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INTRODUCTION 
I. The visual system in the retina 

A. General considerations about retinal and visual processing 
1. Transmission of the visual signal from the eye to the brain 

The retina is the light-sensitive part of the eye and corresponds to the inner-most layer of the 

posterior part of the ocular globe. Light enters the eye through the pupil; a circular muscle 

called the iris controls the diameter of the pupil, and it also gives the eye color. The 

transparent cornea covers both of these tissues anteriorly. After entering through the pupil, 

light passes through the crystalline lens and the vitreous chamber before finally reaching the 

retina. Cornea and crystalline lens accommodation is necessary for the formation of a sharp 

image on the retina. Moreover, transparency of the lens and vitreous humor is essential for 

sufficient light transmission to the retina. The retina is part of the central nervous system and 

is composed of several layers of neurons surrounded by glial cells and interconnected by 

synapses (Figure 1). The retina lays on a monolayer of epithelial cells, known as the retinal 

pigment epithelium (RPE). 

 
Figure 1: Schematic representation of a human eye in cross-section with an enlargement of the retina (modified from 
Webvision) 

Once light reaches the retina, photons (elementary particles of light) are captured by rod and 

cone photoreceptors which transform light into a biochemical signal. This signal is 

transmitted to bipolar cells (BCs) and then retinal ganglion cells (RGCs) which in turn 

transform the signal into action potentials. The visual signal is then carried by axons of RGCs 

that form the optic nerve to the lateral geniculate nucleus (LGN). Finally, the visual signal 

reaches the primary visual cortex (V1), a region of the brain in the posterior occipital lobe 
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where the information is analyzed to create images (Figure 2). A separate part of the brain, the 

accessory visual cortex, is responsible for image memory and higher visual processing. 

 
Figure 2: Schematic representation of the visual input from the eye to the brain (modified from Webvision). LGN: 
lateral geniculate nucleus; V1: primary visual cortex 

2. Histology of the retina 

The retina is composed of 10 different layers, listed below from the inner retina (vitreous 

side) towards the outer retina (choroid side) (Figure 3): 

 the inner limiting membrane, a basal membrane associated with Müller glial cell end 

feet, forming a barrier between the retina and vitreous 

 the nerve fiber layer (NFL), composed of axons of RGCs that form the optic nerve 

 the ganglion cell layer (GCL), containing ganglion cell bodies 

 the inner plexiform layer (IPL), formed by vertical synapses connecting bipolar and 

ganglion cells and horizontal synapses connecting bipolar and amacrine cells 

 the inner nuclear layer (INL), containing cell bodies of amacrine, bipolar, horizontal 

cells and Müller cells 

 the outer plexiform layer (OPL), formed by vertical synapses connecting 

photoreceptor and BCs and horizontal synapses connecting photoreceptors and 

horizontal cells 

 the outer nuclear layer (ONL), containing photoreceptor cell bodies 

 the external limiting membrane, a zone of adherent junctions between Müller cells and 

photoreceptor inner segments, forming a barrier between the subretinal space and the 

neural retina 

 the photoreceptor layer, which is composed of the inner and outer segments of 

photoreceptors 

 the retinal pigment epithelium (RPE) composed of a monolayer of epithelial cells 
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Figure 3: Simple representation of retinal layers (modified from Webvision) 

 
Figure 4: Summary of retinal pigment epithelium functions (adapted from (1)) 

Horizontal cells play an important role in the organization of the spatially opponent receptive 

fields of BCs and RGCs, which modulate the photoreceptor signal for better light sensitivity 

and adjust the synaptic gain. Amacrine cells serve to integrate, modulate and interpose a 

temporal domain to the visual message presented to the ganglion cell. Müller cells are glial 

cells that are necessary to maintain the correct structure and function of the neural retina. 

Epithelial cells from the RPE form the hemato-retinal barrier and are essential for the survival 

of the photoreceptors. They are responsible for the phagocytic cycle of photoreceptor outer 

segments, the recycling of 11-cis retinal through the vitamin A cycle, protection against 

oxidative stress induced by light, the supply of nutrients to the retina, the ionic balance and 

the secretion of trophic factors (1) (Figure 4). 
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B. The visual cascade in the retina 
1. Photoreceptors 

a. Types and structure: comparison between human and mouse 

Photoreceptors are the first order neurons of the retina. They are located in the outer part of 

the retina and transform photons (light energy) into an electrochemical signal. In mammals, 

two types of photoreceptors coexist: rods and cones, which are named according to the shape 

of their outer segments. Each photoreceptor is composed of an outer and inner segment. The 

phototransduction cascade takes place in the outer segment. The inner segment contains a lot 

of mitochondria and ribosomes and is connected to the outer segment through a connecting 

cilium. The cell body contains the nucleus and the synaptic terminal contacts the second order 

neurons of the retina (2). The outer segments of photoreceptors are filled with stacks of discs 

continuously extending from the connecting cilium; these stacks contain visual pigment 

molecules called opsins (3). Outer segments are also continuously digested by RPE cells, 

which serve to maintain a consistent length of the outer segments. In rods, the discs are 

independent from the plasma membrane, which envelops the entire outer segment, whereas in 

cones, the plasma membrane itself invaginates to form the stacks (Figure 5). 

 
Figure 5: Schematic structure of rod and cone photoreceptors (adapted from (2)) 

Rods are responsible for vision under dim light conditions at night. They only need one 

photon to be activated and their function is saturable. Their outer segments contain the 

pigment molecule rhodopsin, encoded by RHO, with a peak-sensitivity around 500 nm 

wavelength of light. Cones mediate color vision and function in bright light. There are three 

types of cones in the human retina defined by the expression of three distinct opsins with 
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different light sensitivities (4). S-cones express a short-wavelength sensitive opsin that peaks 

at 437 nm, M-cones express a medium-wavelength sensitive opsin peaking at 533 nm, and L-

cones express a long-wavelength sensitive opsin peaking at 564 nm. In contrast to humans, 

only two types of cones are present in the mouse retina, expressing two different opsins with 

different light sensitivities. UV-cones express an ultraviolet light sensitive opsin peaking at 

370 nm and M-cones express a medium-wavelength sensitive opsin peaking at 511 nm (5). 

b. Density and localization in the retina: comparison between human and mouse 

Photoreceptors are distributed on the whole surface of the retina except above the optic disc, 

the nasal zone where the optic nerve fibers leave the eye. The optic disc corresponds to the 

“blind spot” in the visual field. Although humans are diurnal mammals and mice are 

nocturnal mammals, the retina of both species is dominated by rods: the human retina is 

composed of approximately 95% rods and 5% cone photoreceptors (6) and the mouse retina is 

composed of approximately 97% rods and 3% cone photoreceptors (7). The human and 

mouse retinas contain a specialized central area known as the macula and area centralis (8), 

respectively. These regions are highly enriched in cones as compared to the rest of the retina, 

although rods are still the predominant photoreceptor type in this region. However, the most 

central part of the macula in humans (but not mice) is a region called the fovea that is 

composed exclusively of cones (6) (Figure 6); this region is responsible for sharp central 

vision and maximal visual acuity. Although the murine retina lacks a fovea, the general 

composition and organization of photoreceptors in murine and human retinas are otherwise 

comparable (9). 

 
Figure 6: Rod and cone densities in the human retina (adapted from (10)) 

However, there are notable differences between murine and human retinas in the distribution 

of the different cone subtypes. In humans, M- and L-cones represent 90% of cones and are 
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present on the whole retinal surface, but they are the only types of cones in the fovea. S-cones 

represent only 10% of cones and are completely absent from the fovea (11). In mice, M-cones 

localize to the dorsal half of the retina whereas UV-cones localize mainly to the ventral half 

(12). 

c. The phototransduction cascade 

As previously described, photoreceptors transform light into a biochemical signal. The first 

steps of this transformation occur as part of the phototransduction cascade, whereby the 

capture of a photon leads to the hyperpolarization of the photoreceptor plasma membrane (13) 

(Figure 7).  

 
Figure 7: Schematic representation of rod phototransduction (modified from Webvision). R*: activated rhodopsin; 
G*: activated transducin 

Rod phototransduction is a G-protein-signaling cascade. Rhodopsin is the G protein-coupled 

receptor, anchored in the outer segment discs and associated with the chromophore 11-cis 

retinal. Photon absorption by 11-cis retinal triggers its isomerization into all-trans retinal and 

leads to the activation of rhodopsin. Activated rhodospin binds the α-subunit of the 

heterotrimeric G protein transducin, encoded by GNAT1, catalyzing the exchange of 

guanosine 5'-triphosphate (GTP) for guanosine 5’-diphosphate (GDP). The activated α-

subunit of transducin interacts with the two inhibitory γ-subunits of the cyclic guanosine 3’, 

5’-monophosphate (cGMP) phosphodiesterase (PDE), encoded by PDE6A, PDE6B and 

PDE6G, respectively. The catalytic α- and ß-subunits of PDE are released and catalyze the 
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hydrolysis of cGMP. The consequent decrease in the cytoplasmic free concentration of cGMP 

leads to closure of the cGMP-gated cation channels located in the plasma membrane of rod 

outer segments. Consequently, the influx of cations into rod outer segments is inhibited, 

resulting in their hyperpolarization. During recovery from the photoresponse, transducin is 

deactivated by hydrolysis of bound GTP, allowing the inhibitory γ-subunits of PDE to rapidly 

re-inhibit the α- and ß-subunits. Rhodopsin is also deactivated and the all-trans retinal is 

recycled by RPE cells. In darkness, cGMP-gated cation channels are open and mediate the 

influx of cations (primarily Na+ but also Ca²+) into the cell (the so-called “dark current”) (14). 

Sodium ions are actively expelled by a Na/K-adenosine triphosphatase (ATPase) whereas a 

Na/Ca²-K exchanger, SLC24A1 in rods and SLC24A2 in cones (15), balances the Ca2+ 

current in photoreceptor outer segments. 

d. Glutamate release 

In the synaptic terminal of photoreceptors, light stimulus is finally transformed into a 

biochemical signal. Photoreceptors use the neurotransmitter glutamate to transmit the visual 

signal to the second order neurons of the retina. Glutamate release at the photoreceptor 

synapse is controlled by Ca2+ currents and requires a Ca2+ channel (13). Photoreceptors 

specifically express CACNA1F, which is the α1-subunit of a voltage-dependent L-type Ca2+ 

channel. This subunit forms the pore of a heteromultimeric protein complex, which transmits 

the calcium influx across the synaptic membrane. Auxiliary subunits ß, γ and α2δ, the last one 

being encoded by CACNA2D4, modulate calcium currents and are involved in the correct 

localization and assembly of the complex at the synaptic membrane. Moreover, CABP4 is a 

Ca2+ binding protein that is associated with CACNA1F for its modulation. In darkness, 

photoreceptors’ membrane potential is around -30 mV. CACNA1F is in an open 

conformation and calcium influx triggers a continuous release of glutamate in the synaptic 

cleft. Conversely, when the phototransduction cascade is initiated by light, photoreceptors 

hyperpolarized and glutamate release is reduced (Figure 8).  
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Figure 8: Schematic drawing of the molecular pathways at the first visual synapse between photoreceptors and ON-
BCs without considering LRIT3 (adapted from (16)) 

e.  Photoreceptor synapses 

Photoreceptors release glutamate at a specialized chemical synapse, the ribbon synapse, 

allowing a sustained neurotransmitter release at high rates (17). The ribbon is a large electron-

dense plate-like structure that is encountered by a large number of regularly aligned glutamate 

vesicles. One of the proteins present in the ribbon is ribeye. The number of ribbons differs 

between rod and cone synaptic terminals. The synaptic terminal of rod photoreceptors is small 

and is called the rod spherule. It usually contains only one ribbon (Figure 9). The synaptic 

terminal of cone photoreceptors is larger than the rod terminal and is called the cone pedicle. 

It may contain between 20 and 42 ribbons (18) (Figure 10). 

 
Figure 9: Organization of the rod spherule (modified from Webvision). Electron micrograph (left) and schematic 
representation (right) of a rod spherule. The presynaptic ribbon is opposed to the invaginating axons of horizontal 
cells (HC, yellow) and dendrites of rod bipolar cells (rb, orange) 
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Figure 10: Organization of the cone pedicle (adapted from (18)). (A) Schematic drawing of a cone pedicle in cross-
section. Four presynaptic ribbons flanked by synaptic vesicles and four triads are shown. Invaginating dendrites of 
horizontal cells (medium gray) form the lateral elements, and invaginating dendrites of cone ON-BCs (light gray) 
form the central elements of the triads. Cone OFF-BCs dendrites (dark gray) make flat contacts at the cone pedicle 
base. (B) Reconstruction of the horizontal view of a cone pedicle. The short black lines represent the ribbons. 
Invaginating cone ON-BC dendrites (light gray) and horizontal cell dendrites (darker gray) form the 40 triads 
associated with the ribbons. Flat contacts are not shown. (C) Electron micrograph of a vertical section through the 
synaptic complex of a cone pedicle base. The upper third of the micrograph shows the cone pedicle filled with vesicles. 
A typical triad containing a presynaptic ribbon (arrowhead), two lateral horizontal cell processes (“H”), and one 
invaginating bipolar cell dendrite (star) is present in the upper left part. A flat (basal) contact is indicated by an 
asterisk 

 
Photoreceptor synaptic terminals end in the OPL where they synapse with BCs, the second 

order neurons of the retina. It is also at this level that ON- and OFF-pathways originate as the 

two major parallel pathways of the visual system (19). These two distinct pathways extend 

from the retina to the visual cortex. 

2. ON pathways 
a. Different subtypes of ON-BCs and their proximal synapse 

The term “ON-BCs” comes from the fact that this type of BC depolarizes at the switch from 

dark to light conditions. This sign-inverting synapse between photoreceptors and ON-BCs 

exists because of the expression of the metabotropic glutamate receptor 6 (GRM6/mGluR6), 

which initiates the G protein-signaling cascade, at the dendritic tips of ON-BCs (20-22). In 

mouse, there are six subtypes of ON-BCs including rod BCs (23) (Figure 11). ON-BCs 

synapse with photoreceptors in a particular orientation named a triad. One dendrite of one 

ON-BC invaginates the rod spherule and the cone pedicle in line with a ribbon. Two dendrites 

of horizontal cells invaginate the photoreceptor terminal laterally to the ON-BC dendrite (24) 

(Figure 9, Figure 10). 
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Figure 11: The different subtypes of BCs in mouse retina (adapted from (23)). RBC: rod BCs; IPL: inner plexiform 
layer 

b. The mGluR6 signaling cascade at the ON-BC dendritic tip 

As described above, photoreceptors have a resting potential of -30 mV in the dark, 

continuously releasing glutamate at the ribbon synapse (25). mGluR6 is a G protein-coupled 

receptor that binds glutamate (20-22) at the dendritic tips of ON-BCs (Figure 8). Following 

this binding event, mGluR6 catalyses the exchange of GTP for GDP on the splice variant 1 of 

the α-subunit of its G protein, Go, which dissociates from ßγ-subunits (26-28). Gß3 is proposed 

to be the ß-subunit and Gγ13 is proposed to be the γ-subunit of this heterotrimeric G-protein 

(29-31). At the end of the cascade, activated Go inhibits the closure of the transient receptor 

potential melastatin 1 (TRPM1) cation channel (32-34). A glycosylphosphatidylinositol 

(GPI)-anchored protein, NYX, has been demonstrated to be essential for the correct 

localization of TRPM1 at the dendritic tip of ON-BCs (35). Upon light stimulus, 

photoreceptor glutamate release drops, the G protein-signaling cascade is deactivated, and 

TRPM1 opens, leading to an influx of cations and to the depolarization of ON-BCs.  

It is hypothesized that the Go protein directly acts on TRPM1 (36). According to this 

hypothesis, both α- and βγ-subunits would bind TRPM1, with the βγ-subunits at the N-

terminus and the α-subunit at both the N- and C-termini. When the Go protein is activated, 

Goα1-GTP would dissociate from Gß3γ13 at the N-terminus of TRPM1 and would bind the C-

terminus of TRPM1, inducing a conformational change of TRPM1 and leading to its closure. 

When the Go protein is deactivated, Goα1-GDP would swing from C- to N-terminus of TRPM1 

to bind Gß3γ13, inducing a conformational change of TRPM1, leading to its opening (36). The 

Go protein is able to naturally deactivate, but at a rate that is incompatible with proper visual 

signal transmission (37). Thus the assistance of regulator of G protein signaling (RGS) 

proteins of the R7 group is required for the rapid hydrolysis of GTP. At the ON-BC dendritic 
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tips, these RGS proteins are RGS7 and RGS11 (38-40). In mouse retina, RGS7 and RGS11 

are in excess compared to mGluR6, indicating that the deactivation of the G-protein cascade 

is not a rate-limiting step in generation of the depolarizing response (41).  

These RGS proteins contain four distinct structural domains and form heterotrimeric 

complexes with two binding partners (42). The catalytic domain, also called guanosine 5'-

triphosphatase activating protein (GAP), is located at the C-terminus of the molecule and is 

responsible for the stimulation of GTP hydrolysis on Goα1. The second RGS protein domain, 

known as the G protein gamma-like domain (GGL), is involved in an interaction with a 

specific ß-subunit of G protein named Gß5 (40, 43, 44). The Disheveled, Egl-10, Pleckstrin 

(DEP) and the DEP helical extension (DHEX) domains are located at the N-terminus. These 

domains are necessary for the interaction of RGS7 and RGS11 with membrane proteins in 

order to keep them in close proximity to the plasma membrane of the dendritic tips of ON-

BCs. Two different anchored proteins have been described at the ON-BC dendritic tips: RGS9 

anchored protein (R9AP) and GPR179. R9AP is responsible for the anchoring of RGS11, 

forming a RGS11/Gß5/R9AP complex (44, 45). GPR179 is responsible for the anchoring of 

RGS7, forming a RGS7/Gß5/GPR179 complex (46). GPR179 is also responsible for the 

anchoring of R9AP and therefore, indirectly, for the anchoring of RGS11 (47). However, 

since GPR179 is a G protein-coupled receptor and because it interacts with mGluR6 (48), it 

may have another function in addition to the mGluR6 signaling cascade regulation (e.g as a 

co-receptor) (49). 

c. The distal synapses of ON-BCs and ON-RGCs 

The mammalian IPL is subdivided into five strata of equal thickness. Between the second and 

third strata is the boundary between the OFF-sublamina and the ON-sublamina (50) (Figure 

11). Axons of ON-BCs end in the inferior part of the IPL, in the ON-sublamina, where they 

synapse with their specific third order neurons of the retina, the ON-RGCs. They also synapse 

with ON/OFF-RGCs. ON-RGCs have an increased spiking activity at the light onset (51). 

Only cone ON-BCs axons directly contact ON-RGCs. Rod BCs first synapse with a subtype 

of amacrine cells, AII amacrine cells, which in turn form electrical synapses onto the axon 

terminals of cone ON-BCs (52). Alternative routes for rod pathways have recently been 

demonstrated including one route through gap junctions that exist between rod spherules and 

cone pedicles (53, 54) (Figure 12). 
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Figure 12: Rod and cone pathways in the mammalian retina (adapted from (55)). There are five different rod 
pathways: 1) rodsrod BCsAII amacrine cellscone ON-BCsON-RGCs; 2) rodsrod BCsAII amacrine 
cellscone OFF-BCsOFF-RGCs; 3) rodsconescone ON-BCsON-RGCs; 4) rodsconescone OFF-
BCsOFF-RGCs; 5) rodscone cone OFF-BCsOFF-RGCs. There are two different cone pathways: 1) 
conescone ON-BCsON-RGCs; 2) conescone OFF-BCsOFF-RGCs. OS/IS: outer segments/inner segments 

3. OFF pathways 
a. Different subtypes of OFF-BCs and their proximal synapse 

The name “OFF-BCs” comes from the fact that this type of BC is inhibited by light. This 

sign-conserving synapse between photoreceptors and OFF-BCs exists because of the 

expression of ionotropic glutamate receptors (iGluRs) that form integral and non-selective 

cation channels at the dendritic tips of OFF-BCs (56). In mice, there are five subtypes of 

OFF-BCs that contact mainly cones (23) but it has been shown that type 3a, type 3b and type 

4 OFF-BCs also contact rods (57, 58) (Figure 11). OFF-BCs synapse with photoreceptors by 

forming flat contacts (Figure 10).  

b. Ionotropic glutamate receptors 

In the dark, photoreceptors have a resting potential of -30 mV and continuously release 

glutamate at the level of the ribbon synapse (59). This means that glutamate is not directly 

released in immediate proximity of OFF-BC dendrites, but rather that it spills over ribbon 

synapses and diffuses towards the dendritic tips of OFF-BCs, which express iGluRs (25, 60). 

Two different families of iGluRs are present at the dendritic tips of OFF-BCs: AMPA (α-

amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors (GluR1-4) (61) and kainate 

(2-carboxy-3-carboxymethyl-4-iso-propenyle-pyrrolidine) receptors (GluR5 and KA2) (62, 

63). They form heteromeric complexes and act as integral, non-selective cation channels (56). 

Channels open in response to glutamate binding, leading to OFF-BC depolarization. It has 
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functionally and anatomically been demonstrated that OFF-BCs express distinct types of 

dendritic iGluRs in the mouse retina (64, 65) (Figure 13). Moreover, kainate receptors have 

been shown to mediate transient responses whereas both AMPA and kainate receptors 

contribute in sustained OFF-BC subtypes (65). 

 
Figure 13: Patterns of iGluRs expressed by the different subtypes of OFF-BCs (adapted from (64)). GluA1=GluR1; 
GluK1=GluR5; n.d: not determined 

c. The distal synapse of OFF-BCs and OFF-RGCs 

Axons of OFF-BCs end in the superior part of the IPL, in the OFF-sublamina, where they 

synapse with their specific third order neurons of the retina, the OFF-RGCs. They also 

synapse with ON/OFF-RGCs. OFF-RGCs have an increased spiking activity at the light offset 

(51). Only OFF-BC axons directly contact OFF-RGCs. Rod BCs first synapse with AII 

amacrine cells, which in turn form inhibitory chemical synapses onto the axon terminals of 

cone OFF-BCs (52). A third rod-driven OFF-pathway is through gap junctions that exist 

between rod spherules and cone pedicles (53, 54) (Figure 12). 

4. Receptive fields of RGCs 

The receptive field of an RGC may be considered as the portion of the visual field in which 

light stimuli evoke responses in a ganglion cell (51). It corresponds to all the photoreceptors 

that connect (indirectly) an RGC. The receptive field of an RGC is subdivided into two 

concentric regions, the center and the surround. Two major types of ganglion cells are thus 

described: ON-center/OFF-surround and OFF-center/ON-surround RGCs. ON-center/OFF-

surround RGCs increase their firing frequency when a spot of light is presented within the 

center of their receptive field and when the surround remains in the dark. On the contrary, a 

light stimulus presented in the surround region inhibits the cells’ response at light onset but 

increases the cells’ response at light offset (Figure 14). OFF-center/ON-surround RGCs have 
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an opposite behavior. OFF-center/ON-surround RGCs increase their firing frequency when a 

light stimulus is presented in the surround region of their receptive field and when the center 

remains in the dark. On the contrary, a spot of light presented within the center inhibits the 

cells’ response at light onset but increases the cells’ response at light offset (Figure 14) (66). 

The center-surround organization of the receptive fields allows the RGCs to optimally 

respond to contrasts rather than only to absolute luminance. 

 
Figure 14: The receptive fields of RGCs and their behavior (modified from: http://lecerveau.mcgill.ca). ON-
center/OFF-surround RGCs increase their firing frequency when the light stimulus is presented at the center of their 
receptive field (left, top), whereas a light stimulus presented in the surround region inhibits the cells’ activity at light 
onset but increases the cells’ activity at light offset (left, middle and bottom). OFF-center/ON-surround RGCs 
increase their firing frequency when the light stimulus is presented in the surround of their receptive field (right, top), 
whereas a light stimulus presented in the center inhibits the cells’ activity at light onset but increases the cells’ activity 
at light offset (right, middle and bottom). The first dashed line represents light onset, and the second dashed line 
represents light offset 

C. Diagnostic tools for retinal diseases: comparison between 

human and mouse 

In this part, I will develop only diagnostic tools that have been used in experiments performed 

during my thesis. Depending on the study, I will compare these tools in human and in mouse. 

1. Visual acuity (VA) 

Visual acuity (VA) represents the spatial resolving capacity of the visual system or, in simpler 

terms, the ability of the eye to see fine details. VA can be affected by different factors such as 

refractive errors and eye movement. 
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a. In human: Early Treatment Diabetic Retinopathy Study (ETDRS) chart 

 
Figure 15: ETDRS chart and table showing ETDRS score with decimal conversion 

The Early Treatment Diabetic Retinopathy Study (ETDRS) chart is one of the most 

commonly used test to evaluate the VA in humans. It is based on the recognition of optotypes, 

which may be letters or shapes. For this chart, the subject is placed 4 meters away from a 

sheet of paper covered with lines of letters with different sizes (biggest letters are on the top, 

smallest at the bottom) (Figure 15). The determination of VA is made based on the number of 

letters or shapes the subject can correctly identify. The ETDRS score is correlated to the VA 

expressed in the decimal form (Figure 15). 

b. In mouse: the optomotor response 

VA assessment using optotypes is not applicable for mice as they are not able to 

communicate. Thus, it was necessary to develop new tools to evaluate visual function in 

animals. It has been shown that the optomotor response allows assessment of all components 

of visual integration in mice in both scotopic (dark-adapted) and photopic (light-adapted) 

conditions (67). For this experiment, following dark or light adaptation, the mouse is placed 

in a rotating drum covered with vertical white and black stripes at various spatial frequencies 

(Figure 16). Normal mice are able to track the rotating stripes by moving their head whereas 

animals with altered vision cannot. The VA is determined based on the smallest spatial 

frequency for which the animal fails to follow the rotating drum. 



28 

 
Figure 16: Picture of the dispositive used for the optomotor test (adapted from (67)) 

2. Fundus examination 
a. Funduscopy 

Funduscopy refers to the inspection of the structures lying at the innermost part of the globe: 

the retina, retinal blood vessels, optic nerve head (disc), and (to a limited degree) the 

subjacent choroid (68). The patient is placed in front of an ophthalmoscope that illuminates 

the retina, using a magnifying lens to observe the fundus, preferably after pharmacological 

dilatation of the pupil. The optic nerve head is a yellow-pink disc that is visually distinct from 

the surrounding retina, which is typically more red, brown, or orange in color and contains 

photoreceptors. The central retinal artery and vein emerge from the optic nerve and 

immediately bifurcate into superior and inferior branches, which run parallel with the retinal 

surface. Arteries appear smaller in diameter and lighter in color than veins. In humans, the 

macula is located temporally relative to the optic disc (Figure 17).  

 
Figure 17: Normal human (left) and mouse (right) fundus (adapted from (69) and (70)). A, artery; V, vein; arrow, 
disc; asterisk, central retina 
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b. Fundus autofluorescence (FAF) 

RPE cells play an essential role in photoreceptor survival. RPE cells phagocytose the distal 

part of photoreceptor outer segments, stimulating their continuous renewal. Lipofuscin (LF) is 

an autofluorescent pigment that normally accumulates in the lysosomes of RPE cells as a by-

product of the degradation of photoreceptor outer segments (71); it can be visualized by the 

fundus autofluorescence (FAF) of the retina (Figure 18). LF levels increase with age (72). 

FAF images can be obtained through a dilated pupil with a scanning laser ophthalmoscope 

(SLO) with an exciting 488 nm-laser and a > 500 nm barrier filter.  

 
Figure 18: Normal human (left) and mouse (right) FAF images (modified from Macula specialists and adapted from 
(73)) 

3. Structure of the retina: spectral domain optical coherence 

tomography (SD-OCT) 

Spectral domain optical coherence tomography (SD-OCT) is a fast non-invasive method that 

allows the production of high-resolution cross-sectional images of the human and mouse 

retina. Scans of transverse sections are used to morphologically study and measure the layers 

of the retina and to dissect the outer retina (Figure 19). The retinal layers include: 

RPE/Bruch’s membrane (RPE/BM) complex, the hyper reflexive band corresponding to the 

interdigitation zone (IZ), the photoreceptor outer segments (OS), the ellipsoid zone (EZ), the 

myoid zone (MZ), the external limiting membrane (ELM), ONL, OPL, INL and a complex 

comprising IPL, GCL and NFL (IPL+GCL+NFL). The morphology and/or thickness of some 

layers can be locally or globally affected in retinal diseases (71, 74), so the SD-OCT is a 

useful tool with which to analyze these changes over time. 
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Figure 19: Normal human (left) and mouse (right) SD-OCT scans (courtesy from Thomas Pugliese, MD, Centre 
d'Investigation Clinique des Quinze-Vingts, Paris, France and adapted from (75)). RPE/BM, retinal pigmentary 
ephithelium/Bruch’s membrane; IZ: interdigitation zone; OS, outer segments; EZ: ellipsoid zone; MZ: myoid zone; 
ELM, external limiting membrane; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; 
IPL+GCL+NFL, inner plexiform layer + ganglion cell layer + nerve fiber layer 

4. Function of the retina 
a. Full-field electroretinogram (ERG) 

The full-field electroretinogram (ERG) records the light-induced electrical activity of the 

retina in response to standardized flashes and is used to assess overall retinal function. The 

specific parameter that is recorded by ERG is the difference of electrical potential between the 

retina and the cornea on which an electrode is placed (active electrode). For humans, 

standardized international recommendations exist for ERG testing (76), but similar 

recommendations are not available for mice. In humans, after at least 20 min of dark-

adaptation to be in scotopic conditions, eyes are submitted to a first flash of 0.01 cd.s/m² 

(dark-adapted 0.01 ERG) to elicit a rod-driven ERG trace. Then, a second and a third flash of 

3.0 (dark-adapted 3.0 ERG) and 10 cd.s/m² (dark-adapted 10 ERG), respectively, are 

generated to obtain mixed rod-cone-driven ERG traces dominated by the rods which 

outnumber the cones. The subject is then light-adapted for at least 10 min with a 30 cd/m² 

background light to be in photopic conditions in which case the rods are saturated. A first 

flash of 3.0 cd.s/m² (light-adapted 3.0 ERG) elicits a cone-driven ERG trace. Finally, a 30 Hz-

flicker (light-adapted 30 Hz flicker) is applied. The same types of ERG backgrounds and 

stimuli can be applied to mice with some adaptations (77).  

The resulting ERG traces have two major components reflecting the retinal physiology: (1) 

the a-wave, mainly corresponding to the hyperpolarization of photoreceptors and OFF-BCs, 

and (2) the b-wave, mainly corresponding to the depolarization of ON-BCs in response to 

light onset that is counterbalanced by OFF-BCs responses (Figure 20). Further detail about 

the cellular origins of each ERG wave under different background and flash intensity 
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conditions is shown in Table 1. ERG study results include considerations of the morphology, 

implicit time, and amplitude of both a- and b-wave. 

 
Figure 20: Origin of the a- and b-waves in the dark-adapted ERG. A schematic representation of the retina (left, from 
Webvision) and a representative ERG trace from the mixed rod-cone response (right) are shown. In scotopic 
conditions, the a-wave originates mainly from the hyperpolarization of rods and the b-wave originates mainly from 
the depolarization of rod BCs in response to light. Implicit times are measured from the time of the flash to the trough 
or the peak of the corresponding wave. The amplitude of the a-wave is measured from the baseline to the trough of 
the wave whereas amplitude of the b-wave is measured from the trough of the a-wave to the peak of the b-wave 

Table 1: Physiological cellular origins of ERG waves under different testing conditions (adapted from (76)) 

ERG test Main physiological generator(s) 
Dark-adapted 0.01 ERG - no a-wave 

- b-wave: rod BCs 
Dark-adapted 3.0 ERG - a-wave: (mainly rods) with a minor contribution of cone OFF-BCs 

- b-wave: ON-BCs (mainly rod-driven) slightly counterbalanced by cone OFF-BCs 
Dark-adapted 10 ERG - a-wave: (mainly rods) with a minor contribution of cone OFF-BCs 

- b-wave: ON-BCs (mainly rod-driven) slightly counterbalanced by cone OFF-BCs 
Light-adapted 3.0 ERG - a-wave: cones + cone OFF-BCs 

- b-wave: cone ON-BCs counterbalanced by cone OFF-BCs 
Light-adapted 30 Hz flicker - cone-driven ON- and OFF-pathways 

In humans, it is also possible to separately assess the ON- and OFF-pathways of the cone 

visual system. In photopic conditions, when a brief flash is used, the b-wave illustrates both 

the depolarization of cone ON-BCs counterbalanced by cone OFF-BCs. By using a long-

duration flash (> 100 ms), a positive d-wave is generated, reflecting the retina’s response to 

light cessation and the depolarization of cone OFF-BCs at the light offset (78) (Figure 21). 

Several studies describe attempts to separately assess the ON- and OFF-pathways of the cone 

visual system in mice but none of these protocols is currently used in routine (79-83). 
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Figure 21: Normal human photopic ERG duration series for 10- to 300-ms flashes to isolate the d-wave (courtesy from 
Graham Holder, PhD, UCL Institute of Ophthalmology, UK Moorfields Eye Hospital, London, UK) 

b. Multi-electrode array (MEA) 

In mice, ON- and OFF-pathways of the cone visual system may be evaluated by multi-

electrode array (MEA), which records light-evoked spiking activity from RGCs from ex vivo 

isolated flat-mounted retina (84) (Figure 22). A flat-mounted retina is pressed against a MEA 

composed of 256 electrodes and is continuously perfused with a warmed oxygenated medium 

to keep it alive throughout the experiment. Light-evoked spiking activity from RGCs is 

elicited by applying full-field light stimuli of different intensities and wavelengths. 

Interpretation and analysis of the MEA results includes consideration of the morphology of 

the responses, their maximum firing frequency, and the time at which the firing frequency is 

maximal. 

 
Figure 22: Peristimulus time histogram representing the average response to a full-field flash (adapted from (84)). 
The first dashed line represents light onset, and the second dashed line represents light offset. ON- and ON/OFF 
RGCs spike at the light onset whereas OFF- and ON/OFF RGCs spike at the light offset 
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II. Congenital stationary night blindness (CSNB) 

The first steps in vision occur when rod and cone photoreceptors transform light into a 

biochemical signal, which is subsequently processed by the retina. The initial steps occur in 

photoreceptors (the phototransduction cascade), and are well understood, whereas the process 

of signal transmission from the photoreceptors to their postsynaptic neurons (e.g. bipolar 

cells) remains to be further characterized. Our understanding about the phototransduction 

cascade was obtained by studying the molecular pathophysiology of retinal diseases such as 

retinitis pigmentosa and Leber congenital amaurosis, two disorders resulting from mutations 

in specific components of the phototransduction pathway. On the other hand, congenital 

stationary night blindness (CSNB) is a useful model to characterize the signal transmission 

cascade from the photoreceptors to postsynaptic neurons. CSNB is a clinically and genetically 

heterogeneous group of retinal disorders caused by mutations in genes implicated in the 

phototransduction cascade or in signaling from photoreceptors to adjacent bipolar cells (13, 

16). These disorders are non-progressive and non-degenerative, and unlike many other retinal 

disorders, they are present at the time of birth. The common clinical sign in CSNB patients is 

either night or dim-light vision disturbance or delayed dark adaptation (Figure 23). The true 

prevalence of CSNB is unknown (and probably underestimated) because the night vision 

disturbance may be overlooked in a well-lit urban environment. In addition, CSNB is a 

clinical diagnosis and requires a clinical examination with specialized equipment that is only 

available in some hospitals, so many affected individuals may not be identified. 

 
Figure 23: Normal vision (left and right) compared with what an individual suffering from CSNB sees in dim-light 
conditions (center) (from Retina Suisse) 
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A. Different forms of CSNB 

CSNB can be subdivided into different types according to the pattern of clinical signs present 

in affected patients, but, in all cases, the full-field ERG is critical for precise diagnosis. 

1. The Riggs-type of CSNB 

The Riggs-type of CSNB [MIM 610445, MIM 610444, MIM 616389, MIM 163500, MIM 

613830] is the less common type of CSNB; only a few cases have been reported. Individuals 

affected with this type of CSNB display specific ERG abnormalities, as first reported by 

Riggs (85). These patients exhibit generalized rod photoreceptor dysfunction, with dark-

adapted responses being dominated by cone responses, which are normal. Therefore, the a-

wave amplitude is reduced in response to a bright flash under dark adaptation, with a possible 

additional reduction of the b/a ratio and an electronegative waveform due to the photopic hill 

phenomenon that is characteristic of the cone pathway function (86). Photopic ERG responses 

are preserved due to the normal cone system function (Figure 24). These CSNB patients 

exhibit a relatively mild phenotype as compared to CSNB patients affected with the Schubert-

Bornschein-type of CSNB. They report night blindness but have normal visual acuity, normal 

color vision, normal fundus appearance, and no sign of high myopia, nystagmus or 

strabismus. They have elevated final thresholds on dark-adaptometry, which is compatible 

with a prolonged dark adaptation phase with normal daylight vision (16). 

 
Figure 24: Representative ERG traces from a patient suffering from the Riggs-type of CSNB (left) compared to a non-
affected individual (right) (adapted from (87)) 
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2. The Schubert-Bornschein-type of CSNB 

Most CSNB patients are affected by the Schubert-Bornschein subtype, and they exhibit 

characteristic ERG abnormalities as first described by Schubert and Bornschein. In this CSNB 

subtype, the b-wave amplitude is smaller than the a-wave (which is globally normal) in the 

dark-adapted bright flash condition (88). This electronegative waveform can be subdivided in 

two subtypes, complete (c)CSNB [MIM 310500, MIM 257270, MIM 613216, MIM 614565, 

MIM 615058] and incomplete (ic)CSNB [MIM 300071], characterized by ON- or both ON- 

and OFF-pathway dysfunction (89, 90), respectively. Patients suffering from the Schubert-

Bornschein-type of CSNB display a more severe phenotype as compared to patients affected 

with the Riggs-type, and they often exhibit additional ocular abnormalities such as reduced 

visual acuity, myopia, nystagmus, photophobia and strabismus (13, 16). The Schubert-

Bornschein-type of CSNB results from a post-phototransduction defect and affecting signal 

transmission between photoreceptors and BCs. 

a. Incomplete CSNB (icCSNB) 

icCSNB results from both ON- and OFF-pathway dysfunction. The ERG b-wave is present in 

response to the dark-adapted 0.01 ERG, but it is of subnormal amplitude, giving the term 

“incomplete CSNB”. In response to a scotopic brighter flash, the a-wave is normal, 

confirming normal rod phototransduction, but the b-wave is severely reduced, giving an 

electronegative waveform (89). Photopic responses are also affected. The light-adapted single 

flash reveals a reduced b/a ratio. The light-adapted 30 Hz-flicker is markedly subnormal with 

reduced amplitude and implicit time shift, with most having a distinctive bifid peak. Finally, 

the photopic long-duration flash confirms both ON- and OFF-pathway defects (Figure 25). 

Patients suffering from icCSNB may present with little or no night vision disturbances, as 

only 54% of icCSNB patients report night blindness that actually does impact their daily life 

(91, 92). Patients with icCSNB have variable degrees of refractive error, from myopia to 

hyperopia, with a median refractive error of -4.8 D and various degrees of nystagmus and 

strabismus. Fifty three percent of icCSNB patients report photophobia. In addition, icCSNB 

patients generally have low visual acuity (median of 20/60) and variable color vision defects 

despite having normal visual fields; these daylight symptoms are consistent with the 

involvement of both cone-driven ON- and OFF-pathways in this condition. The fundus 

examination of icCSNB patients is usually normal apart from myopic changes. However, 
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changes in retinal structure and thinning of the retina have been reported in icCSNB patients 

as compared to patients with isolated myopia (93, 94). 

 
Figure 25: Representative ERG traces of individuals with cCSNB (top) and icCSNB (middle) as compared to a normal 
subject (bottom) (adapted from (16)). DA 0.01, dark-adapted 0.01 ERG; DA 10.0, dark-adapted 10 ERG; LA 3.0 
30Hz, light-adapted 30 Hz-flicker ERG; LA 3.0, light-adapted 3.0 ERG; ON-OFF, photopic long-duration flash 

b. Complete CSNB (cCSNB) 

cCSNB results from ON-pathway dysfunction. In this form of CSNB, the ERG b-wave is not 

detectable in response to the dark-adapted 0.01 ERG, giving the term “complete CSNB”. In 

response to a scotopic brighter flash, the a-wave is normal, confirming normal rod 

phototransduction, but the b-wave is severely reduced, producing an electronegative 

waveform (89). Under photopic conditions, the single flash response frequently has a normal 

a-wave amplitude, but with a square shape; the waveform has a sharply rising b-wave and a 

mildly reduced b/a ratio. The light-adapted 30 Hz-flicker ERG response is of normal 

amplitude but may have a flattened trough and mild implicit time shift. Finally, the photopic 

long-duration flash confirms the isolated ON-pathway defect with a normal OFF-response 

(Figure 25). Patients suffering from cCSNB always present with night vision disturbances 

(91, 92), and they have variable degrees of myopia (median refractive error of -7.4 D) and 

nystagmus. Strabismus is also frequently reported. Visual acuity in cCSNB patients (median 

of 20/40) is generally superior to that of icCSNB patients, and they usually have normal color 

vision and visual fields. The fundus examination is usually normal apart from myopic 

changes. However, retinal thinning outside of the foveal region with preservation of the outer 
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retina has been reported in three cCSNB patients, although the authors do not comment on 

whether or not the same findings were evaluated in a myopic population (95). 

B. CSNB genes and mutations 
1. Gene identification strategies 

Disease causing variants in many genes associated with CSNB have been identified through 

classical linkage approaches (96-101) or through candidate gene approaches by comparing the 

human phenotype to similar phenotypes observed in knock-out or naturally occurring animal 

models (102-110). One limitation of the linkage approach is the requirement to examine large 

families. Techniques using massively parallel sequencing of human exons implicated in 

inherited retinal disorders (targeted sequencing) and all human exons (whole exome 

sequencing, WES), have successfully identified disease causing variants in known and novel 

genes underlying many heterogeneous diseases (111, 112), including CSNB (111, 113). WES 

is an unbiased method to identify the gene defect in families with only few family members 

available, but data from unaffected family members and proper filtering procedures are 

crucial to the rapid identification of “the” disease-causing variant in each CSNB family. A 

first filtering step is performed based on the mode of inheritance and the frequency of the 

identified genetic variants in the general population. Priorities are then given to frameshift, 

nonsense, missense and splice site variants as well as in-frame insertions or deletions. 

Identified amino acid substitutions are evaluated with respect to the evolutionary conservation 

at that position, as well as pathogenicity predictions and in-silico splice-site predictions. The 

expression of candidate genes of interest in the eye and retina is evaluated by use of publically 

available transcriptomic databases. In addition, literature searches are performed for each 

candidate gene to find further evidence of putative pathogenicity and/or retinal function based 

on animal models, metabolic pathways, or other supporting experimental of clinical data, 

including 3-D modeling. The most likely disease causing variants are confirmed by Sanger 

sequencing and co-segregation analyses. Further patients are screened for mutations in the 

same gene.  

2. Riggs-type of CSNB 

The Riggs-type of CSNB has been associated with disease causing variants in RHO [MIM 

180380] (110), GNAT1 [MIM 139330] (114), PDE6B [MIM 180072] (96, 115) and SLC24A1 

[MIM 603617](101), in both autosomal dominant (RHO, GNAT1 and PDE6B) and autosomal 
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recessive (GNAT1, SLC24A1) modes of inheritance (Figure 26). Only four families with four 

different mutations in RHO (110, 116-118), three families with three different mutations in 

GNAT1 (114, 119, 120), two families with two different mutations in PDE6B (87, 96) and one 

family with one mutation in SLC24A1 (101) have been described to date, leading to a total of 

10 different mutations in 4 genes. All of these mutations are only missense mutations (change 

of amino acid) or frameshift mutations, leading to a premature stop codon. The proteins 

encoded by these genes are localized in rod photoreceptors and play an important role in the 

phototransduction cascade (16). 

 
Figure 26: Genes implicated in CSNB according to ERG and mode of inheritance at the beginning of my thesis 
(adapted from (113)). XL, X-linked; ar, autosomal recessive; ad, autosomal dominant 

3. Schubert-Bornschein-type of CSNB 
a. icCSNB 

icCSNB has been associated with disease causing variants in CACNA1F [MIM 300110] (97, 

98), CABP4 [MIM 608965] (105) and CACNA2D4 [MIM 608171] (121). CACNA1F 

mutations are responsible for the X-linked form of icCSNB whereas CABP4 and CACNA2D4 

mutations are inherited as an autosomal recessive trait (Figure 26). One hundred and thirty-

three different mutations have been reported for icCSNB, with the majority identified in 

CACNA1F, followed by CABP4 and then CACNA2D4. Many different types of mutations 

were identified in these three genes, missense mutations, nonsense mutations, in-frame 

insertions-deletions (Indels), mutations putatively affecting splicing, and frameshift mutations 
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leading to a premature stop codon or to an elongated protein. The proteins encoded by these 

three genes localize presynaptically and are important for the continuous release of glutamate 

at the photoreceptor synapse as previously described (13, 16). 

b. cCSNB 

cCSNB has been associated with disease causing variants in NYX [MIM 300278] (99, 100), 

GRM6 [MIM 604096] (107, 108), TRPM1 [MIM 603576] (102-104) and GPR179 [MIM 

614515] (109, 113). NYX mutations are responsible for the X-linked form of cCSNB whereas 

GRM6, TRPM1 and GPR179 mutations are inherited as an autosomal recessive trait (Figure 

26). One hundred and fifty-six different mutations have been reported for cCSNB, with the 

majority identified in NYX followed by TRPM1, GRM6, and finally GPR179 (16, 122). The 

identified genetic variants includes missense mutations, nonsense mutations, in-frame Indels, 

mutations putatively affecting splicing, frameshift mutations leading to a premature stop 

codon and the putative loss of the initiation codon. The proteins encoded by these genes 

localize at the dendritic tips of ON-bipolar cells and are part of the mGluR6 signaling cascade 

as previously described (13, 16). 

C. Animal models for cCSNB 

Several animal models have been described for the Riggs-type of CSNB and for icCSNB 

(16), but these models will not be discussed in detail for the purpose of this thesis. The 

primary focus of this work is the study of animal models of cCSNB and the pathogenic 

mechanisms associated with mutations in genes underlying cCSNB. Animal models of CSNB 

have played a critical role in our understanding of the molecular physiopathology of this 

disease, and well-characterized animal models are also crucial for the development of 

pharmaceutical or genetic treatments. The advantage of animal models, in addition to the 

possibility of in vivo functional and structural assessments similar to those performed on 

human patients (e.g. ERG recording, retinal imaging including FAF and SD-OCT, etc), is to 

allow post mortem studies for a more precise analysis of retinal structure and function. In 

addition, protein localization and interaction studies may be performed in samples from 

affected animals and compared to unaffected controls.  

Twelve animal models for the Schubert-Bornschein-type of CSNB (primarily cCSNB) have 

been created or spontaneously occurred, including eight mouse models, three zebrafish 

models and one horse model. These animal models of cCSNB all exhibit molecular defects 
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that impair signal transmission from photoreceptors to BCs. More specifically, they all exhibit 

defects in the mGluR6 signaling cascade at the dendritic tips of ON-BCs. The phenotype in 

these animal models is non progressive, stationary and characterized by night blindness as in 

human patients. All animals exhibit absent scotopic ERG b-waves, a phenotype now 

commonly known as “nob” for “no b-wave” phenotype. There are no obvious morphological 

changes in these animals. The ERGs in most models differ from those of humans under 

photopic conditions. In almost all mice, the photopic b-wave amplitude is undetectable, 

whereas in cCSNB patients, photopic b-waves are clearly present although of abnormal 

waveform. These differences in ERG pattern may reflect inter-species differences in cone 

populations and properties (123). 

1. Animal models for Nyx gene defect 
a. Mouse model for Nyx gene defect 

For the Nyx gene defect, one naturally occurring mouse model carrying a deletion that is 

predicted to lead to a truncated protein has been described (nob) (123-125). This mouse 

model displays a stationary nob phenotype with an absent scotopic ERG b-wave, whereas the 

a-wave is normal. The photopic b-wave is also not detectable (123). For the photopic ERG, a 

long-latency negative wave is followed by a positive-going intrusion, illustrating the 

contribution of the cone-driven OFF-pathways (80). The rod-driven OFF-pathways are also 

functional (126). For the photopic flicker ERG, responses are smaller than in control mice at 

low temporal frequencies but with a different waveform. However, they become similar when 

the stimulus frequency increases, indicating that the derived ON-BC response is maximal at 

low frequencies (127). In a recent paper, Tanimoto et al. showed that rod- and cone-driven 

ON-responses are abolished in nob mice, whereas cone-driven OFF-responses are normal 

(82). ON-BCs fail to respond to glutamate or mGluR6 antagonist puffs (35, 128). The ON-

defect is also highlighted in RGCs, the LGN, and in the cortex (123, 129). RGCs display an 

abnormally elevated spontaneous rhythmic activity after eye opening, as well as small and 

delayed ON-responses with decreased OFF-responses. Furthermore, RGCs projections are 

desegregated in the LGN. Finally, visual evoked potentials reveal no response to light onset 

and a slow response at the light offset. The nob mice also show decreased sensitivity to light 

(125). No gross morphological abnormalities are reported in the retina and even in the rod BC 

dendrites of these animals (123, 130). 



41 

b. Zebrafish model for nyx gene defect 

One zebrafish model for the nyx gene defect was generated by injection of antisense 

morpholino nucleotides directed against the translation site (109, 131). At 4 days post 

fertilization, injected zebrafish exhibit abolition of the ERG b-wave as well as reduced 

contrast sensitivity. No evidence of morphological changes was reported. 

2. Animal models for Grm6 gene defect 
a. Mouse models for Grm6 gene defect 

Four mouse models have been described for Grm6: one laboratory-generated knock-out 

(Grm6tm1Nak/tm1Nak) (22), one chemically-induced mouse model harboring a missense mutation 

(nob4, p.Ser185Pro) (132) and two naturally occurring mouse models carrying mutations that 

are predicted to lead to a truncated protein (nob3 and nob7) (133, 134). All of these mouse 

models display a stationary nob phenotype with an absent scotopic ERG b-wave and a normal 

a-wave (22, 132-134). The photopic ERG is electronegative with an increased a-wave and a 

severely reduced b-wave, with a small and slow positive component remaining, showing the 

contribution of the OFF-pathways (135). Intact functioning of the OFF-pathway is confirmed 

by the photopic long-duration flash ERG with the presence of a d-wave (135, 136). Tanimoto 

et al. showed an abolition of rod- and cone-driven ON-responses in these mice, whereas cone-

driven OFF-responses are normal (82, 83). In addition, rod BCs fail to respond to light and 

are hyperpolarized (137).  

These mouse models also exhibit behavioral abnormalities. Grm6tm1Nak/tm1Nak mice show 

reduced sensitivity of papillary responses to light stimulus and a severely impaired ability to 

drive optokinetic nystagmus in response to visual contrasts (138). They also fail to suppress 

activity upon light onset despite a normal circadian system (139). nob3 and nob4 mice also 

display reduced scotopic and photopic contrast sensitivity (132, 133). At the level of RGCs 

and their projections to the cortex, Grm6tm1Nak/tm1Nak mice show visual evoked potentials with 

no ON-responses and normal OFF-responses (22). Neurons of the visual cortex and RGCs in 

this mouse model have long-latency ON-responses of small amplitude and normal OFF-

responses (136). Moreover, recording light evoked fields potentials from the superior 

colliculus shows a drastically reduced and delayed ON-response that further decreases as light 

intensity increases (140). For nob3 and nob4 mice, RGCs give drastically reduced ON-

responses with a long latency whereas OFF-responses are relatively normal (132, 133). In 
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addition, these mouse models display reduced orientation selectivity and contrast sensitivity 

in cortical cells (141).  

The gross retinal morphology remains normal in the Grm6 mouse models (22). They have a 

normal fundus appearance, normal retinal laminar structure (132, 133), no alteration in the 

cellular organization of BCs, amacrine cells and RGCs, and no defects in the stratifications of 

both ON- and OFF-BCs in developing and mature RGCs (142). Finally, there are no changes 

in the RGC fiber projections (22). However, despite normal retinal gross morphology, some 

ultrustructural defects have been reported in the Grm6 mouse models. In Grm6tm1Nak/tm1Nak 

mice, rod spherules were completely normal, but cone pedicles showed a reduced number of 

invaginating ON-BC dendrites. This decrease was correlated with a reduced number of 

ribbons per cone pedicle (143). In nob4 mice, both rod spherules and cone pedicles showed a 

reduced number of invaginating ON-BC dendrites (44, 144). 

b. Zebrafish model for grm6 gene defect 

One zebrafish model for the grm6 gene defect was developed by injection of antisense 

morpholino nucleotides directed against the grm6b paralog (145). In this model, a 

concentration-dependent reduction of the ERG b-wave was shown at 5 days post-fertilization. 

3. Animal models for Trpm1 gene defect 
a. Mouse models for Trpm1 gene defect 

Two mouse models have been described for the Trpm1 gene defect: one laboratory-generated 

knock-out (Trpm1tm1Lex/Tm1Lex) (32-34) and one naturally occurring mouse model harboring a 

missense mutation (Trpm1tvrm27/tvrm27, p.Leu134Pro) (146). Both display a nob phenotype with 

an absent scotopic b-wave, a preserved a-wave, and a photopic electronegative ERG (32-34, 

146, 147). Vision in these mice is impaired with reduced contrast sensitivity and spatial 

frequency thresholds (32). Rod BCs are unresponsive and cone ON-BC responses are 

dramatically altered whereas cone OFF-BCs remain responsive (32, 34, 35). Structurally, 

these mouse models show normal cellular and synaptic layers. Moreover, rod and cone 

photoreceptor terminals have normal ribbon synapses (146). 

b. Horse model for Trpm1 gene defect 

One horse model with a 1378 base pair-insertion in the intron 1 of Trpm1 has been described 

(148). This insertion corresponds to a long terminal repeat of an endogenous retrovirus that 
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leads to a premature poly-adenylation and disruption of the Trpm1 transcript. This horse 

model displays an ERG that is similar to patients with cCSNB; there is no scotopic b-wave, a 

reduced photopic b-wave, and an a-wave with both a larger trough and a longer implicit time 

(149, 150). The photopic flicker is normal but the scotopic one is abnormal; the waveform is 

altered with reduced amplitude and increased implicit time (150). These horses do not suffer 

from myopia but show visual deficits in reduced ambient illumination (149, 150). Horses with 

Trpm1 gene defects exhibit normal gross retinal morphology, including normal rod and cone 

inner and outer segments and normal rod and cone synapses (149).  

4. Animal models for Gpr179 gene defect 
a. Mouse model for Gpr179 gene defect 

One mouse model for the Gpr179 gene defect has been described (nob5) (109). This naturally 

occurring mouse model harbors the insertion of an endogenous retroviral element in intron 1 

of Gpr179. The dark-adapted ERG initially shows a normal a-wave and an absent b-wave 

(109) but a small b-wave-like response is present with low light luminance flashes (151). A 

slow b-wave is also present in response to long-duration scotopic flashes (151). The light-

adapted ERG is electronegative (109). Rod BCs generate small but detectable responses after 

application of an mGluR6 antagonist (151). Structurally, the Gpr179 mice show normal 

cellular and synaptic layers as well as normal rod and cone ribbon synapses (109). 

b. Zebrafish model for gpr179 gene defect 

One zebrafish model for the gpr179 gene defect was generated by injection of antisense 

morpholino nucleotides directed against the translation site (109). At 4-6 days post-

fertilization, this zebrafish model displays significantly reduced ERG b-wave amplitudes 

(109). 

D. Pathogenic mechanism(s) of gene defects underlying cCSNB 

The known molecular components of the mGluR6 signaling cascade (described in I.B.2.b. 

The mGluR6 signaling cascade at the ON-BC dendritic tip) include transmembrane proteins, 

GPI-anchored proteins, and cytoplasmic proteins, all of which are localized at the dendritic 

tips of ON-BCs. Some of proteins components, when mutated, are responsible for cCSNB. In 

vitro and ex vivo studies of mutations identified in patients as well as in animal models have 

enabled the elucidation of the pathogenic mechanism(s) underlying this disorder. 
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1. GRM6/Grm6 mutations 

mGluR6 is a GPCR containing seven transmembrane domains and a bi-lobed, extracellular N-

terminal domain containing the glutamate binding site. An extracellular cystein-rich region is 

placed between the glutamate binding site and the first transmembrane domain. In humans, 22 

mutations have been identified in GRM6 (16) (Figure 27A). Approximately half of them are 

nonsense or frameshift mutations potentially leading to a truncated protein. For these 

mutations, the pathogenic mechanism is most likely a loss of function of the receptor due to 

nonsense mediated mRNA decay or as a consequence of the receptor missing one or several 

critical functional domains. For six of the missense mutations, in vitro cellular localization of 

the mutated proteins has been evaluated in stable cell lines (152). None of these mutant 

proteins were demonstrated at the cell surface, suggesting an intracellular transport defect of 

the receptor. Although the mutations affect different domains of mGluR6, all probably result 

in misfolding of the protein. In the four mouse models with a Grm6 gene defect, the encoded 

proteins do not show the typical ON-BC dendritic tip localization, indicating loss-of-function 

mutations (22, 40, 132-135, 137, 142, 153). Many other proteins of the mGluR6 signaling 

cascade, including TRPM1, are also mislocalized in these mouse models (Table 2). 



45 

 
Figure 27: Schematic drawing of proteins implicated in cCSNB at the beginning of my thesis with identified mutations 
(adapted from (16)). Nonsense and frameshift mutations are depicted in red, missense mutations are depicted in 
green, and in frame deletions and insertions are depicted in yellow. The presumed splice site mutations as well as the 
two most recent mutations identified in NYX (122) are not depicted. LRR, leucine-rich repeat; LRRNT, N-terminal 
LRR; LRRCT, C-terminal LRR; TM, transmembrane domain; GPI, glycosylphosphatidylinositol; ml, 
mislocalization; nf, no functional defect identified 

2. NYX/Nyx mutations 

Nyctalopin is a GPI-anchored protein containing 11 leucine-rich repeat (LRR) flanked by an 

N-terminal LRR (LRRNT) and a C-terminal LRR (LRRCT). To date, 71 mutations in this 

gene have been identified in cCSNB patients of which 75% are missense mutations (16, 122) 

(Figure 27D). Similar to the case for GRM6 mutations, nonsense or frameshift mutations are 

most likely leading to a loss of function of the protein due to nonsense mediated mRNA decay 

or to a non-functional truncated protein. The subcellular localization of three mutant proteins 

has been studied, but they do not show a trafficking defect (154). Trafficking defects are thus 

probably not the pathogenic mechanism associated with NYX mutations. However, it has been 

shown that nyctalopin interacts with both TRPM1 and mGluR6 (35, 155) and that it is 

necessary for the correct localization of TRPM1 at the dendritic tips of ON-BCs (35) (Table 

2). Consistent with this, rod BCs of nob mice lack functional TRPM1 channels as 

demonstrated by patch clamp recordings (35). In addition, restoration of nyctalopin 
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expression in nob mice restores proper TRPM1 cellular localization, thereby restoring a 

normal phenotype (128, 156). Thus, the pathogenic mechanism associated with NYX 

mutations is most likely related to the mislocalization of TRPM1 and the incapacity of ON-

BCs to depolarize upon light stimulus. 

3. TRPM1/Trpm1 mutations 

TRPM1 is a non-selective cation channel with six transmembrane domains. To date, 51 

TRPM1 mutations have been identified in cCSNB patients (16) (Figure 27C). Again, 

nonsense or frameshift mutations leading to potentially truncated proteins are most likely 

leading to a loss of function of the protein due to nonsense mediated mRNA decay or to a 

non-functional protein. Two splice-site mutations are predicted to abrogate normal splicing 

and lead to abnormal protein production, suggesting that they are also loss-of-function alleles 

(147). In addition, two missense mutations located in the N- and C-terminal ends of the sixth 

transmembrane domain (one mutation in each end) have been studied and exhibit no ON-BC 

dendritic tip staining when electroporated in the mouse retina, indicating that mislocalization 

of TRPM1 may lead to cCSNB (147). In the Trpm1 knock-out mouse model, TRPM1 is 

absent (Table 2) and there is no ON-response in ON-BCs after application of a TRPM1 

agonist (34, 35, 151). Interestingly, a different mouse model carrying a missense mutation in 

Trpm1 (Trpm1tvrm27/tvrm27) shows correct localization of TRPM1 (Table 2) at the dendritic tips 

of ON-BCs, indicating that the nob phenotype is the result of a loss of channel function (146).  

4. GPR179/Gpr179 mutations 

To date, 14 different mutations have been identified in GPR179 leading to cCSNB (16) 

(Figure 27B). Again, nonsense or frameshift mutations are most likely leading to a loss of 

function of the protein. One predicted splice site mutation was confirmed to result in a mis-

splicing event, probably leading again to the loss of function of the protein (49). In another 

report, of the four missense mutations studied, three resulted in proteins that are not properly 

localized to the plasma membrane, indicating a trafficking defect (49). In the case of the 

fourth missense mutation (which had proper localization to the plasma membrane), the 

mutated residue is located at the predicted extracellular N-terminal region of the protein and is 

probably involved in ligand binding. Thus, even if the ligand of GPR179 is still unknown, this 

missense mutation could lead to a ligand binding defect. In the spontaneous occurring mouse 

model with a Gpr179 gene defect, the corresponding mRNA level is dramatically decreased 
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and nonsense-mediated mRNA decay leading to a null allele is the predicted pathogenic 

mechanism (109). 
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Table 2: Localization of many known components of the mGluR6 signaling cascade at the dendritic tips of ON-BCs in cCSNB mouse models without considering LRIT3 (adapted 
from (16)). DTB, dendritic tip staining 

Gene defect Mouse model mGluR6 GPR179 Nyctalopin TRPM1 RGS7 RGS11 Gß5 R9AP 
Grm6 Grm6tm1Nak/tm1Nak (22) no DTB  

(22, 135, 137, 142, 153) 
DTB  
(151, 153) 

n.d. reduced DTB (137) no DTB 
(153) 

no DTB  
(137, 153) 

reduced 
DTB (137) 

no DTB 
(153) 

nob3 (133) no DTB (133) no DTB (48) n.d. no DTB (48, 155) n.d. n.d. n.d. n.d. 
nob4 (132) no DTB (40, 132) n.d. n.d. no DTB (155) reduced 

DTB (44) 
no DTB  
(40, 44) 

no DTB 
(44) 

no DTB 
(44) 

nob7 (134) no DTB (134) n.d. n.d. n.d. n.d. n.d. n.d. n.d. 
Gpr179 nob5 (109) DTB (47, 151, 153) no DTB  

(46, 47, 109, 151, 153, 157) 
DTB  
(151, 153) 

DTB (46, 47, 151, 153) no DTB  
(46, 153) 

no DTB 
(47, 153) 

no DTB 
(47, 158) 

no DTB 
(47, 153) 

Nyx nob (123, 125) DTB (130, 153) DTB  
(151, 153) 

n.d. no DTB (35, 153) DTB 
(153) 

DTB 
(153) 

n.d. DTB 
(153) 

Trpm1 Trpm1tm1Lex/tm1Lex (32-34) DTB  
(34, 35, 48, 144, 146, 153) 

DTB  
(48, 151, 153) 

DTB  
(35, 153) 

no DTB  
(32, 34, 35, 144, 151, 153) 

DTB 
(153) 

DTB 
(153) 

n.d. DTB 
(153) 

Trpm1tvrm27/tvrm27 (146) DTB (146) n.d. n.d. DTB (146) n.d. n.d. n.d. n.d. 
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III. Objectives of the study 

Despite comprehensive genotyping studies of our own CSNB cohort, some cases remain with 

no identified disease-causing variants in known CSNB genes. This finding strongly indicates 

that additional disease-causing variants in other genes remain to be discovered, or that defects 

in the regulatory elements or introns of known CSNB genes may be involved. Therefore, the 

objectives of this thesis are: 

1) Identification of novel gene defects underlying CSNB 

2) Expression studies of genes underlying CSNB and immunolocalization studies of the 

encoded proteins in the human retina 

3) Genetic and phenotypic characterization of a new mouse model with a new gene 

defect underlying CSNB 

4) Localization analysis of photoreceptor synaptic proteins in this mouse model 

5) Study of the ultrastructure of the photoreceptor ribbon synapses in this mouse model  

6) Evaluation of the ON- and OFF-pathways function in this mouse model 

7) Identification of binding partners of the protein of interest in the human and/or mouse 

retina. 

These objectives will result in the functional characterization of the corresponding protein and 

to the elucidation of pathophysiological mechanism(s) by which mutations in this protein lead 

to CSNB. 
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MATERIALS AND METHODS 
 

This section includes only the materials and methods which have not yet been published as 

part of this doctoral work. All previously published materials and methods are not described 

here. 

I. Ethics statements 

All animal procedures were performed according to the Council Directive 2010/63EU of the 

European Parliament and the Council of 22 September 2010 on the protection of animals used 

for scientific purposes, as well as the National Institute of Health guidelines. The procedures 

were granted formal approval by the Institutional Animal Care and Use Committee of the 

Scripps Research Institute. 

II. Animal care 

The generation and characterization of the Lrit3 knock-out mouse model (Lrit3nob6/nob6) was 

previously described (75) (http://www.taconic.com/knockout-mouse/lrit3/tf2034). The Grm6 

knock-out mouse model (Grm6-/-) [129S6.129S(Cg)-Grm6tm1Nak] mouse model was obtained 

commercially (Riken, Ibaraki, Japan).  Nine Lrit3nob6/nob6 and 4 Grm6-/- homozygous mutant 

adult mice of both sexes and 15 control animals (10 for Lrit3, 5 for Grm6) were used in this 

study. Mice were housed in groups in a temperature-controlled room with a 12-h light/12-h 

dark cycle. Fresh water and rodent diet were available ad libitum. 

III. DNA constructs and antibodies 

The murine and human Lrit3/LRIT3 coding sequences without the stop codon were subcloned 

into a pBudCE4.1 expression vector at the SalI and XbaI or BamHI restriction sites, 

respectively, by GeneCust Europe (Dudelange, Luxembourg). These plasmids encode mouse 

and human LRIT3-Myc fusion proteins. The Myc tag is located at the C-terminal end. 

Rabbit anti-mouse LRIT3 antibody was obtained from Eurogentec (Seraing, Belgium) (159). 

Rabbit anti-GluR1 antibody (AB1540, Merck, Darmstadt, Germany), goat anti-GluR5 

antibody (sc-7616, Santa-Cruz Biotechnology, Dallas, TX, USA), rabbit anti-Pikachurin 
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antibody (011-22631, Wako, Osaka, Japan), mouse anti-PSD-95 antibody (MABN68, 

Merck), mouse anti-Myc antibody (11667149001, Roche Diagnostics, Meylan, France) and 

rabbit polyclonal anti-human LRIT3 antibody (HPA013454, Sigma-Aldrich, Saint-Louis, 

MO, USA) were purchased. 

IV. Electron microscopy 

Electron microscopy (EM) studies were performed in collaboration with Kirill Martemyanov 

(Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA). Eyes were 

enucleated, cleaned of extra-ocular tissue, and pre-fixed for 15 min in cacodylate-buffered 

half-Karnovsky's fixative containing 2 mM calcium chloride. The eyecups were then 

hemisected along the vertical meridian and fixed overnight in the same fixative. The 

specimens were rinsed with cacodylate buffer and postfixed in 2% osmium tetroxide in buffer 

for 1 hour, then gradually dehydrated in a series of solutions with increasing ethanol and 

acetone concentrations (30–100%), and embedded in Durcupan ACM resin (Electron 

Microscopy Sciences, Hatfield, PA, USA). Blocks were cut to 70-nm-thickness sections, and 

were stained with 3% lead citrate. Sections were examined in a Tecnai G2 spirit BioTwin 

(FEI, Hillsboro, OR, USA) transmission electron microscope at 80 or 100 kV accelerating 

voltage. Images were captured with a Veleta CCD camera (Olympus, Tokyo, Japan) operated 

with TIA software (FEI). 

V. Immunohistochemistry 
A. Preparation of retinal sections 

Mice were euthanized by CO2 administration and cervical dislocation. Eyes were enucleated 

and prepared as previously described (160) with some modifications. The anterior segment 

and lens were removed and the eyecup was fixed in 2% (w/v) paraformaldehyde in 0.12 M 

phosphate buffer, pH 7.2 (PB) for 10 min at room temperature. The eyecup was washed three 

times in PB and cryoprotected with increasing concentrations of ice-cold sucrose in PB (10%, 

20% for 1 h each and 30% overnight). Subsequently, the eyecup was embedded in 7.5% 

gelatin-10% sucrose and frozen in a dry ice-cooled bath of isopentane. Sections were cut at a 

thickness of 16 µm on a cryostat and mounted onto glass slides (Super-Frost, Thermo Fisher 

Scientific, Waltham, MA, USA). The slides were air dried and stored at -80°C. 
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B. Immunostaining of retinal sections 

Immunohistochemistry on retinal sections was performed as previously described (160) with 

some modifications. Sections were incubated with primary antibodies in 3% (v/v) normal 

donkey serum, 1% bovine serum albumin, and 0.5% Triton X-100 in PB overnight at room 

temperature. Primary antibodies were: rabbit anti-GluR1 (1:100), goat anti-GluR5 (1:100), 

rabbit anti-Pikachurin (1:1000), and mouse anti-PSD-95 (1:500). After washing in PB, the 

sections were incubated with secondary antibodies coupled to Alexa Fluor 488 or Cy3 

(Jackson ImmunoResearch, West Grove, PA, USA) at a dilution of 1:1000 in PB for 1.5 h at 

room temperature. The slides were stained with DAPI and a cover slip was applied with 

mounting medium (Mowiol, Merck Millipore, Billerica, MA, USA). None of the secondary 

antibodies used gave recordable signal when used as a negative control without primary 

antibodies (data not shown). 

C. Image acquisition 

Fluorescent staining signals were captured with a confocal microscope (FV1000, Olympus, 

Hamburg, Germany) equipped with 405, 488, and 559 nm lasers. Confocal images were 

acquired with a 40x objective compatible with oil (lens NA: 1.3) imaging pixels of 310 nm 

and 77 nm in width and height for zoom 1 and 4, respectively, and using a 0.52 µm step size. 

Each image corresponds to the projection of three optical sections. For figures, brightness and 

contrast were optimized (ImageJ, v.1.50; National Institutes of Health, Bethesda, MD, USA). 

VI. ON/OFF ERG 

ON/OFF ERG studies were performed in collaboration with Stuart Coupland (Ottawa 

Hospital Research Institute, University of Ottawa, Ottawa ON, Canada). We tried to adapt the 

protocol established by Khan et al. in primate for mice in order to separately record ERG 

responses originating from cone driven ON- and OFF-bipolar cells (BCs) (161). After 

overnight dark adaptation, mice were anesthetized with ketamine (100 mg/kg) and xylazine 

(10 mg/kg). Eye drops were used to dilate the pupils (0.5 % mydriaticum, 5 % neosynephrine) 

and anesthetize the cornea (0.4 % oxybuprocaine chlorhydrate). Body temperature was 

maintained at 37°C through the use of a heating pad. Gold wire loop electrodes for mice 

(Diagnosys LLC, Lowell, MA, USA) were placed on the corneal surface. A needle electrode 

placed subcutaneously in the forehead served as reference and a needle electrode placed in the 
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back served as a ground electrode. Recordings were made from both eyes simultaneously. 

Stimulus presentation and data acquisition were provided by the Espion E2 system (Diagnosys 

LLC). Mice were first light-adapted for 10 min by exposure to a white 150 cd/m² saturating 

background. Ramping rapid-ON/OFF-flicker white stimuli were then applied at a frequency 

of 8 Hz to selectively elicit ON- and OFF-responses. The stimuli had a miminum light 

intensity of 0 cd/m² and a maximum light intensity of 150 cd/m². Twenty consecutive sweeps 

were recorded. 

VII. MEA 

MEA studies were performed in collaboration with Serge Picaud (Institut de la Vision, Paris, 

France). MEA recordings were obtained from ex vivo isolated flat-mounted retina as 

previously described (84). Mice were euthanized by CO2 inhalation followed by cervical 

dislocation and eyes were rapidly enucleated and dissected under dim red light at room 

temperature in Ames medium (Sigma-Aldrich, St-Louis, MO, USA), oxygenated with 95% 

O2 and 5% CO2 (Air Liquide, Paris, France). Retinas were placed on a Spectra/Por membrane 

(Spectrum Laboratories, Rancho Dominguez, CA, USA) and gently pressed against a MEA 

(MEA256 100/30 iR-ITO, Multi Channel systems MCS, Reutlingen, Germany) using a 

micromanipulator, with RGCs facing the electrodes. Retinas were continuously superfused 

with bubbled Ames medium at 34°C at a rate of 1–2 mL/min, and let to rest for 1 hour before 

the recording session. Ten repeated full-field light stimuli at a 480 nm-wavelength were 

applied to the samples at 1014 photons/cm2/s for 2 sec with 10 sec intervals by using a 

Polychrome V monochromator (Olympus) driven by a STG2008 stimulus generator (MCS). 

Raw RGC activity recorded by the MEA was amplified (gain 1000-1200) and sampled at 20 

kHz using MCRack software (MCS). Resulting data were stored and filtered with a 200 Hz-

high-pass filter. Raster plots were obtained using threshold detection (using the mean 

amplitude of the spontaneous activity + 3 standard deviations (SD) as a threshold) and 

peristimulus time histograms (PSTH) were plotted with a bin size of 50 ms using a custom 

made script in MATLAB v.R2014b (MathWorks, Natick, MA, USA). Only RGCs with a 

mean spontaneous firing frequency superior to 1 Hz were considered. We subsequently 

determined for each sorted RGC the maximum firing frequency in an interval of 2 s after the 

light onset (for ON-responses) and in an interval of 2 s after the light offset (for OFF-

responses). These values were normalized to the mean spontaneous firing frequency of the 

corresponding RGC. Considering that significant responses have a maximum firing frequency 
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that is superior to the mean spontaneous firing frequency + 5SD, we determined the time at 

which these significant frequencies were reached after the light onset for ON-responses and 

after the light offset for OFF-responses. The histograms were traced using Prism v6 software 

(Graphpad, La Jolla, CA, USA). 

VIII. Analysis of mouse and human LRIT3 in 

overexpressing cells though mass spectrometry  

These studies were performed in collaboration with Manuela Argentini (Institut de la Vision, 

Paris, France) and the structural and functional proteomic/mass spectrometry platform 

(Institut Jacques Monod, Paris, France). 

A. Cell culture and transfection 

GripTite™ 293 MSR cells, a subtype of human embryonic kidney (HEK) cells, were 

purchased (Thermo Fisher Scientific, Waltham, MA, USA) and maintained in DMEM (Life 

Technologies, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum, 0.01 mg/mL 

of gentamycin (Life Technologies) and 0.6 mg/mL of geneticin (Life Technologies) to 

maintain the selection pressure. One day before transfection, GripTite™ 293 MSR cells were 

seeded at a concentration of 300,000 cells/mL in a 10-cm petri dish. The following day, cells 

reached approximately 80% confluence and were transfected with either the human LRIT3-

myc or the mouse Lrit3-myc construct using Lipofectamine 2000 (Life Technologies) 

according to the manufacturer’s instructions. Cell pellets were collected and frozen 48 h after 

transfection. 

B. Immunoprecipitation and Western blotting 

Transfected GripTite™ 293 MSR cells from one 10-cm plate were lysed using 200 µL of 50 

mM Tris, pH 7.5 supplemented with 150 mM NaCl, 1% Triton-X100 (Sigma-Aldrich) and 

protease and phosphatase inhibitor cocktails (Sigma-Aldrich). The homogenate was incubated 

for 30 min on ice with vortexing every 10 min. It was subsequently sonicated three times for 

10 s with at least 30 s between each sonication step, then centrifuged at 13,000 g for 10 min at 

4°C. The total protein concentration of each sample was determined with a bicinchoninic acid 

assay (BCA Protein Assay Kit, Thermo Fisher Scientific). 10 µg of mouse anti-Myc or rabbit 

anti-human LRIT3 antibody or 2.5 µg of rabbit anti-mouse LRIT3 antibody were incubated 
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with 100 or 25 µL of magnetic beads covalently coupled to G protein (Dynabeads, Life 

Technologies), respectively, on a rocker at room temperature for 1 h. Supernatants were then 

incubated with antibody-bead complexes on a rocker at 4°C overnight. After five washes with 

lysis buffer, the proteins were eluted from the beads with 20 µL of a sodium dodecyl sulphate 

(SDS) sample buffer (240 mM Tris-HCl pH 6.8, 40% glycerol, 8% SDS) with 10 nM of 1,4-

Dithiothreitol (DTT) at room temperature for 30 min with vortexing every 5 min.  

Two microliters of each eluate were mixed with a loading buffer (SDS sample buffer with 

0.04% bromophenol blue) with 20 nM of DTT in final concentration and were then subjected 

to 4-15% SDS-PAGE (Bio-Rad Laboratories, Hercules, CA, USA). Protein bands were 

transferred onto nitrocellulose membranes (GE Healthcare, Little Chalfont, UK). Membranes 

were blocked for 1 h at room temperature in 5% dry milk diluted in phosphate buffer saline 

(PBS) with 0.1% Tween 20 and subjected to primary antibodies in 1% dry milk diluted in 

PBS with 0.1% Tween 20 overnight at 4°C. After washing in PBS, 0.1% Tween 20, the 

membranes were incubated with horseradish peroxidase (HRP)-conjugated secondary 

antibodies (Jackson ImmunoResearch, West Grove, PA, USA) in 1% dry milk diluted in PBS, 

0.1% Tween 20, and bands were subsequently detected by using a chemiluminescent substrate 

(ECL2, Thermo Fisher Scientific). 

C. Silver staining 

The remaining eluates from the immunoprecipitation experiment were subjected to 4-15% 

SDS-PAGE (Bio-Rad Laboratories). The gel was fixed for 30 min in 30% ethanol, 5% acetic 

acid. After washes with water, the gel was incubated with sensitizing solution (0.02% sodium 

thiosulfate) for 1 min. The staining was performed for 20 min in a solution containing 0.2% 

(w/v) of silver nitrate and 0.01% of formaldehyde before development with 1% (w/v) sodium 

carbonate, 0.00125% sodium thiosulfate and 0.01% formaldehyde. Once the bands had 

reached the desired intensity, development was stopped by adding a solution containing Tris 

4% (w/v) and 2% acetic acid. Finally, individual bands were cut and stored in 50µL of 

acetonitrile at -20°C until submission for mass spectrometry analysis. 

D. Mass spectrometry analyses: LC-MS/MS acquisition 

Plugs were reduced with 10mM DTT, alkylated with 55mM iodoacetamide and incubated 

with 20 μL of 25 mM NH4HCO3 containing sequencing-grade trypsin (12.5 μg/mL; Promega, 
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Madison, WI, USA) overnight at 37°C. The resulting peptides were sequentially extracted 

with 70% acetonitrile, 0.1% formic acid. All digests of protein extracts were analyzed using a 

Q Exactive Plus equipped with an EASY-Spray nanoelectrospray ion source and coupled to 

an Easy nano-LC Proxeon 1000 system (all devices are from Thermo Fisher Scientific). 

Chromatographic separation of peptides was performed with the following parameters: 

Acclaim PepMap100 C18 pre-column (2 cm, 75 μm i.d., 3 μm, 100 Å), Pepmap-RSLC 

Proxeon C18 column (50 cm, 75 μm i.d., 2 μm, 100 Å), 300 nL/min flow, gradient rising from 

5 % solvent B (100 % acetonitrile, 0.1% formic acid) to 35% solvent B (solvent A is water, 

0.1% formic acid) in 120 min followed by column regeneration for 50 min. Peptides were 

analyzed in the orbitrap in full ion scan mode at a resolution of 70000 (at mass to charge ratio 

(m/z) 400) and with a mass range of m/z 350-1500. Fragments were obtained with a Higher 

Energy Collision dissociation activation with a collisional energy of 27%, an isolation width 

of 1.4 m/z. MS/MS data were acquired in the orbitrap in a data-dependent mode in which the 

20 most intense precursor ions were fragmented, with a dynamic exclusion of 30 s. The 

maximum ion accumulation times were set to 50 ms for MS acquisition and 45 ms for 

MS/MS acquisition. MS/MS data were processed with Proteome Discoverer 2.1 software 

(Thermo Fisher Scientific) coupled to an in house Mascot search server (version 2.5.1; Matrix 

Science, Boston, MA, USA). The mass tolerance was set to 6 parts per million (ppm) for 

precursor ions and 0.02 Da for fragments. The following modifications were used in variable 

modifications: oxidation (Methionine), phosphorylation (Serine, Threonine, and Tyrosine), 

acetylation (N-terminal). The maximum number of missed cleavages by trypsin was limited 

to two. MS/MS data were searched against Homo Sapiens and Mus musculus databases 

retrieved from the NCBInr database. 
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RESULTS 
I. Identification of novel mutations in SLC24A1 in the 

Riggs-type of CSNB 

This work led to one publication and one poster presentation at an international meeting. 

Publication: 

1) Neuille, M., Malaichamy, S., Vadala, M., Michiels, C., Condroyer, C., Sachidanandam, R., 
Srilekha, S., Arokiasamy, T., Letexier, M., Demontant, V., Sahel, J.A., Sen, P., Audo, I., 
Soumittra, N. & Zeitz, C. (2016) Next-generation sequencing confirms the implication of 
SLC24A1 in autosomal-recessive congenital stationary night blindness (CSNB). Clin Genet. 
Epub ahead of print. 

Poster presentation: 

1) Neuille, M., Malaichamy, S., Vadala, M., Sachidanandam, R., Arokiasamy, T., Sahel, J.A., 
Sen, P., Audo, I.S., Soumittra, N.  & Zeitz, C. - Novel mutations in SLC24A1 leading to 
congenital stationary night blindness (CSNB) - Annual meeting of the Association for 
Research in Vision and Ophthalmology (ARVO) (May 1-5 2016) – Seattle (WA, USA). 
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Next-generation sequencing confirms the implication of SLC24A1 

in autosomal-recessive congenital stationary night-bindness 

The aim of this study was to identify the gene defect(s) in a previously diagnosed icCSNB 

family lacking and in two other families with unclassified CSNB. Disease causing variants in 

the known genes CACNA1F, CABP4, CACNA2D4 and in the candidate gene CACN2B had 

already been excluded in the icCSNB family by Sanger sequencing. In contrast, the two 

families with unclassified CSNB had not previously been investigated. This work was 

performed in collaboration with an Indian group. 

Whole-exome sequencing (WES) in the previously diagnosed icCSNB patient identified a 

homozygous nonsense variant (c.2401G>T, p.(Glu801*)) in SLC24A1. Further subsequent 

clinical investigation and review of the family’s medical records revealed the true diagnosis to 

be the Riggs-form of CSNB in this patient. Targeted next-generation sequencing (NGS) 

identified compound heterozygous deletions (c.1691_1693delTCT, p.(Phe564del) and 

c.3291_3294delATCT, p.(Val1099Glufs*31)) and a homozygous missense variant 

(c.2968A>C, p.(Ser990Arg)) in SLC24A1 in the two other patients with unclassified CSNB. 

The electroretinographic abnormalities varied in these three patients, but all of them had 

normal visual acuity without myopia or nystagmus, unlike the patients with the Schubert-

Bornschein-type of CSNB. These findings confirm that SLC24A1 defects lead to CSNB, and 

outline phenotype/genotype correlations in CSNB subtypes. They also demonstrate the utility 

of NGS techniques for diagnostic clarification in cases where the clinical characteristics are 

unclear. 
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Next-generation sequencing confirms
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Congenital stationary night blindness (CSNB) is a clinically and genetically
heterogeneous retinal disorder which represents rod photoreceptor
dysfunction or signal transmission defect from photoreceptors to adjacent
bipolar cells. Patients displaying photoreceptor dysfunction show a
Riggs-electroretinogram (ERG) while patients with a signal transmission
defect show a Schubert–Bornschein ERG. The latter group is subdivided
into complete or incomplete (ic) CSNB. Only few CSNB cases with
Riggs-ERG and only one family with a disease-causing variant in SLC24A1
have been reported. Whole-exome sequencing (WES) in a previously
diagnosed icCSNB patient identified a homozygous nonsense variant in
SLC24A1. Indeed, re-investigation of the clinical data corrected the
diagnosis to Riggs-form of CSNB. Targeted next-generation sequencing
(NGS) identified compound heterozygous deletions and a homozygous
missense variant in SLC24A1 in two other patients, respectively. ERG
abnormalities varied in these three cases but all patients had normal visual
acuity, no myopia or nystagmus, unlike in Schubert–Bornschein-type of
CSNB. This confirms that SLC24A1 defects lead to CSNB and outlines
phenotype/genotype correlations in CSNB subtypes. In case of unclear
clinical characteristics, NGS techniques are helpful to clarify the diagnosis.
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Introduction

Congenital stationary night blindness (CSNB) is a clin-
ically and genetically heterogeneous group of retinal
disorders caused by variants in genes implicated in the
phototransduction cascade or in retinal signaling from
photoreceptors to adjacent bipolar cells (1, 2).

Most individuals affected with CSNB show charac-
teristic electroretinogram (ERG) abnormalities, named
after Schubert and Bornschein who initially reported
them, in which the b-wave amplitude is smaller than
that of the a-wave, which is globally normal, in the
dark-adapted bright flash condition (3). This electroneg-
ative waveform can be divided in two subtypes, com-
plete (c)CSNB [MIM 310500, MIM 257270, MIM
613216, MIM 614565, MIM 615058] and incomplete
(ic)CSNB [MIM 300071] (4). Patients suffering from the
Schubert–Bornschein-type of CSNB often show ocular
abnormalities in addition to night blindness, including
reduced visual acuity, photophobia, myopia, nystagmus
and strabismus (1, 2). cCSNB is characterized by a dras-
tically reduced rod b-wave response due to ON-bipolar
cell dysfunction, and specific cone ERG waveforms (5).
cCSNB has been associated with disease-causing vari-
ants in NYX [MIM 300278] (6, 7), GRM6 [MIM 604096]
(8, 9), TRPM1 [MIM 603576] (10–12), GPR179 [MIM
614515] (13, 14) and LRIT3 [MIM 615004] (15), whose
products localize at the dendritic tips of ON-bipolar
cells (2). icCSNB is characterized by a reduced rod
b-wave and substantially reduced cone responses, indica-
tive of both ON- and OFF-bipolar cell dysfunction.
icCSNB has been associated with disease-causing vari-
ants in CACNA1F [MIM 300110] (16, 17), CABP4
[MIM 608965] (18) and CACNA2D4 [MIM 608171]
(19), genes coding for proteins localized presynaptically
and important for the continuous glutamate release at the
photoreceptor synapse (1, 2).

Less commonly, individuals affected with CSNB dis-
play another type of ERG abnormalities, reported by
Riggs (20) [MIM 610445, MIM 610444, MIM 616389,
MIM 163500, MIM 613830]: in these cases there is a
generalized rod photoreceptor dysfunction, dark-adapted
responses being dominated by cone responses which
are normal. Therefore, the a-wave amplitude is reduced
in response to a bright flash under dark adaptation
with a possible additional reduction of the b/a ratio
and an electronegative waveform due to the photopic
hill phenomenon characteristic of the cone pathway
function (21). Photopic ERG responses are preserved
due to the normal cone system function. These CSNB
patients manifest distinct clinical characteristics from the
Schubert–Bornschein patients, including a normal visual
acuity and no clinical signs of myopia and/or nystagmus
(1, 2). Riggs-type of CSNB has been associated with
disease-causing variants in RHO [MIM 180380] (22),
GNAT1 [MIM 139330] (23), PDE6B [MIM 180072] (24,
25) and SLC24A1 [MIM 603617] (26), underlying auto-
somal dominant (RHO, GNAT1 and PDE6B) or auto-
somal recessive (GNAT1, SLC24A1) CSNB. Only four
families with four different disease-causing variants in
RHO (22, 27–29), three families with three different

disease-causing variants in GNAT1 (23, 30, 31), two
families with two different disease-causing variants in
PDE6B (25, 32) and one family with one disease-causing
variant in SLC24A1 (26) were described. The corre-
sponding proteins localize in rods and have a role in their
phototransduction cascade (2).

To date, more than 360 different disease-causing vari-
ants have been identified in genes underlying CSNB
(2). However, despite comprehensive genotyping stud-
ies on our own CSNB cohort, some cases carried no
disease-causing variants in known genes underlying
CSNB. This is a strong indication that disease-causing
variants in other genes remain to be discovered or
that defects in regulatory elements or introns might be
involved. In addition, the phenotype may not be well
characterized or one phenotype may be associated with
different gene defects.

Disease-causing variants in many genes associated
with CSNB have been identified through classical link-
age approaches (6, 7, 16, 17, 25, 26) or through a can-
didate gene approach comparing the human phenotype
with similar phenotypes observed in knock-out or nat-
urally occurring animal models (8–12, 14, 18, 22, 33).
One limitation of the linkage approach is the requirement
to examine large families. Techniques using massively
parallel sequencing of known human exons implicated
in inherited retinal disorders and all human exons, also
called whole-exome sequencing (WES) have recently
been successful in identifying disease-causing variants
in known and novel genes underlying heterogeneous dis-
eases (34, 35), including rod–cone dystrophy (34, 36,
37), cone or cone–rod dystrophy (38) and CSNB (13,
15, 34). Especially, WES is an unbiased method to iden-
tify the gene defect in families with unclear phenotypes
and with only few family members available.

The aim of this study was to identify the gene
defect in a previously diagnosed icCSNB family lacking
disease-causing variants in the known genes CACNA1F,
CABP4, CACNA2D4 and in a candidate gene CACN2B
[MIM 600003], and in two other families with unclassi-
fied CSNB, never investigated before.

Materials and methods

Methods for WES, targeted next-generation sequencing
(NGS) and investigation of annotated sequencing data
are provided as supplementary data.

Ethics statements

Research procedures were conducted in accordance with
institutional guidelines and the Declaration of Helsinki.
Prior to genetic testing, informed consent was obtained
from all CSNB-affected individuals and their family
members.

Clinical investigation

Ophthalmic examination included best corrected Snellen
visual acuity measurement, fundoscopy, D15 Farnworth
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color vision test, full-field ERG incorporating the Inter-
national Society for Clinical Electrophysiology of Vision
(ISCEV) standards (39), fundus autofluorescence (FAF),
and spectral-domain optical coherence tomography
(SD-OCT) (the extent of investigation depended on the
referring center).

Previous molecular genetic analysis

The DNA of the index patient of Family 1 was directly
Sanger sequenced for the coding exonic and flanking
intronic regions of the known genes underlying icCSNB
and a candidate gene (CACNA1F, NM_005183.3;
CABP4, NM_145200.3; CACNA2D4, NM_172364.4;
CACNB2, NM_000724.3).

Disease-causing variants

Novel disease-causing variants identified in SLC24A1
in this study have been deposited in the ‘Leiden Open
Variation Database’ (http://www.lovd.nl/3.0/home) prior
to publication.

Results

The two male patients of Family 1 were previously
reported to us as affected with icCSNB (Fig. 1a).
However, mutation analysis by Sanger sequencing in
these cases in known genes underlying icCSNB and a
candidate gene (CACNA1F, CACNA2D4, CABP4 and
CACN2B) did not reveal any disease-causing variant
(data not shown). Subsequently, WES was performed.
The index cases of Family 2 and 3 were screened for
variants in all genes previously associated with CSNB
by targeted NGS.

Applying our stringent criteria and filters to the
sequencing data of the WES for Family 1, we reduced
the number of putative variants from 1059 inser-
tions/deletions (InDels) and 18,058 single-nucleotide
variants (SNVs) to four hemizygous variants in four
genes, six compound heterozygous variants in three
genes and one homozygous variant in one gene (Tables
S1 and S2, Supporting Information). Due to the fil-
tering and the pathogenic prediction, the most likely
disease-causing variant was the homozygous nonsense
variant, c.2401G>T (p.(Glu801*)) in SLC24A1 (Figs
1a and 2b and Table S2). The overall sequencing cov-
erage of the captured regions in the family was 95%
and 87.75% for a 10× and 25× depth of coverage,
respectively, resulting in a mean sequencing depth of
77.75× per base (Table S3). Both unaffected parents
were found to be heterozygous for this variant. The
nucleotide T was read 104 and 74 times in the mother
and father, respectively, whereas the G was found 97 and
101 times, respectively. The two affected boys showed
170 and 212 times the nucleotide T. Sanger sequencing
confirmed these results (Fig. 1b). The detailed clinical
data of the index case of Family 1 were only available
after SLC24A1 defect identification. For this 6 year-old
patient, night blindness was reported since early child-
hood. Visual acuity was 20/20 for both eyes, with no

signs of myopia or nystagmus. Fundus examination
revealed no retinal or disc abnormalities. Color sensitiv-
ity was normal. Scotopic ERG responses were severely
reduced for both a- and b-waves for both eyes, whereas
photopic responses were normal.

Applying our stringent filtering criteria to the
sequencing data of the targeted NGS from two
unclassified CSNB families never genetically inves-
tigated before and considering the pathogenic variant
predictions, we found that the index patient of
Family 2 carried compound heterozygous dele-
tions, c.1691_1693delTCT (p.(Phe564del)) and
c.3291_3294delATCT (p.(Val1099Glufs*31))(Figs
1a and 2b and Table S2) and that the index patient
of the consanguineous Family 3 harbored a homozy-
gous missense variant, c.2968A>C (p.(Ser990Arg))
affecting the well conserved amino acid residue Ser at
position 990 in SLC24A1 (Figs 1a and 2 and Table S2).
For Family 2, the overall sequencing coverage of the
captured regions was 100% for both 10× and 25× depth
of coverage, resulting in a mean sequencing depth of
200× per base. For Family 3, the overall sequencing
coverage of the captured regions was 100% for both
10× and 25× depth of coverage, resulting in a mean
sequencing depth of 204× per base (Table S4). All these
variants co-segregated with the phenotype (Fig. 1) and
were absent in 100 healthy ethnically matched control
individuals. For the index patients of Family 2 and 3,
night blindness was reported since early childhood. At
the time of clinical examination, they were 32 and 36
years old, respectively. There were no signs of reduced
visual acuity, myopia or nystagmus. Color vision was
normal. Fundus examination revealed no retinal or disc
abnormalities (Fig. 3a,b). No retinal degeneration was
detected by SD-OCT (Fig. 3c,d). Scotopic ERG ampli-
tudes were severely reduced in both patients with a more
severe defect in the index patient of Family 3 (Fig. 4 and
Table 1). The index patient of Family 2 displays minimal
decreased amplitudes in response to a single photopic
flash with moderately reduced flicker responses (Fig. 4
and Table 1). Photopic responses of the index patient
of Family 3 are more altered with the amplitude of the
b-wave which is significantly reduced in response to both
the single flash as well as flicker (Fig. 4 and Table 1).

Discussion

In this work, we have used WES to identify a novel
nonsense variant in SLC24A1 in a family previously
reported to us as affected with icCSNB (Family 1). In
addition, targeted NGS has led to the identification of
three other novel variants in the same gene in two other
unclassified CSNB families (Family 2 and 3).

The index patient and his affected brother of Family
1 carry a homozygous SNV in SLC24A1 (c.2401G>T).
Localized in exon 7, this variant is predicted to result in a
truncated protein (p.(Glu801*)) or in nonsense-mediated
mRNA decay (NMD). The variant co-segregates with
the phenotype as the affected brother is also homozygous
and both non-affected parents are heterozygous for this
variant. Interestingly, a SLC24A1 disease-causing variant
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(a)

(b)

Fig. 1. SLC24A1 novel disease-causing variants in congenital stationary night blindness (CSNB). (a) Corresponding pedigrees of patients with
CSNB with SLC24A1 disease-causing variants and co-segregation analysis. Indexes patients are individual II.1 of Family 1, II.4 of Family 2
and IV.2 of Family 3. Patients included for whole-exome sequencing are marked with a red arrow. Patients included for targeted next-generation
sequencing are marked with a black arrow. Patients used for co-segregation analysis by Sanger sequencing are marked with a blue arrow. Square
symbol=male, round symbol=woman, filled symbol= affected, unfilled symbol= unaffected, double line= consanguinity, barred= deceased. (b)
Sequence electropherograms of CSNB patients with SLC24A1 disease-causing variants, their relatives and controls. The underlined letters correspond
to modifications of sequence induced by the different disease-causing variants. For Family 1, affected patient II.2 displays the same profile as his affected
brother II.1 and the unaffected father I.1 displays the same profile as the unaffected mother I.2; for Family 2, the non-affected sister II.3 displays the
same profiles as the non-affected mother I.2; for Family 3, the non-affected brother IV.1 displays the same profile as the control.
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(a)

(b)

Fig. 2. Conservation and positioning of SLC24A1 disease-causing variants. (a) Evolutionary conservation of Ser990 in other orthologs shown in
green. Amino acid substitution is highlighted in red. The position of the amino acid is shown in black numbers. (b) Topological model of SLC24A1.
Transmembrane domains (TM) are identified by numbers 0–10. Cleavage of the signal peptide, including TM 0, is illustrated by a cross. Two novel
disease-causing variants reside in TM 4 and 7, one localizes in the intracellular loop between the two predicted ion exchanger domains and the last one
was identified at the C-terminus of the protein. The disease-causing variants previously described resides in TM3.

had already been described in CSNB (c.1613_1614del,
p.(Phe538Cysfs*23)). However, this disease-causing
variant was not associated with the incomplete form
but with the Riggs-type of CSNB (26). On the clinical
data on which we did not have access before genetic
screening, myopia or nystagmus were not present and
visual acuity was normal. In addition, it was noted
that scotopic ERG responses were severely reduced,
while photopic responses were in the normal range.
These basic phenotypic descriptions are actually more
in accordance with the Riggs-type of CSNB than with
icCSNB. However, the misdiagnosis from the referring
clinician may have come from some icCSNB cases with
disease-causing variants in CACNA1F described with
reduced scotopic a-wave (40, 41), but in these cases,
photopic responses were also altered. Unfortunately, the
patient was no longer available for retesting to confirm
a Riggs-type of CSNB. Indeed, if we had access to
these clinical details before genetic testing, SLC24A1
would have been a good candidate to screen first before
the unbiased WES approach. In Family 2, we analyzed
targeted NGS data of one index male and performed
co-segregation analysis in his unaffected mother and
one of his unaffected sisters, which led to the identi-
fication of compound heterozygous disease-causing
deletions in SLC24A1 (c.1691_1693delTCT and
c.3291_3294delATCT). Localized in exons 2 and
10, these disease-causing variants are predicted to result
in a deletion of a phenylalanine (p.(Phe564del)) and a
longer protein at the C-terminus (p.(Val1099Glufs*31)),

respectively. In Family 3, we analyzed targeted NGS
data of one index male in a family with consanguinity.
We found a homozygous missense variant in SLC24A1
(c.2968A>C), localized in exon 9, which co-segregates
with the phenotype, resulting in the replacement of a
serine by an arginine (p.(Ser990Arg)). For the index
patients of Family 2 and 3, ERGs were not conclusive
as scotopic as well as photopic responses were altered.
In general, Riggs-ERG is characterized by a drasti-
cally reduced scotopic a-wave and b-wave due to rod
dysfunction and normal photopic responses (20). This
ERG phenotype is found in most of the Riggs-type of
CSNB described, with disease-causing variants in RHO,
GNAT1 and PDE6B (22, 23, 25–28, 32). However, in
some cases with disease-causing variants in GNAT1,
photopic responses were normal to moderately decreased
in amplitudes (30, 31). Moreover, in the same family
with the same SLC24A1 disease-causing variant, two
indexes showed normal cone responses while they were
modestly reduced in two other affected patients (26).
It is unclear why photopic responses may be abnormal
in Riggs-ERG as genes underlying the Riggs-type of
CSNB are specifically expressed in rods. Some expla-
nations may come from the fact that depending on the
publications, not all ERGs were recorded according to
the ISCEV current recommendations. Another explana-
tion may come from interaction between rod and cone
circuitry at the level of the inner retina or in rare cases
the possibility for mild rod photoreceptor degeneration
that may induce additional cone degeneration. However,
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(a)

(c)

(b)

(d)

Fig. 3. Fundus photograph and spectral-domain optical coherence tomography (SD-OCT) scan of congenital stationary night blindness patients with
SLC24A1 disease-causing variants (a) and (b) fundus photographs of patient II.4 of Family 2 and patient IV.2 of Family 3, respectively. (c) and (d)
Normal SD-OCT scans in both the patients.

in a Slc24a1 knock-out mouse model, recently pub-
lished, despite slow rod degeneration, the number of
cones was maintained as well as cone responses to light
stimulations, indicating that cone-mediated vision is not
compromised in this mouse model (42). Further inves-
tigations are needed to address this point. However, it is
important to notice that myopia and nystagmus were also
absent in index patients of Family 2 and 3 and that their
visual acuity was normal. These data demonstrate that
the ERG phenotype may diverge from the general char-
acterization for the Riggs-type of CSNB but that absence
of other ocular abnormalities such as reduced visual acu-
ity, myopia or nystagmus are consistent findings upon
clinical examination. On the contrary, if the phenotype
may vary among icCSNB patients even within the same
family, all affected patients have reduced visual acuity
and variable degrees of abnormal refractive errors and
nystagmus (43). In conclusion, if a CSNB phenotype is
suspected in a patient on the basis of night blindness and
no sign of retinal degeneration on retinal examination
and if the ERG recording does not allow the distinction
between Riggs and Schubert–Bornschein CSNB, vari-
ants in genes underlying Riggs-type of CSNB may cause
the disease in case of normal visual acuity and absence of
major refractive errors or nystagmus. Of note, 50 patients
with unclear phenotype screened in our laboratory for
disease-causing variants in SLC24A1 did not reveal any
disease-causing variant (data not shown), indicating that
this phenotype or gene defect is rare or underdiagnosed.

As mentioned above, in 2010, Riazuddin et al.
reported the first case of Riggs-CSNB associated
with an autosomal-recessive inheritance. They found
a homozygous 2 bp deletion in exon 2 of SLC24A1

(c.1613_1614del), which is predicted to result in
a frameshift leading to either truncated protein
(p.(Phe538Cysfs*23)) or NMD (26). SLC24A1 is a
Na/Ca2-K exchanger which is present in the retina at
the plasma membrane of the rod outer segments (42,
44, 45). Under dark conditions, guanosine 3′,5′-cyclic
phosphate (cGMP)-gated channels are opened and medi-
ate an influx of cations, including Ca2+, (the so-called
‘dark-current’) into the cell (46). SLC24A1 balances
this Ca2+ current by exchange of one Ca2+ against four
Na+ and one K+ (42). Illumination and activation of the
phototransduction cascade closes cGMP-gated channels,
leading to a lowering of intracellular free Ca2+. Finally,
this low cellular Ca2+ concentration activates a negative
feedback loop which results in the termination of the
phototransduction and subsequently in the re-opening of
cGMP-gated channels (45).

Recently, Vinberg et al. described a mouse model lack-
ing Slc24a1 which mimics the pathophysiology of the
Riggs-CSNB described in human (42). They confirmed
localization of SLC24A1 to the plasma membrane of rod
outer segments. Slc24a1−/− mice revealed a slow pro-
gressive retinal degeneration and displayed a less sen-
sitive and slower rod-mediated vision with drastically
reduced ERG a-wave amplitude under dark-adaptation.
Therefore, despite dramatically decreased rod response
amplitudes, rods are viable and still contribute to visual
function and rod-mediated synaptic signaling. Moreover,
light adaptation of rods is not significantly compro-
mised indicating that there is an unknown mechanism
for Ca2+ to be extruded from rod outer segments in the
absence of SLC24A1, even if this mechanism is too slow
to provide normal feedback to the phototransduction
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Fig. 4. Full-field electroretinogram of patient II.4 of Family 2 and patient IV.2 of Family 3, as an example. (a) Dark-adapted 0.01 electroretinogram
(ERG). (b) Dark-adapted 3.0 ERG. (c) Dark-adapted 3.0 oscillatory potentials. (d) Light-adapted 3.0 ERG. (e) Light-adapted 3.0 flicker ERG. Scotopic
responses are severely reduced for both patients. Patient II.4 of Family 2 shows relatively conserved photopic responses whereas photopic ERG is
altered in patient IV.2 of Family 3.

cascade in the time scale of dim flash responses. The
capability of rods to regulate Ca2+ influx in the absence
of SLC24A1 together with the reduced ‘dark-current’
observed explain why there is no severe rod degenera-
tion in these mouse model and are consistent with the
stationary nature of the disorder. In our study, none of
our patients demonstrated retinal degeneration at the time
of the first investigation but this retinal degeneration has
been reported to be slow and progressive in the Slc24a1
knock-out mouse model (42). Therefore, re-investigation
of the patients with SLC24A1 disease-causing variants
may be useful to see if the retinal degeneration can also
be observed. Moreover, a novel homozygous truncat-
ing disease-causing variant has been reported in GNAT1

(c.904C>T, p.(Gln302*)) in an 80 year-old patient who
displays marked peripheral pigmentary deposits resem-
bling bone spicule on fundus examination (47). This last
observation is more in accordance with a slow and late
onset form of retinitis pigmentosa than CSNB. Moreover,
Gnat1 lacking mouse model showed a subtle and slow
thinning of the retina (48).

Structurally, SLC24A1 is predicted to contain two
clusters of five transmembrane domains (TM) that are
separated by a large hydrophilic loop located in the
cytosol. One putative TM does not span the membrane
and precedes the second cluster of TM. An additional
TM is present at the N-terminal of the protein but it is
a signal peptide that can be cleaved. Therefore, N- and
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C-terminus are extracellular. The two TM clusters are
proposed to constitute the two ion exchanger domains
(45, 49). The novel disease-causing variant identified by
WES is located in the intracellular loop located between
these two predicted ion exchanger domains (Fig. 2b).
Moreover, the deletion of the phenylalanine in position
564 as well as the replacement of a serine by an arginine
in position 990 identified by targeted NGS are located in
TM 4 and 7, respectively and could alter the ion exchange
function (Fig. 2b). In particular, the Ser990 is analo-
gous to Ser552 present in NCKX2 that appears to be
critical for cation binding and transport (50, 51). It is
hypothesized that the complete or even partial loss of
the ion exchange function would result in abnormal lev-
els of intracellular Ca2+ concentrations that could poten-
tially interfere with the proper functioning of the rod
photoreceptors, resulting in the CSNB phenotype (26).
Concerning the frameshift disease-causing variant, it is
predicted to change the last amino acid of the protein
and to elongate the protein by 29 novel amino acids.
It is likely that the elongated protein presents structural
changes which may alter the cation binding affinity or the
interaction with other proteins, influence its intracellular
localization or modify its stability. It has been shown that
SLC24A1 interacts with the α-subunit of cGMP-gated
channel (52). Whether the extended SLC24A1 protein
alters the interaction with the cGMP-gated channel needs
to be tested. Alternatively, the elongated SLC24A1 pro-
tein may be mislocalized, leading to complete loss of
function as found for other mutants implicated in CSNB
(53, 54). Finally, the extended SLC24A1 protein may be
misfolded and, thus, become subject to degradation.

Here, we showed that NGS techniques such as WES
and targeted NGS are unbiased methods to identify gene
defects leading to CSNB, helping clinicians to clas-
sify the subtype of the disorder where clinical diag-
nosis is unclear. Moreover, we identified four novel
disease-causing variants in SLC24A1 in three different
families, expanding the disease-causing variants spec-
trum for this gene. This report is only the second one
which documents SLC24A1 defects leading to CSNB,
considering the fact that the previous one described only
one disease-causing variant in one family. Together with
the knock-out mouse model, this article reinforces the
assertion that SLC24A1, when mutated, is implicated in
the Riggs-type of CSNB.

Supporting Information

Additional supporting information may be found in the online
version of this article at the publisher’s web-site.
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II. Identification and functional characterization of 

LRIT3, a novel molecule implicated in cCSNB 
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A. Whole-Exome Sequencing Identifies LRIT3 Mutations as a 

Cause of Autosomal-Recessive Complete Congenital 

Stationary Night Blindness 

Whole-exome sequencing of one simplex cCSNB case lacking mutations in the known genes 

led to the identification of a missense mutation (c.983G>A, p.(Cys328Tyr)) and a nonsense 

mutation (c.1318C>T, p.(Arg440*)) in LRIT3, encoding leucine-rich-repeat (LRR), 

immunoglobulin-like, and transmembrane-domain 3 (LRIT3). Subsequent Sanger sequencing 

of 89 individuals with CSNB identified another cCSNB patient harboring a nonsense 

mutation (c.1151C>G, p.(Ser384*)) and a deletion predicted to lead to a premature stop codon 

(c.1538_1539del, p.(Ser513Cysfs*59)) in the same gene. LRIT3 antibody staining revealed a 

punctuate-labeling pattern in the outer plexiform layer of the human retina resembling the 

dendritic tips of bipolar cells; similar patterns have been observed for other proteins 

implicated in cCSNB. The exact role of this LRR protein in cCSNB remains to be 

determined.
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Sharon B. Schwartz,4 Béatrice Bocquet,5 Congenital Stationary Night Blindness Consortium,17
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Congenital stationary night blindness (CSNB) is a clinically and genetically heterogeneous retinal disorder. Two forms can be distin-

guished clinically: complete CSNB (cCSNB) and incomplete CSNB. Individuals with cCSNB have visual impairment under low-light

conditions and show a characteristic electroretinogram (ERG). The b-wave amplitude is severely reduced in the dark-adapted state of

the ERG, representing abnormal function of ON bipolar cells. Furthermore, individuals with cCSNB can show other ocular features

such as nystagmus, myopia, and strabismus and can have reduced visual acuity and abnormalities of the cone ERG waveform. The

mode of inheritance of this form can be X-linked or autosomal recessive, and the dysfunction of four genes (NYX, GRM6, TRPM1,

and GPR179) has been described so far. Whole-exome sequencing in one simplex cCSNB case lacking mutations in the known genes

led to the identification of a missense mutation (c.983G>A [p.Cys328Tyr]) and a nonsense mutation (c.1318C>T [p.Arg440*]) in

LRIT3, encoding leucine-rich-repeat (LRR), immunoglobulin-like, and transmembrane-domain 3 (LRIT3). Subsequent Sanger

sequencing of 89 individuals with CSNB identified another cCSNB case harboring a nonsense mutation (c.1151C>G [p.Ser384*]) and

a deletion predicted to lead to a premature stop codon (c.1538_1539del [p.Ser513Cysfs*59]) in the same gene. Human LRIT3 antibody

staining revealed in the outer plexiform layer of the human retina a punctate-labeling pattern resembling the dendritic tips of bipolar

cells; similar patterns have been observed for other proteins implicated in cCSNB. The exact role of this LRR protein in cCSNB remains to

be elucidated.

Congenital stationary night blindness (CSNB) is a clinically

and genetically heterogeneous group of retinal disorders

caused by mutations in genes implicated in the photo-

transduction cascade or in retinal signaling from photore-

ceptors to adjacent bipolar cells.1 Most of the individuals

affected by CSNB show a characteristic electroretinogram

(ERG) in which the b-wave amplitude is smaller than the

a-wave amplitude in the dark-adapted bright-flash condi-

tion.2 This electronegative waveform can be divided in

two subtypes, incomplete CSNB (icCSNB) (CSNB2A [MIM

300071] and CSNB2B [MIM 610427]) and complete

CSNB (cCSNB) (CSNB1A [MIM 310500], CSNB1B [MIM

257270],3 CSNB1C [MIM 613216]), and CSNB1E [MIM

614565]). icCSNB is characterized by a reduced rod b-

wave and substantially reduced cone responses, indicative

of both ON and OFF bipolar cell dysfunction. icCSNB has

been associated with mutations in CACNA1F (MIM

300110), CABP4 (MIM 608965), and CACNA2D4 (MIM

608171), genes coding for proteins important for the

continuous glutamate release at the photoreceptor

synapse.1 cCSNB is characterized by a drastically reduced

rod-b-wave response due to ON bipolar cell dysfunction,

as well as specific cone ERG waveforms.4 cCSNB has been

associated with mutations in NYX (MIM 300278), GRM6

(MIM 604096), TRPM1 (MIM 603576), and GPR179

(MIM 614515), genes expressed and localized in ON
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bipolar cells. To date, more than 300 mutations have been

identified in the genes underlying icCSNB and cCSNB.5–24

Mutations in many genes associated with CSNB have been

identified through a candidate gene approach comparing

the human phenotype to similar phenotypes observed in

knockout or naturally occurring animal models,10–16,25

but techniques using massively parallel sequencing of all

human exons have recently been successful in identifying

mutations in genes underlying heterogeneous diseases,

including Leber congenital amaurosis and, more recently,

CSNB.18,26,27 Thus, to rapidly identify the gene defect of

another autosomal-recessive-cCSNB-affected family

(family A, Figure 1A), previously excluded for known

cCSNB-associated gene defects, we sequenced the index

nonconsanguineous affected female after whole-exome

enrichment (IntegraGen, Evry, France). Research proce-

dures were conducted in accordance with institutional

guidelines and the Declaration of Helsinki; institutional-

review-board approvals were obtained from the partici-

pating universities and the national Ministries of Health

of each participating center. Prior to genetic testing,

informed consent was obtained from all CSNB-affected

Figure 1. LRIT3 Mutations and the Associated Electroretinographic Phenotype
(A) Family A (left) and family B (right), each with an affected individual who is a compound heterozygote for mutations in LRIT3, and
cosegregation analysis in available family members. The cCSNB-19018-affected index individual (II.1 of family A) used for whole-exome
next-generation sequencing is marked with a red arrow. The mother of I.2 of family A is deceased, which is highlighted by a crossed line.
Females and males are depicted by circles and squares, respectively. Filled and unfilled symbols indicate affected and unaffected status,
respectively. ERGs of a normal (‘‘unaffected’’) subject are compared with those of individuals II:1 from family A and II:1 from family B.
Normal ERGs have a rod-driven waveform, a mixed (combined) rod and cone response elicited by a bright flash of light, and two cone-
driven responses at different frequencies of stimulation (1 and 29 Hz). The ERGs from affected individuals II:1 from family A and II:1
from family B are typical of cCSNB and differ from a normal ERG as follows: there is a mixed response with a preserved negative compo-
nent of the waveform (a-wave [from photoreceptors]) but a reduced positive component (b-wave [from postreceptoral retinal activity]),
a cone-driven 1 Hz response with an unusual waveform, a cone-driven 29 Hz flicker ERG with a typical broadened trough and a mildly
delayed implicit time, and no detectable rod-driven waveform.
(B) LRIT3 (RefSeq NM_198506.3) structure containing four coding exons. Different mutations identified in persons with cCSNB are
depicted. Filled and unfilled boxes represent coding regions and UTRs of LRIT3, respectively. The start codon is indicated by an arrow.
(C) The translated amino acid sequence of LRIT3 (RefSeq NP_940908.3), predicted domains, and the different LRIT3 alterations of two
persons with cCSNB are indicated. The exact start and end of the domains vary depending on the different prediction programs used.
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individuals and their family members. Ophthalmic exam-

inations were performed on all subjects: a full-field ERG

incorporated the International Society for Clinical Electro-

physiology of Vision standards and methodology previ-

ously described.28–30 Exons of DNA samples were captured

and investigated as shown before with in-solution enrich-

ment methodology (SureSelect Human All Exon Kits

version 3, Agilent, Massy, France) and next-generation

sequencing (NGS) (Illumina HISEQ, Illumina, San Diego,

CA, USA). Image analysis and base calling were performed

with Real Time Analysis software (Illumina).18 Genetic-

variation annotations were performed by an in-house

pipeline (IntegraGen), and results were provided per

sample or family in tabulated text files. After very stringent

criteria were used for excluding variants observed in

dbSNP 132, HapMap, 1000 Genomes Project, and internal

(IntegraGen) variant-detection databases, the results were

further filtered so that only compound heterozygous or

homozygous variants in coding regions remained. This al-

lowed us to reduce the number of variants from 4,267 to

0 indels and from 50,807 SNPs to 21 homozygous variants

in 13 genes and 30 compound heterozygous variants in

10 genes. To determine the most likely disease-causing

gene defect for this cCSNB-affected family, we investigated

missense changes with bioinformatic tools to predict the

pathogenicity of the mutations and the conservation of

affected amino acid residues (PolyPhen-2,31 SIFT,32

KD4v,33 and the USCS Human Genome Browser). Those

genes harboring the selected variants were assessed for

eye and retinal expression with the use of the UniGene

database, the retinal gene-expression profile database

provided by Siegert et al.,34 and the in-house rd1 mouse

expression database (courtesy of Thierry Leveillard). On

the basis of these criteria, the only selected variants were

compound heterozygous mutations (c.983G>A

[p.Cys328Tyr] and c.1318C>T [p.Arg440*]) in exon 4 of

LRIT3 (RefSeq accession number NM_198506.3), which

encodes leucine-rich-repeat (LRR), immunoglobulin-like,

and transmembrane-domain 3 (LRIT3) (Figures 1A–1C;

family A). For the c.983G>A variant, the G and A were

found 463 and 533, respectively, and for c.1318C>T,

the C and T were present 703 and 543, respectively, indi-

cating that both variants were present heterozygously.

Both variants were absent in more than 340 control chro-

mosomes, and only c.983G>A (p.Cys328Tyr) was found at

a very low frequency (1 out of 10,757 alleles, indicating

that only one person was heterozygous for this substitu-

tion) in the National Heart, Lung, and Blood Institute

(NHLBI) Exome Sequencing Project Exome Variant Server

(EVS, 15.06.2012). The cystein at amino acid position 328

is highly conserved; only alpaca show a different amino

acid residue (Phe) (USCS Human Genome Browser

15.06.2012) (Table 1). PolyPhen-2, SIFT, and KD4v pre-

dicted this variant to be probably damaging (Table 1).

The second mutation, c.1318C>T (p.Arg440*), was

absent in all publically available databases, including the

EVS. Cosegregation analysis revealed that the unaffectedT
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father and brother were heterozygous for the p.Cys328Tyr

substitution. Subsequent Sanger sequencing of seven frag-

ments covering the four exons and flanking intronic

regions of LRIT3 (RefSeq NM_198506.3) (detailed condi-

tions will be communicated on request) in 89 individuals

(with cCSNB and unclassified CSNB) of various ethnic

origins and from different clinical centers in Europe, the

United States, Canada, Israel, and India (CSNB study

group) detected one additional cCSNB-affected person,

who carried compound heterozygous disease-causing

mutations (c.1151C>G [p.Ser384*] and c.1538_1539del

[p.Ser513Cysfs*59]) in exon 4 (Figures 1A–1C; family B).

Both variants cosegregated with the phenotype, were

absent in more than 370 control chromosomes, and

were not described in the current EVS database

(Figure 1A, family B). The frequencies of LRIT3 polymor-

phisms found in our individuals with CSNB are provided

in Table S1, available online. On the basis of all of the

above evidence, we conclude that mutations in LRIT3

lead to cCSNB.

In family A, used for the whole-exome NGS approach

(Figure 1A, family A), the index case (II.1) had visual blur-

ring and night-vision disturbances from childhood. When

she was 4 years old, spectacles for myopia were prescribed

and strabismus surgery was performed in the right eye. A

diagnosis was not specifically made, but the individual

recalls being told that she had a progressive blinding

disease with high myopia. Laser treatment of retinal tears

occurred when she was 25 years old. When she was 45

years of age, an ERG was taken for the first time

(Figure 1A, family A). The ERG features were those of

cCSNB: undetectable responses to a dim flash under dark-

adapted conditions (rod, Figure 1A, family A), a negative

waveform in the mixed rod-cone response in the dark-

adapted state, and an unusual square-shape appearance

of the a-wave in the cone ERG1,14,18 (29 Hz, Figure 1A,

family A). In the detectable ERGs, amplitudes were abnor-

mally reduced, a result that might be associated with high

myopia.35 Visual acuities were 20/80 (�26.00 D sphere) in

the right eye and 20/30 (�27.00 D sphere) in the left eye.

Eye pressures were normal, and the fundus appearance

was that of myopia (1 Hz, Figure 1A). Other than under-

going eye-muscle and laser surgery (see above), the index

case had arthroscopic knee surgery in her 40s. In family

B, the affected person was diagnosed with high myopia

at the age of 2 years. Prominent night blindness was also

noticed at that age, and later on, visual acuity was found

to be decreased. She had no photoaversion or loss in the

peripheral visual field. At the time of presentation, 9 years

of age, visual acuities were 20/40 (�7.00 D sphere) in the

right eye and 20/50 (�8.00 D sphere) in the left eye. Lenses

were transparent, and the fundus appearance was that of

myopia with a tilted optic disc. Fundus autofluorescence

was normal. An optical-coherence-tomography-3 scan of

the maculae disclosed a normal photoreceptor layer. Light

sensitivity was foundmoderately decreased over the whole

visual field. She had an electronegative ERG mixed rod-

cone response in the dark-adapted state (Figure 1A, family

B). In addition, there were moderately reduced cone 30 Hz

flicker responses, an atypical waveform in the light-

adapted state (1 Hz, Figure 1A, family B), and no ERG

responses to dim stimuli in the dark-adapted state (rod,

Figure 1A, family B); all of these findings are compatible

with the diagnosis of cCSNB (Figure 1A, family B).

To date, only little information is available on the

expression, localization, and function of LRIT3. It maps

to chromosomal region 4q25 and contains four exons,

the first of which was only recently identified and codes

for a protein with 679 amino acids.36 An available ex-

pressed-sequence-tag (EST) profile (from the UniGene

EST Profile Viewer) indicates that the gene is expressed in

the brain and the eye. Real-time-PCR experiments and

subsequent Sanger sequencing of amplified real-time-PCR

products confirmed the expression of LRIT3 in the human

retina (commercially available cDNA fromClontech, Saint-

Germain-en-Laye, France) by giving a signal of DCT ¼ 6.33

(CT LRIT3 ¼ 24.96) in relation to b-actin (ACTB [MIM

102630]) (CT ACTB ¼ 18.63) (primers Table S2).

To immunolocalize the exact location of LRIT3 in the

retina, we used a validated human LRIT3 antibody (Figures

S1 and S2) in human retina from a cryosectioned eye and

performed immunostainings. LRIT3 localization could be

detected in the outer plexiform layer (OPL) (Figures 2A

and 2B, green). Immunofluorescence was analyzed with

a confocal microscope (FV1000 fluorescent, Olympus,

Hamburg, Germany). Colocalization studies with an anti-

body against a mouse Goa (Millipore, Molsheim, France),

a specific ON bipolar cell marker (Figures 2A and B, red),

demonstrated that human LRIT3 antibody reveals a charac-

teristic synaptic punctate labeling at the dendrites of depo-

larizing bipolar cells. Comparing this immunostaining

with the immunostaining from other molecules impli-

cated in cCSNB, we conclude that the dotted punctate

labeling (arrows) represents multiple rod bipolar cell

dendritic tips that invaginate a rod spherule and that the

innermost punctate labeling organized in rows (arrow-

heads) represents labeling of cone bipolar cell tips that

invaginate the foot of a cone pedicle (Figure 2B).37,38

Fainter green fluorescence signal was also detected in other

retinal layers and especially in the photoreceptor layers. In

these latter layers, a comparable faint signal was also de-

tected in human retina with only the use of secondary

antibodies, indicating that this signal is not specific to

LRIT3. Future studies on wild-type and knockout mice

retinas with a mouse LRIT3 antibody are warranted for

further validating whether LRIT3 is present in retinal layers

other than the OPL.

LRIT3 (RefSeq NP_940908.3) is predicted to belong to

the LRR protein family, which contains a signal peptide

(amino acids 1–19) and four LRR domains (amino acids

82–104, 106–128, 130–152, and 154–176), which are

flanked by cysteine-rich LLRNT (amino acids 20–61) and

LRRCT (amino acids 201–253) motifs. Furthermore,

an immunoglobulin-like (Ig-like) domain (amino acids

70 The American Journal of Human Genetics 92, 67–75, January 10, 2013



254–344), a fibronectin type III (FNIII) domain (amino

acids 484–574), and a transmembrane (TM) domain

(amino acids 583–633) were annotated (UniProtKB/Swiss-

Prot and SMART). The C-terminal region is highly

conserved and might harbor a PDZ-binding motif. More

specifically, according to Tian et al.39 and to publicly avail-

able motif research programs (ELM: The Database of Eu-

karyotic Linear Motifs), the C-terminal amino acid residues

‘‘ESQV’’ and ‘‘RPEYYC,’’ respectively, are good candidates

to represent such PDZ-binding motifs (Figure 1C). In

addition, LRIT3 contains a serine-rich region (amino acids

373–433) and the two cysteine residues, Cys275 and

Cys328, predicted to form disulfide bonds (UniProtKB/

Swiss-Prot) (Figure 1C). Recent in vitro studies have sug-

gested that LRIT3 can regulate a fibroblast-growth-factor

receptor, FGFR1.36 Although FGFR1 is expressed in many

tissues, including the retina (UniGene EST Profile Viewer),

a role for FGFR1 in bipolar cells has not yet been re-

ported.40 The mutation spectrum described here affects

different LRIT3 domains, including the Cys328 residue,

which is predicted to form a disulfide bond in the Ig-like

domain. Disulfide bonds have been shown to be important

for folding and stability of some proteins and especially in

proteins secreted to the extracellular medium.41 The

p.Cys328Tyr substitution might thus lead to accumulation

of misfolded protein in the endoplasmic reticulum, as has

been illustrated for substitution p.Cys203Arg, which

affects a disulfide bond in the green opsin and leads to

anomalous trichromacy.42 Interestingly, cysteine substitu-

tions have also been described in the protein encoded by

NYX (RefSeq NM_022567.2), another gene associated

with cCSNB (Figure 3). We and others found that NYX

missense mutations c.143G>A and c.144C>G, respec-

tively, lead to substitutions p.Cys48Tyr (associated with

CSNB without myopia)6 and p.Cys48Trp (associated with

CSNB with isolated myopia),43 respectively. The Cys48

residue was predicted to be important for protein

Figure 3. Genes Underlying CSNB
Different forms of CSNB in humans are classified according to
their electroretinographic features, mode of inheritance, clinical
phenotype, and mutated genes. Affected individuals discussed
herein show a complete type of Schubert-Bornschein ERG.
Genes are indicated in italics and are underlined. Chromosomal
locations are given in parentheses. The following abbreviations
are used: cCSNB, complete CSNB; icCSNB, incomplete CSNB;
AR, autosomal recessive; and AD, autosomal dominant.

Figure 2. LRIT3 Immunohistochemistry in Human Retinal
Sections
(A) LRIT3 signal (green) in the OPL double labeled with an ON
bipolar cell marker against Goa (red) was detected in the human
retina by confocal microscopy. A strong signal with the human
LRIT3 antibody was detected in a punctate manner at presumable
dendritic tips of the ON bipolar cells (16 stacks of the confocal-
microscopy image were chosen). The following abbreviations are
used: PHR, photoreceptor layer; ONL, outer nuclear layer; OPL,
outer plexiform layer; INL, inner nuclear layer; and GCL, ganglion
cell layer.
(B) A 3.53 zoom of (A) focuses on LRIT3 staining at presumable
dendrites of the bipolar cells (three stacks of the confocal-micros-
copy image were chosen). The scale bar represents 20 mm.
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stabilization via disulphide bridging. Because both substi-

tutions are predicted to probably destabilize the protein

structure, the phenotypic variability still needs to be eluci-

dated. However, it is striking that most of the individuals

with mutations in genes underlying the complete form

of CSNB show high myopia. It has been suggested that

altered cone signal resulting from mutations in genes

important for the ON pathway might participate in

myopia.43 Blurred images seen by the affected persons

might create an aberrant retinal signal before the local

eye can react to retinal blur and might therefore induce

myopia.44–47

The three other mutations represent two nonsense

mutations and a frameshift, which are located in the last

exon. Thus, it is likely that mutant mRNA products escape

nonsense-mediated decay. The p.Ser384* truncated

protein is predicted to lack the serine-rich, FNIII, and TM

domains and the PDZ-binding motifs; the p.Arg440*

altered protein is predicted to lack the FNIII and TM

domains and the PDZ-binding motifs; and the p.Ser513-

Cysfs*59 truncated protein is predicted to lack the TM

domain and the PDZ-binding motif. Given that all altered

proteins are predicted to lack the TM motif, they might

lead to a protein that cannot be targeted to the membrane

and that therefore cannot function at its predicted site.

Considering the different domains present in LRIT3, the

protein resembles most LRIT1 and LRIT2 of unknown

function, as well as SALM1, SALM2, and SALM3 of the

synaptic-cell-adhesion-molecule protein family. These

proteins contain LRRs; LLRNT and LRRCT motifs; Ig-like,

FNIII, and TM domains; and an intracellular C-terminal

PDZ-binding motif, which interacts within the SALM

protein family with PSD-95, an abundant postsynaptic

scaffolding protein.48,49 Compared to the SALM family,

in which proteins always have six LRRs, LRIT3 contains

only four. This protein family has been shown to be impor-

tant in synapse formation.More precisely, SALM1 has been

implicated in clustering NMDA receptors, and an altered

SALM1 lacking PSD-95 binding fails to cluster these recep-

tors. SALMS2 is targeted to and stabilized at excitatory

synapses via its interaction with PSD-95, where it recruits

NMDA and AMPA receptors to promote excitatory

synaptic maturation. SALM1, SALM2, and SALM3 form

homomeric and heteromeric complexes with each

other.49 In ON bipolar cells, TRPM1 represents the channel

that opens after light stimulation, leading to the ERG b-

wave, which is severely reduced in individuals with

cCSNB.14,50,51 We and others have recognized low-surface

TRPM1 localization in overexpressing mammalian cells.52

Studies by Pearring et al. showed that the presence of

NYX located in the dendritic tips of ON bipolar cells is

necessary for the dendritic-tip localization of TRPM1.38 A

mouse model lacking NYX led to the absence of

dendritic-tip labeling of TRPM1. The authors suggested

that NYX is localized to the ON bipolar cell dendritic

tips, subsequently interacts with TRPM1, and thereby

establishes the correct TRPM1 localization. They also

mention that another ancillary protein would be needed

to interact with intracellular scaffolding complexes to

hold the TRPM1 channels to the bipolar cell synapse.

Given the fact that LRIT3 has a PDZ-binding motif, it

might be the missing molecule interacting with scaf-

folding proteins to bring TRPM1 to the surface of the

cell, and thereafter, NYX and LRIT3 hold the channel in

this form. Confirming this hypothesis will require in vivo

and in vitro studies.

Including in this study, mutations in five genes (NYX,

GRM6, TRPM1, GPR179, and LRIT3) have been implicated

in cCSNB (Figure 3).8–11,14–16,18,19,25 These genes code

for nyctalopin, metabotropic glutamate receptor 6, tran-

sient receptor potential cation melastatin 1, G-protein-

coupled receptor 179, and LRIT3, respectively. All localize

postsynaptically to the photoreceptors in the retina

in ON bipolar cells.19,37,38,53 Further functional studies

will eventually clarify the exact role of LRIT3 within the

ON bipolar cell pathway, which will also improve our

understanding of the overall visual signal transduction

through the retina.

Supplemental Data

Supplemental Data include two figures and two tables and can be

found with this article online at http://www.cell.com/AJHG.
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B. Lrit3 deficient mouse (nob6): a novel model of complete 

congenital stationary night blindness (cCSNB) 

The purpose of this study was to characterize a commercially available Lrit3 knockout mouse 

model and to establish whether this animal model may serve as a reliable model for human 

cCSNB. 

We utilized several different methods to genetically and functionally characterize a 

commercially available Lrit3 knockout mouse model. We confirmed that the insertion of a 

Bgeo/Puro cassette in the knock-out allele introduces a premature stop codon, which 

presumably codes for a non-functional protein. The mouse line did not harbor other mutations 

present in common laboratory mouse strains or in other known cCSNB genes. Lrit3 mutant 

mice exhibit a no b-wave (nob) phenotype, with lack of b-waves or severely reduced b-wave 

amplitudes in the scotopic and photopic electroretinogram (ERG), respectively. Optomotor 

tests revealed notably decreased optomotor responses in scotopic conditions. No obvious 

fundus autofluorescence or histological retinal structure abnormalities were observed. 

However, spectral domain optical coherence tomography (SD-OCT) revealed thinned inner 

nuclear layers in these mice and thinning of the retinal part containing inner plexiform layer, 

ganglion cell layer and nerve fiber layer. This murine phenotype was noted at both 6 weeks 

and at 6 months of age. The stationary nob phenotype of mice lacking Lrit3, which we named 

nob6, confirmed the previously reported findings in patients carrying LRIT3 mutations and is 

similar to other cCSNB mouse models. This novel mouse model will be useful for 

investigating the pathogenic mechanism(s) associated with LRIT3 mutations and clarifying 

the role of LRIT3 in the ON-bipolar cell signaling cascade. 
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Abstract

Mutations in LRIT3, coding for a Leucine-Rich Repeat, immunoglobulin-like and transmembrane domains 3 protein lead to
autosomal recessive complete congenital stationary night blindness (cCSNB). The role of the corresponding protein in the
ON-bipolar cell signaling cascade remains to be elucidated. Here we genetically and functionally characterize a
commercially available Lrit3 knock-out mouse, a model to study the function and the pathogenic mechanism of LRIT3. We
confirm that the insertion of a Bgeo/Puro cassette in the knock-out allele introduces a premature stop codon, which
presumably codes for a non-functional protein. The mouse line does not harbor other mutations present in common
laboratory mouse strains or in other known cCSNB genes. Lrit3 mutant mice exhibit a so-called no b-wave (nob) phenotype
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Optomotor tests reveal strongly decreased optomotor responses in scotopic conditions. No obvious fundus auto-
fluorescence or histological retinal structure abnormalities are observed. However, spectral domain optical coherence
tomography (SD-OCT) reveals thinned inner nuclear layer and part of the retina containing inner plexiform layer, ganglion
cell layer and nerve fiber layer in these mice. To our knowledge, this is the first time that SD-OCT technology is used to
characterize an animal model for CSNB. This phenotype is noted at 6 weeks and at 6 months. The stationary nob phenotype
of mice lacking Lrit3, which we named nob6, confirms the findings previously reported in patients carrying LRIT3 mutations
and is similar to other cCSNB mouse models. This novel mouse model will be useful for investigating the pathogenic
mechanism(s) associated with LRIT3 mutations and clarifying the role of LRIT3 in the ON-bipolar cell signaling cascade.
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Introduction

Congenital stationary night blindness (CSNB) is a clinically and

genetically heterogeneous group of non-progressive retinal disor-

ders caused by mutations in genes implicated in the phototrans-

duction cascade or in retinal signaling from photoreceptors to

adjacent bipolar cells [1]. These disorders can be associated with

other ocular abnormalities, including reduced visual acuity,

myopia, nystagmus and strabismus. Most of the individuals

affected with CSNB show a characteristic electroretinogram

(ERG) response, named Schubert-Bornschein, in which the b-

wave amplitude is smaller than that of the a-wave in the dark-

adapted bright flash condition [2]. This electronegative waveform

can be divided in two subtypes, incomplete (ic)CSNB and

complete (c)CSNB [3]. cCSNB is characterized by a drastically

reduced rod b-wave response due to ON-bipolar cell dysfunction,

and specific cone ERG waveforms [4]. cCSNB has been associated

with mutations in NYX [5,6], GRM6 [7,8], TRPM1 [9–11] and

GPR179 [12,13], genes expressed in the inner nuclear layer (INL)

of the retina [6,14–17] and coding for proteins localized at the

dendritic tips of ON-bipolar cells [12,14,15,17–20]. Recently, we

have identified mutations in LRIT3, a gene coding for a Leucine-

Rich Repeat (LRR), immunoglobulin-like and transmembrane

domains 3 protein, that lead to cCSNB [21]. The corresponding

protein also localizes at the dendritic tips of ON-bipolar cells in the

retina [21].

Animal models have been shown to be an excellent tool for

identifying and elucidating the pathogenic mechanism(s) of gene

defects underlying CSNB [15,18,22–32]. Clinically, the pheno-

types of these models can be assessed as in patients by performing

full-field electroretinography, fundus autofluorescence imaging

(FAF), and optical coherence tomography (OCT). In addition, the
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retinal structure can be investigated post mortem in affected animals

and compared to unaffected littermates. This aspect is valuable for

a better assessment of histological changes since access to human

retinas remains extremely difficult. Various mouse models have

been design or are naturally occurring for Schubert-Bornschein

type of CSNB with dysfunction in molecules important for the

signaling from the photoreceptors to the adjacent bipolar cells. Six

mouse models with four different gene defects, Nyx (no b-wave

(nob)), Grm6 (nob3 and nob4), Trpm1 and Gpr179 (nob5) have already

been published for cCSNB [12,15,18,25,26,32–36].

These mouse models were helpful in dissecting the ON-bipolar

cell signaling cascade. In darkness, the glutamate neurotransmitter

released by the photoreceptors binds to the metabotropic

glutamate receptor 6 (GRM6/mGluR6) [16,37]. This binding

leads to the activation of the a-subunit of the G-protein, G0a
[38,39], which results in the closure of the non-selective cation

channel TRPM1. When the photoreceptors are stimulated by

light, the deactivation of the G-protein in the ON-bipolar cells is

responsible for the opening of TRPM1, resulting in the formation

of the ERG b-wave [15,25,32]. GRM6 and NYX interact with

TRPM1 and are essential for its localization at the dendritic tips of

ON-bipolar cells [23,24]. In addition GPR179 is essential for the

action of the G-protein downstream of mGluR6 via the correct

localization of Regulator of G protein Signaling proteins (RGS)

[20], GPR179 also interacts with both mGluR6 and TRPM1 and

its correct localization is mediated through mGluR6 [40].

The exact role of LRIT3 in this cascade remains to be

elucidated. As previously described, NYX is essential for the

correct localization of TRPM1 [23]. However, NYX alone would

not be sufficient to bring TRPM1 at the dendritic tips of ON-

bipolar cells in the retina. Mouse and human NYX are mainly

extracellular proteins [41,42] that lack an intracellular PDZ-

binding domain important for binding to scaffolding proteins

involved in membrane trafficking [43]. Thus, another transmem-

brane protein is needed to interact with the scaffolding proteins for

TRPM1 localization [23]. As LRIT3 resembles proteins of the

SALM family, in particular containing a PDZ-binding motif, our

hypothesis is that LRIT3 might interact with scaffolding proteins

to bring TRPM1 to the cell surface and thereafter LRIT3 together

with NYX might hold the channel in this form [21]. We have not

so far been able to confirm this hypothesis or to study the

pathogenic mechanism(s) of LRIT3 defects underlying cCSNB by

in vitro experiments due to the lack of an antibody able to detect

human LRIT3 at the cell surface of transfected cells and the lack

of a characterized mouse model for Lrit3, which will be named

nob6.

The aim of this study was to characterize a commercially

available Lrit3 mouse model and to establish whether this animal

would be a reliable model for human cCSNB.

Materials and Methods

Ethics statements
All animal procedures were performed according to the

Association for Research in Vision and Ophthalmology (ARVO)

Statement for the Use of Animals in Ophthalmic and Visual

Research and were approved by the French Minister of

Agriculture (authorization A-75-1863 delivered on 09th November

2011). All efforts were made to minimize suffering.

Lrit3 cDNA sequence
We deposited at GenBank the experimentally validated cDNA

sequence of Lrit3 (BankIt1682729 Lrit3 KF954709), which

corresponds to the mouse Lrit3 cDNA sequence, which was

updated on 10th December 2013 (NM_001287224.1).

Animal Care
Three 129/SvEv-C57BL/6 heterozygous knock-out mice for

Lrit3 of each sex were obtained from a company (TF2034,

Taconic, Hudson, NY). These mice were intercrossed (Centre

d’Exploration et de Recherche Fonctionnelle Expérimentale

CERFE, Evry, France) to produce wild-type (Lrit3+/+), heterozy-

gous (Lrit3nob6/+) and mutant (Lrit3nob6/nob6) offspring. To follow up

the phenotype at different ages, the two time points, six weeks and

six months, were selected. For the optomotor test, we used seven

Lrit3+/+, eleven Lrit3nob6/+, nine Lrit3nob6/nob6 mice of six weeks and

nine Lrit3+/+, eight Lrit3nob6/+ and nine Lrit3nob6/nob6 mice of six

months. The same animals were used for ERG recordings, FAF,

and Spectral-Domain Optical Coherence Tomography (SD-OCT)

except for one six weeks Lrit3+/+ and one six weeks Lrit3nob6/nob6

who died during FAF. For histology, two animals of each genotype

for both ages were used. Mice were housed in a temperature-

controlled room with a 12-h light/12-h dark cycle. Fresh water

and rodent diet were available ad libitum.

Polymerase chain reaction (PCR) genotyping for Lrit3
DNA was isolated from mouse tails with 50 mM NaOH after

incubation at 95uC for 30 min. Two couples of primers were

designed to amplify wild-type (wt) or mutant allele independently

(HOT FIREPol, Solis Biodyne, Tartu, Estonia): mLrit3_4aF and

mLrit3_4aR for the wt allele, mLrit3_3F and mLrit3_CasR for the

mutant one (Table S1). PCR products were separated by

electrophoresis on 2% agarose gels, stained with ethidium

bromide, and visualized using the Gel Doc XR+ system (Bio-

Rad, Hercules, CA).

Genotyping for common mutations found in laboratory
mouse strains

The genotyping for the Crb1rd8 mutation was carried out by

qPCR Taqman on genomic DNA with probes specific for wt or

mutant allele, respectively (Table S2). The presence of common

mutations in laboratory strains Pde6brd1, Gnat2cpfl3, and c.230G.T

p.Arg77Leu in Tyr were investigated by direct Sanger sequencing.

The following primers were used: Pde6b_7–8F and Pde6b_7–8R

for the substitution in rd1 (Gotaq DNA Polymerase, Promega,

Madison, WI, USA), Pde6b_G2shortF and Pde6b_G1shortR for

the insertion in rd1 (HOT FIREPol), Gnat2_6F and Gnat2_7R for

the muration in cpfl3 (HOT FIREPol) and Tyr_F and Tyr_R for

p.Arg77Leu in Tyr (HOT FIREPol) (Tables S3, S4, S5).

Subsequently, PCR products were Sanger sequenced with a

sequencing mix (BigDyeTerm v1.1 CycleSeq kit, Applied Biosys-

tems, Courtabœuf, France), analyzed on an automated 48-

capillary sequencer (ABI 3730 Genetic analyzer, Applied Biosys-

tems), and the results interpreted by applying a software

(SeqScape, Applied Biosystems).

Genotyping for genes with mutations underlying cCSNB
DNA of six founder mice were used to sequence the flanking

intronic and exonic sequences of Grm6, Gpr179, Nyx, Lrit3 and

Trpm1 as well as intron 2 of Grm6 and intron 1 of Gpr179 (HOT

FIREPol). The corresponding primers, fragment sizes and

annealing temperatures used are reported in Tables S1 and S6,

S7, S8, S9. Identified variants were evaluated in respect to the

conservation (UCSC Genome Browser: http://genome.ucsc.edu/

), pathogenicity predictions (Sorting Intolerant from Tolerant

(SIFT): http://sift.bii.a-star.edu.sg/, and PolyPhen-2: http://
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genetics.bwh.harvard.edu/pph2/) and presence in mouse strains

used to generate the Lrit3 mouse model (Ensembl Genome

Browser: http://www.ensembl.org/index.html).

Electroretinography
Electroretinography was performed according to Yang and co-

workers with some modifications [44]. After overnight dark

adaptation, mice were anesthetized with ketamine (80 mg/kg)

and xylazine (8 mg/kg). Eye drops were used to dilate the pupils

(0.5% mydriaticum, 5% neosynephrine) and anesthetize the

cornea (0.4% oxybuprocaine chlorhydrate). Body temperature

was maintained at 37uC through the use of a circulating hot water

heating pad. Upper and lower lids were retracted to keep the eyes

open and bulging. Contact lens electrodes for mice (Mayo

Corporation, Japan) were placed on the corneal surface to record

ERG. Needle electrodes placed subcutaneously in cheeks served as

reference and a needle electrode placed in the back served as

ground. Recordings were made from both eyes simultaneously.

The light stimulus was provided by a 150 Watt xenon lamp in a

Ganzfeld stimulator (Multilinear Vision, Jaeger Toennies, Ger-

many). Responses were amplified and filtered (1 Hz-low and

300 Hz-high cut off filters) with a 1 channel DC-/AC-amplifier.

Eight levels of stimulus intensity ranging from 0.0006 cd.s/m2 to

60 cd.s/m2 were used for the dark-adapted ERG recording. Each

scotopic ERG response represents the average of five responses

from a set of five flashes of stimulation. To isolate cone responses a

10-minute light adaptation at 20 cd/m2 was used to saturate rod

photoreceptors. Six levels of stimulus intensities ranging from

0.3 cd.s/m2 to 60 cd.s/m2 were used for the light-adapted ERGs.

The light-adapted ERGs were recorded on the same rod-

suppressive white background as for the light adaptation. Each

cone photopic ERG response represents the average of twenty

responses to a set of twenty consecutive flashes. The major

components of the ERG were measured conventionally. The a-

wave amplitude was measured from the baseline to the a-wave

trough and the b-wave amplitude was measured from the a-wave

trough to the peak of the b-wave or, if no a-wave was present, from

the baseline. Implicit times were measured from the onset of the

flash stimulus to the a-wave trough and the b-wave peak,

respectively.

Optomotor response
Optomotor test was performed as previously described [45].

After overnight dark adaptation, mice were placed on a grid

platform (11.5 cm diameter, 19 cm above the bottom of the drum)

surrounded by a motorized drum (29 cm diameter) that could be

revolved clockwise or anticlockwise at two revolutions per minute.

Vertical black and white stripes of a defined spacial frequency

were presented to the animal. Spatial frequencies tested were

0.063, 0.125, 0.25, 0.5 and 0.75 cycles per degree. The stripes

Figure 1. Construction of the Lrit3 knock-out allele and genotyping. (A) Wild-type (wt) Lrit3 allele comprises 4 exons. In the knock-out (ko)
construction, exons 3 and 4 were replaced by a selection cassette with only 21 bp of exon 3 still remaining. For genotyping, mLrit3_ex4aF and
mLrit3_ex4aR were designed to only amplify the wt allele, whereas mLrit3_ex3F and mLrit3_CasR were designed to only amplify the ko allele. (B)
After migration on 2% agarose gel, Lrit3+/+ mice exhibited a single fragment at the expected length of 602 bp, Lrit3nob6/nob6 exhibited a single
fragment at the expected length of 377 bp and Lrit3nob6/+ mice exhibited both fragments. Legends: WT: wild-type allele; Mut: mutant allele.
doi:10.1371/journal.pone.0090342.g001
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were rotated for 1 min in each direction with an interval of 10 sec

between the two rotations. Animals were videotaped using a digital

video camera for subsequent scoring of head movements. Tests

were initially performed under scotopic conditions, using the night

shot function of the camera. Mice were then subjected to two

lamps of 60 Watt each for 5 min and photopic measurements were

performed. Head movements were scored only if the angular

speed of the movement corresponded to that of the drum rotation.

Head movements in both directions were averaged to obtain the

number of head movements per minute.

FAF
Photographs of the eye fundus and autofluorescence were

obtained with a scanning laser ophthalmoscope (SLO) (HRA1,

Heidelberg, Germany). Mouse pupils were dilated by the ocular

instillation of 0.5% mydriaticum and 5% neosynephrine.

SD-OCT
Mice were anesthetized by isoflurane inhalation and maintained

under anesthesia via a mask. Eye drops were used to dilate the

pupils (0.5% mydriaticum, 5% neosynephrine) and eye dehydra-

tion was prevented by regular instillation of sodium chloride drops.

SD-OCT images were recorded for both eyes using a spectral

domain ophthalmic imaging system (Bioptigen, Inc., Durham,

NC, USA). We performed rectangular scans consisting of a

1.4 mm by 1.4 mm perimeter with 1000 A-scans per B-scan with a

total B-scan amount of 100. Scans were obtained first while

centered on the optic nerve, and then with the nerve displaced

either temporally/nasally or superiorly/inferiorly. SD-OCT scans

were exported from InVivoVue as AVI files. These files were

loaded into ImageJ (version 1.47; National Institutes of Health,

Bethesda, MD) where they were registered using the Stackreg

plug-in. If the optic nerve was placed temporally/nasally, three B-

scans at the level of the nerve were averaged and measurements

were performed 500 mm away from the optic disc, on each side. In

the case where the optic nerve was placed superiorly/inferiorly, 3

B-scans placed 500 mm away from the optic disc were averaged to

perform the measurements. We measured the thickness of outer

nuclear layer (ONL), INL and a complex comprising inner

plexiform layer (IPL), ganglion cell layer (GCL) and nerve fiber

layer (NFL) that we called IPL+GCL+NFL [46].

Figure 2. wt and ko Lrit3 cDNAs and RT-PCR. (A) ko cDNA comprised the remaining 21 bp of exon 3 and only the first 8 bp of the selection
cassette which leads to a premature stop codon. mLrit3_RT_ex2F and mLrit3_RT_ex3R were designed to only amplify the wt cDNA whereas
mLrit3_RT_ex2F and mLrit3_RT_CasR were designed to only amplify the supposed ko cDNA. (B) After amplification and migration on agarose gel,
Lrit3+/+ mice exhibited a single fragment at 539 bp, Lrit3nob6/nob6 mice exhibited a 443 bp fragment and Lrit3nob6/+ mice exhibited both fragments.
Legends: WT: wild-type cDNA; Mut: mutant cDNA. (C) Sequence of the ko LRIT3 protein. This 206 amino acid protein are supposed to lack its Ig-like,
Serine-rich, fibronectin III, transmembrane and PDZ-binding domains.
doi:10.1371/journal.pone.0090342.g002
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Figure 3. Scotopic ERG phenotype. Dark-adapted ERG series were obtained from representative Lrit3+/+ (black line), Lrit3nob6/+ (blue line) and
Lrit3nob6/nob6 (red line) littermates. (A) At 6 weeks of age. The scale indicates 100 ms and 200 mV. Values to the left of the row of waveforms indicate
flash intensity in log cd.s/m2. (B) Amplitude of the major components of the dark-adapted ERG with increasing flash intensity at 6 weeks of age. The
b-wave component is absent in Lrit3nob6/nob6 mice and therefore this data is not plotted. (C) Implicit time of the major components of the dark-
adapted ERG with increasing flash intensity at 6 weeks of age. The b-wave component is absent in Lrit3nob6/nob6 mice and therefore this data is not
plotted. (D) At 6 months of age. The scale indicates 100 ms and 200 mV. Values to the left of the row of waveforms indicate flash intensity in log cd.s/
m2. (E) Amplitude of the major components of the dark-adapted ERG with increasing flash intensity at 6 months of age. The b-wave component is
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Preparation of retinas for RNA
Mice were killed by CO2 administration and cervical disloca-

tion. Eyes were removed and dissected in PBS to collect one retina

of each mouse. Retinas were soaked in RNA latter (Qiagen,

Venlo, The Netherlands) and stored at 280uC until used.

RT-PCR
Total RNA was isolated from retinas of 6 weeks old mice using a

kit (RNeasy Mini Kit, Qiagen) and 500 ng were used to synthesize

cDNA with a reverse transcriptase (SuperScript II, Invitrogen,

Carlsbad, CA, USA), according to the manufacturer’s protocol.

Two couples of primers were designed to amplify wt or mutant

cDNA independently: mLrit3_RT_ex2F 59 GTGGAGCTG-

CAGTACCTCT 39 and mLrit3_RT_ex3R 59 GCTGACAT-

CATCACGGACG 39 for the wt cDNA, mLrit3_RT_ex2F and

mLrit3_RT_CasR 59 GCTCGAAGCTTATCGCTAGT 39 for

the mutant one. Amplification was carried out by a DNA

polymerase (HOT FIREPol).

Preparation of retinal sections for histology
Mice were killed by CO2 administration and cervical disloca-

tion. Eyes were removed, fixed in Davidson’s fixative (22%

formalin 37%, 33% absolute ethanol, 11% glacial acetic acid) at

room temperature for 3 h, dehydrated and embedded in paraffin.

Sections of 5-mm-thickness were cut on a microtome (HM 340E,

Microm Microtech, Francheville, France), mounted onto Super-

frost plus glass slides (Thermo Fisher Scientific, Waltham, MA,

USA), dried in an oven and stored at room temperature until used.

Histology
Retinal sections for histology were hematoxylin-eosin colored by

an automaton (HMS 70, Microm Microtech), dried and mounted

with a non-aqueous medium (Diamount, Diapath, Martinengo,

BG, Italy). Slides were then scanned with a Nanozoomer 2.0 high

throughput (HT) equipped with a 3-charge–coupled device time

delay integration (TDI) camera (Hamamatsu Photonics, Hama-

matsu, Japan).

Statistical analyses
Statistical analyses were performed using the statistical software

(SPSS, version 19.0 Inc, Chicago, Illinois, USA). Kruskal-Wallis’s

test was used to compare head movements per minute in

optomotor test and retinal layer thickness in SD-OCT among

the three genotypes. Post-hoc comparisons were used to compare

the genotypes two by two when the Kruskal-Wallis’s test permitted

to reject the hypothesis H0. These post-hoc analyses were also

applied to compare results obtained from mice at six weeks and six

months of ages. The number of animals used for the different

phenotyping experiments and groups are described above (Animal

Care). Tests were considered as significant when p,0.05.

Results

Genetic characterization of the Lrit3 deficient mouse
To obtain an in vivo tool to study the pathogenic mechanism(s) of

cCSNB due to mutations in LRIT3, common databases were

checked for the existence of commercially available mice lacking

functional LRIT3. Indeed, Lrit3 knock-out mouse line (LEXKO-

2034) was generated by a company (Lexicon Pharmaceuticals,

The Woodlands, TX, USA) and a basic phenotype description was

given. For this line no obvious phenotype had been noted

(behavior, hematology, endocrinology, immunology, cardiology,

radiology, fertility, ophthalmology). Since the ophthalmic exam-

ination was also inconspicuous and no information on the

phenotyping protocol was available, we wanted to elucidate if

these mice represent a model for cCSNB. Six 129/SvEv-C57BL/6

mice heterozygous knock-out for Lrit3 of both sexes were obtained

from a company (Taconic, Hudson, NY, USA) and three breeding

pairs were established. For the knock-out allele, exons 3 and 4 are

deleted and replaced by a Bgeo/Puro cassette, with only 21 bp of

exon 3 remaining (Figure 1A). These mice were intercrossed and

the offspring was genotyped by size specific PCR strategies. While

Lrit3+/+ and Lrit3nob6/nob6 exhibited a single fragment at 602 bp and

377 bp respectively, Lrit3nob6/+ mice revealed both fragments

(Figure 1B). Lrit3 mice used in these experiments were free of

common mutations in Tyr [47], Crb1 [48], Pde6b [49,50] and Gnat2

[51] frequently found in laboratory strains and associated with

different eye phenotypes (data not shown). Since already three

naturally occurring mouse models for cCSNB have been described

(Nyx [34], Gpr179 [12] and Grm6 [35]), we excluded these

mutations and mutations in all genes underlying cCSNB (Nyx,

Grm6, Trpm1, Gpr179 and Lrit3) by a direct sequencing approach.

Only 129/SvEv and C57BL/6 strain specific non-pathogenic

variants were detected (Tables S10, S11).

Validation of the Lrit3 deficient mouse
Lrit3 deficient mice were validated at transcript level by

performing RT-PCR experiments with subsequent direct sequenc-

ing of the amplicons (Figure 2A–B). A 539 bp and a 443 bp

fragment was obtained for the wt and the mutant cDNA,

respectively. Heterozygous mice exhibited both fragments con-

firming the PCR genotyping for Lrit3 model (Figure 2B). The

knock-out allele for Lrit3 produced a transcript including 21 bp of

exon 3 and the first 8 bp of the selection cassette (c.611_2046de-

linsGGCCATAG), which leads to a premature stop codon

(p.Phe204Trpfs*3) (Figure 2A). So, if a protein is produced, it

would code for a short 206 amino acid lacking presumably the

Immunoglobulin-like (Ig-like), Serine-rich, fibronectin III, trans-

membrane and PDZ-binding domains (Figure 2C).

Functional characterization of mice lacking functional
LRIT3

Electroretinography. ERG responses of Lrit3+/+, Lrit3nob6/+

and Lrit3nob6/nob6 mice were recorded at six weeks and at six

months under scotopic and photopic conditions and increasing

flash intensities. At six weeks of age, under scotopic conditions,

which are dominated by rod-pathway function, Lrit3+/+ mice

showed normal responses with the classic positive deflection of the

b-wave. As expected, with increasing flash intensities, amplitudes

of both a-wave and b-wave increased whereas implicit times of

both waves shortened (Figure 3A–C). ERG responses of hetero-

zygous mice were undistinguishable from the Lrit3+/+ responses

(Figure 3A–C). In contrast, Lrit3nob6/nob6 mice were lacking b-wave

on their ERG responses, while a-waves were comparable in

amplitude or implicit time to Lrit3nob6/+ and to Lrit3+/+ mice

(Figure 3A–C). This led to an electronegative ERG waveform in

Lrit3nob6/nob6 mice, in which the b-wave was absent while the a-

wave was preserved, indicating a signal transmission defect

absent in Lrit3nob6/nob6 mice and therefore this data is not plotted. (F) Implicit time of the major components of the dark-adapted ERG with increasing
flash intensity at 6 months of age. The b-wave component is absent in Lrit3nob6/nob6 mice and therefore this data is not plotted.
doi:10.1371/journal.pone.0090342.g003
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Figure 4. Photopic ERG phenotype. Cone-mediated ERG series were obtained from representative Lrit3+/+ (black line), Lrit3nob6/+ (blue line) and
Lrit3nob6/nob6 (red line) littermates. (A) At 6 weeks of age. The scale indicates 100 ms and 100 mV. Values to the left of the row of waveforms indicate
flash intensity in log cd.s/m2. (B) Amplitude of the a-wave with increasing flash intensity at 6 weeks of age. (C) Amplitude of the b-wave with
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between rod photoreceptors and ON-bipolar cells, whereas the

phototransduction in rod photoreceptors is not affected. At 6

weeks of age, under photopic conditions, which reflect cone

circuitry function, Lrit3+/+ mice showed normal ERG responses

with the classic positive deflection of the b-wave. As expected, with

increasing flash intensities, the amplitudes of both, the a-wave,

increasing flash intensity at 6 weeks of age. (D) Implicit time of the a-wave with increasing flash intensity at 6 weeks of age. (E) Implicit time of the b-
wave with increasing flash intensity at 6 weeks of age. (F) At 6 months of age. The scale indicates 100 ms and 100 mV. Values to the left of the row of
waveforms indicate flash intensity in log cd.s/m2. (G) Amplitude of the a-wave with increasing flash intensity at 6 months of age. (H) Amplitude of the
b-wave with increasing flash intensity at 6 months of age. (I) Implicit time of the a-wave with increasing flash intensity at 6 months of age. (J) Implicit
time of the b-wave with increasing flash intensity at 6 months of age.
doi:10.1371/journal.pone.0090342.g004

Figure 5. Optomotor responses. The number of head movements per minute was obtained in scotopic conditions with spatial frequencies from
0.063 to 0.75 cpd and compared using Kluskal-Wallis statistical test in representative Lrit3+/+ (black box), Lrit3nob6/+ (blue box) and Lrit3nob6/nob6 (red
box) littermates. The star indicates a significant test (p,0.05). (A) At 6 weeks of age. (B) At 6 months of age.
doi:10.1371/journal.pone.0090342.g005
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when measurable, and the b-wave increased, whereas implicit

times of both waves shortened (Figure 4A–E). Responses in

Lrit3nob6/+ mice were not different from those of Lrit3+/+

(Figure 4A–E). In contrast, ERG responses for Lrit3nob6/nob6 were

very variable and showed larger a-wave amplitudes, shorter b-

wave amplitudes and longer implicit times than for Lrit3+/+ mice

(Figure 4A–E). These results are in keeping with cone-mediated

pathway dysfunction in these mice. The nob phenotype observed in

mutant mice seemed to be stationary since no difference was

observed between responses obtained at six weeks (Figures 3A–C

and 4A–E) and six months (Figures 3D–F and 4F–J). This new nob

mouse model was named nob6.

Optomotor test. We tested optomotor responses of Lrit3+/+,

Lrit3nob6/+ and Lrit3nob6/nob6 mice at 6 weeks and 6 months of age

under scotopic and photopic conditions at increasing spatial

frequency. Under scotopic conditions, for all the genotypes at both

ages, a maximum number of head movements per minute was

reached at 0.125 cpd. The number of head movements per minute

decreased then with increasing spatial frequency but the exact visual

acuity was not evaluable because the zero was never reached.

Responses in heterozygous mice were globally undistinguishable

from the Lrit3+/+ responses (Figure 5A–B). However, optomotor

responses in Lrit3nob6/nob6 mice were statistically decreased at all

spatial frequencies and at both ages (from p,0.001 to p = 0.032)

(Figure 5A–B). Moreover, no statistical differences were observed

for the mutant mice responses between 6 weeks and 6 months.

Analyses of the optomotor responses under photopic conditions

were not conclusive and therefore the data are not shown.

FAF. To validate if Lrit3nob6/nob6 mice represent indeed a good

model for a stationary not progressive night blindness disease,

which is not associated with striking fundus abnormalities, we

performed FAF. In the retinal pigment epithelium (RPE) of

mammals, lipofuscin (LF) accumulates as a result of outer segment

renewal. LF levels increase with age and can be modified in case of

photoreceptor/RPE diseases [52,53]. This dynamic process can be

imaged through FAF. None of the six weeks or six months old

mice whatever their genotypes exhibited changes in FAF (data not

shown) in keeping with the absence of photoreceptor/RPE disease.

SD-OCT and histology. We compared retinal morphology

and thickness for ONL, INL and IPL+GCL+NFL obtained by

histology and SD-OCT analysis in Lrit3+/+, Lrit3nob6/+ and

Lrit3nob6/nob6 at six weeks and six months of age (Figure 6 and

7A). Examination of histological retinal cross sections showed

normal nuclear and synaptic layers among the three genotypes

(Figure 6). SD-OCT images exhibited no changes in layer

thickness according to the quadrant (dorsal, ventral, temporal or

nasal) in each animal. No statistical differences were observed

between Lrit3+/+ and Lrit3nob6/nob6 mice in ONL thickness,

suggesting normal photoreceptors in the retina of mutant mice

(Figure 7B–C). ONL thickness in Lrit3nob6/+ mice was slightly

reduced compared to Lrit3+/+ and Lrit3nob6/nob6 mice at 6 weeks

(p,0.001) (Figure 7B). However, thickness of INL and

IPL+GCL+NFL was statistically decreased in mutant mice

compared to Lrit3+/+ and heterozygous (from p,0.001 to

p = 0.024) (Figure 7B–C). Thickness of ONL and INL but not

IPL+GCL+NFL was also slightly decreased at six months

compared to six weeks but these changes were similar in the

three genotypes (from p,0.001 to p = 0.025) (Figure 7B–C).

Discussion

In this work, we have genetically characterized a commercially

available Lrit3 mouse lacking Lrit3 and determined the impact of

this knock-out model on visual function. Our results show that

mice lacking Lrit3 display similar abnormalities as patients with

cCSNB due to LRIT3 mutations and other mice with mutations in

Figure 6. Retinal anatomy of Lrit3nob6/nob6 mice. Retinal sections of representative Lrit3+/+, Lrit3nob6/+ and Lrit3nob6/nob6 littermates were compared
by light microscopy at 6 weeks and 6 months of age. Scale bar, 40 mm.
doi:10.1371/journal.pone.0090342.g006
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genes implicated in the retinal ON-pathway, most strikingly

lacking the scotopic ERG b-wave. Here we describe in detail this

novel nob mouse, which we subsequently called nob6.

nob6 denotes a mouse mutant carrying the Lrit3 knock-out (ko)

allele homozygously. In this ko model, exons 3 and 4 were deleted

and replaced by a Bgeo/Puro cassette, with only 21 bp of exon 3 still

remaining, which was confirmed at genomic and RNA levels. This

construction contains a premature stop codon in the first 8 bp of

the cassette (c.611_2046delinsGGCCATAG), which is predicted

to lead to a truncated 206 amino acid LRIT3 protein

(p.Phe204Trpfs*3). A functional antibody against the mouse

LRIT3 protein needs to be developed to validate this prediction.

If the truncated LRIT3 protein was indeed formed, it would lack

several domains, including the transmembrane domain and the

PDZ-binding motif that we previously hypothesized to be crucial

for LRIT3 function. Our theory would be that LRIT3, with its

PDZ-binding motif, might be the missing transmembrane protein,

which brings the TRPM1 channel to the cell surface by interacting

with scaffolding proteins [21,23,43]. Subsequently, the channel

opens during light stimulation, allowing the depolarization of ON-

bipolar cells, which results in the signal transmission and the ERG

b-wave [15,25,32]. Without its transmembrane domain and its

PDZ-binding motif, LRIT3 could not fulfill its function. TRPM1

would not localize at the dendritic tips of ON-bipolar cells and

Figure 7. SD-OCT retinal nuclear layers measurements. (A) ONL, INL and IPL+GCL+NFL thickness were obtained by SD-OCT and compared
using Kluskal-Wallis statistical test in representative Lrit3+/+ (black box), Lrit3nob6/+ (blue box) and Lrit3nob6/nob6 (red box) littermates. The star indicates
a significant test (p,0.05). (B) At 6 weeks of age. (C) At 6 months of age.
doi:10.1371/journal.pone.0090342.g007

Lrit3nob6 Mouse Model

PLOS ONE | www.plosone.org 10 March 2014 | Volume 9 | Issue 3 | e90342



thus would be inactive. ON-bipolar cells would not depolarize upon

light stimulus resulting in the absence of a b-wave. Visual signal

transmission would be compromised, leading to night blindness.

Interestingly, the nob6 allele resembles the deletion (c.1538_1539del

leading to p.Ser513Cysfs*59) and nonsense mutations (c.1318C.T

leading to p.Arg440* and c.1151C.G leading to p.Ser384*) in

LRIT3 identified in cCSNB patients [21]. These three human

mutations, located in exon 4, are predicted to lead to truncated

proteins lacking the transmembrane domain and the PDZ-binding

motif. Thus, the nob6 mouse represents in fact a reliable model to

study the pathological mechanism(s) associated with autosomal

recessive complete CSNB due to LRIT3 mutations.

Functional characterization of nob6 mouse revealed a stationary

nob phenotype as found in patients with cCSNB due to LRIT3

mutations [21], in patients with cCSNB due to other gene defects

of the same cascade [5–13] and in other mouse models of cCSNB

[12,15,18,25,26,32,33,35,36,54]. In scotopic conditions, nob6

mice defined a selective absence of the ERG b-wave, with a

preserved a-wave component. The preserved a-wave indicates

that photoreceptors respond normally to light, and the lack of the

b-wave localizes the defect to synaptic transmission from the

photoreceptors to the ON bipolar cells or to signaling within them.

Cone-mediated pathways are also affected since implicit times of

both a- and b-waves were delayed and amplitude of b-wave

markedly reduced in photopic conditions. Therefore, visual

dysfunction in nob6 mice affects both rod- and cone- ON-bipolar

systems. Optomotor tests revealed that, under scotopic conditions,

the number of head movements was strongly decreased in nob6

mice even if the visual acuity is not really measurable [45].

However, we can suppose that, by increasing more the spatial

frequency, the optomotor response in mutant mice would reach

the zero before wild-type and heterozygous mice and therefore the

visual acuity of nob6 mice would be decreased in scotopic

conditions. Moreover, there were no indications for photoreceptor

degeneration in this mouse model. Retina morphology investigat-

ed by fundus autofluorescence and histology was unsuspicious for

all genotypes at the different ages. Similar findings have been

reported for other mouse models of cCSNB [12,18,26,33,35,36].

However, all steps providing the retinal sections such as fixation,

dehydration or cutting are potential sources for significant and

variable alteration in dimensions, especially for subtle changes.

Thus, an in vivo analysis of the retinal structure as SD-OCT may

be helpful to detect fine morphological changes without being

biased by handling procedures [55]. Moreover, in patients,

histology is not possible because it is difficult to have access to

human tissues and SD-OCT is used in practice. Indeed,

interestingly Godara and co-workers showed that, despite a

normal retinal structure using light and electronic microscopy in

nob mouse mutants carrying mutations in genes coding for

postsynaptic proteins, three patients with cCSNB and GRM6

mutations exhibited a reduced retinal thickness in the extrafoveal

region upon SD-OCT examination [56]. This thinning was the

result of inner retinal defects, as opposed to photoreceptor loss,

and involves GCL. Similarly, as we observed in the nob6 mice, a

normal ONL thickness was measured whereas the inner retinal

layer thickness, comprising GCL plus IPL, was reduced. These

results support the emerging view that although cCSNB may be

considered primarily as a stationary disorder, small structural

changes in the retina of patients may be detectable [56]. Thus, this

study is the first one using SD-OCT technology to characterize a

mouse model with cCSNB. Mutant mice showed no photorecep-

tor degeneration as measured by the ONL thickness. Interestingly,

as Godara and co-workers, we found a small but significant

thinning of the inner retina (INL and IPL+GCL+NFL) but it

remains unknown if this thinning is functionally relevant.

Therefore, it would be interesting to study other patients with

cCSNB and the respective mouse models by applying SD-OCT to

investigate if this inner retinal thinning is a common finding. We

also observed a thinning of ONL and INL between the two time-

points but we assumed that this is an ageing consequence because

it was observed in the three genotypes and in the same

proportions. A slight reduction in ONL thickness was surprisingly

detected in heterozygous mice but that phenomenon remains

unexplained. In general our data show that the wild-type and

heterozygous mice are very similarly, which is what we expected

for an autosomal recessive mode of inheritance.

To conclude, this study describes a novel mouse model for

human cCSNB associated with LRIT3 mutations. It creates the

basis to clarify the role of LRIT3 in the ON-bipolar cell signaling

cascade, presents a tool to confirm putative interactions with

various components of this cascade and to elucidate the

pathogenic mechanism(s) of cCSNB.
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C. LRIT3 is essential to localize TRPM1 to the dendritic tips of 

depolarizing bipolar cells and may play a role in cone 

synapse formation 

The purpose of this study was to describe the localization of LRIT3 in the mouse retina and 

compare the localization of known components of the mGluR6 signaling cascade in wild-type 

and Lrit3nob6/nob6 retinas to better understand the function of LRIT3. 

An anti-LRIT3 antibody was generated. Immunofluorescent staining of LRIT3 in wild-type 

mice revealed a specific punctuate labeling in the outer plexiform layer (OPL), and this 

staining pattern was notably absent in Lrit3nob6/nob6 mice. LRIT3 did not co-localize with 

ribeye or calbindin, but it did co-localize with mGluR6. TRPM1 staining was severely 

decreased at the dendritic tips of all depolarizing bipolar cells in Lrit3nob6/nob6 mice. mGluR6, 

GPR179, RGS7, RGS11 and Gβ5 immunofluorescence was absent at the dendritic tips of cone 

ON-bipolar cells in Lrit3nob6/nob6 mice, but it was present at the dendritic tips of rod bipolar 

cells. Furthermore, PNA labeling was severely reduced in the OPL in Lrit3nob6/nob6 mice. This 

study confirmed the localization of LRIT3 at the dendritic tips of depolarizing bipolar cells in 

mouse retina and demonstrated the dependence of TRPM1 localization on the presence of 

LRIT3. In addition, the disrupted localization of several components of the ON-bipolar cell 

signaling cascade and PNA in Lrit3nob6/nob6 mice suggests a possible additional function of 

LRIT3 in cone synapse formation. These results also suggest that the regulation of the 

mGluR6 signaling cascade may differ between rod and cone ON-bipolar cells. 
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Abstract

Mutations in LRIT3 lead to complete congenital stationary night blindness (cCSNB). The exact role of LRIT3 in ON-bipolar cell
signaling cascade remains to be elucidated. Recently, we have characterized a novel mouse model lacking Lrit3 [no b-wave 6,
(Lrit3nob6/nob6)], which displays similar abnormalities to patients with cCSNB with LRIT3 mutations. Here we compare the localiza-
tion of components of the ON-bipolar cell signaling cascade in wild-type and Lrit3nob6/nob6 retinal sections by immunofluorescence
confocal microscopy. An anti-LRIT3 antibody was generated. Immunofluorescent staining of LRIT3 in wild-type mice revealed a
specific punctate labeling in the outer plexiform layer (OPL), which was absent in Lrit3nob6/nob6 mice. LRIT3 did not co-localize
with ribeye or calbindin but co-localized with mGluR6. TRPM1 staining was severely decreased at the dendritic tips of all depolar-
izing bipolar cells in Lrit3nob6/nob6 mice. mGluR6, GPR179, RGS7, RGS11 and Gb5 immunofluorescence was absent at the den-
dritic tips of cone ON-bipolar cells in Lrit3nob6/nob6 mice, while it was present at the dendritic tips of rod bipolar cells. Furthermore,
peanut agglutinin (PNA) labeling was severely reduced in the OPL in Lrit3nob6/nob6 mice. This study confirmed the localization of
LRIT3 at the dendritic tips of depolarizing bipolar cells in mouse retina and demonstrated the dependence of TRPM1 localization
on the presence of LRIT3. As tested components of the ON-bipolar cell signaling cascade and PNA revealed disrupted localiza-
tion, an additional function of LRIT3 in cone synapse formation is suggested. These results point to a possibly different regulation
of the mGluR6 signaling cascade between rod and cone ON-bipolar cells.

Introduction

The visual ON-pathway is initiated at the first retinal synapse
between photoreceptors and ON-bipolar cells. In darkness, glutamate
released by the photoreceptors binds to the metabotropic glutamate
receptor 6 (GRM6/mGluR6) on the ON-bipolar cell dendrites (Nak-
ajima et al., 1993; Nomura et al., 1994). This binding leads to the
activation of the heterotrimeric G-protein, Go (Nawy, 1999; Dhingra
et al., 2000), which results in the closure of the transient receptor
potential melastatin 1 (TRPM1) cation channel (Morgans et al.,
2009; Shen et al., 2009; Koike et al., 2010). When the photorecep-

tors are stimulated by light, glutamate release is reduced, the
cascade is deactivated and TRPM1 channels open, resulting in cell
membrane depolarization.
Mutations in several genes disrupt synaptic transmission between

photoreceptors and ON-bipolar cells, leading to complete congenital
stationary night blindness (cCSNB) (Zeitz, 2007; Zeitz et al., 2015).
cCSNB has been associated with mutations in genes encoding pro-
teins localized at the dendritic tips of ON-bipolar cells (Masu et al.,
1995; Morgans et al., 2009; Orlandi et al., 2012; Peachey et al.,
2012b; Orhan et al., 2013), including nyctalopin, a leucine-rich
repeat protein (Morgans et al., 2006). Recently, we have identified
mutations in LRIT3, a gene encoding the leucine-rich repeat, immu-
noglobulin-like and transmembrane domains 3 protein, leading to
cCSNB (Zeitz et al., 2013). The corresponding protein localizes at
the dendrites of ON-bipolar cells in human (Zeitz et al., 2013).
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The exact role of LRIT3 in the mGluR6 signaling cascade
remains to be elucidated. It has been shown that nyctalopin binds to
TRPM1 (Cao et al., 2011; Pearring et al., 2011) and is essential for
its correct localization (Pearring et al., 2011). Membrane transport
of proteins such as TRPM1 involves cytoskeletal scaffolding pro-
teins, many of which contain PDZ domains (Feng & Zhang, 2009).
Nyctalopin, being mainly an extracellular protein, does not contain
an intracellular PDZ-binding domain and is therefore probably not
able to bring TRPM1 to the cell surface via scaffolding proteins
(Pearring et al., 2011). Interestingly, LRIT3 has a PDZ-binding
motif and might fulfill this function (Zeitz et al., 2013).
Mouse models for cCSNB have been helpful in dissecting the

visual ON-pathway in bipolar cells (Cao et al., 2011; Pearring et al.,
2011; Orlandi et al., 2012, 2013). Seven mouse models with defects
in four different genes have already been published (Masu et al.,
1995; Pardue et al., 1998; Gregg et al., 2003; Pinto et al., 2007;
Maddox et al., 2008; Morgans et al., 2009; Shen et al., 2009;
Koike et al., 2010; Peachey et al., 2012a,b). Recently, we have
characterized a novel mouse model lacking Lrit3 [no b-wave 6
(Lrit3nob6/nob6)], which displays similar abnormalities to patients
with cCSNB due to LRIT3 mutations, with lacking or severely
reduced b-wave amplitudes in the scotopic and photopic electroreti-
nogram, respectively (Neuille et al., 2014).
Here we describe the localization of LRIT3 in mouse retina and

compare the localization of known components of the mGluR6 sig-
naling cascade in wild-type and Lrit3nob6/nob6 retinas to better under-
stand the function of LRIT3.

Materials and methods

Ethics statements

All animal procedures were performed according with the Council
Directive 2010/63EU of the European Parliament and the Council of
22 September 2010 on the protection of animals used for scientific
purposes and were approved by the French Minister of Agriculture
(authorization A-75-1863 delivered on 9 November 2011).

Animal care

The generation and characterization of the Lrit3 knock-out mouse
has been described elsewhere (Neuille et al., 2014) (http://www.ta
conic.com/knockout-mouse/lrit3/tf2034). Ten wild-type (Lrit3+/+)
and seven mutant (Lrit3nob6/nob6) 6- to 7-week-old male and female
mice were used in this study. Mice were housed in a temperature-
controlled room with a 12-h light/12-h dark cycle. Fresh water and
rodent diet were available ad libitum.

LRIT3 antibody

To obtain an antibody to mouse LRIT3, the following procedure
was performed by Eurogentec (Seraing, Belgium). Two peptides
corresponding to amino acids 180–195 and 613–628 of mouse
LRIT3 (NP_001274153.1; peptide sequences: AVTPSRSPDFPPRR
II and CTSKPFWEEDLSKETY, respectively) were synthesized and
coupled to keyhole limpet haemocyanin (KLH). Two adult New
Zealand White rabbits were immunized with both peptide–KLH con-
jugates. The rabbits received three more immunizations 7, 10 and
18 days later. Immune sera were collected 10 days after the final
immunization and stored at �20 °C. We performed immunohisto-
chemistry on Lrit3+/+ and Lrit3nob6/nob6 retinal sections with these
two sera. One of them produced a specific punctate signal in the

outer plexiform layer of the Lrit3+/+ retinal sections that was absent
on Lrit3nob6/nob6 sections. However, strong non-specific signal and
noise were also present on the whole Lrit3+/+ and Lrit3nob6/nob6 sec-
tions (data not shown). To determine which of the two peptides
resulted in the specific staining, we performed immunohistochemis-
try on Lrit3+/+ retinal sections after pre-incubation of the serum with
either the N- or the C-terminal peptide. The specific signal was
absent when the serum was pre-incubated with the peptide localized
at the N-terminus but noise remained (data not shown). Subse-
quently, affinity purification was performed with this peptide to
decrease noise and to obtain a more specific antibody.

Preparation of retinal sections for immunohistochemistry

Mice were killed by CO2 administration and cervical dislocation.
Eyes were removed and prepared following three methods. For
method 1, we made two slits in a cross within the cornea and placed
the eyeball in ice-cold 4% (w/v) paraformaldehyde in 0.12 M phos-
phate buffer, pH 7.2, for 1 h. After three 10-min washes with ice-
cold phosphate buffered saline (PBS), we transferred the eyeball to
ice-cold 30% sucrose. Finally, the lens was removed and the eyecup
was embedded in OCT (Sakura Finetek, AJ Alphen aan den Rijn,
the Netherlands) and frozen in a dry ice-cooled isopentane bath. For
method 2, the anterior segment and lens were removed and the eye-
cup was fixed in ice-cold 4% (w/v) paraformaldehyde in 0.12 M

phosphate buffer, pH 7.2, for 20 min. The eyecup was washed three
times in ice-cold PBS and cryoprotected with increasing concentra-
tions of ice-cold sucrose in 0.12 M phosphate buffer, pH 7.2 (10%,
20% for 1 h each and 30% overnight). Finally, the eyecup was
embedded in 7.5% gelatin–10% sucrose and frozen in a dry ice-
cooled isopentane bath. For method 3, we made a hole just behind
the ora serrata and placed the eyeball in 4% (w/v) paraformaldehyde
in 0.12 M phosphate buffer, pH 7.2, for 5 min. We then removed
the lens and the eyecup was again fixed for 20 min in paraformalde-
hyde at room temperature. The eyecup was washed three times in
PBS and cryoprotected with increasing concentrations of ice-cold
sucrose in 0.12 M phosphate buffer, pH 7.2 (10% for 1 h and 30%
overnight). Finally, the eyecup was embedded in 7.5% gelatin–10%
sucrose and frozen in a dry ice-cooled isopentane bath. Sections
were cut at a thickness of 18 lm on a cryostat and mounted onto
glass slides (Super-Frost; Thermo Fisher Scientific, Waltham, MA,
USA). The slides were air dried and stored at �80 °C.

Immunostaining of retinal cryosections

Primary antibodies used for immunostaining and the respective tis-
sue section preparations are listed in Table 1. The TRPM1 immuno-
reactive serum from a patient suffering from melanoma-associated
retinopathy (MAR), the rat mGluR6 antiserum raised in sheep, the
purified goat polyclonal antibody to mouse Gb5 and the mouse
RGS11 antibody raised in rabbit were used as previously described
(Chen et al., 2003; Morgans et al., 2006, 2007; Xiong et al., 2013).
Immunohistochemistry on retinal sections was performed following
two protocols depending on the section preparation. For eyecups
embedded in OCT (method 1 under Preparation of retinal sections
for immunohistochemistry), we used a previously published protocol
(Morgans et al., 2006). Briefly, eyecup sections were blocked by
incubation with antibody incubation solution (AIS) [3% (v⁄v) normal
horse serum, 0.5% (v⁄v) Triton X-100, 0.025% (w⁄v) NaN3 in PBS]
at room temperature for 60 min. Subsequently, the sections were
incubated with primary antibodies in AIS for 1 h at room tempera-
ture. After washing in PBS, the sections were incubated with sec-
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ondary antibodies coupled to Alexa Fluor 488 or Alexa Fluor 594
(Life Technologies, Grand Island, NY, USA) at a dilution of
1 : 1000 in PBS for 1 h at room temperature. The slides were
stained with 40,6-diamidino-2-phenylindole (DAPI) and subsequently
cover-slipped with mounting medium (Aqua-Mount mounting med-
ium; Thermo Fisher Scientific). For eyecups embedded in gelatin-
sucrose (method 2 and 3 under Preparation of retinal sections for
immunohistochemistry), sections were blocked by incubation at
room temperature for 60 min in 10% (v⁄v) donkey serum, 0.3% (v⁄
v) Triton X-100 in PBS. Subsequently, the sections were incubated
with primary antibodies in blocking solution overnight at room tem-
perature. After washing in PBS, the sections were incubated with
secondary antibodies coupled to Alexa Fluor 488 or Cy3 (Jackson
ImmunoResearch, West Grove, PA, USA) at a dilution of 1 : 1000
in PBS for 1.5 h at room temperature. The slides were stained with
DAPI and subsequently cover-slipped with mounting medium
(Mowiol, Merck Millipore, Billerica, MA, USA). None of the sec-
ondary antibodies used gave recordable signal when used without
primary antibodies (data not shown).

Image acquisition and quantification

Fluorescent staining signals were captured with a confocal micro-
scope (FV1000, Olympus, Hamburg, Germany) equipped with 405-,
488- and 559-nm lasers.
For localization studies as well as for quantification of LRIT3,

confocal images were acquired with a 40 9 objective compatible
with oil (lens numerical aperture: 1.3) imaging pixels of 310 and
77 nm in width and height for zoom 1 and 4, respectively, and

using a 0.52-lm step size. For localization, each image corresponds
to the projection of three optical sections. For figures, brightness
and contrast were optimized (ImageJ, version 1.49; National Insti-
tutes of Health, Bethesda, MD, USA). The method for quantification
of LRIT3 on four independent Lrit3+/+ retinal sections was adapted
from a previously published protocol (Ramakrishnan et al., 2015),
using Imaris (Bitplane, Zurich, Switzerland) and is illustrated in
Supporting Information Fig. S1. Optical sections centered on the
outer plexiform layer (OPL) were stacked to obtain a three-dimen-
sional reconstruction of the entire retinal section thickness at this
level. An initial region of interest (ROI) was drawn around the OPL
(Fig. S1A and S1B). We used peanut agglutinin (PNA) staining as a
marker to define the ROI of cone ON-bipolar cell dendritic tips
(Fig. S1C). The mean intensity per voxel of LRIT3 staining at the
dendritic tips of cone ON-bipolar cells was obtained by quantifying
LRIT3 staining enclosed within this region. The ROI corresponding
to LRIT3 staining at the dendritic tips of rod bipolar cells was
formed by drawing spheres of 2-lm radius around LRIT3-labeled
puncta that are not associated with PNA (Fig. S1D). The mean
intensity per voxel of LRIT3 staining at the dendritic tips of rod
bipolar cells was then measured. Finally, these two intensities were
compared in the same retinal section.
For quantification of PNA, confocal images were acquired with a

20 9 objective compatible with oil (lens numerical aperture: 0.85)
imaging pixels of 621 nm in width and height, and using a 1.55-lm
step size. We reconstructed three Lrit3+/+ and three Lrit3nob6/nob6

retinas by assembling multiple confocal images of the same retina.
For each Lrit3+/+ mouse, a Lrit3nob6/nob6 mouse of the same breed-
ing pair was chosen and their retinas were processed in parallel and
in the same way. Quantification of PNA in the OPL and in inner
and outer segments (IS/OS) was adapted from a previously pub-
lished protocol (Xu et al., 2012) and was performed with ImageJ
(version 1.49). The background value was defined as the mean
intensity per pixel in an ROI comprising the inner nuclear layer
(INL) in which no PNA staining has been described. This value was
then subtracted from the measurements of OPL and IS/OS intensities
to give corrected measurements. For quantification of PNA in the
OPL, the corrected mean intensity per pixel was measured for a seg-
mented line of 30 pixels thickness drawn along the OPL. To obtain
the number of PNA-labeled synaptic clefts between cones and corre-
sponding cone ON-bipolar cells per millimeter of OPL (density of
particles), the line was straightened and a threshold was applied to
isolate each labeled structure. The same threshold was applied for
the wild-type and the mutant retinas of the same pair. We then
counted the number of labeled structures with a size between 4 and
45 lm² and divided this value by the length of the selected line.
The corrected mean intensity per pixel and the density of particles
were compared between wild-type and mutant mice in each pair. To
quantify the PNA staining in the IS/OS compartment, the corrected
mean intensity per pixel was measured in an ROI surrounding these
compartments. The values obtained were compared between Lrit3+/+

and Lrit3nob6/nob6 mice of each pair.

Preparation of retinal lysates and Western blotting

Retinas were prepared according to a previously published protocol
(Cao et al., 2012). Mice were killed by CO2 administration and
cervical dislocation. Whole retinas were removed from three
Lrit3+/+ and three Lrit3nob6/nob6 mice and lysed by sonication in
ice-cold PBS supplemented with 150 mM NaCl, 1% Triton X-100,
and protease inhibitor (complete protease inhibitor tablets; Roche,
Meylan, France). Supernatants were collected after a 15-min centri-

Table 1. Primary antibodies used in immunohistochemistry in this study

Antibody Species Dilution Reference/source

Retinal
section
preparation

LRIT3 Rabbit 1 : 500 This paper Method 2
TRPM1 Human 1 : 2000 Xiong

et al. (2013)
Method 1

mGluR6 Sheep 1 : 100 Morgans
et al. (2006)

Method 1

mGluR6 Guinea
pig

1 : 200 AP20134SU-N
Acris

Methods 2
and 3

GPR179 Mouse 1 : 200 Ab-887-YOM
Primm

Method 1

RGS11 Rabbit 1 : 4000 Chen
et al. (2003)

Method 1

Gb5 Goat 1 : 100 Morgans
et al. (2007)

Method 1

RGS7 Mouse 1 : 1000 sc-271643
Santa-Cruz

Method 2

Lectin PNA
488 conjugate

Arachis
hypogaea

1 : 1000 L21409
Life
Technologies

Method 2

Lectin PNA
594 conjugate

Arachis
hypogaea

1 : 1000 L32459
Life
Technologies

Method 2

Cone arrestin Rabbit 1 : 2000 ab15282
Abcam

Method 2

PKCa Mouse 1 : 1000 P5704
Sigma-Aldrich

Method 2

Goa Mouse 1 : 200 MAB3073
Merck Millipore

Method 3

Calbindin
D-28k

Mouse 1 : 5000 300 Swant Method 2

ribeye Mouse 1 : 10 000 612044
BD Biosciences

Method 2
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fugation step at 21 000 g at 4 °C and total protein concentration
was measured by using a bicinchoninic acid protein assay kit
(BCA Protein Assay Kit, Thermo Fisher Scientific). Sodium dode-
cylsulfate sample buffer (pH 6.8) containing 8 M urea was added
to the supernatants and 8.5 lg of protein was subjected to 4–15%
sodium dodecylsulfate polyacrylamide gel electrophoresis (Bio-Rad
Laboratories, Hercules, CA, USA). Protein bands were transferred
onto nitrocellulose membranes (GE Healthcare, Little Chalfont,
UK). Membranes were blocked for 1 h at room temperature in 5%
dry milk diluted in PBS and 0.1% Tween 20 and subjected to
primary antibodies in 1% dry milk diluted in PBS and 0.1%
Tween 20 overnight at 4 °C. After washing in PBS plus 0.1%
Tween 20, the membranes were incubated with horseradish
peroxidase-conjugated secondary antibodies (Jackson Immuno-
Research) in 1% dry milk diluted in PBS and 0.1% Tween 20,
and subsequently bands were detected by using a chemilumines-
cent substrate (ECL2; Thermo Fisher Scientific). Primary antibodies
were mouse anti-TRPM1 antibody raised in sheep diluted at
1 : 1000 (Cao et al., 2011) and anti-b-actin antibody raised in
mouse diluted at 1 : 10000 (MAB1501; Merck Millipore, Darmstadt,
Germany). Band intensities were quantified by using ImageJ
(version 1.49). For each lane, TRPM1 staining intensity was
normalized to b-actin staining intensity and compared between
three Lrit3+/+ and three Lrit3nob6/nob6 mice. The experiment was
repeated seven times.

Statistical analyses

Statistical analyses were performed using SPSS Statistics (version
19.0, IBM, Armonk, NY, USA). A Student’s t-test was used to
compare TRPM1 protein amounts between Lrit3+/+ and Lrit3nob6/
nob6 mice, the intensity of LRIT3 staining at the dendritic tips of rod
bipolar cells vs. cone ON-bipolar cells in Lrit3+/+ mouse, and PNA
staining in the OPL and in the IS/OS complex between Lrit3+/+ and
Lrit3nob6/nob6 mice. Tests were considered significant at P < 0.05.

Results

Validation of the LRIT3 antibody

Immunofluorescent staining of LRIT3 on Lrit3+/+ mouse retinal sec-
tions revealed punctate labeling in the OPL (Fig. 1A, two pictures
on the left and Fig. 1B left). On Lrit3nob6/nob6 mouse retinal sec-
tions, this punctate labeling was absent, demonstrating the specificity
of the LRIT3 labeling (Fig. 1A, two pictures on the right and
Fig. 1B, right). Some non-specific signal remained in the inner plex-
iform and the ganglion cell layers (IPL and GCL, respectively) in
both Lrit3+/+ and Lrit3nob6/nob6 mice (Fig. 1A, LRIT3 staining
alone). The specific staining in the OPL probably represents the den-
dritic tips of rod bipolar cells (arrows, Fig. 1B, left) and cone ON-
bipolar cells (arrowheads, Fig. 1B, left).

LRIT3 localizes at the dendritic tips of depolarizing bipolar
cells in the mouse retina

To precisely localize LRIT3 in mouse retina, and particularly in the
OPL, we performed co-immunolocalization studies with the anti-
LRIT3 antibody and antibodies against ribeye, a component of the
photoreceptor synaptic ribbon (Schmitz et al., 2000; tom Dieck
et al., 2005), calbindin, which labels the post-synaptic processes of
horizontal cells (Haverkamp & Wassle, 2000), protein kinase Ca
(PKCa) to label rod bipolar cells (Negishi et al., 1988; Greferath

et al., 1990) and mGluR6 to label dendritic tips of ON-bipolar cells
(Vardi et al., 2002; Morgans et al., 2007; Cao et al., 2008).

The LRIT3 puncta did not co-localize with ribeye but were nested
within the arcs of the synaptic ribbons (Fig. 2A). LRIT3 staining was
also adjacent to calbindin staining but without co-localization
(Fig. 2B). Thus, LRIT3 was present in the OPL but did not localize
presynaptically and was absent in the horizontal cells. PKCa was pres-
ent in both the dendritic tips and the cell bodies of rod bipolar cells,
whereas LRIT3 staining was solely concentrated in the OPL (Fig. 2C).
Strong co-localization of LRIT3 and mGluR6 confirmed that LRIT3 is
present at the dendritic tips of rod and cone ON-bipolar cells (Fig. 2D).

TRPM1 localization is disrupted at the dendritic tips of ON-
bipolar cells in Lrit3nob6/nob6 retina

To test our hypothesis that LRIT3 is required for the correct locali-
zation of TRPM1, we performed immunohistochemistry on Lrit3+/+

and Lrit3nob6/nob6 mouse retinal sections with serum from a MAR
patient that was previously demonstrated to show specific TRPM1
immunoreactivity on mouse retinal sections (Xiong et al., 2013). On
Lrit3+/+ retinal sections, the serum revealed punctate labeling in the
OPL (Fig. 3A and C, left) that co-localized with mGluR6 staining
(Fig. 3B and C, left), confirming the localization of TRPM1 at the
dendritic tips of rod bipolar cells (arrows, Fig. 3B and C, left) and
cone ON-bipolar cells (arrowheads, Fig. 3B and C, left). We also
observed immunofluorescent labeling of bipolar cell bodies (aster-
isks) in the INL (Fig. 3A and C, left). In Lrit3nob6/nob6 mice, the
intensity of the TRPM1 puncta co-localizing with mGluR6 was dra-
matically decreased, but somatic staining (asterisks) seemed
unchanged (Fig. 3A and C, right), suggesting that TRPM1 localiza-
tion at the dendritic tips of ON-bipolar cells is dependent on LRIT3.
To investigate whether the decrease in TRPM1 localization at the

dendritic tips of depolarizing bipolar cells is also reflected by a
reduction of the total amount of TRPM1 protein, we compared
TRPM1 protein levels in Lrit3+/+ and Lrit3nob6/nob6 retinas by Wes-
tern blot analysis. TRPM1 protein was still present in the retina of
Lrit3nob6/nob6 mice and the amount of protein was not significantly
altered (Fig. 3D and E). These findings suggest that elimination of
LRIT3 results in a severe reduction of TRPM1 at the dendritic tips
of all ON-bipolar cells but does not significantly affect the total
amount of TRPM1 protein.

Other components of the ON-bipolar signaling cascade are
mislocalized in Lrit3nob6/nob6 retina

Interestingly, mGluR6 staining in Lrit3nob6/nob6 retina showed an
apparently normal punctate labeling of the dendritic tips of rod bipo-
lar cells (arrows, Fig. 3B and C), but immunofluorescence seemed
nearly absent at the dendritic tips of cone ON-bipolar cells (arrow-
heads, Fig. 3B and C, left vs. right) with some mGluR6 immunoflu-
orescence appearing instead over bipolar cell bodies in the
INL. This dramatic decrease of staining at the dendritic tips of
Lrit3nob6/nob6 cone ON-bipolar cells was also observed for GPR179,
RGS7, RGS11 and Gb5 (arrowheads, Fig. 4), which are also com-
ponents of the mGluR6 signaling cascade and normally localize at
the dendritic tips of both rod and cone ON-bipolar cells (Morgans
et al., 2007; Rao et al., 2007; Orlandi et al., 2012; Peachey et al.,
2012b; Orhan et al., 2013). Co-immunostaining of mGluR6 with
Goa (Fig. 5A) and with cone arrestin (Fig. 5B) confirmed these
findings. While Goa is a marker of the somas and dendrites of both
rod and cone ON-bipolar cells (Vardi, 1998), cone arrestin labels
cone photoreceptors including the cone pedicles (Sakuma et al.,
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1996), which are contacted by the dendritic tips of cone ON-bipolar
cells. On Lrit3+/+ retinal sections co-stained with Goa, mGluR6 was
present as small puncta at the dendritic tips of rod bipolar cells
(arrows, Fig. 5A, left) and as larger patches, where each patch rep-
resents the dendritic tips of multiple cone ON-bipolar cells contact-
ing a single cone pedicle (arrowheads, Fig. 5A, left). On Lrit3+/+

retinal sections co-stained with cone arrestin, mGluR6 was again
normally present as small puncta at rod bipolar cell dendrites
(arrows, Fig. 5B, left) and as larger patches at the dendritic tips of
cone ON-bipolar cells (arrowheads, Fig. 5B, left). Interestingly, on
Lrit3nob6/nob6 sections, in the presence of unaltered Goa staining,
cone-associated mGluR6 staining was absent whereas rod-associated
mGluR6 puncta were still present (arrows, Fig. 5A, right). The cone

arrestin immunofluorescence showed that cone pedicles are present
in the Lrit3nob6/nob6 retina, but that mGluR6 in the close vicinity of
cone arrestin was absent (Fig. 5B, right).

PNA staining is disrupted in the OPL in Lrit3nob6/nob6 retina

We performed immunostaining on wild-type and mutant retinas with
PNA, which binds specific glycosylated residues localized extracel-
lularly to cone IS and OS, respectively, and at the synaptic cleft
between cone pedicles and cone ON-bipolar cells located in the
OPL (Blanks & Johnson, 1983, 1984; Wu, 1984) and was shown to
overlap with GPR179 (Ray et al., 2014). In wild-type mice, PNA
staining overlapped with mGluR6 staining at the dendritic tips of

A

B

Fig. 1. Validation of mouse LRIT3 antibody. (A) Representative confocal images of cross-sections of Lrit3+/+ and Lrit3nob6/nob6 retina stained with mouse
LRIT3 antibody (green) with or without DAPI (gray). Scale bar, 50 lm. (B) 4 9 zoom of A focused on outer plexiform layer (OPL). Arrows represent puta-
tive dendritic tips of rod bipolar cells, and arrowheads represent putative dendritic tips of cone ON-bipolar cells. Scale bar, 10 lm.

A

B

C

D

Fig. 2. Localization of LRIT3 in mouse retina. Representative confocal images of cross-sections centered on the OPL of Lrit3+/+ retina stained with antibodies
against LRIT3 (green) and (A) ribeye (red), (B) calbindin (red), (C) PKCa (red) or (D) mGluR6 (red) and merge (yellow). Scale bar, 10 lm.
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cone ON-bipolar cells in the OPL (arrowheads, Fig. 6A–C, left). In
contrast, PNA staining was dramatically decreased in the OPL on
Lrit3nob6/nob6 retinal sections (Fig. 6A–C, right). On low-power
views of retinal sections, this decrease is obvious in the OPL with
no apparent difference of staining intensity in the IS and OS of
the cones (Fig. 6D). Quantitatively, PNA fluorescence intensity was
significantly decreased (64%, P = 0.041) in the whole OPL of
Lrit3nob6/nob6 retinas compared with wild-type mice (Fig. 6E). More
strikingly, the number of synaptic clefts stained with PNA between
cone pedicles and corresponding cone ON-bipolar cells, per millime-
ter of OPL, was dramatically decreased with only 1% remaining
(P = 0.008) in Lrit3nob6/nob6 retinas compared with wild-type
(Fig. 6F). In contrast, a measured 23% decrease of the PNA staining
at the IS/OS complex in Lrit3nob6/nob6 retinas compared with wild-
type was not statistically significant (P = 0.515) (Fig. 6E).

LRIT3 staining is similar at the dendritic tips of rod and cone
ON-bipolar cells

As localization of several components of the cone to cone ON-bipo-
lar cell synapse seemed to be disrupted in Lrit3nob6/nob6 retina
whereas their localization at the rod to rod bipolar cell synapse
seemed to be unaffected, and because LRIT3 staining at the den-
dritic tips of cone ON-bipolar cells seemed to be more intense than
that at the dendritic tips of rod bipolar cells, we quantified LRIT3
staining at the dendritic tips of rod and cone ON-bipolar cells in four
Lrit3+/+ mice. LRIT3 staining was 7% less intense at the dendritic
tips of rod bipolar cells compared with the dendritic tips of cone
ON-bipolar cells but this difference was not significant (P = 0.504).

Discussion

In this work, we have produced a specific antibody against mouse
LRIT3, localized the corresponding protein in the mouse retina

A
D

E
B

C

Fig. 3. Localization of TRPM1 and mGluR6 as well as TRPM1 protein quantification in Lrit3+/+ and Lrit3nob6/nob6 mice. Representative confocal images of
cross-sections centered on OPL of Lrit3+/+ and Lrit3nob6/nob6 retina stained with antibodies against (A) TRPM1 (red) and (B) mGluR6 (green) and (C) merge
(yellow). Arrows represent putative dendritic tips of rod bipolar cells, arrowheads represent putative dendritic tips of cone ON-bipolar cells and asterisks repre-
sent putative somas of ON-bipolar cells. Scale bar, 10 lm. (D) Western blots of three Lrit3+/+ and three Lrit3nob6/nob6 total retinal lysates probed with antibodies
to TRPM1 (top) and b-actin (bottom). Bars on the left side of blots represent molecular weight in kDa. Arrows represent bands of interest. (E) Quantification of
TRPM1 Western blotting data in D. For each lane, TRPM1 staining intensity was normalized to b-actin staining intensity. Values were plotted as the percentage
of the level in Lrit3+/+. Error bars represent standard deviations.

A

B

C

D

Fig. 4. Localization of GPR179, RGS11, RGS7 and Gb5 in Lrit3+/+ and
Lrit3nob6/nob6 retina. Representative confocal images of cross-sections cen-
tered on OPL of Lrit3+/+ and Lrit3nob6/nob6 retina stained with antibodies
against (A) GPR179 (green), (B) RGS11 (red), (C) RGS7 (red) or (D) Gb5
(green). Arrowheads represent putative dendritic tips of cone ON-bipolar
cells. Scale bar, 10 lm.
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and studied how the localization of most of the known compo-
nents of the ON-bipolar signaling cascade are affected in a mouse
model of cCSNB lacking Lrit3 (Lrit3nob6/nob6). Our results show
that LRIT3 localizes at the dendritic tips of both rod and cone
ON-bipolar cells, that the correct localization of TRPM1 is depen-
dent on LRIT3 and that the localization of other partners is
disrupted in Lrit3nob6/nob6 retina particularly at the cone to cone
ON-bipolar cell synapse.

LRIT3 localizes at the dendritic tips of ON-bipolar cells in
mouse retina

The punctate labeling observed in the OPL of wild-type retina with
the mouse LRIT3 antibody was absent on Lrit3nob6/nob6 retina, dem-
onstrating the specificity of this antibody and validating the knock-
out mouse model. This labeling resembles those obtained on human
retina with an LRIT3 antibody (Zeitz et al., 2013) as well as those

A B

Fig. 5. Localization of mGluR6, Goa and cone arrestin in Lrit3+/+ and Lrit3nob6/nob6 retina. Representative confocal images of cross-sections centered on OPL
of Lrit3+/+ and Lrit3nob6/nob6 retina stained with antibodies against mGluR6 (red) and (A) Goa (green) and merge (yellow) or (B) cone arrestin (green) and
merge (yellow). Arrows represent putative dendritic tips of rod bipolar cells, and arrowheads represent putative dendritic tips of cone ON-bipolar cells. Scale
bar, 10 lm.

A

D

E F
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C

Fig. 6. Localization and quantification of PNA in Lrit3+/+ and Lrit3nob6/nob6 retina. Representative confocal images of cross-sections centered on OPL of
Lrit3+/+ and Lrit3nob6/nob6 retina stained with antibodies against (A) PNA (green) and (B) mGluR6 (red) and (C) merge (yellow). Arrowheads represent putative
dendritic tips of cone ON-bipolar cells. Scale bar, 10 lm. (D) Representative confocal images of cross-sections of Lrit3+/+ and Lrit3nob6/nob6 retina stained with
PNA. Scale bar, 50 lm. (E) Quantification of the intensity of PNA staining in the OPL and in the IS/OS complex in three independent Lrit3+/+/Lrit3nob6/nob6

pairs of retina. Error bars represent standard deviations. Asterisks represent results that are significantly different (P < 0.05). (F) Quantification of the number of
PNA-stained synaptic clefts between cone pedicles and corresponding cone ON-bipolar cells per millimeter of OPL in three independent Lrit3+/+/Lrit3nob6/nob6

pairs of retina. Error bars represent standard deviations. Asterisks represent results that are significantly different (P < 0.05).
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obtained with antibodies directed against various components of the
ON-bipolar signaling cascade on mouse retina such as mGluR6,
GPR179, NYX, TRPM1, RGS7, RGS11, Gb5 and R9AP (Masu
et al., 1995; Bahadori et al., 2006; Morgans et al., 2006, 2007,
2009; Rao et al., 2007; Cao et al., 2008, 2009; Jeffrey et al., 2010;
Orlandi et al., 2012; Peachey et al., 2012b; Orhan et al., 2013). Co-
localization studies with either ribeye or calbindin (Haverkamp &
Wassle, 2000; Schmitz et al., 2000; tom Dieck et al., 2005) con-
firmed the absence of LRIT3 presynaptically in photoreceptors and
in horizontal cells. In contrast, LRIT3 localizes at the dentritic tips
of both rod and cone ON-bipolar cells where it co-localizes with
mGluR6.

TRPM1 localization at the dendritic tips of ON-bipolar cell is
dependent on LRIT3

The cation channel TRPM1 is the endpoint of the ON-bipolar cell
signaling cascade at the dendritic tips of ON-bipolar cells. TRPM1
opening during light stimulation results in the depolarization of ON-
bipolar cells and the formation of the ERG b-wave (Morgans et al.,
2009; Shen et al., 2009; Koike et al., 2010). In some mouse models
of cCSNB, TRPM1 staining is severely reduced or absent at the
dendritic tips of depolarizing bipolar cells. This is the case in the
Trpm1 knock-out mouse itself (Morgans et al., 2009; Koike et al.,
2010), but also in three different Grm6 mutants: the Grm6 knock-
out model (Masu et al., 1995; Xu et al., 2012), the nob3 mouse
[Grm6 splice mutation (Maddox et al., 2008; Cao et al., 2011)] and
the nob4 mouse [Grm6 missense mutation (Pinto et al., 2007; Cao
et al., 2011)]. Similarly, the TRPM1 staining at the dendritic tips
was also absent in the nob mouse [Nyx deletion (Pardue et al.,
1998; Gregg et al., 2003; Pearring et al., 2011)]. These results sug-
gest that mGluR6 and nyctalopin, encoded by Nyx, are required for
the correct localization of TRPM1. In contrast, other mouse models
deficient for proteins participating in the same signaling cascade
[Rgs7�/�/Rgs11�/�, nob5 (deficient for GPR179)] do not show such
a mislocalization of TRPM1 (Orlandi et al., 2012; Ray et al.,
2014). Therefore, these proteins probably play a role in regulating
G-protein signaling, rather than a role in trafficking of TRPM1.
Although it has been previously shown that nyctalopin is essential
for the correct localization of TRPM1 at the dendritic tips of ON-
bipolar cells, it was suggested that nyctalopin alone is probably not
able to bring the cation channel to the cell surface as it is mainly an
extracellular protein (Pearring et al., 2011). We hypothesized that
LRIT3 with its intracellular PDZ-binding domain might interact with
scaffolding proteins to traffic TRPM1 to its correct localization and,
together with nyctalopin, LRIT3 maintains TRPM1 at this localiza-
tion (Zeitz et al., 2013; Neuille et al., 2014). Indeed, here we show
that TRPM1 localization at the dendritic tips of both rod and cone
ON-bipolar cells is dramatically decreased in Lrit3nob6/nob6 mice,
while the total quantity of TRPM1 was not significantly altered,
indicating that localization but not the protein amount of TRPM1 is
dependent on LRIT3. Previous studies have also investigated the
localization and protein amount of TRPM1 in mouse models for
cCSNB. Quantitative analysis of total intensity of TRPM1 in all ret-
ina layers in the knock-out model for mGluR6 was slightly lower
compared with the wild-type mouse (15% reduction by immuno-
staining and 23% reduction by Western blot) (Xu et al., 2012).
However the authors concluded that the main effect of eliminating
mGluR6 is the severe reduction of TRPM1 localization at the den-
dritic tips of ON-bipolar cells (30% reduction in intensity and 60%
lower number of puncta in the OPL) (Xu et al., 2012). However,
this decrease of the total protein amount was not found in another

study using the same mouse model (Ray et al., 2014). In the two
other mouse models with mGluR6 mutations, nob3 and nob4, in
addition to the lack of TRPM1 staining at the dendritic tips of ON-
bipolar cells, a moderate 30% reduction of TRPM1 levels in both
mouse lines was described by Western blot analysis (Cao et al.,
2011). In contrast, the absence of TRPM1 at the dendritic tips of
ON-bipolar cells in nyctalopin mutant (nob) mice was accompanied
with a severe reduction in total TRPM1 protein quantified by
Western blot analysis (Pearring et al., 2011). The observation that
the total amount of TRPM1 protein seems unchanged in the
Lrit3nob6/nob6 mouse compared with the nob mouse suggests that
LRIT3 is necessary for correct trafficking of TRPM1, but that
nyctalopin is necessary for both trafficking and either synthesis or
stability of TRPM1. It has been shown that nyctalopin, mGluR6,
GPR179 and TRPM1 form a macromolecular complex (Cao et al.,
2011; Pearring et al., 2011; Orlandi et al., 2013; Ray et al., 2014).
It is not clear if LRIT3 directly interacts with TRPM1 or via another
component of the complex. Motif analysis suggests that the pre-
dicted intracellular PDZ-binding domain present in LRIT3 interacts
with an as yet unknown scaffolding protein to bring TRPM1 to the
surface (Zeitz et al., 2013).

LRIT3 may play a role in cone synapse formation

Surprisingly, we found that most of the known components of the
ON-bipolar cell signaling cascade including mGluR6, GPR179,
RGS7, RGS11 and Gb5 are nearly absent at the dendritic tips of
cone ON-bipolar cells in Lrit3nob6/nob6 mice, whereas their staining
at the dendritic tips of rod bipolar cells appears normal. In the
Lrit3nob6/nob6 mouse, some punctate mGluR6 labeling was present in
the INL, possibly indicating a defect in trafficking mGluR6 in cone
ON-bipolar cells. We also revealed a dramatic decrease of PNA
staining at the synaptic clefts between cone pedicles and correspond-
ing cone ON-bipolar cells in the Lrit3nob6/nob6 mouse, whereas cone
pedicles are still present. This decrease was qualitatively evident and
was well reflected in the quantification of the number of PNA-
stained synaptic clefts per millimeter of OPL, while PNA staining
was unchanged in IS and OS of cones. Together, these results sug-
gest that LRIT3 may have an additional function in cone synapse
formation. To our knowledge, this is the first report of the absence
of PNA in the OPL in a mouse model of cCSNB. Indeed, PNA
staining in the OPL of Grm6 knock-out, nob (Nyx), Trpm1 knock-
out and nob5 (Gpr179) retinal sections is not different from
wild-type (Ray et al., 2014). However, alterations in ribbon synapse
formation or bipolar dendrite invagination have been described pre-
viously in Grm6 mutants and Gb5 knock-out mice (Rao et al.,
2007; Cao et al., 2009; Ishii et al., 2009; Tsukamoto & Omi, 2014).
Electron microscopy studies are needed to confirm if there is indeed
an ultrastructural defect in Lrit3nob6/nob6 retina, which might also
explain the slight but significant thinning of inner retinal layers in
the Lrit3nob6/nob6 mouse that we previously highlighted (Neuille
et al., 2014). We quantified LRIT3 staining at the dendritic tips of
rod vs. cone ON-bipolar cells and showed that the staining is similar
at the dendritic tips of both rod and cone ON-bipolar cells. These
findings are in accordance with our previous LRIT3 staining on
human retina, which revealed equal intensities at the dendritic tips
of both rod and cone ON-bipolar cells (Zeitz et al., 2013; Fig. 2).
Thus, the additional function of LRIT3 in cone ON-bipolar cells
does not seem to be correlated with a difference in the amount of
LRIT3 protein in these cells compared with rod bipolar cells.
Rather, the mGluR6 signaling cascade may be differently regulated
in rod and cone ON-bipolar cells.
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To conclude, this study reveals that several of the known compo-
nents of the ON-bipolar cell signaling cascade display a disrupted
localization in the Lrit3nob6/nob6 mouse, a mouse model of cCSNB
lacking Lrit3. In particular, TRPM1 is reduced at the dendritic tips
of ON-bipolar cells, explaining the no b-wave phenotype and sup-
porting our hypothesis that LRIT3 might bring TRPM1 to the cell
surface. Moreover, LRIT3 may have an additional function in syn-
apse formation as most of the known components of the cascade
and PNA are absent at the cone to cone ON-bipolar cell synapse.
Putative interactions between LRIT3 and partners of the cascade
highlighted here have now to be confirmed to clarify the exact role
of LRIT3 in the mGluR6 signaling cascade and to elucidate the
pathogenic mechanism(s) of cCSNB.

Supporting Information

Additional supporting information can be found in the online ver-
sion of this article:
Fig. S1. Method for the quantification of LRIT3 immunolabeling in
the mouse retina OPL.
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D. Ultrastructure of the rod and cone synapses in the nob6 

mouse model 
1. Rod synapses 

Given that mice deficient in LRIT3 exhibit disrupted accumulation of synaptic proteins in the 

OPL, we evaluated the architecture of the synapses formed by rod and cone photoreceptors by 

transmission EM. These studies were performed in collaboration with Kirill Martemyanov 

(Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA). 

Examination of the rod synapses revealed that retinas of Lrit3nob6/nob6 mice had normally 

organized spherules formed by the axonal terminals of these neurons. They were regularly 

shaped and contained easily identifiable ribbons and mitochondria. Immediately adjacent to 

the ribbons we detected the lateral processes of horizontal cells and the deeply invaginating 

dendrites of rod BCs. The tips of the ON-BCs were positioned immediately below the ribbons 

and were properly aligned with respect to the orientation of horizontal cell processes (Figure 

28A). On average 60% of wild-type rod-spherules from 520 rod synapses and 65% of knock-

out rod spherules from 436 rod synapses of Lrit3nob6/nob6 mice contained the typical triad 

configuration containing invaginating ON-BC processes (Figure 28C). This finding 

demonstrates that the elimination of LRIT3 does not affect the structure of the rod-to-rod BC 

synapses. 
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Figure 28: Ultrastructure of rod and cone synapses in Lrit3

nob6/nob6 mice. Representative electron microscopy images of 
rod (A) and cone (B) ribbon synapses a in Lrit3

nob6/nob6 retina compared to a Lrit3
+/+ retina. Rod spherules and cone 

pedicles are shown in yellow, invaginating dendrites of both rod and cone ON-BCs are shown in red, horizontal cell 
processes are shown in blue, and flat-contacting dendrites of cone OFF-BCs are marked with asterisks. Scale bar, 1 
µm. (C) Quantification of synaptic elements present in rod spherules. Synapses are classified as diads if they have 
identifiable ribbon with adjacent horizontal cell process. If spherules additionally have ON-BC process next to the 
synaptic ribbon, they are designated as triads. (D) Quantification of synaptic elements at the cone pedicles of 
Lrit3

nob6/nob6 retinas compared to Lrit3
+/+ retinas as a percentage of all counted synapses. In addition to diads and 

triads classified as described above, flat contacts at the base of the pedicle away from the ribbon were also 
distinguished and labeled as OFF type. Not otherwise classified contacts are labeled as NC. Error bars represent 
standard error of the mean (SEM) values. 

2. Cone synapses 

Next, we assessed the morphology of the synapses formed by cone photoreceptors. As 

compared to rods, cone axons form substantially larger terminals that stratify in the lower 

sublamina of the OPL and contain multiple ribbons. Overall, this organization was preserved 

in Lrit3nob6/nob6 mice and well-formed cone pedicles were readily identified at the appropriate 

location (Figure 28B). However, vacuole-like structures were frequently observed in the 

knock-out terminals but not in the wild-type samples. The ribbons in Lrit3nob6/nob6 mice were 

normal both in number and morphology. Furthermore, these ribbons were properly positioned 

towards the edge of the terminal and contained adjacent horizontal cell processes. In contrast 
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to rod synapses, we observed a marked reduction in the number of invaginating contacts made 

by the cone ON-BCs. Quantification of 99-108 individual cone pedicles in wild-type and 82-

123 pedicles in Lrit3nob6/nob6 mice, respectively, confirmed this observation (Figure 28D). We 

found a dramatic reduction in the number of triads containing cone ON-BC processes in 

Lrit3nob6/nob6 pedicles. While ~26% of cone terminals in wild-type retinas contained easily 

identifiable invaginating cone ON-BC processes immediately adjacent to the ribbons, only 

~7% of Lrit3nob6/nob6 cone synapses had this organization. Consequently, the number of diads 

lacking cone ON-BC dendrites were increased in Lrit3nob6/nob6 mice as compared to wild-type 

controls. We also observed a substantial increase in the number of flat contacts at the base of 

cone pedicles in these mice, typically observed for OFF-BCs. Because the identity of the BC 

types cannot be ascertained from only morphologic analysis by EM, these flat contacts may 

correspond to either OFF-BCs or cone ON-BC dendrites incompletely penetrating the cone 

pedicles and thus positioned farther away from the ribbons. However, despite these deficits 

we observed a number of normal cone ON-BC-like contacts with Lrit3nob6/nob6 cone pedicles. 

To ensure preservation of some normal cone ribbon synapses we performed limited serial 

reconstruction. A representative panel of stacked sections through the same cone pedicle is 

presented in Figure 29 and provides evidence of a cone ON-BC dendrite entering deep into 

the cone terminal to position itself in immediate proximity to the ribbon (Figure 29). In 

summary, we detected substantial deficits in the organization of the cone synapses with 

quantitative loss of deeply invaginating contacts made by cone ON-BCs. 
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Figure 29: Serial reconstruction of a cone pedicle in a Lrit3

nob6/nob6 retina. Serial electron microscopy pictures of a cone 
pedicle in a Lrit3

nob6/nob6 retina. Cone pedicle is shown in yellow, invaginating dendrite of cone ON-BC is shown in red, 
and horizontal cell processes are shown in blue. Scale bar: 1 µm. 

3. Localization of several ionotropic glutamate receptors and 

Pikachurin in the OPL 

In order to confirm the results obtained by EM, we studied the localization of some ionotropic 

glutamate receptors and Pikachurin in the OPL. We evaluated the localization of GluR1, an 

AMPA receptor present at the dendritic tips of type 3b and type 4 OFF-BCs, as well as 

GluR5, a kainate receptor present at the dendritic tips of type 3a, type 3b and type 4 OFF-BCs 

(61, 64). Pikachurin is a component of the dystrophin-glycoprotein complex (DGC), which 

localizes to the synaptic cleft of both rod and cone synapses (162, 163). PSD-95, a 

presynaptic marker for rod spherules and cone pedicles (164), was used to identify the 

position of photoreceptor axonal terminals. Both GluR1 and GluR5 antibodies showed a 

similar punctuate staining clustered in patches in the OPL regions of wild-type and 
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Lrit3nob6/nob6 mice (Figure 30A and B). GluR1 staining was in close proximity with PSD-95 

staining (Figure 30A) and both GluR5 and GluR1 positive dots were present at the same cone 

pedicles (Figure 30B). Thus, we conclude that targeting of ionotropic glutamate receptors to 

the dendritic tips of OFF-BCs was not affected by the loss of LRIT3. The pikachurin antibody 

showed a punctuate staining of two different types in the OPL of both wild-type and 

Lrit3nob6/nob6 mice (Figure 30C): isolated dots were observed at the synaptic cleft of rod 

synapses and clustered dots were observed at the synaptic cleft of cone synapses (Figure 30C, 

arrowheads). Pikachurin staining was in direct contact to PSD-95 staining (Figure 30C). Thus, 

we conclude that the loss of LRIT3 has no effect on the localization of Pikachurin at the 

synaptic cleft of both rod and cone synapses. 

 
Figure 30: Localization of ionotropic glutamate receptors GluR1 and GluR5 and Pikachurin in a Lrit3

nob6/nob6 retina. 
Representative confocal images of cross sections centered on the OPL of Lrit3

+/+ and Lrit3
nob6/nob6 retinas stained with 

antibodies against (A) GluR1 (red) and PSD-95 (green), (B) GluR1 (red) and GluR5 (green), and (C) Pikachurin (red) 
and PSD-95 (green). Arrowheads represent putative cone synapses. Scale bar, 10 µm. 
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E. Functionality of ON- and OFF-pathways in the nob6 mouse 

model 

In light of our finding that LRIT3 plays a role in cone ribbon synapse formation (as confirmed 

by EM studies) and the observation that OFF-BCs make flat contacts at the cone pedicle, we 

hypothesized that loss of LRIT3 would influence the responses originating from OFF-BCs. 

1. ON/OFF ERG 

ON/OFF ERG studies were performed in collaboration with Stuart Coupland (Ottawa 

Hospital Research Institute, University of Ottawa, Ottawa ON, Canada). We tried to adapt an 

ERG protocol previously established in primate for mouse to separately measure cone driven 

ON- and OFF-responses at the level of BCs (161). We performed this study in the mouse 

model lacking Lrit3 (Lrit3nob6/nob6) and in the mouse model lacking Grm6 (Grm6-/-), a model 

of cCSNB that was previously shown to display intact OFF-responses but lacking ON-

responses (83, 135, 136). Since the Lrit3 mouse model is also a model for cCSNB, we 

hypothesized that Lrit3 deficient mice should have similar responses to those of Grm6 

deficient mice.  

Although we observed a high sweep to sweep variability in Grm6 and Lrit3 wild-type mice, in 

most cases we observed the same trend in the profile for both ON- and OFF-responses. Figure 

31A and B show examples of ON- and OFF-response profiles, respectively, of a Lrit3 wild-

type mouse. In this mouse, the ramping rapid-ON-flicker stimulus resulted in a response that 

began with a relatively small negative component corresponding to the a-wave followed by a 

larger positive component corresponding to the b-wave (Figure 31A). The ramping rapid-

OFF-flicker stimulus elicited a flicker response dominated by a positive component 

corresponding to the d-wave (Figure 31B). Interestingly, we observed a higher variability 

among the sweeps for the Grm6-/- mice than for wild-type animals, which was even higher for 

the Lrit3nob6/nob6 mice. Because of this variability, we were not able to observe a trend in the 

ON- and OFF-response profiles in mutant mice (data not shown). Thus, we cannot make a 

conclusion based on these preliminary results 
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Figure 31: ON/OFF ERG in a Lrit3

+/+ mouse. Example of ERG recordings obtained in a wild-type mouse after 
ramping rapid-ON-flicker stimuli (A) and after ramping rapid-OFF-flicker stimuli (B). The left part corresponds to 
the right eye and the right part to the left eye. The scale indicates 50 ms and 20 µV. 

2. MEA 

We subsequently evaluated the function of cone-driven ON- and OFF-pathways at the level of 

RGCs by MEA recordings. MEA studies were performed in collaboration with Serge Picaud 

(Institut de la Vision, Paris, France). Before the light stimulus, RGCs displayed a spontaneous 

spiking activity for all wild-type and Lrit3nob6/nob6 tested retinas. Just after the light onset, 

RGCs from wild-type retinas showed a remarkable increase in their firing frequency that 

rapidly reached a maximum, then progressively returned to baseline (Figure 32A and C), 

reflecting ON-responses. Immediately after light offset, a similar response profile was 

observed in wild-type mice (Figure 32A and C), reflecting OFF-responses. In contrast, the 

spiking activity in the Lrit3nob6/nob6 retinas remained at the baseline level after light onset, 

suggesting a total absence of light-evoked ON-responses (Figure 32B and D). At light offset, 

the firing frequency of RGCs in Lrit3nob6/nob6 retinas markedly increased, suggesting the 

presence of intact light-evoked OFF-responses, although more time was required to achieve 

the maximum frequency and to return to baseline, as compared to wild-type retinas (Figure 

32B and D).  

To confirm these observations, two parameters were estimated for both ON- and OFF-

responses: the maximum firing frequency and the time at which this maximum frequency was 

reached after the light onset (for ON-responses) or after the light offset (for OFF-responses). 

We demonstrated that the firing frequency was approximately six-fold increased in wild-type 

retinas after light onset, whereas the firing frequency was unchanged Lrit3nob6/nob6 retinas after 

light onset (Figure 32E). We did not plot the time at which the maximum firing frequency 

was reached for ON-responses because ON-responses were only present in wild-type retinas. 

The maximum firing frequency for OFF-responses did not markedly differ between wild-type 

and Lrit3nob6/nob6 retinas and was approximately 2.5 times higher than the spontaneous 
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baseline activity (Figure 32F). However, the time at which this maximum was reached was 

increased in Lrit3nob6/nob6 retinas compared to wild-type retinas, suggesting that OFF-

responses were delayed in Lrit3nob6/nob6 retinas (Figure 32G). Together, these results suggest 

that loss of LRIT3 results in the abolition of ON-responses in RGCs, whereas OFF-responses 

are still present but probably delayed and more sustained as compared to responses in wild-

type retinas. 

 
Figure 32: ON- and OFF-responses of RGCs in Lrit3

nob6/nob6 retinas. Representative activity recording from Lrit3
+/+ 

(A) and Lrit3
nob6/nob6 RGC (C). The grey box corresponds to the light stimulus. Horizontal scale bar, 500 ms; vertical 

scale bar, 50 µV. Representative raster plot (top) and peristimulus time histogram (bottom) from Lrit3
+/+ (C) and 

Lrit3
nob6/nob6 RGC (D). The grey box corresponds to the light stimulus. Horizontal scale bar, 1 s; vertical scale bar, 50 

events/bin. Maximum firing frequency of ON- (E) and OFF-responses (F) in Lrit3
nob6/nob6 retinas compared to Lrit3

+/+ 
retinas, normalized to the spontaneous activity level. Error bars represent standard deviation (SD) values. (G) Time 
after the light stimulus offset for which the maximum firing rate frequency is reached for OFF-responses in 
Lrit3

nob6/nob6 retinas compared to Lrit3
+/+ retinas. Bars represent mean values. 

F. Analysis of mouse and human LRIT3 through mass 

spectrometry 

The purpose of this study was to identify LRIT3 binding partners in the retina. The first step 

to achieve this objective was to optimize conditions for immunoprecipitation of mouse and 
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human LRIT3 with anti-mouse and anti-human LRIT3 antibodies, respectively, and 

subsequently to demonstrate that both proteins are detectable by mass spectrometry. We used 

a cell culture model overexpressing human or mouse LRIT3 for our preliminary studies in 

order to obtain sufficient protein concentration for detection by mass spectrometry. In the 

future, we will adapt the protocol to utilize mouse or human retinal samples for the 

immunoprecipitation experiment, rather than cell culture models. For Western blotting, we 

only used one tenth of each eluate, keeping the rest of the sample for mass spectrometry 

analysis. These experiments were conducted in collaboration with Manuela Argentini (Institut 

de la Vision, Paris, France) and the structural and functional proteomic/mass spectrometry 

platform at Institut Jacques Monod (Paris). 

1. Mouse LRIT3 immunoprecipitation 

Proteins extracts from non-transfected cells and cells transfected with the mouse Lrit3-myc 

construct were immunoprecipitated with anti-Myc or anti-mouse LRIT3 antibodies and 

detected by Western blotting using an anti-Myc antibody. In lysates, we revealed a band 

between 70 and 100 kDa in transfected cells that is not present in non-transfected cells. The 

same band is present in both immunoprecipitated extracts from transfected cells and 

corresponds to the expected molecular weight of the LRIT3-Myc fusion protein (Figure 33). 

 

Figure 33: Immunoprecipitation of the murine LRIT3-Myc fusion protein from transfected cell lysates with anti-Myc 
or anti-LRIT3 antibodies. The immunoprecipitated proteins were detected by Western blotting using the anti-Myc 
antibody. Non-transfected cells served as a control. Numbers indicate molecular weights. IP, immunoprecipitation 

2. Human LRIT3 immunoprecipitation 

Proteins extracts from non-transfected cells and cells transfected with the human LRIT3-myc 

construct were immunoprecipitated with anti-Myc or anti-human LRIT3 antibodies. Our 

previous results showed that the anti-human LRIT3 antibody is able to detect LRIT3 by 

Western blotting (165), so we use both anti-Myc and anti-human LRIT3 antibodies for 

Western blotting. In lysates, we revealed a band between 70 and 100 kDa in transfected cells 

that is not present in non-transfected cells. The same band is present in both 
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immunoprecipitated extracts from transfected cells and corresponds to the expected molecular 

weight of the LRIT3-Myc fusion protein (Figure 34). 

 
Figure 34: Immunoprecipitation of the human LRIT3-Myc fusion protein from transfected cell lysates with anti-Myc 
or anti-LRIT3 antibodies. Immunoprecipitated proteins were detected by Western blotting using anti-Myc or anti-
LRIT3 antibodies. Non-transfected cells served as a control. Numbers indicate molecular weights. IP, 
immunoprecipitation; WB, Western blotting 

3. Silver staining 

Myc- and LRIT3-immunoprecipitated protein extracts from non-transfected cells and cells 

transfected with the human or the mouse LRIT3-myc construct were silver stained after 

electrophoresis in a polyacrylamide gel. The gel segments corresponding to molecular 

weights between 70 and 130 kDa were cut (Figure 35) for each sample and samples obtained 

from transfected cells were subjected to mass spectrometry analysis. 

 
Figure 35: Silver staining of Myc- and LRIT3-immunoprecipitated protein extracts from non-transfected cells (NT) 
and cells transfected with the human (H) or the mouse (M) LRIT3-Myc construct before (left) and after (right) cutting 
of bands. Numbers indicate molecular weights. IP, immunoprecipitation. 

4. Mass spectrometry 

Protein bands from transfected cells were analyzed by mass spectrometry. Seven unique 

peptides were clearly identified for mouse LRIT3; of these, 2 were identified in the sample 

from the anti-Myc antibody immunoprecipitation, and 6 of these were identified in the sample 
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from the anti-mouse LRIT3 antibody immunoprecipitation (1 peptide in common). Similarly, 

7 unique peptides were clearly identified for human LRIT3, 5 of which were identified in the 

bands corresponding to lysates immunoprecipitated with the anti-Myc antibody, and 4 of 

which were identified in the bands corresponding to lysates immunoprecipitated with the anti-

human LRIT3 antibody (2 peptides in common). 
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III. Other projects 

Throughout my doctoral studies, I also contributed to several additional projects in the 

laboratory. The publications and presentations resulting from this work are listed below, but 

these projects will not be discussed in further details in this thesis manuscript. 

KIZ identification and characterization project 

Publication: 

1) El Shamieh, S., Neuille, M., Terray, A., Orhan, E., Condroyer, C., Demontant, V., 
Michiels, C., Antonio, A., Boyard, F., Lancelot, M.E., Letexier, M., Saraiva, J.P., Leveillard, 
T., Mohand-Said, S., Goureau, O., Sahel, J.A., Zeitz, C. & Audo, I. (2014) Whole-exome 
sequencing identifies KIZ as a ciliary gene associated with autosomal-recessive rod-cone 
dystrophy. Am J Hum Genet, 94, 625-633. 

Paper presentation: 

1) El Shamieh, S., Neuille, M., Terray, A., Orhan, E., Condroyer, C., Demontant, V., 
Michiels, C., Antonio, A., Boyard, F., Leveillard, T., Mohand-Said, S., Goureau, O., Sahel, 
J.A., Zeitz, C. & Audo, I. – Whole exome sequencing identifies a new ciliary gene underlying 
autosomal recessive rod-cone dystrophy - Young Researchers in Life Science Conference 
(May 22-24 2013) – Paris (France). 

Poster presentation: 

1) Audo, I., El Shamieh, S., Neuille, M., Terray, A., Orhan, E., Mohand-Said, S., Leveillard, 
T., Goureau, O., Sahel, J.A. & Zeitz, C – Whole exome sequencing identifies a new ciliary 
gene in autosomal recessive rod-cone dystrophy – Annual meeting of the Association for 
Research in Vision and Ophthalmology (ARVO) (May 4-8 2014) – Orlando (FL, USA). 

Genome editing approaches applied to Rhodopsin mutations 

project 

Publication: 

1) Orhan, E., Dalkara, D., Neuille, M., Lechauve, C., Michiels, C., Picaud, S., Leveillard, T., 
Sahel, J.A., Naash, M.I., Lavail, M.M., Zeitz, C. & Audo, I. (2015) Genotypic and phenotypic 
characterization of P23H line 1 rat model. PLoS One, 10, e0127319. 
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mGluR6 gene therapy project 

Paper presentation: 

1) Miranda de Sousa Dias, M., Neuille, M., Orhan, E., Dalkara, D., Audo, I. & Zeitz, C – 
Gene replacement therapy for CSNB as a proof-of-concept for other inner retinal disorders - 
Joint Meeting of the Société de Génétique Ophthalmologique Francophone (SGOF) and the 
section of genetics of the German Association of Ophthtalmology (DOG) (December 5-6 
2014) – Giessen (Germany). 

Poster presentation: 

1) Miranda de Sousa Dias, M., Pugliese, T., Neuille, M., Orhan, E., Michiels, C., Desrosiers, 
M., Sahel, J.A., Dalkara, D., Audo, I. & Zeitz, C – Gene for CSNB associated with GRM6 
gene defects - Annual meeting of the Association for Research in Vision and Ophthalmology 
(ARVO) (May 1-5 2016) – Seattle (WA, USA). 
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DISCUSSION AND PERSPECTIVES 
I. Identification of gene defects in CSNB 

To date, more than 300 different mutations in 12 genes have been identified in CSNB patients 

with normal fundus exams. However, some cases still have no molecular diagnosis, and there 

are several possible explanations for this: (1) the mutated gene(s) in these patients is not yet 

known to be involved in CSNB, (2) the gene defects are in regulatory elements or introns that 

have not previously been studied by WES, or (3) the phenotype of the patient is not well 

characterized. These unresolved cases highlight the importance of developing new tools to 

identify gene defects. In addition, unbiased next-generation sequencing techniques may also 

help to clarify unclear phenotype by identifying the underlying genetic mutation responsible 

for the patient’s condition.  

Our team recently identified LRIT3 as a new gene implicated in cCSNB by applying WES 

approaches to an affected family that previously lacked a molecular diagnosis (165). Sanger 

sequencing in a second affected family identified mutations in the same gene, strongly 

suggesting LRIT3 as the causative gene in both cases. Working in collaboration with a 

research team in India, we also identified four novel mutations in SLC24A1 in three families 

leading to the Riggs-type of CSNB (166). Although one of these families had initially been 

diagnosed with icCSNB, Sanger sequencing for genes underlying icCSNB detected no 

mutations. By applying WES, we revealed a homozygous nonsense mutation in SLC24A1 in 

this family; upon further review of the clinical data, they were found to have phenotypes 

consistent with the Riggs-type of CSNB. Interestingly, the other two families with SLC24A1 

mutations exhibited ERG traces that were quite different from the classic ERG description for 

the Riggs-type of CSNB. In all three of these cases, next-generation sequencing techniques 

not only enabled us to accurately identify the underlying gene defect, but also to properly 

reclassify the diagnosis of the icCSNB family and to clarify the diagnosis for the other two 

families. For those patients in whom no pathogenic mutations were found in coding exons, 

new approaches such as whole-genome sequencing have already been used to successfully 

identify intronic mutations involved in retinal diseases (167). 

Efficient and comprehensive genotyping, as well as correct clinical characterization of CSNB 

patients and families, remain necessary to fully characterize genotype-phenotype correlations 

in this disease. These correlations are key to our improved diagnosis and genetic counseling 
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for CSNB and other inherited retinal disorders. However, further studies are required to 

uncover the function of proteins encoded by the identified genes in order to provide 

knowledge in physiology and physiopathology of the retina. 

II. Functional characterization of new gene defects 

identified in CSNB 

At the time that LRIT3 mutations were identified in cCSNB patients, the function of the 

LRIT3 protein remained to be discovered. To address this, we needed an animal model that 

accurately reproduced the human disease. Animal models (and particularly mouse models) are 

the most commonly used model for cCSNB because: (1) they occur spontaneously or are 

quite easy to generate, (2) their small size, short lifespan, high reproductive rate, and ease of 

handling make them convenient experimental subjects, (3) their retina is very similar to the 

human retina in structure and function, (4) it is possible to perform behavioral tests on mice, 

(5) their phenotype can be assessed by performing full-field ERG, FAF and SD-OCT in 

similar manner to human patients, and (6) structural and functional studies can be performed 

post mortem (75, 168).  

Functional characterization of a mouse model lacking Lrit3 revealed a stationary no b-wave 

(nob) phenotype similar to that observed in cCSNB patients with LRIT3 mutations (165). The 

phenotype was also similar to the phenotypes of cCSNB patients with gene defects in other 

members of the same molecular cascade (99, 100, 102-104, 107-109, 113) and to phenotype 

of other mouse models of cCSNB (22, 32-34, 109, 123, 132, 133, 138, 146). We called this 

mouse model nob6. nob6 mice exhibit a selective absence of the scotopic b-wave, with a 

preserved a-wave component. Cone-mediated pathways are also affected, with markedly 

reduced b-waves in photopic conditions. Therefore, visual dysfunction in nob6 mice affects 

both the rod and cone ON-bipolar systems. Moreover, the visual acuity of nob6 mice was 

decreased in scotopic conditions. Finally, there were no indications of photoreceptor 

degeneration in nob6 mice (75). The nob6 mice therefore represent a relevant cCSNB model 

in which to decipher the function of LRIT3 in the retina and the pathophysiologic 

mechanism(s) associated with LRIT3 mutations. An independent, chemically induced Lrit3 

mouse model was recently described. This mouse model harbors a missense mutation 

(p.Leu134Pro) and displays an electroretinographic phenotype that is similar to nob6 mice 

(169). 
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We subsequently confirmed the localization of LRIT3 at the dendritic tips of ON-BCs in the 

mouse retina, suggesting that LRIT3 plays a role in the mGluR6 signaling cascade (Figure 

36). We also showed that LRIT3 is important for the correct localization of the TRPM1 

channel at the dendritic tips of ON-BCs (as also found for nyctalopin), suggesting that the 

pathophysiological mechanism associated with LRIT3 mutations is probably the 

mislocalization of TRPM1 and the incapacity of ON-BCs to depolarize upon light stimulus. It 

has been hypothesized that LRIT3, which contains a PDZ-binding motif at its C-terminus, 

may interact with scaffolding proteins to bring TRPM1 to the cell surface and to maintain it 

there, through association with NYX (165). These findings suggest that LRIT3 interacts with 

one or more partners expressed by ON-BCs. More surprisingly, nob6 retinas exhibit near 

complete elimination of post-synaptic clustering of the mGluR6 cascade components at the 

dendritic tips of cone ON-BCs, (including mGluR6 itself, GPR179, RGS7, RGS11 and Gß5) 

despite their undisrupted accumulation at the dendritic tips of rod BCs (160). These deficits 

suggest the potential involvement of LRIT3 in cone synapse formation and signaling to ON- 

and OFF-BCs.  

 
Figure 36: Schematic drawing of major molecules important for the first visual synapse between photoreceptors and 
ON-BCs in light of discovery of LRIT3’s role in the retina (adapted from (16)) 

EM studies revealed that rod spherules are normally organized in Lrit3nob6/nob6 mice with 

correctly formed triads (Figure 28), indicating that LRIT3 has no role in the rod ribbon 

synapse formation. However, the results were strikingly different in cone pedicles. A dramatic 

decrease in the number of ON-BC dendrites deeply invaginating cone pedicles was found 
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(Figure 28), leading to an increased diad/triad ratio at cone synapses in Lrit3nob6/nob6 mice. 

These results confirmed that LRIT3 plays an important role in cone ribbon synapse formation. 

However, we do not know yet if LRIT3 is important for synapse maintenance and/or synapse 

development. Structural defects of the first visual synapse have already been shown in some 

cCSNB mouse models or in mouse models deficient in protein components of the mGluR6 

signaling cascade (30, 38, 44, 143, 144, 170) (Table 3). For example, rod spherules were 

completely normal in the Grm6 knock-out model (22), but cone pedicles showed a reduced 

number of invaginating ON-BC dendrites. However, this decrease was correlated with a 

reduced number of ribbons per cone pedicle (143). For the nob4 mouse model with a mutation 

in Grm6 (132), rod spherules and cone pedicles showed a reduced number of invaginating 

ON-BC dendrites (44, 144). The same phenotype is present in mice lacking Gnb5. Moreover, 

the decrease for rod spherules was observed from post-natal day 13 to 21, when retinal 

development is not totally finished, indicating that Gβ5 has a role in ribbon synapse 

development (38). Mice lacking Gnb3 exhibited a reduced number of invaginating ON-BC 

dendrites in rod spherules. Moreover, the number of rod triads in Gnb3 lacking mice was 

similar to that of wild-type mice at three weeks of age, suggesting that Gβ3 has a role in ribbon 

synapse maintenance (30). Finally, in mice lacking Gnao1 (28), the number of ON-BC 

dendrites invaginating rod spherules was also decreased, but to a lesser extent than in mice 

lacking Gnb3 (170). 

 Lrit3nob6/nob6 mice differ from these models because the structural defect affects only cone 

synapses, but not the number of ribbons per cone pedicle. It would be interesting to perform 

an ultrastructural study at an earlier stage of retinal development to determine if LRIT3 

function is important for the development and/or maintenance of the cone ribbon synapse. 

Recently, Cao et al. described a mouse model lacking Elfn1 (144), which encodes a 

transmembrane protein (ELFN1) that has been shown to be specifically expressed by rods and 

to localize to rod synaptic terminals. ELFN1 interacts with mGluR6 at the dendritic tips of rod 

BCs and Elfn1 deficient mice exhibit absence of mGluR6 at the dendritic tips of rod BCs, but 

staining at the dendritic tips of cone ON-BCs was normal. Moreover, mice lacking Elfn1 

showed a nearly complete absence of invaginating ON-BC dendrites in rod spherules. 

Functionally, mice lacking Elfn1 lacked the ERG b-wave in response to a dim flash under 

scotopic conditions whereas a small b-wave was present in response to a bright flash. In both 

cases, the a-wave was normal. Photopic ERG is also undistinguishable between knock-out 

and wild-type mice. Together, these results indicate that ELFN1 is necessary for the proper 
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development of rod ribbon synapses and the correct functioning of the primary rod-driven 

ON-pathway (144).  

Given that cone ribbon synapses are affected in mice lacking Lrit3, it would be interesting to 

identify LRIT3 interacting partners in order to determine if trans-synaptic contacts between 

LRIT3 and proteins localized at the cone synaptic terminal exist (as shown for mGluR6 and 

ELFN1 in the rod ribbon synapses). Moreover, proteins of the dystrophin-glycoprotein 

complex (DGC) may be involved in interactions with pre- and post-synaptic complexes in 

order to maintain a stable adhesion between rod spherules and rod ON-BC dendrites (170), 

and it is possible that they play a similar role at the cone synapse. Dystroglycan (DG) is the 

key component of this complex and is composed of an extracellular α-subunit and a 

transmembrane β-subunit. The α-DG has been shown to localize at retinal photoreceptor 

synaptic terminals where it interacts in a glycosylation-dependent manner with its ligand 

Pikachurin (162, 163). Mice lacking Pikachurin and conditional knock-out mice specifically 

lacking Dg in the retina display similar phenotypes. Structurally, these mouse models lack 

invaginating ON-BC dendrites in both rod spherules and cone pedicles. However, the 

invaginating dendrites remain in close vicinity to photoreceptor terminals and seem to help 

maintain the integrity of the ribbon synapse. Functionally, the ERG b-wave is reduced and 

delayed in both scotopic and photopic conditions in these mice (162, 163). We evaluated the 

localization of Pikachurin in the OPL of Lrit3nob6/nob6 mice and showed that Pikachurin 

localizes properly to the synaptic cleft of both rod and cone synapses (Figure 30), indicating 

that Pikachurin is probably not directly involved in the maintenance of the cone ribbon 

synapse. 
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Table 3: Ultrastructural defects of photoreceptor ribbon synapses in knock-out mice with mutations in different 
components of the mGluR6 signaling cascade. ON-BC, ON-bipolar cell; n.a, non-available 

Mouse model Rod ribbon synapses Cone ribbon synapses Comments Reference 
Grm6-/- Normal Reduced number of invaginating 

ON-BC dendrites 
Corresponding reduced number 
of ribbons 

 (143) 

nob4 Reduced number of invaginating 
ON-BC dendrites 

Reduced number of invaginating 
ON-BC dendrites 

 (44, 144) 

Gnb5-/- Reduced number of invaginating 
ON-BC dendrites 

Reduced number of invaginating 
ON-BC dendrites 

Role for Gβ5 in rod synapse 
development 

(38) 

Gnb3-/- Reduced number of invaginating 
ON-BC dendrites 

n.a. Role for Gβ3 in rod synapse 
maintenance 

(30) 

Gnao1-/- Reduced number of invaginating 
ON-BC dendrites 

n.a.  (170) 

nob6 Normal Reduced number of invaginating 
ON-BC dendrites 

 This thesis 

By EM, we showed that the number of OFF-BC dendrites making flat contacts with cone 

pedicles was slightly increased in mice lacking Lrit3 (Figure 28). However, we may be 

slightly overestimating this increase given that some of these dendrites, especially those close 

to ribbons, may actually be ON-BC dendrites that do not invaginate cone pedicles (but rather 

just lie in close vicinity to ribbons). This hypothesis could be confirmed by performing 

electron microscopy coupled with cone ON-BC staining using a ON-BC marker such as Goα 

(171). This particular configuration has already been highlighted in conditional Dg mutants 

and in mice lacking Pikachurin, as both corresponding proteins play a role in ribbon synapse 

maintenance. There are no invaginating ON-BC dendrites in these mouse models, but the 

dendrites are correctly formed and remain close to the ribbons, helping to maintain the 

organization and function of the synapse (162, 163). Thus, OFF-BC dendrites are normally 

present in the OPL of Lrit3nob6/nob6 mice. Moreover, we demonstrated that the cellular 

localization of OFF-BC ionotropic glutamate receptors is similar in wild-type and 

Lrit3nob6/nob6 mice (Figure 30). Our studies showed that at least type 3a, type 3b and type 4 

OFF BCs make flat contacts at cone pedicles Lrit3 deficient mice, potentially allowing for 

both transient and sustained responses at light offset (65). 

In our ERG studies, we tried to separately elicit cone driven ON- and OFF-responses 

originating from corresponding BCs in our Lrit3 deficient mice in order to confirm that ON-

responses are absent in this cCSNB mouse model and to evaluate the state of OFF-responses 

in these animals (161). We also used the Grm6 mouse model as a control, since it has already 

been shown by ERG to have intact OFF-responses and absent ON-responses, which is in 



125 

accordance with the cCSNB phenotype (83, 135, 136). Despite the sweep-to-sweep 

variability, we identified a clear trend in the wild-type profiles of ON- and OFF-responses in 

wild-type mice with the adapted protocol. In comparison, the Grm6 deficient mice 

demonstrated higher variability in the ERG studies, which was even higher for the Lrit3 

mouse model and which did not allow us to obtain reproducible profiles. Further efforts are 

thus needed to reduce the high variability observed in the ERG studies. This may be possible 

by increasing the sample size, by recording more sweeps, and/or by reducing the signal to 

noise ratio. Moreover, it would be interesting to remove the adaptation step in the future as it 

may negatively influence the responses by saturating both rods and cones. In order to obtain 

quantitative results on the functionality of ON- and OFF-pathways in mice lacking Lrit3, we 

decided to record ON- and OFF-responses at the level of RGCs by MEA in collaboration with 

Serge Picaud (Institut de la Vision, Paris, France). 

Consistent with the fact that the Lrit3nob6/nob6 cCSNB mouse model has signaling defect 

between photoreceptors and ON-BCs, Lrit3nob6/nob6 mice exhibit no cone driven ON-responses 

as evaluated by MEA (Figure 32). This phenotype of no ON-responses is also observed in 

other mouse models of cCSNB, although authors in some reports described long-latency ON-

responses with drastically reduced firing frequencies originating from OFF-pathway inputs 

that can be blocked by functional ON-pathways. Moreover, spontaneous activity of RGCs is 

increased in these mouse models (128, 129, 132, 133, 136). These results suggest that the 

mGluR6 signaling cascade is non-functional in mice lacking Lrit3, leading to an ON-defect 

and to a cCSNB phenotype. OFF-responses are present in Lrit3nob6/nob6 mice and are similar in 

frequency to wild-type mice, which is in accordance with the cCSNB phenotype. However, 

our results demonstrated OFF-responses that are delayed and more sustained. Small OFF-

response abnormalities have been already shown in one of the other mouse models. Although 

the Grm6 mutants Grm6-/-, nob3 and nob4 displayed normal OFF-responses in frequency and 

latency (132, 133, 136), the Nyx mutant showed decreased OFF-responses with normal 

latencies (128, 129). A deeper analysis of the data is needed to confirm the presence of 

delayed OFF-responses in mice lacking Lrit3 and discuss the differences observed due to 

different gene defects. 

The next step of this study will be to identify LRIT3 binding partners. These proteins might 

be localized post-synaptically in ON-BCs, pre-synaptically at the cone pedicles, or in the 

synaptic cleft at the cone synapses. We have shown in this thesis that we are able to 

successfully immunoprecipitate both human and mouse LRIT3 with the corresponding anti-
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LRIT3 antibodies, and that we are able to detect both proteins by mass spectrometry. The 

protocol has now to be adapted for mouse and human retina in order to identify LRIT3 

partners. 

Our improved understanding of the function of LRIT3 will lead to a better knowledge of the 

retinal signaling pathway(s) at the first synapse. Furthermore, identification of LRIT3 binding 

partners may reveal other proteins that, when mutated, result in CSNB in human patients. 

Finally, our data will provide the basis for the development of comprehensive therapeutic 

approaches for CSNB and possible new approaches to monitor treatment efficacy. 

III. Development of therapeutic approaches for CSNB 

Since CSNB is a stationary condition (rather than a degenerative process), gene therapy 

represents a promising therapeutic approach. The basic premise of gene therapy is to replace 

or “repair” a mutated, improperly functioning gene with a normal gene that can restore protein 

function when expressed in retinal cells (172). To achieve this goal, it is necessary to transfer 

the therapeutic gene to the affected cell type in a safe, efficient and stable manner, and with 

specificity to the appropriate cell type (173). In the case of the Riggs-type of CSNB and for 

icCSNB, the therapeutic gene must therefore be expressed in photoreceptors. Similarly, for 

cCSNB, the therapeutic gene must be expressed in ON-BCs.  

Most gene therapy approaches developed today use viral vectors to deliver the therapeutic 

gene to a targeted cell population. Adeno-associated virus (AAV)-derived vectors are the 

preferred vectors for ocular gene therapy for several reasons: (1) they have low 

immunogenicity because viral coding sequences are absent from their genome, (2) a large 

numbers of AAVs exist with different preferential targets, and thus may be engineered in 

order to target certain cell types of interest with high specificity, and (3) they confer long-

lasting transgene expression (172). However, AAV vectors only have a cloning capacity of 

about 4.7 kilobases (kb) in length, which might be insufficient for some large CSNB genes 

such as SLC24A1, CACNA1F or TRPM1. Despite this challenge, gene therapy remains a very 

promising approach for several gene defects underlying CSNB, and several gene therapy 

studies in CSNB mouse models have already been reported (156, 174). The most recent 

reports have utilized intravitreal injections for AAV delivery rather than subretinal injections 

in order to avoid complications associated with retinal detachment (172). 
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A. Gene therapy for the dominant mode of inheritance 

To date, only the Riggs-type of CSNB (resulting from mutations RHO, GNAT1 and PDE6B) 

exhibits an dominant mode of inheritance (16). The dominant nature of the disorder implies 

that gene therapy approaches could be used to knockdown the mutant allele. Conley and 

coworkers recently used ribozymes to knockdown the G90D CSNB mutation in rhodopsin 

(174). Ribozymes are RNAs that possess a catalytic activity and that cleave RNAs in a site-

specific manner. The G90D mutation in rhodopsin leads to a constitutively active protein that 

suppresses rod sensitivity (116, 175). The ribozyme designed specifically for the G90D 

rhodopsin mutation was cloned into a recombinant AAV under the regulatory control of the 

mouse opsin promoter, resulting in its expression of in photoreceptors (173). The AAV was 

injected intravitreally at 4 weeks of age in G90D transgenic mice. An AAV coding for GFP 

was injected in the contralateral eye as a positive control. GFP-positive cells were found 

throughout the retina at 6 weeks post-injection and remained for up to 10 months. 

Functionally, the ribozyme designed to specifically target the G90D mutation was only able to 

slow the long-term loss of ERG function in this mouse model, but not to restore a normal 

phenotype (174). At 3 and 8 months post-injection, the amplitude of the scotopic b-wave was 

increased by almost 25 and 66% compared to AAV-GFP controls, respectively. However, in 

the same time, the amplitude of the scotopic b-wave was still decreasing in controls and, thus, 

the amplitude of the scotopic b-wave at 8 months post-injection in the treated retinas was 

even lower than in controls at 6 weeks post-injection. It is possible, but currently unknown, 

that slowing down the long-term loss of ERG function would be sufficient to improve the 

clinical phenotype of affected subjects. 

Of note, this study utilized a specifically designed ribozyme that was developed to selectively 

recognize and act upon the mutated G90D allele. However, wide spread use of this approach 

would mean that a specific ribozyme must be developed for each disease-causing mutation on 

a case-by-case basis, which represents an inefficient therapeutic approach. An alternative 

approach would be to develop one optimal ribozyme that is able to knockdown both mutated 

and wild-type alleles non-selectively (independent of the pathogenic variants), coupled with 

concurrent supplementation of a knockdown-resistant wild-type gene to restore protein 

function. In this way, multiple different disease-causing mutations could be treated using the 

exact therapeutic approach, and this method could also be extended to other retinal disorders. 
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B. Gene therapy for recessive or X-linked modes of inheritance 

To date, all known forms of CSNB demonstrate autosomal recessive or X-linked modes of 

inheritance. The proteins encoded by the mutated genes underlying these disorders localize in 

photoreceptors and play roles in the phototransduction cascade (Riggs-type of CSNB), in 

glutamate release (icCSNB), or in the mGluR6 signaling cascade at the dendritic tips of ON-

BCs (cCSNB) (16). Theses modes of inheritance imply that complementation by a wild-type 

copy of the causative gene would be sufficient to restore a normal phenotype.  

Scalabrino and coworkers recently published the first study showing that postnatal delivery of 

an ON-BC specific gene via AAV is capable of restoring ON-BC signaling in a mouse model 

of cCSNB (156). Prior to that report, the transduction of cells located in the inner retinal 

layers (such as BCs) within non-degenerative retinas with successful selective expression of 

the therapeutic transgene had been extremely challenging. Scalabrino et al. used the Nyx 

deficient nob mouse model for their study. Nyx gene was packaged in an AAV2-based capsid 

variant capable of transducing the majority murine retinal cells following intravitreal injection 

(176) under the control of the human MiniPromoter “Ple155” that drives transgene expression 

in BCs (177).  The AAV was injected intravitreally at post-natal day 2 or 30 (P2 or P30) in 

nob mice. An AAV coding for GFP was injected in the contralateral eye as a positive control. 

GFP expression was observed in ON-BCs and the fluorescence was localized in the somas, at 

the dendritic tips of ON-BCs and in their axon terminals. In the experimentally treated eyes, 

nyctalopin protein was observed at the dendritic tips of ON-BCs in nob retinas. The final 

percentage of transduction of the protein was more important with the P2 injection (21.5% of 

ON-BCs), suggesting that supplementation of an ON-BC-specific transgene is most effective 

when delivered while BCs are still differentiating (178). This therapeutic window therefore 

needs to be extended for potential future applications in humans, since delivery of gene 

therapy in utero is not feasible. In ON-BCs that were transduced, TRPM1 was relocated to the 

dendritic tips of ON-BCs and the cells responded to the TRPM1 agonist capsaicin with robust 

outward currents. At the level of entire retina, 30 days after the P2 injection, the transduction 

of nyctalopin partially restored the ERG b-wave in both scotopic and photopic conditions 

(156). Whereas the scotopic b-wave was totally absent in AAV-GFP controls, a scotopic b-

wave was clearly observed in the experimentally treated eyes. However, the amplitude of this 

“restored” b-wave was only 5.7% of typical wild-type amplitudes. It is possible that even such 
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a small increase in amplitude would be sufficient to rescue (or improve) the phenotype, and 

this remains to be determined. 

Gene replacement therapy would be also the best therapeutic approach for CSNB due to 

SLC24A1 mutations. However, the large size of the gene precludes it from being packaged 

into a single AAV vector. Although other approaches such as lentiviral vectors with a larger 

packaging capacity (up to 8 kb) or alternative delivery systems such as nanoparticles could 

circumvent this problem, to date AAV vectors still remain the most effective and safest tool 

for gene therapy. Interestingly, recent studies highlighted the use of AAV vectors to deliver 

larger genes to the retina by employing a dual AAV approach (179, 180). The general idea is 

to split the large gene into pieces, each less than 5 kb in length, and to package these into two 

separate AAV vectors. After co-transducing these gene fragments in to retinal cells, the full-

length transgene is reconstituted. This dual AAV approach has already been shown to allow 

expression of full-length ABCA4 and MYO7B transgenes in photoreceptors and RPE cells, 

improving the retinal phenotype in two mouse models of Stargardt’s disease and Usher 

syndrome, respectively (179, 180). 

LRIT3 is an even better candidate for gene replacement therapy as compared to SLC24A1. 

The relatively small size of this gene would allow its packaging into a single AAV vector. 

Moreover, we already have a suitable and well-characterize mouse model with an Lrit3 gene 

defect that reproduces the human cCSNB phenotype, making it an ideal model system in 

which to test LRIT3 gene therapy approaches. Finally, Deniz Dalkara (Institut de la Vision) 

developed a genetic variant of AAV2, known as 7m8, which is capable of transducing 

multiple cell types in the retina including BCs after intravitreal injection (181). Lrit3 can be 

placed under the control of a 200-base pair enhancer sequence of the mouse Grm6 gene that 

has been shown to drive transgene expression specifically in ON-BCs in degenerative retina 

(84). The rescue of the cCSNB phenotype in these mice could subsequently be evaluated by 

analyzing the restored localization of previously mislocalized components of the mGluR6 

cascade, and by performing a series of functional and clinical phenotyping studies including 

ERG, MEA and behavioral tests. 
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Abstract: 

The first steps in vision occur when rod and cone photoreceptors transform light into a 
biochemical signal, which gets processed through the retina. Our group investigates genetic 
causes and mechanisms involved in inherited retinal diseases as congenital stationary night 
blindness (CSNB), which reflects a signal transmission defect between photoreceptors and 
bipolar cells. This thesis gives several insights on the retinal physiology at this first visual 
synapse. We identified four novels mutations in SLC24A1 underlying the Riggs-type of 
CSNB, which has a role in calcium balance in rods. We subsequently identified a novel gene, 
LRIT3, which is mutated in the complete form of CSNB. We delivered a knock-out mouse 
model lacking Lrit3 which displays a phenotype similar to patients. We confirmed the 
localization of LRIT3 at the dendritic tips of ON-bipolar cells, suggesting a role of LRIT3 in 
the mGluR6 signaling cascade. We showed that LRIT3 is necessary for the functional 
localization of TRPM1. We also revealed that LRIT3 has an additional role in formation of 
the cone synapse but with probably only a minor effect on OFF-pathway functionality. We 
finally succeeded in immunoprecipitating and detecting LRIT3 by mass spectrometry, 
opening the way for the identification of LRIT3 partners. Improving knowledge about retinal 
physiology and physiopathology will lead to a better diagnosis and genetic counseling of the 
patients and to the development of novel therapeutic approaches. 

Keywords: retina, congenital stationary night blindness, SLC24A1, LRIT3, mouse model 

Identification et caractérisation fonctionnelle de défauts génétiques à l’origine de la 
cécité nocturne congénitale stationnaire 

Résumé : 

Le processus visuel débute lorsque les photorécepteurs transforment la lumière en un signal 
biochimique qui est ensuite traité et transmis via la rétine. Notre groupe s’intéresse à élucider 
les défauts génétiques et les mécanismes à l’origine de pathologies rétiniennes comme la 
cécité nocturne congénitale stationnaire (CNCS), conséquence d’un défaut de transmission du 
signal entre les photorécepteurs et les cellules bipolaires. Cette thèse apporte de nouvelles 
connaissances sur la physiologie de cette première synapse visuelle. Nous avons identifié 
quatre nouvelles mutations dans SLC24A1, un échangeur ionique intervenant dans 
l’homéostasie du calcium dans les bâtonnets, à l’origine de la CNSC de type Riggs. Nous 
avons également identifié LRIT3 comme étant un nouveau gène impliqué dans la forme 
complète de CNCS. Nous avons décrit un modèle de souris invalidé pour Lrit3 avec un 
phénotype visuel similaire à celui des patients. Nous avons confirmé la localisation de LRIT3 
aux extrémités dendritiques des cellules bipolaires ON, suggérant un rôle dans la cascade de 
signalisation mGluR6. Nous avons montré que LRIT3 était nécessaire à la localisation 
fonctionnelle de TRPM1. Nous avons de plus démontré un rôle additionnel de LRIT3 dans la 
formation de la synapse du cône n’impactant probablement que faiblement les voies OFF. 
Nous avons également réussi à détecter LRIT3 par spectrométrie de masse, ouvrant la voie à 
l’identification de ses partenaires. La meilleur connaissance de la physiologie et de la 
physiopathologie rétinienne doit mener non seulement à un meilleur diagnostic et conseil 
génétique des patients mais également au développement de nouvelles approches 
thérapeutiques. 

Mots clés : rétine, cécité nocturne congénitale stationnaire, SLC24A1, LRIT3, modèle de 
souris 


