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General Introduction

Switched systems represent an important class of hybrid dynamical systems (HDS). They are systems involving both continuous and discrete dynamics. They consist of a finite number of subsystems and a discrete rule that dictates switching between them. For example, for a manipulator arm (see Fig. 1), which is a widely used industrial robotic system, the problem of trajectory tracking depends on the robot inertia which can rapidly change with the movement. Continuous control strategy with Figure 1: Manipulator arm a discrete rule can be used to stabilize the dynamics of the robot. This closed-loop system can be modeled as a hybrid dynamical systems. Similarly, the multicellular converter in series is a switched system see (Fig. 2). It is based on an assembly of elementary cells of commutation to transfer the energy from a primary source to a load. It is composed of switching cells arranged in series, between which the floating capacitors can be charged or discharged depending on the configurations.

The multicellular converter shows, by its structure, a hybrid behavior due to discrete variables (i.e. switching or commutation logic). Note that because of the presence of capacitors, there are also continuous variables (i.e. currents and voltages).

Most of the existing methods to analyze the stability of switched systems can only be applied to systems operating on the continuous-time domain [START_REF] Decarlo | Perspectives and results on the stability and stabilizability of hybrid systems[END_REF], [START_REF] Sun | Switched linear systems: control and design[END_REF], [START_REF] Liberzon | Basic problems in stability and design of switched systems[END_REF], [START_REF] Hespanha | Stability of switched systems with average dwell-time[END_REF], [START_REF] Liberzon | Stability of switched systems: a lie-algebraic condition[END_REF], [2] or the discrete uniform time domain [START_REF] Zhai | Quadratic stabilizability of switched linear systems with polytopic uncertainties[END_REF], [START_REF] Ji | A constructive approach to reachability realization of discrete-time switched linear systems[END_REF], [START_REF] Zhai | Quadratic stabilizability of discrete-time switched systems via state and output feedback[END_REF], [START_REF] Geromel | Stability and stabilization of discrete-time switched systems[END_REF], [START_REF] Zhai | Qualitative analysis of discrete-time switched systems[END_REF]. In contrast, in engineering or in several areas of industry, there are many dynamical systems that evolve on a non uniform time domain that can be discrete with non-uniform sampling or a combination of discrete and continuous time domains. There are many applications involving such switched systems. A cascaded system composed of a continuous-time plant, 10
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cell 1 with control input s 1 cell p with control input s p 3: Multi-agent system a set of discrete-time controllers and switchings among the controllers is one example [START_REF] Zhai | Analysis and design of switched normal systems[END_REF]. Impulsive systems (which are a relevant class of switched systems, in which the state jumps occur only at some time instances) with non-instantaneous state jumps are another examples. Indeed, the temporal nature of previously introduced systems cannot be represented by the real line (ie R) or discrete line (ie Z). To overcome this difficulty, we will introduce in this thesis the time scale theory to study the stability of linear dynamical switched systems on an non-uniform time domain.

The time scales theory is a promising theory because it allows to model and study such systems on an arbitrary time domain noted T which is a closed non-empty subset of R. In addition, it allows interaction between the theory of dynamical systems in continuous time and discrete time dynamical systems [START_REF] Bohner | Dynamic Equations on Time Scales: An Introduction with Applications[END_REF], [START_REF] Bohner | Advances in Dynamic Equations on Time Scales[END_REF], [START_REF] Davis | The laplace transform on time scales revisited[END_REF], [START_REF] Hilger | Generalized theorem of hartman-grobman on measure chains[END_REF], [START_REF] Hilger | Analysis on measure chains -a unified approach to continuous and discrete calculus[END_REF]. Thus, we can establish more general results that can be applied both in the discrete case and in the continuous case.

Many consensus schemes have been developed recently for multi-agent systems (see Fig. 3). They can be categorized into two separated directions depending on whether the agents are described via continuous-time or discrete-time models. Most of the existing consensus protocols are derived in the continuous-time setting [START_REF] Ren | Consensus seeking in multi-agent systems under dynamically changing interaction topologies[END_REF], [START_REF] Du | Robust consensus algorithm for second-order multi-agent systems with external disturbances[END_REF], [START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and time-delays[END_REF], [START_REF] Zhai | Extended consensus algorithm for multi-agent systems[END_REF], [START_REF] Liu | Consensus for multi-agent systems with inherent nonlinear dynamics under directed topologies[END_REF], [START_REF] Seyboth | Event-based broadcasting for multi-agent average consensus[END_REF]. In the discrete uniform time domain, there exist some results to design an appropriate distributed protocol [START_REF] Jadbabaie | Coordination of groups of mobile autonomous agents using nearest neighbor rules[END_REF], [START_REF] You | Network topology and communication data rate for consensusability of discrete-time multi-agent systems[END_REF], [START_REF] Yang | Global consensus for discrete-time multiagent systems with input saturation constraints[END_REF]. Usually, the existing works on consensus assume that relative local information among agents is transmitted continuously or at some moments with an identical step size. However, this assumption is unrealistic due to, for instance, unreliability of communication channels, external disturbances and limitations of sensing ability. Indeed, local information is exchanged over some disconnected time intervals due to communication obstacles or sensor failures. Therefore, it is of practical interest to consider the case of intermittent information transmission between neighbor agents. In this case, the time domain is neither continuous nor uniformly discrete due to possible intermittent information transmissions for instance [START_REF] Taousser | Consensus for linear multi-agent system with intermittent information transmissions using the time scale theory[END_REF], [START_REF] Taousser | Stability analysis of a class of uncertain switched systems on time scale using lyapunov functions[END_REF].

The time scale theory was firstly introduced by Stephan Hilger in his Phd thesis [START_REF] Hilger | Ein Mabkettenkalkul mit Anwendung auf Zentrumsmannigfaltigkeiten[END_REF] in 1988 in order to unify the theory of continuous dynamical systems and discrete dynamical systems. If T = R, dynamical equations reduce to standard continuous differential equations. When T = hZ (h is a real), they are reduced to classical difference equations. In addition, between these two extreme cases, there are other interesting time domains that are a mixture between the continuous and discrete time (as a time domain formed by a union of disjoint intervals), or a discrete time domain with a non-uniform step size, such as the time scale T = {t n } n∈N called harmonic numbers with t n = n k=1 1 k , n ∈ N, the Cantor set, etc.

Aims

In this thesis, we will study the stability of switched systems on a non uniform time domain using the time scale theory. We are mainly interested in switched linear dynamical systems defined on a particular time scale T = P {tσ k ,t k+1 } = ∪ ∞ k=0 [t σ k , t k+1 ]. In fact, the studied system switches between continuous dynamical subsystems on the intervals ∪ ∞ k=0 [t σ k , t k+1 [ (continuous time) and discrete dynamical subsystems at times ∪ ∞ k=0 {t k+1 } (discrete time) with variable discrete step size. Using the properties of the generalized exponential function on time scales, sufficient conditions will be derived to guarantee the exponential stability of this class of switched systems where both subsystems are stable. These results will be extended considering one of the subsystems is unstable or when both subsystems are unstable.

Then we will give sufficient conditions for stability of this class of switched linear systems with nonlinear uncertainties using the explicit solution of the linear switched system and by designing a common Lyapunov function. Examples will illustrate the different theorems and will show that the stability conditions are easy to numerically check.

Finally, an application of the given results on the consensus problem with intermittent information transmissions will be studied. The problem of consensus with intermittent information transmissions can be converted to the asymptotic stabilization problem for a particular switched system on a non-CONTENTS uniform time domain. Indeed, the interaction among agents happens during some continuous-time intervals with some discrete-time instants. During the communication failures, only the behavior of solution of this system at discrete times is considered, and using the derivative on time scales, the multi-agent system are discretized to obtain a switched system which evolves on time scale P {tσ k ,t k+1 } .

A leader-follower consensus problem for multi-agent system with intermittent information transmissions without and with uncertainty will be studied.

Thesis Organization

The thesis is organized into 6 chapters as follows:

Chapter 1

The first chapter is a brief overview on switched systems and time scale theory. First, the formal definition of a switched system is given. After, some recalls on classical stability, the concepts of stability and stabilization for switched systems are discussed. We will present some results on the stability of continuous-time switched systems and discrete-time switched systems to establish the foundation for the understanding of our work. Indeed, the work developed in this thesis concerns the study of the stability of systems that switch between a continuous dynamical subsystem and a discrete dynamical subsystem.

Chapter 2

In this chapter, we will present a general recall on time scale theory by introducing some fundamental tools related to this theory. First, some examples of time scales are presented. Then, the ∆-derivative will be introduced and we will give a brief introduction on the ∆-Lebesgue integral on time scales. We will also introduce the complex plane of Hilger and the cylinder transformation to define the generalized exponential function on time scale and the transition matrix for linear dynamical systems.

Several fundamental results will be presented on the stability of dynamical systems on time scales that will be required in the next chapters.

Chapter 3

We will analyze in this chapter the stability of linear switched systems on the time scale T =

P {tσ k ,t k+1 } = ∪ ∞ k=0 [t σ k , t k+1 ].
The studied system switches between a continuous-time dynamical subsystem on the intervals ∪ ∞ k=0 [t σ k , t k+1 [ (continuous time) and a discrete-time dynamical subsystem at instants ∪ ∞ k=0 {t k+1 } (discrete time) with a variable step size. In the first part, we will deal with the stability of this class of switched systems where the matrices of subsystems are pairwise commuting, stable or unstable. We will present sufficient conditions for exponential stability of this class of switched systems in four possible cases: both subsystems are stable, one of the subsystems (continuous or discrete) is stable and the other is unstable and finally in the case where the two subsystems are unstable. Then, we will give necessary and sufficient conditions for exponential stability of these switched systems by determining a region of exponential stability.

In the second part of this chapter, we will analyze the stability of this class of switched systems where the matrices of subsystems are not pairwise commuting. As in the previous part, we will present sufficient conditions for exponential stability of these switched systems in the cases where both subsystems are stable, one of the subsystems (continuous or discrete) is stable and the other is unstable and finally in the case where the two subsystems are unstable. Illustrative examples will be given.

Chapter 4

We will present in this chapter nonlinear dynamical systems on time scales. Initially, we will recall some conditions on the existence and uniqueness of solutions. Then we will study the exponential stability of perturbed switched systems on the time scale T = P {tσ k ,t k+1 } = ∪ ∞ k=0 [t σ k , t k+1 ] in the presence of a nonlinear perturbation. Sufficient conditions of stability will be given by using the explicit solution of the linear unperturbed switched system and some conditions on the bounds of the uncertain terms. The second part of this chapter will focus on the study of the stability of this class of switched systems by designing a common quadratic Lyapunov function if it exists and some conditions on the perturbation terms.

Chapter 5

We will present in this chapter an application of results presented in Chapters 3 and 4. We will consider the consensus problem for linear multi-agent system with intermittent information transmissions which can be converted to the stabilization of a switched linear systems on time scale T = P {tσ k ,t k+1 } .

Based on the approach used to analyze the stability of this class of switched systems in Chapter 3, some conditions are derived to guarantee the closed-loop stability of the tracking errors in the case of intermittent information transmissions. Using the results given in Chapter 4, the stability of the consensus problem for linear perturbed multi-agent system with intermittent information transmissions using the concept of a common Lyapunov function is analyzed. Some simulations will show the effectiveness of the proposed scheme.

Chapter 6

This chapter is a general conclusion. A contribution of the works performed in this thesis and the results given in the study of stability of this class of switched systems will be presented as well CONTENTS as perspectives on future works. Several problems and methods remain open and need to be developed.
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Chapter 1

State of the art

In this chapter, we will, at first, introduce some basic concepts related to switched systems. Then we will make a brief state of the art on the stability of dynamical systems on time scales.

In the first part, a formal definition of switched systems will be given. The concepts of stability and stabilization of switched systems will be discussed. Since the aim of time scale theory is to unify the continuous theory and the discrete theory, we will recall, at first, the concepts of stability of switched systems in continuous-time and discrete-time separately. As the work developed in this thesis mainly concerns switched systems on time scales, we will present in the second part of this chapter, a brief state of the art on the stability of dynamical systems (including switched systems) on time scales. 1.1 Basics on switched systems 1. 1

.1 Definition

Switched systems represent a class of hybrid dynamical systems (see [START_REF] Zaytoon | Systemes dynamiques hybrides[END_REF], [START_REF] Van Ser Schaft | An introduction to hybrid dynamical systems[END_REF], [START_REF] Lin | Stability and stabilizability of switched linear systems: A survey of recent results[END_REF]). A switched system is a dynamical system which consists of a finite number of subsystems and a logical rule that orchestrates the switching between these subsystems. Mathematically, these subsystems are generally described by a collection of differential equations or differences indexed. A convenient way to classify switched systems is based on the dynamics of their subsystems, such as continuous or discrete, linear and nonlinear (etc.).

Formally, a continuous time switched system is defined by

ẋ(t) = f σ(t) (t, x(t), u(t)) (1.1) 
where σ : R + → I = {1, 2, . . . , N } is a piecewise constant function, called switching law, which takes values in a set of indices I, x(t) ∈ R n is the state of system, u(t) ∈ R m the control law, and f i (., ., .), ∀i ∈ I are vector fields describing the various operating modes of the system.

Similarly, a discrete-time switched system is defined by a collection of difference equations

x(k + 1) = f σ(k) (k, x(k), u(k)), (1.2) 
with σ : Z + → I = {1, 2, . . . , N }, where Z + is the set of nonnegative integers. 

ẋ(t) = A i x(t) (1.3)
in the continuous case and

x(k + 1) = A i x(k) (1.4) 
in the discrete case.

These linear switched systems have attracted most of the attention [START_REF] Bemporad | Control of systems integrating logic, dynamics, and constraints[END_REF], [4], [START_REF] Bemporad | Observability and controllability of piecewise affine and hybrid systems[END_REF], [START_REF] Hespanha | Stabilization through hybrid control. Encyclopedia Life Support Syst[END_REF], [START_REF] Johansson | Piecewise Linear Control Systems[END_REF]. Recent research efforts on linear switched systems focus in general on the analysis of dynamic behaviors, such as stability [13], [START_REF] Johansson | Piecewise Linear Control Systems[END_REF], [START_REF] Hespanha | Stabilization through hybrid control. Encyclopedia Life Support Syst[END_REF], [2], [START_REF] Liberzon | Basic problems in stability and design of switched systems[END_REF], controllability, accessibility [START_REF] Cheng | Controllability of switched bilinear systems[END_REF], [51], [START_REF] Ji | A constructive approach to reachability realization of discrete-time switched linear systems[END_REF], [START_REF] Sun | Controllability and reachability criteria for switched linear systems[END_REF] and observability [START_REF] Hespanha | Nonlinear norm-observability notions and stability of switched systems[END_REF], [START_REF] Bemporad | Observability and controllability of piecewise affine and hybrid systems[END_REF] (etc.), and aim to design controllers guaranteeing a certain performance [START_REF] Bemporad | Control of systems integrating logic, dynamics, and constraints[END_REF], [START_REF] Cassandras | Optimal control of a class of hybrid systems[END_REF], [START_REF] Johansson | Piecewise Linear Control Systems[END_REF], [START_REF] Sun | Analysis and synthesis of switched linear control systems[END_REF], [START_REF] Xu | Optimal control of switched systems based on parameterization of the switching instants[END_REF].

The problem of stability of switched systems comprises several interesting phenomena. For example, even when all the subsystems are exponentially stable, the switching system may have divergent trajectories for certain switching signals [13], [START_REF] Liberzon | Stability of switched systems: a lie-algebraic condition[END_REF]. Another remarkable fact is that switches between unstable subsystems may make the switched system exponentially stable [13], [START_REF] Liberzon | Stability of switched systems: a lie-algebraic condition[END_REF]. In fact, the stability of switched systems depends not only on the dynamics of each subsystem but also on the properties of the switching signal.

Therefore, the study of stability of switched systems can be divided into two types of problems. One is to analyze the stability of switched systems under given switching signals (either arbitrary or slow switching etc.); the other is the synthesis of stabilization of the switching signal for a given set of dynamical systems.

In the following, we will state some fundamental concepts on stability of dynamical systems.

Stability of dynamical systems

Continuous-time systems

Consider the continuous time dynamical system

ẋ(t) = f (x(t)) (1.5)
where

f : Ω ⊂ R n → R n is a locally Lipschitz function and Ω is an open set of R n .
Formally, the equilibrium points x * are the real roots of the equation f (x) = 0. We say that the equilibrium point is stable if the trajectory which starts close from x * does not go too far away. We say that the equilibrium point is asymptotically stable if in addition the trajectory approaches x * as t tends to infinity. A formal definition of these concepts is given below. Consider the nonlinear system (1.5) where the origin

(x * = 0 ∈ Ω ⊂ R n ) is an equilibrium point. If
there exists a function V : R n → R + , continuously differentiable such that

α( x ) ≤ V (x) ≤ β( x ), ∀x ∈ Ω ⊂ R n (1.6)
with α and β are functions of class K. Then the origin of system (1.5) is said

• Stable if dV dt (x) ≤ 0, x ∈ Ω, x = 0 (1.7)
• Asymptotically stable if there exists a function ϕ of class K such that

dV dt (x) ≤ -ϕ( x ), x ∈ Ω, x = 0 (1.8)
• Exponentially stable if there are positive constants α 1 , α 2 , α 3 , p such that the following properties are satisfied for all

x ∈ Ω ⊂ R n α 2 x p ≤ V (x) ≤ α 1 x p and dV dt (x) ≤ -α 3 x p Theorem 1.2
Consider the discrete dynamical system

x(k + 1) = f (x(k)) (1.9)
where the origin

(x * = 0 ∈ Ω ⊂ R n ) is an equilibrium point.
If there exists a function V : R n → R + and functions α and

β of class K such that α( x ) ≤ V (x) ≤ β( x ), ∀x ∈ Ω ⊂ R n (1.10)
Then, the origin of system (1.9) is said

• Stable if ∆V (x(k)) ≤ 0, x ∈ Ω, x = 0 (1.11) with ∆V (x(k)) = V (x(k + 1)) -V (x(k)) = V (f (x(k))) -V (x(k))
• Asymptotically stable if there exists a function ϕ of class K such that

∆V (x(k)) ≤ -ϕ( x ), x ∈ Ω, x(k) = 0 (1.12)
• Exponentially stable if there exists a constants α 1 , α 2 , α 3 , p such that the following properties are satisfied for all

x ∈ Ω ⊂ R n α 2 x p ≤ V (x) ≤ α 1 x p and ∆V (x) ≤ -α 3 x p Remark 1.1
The enumerated properties in these theorems are local. They become global

(Ω = R n ) if functions are chosen of class K ∞ .

Stability of switched systems -Problematic, tools and results

Arbitrary switching

For the stability analysis problem of switched systems, the first question is whether the switched system is stable when there is no restriction on the switching signal. For this problem, it is necessary to require that all subsystems are asymptotically stable. However, even when all the subsystems of a switched system are exponentially stable, it is still possible that the trajectory diverges. Consequently, in general, assuming the stability of subsystems of switched systems (1.3) and (1.4) is not sufficient to ensure the stability of the switched system with an arbitrary switching, except in special cases, for example when matrices A i are pairwise commuting (i.e A i A j = A j A i , ∀i, j ∈ I) [START_REF] Narendra | A common lyapunov function for stable lti systems with commuting a-matrices[END_REF], [START_REF] Zhai | Qualitative analysis of discrete-time switched systems[END_REF], or when matrices A i are symmetric, i.e.

A i = A T i , ∀i, j ∈ I [85], or A i are normals (A i A T i = A T i A i ∀i, j ∈ I) [88]
. On the other hand, if there exists a common Lyapunov function for all subsystems, the stability of the switched system is guaranteed for an arbitrary switching. This provides a possible way to solve this problem, and much effort has been focused on common quadratic Lyapunov functions. It is said that V is a common Lyapunov function for the family of subsystems of (1.3) if

∂V ∂x A i (x) < 0, ∀x = 0; ∀i ∈ I
and for family of subsystems of (1.4) if

V (A i (x k )) -V (x( k )) < 0, ∀x = 0; ∀i ∈ I
especially, if there is a symmetric positive definite matrix P = P T > 0 and V (x) = x T P x such that the following inequalities are satisfied

A T i P + P A i < -Q i , Q i = Q T i > 0, ∀i ∈ I (1.13) 
for continuous switched system, and

A T i P A i -P < -Q i , Q i = Q T i > 0, ∀i ∈ I (1.14)
for discrete switched system. Then, V (x) is a common Lyapunov function [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF]. The advantage is that the decay of function V along the solution is not affected by switching.

The question of the existence of a common quadratic Lyapunov function was treated in several ways depending on algebraic criteria. Liberzon proposed an algebraic Lie condition [START_REF] Liberzon | Stability of switched systems: a lie-algebraic condition[END_REF] for LTI switched system.

Several algebraic stability criteria related to this Lie algebra have been proposed. If all state matrices A i , ∀i ∈ I are pairwise commuting, that is to say if the Lie bracket [A i , A j ] vanishes for any pair A i , A j ∀i, j ∈ I of state matrices (i.e Lie algebra is solvable), then the switched system (1.3) is asymptotically stable [START_REF] Narendra | A common lyapunov function for stable lti systems with commuting a-matrices[END_REF]. Gurvits indicates that if the Lie algebra is nilpotent, then the system is asymptotically stable [START_REF] Gurvits | Stability of linear inclusions[END_REF]. Mori [62] shows that if the matrices A i , ∀i ∈ I admit a higher (or lower) triangulation simultaneously, then there exists a common quadratic Lyapunov function. Liberzon also provides a sufficient condition for simultaneously triangulation (upper or lower) with a set of matrices in terms of solvable Lie algebra [START_REF] Liberzon | Stability of switched systems: a lie-algebraic condition[END_REF]. However, these criteria represent only sufficient conditions for the existence of a common quadratic Lyapunov function, which implies a certain conservatism.

To reduce the conservatism of the previous approaches, the scientific community has tried to find a necessary and sufficient condition for the existence of a common quadratic Lyapunov function. [START_REF] Shorten | Necessary and sufficient conditions for the existence of a common quadratic lyapunov function for two stable second order linear time-invariant systems[END_REF] considers the convex envelope co{A

1 , A 2 } = {αA 1 + (1 -α)A 2 : α ∈ [0, 1]} generated by two matrices A 1 , A 2 ∈ R 2×2 . The system (1.3) for i ∈ {1, 2} with A 1 , A 2 ∈ R 2×2 has a common quadratic Lyapunov
function if and only if all matrices of the convex envelopes co{A 1 , A 2 } and co{A 1 , A -1 2 } are Hurwitz stable. An extension exists for the case of several second order systems or for a pair of third order systems [START_REF] King | A singularity test for the existence of common quadratic lyapunov functions for pairs of stable lti systems[END_REF].

It should be mentioned that the existence of a common quadratic Lyapunov function is only a sufficient condition for the stability of arbitrary switched systems. There are examples [START_REF] Liberzon | Switching in Systems and Control[END_REF] of systems that do not admit a common Lyapunov function, but are exponentially stable under arbitrary switching.

Restricted switching

A switched system can be stable for a restricted class of switching signals. This restrictive switching can occur naturally in the case of physical constraints on the system, for example, in the automotive switching speed, the switching sequence (from first gear to second, etc.) must be respected. In addition, there are cases where there are some knowledge of the switching logic for example, there must be some bounds on the time interval between two successive commutations. With this kind of knowledge, we can get some results on stability. These results were reasonable and are captured by concepts such as the dwell time and the average dwell time proposed by Morse and Hespanha [START_REF] Hespanha | Uniform stability of switched linear systems: Extensions of lasalle's invariance principle[END_REF], [START_REF] Hespanha | Stability of switched systems with average dwell-time[END_REF], [START_REF] Zhai | Disturbance attenuation properties of timecontrolled switched systems[END_REF]. A positive constant τ d ∈ R + is called a dwell time of a switching signal if the time interval between two successive commutations is not less than τ d . We can show that it is always possible to maintain stability when all subsystems are stable and the switching is slow enough, in the sense that the dwell time is sufficiently large [START_REF] Morse | Supervisory control of families of linear set-point controllers. part 1: exact matching[END_REF]. In fact, we can always maintain the stability if we have sometimes a dwell time between two switching signal smaller than τ d provided that this does not happen too often. This concept is reflected in the notion of average dwell time [START_REF] Hespanha | Stability of switched systems with average dwell-time[END_REF]. It has been shown in [START_REF] Hespanha | Stability of switched systems with average dwell-time[END_REF] that if all subsystems are exponentially stable then the switched system remain exponentially stable provided that the average dwell time is sufficiently large.

The stability analysis with restricted switching was also studied using multiple Lyapunov functions (MLF). The basic idea is that the Lyapunov functions, which correspond to each subsystem or regions of the state space, are concatenated to produce a non-traditional Lyapunov function. This means that multiple Lyapunov functions may not be monotonically decreasing, may have discontinuities and be piecewise differentiable.

There are many results on multiple Lyapunov functions in the literature. A very intuitive result, as stated in [START_REF] Decarlo | Perspectives and results on the stability and stabilizability of hybrid systems[END_REF], indicates that multiple Lyapunov functions are decreasing when the corresponding mode is active and its value decreases at the switching times. In addition, the multiple Lyapunov functions can increase during a time interval but this increase must be limited by some continuous functions [START_REF] Ye | Stability theory for hybrid dynamical systems[END_REF]. For more details, one may refer also to [START_REF] Decarlo | Perspectives and results on the stability and stabilizability of hybrid systems[END_REF], [START_REF] Liberzon | Basic problems in stability and design of switched systems[END_REF]. Note that most of the results for continuous-time switched systems can be extended to the case of discrete-time switched systems.

Switched systems on time scale

The study of stability of dynamical systems that evolve on a non-uniform time domain seems very interesting. The exponential stability was investigated for linear systems using generalized exponential function on time scales [START_REF] Dacunha | Stability for time varying linear dynamic systems on time scales[END_REF], [1], [START_REF] Du | On the exponential stability of dynamic equations on time scales[END_REF]. Some extensions for dynamic equations varying in time [25], [START_REF] Dacunha | Lyapunov Stability and Floquet Theory for Nonautonomous Linear Dynamic Systems on Time Scales[END_REF], [START_REF] Dacunha | Stability for time varying linear dynamic systems on time scales[END_REF] dynamic equations with general structured perturbations [START_REF] Du | Stability radius of implicit dynamic equations with constant coefficients on time scales[END_REF] and nonlinear non-autonomous systems of finite dimension [START_REF] Bartosiewicz | On stabilisability of nonlinear systems on time scales[END_REF] on time scales were also studied. However, these analysis cannot be easily extended to the class of switched systems.

Most existing methods for analyzing stability of linear switched systems can only be applied to systems evolving on a continuous-time domain or a discrete uniform time domain. However, the extension to a larger class of systems operating in a non-uniform time domain is not trivial. To solve this problem, the theory of dynamical systems on an arbitrary time scale T appears to be appropriate.

Motivated by this observation and the definition of switched systems, some authors started the study of dynamical switched systems on time scales. A linear dynamic switched system on an arbitrary time scale is defined as follows Definition 1.2 Let a family of matrices {A i } i∈I ∈ R n×n where I is a set of indices. The family of the corresponding subsystems,

x ∆ (t) = A i(t) x, t ≥ 0, x(0) = x 0 , t ∈ T (1.15)
is said a switched system on the time scale T, where x ∆ (t) is the derivative of x(t) on T with i(t) :

T → I is the switching signal.

Works to analyze the stability of switched systems on time scales were realized. In [START_REF] Davis | Stability of switched linear systems on non-uniform time domains[END_REF], they considered a linear switched system that is determined by matrices which are pairwise commutating. They determine a region of stability that depends on µ(t) and µ(σ(t)) so that the Lyapunov function candidate proposed V = x T P x with P = P T > 0, is a common Lyapunov function for the switched system. In this case, the following inequality

A i P + P A i + µA T i P A i + (I + µA T i )P ∆ (I + µA i ) < 0.
for i ∈ I must be satisfied. But the condition of commutativity is quite restrictive. In [START_REF] Gravagne | Switched linear systems on time scales with relaxed commutativity constraints[END_REF],

the authors have relieved this condition using a geometric approach to examine the existence of a common Lyapunov function. However, finding a common Lyapunov function is not an easy task for switched systems on time scales. In addition, the approaches given in [START_REF] Gravagne | Switched linear systems on time scales with relaxed commutativity constraints[END_REF], [START_REF] Davis | Stability of switched linear systems on non-uniform time domains[END_REF], [START_REF] Taousser | Stability of switched linear systems on time scale[END_REF] require that all subsystems must be asymptotically stable. In [START_REF] Eisenbarth | Stability of simultaneously triangularizable switched systems on hybrid domains[END_REF], the authors showed that if the matrices A i are simultaneously triangularizable, and under certain conditions on the graininess function µ(t), the common quadratic Lyapunov function exists and the switched system is stable.

Chapter 2

Basics on time scale theory

In this chapter, we will present the fundamental tools of the time scale theory and the concepts in the study of stability of dynamic systems on time scales. Stephan Hilger presented in his Phd thesis [START_REF] Hilger | Ein Mabkettenkalkul mit Anwendung auf Zentrumsmannigfaltigkeiten[END_REF] the time scale theory in order to unify the discrete and continuous analysis. A general introduction including some definitions and theorems on time scales theory presented in this chapter can be found in the excellent book of Martin Bohner and Allan Peterson [START_REF] Bohner | Dynamic Equations on Time Scales: An Introduction with Applications[END_REF]. 

Calculus on time scales

N = {natural numbers = 0} N 0 = N ∪ {0} hZ = {hz : z ∈ Z} with h ∈ R a constant q N 0 = {q n : n ∈ N 0 } with q > 1 fixed. P {a;b} = ∪ ∞ k=0 [k(a + b); k(a + b) + a]
The most classical time scales are those that represent the real time domain T = R on which the continuous dynamical systems are studied, the time scale that represent the discrete time domain T = hZ on which one studies the discrete dynamical systems and the time scale T = q N 0 , q > 1 for quantum analysis. To present the time scale theory, we need to define some operators Chapter 2. Basics on time scale theory Let a time scale T.

R hZ • • • • • • • • • • • • • • • • P q N 0 • • • • • • • • • • • • • T • • • • • •
• For all t ∈ T the fj-operator (forward jump operator) σ : T → T is defined by:

σ(t) = inf{s ∈ T : s > t}
• For all t ∈ T the bj-operator (backward jump operator) is defined by:

ρ(t) = sup{s ∈ T : s < t}.
• For all t ∈ T the "graininess" function µ : T → [0, +∞[ is defined by:

µ(t) = σ(t) -t (2.1) Definition 2.2
The operators σ and ρ allow the following classification of points t on T:

• If σ(t) > t, we say that t is rs ("right-scattered").

• If ρ(t) < t, we say that t is ls ("left-scattered").

• If a point is both ls and rs, it is said to be isolated.

• If t < sup T and σ(t) = t, we say that t is rd (right-dense).

• If t > inf T and ρ(t) = t, we say that t is ld (left-dense).

• If a point is both rd and ld, it is said to be dense. In the following example, definitions of the various operators are explained.

•

t 1 ρ(t 1 ) = t 1 = σ(t 1 ) dense • t 2 • σ(t 2 ) • ρ(t 2 ) = t 2 < σ(t 2 ) ( ld, rs) • • ρ(t 3 ) • t 3 ρ(t 3 ) < t 3 = σ(t 3 ) ( rd, ls) • • ρ(t 4 ) • t 4 • σ(t 4 )
• ρ(t 4 ) < t 4 < σ(t 4 ) isolated Consider different time scales T such that:

• For T = R, we have σ(t) = ρ(t) = t and µ(t) = 0.

• For T = Z, we have σ(t) = t + 1, ρ(t) = t -1 and µ(t) = 1.

• For T = hZ, we have σ(t) = t + h, ρ(t) = th and µ(t) = h.

• For T = N 2 0 = {n 2 : n ∈ N 0 }, we have σ(t) = t + 2 √ t + 1, ρ(t) = t -2 √ t + 1 and µ(t) = 2 √ t + 1.
• For T = P {a;b} , we have

σ(t) =        t if t ∈ ∪ ∞ k=0 [k(a + b); k(a + b) + a[ t + b if t ∈ ∪ ∞ k=0 {k(a + b) + a} and µ(t) =        0 if t ∈ ∪ ∞ k=0 [k(a + b); k(a + b) + a[ b if t ∈ ∪ ∞ k=0 {k(a + b) + a}

Differentiation

A definition is needed for the differential operator on time scales. We introduce the following subset, noted by T k , represented in Fig. 2.3 and defined by:

T k = T -{m}, if T has a left-scattered maximum {m} T otherwise. (2.2) T κ • • • • • • • {• m } Figure 2.3: Illustration of subset T k . Definition 2.3 A function f : T → R is said ∆-differentiable in t ∈ T k if ∀s ∈ U which is a neighborhood of t (i.e U =]t -δ, t + δ[∩T for some δ > 0), f ∆ (t) = lim s→t f (σ(t)) -f (s) σ(t) -s (2.3) exists. f ∆ (t) is called the ∆-derivative of f in t. If f ∆ (t) exist for all t ∈ T κ , then function f is called ∆-differentiable on T κ .
Some useful relations about the ∆ -derivative of f are given by the following Theorem.

Theorem 2.1 [START_REF] Bohner | Dynamic Equations on Time Scales: An Introduction with Applications[END_REF] Let f : T → R and t ∈ T k , one has

(i) If f is ∆-differentiable at t then it is continuous at t.
(ii) If f is continuous at t and t is right-scattered, then f is ∆-differentiable at t and

f ∆ (t) = f (σ(t)) -f (t) µ(t) (2.4) (iii) If t is right-dense, then f is ∆-differentiable at t if and only if f ∆ (t) = lim s→t f (t) -f (s) t -s (2.5) exists. 
(iv

) If f is ∆-differentiable in t ∈ T k , then f (σ(t)) = f (t) + µ(t)f ∆ (t).
In the usual time scales, we have

• If T = R, we have σ(t) = t and f ∆ (t) = lim s→t f (σ(t)) -f (s) σ(t) -s = lim s→t f (t) -f (s) t -s = ḟ (t) • If T = Z, we have σ(t) = t + 1 and f ∆ (t) = lim s→t f (σ(t)) -f (s) σ(t) -s = f (t + 1) -f (t) t + 1 -t = f (t + 1) -f (t) = ∆f (t)
where ∆ is the difference operator.

The following example illustrates the differential operator on time scale T.

Example 2.2 1. Let f : T → R defined by f (t) = α, ∀t ∈ T with α ∈ R then f ∆ (t) = lim s→t f (σ(t)) -f (s) σ(t) -s = lim s→t α -α σ(t) -s = 0 2. Let f : T → R defined by : f (t) = t, then f ∆ (t) = lim s→t f (σ(t)) -f (s) σ(t) -s = lim s→t σ(t) -s σ(t) -s = 1 3. Let f : T → R defined by : f (t) = t 2 , then f ∆ (t) = lim s→t f (σ(t)) -f (s) σ(t) -s = lim s→t σ(t) 2 -s 2 σ(t) -s = σ(t) + t 4. Let T = { √ n; n ∈ N 0 } and f (t) = t 2 , then σ(t) = σ( √ n) = √ n + 1 = √ t 2 + 1 and f ∆ (t) = lim s→t f (σ(t)) -f (s) σ(t) -s = t 2 + 1 -t 2 √ t 2 + 1 -t = 1 √ t 2 + 1 -t = t 2 + 1 + t
The following properties can be derived. If f, g : T → R are ∆-differentiable at t ∈ T k , then we have

1. The sum f + g : T → R is ∆-differentiable at t ∈ T k and (f + g) ∆ (t) = f ∆ (t) + g ∆ (t) (2.6)
2. For any constant α, function αf :

T → R is ∆-differentiable at t ∈ T k and (αf ) ∆ (t) = αf ∆ (t) (2.7) 3. The product f g : T → R is ∆-differentiable at t ∈ T k and (f g) ∆ (t) = f ∆ (t)g(t) + f (σ(t))g ∆ (t) = f (t)g ∆ (t) + f ∆ (t)g(σ(t)) (2.8) 4. If f (t)f (σ(t)) = 0 for t ∈ T k , then 1 f is ∆-differentiable at t ∈ T k and 1 f ∆ (t) = - f ∆ (t) f (t)f (σ(t))
(2.9) 

5. If g(t)g(σ(t)) = 0 for t ∈ T k , then f g is ∆-differentiable at t ∈ T k and f g ∆ (t) = f ∆ (t)g(t) -f (t)g ∆ (t) g(t)g(σ(t)) (2.
(f • g) ′ (t) = g ′ (t) f ′ (g(t))
But it does not hold for all time scales. Let T = Z, let f, g : Z → R defined by

f (t) = g(t) = t 2 one gets f ∆ (t) = g ∆ (t) = 2t + 1
Thus, one can obtain

(f • g)(t) = t 4 , (f • g) ∆ (t) = (t + 1) 4 -t 4 = 4t 3 + 6t 2 + 4t + 1 and g ∆ (t)f ∆ (g(t)) = (2t + 1)(2t 2 + 1) = 4t 3 + 2t 2 + 2t + 1.
So we notice that for T = Z we have

(f • g) ∆ (t) = g ∆ (t) f ∆ (g(t)) only for t ∈ {0, -1 2 }.
We present the following theorem for the derivative of the composition of two functions.

Theorem 2.3 [10]

Let f : R → R continuously differentiable and g :

T → R, ∆-differentiable, then f • g : T → R is
∆-differentiable and we have

(f • g) ∆ (t) = g ∆ (t) 1 0 f ′ [g(t) + hµ(t)g ∆ (t)] dh (2.11) 
The following example illustrates Theorem 2.3.

Example 2.3

Let g : Z → R and f : R → R such that g(t) = t 2 and f (t) = e t . We have g ∆ (t) = 2t + 1 and f ′ (t) = e t . The derivative of the composition of both functions is given by

(f • g) ∆ (t) = g ∆ (t) 1 0 f ′ [g(t) + hg ∆ (t)] dh = g ∆ (t) 1 0 e t 2 +h(2t+1) dh = (2t + 1)e t 2 [ e 2t+1 2t+1 -1 2t+1 ] = e t 2 (e 2t+1 -1)
On the other hand, since (f • g) is defined on T = Z one can be deduce that

(f • g) ∆ (t) = (f • g)(t + 1) -(f • g)(t) = e (t+1)
2e t 2 = e t 2 (e 2t+1 -1)

Integration on time scale

To deal with the solutions of dynamical equations, we must develop an integration process. Obtaining the exact value of a ∆-integral of a Lebesgue or Riemann ∆-integrable function on an arbitrary time scale remains an open problem. In fact, most of the ∆-primitives of elementary continuous functions are unknown for an arbitrary time scale.

A study of Riemann and Lebesgue ∆-integral was performed in [START_REF] Guseinov | Integration on time scales[END_REF][START_REF] Guseinov | Basics of riemann delta and nabla integration on time scales[END_REF][START_REF] Bohner | Improper integrals on time scales[END_REF][START_REF] Cabada | Expression of the lebesgue δ-integral on time scales as a usual lebesgue integral; application to the calculus of δ-antiderivatives[END_REF]. In this section, we will review the Lebesgue ∆-integral on an arbitrary time scale T.

Let us start by defining the ∆-measure on T. Denoted by F 1 the family of all left closed and right open intervals of the time scale T such that:

F 1 = {[a, b[∩T : a, b ∈ T , a ≤ b} one can assign to each interval [a, b[∩T ∈ F 1 its length : m 1 ([a, b[) = b -a
When a = b, the interval reduce to the empty set and

m 1 (∅) = m 1 ([a, a[) = a -a = 0 hold for any a ∈ T.
m 1 generates the outer measure m * 1 on P(T) (i.e. power set of T), defined for each E ∈ P(T) by: If there exists at least one finite or countable system of intervals

I i = {[a i , b i [∩T} i∈I⊂N ∈ F 1 , then m * 1 (E) = inf{ i∈I (b i -a i ) : E ⊂ i∈I [a i , b i [∩T, a i , b i ∈ T, a i < b i , I ⊂ N} ∈ R +
where the infimum is taken over all coverings of E by a finite or countable system of intervals

I i ∈ F 1 .
The outer measure is always nonnegative but could be infinite so that in general we have 0 ≤ m * 1 (E) ≤ ∞. In case there is no such covering of E, we say that E is not coverable by finite or countable system of intervals and the outer measure of this set is equal to infinity, i.e., m * 1 (E) = ∞.

Definition 2.4 A subset E of T is called ∆-measurable if the following equality m * 1 (I) = m * 1 (I ∩ E) + m * 1 (I ∩ (T \ E)) is satisfied if for each interval I ⊂ F 1 .
We define

M(m * 1 ) = {E ⊂ T : E is ∆ -measurable}
which forms a σ-algebra. The Lebesgue ∆-measure noted µ ∆ is the restriction of m * 1 to M(m * 1 ).

Theorem 2.4 [START_REF] Guseinov | Integration on time scales[END_REF] Any single point set {t 0 } ⊂ T -{max T} is ∆-measurable and its ∆-measure is given by :

µ ∆ (t 0 ) = σ(t 0 ) -t 0 = µ(t 0 ).
Chapter 2. Basics on time scale theory Suppose that T has a finite maximum τ 0 . Obviously the set X = T -{τ 0 } can be represented as a finite or countable union of intervals of the family F 1 and therefore it is ∆-measurable. Furthermore, the single point set {τ 0 } = T -X is ∆-measurable as the difference of two ∆-measurable sets T and X but {τ 0 } does not have a finite or countable covering intervals of F 1 , therefore, the single point set {τ 0 } and also any ∆-measurable subset of T containing {τ 0 } have ∆-measure infinity. 

µ ∆ ([a, b[) = b -a, µ ∆ (]a, b[) = b -σ(a)
If a, b ∈ T{max T} and a ≤ b, then

µ ∆ (]a, b]) = σ(b) -σ(a), µ ∆ ([a, b]) = σ(b) -a
We introduce now some concepts from general measure and integration applied to the measurable space (T, M(m * 1 )) with the Lebesgue ∆-measure µ ∆ .

The following lemma allows to have a relationship between the Lebesgue outer measure µ * defined on R and the outer measure m * 1 defined on T. By µ L , we mean the usual Lebesgue measure on R and µ * the corresponding outer measure Lemma 2.1 [START_REF] Cabada | Expression of the lebesgue δ-integral on time scales as a usual lebesgue integral; application to the calculus of δ-antiderivatives[END_REF] Let the set of all right-scattered points of T R = {t ∈ T : t < σ(t)} = {t i } i∈I , for I ⊂ N (2.12)

which is at most countable. Let E ⊂ T -{max T}, then the following properties are satisfied:

i) µ * (E) ≤ m * 1 (E). ii) m * 1 (E) = i∈I E (σ(t i ) -t i ) + µ * (E).
iii) The sets R, defined in (2.12), and

T \ R are Lebesgue measurable. Moreover µ L ( R) = 0. iv) m * 1 (E) = µ * (E) if and only if E does not have right-scattered points. v) µ ∆ (E ∩ R) = i∈I E (σ(t i ) -t i ) ≤ (b -a) = µ ∆ ([a, b[∩T) with I E = {i ∈ I : t i ∈ E ∩ R} for I ⊂ N. Definition 2.5
We say that f : 

T → R = [-∞, +∞] is ∆-measurable, if for all α ∈ R, the set f -1 ([-∞, α[) = {t ∈ T : f (t) < α} is ∆-measurable.
f (t) =        f (t), if t ∈ T f (t i ), if t ∈]t i , σ(t i )[, i ∈ I [a,b] (2.13) 
The following proposition gives a relationship between the ∆-measurable functions and the Lebesguemeasurable functions. Using the previous theorem, we can determine the ∆-integral of f on particular time scales. Indeed, 

f (t)∆t =        b-1 t=a µ(t)f (t) if a < b 0 if a = b -b-1 t=a µ(t)f (t) if a > b
In particular:

-

If T = Z, µ(t) = 1 we have b a f (t)∆t =        b-1 t=a f (t) if a < b 0 if a = b -b-1 t=a f (t) if a > b -If T = hZ, µ(t) = h we have b a f (t)∆t =          b h -1 k= a h hf (kh) if a < b 0 if a = b - b h -1 k= a h hf (kh) if a > b
To illustrate the previous theorem, we consider the following example.

Example 2.4

Let T a bounded time scale and let a, t ∈ T with a ≤ t. According to equality (2.15), we have

t a s∆s = [a,t[ s ds + i∈I [a,t[∩T σ(t i ) t i (t i -s) ds = [ 1 2 s 2 ] t a + i∈I [a,t[∩T [t i s -1 2 s 2 ] σ(t i ) t i = 1 2 (t 2 -a 2 -i∈I [a,t[∩T µ 2 (t i ))
• For T = {0, h, 2h, . . . , mh} and t ∈ T

t 0 s∆s = 1 2 (t 2 -ht) • For T = {0, 1, 4, 9, . . . , m 2 } and t ∈ T t 0 s∆s = t 2 2 - √ t( √ t -1)(2 √ t -1) 3 -t
In the rest of this section, we discuss the existence of the ∆-antiderivative of a function.

Definition 2.6

A function f : T → R is called regulated on time scale T provided its right-dense limit exists at all right-dense points in T and its left limit exists at all left-dense points in T.

Definition 2.7

A function f : T → R is called rd-continuous if it is continuous at right-dense points in T and its left-hand limit exists at left dense points in T.

The set of rd-continuous functions f :

T → R is denoted by C rd Example 2.5 Let T = {0} ∪ { 1 n , n ∈ N} ∪ {2} ∪ {2 -1 n , n ∈ N}. We define the function f : T → [0, 2] by f (t) = t if t = 2
The non isolated points are {0} and {2}. The function f is continuous on all isolated points including {0}. The point {0} is rd. The point {2} is ld. The right limit of f at {0} exists and equals to f (0), so f is continuous in {0}. The function f is discontinuous in {2} since lim t→2 f (t) = f (2) but the left limit of f exists at {2}. Therefore f is not continuous, but it is rd-continuous.

Theorem 2.8 (Existence of ∆-antiderivative) [START_REF] Guseinov | Integration on time scales[END_REF] Let f : T → R be a regulated function. Then there exists a function F : T → R which is ∆-differentiable such that:

F ∆ (t) = f (t), F ∆ is called the ∆-antiderivative.
Theorem 2.9 [START_REF] Guseinov | Integration on time scales[END_REF] Every rd-continuous function has a ∆-antiderivative. In particular, if t 0 ∈ T then F is defined by

F (t) = t t 0 f (s)∆s, t ∈ T.
Theorem 2.10 Let f : T → R be a rd-continuous function and t ∈ T κ , then

σ(t) t f (s)∆s = µ(t)f (t)
Proof 2.1 Since f ∈ C rd and by theorem 2.9, there exists a primitive F of f such that

σ(t) t f (s)∆s = F (σ(t)) -F (t) = µ(t)F ∆ (t) = µ(t)f (t)
Some properties of integration on time scales are given in the following. If a, b, c ∈ T and f, g ∈ C rd , then for all a ∈ T.

a (f (t) + g(t))∆t = b a f (t)∆t + b a g(t)∆t 2. b a αf (t)∆t = α b a f (t)∆t 3. b a f (t)∆t = - a b f (t)∆t 4. b a f (t)∆t = c a f (t)∆t + b c f (t)∆t 5. b a f (σ(t))g ∆ (t)∆t = f (b)g(b) - b a f ∆ (t)g(t)∆t 6. a a f (t)∆t = 0 7. σ(t) t f (τ )∆τ = µ(t)f (t) , t ∈ T k 8. If |f (t)| ≤ g(t) on [a, b), then | b a f (t)∆t| ≤ b a g(t)∆t

Generalized exponential function on time scale

We will begin this section by introducing the concept of the Hilger complex plane.

Definition 2.9

Let h > 0. We define the Hilger complex plane by:

C h = z ∈ C : z = -1 h (2.16)
such that the Hilger real axes is given by: and the Hilger imaginary circle as:

R h = z ∈ R : z > -1 h (2.
I h = z ∈ C h : z + 1 h = 1 h (2.

18)

For h = 0, we define C 0 = C , R 0 = R and I 0 = iR. 

Definition 2.10

Let h > 0 and z ∈ C h . We define the Hilger real part of z by:

Re h (z) = |zh + 1| -1 h (2.19)
and the Hilger imaginary part of z by:

Im h (z) = arg(zh + 1) h (2.20)
where arg(z) denote the principal argument of z (i.e -π < arg(z) ≤ π). Note that: Let -π h < w ≤ π h . We define the purely imaginary number

-π h < Im h (z) ≤ π h
• ıw by • ıw = e iwh -1 h (2.21) 
For z ∈ C h , we have

• ıIm h (z) ∈ I h and the relation lim h→0 [Re h (z) + • ıIm h (z)] = Re(z) + i Im(z)
is satisfied.

The previous definitions are illustrated in Fig. 2.5.

Definition 2.12

We define the ⊕ addition on C h by

z ⊕ q = z + q + hzq, (2.22) 
with z, q ∈ C h . The set (C h , ⊕) is an abelien group such that the inverse of z under the addition ⊕ is

⊖z = -z 1 + zh (2.

23)

We define the substraction on C h by

z ⊖ q = z ⊕ (⊖q) (2.24) Definition 2.13
For z ∈ C h , we have 

z = Re h (z) ⊕ • ıIm h (z)

Definition 2.14

For h > 0, we define the strip Z h by :

Z h = z ∈ C : -π h < Im(z) ≤ π h (2.25) 
and for h = 0, Z 0 = C.

Definition 2.15

For h ≥ 0, the cylinder transformation ξ h : C h → Z h is defined by

ξ h (z) =        1 h log(1 + zh), h > 0 z, h = 0 (2.26)
where log is the principal logarithm function.

To determine the generalized exponential function on an arbitrary time scale T, we need to introduce regressive functions.

Definition 2.16

A function f :

T → R is said regressive if 1 + µ(t)f (t) = 0 for all t ∈ T k . f is said positively regressive, if 1 + µ(t)f (t) > 0 for all t ∈ T κ .
f is said uniformly regressive if there exists a positive constant γ such that γ

-1 ≤ |1 + µ(t)f (t)| for all t ∈ T κ .
The set of all rd-continuous and regressive functions f : T → R is noted by R and the set of rdcontinuous and positively regressive function is noted by R + Remark 2.2

If p, q ∈ R, then ⊖p, p ⊕ q, p ⊖ q, q ⊖ p ∈ R Definition 2.17 (Generalized exponential function)

Let a function p ∈ R. We define the generalized exponential function of p(t) noted e p (t, s) by:

e p (t, s) = exp t s ξ µ(τ ) (p(τ ))∆τ for all t, s ∈ T × T where ξ µ(t) (p(t)) is the cylinder transformation of p(t).
Some examples are provided below to illustrate this important concept.

Example 2.6

Let p ∈ R. The objective is to determine the exponential function e p (t, s) for t, s ∈ T.

• For T = R:

e p (t, s) = e t s p(τ )∆τ
• For T = hZ :

e p (t, s) = t-s h τ =s (1 + hp(τ ))
Indeed, for all t ∈ T, we have µ(t) = h, so

e p (t, s) = e t s log(1+hp(τ )) h ∆τ = e t τ =s h log(1+hp(τ )) h = t-s h τ =s (1 + hp(τ )) -For T = Z : e p (t, s) = t-s τ =s (1 + p(τ )) -If p is a constant function, we have for T = hZ, e p (t, s) = (1 + hp) t-s h
The generalized exponential function has the following properties:

If p, q ∈ R and t, r, s ∈ T, then 1. e 0 (t, s) = 1 and e p (t, t) = 1 2.

1 ep(t,s) = e ⊖p (t, s)

3. e p (t, s) = 1 ep(s,t)
4. e p (t, s)e p (s, r) = e p (t, r)

5. e p (t, s)e q (t, s) = e p⊕q (t, s)

6.

ep(t,s) eq(t,s) = e p⊖q (t, s)

7. If p is a positive constant, then lim t→∞ e p (t, s) = ∞, lim t→∞ e ⊖p (t, s) = 0. Remark 2.3
From [START_REF] Hilger | Ein Mabkettenkalkul mit Anwendung auf Zentrumsmannigfaltigkeiten[END_REF], and for z ∈ C µ we have the decomposition

e z (t, s) = e Reµ(z)⊕ • ıImµ(z) (t, s) = e Reµ(z) (t, s).e• ıImµ(z) (t, s). ( 2 

.27)

We note that Re µ (z Let p ∈ R and t 0 ∈ T.

) ∈ R + , e Reµ(z) (t, s) > 0 and |e• ıImµ(z) (t, s)| = 1,
(i) If 1 + µ(t)p(t) > 0 on T κ , then e p (t, t 0 ) > 0, ∀t ∈ T. (ii) If 1 + µ(t)p(t) < 0 on T κ , then e p (t, t 0 ) = (-1) nt e t t 0 log |1+µ(τ )p(τ )| µ(τ ) ∆τ ∀t ∈ T with e t t 0 log |1+µ(τ )p(τ )| µ(τ ) ∆τ > 0 and n t =        |[t 0 , t[| if t ≥ t 0 |[t, t 0 [| if t < t 0 where |[t 0 , t[| is the number of terms in the interval [t 0 , t[.
Using the previous result, one can derive the following theorem.

Theorem 2.13 [START_REF] Bohner | Dynamic Equations on Time Scales: An Introduction with Applications[END_REF] Let p ∈ R and t 0 ∈ T.

(i) If p ∈ R + , then e p (t, t 0 ) > 0 for all t ∈ T.

(ii) If 1 + µ(t)p(t) < 0 for some t ∈ T κ , then e p (t, t 0 )e p (σ(t), t 0 ) < 0.

(iii) If 1 + µ(t)p(t) < 0 for all t ∈ T κ , then e p (t, t 0 ) changes its sign at every point of T.

In the second part of this chapter, we will present various important concepts for studying the stability of dynamical systems on time scales.

Notion of stability of dynamical systems on time scales

In order to study in the following chapters, the stability of switched dynamical systems, we will initially recall some important definitions and properties of dynamical systems on time scales. Then, we will introduce the important concepts of stability of dynamical systems on time scale. An extension of the Lyapunov function on time scales will be presented.

Dynamical systems on time scale

We will present in this part, the linear dynamical systems on time scales and the calculation of the corresponding solutions. We will start by introducing some notions on linear dynamic equations.

Let the function f :

T × R 2 → R. The equation x ∆ (t) = f (t, x(t), x(σ(t))) (2.28) is called first order equation in time scale T. Let the functions f 1 , f 2 : T × R 2 → R. If f (t, x, x σ ) = f 1 (t)x + f 2 (t) or f (t, x, x σ ) = f 1 (t)x σ + f 2 (t); then the equation (2.28
) is called linear dynamical equation on time scale T.

The function x : T → R is a solution of equation (2.28), if it satisfies (2.28) for all t ∈ T κ . Let

t 0 ∈ T and x 0 ∈ R. x ∆ (t) = f (t, x(t), x(σ(t))), x(t 0 ) = x 0 (2.29)
is called a dynamic equation with initial value and the solution x of (2.28) which verifies x(t 0 ) = x 0 is the solution of this problem.

Definition 2.18 If p ∈ R, then the first order equation

x ∆ (t) = p(t)x(t) (2.30)
is called regressive.

Theorem 2.14 [START_REF] Bohner | Dynamic Equations on Time Scales: An Introduction with Applications[END_REF] If (2.30) is regressive by definition (2.18). Let t 0 ∈ T and x 0 ∈ R. The unique solution of the initial value dynamic equation

x ∆ (t) = p(t)x(t), x(t 0 ) = x 0 (2.31)
is given by x(t) = e p (t, t 0 ) x 0 .

Definition 2.19 (rd-continuous matrices)

Let A : T → R n×m be a n × m matrix-valued function on T. We say that A is rd-continuous on T, if each entry of A is rd-continuous on T. Similar to the scalar case, the class of all rd-continuous n × m matrix-valued function is denoted by : C rd .

Definition 2.20 (Regressive matrices)

Let A : T → R n×n a n × n matrix-valued function on time scale T. It is called regressive if

I + µ(t)A(t) is invertible for all t ∈ T κ (2. 32 
)
where I is the identity matrix. The class of all regressive and rd-continuous functions is denoted (similarly to the scalar case) by : R.

Proposition 2.2 [10]

Let A : T → R n×n a n × n matrix-valued function on time scale T. A is regressive if and only if the

eigenvalues λ i (t) of A are regressive for all 1 ≤ i ≤ n.
Definition 2. [START_REF] Davis | Stability of switched linear systems on non-uniform time domains[END_REF] The homogeneous dynamic linear system

x ∆ (t) = A(t)x(t), x(t 0 ) = x 0 (2.33)
has a unique solution given by

x(t) = Φ A (t, t 0 )x 0 (2.

34)

If A(t) = A is a constant matrix, then the transition matrix of A is defined by: Φ A (t, t 0 ) = e A (t, t 0 )

and it is called the generalized exponential function of A.

We will state and prove an important preliminary result for the study of switched systems.

Theorem 2.15 Suppose that matrix A is regressive and

C : T → R n×n is a ∆-differentiable matrix. If C(t) is a solution of C ∆ (t) = A(t)C(t) -C(σ(t))A(t), then C(t)e A (t, s) = e A (t, s)C(s). Proof 2.2 Let s ∈ T fixed. Consider function F (t) = C(t)e A (t, s) -e A (t, s)C(s). Then F (s) = 0 and F ∆ (t) = C(σ(t))A(t)e A (t, s) + C ∆ (t)e A (t, s) -A(t)e A (t, s)C(s) = [C(σ(t))A(t) + C ∆ (t) -A(t)C(t)]e A (t, s) + A(t)[C(t)e A (t, s) -e A (t, s)C(s)] = A(t)F (t)
Therefore F is a solution of dynamical system x ∆ (t) = A(t)F (t) with F (s) = 0 such that

F (t) = e A (t, s)F (s) = 0, which means that C(t)e A (t, s) = e A (t, s)C(s).

Corollary 2.1

Let A ∈ R and C be a constant matrix. If C commutes with A, then C commutes with e A . In particular, if A is a constant matrix, then A commutes with e A .

In the following, we will give an expression of the transition matrix of A of system (2.33) on an arbitrary time scale. For this, we need the following notions.

Let A be a regressive n × n valued-matrix function on

T κ . Suppose that (b 1 , . . . , b n ) is an algebraic basis of R n and denote Q(t) = [b 1 . . . b n ]. Then Q(t)
est invertible and we can write A in this basis as We have σ(J k ) = {λ k }, where σ(.) is the set of eigenvalues. Consequently, σ(A) = {λ 1 , λ 2 , . . . , λ l }.

J = Q -1 (t)AQ(t) such that J(t) =     J 1 (t) . . . J l (t)     (2.35) with J k (t) = λ k (t)I + N =        λ k (t) 1 0 . . . 0 λ k (t) 1 . . . 0 . . . . . . λ k (t)        ∈ C d k ×d k (2.
The matrices J k are called Jordan block and each Jordan block has only one independent eigenvector.

Let us consider the case that A has n independent eigenvectors. In this case, choosing the algebraic basis (b 1 , . . . , b n ) which consists of eigenvectors of A, we obtain l = n, d k = 1 and N = 0 with

J = diag(λ 1 , λ 2 , . . . , λ n ).
Theorem 2.16 [START_REF] Potzsche | A spectral characterization of exponential stability for linear time-invariant systems on time scales[END_REF] Suppose that A is a regressive matrix. The transition matrix of system x ∆ (t) = A(t)x(t) is given by

Φ A (t, s) = Q(t)     Φ J 1 (t, s) . . . Φ J l (t, s)     Q(t) -1 = Q(t)Φ J (t, s)Q(t) -1 for t, s ∈ T κ (2.37) Proof 2.3
Let the transition matrix

Φ A (t, s) = Q(t) Φ J (t, s) Q(t) -1 , then Φ ∆ A (t, s) = Q(t) JΦ J (t, s) Q(t) -1 = Q(t)Q(t) -1 AQ(t)Φ J (t, s)Q(t) -1 = AΦ A (t, s) Definition 2.22
For all n ∈ N and λ ∈ R, the operator m n λ : T × T κ → C recursively defined by

m 0 λ (t, s) = 1, m n+1 λ (t, s) = t s m n λ (τ, s) 1 + µ(τ )λ(τ ) ∆τ for n ∈ N (2.38)
are called monomials of degree n.

Lemma 2.2 [66]

Let λ ∈ R and J λ : T → C d×d such that

J λ (t) =        λ(t) 1 0 . . . 0 
λ(t) 1 . . . 0 . . . . . . λ(t)        (2.39)
Then, the transition matrix of dynamical system x ∆ (t) = J λ (t)x(t) is given by

e J λ (t, s) = e λ (t, s)                1 m 1 λ (t, s) . . . m d-1 λ (t, s) 1 . . . m d-2 λ (t, s) . . . . . . 1                for t, s ∈ T κ .
To illustrate the previous result, we consider the following example.

Example 2.7

The transition matrix of the dynamical system x ∆ (t) = J λ x(t) with J λ : T → C d×d is determined as:

• For T = R. Considering the constant λ ∈ C, we obtain m n λ (t, s) = (t-s) n n! for t, s ∈ R and e J λ (t, s) = e J λ (t-s) = ∞ n=0 (t -s) n n! J n λ = e λ(t-s)                1 (t -s) . . . (t-s) (d-1) (d-1)! 1 . . . (t-s) (d-2) (d-2)! . . . . . . 1               
• For an homogenous discrete time scale with graininess function µ . . .

(t) = h ≥ 0. Considering a regressive constant λ ∈ C, we obtain m n λ (t, s) = (t-s) n n!(1+hλ) n for t, s ∈ hZ and e J λ (t, s) = (I + hJ λ ) t-s h = (1 + hλ) t-s h                 1 t-s 1+hλ k . . . (t-s) (d-1) (d-1)! (1+hλ) (d-1)
(t-s) (d-2) (d-2)! (1+hλ) (d-2) . . . . . . 1                
Consider in the following the linear invariant system:

x ∆ (t) = Ax(t) (2.40) 
with a constant matrix A ∈ R. The transition matrix of system (2.40) is given by:

e A (t, s) = Q     e J 1 (t, s) . . . e J l (t, s)     Q -1 = Q e J (t, s) Q -1 (2.41) for t, s ∈ T κ .
Theorem 2.17 [START_REF] Bohner | Dynamic Equations on Time Scales: An Introduction with Applications[END_REF] Let (λ, V ) be an eigenpair of A, then x(t) = e λ (t, t 0 )V is a solution of system (2.40) on time scale T.

Proof 2.4

Let (λ, V ) an eigenpair of A. Since A is regressive, then λ ∈ R from proposition 2.2. Consequently,

x(t) = e λ (t, t 0 )V is well defined on T. We have x ∆ (t) = e ∆ λ (t, t 0 )V = λe λ (t, t 0 )V = e λ (t, t 0 )λV = e λ (t, t 0 )AV = Ae λ (t, t 0 )V = Ax(t) for t ∈ T κ . Remark 2.4
By Lemma 2.2 and Theorem 2.17, the general solution of the system (2.40) may be expressed as follows

x(t) = l j=1 e λ j (t, s)   d j -1 i=0 C k,j m i λ j (t, s)   V j
with d j is the dimension of associated Jordan matrix of λ j and l is the dimension of the eigenspace of A. C k,j are constants which depend on x(s).

Proposition 2.3

Let a time scale T with graininess function µ(.) and a regressive constant matrix

A ∈ R n×n with eigenvalues λ k for k = 1, . . . , l ≤ n. Let λ an eigenvalue of A such that Re µ(.) (λ) = max 1≤k≤l {Re µ(.) (λ k )}, ∀t ∈ T κ . For every positively regressive constant α ≥ Re µ(.) (λ), ∀t ∈ T κ (i.e α ∈ R + ) which verifies e α (t, s) ≥ |e λ (t, s)| = e Re µ(.) (λ) (t, s), ∀t ≥ s, there exists a constant β(s) ≥ 1, such that e A (t, s) ≤ β(s) e α (t, s), ∀t ≥ s. (2.42) Proof 2.5
From Theorem 2.16 and decomposition (2.27), the transition matrix is upper bounded by

e A (t, s) ≤ Q Q -1 e Re µ(.) (λ) (t, s) 1 + max 1≤k≤l max 1≤n≤n k-1 |m n λ k (t, s)| for t, s ∈ T κ , t ≥ s.
For a positive constant ε, let us define the positively regressive constant α ≥

Re µ(.) (λ) ⊕ ε, ∀t ∈ T κ such that Q . Q -1 .e Re µ(.) (λ) (t, s) 1 + max 1≤k≤l max 1≤n≤n k -1 |m n λ k (t, s)| ≤ βe Re µ(.) (λ)⊕ε (t, s) ≤ β e α (t, s) So β ≥ Q . Q -1 1 + max 1≤k≤l max 1≤n≤n k -1 |m n λ k (t, s)| e Re µ(.) (λ)⊖(Re µ(.) (λ)⊕ε) (t, s) = Q . Q -1 1 + max 1≤k≤l max 1≤n≤n k -1 |m n λ k (t, s)| e ⊖ε (t, s)
Then, ∀ε > 0 defined as above, there exist a constant β(s) ≥ 1 with

β(s) = max t Q . Q -1 1 + max 1≤k≤l max 1≤n≤n k-1 |m n λ k (t, s)| e ⊖ε (t, s)
such that e A (t, s) ≤ β e α (t, s).

Note that if A is diagonalizable, then β = Q Q -1 .

Notion of stability on time scales

The definitions of stability of dynamical systems on time scales are achieved by modifications of the standard stability concepts for continuous dynamical systems and discrete dynamical systems. Here they are always described with respect to the origin, which is supposed to be the equilibrium. The initial time is t 0 . The system (2.33) is stable if

∀ε > 0, ∃δ > 0, ∀x 0 , x 0 < δ ⇒ (∀t ∈ T and t ≥ t 0 , x(t) < ε) (2.43) System (2.33
) is asymptotically stable, if it is stable and

∃δ > 0, ∀x 0 , x 0 < δ ⇒ lim t→∞ x(t) = 0 (2.44)
In particular, if there exist a constant β ≥ 1 and a negative positively regressive constant α ∈ R + such that all solutions of system (2.33) satisfy the inequality

x(t) ≤ β x 0 e α (t, t 0 ), ∀t ≥ t 0 , t, t 0 ∈ T (2.45)
then, system (2.33) is exponentially stable.

Remark 2.5

This characterization of exponential stability for system (2.33) is a generalization of the definition of exponential stability for systems defined in R or hZ. More specifically, the condition that α < 0 and α ∈ R + in the characterization of exponential stability is reduced to α < 0 for T = R and to

0 < 1 + hα < 1 for T = hZ. Remark 2.6
There are several definitions of the exponential stability on time scales in the literature. In [START_REF] Potzsche | A spectral characterization of exponential stability for linear time-invariant systems on time scales[END_REF] (respectively [START_REF] Dacunha | Stability for time varying linear dynamic systems on time scales[END_REF]) the authors have defined the exponential stability of system (2.33) via the standard exponential function e α(t-t 0 ) (respectively e ⊖α (t, t 0 )) rather than the general exponential function e α (t, t 0 ). Since e α (t, t 0 ) ≤ e α(t-t 0 ) ≤ e ⊖α (t, t 0 ) for t, t 0 ∈ T, t ≥ t 0 , α < 0 and α ∈ R + we will use the definition which is more general.

Let us recall some results on the exponential stability. In [START_REF] Potzsche | A spectral characterization of exponential stability for linear time-invariant systems on time scales[END_REF], a necessary and sufficient condition for exponential stability of system (2.33) in the scalar case is given by the following theorem.

Theorem 2.18 [66]

Let T an arbitrary time scale which is unbounded above, and the regressive constant λ ∈ C. The scalar equation

x ∆ (t) = λx(t) (2.46)
is exponentially stable if and only if one the following conditions are satisfied for an arbitrary

t 0 ∈ T (i) γ(λ) = lim sup t→∞ 1 (t-t 0 ) t t 0 lim s→µ(τ ) log |1+sλ| s ∆τ < 0 (ii) ∀T ∈ T, ∃t ∈ T : t > T such that 1 + µ(t)λ = 0 where lim s→µ(t) log |1 + sλ| s =        Re(λ), if µ(t) = 0 log |1+µ(t)λ| µ(t) , if µ(t) = 0
Using of the previous theorem, we define the set of exponential stability of system (2.46)

Definition 2.

(Set of exponential stability)

Let an arbitrary time scale T which is unbounded above. We define for an arbitral t 0 ∈ T,

S C (T) = {λ ∈ C : lim sup t→∞ 1 t -t 0 t t 0 lim s→µ(τ ) log |1 + sλ| s ∆τ < 0} and S R (T) = {λ ∈ R : ∀T ∈ T, ∃t ∈ T and t > T such that 1 + µ(t)λ = 0}
The set of exponential stability of system (2.46) on time scale T is given by:

S(T) = S C (T) ∪ S R (T).
From the above definition, we can deduce that the region of exponential stability is reduced to the left complex half-plane for T = R and shifted unit circle for T = Z. Fig. 2.6 illustrates these results.

In general, it is possible that S(t) is disconnected as it will be shown in Chapter 3. An extension of Theorem 2.18 in the case of system (2.33) for A(t) = A a constant matrix is given by the following theorem.

Theorem 2.19 [START_REF] Potzsche | A spectral characterization of exponential stability for linear time-invariant systems on time scales[END_REF] Let T be a time scale which is unbounded above and let A ∈ R n×n a regressive matrix. Then the following properties are satisfied:

(i) If system (2.33) is exponentially stable, Then σ(A) ⊂ S C (T) where σ(A) is the spectrum of matrix A.

(ii) If all eigenvalues λ j of A are uniformly regressive and σ(A) ⊂ S C (T), then system (2.33) is exponentially stable.

Theorem 2. [START_REF] Davis | The laplace transform on time scales revisited[END_REF] gives a very strong result. However, it has limitations in practice because it can be very difficult to calculate the set S for an arbitrary time scale. A result in [START_REF] Davis | Regions of exponential stability for lti systems on nonuniform discrete domains[END_REF] has greatly simplified the calculation of this region for a discrete time scale which consists of a set of points that occur with a known frequency.

Theorem 2.20 [START_REF] Davis | Regions of exponential stability for lti systems on nonuniform discrete domains[END_REF] Let T a discrete time scale with asymptotic graininess function

{µ k } M k=1 such that the Reative weight of each µ k is {d k } M k=1 .
Then the solution of the uniformly regressive system x ∆ (t) = Ax(t) is exponentially stable, if and only if

M k=1 |1 + µ k λ| d k < 1 for all λ ∈ σ(A).
Motivated by the difficulty of computing the set of exponential stability S, Gard and Hoffacker showed in [START_REF] Gard | Asymptotic behavior of natural growth on time scales[END_REF] that for any time scale, the Hilger's circle H min corresponding to µ max is a subset of S C . This result provides a stable region that is much easier to calculate, but it is more restrictive.

From this work, we can conclude that σ(A) ⊂ H min is a sufficient condition for the stability of system (2.33) when A(t) = A.

Definition 2.24

If A(t) is a uniformly regressive matrix, system (2.33) is said Hilger stable if σ(A(t)) ⊂ H(t) for all

t ∈ T. If A(t) = A, then it is equivalent to σ(A) ⊂ H min .

Lyapunov function on time scale

In general, we are not able to explicitly solve the dynamic equations. Thus, the stability analysis of a dynamical system may be associated with the existence of a scalar positive definite function V (x) which is decreasing along the system trajectories, called Lyapunov function.

To extend these concepts to dynamic equations on time scales many works are realised [START_REF] Davis | Algebraic and dynamic lyapunov equations on time scales[END_REF], [START_REF] Liu | Boundedness and exponential stability of solutions to dynamic equations on time scales[END_REF], [5], [START_REF] Jackson | Linear state feedback on time scales[END_REF], [START_REF] Hoffacker | Stability and instability for dynamic equations on time scales[END_REF]. Next, we define a generalized Lyapunov function on time scale that can unify the known notions of Lyapunov function for continuous dynamical systems and discrete dynamical systems.

Let U be a non-empty open set of R n containing zero. Consider the nonlinear dynamic equation on time scales T

x ∆ (t) = f (x(t)), x(t 0 ) = x 0 (2.47)
where f : U → R n is a rd-continuous function and which verifies conditions of existence and unicity of solution of (2.47) [START_REF] Bohner | Dynamic Equations on Time Scales: An Introduction with Applications[END_REF].

Definition 2.25 [START_REF] Liu | Boundedness and exponential stability of solutions to dynamic equations on time scales[END_REF] Let V : U → R be a continuously differentiable function on U . We define the ∆-derivative of V with respect to system (2.47) by

V ∆ (x) = 1 0 V (x(t) + hµ(t)f (x)) f (x) dh
where V means the usual derivative of V in x.

Theorem 2.21 [5] If there exists V : U → R a continuously differentiable function on U such that:

(i) V is positive definite on U (ii) V ∆ (x) is semi-definite(definite) negative on U
Then, the equilibrium of system (2.47) is stable (asymptotically stable) and V is called a generalized Lyapunov function on time scale T.

In particular, if we consider the linear dynamic system (2.33), one can select as a candidate Lyapunov function

V (x) = x T (t)P (t)x(t) (2.48) 
with P (t) a symmetric definite matrix. The ∆-derivative of V on T is given by

V ∆ (x) = [x T (t)P (t)x(t)] ∆ = x T (t)[A T (t)P (t) + (I + µ(t)A T (t))(P ∆ (t) + P (t)A(t) + µ(t)P ∆ (t)A(t))]x(t) = x T (t)[A T (t)P (t) + P (t)A(t) + µ(t)A T (t)P (t)A(t) +(I + µ(t)A T (t))P ∆ (t)(I + µ(t)A(t))]x(t)
If the matrix P is constant, then P ∆ (t) = 0 and

V ∆ (x) = x T (t)[A T (t)P + P A(t) + µ(t)A T (t)P A(t)]x(t)
Note that, for an arbitrary time scale T and matrix A(t), the existence of Lyapunov function (2.48) is a sufficient condition for the stability of linear dynamic system (2.33). The previous theorem unifies the classical results on T = R and T = Z.

Conclusion

In this chapter, basics concepts of time scales theory are introduced, namely differentiation, integration, generalized exponential function and some notions of the stability of linear dynamical systems on time scales.

In the following, and motivated by the theory of time scales and switched systems which evolves on nonuniform time domain, we will study the exponential stability of a particular class of switched linear system on time scale

T = P {tσ k ,t k+1 } = ∪ ∞ k=0 [t σ k , t k+1 ] which is a union of closed bounded intervals.
Chapter 3

Stability analysis of a class of linear switched systems on time scales

In this chapter, the time scale theory is introduced to study the stability of a particular class of linear time-invariant switched systems when the system commutes between a linear continuous-time subsystem and linear discrete-time subsystem for a certain period of time (which may correspond to the time required for the jump of the state or interruption of information transmission). Hence, we will study the stability of linear time-invariant switched systems on a particular time scale T =

P {tσ k ,t k+1 } = ∪ ∞ k=0 [t σ k , t k+1
] which is a non-uniform time domain formed by a union of disjoint closed intervals with variable length t k+1t σ k and variable gap µ(t k ) = t σ kt k . In the first part, the studied system switches between a continuous-time dynamic subsystem and a discrete-time dynamic subsystem with a bounded graininess function.

Using the properties of the generalized exponential function on time scales, sufficient conditions are provided to guarantee the exponential stability of this class of switched systems where both subsystems are stable. These results are extended when considering an unstable discrete-time subsystem and/or an unstable continuous-time subsystem using the spectrum of the system matrices.

In the second section of this part, we will extend and adapt the results given by [START_REF] Potzsche | A spectral characterization of exponential stability for linear time-invariant systems on time scales[END_REF] to the linear switched systems on T = P {tσ k ,t k+1 } . We will give necessary and sufficient conditions for exponential stability of this class of switched systems by introducing a region of exponential stability. Therefore, if all eigenvalues of the matrices of continuous subsystems and discrete subsystems are within this region, then the switched system is exponentially stable.

In the second part of this chapter, sufficient conditions are provided to guarantee the exponential stability of this class of switched systems when the matrices of continuous time-subsystem (i.e A c ) and discrete-time subsystem (i.e A d ) do not commute which each other. We will study the cases where both subsystems are stable, the continuous subsystem and the discrete one are stable or unstable and when both subsystems are unstable.

Problem statement

Let {t 0 , t 1 , t 2 , t 3 , . . .} be a monotonically increasing sequence of times without finite accumulation points. In this thesis, we will consider a particular time scale T defined as

P {tσ k ,t k+1 } = ∪ ∞ k=0 [t σ k , t k+1 ] (3.1) with t σ 0 = t 0 = 0 t k < t σ k < t k+1 , k ∈ N *
The corresponding forward jump operator satisfies ∀k ∈ N, σ(t k ) = t σ k . The graininess function is

such that µ(t k ) = σ(t k ) -t k = t σ k -t k , ∀k ∈ N * .
Let {A c , A d } be a set of two constant regressive matrices of appropriate dimensions. The studied switched linear system on time scale T = P {tσ k ,t k+1 } can be written as

x ∆ (t) =        A c x(t) for t ∈ ∪ ∞ k=0 [t σ k , t k+1 [ A d x(t) for t ∈ ∪ ∞ k=0 {t k+1 } (3.2) 
The first equation of (3.2) describes the continuous-time linear dynamics of the system and the second describes the state jumps. Hence, the dynamical system commutes between a possibly unstable continuous-time linear subsystem and a possibly unstable linear discrete-time subsystem during a certain period of time. It could be also seen as an extension of impulsive systems where state jumps are not instantaneous and depend on the graininess function. An illustration of the studied class of systems is given in Fig. 3.1.

Part1

: Sufficient conditions of stability of switched systems on time scale T = P {t σ k ,t k+1 } with commutative matrices

We will study, in this section, the exponential stability of switching system (3.2) giving adequate conditions of stability if the two subsystems (continuous and discrete) are stable. Then we will handle the case where a subsystem is unstable and finally the case where the two subsystems are simultaneously unstable.

The following lemma plays an important role to derive a sufficient condition to guarantee stability for a large class of switched systems on time scales.

Lemma 3.1 [START_REF] Gauthier | Commutation des matrices et congruences d'ordre un[END_REF] If two matrices commute with each other then, any direction eigenvectors of one matrix, associated to the root of its spectral equation, is also a direction eigenvector of the other matrix. 

Case 1: Each individual subsystem is stable

Consider the switched linear system (3.2) and suppose that the following assumptions are fulfilled: Under Assumptions (i)-(iv), the switched system (3.2) is exponentially stable.

(i) For each t ∈ P {tσ k ,t k+1 } ,

Proof 3.1

Using time scales theory, we can determine an explicit solution of (3.2). One gets:

If k ∈ N and t ∈ [t σ k , t k+1 [, then x(t) satisfies ẋ(t) = A c x(t). It yields x(t) = e Ac(t-tσ k ) x(t σ k ) = e Ac(t-σ(t k )) x(σ(t k )) (3.3)
If k ∈ N and t = t k+1 , then the solution x(t) satisfies x ∆ (t) = A d x(t), which means that

x(t σ k+1 ) = x(σ(t k+1 )) = (I + µ(t k+1 )A d ) x(t k+1 ) (3.4)
where I ∈ R n×n is the identity matrix.

Therefore, the solution of (3.2) can be derived according to the following:

• For t 0 ≤ t ≤ t 1 , since x(t 0 ) = x 0 , one has x(t) = e Act x 0
Thus, x(t 1 ) = e Act 1 x 0 and

x(t σ 1 ) = x(σ(t 1 )) = (I + µ(t 1 )A d )x(t 1 ) = (I + µ(t 1 )A d )e Act 1 x 0 • For t σ 1 ≤ t ≤ t 2 , one has x(t) = e Ac(t-σ(t 1 )) x(σ(t 1 )) = e Ac(t-σ(t 1 )) (I + µ(t 1 )A d )e Act 1 x 0
Hence, one gets

x(t σ 2 ) = x(σ(t 2 )) = (I + µ(t 2 )A d )x(t 2 ) = (I + µ(t 2 )A d )e Ac(t 2 -σ(t 1 )) (I + µ(t 1 )A d )e Act 1 x 0
By mathematical induction, one can easily show that for

t σ k ≤ t ≤ t k+1 , k ∈ N, the solution of (3.2)
is given by

x(t) = e Ac(t-σ(t k )) (I + µ(t k )A d )e Ac(t k -σ(t k-1 )) . . . (I + µ(t 1 )A d )e Act 1 x 0 (3.5)
Using Assumption (ii) and Corollary 2.1, one has

x(t) = e Ac(t-[σ(t k )-t k +...+σ(t 1 )-t 1 ]) (I + µ(t k )A d ) . . . (I + µ(t 1 )A d ) x 0 = e Ac(t-[µ(t k )+...+µ(t 1 )]) (I + µ(t k )A d ) . . . (I + µ(t 1 )A d ) x 0 = e Ac(t-k i=0 µ(t i )) k i=1 (I + µ(t i )A d ) x 0 (3.6) 
Using generalized exponential functions, solution of (3.2) can be rewritten as

x(t) = e Ac (t - k i=0 µ(t i ), 0) e A d (t k+1 , t 1 ) x 0 (3.7) for t ∈ [t σ k , t k+1 ], k ∈ N.
According to Assumption (i),

e Ac (t - k i=0 µ(t i ), 0) ≤ β c e αc (t - k i=0 µ(t i ), 0) = β c e αc(t-k i=0 µ(t i )) (3.8) 
holds with constant β c ≥ 1 and constant α c < 0, and

e A d (t k+1 , t 1 ) ≤ β d e α d (t k+1 , t 1 ) = β d k i=1 (1 + µ(t i )α d ) (3.9)
holds with constant β d ≥ 1, and negative constant function

α d ∈ R + . Combining these inequalities, one can obtain x(t) ≤ β c e αc(t-k i=0 µ(t i )) β d k i=1 (1 + µ(t i )α d ) x 0 ≤ β c β d e αc(t-k i=0 µ(t i )) (1 + µ min α d ) k x 0 = β c β d e αc(t-k i=0 µ(t i )) e k log(1+µ min α d ) x 0 From Assumption (iii), one can derive k µ min ≤ k i=0 µ(t i ) ≤ k µ max . It yields k ≥ k i=0 µ(t i )
µmax . Hence, one gets

x(t) ≤ β c β d e αc(t-k i=0 µ(t i )) + k i=0 µ(t i ) log(1+µ min α d ) µmax x 0 (3.10)
Since α d is negative and

α d ∈ R + (positively regressive), then 0 < 1 + µ(t)α d < 1, ∀t ∈ ∪ ∞ k=0 {t k+1 }, which implies that log(1+µ min α d ) µmax < 0. Let α = max{α c , log(1+µ min α d ) µmax } < 0 and β = β c β d ≥ 1, then x(t) ≤ βe α(t-k i=0 µ(t i )) + α k i=0 µ(t i ) x 0 = β e αt x 0 (3.11)
Therefore, the switched system (3.2) is exponentially stable.

Remark 3.1

It is well known that for the case of switched linear systems whose temporal nature is represented by the continuous line (i.e. R) or discrete line (i.e. Z), the commutativity condition implies asymptotic stability of the switched system for arbitrary measurable switching signals [START_REF] Liberzon | Switching in Systems and Control[END_REF], [START_REF] Narendra | A common lyapunov function for stable lti systems with commuting a-matrices[END_REF]. Similarly to these existing approaches, Condition (ii) is considered to derive conditions for the case of switched linear systems whose temporal nature cannot be represented by the continuous line or the discrete line.

Example 3.1

Let us consider the following example on time scale

T = P {tσ k ,t k+1} = ∪ ∞ k=0 [2 k -1 k+1 , 2 k+1 -1] x ∆ =              -1 -1 2 -4 x, t ∈ ∪ ∞ k=0 [2 k -1 k+1 , 2 k+1 -1[ -1 1 3 -2 3 0 x, t ∈ ∪ ∞ k=0 {2 k+1 -1} (3.12)
System (3.12) can be written as (3.2) with

t k = 2 k -1, σ(t k ) = t σ k = 2 k -1 k+1 , 1 2 ≤ µ(t k ) = σ(t k ) -t k = 1 -1 k+1 ≤ 1, k ∈ N * .
Hence, the dynamical system (3.12) commutes between a stable linear continuous-time subsystem

with A c = -1 -1 2 -4
and a stable linear discrete-time subsystem

A d = -1 1 3 -2 3 0 during a certain period of time. The eigenvalues of A c (resp A d ) are λ 1 c = -2 and λ 2 c = -3 (resp λ 1 d = -1 3 , λ 2 d = - 2 
3 ). One can easily verify that Assumptions (i)-(iv) are satisfied. Therefore, using Theorem 3.1, the switched system (3.12) is exponentially stable.

To show the effectiveness of Theorem 3.1, one can derive the analytic solution of system (3.12) as follows

x(t) = e Ac(t-k i=1 (1-1 i+1 )) k i=1 (I + (1 - 1 i + 1 )A d ) x 0
From Assumption(ii) and Lemma 3.1, using the eigenvalues and eigenvectors of A c and A d , it yields

x(t) = C 1 e λ 1 c (t - k i=0 µ(t i ), 0) e λ 1 d (t k+1 , t 1 ) V 1 + C 2 e λ 2 c (t - k i=0 µ(t i ), 0) e λ 2 d (t k+1 , t 1 ) V 2 where V 1 = 1 1 , V 2 = 1 2
are the eigenvectors corresponding to the eigenvalues λ 1 c , λ 1 d and λ 2 c , λ 2 d , C 1 and C 2 are known constants which depend on x 0 . Using the corresponding numerical values, one gets

x(t) = C 1 e -2(t-k i=1 (1-1 i+1 )) k i=1 1 + -2 3 (1 -1 i+1 ) V 1 + C 2 e -3(t-k i=1 (1-1 i+1 )) k i=1 1 + -1 3 (1 -1 i+1 ) V 2 = C 1 e -2(t-k i=1 (1-1 i+1 )) k i=1 1 3 1 + 2 i+1 V 1 + C 2 e -3(t-k i=1 (1-1 i+1 )) k i=1 1 3 2 + 1 i+1 V 2 =      C 1 e -2(t-k i=1 ( 1 i+2 +1)) k i=1 1 3 1 + 2 i+1 + C 2 e -3(t-k i=1 ( 1 i+2 +1)) k i=1 1 3 2 + 1 i+1 C 1 e -2(t-k i=1 ( 1 i+2 +1)) k i=1 1 3 1 + 2 i+1 + 2C 2 e -3(t-k i=1 ( 1 i+2 +1)) k i=1 1 3 2 + 1 i+1     
The trajectories converge to zero as is shown in Fig. 3.2 where the initial state is 

x 0 = [2 5] T . 0 2 4 6 8 -5 -4 -3 -2 -1 0 1 2 3 time(t) x(t) x1 x2

Case 2:

The continuous-time linear subsystem (i.e. A c ) is stable and the discrete-time linear subsystem (i.e. A d ) is unstable Consider the switched linear system (3.2) and suppose that the following assumptions are fulfilled: (i) For each t ∈ P {tσ k ,t k+1 } , the eigenvalues λ j c (resp. λ j d ) of A c (resp. A d ) are real and simple ∀j = 1, . . . , n. Furthermore, λ j c strictly lie within the Hilger circle. Here, the continuous-time linear system (i.e. A c ) is exponentially stable with respect to time scale P {tσ k ,t k+1 } while the discrete-time one (i.e. A d ) is supposed to be unstable. 

max 1≤j≤n |1 + µ max λ j d | < e min 1≤j≤n (-λ j c ) min 1≤i≤k (t i -σ(t i-1 )) (3.13) Theorem 3.2
Under the above Assumptions (i)-(v), the switched system (3.2) is exponentially stable.

Proof 3.2

Similarly to Proof of Theorem 3.1 and using Assumption (ii) and Corollary 2.1, the general solution of (3.2) is given by

x(t) = e Ac(t-k i=0 µ(t i )) k i=1 (I + µ(t i )A d ) x 0 (3.14) for t ∈ [t σ k , t k+1 ].
From Assumption (ii) and using Lemma 3.1, there exists V j ∈ R n , such that (λ j c , V j ) (resp. (λ j d , V j )) are eigenpairs of A c (resp. A d ) ∀j = 1, . . . , n. Therefore,

x(t) = e λ j c (t-k i=0 µ(t i )) k i=1 (1 + µ(t i )λ j d ) V j (3.15)
is a solution of (3.2) (by Theorem 2.17). From Assumption (i)-(iv), one gets an upper bound of solution (3.15) as follows and the upper bound of solution (3.15) can be written as

x(t) = e λ j c (t-k i=0 µ(t i )) k i=1 (1 + µ(t i )λ j d ) V j = e λ j c (t-k i=0 µ(t i )) k i=1 |1 + µ(t i )λ j d | V j ≤ e λ j c (t-k i=0 µ(t i )) max 1≤i≤k {|1 + µ(t i ) λ j d |} k V j = e λ j c (t-k i=0 µ(t i ))+k log(max 1≤i≤k {|1+µ(t i ) λ j d |}) V j .
x(t) ≤ e λt V j (3.16 
)

with λ = max{λ j c , log(max 1≤i≤k {|1+µ(t i ) λ j d |}) µmax } < 0.
Then the solution x(t) converge to zero as t → ∞.

Since A d is unstable, there exists at least one λ j d which does not lie within the Hilger circle, i.e.

|1 + µ(t) λ j d | ≥ 1, ∀t ∈ ∪ ∞ k=0 {t k+1 }. It implies that 1 ≤ max 1≤i≤k {|1 + µ(t i ) λ j d |} = |1 + max 1≤i≤k µ(t i ) λ j d | = |1 + µ max λ j d |
Since the graininess function is bounded, one can derive, for t

∈ [t σ k , t k+1 ], k min 1≤i≤k (t i -σ(t i-1 )) ≤ k i=1 t i -σ(t i-1 ) ≤ t - k i=0 µ(t i ) (3.17) It yields k ≤ t -k i=0 µ(t i ) min 1≤i≤k (t i -σ(t i-1 )) (3.18) 
Then, the upper bound of solution (3.15) becomes

x(t) ≤ e λ j c (t-k i=0 µ(t i ))+(t-k i=0 µ(t i )) log(|1+µmax λ j d |) min 1≤i≤k (t i -σ(t i-1 )) V j ≤ e (t-k i=0 µ(t i )) λ j c + log(|1+µmax λ j d |) min 1≤i≤k (t i -σ(t i-1 )) V j (3.19)
Using Assumption (v), one can obtain log( max

1≤j≤n |1 + µ max λ j d |) < min 1≤j≤n (-λ j c ) min 1≤i≤k (t i -σ(t i-1 )) (3.20)
Hence, one can derive

-min 1≤j≤n (-λ j c ) + log(max 1≤j≤n |1 + µ max λ j d |) min 1≤i≤k (t i -σ(t i-1 )) < 0 (3.21)
It means that Roughly speaking, Assumption (v) means that the effect of the unstable subsystem (left part of condition (3.13)) is less significant than the effect of the stable subsystem (right part of (3.13)) to guarantee the exponential stability of the switched system on a non-uniform time domain. Furthermore, one can see that condition (3.13) is always satisfied when the discrete-time subsystem is considered to be stable.

λ j c + log(|1 + µ max λ j d |) min 1≤i≤k (t i -σ(t i-1 )) < 0, ∀1 ≤ j ≤ n. ( 3 

Remark 3.3

It is possible to Relax Assumption (i). Indeed, if the eigenvalues of matrices A c and A d are not real, one can replace Assumption (v) by

max 1≤j≤n |1 + µ max λ j d | < e min 1≤j≤n (-Re(λ j c )) min 1≤i≤k (t i -σ(t i-1 )) (3.23) 
where Re(λ j c ) is the real part of λ j c and |1+µ max λ j d | is the modulus of the complex number (1+µ max λ j d ).

Example 3.2

Let us consider the following example using the time scale

T = P {tσ k ,t k+1} = ∞ k=0 k 2 , (k + 1) 2 + k+1 k+2 x ∆ =              -1 2 -1 -4 x, t ∈ ∪ ∞ k=0 k 2 , (k + 1) 2 + k+1 k+2 2 -2 1 5 x, t ∈ ∪ ∞ k=0 (k + 1) 2 + k+1 k+2 (3.24) 
System (3.24) can be written as (3.2) with

t k = k 2 + k k+1 , σ(t k ) = t σ k = k 2 , 1 2 ≤ µ(t k ) = σ(t k ) -t k = k k+1 ≤ 1, k ∈ N * .
Hence, the dynamical system (3.24) commutes between a stable continuous-time linear subsystem with

A c = -1 2 
-1 -4 and a unstable linear discrete-time subsystem 

A d = 2 -2 1 

One can easily verify that

A c A d = A d A c . Furthermore, max 1≤j≤2 (1 + µ max λ j d ) = 5 < e min 1≤j≤2 (-λ j c ) min 1≤i≤k (t i -σ(t i-1 )) = e 2 3 2 = e 3
Therefore, Assumptions (i)-(v) are fulfilled. Using Theorem 3.2, the switched system (3.24) is exponentially stable.

To show the effectiveness of Theorem 3.2, one can derive the analytic solution of system (3.24) as follows

x(t) = C 1 e -2(t-k i=0 µ(t i )) k i=1 (1 + 3µ(t i )) V 1 + C 2 e -3(t-k i=0 µ(t i )) k i=1 (1 + 4µ(t i )) V 2 with V 1 = 1 -1 2 , V 2 = 1 -1
, C 1 and C 2 are known constants which depend on x 0 .

This solution can be bounded as

x(t) ≤ |C 1 | e (t-k i=0 µ(t i )) -2+ log(1+3µmax) min j (t j -σ(t j-1 )) V 1 +|C 2 | e (t-k i=0 µ(t i )) -3+ log(1+4µmax) min j (t j -σ(t j-1 )) V 2 = |C 1 | e (t-k i=0 µ(t i )) -2+ 2log(1+3(1)) 3 V 1 + |C 2 | e (t-k i=0 µ(t i )) -3+ 2log(1+4(1)) 3 V 2 = √ 5 2 |C 1 | e (t-k i=0 µ(t i )) -6+2log(4) 3 + √ 2 |C 2 | e (t-k i=0 µ(t i )) -9+2log(5) 3 ≤ C e (t-k i=0 µ(t i )) -6+2log(4) 3 
The trajectories converge to zero as is shown in Fig. 

|1 + µ(t i ) λ j d | < e -max 1≤j≤n (λ j c )[max 1≤i≤k (t i+1 -σ(t i ))] (3.26) 
Theorem 3.3 Under the above Assumptions (i)-(v), the switched system (3.2) is exponentially stable. 

x(t) ≤ e λ j c (t-k i=0 µ(t i ))+k log(max 1≤i≤k |1+µ(t i ) λ j d |) V j (3.27)
Since the graininess function is bounded and

(t k+1 -σ(t k )) is bounded for all k ∈ N, one can derive, for t ∈ [t σ k , t k+1 ], k + 1 ≥ t -k i=0 µ(t i ) max 0≤i≤k (t i+1 -σ(t i )) (3.

28)

Since A d is stable, λ j d lies within the Hilger circle, i.e.

|1 + µ(t k ) λ j d | ≤ 1, ∀k ∈ N * .
It implies that the upper bound of (3.27) becomes

x(t) ≤ e λ j c (t-k i=0 µ(t i ))+ t-k i=0 µ(t i ) max 0≤i≤k (t i+1 -σ(t i )) -1 (log(max 1≤i≤k |1+µ(t i )λ j d |)) V j = e (t-k i=0 µ(t i )) λ j c + log(max 1≤i≤k |1+µ(t i ) λ j d |) max 0≤i≤k (t i+1 -σ(t i )) -log(max 1≤i≤k |1+µ(t i ) λ j d |) V j (3.29)
Using Assumption (v), one can obtain log( max

1≤j≤n,1≤i≤k |1 + µ(t i )λ j d |) + max 1≤j≤n (λ j c )[ max 1≤i≤k (t i+1 -σ(t i ))] < 0 (3.30)
Hence, one can derive

max 1≤j≤n λ j c + log(max 1≤j≤n,1≤i≤k |1 + µ(t i ) λ j d |) max 1≤i≤k (t i+1 -σ(t i )) < 0. ( 3.31) 
It means that for all k ∈ N 

λ j c + log(|1 + µ(t i ) λ j d |) max 1≤i≤k (t i+1 -σ(t i )) < 0, ∀1 ≤ j ≤ n, ∀1 ≤ i ≤ k. ( 3 
|1 + µ(t i ) λ j d | < e -max 1≤j≤n (Re(λ j c )) max 1≤i≤k (t i+1 -σ(t i )) (3.33) 
where Re(λ j c ) is the real part of λ j c and |1+µ(t i ) λ j d | is the modulus of the complex number (1+µ(t i ) λ j d ).

Example 3.3

Let us consider the following example using the time scale T = P {tσ k ,t k+1} = ∞ k=0 5k + 3k 2k+4 , 5(k + 1)

x ∆ =                  -1 36 
1 3 -1 72 1 9 x, t ∈ ∪ ∞ k=0 5k + 3k 2k+4 , 5(k + 1) -2 6 -1 4 1 2 x, t ∈ ∪ ∞ k=0 {5(k + 1)} (3.34) System (3.34) can be written as (3.2) with t k = 5k, σ(t k ) = t σ k = 5k + 3k 2k+4 , 1 2 ≤ µ(t k ) = σ(t k ) -t k = 3k 2k+4 ≤ 3 2 , k ∈ N * . 3.5 ≤ t k+1 -σ(t k ) = 5 - 3k 2k + 4 ≤ 5, ∀k ∈ N.
Hence, the dynamical system (3.34) commutes between an unstable continuous-time linear subsystem

with A c = -1 36 
1 3 -1 72 1 9
and a stable linear discrete-time subsystem

A d = -2 6 -1 4 1 2
during a certain period of time. The eigenvalues of A c (resp

A d ) are λ 1 c = 1 18 and λ 2 c = 1 36 (resp λ 1 d = -1 2 , λ 2 d = -1).

One can easily verify that

A c A d = A d A c . Furthermore, max 1≤j≤2,1≤k≤∞ |1 + µ(t k ) λ j d | = 0.75 < e -max 1≤i≤2 (λ i c ) max 0≤k≤∞ (t k+1 -σ(t k )) = e -1
18 ×5 = 0.7575

Therefore Assumptions (i)-(v) are fulfilled. Using Theorem 3.3, the switched system (3.34) is exponentially stable.

To show the effectiveness of Theorem 3.3, one can derive the analytic solution of system (3.34) as follows

x(t) = C 1 e 1 18 (t-k i=0 µ(t i )) k i=1 (1 - 1 2 µ(t i )) V 1 + C 2 e 1 36 (t-k i=0 µ(t i )) k i=1 (1 -µ(t i )) V 2 with V 1 = 4 1 , V 2 = 6 1
, C 1 and C 2 are known constants which depend on x 0 .

This solution can be bounded as

x(t) ≤ |C 1 | e (t-k i=0 µ(t i )) 1 18 + log(1-1 2 ( 1 2 )) 5 - log(1-1 2 ( 1 2 )) 5 V 1 +|C 2 | e (t-k i=0 µ(t i )) 1 36 + log(1-1 2 ) 5 - log(1-1 2 ) 5 V 2 = √ 17 |C 1 | e (t-k i=0 µ(t i ))(-0.002)-0.0575 + √ 37 |C 2 | e (t-k i=0 µ(t i ))(-0.1109)-0.1386
The trajectories converge to zero as is shown in Fig. 3.4 where the initial state is x 0 = [5 1] T . Suppose that λ j c < 0 and log(max

λ j c + log(max 1≤i≤k {|1 + µ(t i ) λ j d |}) min 1≤i≤k (t i -σ(t i-1 )) < 0. (3.36) (b) log(max 1≤i≤k {|1 + µ(t i ) λ j d |}) < 0 such that λ j c + log(max 1≤i≤k {|1 + µ(t i ) λ j d |}) max 0≤i≤k (t i+1 -σ(t i )) < 0. ( 3 
1≤i≤k {|1 + µ(t i ) λ j d |}) > 0. Since k ≤ t-k i=0 µ(t i ) min 1≤i≤k (t i -σ(t i-1
)) , so

x(t) ≤ e (t-k i=0 µ(t i )) λ j c + log(max 1≤i≤k {|1+µ(t i ) λ j d |})
min 1≤i≤k (t i -σ(t i-1 ))

V j .

According to condition (a) in assumption (v), the switched system (3.2) is exponentially stable.

Suppose that log(max

1≤i≤k {|1 + µ(t i ) λ j d |}) < 0. Since k + 1 ≥ t-k i=0 µ(t i ) max 0≤i≤k (t i+1 -σ(t i )) , so x(t) ≤ e (t-k i=0 µ(t i )) λ j c + log(max 1≤i≤k |1+µ(t i ) λ j d |) max 0≤i≤k (t i+1 -σ(t i )) -log(max 1≤i≤k |1+µ(t i ) λ j d |) V j .
According to condition (b) in assumption (v), the switched system (3.2) is exponentially stable.

Remark 3.7

It is possible to Reax Assumption (i). Indeed, if the eigenvalues of matrices A c and A d are not real, one can replace conditions in assumption (v) by (a) Re(λ j c ) < 0 and log(max

1≤i≤k {|1 + µ(t i ) λ j d |}) > 0 such that Re(λ j c ) + log(max 1≤i≤k {|1 + µ(t i ) λ j d |}) min 1≤i≤k (t i -σ(t i-1 )) < 0. (3.39) (b) log(max 1≤i≤k {|1 + µ(t i ) λ j d |}) < 0 such that Re(λ j c ) + log(max 1≤i≤k {|1 + µ(t i ) λ j d |}) max 0≤i≤k (t i+1 -σ(t i )) < 0. ( 3.40) 
where Re(λ j c ) is the real part of λ j c and |1+µ(t i ) λ j d | is the modulus of the complex number (1+µ(t i ) λ j d ).

Example 3.4 Let us consider the following example using the time scale 

T = P {tσ k ,t k+1} = ∞ k=0 2k + k k+0.5 , 2(k + 1) x ∆ =                  5 4 -9 4 3 4 -7 4 x, t ∈ ∪ ∞ k=0 2k + k k+0.
= 2k, σ(t k ) = t σ k = 2k+ k k+0.5 , 2 3 ≤ µ(t k ) = σ(t k )-t k = k k+0.5 ≤ 1, 1 < t k+1 -σ(t k ) = k+1 k+0.5 < 2, k ∈ N * .
Hence, the dynamical system (3.41) commutes between an unstable continuous-time linear subsystem with A c = 

). One can easily verify that

A c A d = A d A c .
Furthermore, the conditions (a) and (b) of assumption (iv) are satisfied

λ j c + log(max 1≤i≤k {|1 + µ(t i ) λ j d |}) max 1≤i≤k (t i -σ(t i-1 )) = 1 2 + log(0.2) 2 = -0.3047 < 0.
and

λ j c + log(max 1≤i≤k {|1 + µ(t i ) λ j d |}) min 0≤i≤k (t i+1 -σ(t i )) = -1 + log(2) 1 = -0.3069 < 0.
The trajectories converge to zero as is shown in Fig. 3.5 where the initial state is 

x 0 = [1 3] T .

Generalization for non-diagonalizable matrices

Let A be a regressive n × n matrix, then there exists an invertible matrix Q, as described in Theorem 2.16 of Chapter 2, such that the exponential function of A is given by

e A (t, s) = Q     e J 1 (t, s) . . . e J l (t, s)     Q -1 for t, s ∈ T κ (3.44) with J =     J 1 . . . J l     , J k ∈ C d k ×d k , J k = λ k I + N =        λ k 1 0 . . . 0 λ k 1 . . . 0 . . . . . . λ k       
.

where k = 1, 2, . . . , l such that 

d 1 + d 2 + . . . + d l = n. We have σ(J k ) = {λ k }, whence σ(A) = {λ 1 , λ 2 , .
               1 m 1 λ k (t, s) . . . m d k -1 λ k (t, s) 1 . . . m d k -2 λ k (t, s) . . . . . . 1                for t, s ∈ T κ Lemma 3.2 [66]
Consider λ which is uniformly regressive, i.e there exist a γ > 0 such that

γ -1 ≤ |1 + µ(t)λ| for all t ∈ T κ . ( 3 

.45)

Then the estimate |m n λ (t, s)| ≤ γ n (ts) n holds for t ≥ s and n ∈ N 0 .

Remark 3.9 The general solution of system (3.2) given by (3.7) can be expressed by

x(t) = l j=1 e λ j c (t-k i=0 µ(t i )) k i=1 (1 + µ(t i )λ j d ) C j F (m d j -1 λ j c (t - i=1 µ(t i ), 0) , m d j -1 λ j d (t k+1 , t 1 )) V j (3.46)
where F (m

d j -1 λ j c (t -i=1 µ(t i ), 0) , m d j -1 λ j (t k+1 , t 1 )
) is a function which depends on sum and product of m

d j -1 λ j c (t -i=1 µ(t i ), 0) and m d j -1
λ j (t k+1 , t 1 ), d j is the dimension of associated Jordan matrix of λ j c (respectively λ j d ) and l is the dimension of the eigenspace of A c (respectively A d ). C j is a constant which depends on x 0 . From the above expression, the upper bound of x(t) is given by

x(t) ≤ l j=1 e λ j c (t-k i=0 µ(t i )) k i=1 |1 + µ(t i )λ j d | × |C j | max 1≤j≤l (max 1≤n≤d j -1 |F (m n λ j c (t -i=1 µ(t i ), 0) , m n λ j (t k+1 , t 1 ))|) V j (3.47)
To ensure the stability of switched system (3.2), and by Lemma 3.2, it is sufficient that the assumptions of previous Theorems are satisfied since the terms e λ j c (t

-k i=0 µ(t i )) k i=1 |1 + µ(t i )λ j d | converge to zero as t → ∞ and F (m n λ j c (t -i=1 µ(t i ), 0) , m n λ j (t k+1 , t 1 )
) is bounded by a power of (ts).

We have given in this section sufficient conditions of exponential stability of the switched system (3.2). These conditions are only sufficient. Nevertheless, we have considered an arbitrary time-varying graininess function µ(t) which is bounded. In the following, we will introduce necessary and sufficient conditions for exponential stability of the switched system (3.2), introducing a region of exponential stability. However, for a non-uniform arbitrary time scale, the region of exponential stability remains difficult to compute except for some special cases. In the next subsection, we will introduce some illustrative examples to determine the region of exponential stability of system (3.2) on time scale T = P {tσ k t k+1 } where µ(t) is periodic in time.

Necessary and sufficient conditions of exponential stability of scalar switched systems on time scales

In this section, we consider the switched system (3.2) and we will define a subset of the complex plane which is Reevant for a spectral characterization of the exponential stability. To motivate this notion, let us first study the scalar case.

• General case

Consider the time invariant scalar switched system defined on time scale T = P {σ(t k ),t k+1 } as follows Consider the time scale T = P {σ(t k ),t k+1 } . We define for an arbitrary t 0 ∈ T,

x ∆ (t) =        λ c x(t) for t ∈ ∪ ∞ k=0 [t σ k , t k+1 [ λ d x(t) for t ∈ ∪ ∞ k=0 {t k+1 } (3.
with λ c,d =        λ c , if µ(t) = 0 λ d , if µ(t) = 0 and lim s→µ(t) log |1 + sλ c,d | s =        Re(λ c ), if µ(t) = 0 log |1+µ(t)λ d | µ(t) , if µ(t) = 0 Proof 3.5 ( 
∆τ = log(K) + α(t - k i=0 µ(t i ) -t 0 ) + k i=1 µ(t i ) log(1+µ(ti)α) µ(ti) ≤ log(K) + α(t - k i=0 µ(t i ) -t 0 ) + k i=1 µ(t i )α = log(K) + α(t -t 0 )
S(T) = {λ c , λ d ∈ C : lim sup t→∞ 1 t -t 0 t t 0 lim s→µ(τ ) log |1 + sλ c,d | s ∆τ < 0},
the set of exponential stability of system (3.48) on time scale T = P {σ(t k ),t k+1 } .

Remark 3.10

The set S(T) is symmetric with respect to real axis as Re(λ c ) = Re( λc ) and |1 + sλ d | = |1 + s λd | for s real ( λ is a complex conjugate of λ).

In general, the calculation of the exponential stability set S(T) is difficult. For this, a Lemma is proposed to compute γ(λ c,d ).

Lemma 3.3

Let Then γ(λ c,d ) = a p , which concludes the proof.

Example 3.5

Consider the time scale

T = P {k,k+σ} = ∪ ∞ k=0 [k, k + σ], with σ ∈]0, 1[. So we have µ(t k ) = (k + 1) - (k + σ) = 1 -σ.
To compute the set of exponential stability of (3.48) we remark that 

σ λ c + log |1 + (1 -σ)λ d | < 0 It implies that              1 + (1 -σ)λ d < e -σ λc if λ d > -1 1-σ -1 -(1 -σ)λ d < e -σ λc if λ d < -1 1-σ (3.50)
From these inequalities, the region of exponential stability is given by the region between the curves in Fig. 3.6 for σ = 0.1, Fig. • Let us consider now λ c and λ d as complex numbers. Let λ d = x + iy, implies that

(1 + (1 -σ)x) 2 + ((1 -σ)y) 2 < e -2σ Re(λc) therefore (x + 1 1 -σ ) 2 + y 2 < e -2σ Re(λc) (1 -σ) 2
From these inequalities, the region of exponential stability is given by the region inside the circle with center ( -1 1-σ , 0) and radius e -2σ Re(λc)

(1-σ) 2
for all values of Re(λ c ). Consider the complex number λ = x + iy, then inequality

(1 + (1 -σ)x) 2 + (1 -σ) 2 y 2 < e -2σx
implies that the region of exponential stability is disconnected for 0 < σ < 0.21. Fig. 3.12 illustrates the region of exponential stability of system (3.48) for σ = 0.5 and σ = 0.21.

Remark 3 .11 In particular, if λ c = λ d , then S C (T) is included in the left half plane as is shown in [START_REF] Potzsche | A spectral characterization of exponential stability for linear time-invariant systems on time scales[END_REF], which is not the case for the switched systems with λ c = λ d . In the next example, we will explicitly determine the region of exponential stability of (3.48) on a non-uniform time scale when the graininess function µ(t k ) is periodic.

Example 3.6

Consider the time scale

T = P {σ(t k ),t k+1 } = ∪ ∞ k=0 {[2k, 2k + σ 1 ] ∪ [2k + 1, (2k + 1) + σ 2 ]} with σ 1 , σ 2 ∈]0, 1[. Then µ 1 (t k ) = (2k +1)-(2k +σ 1 ) = 1-σ 1 and µ 2 (t k ) = (2k +2)-(2k +1+σ 2 ) = 1 -σ 2 .
To calculate the set of exponential stability of system (3.48) on this time scale, we see that

2(k+1) 2k lim s→µ(t) log |1+sλ c,d | s ∆t = 2k+σ 1 2k Re(λ c ) dt + 2k+1 2k+σ 1 log |1+(1-σ 1 )λ d | 1-σ 1 + 2k+1+σ 2 2k+1 Re(λ c ) dt + 2(k+1) (2k+1)+σ 2 log |1+(1-σ 2 )λ d | 1-σ 2 = (σ 1 + σ 2 )Re(λ c ) + log(|1 + (1 -σ 1 )λ d ||1 + (1 -σ 2 )λ d |)
According to Lemma 3.3, for t 0 = 0, p = 2, we have

S(T) = {λ c , λ d ∈ C, (σ 1 + σ 2 )Re(λ c ) + log(|1 + (1 -σ 1 )λ d ||1 + (1 -σ 2 )λ d |) < 0}
Suppose that λ c and λ d are real numbers, then the region of exponential stability of system (3.48) is

given by the region between the curves in Fig. 3. 13. 

P {σ(t k ),t k+1 } = ∪ ∞ k=0 {[2k, 2k + σ 1 ] ∪ [2k + 1, (2k + 1) + σ 2 ]} with σ 1 = 1 2 , σ 2 = 2
{σ(t k ),t k+1 } = ∪ ∞ k=0 {[2k, 2k + σ 1 ] ∪ [2k + 1, (2k + 1) + σ 2 ]} with σ 1 = 1 2 , σ 2 =

Region of exponential stability of linear switched system on time scale

Consider now the switched linear system

x ∆ (t) =        A c x(t) for t ∈ ∪ ∞ k=0 [t σ k , t k+1 [ A d x(t) for t ∈ ∪ ∞ k=0 {t k+1 } (3.51) 
on time scale T = P {tσ k ,t k+1 } such that A c and A d are constant regressive matrices which are pairwise commuting. In the following, we will present a theorem which characterizes the exponential stability set of this class of switched systems.

Theorem 3.5

Let a time scale T = P {σ(t k ),t k+1 } and consider system (3.51). Then the following properties are satisfied:

(i) If system (3.51) is exponentially stable, then for any eigenpairs (λ j c , V j ) and (λ j d , V j ) of A c and A d respectively, we have {λ j c , λ j d } ⊂ S(T) for all 1 ≤ j ≤ n.

(ii) If the eigenvalues λ j d of A d are uniformly regressive and if for all eigenpaire (λ j c , V j ) and (λ j d , V j ) of A c and A d respectively, we have {λ j c , λ j d } ⊂ S(T), then system (3.51) is exponentially stable.

Proof 3.7

(i) The solution of system (3.51) is given by

x(t) = e Ac((t-k i=0 µ(t i ))-t 0 ) k i=1 (1 + µ(t i )A d ) x(t 0 ) = e Ac (t -k i=0 µ(t i ), t 0 ) e A d (t k+1 , t 1 ) x(t 0 ) = e A c,d (t, t 0 ) x(t 0 )
Since matrices A c and A d are pairwise commuting, then

x(t) = e λ j c ((t-k i=0 µ(t i ))-t 0 ) k i=1 (1 + µ(t i )λ j d ) V j = e λ j c (t -k i=0 µ(t i ), t 0 ) e λ j d (t k+1 , t 1 ) V j = e λ j c,d (t, t 0 ) V j
is a solution of system (3.51) such that (λ j c , V j ) (respectively (λ j d , V j )) are the eigenpairs of A c (respectively A d ) for all 1 ≤ j ≤ n.

If system (3.51) is exponentially stable, then there are a constant K ≥ 1 and α a negative positively regressive constant function (α ∈ R + ) such that

|e λ j c,d (t, t 0 )| ≤ Ke α (t, t 0 ), for t ≥ t 0
for all eigenpairs (λ j c , V j ) and (λ j d , V j ) of A c and A d respectively. From Proposition 3.1, one can conclude that {λ j c , λ j d } ⊂ S(T).

(ii) Since the eigenvalues of A d are uniformly regressive, there exists γ > 0 such that

γ -1 ≤ |1 + µ(t)λ j d | for t ∈ T, ∀1 ≤ j ≤ n
Therefore, for j ∈ {1, . 

|m n k λ j c,d (t, t 0 ) e λ j c,d (t, t 0 )| ≤ K 1 γ n k (t -t 0 ) n k e α(t-t 0 )
for t ≥ t 0 . Similarly to [START_REF] Potzsche | A spectral characterization of exponential stability for linear time-invariant systems on time scales[END_REF], one can derive:

e A c,d (t, t 0 ) ≤ K e α(t-t 0 ) for all t ≥ t 0 (3.52)
with α is a negative positively regressive constante and K ≥ 1. One can conclude the exponential stability of (3.51).

Example 3.7

Consider the same time scale as in Example 3.5, namely

T = P {σ(t k ),t k+1 } = ∪ ∞ k=0 {[2k, 2k + σ 1 ] ∪ [2k + 1, (2k + 1) + σ 2 ]} with σ 1 = 1 2 , σ 2 = 2 3
. Consider the switched system

x ∆ (t) =                  -5 3 
4 3 8 3 -1 3 x(t) for t ∈ ∪ ∞ k=0 [t σ k , t k+1 [ 2 -2 -4 0 x(t) for t ∈ ∪ ∞ k=0 {t k+1 } (3.53)
The matrices are pairwise commuting.

V 1 = 1 2
1 is the eigenvector corresponding to the eigenvalues

λ 1 c = 1, λ 1 d = -2, and V 2 = - 1 
1
is the eigenvector corresponding to the eigenvalues λ 2 c = -3,

λ 2 d = 4.
According to Fig. 3.13, all eigenvalues λ 1 c , λ 1 d , λ 2 c and λ 2 d are in the region of stability S(T). Trajectories converge to zero as shown in Fig. 3.15 where the initial state is x 0 = [1 -0.5] T .

Remark 3.12

Note that in Eq. (3.53), both continuous and discrete subsystems are unstable but the switched system is stable. 
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P {tσ k ,t k+1 } = ∪ ∞ k=0 {[2k, 2k + σ 1 ] ∪ [2k + 1, (2k + 1) + σ 2 ]} with σ 1 = 1 2 , σ 2 = 2 3 .
Example 3.8 Consider now the switched system

x ∆ =                  5 -3 6 -4 x for t ∈ ∪ ∞ k=0 [t σ k , t k+1 [ 4 - 6 
12 -14

x for t ∈ ∪ ∞ k=0 {t k+1 } (3.54)
The matrices are pairwise commuting.

V 1 = 1 1
is the eigenvector corresponding to the eigenvalues

λ 1 c = 2, λ 1 d = -2, and V 2 = 1 2
is the eigenvector corresponding to the eigenvalues λ 2 c = -1,

λ 2 d = -8.
According to Fig. 3.13, all eigenvalues λ 1 c , λ 1 d , λ 2 c and λ 2 d are not within the stability region S(T). Trajectories diverge as shown in Fig. 3.16 where the initial state is 

x 0 = [1 -2] T
= ∪ ∞ k=0 {[2k, 2k +σ 1 ]∪[2k +1, (2k + 1) + σ 2 ]} with σ 1 = 1 2 , σ 2 = 2 3 .
The solution of (3.2), as shown in the previous section, is given by:

x(t) = e Ac(t-σ(t k )) (I + µ(t k )A d )e Ac(t k -σ(t k-1 )) . . . (I + µ(t 1 )A d )e Act 1 x 0 (3.55)
We note that we cannot group the terms because of the non-commutativity of matrices A c and A d . 

λ c = max j {λ j c , λ j c ∈ spect(A c )} and |1 + µ(t)λ d | = max j {|1 + µ(t)λ j d |, λ j d ∈ spect(A d )}, ∀t ∈ ∪ ∞ k=1 {t k } and for t, s ∈ [t σ k , t k+1 ], t ≥ s, ∀k ∈ N, e Ac (t, s) ≤ β c e λc (t, s) and e A d (σ(t i ), t i ) ≤ β d e λ d (σ(t i ), t i ), ∀1 ≤ i ≤ k,
such that one of the following conditions is satisfied a) A d is stable (i.e all eigenvalues of A d lie strictly within the Hilger circle ), and

max 1≤i≤k |1 + µ(t i )λ d | < 1 β 2 , (3.56)
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b)

max 1≤i≤k |1 + µ(t i ) λ d | < e [-λc min 1≤i≤k (t i -σ(t i-1 )) -log(β 2 )] (3.57) β = max{β c , β d } Remark 3.13
Condition (3.56) means that A d is stable (i.e the eigenvalues of A d strictly lie within the Hilger circle).

If condition (3.56) does not hold, one may check condition (3.57). Roughly speaking, this condition means that the effect of the discrete-time subsystem (stable or instable) is less significant than the effect of the continuous-time subsystem to guarantee the exponential stability of the switched system.

Theorem 3.6

Under Assumptions (i)-(iv), the switched system (3.2) is exponentially stable.

Proof 3.8

According to Assumption (i), the state transition matrix of the continuous-time subsystem satisfies e Ac (t, s) = e Ac(t-s) ≤ β c e λc(t-s)

for t, s ∈ [t σ k , t k+1 [, t ≥ s with λ c < 0.
Therefore, on [t σ k , t k+1 ], k ∈ N, one can derive an upper bound of solution (3.55) as follows

x(t) ≤ e Ac(t-σ(t k )) e A d (σ(t k ), t k ) e Ac(t k -σ(t k-1 )) . . . e A d (σ(t 1 ), t 1 ) e Act 1 x 0 ≤ β c e λc(t-σ(t k )) β d |1 + µ(t k )λ d | β c e λc(t k -σ(t k-1 )) . . . β d |1 + µ(t 1 )λ d | β c e λct 1 x 0 ≤ β k+1 c β k d e λc(t-k i=1 µ(t i )) k i=1 |1 + µ(t i )λ d | x 0 ≤ β 2k+1 e λc(t-k i=1 µ(t i )) (max 1≤i≤k |1 + µ(t i )λ d | k ) x 0 ≤ β e λc(t-k i=1 µ(t i )) e k[log(max 1≤i≤k |1+µ(t i )λ d |)+log(β 2 )] x 0 with β = max{β c , β d }.
Suppose that condition (3.56) is satisfied, i.e.

log( max

1≤i≤k |1 + µ(t i )λ d |) + log(β 2 ) < 0 Assumption (ii) yields k ≥ k i=1 µ(t i ) µ max
Then, the upper bound of solution (3. 

k ≤ t -k i=1 µ(t i ) min 1≤i≤k (t i -σ(t i-1 ))
Then, the upper bound of solution (3.55) becomes

x(t) ≤ β e (t-k i=1 µ(t i )) λc+ log(max 1≤i≤k |1+µ(t i )λ d |)+log(β 2 ) min 1≤i≤k (t i -σ(t i-1 ))
x 0 (3.58)

Suppose that condition (3.57) is satisfied. Therefore, one can obtain

log( max 1≤i≤k |1 + µ(t i )λ d |) + log(β 2 ) < -λ c min 1≤i≤k (t i -σ(t i-1 )) (3.59)
It means that 

λ c + log(max 1≤i≤k |1 + µ(t i )λ d |) + log(β 2 ) min 1≤i≤k (t i -σ(t i-1 )) < 0 (3.
max 1≤i≤k |1 + µ(t i )λ d | < 1 β 2 , max 1≤i≤k |1 + µ(t i ) λ d | < e [-Re(λc) min 1≤i≤k (t i -σ(t i-1 )) -log(β 2 )]
respectively, where Re(λ c ) is the real part of λ c and |1 + µ(t i ) λ d | is the modulus of the complex number

(1 + µ(t i ) λ d ).

Remark 3.15

From Proposition 2.3, there always exist constants 

α c ∈ R, α d ∈ R + and β c , β d ≥ 1 such that α c ≥ Re(λ c ) = max j {Re(λ j c ), λ j c ∈ spec(A c )} and α d ≥ Re µ(.) (λ d ) = max j {Re µ(.) (λ j d ), λ j d ∈ spec(A d )}, ∀ t ∈ ∪ ∞ k=1 {t k }.
max 1≤i≤k (1 + µ(t i )α d ) < 1 β 2 , max 1≤i≤k (1 + µ(t i ) α d ) < e [-αc min 1≤i≤k (t i -σ(t i-1 )) -log(β 2 )] .
Example 3.9

Let us consider the following example using the time scale T = P {tσ k ,t k+1} = ∞ k=0 2k + 1.5k k+1. 25 , 2(k + 1)

x ∆ =                  -3 2 1 1 -1 x, t ∈ ∪ ∞ k=0 2k + 1.5k k+1.25 , 2(k + 1) -1 2 
1 10 0 -1 x, t ∈ ∪ ∞ k=0 {2(k + 1)} (3.61)
System (3.61) can be written as (3.2) with

t k = 2k, σ(t k ) = t σ k = 2k + 1.5k k+1.25 , 2 3 ≤ µ(t k ) = σ(t k ) -t k = 1.5k k+1.25 ≤ 3 2 , k ∈ N.
Hence, the dynamical system (3.61) commutes between a stable continuous-time linear subsystem with

A c = -3 2 1 1
-1 and a stable linear discrete-time subsystem

A d = -1 2 
1 10
0 -1 during a certain period of time.

The condition (3.56) is satisfied such that the eigenvalues of

A d are λ 1 d = -1 2 , λ 2 d = -1, and for β = 1.2198, max 1≤i≤k,1≤j≤n |1 + µ(t i )λ j d | = 0.6667 < 1 β 2 = 0.6721.
Hence the exponential stability of the solution holds. It is shown in Fig. 3.17 where the initial state is

x 0 = [0.5 2] T .
If we consider the same system (3.61) but in other time scale

T = P {tσ k ,t k+1} = ∞ k=0 5 2 k + 3k 2k+7 , 2(k + 1) , with t k = 5 2 k, σ(t k ) = t σ k = 5 2 k + 3k 2k+7 , 1 3 ≤ µ(t k ) = σ(t k ) -t k = 3k 2k+7 ≤ 3 2 and 1 ≤ (t i -σ(t i-1
)) ≤ 39 28 , k ∈ N * . The discrete subsystem is stable on this time scale, but the condition (3.56) is not satisfied whereas condition (3.57) is satisfied:

max 1≤i≤k,1≤j≤n |1 + µ(t i )λ j d | = 0.8333 < e [-λc min 1≤i≤k (t i -σ(t i-1 )) -log(β 2 )] = e [0.2192-log((1.2198) 2 )] = 0.8368.
Hence the exponential stability of the solution holds. It is shown in Fig. 3.18 where the initial state is

x 0 = [0.5 2] T .
Multiplying A c by 4, the continuous-time subsystem is stable. Multiplying A d by -1 2 , the discretetime subsystem becomes unstable. On time scale T = P {tσ k ,t k+1} = ∞ k=0 2k + 1.5k k+1. 25 , 2(k + 1) we can show that the condition (3.57) is satisfied since

max 1≤i≤k,1≤j≤n |1 + µ(t i )λ j d | = 1.375 < e [-λc min 1≤i≤k (t i -σ(t i-1 )) -log(β 2 )] = e [(0.2192×4)-log((1.2198) 2 )] = 1.6151.
Hence the exponential stability of the solution holds. It is shown in Fig. 3.19 where the initial state is (i) Matrices A c , A d are diagonalizable and has a real eigenvalues and suppose that A d is Hilger stable with respect to P {tσ k ,t k+1 } whereas A c is unstable.

x 0 = [0.
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(ii) The graininess function is bounded i.e 0 < µ min ≤ µ(t) ≤ µ max for all t ∈ ∪ ∞ k=0 {t k+1 } and (t k+1t σ k ) is upper bounded (i.e the dwell time for the continuous-time subsystem is bounded) for all k ∈ N.

(iii) Let us define constants λ

c ∈ R + , λ d ∈ R + , β c , β d ≥ 1 as in Case 1 (iii). It is assumed that max 1≤i≤k |1 + µ(t i )λ d | ≤ e [-λc max 0≤i≤k (t i+1 -σ(t i ))-log(β 2 )] (3.62) for β = max{β c , β d }.
Remark 3.16

Contrary to Theorem 3.6, λ c is strictly positive. Hence, similarly to condition (3.57), inequality (3.62) means that the effect of the unstable subsystem is less significant than the effect of the stable subsystem to guarantee the exponential stability of the switched system.

Theorem 3.7

Under the above Assumptions (i)-(iii), the switched system (3.2) is exponentially stable.

Proof 3.9

On [t σ k , t k+1 ], k ∈ N, the general solution of (3.2) is upper bounded by

x(t) ≤ β e λc(t-k i=1 µ(t i )) e k[log(max 1≤i≤k |1+µ(t i )λ d |)+log(β 2 )] x 0 (3.63)
where β = max{β c , β d } and λ c > 0. Using Assumption (ii), one can derive, for t ∈ [t σ k , t k+1 ],

k + 1 ≥ t -k i=1 µ(t i ) max 0≤i≤k (t i+1 -σ(t i ))
Since A d is Hilger stable, λ j d strictly lies within the Hilger circle

∀1 ≤ j ≤ n, i.e. |1 + µ(t) λ j d | ≤ |1 + µ(t) λ d | < 1, ∀t ∈ ∪ ∞ k=0 {t k+1 }. Since λ c > 0, condition (3.62) yields log( max 1≤i≤k |1 + µ(t i )λ d |) + log(β 2 ) < 0 (3.64)
It implies that the upper bound of x(t) in (3.63) becomes

x(t) ≤ βe (t-k i=1 µ(t i )) λc+ log(max 1≤i≤k |1+µ(t i )λ d |)+log(β 2 ) max 0≤i≤k (t i+1 -σ(t i )) . e -[log(max 1≤i≤k |1+µ(t i )λ d |)+log(β 2 )] x 0 (3.65)
Using Assumption (iii), one can obtain

log( max 1≤i≤k |1 + µ(t i )λ d |) + log(β 2 ) + λ c [ max 0≤i≤k (t i+1 -σ(t i ))] < 0 (3.66)
Hence, one can derive Let us consider the following example using the time scale 25 , 2(k + 1)

λ c + log(max 1≤i≤k (1 + µ(t i ) λ d )) max 0≤i≤k (t i+1 -σ(t i )) < 0. ( 3 
T = P {tσ k ,t k+1} = ∞ k=0 2k + 1.5k k+1.
x ∆ =                  0.0857 0.0624 0.0442 0.0324 x, t ∈ ∪ ∞ k=0 2k + 1.5k k+1.25 , 2(k + 1) -1 0 0 -0.6 x, t ∈ ∪ ∞ k=0 {2(k + 1)} (3.68)
System (3.68) can be written as (3.2) with

t k = 2k, σ(t k ) = t σ k = 2k + 1.5k k+1.25 , 2 3 ≤ µ(t k ) = σ(t k ) -t k = 1.5k k+1.25 ≤ 3 2 and 2 3 ≤ (t k+1 -σ(t k )) ≤ 3 2 , k ∈ N.
Hence, the dynamical system (3.68) commutes between an unstable continuous-time linear subsystem
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with A c = 0.0857 0.0624 0.0442 0.0324 and a stable linear discrete-time subsystem A d = -1 0 0 -0.6 during a certain period of time.

The condition of the assumption (iv) is satisfied such that the eigenvalues of A c are λ 1 c = 0.118, λ 2 c = 0.0002, the eigenvalues of A d are λ 1 d = -1, λ 2 d = -0.6, and for β = 1.1673,

max 1≤i≤k,1≤j≤n |1 + µ(t i )λ j d | = 0.6 < e [-λc max 0≤i≤k (t i+1 -σ(t i )) -log(β 2 )]
= e [-0.118(1.5)-log((1.1673) 2 )] = 0.6149.

Hence the exponential stability of the solution holds. It is shown in Fig. 3.20 where the initial state is 

x 0 = [-0.
max 1≤i≤k |1 + µ(t i )λ d | ≤ e [-Re(λc) max 0≤i≤k (t i+1 -σ(t i ))-log(β 2 )]
where Re(λ c ) is the real part of λ c and |1+µ(t i ) λ d | is the modulus of the complex number (1+µ(t i ) λ d ).

Remark 3.18

From Proposition 2. 

(1 + µ(t i )α d ) ≤ e [-αc max 0≤i≤k (t i+1 -σ(t i ))-log(β 2 )] .

Case3: Both subsystems are unstable

Consider now the switched linear system (3.2) and suppose that the following assumptions are fulfilled:

(i) For each t ∈ P {tσ k ,t k+1 } , A c and A d are unstable.

(ii) The graininess function is bounded i.e., 0 < µ min ≤ µ(t) ≤ µ max for all t ∈ ∪ ∞ k=1 {t k+1 } and (t k+1t σ k ) is bounded (i.e the dwell time for the continuous-time subsystem is bounded) for all k ∈ N.

(iii) A c and A d are regressive matrices, (iv) There exists

a i ∈]0, 1[ such that e Ac(t i+1 -σ(t i )) (I + µ(t i )A d ) ≤ a i , ∀0 ≤ i ≤ k.
(3.69)

Theorem 3.8
Under Assumptions (i)-(iv), the switched system (3.2) is exponentially stable.

Proof 3.10

The solution of switched system (3.2) is given by (3.55). So, for t = t k+1 ,

x(t k+1 ) = k i=0 e Ac(t k+1-i -σ(t k-i )) (I + µ(t k-i )A d ) x 0 (3.70) Let 0 < a i < 1 such that for all 0 ≤ i ≤ k, e Ac(t i+1 -σ(t i )) (I + µ(t i )A d ) ≤ a i , (3.71) 
From this inequality, the upper bound of solution (3.70) is given by

x(t k+1 ) ≤ k i=0 e Ac(t k+1-i -σ(t k-i )) (I + µ(t k-i )A d ) x 0 ≤ k i=0 a i x 0 = e k i=1 log(a i ) x 0 ≤ e k max 0≤i≤k log(a i ) x 0 (3.72) Since k + 1 ≥ t k+1 -k i=0 µ(t i ) max 0≤i≤k (t i+1 -t σ i )
, so

x(t k+1 ) ≤ e (t k+1 -k i=0 µ(t i )) (max 0≤i≤k log(a i )) max 0≤i≤k (t i+1 -tσ i ) -max 0≤i≤k log(a i ) x 0 (3.73) 
which implies the exponential stability of the solution of switched system (3.2).

Example 3.11

Let us consider the following example using the time scale

T = P {tσ k ,t k+1} = ∞ k=0 k + k 2k+1 , (k + 1) x ∆ =                  -1 0 0 1 2 x, t ∈ ∪ ∞ k=0 k + k 2k+1 , k + 1 -9 2 1 0 -1 x, t ∈ ∪ ∞ k=0 {k + 1} (3.74) System (3.74 
) can be written as (3.2) with

t k = k, σ(t k ) = t σ k = k + k 2k+1 , 1 3 ≤ µ(t k ) = σ(t k ) -t k = k 2k+1 ≤ 1 2 , 1 < t k+1 -σ(t k ) = k+1 2k+1 < 2 3 , k ∈ N.
Hence, the dynamical system (3.74) commutes between an unstable continuous-time linear subsystem

with A c = -1 0 0 1 2
and an unstable linear discrete-time subsystem

A d = -9 2 
1 0 -1 with respect to time scale such that A c and A d don't commute each other.

e Ac(t i+1 -σ(t i ))

(I + µ(t i )A d ) = e -(t i+1 -σ(t i )) (1 + µ(t i )( -9 2 )) µ(t i )e -(t i+1 -σ(t i )) 0 (1 -µ(t i ))e 0.5(t i+1 -σ(t i ))
and 0.808 ≤ e Ac(t i+1 -σ(t i )) (I + µ(t i )A d ) ≤ 0.8787 for all 0 ≤ i ≤ k. So the switched system is exponentially stable and the trajectories converge to zero as is shown in Fig. 3.21 where the initial state is x 0 = [-1 3] T .

Conclusion

In this chapter we have analyzed exponential the stability of a class of linear switched systems which evolve on a non-uniform time domain formed by a union of disjoint intervals of variable length and variable gap using the time scale theory. The considered class consists of a linear continuous-time subsystem and linear discrete-time subsystem. In the first part, sufficient conditions are derived to ensure the exponential stability of this class of switched systems such that the matrices of continuoustime subsystem and discrete-time subsystem are pairwise commuting where both subsystems are stable, one of the subsystems is stable and the other is unstable and finally in the case where the 

Stability analysis of a class of uncertain linear switched systems on time scales

The objective of this chapter is to study the stability of nonlinear perturbed switched systems on time scales. We are interested in extending the results of previous chapter. The considered class consists of a set of uncertain continuous-time subsystem and uncertain discrete-time subsystems on time scale

T = P {tσ k ,t k+1 } = ∪ ∞ k=0 [t σ k , t k+1
]. We will first present conditions of existence and uniqueness of solutions of a nonlinear dynamical system on arbitrary time scales. Subsequently, we will present some results on the stability of linear dynamic systems with a nonlinear uncertain term on arbitrary time scales. Secondly, we will give sufficient conditions for stability of perturbed nonlinear switched systems on time scale

T = P {tσ k ,t k+1 } = ∪ ∞ k=0 [t σ k , t k+1 ]
where the nonlinearity is in the perturbed term using explicit solution of switched system.

Finally, and to avoid the computation of the explicit solution of the system, a common quadratic Lyapunov function will be designed to guarantee the asymptotic stability of the given class of switched systems. It will be shown that, using the linear growth conditions on uncertainties, one can derive some conditions to guarantee the asymptotic stability of the switched uncertain systems on time scale with bounded graininess function.

Existence and uniqueness of solutions of nonlinear systems on time scales

Let us first present some definitions that are useful to give sufficient conditions for the existence and uniqueness of the solution of nonlinear initial value problem

x ∆ (t) = f (t, x(t)), x(t 0 ) = x 0 (4.1) 
Theorem 4.5 [START_REF] Bohner | Dynamic Equations on Time Scales: An Introduction with Applications[END_REF] Let A ∈ R be an n × n matrix-valued function on T. Suppose that f : T → R n is rd-continuous. Let t 0 ∈ T and x 0 ∈ R n . Then the initial value problem

x ∆ (t) = A(t)x(t) + f (t), x(t 0 ) = x 0 (4.4) 
has a unique solution x : T → R n given by

x(t) = Φ A (t, t 0 )x 0 + t t 0 Φ A (t, σ(s))f (s)∆s, (4.5) 
where Φ A (t, t 0 ) is the transition matrix of A on T.

If A(t) = A is a constant matrix, then the transition matrix of A is defined by Φ A (t, t 0 ) = e A (t, t 0 ).

We will introduce in the next section some results concerning the stability of linear dynamic systems affected by an uncertain nonlinear terms.

Recall on stability for perturbed nonlinear system on time scales

Let us present the Gronwall's inequalities on time scale. Lemma

Let x, f ∈ C rd and p ∈ R + . Then

x ∆ (t) ≤ p(t)x(t) + f (t), for all t ∈ T implies that

x(t) ≤ x(t 0 )e p (t, t 0 ) + t t 0 e p (t, σ(s))f (s)∆s for all t 0 , t ∈ T.

Theorem 4.6 (Gronwal's inequality on time scale) [3] Let x, f, p ∈ C rd and p ≥ 0. Then

x(t) ≤ f (t) + t t 0
x(s)p(s)∆s, for all t ∈ T implies that

x(t) ≤ f (t) + t t 0 e p (t, σ(s))f (s)p(s)∆s for all t 0 , t ∈ T. Corollary 4.2 [3] Let x, p ∈ C rd , x 0 ∈ R and p ≥ 0. Then x(t) ≤ x 0 + t t 0 p(s)x(s)∆s, for all t ∈ T implies that x(t) ≤ x 0 e p (t, t 0 )
for all t 0 , t ∈ T.

Let the linear dynamical system

x ∆ (t) = Ax(t), x(t 0 ) = x 0 (4.6) 
Suppose that f : T × R n → R n is rd-continuous with respect to variable t and f (t, 0) = 0. Let A a n × n constant matrix, t 0 ∈ T and x 0 ∈ R n . The unique solution of the initial value problem

x ∆ (t) = Ax(t) + f (t, x), x(t 0 ) = x 0 (4.7) 
is given by

x(t) = e A (t, t 0 )x 0 + t t 0 e A (t, σ(s))f (s, x(s))∆s (4.8) 
Theorem 4.7 [START_REF] Du | On the exponential stability of dynamic equations on time scales[END_REF] If the following conditions are satisfied i) System (4.6) is exponentially stable such that its solution verifies x(t) ≤ βe α (t, t 0 ) x 0 with

β ≥ 1, α < 0 and α ∈ R + . ii) f (t, x) ≤ L x , with L is a positive constant.
iii) α + βL < 0.

Then, the perturbed nonlinear system (4.7) is exponentially stable.

In particular, if the perturbed dynamical system (4.7) is in the form

x ∆ (t) = Ax(t) + Bx(t) (4.9) 
Then, it is exponentially stable if the following conditions hold i) The non perturbed linear system is exponentially stable such that its solution verifies x(t) ≤ βe α (t, t 0 ) x 0 with β ≥ 1, α < 0 and α ∈ R + .

ii) L = sup t∈T B(t) < +∞.

iii) α + βL < 0.

Sufficient conditions are given in the following theorem to ensure the exponential stability of the perturbed system (4.7) with integrable perturbation f (t, x).

Theorem 4.8 [START_REF] Du | On the exponential stability of dynamic equations on time scales[END_REF] If the following conditions are satisfied i) The non perturbed linear system (4.6) is exponentially stable such that x(t) ≤ βe α (t, t 0 ) x 0 with β ≥ 1, α < 0 and α ∈ R + .

ii) f (t, x) ≤ L(t) x .

iii)

+∞ t 0 L(t) 1+µ(t)α ∆t < +∞.
Then, the perturbed dynamical system (4.7) is exponentially stable.

Remark 4.2

If α is uniformly positively regressive and ∞ t 0 L(t)∆t < +∞, then condition (iii) of Theorem 4.8 is always satisfied.

After these important results on the stability of perturbed dynamical systems, we will now study the exponential stability of linear perturbed switched systems on time scale

T = P {tσ k ,t k+1 } = ∪ ∞ k=0 [t σ k , t k+1
] in the presence of a nonlinear perturbation. As in the pervious chapter, we consider the class of switched systems which commute between continuous-time subsystem on intervals

∪ ∞ k=0 [t σ k , t k+1 [ and a discrete-time subsystem at times ∪ ∞ k=0 {t k+1 }.

4.3

Stability for perturbed switched systems on T = P {t σ k ,t k+1 }

Problem statement

Let us consider the same time scale

T = P {tσ k ,t k+1 } = ∪ ∞ k=0 [t σ k , t k+1 ],
as given in Chapter 3.

Let us recall the studied switched dynamical system on time scale

T = P {tσ k ,t k+1 } x ∆ (t) =        A c x(t) for t ∈ ∪ ∞ k=0 [t σ k , t k+1 [ A d x(t) for t ∈ ∪ ∞ k=0 {t k+1 } (4.10) 
Here, we will study the associated perturbed switched system 

x ∆ (t) =        A c x(t) + f (x(t)) for t ∈ ∪ ∞ k=0 [t σ k , t k+1 [ A d x(t) + g(x(t)) for t ∈ ∪ ∞ k=0 {t k+1 } (4.
x(t) = e Ac(t-k i=0 µ(t i )) k i=0 (I + µ(t i )A d ) x 0 = e Ac (t - k i=1 µ(t i ), 0) e A d (t k+1 , t 1 ) x 0 (4.12) 
Let us set

F (x(t)) =        f (x(t)) for t ∈ ∪ ∞ k=0 [t σ k , t k+1 [ g(x(t)) for t ∈ ∪ ∞ k=0 {t k+1 } (4.13) 
The solution of the perturbed switched system (4.11) can be derived using equation (4.8) as follows

• For t 0 ≤ t ≤ t 1 x(t) = e Ac(t-t 0 ) x 0 + t t 0 e Ac(t-s) f (x(s))ds Thus, for t = t 1 x(t 1 ) = e Ac(t 1 -t 0 ) x 0 + t 1 t 0 e Ac(t 1 -s) f (x(s))ds
• For t = σ(t 1 ), we have

x(σ(t 1 )) = (I + µ(t 1 )A d )x(t 1 ) + µ(t 1 )g(x(t 1 )) = (I + µ(t 1 )A d ) e Ac(t 1 -t 0 ) x 0 + t 1 t 0 e Ac(t 1 -s) f (x(s))ds + µ(t 1 )g(x(t 1 )) = e Ac(t 1 -t 0 ) (I + µ(t 1 )A d )x 0 + t 1 t 0 e Ac(t 1 -s) (I + µ(t 1 )A d )f (x(s))ds + µ(t 1 )g(x(t 1 )) • For σ(t 1 ) ≤ t ≤ t 2 x(t) = e Ac(t-σ(t 1 )) x(σ(t 1 )) + t σ(t 1 ) e Ac(t-s) f (x(s))ds = e Ac(t-σ(t 1 )) [e Ac(t 1 -t 0 ) (I + µ(t 1 )A d )x 0 + t 1 t 0 e Ac(t 1 -s) (I + µ(t 1 )A d )f (x(s))ds +µ(t 1 )g(x(t 1 ))] + t σ(t 1 ) e Ac(t-s) f (x(s))ds = e Ac(t-µ(t 1 )-t 0 ) (I + µ(t 1 )A d )x 0 + t 1 t 0 e Ac(t 1 -µ(t 1 )-s) (I + µ(t 1 )A d )f (x(s))ds + t σ(t 1 ) e Ac(t-s) f (x(s))ds + e Ac(t-σ(t 1 )) µ(t 1 )g(x(t 1 )) = e Ac(t-µ(t 1 )-t 0 ) (I + µ(t 1 )A d )x 0 + t 1 t 0 e Ac(t 1 -µ(t 1 )-s) (I + µ(t 1 )A d )f (x(s))ds + t σ(t 1 ) e Ac(t-s) f (x(s))ds + σ(t 1 ) t 1 e Ac(t-σ(s)) g(x(s))∆s = e Ac(t-µ(t 1 )-t 0 ) (I + µ(t 1 )A d )x 0 + t 1 t 0 e Ac(t 1 -µ(t 1 )-s) (I + µ(t 1 )A d )f (x(s))ds + t t 1 e Ac(t-σ(s)) F (x(s))∆s • For t = t 2 x(t 2 ) = e Ac(t 2 -µ(t 1 )-t 0 ) (I + µ(t 1 )A d )x 0 + t 1 t 0 e Ac(t 1 -µ(t 1 )-s) (I + µ(t 1 )A d )f (x(s))ds + t 2 t 1 e Ac(t 2 -σ(s)) F (x(s))∆s Hence, for t = σ(t 2 ) x(σ(t 2 )) = (I + µ(t 2 )A d )x(t 2 ) + µ(t 2 )g(x(t 2 )) • For σ(t 2 ) ≤ t ≤ t 3 x(t) = e Ac(t-σ(t 2 )) x(σ(t 2 )) + t σ(t 2 ) e Ac(t-s) f (x(s))ds = e Ac(t-σ(t 2 )) [(I + µ(t 2 )A d )x(t 2 ) + µ(t 2 )g(x(t 2 ))] + t σ(t 2 ) e Ac(t-s) f (x(s))ds = e Ac(t-σ(t 2 )) (I + µ(t 2 )A d )x(t 2 ) + µ(t 2 )e Ac(t-σ(t 2 )) g(x(t 2 )) + t σ(t 2 ) e Ac(t-s) f (x(s))ds = e Ac(t-σ(t 2 )) (I + µ(t 2 )A d )x(t 2 ) + σ(t 2 ) t 2
e Ac(t-σ(s)) g(x(s))∆s

+ t σ(t 2 ) e Ac(t-s) f (x(s))ds = e Ac(t-µ(t 1 )-µ(t 2 )-t 0 ) (I + µ(t 1 )A d )(I + µ(t 2 )A d )x 0 + t 1 t 0 e Ac(t-µ(t 1 )-µ(t 2 )-s) (I + µ(t 1 )A d )× (I + µ(t 2 )A d )f (x(s))ds + t 2 σ(t 1 ) e Ac(t-µ(t 2 )-s) (I + µ(t 2 )A d )f (x(s))ds+ σ(t 1 ) t 1 e Ac(t-µ(t 2 )-σ(s)) (I + µ(t 2 )A d )g(x(s))∆s + σ(t 2 ) t 2
e Ac(t-σ(s)) g(x(s))∆s

+ t σ(t 2 ) e Ac(t-s) f (x(s))ds = e Ac(t-µ(t 1 )-µ(t 2 )-t 0 ) (I + µ(t 1 )A d )(I + µ(t 2 )A d )x 0 + t 1 t 0 e Ac(t-µ(t 1 )-µ(t 2 )-s) (I + µ(t 1 )A d )× (I + µ(t 2 )A d )f (x(s))ds + t 2 σ(t 1 ) e Ac(t-µ(t 2 )-s) (I + µ(t 2 )A d )f (x(s))ds+ σ(t 1 ) t 1
e Ac(t-µ(t 2 )-σ(s)) (I + µ(t 2 )A d )g(x(s))∆s + t t 2 e Ac(t-σ(s)) F (x(s))∆s

By mathematical induction, one can easily show that for σ(t k ) ≤ t ≤ t k+1 the solution of (4.11) is given by

x(t) = e Ac(t-k i=0 µ(t i )) k i=0 (I + µ(t i )A d )x 0 + k-1 i=0 t i+1 t i e Ac(t-k n=i+1 µ(tn)-σ(s)) k n=i+1 (I + µ(t i )A d ) F (x(s))∆s + t t k e Ac(t-σ(s)) F (x(s))∆s (4.14) 
Theorem 4.9

If the following conditions are satisfied (i) A c and A d commute each other i.e.,

A c A d = A d A c .
(ii) The graininess function is bounded i.e., 0 < µ min ≤ µ(t) ≤ µ max for all t ∈ ∪ ∞ k=0 {t k+1 }.

(iii) The non perturbed switched system (4.10) is exponentially stable such that its solution verifies

x(t) ≤ β e α (t, t 0 ) x 0 with β ≥ 1, α < 0 and α ∈ R + (iv) There exists a constant L ≥ 0 such that F (t, x(t) ≤ L x(t) (v) α + βL < 0
Then the perturbed switched system (4.11) is exponentially stable.

Proof 4.1

Since system (4.10) is exponentially stable and from Assumption (iii), we have

e Ac(t-k i=0 µ(t i )) k i=0 (I + µ(t i )A d ) ≤ β e α (t, t 0 ) with β ≥ 1, α < 0 and α ∈ R + From (4.14), one can derive x(t) ≤ βe α (t, t 0 ) x 0 + k-1 i=0 t i+1 t i βe α (t, σ(s)) F (x(s)) ∆s + t t k βe α (t, σ(s)) F (x(s)) ∆s ≤ βe α (t, t 0 ) x 0 + t t 0 βe α (t, σ(s)) F (x(s)) ∆s It implies that x(t) e α (t, t 0 ) ≤ β x 0 + t t 0 β e α (t, σ(s)) e α (t, t 0 ) L x(s) ∆s
We have

e α (t, σ(s)) = 1 e α (σ(s), t) = 1 (1 + µ(s)α)e α (s, t) = 1 (1 + µ(s)α) e α (t, s) Hence, x(t) e α (t, t 0 ) ≤ β x 0 + t t 0 βL (1 + µ(s)α) e α (t, s) e α (t, t 0 ) x(s) ∆s = β x 0 + t t 0 βL (1 + µ(s)α) e α (t, s)e α (t 0 , t) x(s) ∆s = β x 0 + t t 0 βL (1 + µ(s)α) e α (t 0 , s) x(s) ∆s = β x 0 + t t 0 βL (1 + µ(s)α)
x(s) e α (s, t 0 ) ∆s Using Gronwall's inequality of Corollary 4.2, we obtain

x(t) e α (t, t 0 ) ≤ β x 0 e βL (1+µ(.)α) (t, t 0 ) It implies that x(t) ≤ β x 0 e α (t, t 0 )e βL (1+µ(.)α) (t, t 0 ) ≤ β x 0 e α⊕ βL (1+µ(.)α) (t, t 0 )
We have

α ⊕ βL (1 + µ(.)α) = α + βL 1 + µ(.)α + µ(.)αβL 1 + µ(.)α = α + βL So, x(t) ≤ β x 0 e α+βL (t, t 0 )
Therefore, the perturbed switched system (4.11) is exponentially stable Note that, if α+βL < 0, then function (α+βL) is positively regressive because, knowing that α < 0 and α ∈ R + , we have 0

< 1 + µ(t)α < 1. It implies that 0 < µ(t)βL < 1 + µ(t)(α + βL) < 1 + µ(t)βL
which means that (α + βL) ∈ R + (positively regressive). Consider now the associated perturbed switched system

x ∆ =                  -1 36 
1 3 -1 72 1 9
x + 0.004 sin(x), t ∈ ∪ ∞ k=0 5k + 3k 2k+4 , 5(k + 1)

-2 6 -1 4 1 2 x + 0.0035 sin(x), t ∈ ∪ ∞ k=0 {5(k + 1)} (4.15) 
Conditions (iv)-(v) of Theorem 4.9 are satisfied since α+βL = -0.0031 < 0. Therefore the exponential stability of perturbed switched system (4.15) is established. The trajectory converges to zero as it is shown in Fig. 4.2-4.3 where the initial condition is x 0 = [5 1] T . 4.4 Stability for perturbed switched systems on T = P {t σ k ,t k+1 } using

Lyapunov function

For switched systems, one method to analyze the stability of continuous-time or discrete-time switched systems is based on the existence of a common Lyapunov function for family of stable subsystems [START_REF] Liberzon | Switching in Systems and Control[END_REF].

Here, we will generalize this well-known result to switched systems on non-uniform time domains. 

Then, some sufficient conditions are derived to guarantee the asymptotic stability of system (4.11) where uncertainties on the continuous-time subsystem and the discrete-time subsystem are considered.

First, the stability for the linear switched system (4.10) is analyzed using common Lyapunov function and the design of this Lyapunov function is explicitly given. Then, these results are extended to the uncertain case.

Using time scale dynamic Lyapunov theory, the ∆-derivative of (4.16) along the trajectories of the discrete-time subsystem is

V ∆ (x) = x T A T d P + P A d + µ(t)A T d P A d x < 0
This concludes the proof. Considering a switched system over R with pairwise commuting asymptotically stable subsystems, it is well-known that a common quadratic Lyapunov function can be designed [START_REF] Liberzon | Switching in Systems and Control[END_REF]. In the following Corollary, we will extend this result to switched systems whose temporal nature cannot be represented by the continuous line or the discrete line. An explicit design of a common quadratic Lyapunov function, which will be useful to study the uncertain switched system, is proposed.

Corollary 4.3

Let us consider system (4.10) with bounded graininess function, i.e. 0 < µ(t) ≤ µ max , ∀t ∈ P {tσ k ,t k+1 } . Furthermore, it is assumed that matrices A c and A d are pairwise commuting and Hilger stable with respect to time scale P {tσ k ,t k+1 } . Then, a common quadratic Lyapunov function associated with system (4.10) exists and can be designed. 

-P d + (I + µ(t)A T d )P d (I + µ(t)A d ) = -µ(t)Q(t) (4.20) 
Let us consider the candidate Lyapunov function 

V (x) = x T P c x (4.
A T d (A T c P c + P c A c ) + (A T c P c + P c A c )A d +µ(t)A T d (A T c P c + P c A c )A d = Q(t)
Using commutativity of A c and A d , one gets

A T c (A T d P c + P c A d + µ(t)A T d P c A d ) +(A T d P c + P c A d + µ(t)A T d P c A d )A c = Q(t)
Since A c is stable and Q(t) is definite positive, inequality (4.18) holds.

Using Lemma 4.3, one can conclude that (4.21) is a common quadratic lyapunov function associated with system (4.10).

Based on the above preliminary result, sufficient conditions are derived to guarantee the asymptotic stability of system (4.11) where uncertainties on the continuous-time subsystem and the discrete-time subsystem are considered.

Theorem 4.10

Consider the uncertain switched system (4.11). It is assumed that the following assumptions hold (a) The graininess function is bounded, i.e 0 < µ(t) ≤ µ max , ∀t ∈ P {tσ k ,t k+1 } .

(b) There exists a positive definite matrices P , Q 1 and Q 2 such that the inequalities

A T c P + P A c < -Q 1 (4.22) A T d P + P A d + µ max A T d P A d < -Q 2 (4.23) 
are simultaneously fulfilled.

(c) The perturbations are bounded as follows without nonlinear uncertain terms is given by

f (x(t)) ≤ L 1 x(t) , ∀t ∈ ∪ ∞ k=0 [t σ k , t k+1 [ g(x(t)) ≤ L 2 x(t) , ∀t ∈ ∪ ∞ k=0 {t k+1 } (4.
V (x) = x T P x (4.27)
The time derivative of (4.27) along the trajectories of the uncertain continuous-time subsystem is

V (x) = x T (A T c P + P A c )x + (f T (x)P x + x T P f (x)) = x T (-Q 1 )x + (f T (x)P x + x T P f (x)) ≤ -λ min (Q 1 ) x 2 + 2 P f (x) x ≤ -λ min (Q 1 ) x 2 + 2L 1 λ max (P ) x 2 = [-λ min (Q 1 ) + 2L 1 λ max (P )] x 2
Since constant L 1 is bounded according to Eq. The ∆-derivative of V (x) along the trajectories of the uncertain discrete-time subsystem is

V ∆ (x) = (x T ) ∆ P x(σ(t)) + x T P x ∆ = (x T A T d + g(x) T )P ((I + µ(t)A d )x + µ(t)g(x)) + x T P (A d x + g(x)) = x T (A T d P + P A d + µ(t)A T d P A d )x +g(x) T P ((I + µ(t)A d )x + µ(t)g(x)) + x T (µ(t)A T d + I)P g(x)
= -x T Q 2 x + 2x T (µ(t)A T d + I)P g(x) + µ(t)g(x) T P g(x) where I is the identity matrix with appropriate dimensions.

It yields

V ∆ (x) ≤ [-λ min (Q 2 ) + 2L 2 (1 + µ max A d )λ max (P ) + µ max L 2 2 λ max (P )] x 2
Since the nonlinear term g(x) is bounded according to Eq. ( 4 Let us consider the time scale

T = P {tσ k ,t k+1 } = ∞ k=0 [k + k k + 1 , k + 1] with for k = 1, . . . , ∞ t k = k t σ k = k + k k+1
Let us study the uncertain switched system and by L 2 = 0.002 which satisfy the following inequality

2L 2 (1 + µ max A d ) + µ max L 2 2 = 0.0221 < λ min (Q 2 ) λ max (P ) = 0.0316
Hence, the assumptions of Theorem 4.10 are satisfied. Therefore, the uncertain switched system (4.11) is asymptotically stable.

The uncertain switched system trajectories with initial state x(0) = [-0.2 1] T are depicted in Fig. 

Remark 4.3

Let us assume that the following condition holds:

A T d + A d + µ(t)A T d A d < 0 (4.31)
In this case, one can find the best upper bound L 1 using a quadratic lyapunov function. Indeed, it is The corresponding upper bound L 1 is given by:

known that L 1 = λ min (P d ) 2λmax ( 
A c =     -4 9 -1 54 
-1 3 -7 18     , A d =     -1 3 
L 1 = 1 
2λ max P c = 1 2 × 1.9996
= 0.2501.

Conclusion

In this Chapter, the exponential stability of perturbed switched systems on time scale T = P {tσ k ,t k+1 } = ∪ ∞ k=0 [t σ k , t k+1 ] was studied. Using results on the exponential stability of linear perturbed systems on time scales, we gave sufficient conditions on the matrices of continuous-time subsystem A c , discretetime subsystem A d and terms of uncertainties to ensure the stability of the switched uncertain system.

Finally, we have studied the stability of this class of uncertain switched systems using the concept of common lyapunov function. Sufficient conditions are derived to guarantee the asymptotic stability of this class of systems on time scales T = P {tσ k ,t k+1 } with bounded graininess function.

Chapter 5

Application to consensus for linear multi-agent system with intermittent information transmissions Multi-agent systems (MAS) are more and more studied because multiple agents may perform a task more efficiently than a single one, reduce sensibility to possible agent fault and give high flexibility during the mission execution. Many recent works deal with cooperative scheme for MAS due to its broad range of applications in various areas, e.g. flocking [START_REF] Jing | Flocking of multi-agent systems with multiple groups[END_REF], rendezvous [START_REF] Fan | Combination framework of rendezvous algorithm for multi-agent systems with limited sensing ranges[END_REF], formation control [31], [START_REF] Defoort | Sliding mode formation control for cooperative autonomous mobile robots[END_REF], etc. Among them, the consensus problem, which objective is to design control policies that enable agents to reach an agreement regarding a certain quantity of interest by relying on neighbors' information [START_REF] Ren | Consensus seeking in multi-agent systems under dynamically changing interaction topologies[END_REF], has received considerable attention. Indeed, many consensus schemes have been developed recently. They can be categorized into two separated directions depending on whether the agents are described via continuous-time or discrete-time models. Most of the existing consensus protocols are derived in the continuous-time setting [START_REF] Ren | Consensus seeking in multi-agent systems under dynamically changing interaction topologies[END_REF], [START_REF] Du | Robust consensus algorithm for second-order multi-agent systems with external disturbances[END_REF], [START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and time-delays[END_REF], [START_REF] Zhai | Extended consensus algorithm for multi-agent systems[END_REF], [START_REF] Liu | Consensus for multi-agent systems with inherent nonlinear dynamics under directed topologies[END_REF], [START_REF] Seyboth | Event-based broadcasting for multi-agent average consensus[END_REF]. In the discrete uniform time domain, there exist some results to design an appropriate distributed protocol [START_REF] Jadbabaie | Coordination of groups of mobile autonomous agents using nearest neighbor rules[END_REF], [START_REF] You | Network topology and communication data rate for consensusability of discrete-time multi-agent systems[END_REF], [START_REF] Yang | Global consensus for discrete-time multiagent systems with input saturation constraints[END_REF].

Most of the mentioned works on consensus assume that relative local information among agents is transmitted continuously or at some moments with an identical step size. However, this assumption is unrealistic due to, for instance, unreliability of communication channels, external disturbances and limitations of sensing ability. Indeed, local information is exchanged over some disconnected time intervals due to communication obstacles or sensor failures. Therefore, it is of practical interest to consider the case of intermittent information transmission between neighbor agents Fig. 5. 1. The problem of consensus with intermittent information transmissions can be converted to the asymptotic stabilization problem for a particular switched system on a non-uniform time domain. In- By using the time scale theory, it will be shown that the consensus problem under intermittent information transmissions is equivalent to the stabilization of a switched system which consists of a set of linear continuous-time and a linear discrete-time systems on a particular time scale T = P {tσ k ,t k+1 } (Fig. 5.2). First, a leader-follower consensus problem for multi-agent system with intermittent information transmissions without uncertainty will be considered. Sufficient conditions will be derived to guarantee the exponential stability of this class of switched systems on such time scale with bounded graininess function using the spectrum of matrices of this switched system. Then, we consider the leader-follower consensus problem for multi-agent system with uncertainty. The stability of this systems as a class of switched system on times scales will be studied using the approach of a common Lyapunov function. Some examples illustrate these results. where x 0 ∈ R n is the state of the leader, x i ∈ R n is the state of agent i and u i ∈ R m is the control input of agent i. A and B are constant real matrices with appropriate dimensions.

To solve the coordination problem and model exchanged information between agents, graph theory is briefly recalled hereafter.

The communication topology among all followers is fixed and is represented by a digraph G which consists of a nonempty set of nodes V = {1, 2, • • • , N } and a set of edges E ⊂ V × V. Here, each node in V corresponds to an agent i, and each edge (i, j) ∈ E in the directed graph corresponds to an information link from agent i to agent j, which means that agent j can receive information from agent i.

The topology of graph G is represented by the weighted adjacency matrix A = (a ij ) ∈ R N ×N given by A directed path from node i to j is a sequence of edges (i, j 1 ), (j 1 , j 2 ), . . . (j l , j) in a directed graph with distinct nodes j k , k = 1, . . . , l.

a ij = 1 if (j, i) ∈ E

Definition 5.2 [67]

The directed graph G is said to have a directed spanning tree if there is a node (called root node) that can reach all the other nodes following a directed path in the graph.

To solve the consensus problem under intermittent information transmission between neighbor agents, the following hypothesis are considered.

Assumption 5.1

It is assumed that:

• The fixed digraph Ḡ has a directed spanning tree [START_REF] Ren | Consensus seeking in multi-agent systems under dynamically changing interaction topologies[END_REF].

where I N ∈ R N ×N is the identity matrix. The closed-loop system (5.7) is equivalent to

ė = [(I N ⊗ A) -(H ⊗ BK)]e(t) if t ∈ ∪ ∞ k=0 [σ(t k ), t k+1 [ (I N ⊗ A)e(t) -(H ⊗ BK)e(t k+1 ) if t ∈ ∪ ∞ k=0 [t k+1 , σ(t k+1 )[ (5.8) 
The first equation of (5.8) describes the linear subsystem where the agents can communicate with their neighbors whereas the second one represents the linear subsystem where the feedback does not evolve (i.e. is constant to its value at the switching time t k+1 ) (k = 0, 1, . . . ∞) due to the absence of local information.

To solve the consensus problem under intermittent information transmissions, one must find the appropriate matrix K such that system (5.8) is exponentially stable.

Formulation of the stabilization problem using time scale theory

Since the feedback does not evolve when local information is not available, the study of system (5.8)

is not trivial. There exist some works dealing with the stabilization of linear systems under variable sampling period [START_REF] Fiter | A state dependent sampling for linear state feedback[END_REF]. The approaches are usually based on linear matrix inequalities obtained thanks to sufficient Lyapunov-Razumikhin stability conditions. However, the derived conditions are rather complex to verify. To reduce the conservatism, the consensus problem with intermittent information transmissions is stated using the time scale theory.

To facilitate the analysis and the controller design, during the communication failures, only the behavior of the solution of (5.8) at the discrete times {t k+1 } and {σ(t k+1 )} is considered. Indeed, on each time interval [t k+1 , σ(t k+1 )[, the control input is not updated. Hence, the second subsystem of ( 5.8) is discretized at times {t k+1 } 0≤k≤∞ as follows.

Let us consider the second subsystem of (5. 

e(t) = e (I N ⊗A)(t-t k+1 ) e(t k+1 ) + t t k+1 e (I N ⊗A)(t-s) (I N ⊗ B)u {k+1} ds = e (I N ⊗A)(t-t k+1 ) e(t k+1 ) + (I N ⊗ A) -1 e (I N ⊗A)(t-t k+1 ) (I N ⊗ B)u {k+1} -(I N ⊗ A) -1 (I N ⊗ B)u {k+1} = e (I N ⊗A)(t-t k+1 ) e(t k+1 ) + (I N ⊗ A -1 B)u {k+1} -(I N ⊗ A -1 B)u {k+1} (5.
= e (I N ⊗A)(σ(t k+1 )-t k+1 ) [e(t k+1 ) + (I N ⊗ A -1 B)u {k+1} ] -(I N ⊗ A -1 B)u {k+1} -e(t k+1 ) σ(t k+1 ) -t k+1 = e (I N ⊗A)µ(t k+1 ) [e(t k+1 ) + (I N ⊗ A -1 B)u {k+1} ] -[e(t k+1 ) + (I N ⊗ A -1 B)u {k+1} ] µ(t k+1 ) = e (I N ⊗A)µ(t k+1 ) -I nN µ(t k+1 ) [e(t k+1 ) + (I N ⊗ A -1 B)u {k+1} ] = e (I N ⊗A)µ(t k+1 ) -I nN µ(t k+1 ) [e(t k+1 ) + (I N ⊗ A -1 B)(-(H ⊗ K))e(t k+1 )] = e (I N ⊗A)µ(t k+1 ) -I nN µ(t k+1 ) I nN -(H ⊗ A -1 BK) e(t k+1 )
Let us consider the particular time scale T, defined as

T = ∞ k=0 [σ(t k ); t k+1 ].
The graininess function µ(t k+1 ) = σ(t k+1 )t k+ = b is fixed. To facilitate the analysis, the closed-loop system (5.8) is simplified as the following switched linear system on time scale T

e ∆ =            [(I N ⊗ A) -(H ⊗ BK)]e(t) if t ∈ ∞ k=0 [σ(t k ); t k+1 [ e (I N ⊗A)b -I nN b I nN -(H ⊗ A -1 BK) e(t) if t ∈ ∞ k=0 {t k+1 } (5.12) 
This simplification enables the use of time scale theory while avoiding the derivation of complex Lyapunov-Razumikhin stability conditions. In the next section, the switched linear system (5.12) where the dynamical system commutes between a continuous-time linear subsystem and a discretetime linear subsystem during a certain period of time (which corresponds to the interruption time of the control evolution due to the lack of information transmissions) is studied.

Stabilization of the consensus problem under intermittent information transmissions

In this section, some conditions are derived to guarantee the closed-loop stability of the tracking errors in the case of intermittent information transmissions.

Before solving the consensus problem, let us analyze the stability of the following switched linear system using the time scale theory

x ∆ = (A + BK)x(t) if t ∈ ∞ k=0 [σ(t k ); t k+1 [ A d x(t) if t ∈ ∞ k=0 {t k+1 } (5.13) 
where x ∈ R n is the state and A d = e Ab -I n b (I n + A -1 BK) . A, B and K are constant real matrices with appropriate dimensions. A is assumed to be invertible. Based on this analysis, the stabilization of system (5.12) is studied to solve the consensus problem.

The following theorem derives a sufficient condition to guaranty the stability of the switched linear system (5.13) on time scale T = ∞ k=0 [σ(t k ); t k+1 ]. Before that, suppose that the following assumptions are fulfilled:

(i) For each t ∈ T, the eigenvalues of all matrices of system ( 5.13) 

+ (1 -e -bλ j A )λ j A -1 BK < e -b λ j A , ∀j = 1, . . . , n. (5.14) 
where (λ j A , V j ) (resp. (λ j A -1 BK , V j )) denotes the eigenpairs of matrix A (resp. A -1 BK). b) A d is not Hilger stable, i.e. there exist some eigenvalues λ k A d with the corresponding eigenvectors V k (k = 1, . . . , l with n ≥ l ≥ 1) of A d which do not strictly lie within the Hilger circle. The corresponding eigenvalues of the different matrices must satisfy the following inequality, ∀k = 1, . . . , l,

λ k (A+BK) + bλ k A + log 1 + (1 -e -bλ k A )λ k A -1 BK min i∈N * (a i ) < 0 (5.15) (λ k A , V k ), (λ k (A+BK) , V k ) and (λ k A -1 BK , V k ) denote eigenpairs of matrix A, A + BK and A -1 BK respectively and a i = (t 1 -t 0 ) ∪ (t i+1 -(t i + b)), i ∈ N * . Theorem 5.1
Under the above Assumption (i)-(iv), the switched system (5.13) is exponentially stable.

Proof 5.1

Using the time scale theory, and similarly to Chapter 3, the solution of system (5.13) can be given by

x(t) = e (A+BK)(t-kb) (I + bA d ) k x 0 , (5.16 
) with x 0 is the initial state. Replacing A d in (5.16) by its value, the general solution of system (5.13) is written as

x(t) = e (A+BK)(t-kb) [e Ab + (e Ab -I)A -1 BK] k x 0 (5.17)
To simplify the notations, only the case of simple eigenvalue is discussed hereafter. Nevertheless, as shown in Chapter 3, the extension to generalized eigenvectors is straightforward by including monomials [START_REF] Potzsche | A spectral characterization of exponential stability for linear time-invariant systems on time scales[END_REF] which are dominated by the exponential function.

From Assumption (ii), there exists V j ∈ R n such that (λ j (A+BK) , V j ) (resp. (λ j A , V j ) and (λ j A -1 BK , V j )) are eigenpairs of (A + BK) (resp. A and A -1 BK), ∀j = 1, . . . , n. Therefore,

x(t) = e λ j (A+BK) (t-kb) [e bλ j A + (e bλ j A -1)λ j A -1 BK ] k V j (5.18)
is a solution of system (5.13). From Assumption (iii), one can derive Eq. ( 5.18) as follows

x(t) = e λ j (A+BK) (t-kb) [e bλ j A + (e bλ j A -1)λ j A -1 BK ] k V j = e λ j (A+BK) (t-kb) [e bλ j A (1 + e -bλ j A (e bλ j A -1)λ j A -1 BK )] k V j = e λ j (A+BK) (t-kb) e bλ j A (1 + (1 -e -bλ j A )λ j A -1 BK ) k V j = e λ j (A+BK) (t-kb) e kbλ j A e k log 1+(1-e -bλ j A )λ j A -1 BK V j = e λ j (A+BK) (t-kb) e k bλ j A +log 1+(1-e -bλ j A )λ j A -1 BK V j = e λ j (A+BK) (t-kb) e kb[λ j A + log(|1+(1-e -bλ j A )λ j A -1 BK |) b ] V j (5.19)
If Assumptions (i) and (iv.a) are fulfilled (i.e. both the continuous-time and the discrete-time subsystems are stable), the following inequalities can be derived

λ j (A+BK) < 0 bλ j A + log 1 + (1 -e -bλ j A )λ j A -1 BK < 0, ∀1 ≤ j ≤ n (5.20)
Hence, the upper bound of solution (5.19) can be written as

x(t) ≤ e λt V j (5.21) 
where λ = max{λ j (A+BK) , λ

j A + log 1+(1-e -bλ j A )λ j A -1 BK b } < 0.
Therefore, the switched system (5.13) is exponentially stable.

If Assumption (iv.a) is not satisfied, then the discrete-time subsystem is unstable. Therefore, there exist some eigenvalues λ j A d with the corresponding eigenvectors V j (j = 1, . . . , l with n ≥ l ≥ 1) of A d which do not strictly lie within the Hilger circle. It implies that, ∀j = 1, . . . , l, bλ

j A + log 1 + (1 -e -bλ j A )λ j A -1 BK > 0 (5.22)
Since the graininess function is fixed, one can derive for t ∈

[σ(t k ), t k+1 ] k min i∈N * ((t 1 -t 0 ) ∪ (t i+1 -(t i + b))) + kb ≤ t k + b ≤ t ≤ t k+1 (5.23) It yields k ≤ t -kb min i∈N * ((t 1 -t 0 ) ∪ (t i+1 -(t i + b))) (5.24)
Therefore, the upper bound of (5. [START_REF] Davis | The laplace transform on time scales revisited[END_REF]) can be written as

x(t) ≤ e λ j (A+BK) (t-kb) e t-kb min i∈N * (a i ) bλ j A +log 1+(1-e -bλ j A )λ j A -1 BK V k = e (t-kb)      λ j (A+BK) + bλ j A + log 1 + (1 -e -bλ j A )λ j A -1 BK min i∈N * (a i )      V k for all j = 1, . . . , l, with a i = (t 1 -t 0 ) ∪ (t i+1 -(t i + b)), i ∈ N * .
In this case, from Assumption (iv.b), x(t) converges exponentially to zero. Roughly speaking, condition (5.15) means that the effect of the unstable discrete-time subsystem is less significant than the effect of the stable continuous-time subsystem.

From the above analysis, one has converted the consensus problem for multi-agent system (5.1)

with agreement control law (5.2) to the stability problem of the switched linear system (5.13) on time

scale T = ∞ k=0 [σ(t k ); t k+1 ].
The following corollary is presented to derive protocol (5.2). (iv) One of the following hypothesis is fulfilled:

a) Matrix e (I N ⊗A)b -I N n b [I N n -(H ⊗ A -1 BK)] is Hilger stable. b) Matrix e (I N ⊗A)b -I N n b [I N n -(H ⊗ A -1 BK)]
is not Hilger stable but the corresponding eigenvalues which do not strictly lie within the Hilger circle satisfy

λ k (I N ⊗A)-(H⊗BK) + bλ k (I N ⊗A) + log 1 + (1 -e -bλ k (I N ⊗A) )λ k (-H⊗A -1 BK) min i∈N * (a i ) < 0 (5.25) (λ k (I N ⊗A) , V k ), (λ k (-H⊗A -1 BK) , V k ) and (λ k (I N ⊗A)+(-H⊗BK) , V k ) are the eigenpairs of matrices (I N ⊗A), (-H ⊗A -1 BK) and (I N ⊗A)+(-H ⊗BK) and a i = (t 1 -t 0 )∪(t i+1 -(t i +b)), i ∈ N * .
Then, system (5.12) is exponentially stable.

Remark 5.1

One can easily relax assumption (i) of Corollary 5.1 (resp. Theorem 5.1) by considering complex eigenvalues. Indeed, since the modulus of the exponential of a complex number z equals to |e z | = e Rel(z) , one can update conditions (5.14)-(5.15) using the real parts of the eigenvalues and replacing the absolute value by the modulus of the complex number.

Simulation examples

To illustrate the procedure given above, let us consider the consensus problem under intermittent information transmissions for a multi-agent system which consists of four robots (one leader and

N = 3 followers).
The communication topology of all followers and the leader is shown in Fig. 5. 3. One can see that the fixed digraph Ḡ has a directed spanning tree. It is described by the weighted matrix It is assumed that the four agents can communicate with their neighbors only when t ∈

H =     1 0 0 -1 1 0 -1 0 2     .
∪ ∞ k=0 [σ(t k ), t k+1 [ with:        σ(t 0 ) = t 0 = 0 σ(t k ) = t k + b, k ∈ N * t k = 1.5(2k -1) + 0.1 log k, k ∈ N * (5.26) 
The time instants t k , k ∈ N * indicates when a communication failure occurs. The duration of communication failures is randomly generated but bounded by b = 1 2 for case 1 and by b = 1.5 for case 2 (see Fig. 5.9). Therefore, Assumption 1 is fulfilled. The consensus problem for multi-agent system t (s) (5.1) with agreement control law (5.2) is equivalent to the stabilization of the following switched linear system on time scale T = ∞ k=0 [σ(t k ); t k+1 ]:

e ∆ =                                                            I 3 ⊗ 0.5 -0.25 1 2 -H ⊗ 0.5 0 1 2 K e(t) if t ∈ ∞ k=0 [σ(t k ), t k+1 [         e b   I3⊗    0.5 -0.25 1 2       -I 6 b         I 6 -(H ⊗ 1 0.4 0 0.8 K) e(t) if t ∈ ∞ k=0 {t k+1 } (5.27) One should highlight that (t i+1 -σ(t i )) ≥ 3 2 , ∀i ∈ N * . To satisfy condition (ii) of Corollary 1, matrix K is chosen as follows K = 2k 1 2k 2 -k 1 -2k 2 k 1 2 -4k 2 (5.28)
where k 1 ∈ R and k 2 ∈ R must be appropriately designed. To guarantee the stability of the continuoustime subsystem (i.e. condition (i) of Corollary 5.1), the following inequalities are considered 

k 1 ≥ 3 k 2 ≤ 0.2
      λ j (-H⊗A -1 BK) = - 1 1 -e -bλ j (I N ⊗A) 1 - 2 1-e -bλ j (I N ⊗A) ≤ λ j (-H⊗A -1 BK) < -1 (5.30) 
where (λ j (I N ⊗A) , V j ) and (λ j (-H⊗A -1 BK) , V j ) are the eigenpairs of matrices (I N ⊗A) and (-H⊗A -1 BK). Since A and BK commute each other, one can simplify Eqs. (5.30) the condition b) of assumption (iv) of Corollary 5.1 is satisfied. Therefore, using the corresponding agreement control law (5.2), the consensus problem with intermittent information transmissions is solved. The trajectories of the tracking errors e i , ∀i ∈ 1, . . . , 3 on time scale T = ∞ k=0 [σ(t k ); t k+1 ] are depicted in Fig. 5.6-5. [START_REF] Bemporad | Observability and controllability of piecewise affine and hybrid systems[END_REF]. In this case, the design of matrix K is more difficult. However, the convergence time is rather small compared to the previous case. 

as follows                  λ j (I N ⊗BK) = - 1 λ j (-H⊗A -1 ) (1 -e -bλ j (I N ⊗A) ) 1 - 2 1-e -bλ j (I N ⊗A) λ j (-H⊗A -1 ) > λ j (I N ⊗BK) > -1 λ j (-H⊗A -1 )

Leader-follower consensus problem for MAS with uncertainty under intermittent information transmissions

Consider now a multi-agent system such that the dynamics of each follower and of the leader agent are given by ẋi .32) where x 0 ∈ R n is the state of the leader, x i ∈ R n is the state of agent i and u i ∈ R m is the control input of agent i. A and B are constant real matrices with appropriate dimensions. Moreover, f is an uncertain dynamics. Since f is uncertain, it is not possible to cancel it with the control. To simplify the following derivations, the uncertainty is assumed to be linear, i.e. f (x) = δA x where δA is a constant real matrix with appropriate dimensions.

= Ax i + Bu i + f (x i ), i ∈ {1, • • • , N } ẋ0 = Ax 0 + f (x 0 ) ( 5 
The communication topology among all followers is fixed and is represented by a digraph G similarly to the previous Section.

To solve the consensus problem under intermittent information transmissions, the following hypothesis are considered:

Assumption 5.2
It is assumed that:

• The fixed digraph Ḡ has a directed spanning tree.

the communication failures, only the behavior of the solution of (5. The switched uncertain system (5.38) commutes between a continuous-time subsystem and a discretetime subsystem with uncertainties during a certain period of time

Stabilization of the consensus problem under intermittent information transmissions

To analyse the stability of switched uncertain system (5.38), we can use the procedure given in Chapter Then the uncertain switched system (5.39) is asymptotically stable.

Next, we present a numerical example to illustrate the above procedure.

Simulation examples

Let us consider the consensus problem under intermittent information transmissions for a multi-agent system which consists of three robots (one leader and N = 2 followers).

The communication topology of all followers and the leader is shown in Fig. . The uncertainty is linear with parameter δA = 10 -4 -0. The objective is to verify that this agreement control law (5.33) solves the consensus problem under intermittent information transmissions.

The consensus problem for multi-agent system (5.32) with agreement control law (5.33) is equivalent to the stabilization of system (5. 

Conclusion

In this Chapter, the consensus problem for linear multi-agent system with intermittent information transmissions has been converted to the stabilization of a switched linear system on time scale. The stability of a switched linear system which consists of a set of linear continuous-time and linear discretetime subsystems on a particular time scale T = P {tσ k ,t k+1 } has been studied. Based on the approach used to analyze the stability of this class of switched systems on this particular time scale, some conditions are derived from Theorems established in Chapter 3, to guarantee the closed-loop stability of the tracking errors in the case of intermittent information transmissions. Using the results given in Chapter 4 based on the concept of common Lyapunov function, the consensus problem for linear multi-agent perturbed system with intermittent information transmissions has been converted to the stabilization of a switched linear system on time scale T = P {tσ k ,t k+1 } and the stability of this system has been solved. Some simulations have shown the effectiveness of the proposed scheme.

• In Chapter 3, it was considered a dynamical system that switches between continuous-time subsystem and discrete-time subsystem. The problem of exponential stability of this class of switched linear systems has been studied. In the first part, the study of stability has focused on the case where the matrices of the two subsystems are pairwise commuting. It was shown in this case that if both subsystems are Hilger stable then the switched system is also stable. Using the explicit general solution of the switched system, this result has been extended to the case where one subsystems is unstable and to the case where both subsystems are unstable. Sufficient conditions are derived to guarantee the exponential stability of this class of switched systems.

After that, we have extended the results in [START_REF] Potzsche | A spectral characterization of exponential stability for linear time-invariant systems on time scales[END_REF] by giving a necessary and sufficient conditions for exponential stability of this class of switched systems such that a region of exponential stability is determined. The switched linear system is exponentially stable if and only if the eigenvalues of the matrices of the two subsystems (continuous and discrete) are within this region of stability. This condition is more general than the previous analysis because the circle of Hilger is always included in the region of stability. However, the computation of this region remains difficult except for certain time scales for example if the graininess function µ(t) varies in a periodic manner. This concept has been illustrated by numerical examples.

In the second part of this chapter, using the explicit solution of the switched system, sufficient conditions has been derived to guarantee the exponential stability of this class of switched linear systems where the matrices of the two subsystems are not pairwise commuting. The cases where the two subsystems are stable, one of subsystems is stable and the other one is unstable and both subsystems are unstable have been studied.

• In Chapter 4, we have studied the exponential stability of this class of switched systems including nonlinear uncertainties on the continuous-time subsystem and on the discrete-time subsystem. First, the case where the matrices of nominal subsystems are pairwise commuting has been studied. The approach used to study the stability of this class of nonlinear switched systems is based on the determination of the explicit solution of the perturbed switched system.

We have given some conditions on the upper bound of the uncertainties in order to ensure the stability of the switched system. Then, the case where the matrices of the two subsystems are supposed Hilger stable but not necessarily pairwise commutating has been studied. In this case, the existence of a common Lyapunov function for the nominal switched system and under some conditions on the uncertain terms, the stability of the nonlinear perturbed switched system is guaranteed.

• In Chapter 5, as an applicative example, theoretical results of this thesis have been applied

in the study of stability of consensus for a multi-agent system with intermittent information transmissions. The problem of consensus for a multi-agent system is to design control schemes that allow agents to reach an agreement on a certain quantity based on information from neighbors. However most of the works on consensus problem assume that local information among agents are transferred either continuously or discretely with fixed sampling. However, this assumption is not realistic because of, for example, unreliable communication channels, external disturbances and detection capacity limitations. Indeed, the local information is exchanged over certain time intervals disconnected due to the interruption of the communication or sensor failures. Therefore, it is important to consider the case of interruptions of information transmissions between neighboring agents. Indeed, the interaction between the agents happens during certain continuous-time intervals with some discrete instants. It is therefore of great interest to mix the case of continuous-time and discrete-time in a unified framework. The consensus problem with intermittent information transmission has been converted to asymptotic stabilization problem of this particular class of switched systems on a nonuniform time domain as it is considered in this work.

Perspectives

At the end of this thesis, several problems remain open and other methods need to be developed.

Theoretical concepts introduced in this thesis can lead to several extensions or future applications.

• In Chapter 3, the stability of linear time-invariant switched systems (continuous / discrete) on the time scale T = P {tσ k ,t k+1 } = ∪ ∞ k=0 [t σ k , t k+1 ] is studied. In the first part, some sufficient condition are derived to guarantee the exponential stability of this class of switched systems in the cases where the matrices of the two subsystems are real, pairwise commuting and not. The class of switched systems studied, contains only one continuous-time linear subsystem and one discrete-time linear subsystem. We can generalize the results to a class of systems switching between a continuous-time linear subsystem and several discrete-time linear subsystems or between multiples continuous-time and discrete-time subsystems, which seems to be more general and more interesting in practice. In the second part of this chapter, some sufficient and necessary conditions for exponential stability of this class of switched systems have been presented. The conditions are derived by introducing stability region in the case of pairwise commuting matrices, which makes the result quite restrictive. It could be interesting to determine this region of stability in the case of not pairwise commuting matrices and also in the case of several continuous-time and discrete-time subsystems.

• In chapter 4, the stability of this class of switched systems with nonlinear uncertainties is studied. The first method uses the explicit solution of the switched system and some conditions on the upper bound of solutions of both continuous-time and discrete-time subsystem by supposing that two nominal subsystems are stable. We can notify that we can develop the case where one of the nominal subsystems is unstable. Secondly the stability is analysed by using the common Lyapunov function approach which does not work if one of subsystems is not stable.

We can also extend the results to a class of switched systems with multiple continuous-time and discrete-time subsystems.

• The problem of consensus for a linear multi-agent system with intermittent information transmissions was studied in Chapter 5. The matrix K of the linear closed-loop control feedback was synthesized using linear matrix inequalities. Hence, it will be interesting to develop a theoretical procedure to synthesize matrix K. We note that in the problem of consensus for a multi-agent system, we have considered only the case of pairwise commuting matrices. Therefor, we can study the more general case and derive a sufficient conditions for stability in the case where the matrices of continuous-time and discrete-time subsystems are not pairwise commuting.

• The approach used in this work is mainly based on the determination of the solution of the switched system. Indeed, to ensure the exponential stability, sufficient conditions on the spectrum of the matrices and on the upper or lower bound of the dwell time of the continuous-time and discrete-time subsystem are derived. However, it is not always possible to determine the general solution of the switched system, as in the case of time-varying systems or the case of nonlinear systems. For that, we can always develop this approach to the qualitative study of the solution of the switched system by introducing the direct method of Lyapunov. Note that finding a common Lyapunov function for a switched linear system which evolves on an arbitrary time scale is a difficult task. On can extend these results only for some special cases assuming restrictive conditions on the matrices of subsystems (pairwise commuting, as it is studied in Chapter 4, simultaneously triangularizable or normal conditions etc .) or by using the geometric approach. We can develop to the approach of multiple Lyapunov functions to study the stability of this class of switched systems.

• In this thesis, we only focuss on the stability problem of linear switched systems. Therefore, it would be important to study the stabilization problem, control problem and the observation problem of this class of switched systems using the time scales theory.
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. 1 A

 1 The concept of stability is closely related to the theory of Lyapunov stability. It is the mathematician Alexander Mikhailovich Lyapunov who established in 1892 in his thesis entitled "General problem of stability of the motion" the framework of the modern theory of stability. Roughly speaking, one can verify the stability of a system if there is a scalar function V (x) positive definite and decreasing along the trajectories of solutions of the system, called Lyapunov function. It is often a norm. The main theorems in continuous-time and discrete-time used for the stability analysis are given as follows Definition 1scalar continuous function α : [0, a[→ [0, +∞[ is said to belong to class K if it is strictly increasing and α(0) = 0. It is said to belong to class K ∞ if it defined for all r ≥ 0 and α(r) → ∞ as r → ∞.Theorem 1.1[START_REF] Khalil | Nonlinear Systems[END_REF] 

2. 1 . 1

 11 Notations and definitions A time scale, noted T is a non-empty closed subset of the real numbers R, provided with an induced topology of R. The following sets are examples of time scales: R = {real numbers} Z = {integers numbers}

Fig. 2 .

 2 1 gives some examples of time scales.

Figure 2 . 1 :

 21 Figure 2.1: Examples of time scales.

Fig. 2 .

 2 Fig. 2.2 illustrates the classification of points.

Figure 2 . 2 :

 22 Figure 2.2: Classification of points.

Theorem 2 . 2

 22 [START_REF] Bohner | Dynamic Equations on Time Scales: An Introduction with Applications[END_REF](Derivative of sum, product and quotient)

Theorem 2 . 5 [ 38 ]

 2538 If a, b ∈ T and a ≤ b, then

  Let f : T → R. Consider the function f : [a, b] → R which is an extension of f on [a, b] defined by:

  (i) If T = R, the ∆-integral of function f on [a, b] is given by: If [a, b] only contains an isolated points, then we have b a

  b

9 .Definition 2 . 8 (

 928 If f (t) ≥ 0 for all a ≤ t ≤ b, then b a f (t)∆t ≥ 0 Theorem 2.11 [10] Let a, b ∈ T. For any constant function f : T → R such that f (t) = C on [a, b], we have b a C∆t = C(ba) Improper integral) If a ∈ T, sup T = ∞ and f is rd-continuous on [a, ∞[, then we define the improper integral by

17

 17 

  )

Fig. 2 .

 2 Fig.2.4 illustrates the previous sets.

Figure 2 . 4 :

 24 Figure 2.4: Hilger complex plane.

Figure 2 . 5 :

 25 Figure 2.5: Hilger real part and Hilger imaginary part in Hilger complex plane.

  where |.| is the modulus of the complex number.Contrarily to the classical case (i.e T = R), the generalized exponential function on arbitrary time scale is not always positive. The sign of the generalized exponential function on time scales can be determined by the following theorem Theorem 2.12[START_REF] Bohner | Dynamic Equations on Time Scales: An Introduction with Applications[END_REF] 

36 )k = 1 , 2 ,

 3612 . . . , l such that d 1 + d 2 + . . . + d l = n and N denotes a square matrix with null elements except on the superdiagonal where the elements equal one.

1

 1 

Figure 2 . 6 :

 26 Figure 2.6: Hilger circle for different time scales. (a) T = Z, (b) any cases, (c) T = R.
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 31 Figure 3.1: Illustration of the considered class of switched systems on time scale P {tσ k ,t k+1 } .

  all eigenvalues of A c and A d strictly lie within the Hilger circle. In other words, each individual system is exponentially stable with respect to time scale P {tσ k ,t k+1 } . (ii) A c and A d commute each other i.e., A c A d = A d A c , (iii) The graininess function is bounded i.e., 0 < µ min ≤ µ(t) ≤ µ max for all t ∈ P {tσ k ,t k+1 } , (iv) Matrices A c and A d are regressive. Theorem 3.1

Figure 3 . 2 :

 32 Figure 3.2: Converging trajectories of the switched system (3.12) with initial value x 0 = [2 5] T .

  (ii) A c and A d commute each other i.e., A c A d = A d A c , (iii) The graininess function is bounded i.e., 0 < µ min ≤ µ(t) ≤ µ max for all t ∈ P {tσ k ,t k+1 } , (iv) Matrices A c and A d are regressive, (v) The eigenvalues of A c and A d satisfy the following condition

. 22 )

 22 From Eqs.(3.19)-(3.21) and inequality(3.22), the general solution of (3.2) given by (3.14) converges exponentially to zero.Remark 3.2

5

 5 during a certain period of time. The eigenvalues of A c (resp A d ) are λ 1 c = -2 and λ 2 c = -3 (resp λ 1 d = 3, λ 2 d = 4).

2 Figure 3 . 3 :Remark 3 . 4 ( 3 . 25 ) 3 . 2 . 3

 23334325323 Figure 3.3: Converging trajectories of the switched system (3.24) with initial value x 0 = [2 5] T .

Proof 3 . 3

 33 Similarly to Proof of Theorem 3.2, the general solution of (3.2) is given by (3.14). It follows that a solution of (3.2) is characterized by (3.15). From Assumptions (i)-(iv), one gets an upper bound of solution (3.15) as previous Proof as follows

Figure 3 . 4 :Remark 3 . 6 ( 3 . 35 ) 3 . 2 . 4

 3436335324 Figure 3.4: Converging trajectories of the switched system (3.34) with initial value x 0 = [5 1] T .

  time. The eigenpairs of A c (resp A d ) are

Figure 3 . 5 :Remark 3 . 8

 3538 Figure 3.5: Converging trajectories of the switched system (3.41) with initial value x 0 = [1 3] T .

  Re(λc ) dt + log |1 + (1σ)λ d | = σRe(λ c ) + log |1 + (1σ)λ d |According to Lemma 3.3, for t 0 = 0, p = 1 we haveS(T) = {λ c , λ d ∈ C : σRe(λ c ) + log |1 + (1σ)λ d | < 0}• If λ c and λ d are reals numbers, then

3 .8 for σ = 0. 3 .

 33 In the following, the trajectories of the solution are presented for λ c and λ d who are inside (left figure) or outside (right figure) the region of exponential stability for σ = 0.1 (Fig. 3.7), σ = 0.3 (Fig. 3.9).
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 36 Figure 3.6: Region of exponential stability of system (3.48) on time scale P {k,k+σ} with σ = 0.1.

Figure 3 . 7 :

 37 Figure 3.7: Trajectories of solution of system (3.48) on time scale P {k,k+σ} with σ = 0.1. At left (λ c = 2.5, λ d = -1.8), at right (λ c = -4, λ d = 1).

Fig. 3 .Figure 3 . 8 :

 338 Figure 3.8: Region of exponential stability of system (3.48) on time scale P {k,k+σ} with σ = 0.3.

Figure 3 . 9 :•

 39 Figure 3.9: Trajectories of solution of system (3.48) on time scale P {k,k+σ} with σ = 0.3. At left (λ c = 3, λ d = -1), at right (λ c = -4.5, λ d = -8).
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 310 Figure 3.10: Region of exponential stability of system (3.48) on time scale P {k,k+σ} with complex eigenvalues and σ = 0.1.

Figure 3 . 11 :

 311 Figure 3.11: Trajectory of solution of (3.48) on time scale P {k,k+σ} with σ = 0.1. At left (λ c = -4 + 5i, λ d = -0.4 + i), at right (λ c = -4 + 5i, λ d = -0.4 + 1.75i).

Figure 3 . 12 :

 312 Figure 3.12: Specific case λ = λ c = λ d : The region of exponential stability of (3.48) on time scale P {k,k+σ} for σ = 0.5 at left and σ = 0.21 at right.

Fig. 3 .

 3 Fig. 3.14 represents the trajectories of the solution of system (3.48) where the eigenvalues are inside the region of exponential stability (λ c = 2.71, λ d = -2.4) and in the case where the eigenvalues are outside the region of exponential stability (λ c = 2.76, λ d = -2.5).

Figure 3 . 13 :

 313 Figure 3.13: Region of exponential stability of switched system (3.48) on time scale P {σ(t k ),t k+1 } =

Figure 3 . 14 :

 314 Figure 3.14: Trajectories of solution of system (3.48) on time scaleP {σ(t k ),t k+1 } = ∪ ∞ k=0 {[2k, 2k + σ 1 ] ∪ [2k + 1, (2k + 1) + σ 2 ]} with σ 1 = 1 2 , σ 2 =2 3 and for (λ c = 2.71, λ d = -2.4) at left, (λ c = 2.76, λ d = -2.5) at right.

2 3

 2 Figure 3.14: Trajectories of solution of system (3.48) on time scaleP {σ(t k ),t k+1 } = ∪ ∞ k=0 {[2k, 2k + σ 1 ] ∪ [2k + 1, (2k + 1) + σ 2 ]} with σ 1 = 1 2 , σ 2 =2 3 and for (λ c = 2.71, λ d = -2.4) at left, (λ c = 2.76, λ d = -2.5) at right.

Figure 3 . 15 :

 315 Figure 3.15: Trajectories of the switched system (3.53) on time scaleP {tσ k ,t k+1 } = ∪ ∞ k=0 {[2k, 2k + σ 1 ] ∪ [2k + 1, (2k + 1) + σ 2 ]} with σ 1 = 1 2 , σ 2 = 2 3 .

  . The switched system (3.54) is unstable on this time scale.

3. 3

 3 Part2: Stability of switched systems on time scale T = P {t σ k ,t k+1 }with non commutative matricesIn the following, we give more general results. The stability of system (3.2) with non commutative matrices is discussed in four different cases. We give, as in Part1, sufficient conditions for exponential stability of switched system (3.2).

Figure 3 . 16 :

 316 Figure 3.16: Trajectories of switched system (3.54) on time scale T= ∪ ∞ k=0 {[2k, 2k +σ 1 ]∪[2k +1, (2k + 1) + σ 2 ]} with σ 1 = 1 2 , σ 2 = 2 3 .

3. 3 . 1

 31 Case 1: The continuous-time linear subsystem (i.e. A c ) is stable and the discrete-time linear subsystem (i.e. A d ) is stable or unstable Consider the switched linear system (3.2) and suppose that the following assumptions are fulfilled: (i) Matrices A c , A d are diagonalizable and has a real eigenvalues and suppose that A c is Hurwitz. (ii) The graininess function is bounded i.e., 0 < µ min ≤ µ(t) ≤ µ max for all t ∈ ∪ ∞ k=0 {t k+1 } (iii) Let us define λ c , λ d ∈ R and corresponding constants β c , β d ≥ 1 such that :

60 )Remark 3 . 14

 60314 From Eqs. (3.58)-(3.60), the general solution of (3.2) given by (3.55) converges exponentially to zero. If the eigenvalues of A c and A d are not real, one can replace conditions (3.56) and (3.57) by

  If A c and A d are not diagonalizable, one can replace conditions (3.56) and (3.57) by

Figure 3 . 17 :

 317 Figure 3.17: Illustration of the considered class of switched systems on time scale P {tσ k ,t k+1 } with A c stable and A d stable (condition (3.56) is satisfied).

Figure 3 . 18 :

 318 Figure 3.18: Illustration of the considered class of switched systems on time scale P {tσ k ,t k+1 } with A c stable and A d stable (condition (3.57) is satisfied).

Figure 3 . 19 :

 319 Figure 3.19: Illustration of the considered class of switched systems on time scale P {tσ k ,t k+1 } with A c stable and A d unstable (condition (3.57) is satisfied).

3. 3 . 2

 32 Case 2: The continuous-time linear subsystem (i.e. A c ) is unstable and the discrete-time linear subsystem (i.e. A d ) is stable Let us now consider the switched linear system (3.2) and suppose that the following Assumptions are fulfilled:

. 67 )

 67 From Eqs. (3.63)-(3.67), the general solution of (3.2) given by (3.55) converges exponentially to zero. Example 3.10

Figure 3 . 20 :

 320 Figure 3.20: Illustration of the considered class of switched systems on time scale P {tσ k ,t k+1 } with A c stable and A d unstable.

  If the eigenvalues of A c and A d are not real, one can replace conditions (3.62) by

Figure 3 . 21 :

 321 Figure 3.21: Converging trajectories of the switched system (3.74).

11 )

 11 where x(t) ∈ R n is the state of the system (x 0 ∈ R n is the initial state), A c ∈ R n×n and A d ∈ R n×n are constant regressive matrices. Uncertainties act both on the continuous-time and discrete-time dynamics and are characterized by functions f : R n → R n and g : R n → R n (Fig 4.1).

Figure 4 . 1 :

 41 Figure 4.1: Illustration of the considered class of switched systems on time scale P {tσ k ,t k+1 } .4.3.2 Stability analysis of the perturbed switched system using integral inequalities Suppose that matrices A c and A d commute each other (i.e A c A d = A d A c ). The solution of system (4.10), as shown in Chapter 3, is given by

Example 4. 1

 1 Let us consider Example 3 from Chapter 3. We have seen in Chapter 3 that this system verifies the Assumptions (i)-(iii) of Theorem 4.9 with α = -0.1109 and β = 26.962.

2 Figure 4 . 2 : 2 Figure 4 . 3 :

 242243 Figure 4.2: Convergence of the trajectory of switched system (4.15) with initial condition x 0 = [5 1] T .

Proof 4. 3

 3 Since matrices A c and A d are Hilger stable with respect to time scale P {tσ k ,t k+1 } , there exist Q(t) an arbitrary positive definite matrix and unique positive definite solutions P d and P c to the algebraic Lyapunov equations A T c P c + P c A c = -P d (4.19)

Proof 4. 4 From

 4 Assumption (b) and Lemma 4.3, the common Lyapunov function of the switched system(4.11) 

  (4.25), function(4.27) is a quadratic Lyapunov function for the continuous-time subsystem of (4.11).

1 3 .

 13 (4.11) on this time scale. It commutes between a stable continuous-time linear subsystem with A c = -It is worthy of noting that matrices A c and A d are not pairwise commuting. The uncertain terms are described by f (x) = 0.03 sin(x) g(x) = 0.002 sin(x) Assumption (b) of Theorem 4.10 is verified using the definite positive matrices P = 0a) holds since the graininess function is bounded, i.e.

1 2 ≤ 1 .

 21 µ(t k ) = σ(t k )t k = k k+1 ≤ The perturbations f (x)and g(x) are upper bounded by L 1 as follows L 1 = 0.03 < λ min (Q 1 ) 2λ max (P ) = 0.1846 2 × 0.298 = 0.031

4. 4 .

 4 It is worth pointing out that the proposed common Lyapunov function shown in Fig. 4.5 is decreasing on time scale T = P {tσ k ,t k+1 } .

Figure 4 . 4 :

 44 Figure 4.4: Trajectory of the uncertain switched system described in Example 2.

  Pc) is maximal for P d = I where I is the matrix identity. If inequality (4.31) is fulfilled, then the best upper bound L 1 of the continuous-time subsystem is 1 2λmax( Pc) where P c is the unique matrix solution of the Lyapunov equation A T c P c + P c A c = -I. The function V (x) = x T P c x is a common quadratic Lyapunov function of the switched system (4.11). For instance, if the nonlinear switched system (4.11) is considered with

Figure 4 . 5 :

 45 Figure 4.5: Evolution of the proposed common Lyapunov function for the uncertain switched system described in Example 2.

  and

1 2 <

 2 µ(t) < 1. Since inequality (4.31) is fulfilled, one can derive matrix P c =

Figure 5 . 1 :

 51 Figure 5.1: Multi-agent systems with intermittent information transmissions

Figure 5 . 2 :

 52 Figure 5.2: Illustration of considered time scales.

5. 1 1 . 1

 111 Leader-follower consensus problem for MAS without uncertainty under intermittent information transmissions 5.Problem statement Consider a multi-agent system consisting of a leader and followers. The linear or linearized dynamics of each follower and of the leader agent are given by ẋi = Ax i + Bu i , i ∈ {1, • • • , N } ẋ0 = Ax 0 (5.1)

  and a ij = 0, otherwise. The Laplacian matrix of G is defined as L = (l ij ) ∈ R N ×N with l ii = N j=1 a ij and l ij = -a ij for i = j. The digraph Ḡ is fixed and describes the communication topology of all followers and the leader. It is assumed that the leader has no information from the followers. The topology of Ḡ is described by the weighted matrix H = L + D ∈ R N ×N where D = diag(d 1 , . . . , d N ) with d i = 1 if the leader state is available to follower i and with d i = 0 otherwise. Definition 5.1 [67]

Corollary 5. 1

 1 Suppose that Assumption 5.1 holds. If the following conditions are satisfied (i) For each t ∈ T, the eigenvalues of all matrices of system (5.12) are reals and[(I N ⊗A)-(H⊗BK)] is stable on ∪ ∞ k=0 [t k + b, t k+1 [.(ii)A and BK commute each other. (iii) Matrix e (I N ⊗A)b -I N n b [I N n -(H ⊗ A -1 BK)] is regressive.

Figure 5 . 3 :

 53 Figure 5.3: Communication topology Ḡ.

Figure 5 . 4 :

 54 Figure 5.4: Intermittent information transmissions. (a) Case 1 with b = 0.5. (b) Case 2 with b = 1.5.

29 )

 29 Let us first consider Case 1 with b = 0.5. According to Corollary 5.1, let us try to design a matrixK such that matrix e (I N ⊗A)b -I N n b [I N n -(H ⊗ A -1 BK)] is regressive and Hilger stable. Hence, the following conditions must be satisfied, ∀1 ≤ j ≤ 6, Since matrix A is not singular, Eqs.(5.29) yield 

- 2 . 2 -0. 4 - 4 . 2 Figure 5 . 5 :

 2244255 Figure 5.5: Trajectories of the tracking errors e i for Case 1.

Figure 5 . 6 :

 56 Figure 5.6: Trajectories of the tracking errors e i for Case 2.

Figure 5 . 7 :

 57 Figure 5.7: Zoom of the trajectories of the tracking errors e i for Case 2.

  ) = σ(t k+1 )t k+1 = b. Using time scale T, the closed-loop system(5.36) is written as the following switched systeme ∆ =                        [(I ⊗ A) -(H ⊗ BK)]e(t) + (I ⊗ δA)e(t) if t ∈ ∞ k=0 [σ(t k ), t k+1 [ e (I⊗A)b -I b I -(H ⊗ A -1 BK) e(t) + ∆Ae(t) if t ∈ ∞ k=0 {t k+1 } (5.38)where ∆A is the uncertain term which depends on matrix δA and is as follows∆A = e (I⊗(A+δA))b -I b I -(H ⊗ (A + δA) -1 BK) -e(I⊗A)b -I b I -(H ⊗ A -1 BK)

4A

  using the common Lyapunov function, such that if there exists a common Lyapunov quadratic function which verifies some properties (given by Theorem 4.10 and Corollary 4.4 of Chapter 4) the stability of switched uncertain system(5.38) is guaranteed. The uncertain switched system is in the form c e(t)+ f (e(t)) if t ∈ ∞ k=0 [σ(t k ), t k+1 [ A d e(t) + g(e(t)) if t ∈ ∞ k=0 {t k+1 }(5.39)withA c = [(I ⊗ A) -(H ⊗ BK)], A d = e (I⊗A)b -I b I -(H ⊗ A -1 BK) f (e(t)) = (I ⊗ δA)e(t)and g(e(t)) = ∆Ae(t). From Theorem 10 and Corollary 4 of Chapter 4 if the algebraic equations A T c P c + P c A c = -P d (5.40) A T d P d + P d A d + bA T d P d A d = -Q (5.41) hold for P c , P d and Q positive definite symmetric matrices and for A c and A d which are pairwise commuting and Hilger stable with respect to time scale P {σ(t k ),t k+1 } , then the quadratic functionV (x) = x T P cx is a common Lyapunov function of the switched system (5.39) without uncertainties (i.e f (e) = g(e) = 0). In addition if the uncertain terms verifies the inequalitiesf (x(t)) ≤ L 1 x(t) , ∀t ∈ ∪ ∞ k=0 [σ(t k ), t k+1 [ g(x(t)) ≤ L 2 x(t) , ∀t ∈ ∪ ∞ k=0 {t k+1 }(5.42)with L 1 < λ min (P d ) 2λ max (P c ) , and 2L 2 (1 + µ max A d )λ max (P c ) + bL 2 2 λ max (P c ) < λ min (S) (5.43) for S = -A T d P c -P c A d -bA T d P c A d .(5.44) 

5 . 8 . 0 - 1 2 .

 58012 One can see that the fixed digraph Ḡ has a directed spanning tree. It is described by the weighted matrix H = 1 The dynamics of the agents is given by (5.32) with A = -

Figure 5 . 9 :

 59 Figure 5.9: Intermittent information transmissions.
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 114521510 Figure 5.10: Trajectories of the tracking error e.

Figure 5 . 11 :

 511 Figure 5.11: Zoom of the trajectories of the tracking error e.

  For f, g : R → R differentiable. The derivative of (f • g) is

	Chapter 2. Basics on time scale theory
	Remark 2.1
	10)

  T -{max T} ∆-mesurable set. Let Ẽ = E∪]t i , σ(t i )[ i∈I E . f is Lebesgue ∆-integrable on Eif and only if f is Lebesgue integrable on Ẽ, and we have

	Proposition 2.1 [14]							
	f is ∆-measurable if and only if f is Lebesgue measurable		
	From the above results, it is possible to obtain a formula for the calculation of a Lebesgue ∆-integral.
	Theorem 2.6 [14]							
	Let E ⊂ E	f (s)∆s =	Ẽ f (s)ds		(2.14)
	Theorem 2.7 [14]							
	Let f : [a, b] → R a Lebesgue ∆-integrable function on [a, b], then for all r, t ∈ T with r ≤ t, we have
							σ(t i )	
	[r,t[∩T	f (s)∆s =	[r,t[	f (s)ds +	i∈I [r,t[∩T	t i	(f (t i ) -f (s))ds	(2.15)

  If λ j d lies strictly within the Hilger circle, i.e. max 1≤i≤k {|1 + µ(t i ) λ j d |} < 1, then similarly to Proof of Theorem 3.1, we have k ≥

	k i=1 µ(t i )
	µmax

  .32) It is possible to Reax Assumption (i). Indeed, if the eigenvalues of matrices A c and A d are not real,

	From Eqs. (3.29)-(3.31) and inequality (3.32), the general solution of (3.2) given by (3.14) converges
	exponentially to zero.
	Remark 3.5
	one can replace Assumption (v) by
	max 1≤j≤n,1≤i≤k

  .37) Similarly to previous cases, the general solution of (3.2) is given by(3.14). It follows that a solution of (3.2) is characterized by(3.15). From Assumption (i)-(iii), one gets an upper bound to the solution (3.15) as followsx(t) ≤ e λ j c (t-k i=0 µ(t i ))+k log(max 1≤i≤k {|1+µ(t i ) λ j d |}) V j . (3.38)Although A c and A d are unstable, we can get stability of the switched system (3.2) if and only if at least one of terms λ j c and log(max 1≤i≤k {|1 + µ(t i ) λ j d |}) in the last inequality is negative for all 1 ≤ j ≤ n.

	Theorem 3.4
	Under Assumptions (i)-(v), the switched system (3.2) is exponentially stable.
	Proof 3.4

  System(3.41) can be written as (3.2) with t k

			5 , 2(k + 1)
			(3.41)
	-3 10 9 10	-27 10 -39 10	x, t ∈ ∪ ∞ k=0 {2(k + 1)}

  e max 0≤i≤k (t i+1t σ i ) is finite for all t ∈ ∪ k i=0 [t σ i , t i+1 [). The solution of (3.48) is given by ), t 0 ) e λ d (t k+1 , t 1 ) by e λ c,d (t, t 0 ). Consider the time scale T = P {σ(t k ),t k+1 } and regressive constants λ c , λ d ∈ C. The scalar switched system (3.48) is exponentially stable if and only if the following condition is satisfied for an arbitrary

	x(t) = e λc((t-k i=0 µ(t i ))-t 0 )	k i=1 (1 + µ(t i )λ d ) x(t 0 )
	= e λc (t -k i=0 µ(t i ), t 0 ) e λ d (t k+1 , t 1 ) x(t 0 )
	= e λ c,d (t, t 0 ) x(t 0 )				
	We note e λc (t -k i=0 µ(t i Proposition 3.1						
	t→∞	1 (t -t 0 )	t t 0	lim s→µ(τ )	log |1 + sλ c,d | s	∆τ < 0	(3.49)

48) such that λ c and λ d are regressive constants. It is assumed in the following that the graininess function µ(t) is bounded for all t ∈ ∪ ∞ k=0 {t k+1 } and that the dwell time of continuous time subsystem is bounded (i.t 0 ∈ T and for all σ(t k ) ≤ t ≤ t k+1 , γ(λ c,d ) = lim sup

  If(3.49) holds, then, for all ε > 0 there exists a constantK = K(t 0 ) ≥ 1 such that |e λ c,d (t, t 0 )| ≤ Ke (γ+ε)(t-t 0 ) , t ≥ t 0In particular, choosing ε < -α, the exponential stability of (3.48) is guaranteed.

	Hence, one gets (⇐=)Using the definition of the generalized exponential function, one obtains lim sup t→∞ 1 t t 0 lim s→µ(τ ) log |1 + sλ c,d | s ∆τ ≤ α < 0 t -t 0
	|e λ c,d (t, t 0 )| = e	t t 0	lim s→µ(τ )	log |1+sλ c,d | s	∆τ , t ≥ t 0

Using Proposition 3.1, let us extend the concept of set of exponential stability given in Definition 2.23 of Chapter 2 to the case of switched systems Definition 3.1 (Set of exponential stability)

  Considering that for any eigenpairs (λ j c , V j ) and (λ j d , V j ) of A c and A d resp., {λ j )| ≤ K 1 e α(t-t 0 ) , t ≥ t 0 with K 1 ≥ 1 and α = min 1≤j≤n {α j }. Using Theorem 2.16, one hase A c,d (t, t 0 ) ≤ Q Q -1 e J c,d (t, t 0 )Since all the non zero entries of e J c,d (t, t 0 ) are of type m n k

	c , λ j d } ⊂ S(T), with α j is a negative positively regressive constant function. Therefore, one can obtain then lim sup t→∞ 1 T t 0 lim s→µ(t) log |1 + sλ j c,d | s ∆t = α j T -t 0
	|e λ j c,d	(t, t 0 λ j c,d	(t, t 0 ) e λ j c,d	(t, t 0 ) for some integers
	n k ∈ {0, . . . , d k -1}, Lemma 3.2 implies		

. . , n}, one has |e λ j c,d (t, t 0 )| = e T t 0 lim s→µ(t) log |1+sλ c,d | s ∆t , T ≥ t 0

  (max 1≤i≤k |1+µ(t i )λ d |)+log(β 2 ) µmax } < 0. In this case, system (3.2) is exponentially stable. Let us now consider that condition (3.56) of Assumption (iii) is not satisfied. Hence, one has Since the graininess function is bounded, one can derive, for t ∈ [t σ k , t k+1 ],

	log( max

[START_REF] King | A singularity test for the existence of common quadratic lyapunov functions for pairs of stable lti systems[END_REF] 

becomes

x(t) ≤ β e λt x 0 with λ = max{λ c , log1≤i≤k |1 + µ(t i )λ d |) + log(β 2 ) > 0

  3, and us Remark (3.15), if A c and A d are not diagonalizable, one can replace conditions (3.62) by

	max 1≤i≤k

21 )

 21 Inequality (4.17) holds from (4.[START_REF] Davis | The laplace transform on time scales revisited[END_REF]) with P = P c .

	Replacing P d in (4.19) into (4.20) yields

  (1 + µ max A d )λ max (P ) + µ max L 2 2 λ max (P ) < λ min (Q 2 ) (4.26) λ min (Q 1 ), λ min (Q 2 )are the smallest eigenvalues of Q 1 and Q 2 respectively, and λ max (P ) is the largest eigenvalue of P .Under these conditions, the uncertain switched system (4.11) is asymptotically stable.

				24)
	with	L 1 <	λ min (Q 1 ) 2λ max (P )	(4.25)
	and			
	2L 2			

  The graininess function is bounded, i.e 0 < µ(t) ≤ µ max , ∀t ∈ P {tσ k ,t k+1 } .(b) MatricesA c and A d are pairwise commuting and Hilger stable with respect to time scale P {tσ k ,t k+1 } . Hence, there exist positive definite matrices P c , P d and Q which satisfy the in--P c A dµ max A T d P c A d (4.30) λ min (P d ), λ min (S) are the smallest eigenvalues of P d and S respectively, and λ max (P c ) is the largest eigenvalue of P c .Under these conditions, the uncertain switched system (4.11) is asymptotically stable.

	(c) The perturbations satisfy (4.24) with		
	L 1 <	λ min (P d ) 2λ max (P c )	(4.28)
	and		
	2L 2 (1 + µ max A d )λ max (P c ) + µ max L 2 2 λ max (P c ) < λ min (S)	(4.29)
	such that the positive definite matrix S is as follows	
	S = -A T d P c Example 4.2		
		.26), function (4.27) is a quadratic
	Lyapunov function for the discrete-time subsystem of (4.11). One can conclude that function (4.27)
	is a common Lyapunov function for the switched uncertain system (4.11). Therefore, the switched
	uncertain system (4.11) is asymptotically stable.		
	Corollary 4.4		
	Consider the uncertain switched system (4.11). It is assumed that the following assumptions hold	
	(a) equalities (4.19)-(4.20).		

  are real and (A + BK) is stableon ∞ k=0 [t k + b, t k+1 [.(ii) A and BK commute each other.(iii) Matrices A c and A d are regressive.

(iv) One of the following conditions should be verified: a) A d is Hilger stable, i.e. all eigenvalues of A d lie strictly within the Hilger circle. It means that the following inequality holds 1

  36) at the discrete times {t k+1 } and {σ(t k+1 )} is considered. The solution of the second subsystem of (5.36) for t ∈ [t k+1 , σ(t k+1 )[ 0≤k≤∞ At time t = t k+1 , ∀k ∈ N , Eq. (5.37) yields e ∆ (t k+1 ) = e (I⊗(A+δA))µ(t k+1 ) -I µ(t k+1 ) [I -(H ⊗ (A + δA) -1 BK)]e(t k+1 ) Let us consider the particular time scale T = ∞ k=0 [σ(t k ), t k+1 ]. The graininess function is µ(t k+1

	in the continuous sense is given by		
	e(t) = e (I⊗(A+δA))(t-t k+1 ) [(t k+1 ) + (I ⊗ (A + δA) -1 B)u k+1 ] -(I ⊗ (A + δA) -1 B)u k+1	
	The ∆-derivative of e on the discrete time scale is	
	e ∆ (t) =	e(σ(t)) -e(t) σ(t) -t	(5.37)

Remerciements

Let T be an arbitrary time scale. The function f : T × R n → R n is said to be : i) rd-continuous, if g defined by g(t) = f (t, x(t)) is rd-continuous, for all continuous function

ii) regressive at t ∈ T κ , if the operator

iii) bounded on a set S ⊂ T × R n , if there exists a constant M > 0 such that f (t, x) ≤ M, for all (t, x) ∈ S iv) Lipchitz on S ⊂ T × R n , if there exists a constant L > 0, such that

for all (t, x 1 ), (t, x 2 ) ∈ S Remark 4.1 [START_REF] Bohner | Dynamic Equations on Time Scales: An Introduction with Applications[END_REF] Let f : T × R n → R n be a Lipschitz function. If the Lipschitz constant L verifies Lµ(t) < 1 for all t ∈ T κ then f is regressive on T κ .

Theorem 4.1 (Local existence and uniqueness) [START_REF] Bohner | Dynamic Equations on Time Scales: An Introduction with Applications[END_REF] Let T be a time scale, t 0 ∈ T, x 0 ∈ R n and a > 0 with inf T ≤ t 0a and sup T ≥ t 0 + a

Let us define

Suppose that f : I a × U b → R n is rd-continuous, bounded (with bound M > 0), and Lipschitz (with constant L > 0). Then the initial value problem (4.1) has one solution on [t 0α, t 0 + α], where

If t 0 is right-scattered and α < µ(t 0 ), then the unique solution exists on the interval [t 0α, σ(t 0 )].

Definition 4.2

We say that the initial value problem (4.1) has a maximal solution

with maximal interval of existence I max provided that the following holds:

If J ⊂ T is an interval and x : J → R n is a solution of (4.1), then J ⊂ I max and x(t) = x(t) for all t ∈ J. Then the problem (4.1) has a unique solution on interval t 0 -b M , t 0 + b M .

Theorem 4.3 [START_REF] Bohner | Dynamic Equations on Time Scales: An Introduction with Applications[END_REF] Suppose the assumptions of Theorem 4.2 are satisfied, and assume that there are positive and continuous function p and q such that f (t, x) ≤ p(t) x + q(t) for all (t, x) ∈ T × R n

Then each solution of x ∆ (t) = f (t, x(t)) exists on T.

Definition 4.3

Let the first order nonhomogeneous linear equation

Theorem 4.4 (Variation of constants) [START_REF] Bohner | Dynamic Equations on Time Scales: An Introduction with Applications[END_REF] Suppose that f ∈ C rd and p ∈ R. Let t 0 ∈ T and x 0 ∈ R. The unique solution of the initial value problem

is given by

Stability of switched systems using Lyapunov function

First, the stability of the linear switched system (4.10), without uncertainty, on time scale

Let us consider the switched linear system (4.10) without uncertainty (i.e. f (x(t)) = 0 and

The equilibrium of (4.10) is asymptotically stable if there exists a common quadratic Lyapunov function

where P = P T is positive definite such that

for all nonzero x ∈ R n where the time derivative is taken along solutions of (4.10).

Lemma 4.3

Let us consider system (4.10) with bounded graininess function, i.e. 0 < µ(t) ≤ µ max , ∀t ∈ P {tσ k ,t k+1 } .

If there exists a positive definite matrix P such that the following inequalities are simultaneously fulfilled A T c P + P A c < 0 (4.17)

Then, the candidate function (4. [START_REF] Cheng | Controllability of switched bilinear systems[END_REF]) is a common quadratic lyapunov function associated with system (4.10). Therefore, the equilibrium of (4.10) is asymptotically stable.

Proof 4.2

From inequality (4.17), the time derivative of (4. [START_REF] Cheng | Controllability of switched bilinear systems[END_REF]) along the trajectories of the continuous-time

Hence, (4. [START_REF] Cheng | Controllability of switched bilinear systems[END_REF]) is a quadratic Lyapunov function for the continuous-time subsystem.

Inequality (4.18) yields

• The duration of a communication failure is bounded by a known value b ∈ R + .

• Over each time interval of length b, there is no more than one communication failure.

• Matrix A is assumed to be invertible.

• (A,B) is stabilizable.

The following switched agreement control law is applied:

The union of time intervals over which the agents can communicate with their neighbors is represented by

3)

The remain intervals represent the time intervals over which the feedback does not evolve (i.e. is constant to its value at the switching time t k+1 ) due to the absence of local information. The time sequence {t 1 , t 2 , t 3 , . . .} is monotonically increasing without finite accumulation points and characterizes the time when the communication failure occurs.

K is an appropriate matrix that will be designed hereafter and z i is considered as local information available for agent i, i.e.

where N i = j ∈ V : (j, i) ∈ E, j = i is the set of neighbors of agent i, i.e. a ij = 1.

The objective is to design the matrix K in the distributed control laws u i , i = 1, . . . , N such that the following equation is fulfilled

where the state error between agent i and the leader is 

• The duration of a communication failure is bounded by a known value µ max = b ∈ R + .

• Matrix (A + δA) is assumed to be invertible.

• Pair (A + δA, B) is stabilisable.

The following switched agreement control law, as previously, is applied: [START_REF] Gard | Asymptotic behavior of natural growth on time scales[END_REF] where K is an appropriate matrix that should be appropriately designed and z i is considered as local information available for agent i, given by (5.4)

Here, the objective is to verify that matrix K in the distributed control laws u i , i = 1, . . . , N

using the time scale theory, where the state error between agent i and the leader given by (5.6)

T and the tracking error e = (e T 1 , . . . , e T N ) T . The dynamics of the state error e can be written in a compact form as:

The closed-loop system (5.35) is equivalent to:

where

To verify that the distributed switched agreement control law (5.33) solves the consensus problem under intermittent information transmissions, one must verify that matrix K guarantees that system (5.36) is asymptotically stable.

Formulation of the stabilization problem using time scale theory

The consensus problem with intermittent information transmissions can be stated using the time scale theory. Similarly to the previous Section, to facilitate the analysis and the controller design, during

General conclusion and perspectives

The work of this thesis focuses on the study of exponential stability for linear switched systems on a nonuniform time domain. We mainly considered the class of switched linear time invariant systems.

The switch occurs between a linear continuous-time subsystem and a linear discrete-time subsystem with variable length and gap. In practice, several systems can be represented by this model: impulsive systems with a non-instantaneous state jump, a network system with an interruption of the information transmissions, etc. To perform this study, we introduced the theory of time scales which is a promising theory because it helps to unify the theories of continuous and discrete dynamical systems.

Contributions

The problem we have considered is very ambitious, since it is to unify the theories of continuous and discrete dynamical systems to analyze switched systems on a nonuniform time domain.

• In the first chapter, we have presented a general recall on switched systems and the problems that arise in the stability analysis of this class of systems. Subsequently, we have given a brief state of the art of various notions and works that have been made on the study of stability of dynamical equations on time scales and in particular on the study of stability of switched systems on time scales.

• To better understand the approach used in this work for the analysis of stability of switched systems, a detailed introduction on the theory of time scales has been presented in Chapter 2.

Definitions and examples of time scales have been introduced. Then, the notions of ∆-derivative, ∆-integral on time scales, the complex plane of Hilger and the generalized exponential function