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1.1.1 Renewable energy: wind turbines . . . . . . . . . . . . . . . . . . 9
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1.2 Flows behind rotors . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.1 Wind turbine wakes: the near- and far-wake . . . . . . . . . . . . 11
1.2.2 Experiments and numerical computations . . . . . . . . . . . . . 12

1.3 Helically symmetric vortices and their instabilities . . . . . . . 13
1.4 Goal and personal contributions . . . . . . . . . . . . . . . . . . 15
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

In this chapter, we briefly introduce the general context of the study and focus on the
helical rotor flows.

1.1 Context
The present Ph.D. thesis deals with a fundamental topic in fluid mechanics: the structure,
dynamics and instabilities of concentrated vortices having a helical geometry. Despite
being of fundamental nature, numerous real life applications exist: indeed, any rotating
blade in a fluid (air or liquid) sheds vortices in its wake, their structure having a helical
geometry.

1.1.1 Renewable energy: wind turbines
Among all possible applications, one directly concerns the current economical and political
context of the renewable energies. With our fossil-fuel supplies running lower every day
and the CO2 concentration in the atmosphere increasing, governments and companies
are heavily investing in the development of alternate technologies to exploit the power of
clean and renewable energy sources. Thanks to its potential to produce large quantities
of energy without generating greenhouse gases, the extraction of wind energy with wind
turbines is currently one of the most advanced technology. In history, apart from the
sailing ship, windmills (the ancestor of the wind turbines) are the oldest devices to utilize
the wind energy. The first documented use of wind energy on land dates 200 years B.C.
(Ivanell et al., 2007). According to the American Wind Energy Foundation, « In China,
water was pumped with simple windmills while the first vertical-axis windmills with woven
reed sails were grinding grain in Persia and the Middle East. » While mostly used for food
production for more than one thousand years, the discovery and development of the electric

9



1.1. CONTEXT

Figure 1.1 – Wake of wind turbines revealed by fog (Hasager et al., 2013) on the offshore
wind farm, Horns Rev 1 in the North sea. Turbines within the array can be seen to be
operating in the wake of upstream turbines. (80 wind turbines, 160 MW of production
capacity.)

power during the late 19th century led to a new purpose for wind power: provide electricity
to houses located too far away from the central power plants. This was the motivation
source for the pioneering work of the Danish inventor Poul La Cour who was among the
first to generate electricity from wind power. Since the 20th century, the interest in wind
energy varied according to the oil prices. During the 1973 crisis, the high oil prices had
a decisive impact on the interest for wind power and on the research on wind turbines.
Today, the continuous evolution of the technologies and techniques has led wind turbines
to become the biggest rotating devices on earth. The research in the field has focussed on
the rotor efficiency to convert energy. In order to further improve the production capacity
of wind farms as well as the quality of predictions, fundamental studies on the wake are
found necessary. In particular, the study of instabilities in such helical vortex systems is
a first step towards the prediction of the complex wake dynamics.

1.1.2 Helicopter wakes and VRS

In stationary flight conditions, helicopter wakes are constituted of helical vortices shed
below the rotor towards the helicopter fuselage. A phenomenon, which is well-known to
helicopter manufacturers and pilots, but still poorly understood and even less controlled,
is the transition of this wake to a so-called Vortex Ring State (VRS). It occurs when
the vertical descent speed of the helicopter exceeds a certain limit: the blade tip vortices
accumulate in the rotor plane, leading to a lift crisis and highly unsteady flow, which
can cause a loss of control and a helicopter crash. This phenomenon, which has caused
a number of fatal accidents, sets a forbidden range of descent speeds. Current helicopter
flight rules include a considerable margin, due to a lack of physical understanding of this
transition but helicopter manufacturers and operators wish to reduce this margin. The
goal is to reduce the descent time and the associated acoustic nuisances. Fundamental
mechanisms responsible of the transition thus need to be better understood in order to
elaborate control strategies. A link with rotor wake instabilities has been established by
Bolnot (2012) using a vortex ring analogy. Instabilities in helical vortex systems are thus
pertinent in this context.

10



CHAPTER 1. INTRODUCTION

1.1.3 The ANR project: HELIX

This thesis is part of a project entitled HELIX under the leadership of Thomas Leweke
and funded by the French National Agency for Research (ANR). This project covers the
years 2013− 2016 and involves several laboratories and partners:

• IRPHE, Aix-Marseille Université: Thomas Leweke, Stéphane Le Dizès, Malek Abid,
Mohamed Ali, Umberto Quaranta and Francisco J. Blanco-Rodriguez.
• LIMSI-CNRS: Ivan Delbende
• ∂’Alembert-Université Pierre et Marie Curie: Maurice Rossi.

The aim of the project is to improve our current understanding on the dynamics and
instabilities of helical vortex systems, with relevance to applications involving flows around
rotors. The project is mainly divided into four distinct but complementary tasks:

1. finding numerical (quasi)-steady solutions involving one or several helical vortices
with a central hub vortex. It is performed by the LIMSI and IRPHE teams with two
different approaches: the first computes the idealised configuration of an infinite
and spatially periodic helical flow while the second uses a semi-infinite approach
with the actuator line technique.

2. studying the instability modes of these solutions.
3. running experiments on one- or two-bladed rotor wakes in a water channel and

triggering instabilities by modulating the rotation speed
4. use the above findings to model the dynamics of helical flows encountered in ap-

plications such as helicopter and wind turbines or more generally for flows around
rotors.

The present thesis contributes mainly to the first and second tasks of this project.

1.2 Flows behind rotors

Rotor systems are commonly used in a broad range of applications where a transfer of
energy between a mechanical device and the surrounding flow is needed. Here, the rotor
refers to a set of blades which rotates to generate a flow perpendicular to the rotor plane.
Depending on the application considered, its size, the number of blades and the global
complexity of the design varies. These differences characterize the vast range of operating
regimes that a rotor can perform. The resulting list of applications is thus very rich:
rotor systems are found in wind turbines, helicopters, marine propellers, pumps, vent
systems and some aircrafts. Most of these applications (all except the wind turbines)
rely on rotor systems to entrain a fluid motion by providing rotational kinetic energy to
the latter. Conversely, wind turbines are conceived to extract electrical energy from the
rotor rotations entrained by an incoming wind. In all these applications the rotor system
sheds in its wake large helical vortex structures embedded in a shear layer. The wakes
emanating from rotors are known as rotor wakes and the associated vortex structures are
always considered to be nuisances as they induce noises, increased loads on blades and
stress on the structures. For the past years, the research on the field have been mostly
focused on the power conversion efficiency and the endurance of the rotor devices while
little interest was shown to their wakes.

1.2.1 Wind turbine wakes: the near- and far-wake

In rotor-wake literature, the wake of a wind turbine is divided into two separated regions:
the near- and the far-wake. The near-wake refers to the region directly downstream the
rotor plane (up to, approximately, one rotor diameter) where the flow characteristics are
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(a) (b)

Figure 1.2 – Tip vortex visualisation on (a) the NREL wind turbine at NASA-AMES
(Schreck, 2002) (b) the New-Mexico (Snel et al., 2007).

directly linked to the rotor’s design and its aerodynamic properties. In this region, the
flow field is principally constituted of large-scale and coherent vortical structures. The
far-wake refers to the region beyond the near-wake, where the flow has transitioned and
fully developed into turbulence. The far-wake region results from the convection and
turbulent diffusion of coherent structures and is characterised by a momentum deficit
and increased levels of turbulent intensity. The far-wake dynamics is mostly considered
independent of the near-wake but results from its spatial evolution (Vermeer et al., 2003).
Far-wake analyses are more oriented on wake-structure interactions, wake-atmospheric
boundary layer interactions and mutual influence of multiple wind-turbine wakes when
the turbines are placed in arrays as in wind farms (see figure 1.1). Near-wake studies
focus on the creation, evolution and stability analysis of the coherent vortex structures
emanating from the rotor blades.

1.2.2 Experiments and numerical computations
Helical vortices can be observed for instance in figures 1.2-a and 1.2-b, when revealed by
the smoke released at the tip of the rotor blades. Most of the experimental results exposed
in the literature about the near wake vortices are obtained from small scale experimental
studies performed in controlled environments. The reasons for this are multiple. On one
hand, field experiments with full scale wind turbines provide invaluable data, but due to the
highly chaotic nature of the inflow conditions, clear exposure of the physical phenomena
and analysis of the underlying mechanisms are challenging tasks. On the other hand,
wind tunnel experiments on large-scale rotors would lead to the most relevant results but,
due to the financial cost involved by such projects, only few documented sources exist in
the literature (see Schreck (2002) and Snel et al. (2007) for detailed reviews see Vermeer
et al. (2003) and Nemes (2015)). While restricted to a lower range of Reynolds numbers,
the laboratory experiments provide a simplified but favourable approach that can help to
elucidate the rather complex wake dynamics.
Numerical simulations are an efficient and complementary tool to understand the aerody-
namics of rotor wakes. They are mainly divided into two categories. The numerical studies
can be performed with or without the rotor present in the computational domain. The
former is oriented mostly towards engineering problems such as rotorcraft aerodynamics,
aeromechanic performance or noise reduction. An example of such simulation is presented
in figure 1.3, where a snapshot of a rotor model and its near wake is plotted. The (purple
colored) helical vortices are embedded within a turbulent flow with small scale structures
(green colored). While providing insight into a, as much as possible, realistic flow dynam-
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Figure 1.3 – Navier-Stokes simulation of a V-22 Osprey rotor in hover, using adaptive mesh
refinement (AMR) and a Spalart-Allmaras/detached eddy simulation (DES) turbulence
model. Vortices are rendered with the q-criterion. Magenta indicates high vorticity, blue
indicates low vorticity. Neal Chaderjian, NASA/Ames. This study used 1,536 cores on
NASA’s Pleiades supercomputer

ics, the clear separation of the different physical phenomena remains difficult. With the
rotor model in the computational domain, the computational cost is also increased due
to the requirement that one has to resolve the boundary layer (1,536 cores in 1.3 with a
supercomputer).
To overcome the latter difficulty, several techniques such as the actuator disc method
(Sørensen and Myken, 1992) or the actuator line method (Ivanell et al., 2009) have been
used. These methods represent rotors by equivalent forces distributed on a permeable disc
or on lines in a flow domain. Such methods were applied for the prediction of a single
wind turbine wake but also for the prediction of power extraction by a whole wind farm
(Nilsson et al., 2015).
An additional possibility, although idealised, is to take advantage of an invariance of the
problem. The rotor wakes shown in figures 1.2 and 1.3 all display in the near wake region,
large vortex structures which have, at least locally, a helical symmetry i.e. the structures
are invariant through a combined axial translation and a rotation about the same axis.
This thesis focuses on vortices with imposed helical symmetry. This reduces the fully
three-dimensional problem to a two-dimensional one but still preserves three-dimensional
effects (curvature and torsion). Such an approach necessarily filters out ingredients such
as wake spatial development, fluid-rotor interaction and turbulence. On the contrary it
focuses on the fundamental physical mechanisms (induction and diffusion).

1.3 Helically symmetric vortices and their instabilities

In the literature, theoretical studies used this idealised formulation to derive the dynamics
of helical vortex systems in the inviscid framework: equilibrium states (Hardin, 1982),
(Dritschel, 1991), (Ricca, 1994), (Kuibin and Okulov, 1998), (Wood and Boersma, 2001),
(Fukumoto and Okulov, 2005), (Lucas and Dritschel, 2009) and their instabilities (Widnall,
1972), (Gupta and Loewy, 1974), (Okulov, 2004), (Okulov and Sørensen, 2007), (Hattori
and Fukumoto, 2009), (Hattori and Fukumoto, 2014).
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Among the studies devoted to equilibria, some concern thin-core helical vortices where the
main problem is to remove the singular behaviour of curved filaments to deduce the actual
dynamics (angular velocity, induced velocity). Lucas and Dritschel (2009) by contrast
exhibit a family of helical vortex equilibria with arbitrary core size. Their approach is
based on the helically symmetric Euler equations and consists in finding helical patch
solutions steady in some rotating frame, imposing geometrical constraints on the centroid
location and the vortex core size at fixed pitch. However all these studies pertain to
inviscid flows, and one of the goals of the present work is to investigate and characterise
viscous quasi-equilibrium that is reached by helical vortex systems.
Widnall (1972) first predicted the stability features of helical vortices. She performed the
linear stability analysis of a helical vortex filament with respect to sinusoidal perturba-
tions. She found that the system was subject to three types of unstable mode: a long
wavelength mode, a mutual-inductance mode and a short wavelength mode. This work
was extended by Gupta and Loewy (1974) to several helical vortices forming a regular ar-
ray. He found modes analogous to those obtained for one single vortex and additional ones
arising from the mutual interaction between distinct vortices. It is noteworthy that in the
limit of infinite wavelengths, these latter modes are compatible with the helical symmetry
constraint. Okulov (2004) focused specifically on these helically symmetrical modes in ar-
rays of N vortices with circular cores and constant vorticity. He showed that such systems
are unstable when the helical pitch is smaller than a threshold value. Later, in order to
study the more realistic case of rotor wakes, Okulov and Sørensen (2007) investigated the
effect of a central hub vortex. They found that the stability of such flows strongly depends
on the vorticity profile in the core and that the central hub has a destabilizing effect.
They are very few experimental studies of instabilities in the literature.
The IRPHE partner (Bolnot, 2012), (Bolnot et al., 2014), (Quaranta et al., 2015) has
an experimental facility with a water channel in which machined one- and two-bladed
rotors can be exploited to generate carefully monitored helical wakes. Basic states are
characterised using PIV measurements, and quantities such as velocity profile, circulation
and core size are determined. The Widnall instability modes are forced by modulating
the rotor angular velocity and their temporal growth rates are measured as a function
of the imposed wavelength using dye visualisations. A very good agreement is obtained
between the filamentary theory and the experiments. Felli et al. (2011) studied the spatial
development of marine propeller wakes for two to four blades. They observed the growth
of perturbations up to high amplitudes, which causes vortex groupings and eventually
dissipation of the coherent structures. The vortices are observed by making the tip vortices
cavitating by lowering the pressure in the test section. This also reveals the presence, at
the axis, of the hub vortex which also takes part to the instability process.
A numerical code called HELIX has been developed at LIMSI-CNRS and d’Alembert-
UPMC (Delbende et al., 2012). This code implements the helical formulation of the
incompressible Navier-Stokes equations: it is quasi-two dimensional, based on a pseudo-
spectral method in θ and finite differences in r. In a previous PhD work, Benjamin Piton
(2011) performed the numerical analysis of the dynamics of some helical vortex systems.
For a single helical vortex, he computed quasi-steady states for different helical pitches and
Reynolds numbers, and analysed the angular rotation. He observed that for such vortices,
the core diffuses according to a law close to that of classical two-dimension diffusion. He
also focussed on the merging of two helical vortices. At large helical pitch, the merging was
found very similar to that of two-dimensional vortices, however the helical geometry slows
down the process. A criterion for merging was proposed. At medium pitch, the merging
was found to become purely diffusive. At small pitch, a convective merging between
successive coils was observed, resulting from the instability predicted by Okulov (2004).
However, at low Reynolds numbers, this merging process becomes purely diffusive, as the
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instability is killed by viscosity.

1.4 Goal and personal contributions
The present work numerically investigates these instabilities using the Navier-Stokes equa-
tions linearised in the vicinity of imposed helically symmetric basic states: one, two and
three tip vortices with and without the hub vortex. The time evolution of these vortex
systems, when perturbed by unstable linear modes, are also computed in the nonlinear
regime within the helical symmetry framework.
In order to achieve these objectives, numerous (mostly numerical) tasks were performed
during these three years. The following paragraph summarizes my personal contributions
to this PhD work. The numerical code HELIX was available and had been exploited by the
previous PhD student Benjamin Piton using polar meshes with evenly spaced grid points
in the radial direction. This code was first generalised for irregular grids, which implied to
rewrite all the discretization matrices and nonlinear terms related to the Navier-Stokes and
Poisson equations. This code was thereafter linearised in the vicinity of a frozen state and
an Arnoldi algorithm within the helical framework was implemented in order to extract the
dominant stability modes. The choice of implementing the algorithm from scratch rather
than using libraries has been made for pedagogical reasons and also for a better control
on the problem parameters. The structures of the solutions (such as the linear modes
or nonlinear solutions) were analysed and investigated with the help of home-made tools
(high order and accurate interpolations, optimisation procedures, integrations and spectral
analysis). This handful of routines allowed for the successful comparisons of our numerical
results with the theoretical ones obtained by our IRPHE partners with an asymptotic
analysis (Blanco-Rodríguez et al., 2015). A particular attention was paid to the numerical
implementation of Lagrangian particle tracking, for both passive and inertial particles.
This tool enabled to highlight the complex trajectories prevailing in such vortex systems.
The second linear code HELIKZ, aimed at investigating the stability of helical flows with
respect to perturbations breaking the helical symmetry, has been available during the
PhD. The Arnoldi algorithm was implemented for this general three-dimensional case using
complex primitive variables. As the base flow in HELIKZ is provided by a preliminary
run of the HELIX code, a whole battery of routines were also developed to automate and
ease the management of the computations.

1.5 Outline

This manuscript is organised as follows. The first part (chapters 2 to 7) is dedicated to
the numerical computation and characterisation of helically symmetric vortices. The sec-
ond part (chapters 8 to 11) deals with the obtention of linear instability modes and their
nonlinear evolution.

Chapter 2 introduces the framework of the helical symmetry and the governing equations
for incompressible unbounded flows. Numerical aspects of the DNS code (HELIX) used in
this work are presented in chapter 3. This includes the details on the numerical methods
and the discretisation of the governing equations. An inviscid filamentary model is also
derived using a cut-off technique. The equations of motion along with numerical vali-
dations are given in chapter 4. Chapter 5 presents the physical quantities (helix radius,
angular velocity, vortex core size and ellipticity) which characterise the helical vortices
obtained by DNS as well as their numerical computation. This characterisation is applied
to the quasi-steady evolution of a single helical vortex 6. The streamline topology and
the consequences for passive particle trajectories are analysed. The internal structure of

15



1.5. OUTLINE

the velocity field within the helical vortex core is studied in chapter 7: quasi-equilibrium
solutions are decomposed into multipolar contributions and compared with the analytical
predictions given by the IRPHE partner.

Chapter 8 tackles the principles linear stability analysis for helical flows, the Arnoldi
method of mode extraction, its implementation and validation. This analysis is applied in
chapter 9 to several vortex configurations: two and three helical vortices with/without a
central hub vortex. The nonlinear dynamics of helical systems subject to these unstable
modes is characterised in chapter 10. In chapter 11, the principles of the linear stability
analysis are extended to perturbations breaking the helical symmetry. A new linear code
HELIKZ is introduced and coupled to an Arnoldi procedure. Results obtained in this
context are presented and analysed.

Chapter 12 summarises the results and discusses possible perspectives to this work.
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Chapter 2
Navier-Stokes equations for helical flows

Contents
2.1 Helical symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Expression of differential operators for helical fields . . . . . . . . 19
2.1.2 Incompressibility for helical fields. . . . . . . . . . . . . . . . . . 20

2.2 Governing equations for helically symmetric flows . . . . . . . . 20
2.3 Spectral formulation of the governing equations. . . . . . . . . 22

2.3.1 Modes m 6= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Modes m = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Boundary conditions at r = 0 . . . . . . . . . . . . . . . . . . . . 24
2.4.1 Boundary conditions at r = 0 for modes m 6= 0 . . . . . . . . . . 24
2.4.2 Boundary conditions at r = 0 for mode m = 0 . . . . . . . . . . . 24

2.5 Boundary condition at r = Rext . . . . . . . . . . . . . . . . . . . 24
2.5.1 Modes m 6= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.2 Modes m = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

In the theory of shear flows, it is usual to assume local parallel flow approximation to
study linear or nonlinear instability properties of jets, wakes, boundary layers... This

(a) (b)

Figure 2.1 – (a) Near wake of the NREL wind turbine at NASA-AMES. (b) Numerical
model: a vortex with enforced helical symmetry.

local approach means that the slow streamwise variation is neglected. In rotor wakes, one
may assume a similar type of approximation in which the base flow is assumed to satisfy
a helical symmetry as illustrated in figure 2.1. For this particular symmetry, any vector

17



2.1. HELICAL SYMMETRY

ϕ ≡ θ − z/L = cst

(b)

2πL

H

θs

(a)

rθ

z eB

er

eϕ

z

Figure 2.2 – (a) Geometrical parameters defining the helical symmetry. (b) Local or-
thonormal helical basis (er, eB, eϕ).

field remains unaffected by the combined actions of two continuous transformations: a
translation along a given axis combined to a rotation about the same axis. Here, we
present the helical symmetry (section 2.1), the equations governing the dynamics (section
2.2) and their spectral formulation (section 2.3), together with the boundary conditions
at the centre and the edge of the circular domain (sections 2.4 and 2.5).

2.1 Helical symmetry

In the cylindrical coordinate basis (er, eθ, ez), the helical symmetry implies that the flow
characteristics remain invariant though combined translation of magnitude H along the
axis and a rotation of angle θs = H/L around the same axis (see figure 2.2-a) where 2πL
is the helix pitch. The flow characteristics thus remain invariant along helical lines ϕ = cst
with

ϕ ≡ θ − z/L, (2.1)
and have a spatial periodicity of 2πL along the z-axis. The sign of the so-called reduced
pitch L defines the direction of the helix, L > 0 corresponds to a right-handed helix while
L < 0 corresponds to a left-handed one. For L → ±∞, helical lines tend to be straight
lines and the velocity field becomes two dimensional.
In order to implement the helical symmetry, we introduce an orthonormal helical basis
(eB, er, eϕ) depicted in figure 2.2-b. It consists of a vector locally tangent to the helical
lines called the Beltrami vector:

eB = α (r)
(
ez + r

L
eθ

)
(2.2)

with the r-dependent normalisation factor

α(r) =
(

1 + r2

L2

)−1/2

, (2.3)

the unitary radial vector er and a third vector

eϕ = eB × er = α (r)
(
eθ −

z

L
ez

)
. (2.4)
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In this basis, any velocity field can be expressed as :

u = ur er + uB eB + uϕ eϕ (2.5)

with

ur (r, θ, z) = u · er, (2.6)

uB (r, θ, z) = u · eB = α(r)
(
uz + r

L
uθ

)
, (2.7)

uϕ (r, θ, z) = u · eϕ = α(r)
(
uθ −

r

L
uz

)
. (2.8)

When the helical symmetry holds, the above components are constant along the helical
lines

eB ·∇ur = eB ·∇uB = eB ·∇uϕ = 0, (2.9)

or, stated equivalently, solutions depend on two variables of space (r, ϕ) instead of the
three variables (r, θ, z). A helically symmetric velocity field u is thus given by

u (r, ϕ, t) = ur (r, ϕ, t) er (θ) + uB (r, ϕ, t) eB (r, θ) + uϕ (r, ϕ, t) eϕ (r, θ) . (2.10)

Note, however, that eB and eϕ have a dependency with respect to (r, θ), not to (r, ϕ).

2.1.1 Expression of differential operators for helical fields

The expression of differential operators is derived from their definitions in cylindrical
coordinates. First, partial derivatives are computed with the change of variable (r, θ, z)→
(r, ϕ):

∂

∂θ
= ∂ϕ

∂θ

∂

∂ϕ
= ∂

∂ϕ
, (2.11)

∂

∂z
= ∂ϕ

∂z

∂

∂ϕ
= − 1

L

∂

∂ϕ
. (2.12)

The gradient of a scalar field f is then given by:

∇f = ∂f

∂r
er + 1

r

∂f

∂θ
eθ + ∂f

∂z
ez = ∂f

∂r
er + 1

rα

∂f

∂ϕ
eϕ. (2.13)

As expected ∇f has no component along eB, i.e. along helical lines. The divergence of a
vector field u is given by:

∇ · u ≡ 1
r

∂ (rur)
∂r

+ 1
r

∂uθ
∂θ

+ ∂uz
∂z

= 1
r

∂ (rur)
∂r

+ 1
rα

∂uϕ
∂ϕ

, (2.14)

which is up to the factor α(r) similar to the two-dimensional divergence operator in the
cylindrical coordinate system (r, ϕ). Finally, the curl of u reads:

∇× u = 1
r

∂

∂ϕ

(
uB
α

)
er − α

∂

∂r

(
uB
α

)
eϕ +

{ 1
rα

∂

∂r
(rαuϕ)− 1

rα

∂

∂ϕ
ur + 2

L
α2uB

}
eB.

(2.15)
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2.1.2 Incompressibility for helical fields.
Flows studied in the present thesis are incompressible, that is

∇ · u = 0. (2.16)

From expression (2.14), this condition implies the existence of a stream function Ψ(r, ϕ, t)
such that

ur = 1
r

∂Ψ
∂ϕ

, (2.17)

uϕ = −α∂Ψ
∂r

. (2.18)

The velocity field u of a general incompressible helical flow can then be reduced to only
two scalar fields, namely its helical component uB(r, ϕ, t) along eB and the stream function
Ψ(r, ϕ, t):

u(r, ϕ, t) = uB(r, ϕ, t) eB + α(r)∇Ψ(r, ϕ, t)× eB. (2.19)
From equations (2.15) and (2.17)-(2.18), the velocity component, uB/α plays for vorticity
ω =∇× u the role of the stream function for velocity

ωr = 1
r

∂

∂ϕ

(
uB
α

)
, (2.20)

ωϕ = −α ∂

∂r

(
uB
α

)
. (2.21)

As a consequence, ω can be expressed with only two scalar fields, namely its vorticity
component ωB and the velocity component uB/α

ω(r, ϕ, t) = ωB(r, ϕ, t) eB + α(r)∇
(
uB(r, ϕ, t)

α

)
× eB. (2.22)

Using equations (2.15), (2.17) and (2.18), the helical component ωB can be expressed as :

ωB = −LΨ + 2α
2

L
uB (2.23)

where the linear operator L stands for:

L (.) ≡ 1
rα

∂

∂r

(
rα2 ∂

∂r
(.)
)

+ 1
r2α

∂2

∂ϕ2 (.) . (2.24)

Equation (2.23) connects the stream function Ψ to vorticity component ωB and velocity
component uB. This Ψ − ωB − uB relation turns out to be the generalisation of the two-
dimensional stream function-vorticity (Ψ− ω) formulation for helical flows. The direct
consequence of (2.23) is that the knowledge of ωB and uB gives access to Ψ and thereafter
to all other variables through equations (2.17)-(2.18) and (2.20)-(2.21). Since the dynamics
has not been taken into account yet, the above relations can be used in any area of physics
when helically symmetric and divergence-free fields are present (magneto-hydrodynamics,
plasma physics, ...).

2.2 Governing equations for helically symmetric flows
Two dynamical equations, one for uB and one for ωB, are needed to obtain the time
evolution of the full system. The starting point is the Navier-Stokes equations

∂

∂t
u+ u ·∇u = −1

ρ
∇p+ ν∇2u, (2.25)

∇ · u = 0, (2.26)
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with p the pressure field, ρ the uniform density of the fluid and ν its kinematic viscosity.
In the incompressible framework, the following vectorial relations can be used

u ·∇u = ω × u+∇
(
u2

2

)
,

∇2u = −∇× ω

to rewrite equation (2.25) as

∂

∂t
u+ ω × u = −∇

(
p

ρ
+ u2

2

)
− ν∇× ω. (2.27)

Equation for vorticity is obtained by taking the curl of (2.27):

∂

∂t
ω +∇× (ω × u) = −ν∇× (∇× ω) . (2.28)

Projecting equations (2.27)-(2.28) on the Beltrami vector eB leads to the two needed scalar
equations. The first one for uB (r, ϕ, t) reads:

∂

∂t
uB +NLu = V Tu (2.29)

where the viscous term is given by

V Tu ≡ ν
[
L
(
uB
α

)
− 2α2

L
ωB

]
, (2.30)

and the nonlinear term by

NLu ≡ eB · [ω × u] = ωr uϕ − ωϕ ur . (2.31)

Thanks to relation (2.9), the pressure field p disappears from the equation for uB. The
second equation, for ωB (r, ϕ, t), reads:

∂

∂t
ωB +NLω = V Tω (2.32)

where the viscous term is given by

V Tω ≡ −ν eB ·∇× [∇× ω] = ν

L(ωB
α

)
−
(

2α2

L

)2

ωB

+ ν
2α2

L
L
(
uB
α

)
, (2.33)

and the nonlinear term by

NLω ≡ eB ·∇× [ω × u] . (2.34)

This latter quantity can be reduced after some algebra to:

NLω = 1
rα

{
∂

∂r
(rαgϕ)− ∂

∂ϕ
gr

}
+ 2α2

L
gB + α

L2
∂

∂ϕ

(
u2
B

)
, (2.35)

where
gϕ = ωB ur, gr = −ωB uϕ, gB = ωr uϕ − ωϕ ur.

The dynamics of helically symmetric flows are obtained through the set of equations
(2.29)-(2.35) along with (2.23) which completely define the problem. The periodicity
of the variables along ϕ is exploited and a pseudo-spectral D.N.S. code is built on this
formulation. In appendix A, the helical rate of strain tensor is given for the sake of
completeness.
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2.3 Spectral formulation of the governing equations.

In order to solve them, one formulates equations (2.29)-(2.35) in spectral space. Quantities
ωB(r, ϕ, t) and uB(r, ϕ, t) are 2π-periodic with respect the variable ϕ and these quantities
can be expanded in Fourier series along ϕ:

uB(r, ϕ, t) =
+∞∑

m=−∞
u

(m)
B (r, t) eimϕ, (2.36)

ωB(r, ϕ, t) =
+∞∑

m=−∞
ω

(m)
B (r, t) eimϕ, (2.37)

where u(m)
B (r, t), and ω

(m)
B (r, t) are complex Fourier coefficients. Equations (2.29) and

(2.32) are recast for each Fourier mode m. A distinction has to be made between the case
m 6= 0 and the case m = 0, as their boundary conditions and numerical resolution strongly
differ.

2.3.1 Modes m 6= 0

For mode m 6= 0, the pair
(
ω

(m)
B , u

(m)
B

)
is obtained by solving equations (2.29) and (2.32)

projected on each mode m
∂

∂t
ω

(m)
B +NL(m)

ω = V T (m)
ω , (2.38)

∂

∂t
u

(m)
B +NL(m)

u = V T (m)
u . (2.39)

The terms NL(m)
ω , V T

(m)
ω , NL

(m)
u and V T (m)

u are given by

NL(m)
ω = 1

rα

{
∂

∂r

(
rαg(m)

ϕ

)
− img(m)

r

}
+ 2α2

L
g

(m)
B + α

L2 im
(
u2
B

)(m)
, (2.40)

V T (m)
ω = ν

L(m)
(
ω

(m)
B

α

)
−
(

2α2

L

)2

ω
(m)
B

+ ν
2α2

L
L(m)

(
u

(m)
B

α

)
, (2.41)

NL(m)
u = {ωr uϕ − ωϕ ur}(m) , (2.42)

V T (m)
u = ν

[
L(m)

(
u

(m)
B

α

)
− 2α2

L
ω

(m)
B

]
. (2.43)

The stream function modes Ψ(m) are computed by inverting the generalised Poisson equa-
tion (2.24) written for each mode m:

L(m)Ψ(m) = −ω(m)
B + 2α2

L
u

(m)
B (2.44)

with the operator L(m) defined by

L(m)(·) = 1
rα

∂

∂r

(
rα2 ∂

∂r
(·)
)
− m2

r2α
(·) . (2.45)

Velocity components u(m)
r (r, t), u(m)

ϕ (r, t) are obtained from Ψ(m)(r, t) through

u(m)
r (r, t) = im

r
Ψ(m) , u(m)

ϕ (r, t) = −α(r) ∂
∂r

Ψ(m) , (2.46)

and the vorticity components from u
(m)
B /α through

ω(m)
r (r, t) = im

r

(
u

(m)
B

α

)
, ω(m)

ϕ (r, t) = −α(r) ∂
∂r

(
u

(m)
B

α

)
. (2.47)
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2.3.2 Modes m = 0
The treatment of mode m = 0 is different from modes m 6= 0. Using (2.23) for mode
m = 0, the relation

ω
(0)
B

α
= 2
L
αu

(0)
B + 1

r α2
∂

∂r
(r α u(0)

ϕ ) (2.48)

is obtained showing a direct link between ω(0)
B , u(0)

ϕ and u(0)
B . Form = 0, the pair (u(0)

ϕ , u
(0)
B )

will be hence chosen as the problem unknowns rather than (ω(0)
B , u

(0)
B ). The dynamical

equation for uϕ(0) is obtained by projecting the momentum equation (2.27) on eϕ:

∂

∂t
u(0)
ϕ = −eϕ · (ω × u)(0) − eϕ ·∇(0)

(
p

ρ
+ u2

2

)
− νeϕ · (∇× ω)(0) . (2.49)

Thanks to the gradient expression (2.13) written for mode m = 0, pressure disappears
from equation (2.49). Finally, some algebra leads to:

∂

∂t
u(0)
ϕ = {ωruB − ωBur}(0) + να

∂

∂r

(
ω

(0)
B

α

)
. (2.50)

Since
ωruB = 1

r

∂

∂ϕ

(
uB
α

)
uB = 1

2rα
∂

∂ϕ
u2
B, (2.51)

one obtains (ωruB)(0) = 0, reducing equation (2.50) to

∂

∂t
u(0)
ϕ = {−ωBur}(0) + να

∂

∂r

(
ω

(0)
B

α

)
. (2.52)

To summarize, the set of equations needed for mode m = 0 are
∂

∂t
u(0)
ϕ +NL(0)

uϕ = V T (0)
uϕ , (2.53)

∂

∂t
u

(0)
B +NL(0)

u = V T (0)
u , (2.54)

with
NL(0)

uϕ = {ωBur}(0) , (2.55)

V T (0)
uϕ = να

∂

∂r

( 2
L
αu

(0)
B + 1

r α2
∂

∂r
(r α u(0)

ϕ )
)
, (2.56)

NL(0)
u = {ωr uϕ − ωϕ ur}(0) , (2.57)

V T (0)
u = ν

{
1
rα

∂

∂r

(
rα2 ∂

∂r

(
u

(0)
B

α

))
− 2α2

L

( 2
L
α2 u

(0)
B + 1

r α

∂

∂r
(r α u(0)

ϕ )
)}

. (2.58)

As far as other components are concerned, radial velocity and radial vorticity components
vanish for m = 0

u(0)
r = 0 ω(0)

r = 0 (2.59)
as they are respectively derivatives of Ψ and uB/α with respect to ϕ (equations (2.17) and
(2.20)). In order to obtain Ψ(0), one integrates equation (2.18)

Ψ(0) (r) = −
∫ r

0

u
(0)
ϕ (r′)
α(r′) r′ dr′. (2.60)

Finally, ω(0)
ϕ is simply obtained from definition (2.21):

ω(0)
ϕ = −α ∂

∂r

(
u

(0)
B

α

)
, (2.61)

and ω(0)
B is recovered from (2.48).
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2.4 Boundary conditions at r = 0

A detailed analysis of the conditions at the axis r = 0 are described in the appendix B. In
the numerical formulation, the imposed boundary conditions are deduced from equations
(B.25)-(B.27) of appendix B. However a weaker form is used.

2.4.1 Boundary conditions at r = 0 for modes m 6= 0

For modes m 6= 0, we impose Dirichlet conditions at r = 0 on the components Ψ(m), ωB(m)

and uB(m):

Ψ(m)(0) = 0 , ωB
(m)(0) = 0 , uB

(m)(0) = 0 , for m 6= 0. (2.62)

For m ≥ 2, one may also need the values of components u(m)
r , ω(m)

r , u(m)
ϕ and ω(m)

ϕ at the
axis:

ω(m)
r (0) = 0, u(m)

r (0) = 0 for m ≥ 2
ω(m)
ϕ (0) = 0, u(m)

ϕ (0) = 0 for m ≥ 2. (2.63)

The mode m = 1 is a particular case: the components u(1)
r , ω(1)

r and u(1)
ϕ , ω(1)

ϕ are finite
at the axis and their values can be deduced from Ψ(1) and u(1)

B . Using (2.46) and (2.47),
ur

(1) and ω(1)
r read

ur
(1) = i

r
Ψ(1) , ω(1)

r = i
r

(
u

(1)
B

α

)
. (2.64)

Taking the limit as r → 0 and using L’Hospital’s rule leads to:

lim
r→0

ur
(1) = lim

r→0

iΨ(1)

r
= i ∂Ψ(1)

∂r

∣∣∣∣∣
r=0

(2.65)

which evaluates the undetermined form in equation (2.64). For the vorticity condition,
one obtains in a similar way

ω(1)
r (0) = i ∂

∂r

(
u

(1)
B

α

)∣∣∣∣∣
r=0

, u(1)
ϕ (0) = − ∂Ψ(1)

∂r

∣∣∣∣∣
r=0

, ω(1)
ϕ (0) = − ∂

∂r

(
u

(1)
B

α

)∣∣∣∣∣
r=0

.

(2.66)

2.4.2 Boundary conditions at r = 0 for mode m = 0

The boundary conditions for the axisymmetric contribution of the velocity components
simply read

∂

∂r

(
u

(0)
B

α

)∣∣∣∣∣
r=0

= 0, u(0)
r (0) = 0, u(0)

ϕ (0) = 0. (2.67)

2.5 Boundary condition at r = Rext

Conditions at the boundary of the computational domain depend on the physics (bounded
flow, unbounded flow, flow subjected to shear, etc.). Here, the numerical solution is
matched to an outer potential flow in order to mimic a fluid medium of infinite extent.
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2.5.1 Modes m 6= 0
At the outer boundary r = Rext of the computational domain, the numerical solution
is matched with an analytical potential flow solution. This condition translates, for the
helical vorticity ωB(m) and the helical velocity uB(m), into :

ωB
(m)(r = Rext) = 0, uB

(m)(r = Rext) = 0 for m 6= 0. (2.68)

For r > Rext, the flow is purely potential: the stream function Ψ satisfies a Laplace
equation ∇2Ψ = 0. Using formulas (2.13)-(2.14), the Laplacian can be expressed in the
helical framework as:

∇2Ψ = 1
r

∂

∂r

(
r
∂

∂r
Ψ
)

+ 1
r2α2

∂2

∂ϕ2 Ψ. (2.69)

Let us expand the stream function in Fourier series along the periodical direction ϕ

Ψ(r, ϕ) =
+∞∑

m=−∞
Ψ(m)(r) eimϕ. (2.70)

The Laplace equation for Ψ can be written for each mode m

r2 ∂
2

∂r2 Ψ(m)(r) + r
∂

∂r
Ψ(r)(m) −Ψ(m)(r)

(
m2r2

L2 +m2
)

= 0, (2.71)

yielding a modified Bessel function of order m. The solution of this equation depends on
the value of L. For the two-dimensional case where L→∞, the ratio r2/L2 vanishes and
the solution is given by Ψ(r)(m) = Amr

−m +Bmr
m. The requirement that the solution

remains finite imposes Bm = 0. For any finite value of L, equation (2.71) accepts two
linearly independent solutions, the modified Bessel function of the first kind Im and the
modified Bessel function of the second kind Km. Since Im and Km are respectively expo-
nentially growing and decaying functions, only the modified Bessel function of the second
kind is physically relevant. To summarize, for r > Rext

Ψ(m)(r) =
{
Am/r

m if |L| =∞
AmKm (|m/L| r) if L finite (2.72)

The unknown coefficients Am can be eliminated using relationships between Ψ and its first
derivative. For L→∞ it directly reads

∂

∂r
Ψ(m) = −m

r
Ψ(m) (2.73)

while for finite value of L, by setting γ = m/|L| and using the following recurrence
relationship for Km

d
drKm(γr) = −γKm−1(γr)− m

r
Km(γr) , m ≥ 1 , (2.74)

one obtains
∂

∂r
Ψ(m) = −mΨ(m)

(1
r
− 1
|L|

Km−1(γr)
Km(γr)

)
. (2.75)

The matching conditions at r = Rext between the inner (numerical) solution and the outer
(analytical) solution for Ψ and its radial derivative impose Robin boundary conditions for
the numerical solution:

∂

∂r
Ψ(m)(Rext) = −mCmΨ(m)(Rext) (2.76)

with Cm = 1
Rext

+


0 if |L| =∞
1
|L|

Km−1(|m/L|Rext)
Km(|m/L|Rext)

if L finite
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2.5. BOUNDARY CONDITION AT R = REXT

2.5.2 Modes m = 0

From equations (2.46) and (2.47) for u(0)
r and ω(0)

r , when expressed on the outer boundary
at r = Rext, one deduces

ω(0)
r (Rext) = 0, u(0)

r (Rext) = 0, ω
(0)
B (Rext) = 0, ω(0)

ϕ (Rext) = 0. (2.77)

The velocity component u(0)
B (r = Rext) is obtained from the definition in (2.7) expressed

on the boundary

u
(0)
B (Rext) = α (Rext)

(
u(0)
z (Rext) + Rext

L
u

(0)
θ (Rext)

)
. (2.78)

The axial velocity u(0)
z (Rext) ≡ U∞z is a prescribed value and is chosen to be set to 0 as

it requires an a priori knowledge on the dynamics for the case considered. The azimuthal
counterpart is supposed to behave as u(0)

θ ∼ Γ/2πr for large r, where Γ is the total
circulation. Injecting these into (2.78) yields

u
(0)
B (Rext) = α (Rext)

(
U∞z + Γ

2πL

)
. (2.79)

Finally, the same considerations for u(0)
ϕ leads to

u(0)
ϕ (Rext) = α (Rext)

( Γ
2πRext

− Rext
L

U∞z

)
. (2.80)
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DNS code with enforced helical sym-
metry : HELIX
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In this chapter, details on the temporal and spatial discretisation of the equations are
provided. In the direction ϕ, a Fourier decomposition is performed. The equations recast
for azimuthal modes m, are spatially discretised along the radial direction r. In the first
version of the code, evenly spaced grid points were used for radial discretisation, which
had the benefit of simplicity when discretising the derivatives up to 2nd order accuracy.
The disadvantage is the very high total number of grid points to be used to mesh the
whole computational domain if one wishes to finely capture the vortex core structures. In
order to reduce the computational time while ensuring fair accuracy within the regions
of interest, a mesh with unevenly spaced grid points in the radial direction is introduced.
The temporal scheme is first presented (section 3.1), the spatial mesh (section 3.2) and
the discretisation of the governing equations are then given (sections 3.3 and 3.4).
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3.1. TEMPORAL SCHEME FOR THE DYNAMICAL EQUATIONS

3.1 Temporal scheme for the dynamical equations
The two dynamical equations to be integrated in time are expressed for modes m 6= 0

∂

∂t
u

(m)
B +NL(m)

u = V T (m)
u , (3.1)

∂

∂t
ω

(m)
B +NL(m)

ω = V T (m)
ω , (3.2)

while for mode m = 0 they read

∂

∂t
u

(0)
B +NL(0)

u = V T (0)
u , (3.3)

∂

∂t
u(0)
ϕ +NL(0)

uϕ = V T (0)
uϕ . (3.4)

The viscous and nonlinear terms in equations (3.1)-(3.4) are given by (2.40)-(2.43) and
(2.55)-(2.58). In order to present the temporal scheme in a compact form, one introduces
the following quantities: for m 6= 0, G(m) = (u(m)

B , ω
(m)
B ), NL(m) = (NL(m)

u , NL
(m)
ω ) and

V T (m) = (V T (m)
u , V T

(m)
ω ); similarly form = 0, G(0) = (u(0)

B , u
(0)
ϕ ), NL(0) = (NL(0)

u , NL
(0)
uϕ )

and V T (0) = (V T (0)
u , V T

(0)
uϕ ).

3.1.1 Temporal derivative: 2nd order backward Euler scheme

The time step ∆t is assumed constant, and G(m)
n refers to the value of G(m)(t) at discrete

time tn ≡ n∆t. All the dynamical equations are temporally discretised at second order
accuracy at time tn+1. In this code, a second order backward discretisation is used for the
temporal derivative:

∂

∂t
G(m)

∣∣∣∣
n+1

=
3G(m)

n+1 − 4G(m)
n +G

(m)
n−1

2 ∆t +O(∆t2). (3.5)

3.1.2 Nonlinear terms: second order Adams-Bashforth extrapolation
The nonlinear terms have to be evaluated at instant tn+1. Two main approaches can
be considered. A first method would consist in writing the term NL

(m)
n+1 using variables

G
(p)
n+1 relative to all mode p at time tn+1 (implicit nonlinear term). This would result in a

fully coupled nonlinear system which could be solved using for instance Newton-Raphson
iterations. The alternative used in the present code, Helix, is an explicit formulation
for the nonlinear terms. It consists in writing the nonlinear term at time tn+1 using an
extrapolation from its values at times tn and tn−1. This has the advantage that at each
time step the system to be solved becomes linear. The extrapolation is obtained via second
order Adams-Bashforth scheme:

NL
(m)
n+1 = 2NL(m)

n −NL(m)
n−1 +O(∆t2). (3.6)

3.1.3 Viscous terms: implicit scheme
The viscous terms are treated implicitly: this stabilises the temporal scheme and allows
for larger time-steps ∆t. Since the viscous term

V T
(m)
n+1 = LvG(m)

n+1, (3.7)

is linear in the variable G(m)
n+1, the viscous operator Lv becomes part of the linear operator

which is inverted at each time step (see below the l.h.s. of equation (3.9)).
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r = 0 r = R2 r = Rext

∆

i = 1 i = N1

r = R1N1
i = N1 +Np

∆
γ3

∆

N3
i = N1 +Np +N3

γ1

Figure 3.1 – Structure of the radial mesh used for the spatial discretisation. In the central
section (indices i = N1, ..., N1 +Np), the grid points are regularly spaced. Two regions of
irregularly spaced points are represented with different contraction/expansion parameters
γ1 for i = 1, ..., N1 − 1 and γ2 for i = N1 +Np, ..., Nr.

3.1.4 General form

Using formulas (3.5),(3.6), (3.7), the time advance of quantity G(m) is governed by

3G(m)
n+1 − 4G(m)

n +G
(m)
n−1

2 ∆t +
(
2NL(m)

n −NL(m)
n−1

)
= LvG(m)

n+1 , (3.8)

Putting all unknown variables (relative to time step n + 1) to the l.h.s. and all known
variables (relative to n and n− 1) to the r.h.s., equation (3.8) is recast as

(σI − Lv)G(m)
n+1 =

(
−2NL(m)

n +NL
(m)
n−1

)
+

4G(m)
n −G(m)

n−1
2 ∆t , (3.9)

with σ = 3/ (2∆t). The radial discretisation is presented in the next section.

3.2 Spatial discretisation

3.2.1 Fourier decomposition along ϕ

The Fourier series in equation (2.36) and (2.37) are truncated to a finite number of complex
mode |m| < M . Since modes with negative m can be direclty obtained as complex
conjugates, we consider only the positive m. The standard 2/3 dealiasing requires the
computation of 3M/2 modes. This is done by discretising ϕ at Nθ = 3M physical angles
given by

ϕj = jδθ (j = 0, ..., Nθ − 1), ϕNθ = ϕ0 = 0, (3.10)

where δθ = 2π/Nθ. The firstM first complex modes are effectively used, the higher modes
m = M, ..., 3M/2− 1 being dismissed at each time step.

3.2.2 Irregular meshes

We create a radial grid mesh where points are not necessarily evenly spaced. We aim at
placing most of the grid points within the region where the vortices are supposed to be
localised. In the present context such a region is either an annulus or a disk 0 ≤ R1 ≤
r ≤ R2, bound by the lower and upper radii R1 and R2. This ensures that the dynamics
and the core structure of the vortices are accurately captured in that region. In order to
reduce the total number of grid points, we connect the above refined region to regions with
a coarser grid, corresponding to the regions where the flow is likely to be potential. A
typical arrangement of the regions is depicted in figure 3.1. In the refined region (region 2),
we use N2 regularly spaced grid points, spaced by a distance ∆ = (R2 −R1) /N2 set at
ri = R1 + (i−N1) ∆ for i = N1, ..., N1 +N2. In the coarse mesh regions (regions 1 and 3),
we use N1 and N3 grid points. The cells next to the refined regions are imposed to be of
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size ∆ (see red ticks in figure 3.1) while for the others we set fixed contraction/expansion
rates γi: one chooses the grid spacings hi ≡ ri+1 − ri such that

γ1 = hi/hi−1 for i < N1 − 1 (3.11)
γ3 = hi/hi−1 for i ≥ N1 +N2 + 1. (3.12)

We require the γi parameters to be close to 1 (we choose in practice 0.9 < γi < 1.1) in
order to control the discretisation errors (see section 3.2.3 below).
In practice, radii R1, R2, Rext and the number N2 of grid points in region 2 are first chosen,
which fixes ∆. For region 3, the expansion rate γ3 is then determined as the closest value
below 1.1 which ensures that the outer boundary at r = Rext is a grid point. Similarly
for region 1, when present, the contraction rate γ1 is the closest value above 0.9 ensuring
that the centre of the domain r = 0 is a grid point. The number of grid points N1, N3
of regions 1 and 3 are then an output of this procedure. Since in region 3, the following
sequence holds

r (N1 +Np) = R2

r (N1 +Np + 1) = R2 + ∆
r (N1 +Np + 2) = R2 + ∆(1 + γ3)
r (N1 +Np + 3) = R2 + ∆(1 + γ3 + γ2

3)
...

r (N1 +Np +N3) = Rext = R2 + ∆
N3−1∑
p=0

γp3 = R2 + ∆1− γN3
3

1− γ3
,

the determination of γ3 amounts to solve the equation

(R2 −Rext) (1− γ3) + ∆
(
1− γN3

3

)
= 0, (3.13)

for N3 and γ3. This is done in two steps: equation (3.13) is first solved for N3 at fixed
value of γ3 = 1.1. N3 is obtained as the closest integer value greater than

log
[
1− 1

(R2 −Rext)(1− γ3)

]
log γ3

. (3.14)

Equation (3.13) is then solved for γ3 using a Newton algorithm with γ3 = 1.1 as initial
guess. The iterations converge toward the closest solution below 1.1. A similar procedure
is used for region 1. Some mesh examples are shown in figure 3.2.

3.2.3 Finite differences along the radial direction r

The first and second order derivatives with respect to r are discretized with the finite dif-
ference method. Such methods are well known for regular grids, we establish the derivative
formulas when the spacing hi ≡ ri+1 − ri is not constant. Let us define ui ≡ u (ri). Using
the Taylor expansions,

ui+1 = ui + hi
∂u

∂r

∣∣∣∣
i
+ h2

i

2
∂2u

∂r2

∣∣∣∣∣
i

+ h3
i

6
∂3u

∂r3

∣∣∣∣∣
i

+O(h4
i ), (3.15)

ui−1 = ui − hi−1
∂u

∂r

∣∣∣∣
i
+
h2
i−1
2

∂2u

∂r2

∣∣∣∣∣
i

− h3
i−1
6

∂3u

∂r3

∣∣∣∣∣
i

+O(h4
i−1) (3.16)
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(a)

(b)

Figure 3.2 – Example of irregular meshes. (a) Mesh with irregular grid points for regions
0 ≤ r ≤ R1 and R2 ≤ r ≤ Rext with R1 = 1, R2 = 2, Rext = 5. The parameters obtained
with the optimisation process are found to beNp = 500,∆ = 0.002, N1 = 43, N3 = 53, γ1 =
1.0975, γ3 = 1.0991. (b) Mesh with regularly spaced points for 0 ≤ r ≤ R2 with R2 = 3
and Rext = 5. The resulting parameters obtained with the optimisation process are found
to be N1 = Np = 384, N3 = 38 γ1 = ∆ = 0.006 and γ3 = 1.0965.

one obtains an approximation for the derivative of u at nodes ri:

ui+1 − ui−1 = (hi + hi−1) ∂u
∂r

∣∣∣∣
i
+ 1

2
(
h2
i − h2

i−1

) ∂2u

∂r2

∣∣∣∣∣
i

+ 1
6
(
h3
i + h3

i−1

) ∂3u

∂r3

∣∣∣∣∣
i

+ · · ·

∂u

∂r

∣∣∣∣
i

= ui+1 − ui−1
hi + hi+1

− 1
2 (hi − hi−1) ∂

2u

∂r2

∣∣∣∣∣
i

+ · · · (3.17)

This approximation is accurate to first order and the leading error term is proportional

to (hi − hi−1) = hi (1− γ). In the coarse regions where ∂2u

∂r2

∣∣∣∣∣
i

is a priori small, taking

|1− γ| < 0.1 as discussed previously, still leads to an acceptable accuracy. In the refined
regions where γ = 1 the second order accuracy is ensured.
We further introduce the staggered points ri+1/2 and ri−1/2 such that

ri+1/2 = ri + ri+1
2 , (3.18)

ri−1/2 = ri + ri−1
2 (3.19)

and compute the first derivative at ri using the values of u at the staggered points ri+1/2
and ri−1/2:

∂u

∂r

∣∣∣∣
i

= 2
hi + hi−1

ui+1/2 −
2

hi + hi−1
ui−1/2 −

1
4 (hi − hi−1) ∂

2u

∂r2

∣∣∣∣∣
i

+O
(
h2
)
. (3.20)

This relation is useful to derive the second derivative. It is obtained by replacing u by ∂u

∂r
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in (3.20):

∂

∂r

(
∂u

∂r

)∣∣∣∣
i

=
(
∂u

∂r

∣∣∣∣
i+ 1

2

− ∂u

∂r

∣∣∣∣
i− 1

2

)
2

hi + hi−1
+O (h) , (3.21)

∂2u

∂r2

∣∣∣∣∣
i

= 2
hi−1 (hi + hi−1)ui−1 −

2
hihi−1

ui + 2
hi (hi + hi−1)ui+1 +O (h) . (3.22)

Note that for regularly spaced grid points with hi = hi−1 = h, the equation (3.22) becomes
the general well-known formula of the second derivative at second order accuracy for
regular grid points.

3.3 Discrete system of equations for m 6= 0
For modes m 6= 0, all the unknowns of the problem are solved at grid points ri.

3.3.1 Modified Poisson equation for Ψ(m)

The discrete form of equation (2.44)

L(m)Ψ(m)
∣∣∣
i

= −ω(m)
Bi

+ 2α2
i

L
u

(m)
Bi

(3.23)

is solved at each time step in order to obtain Ψ(m). The linear operator L(m) (2.45) is
discretised at each grid point ri using formula (3.22):

L(m)Ψ(m)
∣∣∣
i

= 2
riαi (hi + hi−1)

ri+ 1
2
α2
i+ 1

2

(
Ψ(m)
i+1 −Ψ(m)

i

)
hi

− ri− 1
2
α2
i− 1

2

(
Ψ(m)
i −Ψ(m)

i−1

)
hi−1


− m2

r2
i αi

Ψ(m)
i . (3.24)

Introducing the quantities η+
i = hi (hi + hi−1)

2 and η−i = hi−1 (hi + hi−1)
2 , the discretised

operator L(m)Ψ(m)
∣∣∣
i
thus reads:

[
ri−1/2α

2
i−1/2

riαiη
−
i

−
(
ri+1/2α

2
i+1/2

riαiη
+
i

+
ri−1/2α

2
i−1/2

riαiη
−
i

+ m2

r2
i αi

)
ri+1/2α

2
i+1/2

riαiη
+
i

]


Ψ(m)
i−1

Ψ(m)
i

Ψ(m)
i+1

 .

The resulting tridiagonal system has to be solved for 2 ≤ i ≤ Nr − 1. It also contains the
quantities Ψ(m)

1 and Ψ(m)
Nr

. These terms are substituted for, using the boundary conditions
given in (2.62) and (2.68). On the axis, at r = r1 = 0, the regularity condition for m 6= 0
directly imposes:

Ψ(m)
1 = 0. (3.25)

At the outer boundary of the domain, the condition is discretised using a second order
backward formula

Ψ(m)
Nr

= (hNr−1 + hNr−2)2

mCmhNr−1hNr−2 (hNr−1 + hNr−2) + hNr−2 (hNr−2 + 2hNr−1)Ψ(m)
Nr−1

− h2
Nr−1

mCmhNr−1hNr−2 (hNr−1 + hNr−2) + h2
Nr−2 + 2hNr−1hNr−2

Ψ(m)
Nr−2. (3.26)
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Figure 3.3 – Matrix bloc structure for mode m 6= 0 at instant tn+1. PZ, PD, PU are
tridiagonal matrix blocks while PG is diagonal.

The resulting tridiagonal (Nr − 2) × (Nr − 2) system is solved using a band LU factori-
sation of the LAPACK library. As each mode m can be treated independently, parallel
OpenMP micro-tasking is implemented: different ranges of m values are assigned to dif-
ferent threads.

3.3.2 Modified Helmholtz equations for
(
ω

(m)
B , u

(m)
B

)
The system of equations for

(
ω

(m)
B , u

(m)
B

)
resulting from the temporal discretisation of

(3.9) can be written in a matrix bloc form as depicted in figure 3.3. As ωB and uB are
coupled through the dynamical equations, the resulting discretised system displays a 2×2
block structure: the bloc matrices PZ and PD contain the discretisation coefficients of
modified Helmholtz equation for ωB while the bloc matrices PG and PU refer to the
modified Helmholtz equation for uB. The viscous terms V T (m)

ω and V T (m)
u discretised at

nodes ri are expressed as

V T (m)
ω

∣∣∣
i

= ν

L(m)
(
ω

(m)
B

α

)∣∣∣∣∣
i

−
(

2α2
i

L

)2

ω
(m)
Bi

+ ν
2α2

i

L
L(m)

(
u

(m)
B

α

)∣∣∣∣∣
i

,

V T (m)
u

∣∣∣
i

= ν

[
L(m)

(
u

(m)
B

α

)∣∣∣∣∣
i

−2α2
i

L
ω
B

(m)
i

]
.

Using the discretisation of operator L(m) (formula (3.24)), one obtains

PZ(m) · ω(m)
B

∣∣∣
i

= σω
(m)
Bi
− ν

L(m)
(
ω

(m)
B

α

)∣∣∣∣∣
i

−
(

2α2
i

L

)2

ω
(m)
Bi

 (3.27)

which reads

−ν ri− 1
2
α2
i− 1

2

riαiαi−1η
−
i

σ + ν

ri+ 1
2
α2
i+ 1

2

riα2
i η

+
i

+
ri− 1

2
α2
i− 1

2

riα2
i η
−
i

+ m2

r2
i α

2
i

+ 4α4
i

L2

 −ν
ri+ 1

2
α2
i+ 1

2

riαiαi+1η
+
i



ω

(m)
Bi−1

ω
(m)
Bi

ω
(m)
Bi+1

 .

Similarly, the other matrix blocks are expressed as

PD(m) · u(m)
B

∣∣∣
i

= −2ν
L
α2
i L(m)

(
u

(m)
B

α

)∣∣∣∣∣
i

(3.28)
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= 2ν
L

[
−
ri− 1

2
α2
i− 1

2
αi

riαi−1η
−
i

ri+ 1
2
α2
i+ 1

2

riη
+
i

+
ri− 1

2
α2
i− 1

2

riη
−
i

+ m2

r2
i

−
αiri+ 1

2
α2
i+ 1

2

riαi+1η
+
i

]

u

(m)
Bi−1

u
(m)
Bi

u
(m)
Bi+1



PG(m) · ω(m)
B

∣∣∣
i

=2ν
L
α2
iω

(m)
Bi

(3.29)

PU (m) · u(m)
B

∣∣∣
i

=σu(m)
Bi
− ν L(m)

(
u

(m)
B

α

)∣∣∣∣∣
i

(3.30)

=

−ν ri− 1
2
α2
i− 1

2

riαiαi−1η
−
i

σ + ν

ri+ 1
2
α2
i+ 1

2

riα2
i η

+
i

+
ri− 1

2
α2
i− 1

2

riα2
i η
−
i

+ m2

r2
i α

2
i

 −ν
ri+ 1

2
α2
i+ 1

2

riαiαi+1η
+
i



u

(m)
Bi−1

u
(m)
Bi

u
(m)
Bi+1



The resulting system, for 2 ≤ i ≤ Nr − 1, contains also the quantities ω(m)
B (r1) and

ω
(m)
B (rNr) which are substituted for by their expressions at the boundaries for r1 = 0

(2.62) and rNr = Rext (2.68)

u
(m)
B (rNr) = 0, (3.31)

ω
(m)
B (rNr) = 0, (3.32)

u
(m)
B (r1) = 0, (3.33)

ω
(m)
B (r1) = 0. (3.34)

The nonlinear terms NL(m)
n appearing in the right hand side of (3.9) have to be also

discretised at nodes ri:

NL(m)
ω

∣∣∣
i

= 1
riαi

∂

∂r

(
rαg(m)

ϕ

)∣∣∣∣
i
− im
riαi

g(m)
r

∣∣∣
i
+ 2α2

i

L
g

(m)
B

∣∣∣
i
+ imαi

L2 (u2
Bi

)(m) (3.35)

NL(m)
u

∣∣∣
i

= g
(m)
B

∣∣∣
i

(3.36)

where gB ≡ ωruϕ − ωϕur, gr ≡ ωBuϕ and gϕ ≡ ωBur.
In the pseudo-spectral approach, nonlinear terms are evaluated in the physical space. The
evaluation of the radial derivative of gϕ at ri requires the computation of ωBur at the
staggered grid points ri+1/2. In order to address this problem, gϕ

(
ri+1/2, ϕj

)
is obtained

by interpolation of ωBur between points ri and ri+1 in physical space:

gϕ
(
ri+1/2, ϕj

)
= [ωBur]

(
ri+1/2, ϕj

)
(3.37)

= 1
2

(
ωB (ri, ϕj)ur (ri, ϕj) + ωB (ri+1, ϕj)ur (ri+1, ϕj)

)
.
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Figure 3.4 – Matrix bloc structure for mode m = 0 at discrete instant tn+1. The matrix
blocks PV (0) and PU (0) are tridiagonal while PG(0) and PD(0) are bidiagonal.

Moreover, gr and gB need to be evaluated at nodes ri while the components uϕ and ωϕ
are available at nodes ri+1/2. The following interpolation formulas are used:

gB (ri, ϕj) = [ωruϕ] (ri, ϕj)− [ωϕur] (ri, ϕj) (3.38)

= ωr (ri, ϕj)
(

hi
hi + hi−1

uϕ
(
ri−1/2, ϕj

)
+ hi−1
hi + hi−1

uϕ
(
ri+1/2, ϕj

))
− ur (ri, ϕj)

(
hi

hi + hi−1
ωϕ
(
ri−1/2, ϕj

)
+ hi−1
hi + hi−1

ωϕ
(
ri+1/2, ϕj

))
,

gr (ri, ϕj) = [ωBuϕ] (ri, ϕj) (3.39)

= ωB (ri, ϕj)
(

hi
hi + hi−1

uϕ
(
ri−1/2, ϕj

)
+ hi−1
hi + hi−1

uϕ
(
ri+1/2, ϕj

))
.

The above components are then Fourier transformed to yield g
(m)
ϕ , g(m)

r and g
(m)
B from

which nonlinear terms NL(m)
ω and NL

(m)
u are deduced. The remaining terms in equa-

tion (3.9) are already known from the previous time steps so that the right hand side is
completely determined.
The resulting linear system has dimension 2(Nr−2)×2(Nr−2) and the coupling between
ω

(m)
B and u(m)

B would require solving the system blockwise. In order to avoid the block solv-
ing, we first reorder the variables according to ω(m)

B (r2) , u(m)
B (r2) , ω(m)

B (r3) , u(m)
B (r3) , .....

For each mode m 6= 0 this leads to a single band matrix with a left half-bandwidth 2 and
right half-bandwidth 3 – a hexadiagonal matrix which is solved using band LU factorisa-
tion.

3.4 Discrete system of equations for m = 0

3.4.1 Computation of the streamfunction Ψ(0)

For m = 0, there is no need to solve a linear system for the axisymmetric contribution
Ψ(0), because it can obtained directly through a numerical integration of equation (2.18)
along the radial direction.

3.4.2 Modified Helmholtz equations for
(
u(0)
ϕ , u

(0)
B

)
For the mode m = 0, the unknown functions are u(0)

ϕ et u(0)
B . An important difference

exists due to u(0)
ϕ being defined on the staggered points ri+1/2. The coupled system that

has to be solved for
(
u

(0)
ϕ , u

(0)
B

)
has the 2× 2 block structure depicted in figure 3.4.

The viscous terms V T (0)
uϕ and V T (0)

uB are now discretised at nodes ri+1/2 and ri, respectively.
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They are expressed with the block matrices PV (0), PD(0), PG(0) and PU (0) such that

V T (0)
uϕ

∣∣∣
i+1/2

= ν

(
αi+1/2

∂

∂r

( 1
rα2

∂

∂r

(
rαu(0)

ϕ

))∣∣∣∣
i+1/2

+
2αi+1/2
L

∂

∂r

(
αu

(0)
B

)∣∣∣∣
i+1/2

)
,

V T (0)
uB

∣∣∣
i

= ν

[
−2αi
riL

∂

∂r

(
rαu(0)

ϕ

)∣∣∣∣
i
− 4α4

i

L2 u
(0)
Bi

+ 1
riα

∂

∂r

(
rα2 ∂

∂r

(
u

(0)
B

α

))∣∣∣∣∣
i

]
.

These terms contain the discretisation coefficients obtained after injecting the formulas
(3.22). For i = 2, ..., Nr − 1, one obtains

PV (0) · u(0)
ϕ

∣∣∣
i+1/2

= σu(0)
ϕi+1/2

− ναi+1/2
∂

∂r

( 1
rα2

∂

∂r

(
rαu0

ϕ

))∣∣∣∣
i+1/2

(3.40)

=

−ν ri− 1
2
αi+ 1

2
αi− 1

2

riα2
i η

+
i

σ + ν

ri+ 1
2
α2
i+ 1

2

riα2
i η

+
i

+
ri+ 1

2
α2
i+ 1

2

ri+1α2
i+1η

++
i

 −ν
ri+ 3

2
αi+ 1

2
αi+ 3

2

ri+1α2
i+1η

++
i



u

(0)
ϕi−1/2

u
(0)
ϕi+1/2

u
(0)
ϕi+3/2



PD(0) · u(0)
B

∣∣∣
i+ 1

2
= −2ν

αi+ 1
2

L

∂

∂r

(
αu

(0)
B

)∣∣∣∣
i+ 1

2

=
[
0

2αi+ 1
2
αi

Lhi
−

2αi+ 1
2
αi+1

Lhi

]

u

(0)
Bi−1

u
(0)
Bi

u
(0)
Bi+1


(3.41)

PG(0) · u(0)
ϕ

∣∣∣
i

=2αi
Lri

∂

∂r

(
rαu(0)

ϕ

)∣∣∣∣
i

(3.42)

=
[

4ri− 1
2
αi− 1

2
αi

Lri (hi + hi−1)
4ri+ 1

2
αi+ 1

2
αi

Lri (hi + hi−1) 0
]

u

(0)
ϕi−1/2

u
(0)
ϕi+1/2

u
(0)
ϕi+3/2

 (3.43)

PU (0) · u(0)
B

∣∣∣
i

=
(
σ + 4α4

i

L2

)
u

(0)
Bi
− 1
riαi

∂

∂r

(
rα2 ∂

∂r

(
u

(0)
B

α

))∣∣∣∣∣
i

(3.44)

=
[
−

ri− 1
2
α2
i− 1

2

riαiαi−1δri−
σ + 4α4

i

L2 +
ri+ 1

2
α2
i+ 1

2

riα2
i δri

+ +
ri− 1

2
α2
i− 1

2

riα2
i δri

− −
ri+ 1

2
α2
i+ 1

2

riαiαi+1δri+

]

u

(0)
Bi−1

u
(0)
Bi

u
(0)
Bi+1



where η++
i is given by η++

i =
hi
(
hi + hi+1

)
2 . Matrices PV (0) and PU (0) are tridiagonal

while PD(0) and PG(0) are bidiagonal. The system of equations for u(0)
B is written at grid
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points ri for 2 ≤ i ≤ Nr − 1 (as for modes m 6= 0). Wherever they appear, the values of
u

(0)
B (r1) and u

(0)
B (rNr) are substituted for by their expression arising from the boundary

conditions (2.67) and (2.78):

u
(0)
B (r1) = (h2 + h1)2

α2
(
h2

2 + 2h2h1
)u(0)

B (r2)− h2
1

α3
(
h2

2 + 2h2h1
)u(0)

B (r3) , (3.45)

u
(0)
B (rNr) = α (rNr)

(
u∞z + Γ

2πL

)
. (3.46)

As the first equation for uB1 involves uB2 and uB3 , an extra diagonal term proportional
to uB3 arises in the matrix block PV (0). This term is unwanted as it breaks the band
structure. Fortunately, it is removed by an appropriate linear combination of the equation
for u(0)

ϕ

(
r3/2

)
with the equation for u(0)

B2 . This procedure preserves both the band structure
of PV (0) and the second order accuracy.
By contrast, the system of equations for u(0)

ϕ should be written at staggered grid points
ri+1/2. The first value at r3/2 is part of the unknowns of the system whereas the last value
at rNr+1/2 is replaced by

u(0)
ϕ (rNr+1/2) = α(Rext + hNr/2)

( Γ
2π (Rext + hNr/2) −

Rext + hNr/2
L

U∞z

)
(3.47)

according to (2.80). It remains that for i = 1, at radial distance r = r3/2, we need an
expression for the viscous term

V T (0)
uϕ

∣∣∣
r3/2

=ν α(r3/2) ∂

∂r

(
ω

(0)
B

α

)∣∣∣∣∣
r3/2

= ν
α(r3/2)
h1

[
ω

(0)
B (r2)
α(r2) − ω

(0)
B (r1)
α(r1)

]
, (3.48)

which should be written with the help of u(0)
ϕ and u(0)

B . From equation (2.48), one gets

rαω
(0)
B = 2

L
rα3 u

(0)
B + ∂

∂r

(
rα u(0)

ϕ

)
. (3.49)

Integration of (3.49) from r = 0 to r = r3/2 and discretisation of this integral yields the
second-order accurate formula:

ω
(0)
B (r1) = 2

L
u

(0)
B (r1) +

4α(r3/2)
h1

u(0)
ϕ (r3/2). (3.50)

In addition, equation (3.49), when discretised with a centred finite difference scheme at
r = r2, yields

ω
(0)
B (r2) = 2

L
α2(r2)u(0)

B (r2) + 2
r5/2α(r5/2)u(0)

ϕ (r5/2)− r3/2α(r3/2)u(0)
ϕ (r3/2)

r2α(r2) (h1 + h2) . (3.51)

The expression of the viscous term thus consists of

PV (0) · u(0)
ϕ

∣∣∣
r3/2

=
[
σ + ν

(
− 2r3/2α3/2
r2α2h1 (h1 + h2) +

4α3/2
h2

1

)
ν

−r5/2α5/2
r2α2

2h1 (h1 + h2)
0
]

u

(0)
ϕ3/2

u
(0)
ϕ5/2

u
(0)
ϕ7/2
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and the coupling terms

PD(0) · u(0)
B

∣∣∣
r3/2

=
[ 2ν
Lh1

−2ν
α2h1

0
]

u

(0)
B1

u
(0)
B2

u
(0)
B3

 .

In the right hand side of (3.4), the nonlinear terms

NL(0)
uB

= g
(0)
B = [ωr uϕ − ωϕ ur](0) (3.52)

NL(0)
uϕ = g(0)

ϕ = [ωBur](0) (3.53)

are respectively discretised at r = ri and r = ri+1/2. As the nonlinear terms are computed
in the physical space and then Fourier transformed, all Fourier modes m including the
axisymmetric contribution m = 0 are readily available to compute the right hand side of
the system. The unknown variables are reordered according to u(0)

ϕ (r1), u(0)
B (r2), u(0)

ϕ (r2),
u

(0)
B (r3),... This leads to a pentadiagonal matrix with left and right-half bandwidth 2. The

reordered system is solved with the LAPACK library.
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Vortex filaments: cut-off theory
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For two-dimensional flows, the analysis of the flow dynamics can be reduced to the study
of ordinary differential equations (O.D.E.) describing a set of point vortices. For three-
dimensional flows, a filamentary approach based on the cutoff theory exists in which the
flow dynamics is described by the time evolution of lines. In the present chapter, this
latter approach is adopted with the additional constraint of helical symmetry. In this
context, the time evolution problem of a set of helical filaments (see figure 4.1) can be
again written as an O.D.E. system. This chapter assumes an incompressible inviscid flow
which is at rest at r → ∞ and describes the ordinary differential equations (section 4.1),
the numerical integration (section 4.2) and a validation (section 4.3) for a set of helical
vortices.
This approach is used in chapter 6 to obtain an analytical approximation for the angular
velocity of a quasi-equilibrium and in chapter 10 to obtain the nonlinear dynamics of an
unstable set of helical vortices.
Let us consider a set of N helical filaments indexed by the subscript j = 1, ..., N . Each
filament Hj is labelled by its vector position rj :

rj (rj , ϕj , θ, t) = i rj (t) cos
(
θ + ϕj (t)

)
+ j rj (t) sin

(
θ + ϕj (t)

)
+ k θ

γ
, (4.1)

where θ is a continuous parameter defining a particular point on the filament and γ is
the inverse of the reduced pitch L introduced in chapter 2, so that 2π/γ = 2πL is the
spatial period along the axial direction z. At time t, the helical filament Hj intersects the
horizontal plane (z = 0 or θ = 0) at

r0
j (t) ≡ rj (rj , ϕj , 0, t) = irj(t) cos (ϕj(t)) + jrj(t) sin (ϕj(t)) = rj(t)er (ϕj(t)) . (4.2)

Variables rj(t) and ϕj(t) are thus respectively the radial and azimuthal positions of this
intersecting point. Note that γ is kept constant in time and is identical for all filaments: all
filaments are right-handed or else left-handed to comply with helical symmetry. Following
Ricca (1994), it is adequate for computations to introduce on each filament Hj , a Frenet-
Serret basis (tj ,nj , bj). Vector tj is the vector tangent to the filament

tj ≡ rj ′ =
γ rj√

1 + γ2r2
j

[
−i sin(θ + ϕj) + j cos(θ + ϕj) + k

γ rj

]
. (4.3)
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Figure 4.1 – N = 3 helical vortex filaments.

where the prime denotes the derivative with respect to the arclength sj ≡ θ
(
1 + γ2r2

j

)1/2
/γ

of helix Hj . The unit normal vector nj is defined as

nj ≡
r′′j∥∥∥r′′j ∥∥∥ = −i cos(θ + ϕj)− j sin(θ + ϕj), (4.4)

and the binormal bj ≡ tj × nj reads

bj = 1√
1 + γ2r2

j

[
i sin(θ + ϕj)− j cos(θ + ϕj) + kγ rj

]
. (4.5)

It is recalled that the following equations are satisfied
dtj
ds = κnj ,

dbj
ds = −τ nj . (4.6)

where κ stands for the curvature and τ for the torsion of the helix:

κ ≡
∥∥∥r′′j ∥∥∥ = γ2 rj

1 + γ2 r2
j

, τ = γ

1 + r2
jγ

2 . (4.7)

4.1 The ODE system governing the helical vortex filaments
If we determine the motion of the particular fluid particle located at time t at position
r0
i (t), we are able to recover the position and motion of the whole filament Hi because of

the helical symmetry.

4.1.1 Computation of the velocity using the Biot-Savart law
Let us compute the Lagrangian velocity ui

(
r0
i

)
of that particular point. It can be de-

composed into two contributions: the induced motion of the filament Hi on itself and the
velocity induced by the N − 1 other filaments:

ui
(
r0
i

)
= uself

j

(
r0
i

)
+

N∑
j 6=i
uj
(
r0
i

)
. (4.8)
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The velocity induced by the jth (j 6= i) filament Hj at a point r0
i ∈ Hi is given by the

Biot-Savart law:

uj(r0
i ) = Γj

4π

∫ +∞

−∞
tj ×

(
r0
i − rj

)
∥∥∥(r0

i − rj
)∥∥∥3 dsj (4.9)

that can be evaluated by direct integration (see Appendix D). The self-induced velocity
uself
i

(
r0
i

)
of filament Hi at a point r0

i ∈Hi is again given by the Biot-Savart law. However
the integral is singular and should be regularized using the cutoff theory which introduces
a vortex core size (see Appendix D).

4.1.2 Motion of the intersecting point
Let us consider a given fluid particle located on the filament Hi. A parameter θ = θp(t)
defines its position via

ri(θp, t) = i ri(t) cos(θp + ϕi(t)) + j ri(t) sin(θp + ϕi(t)) + k θp
γ

(4.10)

= ri(t) er(θp + ϕi(t)) + k θp
γ
. (4.11)

As θ = θp(t) a priori varies in time, it follows that

Dri
Dt

= ∂ri
∂si

dsi
dθ

dθp
dt + ∂ri

∂ϕi

dϕi
dt + ∂ri

∂ri

dri
dt (4.12)

with
∂ri
∂si

= ti,
∂ri
∂ϕi

= ri(t)eθ(θp + ϕi(t)) = ri(t)k × er(θp + ϕi(t)),
∂ri
∂ri

= er(θp + ϕi(t)).

Within the framework of filament theory, only the velocity components orthogonal to
the filament can be computed for velocity at a point located on the vortex itself. As a
consequence, the condition

Dri
Dt

= ui (ri) (4.13)

is imposed only along ni and bi:(
ui (ri)−

Dri
Dt

)
· ni =

(
ui (ri)−

∂ri
∂ϕi

dϕi
dt −

∂ri
∂ri

dri
dt

)
· ni = 0, (4.14)(

ui (ri)−
Dri
Dt

)
· bi =

(
ui (ri)−

∂ri
∂ϕi

dϕi
dt −

∂ri
∂ri

dri
dt

)
· bi = 0. (4.15)

For a given time t, let us now impose the above equations to the particle located at
r0
i = ri(t) er(ϕi(t)) that is at z = 0 or θp(t) = 0. Since at point r0

i one has

ni = −er(ϕi(t)), bi = 1√
1 + γ2r2

i

[−eθ(ϕi(t)) + γ rik] ,

∂ri
∂ϕi

= ri(t)eθ(ϕi(t)) = ri(t)k × er(ϕi(t)),
∂ri
∂ri

= er(ϕi(t)),

the following equations are obtained

dri
dt = ui

(
r0
i

)
· er(ϕi(t)), (4.16)

dϕi
dt = ui

(
r0
i

)
·
[
eθ(ϕi(t))

ri
− γk

]
. (4.17)
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After introducing the expressions for ui
(
r0
i

)
computed in section 4.1.1 and after time-

consuming computations, one gets a system of 2N O.D.E. for ri(t) and ϕi(t):

dri
dt =

N∑
j 6=i

Γj
4π |γ| rj [Aij cos(ϕj − ϕi) +Bij sin(ϕj − ϕi)], (4.18)

dϕi
dt = Γi

2π γ
2
{

[Ki (γri, γδ)− Ii (γri, γδ)]− γ2 r2
i Ii (γri, γδ)

}
+

N∑
j 6=i

Γj
4π |γ|

[
Fij −

rj
ri
Bij cos(ϕj − ϕi) + rj

ri
Aij sin(ϕj − ϕi)

]
(4.19)

+
N∑
j 6=i

Γj |γ|
4π

[
(ri rj Cij cos(ϕj − ϕi)− ri rj Dij sin(ϕj − ϕi)− r2

j Fij)
]

where δ = δ1a denotes the cut-off length with a the core size and δ1 a dimensionless factor
linked to the velocity profile in the vortex core (see Appendix D). The integrals

Aij =
∫ +∞

−∞
[sin(θ)− θ cos(θ)]Yij dθ, (4.20)

Bij =
∫ +∞

−∞
[cos(θ) + θ sin(θ)]Yij dθ,

Cij =
∫ +∞

−∞
[cos(θ)]Yij dθ,

Dij =
∫ +∞

−∞
[sin(θ)]Yij dθ,

Fij =
∫ +∞

−∞
Yij dθ,

Yij = 1
Z

3/2
ij

,

Zij =θ2/γ2 + r2
i + r2

j − 2rjri cos θ cos (ϕj − ϕi) + 2rjri sin θ sin (ϕj − ϕi)
are related to the contributions of other vortices and the integrals

Ii (γri, γδ) =
∫ ∞
θ0i

[1− cos θ] dθ
{θ2 + 2 γ2 r2

i [1− cos θ]}3/2 ,

Ki (γri, γδ) = 1
γ2r2

i

{
1− θ0i

[2γ2r2
i [1− cos θ0i] + θ2

0i]1/2

}

to the self-induced contribution. Note that θ0i = |γ| δ√
1 + γ2r2

i

.

4.2 Numerical integration for the helical vortex system

This system takes the form of a general dynamical system

dX
dt = F (X) , X(t = 0) = X0 (4.21)

where F is a nonlinear function of X = (r1, r2, .....rN−1, rN , ϕ1, ϕ2, ...., ϕN−1, ϕN )T . This
system is solved numerically using a second order Adams-Bashforth extrapolation for the
r.h.s.

Xn+1 −Xn

δt
= 3

2Fn −
1
2Fn−1 (4.22)
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with Fn = F (Xn) and δt the time step. The method is second order accurate at time
(tn + tn+1)/2. To start the simulation, one uses the initial condition X0 and

X1 = X0 + δtF (X1/2), where X 1
2

= X0 + δt

2 F (X0).

Integrals Aij to Fij are decomposed into a sum of 2Np integrals (the value of Np is chosen
to be large enough to ensure numerical convergence)

Aij =
Np∑

p=−Np

∫ 2π

0

[sin(θ)− (θ + 2pπ) cos(θ)]
[(θ + 2pπ)2 /γ2 + r2

i + r2
j − 2rjri cos (θ) cos (ϕj − ϕi) + 2rjri sin (θ) sin (ϕj − ϕi)]3/2

dθ,

Bij =
Np∑

p=−Np

∫ 2π

0

[cos(θ) + (θ + 2pπ) sin(θ)]
[(θ + 2pπ)2 /γ2 + r2

i + r2
j − 2rjri cos (θ) cos (ϕj − ϕi) + 2rjri sin (θ) sin (ϕj − ϕi)]3/2

dθ,

Cij =
Np∑

p=−Np

∫ 2π

0

cos(θ)
[(θ + 2pπ)2 /γ2 + r2

i + r2
j − 2rjri cos (θ) cos (ϕj − ϕi) + 2rjri sin (θ) sin (ϕj − ϕi)]3/2

dθ,

Dij =
Np∑

p=−Np

∫ 2π

0

sin(θ)
[(θ + 2pπ)2 /γ2 + r2

i + r2
j − 2rjri cos (θ) cos (ϕj − ϕi) + 2rjri sin (θ) sin (ϕj − ϕi)]3/2

dθ,

Fij =
Np∑

p=−Np

∫ 2π

0

1
[(θ + 2pπ)2 /γ2 + r2

i + r2
j − 2rjri cos (θ) cos (ϕj − ϕi) + 2rjri sin (θ) sin (ϕj − ϕi)]3/2

dθ.

The integral Ii is split into a sum of Np integrals

Ii =
∫ 2π

θ0i

[1− cos θ] dθ
{θ2 + 2 γ2 r2

i [1− cos(θ)]}3/2 dθ +
Np−1∑
p=1

∫ 2π

0

[1− cos (θ)]
{(θ + 2pπ)2 + 2 γ2 r2

i [1− cos (θ)]}3/2
dθ.

Each such integral is then discretized into an even number NSimpson of sub-intervals in
[0, 2π] and evaluated using a composite Simpson method

∫ 2π

0
f (θ) dθ ≈ h

3

f (0) + 4
n/2∑
j=1

f (θ2j−1) + 2
n/2−1∑
j=1

f (θ2j) + f (2π)


where

θj = jh for j = 0, 1, · · · , NSimpson, and h = 2π
NSimpson

.

4.3 Numerical validation
In order to validate the code, a comparison between two-dimensional theoretical results
and numerical results for γ → 0 is performed.
First, the angular velocity of a polygon of N point vortices with γ → 0 is performed
starting with an initial condition

ϕi(t = 0) = (i− 1) 2π
N

, ri(t = 0) = 1.

For N < 7, the pure two-dimensional polygonal configuration is known to be a stable
equilibrium with angular velocity

Ωth
2D = Γ (N − 1)

4πr2
0

. (4.23)
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Here the circulation Γ and r0 are set to 1. Numerically one sets γ = 0.00001 and core size
a = 0.1. The numerical parameters are the time step δt = 0.1 and NSimpson = 256× 104.
Once the simulation is performed, the angular velocity is evaluated by the formula Ωn

2D =
[ϕ(tn) − ϕ(tn−1)]/δt. Ωn

2D is shown to be constant with time (it does not depend on n)
and Table 4.1 indicates that its numerical value is close to the theoretical expectation.

N Ω2D Ωth
2D

2 0.079577 0.079577
3 0.159154 0.159154
4 0.238732 0.238732
5 0.318309 0.318309
6 0.397886 0.397887

Table 4.1 – Comparison of the numerical Ω2D and theoretical Ωth
2D results for a polygonal

configurations with N = 2 to 6 vortices.

A second test consists in computing the angular velocity of a pair of point vortices with
γ → 0, however with an initial condition off-centred with respect to the origin:

r1(t = 0) = r0 + δr, r2(t = 0) = r0 − δr,
ϕ1(t = 0) = ϕ2(t = 0) = π

4 .

This pattern is more demanding as far as numerics are concerned. In this configuration, the
vortices are theoretically expected to rotate around a centroid which is located at (r = r0,
ϕ = π

4 ). This is indeed observed and parameters and results are shown in table 4.2. The
comparison is very good for δr > 0.1. When δr = 0.1, the angular velocity increases and
a smaller time step δt < 0.01 is necessary to reach convergence.

N γ δt NSimpson Np δr Ω2D Ωth
2D Err-relative %

2 0.00001 0.01 256× 104 8 0.1 7.33074 7.95774 ∼ 8
2 0.00001 0.05 256× 104 8 0.2 1.9827 1.9894 0.33
2 0.00001 0.05 256× 104 8 0.3 0.88566 0.88419 0.16
2 0.00001 0.05 256× 104 8 0.4 0.4971 0.4973 0.03

Table 4.2 – Comparison numerical Ω2D and theoretical Ωth
2D results for a vortex pair when

the centroid is not centred at the origin.
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Chapter 5

Characterization of helical vortices
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In this chapter, the numerical tools and the physical quantities of interest needed to char-
acterize one or multiple helical vortices are presented. Helix radius and angular velocity
can be directly extracted from the DNS fields (section 5.1). However, the analysis of the
vortex core structures necessitates the definition of a cut plane "orthogonal" to the vortex
(section 5.2). The fields are separated into in-plane and orthogonal components and a
multipolar decomposition is applied (section 5.3), leading to the definition of vortex core
radius and ellipticity (section 5.4).

5.1 Vortex position and angular velocity

All quantities are obtained by DNS at discrete points (ri, ϕj) or equivalently at points
(ri, θj) in the plane z = 0 thereafter denoted plane Π0.

5.1.1 Helix radius rA

In the plane Π0, we determine the position of the vortices as being the centre A of the
vortex or the various centres in the case of multiple vortices. Point A with coordinates
(rA, θA) corresponds to the location where the maximum of the helical vorticity ωB is
reached in the vortex region in plane Π0. The precise value of the helix radius rA is
obtained using a local quadratic interpolation of ωB around the discrete maximum location.
Alternatively, A can also be defined as a stagnation point (see definition and procedure in
chapter 7).
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5.1.2 Angular velocity Ω

Configurations of one helical vortex or a regular array of identical vortices may be inviscid
equilibria when considered in a frame rotating at some constant angular velocity Ω0. This
rotation is due to both the self-induced vortex velocity and the mutual induction between
vortices. When viscous diffusion acts, it gives rise to a slowly evolving state that we
call quasi-equilibrium with changing angular velocity and core size. A first method for
evaluating the instantaneous angular velocity Ω(t) is to track the azimuthal location of
the vortex center θ− and θ+ in the Π0 plane for times t− and t+ and to set Ω(t) =
(θ+ − θ−)/(t+ − t−) at time t = 1

2(t− + t+). Such a procedure is inaccurate because
determining θ± is quite sensitive to the actual position of the vortex center within the
numerical cell. Instead we use the vorticity component ωB in the whole plane Π0 at times
t− and t+. The rotation angle δθ along the azimuth is determined to achieve the best
correlation between ωB(r, θ + δθ, t−) and ωB(r, θ, t+). Technically, the integral

I(δθ) ≡
∫∫

S
|ωB(r, θ, t+)− ωB(r, θ + δθ, t−)|2dS , (5.1)

is optimized using an iterative procedure. ωB(r, θ+δθ, t−) is easily obtained from ωB(r, θ, t−):
Fourier azimuthal modes ω(m)

B are simply multiplied by eimδθ. This approach is justified
since for inviscid equilibria, I(δθ) vanishes for δθ = Ω0 × (t+ − t−). For viscous quasi-
equilibria, I(δθ) is assumed to reach a minimum when δθ = Ω(t)× (t+− t−) yielding Ω(t)
at time t = 1

2(t− + t+).

5.2 Framework description

The plane Π0 is not convenient to characterize the vortex core structures. For instance, let
us consider a helical vortex with circular vorticity distribution in its core. When cut by the
plane Π0 orthogonal to the helix axis, its cross-section is not circular but takes a banana
shape. This effect is only geometrical and it is amplified when the helical pitch 2πL is
reduced. This can be visualised in figure 5.1 (left column), where the contours of the helical
vorticity component ωB are plotted for the case of a single helical vortex and various values
of L. In order to characterize the structure of a helical vortex, it is convenient to slice it
with a plane locally perpendicular to the vorticity tube. Note that strictly speaking it is
not possible to define "a plane perpendicular to a helical vortex" as the orientation of the
vector eB tangent to a helical line changes with position. However, if the vorticity tube is
small enough so that these variations can be neglected, a perpendicular plane thereafter
denoted Π⊥ can be introduced. Note that the Π⊥ is associated to one given vortex, and it
depends on time. Other vortices present in the fluid domain are associated to other such
orthogonal planes. The following section is dedicated to the definition of this plane.

5.2.1 Definition of Π⊥ and its associated basis

The plane Π⊥ is defined as the plane which includes point A of maximum helical vorticity
and which is perpendicular to the helical line passing through this point, i.e. perpendicular
to the unit vector eBA ≡ eB (rA, θA) given by

eBA (rA, θA) = αA

[
ez + rA

L
eθ (θA)

]
with αA ≡ α (rA) = 1√

1 + (rA/L)2
. (5.2)

If the vortex core size is small compared to L, all helical lines of this vorticity tube
intersect quasi perpendicularly the Π⊥-plane and the cross section of the vortex is by far
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CHAPTER 5. CHARACTERIZATION OF HELICAL VORTICES

Figure 5.1 – Single vortex of core radius a = 0.09. Top: reduced pitch L = 0.20, middle:
L = 0.60 and bottom: L = 1. Left column: contours of vorticity ωB in the Π0 plane.
Right column: contours of vorticity ωB in the Π⊥ plane.
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Figure 5.2 – Planes Π0 and Π⊥ with their associated coordinates systems. The black solid
helical line intersects Π0 at point M and Π⊥ at point M1.

more circular, as can be seen in figure 5.1 (right column). In the Π⊥ plane, one may use
a Cartesian basis (erA , eϕA) defined as

eϕA ≡ eϕ(rA, θA) = αA

[
eθ (θA)− rA

L
ez

]
, (5.3)

erA ≡ er(θA) = cos θA ex + sin θA ey (5.4)

or a local polar coordinate system centred at point A with local basis
(
eρ, eψ

)
:

eρ = cosψerA + sinψeϕA , (5.5)
eψ = cosψeϕA − sinψerA (5.6)

where ψ is the polar angle. A sketch of the different planes and their associated coordinate
systems is shown in figure 5.2.

5.2.2 Relationships between planes Π0 and Π⊥
It is necessary to establish some connections between points in Π0 and points in Π⊥.
Any point M in plane Π0, is characterised by its Cartesian coordinates (x, y) or polar
coordinates (rM , θM = ϕM ) given by

−−→
OM = xM ex + yM ey, with xM = rM cos θM , yM = rM sin θM , (5.7)

where (ex, ey), are unitary vectors along x and y respectively.
Let us consider a point M1 in the Π⊥ plane. M1 does not lie in plane Π0 but sits on
a helical line ϕ = cst which intersects plane Π0 at a given position M (see figure 5.2).
Relations between the coordinates of M and M1 can be now derived. The position vector−−−→
OM1 can be expressed in the cylindrical coordinates associated to Π0

−−−→
OM1 = zM1 ez + rM cos θM1 ex + rM sin θM1 ey (5.8)

with θM1 = θM + zM1/L, or it can be expressed in the Cartesian frame in the Π⊥ plane

−−−→
OM1 = −→OA+ ξ1erA + η1eϕA = (rA + ξ1)erA + η1eϕA (5.9)
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where (ξ1, η1) are the local Cartesian coordinates ofM1. Using expressions (5.8) and (5.9),
the height zM1 can be expressed as

zM1 = −−−→OM1 · ez = −αA
rA
L
η1, (5.10)

implying that vector

−−−→
OM1 − zM1 ez = (rA + ξ1)erA + η1α

2
AeϕA + η1α

2
A

rA
L
eBA (5.11)

has no component along z. The norm of (5.11) yields

r2
M = r2

M1 = (rA + ξ1)2 + α2
Aη

2
1 (5.12)

and computing the scalar products −−−→OM1 · ex and −−−→OM1 · ey leads to

rM cos(θM1) = (rA + ξ1) cos θA − η1αA sin θA, (5.13)
rM sin(θM1) = (rA + ξ1) sin θA + η1αA cos θA, (5.14)

where θM1 = θM − αA
rA
L2 η1. (5.15)

Equations (5.13)-(5.15) link the Cartesian coordinates (ξ1, η1) of a point M1 in Π⊥ to the
coordinates (rM , θM ) of its "helically projected" image point M in Π0. If, in the plane Π⊥,
the polar coordinates (ρ1, ψ1) of point M1 are needed, the relations ξ1 = ρ1 cosψ1, η1 =
ρ1 sinψ1 are used.

5.3 Multipolar decomposition of the fields in the Π⊥ plane

In order to characterize a vortex in the Π⊥ plane, the vorticity component ωB is not
sufficient, for instance, to evaluate the vortex circulation: except at point A, ωB is not
the vorticity component perpendicular to the plane Π⊥. Consequently, it is preferable to
separate the vorticity field into a component orthogonal to the plane Π⊥, namely ωBA ,
and two in-plane polar components ωρ and ωψ defined by

ωBA (M1) ≡ ω (M1) · eBA , (5.16)
ωρ (M1) ≡ ω (M1) · eρ, (5.17)
ωψ (M1) ≡ ω (M1) · eψ. (5.18)

By using the following projections relations

eB (M1) · eBA = αM1αA

[
1 + rM1rA

L2 cos (θM1 − θA)
]
, (5.19)

eϕ (M1) · eBA = αM1αA

[
rA
L

cos (θM1 − θA)− rM1

L

]
, (5.20)

er (M1) · eBA = αA
rA
L

sin (θM1 − θA) (5.21)

and some algebra, equations (5.16)-(5.18) turns into

ωBA (M1) = ωB (M1)αM1αA

[
1 + rM1rA

L2 cos (θM1 − θA)
]

(5.22)

+ ωϕ (M1)αM1αA

[
rA
L

cos (θM1 − θA)− rM1

L

]
+ ωr (M1)αA

rA
L

sin (θM1 − θA)
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Figure 5.3 – Point M1 located at grid node (ρi, ψj) in the Π⊥ plane and corresponding
point M with coordinates (rM , θM ) in the Π0 plane.

ωρ (M1) = ωB (M1)
[
αM1rM1

L
sin (θA − θM1) cosψ

+ αM1αA sinψ
(
−rA
L

+ rM1

L
cos (θM1 − θA)

)]
+ ωr (M1) [cos (θM1 − θA) cosψ + αA sin (θM1 − θA) sinψ] (5.23)

+ ωϕ (M1)
[
αM1 sin (θA − θM1) cosψ + αM1αA

rM1rA
L2 + cos (θM1 − θA) sinψ

]
ωψ (M1) = ωB (M1)

[
−αM1rM1

L
sin (θA − θM1) sinψ

+ αM1αA cosψ
(
−rA
L

+ rM1

L
cos (θM1 − θA)

)]
+ ωr (M1) [− cos (θM1 − θA) sinψ + αA sin (θM1 − θA) cosψ] (5.24)

+ ωϕ (M1)
[
−αM1 sin (θA − θM1) sinψ + αM1αA

rM1rA
L2 + cos (θM1 − θA) cosψ

]
.

Velocity components have similar expressions, when ω is replaced by u in the above
equations.
The helical symmetry is used to retrieve the values of the flow field components in the Π⊥
plane, namely vorticity ωr(M1), ωϕ(M1), ωB(M1) and velocity ur(M1), uϕ(M1), uB(M1)
components from the values ωr(M), ωϕ(M), ωB(M) and ur(M), uϕ(M), uB(M) at point
M "helically projected" on the Π0 plane. In practice, we compute the above quantities on
a regular grid (ρi, ψj) in Π⊥ where the ρi are evenly spaced between 0 and a few typical
vortex core sizes, and ψj is evenly spaced in [0, 2π[: ψj = 2πj/Nψ with j = 0, · · · , Nψ − 1
(this is needed for Fourier decomposition, see section below). However this grid becomes
irregular when "projected" onto the computational domain Π0 using relations (5.13)-(5.15)
(see figure 5.3). Since a priori point M at (rM , θM ) does not correspond to any grid point
of the computational domain in the Π0 plane, an interpolation is needed to get the value
at point M . To reach a good accuracy, a fifth order interpolation method based on
Tchebychev polynomials is used (for more details, see the appendix E.1).
The core structure of the helical vortex can be studied by decomposing the quantities
(5.16)-(5.18) and their respective velocity counterparts in the Π⊥ plane in multipolar
components. This is achieved by applying a discrete Fourier transform in the azimuthal
direction ψ to yield the complex azimuthal modes with wavenumber m. For instance, on
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(a) (b)

Figure 5.4 – A single vortex of reduced pitch L = 1. (a) Plot of the axisymmetric part of
the helical vorticity ω(0)

BA
(ρ) fitted with a Gaussian function f(ρ;C, a). (b) Iso-contours of

ωBA(ρ, ψ) on the Π⊥ plane.

quantity ωBA(ρi, ψj), this means

ω
(m)
BA

(ρi) = 1
Nψ

Nψ−1∑
j=0

ωBA (ρi, ψj) e−imψj . (5.25)

The initial fields are recovered with the following inverse Fourier relation

ωBA (ρi, ψj) =
Nψ−1∑
m=0

ω
(m)
BA

(ρi) eimψj . (5.26)

5.4 Characterization of the vortex core structure
Examples of vortex core structures in the Π⊥ plane are depicted for large and small pitch
L in figures 5.4-b and 5.5-b respectively. For a vortex of large pitch (figure 5.4-b), the
core structure is close to axisymmetric as for two-dimensional vortex. For small pitch,
strong interactions between successive turns occur, causing the core structure to deviate
from axisymmetry because of the self induced strain field (see figure 5.5-b). We introduce
here the two most relevant quantities used to characterise the vortex core shape: the core
size which can be quantified from the axisymmetric component, and the ellipticity from
the quadripolar component.

5.4.1 Vortex core size a
Contrary to the two-dimensional case, there is no clear procedure to define the core size
for a helical vortex. Here, we propose two different approaches.

First approach : least square fit of ω(0)
BA

with a Gaussian function

A first approach is based on the assumption that the axisymmetric structure for such
developed vortices is close to a Gaussian profile, which is a viscous self-similar solutions for
two-dimensional flows. More precisely, the procedure consists in fitting the axisymmetric
component ω(0)

BA
(ρ) of the vorticity by the function

f(ρ;C, a) ≡ C · e−(ρ/a)2 for ρ ∈ [0, ρcut] . (5.27)
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(a) (b)

Figure 5.5 – One vortex of reduced pitch L = 0.25. (a) Plot of the axisymmetric part of
the helical vorticity ω(0)

BA
(ρ) and the fit function. (b) Iso-contours of ωBA(ρ, ψ) on the Π⊥

plane.

The unknowns are quantities C, a and ρcut. The parameters C and a are chosen so that
f(ρ) is the optimal fit of ω(0)

BA
(ρ) within the interval ρ ∈ [0, ρcut]. The appropriate value

of ρcut is chosen so that vorticity is large enough in interval [0, ρcut] in order to cover the
pertinent part the vorticity profile. An example of a typical fit is shown figure 5.4-a for
one vortex of reduced pitch L = 1 where the Gaussian profile is a good approximation
for ω(0)

BA
(ρ) (the two curves are almost undistinguishable). In the periphery of the vortex,

however, the axisymmetry is somewhat broken as may be seen in figure 5.4-b. This feature
due to vortex curvature does not significantly alter the evaluation of the core size (see the
discussion below for the influence of and the choice of ρcut). For fixed ρcut, parameters
C and a are computed with an iterative nonlinear least square method (see appendix
E.2) with adequate initial guess values C∗ and a∗. The amplitude guess value is set to
C∗ = ω

(0)
BA

(ρ = 0); since the fields are obtained by numerical simulation, the value of a∗
for a given time t is initialized with the value computed at a previous time step.

Second approach: helical vorticity moments

The second approach computes the core size from vorticity moments. In a general two-
dimensional flow, the vorticity moments read (Wu et al., 2007)∫∫

S
ω

2∏
i=1

xjii dS with ji positive integers, (5.28)

and some moments have a precise physical meaning: the zero moment is the circulation,
the first moments are related to the vortex centroid and the total impulse while the second
moments are related to the dispersion radius and to the angular momentum. Here, we
extend these concepts to helical flows by considering the vorticity component ωBA in the
plane Π⊥. We thus introduce the moments of ωBA :

Jmn =
∫∫

ξm ηn ωBA (ξ, η) dξ dη. (5.29)

The vortex circulation Γ is obviously equal to J00 and one may define the centroid position
of the vorticity in the Π⊥ plane as

ξC = J10/Γ, ηC = J01/Γ. (5.30)
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(a) (b)

Figure 5.6 – One helical vortex for L = 1 (solid) and L = 0.25 (dashed). (a) Core sizes
a (red) and ad (blue) as a function of ρcut/ (πLd) (see definition of d in equation (5.33)).
(b) Error S (equation (5.35)) as a function of ρcut/ (πLd). Note that for L = 1, the error
S is multiplied by a factor of 25.

In our simulations, this point almost coincides with point A when chosen to be the vorticity
maximum. The second-order moment

J20 + J02 =
∫∫

ρ2ωBA (ρ, ψ) ρ dρdψ (5.31)

defines the dispersion radius ad:

a2
d = J20 + J02

J00
=

∫ ρcut

0
ρ2ω

(0)
BA
ρdρ∫ ρcut

0
ω

(0)
BA
ρdρ

. (5.32)

The influence of the cutoff length ρcut on the core sizes a and ad is now analysed. When
choosing a value for ρcut, a difficulty arises due to its implicit link to the vortex structure.
More precisely, it is related to the shortest distance separating two successive turns

D (a, L) ≡ 2 (πLd− a) , with d = R(√
L2 +R2

) . (5.33)

The ratio d is a term arising from the angle between the Π⊥ and the vertical (r, z)-plane.
On a general basis, the successive turns of the vortex are considered to be well separated
when 2a � 2πLd. An example of such favourable configuration is shown in figure 5.4-a
for L = 1 where the vorticity profile fully decays (to zero) around ρ ∼ 2a. Based on the
geometrical argument that ρcut cannot be larger than πLd (otherwise a portion of the next
coils would be included) and from the observation that ρcut needs to be at least twice the
coresize value, the following constrain on ρcut can be constructed

2a ≤ ρcut < πLd. (5.34)

In equation (5.34), both a and ρcut are unknowns, but we expect a core size a to be largely
independent of the choice of ρcut. For L = 1, the computation of the dispersion radius ad
as a function of ρcut is shown in figure 5.6-a (solid blue line). The core size increases from
zero with ρcut until a plateau is reached at ad = 0.31. For such configurations and despite
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(a) (b)

Figure 5.7 – Time evolution of the squared core size a2 for one helical vortex at Re = 5000.
(a) L = 1. (b) L = 0.25. Solid: fit of the axisymmetric mode of the helical vorticity ω(0)

BA
.

Dashed: a2
d obtained from the vorticity moments. In both graphs, the solid black line

represents the two-dimensional diffusion law.

having a high sensitivity with respect to ρcut when small, this procedure can be well suited
to compute the core size. The limit of this method appears when the condition (5.34) is
no longer strictly satisfied i.e. for cases when 2ad/πLd ∼ 1. This occurs for example
when the turns of the vortex are on the onset of merging as shown in figure 5.5-b for
L = 0.25. For this case, the underlying axisymmetric vorticity profile does not completely
reach zero (see figure 5.5-a). When ad is obtained from the integration of such profile, one
cannot obtain a unique value of ad as it keeps increasing linearly within the whole range
of authorised values for ρcut. It is thus preferable to use the method based on a Gaussian
fit in order to estimate the core size a.
In order to check if the Gaussian fit method is sensitive to ρcut, we may also use different
values of ρcut. The error S (relative to the vorticity maximum) for a choice of ρcut is
defined by

S(ρcut) ≡
1

maxω(0)
BA

∑
i

(
ω

(0)
BA

(ρi)− f(ρi;C, a)
)2

with ρi ∈ [0, ρcut] . (5.35)

In figure 5.6-b, the error S is plotted when ρcut is varied for the two cases L = 1 (solid)
and L = 0.25 (dashed). For L = 0.25, the error within the interval 0 ≤ ρcut/ (πLd) ≤ 0.4
remains close to zero and the vorticity profile is fitted accurately. The corresponding fitted
core size a is plotted in figure 5.6-a (red dashed curve). It remains almost constant around
the value a = 0.275. Further increasing ρcut leads to a drastic increase of the error S on the
fit, because the vorticity profile deviates strongly from the Gaussian distribution due to the
close neighbouring coils (see figure 5.5-a). The impact of this effect on the fitted coresize
can be visualised in 5.6-b at ρcut/ (πLd) ∼ 0.4 as it increases by a small amount. For
L = 1, the error S is almost nil for the range of values 0 ≤ ρcut/ (πLd) ≤ 0.2. It increases
for greater values of ρcut but still remains very low of about 1% of the vorticity maximum
(on figure 5.6-a, the corresponding curve is multiplied by a factor 25 for visualisation
purpose). The fitted core size is not impacted since it remains roughly constant at value
a = 0.29. Both methods are impacted by the presence of the neighbouring coils when they
are too close, but the method based on the fit is less sensitive than the moment based
method.
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(a) (b)

Figure 5.8 – One helical vortex of reduced pitch L = 0.25 and L = 1 at Re = 5000: (a)
ellipticity µ at different instants τ = 62.5, 112.5. (b) Angle ψe of the major axis of the
ellipse at the same instants. On both plots, the radial coordinate is made dimensionless
with the core size a.

In figure 5.7, the two methods are benchmarked for the two values of L considered.
They both lead to comparable results during the very early evolution stages of the time
evolution for τ ≤ 50, but diverge afterwards. For L = 1, the method based on vorticity
moments yields larger values than the classical two-dimensional diffusion law, while the
Gaussian fit provides smaller ones. Note that at τ ∼ 1200 the dispersion radius is about
twice the fitted core size. For L = 0.25, both methods lead to similar results but the Gaus-
sian fit method yields a smoother evolution curve for the core size. As vortex merging
begins at τ ≈ 220, both methods are seen to depart from the two-dimensional diffusion
law. From these observations and without a unique definition of the core size for a helical
vortex, a choice has to be made: since the dispersion radius overestimates the core size
and is strongly dependent on numerical parameters, we chose to characterise the core size
using the fit of the axisymmetric component of the helical vorticity ω(0)

BA
.

5.4.2 Ellipticity
The deformation of a vortex under the effect of strain introduces many azimuthal wavenum-
bers m 6= 0. In order to quantify the elliptical deformation, we use the quadripolar con-
tributions of the computed fields (azimuthal mode m = ±2). More precisely, extending
the work by (Jiménez et al., 1996) for helical flows, we study the geometry of streamlines
in the frame rotating with the vortex. In that reference frame, the flow is steady and the
stream function ΨR can be expanded as

ΨR (ρ, ψ) = Ψ(0)
R (ρ) + ΨR

(2) (ρ) ei2ψ + c.c.+ . . . , (5.36)

where c.c. stands for the complex conjugate. We assume that the streamline of level ΨR

is located at
ρ = ρ(0) + ρ(2)ei2ψ + c.c. (5.37)

where ρ(0) and ρ(2) depend only on ΨR. The absence of a term in eiψ assumes that the
streamline is centered at point A. If we discard higher multipolar contributions in (5.37),
we get ρ = ρ(0) +2|ρ(2)| cos(2ψ+φ) where φ designates the phase of ρ(2). This corresponds
to an ellipse with major and minor semi-axes of respective lengths A(ρ(0)) = ρ(0) + 2|ρ(2)|
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and B(ρ(0)) = ρ(0) − 2|ρ(2)|, and ellipticity

µ(ρ(0)) = A−B
A+B

= 2 |ρ
(2)|
ρ(0) . (5.38)

Let us introduce (5.37) into (5.36) and use the Taylor expansion of (5.36) with respect
to ρ:

ΨR (ρ, ψ) = Ψ(0)
R

(
ρ(0)

)
+ Ψ(2)

R

(
ρ(0)

)
ei2ψ + ρ(2)

(
ρ(0)

)
ei2ψ ∂Ψ(0)

R

∂ρ

∣∣∣∣∣
ρ(0)

+ c.c+ . . . (5.39)

Since ΨR is constant along streamlines, all orders in (5.39) are constant and, from first
order terms, one gets the following relationship between ρ(2) and Ψ(2)

R

ρ(2)
(
ρ(0)

)
= −Ψ(2)

R

(
ρ(0)

)
/
∂Ψ(0)

∂ρ

∣∣∣∣∣
ρ(0)

. (5.40)

Hence, one obtains the ellipticity :

µ(ρ(0)) = 2
ρ(0)

∣∣∣Ψ(2)
R

∣∣∣ / ∣∣∣∣∣∂Ψ(0)

∂ρ

∣∣∣∣∣ at ρ = ρ(0). (5.41)

The major axis of the ellipse is aligned at an angle ψe = −φ/2 with respect to erA , and
with φ = arctan

(
=
{

Ψ(2)
}
/<
{

Ψ(2)
})

. Finally, the value at the origin is finite and is
computed through two successive uses of L’Hôpital’s rule:

lim
ρ→0

µ(ρ) =
∣∣∣∣∣∂2Ψ(2)

R

∂ρ2

∣∣∣∣∣ /
∣∣∣∣∣∂2Ψ(0)

R

∂ρ2

∣∣∣∣∣ at ρ = 0. (5.42)

In figure 5.8-a-b, the ellipticity µ and the angle ψe are plotted for L = 0.25 and L = 1 at
two different times. The ellipticity is found to increase with radial distance, as expected
since vorticity levels gradually decrease. However, µ(ρ) remains almost constant up to a
radial distance of one initial core size a. For this reason, we use µ0 ≡ µ(0) as a global
measure of the core ellipticity in the following. For both cases the major axis of the ellipse
is aligned at 90◦ with respect to erA .
Note that the ellipticity could be also computed from the second moments of vorticity.
Let consider X and Y the principal axes of the elliptical vortex in the Π⊥ plane such that:

X = ξ cosψe + η sinψe (5.43)
Y = −ξ sinψe + η cosψe, (5.44)

with ψe the orientation angle of the ellipse with respect to the erA-axis. Following (Le Dizès
and Verga, 2002), A and B are related to the moments of vorticity (5.29):

ΓA2 =
∫∫

X2 ωBA(ξ, η)dξ dη =
(
J20 cos2 ψe + 2J11 cosψe sinψe + J02 sin2 ψe

)
(5.45)

ΓB2 =
∫∫

Y 2 ωBA(ξ, η)dξ dη =
(
J02 cos2 ψe − 2J11 cosψe sinψe + J20 sin2 ψe

)
. (5.46)

With the additional symmetry condition∫∫
X Y ωBA(ξ, η) dξ dη = 0, (5.47)

the angle of the major axis ψe is given by:

ψe = arctan
(

J11
J20 − J02

)
. (5.48)

For reasons analogous to those given for the computation of the dispersion radius, such
integral method is not used here.
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Quasi-equilibrium solutions for helical
vortices
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In this chapter, the time evolution of one helical vortex is analysed. Some invariance
properties of helically symmetric systems are first presented in the inviscid as well as
the viscous framework (section 6.1). We introduce specific initial conditions (section 6.2)
aimed at ensuring a generic time evolution (section 6.3) of the system. After a rapid
relaxation process (section 6.4), the system evolves to a generic quasi-equilibrium state
(section 6.5). The streamline topology is investigated (section 6.6) and linked to particle
transport (section 6.7). Finally we describe the late evolution towards an axisymmetric
state which involves the merging of successive coils (section 6.8).
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6.1. INVARIANT QUANTITIES

6.1 Invariant quantities
Instead of the helical vorticity uB, we prefer to introduce quantity uH

uH ≡
uB
α
−
(
U∞z + Γ

2πL

)
, (6.1)

where U∞z denotes the axial velocity far from the z-axis and Γ the total flow circulation.
Indeed, quantity uH vanishes far from the vorticity region since uB/α = (uz + ruθ/L)
behaves as U∞z + Γ/(2πL) when r → ∞. When uH is uniform, it is bound by definition
to be zero.
In the next section, some invariant quantities and conservation properties are derived from
the viscous dynamics of helical flows (2.23)–(2.33).

6.1.1 Global Invariant quantities
Global quantities are obtained by integration in any (r, θ) plane over a disk S having a
radius Rext large enough to encompass the vorticity region. Quantities uH , ωB and ωz are
assumed to tend to zero rapidly enough as r →∞, so that the global quantities presented
hereafter are indeed convergent integrals. The total circulation

Γ =
∫∫

S
ωz rdrdθ (6.2)

is known to be a global invariant. Inserting the two equalities ωz = α(ωB − rωϕ/L) and
ωϕ = −α∂uH/∂r which are valid in the helical symmetry context into equation (6.2), one
gets after an integration by parts:

Γ = K1 −
2
L
K2 where K1 ≡

∫∫
S
αωB rdrdθ, K2 ≡

∫∫
S
α4uH rdrdθ. (6.3)

Another global invariant (Saffman, 1992; Kelbin et al., 2013) is the axial momentum Pz
per axial length unit, given by

Pz =
∫∫

S
rωθ rdrdθ . (6.4)

In the context of helical symmetry, this global invariant reads:

Pz = 2K2 + 1
L
K3 where K3 ≡

∫∫
S
r2αωB rdrdθ. (6.5)

Finally it can be shown from the Navier-Stokes equations that the global angular momen-
tum Lz per axial length unit satisfies

Lz(t) = Lz(0) + 4Γνt , Lz =
∫∫

S
r2ωz rdrdθ . (6.6)

In the context of helical symmetry, Lz can be written in terms of integrals of ωB and uH :

Lz = 2LK2 +K3 − 2LK4 , where K4 ≡
∫∫

S
uH rdrdθ. (6.7)

Relations (6.5), (6.6) and (6.7) can be combined to yield the following time evolution
involving the integral of uH :∫∫

S
uH rdrdθ = 1

2

[
Pz −

Lz(0)
L

]
︸ ︷︷ ︸

const.

−2Γ
L
νt . (6.8)

For flows with zero total circulation (Γ = 0), the global angular momentum is con-
served (Saffman, 1992), in which case the integral K4 of uH becomes time-independent.
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6.1.2 Local conservation laws for the inviscid case

Apart from global quantities, it is worth mentioning local conservation laws for helically
symmetric flows. For inviscid flows (Lucas and Dritschel, 2009), quantity uH is materially
conserved (see equations (2.29) and (2.30)):

∂

∂t
uH + ur

∂uH
∂r

+ uϕ
αr

∂uH
∂ϕ

= 0. (6.9)

Using equation (2.19), the relation (6.9) can be expressed as

∂

∂t
uH + J(uH , ψ) = 0, where J(f, g) ≡ 1

r

[
∂f

∂r

∂g

∂ϕ
− ∂f

∂ϕ

∂g

∂r

]
. (6.10)

This implies that, for ν = 0, an initially uniform distribution uH = 0 remains zero in
time, and so do the vorticity components ωr and ωϕ (see equations (2.22) and (6.1)). As
a consequence, vorticity remains everywhere tangent to helical lines.
In the inviscid framework, it was further showed by (Lucas and Dritschel, 2009) that
quantity αωB evolves according to

∂

∂t
(αωB) + J(αωB,Ψ) + 2α4

L
J(uH ,Ψ) + 2α4

L2 uH
∂uH
∂ϕ

= 0. (6.11)

Contrary to what happens for ωz in the two-dimensional case (obtained in the limit L =
∞), quantity αωB is not conserved on a general basis. However, when uH is uniformly
zero, αωB is materially conserved:

∂

∂t
(αωB) + J(αωB,Ψ) = 0 with uH = 0. (6.12)

For inviscid equilibrium solutions rotating at angular velocity Ω0, it is possible to say more.
Such solutions are of the form uH(r, ϕ, t) = uH(r, ϕ− Ω0t), and, as a consequence,

∂

∂t
uH = −Ω0

∂uH
∂ϕ

. (6.13)

Equation (6.10) then reduces to J(uH ,ΨR) = 0 where ΨR ≡ Ψ + 1
2r

2Ω0 denotes the
streamfunction in the rotating frame of reference. This implies that uH is a univoque
function of ΨR:

uH = F (ΨR). (6.14)

For the specific case uH = 0, the inviscid rotating equilibria satisfies J(αωB,ΨR) = 0, as
implied by equation (6.12). This imposes αωB to be a univoque function of ΨR:

αωB = G(ΨR) with uH = 0. (6.15)

For non-uniform uH distribution, an equilibrium should satisfy equation (6.11) as well as
equation (6.14) yielding

J(αωB,ΨR) + 2α4

L2 uH
(R)∂uH

∂ϕ
= 0, (6.16)

where uH(R) = uH − LΩ0 is the value of uH in the rotating frame. If the second term in
equation (6.16) is discarded, one recovers equation (6.15).
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6.1.3 Local conservation laws in the viscous case

When viscosity is present, the equation for uH and αωB respectively read

∂

∂t
uH + J(uH ,Ψ) = ν

α
L(uH)− 2ν

L
αωB, (6.17)

and

∂

∂t
(αωB) + J(αωB,Ψ) + 2α4

L
J(uH ,Ψ) + 2α4

L2 uH
∂uH
∂ϕ

= ν

[
1
α
L(αωB) + 4rα2

L2
∂

∂r
(αωB) + 2α3

L
L(uH)

]
.

(6.18)

The last term in equation (6.17) couples uH and αωB. This implies that, contrary to the
inviscid case, uH cannot remain null if uH(t = 0) = 0.
However it is possible to find an approximate time evolution in the viscous case. Indeed
when uH(t = 0) = 0, equation (6.8) imposes Pz = Lz/L and thus suggests that uH might
depend linearly on νt. Following this idea, we neglect for the initial time period the uH
terms in the dynamic equation (6.18) for αωB leading to the approximation :

∂

∂t
(αωB) + J(αωB,Ψ) = ν

[
1
α
L(αωB) + 4rα2

L2
∂

∂r
(αωB)

]
.

If, in addition, we neglect the first radial derivative (second term in the rhs) with respect
to second radial derivatives (first term in the rhs), then αωB satisfies

∂

∂t
(αωB) + J(αωB,Ψ) = ν

α
L(αωB). (6.19)

Equations (6.17) and (6.19) as well as the initial condition are simultaneously satisfied if
the following relationship holds between αωB and uH :

uH = −2νt
L
αωB(t) . (6.20)

The above ansatz is presumably valid whenever uH is small, and is fully consistent with the
integral relation (6.8). We can extend this idea to a solution in which the initial condition
reads as

uH(r, ϕ, 0) = − δ
2

2LαωB(r, ϕ, 0) , (6.21)

where δ is a length such that δ/L� 1. In that case, following the same approximations,
the solution reads

uH(r, ϕ, t) = −δ
2 + 4νt

2L αωB(r, ϕ, t) . (6.22)

We will show that this ansatz is validated by the numerical results (see section of sec-
tion 6.5.1.

6.2 Initial conditions for a generic time evolution
For a two-dimensional vortex, it is known that the core size spreads in time according to
a(t) = (a2

0 + 4νt)1/2. This classical diffusion law can be written as well as

a(τ) = (4ντ)1/2 , τ = t− t? , t? = −1
4a

2
0/ν < 0 . (6.23)
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Figure 6.1 – Initial condition: image of the discrete position (rk, θl) on the Π⊥ plane with
coordinate ξ?, η?.

Introducing the shifted time variable τ makes the diffusion law independant on the initial
core size a0. These basic considerations can be also used for an initial polygonal array
of two-dimensional Gaussian vortices with identical core size a0 when a0 is small with
respect to the distance between vortices. In that case, the system rotates as a polygonal
array of point vortices while each vortex evolves in two stages (see for instance (Le Dizès
and Verga, 2002)): a first rapid initial relaxation where Kelvin waves are observed, and
a second phase in which a quasi-equilibrium is reached that slowly diffuses. In this latter
stage, it is found that the time evolution of the array does not depend on a0 if expressed
as a function of τ .
Here we extend this procedure already used in the viscous two-dimensional setting (L =∞
in our case) to the helical context. In the simulation, the initial condition consists of N
identical vortices with a small core size a0 > 0. The other geometrical parameters are
the helical pitch 2πL, and the location of the vorticity maximum at (rA, θp = 2πp/N) for
p = 1, ...N in the Π0 plane.
In order to ensure that the initial condition is close to an equilibrium solution, we choose
to impose a Gaussian helical vorticity profile of amplitude C0 and radius a0 in the plane
Π⊥:

ω̃B(ξ, η) = C0 exp
(
−ξ

2 + η2

a2
0

)
. (6.24)

This profile needs to be projected onto the polar mesh (rk, θl) of plane Π0. More precisely, it
is necessary for each grid point M (rk, θl) in Π0 to locate the coordinates (ξ?, η?) of the point
M? in Π⊥ belonging to the same helical line as M. Since the inverse process (from Π⊥ to
Π0) is easier to tackle, a Cartesian grid is created in Π⊥ with points (ξi, ηj) ∈ [−5a0, 5a0]2,
and mapped to the plane Π0. The coord (ξ?, η?) are then precisely located by minimising
in the plane Π⊥ a positive functional linked to the distance in Π0 to point (rk, θl), which
is zero at (ξ?, η?). Then ω̃B, is set in Π0 at grid point (rk, θl) using the value (6.24) at
point (ξ?, η?).
At the end of the process, the helical vorticity ω̃B (r, θ), has been initialised in the com-
putational domain Π0 and the velocity component ũH (r, θ) is deduced from ω̃B (r, θ) by
the ansatz (6.22) with δ = a0, namely:

ũH (r, θ) = −α a
2
0

2Lω̃B(r, θ) . (6.25)
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(a) (b)

Figure 6.2 – One vortex of reduced pitch L = 1 and L = 0.25. Generic initial conditions
at Re = 5000. For each plots, three initialisations at times: τ = 3.125 , τ = 12.5 and
τ = 28.125 . (a) Time evolution of the radial position rmax of the maximum of vorticity
ωB as a function of τ . (b) Time evolution of the quantity a2, with a being the core size, as
a function of τ , the black dashed line is the two dimension diffusion law a2(τ) = 4 τ/Re.

In these flows, circulation Γ and axial momentum Pz are conserved quantities. If both
are prescribed, the normalisation constant C0 in (6.24) and the helix radius rA can be
determined using formulas (6.3) and (6.5).

For these helical states, we have the same genericity requirement than in two dimensions
concerning the initial core size a0. Since no analytical solution exists for a viscous helical
vortex, the vortex core size is assumed sufficiently small to satisfy the two-dimensional
diffusion law in the Π⊥ plane, which makes it possible to evaluate the virtual time origin
t? = −1

4a
2
0/ν. At τ = 0, one thus assumes the existence of an array of helical filaments

(zero core size). Because of conservation laws, each filament has circulation Γ, reduced
pitch L and helix radius R? = (PzL/Γ)1/2, which is close but distinct from rA.

From now on, variables are made nondimensional using R? as a lengthscale, and Γ/R? as
a timescale. Simulations now depend on three dimensionless parameters: the Reynolds
number Γ/ν, the dimensionless helical pitch L and the dimensionless core size a0.

The generic aspect of the time evolution with respect to the initial condition is illus-
trated figure 6.2. Computations are started with three different initial core sizes a0 =
0.05, 0.1, 0.15, corresponding to the instants τ = 3.12, 12.5, 28.1, for pitch L = 0.25 and
L = 1. In figure 6.2-a, the time evolution of rA is plotted. For a given L, all the curves end
up collapsing after a short transient period (characterised by the wiggles). Note that, even
if the initial oscillations tend to increase in amplitude and duration with the initial core
size, they remain limited. This shows that the point vortex diffusion hypothesis coupled
to the ansatz (6.22) for uH holds even for small values of L. This is further confirmed
in figure 6.2-b where the (squared) core size follows the two-dimensional diffusion law for
short instants.

These features ensure that the long time dynamics do not depend on the initial core size
a0, which thus further reduces the number of control parameters to only two: the reduced
pitch L and the Reynolds number Re.
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6.3 Temporal evolution of a single helical vortex

In the following, we study the temporal evolution of a single generic helical vortex with en-
forced helical symmetry in an unbounded incompressible medium. The numerical domain
is a disk of nondimensional radius Rext = 3, meshed by Nr×Nθ grid points where Nr = 512
and Nθ = 384 typically. All the computations are run with the initial condition procedure
described in section 6.2. The chosen values for the pitch are L = 0.25, 0.5, 0.75, 1, 2, 3 and
the Reynolds number is fixed at Re = 5000.
The vortex evolution is mainly characterised by four stages of evolution. During the first
stage the vortex goes through a rapid relaxation process where it adapts its structure to
the strain field it is subject to (section 6.4). The second stage is a slow diffusion process
where the vortex grows in size and rotates quasi steadily at angular velocity Ω (τ), i.e. a
quasi-equilibrium state (section 6.5). This generalises the inviscid equilibrium flow induced
by one helical vortex (Kuibin and Okulov, 1998). At low pitch, a third stage occurs for
large time: successive coils merge and the vortex progressively loses its helical structure
and becomes a cylindrical vorticity layer. For all values of the pitch, the system finally
evolves towards a columnar axisymmetric Gaussian vortex.

6.4 Relaxation towards quasi-equilibria for a single vortex

This section illustrates the first evolution stage, where the system rapidly relaxes towards
a quasi-equilibrium state. This temporal evolution is only presented for a single helical
vortex of pitch L = 0.25, of core size a0 = 0.06, at Re = 5000. Results are similar for a
single vortex at other pitch values and Reynolds numbers, as well as for a polygonal array
of helical vortices.
The whole adaptation process of the helical vortex is the so-called relaxation process. For
an array of vortices, the initial fields (6.24)–(6.25) are not an equilibrium of the Euler
equations due to the presence of an external strain. For a single vortex, this also holds
since a self-induced strain is present, originating from local curvature as well as induction
due to remote vorticity. The vortex thus adapts its structure to this self-induced strain
field: snapshots in figure 6.3 show how the initial axisymmetric vorticity distribution
evolves towards an elliptic one within the core, while the very weak peripheral vorticity
region displays a more complex evolution which is associated to the damping of inertial
waves by viscosity. This relaxation process is thus very similar to what is observed in
two dimensions for co-rotative vortices (Le Dizès and Verga, 2002) and counter rotatives
vortices (Sipp et al., 2000).

6.5 Quasi equilibrium stage

6.5.1 Relationship between ΨR, uH and αωB

After the short relaxation process depicted in figure 6.3, the vortex diffuses and rotates at
an angular velocity Ω slowly varying with time. Snapshots of αωB and uH in figure 6.4 show
that isovalues of these quantities are closely related to streamlines. This indicates that the
flow is close to an Euler equilibrium: in the inviscid framework, functional relationships
uH = F (ΨR) and, whenever uH is weak, αωB = G(ΨR) hold for equilibrium solutions
(see section 6.1.2). This is further confirmed by the scatterplots in figure 6.5-a and b:
the points (αωB,ΨR) and (uH , αωB) are aligned on a single curve for any fixed time.
For an Euler flow, the functional relationship would be steady. Here, this state is called
quasi-equilibrium since it evolves in time because of viscous diffusion, leading to a slow
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Figure 6.3 – One vortex of reduced pitch L = 0.25 and initial core size a = 0.06 at
Re = 5000. Vorticity contours in the Π⊥ plane during the relaxation process. From
left to right, top to bottom tΓ/

(
2πa2

0
)

= 0, 10, ..., 80. Contours levels are ωBA/ω
(0)
BA

(0) =
0.5, 0.1, 0.01, 0.001, 10−4, 10−5, 10−6.

time dependance of the functional relationship as well. Figure 6.5-b confirms the linear
dependence between uH and αωB predicted by equation (6.20).

6.5.2 Core size of a helical vortex

The core size a of the helical vortex is computed using the technique based on the Gaussian
fit of the axisymmetric part of the helical vorticity (see section 5.4.1). When L > 1, the
two-dimensional diffusion law is a fair approximation for the core size evolution, as can
be seen in figure 6.6. When L < 1, the core size increases less than its two-dimensional
counterpart. The strong increase of a observed for L = 0.25 around τ = 130 corresponds
to a core size as large as a ∼ 0.32, where the notion of core size becomes questionable.

6.5.3 Self-similar solutions

On figure 6.7-a, the axisymmetric part of the helical vorticity ω(0)
BA

(see 5.3) is plotted for
a set of equally spaced times. A self-similar behaviour is identified: while the Gaussian’s
amplitude decreases in time, the radial spreading increases accordingly. When rescaled as
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Figure 6.4 – One helical vortex of reduced pitch L = 0.5 at Re = 5000. Left column:
isocontours of the stream function in the rotating frame ψR (black lines) superimposed
on top of the quantity αωB with ωB being the helical vorticity . Right column: same
isocontours of ΨR (white lines) superimposed on top of the helical velocity (jet) uH . The
chosen instants are τ = 62.5 (top) and τ = 162.5 (bottom).

(a) (b)

Figure 6.5 – One helical vortex of reduced pitch L = 0.5 at Re = 5000. Scatter plots of the
quantities (αωB,ΨR) and (uH , αωB) at instants τ = 62.5 (blue), 112.5 (black), 162.5 (red).
During the diffusing stage, all the (vorticity, streamfunction) points on (a) and (velocity,
vorticity) points on (b) are aligned in a single curve for a given time τ , illustrating the
functional relationship between these quantities.
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Figure 6.6 – Time evolution of the squared core size a2 for a single helical vortex at
Re = 5000 and different values of L. The black dashed line shows the two-dimensional
diffusion law a2(τ) = 4 τ/Re.

(a) (b)

Figure 6.7 – One helical vortex of reduced pitch L = 0.5 at Re = 5000. (a) Axisymmetric
part of ω(0)

BA
(ρ) at instants τ = 22.5, 32.5, ...., 172.5 (time increases from top to bottom).

(b) Scaled profiles of the axisymmetric part of the helical vorticity as a function of the
similarity variable ξ (6.26) for the same instants.
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(a) (b)

Figure 6.8 – One helical vortex of reduced pitch L = 0.5 at Re = 5000. (a) Axisymmetric
part of the helical jet u(0)

H (ρ) at instants τ = 22.5 : 10 : 172.5 (time increases from left to
right). (b) Scaled profiles of the axisymmetric part of the helical jet as a function of the
similarity variable ξ (6.26) for the same instants.

follows:

ω̃
(0)
BA

= ω
(0)
BA

(ξ, τ)
ω

(0)
BA

(0, τ)
, ξ = ρ

a(τ) , (6.26)

the profiles collapse (figure 6.7-b) onto the Gaussian curve ω̃(0)
BA

(ξ) = exp(−ξ2). This
self-similarity was already observed on numerically computed rotor wakes by Ali and
Abid (2014). The profiles of u(0)

H , the axisymmetric part of quantity uH , are presented in
figure 6.8-a. These profiles are also spreading in time (figure 6.8-b). However, as evidenced
in figure 6.8-a, the amplitude of the velocity deficit remains approximately constant in
time: based on equation (6.20) this implies that the maximum of vorticity varies as 1/τ .
When plotted as a function of with the same variable ξ and normalised by its absolute
maximum value, the curves collapse on a single one close to ũ(0)

H (ξ) = −e−ξ2 (figure 6.8-b).

6.5.4 Helix radius rA and angular velocity Ω

Let us characterize the global dynamics by tracking point A (rA(τ), θA(τ)) in the Π0-
plane where ωB is maximum and by providing the angular velocity of the vortex Ω(τ).
The temporal evolution of the helix radius rA is plotted in figure 6.9-a for different values
of L at Re = 5000. For all values of L considered, the helix radius first increases. The
explanation of this radial drift is not clear at the moment and is believed to be related to
the conservation of the angular momentum with a core size increasing in time. However,
for larger times, rA reaches a maximum and then decreases (see figure 6.9-c). For small
L, the maximum is reached at a critical time where the vortex successive coils are about
to merge, as depicted in figure 6.10. For larger L, this mechanism is no more active, but
since rA should asymptotically be zero, a maximum is still reached. As seen in figure 6.11,
the same argument about the successive coils about to come into contact does not hold to
explain this maximum of rA.
The angular velocity Ω of the vortex is plotted as a function of time in figures 6.9-b and d.
It is compared to the values obtained with the corresponding temporal simulation using
vortex filaments along with the cut-off theory introduced in chapter 4.
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(a) (b)

Figure 6.9 – One helical vortex at Re = 5000. (a) Time evolution of the helix radii rA,
for different values of L. (b) Time evolution of the angular velocity Ω for the same range
of parameters. The dotted lines are the predicted values by the cutoff theory coupled to
a 2D diffusion law for the vortex core size.

(a) (b)

Figure 6.10 – One helical vortex of reduced pitch L = 0.25 for Re = 5000 at τ = 92.5. (a)
Isocontours of the stream function in the rotating frame ΨR (black lines) superimposed
on top of the quantity αωB. (b) Representation in the meridian r− z plane (two coils are
represented).
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(a) (b)

Figure 6.11 – One helical vortex of reduced pitch L = 1 for Re = 5000 at τ = 1750. (a)
Isocontours of the stream function in the rotating frame ΨR (black lines) superimposed
on top of the quantity αωB. (b) Representation in the meridian r − z plane.

6.5.5 Ellipticity µ and major axis angle ψe
We focus on the evolution of the ellipticity µ0 in the center of the vortex core. In figure
6.12-a, the time evolution of the measured ellipticity µ0 is plotted for various values of
L. As L is decreased, it is found that the ellipticity increases, due to the increase of the
self-induced strain rate γ acting on the vortex. This is reminiscent of a two-dimensional
vortex in an external strain field. For a two-dimensional uniform elliptic patch of vorticity
ωp subjected to a plane strain at rates ±γ, the ellipticity µ0 is related to the ratio γ/ωp
according to Kida (1981):

γ

ωp
= µ0

(
1− µ2

0
)

(1− µ0)
2
(
1 + µ2

0
) . (6.27)

For small values of µ0, the above expression can be linearised into
γ

ωp
∼ µ0

2 . (6.28)

The above relationships hold for a patch, but have been shown to hold also for smooth
vorticity profiles (Delbende and Rossi, 2009), if ωp is chosen as ωp = Γ/(2πa2).
One may tentatively use (6.27) or (6.28) to estimate µ0 in the three-dimensional context.
For a single helical vortex, the strain rate γ is not externally imposed: it is self-induced
and has been obtained through an asymptotic analysis (Blanco-Rodríguez et al., 2015):

γ = −2Sε2 , ε = aκ = a/rA
1 + L2/r2

A

(6.29)

where S is given in Blanco-Rodríguez et al. (2015) and ε is the expansion parameter of the
asymptotic analysis which is assumed small. These considerations lead to a semi-analytical
prediction for µ0(τ), which is plotted in figure 6.12-a (dashed lines) for various values of
L. For large L, the auto-induced strain field is almost null and so is the ellipticity. At
short instants, the agreement is very good at all L values. For small L, the agreement
deteriorates at large times, as the expansion parameter ε increases. Indeed, as shown in
figure 6.12-b, ε does not remain small for large times and/or small pitch L. At large pitch
L ≥ 1 however, the linear relation (6.28) is sufficient to predict µ0 (see circles in figure
6.12-a).

69



6.6. STREAMLINE TOPOLOGY

(a) (b)

Figure 6.12 – One helical vortex at Re = 5000. (a) Time evolution of the ellipticity
µ (ρ = 0) ≡ µ0 at the center of the vortex for different values of L. Solid line : measured
values, dashed line: ellipticity predicted from equation (6.27) with the strain γ obtained
from the asymptotic analysis and the two-dimensional equivalent vortex patch. The circles
are the prediction when the relation (6.27) is linearised into (6.28). (b) Time evolution of
ε = aκ used in the asymptotic analysis with a and κ being the vortex core size and the
curvature respectively.

The major axis is always found aligned with the vector eϕA , hence orthogonal to the
r-direction.

6.6 Streamline topology
The flow is further characterised by the streamline topology, first in the laboratory frame
and then in the frame rotating with the vortex.

6.6.1 Streamline topology in the laboratory frame
In this section, the streamline topology induced by a single helical vortex in the laboratory
frame is presented and compared to the topology predicted by an inviscid filamentary
theory. In figure 6.13, the streamlines for several values of L are presented in plane Π0.
These states are characterised by the same core size a = 0.06. For large L, the structure
is composed of smooth streamlines that all encircle the helical vortex centre-line (as in
figure 6.13-a for L = 1). Below a critical value close to L = 0.815 (see figure 6.13-b), a
new region with closed streamline structure appears outside the vortex region (see figure
6.13-c). This region grows when L is decreased, as shown in figure 6.13-d for L = 0.5
where the region now includes the helix axis.
In the inviscid framework, the topology of the streamlines associated to a helical vortex
filament has been extensively studied by Andersen and Brøns (2014). These authors
derived a closed formulation of the stream function from the solution by Hardin (1982),
this formulation is briefly recalled below. Let ξ = r/L and λ = 1/L. The stream function
reads

ΨH (ξ, ϕ) = 1
2


ξ2

2 −
1
2

((
1 + λ2

) (
1 + ξ2

)1/4
)
<
(
ln
(
1− e+δf+iϕ

))
− ln (ξ) + ln (λ)− 1

2

((
1 + λ2

) (
1 + ξ2

)1/4
)
<
(
ln
(
1− e−δf+iϕ

))
(6.30)
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Figure 6.13 – Streamline topology in the laboratory frame for a helical vortex of reduced
pitch L = 1 (top), L = 0.815 (second row), L = 0.791 (third row) and L = 0.5 (bottom).
Left: Contours of Ψ from the DNS for a vortex with finite core size a = 0.06. Right:
contours of ΨH from analytical formula (6.30). On both bottom graphs, the green dots
correspond to the critical points of ΨH .
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where the top line refers to the inner solution (r < 1) and the bottom line to the outer
solution (r > 1). Variable δf is given by

δf = δf (ξ, λ) = f (ξ)− f (λ) , where f (x) =
√

1 + x2 + ln
(

x

1 +
√

1 + x2

)
. (6.31)

Note that equation (6.30) diverges on the filament at (ξ, ϕ) = (λ, 0).
On figure 6.13 (right column) the streamlines obtained through 6.30 are plotted for the
same pitch values as the DNS. It is found that, the streamline structure globally reproduces
that obtained by DNS in most of the flow. Unsurprisingly, some differences occur in the
vortex core. As the core size in the DNS is reduced, the agreement improves (not shown).
There are also local differences associated to the appearance of critical points of the stream
function, which we discuss now.
In Andersen and Brøns (2014), the critical points of the stream function ΨH were analysed
using equation (6.30). It was first demonstrated that the points at (r 6= 1, ϕ = 0) cannot
be critical points whatever the pitch value. The critical points occur on the line (r, ϕ = π)
and are found to be the zeros of the function F defined as:

F (ξ;λ) ≡ ∂

∂ξ
ΨH (ξ, π) (6.32)

=


ξ

2 −
1
2
(
1 + λ2

)1/4
(

1
2

ξ

(1 + ξ2)3/4 ln
(
1 + eδf

)
+
(
1 + ξ2)3/4

ξ

eδf

1 + eδf

)

− 1
2ξ −

1
2
(
1 + λ2

)1/4
(

1
2

ξ

(1 + ξ2)3/4 ln
(
1 + e−δf

)
−
(
1 + ξ2)3/4

ξ

e−δf

1 + e−δf

)
.

In figure 6.13 (bottom right) the critical points are represented in filled green dots. When
plotted on the DNS streamlines (bottom left), a very good agreement is found, even if a
small discrepancy is observed on the location of critical points due to the finite core size.
The theory shows that critical points occur through a saddle-node bifurcation when L
is decreased below the critical value LC1 = 0.7905 (figure 6.13-c). At this precise value,
the D.N.S. fields already show a small pocket of closed streamlines. Indeed the critical
threshold we obtained by DNS is rather LDNSC1 ≈ 0.815 which is slightly off LC1 = 0.7905
due to the finite core size.
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6.6.2 Streamline topology in the rotating frame
In previous section, we analysed the streamline structure in the laboratory frame and
highlighted the topology modifications of the helical flow when the pitch L is varied.
However, physical interpretations in the laboratory frame remain limited: since the flow is
not stationary in this frame, trajectories differ from streamlines. It is thus more instructive
to study the streamline structure in the frame rotating with the vortex system. Such a
study gives valuable informations on Lagrangian dynamics of particles for example.

Influence of L

The influence of the pitch L on the flow topology is analysed. In figure 6.14, the isovalues
of ΨR are plotted for L = 0.5, 0.35, 0.25 with the core size being fixed at a = 0.25. For
this core size at L = 0.5, there is no critical point in the flow field aside from the vortex
centre. At L = 0.35 and L = 0.25, a centre and a saddle point exist on the radial line
located at the opposite of the vortex centre with respect to the origin.
When L decreases, the radial distance separating these critical points increases. The cen-
tre critical point shifts radially inwards while the saddle shifts outwards. The streamlines
passing between these two critical points thus form a region where fluid particles do not
travel around the vortex core but move along/around the z axis. This behaviour is as-
sociated to the velocity excess or deficit inside a helical vortex at small L. Indeed, the
resulting flow field tends to be equivalent to that of a cylindrical vortex sheet with a jet
or wake component inside the cylinder.

Influence of a

We now focus on the streamline topology obtained by DNS in the rotating frame when a
is varied at fixed pitch L. In figure 6.15 the iso-contours of ΨR are plotted for L = 0.5 and
different core sizes a = 0.26, 0.485, 0.603, again showing different topologies. For a = 0.26,
no critical point is present in the flow field aside from the vortex centre. It is observed
that the same scenario occurs when a is increased at fixed L as we had before when L is
decreased at fixed a. Here, a pair of critical points arise at a = 0.485, which progressively
shift apart radially when a is increased. Indeed, with a increasing, the vorticity tends
to spread around the axis to form a cylindrical layer similar to the previous case. This
explains why similar topologies are observed here.
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Figure 6.14 – Rotating frame: streamline topology obtained by DNS, for one helical vortex
of core size a = 0.25 and for different L. Top row: L = 0.5. Middle row: L = 0.35. Bottom
row: L = 0.25. First column: representation in Π0. Second column: representation in the
meridian plane (r − z). The green dots represent the locations of the hyperbolic points.
The blue and red dots represent the centre points: the blue dot is created in the inner
region while the red one is located within the vortex centre.
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Figure 6.15 – Rotating frame: streamline topology obtained by DNS for one helical vortex
L = 0.5 and for different core sizes a. Top row: a = 0.26. Middle row: a = 0.485. Bottom
row: a = 0.603. First column: representation in Π0. Second column: representation in the
meridian plane (r − z). The green dots represent the locations of the hyperbolic points.
The blue and red dots represent the centre points: the blue dot is created in the inner
region while the red one is located within the vortex centre.
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6.7 Particle transport by a helical vortex
In this section, we study the motion of particles in presence of a helical vortex with frozen
finite core size. This is done in the framework rotating with the vortex since the flow being
stationary, the trajectories of fluid particles follow the streamlines.

6.7.1 Equations for the particle motion in the rotating frame
In an inertial frame, we define the velocity of a particle as the time derivative of its position
vector xp:

up ≡
dxp
dt , (6.33)

where d/dt denotes the time derivative in the inertial reference frame. Passive particles
act as perfect tracers in the flow: their velocity equals that of the fluid particles uflow.
Hoverer, it is possible to take inertial effects into account by writing the momentum
equation as:

dup
dt = 1

St
(uflow − up) , (6.34)

where the Stokes number St is given by

St ≡ Γtp
R2 =

2ρpr2
pΓ

9ρνR2 , (6.35)

with the density ρp and the radius rp of the particle, and the density ρ and the viscosity
ν of the carrier flow, respectively. This number represents the ratio between the particle
relaxation time tp and a typical time scale of the flow (for passive particles, St = 0).
We now consider a non-inertial frame rotating with respect to the inertial frame at an
angular velocity Ω around the vertical axis ez. Let d/dt′ denote the time derivative in this
rotating frame of reference and consider a particle of position vector xp: if this particle is
stationary in the rotating reference frame, it appears to move in the inertial frame. Hence
it is clear that d/dt 6= d/dt′, more precisely

dxp
dt = dxp

dt′ + Ωez × xp. (6.36)

In the rotating frame, we define:
u′p ≡

dxp
dt′ . (6.37)

Using definitions (6.33) and (6.37), equation (6.36) relates the velocity, up = dxp/dt of
an object at position xp in the inertial reference frame to its velocity, u′p = dxp/dt′, in
the rotating reference frame

up = u′p + Ωez × xp. (6.38)

In order to compute the acceleration, the operation is applied twice to xp:

dup
dt ≡

d2xp
dt2 =

( d
dt′ + Ωez×

)(
u′p + Ωez × xp

)
(6.39)

yielding

dup
dt = d2xp

dt′2 + Ωez ×
dxp
dt′ + d (Ωez × xp)

dt′ + Ωez × (Ωez × xp) . (6.40)

If we assume that Ω is constant (frozen vortex), this yields:

dup
dt =

du′p
dt′ + 2Ωez × u′p + Ωez × (Ωez × xp) . (6.41)
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Finally, the acceleration in the rotating frame reads

du′p
dt′ = dup

dt − 2Ωez × u′p − Ωez × (Ωez × xp) (6.42)

and since u′flow − u′p = uflow − up, equation (6.42) becomes

du′p
dt′ = 1

St

(
u′flow − u′p

)
− 2Ωez × u′p − Ωez × (Ωez × xp) . (6.43)

6.7.2 Particle initialisation and simulation

particles in the vortex core particles in the inner region particles in the outer region

Figure 6.16 – Particle initialisations in the Π0 plane on top of the streamlines in the
rotating frame. Particles are set in the vortex core (left column), in the inner region
(central column) and in the outer region (right column). Top row: case 1, middle row:
case 2 and bottom row: case 3.

The fluid domain is virtually split into three different regions in Π0:
— a first area called vortex core defined as the region (r, θ) where ωB (r, θ) > 1

2 max (ωB);
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(a) (b)

Figure 6.17 – Rotating frame: streamlines obtained by DNS for a single helical vortex. (a)
Case 1. (b) Case 3. The trajectories of three particles are shown in red thick lines. Case
2, very similar to case 1, is not plotted.

— a second area called the inner region where r < 1 but which excludes the vortex
core region;

— a third area called the outer region where r > 1 but which also excludes the vortex
core region.

In each area, Np = 2000 particles are randomly set and the corresponding trajectories
are then integrated using equation (6.43) or, if St = 0, equation (6.37) with u′p = u′flow.
Three different cases are investigated:

— case 1: L = 0.5, a = 0.06,
— case 2: L = 0.5, a = 0.25,
— case 3: L = 0.25, a = 0.25 .

For cases 1 and 2, the streamlines have no critical points. For case 3, one centre and one
saddle critical point are present in the inner region of the flow field. In figure 6.16, typical
initialisations of the particles in each of the three areas are shown on top of the streamlines
ΨR = cst for the three cases under investigation.

6.7.3 Results for the passive case: St = 0

The trajectories of three particles emanating from each area are represented in figure 6.17
on top of the streamlines. In plane Π0, the trajectories necessarily follow closed paths.
The corresponding three-dimensional trajectories are shown for the three cases in figure
6.18.
When a particle is initially set within the vortex core, it is advected along the helical
vortex tube (see left column of figure 6.18). It loops around the vortex centreline with a
spatial and temporal periodicity which depends on the core size, the pitch and its distance
to the centreline. As a consequence, there exist a wide diversity of geometries for such
trajectories.
When a particle is initially set in the outer region, it follows trajectories close to a helix
of large radius and small pitch (see right column of figure 6.18). This class of trajectories
is weakly influenced by the geometrical parameters of the vortex.
When the particle is initially set in the inner region, two scenarios occur depending on
the flow topology (see central column of figure 6.18). For case 1 and 2 (top and middle
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particles in the vortex core particles in the inner region particles in the outer region

Figure 6.18 – Representation in the rotating frame of particle trajectories (solid black line)
around a helical vortex of reduced pitch L = 0.5 with core size a = 0.06 (case 1, top row),
core size a = 0.25 (case 2, middle row) and pitch L = 0.25 with core size a = 0.25 (case 3,
bottom row). The particles are initially located within the vortex core (left figures), in the
circle of radius r < 1 in Π0 without being in the vortex core (central figures) and outside
the circle of radius r > 1 without being in the vortex core (right figures). The trajectories
correspond to the black curves shown in figure 6.17.
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figures, without critical points), it progresses alternatively by looping around the vortex
core and by moving along a path in the vicinity of the z−axis. For case 3 (bottom figure),
if the particle follows a trajectory situated between the critical points it does not loop
around the vortex core but rather travel along the axial direction. Again, this behaviour
is associated to the velocity excess or deficit inside a helical vortex at small L or large a.
The temporal aspect, in particular the advection velocity along the axis cannot be analysed
from the above snapshots. We now present the time evolution of a large number of particles
being released in each area in the plane z = 0. The dispersion of particles along the axial
direction z is quantified by the probability density functions of the axial position z.

Probability density functions of the axial position z

At a given time t, the probability density function f(z) of the particle axial position is such
that f(z)δz is the probability for particles to be present within the interval [z, z+δz]. This
quantity is evaluated numerically by first defining a partition of the z axis in sub-intervals
[zi, zi+1], each one containing a prescribed number of particles chosen as 2

√
Np (for regions

where the particles are sparse, a maximum extent zi+1−zi = 2∆z/
√
Np is enforced instead,

where ∆z is the axial separation between the most distant particles at that time). The
density function f(z) is then computed at middle points zi+1/2 = (zi + zi+1)/2 as:

f(zi+1/2) = 1
δzi

δNi

Np
, (6.44)

where δNi is the number of particles located in [zi, zi + δzi] and δzi = zi+1 − zi.
We first analyse the evolution of particles initially situated in the vortex core (figure 6.19
left column). It is seen that the particles remain tightly clustered as far as the axial
position z is concerned. It is observed that reducing the core size at fixed L or reducing
L at fixed a both lead to higher axial velocities.
When the particles are initialised within the outer region (figure 6.19 right column), it
is observed for the three cases that the particles all remain in the vicinity of the plane
z = 0, which indicate a weak axial velocity. This is linked to the fact that in the present
simulations the axial velocity far from the axis is set to zero.
When particles are initially set in the inner region, their distribution along the z axis
presents a large scattering (figure 6.19 middle column). At large pitch (case 1 and 2), this
scattering is particularly wide: the area contains particles which are close to the vortex
core and propagate rapidly (see above) as well as particles more remote which propagate
at reduced velocity. At smaller pitch (figure 6.19 bottom row, middle column) however,
the scatter is reduced and the particles are found to travel along z at high speed, much
higher than the particles in the vortex core. Again this corresponds to the excess velocity
present inside the helical vortex at small pitch: when L is reduced, there are more coils
hence more azimuthal vorticity per unit length along z and thus a large axial velocity
gradient between the outer and the inner region.

6.7.4 Preliminary results for the inertial cases St 6= 0.
In order to illustrate the effect of inertia on particle motion, the trajectory of a particle
with inertia is plotted in plane Π0 and in three dimensions (figure 6.20).
While initially located within the inner region, the particle does not remain in that region
as before. It thus progressively shift towards the outer region and leaves the computa-
tional domain. Due to lack of time, we could not analyse the dependency of the particle
trajectories with respect to the Stokes number and to the geometrical vortex properties.
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particles in the vortex core particles in the inner region particles in the outer region

Figure 6.19 – Passive particles (St = 0): time evolution of the probability density functions
of the axial position z at t = 100 (orange), t = 200 (green), t = 300 (red) and t = 400
(blue). First row: case 1; second row: case 2; bottom row: case 3. The Np particles
are initially set at z = 0 in the vortex core (left column), or in the inner region (central
column) or in the outer region (right column).
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(a) (b)

Figure 6.20 – Particle with inertia at Stokes number St = 0.5. Trajectory of a particle
initially locate in the inner region represented (a) in plane Π0, (b) in three dimensions.
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Figure 6.21 – One helical vortex of reduced pitch L = 0.25 and Re = 5000. Isosur-
faces of αωB at instants τ = 22.5, 92.5, 142.5. The chosen isosurface value is αωB(τ) =
0.15 max (αωB).

6.8 Late evolution: coil merging and axisymmetrisation
The late evolution of a single helical vortex at small pitch is a merging phase between the
coils, as illustrated in figure 6.21 for L = 0.25. The helical vorticity field evolves towards
a cylindrical layer of helical vorticity. At L = 0.25, the merging starts at roughly τ = 92.5
which corresponds to the state plotted in figure 6.10. This is also the time at which the
functional relation between the stream function and the quantity αωB breaks. This is
shown on the scatter plots in figure 6.22 for instants τ = 112.5 and τ = 202.5 where
two branches are now observed (black and red curves). The splitting concerns regions of
weak vorticity which include the vicinity of the hyperbolic point of the stream function,
as seen in figure 6.23. This indicates that the evolution is not quasi-stationary during the
merging.
Once the successive coils of the vortex have merged to yield a cylindrical sheet, the resulting
structure continues to evolves on a slow diffusing time scale. The radial position rA of the
vortex center decreases in time until reaching the origin of the domain. At this moment
the cylindrical vortex sheet becomes a centred axisymmetric vortex.
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(a) (b)

Figure 6.22 – One helical vortex of reduced pitch L = 0.25 and Re = 5000. Scatter plots
of the quantities (αωB,ΨR) and (uH , αωB) for instant τ = 62.5 (blue), 112.5 (black), 202.5
(red).

Figure 6.23 – One helical vortex of reduced pitch L = 0.25 and Re = 5000. Snapshots at
τ = 112.5 (top) and τ = 202.5 (bottom). Left column: contours of the stream function
in the rotating frame ΨR (black lines) superimposed on top of the quantity αωB. Right
column: same streamlines (white lines) superimposed on top of the quantity uH .
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In the present chapter, quasi-equilibrium solutions previously obtained are used to analyse
the internal structure of the helical vortex and to compare them with analytical predic-
tions. This work led to a publication (Blanco-Rodríguez et al., 2015) between the team at
IRPHE Marseille who performed the theoretical analysis and our team at LIMSI Orsay
and d’Alembert Paris who provided numerical results and performed comparisons between
analytical and numerical results. This chapter includes the JFM paper (section 7.2). In
section 7.1, however, additional details are provided about methods used for comparisons.

In the asymptotic analysis, the multipolar internal structure of vortex rings and helical
vortices are predicted. Equations are expanded in powers of a small parameter ε defined
in equation (6.29)

ε = a

rA

1
1 + L2/r2

A

(7.1)

representing the ratio between the vortex core size a and the radius of curvature. The
leading order is chosen to be an axisymmetric columnar vortex with an axial jet/wake
modeled by a Batchelor vortex profile V =

(
0, u(0), w(0)

)
given in dimensionless cylindrical

coordinates by

u(0) = 1
r

(
1− e−r2)

w(0) = W0e
−r2 +W00 . (7.2)

This leading order is characterised by zero curvature and torsion. When curvature and
torsion are introduced, the core structure is modified through local and non-local effects.
The asymptotic analysis aims at predicting the associated corrections. At first order, a
dipolar correction (azimuthal modem = 1) arises and is shown to depend only on the local
vortex curvature. This correction is thus identical for a ring, an array of rings, a helix and
an array of N helices provided they have the same radius of curvature. At second order,
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a quadrupolar (azimuthal mode m = 2) correction arises and is shown to be composed of
two contributions, one associated with the local curvature and another one arising from a
two-dimensional strain field due to distant vortex parts and/or distant vortices.

7.1 Extraction of the multipolar profile from the DNS data.
In order to compare DNS results to theoretical predictions, we use numerical fields obtained
at a fixed time τ chosen such that a quasi-equilibrium state in the frame rotating with
the helical structure is reached. The rotation rate Ω (τ) of the vortex structure is first
computed using the method described in 5.1.2. The velocity field in the frame rotating at
rate Ω (τ) has then to be analysed in plane Π⊥ in order to extract the monopolar, dipolar
and quadrupolar contributions.

First, this necessitates to define how the plane Π⊥ is chosen in the numerics (see sub-
section 7.1.1). Second the velocity and vorticity field can be expressed in three different
reference frames:

— the laboratory frame (L) in which the vortex rotates
— the frame (T ) in axial translation at velocity Vframe used in the theory in which

the vortex is steady
— the frame (Ro) rotating at angular velocity Ω̂frame used for DNS post-treatment

in which the vortex is also steady.
In order to compare our results to the theory, one has first to express the analytical
velocity field V (Ro) in the rotating frame of reference in adequate dimensionless form (see
subsection 7.1.2). Third, one should provide the parameters of the monopolar fields (see
subsection 7.1.3).

7.1.1 Choice of plane Π⊥
In Blanco-Rodríguez et al. (2015), the centre line of the helical vortex of radius R (R ≡ rA
in our notation) is a filament with imposed helical symmetry represented by a helix S. The
curve S is parametrized by the arc length s, such that in a general Cartesian frame, a point
on S is located by C(s) = (R cos θ,R sin θ, Lθ) with θ = s/

√
R2 + L2. The Serret Frenet

frame attached to S is defined by the tangent t, the normal n and the bi-normal vector b.
The plane (n, b) generates the orthogonal plane Π⊥ where a local polar coordinate system
is constructed such that

er = n cosϕ+ b sinϕ, (7.3)
eϕ = −n sinϕ+ b cosϕ. (7.4)

With our notations this is equivalent to

eρ = erA cos (ψ) + eϕA sin (ψ) (7.5)
eψ = −erA sin (ψ) + eϕA cos (ψ) . (7.6)

In this work, the origin of the local polar coordinate system (hence the vortex centre) is
defined as the stagnation point of the velocity field in Π⊥ such that:

‖v⊥ (ρ, ψ)‖ = ‖uρ (ρ, ψ) eρ + uψ (ρ, ψ) eψ‖ = 0 at the origin ρ = 0. (7.7)

Hence, the curve S crosses the plane Π0 at a point A with coordinates (rA, θA) such that
(7.7) is satisfied. The location of point A is unknown and is found numerically with an
iterative procedure. First, as initial guess value, one finds in Π0, the position M0 where
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the helical vorticity ωB reaches its maximum. Second, the plane Π⊥(M0) normal to the
local helical vector eB(M0) passing through this point M0 is constructed. The velocity
components uρ and uψ in (7.7) are computed in Π⊥(M0) with the set of relations (5.17)-
(5.18) derived in section 5.16. Third one determines the location of the point (ρ0, ψ0) in
Π⊥(M0) where the quantity ‖v⊥ (ρ0, ψ0)‖ (equation (7.7)) is minimum. The intersection of
the helical line passing through this point, with local polar coordinate (ρ0, ψ0) in Π⊥(M0),
with the plane Π0 defines the new stagnation point M1.
At this stagnation point M1, the local helical vector eB(M1) is oriented in a slightly
different direction than eB(M0), so a new plane Π⊥(M1) can be defined in which we can
get another stagnation point M2 by locating the position (ρ1, ψ1) in Π⊥ (M1) where (7.7)
is minimum.
This operation is repeated until convergence (when ‖v⊥ (0, ψ)‖ < 10−11). In practice,
around 100 iterations are necessary. At the end of the process, the stagnation point A
(Mst with the notations of the paper) has been located, providing a helical centre line
S. The radial coordinate of A defines the value of R. The local frame is (erA , eϕA , eBA)
which corresponds to the frame (n, b, t) in the paper.

Velocity and vorticity fields can be easily expressed in the cylindrical coordinates attached
to this plane and thereafter Fourier decomposed in the azimuthal direction using equa-
tions (5.25). This yields the monopolar, dipolar and quadripolar components needed for
comparisons.

7.1.2 Expression of the theoretical velocity field in the rotating frame
In the laboratory frame (L), the vorticity field obtained by the D.N.S. has been shown
(see chapter 6) to possess a structure close to that of the Batchelor vortex. This means
that the monopolar component of the velocity in the laboratory frame (L) reads

V (L)
mono = Γ

2πr
(
1− e−( r

a
)2) eϕ + Ŵ0 e

−( r
a

)2 es + V̂0

where V̂0 is a constant velocity with a part Ŵ (L)
00 es oriented along es and a part per-

pendicular to es. In the rotating frame (Ro) in which the vortex is steady, the velocity
reads

V (Ro) = V
(L)

mono − Ω̂frame ez × ρeρ
= V

(L)
mono − Ω̂frame ez × [ρeρ −Reρ(Mst)]− Ω̂frame ez × [Reρ(Mst)]

or
V (Ro) = V (L)

mono − rΩ̂frame ez × er −RΩ̂frame eφ(Mst).
Since

ez × er = −(eϕ · ez)es + (es · ez)eϕ = − 1√
1 + α2

cosϕes + α√
1 + α2

eϕ ,

one has

V (Ro) = V (L)
mono − rΩ̂frame

α√
1 + α2

eϕ + rΩ̂frame
1√

1 + α2
cosϕes −RΩ̂frame eφ(Mst).

Note that the component perpendicular to es for the term −RΩframe eφ(Mst) and the
term V̂0 cancel out by definition of the stagnation point. There remains only the term
along es that is

−RΩ̂frame eφ(Mst) · es + V̂0 · es = −RΩ̂frame
1√

1 + α2
+ Ŵ

(L)
00 ≡ Ŵ

(Ro)
00 .
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In the rotating frame (Ro), we thus assume a profile of the form

V (Ro) =
[ Γ

2πr
(
1− e−( r

a
)2) − rΩ̂frame

α√
1 + α2

]
eϕ

+
[
Ŵ

(Ro)
00 + Ŵ0 e

−( r
a

)2 + rΩ̂frame
1√

1 + α2
cosϕ

]
es .

(7.8)

7.1.3 Getting the parameters of the monopolar contribution

We determine the values of parameters a, Γ, Ŵ (Ro)
00 and Ŵ0 present in equation (7.8)

by fitting the monopolar component of the velocity obtained by D.N.S. Quantities a and
Γ/2π are then used to make velocity dimensionless as in the theory. For the monopolar
component, this reads[1

r

(
1− e−r2) − rΩframe

α√
1 + α2

]
eϕ + [W (Ro)

00 +W0 e
−r2 ] es.

The parameter W0 is identical in all reference frames. By contrast, the constant jet value
W00 in the translation frame (T ) is linked to W (Ro)

00 by:

W00 = W
(Ro)
00 −

√
1 + α2

α
Vf .

This allows us to compute the two parametersW0 andW00 necessitated by the asymptotic
analysis, and to perform the comparison.

7.2 Paper: Internal structure of vortex rings and helical vortices
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The internal structure of vortex rings and helical vortices is studied using asymptotic
analysis and numerical simulations in cases where the core size of the vortex is
small compared to its radius of curvature, or to the distance to other vortices. Several
configurations are considered: a single vortex ring, an array of equally-spaced rings,
a single helix and a regular array of helices. For such cases, the internal structure is
assumed to be at leading order an axisymmetric concentrated vortex with an internal
jet. A dipolar correction arises at first order and is shown to be the same for all
cases, depending only on the local vortex curvature. A quadrupolar correction arises at
second order. It is composed of two contributions, one associated with local curvature
and another one arising from a non-local external 2-D strain field. This strain field
itself is obtained by performing an asymptotic matching of the local internal solution
with the external solution obtained from the Biot–Savart law. Only the amplitude
of this strain field varies from one case to another. These asymptotic results are
thereafter confronted with flow solutions obtained by direct numerical simulation
(DNS) of the Navier–Stokes equations. Two different codes are used: for vortex rings,
the simulations are performed in the axisymmetric framework; for helices, simulations
are run using a dedicated code with built-in helical symmetry. Quantitative agreement
is obtained. How these results can be used to theoretically predict the occurrence of
both the elliptic instability and the curvature instability is finally addressed.

Key words: vortex flows, vortex interactions

1. Introduction

Most vortices observed in nature are curved and interact with nearby vortices.
Although they can often be considered locally as axisymmetric (with possibly a
jet component), their internal structure is actually azimuthally deformed by local

† Email address for correspondence: ledizes@irphe.univ-mrs.fr
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effects (curvature, torsion) and non-local effects (remote vorticity). These azimuthal
corrections are known to be the source of short-wavelength instabilities. The
description of these corrections is therefore an important necessary step for the
understanding and modelling of these instabilities. In this work, the first dipolar
and quadrupolar corrections to a prescribed monopolar structure are computed for a
single vortex ring, an array of rings, a helical vortex and an array of helices using
two methods: an asymptotic analysis in the limit of small core size and dedicated
numerical simulations.

Vortex rings are simple invariant vortical states that have been studied for more than
a hundred years. In an inviscid framework, vortex rings are expected to propagate at a
constant speed without changing their form. Many works have aimed at determining
the ring propagation speed when the ring core size is small compared to its radius
(see Saffman 1992). In this limit, the most recent work is by Fukumoto & Moffatt
(2000) who also includes viscous effects and computes the internal structure of a
vortex ring up to third order. This analysis clearly shows that dipolar corrections are
generated at first order, while quadrupolar corrections only appear at second order.
The link between dipolar corrections and local curvature has been known for a long
time (Ting & Tung 1965; Widnall, Bliss & Zalay 1971; Moore & Saffman 1972). In
a general setting, Callegari & Ting (1978) showed how dipolar corrections depend
on the local vortex curvature. These results were extended by Fukumoto & Miyazaki
(1991) to account for an axial jet component within the vortex. In the present study,
these asymptotic predictions are retrieved and compared for the first time to numerical
simulations of finite core size vortices.

Helical vortices are more complicated than rings; in addition to their translation
motion they also rotate. Many works are devoted to the rotation and translation
speeds of such invariant structures (Moore & Saffman 1972; Widnall 1972; Ricca
1994; Kuibin & Okulov 1998; Boersma & Wood 1999). In particular Kuibin &
Okulov (1998) and Boersma & Wood (1999) used the expression of the velocity
field in terms of Kapteyn series derived by Hardin (1982) for helical filaments.
These results were further extended for multiple helices by Okulov (2004) and to
higher-order corrections by Fukumoto & Okulov (2005). The effect of torsion is not
present in the rings. It was first characterized by Ricca (1994) for helices. Torsion also
generates a dipolar correction, as does curvature, but this effect is weaker since it is
of second order (see Fukumoto & Okulov 2005). Quadrupolar corrections responsible
for the elliptic deformation of the inner core are also expected at second order (see
for instance Fukumoto & Moffatt 2000). Such corrections are known to be generated
when a vortex is subjected to an external strain field (Moffatt, Kida & Ohkitani
1994), or is exposed to the influence of other vortices (see Le Dizès & Verga 2002)
or to distant parts of the same vortex, as for a ring. This quadrupolar correction has
been fully computed for a single vortex ring (without jet) by Fukumoto & Moffatt
(2000). In the present work, this correction is also provided for an array of rings, a
single helix and an array of helices. The effect of axial jet within the vortex core is
also analysed.

These asymptotic results are then compared with numerical results obtained by
DNS. For rings, the spectral DNS code developed by Bolnot (2012) is used, in
which axisymmetry is enforced as well as axial periodicity, allowing short-wavelength
instabilities (Widnall, Bliss & Tsai 1974; Hattori & Fukumoto 2003) and the pairing
instability (Levy & Forsdyke 1927; Bolnot, Le Dizès & Leweke 2014) to be filtered
out. For helical vortices, the DNS code developed by Delbende, Rossi & Daube
(2012a) and restricted to the simulation of helically symmetrical flows is used.
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FIGURE 1. (Colour online) Vortex configurations studied in the present paper: (a) vortex
ring, (b) array of rings, (c) helical vortex, (d) N helical vortices (here plotted for N = 2).

The paper is organized as follows. In § 2, the framework of the analysis is
presented. The configurations under study are introduced, as well as the different
parameters and the local reference frame in which the internal structure of the vortex
is analysed. The asymptotic analysis of the inner structure is performed in § 3. Both
the leading-order dipolar correction and quadrupolar corrections are obtained. The
quadrupolar contribution is shown to depend on a single constant, which varies from
one configuration to another. This constant is related to the external strain field
experienced locally by the vortex and is computed in § 4 for each configuration. In
§ 5, asymptotic results are compared to DNS results. Section 6 provides a summary
of the main results and a discussion of their implications concerning short-wavelength
instabilities.

2. Presentation of the framework
Four vortex configurations are considered, where the vorticity field (longitudinal and

transverse) is confined in a region of radius a around the curve S , as illustrated in
figure 1. Depending on the configuration, the curve S is

(i) a circle of radius R (figure 1a);
(ii) an infinite array of circles of radius R separated by a distance Lz (figure 1b);

(iii) an helix of radius R and pitch L (figure 1c);
(iv) a regular array of N helices of radius R and pitch L (figure 1d).

Such a curve S possesses a symmetry axis called the Oz axis and is parametrized
by the arc length s. This means that in a global Cartesian frame, the point C(s) is
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given by C(s)= (R cos φ, R sin φ, Lφ) with φ = s/
√

R2 + L2 (for rings, L is taken to
be zero). In this Cartesian frame, the Serret–Frenet frame can be expressed as

t≡
dC
ds∣∣∣∣
dC
ds

∣∣∣∣
= R(−ex sin φ + ey cos φ)+ Lez√

R2 + L2
, (2.1a)

n≡ dt
ds
=−(ex cos φ + ey sin φ), (2.1b)

b≡ t× n= Rez + L(ex sin φ − ey cos φ)√
R2 + L2

. (2.1c)

Note that the curvature κ and torsion τ of this curve are given by

κ = R
R2 + L2

, τ = L
R2 + L2

. (2.2a,b)

The vorticity field is assumed to be uniform along the curve S , with a constant
longitudinal circulation Γ . The vorticity field is also assumed to possess a transverse
component associated with a localized jet along S . This will be further defined below.
The radius a is assumed to be small compared to the other length scales i.e. R and
Lz for rings, and R and L/N for helices. In this context, we are studying the internal
structure within the region of radius a around S . It is therefore useful to define a
local frame centred on a point C(s) of S . Following Callegari & Ting (1978), we
introduce the local polar frame

er = n cos ϕ + b sin ϕ, (2.3a)
eϕ =−n sin ϕ + b cos ϕ, (2.3b)

es = t, (2.3c)

associated with the local coordinate system (r, ϕ, s). The coordinate system is
illustrated in figure 2 for ring and helix configurations. This non-orthogonal coordinate
system is related to an orthogonal coordinate system (r, θ , s) where

θ = ϕ + θ0(s), with
∂θ0

∂s
= τ , (2.4)

which can be used to derive the governing equations in the local frame (see Callegari
& Ting 1978, for details). In the following, the velocity vector field will be written
V = vρeρ + vφeφ + vzez in the global cylindrical frame and V = uer + veϕ + wes in
the local polar frame. The formulae that connect one representation to the other are
provided in appendix A.

In the local frame, the vortex structure is assumed, at leading order, to be a
columnar axisymmetrical vortex, independent of s and ϕ. Our goal is to determine
the corrections to this axisymmetrical structure induced by the curvature and torsion
of vortex lines, and the presence of distant vortices or vortical parts of the same
vortex.

We introduce the following parameters

ε= Ra
R2 + L2

= κa, α = L
R
= τ
κ
, λ= Lz

R
. (2.5a−c)
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FIGURE 2. (Colour online) Illustration of the coordinate system for a ring (a) and a helix
(b). The point M can be localized using the global cylindrical frame (eρ, eφ, ez), or the
local frames: the Serret–Frenet frame (n, b, t) and the frame (er, eϕ, t). Note that vectors
er and eϕ are in the plane (n, b). Point C(s) is defined as the point on the curve S which
is the closest to point M.

The asymptotic analysis is performed in the limit a� R and a� Lz for rings, and
a� R and a� L for helical vortices. The parameter ε is thus assumed to be small,
whereas the parameters α and λ are O(1). In the present study, we do not consider
compressible and buoyancy effects and assume that the density is uniform and
constant. Viscous effects are also neglected by assuming that the Reynolds number
Γ/ν (ν is the kinematic viscosity) is sufficiently large. This hypothesis means that
we consider vortex structures on time scales which are short compared to the viscous
diffusion time scale a2/ν. This allows us to consider vortical structures that translate
and rotate steadily without changing their shapes. Here, we shall assume that there
exists a frame translating at the velocity Vframeez where the solution is steady.

The computation of the displacement speed of helical vortices or rings has been the
subject of numerous works (see for instance Saffman (1992) for rings and Alekseenko,
Kuibin & Okulov (2007) for helices). In each case, there is a dominant local velocity
contribution which is proportional to −ε log(ε) and oriented along the binormal
vector b, as predicted by the local induction approximation (Saffman 1992). This
local contribution is corrected by O(ε) non-local effects associated with distant vortex
parts or other vortices. In all cases, the vortex structure displacement speed remains
asymptotically small. The frame velocity Vframe is related to the vortex structure
displacement speed in the manner illustrated in figure 3. For rings, the binormal
vector is aligned along with the vertical axis, so the frame velocity correspond to the
displacement speed Vring = Vringb = Vframeez. For helices, the displacement speed can
be decomposed as Vhelix = Vhelixb = Vframeez + W00 t, where Vframe =

√
1+ α2Vhelix and

W00 = −αVhelix because ez · b = 1/
√

1+ α2 and ez · t = α/√1+ α2. The component
W00 represents a uniform jet contribution along the vortex axis. It is only present in
helices. Though small, we shall take this effect into account in our analysis.

In the uniformly translating frame, the solution satisfies the steady Euler equations.
If, in the local frame, the velocity field (u, v, w) and pressure p are assumed to be
independent of s, the steady Euler equations become (Callegari & Ting 1978)
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FIGURE 3. (Colour online) Definition of Vframe for a ring (a) and of a helix (b). The
velocities Vframeez and RΩframeeφ are such that their projection on the binormal vector b is
equal to vortex structure displacement speed.

ε(−αuϕ +w cos ϕ)w
h

+ uur + v(uϕ − v)r
+ pr = 0, (2.6a)

ε(−αvϕ −w sin ϕ)w
h

+ uvr + v(vϕ + u)
r

+ pϕ
r
= 0, (2.6b)

ε[(−αwϕ − (u cos ϕ − v sin ϕ))w− αpϕ]
h

+ uwr + vwϕ

r
= 0, (2.6c)

ε[−αwϕ − (u cos ϕ − v sin ϕ)]
h

+
[
ur + u

r
+ vϕ

r

]
= 0, (2.6d)

with h= 1− εr cos ϕ. Note that, in the text, vρ , vφ and vz indicate the components in
the global cylindrical frame, whereas the subscript indices for other variables such as
the local components u, v, w refer to derivatives (e.g. uϕ = ∂u/∂ϕ).

3. Internal vortex structure
In this section, we calculate the main dipolar and quadrupolar corrections to the

local columnar axisymmetrical vortex. The velocity and pressure fields are expanded
in powers of ε

u = + εu(1)(r, ϕ)+ ε2u(2)(r, ϕ)+ · · · , (3.1a)
v = v(0)(r)+ εv(1)(r, ϕ)+ ε2v(2)(r, ϕ)+ · · · , (3.1b)
w = w(0)(r)+ εw(1)(r, ϕ)+ ε2w(2)(r, ϕ)+ · · · , (3.1c)
p = p(0)(r)+ εp(1)(r, ϕ)+ ε2p(2)(r, ϕ)+ · · · . (3.1d)

3.1. Monopolar structure

At leading order, the solution is a straight vortex of azimuthal velocity v(0)(r) and
axial velocity w(0)(r). The pressure p(0) is related to v(0) by

p(0)(r)=
∫ r

0

[v(0)(η)]2
η

dη. (3.2)

The longitudinal (axial) and transverse (azimuthal) distributions of vorticity are defined
respectively from v(0) and w(0) by the following expressions
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ζ (0) = 1
r
∂

∂r
(rv(0)), (3.3a)

Υ (0) =−∂w(0)

∂r
. (3.3b)

The asymptotic analysis can be performed for any axisymmetrical vortex with jet
but for computations and numerical comparisons we use the Batchelor family of
profiles

v(0)(r)= 1
r
(1− e−r2

), (3.4a)

w(0)(r)=W0e−r2 +W00 . (3.4b)

This vortex model is often used because it corresponds to profiles of fully viscous
self-similar solutions; viscosity is then expected to modify the core size and the
jet strength but not the profiles. In expressions (3.4a,b), the velocity is made
dimensionless using the vortex core size, a, as a characteristic length and Γ/(2πa) as
characteristic velocity. The constant W0 characterizes the jet strength and the constant
W00 corresponds to a uniform flow component along the vortex axis. As explained
above, such a component is present in helices. It is created by the change of reference
frame, because the frame velocity does not correspond to the direction of propagation
of the helix (see figure 3). If we take into account only this effect, it is related to
the speed Vframe of the comoving frame by

W00 =−
αVframe√
1+ α2

. (3.5)

This term is null for vortex rings (α= 0), and is O(ε log ε) for helices. Although this
term is a higher-order term, it is convenient to introduce it here. We shall see below
that it improves the predictions of the axial flow component.

3.2. Dipolar correction
The problem at first order provides the main dipolar correction to the axisymmetric
vortex. This problem was first solved in a general setting by Callegari & Ting (1978).
They showed that the first order corrections satisfy the system

v(0)

r
(u(1)ϕ − 2v(1))+ p(1)r =−[w(0)]2 cos ϕ, (3.6a)

ru(1)v(0)r + v(0)(v(1)ϕ + u(1))+ p(1)ϕ = r[w(0)]2 sin ϕ, (3.6b)

u(1)w(0)
r +

v(0)

r
w(1)
ϕ =−[w(0)v(0)] sin ϕ, (3.6c)

1
r
(ru(1))r + 1

r
v(1)ϕ =−v(0) sin ϕ. (3.6d)

This system possesses a solution of the form

u(1) = û(1)(r) sin ϕ =− ψ̂
(1)

r
sin ϕ, (3.7a)

v(1) = v̂(1)(r) cos ϕ = (−ψ̂ (1)
r + rv(0)) cos ϕ, (3.7b)
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w(1) = ŵ(1)(r) cos ϕ =
(
−w(0)

r

v(0)
ψ̂ (1) + rw(0)

)
cos ϕ, (3.7c)

p(1) = p̂(1)(r) cos ϕ = (−ζ (0)ψ̂ (1) + v(0)ψ̂ (1)
r − r[v(0)]2 − r[w(0)]2) cos ϕ, (3.7d)

where the streamfunction amplitude ψ̂ (1)(r) satisfies

L (1)(ψ̂ (1))= 2rζ (0) + v(0) + 2r
w(0)w(0)

r

v(0)
, (3.8)

with the operator L (k) for k= 1, 2, . . . defined as

L (k) ≡
[
∂2

∂r2
+ 1

r
∂

∂r
−
(

k2

r2
+ ζ

(0)
r

v(0)

)]
. (3.9)

Using the method of variation of constants, (3.8) can be integrated in closed form as
it possesses v(0) as an exact homogeneous solution. If the centre of the local frame is
chosen such that the velocity in the (n, b) plane vanishes at the origin (up to O(ε2)),
ψ̂ (1)

r (0)= 0 and ψ̂ (1)(0)= 0 must be imposed, hence

ψ̂ (1)(r)= v(0)(r)
∫ r

0

∫ z

0
v(0)(η)

[
2ηζ (0)(η)+ v(0)(η)+ 2η

w(0)(η)w(0)
r (η)

v(0)(η)

]
η dη

z[v(0)(z)]2 dz.

(3.10)
As explained in Fukumoto & Moffatt (2000), adding a homogeneous solution
c1v

(0) to ψ̂ (1) corresponds to a change of frame centre. In the present work, the frame
centre has been selected as the stagnation point of the flow, and this corresponds
to c1 = 0. As soon as the frame centre is fixed, there are no free parameters:
streamfunction, velocity and pressure are given at first order by (3.7a–d) and (3.10).

The first-order correction is thus a pure dipolar correction which depends on the
local curvature only. This correction is thus identical for a ring, an array of rings,
a helix and an array of N helices. It is easy to show that ψ̂ (1) expands for large r
(Fukumoto & Miyazaki 1991) as follows

ψ̂ (1) ∼ 1
2

r log r+ rA+O
(

1
r

)
, (3.11)

with

A = 1
2

lim
r→∞

(∫ r

0
η(v(0)(η))2 dη− log r

)
+ 1

4
−
∫ ∞

0
η((w(0)(η))2 −W2

00
) dη

= 1
4
(1−W0(W0 + 2W00)+ γ − log 2) (3.12)

and γ ≈ 0.577 being Euler’s constant. As W0W00 is always small, we shall use the
approximation A ≈ 0.22 − W2

0/4. In figure 4, the streamfunction, ψ̂ (1)/r is plotted
together with its asymptotic behaviour for the Batchelor vortex for two jet parameters
(W0 = 0, W0 = 1) and W00 = 0. When W0 = 0, the dipolar component of the axial
velocity follows the simple linear expression ŵ(1)(r)= rW00 .

As shown by Fukumoto & Okulov (2005), dipolar corrections are modified by
torsion at second order. Thus, rings and helices generate a different dipolar correction
only if we consider higher-order terms.
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FIGURE 4. Characteristics of the dipolar correction for the Batchelor vortex. ψ̂ (1)/r
versus r (solid line: W0 = 0; dashed line: W0 = 1. W00 = 0 for both cases) The dotted
lines correspond to the asymptotic behaviour (3.11).

3.3. Quadrupolar correction
Quadrupolar corrections do not appear at first order but they are generated at second
order. At second order, dipolar and monopolar corrections are also generated but we
focus here on quadrupolar corrections, as monopolar and dipolar fields were already
obtained at lower order. The perturbation equations for the second-order corrections
are given by

v(0)

r
(u(2)ϕ − 2v(2))+ p(2)r =

[
v(1)

r
(v(1) − u(1)ϕ )− u(1)u(1)r

]

−w(0)(2w(1) cos ϕ +w(0)r cos2 ϕ), (3.13a)

ru(2)v(0)r + v(0)(v(2)ϕ + u(2))+ p(2)ϕ = −[ru(1)v(1)r + v(1)(v(1)ϕ + u(1))]

+ rw(0)(2w(1) sin ϕ +w(0)r cos ϕ sin ϕ), (3.13b)

u(2)w(0)
r +

v(0)

r
w(2)
ϕ = −

[
u(1)w(1)

r +
v(1)

r
w(1)
ϕ

]
− v(0)w(1) sin ϕ

+w(0)(u(1) cos ϕ − v(1) sin ϕ − rv(0) cos ϕ sin ϕ),
(3.13c)

1
r
(ru(2))r + 1

r
v(2)ϕ = u(1) cos ϕ − v(1) sin ϕ − rv(0) cos ϕ sin ϕ. (3.13d)

The quadrupolar field satisfying these equations is found to be of the form

u(2)quad = û(2)(r) sin 2ϕ =−2
r
ψ̂ (2) sin 2ϕ, (3.14a)

v
(2)
quad = v̂(2)(r) cos 2ϕ = (−ψ̂ (2)

r + VF) cos 2ϕ, (3.14b)

w(2)
quad = ŵ(2)(r) cos 2ϕ =

(
−w(0)

r

v(0)
ψ̂ (2) +WF

)
cos 2ϕ, (3.14c)

p(2)quad = p̂(2)(r) cos 2ϕ = (−ζ (0)ψ̂ (2) + v(0)ψ̂ (2)
r + PF) cos 2ϕ, (3.14d)
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with

VF = r2

4
(û(1)r + 2v(0)), (3.15a)

WF = r
4v(0)

[
− ŵ(1)v̂(1)

r
+ ŵ(1)

r û(1) + v(0)(ŵ(1) + rw(0))+w(0)(v̂(1) − û(1))
]
, (3.15b)

PF = r
4

û(1)v̂(1)r −
v̂(1)

4
(v̂(1) − û(1))− r

2
w(0)

(
ŵ(1) + r

2
w(0)
)
− v(0)VF. (3.15c)

The streamfunction amplitude ψ̂ (2) satisfies

L (2)(ψ̂ (2))=F , (3.16)

with

F = 3rv(0)

4
− rψ̂ (1)ζ (0)r

v(0)
− (ψ̂

(1))2

4v(0)

(
ζ (0)r

v(0)

)

r

+ rψ̂ (1)

[v(0)]2
[

w(0)w(0)
r v

(0)
r

v(0)
− (w(0)w(0)

r )r

]
. (3.17)

The general solution to (3.16) which is finite at the origin, can be written as

ψ̂ (2) = SΨ (2)(r)+Ψ (2)
NH (r), (3.18)

where Ψ (2) denotes the homogeneous function such that

L (2)(Ψ (2))= 0, Ψ (2) ∼
r→0

s0r2, Ψ (2) ∼
r→+∞

r2, (3.19a−c)

and Ψ (2)
NH denotes a particular solution to the non-homogeneous problem (3.16). Finally,

S is an arbitrary constant.
It is worth mentioning that another homogeneous solution of (3.13a–d) corresponding

to a radial velocity proportional to (2/r)Ψ (2)(r) cos 2ϕ could have been added in
principle in (3.14a). This solution turns out not to be present for rings and helices,
as will be seen in the expressions of the outer solution given in the next section.

The function Ψ (2) describes how a strain field is transmitted within a vortex. It was
first introduced by Moffatt et al. (1994) for the asymptotic analysis of a vortex in a
strain field. Eloy & Le Dizès (1999) showed that s0 ≈ 2.525 for a Gaussian vorticity
profile. Function Ψ

(2)
NH (and consequently ψ̂ (2)) is expected to behave as 3/16r2 log r

for large r (see figure 5) because F ∼ 3/4 as r→+∞. Using the method of variation
of constants and the fact that Ψ (2) is an exact solution of the homogeneous problem,
Ψ
(2)

NH is given by

Ψ
(2)

NH =Ψ (2)(r)




3
16

log r−
∫ +∞

r




∫ s

0
ηF (η)Ψ (2)(η) dη

s[Ψ (2)]2 − 3
16s


 ds


 . (3.20)

The strain rate S(2)NH = limr→0 Ψ
(2)

NH/r2, which is associated with local curvature effects
(it is not present for straight vortices (see, for instance, Le Dizès & Verga 2002)),
strongly varies with respect to the jet parameter W0 (see figure 6). Finally, the function
Ψ (2) only depends on v(0) and the function Ψ

(2)
NH only on v(0) and w(0), that is, they
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FIGURE 5. Characteristics of the quadrupolar correction for a Batchelor vortex. (a) Ψ (2)/r2

versus r; (b) Ψ (2)
NH/r2 versus r (solid line: W0 = 0, dashed line: W0 = 0.4, dash-dot line:

W0 = 1). For all cases, W00 = 0.
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FIGURE 6. Variation of S(2)NH with respect to W0 for W00 = 0.

only depend on the local properties of the underlying axisymmetrical vortex. These
two functions are plotted in figure 5 for the Batchelor vortex for three values of the
jet parameter.

The constant S is not determined from the above inner analysis but from matching
with an outer solution. It is hence expected to be different for each case; S is actually
related to the external strain field experienced by the vortex (see the following section).
Contrary to the dipolar correction, the quadrupolar correction is dependent on non-
local effects. Yet this dependence comes about through a single constant! Near the
origin, the function ψ̂ (2) represents a pure strain field

ψ̂ (2) ∼ S(2)r2, (3.21)

where S(2) = s0S+ S(2)NH . The principal directions of this strain field are ϕ =±π/4.
The choice of the frame centre selected at first order does not affect the constant

S, but has an impact on the forcing term F , and thus on the function Ψ
(2)

NH . When
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W0 = 0, the axial flow component is particularly simple ŵ(2) = r2W00/2 and the other
velocity components become independent of W00 .

4. External strain field
The constant S depends on the strain field induced by the background flow. It comes

about through an asymptotic matching of the inner solution previously obtained with
the outer solution obtained by the Biot–Savart law.

Let us consider the velocity u(out) induced by the vortex system in a reference frame
where the system is steady. Such a frame is chosen here as the frame uniformly
translating with a velocity Vframeez.

To get the outer solution, we assume that the vorticity is a monopolar field
concentrated on the curve S corresponding to one of the configurations shown in
figure 1. The velocity is then such that

u(out)(x)= u(BS)(x)− Vframeez, with u(BS)(x)=− 1
4π

∫

S

Γ ′
(x− x′)× t′

|x− x′|3 ds′. (4.1)

All vortices have a constant circulation Γ ′ = 2π. Note that we do not consider the
transverse distribution of vorticity on S associated with the axial flow within the
vortex. Indeed, this vorticity distribution is not expected to contribute to the external
flow, as proved by Fukumoto & Miyazaki (1991). We also disregard higher-order
corrections to (4.1) corresponding to multipolar vorticity concentration on S ; these
corrections would be needed to perform a full matching of inner and outer solutions
up to O(ε2) (see for instance Fukumoto & Moffatt 2000) but are not required for the
computation of S. Here, we simply match the quadrupolar field of one component of
the velocity field at leading-order only. More precisely, we impose that the local radial
velocity of the outer solution possesses a quadrupolar part u(out)

quad of the form

u(out)
quad = u(BS)

quad ∼ ε2[(−2Sr− 3
8 r log r) sin 2ϕ] for 1� r� 1/ε. (4.2)

4.1. A single vortex ring
The asymptotic description of a single ring was first considered by Widnall & Tsai
(1977). It was recently re-examined by Fukumoto & Moffatt (2000) and Fukumoto
(2002). Fukumoto & Moffatt (2000) obtained an asymptotic solution up to ε3 which
can be used for the present analysis. Their expression (3.7) of the outer solution in
the regime (1� r� R) leads to the radial velocity

u(BS) ∼ 1
2R

(
log
(

8R
r

)
− 1
)

sin ϕ + 3r
8R2

(
log
(

8R
r

)
− 4

3

)
sin 2ϕ. (4.3)

Since ε = 1/R for the ring, the matching of their quadrupolar field with the inner
quadrupolar part (4.2) requires that

SRi =− 3
16

[
log
(

8
ε

)
− 4

3

]
. (4.4)

Note that such a formula could have also been obtained from expression (4.21) of
Widnall & Tsai (1977).
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4.2. An array of vortex rings
The velocity field of an array of vortex rings is equal to the field of a single ring plus
the field generated by distant rings. The first contribution has been calculated in the
previous section. The contribution from distant rings can be obtained directly from the
Biot–Savart integral. The velocity field of the ring placed at position z= 2πnLz can
be written using the global cylindrical coordinate system (see appendix A) as

v(BS)
n,ρ (ρ, z)=−1

2

∫ 2π

0

R(z− 2πnLz) cos s
(ρ2 − 2Rρ cos s+ R2 + (z− 2πnLz)2)3/2

ds, (4.5a)

v(BS)
n,z (ρ, z)=−1

2

∫ 2π

0

R(R2 − ρR cos s+ (z− 2πnLz)
2) cos s

(ρ2 − 2Rρ cos s+ R2 + (z− 2πnLz)2)3/2
ds. (4.5b)

Using the expression for the local radial velocity (see appendix A), one obtains (L=
α = 0)

u(r, ϕ)=−vρ cos ϕ + vz sin ϕ (4.6)

ρ = R− r cos ϕ, z= r sin ϕ (4.7a,b)

Finally, the dipolar and quadrupolar terms are for r� R

uBS ∼
∑

n6=0

[
v(BS)

n,z (R, 0) sin ϕ − r
2
(∂zv

(BS)
n,ρ (R, 0)+ ∂ρv(BS)

n,z (R, 0)) sin 2ϕ
]
. (4.8)

The quadrupolar velocity contribution from distant rings becomes (ε= 1/R)

uBS
quad ∼−2SDRiε2r, with SDRi = R2

2

∞∑

n=1

(∂zv
(BS)
n,ρ (R, 0)+ ∂ρv(BS)

n,z (R, 0)). (4.9)

As shown by Levy & Forsdyke (1927), SDRi can also be expressed in terms of the
complete elliptic integrals of the first and second kind, K(Z) and E(Z), (Abramowitz
& Stegun 1965, p. 590)

SDRi = 1
4

∞∑

n=1

Λ3/2
n

((
1− 4

n2λ2

)
E(Λn)−K(Λn)

)
, (4.10)

with

Λn = 1
1+ n2λ2/4

. (4.11)

The function SDRi is plotted in figure 7 as a function of the parameter λ = Lz/R.
The constant S for an array of vortex rings is

SARi = SDRi + SRi. (4.12)

Both contributions are negative, and tend to elongate the vortex core along the z
direction. In figure 8, the total contribution is plotted as a function of λ for a few
values of ε.

Note that because

SDRi ∼− π2

6λ2
as λ→ 0, (4.13)

the complete external strain rate is equal to Sext≡ 2SDRiε2∼−π2/(3L2
z ) which is equal

to the external strain rate generated by an array of point vortices of circulation 2π
separated by a distance Lz (Lamb 1932).



232 F. J. Blanco-Rodríguez, S. Le Dizès, C. Selçuk, I. Delbende and M. Rossi

 0

 –0.2

 –0.4

 –0.6

 –0.8

 –1.0

 –1.2

–1.6

–1.4

–1.8
0 2 4 6 8 10

FIGURE 7. Strain rate parameter SDRi generated by distant rings in an array of rings as
a function of the aspect ratio λ= Lz/R.
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FIGURE 8. Strain rate parameter SARi for an array of vortex rings as a function of λ=Lz/R
for various ε = a/R. Solid line: ε = 0.33; dashed line: ε = 0.1; dash-dot line: ε = 0.033;
dotted line: ε= 0.01.

4.3. A single helix

As shown by Hardin (1982), the velocity field induced by a helical vortex filament
can be expressed in cylindrical coordinates for ρ < R (with our normalization) as

v(BS)
ρ (ρ, χ)= 2

Rα2
Im
[

H1,1
1

(
ρ

Rα
,

1
α
, χ

)]
, (4.14a)

v
(BS)
φ (ρ, χ)= 2

ρα
Re
[

H0,1
1

(
ρ

Rα
,

1
α
, χ

)]
, (4.14b)

v(BS)
z (ρ, χ)= 1

Rα
− 2

Rα2
Re
[

H0,1
1

(
ρ

Rα
,

1
α
, χ

)]
, (4.14c)
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where χ = φ − z/L and Re[ ] (respectively Im[ ]) indicates the real (respectively
imaginary) part of a complex expression, and

HI,J
M (x, y, χ)=

∞∑

m=1

mMI(I)m (mx)K(J)
m (my) exp(imχ), (4.15)

where we used the notation introduced by Okulov (2004) for the Kapteyn series.
I(I)m and K(J)

m denote the Ith and Jth derivative of modified Bessel functions. Other
expressions for the velocity field can be obtained for ρ > R, but we only need the
above expressions valid for ρ < R to compute the value of S.

The value χ = 0 defines the angular position of the helix. Without restriction, we
can consider a local frame centred on the point in cylindrical coordinates (ρ, φ, z)=
(R, 0, 0). The local radial velocity u can be deduced from (4.14a–c) using (A 4a)
and (A 5a–c) given in appendix A. We are interested in the expansion of u as r/R
goes to zero. As shown by Okulov (2004), it is convenient to isolate the singularity
of the Kapteyn series to obtain such an expansion (see appendix B). The derivation,
which should be carried up to O(r/R)2 terms, is tedious but straightforward. It can
be facilitated by using a symbolic software. The final result is expression (B 12) for
u with the following expression for S:

SHe = − 3
16

log
(

α

(α2 + 1)3/2ε

)
− (α

2 + 1)2

24α2
− 1

4
(α2 + 1)2 + 1

4
α(α2 + 1)3/2

+ 1
96
(28α2 + 11)+

∞∑

m=1

Rm(α), (4.16)

with

Rm(α) = α(α2 + 1)3/2

2
+ 3

16m
− (1+ α

2)3m
2α2

+ m2(α2 + 1)5/2

α3

(
−Im−1

(m
α

)
+ αIm

(m
α

)) (
Km−1

(m
α

)
+ αKm

(m
α

))

+m(α2 + 1)3/2Im

(m
α

) (
Km−1

(m
α

)
+ αKm

(m
α

))
. (4.17)

The function SHe is plotted in figure 9 for various values of ε.
Note that when α→ 0, we have SHe ∼−1/(24α2), which corresponds to the value

(4.13) for an array of rings for small λ since we have the relation λ = 2πα. From
figure 9, we can also guess that SHe ∼O(α2) as α→∞, which implies that the self-
external strain of a helix does vanish when its pitch L/R goes to infinity with a fixed
a/R.

4.4. Multiple helices
When there are several helices, we must add to the previous contribution of a single
helix, the contribution from the other distant helices. Expressions (4.14a–c) for the
velocity field can still be used. For the helix located in the horizontal plane (0xy)
at φk = 2πk/N, we have to change χ = φ − z/L into χ = (φ − φk) − z/L. Summing
the contribution from each helix for k = 1, . . . , N − 1 and expanding every quantity
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FIGURE 9. Strain rate parameter SHe as a function of α = L/R for various ε. Solid line:
ε= 0.33; dashed line: ε= 0.1; dash-dot line: ε= 0.033; dotted line: ε= 0.01.

as r/R→ 0 leads to expression (B 15) for the local radial velocity (see appendix B)
where S is given by

SDHe = 3 log(N)
16

− (α
2 + 1)3(N2 − 1)

24α2

+ α(α
2 + 1)3/2(N − 1)

4
+
∞∑

m=1

Rm(α)%
(m

N

)
, (4.18)

with Rm(α) given by (4.17) and

%
(m

N

)
=

N−1∑

k=1

cos
(

2πk
m
N

)
=





−1
m
N
6∈N,

N − 1
m
N
∈N.

(4.19)

We obtain for multiple helices SMHe = SHe + SDHe, that is

SMHe = − 3
16

log
(

α

(α2 + 1)3/2Nε

)
− 4(α2 + 1)3N2 + α2(20α4 + 12α2 + 9)

96α2

+ α(α
2 + 1)3/2N

4
+N

∞∑

n=1

RnN(α). (4.20)

The function SMHe is plotted in figure 10 for N= 1, 2, 3, 5 and ε= 1. Plots for other
values of ε are obtained by adding (3/16) log ε as SMHe(ε)= SMHe(1)+ (3/16) log ε.

Note that we have

SMHe ∼− N2

24α2
as α→ 0, (4.21)

SMHe ∼− (N − 1)(N − 5)
24

α4 as α→∞. (4.22)
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FIGURE 10. Strain rate parameter SMHe versus α= L/R for N helices with N = 1, 2, 3, 5
(solid, dash, dash-dot, dotted lines) for ε= 1. (a) SMHe is normalized by its expression at
the origin SMHe

0 =−N2/(24α2); (b) SMHe is normalized by α4.

For large α, the problem becomes a configuration of 2-D straight vortices on
a polygon. This can be used to check (4.22). For N = 2, the calculation is
straightforward as the strain field at (x, y) = (R, 0) is due to a vortex of circulation
2π located at (−R, 0). We immediately obtain a strain rate Sext = 1/(4R2) =
(1/4)ε2(1 + α2)2 = 2Sε2 which gives S = (1/8)α4 for large α in accordance with
(4.22) for N = 2.

For large N, we obtain

SMHe ∼− (1+ α
2)3N2

24α2
, (4.23)

which corresponds to the external strain rate generated by an array of straight vortices
of circulation 2π and separated by the shortest distance between the helices: Lz =
2πL/(N

√
1+ α2).

Note that although SMHe diverges for small and large α, the external strain rate
defined by Sext = 2SMHeε2 = 2SMHe(a/R)2/(1 + α2)2 remains always small when the
core size, a, remains small compared to the shortest distance to the other parts of the
vortex structure.

5. Comparison with numerical results
In this section, the asymptotic solution is compared to direct numerical simulations.

5.1. Simulation of a ring array
For an array of vortex rings, the pseudo-spectral code developed by Bolnot (2012) is
used. This code has been validated and run to analyse the stability of vortex rings
with respect to the pairing instability in Bolnot et al. (2014). The system is assumed
axisymmetric and periodic in the axial direction. The numerical formulation is based
on Chebyshev and Fourier decompositions in the radial and axial directions, and
on an extrapolation Adams–Bashforth scheme for time evolution. The simulation is
initialized by a normalized Gaussian profile for the azimuthal vorticity and velocity
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centred at (ρ, z)= (R0, 0) in a box of axial length Lz with a prescribed jet parameter.
At t = 0, circulation and core radius of the vortex ring and Reynolds number are
fixed to Γ0 = 2π, a0 = 1 and Re= Γ0/ν = 2000.

After a short relaxation process, the solution reaches a quasi-steady state in the
frame moving with the vortex ring (Bolnot et al. 2014). The core size and jet
parameter have slightly evolved during the relaxation process but are adequately
predicted using the viscous expansion factor

√
1+ 4t/Re (Bolnot et al. 2014). It is

this quasi-equilibrium state (frozen at a time tr) that is compared to the asymptotic
solution. In order to agree with the definition used in the asymptotic analysis, the
radius R of the ring should correspond to a radial and axial velocity stagnation point.
As the plane of symmetry of the solution is fixed in the centre z= 0 of the box, the
radius R is obtained from the condition uz(R, 0)= 0 which leads to a value slightly
different from R0.

As soon as the centre of the local frame is obtained, the local velocity field (u, v,w)
can be computed using (A 4a–c), (A 5a–i) and (A 1a–c). An azimuthal decomposition
is then performed to get the monopolar, dipolar and quadrupolar contributions that we
compare to the theory.

Figure 11 shows a comparison between asymptotic and DNS results for an array
of vortex rings for the parameters ε = 0.11, λ = Lz/R = 3, W0 = 0.1 and Re = 2000.
In these figures, we plotted the monopolar, dipolar and quadrupolar contributions of
each velocity component in the local frame, using the same normalisation as in the
theory. The core size, circulation and jet parameter have been evaluated by comparing
the monopolar part (a,d,g) of the numerical velocity fields with the Gaussian model
used. It is found that the theoretical profile selected at zero order is appropriate (see
comparison figure 11a,d,g). A good agreement between numerical and theoretical
curves is also found for all dipolar and quadrupolar components. Other configurations
have been tested, and a similar agreement has always been observed. This constitutes
a strong validation for both theory and code.

5.2. Simulation of helices
The simulations of helix systems have been carried out using the helical code
developed in Delbende et al. (2012a), which implements a generalisation of the
vorticity-streamfunction formulation in a circular domain, with finite differences
in the radial direction and spectral decomposition along the azimuth. The helical
symmetry is explicitly enforced in such a way that the 3-D Navier–Stokes equations
are reduced to a 2-D unsteady problem. The code has also been validated and used
in Delbende, Rossi & Piton (2012b), Delbende, Piton & Rossi (2015).

Similarly to vortex ring simulations, we start the simulation with Gaussian profiles
for the axial velocity and axial vorticity around one or several helical curves (see
figure 1) with prescribed a0, R0, W0, Γ and L. The Reynolds number is always fixed at
Re=Γ/ν= 10 000. After a relaxation process, the system reaches a quasi-equilibrium
state in the frame rotating at the rotation rate Ωframe of the helical structure. The
rotation rate Ωframe is related to the displacement speed of the helical structure as
sketched in figure 3. It can then also be expressed as a function of Vframe using
Ωframe =−Vframe/(αR).

The difficulty concerning the treatment of the numerical data is the prescription of
the local frame. Such a frame is not naturally defined from the DNS, and is obtained
here by an iterative procedure. Let us define the helical vorticity ωB by ω · eB where
eB is a unit vector tangent to any helical line (for details see Delbende et al. (2012a)).
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FIGURE 11. Array of swirling vortex rings with jet strength W0 = 0.1, at Lz/R= 3, ε =
0.11, Re= 2000: comparison between asymptotic results (dashed lines) and DNS results
(solid lines). (a,d,g) Monopolar component; (b,e,h): dipolar component; (c,f,i) quadrupolar
component. (a–c) Radial velocity, (d–f ) azimuthal velocity, (g–i) axial velocity.
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This quantity is directly provided by the helical code. First, one finds the position
M0 where the helical vorticity ωB reaches its maximum in a global horizontal plane.
Second, one defines the plane Π⊥(M0) normal to the local helical vector eB(M0)
passing through this point M0. Third, one determines the stagnation point M1 of the
velocity components normal to eB(M0) in Π⊥(M0). At this stagnation point, M1, the
local helical vector eB(M1) is oriented in a slightly different direction than eB(M0),
so a new plane Π⊥(M1) can be defined in which we can obtain another stagnation
point M2 of the velocity components normal to eB(M1) in Π⊥(M1). This operation
is repeated until it has converged to the point that will be the centre of the local
frame. In practice, around 100 iterations are necessary. At the end of the process, the
stagnation point C has been located, providing a helical line S . The radial coordinate
of C defines the value of R. The local frame is such that eB(C) corresponds to the
vector es of the theory.

Velocity and vorticity fields are expressed in the cylindrical coordinates attached to
this local frame and thereafter Fourier decomposed in the azimuthal direction to obtain
the monopolar, dipolar and quadrupolar components. The monopolar components are
used to correct the value of the parameters a, Γ and W0, by fitting axial vorticity
and axial velocity with Gaussian profiles, after subtracting the uniform vorticity
associated with the rotation of the frame. At the end of this procedure, all theoretical
parameters have been obtained and each component can be adequately renormalized
for comparison. Note that the frame used in the theory to obtain a steady vortex
system is different; it is translating rather than rotating. To express the theoretical
results in the rotating frame, one simply subtracts velocity −Vframeez + Ωframeρeφ
from the theoretical solution. Using (A 6), this amounts to performing the following
modifications on the theoretical fields:

v(0)→ v(0) + ε
√

1+ α2Vframer, (5.1a)

w(0)→w(0) +
√

1+ α2

α
Vframe, (5.1b)

w(1)→w(1) −
√

1+ α2

α
Vframer. (5.1c)

Since Vframe is O(ε log ε) for helices, these changes are higher-order terms. Nevertheless,
it is convenient to introduce them here because they improve the predictions of the
axial flow component, as shown below.

In figure 12 (respectively figure 13), theoretical and numerical results are compared
for a single helix with axial flow W0= 0.54 (respectively for a system of two helices
without axial jet W0 = 0). For radial and azimuthal velocity components, a fair
agreement is found between theory and DNS results. Despite a smaller value of ε,
the agreement is found to be less convincing than for an array of rings. It is also seen
that the change (5.1a–c) of reference frame has to be taken into account. However, a
small mismatch between DNS and theory remains for the monopolar component. This
is probably at the origin of the deteriorated agreement for the dipolar and quadrupolar
components (see bottom figures in figures 12 and 13).

As for the ring arrays, other configurations have been tested for helical vortex
systems and we always observed a good agreement with the asymptotic theory. The
values obtained from the numerical simulations for the internal strain rate S(2) and
for the frame rotation rate Ωframe have also been compared to the theory and we have
systematically found a good agreement. This provides a validation of expressions
(4.20) and (B 17) for the external strain field and translation speed of multiple
helices.
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FIGURE 12. Single helix with W0 = 0.54, L/R = 0.5, ε = 0.045, Re = 104:
comparison between asymptotic (dashed lines) and DNS (solid lines). (a,d,g) Monopolar
component; (b,e,h) dipolar component; (c,f,i) quadrupolar component. (a–c) Radial velocity,
(d–f ) azimuthal velocity, (g–i) axial velocity. The dash-dotted lines correspond to the
theory without taking into account the effect of the change of frame (W00 = 0). For these
parameters, the theory gives Ωframe = −0.0120 and S = −0.6341, which gives a strain
rate in the vortex centre S(2) = −1.699 (defined in (3.21)). The numerical values are
Ωframe =−0.0110 and S(2) =−1.803.
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FIGURE 13. System of two helical vortices with W0 = 0, L/R= 0.5, ε = 0.06, Re= 104:
comparison between asymptotic (dashed lines) and DNS (solid lines). (a,d,g) Monopolar
component; (b,e,h) dipolar component; (c,f,i) quadrupolar component. (a–c) Radial velocity,
(d–f ) azimuthal velocity, (g–i) axial velocity. The dash-dotted lines correspond to the
theory without taking into account the effect of the change of frame (W00 = 0). For
these parameters, the theory predicts Ωframe = −0.0258 and S = −1.2832, which gives
a strain rate in the centre S(2) = −3.441 (defined in (3.21)). The numerical values are
Ωframe =−0.0261 and S(2) =−3.496.
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6. Conclusions
We analysed the internal structure of vortex rings and helical vortices showing that

they can be described using an asymptotic theory where the core size is considered
small compared to the other scales of the vortex structure. At leading order, the vortex
structure was assumed locally an axisymmetric vortex with axial flow. The asymptotic
theory was used to determine dipolar and quadrupolar corrections associated with this
structure. It was shown that dipolar corrections which appear at first order depend in a
dominant way on the local curvature of the vortex. As a consequence, we expect rings,
arrays of rings, helices and multiples helices to all exhibit the same dipolar correction
if they possess the same curvature. We also computed the quadrupolar corrections
which appear at second order. Contrary to the dipolar corrections, such corrections
depend on the global geometry. To be more precise, quadrupolar corrections are
composed of a contribution which depends on the local curvature and a non-local
contribution associated with the strain field generated by distant part of the vortex
structure. The non-local contribution has been calculated for a vortex ring, an array
of rings, a helix and multiple helices by considering the flow field obtained from
Biot–Savart law for vortex filaments.

The asymptotic results have been compared to numerical solutions obtained by DNS
for both rings and helices. A good agreement has been observed for rings. For helices,
a fair agreement has also been demonstrated. In practice, this case is more involved
because of the necessity to define a plane orthogonal to the vortex core structure.

The present results are important to model the short-wavelength instabilities that
can develop in rings or helices. Both dipolar and quadrupolar correction terms are
expected to couple modes of the underlying vortex and be a source of instability. The
dipolar correction term is known to be responsible of the so-called curvature instability.
This instability has been theoretically predicted for rings (Hattori & Fukumoto 2003;
Fukumoto & Hattori 2005) and helices (Hattori & Fukumoto 2009, 2014). However,
the analysis has only been performed for particular vortices with uniform vorticity. It
would be interesting to extend the analysis to more realistic vortices such as those
considered in the present study. The quadrupolar correction is associated with the
so-called elliptic instability (see for instance Kerswell 2002). Widnall & Tsai (1977)
provided a growth rate estimate for the elliptic instability in a single ring with a
Rankine vorticity profile. No person however has so far provided any prediction for
helices or rings with a realistic vorticity profile. Yet, we expect this instability to be
present as the quadrupolar field contained a strain field part which is also present in
straight vortices. An interesting study would then be to compute the effects of the
additional quadrupolar field which is generated by curvature.

Both curvature and elliptic instabilities are also expected to be strongly affected
by the presence of axial flow, as this parameter modifies the form of vortex modes
involved in the instabilities (Lacaze, Ryan & Le Dizès 2007; Roy et al. 2011). We
suspect that this parameter is crucial to an understanding of the competition between
both instabilities and associate recent observations in helices (Leweke et al. 2014)
with one instability or another.
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Appendix A. Change of coordinate systems
In this section, we provide the formulae which can be used to obtain the velocity

field in the local frame from its expression in the global cylindrical frame. Consider a
point of coordinates (ρ, φ, z) in the global cylindrical coordinate system and assume
that this point has the coordinates (r, ϕ, s) in the local frame defined by (2.1) and
(2.3) centred on the point C(s) of cylindrical coordinates (R, φ0, Lφ0) (see figure 2).
We obtain the following relation between the coordinates:

ρ2 = (R− r cos ϕ)2 + α2

1+ α2
r2 sin2 ϕ, (A 1a)

ρ sin φ = (R− r cos ϕ) sin φ0 − α√
1+ α2

r sin ϕ cos φ0, (A 1b)

z= Lφ0 + 1√
1+ α2

r sin ϕ, (A 1c)

s= φ0

√
R2 + L2. (A 1d)

If the velocity field can be written in the global cylindrical frame as

V =V(ρ, φ, z)= vρeρ + vφeφ + vzez (A 2)

and

V = uer + veϕ +wes (A 3)

in the local frame, we derive the relation between (u, v,w) and (vρ, vφ, vz):

u(r, ϕ, s)= vρ(ρ, φ, z)er · eρ + vφ(ρ, φ, z)er · eφ + vz(ρ, φ, z)er · ez, (A 4a)

v(r, ϕ, s)= vρ(ρ, φ, z)eϕ · eρ + vφ(ρ, φ, z)eϕ · eφ + vz(ρ, φ, z)eϕ · ez, (A 4b)

w(r, ϕ, s)= vρ(ρ, φ, z)es · eρ + vφ(ρ, φ, z)es · eφ + vz(ρ, φ, z)es · ez, (A 4c)

where

er · eρ =−
(

R
ρ
− r
ρ

cos ϕ
)

cos ϕ + α2

(1+ α2)

r
ρ

sin2 ϕ, (A 5a)

er · eφ =− α√
1+ α2

R
ρ

sin ϕ, (A 5b)

er · ez = 1√
1+ α2

sin ϕ, (A 5c)

eϕ · eρ =
(

R
ρ
− r
ρ

cos ϕ
)

sin ϕ + α2

(1+ α2)

r
ρ

sin ϕ cos ϕ, (A 5d)

eϕ · eφ = α√
1+ α2

(
r
ρ
− R
ρ

cos ϕ
)
, (A 5e)

eϕ · ez = 1√
1+ α2

cos ϕ, (A 5f )
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es · eρ =− α

(1+ α2)

r
ρ

sin ϕ, (A 5g)

es · eφ = 1√
1+ α2

(
R
ρ
− r
ρ

cos ϕ
)
, (A 5h)

es · ez = α√
1+ α2

. (A 5i)

These expressions can be used to express in the local frame with the local
coordinates the vector U = −Vframeez + Ωframeρeφ associated with the change of
frame in § 5.2. Using Ωframe =−Vframe/(αR), we obtain

U= Vframe

(
− r

R
√

1+ α2
eϕ +

(
−
√

1+ α2

α
+ r cos ϕ

Rα
√

1+ α2

)
es

)
. (A 6)

Appendix B. Inner expansion of Hardin solution for helices

To derive the inner expansion of Hardin solution, it is convenient to isolate the
singularity of the Kapteyn series using the technique introduced by Okulov (2004).
We have in particular used the expressions (valid for ρ < R) given by Fukumoto &
Okulov (2005):

v(BS)
ρ = 2

Rα2
Im
[
λ1,1

(
eξ+iχ

1− eξ+iχ
+ α1,1 log(1− eξ+iχ)+ β1,1Li2(eξ+iχ)

)
+ R1,1

1

]
, (B 1a)

v
(BS)
φ = 2

ρα
Re
[
λ0,1

(
eξ+iχ

1− eξ+iχ
+ α0,1 log(1− eξ+iχ)+ β0,1Li2(eξ+iχ)

)
+ R0,1

1

]
, (B 1b)

v(BS)
z = 1

2α
− 2

Rα2
Re
[
λ0,1

(
eξ+iχ

1− eξ+iχ
+ α0,1 log(1− eξ+iχ)+ β0,1Li2(eξ+iχ)

)
+ R0,1

1

]
,

(B 1c)

where

χ = φ − z/(Rα), eξ = x(1+√1+ y2) exp(
√

1+ x2)

y(1+√1+ x2) exp(
√

1+ y2)
, (B 2a,b)

λ1,1 =− ((1+ x2)(1+ y2))1/4

2xy
, λ0,1 =− 1

2y

(
1+ y2

1+ x2

)1/4

, (B 3a,b)

α1,1 = υ1(tx)− υ1(ty), β1,1 = υ2(tx)+ υ2(ty)− υ1(tx)υ1(ty), (B 4a,b)

α0,1 = ϑ1(tx)− υ1(ty), β0,1 = ϑ2(tx)+ υ2(ty)− ϑ1(tx)υ1(ty), (B 4c,d)

with

x= ρ

Rα
, y= 1

α
, tx = 1√

1+ x2
, ty = 1√

1+ y2
, (B 5a−d)
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and

υ1(t)= (−9t+ 7t3)/24, (B.6a)

ϑ1(t)= (3t− 5t3)/24, (B.6b)

υ2(t)= (−135t2 + 594t4 − 455t6)/1152, (B.6c)

ϑ2(t)= (81t2 − 462t4 + 385t6)/1152. (B.6d)

The functions R1,1
1 and R0,1

1 are defined by

R1,1
1 =

∞∑

m=1

ri1,1
m (x, y)eimχ , R0,1

1 =
∞∑

m=1

ri0,1
m (x, y)eimχ , (B 7a,b)

with

ri1,1
m (x, y)=mI′m(mx)K ′m(my)− λ1,1emξ

(
1+ α

1,1

m
+ β

1,1

m2

)
, (B.8a)

ri0,1
m (x, y)=mIm(mx)K ′m(my)− λ0,1emξ

(
1+ α

0,1

m
+ β

0,1

m2

)
. (B.8b)

An expression for u in terms of the local coordinates is obtained using (A 4a) and
(A 1a–c) with φ0= 0. Expanding all the quantities as r/R→ 0, we find an expression
for a single helix of the form

u(BS) ∼ [CHe − 1
2 log r]ε sin ϕ + [−2SHe − 3

8 log r]ε2r sin 2ϕ, (B.9)

where SHe is given by (4.16) and

CHe = 1− α4 + α3
√

1+ α2

2α
√

1+ α2
+ 1

2
log
(

α

ε(1+ α2)3/2

)
+
∞∑

m=1

cm(α), (B.10)

with

cm(α)=− (1+ α
2)3/2

α

(
2m
α

Im

(m
α

)
K ′m
(m
α

)
+ 1
)
− 1

2m
. (B.11)

Both Rm(α) and cm(α) are O(1/m3) for large m, which guarantees that the sums in
(4.16) and (B 10) are absolutely convergent.

If we now add the contribution from the displacement of the frame (which is
−VHe

frameez) we obtain from (4.1) for a single helix

u(out) ∼
[
− VHe

frame√
1+ α2

+CHe − 1
2

log r
]
ε sin ϕ +

[
−2SHe − 3

8
log r

]
ε2r sin 2ϕ. (B.12)

The matching of this expression with the inner expansions provides the strain rate SHe

and the frame velocity VHe
frame:

VHe
frame =

√
1+ α2(CHe + A)ε, (B.13)
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where A is defined by (3.12). This expression is analogue to an expression already
given in Alekseenko et al. (2007), p. 250.

The velocity field induced by the distant helices is obtained by summing the N − 1
contributions taken at φk = 2πk/N, k = 1, . . . ,N − 1. There are many simplifications
thanks to the relations

N−1∑

k=1

exp(iφk)

1− exp(iφk)
= 1−N

2
, (B.14a)

N−1∑

k=1

log(1− exp(iφk))= log N, (B.14b)

N−1∑

k=1

Li2(exp(iφk))= π2

6
1−N

N
. (B.14c)

After a long but straightforward calculation, we obtain for the contribution from
distant helices

u(BS) ∼CDHeε sin ϕ − 2SDHeε2r sin 2ϕ, (B.15)

where SDHe is given by (4.18) and

CDHe =−
√

1+ α2(α2 − 1)(N − 1)
2α

− 1
2

log N +
∞∑

m=1

cm(α)%
(m

N

)
, (B.16)

with %(x) defined in (4.19).
The velocity field obtained by multiple helices is the sum of the contributions

from a single helix and distant helices. From the complete matching of the dipolar
component, we obtain using (B 12) and (B 15), an expression for the velocity VMHe

frame
of the frame for multiple helices:

VMHe
frame =

√
1+ α2(CMHe + A)ε, (B.17)

where CMHe =CHe +CDHe reduces to

CMHe = α
2

2
−
√

1+ α2(α2 − 1)N
2α

+ 1
2

log
(

α

ε(1+ α2)3/2N

)
+N

∞∑

k=1

cNk(α). (B.18)

It is this expression of Vframe, with A≈0.22−W2
0/4 which has been used in expression

(3.5) for W00 and in (5.1a–c).
Note finally that the expressions (B 9) and (B 15), and (4.3) and (4.8) for rings,

contain no cos 2φ terms. This property validates the hypothesis made in § 3.3 that
there is no homogeneous solution proportional to cos 2φ in the inner expression
(3.14a) of the quadrupolar contribution to the radial velocity.
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Chapter 8
Linear Stability analysis in the helical
framework
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In this chapter, the linear stability analysis within the helical framework is presented. In
section 8.1, the base flow u is described. The perturbation equations for u′ and ω′, in the
helical framework, are provided in 8.2. The Arnoldi method used to extract the eigenvalues
and the associated eigenvectors is detailed in 8.3. The method is then validated in the
laboratory frame with two well documented cases in section 8.4. Finally an analysis is
provided for the cases requiring a rotating frame of reference (section 8.5), highlighting
the need of a very high accuracy on the computed angular velocity Ω.

8.1 Basic state solutions in the rotating frame: frozen quasi-
equilibrium solutions

Let us consider quasi-equilibrium solutions of one or an array of N identical helical vortices
which were presented in chapter 6. These solutions are obtained numerically and are
unsteady since their core size and angular velocity are slowly changing with time. In this
chapter, we define a basic state solution as follows. First, we consider the flow structure
corresponding to the quasi-equilibrium solution at a given time τb. This flow structure
is characterized by a set of parameters: the core size a = a (τb), the helix radius rA (τb),
the angular velocity Ω (τb) at time τb and the reduced pitch L. Second, the basic state
solution is defined as being this flow structure (velocity u(τb), vorticity ω(τb)) in steady
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8.2. PERTURBATION EQUATIONS IN THE HELICAL AND ROTATING
FRAMEWORK

(a) (b)

Figure 8.1 – Stability analysis of N = 2 helical vortices of reduced pitch L = 0.3 with core
size ab = 0.09. (a) Frozen base flow : contours of the helical vorticity component ωB in
the Π0 plane. Note that the x and y are chosen such that vortex centres are aligned at
y = 0. (b) Initial helical vorticity perturbations ω′B in Π0.

rotation at angular velocity Ω (τb). Such a solution is clearly not a strict Navier-Stokes
solution. In a way we introduce a body force term to counterbalance the viscous diffusion.
This is justified for the range of flows we consider which are typically at high Reynolds
number, similarly to what is current practice for shear flow stability analysis. To perform
the stability analysis, it is preferable to be in the frame of reference rotating with the
vortices at Ω(τb). This is performed by removing the solid body rotation from the helical
vorticity and velocity components as:

uRB = uB −
r2

L
αΩ(τb), (8.1)

uRϕ = uϕ − rαΩ(τb), (8.2)
ωRB = ωB − 2αΩ(τb), (8.3)

ωRϕ = ωϕ + 2r
L
αΩ(τb). (8.4)

In this frame, the basic flow is steady and standard temporal stability analysis can be
performed. By freezing the basic state, the associated diffusion process is neglected. How-
ever the viscous diffusion acts on perturbations. A typical frozen basic state is depicted
in figure 8.1-a.

8.2 Perturbation equations in the helical and rotating framework
The velocity and vorticity in the rotating frame of reference are written as a superposition
of the basic state uR,ωR and perturbations u′,ω′:

uRtot = uR + u′ (8.5)
ωRtot = ωR + ω′ (8.6)

In the framework of helical symmetry, the equations for the perturbations are first written
in the rotating frame of reference. This introduces a Coriolis force into the equations
(2.29) and (2.32) (see appendix F for additional details). By linearising these equations in
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the rotating frame of reference, the dynamical equation for the velocity perturbation u′B
is obtained

∂

∂t
u′B + ωRr u

′
ϕ + uRϕω

′
r − (ωRϕu′r + uRr ω

′
ϕ) + 2Ω

L
αru′r = ν

[
L
(
u′B
α

)
− 2α

2

L
ω′B

]
. (8.7)

And the dynamical equation for the vorticity perturbation ω′B, which has a rather more
complicated form, becomes :

∂

∂t
ω′B + 1

rα

∂

∂r

(
rα
(
ωRBu

′
r + uRr ω

′
B

))
+ 1
rα

∂

∂ϕ

(
ωRBu

′
ϕ + uRϕω

′
B

)
+ 2α2

L

[
ωRr u

′
ϕ + uRϕω

′
r −

(
ωRϕu

′
r + uRr ω

′
ϕ

)]
+ α

L2
∂

∂ϕ

(
2uRBu′B

)
+ 2Ω

L

∂u′B
∂ϕ

= ν

L(ω′B
α

)
−
(

2α
2

L

)2

ω′B

+ ν
2α2

L
L
(
u′B
α

)
. (8.8)

As the modified Laplace operator L is linear, the third equation linking the streamfunction
perturbation Ψ′ to ω′B and u′B directly reads:

LΨ′ = 2α
2

L
u′B − ω′B. (8.9)

In the system of dynamical equations (8.7)-(8.8), the other perturbation components
u′r, u

′
ϕ, ω

′
r and ω′ϕ also appear. These components can be expressed from u′B, ω′B and

Ψ′ using formulas (2.17)-(2.18) and (2.20)-(2.21). At this point, by introducing the per-
turbation vector p′ = (u′B, ω′B,Ψ′)

T , the whole linear system can be rewritten as

B∂p
′

∂t
= Jp′, (8.10)

where a mass matrix B and the Jacobian matrix J have been introduced:

B =

1 0 0
0 1 0
0 0 0

 , J =


J11 J12 J13
J21 J22 J23

2α
2

L
−1 −L

 . (8.11)

The system (8.10) can be further reduced with the help of equation (8.9) which implies
that Ψ′ can be also formally expressed from u′B and ω′B as:

Ψ′ = L−1
{

2α
2

L
u′B − ω′B

}
. (8.12)

Upon introducing the reduced perturbation vector q′ = (u′B , ω′B)T of length 2N with
N = Nr × Nθ, the total number of grid points, we rewrite the linearised Navier-Stokes
system as :

∂

∂t
q′ = A q′ (8.13)

where A is a linear operator and q′(t0) = q′0 is a given initial condition.

8.3 The Arnoldi method

8.3.1 Initial condition: random noise
The algorithm we use requires to start the linear simulation from a perturbation consisting
in synthetic noise for q′0. This perturbation is computed in the Π0 plane as follows. In a
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v1 = q′
1

||q′
1||

Ev1 w2

v2 = w2
||w2|| Ev2 w3 v3=...

Linearized DNS P⊥(v1)

Linearized DNS P⊥(v1,v2)

Figure 8.2 – Sketch of the first two iterations of the Arnoldi algorithm.

first step, one initiates the helical components

ω′B
(m) = n′

(m)
w (r) gm(r, r1, r2), u′B

(m) = n′
(m)
u (r) gm(r, r1, r2) (8.14)

in Fourier space using random distributions n(m)′
w and n

(m)′
u with values in the interval

[−1; 1] and a function defined gm (r) for each azimuthal wavenumber m:

gm(r; r1, r2) = (r/r1)m

1 + (r/r1)m e
−(r/r2)6

. (8.15)

The fraction in formula (8.15) ensures that for m 6= 0, ω′B
(m) and u′B

(m) tend to zero at
the origin while the exponential part causes the noise to vanish in the vicinity of the outer
boundary at r = Rext where the flow is supposed to be potential. The random fields thus
take significant values within the interval [r1, r2]. In our simulations these two parameters
are set to r1 = rA/2 and r2 = 2rA. In order to improve the convergence of the algorithm, a
second step was found necessary: the fields (8.14) are further multiplied by the respective
base flow components ωB (τb) and uB (τb) in the physical space. This eventually leads to
initial random fields spatially localized within the vortex structures as shown in figure
8.1-b.

8.3.2 Time stepper approach
The instability features of the flow system are given by the eigenpairs (λA,vA) of the Jaco-
bian matrix A. In practice, after discretisation, the dimension of such matrix becomes too
large to even consider the storage and the direct computation of its eigenvalues. Instead,
a time stepper and matrix-free approach is considered. The exact solution of (8.13) with
initial condition q′1 = q′ (t1) can be written as:

q′(t1 + ∆t) = e∆tA q′1 = E q′1, (8.16)

the operator E ≡ e∆tA, represents the time or exponential propagator of the system (8.13)
between times t1 and t1 + ∆t. At first sight, introducing this operator does not simplify
the original computational cost and storage problem. The resulting matrix is also of large
dimension as well, and numerical matrix exponentiation is known to be a challenging task.
Although e∆tA is as computationally expensive to construct as the Jacobian A, the ac-
tion of the exponential propagator onto a vector q′1 can be easily obtained by simply
time-marching the linearised Navier-Stokes equations with q′1 as initial condition. Also,

122



CHAPTER 8. LINEAR STABILITY ANALYSIS IN THE HELICAL FRAMEWORK

v1 = q′1/‖q′1‖ with q′1 a starting vector
Time advance
w ← Ev1
Gram-Schmidt orthogonalization
h11 ← (v1,w)
w2 ← w − v1h11
Normalisation
h21 ← ‖w2‖
v2 ← w2/h21
for k=2,....K do
w ← Evk
hlk ← (vl,w) for l = 1, ...., k
if k ≤ K − 1 then

wk+1 ← w −
k∑
l=1
vlhlk

hk+1,k ← ‖wk+1‖
vk+1 ← wk+1/hk+1,k

end if
end for

Figure 8.3 – Arnoldi algorithm implemented within the linearised version of HELIX, with
the first step k = 1 of the algorithm detailed.

the eigenpairs (λA,vA) of the Jacobian matrix A are related to those (λE ,vE) of the
exponential propagator E by:

λE = e∆tλA , vA = vE . (8.17)

Since the action of the exponential operator onto a given vector is obtained by temporal
simulation steps, this technique is much more efficient than the direct determination of
the spectrum of the Jacobian matrix.

8.3.3 The Arnoldi algorithm
The eigenvalue algorithm onto which the above time-stepper approach is relying is the
Arnoldi algorithm. The Arnoldi algorithm was introduced in the early 1950s by W.E.
Arnoldi as a generalisation of the Lanczos method for Hermitian matrices. The utility of
the Arnoldi method comes from its ability to generate accurate eigenvalue approximations
from a partial, rather than full, upper Hessenberg factorisation of a matrix (Carden, 2012).
Both methods approximate eigenvalues by orthogonally projecting a matrix onto a Krylov
subspace. Given the exponential propagator E and an initial vector q′1, a Krylov subspace
KK of dimension K is spanned by the iterates of the power method,

KK(E, q′1) = span
{
q′1,Eq′1,E2q′1, ...,EK−1q′1

}
. (8.18)

The power method is an eigenvalue method that approximates only one single eigenvector
associated with the eigenvalue of largest magnitude. To overcome this restriction, the
Arnoldi algorithm combines the power iteration method with a Gram-Schmidt orthog-
onalisation process. By generating an orthonormal basis for the Krylov subspace, one
can look for an accurate approximation of the K � N leading eigenpairs (λE ,ve) of the
operator E without explicitly constructing E. The sought eigenpairs (λA,vA) of A are
then recovered with equation (8.17). The first steps of the Arnoldi algorithm are sketched
in figure 8.2 and the complete algorithm are provided in figure 8.3. Each step k of the
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algorithm generates a new basis vector vk such that ‖vk‖ = 1 and vk ⊥ Kj for j < k
and vk ∈ Kk(E, q′0). At the kth iteration of the algorithm, the orthonormal matrix Vk
containing the k basis vectors v1,v2, ....,vk on its columns, satisfies

EVk = VkHk + hk+1,kvk+1e
∗
k, (8.19)

with Hk, an upper Hessenberg matrix with elements [Hk]i,j = hi,j and where ek is the
k-th element of the canonical basis. Note that the residual term hk+1,k indicates how far
Vk is from an invariant subspace of E. Indeed, if hk+1,k = 0, the subspace generated by
the columns of Vk is an eigenspace of E and the eigenvalues of Hk are also eigenvalues
of E. Generally, hk+1,k is not zero. However if this quantity is small enough, (i) the
eigenvalues λH of H are good approximations of the leading eigenvalues of E i.e.

λE ≈ λH (8.20)

(ii) the eigenvectors vH of H left multiplied by Vk provide the Ritz vectors vRE close to
the eigenvectors of E:

vE ≈ vRE = Vk vH . (8.21)

The residual norm rk associated to the kth Ritz pair (λH ,vRE) can be computed as

EvRE − λHvRE = EVk vH − λHVkvh (8.22)
= VkHkvH + hk+1,kvk+1e

∗
kvH − λHVkvH (8.23)

= λHVkvH + hk+1,kvk+1e
∗
kvH − λHVkvH (8.24)

= hk+1,kvk+1e
∗
kvH (8.25)

and hence
rk =

∥∥∥EvRH − λHvRE∥∥∥ = |hk+1,k||e∗kvH |. (8.26)

This quantity is useful to monitor the accuracy of the Ritz pairs as approximations of the
eigenpairs of E. Note that quantities rk can only be computed at the end of the process
because vH is only obtained at the end and depends on K the total number of Ritz pairs
determined.

8.3.4 Time-stepping and orthogonalisation
In practice the Arnoldi algorithm is exploited as follows (Edwards et al., 1994). The action
of E is obtained by time marching the linearised code over a time interval ∆t. This process
is repeated K times: the orthonormal basis v1, ....,vK of the Krylov subspace as well as
the upper Hessenberg matrix HK are progressively generated during the computation. As
the upper Hessenberg matrix HK is of a relatively small dimension (K ×K), the direct
computation of its eigenpairs (λH ,vH) is done at low computational cost and memory
requirement. The Arpack routine zgeemm is used for the diagonalisation.
Using formulas (8.17), (8.20) and (8.21) the eigenpairs (λA,vA) are such that:

eλA∆t ≈ λH (8.27)
vA ≈ VK vH , (8.28)

where σ = <{λA} is the growth rate of the instability mode and ω = ={λA}, the associated
temporal frequency. The time interval ∆t and the number K of computed eigenmodes
depend on the specific case under study. Modes are easily extracted if their growth rates are
well separated. For two modes with growth rates σ1 > σ2, this means that eσ1∆t � eσ2∆t

so that ∆t� 1/ (σ1 − σ2). As a consequence, selected values for ∆t can be very large.
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However choosing too large a ∆t causes an additional issue: according to equation (8.27),
the frequency ω is such that

log λH = σ∆t+ iω∆t+ 2 ipπ, with p ∈ Z (8.29)

or

ω = ={log λH}+ 2p′π
∆t with p′ ∈ Z (8.30)

but the integer p′ is not known. A solution to this problem is proposed on the next
subsection.

8.3.5 Recovery of the temporal frequency ω of the modes when ∆t is chosen
too big.

As mentioned in this context by Loiseau et al. (2014), a mode oscillating at a given
frequency ω, can be captured if the Nyquist criterion is satisfied: one needs at least four
snapshots to appropriately represent one time period. Hence, a given sampling period ∆t,
gives only access to the modes oscillating at a frequency less than 2π/4∆t. For a given ω,
this imposes the following condition on ∆t:

∆t ≤ π

2ω , (8.31)

which implies that p′ = 0 in equation (8.30). When ∆t is chosen larger than π/(2ω)
(for instance, in order to ensure a satisfactorily convergence for the companion growth
rate), the information on the temporal frequency is a priori lost because the value of p′
in equation (8.30) is unknown. We propose the following procedure to recover ω. We
perform a short additional simulation where the real part of an eigenmode vA is chosen
as initial condition and time integrated over a short time interval ∆tω to yield

v′A = vAe
(σ+iω)∆tω . (8.32)

The frequency ω is then found by minimizing the correlation integral I (ω), defined by

I (ω) ≡
∫∫

S
<
{
v′Ae

−σ∆tω − vAeiω∆tω
}2

dS. (8.33)

In practice, a value ∆tω = 10δt is chosen. This procedure is applied for all the eigenmodes
j = 1, ....,K and frequencies ωj are obtained with an accuracy of 10−10.

8.4 Validation of the Arnoldi implementation in fixed frame

In the section, the validation of the Arnoldi algorithm is described. Unstable modes
for two well documented cases are investigated with the Arnoldi method and the results
are compared to those given by a dedicated stability code and also to the results of the
literature.

8.4.1 Linear modes of the Batchelor or q-vortex.

The Batchelor vortex or q-vortex, is an analytical solution of the unsteady Navier-Stokes
equations which is a suitable model for wake vortices and swirling jets. This widely stud-
ied, axisymmetric vortex model has the particularity that the axial velocity and vorticity
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Figure 8.4 – Batchelor vortex for swirl parameter q = 0.8 in the helical framework with
L = 1.76. (a) The azimuthal uθ and axial uz components are combined to yield the helical
velocity component uB (equation (8.37)). (b) The Azimuthal ωθ and axial ωz vorticity
components are combined to yield the helical vorticity ωB (equation by (8.38)).

profiles are both Gaussian. When expressed with dimensional quantities, (denoted by the
+ symbol) the axial and azimuthal components of velocity and vorticity are given by :

u+
z = Uze

−(r+/a)2
, u+

θ = Γ
2πr+

(
1− e−(r+/a)2) (8.34)

ω+
z = 2qUze−(r+/a)2

, ω+
θ = 2Uz

r+

a2 e
−(r+/a)2

with the swirl parameter q defined as

q = Γ
2πaUz

(8.35)

and where a and Uz are the characteristic length and velocity scale used to define the
Reynolds number

Re = aUz
ν
. (8.36)

Introducing the dimensionless variables r = r+/a and u = u+/Uz the helical components
of vorticity and vorticity read

uB = α

(
uz + r

L
uθ

)
= α

(
q

L
+ e−r

2
(

1− q

L

))
(8.37)

ωB = α

(
ωz + r

L
ωθ

)
= 2αe−r2

(
q + r2

L

)
(8.38)

Velocity and vorticity profiles are plotted in figure (8.4) for swirl number q = 0.8. For
any axisymmetric base flow, the perturbations can be expanded on modes with azimuthal
wavenumber m, positive axial wavenumber k and complex frequency ω :

(u′r, u′θ, u′z, p′)(r, θ, z, t) = (ûr(r), ûθ(r), ûz(r), p̂(r)) exp [i(kz +mθ − ωt)] , (8.39)

where hat variables are complex eigenfunctions. The flow composed of the base flow plus
one such instability mode displays helical symmetry. Indeed the expression kz + mθ =
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m(θ + kz/m) can be written as m(θ − z/L) = mϕ with the reduced pitch L = −m/k.
In that instance, components (8.39) become functions only on r, ϕ and t and since the
complete phase writes mϕ−ωt, the mode rotates around the z-axis with angular velocity
Ω = ω/m.
The Batchelor vortex is known to be unstable for swirl number q . 1.5 at Re = 1000, and
is subject to a large family of unstable modes. For instance, at q = 0.8, azimuthal modes
−16 ≤ m ≤ −1 are unstable and the flow is found stable with respect to perturbations
with axial wavenumber k > 10.4. Moreover, for each fixed azimuthal wavenumber m and
axial wavenumber k, there generally exists an infinite number of instability modes labelled
by j = 0, 1, 2, ... with increasingly complex radial structures and decreasing growth rates

σ0 > σ1 > σ2 > · · · . (8.40)

Depending on the values m and k, some of these modes are amplified (or none of them).
The Batchelor vortex is thus a good test case for the Arnoldi method discussed previously.
The vortex, which is axisymmetric, is centred at the origin and thus complies with the
helical symmetry for any value of L. The initial condition q′0 = (u′B, ω′B) is set in spectral
space using a random noise

û
′(m)
B (ri) = c n(m)

u (ri) rmi e−r
2
i (8.41)

where c is an amplitude and n(m)
u is a random function with values in [−1, 1]. A similar

formula is used for the helical vorticity component ω̂′(m)
B (r). For a given value of L, all the

modes with azimuthal wavenumber m and axial wavenumber k, satisfying the relation

L = −m/k (8.42)

will be excited. In the following only the range of azimuthal modes 0 ≤ m ≤ 4 are chosen
to be excited in order to limit the number of unstable mode and hence the number K of
Krylov vector to be computed. Note that equation (8.41) is slightly different from (8.15)
and is actually an earlier version of the noise initialisation yielding similar results.

Results and comparisons for q = 0.8 and Re = 1000 and L = 1.76

We apply the Arnoldi method to the case q = 0.8 and Re = 1000 with the helical pitch
L = 1.76. For this test, we chose parameters K = 20 and ∆t = 20. The dominant modes
are represented in figure 8.5. It is seen that they correspond to azimuthal structures
m = −4,−3 and m = −2. For comparison purposes, the axial wavenumbers are deduced
from (8.42) to be respectively k = 2.266, k = 1.700 and k = 1.133. It can also be seen on
figure 8.5, that the radial structure of the modes corresponds to j = 0 on the top row and
to j = 1 on the bottom row. The growth rates are given in table 8.1 (column σArnoldi and
compared with the theoretical values obtained from Delbende and Rossi (2005) (column
σth). The comparisons of the frequencies are also presented. For K = 20 and ∆t = 20,
we obtain a relative error of the order of 10−4. Note however that for the mode in the
last line of table 8.1, the accuracy is deteriorated as confirmed by figure 8.5-f. Still, the
dipolar structure of the mode is distinguishable, suggesting that it is possible to improve
the accuracy on this mode by increasing K and/or ∆t.
In this case for L = 1.76 and the set of Arnoldi parameters K = 20, ∆t = 20, among
all the modes which satisfies the relation (8.42), the following modes with their (first)
secondary modes have emerged:

m = −2→ k = 1.133
m = −3→ k = 1.7
m = −4→ k = 2.266
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Figure 8.5 – Batchelor vortex: structure of the unstable helical modes obtained with the
Arnoldi algorithm with parameters K = 20, ∆t = 20. Left figures: mode m = −4, k =
2.266. Central figures: mode m = −3, k = 1.7. Right figures: mode m = −2, k = 1.133.
First row : most unstable modes (j = 1 in (8.40)). Second row : Secondary modes
with lower positive growth rates (j = 2 in (8.40)). Note that the last secondary mode
m = −2, k = 1.133 didn’t converge perfectly for this set of parameters. Still, the dipolar
structure is distinguishable, suggesting that increasing the number K of the number of
vectors spanning the Krylov subspace would improve this.
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Mode label σth ωth σArnoldi ωArnoldi
m = −4, k = 2.266, j = 1 0.33101 −1.04559 0.33100 −1.0393
m = −3, k = 1.7, j = 1 0.32332 −0.73151 0.32331 −0.72030
m = −2, k = 1.133, j = 1 0.28273 −0.41301 0.28278 −0.41380
m = −4, k = 2.266, j = 2 0.21110 −1.05328 0.21101 −1.05244
m = −3, k = 1.7, j = 2 0.19600 −0.75836 0.19600 −0.75954
m = −2, k = 1.133, j = 2 0.15731 −0.46873 0.15190 −0.45783

Table 8.1 – Batchelor vortex: comparisons for growth rate σ and temporal frequency ω
obtained from the theory and through the Arnoldi method.
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Figure 8.6 – Carton-McWilliams’ vortex: profiles for various values of the steepness pa-
rameter β. (a) Azimuthal velocity uθ(r). (b) Axial vorticity ωz(r).

The computed growth rates are compared to the predicted values by the theory in the table
(8.1). Globally the modes are recovered with a satisfactory precision. However, as the
Batchelor vortex has a rich collection of unstable modes, all of them cannot be recovered
without significantly increasing the number K of vectors spanning the Krylov subspace.
This can be seen in the case the secondary mode m = −2, k = 1.133 in figure (8.5).
This mode, which has the lowest growth rate among the other ones depicted, couldn’t
emerge sufficiently for this set of parameters. Still, the dipolar structure of the mode is
distinguishable, suggesting that increasingK and/or ∆t would greatly improve the results.
This first benchmark suggests that the implementation of the algorithm is correct, but
the separation of the modes is probably made easier in this case, because the vortex
axis is centred at the origin of the domain, resulting in modes being distributed among
different azimuthal Fourier components in the DNS code. A more stringent test would be
to compute the same unstable helical modes when the basic Batchelor vortex is off-centred.
Such a basic flow can only be represented within the framework of helical symmetry if L
is infinite. The only instability modes available would then be the two-dimensional modes
(k = 0). Unfortunately, the Batchelor vortex is known to be stable to such perturbations.
Hence another vortex model, unstable to two-dimensional perturbation is selected in order
to stress the algorithm further.

8.4.2 Linear modes of the Carton-McWilliams shielded vortex.
The Carton-McWilliams vortex model consists of a vortex core surrounded by an annulus
of opposite vorticity so that the total circulation is zero. The azimuthal velocity distribu-
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Figure 8.7 – Temporal growth rate as a function of the axial wavenumber k for β = 4 and
various values of m = 0, ..., 3, at Re = 667. From (Gallaire and Chomaz, 2003)

tion thus goes to zero at infinite radial distance, the core vorticity is said to be shielded.
There is no jet component for this model. Using dimensional quantities, the azimuthal
velocity and the axial vorticity components are defined by

u+
θ = U

r+

R
e−(r+/R)β , ω+

z = U

R

[
e−(r+/R)β

(
2− β r

+

R

)]
, (8.43)

with U , a typical azimuthal velocity and R, a length linked to the core size. The Reynolds
number is defined here as

Re = UR

ν
. (8.44)

In dimensionless form, the base flow components are:

uθ(r) = re−r
β (8.45)

ωz(r) = e−r
β
(
2− βrβ

)
. (8.46)

The azimuthal velocity and axial vorticity profiles are plotted for different values of the
steepness parameter β in figure (8.6). The maximum of the azimuthal velocity umaxθ and
its radial location rmax both increase with β. On the axial vorticity profile, it is seen how
the annulus of negative vorticity narrows and intensifies as β is increased. As explained
in (Gallaire and Chomaz, 2003), the vortex is prone to instability with respect to two-
dimensional m 6= 0, k = 0 unstable modes as well as axisymmetric (m = 0, k 6= 0) and
helical (m 6= 0, k 6= 0) modes.

dωz
dr = 0 (8.47)

The growth rates of the modes for β = 4 and Re = 667 are plotted in figure (8.7) as
functions of the axial wavenumber k. Two, unstable, two-dimensional modes are found for
m = 2 and m = 3. We compare the growth rates of these modes in two cases: when the
basic flow is centred at the origin of the numerical domain, and when it is off-centred.

Results and comparisons for β = 4, Re = 667, L =∞
As we are looking for only two unstable modes, the number K of vector spanning the
Krylov subspace is set to K = 10 and ∆t = 10 for both the centred and the off-centred
case. As shown in figure (8.8), we obtain the same results for both cases. However, the
white noise should not be initialised in the same way. When centred, the process is similar
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(a) (b) (c)

Figure 8.8 – Carton and & McWiliams vortex: structure of the modes, obtained with
the Arnoldi algorithm, at Re = 667. First row: (a) Unstable mode (m = 2, k = 0). (b)
Unstable mode (m = 3, k = 0). (c) Unstable mode mode (m = 1, k = 0). Second row:
modes obtained when the base flow is off-centred from the axis.

Theoretical value Centred Off-centred
σm=1,k=0 0.0269 0.02685 0.0294
σm=2,k=0 0.2213 0.2306 0.2307
σm=3,k=0 0.0958 0.0965 0.0964

Table 8.2 – Carton & McWilliams vortex: Comparisons of the growth rates for the most
unstable bi-dimensional k = 0,m 6= 0 modes at Re = 667. The associated eigenvectors
are shown on figure 8.8.

to the investigation of the helical modes of the Batchelor vortex. The random perturbation
(8.41) is only set on the two azimuthal modes investigated m = 2 and m = 3. Such a
procedure cannot be used when the vortex is off-centred as the instability modes are defined
with respect to the center-axis of the vortex and not the centre of the numerical domain.
They thus require a broad spectrum of numerical Fourier modes. The initial condition for
the perturbations is that described in section 8.3.1. The comparison of the growth rates
for the two cases are summarised in table (8.2). The unstable modes are recovered with a
good accuracy. A mode m = 1 is found with a small growth rate σ = 0.027, which is also
predicted by the theory but not in reference (Gallaire and Chomaz, 2003).

8.5 Validation of the Arnoldi algorithm for rotating basic state

In this section, we address the issue arising from the finite precision of the method (see
5.1.2) used to compute the angular velocity Ω(τb). This quantity is associated to the basic
flow chosen at a particular instant τb (see 8.1 for more details) and is computed during
the DNS. When the angular velocity is not accurately determined, the base flow is not
exactly steady, which is the case in practice, due to the finite precision of the numerics.
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Figure 8.9 – Growth rates obtained with artificial angular velocities Ω(τb)(1+ε): dominant
mode σ1(ε) (black line) and "neutral" mode σ0(ε) (red line).

One thus possibly gets errors on the determination of the growth rates.
In the following, we seek to quantify these errors. To do so, one artificially shifts the
angular velocity to the value

Ω? = Ω(τb) (1 + ε) . (8.48)

where the parameter ε is varied within the range [−0.1, 0.1]. The whole linear stability
analysis is then performed using the artificial angular velocity Ω? instead of Ω (τb) in the
set of equations (8.1)-(8.8). The growth rates are compared to the those obtained when
ε = 0.
We illustrate the above considerations in the case of two helical vortices with pitch L = 0.4
and core size a = 0.06. For this particular case, the angular velocity is found to be
Ω(τb) = −1.153753 from the DNS. The instability analysis gives one unstable mode with
positive growth rate σ1(ε = 0) = 0.5468 and a theoretically neutral mode which is found
here to have a growth rate σ0(ε = 0) = 0.0068.
The linear stability analysis performed for various artificial angular velocities Ω?(ε) with
all the other parameters of the Arnoldi procedure kept constant (∆t = 5,K = 20, δt =
1/4000) yields the growth rates σ1(ε) and σ0(ε) plotted in figure 8.9. For 0 ≤ ε ≤ 0.02,
the values σ0(ε) has a very steep variation, which indicates a high sensitivity with respect
to a wrong evaluation of Ω. In our simulations a typical value for ε is 10−3 leading to
a precision of roughly 10−2 for σ0, which explains the order of magnitude of the growth
rate σ0(ε = 0) = 0.0068 instead of zero. The growth rate of the dominant mode σ1 is
also affected by variations of ε. For ε = 10−3, one obtains a precision of approximatively
10−4 for σ1 which is a favourable case. However when σ1 approaches σ0, the precision
deteriorates and the mode separation becomes difficult.
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The linear stability analysis previously described is applied to several regular arrays of
N helical vortices: one helical vortex (section 9.1), two helical vortices (section 9.2), two
helical vortices with a central hub vortex (section 9.3) and three vortices with a hub vortex
(section 9.4), a situation relevant for wind turbine applications. In such arrays, the center
line of one vortex is used as reference angle ϕ = 0 in plane Π0. In the present section
perturbations have the same helical symmetry as the regular array of N helical vortices.
This assumption will be removed in chapter 11.

Let us indicate first how eigenmodes are normalized. The Arnoldi procedure gives a set
of complex eigenvectors vA with unit norm (‖vA‖2 = 1). These vectors contain a mix of
helical vorticity and velocity components since vA = (ω̃B, ũB)T and are obtained up to
an arbitrary phase factor. In order to normalize the eigenvectors in a unique fashion, we
enforce the vorticity component to be unity at a particular location (r+, ϕ+) chosen so
that

|ω̃B (r+, ϕ+)| = max |ω̃B| , with ϕ+ ∈ [0;π/N ]. (9.1)

The hub vortex, when present, is not taken into account to define the appropriate normal-
ization. The normalised eigenmodes become

ω̂B = ω̃B
ω̃B (r+, ϕ+) , ûB = ũB

ω̃B (r+, ϕ+) . (9.2)

9.1 A single helical vortex
We present the spectrum and neutral mode found in the stability of a single helical vortex.
For this vortex, the centre is located at r ≈ 1, ϕ = 0. In figure 9.1-a, the stability spectrum
is plotted for L = 0.3, a = 0.09 and Re = 10000. Only the 50 eigenvalues of largest growth
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(a) (b)

Figure 9.1 – (a) Spectrum in the (σ, ω/2π) plane for a single helical vortex with reduced
pitch L = 0.3 and core size a = 0.09 at Re = 10000. The 50 dominant eigenvalues
are displayed. (b) Mode structure of the mode represented with a red dot in graph (a):
contours of the real part of ω̂B in Π0. The associated imaginary part is zero.

rate are represented. One mode emerges with small positive growth rate. The associated
structure is shown in figure 9.1-b where the real part of ω̂B is plotted. The imaginary
part is zero. The mode is characterised by two lobes of opposite sign vorticity. When
superimposed on the base flow, (which contains only positive vorticity), this induces a
displacement of the whole structure in the azimuthal direction. Such a mode arises because
of the invariance of the base flow with respect to rotation around the central axis: it is
expected to be steady (ω = 0) and neutral (σ = 0).

However, because of finite numerical precision (see discussion in section 8.5), this mode has
very small but non zero growth rate (of order 10−2). From a numerical point of view, this
growth rate quantifies the accuracy of our results. In the framework of helical symmetry,
such a linear mode does not play a role. However it might be related to an unstable
phase mode for non helically symmetric instability perturbation at large wavelength (see
chapter 11).

9.2 Two helical vortices

We analyse the stability of N = 2 helical vortices for different helical pitches, different
core sizes and various Reynolds numbers. Figure 9.2-a displays the 50 most unstable
eigenvalues, for the case L = 0.3, a = 0.09 and Re = 10000. It shows one dominant mode
with growth rate σ = 0.925 and a marginally stable mode evaluated at σ = 0.010. Both
modes are stationary (ω = 0). Similarly to the single vortex case, the latter mode is the
neutral mode, also present here; its structure is depicted in figure 9.3. Similar results are
obtained when L, a and Re are varied. In figure 9.2-b, this is shown for several values of
the pitch such that 0.3 ≤ L ≤ 0.7.

The most unstable mode is represented for the particular case L = 0.3 in figure 9.4-a,
where the contours of the real part of ω̂B are plotted. The associated imaginary part is
zero. Its structure is localized within each basic vortex core where it takes again the form
of two lobes with opposite sign vorticity. This is characteristic of displacement modes: on
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(a) (b)

Figure 9.2 – (a) Spectrum in the (σ, ω/2π) plane for two helical vortices with L = 0.3 and
a = 0.09 at Re = 10000. The first 50 eigenvalues are displayed. The dominant eigenmode
is represented in red and the neutral one in blue. (b) Spectrum showing the first four
dominant eigenvalues for various L at Re = 10000. The dominant mode is represented in
filled circles.

(a) (b)

Figure 9.3 – Two helical vortices for L = 0.3, a = 0.09 at Re = 10000. Structure of
the neutral mode represented with a filled red circle in figure 9.2-a. (a) Contours of the
real part of ω̂B in Π0. (b) Three-dimensional isosurface of vorticity corresponding to
±max<{ω̂B}/4 (red for positive isovalue and blue for the negative one).
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(a) (b) (c) (d)

Figure 9.4 – The most unstable mode for the base flow corresponding to two helical
vortices with L = 0.3 and a = 0.09 at Re = 10000. (a) Contours of <{ω̂B} in Π0. The
imaginary part is zero. (b) Three-dimensional isosurface of vorticity <{ω̂B} corresponding
to ±max<{ω̂B}/4. The arrows indicate the displacement induced by the mode: on the
radial direction one vortex goes inwards while the other goes outwards. (c) Contours
of <{ω̂B} in the meridian (r, z) plane. (d) Schematic representation: the structure is
analogous to the pairing instability mode for an infinite row of point vortices.

the three-dimensional representation of the mode (see arrows on figure 9.4-b), it is seen
that a radial inward displacement is induced for one vortex while the other vortex moves
outwards. This motion has also an axial component: when viewed in a cut by a meridian
(r, z) plane (see figure 9.4-c), this structure is very similar to a pairing instability mode
arising in a row of identical two-dimensional vortices, as sketched in figure 9.4-d.

9.2.1 Influence of L on the dominant mode

In figure 9.5-a, we present the growth rate σ of the most unstable mode for core size
a = 0.09 as a function of L. The growth rate decreases as L increases. For L > 1.6, σ is
close to zero and its evaluation becomes difficult, because of the above numerical accuracy
limitation. If the stability threshold is estimated as the value of L where the numerically
estimated growth rate equals that obtained for the neutral mode, it corresponds to a

(a) (b) (c)

Figure 9.5 – Growth rate of the dominant instability mode for N = 2 helical vortices for
a = 0.09 at Re = 10000 as a function of pitch L. (a) Growth rate σ. (b) Normalized
growth rate σ∗ as defined in (9.4). (c) Normalized growth rate σ∗d as defined in equation
(9.6). In figures (b) and (c) the horizontal dashed line is located at the value π/2.

136



CHAPTER 9. LINEAR HELICAL STABILITY: RESULTS

value of Lthreshold close to 1.6. In the inviscid framework, Okulov and Sørensen (2007)
predicted that two helical Rankine vortices are unstable for L < 1.106. For the present
configuration, a higher threshold is found. This difference could be attributed to the
nature of the underlying vorticity profile (it is nearly Gaussian) and to the finite Reynolds
number effect, but this discrepancy remains unclear.

9.2.2 Point vortex analogy

For small L, when visualised in the meridian plane (see figure 9.4-c), the mode looks very
similar to the unstable mode of an infinite row of point vortices separated by h = πL;
the axial distance between two successive coils (h = 2πL/N = πL for N = 2 vortices).
Following Bolnot (2012), we can compare the above growth rates obtained for helical
configurations to the values obtained for an array of point vortices.

The stability of an infinite array of two-dimensional point vortices with circulation Γ
separated by a constant distance h has been analysed by von Kàrmàn and Rubach (1912)
and Lamb (1932). The unperturbed vortices are situated at points (mh, 0) with m ∈ Z.
After linearising the two-dimensional Biot-Savart motion equations, the system is shown to
be unstable with respect to perturbations of wavelength λ = 2πh/φ with φ ∈ [0, 2π[. More
precisely, the motion of vortex m subject to such instability mode is (mh+ xm(t), ym(t))
where xm(t) = A0e

σt+imφ and ym(t) = −A0e
σt+imφ and the corresponding growth rate is

given by

σ (φ) = Γ
4πh2φ (2π − φ) . (9.3)

The maximum occurs for φ = π corresponding to an out-of-phase displacement of the
neighbouring vortices (figure 9.4-d). The maximum growth rate is thus equal to σ2D(h) =
Γπ/4h2. When normalised by 2h2/Γ it gives the constant π2 . One may tentatively compare
growth rates obtained for helical vortices to those obtained for point vortices separated
by a distance h = 2πL/N :

σ∗ ≡ π

2
σ

σ2D(h) , (9.4)

or
σ∗ = 2σh

2

Γ = 8σπ
2L2

ΓN2 . (9.5)

Figure 9.5-b depicts the normalised growth rate σ∗ of the most unstable mode for core
size a = 0.09 as a function of L. For small values of L, the growth rate tends towards
π/2 indicating that the underlying mechanism is indeed similar to the pairing of point
vortices. However for increasing L, σ∗ is seen to exceed π/2. This overshoot might be
due to a wrong choice of the separating length. The pairing mechanism occurs through
the mutual induction of the vortices. In the case of an array of straight vortices, as well
as vortex rings the separation distance h is obvious. For a helical vortex, however, the
shortest length between two successive coils is not the helical pitch. Following Quaranta
et al. (2015), we define the shortest length d between the successive coils by unwrapping
the helices in a (z,Rθ)-plane as depicted in figure 9.6. Using the notations of this figure,
one has d = h sinα and sinα = R/(L2 +R2)1/2. Using d for instead of h leads to introduce
σ∗d

σ∗d = π

2
σ

σ2D(d) , (9.6)

or
σ∗d = σ∗

R2

L2 +R2 . (9.7)
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Figure 9.6 – Schematic representation of the shortest length d between two successive coils
for N = 2 helical vortices.

The normalised growth rate σ∗d is plotted in figure 9.5-c for a = 0.09. Similarly to σ∗,
σ∗d tends to π/2 for small values of L and is found to monotonically decrease when L
increases. This corresponds to the fact that, as L increases to +∞, the system tends to
N = 2 straight thin core vortices, a situation known to be stable with respect to such
perturbations (for L =∞, the instability occurs only when N ≥ 7).

9.2.3 Vortex ring array analogy
Growth rates may also be compared to those obtained in the case of an array of vortex
rings. The temporal stability of an infinite array of vortex rings of circulation Γ and
radius R has been studied by Levy and Forsdyke (1927) using a filamentary approach.
They have obtained a formula for the maximum growth rate of the pairing instability for
uniform vorticity rings. The dimensional growth rate σ reads

σRing = Γ
2πR2

√
C (G+ C/2 +H0 −B) (9.8)

with

B =
∞∑
p=1

α3
2p−1
2

[(
3 + β2

2p−1

)
E
(
α2

2p−1

)
−K

(
α2

2p−1

)]
, (9.9)

C =
∞∑
p=1

α3
2p−1

[(
1− β2

2p−1

)
E
(
α2

2p−1

)
−K

(
α2

2p−1

)]
, (9.10)

G =
∞∑
p=1

α3
2p

[
2E

(
α2

2p

)
−K

(
α2

2p

)]
, (9.11)

αk =
[
1 +

(
kh

2R

)2]−1/2

, βk = 2R
kh

. (9.12)

The functions K and E are the complete elliptic integrals of the first and second kind,
respectively (Abramowitz and Stegun, 1965). The last term H0 reads

H0 = 1
2

(7
4 − ln 8R

ae

)
, (9.13)
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(a) (b) (c)

Figure 9.7 – Growth rate of the dominant instability mode for N = 2 helical vortices for
a = 0.06, 0.07, ...., 0.1 at Re = 10000 as a function of pitch L (solid lines). (a) Growth
rate σ (solid line) and σRing (dashed lines). (b) Normalized growth rate σ/(σRing(h)). (c)
Normalized growth rate σ/(σRing(d)). In all graphs, the dashed lines represent the growth
rates computed with the extended formula (9.8) of Levy and Forsdyke (1927) by Bolnot
et al. (2014) for vortex rings with Gaussian vorticity profiles.

and is associated to the self induced velocity of a single ring with uniform vorticity i.e. a
Rankine profile of size ae. Equation (9.13) can be used for arbitrary vorticity profiles if the
equivalent core size ae is used (Widnall et al., 1971). The above formula were extended
by Bolnot et al. (2014) for vortex rings with arbitrary vorticity profiles. As shown in
chapter 6 (figure 6.7), the vorticity profile within a developed helical vortex is found to be
very close to a Gaussian with core size a. It is found (Bolnot et al., 2014) that for such
profiles the equivalent core size is approximatively ae ≈ 1.36a. This value is used here for
comparisons.

One may tentatively compare growth rates obtained for helical vortices to those obtained
for vortex rings separated by a distance h = 2πL/N . The growth rate σRing is plotted in
figure 9.7-a with dashed lines. The normalised growth rates

σ

σRing(h) and σ

σring(d) , (9.14)

for the vortex ring array are respectively plotted in figures 9.7b and c. For small pitch
values L < 0.4, growth rates obtained for vortex rings compare well to the ones obtained
for two helical vortices. A deviation is observed for L > 0.4. Selecting the distance d in
the non-dimensionalisation of the growth rate leads to a slightly better agreement between
helical and vortex ring configurations. For larger L, whatever the core size a investigated,
growth rate monotonically decreases.

9.2.4 Influence of the core size a

The influence of the core size on the growth rate is found weak for the range of a inves-
tigated (0.06 ≤ a ≤ 0.1) (see figure 9.7). For fixed value of L, the growth rate increases
when the core size is decreased. As shown in Brancher and Chomaz (1997), vortex con-
centration enhances the pairing instability mechanism even if this effect remains relatively
weak. Note that the limit L = 0 cannot be reached because of the finite core size implying
that L & 2Na/π (see discussion for the single vortex case in section 5.4). For N = 2,
a = 0.09 this gives L & 0.11.
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(a) (b)

Figure 9.8 – Normalized growth rate σ∗ of the displacement mode for N = 2 helical
vortices. Influence of the Reynolds number with core size (a) a = 0.06; (b) a = 0.09.

9.2.5 Influence of Reynolds number
The influence of the Reynolds number is analysed. The normalised growth rate σ∗ of the
most unstable mode is plotted on figure 9.8 for various values of Re for core size a = 0.06
and a = 0.09. For both values of a, within the range of Re ∈ [1250; 5000[, the effect
of lowering the Reynolds number is paradoxically to enhance the growth rate. This is a
surprising behaviour as one would generally expects the instability to grow stronger with
increasing Reynolds number.

9.3 Two helical vortices with a central hub vortex
We investigate the influence of a central hub on the stability of two helical vortices. The
central hub is chosen with a circulation −NΓ, thus ensuring a global circulation of the
base flow to be zero. This case is relevant for instance for propeller wakes (Felli et al.,
2011). In our simulations, the hub core size is chosen equal to the helical core size a. The
structure of the most unstable mode for L = 0.3, a = 0.09 and Re = 10000 is depicted in
figure 9.9: it is seen that the mode structure is globally the same as without hub namely,
a displacement mode which now also involves the central hub vortex. The effect of the
mode is to displace the hub vortex towards the same half plane in Π0 as shown by the
green arrows in figure 9.9. This is reminiscent of what was observed by Felli et al. (2011)
experimentally in a water channel.
The growth rate is plotted in figure 9.10 as a function of L. The presence of the central
hub slightly enhances the instability for the range L < 0.7. For L > 0.7, the growth rate
abruptly decreases and the mode stabilises near L = 0.9.
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Figure 9.9 – The most unstable mode for the base flow corresponding to two helical
vortices with L = 0.3, core size a = 0.09 and a central hub vortex of core size a. Reynolds
number for perturbations is Re = 10000. (a) Contours of <{ω̂B} in Π0. (b) Schematic
representation: the displacement induced by the unstable mode when superimposed on
the base flow are represented with the green arrows.

(a) (b) (c)

Figure 9.10 – Growth rate of the dominant instability mode for N = 2 helical vortices with
the vortex hub (solid line) and without (dashed line) for ahub = a = 0.09 at Re = 10000 as
a function of pitch L. (a) Growth rate σ. (b) Normalized growth rate σ∗. (c) Normalized
growth rate σ∗d. In (b) and (c) the horizontal line represents π/2.
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Figure 9.11 – Spectrum in the (σ, ω/2π) plane for N = 3 helical vortices with a central
hub vortex at L = 0.3, a = 0.09 and Re = 10000. Only the first 9 dominant modes are
shown.

(a) (b) (c)

Figure 9.12 – Growth rate of the dominant instability mode for N = 3 helical vortices with
the vortex hub (solid line) and without (dashed line) for ahub = a = 0.09 at Re = 10000 as
a function of pitch L. (a) Growth rate σ. (b) Normalized growth rate σ∗. (c) Normalized
growth rate σ∗d.

9.4 Three helical vortices with a central hub vortex

We now investigate the stability of N = 3 helical vortices of for core size a = 0.09 in the
presence of a central hub vortex at Re = 10000. The core size of the hub vortex is chosen
to be equal to those of the helical vortices (ahub = a).
The spectrum obtained for L = 0.3 is presented in figure 9.11. Contrary to the cases for
two helical vortices, there are two dominant unstable modes with the same growth rate
σ = 2.024 and opposite nonzero frequencies ω = ±0.123. The growth rates are plotted in
figure 9.12. Note that the effect of adding a hub is different for N = 2 and N = 3 vortices
: for N = 3 it tends to destabilize the system.
The real and imaginary part of the dominant eigenmode with positive ω are depicted in
figure 9.13. The mode with negative ω has the same real part but opposite imaginary
part. The real part is constituted of three lobes of vorticity of opposite sign and one of the
vortex displacements has a larger magnitude. The imaginary part displays only two lobes
of vorticity with equal magnitudes. The central hub vortex is also involved in the process.
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(a) (b)

Figure 9.13 – Structure of the most unstable mode for L = 0.30, a = 0.09 with a central
hub. (a) Real part of the eigenvector ω̂B. (b) Imaginary part of ω̂B.

Growth rate and mode structure can be interpreted in the framework of point vortex
analogy. Let us first examine this analogy when N helical vortices are present. The
helical symmetry imposes every Nth vorticity region in the meridian plane to be subject
to the same displacement as it belongs to the same helical vortex. This means that only
instability waves having spatial periodicity Λ = Nh should be kept in the point vortex
analogy: those are waves of wavelength λ = Λ/p = Nh/p with p = 1, ..., N − 1. In
terms of φ, the waves pertinent for the array of N helical vortices are φ = 2πp/N . For
N = 2 vortices, this gives φ = π, which is the dominant pairing mode with growth
σ∗ = π/2 ≈ 1.57. However, for N = 3, two instability modes corresponding to φ = 2π/3
and φ = 4π/3 are pertinent. This is coherent with the two dominant modes shown in figure
9.11. In the point vortex analogy the two modes are found to be associated to a growth
rate σ∗ = 4π/9 ≈ 1.4 smaller than for N = 2. This is again observed in figure 9.12-b
and 9.12-c, for low values of L, where the normalised growth rates approach a value close
to 4π/9 ≈ 1.4. The distribution of displacement amplitudes between real and imaginary
parts as depicted in figure 9.13 can also be enlightened using the point vortex analogy.
Indeed, the unstable mode induces a displacement of the form ei2πz/λ on the vortex array.
In figures 9.14-b and 9.14-c, the corresponding real and imaginary parts are plotted as
functions of z/λ. It is seen that in the real part, the first vortex (at z/λ = 0) is subjected
to a displacement which is larger in magnitude than the two other vortices (located at
z/λ = 1/3 and z/λ = 2/3). In the imaginary part, the amplitude is zero for the first
vortex and maximal for the two others. This is exactly the amplitude distributions which
are observed for the N = 3 helical case in plane Π0 (see figure 9.13).
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(a) (b) (c)

Figure 9.14 – Analogy with an array of point vortices for N = 3 separated by h = 2πL/3:
(a) Dispersion relation, the full dots correspond to the modes pertinent for N = 3. (b)
Real part of the induced displacement by the unstable mode φ = 2π/3 (red curve) and
4π/3 (green curve). (c) Imaginary part.
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Unstable pairing modes were obtained with the helical linear stability analysis in chapter 9.
Here, we analyse the nonlinear evolution of this mode in the framework of helical symmetry
using the HELIX code. The numerical computations are started with the most unstable
mode û multiplied by an amplitude A and superimposed on the helically symmetric base
flow uBF. Mathematically, this means that

ωTotal
B = ωBF

B +A<{ω̂B} (10.1)
uTotal
B = uBF

B +A<{ûB}, (10.2)

where <{ûB} and <{ω̂B} are obtained by the Arnoldi procedure and are both normalized
such that max |ω̂B| = 1 on Π0 (see introduction of chapter 8). In practice, amplitude A
is set to A = 0.01

∥∥ωBF∥∥ where ‖.‖ is the Euclidean norm. This value guarantees that
the initial evolution is linear and that the resulting nonlinear dynamics will be accessible
in a reasonable computational time. On figure 10.1, base flow and pairing mode that are
combined to yield the initial condition are plotted.

In the helical framework we found that vortices display complex dynamics such as merg-
ing, leapfrogging and overtaking. We briefly recall the first two mechanisms for two-
dimensional straight vortices and vortex rings (section 10.1). The description and the
characterisation of the overtaking mechanism can be found in section 10.2. The nonlinear
dynamic of two helical vortices is described in section 10.3 up to their merging 10.4.

10.1 Leapfrogging and merging of vortices
The leapfrog mechanism of two identical vortex rings moving in the same direction is a
well known phenomenon which has been observed and extensively studied. Helmholtz,
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(a) (b)

Figure 10.1 – (a) Base flow: Two helical vortices L = 0.3 with core size a = 0.1. Component
ωBaseB (b) Real part of the eingemode ω̂B of the helical pairing mode. These two fields will
be combined and set as initial condition for the non linear computation.

on the basis of theorems he himself established, deduced that when two identical vortex
rings travel in the same direction « ... the foremost widens and travels more slowly, the
pursuer shrinks and travels faster, till finally, if their velocities are not too different, it
overtakes the first and penetrates it. Then the same game goes on in the opposite order,
so that the rings pass through each other alternately. » This description provides already
an astonishingly accurate and detailed description of the leapfrogging process of two vortex
rings. It is also known that the leapfrogging motion can be sustained indefinitely in an
inviscid fluid when the cross-section of the vortex ring remains small with respect to the
ring diameter and when the circular shape of the core is maintained (Riley and Stevens,
1993). When viscosity is present, only a given number of leapfrogs can be expected to
occur due to the extension of the vortex core size. The numerical study of Riley and
Stevens (1993) confirms this statement: increasing the Reynolds number from 500 to 4000
leads to an increase of the number of leapfrogs from 1 to 5.

The vortex merging is a generic mechanism for two-dimensional vortices. It occurs when
two vortices are sufficiently close to each other. In the inviscid regime, a pair of co-rotating
vortices separated by a distance b large with respect to their core size, rotates at angular
velocity Γ/

(
2πb2

)
similarly to point vortices. When viscosity is present, the two vortices

always end up merging due to the continuously increasing core size. Meunier et al. (2002)
studied experimentally the merging of two co-rotating straight vortices and identified three
evolution stages. A first viscous stage, where the square of the core size increases linearly
in time, without merging, is followed by a second stage, where the two vortices merge
on a convective (faster) time scale. The third stage is associated to the diffusion of the
filaments of vorticity into a final axisymmetric vorticity distribution. They proposed a
merging criterion based on the angular momentum of the vorticity. Fine et al. (1991)
also proposed a similar criterion based on the first moment of vorticity. Both methods
obtained similar results when compared to the experimental data of Meunier et al. (2002).
The numerical counterpart was provided by Josserand and Rossi (2007) for a large range
of Re number (from 1000 to 100000). They pinpointed the deficiencies of the previous
criteria and proposed a new criterion based on the existence of a quasi-equilibrium.
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Figure 10.2 – Spatial evolution of N = 2 helical vortices generated by a two-bladed rotor
in a water channel. The vortex system is perturbed with one blade being radially offset.
Such perturbation can be understood in a context where the helical symmetry is preserved.
(Bolnot, 2012).

10.2 General mechanism of two helical vortices

Helical vortices are topologically in-between vortex ring arrays and straight vortices. The
first case corresponds to small L and the second to large L. Interestingly, they are sub-
jected to the complex previously described dynamics: leapfrogging and merging. The
leapfrogging for helical vortices can be described as follows: the radius of one of the two
vortices decreases while the radius of the other one increases. Thereafter, the first one
accelerates and passes through the other. The process repeats with the role exchanged.
The leapfrog of helical vortices was first observed by Alfredsson and Dahlberg (1979) with
smoke visualisation. Later, Sherry et al. (2013) and Bolnot (2012) employed particle image
velocimetry (PIV) and dye visualisation, respectively, to observe the same phenomenon.
In order to excite the helical pairing mode, Bolnot (2012) created a small asymmetry be-
tween the two blades of the rotor by radially shifting one of them. A typical visualisation
is shown in figure 10.2 where one helical vortex shrinks and passes through the other one
which is enlarged.

This leapfrog phenomenon is also observed numerically in the frame of the helical sym-
metry: snapshots of the evolution evolution at Re = 10000 of two helical vortices of pitch
L = 0.30 with initial core size a = 0.06 are shown in figure 10.3.

For helical vortices, we observed also a different behaviour that we call the overtaking.
It has been found for intermediate values of L ≥ 0.5: one of the vortex accelerates and
overtakes the other one as at the beginning of leapfrog but then the roles between the two
vortices are not exchanged: it is the same helical vortex that overtakes again. The process
may repeat itself several times before some leapfrogs occur and the vortices finally merge.
Note that, by simply looking at figure 10.2, it is not possible to discriminate between a
leapfrog or an overtaking event. A more reliable characterisation is provided in the next
section.
The effect of the pitch L on the merging of helical vortices has been numerically investi-
gated for two vortices by Delbende et al. (2015) and three vortices Delbende and Rossi
(2013). Note however, that the Reynolds number of these studies prevented from observing
any leapfrog or overtaking events.
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Re number of leapfrog events
1250 1
2500 2
3750 3
5000 4
6750 4
10000 5

Table 10.1 – Dependence of the number of leapfrogs with respect to the Reynolds number
for two helical vortices of reduced pitch L = 0.3 with initial core size a = 0.06.

10.3 Results for two helical vortices

In order to characterize the nonlinear evolution of vortices, we track the radial position
rA(t) of each vortex centreline. The tracking of the individual vortices is done by accurately
locating the point of maximum vorticity in the vicinity of the previous location of the
maximum.
This allows us to characterise this phenomena by separating the overtakings from the
leapfrogs and investigate the effect of the parameters a, L and Re.

10.3.1 Influence of the reduced pitch L

We first investigate the influence of reduced pitch L on the dynamics of two helical vortices
with initial core size a = 0.06 when perturbed with the helical pairing mode at Reynolds
number Re = 10000. The time evolution of the vortex centres rA for various values of L
are plotted in figure 10.4. For L = 0.3 and L = 0.4, the resulting dynamics are similar:
the vortices undergo several leapfrog events and then merge. From 10.4-a and 10.4-b, one
can count 5 clear leapfrogs (light gray area) before the merging starts (dark gray area).
Increasing L has been shown in chapter 9 to decrease the growth rate of the pairing mode
which may explain that it also slows down the leapfrog dynamics.
For 0.5 ≤ L ≤ 0.8, vortices are found to undergo several overtaking events (see middle and
bottom rows of figure 10.4). Globally the number of overtaking events increases with L
and they occur at reduced pace. Note that the peak amplitudes are not constant in time
and sometime the inner vortex approaches the z axis (for L = 0.7 or L = 0.8, see figure
10.4 bottom row).
Once the overtaking events are over, the vortices start leapfrogging. From the same figures,
it can be seen that the number of leapfrogs increases with L and that the events occur at
reduced pace. Note also that between the last overtaking event and the first leapfrogging,
the radial position of the vortices are often very close.

10.3.2 Influence of the Reynolds number Re

According to (Riley and Stevens, 1993), the Reynolds number is a key parameter for
defining the number of leapfrogs before two rings merge. In order to verify whether or not
this is also the case for helical vortices, we keep the initial core size a and reduced pitch
L constant to 0.06 and 0.3 respectively, and perform simulations at different Reynolds
numbers. It is seen on figure 10.5 that, as the Reynolds number increases, the number of
leapfrogs also increases. The number of leapfrogs is reported in table 10.1.
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Figure 10.3 – Re = 104. Time evolution of N = 2 helical vortices of reduced pitch L = 0.3
with initial core size a = 0.06 perturbed with the helical pairing mode. The vortices
undergo a leapfrogs process. Isovalue of the helical vorticity ωB = 1

2ω
max
B at instants

τ = 6.8, 7.3, 7.8, 8.3. Time evolution goes from top to bottom. The grey region is the
cylinder of radius R = 1 around which the unperturbed helical vortices would coil.
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Figure 10.4 – Time evolution of the vortex centres rA at Re = 10000 for L = 0.3, .., L = 0.8
with initial core size a = 0.06. The light grey area corresponds to the time interval where
the leapfrogs occur, the light green region (when it exists) to the overtaking phase, the
dark grey area to the merging instant (rA is erroneously determined in this zone) and the
blue region to the merged state.
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(a) (b)

(c) (d)

Figure 10.5 – Influence of the Reynolds number on the leapfrog mechanism of two helical
vortices of pitch L = 0.3 with core size a = 0.06. (a) Re = 2500. (b) Re = 5000. (c)
Re = 7500 and (d) Re = 10000. In all figures, the evolution of rA is shown as a function
of time. The grey region indicates the time interval when the leapfrogs occur, the dark
grey represents the merging phase and the clear blue region indicates the merged state.
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(a) (b) (c)

Figure 10.6 – Influence of the initial core size on the leapfrog mechanism of two helical
vortices of pitch L = 0.3 at Re = 10000. Evolution of rA as a function of time. The solid
line represents the first vortex while the dashed one represents its companion. Simulations
are initialised with core sizes (a) a = 0.06. (b) a = 0.08 and (c) a = 0.10. In all figures the
grey region indicates the time interval when the leapfrogs occur, the dark grey represents
the merging instant and the clear blue region shows the merged state.

10.3.3 Influence of the core size a
The influence of the initial core size is analysed by computing the nonlinear evolution
of the pairing mode while keeping the Reynolds number Re and the reduced pitch L
constant. The core size is varied from 0.06 to 0.1 while L and Re are set to 0.3 and 10000
respectively. In figure 10.6-a, the time evolution of the radial position of the vortex centres
are plotted. As the initial core size increases the number of leapfrogs reduces. We observe
5, 4 and 3 leapfrogs occurring for initial core size a = 0.06, 0.08 and a = 0.10 respectively.
The amplitude of the initial leapfrog seems independent of the initial core size a.

10.3.4 Cut-off theory
We tried to reproduce the above phenomenology within the helical filament model intro-
duced in section 4. The nonlinear evolution of two helical filaments is simulated. As initial
condition, we use the positions of the vortex centres taken from the DNS when initially
perturbed by the helical pairing mode.
In plane Π0, the time evolution of the radial positions of the filaments is plotted in figure
10.7 for 0.3 ≤ L ≤ 0.6 with core size a = 0.06. Strangely, only overtaking events are
observed. A drift for the peaks of rA is observed as in the DNS but it is larger here. The
reason for such dynamics remains unclear for now and is left for future investigations.

10.4 Merging of two helical vortices
After the leapfrog events, the vortices merge. In figure 10.8, the time evolution of the
merging is shown for L = 0.3. Actually, a leapfrog is initiated (see top row) but due to the
large core size that the vortices have reached at that time, a full vortex merging occurs
(see middle and bottom rows). When viewed in the meridian plane, (right column) this
merging resembles a two-dimensional vortex merging.
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(a) (b)

(c) (d)

Figure 10.7 – Overtaking motion of N = 2 inviscid vortex filaments obtained with the
cut-off theory: radial position as a function of time. The initial positions are obtained
from the DNS. The core size is fixed at a = 0.06 in all figures. (a) L = 0.3, (b) L = 0.4,
(c) L = 0.5, (d) L = 0.6.
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Figure 10.8 – N = 2 helical vortices of pitch L = 0.3 and core size a = 0.06 perturbed
initially with the helical pairing mode at Re = 10000. Left column: isovalue of the vorticity
component ωB = ωmaxB /4. Central column: contours of the helical vorticity ωB in plane
Π0. Right column: contours of the helical vorticity ωB in the median r − z plane. The
chosen instants are τ = 24, 25, 26 (top to bottom).
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Chapter 11
Linear stability analysis with respect
to general perturbations
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In the previous chapters of the thesis, we considered only flows with a helical symmetry,
even when the linear instability modes were concerned. In the present chapter, we in-
vestigate flow fields that break the helical symmetry. More precisely, we select helically
symmetric base flows that are subject to small amplitude perturbations that do not have
the helical symmetry: these perturbations depend on r and ϕ, but also explicitly on z,
they hence display a more complicated structure.
Such analysis was first considered analytically during the 70’s by Widnall (1972) for the
case of one helical vortex in the inviscid framework. Widnall uses the filamentary approach
with the cut off method to take the small core size into account. Within that context,
infinitesimal displacement perturbations are introduced proportional to eiγs where s is
the arc length along the unperturbed filament and γ the associated wavenumber. The
structure of the unstable modes is best understood when described by the non dimensional
parameter

γ/k′ = γL(1 +R2/L2) (11.1)

characterizing the ratio between the axial wavelength of the mode and the helical pitch
2πL (γ/k′ is the number of perturbation wavelengths in a single turn of the unperturbed
filament). Widnall classifies the unstable mode branches using the following terminology:
a very short-wavelength mode, a long-wavelength mode (with axial wavelength larger
than the helical pitch) and modes with intermediate wavelength interpreted as mutual-
inductance modes between successive turns, for sufficiently low pitches. This work was
later expanded to multiple helices by Gupta and Loewy (1974) with a different desingu-
larisation technique.
Using DNS, we generalise the above results to viscous vortices with cores of finite extent.
The stability problem is briefly formulated and, since perturbations cannot be described
in a two-dimensional framework, a new code HELIKZ is introduced (section 11.1). We
can extract the three-dimensional unstable modes for a single or several helical vortices
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Figure 11.1 – General perturbation modes as sketched by Widnall (1972) for different
values of the parameter γ/k′. Widnall makes a distinction between (a) short-wavelength
modes, (b) and (c) intermediate wavelength or mutual induction modes and (d) long-
wavelength modes. Taken from Bolnot (2012).
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(section 11.2). Some of the modes we identify are displacement modes; short-wavelength
modes that deform the vortex core can also be obtained using this technique.

11.1 Stability analysis
Here we briefly present the base flow, the linear equations governing the dynamics of
perturbations and the dedicated numerical code HELIKZ.

11.1.1 Frozen helically symmetric base flow
The base flow possesses the helical symmetry of reduced pitch L along the z-axis. It is
one of the quasi-equilibrium states obtained in chapter 6 by running the HELIX code in
the inertial frame up to a certain time t0. This state is now supposed frozen. Since in
the inertial frame the vortex or vortex system rotates at angular velocity Ω0 ≡ Ω(t0),
we adopt the rotating non-inertial frame in which the flow is steady, with basic velocity
vBF and vorticity ωBF. These latter fields are transferred to the new code HELIKZ and
decomposed into cylindrical components which are the native components of HELIKZ
(HELIX uses helical components).
In the frame rotating at angular velocity Ω0, the basic flow components depend only on
the two space variables r and ϕ ≡ θ− z/L. For instance, the velocity field is expressed in
the cylindrical coordinate system (er, eθ, ez) as

vBF = vBF
r (r, ϕ, t0)er (θ) + vBF

θ (r, ϕ, t0)eθ (θ) + vBF
z (r, ϕ, t0)ez . (11.2)

11.1.2 Equations for the perturbations

In the rotating frame, the velocity (resp. vorticity) reads vBF +v (resp. ωBF +ω) and the
infinitesimal perturbations of velocity v and vorticity ω satisfy the linearized Navier-Stokes
equations:

∂tv + [ωBF + 2Ω0ez]× v + ω × vBF = −∇
(
P

ρ

)
+ 1
Re

∆v , (11.3)

where P is the linearized dynamical pressure. Note that, in the above equation, the term
[ωBF + 2Ω0ez] represents the absolute vorticity. At this point, since vBF only depends on
(r, ϕ), a change of variables is applied from (r, θ, z) to (r̃, ϕ, z̃) where

r̃ ≡ r, z̃ ≡ z, ϕ ≡ θ − z

L
. (11.4)

As shown below, this particular change of variable simplifies the system (11.3) governing
the dynamics of generalised perturbations to a two-dimensional problem in variables (r̃, ϕ).
Through this change of variables, spatial derivatives become

∂

∂r
= ∂

∂r̃
,

∂

∂θ
= ∂

∂ϕ
,

∂2

∂θ2 = ∂2

∂ϕ2 , (11.5)

∂

∂z
= ∂

∂z̃
− 1
L

∂

∂ϕ
, (11.6)

∂2

∂z2 = ∂2

∂z̃2 −
2
L

∂

∂z̃

∂

∂ϕ
+ 1
L2

∂2

∂ϕ2 . (11.7)

The components of the linearised advective terms ADV = [ωBF + 2Ω0ez]× v+ω× vBF

can be written as

ADVr = ωBF
θ vz − (ωBF

z + 2Ω0)vθ +
(
ωθv

BF
z − ωzvBF

θ

)
,
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ADVθ = (ωBF
z + 2Ω0)vr − ωBF

r vz +
(
ωzv

BF
r − ωrvBF

z

)
,

ADVz = ωBF
r vθ − ωBF

θ vr +
(
ωrv

BF
θ − ωθvBF

r

)
,

where the vorticity is such that

ωr = 1
r̃

∂vz
∂ϕ
− ∂vθ

∂z̃
+ 1
L

∂vθ
∂ϕ

(11.8)

ωθ = ∂vr
∂z̃
− 1
L

∂vr
∂ϕ
− ∂vz

∂r
(11.9)

ωz = 1
r̃

∂

∂r̃
(r̃ vθ)−

1
r̃

∂vr
∂ϕ

(11.10)

Similarly, the viscous terms along the radial, azimuthal and axial direction can be written
as

V Tr ≡
∂

∂r̃

(1
r̃

∂(r̃vr)
∂r̃

)
+ 1
r̃2
∂2vr
∂ϕ2 + ∂2vr

∂z̃2 −
2
L

∂

∂z̃

∂

∂ϕ
vr + 1

L2
∂2vr
∂ϕ2 −

1
r̃2

∂

∂ϕ
(2vθ) ,

V Tθ ≡
∂

∂r̃

(1
r̃

∂(r̃vθ)
∂r̃

)
+ 1
r̃2
∂2vθ
∂ϕ2 + ∂2vθ

∂z̃2 −
2
L

∂

∂z̃

∂

∂ϕ
vθ + 1

L2
∂2vθ
∂ϕ2 + 1

r̃2
∂

∂ϕ
(2vr) ,

V Tz ≡
1
r̃

∂

∂r̃

(
r̃
∂vz
∂r̃

)
+ 1
r̃2
∂2vz
∂ϕ2 + ∂2vz

∂z̃2 −
2
L

∂

∂z̃

∂

∂ϕ
vz + 1

L2
∂2vz
∂ϕ2 ,

and incompressibility reads

∇ · v = 1
r̃

∂(r̃vr)
∂r̃

+ 1
r̃

∂vθ
∂ϕ

+ ∂vz
∂z̃
− 1
L

∂vz
∂ϕ

= 0. (11.11)

Since the base flow vBF do not depend on z̃, one may search for a complex solution for
the linearised Navier-Stokes in the form of a normal mode in z̃:

v = exp(ikz z̃)[v̂r(r̃, ϕ, t)er(θ) + v̂θ(r̃, ϕ, t)eθ(θ) + v̂z(r̃, ϕ, t)ez] , (11.12)

where kz is a wavenumber parameter along z̃. Note that for kz = 0, helically symmetric
perturbations are recovered.
Since all wavenumbers kz behave independently, the linearized Navier-Stokes system is very
much simplified: for each wavenumber kz, it becomes a set of partial differential equations
depending on time t, spatial variables r̃, ϕ and in which kz appears as a prescribed
parameter.

11.1.3 Numerical code HELIKZ

The above problem is similar to the one we had to solve with the linearised HELIX
code for helically symmetric perturbations. However, the numerical resolution is more
involved in the code HELIKZ as the flow is essentially three-dimensional: the three velocity
components along with the pressure are unknowns and require the use of a projection
method to ensure the divergence-free condition. As the solutions v are periodic along the
direction ϕ, one uses a Fourier expansion in ϕ:

v̂r(r̃, ϕ, t) =
∞∑

m=−∞
exp(imϕ)v̂(m)

r (r̃, t) (11.13)
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(a) (b)

Figure 11.2 – Single helical vortex of core size a = 0.06 at Re = 5000. Normalized growth
rates as a function of k for various values of the reduced pitch L: (a) σ∗ and (b) σ∗d.

v̂θ(r̃, ϕ, t) =
∞∑

m=−∞
exp(imϕ)v̂(m)

θ (r̃, t) (11.14)

v̂z(r̃, ϕ, t) =
∞∑

m=−∞
exp(imϕ)v̂(m)

z (r̃, t) (11.15)

However, note that quantities v̂i(r̃, ϕ, t), and v̂(m)
i (r̃, t) are both complex so that there is

no relation between modes v̂(m)
i and v̂(−m)

i , contrary to what we have in the HELIX code.
For each kz, the resulting dynamical equations are then solved in spectral space along ϕ
and using finite differences along r̃. Boundary conditions are also dependent on kz, this
leads to technical developments which are not exposed in this thesis but will be included
in future publications. The mode extraction is performed by coupling HELIKZ with an
Arnoldi procedure described in chapter 8 and adapted to the HELIKZ primitive variables
(velocity and pressure).

11.2 HELIKZ results
We present the results using a non dimensional wavenumber k defined as

k = kz
L

N
. (11.16)

The advantage of such definition is that k is identical to the original Widnall parameter
γ/k′ defined in (11.1).

11.2.1 Long wavelength and mutual induction instability

One helical vortex

In figure 11.2, the normalised growth rates σ∗ and σ∗d given respectively in (9.5) and (9.7)
are plotted as a function of k for various values of L in the range 0.2 ≤ L ≤ 0.5. At fixed
L in the range investigated here, the growth rate curves take the form of one or several
tongues with maxima occurring close to values k = 1/2 and k = 3/2 (but not exactly).
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(a) (b)

Figure 11.3 – Single helical vortex at L = 0.25: structure of the dominant instability
modes (a) k = 1/2 and (b) k = 3/2.

The three-dimensional structure of the mode k = 0.55 close to the first maximum for
L = 0.25 is presented in figure 11.3-a. This mode displays the typical vorticity structure
of displacement modes but with signs changing every helix turn (the wavelength being of
two helix turns). When superimposed on the basic flow, the mode induces the displacement
or local groupings sketched in figure 11.4 (top). As described by Quaranta et al. (2015),
the pattern repeats every two helix turns and there is only one azimuthal location where
a local grouping between facing turns occurs.
The three-dimensional structure of the mode k = 1.4 close to the second maximum for
L = 0.25 is presented in figure 11.3-b. The displacement mode structure here changes
signs every third helix turn. When superimposed on the basic flow, the mode induces the
displacement sketched in figure 11.4 (bottom): the pattern repeats every two turns and
there are three azimuthal locations where local groupings occur.
Such modes have been experimentally investigated by Quaranta et al. (2015). They ob-
tained normalised maximum growth rates for k = 1/2, k = 3/2 and k = 5/2. However,
their pitch value is smaller (L ≈ 0.16) than in the present study, and a low pitch enhances
the instability of mutual inductance modes. This effect is observed here: no unstable mode
is observed near k = 5/2 for our range L ≥ 0.2 because the pitch is too large. Moreover,
the maximum growth rate near k = 3/2 at L = 0.20 is σ∗ = 1.157, while for L = 0.25
it is as low as σ∗ = 0.187. This also agrees with Widnall (1972) who states that mutual
inductance modes are no more unstable below L = 0.3.
The values of the maximum growth rates obtained for different values of L near k = 1/2
can be understood if we renormalise the growth rate using the local distance d between
turns as was done in chapter 9.2.2. The growth rate σ∗d is plotted in figure 11.2-b. The
maximum growth rate is found very close to π/2 for all L investigated. This indicates
that the mechanism driving the local groupings is similar to the pairing instability of an
infinite array of point vortices.
In figure 11.5, the dominant eigenvalue for the case L = 0.3 is plotted in the σ − ω/2π
plane for 0.03 ≤ k ≤ 0.9 (first tongue in figure 11.2). For k = 0 the mode is known to be
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Figure 11.4 – Structure of the displacement modes. Left: sketch of the mode with the
helix unwrapped in the Rθ − z plane. Right: original figure of the mode from Widnall
(1972). Top: mode k = 1/2. Bottom: k = 3/2.

Figure 11.5 – Single helical vortex of reduced pitch L = 0.3 and core size a = 0.09 at
Re = 5000. Dominant eigenvalue in the σ − ω/2π plane for various k.
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(a) (b) (c)

Figure 11.6 – Single helical vortex at L = 0.3 and core size a = 0.09. Real part of the
dominant eigenmode for (a) k = 0 (helically symmetric perturbations), (b) k = 0.09 and
(c) k = 0.54.

(a) (b)

Figure 11.7 – N = 2 helical vortices of core size a = 0.06 at Re = 5000 . Normalised
growth rates as a function of k for various values of reduced pitch L: (a) σ∗ and (b) σ∗d.

neutral (see section 9.1) but as k is increased it is progressively destabilised, giving rise to
an unstable long wavelength phase mode. The structure of such mode is plotted in figure
11.6-b for k = 0.09, and can be compared to the structure of the neutral mode at k = 0
(figure 11.6-a) and of the maximum growth rate mode at k = 0.54 (figure 11.6-c). It is
seen on this figure how the eigenmode structure is progressively deformed from that of
the neutral mode as k is increased from zero. Note that the phase mode has a non zero
frequency which gives rise to a phase velocity (ω/k ≈ 2). The neutral mode is stationary
and the modes near the maximum at k = 1/2 are found almost stationary.

Two helical vortices

We now investigate the stability properties of N = 2 helical vortices. The parameter
k = kzL/N can be written as k = ΛBF/λ where ΛBF is the axial periodicity of the base
flow (ΛBF = 2πL/N) and λ the axial wavelength of the perturbation (λ = 2π/kz). As a
consequence, k represents the number of perturbation wavelengths over the spatial period
of the basic flow. For N = 2, the periodicity of the base flow represents half a helix turn.
The growth rates σ∗(k) and σ∗d(k) are plotted in figure 11.7 for various pitch values in the
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CHAPTER 11. LINEAR STABILITY ANALYSIS WITH RESPECT TO GENERAL
PERTURBATIONS

(a) (b)

Figure 11.8 – N = 2 helical vortices at L = 0.30 and core size a = 0.06: structure of
unstable modes (a) k = 1/2, (b) k = 1.

range 0.2 ≤ L ≤ 0.5. As previously, local maxima are observed in the vicinity of k = 1/2,
3/2, ... and correspond to situations with 1/2, 3/2, ... perturbation wavelengths per half
helix cycle. These modes have a similar structure as modes k = 1/2, 3/2, .... for N = 1
vortex but the local groupings now involve different vortices (see figure 11.8-a). Additional
instability tongues are observed which are centred on k = 0, 1, 2, ... and correspond to
situations where there is an integer number of perturbation wavelengths within half a helix
turn (see figure 11.8-b).
However for N = 2, the maximum amplification is obtained for helically symmetric per-
turbations (k → 0) for which σ∗d tends to a value slightly below π/2. This value decreases
when L increases as already shown in figure 9.5. The dominant instability mode is thus
the global helical pairing mode.
It is also observed that as L is increased, the range of k for which instability occurs reduces,
since interactions between turns weaken.

11.2.2 Elliptical instability
In section 11.2.1, we have obtained instability modes which all were displacement modes.
However, the HELIKZ code permits the investigation of modes which deform the internal
structure of the vortex. An example of such mode is represented in figure 11.9. The
structure is clearly not the structure of a displacement mode. Yet, a dipolar distribution
of vorticity is present but it is localised inside each of the two vortex cores (in the figure
the cores are materialised by dashed black circles). This is reminiscent of the radial
structure associated to elliptical instability (see figure 18-c of reference (Leweke et al.,
2016)). Indeed, the present configuration at large pitch L = 2 is relatively close to the
case of two straight infinite vortices and the mode structure obtained here is the helical
counterpart of the one revealed in Meunier (2001) (see his figure 5.13). This preliminary
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Figure 11.9 – N = 2 helical vortices of pitch L = 2, core size a = 0.33. structure of
unstable mode for k = 4.7.

finding is a promising result and opens the way to further investigations, especially on
elliptical instabilities in vortex systems with small pitch.
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Chapter 12
Conclusion and perspectives

The work exposed in this manuscript is a contribution to the numerical study of helical
vortices and their instabilities.

Using a dedicated DNS code we have simulated basic states for various helical vortex con-
figurations and developed accurate tools for their characterisation. We have extended the
inviscid two-dimensional relationship between stream function and vorticity which holds
for steady flows to the helical viscous framework. We have deeply investigated the quasi-
equilibrium state of a single helical vortex by analysing the slow viscous time evolution of
properties such as helix radius, angular velocity, core size and ellipticity, and by highlight-
ing a self-similar solution. In order to deepen the basic knowledge of helical vortices, it
will be necessary to investigate the influence of a strong jet component within the vortex
core. Indeed such feature was observed experimentally (Quaranta et al., 2015) and the
temporal evolution of its amplitude in the quasi-equilibrium framework is still an open
question.

In the thesis, we have shown the influence of pitch and core size on the streamline topol-
ogy and the consequences for passive particle transport in a helical vortex. The case of
inertial particles has been implemented but no extensive simulations could be done due
to lack of time. It would be interesting to complement this study and extend the results
of IJzermans et al. (2007) on the accumulation of inertial particles around a helical vor-
tex filament. Other physical effects acting on the particles could also be introduced (e.g.
pressure gradient).

We have successfully compared the internal structure of the helical vortex with the analyt-
ical predictions provided by the IRPHE partner using accurate multipolar decompositions
of instantaneous flow fields. This collaboration work resulted in a publication (Blanco-
Rodríguez et al., 2015).

We implemented an Arnoldi algorithm within a linearised version of the DNS code in order
to determine the linear stability properties with respect to helically symmetric perturba-
tions. For arrays of two or three helical vortices, we identified the displacement mode
unstable at low pitch and investigated its dependency with respect to pitch, core size,
Reynolds number and presence of a hub vortex. This mode was confirmed to be analogous
to the pairing mode of an infinite array of point vortices or vortex rings.

We computed the nonlinear dynamics of helical vortices when perturbed by the latter
instability mode initially set at a small amplitude, in the framework of helical symmetry.
A complex dynamics was observed with a sequence of overtaking events, leapfrogging and
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eventually merging. The extension to more complex vortex systems (three vortices with
or without hub, ...) and the analysis in terms of dynamical systems may be considered in
the future.

Finally, we were able to compute linear instability modes that break the helical symmetry
and generalise the displacement modes obtained by Widnall (1972). We investigated the
dependency of the growth rate with respect to pitch and core size for one and two helical
vortices. These results were successfully compared to the experimental work of Quaranta
et al. (2015).

Using the same numerical tools, a different kind of mode could be extracted: a mode
deforming the helical vortex cores arising through the elliptic instability mechanism. The-
oretical and experimental works are currently carried on this subject at IRPHE. The
preliminary numerical results presented in this manuscript open the way to a systematic
investigation of their linear instability properties. A natural extension to this work would
be to simulate the nonlinear evolution of the elliptical instabilities in helical vortices with a
fully three-dimensional Navier-Stokes solver. Due to the huge difference of scales between
the size of the helical vortex (pitch or radius) and the size of radial structures within
the thin vortex core (a fraction of the core size), an optimised solver with adaptive mesh
refinement (AMR) is a priori necessary.
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Appendix A
Rate of strain tensor for helically sym-
metric flows.

The components of the rate of strain tensor are here given below for helically symmetric
flows

σ(m)
rr = ∂u

(m)
r

∂r

σ(m)
ϕϕ = im
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1
rα
− 2r3α3

L4

)
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At the origin r = 0 they are obtained by using L’Hôpital’s rule:

σ(0)
ϕϕ(r = 0) = 0
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ϕϕ(r = 0) = 0
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Appendix B
Boundary conditions at the axis.

The conditions at the axis are defined by regularity conditions. They are based on the
postulate that all quantities are infinitely differentiable, in particular at the origin. In this
section, we extend the developments of (Lewis and Bellan, 1990) to the helical framework.

B.1 Symmetry of the Fourier coefficients

The transformation between cartesian coordinates (x, y) and cylindrical coordinates (r, ϕ)
reads

x = r cos(ϕ+ z/L), y = r sin(ϕ+ z/L), (B.1)

Cartesian coordinates are not changed by replacing r by −r and ϕ by ϕ+ π. For a scalar
function f (r, ϕ), this is directly translated into

f (r, ϕ) = f (−r, ϕ+ π) . (B.2)

When f (r, ϕ) designates the component of a vector field, the above equation should be
modified

f (r, ϕ) = εf (−r, ϕ+ π) , with ε± 1. (B.3)

Specifically, for an axial polar component, ε = +1, for azimuthal and radial components
ε = −1. When f (r, ϕ) is expanded in Fourier series, this implies

f (r, ϕ) =
+∞∑

m=−∞
f (m) (r) eimϕ = εf(−r, ϕ+ π) =

+∞∑
m=−∞

εf (m) (−r) eim(ϕ+π). (B.4)

Since eim(ϕ+π) = (−1)meimϕ, this leads to a relation between Fourier coefficients:

f (m) (r) = ε(−1)mf (m) (−r) (B.5)

which dictates the parity of coefficients f (m)(r): if ε = +1, f (m) has the parity of m; if
ε = −1, f (m) has the opposite parity of m.

B.2 Regularity constraints on scalar fields

A scalar field Ψ(r, ϕ) is expanded in Fourier series as:

Ψ(r, ϕ) =
m=∞∑
m=−∞

Ψm(r, ϕ) with Ψm = a(m)(r)eimϕ. (B.6)
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B.3. REGULARITY CONSTRAINTS ON VECTOR FIELD COMPONENTS (ε± 1)

The regularity of Ψ at the origin (x, y) = (0, 0) implies a particular dependency for coef-
ficients am with respect to r. Indeed,

eimϕ = (x± iy)|m|

r|m|
e−imz/L, with ± being the sign of m, (B.7)

is not a regular function at the origin. The terms Ψm(r, ϕ) can be expressed as:

Ψm(r, ϕ) = a(m)(r)
r|m|

(x± iy)|m| e−imz/L. (B.8)

For a(m)(r)/r|m| to be non singular, it is required that

a(m)(r) ∼ r|m| as r → 0. (B.9)

Because of the symmetry condition (B.5), this imposes

a(m)(r) = r|m|Fm(r) (B.10)

where Fm(r) is a regular even function of r.

B.3 Regularity constraints on vector field components (ε± 1)

Let u be a helical vector field (representing the velocity or the vorticity field) written in
the standard cylindrical basis

u = ur (r, ϕ) er + uθ (r, ϕ) eθ + uz (r, ϕ) ez. (B.11)

The axial component uz behaves as a scalar function described in the previous section.
For the other components ur and uθ, the transformation from cylindrical to Cartesian
coordinates is again exploited:

u = ur (cos θ ex + sin θ ey) + uθ (− sin θ ex + cos θ ey) + uz ez.

The x-component ux is given by

ux = ur cos θ − uθ sin θ. (B.12)

Expanded in Fourier series along ϕ, the radial and azimuthal components of u yield

ur =
+∞∑

m=−∞
u(m)
r eimϕ uθ =

+∞∑
m=−∞

u
(m)
θ eimϕ. (B.13)

Hence,
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APPENDIX B. BOUNDARY CONDITIONS AT THE AXIS.

The above expression is written as an expansion in positive powers of x± iy. Whether the
full expression is regular or not depends on the coefficients of this expansion.
For case m=0, the regularity imposes

u(0)
r ∼ r and u

(0)
θ ∼ r as r → 0. (B.14)

For the case m > 0, the regularity imposes as r → 0

u
(m)
+ ≡

(
u(m)
r + iu(m)

θ

)
∼ rp, where p ≥ |m|+ 1 (B.15)

u
(m)
− ≡

(
u(m)
r − i u(m)

θ

)
∼ rq, where q ≥ |m| − 1. (B.16)

Some numerical codes (Lopez et al., 2002) use u+ and u− as variables which is not the
case here. When looking at ur and uθ, one obtains the following behaviours

u(m)
r = cmr

|m|−1 + r|m|+1Gm(r), (B.17)

u
(m)
θ = i cmr|m|−1 + r|m|+1Hm(r), (B.18)

with cm a constant, and Gm(r), Hm(r) regular even functions of r (imposed by the sym-
metry of (B.5)).
For the case m < 0, a similar analysis shows that as r → 0

u
(m)
+

(
u(m)
r + iu(m)

θ

)
∼ rq, where q ≥ |m| − 1 (B.19)

u
(m)
−

(
u(m)
r − iu(m)

θ

)
∼ rp, where p ≥ |m|+ 1, (B.20)

Similarly, one obtains

u(m)
r = cmr

|m|−1 + r|m|+1Gm(r), (B.21)

u
(m)
θ = −i cmr|m|−1 + r|m|+1Hm(r). (B.22)

We have thus found that for m 6= 0:

u(m)
r =cmr|m|−1 + r|m|+1Gm(r), (B.23)

u
(m)
θ =± imcmr

|m|−1 + r|m|+1Hm(r), (m ≷ 0) (B.24)
u(m)
z =r|m|Fm(r). (B.25)

The behaviour of the helical components is then deduced:

u
(m)
B = α

(
u(m)
z + r

L
u

(m)
θ

)
= r|m|Fm(r) (B.26)

u(m)
ϕ = α

(
u

(m)
θ − r

L
u(m)
z

)
= r|m|−1Hm(r), (B.27)

where again Fm(r) and Hm(r) are regular even functions of r. Note that for the modes
|m| = 1, the components u(m)

r and u(m)
ϕ take non zero values at the axis.

For m = 0, since the cylindrical components at r = 0 are of the form

u(0)
r = r G0(r), u

(0)
θ = r H0(r), u(0)

z = F0(r), (B.28)

the additional helical components are such that

u(0)
ϕ = rH0(r), u

(0)
B = F0(r). (B.29)
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Appendix C
HELIX code: Discretisation of first
and second derivatives at second or-
der accuracy on irregular meshes

In section 3.2.2, the radial mesh used to discretise the unknowns of the problem is divided
into regularly and irregularly spaced grid points. The first and second derivatives are
chosen to be discretised with first order accurate formulae for regions with irregularly
spaced grid points. Here we provide the formulae to discretise these derivatives at second
order accuracy.
The first and second order derivatives with respect to r are discretized with the finite
differences method. Such method is based on the Taylor expansion. For a given stencil
with irregular grid points such that

ri+1 − ri ≡ hi 6= cst, (C.1)
one has at nodes ri+1 and ri−1, the quantities u (ri+1) ≡ ui+1 and u (ri−1) ≡ ui−1 expanded
as

ui+1 = ui + hi
∂u

∂r
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ui−1 = ui − hi−1
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i

+O(h4
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An approximation of the first derivative at second order accuracy is possible when equa-
tions (C.2) and (C.3) are multiplied by h2

i−1 and h2
i , respectively and then subtracted.
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(
h3
)
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(C.4)
The leading term of the error is of second order. We further introduce the staggered points
ri+1/2 and ri−1/2 such that

ri+1/2 = ri + ri+1
2 (C.5)

ri−1/2 = ri + ri−1
2 , (C.6)

and re express formula (C.4) of the first derivative at seconder order accuracy
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(C.7)
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After replacing u by ∂u

∂r
in (C.7) and rearranging the terms, one obtains the second order

accurate formula for the second derivative at nodes ri

∂2u

∂r2

∣∣∣∣∣
i

= ui−1

{
hi (hi−1 − hi)

hihi−1
+ 2hi
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{
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h2
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− hi−1 (hi−1 − hi)
hihi−1

}
+O

(
h2
)
. (C.8)

Note that for regularly spaced grid points with hi = hi−1 = h, the equation (C.8) becomes
the general well-known formula of the second derivative at second order accuracy for
regularly spaced grid points.
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Appendix D
Velocity of a set of helical filaments
for the cut-off theory

In section 4, the Lagrangian velocity ui
(
r0
i

)
of a particular point r0

i along a helical filament
was computed. It was decomposed into two contributions: the induced motion of the
filament Hi on itself and the velocity induced by the N − 1 other filaments.

ui
(
r0
i

)
= uj

(
r0
i

)self
+

N∑
j 6=i
uj
(
r0
i

)
. (D.1)

It is the purpose of this appendix to get both expressions. It is recalled that the ith helical
vortex is given by its core size a and its location

ri(θ, t) = i ri(t) cos(θ+ϕi(t))+j ri(t) sin(θ+ϕi(t))+k θ
γ

= ri(t) er(θ+ϕi(t))+k θ
γ

(D.2)

2π/ |γ| stands for the wavelength along z, ri(t) the radius and ϕi(t) the angular position
of the helical filament at z = 0.

D.1 Induced velocity by a helical vortex j on vortex i 6= j

First let us compute a simple case: the velocity induced by a vortex filament j at a position
r = i ri which is a point exterior to the vortex filament location. The Biot and Savart law
imposes that this velocity is given by the expression

u
(j)
0 (i ri) = Γj

4π

+∞∫
−∞

tj ×
(rii− rj(θ, t))
‖(rii− rj(θ, t))‖3

dsj . (D.3)

To compute this Biot and Savart integral, the vector product in the integrand is expressed
as

tj × [rii− rj(θ, t)] = rj√
1 + γ2r2

j

 sin(θ + ϕj)− θ cos(θ + ϕj)
ri/rj − cos(θ + ϕj)− θ sin(θ + ϕj)

γ rj [1− (ri/rj) cos(θ + ϕj)]


or

tj × [rii− rj(θ, t)]ds = rjdθ
γ

 sin(θ + ϕj)− θ cos(θ + ϕj)
ri/rj − cos(θ + ϕj)− θ sin(θ + ϕj)

γ rj [1− (ri/rj) cos(θ + ϕj)]
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Similarly the denominator in the integrand becomes

|rii− rj(θ, t)| 3 =
{
r2
i +r2

j−2rjri cos(θ+ϕi)+θ2/γ2}3/2 = r3
i [
{
θ2/

(
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)
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}3/2]

The induced velocity can be written in the form

u
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where

Aj =
∫ +∞

−∞

sin(θ + ϕj)− θ cos(θ + ϕj){
θ2/

(
γ2r2

i

)
+ 1 + (rj/ri)2 − 2(rj/ri) cos (θ + ϕi)

}3/2
dθ
|γ| ri

.

Bj =
∫ +∞

−∞

1{
θ2/

(
γ2r2

i

)
+ 1 + (rj/ri)2 − 2(rj/ri) cos (θ + ϕi)

}3/2
dθ
|γ| ri

Cj =
∫ +∞

−∞

cos(θ + ϕj) + θ sin(θ + ϕj){
θ2/

(
γ2r2

i

)
+ 1 + (rj/ri)2 − 2(rj/ri) cos (θ + ϕi)

}3/2
dθ
|γ| ri

Dj =
∫ +∞

−∞

cos(θ + ϕj){
θ2/

(
γ2r2

i

)
+ 1 + (rj/ri)2 − 2(rj/ri) cos (θ + ϕi)

}3/2
dθ
|γ| ri

Let us now compute the induced velocity by a helical vortex j on a vortex i 6= j at a point
r0
i ∈Hi which is not along i as above but at xi = ri(t) er(ϕi(t)). The above computation

is easily generalized by a change of axes and provides

u
(j)
0 (xi) = Γj

4π |γ|
[
er(ϕi(t)) rjEij + eθ(ϕi(t)) (riFij − rjGij) + k (γ r2

j Fij − γ ri rj Hij)
]
.

Eij =
∫ +∞

−∞
[sin(θ + ϕj − ϕi)− θ cos(θ + ϕj − ϕi)]Yij dθ.

Fij =
∫ +∞

−∞
Yij dθ.

Gij =
∫ +∞

−∞
[cos(θ + ϕj − ϕi) + θ sin(θ + ϕj − ϕi)]Yij dθ.

Hij =
∫ +∞

−∞
[cos(θ + ϕj − ϕi)]Yij dθ.

Yij = 1
Z

3/2
ij

(D.4)

Zij = θ2/γ2 + r2
i + r2

j − 2rjri cos (θ + ϕj − ϕi) (D.5)
By using trigonometric relation in the above integrals, one recovers integrals 4.20 in section
3.

D.2 Self induced velocity of a helical vortex
Let us consider a vortex located at i r0 at z = 0. The Biot et Savart law provides the self-
induced velocity at this point. The integral however is singular and should be regularized
using the cutoff theory which introduces a vortex core size a. More precisely the cut-off
theory provides the velocity at this point i r0 under the form

u0 ≡ u(x = i r0) = Γ
4π ×

∫ s=+∞

s=−∞

t× (i r0 − r(s))
|i r0 − r(s)| 3 ds (D.6)
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Where the cross on the integral means that the cut-off theory removes an arclength δ
around the point at which velocity is evaluated (here this is i r0). In terms of θ, this
indicates that one removes |θ| ≤ θ0 = |γ| δ/

√
1 + γ2 r2

0 in the integral written in θ.
The cut-off provides a value for δ. If the vorticity field is compact,

δ = aδ1, ln(2 δ1) = 1
2 + 8π2

Γ2

∫ a

0
r1

[
w2(r1)− 1

2 v
2(r1)

]
dr1. (D.7)

δ1 is a dimensionless factor with w the velocity profile along the vortex axis inside the
vortex core and v its azimuthal counterpart. For a Gaussian vortex δ1 = 0.8735.

The various terms of the integral can be simplified

|i r0 − r(s)| 3 =
{
2 r2

0 [1− cos(θ)] + θ2/γ2}3/2 = |γ|−1 γ−2 {2 γ2 r2
0 [1− cos(θ)] + θ2}3/2

t×(i r0−r(s)) = γ r0√
1 + γ2 r2

0

[
−i sin(θ) + j cos(θ) + k

γ r0

]
×
[
i r0 [1− cos(θ)]− j r0 sin(θ)− k θ

γ

]

The integrand can be written as

γ2 r0∣∣2 γ2 r2
0 [1− cos(θ)] + θ2

∣∣3/2 |γ| ds√
1 + γ2 r2

0

× {i [sin(θ)− θ cos(θ)] + j [1− cos(θ)− θ sin(θ)] + k γ r0 [1− cos(θ)]
}

(D.8)

The contribution in i [sin(θ) − θ cos(θ)] vanishes since this is an odd function in θ. The
final expression becomes

u0 = Γ
4π γ

2 r0×
∫ +∞

−∞

j [1− cos(θ)− θ sin(θ)] + k γ r0 [1− cos(θ)]
{2 γ2 r2

0 [1− cos(θ)] + θ2}3/2 dθ (D.9)

By noting that

∂

∂θ

θ{
2γ2r2

0 [1− cos θ] + θ2}1/2 = γ2r2
0

2 [1− cos θ]− θ sin θ{
2γ2r2

0 [1− cos θ] + θ2}3/2 ,

u0 can be written as

u0 = Γ
2π γ

2 r0 { [K (γr0, γδ)− I (γr0, γδ)] j + γ r0 I (γr0, γδ)k} (D.10)

where
K (γr0, γδ) = 1

γ2r2
0

{
1− θ0

[2γ2r2
0 [1− cos θ0] + θ2

0]1/2

}
(D.11)

I (γr0, γδ) =
∫ ∞
θ0

[1− cos(θ)]dθ
{θ2 + 2 γ2 r02 [1− cos(θ)]}3/2 (D.12)

with
θ0 = |γ| δ√

1 + γ2 r2
0

(D.13)

To obtain the self-induced velocity ui
(
r0
i

)self by the filament Hi at a point r0
i ∈ Hi, the

above result can be translated by adequate change of variables leading to

u0
(self) = Γiri

2π γ2 {[Ki (γri, γδ)− Ii (γri, γδ)] eθ(ϕi(t)) + γ ri Ii (γri, γδ)k} (D.14)
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avec
Ki (γri, γδ) = 1

γ2r2
i

{
1− θ0i

[2γ2r2
i [1− cos θ0i] + θ2

0i]1/2

}
(D.15)

Ii (γri, γδ) =
∫ ∞
θ0i

[1− cos θ′] dθ′

{θ′2 + 2 γ2 r2
i [1− cos(θ′)]}3/2 (D.16)

avec

θ0i = |γ| δ√
1 + γ2 r2

i

(D.17)
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Appendix E
Vortex characterisation

E.1 Vortex characterisation: two-dimensional interpolations
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Figure E.1 – A two-dimensional interpolation is performed with successive uses of one-
dimensional interpolations.

The visualisation and the analysis of numerical data in plane Π⊥ require the use of high
order and two-dimensional interpolation methods. To perform a two-dimensional inter-
polation, we successively use one dimensional interpolations. We illustrate the procedure
on the Cartesian grid depicted in figure E.1. The point X with coordinate (x∗, y∗) is the
location where the value of a given function f is sought (i.e. f (x∗, y∗)). Let use denote
N , the accuracy order of the interpolation method. A first series of N +1 one dimensional
interpolations are performed at x∗ to yield f1(x∗, y1)...fn+1(x∗, yn+1). At each y1, ..., yN+1
level, the neighbouring nodes in the x direction are used (represented by the green filled
nodes in E.1) . Finally, the function f(x∗, y∗) is obtained with another one dimensional
interpolation along the y direction involving the values f1(x∗, y1)...fn+1(x∗, yn+1). For one
dimensional interpolation we use Chebyshev polynomials.

E.1.1 One dimensional interpolation: Chebyshev polynomials

Let us consider a function f(x) evaluated at discrete nodes xj , for j = 0...n within the
interval [a, b] such that a ≤ xj ≤ b. Let us define Pn(y) a series of polynomials constituting
a basis for an another interval [A,B]. In order to perform a one-dimensional interpolation
we proceed with the following steps:
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Figure E.2 – Chebyshev polynomials Tn(y) for n = 0− 5

1. We first map xj within [A,B] with:

y = [(B −A)x+A · b− a ·B] / [b− a] (E.1)

for each xj ∈ [a, b] a corresponding yj ∈ [A,B] exists.

2. Let us denote g(yj) = f(xj) = fj and approximate g(yj) by:

g(y) ≈
∑
i=0,n

aiPi(y) (E.2)

3. The coefficients an are determined on the n+ 1 collocation nodes.

a0P0(yj) + a1P1(yj) + a2P2(yj) + ....+ anPn(yj) = fj : j = 0, n (E.3)

This leads to a linear system of n+ 1 equations for the n+ 1 coefficients:

P0(y0) . . . Pn(y0)
...

...
P0(yn) . . . Pn(yn)


a0
...
an

 =

f0
...
fn

 (E.4)

We use as basis functions Pn(y) = Tn(y), the Chebyshev polynomials defined on the
interval [−1, 1] (see figure E.2). The Tn(y) can be expressed with the following recurrence
relations:

Tn(y) = 2yTn−1(y)− Tn−2(y) , k ≥ 2
T1(y) = y (E.5)
T0(y) = 1

In practice the linear system is resolved with an LU decomposition method. Once the
coefficients in (E.4) are obtained the function g can evaluated at any sought location y
with (E.2).
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E.2 Vortex characterisation: nonlinear least square method
In plane Π⊥, he axisymmetric contribution of the helical vorticity is fitted by a Gaussian
for comparison purpose. This section is devoted to the description of the method.
Consider a target function y(x) evaluated on M discrete points yi = y(xi) for i = 1, ...,M .
We want to fit this function by an analytical function f(x;λ1, ..., λN ) with N parameters
λλλ = (λ1, ..., λN ). To find the best vector of parameters λλλ, we minimize the sum of squared
error

S =
M∑
i=1

β2
i where βi = yi − f (xi;λ1, ..., λN ) . (E.6)

A necessary condition for S to be minimum is that its gradient to be zero :

∂S

∂λj
= 2

M∑
i=1

βi
∂βi
∂λj

= 0 for j = 1, ..., N. (E.7)

As the derivatives ∂βi
∂λj

do not have a closed form solution in a nonlinear system, one must

use an iterative procedure to find the optimum vector of parameters λλλ:

λλλk = λλλk−1 + ∆∆∆λλλ,

where at each step number k, the values are refined with an increment vector ∆∆∆λλλ also
called the shift vector. During each step k the fit function is approximated with a Taylor
expansion to first order with respect to λλλk :

f (xi,λλλ) ≈ f
(
xi,λλλ

k
)

+
N∑
j=1

∂f
(
xi,λ

kλkλk
)

∂λj

(
λj − λkj

)
= f

(
xi,λλλ

k
)

+
N∑
j=1

Aij ∆λj (E.8)

with AAA the Jacobian matrix of size N ×M with elements :

Aij =



∂f
(
x1,λλλ

k
)

∂λ1
. . .

∂f
(
x1,λλλ

k
)

∂λN...
...

∂f
(
xM ,λλλ

k
)

∂λ1
. . .

∂f
(
xM ,λλλ

k
)

∂λN


.

The Jacobian, AAA has to be evaluated at each iteration as it depends on the parameters
and the independent variable. With equation (E.8), the equation (E.6) for the error βi
becomes:

βi = yi − f
(
xi,λλλ

k
)
−

N∑
j=1

Aij ∆λj = ∆βi −
N∑
j=1

Aij ∆λj , (E.9)

and
∂βi
∂λj

= −Aij . (E.10)

Injecting these two equations (E.9)-(E.10) into the gradient equation (E.7) yields:

−2
N∑
j=1

Aij

(
∆βi −

N∑
k=1

Aik ∆λk

)
= 0, (E.11)
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E.2. VORTEX CHARACTERISATION: NONLINEAR LEAST SQUARE METHOD

which becomes after rearrangement, N linear equations, called also the normal equations:

M∑
i=1

N∑
k=1

AijAik∆λk =
M∑
i=1

Aij∆βi for j = 1, ..., N. (E.12)

This results in a linear system that has to be inverted in order to obtain ∆∆∆λλλ at each step
k:

AAAᵀAAA∆∆∆λλλ = AAAᵀ∆∆∆βββ

The principle is to prescribe an analytical function for f(x;λ1, ...., λN ) with a set of guess
values λ∗1, ..., λ∗N for the parameters and iterate until convergence is achieved. i.e when :

‖∆∆∆λλλ‖2 < ξ.

with ξ the convergence criterion set to 1−11.
Set a convergence (stop) criterion ξ
Set guess values for the parameters λλλ0

while ‖∆∆∆λλλ‖2 ≥ ξ do
k = k + 1
Sk = 0
for i=1,...,M do

for j=1,...,N do
A(i, j)← compute Jacobian

end for
F0(i)← compute f (xi;λλλ)

end for
∆∆∆βββ ← yyy −F0F0F0
InverseAAAᵀAAA∆∆∆λλλ = AAAᵀ∆∆∆βββ with an LU iterative method or with any other direct/iterative

method.
λλλk ← λλλk−1 + ∆∆∆βββ
Sk ←∑M

i=1

(
∆βi −

∑N
p=1Aip∆λp

)
end while

The algorithm used to implement this method is represented figure 16.
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Appendix F
Linear stability in the rotating frame

The basic flow is made steady by adopting the frame of reference rotating with the helical
vortex at angular velocity Ω around the z−axis. This involves to subtract the correspond-
ing uniform vorticity to the basic flow and to adapt the velocity field also. Then a Coriolis
force intervenes, which reads as

fC = −2Ω× u = 2Ωu× ez .
Using the helical basis, this develops into:

fC = 2Ω (urer + uϕeϕ + uBeB)× α(r)
(
eB −

r

L
eϕ

)
,

fC = 2Ωα
[(
uϕ + r

L
uB

)
er − ureϕ −

r

L
ureB

]
.

The equation for u(m)
B involves the helical component of the Coriolis force:

f
(m)
C · eB = −2Ωα r

L
u(m)
r .

For the mode m = 0, the above term vanishes. The equation for u(0)
ϕ involves the compo-

nent along ϕ

f
(0)
C · eϕ = −2Ωαu(0)

r ,

The equation for ω(m)
B involves the rotational of the Coriolis force

∇× fC = 2Ω∇× (u× ez) = 2Ω(ez ·∇)u = 2Ω∂u
∂z

.

Since the helical basis vectors do not depend on z, and since ur, uϕ and uB depend on
(r, ϕ, t) hence on z through ϕ ≡ θ − z/L, the above relation also reads:

∇× fC = −2Ω
L

(
∂ur
∂φ
er + ∂uϕ

∂φ
eϕ + ∂uB

∂φ
eB

)
.

In particular, the equation for ω(m)
B involves

(∇× f (m)
C ) · eB = −2iΩm

L
u

(m)
B .
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1 Introduction

Helical vortices are important in engineering appli-
cations : the near wake behind helicopter rotors,
ship propellers, turbine impellers or wind turbines
are dominated by helical vortices. Helical vortices
are also important fundamental flows : if a prototype
flow for curvature effect on core dynamics structure
is a vortex ring, a logical extension for the combined
effect of both curvature and torsion is indeed a heli-
cal vortex. For the past decades, asymptotic analy-
sis in the inviscid framework have been employed to
find analytical solutions of the velocity field induced
by idealised helical vortices. Namely the singular he-
lical vortex filament [1] [2] and helical vortices with
circular core structure and constant vorticity (ie : the
Rankine vortex) [3] [4] [5]. In the present work, we
compute the base flow by assuming that the wake is
fully developed and that tip vortices can be viewed
as infinite helical vortices with constant radius and
pitch. This is correct sufficiently far from the rotating
blades. Such flows can be thus considered helically
symmetric : fields are invariant through combined
axial translation of distance ∆z and rotation of angle
∆θ = ∆z/L around the rotor z-axis, where 2πL de-
notes the helix pitch. In order to simulate the evolu-
tion of such flows, we use a DNS [6] code based on
an original formulation in which the helical symmetry
is enforced into the equations. In the present study
we obtain basic states which consist of two diffusing
helical vortices with or without a central hub vortex,
for various values of helical pitch L and fixed core
sizes. Investigating stability properties is a neces-
sary step to understand and predict the dynamics
of helical vortices. This is of importance since co-
herent structures in the wake are responsible for ad-
ditional stresses and losses of performance in wind

turbine farms. Instabilities can also trigger transition
to the highly non-stationary Vortex Ring State which
is responsible for some helicopter crashes. Widnall,
in 1972 [7] first predicted the stability features of he-
lical vortices. She performed the linear stability ana-
lysis of a helical vortex filament with respect to si-
nusoidal perturbations. She found that the system
was subjected to three unstable modes : a short
wavelength mode, a long wavelength mode and a
mutual-inductance mode. In 2004, Okulov [8] [9] ge-
neralized this result to N helical vortices with circular
cores and constant vorticity. He showed that such a
system, in the particular case of two helical vortices
[9], was unstable when the helical pitch was inferior
to a threshold value L < 1.106. Later, in order to
study the more realistic case of rotor wakes, Oku-
lov et al. [9] investigated the effect of a central hub
vortex. It was found that the stability of such flows
strongly depends on the vorticity profile in the core
and that the flow was unconditionally unstable [9].
The stability of such vortex systems have been also
studied experimentally [10] [11] [12].

In the present work, we perform a linear temporal
stability analysis of multiple diffusing vortices. In or-
der to extract the dominant unstable modes, we use
a linearised version of the helical DNS code cou-
pled to an Arnoldi procedure. The influence of the
presence of a hub vortex will also be presented. Fi-
nally nonlinear evolutions have been computed. In-
stability properties as well as nonlinear dynamics
will be characterized for helical pitch values ranging
from large ones (quasi-2D behaviour) to small ones
more pertinent for helicopter and wind turbine appli-
cations.



2 Governing equations

The class of flows we consider can be, at least lo-
cally, modeled in the framework of helical symme-
try. This geometrical property is enforced into the
incompressible Navier-Stokes equations to reduce
the full 3-D problem to a 2-D one. It is then possible
to generalise the classical vorticity-streamfunction
framework to helical flows [6]. The associated ve-
locity field u and vorticity field ω are computed in a
helical coordinate system defined by the orthogonal
Beltrami Basis (er, eϕ, eB) depicted in figure 1 and
expressed as

u = ur(r, ϕ, t)er(θ)
+ uϕ(r, ϕ, t)eϕ(r, θ)
+ uB(r, ϕ, t)eB(r, θ)

ω = ωr(r, ϕ, t)er(θ)
+ ωϕ(r, ϕ, t)eϕ(r, θ)
+ ωB(r, ϕ, t)eB(r, θ)

(1)

where ϕ = θ − z/L. In this framework, as detailed
in [6], the flow evolution is described with the only
knowledge of the two components ωB(r, ϕ, t) and
uB(r, ϕ, t). The streamfunction ψ(r, ϕ, t) is slaved to
these quantities according to the relationship

Lψ =
2α2

L
uB −ωB (2)

where L is a modified (but still linear) Laplacian ope-
rator. The other four components are then easily re-
trieved using :

ur =
1
r

∂

∂ϕ
ψ, uϕ = −α

∂

∂r
ψ

ωr =
1
rα

∂

∂ϕ
uB, ωϕ = −α

∂

∂r

(uB

α

) (3)

where the quantity α(r) is defined as

α(r) =
(

1 +
r2

L2

)− 1
2

, 0 ≤ α(r) ≤ 1 . (4)

ϕ ≡ θ − z/L = cst

(b)

2πL

H

θs

(a)

rθ

z eB

er

eϕ

z

FIGURE 1 – Local helical basis.

The two dynamical equations for ωB(r, ϕ, t) and
uB(r, ϕ, t) are briefly reminded here for sake of cla-
rity. The first equation reads as

∂tuB + NLu = VTu (5)

where the nonlinear and viscous terms are given by

NLu ≡ eB · [ω × u] ,

VTu ≡ ν

[
L(

uB

α
)− 2α2

L
ωB

]
.

(6)

The dynamical equation for ωB reads

∂tωB + NLω = VTω (7)

where the nonlinear term is given by

NLω ≡ eB ·∇× [ω × u] , (8)

and the viscous term by

VTω ≡ −ν eB ·∇× [∇×ω]

= ν

[
L(

ωB

α
)−

(
2α2

L

)2

ωB

+
2α2

L
L(

uB

α
)

]
.

(9)

Numerical resolution
The dynamical equations (5) and (7) for uB(r, ϕ, t)
and ωB(r, ϕ, t) are solved numerically with the DNS
code HELIX [6]. It is a pseudo-spectral code which
uses Fourier series along the periodic direction ϕ
and a centred second order discretisation (finite dif-
ferences) in the radial direction r. We use Nr grid
points along r and M modes along ϕ, the 2/3 dea-
liasing rule implies the use of Nθ = 3M grid nodes
points. The time advance is ensured by a second or-
der backward scheme. Nonlinear terms are treated
explicitly through a second order Adams-Bashforth
extrapolation formula whereas the viscous terms are
implicit. Variables are computed in dimensionless
form based on a typical helix radius R? as charac-
teristic length and the vortex circulation Γ. The Rey-
nolds number is defined as Re = Γ/ν where ν is the
kinematic viscosity. For characterizing purposes, the
following planes are defined as depicted in figure 2 :

Π0 : horizontal plane of computation at z = 0
Πv : meridian (r, z)-plane
Π⊥ : plane locally orthogonal to a vortex core.
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FIGURE 2 – Planes Π⊥, Π0, Πv

3 Base Flow

Generic initial condition
In this section we are looking for a base flow which
represents a quasi-equilibrium solution of N helical
vortices of circulation Γ and pitch 2πL regularly set
in the azimuthal direction (at the apexes of a regular
polygon). In order to obtain such flow we simulate
the dynamics of an initial condition at t = 0, which
itself results from the time-evolution of N singular
vortex filaments located at radial distance R? from
the axis at a past time t? < 0. This choice reduces
the number of control parameters. This procedure
is performed with the following steps :

1) Each vortex k = 1, ..., N is centred at the positions
(R , θk = 2π(k − 1)/N) in the plane Π0. A corres-
ponding plane Πk

⊥ is defined to be orthogonal to the
vector eB(R, θk).

2) In each plane Πk
⊥, we impose a Gaussian profile

on ω0
Bk of half width a0 and amplitude C. The core

size a0 is set to

a0 =
√
−4νt? (t? < 0).

The underlying hypothesis is that each vortex fi-
lament diffuses as a point vortex. In practice we
choose a0 as parameter and deduce t?. This model
is used because it is probably, in this plane, the clo-
sest profile to a quasi-equilibrium solution.

3) Using the invariance of scalar fields along the
helices (according to the helical symmetry), the
complete field ω0

B is obtained in the plane Π0 by

summing the contributions of each vortex.

4) The viscous coupling between uB and ωB (see
equations (5)-(6)) is prone to create an axial velocity
component along the vortex core. It can be shown
that the following relation for u0

B holds for small va-
lues of |t?| :

u0
B = α

(
2t?

LRe
αω0

B + K
)

.

Here K is a constant that depends on the boundary
conditions.

5) The amplitude C has to be determined in order
to prescribe the circulation NΓ to the whole vortex
system. In the context of helical symmetry, the glo-
bal circulation reads

NΓ =
∫∫

ω0
z rdrdθ = Kω +Ku, (10)

where Kω ≡
∫∫

S
αω0

B rdrdθ

and Ku ≡
∫∫

S
r

α2

L
∂

∂r

(
u0

B

α

)
rdrdθ.

Expression (10) is linear in C, so that C can be rea-
dily determined.
6) The conservation equation of the global angular
momentum leads to :

R2 =
1
Γ

∫∫
r2ω0

z rdrdθ = R2
? − 4νt?

thus fixing R in a unique fashion.

With this generic procedure, we reduce the num-
ber of parameters to only two, the reduced pitch
L, hereafter made non dimensional using R?, and
the Reynolds number. Figure 3 illustrates the gene-
ric aspect of this procedure with three initialisations
at t = 0 corresponding to three different values of
times t? = −3.125,−12.5,−28.15. It is seen that the
time evolution of the vortex core size a and of helix
radius R only depend on τ = t− t?.
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FIGURE 3 – Generic initial condition for one heli-
cal vortex L = 1, Re = 5000 : three computations
with different initialisations corresponding to times
t? = −3.125 (red), t? = −12.5 (green) and t? =
−28.15 (blue). (a) Squared core size a2 vs τ ; the
dotted black line represents the 2-D diffusion law
a2 = 4τ/Re. (b) Radial position R of vorticity maxi-
mum versus τ.

Quasi-equilibrium solutions
The previously described procedure allows to
compute solutions with controlled characteristics
(L, Re) : we initialize at time t = 0, N helical vortices
of core size a0 resulting from an assumed evolution
of N singular helical filaments and compute their dy-
namics.
During the first stage of their evolution, the vortices
are going through a rapid relaxation process. The
initial condition being not an exact (but close to)
quasi-equilibrium solution, each vortex adapts its
structure to the strain field it is subjected to. Indeed,
the strain field felt by each vortex has two contribu-
tions : an external one generated by the presence
of the other vortices, and a self-induced one gene-
rated by the helical vortex itself. This relaxation pro-
cess can be seen for instance on figure 3b : the blue
curve presents a small wiggle around t = 30.
The second stage of the temporal evolution is a
slow diffusion process driven by viscosity. This state
is also characterised by a global angular velocity
Ω(τ; L) at which the vortices rotate. This motion is
due to the velocity field induced by remote vortices
and also to a self-induced velocity. In this study, we
are interested in the stability analysis of helical vor-
tices with small core size ab (with respect to R?)
for various values of the reduced pitch L. In order
to compute basic states, simulations are run using
generic initial conditions and are stopped when the
prescribed value of ab is reached at time tend. In the
following ab will be fixed at ab = 0.06, the Reynolds

number will be set to Re = 10000 and we consi-
der N = 2 helical vortices. An example of such a
computation is given for two vortices in figure 4 : it
is observed that the final state corresponding to the
quasi-equilibrium basic state is elliptically deformed
due to strain.
In many application, a central hub vortex may also
be present with a circulation −NΓ. The influence of
such vortex will also be investigated. The parame-
ters related to the computation of the basic states
are summarised in the table 1. Once a basic state is
computed for a given value of the reduced pitch L, it
is frozen and ready for the temporal stability analy-
sis.

L Nr × Nθ δt tend Ω(tend, L)
0.2 1042× 396 1/7000 5.07 -4.2
0.3 1042× 396 1/5000 5.05 -1.96
0.4 1042× 396 1/4000 5.05 -1.15
0.5 1042× 396 1/4000 5.05 -0.76
0.6 1042× 396 1/4000 5.02 -0.53
0.7 1042× 396 1/4000 5.02 -0.39
0.8 1042× 396 1/4000 5.02 -0.30

TABLE 1 – Characteristics of the basic states

FIGURE 4 – N = 2 helical vortices, L = 0.3. Helical
vorticity ωB in the plane Π⊥ at instants (a) t = 0 and
(b) t = tend = 5.07.



4 Temporal stability analysis : Arnoldi procedure

Let us consider now the stability of the quasi-
equilibria computed in the previous section. We
freeze the flow state obtained at time tend and make
it steady adopting the frame rotating with the vor-
tices at angular speed Ω(tend − t?; L). In this study,
the stability analysis is restricted to a specific type
of perturbations, namely to perturbations having the
same helical symmetry as the base flow (of wave-
length 2πL). In that case one solves the linearised
Navier-Stokes equations with helical symmetry in
the frame rotating at Ω(tend − t?; L) which implies
to introduce the Coriolis force. More precisely, the
dynamical equation for the velocity perturbation u′B
reads as

∂tu′B + Lu′ = VTu′ (11)

where

Lu′ ≡ eB ·
[
ω′ × u+ω × u′ − 2Ωu′ × ez

]
(12)

VTu′ ≡ ν

[
L(

u′B
α
)− 2α2

L
ω′B

]
. (13)

The dynamical equation for the vorticity perturbation
ω′B is

∂tω
′
B + Lω′ = VTω′ (14)

where

Lω′ ≡ eB ·∇×
[
ω′ × u+ω × u′] (15)

− 2Ω∇× (u′ × ez)

VTω′ ≡ −ν eB ·∇× [∇×ω′]

= ν

[
L(

ω′B
α
)−

(
2α2

L

)2

ω′B

+
2α2

L
L(

u′B
α
)

]
.

(16)

Introducing a perturbation vector q′ = (u′B, ω′B)T of
length N = 2× Nr × Nθ, the whole system can be
written in a compact form :

∂tq
′ = A q′ with q′(t0) = q′0 (17)

where A is a linear operator and the initial condition
q′0 is chosen adequately (see below). The exact so-
lution of (17) is :

q′(t0 + ∆t) = e∆t A q′0 = B q′0 (18)

We are looking for an accurate approximation of the
K � N leading eigenmodes (λA,vA) of the ope-
rator A without actually constructing neither A nor
B. Note that the action of B on q′ is obtained by
time marching the linearised code. Generally, one

then constructs the set of K ("snapshots") vectors
{q′0, Bq′0 , ... , BK−1q′0} spanning the reduced Kry-
lov subspace and thereafter one extracts informa-
tions on the unstable modes. Here, we proceed in a
slightly different manner [13] : we progressively ge-
nerate an orthonormal basis during the simulation
from t = t0 to (K − 1)∆t + t0. This orthonormal ba-
sis, the so-called Krylov vectors {v1 , ... ,vK} is ob-
tained as follows. Vector v1 is the normalized state
at t0 i.e. v1 = q′0/||q′0||. The kth Krylov vector vk is
obtained at time tk−1 = (k− 1)∆t + t0 of the simula-
tion with the Arnoldi method :

wk+1 = Bvk −
k
∑

l=1
vlHlk with Hlk = (vl , Bvk)

vk+1 = wk+1/||wk+1||
(19)

The above action is performed for k = 1, ...., K− 1. At
the end, we assemble the Krylov vectors in a N× K
matrix V. It is the largest matrix we have to store
and is needed to compute the eigenvectors of A. We
also store the K × K upper Hessenberg matrix H,
obtained during the orthogonalisation process. One
can show that H is a low-dimensional approximation
of B = e∆tA and that its eigenmodes (λH ,vH), also
called the Ritz modes, are related to those (λA,vA)
of A by :

λA ∼
log(λH)

∆t
(20)

vA ∼ VvH (21)

The matrix H being of small size, computational
cost and memory storage of its eigenmodes are
negligible. The time interval ∆t and the number of
computed eigenmodes K are chosen depending the
cases. The Arnoldi method separates K modes by
an orthogonalization process. Each mode k evolves
during ∆t and is being orthogonalized such that its
contribution is removed from the (linearised) dyna-
mic. Modes with high growth rates are easily sepa-
rated from the others as they emerge even for low
value of ∆t. Modes with small growth rates needs
longer time to emerge with sufficient accuracy. Ho-
wever choosing too big a ∆t could be problematic :
in that case, the snapshot information might be com-
pletely dominated by the most unstable mode. Here,
for L < 0.6 (the most unstable cases) we chose
∆t = 5 and K = 50 and for L > 0.6 ∆t = 20, K = 20.
Initial condition q′0
The initial condition q′0 for the perturbation is chosen
to be a random noise exciting all modes with equal
amplitudes and having small amplitude outside the



basic vorticity domain. In addition, q′0 must have a
zero circulation

∫∫
ω′z rdrdθ = 0, (22)

so that the circulation of the total fl ow remains un-
changed with respect to the base fl ow. More preci-
sely this can be written in the context of helical sym-
metry as

∫∫
ω′z rdrdθ = K′ω +K′u = 0 (23)

where K′ω ≡
∫∫

S
αω′B rdrdθ (24)

and K′u ≡
∫∫

S
r

α2

L
∂

∂r

(
u′B
α

)
rdrdθ. (25)

The initial perturbation field ω′B and u′B are obtained

as follows :

ω′B(r, θ) = C1 ñ′ω(r, θ)ωB(r, θ) (26)

u′B(r, θ) = C2 ñ′u(r, θ) uB(r, θ) (27)

where C1 and C2 are constants which are set to en-
sure K′ω + K′u = 0 and ñ′ω(r, θ), ñ′u(r, θ) are ran-
dom noise components. We multiply the random
noise by their corresponding base fl ow components
to ensure that the initial perturbation field is locali-
sed within the basic vortex cores. The random noise
components are computed in the Fourier space to
get the quantities ñ(m)′

ω (r), ñ(m)′
u (r). These quanti-

ties are further multiplied by a function in rm to avoid
singular behaviour near r = 0. We then compute
the inverse Fourier transform to yield ñ′ω(r, θ) and
ñ′u(r, θ).

5 Results : Linear modes

Two Helical vortices
In this section we present the results of the linear
stability analysis of two helical vortices with res-
pect to helical perturbations of wavelength 2πL. The
most unstable mode is represented for the particular
case L = 0.3 in figure 5 : its structure is localized wi-
thin each basic vortex core where it takes the form of
two lobs with opposite sign vorticity characteristic of
a displacement mode. This structure can be better
understood when looking at the 3-D representation
of the mode as depicted in figure 5 : the mode in-
duces a radial inward displacement for one vortex
while the other vortex moves outwards. There exists
also an axial displacement : indeed, if one looks at
the vortices cut by a plane containing the z− axis as
depicted figure 5, the mode structure is very much
similar to a pairing instability mode for a row of co-
rotating vortices in two-dimensions. FIGURE 5 – Structure of the most unstable mode.

The base fl ow corresponds to two helical vortices
with L = 0.3 and core size ab = 0.06. (Top) Mode
represented in the horizontal plane Π0 by colored
contours. (Bottom left) Mode in a 3-D representa-
tion. The arrows indicate the perturbation action on
the base fl ow. The displacement induced by the
mode has two components : one along the radial di-
rection and one along the z direction. On the radial
direction, one vortex goes inwards while the other
goes outwards. (Bottom middle) Representation in
the meridian (r, z) plane. (Bottom right) Schematic
representation : the structure is analogous to the
pairing instability mode for an infinite row of point
vortices.



The growth rate σ of the displacement mode is
shown in figure 6 : as the pitch increases the growth
rate decreases towards zero. This is coherent with
Okulov et al results [9] that predicted that two heli-
cal Rankine vortices are unstable for L < 1.1 in the
inviscid framework. For the present vortex configu-
ration, we find that the threshold value is L = 1.5.
This difference can be attributed to different values
of core size and Reynolds number.
Another mode is always present : it is a stationary
neutral mode shown in figure 7. It is also characte-
rised by two lobs with opposite sign vorticity, which
induces a displacement of the whole base flow in
the azimuthal direction. This mode has no dynami-
cal role and is due to the invariance of the base flow
with respect to the azimuth.

FIGURE 6 – Growth rate σ of the displacement
mode vs reduced pitch L. Red line : two helical vor-
tices without a central hub. Blue line : two helical
vortices with a central hub.

FIGURE 7 – Neutral mode which exists due to the
invariance of the base flow with respect to the azi-
muth. This mode only rotates the base flow in the
clockwise direction.

Two Helical vortices with a hub vortex

We investigate the influence of a central hub on
the stability of two helical vortices. The core size
of the hub is chosen as 2ab that is twice the heli-
cal vortex core size and its circulation is −NΓ, en-
suring a global circulation of the base flow be zero
Γ = 0. The most unstable mode is also a displa-
cement mode. Its structure is depicted in figure 9,
the resulting mode resembles the previously obtai-
ned unstable mode for the case of two helical vor-
tices with now a contribution arising from the hub
vortex. The mode displaces the helical vortices the
same manner as before, in addition the hub vortex
moves off the axis. This reminds what was observed
by Felli et al. [12] experimentally in a water channel.
As seen in figure 6, the presence of the central hub
does not significantly modify the growth rate for the
range of parameters L < 0.7 while for L > 0.7 the
growth rate abruptly decreases and the mode stabi-
lises near L = 0.9.

FIGURE 8 – Most unstable mode for the case of two
vortices with L = 0.3 and a central hub vortex of
core size 2ab. The resulting instability mode can be
described as a displacement mode for both helical
vortices and the hub vortex as well.



6 Results : Nonlinear evolution

Leapfrog mechanism

The nonlinear evolution of two helical vortices wi-
thout hub is presented here when they are initially
perturbed with an unstable displacement mode of
small amplitude. It is observed that the two vortices
undergo a leapfrogging process until they merge
due to viscous diffusion. The number of leapfrog be-
fore the merging occurs seems to vary with L, the
core size ab and Re. The time evolution of the me-
chanism is showed figure 10 for the particular case
of L = 0.3. This dynamic has been observed expe-
rimentally by Leweke et al [10] and Felli et al [12] in
water channels and confirms that this instability also
occurs in a non-helically symmetric framework.

FIGURE 9 – The vortices undergo a leapfrogging
process. Time evolution goes from left to right. Top
figures : Isovalue of the vorticity component ωB = 10
represented at different instants for two helical vor-
tices of pitch L = 0.3 and core size ab = 0.06. Bot-
tom figures : vorticity component ωB in the (r, z)-
plane.

Merging of two helical vortices

The vortices merge after a number of leapfrogs due
to viscous diffusion. The time evolution of the mer-
ging is shown figure 11 in the meridian plane and
with 3-D plot of iso-value of the helical vorticity. A
first vortex attempts to leapfrog but its core size
being too important, it touches the other vortex (see-
figure 11a) thus prompting a vortex roll-up fallowed
by a full vortex merging.

FIGURE 10 – Isovalue of the vorticity component
ωB = 4 of two helical vortices of pitch L = 0.3 and
core size ab = 0.06 represented at different instants.
Time evolution goes from left to right and top to bot-
tom.

7 Conclusion

In this paper, we considered the linear stability ana-
lysis of 2 helical vortices of small core size ab (with
respect to the helix radius) with and without a cen-
tral hub vortex. For the base flows, quasi-equilibrium
solutions with controlled characteristics have been
computed by using a generic initial condition proce-

dure and by enforcing the helical symmetry into the
Navier-Stokes equations. After freezing these quasi-
equilibria basic states, we performed the linear sta-
bility analysis with respect to helical symmetric per-
turbations of wavelength 2πL. Unstable modes were
extracted with a linearised version of our DNS code



HELIX [6] coupled to an Arnoldi procedure [13].
The results are straightforward : within this frame-
work, the dominant modes for all cases conside-
red is a (helical) displacement mode. Growth rates
have been computed for a large range of reduced
pitch values. The results are found coherent with
the analysis of Okulov et al. [9], but a higher thre-
shold value has been found L = 1.5 instead of
L = 1.1. The effect of a central hub vortex with
core size ahub = 2ab has been considered. Again
the most unstable mode is a displacement mode
slightly modified by the presence of the hub vor-
tex. Its presence does not significantly modify the
growth rate for the range of parameters L < 0.7 but
the mode abruptly becomes neutral around L = 0.9.
This mode shows that the hub moves off from the
axis during the instability.
Nonlinear computations for two helical vortices per-

turbed with the unstable displacement mode have
been performed. The vortices undergo a leapfrog-
ging process before they merge due to viscous dif-
fusion. These dynamics were observed experimen-
tally by Leweke et al [10] and Felli et al [12] in water
channels and confirm that this instability also occurs
in a non-helically symmetric framework. A full 3-D
computation would be of interest in order to charac-
terize the spatial evolution of the vortices and the
small scale structures generated within such dyna-
mics (work in progress).
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Sujet : Étude numérique des instabilités de tourbillons hélicoïdaux

Résumé : Le travail présenté dans ce mémoire est une contribution à l’étude numérique
des systèmes tourbillonnaires hélicoïdaux qui sont émis dans le sillage des rotors (éoliennes,
hélicoptères, ...) et de leurs instabilités. Ici, ces écoulements sont localement modélisés
par un ensemble de tourbillons à symétrie hélicoïdale. À l’aide d’un code de simula-
tion numérique directe dédié, des solutions de base quasi-stationnaires sont obtenues pour
différents systèmes tourbillonnaires. Elles sont caractérisées avec précision : vitesse de
rotation, taille et ellipticité du cœur, structure des champs de vitesse et de vorticité ...
À l’aide d’un algorithme d’Arnoldi couplé à une version linéarisée du code, on détermine
les modes dominants d’instabilité ayant la même symétrie que l’écoulement de base, en
fonction des paramètres du système : nombre de vortex, pas hélicoïdal, taille de cœur,
nombre de Reynolds et présence d’un vortex de moyeu. En dessous d’un certain pas héli-
coïdal critique, l’instabilité est dominée par un mode de déplacement global analogue au
mode d’appariement d’une allé infinie de points vortex ou d’anneaux tourbillonnaires. En
régime non linéaire, ce mode est à l’origine d’une dynamique complexe du système : dé-
passements, saute-mouton et fusion. On utilise un autre code linéarisé pour déterminer
les modes instables qui brisent la symétrie hélicoïdale de l’état de base, caractérisés par
une longueur suivant l’axe. À faible nombre d’onde, ces modes induisent localement des
rapprochements entre portions de spires voisines. À grand nombre d’onde, on observe un
autre type de mode qui déforme les cœurs tourbillonnaires via l’instabilité elliptique.

Subject : Numerical study of helical vortices and their instabilities

Abstract : The work presented in this manuscript is a contribution to the numerical
study of helical vortex systems and their instabilities, as encountered in the near wake of
rotors (wind turbines, helicopters, ...). In this work, such flows are locally modelled within
the framework of helical symmetry. Using a dedicated DNS code, helical quasi-stationary
basic state solutions are obtained for several configurations, and accurate tools for their
characterisation are developed: angular velocity, core size and ellipticity, structure of the
velocity and vorticity fields... An Arnoldi algorithm is then coupled to a linearised version
of the code. The dominant instability modes with the same symmetry as the base flow are
extracted as a function of the system parameters: number of vortices, helical pitch, core
size, Reynolds number, presence of a central hub vortex. Under a critical helical pitch, the
instability is dominated by a global displacement mode analogous to the pairing mode of
an infinite array of point vortices or vortex rings. In the nonlinear regime, this mode gives
rise to complex dynamics: overtaking events, leapfrogging and merging. Another linearised
code is then used to extract modes characterised by a wavelength along the helix, which
break the helical symmetry of the base flow. At low wavenumbers, these modes induce
local displacements of the vortices and bring together portions of neighbouring coils. At
large wavenumbers, another type of mode is found, which deforms the vortex cores through
the elliptical instability mechanism.
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