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Towards cognitive brain-computer interfaces : real-time monitoring of visual processing and control using electroencephalography

The first part of this study focuses on BCIs using visual evoked potentials (VEPs) as control signals. A model is proposed to predict steady-state VEPs individually, i.e. to predict the response of a given subject's brain to periodic visual stimulations. This model uses a linear summation of transient VEPs and an amplitude correction for quantitative prediction of the shape and spatial organization of the brain response to repeated stimulations. The simulated signals are then used as a basis of comparison for real-time decoding of electroencephalographic signals in a BCI.

In the second part of this study, a paradigm is proposed for the development of cognitive BCIs, i.e. for the real-time measuring of high-level brain functions. The originality of the paradigm lies in the fact that correlates of cognition are measured continuously, instead of being observed on discrete events. An experiment with the purpose of discriminating between several levels of sustained visual attention is proposed, with the ambition of real-time measurement for the development of neurofeedback systems.

Résumé

Les interfaces cerveau-machine (ICM) ouvrent des voies de communication alternatives entre le cerveau et son environnement. Elles peuvent être utilisées pour supplanter une fonction biologique défaillante ou pour permettre de nouveaux modes d'interaction à l'utilisateur. Les ICM de sortie, dont le fonctionnement se base sur la lecture de données biologiques, nécessitent la mesure de signaux de contrôle stables dans le temps et dans la population. La recherche de tels signaux et leur calibration sont des étapes clefs dans la conception d'une ICM.

Cette étude s'intéresse en premier lieu aux ICM utilisant les potentiels évoqués visuels comme signaux de contrôle. Un modèle est proposé pour la prédiction individuelle de ces potentiels en régime permanent, c'est-à-dire lorsqu'ils sont issus d'une stimulation périodique. Ce modèle utilise une sommation linéaire corrigée en amplitude de la réponse à des stimulations visuelles discrètes pour prédire quantitativement la nature et la localisation spatiale de la réponse à des stimulations répétées. Les signaux modélisés sont ensuite utilisés en temps réel comme base de comparaison pour décoder les signaux électroencéphalographiques d'une ICM.

Dans une deuxième partie, un paradigme est proposé pour le développement d'ICM cognitives, c'est-à-dire permettant la mesure de fonctions cérébrales de haut niveau. L'originalité du paradigme réside dans la volonté de mesurer la cognition en continu plutôt que son influence sur des événements discrets. Une expérience visant à discriminer différents états d'attention visuelle soutenue est proposée, avec l'ambition d'une mesure en temps réel pour le développement de systèmes de neurofeedback.
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This example illustrates the fact that we are not always aware of the focus of our attention and that our conscious choices are only partly responsible for the behaviour of our mind. Sometimes we fail to concentrate on a task and we get distracted. Sometimes we give in to behaviours granting us an instant reward while we had planned a long-term goal-oriented behaviour. Sometimes, we also fail to deal rationally with stressful or highly emotional situations. In fact, most people are concerned to some extent with the mastery of their attention, as it is one of the key components of our brain's functioning.

An important mechanism involved in attention and control is our natural inclination towards stimuli that give us strong and instantaneous rewards, such as new information, erotic content, salty or sugary food and addictive substances. They can lead to behaviours that are both rewarding and reinforcing and can therefore become addictions. Companies use this weakness of our brains to attract our attention towards highly rewarding behaviours and to make us dependent on their products. The problem with the reinforcement of externally driven behaviours leading to short-term rewards is that it consequently weakens our ability to control our attention and thereby our behaviour.
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However, the inability to maintain long-term goal-oriented behaviours is not only a problem for people suffering from addiction or people who spent their childhood watching television and playing video games. It can also be the result of many psychiatric disorders that lead to deficits in executive functions such as attentional and inhibitory control. These include for example attention deficit hyperactivity disorder (ADHD), schizophrenia, major depressive disorder (MDD), etc.

Luckily, it is also possible to use the reinforcement mechanisms of the brain to train ourselves and develop our mastery over attentional processes: be able to focus when we want to, to ignore a stimulus or a thought if we prefer to, and to surrender to a highly rewarding behaviour if we choose to. Through meditation, the training of attention has been one of the important aspects of oriental philosophies for centuries but it is only recently that western medicine got interested in the concept of mindfulness, a focused state of mind not dissimilar to the one developed by Zen meditation, in order to deal with depression, anxiety, addictions, etc.

Meditation and mindfulness training, however, is complex tasks. Beginners require guidance, and sometimes report not knowing if they are doing it correctly. In addition, meditation may take some time before its effects are felt, and it may not be very suitable for young children or for people suffering from advanced attention deficits. Therefore, the development of modern techniques for the training of attention may prove crucial for cognitive therapy (CT), but also for healthy people who want to become more self-conscious, more self-confident, or better at managing their emotions.

What are we trying to do?

The long-term goal of our research is the development of a brain-computer interface (BCI) able to monitor the fluctuation of attention in real time. This "attentionometer" could for example warn its user immediately and objectively that its attention shifted towards a distractor. It could also be used to determine its user's ability to pay attention at certain moments of the day, for example to know if he is capable of driving. Such a device could also be used to train sustained attention by providing a continuous feedback to the user. More generally, being able to monitor our attention as directly as for example the position of our arm would probably allow us to learn how to consciously regulate our attention, and to find ways to concentrate easily and comfortably during long periods of time. This is the principle of neurofeedback [Lachaux, 2011].

The challenge is to find a neural correlate of the fluctuation of attention that can be monitored in real time and that, ideally, does not require invasive hardware nor the performance of a specific task.

Our initial hypothesis was that the fluctuation of visual sustained attention could be monitored by following the amplitude of continuously evoked potentials in the visual cortex. Even though these brain signals are conditioned by external stimuli, any objective measure of attention can be used thereafter to find other correlated brain signals that may be independent from external stimulation.

Consequently, the first purpose of my research project consisted in the characterization and modelling of these steady-state visual evoked potentials (SSVEPs) using CHAPTER 1. INTRODUCTION electroencephalography (EEG). The second objective of my research project was to study neural correlates of sustained attention in order to design a cognitive BCI.

Thesis overview

The present dissertation is organized as follows:

• chapter 2 introduces the concept of BCI, and discusses several aspects and constraints related to the design of such devices. It also presents some examples of EEG-based BCIs developed by the neural engineering community.

• chapter 3 presents the particular characteristics of EEG signals along with the mathematical methods used throughout the present dissertation, including filtering and machine learning techniques.

• chapter 4 starts with an historical review of attention modelling, followed by the proposition of an integrative model of attention and executive control. This chapter also introduces the anatomy of attention-related networks and some neurophysiological effects of attentional processes.

• chapter 5 proposes a method for the individual simulation of SSVEPs based on transient VEPs, and studies the accuracy of this simulation technique in both the time and frequency domains based on EEG recordings.

• chapter 6 studies the relevance of the simulation technique presented in the previous chapter in the context of SSVEP-based BCIs. It also presents the results obtained when taking into account the spatial distribution of transient VEPs in the modelling of SSVEPs.

• chapter 7 proposes an experimental paradigm involving a continuous task for the monitoring of visual sustained attention. Results obtained when classifying EEG epochs at several levels of attentional load and using spectral power features are also presented.

• chapter 8 summarizes the results presented in the previous chapters and proposes another experimental paradigm for the monitoring of visual attention, for which the data have been collected but not yet analysed at the time this dissertation was written. Future lines of research around the topic of this work are also discussed.
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The results presented in this thesis have been partially published in international conferences and a review paper on the mechanisms of neurofeedback have been submitted to a journal. This section references my contributions. as brain-machine interface (BMI), mind-machine interface (MMI), or direct neural interface (DNI). We review different aspects and constraints of BCI design and present examples of devices that are being or have been developed by the neural engineering community.

CHAPTER 2. BRAIN-COMPUTER INTERFACES: CONNECTING BRAINS WITH MACHINES

2.1 What is a brain-computer interface (BCI) ?

Introduction

Brain-Computer Interfaces (BCIs) are communication systems that enable a direct and real-time exchange of information between the brain and the external world. A good introduction to the subject was given by Miguel Nicolelis (see Nicolelis [2011]). The first BCI development attempt, which also served as a proof of concept, was carried out in 1973 by Jacques Vidal and his team in California. Their experiment was called the "BCI project" and "was meant to evaluate the feasibility and practicality of utilizing the brain signals in a man-computer dialogue" [Vidal, 1973]. Vidal and his team developed new hardware and innovative signal processing techniques for EEG acquisition, and pointed out many of the requirements of brain-computer interfacing. Generally speaking, the goal of BCI systems is to create communication pathways that differ from the normal input/output channels used by the brain, namely the sensory organs to capture information about the world and the peripheral nervous system coupled with the muscles to interact with the environment [START_REF] Wheland | Brain-computer interface technology: a review of the first international meeting[END_REF]. The purpose of such alternative pathways is frequently viewed as a means of assisting in the rehabilitation of disabled or paralysed persons, to whom BCIs can be of great help by either replacing a defective sensory input or providing substitute ways to interact with the world. These applications are the most developed BCIs to date and belong to the field of neuroprosthetics, which will be discussed in the next section (2.1.2). However, many other applications can emerge from the development of real-time brain signals decoding and stimulation techniques. They include applications of neurofeedback, such as cognitive therapy (CT) (see section 2.1.4), and applications outside of the medical world, such as for alternative computer controllers1 , silent communication devices 2 or ways to improve cognitive activity 3 .

The field of neuroprosthetics

Neuroprosthetics is a bioengineering discipline concerned with the development of prostheses that are directly connected to the central nervous system. The goal when developing such a device is to provide a replacement for a missing or defective body part while making sure its use requires as little effort as possible. The most common and successful neural prosthesis to date is the cochlear implant, of which more than 320.000 had been installed up to 2012 4 . These devices do not require any conscious effort from the user and allow most of the patients that lack functional cochlear hair cells and, therefore, cannot transduce sound into neural activity to recover audition. BCIs
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that transform an external signal into perceptible neural activity or directly influence brain activity are called input BCIs, as opposed to output BCIs, which convert brain activity into overt device control or feedback signals [START_REF] Leuthardt | The emerging world of motor neuroprosthetics: a neurosurgical perspective[END_REF]. More details will be given in section 2.1.3. Apart from cochlear implants, sensory prostheses include auditory brainstem stimulators (see e.g. [START_REF] Otto | Multichannel auditory brainstem implant: update on performance in 61 patients[END_REF]) and all types of visual implants, ranging from retinal to nervous and finally cortical devices that can provide support to an impaired visual system [START_REF] Leuthardt | The emerging world of motor neuroprosthetics: a neurosurgical perspective[END_REF]. Other neuroprostheses, which fall in the output BCIs category, allow the control of prosthetic limbs through cortical readings [START_REF] Fisher | Neuroprostheses for somatosensory function[END_REF]. These BCIs often use invasive recording technologies, such as electrocorticography (ECoG) or implanted electrode arrays, to control complex prostheses with more than two or three degrees of freedom [Schwartz, 2004]. Prostheses that are controlled using electromyograhy (EMG) or peripheral nervous activity are not brain-computer interfaces in the strict sense but are very similar, and a lot of effort is devoted to providing somatosensory feedback to existing prosthetic limbs, for example using input BCIs [START_REF] Fisher | Neuroprostheses for somatosensory function[END_REF].

Terminology of BCIs

In the previous section, we mentioned the difference between input and output BCIs, which is based on whether the neural interface is used to get information into the brain or from the brain. These are obviously not exclusive and input-output BCIs can be considered. There is a controversy about the fact that input-only devices are actual BCIs, since the definition given during the First International Meeting on Brain-Computer Interface Technology stated that a BCI is "a communication system that does not depend on the brain's normal output pathways" [START_REF] Wheland | Brain-computer interface technology: a review of the first international meeting[END_REF], implying that a BCI necessarily creates an output channel. Even Gert Pfurtscheller, who introduced the concept of hybrid BCI and thereby lifted the restriction that BCI systems should only take brain activity as input, mentioned that a BCI "must rely on activity recorded directly from the brain" [START_REF] Pfurtscheller | Niels: The hybrid BCI[END_REF]]. However, it seems obvious to me that creating artificial inputs into the central nervous system also belongs to the field of brain-computer interfacing. Even so, techniques of direct brain stimulation (e.g. implanted electrodes, transcranial magnetic stimulation (TMS) or transcranial directcurrent stimulation (tDCS)) are not the subject of this dissertation and will not be detailed.

When designing an output BCI, one of the most important tasks is to find a measurable source of neural activity that can be used either to control an external device or to give a feedback to the user. This signal, extracted from biological data, is called the control signal. A distinction can be made depending on what kind of control signal is used [START_REF] Mason | A comprehensive survey of brain interface technology designs[END_REF]. A BCI deriving its control signal from spontaneous brain activity is referred to as endogenous, whether this activity is consciously generated by the user or not. However, an exogenous BCI uses evoked brain activity modulated by the user as a control signal, which means that such systems must both elicit brain activity and extract its characteristics. The stimulus responsible for the evoked activity is called a probe stimulus [START_REF] Zander | Enhancing human-machine systems with secondary input from passive brain-computer interfaces[END_REF] and is often sent through standard sen-CHAPTER 2. BRAIN-COMPUTER INTERFACES: CONNECTING BRAINS WITH MACHINES sory pathways (visual, auditory or somatosensory), such as in the P300 speller or the SSVEP-based BCI (see section 2.3). Thorsten Zander introduced a slightly different classification in which exogenous BCIs are referred to as reactive while endogenous interfaces are separated into active and passive, respectively if the subject consciously triggers control signals or if the interface passively monitors the user's brain state [START_REF] Zander | Enhancing human-machine systems with secondary input from passive brain-computer interfaces[END_REF][START_REF] Zander | [END_REF]. To further refine this classification, we call sensory BCI a device with a control signal that is a correlate of sensory processing, motor BCI a device that uses activity from the motor cortex, and cognitive BCI a system that monitors cognition, that is, the high-level brain activity that deals with knowledge processing.

Other distinctions used to talk about output BCIs include synchronous vs. asynchronous, determined by whether the device or the user decides when a command is sent, respectively [START_REF] Leeb | Self-paced (asynchronous) BCI control of a wheelchair in virtual environments: a case study with a tetraplegic[END_REF]; dependent vs. independent, referring to whether or not a standard communication pathway is also required by the system [START_REF] Wolpaw | Brain-computer interfaces for communication and control[END_REF]; and invasive vs. non-invasive, which depends upon the nature of the brain imaging technique used to extract the control signal (see section 2.2.2).

Feedback and neurofeedback

Proper operation of a brain-computer interface requires the user to train new mental skills that can include interpretation of new neural inputs and voluntary alteration of brain activity. In output BCIs, the electrophysiological control must be precise enough to be detected by the device [START_REF] Wolpaw | Brain-computer interfaces for communication and control[END_REF], and development of such skills can take a lot of effort, especially in the case of BCIs based on spontaneous brain activity (active BCIs) [Rao, 2013]. Individual adjustment of the behaviour of the algorithms responsible for translating neural activity into control signals, a process called calibration, can drastically reduce the time taken by the training period [START_REF] Pfurtscheller | Brain-computer interface-a new communication device for handicapped persons[END_REF][ [START_REF] Curran | Learning to control brain activity: a review of the production and control of EEG components for driving brain-computer interface (BCI) systems[END_REF].

To learn how to use a BCI, a subject has to gain insight into whether or not he is performing well [START_REF] Mcfarland | EEG-based communication and control: short-term role of feedback[END_REF]]. The feedback given to the user can either be based on performance, meaning the subject can evaluate how well he is doing at the task, such as whether he can see the movement of the cursor he is trying to control, or based on result, meaning the subject is told after an experimental trial whether he succeeded or failed. Both approaches have been shown to bring information and motivation important for motor learning [START_REF] Wulf | Motor skill learning and performance: a review of influential factors[END_REF], which will likely be analogous during BCI training. Feedback is, therefore, considered mandatory in many BCI paradigms [START_REF] Pfurtscheller | Niels: The hybrid BCI[END_REF].

A neurofeedback paradigm is a special kind of BCI with the purpose of helping the user control a particular brain activity. This kind of BCI can serve as training for use in another BCI (e.g. [START_REF] Pfurtscheller | Walking from thought[END_REF]) or be used on its own for clinical benefits. A review of different neurofeedback studies can be found in [START_REF] Gruzelier | Validating the efficacy of neurofeedback for optimising performance[END_REF]. Such training paradigms usually involve real-time and quantitative feedback of the subject's neurophysiological signal to make learning possible. Helpers for reinforcement, such as game-like environments, are often used and lead to improved motivation and re-CHAPTER 2. BRAIN-COMPUTER INTERFACES: CONNECTING BRAINS WITH MACHINES sults [START_REF] Neuper | Neurofeedback training for BCI control[END_REF]. A paper proposing a model of cognitive adaptation processes involved in neurofeedback was prepared in our team during my Ph.D. and can be found in appendix A.4.

How does it work ?

This section is focused on the functioning of BCIs that use brain activity to control a device or create a feedback (see output BCI in section 2.1.3).

Online and offline functioning

The typical workflow that can be found in many introductions to brain-computer interfaces (e.g. [START_REF] Leuthardt | The emerging world of motor neuroprosthetics: a neurosurgical perspective[END_REF]), an illustration of which is presented on Figure 2.1, corresponds to the online functioning of an output BCI. "Online" means that the interface is working in real time and the inputs are taken directly from the subject to whom the feedback is given [START_REF] Yourdon | YOURDON, Edward: Design of on-line computer systems[END_REF]. A real-time system can be defined as "one which controls an environment by receiving data, processing it and returning the results sufficiently quickly to affect the environment at that time" [Martin, 1967]. To make real-time possible, the main components of an online BCI are as follows:

1. SIGNAL ACQUISITION. The BCI system records brain activity from the user with one or more functional neuroimaging techniques (see section 2.2.2). Analog signal processing such as amplification or noise filtering may be performed before the signals are usually digitized for further processing.

2. SIGNAL PROCESSING. Data coming from the acquisition system are usually filtered and can be calibrated to fit with the data used to train the system. Then, features are extracted from the incoming signals and used to determine, in real time, which command should be activated or what feedback should be displayed. The translation algorithm is often a semi-empirical model created using supervised learning to separate brain activity into classes that correspond to different commands (classification) or to predict the level of a specific activity (regression). More details about filtering, feature extraction and supervised learning can be found in chapter 3.

3. DEVICE OUTPUT. The output of a BCI can take many forms, such as a simple display of a brain activity correlate or the control of a software (e.g. movement of a cursor) or an external device (e.g. a wheelchair). Feedback concerning the status of the output should be given to the user of the BCI to improve his or her performance.

To calibrate the data during the signal formatting phase and determine the output of the system during the translation phase (see Figure 2.1), most BCIs must be trained using data acquired in a situation similar to the one in which the online BCI has to run. Of course, training data are usually acquired before a functional BCI exists. Therefore, The main elements are as follows: 1) signal acquisition (in gray), including recording, hardware pre-processing and analog to digital conversion; 2) signal processing (in orange), which includes data formatting (usually calibration and filtering), feature extraction and translation (classification) and 3) device output (in green), which can be of different nature and should provide a feedback to the user in real time. Figure 2.1). Data acquisition and signal processing are the same as in the online BCI up to the feature extraction step. Data are acquired on as many training subjects as possible using a task (in blue) designed to elicit brain responses that can be separated by a classifier (in orange). Once enough data have been recorded, the classifier is trained and its parameters will be used for the translation algorithm of the online BCI. the user does not receive any feedback and is instructed to follow a strict protocol designed to elicit different brain responses that will be used online to generate multiple commands. This important step in the design of a BCI is called the training phase, and the set-up used is referred to as an offline BCI. An illustration of the workflow used during this training can be found in Figure 2.2. During offline analysis, different signal processing techniques, classes of features and types of classifiers can be tested because no real-time output is given. However, since the data used to train the interface and those collected by the online BCI should go through the same signal processing steps, the techniques used offline for data processing should be usable in real time. This constraint is the main reason why some advanced signal processing techniques are not yet used in BCI systems.

Brain-imaging techniques

In the previous section, we mentioned that the first essential component of a BCI, whether it be run in real time (online) or with delayed analysis for training purpose (offline), is a functional signal acquisition system. This section briefly introduces different brain-imaging techniques and their advantages and drawbacks for use in a BCI. As a reminder, functional and structural imaging differ in the fact that they focus on MACHINES 3: Time-course of the hemodynamic response (HR) as seen using functional magnetic resonance imaging (fMRI). After an initial short dip, the blood flow increases to reach a maximum 4 to 8 s after stimulus onset. This is followed by a negative overshoot below the baseline that can last for 30 s. Image reproduced from [START_REF] Kornak | Spatially Extended fMRI Signal Response to Stimulus in Non-Functionally Relevant Regions of the Human Brain: Preliminary Results[END_REF] under the Creative Commons licence.

revealing physiological activity or on the physical structure of the observed tissue, respectively. Also, we call invasive an acquisition system that requires surgery to record brain activity and non-invasive a system that can be deployed without opening the body.

Measures of the hemodynamic response (HR)

The human brain represents only 2% of the total weight of the body while being able to consume up to 20% of its total energy [START_REF] Attwell | An energy budget for signaling in the grey matter of the brain[END_REF]. To properly deliver oxygen and glucose to the neuronal tissues, the brain contains a dense mesh of arteries, arterioles and capillaries, that can be locally dilated or constricted by vascular smooth muscles to adjust the amount of nutrients that reach a particular brain region. This effect is called neuro-vascular coupling. The increase of the blood flow in an active neuronal tissue is called the hemodynamic response (HR), and appears with a delay of several seconds, as can be seen in Figure 2.3. Functional brain imaging based on the HR is considered an indirect measure of brain activity but provides a good spatial resolution. Three methods that record the HR will be presented in this section.

Functional magnetic resonance imaging (fMRI)

An increase of the blood flow in a specific region of the brain provokes an increase of the local blood density, as well as a change of oxygenated to deoxygenated hemoglobin concentrations. The magnetic properties of hemoglobin vary according to its oxygenation level, and cerebral blood flow can, therefore, be measured by observing the magnetic response of blood vessels. This functional imaging signal based on the concentration of deoxyhemoglobin is called the blood oxygenation level dependent (BOLD) effect and is the most commonly used signal in fMRI. It allows for a visualization of the active areas of the brain in delayed real time with a spatial resolution of about 1 mm [START_REF] Yoo | Brain-computer interface using fMRI: spatial navigation by thoughts[END_REF]. An example of an image obtained using this technique can be found in Figure 2.4.

Apart from a good spatial resolution, fMRI benefits from a negligible interaction between magnetic fields and organic tissues, making it possible to measure activity deep in the brain, such as in the subcortical regions or in cortical areas away from the scalp. Another advantage of the technique is that it is totally non-invasive and does not require electrodes nor any preparation of the subject.

Drawbacks include the high cost and size of the equipment, as well as the technical expertise required for data analysis. MRI scanners also use cryogenic fluids to maintain their magnets at superconducting temperatures, which make them quite expensive to run and nearly impossible to move. In addition, when performing a full brain scan, the recording of a single image can take a full second, limiting the sampling rate of the system to approximately 1 Hz. Finally, as with other brain-imaging techniques based on the hemodynamic response (HR), the delay with which the HR appears makes it difficult to use the system in real time.

Functional near-infrared spectroscopy (fNIRS)

In addition to having different magnetic properties, oxygenated and deoxygenated hemoglobin differ in their light absorption spectrum. This property makes it possible to monitor the cerebral blood flow, especially the blood oxygenation level dependent (BOLD) signal, using an optical method. The idea is to send light beams in the brain and monitor backscattered light to get a direct measurement of the blood oxygenation level. The activation maps obtained through functional near-infrared spectroscopy (fNIRS) are highly correlated with what can be measured using fMRI, even though fMRI data are usually more significant [START_REF] Cui | A quantitative comparison of NIRS and fMRI across multiple cognitive tasks[END_REF].

The limitation due to the delay of the HR is the same in fNIRS and fMRI, but optical spectroscopy benefits from a better temporal resolution, with a sampling rate that can go up to 1 kHz. However, due to the scattering and absorption of the light in the brain, the spatial resolution of fNIRS is not as good as in fMRI, and it is impossible for fNIRS to measure activity deeper than 4 cm below the scalp. Hair can also create interferences in the optical pathway, and fNIRS may not be ideal for measurements over very hairy areas. On the bright side, fNIRS is completely non-invasive and requires little preparation of the subject. It can be integrated in a helmet (see Figure 2.5) and is, therefore, convenient and lightweight in addition to being a lot cheaper than fMRI.

Measures of the electromagnetic response

Instead of monitoring the blood flow response to increased neural demand (as was discussed in the previous sections), a more direct way to monitor the brain's functioning is to measure correlates of the electric activity of neural cells. The various electric contributions that can be imputed to neurons and neuroglia will not be detailed in the present document, but a recent review can be found in [START_REF] Buzsáki | The origin of extracellular fields and currents-EEG, ECoG, LFP and spikes[END_REF]. The classical techniques used to monitor the electric activity of the brain will be introduced in the present section. Information and models concerning electric fields in the brain can be found in [START_REF] Nunez | Electric fields of the brain: the neurophysics of EEG[END_REF].

Implanted electrodes

The most precise method to monitor the electric activity of neural cells is the insertion of electrodes inside the brain near the cells that should be recorded. This technique provides the best possible spatial accuracy because it allows the recording of the spikes of a single neuron. Usually, multiple electrodes made of steel, glass or silicon are implanted into a region of interest, and record a signal called local field potential (LFP), from which it is possible to extract both the action potentials of nearby neurons and the membrane potential-derived fluctuations [START_REF] Buzsáki | The origin of extracellular fields and currents-EEG, ECoG, LFP and spikes[END_REF]. This invasive technique also allows local stimulation of small groups of neurons and can be used to create both inputs and outputs for real-time interaction (an example can be found in de [START_REF] De Lavilléon | Explicit memory creation during sleep demonstrates a causal role of place cells in navigation[END_REF], where real-time recording and stimulation are used to create false memories in a rat's brain). The major drawback of implanted electrodes for use in BCI systems is their invasiveness, coupled with the fact that the tissue surrounding the electrodes usually heals over time, weakening the signals recorded by the system.

Electrocorticography (ECoG)

ECoG is an invasive recording technique that uses stainless electrodes to record activity directly from the surface of the cerebral cortex (see Figure 2.6). The signals obtained using ECoG are basically a spatially and temporally smoothed version of LFPs, and, therefore, close to what can be recorded using EEG. However, the electric fields recorded by ECoG are not attenuated by the skull and less subject to electromyographic noise than when using EEG. Thus, ECoG has a better spatial resolution, which can be brought down to less than 5 mm² [START_REF] Buzsáki | The origin of extracellular fields and currents-EEG, ECoG, LFP and spikes[END_REF].

CHAPTER 2. BRAIN-COMPUTER INTERFACES: CONNECTING BRAINS WITH MACHINES

Electroencephalography (EEG)

EEG is one of the oldest and probably the most widely used technique for the measurement of electrical activity in the brain. This technique was introduced as a tool for human brain study by [START_REF] Berger | Über das elektrenkephalogramm des menschen[END_REF][Berger, 1929] and has often been improved since. What started with qualitative analysis of the shape of measured signals can now make use of hundreds of electrodes to record quantitative variations in time and space. EEG systems usually rely on silver chloride electrodes to convert electric fields into electron current. These electrodes require an aqueous environment containing chloride ions and provide with a good signal quality and low contact impedance. Installing these electrodes takes some time, as electrolyte gel should be applied to the scalp at each electrode site. Dry electrodes using metal coatings have been developed over the past decades but still do not provide the same signal quality as their wet counterparts, especially below 1 Hz and over 30 Hz. However, dry (and even non-contact) electrodes are suitable for certain EEG-based BCI applications [Chi et al., 2012].

A measure on a single electrode results from the integration of LFPs on an area that can reach 10 cm² [START_REF] Buzsáki | The origin of extracellular fields and currents-EEG, ECoG, LFP and spikes[END_REF]. It implies that an activity can be recorded only if one million spatially aligned neurons fire in a coherent way [START_REF] Nunez | Electric fields of the brain: the neurophysics of EEG[END_REF]. Fortunately, the pyramidal neurons present below the surface of the neocortex (hence below the scalp) are organized in columns that produce coherent electric fields that EEG can detect (see Figure 2.7 for an illustration of the neuronal organization of the cortex). In addition, the spatial resolution of EEG can be highly improved when recording with multiple electrodes by using either spatial filtering (see Section 3) or source reconstruction (which will not be used or described in this document). Placement of EEG electrodes for brain activity recording generally follows a mapping of the scalp called the 10-20 system, which can be found in Figure 2.8.These positioning guidelines will be used when designing experiments in the following chapters. An illustration of the typical EEG recordings obtained in our laboratory is presented in Figure 2.9.

Temporal resolution of EEG can be greater than 1 kHz, which is amply sufficient to measure brain activity in the frequency domain that is not filtered by the skull and the other tissues surrounding the brain. Typically, electric fields at frequencies above 100 Hz cannot be recorded by EEG because their signal-to-noise ratio (SNR) becomes too low. More details about EEG recordings in the frequency domain will be given throughout chapter 3.

Apart from its high temporal resolution, EEG benefits from being a non-invasive, portable, and cheap technology that measures direct correlates of brain activity, thereby avoiding the inherent delay of imaging techniques relying on the HR. These qualities make EEG a good candidate for BCI applications despite its low spatial resolution, its weak signal-to-noise ratio (SNR), and the preparation required prior to recording. An illustration of the EEG helmet used during this research can be found in Figure 2. [START_REF] Brainard | The psychophysics toolbox[END_REF]. Several examples of EEG-based BCIs will be presented in section 2.3. The international 10-20 system is the most commonly used reference for the placement of EEG electrodes. This system was developed and widely accepted to ensure reproducibility of EEG experiments. The "10" and "20" refer to the distance between two adjacent electrodes, which represents 10% or 20% of the total distance between the nasion and the inion (for front to back distances), or between the ears (for left to right distances). Each electrode site is labelled using one or two letters indicating the position of the electrode along the front-back line and a number indicating its position along the right-left axis. This number is replaced by a "z" when the electrode is located on the midline, and otherwise increases as the electrode gets farther from it. Even and odd numbers, respectively, refer to the right and left hemispheres. "Fp" stands for frontal polar, "AF" for anterior frontal, "F" for frontal, "FC" for fronto-central, "FT" for fronto-temporal, "C" for central, "T" for temporal, "CP" for centro-parietal, "TP" for temporo-parietal, "P" for parietal, "PO" for parieto-occipital and "O" for occipital. "A" corresponds to electrodes placed on the ears (often as electric potential references). Electrodes are displayed from the front to the back and from the left to the right of the head. Data were recorded on a healthy subject with his eyes closed and were filtered between 0.5 Hz and 90 Hz. Oscillations with a frequency of about 10 Hz, called the α rhythm, can be observed on the occipital channels (O1 and O2) with a peak-to-peak amplitude of nearly 160 µV. These oscillations are still visible on the sides of the head up to the central electrodes (C3 and C4) with a lower amplitude as the electrodes get farther from the occipital cortex. In the absence of artefacts and high amplitude activity, such as the α rhythm, the amplitude of EEG signals usually remains below 80 µV peak-to-peak, as can be observed on the frontal channels. 

Magnetoencephalography (MEG)

MEG is a brain imaging technique that uses superconducting quantum interference devices (SQUIDs) to monitor the weak magnetic fields (10-1000 fT) resulting from neuronal electric currents. Because magnetic fields are less sensitive to the tissues surrounding the brain and to extracellular space than electric fields are, the signals recorded with MEG are less distorted in both space and time than EEG signals [START_REF] Buzsáki | The origin of extracellular fields and currents-EEG, ECoG, LFP and spikes[END_REF]. Therefore, MEG benefits from both high temporal and spatial resolutions (about 1 ms and 2-3 mm, respectively) and from a larger bandwidth than EEG has, especially in the high-frequency domain (above 40 Hz). However, the size and cost of MEG systems make them less common than EEG in BCI studies.

The choice of EEG

In the previous section, we introduced the functional imaging techniques that can be used for real-time or close to real-time applications. Among these methods, EEG ans fNIRS are the only non-invasive and portable systems, making them good candidates for the design of lightweight and affordable BCIs. Both have the potential to record cognitive activity [START_REF] Klimesch | EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis[END_REF]][Cui et al., 2011]. However, EEG has the advantage of measuring a direct correlate of brain electric activity while fNIRS measures a delayed response. The research in our team has therefore been focused on EEG, even though a bimodal BCI using both fNIRS and EEG has been studied [START_REF] Tomita | Bimodal BCI using simultaneously NIRS and EEG[END_REF]. 

Examples of EEG-based BCIs

In this section, we present some examples of non-invasive BCIs that use EEG to create an output pathway from the brain to the external world.

P300-based BCI

The P300 or P3 wave is an event-related potential (ERP) that appears over the cerebral cortex after the presentation of a rare but expected stimulus [START_REF] Farwell | Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials[END_REF]. The apparition of such a waveform is thought to be linked with decision making and the process of stimulus categorization. An oddball paradigm, in which uncommon targets are mixed with common non-target items, is generally used to elicit P300 potentials. This protocol can either use visual or auditory stimuli. When recorded using EEG, the P300 ERPs have their strongest amplitude over the parietal cortex and take their name from the positive (P) fluctuation of the EEG signal appearing about 300 ms after stimulus onset. An illustration of a P300 potential can be found in Figure 2.11. In the case of visual stimuli, this ERP appears even if the subject is not foveating the target, but its amplitude decreases if only covert attention is paid to the stimulus [START_REF] Treder | Benjamin: (C)overt attention and visual speller design in an ERP-based brain-computer interface[END_REF].

The advantages of the P300 are that it appears on nearly every subject without prior training and has some stable characteristics over the population. It is, therefore, a good candidate for the development of a BCI and the first prototype of a P300-based BCI, known as the P300 Speller, was developed in 1988. This interface allowed users to enter words with a virtual keyboard by thinking about the letter they wanted to select [START_REF] Farwell | Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials[END_REF]. The principle of the system is the following: each row and column of the virtual keyboard flashes randomly (see Figure 2.12), and the user is Figure 2.12: Example of a P300 speller interface with the fourth column flashing. Characters that the user can choose are displayed on a computer screen and organized on a grid. Lines and columns randomly flash, and the subject is asked to count the number of times the character he wants to input is highlighted. The BCI records the P300 potentials generated by the flashes and estimates which character the user has selected. Image reproduced from [START_REF] Sepulveda | SEPULVEDA, Francisco: Brain-actuated Control of Robot Navigation[END_REF].

asked to count the number of times the letter he wants to type is flashed. When a P300 is detected in the brain, the BCI knows that the letter has been flashed about 300 ms before the P300 wave. After a small number of flashes, the system can determine which letter the user is thinking about.

This BCI paradigm has been reproduced and improved by many teams over the years and have been shown to work on people suffering from motor impairment (Amyotrophic Lateral Sclerosis, see [START_REF] Nijboer | A P300-based brain-computer interface for people with amyotrophic lateral sclerosis[END_REF]). According to the terminology presented in section 2.1.3, the P300 Speller can be classified as a sensory reactive output BCI, even though it does not use evoked potentials but event-related potentials. It is also synchronous, dependent and non-invasive.

SSVEP-based BCI

Steady-state visual evoked potentials (SSVEPs) are the electric responses elicited in the brain by blinking lights or patterns, a stimulus referred to as intermittent photic stimulation (IPS). These evoked potentials are the result of a repeated stimulation of the visual cortex and are interesting for BCI design because their temporal structure is time locked to the stimuli that elicit them [Vialatte et al., 2010]. Consequently, a stimulus blinking at a known and constant rate will elicit SSVEPs with the same fundamental frequency, which can be easily extracted from background activity. Another interesting aspect of these potentials is that their amplitude increases when the subject gazes at them or even just attends to them. A lot more details about VEPs and their steady-state form will be given throughout chapters 5 and 6.

The predictable and very localized frequency content of SSVEPs has been thoroughly used to design BCIs where several patterns flickering at different frequencies are shown to the user, who can select a command by foveating or just attending to the corresponding pattern. The BCI will extract the frequency content of the brain activity occurring in the visual cortex and determine which command was selected by the user based on the amplitudes of the frequencies displayed to the user and their harmonics. An example of the display of a SSVEP-based BCI that we developed during my Ph.D. can be found in Figure 2.13 and an example of the SSVEP response observed in the frequency domain can be found in Figure 2.14. One aspect of my research was to investigate the detection of SSVEPs in the time domain and how this could be applied to the development of a SSVEP-based BCI. The results will be presented in chapter 6.

As the P300-based BCI presented in the previous section, SSVEP-based BCIs are reactive output BCIs that use a sensory modality for their probe stimulus. They benefit from the fact that the SSVEP response does not need to be trained and appear on most subjects. Training can, nonetheless, increase the user's ability to use the BCI, since the user can learn to better focus his attention on one stimulus, thereby inhibiting the response to other stimuli. The major drawback of SSVEP-based BCIs is that they are tiring for the eyes and may cause epileptic seizures among sensitive subjects.

BCI using motor imagery

The two previous examples of EEG-based BCIs were reactive, which means they used EPs or ERPs as control signals. Here, we introduce an active BCI, which uses spontaneous brain activity that can be consciously generated by the user to trigger com-MACHINES This spectrum was obtained using the fast Fourier transform (FFT) and a Hanning window on a 15 s EEG signal recorded over the occipital cortex while the subject was staring at a single blinking black and white chequerboard. The brain response is a periodic signal with a fundamental frequency of 5 Hz. Because it is not a pure sine wave, its frequency decomposition consists of several peaks at multiples of 5 Hz.

mands. The operating principle of a motor imagery BCI is that imagination of movements generates electric activity in the somatosensory cortex that can be detected via EEG. This activity is similar to what can be observed in this brain region when real movements are executed. However, proper generation of detectable spontaneous brain activity takes a lot of training [START_REF] Mcfarland | Electroencephalographic (EEG) control of three-dimensional movement[END_REF].

In practice, regular oscillations called the sensorimotor rhythm (SMR) can be observed in the resting somatosensory cortex. These oscillations are generally found in the 8 Hz to 15 Hz frequency range (called the µ band in the somatosensory cortex) [START_REF] Fruitet | Interfaces Cerveau-Machines basées sur l'imagination de mouvements brefs: vers des boutons contrôlés par la pensée[END_REF]. When a movement occurs, or when the subject imagines this movement, these regular oscillations tend to disappear for a short period of time, a phenomenon called event-related desynchronisation (ERD). Once the movement is over, the amplitude of the SMR increases anew and usually becomes stronger than before the movement, a phenomenon called event-related synchronisation (ERS). Both ERD and ERS can be detected in real time and can therefore be used as spontaneous control signals for an output BCI.

The organization of the somatosensory cortex is somatotopic, which means that there is a point-for-point correspondence between each area of the body and a specific region of the cortex. With enough EEG electrodes to increase spatial resolution, this organization makes it possible to design a BCI with multiple commands, each corresponding to the imagination of a movement of a different part of the body. In 2010, a motor imagery BCI allowed users, which included a subject with a spinal cord injury, CHAPTER 2. BRAIN-COMPUTER INTERFACES: CONNECTING BRAINS WITH MACHINES to control three independent signals and move a cursor in a three-dimensional space [START_REF] Mcfarland | Electroencephalographic (EEG) control of three-dimensional movement[END_REF].

Constraints

In this section, we briefly present some important constraints to take into account during BCI design.

Training both the human and the machine

As mentioned in the previous sections of this chapter, using a BCI can involve a lot of training for both the user of the BCI and the BCI itself. This training is required because the system has to reach a compromise between what a given human brain can do and what the machine can understand from neural activity. If the computer cannot adapt well to the user, then the user has to learn how to generate a standardized pattern in his EEG data that the computer will understand. However, if the user is completely untrained, the machine has to be able to identify both signal and noise by itself and determine individual parameters, such as detection thresholds. Therefore, it seems logical that a BCI with a good calibration process and a large and well-calibrated database will require less training from the user at the cost of a lot of time spent developing the BCI.

Of course, training of both the human and the machine can be shortened if the user accepts a lower accuracy of the system or a longer response time, which usually means the BCI gets more data before a command is executed, and can, thus, get a better SNR. There are situations, however, in which the response time cannot be artificially increased because the control signal has a specific duration (e.g. a single P300 potential) and other situations where human training is not easy (e.g. training of a schizophrenic for a neurofeedback paradigm) or impossible (if the control signal cannot be consciously altered). In these cases, improvement of the hardware, signal processing, calibration phase and larger training databases are required for applications outside the laboratory.

BCI illiteracy

Both literature and experience suggest that some people can use a given BCI more easily than others. Due to the variability of brain wiring among the population, it happens that a subject's recorded activity does not show the features that a BCI is looking for to extract a control signal. The phenomenon is called BCI illiteracy and has been reported to affect 15% to 30% of the population. Yet, training these BCI illiterate subjects with a proper neurofeedback paradigm designed to enhance the brain activity that the BCI is looking for could help them use the system [START_REF] Vidaurre | Benjamin: Towards a cure for BCI illiteracy[END_REF]. Of course, this strategy would work only if the control signal can be consciously enhanced, and one could make the hypothesis that only large datasets accounting for the variability observed in the population could solve certain cases of BCI illiteracy. 

Noise and artefacts

One major constraint when designing an EEG-based BCI is that the relevant brain signals are generally buried in a lot of electric activity. This noise can either come from the brain but be unrelated to the control signal, or originate from other sources in and out of the body, in which case the resulting signals are called artefacts. The problem is that EEG signals have a low amplitude (varying between 1 µV and 100 µV), whereas artefacts, such as muscular activity, can have amplitudes three orders of magnitude higher. Such strong signals can propagate across the scalp, distorting neural activity [START_REF] Croft | Removal of ocular artifact from the EEG: a review[END_REF]. Below, we summarize the most common electric artefacts observed in EEG, of which some are illustrated in Figure 2.15.

1. Eye movements generate low-frequency artefacts with amplitudes that vary according to the speed and extension of the movement. These artefacts are generated by the friction of the eyeball and the eyelid, leading to the creation of a dipole, whose movement is visible on surrounding electrodes. The effect is usually stronger on frontal electrodes but can be detected on all of them, with an amplitude decreasing with the distance from the eyes.

2. Eye blinks are a particular case of rapid up-down eye movements that generate strong amplitude peaks in EEG recordings. Their typical shape and spatial distribution make them relatively easy to remove using blind source separation (BSS). This technique will be presented in chapter 3.

3.

Muscular artefacts, also called EMG activity, are the result of muscular contractions. Depending on the position of the muscle and the strength and nature of the contraction, a muscular artefact can have nearly any amplitude and frequency content but is usually widespread in the frequency domain, with significant power over 30 Hz. The amplitude of a muscular artefact in the temporal domain can go from negligible to three orders of magnitude above brain signals.

These varied artefacts are nearly impossible to filter out, and EEG subjects are usually asked to refrain from excessive movement, especially of the neck, jaw and eyebrows.

4. The heart is a powerful muscle producing a characteristic EMG activity that may be observed in certain EEG recordings. Heart beats can also produce mechanical artefacts due to the blood flowing in subcutaneous veins, which provokes impedance fluctuations. Both heart artefacts often have a stable frequency (between 1 Hz and 2 Hz) and can generally be removed using BSS.

5.

Power-line noise is nearly always visible if the EEG system is not properly insulated from the power grid or if the subject and the experimental set-up are not in a Faraday cage. This noise has a strong amplitude at a very localized frequency (50 Hz or 60 Hz depending on the country), as well as at the harmonics of this frequency, which remain stable over time. Band-stop filters with a narrow bandwidth (also called notch filters, see section 3.4.1) can remove most of the power-line noise.

6. Electrodes can be a source of noise if they move over the scalp or if the subject perspires. In these cases, poor contact between the scalp and the electrode may lead to a change of the contact impedance and, therefore, in the EEG signals. Sometimes, electrode noise can be identified because it appears only on one channel and not on its neighbours but this is not always the case; good practice is to make sure the EEG cap is tight and contact impedances are kept low during experiments. Subjects should also be told to avoid touching the cap or the electrodes.

Several of the aforementioned artefacts can be filtered out in real time, especially those with a known frequency span. However, other artefacts cannot be easily filtered and can, therefore, be found in EEG signals processed by online BCIs. These artefacts tend to lower the accuracy of the interface and trigger false commands. This chapter introduces some technical and practical aspects of the signal processing methods and statistical tools used in this dissertation. It is intended to be understandable by readers who have little or no experience in EEG signal processing and some sections may therefore be skipped by proficient readers. Before going into technical details, I will introduce some aspects of EEG recordings and explain what they imply in terms of signal processing.

The nature of EEG signals

The sources of EEG

Monitoring the activity of the brain using EEG is a bit like following a football game with microphones placed outside the stadium: you know when something is happening because you can hear the crowd cheering and singing, and you can approximate the location of an event based on the relative amplitudes and delays of signals recorded at different locations. However, it is very difficult to know exactly what is happening on the field, which player has the ball and the individual behaviour of each supporter. Similarly, EEG is not a very good tool to identify the brain structures that generate the recorded activity, and is unable to monitor the behaviour of individual neurons or even of small brain structures. For these reasons, people working with EEG usually mention the location on the scalp where they record a specific activity rather than mentioning the sources. Hypotheses about these sources can be made but are hard to verify using only EEG. An algorithm known as low resolution electromagnetic tomography (LORETA) can be used to reconstruct sources based on multichannel EEG recordings [Pascual-Marqui, 2009], but precise reconstruction requires a high number of electrodes (64+), which is why this method has not been used with our equipment.

Evoked, induced and spontaneous activity

Signals obtained through EEG recordings are a superimposition of many contributions from either the brain, the rest of the body or the environment (see section 2.4.3). While it is possible to reduce muscular artefacts due to movement and control the electric noise of the environment, the contribution of the brain usually contains a lot of activity unrelated to the task that is being assessed. Consequently, it is required to filter EEG signals to optimize the SNR or signal-to-background ratio. This filtering process is much easier if the measured brain response is time-locked to a stimulus (see section 3.2.1). Time locked responses are called evoked potentials (EPs) if they reflect the processing of the physical properties of a stimulus or event-related potentials (ERPs) if they are a consequence of a more cognitive analysis of the stimulus. Activity unrelated to any stimulation is referred to as spontaneous potentials.

Oscillatory patterns

As mentioned in the previous paragraph, the brain supports self-generated spontaneous activity even in the absence of sensory or motor inputs. This phenomenon requires the presence of oscillators to maintain a basal activity and sustain more complex behaviours that can arise in the presence of a perturbation. Measurements using implanted electrodes have shown that oscillations can be found in the brain at all frequencies between 0.02 Hz and 600 Hz, representing more than four orders of magnitude of temporal scale [START_REF] Buzsaki | BUZSAKI, Gyorgy: Rhythms of the Brain[END_REF]. However, only a limited number of these oscillators are active at the same time, and they can change rapidly. The consequence is that short-lived oscillatory patterns of various durations and frequencies are constantly created and destroyed by the brain's internal dynamics. For this reason, decomposition of EEG data in the frequency domain often leads to interesting results by separating components originating from different brain oscillators. Unfortunately, EEG measurements are not able to grasp the full extent of these oscillatory patterns. High-frequency oscillations are filtered out by the tissues separating the brain from the EEG electrodes, and activity recorded over 100 Hz typically does not originate from the brain. On the other side of the frequency range, slow oscillating patterns at less than 0.5 Hz are often dismissed from EEG data to correct the baseline drift, especially in the BCI community, since accurate measurements of low frequencies require large temporal windows that are not compatible with real-time applications.

The high variability of EEG data

The brain is a complex dynamic system, and the processes generating EEG signals cannot, therefore, be described by linear equations. In addition, EEG signals are nonstationary, which means their statistical properties can change over time. Non-linearity and non-stationarity imply that the response to a given stimulation can be different from one trial to another, even during the same recording session. The variability observed between trials is even larger between individuals, not only because each brain is unique, but also because of the influence of the skull, the environment and the exact position and contact impedance of the electrodes. To circumvent this variability so that EEG signals can be compared between trials and individuals, normalization of the data or calibration of the algorithms is recommended. Normalization refers to any procedure applied to the data to standardize one or several of their statistical properties. For example, it is possible to remove the mean of a signal so that the sum of its time series becomes zero. Calibration refers to a slightly different technique in which the algorithm is adjusted to the subject or the experimental conditions.

Time-domain analysis

The first approach to analyse EEG data is to observe the time series and look for specific patterns. This technique works fairly well for brain activity that results in large amplitude waveforms visible on single-trial recordings, without having to resort to averaging several segments of data. The most visible pattern is the α rhythm, mentioned in a previous chapter (Figure 2.9), which appears when a subject closes his or her eyes. However, most EEG activity has an amplitude lower than the electrical background and is hard to spot without some averaging or filtering techniques. This section (3.2) and the next ones (3.3 and 3.4) will introduce several methods to extract relevant information from raw EEG data. 

Extraction of time-locked events

The brain response to a stimulation contains a component that is time-locked to the stimulus, which means it appears at a specific time after stimulus onset. Even if it has a low amplitude, this evoked activity can be observed by averaging several time windows, each containing the EP and background noise and having the stimulus onset at a fixed point in time. This technique is illustrated on Figure 3.1, where examples of single-trial windows and the averaged EP are shown.

Cross-correlation and synchronization in the time domain

Another way to extract non-trivial information from temporal signals is to use synchrony measures. Instead of looking at a single signal, these measures quantify the similarities between two or more time series. For instance, cross-correlation looks at the similarity between the shapes of signals; mutual information quantifies the dependence between their statistical distributions; phase synchrony measures the lag between their instantaneous phases, etc. A detailed review about synchrony measures in EEG can be found in [START_REF] Dauwels | A comparative study of synchrony measures for the early diagnosis of Alzheimer's disease based on EEG[END_REF].

In this dissertation, only cross-correlation will be used extensively (in chapters 5 and 6). The cross-correlation function computes the similarity between a signal s 1 and a copy of a signal s 2 shifted by a time τ. The following two equations define crosscorrelation between continuous functions (3.1) and discrete time series (3.2):

(s 1 s 2 )(τ) = ∞ -∞ s 1 (t ) s 2 (t + τ) d t (3.1) (s 1 s 2 )[τ] = ∞ n=-∞ s 1 (n) s 2 (n + τ) (3.2)
The maximum of the cross-correlation function in a zero-centered interval [-a ; a] gives a measure of the similarity between the two signals, considering a maximum delay of a between the signals. The position of this maximum gives the value of the time delay that maximizes the similarity between the signals.

Frequency-domain analysis

Instead of looking at the shape of EEG time series, it is possible to look for specific repetitive patterns in the data. This is the principle of frequency analysis. To estimate the frequency at which a pattern appears, a window containing several repetitions is required. Therefore, the lower the frequency, the longer the window required for proper estimation. This relationship leads to the Heisenberg-Gabor limit, which states that it is not possible to localize an event sharply in both the time and frequency domains. This limit can be expressed as follows:

σ t σ f ≥ 1 4π ≈ 0.08 cycles, (3.3) 
where σ t and σ f refer to the standard deviations of observations in the time and frequency domains, respectively. This concept is important for understanding the difference between Fourier (3.3.1.1) and wavelet transforms (3.3.1.3).

Frequency analysis techniques

The Fourier transform

The Fourier transform allows for the decomposition of any series into an infinite sum of sine waves of all possible frequencies. The Fourier transform s of a continuous signal s at frequency f is a complex number corresponding to the amplitude and phase of the sine wave at f included in the decomposition of s. Mathematically, it is defined as follows:

s : f -→ s( f ) = t ∈R s(t )e -i 2π f t d t (3.4)
Practically, we use the fast Fourier transform (FFT) to estimate the frequency decomposition of discrete signals limited in time. Let [s 0 , ..., s N ] be a real time series. The discrete Fourier transform (DFT) can be defined as follows:

∀n ∈ {0, ..., N }, DF T (n) = N k=0
s k e -i 2πk n N (3.5) This decomposition provides N + 1 complex numbers corresponding to the amplitudes and phases of the sine waves constituting the time series. DF T (0) corresponds to the sine wave of zero frequency (constant component), whereas DFT(N) corresponds to the sine wave at the sampling frequency f s . Therefore, the frequency axis of the DFT [ f 0 , ..., f N ] can be defined as follows: However, due to aliasing, only frequencies below f s 2 can be theoretically estimated using DFT, and higher frequencies should be filtered out. Our EEG system had a sampling rate of 2 kHz, allowing for theoretical measurements of frequencies up to 1 kHz, and we filtered our signals above 100 Hz, ensuring proper estimation of the DFT.

f n = n N f s (3.6)
The frequency resolution is given by the interval between f n and f n+1 , which is constant and equal to f s N . Consequently, for a signal of length T (in seconds), the frequency resolution (in Hertz) can be expressed as follows:

f r es = f s N = f s T f s = 1 T (3.7)
An illustration of the resolution of the Fourier transform can be found in Figure 3.2. One important limitation of DFT is that its time and frequency resolutions are constrained by the length of the signal and cannot be adjusted in different frequency domains.

Windowed Fourier transform

The DFT only provides one point for a given signal. To improve the temporal resolution of the frequency decomposition, that is, to be able to look at the evolution in time of the frequency content of a signal, it is possible to cut this signal into multiple windows and apply FFT to each of them (see Figure 3.3). However, two limits appear when cutting signals into shorter epochs. First, as the frequency resolution of FFT is inversely proportional to the length of the signal, the FFT of short signals inherits a smaller frequency resolution. Another important factor to take into account are the boundary effects. Non-zero values at the beginning and end of an epoch are treated like discontinuities by the FFT and result in noisy decompositions. The shorter the signal, the higher the contribution of the edges to the spectrum. To circumvent this limitation, non-rectangular window functions can be applied to short epochs to reduce the weight given to their edges. Such window functions also introduce distortion in the data but are better than introducing boundary effects in many cases.

Wavelet transform

The discrete wavelet transform (DWT) is another method for frequency analysis that decomposes a signal using short bounded oscillating signals, called wavelets, instead of infinite sine waves. Compared with Fourier transform, wavelet transform is a more local method for frequency analysis that is adapted to the non-stationary nature of EEG data. A single decomposition uses a unique wavelet that is stretched temporally to modify its frequency content. The consequence is that the wavelet used for the estimation of high frequencies is shorter than the wavelet used to estimate low frequencies. Therefore, the temporal resolution of the decomposition increases with frequency while the shape of the wavelet (mostly the number of oscillations) sets the frequency resolution. These resolutions are illustrated in Figure 3.4, along with an example of a wavelet stretched at three different scales.

The complex wavelet transform (CWT) is an extension of the DWT that uses complex valued wavelets for the decomposition of real signals. The result is a complex valued time-frequency map containing the magnitude and phase of the decomposition. The advantages of CWT over standard wavelet transform include a high degree of shift invariance in its magnitude, and the ability to estimate the instantaneous phase of a signal. The drawback is an increase in computing time.

In the present work, the complex Morlet wavelet (also called Gabor wavelet) was used for analysing the frequency content of short EEG epochs. This wavelet is composed of an oscillating carrier (complex exponential) multiplied by an envelope to make it bounded in time (Gaussian window). It is defined as follows:

ψ(x) = 1 π f b e i 2π f c x e -x 2 f b , (3.8) 
where f c is the central frequency of the wavelet (frequency of the carrier) and f b is a bandwidth parameter, which determines the width of the wavelet and constrains its resolution both in time and space. Examples of complex Morlet wavelets are shown in Figure 3.5.

Typical frequency bands in EEG analysis

EEG is commonly divided into several frequency bands, which have been associated with different brain states. Although each rhythm originally describes a specific pattern linked with a specific task or activity, the names of the frequency bands are used regardless of their sources. These bands can be defined as follows:

1. The δ rhythms, associated with the δ band (0.5-4 Hz), are the slowest oscillations that can be measured by EEG. They are observed mostly over the frontal lobe during sleep and mind wandering and can reach high amplitudes during deep sleep (200 µV peak to peak). They have also been observed posteriorly in children.

2. The θ rhythms, associated with the θ band (4-8 Hz), can be recorded during sleep, meditation, mind wandering and drowsiness. They have also been reported during active inhibition tasks.

3. The α rhythm, associated with the α band (8-12 Hz), originally refers to the strong oscillations observed over the occipital and parietal cortices when subjects close their eyes. It is linked with an idle state of the visual cortex. Activity in the α band can also be recorded over the sensorimotor cortex when idle. This is called the µ rhythm.

4. The β rhythms, associated with the β band (12-25 Hz), cover a large span of frequencies associated with active thinking and high alertness as well as with anxiety and stress. β waves in the 12-15 Hz band can also be observed in the sensorimotor cortex as part of the sensorimotor rhythm (SMR).

5. The γ rhythms, associated with the γ band (25-100 Hz), were originally considered to be mostly noise. However, they have recently been associated with high-level cognitive tasks, such as cross-modal sensory processing, awareness and consciousness.

There is, however, one important precaution to take when cutting EEG into frequency bands. Because a periodic signal with a given fundamental frequency will have harmonic components in its Fourier decomposition as soon as it is not a pure sine wave. In other words, a signal with a 2 Hz fundamental frequency (i.e. in the δ band) can contain sine waves at all multiples of 2 Hz, and can, therefore, contain power in all higher frequency bands.

Filtering EEG signals

In digital signal processing, a filter is an algorithm used to remove or enhance certain components of a dataset. This section will present different types of filters often encountered in EEG signal processing: temporal filters used to remove unwanted frequencies in time series (section 3.4.1) and several spatial filters with different purposes (section 3.4.2). These filters follow the same basic principle: replace each point of the dataset by a combination of more than one data point.

Time-domain filters

Filters in the time-domain are used to remove specific frequencies from a time-varying signal. An ideal filter would be able to cut certain frequencies completely while leaving other components of the signal untouched. Unfortunately, such a filter does not exist, and each type of filter has its advantages and drawbacks. In this dissertation, we use Butterworth filters that have the advantage of a very flat response in their passband, which means the frequencies that are not cut are mostly unaffected by the filter.

Unless otherwise stated, all the EEG data presented in this dissertation will be filtered using three third-order Butterworth filters:

1. A low-pass filter with a cut-off frequency of 90 Hz is first applied to remove highfrequency noise from the data and prevent aliasing.

2. A high-pass filter with a cut-off frequency of 0.5 Hz is then applied to correct the baseline of the recordings, consequently making the signals zero-centred. In addition, this filter removes low frequency noise due to slow impedance shifts, sweating, electrode movements, etc.

3. A band-stop filter with cut-off frequencies of 49 Hz and 51 Hz is finally applied to remove the 50 Hz noise coming from the power grid.

One issue with filtering is that it induces boundary effects: the beginning and end of the data may be distorted by the filtering process. More precisely, in the case of a oneway filter, only the beginning of the data may be corrupted. When using a two-way filter (i.e. a filter run forwards and backwards to reduce phase distortion), boundary effects can appear at both sides of the signal. To minimize these effects, data analysed offline are filtered before segmentation. First, the whole EEG recording is two-way filtered; then, only the interesting epochs are kept, and the first and last sections of the data are deleted. During online analysis, EEG data are buffered: instead of analysing each new point as it comes from the electrodes, our algorithms one-way filter the last chunk of data and remove the beginning of the chunk.

Multichannel data analysis

Filters in the time domain replace each data point by a combination of other points from the same signal at different times. Similarly, the algorithms presented in this section for multichannel data analysis replace each point by a linear combination of data points obtained at the same time from all the electrodes. For this reason, these algorithms can be considered to be spatial filters. If N electrodes are used for recording, then the data are a set of N -dimensional vectors that can be seen as the matrix X of size N × M , with M the length of the sequence:

X =      x 1 (1) x 1 (2) . . . x 1 (M ) x 2 (1) x 2 (2) . . . x 2 (M ) . . . . . . . . . . . . x N (1) x N (2) . . . x N (M )      (3.9)
The idea of spatial filtering is to change the basis in which the data are represented to either extract certain characteristics of the signal or remove unwanted components.

Practically, spatial filtering tries to find a matrix A of coefficients used to project the data in a new N -dimensional space:

Y = A X, (3.10) 
where Y (N × M ) is the projection of X in the new basis and A (N × N ) is the change of basis matrix. A is sometimes called the unmixing matrix because it can extract components from a set of signals resulting from the mixture of different sources.

Principal components analysis (PCA)

PCA is a statistical procedure that can be used to design spatial filters for EEG data and uses an orthogonal transformation to convert a dataset into a new set of linearly uncorrelated variables called principal components. Practically, one solution for PCA implementation is to find a basis in which the covariance matrix of the dataset is diagonal so that the covariance of any pair of different principal components is zero. First, the covariance matrix of the filtered dataset is computed (filtering is important so that the original signals have a zero mean): (3.11) where X is the dataset (size N × M ) and X T its transpose. The covariance matrix R, therefore, has a size of N × N . Next, the covariance matrix is diagonalized:

R = cov(X) = X X T ,
R = W D W -1 , (3.12)
where D is a diagonal matrix containing the eigenvalues of X, W contains the corresponding eigenvectors and W -1 is the inverse of W (and equal to W T ):

D = W -1 R W =    λ 1 0 . . . 0 λ N    (3.13)
The matrix containing the principal components Y can then be obtained by applying the unmixing matrix W T to the original dataset :

Y = W T X (3.14)
The variance observed in the direction of each eigenvector and, thus, contained by each principal component is proportional to the corresponding eigenvalue. Knowledge of the variance of each principal component can be exploited to reduce the number of dimensions of a dataset by keeping only the components that explain most of the variance (e.g. accounting for 95% of the total variance). PCA is also useful to determine which combinations of parameters are responsible for the variance of the data.

Joint decorrelation (JD)

JD is a statistical procedure related to principal component analysis (PCA) that can also be used to design spatial filters for EEG. The principle of JD is to find a basis in which two datasets have their components as uncorrelated with one another as possible (i.e. a basis in which both datasets have their covariance matrices as diagonal as possible). In addition, JD tries to find a basis where the components accounting for most of the variance of one dataset account for as little variance as possible for the other dataset and vice versa. An extensive review of this procedure and its possible applications can be found in de [START_REF] De | Joint decorrelation, a versatile tool for multichannel data analysis[END_REF].

Practically, we consider two datasets X 1 and X 2 of sizes N × M 1 and N × M 2 , originally in the same measurement space, and therefore with the same number of rows. For EEG data, X 1 and X 2 should be measured using the same electrode placement but may have different durations. Their covariance matrices R 1 and R 2 can be computed as in equation 3.11:

R 1 = cov(X 1 ) = X 1 X 1 T (3.15) R 2 = cov(X 2 ) = X 2 X 2 T (3.16)
If several trials must be considered for each or both datasets, two solutions giving similar results can be used. The first possibility is to compute the covariance matrices of each trial and average them to obtain the covariance matrix of the dataset:

R 1 = 1 N N n=1 R 1,n , (3.17) 
where R 1,n is the covariance matrix of the n-th trial and N the number of trials. The other possibility is to concatenate all the trials along the temporal dimension to form a single dataset and compute its covariance matrix the same as in 3.11. I have not investigated the difference between these two methods and have been using the first one. Both can be found in the literature.

Once the covariance matrices are known, the joint diagonalization of R 1 and R 2 can be computed using the following formula :

R 1 = R 2 W D W -1 , (3.18) CHAPTER 3. METHODS OF THE NEURAL INTERFACE ENGINEER
which is equivalent to solving the following equation:

R 2 -1 R 1 = W D W -1 (3.19)
As in PCA, the diagonal of D contains the generalized eigenvalues and W contains the corresponding eigenvectors. The largest eigenvalues correspond to the eigenvectors along which the dataset X 1 has the most variance. This correspondence is easy to see by assuming that R 2 is the identity matrix, which turns the process into a diagonalization of R 1 . Furthermore, because the eigenvalues of the inverse of a matrix are the inverse of the original eigenvalues, the lowest elements on the diagonal of D correspond to the eigenvectors along which the dataset X 2 has the highest variance. Again, this correspondence can be seen by replacing R 1 by the identity matrix, which makes the process a diagonalization of R 2 -1 .

The decorrelated components are obtained by applying W on the original datasets:

Y 1 = W T X 1 (3.20) Y 2 = W T X 2 (3.21)
However, W can also be applied on any other dataset obtained in the same measurement space (i.e. using the same electrode placement). Keeping only the first (or last) components of the dataset allows for the maximization of the variance of components with the same spatial distribution as one of the datasets used to design the filter while minimizing the variance of components present in the other. Keeping both the first and last components, but not the average ones, allows for a dimensionality reduction that keeps most of the variance from both datasets.

Independent components analysis (ICA)

In section 3.4.2.1, PCA was introduced as a method to decompose a set of signals into uncorrelated components. ICA is another technique for the identification of mixed sources in multivariate data that decomposes a dataset into independent components, with statistical independence being stronger than linear uncorrelation. However, the decomposition provided by ICA is not unique, and some differences with previously mentioned algorithms (PCA and JD) should be noted [START_REF] Lamar | Dominique: An introduction to independent component analysis: InfoMax and Fas-tICA algorithms[END_REF]]:

• ICA does not provide a ranking of the components. In other words, there is no better or worse components unless the user decides to rank them following his own criteria.

• The extracted components are invariant to the sign of the sources.

• Perfectly Gaussian sources cannot be separated by ICA because it tries to separate their non-Gaussianity.

• If the sources of the signals are not independent, ICA finds a space of maximum independence.

ICA computes a linear unmixing matrix W that decomposes the original dataset X into Y, which is the best possible approximation of its independent sources S: Y = W X S (3.22) Many different algorithms can be used to perform blind source separation (BSS) of hypothetical independent sources. These ICA algorithms rely on higher-order statistics (HOS), because the sources are assumed to lack temporal and spatial structure [START_REF] Wheland | Brain-computer interface technology: a review of the first international meeting[END_REF].

In the present work, however, we used a BSS algorithm based on second-order statistics (SOS) called second-order blind identification (SOBI), which is not ICA in the strict sense and can, therefore, separate Gaussian sources based on second-order uncorrelation. This algorithm is more robust than ICA, but unable to separate sources with similar spectral densities [START_REF] Wheland | Brain-computer interface technology: a review of the first international meeting[END_REF]. It can be found in the EEGLAB toolbox for MATLAB [START_REF] Delorme | EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis[END_REF]. More details about SOBI and its application to artefact removal in EEG can be found in [START_REF] Jung | Removing electroencephalographic artifacts by blind source separation[END_REF].

The idea behind SOBI is to find a basis that diagonalizes a set of time-delayed covariance matrices and not only the covariance matrix of the original dataset, as in PCA. In other words, this technique tries to find a basis in which each component is uncorrelated with every other component and its time-shifted versions. Let X be a matrix of observations, of size N × M , with N being the number of channels and M the number of observations. For a given lag τ, the delayed covariance matrix R(τ) can be defined as follows:

R(τ) = X(t + τ) X(t ) T =    x 1 (1 + τ) . . . x 1 (M + τ) . . . . . . . . . x N (1 + τ) . . . x N (M + τ)      
x 1 (1) . . . x 1 (M ) . . . . . . . . .

x N (1) . . . x N (M )

   (3.23)
Practically, for SOBI (and other ICA algorithms) to work properly, data should be whitened before the time-delayed covariance matrices are computed. Whitening means that the original dataset should be centred (so that each channel has a zero mean) and sphericized (so that its covariance matrix becomes the identity matrix I N ). The centred version of X, called X * , is obtained by subtracting the mean from each row:

x * i ( j ) = x i ( j ) - 1 M M j =1 x i ( j ), ∀(i , j ) ∈ [1, N ] × [1, M ] (3.24)
X * is then sphericized into X using either eigenvalue decomposition or singular value decomposition (SVD) of its covariance matrix R * . Using the former, with D the diagonal matrix of eigenvalues and V the matrix of the corresponding eigenvectors:

R * = X * X * T = V D V -1 (3.25)
Then, if we define X as: 

X = D -1/2 V -1 X * , ( 3 
N : R = X XT (3.27) R = D -1/2 V -1 X * X * T V D -1/2 (3.28) R = D -1/2 D D -1/2 (3.29) R = I N (3.30)
X is used instead of X in the computation of time-delayed covariance matrices R(τ)

for a set of time lags τ

∈ {τ i | i ∈ [1, K ]}, as presented in equation 3.23.
Then, the joint diagonalization of these covariance matrices is performed as described in APPENDIX A of [START_REF] Belouchrani | A blind source separation technique using secondorder statistics[END_REF]

. A joint diagonalizer W of the set { R(τ i ) | i ∈ [1, K ]} is obtained: R(τ i ) = W D i W -1 ∀i ∈ [1, K ] (3.31)
The estimated independent sources can, then, be obtained from the centred data:

Y = W T X (3.32) Y = W T D -1/2 V -1 X * (3.33)
In the case of filtered EEG data, which are already centred due to high-pass filtering (see section 3.4.1), the centring process can be removed:

Y = W T D -1/2 V -1 X (3.34)

Machine Learning

Machine learning is a branch of computer science focused on the development of empirical models that rely on data-driven training processes instead of established theories. It includes many techniques used to separate data into different groups (classification), to find relations between variables (regression) and to recognize patterns in a dataset. A machine learning model is usually a parametric function, that takes features from the data as inputs and rely on its data-driven training process for tuning its parameters.

Machine learning has several interests in the field of neural engineering. First, it can be used to identify which variables are the most relevant in a classification or regression task and, therefore, give insights about the inner functioning of the brain. In addition, machine learning allows the creation of empirical models of brain outputs that can be used to design BCIs. This is particularly useful when using EEG because observations from the surface of the scalp are hard to correlate with theoretical models.

Overfitting

One of the major issues in machine learning is that experimental data always come with a certain amount of noise. When trying to find underlying patterns and relationships in a dataset, it is possible that an algorithm learns to describe the distribution of noise, thereby losing generalization power. This phenomenon is called overfitting and generally occurs when a model is excessively complex, often because of a high number of parameters or input variables in comparison with the number of examples used for training. Consequently, the risk of overfitting on a given dataset can be decreased by choosing carefully the complexity of the model and the number of inputs.

Practically, the predictive power of models of different complexities are evaluated on a dataset (validation set) independent from the one used during the training process (training set). While the error on the training set always decreases with model complexity, the error on the validation set first decreases (when model complexity contributes to better understanding of the underlying patterns) and then increases (when the models starts to describe the noise in the training data). The optimal model is the one with the lowest validation error. This is known as the bias-variance tradeoff.

Cross-validation

Splitting a dataset into independent groups for training and validation is called crossvalidation. As mentioned above, it is used to make sure that a trained model has not learned the noise in the data. When a model has several levels of parametrization, such as when trying different numbers of features and hidden neurons in an artificial neural network (ANN), it is useful to separate the data into more than two independent subsets so that each step of the model parametrization can be tested on an independent database (test set).

One problem of cross-validation is that it requires large datasets. It is however possible to circumvent this limitation by using a leave-one-out (LOO) procedure, which consists in training the model on all examples but one and then evaluating the validation error on the remaining example. This is repeated using each element of the dataset as the validation set and then averaging the validation errors. In our case, we generally split the EEG data collected on a given subject into several short epochs. This means that some examples in our datasets are not independent. In order to make sure that our models are trained and evaluated on independent data, we use a procedure we call leave-one-subject-out (LOSO): we use the data from all subjects except one for training and the data from the remaining subject as a test set, and repeat this process for each subject.

Feature selection

The number of features that can be extracted from a dataset is virtually infinite. However, as mentioned in section 3.5.1, training a model using a high number of input variables can easily lead to overfitting and models with different numbers of features are therefore tested out. Since it would be very time-consuming to try all possible combinations of inputs, features are first ranked according to their expected predictive power, after which classification is performed using the best feature, then the best two, etc.

Feature ranking can be done in several ways. In this work, orthogonal forward regression (OFR) was used to rank input variables according to their ability to predict a given output, while making sure that redundant inputs are not selected several times. First, the feature showing the highest linear correlation with the output is selected. Then, all the other features as well as the output are projected in a hyperplane orthogonal to the selected variable in order to avoid further selection of features containing the same information (Gram-Schmidt orthogonalization (GSO)). This process is repeated until all features have been selected.

The OFR algorithm helps selecting relevant features among a large set of variables that can be mutually correlated due to volume conduction of EEG activity. However, it means that if two variables contain similar information, any one of the two may be selected by the algorithm depending on the training set.

Random variables (called probes) can be added to the feature set and only variables more correlated with the output than a certain proportion of the probes (e.g. 95%) are kept for model training. This procedure is described in Stoppiglia et al. [2003].

Classification

In this dissertation, we make use of two classification techniques, namely linear discriminant analysis (LDA) and Artificial Neural Networks (ANNs). For both of them, we used the built-in functions of MATLAB to train our models.

The idea behind LDA is to fit a Gaussian distribution to each feature of each class in the training set, therefore characterizing each class with a multivariate normal distribution with as many dimensions as the number of features. Then, LDA looks for hyperplanes in the feature space that best separate the classes. Likelihood ratios based on the distance to these hyperplanes are used to assign new observations to the different classes. LDA has the advantages of being fast to compute and having a unique solution with a given training set. It can therefore easily be used with many different sets of inputs.

ANNs are models that can approximate non-linear functions and are therefore able to extract complex behaviours from a dataset. A lot of information about ANNs can be found in [START_REF] Dreyfus | Neural networks: methodology and applications[END_REF]. Compared to LDA, ANNs can extract more complex behaviours, but take a lot more time to train. In addition, the training of an ANN relies on an iterative tuning of its parameters that is dependent on initial conditions. Multiple trainings are therefore required with each set of data to explore the parameter space and find a model with optimal performance.

In this chapter, we present some historical milestones of the cognitive modelling of attention and integrate these models to propose a framework of attention and executive control. We also summarise the different definitions and concepts relative to attention that can be found in the literature. In another section of this chapter, we review the different brain networks that have been linked with attentional functions in the human brain. Finally, we give some examples of how attention can modify the behaviour of the brain and especially how it can alter some properties of brain responses measured by EEG.

A history of attention modelling

Attention is generally defined by its role in the information processing occurring in the brain, called cognition, rather than by its neuronal substrate or physiological function. This makes attention a cognitive function, i.e. a process that plays a key role in the modelling of cognition. According to Jean-François Richard, this way of defining attention is what makes it so complex and difficult to study [Richard, 1980]. A century before, in The Principles of Psychology, William James (1842-1910), often considered to be the father of American psychology, produced an early, yet accurate, definition of attention, based mostly on everyday observations and introspection [James, 1890]:

« Everyone knows what attention is. It is the taking possession by the mind, in clear and vivid form, of one out of what seem several simultaneously possible objects or trains of thoughts. Focalization and concentration of consciousness are of its essence. It implies withdrawal from some things in order to deal effectively with others, and is a condition which has a real opposite in the confused, dazed, scatterbrain state which in French is called distraction, and Zerstreutheit in German. » This definition already contains the idea that attention works as a focusing and filtering mechanism able to either enhance or inhibit objects or trains of thoughts. William James also mentions astutely a link between attention and consciousness, which will be discussed later in this chapter.

Emergence of a cognitive model of attention (1946-1968)

Between 1946 and 1953, nearly 60 years after James' pioneer work in experimental psychology, 10 Macy Conferences gathered scientists from various disciplines in New York to work on cybernetics and set the foundations for a general science of the workings of the human mind1 . Mathematicians, physicists, biologists, psychologists, linguists and other scientists developed modern cybernetics, considering the brain as an information-processing unit that could be modelled using control theory. Their work subsequently led to the creation of cognitive science [Dupuy, 2013]. 1958). First, the physical properties of all stimuli coming from the sensory organs are extracted. Then, a filter selects which input reaches working memory based on these low-level properties. Once in working memory (WM), a stimulus can be semantically analysed and either discarded, stored in long-term memory or acted upon.

At the same time, Colin Cherry performed many experiments on auditory attention and studied the famous cocktail party effect to conclude that unattended stimuli were not subject to the same high-level processing as attended stimuli [Cherry, 1953]. Running experiments of his own (e.g. [Broadbent, 1954]) and following the trend of cybernetics, Donald Broadbent proposed, in 1958, the first modern theory of attention, known as the filter model [Broadbent, 1958]. He described the brain has having a limited capacity channel between low-level percept processing (e.g. contrast of a visual stimulus, pitch of a sound) and high-level processing such as semantic analysis. In this model, illustrated in Figure 4.1, attention is a filter that blocks certain stimuli or lets them through based only on their physical properties. This process is called an early selection model of attention and explains both Cherry and Broadbent's data on dichotic listening but does not provide a way for the brain to notice unattended stimuli carrying important information (such as when we hear our name in an unattended conversation).

In 1960, Anne Treisman performed dichotic listening experiments, where the physical differences between the messages played in each ear were removed and only a semantic difference remained [Treisman, 1960]. She showed that subjects attending to a story played in one of their ears would automatically switch to the other ear if the sequel of the story was played there. This experiment demonstrated that semantic analysis can be involved in the selection mechanism of attention. These experiments led to the attenuation model [Treisman, 1964], another early selection model of attention In parallel, in 1963, Antony and Diana Deutsch introduced a theory of attention similar to the filter model but placing the attentional selection after semantic analysis of incoming stimuli [START_REF] Deutsch | Diana: Attention: some theoretical considerations[END_REF], thus also providing a solution to the previously mentioned problem of detecting unattended inputs based on their semantic content. In this late selection model of attention, all sensory inputs are fully processed and subsequently discriminated against based on their importance to the organism, something Donald Norman called pertinence in his extension to the aforementioned model [Norman, 1968]. In Norman's pertinence model, items must both have a strong physical relevance and be important to the organism to be driven towards working memory for conscious processing and possibly long-term storage. A selection based on pertinence requires a high-level orientation of sensory processing, and the late selection model (1963) can, therefore, be considered the first model of topdown, cognitive attention, coming just a year before the attenuation theory of Treisman (1964). 1963). All stimuli coming from the sensory organs are fully processed, and a selection occurs based on the importance of the stimuli to the body. This model implies a high amount of information processing both to extract the properties of all incoming messages and determine their pertinence.

Attention as a resource: the capacity model (1973)

A decade after Deutsch's and Treisman's models, Daniel Kahneman proposed a different point of view on attention in his book Attention and Effort [Kahneman, 1973]. In his capacity model, attention, which he also called effort, is described as a limited mental resource that should be shared between the different information-processing tasks the brain has to run. He also mentioned the idea that attention was responsible not only for selection of relevant activities, but also for inhibition of distracting stimuli. In Kahneman's model, focusing on a task is easier in a quiet environment than when surrounded by distractions, an addition that very well matches the subjective perception of how attention works. It is interesting to note that Kahneman's model includes every cognitive task the brain has to run in his theory of attention and not simply the process of selecting between competing simultaneous stimuli, on which the earlier bottleneck theories had focused. Another addition of his model, based on the work of Daniel Berlyne [e.g Berlyne [1960]], is the fact that the attentional capacity of a person can vary depending on his arousal, which, in turn, can be influenced by the attended tasks. An illustration of the capacity model can be found in Figure 4.4.

Diversity and cost of attentional processes (1975-1990)

In 1978, a series of experiments conducted by William Johnston and Steven Heinz led to the multimode model of attention [START_REF] Johnston | Flexibility and capacity demands of attention[END_REF]. The idea of this theory is that attention is a flexible mental process that can adapt its behaviour to the task (1973). In this model, attention is described as a resource that has to be shared between the different possible activities that require a mental effort. The way this resource is allocated depends on long-lasting dispositions (e.g., novelty gets more resources), momentary intentions (equivalent to voluntary attention) and top-down feedback on how many resources should be allocated to a particular ongoing activity. A key point of the capacity model is that the available resources at a given time are dependent on arousal, which can be influenced by emotions, or dynamically enhanced by a top-down control. at hand. Johnston and Heinz showed that attention can operate both as an early selection filter, discriminating inputs based on low-level physical features, as in the filter model, or as a late selection filter, as in the pertinence model. They integrated the limited resource idea proposed in the capacity model [Kahneman, 1973] and showed that early selection of incoming signals demands less resources than does late selection. This variable cost in attentional resource translated into a longer delay between the presentation of a target stimulus and the subject's response. Flexibility of attentional selection was also highlighted by Michael Posner and Charles Snyder, who thoroughly described automatic vs. voluntary control of attention in a book called Attention and Cognitive Control [START_REF] Posner | Attention and cognitive control[END_REF]. These researchers demonstrated that the more complex voluntary control of attention required more resources and, therefore, took more time than the easier automatic attentional discrimination. In 1989, Steven Petersen and Posner published an important report on attention, in which they began to identify some principles of organization that allow attention to function as a unified system for the control of mental processing [START_REF] Posner | The attention system of the human brain / DTIC Document[END_REF]. In this paper (and in an update published 20 years later [START_REF] Petersen | The attention system of the human brain: 20 years after[END_REF]), attention is described as a network of anatomical areas independent from the sensory input processing areas of the brain, rather than as a single center or as a general function having no anatomical support of its own (more details about the anatomy of attention networks can be found in section 4.4). The authors also introduced what they identified as the three main subsystems of attention, each responsible for different yet interrelated functions: alerting, orienting and detecting:

1. The ALERTING subsystem acts like a security guard [Medina, 2008]. Its functions are surveillance and alert. In one respect, the alerting function consists of passive monitoring of external events in search of unusual activity. This surveillance system is called tonic or intrinsic alertness and is linked with arousal [START_REF] Sturm | On the functional neuroanatomy of intrinsic and phasic alertness[END_REF]. However, the alerting component is also responsible for the short-lived high-attention state that happens after a salient event occurs. This is referred to as phasic alertness [START_REF] Sturm | On the functional neuroanatomy of intrinsic and phasic alertness[END_REF]].

2. The ORIENTING subsystem is responsible for the orientation of attention towards specific areas of the perceptual field, such as after the detection of an event by the alerting network. Orienting includes the ability to prioritize sensory modalities and overtly point sensory organs towards a specific source of stimuli, as well as the covert ability to focus attention on a certain area of the visual field or on a particular frequency range of the acoustic environment.

3. The DETECTING subsystem, also called ANTERIOR ATTENTION system or EXECU-TIVE CONTROL in the updated version of the paper [START_REF] Petersen | The attention system of the human brain: 20 years after[END_REF], is responsible for the top-down control of attention. This subsystem covers several types of control signals including transient activity generated at the beginning of a task, maintenance signals associated with sustained attention and upkeep of task parameters and performance feedback signals used for error correction and reinforcement learning.

Attention and working memory (1995-2007)

A recent framework for visual attention modelling was proposed by Erik Knudsen in 2007 [Knudsen, 2007], which was strongly inspired by the work of Robert Desimone and John Duncan, who defined attention as a competitive selection process to determine which information gains access to working memory [START_REF] Desimone | Neural mechanisms of selective visual attention[END_REF]. This framework is interesting because it includes the possibility for attentional networks to control directly the sensory organs that generate the incoming stimuli (a function related to the orienting subsystem mentioned in section 4.1.3) and integrates the concept of salience filters to describe the set of brain networks that automatically estimate the pertinence of an incoming sensory input. An illustration of Knudsen's model can be found in Figure 4.5. This framework also explicitly mentions the interdependence between attention and WM, which had been introduced earlier without much explanation in figures 4.1, 4.2 and 4.3. The concept of WM has been developed by Alan Baddeley and Graham Hitch [Baddeley and Hitch, 1974] to extend to the concept of short-term memory (STM) developed by [START_REF] Atkinson | Human memory: A proposed system and its control processes[END_REF]. WM is a special type of temporary storage with a limited span [Cowan et al., 2005] that holds the information upon which high-level processing, such as learning and reasoning, can occur [Baddeley and Hitch, 1974]. WM is also the memory upon which decision making and planning of complex behaviours rely [START_REF] Yoshida | Shin: Resolution of uncertainty in prefrontal cortex[END_REF], as well as top-down attentional control [Miller and Cohen, 2001]. According to Knudsen, working memory and attention are inextricably inter-related: WM holds the objects that are attended at a given time. This claim is supported by findings of common neural mechanisms underlying both WM and attention [Ikkai andCurtis, 2011] [Gazzaley andNobre, 2012]. WM is also strongly associated with conscious processing and may be related to the concept of global workspace [START_REF] Dehaene | CHANGEUX, Jean-Pierre: Experimental and theoretical approaches to conscious processing[END_REF]. 2007) include salience filters that take care of bottom-up evaluation of the relevance of available inputs; a competitive selection function that select the neural representations that enter working memory; working memory itself, which holds the objects of attention for high-level cognitive processing; and a sensitivity control module, which can alter the weights given by bottom-up salience filters based on topdown control signals. These control signals can also reach the sensory organs directly, thereby inhibiting or enhancing inputs by modifying the way they will be received through the bottomup pathway. [START_REF] Posner | Attention and cognitive control[END_REF]] describes how attentional process can be automatic (bottom-up filtering of stimuli and train of thoughts) or conscious (top-down selection of relevant information).

The COGNITIVE CONTROL MODEL

6. The MULTIMODE MODEL [START_REF] Johnston | Flexibility and capacity demands of attention[END_REF] reinforces the idea that attention can operate in different conditions based on the demand of the ongoing tasks, and points out that attentional load can be measured by the delay it creates in brain responses.

7. In their ATTENTION SYSTEM OF THE HUMAN BRAIN [START_REF] Posner | The attention system of the human brain / DTIC Document[END_REF]], the authors split attention into three main components: passive monitoring of the environment (alerting), orientation of sensory processing towards relevant areas of the perceptual field (orienting) and top-down control of attentional processes (executive control).

8. The WORKING MEMORY models of attention [Desimone andDuncan, 1995][Knudsen, 2007] correlate attentional selection and entrance into working memory.

The purpose of attention is, thereby, to determine which neural representations will reach conscious high-level processing, either using a bottom-up or a topdown route.

Integrative model of attention and executive control 4.2.1 Executive functions and attention

Executive functions are the mental processes that enable individuals to take control of otherwise automatic responses of the brain to produce goal-oriented behaviours [Lezak, 2004][Lamar and Raz, 2007][Garon et al., 2008]. They are strongly but not exclusively associated with neural networks located in the prefrontal cortex [Miller and Cohen, 2001] (more details can be found in section 4.4). These executive functions allow individuals to handle new or complex situations where routine behaviour does not exist or would prove suboptimal. They include processes such as planning, goalsetting, decision making, voluntary attention, task-switching, set-shifting, behavioural and perceptual inhibitions, emotional regulation and error correction. These executive functions have been considered as emanating from working memory [START_REF] Miyake | Priti: Models of working memory: Mechanisms of active maintenance and executive control[END_REF], and most of them actually interact with attentional processes either by modifying the temporal behaviour of attention (e.g. planning), influencing the salience filters responsible for passive evaluation of neural representations (e.g. goal-setting, perceptual inhibition or emotional regulation) or by favouring certain neural representations (e.g. voluntary attention, set-shifting or task-switching). These executive functions are the components of the top-down executive control subsystem of attention described by Posner and Petersen [START_REF] Petersen | The attention system of the human brain: 20 years after[END_REF]. We, therefore, try to integrate them in the model proposed in section 4.2.2.

Another model of attention

In this section, we present a framework of attention that combines the different models detailed in section 4.1 and some of the executive functions presented in section 4.2.1.

An illustration of the model can be found in Figure 4.6. The framework we propose is based on the fundamental components of attention of Erik Knudsen [Knudsen, 2007], namely salience filters, competitive selection, sensitivity control and working memory (see Figure 4.5). We added the arousal-based capacity control introduced by Daniel Kahneman [Kahneman, 1973] and identified how these components overlap with the subsystems described by Petersen and Posner (alerting, orienting and executive control) [START_REF] Petersen | The attention system of the human brain: 20 years after[END_REF]. Finally, we tried to match the subcomponents of the executive control system with the executive functions involved in attentional control.

Working memory (WM)

WM is a temporary storage used by the brain to store information and make it available to other neuronal assemblies for use in cognition [Baddeley, 1992]. It holds a limited number of mental representations, which are continuously refreshed by the attentional system [Cowan et al., 2005]. The number of items that can be stored at a given time is usually thought to be between 5 and 9 [Miller, 1956]. WM can be seen as an evolution of the STM concept introduced by Atkinson and Shiffrin [Atkinson and Shiffrin, 1968]. However, WM is very different from the short-term buffers used by sensory cortices to keep raw perceptual information, as it only stores representations deemed relevant after pre-processing. In our model, only information stored in working memory can become conscious, and WM, therefore, contains the network introduced by the global workspace theory (GWT), which describes a heavily interconnected neuronal assembly mobilized during conscious, effortful tasks that cannot be handled by specialized networks such as the sensory cortices [START_REF] Dehaene | Jean-Pierre: A neuronal model of a global workspace in effortful cognitive tasks[END_REF]].

The cognitive load theory (CLT) introduces an interesting division of working memory to explain the mechanisms of learning [ Van Merriënboer and Sweller, 2010]. In this model, WM is described as a resource that can be shared amongst three different types of cognitive loads: intrinsic, extrinsic and germane. The task complexity, that is, the number of elements to keep in memory and their interactions, represents the intrinsic cognitive load, which mostly depends on the task itself. The way the task is presented, that is, the amount of processing required to integrate the percepts into a workable mental representation, represents the extrinsic cognitive load, which is often considered to be an unnecessary load on working memory and can be reduced by changing the way the task is presented (such as by showing an image instead of trying to describe it). Finally, germane cognitive load represents the amount of processing devoted to learning, abstraction and creation of automatic behaviours and thinking patterns. In cognitive psychology, these mental constructions are called schemas and can be used to reduce the intrinsic load associated with the task. Background colours indicate the subsystems of attention: green for executive control, blue for alerting and red for orienting. The core elements of this model are working memory and the competitive allocation process. They define the role of the whole system: to select relevant inputs among both internal and external percepts and bring them to working memory, where high-level processing can occur. Irrelevant inputs are discarded during the process. Both selection and rejection of percepts use attentional resources, which are limited by the current level of arousal (shown in yellow).

Salience filters

Salience filters are the brain networks that segregate the most relevant among internal and extrapersonal stimuli in order to guide behavior [Menon and Uddin, 2010]. These filters are responsible for the automatic evaluation of all possible percepts to make a selection. In our model, these filters are divided into two components responsible for the evaluation of low-level and high-level salience. The difference between the two is that low-level salience is evaluated from physical properties of percepts (e.g. intensity, spatial or temporal contrast), hence only concerns sensory inputs, whereas high-level salience relies on semantic interpretation and subjective factors such as the emotional impact of the percept, its novelty or its current importance to the individual. High-level salience filters apply to both external and internal percepts.

Alerting subsystem

The alerting component of attention relates to the ability to become aware and respond to an unexpected event. The process of detecting an unattended stimulus involves a bottom-up chain of salience filters and competitive selection to determine whether or not the neural representation of a percept will reach working memory. On one hand, tonic (or intrinsic) alertness corresponds to passive responsiveness, that is, when no cue indicates the venue of a stimulus. This passive ability is affected by the current attentional state of the subject and by arousal, which generally varies with a characteristic circadian cycle [START_REF] Sturm | On the functional neuroanatomy of intrinsic and phasic alertness[END_REF]. It is also possible to voluntarily maintain a certain level of arousal, and thus tonic alertness, through a process called vigilance. On the other hand, phasic alertness corresponds to an increase in the brain's responsiveness to an upcoming stimulus following a cue. It is different from vigilance in the sense that phasic alertness is an automatic process that can only increase responsiveness during a short period of time (100-300 ms) following the detection of a hint (or cue) by salience filters. Phasic alertness is also different from reflexive orienting (see next section) because it enhances the brain's responsiveness based on when and not where the stimulus will appear [START_REF] Petersen | The attention system of the human brain: 20 years after[END_REF].

Orienting subsystem

The orienting component of attention deals with both overt and covert enhancement of a particular area of the perceptual field. This component implies that more resources can be allotted to a particular sense or a part of what this sense perceives.

Overt orienting refers to a physical movement of sensory organs towards the source of the percept to increase its strength (e.g. eye movement to foveate a stimulus or head movement to maximize the amplitude of a sound), whereas covert orienting is the action of increasing the salience of part of what is perceived (e.g. favouring one visual hemifield against the other). Consequently, orienting can have an influence on lowlevel salience filters, as well as on the sensory organs themselves.

As can be seen in Figure 4.6, attentional orienting can either come from top-down control signals originating in working memory, or can be a consequence of the de-tection of salient events [START_REF] Fecteau | Neural correlates of the automatic and goal-driven biases in orienting spatial attention[END_REF]. The first case, called executive or goaldriven orienting, is a way for an individual to enhance the strength of an attended percept early in the bottom-up chain to favour its selection by the whole attentional system and maximize the amount of information obtained from the stimulus. The other possibility corresponds to the reflexive orienting mechanism, which favours highly salient stimuli by quickly and automatically giving them a strong chance to reach working memory by orienting sensory organs towards them. Reflexive orienting is what happens, for instance, when a loud and unexpected sound occurs and people who can hear it turn their head instinctively towards the source of the sound.

Executive control subsystem

The executive component of attention contains all the top-down mechanisms that influence the way our brain selects the information that reaches our consciousness. It can alter the attentional process at different levels, by directly or indirectly enhancing or inhibiting certain percepts on their way to working memory. Several pathways can be distinguished for executive attention.

First, the brain has the ability to consciously control the sensory organs to physically select relevant sources of information and ignore others, as well as the ability to influence the behaviour of salience filters, even without prior knowledge of the percepts that will go through them. For instance, in a visual search scenario, the brain can voluntarily increase the weight given to objects of a certain colour or with a given shape. High-level salience filters can also be influenced, such as by conscious goalsetting or voluntary emotional regulation. For instance, it is possible to attenuate the salience normally given to frightening objects in a situation where attention is required on other percepts. The executive control of sensory organs and salience filters does not require prior consciousness of a given mental representation and is at the boundary between the executive control and the orienting subsystems. This process is called executive orienting.

Attentional control can also influence the weight given to a mental representation that has already entered working memory, either to inhibit it or to make sure that it will remain an attended train of thought. These processes are respectively called percept inhibition and voluntary attention. Other executive functions can influence the representations that have already entered working memory. Attentional set-shifting, for instance, refers to the ability to change the way a stimulus is represented in working memory on the basis of feedback. Task switching is quite similar to set-shifting, but it relies on cues, rather than feedback, to adapt the stimulus-response (S-R) behaviour. A review of these mental processes regarding cognitive flexibility can be found in Kehagia et al. [2010].

Finally, executive control can adapt arousal to the task at hand or maintain it at a certain level in a preventive way, which is called vigilance. Of note is that arousal affects the capability of the competitive allocation process to select relevant percepts, as well as inhibit distractions. Consequently, a high arousal level is required to focus on both a complex task with multiple percepts to integrate (e.g. learning piano) and simple tasks in noisy environments (e.g. driving in a crowded junction). Arousal can actually affect the whole attentional system and make it more precise when it comes to bottom-up and top-down weight allocation.

Vocabulary of attention

Many branches of psychology and neuroscience have investigated the field of attention. A lot of authors have introduced terms to describe precisely how attention is used in a given experiment and the different phenomena associated with attentional mechanisms. In this section, we summarize the vocabulary encountered in the literature that relates to attention in order to help the reader understand further readings about the subject. Some words may be used in several ways by different authors, and we try to provide the most common and recent use of the vocabulary.

Terminology

First, ATTENTION can be defined as the process responsible for the allocation of highlevel cognitive resources to mental representations. Attention, therefore, corresponds to a selection of trains of thought that enter working memory for further processing and a rejection of those considered irrelevant at a given time. Once in working memory, a condition called AWARENESS, objects become available to consciousness, learning, and cognitive processes involving joint treatment by several neuronal assemblies.

Attention can be classified according to the nature of the attended percept. For instance, according to the taxonomy established by [START_REF] Chun | A taxonomy of external and internal attention[END_REF], EXTERNAL and INTERNAL ATTENTION respectively refer to situations where the attended objects come from sensory organs (including percepts from the body) or are internally generated information coming, for example, from long-term memory. More specifically, attention to a sensory modality is often referred to using the corresponding adjective, including VISUAL ATTENTION, AUDITORY ATTENTION, SOMATO-SENSORY ATTENTION or OLFAC-TORY ATTENTION. Studies also often refer to SPATIAL ATTENTION when the attended percept is a specific area of the surrounding space. This term can be combined with a sensory modality to describe an enhanced modality such as VISUOSPATIAL ATTEN-TION, which corresponds to attending to a particular location in the visual field.

Attention is also frequently classified regarding the way in which percepts are attended. For example, OVERT or EXPLICIT ATTENTION refers to situations of external attention, where the sensory organs are oriented towards the attended object. The opposite situation is called COVERT or IMPLICIT ATTENTION and happens, for instance, when a person is discreetly listening to a conversation taking place next to him. A situation where one percept is attended to and all others are ignored is usually referred to as FOCUSED ATTENTION, whereas a situation where the subject has to choose between several percepts to attend to is called SELECTIVE ATTENTION. If two percepts have to be attended at the same time, and if the available cognitive resources are shared between the two, the term DIVIDED ATTENTION is used. Finally, if the focus of attention is switched back and forth between two percepts but only one is attended to at a time, the situation is called ALTERNATING ATTENTION. SUSTAINED ATTENTION is used when a specific target remains attended to voluntarily over time while possibly ignoring distractors and avoiding mind wandering (which will be introduced in section 4. 3.2.4). This state of maintaining attention is related to what is called CONCENTRATION outside the field of neuroscience. Some authors use the term SUSTAINED VIGILANCE or just VIGILANCE to designate this state, but it is more widely accepted that VIGILANCE refers to a condition of sustained arousal with the purpose of ensuring that important percepts will not be missed. Synonyms include ALERTNESS and WATCHFULNESS.

Another useful terminology is based on how attention is brought to a percept. If a subject chooses to attend a specific target through the executive control subsystem (see Figure 4.6), this process can be referred to as VOLUNTARY, ENDOGENOUS, TOP-DOWN or GOAL-DRIVEN ATTENTION. However, if a percept makes its way through the alerting subsystem and reaches working memory without the help of attentional control, it can be called SPONTANEOUS, REFLEXIVE, EXOGENOUS, BOTTOM-UP or STIMULUS-DRIVEN ATTENTION. These terms may have slightly different meanings depending on the context, such as stimulus-driven attention, which requires a stimulus and is, therefore, associated with external attention, but all carry the idea of an opposition between executive control and spontaneous capture of attention by a salient percept.

Some attention-related mechanisms 4.3.2.1 Attentional blink

ATTENTIONAL BLINK is a phenomenon that can be observed during a rapid serial visual presentation (RSVP) task. When presented with several stimuli in rapid succession, subjects often show a reduced ability to detect a target in a stream of distractors if another target was presented in the last 200 to 500 ms [START_REF] Dux | The attentional blink: A review of data and theory[END_REF]. The authors of the aforementioned review conclude that the use of attentional resources to process a target makes them unavailable for the detection of subsequent stimuli, explaining the blink.

Inhibition of return

When a stimulus appears at a peripheral location of the visual field or when a cue indicates the position of an incoming event, a combination of phasic alertness and reflexive orienting facilitates the attentional processing of stimuli near that location for a short period of time (about 100-300 ms, see sections 4.2.2.3 and 4.2.2.4 for more details). The opposite effect then occurs: for a much longer period of time (which can last several seconds), detection speed and accuracy of further stimuli appearing at that location are impaired. This phenomenon is known as INHIBITION OF RETURN. A review on the subject can be found in Lupiáñez [2010].

Change blindness

CHANGE BLINDNESS refers to a surprising phenomenon that occurs when a large unexpected modification of a visual scene is not detected by the attentional system of the observer. More information can be found in [START_REF] Simons | Change blindness: Past, present, and future[END_REF]. This phenomenon illustrates the limits of perception and corroborates the idea of limited attentional resources.

Mind wandering

MIND WANDERING is a state of consciousness where attention is oriented towards internal thoughts and self-centred matters. This state happens when the brain is "at rest" or sometimes during sustained attention tasks. Usually, the attentional shift towards mind wandering is unconscious, and it may take some time for a person to realize that the target of their attention has changed. Studies have shown that cortical processing of the external world and of task-related context is reduced during mind wandering episodes [START_REF] Smallwood | Going AWOL in the brain: Mind wandering reduces cortical analysis of external events[END_REF].

Anatomy of attentional networks

In this section, we present an overview of the neuronal substrates of the attention model presented in section 4.2.2. We also introduce the default mode network (DMN), which is associated with mind wandering, as well as certain specific self-centred cognitive tasks.

Working memory

The N-back task is a typical experiment used for assessment of working memory and sustained attention. Its principle is that a participant is presented with a succession of stimuli, and has to indicate when the current stimulus matches the one from N steps earlier in the sequence. The difficulty of the task can be adjusted by modifying the number N. According to a review of 24 studies involving variants of N-back tasks [START_REF] Owen | N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies[END_REF], the most robustly activated regions in the brain during working memory maintenance and update are the following: the lateral and medial premotor cortices, the dorsal cingulate cortex, the dorsolateral and ventrolateral prefrontal cortices, the frontal poles, and the medial and lateral posterior parietal cortices. These regions are illustrated in Figure 4.7.

Arousal and alerting subsystem

The alerting component works as a bottom-up warning system able to increase arousal to match the current attentional demand. This subsystem is strongly associated with the brain mechanism responsible for arousal that originates in the locus coeruleus (LC) and uses the neuromodulator norepinephrine (NE) with many projections throughout the brain (see Figure 4.8) [Aston-Jones and [START_REF] Gary | An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance[END_REF]. In the aforementioned review, the LC-NE system is depicted as a performance optimization module driven by the anterior cingulate cortex (ACC) and the orbitofrontal cortex (OFC) which act as evaluators respectively for the costs and rewards of ongoing tasks. The review also mentions two different modes of the LC called the phasic and tonic modes, which correspond to the phasic and tonic alertness functions described earlier (respectively temporal optimization of arousal within a task and global optimization of arousal).

Salience filters

Low-level salience (see section 4.2.2.2) is based on the physical properties of incoming stimuli. These properties are extracted in the different layers of sensory cortices, and the resulting salience is evaluated in several locations of the posterior parietal cortex (PPC), including the temporo-parietal junction (TPJ) [START_REF] Behrmann | SHOMSTEIN, Sarah: Parietal cortex and attention[END_REF] and the lateral intra-parietal (LIP) area [START_REF] Gottlieb | The representation of visual salience in monkey parietal cortex[END_REF]].

High-level salience consists of several subjective criteria such as novelty, emotional impact and cognitive relevance. As previously stated, the ACC and the OFC are involved in the evaluation of costs and rewards associated with stimuli [Aston-Jones and [START_REF] Gary | An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance[END_REF]. Areas that have been shown to be activated by novel stimuli include two sites in the TPJ region (the supramarginal gyrus and the superior temporal gyrus), as well as the right inferior frontal gyrus (IFG), the right anterior insula (aI), the ACC, and the left inferior temporal gyrus [START_REF] Downar | A cortical network sensitive to stimulus salience in a neutral behavioral context across multiple sensory modalities[END_REF]. A network responsible for the evaluation of the cognitive and emotional salience has been shown to comprise the ACC and AI [Menon and Uddin, 2010]. The amygdala has also been shown to play a key role in the enhancement of emotionally salient stimuli [START_REF] Anderson | Lesions of the human amygdala impair enhanced perception of emotionally salient events[END_REF]. 

Locus Coeruleus (LC)

Orienting subsystem

According to [START_REF] Petersen | The attention system of the human brain: 20 years after[END_REF], two brain networks can be identified as responsible for the orienting of attention towards relevant external stimuli (illustrated in Figure 4.9). These networks include a dorsal system comprising the frontal eye fields (FEFs) and the intraparietal sulcus and a more ventral system involving the TPJ and the ventral frontal cortex (VFC). The dorsal pathway has been reported to be involved in target acquisition and cue processing, whereas the ventral system was identified as the source of interrupt signals that make it possible to switch attention towards new locations. Cholinergic systems in the basal forebrain are also mentioned as playing a critical role in orienting. Although these systems have been mostly studied for visual attention, the brain areas involved in non-visual orienting strongly overlap with the aforementioned networks.

Executive control subsystem

The executive component of attention is a controller responsible for many different top-down functions (see section 4.2.2.5). [START_REF] Petersen | The attention system of the human brain: 20 years after[END_REF] gather these functions into two main systems corresponding to two main brain networks. The first one, called the cingulo-opercular control system, takes care of background maintenance of task parameters and performance. The frontoparietal system, in contrast, is responsible for discrete signals sent at the beginning and end of mental tasks, as well as during trials for real-time adjustment. These two networks are illustrated in 1), the medial PFC ( 2), the ACC ( 3), the lateral temporal cortex ( 4), the IPL ( 5), the posterior cingulate and retrosplenial cortices ( 6) and the hippocampus (7). Illustration reproduced from Raichle [2015].

Default mode network (DMN)

In the previous section (4.3), mind wandering was described as an introspective attentional phenomenon occurring at rest or during focused attention tasks. Mind wandering is strongly associated with a brain network called the default mode network (DMN), whose activation seems to match self-oriented cognitive processes and spontaneous cognition. The DMN is a large network that involves many brain regions including the ventral and dorsal medial prefrontal cortices (vmPFC and dmPFC); the posterior cingulate cortex (PCC) and the adjacent precuneus, the inferior parietal lobe, and the enthorinal cortex [Raichle, 2015]. An illustration can be found in Figure 4.11.

Some neurophysiological effects of attention

The previous section described several networks known to contribute to the attentional system. Here, some experiments illustrating the diversity of the neurophysiological effects induced by attention are presented. We will focus on studies using EEG and behavioural measures, since these techniques will be used in the experiments described later in this manuscript.

What are the potential targets of attention?

From a cognitive point of view, if we assume that attention is required to become conscious of a percept, then all neural representations consciously accessible are potential targets of attention. The corresponding functions comprises all sensory inputs, both real and imagined, including proprioception and nociception, real and imagined motor tasks, memorization and memory retrieval tasks and verbalized thinking.

From a neurophysiological point of view, it means that attention can influence the behaviour of most of the neocortex, limbic cortex, basal ganglia, pulvinar nucleus, superior colliculus and cerebellum [Knudsen, 2007].

Attention can modify reaction time

Posner introduced, in 1980, a famous paradigm known as the Posner cueing task to assess the effects of visual cues on the processing of visual inputs [Posner, 1980]. The idea of the experiment is to display stimuli in either the left or right visual field of the participants after presentation of a cue indicating where the next stimulus will appear. The cues give a correct indication most of the time so that the participants trust them and shift their attention towards the location where the stimulus should appear. Variations of this paradigm have led to various findings about visual attention. The most important one is probably that cueing reduces the reaction time to visual events occurring in the cued location while increasing the reaction time to stimuli presented elsewhere in the visual field. This finding remains true even if attention is only covertly shifted to the cued location and the stimulus is presented about 350 ms after the presentation of the cue.

Attention can modulate the amplitude of brain responses

In an experiment published by [START_REF]SA: Selective attention to stimulus location modulates the steady-state visual evoked potential[END_REF], participants were asked to covertly attend one of two continuous and competing stimuli presented in the left and right sides of their visual fields (selective attentioon). The stimuli used in the experiment were patterns blinking at different frequencies so that the responses generated in the brain (SSVEPs) would be time locked to the stimuli and easily measured using EEG. This experiment shows that covert -and a fortiori overt-attention can modify the amplitude of low-level brain responses. An illustration of this experiment and its results, reproduced from the aforementioned study, can be found in Figure 4.12.

In such a selective attention task, the amplitude of the stimulus attended to by the subject is higher than the amplitude of the ignored stimulus. However, it does not necessarily means that the effect of attention is an increase of the amplitude of the stimulus attended to, for it may be an inhibition of the activity corresponding to the ignored stimulus. It is also possible to observe both the excitatory and inhibitory effects, as is illustrated on Figure 4.13. Attend Left Attend Right 
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Detection of mind wandering through frequency analysis

Another way to detect changes induced in the brain by attentional processes is to compare time-frequency maps of brain responses in different conditions. One common approach is to project EEG data on the typical frequency bands (δ, θ, α, β and γ; see section 3.3.2) and look for significant differences between the conditions. For example, in a study published by [START_REF] Braboszcz | Lost in thoughts: neural markers of low alertness during mind wandering[END_REF], neural correlates of the shift between mind wandering (see section 4.3.2.4) and sustained attention to breathing were found in different frequency bands, as illustrated on Figure 4.14.

The influence of contrast (task difficulty)

Reynolds et al. [2000] showed that visual attention mostly amplifies the responses generated by stimuli of average contrast. Whether attended or not, stimuli of high contrast elicit high spiking rates in the visual cortex, whereas stimuli with a low contrast do not provoke any response. These results are illustrated in Figure 4.15 and summed up in Table 4 
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Introduction

In the previous chapter, we presented an experiment where the brain response to two flickering stimuli located on each side of the visual field was modulated by covert spatial attention (see 4.5.3). Our first idea to investigate the fluctuations of visual attention was to reproduce this experiment using a single flickering stimulus, with the hypothesis that attention could modulate the amplitude of the resulting brain response. We CHAPTER 5. MODELLING OF STEADY-STATE ACTIVITY FROM TRANSIENT POTENTIALS therefore performed several preliminary experiments where a subject would look at a single flickering stimulus presented in the centre of his visual field and was asked to pay attention to either the visual stimulation, another sensory input (audio or somatosensory), or nothing in particular. However, we did not observe the expected amplitude modulation associated with a shift in the focus of attention. We concluded that focusing on a high contrast, centred, flickering stimulus is a bad task for the study of attention, since it does not involve any perceptual difficulty nor any high-level processing. Indeed, the visual cortex strongly responds to such a stimulus whether or not it is attended (see 4.5.5). We believe that Morgan et al. [1996] observed amplitude modulations of SSVEPs for two main reasons: first because several visual stimuli were in competition, meaning that an unattended stimulus could be actively inhibited by spatial attention; and then because the visual stimuli were not in the central region of the visual field, making them more difficult to perceive. Nonetheless, during these preliminary experiments, we observed that our measure of the amplitude of SSVEPs, based on Fourier power at the stimulation frequency, was fluctuating over time independently from attentional focus. In addition, we observed that the response to the same flickering pattern could be very different in both shape and spatial distribution from one subject to another. Since we were also developing an active BCI based on SSVEPs at that time, we decided to investigate how the detection of such signals could be improved. Our idea was to use the information contained in the transient VEP recorded on each subject for individual calibration of the SSVEPs detection algorithm.

In this chapter, we introduce transient and steady-state VEPs and attempt to explain the individual content of SSVEPs. To the best of our knowledge, the relationship between the time-frequency properties of VEPs and SSVEP responses has not been investigated. We therefore study the link between the intrinsic frequencies comprised in the transient VEP and the amplitudes of the harmonics of SSVEPs. Our working hypothesis is that the characteristics of SSVEPs in the time and frequency domains may be largely predicted from the average VEP generated with analog stimulation. Based on the hypothesis that SSVEPs are a succession of VEPs, we also propose a simulation method to predict these amplitudes at any stimulation frequency. Most of the results presented in this chapter have been published in Gaume et al. [2014b], of which the full text can be found in appendix A.1.

Transient and steady-state visual evoked potentials

Visual evoked activity results from the exposure of the visual system to external stimulation. The eyes first transduce information into electrical signals that are conveyed up to the visual cortex through the optic nerves. Then, the different layers of the visual cortex process the information to extract patterns, motion, orientations, colours and so on. EEG recordings of this process result in visual evoked potentials or VEPs, which are the macroscopic observation of the processing occurring inside the cortex. It is not exactly known how evoked potentials are generated but it is assumed that the oscillations observed on VEPs result from the progressive integration of the stimulus features by the different layers of the visual cortex [Di Russo et al., 2002a].

CHAPTER 5. MODELLING OF STEADY-STATE ACTIVITY FROM TRANSIENT POTENTIALS

VEPs generally have a low amplitude (about 10 µV peak-to-peak) and are therefore not easily discriminated from the rest of EEG activity. Consequently, VEPs are usually extracted by signal averaging of several trials starting at the presentation of the visual stimulus and lasting longer than the evoked response (see section 3.2.1 for the procedure and figure 5.2 for an example of stimulation pattern and the resulting VEP).

The characteristics of VEPs vary from subject to subject. For example, it is well known that the functional integrity of the visual pathway influences the delay between the stimulation and the observed response [Odom et al., 2010]. This property makes VEPs useful in clinical ophthalmology to diagnose possible lesions of the optic nerve. In addition, factors unrelated to inter-subject variability also influence the shape of evoked potentials. They include the parameters of the stimulus (shape, position and color), its physical properties (such as the response time and contrast of the display or the luminance of the stimulation) and the position of the EEG electrodes.

VEPs are also modified when the stimulation is repeated periodically, in which case the response is called steady-state VEPs or SSVEPs. This definition is widely accepted in the engineering community and matches the definition given in Regan [1989], who defined SSVEPs as the idealized response made by repetition of VEPs, whose frequency components remain constant in amplitude and phase over a long time period. It can be noted that Di Russo et al. consider that VEPs are to be called steady-state only when the visual stimuli are presented rapidly enough to prevent the brain response from returning to base line state (i.e. when the inter-stimulation period is shorter than the VEP) [Di Russo et al., 2002b]. Similarly, Odom considers that repetitive evoked potentials are to be considered steady-state at rapid rates of stimulation, when the recorded waveform becomes approximately sinusoidal [Odom et al., 2010]. We will stick to Regan's definition and consider that SSVEPs can theoretically exist at any stimulation frequency.

Materials and methods

Subjects

Results presented in this chapter were obtained on ten healthy subjects. Nine were males and one female, with an average age of 24.8 (standard deviation: 3.6, range: 21-34). All had normal or corrected-to-normal vision and none of them had any history of epilepsy, migraine or any other neurological condition. The study followed the principles outlined in the Declaration of Helsinki. All participants were given explanations about the nature of the experiment and signed an informed consent form before the experiment started.

Experimental conditions

EEG recordings took place in a dark room, where subjects were seated on a comfortable armchair, about 70 cm away from the screen used to display visual stimulations. Subjects were shown their EEG activity prior to recording and explanations were given CHAPTER 5. MODELLING OF STEADY-STATE ACTIVITY FROM TRANSIENT POTENTIALS about muscular artefacts and eye blinks. They were instructed to relax and prevent excessive muscular contractions or eye movements.

Data acquisition

EEG signals were continuously recorded at a sampling rate of 2 kHz using 16 active Ag/AgCl electrodes from an actiCap system, connected to a V-Amp amplifier, both from Brain Products. The electrodes were placed according to the 10-20 system with a focus on parietal and occipital regions at positions Fp1, Fp2, F7, F3, F4, F8, C3, C4, P7, P3, Pz, P4, P8, O1, Oz and O2, as illustrated in Figure 5.1. Two additional electrodes were used as ground and reference for the amplifier and were located respectively at AFz and FCz. A photodiode connected directly to the EEG amplifier auxiliary input allowed synchronization between the EEG recordings and the visual stimulation. The BPW-21R photodiode was chosen for its sensitivity to visible light (420-675 nm) and its theoretical response time of about 3 µs, lower than any other time scale in our setup.

Stimulation

Stimuli used during the experiment were flickering black and white chequerboards composed of a 10 by 10 grid of squares, for a total stimulus size of 500 by 500 pixels, corresponding approximately to 11°by 11°of the visual field. During experiments, subjects were asked to keep their gaze on a 14 pixels red fixation cross located at the centre of the display. An illustration of the stimulus can be found in Figure 5.2 and appendix B.1. Stimulations were designed using PsychToolBox-3 for MATLAB [Brainard, 1997][ Kleiner et al., 2007] and displayed on a Samsung S23A750D screen with a refresh rate of 120 Hz, allowing for more stimulation frequencies than screens with lower refresh rates.

More specifically, a screen with a refresh rate f can display f images per second, and the duration of a frame is, therefore, 1/ f . Generation of flickering patterns with a duty factor of 0.5 (i.e. with an equal time spent on each version of the pattern) requires an integer and equal number of frames between each reversal. Consequently, the possible stimulation frequencies with such a display are the { f /(2k), k ∈ N}. As each reversal of a chequerboard produces the same evoked potential, a stimulation with 2 reversals per second will be referred to as a 2 Hz stimulation in this dissertation, even though the flickering rate of each square of the pattern is 1 Hz.

Photodiode measurements allowed us to check that the contrast of stimulations decreased by less than 1% between low frequency and high frequency stimulations (up to 60 Hz). Furthermore, the stimulation frequency had no noticeable variations over time at a 2 kHz sampling rate.

Experimental procedure

Each experiment consisted in the recording of 2 minutes of resting state with eyes open, 2 minutes of resting state with eyes closed, a total of 5 minutes of VEPs (obtained with a pattern flickering at a 2 Hz frequency as recommended in [Odom et al.,CHAPTER 5. MODELLING OF STEADY-STATE ACTIVITY FROM TRANSIENT POTENTIALS Between each sequence, the subject was able to rest for as long as desired, and controlled the beginning of the next sequence with a button. After the button was pressed, a 3s countdown preceded the beginning of the sequence.

SSVEPs were recorded at the following frequencies (in reversals per second): 1, 1. 5, 2, 2.5, 3, 4, 5, 6, 7.05, 8, 9.23, 10, 12, 13.33, 15, 17.14, 20, 24, 30 and 40, which can all CHAPTER 5. MODELLING OF STEADY-STATE ACTIVITY FROM TRANSIENT POTENTIALS be exactly displayed on a 120 Hz screen because they are all solutions of the following equation:

f = 120 n , n ∈ N (5.1)

Signal processing

Analyses were performed using MATLAB 2013a, with the signal processing toolbox and the wavelet toolbox. The recorded EEG signals were filtered between 0.5 Hz and 90 Hz, and a notch filter was applied in real time by the amplifier to remove the 50 Hz component due to the power grid (see section 3.4.1 for more details). Before any analysis was performed, all data were downsampled from 2 kHz to 1.8 kHz using MATLAB's resample function. Because 1.8 kHz is a multiple of 120 Hz (the refresh rate of the stimulation device), inter-stimuli durations for all previously mentioned frequencies corresponded to whole numbers of points in the downsampled signals. This allowed for precise segmentation of SSVEPs and precise estimation of frequencies using FFT. Both filtering and downsampling were applied before any segmentation to avoid boundary effects.

Frequency and time-frequency analyses

Frequency spectra were estimated using MATLAB's FFT algorithm on time windows corresponding to multiples of the stimulation period, so that the stimulation frequency and its harmonics would fall precisely on points of the resulting frequency axis. For SSVEP responses, FFT power is generally preferable to other power spectrum estimation methods (such as Welch's periodogram or multitapers) since SSVEP peaks are very precisely located in the frequency domain and are supposed to have a nearly constant phase as long as the stimulation frequency is stable. Time-frequency decompositions were computed using MATLAB's wavelet toolbox. Complex Morlet wavelets with 3 and 11 oscillations were used in this study. These two wavelets are called 'cmor1-1 and are illustrated in Figure 5.3. The wavelet with 3 oscillations provides average temporal and frequency resolutions in the time-frequency domain of an evoked potential and is used for global visualization of EEG. The wavelet with 11 oscillations has a better frequency resolution and is used for the estimation of frequency components. More details about the resolutions of the wavelet transform can be found in section 3.3.1.3. Only the magnitudes of time-frequency maps were kept for analysis.

Simulations

For a given frequency, SSVEPs were simulated for each subject by concatenating trains of individual centred VEPs. Delay between two successive waveforms was taken equal to the desired SSVEP period. When this delay was shorter than the length of the VEP, the waveforms were summed in the overlapping area. This can be written as a convolution of a VEP waveform with a Dirac comb or as a periodic summation:

SSV E P si m (t ) = (∆ T V E P )(t ) = ∞ k=-∞ V E P (t -kT ), (5.2) 
where SSV E P si m is the simulated SSVEPs signal, ∆ T a T-periodic Dirac comb, T the desired period of simulated SSVEPs, " " the convolution, and VEP a function with a transient VEP starting at t = 0 and zeros everywhere else. The principle of this procedure and examples of SSVEPs simulated at different frequencies can be found in Figure 5.4.

When the delay between the VEPs was so short that the main components of consecutive VEPs started to overlap one with another (N65, P90 and N180; see Figure 5.2), we applied a correction to the simulation process. The rationale behind this correction is that the neuronal assemblies responsible for VEP generation should not be able to give rise to two VEPs at the same time. Therefore, we considered that if a VEP waveform overlaps with the next VEP by 30%, then only 70% of the neurons can be involved in each VEP generation, thus multiplying the simulated SSVEP amplitude by 0.7. Since most of the VEP energy is generally contained in a 100 ms oscillation, this correction was applied only for simulations above 10 Hz. Practically, simulated SSVEPs were multiplied by 10 and divided by their stimulation frequency. Results of the simulation with and without this correction are presented and discussed in the following sections. 

Results

VEP intrinsic components and SSVEPs

Figure 5.5 (a) shows a VEP observed in the occipital region, averaged over the ten subjects who took part in the experiment. The observed waveform is consistent with the expected VEP for pattern reversal stimulation as described in Odom et al. [2010]. However, a notable difference can be observed: the N135 component described in Odom et al. [2010] is shifted in our results to 180 ms after stimulus onset. Figure 5.5 (b) shows the intrinsic time-frequency components of the average occipital VEP computed using wavelet transform. It can be observed that this VEP is composed of three main oscillatory bursts centred at (80 ms, 16 Hz), (110 ms, 7.5 Hz) and (190 ms,3 Hz). A magnified version of this time-frequency decomposition can be found in appendix C.1. Figure 5.5 (c) shows the FFT spectrum of the occipital response to the 2 Hz stimulation used for VEP measurement, averaged over all subjects. This brain response corresponds to 2 Hz SSVEPs. The sharp vertical peaks correspond to the harmonics of the stimulation frequency and can be seen every 2 Hz, from 2 Hz to 30 Hz, i.e. in the same frequency range as the intrinsic oscillations present in the transient VEP. It can be observed that harmonics located at 10 Hz and 12 Hz, i.e. between two of the aforementioned oscillatory bursts have a lower amplitude than the neighbouring peaks. This phenomenon will be described on individual recordings in the next paragraphs. ject can be used to explain qualitatively the spectral content of SSVEPs recorded on the same subject.

More precisely, the time-frequency map obtained from the VEP of subject 4 (b) shows strong components in the 3-14 Hz frequency band, as well as a moderate burst centered at 21 Hz with a hole around 15 Hz. Similarly, SSVEPs recorded on subject 4 at 2 Hz (e) and 3 Hz (f ) contain strong harmonics below 15Hz and weak harmonics visible in the 18-24 Hz range, with a decrease in harmonics amplitude around 15 Hz. A weak burst can also be observed in the VEP at (100 ms, 36 Hz), and the corresponding weak components can be found in the 3 Hz SSVEPs at 33, 36 and 39 Hz (f ). Subject 6 exhibits a different behavior (d): its VEP contains only weak components below 10 Hz, with a constant contribution at 2.5 Hz (which is probably due to the general shape of the VEP) and some activity around 6 and 9 Hz. More powerful bursts can be found above 10 Hz, with a narrow component at 11 Hz and an important oscillatory burst ranging from 14 Hz to 30 Hz, with small amplitude reaching frequencies above 40 Hz. Spectral analysis of SSVEPs shows consistent results, with weak peaks at 2 Hz in (g) and 6 and 9 Hz in (h), while quite strong amplitudes can be observed in the 14-30 Hz band, with visible contributions at 33 and 39 Hz in (h). 

Simulation of SSVEPs using transient VEPs

Based on the observed similarity between the frequency content of individual VEPs and SSVEPs, we simulated SSVEPs using the method described in section 5.3.8 at all frequencies used for stimulation during the experiment (see section 5.3.5). Next sections will compare experimental and simulated SSVEPs in the time and frequency domains. show the distance between the experimental and simulated SSVEPs spectra, computed using equation 5.3, respectively with and without correction to the simulated amplitudes (as described in section 5.3.8). Each dot represents one subject at a given frequency. Dots of the same color pertain to the same subject. The red dashed lines represent the average distance between experimental and simulated SSVEPs at a given frequency.

Comparison in the frequency domain

The accuracy of the simulation can be quantified for each stimulation frequncy f by averaging the squared differences between the experimental and simulated SSVEP peaks, as in the following equation: (5.3) where d is the distance between the two spectra and nPeaks the number of harmonics of f below 40 Hz. This distance is based only on frequencies at which SSVEP peaks can be found, including harmonics of the stimulation frequency up to the twentieth as long as it remains under 40 Hz. Results obtained using this distance for each subject and each frequency are presented in Figure 5.8. Without any correction, quantitative prediction is very accurate in the 1-6 Hz frequency band, satisfactory in the 6-12 Hz band, and its accuracy decreases above 12 Hz, with an improvement at 30 Hz and 40 Hz. It can be noted, however, that there is a wide spread of the prediction accuracy across subjects in the 15-30 Hz band. The corrected version of the simulation algorithm strongly improves the prediction performances in the 15-30 Hz band, while slightly degrading the prediction at 40 Hz.

d ( f ) = 1 nPeaks k f <40 k∈[1;20] (F F T exp (k f ) -F F T si m (k f )) 2 ,

Comparison in the time domain

In this section, the maximum of the cross-correlation function is used to quantify the similarity between two time series (more details in section 3.2.2). These maxima were computed between experimental and simulated SSVEPs for every pair of subjects and 5.1: "Own VEP": cross-correlation coefficients between each subject's experimental SSVEPs and simulations obtained using their own VEP. "All VEPs": average cross-correlation coefficients between each subject's experimental SSVEPs and simulations obtained from all subjects. Coefficients are computed on the occipital channels (O1, Oz, O2) and averaged on the 20 frequencies used during the experiment. every trial, using signals from the same electrode and at the same stimulation frequency. In order to compare only the shape of the signals, these were standardized (i.e. set to zero-mean and unitary standard deviation) before cross-correlation coefficients were computed. Consequently, no comparison was done between real signals and simulations corrected by the procedure described in section 5.3.8.

Table 5.1 shows the cross-correlation coefficients obtained between experimental and simulated SSVEPs, using either a subject's own simulations, or averaging the results over simulated data from all subjects. Even though the difference is small, each subject shows a stronger correlation with his own simulations compared to average ones. It can also be observed that these coefficients vary a lot from subject to subject, with a maximum obtained on subject 4 and a minimum obtained on subject 8.

Figures 5.9 and 5.10 show a comparison of experimental and simulated SSVEPs in the time domain, respectively for the subject showing the highest (subject 4) and lowest (subject 8) cross-correlation coefficients between the two signals. Since real SSVEPs are usually buried in noise, experimental waveforms were extracted by averaging EEG windows time-locked to the stimulation. The number of windows averaged for each frequency can be found in Table 5.2. Figure 5.9 (best subject) shows a very strong similarity between real and simulated signals, both in shape and amplitude and at all frequencies. It can however be noted that simulated amplitudes become higher than observed amplitudes for frequencies above 10 Hz. This difference becomes maximum at 20 Hz and 24 Hz and decreases afterwards until real and simulated signals become similar again at 40 Hz. This behaviour can be observed on several subjects and is coherent with observations in the frequency domain in which the distance between real and simulated SSVEP spectra was maximum at 24 Hz without correction (see Figure 5.8). Figure 5.10 (worst subject) shows a different behaviour. It can be observed that the transient VEP of subject 8 has a lower amplitude and a more complex structure (i.e. more oscillations of various intrinsic frequencies) than the transient VEP of subject 4. The simulation more or less matches experimental data up to 6 Hz, after which the simulations seem to be always more complex than the real signals, which tend to have very low amplitudes. Period and number of averaged windows used to compute each experimental SSVEP waveform presented in figures 5.9 and 5.10. For each frequency and each subject, we averaged data from the three 15s trials recorded into an average waveform.

Discussion

Figure 5.5 shows that the shape and time-frequency content of individual transient VEPs allow us to make qualitative prediction about the spectral content of SSVEPs. As demonstrated by figures 5.7 and 5.9, we can also use VEPs to predict quantitatively the amplitudes of SSVEPs in both the time and frequency domains, using the proposed simulation method.

At low frequencies, good performance of the uncorrected simulation algorithm can be explained by the fact that the SSVEP response is basically a train of VEPs as long as the main components of consecutive VEPs do not overlap. At such frequencies, the power spectrum can be explained by the shape of the oscillations of the VEP, as illustrated in Figure 5.11. This example shows that a 16 Hz sine wave with a well-chosen phase overlaps almost perfectly the N65 and P90 components of an average VEP and is in phase with the N180 component. This explains why we observe such a strong oscillatory burst in Figure 5.5 (b) centered at (80 ms, 16 Hz), since the aforementioned components are the most reproducible.

At higher frequencies of stimulation, the brain cannot return to (or close to) baseline state before the next VEP is triggered. At frequencies higher than 7 Hz, the N180 of a VEP overlaps with the N65 of the next VEP. Furthermore, at 13 Hz, the P90 component starts to overlap with the following N65. This is probably the source of the low performances of the uncorrected simulation after 13 Hz, and may explain why the corrected algorithm gives better results. The fact that a linear correction to the SSVEP amplitude gives such good results in correcting the prediction in the 15-30 Hz band may give credit to the "brain oscillations" hypothesis against the "phase resetting" hypothesis for event-related potential generation (see [Sauseng et al., 2007] for a review of this discussion). Indeed, our simulated SSVEPs are a sum of known brain oscillations (VEPs) even when their amplitude is reduced due to overlapping of two consecutive waveforms. However, better prediction obtained without correction at 40 Hz indicates that our correction strategy may not work for frequencies which are not intrinsically present in the VEP. From an engineering point of view, being able to predict SSVEP peaks amplitude from VEPs may lead to better calibration of SSVEP detection algorithms, which often only take into account the first two harmonics of the stimulation 

Introduction

In the previous chapter, a method for the simulation of SSVEPs was introduced. The hypothesis behind this simulation algorithm is that SSVEPs can be modelled as a train of transient VEPs. In this chapter, we use these simulated SSVEPs to classify EEG epochs depending on the frequency of the SSVEPs they contain. Our hypothesis is that detection of SSVEPs based on simulated EEG signals should work better than using features such as the spectral power taken at one or several frequencies, as can be found in the literature. We also expect that detection of SSVEPs on a given subject will lead to better results when the simulated signals are generated from the VEP recorded on the same subject. Finally, we expect that the information contained in the spatial distribution of VEP components can be used to improve classification.

This chapter provides a proof of concept based on the same data as the previous chapter: SSVEPs were recorded with only one flickering pattern on the screen, without any feedback to the user (offline BCI). We also present a validation of this approach based on another dataset collected using the SSVEP-based BCI interface presented in Figure 2.13 with both an offline training of the system and an online validation. Part of the results presented in this chapter were published in Gaume et al. [2014a], of which the full text can be found in appendix A.2.

Materials and methods

Data used in the results section of this chapter are the same as in the previous chapter: refer to section 5.3 for information about data collection and pre-processing.

Classification

Linear discriminant analysis (LDA, see section 3.5.4) was used to build a classifier which inputs are a set of features extracted from EEG epochs recorded during SSVEP stimulation at one of the 20 frequencies mentioned in section 5.3.5. The classifier was trained to estimate the frequency of the stimulation during which the recording was performed (20-class classifier). Classification was preferred to regression because the features used were extracted at given frequencies and did not contain information about the frequency itself (more details in the next section).

The performance of the classifier was evaluated as the percentage of well-classified epochs, for different epoch lengths: 1s, 1.5s, 2s, 2.5s, 3s, 4s, 5s, 6s, 8s, 10s, 12.5s, 15s. The same number of examples was used in each class (balanced dataset) and random classification would therefore lead to a 5% accuracy. With three recordings of 15s for each frequency and each of the ten subjects, the number of examples N ex in each class can be computed as a function of the epoch length L e :

N ex = 10 • 3 • 15 L e = 30 • 15 
L e , ( 6.1) 
where . refers to the floor function. For example, with 3s epochs, the number of examples amounts to 150 per class, for a total of 3000. Two different approaches were used for partitioning the dataset into training and test sets. First, the database was randomly segmented into 100 subsets of equal size. We evaluated the accuracy of the classifier on each small set while other sets were used for training (leave 1% out). Performances were then averaged on all test sets. The other approach consists in training the classifier using all but one subject and to use data from the last subject as the test set. This was done for all subjects, and performances were averaged (leave-one-subject-out).

Features used for classification

Three types of features were used as inputs of the classifier:

• The spectral amplitude taken at the first 10 harmonics of each stimulation frequency, which was estimated using FFT on time windows corresponding to multiples of the stimulation period, so that stimulation frequency and its harmonics would fall precisely on points of the resulting frequency axis.

• The signal-to-background ratio (SBR) in the spectral domain, which can be easily computed by dividing the previously mentioned spectral amplitude by the average amplitude in a 1 Hz interval around the considered frequency. SBR was also extracted at the first 10 harmonics of each stimulation frequency.

• The maximum of the cross-correlation function between an EEG epoch and simulated SSVEPs at each of the 20 stimulation frequencies. Unless specified otherwise, the simulated signals are generated for each subject using their own VEP in order to estimate the cross-correlation.

Spatial filtering

In this chapter, we use PCA (see 3.4.2.1) and joint decorrelation (see 3.4.2.2) to find spatial bases that maximize the signal-to-noise ratio of SSVEPs and therefore enhance the power of our classifier. Our hypothesis is that we can find a basis using VEP data and use it for the simulation procedure and the classification of SSVEPs.

For PCA, the approach is straightforward: for a given subject, we apply the algorithm to the average VEP taken on all 16 channels and proceed to simulation using VEPs in the components basis instead of the channels basis. SSVEPs are also projected in the new spatial basis before computation of cross-correlation coefficients.

JD is more complex, as it requires two sets of data. In our case, we want to maximize the signal-to-noise ratio of VEPs. Therefore, we need a first dataset containing the "signal", and another one describing the distribution of noise. As for PCA, the "signal", in this case, is the average VEP in the EEG channel basis. Two different datasets were tested to define the noise distribution: rest data (with eyes open), and unaveraged VEP data (i.e. the same data as for the "signal", but without the averaging procedure which reveals transient VEP from EEG background). Using the leave-one-subject-out validation approach . Black lines: accuracy obtained using cross-correlation coefficients between an epoch and the 20 simulated trains of VEPs. Red lines: accuracy obtained using FFT amplitudes taken at each possible stimulation frequency (1f) or one of their harmonics (2f, 3f . . . ). Blue lines: same as red but using FFT signal-to-background ratios.

Results

Classification using a single set of features

between the considered EEG epoch and simulated SSVEPs at each stimulation frequency. Accuracy is computed for different epoch lengths, and in the two training and validation conditions described in section 6.2.1.

We observe that the cross-correlation coefficients are the best features to classify epochs for all epoch lengths and in both conditions. Classification using FFT amplitudes and FFT signal-to-background ratios as input features give very similar results, with FFT amplitudes giving slightly better results than FFT SBR for epoch lengths below 6s and FFT SBR doing slightly better for epoch lengths above 6s. Classification accuracy using these spectral features decreases as the order of the harmonic taken into account increases. Accuracies are always better in the leave 1% out condition (6.1 a) than in the leave-one-subject-out condition (6.1 b), but these do not differ by more than 4%. displayed, since this situation is the most likely to happen in real SSVEP-based BCI scenario (more details in the discussion).

Classification using multiple harmonics

We observe that classification accuracy increases when we add the second and third harmonics as input features to the classifier compared to using only features at the fundamental frequencies. Addition of higher order harmonics does not improve the classification results significantly.

Spectral amplitude-based classification (6.2 a) using 3 or more harmonics gives similar accuracies as cross-correlation-based classification for epochs shorter than 6s, while not being as accurate for longer epochs. The opposite effect can be observed on Figure 6.2 (b), which shows that SBR-based classification provides lower accuracies than cross-correlation features for epochs below 6s, but reaches equal or even slightly superior accuracies for longer epochs. The proportionality between the frequency resolution of the FFT and the epoch length may explain the low accuracy of SBR-based classification with short epochs, because the estimation of the background power may then be imprecise. However, the fact that SBR operates an individual calibration of the features by dividing the spectral amplitudes by the background EEG power of each subject may make the database more robust and may explain the good performances obtained with long epochs.

Influence of the VEP used for simulation

Simulated SSVEP signals can be generated using different VEPs. In the previous sections, cross-correlation features were computed for each subject using his own VEP to generate simulated signals. Table 6.1 compares these results with those obtained when cross-correlation coefficients were computed using SSVEPs simulated from one subject's VEP for the whole dataset. For epochs longer than 3s, we can observe that accuracies obtained using each subject's VEP for SSVEP simulation are better than when using any other VEP. However, for shorter epochs, simulated signals generated using certain VEPs lead to slightly better classification accuracies. "Own VEP" means that the best results were obtained when using each subject's VEP for simulation. # of VEPs better than own: number of VEPs leading to better accuracy when used for all subjects than when each subject is classified using simulated signals from his own VEP.

Calibration using the spatial response to visual stimulation

In the previous chapter, we showed that the individual shape of VEPs offers an insight into both the time and frequency representations of SSVEPs. This was used in the previous sections to detect SSVEPs in an offline BCI paradigm. Here, we use the information contained in the spatial domain, i.e. the individual spatial distribution of VEP components, to improve SSVEP detection accuracy. Figure 6.3 shows the classification results obtained when using spatial filtering techniques prior to the computation of the cross-correlations features. Only one set of twenty features, extracted from either one channel or one spatial-filtered component, was used for classification. It can be seen on Figure 6.3 (a) that while a component based solely on a maximized VEP variance (i.e. obtained through PCA) reduces the accuracy of the classification by 5 to 15%, components based on a maximized VEP variance and a minimized noise variance have a better predictive power than a single EEG channel and improve classification accuracy by up to 15% for epochs of 1s. There is no significant differences between the results obtained using unaveraged VEP signals or rest data as noise in the JD process. Figure 6.3 (b) and (c) show an example of the different VEPs computed in the aforementioned conditions along with their corresponding topographic maps. Both were taken from subject 1. The VEPs recorded on electrode Oz and those obtained through JD are very similar in shape, but the VEP obtained through PCA shows less details, especially in the N65 component and between the P90 and N180 components. Topographic maps of best JD components for both conditions seem to integrate electrode Oz and O2 positively while making use of the neighbouring electrodes to compensate less local activity (as is done arbitrarily when using bipolar or Laplacian EEG references). 

Validation on a real BCI

An experiment to validate the technique presented in this chapter was conducted using a 13-command SSVEP-BCI (of which an illustration can be found in Figure 2.13 and appendix B.1). In this experiment, 10 subjects were shown thirteen flickering patterns simultaneously and were asked to gaze at each of them successively. Individual VEPs were also recorded to simulate SSVEPs at each of the 13 stimulation frequencies. As in the experiment presented in this chapter, offline classification was performed using LDA and followed a leave-one-subject-out validation approach with balanced classes. In this situation, the accuracy of a random classifier would be 7.7%. After rejection of two subjects who showed very low SSVEP responses, an average classification accuracy of 66.1% was obtained based on cross-correlation features computed on 3.33s epochs and averaged over three electrodes of the occipital cortex (O1, Oz and O2). This accuracy was obtained without the spatial filtering technique introduced in the previous section, and is therefore consistent with the results presented in Figure 6.2. It is also possible to compute the average information transfer rate (ITR) from the classification accuracies. ITR is an important performance index for the evaluation of BCIs. It is expressed in bits per minute and can be computed using the following equation, taken from [START_REF] Wolpaw | EEG-based communication: improved accuracy by response verification[END_REF].

ITR = f [log 2 (N ) + p log 2 (p) + (1 -p) log 2 1 -p N -1 ], (6.2) 
where N is the number of commands (13), p the average classifier accuracy (66.1%), and f the number of commands per minute, equal to 60 over the length of an epoch (18). This formula gives an average ITR of 60 bits/minute over the eight best subjects with a standard deviation of 2.39. An online recording was also performed with a subject independent from the training set. After a short recording of the transient VEP to simulate SSVEPs, classification of online EEG was performed with an accuracy of 60%, resulting in an online ITR of 58 bits/min. These results were published in [START_REF] Abbasi | Fast calibration of a thirteencommand BCI by simulating SSVEPs from trains of transient VEPs-towards timedomain SSVEP BCI paradigms[END_REF].

Discussion

On Figure 6.2, we observed that the accuracy of the classifier built using the proposed cross-correlation features is close to the limit reached when using several harmonics of spectral features. This indicates that correlation with a simulated train of VEPs and frequency decomposition of SSVEPs probably convey the same information. Of course, it is obvious that a signal in the time domain holds the same information as its frequency representation, but the interesting thing here is that our reference signal in the time domain is not a genuine SSVEP signal but a simulated SSVEP signal formed by a concatenation of transient VEPs. This supports the idea that SSVEPs are indeed formed of a succession of VEPs, even at frequencies higher than 6 Hz when consecutive VEPs start to overlap one with another. INTERFACES An advantage of using a single set of cross-correlation features instead of multiple features computed from the EEG power spectrum is linked with the problem of SSVEP detection in a context where several stimulations at different frequencies are presented at the same time (i.e. in a SSVEP-based BCI). Since the number of available stimulation frequencies displayed on a computer screen is limited by its refresh rate, it not uncommon, when increasing the number of commands, that some of them generate common harmonics. In this case, two flickering patterns may generate activity at the same frequency but with a different phase, or with a different ratio to another harmonic of the stimulation frequency. Estimation of the spectral power will fail to make the difference between such contributions, whereas cross-correlation with a time domain signal takes into account both magnitude and phase of the different components of the SSVEP signal in a single feature.

For epochs longer than 3s, results in Table 6.1 confirmed our hypothesis that classification works better when comparing one subject's experimental SSVEPs with simulated signals obtained from the same subject's VEP. However, results obtained on epochs shorter than 3s show that some properties of VEPs may make them better candidates for simulating signals used for SSVEP detection in short epochs. We have yet to identify what made the VEP of subject 5 the best waveform in such context, especially because reducing the time taken to identify a command is the most direct way to improve the ITR and comfort of a SSVEP-BCI.

To summarize, using transient VEPs to simulate SSVEPs and improve their detection provides an effective way to calibrate SSVEP-BCIs to a given subject, since the time taken for calibration does not scale with the number of commands used by the system, as it only requires the recording of a single VEP. It also reduces the number of features used by the classifier, leading to easier training and reduced risk of overfitting. In addition, the improvement of classification accuracies when using JD as a spatial filter shows that transient VEPs not only convey information about the shape of SSVEPs in the time domain but also about their spatial distribution, that can also vary from subject to subject. 

Introduction

In the previous chapters, we described how SSVEPs can be simulated from transient VEPs and how this can improve their detection as control signals in active BCIs. Our original idea was to use the modulation of these SSVEPs to monitor the fluctuations of visual sustained attention (defined in section 4.3). Unfortunately, our experiments failed to unravel a correlation between the amplitude of SSVEPs generated by a single flickering pattern and subjective reports of attentional focus.

Consequently, we moved away from SSVEPs and designed paradigms aimed at discriminating between several levels of sustained attention, with the idea that an objective correlate of attention should be measurable during the experiments. If this objective measure matches the subjective reports of attentional state, then the measure can be used as the output of a classifier in order to find the electrophysiological correlates of attention required to design a neurofeedback paradigm.

Our first experiment was inspired by the Mackworth Clock [START_REF] Mackworth | MACKWORTH, NH: The breakdown of vigilance durning prolonged visual search[END_REF], and involved long sessions of visual monitoring in search for unusual events. The objective measure used in this case as an indicator of attention was the response time of the subjects to the appearance of targets. However, most subjects indicated that their attention fluctuated between targets and that each unusual event recaptured their focus. Discrete measurement of the response time was, therefore, deemed insufficient to monitor the fluctuations of attention. In addition, all subjects who showed a significant decrease in their response time over the course of the experiment reported drowsiness and dozing. Consequently, this experiment was considered interesting for the monitoring of alertness and vigilance (i.e. sustained arousal, see section 4.3), but not adapted to the monitoring of sustained attention as it did not require a continuous involvement and did not allow a continuous measurement of performance.

The design of BCIs able to monitor sustained attention in real time, therefore, required a task during which the subject had to focus continuously but also in which the evaluation of attentional load did not rely on discrete stimulations or discrete evaluation of the performance of the subject.

In addition, we wanted to design a task that minimized the involvement of cognitive functions other that sustained attention. We therefore decided to focus on the attention required to continuously update the visual information we get from our sensory inputs instead of a task based on continuous processing of the information stored in working memory, which would involve working memory load in addition to sustained attention.

The task we propose in this chapter tries to fit in all the aforementioned categories, but it involves motor control in addition to sustained attention, and we expect that correlates of motor control may be found in the EEG signals in addition to correlates of attentional load. The results presented in this chapter extend those published in [START_REF] Gaume | Towards cognitive BCI: Neural correlates of sustained BIBLIOGRAPHY attention in a continuous performance task[END_REF], of which the full text can be found in appendix A.3.

Materials and methods

Continuous Performance Task (CPT)

CPT is a test used in neuropsychology for the assessment of sustained and selective attention. As detailed in section 4.3, sustained attention is the ability to maintain concentration over time on a given task while selective attention refers to the ability to focus on relevant stimuli in a distracting environment. CPT paradigms generally involve multiple repetitions of a rapid presentation of stimuli with infrequently occurring targets. More details about CPTs can be found in [START_REF] Riccio | The continuous performance test: a window on the neural substrates for attention?[END_REF].

The task we developed is different from the original CPT but keeps the idea that evaluation of sustained attention requires a continuous involvement of the subject. However, we wanted to avoid discrete evaluations of performance. Our task consists in the motor control of a cursor using a joystick. The concept is simple: subjects of the experiment sit in front of a computer screen displaying a black circle (the target) on a grey background (see Figure 7.1 for an illustration and appendix B.2 for an actual screen shot). A cursor moves randomly on the screen and subjects are asked to keep this cursor inside the circle using the right joystick of a joypad (EG-C1036, Targetever Technology Co. Ltd.). The difficulty of the task is adjusted by modifying the speed of the random movement. Performance of the subjects can be monitored in real time based on the correction applied to the random movement. The whole experiment was developed using PsychToolBox-3 for MATLAB [Brainard, 1997][Kleiner et al., 2007] and displayed on a 120 Hz screen with a resolution of 1920 * 1080 pixels.
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Experimental procedure

After installation of the electrodes and presentation of the EEG principles and signals, subjects were trained on the CPT several times at low speed (150 px/s) to make sure they understood how to manipulate the joypad.

A calibration session was then performed, during which each subject played the game at 20 different difficulty levels (starting at 75 px/s and up to 1500 px/s, increasing the speed by 75 px/s at the beginning of each sequence). Each level was played continuously for 20s and subjects controlled when to begin the rounds so they could take breaks in-between. Data from the calibration phase was used to determine the speed of the pointer during the rest of the experiment. This calibration phase lasted less than ten minutes.

The recording session then started. Each subject played a total of 60 rounds of the game at three different difficulty levels (20 "easy", 20 "medium" and 20 "hard"). The first round was an "easy" round, followed by a "medium" round and a "hard" round. This was repeated 20 times. Each round lasted 30s for a total duration of around 40 minutes. The cursor speed for the "easy" levels was always 150 px/s. Cursor speeds for "medium" and "hard" levels were determined according to calibration results as the speeds for which the cursor would stay 95% and 50% of the time in the circle respectively. Speed ranges were [375,750] px/s for "medium" level and [650, 900] px/s for "hard" levels, depending on the subject. Last round score, best scores and average scores for each difficulty were shown to the subject between each round to stimulate his motivation (as illustrated in appendix B.2).

Experimental conditions

EEG recordings took place in a dark room, where subjects were seated in a comfortable armchair, about one meter away from the screen used to display the CPT. The subjects were shown their EEG activity prior to the recording and explanations were given about muscular artefacts and eye blinks. They were instructed to relax and prevent excessive muscular contractions or eye movements.

Subjects

Seventeen (17) healthy subjects took part in the experiment. Three (3) of them were rejected from the study because the recorded data were too noisy. Fourteen (14) subjects remained, among which eleven [START_REF] Jung | Removing electroencephalographic artifacts by blind source separation[END_REF] were males and three (3) females, with an average age of 23.7 (standard deviation: 3.9, range: 19-32). All had normal or corrected-tonormal vision and none of them had any known history of epilepsy, migraine or any other neurological condition. The study followed the principles outlined in the Declaration of Helsinki. All participants were given explanations about the nature of the experiment and signed an informed consent form before the experiment started.

Data acquisition

EEG signals were continuously recorded at a sampling rate of 2 kHz using 16 active Ag/AgCl electrodes from an actiCap system, connected to a V-Amp amplifier, both from Brain Products. The electrodes were placed according to the 10-20 system with a focus on frontal, parietal and occipital regions at positions Fp1, Fp2, F7, F3, F4, F8, C3, C4, CP5, CP1, CP2, CP6, P3, P4, O1 and O2, as illustrated in Figure 7.2. Two additional electrodes were used as ground and reference and were located respectively at AFz and FCz.

Figure 7.2:

Electrode placement for CPT recordings. Brain activity was recorded using 16 active electrodes (in green), located all over the scalp with a focus on the frontal, parietal and occipital regions which cover several regions involved in attention and visual processing.

Signal processing

Analyses were performed using MATLAB 2013a. The recorded EEG signals were filtered between 0.5 Hz and 90 Hz using a zero-phase 3rd-order digital Butterworth filter, and the same kind of filter was applied around 50 Hz to remove the power-line noise. Filtering was applied on the raw signals before any segmentation to avoid boundary effects.

Eye blink rejection

Preliminary experiments showed that subjects produced less eye blinks when they were engaged in tasks requiring a high level of visual attention than in other tasks. In order to avoid classification of our data based on the amount of eye blinks found in EEG signals, we needed either to remove all epochs containing eye blinks, thereby reducing significantly the size of our dataset, or to find a way to remove eye blinks from EEG signals.

Therefore, a Second-Order Blind Identification (SOBI) algorithm from the EEGLAB toolbox was used to decompose recorded EEG signals into independent components. Eye blink activity and strong eye movements artefacts were removed before signal reconstruction from SOBI components. Details about this algorithm can be found in section 3.4.2.3 and in Belouchrani et al. [1993]. More information about the eye blink removal using ICA can be found in [START_REF] Jung | Removing electroencephalographic artifacts by blind source separation[END_REF].

Feature extraction and selection

This chapter only presents results obtained using spectral features extracted from EEG power spectra. Absolute and relative EEG power in the delta (δ: 1-4 Hz), theta (θ: 4-8 Hz), alpha (α: 8-12 Hz), low beta (β-: 12-18 Hz), high beta (β+: 18-25 Hz), low gamma (γ-: 25-35 Hz) and high gamma (γ+: 35-45 Hz) frequency bands were extracted from each channel of each EEG epoch, accounting for a total of 224 features per epoch (14 features and 16 channels). Absolute power refers to the total power in a given frequency band, obtained using FFT and a Hanning window on a given epoch. Relative power refers to the ratio of the absolute power in a given frequency band to the absolute power in the whole spectrum, taken between 1 and 45 Hz. All features were extracted from epochs of five, ten and thirty seconds.

Feature selection for multiple variables classification was performed using Orthogonal Forward Regression (OFR), as described in 3.5.3. Random variables (probes) were added to the feature set and only variables ranked better than 95% of the probes were kept for classification (35 features out of 224).

Classification

Classification of the EEG epochs was performed using MATLAB's LDA function. Epochs were labelled as "easy", "medium" or "hard", depending on the difficulty of the task (see section 7.2.2). We performed pairwise classification (between all pairs of classes) and three-class classification. Since the datasets used for classification were balanced, expected classification accuracies using random features were 50% for pairwise classification and 33.3% for three-class classification. Feature selection and classifier training were performed using data from all subjects except one and data from the remaining subject were used as test set. This is repeated for each subject and accuracies are averaged (leave-one-subject-out).

Subjective feedback

After the experiment, each subject was asked about his perception of the difficulty levels of the game.

• All subjects found the "easy" rounds very easy. Some reported boredom. On average, 99.8% of "easy" play time was spent inside the target circle.

• Most subjects reported that the "medium" levels were the most interesting and engaging, as they had the impression of having a real control over the movement of the cursor. 94.6% of total "medium" play time was spent inside the target.

• All subjects found that "hard" levels were by far the hardest, and most of them reported that it was slightly less motivating than the "medium" difficulty because they felt they did not have enough control over the fast-moving cursor. Some subjects however found this difficulty very challenging and interesting. On average, 56.4% of "hard" play time was spent inside the target circle.

Results

Single feature classification

Table 7.1 shows the evolution of the best accuracy obtained using single feature LDA as a function of the epoch length. It can be observed that the best accuracy increases with epoch length for all classification scenarios. However, 30s epochs seem to be only slightly easier to classify than 1s epochs using a single spectral power feature. Table 7.2 and 7.3 illustrate the results obtained on 10s epochs using single feature LDA for respectively three-class classification ("easy" vs. "medium" vs. "hard") or pairwise classification (between any pair of difficulty levels). We observe that the best accuracies obtained in "easy" vs. "medium" (65.5%) and "easy" vs. "hard" (65.8%) scenarios come from the same feature (absolute theta power at Fp1) and are significantly higher than the accuracies obtained for "medium" vs. "hard" classification. The accuracy maps obtained with absolute spectral power are also very similar in the "easy" vs. "medium" and "easy" vs. "hard" scenarios, and both qualitatively look like the accuracy map obtained in the 3-class scenario. We also observe that the features giving the best results are mostly low frequency features (delta and theta band power) in the prefrontal, superior parietal and central cortices. 

Best LOSO classification accuracies

Multiple feature classification

Table 7.4 and 7.5 show the results obtained using LDA classification with multiple features as inputs in the four conditions described in section 7.2.9. All results are given for different epoch lengths ranging from 1s to 30s. Accuracies are obtained using a leaveone-subject-out cross validation method. Along with the classification accuracies, the best features selected by OFR for the classification of 10s epochs are listed for each condition.

On average, accuracies increase with the number of features in all conditions and for all epoch lengths. The improvement of the classification accuracies with epoch length also increases with the number of features.

Using 30s epochs, accuracy reaches 64.8% for the three-class classifier using 26 features; 85.5% in the "easy" vs. "medium" condition using 14 features; 89.3% in the "easy" vs. "hard" condition using 26 features and 77.3% in the "medium" vs. "hard" condition using 25 features. With shorter 5s epochs, a situation more likely to happen in a real cognitive BCI, accuracy reach 51.8% with the three-class classifier; 75.6% in the "easy" vs. "medium" condition; 76.2% in the "easy" vs. "hard" condition and 63.5% in the "medium" vs. "hard" condition.

It can be noted that the "easy" vs. "medium" classification is the condition that reaches its accuracy plateau with the lowest number of features, thereby decreasing the chance of overfitting.

"Easy" vs. "Medium" vs. "Hard" LOSO Classification

Best features Accuracy

Relative 7.2: Three-class classification results obtained using a single spectral power feature when separating EEG epochs of 10 seconds recorded during "easy", "medium" and "hard" conditions. The five features giving the best average accuracies are listed. Accuracies obtained using absolute EEG power for each frequency band and each channel are presented as topographic maps (frontal electrodes are located at the top). Details about frequency bands can be found in section 7.2.8.

The features selected for each classifier are different and not directly linked with the features giving the best accuracy when classification is performed using a single input. However, except for the "medium" vs. "hard" classifier, which uses a lot of features in the delta range (1 Hz to 4 Hz), the other three classifiers select similar features among their best ten including:

• several features based on absolute or relative theta power (4-8 Hz), taken from multiple locations over the scalp, from frontal to occipital regions

• features based on high gamma power (35)(36)(37)[START_REF] Tomita | Bimodal BCI using simultaneously NIRS and EEG[END_REF][START_REF] Farwell | Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials[END_REF](40)(41)(42)[START_REF] Vidaurre | Benjamin: Towards a cure for BCI illiteracy[END_REF][START_REF] Croft | Removal of ocular artifact from the EEG: a review[END_REF](45), taken in the central or parietal regions

• a feature based on frontal low beta power [START_REF] Stoppiglia | Ranking a random feature for variable and feature selection[END_REF](13)(14)(15)(16)(17)(18) • a feature based on central high beta power (18-25 Hz)

• a feature based on centro-parietal alpha power (8-12 Hz) 7.3: Two-class classification results obtained using a single spectral power feature when separating EEG epochs of 10 seconds recorded during two conditions among "easy", "medium" and "hard". The five features giving the best average accuracies are listed for each classifier. Sensitivities and specificities are given for the best threshold. Accuracies obtained using absolute EEG power for each frequency band and each channel are presented as topographic maps (frontal electrodes are located at the top). Details about frequency bands can be found in section 7. 

Discussion

Subjects of the experiment reported that the "medium" rounds and the "hard" rounds required more or less the same concentration. We therefore expected that classification would work better between "easy" and "medium" or "hard" rounds than between "medium" and "hard" rounds. This is consistent with the results shown on Table 7. 1, 7.3, 7.4 and 7.5. It is also consistent with the fact that the features used to separate "medium" and "hard" rounds are different from those used by the other classifiers.

For pairwise classification ("easy" vs. "medium" or "hard" rounds), accuracies above 75% were obtained even with short 5s epochs. Accuracies over 85% could be reached using 30s epochs. These results are very promising and show that prediction of the current cognitive load required by a task can be monitored using EEG. In the "easy" vs. "medium" scenario, these accuracies were reached using a small number of features (less than ten), after which the accuracy remained stable or only slightly increased when adding more inputs to the classifier. This supports the fact that these classification results are not due to overfitting. In other conditions, and especially in the "easy" vs. "hard" condition, accuracy increased with the number of features and did not seem to reach a plateau (see Table 7.5). This may hint that some overfitting occurred, and the features should be tested on an independent test set to disprove this possibility.

Even though we removed eye blinks using SOBI, we cannot rule out that some features participating in the classification process may be related to eye movement artefacts. Indeed, on Table 7.2 and 7.3, we can see that low frequency spectral features give good classification accuracies on frontal electrodes. These figures also show that high beta activity in the left central region provides good classification results. This activity may be linked with motor control, since the task involved the control of a joystick with the right hand. Nevertheless, the high beta frequency band, containing spectral activity between 18 and 25 Hz, does not overlap with the and sensorimotor rhythm (SMR, see section 2.3.3), and may therefore be linked with cognitive load and attention more than with direct control of motor activity. This is consistent with the work of [START_REF] Wróbel | WRÓBEL, Andrzej: Beta activity: a carrier for visual attention[END_REF], which supports that the 15-25 Hz frequency band is a general carrier for attention in the brain.

Features based on power asymmetry, i.e. the differences between spectral distributions in the left and right hemisphere, and features based on instantaneous phase synchrony were extracted but did not lead to improved classification accuracies for the task presented in this chapter. However, other features based for example on complexity (e.g. fractal dimension, entropy) or synchrony (e.g. mutual information) could be added to the feature set and might lead to improved classification.

To conclude, we presented in this chapter an experiment aimed at discriminating low versus high sustained attention states in a continuous task. We showed that features such as average frequency band power, which can be estimated continuously and do not require discrete stimulations, provide good classification rates even with short epochs (5s). A leave-one-subject-out classification approach was used to avoid overfitting but other experiments are required to differentiate the features specific to the motor control task of this chapter and the features that could be used in other attentional load monitoring tasks.

Chapter 8

Conclusion and Perspectives

The research conducted as part of this Ph.D. project focused on the study of EEG signals for the development of brain-computer interfaces. As the first Ph.D. student in the BCI team at ESPCI ParisTech, I explored many aspects of BCI design and took part in the implementation of several projects concerning EEG signal acquisition, modelling and processing. Most of our early research focused on the study of SSVEPs for the development of both active and cognitive BCIs, as illustrated by chapter 5 and chapter 6. However, as we did not manage to use SSVEPs for the monitoring of visual attention, we designed a novel experimental paradigm for the assessment of cognitive functions in real-time. Since then, the team has grown and is now fully devoted to the development of cognitive BCIs using paradigms derived from the continuous task presented in chapter 7, even though our research is now primarily focused on the monitoring of working memory load, which is close but not exactly similar to sustained attention.

More precisely, our original contribution to the field of evoked potential modelling was to show that the information contained in the transient visual activity elicited in the brain by isolated photic stimulation could be used to predict the brain response to regularly flickering light, even at frequencies at which the successive waveforms would mutually overlap. A simple method for the simulation of SSVEPs was proposed in chapter 5 and shown to give good results in the 1 Hz to 40 Hz frequency range. However, accurate quantitative predictions at frequencies over 10 Hz required a mathematical correction based on the amount of overlapping between two successive VEPs. We think that this amplitude correction can be improved by taking into account more specifically the components that mutually overlap as frequency increases. It would also be interesting to test our simulation procedure with other types of evoked potentials (either non-visual or elicited by non-chequerboard patterns), as well as with irregular stimuli.

The aforementioned simulation technique was tested in both offline and online SSVEP-based BCIs and led to a better command detection accuracy than standard spectral features taken at the harmonics of the stimulation frequencies. An accuracy of 70% was obtained for the twenty-class classification of EEG epochs containing SSVEPs at 20 different frequencies (single pattern stimulation, 3s EEG epochs). Similarly, an accuracy of 60% was obtained using an online BCI prototype with 13-commands (multiple patterns stimulation, 3.33s EEG epochs). In addition, we implemented a spatial filter based on the joint decorrelation of transient VEP from background EEG, which significantly improved the performance of the twenty-class classification (83.5% accuracy using 3s epochs). Both the simulation algorithm and the spatial filter are based on the measure of a transient VEP, which takes between 3 and 5 minutes to record properly. The time taken by our calibration method is, therefore, independent from the number of commands used by the BCI. Finally, the use of a single feature per frequency reduces the size of the feature space compared to most SSVEP-based BCIs in the litterature, thereby reducing the risk of overfitting. However, our method was not compared to other calibration techniques used by SSVEP-based BCIs.

In the second part of my Ph.D., I moved back to the assessment of attentional load and proposed an innovative BCI paradigm based on a continuous task with an adjustable difficulty level, during which the performance of the subject could be evaluated in real time. Our idea was to get away from paradigms found in the literature of neuropsychological assessment, in which the influence of attention is generally observed on discrete events such as event-related potentials. Using features based on the spectral power in the different EEG frequency bands, we were able to predict the difficulty level at which the subjects were playing the game, which was congruent with the subjective feedback of the amount of attention required. This was especially the case when discriminating between the "easy" and "medium" difficulty levels, for which a classification accuracy of 75% was obtained using 5s EEG epochs. However, we were not able to explain why the features we obtained were good predictors nor to verify that these features would work in a different task involving visual attention. In order to check that last point, we developed another continuous task, inspired by the serial reading technology developed by Spritz1 , and for which EEG data were collected on 17 subjects. Analyses of the data were still in progress at the time this dissertation was written. The paradigms and the tools developed for continuous assessment of sustained visual attention are currently being extended for the monitoring of working memory load, and an industrial partnership for the development of cognitive neurofeedback technologies is being negotiated. 

I. INTRODUCTION

Visual evoked potentials (VEPs) are electric potentials elicited in the brain by sudden visual stimulation. When measured by electroencephalography (EEG) in single trial scenarios, these low amplitude signals (about 10 µV) are not easily discriminated from the rest of the recorded electric activity (i.e. the combination of other brain signals, electromyographic artifacts and electrical noise). Therefore, VEP waveforms are usually extracted by signal averaging of several trials starting at the presentation of the visual stimulus and lasting longer than the evoked response. The clinical standards for VEP recording and testing can be found for instance in Odom et al. (2009) [1].

Characteristics of VEPs can vary from subject to subject. For example, the functional integrity of the visual pathway is well known to influence the delay between the stimulation and the response of the visual cortex [1]. This property makes VEPs useful in clinical ophthalmology to diagnose possible lesions of the optic nerve. However, this functional integrity is only one of the factors that may explain the shape of a given evoked potential. Other factors include the parameters of the stimulus (shape, position and color), its physical properties (such as the response time and contrast of the display or the luminance of the stimulation) [2] as well as the position of the EEG electrodes, and of course, the intersubject variability.

The shape of the VEP also changes when the stimulation is repeated periodically over time, in which case it is known as steady-state VEPs or SSVEPs. This definition of SSVEPs is widely accepted in the engineering community and matches the definition of Regan (1989) [3], who defined SSVEPs as the idealized response made by repetition of VEPs, whose frequency components remain constant in amplitude and phase over a long time period. It can be noted that Di Russo et al. (2003) [4] consider that VEPs are to be called steady-state only when the visual stimuli are presented rapidly enough to prevent the brain response from returning to base line state (i.e. when the inter-stimulation period is shorter than the VEP). Similarly, in [1], Odom considers that repetitive evoked potentials are to be considered steady-state at rapid rates of stimulation, when the recorded waveform becomes approximately sinusoidal. We will stick to the first definition and consider that SSVEPs can theoretically exist at any stimulation frequency.

These SSVEPs are widely used in the engineering domain to design brain-computer interfaces (BCIs) [5], where the frequency of an attended flickering stimulus is detected using EEG and translated into a command by the computer. They are also used in several cognitive neuroscience studies as well as in clinical studies (see Vialatte et al. (2010) [5] for a review). The advantage of SSVEPs is that they are elicited by a periodic stimulation and therefore are themselves periodic: their spectral content is located around the frequency of the stimulation and its multiples (called harmonics). SSVEPs are also more stationary than most of EEG activity [5], which means that their characteristics remain more constant over time. Thanks to this property, they can be easily detected using simple frequency analysis methods. This is why SSVEPs are generally studied in the frequency domain while transient VEPs are observed in the time domain.

In this study, we attempt to explain the origins of the spectral content of SSVEPs. Our working hypothesis is that the characteristics of SSVEPs in the frequency domain may be largely predicted from the average VEP generated with analog stimulation. To the best of our knowledge, the relationship between the time-frequency properties of VEPs and SSVEP responses has never been investigated. We therefore study the link between the intrinsic frequencies comprised in the transient VEP and the amplitudes of the harmonics of SSVEPs. Based on the hypothesis that SSVEPs are a succession of VEPs, we also propose a simulation method to predict these amplitudes at any stimulation frequency. We will make sure to identify the frequency domains in which these predictions are accurate.

II. MATERIALS AND METHODS

A. Subjects

Ten healthy subjects took part in the experiment. Nine were males and one female, with an average age of 24.8 (standard deviation: 3.6, range: 21-34). All had normal or corrected-to-normal vision and none of them had any history
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The study followed the principles outlined in the Declaration of Helsinki. All participants were given explanations about the nature of the experiment and signed an informed consent form before the experiment started.

B. Experimental Conditions

EEG recordings took place in a dark room, where subjects were seated in a comfortable armchair, at about 70 cm from the screen used to display visual stimulation. The subjects were shown their EEG activity prior to the recording and explanations were given about muscular artifacts and eye blinks. They were instructed to relax and prevent excessive muscular contractions or eye movements.

C. Data Acquisition

EEG signals were continuously recorded at a sampling rate of 2 kHz using 16 active Ag/AgCl electrodes from an actiCap system, connected to a V-Amp amplifier, both from Brain Products. The electrodes were placed according to the 10-20 system with a focus on parietal and occipital regions at positions Fp1, Fp2, F7, F3, F4, F8, C3, C4, P7, P3, Pz, P4, P8, O1, Oz and O2. Two additional electrodes were used as ground and reference for the amplifier and were located respectively at AFz and FCz.

A photodiode connected directly to the EEG amplifier auxiliary input allowed synchronization between the EEG recordings and the visual stimulation. The BPW-21R photodiode was chosen for its sensitivity to visible light (420-675 nm) and its theoretical response time of about 3 µs, lower than any other time scale in our setup.

D. Stimulation

The presented stimuli were flickering black and white checkerboards composed of a 10 by 10 grid of squares, for a total stimulus size of 500 by 500 pixels, corresponding approximately to 11° by 11° of the visual field. During experiments, subjects were asked to keep their gaze on a 14 pixels red fixation cross located at the center of the display, at the intersection of four checkerboards.

Stimulations were designed using PsychToolBox-3 [6][7] on MATLAB and displayed on a Samsung S23A750D screen with a refresh rate of 120 Hz, allowing for more different stimulation frequencies than screens with lower refresh rates. It is generally considered that each reversal of a checkerboard produce the same evoked potential, so that a 120 Hz screen can display all stimulation frequencies submultiple of 120 Hz. In the rest of the paper, a stimulation with 2 reversals per second will be referred to as a 2 Hz stimulation, even though the flickering rate of each square of the pattern is 1 Hz. Photodiode measurements allowed us to check that the contrast of stimulations decreased by less than 1% between low frequency and high frequency stimulations (up to 60 Hz). Furthermore, the stimulation frequency had no noticeable variations over time at a 2 kHz sampling rate.

E. Experimental Procedure

Each experiment consisted in the recording of 2 minutes of resting state with eyes open, 2 minutes of resting state with eyes closed, a total of 5 minutes of VEPs (at a 2 Hz frequency) and 3 sets of SSVEPs, composed of 20 different stimulation frequencies, each presented during 15s in a randomized order, for a total of 45s of SSVEP signal per frequency. The total stimulation time was 20 minutes.

The sequences were displayed in the following order: Between each sequence, the subject was able to rest for as long as desired, and controlled the beginning of the next sequence with a button. After the button was pressed, a 3s countdown preceded the beginning of the sequence.

SSVEPs were recorded at the following frequencies (in reversals per second): 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7.05, 8, 9.23, 10, 12, 13.33, 15, 17.14, 20, 24, 30 and 40.

F. Signal Processing

Analyses were performed using MATLAB® 2013a, with the signal processing toolbox and the wavelet toolbox. The recorded EEG signals were filtered between 0.5 Hz and 90 Hz, and a notch filter was applied in real time by the amplifier to remove the 50 Hz component due to the power grid. Before any analysis was performed, all data were downsampled from 2 kHz to 1.8 kHz using MATLAB's resample function. Thanks to this procedure, all inter-stimuli durations for all previously mentioned frequencies corresponded to integer numbers of points in the downsampled signals. This allowed for precise segmentation of SSVEPs and precise estimation of frequencies using Fast Fourier Transform (FFT). Both filtering and downsampling were applied on the raw signal before any segmentation to avoid border effects.

G. Frequency and Time-Frequency Analyses

Estimation of the frequency components of a signal were made using MATLAB's FFT algorithm on time windows corresponding to multiples of the stimulation period, so that stimulation frequency and its harmonics would fall precisely on points of the resulting frequency axis. For SSVEP responses, the magnitude of the FFT is generally preferable to other power spectrum estimation methods (such as Welch's periodogram or multitapers) since SSVEP peaks are very precisely located in the frequency domain and are supposed to have a nearly constant phase as long as the stimulation frequency is stable. Time-frequency decompositions were computed using MATLAB's wavelet toolbox. We used complex Morlet wavelets with . Magnitudes of time-frequency maps were kept for analysis.

H. Simulations

For a given frequency, SSVEPs were simulated for each subject by generating trains of individual VEPs. Delay between two successive waveforms was taken equal to the desired SSVEP period. When this delay was shorter than the length of the VEP, the waveforms were summed in the overlapping area. Fig. 1 illustrates the principle of this simulation and shows examples of SSVEPs simulated at different frequencies.

When the delay between the VEPs was so short that the main components of consecutive VEPs started to overlap one with another (N65, P90 and N180; see Fig. 2a), we applied a correction to the simulation process. The idea behind this correction is that the neuronal assembly responsible for VEP generation should not be able to give rise to two VEPs at the same time. Therefore, we considered that if the VEP waveform overlaps with the next VEP by 30%, then only 70% of the neurons can be involved in each VEP generation, thus multiplying the simulated SSVEP amplitude by 0.7. Since most of the VEP energy is generally contained in a 100 ms oscillation, this correction only affected simulations above 10 Hz. Practically, simulated SSVEPs were multiplied by 10 and divided by their stimulation frequency. Results of the simulation with and without this correction are presented and discussed in the following sections. 

A. VEP intrinsic components and SSVEPs

Fig. 2a shows the average VEP obtained on all subjects in the occipital region. The observed waveform is consistent with the expected VEP for pattern reversal stimulation as described in Odom et al. (2009) [1]. However, a notable difference can be observed: the N135 component described in [1] is shifted to 180 ms in our experiment. Fig. 2b shows the intrinsic time-frequency components of the average VEP computed using wavelet transform. It shows that the average VEP is composed of three main oscillatory bursts centered at (80 ms, 16 Hz), (110 ms, 7.5 Hz) and (190 ms, 3 Hz). Fig. 2c shows the average SSVEPs spectrum of subjects under a 2 Hz flickering checkerboard stimulation, recorded over the occipital region. The sharp vertical peaks correspond to the harmonics of the stimulation frequencies (every 2 Hz from 2 Hz to 30 Hz). It can be observed that harmonics at 14 Hz and 16 Hz are stronger than the neighboring peaks and that the overall localization of peaks corresponds to the frequency domain of the VEP oscillatory bursts (Fig. 2b). While Fig. 2 focused on brain responses averaged on all subjects, Fig. 3 illustrates that individual VEPs obtained on a given subject can be used to explain the spectral content of that subject's SSVEPs. Occipital VEP, time-frequency decomposition of this VEP and SSVEPs at 2 and 3 Hz are shown for subject 4 (Fig. 3a) and 6 (Fig. 3b).

On the time-frequency map obtained from subject 4's VEP (Fig. 3a), strong components can be observed in the 3-14 Hz frequency band, as well as a moderate burst centered at 21 Hz with a hole around 15 Hz. Similarly, SSVEPs contain strong harmonics below 15Hz and weak harmonics are visible in the 18-24 Hz range, with a decrease in harmonics amplitude around 15 Hz. A weak burst is observed in the VEP centered at (90 ms, 36 Hz), and, similarly, weak components can be found in the 3 Hz SSVEPs spectrum at 33, 36 and 39 Hz. Subject 6 (Fig. 3b) exhibits a different behavior: its VEP contains very little activity below 10 Hz, a narrow component at about 11 Hz and an important oscillatory burst ranging mostly from 14 Hz to 30 Hz, with small amplitude reaching frequencies above 40Hz. FFT of SSVEPs shows consistent results, with no or very weak peaks below 10 Hz, and strong amplitudes in the 14-30 Hz band. The accuracy of the simulation was estimated by averaging the squared differences between the experimental and simulated SSVEP peaks: This defines a distance between the two spectra, based only on frequencies at which SSVEP peaks can be found, up to the twentieth harmonic of the stimulation frequency and only if the peak frequency is lower than 40Hz. Results obtained using this distance for each subject and each frequency are shown on Fig. 5 and will be discussed in the next section. IV. DISCUSSION Fig. 3 shows that the VEP shape and its time-frequency map allow us to make qualitative prediction about the spectral content of SSVEPs. As demonstrated by Fig. 4 and Fig. 5, we can also use VEPs to predict the amplitudes of SSVEP peaks in the Fourier domain quantitatively, using the proposed simulation method. Without any correction, this prediction is very accurate in the 1-6 Hz frequency band, is satisfactory in the 6-12 Hz band, and its accuracy decreases above 12 Hz, with an improvement at 30 Hz and 40 Hz. The corrected version of the simulation algorithm strongly improves the prediction performances in the 15-30 Hz band, while moderately degrading the prediction at 40 Hz.

B. Simulation of SSVEPs using transient VEP

At low frequencies, good performances of the uncorrected simulation algorithm can be explained by the fact that the SSVEP response is basically a train of VEPs as long as VEPs do not overlap. At such frequencies, FFT components are linked with the shape of the oscillations of the VEP, as illustrated on Fig. 6. On this example, we see that a 16 Hz sine wave with a well-chosen phase overlaps almost perfectly the N65 and P90 components and is in phase with the N180 component. This explains why we observe such a strong oscillatory burst on Fig. 2b centered at (80 ms, 16 Hz), since these components are the most reproducible components of the VEP. At higher frequencies of stimulation, the brain cannot return to (or close to) baseline state before the next VEP is triggered. At frequencies higher than 7 Hz, the N180 of a VEP overlaps with the N65 of the next VEP. Furthermore, at 13 Hz, the P90 component starts to overlap with the following N65. This can be viewed as the source of the low performances of the uncorrected simulation after 13 Hz, and explains why the corrected algorithm gives better results.

The fact that a linear correction to the SSVEP amplitude gave such good results in correcting the prediction in the 15-30 Hz band may give credit to the "brain oscillations" hypothesis against the "phase resetting" hypothesis for eventrelated potential generation (see [8] for a review of this discussion). Indeed, our simulated SSVEPs are a sum of known brain oscillations (VEPs) even when their amplitude is reduced due to overlapping of two consecutive waveforms. However, better prediction obtained without correction at 40 Hz indicates that our correction strategy may not work for frequencies which are not intrinsically present in the VEP.

From an engineering point of view, being able to predict SSVEP peaks amplitude from VEPs may lead to better calibration of SSVEP detection algorithms, which often only take into account the first two harmonics of the stimulation frequency. This work may therefore lead to an increase of the performances of SSVEP-based BCIs.

 Abstract-In this paper, we address the problem of detecting steady-state visual evoked potentials (SSVEPs) in EEG signals by using a set of simulated trains of VEPs instead of the sinewaves basis typically used in Fourier Transform. The detection algorithm is calibrated using the subject's brain response to visual stimulation. The original contribution of the paper is that our detection method automatically takes into account all the spectral content adapted to the steady-state response in terms of harmonic localization, weights, and phase. We show that this method give better results than simple frequency analysis for SSVEP detection while requiring less features, thereby reducing the risk of overfitting the detection model.

I. INTRODUCTION

Brain-Computer Interfaces (BCIs) are communication systems that enable users to exchange information with a machine without using traditional input devices such as mouse, keyboard, buttons or levers. They allow users to send commands to a computer by reading only their brain activity -see [1] for an introduction about BCI. Neural activity is generally measured using electroencephalography (EEG), which is convenient, non-invasive, and has a high temporal resolution (in the millisecond range), making it a good choice for real-time applications. Most EEG-based BCIs are designed around a pattern recognition approach: features describing the relevant information embedded in the EEG signals are extracted and serve as inputs for a translation algorithm which convert these features into commands for the computer or machine. Various BCI systems have been designed using different EEG components as input features, including P300 evoked potentials, slow cortical potentials, motor related potentials, and visual evoked potentials (VEPs) -see [2] for references about different BCI types.

These VEPs are electric responses elicited in the visual cortex of the brain by sudden visual stimulation of the retina. Their low amplitude (about 10 µV) makes them hard to discriminate from the rest of the recorded EEG activity in single trial scenarios. However, when the stimulation is repeated over time at a constant frequency -a procedure known as Intermittent Photic Stimulation (IPS) -the brain response becomes somehow stationary [3] and is referred to as Steady-State Visual Evoked Potentials (SSVEPs) [4]. This stationary response is known to contain precise components in the frequency domain at the stimulation frequency and its multiples (harmonics) [3]. SSVEP-based BCIs exploit these potentials by presenting the user a set of images, checkerboards or more complicated patterns all flickering at different frequencies. Processing of EEG data collected over the occipital cortex of the subject allows for identification of the stimulation the user is attending to. Most of the time, the algorithms that identify which command is attended by the user take profit of the precise localization of SSVEP components in the frequency domain, and use the amplitudes of these spectral components as inputs of classifiers trained on a set of subjects whose SSVEPs have been recorded and processed offline.

Based on the hypothesis that SSVEPs are merely a succession of transient VEPs, we study how we can use correlation with simulated trains of VEPs in the time domain instead of the more common spectral features to detect SSVEPs. Different types of features are compared using linear discriminant analysis. When using simulated trains of VEPs for SSVEP detection on a given subject, we expect that the best results will be obtained by generating the simulated signals with the VEP recorded from that subject.

II. MATERIALS AND METHODS

EEG data used in this study has already been described in [5] (to be published) and part of this section is therefore similar to section II. of [5].

A. Subjects

Ten healthy subjects took part in the experiment. Nine were males and one female, with an average age of 24.8 (standard deviation: 3.6, range: 21-34). All had normal or corrected-to-normal vision and none of them had any history of epilepsy, migraine or any other neurological condition. The study followed the principles outlined in the Declaration of Helsinki. All participants were given explanations about the nature of the experiment and signed an informed consent form before the experiment started.

B. Experimental Conditions

EEG recordings took place in a dark room, where subjects were seated in a comfortable armchair, at about 70 cm from the screen used to display visual stimulation. The subjects were shown their EEG activity prior to the recording and explanations were given about muscular artifacts and eye blinks. They were instructed to relax and prevent excessive muscular contractions or eye movements.

C. Data Acquisition

EEG signals were continuously recorded at a sampling rate of 2 kHz using 16 active Ag/AgCl electrodes from an
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Antoine Gaume, IEEE Student Member, François Vialatte, and Gérard Dreyfus, IEEE Fellow actiCap system, connected to a V-Amp amplifier, both from Brain Products. The electrodes were placed according to the 10-20 system with a focus on parietal and occipital regions at positions Fp1, Fp2, F7, F3, F4, F8, C3, C4, P7, P3, Pz, P4, P8, O1, Oz and O2. Two additional electrodes were used as mass and reference for the amplifier and were located respectively at AFz and FCz.

A photodiode connected directly to the EEG amplifier auxiliary input allowed synchronization between the EEG recordings and the visual stimulation. The BPW-21R photodiode was chosen for its sensitivity to visible light (420-675 nm) and its theoretical response time of about 3 µs, lower than any other time scale in our setup.

D. Stimulation

The presented stimuli were flickering black and white checkerboards composed of a 10 by 10 grid of squares, for a total stimulus size of 500 by 500 pixels, corresponding approximately to 11° by 11° of the visual field. During experiments, subjects were asked to keep their gaze on a 40 pixels red fixation cross located at the center of the display, at the intersection of four checkerboards.

Stimulations were designed using PsychToolBox-3 [6][7] on MATLAB and displayed on a Samsung S23A750D screen with a refresh rate of 120 Hz. In the rest of the paper, a stimulation with 2 reversals per second will be referred to as a 2 Hz stimulation. Photodiode measurements allowed us to check that the contrast of stimulations decreased by less than 1% between low frequency and high frequency stimulations (up to 60 Hz). Furthermore, the stimulation frequency had no noticeable variations over time at a 2 kHz sampling rate.

E. Recording Procedure

Each experiment consisted in the recording of 2 minutes of resting state with eyes open, 2 minutes of resting state with eyes closed, a total of 5 minutes of VEPs (at a 2 Hz frequency) and 3 sets of SSVEPs, composed of 20 different stimulation frequencies, each presented during 15s in a randomized order, for a total of 45s of SSVEP signal per frequency. The total stimulation time was 20 minutes.

The sequences were displayed in the following order: Between each sequence, the subject was able to rest for as long as desired, and controlled the beginning of the next sequence with a button. After the button was pressed, a 3s countdown preceded the beginning of the sequence.

SSVEPs were recorded at the following frequencies (in reversals per second): 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7.05, 8, 9.23, 10, 12, 13.33, 15, 17.14, 20, 24, 30 and 40.

F. Signal Processing

Analyses were performed using MATLAB® 2013a, with the signal processing toolbox. The recorded EEG signals were filtered between 0.5 Hz and 90 Hz, and a notch filter was applied in real time by the amplifier to remove the 50 Hz component due to the power grid. Before any analysis was performed, all data were downsampled from 2 kHz to 1.8 kHz using MATLAB's resample function. Thanks to this procedure, all inter-stimuli durations for all previously mentioned frequencies corresponded to integer numbers of points in the downsampled signals. This allowed for precise segmentation of SSVEPs and precise estimation of frequencies using Fast Fourier Transforms (FFTs). Both filtering and downsampling were applied on the raw signal before any segmentation to avoid border effects.

G. Simulations

For a given frequency, SSVEPs were simulated for each subject by generating trains of individual VEPs. VEP was computed for each subject by averaging of 600 trials lasting 0.5 s. Delay between two successive waveforms was taken equal to the desired SSVEP period. When this delay was shorter than the length of the VEP, the waveforms were summed in the overlapping area. 

H. Classification

Using MATLAB's linear discriminant analysis (LDA) function, we built a classifier which takes as input a set of features extracted from an EEG epoch recorded during SSVEP stimulation at one of the 20 frequencies mentioned in II. E. The classifier is trained to evaluate the frequency of the IPS during which the recording was performed (20 classes classifier). We evaluated the performances of the classifier as the percentage of well-classified epochs. We used two different approaches for cutting our data into training and test sets. First, we randomly segmented our database into 100 small sets of equal size. We evaluated the accuracy of the classifier on each small set while all other sets were used for training (leave 1% out). Performances were then averaged on all test sets. The other approach consists in training the classifier using all but one subject and to use data from the last subject as the train set. This was done for all subjects, and performances were averaged (leave one subject out). All classification tests were performed for different epoch length, ranging from 1 s to 15 s.

I. Features used for Classification

Three types of features were used as inputs of the classifier. The first one is the spectral amplitude taken at each stimulation frequency (for a total of 20 features), which was estimated using MATLAB's FFT algorithm on time windows corresponding to multiples of the stimulation period, so that stimulation frequency and its harmonics would fall precisely on points of the resulting frequency axis. The second type consists in a signal-to-background ratio (SBR) in the spectral domain, which is easily computed by dividing the previously mentioned spectral amplitude by the average amplitude in a 1 Hz radius around the stimulation frequency. Both FFT amplitudes and SBR were extracted at the first 10 harmonics of each frequency. The third type of features is the maximum of the cross-correlation function between the EEG epoch and simulated SSVEPs at each of the 20 stimulation frequencies. Unless specified otherwise, the simulated signals are generated for each subject using their own VEP in order to estimate the cross-correlation. All features were extracted from the Oz channel, located over the visual cortex.

III. RESULTS

A. Classification using one set of features

Fig. 2 shows the classification accuracies obtained with a single set of features (calculated for each stimulation frequency therefore containing 20 features). Accuracy is computed for different epoch lengths, and in the two conditions described in II. H.

We observe that the correlation score is the best feature to classify epochs for all epoch lengths and in both conditions. Classification using FFT amplitudes and FFT signal-to-background ratios as input features give very similar results, with FFT amplitudes giving slightly better results than FFT SBR for epoch lengths below 6 s and FFT SBR doing slightly better for epoch lengths above 6 s. Classification accuracy using these spectral features decreases as the order of the harmonic taken into account increases. Accuracies are always better in the leave 1% out condition (Fig. 2a) than in the leave one subject out condition (Fig. 2b), but these do not differ by more than 4%. b) Using the leave one subject out learning approach. Black lines: accuracy using correlation scores with simulated trains of VEPs. Red lines: accuracy using the FFT amplitudes taken at the stimulation frequency (1 f) and its harmonics (2 f, 3 f…). Blue lines: same as red but using FFT signal-to-background ratio.

B. Classification using multiple harmonics

Fig. 3 shows the classification accuracies obtained when increasing the number of harmonics taken into account simultaneously by the classifier. Fig. 3a and 3b compares the results obtained using the proposed correlation score with those obtained using respectively FFT amplitudes and SBR at the stimulation frequency and its harmonics. Only the accuracies obtained with the leave one subject out method are displayed, since this situation is the most likely to happen in real SSVEP-based BCI training and test scenarios.

We observe that classification accuracy increases when we add the 2 nd and 3 rd harmonics as input features to the classifier as compared to when using only spectral features at the fundamental frequency. Addition of higher order harmonics does not improve the classification results significantly.

Spectral amplitude-based classification (Fig. 3a) using 3 or more harmonics give similar accuracies as correlationbased classification for epochs shorter than 6 s, while not being as accurate for longer epochs. The opposite effect can be observed on Fig. 3b, which shows that spectral SBRbased classification gives smaller accuracies for epochs below 6 s than correlation-based classification, but reaches equal or even slightly superior accuracies for longer epochs. 

C. Influence of the VEP used for stimulation

Simulated SSVEP signals can be generated using different VEPs. In the previous sections, correlation features were computed for each subject using their own VEP to generate simulated signals. Table 1 summarizes the results obtained when correlation features are not computed with each subject's individual VEP, but with one subject's VEP for the whole dataset. 

IV. DISCUSSION

On Fig. 3, we observed that the accuracy of the classifier built using the proposed correlation feature is close to the limit reached when using several harmonics of spectral features. This could indicate that correlation with a simulated train of VEPs and frequency decomposition of SSVEPs convey the same information. Of course, it is logical that a periodic signal in the time domain holds the same information as its frequency representation, but the interesting thing here is that the signal taken as reference is not a genuine SSVEP signal but a simulated SSVEP signal formed by adding VEPs in the time domain. This supports the idea that SSVEPs are indeed formed of a succession of transient VEPs, even at frequency higher than 6 Hz when consecutive VEPs start to overlap one with another.

One advantage of using a single correlation feature instead of multiple features computed for different harmonics is linked with the problem of SSVEP detection in a context where several stimulation frequencies are presented at the same time (i.e. in a SSVEP-based BCI) and contain common harmonics. Indeed, two flickering patterns can generate activity at the same frequency but with a different phase. Estimation of the spectral density will fail to make the difference between such contributions, whereas correlation with a time domain signal takes into account both magnitude and phase of the different components of the SSVEP signal in a single feature. Using fewer features also makes it easier to train the classifier and to avoid overfitting issues.

For epochs longer than 3 s, results in Table 1 confirmed our hypothesis that classification works better when comparing one subject's experimental SSVEPs with simulated signals obtained from the same subject's VEP. However, results obtained on epochs shorter than 3 s show that some properties of VEPs may make them better candidates for simulating signals used for SSVEP detection.

We have yet to identify what made subject 5's VEP the best waveform in such context.

It can be noted that this study only takes into account one electrode (Oz), whereas VEP can be recorded at several locations on the scalp, allowing for multi-electrode simulation and cross-correlation which may increase the classification accuracies presented here.

 Abstract-Development of brain-computer interfaces interacting with cognitive functions is a hot topic in neural engineering since it may lead to innovative and powerful diagnosis, rehabilitation, and training methods. This paper addresses the problem of measuring sustained visual attention using electroencephalography and presents an experiment inspired by continuous performance tasks used in neuropsychology along with the classification results obtained when trying to discriminate between low and high attention states. Following a leave-one-subject-out validation approach, 76% accuracy was obtained when discriminating thirty second epochs and 69% accuracy using five second epochs.

I. INTRODUCTION

Brain-Computer Interfaces (BCIs) are communication systems that allow a computer to translate information from brain signals in real-time (see [1] for an introduction about BCI). In these devices, neural activity is generally measured using electroencephalography (EEG), which is convenient, non-invasive, low-cost and has a high temporal resolution, making it a good choice for real-time applications. Most BCIs developed so far aim at giving subjects the opportunity to control a computer or a machine. They are called active BCIs. On the other hand, cognitive BCIs are passive systems used to monitor or interact with cognitive functions [2][3]. Mental processes such as attention, decision making, memory, etc. are potential candidates for such applications.

EEG-based BCIs are usually designed around a signal processing and modeling approach: features describing the relevant information embedded in the EEG signals are extracted and serve as inputs for a translation algorithm which converts these features into the desired output(s). The design of a cognitive BCI therefore requires neural correlates of cognitive activity that can be measured using EEG, the objective being to design a cognitive state classifier (an example can be found in [4]).

In this paper, we present an experiment designed to help finding EEG correlates of sustained attention, i.e. the ability to maintain focus over time on a continuous activity. This experiment uses a game inspired by Continuous Performance Tasks (CPT, see section II. A). We record EEG activity while subjects play the game at different difficulty levels. Our hypothesis is that the attention load required to play the When the manuscript was prepared, all the authors were with the SIGMA laboratory, ESPCI ParisTech, PSL Research University.
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game is proportional to the difficulty of the task. We tried to design our experimental task so that it does not require cognitive functions other than sustained attention.

Based on literature, we expect that neural correlates of attention can be found in several areas of the frontal cortex [5][6][7], in the parietal cortex [6][7][8], at the temporoparietal junction (TPJ) [6] and in areas specifically associated with the task, which in our case are the visual cortex (in the occipital region) and the left motor cortex.

Details about the experiment will be given in the Materials and Methods section; feature selection and classification results will be detailed in the Results section of the paper. In this study, we tested only features based on the average power of brain activity in the typical frequency bands (delta, theta, alpha, beta and gamma).

II. MATERIALS AND METHODS

A. Continuous Performance Task (CPT)

A CPT is a test used in neuropsychology to measure a person's sustained and selective attention. Sustained attention is the ability to maintain concentration over time and selective attention is the ability to ignore distractors and maintain focus on relevant stimuli. CPT paradigms generally involve multiple repetitions of rapid presentation of stimuli with infrequently occurring targets [START_REF] Riccio | The continuous performance test: a window on the neural substrates for attention?[END_REF].

The task we developed is different from the original CPT and involves motor control of a cursor using a joystick. The concept is simple: subjects of the experiment sit in front of a computer screen displaying a black circle (the target) on a grey background (see Fig. 1). A cursor moves randomly on the screen and subjects are asked to keep this cursor inside the circle using the right joystick of a joypad (EG-C1036, Targetever Technology Co. Ltd.). The difficulty of the task is adjusted by modifying the speed of the random movement.
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B. Experimental Procedure

After installation of the electrodes and presentation of the EEG principles and signals, subjects were trained on the CPT several times at low speed (150 px/s) to make sure they understood how to manipulate the joypad.

A calibration session was then performed during which each subject played the game at 20 different difficulty levels (starting at 75 px/s and up to 1500 px/s, increasing the speed by 75 px/s each sequence). Each level was played continuously for 20 s and subjects controlled when to begin the rounds so that they could take breaks in-between. Data from the calibration phase was used to determine the speed of the pointer during the rest of the experiment. This calibration phase lasted less than ten minutes.

The recording session then started. Each subject played a total of 60 rounds of the game at three different difficulty levels (20 "easy", 20 "medium" and 20 "hard"). The first round was an "easy" round, followed by a "medium" round then a "hard" round. This was repeated 20 times. Each round lasted 30 s for a total duration of around 40 minutes. The cursor speed for the "easy" levels was always 150 px/s. Cursor speeds for "medium" and "hard" levels were determined according to calibration results as the speeds for which the cursor would stay 95% and 50% in the circle respectively. Speed ranges were [375,750] px/s for "medium" level and [650, 900] px/s for "hard" levels, depending on subject. Last round score, best scores and average scores for each difficulty were shown to the subject between each round to stimulate his motivation.

C. Subjects

Seventeen (17) healthy subjects took part in the experiment. Three (3) of them were rejected from the study because the recorded data were too noisy. Fourteen (14) subjects remained among which eleven [START_REF] Jung | Removing electroencephalographic artifacts by blind source separation[END_REF] were males and three (3) females, with an average age of 23.7 (standard deviation: 3.9, range: 19-32). All had normal or corrected-tonormal vision and none of them had any known history of epilepsy, migraine or any other neurological condition. The study followed the principles outlined in the Declaration of Helsinki. All participants were given explanations about the nature of the experiment and signed an informed consent form before the experiment started.

D. Experimental Conditions

EEG recordings took place in a dark room, where subjects were seated in a comfortable armchair, at about one meter from the screen used to display the CPT. The subjects were shown their EEG activity prior to the recording and explanations were given about muscular artifacts and eye blinks. They were instructed to relax and prevent excessive muscular contractions or eye movements.

E. Data Acquisition

EEG signals were continuously recorded at a sampling rate of 2 kHz using 16 active Ag/AgCl electrodes from an actiCap system, connected to a V-Amp amplifier, both from Brain Products. The electrodes were placed according to the 10-20 system with a focus on frontal, parietal and occipital regions at positions Fp1, Fp2, F7, F3, F4, F8, C3, C4, CP5, CP1, CP2, CP6, P3, P4, O1 and O2. Two additional electrodes were used as ground and reference and were located respectively at AFz and FCz.

F. Signal Processing

All analyses were performed using MATLAB® 2013a. The recorded EEG signals were filtered between 0.5 Hz and 90 Hz using a zero-phase 3 rd -order digital Butterworth filter, and that same filter was applied around 50 Hz to remove the power-line noise. Filtering was applied on the raw signals before any segmentation to avoid border effects.

G. Eye Blink Rejection

The Second-Order Blind Identification (SOBI) algorithm from the ICA toolbox was used to decompose the EEG signals into uncorrelated components. Eye blink activity and strong eye movements artifacts were removed before rebuilding the signals from SOBI components. Details about this procedure can be found in [START_REF] Jung | Removing electroencephalographic artifacts by blind source separation[END_REF].

H. Features Extracted

Absolute and relative EEG power in the delta (1-4 Hz), theta (4)(5)(6)(7)(8), alpha (8)[START_REF] Riccio | The continuous performance test: a window on the neural substrates for attention?[END_REF][START_REF] Brainard | The psychophysics toolbox[END_REF][START_REF] Jung | Removing electroencephalographic artifacts by blind source separation[END_REF][START_REF] Stoppiglia | Ranking a random feature for variable and feature selection[END_REF], beta [START_REF] Stoppiglia | Ranking a random feature for variable and feature selection[END_REF](13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)[START_REF] Vidal | Toward direct brain-computer communication[END_REF](25) and gamma frequency bands were extracted from each channel of each EEG epoch, accounting for a total of 160 features per epoch (10 features x 16 channels). All features were extracted from epochs of five, ten and thirty seconds.

I. Orthogonal Forward Regression (OFR)

Feature selection for multiple variables classification was performed using Orthogonal Forward Regression. This algorithm ranks input variables according to their linear correlation with a given output. Each time a variable is selected, all the others and the output are projected in a hyperplane orthogonal to the selected variable in order to avoid further selection of features containing the same information (Gram-Schmidt orthogonalization process). This algorithm helps selecting features among a large set of variables that can be strongly correlated due to volume conduction of EEG activity. Random variables (probes) were added to the feature set and only variables more correlated to the output than 95% of the probes were kept (about 30 features out of 160). This procedure is described in [START_REF] Stoppiglia | Ranking a random feature for variable and feature selection[END_REF].

J. Linear Discriminant Analysis (LDA)

Classification of the EEG epochs is performed using MATLAB's Linear Discriminant Analysis function. Epochs are labeled as "easy", "medium" or "hard" (see II. A). We performed two-class classification (between any two of the classes) and three-class classification. Since the datasets used for classification are balanced, expected classification accuracies using random features are 50% for two-class classification and 33.3% for three-class classification.

Feature selection and classifier training are performed using all subjects except one and data from the remaining subject are used as test set. This is repeated for each subject and accuracies are averaged (leave-one-subject-out, LOSO).

III. RESULTS

A. Subjects Feedback

After the experiment, each subject was asked about their feelings on the difficulty levels of the game. All subjects found the "easy" rounds very easy. Some even reported boredom. On average, 99.8% of "easy" play time was spent inside the target circle. Most subjects reported that the "medium" levels were the most interesting and engaging, as they had the impression of having a real control over the movement of the cursor. 94.6% of total "medium" play time was spent inside the target circle. All subjects found that "hard" levels were by far the hardest, and most of them reported that it was slightly less motivating than the "medium" difficulty because of the lack of control over the cursor. Some subjects however found this difficulty very challenging and interesting. On average, 56.4% of "hard" play time was spent inside the target circle.

B. Single Feature Classification

Fig. 2 shows the results obtained using single feature LDA for the four classification processes (see II. J for details). We observe that the best accuracies obtained in "easy" vs. "medium" (65.5%) and "easy" vs. "hard" (65.8%) scenarios are higher than accuracies obtained for "medium" vs. "hard" (58.8%) classification. We also observe that the features giving the best results are mostly low frequency features (delta and theta band power) in the prefrontal, superior parietal and central cortices.

Table 1 shows the evolution of the best accuracy obtained using a single feature as a function of the epoch length. It can be observed that the classification accuracies obtained on longer epochs are only slightly higher than accuracies obtained with 5s epochs. 

Best LOSO classification accuracies

Epochs duration 3-classes classifier "Easy" vs "Medium" "Easy" vs "Hard" "Medium" vs "Hard

C. Multiple Features Classification

Fig. 3 shows the results obtained when classifiers are given multiple features as inputs. Orthogonal Forward Regression is used to select the features. On average, classification accuracies increase with the number of features and the improvement of the classification accuracy with epoch length is stronger than when using a single feature.

With 30 features and using 30s epochs, classification accuracy reaches 58% for the 3-classes classifier, 76% for the "easy" vs. "medium" classifier, 73% for the "easy" vs. "hard" classifier and 63% for the "medium" vs. "hard" classifier.

For all classifiers, the feature selected first is based on theta activity, but a wide diversity of features is selected and allows an increase in classification accuracy. IV. DISCUSSION Subjects of the experiment reported that the "medium" rounds and the "hard" rounds required more or less the same concentration. We therefore expected that classification would work better between "easy" and "medium" or "hard" rounds than between "medium" and "hard" rounds. This is consistent with the results shown on Fig. 2 and Fig. 3.

For two-class classification ("easy" vs. "medium" or "hard" rounds), accuracies of 69% were obtained even with short epochs (5 s). We reached 76% accuracy for the "easy" vs. "medium" classifier using 30 s epochs. These results are promising and show that sustained attention state may be predicted in real-time using EEG.

However, even though we removed eye blinks using SOBI, we cannot rule out that some features participating in the classification process may be related to eye movement artifacts. Indeed, on Fig. 2, we can see that low frequency band power features give good classification accuracies on frontal electrodes. Fig. 2 and Fig. 3 also show that beta band power features on electrode C3 (and to a lesser extent C4) give good classification results. This activity may be linked with motor control, and further investigation is required.

It is hard to conclude if our hypothesis concerning the spatial localization of the best features can be confirmed because we used a limited number of recording electrodes (16) and we decided to place them over the areas where we expected to find good correlates of attention.

In this study, we presented an experiment aimed at discriminating low versus high sustained attention states and showed that simple features such as average frequency band power already provide classification rates higher than random features. A leave-one-subject-out classification approach was used to avoid overfitting. We plan to extend this study by adding other features to the database such as neural synchrony features (linear and non-linear correlation, phase synchrony, mutual information, etc.) and power asymmetry features. Non-linear machine learning algorithms such as neural networks or support vector machines are also likely to improve classification results.

Introduction

Potential of feedback approaches

When children go to school to learn how to read and write, they receive guidance and feedback from their teachers. Through hard work and receptivity to instruction, their cognitive skills will adapt and they will eventually acquire reading and writing skills. This adaptation is crucial to human development and central to the acquisition of what makes us human; tutored interaction plays a key role in culture acquisition. Biofeedback provides a subject with a similar type of training, but instead of acquiring knowledge, the subject acquires selfregulation mechanisms in order to control affective, biological, and/or cognitive skills. Such psychophysiological self-regulation could theoretically extend to the functioning of both the autonomic and the central nervous systems [START_REF] Prinzel | Application of physiological self-regulationand adaptive task allocation techniques for controlling operator hazardous states of awareness[END_REF]. Common modalities of biofeedback include respiratory, cardiovascular, neuromuscular, skin conductance and temperature, and central nervous system (Khazan, 2013).

Biofeedback can be explicit or implicit information (Dekker & Champion, 2007;Kuikkaniemi, Laitinen, Turpeinen, Saari, Kosunen, & Ravaja, 2010;Nacke, Kalyn, Lough, & Mandryk, 2011). In the explicit model, feedback is given to the controller so that the controller can act on the system. This is the most typical case of biofeedback or neurofeedback: the user observes a (generally visual or auditory, less frequently tactile) feedback signal, which is a direct correlate of the biosignal to regulate. For example, the user hears a sound with an amplitude directly proportional to his heart rate, providing him/her with an additional perception to help him/her regulate this biosignal. In implicit biofeedback, the signal is not explicitly presented to the subject, but instead changes some detail(s) of the experimental conditions. For example, a person using a videogame whose content (e.g., changing levels of difficulty or access to bonus items) evolves depending upon his heart rate is receiving implicit feedback; he/she does not know directly that his heart rate has dropped, but he/she experiences indirect effects of this physiological change. The user is not directly aware of his biosignal, but since it changes the behavior of the system he/she is observing, he/she gets implicit access to a correlate of that biosignal. Implicit feedback is used for subtle and indirect interactions (e.g., changing implicitly the game difficulty) rather than to provide information (Dekker & Champion, 2007;Kuikkaniemi, Laitinen, Turpeinen, Saari, Kosunen, & Ravaja, 2010). Such indirect biofeedbacks have an effect on motivational variables (Nacke, Grimshaw, & Lindley, 2010), and are typically used in affective videogames (Gilleade & Dix, 2005). However, note that if the user of an implicit biofeedback starts learning how the system works and thereby gains control over it, implicit biofeedback becomes explicit (Kuikkaniemi, Laitinen, Turpeinen, Saari, Kosunen, & Ravaja, 2010).

Biofeedback is also one of the best approaches to the problem of neurophenomenology [START_REF] Varela | The brainweb: phase synchronization and large-scale integration[END_REF]. Especially when applied to the brain (neurofeedback), it is a promising new scientific avenue to explore phenomenology and to investigate the self and consciousness [START_REF] Bagdasaryan | Experiencing your brain: neurofeedback as a new bridge between neuroscience and phenomenology[END_REF], thereby attempting to solve the so-called hard problem of consciousness [START_REF] Chalmers | Facing up to the problem of consciousness[END_REF].

Finally, biofeedback holds a prominent position in the transhumanist agenda (Hansell & Grassie, 2011). Transhumanism is an international and intellectual movement that aims to enhance human intellectual, physical, and psychological capacities (Bostrom, 2006). The cybernetics perspective on biofeedback (Anliker, 1977) opens new perspectives about human enhancement, attracting the attention of a growing scientific community.

Towards higher standards

In order to clearly evaluate the clinical efficacy of biofeedback interventions, the Association for Applied Psychophysiology and Biofeedback and the Society for Neuronal Regulation developed guidelines with five levels of performance [START_REF] Moss | Task force report on methodology and empirically supported treatments: Introduction and summary[END_REF]:

(1) not empirically supported, (2) possibly efficacious, (3) probably efficacious, (4) efficacious, ( 5) efficacious and specific. In order to reach level 4 and be considered efficacious, a treatment must be replicated in at least two independent studies, the data analysis must not be flawed, the outcome must be evaluated with precise inclusion criteria, and the experimental setting must involve randomized control trials. Level 5 is reached if the treatment satisfies level 4 conditions, and in addition is statistically superior to credible sham therapy, pill, or alternative bona fide treatment in at least two studies. In a review of 41 treatments, urinary incontinence in females was the only biofeedback treatment found to be efficacious and specific [START_REF] Yucha | Evidence-based practice in biofeedback and neurofeedback[END_REF]. In the same study, biofeedback was deemed efficacious for ten other conditions: anxiety, attention deficit hyperactivity disorder (ADHD), chronic pain, epilepsy, constipation, headache, hypertension, motion sickness, Raynaud's disease, and temporomandibular disorder. Note that the survey criteria did not require double-blind investigations; consequently, some of the treatments ranked at level 4 may still be biased by placebo effects. In other words, despite several well-conducted studies exist, the effectiveness of biofeedback has not been fully demonstrated yet, due to insufficient evidences. We hope future biofeedback studies will reach higher standards, so they can meet with level 5 condition with double-blind protocols.

Modeling neurofeedback and biofeedback: how does it work?

Previous studies attempted to describe the cognitive adaptation mechanisms supporting neuro and biofeedback (Sherlin, et al., 2011;[START_REF] Bagdasaryan | Experiencing your brain: neurofeedback as a new bridge between neuroscience and phenomenology[END_REF][START_REF] Gevensleben | Neurofeedback of slow cortical potentials: neural mechanisms and feasibility of a placebo-controlled design in healthy adults[END_REF][START_REF] Ros | Tuning pathological brain oscillations with neurofeedback: a systems neuroscience framework[END_REF][START_REF] Micoulaud-Franchi | Electroencephalographic neurofeedback: Level of evidence in mental and brain disorders and suggestions for good clinical practice[END_REF]. We believe that the missing keystone to design effective and efficient approaches is a clear and comprehensive model synthesizing the existing medical, neurological, psychological and engineering perspectives.

Considering that information processing is impacted by biofeedback, one would expect to see a model-or at least an explanation-of how these processes will adapt. Due to disciplinary barriers, even though these cognitive adaptation processes have been described in the scientific literature, a general model has never been proposed. In the interest of removing those barriers, we will review existing models of biofeedback from biomedical, psychological, brain science, and bioengineering perspectives. We will then synthesize those views and present a general model of the cognitive adaptation mechanisms underlying biofeedback. As was stated by Georges Box, all models are essentially wrong, but some are useful [START_REF] Box | Empirical Model Building and Response Surfaces[END_REF]. We will prove the usefulness of this model by providing guidelines for proper development of efficient biofeedback and neurofeedback protocols and the means to control key parameters for successful feedback learning.

Biomedical perspective

Psychophysiological self-regulation, also commonly termed biofeedback (biological feedback), can be investigated from a biomedical perspective. In this section we will review the existing models of biofeedback mechanisms from the perspective of biomedical interventions, where the aim is to improve biological variables impaired by dysfunctions (e.g., blood pressure, tension, heart rate variability, etc.). The variable of interest is fed back to the subject as a biosignal that he/she then attempts to regulate. Consequently, investigations in the biomedical field are more concerned with optimizing conditions for the provision of effective and efficient treatments. In other words, most manuscripts in this field focus more on biofeedback efficiency rather than on biofeedback mechanisms. Consequently, we will review in this section the interpretations found in the biomedical literature about the conditions for efficient biofeedback design, considered as a treatment.

Indeed, a medical approach to biofeedback necessarily means an approach centered on treatment of pathologies, for the purposes of improving health and performance [START_REF] Yucha | Evidence-based practice in biofeedback and neurofeedback[END_REF]. This perspective is to be distinguished from the transhumanist goal of performance enhancement (Maheu, Pulier, Wilhelm, McMenamin, & Brown-Connolly, 2004), and should not be confused with the entertainment perspective of biofeedback games (Arns, Heinrich, Ros, Rothenberger, & Strehl, 2015). In other words, medical biofeedback seeks to cure, not to enhance or entertain. Some authors defend the thesis that biofeedback would normalize biological functions, thereby treating pathologies. For instance, for Arns the main goal neurofeedback is to normalize deviant brain activity (Arns M. , 2011). The biofeedback aim would in this case be to train the patient so he can reach normality. However, judging a statistically abnormal feature as pathology is rather a normative judgement than a scientific one. One shall always refer to the individual's own reference when defining pathology 1 (Canguilhem, 1966). According to Canguilhem's perspective, the aim of medicine in general and biofeedback in particular would be to seek improvements in impaired functions, instead of seeking normality. However, as the distinction between the vital norms of the body and the disciplinary norms of society is becoming difficult to maintain in the modern times, this ethical question remains to be solved (Rose, 2009).

Acquiring skills

For decades, the biomedical literature has emphasized biofeedback's basis in the acquisition of self-regulation and self-control skills that subjects could use to correct their states toward an optimum [START_REF] Schwartz | Definitions of biofeedback and applied psychophysiology[END_REF][START_REF] Norris | Biofeedback, voluntary control, and human potential[END_REF][START_REF] Epstein | Biofeedback, self-control, and self-management[END_REF][START_REF] Hauri | Biofeedback and self-control of physiological functions: clinical applications[END_REF]. The consequence of this acquisition of new self-control skills would be an improved "calibration" of the nervous system [START_REF] Brenner | A general model of voluntary control applied to the phenomenon of learned cardiovascular change[END_REF]. The key to understanding the effect of biofeedback would then be to model how these volitional skills or strategies are acquired during biofeedback sessions. One can identify two specific skills: discrimination, which is the aptitude to achieve an inner perception of the biological variable, and selfmaintenance, which is the ability to affect the biological variable and effectively change it in the intended direction [START_REF] Epstein | Biofeedback, self-control, and self-management[END_REF]. These skills would in turn allow subjects to regulate their biological constants through a volitional psychosomatic process [START_REF] Leigh | Self-control, biofeedback, and change in 'psychosomatic' approach[END_REF]. This model provides an important guideline for evaluating biofeedback systems-a model that unfortunately has not been taken into account in several studies. Indeed, if discrimination and self-maintenance are acquired, then a proper evaluation of biofeedback should be based on an evaluation of this acquisition. Biofeedback, therefore, should be evaluated pre-and post-training to determine whether the subject has an improved perception of and action on the targeted biological variable [START_REF] Epstein | Biofeedback, self-control, and self-management[END_REF]. This should be done by comparing the subject's perceptions before and after training (rather than merely evaluating objective performances). There is, however, a surprising lack of reflection in the biomedical literature regarding the nature of those self-control skills and what those strategies could be. Nevertheless, one could easily make the small leap to define discrimination and self-maintenance skills as cognitive processes. We will attempt to provide a proper definition of this new class of cognitive processes in sections 3 and 4.

Volitional and conscious strategy?

The existing literature presents contradictory theories about the effects of biofeedback: it is either attributed to volitional control over the biological variables (involving executive function) or to autonomic regulation of subcognitive systems. The biofeedback literature most often argues that observed effects are due to volitional control of biological variables (e.g., [START_REF] Abukonna | Volitional control of the heart rate[END_REF], and neurofeedback is known to be more efficient when based on volitional and conscious cognitive strategies demanding the use of attentional processes [START_REF] Bagdasaryan | Experiencing your brain: neurofeedback as a new bridge between neuroscience and phenomenology[END_REF]. However, one could argue that improved regulation could be achieved without volitional control (in which case the subject would not exert voluntary control over the regulation). In a recent review, for example [START_REF] Lehrer | Heart rate variability biofeedback: how and why does it work[END_REF], the effect of heart rate variability biofeedback was attributed to a combination of causes, including homeostasis in the baroreceptors, parasympathetic reflex stimulation, improved gas exchange, mechanical stretching of airways, anti-inflammatory effects, and attentional effects. Nevertheless, as we will see in section 3.6 it is difficult to defend a hypothesis involving a total absence of volitional control. Furthermore, one could consider the learning strategy to acquire the biofeedback skills (discrimination and self-maintenance) to be conscious or unconscious. The discord between a cognitive model and an infra-cognitive model is more visible in neurofeedback publications, where two different models can easily be identified. On the one hand, a recent manuscript suggested that neurofeedback relies on a top-down processing mechanism, where higher cognitive functions percolate down from large-scale oscillations to small-scale and singleneuronal activities [START_REF] Bagdasaryan | Experiencing your brain: neurofeedback as a new bridge between neuroscience and phenomenology[END_REF]. On the other hand, operant conditioning (OC) has historically been the dominant interpretation of neurofeedback mechanisms; the feedback would in that case be modeled as an implicit infra-cognitive reinforcement signal [START_REF] Lawrence | Self-regulation of the anterior insula: Reinforcement learning using real-time fMRI neurofeedback[END_REF][START_REF] Caria | Real-time fMRI: a tool for local brain regulation[END_REF][START_REF] Koralek | Corticostriatal plasticityis necessary for learning intentional neuroprosthetic skills[END_REF][START_REF] Sterman | Foundation and Practice of Neurofeedback for the Treatment of Epilepsy[END_REF]. These two models lead to opposing perspectives on proper feedback designs: one based on a behavioral paradigm using conditioning strategies, discrete trials, reinforcement approaches, and exercises excluding entertainment [START_REF] Sterman | Foundation and Practice of Neurofeedback for the Treatment of Epilepsy[END_REF]; and another based on a cognitive paradigm linking inner events with the corresponding neural signals [START_REF] Bagdasaryan | Experiencing your brain: neurofeedback as a new bridge between neuroscience and phenomenology[END_REF].

These two conflicting models have led to a dual-process theory for neurofeedback mechanisms [START_REF] Wood | On the need to better specify the concept of "control" in brain-computer-interfaces/neurofeedback research[END_REF], a theory that categorizes the cognitive functions supporting neurofeedback into two main types of processing: more automatic and capacity-free processes vs. more controlled and capacity-limited processes. One possible resolution to this contradiction would be to postulate the existence of interactions between these two types of processing. From this perspective, biofeedback could be considered as a self-investigation tool, where the patient improves his volitional control over autonomic mechanisms (Zolten, 1989). As we will see in section 3.2, it is possible to reconcile these two apparently opposing perspectives, as recent connectionist models in developmental psychology can integrate both perspectives on a continuum. The question of entertainment and biofeedback will be discussed further with the paradigm of serious games in section 5.3.

Synthetic biomedical model

From a biomedical perspective, biofeedback paradigms are based either on cognitive training-or subcognitive regulation-of two specific skills acquired using a biosignal (Fig. 1): discrimination (perception of the target biological variable) and self-maintenance (action over the biological variable). Successful training in either or both of these skills would lead to improved balance in the biological variable for patients suffering from medical conditions involving that variable, and the positive effect should remain when the feedback is turned off (otherwise the patient would be dependent upon the feedback system). 

Psychological perspective

Operant conditioning: the reward problem

As we mentioned in section 2.2, the mechanisms of biofeedback have traditionally been theorized using a behavioral approach inspired by Skinner's theories of OC [START_REF] Skinner | The Behavior of Organisms:An Experimental Analysis[END_REF]Sherlin, et al., 2011) and reinforcement learning (RL). The OC paradigm states that when a behavior has consequences (either rewards or punishments), it will be reinforced or repressed. In the case of biofeedback, the behavior is the regulation of an underlying biological variable, and the reinforcement signal is the success or failure of the subject to modulate the feedback signal. Such an approach is supported by animal studies: for example, prefrontal cortex neurons can be controlled by rhesus monkeys through an OC paradigm [START_REF] Schafer | Selective Attention from Voluntary Control of Neurons in Prefrontal Cortex[END_REF]. RL has two possible mechanisms (Sutton & Barto, 1998;Dayan & Berridge, 2014): either the subject is in a goal-directed setup and supports his learning from an internal model, in which case learning is termed as model-based RL; or the subject has no model of the outside events and learning arises from simple associations, termed as modelfree RL. In the case of biofeedback and neurofeedback based on explicit feedbacks, a modelbased RL is triggered: the subject seeks to reach a goal (regulating the feedback signal). In the case of biofeedback and neurofeedback based on implicit feedbacks, learning is more likely to follow a model-free RL mechanism. OC, and more specifically the SORC model [START_REF] Goldfried | Behavioral personality assessment[END_REF], has been used for decades to model the functional analysis of behaviors [START_REF] Bellack | Behavioral assessment: A practical handbook[END_REF]. In the SORC model (see Fig. 2), the behavior of an organism is modulated by the environmental feedback that is the consequence of its action. In other words, the action consequence acts as a reward signal. However, whether for implicit or explicit feedbacks, the OC model for biofeedback has a fundamental limitation. The problem lies with the definition of the reinforcement signal.

In animal experiments, it is standard practice to withhold food from a rat or a monkey and provide it later as a reward when the animal successfully modulates a biosignal, but it would be more difficult (and clearly unethical) to deprive human subjects of food. Furthermore, there is no guarantee that a human subject would interpret the biosignal as a reward: interpretation of the signal would depend upon the motivational state of the subject (see section 5.3 about motivation). The challenge is, therefore, to find an appropriate and effective reward to motivate human subjects. Rewards can be extrinsic when they take the form of external motivations (such as money, a pat on the back, or food) or intrinsic when based on self-motivation.

Extrinsic rewards are maladaptive for human subjects: even if it were possible to control the rewarding effect of the biosignal, Lepper's studies on the overjustification effect [START_REF] Lepper | Undermining children's Intrinsic interest with extrinsic reward: A test of the "overjustification" hypothesis[END_REF] demonstrated that extrinsic rewards have a detrimental effect on long-term motivation in human subjects, as they are perceived by human subjects as constraints rather than motivations. Extrinsic-reward-based strategies can therefore induce short-term stimulation followed by long-term aversive effects.

Another, more plausible option would be to base the reinforcement signal on intrinsic rewards. Intrinsic rewards are triggered when the action a subject takes is congruent with his internal motivation. When a human subject achieves learning toward proficiency in a skill (in the case of biofeedback, the skill would be discrimination and/or self-maintenance), exercising that skill provides an intrinsic reward. This intrinsic reward is the so-called flow state, obtained whenever a good balance is achieved between task difficulty and skill proficiency [START_REF] Csikszentmihalyi | Flow: The Psychology of Optimal Experience[END_REF]. From this perspective, the implicit reward value of the biosignal in biofeedback paradigms would be intrinsic and due to achievement of a flow state, which involves voluntary attentional processes and higher cognitive functions. By integrating higher cognitive functions in the OC paradigm, one moves from behavioral learning theories to cognitive and developmental theories (explored in more depth in section 3.2), which could explain the recent trend in neurofeedback publications toward cognitive strategies for the training of human subjects [START_REF] Bagdasaryan | Experiencing your brain: neurofeedback as a new bridge between neuroscience and phenomenology[END_REF].

Developmental psychology and schemata

A central question in developmental psychology is how best to understand the acquisition of complex behaviors. Rats cannot surf the internet, dance the tango, or even solve the towers of Hanoï problem. These tasks involve the coordination of complex skills whose emergence cannot be attributed to simple reinforcement learning. To model the acquisition of such complex skills, psychologists have had to move away from learning theories grounded in behavioral psychology and notions of conditioning or reward and toward schemata formation and working memory (WM) span. We will review these concepts here and explain how they can be used to model biofeedback mechanisms.

Piaget was the first to model human development, with a specific interest in childhood development. In 1926 he introduced the concept of schema (plural schemata), a cognitive structure representing organized knowledge of some part of the world that is acquired on the basis of experience [START_REF] Piaget | Biology and Knowledge[END_REF]. The concept was further developed by [START_REF] Bartlett | Remembering: A study in experimental and social psychology[END_REF] and later by other developmental and cognitive psychologists. When new elements are encountered, a given schema could either be adapted to assimilate the element through an abstraction process, or be revised in order to accommodate the schema to the new element (Lewis & Durrant, 2011). The schemata theory has been successfully extended to development in adults and is still used to model skill acquisition [START_REF] Weeks | Safety in numbers 7: Veni, vidi, duci: a grounded theory evaluation of nursing students' medication dosage calculation problem-solving schemata construction[END_REF][START_REF] Plant | The explanatory power of Schema Theory: theoretical foundations and future applications in Ergonomics[END_REF]. A neuroscience perspective regarding schemata formation and integration is presented in section 4.

While it might appear that behavioral learning theories and developmental schemata integration theories are incompatible perspectives, it is possible to reconcile them. From a connectionist perspective, schemata emerge at the moment they are needed from the interaction of large numbers of much simpler elements all working in concert [START_REF] Rumelhart | Schemata and sequential thought processes in PDP models[END_REF]. Reinforcement learning at a lower level can interact with integration mechanisms to become higher level skills, as has been suggested in recent cognitive neuroscience models of schemata (Lewis & Durrant, 2011), which we will discuss in section 4.

Early in the development of schemata theories of skill acquisition, questions began to arise about how these skills evolve, since it became apparent that humans acquire skills through successive non-linear "steps." Strikingly, these steps are even evident in the acquisition of complex skills when children have already acquired their subcomponents. A child can learn motor and cognitive skills through apparently abrupt transformations. In order to model what happens between these discontinuous evolutions, the successors of Piaget (the so-called neo-Piagetians) introduced the concept of memory span [START_REF] Pascual-Leone | Intelligence and experience: a neopiagetian approach[END_REF][START_REF] Case | Intellectual development: Birth to adulthood[END_REF]. Memory span is a limit on WM during the execution of tasks, the idea being that it is impossible to keep too many items in mind or execute too many cognitive operations simultaneously. The explanatory power of memory span resides in the explanation of developmental "steps" observed in children. Instead of proposing that schemata are created "out of nowhere," neo-Piagetians theorize mechanisms of progressive integration in which schemata with a higher degree of integration have a lower WM cost.

Development, therefore, would move in observable steps, since whenever children have finished integrating their schemata they are suddenly able to coordinate more schemata and perform combinations of tasks. (A neuroscience perspective regarding schemata formation and integration is presented in sections 4 and 4.2.) A common observation in developmental skill acquisition is the U-shaped learning curve, representing a three-step process: good performance, followed by bad performance, followed by good performance once again [START_REF] Carlucci | On the necessity of U-shaped learning[END_REF]. The adoption of novel processing strategies leads to an increased cognitive load and to temporary losses of processing efficiency [START_REF] Pauls | U-shaped development: an old but unsolved problem[END_REF][START_REF] Siegler | U-shaped interest in U-shaped development and what it means[END_REF]. Language acquisition models confirm that U-shaped behavior is unavoidable since human learners are limited by cognitive constraints [START_REF] Carlucci | On the necessity of U-shaped learning[END_REF]. If the cognitive load of a task is too high, performance will decline. This effect was observed early for biofeedback, where a transient decrease of galvanic skin response (usually following a U-shaped evolution) can be observed, representative of the increased attentional demand with the biofeedback (Gatchel, Korman, Weis, Smith, & Clarke, 1978;Montgomery, 1988;Freedman & lanni, 1983;[START_REF] Gevensleben | Neurofeedback of slow cortical potentials: neural mechanisms and feasibility of a placebo-controlled design in healthy adults[END_REF].

One explanation for this learning curve can be found in cognitive load theory (CLT) ( van Merriënboer & Sweller, 2010;[START_REF] Sweller | Element Interactivity and Intrinsic, Extraneous, and Germane Cognitive Load[END_REF]. In CLT, WM is considered a resource divided between three different cognitive loads: intrinsic, extraneous, and germane.

Extraneous load refers to the complexity of task presentation and is external to the subject.

Intrinsic load refers to the amount of WM dedicated to task performance; it is high when element interactivity is high, i.e., when the subject has to process numerous elements (new

elements not yet integrated into his own memorized schemata in long term memory).

Germane load refers to the process learning load involving induction or "mindful abstraction," whereby the subject performs abstractions on the schemata associated with the intrinsic cognitive load. We can see how this theory relates to the U-shaped learning curve (as illustrated in Fig. 3): when learning begins, subjects need to devote part of their WM to performing mindful observation of their WM in order to aggregate their schemata into a coherent new process. This increased germane cognitive load will in turn decrease performance. When the new schema is formed, performance improves again (since the intrinsic load is lower due to better schemata integration). It was already defended in 1989 by Zolten that biofeedback indeed follows the CLT predictions: "the better the clients are able to control their autonomic processes, the more efficient will be the organization of those processes when routinization occurs, and the clients will be able to direct their attentional abilities toward other important problem issues" (Zolten, 1989).

The classical perspective of Piaget restricts development of schemata to self-acquired experience [START_REF] Piaget | Biology and Knowledge[END_REF]. However, both the social cognitive theory of Bandura [START_REF] Bandura | Social foundations of thought and action : a social cognitive theory[END_REF] and the social learning theories of Vygotski [START_REF] Valsiner | The Oxford Handbook of Culture and Psychology[END_REF] placed social interaction at the heart of child development. Children learn more easily when learning is mediated by social interactions with a tutor [START_REF] Dixon-Krauss | Vygotsky in the classroom. Mediated literacy instruction and assessment[END_REF]. The tutor provides scaffolding, i.e., elements of a task that are initially beyond the learner's capacity, thus permitting the child to concentrate upon and complete those elements that are within his range of competence [START_REF] Wood | The role of tutoring in problem solving[END_REF]. What a child is able to do today with instructional scaffolding, he/she will be able to do tomorrow alone [START_REF] Valsiner | The Oxford Handbook of Culture and Psychology[END_REF]. While the subject has limited abilities, with the help of a supervisor he/she is able to perform more complex tasks.

What he/she can do alone is termed the "autonomy zone," what he/she can do with help is termed the "zone of proximal development," and what he/she cannot do even with help is termed the "rupture zone." Numerous experiments have supported this model, demonstrating the direct impact of scaffolding on executive function, WM emergence, and cognitive selfregulation [START_REF] Valsiner | The Oxford Handbook of Culture and Psychology[END_REF][START_REF] Hammond | The effects of parental scaffolding on preschoolers' executive function[END_REF][START_REF] Dilworth-Bart | Maternal scaffolding and preterm toddlers' visual-spatial processing and emerging working memory[END_REF][START_REF] Freund | Maternal Regulation of Children's Problem-solving Behavior and Its Impact on Children's Performance[END_REF].

Interestingly, cognitive self-regulation corresponds to the definition of self-maintenance in section 2.1. Fig. 3. The neo-Piagetian memory span model, cognitive load theory, and schemata integration. When a subject begins learning a task involving volitional control over a combination of schemata, the memory span is high. When learning begins (A), several storage and processing schemata have to be controlled, inducing a high intrinsic cognitive load.

During learning (B), the use of learning schemata (in green) to integrate the processing and storage schemata increases the cognitive load. At this point, performance drops (performance follows a U-shaped curve) as the cognitive load increases (due to a germane cognitive load increase). After learning (C), the schemata are integrated and the cognitive load drops, leading to improvement in performance.

We will now illustrate with a simple example why schemata theory accurately models biofeedback effects. As noted in section 2.2, a recent review [START_REF] Lehrer | Heart rate variability biofeedback: how and why does it work[END_REF] attributed the effect of heart rate variability biofeedback to a combination of causes including: homeostasis in the baroreceptors, parasympathetic reflex stimulation, improved gas exchange, mechanical stretching of airways, anti-inflammatory effects, and attentional effects. As explained in section 2.1, the effect of biofeedback is to improve biosignal control through the acquisition of two skills: discrimination and the self-maintenance. Here, both discrimination and self-maintenance can be seen as complex tasks; though a given subject may know how to sustain his attention, relax, or slow down his breathing, the coordination of these tasks is not necessarily a straightforward process. Similarly, though a subject can monitor his breathing, notice if he/she is relaxed or tense, and observe when his attention drops, the combined monitoring of multiple states can be challenging. In the case of heart rate variability biofeedback, therefore, discrimination and self-maintenance skills could be modeled as schemata. This example is not exceptional, as most biofeedback paradigms include involvement of executive function or attention (see section 3.4 below). From this perspective, biofeedback provides scaffolding for the subject [START_REF] Sanders | Strategies to scaffold student learning: applying Vygotsky's Zone of Proximal Development[END_REF], helping him/her to acquire or improve task-related discrimination and self-maintenance schemata.

Skill learning

Skill learning is a paradigm that describes the mechanisms involved in the acquisition of complex perceptual, cognitive, or motor skills. The effect of feedback is a variable of interest in skill learning-for example, it could be useful for the description of efficient coaching practices for motor skill acquisition. One can identify two significant properties of a motor action [START_REF] Salmoni | Knowledge of results and motor learning: a review and critical reappraisal[END_REF]: its performance, i.e., the quality of the subject's own movement (how to do the action); and its result, i.e., the success or failure of the action (what shall be done). The subject can learn about these two properties either by himself or with external help. When the subject has direct access to these two observables, it is termed "intrinsic feedback." When the information comes from an external source (for example, a sports coach or a device), it is termed "external feedback."

The efficiency of external feedback for skill learning has been the object of several studies and some foundational truths have been demonstrated. First, extrinsic feedback helps to accelerate and facilitate the learning process [START_REF] Poole | Application of Motor Learning Principles in Occupational Therapy[END_REF], especially when it is not redundant with internal feedback [START_REF] Schmidt | Motor Learning and Performance, 4th Edition[END_REF]. It has informational functions and motivational properties with important influences on learning [START_REF] Wulf | Rebecca: Motor skill learning and performance: a review of influential factors[END_REF], but it can also induce dependency (the so-called guidance effect): if administration of extrinsic feedback is not appropriate, performance decreases after the feedback is withdrawn [START_REF] Buchanan | Overcoming the guidance effect in motor skill learning: feedback all the time can be beneficial[END_REF]. Second, the subject must be able to act upon his internal feedback when the external feedback is removed; successful feedback learning, therefore, is an adaptation of internal feedback in a way that incorporates the external feedback [START_REF] Syznofzik | Internalizing agency of self-action: perception of one's own hand movements depends on an adaptable prediction about the sensory action outcome[END_REF]. Finally, performance feedback is generally more effective for real-world tasks [START_REF] Schmidt | Motor Learning and Performance, 4th Edition[END_REF].

The dissociation of performance feedback and result feedback can be observed for instance in skilled typists. Logan and Crump provided skilled typist with fake result feedbacks (Logan & Crump, 2010), either corrected errors that typists made or inserting errors in correct responses. When asked to report errors, typists took credit for corrected errors and accepted blame for inserted errors, claiming authorship for the result feedback. However, their typing rate showed no evidence of these illusions, slowing down after corrected errors but not after inserted errors. This dissociation suggests two error-detection processes: an outer loop sensitive to the appearance of the screen (result feedback) and an inner loop sensitive to keystrokes (intrinsic performance feedback). Another example in motor learning is voice control training or rehabilitation. Visual feedback on voice spectral properties can be used to train singers, and as one would expect, novice and expert singers require training tailored to their individual skill level: while beginners prefer simple and continuous information, experienced singers prefer more complex and discontinuous feedback [START_REF] Hoppe | Development of a real-time visual feedback assistance in singing training: a review[END_REF]. Internal result feedback develops with expertise, and therefore simple external result feedback is redundant and ineffective for experts. The results of the Sing & See project [START_REF] Wilson | Looking at singing: does real-time visual feedback improve the way we learn to sing[END_REF] are of particular interest, as they illustrate how developmental psychology can explain feedback learning mechanisms: singers' performance dropped during feedback presentation but improved after feedback training (as compared to a control group). This is typical of a U-shaped performance curve (see section 3.2).

Though motor skill learning theories cannot be directly adapted to explain biofeedback training, their core principles are similar in practice, and assumptions about efficiency of feedback from the motor skill model are likely to hold true for biofeedback. This model can easily be extended to any kind of feedback learning in general, including biofeedback and neurofeedback. The implications of skill learning for neurofeedback has already been debated by Strehl [START_REF] Strehl | What learning theories can teach us in designing neurofeedback treatments[END_REF]. Skill learning theory models systems with explicit feedbacks, and therefore would relate to model-based RL mechanisms.

Executive function and attention

Biofeedback could not exist without involvement of executive functions and/or attention. Executive functions comprise the mental processes that enable individuals to take control over otherwise automatic responses of the brain in order to produce goal-oriented behaviors (Lamar & Raz, 2007;[START_REF] Garon | Executive function in preschoolers: a review using an integrative framework[END_REF][START_REF] Lezak | Neuropsychological assessment. Fifth Edition[END_REF]. They are strongly, but not exclusively, associated with neural networks located in the prefrontal cortex (Miller & Cohen, 2001) (more details in section 4.3.). These executive functions allow individuals to handle new and/or complex situations where routine behavior does not exist or would prove suboptimal, and they include processes such as planning, goal setting, decision making, voluntary attention, task switching, set shifting, behavioral and perceptual inhibitions, voluntary emotional regulation, and error correction. In biofeedback paradigms, and especially when training is based on cognitive strategies (see section 3), several executive functions appear to be essential to setting up an internal reward system (goal setting), integrating feedback information (voluntary attention, set-shifting), and adapting behavior toward self-maintenance (error correction).

Most of the aforementioned cognitive functions interact with attention, a broad concept that can be defined as the set of processes dealing with the allocation of WM to the different neural representations available in the brain (Knudsen, 2007). Many studies point to the common neural mechanisms that support both WM and attention (Ikkai & Curtis, 2011;Gazzaley & Nobre, 2012), reinforcing the idea of an overlap between the two functions.

Because high-level cognition relies on WM's limited span [START_REF] Cowan | Working memory capacity[END_REF]Cowan, et al., 2005), attention plays a crucial role in learning tasks where WM is partly occupied by learning schemata (see section 3.2).

Working memory models

There are good reasons to hypothesize that WM plays a key role in biofeedback learning. The central role of WM is emphasized in motor skill learning [START_REF] Seidler | Neurocognitive Contributions to Motor Skill Learning: The Role of Working Memory[END_REF], and by definition, this theoretical construct intersects with all cognitive functions (see section 3.4). While performing any cognitive task, information being processed is stored and maintained in WM. Miller coined the term "working memory" while studying everyday formation, transformation, and execution of plans in the context of behavioral science [START_REF] Wallace | Plans and the Structure of Behavior[END_REF].

Multiple-component model

Baddeley and Hitch's model (Baddeley & Hitch, 1974) remains the most influential model of WM. The original model included two slave storage subsystems in charge of storage and maintenance of visual and auditory information; and a coordinating system, the central executive. The central executive coordinates the slave subsystems, activates memory traces from long-term memory (LTM), selects coding strategies, and shifts attention. Two main criticisms of the concept of a central executive have been (1) that it is depicted as an homunculus, an all-powerful man running WM, and ( 2) that the lack of rigorous evidence makes it impossible to falsify [START_REF] Parkin | The central executive does not exist[END_REF]. A new slave system, the episodic buffer, was later introduced by Baddeley [START_REF] Baddeley | The episodic buffer: a new component of working memory?[END_REF]. The episodic buffer stores multidimensional pieces of information integrated by the central executive into time-ordered episodes, like fragments of a story. These episodes are then linked to multi-dimensional representations in LTM.

Embedded-process model

Cowan's model of WM [START_REF] Cowan | Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system[END_REF] outlines more precisely the mechanisms underlying attention and extends the notion of slave subsystems to more general types of encoding. In terms of flow, information enters the brief sensory store and is retained for several hundred milliseconds, whereupon LTM representations (sensory or semantic) become active and remain so for a few seconds. Depending on the salience of the stimuli and/or voluntary attention, the activated memories may enter the focus of attention or remain outside of it (yet still active). The attentional processes are mediated by the central executive, which can direct attention either outward to perceived stimuli or inward to LTM. The processing of activated traces of LTM might lead to controlled actions if information passes through the focus of attention or to automatic actions otherwise. LTM storage of some coded features occurs automatically. Processing in this model can also be performed on active items outside the focus of attention.

Long-term working memory

Traditional models of WM perform rather well on laboratory tasks. However, the large storage demands of text comprehension and other skilled activity (e.g., good chess players, digit span experts) cannot be explained by models that rely only on temporally limited capacity [START_REF] Anders Ericsson | Long-term working memory[END_REF]. To address this problem, Anders Ericsson and Knitsch proposed their long-term working memory (LTWM) model. Based on experimental findings (Anders Ericsson & Delaney, 1999) that conflicted with other WM models, they proposed the idea that skilled activity in everyday life does not rely heavily on temporal storage. On the contrary, while skills are developing, domain specific semantic structures are built in LTM that allow for efficient coding and fast retrieval, and hence LTM largely mediates expert performance.

Time-based resource-sharing model

A model of WM that proposes an interesting definition of cognitive load is the timebased resource-sharing model (TBRS) [START_REF] Barrouillet | Time constraints and resource sharing in adults' working memory spans[END_REF]. The main assumption of the TBRS model is that attentional resources, serial in nature, are needed not only for processing information, but are also shared with activation and maintenance processes. This holds true both for complex tasks as well as for simple activities like reading letters or digits.

Within this model, quick pauses are required during processing in order to maintain the memory traces, which would otherwise decay over time. This process does not necessarily correspond to rehearsal in the phonological loop proposed by Baddeley since different mechanisms could occur, such as the rapid and covert retrieval process through attentional focusing proposed by Cowan [START_REF] Cowan | Verbal memory span and the timing of spoken recall[END_REF]. This attentional switch might occur constantly and at the micro level, as described in the micro-task-switching process by Towse et al. [START_REF] Towse | Working memory as the interface between processing and retention: a developmental perspective[END_REF]. This process is serial in nature at the micro level, yet rapid enough to seem parallel at the macro level.

Due to this attentional constraint, it is important to redefine the notion of cognitive load. A high load condition should involve not only the number of active items, but also the available time that can be devoted to attentional switches to refresh memory traces. If the task allows enough time to ensure proper maintenance of memory traces, it is said to correspond to low cognitive load, and conversely, if high processing demands leave little time for refreshing, the task is said to involve high cognitive load. In this sense, the concept of load becomes task dependent.

Volitional action, agency, and fluency

In section 2.2, we mentioned that biomedical models of biofeedback disagree over the need for volitional control of the regulated biological variables. Volitional action is associated with authorship of the action, a sense of agency or self-agency-the sense that "I am the one who is causing or generating an action" [START_REF] Gallagher | Philosophical conceptions of the self: implications for cognitive science[END_REF]. In other words, a sense of agency refers to the feeling of controlling an external event through one's own actions. Agency is at the center of neurocognitive models of schizophrenia as an explanation for volitional delusions [START_REF] Lafargue | Effort awareness and sense of volition in schizophrenia[END_REF]. Interestingly, agency seems to be linked with both internal and external feedback about self-control [START_REF] Syznofzik | Internalizing agency of self-action: perception of one's own hand movements depends on an adaptable prediction about the sensory action outcome[END_REF]) and therefore has a direct relationship to fluency. Fluency is the subjective experience of ease or difficulty associated with completing a mental task [START_REF] Oppenheimer | The secret life of fluency[END_REF] and therefore relates to the perception of self-control or self-regulation. Monitoring of physical efforts by a subject, for example, can lead to a retrospective sense of fluency, which can in turn contribute to a sense of agency [START_REF] Demanet | Power to the will: how exerting physical effort boosts the sense of agency[END_REF]. This is not a new observation; Maine de Biran proposed in 1805 that the sensation of effort might provide an internal cue for distinguishing self-caused changes from other changes in the environment (Maine de Biran, 1805). Recent reports have shown that a sense of agency would be derived from both a prospective (action selection) and retrospective (action outcome) fluency [START_REF] Chambon | From action intentions to action effects: how does the sense of agency come about[END_REF]. This relationship between agency and self-regulation is critically important for biofeedback training. First of all, successful volitional biofeedback induces improved fluency in regulation of the biological variable and consequently involves a sense of agency.

Furthermore, self-regulation can be seen as one aspect of executive function, whose depletion has negative effects on task performance-the so-called ego depletion effect [START_REF] Vinney | The role of self-regulation in voice therapy[END_REF]. Again, this ego depletion effect predicts a drop in performance during effective biofeedback, in line with developmental psychology models (section 3.2).

Synthetic psychological models

Biofeedback is concerned with a specific subtype of skill learning: biological variable regulation. Biofeedback setups provide the user with external feedback, while the discrimination skill is an internal performance feedback. The self-maintenance skill integrates both internal and external feedback and acts on the biological variable. As with motor learning, biological variable regulation seeks an effect involving the organism and its environment and has a directed functional goal; succeeding or failing to reach this goal is the result feedback. The main difference from motor learning resides in the type of action involved: while motor action learning involves sensorimotor processes, biofeedback is more general and can include any kind of biological variable. We can summarize these elements in a general biofeedback flow chart with four types of feedbacks: external result feedback, external performance feedback, internal result feedback, and internal performance feedback (Fig. 4).

A framework for the different executive functions involved in biofeedback, largely inspired by the work of Knudsen (Knudsen, 2007), is shown in Fig. 5. This model includes several levels of salience filters that attribute weights to both external and internal percepts based on their physical, temporal, motivational, and emotional properties [START_REF] Menon | [END_REF]. The resulting neural representations then go through a competitive selection process to determine which information enters WM. This filtering layer is referred to as bottom-up attention and will, for example, allow a loud, unexpected sound to enter almost anyone's WM (in addition to triggering subcortical responses). Sustained attention is another key component of attention and refers to the ability to maintain neural representations in WM over time (Gazzaley & Nobre, 2012). This cognitive function is also strongly involved in the learning process described in section 3.2, as both feedback information and learning schemata should be maintained in WM during the integration process.

As explained in section 2.1, the interest of biofeedback is to help train two cognitive functions related to a target biological variable: discrimination and self-maintenance.

Acquisition of the discrimination skill requires the subject to find an internal or autogenous percept that matches the fluctuation of the external feedback. This process requires the subject to scan the different percepts available to him/her at a given time (selective attention) and to manipulate their different neural representations (set-shifting) in order to find out if a correlation can be established with the feedback. Training of the discrimination skill is greatly facilitated by joint or prior development of the self-maintenance function, i.e., the ability to affect the biological variable voluntarily. Intended modification of the biological variable allows the subject to more easily confirm or contradict a possible correlation between an internal or autogenous percept and the external feedback than would mere observation of natural fluctuations in the biological variable. Development of the self-maintenance skill also requires the subject to try several approaches to infer whether or not a behavior has an influence on the feedback. Both functions are therefore acquired using typical learning strategies that involve reinforcement in the case of a positive correlation and error detection/correction otherwise.

Neuroscience perspective

Neural correlates of schemata formation

Straightforward links can be established between schemata theory and functional neuroanatomy [START_REF] Johnson | From 'acting on' to 'acting with': the functional anatomy of object-oriented action schemata[END_REF][START_REF] Cannon | Self-perception and Experiential Schemata in the Addicted Brain[END_REF]. Schemata correspond closely to biological networks of neurons usually termed "neural assemblies." A neural assembly is a small set of interconnected neurons that can persist without external stimulus, connected by learning and supported by synchronous firing behavior [START_REF] Huyck | A review of cell assemblies[END_REF]. The "information overlap to abstract" (iOtA) model of Lewis and Durant (Lewis & Durrant, 2011) theorizes that schemata are created through reinforcement of synaptic connections of overlapping memories: when a group of neural assemblies are activated simultaneously, their common overlapping networks are reinforced. Through progressive abstraction due to synaptic homeostasis, a new assembly of neurons could be gathered into abstract schemata combining elements of these memories. Despite the likelihood that other biological mechanisms may also underlie the formation of schemata, such mechanisms have not yet been described [START_REF] Huyck | A review of cell assemblies[END_REF], so the iOtA model is the most complete available.

The formation of neural assemblies occurs in two steps [START_REF] Frankland | The organization of recent and remote memories[END_REF]. First, a transient neuronal assembly is formed to deal with a task, leading to short-term memory organization. The hippocampus probably plays a key role at this stage, especially for episodic memories [START_REF] Shirvalkar | Hippocampal neural assemblies and conscious remembering[END_REF]. Reactivation of the assembly leads to its consolidation and the formation of a long-term memory through reinforcement learning (RL), stored in cortical networks. Classical models assume that memories are consolidated during sleep, but experimental evidence shows that this process can also occur during waking states [START_REF] Axmacher | Memory processes during sleep: beyond the standard[END_REF]. The ventromedial prefrontal cortex and the hippocampus may interact at this stage for schema formation and possibly in the representation of partially consolidated schemata (van Kesteren, Fernández, [START_REF] Van Kesteren | Persistent schema-dependent hippocampal-neocortical connectivity during memory encoding and postencoding rest in humans[END_REF]. Furthermore, schema acts as memory containers facilitating encoding: when a schema exists, the assimilation of new mnesic traces into the schema can occur extremely quickly, and become rapidly hippocampal-independent (Tse, et al., 2007).

A functional model of the neural correlates of schemata could be found in the notion of actor strategies in the prefrontal cortex (Koechlin, 2014;Collins & Koechlin, 2012). Actors are task sets driving ongoing behavior, stored in long-term memory. Koechlin's theory (Koechlin, 2014;Koechlin, 2016) provides a model integrating schemata learning and selfcontrol networks. While existing actors are used and reinforced through model-free RL (see section 3), they are evaluated by the prefrontal cortex (PFC), and monitored by the anterior cingulate cortex (ACC). Cascade of interactions can be observed between the dorsolateral PFC and the anterior cingulate cortex, involved in response evaluation upon action performance [START_REF] Banich | Executive Function: The Search for an Integrated Account[END_REF] Barto, 1998;Gershman, Markman, & Otto, 2014;Koechlin, 2016). It can easily be seen that this theory articulates model-free RL mechanisms for schema assimilation and model-based RL mechanisms for schema accommodation (new actor creation), which bridges the gap between the CLT in psychology (section 3.2) and RL mechanisms in neuroscience. The germane load could find a potential neural correlate in the frontopolar cortex, involved in the cognitively costly evaluation of new strategies in model-based RL by (Koechlin, 2014). A recent study illustrates this effect and indicate an neural correlate of the germane load: subjects exposed to a slow cortical potential followed a U-shaped evolution of neuronal resource allocations, measurable using the contingent negative variation (CNV) at the Cz electrode [START_REF] Gevensleben | Neurofeedback of slow cortical potentials: neural mechanisms and feasibility of a placebo-controlled design in healthy adults[END_REF], which was not observed in the sham group. The role of the PFC, the cognitive control network and the ACC are discussed with more details thereafter in sections 4.3, 4.4 and 4.5.

Schemata and working memory

WM, or the processing of short-term memory, is fundamental to the functioning of schemata. As neural activity persists in subregions of the PFC and posterior parietal cortex (PPC) during maintenance of WM representations (Ikkai & Curtis, 2011), one could consider these two brain regions together as the location of WM neural substrates.

Two subfunctions of WM have been identified: information storage and executive processing of stored data. Neuroimaging evidence links the short-term memory storage function with the ventrolateral PCF [START_REF] Smith | Storage and executive processes in the frontal lobes[END_REF][START_REF] Stokes | Activity-silent' working memory in prefrontal cortex: a dynamic coding framework[END_REF][START_REF] Smith | Storage and executive processes in the frontal lobes[END_REF][START_REF] Ester | Parietal and Frontal Cortex Encode Stimulus-Specific Mnemonic Representations during Visual Working Memory[END_REF] and the PPC [START_REF] Ester | Parietal and Frontal Cortex Encode Stimulus-Specific Mnemonic Representations during Visual Working Memory[END_REF]Ikkai & Curtis, 2011). The executive component, on the other hand, appears to be mediated by the dorsolateral PFC [START_REF] Smith | Storage and executive processes in the frontal lobes[END_REF], whose causal role is supported by transmagnetic stimulation studies [START_REF] Mottaghy | Interfering with working memory in humans[END_REF].

There are three hypotheses regarding the neural basis of WM storage. First, information could be stored in the PFC and PPC themselves; in fact, brain activity in these areas can be used to reconstruct orientation bars stored in visual WM [START_REF] Ester | Parietal and Frontal Cortex Encode Stimulus-Specific Mnemonic Representations during Visual Working Memory[END_REF]. A second hypothesis is that WM is not stored in persistent neural activity, but instead in the combined interaction of ongoing activity and the hidden state (activity-silent states) in the brain's structural connectivity [START_REF] Stokes | Activity-silent' working memory in prefrontal cortex: a dynamic coding framework[END_REF]. This hypothesis is supported by the fact that dynamic states of neural networks are combinations of their ongoing activity, underlying connections, and short-term synaptic plasticity [START_REF] Buonomano | State-dependent computations: spatiotemporal processing in cortical networks[END_REF]. The final hypothesis proposes a mediating role for the lateral PFC. Recent studies combining TMS and neural measures have shown that the lateral PFC modulates sensory activity during WM tasks and enhances selectivity of representations in the sensory cortex [START_REF] Sreenivasan | Revisiting the role of persistent neural activity during working memory[END_REF]. According to these results, and in line with Cowan's WM model (section 3.5), the WM would not be stored in the lateral PFC, but instead stored in the sensory cortex and mediated by the lateral PFC (whose activity would therefore be a correlate of sensory cortex activity). There is no consensus yet on these three models. However, a recent study demonstrated that noise learning is accompanied by rapid formation of sharp neural selectivity to arbitrary and complex acoustic patterns within sensory regions [START_REF] Andrillon | Perceptual Learning of Acoustic Noise Generates Memory-Evoked Potentials[END_REF]. This is the first experimental confirmation that schemata bridge the gap between sensory and memory processes, and a validation of Cowan's hypotheses.

The iOtA model is compatible with all three theories of WM storage, fitting best with the second (activity-silent states) theory. The model describes schemata as neural assemblies involving structural networks of neurons, a description that is consistent with activity-silent states. The TBRS model (see section 3.5.4) is more compatible with the third theory (lateral PFC mediation of WM), as it separates the storage function from the storage location.

Executive functions and the prefrontal cortex

As mentioned in section 3.4, executive functions play a key role in the integration of feedback in skill learning. Two frontal brain regions are central to several executive functions [START_REF] Logue | The neural and genetic basis of executive function: attention, cognitive flexibility, and response inhibition[END_REF]: the medial PFC, involved in general attention and set-shifting tasks; and the orbitofrontal cortex, involved in reversal learning and response inhibition tasks.

Koechlin's hierarchical model of cognitive control (Koechlin, Ody, & Kouneiher, 2003;Koechlin & Summerfield, 2007) is a multistage architecture along the anteriorposterior axis of the lateral PFC where each stage maintains active representations that are controlled by higher stages and that exert control on representations in lower stages. Control signals owing to events which occurred in the more and more distant past would arise from successively more anterior cortical regions. In this model, the apex of the prefrontal executive system is implemented in the most anterior prefrontal regions and corresponds to control processes underlying multitasking and the temporary maintenance of pending behavioral episodes. Logan and Crump's hierarchy of loops (Logan & Crump, 2010) involved in result (outer loop) and performance (inner loop) error-detection processes is compatible with this hierarchical model. Together, these models can explain the differences observed between result and performance feedbacks in skill learning (see section 3.3).

There is general consensus about the nature of the PFC's mediation of executive functions [START_REF] Smith | Storage and executive processes in the frontal lobes[END_REF]. PFC areas modulate the activity in sensory cortices, thereby allowing for voluntary control of brain functions. Similarly, emotional regulation involves a network of areas in the PFC, hippocampus, and parahippocampus [START_REF] Phillips | A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder[END_REF]. The PFC most likely plays a central role in executive control of the brain: several reports indicate that top-down signals originating in the LPFC (representing current task goals) implement cognitive control by biasing information flow across multiple large-scale functional networks (Miller & Cohen, 2001;[START_REF] Cole | Multi-task connectivity reveals flexible hubs for adaptive task control[END_REF]. This specific role in cognitive control will be addressed in the next section.

Self-control networks

As noted in section 2.1, the voluntary control of biosignals attempted in biofeedback paradigms depends on two functions: discrimination and self-maintenance. Here we will report recent evidence about the neural correlates of cognitive control, which could stand as potential candidates for the neural basis of self-maintenance. Recently it has been hypothesized that neurofeedback might tune brain oscillations toward a homeostatic point through a top-down regulation mechanism [START_REF] Ros | Tuning pathological brain oscillations with neurofeedback: a systems neuroscience framework[END_REF]. If this theory is true, then top-down control of brain functions would play a key role in neurofeedback, even in autonomous (non-volitional) regulation neurofeedback models (see section 2.2 for a discussion of volitional and autonomous regulation strategies).

The cognitive control network (CCN) is a brain network thought to underlie cognitive control capacity [START_REF] Dosenbach | A core system for the implementation of task sets[END_REF][START_REF] Cole | The cognitive control network: Integrated cortical regions with dissociable functions[END_REF]; to correlate with fluid intelligence [START_REF] Cole | Global Connectivity of Prefrontal Cortex Predicts Cognitive Control and Intelligence[END_REF]; and to support executive functions in general [START_REF] Niendam | Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions[END_REF]. Regions within the CCN include the ACC and pre-supplementary motor area (pSMA), inferior frontal junction (IFJ), anterior insular cortex (AIC), dorsal premotor cortex (dPMC), and a subnetwork termed the frontoparietal network (FPN) that includes portions of the lateral prefrontal cortex (LPFC) and the posterior parietal cortex (PPC) [START_REF] Cole | The cognitive control network: Integrated cortical regions with dissociable functions[END_REF][START_REF] Cole | Multi-task connectivity reveals flexible hubs for adaptive task control[END_REF]. The FPN acts as a hub that coordinates cognitive control [START_REF] Cole | Multi-task connectivity reveals flexible hubs for adaptive task control[END_REF]; it centralizes functional connections with multiple brain networks and is involved in a wide variety of tasks. Furthermore, these connections form an organized framework, with systematic relationships between the types of tasks and the corresponding connectivity patterns. Consequently, the FPN can coordinate brain networks according to the requirements of the task, thereby enabling the transfer of abilities across tasks. The CCN is considered the neural seat of cognitive control, and therefore is a good candidate for the neural basis of selfmaintenance; in a recent fMRI study, sham neurofeedback was indeed associated with activation in three areas of the CCN: the LPFC, ACC, and AIC [START_REF] Ninaus | Neural substrates of cognitive control under the belief of getting neurofeedback training[END_REF].

The CCN is likely not the only neural network supporting the self-maintenance function. In situations of wakeful rest such as day-dreaming, activity in a network of brain areas termed the default mode network (DMN) can be observed [START_REF] Buckner | The Brain's Default Network: Anatomy, Function, and Relevance to Disease[END_REF]. Recent investigations have observed that cognitive control may actually be the outcome of dynamic functional couplings between the FPN system, the cingulo-opercular network, and the DMN [START_REF] Cocchi | Dynamic cooperation and competition between brain systems during cognitive control[END_REF]. By applying network control theory on human diffusion tensor imaging, Gu et al. recently confirmed that: (i) DMN areas may be important in low cognitive effort tasks, (ii) the FPN and cingulo-opercular areas may be important in high cognitive effort tasks, and (iii) attention areas may be important in manipulating information across different cognitive processes [START_REF] Gu | Controllability of structural brain networks[END_REF]. Furthermore, the FPN is anatomically positioned to integrate information from the attention system and the DMN [START_REF] Vincent | Evidence for a frontoparietal control system revealed by intrinsic functional connectivity[END_REF]. From this perspective, the CCN, attentional networks, and DMN would share access to cognitive processes depending on the type of task. This observation confirms recent evidence pointing to correlations between dynamic interactions of the CCN and DMN on the one hand, and cognitive control performance of adolescent subjects on the other [START_REF] Dwyer | Large-Scale Brain Network Dynamics Supporting Adolescent Cognitive Control[END_REF]. This is also consistent with the dual-process theory mentioned in section 2.2 [START_REF] Wood | On the need to better specify the concept of "control" in brain-computer-interfaces/neurofeedback research[END_REF], with the DMN corresponding to low-level processing and the CCN to high-level processing.

Finally, as explained in section 3.6, a sense of agency would be directly related to the perception of self-maintenance. According to one meta-analysis, self-agency appears to involve the insula and the experience of a "global emotional moment" representative of the sequential integration of perceptive and motivational information [START_REF] Sperduti | Different brain structures related to self-and external-agency attribution: a brief review and meta-analysis[END_REF]. The angular gyrus (AG) may also play a key role in monitoring signals relating to action selection in the dorsolateral prefrontal cortex in order to prospectively inform subjective judgments of control over action outcomes. The online monitoring of these signals by the AG might provide a subject with subjective markers of volition prior to the action itself [START_REF] Chambon | An online neural substrate for sense of agency[END_REF], and therefore the AG might be a neural substrate of the sense of agency [START_REF] Chambon | From action intentions to action effects: how does the sense of agency come about[END_REF]. The main electrophysiological markers of a sense of agency in EEG signals are the alpha-band relative power in the central, parietal, and right temporal areas, as well as alpha phase coherence in frontal areas (Kang, et al., 2013). The correlates of fluidity in EEG are the error potentials reported in the next section.

Consciousness of errors and error potentials

Action monitoring and error processing are two critical stages of executive control in humans, allowing for efficient behavioral adjustment and optimization of performance. These functions therefore play a central role in skill learning and are good candidates for neuronal markers of the discrimination function defined in section 2.1.

Correct overt responses are frequently preceded by an early subthreshold electromyographic burst recorded from the hand that is associated with the incorrect response [START_REF] Burle | What's an internal clock for? From temporal information processing to temporal processing of information[END_REF]. These bursts that occur in about 20% of correct response trials represent partial errors [START_REF] Hasbroucq | Stimulus-hand correspondence and direct response activation: An electromyographic analysis[END_REF]. If the correct response is provided by the subject, this means that the partial error has been identified and corrected, preventing an overt error. Rochet et al. studied whether partial errors are consciously detected by subjects [START_REF] Rochet | Detecting and correcting partial errors: Evidence for efficient control without conscious access[END_REF], and they showed that less than one-third of partial errors were reported. Even if partial errors are not consciously detected, however, they are being corrected for before producing an overt error.

One might ask: is it helpful to be aware of our errors if two-thirds are not reported but still corrected? Biofeedback could be used to explore brain mechanisms implicated in error monitoring and whether being aware of our errors has consequences on error processing and skill learning. Indeed, errors can be corrected without awareness before they reach the threshold of response. However, in situations where partial errors have been consciously detected, it would be of interest to investigate whether they are corrected through the same processing mechanism or if other adjustments occur (such as a change in strategy). Evoked related potential (ERP) can be useful in exploring error monitoring and might be employed in biofeedback to investigate error monitoring mechanisms.

Errors in reaction-time tasks induce a response-locked ERP that peaks within 50 to 100 ms after the erroneous response. This ERP is a fronto-central negative deflection, and because it was originally reported as being absent following correct responses, it has been called error negativity or Ne [START_REF] Falkenstein | Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction time tasks[END_REF], or error-related negativity or ERN [START_REF] Gehring | A neural system for error detection and compensation[END_REF]. The Ne is strong evidence for the existence of an action monitoring system able to quickly separate errors from correct responses at the very moment of response [START_REF] Vidal | Basics for sensorimotor information processing: some implications for learning[END_REF]. In 2000, Vidal et al., by applying the Laplacian transformation, observed a smaller Ne-like potential following correct responses. Actually, Laplacian-transformed data argues in favor of a single-generator hypothesis [START_REF] Vidal | Basics for sensorimotor information processing: some implications for learning[END_REF] for the Ne, and the Ne is sensitive to the correctness of the ongoing response. Previous studies suggest that Ne may remain present even when subjects are unaware of having made a partially erroneous eyemovement. It seems that Ne is generated independently of the conscious detection of errors [START_REF] Nieuwenhuis | Error-related brain potentials are differentially related to awareness of response errors: Evidence from an antisaccade task[END_REF][START_REF] Endrass | ERP correlates of conscious error recognition: Aware and unaware errors in an antisaccade task[END_REF][START_REF] O'connell | The role of cingulate cortex in the detection of errors with and without awareness: a high-density electrical mapping study[END_REF]. More generally, the midline frontal theta power-the position and frequencies where Ne is observed-might be the best EEG marker for cognitive control [START_REF] Cavanagh | Frontal theta as a mechanism for cognitive control[END_REF]. The error positivity (Pe) is a positive deflection with more parietally distributed ERP than the Ne. It occurs 200-400 ms after a conscious erroneous response [START_REF] Falkenstein | Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction time tasks[END_REF][START_REF] Nieuwenhuis | Error-related brain potentials are differentially related to awareness of response errors: Evidence from an antisaccade task[END_REF][START_REF] Overbeek | Dissociable components of error processing: on the functional significance of the Pe vis-à-vis the ERN/Ne[END_REF]. The amplitude of Pe is sensitive to the degree of awareness of an error [START_REF] Dockree | Electrophysiological markers of cognitive deficits in traumatic brain injury: a review[END_REF] and is larger for conscious than unconscious errors [START_REF] O'connell | The role of cingulate cortex in the detection of errors with and without awareness: a high-density electrical mapping study[END_REF][START_REF] Charles | Distinct brain mechanisms for conscious versus subliminal error detection[END_REF][START_REF] Logan | Cognitive control of conscious error awareness: error awareness and error positivity (Pe) amplitude in moderate-to-severe traumatic brain injury (TBI)[END_REF]. Ne and Pe are therefore neural correlates of volitional self-monitoring of errors.

Motivation and reward

As explained in section 3, motivation and reward are central components of biofeedback mechanisms. Motivation involves dopaminergic circuits in the reward system, where the striatum plays a key role [START_REF] Yager | The ins and outs of the striatum: Role in drug addiction[END_REF]. Monitoring the neural correlates of motivation and reinforcement learning would provide direct insights into biofeedback learning mechanisms.

Volitional self-monitoring of errors is associated with Ne and Pe. When feedback is presented, a specific Ne can be recorded: feedback-related negativity (FRN), which follows the display of negative feedback [START_REF] Miltner | Event-related brain potentials following incorrect feedback in a time-estimation task: evidence for a "generic" neural system for error detection[END_REF][START_REF] Walsh | Learning from experience: Event-related potential correlates of reward processing, neural adaptation, and behavioral choice[END_REF].

FRN may be the best neural correlate of the reinforcement learning process [START_REF] Walsh | Learning from experience: Event-related potential correlates of reward processing, neural adaptation, and behavioral choice[END_REF] for several reasons: (1) FRN represents a quantitative prediction error; (2) it is evoked by rewards and by reward-predicting stimuli; (3) FRN and behavior change with experience; and (4) the system that produces FRN is maximally engaged by volitional actions.

According to a recent joint EEG-fMRI investigation by Hauser and colleagues [START_REF] Hauser | The feedback-related negativity (FRN) revisited: new insights into the localization, meaning and network organization[END_REF], FRN could be a neural correlate of surprise signals involving top-down cognitive control in the ACC and may therefore be a good neural marker of fluency in feedback learning (see section 3.6).

One well-studied ERP component that seems to play a role in reward processing is the P3 (or P300), a positive wave usually peaking between 300 and 600 ms post-stimulus with its largest amplitude at centroparietal scalp sites. When comparing P300 and FRN, reward magnitude (how much reward is received) is reflected by the P300 ERP but not by feedback negativity, while reward valence (positive or negative reward) was reflected by feedback negativity only [START_REF] Yeung | Independent coding of reward magnitude and valence in the human brain[END_REF].

General model of feedback learning

Feedback learning is the generalization of skill learning to cognitive functioning. The principal brain areas involved in this learning process are illustrated in Fig. 6. The user is performing a learning task that involves both the executive functions and the self-control networks. During learning, working memories and neural assemblies are activated under the monitoring of the central executive (involving the CCN and the DLPFC). Error detection is related to fluency and agency, involving the ACC and the AG: AG playing a key role in the sense of agency [START_REF] Chambon | From action intentions to action effects: how does the sense of agency come about[END_REF], while ACC is involved with error detection (Bush, Luu, & Posner, 2000). If the protocol leads to motivating conditions (mainly intrinsic motivation in volitional biofeedback), then the reward system activates. Finally, feedback learning leads to the formation of coordinated and integrated neural assemblies through reinforcement of synaptic connections among overlapping memories. The resulting schemata have lower intrinsic cognitive load because the CCN will not need to coordinate the underlying neural assemblies anymore (the task is automated now; see Fig. 3). Fig. 6. Feedback learning from a neuroscience perspective. The user is focusing his executive functions on the task, involving the DLPFC (1) and the CCN (not represented in the illustration). Working memory is coordinated by these networks, involving both his hippocampus (2) and the neural assemblies supporting task performance (3) under the supervision of the DLPFC (1). Error monitoring in the ACC (4) allows the user to perceive fluidity, which is then converted into agency by the AG (5). If agency is perceived, and the user is training through a trial-and-error process, then the ventral striatum (6) activates. This leads to the formation of a schemata, progressively integrated and abstracted from the areas involved in the task (3) and consolidated into long-term memory as a skill.

Note that whereas conscious error monitoring involves the ACC, subliminal error monitoring does not (Dehaene, et al., 2003). Implicit feedback strategies may indeed not involve the same mechanisms: they are more likely to be based on model-free RL mechanisms (Dayan & Berridge, 2014). Explicit feedbacks would foster schema accommodation with a model-based RL mechanism; whereas implicit feedbacks would foster schema assimilation with a model-free RL mechanism.

Engineering perspective

Process control models of feedback learning

In engineering, process control is a discipline that aims to maintain the output of a process in a certain desired state (Murrill, 2000;Bennett, 1993;Levine, 2010). For example, a thermostat on a heater can turn the heater on or off by comparing the temperature measured by a sensor to a reference temperature. Once the target temperature is reached, the difference between the room temperature and the target temperature is zero, so the thermostat stops the heater. Process control can work in an open loop or by using feedback (Wilts, 1960). It can be continuous or discretecausing a sequence of events (Levine, 2010). Its application to biomedical engineering models was first suggested by Norbert Wiener in 1948 who introduced cybernetics to model self-regulating mechanisms (Wiener, 1948(Wiener, , 2nd revised ed. 1961;;Mindell, 2002;Ross Ashby, 1956), and was soon identified as a framework to model biofeedback (Anliker, 1977). It is now commonly used to model systems biology (Cosentino & Bates, 2011), and was recently applied for instance to model biological motor systems [START_REF] Scott | Optimal feedback control and the neural basis of volitional motor control[END_REF] and their cognitive control [START_REF] Frith | Abnormalities in the awareness and control of action[END_REF], or speech acquisition (Tourville & Guenther, 2011;[START_REF] Vinney | The role of self-regulation in voice therapy[END_REF], and generally the behavior of biological organisms (Cowan, et al., 2014). Biofeedback and neurofeedback are also often modeled using control theory, such as neurofeedback training of implanted braincomputer interface (Guenther, et al., 2009), for biofeedback training of postural control (Ersal & Sienko, 2013), biofeedback techniques in renal replacement therapy (Paolini & Bosetto, 1999), or electrodermal biofeedback of arousal (Parnandi, Son, & Gutierrez-Osuna, 2013). It was also suggested as a general model for neurofeedback [START_REF] Ros | Tuning pathological brain oscillations with neurofeedback: a systems neuroscience framework[END_REF].

Feedback can be positive or negative (Ross Ashby, 1956;Black, 1934) terms that can refer either to the way we widen or narrow the gap between reference and measurement of a parameter, or to the valence of the action on the gap, which can have positive or negative emotional connotations.

Controllability

A deterministic system can be fully described by the set of values of all its state variables at a given time. These state variables are characterized by dynamic equations, and prior knowledge is not necessary to predict future states given the current state and current and future values of control variables. Controllability describes the ability to control the internal state of a system from an initial state to a final state in a finite time interval (Kalman, 1960). Controlling a system means being able to move it in all its configuration space using some determined displacements.

Observability

Observability is a measure of a system's predictability according to knowledge of its external outputs. A system is observable if the current state can be determined in a finite time using only its outputs, for any possible sequence of states and control (Kalman, 1960). If a system is not observable, it means that the current value of some of its state cannot be determined using the output sensors; they are unknown to the controller, but can be estimated under certain conditions.

Basic model

The basic model of feedback in process control theory can be illustrated as in Fig. 7 (Murrill, 2000). A sensor is used to measure the output of a system. This output is then compared to a reference value so that the error between measured output and reference can be reduced. In this model, the comparison only involves the output of the system. 

Explicit model of neurofeedback and biofeedback

Biofeedback can be explicit or implicit (Dekker & Champion, 2007;Kuikkaniemi, Laitinen, Turpeinen, Saari, Kosunen, & Ravaja, 2010;Nacke, Kalyn, Lough, & Mandryk, 2011); we will first provide a model for explicit biofeedback (see Fig. 8). In this model, both internal and external functions are used to control the current state of the system as compared to the target state.

Implicit model of neurofeedback and biofeedback

The process control model of implicit biofeedback is shown in Fig. 9. In this model, there are two kinds of comparisons: the system can use both internal and external functions to reach a target state. Internal functions refer to inner sensors of the system, while external functions are not directly accessible. External feedback is provided as an input to the system (it has an impact on the system input but not on the error measurement).

Limits of process control models

When using modeling biofeedback, one should bear in mind the typical limitations of process control methods, reflected in the following five "good practice" precautions. 

Linearity

Linear process control models are generally only applicable to linear systems, and when applied to non-linear systems, definitions are only valid for small movements in the neighborhood of a functioning point (Trentelman, Stoorvogel, & Hautus, 2001). Physiological regulation is typically non-linear, and consequently, biofeedback systems need to be individually calibrated, with each user having his own functioning point depending upon both his physiology and his proficiency at regulating the biosignal of interest. Furthermore, the regulation task should also target small enough variations in performances to prevent nonlinearity effects. In addition, neurophysiological regulation is allostatic (Sterling, 2004): the brain performs predictive regulations and retune its parameters according to changes. Therefore, experimental protocols should take into account the fact that individuals' reference point may vary over time depending on task demands and learning.

Stability

Process control systems can be stable or unstable (Ross Ashby, 1956;Routh & Fuller, 1975;Lopez-Caamal, Middleton, & Huber, 2014). Unstable systems can be heavily perturbed by the slightest change in the input command, whereas stable systems can regulate even the most discontinuous perturbations (e.g., Dirac pulses, which have finite impulse responses).

Biofeedback systems are in most cases unstable, and consequently, tolerance to variations around the functioning point is fairly limited.

Temporality: transients and steady-states

When the command changes in complex systems, transient variations typically occur before the system reaches its steady-state (Wilts, 1960). Controlling the amplitude of these variations usually leads to a tradeoff between convergence speed and transient variation amplitude. In other words, fast systems tend to have lots of fluctuations before they reach their goals, whereas slow systems tend to be more precise. This means that the temporality of biofeedback can be a crucial issue: while transient variations correspond to task performances, steady-state error relates to the task result (see section 3.3 about performance and results).

Consequently, continuous feedback about transient states is usually more efficient than discrete feedback about steady-state errors, unless steady-state error perception is not readily available to subjects. For example, in sports training, result feedback can provide useful information to beginners but is of less interest to trained subjects. In biofeedback, the type of feedback presented (transient or steady-state) has to match the subject's level of fluency in the task.

Precision

In process control, a system's precision (or accuracy) is defined by its ability to reach a zero steady-state error (Levine, 2010). This precision, or static error, is one of the key estimates of the system's performance. Therefore, the precision of the biofeedback system (i.e., the precision of biosignal monitoring, the subject's performance with or without feedback) should always be evaluated.

Serious games

"Serious games" are games with teaching, training, and informational purposes that utilize play as motivational leverage [START_REF] Abt | Serious Games[END_REF][START_REF] Prensky | Digital Game-Based Learning[END_REF][START_REF] Michael | Serious games: Games that educate, train and inform[END_REF][START_REF] Mcgonigal | Reality Is Broken: Why Games Make Us Better and How They Can Change the World[END_REF]. Such games have been designed and engineered to stimulate motivation in subjects learning new tasks. Video gaming has several effects on cognitive functions, and in particular may be efficient training for learning how to learn [START_REF] Bavelier | Brain plasticity through the life span: learning to learn and action video games[END_REF]: action video game players have been shown to learn how to extract regular patterns in their environment, thereby improving their ability to learn new tasks. Furthermore, video gaming may lead to lasting changes in reward processing mechanisms [START_REF] Lorenz | Video game training and the reward system[END_REF]. For example, it has been shown that cancer patients playing a serious game to encourage treatment-related behavior markedly activated neural circuits implicated in reward (caudate, putamen, and nucleus accumbens) as compared to patients observing the same audio-visual stimuli without playing [START_REF] Cole | Interactivity and Reward-Related Neural Activation during a Serious Videogame[END_REF].

Biofeedback can be considered a type of serious game: the user "plays" with his biological variable through an interface. Understanding the effective design of serious games is therefore critical to knowing how to design efficient biofeedback systems.

Games are interesting learning strategies because they stimulate motivation and therefore the reward system. Humans have genuinely high motivation to play video games because they stimulate intrinsic motivation factors, i.e., psychological needs of mastery, autonomy, and relatedness [START_REF] Przybylski | A motivational model of video game engagement[END_REF][START_REF] Lorenz | Video game training and the reward system[END_REF]. Several studies have been published on video games and flow [START_REF] Olson | Children's Motivations for Video Game Play in the Context of Normal Development[END_REF][START_REF] Swanson | Intrinsic or Extrinsic? Using Videogames to Motivate Stroke Survivors: A Systematic Review[END_REF], a state of being pleasantly and completely absorbed in a goaldriven activity with hyper-focused attention [START_REF] Csikszentmihalyi | Optimal experience in work and leisure[END_REF]. The flow state occurs when information processing matches the user's aptitudes and the task becomes a realizable challenge (neither too frustrating nor too boring). According to Csikzentmihalyi, the amount of information a human subject can process amounts to a bit rate of 126 bits/sec [START_REF] Csikzentmihalyi | Optimal experience: Psychological Studies of Flow in Consciousness[END_REF], placing a higher bound on manageable cognitive load (which is modulated by the person's skills). This intrinsic motivation is mainly reported as "fun" by the video game player [START_REF] Olson | Children's Motivations for Video Game Play in the Context of Normal Development[END_REF], associated with biological rewards with dopamine release in the ventral striatum [START_REF] Lorenz | Video game training and the reward system[END_REF].

Certain errors must be avoided to take full advantage of the "fun factor" in biofeedback treatments. Simply because a process is required during game play does not guarantee changes in that process [START_REF] Bavelier | Brain plasticity through the life span: learning to learn and action video games[END_REF]. Unfortunately in some clinical studies the goal has been to "entertain" children with "EEG-driven games," rather than really applying a learning procedure the children could benefit from for a longer period (Arns, Heinrich, Ros, Rothenberger, & Strehl, 2015). The game should be designed to induce training, and this is done by controlling the game's validity-in particular, its predictive validity, proving that performance in the game leads to better outcomes in reality [START_REF] Graafland | How to systematically assess serious games applied to health care[END_REF]. In the field of biofeedback, the problem of transfer is as important as it is for serious games; the skill must be transferable to real life or the user will not benefit from treatment.

Psychoengineering model

The missing keystone: toward a psychoengineering model

In the previous sections, we have explored the various existing models of biofeedback: biomedical, psychological, neuroscience and bioengineering perspectives. We could argue in favor of any of these four perspectives, as each one answers a set of critical questions.

However, we believe that a blended model would best describe the mechanisms of biofeedback and produce useful experimental paradigms. This model should represent the perspective of biofeedback itself and bridge the gaps among the aforementioned four disciplines. From a biofeedback perspective, the brain is regulating its own control over biosignals, thereby building itself anew. We have therefore coined the term "psychoengineering" to define our perspective and will attempt to develop such a model in this section.

Bridging the disciplinary gaps

First, we recapitulate the key points of the above-mentioned four models in the table below (Table 1). As we can see, there is no direct mapping between the applied models (biomedicine and engineering perspectives) and the theoretical models (psychology and neuroscience perspectives) of self-maintenance. We can identify five key properties of an efficient biofeedback system: perceptibility, autonomy, mastery, motivation, and learnability.

Controlling these five variables is necessary for evaluation of a biofeedback prototype.

Perceptibility refers to the potential for the subject to access the perception of the biosignal he/she has to regulate. Autonomy refers to the potential for the subject to regulate the biosignal by himself, without the help of biofeedback, once the training protocol is over.

Mastery refers to the degree of control the subject can exercise over the biosignal. Motivation refers to the reward system of the biofeedback device-the reinforcement signal that will induce learning. Learnability refers both to the conditions for achieving long-term memory formation (e.g., sufficient amount of time and repetitions) and to the possibility of learning itself. 

Conclusion

The learning mechanisms involved in biofeedback should be thoroughly investigated, as the existing literature is largely insufficient to understand biofeedback and explain how it works. We conclude thereafter with five directions that ought to be pursued to better investigate these mechanisms and to improve biofeedback and neurofeedback protocols.

These guidelines are representative of the existing literature and should not be seen as established laws but rather as future research directions. They can be used to design a good practice guide for biofeedback and neurofeedback-a tool that is of critical importance to the clinical evaluation of these interventions [START_REF] Micoulaud-Franchi | Electroencephalographic neurofeedback: Level of evidence in mental and brain disorders and suggestions for good clinical practice[END_REF]. Thanks to these guidelines, we hope future biofeedback studies will reach higher standards.

Note that different standardized psychological scales are mentioned for each property, complicating the investigation of feedback protocols. Performing all these evaluations during online feedback procedures might lead to an increased cognitive load for the subject, which could lead to negative interactions with the feedback protocol. Therefore, developing a general feedback learning experience scale involving the main items of all five properties may provide us with a new and useful direction in biofeedback research. Furthermore, one should distinguish here the research purposes (when one evaluates a feedback procedure) and the clinical purposes (when one uses a feedback procedure for treatment). The evaluation of psychological scales during feedback trials is certainly useful for research purposes; however for the final clinical applications such evaluations could be pointless in many cases.

Investigating and promoting perceptibility

An efficient biofeedback system has to ensure that both the external and internal signals of interest can be perceived with sufficient precision and be effectively organized so that their bit rate will not exceed the user's perception capabilities. One method that might improve perceptibility in explicit models would be to provide multimodal feedbacks [START_REF] Lotte | Flaws in current human training protocols for spontaneous Brain-Computer Interfaces: lessons learned from instructional design[END_REF]: each sensory modality would correspond to a different slave subsystem of working memory. Consequently, a sensory modality not involved in the task should be preferred in the feedback design (see section 3.5 about working memory models).

From a psychological perspective, perceptibility is related to cognitive load, which can be measured using scales such as the NASA TLX [START_REF] Hart | Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research[END_REF] or equivalent standardized measures while the subject performs the feedback learning task. The cognitive load is expected to be anti-correlated with the U-shaped evolution of performance [START_REF] Pauls | U-shaped development: an old but unsolved problem[END_REF][START_REF] Siegler | U-shaped interest in U-shaped development and what it means[END_REF] and should not reach too high a level, or the subject will experience a cognitive overload and a subsequent loss of motivation.

Unfortunately, the issue of cognitive load is often overlooked or ignored in biofeedback Furthermore, one has to ensure that the informative external and internal feedback can be perceived as well. This concerns the validity of the external feedback signal: one must demonstrate that the signal is indeed correlated with biosignal regulation. It also concerns the precision of the feedback signal-a classical modelling problem, this precision is a test error that should be evaluated on an independent test set (not on the database used to develop the feedback model). For instance, in neurofeedback, the appropriate approach is to evaluate precision using the same methods as in brain-computer interface paradigms.

Finally, evaluating internal feedback is an observability issue: without the presence of internal feedback there is nothing to be learned. This evaluation can be achieved using psychophysiological scales measuring perception of the internal biosignal: subjects with a complete infirmity in the trained biosignal regulation would not be good candidates for a neurofeedback procedure (since they will never be able to develop autonomy, as explained in the next section). Instead, they would be limited to using the biofeedback system as a palliative measure-something akin to a wheelchair, which cannot be used to rehabilitate movement in hemiplegic individuals (though still useful to them). Inter-individual differences in the ability to monitor interoceptive signals, to concentrate on one's own internal representations and inhibit external, task-irrelevant, stimulation, should be tracked (Corbetta & Shulman, 2002;Burgess, Dumontheil, & Gilbert, 2007). Measuring these individual profiles in biofeedback subjects could be of use to adapt the protocol to individual needs. For instance, Lazarov et al. reported that individuals with obsessive compulsive disorders may suffer from interoceptive deficits, with deficits in internal signal perception, when exposed to biofeedbacks (Lazarov, Liberman, & Oded, 2010). One could use scales such as Rotter's

Locus of control scale to evaluate whether subjects are internally or externally oriented (Rotter, 1966). Internal state perceptibility might also be promoted by combining biofeedback with mindfulness interventions and strategies (Khazan, 2013).

Investigating and promoting autonomy

From a psychological perspective, autonomy could be promoted following the "guidance hypothesis" [START_REF] Winstein | Reduced frequency of knowledge of results enhances motor skill learning[END_REF][START_REF] Strehl | What learning theories can teach us in designing neurofeedback treatments[END_REF]. Biofeedback aims to be a scaffolding system rather than palliation for a missing internal signal; otherwise, learning furthermore the subject has to progressively gain autonomy by learning to rely on his internal feedback, the final training step being performed with a withheld external feedback. Such procedures will induce generalization, a process whereby the learner control is progressively experienced without feedback (Sherlin, et al., 2011;Strack, 2011).

Predictive validity is necessary to allow transfer from the task-training protocol to real-life positive outcomes. It can be investigated using task performance properties: the socalled "game metrics" used in serious-game designs. These game metrics must be reliable, valid, and cause-specific [START_REF] Graafland | Systematic review of serious games for medical education and surgical skills training[END_REF]. For example, in neurofeedback, predictive validity requires specificity of the feedback signal: is it targeting only the function to be regulated or a confused signal involving the target function together with additional brain systems? The feedback setup is also of interest: is the training related to real-life conditions or to an abstract conditioning protocol that has no meaning for the subject? Virtual reality setups, for example, seek to improve predictive validity by immersing the subject in a realistic task environment.

If the sense of agency is too low, the biofeedback protocol will not trigger intrinsic motivation and could have a negative impact on learning. Sense of agency can be measured using scales such as SOARS [START_REF] Polito | Developing the Sense of Agency Rating Scale (SOARS): an empirical measure of agency disruption in hypnosis[END_REF] or equivalent standardized measures. Other implicit, preverbal, measures such as action-outcome temporal compression or sensory attenuation following voluntary action could also be used to estimate agency (Brown, Adams, Parees, Edwards, & Friston, 2013;Dewey & Knoblich, 2014).

From a neuroscience perspective, monitoring the neural correlates of agency could be attempted by measuring the alpha-band relative power and phase coherence during feedback performance.

Investigating and promoting mastery

Biofeedback systems should provide the user with the possibility to experiment with a progressive experience of control over the regulatory task, promoting the user's sense of fluency. Mastery can be promoted by maintaining a reasonable challenge level, which can be achieved by breaking the treatment down into several sessions of progressive difficulty. In order to respect conditions of linearity and stability, a typical solution is to estimate a psychophysiological curve of subject performance during a calibration phase. This curve estimates both the optimal functioning point and the tolerance to variations around this point.

The curve could then be optimized online while the subject is training with the biofeedback system. Task difficulty could either be regularly recalibrated at the beginning of each session, or controlled in real-time using an adaptive calibration strategy.

A sense of fluency can be measured using scales such as SCS [START_REF] Dong | The development of a sense of control scale[END_REF] or equivalent standardized measures. Task performance (such as biosignal modulation ability) or cognitive load physiological markers (such as galvanic skin response, or CNV in Cz) are objective but indirect indicator of mastery, and should follow a U-shaped evolution [START_REF] Pauls | U-shaped development: an old but unsolved problem[END_REF][START_REF] Siegler | U-shaped interest in U-shaped development and what it means[END_REF][START_REF] Gevensleben | Neurofeedback of slow cortical potentials: neural mechanisms and feasibility of a placebo-controlled design in healthy adults[END_REF] in explicit feedback protocols. Despite U-shape cognitive demand evolution was first reported in 1978 in biofeedback systems (Gatchel, Korman, Weis, Smith, & Clarke, 1978), and is still reported in recent investigations [START_REF] Gevensleben | Neurofeedback of slow cortical potentials: neural mechanisms and feasibility of a placebo-controlled design in healthy adults[END_REF], most studies investigate performances before and after feedback administration, instead of duringand are therefore ignoring this issue. Note however that this U-shaped evolution might not be observed in implicit reward feedback systems, as the subject is not focusing his attention directly onto the feedback. Optimally, the type of feedback (steady-state or transient) should be consistent with the subject's fluency without feedback. Fluent subjects will not be interested in steady-state discrete feedback but rather in transient continuous feedback, whereas subjects with low fluency may find discrete steady-state feedback useful.

From a neuroscience perspective, FRN may be a good neural marker of fluency in feedback learning and can be measured during tasks comparing naive, trained, and control subjects while they receive feedback (sham feedback for control subjects).

Investigating and promoting motivation

Within the five properties of efficient biofeedback systems, motivation is probably the most important research avenue. Most existing biofeedback systems are actually extremely boring: the subject sits in a chair and observes a biosignal correlate over a long period of time.

A biofeedback system should be motivating (targeting extrinsic or intrinsic motivation) to best promote learning.

From a psychological perspective, though it is well-known that human interactions are catalysts of intrinsic motivation [START_REF] Ryff | The Structure of Psychological Well-Being Revisited[END_REF], biofeedback and neurofeedback paradigms are too often based on solitary human-computer interactions, and the "human variable" is seldom mentioned or investigated. Much biofeedback research seems to assume a treatment model, as if biofeedback is a procedure "done to" an individual [START_REF] Yucha | Evidence-based practice in biofeedback and neurofeedback[END_REF]. As was previously stated by Strehl, neurofeedback and biofeedback will always take place within a patient-therapist interaction [START_REF] Strehl | What learning theories can teach us in designing neurofeedback treatments[END_REF]. Furthermore, it should be noted that this human factor can have an effect both on feedback groups and on control groups in controlled studies (possibly biasing outcomes). Interactions with instructors are key motivational variables (Middaugh, et al., 2001;Khazan, 2013) that should be taken into account and evaluated rigorously, for instance using principles taken from instructional design [START_REF] Lotte | Flaws in current human training protocols for spontaneous Brain-Computer Interfaces: lessons learned from instructional design[END_REF].

Finally, from the perspective of OC, the reward percentage (positive feedback), the reward delay and the strategy of reward presentation can also play a key role (Sherlin, et al., 2011). In any case, the subjective experience of motivation should be controlled, for instance using items from standardized flow-state evaluation scales such as the FSSOT [START_REF] Yoshida | The Flow State Scale for Occupational Tasks: Development, Reliability, and Validity[END_REF] or equivalent standardized measures.

From a neuroscience perspective, monitoring the neural correlates of motivation and reinforcement learning would be of great interest. For instance, EEG signatures such as Ne, Pe, FRN, P300, or midline frontal theta power would provide direct insights into biofeedback learning mechanisms.

Investigating and promoting learnability

Learnability introduces a controllability issue: is the subject able to regulate his biosignal-at least slightly-before the biofeedback or neurofeedback protocol starts?

Otherwise, the subject will never be able to learn anything: whatever the precision of the biofeedback, it cannot be used to train nonexistent internal mechanisms. This can be evaluated by determining the subject's fluency without feedback before training begins, which can be measured using scales such as the SCS [START_REF] Dong | The development of a sense of control scale[END_REF].

From a neuroscience perspective, it could also be of great interest to measure a subject's aptitude in brain wave modulation as an indicator of his ability to be trained by neuro or biofeedback. For instance, performance in neurofeedback is usually defined as the ability to up-regulate the targeted neuromarker during feedback training sessions (Escolano, Olivan, Lopez-del-Hoyo, Garcia-Campayo, & Minguez, 2012;Witte, Kober, Ninaus, Neuper, & Wood, 2013;Zoefel, Huster, & Herrmann, 2011;[START_REF] Reichert | Resting-state sensorimotor rhythm (SMR) power predicts the ability to up-regulate SMR in an EEG-instrumental conditioning paradigm[END_REF]Escolano, Aguilar, & Minguez, 2011). The investigation of biomarkers predicting learnability is of great interest for the design and evaluation of efficient bio and neurofeedback, and should be generalized. For instance, Reichert et al. reported a relationship between the controllability of the biosignal (ability to modulate the SMR) and the measurement of an EEG marker (rest signal pre-training value) in SMR neurofeedback [START_REF] Reichert | Resting-state sensorimotor rhythm (SMR) power predicts the ability to up-regulate SMR in an EEG-instrumental conditioning paradigm[END_REF]. . Three low frequency components with small amplitudes can be observed at (250 ms, 2.5 Hz), (160 ms, 6 Hz) and (110 ms, 9 Hz). Another oscillatory burst with a higher amplitude can be observed at (100 ms, 11 Hz). Most of the energy of the VEP is, however, included in a large oscillatory burst centred at (90 ms, 16 Hz), which extends in high frequencies, with visible contributions up to 40 Hz.
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FeedbackFigure 2 . 1 :

 21 Figure 2.1:Essential components of an online BCI. The main elements are as follows: 1) signal acquisition (in gray), including recording, hardware pre-processing and analog to digital conversion; 2) signal processing (in orange), which includes data formatting (usually calibration and filtering), feature extraction and translation (classification) and 3) device output (in green), which can be of different nature and should provide a feedback to the user in real time.

Figure 2 . 2 :

 22 Figure 2.2: Schematic of the components of an offline BCI used to acquire training data for the online version (see Figure 2.1). Data acquisition and signal processing are the same as in the online BCI up to the feature extraction step. Data are acquired on as many training subjects as possible using a task (in blue) designed to elicit brain responses that can be separated by a classifier (in orange). Once enough data have been recorded, the classifier is trained and its parameters will be used for the translation algorithm of the online BCI.

  Figure 2.3:Time-course of the hemodynamic response (HR) as seen using functional magnetic resonance imaging (fMRI). After an initial short dip, the blood flow increases to reach a maximum 4 to 8 s after stimulus onset. This is followed by a negative overshoot below the baseline that can last for 30 s. Image reproduced from[START_REF] Kornak | Spatially Extended fMRI Signal Response to Stimulus in Non-Functionally Relevant Regions of the Human Brain: Preliminary Results[END_REF] under the Creative Commons licence.
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 24 Figure 2.4: Image of the default mode network (DMN) as observed using fMRI. The DMN includes regions in the medial pre-frontal cortex, precuneus, and bilateral parietal cortex. Image of the public domain reproduced from Graner et al. [2013].
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 225 Figure 2.5: Illustration of a functional Near-Infrared Spectroscopy (fNIRS) system that can operate up to 16 sources and 24 detectors all embedded in a helmet. Image reproduced from the Cambridge Research Systems website.
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 226 Figure 2.6: Illustration of an intra-cranial electrocorticographic (ECoG) recording. A grid of electrodes is directly on the surface of the cortex to measure its electric activity. Image reproduced from Van Dellen et al. [2009] under the Creative Commons licence.
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 27 Figure 2.7: Illustration of the layered organization of the cerebral cortex. Neurons are spatially aligned with their axons pointing towards the pial surface. Differences exist between sensory, motor and association cortices, but the structural organization and the six layers remain the same. This spatial alignment brings coherence to the electric fields generated by a neuronal assembly, allowing non-invasive recordings of the average activity using EEG. Image reproduced from the website of Professor A.C. Brown
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 29 Figure 2.9:Example of EEG data recorded in our laboratory using a 16-channels EEG system. Electrodes are displayed from the front to the back and from the left to the right of the head. Data were recorded on a healthy subject with his eyes closed and were filtered between 0.5 Hz and 90 Hz. Oscillations with a frequency of about 10 Hz, called the α rhythm, can be observed on the occipital channels (O1 and O2) with a peak-to-peak amplitude of nearly 160 µV. These oscillations are still visible on the sides of the head up to the central electrodes (C3 and C4) with a lower amplitude as the electrodes get farther from the occipital cortex. In the absence of artefacts and high amplitude activity, such as the α rhythm, the amplitude of EEG signals usually remains below 80 µV peak-to-peak, as can be observed on the frontal channels.
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 2210 Figure 2.10: Illustration of the Brain Products actiCap EEG system with 16 active silver chloride electrodes that have been used for all the experiments presented in this thesis. In addition to those used for recording, two electrodes positioned on the midline are used as the reference and ground (respectively, in blue and black on the picture).
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 2211 Figure 2.11: Illustration of an event-related potential (ERP) showing the P300 (or P3) component between 250 and 500 ms after stimulus onset (t = 0 s). Image reproduced from Wikipedia under the Creative Commons licence.
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 2 Figure 2.13: SSVEP-based BCI interface designed to replace the keyboard of a phone and developed during my Ph.D. Each of the 13 buttons consists of a black and white chequerboard flickering at a unique frequency superimposed with the corresponding command. A user can select a button just by looking at the corresponding pattern. The commands allow the user to dial a phone number, correct it, make a call and pause the interface.
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 214 Figure 2.14:Frequency spectrum of the SSVEPs elicited by a 5 Hz blinking chequerboard. This spectrum was obtained using the fast Fourier transform (FFT) and a Hanning window on a 15 s EEG signal recorded over the occipital cortex while the subject was staring at a single blinking black and white chequerboard. The brain response is a periodic signal with a fundamental frequency of 5 Hz. Because it is not a pure sine wave, its frequency decomposition consists of several peaks at multiples of 5 Hz.
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F8Figure 2 . 15 : 1 1

 21511 Figure2.15: Illustration of some common EEG artefacts displayed on the electrode where they have the strongest amplitude. (a) Eye movements artefact. The subject was asked to move his eyes from left to right. The result is an oscillation, strongly visible on both sides of the frontal lobe (on electrode F7). (b) Eye blinks. These artefacts were unconsciously generated by a subject using a BCI. A quickly rising and high amplitude peak visible on frontal polar electrodes is typical of vertical eye movements (shown on Fp1). (c) Biting artefact. Among muscular artefacts, those involving the jaw muscles are very common and strongly visible. They result in a high-frequency activity on both sides of the skull (shown on F8). (d) Electrode movement. This artefact was voluntarily produced to simulate the movement of an electrode by gently pulling the EEG cap repeatedly from behind. The result is a slow oscillation of the electric field measured in the occipital region (shown on O1), which appears time locked to the movement of the electrode.

Figure 3 . 1 :

 31 Figure 3.1: Illustration of the extraction of a time-locked event (VEP) from background EEG. (a) Five single-trial EEG windows containing the VEP buried in the rest of EEG activity. (b) Averaging of such windows to observe the VEP. From left to right, 5 to 500 time-locked windows were averaged. Note that the scale of the y-axis changes from (a) to (b).

Figure 3 . 2 :

 32 Figure 3.2: Resolution of the DFT. Each area on the time-frequency map corresponds to one point obtained using FFT. Temporal resolution is low (only one point in the temporal domain), and frequency resolution is constant at all frequencies, equal to the inverse of the length of the signal (i.e. five points per Hertz for a signal of five seconds). Three sine waves of the base used for decomposition are shown on the right of the figure.
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 33 Figure 3.3: Resolution of the windowed Fourier transform. Each area on the time-frequency map corresponds to one point obtained using windowed FFT. Compared with standard FFT (Figure 3.2), the consequence of cutting signals into windows before frequency decomposition is a reduction of the frequency resolution proportional to the increase in temporal resolution. Three sine waves of the base used for decomposition are shown on the right of the figure.

Figure 3 . 4 :

 34 Figure 3.4: Resolution of the wavelet transform. Each area on the time-frequency map corresponds to one point obtained using the wavelet transform. Estimation of low frequencies uses wavelets with a long support, resulting in low temporal resolution, whereas estimation of high frequencies uses short wavelets, allowing for a better temporal resolution. Three versions of a real Morlet wavelet at different scales are shown on the right of the figure.
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 35 Figure 3.5: Illustration of different Morlet wavelets. (a), (b) and (c) represent the real part of three Morlet wavelets with different parameters. (a) and (b) share the same central frequency, but (a) has a larger bandwidth (resulting in a better frequency resolution but a lower temporal resolution). (b) and (c) share the same bandwith (same shape of the Gaussian) but have a different central frequency. (d) shows both the real part (in blue) and imaginary part (in red) of the wavelet presented in (a). (e) is a 3-dimensional illustration of the same complex wavelet as in (d). In MATLAB, these wavelets correspond to 'cmor10-1' (a, d, e), 'cmor1-1' (b) and 'cmor1-2' (c).
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 41 Figure 4.1: D. E.Broadbent's filter model of attention (1958). First, the physical properties of all stimuli coming from the sensory organs are extracted. Then, a filter selects which input reaches working memory based on these low-level properties. Once in working memory (WM), a stimulus can be semantically analysed and either discarded, stored in long-term memory or acted upon.
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 42 Figure 4.2: A. Treisman's attenuation model of attention(1964). Incoming stimuli are first discriminated against based on their physical properties. Then, the remaining stimuli are analysed semantically, and only the stimulus with the maximum weight reaches working memory.
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 43 Figure 4.3: Deutsch and Deutsch's late selection model of attention(1963). All stimuli coming from the sensory organs are fully processed, and a selection occurs based on the importance of the stimuli to the body. This model implies a high amount of information processing both to extract the properties of all incoming messages and determine their pertinence.

Figure 4 . 4 :

 44 Figure 4.4: Kahneman's capacity model of attention(1973). In this model, attention is described as a resource that has to be shared between the different possible activities that require a mental effort. The way this resource is allocated depends on long-lasting dispositions (e.g., novelty gets more resources), momentary intentions (equivalent to voluntary attention) and top-down feedback on how many resources should be allocated to a particular ongoing activity. A key point of the capacity model is that the available resources at a given time are dependent on arousal, which can be influenced by emotions, or dynamically enhanced by a top-down control.

Figure 4 . 5 :

 45 Figure 4.5: Knudsen's fundamental components of attention(2007) include salience filters that take care of bottom-up evaluation of the relevance of available inputs; a competitive selection function that select the neural representations that enter working memory; working memory itself, which holds the objects of attention for high-level cognitive processing; and a sensitivity control module, which can alter the weights given by bottom-up salience filters based on topdown control signals. These control signals can also reach the sensory organs directly, thereby inhibiting or enhancing inputs by modifying the way they will be received through the bottomup pathway.
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 46 Figure 4.6: Integrative model of attention and executive control. Large arrows represent the flow of information coming from either the sensory organs or the background brain processing. Plain and dashed black arrows represent executive control and internal feedback, respectively.Background colours indicate the subsystems of attention: green for executive control, blue for alerting and red for orienting. The core elements of this model are working memory and the competitive allocation process. They define the role of the whole system: to select relevant inputs among both internal and external percepts and bring them to working memory, where high-level processing can occur. Irrelevant inputs are discarded during the process. Both selection and rejection of percepts use attentional resources, which are limited by the current level of arousal (shown in yellow).
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 47 Figure 4.7: Activation maps obtained using fMRI during N-back tasks showing regions consistently activated across studies of working memory. The right side of each map represents the right side of the brain, and the z-coordinates are given in the Talairach space. Regions activated include lateral and medial premotor cortices, lateral and medial posterior parietal cortices, dorsolateral and ventrolateral prefrontal cortices and frontal poles. Illustration reproduced from Owen et al. [2005].
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 48 Figure 4.8: Saggital view of a monkey brain showing the LC and its efferent projections throughout the central nervous system. The LC, located in the pons, is an important centre for the regulation of arousal. Its projections reach most areas of the brain. Illustration reproduced from Aston-Jones and Cohen [2005].
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 49 Figure 4.9: The dorsal and ventral orienting networks of attention. The dorsal network (in green) consists of the FEFs, the intraparietal sulcus (IPS) and the superior parietal lobe. The ventral network (in blue) consists of the TPJ and the VFC. Illustration reproduced from Petersen and Posner [2012].
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 410 Figure 4.10: Networks of the executive control system of attention.The cingulo-opercular system (in black) consists of the thalamus, the dorsal anterior cingulate cortex (dACC), the anterior insula and frontal operculum (aI/fO) and the anterior prefrontal cortex (aPFC). It is responsible for the maintenace of task parameters. The frontoparietal system (in yellow) contains the dorsal frontal cortex (dFC), the dorsolateral prefrontal cortex (dlPFC), the precuneus, the IPS and the inferior parietal lobe (IPL). It is responsible for moment-to-moment task management. Illustration reproduced from[START_REF] Petersen | The attention system of the human brain: 20 years after[END_REF].

Figure 4 . 11 :

 411 Figure 4.11: Several views of the DMN, observed using fMRI. Statistically significant activation clusters include the OFC (1), the medial PFC (2), the ACC (3), the lateral temporal cortex (4), the IPL (5), the posterior cingulate and retrosplenial cortices (6) and the hippocampus(7). Illustration reproduced fromRaichle [2015].

Figure 4 . 12 :

 412 Figure 4.12: Amplification of SSVEPs by covert spatial attention. A: experimental setup; participants of the experiment gaze at a central fixation cross and are asked to attend one of two competing stimuli flickering at two different frequencies (8.6 Hz and 12 Hz); B: EEG signals recorded over the right visual cortex and notch-filtered at the stimulation frequencies; C: spectral decomposition of the signals. Covert attention directed at one stimulus increases the amplitude of the corresponding brain response. Illustration reproduced from Morgan et al. [1996].
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 4 Figure 4.13: Illustration of the possible effects of selective attention on brain responses. A: attention has no effect. B: attention increases the brain activity associated with the attended stimulus (excitatory effect). C: attention decreases the activity of the ignored stimulus (inhibitory effect). D: attention has both an excitatory and inhibitory effect.

Figure 4 .

 4 Figure 4.14: Time-frequency map of the transition between mind wandering and sustained attention to breathing, observed using EEG at position Oz (central occipital cortex). Frequency bands definitions are the following: 2-3.5 Hz (δ), 4-7 Hz (θ), 9-11 Hz (α) and 15-30 Hz (β). Dotted frames indicate areas of statistically significant differences between the two conditions. Illustration reproduced from Braboszcz and Delorme [2011].
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 415943 Figure 4.15: Attentional modulation of a neuron contrast-response function. The black and grey curves respectively represent the contrast-response functions of a hypothetical neuron of the visual cortex when attention is directed towards or away from its receptive field. The dotted and dashed lines represent the change of firing rate due to attention either in absolute rate or in percentage. Illustration reproduced from Reynolds et al. [2000].
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 5152 Figure 5.1: Electrode placement for VEP and SSVEP recordings. Brain activity was recorded using 16 active electrodes (in green), located all over the scalp with a focus on the parietal and occipital regions which cover the visual cortex.

CHAPTER 5 .Figure 5 . 3 :

 553 Figure 5.3: Illustration of the wavelets used for VEP analysis. In MATLAB, (a) corresponds to 'cmor1-1' and (b) to 'cmor1-3'. The blue and red lines represent the real and imaginary parts of the wavelets respectively.
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 54 Figure 5.4: Simulation of SSVEPs using transient VEPs. (a) Principle of the simulation. In order to generate a SSVEP signal at a given frequency f (here, 12 Hz), VEPs are concatenated in the time domain with a delay between two consecutive VEPs equal to the period of the stimulation (1/f ). (d) Result of the simulation procedure at 12 Hz in the time domain. (b), (c), (e) SSVEPs simulated at other frequencies(2 Hz, 6 Hz and 20 Hz) 

Figure 5 .Figure 5 . 5 :Figure 5 . 6 :

 55556 Figure 5.6 illustrates two ideas. First, it shows an example of the inter-subject variability that can be found in the brain response to the same visual stimulation. More importantly, this figure illustrates the fact that individual VEPs obtained on one sub-

Figure 5 . 7 :

 57 Figure 5.7: Comparison of experimental and simulated SSVEPs in the frequency domain for different stimulation frequencies(3 Hz, 8 Hz, 15 Hz and 20 Hz). Each plot shows the average FFT power spectrum of signals recorded over the occipital cortex during flickering stimulation (blue lines), the FFT spectrum of simulated trains of VEPs for the same stimulation frequency (red circles) and the amplitudes obtained after correction of the simulation results as described in section5.3.8 (black stars). All plots are averaged on all subjects. Note that since the simulation generates perfectly periodic signals, the FFT of such signals is equal to zero at all points that are not harmonics of the repetition frequency.

Figure 5 .

 5 Figure 5.7 shows the results of the simulation process at different frequencies, with and without the correction described in section 5.3.8. These results are averaged over all subjects and take into account the magnitude of the Fourier transform only. Without correction, quantitative prediction is very accurate at low frequency (3 Hz is shown on the figure), but the accuracy of the simulation decreases when the frequency increases. Correction of the simulated amplitudes above 10 Hz gives good results at 15 and 20 Hz.
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 58 Figure 5.8: Accuracy of SSVEPs simulations in the frequency domain. (a) and (b)show the distance between the experimental and simulated SSVEPs spectra, computed using equation 5.3, respectively with and without correction to the simulated amplitudes (as described in section5.3.8). Each dot represents one subject at a given frequency. Dots of the same color pertain to the same subject. The red dashed lines represent the average distance between experimental and simulated SSVEPs at a given frequency.
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 59510 Figure 5.9: Comparison of experimental and simulated occipital SSVEPs in the time domain for the subject showing the strongest correlations (subject 4). Single waveforms of experimental SSVEPs (in blue) were obtained by averaging EEG time windows with a length equal to the period of SSVEPs (more details in Table5.2). Simulated SSVEPs (in red) were shifted horizontally to match the position of maximum cross-correlation between the signals.
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 511 Figure 5.11: Illustration of the correlation between a 2 Hz train of VEPs and a 16 Hz sine wave.Because the shape of the main oscillation of the VEP is very similar to a 16 Hz sine wave, repetitions of VEPs will have a strong correlation with any sine wave whose frequency is both a multiple of the repetition frequency and close to 16 Hz.)
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 661 Figure 6.1 shows the classification accuracies obtained with a single set of 20 features (one per stimulation frequency). A set contains either the spectral amplitudes or SBRs at a given harmonic of each stimulation frequency, or the maximum of the cross-correlation

Figure 6 .

 6 Figure 6.2 shows the classification accuracies obtained when increasing the number of harmonics taken into account simultaneously by the classifier.Figure 6.2 (a) and (b)compare the results obtained using cross-correlation coefficients and those obtained using respectively FFT amplitudes and SBR at the stimulation frequencies and their harmonics. Only the accuracies obtained with the leave-one-subject-out method are
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 62 Figure 6.2 shows the classification accuracies obtained when increasing the number of harmonics taken into account simultaneously by the classifier.Figure 6.2 (a) and (b)compare the results obtained using cross-correlation coefficients and those obtained using respectively FFT amplitudes and SBR at the stimulation frequencies and their harmonics. Only the accuracies obtained with the leave-one-subject-out method are
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 63 Figure 6.3: Calibration of SSVEP detection using VEP spatial distribution. (a) Classification accuracy obtained with a leave-one-subject-out validation method, using cross-correlation coefficients taken from either EEG channel Oz (in black), the best component obtained through JD of the average VEP (signal) and the unaveraged VEP signal (noise) (in blue), the best JD component using rest data as noise (in red), the PCA component explaining most of the average VEP variance (in green). (b) Example of average VEP corresponding to the four aforementioned conditions (same colours). (c) Example of spatial distributions corresponding to the VEPs shown in (b). The plots represent the scalp, with the nose located at the top of each map. The black dots represent the positions of the electrodes. The color scale ranges from blue (negative contribution) to red (positive contribution).
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 71 Figure 7.1: Illustration of the CPT interface. The subject of the experiment tries to keep a randomly moving cursor inside the target circle using a joystick. The difficulty of the task can be adjusted by changing the speed of the cursor.



  Abstract-Steady-state visual evoked potentials (SSVEPs) are widely used in the design of brain-computer interfaces (BCIs). A lot of effort has therefore been devoted to find a fast and reliable way to detect SSVEPs. We study the link between transient and steady-state VEPs and show that it is possible to predict the spectral content of a subject's SSVEPs by simulating trains of transient VEPs. This could lead to a better understanding of evoked potentials as well as to better performances of SSVEP-based BCIs, by providing a tool to improve SSVEP detection algorithms.

  A. Gaume, F. Vialatte and G. Dreyfus are with the SIGMA Laboratory, ESPCI ParisTech; 10, rue Vauquelin, 75005 Paris, France (phone: +331 40 79 45 41; fax: +331 40 79 45 53; email: antoine.gaume@espci.fr).A. Gaume is with the UPMC Univ. Paris 06, IFD; 4, Place Jussieu, 75005 Paris, France.

 1

 1 min resting state with eyes open  1 min resting state with eyes closed  5 sequences of 30 s of VEP recording (2 Hz)  20 sequences of SSVEP recording of 15 s each  20 sequences of SSVEP recording of 15 s each  20 sequences of SSVEP recording of 15 s each  1 min resting state with eyes open  1 min resting state with eyes closed  5 sequences of 30s of VEP recording (2Hz)

Figure 1 .

 1 Figure 1. Simulation of SSVEPs using transient VEPs. (a) Principles of the simulation: in order to generate a SSVEP signal at a given frequency f, VEPs are concatenated in the time domain with a delay between two consecutive VEPs equal to the period of the stimulation (1/f). (b) Result of the simulation procedure at 12 Hz in the time domain. (c), (d), (e) SSVEPs simulated at other frequencies (2 Hz, 6 Hz and 20 Hz)

Figure 2 .

 2 Figure 2. Average VEP and SSVEPs on all subjects. (a) VEP obtained in the occipital region (electrodes O1, Oz and O2) by averaging VEPs obtained on all subjects. Dashed lines: VEP ± standard deviation. Main components are N65 (negative at 65ms), P90 (positive at 90ms) and N180 (negative at 180ms). (b) Magnitude of the wavelet transform of the average VEP obtained using 3 oscillations wavelets described in [II. G.] (c) Average spectrum obtained by FFT of the brain response to a 2 Hz flickering stimulation in the occipital region. The sharp peaks observed at regular intervals correspond to the harmonics of the stimulation frequency.

Fig. 4

 4 shows the results of the simulation process at different frequencies, with and without the correction described in [II. H.]. These results are averaged on all subjects. Without correction, quantitative prediction seems very accurate at low frequency (3 Hz is shown on the figure), and the accuracy of the simulation decreases when the frequency increases. Correction of the simulated amplitudes above 10 Hz gives good results at 15 and 20 Hz.

Figure 4 .

 4 Figure 4. Results of the spectral simulation at different frequencies(3 Hz, 8 Hz, 15 Hz, 20 Hz). Each plot shows the FFT spectrum obtained experimentally during flickering stimulation (blue line), the expected amplitudes obtained by FFT of simulated trains of VEPs (red circles) and the expected amplitudes obtained using the corrected simulation (black stars) (see[II. H.]). Note that since the simulation generates signals that are perfectly periodic, the FFT of such signals is equal to zero at every points that are not harmonics of the repetition frequency.

Figure 3 .

 3 Figure 3. Illustration of the inter-subject variability. (a) Average VEP, wavelet transform and SSVEPs at 2 Hz and 3 Hz stimulation frequencies for subject 4 in the occipital region. Wavelet transform uses the 11 oscillations wavelet described in [II. G.] in order to increase frequency resolution (at the cost of time resolution). (b) Same as (a) for subject 6. FFTs are scaled for each subject to maximize readability but time-frequency maps have the same color axis (low amplitude = blue, high amplitude = red) and can be compared quantitatively.

Figure 5 .

 5 Figure 5. Accuracy of the simulation. (a) and (b) show the distance between the experimental and simulated SSVEP spectra, computed as described in [III. B.], using the simple simulation (a) and the corrected simulation (b). Each dot represents one subject at a given frequency. Dots of the same color pertain to the same subject. The red dashed line represents the average distance between experiment and simulation at a given frequency.
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 6 Figure 6. Illustration of why the shape of the VEP explains the strength of the 16 Hz harmonic in SSVEPs generated by a 2Hz flickering stimulation.
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 1

 1 min resting state with eyes open  1 min resting state with eyes closed  5 sequences of 30 s of VEP recording (2 Hz)  20 sequences of SSVEP recording of 15 s each  20 sequences of SSVEP recording of 15 s each  20 sequences of SSVEP recording of 15 s each  1 min resting state with eyes open  1 min resting state with eyes closed  5 sequences of 30s of VEP recording (2Hz)

  Fig. 1 illustrates the principle of this simulation and shows examples of SSVEPs simulated at different frequencies.

Figure 1 .

 1 Figure 1. Simulation of SSVEPs using transient VEPs. (a) Principles of the simulation: in order to generate a SSVEP signal at a given frequency f, VEPs are concatenated in the time domain with a delay between two consecutive VEPs equal to the period of the stimulation (1/f). (b) Result of the simulation procedure at 12 Hz presented in (a) in the time domain. (c), (d), (e) SSVEPs simulated at other frequencies (2 Hz, 6 Hz and 20 Hz)

Figure 2 .

 2 Figure 2. Classification accuracy with a single set of features. (a) Using the leave 1% out learning approach. (b) Using the leave one subject out learning approach. Black lines: accuracy using correlation scores with simulated trains of VEPs. Red lines: accuracy using the FFT amplitudes taken at the stimulation frequency (1 f) and its harmonics (2 f, 3 f…). Blue lines: same as red but using FFT signal-to-background ratio.

Figure 3 .

 3 Figure 3. Classification accuracy using multiple harmonics. (a) Results with FFT amplitudes. (b) Results with FFT signal-to-background ratio. Black lines: accuracy using correlation features (20 features). Colored dashed lines: accuracy using multiple harmonics (total number of features is 20 * number of harmonics).

  A. Gaume and F.-B. Vialatte are with the Brain Plasticity Unit, CNRS UMR 8249, ESPCI ParisTech, PSL Research University; Paris, France (contact: antoine.gaume@espci.fr).
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 1 Figure 1. Illustration of the CPT interface

Figure 2 .

 2 Figure 2. Single feature classification results for the four different classifiers using features extracted from 10s epochs. Sensitivities and specificities are obtained using a threshold of 0.5. The five features giving the best accuracies are listed for each classifier. Accuracies obtained using absolute EEG power for each frequency band and each channel are presented as topographic maps (frontal electrodes are located at the top).
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 1 Fig. 1. Biomedical model of biofeedback.

Fig. 2 .

 2 Fig. 2. The SORC model (Goldfried & Sprafkin, 1976), a behavioral model inspired

Fig. 4 .

 4 Fig. 4. Four-component biofeedback flow chart. The subject has access to two internal

Fig. 5 .

 5 Fig. 5. Integrative model of attention and executive control. Large arrows represent the

  . When the ACC detects suboptimal strategies, a model-based RL mechanism would be triggered in order to create a new actor. Once a new efficient actor is learned, model-free RL progressively dominates with time. Model-free RL and model-based RL form two cooperative systems with model-free RL driving online behavior and modelbased RL working offline in the background to continuously adjust model-free RL (Sutton &

Fig. 7 .

 7 Fig. 7. Basic control theory model. Block diagrams are graphical representations of

Fig. 8 .

 8 Fig. 8. Explicit model of biofeedback and neurofeedback. The feedback is subdivided

Fig. 9 .

 9 Fig. 9. Implicit model of biofeedback and neurofeedback. The feedback signal is not

  studies. For instance, inAngelakis et al., 2007, the same neurofeedback is presented both in auditory and visual modalities(Angelakis, Stathopoulou, Frymiare, Green, Lubar, & Kounios, 2007) without any discussion about the impact on cognitive load of this strategy. In Keizer et al., 2010, an auditory neurofeedback rate is bounded to a maximum of 1 feedback per second(Keizer, Verschoor, Verment, & Hommel, 2010). The amount of information a given subject can process during 1 sec is limited, this limit has an interaction with the extraneous load of this task. In Kober et al. 2015, an SMR neurofeedback uses 3 bars, the subject having to modulate both SMR, alpha range and theta range (Kober, Witte, Stangl, Väljamäe,[START_REF] Reichert | Resting-state sensorimotor rhythm (SMR) power predicts the ability to up-regulate SMR in an EEG-instrumental conditioning paradigm[END_REF]. As the theta and beta range bars were used to prevent muscle contraction and eye blinks, they could have been replaced by an auditory feedback, and thereby the cognitive load could have been decreased. In Penzlin et al. 2015, a visual feedback is presented to indicate heart rate variability, while another visual cue is presented to indicate breath-pacing(Penzlin, Siepmann, Illigens, Weidner, & Siepmann, 2015). The breath pacing cue could have been auditory, likely reducing the cognitive load.

  cannot occur. The biofeedback signal should help the subject identify his own internal signals and become progressively more independent of the external feedback, promoting the user's sense of agency. The biofeedback protocol should be as close to reality as possible (high predictive validity, with feedback progressively withheld to promote memorization and intrinsic motivation; see sections3 and 3.5.3). For instance, in O'Connell et al. 2008, a protocol promoting autonomy in an explicit biofeedback setting is presented (O'Connell, Bellgrove,Dockree, Lau, Fitzgerald, & Robertson, 2008): volitional control is promoted by allowing the subject to progressively initiate the biofeedback task, instead of externally cued;

ForFigure C. 2 :Figure C. 3 :

 23 Figure C.2: Magnified time-frequency representation of the average occipital VEP observed on subject 4. Four main oscillatory bursts can be observed, centred at (180 ms, 6 Hz), (105 ms, 9 Hz), (95 ms, 12.5 Hz) and (100 ms, 20 Hz). A weak component may be distinguished at (100 ms, 36 Hz).

  

  

  

  

  

  

  

  

  

  

  

  

Table 4 . 1 :

 41 .1. Attention can, therefore, have a different neurophysiological effect depending on the difficulty of the task. Activity (i.e. spiking rate) observed in the visual cortex after presentation of a stimulus, depending on contrast and attention to the stimulus.

	Stimulus contrast Activity (unattended) Activity (attended) Attention effect
	low	weak	weak	none
	average	weak	strong	amplification
	high	strong	strong	none

  .23 0.21 0.19 0.39 0.19 0.23 0.19 0.16 0.24 0.24 All VEPs 0.20 0.19 0.18 0.31 0.16 0.22 0.18 0.15 0.21 0.21

										POTENTIALS
	Subject	1	2	3	4	5	6	7	8	9	10
	Own VEP 0Table										

Table 5 .

 5 2). Simulated SSVEPs (in red) were shifted horizontally to match the position of maximum cross-correlation between the signals.

	CHAPTER 5. MODELLING OF STEADY-STATE ACTIVITY FROM TRANSIENT	
	POTENTIALS										
	Frequency (Hz)	1	1.5	2	2.5	3	4	5	6	7.06	8
	Period (ms)	1000 667 500	400	333	250	200 167	142	125
	# of windows	45	69	90	114	135	180	225 270	318	360
	Frequency (Hz) 9.23	10	12	13.33	15	17.14 20	24	30	40
	Period (ms)	108 100 83.3	75	66.7 58.3	50	41.7 33.3	25
	# of windows	417 450 540	600	675	774	900 1080 1350 1800

Table 5 .2:

 5 

.0 76.3 80.3 83.6 87.2 88.7 91.7 92.5

  

	Epoch Length (s)	1	1.5	2	2.5	3	4	5	6	8	10 12.5 15
	Own VEP (%) 46.8 55.6 62.0 66.0 70Best VEP (%) 47.9 56.1 62.8 66.6 69.9 76.2 80.2 83.4 86.2 88.0 91.3 91.7
	Average for												
	all VEPs	46.4 54.3 60.9 64.7 68.1 73.8 77.7 81.1 83.7 86.1 89.1 90.1
	(%)												
	Best	VEP	VEP	VEP	VEP	Own	Own	Own	Own	Own	Own	Own	Own
	feature	5	5	5	5	VEP	VEP	VEP	VEP	VEP	VEP	VEP	VEP
	# of VEPs												
	better than	4	1	2	1	0	0	0	0	0	0	0	0
	own												

Table 6 .

 6 

1: Classification results obtained when using different VEPs to simulate SSVEPs. Own VEP: classification accuracy obtained using cross-correlation coefficients based on the SSVEPs simulated from each subject's own VEP. Best VEP: best classification accuracy obtained using a single VEP to simulate the SSVEPs for all subjects. Average for all VEPs: average classification accuracy obtained using each VEP to simulate SSVEPs for all subjects. Best feature: VEP leading to the best classification results. "VEP N" corresponds to the VEP recorded from subject N.

Table 7 . 1 :

 71 Best accuracies using a single spectral power feature for different epoch lengths and for the four classification scenarios described in section 7.2.9.

	Epochs	3-class	"Easy" vs.	"Easy" vs.	"Medium" vs.
	duration	classifier	"medium"	"hard"	"hard"
	1s	0.405	0.601	0.608	0.545
	3s	0.422	0.627	0.631	0.558
	5s	0.428	0.643	0.650	0.571
	10s	0.440	0.655	0.658	0.582
	30s	0.462	0.688	0.664	0.602

Table

  

			Theta Power (CP2)			0.440	
		Absolute Theta Power (Fp1)			0.438	
		Relative Theta Power (CP1)			0.437	
		Absolute Delta Power (Fp1)			0.428	
		Absolute Delta Power (Fp2)			0.424	
								0.438
	δ	θ	α	β-	β+	γ-	γ+	0.308

A -"Easy" vs. "Medium" LOSO Classification

  

		Best features		Accuracy		Sensitivity Specificity	AUC
	Absolute Theta Power (Fp1)	0.655		0.696	0.620	0.695
	Absolute Delta Power (Fp1)	0.654		0.675	0.640	0.685
	Relative Theta Power (C3)	0.649		0.658	0.646	0.681
	Relative Theta Power (CP2)	0.648		0.688	0.620	0.686
	Relative Theta Power (CP1)	0.646		0.629	0.680	0.693
								0.655
	δ	θ	α	β-	β+	γ-	γ+	0.438
		Best features		Accuracy		Sensitivity Specificity	AUC
	Absolute Theta Power (Fp1)	0.658		0.699	0.624	0.702
	Absolute Theta Power (Fp2)	0.643		0.631	0.689	0.695
	Absolute Delta Power (Fp1)	0.640		0.635	0.670	0.676
	Absolute Delta Power (Fp2)	0.620		0.643	0.631	0.633
	Relative Low Gamma Power (O2)	0.611		0.718	0.537	0.618
								0.658
	δ	θ	α	β-	β+	γ-	γ+	0.461
		Best features		Accuracy		Sensitivity Specificity	AUC
	Relative Theta Power (P4)	0.582		0.604	0.571	0.599
	Relative Theta Power (CP2)	0.581		0.617	0.560	0.589
	Relative Theta Power (O2)	0.573		0.568	0.585	0.582
	Relative Theta Power (CP6)	0.570		0.519	0.645	0.582
	Relative Theta Power (CP1)	0.564		0.505	0.642	0.578
								0.559
	δ	θ	α	β-	β+	γ-	γ+	0.460

B -"Easy" vs. "Hard" LOSO Classification C -"Medium" vs. "Hard" LOSO Classification

Table

  

Table 7 . 4 :

 74 2.8. Classification results using multiple features for three-class classification (left) and "easy" vs. "medium" classification (right). Accuracies are given for different epoch lengths as a function of the number of features used by the classifier. The best ten features selected by OFR on 10s epochs are listed for both classifiers.

		"Easy" vs. "Medium" vs. "Hard"			"Easy" vs. "Medium"
		1s	3s	5s	10s	30s	1s	3s	5s	10s	30s
		1					1			
		0.9					0.9			
	Accuracy	0.5 0.6 0.7 0.8				Accuracy	0.5 0.6 0.7 0.8			
		0.4					0.4			
		0.3	0	10	20	30	0.3	0	10	20	30
				Number of features				Number of features
		Selected features (in order)		Selected features (in order)
		Absolute Theta Power (Fp1)		Relative Theta Power (CP1)
		Relative High Gamma Power (P3)		Absolute Low Beta Power (Fp1)
		Relative High Beta Power (C3)		Relative High Gamma Power (CP1)
		Absolute Low Beta Power (Fp2)		Relative Low Gamma Power (F4)
		Relative Theta Power (F4)		Relative Theta Power (C4)
		Relative Alpha Power (CP2)		Relative High Beta Power (C3)
		Absolute High Gamma Power (CP1)	Relative Theta Power (O1)
		Absolute High Beta Power (C3)		Relative Alpha Power (CP2)
		Absolute Alpha Power (F4)		Relative Delta Power (CP5)
		Relative Theta Power (O2)		Relative High Gamma Power (F4)

Table 7 . 5 :

 75 Classification results using multiple features for "easy" vs. "hard" classification (left) and "medium" vs. "hard" classification (right). Accuracies are given for different epoch lengths as a function of the number of features used by the classifier. The best ten features selected by OFR on 10s epochs are listed for both classifiers.

.0 76.3 80.3 83.6 87.2 88.7 91.7 92.5

  

						Epoch Length (s)				
		1 1.5 2 2.5 3	4	5	6	8	10 12.5 15
	Own VEP (%) 46.8 55.6 62.0 66.0 70Best VEP (%) 47.9 56.1 62.8 66.6 69.9 76.2 80.2 83.4 86.2 88.0 91.3 91.7
	Average												
	for all	46.4 54.3 60.9 64.7 68.1 73.8 77.7 81.1 83.7 86.1 89.1 90.1
	VEPs (%)												
	Best	VEP	VEP	VEP	VEP	Own	Own	Own	Own	Own	Own	Own	Own
	feature	5	5	5	5	VEP	VEP	VEP	VEP	VEP	VEP	VEP	VEP
	# of VEPs												
	better	4	1	2	1	0	0	0	0	0	0	0	0
	than own												

Table 1 .

 1 Classification results obtained when using different VEPs to simulate SSVEPs.

	Own VEP: classification accuracy obtained using
	correlation coefficients with the signals simulated from a subject's own
	VEP. Best VEP: best classification accuracy obtained using a single VEP
	to classify all subjects. Average for all VEPs: average classification
	accuracy obtained using each VEP to classify the dataset. Best feature:
	VEP giving the best classification results. # of VEPs better than own:
	number of VEPs giving better results when used for all subjects than using
	his own VEP for each subject.

Table 1 .

 1 Best accuracies using a single feature for different epoch lengths.

	"

A -"Easy" vs. "Medium" vs. "Hard" LOSO Classification Best Features Accuracy

  

	Relative Theta Power (CP2)	0.440
	Relative Theta Power (CP1)	0.439
	Absolute Theta Power (Fp1)	0.438
	Absolute Delta Power (Fp1)	0.428
	Relative Theta Power (C4)	0.426
	B -"	

Easy" vs. "Medium" LOSO Classification Best Features Accuracy Sensitivity Specificity AUC

  

	Absolute Theta Power (Fp1)	0.655	0.705	0.606	0.695
	Absolute Delta Power (Fp1)	0.654	0.693	0.615	0.685
	Relative Theta Power (CP2)	0.653	0.671	0.635	0.692
	Relative Theta Power (C3)	0.652	0.676	0.627	0.684
	Relative Theta Power (CP1)	0.648	0.660	0.636	0.696
	C -"				

Easy" vs. "Hard" LOSO Classification Best Features Accuracy Sensitivity Specificity AUC

  

	Absolute Theta Power (Fp1)	0.658	0.704	0.611	0.702
	Absolute Theta Power (Fp2)	0.643	0.681	0.605	0.676
	Absolute Delta Power (Fp1)	0.640	0.690	0.590	0.606
	Absolute Delta Power (Fp2)	0.620	0.723	0.518	0.615
	Relative Gamma Power (O2)	0.613	0.652	0.574	0.621
	D -"				

Medium" vs. "Hard" LOSO Classification Best Features Accuracy Sensitivity Specificity AUC

  

	Relative Theta Power (P4)	0.588	0.576	0.600	0.466
	Relative Gamma Power (F7)	0.583	0.550	0.617	0.488
	Relative Theta Power (CP2)	0.582	0.600	0.604	0.593
	Relative Theta Power (CP6)	0.573	0.567	0.579	0.565
	Relative Theta Power (O2)	0.573	0.568	0.577	0.581

Table 1 : Integrative perspective on biofeedback models, from biomedicine to neuroscience. WM = working memory, LPFC = lateral prefrontal cortex, CCN = cognitive control network.

 1 

	Biomedicine		Engineering	Psychology	Neuroscience	Psychoengineering
	Discrimination		Observability	Cognitive load, WM	LPFC, sensory cortex	Perceptibility
				Agency	Insula, Angular gyrus	Autonomy
	Self	Volitional	Explicit paradigms	Fluency	CCN, Error potentials	Mastery
	maintenance			Extrinsic		
		Autonomous	Implicit paradigms	motivation Operant conditioning	Reward system, Ventral striatum	Motivation
	Biosignal regulation	Controllability	Schemata formation	Neural assembly formation	Learnability

Some companies already sell general use EEG systems, see e.g. http://emotiv.com or http:// neurosky.com.

See for instance[START_REF] Grau | Conscious brain-to-brain communication in humans using non-invasive technologies[END_REF] or[START_REF] Rao | A direct brain-tobrain interface in humans[END_REF] for promising brain-to-brain communication interfaces.

See e.g. http://dreem.com for an example of BCI for the general public aimed at improving the quality of sleep (under development).

https://www.nidcd.nih.gov/health/hearing/pages/coch.aspx

http://www.asc-cybernetics.org/foundations/history/MacySummary.htm

The FILTER MODEL[Broadbent, 1958] introduces the idea of a bottom-up lowlevel filtering of incoming information towards conscious, high-level processing areas of the brain.

2. The LATE SELECTION MODEL[START_REF] Deutsch | Diana: Attention: some theoretical considerations[END_REF]] adds a semantic analysis of incoming stimuli before the selection occurs based on a top-down evaluation of the importance of signals to the

organism.3. The ATTENUATION MODEL[Treisman, 1964] includes the idea of a weighting of the available pieces of information along the filtering process so that all signals are not fully analysed if they are deemed

irrelevant early.4. The CAPACITY MODEL[Kahneman, 1973] describes attention as a limited resource that must be shared between effortful tasks and whose capacity is variable.

http://spritzinc.com/. Our version of the interface is depicted in appendix B.3.

in the occipital region. Wavelet transform uses the 11 oscillations wavelet described in [II. G.] in order to increase frequency resolution (at the cost of time resolution). (b) Same as (a) for subject 6. FFTs are scaled for each subject to maximize readability but time-frequency maps have the same color axis (low amplitude = blue, high amplitude = red) and can be compared quantitatively.
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Chapter 4

Models and Networks of Attention

Contents Summary

The theories described above contain most of the modern concepts of attention modelling:

Appendix A

Papers as first author

A.1 Transient brain activity explains the spectral content of steady-state visual evoked potentials [Gaume et al., 2014b 

A.4 A psychoengineering paradigm for the neurocogni-

tive mechanisms of biofeedback and neurofeedback [START_REF] Gaume | François-Benoît: A psychoengineering paradigm for the neurocognitive mechanisms of biofeedback and neurofeedback[END_REF] 

ABSTRACT

We believe that the missing keystone to design effective and efficient biofeedback and neurofeedback protocols is a comprehensive model of the mechanisms of feedback learning. In this manuscript we review the learning models in behavioral, developmental and cognitive psychology, and derive a synthetic model of the psychological perspective on biofeedback. We afterwards review the neural correlates of feedback learning mechanisms, and present a general neuroscience model of biofeedback. We subsequently show how biomedical engineering principles can be applied to design efficient feedback protocols. We finally present an integrative psychoengineering model of the feedback learning processes, and provide new guidelines for the efficient design of biofeedback and neurofeedback protocols. We identify five key properties, (1) perceptibility = can the subject perceive the biosignal?, (2) autonomy = can the subject regulate by himself?, (3) mastery = degree of control over the biosignal, (4) motivation = rewards system of the biofeedback, and ( 5) learnability = possibility of learning. We conclude with guidelines for the investigation and promotion of these properties in biofeedback protocols. 

Appendix B Visuals of experiments B.1 Stimulations for visual evoked potentials
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