N

N
N

HAL

open science

Topological phases of periodically driven crystals
Michel Fruchart

» To cite this version:

Michel Fruchart. Topological phases of periodically driven crystals. Mesoscopic Systems and Quantum
Hall Effect [cond-mat.mes-hall]. Université de Lyon, 2016. English. NNT: 2016LYSEN025 . tel-

01398614v1

HAL Id: tel-01398614
https://theses.hal.science/tel-01398614v1
Submitted on 17 Nov 2016 (v1), last revised 6 Dec 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://theses.hal.science/tel-01398614v1
https://hal.archives-ouvertes.fr

UNIVERSITE

ENS DE LYON

G[:%

Numéro National de Thése : 2016LYSENO025

THESE de DOCTORAT DE L’UNIVERSITE DE LYON
) opérée par
I’Ecole Normale Supérieure de Lyon

Ecole Doctorale N°52
Physique et Astrophysique de Lyon
Discipline : physique

Soutenue publiquement le cinq octobre 2016 par

Michel FRUCHART

Topological phases of
periodically driven crystals

Phases topologiques dans les cristaux
soumis a un forcage périodique

Devant le jury composé de :

Jean Dalibard, Professeur, Collége de France Examinateur
Benoit Dougot, Directeur de recherche, LPTHE Examinateur
Mark O. Goerbig, Directeur de recherche, LPS Orsay Rapporteur
Karyn Le Hur, Directrice de recherche, CPHT Examinateur
Gianluca Panati, Professeur, Universita di Roma Examinateur
Mark S. Rudner, Professeur, Niels Bohr Institute Rapporteur
David Carpentier, Directeur de recherche, LPENSL Directeur de these

Krzysztof Gawedzki, Directeur de recherche, LPENSL Codirecteur de thése






Chapter1

Introduction

1 Generalintroduction

The study of physical phenomena usually involves local observables or correlations be-
tween local quantities. In some instances however, certain “global” quantities which
do not depend on the details of the local description are required. In solid state
physics, topological tools were first used to study defects in an ordered phase [Mer79].
Such an ordered phase of matter is characterized by an order parameter, and topo-
logical defects appear as particular configurations of the order parameter field with
singularities. As an example, consider a two-dimensional film of superfluid “He, which
is described by a complex order parameter field ¢ (z) = 1bo(z) e®) characterizing the
breaking of U(1) symmetry. An example of defect associated with such a U(1) order
parameter in two dimensions is a vortex, where the order parameter v vanishes. The
circulation around this defect is an integer called the topological charge of the vortex.
It measures how many time the phase 6(z) winds along a curve surrounding the vor-
tex. The topological charge is not sensitive to the precise configuration of the order
parameter field: it is left invariant by smooth modifications of the order parameter
field inside the region encircled by the curve. This is the reason why it is referred to
as a topological quantity.

In general, topology is concerned with global properties which are invariant under a
certain kind of transformations, like smooth deformations. Such global properties may
distinguish objects which look locally similar, or gather objects which look different
at first sight. The usual example of such a global property is the number of holes
(or genus g) of a two-dimensional surface (see figures 1.1 and 1.2). For example,
a sphere has no hole, whereas a torus has one hole: it is not possible to smoothly
deform a sphere into a torus. To make the notion of topologically equivalent objects
precise, it is necessary to specify what are the allowed transformations: for the sake of
this introduction, we will only rely on an intuitive picture. Imagine that objects are
made of modeling clay: allowed transformations consist in deforming the clay without
drastic modification like tearing it or gluing two parts together. Hence, a coffee cup
has a handle, so it corresponds to a genus 1 surface, which can be deformed into a
torus without such drastic modification. This topological classification explains, for
example, why a genus 1 donut tastes different than a genus 3 pretzel.

The topological character of vortices provides them with a robustness (against
smooth deformations of the configuration of the order parameter) which allows to
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Figure 1.1: Genus of some 2D surfaces. The genus g of a closed 2D surface essentially
counts the number of “holes” or “handles” in the surface. A sphere has no hole (genus
0), a torus has one hole (genus 1), and so on. If fact, any orientable closed surface
(two-dimensional manifold) is homeomorphic to a connected sum of ¢ tori. It is related
to the Euler characteristic of the surface x = 2 — 2g, an homological invariant which
can be computed as the integrated local curvature through the Chern-Gauss-Bonnet
theorem.

treat them as independent objects, behaving similarly to electric charges: as one
would expect, two vortices with opposite topological charges can annihilate when
they meet, and a vortex with charge +2 can break down into two vortices with charge
+1, and so on, leading to a very fruitful analogy. In the case of defects, topological
methods are used to characterize different configurations of a given ordered phase. It
happens that topology may also serve a completely different purpose and distinguish
different phases of matter in a situation where their symmetries are the same and
no order parameter can be used to differentiate between them. This is the case of
topological phases of matter like the quantum Hall effect, that we shall discuss in the
next section.

1.1 The quantum Hall effect

We wish to focus on a particular application of topology in condensed matter, which
started with the discovery of the quantum Hall effect by von Klitzing, Dorda and Pep-
per [KDP80] in 1980, the topological nature of which was soon recognized by TKNN
(Thouless, Kohmoto, Nightingale and den Nijs) [TKNN82] and Avron, Seiler and Si-
mon [ASS83; Sim83]. This discovery opened a new field in condensed matter and
beyond. The interest in the quantum Hall effect comes from multiple points of view.
First, there is a fundamental interest, both from theoreticians and experimentalists.
The integer quantum Hall effect is the first example of a phase of matter escaping
the Landau paradigm, as it is not associated with a local order parameter. Moreover,
it is described by a beautiful theory which connects relatively modern mathematical
constructs to experimentally realizable situations. Third, there is a practical interest
from metrology, as the integer quantum Hall effect (IQHE) provides an extremely
precise and reproducible measure of the fundamental constant e?/h, with a relative
uncertainty lower than 10~ which is used as an electrical resistance standard [WK11;
JJ06]. Besides, the IQHE and its derivatives (like the fractional quantum Hall effect)
are now used as a platform for the fundamental study of quantum mechanics (in par-
ticular of the decoherence) in the field of electronic quantum optics [BFPB13] and to
develop quantum computation [Kit03; NSSF08; JOPS10].



Figure 1.2: Topology of 2D surfaces. A bowl and a sphere have genus g = 0. A coffee
cup and a torus have genus g = 1.

First, we shall review the “classical” Hall effect. When a two-dimensional electron
gas is submitted to a transverse magnetic field B, the in-plane current density J and
electric field F are related in linear response by

Ju = O-MIJEV (11)
where o is the 2 x 2 conductivity tensor. Within the semiclassical Drude theory (see
e.g. [Pot07])

(o} 1 WeT
= 1.2
7T+ (wer)? (—wcT 1 > (1.2)
where )
ne-t
= 1.3
70 ="C (13)

is the conductivity at zero magnetic field,

We =

s (1.4)
is the cyclotron pulsation, proportional to the magnetic field, n is the electron den-
sity, 7 is a relaxation time (a characteristic time for the relaxation to equilibrium,
essentially due to collision processes), m* the effective mass of the electrons and e
the fundamental charge. When the magnetic field is strong enough or the relaxation
time is large enough so that w.7 > 1, the diagonal components 0,, and o, can be
neglected with respect to the antidiagonal components 0., = —0y,; in this case, the
Hall conductance can be approximated as o4, = % v where we have defined the di-
mensionless parameter v = hn/eB. Experimentally, the different components of the
conductivity tensor are usually probed in a Hall bar setup, see figure 1.3, which enables
to escape issues due to contact resistances and to probe both the longitudinal and



Hall conductances (in two dimensions, conductances and conductivities are related
through a dimensionless geometric factor (when the conductivity tensor is uniform in
the sample), which is in fact 1 in the case of the Hall conductance [Goell]).
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Figure 1.3: Hall bar setup. In the Hall bar setup, a current [ is driven through the
sample by terminals 1 and 4. In the meantime, the longitudinal tension Ur, between
e.g. leads 2 and 3 is measured, as well as the transverse tension Uy between e.g.
leads 3 and 5. The longitudinal and Hall resistances are obtained by Ry, = Uy, /I and
Ry =Uy/I.

A surprising behavior, called the quantum Hall effect, happens when a weakly
disordered electron gas is put in a high magnetic field at low temperature (when
hwe > kpT): in 1980, von Klitzing, Dorda and Pepper [KDP80] observed that the
Hall conductance o, against the inverse magnetic field 1/B displays plateaus, where
the value of o,, is quantized with an extremely high precision to integer multiples of
e?/h, i.e.

Oay = 4 1% with 7 € Z. (1.5)

The integer # is the quantity v = hn/eB rounded to the nearest integer, and the
Hall conductance o, jumps from one plateau to another. The transitions between
plateaus are accompanied by a peak in the longitudinal conductance o,,, which van-
ishes otherwise, as represented on figure 1.4. Experimentally, it is usual to measure
the Hall resistivity p., as well as the longitudinal resistivity ps., components of the
resistivity tensor p = o ~!. This is for example the case in figure 1.5. To connect both
points of view, notice that as long as 0, is nonvanishing (so when B # 0), py, = 0 iff
0ze = 0. Moreover, when o4, (or pg,) vanishes, then p;, = —1/0,, so whenever one
is quantized, the other is too. The quantized value of o, is a universal property: it is
not altered by the precise geometry of the system, nor by the impurities and disorder,
and it is the same, to great precision, in various systems like semiconductor-oxide
interface in MOSFET, semiconductor heterojunctions, or graphene. This universality
and this invariance against perturbations are a clue that the quantized Hall conduc-
tance may be related to a topological invariant. It turns out that it is indeed the case,
and that the quantity 7 is a topological invariant of the ground state of the system,
the “first Chern number associated to the Fermi projector” (see chapter 2).



owy |
e2/h
O—flfil;
2/h 2T
1Ak
0 1 2 3 4

v

Figure 1.4: Simplified view of the quantum Hall effect. In an idealized picture, there
are quantized plateaus of Hall conductance around integer values 7 € Z of the dimen-
sionless ¥ = hn/eB, on which the Hall conductance is equal to 7e?/h. An abrupt
transition happens at half-integer values of v. The longitudinal conductivity vanishes,
except at the transitions between plateaus, where it takes very large values.

To describe the two-dimensional electron gas where the IQHE takes places, a
simplified description neglecting interactions between electrons is sufficient, so we
focus on the one-particle description. The Landau Hamiltonian describing an two-
dimensional electron in a constant magnetic field B is

H:—1 (P +eA)? = L2

II 1.
2m* 2m* (1.6)

where P is the momentum operator, A the vector potential and II = P + eA. It can
be written as an harmonic oscillator Hamiltonian

1 1
H = hw, ata + ) where af = II, +iIl 1.7
(atat 3 (L, +iT1,) (17)

with [a,a'] = Id. Tts spectrum is therefore
1
E, = hw, (n + 2) . (1.8)

Each energy FE,, is strongly degenerate, as there are Ny = A/(2n(%) states with
energy E, in an area A, where {g = \/h/eB is the magnetic length. The set of all
degenerate states with energy F,, is called the nth Landau level, or nth Landau band
when it is broadened by disorder.

Landau levels are in several ways similar to energy bands in an insulating crystal.
They are separated from each other by energy gaps, and contain a large number of
states. In a system with disorder, it is possible to set the chemical potential in a
gap between Landau levels: in this situation, the system resembles a band insulator.
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Figure 1.5: Halland longitudinal resistances in the quantum Hall effect. Experimental
curves of the Hall resistance (in black) and of the longitudinal resistance (in red) in a
GaAs-AlGaAs heterostructure as a function of the magnetic field, at 8 mK. Adapted
from [K1i86].

However, this insulator has peculiar properties, which may be illustrated in a semi-
classical picture (see figure 1.6): in a strong enough magnetic field, states in a Landau
level drift along equipotential lines of the confinement and disorder potentials. In
the bulk, the system is an insulator: an electron is confined to a closed orbit and
cannot carry current. However, at the edge, electrons may move along the interface,
which leads to a global motion. In other words, at the boundary, the confinement
potential bends the otherwise flat Landau bands, so the Landau levels that are below
the chemical potential in the bulk are forced to cross it near the edge. There are
conducting states confined near to the boundary of the sample: the unidirectional
edge states. The boundary of the system is therefore a one-dimensional metal. The
edge modes are chiral (or unidirectional): for example, they may go from the left to
the right, but not the other way around. This chiral behavior may be understood
semi-classically as stemming from skipping cyclotron orbits near the edge [Biit88a]
(see figure 1.6). As a consequence, there are no available states to backscatter to, even
in presence of impurities: the edge states may be deformed in presence of a rough
edge or impurities, but will still move in the same direction without dissipation. The



existence of such robust chiral edge states can be tracked down as stemming from the
nontrivial topology of the states in the bulk. An energy band is a well-defined object,
described by a set of dispersion relations and the corresponding eigenstates (or if we
only keep essential informations, by an energy range and a spectral projector, as we
will see later). As such, it can have a nontrivial topology, encoded in the eigenstates.
In the same way as closed surfaces have a certain number g of holes, an energy band
may have nontrivial topological properties, encoded (in this case) in their first Chern
number C7. A trivial band, e.g. obtained in a tight-binding model with vanishing
tunneling terms, has Chern number zero. This is also the case of the energy bands of
usual materials, like air of vacuum. In contrast, a Landau band has a nonzero Chern
number. This topological property is preserved as long as a band is well-defined, that
is to say, separated from all other bands. When a gap closes and two bands touch each
other, they can exchange their topological properties; for example, two (sub)bands
with opposite Chern numbers can be transformed into two trivial bands when they
touch (so the total Chern number of the two bands is conserved). Otherwise, the
topological properties of bands are robust to perturbations. In particular, this explains
the robustness of the “topologically protected” edge states. The number of edge states
is given by the number of Landau bands under the Fermi level, an observation which
can be generalized as follows: the number of edge states is equal to the total Chern
number of the band(s) below the Fermi level. In transport measurements, the Hall
current is carried by the edge states, each of which happens to contribute as e2/h
to the Hall conductance [Biit88a], which means that o = C in equation (1.5); the
topological nature of this quantity explains the extremely precise quantization of the
Hall plateaus. (I refer the reader to standard reviews [PKG90; DP08; CJOD99;
Goell; DPRO6] for more details on the IQHE.)

The quantum Hall effect is the first example of a more general family of phenomena
called topological insulators, a key feature of which is the appearance of topologically
protected edge states at their boundaries due to the existence of a nontrivial topology
of the bulk bands. This general principle is called the bulk-boundary correspondence:
whenever the bulk is nontrivial, topologically protected edge states appear at the
boundary of a finite sample, and conversely, topologically protected edge states are
due to a nontrivial topology of bulk bands(®).

A disordered electron gas under a strong magnetic field has the disadvantage of not
being easily cast into the framework of Bloch theory. On the one hand, the magnetic
field requires to consider a supercell (for rational values on the dimensionless magnetic
flux), which depends on the magnitude of the field; in a very strong magnetic field, this
leads to the beautiful but complex physics of the Harper-Hofstadter butterfly [Har55;
Hof76]. On the other hand, a disordered system lacks translation invariance and can
therefore not be described within Bloch theory, yet disorder plays a essential role in the
quantum Hall effect: the quantum mechanics of a two-dimensional electron gas under
strong magnetic field without any disorder leads to a completely standard classical
Hall effect. A coherent understanding of the topological nature of the quantum Hall

(D1In fact, when a symmetry is necessary to define the bulk invariant (see later), and in the right
space dimension, it may be possible to have a gapped boundary instead of a gapless boundary
provided the symmetry is broken at the interface, a situation first recognized by Ezawa, Tanaka and
Nagaosa [ETN13].
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Figure 1.6: Skipping orbits and edge state picture. A finite sample may be modeled
by a confinement potential which bends the Landau level near the boundary (here at
y = £W/2). As a consequence, even if the system is a bulk insulator with a chemical
potential fixed between two Landau levels, there will be metallic states crossing the
chemical potential near the boundary (in blue and red), corresponding to edge states.
Such edge states may be pictorially represented as cyclotron orbits bouncing on the
interfaces, which induces a chiral motion. The resulting chiral edge states, which are
a common property of IQHE and Chern (Bloch) insulators, are represented in the
rightmost picture.

effect requires to take into account disorder from the beginning, and defining the
topological invariants requires the framework of noncommutative geometry [BEB94],
a beautiful but conceptually and technically advanced tool. It is however possible
to understand key features of IQHE (and more generally of topological insulators) in
the framework of band theory. Haldane [Hal88] was the first to discover an example
of a model implemented on a lattice, without net magnetic field (so that the full
lattice periodicity is retained, and Bloch theory is applicable), which exhibit the
same topological properties as the quantum Hall effect. Such systems, now called
Chern insulators, are easier to study theoretically, an advantage which has allowed a
series of extensions, among which

— the inclusion of symmetries in the description: symmetries add constraints which
allow for different topological properties;

— the extension to other domains of physics: it was recognized that there may be
analogues of the quantum Hall effect in *He as soon as 1988 by Volovik [Vol88a],
then in photonic crystals by Haldane and Raghu [HR08; RHO08] in 2005); now, it is
understood that analogues of IQHE and of derivatives with other symmetries may
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arise in all systems which support waves (optics, acoustics, mechanics, cold atoms,
and so on);

— the possibility to induce topological properties through e.g. interactions [RQHZ08],
dissipation [RL09; ZRPL15; DRBZ11; BBKR13; BD15; RLL16], or an external
driving (see later).

This list does not aim at completeness, but highlights the three main directions that
I believe are intersecting in this thesis.

The framework of topological Bloch band theory is the following: one associates
to a translation-invariant system a Bloch Hamiltonian H(k), where k is a reciprocal
vector living on the Brillouin zone, which is in fact a torus as k is only defined modulo
reciprocal lattice vectors. The spectrum of H (k) provides a band structure described
by energy levels E;(k), which may exhibit spectral gaps. In this case, a spectral
projector family P(k) describes the eigenstates of the band between two gaps. For
example, a two-by-two Bloch Hamiltonian has eigenstates ¢4 (k) with energies Fy (k);
if B4(k) > pu> E_(k), we define Py (k) = |1 (k)){vb+(k)|. Tt is possible to associate
topological invariants (like the first Chern number) to the projector family P which
do not change even if H is modified as long as the gap does not close.

Now, let us consider a boundary between two topologically inequivalent insulators:
the system is trivial on the left of the boundary whereas it is nontrivial on the right.
Away from the boundary, the system is not aware of the existence of an interface, so
it is a bulk insulator which can be describe as if it were infinite, and (topological)
Bloch theory can be applied. Near the boundary, this description may break down,
but let us accept to use a position-dependent Bloch Hamiltonian, parametrized by
the distance to the interface: in order to pass from a trivial to a nontrivial insulator,
there must be a position near the interface where the gap closes (so the topological
invariants cannot be defined), leading to metallic edges. It is possible to make this
description partially rigorous through the use of Green functions, a method pioneered
by Volovik [Vol88a] and significantly expanded by Gurarie and Essin [Gurll; EG11].
This method was also extended [RLBL13; NR15] to the case of periodically driven
(Floquet) topological phases.

1.2 Symmetries and topological insulators

The study of quantum Hall effects was an established subfield of condensed matter
when a breakthrough was achieved by Kane and Mele in 2005 [KM05a; KMO05b]. They
proposed a “time-reversal invariant version” of the IQHE (breaking time-reversal in-
variance is a crucial ingredient of IQHE/Chern insulators), which they called “quan-
tum spin Hall effect” (QSHE). Here, the crucial ingredients appear to be a band
inversion near a symmetric point of the Brillouin zone and a strong spin-orbit cou-
pling, which effectively generate a momentum- and spin-dependent magnetic field. A
year later, Bernevig, Hughes and Zhang [BHZ06] proposed an experimental realiza-
tion in HgTe-CdTe quantum wells, which was experimentally achieved the following
year by Konig and collaborators [KWBRO07], in Molenkamp group (see figure 1.7).
It was discovered by Fu, Kane and Mele [FKMO7], Roy [Roy09], Moore and Balents
[MBO07], that the time-reversal invariant topological insulator or QSHE has an equiva-
lent in three dimensions, which was soon to be experimentally observed in Bi,_Sb, by
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Figure 1.7: Transport signature of topological edge states in the QSHE in HgTe quan-
tum wells. Longitudinal four-terminal resistance R4 23 with respect to the gate
voltage Vy — Vier in a trivial (black curve) and in topological (red, green and blue
curves) HgTe-CdTe quantum well, at 30 mK. In the topological situation (when there
is a band inversion), Ri423 reaches a quantized value of 2 e?/h, as expected from
the Landauer-Bittiker formalism applied to the edge state transport (except in the
blue curve, corresponding to a larger sample where the conductance is reduced by
inelastic processes causing backscattering). In the trivial situation (black curve), the
resistance is very high in the gap, which is the expected behavior of a conventional
insulator. Adapted from [KWBRO7]. Reprinted with permission from AAAS.

Hsieh and collaborators [HQWX08] in Hasan group with angle-resolved photoemis-
sion spectroscopy (ARPES) measurements. They observed the signature of surface
states: a Dirac dispersion relation of surface electrons for energies in the bulk gap
of the material, as predicted by the topological band theory. Several other materi-
als with a nontrivial 3D Kane-Mele topology were subsequently discovered, among
which Bi,Ses; we reproduce in figure 1.8 an experimental ARPES spectrum of the
topological surface states of this material from [XQHWO09].

In a time-reversal invariant (TRI) electronic system, it is not possible to have a
nontrivial Chern insulator. Time-reversal is represented as an antiunitary operator ©,
with ©2 = —Id for particles with half-integer spin. In a time-reversal invariant system,
the Bloch Hamiltonian respects O H (k)©~! = H(—k), so any eigenstate (k) of H(k),
has a Kramers partner O (k) which is an eigenstate of H(—k). The contribution of
Kramers partners in the Chern insulator topology are opposite and cancel out. As
was shown by Kane and Mele, however, it is possible to somehow overcome this
cancellation by defining a finer invariant, characterizing the topology of TRI systems.
The simplest way to understand the Kane-Mele topology is probably through its
most striking physical consequence, in terms of edge states. While Chern insulators
have characteristic chiral edge states on the boundary, Kane-Mele insulators exhibit
helical edge states, which are essentially a Kramers pair of chiral edge states with
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Figure 1.8: ARPES signature of topological surface states in Bi,Se;. ARPES spectrum
of 2D surface electronic band dispersion of the three-dimensional time-reversal invari-
ant topological insulator Bi,Se; (111) near the I' point, along the T — M (left) and
I'— K (right) cuts of the surface Brillouin zone. This data proves the existence of sur-
face states with linear dispersion in the bulk gap of Bi,Se;. Adapted from [XQHWO09].
Reprinted by permission from Macmillan Publishers Ltd, Nature Physics, copyright
20009.

opposite chiralities (see figure 1.9). As the counter-propagating edge states form a
Kramers pair, backscattering from an edge state to its counter-propagating partner
is not allowed. As long as time-reversal invariance (with ©2 = —Id) is not broken, in
space dimensions d = 2 and 3, a topological quantity called the Kane-Mele invariant
KM € Z, (associated to the valence band) can be defined. In terms of the edge
states, it means that one Kramers pair of edge state is topologically distinct from no
edge state, but that two Kramers pairs of edge states are topologically equivalent to
no edge state, as backscattering is allowed in this case (this is why KM € Zj). In
fact, the Kane-Mele invariant can be defined without starting from a situation where
spin is conserved, and it is even possible to conceive a toy model with only spin-non-
conserving terms which is time-reversal invariant and topologically nontrivial from
the point of view of Kane-Mele topology.

A particular example may be helpful to illustrate what happens: when spin is
conserved, it is possible to associate first Chern numbers C4| to each spin species. In
a time-reversal invariant system, Cy = —C|. When C}; = —C| = 1, a Chern insulating
phase occurs for each spin species, giving rise in a finite sample to a Kramers pair
of a right-handed edge state with spin up associated to a left-moving edge state with
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Figure 1.9: Edge states of a Kane-Mele insulator. In a Kane-Mele insulator (also called
QSHE state), there are two counter-propagating helical edge states which form a
Kramers pair on each interface. As a consequence, backscattering from an edge state
to its counter-propagating partner is not allowed.

spin down. In this situation, the Kane-Mele invariant simplifies into

@ mod. 2 = C4 mod. 2. (1.9)

KM =
If we start from this situation and turn on time-reversal invariant spin-flip pertur-
bations, spin is no more conserved. Hence, neither C4 nor C| remain well-defined.
However, the Kane-Mele invariant KM remains well-defined and does not change as
long as the gap separating the valence band from the conduction band remains open
(and time-reversal invariance is preserved).

Kane and Mele discovery (along with the discovery of graphene in 2004) focused
the attention of the condensed matter community on topological physics, and a huge
volume of results have been produced (or rediscovered ...) since then (good reviews
include [Lud15; CTSR15; HK10; QZ11; BLD16]). It was realized that (i) there are
systems analogous to IQHE in other dimension than d = 2 and (ii) symmetries give
rise to different/finer topological invariants, which led to express known phenomena
such as domain walls in the Su-Schrieffer-Heeger model of polyacetylene [SSH79] or
unpaired Majorana fermions in the Kitaev chain [Kit01] in the language of topological
insulators, and to conceive and realize new kinds of topological insulators.

A milestone in the topic of topological phases was achieved by Schnyder, Ryu,
Furusaki and Ludwig [SRFL08; SRFL09; RSFL10] and Kitaev [Kit09], who devel-
oped a classification of topological phases according to their non-spatial symmetries,
leading to the so-called “periodic table of topological insulators”. The main idea
is that there are three fundamental symmetries which act only on the internal de-
grees of freedom (locally on space), which are time-reversal O, charge conjugation
C (also called particle-hole symmetry) and chiral symmetry I" (which is related to
© and C by T' = OC if they are defined, possibly up to a phase). Time-reversal
and charge-conjugation © and C' are antiunitary operators which can square to +Id
or —Id, whereas T' is unitary (but is not a unitarily implemented symmetry as it
anticommutes with the Hamiltonian). There are ten ways to combine all the possi-
ble symmetries of a one-particle Hamiltonian H, which are called symmetry classes
(they were already discovered by Altland and Zirnbauer in the context of disordered
systems [AZ97], and related to Cartan symmetric spaces). For example, the Hamil-
tonian may have no such symmetry at all: it is said to be in class A, and examples in
two dimensions are the IQHE and Chern insulators. Another possibility is that H is
time-reversal invariant with a time-reversal operator squaring to —Id, but there are
no charge conjugation symmetry and no chiral symmetry: then H is in class AIl, this
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is the case of Kane-Mele insulators. Different approaches were developed to obtain
this classification: Schnyder, Ryu, Furusaki and Ludwig [SRFL08; SRFL09; RSFL10]
used an approach based on the (lack of) Anderson localization of the low-energy Dirac
edge states of a topological insulator, whereas the K-theoretic approach developed by
Kitaev [Kit09] focuses on the classification of equivalent bulk Hamiltonians. The
agreement of the results of both approaches is not a trivial fact, and is the core of
bulk-boundary correspondence. Another point of view on this classification based on
anomalies has emerged from the study of the electromagnetic response of the quan-
tum Hall effect, and more generally of the study of gauge fields coupled to topological
insulator [RML12]. Spatial/crystallographic symmetries (which are unitary realized)
also constrain and enrich the possible topological properties, but in a less robust way:
the bulk-boundary correspondence in this case is only valid for boundaries which are
invariant under the relevant symmetry, at least on average. Despite a lot of activ-
ity, partially reviewed in [CTSR15] (see also the more recent papers [WL16; SSG15;
DL16]) a full classification of these refined topological phases is, to the knowledge of
the author, not yet achieved.

1.3 Topological phases outside solid-state physics

Linear waves propagating in a spatially periodic structure are described within Bloch
theory by dispersion relations w(k) which organize in a band structure, in analogy
with electrons in a crystal. Hence, they can support topological invariants and host
topological edge states in a finite sample, provided there may be phase interfer-
ences between the waves and the relevant phase structure can be engineered in the
medium. As a nontrivial topology manifests itself in particular geometrical phase
patterns, which are at the origin of edge states, this is is not a surprise: geometri-
cal phases (Pancharatnam—Berry phases [Pan56; Ber84] and Hannay angles [Han85])
were known to appear in classical systems as well as in quantum systems [CJ04].
Such behavior was predicted (and often observed) in a variety of systems, includ-
ing mechanical systems [PP09; BJKP11; KL13; CUV14; VUG14; PCV15; SH15;
NKRV15], acoustic waves [YGSL15; KFMA15; FKA15; XMYS15], light and elec-
tromagnetic waves [HR08; RH08; WCJS09; HDLT11; KMTK12; FYF12; RZPL13;
HMFM13; LJS14; MGFV16; CIJNM16], optomechanical systems [PBSM15], cold
atoms [JMDL14; ALSA14; AALB13; MSKB13], linear electrical circuits [NOSS15;
AGJ15] and (bio)chemical reaction networks [MV16]. This set of investigations has a
considerable importance, as it was understood (and confirmed experimentally) that
the topological properties of a Bloch band structure and the corresponding edge states
are essentially wave properties which may be found in all domains of physics, raising
considerable interest in the domain, with fascinating fundamental discoveries as well
as promising forthcoming applications.
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1.3.1 Electromagnetic waves: photonic crystals in the optical and microwave do-
mains

A fruitful analogy between optical and electronic systems [HL90; JJWM11] started
to emerge in the ’80s, especially after the conceptualization of the notion of pho-
tonic crystals [Yab87; Joh87], characterized by a photonic band structure which can
have photonic band gaps, in analogy with electronic band structures. The main idea
[JJWM11; NL14] is that the dynamical Maxwell equations can be cast to the form of
a Schrodinger equation

i0p) = M1 (1.10)

where the Maxwell operator M and the electromagnetic field ¢ are defined as

E e 0\ ! 0 icurl
oo(B) w0 ) o

Here, F and H are, respectively, the mesoscopic electric and magnetic vector fields,
€ and p are, respectively, the local dielectric permittivity and magnetic permeability
tensors, which describe the response of the material where the electromagnetic field
propagates. They are assumed to be independent of time, but may vary in space.
In bi-anisotropic and bi-isotropic materials like optically active media, the Maxwell
operator also has diagonal components. In absence of sources, the two other Maxwell
equations yield the constraints div(uH) = 0 and div(eE) = 0. Squaring the Maxwell-
Schrodinger equation leads to the second-order wave equation

(0} + M) =0 (1.12)

where the evolutions of the electric and magnetic fields are decoupled. In a photonic
crystal, the permittivity and permeability e(x) and p(z) depend periodically on space.
A Fourier transform can be applied to reduce the Maxwell operator M into a family
of Bloch Maxwell operators M (k), where k is the quasimomentum, the eigenvalues of
which give the dispersion relation w, (k) of the photonic crystal.

Haldane and Raghu [HR08; RHOS8] realized in 2005 that it is be possible to in-
duce topologically nontrivial bands in such a gapped photonic crystal if time-reversal
symmetry is broken through Faraday rotation in a gyromagnetic medium where p
is not a symmetric tensor(®. This idea was experimentally confirmed [WCJS09] by
Wang, Chong, Joannopoulos and Soljac¢i¢, who observed unidirectional electromag-
netic modes immune to backscattering. They used a lattice of ferrite rods with a radius
of the order of the centimeter submitted to a magnetic field to realize a topologically
nontrivial photonic crystal in the microwave regime. With scattering measurements
using two antennas and a network analyzer, which basically sends and receives mi-
crowave light to measure the scattering matrix, they demonstrated the existence of
non-reciprocal (or chiral) modes located near the edge, in agreement with theoretical
predictions, see figures 1.11 and 1.10. By adding a metallic obstacle, they also showed
the robustness of this topological chiral edge state.

(Q)Usually, the permeability and permittivity are symmetric tensors. However, in an external
magnetic field Bp, the tensors € and p may fail to be symmetric: in this case, the medium is said
to be gyrotropic. The reversal of magnetic field transposes the tensors, as e(—Bg) = €I (Bg) and
u(—=Bo) = uT(Bp). When only p (resp. ¢€) is concerned, the material is said to be gyromagnetic
(resp. gyroelectric).
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Figure 1.10: Photonic crystal with an edge and probe antennas. The photonic crystal
used by [WCJS09] is composed of ferrimagnetic rods put in a magnetic field. An
interface is realized by a metal wall, which plays the same role that an interface
with vacuum in electronic systems (air or vacuum would allow radiation loss). Two
antennas are used to measure the backward and forward transmissions of microwave
light in the photonic crystal. Either the bulk (with antenna A’ and B’) or the edge
(with antenna A and B) can be probed this way (see figure 1.11). This allowed Wang
and collaborators [WCJS09] to demonstrate the existence of non-reciprocal (or chiral)
modes located near the edge, in agreement with the theoretical predictions.

An important amount of theoretical and experimental investigations followed this
work; a recent review is [LJS14]. From the fundamental point of view, the classifi-
cation of photonic topological insulators was studied by De Nittis and Lein [NL14].
Microwave systems like the one used by Wang and collaborators were also employed
to experimentally realize the merging of Dirac cones [BKMM13] and to observe weak
topological effects [BKMM14] in artificial graphene. At microwave wavelength, a
network analyzer allows to probe the phase structure of eigenstates, which is par-
ticularly interesting to probe topological phases. This kind of scattering experiment
was carried out by Hu et al. [HPWP15] in a system of optical ring resonators [LC13]
described as a Chalker-Coddington-like [CC88; HC96] directed scattering network
[PC14; TD15].

Another branch of development of this field is particularly relevant here. For visible
light, the gyrotropic effects are usually very small, so the extension of the method
used by Wang et al. [WCJS09] seems to be experimentally challenging. A way to
circumvent this difficulty was proposed and experimentally realized by Rechtsman and
collaborators [RZPL13], who used helical waveguides arranged on an two-dimensional
lattice to realize a two-dimensional Floquet topological insulator. In their setup, the
spatial direction along which light propagates (along the waveguides) does not play
the same role as the two orthogonal directions, so the system is better described by
a specialization of the dynamical Maxwell equations. Such waveguides are obtained
by illuminating a glass like silica with ultrashort laser pulses, which slightly modify
the refraction index from its initial value ngy to a spatially dependent ng + dn(x).
This allows to produce well-controlled waveguides for visible light. In the paraxial
approximation where light essentially propagates along the waveguide axis z, the
Helmholtz equation governing the spatial part ¢ of a monochromatic electromagnetic
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Figure 1.11: Scattering signature of chiral photonic edge states. The (projected) pho-
tonic band structure for transverse magnetic modes f(k) sketched in (b) of the pho-
tonic crystal designed by [WCJS09] exhibits topological gaps, supporting topological
edge states (in red). A signature of such edge states is obtained by carrying out scat-
tering measurements: in the bulk (a), the transmission is reciprocal, as there is no
significant discrepancy between the forwards transmission (in blue) and backwards
transmission (in red). (c) In contrast, on the edge, the backwards transmission is
much smaller than the forwards transmission. In the band structure (b), the first
Chern numbers of bands are indicated as blue integers. They are compatible with
the existence of the red edge state. An additional edge state should appear in the
gap separating the two bands with largest frequencies; however, [WCJS09] explain
that such bands have ill-defined band-edges due to a large absorption near the fer-
romagnetic resonance, which is probably the reason why this additional edge mode
is not indicated. Adapted from [WCJS09]. Reprinted by permission from Macmillan
Publishers Ltd, Nature, copyright 2009.
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field ¥(t, ) = ¢(x)e ™t at frequency w takes the form
kzoén

no

0.6 = V3o - 2y (1.13)
0

where V| = 0% + 873, ko = 2mng/A, and A = 27wc/w is the vacuum wavelength of the
radiation. The propagation of light along such a waveguide is similar to an evolution
in time, with time ¢ is replaced by the distance of propagation z along the waveguide
axis. The equation of propagation is similar to the Schrodinger equation where the
space-dependent refraction index plays the role of a potential (see e.g. [Lon09; SN10]
for details). For example, when two such waveguides are sufficiently close to each
other, they can exchange light by evanescent coupling: as a consequence, light ini-
tially sent into one waveguide will oscillate between the two waveguides, in a process
similar to the Rabi oscillations. Hence, on the one hand, and as long as waveguides
are not too strongly coupled, it is possible to describe an arrangement of parallel
waveguides by a coupled-mode theory analogous to the tight-binding approximation
in solid-sate physics (see e.g. [YY06; SN10]). On the other hand, the helical form of
the waveguides can be taken into account in this tight-binding-like description as a
periodic modulation of the coupled-mode/tight-binding parameters in the direction
of propagation (see e.g. [Lon09; SN10]). The equations of propagation are therefore
formally equivalent to the equation of evolution of a tight-binding Hamiltonian pe-
riodically modulated in time. A sinusoidal modulation of the waveguide mimics the
interaction of an electron with a linearly polarized electric field. The helical waveg-
uides used by Rechtsman and collaborators correspond to a circular polarization.
They indeed observed, for the right set of parameters, a chiral propagation of light
on the edge of the system, even when defects are added.

1.3.2 Mechanical waves: phonons in bead-spring lattices

Following the seminal work of Prodan and collaborators [PP09; BJKP11] who identi-
fied topological phonon modes in systems inspired from biology, Kane and Lubensky
[KL13] developed a framework to characterize the topological properties of beads
and spring systems, in analogy with electronic systems. In particular, they provided
a (physically) precise statement of the bulk-boundary correspondence in mechani-
cal lattices. In such a mechanical lattice, beads connected to each other by Hookean
springs are positioned in a spatially periodic fashion. The harmonic oscillations about
the equilibrium positions are decomposed into phonon modes. As the system is spa-
tially periodic, the phonon spectrum organizes into Bloch bands w;(k), where k is the
quasimomentum, and an isolated Bloch band can be topologically nontrivial. The
mechanical lattice possesses two kinds of degrees of freedom: the displacements of
the beads and the extensions of the bonds, defined with respect to the equilibrium
configuration. There is a geometrical relation between the displacements wu; and the
extensions e,,, contained in the rigidity matriz R defined by

Similarly, the geometrical relation between the tensions T, of the bonds and the forces