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Chapter 1

Introduction
1 General introduction
The study of physical phenomena usually involves local observables or correlations be-
tween local quantities. In some instances however, certain “global” quantities which
do not depend on the details of the local description are required. In solid state
physics, topological tools were first used to study defects in an ordered phase [Mer79].
Such an ordered phase of matter is characterized by an order parameter, and topo-
logical defects appear as particular configurations of the order parameter field with
singularities. As an example, consider a two-dimensional film of superfluid 4He, which
is described by a complex order parameter field ψ(x) = ψ0(x) eiθ(x) characterizing the
breaking of U(1) symmetry. An example of defect associated with such a U(1) order
parameter in two dimensions is a vortex, where the order parameter ψ vanishes. The
circulation around this defect is an integer called the topological charge of the vortex.
It measures how many time the phase θ(x) winds along a curve surrounding the vor-
tex. The topological charge is not sensitive to the precise configuration of the order
parameter field: it is left invariant by smooth modifications of the order parameter
field inside the region encircled by the curve. This is the reason why it is referred to
as a topological quantity.

In general, topology is concerned with global properties which are invariant under a
certain kind of transformations, like smooth deformations. Such global properties may
distinguish objects which look locally similar, or gather objects which look different
at first sight. The usual example of such a global property is the number of holes
(or genus g) of a two-dimensional surface (see figures 1.1 and 1.2). For example,
a sphere has no hole, whereas a torus has one hole: it is not possible to smoothly
deform a sphere into a torus. To make the notion of topologically equivalent objects
precise, it is necessary to specify what are the allowed transformations: for the sake of
this introduction, we will only rely on an intuitive picture. Imagine that objects are
made of modeling clay: allowed transformations consist in deforming the clay without
drastic modification like tearing it or gluing two parts together. Hence, a coffee cup
has a handle, so it corresponds to a genus 1 surface, which can be deformed into a
torus without such drastic modification. This topological classification explains, for
example, why a genus 1 donut tastes different than a genus 3 pretzel.

The topological character of vortices provides them with a robustness (against
smooth deformations of the configuration of the order parameter) which allows to
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g = 0 g = 1 g = 2

Figure 1.1: Genus of some 2D surfaces. The genus g of a closed 2D surface essentially
counts the number of “holes” or “handles” in the surface. A sphere has no hole (genus
0), a torus has one hole (genus 1), and so on. If fact, any orientable closed surface
(two-dimensional manifold) is homeomorphic to a connected sum of g tori. It is related
to the Euler characteristic of the surface χ = 2 − 2g, an homological invariant which
can be computed as the integrated local curvature through the Chern-Gauss-Bonnet
theorem.

treat them as independent objects, behaving similarly to electric charges: as one
would expect, two vortices with opposite topological charges can annihilate when
they meet, and a vortex with charge +2 can break down into two vortices with charge
+1, and so on, leading to a very fruitful analogy. In the case of defects, topological
methods are used to characterize different configurations of a given ordered phase. It
happens that topology may also serve a completely different purpose and distinguish
different phases of matter in a situation where their symmetries are the same and
no order parameter can be used to differentiate between them. This is the case of
topological phases of matter like the quantum Hall effect, that we shall discuss in the
next section.

1.1 The quantumHall effect

We wish to focus on a particular application of topology in condensed matter, which
started with the discovery of the quantum Hall effect by von Klitzing, Dorda and Pep-
per [KDP80] in 1980, the topological nature of which was soon recognized by TKNN
(Thouless, Kohmoto, Nightingale and den Nijs) [TKNN82] and Avron, Seiler and Si-
mon [ASS83; Sim83]. This discovery opened a new field in condensed matter and
beyond. The interest in the quantum Hall effect comes from multiple points of view.
First, there is a fundamental interest, both from theoreticians and experimentalists.
The integer quantum Hall effect is the first example of a phase of matter escaping
the Landau paradigm, as it is not associated with a local order parameter. Moreover,
it is described by a beautiful theory which connects relatively modern mathematical
constructs to experimentally realizable situations. Third, there is a practical interest
from metrology, as the integer quantum Hall effect (IQHE) provides an extremely
precise and reproducible measure of the fundamental constant e2/h, with a relative
uncertainty lower than 10−9, which is used as an electrical resistance standard [WK11;
JJ06]. Besides, the IQHE and its derivatives (like the fractional quantum Hall effect)
are now used as a platform for the fundamental study of quantum mechanics (in par-
ticular of the decoherence) in the field of electronic quantum optics [BFPB13] and to
develop quantum computation [Kit03; NSSF08; JOPS10].
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Figure 1.2: Topology of 2D surfaces. A bowl and a sphere have genus g = 0. A coffee
cup and a torus have genus g = 1.

First, we shall review the “classical” Hall effect. When a two-dimensional electron
gas is submitted to a transverse magnetic field B, the in-plane current density J and
electric field E are related in linear response by

Jµ = σµνEν (1.1)

where σ is the 2 × 2 conductivity tensor. Within the semiclassical Drude theory (see
e.g. [Pot07])

σ = σ0
1 + (ωcτ)2

(
1 ωcτ

−ωcτ 1

)
(1.2)

where
σ0 = ne2τ

m∗ (1.3)

is the conductivity at zero magnetic field,

ωc = eB

m∗ (1.4)

is the cyclotron pulsation, proportional to the magnetic field, n is the electron den-
sity, τ is a relaxation time (a characteristic time for the relaxation to equilibrium,
essentially due to collision processes), m∗ the effective mass of the electrons and e
the fundamental charge. When the magnetic field is strong enough or the relaxation
time is large enough so that ωcτ ≫ 1, the diagonal components σxx and σyy can be
neglected with respect to the antidiagonal components σxy = −σyx; in this case, the
Hall conductance can be approximated as σxy = e2

h ν where we have defined the di-
mensionless parameter ν = hn/eB. Experimentally, the different components of the
conductivity tensor are usually probed in a Hall bar setup, see figure 1.3, which enables
to escape issues due to contact resistances and to probe both the longitudinal and
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Hall conductances (in two dimensions, conductances and conductivities are related
through a dimensionless geometric factor (when the conductivity tensor is uniform in
the sample), which is in fact 1 in the case of the Hall conductance [Goe11]).

2 3

6 5

1 4

V

UL

V UH
I I

Figure 1.3: Hall bar setup. In the Hall bar setup, a current I is driven through the
sample by terminals 1 and 4. In the meantime, the longitudinal tension UL between
e.g. leads 2 and 3 is measured, as well as the transverse tension UH between e.g.
leads 3 and 5. The longitudinal and Hall resistances are obtained by RL = UL/I and
RH = UH/I.

A surprising behavior, called the quantum Hall effect, happens when a weakly
disordered electron gas is put in a high magnetic field at low temperature (when
ℏωc ≫ kBT ): in 1980, von Klitzing, Dorda and Pepper [KDP80] observed that the
Hall conductance σxy against the inverse magnetic field 1/B displays plateaus, where
the value of σxy is quantized with an extremely high precision to integer multiples of
e2/h, i.e.

σxy = e2

h
ν̃ with ν̃ ∈ Z. (1.5)

The integer ν̃ is the quantity ν = hn/eB rounded to the nearest integer, and the
Hall conductance σxy jumps from one plateau to another. The transitions between
plateaus are accompanied by a peak in the longitudinal conductance σxx, which van-
ishes otherwise, as represented on figure 1.4. Experimentally, it is usual to measure
the Hall resistivity ρxy as well as the longitudinal resistivity ρxx, components of the
resistivity tensor ρ = σ−1. This is for example the case in figure 1.5. To connect both
points of view, notice that as long as σxy is nonvanishing (so when B ̸= 0), ρxx = 0 iff
σxx = 0. Moreover, when σxx (or ρxx) vanishes, then ρxy = −1/σxy so whenever one
is quantized, the other is too. The quantized value of σxy is a universal property: it is
not altered by the precise geometry of the system, nor by the impurities and disorder,
and it is the same, to great precision, in various systems like semiconductor-oxide
interface in MOSFET, semiconductor heterojunctions, or graphene. This universality
and this invariance against perturbations are a clue that the quantized Hall conduc-
tance may be related to a topological invariant. It turns out that it is indeed the case,
and that the quantity ν̃ is a topological invariant of the ground state of the system,
the “first Chern number associated to the Fermi projector” (see chapter 2).
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Figure 1.4: Simplified view of the quantum Hall effect. In an idealized picture, there
are quantized plateaus of Hall conductance around integer values ν̃ ∈ Z of the dimen-
sionless ν = hn/eB, on which the Hall conductance is equal to ν̃e2/h. An abrupt
transition happens at half-integer values of ν. The longitudinal conductivity vanishes,
except at the transitions between plateaus, where it takes very large values.

To describe the two-dimensional electron gas where the IQHE takes places, a
simplified description neglecting interactions between electrons is sufficient, so we
focus on the one-particle description. The Landau Hamiltonian describing an two-
dimensional electron in a constant magnetic field B is

H = 1
2m∗ (P + eA)2 = 1

2m∗ Π2 (1.6)

where P is the momentum operator, A the vector potential and Π = P + eA. It can
be written as an harmonic oscillator Hamiltonian

H = ℏωc

(
a†a+ 1

2

)
where a† = 1√

2ℏeB
(Πx + iΠy) (1.7)

with [a, a†] = Id. Its spectrum is therefore

En = ℏωc

(
n+ 1

2

)
. (1.8)

Each energy En is strongly degenerate, as there are NA = A/(2πℓ2
B) states with

energy En in an area A, where ℓB =
√
ℏ/eB is the magnetic length. The set of all

degenerate states with energy En is called the nth Landau level, or nth Landau band
when it is broadened by disorder.

Landau levels are in several ways similar to energy bands in an insulating crystal.
They are separated from each other by energy gaps, and contain a large number of
states. In a system with disorder, it is possible to set the chemical potential in a
gap between Landau levels: in this situation, the system resembles a band insulator.
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Figure1.5: Hall and longitudinal resistances in thequantumHall effect. Experimental
curves of the Hall resistance (in black) and of the longitudinal resistance (in red) in a
GaAs-AlGaAs heterostructure as a function of the magnetic field, at 8 mK. Adapted
from [Kli86].

However, this insulator has peculiar properties, which may be illustrated in a semi-
classical picture (see figure 1.6): in a strong enough magnetic field, states in a Landau
level drift along equipotential lines of the confinement and disorder potentials. In
the bulk, the system is an insulator: an electron is confined to a closed orbit and
cannot carry current. However, at the edge, electrons may move along the interface,
which leads to a global motion. In other words, at the boundary, the confinement
potential bends the otherwise flat Landau bands, so the Landau levels that are below
the chemical potential in the bulk are forced to cross it near the edge. There are
conducting states confined near to the boundary of the sample: the unidirectional
edge states. The boundary of the system is therefore a one-dimensional metal. The
edge modes are chiral (or unidirectional): for example, they may go from the left to
the right, but not the other way around. This chiral behavior may be understood
semi-classically as stemming from skipping cyclotron orbits near the edge [Büt88a]
(see figure 1.6). As a consequence, there are no available states to backscatter to, even
in presence of impurities: the edge states may be deformed in presence of a rough
edge or impurities, but will still move in the same direction without dissipation. The
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existence of such robust chiral edge states can be tracked down as stemming from the
nontrivial topology of the states in the bulk. An energy band is a well-defined object,
described by a set of dispersion relations and the corresponding eigenstates (or if we
only keep essential informations, by an energy range and a spectral projector, as we
will see later). As such, it can have a nontrivial topology, encoded in the eigenstates.
In the same way as closed surfaces have a certain number g of holes, an energy band
may have nontrivial topological properties, encoded (in this case) in their first Chern
number C1. A trivial band, e.g. obtained in a tight-binding model with vanishing
tunneling terms, has Chern number zero. This is also the case of the energy bands of
usual materials, like air of vacuum. In contrast, a Landau band has a nonzero Chern
number. This topological property is preserved as long as a band is well-defined, that
is to say, separated from all other bands. When a gap closes and two bands touch each
other, they can exchange their topological properties; for example, two (sub)bands
with opposite Chern numbers can be transformed into two trivial bands when they
touch (so the total Chern number of the two bands is conserved). Otherwise, the
topological properties of bands are robust to perturbations. In particular, this explains
the robustness of the “topologically protected” edge states. The number of edge states
is given by the number of Landau bands under the Fermi level, an observation which
can be generalized as follows: the number of edge states is equal to the total Chern
number of the band(s) below the Fermi level. In transport measurements, the Hall
current is carried by the edge states, each of which happens to contribute as e2/h
to the Hall conductance [Büt88a], which means that ν̃ = C1 in equation (1.5); the
topological nature of this quantity explains the extremely precise quantization of the
Hall plateaus. (I refer the reader to standard reviews [PKG90; DP08; CJOD99;
Goe11; DPR06] for more details on the IQHE.)

The quantum Hall effect is the first example of a more general family of phenomena
called topological insulators, a key feature of which is the appearance of topologically
protected edge states at their boundaries due to the existence of a nontrivial topology
of the bulk bands. This general principle is called the bulk-boundary correspondence:
whenever the bulk is nontrivial, topologically protected edge states appear at the
boundary of a finite sample, and conversely, topologically protected edge states are
due to a nontrivial topology of bulk bands(1).

A disordered electron gas under a strong magnetic field has the disadvantage of not
being easily cast into the framework of Bloch theory. On the one hand, the magnetic
field requires to consider a supercell (for rational values on the dimensionless magnetic
flux), which depends on the magnitude of the field; in a very strong magnetic field, this
leads to the beautiful but complex physics of the Harper-Hofstadter butterfly [Har55;
Hof76]. On the other hand, a disordered system lacks translation invariance and can
therefore not be described within Bloch theory, yet disorder plays a essential role in the
quantum Hall effect: the quantum mechanics of a two-dimensional electron gas under
strong magnetic field without any disorder leads to a completely standard classical
Hall effect. A coherent understanding of the topological nature of the quantum Hall

(1)In fact, when a symmetry is necessary to define the bulk invariant (see later), and in the right
space dimension, it may be possible to have a gapped boundary instead of a gapless boundary
provided the symmetry is broken at the interface, a situation first recognized by Ezawa, Tanaka and
Nagaosa [ETN13].
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Figure 1.6: Skipping orbits and edge state picture. A finite sample may be modeled
by a confinement potential which bends the Landau level near the boundary (here at
y = ±W/2). As a consequence, even if the system is a bulk insulator with a chemical
potential fixed between two Landau levels, there will be metallic states crossing the
chemical potential near the boundary (in blue and red), corresponding to edge states.
Such edge states may be pictorially represented as cyclotron orbits bouncing on the
interfaces, which induces a chiral motion. The resulting chiral edge states, which are
a common property of IQHE and Chern (Bloch) insulators, are represented in the
rightmost picture.

effect requires to take into account disorder from the beginning, and defining the
topological invariants requires the framework of noncommutative geometry [BEB94],
a beautiful but conceptually and technically advanced tool. It is however possible
to understand key features of IQHE (and more generally of topological insulators) in
the framework of band theory. Haldane [Hal88] was the first to discover an example
of a model implemented on a lattice, without net magnetic field (so that the full
lattice periodicity is retained, and Bloch theory is applicable), which exhibit the
same topological properties as the quantum Hall effect. Such systems, now called
Chern insulators, are easier to study theoretically, an advantage which has allowed a
series of extensions, among which

– the inclusion of symmetries in the description: symmetries add constraints which
allow for different topological properties;

– the extension to other domains of physics: it was recognized that there may be
analogues of the quantum Hall effect in 3He as soon as 1988 by Volovik [Vol88a],
then in photonic crystals by Haldane and Raghu [HR08; RH08] in 2005); now, it is
understood that analogues of IQHE and of derivatives with other symmetries may
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arise in all systems which support waves (optics, acoustics, mechanics, cold atoms,
and so on);

– the possibility to induce topological properties through e.g. interactions [RQHZ08],
dissipation [RL09; ZRPL15; DRBZ11; BBKR13; BD15; RLL16], or an external
driving (see later).

This list does not aim at completeness, but highlights the three main directions that
I believe are intersecting in this thesis.

The framework of topological Bloch band theory is the following: one associates
to a translation-invariant system a Bloch Hamiltonian H(k), where k is a reciprocal
vector living on the Brillouin zone, which is in fact a torus as k is only defined modulo
reciprocal lattice vectors. The spectrum of H(k) provides a band structure described
by energy levels Ei(k), which may exhibit spectral gaps. In this case, a spectral
projector family P (k) describes the eigenstates of the band between two gaps. For
example, a two-by-two Bloch Hamiltonian has eigenstates ψ±(k) with energies E±(k);
if E+(k) > µ > E−(k), we define P±(k) = |ψ±(k)⟩⟨ψ±(k)|. It is possible to associate
topological invariants (like the first Chern number) to the projector family P which
do not change even if H is modified as long as the gap does not close.

Now, let us consider a boundary between two topologically inequivalent insulators:
the system is trivial on the left of the boundary whereas it is nontrivial on the right.
Away from the boundary, the system is not aware of the existence of an interface, so
it is a bulk insulator which can be describe as if it were infinite, and (topological)
Bloch theory can be applied. Near the boundary, this description may break down,
but let us accept to use a position-dependent Bloch Hamiltonian, parametrized by
the distance to the interface: in order to pass from a trivial to a nontrivial insulator,
there must be a position near the interface where the gap closes (so the topological
invariants cannot be defined), leading to metallic edges. It is possible to make this
description partially rigorous through the use of Green functions, a method pioneered
by Volovik [Vol88a] and significantly expanded by Gurarie and Essin [Gur11; EG11].
This method was also extended [RLBL13; NR15] to the case of periodically driven
(Floquet) topological phases.

1.2 Symmetries and topological insulators

The study of quantum Hall effects was an established subfield of condensed matter
when a breakthrough was achieved by Kane and Mele in 2005 [KM05a; KM05b]. They
proposed a “time-reversal invariant version” of the IQHE (breaking time-reversal in-
variance is a crucial ingredient of IQHE/Chern insulators), which they called “quan-
tum spin Hall effect” (QSHE). Here, the crucial ingredients appear to be a band
inversion near a symmetric point of the Brillouin zone and a strong spin-orbit cou-
pling, which effectively generate a momentum- and spin-dependent magnetic field. A
year later, Bernevig, Hughes and Zhang [BHZ06] proposed an experimental realiza-
tion in HgTe-CdTe quantum wells, which was experimentally achieved the following
year by König and collaborators [KWBR07], in Molenkamp group (see figure 1.7).
It was discovered by Fu, Kane and Mele [FKM07], Roy [Roy09], Moore and Balents
[MB07], that the time-reversal invariant topological insulator or QSHE has an equiva-
lent in three dimensions, which was soon to be experimentally observed in Bi1-xSbx by
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Figure 1.7: Transport signature of topological edge states in the QSHE in HgTe quan-
tum wells. Longitudinal four-terminal resistance R14,23 with respect to the gate
voltage Vg − Vref in a trivial (black curve) and in topological (red, green and blue
curves) HgTe-CdTe quantum well, at 30 mK. In the topological situation (when there
is a band inversion), R14,23 reaches a quantized value of 2 e2/h, as expected from
the Landauer-Büttiker formalism applied to the edge state transport (except in the
blue curve, corresponding to a larger sample where the conductance is reduced by
inelastic processes causing backscattering). In the trivial situation (black curve), the
resistance is very high in the gap, which is the expected behavior of a conventional
insulator. Adapted from [KWBR07]. Reprinted with permission from AAAS.

Hsieh and collaborators [HQWX08] in Hasan group with angle-resolved photoemis-
sion spectroscopy (ARPES) measurements. They observed the signature of surface
states: a Dirac dispersion relation of surface electrons for energies in the bulk gap
of the material, as predicted by the topological band theory. Several other materi-
als with a nontrivial 3D Kane-Mele topology were subsequently discovered, among
which Bi2Se3; we reproduce in figure 1.8 an experimental ARPES spectrum of the
topological surface states of this material from [XQHW09].

In a time-reversal invariant (TRI) electronic system, it is not possible to have a
nontrivial Chern insulator. Time-reversal is represented as an antiunitary operator Θ,
with Θ2 = −Id for particles with half-integer spin. In a time-reversal invariant system,
the Bloch Hamiltonian respects ΘH(k)Θ−1 = H(−k), so any eigenstate ψ(k) of H(k),
has a Kramers partner Θψ(k) which is an eigenstate of H(−k). The contribution of
Kramers partners in the Chern insulator topology are opposite and cancel out. As
was shown by Kane and Mele, however, it is possible to somehow overcome this
cancellation by defining a finer invariant, characterizing the topology of TRI systems.
The simplest way to understand the Kane-Mele topology is probably through its
most striking physical consequence, in terms of edge states. While Chern insulators
have characteristic chiral edge states on the boundary, Kane-Mele insulators exhibit
helical edge states, which are essentially a Kramers pair of chiral edge states with
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Figure 1.8: ARPES signature of topological surface states in Bi2Se3. ARPES spectrum
of 2D surface electronic band dispersion of the three-dimensional time-reversal invari-
ant topological insulator Bi2Se3 (111) near the Γ point, along the Γ − M (left) and
Γ−K (right) cuts of the surface Brillouin zone. This data proves the existence of sur-
face states with linear dispersion in the bulk gap of Bi2Se3. Adapted from [XQHW09].
Reprinted by permission from Macmillan Publishers Ltd, Nature Physics, copyright
2009.

opposite chiralities (see figure 1.9). As the counter-propagating edge states form a
Kramers pair, backscattering from an edge state to its counter-propagating partner
is not allowed. As long as time-reversal invariance (with Θ2 = −Id) is not broken, in
space dimensions d = 2 and 3, a topological quantity called the Kane-Mele invariant
KM ∈ Z2 (associated to the valence band) can be defined. In terms of the edge
states, it means that one Kramers pair of edge state is topologically distinct from no
edge state, but that two Kramers pairs of edge states are topologically equivalent to
no edge state, as backscattering is allowed in this case (this is why KM ∈ Z2). In
fact, the Kane-Mele invariant can be defined without starting from a situation where
spin is conserved, and it is even possible to conceive a toy model with only spin-non-
conserving terms which is time-reversal invariant and topologically nontrivial from
the point of view of Kane-Mele topology.

A particular example may be helpful to illustrate what happens: when spin is
conserved, it is possible to associate first Chern numbers C↑↓ to each spin species. In
a time-reversal invariant system, C↑ = −C↓. When C↑ = −C↓ = 1, a Chern insulating
phase occurs for each spin species, giving rise in a finite sample to a Kramers pair
of a right-handed edge state with spin up associated to a left-moving edge state with
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Figure 1.9: Edge states of aKane-Mele insulator. In a Kane-Mele insulator (also called
QSHE state), there are two counter-propagating helical edge states which form a
Kramers pair on each interface. As a consequence, backscattering from an edge state
to its counter-propagating partner is not allowed.

spin down. In this situation, the Kane-Mele invariant simplifies into

KM = C↑ − C↓
2 mod. 2 = C↑ mod. 2. (1.9)

If we start from this situation and turn on time-reversal invariant spin-flip pertur-
bations, spin is no more conserved. Hence, neither C↑ nor C↓ remain well-defined.
However, the Kane-Mele invariant KM remains well-defined and does not change as
long as the gap separating the valence band from the conduction band remains open
(and time-reversal invariance is preserved).

Kane and Mele discovery (along with the discovery of graphene in 2004) focused
the attention of the condensed matter community on topological physics, and a huge
volume of results have been produced (or rediscovered ...) since then (good reviews
include [Lud15; CTSR15; HK10; QZ11; BLD16]). It was realized that (i) there are
systems analogous to IQHE in other dimension than d = 2 and (ii) symmetries give
rise to different/finer topological invariants, which led to express known phenomena
such as domain walls in the Su-Schrieffer-Heeger model of polyacetylene [SSH79] or
unpaired Majorana fermions in the Kitaev chain [Kit01] in the language of topological
insulators, and to conceive and realize new kinds of topological insulators.

A milestone in the topic of topological phases was achieved by Schnyder, Ryu,
Furusaki and Ludwig [SRFL08; SRFL09; RSFL10] and Kitaev [Kit09], who devel-
oped a classification of topological phases according to their non-spatial symmetries,
leading to the so-called “periodic table of topological insulators”. The main idea
is that there are three fundamental symmetries which act only on the internal de-
grees of freedom (locally on space), which are time-reversal Θ, charge conjugation
C (also called particle-hole symmetry) and chiral symmetry Γ (which is related to
Θ and C by Γ = ΘC if they are defined, possibly up to a phase). Time-reversal
and charge-conjugation Θ and C are antiunitary operators which can square to +Id
or −Id, whereas Γ is unitary (but is not a unitarily implemented symmetry as it
anticommutes with the Hamiltonian). There are ten ways to combine all the possi-
ble symmetries of a one-particle Hamiltonian H, which are called symmetry classes
(they were already discovered by Altland and Zirnbauer in the context of disordered
systems [AZ97], and related to Cartan symmetric spaces). For example, the Hamil-
tonian may have no such symmetry at all: it is said to be in class A, and examples in
two dimensions are the IQHE and Chern insulators. Another possibility is that H is
time-reversal invariant with a time-reversal operator squaring to −Id, but there are
no charge conjugation symmetry and no chiral symmetry: then H is in class AII, this
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is the case of Kane-Mele insulators. Different approaches were developed to obtain
this classification: Schnyder, Ryu, Furusaki and Ludwig [SRFL08; SRFL09; RSFL10]
used an approach based on the (lack of) Anderson localization of the low-energy Dirac
edge states of a topological insulator, whereas the K-theoretic approach developed by
Kitaev [Kit09] focuses on the classification of equivalent bulk Hamiltonians. The
agreement of the results of both approaches is not a trivial fact, and is the core of
bulk-boundary correspondence. Another point of view on this classification based on
anomalies has emerged from the study of the electromagnetic response of the quan-
tum Hall effect, and more generally of the study of gauge fields coupled to topological
insulator [RML12]. Spatial/crystallographic symmetries (which are unitary realized)
also constrain and enrich the possible topological properties, but in a less robust way:
the bulk-boundary correspondence in this case is only valid for boundaries which are
invariant under the relevant symmetry, at least on average. Despite a lot of activ-
ity, partially reviewed in [CTSR15] (see also the more recent papers [WL16; SSG15;
DL16]) a full classification of these refined topological phases is, to the knowledge of
the author, not yet achieved.

1.3 Topological phases outside solid-state physics

Linear waves propagating in a spatially periodic structure are described within Bloch
theory by dispersion relations ω(k) which organize in a band structure, in analogy
with electrons in a crystal. Hence, they can support topological invariants and host
topological edge states in a finite sample, provided there may be phase interfer-
ences between the waves and the relevant phase structure can be engineered in the
medium. As a nontrivial topology manifests itself in particular geometrical phase
patterns, which are at the origin of edge states, this is is not a surprise: geometri-
cal phases (Pancharatnam–Berry phases [Pan56; Ber84] and Hannay angles [Han85])
were known to appear in classical systems as well as in quantum systems [CJ04].
Such behavior was predicted (and often observed) in a variety of systems, includ-
ing mechanical systems [PP09; BJKP11; KL13; CUV14; VUG14; PCV15; SH15;
NKRV15], acoustic waves [YGSL15; KFMA15; FKA15; XMYS15], light and elec-
tromagnetic waves [HR08; RH08; WCJS09; HDLT11; KMTK12; FYF12; RZPL13;
HMFM13; LJS14; MGFV16; CJNM16], optomechanical systems [PBSM15], cold
atoms [JMDL14; ALSA14; AALB13; MSKB13], linear electrical circuits [NOSS15;
AGJ15] and (bio)chemical reaction networks [MV16]. This set of investigations has a
considerable importance, as it was understood (and confirmed experimentally) that
the topological properties of a Bloch band structure and the corresponding edge states
are essentially wave properties which may be found in all domains of physics, raising
considerable interest in the domain, with fascinating fundamental discoveries as well
as promising forthcoming applications.
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1.3.1 Electromagnetic waves: photonic crystals in the optical and microwave do-
mains

A fruitful analogy between optical and electronic systems [HL90; JJWM11] started
to emerge in the ’80s, especially after the conceptualization of the notion of pho-
tonic crystals [Yab87; Joh87], characterized by a photonic band structure which can
have photonic band gaps, in analogy with electronic band structures. The main idea
[JJWM11; NL14] is that the dynamical Maxwell equations can be cast to the form of
a Schrödinger equation

i∂tψ = Mψ (1.10)
where the Maxwell operator M and the electromagnetic field ψ are defined as

ψ =
(
E
H

)
and M =

(
ε 0
0 µ

)−1 ( 0 i curl
−i curl 0

)
. (1.11)

Here, E and H are, respectively, the mesoscopic electric and magnetic vector fields,
ε and µ are, respectively, the local dielectric permittivity and magnetic permeability
tensors, which describe the response of the material where the electromagnetic field
propagates. They are assumed to be independent of time, but may vary in space.
In bi-anisotropic and bi-isotropic materials like optically active media, the Maxwell
operator also has diagonal components. In absence of sources, the two other Maxwell
equations yield the constraints div(µH) = 0 and div(εE) = 0. Squaring the Maxwell-
Schrödinger equation leads to the second-order wave equation

(∂2
t +M2)ψ = 0 (1.12)

where the evolutions of the electric and magnetic fields are decoupled. In a photonic
crystal, the permittivity and permeability ε(x) and µ(x) depend periodically on space.
A Fourier transform can be applied to reduce the Maxwell operator M into a family
of Bloch Maxwell operators M(k), where k is the quasimomentum, the eigenvalues of
which give the dispersion relation ωn(k) of the photonic crystal.

Haldane and Raghu [HR08; RH08] realized in 2005 that it is be possible to in-
duce topologically nontrivial bands in such a gapped photonic crystal if time-reversal
symmetry is broken through Faraday rotation in a gyromagnetic medium where µ
is not a symmetric tensor(2). This idea was experimentally confirmed [WCJS09] by
Wang, Chong, Joannopoulos and Soljačić, who observed unidirectional electromag-
netic modes immune to backscattering. They used a lattice of ferrite rods with a radius
of the order of the centimeter submitted to a magnetic field to realize a topologically
nontrivial photonic crystal in the microwave regime. With scattering measurements
using two antennas and a network analyzer, which basically sends and receives mi-
crowave light to measure the scattering matrix, they demonstrated the existence of
non-reciprocal (or chiral) modes located near the edge, in agreement with theoretical
predictions, see figures 1.11 and 1.10. By adding a metallic obstacle, they also showed
the robustness of this topological chiral edge state.

(2)Usually, the permeability and permittivity are symmetric tensors. However, in an external
magnetic field B0, the tensors ϵ and µ may fail to be symmetric: in this case, the medium is said
to be gyrotropic. The reversal of magnetic field transposes the tensors, as ϵ(−B0) = ϵT (B0) and
µ(−B0) = µT (B0). When only µ (resp. ε) is concerned, the material is said to be gyromagnetic
(resp. gyroelectric).
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A B
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Figure 1.10: Photonic crystal with an edge and probe antennas. The photonic crystal
used by [WCJS09] is composed of ferrimagnetic rods put in a magnetic field. An
interface is realized by a metal wall, which plays the same role that an interface
with vacuum in electronic systems (air or vacuum would allow radiation loss). Two
antennas are used to measure the backward and forward transmissions of microwave
light in the photonic crystal. Either the bulk (with antenna A’ and B’) or the edge
(with antenna A and B) can be probed this way (see figure 1.11). This allowed Wang
and collaborators [WCJS09] to demonstrate the existence of non-reciprocal (or chiral)
modes located near the edge, in agreement with the theoretical predictions.

An important amount of theoretical and experimental investigations followed this
work; a recent review is [LJS14]. From the fundamental point of view, the classifi-
cation of photonic topological insulators was studied by De Nittis and Lein [NL14].
Microwave systems like the one used by Wang and collaborators were also employed
to experimentally realize the merging of Dirac cones [BKMM13] and to observe weak
topological effects [BKMM14] in artificial graphene. At microwave wavelength, a
network analyzer allows to probe the phase structure of eigenstates, which is par-
ticularly interesting to probe topological phases. This kind of scattering experiment
was carried out by Hu et al. [HPWP15] in a system of optical ring resonators [LC13]
described as a Chalker-Coddington-like [CC88; HC96] directed scattering network
[PC14; TD15].

Another branch of development of this field is particularly relevant here. For visible
light, the gyrotropic effects are usually very small, so the extension of the method
used by Wang et al. [WCJS09] seems to be experimentally challenging. A way to
circumvent this difficulty was proposed and experimentally realized by Rechtsman and
collaborators [RZPL13], who used helical waveguides arranged on an two-dimensional
lattice to realize a two-dimensional Floquet topological insulator. In their setup, the
spatial direction along which light propagates (along the waveguides) does not play
the same role as the two orthogonal directions, so the system is better described by
a specialization of the dynamical Maxwell equations. Such waveguides are obtained
by illuminating a glass like silica with ultrashort laser pulses, which slightly modify
the refraction index from its initial value n0 to a spatially dependent n0 + δn(x).
This allows to produce well-controlled waveguides for visible light. In the paraxial
approximation where light essentially propagates along the waveguide axis z, the
Helmholtz equation governing the spatial part ϕ of a monochromatic electromagnetic
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Figure 1.11: Scattering signature of chiral photonic edge states. The (projected) pho-
tonic band structure for transverse magnetic modes f(k) sketched in (b) of the pho-
tonic crystal designed by [WCJS09] exhibits topological gaps, supporting topological
edge states (in red). A signature of such edge states is obtained by carrying out scat-
tering measurements: in the bulk (a), the transmission is reciprocal, as there is no
significant discrepancy between the forwards transmission (in blue) and backwards
transmission (in red). (c) In contrast, on the edge, the backwards transmission is
much smaller than the forwards transmission. In the band structure (b), the first
Chern numbers of bands are indicated as blue integers. They are compatible with
the existence of the red edge state. An additional edge state should appear in the
gap separating the two bands with largest frequencies; however, [WCJS09] explain
that such bands have ill-defined band-edges due to a large absorption near the fer-
romagnetic resonance, which is probably the reason why this additional edge mode
is not indicated. Adapted from [WCJS09]. Reprinted by permission from Macmillan
Publishers Ltd, Nature, copyright 2009.
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field ψ(t, x) = ϕ(x)e−iωt at frequency ω takes the form

i∂zϕ = − 1
2k0

∇2
⊥ϕ− k0δn

n0
ϕ (1.13)

where ∇⊥ = ∂2
x + ∂2

y , k0 = 2πn0/λ, and λ = 2πc/ω is the vacuum wavelength of the
radiation. The propagation of light along such a waveguide is similar to an evolution
in time, with time t is replaced by the distance of propagation z along the waveguide
axis. The equation of propagation is similar to the Schrödinger equation where the
space-dependent refraction index plays the role of a potential (see e.g. [Lon09; SN10]
for details). For example, when two such waveguides are sufficiently close to each
other, they can exchange light by evanescent coupling: as a consequence, light ini-
tially sent into one waveguide will oscillate between the two waveguides, in a process
similar to the Rabi oscillations. Hence, on the one hand, and as long as waveguides
are not too strongly coupled, it is possible to describe an arrangement of parallel
waveguides by a coupled-mode theory analogous to the tight-binding approximation
in solid-sate physics (see e.g. [YY06; SN10]). On the other hand, the helical form of
the waveguides can be taken into account in this tight-binding-like description as a
periodic modulation of the coupled-mode/tight-binding parameters in the direction
of propagation (see e.g. [Lon09; SN10]). The equations of propagation are therefore
formally equivalent to the equation of evolution of a tight-binding Hamiltonian pe-
riodically modulated in time. A sinusoidal modulation of the waveguide mimics the
interaction of an electron with a linearly polarized electric field. The helical waveg-
uides used by Rechtsman and collaborators correspond to a circular polarization.
They indeed observed, for the right set of parameters, a chiral propagation of light
on the edge of the system, even when defects are added.

1.3.2 Mechanical waves: phonons in bead-spring lattices

Following the seminal work of Prodan and collaborators [PP09; BJKP11] who identi-
fied topological phonon modes in systems inspired from biology, Kane and Lubensky
[KL13] developed a framework to characterize the topological properties of beads
and spring systems, in analogy with electronic systems. In particular, they provided
a (physically) precise statement of the bulk-boundary correspondence in mechani-
cal lattices. In such a mechanical lattice, beads connected to each other by Hookean
springs are positioned in a spatially periodic fashion. The harmonic oscillations about
the equilibrium positions are decomposed into phonon modes. As the system is spa-
tially periodic, the phonon spectrum organizes into Bloch bands ωi(k), where k is the
quasimomentum, and an isolated Bloch band can be topologically nontrivial. The
mechanical lattice possesses two kinds of degrees of freedom: the displacements of
the beads and the extensions of the bonds, defined with respect to the equilibrium
configuration. There is a geometrical relation between the displacements ui and the
extensions em, contained in the rigidity matrix R defined by

em = Rmiui. (1.14)

Similarly, the geometrical relation between the tensions Tm of the bonds and the forces
Fi on the beads is contained in the equilibrium matrix Q ≡ RT such that

Fi = QimTm. (1.15)
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Concerning the dynamics, the tension Tm on a Hookean bond is related to its extension
by Tm = −Kmem, and the force Fi on a bead is given by Newton’s law Fi = Miüi.
When all stiffnesses and masses are equal, Km = K and Mi = M , it is convenient to
define ω0 =

√
K/M , and the equation of motion reads

i d
dtψ = Hψ (1.16)

where
H = ω0

(
0 Q
QT 0

)
and ψ =

(
u̇

−iω0e

)
. (1.17)

Again, the Fourier transform can be used to make use of the spatial periodicity of
the system, which gives a family of matrix Bloch Hamiltonians H(k). When this
family of Bloch Hamiltonians is gapped, topological invariants can be computed in
the usual way. A gap at zero frequency in the excitation spectrum is only possible
when the lattice is isostatic, i.e. when the number of constraints (due to bonds) is
equal to the number of degrees of freedom of the beads and in this case a structural
symmetry (a chiral symmetry in the language of topological insulators) visible in
the block-antidiagonal structure of H can be used to protect topological phases. A
generalized Hamiltonian framework to describe (topological) mechanical systems, not
specialized to beads and springs, as well as a classification of such phases (both at
zero and nonzero frequency) were recently developed by Süsstrunk and Huber [SH16]
in a very clear paper.

Kane and Lubensky proposed a mechanical analogue of the Su-Schrieffer-Heeger
model of polyacetylene, which was experimentally realized by Chen et al. [CUV14].
Outside of phase transitions, the bulk is insulating, which means that there are no
modes at zero frequency. In a mechanical system with bonds of very large stiffness
(e.g. if springs are replaced by plastic rods), no motion is possible. At the interface
between two topologically distinct mechanical insulators, however, there is a robust
zero-frequency mode, so a motion is possible only through such topological boundary
modes (see figure 1.12). The motion is not infinitesimal, however, as a nonlinear
soliton coupled to the domain wall separating the two topologically distinct phases
can propagate along the chain [CUV14; VUG14], a behavior reminiscent of what
happens in polyacetylene [JR76].

Another experimental realization of a mechanical topological system is due to
Nash and collaborators [NKRV15], who used a lattice of coupled gyroscopes to create
a two-dimensional mechanical metamaterial with chiral edge states (an analogue of
the Haldane model). I encourage the reader to look at their videos. Here, again, a
time-periodic motion is used to induce a topological phase.

1.4 Inducing topological properties through a time-periodic excita-
tion

We have already mentioned that a time-periodic modulation (or its equivalent in
paraxial propagation) can be used to induce topological properties in photonic and
mechanical systems. This was only realized after it was proposed to use light to con-
trol topological phases in the solid state, a task which appeared to be experimentally
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Figure 1.12: Mechanical topological insulator in LEGO. A LEGO version of the me-
chanical SSH model designed by Vitelli et al. [VUG14]. The two insulating phases
correspond to the red rods pointing to the left or to the right of their pinning point.
In such phases, nothing can move (at zero frequency). At the interface between two
topologically distinct phases, in contrast, there is a zero-frequency degree of freedom,
corresponding to a free motion. If we push a little the green or red rods near the
interface, the domain wall can move, e.g. from (a) to (b), and can propagate all along
the system.

challenging. The idea of inducing a topological transition through an excitation pe-
riodic in time, e.g. by shining light on a sheet of graphene, was proposed in 2009 by
Oka and Aoki [OA09]. They were quickly followed by Inoue and Tanaka [IT10] and
Lindner, Refael and Galitski [LRG11] who proposed the idea of a “Floquet topological
insulator” where a quantum spin Hall effect is induced by light. Similar ideas were
already (theoretically) developed in the beginning of the 2000s in cold atom systems;
the state of the field in 2007 is reviewed in [LSAD07].

As a first approximation, a (Bloch) HamiltonianH0(k) subject to a time-dependent
perturbation W (t) = W (t+T ) periodic in time can be replaced by a time-independent
“effective Hamiltonian” which captures the long-time stroboscopic dynamics of the
system after an integer number of time periods (i.e. at times nT , with n ∈ Z). For a
monochromatic perturbation

W (t) = W1(k)eiωt +W−1(k)e−iωt (1.18)

this effective Hamiltonian is, at first order,

Heff(k) = H0(k) + 1
ω

[W1(k),W−1(k)] +O

(
1
ω2

)
. (1.19)
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Starting from a critical phase with Dirac cones (such as graphene), it is possible to
induce topological properties provided the sign of the masses at the different Dirac
points can be controlled. It is the case for the coupling with an electromagnetic wave
in graphene, which induces opposite masses in the two valleys [OA09; IT10]; similarly,
in the setup used by [RZPL13], the helical waveguides precisely mimic the coupling
with a circularly polarized light. To give an intuition of what happens, we will focus
on the low energy Hamiltonian near a single Dirac cone

H0(q) = qxσx + qyσy (1.20)

and take the simple perturbation W1 = W/4 (σx + iσy) and W−1 = W †
1 . We ob-

tain
Heff(q) = qxσx + qyσy + W 2

ω
σz + higher order terms. (1.21)

It is therefore possible to gap the Dirac point with a mass depending on W . In
graphene, the perturbation due to a circularly polarized light is either W1 or W †

1
depending on the valley, so the masses ±W 2/ω on both valleys are indeed opposite.
A simpler perturbation identical on both valley may also induce topological properties,
but at higher order in perturbation.

At first sight, the time-independent effective Hamiltonian Heff is enough to under-
stand this kind of topological periodically driven systems: the driving field can yield
a topologically nontrivial Heff from a trivial unperturbed Hamiltonian H0. In fact,
the meaning of this effective Hamiltonian has to be made precise. In a driven system,
energy is no more conserved, as it is exchanged with the driving field. However, the
time periodicity of the driving ensures that energy is only exchanged in quanta of ℏω
(where ω is the driving angular frequency), so the quantity

ε = E mod. ℏω (1.22)

called quasi-energy is still conserved. Hence a periodically driven system is charac-
terized by a quasi-energy spectrum (and the corresponding eigenstates) instead of an
energy spectrum. This quasi-energy spectrum appears as the spectrum of the effective
Hamiltonian Heff or, up to exponentiation, as the spectrum on the circle of the evo-
lution operator after one period, U(T ) = e−iT Heff , which is often called the Floquet
operator. As a consequence, quasi-energies are essentially phases (periodic quantities)
which are organized on a circle, see figure 1.13. The Floquet operator U(T ) is well-
defined, but the effective Hamiltonian is not uniquely defined: a choice of the branch
cut for the complex logarithm is required. The periodicity of quasi-energy seems
to be innocuous. Instead of energy bands in the spectrum of a Hamiltonian, quasi-
energy bands appear in the spectrum of the Floquet operator U(T ), and we could
expect to describe the topology of periodically driven systems in the same way as
static phases, through the topology of the quasi-energy bands. It turns out that such
out-of-equilibrium phases display richer topological features than equilibrium phases:
a system where all band invariants vanish may still exhibit topological properties,
in the so-called “anomalous” topological phases. This peculiar property of periodi-
cally driven systems which was first observed by Kitagawa et al. [KBRD10], soon
thereafter was observed in optical experiments [KBFR12]) and understood in 2013 by
Rudner, Lindner, Berg, and Levin [RLBL13]. They developed a new framework to
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Figure 1.13: A quasi-energy spectrum. The spectrum of the unitary evolution oper-
ator after one period U(T ) is called the quasi-energy spectrum, and it organizes the
unit circle U(1). As in static systems, the quasi-energy spectrum of a crystal is com-
posed of bands (there are two bands in this example, in blue and in red) separated
by gaps.

fully describe the topological properties of the unitary evolution of a two-dimensional
periodically driven system without specific symmetry, which correctly accounts for
the existence of chiral edge states at the boundary of a finite sample. The key to
understand such anomalous phases turns out to be the periodicity of the quasi-energy
spectrum. In an equilibrium system with two energy bands, there may be edge states
in the bulk gap, located between the two bands(3). In a Floquet system with two
quasi-energy bands, there are two bulk gaps, each of which may host edge states in
a finite system, as pictured in figure 1.14. Naturally, this observation generalizes to
more than two bands. In fermionic systems, the periodicity of quasi-energy also high-
lights the question of the thermodynamic filling of quasi-energy bands: there is no
“bottom of the band” to start filling from. It is therefore not reasonable to expect a
unique behavior essentially independent of the driving fields, baths and reservoirs to
which the system is connected.

The framework developed by Rudner et al. [RLBL13] consists in defining gap
invariants which are directly related (equal) to the number of edge states (counted
with chirality) that would fill the corresponding bulk gap in a finite system with
boundaries. This point of view is particularly adapted to situations where it is possible
to probe the response of the system at a fixed quasi-energy, for example through
scattering experiments, without having to rely on a particular filling. This is the
case in several classical systems (a beautiful experiment in photonic crystals is found
in [SLIY15]). In contrast, topological phases are usually understood as stemming
from the topology of the ground state, a fruitful point of view which was extended
to interacting phases like FQHE and led to the notion of topological order introduced

(3)To put both situations in a single form, we can consider that a constant Hamiltonian is in fact
periodic, with a period T small enough so that Tσ(H) ⊂] − π, π[, i.e. so that the band structure
laid on the circle does not overlap with itself. In this situation, the energy “gaps” going from the
top of the upper band to +∞ and from the bottom of the lower band to −∞ correspond to the
quasi-energy gap near e±iπ = −1, which therefore contain no edge state.
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Figure 1.14: Anomalous and trivial systems. Quasi-energy spectra of two systems
with edges, which share the same bulk dispersion (red and blue bands) but have dif-
ferent bulk topological properties, manifesting themselves in different edge dispersion
(in dashed purple). Despite this difference, both systems have the same bulk band
invariants (first Chern numbers C1), which are not sufficient to fully characterize the
system [RLBL13].

by Xiao-Gang Wen [Wen90]. A number of developments were carried out in this
direction, in particular to classify symmetry protected topological phases (SPT, a
particular formalization of what we call “topological insulators” here) through the
ground states of gapped Hamiltonians with group cohomology [CGLW13; GW14;
CGLW12; Wit16]. In the case of topological periodically driven systems, there are
several reasons why this description may not be fully relevant: (i) in an anomalous
phases, the topological invariants associated to a band always vanish and yet the
system exhibits topological properties manifesting themselves as edge states in a finite
system; (ii) the ground state is not well-defined, as the filling of Floquet bands is not
unambiguous, and depends in a crucial way in the details of the coupling to the
environment.

The idea of inducing topological properties through a time-periodic driving, and,
therefore, the peculiar properties of Floquet topological phases, are of fundamental
interest. Beyond this fundamental interest, Floquet topological phases provide a con-
venient way to realize topological phases outside of solid state physics. In cold atoms,
the idea of using periodically driven lattices in order to control the tunneling matrix
elements is already well-established, and I refer the reader to recent reviews [Hol15;
GD14] for more details. In particular, controlling tunneling amplitudes allows to cre-
ate artificial gauge fields [HTCÖ12]. An obvious application of this kind of technique
is the simulation of topological insulators: let us mention the experimental realiza-
tions of the Haldane model [JMDL14], the Harper-Hofstadter Hamiltonian [ALSA14;
AALB13; MSKB13]). More or less independently, as we have seen, the same ideas
were also used to design and realize topological phases (i) in mechanical systems:
experimentally with a lattice of gyroscopes connected by springs [NKRV15], and the-
oretically with gyroscopes [WLB15] and in a rotating frame [WLZ15; KH15], and (ii)
with light [KBFR12; RZPL13], where the periodic evolution in time is replaced by a
periodic modulation in the (d+ 1)th dimension of real space along which propagation
occurs. All in all, I believe that periodically driven systems (and the correspond-
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ing synthetic gauge fields) are an important tool to extend the notion of topological
insulator outside of the initial scope where it was discovered.

Finally, the framework developed to study periodically driven phases, which also
applies to undriven phases, may serve as a platform for a better understanding of
topological phases. For example, the topological edge states in an anomalous system
are (or at least seem to be) of the same nature that standard edge states. Yet,
anomalous systems are not related to a band invariant: this deviation from standard
behavior can serve as a tool to probe the limits of usual characterizations of topological
states, and to extend them in a setting which may be better suited to be generalized
to systems outside the scope of condensed matter.

1.4.1 Topological Floquet phases in electronic systems

To realize topological Floquet phases in a solid state context appears to be challenging.
Floquet theory is a high-frequency approach, meaningful when the driving is fast
with respect to the characteristic time scales of the undriven system. In this very
high frequency regime, the system essentially feels an effective static potential. In
contrast, the opposite limit is the slow adiabatic driving where the state of the system
essentially follows the instantaneous eigenstates of the time-dependent Hamiltonian.
Starting from a very high frequency limit, interesting physical behaviors typically
occur when the frequency becomes comparable with the natural timescale of the
undriven system. However, there are several issues which arise when frequency is
“too low”: first, at low frequency, the initial energy bands are folded a lot of times
on the circle, and opening a sizable gap seems difficult. At even lower frequencies,
the quasi-energy spectrum becomes meaningless, the perturbative expansions break
down, and Floquet theory is no longer helpful. Hence, in order to have meaningful and
interesting results, the bandwidth should be comparable to (or at least of the order
of) the driving frequency. For example, the bandwidth of graphene is approximately
6t where t ≈ 3 eV, so we may expect that the order of magnitude of the relevant
radiation frequency should be in the far ultraviolet range, f ∼ 6t/h ∼ 1 × 1015 Hz.
Such kind of ionizing radiation will damage the system. This problem is even worse
as in order to get a sizable Floquet band gap, a very high light intensity would be
required at such frequencies, e.g. obtained with a laser. If light is introduced through
minimal coupling p → p − eA in a Dirac Hamiltonian H(p) = vFp · σ, the gap is of
order of [CPRT11]

∆ ∼ αv2
FI

ω3 (1.23)

where I ∼ c ε0 ω
2A2 is the intensity of the laser beam, in W · m−2 (see e.g. [Pas16]),

and α ≈ 1/137 is the fine structure constant. With the previously calculated angular
frequency ω ∼ 1 × 1016 rad · s−1, a gap of 10 meV would require I ∼ 1 × 1017 W · m−2

with vF ∼ 1 × 106 m · s−1 in graphene. Such a high laser intensity would probably
have deleterious effects on the stability of the graphene sheet, be it only heating.
Several proposals have slightly more optimistic estimations of both the driving fre-
quency and the laser intensity required [CPRT11; UPTB14; PUBT14; QGS16], but
they seem to be out of experimental reach for now. Despite this disappointing order
of magnitudes, there is still hope, as Floquet states were unambiguously detected in
Gedik group by Mahmood and collaborators [MCAG16] (following previous works
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[WSJG13]), who used time-resolved pump-probe angle-resolved photoemission spec-
troscopy (Tr-ARPES) on surface states of the topological insulator Bi2Se3 to induce
Floquet states with the pump light and observe them with the probe light. In par-
ticular, they were able to distinguish the contribution of Volkov states (which are in
this case Floquet states for the free electrons outside, but close to the surface of the
system) and Bloch-Floquet states of the crystal, see figure 1.15. To give an order of
magnitude, the pump light that was used to induce Floquet states was in the infrared
range, with ω ∼ 1014 Hz and I ∼ 1012 W2 · m−1. Even if it is still far from the real-
ization of Floquet topological phases, this work is particularly promising as it proves
that it is indeed possible to induce Floquet states in a crystal, at least for a short
time (approximately one picosecond).

(a) before pump

−0.1 0 0.1
−0.4

−0.2

0

0.2

0.4

ky (Å−1)

E
−

E
f

(e
V

)

(b) after pump

−0.1 0 0.1
ky (Å−1)

Figure 1.15: Tr-ARPES signature of Bloch-Floquet states. Time-resolved ARPES spec-
tra from [MCAG16] exhibiting Bloch-Floquet states. (a) Before any strong excitation,
ARPES enables to observe a Dirac cone at the surface of Bi2Se3 as well as bulk bands.
(b) After the pump pulse excited the sample, several “replica” (or “sidebands”) of the
original Dirac cone are observed in the time-resolved ARPES spectrum, translated
by multiples of the energy ℏω ≃ 0.16 eV, where ω is the angular frequency of the
pump light. Avoided crossing gaps can be observed between the Floquet sidebands.
In this spectrum, there is a mixture of contributions from Floquet and Volkov states
(they should lead to the same signature), but Mahmood et al. were able to prove that
Bloch-Floquet states indeed exist in the crystal. Adapted from [MCAG16]. Reprinted
by permission from Macmillan Publishers Ltd, Nature Physics, copyright 2016.

Even when (if?) the difficulties of realizing topological Floquet states in a solid
state setting are overcome, the issue of filling quasi-energy states will still need to be
either addressed or avoided. In such an out-of-equilibrium driven system, a source
of dissipation is essential if we hope to reach a non-equilibrium steady-state (NESS)
which may be described by an effective unitary evolution [TOA09; BDP15; DOM14;
DOM15], as the driving field acts as a source of energy. An important question in this
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context is how the band structure is filled in the stationary regime [SBLR15; INC15;
LDM14], as long-time physical observables such as transport or response properties
are determined by the steady-state.

In the following, we will assume that a stationary regime is reached, and we
won’t focus on the thermodynamics (filling) but on the dynamical structure (evolution
operator and effective Hamiltonian) of the system. This is not a problem as the
topological properties of a band structure is independent of its filling. In this context
however, we will try to avoid the word “insulator” (especially in “Floquet insulator”)
to refer to gapped driven systems as long as the filling of quasi-energy bands is not
specified.

2 Aim of this work

2.1 Topology of systems under a time-periodic excitation

The first proposals for inducing topological states in periodically driven systems were
carried out in a situation with no symmetry at all (in class A) by Oka and Aoki
[OA09] and Inoue and Tanaka [IT10] (similar ideas were also present in the cold
atoms literature, in particular with proposals to realize artificial gauge fields). A
year later, Lindner, Refael and Galitski [LRG11] proposed a similar idea for systems
with fermionic time-reversal invariance (in class AII, like Kane-Mele insulators). The
same year, Jiang and collaborators [JKAA11] proposed to use a periodic driving to
induce Majorana fermions in a 1D chain with particle-hole symmetry (in class D).
In the same time, Kitagawa and collaborators [KRBD10; KBRD10] took a first step
towards the topological classification of periodically driven systems. A breakthrough
came from Rudner, Lindner, Berg, Levin in 2013 [RLBL13], who realized that the
invariants characterizing equilibrium systems are not sufficient to completely char-
acterize periodically driven systems, and developed a framework to fully describe
two-dimensional systems without symmetries (in class A). Due to the importance of
symmetries in topological systems, a generalization of this framework to other sym-
metries classes is crucial. Using different methods, Asbóth, Tarasinski, and Delplace
[ATD14] defined an invariant for periodically driven 1D chiral systems (in class AIII,
like the SSH model). One of the aims of this thesis was to define such an invariant
for fermionic-time-reversal invariant systems (in class AII, like the Kane-Mele insula-
tors), a goal that was realized in the same framework that Rudner and collaborators.
I also reinterpreted Asbóth’s et al. results in the same framework, and extended
the definition of the Floquet invariants to all dimensions for complex classes (A and
AIII). The central object in this approach is the unitary evolution operator U(t, k).
When the spectrum of the Floquet operator U(T, k) (the quasi-energy spectrum)
possesses gaps, it is possible to define periodized versions of the evolution operator
Vε(t, k) = Vε(t + T, k), which crucially depend on choice of the gap ε in the quasi-
energy spectrum. In class A, homotopy theory defines a bulk topological invariant
from the unitary map Vε: its winding (or degree)

Wε[U ] = deg(Vε) ∈ Z (1.24)
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which counts the chiral edge states in the bulk gap ε that appear in a finite sample
[RLBL13]. This is a gap invariant, in contrast with e.g. Chern invariants, which
are band invariants, as they characterize (quasi-)energy bands. There is a relation
between them: the difference between W ’s in two different gaps gives the Chern
number of the quasi-energy band in between,

Wε′ [U ] −Wε[U ] = C1[Pε,ε′ ]. (1.25)

I extended this definition to any even dimension d, where the (d/2)-th Chern invariant
appears [Fru16]. In class AII, when time-reversal symmetry Θ2 = −Id is present, that
is when

ΘH(t, k)Θ−1 = H(−t,−k) (1.26)

then Wε[U ] always vanishes in two dimensions, a behavior reminiscent of the vanishing
of the first Chern number in this situation. However, in d = 2, 3 it is possible to define
another invariant

Kε[U ] ∈ Z2 (1.27)

which counts the helical edge states in the bulk gap ε that appear in a finite sample
[CDFG15b]. It is a Z2-valued index, as the Kane-Mele invariant. Similarly, the
difference of K’s for two gaps gives the Kane-Mele invariant of the corresponding
band

Kε′ [U ] −Kε[U ] = KM[Pε,ε′ ]. (1.28)

In class AIII, when chiral symmetry is present, that is

ΓH(t, k)Γ−1 = H(−t, k) (1.29)

there is a constraint on the chiral gaps ε = 0 and π (also called real gaps), which
implies the vanishing of W0/π[U ] in even dimension. In all odd dimensions, W is not
defined, but it is possible to define chiral gap invariants for the chiral gaps,

Gε[U ] ∈ Z (ε = 0 or π) (1.30)

and again, their difference is the usual chiral band invariant [Fru16].

It is conjectured that this structure is general, and arises for all Cartan-Altland-
Zirnbauer classes. All known topological insulators (or superconductors) should be
characterized by gap invariants, which naturally extend to periodically driven phases.
Evidence in this direction are the works of Nathan and Rudner [NR15] and Roy and
Harper [RH16]. In the chapter 4 of this work, I show that the bulk invariants W and
G characterize all Z classes of the periodic table of topological insulators; notably,
the constraints put on such invariants by antiunitary symmetries enable to recover a
large part of the periodic table (without the Z2 invariants).

It would be particularly interesting to observe topological Floquet states in a solid
state setup. As I already mentioned, it is also quite challenging. The natural probe
in electronic condensed matter system is transport measurements, which proved to
be particularly adapted to the study of topological states in the quantum Hall effects
[Büt88a] as well as in the Kane-Mele insulators [RBBM09; Büt09]. We expect to
observe an analogue of the quantization of the conductance in the periodically driven



29

system, even if it is not completely obvious that it should happen. Transport in
topological periodically driven systems was already studied theoretically in several
setups [KOBF11; GFAA11; KS13; TPBU14; FP16]. I used time-resolved numerical
simulations to study the transport properties of such a Floquet topological insulator.
We indeed find that the stationary time-averaged differential conductance turns out
to be quantized in a topological bulk gap [FDWW16], in a situation where transport
remains ballistic, and where dissipation is dominated by the coupling to the metallic
leads. Moreover, the three-terminal conductances allow to probe the chiral nature of
the edge states.

3 Organizationof this thesis and relatedpublications

During my thesis, I contributed to several peer-review articles.

1. An Introduction to Topological Insulators,
Michel Fruchart, David Carpentier
Comptes Rendus Physique 14 (2013) 779-815
doi:10.1016/j.crhy.2013.09.013, arXiv:1310.0255
This review article aims at providing a simple and self-contained introduction to
Chern and Kane-Mele topological insulators.

2. Parallel Transport and Band Theory in Crystals,
Michel Fruchart, David Carpentier, Krzysztof Gawędzki
EPL 106, 60002 (2014)
doi:10.1209/0295-5075/106/60002, arXiv:1403.2836
In non-Bravais crystals, the definition of the matrix Bloch Hamiltonian is not
unique: there are several inequivalent ways to represent the Hamiltonian operator
as a k-dependent matrix. Correspondingly (but independently) there are several
inequivalent choices of parallel transport, and therefore of Berry curvatures. This is
surprising, as the Berry curvature (as opposed to the Berry connection) is gauge-
invariant, and therefore generally understood as a physical quantity. In this paper,
we show that there is a particular “canonical” Berry curvature which is independent
of the choice of the fundamental domain for the crystal, directly related to the
position operator, and which respects the symmetries of the crystal. Notably, this
canonical Berry curvature is not periodic in reciprocal space. As this topic does
not naturally fit the subject of this thesis, I will not expose it in details.

3. Topological index for periodically driven time-reversal invariant 2D systems,
David Carpentier, Pierre Delplace, Michel Fruchart, Krzysztof Gawędzki
Phys. Rev. Lett. 114, 106806 (2015)
doi:10.1103/PhysRevLett.114.106806, arXiv:1407.7747
This paper defines a topological invariant for periodically driven systems with
fermionic time-reversal invariance (in class AII) in two dimensions, i.e. the exten-
sion of the Kane-Mele invariant to Floquet systems. Its contents are discussed in
details in section 3.4 of chapter 4, page 152.

4. Construction and properties of a topological index for periodically driven time-
reversal invariant 2D crystals,
David Carpentier, Pierre Delplace, Michel Fruchart, Krzysztof Gawędzki, Clément

http://dx.doi.org/10.1016/j.crhy.2013.09.013
http://arxiv.org/abs/1310.0255
http://dx.doi.org/10.1209/0295-5075/106/60002
http://arxiv.org/abs/1403.2836
http://dx.doi.org/10.1103/PhysRevLett.114.106806
http://arxiv.org/abs/1407.7747
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Tauber
Nuclear Physics B 896 (2015) 779-834
doi:10.1016/j.nuclphysb.2015.05.009, arXiv:1503.04157
This is a supporting paper supporting the previous one, containing proofs of our
claims. To avoid an useless repetition of technical topics, I will not include them
in this thesis, and the reader seeking proofs and details on the construction of the
index K is directed to this work.

5. Probing (topological) Floquet states through DC transport,
Michel Fruchart, Pierre Delplace, Joseph Weston, Xavier Waintal, David Carpen-
tier
Physica E 75 (2016) 287-294
doi:10.1016/j.physe.2015.09.035, arXiv:1507.00152
Transport measurements are the archetypal way of probing topological edge states.
In this work, we use time-resolved numerical simulations to probe the transport
properties of (topological) Floquet states in a regime where we expected to under-
stand the results, with the aim of setting the ground for more dicey explorations.
Despite encouraging results, it turns out that even the simple regime is not fully
understood. This topic is exposed in details in chapter 5, page 165.

6. Complex classes of periodically driven topological lattice systems,
Michel Fruchart, Phys. Rev. B 93, 115429 (2016)
doi:10.1103/PhysRevB.93.115429, arXiv:1511.06755. This paper extends previous
works to cast in a single framework known topological invariants for complex CAZ
classes A and AIII, and to extend them to any relevant dimension. Notably, a 3D
chiral invariant for Floquet systems is defined. Its contents are discussed in details
in sections 3.2 and 3.3 of chapter 4, respectively at pages 126 and 143.

7. Anomalous topological directed scattering networks
Pierre Delplace, Michel Fruchart, Clément Tauber
in preparation.
Directed scattering network models like the Chalker-Coddington model [CC88;
HC96] are described by evolution operators expressed in terms of scattering ma-
trices. Chong and collaborators [PC14] identified them as a “static” realization of
Floquet phases, more precisely of “discrete time quantum walks” (DTQW). In par-
ticular, they were the first to observe experimentally an anomalous Floquet phases
(with vanishing band invariants) in such a system [HPWP15; GGSY16]. This pa-
per is devoted to the equivalence on two rather different points of view on such
systems. In the formulation of Ho and Chalker [HC96], appear both the one-step
evolution operator of the directed network and a two-step Floquet/DTQW-like
formulation used by Chong and collaborators. In the first point of view, which
focuses on the full stack of degrees of freedom, the directed nature of the network
model gives rise to a “structure constraint” which is at the origin of the topology.
The second point of view, which halves the number of degrees of freedom to adhere
closely to the analogy with a DTQW is only permitted by the existence of this
structure constraint. In addition to the always present structure constraint, we
also identify an additional pseudo-symmetry without equivalent in Hamiltonian
systems, which is associated to a quasi-energy rotation. This symmetry can force
a vanishing band invariant (first Chern number) despite the explicit time-reversal
symmetry breaking. This work is preparation at the time of writing this thesis.

http://dx.doi.org/10.1016/j.nuclphysb.2015.05.009
http://arxiv.org/abs/1503.04157
http://dx.doi.org/10.1016/j.physe.2015.09.035
http://arxiv.org/abs/1507.00152
http://dx.doi.org/10.1103/PhysRevB.93.115429
http://arxiv.org/abs/1511.06755
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This thesis is organized as follows.
– A general introduction (you are reading it) starts on page 3.
– A rather technical chapter 2, starting on page 33 briefly reviews the topology of

vector bundles.
– The chapter 3, starting on page 57 gives a review of the usual equilibrium topolog-

ical insulators and their classification.
– The chapter 4, starting on page 109 is the main part of this work, and is devoted

to the topology of periodically-driven/Floquet systems, in particular in presence of
symmetries.

– Finally, the chapter 5, starting on page 165, is another important part of this work,
and is devoted to transport signatures of (topological) Floquet states.

– Additionally, a french summary of this thesis, which is essentially a tranlsation of
the current introduction, is available at page 199.





Chapter 2

Vectorbundlesandtheir topology
In this chapter, we introduce several mathematical objects required for a precise
theoretical description of topological insulators. I will briefly introduce the notion
of bundles, in particular vector bundles, and quickly review the key features of their
topological classification. In a next chapter, we will see that band theory allows
to describe the energy bands of a crystal in terms of vector bundles, which may or
not be topologically nontrivial, which corresponds to trivial or nontrivial topological
insulators. In the following, maps will always be supposed to be continuous unless
explicitly mentioned, and as smooth as necessary when a differential structure is
assumed.

1 Vector bundles
The following section is devoted to introducing the notion of bundles. To give a
general idea, suppose that we want to define F -valued functions on a manifold M .
Typically, this is what happens when we consider a vector field over M , in which case
F is a vector space. Locally, fields are functions from M to F . Globally, however, it
happens that in order to describe physical phenomena, it is crucial to be able to allow
fields to have a global twist, which allows them to feel the topologically nontrivial
nature of the base manifold (in particular, band theory is naturally formulated in the
language of vector bundles describing Bloch states, and the topological properties of a
band structure are consequences of their global twist). Bundles provide such a global
structure, which is not captured in a local description.

1.1 Pictorial introduction

Consider a simple planet, a sphere standing still in empty space, with a very thin layer
of atmosphere. Wind on this planet is mostly horizontal, because the layer is so thin
it can be considered as two-dimensional and we can neglect ascending and descending
flows. There is a velocity field #”v (p) defined at any point p of the surface of the planet
which gives the direction of the wind, which is therefore “horizontal”. That means
that #”v (p) · #”ur(p) = 0 with spherical unit vectors ( #”ur,

#”uθ,
#”uϕ) at any point p of the

sphere. In fact, the set of such horizontal vectors forms a vector space

Tp =
{

#”w ∈ R3 | w · #”ur(p) = 0
}

(2.1)

33
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called the tangent space at point p of the surface of our planet (and vectors inside
are called tangent vectors at p, which means they are horizontal). Notice that the
velocity at point p does not live in the same vector space than the velocity at point q.
This may seem surprising, but is not when we realize that a horizontal vector at p
is not horizontal at q (see figure 2.1b), simply because #”ur(p) ̸= #”ur(q). All spaces Tp

are isomorphic to the plane R2, but they are not identical (this is quite obvious if we
look at how they are embedded into the whole space R3). We can put together this
collection of vector spaces (one over each point of the surface) in a disjoint union

T =
⨆

p∈S2

Tp =
⋃

p∈S2

{(p, w) | w ∈ Tp} ⊂ R3 × R3 (2.2)

which simply means that we gather all possible velocities w in all possible vector
spaces Tp, but we remember over which point p of the surface w is supposed to be, so
we can recover it later thanks to a projection map π which gives the position p = π(t)
corresponding to an element t = (p, w) ∈ T . In fact, we can recover the whole vector
space Tp (which is called fiber over p) as Tp = π−1(p). The disjoint union T along
with the projection map π : T → S2 is said to be a bundle over S2 with typical
fiber R2. The wind velocity field over the planet is a map p ↦→ v(p) going from S2 to
T , with v(p) ∈ Tp. In the language of bundles, v is a section of the bundle T .

(a) A planet and one of its tangent planes. (b) Tangent planes at two different points.

Figure 2.1: Tangent bundle of the 2-sphere.

Finally, as we have seen, velocities are different points live in different fibers, so we
cannot compare them, or add them. Neither can we differentiate the velocity field. In
order to extend this kind of operations in a meaningful way, we need to introduce an
additional structure called a parallel transport, which essentially specifies a particular
way to move a vector along a path on the planet. In a “flat” space like the plane,
the parallel transport of a vector leaves it unchanged. On the other hand the parallel
transport on the sphere must ensure that the transported vector remains horizontal,
and this is only possible if it is modified in a particular way.

A final note: this example is slightly misleading because it illustrates bundles on
the tangent bundle of a manifold, and also because everything is naturally embedded
in the three-dimensional space (so we can see what happens). (It is also misleading
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from a meteorological point of view, see e.g. [Mor13].) First, the manifold needs not
to be embedded in a larger-dimensional space. Second, the fibers are not necessarily
geometrically related to the manifold (e.g. tangent or orthogonal), neither is the
parallel transport specification(1). For example, we could replace the tangent planes
by a copy of the group U(1) representing all possible dephasings of a wavefunction
(instead of all possible wind velocities), and define a parallel transport by specifying
the electromagnetic field strength Fµν (as in Wu and Yang’s version of the Dirac
monopole bundle [WY75]).

1.2 Vector bundles

After this slightly misleading example, we will introduce (vector) bundles more for-
mally. My principal references are the review of Eguchi, Gilkey and Hanson [EGH80]
aimed at (high-energy) physicists, Steenrod’s classical textbook [Ste51] and the more
recent textbooks of Hatcher [Hat03b] and Husemöller [Hus93].

1.2.1 Fiber bundles

A fiber bundle consists of three objects: two topological spaces, the total space E
and the base space M , a continuous projection map

π : E → M (2.3)

and a space F called the fiber (see figure 2.2). The set

Ex = π−1(x) (2.4)

is called the fiber over the point x of M , and is required to be homeomorphic
to F . A local triviality condition is imposed to the projection map: for each point
x ∈ M there is an open neighborhood U of x and a homeomorphism ϕ : U × F →
π−1(U) commuting with the projection π in the following sense: π |U ◦ϕ = π̃, where
π̃ : U × F → F is the projection on U (that only means that for (x, f) ∈ U × F ,
π(ϕ(x, f)) = x). Maps U × F → π−1(U) are called local trivializations. Hence, E
looks locally like the cartesian product M × F . The bundle is called trivial if this
also holds globally, i.e. if E and M × F are isomorphic. When it is not the case, the
vector bundle is said to be nontrivial, or twisted.

A bundle (E′, π′,M ′) is a subbundle of (E, π,M) if E′ is a subspace of E, and
projections agree π′ = π |E′ : E′ → M ′. In the following, we will implicitly assume
that M ′ = M when dealing with subbundles.

A bundle morphism between (E, π,M) and (E′, π′,M ′) is a pair of map u : E →
E′ and f : M → M ′ such that π′ ◦ u = f ◦ π, that is, the fiber over x ∈ M is carried

(1)A common but maybe misleading approach to motivate topological phases is to draw a parallel
between the curvature of a manifold and the Berry curvature of a vector bundle. Integrating these
quantities over the manifold yields respectively the Euler characteristic (directly related to the genus)
of the surface, and the first Chern number of the vector bundle. This analogy is enlightening when
we realize that the (affine) curvature of the manifold is in fact the curvature of the connection of its
tangent bundle. On the other hand, the curvature of the base manifold is irrelevant in the case e.g.
of the Berry curvature.
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Figure 2.2: Schematic view of a bundle. Over each point x of the base manifold M ,
there is a fiber Ex (here, the fiber Ex over x is drawn in blue). A projection map π
is defined over the whole bundle E, which sends all elements of the fiber Ex back to
the base point x, so Ex is the inverse image of x by π.

over f(x) ∈ M ′ by u. When there is a bundle morphism (u′, f ′) with u′ : E′ → E
and f ′ : M ′ → M such that (i) f ′ ◦ f = idM ′ and f ◦ f ′ = idM and (ii) u′ ◦ u = idE′

and u ◦u′ = idE , then (u, f) (and (u′, f ′)) is a bundle isomorphism, and (E, π,M)
and (E′, π′,M) are said to be isomorphic.

A section of a bundle consists of assigning a preferred point s(x) ∈ Ex to each
point x of (a part of) the base space M . A global section of a fiber bundle E is
a smooth map s : M → E such that π ◦ s = idM . A local section on an open set
U ⊂ M is a map s : U → E such that π◦s = idU . Sections can, for example, represent
a field configuration. Local sections always exist, even in nontrivial bundles, but this
is not always the case of global sections.

Given a map f : A → B between from two manifolds A and B and a bundle
π : E → B over B, we can construct a bundle E′ over A by “pulling back” fibers
through f , that is, the fiber of E′ over a ∈ A is defined as a copy of the fiber of E
over f(a) ∈ B (see figure 2.3). Then, there exist a bundle π′ : E′ → A and a map
f ′ : E′ → E taking the fiber F ′

a of E′ over each point a ∈ A isomorphically onto the
fiber Ff(a) of E over f(a); this bundle is called the pullback bundle of E by f . It
is usually written as f∗E.

1.2.2 Vector bundles

A special case of fiber bundles which we shall use extensively are vector bundles. A
bundle whose typical fiber is a finite-dimensional vector space F = V , and whose local
trivializations U ×F → π−1(U) are linear is called a vector bundle. The dimension
or rank of the bundle is defined as the dimension of a fiber. Sections inherit the
vector space structure: if s and s′ are two sections and f a smooth function on M ,
then fs+ s′, define pointwise as (fs+ s′)(x) = f(x)s(x) + s′(x) is also a section. As
such, the set Γ(E) of sections of E is a vector space under pointwise operations. The
zero section s(x) = 0 for any x ∈ M always exists, so vector bundles always have a
global section. However, non-vanishing global sections do not always exist. In fact,
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Figure 2.3: Schematic view of a pullback bundle. A map f going from the manifold
A to the manifold B enables to “pull back” bundles in the reverse direction. From a
bundle E over B, a new bundle E′ = f∗E over A is defined by assigning to a points
a of A the fiber of E over f(a).

a n-dimensional vector bundle (i.e. of rank n) is trivial iff it has a frame, that is a
collection of n global sections which form a basis of the fiber over each point [Hat03b].
On the contrary, the obstruction to define a frame will signal a nontrivial topology of
a vector bundle.

Starting from one (or several) vector bundles on the same base space, we can use
usual linear constructions on the fibers to obtain new vector bundles. For example,
the direct sum V ⊕W is defined pointwise, with (V ⊕W )x = Vx ⊕Wx. Similarly, the
tensor product V ⊗W , the exterior product V ∧W of fibers are naturally extended to
vector bundles (on the same base space). Notably, the bundle with maximal exterior
power, with fiber ΛnV = V ∧ n· · · ∧V , is called the determinant line bundle (a line
bundle is a one-dimensional vector bundle), and the bundle with typical fiber V ∗ (the
dual vector space of V ) is called the dual bundle.

It is always useful to have a scalar product at one’s disposal when working on vector
spaces. Given a complex vector bundle E, an Hermitian structure h : E → M is
an Hermitian scalar product hx on each fiber Ex which depends smoothly on x. More
precisely, it is a positive-definite section h ∈ Γ(E∗ ⊗E), which may be represented on
local trivialization by Hermitian matrix-valued functions. A complex vector bundle
equipped with an Hermitian structure is called a Hermitian vector bundle. We
will assume vector bundles to have an Hermitian structure as soon as needed, e.g.
when formula include scalar products or when adjoint operators are used.

We have seen that bundles locally look like direct products. In fact, it is possible
to glue such local descriptions to reconstruct the bundle. Consider a good open cover
(Ui)i of M . By definition there exist an isomorphism ϕi : Ui × F → π−1(Ui) for each
Ui; this is why we say that the fiber bundle locally looks like a direct product. In a
given neighborhood Ui, local sections can be represented by usual maps Ui → F . But
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S1 S1

Figure 2.4: A cylinder bundle andaMöbius bundle. A cylinder (left) is a trivial bundle
(with no twist), whereas a Möbius strip (right) is a nontrivial bundle (with twist).
Here, we have used the typical fiber F = [−1, 1] instead of R to get an easier object
to draw. Attempts to construct a never vanishing section (successful for the cylinder,
unsuccessful for the Möbius strip) are represented in red.

we need a way to go from a neighborhood to another: on the overlap (Ui ∩ Uj) × F ,
we define the transition function

ϕij = ϕ−1
i ϕj . (2.5)

Transition functions are assumed to belong to a group G of transformations of the
fiber space F called the structure group of the bundle, which is G = GL(V ) for
vector bundles. They satisfy the so-called cocycle conditions,

ϕii = id and ϕijϕjk = ϕik (2.6)

on the intersection Ui ∩ Uj ∩ Uk of three overlapping neighborhoods. In fact, a set
of transition functions (satisfying the cocycle conditions) completely determines the
bundle [Ste51, § 3].

1.2.3 Example: the Möbius bundle

To provide an intuitive picture of nontrivial bundles, let us consider a simple example:
the Möbius bundle. Let the base manifold M be the circle S1, parameterized by the
angle θ. We cover it with the open sets (see also figure 2.5)

U1 = (0 − ϵ, π/3 + ϵ)
U2 = (π/3 − ϵ, 2π/3 + ϵ)
U3 = (2π/3 − ϵ, 2π + ϵ)

. (2.7)

(We used three open sets to avoid a non-connected intersection U1 ∩ U2.) Take the
typical fiber to be the line F = R, and the structure group to be GL(R) (so we can
have a vector bundle). To construct the bundle, we have to glue together the three
pieces Ui × F with coordinates (θ, fi) by specifying transition functions. In general,
the transition function tij is of the form f ↦→ αf with α ∈ R∗ ≃ GL(R). Here, we
will consider two possible sets of transition functions. First, set

t12 = t23 = t31 = f ↦→ f. (2.8)
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In this case, the bundle is a trivial bundle (not twisted), which is in fact a cylinder
(see figure 2.4) Another possibility is to take

t12 = t23 = f ↦→ f and t31 = f ↦→ −f. (2.9)

In this case, the bundle is not trivial (it is twisted) ! It is the Möbius bundle (see
figure 2.4).

Indeed, it is not possible to find a never-vanishing global section of the Möbius
bundle. Intuitively, if it were so, it would be possible to make it constant, by dividing
by the norm, so let us consider a constant global section. After one full turn from a
starting position θ, we have crossed two transition functions t ↦→ t and one transition
function t ↦→ −t so s(θ + 2π) = −s(θ), and hence s vanishes. This illustrates the
more general obstruction to define a frame of global sections in a nontrivial vector
bundle.

U1

U2

U3

S1

Figure 2.5: Schematic viewof the open covering of the circle. Three overlapping open
sets Ui are used to cover the circle S1.

1.3 Connections on vector bundles

Vectors living in different fibers cannot be compared (e.g. added or subtracted) di-
rectly. A particular structure called a connection is required to do so, and in particular
to extend the notion of derivatives and differential operators on fields over a manifold
(i.e. on sections of a bundle over this manifold) . In the following, we consider a
smooth vector bundle E of rank n with fiber F over a smooth differentiable manifold
M . Let Γ(E) be the space of (smooth) sections of E. We recall the reader that T (M)
is the tangent bundle to M and that T ∗(M) is its cotangent bundle, and ΛqT ∗(M)
its qth power. The space of E-valued q-forms on M (or in other words, of q-forms
with value in the vector bundle E) is the space of sections of ΛqT ∗(M) ⊗ E

Ωq(M,E) = Γ(ΛqT ∗(M) ⊗ E). (2.10)

When E = E0 is the trivial line bundle, then Ωq(M) = Ωq(M,E0) is simply
the space of q-forms on M . In this case, the exterior derivative d provides a map
d : Ωq(M) → Ωq+1(M). We now aim at defining an equivalent to the exterior
derivative in the case of a generic vector bundle, that is, an operator

Ωq(M,E) → Ωq+1(M,E). (2.11)
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A connection on the smooth vector bundle E overM is a complex linear map

∇ : Ω0(M,E) ≡ Γ(E) → Γ(T ∗(M) ⊗ E) ≡ Ω1(M,E) (2.12)

such that
∇(fs) = f∇(s) + df ⊗ s (2.13)

for a smooth function f ∈ Ω0(M) and a section s ∈ Ω0(M,E). If we have such a
map, there is a unique extension to a linear map

∇ : Ωq(M,E) → Ωq+1(M,E) (2.14)

such that
∇(α⊗ s) = dα⊗ s+ (−1)|α| α ∧ ∇s (2.15)

for all |α|-forms α ∈ Ω|α|(M) on M and all F -valued (q−|α|)-forms s ∈ Ωq−|α|(M,E).
We will also call connection this extension.

On a Hermitian vector bundle, the connection should be required to preserve
the Hermitian structure, namely to satisfy dh(s, s′) = h(∇s, s′) + h(s,∇s′); such a
connection is a unitary connection.

There is also a unique 2-form K ∈ Ω2(M,End(E)) called the curvature form of
the connection such that

∇2s = ∇(∇(s)) = Ks (2.16)

for all s ∈ Ωq(M,E).

Locally, E has a basis of local sections e1, . . . , en so we can write

∇ei =
∑

j

Aji ⊗ ej (2.17)

where Aji ∈ Ω1(M) are 1-forms on M . The End(E)-valued 1-form A is called the
(local!) connection form, and we have (locally)

∇s = (d +A)s. (2.18)

When a Hermitian structure is available (ei are then assumed to be orthonormal) the
connection form is

Aij = ⟨ei,∇ej⟩ . (2.19)

The curvature is then given by

∇2ei =
∑

j

Kji ⊗ ej (2.20)

where K is a End(E)-valued 2-form called the curvature form,

K = dA−A ∧A. (2.21)

(that is, Kij = dAij −Aik ∧Akj). The curvature form K is globally defined, and does
not depend on the choice of the local trivialization.
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A related notion is the covariant derivative along a vector field X ∈ Γ(T (M)),
which takes a section s ∈ Γ(E) and gives back another section ∇Xs ∈ T (E), defined
as

∇Xs = ⟨∇s,X⟩ . (2.22)

The connection is decomposed over covariant derivatives along local coordinates as

∇s = ∇∂/∂xµ(s)dxµ. (2.23)

1.3.1 Projected connections on vector bundles

Consider a trivial bundle E = M ×Cn with the trivial connection ∇ = d. A family of
orthogonal projectors P over the base manifold M is associated with a subbundle E′

of E with fiber P (x)Cn over x ∈ M . This defines a projected connection

∇P = P∇ = Pd (2.24)

and its curvature is
KP = PdP ∧ dP. (2.25)

Particularly noticeable is the fact that even if ∇ is flat, ∇P may not be.

The Berry connection in quantum mechanics is an example of projected connec-
tion, where the projectors implement the adiabatic constraint.

2 Another mathematical preliminary: topology
Mathematicians are often concerned with details. Topology is a somehow paradoxical
branch of mathematics which is devoted to rigorously ignore details, and rather to
focus on the global properties of certain objects, like a space or a map, which are
not sensitive to the specific features of the object. Crucially, such properties are left
invariant by continuous deformations of the objects they characterize, and as such,
are known as topological invariants. In the best cases, such topological invariants fully
characterize a class of objects defined up to smooth transformations. Homotopy theory
is the most natural framework to define such topological properties, but although
very easy to define, the objects in homotopy theory are generally very difficult to
compute. Yet, it serves as a ground for computationally simpler but weaker theories
like homology, cohomology and K-theory.

The reader may refer to [Hat03a] and [DFN85; Spa94; Uni13] for details and in
[GBL08] for the big picture.

2.1 Homotopy

Two continuous maps f0 : X → Y and f1 : X → Y (where X and Y are smooth
manifolds) are said to be homotopically equivalent or simply homotopic if there
is a continuous map (called homotopy)

F : [0, 1] ×X → Y (2.26)
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such that F (0, x) = f0(x) and F (1, x) = f1(x) for all x ∈ X. If f0 and f1 are
smooth, it is always possible to assume that F is smooth too. Homotopy is an
equivalence relation, written f0

hom.∼ f1, which defines homotopy classes. The
set of homotopy classes of maps X → Y is usually written [X,Y ]. Note that a
homotopy class always has a smooth representative, a fact which is useful to compute
the homotopy class of a given map. A map equivalent to any constant map is said to
be null-homotopic.

Two spaces X and Y are said to be homotopically equivalent or of the same
homotopy type, if there are two maps f : X → Y and g : Y → X such that f ◦ g
is homotopic to idY and g ◦ f is homotopic to idX . Indeed, isomorphic spaces are of
the same homotopy type. If X and X ′ (resp. Y and Y ′) are of the same homotopy
type, then [X,Y ] ≃ [X ′, Y ′].

A particular attention was given to homotopy classes from the spheres (i.e. with
X = Sn), which form a group. The n-th homotopy group of a manifold Y is
defined as πn(Y ) = [Sn, Y ] (note that a precise definition requires the choice of
a basepoint). The 0-th homotopy group π0(Y ) lists the connected components of
Y ; the first homotopy group π1(Y ) is called the fundamental group of Y , and
describes the classes of equivalence of closed loops in Y . For example, π1(R2) ≃ {1}
is the trivial group, because all loops on the plane are contractible to a point. On the
other hand, if we remove the origin, so Y = R2\{0}, then we obtain π1(R2\{0}) ≃ Z,
according to the number of times the loop winds around the origin (with a sign to
distinguish clockwise and anticlockwise loops), see figure 2.6. As R2\{0} and S1 are
of the same homotopy type, this illustrates that the fundamental group of the circle
is π1(S1) ≃ Z. To determine the homotopy group of spheres πp(Sq) is a surprisingly
complicated problem. Although low-dimensional ones were indeed computed, and
that there is a regularity in the so-called stable range when 2q ≥ p+ 2, all homotopy
groups of spheres are not known.

2.2 Topology of vector bundles

The next section focuses on the topology of vector bundles: we want to know when
two vector bundles are essentially the same. This question is motivated by considera-
tions of physics: vector bundles are good descriptions of particular features of certain
physical systems (e.g. the bands in Bloch theory), and a drastic difference between
two such systems is expected to have observable physical consequences (it turns out
to be the case). We focus on complex vector bundles which appear in Bloch theory.
Very similar constructions appear in the study of real vector bundles and principal
bundles. The interested reader is directed to the references [EGH80; Ste51; Hat03b;
Hus93]. On K-theory, see [Hat03b; Kar08; Par08] for more details and [RLL00] for
the operator version.
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Figure 2.6: Loopson thepuncturedplaneand their homotopy classes. The punctured
plane is obtained by removing a point (or for the sake of the illustration, a hatched
disk) from the plane R2. Several oriented paths are drawn, colored according to
their homotopy class. The blue loop corresponds to a null-homotopic map, and can
therefore be contracted to a point. The red loops are homotopic. However, they are
not homotopic to the green loop, as their orientations are opposite. In contrast, on
the full plane (without the hatched disk), all those loops would be homotopic.

2.2.1 Homotopy and the classification of vector bundles

A natural question, which will gain an important physical meaning later, is whether
two vector bundles are isomorphic. In fact, given a base manifold M , we can ask what
are the different possible vector bundles over M . Naturally, two vector bundles cannot
be isomorphic if the fibers have not the same dimension, so we are led to consider the
set VectC(M,n) of isomorphism classes of n-dimensional (complex) vector bundles
over M . The same results also hold when replacing all C with R and C-linearity
with R-linearity, but we will mainly be concerned with complex vector bundles in the
following.

The main idea is to replace the classification of vector bundles over M by the
classification of maps fromM to a particular manifold, for which the tools of homotopy
theory are available. Two fundamental results allow for this reformulation:
– First, there is a relation between homotopy of maps and isomorphisms of vector

bundles. Consider a vector bundle E → M and two homotopic maps f : N → M
and g : N → M . Then the pullback bundles f∗E and g∗E are isomorphic.

– Second, every vector bundle can be seen as the pullback bundle of a certain “uni-
versal bundle”. The idea is that the base manifold of the universal bundle is made
of all possible (finite-dimensional) vector spaces, and the fiber over a vector space
is this vector space.
A consequence of the first point is that a homotopy equivalence between manifolds

f : N → M induces a bijection f∗ : Vect(M,n) → Vect(N,n). In particular, every
vector bundle over a contractible base space is trivial.

The second point is made more precise in the following. First, we must define
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the “universal bundle” from which we can pull back every other vector bundle. To
do so, we first define its base manifold, which is called the classifying space. In the
case of vector bundles, the classifying space is called the Grassmannian Grn(Ck)
(for n ≤ k) as the set if all n-dimensional vector subspaces of Ck. For example
(and in the real case to simplify visualization) Gr1(R2) is the set of all lines passing
through the origin in the plane R2. The inclusions Ck ⊂ Ck+1 ⊂ · · · give inclusions
Grn(Ck) ⊂ Grn(Ck+1) ⊂ · · · , so we can consider the limit

Grn(∞,C) =
⋃
k

Grn(k,C) (2.27)

which is essentially the set of all n-dimensional vector spaces. There are canonical
n-dimensional vector bundles over Grn(k,C) and Grn(∞,C), defined as

EG
n (k,C) =

{
(x, v) ∈ Grn(k,C) × Ck

}
(2.28)

and again, due to natural inclusions,

EG
n (∞,C) =

⋃
k

EG
n (k,C). (2.29)

The vector bundle EG
n (∞,C) → Grn(∞,C) is called the universal bundle. It was

constructed in order to somehow contain all vector bundles of rank n, in the following
sense: the map

[M,Grn(∞)] → Vect(M,n)
[f ] → f∗EG

n (∞)
(2.30)

is a bijection. Hence, every vector bundle of rank n over M can be seen as a pullback
bundle of the universal bundle by some map f : M → Grn(∞).

The sad conclusion of this construction is that generally, it is not technically
possible to compute the homotopy classes [M,Grn(∞)]. As a consequence, more
tools are necessary.
– First, objects called “characteristic classes” enable to explicitly compute invariants

that partially characterize the topology of vector bundles. As their name indicate,
the topological invariants are the same for equivalent vector bundles, but they
may not be sufficient to completely characterize them. In particular, characteristic
classes are cohomological objects that allow to explicitly compute those invariants
as integrals of differential forms.

– Second, a weaker notion of equivalence between vector bundles, called “stable equiv-
alence”, allows to make the problem tractable, and results in what is called K-
theory. The classes of stably equivalent vector bundles over a compact manifold M
turns out to be a group, called the (reduced) K-group of M .

2.2.2 Characteristic classes

A nontrivial vector bundle is characterized by an obstruction to extend a local product
structure to a global product structure, and in particular to find a global frame. When
such a bundle is equipped with a connection ∇, we expect that the connection (and
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in particular its curvature) will somehow keep track of this obstruction, as it prevents
from parallel transporting a basis everywhere in a coherent way. Characteristic classes
are quantities constructed from the curvature of the connection which turn out to
depend only on the bundle (hence their name), and to (almost) provide a measure of
how much it is impossible to find a global frame. In the following, we will focus on
complex vector bundles, for which the characteristic classes are called “Chern classes”,
but a similar construction is possible also for real vector bundles.

Consider a differentiable vector bundle E → M of rank n, equipped with a con-
nection ∇ with curvature form K. An invariant polynomial P is a polynomial which
is invariant under the action of a group. Here, the structure group GL(k,C) acts
through its adjoint action on the curvature form K at transitions between different
trivializations, so we consider invariant polynomials such that P (g−1Xg) = P (X) for
any X ∈ Mk(C) and g ∈ GL(k,C). Invariant polynomials of the curvature form P (K)
are closed differential forms which turn out to depend only on the isomorphism class
of E; in this sense, they are topologically invariant.

A particular invariant polynomial is the total Chern form, defined as

c(K) = det
(

Id + i
2πK

)
∈ H∗(M,R). (2.31)

It is expanded into homogeneous polynomials cj(K) ∈ H2j(M,R) called the jth Chern
forms as

c(K) = Id + c1(K) + c2(K) + · · · (2.32)
with the lowest order terms

c0(K) = 1 c1(K) = i
2π trK c2(K) = 1

8π2 tr(K ∧K) − (trK) ∧ (trK), etc. (2.33)

All cj(K) with 2j > dimM vanish, so c(K) is a finite sum.

The jth Chern form cj(K) is closed, dcj(K) = 0, and therefore defines a (2j)-
th cohomology class, the jth Chern class cj(E) ∈ H2j(M,R), which actually does
not depend on the choice of the connection on E (if K and K ′ are the curvatures
of two connections ∇ and ∇′ on E, the difference cj(K) − cj(K ′) is exact, so it
disappears in cohomology). They are all collected into the total Chern class c(E) ∈
Heven(M,R).

The total Chern class “commutes” with pullbacks, given a map f : N → M , the
Chern class of the pullback bundle f∗E is given by the pullback c(f∗E) = f∗c(E),
and it factorizes on direct sums, that is(2) c(E1 ⊕ E2) = c(E1) ∧ c(E2).

The Chern class c(E) only depends on the isomorphism class of E. In this sense,
it is a topological invariant: if two bundles have different Chern classes, then they are
not isomorphic. Equivalently, two isomorphic bundles share the same Chern class.
However, the converse is in general not true, and two non-isomorphic bundles may
share the same Chern class. More precisely, Chern classes are the primary obstruc-
tion to find global non-vanishing sections. Namely, if E has m linearly independent

(2)This identity is more precisely written as c(E1 ⊕E2) = c(E1) ⌣ c(E2) where the cup product ⌣
is defined on cohomology classes as c = [ϕ] and c′ = [ϕ′], c ⌣ c′ = [ϕ ∧ ϕ′].
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sections, then the last m Chern classes vanish. More precisely, besides c0(E) = 1
which obviously never vanishes, we have the following properties.
– If E ≃ M × Cn (so it is trivializable), then all cj(E) = 0 for j = 1, . . . , n.
– If E ≃ E′ ⊕ Tm where Tm → M is a trivial bundle of rank m, then cj(E) = 0 for
j = n−m+ 1, . . . , n.
When they are well-normalized, the Chern forms are actually of integer class,

cj(K) ∈ H2j(M,Z), which means that their integral over any 2j-cycle of M is an
integer (which is a more concrete kind of topological invariant). If the base space M
is a compact oriented, 2m-dimensional manifold, one can form several 2m-forms from
the Chern forms cj(K) (by choosing a partition j1 +j2 + · · ·+jk = m of m and taking
the product cj1(K) ∧ · · · ∧ cjk

(K)) and integrate them over M : the resulting numbers
are integers (due to the fact that cj belong to integer cohomology class) called Chern
numbers of the bundle [MS74; Kha16; AI98].

All jth Chern classes are indeed invariant polynomials, and any invariant polyno-
mial of the curvature form P (K) can be expressed in terms of the cj(K). We will be
particularly interested in another invariant polynomial, which gives rise to another
set of useful differential forms. The total Chern character is defined as the closed
form

ch(K) = tr
[
exp

(
i

2πK
)]

. (2.34)

It is expanded as
ch(K) =

∑
j

chj(K) (2.35)

where chj(K) is the jth Chern character

chj(K) = 1
j!

(
i

2π

)j

tr
(
Kj
)

(2.36)

where Kj = K ∧ · · · ∧ K is an exterior power. Again, chj(K) = 0 if 2j > dimM .
As we said, the Chern characters can be expressed in terms of the Chern forms, with
[AI98]

ch0 = n ch1 = c1 ch2 = 1
2
(
c2

1 − 2c2
)
, etc. (2.37)

The Chern class behaves well for direct sums, but not for tensor products. The
Chern character behaves well for both, as

ch(E ⊕ E′) = ch(E) + ch(E′) and ch(E ⊗ E′) = ch(E) ∧ ch(E′). (2.38)

2.2.3 K-theory

We will first motivate K-theory from a physical point of view, following [Kit09]. As
we shall see in the section 1.1 on Bloch theory, page 57, energy bands of a solid are
represented by possibly nontrivial subbundles of a trivial Bloch bundle. In condensed
matter, all models are effective descriptions at low-energy to some extent. Hence,
we reasonably expect the properties of a system to be unchanged if a completely
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independent trivial band is added to its description, e.g. accounting for high energy
excitations. For topological properties, this reasonable assumption(3) is not always
satisfied: a strictly two-band system can be topologically nontrivial, but become
trivial when a third (trivial and unrelated) band is added to the description. In other
words, the two Hamiltonians

H and H ⊕ E∞Id =
(
H 0
0 E∞

)
(2.39)

may not be topologically equivalent. K-theory provides a slightly weaker notion of
topological equivalence which gets rid of this kind of possibility.

From a slightly more mathematical point of view, the isomorphism classes of vector
bundles are not “stable”. That means that it is possible that two vector bundles E
and E′ which are not isomorphic, E ̸≃ E′, become isomorphic when added to another
vector bundle F , that is, E ⊕ F ≃ E′ ⊕ F . This kind of irregular behavior happens
when the dimension of the fiber is too small to be typical. The idea of K-theory is
to define a notion of “stable equivalence” between vector bundles which gets rid of
this kind of pathology so that E and E′ are stably equivalent. The main advantage
of this approach is that it forgets enough things so that the set of stable equivalence
classes i) becomes an abelian group and ii) can actually be computed in nontrivial
cases.

More precisely, two vector bundles E and E′ are said to be stably equivalent,
written E

st.∼ E′, when there are integers r and s such that

E ⊕ Ir ≃ E′ ⊕ Is, (2.40)

where Ik is the trivial vector bundles of rank k on M . When it is possible to have
r = s, E and E′ are said to be stably isomorphic, written E

st.≃ E′. When M is
a compact manifold, the set K̃

0
(M) of stable equivalence classes forms an abelian

group with respect to the direct sum ⊕ (for each bundle E, there exists a bundle E′

such that E ⊕E′ is trivial, which provides an inverse), called the reduced K-theory of
M .

The reduced K-group does not take the rank of the bundle into account, as Ir
st.∼ Is,

so we define the K-theory of M as the set K0(M) of formal difference of bundles E−E′

(see them as couples E − E′ = (E,E′)) with the equivalence relation

E1 − E′
1 = E2 − E′

2 iff E1 ⊕ E2
st.≃ E′

1 ⊕ E′
2 (2.41)

For compact M , K0(M) is an abelian group with the addition defined as

(E1 − E′
1) + (E2 − E′

2) = (E1 ⊕ E2) − (E′
1 ⊕ E′

2) (2.42)
(3)Is this assumption really reasonable? Several topological insulators based on unstable homotopy

groups were studied, starting with the so-called Hopf topological insulators [MRW08] (based on
π3(S2) ≃ Z, which is characterized by the Hopf invariant). See also [KZ15]. It is not clear to the
author of this thesis whether this kind of unstable nontrivial topology may or not survive experimental
realization.
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and the equivalence class of E − E (for any E) as the zero element(4).

Indeed, the reduced K-theory K̃
0
(M) can be recovered from the full K-theory

K0(M) by forgetting all informations about the rank of the bundles. There is an
exact sequence

0 −→ Z −→ K0(M) −→ K̃
0
(M) −→ 0 (2.43)

where the first arrow is induced by the projection of M onto a point P , Z ≃ K0(P ) →
K0(M) (the K-theory of a point only keeps track of the rank of the bundle, as there is
nothing else to do) and the second one is the natural homomorphism K0(M) → K̃

0
(M)

sending E−Ir to the stable equivalence class of E. The choice of a base point x0 ∈ M

induces a canonical splitting so that K̃
0
(M) is the kernel of K0(M) → K0({x0})

and
K0(M) ≃ Z ⊕ K̃

0
(M). (2.44)

Finally, the Chern character ch induces an isomorphism

K0(M) ⊗ R ≃→ Heven(M,R) (2.45)

between the torsion-free part(5) of the K-theory of M and the even cohomology of
M (the tensoring with R removes the torsion part of K0, and we could replace R by
C or Q with the same effect). This isomorphism means that we may use differential
forms (the Chern character forms) to actually compute the stable isomorphism class
of a vector bundle, at least when K0(M) has no torsion.

2.2.4 Another point of view on K-theory

Instead of focusing on vector bundles over M , we will concentrate on families of
projectors on M . The two points of view are equivalent, because a vector bundle can
be associated to any projector family, and conversely, a projector family to any vector
bundle.

Given an abelian monoid(6) (V,+, e), the Grothendieck group of V is

G(V ) = V × V/
Gr.∼ (2.46)

where

(v1, v2) Gr.∼ (u1, u2) when ∃w ∈ V s.t. v1 + u2 + w = u1 + v2 + w. (2.47)
(4)This method is called the Grothendieck construction, see later.
(5)Consider an (additive) abelian group G the torsion subgroup of G is the group Tor(G) =

{g ∈ G | ng = 0 for some nonzero integer n} of finite order elements. The group is has no torsion
when Tor(G) is reduced to {0}. In any case, the quotient G/Tor(G) has no torsion, and tensoring
with a divisible group D (like (Q,+) or (R,+)) removes torsion, as G⊕D ∼= G/Tor(G) ⊕D.

(6)A monoid (M, ·, e) is a set M with a binary operation · : M × M → M and a neutral element
e ∈ M such that the binary operation is associative, (a · b) · c = a · (b · c) and the neutral element
satisfies e · a = a = a · e for all a ∈ M . It is abelian if a · b = b · a for all a, b ∈ M , and in
this case the binary operation is preferentially written +. Standard examples include the natural
numbers (N,+, 0) (where N includes 0) with the addition and the positive integers (N∗,×, 1) with
the multiplication.
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It is a group with neutral element [(v, v)] = [(e, e)] and the sum

[(v1, v2)] + [(u1, u2)] = [(u1 + v1, u2 + v2)] (2.48)

for which
[(v1, v2)] = −[(v2, v1)]. (2.49)

A familiar example is the construction of all integers a − b = (a, b) from the non-
negative integers with equivalence relation a− b

Gr.∼ c− d iff a+ d = c+ b.

Let Pn(M) represent continuous families of n × n matrix orthogonal projectors
over M , that is

Pn(M) =
{
P ∈ C0(M,Mn(C)) | P (x)2 = P (x) = P †(x) for x ∈ M

}
. (2.50)

There is an obvious inclusion Pn ↪→ Pn+1 which send p to p⊕ 0, so we can take the
ascending union

P∞(M) =
⋃
n

Pn(M). (2.51)

Two elements p, q ∈ P∞(M) are said to be homotopic in P∞(M), written p
hom.∼ q, if

there is a sufficiently large Pn(M) ∋ p, q where they are homotopic.

The K-group K0(M) is

K0(M) = G(P∞/
hom.∼ ). (2.52)

In other words, it represents stable equivalence classes of projector maps on M , which
is consistent with the vector bundle picture.

The same game can be played with unitary maps Un(M) (except the inclusion is
now given by u ↦→ u⊕ 1) and we define the K-group K1(M) as

K1(M) = U∞/
hom.∼ (2.53)

which represents stable equivalence classes of unitary maps on M .

As we have seen in the previous section for the group K0, we can compute the
torsion free part of K-theory from cohomology through the Chern isomorphisms

K0(M) ⊗Z R ≃ Heven(M,R)
K1(M) ⊗Z R ≃ Hodd(M,R).

(2.54)

We have seen that the first one is realized by the Chern character (2.35). When the
vector bundle at hand is defined by a family of projector P ∈ Pn(M) (by setting the
fiber over x ∈ M to be P (x)Cn), the (even) Chern character form associated
to P is expressed in terms of the corresponding projected connection (2.25) as

ch(P ) =
∑

n

chn(P ) =
∑
n≥0

1
n!

(
i

2π

)n

tr
[
P (dP )2n

]
(2.55)
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where (dP )2n = dP∧ 2n· · · ∧dP .

Following [ASSS89], we define the corresponding n-th Chern invariant associ-
ated to the closed 2n-dimensional submanifold X of M as the period

Cn(P,X) =
∫

X

chn(P ). (2.56)

The Chern invariants are in general not equal to the Chern numbers defined above
(so we did not use the same name), though they are related through equation (2.37).
However, the first Chern invariant C1 and the first Chern number C̃1 are the same,
and it is common to call it that way.

In the case of unitary maps U ∈ U(M), the Chern isomorphism is realized by
the odd Chern character associated to U , defined as [Par08, p. 197] (see also [Get93;
TWZ13]) )

c̃h(U) =
∑
n≥0

c̃hn(U) =
∑

n

(−1)n n!
(2n+ 1)!

(
i

2π

)n+1
tr
[
(U−1dU)2n+1] . (2.57)

The homogeneous forms c̃hn(U) are called the odd Chern forms. We have

c̃h(U) + c̃h(U−1) = 0. (2.58)

We then define the n-th winding number (or degree, or odd Chern invari-
ant) of U associated to the closed (2n + 1)-dimensional submanifold X of M as the
period

Wn(U,X) =
∫

X

c̃hn(U). (2.59)

When X is a spherical cycle, this winding number is guaranteed to be an integer
[BS78]. Note that if D is a diffeomorphism on the manifold X, then Wn(U ◦D,X) =
±Wn(U,X) where the positive (negative) sign applies if D is an orientation-preserving
(orientation reversing) diffeomorphism.

The winding number essentially counts the number of times the map V winds
around nontrivial (2n + 1)-cycles in U(N). For instance, in the case of d = 0 (so
n = 0)

deg(V ) = i
2π

∫
tr(V −1(φ)V ′(φ)) dφ (2.60)

so the map S1 → U(1) defined by f(φ) = 1 has no winding, whereas the map defined
by g(φ) = e−iφ has a winding deg(g) = 1.

The odd Chern character can in fact be defined for any invertible family G : M →
GL(n) [Get93]. Now, by polar decomposition, G can always be written as

G(x) = U(x)H(x) (2.61)

for x ∈ M , where U : M → U(n) is a unitary family and where H : M → HPD(n) is
a family of Hermitian positive definite matrices. As HPD(n) is a star domain, there
is an homotopy defined by

Hs(x) = sId + (1 − s)H(x) (2.62)
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from H to the constant map Id, with Hs(x) ∈ HPD(n) for all s ∈ [0, 1] and all x ∈ M .
This gives an homotopy defined by

Gs(x) = U(x)H(x) (2.63)

from G0 = G to G1 = U , so we can deform the invertible map G to a unitary map U
with the same winding.

Notice that what we quickly sketched is topological K-theory, which is defined
through vector bundles. A noncommutative analogue is operator K-theory, which is
based on C∗-algebra (see [RLL00]). The topological K-theory of M is recovered as
the operator K-theory of continuous functions on M as Kq(M) ≃ Kq(C(M)), but
it is possible to consider more general C∗-algebra, for example covering disordered
systems: see e.g. [PS16] and [Kel15].

2.3 Example: vector bundles over a sphere

We will consider the very simple example of vector bundles over the 2-sphere S2. This
example is motivated by the fact that (gapped) Bloch Hamiltonians (see section 1) in
space dimension d are closely related to vector (sub)bundles over Sd (which is called
the Poincaré-Bloch sphere in the case d = 2). We will see in the next chapter that
when weak topological invariants vanish, it is possible to replace the Brillouin torus
by a sphere to describe the strong invariants as stemming from a nontrivial topology
of vector bundles over the sphere.

2.3.1 A nontrivial vector bundle

Starting from the trivial vector bundle E = S2 ×C2, we will split it into two nontrivial
bundles E± by constructing projection operators P± : E → E±.

First embed S2 into R3 with coordinates (x1, x2, x3) as the surface

S2 ≃
{
x ∈ R3 | x2 ≡

∑
x2

i = 1
}
. (2.64)

It will be convenient to use spherical coordinates

x ≃

⎛⎝x1
x2
x3

⎞⎠ =

⎛⎝sin θ cosϕ
sin θ sinϕ

cos θ

⎞⎠ . (2.65)

The trivial vector bundle E is endowed with a natural connection ∇ = d defined
by

⟨ei(x),∇s(x)⟩ = d ⟨ei(x), s(x)⟩ . (2.66)
for a constant frame (ei)i and a section s. Notice that this definition does not depend
on the choice of the constant frame of global sections. It is flat, ∇2 = 0 due to
d2 = 0.

Define the matrix (in fact a section of the endomorphism bundle End(E) = E ⊗
E∗)

H(x) =
∑

i

xiσi =
(

x3 x1 − ix2
x1 + ix2 −x3

)
(2.67)
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where σi are Pauli matrices (see appendix A, page 54). (As the name suggests, this
matrix will later be related to a Hamiltonian.)

Observe that H2(x) = Id (as x ∈ S2), so the eigenvalues of H(x) are either ±1.
Projectors

P±(x) = 1
2 (Id ±H(x)) (2.68)

on the corresponding eigenspaces allow to define two subbundles of E, namely E±
with fiber P±(x)C2 over x ∈ S2. Indeed, E = E+ ⊕ E−. A projected connection ∇±
may be defined on E± by

∇± = P±∇. (2.69)

Its curvature is given by

K± = ∇2
± = P±dP± ∧ dP±. (2.70)

We can use equation (2.68) and the explicit(7) expression (2.67) of H to compute its
trace as

tr(K±) = ± i
4ϵ

ijkxidxj ∧ dxk = ± i
2volS2 (2.71)

where volS2 is the (unnormalized) volume form on S2.

For concreteness, focus on the “valence bundle” E− and we set P = P−, K = K−.
As S2 is a 2-manifold, its is characterized by only one Chern invariant (which is also
the first Chern number)

C1 = i
2π

∫
S2

trK = 1
4π

∫
S2

volS2 = 1, (2.72)

so we conclude that the bundle E− is nontrivial!

2.3.2 Another lookat thesameproblem: connection formsandtransition functions

To gain an understanding of what happens, it may be useful to look at a local picture.
Eigenstates of H(x) are, up to a phase,

|ψ+(θ, ϕ)⟩ =
(

cos θ
2

sin θ
2 eiϕ

)
and |ψ−(θ, ϕ)⟩ =

(
− sin θ

2
cos θ

2 eiϕ

)
. (2.73)

In the following, we will focus on the “filled” state |ψ−⟩ and the corresponding sub-
bundle E− for concreteness.

The vector |ψ−⟩ has an ill-defined phase in the limit θ → 0. Indeed, we may
change the global phase of the vector, but it would only move the singularity: there is
an obstruction to define |ψ−⟩ on the whole sphere due to the nonvanishing first Chern
number. Let us therefore consider an open cover of the sphere composed of two
overlapping hemispheres UN and US (see figure 2.7). Their intersection is homotopic
to the equator of the sphere which is a circle, C = UN ∩ US ≃ S1, and can be viewed

(7)Even more explicitly with coordinates (x1, x2, x2) = (x, y, z), we have tr(K±) = ±(i/2)(xdy ∧
dz + ydz ∧ dx+ zdx ∧ dy).
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UN

US

C ≃ S1

Figure 2.7: Open covering of the 2-sphere.

as the boundary C = ∂UN = −∂US (they have opposite orientations). We define a
local frame of E− on each hemisphere by

|ψS
−(θ, ϕ)⟩ =

(
− sin θ

2
cos θ

2 eiϕ

)
and |ψN

−(θ, ϕ)⟩ =
(

−e−iϕ sin θ
2

cos θ
2

)
(2.74)

so |ψN/S
− ⟩ is well defined on UN/S. The transition function from the trivialization on UN

to the one on US is a phase change on the equator C given by the map tNS : C → U(1)
defined by

tNS(ϕ) = e−iϕ. (2.75)

On the southern hemisphere US, we have a frame of eigenstates (ψS
+, ψ

S
−). In this

basis, the projector P− ≃ diag(0, 1) is obviously diagonal so the projected connection
is fully defined by the application of (2.19) which yields

A = AS = AS
− = ⟨ψS

−,dψS
−⟩ (2.76)

and the curvature is
K = dA−A ∧A = dA (2.77)

as A is only a 1 × 1 matrix (so K = trK and A = trA). Therefore, the connection
form is

A = i cos2
(
θ

2

)
dϕ (2.78)

and the curvature is
K = dA = − i

2 sin θdθ ∧ dϕ. (2.79)

The same game can be played on the northern hemisphere, giving a connection form
AN

−. On the intersection between the hemispheres, both connection forms are related
by the transition function by

trAN
− = trAS

− + tr
[
t−1
NSdtNS

]
(2.80)

so in our case
AN

− = AS
− − idϕ (2.81)
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so as expected the curvature does not depend on the choice of the local trivializa-
tion.

In order to highlight its interpretation as an obstruction to define eigenvectors on
the whole sphere, we now express the first Chern number as the winding number of
the transition function tNS. Indeed,

C1 = i
2π

∫
S2

trK = i
2π

(∫
UN

trK +
∫

US

trK
)
. (2.82)

On each open set UN/S, we have trK = dtrAN/S
− so we have

C1 = i
2π

(∫
∂UN

trAN
− +

∫
∂US

trAS
−

)
= i

2π

∫
∂UN

(trAN
− − trAS

−) (2.83)

(remind that the boundaries of the two hemispheres are the same, but with opposite
orientations). Using equation (2.81),

C1 = i
2π

∫
S2

trK = i
2π

∫
∂UN

tr
[
t−1
NSdtNS

]
(2.84)

The last integral is readily computed as

C1 = i
2π

∫
S1

(−idϕ) = 1 (2.85)

as we already knew.

2.3.3 A higher-dimensional generalization

It would be a shame not to mention that this construction generalizes to the bun-
dle Sd × C2ℓ , by replacing Pauli matrices by a set of d generalized Dirac matrices
(Γ0, . . . ,Γn), which are 2ℓ × 2ℓ Hermitian matrices obeying

ΓiΓj + ΓjΓi = 2δijId and Γ0Γ1 · · · Γd = iℓId. (2.86)

In fact, nearly nothing changes, except in the expressions in terms of coordinates, and
in the explicit expression of the curvature which generalizes to [EGH80]

tr(K±) = ±d! (2i)ℓ

2d+1 volSd . (2.87)

Appendix A – Pauli matrices
A.1 Definition

We define Pauli matrices

σ1 = σx =
(

0 1
1 0

)
σ2 = σy =

(
0 −i
i 0

)
σ3 = σz =

(
1 0
0 −1

)
. (2.88)

They are often supplemented with the identity σ0 = Id. A common convention
consists of using Latin indices i, j, . . . starting from 1 to exclude the identity, and
Greek indices µ, ν, . . . starting from 0 to include it.
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A.2 General properties

Pauli matrices are traceless, with determinant −1,

tr(σi) = 0 and det(σi) = −1. (2.89)

They are involutive,
σ2

i = Id. (2.90)

A.3 Commutation and anticommutation rules

Pauli matrices obey the commutation rules

[σi, σj ] = 2i εijkσk. (2.91)

As a consequence, when correctly normalized, they form a representation of su(2),
and

su(2) = spanR

(
iσ1
2 ,

iσ2
2 ,

iσ3
2

)
. (2.92)

Furthermore, they generate the Clifford algebra Cl3, as

{σi, σj} = 2δijId. (2.93)

The two previous relations give the product of two Pauli matrices as

σiσj = δijId + i εijkσk. (2.94)

A.4 Pauli matrices as a basis of two-by-two Hermitianmatrices

Together with the identity σ0 = Id, Pauli matrices form a basis of the real vector
space of two-by-two Hermitian matrices (and a basis of the complex vector space of
all two-by-two matrices if the coefficients are allowed to be complex). This basis is
orthonormal for the scalar product

⟨A,B⟩ = 1
2tr(AB) (2.95)

so any two-by-two Hermitian matrix is decomposed as

M =
∑

µ

⟨σµ,M⟩σµ. (2.96)

In such a decomposition, the components can be cast into a “Pauli vector” #”m =
(m1,m2,m3) (and if needed in a “Pauli 4-vector” mµ = (m0,m1,m2,m3)) so that we
can symbolically write the decomposition as

M = m0Id + #”m · #”σ = mµσµ. (2.97)

where #”σ = (σ1, σ2, σ3).
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A.5 Combination of Pauli vectors

The matrix product of two-by-two matrices induces a composition law for Pauli
(quadri)vectors through the identity

(aµσµ)(bνσν) = cρσρ (2.98)

with
cρ =

(
a0b0 + #”a · #”

b

a0
#”

b + b0
#”a + i #”a × #”

b

)
(2.99)

where × is the cross-product of C3-vectors. A more simple version of this equation is
often useful,

( #”a · σ)( #”

b · σ) = #”a · #”

b Id + i( #”a × #”

b ) · σ. (2.100)

A.6 Exponential of Pauli matrices

For a normalized vector n and a real θ,

exp (iθ #”n · #”σ ) = cos θ Id + i sin θ #”n · #”σ (2.101)



Chapter 3

Topological insulatorsandtopolog-
ical phases
This chapter is devoted to a (partial and biased) review of topological insulators,
in a way which prepares for the core of this work, devoted to the topology of crys-
tals under a time-periodic perturbation. In a first time, I will remind the reader of
the Bloch theory of waves in periodic media in a way that highlights its underlying
mathematical structure: a band, in Bloch theory, is described by a spectral projector
over an energy range, and this defines a complex vector bundle, which may or not
be topologically trivial. This possibility leads to the notion of topological insulators,
which are reviewed in a second part.

1 Band theory

1.1 Bloch theory

The description of electrons in a crystalline solid rely on the fundamental assumption
that they evolve in a fixed background of nuclei lying on a spatially periodic lattice
(the crystal), giving rise to a spatially periodic attractive potential. This separation
between nuclear and electronic degrees of freedom is known as the Born-Oppenheimer
approximation. In a real material, a handful of deviations from this ideal description
arise (due to e.g. defects and impurities), but they are usually treated as a pertur-
bation of the crystalline solid. This is because the description of an ideal periodic
material is enormously simplified by the so-called Bloch decomposition. We will de-
scribe it from two complementary points of view. The aim of Bloch decomposition is
to use the discrete translational invariance of the Hamiltonian to block-diagonalize it
as much as possible. A full translational invariance would ensure the conservation of
the momentum; in such a system, plane waves with fixed momentum are eigenstates
of the evolution, and any state of the system can be decomposed as a superposition
of such plane waves. In a system with only discrete translational invariance such as
a crystal, momentum is no more conserved; yet the quasi-momentum, defined as the
momentum modulo a reciprocal lattice vector, is still conserved. The corresponding
eigenstates of the evolution are called Bloch waves, which are simply plane waves with
an additional spatial modulation on small spatial scales (on the level of the unit cell
of the crystal).

57



58

In all this work, we will make use of the so-called tight-binding approximation to
describe the (valence) electrons of the crystal. Its main idea is to fix the position
of atoms on a lattice and to then allow electrons to tunnel from (the atomic orbital
of) one atom to another, usually a neighbor or a next-neighbor, through what is
called a hopping process. It is obvious that this description is artificial, effective, and
unsatisfactory as the sharing of electrons is the main reason why the crystal holds
together and therefore the main cause of the positioning of atoms on a lattice, although
this was arbitrarily fixed by the theoretician from the beginning. Yet, tight binding
models are incredibly useful in order to understand complicated features of electrons
in solids (such as the topological phases this work deals with), because they allow to
focus on the relevant degrees of freedom (the electrons), and because although they
do not enable to realize ab-initio prediction, they can still be, as an effective model,
related to experimental situations.

As we have seen, tight-binding models are effective in essence, so it is perfectly
reasonable to only include relevant degrees of freedom; for example, when describing
graphene, only the out-of-plane 2 pz atomic orbitals are included. Other internal
degrees of freedom such as spin can also be included if needed. Not all crystals
are Bravais lattices: for example, the honeycomb lattice of graphene has a triangular
Bravais lattice with two sublattices (equivalently, two sites per unit cell) usually called
A and B. After the Bloch decomposition, those sublattice degrees of freedom are
more or less on the same footing as genuine internal degrees of freedom, so we will
gather them as a whole and let N be their count. Indeed, Bloch decomposition is
particularly useful in a tight-binding setting, because after having block-diagonalized
the translational degrees of freedom, one is left with a (family of) N × N matrix
Hamiltonian(s), N being, as we previously stated, the number of degrees of freedom
inside a unit cell. Matrices being considerably easier to deal with than functions, this
simplification is really helpful.

We will now rephrase this inside a standard mathematical framework. A classi-
cal mathematical reference for Bloch-Floquet theory of Schrödinger operators with
periodic potentials is the chapter XIII.16 of [RS78]. For more solid-state physics ori-
ented references, see Ziman’s excellent book [Zim79] as well as Marder’s more recent
textbook [Mar15].

We first need to introduce the notion of a fundamental domain. Given a set X
and a group G acting on it, we can define an equivalence relation by x ∼ y whenever
y = g · x, for x, y ∈ X and g ∈ G. The set of all equivalence classes is then the
quotient X/G. A fundamental domain for a group action of G on X is a choice
of exactly one representative for each equivalence class; or alternatively one of the
numerous possible ways to embed X/G in X. Formally, it is a subset F ⊂ X such
that ∪g∈G g · F = X and that ∩g∈G g · F has no interior.

We consider atoms arranged on a crystal C, a discrete subset of the d-dimensional
Euclidean space Ed representing the locations of atoms. The periodicity of the crystal
is taken into account by the fact that it is acted upon by a Bravais lattice Γ ⊂ Rd

of discrete translations, Γ ≃ Zd (as groups). For non-Bravais crystals, there are
m = |C/Γ| classes of translationally equivalent points of C called sublattices (for
example, the hexagonal lattice of graphene has two sublattices). The Bravais lattice
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is composed of vectors connecting sites of the same sublattice. The set of sublattices
C/Γ may be represented by a unit cell F ⊂ C, which has one point in each sublattice,
i.e. it is a fundamental domain for the action of the translation group Γ on C. A
translation of F by a Bravais vector is also a possible choice for a unit cell but when
there are several sublattices, i.e. m > 1, then there are choices of F that are not
related in this way (one can e.g. take representatives for the different sublattices
arbitrarily far from each other).

Along with the translational degrees of freedom, one may consider a finite num-
ber n of internal degrees of freedom, e.g. different orbitals or the spin of electrons, rep-
resented as a finite-dimensional complex vector space V , with dim(V ) = n, equipped
with a scalar product ⟨·, ·⟩V . The Hilbert space of crystalline states is then the space
H = ℓ2(C, V ) of V -valued square-summable functions on C with the scalar prod-
uct

⟨ψ|χ⟩ =
∑
x∈C

⟨ψ(x)|χ(x)⟩V . (3.1)

We now want to use the discrete translations to decompose the Hilbert space H

into a direct sum of fixed quasi-momentum components; as we will see, the transla-
tional invariance of the Hamiltonian will ensure that it is block-diagonalized by this
decomposition.

Remember that the crystal is embedded in the Euclidean space Ed. Translations
in Ed live in its translation vector space T ≃ Rd. The dual vector space T ∗ ≃
Hom(T,R) ≃ Rd is the set of reciprocal vectors, which are in fact linear forms in
disguise: a reciprocal vector k ∈ T ∗ is in fact a linear map χk : v ↦→ k · v for v ∈ T .
The translation of states ψ ∈ H by a vector γ ∈ Γ ⊂ T of the Bravais lattice is defined
by the unitary translation operator Tγ such that Tγψ(x) = ψ(x − γ) for x ∈ C.
Operators Tγ define a representation of the translation group Γ in H which may be
decomposed into irreducible components. As the translation group Γ is abelian, its
irreducible representations are its characters (which are one-dimensional),

χk : γ ↦→ eik·γ (3.2)

where k ∈ T ∗ is a reciprocal vector. Let us now define the reciprocal lattice
Γ∗ = Hom(Γ,Z) (composed of reciprocal lattice vectors G ∈ T ∗ with G ·γ ∈ 2πZ)
and notice that eik·γ = ei(k+G)·γ for G ∈ Γ∗. Hence, the characters of Γ form a group,
the Pontryagin dual Γ̂ of Γ, which is also a d-dimensional torus called the Brillouin
torus:

BZ ≡ Γ̂ ≡ T ∗/Γ∗ ≃ Td. (3.3)

The elements k ∈ BZ are called quasi-momenta, and we will follow a longstanding
tradition of careless physicists and identify them with any of their lifts k (or k + G)
in T ∗. A choice of a fundamental domain F∗ ⊂ T ∗ to represent the Brillouin torus is
called a Brillouin zone (usually, it is a Wigner-Seitz cell, also called a Voronoi cell,
defined as the closure of the set of all points in T ∗ which are closer to some v ∈ Γ∗

than to any other point of Γ∗, the most common choice being the first Brillouin zone
where v is the origin).
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The decomposition of H into irreducible components is realized by the Fourier
transform ψ ↦→ ψ̂, where

ψ̂(k, x) =
∑
γ∈Γ

e−ik·γψ(x− γ). (3.4)

Note that ψ̂(k) = ψ̂(k +G) and

ψ̂(k, x− γ) = eik·γψ̂(k, x) (3.5)

so that (T̂γψ)(k, x) = eik·γ ψ̂(k, x). This property defines the Bloch functions
on C with quasi-momentum k, which for fixed k form a finite-dimensional Bloch
space

H(k) =
{
ψ ∈ H | ψ(x− γ) = eik·γψ(x) for γ ∈ Γ

}
= H(k +G) (3.6)

that may be equipped with the scalar product

⟨φ(k) | χ(k)⟩k =
∑

x∈C/Γ

φ(k, x)χ(k, x). (3.7)

Bloch spaces H(k) are defined canonically for each k, without any further choices. As
a Bloch function is determined by its values on a unit cell F ⊂ C, their dimension is
dim(H(k)) = (cardF) × (dimV ) = m× n = N .

Geometrically, the collection of vector spaces H(k) forms a complex N -dimensional
vector bundle H over the Brillouin torus BZ that we shall call the Bloch bundle,
and we will see that it is trivializable. Spaces H(k) are the fibers of H and their scalar
product equips H with a Hermitian structure. Sections of H are maps k ↦→ φ(k) ∈
H(k), and they are smooth if functions k ↦→ φ(k, x) are smooth for all x. The Fourier
transform (3.4) realizes an isomorphism between H and the space of square-integrable
sections k ↦→ ψ̂(k) of the Bloch bundle H over BZ which preserves the norm, as stated
by the Plancherel formula

∥ψ∥2 = 1
|BZ|

∫
BZ

∥ψ̂(k)∥2
kdk (3.8)

where |BZ| is the volume of BZ (which can be computed as the volume of a Brillouin
zone embedded in the Euclidean space). Its inverse is given by the normalized integral
of ψ̂(k, x) over the Brillouin torus

ψ(x) = 1
|BZ|

∫
BZ
ψ̂(k, x) dk. (3.9)

As we previously stated, the Bloch bundle may be trivialized (yet not in a canonical
way), which will enable us to represent operators on H as families of matrices over
the Brillouin torus. A trivialization of H is a family of smooth sections k ↦→ ei(k),
i = 1, . . . , N , defined over BZ (i.e. with ei(k) = ei(k+G)), which for each k form an
orthonormal basis (a frame) of H(k).
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Let (v1, . . . , vn) be a basis of V . An example of trivialization of H is provided by
the Fourier transforms of functions ϕi,j ∈ ℓ2(C, V ) defined by

ϕ(i,j)(x) = δx,xivj (3.10)

concentrated at points xi ∈ F of a fixed unit cell F ⊂ C. We shall denote by eF
I (k)

for (i, j) = I the corresponding vectors in H(k),

eF
(i,j)(k) =

∑
γ∈Γ

e−ik·γϕ(i,j)(x− γ). (3.11)

Bloch functions decompose on this frame as

φ =
∑

I

φIe
F
I where φI(k) = ⟨eF

I (k) | ϕ(k)⟩k . (3.12)

The trivialization of H defined this way depends on the choice of the fundamental
domain F . If F ′ is another unit cell then x′

i = xi + γi with γi ∈ Γ for an appropriate
numbering of its points so that

δx,x′
i

= Tγiδx,xi (3.13)

and consequently
eF ′

(i,j)(k) = eik·γieF
(i,j)(k). (3.14)

For convenience, in the following we will treat the composite index I = (i, j) as
a number running from 1 to N . Each trivialization permits to identify the Bloch
bundle H with the trivial bundle BZ × CN .

To sum up, Bloch decomposition amounts to use the Fourier transform to define
a Bloch bundle

H =
⨁

k∈BZ
H(k) (3.15)

where BZ is the Brillouin torus and H(k) are N -dimensional complex vector spaces,
so that the Hilbert space H is isomorphic the set of sections of a (trivializable) vector
bundle H → BZ over the Brillouin torus,

H ≃ Γ(H). (3.16)

Now consider a tight-binding Hamiltonian on C, that is an Hermitian opera-
tor

H =
∑

x,y∈C
h(x, y) |x⟩⟨y| ∈ End(H) (3.17)

where |x⟩ represents a state with a localized wave function ξ ↦→ δξ,x, and where
h(x, y) ∈ End(V ) with h(x, y)† = h(y, x) so that H† = H is Hermitian. Assume that
this Hamiltonian is translation invariant with respect to Bravais lattice translations,
that is TγHT

−1
γ = H, or explicitly

h(x+ γ, y + γ) = h(x, y) (3.18)
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for a translation γ ∈ Γ. Then, H maps Bloch functions into Bloch functions: if ψ is
an element of H(k), so ψ(k, x− γ) = eik·γ , then

(Hψ(k))(x) =
∑
y∈C

h(x, y)ψ(k, y) (3.19)

is also an element of H(k) (the Hamiltonian fibers over the Brillouin torus), and that
defines Bloch Hamiltonians H(k) = H(k + G) acting on H(k), which decompose
H along (3.15) as

H =
⨁

k∈BZ
H(k). (3.20)

This equation may be understood as the continuous version of a decomposition of H
into block-diagonal form, corresponding to the identification of conserved quantities
due to symmetries. This is already a huge simplifications as Bloch Hamiltonians
act on finite-dimensional vector spaces. The last step consists in representing those
operators as matrices by choosing a frame of sections k ↦→ ei(k), i = 1, . . . , N of the
Bloch bundle to define the promised N ×N Bloch Hamiltonian matrices as

Hij(k) = ⟨ei(k) | H | ej(k)⟩ . (3.21)

We already know a frame of smooth global sections defined over the whole Brillouin
torus, maps k ↦→ eF

I (k) defined through the Fourier transform, which define Bloch
Hamiltonians HF (k).

For example, let us take V = C and F = {x1, . . . , xm}, so the Bloch Hamiltonian
(in basis eF ) is a m×m matrix. Let us write |x1⟩B the corresponding basis vectors(1)

in Cm. A typical tight-binding element is |x⟩ ⟨y|, with x, y ∈ C. Points on the crystal
are decomposed as e.g. x = γx + [x] where γx ∈ Γ and [x] ∈ F (same for y), so to
obtain the Bloch Hamiltonian, we simply have to replace

|x⟩⟨y| −→ e−ik·(γy−γx) |[x]⟩B⟨[y]|B . (3.22)

To give an even more simple example, in a one-dimensional system with m = 1, we
simply replace |x⟩ ⟨x+ 1| with e−ik, |x+ 1⟩ ⟨x| with e+ik, |x⟩ ⟨x+ 2| with e−2ik, and
so on.

1.1.1 An alternative picture

Bloch functions can also be seen as Γ-periodic functions on C modulated by a Bloch
phase: this is the usual formulation of Bloch theorem, which states that a wavefunc-
tion ψk(x) can be written as the product of a periodic function uk(x) = uk(x+γ) and
of a phase factor e−ik·x, that is ψk(x) = e−ik·xuk(x). We will make this statement
precise in the following, and show that the Bloch bundle can be identified with the
quotient

T ∗ × ℓ2(C/Γ)
Γ∗ ≃ H (3.23)

where T ∗ is the set of reciprocal vectors, ℓ2(C/Γ) are Γ-periodic functions on C and
Γ∗ is the reciprocal lattice. To do so in a meaningful way, we will need to allow the

(1)For example, we can take |x1⟩B = (1, 0, . . . , 0), |x2⟩B = (0, 1, 0, . . . , 0), etc.
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quasi-momentum to live in the whole reciprocal space T ∗ ≃ Rd and only at the end
to identify k with k +G.

First, Γ-periodic functions on C are maps u satisfying u(x) = Tγu(x). They form
the vector space ℓ2(C/Γ). This being said, we can define the trivial bundle

B = T ∗ × ℓ2(C/Γ) (3.24)

with typical element (k, u). From a section k ↦→ u(k) of this trivial bundle, where
u(k, x) = u(k, x+ γ), one can define

ψ(k, x) = e−ik·(x−x0)u(k, x) (3.25)

where x0 ∈ Ed is a fixed origin in the Euclidean space, needed to get a vector x−x0 ∈
T , where T is the translation vector space, out of x ∈ C ⊂ Ed. Thus ψ is a section
of the Bloch bundle. By construction, ψ(k, x − γ) = eik·γψ(k, x) so ψ(k) ∈ H(k) ≡
H(k+G) but we also need ψ(k+G, x) = ψ(k) which is not necessarily true. It is for
sections k ↦→ u(k) such that

u(k +G, x) = eiG·(x−x0)u(k, x). (3.26)

In order to impose this relation, we define an equivalence relation between elements of
the bundle B: the previous equation can be interpreted as an action of the reciprocal
lattice Γ∗ on periodic functions, so we now have an action of Γ∗ on B defined by

(k, u) ↦→ (k +G, x ↦→ eiG·(x−x0)u(x)) (3.27)

for G ∈ Γ∗. Dividing B by this action gives a bundle on BZ with fiber H(k), i.e. the
Bloch bundle.

Starting from a frame of sections of B

b̃(i,j)(k, x) =
∑
γ∈Γ

Tγδx,xi
vj =

∑
γ∈Γ

δx−γ,xi
vj (3.28)

for xi ∈ F and vj ∈ V , we define functions

ẽx0
(i,j)(k, x) = e−ik(x−x0)b̃(i,j)(k, x) = e−ik(x−x0)

∑
γ∈Γ

δx−γ,xi
vj . (3.29)

They naturally provide local sections of the Bloch bundle, but not global sections as
ẽx0

I (k) ̸= ẽx0
I (k +G) (they are however identified in the quotient).

1.1.2 Different Bloch Hamiltonians

Sections ẽx0
I obtained from B therefore allow to define a family of Bloch matrix Hamil-

tonian, which will however not be defined on the Brillouin torus, but rather on the
whole plane T ∗. The choice of the Bloch Hamiltonian can have no impact on the
physical observables: it is an arbitrary choice of basis which enables to represent op-
erators as matrices. For example, the energy spectrum of HF (k) is the same as the
one of H̃(k). On the other hand, particular choices can prove to be more useful in
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discussing a particular property. In order to study topological properties, it is more
convenient to have a periodic Bloch Hamiltonian, so we will work with HF (k) which
will be shortened as H(k) in the following (but we should keep in mind that it de-
pends on the unit cell). In certain situations, it appears that the non-periodic Bloch
Hamiltonian H̃(k) is more convenient. I partially explored this issue in [FCG14].
Following the observations of Bena and Montambaux [BM09] and Fuchs, Piéchon,
Goerbig and Montambaux [FPGM10] on graphene-like systems, we observed that
there is an almost canonical choice of parallel transport on the Bloch bundles, which
gives rise to a canonical Berry curvature when projected on a band [FCG14]. The
corresponding projected (Berry) connection is directly related to the position oper-
ator, as discovered by Blount in 1962 [Blo62]. Other choices of parallel transport
may be related to the position operator, but in a more complicated fashion. The
non-periodic matrix Bloch Hamiltonian happens to be directly related to such ob-
jects, as the frame used to define it is parallel transported by the (almost) canonical
connection. It is therefore not surprising to find the non-periodic Bloch Hamiltonian
more convenient to work with in situations where the position operator appears, for
example when the system is subjected to an external electric field, a situation first
considered by Zak [Zak68; Zak89], leading to a distinction between a Bloch-Floquet
transform and a Zak-Bloch-Floquet transform [PST03], which are closely related to
the objects we defined. Observables more easily described with the later choice seem
to arise in Stückelberg interferometry of Bloch states [LFM15] and in Friedel oscil-
lations [DK16]. Although the non-periodic Bloch Hamiltonian is convenient as it is
naturally related to the canonical curvature, it is still possible to choose another frame
to define matrix families representing operators. Expressing simple quantities in such
a basis would be unnecessarily complicated, but possible. As it is outside of its scope,
I will not discuss this matter any further in this thesis.

1.1.3 Example: graphene

To illustrate Bloch theory on a simple example (and also to prepare for the Haldane
model that we shall study in section 2.1), consider the tight-binding model of graphene
[Wal47; CGPN09]. Here, the crystal C is a hexagonal lattice (also called honeycomb
lattice). The Bravais lattice Γ is composed of integer linear combinations of the lattice
vectors

a1 = a

2

(
3√
3

)
and a2 = a

2

(
3

−
√

3

)
, (3.30)

that is
Γ ≃

{
ia1 + ja2 | (i, j) ∈ Z2} . (3.31)

We also define the nearest neighbor vectors

δ1 = a

2

(
1√
3

)
, δ2 = a

2

(
1

−
√

3

)
and δ3 = a

2

(
−2
0

)
. (3.32)

A choice of fundamental domain for the graphene lattice, illustrated on figure 3.1a,
is

F = {x0, x0 + δ3} (3.33)
where x0 ∈ E2 is an (arbitrary) origin of the Euclidean plane. Here, we choose to
take x0 ∈ C for simplicity, but this is not mandatory (another possible choice of
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fundamental domain is F ′ = {x0 − δ3/2, x0 + δ3/2}, for example). The crystal C is
obtained by the action of Γ on F , that is

C = ΓF =
{
x0 + ia1 + ja2 | (i, j) ∈ Z2}∪

{
x0 + δ3 + ia1 + ja2 | (i, j) ∈ Z2} . (3.34)

The crystal is composed of two subsets, each coming from a single point in F . The
first set will be called sublattice A, and the second sublattice B. This is illustrated
on figure 3.1a. Notice that another choice of fundamental domain, e.g. with δ2
instead of δ3, would give the same crystal. The reciprocal lattice Γ∗ is generated by
vectors

a∗
1 = 2π

3a

(
1√
3

)
and a∗

2 = 2π
3a

(
1

−
√

3

)
(3.35)

(which were chosen so that a∗
i · aj = 2πδij), that is

Γ∗ ≃
{
ia∗

1 + ja∗
2 | (i, j) ∈ Z2} . (3.36)

The first Brillouin zone (see figure 3.1) is an hexagon with corners (K,K −
K ′,−K ′,−K,K ′ −K,K ′) where

K = 2π
3
√

3a

(√
3

1

)
and K ′ = 2π

3
√

3a

(√
3

−1

)
(3.37)

are the so-called K points, also called Dirac points in graphene.

In this example (and in the Haldane model), we consider spinless electrons: the full
Hamiltonian of the electronic problem factorizes as the product Htot = Horbital⊗Hspin
of an orbital part of a spin part. In this example, as well as in the Haldane model,
the spin Hamiltonian is simply the identify Hspin = Id (the spinless picture is actually
valid as long as Hspin do not depend on space, so the Bloch Hamiltonian also factorizes
as Htot(k) = Horbital(k)⊗Hspin(k) where Hspin(k) is a constant matrix not depending
on k). Hence, it is possible to only keep the orbital part.

When there are no internal degrees of freedom (e.g. because they were factored
out, which is the case here for spinless electrons), a tight-binding Hamiltonian can be
written in the form

H =
∑

x,y∈C
hx,y |x⟩⟨y| (3.38)

where |x⟩ represents a state with a localized wave function (approximated on the
crystal by) ξ ↦→ δξ,x, and where hx,y = hy,x so H is Hermitian. It is generally assumed
that hx,y vanishes for a large enough |x−y|. Here, we introduce both nearest-neighbors
and second-nearest-neighbors couplings leading to the Hamiltonian

H = t
∑
⟨x,y⟩

|x⟩⟨y| + t′
∑

⟨x,y⟩2

|x⟩⟨y| +
∑
x∈C

Mx |x⟩⟨x| (3.39)

where ⟨x, y⟩j means that the sum runs on jth nearest neighbors pairs (all of them,
but without repetitions), with j = 1 when omitted. We also introduce a staggered
potential

Mx =
{

+M when x ∈ A

−M when x ∈ B
(3.40)
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(a) Crystal.
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Γ
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K ′
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(b) Reciprocal lattice.

Figure 3.1: Graphene and its reciprocal lattice. The hexagonal lattice (also called
honeycomb lattice) of graphene is constituted of two sublattices A and B, located
(with our choice of fundamental cell) at 0 and δ3 respectively. Vectors δi (in red)
connect nearest neighbors. The Bravais lattice of the crystal is a triangular lattice
of primitive vectors a1 and a2 (in blue). This corresponds to a triangular reciprocal
lattice with primitive vectors a∗

1 and a∗
2 (in blue). Two possible fundamental domains

for the Brillouin torus (or Brillouin zones) are proposed: a blue rhombus and a red
hexagon. The red hexagon represents the first Brillouin zone (composed of points
that are closer to the origin than they are of any other reciprocal lattice points);
particularly noticeable points of the first Brillouin zone are the origin, usually called
the Gamma point Γ (not to be confused with the Bravais lattice), the two inequivalent
K points K and K ′, which are the Dirac points in the gapless case, and the three
inequivalent M points at the centers of the edges. (Equivalent points are equal up to
a reciprocal lattice translation.)

inducing an asymmetry between sublattices A and B, which will be required to open
a gap in the band structure; M = 0 in pristine graphene, but it is possible to open a
gap in its band structure, e.g. by growing it on a well-chosen substrate [ZGFF07] (see
also [Nov07]), and the model with M ̸= 0 also describes boron nitride [Sem84].

To obtain Bloch Hamiltonians, we need frames of sections of the Bloch bundle.
With the ones defined in the previous section 1.1, we can compute the two kinds of
Bloch Hamiltonians,

HF
ij (k) = ⟨eF

i (k)|H|eF
j (k)⟩ = HF

ij (k +G) (3.41)

which depends on the unit cell F and is k-periodic, and

H̃ij(k) = ⟨ẽx0
i (k)|H|ẽx0

j (k)⟩ ≠ Hij(k +G) (3.42)

which does actually not depend on x0, but is not k-periodic(2). Both Bloch Hamilto-
nians can be written in the form

HF (k) =
(

+M gF (k)
gF (k) −M

)
and H̃(k) =

(
+M g̃(k)
g̃(k) −M

)
(3.43)

(2)In fact, we work with k ∈ T ∗ in this case, and the quotient by Γ∗ is yet to be taken.
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For our choice of fundamental domain (3.33) and t′ = 0, we have

gF (k) = t
(
1 + eik·a1 + eik·a2

)
(3.44)

and
g̃(k) = t

(
eik·δ1 + eik·δ2 + eik·δ3

)
. (3.45)

When second nearest neighbors couplings (which will be essential in part 2.1) are
present, t′ ̸= 0, the term

t′
(

eik·a1 + eik·a2 + e−ik·a1 + e−ik·a2 + eik·(a1−a2) + eik·(a2−a1)
)

Id (3.46)

is added to either or HF (k) or H̃(k) (it is the same in both cases as hoppings connect
the same sublattice).

1.1.4 Example: the SSHmodel

unit cellA B

J1 J2
a

δ

Figure 3.2: Lattice of the SSHmodel.

The SSH model [SSH79] was developed by Su, Schrieffer and Heeger to describe
trans-polyacetylene (or polyethyne, (C2H2)n). If we were to build a linear polymer
composed of CH chunks, the most simple way to associate them is the most symmetric
configuration represented on figure 3.3 (b). However, it happens that this configu-
ration is not the most stable, and it is energetically preferable to slightly move the
atoms to alternate short and long bonds: in other words, there is a dimerization of the
molecule due to the coupling of the electronic modes with phonons, a phenomenon
called Peierls instability. There are two equivalent possibilities for atoms to dimerize,
represented on figure 3.3 (c) and (d). A crucial point is that the lattice (not only the
distribution of electrons) is deformed from the initial, fully delocalized (and physically
irrelevant) system, as illustrated on figure 3.4. As long as the atoms are confined in
a plane, the two ground states (c) and (d) are inequivalent (they are however related
e.g. by reflection symmetry). As a consequence, the lattice is not Bravais, and there
are two kinds of inequivalent carbon atoms, collected into two sublattices that we will
call A and B. A long bond (usually represented as a simple bond) corresponds to
a lower hopping term than a short (double) bond. See [BCM92; HKSS88] for more
detailed reviews.

For a fixed configuration of the atom positions, the (low energy) electronic prop-
erties of polyacetylene are described by a one-dimensional tight-binding model with
two sublattices A and B (see figure 3.2), the SSH model introduced by Su, Schrieffer
and Heeger. Here, the one-dimensional Bravais lattice is simply

Γ = ⟨a⟩ ≃ Z (3.47)
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Figure 3.3: Polyacetylene. Polyacetylene, or more precisely trans-polyacetylene is
a linear polymer. Naively, assembling C2H2 units into the polymer (C2H2)n could
be done (a) by putting radicals on carbon atoms or better, (b) by delocalizing the
unpaired electrons on the whole molecule. If carbon atoms were fixed, it would be the
more stable solution. However, the coupling with phonon (i.e. deformations of the
lattice, which allows carbon atoms to move) favors energetically the two dimerized
configurations (c) and (d), so there is a spontaneous symmetry breaking leading to
the system we are used to.

where a is a one-dimensional vector, see figure 3.2), and a choice of fundamental
domain is

F = {x0, x0 + δ} (3.48)

corresponding to sublattices A and B respectively (see figure 3.2). It is described by
the Hamiltonian

H =
∑
γ∈Γ

J1 |x0 + γ⟩ ⟨x0 + γ + δ| + J2 |x0 + γ⟩ ⟨x0 + γ + 1 + δ| + h.c.. (3.49)

where the sum runs on the Bravais lattice Γ ≃ Z, and |x⟩ represents a state localized
at point x ∈ C. It is very convenient to shorten notations a little to write this
Hamiltonian as

H =
∑
x∈Γ

J1 |x,A⟩ ⟨x,B| + J2 |x,A⟩ ⟨x+ 1, B| + h.c. (3.50)

where x0 was removed and x represents both a point of the crystal and a Bravais
lattice vector so e.g. |γ,B⟩ in fact means |x0 + γ + δ⟩. This corresponds to the Bloch
Hamiltonian

H(k) = (J1 + J2 cos(k))σ1 + J2 sin(k)σ2 (3.51)

where σi are the Pauli matrices in the basis of sublattices A and B.
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(d)

(c)

Figure 3.4: Exaggerated picture of the deformation of trans-polyacetylene. The two
stable configurations of trans-polyacetylene represented in figure 3.3 (c,d) are not
equivalent, at least as long as the molecule is confined on the plane, as it is clearly
seen when the deformed lattice is represented. Here, the deformation is exaggerated
for clarity; in real polyacetylene, its order of magnitude is less that 3 %.

1.1.5 Time-dependent Bloch Hamiltonians and evolution operators

In the main part of this thesis, we will be concerned with tight-binding Hamiltonians
which depend on time. We will focus on the simple case where the underlying lattice
does not depend on time. In this case, the Bloch decomposition is simply done at
fixed time. From a time-dependent tight-binding Hamiltonian H(t), we obtain a time-
dependent Bloch Hamiltonian H(t, k), which is defined by extending (3.21) as

Hij(t, k) = ⟨ei(k) | H(t) | ej(k)⟩ . (3.52)

It is a smooth function of time when H(t) is. In the case where the lattice depends
on time, it may be possible to capture the physics through an effective description
on a fixed lattice, through a modulation of the hopping parameters. In certain cases,
e.g. when the topology of the lattice changes, such an effective description will break
down, but we will not consider this kind of situations.

The evolution operator of the system is defined as the solution of the differential
equation

iℏU̇ = HU (3.53)

where U̇ represents the time derivative of U , with initial condition U(0) = Id. In a
spatially periodic system, there is a family of matrix Bloch evolution operators U(t, k)
which are similarly defined from the Bloch Hamiltonians by

iℏU̇ij(t, k) = Hij(t, k)Uij(t, k). (3.54)

Physically, the evolution happens separately in each fixed k subspace thanks to mo-
mentum conservation, as we assume that the evolution does not alter space periodicity.
Alternatively,

Uij(t, k) = ⟨ei(k) | U(t) | ej(k)⟩ . (3.55)

(A similar definition may indeed be applied to all operators commuting with space
translations.) When the Hamiltonian does not depend on time, there is a simple ex-
pression for the evolution operator as U(t) = e−i/ℏtH , and for its Bloch version,

U(t, k) = exp
(

− i
ℏ
tH(k)

)
. (3.56)
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When the Hamiltonian does depend on time, however, the evolution operator is a
time-ordered exponential, which is in general impossible to compute analytically.
However, it may be numerically evaluated in a simple way by discretizing the in-
finite product

U(t, k) = lim
δt/t→0

[t/δt]∏
n=0

exp
(

− i
ℏ
δtH(nδt, k)

)
(3.57)

with a small but finite δt. Notice that the product is time-ordered with n = 0 being
on the right, so

N∏
n=0

f(n) = f(N) · f(N − 1) · · · f(n) · · · f(1) · f(0) (3.58)

with
f(n) = exp

(
− i
ℏ
δtH(nδt, k)

)
. (3.59)

1.2 Energy bands

Each Bloch Hamiltonian is a hermitian operator with a discrete, real spectrum S(k) =
(Ei(k))1≤i≤r ⊂ R with E1(k) ≤ · · · ≤ Er(k). Energy eigenvalues Ei(k) are associ-
ated with eigenvectors ψi(k). Energies Ei are well-defined and piecewise smooth;
eigenvectors are defined up to a choice of phase (or a unitary transformation when
there are degeneracies). Maps k ↦→ Ei(k) are usually called energy bands, but we will
also use this name to denote the corresponding wave function. It may happen that
a certain value of energy E separates two energy bands, that is, there may be some
i such that Ei(k) is always smaller than E and Ei+1(k) is always greater, or, more
formally,

max
k

Ei(k) < E < min
k
Ei+1(k). (3.60)

In this case, the band structure has a band gap at energy E, and we define the gap
width (or simply gap) Egap = mink Ei+1(k) − maxk Ei(k).

A band structure may have a local gap when Ei(k) < mink Ei+1(k), but fail to
satisfy condition (3.60): in this case, the band structure is not considered to be
gapped.

We will treat as a whole the set of energy bands E < Ei, . . . , Ej < E′ com-
prised between two band gaps E and E′; this object will also be called an energy
band. It is convenient to represent it as a spectral projector over the range ]E,E′[
[ASSS89],

PE,E′(k) =
∑
i s.t.

E<Ei<E′

|ψi(k)⟩⟨ψi(k)| = 1
2πi

∫
C

dz
z −H(k) (3.61)

where the contour C encircles the band in the complex z plane (see figure 3.5). Spec-
tral projectors define spectral bundles over the Brillouin torus, with fiber PE,E′(k)Cr

over k, so each energy band (separated from others bands by gaps) corresponds to
a subbundle of the Bloch bundle. As we shall see, the band subbundles may be
nontrivial, leading to topological properties.
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Re(z) = E

Im(z)
C

Figure 3.5: Complex contour defining a spectral projector.

1.2.1 Example: two-by-twomatrices

Both of the examples that we considered happen to yield 2 × 2 matrices as Bloch
Hamiltonians: 2×2 matrices provide enough structure to describe all two-band cross-
ings, and therefore to construct minimal and sufficient low-energy effective models for
the corresponding phenomena. In this paragraph, we shall consider a generic 2 × 2
Hamiltonian and diagonalize it; the results of this (easy) computation can readily be
applied both to graphene and to the SSH model.

Consider the most general 2 × 2 Hamiltonian

Hσ(h) = hµσµ = h0Id + #”

h · #”σ (3.62)

where(3) hµ are real parameters and σi are Pauli matrices (see appendix A, page 54);
we may also use the notation hx = h1, σx = σ1, hy = h2, etc. and #”

h = (h1, h2, h3).
More explicitly,

Hσ(h) = h0Id + h1σ1 + h2σ2 + h3σ3. (3.63)

When h0 = 0, the eigenvalues of Hσ(h) are

Eσ
±(h) = ±

√
h2

1 + h2
2 + h3

3 = ±∥ #”

h∥. (3.64)

and the corresponding normalized eigenvectors are

|ψσ
±(h)⟩ = 1√

2Eσ
±(Eσ

± + hz)

(
hz + Eσ

±
hx + ihy

)
. (3.65)

In the following we will always consider h0 = 0. When it is not the case, the eigen-
values become h0 + Eσ

±(h), and the eigenvectors are indeed not modified.

The spectrum of Hσ(h) is gapped as long as #”

h ̸= 0, and in this case, the spectral
projectors on positive/negative energies (corresponding to conduction/valence bands)

(3)We use the standard convention of Greek indices starting at 0 and Latin indices starting at 1.
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are

Pσ
±(h) = |ψσ

±⟩⟨ψσ
±| = 1

2Eσ
±(Eσ

± + hz)

(
(Eσ

± + hz)2 (Eσ
± + hz)(hx − ihy)

(Eσ
± + hz)(hx + ihy) (Eσ

±)2 − h2
z

)
.

(3.66)

As we discussed in section 2.3, page 51, the eigenvectors cannot be smoothly
defined for all values of h ̸= 0, and this obstruction is at the root of nontrivial
topological properties. In contrast, the projectors are smoothly defined for all values
of h ̸= 0.
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Figure3.6: Dispersionrelationofgraphene. Dispersion relation of the simplified tight-
binding description of graphene with t = 1, over a square slightly larger than the first
Brillouin zone (black hexagon). Linear gap closing (Dirac cones) happen at the K
points (black dots), two of which are inequivalent.

Example: graphene (continued) Graphene is not a gapped system. Instead, it is
a semimetal, as one can see on figure 3.6 representing its dispersion relation (where
linear crossings between the conduction and the valence band are especially noticeable;
they occur at the so-called Dirac points ±K on the Brillouin zone). However, as
we discussed in paragraph 1.1.3, it is possible to induce a gap (or in high-energy
physics language, a mass) in graphene, which gives rise to the dispersion relation
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Figure3.7: Dispersion relationofgappedgraphene. Here, the Dirac cones of figure 3.6
are now gapped, due to a mass term m = 0.1, so the system is fully gapped. A zoom
of the dispersion relation near the Dirac points is found on figure 3.8.

of figure 3.7. The dispersion relation is qualitatively modified only near the Dirac
points, as we can see on figure 3.8. In the massive case, the valence and conduction
bands are unambiguously defined on the whole Brillouin zone, and one can define the
corresponding projectors.

The Hamiltonian HF = H of equation 3.43 with t′ = 0 can be written as

H(k) = t(1 + cos(k · a1) + cos(k · a2))σx + t(sin(k · a1) + sin(k · a2))σy +mσz, (3.67)

corresponding to a Pauli vector h = #”

h (k), where

#”

h (k) =

⎛⎝t(1 + cos(k · a1) + cos(k · a2))
t(sin(k · a1) + sin(k · a2))

m

⎞⎠ . (3.68)

In particular, the spectrum of graphene is given by

(h∗Eσ
±)(k) = ±

√
m2 + 3t2

[
1 + 2

3
(

cos(k · a1) + cos(k · a2) + cos(k · (a1 − a2))
)]
.
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(a) gapless case.
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(b) gapped case.

Figure 3.8: Zoom of the dispersion relation near a Dirac point. Zooms near the K
point of the dispersion relations of graphene ((a), figure 3.6) and gapped graphene
((b), figure 3.7) are presented.

When it is gapped (i.e. as long as m ̸= 0), the projectors h∗Pσ
± are well-defined, and

can be readily computed.

A 2 × 2 Bloch Hamiltonian H(k) can always be written as

H(k) = hµ(k)σµ = Hσ(h(k)) (3.69)

or in other words, H = h∗Hσ ≡ Hσ ◦ h where the star represents the pullback
operation (defined by this relation). Notice that here h : BZ → R3 is a map from
the Brillouin torus to R3, and not a point of R3 like in e.g. equation (3.62). We
can directly use the preceding: eigenvectors, energies and projectors of H are h∗ψσ

±,
h∗Eσ

± and h∗Pσ
±. When k ↦→ h(k) is a smooth map, then h∗Eσ

pm and h∗Pσ
± are too,

but this is not always the case of the eigenstates h∗ψ±: it may happen that it is
impossible to define smooth maps h∗ψσ

± on the whole Brillouin torus. In fact, as
we shall see in section 2, this obstruction is a direct consequence of a topologically
nontrivial insulator.

1.3 Electrons in a solid and the Pauli principle

In a solid state setting, we are concerned about a chunk of material at equilibrium,
near zero temperature: the temperature scale of electrons in a solid is set by the Fermi
temperature which is on the order of 1 × 105 K, which is huge with respect to room
temperature. As a consequence, the fact that temperature is in fact not exactly zero
can be treated as a perturbative correction. In such a system, there are many electrons
(say N), and the Hilbert space is the N th antisymmetric tensor product of the single-
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particle Hilbert space. When interactions between electrons can be neglected(4), the
fundamental state of the many-body system is readily obtained from the spectrum of
the one-body system. As electrons are fermionic particles, they must obey the Pauli
exclusion principle, which states that two (or more) or them cannot share the same
one-particle state. As a consequence, the fundamental state at zero temperature is
obtained by filling one-body eigenstates starting from the lowest energy (the bottom
of the bands) until we run out of electrons. The energy of the highest occupied one-
particle state (at zero temperature) is called the Fermi energy EF; all states with
energy below EF are occupied (and constitute the so called Fermi sea) and all states
above EF are empty. This description gives a good picture of what happens, but it
is not really robust: what happens at nonzero temperature? or when the system is
open? To answer those questions, it is better to introduce a purely thermodynamical
quantity, the chemical potential µ of the system(5). At equilibrium, the electrons
are distributed according to the Fermi-Dirac distribution

nFD(E) = 1
eβ(E−µ) + 1 (3.70)

where β = 1/kBT is the inverse temperature, giving the population of a state with
energy E. This implicitly defines µ. Alternatively (but equivalently), the chemical
potential can be defined as a derivative of the appropriate thermodynamic function,
e.g.

µ = ∂G

∂N

⏐⏐⏐⏐
T,P

= ∂U

∂N

⏐⏐⏐⏐
S,V

. (3.71)

Physically, the chemical potential is interpreted as the energy required to add an
electron to the system, or equivalently as the Lagrange multiplier associated to the
particle number conservation. With such a thermodynamic definition, we find that
a zero temperature, the chemical potential lies exactly at the middle of the energies
of the highest filled and the lowest empty states. In particular, when there is a
gap between a filled band and an empty one (i.e. in an insulator), the chemical
potential lies in the middle of this gap. On the other hand, when there is no gap (in a
metal), the Fermi energy and the chemical potential coincide at zero temperature. The
thermodynamic definitions (3.71) assume that the system is closed, that is, electrons
cannot enter or leave the system. This is not always the case: the chemical potential
can also be controlled by the environment, in particular in transport experiments
where the system may be connected to electronic reservoirs and may be placed under
a gate (in which case µ is fixed as a thermodynamic variable, and not N). When
the chemical potential is inside a gap in the band structure, the system is called an
insulator ; it is principally characterized by its gap Egap (see figure 3.9). In other
situations, when the chemical potential crosses a band, the system is a usually a
metal (see figure 3.9), except in the very special situation where the density of states
vanishes at the Fermi level: in this case, the system is a semimetal.

(4)Another case is when interactions can be taken into account in a mean field approach, but then
we start from the mean-field one-particle Hamiltonian.

(5)The chemical potential includes contributions from external field, e.g. qV for an electric potential
V or mgh to take gravity into account. In the former case, µ may also be called an electrochemical
potential.
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Figure 3.9: Metal and insulator.

This classification comes first from transport properties, which are spectacularly
different in metals and insulators. In both cases, in the absence of any external field,
the ground state does not carry any current. In a metal, it is possible to excite an
electron from just below the Fermi level to just above it, a change which costs an very
small amount of energy per electron, that can be provided e.g. by an electric field. The
electron-hole pair that is created by this process can carry current, a characteristic
of metals, which are good electrical conductors. In an insulator however, it is not
possible to create such a low energy excitation: a minimal energy Egap is required to
create an electron pair, and this energy is huge (see later), so it cannot be provided
by the electric field of a tension source. As a consequence, the system is not able
to carry an electrical current, in other words it is an electrical insulator(6). At zero
temperature, the gap controls whether the system is insulating or not: we can estimate
the order of magnitude of the electric field needed to induce Landau-Zener tunnelling
between bands, which is negligible as long as eE/kF ≪ Egap

√
Egap/EF [Mar15].

Taking typical values of EF = 10 eV, kF = 1 Å, and Egap = 0.1 eV, we find that the
electric field has to be comparable with 1 × 106 V · cm−1 to induce Zener breakdown.
In practice, electrical breakdown usually occurs below this limit, due to a variety
of other mechanisms due to interfaces, defects, temperature, etc. Besides, at finite
temperature, the thermal filling of the conduction band can induce a density of charge
carriers sufficient to carry a macroscopic current even when there is a gap: this is the
case of semiconductors. As we shall see in the following parts of this work, transport
measurements are a key source of information about mesoscopic systems.

In an insulator (at zero temperature), the band gap separates the filled valence
band from the empty conduction band. Let the valence projector Pv(k) be the
(spectral) projector on states of the valence band. We also define a conduction pro-
jector Pc(k) = Id − Pv(k). Maps k ↦→ Pv/c(k) are always well-defined as long as the
gap is open (thanks to equation (3.61)), even if there are obstructions to the existence
of globally defined wave functions on the Brillouin zone (we shall see in section 2 that

(6)This description breaks down when our assumptions are not satisfied, e.g. when electrons are
interacting (in Mott insulators) or when the system is no longer a periodic crystal (in Anderson
insulators).
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it can happen, and in fact is a signature of the nontrivial topology of the band). The
corresponding vector bundles over the Brillouin torus are naturally called the valence
bundle and the conduction bundle.

For example, in gapped graphene, when the chemical potential lies in the gap, the
lowest band in the valence band, and the highest one is the conduction band; so we
have Pv = h∗Pσ

− and Pc = h∗Pσ
+. In terms of the geometrical objects, the valence

bundle, for instance, has fiber Pv(k)C2 over point k ∈ BZ.

1.4 Band structures beyond electronic systems

As we have seen in the introduction (see section 1.3, page 15), any system with waves
propagating in a periodic structure is described by Bloch theory, and therefore has a
band structure, etc. This is the case e.g. for photonic crystals, cold atoms in photonic
lattices, or mechanical metamaterials. In a classical context, the energy of eigenstates
is replaced by the frequency of eigenmodes. In such systems (except perhaps fermionic
cold atoms), a gapped system is not an “insulator”, because (i) without electrical
current to carry, the notion of an insulator is dubious, (ii) the Pauli principle does
not apply, and (iii) room temperature is usually not a good approximation for zero
temperature. This modification is crucial to many points of views: for example, it
is usually no more possible to use the ground state to define topological properties
(and as a consequence, we expect a part of the experimental signatures of a nontrivial
topology to be lost). Yet, the band structure still has distinct topological properties,
which lead to clearly observable consequences such as protected edge states. As we
shall see, the issue is very similar, even for electrons in solids, when the system
is subject to a time-periodic modulation. In the following, we will therefore focus
on the topological properties of the band structure, not of the ground state, which
we expect to be generalizable (i) to classical systems and (ii) to periodically driven
systems.

2 Topological insulators
In this section, we review topological insulators. We start with the Haldane model,
an example of Chern insulator, with properties similar to the quantum Hall effect.
Then, we describe the SSH model of polyacetylene, an example of one-dimensional
topological insulator protected by chiral symmetry, and the Bernevig-Hughes-Zhang
model to illustrate Kane-Mele insulators protected by time-reversal invariance. Fi-
nally, we review the classification of unitary evolutions according to the ten Cartan-
Altland-Zirnbauer symmetry classes, and the corresponding “periodic table” classi-
fying topological insulators according to their CAZ symmetry class and the space
dimension.
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2.1 The Haldanemodel

2.1.1 Introduction

Less than one year after the experimental discovery of the quantum Hall effect by von
Klitzing, Dorda and Pepper [KDP80] in 1980, Laughlin proposed his famous pumping
argument [Lau81], which, in retrospect, highlights that the quantum Hall effect is the
manifestation of an anomaly. In parallel, so as to say, anomalies were discovered in
the context of high energy physics in the end of the ’60s with the Adler-Bell-Jackiw
axial/chiral anomaly [Adl69; BJ69] (in even dimensional spacetime), which was fol-
lowed by the parity anomaly (in odd dimensional spacetime) by Niemi, Semenoff and
Redlich [NS83; Red84a; Red84b]. On the one hand, the quantum Hall effect was
explicitly linked to anomalies as soon as 1984 [Ish84; FSWS84; Jac84]. On the other
hand, in the context of lattice gauge theory, Nielsen and Ninomiya [NN81a; NN81c;
NN81b] proved in 1981 that under certain conditions, it is not possible to implement
chiral fermions on a lattice (an analogue of Nielsen-Ninomiya theorem was later devel-
oped for two dimensional graphene by Hatsugai [Hat11]). They later illustrated this
theorem on electrons in a crystal and linked it to an analogue of the ABJ anomaly
in solid state physics [NN83]. This idea was extended to the parity anomaly by Se-
menoff [Sem84], who proposed a “condensed-matter simulation of a three-dimensional
anomaly” (this is the title of his paper) in a graphite monolayer. Finally, four years
later, Haldane [Hal88] extended Semenoff’s model by adding local magnetic fluxes
to the unit cell to Semenoff’s model, organized so that the total magnetic flux in a
unit cell vanishes (so the net magnetic flux through the system vanishes, the vec-
tor potential has the lattice periodicity, and Bloch theorem applies). Two striking
consequences arise from this last step. First, the system exhibits a quantum Hall
effect behavior without a magnetic field; this behavior, dubbed “anomalous quantum
Hall effect” (and later Chern insulator) is manifested in the appearance of a quan-
tized Hall conductance. Second, the phase diagram of the system exhibits insulating
phases with different Hall conductances, namely 0 and ±1 (in units of e2/h). In the
semi-metallic critical phases that lie at the transition lines between the different in-
sulators, the breaking of time-reversal invariance allows a single Dirac cone (or chiral
fermion) to exist at low energy. A last point worth to mention is that in 1988, the
same year as Haldane’s paper [Hal88] (but in the soon-to-be former USSR) Volovik
[Vol88b; Vol88a] described an analogue of the quantum Hall effect without a mag-
netic field in two-dimensional films of 3He-A, where time-reversal symmetry is broken
and the nontrivial structure of the complex order parameter may induce a nontrivial
topology.

In 1982 Thouless, Kohmoto, Nightingale and den Nijs (TKNN) [TKNN82] recog-
nized the topological nature of the quantum Hall effect, which were soon recognized
to be Chern invariants by Avron, Seiler and Simon [ASS83; Sim83]. But TKNN were
(rightfully) concerned with the problem of electrons in a magnetic field, which they
described with the Harper-Hofstadter model, a complicated situation where Bloch
theorem does not generically apply (only when a magnetic unit cell can be defined).
The Haldane model is the first example of a topological insulator realized in a peri-
odic crystal, where Bloch theorem applies, a much simpler situation which is easier
to study and to extend.
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2.1.2 The tight-bindingmodel

Spinless electrons on a sheet of graphene (so in space dimension d = 2) are described
with a simple tight-binding Hamiltonian (see paragraph 1.1.3), to which is added a
staggered potential (or mass term) Mx which breaks inversion symmetry [Sem84] and
Aharanov–Bohm phases corresponding to complex hopping amplitudes which break
time-reversal invariance [Hal88]. The Aharanov–Bohm phases may correspond to
local magnetic fluxes, organized so that there is no net magnetic flux in an unit cell
(so the system is not supposed to be under an external magnetic field, in contrast with
the quantum Hall effect). In the tight-binding description, Aharanov–Bohm phases
are taken into account through a Peierls substitution,

txy → txy exp
(

−i e
ℏ

∫
Γxy

#”

A · d #”

ℓ

)
(3.72)

where txy is the hopping parameter from site y to site x (e.g. with a term txy |x⟩⟨y|),
Γxy the trajectory from site x to site y and #”

A is a potential vector accounting for the
presence of the magnetic flux. In our case, the substitution is simply

t′ → t′e±iϕ (3.73)

with a sign depending on the sublattice and of the direction of the hopping, in order
to ensure that the total magnetic flux through a unit cell is zero. To be more precise,
equation (3.39) is modified into

H = t
∑
⟨x,y⟩

|x⟩⟨y| + t′
∑

⟨x,y⟩2

eiϕx,y |x⟩⟨y| +
∑
x∈C

Mx |x⟩⟨x| (3.74)

with, as in the previous paragraph,

Mx =
{

+M when x ∈ A

−M when x ∈ B
(3.75)

and with

ϕx,y =
{

±ϕ when x, y ∈ A and x− y ∈ ∆±
2

∓ϕ when x, y ∈ B and x− y ∈ ∆±
2

(3.76)

where the second neighbors positions are

∆2 = ∆+
2 ∪ ∆−

2 = (a1,−a2, a2 − a1) ∪ (a2,−a1, a1 − a2) . (3.77)

The definition of ϕx,y (done coherently so that tji = tij) ensures that the phase
accumulated through A → A hopping is opposite of the one gained through B → B
hopping, in the following sense: the same oriented closed path [x, x+ a2, x+ a1] will
catch a flux ∓3ϕ according to whether x ∈ A/B (see figures 3.10, 3.11a and 3.11b).
Namely, the path ΓA in figure 3.11a catches a flux −3ϕ while the path ΓB catches a
flux +3ϕ

The corresponding Bloch Hamiltonian is

H = h∗Hσ i.e. H(k) = hµ(k) · σµ (3.78)



80

with

h0(k) = 2t′ cosϕ
∑

δ2∈∆+
2

cos(k · δ2)

hx(k) = t [1 + cos(k · a1) + cos(k · a2)]
hy(k) = t [sin(k · a1) + sin(k · a2))]

hz(k) = M − 2t′ sinϕ
∑

δ2∈∆+
2

sin(k · δ2).

(3.79)

AB

(a) Point view of A sublattice.

AB

(b) Point of view of B sublattice.

Figure 3.10: Staggered fluxes in the Haldane model. A simple picture of the local
magnetic fluxes can be painted when we separate sublattices A and B. As the net flux
through a unit cell vanishes, the first-nearest-neighbors are not affected by the Peierls
substitution and we can focus on the second-nearest-neighbors hoppings. As they
are diagonal in sublattice, we can separate the discussion. For example, figure (a)
represents a possible flux distribution from the point of view of sites in the sublattice
A. The red triangles contain a flux 3ϕ, and the blue ones a flux −3ϕ. Obviously, the
total flux vanishes. The picture is similar from the point of view of B sites, in figure
(b) (the color code is the same), but with different triangles. It is indeed possible
to find a flux distribution that make both points of view simultaneously possible, see
figure 3.11b. (All fluxes are oriented in the same way, towards the reader.)

In order to make the discussion a bit more general, we will consider all possible 2×2
Bloch Hamiltonians instead, a natural thing to do as we are interested in topological
properties.

2.1.3 The two-by-two Hamiltonian again

As we have seen, a two-by-two Bloch Hamiltonian can always be written as H(k) =
h∗Hσ where h : BZ → R4. Here, R4 can be thought as a parameter space. In the
following, we will consider a gapped system (in the sense of equation (3.60)). As
we are mainly interested in the topological properties of this Hamiltonian, we are
allowed to smoothly modify the function h as long as it does not close the band gap.
The valence (and conduction) bundle will be affected by such modifications, but they
will remain in the same equivalence class, i.e. their topological properties won’t be
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ΓA

ΓB

AB

(a) Phases accumulated on a closed loop.
The phase accumulated over a closed loop
ΓA connecting only A sites is the oppo-
site of the phase accumulated over the
same loop ΓB translated so that it con-
nects only B sites.

(b) Possible flux distribution. A possible
choice of fluxes to ensure the phase dis-
tribution (3.76): put −6ϕ in the inner
hexagon and +ϕ in each branch of the
star (this ensures a vanishing total flux
through the unit cell).

Figure 3.11: Flux distribution and phase accumulation in the Haldanemodel.

affected. We will therefore be able to reduce the parameter space R4 to a 2-sphere
and use our knowledge of the bundles on the sphere generated by a “band flattened
Hamiltonian” with eigenvalues ±1.

First, suppose that h0 ≡ 0. When this is the case, the system is gapped as long as
#”

h never vanishes (we shall see that indeed #”

h never vanishes for the Haldane model,
except on transition lines where the topological nature of the phase changes). The
coefficient h0 should be discarded or added back with some care, as it could change the
nature (gapped or not) of the system, but topological properties will not be affected,
because the eigenstates do not depend on h0, or alternatively because the system
remains locally gapped as long as #”

h never vanishes. From now, we may use the same
notation h for the map BZ → R4 including h0 and the map BZ → R3 without h0, as
the context makes clear which of these is considered.

Second, notice that as long as h0 = 0, the eigenvectors and projectors of section
2.3 only depend on the normalized vector

x = h

∥h∥ =

⎛⎝x1
x2
x3

⎞⎠ =

⎛⎝sin θ cosϕ
sin θ sinϕ

cos θ

⎞⎠ (3.80)

and in these spherical coordinates, the projectors read

Pσ
±(θ, ϕ) = 1

2

(
1 ± cos θ ± sin θ e−iϕ

± sin θ e+iϕ 1 ∓ cos θ

)
. (3.81)

As a consequence, it is sufficient to have a map n : BZ → S2 defined by

n = #”

h/∥ #”

h∥. (3.82)
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See also figure 3.12. This procedure is sometimes called band flattening, as we can
define a “band flattened Hamiltonian” n · σ with eigenvalues E/|E| = ±1 (so the
energy bands are now flat, they do not depend on k).

h

R3

x

S2

k BZ

h n

h ↦→ h/|h| = x

Figure 3.12: Mapping from the vector bundle on a sphere to the Bloch bundle. The
map p : h ↦→ x = h/|h| goes from R3\0 to the sphere S2. A two-by-two Bloch
Hamiltonian is described by a map h : BZ → R3. When the Bloch Hamiltonian is
gapped, this application never vanishes and can be composed with p to get a map
n : BZ → S2 (which also defines a band flattened Bloch Hamiltonian), the topological
properties of which are easy to visualize. To reduce the number of notations, I used
the letter h both for a point of R3\0 and for the map BZ → R3.

The pullback of the bundle E± (defined in section 2.3) by n defines the valence
bundle Ev = n∗E− and the conduction bundle Ec = n∗E+, both of which are (possibly
nontrivial) bundles on the Brillouin torus. As the conduction and valence subbundles
combine to form the trivial total Bloch bundles, their topologies are opposite(7), so
we can focus e.g. on the valence bundle, and let P = n∗Pσ

− be the corresponding
projector. As we have seen, this complex vector bundle may be nontrivial. As the
Brillouin torus is a 2-manifold, the valence bundle is (stably) trivial as long as its first
Chern number vanishes. This invariant is obtained by integrating over the Brillouin
zone the pull-back by n of the curvature form FS2 on the sphere,

C1 = i
2π

∫
BZ
n∗FS2 (3.83)

For example, in terms of the projector P = n∗Pσ
−, the curvature is

n∗FS2 = trPdP ∧ dP. (3.84)
We can also pull back formula (2.71) for the curvature (with our FS2 = trK−). As n
depends on the two components kx and ky of the quasi-momentum k ∈ BZ,

dnj = ∂nj

∂ka
dka and dnj ∧ dnk = ∂nj

∂ka

∂nk

∂kb
dka ∧ dkb (3.85)

(7)To be more precise, the Bloch bundle is E = Ev ⊕Ec (for valence and conduction), and we know
that E is trivial, so ch(E) vanishes. From equation (2.38), we deduce ch(Ev) = − ch(Ec).
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so we have

n∗FS2 = −i
4 ϵijk ni

∂nj

∂ka

∂nk

∂kb
dka ∧ dkb = −i

2
#”n ·
(
∂ #”n

∂kx
× ∂ #”n

∂ky

)
dkx ∧ dky (3.86)

where × is the 3-vector cross product. It is convenient to use a slight variation of the
last formula to express the curvature directly in terms of h as

n∗FS2 = −i
2

#”

h

∥h∥3 ·
(
∂

#”

h

∂kx
× ∂

#”

h

∂ky

)
dkx ∧ dky (3.87)

Notice that we did not simply replace n with h/∥h∥: the norm was factored out of
the differential operators, an observation which facilitates greatly the actual compu-
tations.

At the end, the first Chern number is

C1 = 1
4π

∫
BZ

#”

h

∥h∥3 ·
(
∂

#”

h

∂kx
× ∂

#”

h

∂ky

)
dkx ∧ dky (3.88)

(arrows on vectors are especially put in expressions where dot/cross products appear,
to avoid any confusion). We recognize the degree (or index) of the map h ≡ #”

h : BZ →
R3 (see [DFN85]). This identification provides an intuitive picture of the first Chern
number, and will allow us to compute it easily. When k spreads over the Brillouin
torus, #”

h describes a closed surface Σ ⊂ R3 (which projects on a closed surface Σ̂ ⊂ S2,
described by #”n). The degree of h (or n) is equivalently given by

– the integral formula (3.88), which may be interpreted as the (normalized) flux
through the surface Σ of a magnetic monopole located at the origin (and giving
rise to a field strength FS2),

– the number of times the surface Σ wraps around the origin (in particular, it is zero
if the origin is outside the interior of Σ ; more precisely it is the homotopy class of
Σ in the punctured space R3 − 0) ; equivalently, the system is trivial iff Σ̂ does not
completely cover S2,

– the number of (algebraically counted) intersections of a ray coming from the ori-
gin with Σ. This last method was notably used by [SPFK12] to engineer two-
dimensional Chern insulators with arbitrarily large Chern numbers.

We may now compute the Chern invariant explicitly, either numerically or ana-
lytically. A numerical computation is quite useful (and sometimes necessary) when
the analytic expression of n (or P ) and its derivatives are unknown or too compli-
cated; in this case, it is possible to simply discretize the integral over the torus, but
a more efficient method was proposed by Fukui, Hatsugai and Suzuki [FHS05]. For
now however, let us focus on the analytical computation.

To determine the phase diagram of the Haldane model, let us first find the points
in the parameter space where the local gap closes (i.e. where h vanishes) at some
point(s) of the Brillouin torus. In graphene, which corresponds to (M,ϕ) = (0, 0)
in the diagram, the two energy bands are degenerate at the Dirac points K et K ′
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(defined at equation (3.37)). At a generic point of the diagram, this degeneracy is
lifted, and the system is an insulator (h ̸= 0), except when

|M | = 3
√

3t′ sinϕ (3.89)

where the gap closes (at least) at one of the Dirac pointsK andK ′. The corresponding
lines separate four possibly different insulating states. To know their nature, we
must determine the first Chern number, which is also the number of intersections
between a ray coming from the origin and the oriented closed surface Σ spanned
by h. Alternatively, we can consider half of the number of intersections with a line
instead of a ray. A good choice for this line is the Oz axis, as Dz = h−1(Oz ∩ Σ) is
simply the set of Dirac points K and K ′, so

C1 = 1
2
∑

k∈Dz

sign
[

#”

h (k) · #”ν (k)
]

= 1
2
∑

k∈Dz

sign [hz(k)] sign
[(

∂
#”

h

∂kx
× ∂

#”

h

∂ky

)
z

]
(3.90)

where ν(k) is the normal vector to Σ at k (it is the cross product in the rhs). The
masses are

hz(K) = M + 3
√

3t′ sinϕ and hz(K ′) = M − 3
√

3t′ sinϕ. (3.91)

On the other hand, νz(k) = 3
√

3/2t2 sin(
√

3ky) so the first Chern number turns out
to be

C1 = 1
2

[
sign

(
M

t′
+ 3

√
3 sin(ϕ)

)
− sign

(
M

t′
− 3

√
3 sin(ϕ)

)]
. (3.92)

It is represented on the phase diagram of figure 3.13.

2.1.4 Edge states

A striking consequence of a nontrivial bulk topology is the appearance of metallic
edges at the surface of a topological insulator, or, to be more precise, at the in-
terface between two insulators with different topologies. Such edge states display
peculiar properties: in the case of Chern insulators, they are chiral, or “one-way”:
they propagate in one direction only along the edge. Moreover, they are “topolog-
ically protected”, in the sense that they are immune to defects or disorder in the
interface, because there are no states available for backscattering.

Chiral edge states can be seen as domain walls between two phases, which arise
from the interpolation between two different values of a parameter. Such a situa-
tion was first studied by Jackiw and Rebbi [JR76], who considered a fermionic field
(corresponding here to the Bloch vector) coupled to a scalar field (here, the space-
dependent mass term) with a soliton solution (here, the edge state). This soliton wave
function carries a fractional charge ±e/2, which is both interpreted as the topological
charge of the soliton and as the electric charge of the fermionic mode. Su, Schrieffer
and Heeger studied a soliton at the interface between two phases of polyacetylene
[SSH79], which is now understood as an edge state (in a one-dimensional system with
chiral symmetry, see section 2.2.3). This kind of domain wall states with a linear
dispersion were also predicted at the interface between semiconductors with different
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Figure 3.13: Phase diagram of the Haldane model. The Haldane Hamiltonian is
gapped, except on the critical lines (in black), where the system is a semi-metal
with only one Dirac cone, except at the bicritical points (ϕ,M/t2) = (πZ, 0). The
point (0, 0) corresponds to bare graphene. The insulating phase are characterized by
their first Chern number C1, which is color coded (white: 0; red: +1; blue: −1). The
phase diagram is represented on the plane (ϕ,M/t2), but the parameter manifold is
in fact a cylinder S1 × R as ϕ is a phase.

dopings by Volkov and Pankratov [Vol85]. Another step in the understanding of such
phenomena was taken by Callan and Harvey [CH85], who gave a cancellation relation
(the so-called “anomaly inflow”) between the anomalous behavior of a domain wall
(the edge state) and the flow of a relevant charge from the higher-dimensional space
in which it is embedded (the bulk). Kaplan [Kap92] realized that this allowed to con-
struct chiral lattice fermions in 2n dimensions on the boundary of a (2n+ 1) lattice,
as a way to circumvent the Nielsen–Ninomiya theorem.

Let us illustrate the appearance of such chiral topological edge states in the Hal-
dane model. As the transition between different phases happen only when the gap
closes, which are the Dirac points K and K ′, it is enough to focus on a low energy
description around them. We linearize the Haldane Hamiltonian around K (or K ′)
by writing k = K + q to the massive Dirac Hamiltonian

Hl(q) = ℏvF q · σ2d +mσz (3.93)

with q = (qx, qy) (up to a rotation) and σ2d = (σx, σy), and m = hz(K) (in the
following, we set ℏvF = 1). The same holds at K ′, with a mass m′. In terms of the
original parameters,

m = hz(K) = M + 3
√

3t′ sinϕ and m′ = hz(K ′) = M − 3
√

3t′ sinϕ. (3.94)

As C1 = (sign(m) − sign(m′))/2, the masses m and m′ of the Dirac points K and
K ′ have the same sign in the trivial phase with C1 = 0, and have opposite signs in
the topological phase with C1 = ±1. We can now consider an interface at y = 0
between a (nontrivial) Haldane insulator with a Chern number C1 = 1 for y < 0 and
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a (trivial) insulator with C1 = 0 for y > 0. Necessarily, one of the masses changes
sign at the interface: m(y < 0) < 0 and m(y > 0) > 0, whereas the other one has a
constant sign m′ > 0 (see figure 3.14). It is natural to set m(0) = 0, which implies
that the gap closes at the interface. A more precise analysis shows that there are
indeed surface states. As the mass m depends on the position, it is more convenient
to express the single-particle Hamiltonian in space representation. By inverting the
Fourier transform in (3.93) (which amounts to the replacement q → −i∇), we obtain
the Hermitian Hamiltonian:

Hl = −i∇ · σ2d +m(y)σz =
(

m(y) −i∂x − ∂y

−i∂x + ∂y −m(y)

)
. (3.95)

In order to get separable PDE, let us rotate the basis with the unitary matrix:

U = 1√
2

(
1 1
1 −1

)
(3.96)

to obtain the Schrödinger equation:

U ·Hl · U−1
(
α
β

)
=
(

−i∂x ∂y +m(y)
−∂y +m(y) i∂x

)(
α
β

)
= E

(
α
β

)
. (3.97)

This matrix equation corresponds to two separable PDE

(−i∂x − E)α = S1 = −(∂y +m(y))β (3.98a)
(i∂x − E)β = S2 = −(−∂y +m(y))α (3.98b)

In order to obtain normalizable solutions, the corresponding separations constants S1
and S2 must be zero. We can then solve separately for α and β. For our choice of
m(y), there is only one normalizable solution, which reads in the original basis

ψqx
(x, y) ∝ eiqx x exp

[
−
∫ y

0
m(y′) dy′

] (
1
1

)
(3.99)

and has an energy E(qx) = EF + ℏvFqx. This solution is localized transverse to the
interface where m changes sign (see figure 3.14).

The edge state crosses the chemical potential at qx = 0, with a positive group
velocity vF and thus corresponds to a right moving chiral edge state. One would get
a left moving chiral edge state by reversing the Chern numbers, see table 3.1.

The precise understanding of the bulk-boundary correspondence is a difficult prob-
lem, which has led to a number of developments, both in physics and in mathematical
physics. It is possible to make the naive description that we sketched a bit more pre-
cise through the use of Green functions, a method which was first used by Volovik
[Vol88a] in 3He-A, and which was extended to topological insulators of the Altland-
Zirnbauer classification by Gurarie and Essin [Gur11; EG11], and by Rudner et al.
[RLBL13] and Nathan et al. [NR15] to the case of topological periodically driven sys-
tems. It is also worth to mention the corresponding developments in mathematical
physics. In the case of IQHE, the first rigorous result on the bulk-edge correspondence
as obtained by Hatsugai [Hat93a; Hat93b], in the case of rational magnetic fluxes and
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nontrivial insulator trivial insulator

y

m(y) et |ψ|2

Figure 3.14: Description of a soliton at an interface. The mass m(y) and the wave-
function amplitude |ψ|2 are drawn along the coordinate y orthogonal to the interface
y = 0 between a nontrivial Chern insulator and a trivial Chern insulator.

sign(m) sign(m′) C1 edge states
+1 +1 0 none
+1 −1 +1 left-moving
−1 +1 −1 right-moving
−1 −1 0 both ≃ none

Table 3.1: Possible transitions in theHaldanemodel. We consider the possible combi-
nations of (nonzero) masses in the Haldane model, the corresponding first Chern num-
ber, and the edge state at an interface with a trivial insulator where (m,m′) = (1, 1).
Only situations with C1 ̸= 0 correspond to topological edge states. The interface
with two counter-propagating edge states can be adiabatically connected to a trivial
situation with no edge states, which can be mixed together and gapped by a perturba-
tion. For example, an impurity may induce backscattering between the two counter-
propagating edge states, spoiling quantized conductance in a sample connected with
electrodes.

specific boundary conditions. An important step was taken by Kellendonk, Richter
and Schulz-Baldes [SKR99; KRS02; KS04] who extended Hatsugai results to the case
of arbitrary magnetic fluxes and boundary conditions with K-theoretic methods and
defined an edge invariant characterizing the quantized current. This result was also
demonstrated by Elbau and Graf [EG02]. A challenge is to extend such constructions
to the case with symmetries. The case of two-dimensional Kane-Mele (fermionic
time-reversal invariant) systems was studied by Graf and Porta [GP13b] and Avila,
Schulz-Baldes and Villegas-Blas [ASV12], and the case of complex classes by Prodan
and Schulz-Baldes [PS16]. Another look at the issue comes from Thiang, Mathai and
collaborators [MT15b; MT15a; HMT16] who use T-duality to relate K-theoretic bulk
invariants and edge invariants; the K-theoretic bulk-boundary correspondence is also
studied by Bourne, Kellendonk and Rennie [BKR16]. This list is not nearly com-
plete; a review of recent literature on the subject in mathematical physics is included
in [BCR15].
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2.1.5 The (anomalous) quantumHall effect and Chern insulators, or class A

The Haldane model is the canonical example of Chern insulator, or class A topolog-
ical insulator, a kind of topological insulators which require no symmetry at all, and
can exist in all even space dimensions. Indeed, there are other models which exhibit
this topology; for example, the spin up part of the BHZ model that we will study
in section 2.3.4 is a Chern insulator. The Haldane model is limited to values 0,±1
of the first Chern number, but any integer value is allowed: it is possible to design
tight-binding Hamiltonians (yet perhaps not realistic ones) with arbitrary first Chern
number [SPFK12; DWD14]. Several experimental realizations of Chern insulators
exist in various domains of physics: if was realized with cold atoms in an optical
lattice [JMDL14], in lattices of gyroscopes connected by springs (implemented with
magnets) [NKRV15], in gyromagnetic photonic crystals [WCJS09] and in thin films
of ferromagnetic topological insulators [CZKZ15; CZFS13; BFKP15].

Chern insulators may exist in any even space dimension (weak versions, see section
2.4.3 page 105, may indeed exist in odd space dimensions). Namely, the topology of a
spectral projector family P on a d = 2n-dimensional Brillouin torus is characterized
by the n-th Chern invariant (2.56) (page 50)

Cn[P ] ∈ Z. (3.100)

2.2 Chiral symmetric topological insulators, or class AIII

2.2.1 Chiral symmetry and chiral topological invariants

A Hamiltonian H is chiral invariant if

ΓHΓ−1 = −H (3.101)

where Γ is a unitary chiral operator Γ squaring to the identity Γ2 = Id (in general,
the chiral operator may square to a phase Γ2 = eiϕ Id, which can be eliminated
through a redefinition). In other words, the chiral operator Γ anticommutes with the
Hamiltonian, {H,Γ} = 0. When the Hamiltonian is translation invariant, the chiral
operator is assumed to commute with the space translations, and a Bloch Hamiltonian
is chiral invariant if

ΓH(k)Γ−1 = −H(k). (3.102)
The chiral operator acts only on internal and sublattice degrees of freedom, or equiva-
lently whose Bloch representation is a constant matrix (not depending on k). In such
a system, the energy spectrum is symmetric with respect to zero (i.e. by E → −E),
so a reference for the energies E = 0 is naturally provided by chiral symmetry (see
paragraph 2.4.4 page 106). Due to this symmetry, the Hamiltonian can have a gap
around zero energy only if the size of the Bloch matrix H(k) is even, so we will sup-
pose that it is the case and denote this size by 2M . In this situation, there is a basis
called a chiral basis where Γ ∼= diag(1, . . . , 1,−1, . . . ,−1). Moreover, when H has
no zero mode, then trΓ = 0(8), so in the chiral basis, the matrix representing operator

(8)Suppose that H has no zero mode. Let (ψ1, . . . , ψM ) be the eigenvectors of H with positive
energy; in the basis (ψ1,Γψ1, ψ2,Γψ2, . . . , ψM ,ΓψM ) the chiral operator Γ is represented by the
block-diagonal matrix diag(σx, . . . , σx) (where σi are Pauli matrices), which is traceless.
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Γ has the form
Γ ∼=

(
IdM 0

0 −IdM

)
∈ U(2M). (3.103)

Despite the existence of several such bases, we will choose one and refer to it as the
chiral basis, as nothing actually depends on this choice.

The (Bloch) Hamiltonian is block-antidiagonal in the chiral basis,

H(k) ∼=
(

0 f(k)
f†(k) 0

)
. (3.104)

More generally, consider an operator X such that

{Γ, X} = 0 i.e. ΓXΓ = −X (3.105)

and let us write the block matrix of this operator in the chiral basis

X ∼=
(
a b
c d

)
. (3.106)

By computing the block product,

ΓXΓ ∼=
(
a −b

−c d

)
(3.107)

so that (3.105) leads to the condition

0 = ΓXΓ +X =
(

2a 0
0 2d

)
(3.108)

and therefore a = 0 and d = 0, so an operator that anticommutes with the chirality
operator is block-antidiagonal in the chiral basis. In the same vein, an operator that
commutes with the chirality operator is block-diagonal in the chiral basis.

2.2.2 Chiral topological invariants

When the Hamiltonian is gapped, it is possible to define its valence projector P and
the corresponding unitary operator Q = Id − 2P . In the chiral basis, Q is also block-
antidiagonal, of the form

Q =
(

0 q
q† 0

)
. (3.109)

The blocks q and q† are unitary matrices of size M . When the space dimension d is
odd, d = 2n+ 1, it is possible to compute the winding number, or odd Chern number
(see (2.59)), of the map q : BZ → U(M) to define the chiral invariant

g[P ] = Wn(q,BZ) =
∫

BZ
c̃hn(q) ∈ Z. (3.110)

associated to the band described by the projector P .
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Chiral symmetry is sometimes also called sublattice symmetry. In a tight-
binding system with bipartite hoppings, the crystal is separated into two sets of sub-
lattices A and B, with hopping terms only connecting A to B (or B to A). This
structure naturally induces a chiral operator (see e.g. equation (3.111)). However,
other internal degrees of freedom may also participate in this structure in a nontrivial
way, so this denomination is slightly misleading.

Note that the chiral symmetry is not unambiguously defined (see also [NG15a]).
For example, in the SSH model (see next section), we could take

Γ1 =
∑
x∈Γ̃

|x,A⟩⟨x,A| − |x,B⟩⟨x,B| (3.111)

(where the Γ̃ on which the sum runs is the Bravais lattice) or choose

Γ2 = −Γ1. (3.112)

The choice of the (ordered) fundamental domain should be done in a manner which
guarantees that Γ is represented by the matrix Γ = diag(1, . . . , 1,−1, . . . ,−1), in this
case σ3 (and not e.g. −σ3 ; indeed, we could choose another matrix representation
for the chiral operator, which would give an equivalent but different set of invariants).
The chiral topological invariants are not independent of the definition of the chiral
operator. Another point of view on this topic comes from the mathematical literature,
where Thiang [Thi15b; Thi15a] (see also De Nittis and Gomi [NG15a]) show that the
chiral invariant is only a relative object, which can be used to compare phases, but
which has no absolute meaning (9).

The nontrivial topology of Chern insulators, in class A, can be interpreted as stem-
ming from the nontriviality of the spectral vector bundles over the torus corresponding
to the energy bands of the system. In the case of chiral topological insulators, in class
AIII, a similar picture has been developed by De Nittis and Gomi [NG15a] who de-
fine chiral vector bundles (a generalization inspired from chiral topological insulators,
which are a particular case of the construction). Prodan and Schulz-Baldes [PS16]
studied classes A and AIII in the framework on noncommutative geometry and K-
theory, providing definitions applicable in disordered systems; they also consider the
case of approximate chiral systems and explore the consequences of this deviation
from the ideal behavior.

Besides polyacetylene (and the SSH model to which the next section is devoted),
examples of chiral systems include graphene (and artificial equivalents; see [PRSH13]
and references therein) and isostatic mechanical lattices in the harmonic approx-
imation [KL13; PCV15]. In the two-dimensional situations (e.g. in graphene) it is
only possible to observe weak topological invariants, which are in fact one-dimensional
topological invariants which remain defined thanks to translation invariance, see para-
graph 2.4.3, page 105. In general, lower-dimensional or so-called weak topological
invariants do not always lead to topologically protected edge modes. This is indeed
the case in graphene, where armchair edges do not support edge states, in contrast

(9)The same is in fact true for the Chern invariants of class A, but the vacuum provides a canonical
reference.
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with zigzag and bearded edges which do. The same kind of behavior was observed in
2D mechanical systems.

2.2.3 The SSHmodel

We already encountered the SSH model developed by Su, Schrieffer and Heeger
[SSH79] to describe polyacetylene in section 1.1.4 (page 67). Its Bloch Hamiltonian
is

H(k) = #”

h · #”σ = (J1 + J2 cos(k))σ1 + J2 sin(k)σ2 (3.113)
where σi are the Pauli matrices in the basis of sublattices A and B. This Hamiltonian
has chiral symmetry with the unitary chiral operator

Γ = σ3. (3.114)

One can indeed check that Γ2 = Id and

ΓH(k)Γ−1 = −H(k). (3.115)

The chiral invariant can be computed as follows. Define n = #”

h/∥ #”

h∥ and consider the
valence projector (pulled back from equation (2.68))

P = n∗Pσ
− = −n · σ (3.116)

to find that in this case

q(k) = −[nx − iny] = J2

(
e−ik − J1

J2

)
. (3.117)

Its winding number
g = i

2π

∫
BZ

dk q−1(k)∂kq(k) (3.118)

can be computed e.g. by the residue theorem, and we find that

g = i
2π

∫
BZ

tr
(
q−1dq

)
=
{

1 when |J1/J2| < 1
0 when |J1/J2| > 1

. (3.119)

The two different phases of polyacetylene ((a) and (b) in figure 3.3) correspond
respectively to g = 0 and g = 1, and the gap closes at the topological transition when
|J1/J2| = 1.The main message of the work of Su, Schrieffer and Heeger work is that
a soliton appears at the interface between the two varieties of trans-polyacetylene,
which is associated with a fermionic excitation mode. In the framework of topological
insulators, this fermionic mode can be understood as a topological edge state between
two topologically distinct phases. However, the description of the motion of the
exitation/soliton is not accounted for in the topological band theory, as it requires to
take into account the coupling between electronic modes and phonon modes, which
is not included in this description (the lattice is fixed). Again, more details on the
physics of solitons in polymers may be found in the reviews [BCM92; HKSS88].

Finally, notice that the SSH Hamiltonian is also time-reversal invariant (see section
2.3.1) with a time-reversal operator Θ = K (where K is complex conjugation), as we
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have ΘH(k)Θ−1 = H(−k). As a consequence, the system is in fact in class BDI.
However, it is possible to add a time-reversal breaking perturbation which preserves
chiral symmetry in the Bloch Hamiltonian, for example a term J3 cos(k)σ2 without
modifying the topology of the system (at least for a small enough J3), which is
therefore essentially due to chiral symmetry.

2.3 Kane-Mele topological insulators, or class AII

2.3.1 The time-reversal operation

Time-reversal amounts to the transformation in time t → −t. As such, quantities
like spatial position, energy, or electric field are even under time-reversal, whereas
quantities like time, linear momentum, angular momentum, or magnetic field are
odd under time-reversal operation. Within quantum mechanics, the time-reversal
operation is described by an antiunitary time-reversal operator Θ (which is allowed
by Wigner’s theorem) [Le 12; Sak93; Kit87], i.e. (i) it is antilinear, i.e. Θ(αx) = αΘ(x)
for α ∈ C and (ii) it satisfies Θ† Θ = Id, i.e. Θ† = Θ−1. The simplest example of
a time-reversal operator is the complex conjugation, which we denote by K (acting
on the left), so Kz = z. When spin degrees of freedom are included, time-reversal
operation has to reverse the different spin expectation values: the corresponding
standard representation of the time-reversal operator is [Sak93] Θ = e−iπSy/ℏ K,
where Sy is the y component of the spin operator. The unitary part of the time-
reversal operator is therefore a π rotation in the spin space. Therefore, and because
the spin operator e−iπSy/ℏ is real and unaffected by K, in an integer spin system, the
time-reversal operator is involutive, i.e. Θ2 = Id. In contrast, for an half-integer spin
system, this operation is anti-involutive: Θ2 = −Id. The first situation (Θ2 = Id) is
usually called “bosonic” while the second one (Θ2 = −Id) is usually called “fermionic”.
When there are no other special symmetry, Θ2 = Id corresponds to class AI and
Θ2 = −Id to class AII. This denomination can be misleading as it is also possible
to consider synthetic or effective time-reversal operators which are not related to the
nature of the underlying particles. For example, a fermionic time-reversal Θ2 = −Id
can even be implemented(10) in classical mechanical systems [SH15].

A first quantized single-particle Hamiltonian H is said to be time-reversal in-
variant if it commutes with the time-reversal operator,

ΘHΘ−1 = H. (3.120)

Here, H does not depend on time. The more general situation of a time-dependent
Hamiltonian will be considered in chapter 4.

In the context of Bloch theory, the time-reversal invariance is expressed in terms
of the Bloch Hamiltonian as

ΘH(k)Θ−1 = H(−k). (3.121)
(10)Note that strictly speaking, the system of Süsstrunk and Huber is not in class AII: the fermionic
time-reversal is in fact the composition of a bosonic time-reversal with a unitary symmetry. The
Hamiltonian should be block-diagonalized to remove this unitary symmetry before any mention of
symmetry classes. However, it is convenient not to do it. A practical consequence of this difference is
that a breaking of that additional unitary symmetry is sufficient to remove any topological protection.
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Figure 3.15: Typical spectrum of a time-reversal invariant system. Typical energy
spectrum of a time-reversal invariant system (continuous lines) on a closed loop of
the Brillouin torus. At the TRIM λi, there is always a degeneracy of the filled bands
(resp. empty bands). A Kramers pair is drawn as two black circles. When inversion
symmetry is present, the filled bands (resp. empty bands) are everywhere degenerate
(dashed lines).

The time-reversal operator Θ relates the Bloch states at k and −k, or in other words
it is an antiunitary map(11) which relates the fiber over k of the Bloch bundle to the
fiber over −k. This is intuitively understood with a plane wave ψ(k, x) = e−ikx. Here,
time-reversal is simply complex conjugation, so Θψ(k, x) = e−ikx = ψ(−k, x), so Θ
indeed relates k to −k.

In the following, we will focus on a fermionic time-reversal Θ2 = −Id. This
property is essential for what follows. A system which is time-reversal invariant
with this kind of time-reversal operator, but which is neither chiral nor particle-hole
symmetric is said to be in class AII.

2.3.2 Kramers pairs

Time-reversal invariance implies the existence of so-called Kramers pairs of eigen-
states: equation (3.121) implies that the image by time-reversal of any eigenstate of
the Bloch Hamiltonian H(k) at k is an eigenstate of the Bloch Hamiltonian H(−k)
at −k, with the same energy, as

H(k) |ψ(k)⟩ = E(k) |ψ(k)⟩ implies H(−k) |Θψ(k)⟩ = E(k) |Θψ(k)⟩ . (3.122)

This is the Kramers theorem [Sak93; Kit87]. These two eigenstates, that a priori live
in different fibers, are called Kramers partners. The property Θ2 = −Id implies
(11)We should in fact define an antiunitary automorphism Θ̂ of the Bloch bundle π : E → BZ with
π ◦ Θ̂ = ϑ ◦ π, where ϑ : BZ → BZ is the involution defined by ϑ(k) = −k.
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Figure 3.16: Time-reversal invariantmomenta in 2D. The four time-reversal invariant
momenta in dimension d = 2: (0, 0), (π, 0), (0, π) et (π, π). The Brillouin torus T 2 is
represented as a primitive cell, whose sides must be glued together; points equivalent
up to a lattice vector have been drawn with the same symbol.

that the two Kramers partners are orthogonal. Note that the orthogonality of these
Kramers partners in different fibers has only a meaning if we embed these fibers in
the complete trivial bundle T 2 × C2n corresponding to the whole state space of the
Bloch Hamiltonian.

Some points of the Brillouin torus appear of high interest: the time-reversal
invariant momenta (TRIM) λ that are invariant under time-reversal [FKM07], i.e.
which verify λ = −λ+G where G is a reciprocal lattice vector. In other words, they
are the fixed points of the map ϑ(k) = −k defined on the torus. Explicitly, they are
the points λ = G/2, with G a reciprocal lattice vector (see figure 3.16 for the example
of a two dimensional square lattice). In the following, we denote the set of TRIM in
the Brillouin zone as Λ.

At time-reversal invariant points, the two partners of a Kramers pair live in the
same fiber. As they are orthogonal and possess the same energy, the spectrum is
necessarily always degenerate at TRIM (see figure 3.15). As we shall see in the
following, the constraints imposed by the presence of Kramers partners around the
valence Bloch bundle are at the origin of the topology of Kane–Mele insulators.

2.3.3 Topology of (fermionic) time-reversal invariant systems

A time-reversal invariant system with Θ2 = −Id is always topologically trivial from
the point of view of Chern invariants. However, Kane and Mele discovered [KM05a;
KM05b] that a more subtle kind of topology, protected by time-reversal invariance,
may be present in two dimensions. Fu and Kane [FKM07], Roy [Roy09], Moore and
Balents [MB07] realized that this particular topology can also arise in space dimension
d = 3.

Let us consider a two- or three-dimensional band insulator, and let k ↦→ (ei(k))2m
i=1

be a global frame of the valence bundle, i.e. a collection of never-vanishing global
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sections of the valence bundle that form a basis of its fiber over each point. This
global frame exists since the corresponding first Chern number vanishes, owing to
time-reversal invariance. As time-reversal connects opposite momenta k and −k, the
natural way to define “matrix elements” of the time-reversal operator is the sewing
matrix defined by Fu and Kane [FK06] as

wij(k) = ⟨ei(−k)|Θej(k)⟩ (3.123)

so

Θei(k) =
∑

j

wji(k)ej(−k) or ei(−k) =
∑

j

wij(k)Θej(k). (3.124)

The sewing matrix is unitary
w†(k)w(k) = Id (3.125)

and has property
w(−k) = −wT (k). (3.126)

As a consequence, the sewing matrix is antisymmetric at time-reversal invariant mo-
menta, so its pfaffian Pf w is defined at those points. For example, for a system
with only two filled bands, the sewing matrix at a TRIM λ ∈ Λ takes the simple
form:

w(λ) =
(

0 t(λ)
−t(λ) 0

)
(3.127)

with |t(λ)| = 1, and its pfaffian is Pf w(λ) = t(λ).

The Fu-Kane-Mele Z2 invariant is then defined by

(−1)ν =
∏
λ∈Λ

Pf w(λ)√
detw(λ)

. (3.128)

This expression in only meaningful provided that w is calculated from a continuous
basis (which always exists thanks to time-reversal invariance). If so, the square root of
detw(k) can be defined globally as detw(k) has no winding. The topological invariant
seems to depend only on the behaviour of the sewing matrix w at the TRIM, but the
requirement of a globally-defined square root means that the formula (3.128) is in
fact not really localized on TRIM.

The case of (−1)ν = 1 corresponds to a trivial situation, whereas (−1)ν = −1
corresponds to a topologically nontrivial situation, where a global frame of Kramers
pairs cannot be defined (see below). The most striking observable consequence of a
nontrivial Kane-Mele topology is visible at an interface with a trivial system, where
a Kramers pair of counter-propagating chiral states appear, which are called helical
edge states. As Kramers partners are orthogonal, backscattering between them is
prevented; hence, a Kramers pair of edge states is robust to weak disorder. The one-
dimensional edge states of two-dimensional topological insulators lead to character-
istic transport signatures in a multiterminal setup, and the two-dimensional surface
states of three-dimensional topological insulators can be observed through ARPES
measurements (see paragraph 1.2, page 11). From the point of view of mathematics,
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the Fu-Kane-Mele invariant characterizes complex vector bundles (representing en-
ergy bands) endowed with a particular structure due to the time-reversal operation,
which were called “Quaternionic vector bundles” [NG15b; NG16] (see also [FM13]). A
nonvanishing Chern invariant is an obstruction to construct a global frame; similarly,
it was rigorously shown by Fiorenza, Monaco and Panati [FMP16] and independently
by De Nittis and Gomi [NG15b; NG16] that a nonvanishing Fu-Kane-Mele invariant is
an obstruction to find a global time-reversal invariant frame, that is a set of Kramers
pairs of global sections which form a basis of each fiber. This property was already
conjectured by Fu and Kane [FK06]. Another form of the Z2 invariant that expresses
this point of view is [FK06]

ν = 1
2π

[∮
∂EBZ

A−
∫

EBZ
F

]
(mod. 2) (3.129)

where EBZ represents the effective Brillouin zone, defined as a fundamental domain
for the action θ(k) = −k of time-reversal on the Brillouin torus (essentially half of
the Brillouin torus), A is a special version of the Berry connection, constructed from
Kramers pairs on two halves of the effective Brillouin zone, and F = dA is the cor-
responding curvature. In the trivial case, the Stokes theorem can be applied, and ν
vanishes, but there is a topological obstruction to do so in the nontrivial case, when
ν = 1. The equivalence between this expression and the previous one was demon-
strated in [FK06], and is reviewed in [Bernevig, § 10.5]. Moore and Balents [MB07]
have discussed the obstruction point of view using homotopy theory arguments; they
interpreted the Kane-Mele invariant as a “Chern parity” and generalized it to three
dimensions. A new light was shed on their construction by my co-advisor Krzysztof
Gawędzki [Gaw15], as a follow-up of our work on the Floquet equivalent of Kane-Mele
insulator.

The actual computation of the Kane-Mele invariant in a system is not straightfor-
ward (except when there is inversion symmetry, see next paragraph). Formula (3.128)
requires a smooth frame of the valence bundle (so the square root is well-defined),
and an analytical expression is usually required. This is particularly problematic to
work with ab-initio simulations of actual materials. A numerical method was pro-
posed by Fukui and Hatsugai [FH07] (see also [XYFW10]) as a discretization of the
obstruction formula (3.129) in a lattice Brillouin zone. Another method, mainly due
to Soluyanov and Vanderbilt [SV11], consists in following the evolution of the charge
centers of Wannier functions (the authors released the code under an open-source
license under the name Z2Pack). On the material science side, a lot of activity has
happened in the ten last years to find new compounds candidates to be topological in-
sulators (or superconductors and semi-metals), that was recently reviewed by Bansil,
Lin and Das [BLD16].

When the Hamiltonian has an additional inversion (also called parity) symme-
try

PH(k)P−1 = H(−k) (3.130)

with a unitary inversion operator P with P 2 = Id commuting with the time-reversal
operator Θ, the Kane-Mele invariant takes a particularly simple form [FKM07] as
the product of the parity eigenvalues of half of the filled bands at all TRIM. The



97

energy eigenstates at a TRIM λ form Kramers pairs ψ±
i (with an arbitrary choice of

±). Besides, at the TRIM, H(λ) and P commute, so the energy eigenstates ψ±
i (λ)

also have a well-defined parity eigenvalues, which are the same for two Kramers part-
ners ξ+

i (λ) = ξ−
i (λ) = ±1. The Fu-Kane-Mele invariant can then be expressed as

[FKM07]
(−1)ν =

∏
λ∈Λ

∏
i

ξ+
i (λ). (3.131)

This expression allows to identify candidate materials for topological insulators from
their band structure, as the materials where a band inversion occurs at one TRIM,
meaning that the nature of the highest valence band and the lowest conduction band
are exchanged near this point.

2.3.4 The Bernevig-Hughes-Zhangmodel

The first model for a class AIII topological insulator was developed by Kane and Mele,
who considered a graphene sheet with spin-orbit coupling [KM05a]. Unfortunately,
spin-orbit coupling is too small in graphene for the effect to be measurable. The first
experimental evidences of the quantum spin Hall effect were observed in HgTe-CdTe
quantum wells, a quasi-two-dimensional system, following the prediction of Bernevig,
Hughes and Zhang [BHZ06], who proposed a tight-binding model (now called the
BHZ Hamiltonian) regularizing the k · p description of the quantum well. Here, we
present a slightly modified version of the BHZ model; like the original regularized
model, it has inversion symmetry, and we can use the framework developed by Fu
and Kane [FKM07] to characterize its topological properties.

In HgTe quantum wells, the bands near Fermi level are a s-type band with J = 1/2
and a p-type band with J = 3/2. Spin-orbit coupling respectively split such states
into mJ = ±1/2 and mJ = ±1/2,±3/2 states. The relevant degrees of freedom
participating in the band crossing and kept in the BHZ model are the s-type states
with mJ = ±1/2 and the two p-type states with mJ = ±3/2. To simplify the
notations, we will denote the two s (resp. p) orbitals by s ↑ and s ↓ (resp. p ↑ and
p ↓), which amounts to work in the basis

(s,p) ⊗ (↑, ↓) = (s ↑, s ↓,p ↑,p ↓). (3.132)

In this basis, the time-reversal and inversion (parity) operators read

Θ = (Id ⊗ i sy) K and P = σz ⊗ Id. (3.133)

The most general time-reversal invariant and parity invariant Hamiltonian can be
written as a linear combination of the following matrices:

Γ1 = σz ⊗ Id ; Γ2 = σy ⊗ Id ; Γ3 = σx ⊗ sx ; Γ4 = σx ⊗ sy ; Γ5 = σx ⊗ sz (3.134)

where si are spin Pauli matrices and σi are orbital Pauli matrices. Such an Hamilto-
nian

H(k) = d0(k)Id +
∑

j

dj(k)Γj . (3.135)
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is everywhere degenerate, due to the combination of inversion and time-reversal sym-
metries, and its spectrum reads

E±(k) = d0(k) ±

√ 5∑
i=1

d2
i (k). (3.136)

In the following, we will set d0(k) = 0 as this coefficient plays no role in the topological
properties (yet it can cause an indirect gap closing). Time-reversal and inversion
symmetries require the function d1 to be even, and the functions d2, . . . , d5 to be
odd. For this class of Bloch Hamiltonians, the presence of inversion symmetry allows
to use the simplified expression of the Fu-Kane-Mele invariant. As the inversion
operator is P = Γ1, the parity eigenvalues at TRIM are d1(λ), and the Fu-Kane-Mele
invariant reads

(−1)ν =
∏
λ∈Λ

sign d1(λ). (3.137)

The BHZ model [BHZ06] corresponds to non-vanishing coefficients

d1(k) = (M − J − 4B) + 2B(cos kx + cos ky) + J cos kx cos ky

d2(k) = A sin ky

d5(k) = A sin kx

(3.138)

The Fu-Kane-Mele invariant can be computed from the parity eigenvalues at the four
TRIM

d1(0, 0) = (M − J − 4B) + 4B + J

d1(0, π) = (M − J − 4B) − J

d1(π, 0) = (M − J − 4B) − J

d1(π, π) = (M − J − 4B) − 4B + J.

(3.139)

and we find
(−1)ν = sign(M) sign(M − 8B). (3.140)

Hence this model realizes a nontrivial Kane-Mele topological insulator when M/8B <
1 for M > 0 and when M/8B > 1 when M < 0 (and a trivial insulator elsewhere,
except at the transition lines). In this model, there is no spin-flip term, so spin along
the quantization axis is conserved. Yet, spin-flip terms can be added to the Hamil-
tonian without spoiling its topology, as long as time-reversal invariance is preserved
and the gap does not close (similarly, inversion symmetry can also be broken). If
time-reversal invariance is broken, however, the Kane-Mele topological invariant is
no longer defined and the system may even be deformed into a trivial Kane-Mele
insulator without closing the gap [ETN13].

2.3.5 Edge states

At the boundary between a Kane–Mele topological insulator and a trivial insulator,
Kramers pairs of counter-propagating gapless edge states (called helical edge states)
appear. The origin of these edge states can be understood in a similar fashion as for
Chern insulators through Jackiw–Rebbi solitons (see section 2.1.4, 84).
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Figure 3.17: Phase diagram of the BHZ model. We represent a part of the phase
diagram of the BHZ model. Colors represent the Fu-Kane-Mele invariant, where
white represents KM = 0 (trivial phase), whereas green ( ) represents KM = 1 (non-
trivial phase).

Let us consider the BHZ model (3.135) (with coefficients (3.138)). In the trivial
phase, the parity eigenvalues −d1 at all TRIM have a uniform sign, say a positive one,
whereas in the nontrivial phase, there is one TRIM where this sign is negative, say
λ0 = (0, 0), while it is positive at the three others (obviously we can switch “positive”
and “negative” and/or choose another singled out TRIM). To continuously describe
an interface from a trivial to a Kane-Mele topological phase without breaking time-
reversal symmetry requires a change of sign of d1 at the TRIM λ0: this corresponds
to a gap closing and the appearance of a surface state. Let us consider an interface
at y = 0 between a trivial insulator for y > 0 where d1 is positive at all TRIM, and
a nontrivial Kane-Mele topological insulator for y < 0 where only d1(λ0) is negative.
We focus on the low-energy behavior around the point λ0, while a smooth evolution
of the bands is expected elsewhere on the Brillouin torus. Let us define a mass
m(y) smoothly interpolating between the asymptotic “bulk” values m(y ∈ bulk) =
d1[λ0](y), so with m(y > 0) > 0 and m(y < 0) < 0. The low-energy spectrum of this
interface can by described by a linearized Hamiltonian around the TRIM λ0 which
reads, up to a rotation of the local coordinates on the Brillouin zone (qx, qy):

Hl(q) = qxΓ5 − qyΓ2 +m(y) Γ1. (3.141)

In this expression, we used the oddness of the functions di≥2 around λ0, following
from time-reversal invariance, and with local coordinates chosen so that d5(q) =
qx and d2(q) = −qy to simplify the computations. To describe edge states, it
is useful to block-diagonalize the Hamiltonian in the “orbital tensor spin” basis
(s ↑,p ↑, s ↓,p ↓) in which it reads in real space representation (through the substitu-
tion q → −i∇):

Hl =
(
H↑ 0
0 H↓

)
, (3.142)

with

H↑ =
(

−i∂x m(y) + ∂y

m(y) − ∂y i∂x

)
and H↓ =

(
+i∂x m(y) + ∂y

m(y) − ∂y i∂x

)
.

(3.143)
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Exactly as in section 2.1.4, we observe that the Schrödinger equation(
H↑ 0
0 H↓

)
ψ(x, y) = Eψ(x, y) (3.144)

has solutions (remember that we work in the “orbital tensor spin” basis)

ψqx,↑(x, y) ∝ e−iqx x exp
[
−
∫ y

0
m(y′) dy′

] ⎛⎜⎜⎝
0
1
0
0

⎞⎟⎟⎠ ,

ψqx,↓(x, y) ∝ e+iqx x exp
[
−
∫ y

0
m(y′) dy′

] ⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠ ,

(3.145)

These states constitute a Kramers pair of edge states. The first one is a spin-up right-
moving state, while the second one is a spin-down left-moving state. A schematic
representation of such a pair of edge states is represented in figure 3.18. This demon-
strates, at least physically, the existence of helical edge states at the interface between
a trivial and a topological insulating phase in the BHZ model. References on more
precise and formal considerations on the bulk-edge correspondence are found at the
end of section 2.1.4, page 84

Figure 3.18: Edge states of a Kane-Mele insulator. In a Kane-Mele insulator (also
called QSHE state), there are on each interface two counter-propagating helical edge
states which form a Kramers pair. As a consequence, backscattering from an edge
state to its counter-propagating partner is not allowed.

2.4 Classification of topological insulators

As we have seen, there are different kinds of topological insulators, depending on the
symmetries of the system and its space dimension. A classification of the possible
topological phases was achieved by Schnyder, Ryu, Furusaki and Ludwig [SRFL08;
SRFL09; RSFL10] and Kitaev [Kit09], according to particular non-spatial symmetries:
time-reversal, charge-conjugation and chiral symmetry. Those symmetries are, to
some extent, more robust than e.g. an inversion symmetry, because they stem from
the structure of the system, that is, the nature of the constituents of the low-energy
description of the phase. For example, a system without magnetic field nor rotation
is always time-reversal invariant (if we except weak interaction, which is not relevant
in a solid state setting). At low energy, a superconductor has charge-conjugation
symmetry to a very good approximation, and a tight-binding system with bipartite
hoppings has a chiral symmetry, as long as the symmetry breaking intra-sublattice
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hopping terms can actually be neglected. Moreover, as we shall see, such particular
symmetries are what is left when all usual unitary symmetries are removed (through
a block-diagonalization). Instead of classifying e.g. Hamiltonians, it is convenient to
focus on unitary evolutions, even when the Hamiltonian do not depend on time [Zir10];
in this way, Floquet systems are naturally included in the standard classification
scheme. The classification of unitary evolutions according to whether they posses
or not such kind of symmetries leads to ten classes, called Cartan-Altland-Zirnbauer
classes. For each of those classes and for each space dimension, a different kind of
topological insulator is possible, corresponding to the different kinds of evolutions
generated by gapped Bloch Hamiltonians. The description of all those possibilities is
summarized in the “periodic table of topological insulators” of Kitaev and Schnyder,
Ryu, Furusaki, Ludwig. The current section aims at giving a brief overview of this
classification. For more details, the reader is directed towards the original articles
[SRFL08; SRFL09; RSFL10] and [Kit09], and also to the reviews [CTSR15] and
[Lud15]. The classification of unitary evolutions is explained in a particularly clear
way in the article of Freed and Moore [FM13]. On the classification of topological
insulators, let me also mention the articles from Thiang and Mathai [Thi15a; MT15b]
and Kellendonk [Kel15].

2.4.1 Theten-foldway: symmetriesandtheclassificationofunitaryevolutions

We aim at classifying unitary time evolutions of quantum systems (though it should be
possible to adapt the method to any system governed by linear differential equations),
which are described by an evolution operator U(t, t′). Starting from a state ψ0 at t′,
the evolution operator U(t, t′) is a endomorphism of the Hilbert space which maps
an initial state ψ(t′) at some time t′ to the state ψ(t) = U(t, t′)ψ(t′) of the system at
another time t. To simplify, I will for now fix the origin of times at t0 = 0 and only
consider U(t) = U(t, t0 = 0). A unitary evolution is generated by an infinitesimal
generator H(t), the Hamiltonian of the system, through the equation

i∂tU(t) = H(t)U(t) (3.146)

with an initial value U(0) = Id, and where ℏ has been set to 1 for simplicity. When
the Hamiltonian does not depend on time, this equation yields the simple form

U(t) = e−itH . (3.147)

We aim at classifying unitary evolutions according to their symmetries, which form a
group G (so we can combine them). Wigner theorem states that any of such symmetry
g ∈ G can be represented as a unitary or an antiunitary operator acting on the Hilbert
space. Such a representation should be written ρ(g), but we will shorten it as g to
simplify. To track down if the representation is unitary or antiunitary, we define a
map ϕ : G → Z2 with

ϕ(g) =
{

+1 if g is unitary
−1 if g is antiunitary.

(3.148)

We say that g is a symmetry of U when

gU(t)g−1 = U(τ(g)t) (3.149)
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where

τ(g) =
{

+1 if g preserves the orientation of time
−1 if g reverses the orientation of time

(3.150)

is another map τ : G → Z2. At the level of the Hamiltonian, g is a symmetry of the
evolution generated by H when

gH(t)g−1 = ϕ(g)τ(g)H(τ(g)t) (3.151)

and we write
χ(g) = ϕ(g)τ(g). (3.152)

For a time-independent Hamiltonian, χ tracks down if H commutes (+1) or anticom-
mutes (−1) with g. By definition, we have ϕ · τ · χ = 1.

As a consequence, there are four types of symmetries according to whether ϕ and
τ are ±1, which correspond to

– (ϕ, τ) = (1, 1) (so χ = 1) are the usual unitary symmetries,
– (ϕ, τ) = (1,−1) (so χ = −1) are called chiral symmetries,
– (ϕ, τ) = (−1, 1) (so χ = −1) are called charge-conjugation symmetries,
– (ϕ, τ) = (−1,−1) (so χ = 1) are called time-reversal symmetries.

Another name for charge-conjugation symmetries is particle-hole symmetries, and
chiral symmetries are sometimes also called sublattice symmetries. We write Gϕ,τ

the corresponding subsets of G.

Usual unitary symmetries are easy to deal with, and enable to block-diagonalize
the Hamiltonian (or in other words to split the Hilbert space into irreducible repre-
sentation spaces). The ten-fold classification aims at classifying the possible evolu-
tions when all usual unitary symmetries have already been taken into account and
“removed” by working in irreducible representation spaces, where usual unitary sym-
metries are scalar matrices (scalar multiples of Id).

As we shall see, a consequence of this restriction is that there is only one possible
time-reversal, charge-conjugation, and chiral operators at a time. An antiunitary
operatorA can be written asA = UK, where U is unitary, so two antiunitary operators
A1 = U1K and A2 = U2K are related by the unitary V = U2U

−1
1 through A2 =

V A1. So on the one hand, if A1, A2 ∈ G−1,−1 (resp. G−1,1) are two time-reversal
(resp. charge-conjugation) operators, then V ∈ G1,1. On the other hand, all unitaries
symmetries (and in particular V ) on an irreducible representation space are scalar
(and hence phases). Similarly, two chiral symmetries U1, U2 ∈ G1,−1 are related by
the unitary symmetry V = U2U

−1
1 ∈ G1,1, so they are scalar multiples one of each

other. Hence, up to a phase, there is only one time-reversal operator Θ, one charge-
conjugation operator C, and one chiral operator Γ. Moreover, when the square of an
antiunitary operator A is a scalar matrix, then A2 = ±Id, so we have either Θ2 = ±Id
and similarly, either C2 = ±Id. By contrast, Γ2 = eiϕId is an arbitrary phase, which
is not constrained, but usually chosen so that Γ2 = Id. Finally, the product ΘC is
an element of G1,−1 i.e. a chiral symmetry, so we have ΘC = Γ, possibly up to a
phase.
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Evolutions are then classified according to the presence or not of those discrete
symmetries. A given (class of) evolution may have no such symmetries at all, or only
time-reversal symmetry, and so on. We are led to consider the ten possible cases,
which are called Cartan-Altland-Zirnbauer classes and are enumerated in table
3.2.

label s symmetries Θ2 C2

complex
CAZ

classes

A 0 Id
AIII 1 Id,Γ

real
CAZ

classes

AI 0 Id,Θ +1
BDI 1 Id,Θ, C,Γ +1 +1
D 2 Id, C +1
DIII 3 Id,Θ, C,Γ −1 +1
AII 4 Id,Θ −1
CII 5 Id,Θ, C,Γ −1 −1
C 6 Id, C −1
CI 7 Id,Θ, C,Γ +1 −1

Table 3.2: Cartan-Altland-Zirnbauer classes. The Cartan-Altland-Zirnbauer classes
correspond to the different possibilities to arrange the three kinds of special sym-
metries that are time-reversal Θ, charge-conjugation C and chiral symmetry Γ. We
give the possible combinations of operators, which are always defined up to a phase,
and for their squares. CAZ classes are labeled with a nomenclature borrowed from
Cartan’s classification of symmetric spaces. The parameter s gives the K-group which
classifies the corresponding topological insulators: for complex classes, it is K−s(BZ)
whereas for real classes it is KR−s(BZ).

2.4.2 The periodic table of topological insulators

On the level of Bloch evolution operators (see section 1.1.5), g is a symmetry of U
when

gU(t, k)g−1 = U(τ(g)t, ϕ(g)k). (3.153)

A plane wave (or the phase factor of Bloch waves) e−ik·x is mapped to e−i(−k)·x by
complex conjugation (and therefore by any antiunitary operator), hence the action
on k.

The classification of topological insulators has been developed for gapped static
Hamiltonians, for which the evolution operator is U(t, k) = exp(−itH(k)), and the
spectrum of H is gapped around zero energy. Hence, the Bloch bundle (see section
1.1, page 57) is composed of two well-defined spectral subbundles, the valence bun-
dle and the conduction bundle. This separation can be taken into account as a Z2
graduation of the Bloch bundle by the operator Q(k) = Id − 2P (k). In class A, when
there are no symmetry at all, we have seen in section 2.2.3 (page 46) that such graded
Bloch bundles are classified (up to stable homotopy) by the group K0(BZ). The case
of class AIII (with only chiral symmetry) is also straightforward: we need to classify
the unitary maps q : BZ → U(N) that appear in equation (3.109), page 89. As there
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are no other constraint on q, such maps, and therefore the graded Bloch bundles in
class AIII are classified by K1(BZ), as we have seen in section 2.2.3. The classes A
and AIII are therefore called complex classes, as the corresponding topological in-
sulators (i.e. graded Bloch bundles) are classified by complex K-theory. Antiunitary
operators (time-reversal and charge-conjugation) correspond to ϕ = −1 and therefore
relate k and −k: there is a non-trivial involution of the Brillouin torus κ : BZ → BZ
defined by κ(k) = −k (with momenta k ∈ BZ only defined modulo reciprocal lattice
vectors), which lifts to antilinear maps on the Bloch bundle from the fiber over k to
the fiber over κ(k) implementing time-reversal or charge-conjugation. Complex vector
bundles with such a structure were studied by Atiyah [Ati66], who called them Real
vector bundles. They are classified by KR-theory, a particular variety of K-theory.
The eight other classes are therefore called real classes. Schnyder, Ryu, Furusaki
and Ludwig [SRFL08; SRFL09; RSFL10] and Kitaev [Kit09] showed that topological
insulator (graded Bloch bundles with the corresponding antiunitary maps) are clas-
sified by the KR-group KR−s(BZ), where BZ is the d-dimensional Brillouin torus,
and where the correspondence between the value of s and the Real class is given by
table 3.2. It is convenient to use reduced K-groups K̃

−s
(BZ) and K̃R

−s
(BZ) instead

of K−s(BZ) and KR−s(BZ) to factor out the dimension of the bundles, which is irrel-
evant in the classification of topological phases. Finally, replacing the Brillouin zone
BZd by a sphere Sd gives the principal, or so-called “strong” topological invariants
(see paragraph 2.4.3 below). The result of this classification is the celebrated peri-
odic table of topological insulators and superconductors reproduced in table
3.3.

As we are concerned with topological properties, we do not really classify par-
ticular Hamiltonians, but rather classes of Hamiltonians, and it may happen that
some Hamiltonians in a given class have more symmetries than required, or in other
words, accidental symmetries. For example, a Hamiltonian H(λ) depending on some
parameter λ which is usually in class A (with no symmetry) may accidentally fall in
class AII (with time-reversal invariance squaring to −Id) for specific values of λ. For
instance, it is the case for the Haldane model with ϕ = 0, see section 2.1 and figure
3.13. In this situation, we still wish to consider that the system is in class A. Indeed,
the presence of a point where the system is time-reversal invariant inside of a region
of the phase diagram (but not at a region boundary where the gap closes!) guarantees
that the corresponding phase is topologically trivial.

This overview was focused on the bulk K-theoretic classification of topological
insulator, which is mainly due to Kitaev [Kit09], but it is worth to mention several
other approaches. On the same K-theoretic line, see also the articles of Freed and
Moore [FM13] who use twisted K-theory, of Thiang and Mathai [Thi15a; MT15b], and
of Bourne, Carey and Rennie [BCR15] which includes a review of several approaches
in mathematical physics. Another approach to bulk invariants is to use homotopy
theory directly, which enables to capture the non-stable range [KG15]. Historically,
the first approach to the classification is due to Schnyder, Ryu, Furusaki and Ludwig
[SRFL08; SRFL09; RSFL10], and is based on the (lack of) Anderson localization
of the low-energy edge states located at the boundary of a topological insulator.
Another more recent point of view based on anomalies, which connects the bulk and
edge approaches, has emerged from the study of the response functions of topological
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phases [RML12].

As we have already mentioned, the principle of this classification is general enough
to apply to physical systems beyond static electronic Hamiltonians. The physical
meaning and realization of the symmetry depend on the particular type of physical
system, as well as the implementable topological phases, but the big picture seems to
stay the same. The classification of topological phases was studied by De Nittis and
Lein [NL14] in photonic crystals, and by Süsstrunk and Huber in mechanical meta-
materials [SH16]. The ten-fold classification was also recently extended to Floquet
systems by Roy and Harper [RH16].

It is possible to enrich the spectrum of possible phases (and also to constrain it)
when additional unitary symmetries like spatial crystalline symmetries are considered.
This possibility was first discovered by Fu [Fu11] who called topological crystalline in-
sulators the corresponding phases. In principle, the ten-fold classification should be
paired with the classification of crystallographic point groups to obtain a full classi-
fication, a task which is in progress. A review is included in [CTSR15], and relevant
papers published more recently include [WL16; SSG15; DL16]. Such phases are how-
ever usually less robust because the crystal symmetries are more easily broken, e.g.
by disorder, and the bulk-boundary correspondence is only applicable for boundaries
which are invariant under the relevant symmetry, at least on average.

2.4.3 Strong andweak invariants

The periodic table of topological insulators 3.3 only mentions “strong invariants”.
Let us first illustrate the idea of strong and weak invariants on an example, the
Haldane model. As the first Chern invariant which characterizes the topology of the
Haldane model is only defined for a two-dimensional torus: the first Chern invariant
is a strong topological invariant in d = 2. However, it is possible to stack layers
of identical sheets of Haldane models to build a three-dimensional system, which
will still be characterized by a first Chern number. But this system is not “fully
three-dimensional”, as (i) it already exists in a lower dimension, and (ii) it requires
some kind of translational invariance in the stacking direction for the invariant to be
relevant. As a consequence, this first Chern number is said to be a weak topological
invariant in this case. In fact, the Brillouin torus is a 3-torus, which contains three
independent 2-tori, each of which corresponds to one first Chern number: there are
three independent weak topological invariants in d = 3. The most common example of
weak invariants is found in class AII, where three-dimensional time-reversal invariant
topological insulators are characterized by one strong Z2 index as well as three weak
Z2 indexes.

Mathematically, the origin of weak topological invariants is that the torus is not a
sphere. We recall the reader that that the Brillouin zone BZ is a d-torus, where d is the
space dimension, BZ ≃ T d. When weak invariants vanish, the Bloch Hamiltonian may
be viewed as defined not on a d-torus, but on a d-sphere (as we did without caution
in section 2.1). More precisely, we recall that topological invariants are elements of
the K-group K̃

−s
(T d) (for complex classes) or K̃

−s
(T d) (for real classes), where d is



106

the space dimension and s labels the CAZ class. Kitaev [Kit09] showed that

K̃R
−s

(T d) ∼=
d⨁

j=0

(
j

d

)
K̃R

−s
(Sj). (3.154)

Similarly for complex classes,

K̃
−s

(T d) ∼=
d⨁

j=0

(
j

d

)
K̃

−s
(Sj). (3.155)

The part K̃R
−s

(Sd) (or K̃
−s

(Sd)) of this direct sum corresponds to strong topo-
logical invariants, and the reminder corresponds to weak topological invariants,
which already exist in lower space dimensions.

For example, let us consider chiral systems (in class AII): in d = 1, there is
only one strong invariant, associated to the whole one-dimensional Brillouin torus;
in d = 2, there is no strong invariant, but there are two weak invariants associated
to two independent loops on the Brillouin torus (e.g. along kx and ky); in d = 3,
there are three weak invariants (associated e.g. to loops along kx, ky and kz) and one
strong invariant associated to the whole three-dimensional Brillouin torus. Similarly,
in class A, there is only a strong invariant in d = 2 (the first Chern number), but in
d = 3 there are three weak invariants (the first Chern numbers associated to three
independent subtori of the three-dimensional Brillouin torus, which can e.g. be viewed
as three planes kxOky, kyOkz and kyOkz with periodic boundary conditions).

2.4.4 Chiral and charge-conjugation symmetries and the origin of energies

Chiral and charge-conjugation operators anticommute with the Hamiltonian when the
corresponding symmetries are present,

ΓHΓ−1 = −H and/or CHC−1 = −H. (3.156)

As a consequence, they distinguish the “origin of energies” E = 0. In contrast, time-
reversal or a usual unitary symmetry, collectively written g, would not induce such a
choice as

gHg−1 = H implies g(H + E0Id)g−1 = H + E0Id (3.157)

for any (real) E0. As a consequence, the classes with chiral and/or charge-conjugation
(BDI, D, DIII, CII, C, CI) are only relevant when the gap separating the valence and
conduction bundles is at energy E = 0.

Indeed, the actual value of the origin of energies has not to be zero, and one may
choose to define e.g. chiral symmetry as

{Γ, H − E0Id} = 0. (3.158)

The key point is that for a chiral and/or charge-conjugation symmetric Hamiltonian,
there is only one value of E0 for which this relation is valid. It is indeed convenient
to redefine the Hamiltonian such that E0 = 0 in the symmetry relation.
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In a solid state setting, this is not a crucial remark, as we are generally interested in
the low-energy excitations on top of the ground state, and the Fermi level appears as a
natural reference of energies for anticommuting symmetries (e.g. charge-conjugation
is defined with respect to EF in superconductors). However, there are situations where
the band structure exhibits several gaps, each of which may host edge states that can
be probed experimentally (see the article [SLIY15] for an experimental example in
photonic crystals). In this situation, some care has to be taken to avoid mistakes. It
will be convenient to borrow from the language of gap invariants that will be developed
in chapter 4; all we need to know is that we may replace the band invariants like the
Chern number with bulk gap invariants which directly give the number of edge states
that would appear in a finite system. For example, in a two-dimensional system, chiral
symmetry prohibits a nonvanishing Chern-like invariant for the gap around E = E0.
However, this constraint does not apply for other gaps in the band structure, which
may therefore host chiral edge states. Conversely, in a one-dimensional system, only
the gap around E = E0 may be nontrivial due to the Z topology in class AIII.

This subtlety is fully taken into account in the standard interpretation of the
periodic table, which characterizes graded Bloch bundles (with only one valence band
and one conduction band). Here the origin of energy is by definition set to zero.
However, this interpretation is not very practical in the context of classical topological
phases (neither in the context of periodically driven systems), where the whole band
structure can be probed. As a consequence, the precise setup of the periodic table is
often overlooked.
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symmetries space dimension
Θ C Γ 1 2 3 4 5 6 7 8

complex
AZ classes

A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0

real
AZ classes

AI + 0 0 0 0 0 2Z 0 Z2 Z2 Z
BDI + + 1 Z 0 0 0 2Z 0 Z2 Z2
D 0 + 0 Z2 Z 0 0 0 2Z 0 Z2
DIII − + 1 Z2 Z2 Z 0 0 0 2Z 0
AII − 0 0 0 Z2 Z2 Z 0 0 0 2Z
CII − − 1 2Z 0 Z2 Z2 Z 0 0 0
C 0 − 0 0 2Z 0 Z2 Z2 Z 0 0
CI + − 1 0 0 2Z 0 Z2 Z2 Z 0

Table 3.3: Periodic table of topological insulators and superconductors. According
to the Cartan-Altland-Zirnbauer class of the Hamiltonian (A,AIII, . . . ,CI) and the
dimension d = 1, . . . , 8, a class of systems may exhibit different kinds of topological
phases. In the columns “symmetries”, Θ is the time-reversal, C the charge-conjugation
and Γ the chiral symmetry; 0 indicates the absence of a symmetry, ± indicate the
presence of an antiunitary symmetry and the sign of its square ±Id, and a 1 in the
column of the unitary chiral symmetry indicates its presence. In the right part of
the table, a “0” indicates that there is only one kind of topological insulator in this
CAZ class and dimension, the trivial one. A “Z” indicates that there is a countable
infinity of different topological phases, which may be labeled by an integer. A “2Z”
indicates that an additional symmetry constrains the Z-valued invariant to be even
(see the remark 3.24 of [BCR15] and the theorem 5 of [NS14] for details). Finally, a
“Z2” indicates that there are only two kinds of phases, the trivial one and a nontrivial
one. Due to a phenomenon called Bott periodicity in K-theory, dimensions d and d+8
are equivalent for this classification, which is why only dimensions 1 to 8 are present.
Bott periodicity is also at the origin of the repetitive diagonal structure of the periodic
table. The periodic table only mentions strong invariants. It only deals with a system
with one conduction band and one valence band with a gap at zero energy, a crucial
point when chiral or charge-conjugation symmetries are present.



Chapter 4

Periodicallydrivensystemsandtheir
topology
1 Introduction
The current chapter is devoted to the study of the topology of periodically driven sys-
tems, where the Hamiltonian depends on time in a periodic fashion: H(t+T ) = H(t).
In general, a time-dependent Hamiltonian is an effective description of a system ex-
changing energy with an environment. When the Hamiltonian is time-periodic, the
exchanges of energy are quantized multiples of the h/T = ℏω. Indeed, a full descrip-
tion should include a quantum description of both the system and the environment,
which should then be described by a partial density matrix. Such a full description
is still lacking despite progress in several directions, see e.g. [GD15] who use a quan-
tized electromagnetic field instead of classical light, [BBKR13; BD15] and [VRM14b;
VRM14a; VRM15] who attempt to extend topological phase to open systems and at
finite temperature; we do not know to what extent are topological Floquet systems
robust to the coupling to a possibly dissipative environment. However, experimental
input (mostly outside of solid state physics) show that a classical, effective description
is enough to capture the essential properties of Floquet topological phases. Indeed,
deviations from this description should be expected, and a necessary step will be to
understand the conditions in which the real dynamic is accurately reproduced by an
effective description.

Several routes led to the study of the topology of systems subjected to a time-
periodic driving.

– In solid state physics, the study of the interplay between photoinduced properties
(like the photovoltaic effect) and the (quantum) (spin) Hall effects [YMN07] led to
several propositions to induce topological phases with light [OA09; IT10; LRG11].
Floquet theory is a natural framework to describe the interaction between matter
and the electromagnetic field. In particular, several studies focused on illuminated
graphene [CPRT11; DGP13; GDP14].

– In cold atoms physics, both the coupling of atoms with light and periodically shaken
optical lattices are standard tools to control the effective tight-binding Hamiltonian
[LSAD07], both of which are described in the framework of Floquet theory.

– Periodically-driven systems such as kicked rotors and quantum walks were already
viewed as toy models allowing to study various problems such as Anderson local-
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ization; they are therefore potential candidates susceptible to host the geometrical
phase structures of topological systems [KRBD10; Asb12].

– The simplest out-of-equilibrium situations are quenches (see e.g. [DSV11; FGDY14;
KSSV14; CCB15] for applications to topological systems) and periodic driving. As
such, they are natural situations to study with the aim of probing and/or inducing
topological properties in out-of-equilibrium systems. Floquet theory provides a
well-grounded framework which enables rich theoretical investigations; in contrast,
the toolbox applicable to an arbitrary time evolution is much less extensive.

In a first section below, I review the framework of Floquet theory, with a focus on
the specificities necessary to define topological invariants. As I will be interested in
defining such invariants in presence of symmetries (time-reversal, charge-conjugation
and chiral symmetry), I focus on their consequences on the main objects in Floquet
theory, the effective Hamiltonian and the periodized evolution operator. Finally, the
topological properties are discussed in three situations: in class A and AIII in any
dimensions, and in class AII in dimensions two and three. The case of class A (with-
out symmetries) was first studied by Rudner, Lindner, Berg and Levin [RLBL13],
who developed most of the framework that is used in this thesis. I carried out the
(straightforward) extension of their work to any (even) dimension. The case of class
AIII (with chiral symmetry only), on the other hand, was first studied by Asbóth,
Tarasinski, and Delplace [ATD14] in one dimension with different methods. I reinter-
preted their work in the general framework initially developed for class A invariants,
and extended it to any (odd) dimension. Additional antiunitary symmetries impose
constraints on the two topological invariants characterizing complex CAZ classes A
and AIII, which I explicit and discuss in details. Finally, the case of class AII (with
fermionic time-reversal only) was studied for the first time in our article [CDFG15b]
and is discussed in section 3.4, page 152.

2 Description of periodically driven systems

2.1 Time-dependent Hamiltonians and unitary evolutions

The evolution of a linear system is described by a family of linear maps called evo-
lution operators acting on its Hilbert state space H. An initial state ψ0 at time t0
is mapped by the evolution operator U(t, t0) to the state ψ(t) = U(t, t0)ψ0 which de-
scribes the state of the system at time t, from an initial state ψ0 at time t0. Evolution
operators should respect the composition rule

U(t, t1)U(t1, t0) = U(t, t0) (4.1)

and the constraint U(t, t) = Id for all t. Such an evolution is generated by a Hamil-
tonian H(t) through the differential equation

iℏ∂tU(t, t0) = H(t)U(t, t0) (4.2)

with initial condition U(t, t) = Id. In the following, we will frequently set ℏ = 1 to
lighten the notations.
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It will often be convenient to set the origin of time such as t0 = 0 to focus on the
simplified evolution operator

U(t) = U(t, t0 = 0) (4.3)

with U(0) = Id. This simplification should be done with some care as the choice of
the origin of time may hide subtleties, especially when symmetries are present.

Unless stated otherwise, we will assume in the following that U(t, t0) are unitary
operators (and that H(t) is Hermitian). In quantum mechanics, the conservation of
probability restricts the evolution operators to be unitary (this corresponds to restrict-
ing the Hamiltonian to be Hermitian). The propagation of electromagnetic waves is
cast in the same framework by replacing the Hamiltonian with the Maxwell operator
(see paragraph 1.3.1 of the introduction, page 16); in this context, the evolution op-
erator is still a unitary operator, due to the conservation of the electromagnetic field
energy. Similarly, mechanical systems can be described in a Hamiltonian framework
(as exemplified in the paragraph 1.3.2 of the introduction, page 19, and explained
in a more general way by Süsstrunk and Huber in [SH16]); here, the conservation of
mechanical energy (especially the lack of dissipative forces) ensures the unitarity of
the evolution. However, the effective description of a dissipative system and/or of a
system where energy is injected may require a non-unitary description. In this case,
we may still be able to define topological properties (see paragraph 3.2.2, page 129),
but the possible appearance of unstable or damped modes may hinder experimental
relevance. Even when the Hamiltonian does not depend on time, peculiar behavior
may happen in cases where non-diagonalizable Hamiltonians are present in the phase
diagram [Lee16]. In classical systems, regimes where the evolution is non-linear are
easily accessible, which do not fall in this framework; we expect that the study of the
topology of such nonlinear systems will require either perturbation theory or different
tools, like field theory [VUG14].

2.1.1 Computation of the evolution operator

When the Hamiltonian does not depend on time, the evolution operator is simply the
exponential of its generator

U(t) = exp
(

− i
ℏ
tH

)
. (4.4)

When the Hamiltonian does depend on time, things are more complicated: the evo-
lution operator is the time-ordered exponential

U(t) = T exp
(

− i
ℏ

∫ t

0
H(s)ds

)
(4.5)

which is in general impossible to compute analytically. Alternatively, the evolution
operator can be expressed as the infinite series

U(t) = lim
δt/t→0

[t/δt]∏
n=1

exp
(

− i
ℏ
nδtH(nδt)

)
(4.6)
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which highlights the fact that the full time evolution is simply a sequence of infinitesi-
mal evolution with constant Hamiltonians. This formula allows for a simple numerical
evaluation of the evolution operator by discretizing the infinite product with a small
but finite δt. An example of implementation of this method (not optimized at all)
can be found as a supplementary material of my article [Fru16].

2.2 Floquet theory

2.2.1 Setup and general idea

The principle of the theory of space-periodic and time-periodic systems are both
encompassed in the mathematical framework of differential equations with periodic
coefficients (see [Kuc93]), which was discovered several times, at least by George Hill
in 1877 [Hil86], Gaston Floquet in 1883 [Flo83], Alexander Lyapunov in 1896 [Lya96;
Lya99] and Felix Bloch in 1928 [Blo29]. In physics, it is customary to use the name
“Bloch theory” when space-periodic system are considered, and the name “Floquet
theory” when time-periodic systems are considered. We follow this practice. Time-
periodic Hamiltonians were first studied by Shirley [Shi65], Zel’dovich [Zel67] and
Sambe [Sam73], who developed the framework of Floquet theory that I will present
in the following paragraphs. Since then, several extensions and refinements of Floquet
theory were carried out (e.g. with multiple frequencies), which are reviewed by Chu
[CT04].Other modern reviews include the very pedagogical tutorial [Hol15] as well as
the more complete reviews [BDP15; GD14].

Let us consider a time-periodic Hamiltonian which satisfies for all times t,

H(t+ T ) = H(t) (4.7)

where T is the driving period. We also define the driving frequency f = 1/T
and the driving angular frequency ω = 2π/T . Equivalently, we may consider a
time-periodic unitary evolution with for all t and t′,

U(t+ T, t′ + T ) = U(t, t′). (4.8)

The direct implication is due to the unicity of the solution of the Cauchy initial value
problem, while the reverse can be shown from H = iU−1U̇ .

In this case, Floquet theory allows to separate long- and short-time scales,
defined with respect to the driving period T . Indeed, the stroboscopic behavior of
the system happens to be described by powers of the Floquet operator, as

U(nT ) = [U(T )]n (4.9)

for an integer n ∈ Z, and more generally(1)

U(t+ nT ) = U(t)[U(T )]n. (4.10)

As a consequence, we expect the Floquet operator U(T ) to describe the essential
features of the evolution of the system on long-time scales. In particular, the “strobo-
scopic evolution” observed at each period is fully described by U(T ), through equation

(1)This equality is e.g. proven by induction from the fact that H(t+T ) = H(t) and U(t+T, t′+T ) =
U(t, t′) are equivalent, combined with the group structure of evolution operators.
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(4.9), and it is convenient to consider U(T ) as the exponential of an Hermitian effec-
tive Hamiltonian as (this definition will be made precise in the following)

U(T ) ≈ e−iT Heff
. (4.11)

which can be understood as a time-independent “averaged Hamiltonian” which would
generate the same stroboscopic evolution as the time-periodic H(t). Indeed, the ef-
fective Hamiltonian only contains informations on the long-time scales. The full
evolution over one driving period U(t ∈ [0, T ]), which is sufficient to reconstruct the
whole time-evolution, contains informations on the short-time scale evolution. The
main idea of Floquet theory is to separate the two contributions by decomposing the
evolution operator as

U(t) ≈ V (t)e−itHeff
(4.12)

where Heff is the Hermitian effective Hamiltonian containing the long-time scales
features while V (t) = V (t+T ) is a periodized evolution operator essentially containing
the short-time scale informations.

In the next sections, we will be concerned with Bloch Hamiltonians depending
on a quasi-momentum k ∈ BZ (see section 1.1, page 57). As nearly everything in
the Floquet description of time-periodic Hamiltonians gracefully translates to Bloch
Hamiltonians without subtleties by simply adding the parameter k as an argument
for U , Heff or V , we will not always mention it, and the reader may consider that in
the following paragraphs, the index α in fact also contains k. There is, however, one
subtlety. As we shall see in the next paragraph, the effective Hamiltonian is defined
as a logarithm of the Floquet operator. Defining a smooth effective Hamiltonian
k ↦→ Heff(k) is only possible when (i) the spectrum Floquet operator is gapped and
(ii) the branch cut of the complex logarithm is chosen in a gap: hence, operators
U(T, k) must share a common gap.

2.2.2 The effective Hamiltonian and the periodized evolution operator

The Floquet operator U(T ) is unitary, and can therefore be diagonalized on its eigen-
states ϕα defined by

U(T ) |ϕα⟩ = λα |ϕα⟩ (4.13)

as
U(T ) =

∑
α

λα |ϕα⟩⟨ϕα| . (4.14)

The eigenvalues λα ∈ U(1) are called Floquet eigenvalues.

As it was first recognized by Rudner, Lindner, Berg and Levin [RLBL13], the
choice of the branch cut of the logarithm used in the definition of the effective Hamil-
tonian is crucial to define topological properties. When the spectrum of U(T ) is
gapped, it is possible to find a cut ε ∈ R for the logarithm so that e−iε ̸∈ σ(U(T ))
lies in a gap of the spectrum σ(U(T )) of the Floquet operator (see figure 4.1) and
it is possible to define the effective Hamiltonian containing the long-time scales
features

Heff
ε = i

T
log−ε U(T ) (4.15)
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through the spectral decomposition (4.14) as

Heff
ε = i

T

∑
α

log−ε(λα) |ϕα⟩⟨ϕα| . (4.16)

where logφ is the complex logarithm with cut along an axis with angle φ, defined
as

log−ε(eiφ) = iφ for − ε− 2π < φ < −ε. (4.17)

The Floquet operator U(T ) and the effective Hamiltonian Heff
η share the same

eigenstates (due to equation (4.16)), and

Heff
η |ϕα⟩ = ϵη,α |ϕα⟩ (4.18)

where we temporarily used the letter η for the logarithm cut to prevent notation
clashes, and where

ϵη,α = i
T

∑
α

log−η(λα) (4.19)

are called the quasi-energies of the system. They are related to the Floquet eigen-
values by

λα = exp [−iTϵη,α] . (4.20)

As usual in the literature of Floquet topological phases, the Floquet eigenvalues
λα will be referred to as “quasi-energies” when the meaning is clear. Consequently,
the spectrum σ(U(T )) = {λα}i of U(T ) is called the quasi-energy spectrum. In
a translation invariant system, the quasi-momentum k is part of the abstract index
α, and the quasi-energy spectrum is composed of quasi-energy bands, like in figure
4.1. It is also convenient to define a dimensionless quasi-energy ε = Tϵ which
lies e.g. from 0 to 2π instead of 0 to ω, which are also referred to as “quasi-energies”.
Finally, it is also customary to omit the cut index and consider ϵα (resp. εα) as only
defined modulo integer multiples of the driving angular frequency ω = 2π/T (resp.
of 2π).

The periodized evolution operator containing the short-time scale informa-
tions is then defined as

Vε(t) = U(t)eitHeff
ε (4.21)

so that for all t,
Vε(t+ T ) = Vε(t). (4.22)

The end result of this section is the announced decomposition of the evolution operator
as

U(t) = Vε(t)e−itHeff
ε . (4.23)

2.2.3 Floquet modes and the expansion of the evolution operator

By defining time-periodic Floquet modes and their Fourier harmonics, called Floquet
sidebands, it is possible to expand the evolution operator over an overcomplete system
of constant vectors, so that all the time evolution is made explicit. Beyond technical
usefulness in several situations, this decomposition allows for a physical interpretation
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gap e−iT ϵ

gap e−iT ϵ′

quasienergy
band

Figure 4.1: A quasi-energy spectrum. The spectrum of the unitary evolution operator
after one period U(T ) is called the quasi-energy spectrum, and it lies on the unit
circle U(1). As in static systems, the quasi-energy spectrum of a crystal is composed
of bands (there are two bands in this example, in blue and in red) separated by gaps.

of processes in terms of absorption and emission of quanta of the driving field (photons,
phonons, etc.).

The time-periodic Floquet modes are defined as

|uε,α(t)⟩ ≡ Vε(t) |ϕα⟩ = |uε,α(t+ T )⟩ (4.24)

by applying the periodized evolution operator on the basis of eigenstates of U(T ), so
we essentially consider their time-evolution and factor out the long-time phase factor
contained in the effective Hamiltonian. The evolution operator is first expanded
as

U(t, t′) = U(t, 0) IdU−1(t′, 0) =
∑

α

U(t) |ϕα⟩⟨ϕα|U−1(t′). (4.25)

From the decomposition (4.23), one has

U(t) |ϕα⟩ = Vε(t)e−itHeff
ε |ϕα⟩ = e−itϵε,αVε(t) |ϕα⟩ . = e−itϵε,α |uε,α(t)⟩ . (4.26)

Combining both, we obtain an expression in terms of the Floquet modes,

U(t, t′) =
∑

α

e−i(t−t′)ϵε,α |uε,α(t)⟩⟨uε,α(t′)| (4.27)

In this expression, the time-periodic Floquet modes contain the short-time scales
information, whereas the exponentials of quasi-energies describe the long-time dy-
namics.

The Floquet modes are time-periodic and can therefore be expanded in Fourier
series as

|uε,α(t)⟩ =
∑
p∈Z

e−ipωt |u(p)
ε,α⟩ where |u(p)

ε,α⟩ = 1
T

∫ T

0
dt eipωt |uε,α(t)⟩ . (4.28)
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Here, the p-th harmonics u(p)
ε,α are called Floquet sidebands. Alternatively, the

periodized evolution operator can also be expanded in Fourier series as

Vε(t) =
∑
p∈Z

e−ipωtV (p)
ε . (4.29)

and the sidebands read
|u(p)

ε,α⟩ = V (p)
ε |ϕα⟩ . (4.30)

The vectors |u(p)
ε,α⟩ are not mutually orthogonal. Instead, the orthogonality of eigen-

states of the Floquet operator

⟨ϕα | ϕβ⟩ = δα,β (4.31)

implies for q ∈ Z the relation∑
p∈Z

⟨u(p)
ε,α | u(p+q)

ε,β ⟩ = δα,βδq,0. (4.32)

Finally, the evolution operator is expanded on the linearly dependent family of
sidebands as

U(t, t′) =
∑

α

∑
p,p′∈Z

e−i(t−t′)ϵε,αe−iω(pt−p′t′) |u(p)
ε,α⟩⟨u(p′)

ε,α | . (4.33)

The key point is that the time dependence is fully contained is the phase factors, as
the sidebands |u(p)

ε,α⟩ do not depend on time.

2.2.4 The effective Hamiltonian and the Schrödinger equation

Floquet theory can also be interpreted as providing a time-dependent unitary rotation
of the time-dependent Floquet Hamiltonian

HF(t) = H(t) − i∂t (4.34)

into the time-independent effective Hamiltonian, as detailed below. Indeed, the evo-
lution operator is solution of the differential equation

HF(t)U(t) = (H(t) − i∂t)U(t) = 0 (4.35)

with an initial condition U(t) = Id. Along with equation (4.21), this yields

HF(t)Vε(t) = (H(t) − i∂t)Vε(t) = Vε(t)Heff
ε (4.36)

or in other words

V −1
ε (t)HF(t)Vε(t) = V −1

ε (t)(H(t) − i∂t)Vε(t) = Heff
ε . (4.37)

As a consequence, the quasi-energies ϵε,α are eigenvalues of the Floquet Hamiltonian
HF(t); the corresponding eigenstates are the Floquet modes defined in equation (4.24),
as the last equation applied to eigenstates |ϕα⟩ of U(T ) yields

HF(t) |uε,α(t)⟩ = ϵε,α |uε,α(t)⟩ . (4.38)
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2.2.5 Floquet theory in Sambe space

An approach developed by Sambe [Sam73] (which was already present in essence in
Shirley’s paper [Shi65]) consists in using the preceding observation to fully map the
time-dependent and time-periodic Hamiltonian to a time-independent Hamiltonian
acting on a larger “composite space” called the Sambe space. In contrast with the
effective Hamiltonian which only contains the long-time (or stroboscopic) dynamics,
the Sambe Hamiltonian takes into account the full dynamics and should allow to
fully solve the time-dependent problem. In practice, an approximation scheme is
necessary to reduce infinite matrices to finite ones. The Sambe space approach is
particularly useful to numerically compute the quasi-energy spectrum of a system
and the corresponding Floquet states.

As we have seen in the last paragraph, the Floquet modes are eigenstates of the
Floquet Hamiltonian,

(H(t) − iℏ∂t) |uε,α(t)⟩ = ϵε,α |uε,α(t)⟩ . (4.39)
For better clarity, we exceptionally include the ℏ’s in this paragraph. Both the LHS
and the RHS of this equation are time-periodic. After a Fourier decomposition and
a rearrangement of the terms, it is equivalent to the set of equations∑

q∈Z

(
H(p−q) − δp,q pℏω Id

)
|u(q)

ε,α⟩ = ϵε,α |u(p)
ε,α⟩ (4.40)

for all p ∈ Z, where H(p) are the harmonics of the time-periodic Hamiltonian, decom-
posed as

H(t) =
∑
p∈Z

e−ipωtH(p) (4.41)

and where the Floquet sidebands u(p)
ε,α were defined in equation (4.28). In matrix

form, this set of equations reads
HS |Uε,α⟩ = ϵε,α |Uε,α⟩ (4.42)

The infinite matrix HS is called the Sambe Hamiltonian, and is defined as
HS = HS,H − HS,Ω (4.43)

where

HS,H =

⎛⎜⎜⎜⎜⎜⎜⎝

...
H(1) H(0) H(−1) H(−2) H(−3)

· · · H(2) H(1) H(0) H(−1) H(−2) · · ·
H(3) H(2) H(1) H(0) H(−1)

...

⎞⎟⎟⎟⎟⎟⎟⎠ (4.44)

and

HS,Ω =

⎛⎜⎜⎜⎜⎜⎜⎝

. . .
(p− 1) ℏω

p ℏω
(p+ 1) ℏω

. . .

⎞⎟⎟⎟⎟⎟⎟⎠ . (4.45)
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επ = ϵπ/ℏω

π

−π

επ
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ε−2π = ϵ−2π/ℏω
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η0

log−π

log−2π

Figure 4.2: Quasi-energy spectrum on the circle and on the line. The quasi-energy
spectrum on the circle (i.e. the spectrum of the Floquet operator σ(U(T )) ⊂ U(1))
can be unfolded on the real line through the logarithm. The effective Hamiltonian
Heff

η = (i/T ) log−η U(T ) has eigenvalues on a single domain of length 2π depending
on the cut, e.g. ] − π, π[ if η = −π. On the other hand, the spectrum of the Floquet
Hamiltonian consists of an infinite number of copies of the unfolded quasi-energy
spectrum, shifted by integer multiples of 2π.

It acts on a composite space, the Sambe space, where the Floquet sideband modes
were gathered into the infinite tuple

|Uε,α⟩ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

...
u

(p−1)
ε,α

u
(p)
ε,α

u
(p+1)
ε,α

...

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (4.46)

The Floquet Hamiltonian has an infinity of redundant solutions: if uε,α(t) is a
solution with eigenvalue ϵε,α, so that

HF(t)uε,α(t) = ϵε,αuε,α(t) (4.47)
then the gauge transformation

uε,α(t) → ei∆p ℏωtuε,α(t) (4.48)
provides a new eigenstate with eigenvalue ϵε,α +∆p ℏω. In the composite Sambe state
(4.46), this substitution corresponds to

u(p)
ε,α → u(p+∆p)

ε,α . (4.49)
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As a consequence, if we shift the sidebands of an eigenstate of the Sambe Hamiltonian
with eigenvalue ϵε,α (replacing u(p)

ε,α with u
(p+∆p)
ε,α for all p), the resulting state is still

an eigenstate of the same Sambe Hamiltonian, but with eigenvalue ϵε,α +∆p ℏω. This
shift can be applied to the Sambe Hamiltonian instead, as the operator HS +∆p ℏωId
is the Sambe Hamiltonian that would be obtained with a shift of ∆p sidebands.
As

e−i∆pℏωt HS ei∆pℏωt = (HS + ∆p ℏωId) + ∆p ℏωId) |Uε,α⟩ (4.50)
the Sambe Hamiltonian also has an infinity of redundant solutions.

2.2.6 The origin of times

In all the discussion on Floquet theory, I have fixed an origin of times t0 = 0 in
order to reduce the evolution operator family U(t1, t0) to a single-parameter family
U(t) = U(t, t0 = 0). At first sight, this choice seems to be purely arbitrary, and
nothing should depend on it. However,
– from the technical point of view, in presence of antiunitary symmetries, topological

invariants are naturally expressed when the origin of time is chosen as an invariant
point of the action t → −t of the symmetry; this point will be discussed in the next
paragraph 2.4.2;

– from the physical point of view, initial conditions may be crucial, in particular when
it is taken into account that the time-periodic modulation is turned on at some
initial time ti ̸= t0 [GD14] (when e.g. H(t) ∝ sin(t − t0)). Despite this potential
susceptibility to initial conditions, we do not expect that the initial time should
have an incidence on the the topological properties of the system, an hypothesis
supported by numerical experimentations.
In the general case, recall that the evolution operator is defined by the differential

equation
iℏ∂tU(t, t0) = H(t)U(t, t0) (4.51)

with initial condition U(t, t) = Id. Hence, an origin of times was previously implicitly
fixed in the Hamiltonian H(t) when t0 = 0 (this is obvious with an example, e.g.
H(t) = H0 + sin(t)H1). A shift in the time t0 in the evolution operators corresponds
to a shift of this implicit origin of times. Crucially, the evolution operators with
different “origin times” are related by a unitary transformation

U(t1 + T, t1) = U(t1, t0)U(t0 + T, t0)U−1(t1, t0) (4.52)

so they have the same spectrum. As a consequence, a family of effective Hamiltonians
with the same cut can be defined (again by spectral theory) as

Heff
ε,t0 = i

T
log−ε U(t0 + T, t0) (4.53)

as well as periodized evolution operators

Vε(t, t0) = U(t, t0)ei(t−t0)Heff
ε,t0 . (4.54)

They are time-periodic, with V (t + T, t0) = V (t, t0) = V (t, t0 + T ) and indeed
V (t0, t0) = Id.
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Following Rahav, Gilary and Fishman [RGF03], Goldman and Dalibard [GD14]
have proposed to use a canonical effective Hamiltonian Heff

can generating all the origin-
time dependent effective Hamiltonians Heff

t0 through the gauge transformations

Heff
t0 = eiK(t0) Heff

can e−iK(t0). (4.55)

This canonical effective Hamiltonian shares the same spectrum as any of the Heff
t0 , and

seems to be more convenient for perturbative expansions (see [GGN15] and [BDP15,
§ 3]). However, it does not seem straightforward to extend the definition of this object
to fully take into account the branch cuts of the logarithm, which prevents for the
time being to use it to define Floquet topological invariants.

2.3 Symmetriesof time-dependentandtime-periodicevolutions

The role of symmetries – in this section, we will use the term symmetry to design time-
reversal, charge-conjugation and chiral symmetry only – in Floquet phases was first
studied by Kitagawa, Rudner, Berg and Demler, both in quantum walks [KRBD10]
and in generic evolutions [KBRD10]. Several refinements were made, both in papers
devoted to the study of a given symmetry class [JKAA11; ATD14; CDFG15b; Fru16]
and in works towards a full classification [NR15; RH16]. Crucially, studies on chiral
symmetric [ATD14] and time-reversal invariant [CDFG15b] systems showed that the
full time-evolution is constrained by symmetries, and not only the Floquet operator
U(T ) and/or the effective Hamiltonian Heff. In other words, situations where only
the effective Hamiltonian is e.g. time-reversal invariant do not correspond to a time-
reversal invariant time-evolution(2). In retrospect, this assertion is natural in view of
the classification of time evolutions of section 2.4.1 (page 101), where we have seen
that the general form of a symmetry of the Bloch evolution is

gU(t, k)g−1 = U(τ(g)t, ϕ(g)k) (4.56)

where τ(g) tracks whether g reverses time, and ϕ(g) whether g is unitary or antiuni-
tary. For example, an evolution is time-reversal invariant when

ΘU(t, k)Θ−1 = U(−t,−k). (4.57)

This property of U implies, but is not equivalent to the time-reversal constraint on
the effective Hamiltonian

ΘHeff(k)Θ−1 = Heff(−k), (4.58)

as an evolution satisfying (4.58) can break time-reversal invariance.
(2)However, such a situation may be interesting in itself. For example, an evolution which is

not time-reversal invariant but with a time-reversal invariant evolution effective Hamiltonian (i.e.
satisfying (4.58)) may only be topological in an anomalous way, with the same gap invariant in all
gaps. More generally, there may be various constraints on the evolution, but they are not necessarily
symmetries.
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2.4 Symmetries

Explicitly, an evolution is time-reversal invariant when

ΘU(t, k)Θ−1 = U(−t,−k) (4.59a)

where Θ is antiunitary. It is charge-conjugation invariant when

CU(t, k)C−1 = U(t,−k) (4.59b)

where again C is antiunitary. Finally, it is chiral invariant (or chiral) when

ΓU(t, k)Γ−1 = U(−t, k) (4.59c)

where Γ is unitary. In terms of the time-dependent Hamiltonians, those constraints
are equivalent to

ΘH(t, k)Θ−1 = H(−t,−k) (4.60a)
CH(t, k)C−1 = −H(t,−k) (4.60b)
ΓH(t, k)Γ−1 = −H(−t, k). (4.60c)

The effective Hamiltonian and the periodized evolution operator inherit the pre-
ceding constraints as follows. For the effective Hamiltonian, they are respectively

ΘHeff
ε (k)Θ−1 = Heff

ε (−k) (4.61a)

CHeff
ε (k)C−1 = −Heff

−ε(−k) + 2π
T

Id (4.61b)

ΓHeff
ε (k)Γ−1 = −Heff

−ε(k) + 2π
T

Id (4.61c)

and for the periodized evolution operator,

ΘVε(t, k)Θ−1 = Vε(−t,−k) (4.62a)
CVε(t, k)C−1 = V−ε(t,−k)e−2πit/T (4.62b)
ΓVε(t, k)Γ−1 = V−ε(−t, k)e2πit/T (4.62c)

Time periodicity may be used to replace −t with T − t in this set of equations. The
preceding properties are obtained by spectral decomposition of the Floquet operator
U(T, k), and using the logarithm identity

log−ε(e−iϕ) = − logε(eiϕ) − 2πi. (4.63)

I derived them for time-reversal in [CDFG15a] and for chiral symmetry in [Fru16].
The case of charge-conjugation is very similar.
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Figure 4.3: Real gaps of the quasi-energy spectrum. The gaps at quasi-energies λ =
±1, corresponding to arguments ε = 0 or π are particular gaps, invariant by the
reflection by the real axis (going from eiε to e−iε) characteristic of chiral symmetry
and charge-conjugation.

2.4.1 Special gaps for charge-conjugation and chiral symmetry

When describing the constraints due to charge-conjugation and chiral symmetry, in
equations (4.62), we observe that only for two special values of the cut ε, namely
ε = 0 and ε = π does the constraint act on a single periodized evolution operator, i.e.
with the same cut. It is indeed obvious for ε = 0, for which equations (4.62) become

CV0(t, k)C−1 = V0(t,−k)e−2πit/T (4.64a)
ΓV0(t, k)Γ−1 = V0(−t, k)e2πit/T (4.64b)

For ε = π, we need another logarithm identity

log−(ε−2π)(eiϕ) = log−ε(eiϕ) + 2πi. (4.65)

Hence,
V−ε(t, k) = V2π−ε(t, k)e2πit/T (4.66)

and equations (4.62) become

CVπ(t, k)C−1 = Vπ(t,−k) (4.67a)
ΓVπ(t, k)Γ−1 = Vπ(−t, k). (4.67b)

As a consequence, we will see that it is only possible to (technically) define topological
invariants protected by such symmetries for the real gaps ε = 0 and ε = π (dubbed
this way as e−i0 = 1 and e−iπ = −1 are the only real Floquet eigenvalues on the
circle, see figure 4.3). Moreover, we do not expect these symmetries to impose the
vanishing of other existing topological invariants (without symmetries or protected
by time-reversal invariance) in gaps different than the real gaps. Yet, both charge-
conjugation and chiral symmetries can relate the existing invariants in gaps +ε and
−ε (for ε ̸= 0, π), as we shall see with the example of chiral symmetry.
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2.4.2 Symmetries and their invariant points

We mentioned in paragraph 2.2.6 that the origin of times may have physical conse-
quences (though expectedly not on topological properties) when the turning on and
off of the time-periodic perturbation is taken into account. On the technical level,
correctly choosing the origin of times is crucial to define and to compute topological
invariants. For concreteness, let me focus on time-reversal invariance, and consider
two time-independent Hermitian operators H0 and H1, respectively even and odd
with respect to time reversal, that is satisfying

ΘH0Θ−1 = H0 and ΘH1Θ−1 = −H1. (4.68)

Then, consider the two Hamiltonians

H(t) = H0 +H1 sin(ωt) and H ′(t) = H0 +H1 cos(ωt). (4.69)

Both Hamiltonians represent the same physical situation, and differ only in the choice
of the origin of times (modulo a driving period T ). Indeed, the first Hamiltonian is
time-reversal invariant,

ΘH(t)Θ−1 = H(−t) whereas ΘH ′(t)Θ−1 ̸= H ′(−t). (4.70)

The second Hamiltonian seems not to be time-reversal invariant, but it obviously is
with another choice for the reversal point

ΘH ′(tr + t)Θ−1 = H ′(tr − t) (4.71)

with ωtr = −π/2 i.e. tr = T/4.

More generally, time-reversal invariant or chiral symmetry act with respect to a
reversal point tr, which is left invariant, and time-reversal or chiral invariant Hamil-
tonian verify

ΘH(tr + t, k)Θ−1 = H(tr − t,−k) and/or ΓH(tr + t, k)Γ−1 = H(tr − t, k).
(4.72)

Indeed, when the Hamiltonian is time-periodic with period T , this choice of reversal
point is relative to a particular period of time, as any tr +nT/2 with integer n ∈ Z is
a reversal point if tr is. In this situation, we should consider the evolution operator
family U(t) = U(tr + t, tr) to define effective Hamiltonian and periodized evolution
operators. In doing so, we ensure that the periodized evolution operator is constrained
in a way which enables to define topological properties in the most straightforward
way.

The map t0 ↦→ Vε(t, t0) provide a homotopy between the periodized evolution oper-
ators at different initial times t0. In classes where only time-local symmetries (unitary
symmetries and charge-conjugation), the constraints enabling to define topological in-
variants can be respected along this homotopy, and as a consequence, the topological
invariants do not depend on the starting point. In contrast, with symmetries non local
in time, the origin of times t0 must be a reversal point for the topological invariants
to be defined, and the preceding argument cannot be applied. Indeed, the invariants
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computed with t0 = tr and with t0 = tr +T where tr is a reversal point are necessarily
equal, but this is not necessarily the case of t0 = tr and t0 = tr + T/2.

Another open question is the following: an evolution may be time-reversal and chi-
ral invariant with different reversal points, and it is not clear how to define topological
invariants is such a situation.

3 Topology of periodically driven crystals
In the following section, we aim at defining topological invariants for wave-supporting
spatially-periodic systems submitted to a time-periodic excitation or modulation (Flo-
quet topological phases). Kitagawa el al. [KBRD10; KBFR12] first observed that
usual invariants are not sufficient, because of the periodicity of quasi-energy. For
example in figure 4.4, both (a) and (c) have bands with vanishing Chern invari-
ants, despite the existence of topologically protected chiral edge states in (c). The
first complete characterization of the bulk topology of a Floquet system was done in
class A in two space dimensions by Rudner, Lindner, Berg, and Levin [RLBL13]. The
framework they laid down can be extended to include Floquet topological phases with
symmetries, as I will discuss in this part. It is also noticeable that this framework
(and its extension with symmetries) also describes certain kinds of directed scattering
networks [CC88; HC96] which appear e.g. in optical [HPWP15] and acoustic [FKA15]
systems, that are also described by unitary “evolution operators”, as first pointed out
by Chong and collaborators [LC13; PC14; GGSY16].

Besides the definition of bulk invariants, I should mention that several routes
were considered to study Floquet topological phases and their interplay with symme-
tries:
– A bulk K-theoretic classification was recently developed by Roy and Harper [RH16].

Essentially, they find that Floquet topological phases are classified by the K-group
K̃

−s+1
(S1 × BZd) for complex classes and K̃R

−s+1
(S1 × BZd) for real classes,

where s (understood mod. 2 for complex classes and mod. 8 for real classes)
labels the CAZ class and BZd is the d-dimensional Brillouin torus. They ob-
serve that the K-theoretical isomorphisms K̃

−s+1
(S1 × BZd) ≃ K̃

−s
(BZd) and

K̃R
−s+1

(S1 × BZd) ≃ K̃R
−s

(BZd) relate the Floquet classification and the equi-
librium classification (in fact, the isomorphisms are formulated in terms of relative
K-groups, and the preceding equalities should be thought as symbolical). Clément
Tauber and I observed this relation as the manifestation of the Bott isomorphism
for complex classes, see Clément’s thesis [Tau15] and reference [Fru16].

– Another kind of topological invariants focusing on the edge was developed for equi-
librium systems by Akhmerov, Beenakker, Fulga and Hassler, [ADHW11; FHAB11;
FHA12]. This method was recently extended for several classes to Floquet phases
by Fulga and Maksymenko [FM16] and Tarasinski, Asbóth and Dahlhaus [TAD14].
Here, the edge states are detected through their effect on the reflection part of the
scattering matrix, in the spirit of the Levinson theorem.

– A point of view on topological phases due to Chen, Gu, Liu and Wen [CGLW13;
GW14; CGLW12] aims at classifying symmetry-protected topological (SPT) many-
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body localized (MBL) phases through group cohomology. Recently, von Keyser-
lingk and Sondhi [KS16b; KS16a] (whose work was summarized and generalized
by Else and Nayak [EN16]) and independently Potter, Morimoto and Vishwanath
[PMV16] generalized this point of view to Floquet systems. The spirit of this
method is slightly different as states instead of evolutions are classified here.

The results of the bulk K-theoretic classification are in nice agreement with the known
bulk invariants: in fact, the bulk invariants are implementable ways to actually com-
pute the invariants predicted by K-theory, as in the equilibrium case. On the other
hand, scattering edge invariants do agree with the bulk invariants, but the equiva-
lence between them, though physically intuitive, is not completely clear and requires
additional work. Indeed, the identity of both classes of invariants is the core of the
bulk-edge correspondence, which is a difficult subject. I want to stress that this equiv-
alence is not fully understood yet, despite several advances on the subject [RLBL13;
NR15; TD15; RH16].

Finally, note that in this section, the driving (and therefore the Hamiltonian) will
always be supposed time-periodic unless specified otherwise.

3.1 Band invariants and gap invariants

In addition to being able to create an artificial gauge field i.e. a relative phase pattern
inducing the usual equilibrium-like topological phases, a periodic modulation can also
lead to specific situations unreachable at equilibrium. This phenomenon is essentially
due in the one hand to the the existence of a “new gap” at quasienergy e−iπ = −1,
which can potentially host topological edge states, and in the other hand (obviously)
to the time-dependence of the Hamiltonian. Even though the physical picture is quite
similar to the equilibrium case, the usual invariants (like the Chern invariants, the
chiral invariants or the Kane-Mele invariants) are not sufficient to fully characterize
the bulk topology of periodically driven phases [KBRD10]. Indeed, such invariants
characterize the topology of a band (and as such they are called band invariants),
and it appears that the bulk topology of a (linear) evolution is not fully captured
by the topology of the quasienergy bands of the Floquet operator U(T ). Instead,
new gap invariants computed from the full time-evolution (over one period) have
to be defined [RLBL13], which are able to completely capture its bulk topological
properties. A particularly noticeable behavior of periodically-driven phases is the
existence of topological phases where all band invariants vanish, despite a nontrivial
bulk topology; such phases were called anomalous topological phases (see figure
4.4). Notably, different realizations of such anomalous phases were experimentally
observed in photonic systems [HPWP15; GGSY16; MSVA16; MZNS16]. Interestingly,
anomalous phases and more generally phases were all gap invariants are non-vanishing
cannot be implemented as a static lattice Hamiltonian, because the spectrum of the
Floquet operator U(T ) of the system with edges has no gap.

The main picture is the following: we expect that for each CAZ class and each
space dimension d there is a set of gap invariants Igap(CAZ, d, ε, U) associated to
Bloch-Floquet time evolution U : [0, T ] × BZd → U(N) respecting the symmetry
constraints corresponding to the CAZ class, for each quasi-energy e−iε ̸∈ σ(U(T )) in
a quasi-energy gap of the Floquet operator U(T ). Such invariants are expected to be
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related to the standard band invariants associated to symmetry-equivariant projectors
P : [0, T ] × BZd → MN (C) on (quasi-energy) bands Iband(CAZ, d, P ) by

Igap(CAZ, d, ε′, U) − Igap(CAZ, d, ε, U) = Iband(CAZ, d, Pε,ε′) (4.73)

where Pε,ε′ is the spectral projector corresponding to the quasi-energy band between
ε and ε′ (in the right order, see figure 4.5 and the following paragraphs).

This general structure was first discovered by Rudner et al. [RLBL13], and we
shall see in the following paragraphs that it stands in several cases. Along with the
classifications of references [NR15] and [RH16], those examples provides strong evi-
dences that this structure should hold in the general case. The simplest invariants
characterize “complex” CAZ classes A and AIII: such invariants are simply winding
numbers of a unitary map on a compact manifold. As we shall see in paragraphs
3.2.7, page 139 and 3.3.6, page 148, additional symmetries put constraints on the two
topological invariants characterizing complex CAZ classes. Such constraints on the
periodized evolution operator can either force the invariants to vanish or let them es-
sentially unconstrained. The vanishing of class A and AIII invariants can either make
room for a finer Z2 invariant or signal that all phases are trivial in the corresponding
pair (CAZ class, dimension). On the contrary, when the invariants of complex classes
do not vanish, they characterize the topological phases in the corresponding (CAZ
class, dimension) pair, essentially as if the antiunitary symmetries were not present:
it is possible to compute the relevant invariant irrespective of antiunitary symmetries.
The process of forgetting antiunitary symmetries maps the real CAZ classes to the
two complex classes by AI,D,AII,C → A and BDI,DIII,CI,CII → AIII [CTSR15], as
illustrated by the colors in table 4.1, page 161.

The bulk invariants are expected to predict the existence of topologically protected
states with particular properties (e.g. chiral or helical edge states) at the interface
between two topologically distinct Floquet systems with the same driving frequency,
and when the symmetries are not broken at the interface. Namely,

Igap(CAZ, d, ε, U1) − Igap(CAZ, d, ε, U2) (4.74)

should give the number of edge states at quasi-energy ε at the interface between a
phase whose bulk is described by U1 and a phase whose bulk is characterized by U2
(see figure 4.4), counted algebraically (e.g. with chirality). When the invariant is a
torsion invariant, say Zp-valued, the corresponding number should also be interpreted
as modulo p quantity.

3.2 Class A: without any symmetry

3.2.1 Definition of the invariant

The simplest case happens when all symmetries are broken in the symmetry class,
that is when there are no constraint on the Hamiltonian.

When the dimension d of the space (and therefore of the Brillouin torus BZ) is
even, d = 2n, then Vε is a map from the odd-dimensional manifold M = S1 × BZ to
the unitary group U(N), where S1 represents a period of time, e.g. [0, T ], so we can
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Figure 4.4: Topologically distinct situations. We illustrate several possible and topo-
logically distinct situations in the example of a 2D class A driven system (similar to
Chern insulators). In all situations, the quasi-energy spectra are gapped, with two
gaps in ε = 0 and ε = π. In (a), the system is entirely trivial, and there is no topo-
logically protected edge state. In (b), the gap ε = 0 is nontrivial, whereas the gap
ε = π is trivial; more precisely, there are bulk gap invariants W0 = 1 and Wπ = 0.
The main physical manifestation of the non-vanishing W0 is the existence of a chiral
edge state in the corresponding bulk gap on a system with an interface with vacuum.
Similarly, in (c) both gaps are nontrivial, and there is a chiral edge state in each gap.
As W0 = Wπ, this phase is anomalous: all the bulk band invariants (here the first
Chern invariants of the bands) vanish.
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define a Z-valued invariant, extending the definition of [RLBL13] to all even space
dimensions by

Wε[U ] = Wn(Vε, S
1 × BZ) = deg(Vε) ∈ Z (4.75)

where the degree (or winding, or odd Chern invariant) of a map V from a (2n + 1)-
dimensional closed manifold M to the unitary group U(N) is defined in equation
(2.59), page 50. Essentially, it counts the number of times the map V winds around
nontrivial (2n+ 1)-cycles in U(N).

We can write explicitly
Wε[U ] =

∫
M

c̃hn(Vε) (4.76)

where the odd Chern character (see section 2.2.4 and equation (2.59) page 50) is

c̃hn(V ) = (−1)n n!
(2n+ 1)!

(
i

2π

)n+1
tr
[
(V −1dV )2n+1] (4.77)

In terms of the derivatives of V ,

tr
[
(V −1dV )2n+1] = ϵi1i2···i2n+1tr

[
(V −1∂i1V ) · · · (V −1∂i2n+1V )

]
dx1 . . . dx2n+1,

where ϵ is the Levi-Civita symbol. In our case, M = BZ × S1 and we may use the
first 2n variables to describe the Brillouin zone, x1 = k1 to x2n = k2n = kd and the
last one for the time, x2n+1 = t. As an example, in d = 2 (so n = 1), the invariant is
expressed as

Wε[U ] = 1
24π2

∫
BZ×S1

dkxdkydt tr
(
3[V −1

ε ∂kxVε, V
−1

ε ∂kyVε]V −1
ε ∂tVε

)
. (4.78)

Note that due to the logarithm identity

logε+2π(eiϕ) = logε(eiϕ) + 2πi (4.79)

we have
Vε+2π(t, k) = Vε(t, k)e2πit/T (4.80)

from which we obtain
Wε+2π[U ] = Wε[U ] (4.81)

as expected.

Physically, Wε[U ] gives the number of chiral edge states (counted algebraically
with chirality) in the quasienergy gap ε (see figure 4.4). An argument for this bulk-
boundary correspondence was given by Rudner et al. [RLBL13] in two space dimen-
sions, and should be straightforwardly generalized to all even space dimensions. In
class A the vacuum provides a unambiguous reference where W = 0 in all gaps. The
W invariants can therefore be directly interpreted as the number of edge states at
the interface with vacuum. As mentioned in the introduction, there are now sev-
eral experimental confirmations of this theoretical description [HPWP15; GGSY16;
MSVA16; MZNS16].



129

3.2.2 Towards topological invariants in attenuated and amplified evolutions

As we mentioned in section 2.2.4 (page 48), the winding numbers are still defined
when the operators are not unitary but still invertible. I suggest that this property
can be used to define topological invariants in situations where attenuation (and/or
amplification) is present, which is indeed the case in experimental situations. To
produce a periodized evolution operator, we still require that U(t, k) is (a) invertible,
so that a winding may be defined, and (b) diagonalizable, at least at time T , so
that spectral decomposition can be used to define the effective Hamiltonian. Several
different routes may be taken here. The spectrum of the Floquet operator U(T, k) now
lies on the punctured complex plane C\0, which can be retracted to U(1) (through
ρeiθ → eiθ). If the retracted spectrum has a gap, an effective Hamiltonian can be
defined by spectral decomposition, and an invertible periodized evolution operator
Vε can therefore be defined, as well as its degree. In fact, the periodized evolution
operator can be decomposed in polar form as

Vε(T, k) = Vε,U (t, k)Vε,H(t, k) (4.82)

where Vε,U is unitary and Vε,H is hermitian positive-definite. The winding of Vε is
then simply the winding of the unitary map Vε,U . Another route consists in using
the polar decomposition of the evolution operator U(t, k) to deform it into a unitary
map, and use the usual framework from there. Both methods are similar and should
agree, but this is not completely obvious as polar decomposition do not necessarily
commute with the periodization.

At least in some cases, such an extension should be relevant in systems with an
attenuation. A clue in this direction is that in the simplest case of a constant atten-
uation proportional to the identity (which commutes with everything), the invariant
characterizing the evolution without attenuation is recovered.

Yet, unusual behaviors were predicted in the presence of singular matrices when
the Hamiltonian is not Hermitian [Lee16; RLL16]: here, the topology is fundamentally
dependent on the existence of dissipative non-Hermitian components, and even if
(extensions of) the usual band gap-based invariants are still relevant, they will indeed
not characterize this different type of topology. Besides, parametric instabilities were
studied in mechanical [SOPC16] and optomechanical [PBSM15] versions of (Floquet)
topological phases with amplification, as well as in generic bosonic systems [EBPB15].
Whether an extension of the winding number invariants (4.76) is still relevant in
presence of such behaviors is an open question.

3.2.3 Relation with band invariants

The topology of time-independent systems in class A is characterized by the Chern
invariants of their bands (see section 2.1, 78). For example, the valence band of the
Haldane model may have a first Chern invariant C1 = 0,±1. Similarly, quasi-energy
bands can also have non-vanishing Chern invariants, which have a clear physical
meaning: in a finite system, the Chern invariant of a band gives the change in the
number of topological edge states that appear in the bulk gaps above and below the
band. As a consequence, the Chern invariants must be related to (and expressed in
terms of) the winding gap invariants. In the following, we extend this correspondence,
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e−iε′

e−iε

Pε,ε′

Figure4.5: Projectorsonquasi-energybands. For two quasi-energies (or cuts) ε and ε′

with −2π < ε, ε′ < 0, Pε,ε′(k) is the spectral projector on eigenstates with eigenvalues
e−iη in the arc joining e−iε and e−iε′ clockwise on the circle U(1). Cuts are represented
in red, the range of the spectral projector as a dashed blue line, and the bands that are
captured in the range of this spectral projector for an example quasi-energy spectrum
are colored in blue. The remaining bands (not in the range of the projector) are
represented in black.

discovered by Rudner et al. [RLBL13] in d = 2, to the general case of an even
dimensional space.

Let ε and ε′ be two quasi-energies and Pε,ε′(k) the spectral projector on states
with quasi-energy between ε and ε′. More precisely, for −2π < ε, ε′ < 0, Pε,ε′(k)
is the spectral projector on eigenstates with eigenvalues e−iη in the arc joining e−iε

and e−iε′ clockwise on the circle U(1), see figure 4.5. The difference between the gap
invariants W is related to a Chern invariant (see equation (2.56) page 50 and section
2.1 page 78) as

Wε′ [U ] −Wε[U ] = −Cn(Pε,ε′). (4.83)

which characterizes the vector bundle Eε,ε′ over BZ with fiber Pε,ε′(k)C over k ∈ BZ,
corresponding to the quasi-energy band between ε and ε′.

This equality can be proven as follows: as the degree is additive, namely deg(u·v) =
deg(u) + deg(v) (provided all quantities are well-defined), we have

Wε′ [U ] −Wε[U ] = deg(Vε′) − deg(Vε) = deg([Vε]−1Vε′). (4.84)

Moreover, the difference between effective Hamiltonians at different gaps is equal to
the spectral projector on the quasi-energy band between these gaps,

Heff
ε′ −Heff

ε = (2π/T )Pε,ε′ (4.85)

so
[Vε(t, k)]−1Vε′(t, k) = e2πit/T Pε,ε′ (k) (4.86)

and the winding of this last unitary map can be shown to be (up to a minus sign)
the Chern invariant of projector family Pε,ε′ (this is detailed in the appendix of the
reference [Fru16]).
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3.2.4 Interlude: the time-independent half-BHZmodel

Let us introduce an equilibrium model, the restriction to spins up of the Bernevig-
Hugues-Zhang model (see section 2.3.4, page 97) which will be referred to as the
half-BHZ model. Like the Haldane model (see section 2.1, page 78), realizes an
anomalous quantum Hall equilibrium phase, but on a square lattice with two orbitals
per site, denoted s and p for simplicity. The tight-binding Hamiltonian with nearest
and next-to-nearest neighbors hoppings can therefore be written as a two-by-two
matrix on the (s, p) basis as

Hh-BHZ =
∑
x,y

[
[(M − J − 4B)σz − µσ0] |x, y⟩ ⟨x, y|

+
[
A

2iσx +Bσz

]
|x, y⟩ ⟨x+ 1, y| +

[
A

2iσy +Bσz

]
|x, y⟩ ⟨x, y + 1|

+J

4 σz (|x, y⟩ ⟨x+ 1, y + 1| + |x, y⟩ ⟨x+ 1, y − 1|)
]

+ h.c.

(4.87)

where σx,y,z are the Pauli matrices and σ0 the identity matrix and (x, y) labels sites
of the square lattice.

This corresponds to the Bloch Hamiltonian

H(k) = hi(k)σi (4.88)

with coefficients

hx(k) = A sin kx

hy(k) = A sin ky

hz(k) = (M − J − 4B) + 2B(cos kx + cos ky) + J cos kx cos ky.

(4.89)

We show an example of energy spectrum of this Hamiltonian on figure 4.6.

The first Chern invariant can be computed (see section 2.1, page 78) as

C1 = 1
2 [sign(M) + sign(M − 8B) − 2 · sign(M − 2J − 4B)] . (4.90)

corresponding to phase diagram partially represented in figure 4.7.

3.2.5 Example: The harmonically driven half-BHZmodel

Let us now consider a periodically driven system, which illustrates the effect of a
periodic drive on the topology. Following [RLBL13], we submit the half-BHZ model
(4.87) to a periodic on-site perturbation

∆H(t) =
∑
x,y

F [sin(ωt)σx + cos(ωt)σy] |x, y⟩ ⟨x, y| . (4.91)

corresponding to a Bloch Hamiltonian

∆H(t, k) = F [sin(ωt)σx + cos(ωt)σy] . (4.92)
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Figure 4.6: Energy spectrum of the half-BHZ Hamiltonian. The energy spectrum of
a strip of material (infinite in the x direction, but finite in the y direction) of the
half-BHZ Hamiltonian (4.87) with parameters A = 4, B = 1.5, J = 1.5 and M = −1
is represented. For this set of parameters, the bandwidth is BW ≃ 26.

Depending on the strength F and the angular frequency ω, this perturbation can
drive the system either towards a topologically nontrivial out-of-equilibrium state or
in a topologically trivial out-of-equilibrium state. This is exemplified in figure 4.10,
where the quasi-energy spectrum of a finite strip is numerically computed in three
situations. As expected, the bulk gap invariant Wϵ[U ] (also numerically computed,
but this time from the bulk Hamiltonian, see next paragraph) gives the number of
edge states counted algebraically with chirality at an interface with the vacuum. For
example, with the parameters of figure 4.6 for the unperturbed Hamiltonian and
ω = 20 and F = 8, we find W0[U ] = 1 and Wπ[U ] = 0, and indeed one chiral edge
state (per interface, i.e. one in red and one in blue) is found in figure 4.10(b) in the
gap ε = 0. For ω = 6.5 and F = 5.0, we find W0[U ] = 0 and Wπ[U ] = −2, which
corresponds to what is observed in figure 4.10(c): there are two edge states (again, per
interface) in the gap ε = π; moreover, for a given interface (e.g. for red states, located
at the top interface) edge states in 4.10(b) and 4.10(c) have opposite chirality.

Various out-of-equilibrium topological phases can be obtained depending on the
amplitude F and the angular frequency ω of the time-periodic perturbation, and a
phase diagram may be numerically obtained by direct computation of the invariant
for varying driving parameters, see figure 4.8, or for fixed driving parameters with
different parameters of the unperturbed Hamiltonian, see figure 4.9. Two important
points can be learned from those phase diagrams.

– When the driving frequency ω is too small with respect to the undriven system
bandwidth Ebw, i.e. when ℏω ≪ Ebw, then the quasi-energy gaps ∆ε typically
vanish. This is the case for low driving frequency (ω ≲ 5) in figure 4.9 and for high
values of the hopping amplitude B ≳ 5 in figure 4.9. Hence, a driving frequency at
least of the order of the bandwidth of the undriven systems seems to be necessary to
open a sizable gap. A possible explanation of this behavior is that at low driving
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Figure 4.7: Phase diagram of the half-BHZ model. We represent a part of the phase
diagram of the half-BHZ model for different values of the second-nearest-neighbors
coupling J . Colors represent first Chern invariant, where white represents C1 = 0,
light red ( ) represents C1 = +1, red ( ) represents C1 = +2, light blue ( ) represents
C1 = −1, blue ( ) represents C1 = −2.

frequency, a lot of closely spaced topological phase transitions are found in the
(F, ω) plane, which seem to prevent any significant (and physically relevant) gap
opening. The analysis of even simpler models (see paragraph 3.2.6, page 137) gives
some evidences that topological transitions tend to be equally spaced in driving
period (e.g. on the (F, T ) plane), which correspond to transition lines becoming
closer and closer as the driving frequency decreases.

– Except at low driving frequency (see previous point), topological phases appear to
be extended phases (not critical phases reduced to a line, or a very narrow region),
both in the driving parameter space and in the parameter space of the unperturbed
Hamiltonian. As a consequence, we can expect such topological phases to be robust
against small perturbations. A small (spatial or temporal) variation of the material
parameters and/or the driving parameters should not spoil the existence of the
phase (and of the corresponding edge states on a finite sample), as long as the
variation is confined to only one region of the phase diagram. The effect of a lack
of uniformity of the drive (amplitude, frequency, phase) was rarely studied. In class
A, numerical simulations seem to show that a disorder in the driving phase does
not affect the topological properties [FKA15].
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Figure 4.8: Topological phase diagram of the harmonically driven half-BHZ model.
Numerically computed values of (a,b) the index Wε[U ] and (c,d) the amplitude ∆ε

of the corresponding quasi-energy gaps are plotted against the amplitude F and the
angular frequency ω of the drive, for (a,c) ε = 0 and (b,d) ε = π. The color bar
in (a,b) only displays quantized values for better clarity, but the numerical estima-
tions of Wε[U ] are not rounded. In (c,d), quasi-energies are normalized in a range
of 2π ∼ 101 and the gap ∆ε is in logarithmic scale. Blue regions corresponds to
large gaps, whereas white regions corresponds to small or vanishing gaps. Due to
the finite numerical precision, the estimation of the gap does not strictly vanish at
topological transitions. We observe that (i) the amplitude of a gap ε always vanishes
at a topological transition which changes Wε[U ], (ii) at low angular frequency, in the
bottom region, both gaps are really small, perhaps due to the numerous topological
transitions. The bottom part of the phase diagrams (a,b) are not guaranteed to be
meaningful, because (i) the quasi-energy gaps are really small and (ii) the numerical
estimations of the invariants are not well-quantized (a better estimation would re-
quire a finer discretization both in time and momentum). In contrast, the top part
should be meaningful, at least far from transition zones. This data corresponds to a
unperturbed half-BHZ Hamiltonian (4.87) with parameters A = 4, B = 1.5, J = 1.5
and M = −1 submitted to the perturbation (4.92). The evolution operator was com-
puted in discretized time and momentum, with steps δt = 0.005 and δk = 0.05, see
paragraph 2.1.1 page 111.
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Figure 4.9: Topological phase diagram at fixed driving of the HDHBHZ model. The
numerically computed values of (a,b) the index Wε[U ] and (c,d) the amplitude of
the corresponding quasi-energy gaps are plotted against the undriven Hamiltonian
parameters (M,B) for fixed driving parameters ω = 20 and F = 8, for the two
gaps ε = 0 and ε = π. Again, the only meaningful parts of the diagrams (a,b)
are which where the gap is not too small. Notice that the gap vanishes for large
hopping parameter B: this is similar to what happens in figure 4.8 for small driving
angular frequency ω: gaps typically close when the bandwidth of the undriven system
(essentially proportional to B) is small compared to the driving frequency ℏω. See
figure 4.8 for details the model, the computation and the visual representation.
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Figure 4.10: Quasi-energy spectra of the harmonically-driven half-BHZ model. The
quasi-energy spectra of a strip (infinite in the x dimension, but finite in the y di-
mension) of a harmonically-driven half-BHZ model are plotted for various driving
parameters: (a) ω = 20 and F = 2, (b) ω = 20 and F = 8 and (c) ω = 6.5 and
F = 5.0. The parameters of the unperturbed system are the same as in figure 4.6.
Colors are computed from the mean position of the states corresponding to each point:
a green color ( ) indicates a state with average position in the center of the strip; a
orange/red color ( ) indicates a state located at the top edge of the strip, whereas a
blue/violet color ( ) indicates a state located at the bottom of the strip.
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3.2.6 Example: The periodically kicked half-BHZmodel

In the previous paragraph, we considered an example of harmonically driven system.
In an attempt to understand the common features in the topological phase diagram
of Floquet systems, we introduce another system, the periodically kicked half-BHZ
model, which is simple enough to allow an analytical understanding of Floquet phase
transitions. Perturbative analysis of Floquet topological transitions were studied by
Rudner, Lindner, Berg and Levin [RLBL13] and by Kundu, Fertig and Seradjeh
[KFS14], but with other methods and other objectives. Here, (i) we observe that Flo-
quet topological transitions between gapped phases happen through a semi-metallic
phase where a Dirac cone closes, an observation in agreement with [KFS14] and (ii)
we try to explain (or at least get an intuition of) the general low-driving frequency
behavior of Floquet topological systems.

Starting again from the unperturbed half-BHZ model (4.87), we submit it to the
time-periodic perturbation

∆H(t, k) = γσz

∑
n∈Z

δ(t− nT ) (4.93)

which introduces a dephasing γ between orbitals s and p at every period. Indeed, for
a small ϵ > 0 (not the quasi-energy!),

U(T − ϵ) = e−iT H0 and U(T + ϵ) = e−iγσz e−iT H0 . (4.94)

The advantage of this model is that it allows an analytic perturbation expansion near
the “Dirac points” of the system, where H0 ∝ σz commute with γσz.

The first Chern invariant of the conduction band of the undriven system is com-
puted as

C1 = 1
2

(
m(0,0) +m(π,π) −m(0,π) −m(π,0)

)
(4.95)

where K is an edge of the first Brillouin zone, and where we defined

mK = hz(K). (4.96)

Topological phase transitions (of driven or undriven systems) only occur when a
gap closes, and they typically do occur when it is the case, due to band inversions. In
this extremely simplified model, gap closings occur at the potential crossing (Dirac)
points of the unperturbed model which form the set D = {(0, 0), (π, π), (π, 0), (0, π)}.
We expect that the transition lines should be understood from what happens at these
points alone.

Let us determine the effective Hamiltonian (in the sense of Floquet theory) at
Dirac points K ∈ D. Near such points, the low-energy Hamiltonian is a Dirac Hamil-
tonian

HK
0 (q) = H0(K + q) = mKσz + O(q) (4.97)

so up to terms linear or of higher order in q,

e−iHK
0 (0)T e−iγσz = e−i(mK T +γ)σz . (4.98)
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Hence, the (Floquet) effective Hamiltonian near K ∈ D is a Dirac Hamiltonian with
an effective mass

mK
eff = mKT + γ mod. 2π (4.99)

Indeed, e−i(m+2π)σz = e−imσz so this effective mass is only defined modulo 2π. Hence,
its sign is not well-defined and we do not expect to be able to directly compute
any topological invariant directly from the effective masses. In contrast, we expect
(topological) transition lines of the driven model where the quasienergy gap ε = 0
closes to be

∃K ∈ D mK
eff = 0 mod. 2π (4.100)

Moreover, we expect that crossing the transition line corresponding to K = (0, 0)
should have the same effect that with the line corresponding to K = (π, π) (reducing
the topological invariant by one), whereas crossing the two degenerate lines K = (0, π)
and K = (π, 0) should increase the topological invariant by two (one for each point),
essentially due to the relative signs in equation (4.95).

As the quantity exchanged between the driving field and the system is energy, it
is more relevant to use the driving angular frequency ω = 2π/T (or in fact ℏω) than
the driving period T . Hence, we define the sets of transition lines at point K and
quasi-energy ε = 0 in the (γ, ω) plane by

C0
K =

{
(γ, ω)

⏐⏐⏐⏐2πmK

ω
+ γ ∈ 2πZ

}
. (4.101)

Indeed, the same story can be played for the gap ε = π, and similarly we define

Cπ
K =

{
(γ, ω)

⏐⏐⏐⏐2πmK

ω
+ γ ∈ 2πZ + π

}
. (4.102)

The corresponding curves are plotted in color over the numerically determined topo-
logical phase diagram of the system in figure 4.12. There is a very good agreement
between the analytically predicted and numerically observed transition lines, and the
prediction concerning the different transitions lines are also in agreement with the
numerics.

It is possible to estimate the quasi-energy gap ∆0 from the effective masses
as

∆est.
0 = min

K∈D
min
n∈Z

⏐⏐mK
eff − 2πn

⏐⏐ . (4.103)

This estimation assumes that the gap is minimal at one of the pointsK ∈ D. Similarly,
we estimate the gap ∆π by

∆est.
π = min

K∈D
min
n∈Z

⏐⏐mK
eff − (2πn+ π)

⏐⏐ . (4.104)

Even though the estimation does not reproduce all features (compare figures 4.12(c,d)
and 4.11(c,d)), we observe that in many cases, the behavior near Dirac points con-
trols both the gap and the topological properties of the Floquet system. There is in
particular a noticeable discrepancy between the numerically computed gap and its
estimation from the effective masses near γ = 0 and γ = π, which both correspond



139

to scalar perturbations (multiplication by ±Id). The case of γ = 0 is not surprising,
as it corresponds to a vanishing perturbation. The second situation is less obvious.
Far from those particular values, the qualitative agreement is remarkable (but not
surprising, as the model is very simple).

The most important take-away of this analysis is the following: from equation
(4.99), it is clear that transition lines at fixed γ are regularly spaced on the T param-
eter line. Hence, transitions line become closer and closer when ω = 2π/T decreases:
this is clearly visible in figure 4.11. This behavior seems to be a general property of
(topological) Floquet systems. Two striking consequences of this observations are (i)
that the gap is forced to be small by the close vicinity of phase transitions in the pa-
rameter space and (ii) that a small perturbation in the driving angular frequency or in
the driving amplitude (as transition lines are not horizontal) will induce a topological
transition, thus spoiling any kind of topological protection.

3.2.7 Constraints onW ’s due to symmetries

The invariant W was defined in any even space dimension for topological phases in
class A, where no symmetry is present. In the following, we study the constraints
due to symmetries (time-reversal, charge-conjugation and chiral symmetry) on this
invariant: depending on the space dimension, such constraints can be trivially satis-
fied, or can force the W invariants to vanish. In the first situation, W characterizes
the topological phases in the corresponding symmetry class, essentially as if the addi-
tional symmetries were not present: it is possible to forget them in order to compute
the relevant invariant. For example, this is the case of class D (with bosonic charge
conjugation) in d = 2. In the second situation where the symmetries force the W
invariants to vanish, either all phases are trivial in the symmetry class or a finer
invariant protected by the additional symmetries exists. For example, still in space
dimension d = 2, both bosonic and fermionic time-reversals (classes AI and AII) cause
the vanishing of W invariants, but only the fermionic version (class AII) allows a finer
Kane-Mele-like invariant to be defined. The aim of the current paragraph is to find
out when W invariants vanish, and when they are still defined. Without surprise, we
recover (a part of) the standard pattern of the periodic table 3.3, page 108.

We first need to recall several properties of the odd Chern character (defined in
section 2.2.4, page 48). Remember that the odd Chern character c̃hn(V ) associated
to a unitary map V : M → U(N), where M is a (2n + 1)-dimensional manifold,
is a (2n + 1)-th differential form. As the odd Chern character is real or imaginary,
depending on the parity of n,

c̃hn(V ) = (−1)n+1c̃hn(V ). (4.105)

Second, if U0 is a constant unitary matrix of the right size, then

c̃hn(U0V U
−1
0 ) = c̃hn(V ). (4.106)

In fact we even have

c̃hn(U0V ) = c̃hn(V ) = c̃hn(V U−1
0 ). (4.107)



140

−4

−3

−2

−1

0

1

2

3

4

−3 −2 −1 0 1 2 3

5

10

15

20

1

22

ω

(a) W0[U ]

−3 −2 −1 0 1 2 3

(b) Wπ[U ]

−3 −2 −1 0 1 2 3

γ

5

10

15

20

1

22

ω

(c) ∆0

−3 −2 −1 0 1 2 3

γ

(d) ∆π

10−2

10−1

100

Figure 4.11: Topological phase diagramof the kickedHBHZmodel. Numerically com-
puted values (a,b) of the index Wε[U ] and (c,d) of the amplitude of the corresponding
quasi-energy gaps against the driving parameters (ω, γ), for the two gaps ε = 0 and
ε = π. As expected, this diagram is 2π-periodic in γ. Near γ = 0 and γ = ±π
(only for ℏω smaller than half an unperturbed system bandwidth for the gap ε = 0),
the gap closes, and the numerical computation of the topological invariants fail to
converge. Similarly, the values of the topological invariants are not to be fully trusted
at low frequency, due to the numerous and close transitions, and because the color
index was capped for clarity (numerical values go down to −8). The evolution op-
erator was computed in discretized time and momentum, with steps δt = 0.025 and
δk = 0.025, see paragraph 2.1.1 page 111. The topological invariants Wε[U ] are nu-
merically computed by direct integration from the numerically computed periodized
evolution operator.
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Figure 4.12: Analytical estimation of the transition lines and gaps of the kicked HBHZ
model. In (a) and (b), the analytically computed transition lines are plotted in colors
(black ( ) for K = (0, 0), red ( ) for K = (π, π) and blue ( ) for the “double”
line corresponding to K = (0, π) and K = (π, 0)), on top of the numerical values of
figure 4.11(a,b). In (c,d), the amplitudes of the gaps ∆0 and ∆π estimated from the
effective masses at potential transition points are plotted, and should be compared
with figure 4.11(c,d): there is a qualitative difference only near γ = 0 and γ = ±π.
Interestingly, for the gap ε = 0, the discrepancy near γ = 0 only occurs for ℏω smaller
than half an unperturbed system bandwidth (approx. 13).
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Indeed, such properties translate into the winding numbers, so

Wn(V ,M) = (−1)n+1Wn(V,M) (4.108)

and
Wn(U0V U

−1
0 ,M) = Wn(V,M). (4.109)

Indeed, if ϕ is a map which depends only on time (or more generally on less than
2n+ 1 variables) and n > 0, then

Wn(ϕV,M) = Wn(V,M). (4.110)

Also, let us recall that if D is a diffeomorphism on the manifold M , then

Wn(V ◦D,M) =
{

+Wn(V,M) if D preserves orientation
−Wn(V,M) if D reverses orientation.

(4.111)

To use the preceding properties to deduce constraints on the W invariant, it is
convenient to express the constraints on the periodized evolution operators in terms
of unitary operators and complex conjugation. Let UΘ a unitary matrix so that
Θ = UΘK (so Θ−1 = KU−1

Θ = UΘ
−1K). Similarly, let UC a unitary matrix so that

C = UCK (so C−1 = KU−1
C = UC

−1K). In terms of such operators, symmetry
constraints (4.62) read

UΘVεU
−1
Θ = Vε ◦ ϑ (4.112a)

UCVεU
−1
C = ϕ× V−ε ◦ κ (4.112b)

ΓVεΓ−1 = ϕ−1 × V−ε ◦ τ (4.112c)

where ϕ(t, k) = e−2πit/T and where ϑ, κ and τ are diffeomorphisms on S1 ×BZ defined
by

ϑ(t, k) = (−t,−k) (4.113a)
κ(t, k) = (t,−k) (4.113b)
τ(t, k) = (−t, k) (4.113c)

As BZ is even-dimensional when W ’s are defined, ϑ reverses orientation, while κ
preserves orientation; τ is indeed orientation-reversing.

Due to this set of properties, we get, when the corresponding symmetries are
present,

(−1)n+1Wn(Vε) ≡ Wn(ΘVεΘ−1) = −Wn(Vε) (4.114a)
(−1)n+1Wn(Vε) ≡ Wn(CVεC

−1) = Wn(V−ε) (4.114b)
Wn(Vε) ≡ Wn(ΓVεΓ−1) = −Wn(V−ε) (4.114c)

As a consequence, as d = 2n,
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– in dimensions d = 2 and d = 6, time-reversal invariance implies the vanishing of
W ’s in all gaps;

– in dimensions d = 4 and d = 8 with time-reversal invariance, W ’s do not vanish
and provide the Z (or 2Z) invariants for classes AI and AII;

– in dimensions d = 4 and d = 8, charge-conjugation invariance implies the vanishing
of W ’s in real gaps;

– in dimensions d = 2 and d = 6 with charge-conjugation invariance, W ’s do not
vanish and provide the Z (or 2Z) invariants for classes C and D in real gaps;

– in all dimensions with charge-conjugation invariance, but in other gaps (neither 0
nor π), the W ’s invariants of class A still apply; however, the invariants in gap ε
and −ε are related by charge-conjugation, and are opposite or equal depending on
the dimension;

– in all (even) dimensions, chiral symmetry implies the vanishing of W ’s in real gaps;
in others gaps, the W ’s invariants of class A still apply and the invariants in gap ε
and −ε are opposite due to chiral symmetry.

The same statements hold with the usual d → d + 8 periodicity. For example, the
case of d = 8 should also hold for d = 0.

Hence, we recover half of the Z (or 2Z) invariants present in the periodic table 3.3
(page 108) and predict the vanishing of the W invariants in a certain number of its
cells. As we shall see, the other half of Z or 2Z invariants are provided by the chiral
invariant defined in the next section 3.3.

3.3 Class AIII: with chiral symmetry

3.3.1 Overview

When the space dimension d is odd, d = 2n+ 1, there is a Z-valued bulk gap invari-
ant

Gε[U ] ∈ Z (4.115)

defined only for the real gaps ε = 0 or π associated to a chiral symmetric evolutions
U such that

ΓU(t, k)Γ−1 = U(−t, k). (4.116)

This invariant is related to the usual chiral band invariant g[P ] ∈ Z associated to a
projector (respecting chiral symmetry!) by

Gε[U ] −Gε′ [U ] = g[Pε′ε] (4.117)

where Pε,ε′(k) is the spectral projector on states with quasi-energy between ε and ε′.
For the definition of the chiral band invariant, see paragraph 2.2.2 of chapter 3, page
89.

As in class A, we expect that topologically protected edge states should appear
at the boundary of a finite system in the bulk gap(s) endowed with nontrivial invari-
ants, and that the number of edge states counted with chirality should match the
corresponding gap invariant. Such expectations are backed (i) by analogies with the
static case, and (ii) by numerical simulations in one and three dimensions. First steps
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towards a bulk-boundary correspondence in the one-dimensional case were provided
by Asbóth and collaborators in [AO13; ATD14].

Note that subtleties may arise due to the fact that in contrast with the situa-
tion of class A, here the vacuum does not provide an unambiguous reference for a
trivial system, e.g. because of the choice of the chiral operator (see the discussion
in paragraph 2.2.2 of chapter 3, page 89 as well as the references therein). We are
faced with the fact that the invariants G are relative invariants, which have no
physical significance alone (only differences of G’s, e.g. at an interface or at a phase
transition, are physically meaningful). Strictly speaking, a bulk-boundary correspon-
dence should be formulated only in terms of differences of G’s at an interface, which
requires a consistent choice of chiral operator in both systems, but a full analysis of
this problem is outside of the scope of this thesis.

3.3.2 The chiral invariant

The general constraint on the periodized evolution operators of equation (4.62) due
to chiral symmetry (see paragraph 2.3, page 120), namely

ΓVε(t, k)Γ−1 = V−ε(−t, k)e2πit/T (4.118)

is not very convenient to define a topological invariant specific to chiral systems,
because (i) it relates different periodized operators with cuts in opposite quasi-energy
gaps (in a chiral symmetric system, the quasi-energy spectrum is symmetric with
respect to the real axis) and (ii) it relates operators at opposite times. Let us first
address the issue of opposite times: the periodicity of V implies that Vε(−t, k) =
Vε(T − t, k) so at half-period (in t = T/2),

ΓVε(T/2, k)Γ = −V−ε(T/2, k). (4.119)

We therefore expect that the periodized evolution operators at half-period can charac-
terize the topology of chiral systems. However, note that we work with the periodized
evolution operators which contain information on the whole dynamics, due to the
multiplication with the exponential of the effective Hamiltonian.

As we have already mentioned in paragraph 2.4.1 page 122, chiral symmetry relates
states at opposite quasi-energies. As a consequence, chiral symmetric topological
invariants can only be defined for the real (or chiral) gaps e−iε = ±1 corresponding
to arguments ε = 0 or π (if they exist), and in this case, we have seen that the
constraints reduce to

ΓV0(t, k)Γ−1 = V0(−t, k)e2πit/T

ΓVπ(t, k)Γ−1 = Vπ(−t, k).
(4.120)

Note that one could relate operators describing the same gap ε (not necessarily 0 or π)
through chiral symmetry, but generically the phase e2πit/T would need to be replaced
by a discontinuous operator accounting for the phase jumps of the logarithm. The
corresponding map would therefore not be suitable to define a topological invariant.
At half-period, those constraints yield

ΓV0(T/2, k)Γ = −V0(T/2, k)
ΓVπ(T/2, k)Γ = +Vπ(T/2, k).

(4.121)
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Hence, in the chiral basis where Γ ∼= diag(1, . . . , 1,−1, . . . ,−1), see paragraph
2.2.2 page 89, the periodized evolution operators at half-period are, depending on the
gap, block-diagonal or block-antidiagonal,

V0(T/2) ∼=
(

0 V +
0

V −
0 0

)
and Vπ(T/2) ∼=

(
V +

π 0
0 V −

π

)
(4.122)

where V ±
0 : BZ → U(M) are unitary maps and the variable k was omitted for clarity.

Note that the inverse matrices are

[V0(T/2)]−1 ∼=
(

0 [V −
0 ]−1

[V +
0 ]−1 0

)
and [Vπ(T/2)]−1 ∼=

(
[V +

π ]−1 0
0 [V −

π ]−1

)
.

When the space and therefore the Brillouin torus are odd-dimensional (let d =
2n + 1 be this odd dimension), the winding of the periodized evolution operator at
fixed time, w(t) = deg(k ↦→ Vε(t, k)), is well-defined, but vanishes. This degree is
homotopy invariant and V is smooth, so w(t) does not actually depend on time; as
Vε(t = 0, k) = Id for any k, w(0) = 0 and so w(t) = 0 for any time t. In particular,
this is the case for t = T/2, which we shall use in the following.

We can use chiral symmetry to circumvent the vanishing of this winding number:
as it will turn out, the two unitary submatrices that we identified in the previous
section cancel each other in w(T/2). However, we can use the block-(anti)diagonal
structure of Vε(T/2) (equation (4.122)) to define two unitary windings deg(V ±

ε ) from
the periodized evolution operator. Computing w(T/2) from the block-(anti)diagonal
form of Vε(T/2), we see that

0 = w(T/2) = deg(V +
ε ) + deg(V −

ε ), (4.123)

so there is actually only one independent invariant, which we denote by

Gε[U ] = deg(V +
ε ). (4.124)

This is the general topological index for a chiral symmetric Floquet system in odd
space dimension. Let us emphasize again that this invariant is only defined for gaps
ε = 0 or π.

The map k ↦→ V +
ε (k) does not depend on time (it is defined from the periodized

evolution operator Vε at half period), so the degree in (4.124) is computed as an
integral over the Brillouin torus only. For example, in d = 1

Gε[U ] = i
2π

∫
BZ

tr
(
(V +

ε )−1∂kV
+

ε

)
dk (4.125)

and in d = 3,

Gε[U ] = 1
24π2

∫
BZ

dkxdkydkz

tr
(
3[(V +

ε )−1∂kxV
+

ε , (V +
ε )−1∂kyV

+
ε ](V +

ε )−1∂kzV
+

ε

)
.

(4.126)

Let me stress again that as Vε is computed both from the evolution operator U and
the effective Hamiltonian Heff

ε , the invariant Gε still depends on the whole evolution
(and not only of the state of the system at half period).



146

3.3.3 Relation with band invariants

We now seek to relate the gap invariant Gε[U ] to the band invariant used to charac-
terize equilibrium systems computed for a quasi-energy band and described in para-
graph 2.2.2, page 89. In analogy with the case without symmetry, we expect this
band invariant to be equal to the difference between the gap invariants in the two
gaps surrounding the band; as we will show, this is indeed the case, and

Gε[U ] −Gε′ [U ] = g[Pε′ε] (4.127)

where Pε,ε′(k) is the spectral projector on states with quasi-energy between ε and ε′.
As there are only two possible values for ε or ε′, it is sufficient to show that

G0[U ] −Gπ[U ] = g[P0π]. (4.128)

Using the identity
[Vπ(t, k)]−1V0(t, k) = e2πit/T Pπ,0(k) (4.129)

we have
[Vπ(T/2, k)]−1V0(T/2, k) = eiπPπ,0(k) = Qπ,0(k). (4.130)

We can compute the block product

[Vπ(T/2, k)]−1V0(T/2, k) =
(

0 [V +
π (k)]−1V +

0 (k)
[V −

π (k)]−1V −
0 (k) 0

)
(4.131)

Besides, from equations (4.130) and (4.121) we infer that Qπ,0 is block-antidiagonal
in the chiral basis, namely

Qπ,0(k) ∼=
(

0 q+
π,0(k)

q−
π,0(k) 0

)
∈ U(2M) (4.132)

and therefore,
[V +

π (k)]−1V +
0 (k) = q+

π,0(k). (4.133)
As the degree is additive, we end up with

deg(V +
0 ) − deg(V +

π ) = deg(q+
π,0) (4.134)

which is the identity (4.127) that we wanted to show.

3.3.4 Example: the driven SSHmodel in one dimension

A simple example of Floquet system with chiral symmetry is the driven SSH model
[GP13a; ATD14; LAT15]. We start from the Su-Schrieffer-Heeger model described in
paragraph 2.2.3, page 91 and periodically modulate in time the tight-binding coeffi-
cients J1 and J2, which corresponds to a Bloch Hamiltonian

H(t, k) = (J1(t) + J2(t) cos(k))σ1 + J2(t) sin(k)σ2 (4.135)

where σi are the Pauli matrices in the basis of sublattices A and B. We choose
J1(t) = J1 + A cos(ωt) and J2(t) = J2. Chiral symmetry is represented by the op-
erator Γ = σ3, which anticommutes with the Hamiltonian whilst reversing time,
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Figure4.13: Quasi-energyspectrumof thedrivenSSHmodel ina finite system. Quasi-
energy spectrum of a finite system (with edges) of the driven SSH model (a) for
J1 = 3/2, J2 = 1, A = 6 and T = 2.35 and (b) for J1 = 1, J2 = 3/2, A = 6
and T = 2.35. The undriven system with A = 0 is trivial. In contrast, the driven
phases presented here are both topologically nontrivial and exhibit nonvanishing chiral
invariants, with (a) Gπ[U ] = 1 and G0[U ] = 0 and (b) G0[U ] = Gπ[U ] = 1. As a
consequence, edge states appear in the quasi-energy spectra of the finite systems (in
blue, as opposed to the bulk bands which are in red), (a) only in gap π and (b)
both in gap 0 and in gap π. The second case (b) is an “anomalous” situations where
the system is topologically non trivial despite vanishing chiral band invariants. The
quasi-energy spectra are obtained by diagonalization in the Sambe space truncated
to 19 sidebands for a system of length 80. The invariants were computed from the
bulk Hamiltonian by direct integration.

ΓH(t, k)Γ = −H(−t, k). Note that for this choice of modulation, we still have
(bosonic) time-reversal symmetry with Θ = K, as ΘH(t, k)Θ−1 = H(−t,−k), so this
particular Hamiltonian is in fact in class BDI. However, in space dimension d = 1,
time-reversal symmetry does not prevent the chiral invariant to be nonzero, and time-
reversal breaking terms will not change its value (except, obviously, if they close a
gap). This illustrates that the chiral gap invariant that we defined in the previous
paragraph enables to compute all the Z or 2Z invariants in chiral classes (i.e. classes
BDI,DIII,CI,CII → AIII), a property that will be discussed in the paragraph 3.3.6,
page 148.

As we have seen in paragraph 2.2.3, page 91, the undriven system with A = 0 is a
band insulator when |J2/J1| ̸= 1, and it is topologically nontrivial when |J2/J1| > 1.
At the edge of a finite nontrivial system appear topologically protected zero modes
(with an energy inside the bulk gap) exponentially located close to the boundary. In
contrast, the edge of a trivial system does not generically host zero modes.

Turning on the driving from a trivial point of the equilibrium phase diagram, say
J1 = 3/2 and J2 = 1, one can bring the system to an out-of equilibrium phase where
edge modes appear inside the bulk gap, as in the equilibrium case, as illustrated in
figure 4.13 (a), where G0[U ] = 0 and Gπ[U ] = 1. In figure 4.13 (b), the bulk invariants
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G0[U ] = Gπ[U ] = 1 correspond to a finite system with one edge mode in each chiral
gap (ε = 0 and π), an example of an anomalous topological phase where all band
invariants vanish despite a nontrivial topology.

3.3.5 Example: a chiral driven system in three dimensions

To illustrate the 3D chiral invariant, I considered a three-dimensional driven tight-
binding system with chiral symmetry, obtained by a periodic modulation of the pa-
rameters of a minimal tight-binding model for chiral topological insulators adapted
from [WDMS15]. Let us considered electrons with spin 1/2 on a crystal with two
sublattices (or orbitals) A and B, with Bloch Hamiltonian

H(t, k) =
(

0 ih0Id + hi(t, k)σi

[ih0Id + hi(t, k)σi]† 0

)
(4.136)

in basis (A ↑, A ↓, B ↑, B ↓), and where

h0 = m(t) + cos kx + cos ky + cos kz,

h1 = δ + sin kx,

h2 = sin ky,

h3 = sin kz.

(4.137)

Chiral symmetry is represented by the matrix Γ = σ3 ⊗ s0 (where sµ and σµ are
Pauli matrices, with σµ acting on sublattice degrees of freedom and sµ acting on spin
degrees of freedom). This Hamiltonian is chiral, ΓH(t, k)Γ = −H(−t, k), provided
that m(t) = m(−t), so we take m(t) = m0 + m1 cos(ωt). In the following, we fix
δ = 1/2. The undriven system with m1 = 0 is a chiral topological insulator in class
AIII, and has a nontrivial chiral (band) invariant g ̸= 0 for |m0| < 1 (where g = −2)
and for 1 < |m0| < 2 (where g = 1) [WDMS15]. We set m0 = 1.75 so g = 1 in
the undriven system. We expect the periodic driving to induce topological phase
transitions; indeed, for a driving of angular frequency ω = 5 and amplitude m1 = 1,
the numerical computation of the invariants (4.124) gives G0 = 1 and Gπ = −2, a
situation only possible in driven systems, as there are surface states both in the gaps
at quasi-energy ε = 0 and at quasi-energy ε = π.

The numerical computation of the quasi-energy spectrum of a finite system reveals
the appearance of Dirac cones in the quasi-energy spectrum (that is, of isolated points
on the Brillouin zone where a quasi-energy gap closes with linear dispersion) at the
surface of the system. As expected from the bulk-boundary correspondence principle,
we found that at each (bottom and top) interface, the bulk gap ε hosts Gε Dirac
cones. This is illustrated in figures 4.14 and 4.15.

3.3.6 Constraints on the chiral invariant due to other symmetries

In paragraph 3.2.7, page 139, we have shown that additional symmetries can either
force the W invariants to vanish or left them unconstrained, depending on the CAZ
class and the space dimension. In the second case, by forgetting about such sym-
metries and computing the invariant, we obtain topological invariants characterizing
the corresponding (CAZ class, dimension) pair. The same game can be played for
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Figure 4.14: Quasi-energy spectrum of a 3D driven chiral system in a finite system.
Projection along kx of the quasi-energy spectrum of a finite system (with edges) of
the 3D driven chiral model for δ = 1/2, m0 = 1.75, m1 = 1, and ω = 5. Bands
are in gray, and both bulk and surface states are represented. The driven system
is topological, with G0[U ] = 1 and Gπ[U ] = −2. As a consequence, surface states
with linear dispersion (Dirac cones) appear in the quasi-energy spectrum of the finite
system. In agreement with the bulk topological invariants, for each (bottom and top)
surface boundary of the system, there are one Dirac cone in bulk gap 0 and two Dirac
cones in bulk gap π. The quasi-energy spectrum is obtained by diagonalization in
the Sambe space truncated to 7 sidebands for a system of length 15. The invariants
were computed from the bulk Hamiltonian by direct integration (e.g. we obtain here
G0 = 0.99 and Gπ = −1.97 which are rounded to the values given in the main text).

the chiral invariant: for example, in space dimension d = 1, systems in class BDI are
characterized by the chiral invariant of class AIII. Again, we recover a part of the
periodic table 3.3, page 108. Along with the results of paragraph 3.2.7, all Z or 2Z
invariants are found, in agreement with the K-theoretic analysis of [RH16].

When chiral symmetry and another (non unitarily implemented) symmetry is
present, then all three symmetries are necessarily present, as the third is the product
of the two other ones, possibly up to a phase. In this paragraph, we are there-
fore concerned with the situation where time-reversal, charge-conjugation and chiral
symmetry are present. To simplify the reasoning, we will assume that all unitary
symmetries were considered and that we work in an irreducible representation space,
as in the section 2.4.1 on the ten-fold way, page 101. In such a case, we can always
choose to adjust the phases(3) of the three operators such that

Γ =
√

±ΘC =
√

±CΘ and Γ2 = Id (4.138)

(3)Starting from a time-reversal and a charge-conjugation operators Θ0 and C0, we do not necessar-
ily have Θ0C0 = C0Θ0. However, they are related by a unitary operator, which is, in an irreducible
representation space, a scalar matrix (i.e. a phase), so C0Θ0 = eiϕΘ0C0. Let e.g. C = e−iϕ/2C0 and
Θ = Θ0, then CΘ = ΘC. As C and C0 are unitary, their square do not change; C2 = C2

0 = ±Id.
Finally, recall that Θ2C2 = ±Id and define Γ =

√
Θ2C2ΘC so that Γ = ±ΘC = ±CΘ and Γ2 = Id.
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Figure 4.15: ZoomonaDirac cone in the surface quasi-energy spectrumof a 3Ddriven
chiral system. Three dimensional view of the Dirac cone in bulk gap 0 of the quasi-
energy spectrum of figure 4.14. The dispersion is clearly linear in the neighborhood
of the Dirac cone (located approximately at kx = −2.62 and ky = −π). The cone
then merges in the bulk bands (shown in figure 4.14).

where the
√± depends on whether Θ2 = ±C2. As a consequence,

ΓΘΓ−1 = ±Θ and ΓCΓ−1 = ±C (4.139)

so they are either block-diagonal or block-antidiagonal in the chiral basis (see para-
graph 2.2.1, page 88) according to whether time-reversal and charge-conjugation
square to the same or not. Indeed, in both cases the constraints due to charge-
conjugation and time-reversal will turn out to be redundant, as we already have
taken into account their composition through chiral symmetry.

In the chiral basis, we have seen at equation (4.122) that the evolution operator at
half-period is either block-diagonal or block-antidiagonal. We introduce the refined
notations

V0(T/2) ∼=
(

0 V +−
0

V −+
0 0

)
and Vπ(T/2) ∼=

(
V ++

π 0
0 V −−

π

)
. (4.140)

We will need to use the relations (see equation (4.123))

Wn[V +−
0 ] +Wn[V −+

0 ] = 0 and Wn[V ++
π ] +Wn[V −−

π ] = 0 (4.141)

where n is such that d = 2n+ 1.
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Classes BDI and CII. When Θ2 = C2, both operators are block-diagonal in the
chiral basis,

Θ ∼=
(

Θ++ 0
0 Θ−−

)
and C ∼=

(
C++ 0

0 C−−

)
(4.142)

where Θ±± and C±± are antiunitary matrices, with (Θ++)2 = ±Id and (Θ−−)2 =
±Id according to whether Θ2 = ±Id (the same goes mutatis mutandis for charge
conjugation). Hence, constraints on the periodized evolution operator at half-period
read, for time-reversal

Θ++ V +−
0 (Θ−−)−1 = V +−

0 ◦ κ̃
Θ−− V −+

0 (Θ++)−1 = V −+
0 ◦ κ̃

Θ++ V ++
π (Θ++)−1 = V ++

π ◦ κ̃
Θ−− V −−

π (Θ−−)−1 = V −
π ◦ κ̃

(4.143)

where
κ̃(k) = −k (4.144)

is the restriction to BZ of the diffeomorphism κ on S1 × BZ. The chiral invariant is
only defined for an odd space dimension d = 2n+1 with integer n. As a consequence,
the Brillouin torus is odd-dimensional and κ̃ reverses the orientation.

Similar constraints arise for charge conjugation,

C++ V +−
0 (C−−)−1 = −V +−

0 ◦ κ̃
C−− V −+

0 (C++)−1 = −V −+
0 ◦ κ̃

C++ V ++
π (C++)−1 = V ++

π ◦ κ̃
C−− V −−

π (C−−)−1 = V −
π ◦ κ̃.

(4.145)

Such constraints yield

Wn[V ±∓
0 ,BZ] = Wn[V ±∓

0 ◦ κ̃,BZ]

Wn[V ±±
π ,BZ] = Wn[V ±±

π ◦ κ̃,BZ]
(4.146)

so

Wn[V ±∓
0 ,BZ] = (−1)nWn[V ±∓

0 ,BZ]
Wn[V ±±

π ,BZ] = (−1)nWn[V ±±
π ,BZ].

(4.147)

Hence, in the case Θ2 = C2, the chiral invariant Gε[U ] = Wn[V +
ε ] (with V +

0 =
V +−

0 and V +
π = V ++

π ) vanishes for odd n, and is not constrained for even n.

Classes DIII and CI. When Θ2 = −C2, both operators are block-antidiagonal in
the chiral basis,

Θ ∼=
(

0 Θ+−

Θ−+ 0

)
and C ∼=

(
0 C+−

C−+ 0

)
(4.148)
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where Θ±∓ and C±∓ are again antiunitary matrices, but this time with Θ+−Θ−+ =
±Id and Θ−+Θ+− = ±Id according to whether Θ2 = ±Id (and again, the story is
identical for charge conjugation). Constraints on the periodized evolution operator
at half-period now read, for time-reversal

Θ+− V −+
0 (Θ−+)−1 = V +−

0 ◦ κ̃
Θ−+ V +−

0 (Θ+−)−1 = V −+
0 ◦ κ̃

Θ+− V −−
π (Θ+−)−1 = V ++

π ◦ κ̃
Θ−+ V ++

π (Θ−+)−1 = V −−
π ◦ κ̃

(4.149)

and for charge conjugation

C+− V −+
0 (C−+)−1 = −V +−

0 ◦ κ̃
C−+ V +−

0 (C+−)−1 = −V −+
0 ◦ κ̃

C+− V −−
π (C+−)−1 = V ++

π ◦ κ̃
C−+ V ++

π (C−+)−1 = V −−
π ◦ κ̃

(4.150)

Such constraints yield

Wn[V ±∓
0 ,BZ] = Wn[V ∓±

0 ◦ κ̃,BZ]

Wn[V ±±
π ,BZ] = Wn[V ∓∓

π ◦ κ̃,BZ]
(4.151)

which along with equation (4.141) finally give

Wn[V ±∓
0 ,BZ] = (−1)n+1Wn[V ±∓

0 ,BZ]
Wn[V ±±

π ,BZ] = (−1)n+1Wn[V ±±
π ,BZ].

(4.152)

Hence, when Θ2 = −C2, the chiral invariant Gε[U ] = Wn[V +
ε ] vanishes for even

n, and is not constrained for odd n.

To sum up, in the classes where all symmetries are present,
– when Θ2 = C2 (classes BDI and CII) it vanishes for odd n, i.e. for dimensions d =

3, 7, 11, . . . and it is not constrained for even n, i.e. for dimensions d = 1, 5, 9, . . . ;
– when Θ2 = −C2 (classes DIII and CI), it vanishes for even n, i.e. for dimensions d =

1, 5, 9, . . . and it is not constrained for odd n, i.e. for dimensions d = 3, 7, 11, . . . .
In the cases where the chiral invariant is not vanishing, it characterizes the topological
phases in the corresponding CAZ class. For example, in d = 1 the (driven) SSH model
of paragraph 3.3.4, page 146 is strictly speaking in class BDI, but is characterized by
the chiral invariant defined for systems with chiral symmetry alone (class AIII).

3.4 Class AII: with fermionic time-reversal

3.4.1 Overview

In space dimensions d = 2 and d = 3, it is possible to define a new Z2-valued bulk
gap invariant

Kε[U ] ∈ Z2 (4.153)
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associated to time-reversal invariant evolutions U such that

ΘU(t, k)Θ−1 = U(−t,−k). (4.154)

This invariant is related to the Kane-Mele band invariant KM[P ] ∈ Z2 associated to
a (time-reversal invariant) projector by

Kε[U ] − Kε′ [U ] = KM[Pε′ε] (4.155)

where Pε,ε′(k) is the spectral projector on states with quasi-energy between ε and
ε′.

In agreement with the bulk-boundary correspondence principle, we expect that
topologically protected edge states should appear at the boundary of a finite system
in the bulk gap(s) endowed with nontrivial invariants. In a nontrivial bulk gap, a
Kramers pair of counter-propagating chiral edge states (i.e. a pair of helical edge
states) should appear, like in a Kane-Mele insulator. Again, such expectations are
backed (i) by analogies with the static case, and (ii) by numerical simulations in the
two-dimensional case.

3.4.2 Definition of the invariant in two dimensions

As we have seen in section 3.2.7, page 139, in two dimensions the W invariant (and
the first Chern invariant) vanish due to time-reversal invariance (TRI). In the case of
a fermionic TRI (fTRI), this vanishing can be interpreted as due to Kramers partners
giving opposite contribution. Indeed, in a system with fTRI Kramers pairs (ψj ,Θψj)
of eigenstates respectively of U(T, k) and U−1(T,−k) evolve in time in opposite di-
rection (see also figure 4.16):

ΘU(t, k)ψj(k) = U(−t,−k)Θψj(k). (4.156)

To define topological properties, it is more convenient to phrase this property in terms
of the periodized evolution operator:

ΘVε(t, k)ψj(k) = Vε(−t,−k)Θψj(k) = Vε(T − t,−k)Θψj(k). (4.157)

As announced, this property implies the vanishing of Wε[U ], and of all Chern in-
variants of the quasi-energy bands. To circumvent this cancellation, we proposed to
isolate the contribution of only one member of each Kramers pair, in a spirit simi-
lar to the construction by Moore and Balents in static systems [MB07]. Moore and
Balents used an “effective Brillouin zone”, defined as a fundamental domain of the
action ϑ̃ defined by ϑ̃(k) = −k (essentially one half of the Brillouin zone, with only
one representative for each (k,−k) couple). In time-dependent systems, Kramers
pairs are not “local in time”, and we instead have to consider the action of ϑ defined
as ϑ(t, k) = (−t,−k). To keep only one member of each Kramers pair, we simply
restrict the time-evolution of Vε to half a period, i.e. from times t = 0 to t = T/2.
The second key observation is that time t = T/2 is a symmetry point of time-reversal
(as T − T/2 = T/2), so time-reversal acts locally in time at T/2. Hence, Kramers
pairs are “local in time” at t = T/2. The topological invariant turns out to arise
from the comparison of Kramers partners at t = 0 and t = T/2: to do so, we observe
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Figure 4.16: Action of time-reversal. Time-reversal relates states at point (t0 + τ, k)
to states at point (t0 − τ,−k).

that it is possible to deform the map k ↦→ Vϵ(T/2, k) to the identity through a con-
traction of the Kramers pairs present at t = T/2. In this contracted map, Kramers
pairs are preserved at all times. The concatenation of this contraction with the half
of the original periodized evolution operator results in a periodic map containing the
information on the topological winding of Kramers pairs during the first half-period,
see figure 4.17.

More concretely, we consider a smooth map V̂ϵ from [0, T ]×BZ to U(N) such that

V̂ϵ(t, k) = Vϵ(t, k) for 0 ≤ t ≤ T/2 (4.158a)

and
ΘV̂ϵ(t, k)Θ−1 = V̂ϵ(t,−k) for T/2 ≤ t ≤ T (4.158b)

with V̂ϵ(T, k) = Id = V̂ϵ(0, k). The second part of this virtual evolution from t = T/2
to t = T is not unique, and the homotopy class of the map V̂ϵ depends on the choice
of this contraction. However, the time-reversal invariance condition (4.158b) ensures
that a change in the contraction V̂ϵ(T/2 ≤ t ≤ T, k) can only change the winding of
V̂ϵ by an even integer, so the quantity

Kϵ[U ] = deg(V̂ϵ) mod 2 (4.159)

is well-defined. This Z2-valued topological invariant is the generalization for period-
ically driven systems of the Kane-Mele invariant. In a semi-infinite system, Kϵ[U ] is
expected to give the parity of the number of Kramers pairs of counter-propagating
chiral edge states that lie in the corresponding bulk quasienergy gap, a property which
is evidenced by numerical simulations.

Finally, there is a direct relation between the K index and the Kane-Mele invariant
of quasi-energy bands, namely

Kε[U ] − Kε′ [U ] = KM[Pε′ε] (4.160)

where Pε,ε′(k) is the (time-reversal invariant) spectral projector on states with quasi-
energy between ε and ε′. This relation is the exact analogue of ones obtained for the
W invariants of class A and the G invariants of class AIII.
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(−k,Θψ)
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Figure 4.17: Sketch of the periodized evolution over one period. (a) Periodized
evolution V (t, k). Time-reversal relates pairs (ψ,Θψ) of states at (t, k) and (−t,−k),
as shown by black arrows. (b) Contracted half-evolution V̂ (t, k). The second half
of the initial evolution was discarded and replaced by a contraction respecting an
equal-time constraint depicted as black arrows.

The detailed construction of Kϵ[U ], the proof of the existence of contractions
(4.158b), of the independence of Kϵ[U ] upon their choice (in Z2), and of the link with
Kane-Mele invariants are discussed in the reference [CDFG15a].

3.4.3 A simplification when spin is conserved

The expression of the K invariant (4.160) greatly simplifies when the projection Sz of
spin along a fixed axis is conserved. In this situation, there is an additional unitary
symmetry (corresponding to spin rotation around the quantization axis) commuting
with the Hamiltonian(4) Hence, the evolution operator U can be block-diagonalized
in the (↑, ↓) basis, as well as Vϵ. The two blocks are related by time-reversal and the
K index can be related to the W index of the spin blocks by

Kϵ

[(
U↑ 0
0 U↓

)]
= Wϵ[U↑] −Wϵ[U↓]

2 mod 2 , (4.161)

where Wϵ[U↑] = Wϵ[ΘU↓Θ−1] = −Wϵ[U↓]. This expression is reminiscent of the “spin
Chern number” [SWSH06]. Indeed, when considering the difference between indices
at two quasienergy gaps, the usual spin Chern number is recovered.

3.4.4 Example: a toy time-dependent lattice model

To illustrate the index K, we consider a periodic evolution largely inspired by the
model developed by Rudner et al. [RLBL13]. We define a piecewise constant in time

(4)We could infer from this property that the CAZ classification cannot be applied directly in this
situation, and that each block should be considered separately. However, we know independently that
the K index remains well-defined even in the absence of Sz conservation (as long as TRI is preserved),
so we can consider that H is indeed in class AII, and that the additional unitary symmetry is only
“accidental”.
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Figure 4.18: Time-dependent lattice model. Representation of the time evolution.
(a) The only nonvanishing hopping amplitudes between sites are represented for the
time steps n = 1, . . . , 4 as a link labeled with n. This is done for spin up (red solid
lines) and spin down (blue dashed lines). (b) The time sequence of Un is summarized
around plaquettes, which mimics closed orbits. Full and empty circles represent the
two sublattices.

(Bloch) Hamiltonian

H(t, k) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

H1(k) for 0 ≤ t/T < 1/N
· · ·
Hn(k) for (n− 1)/N ≤ t/T < n/N

· · ·
HN (k) for (N − 1)/N ≤ t/T < 1.

(4.162)

where N is the number of time steps, which is extended by periodicity to all times
throughH(t+T ) = H(t) for all t. Hence, the corresponding Floquet operator is

U(T ) = SNSN−1 · · ·S1 (4.163)

where
Sn = exp

(
−i T
N
Hn

)
. (4.164)

It is convenient to write the step Hamiltonians in terms of spin blocks as

Hn(k) =
(
H↑↑

n (k) H↓↑
n (k)

H↑↓
n (k) H↓↓

n (k)

)
(4.165)

with n = 1, . . . , N . The time-reversal invariance of the evolution translates here
into

H↓↓(t, k) = H
↑↑(−t,−k) (4.166)

which means that H↓↓ is the time-reversed copy of H↑↑, and

H↑↓(t, k) = −H↓↑(−t,−k) (4.167)

for off-diagonal components. These TRI constraints translate for the step Hamiltoni-
ans into

H↓↓
n (k) = H

↑↑
N−n+1(−k) (4.168)



157

and
H↑↓

n (k) = −H↓↑
N−n+1(−k) (4.169)

Here, we will first consider the case of N = 4 steps and of a spin-conserving
dynamics, where off-diagonal blocks vanish. An easy way to obtain a TRI evolution
is to specify the time-evolution of spins up, and to deduce the evolution of spins down
by time-reversed invariance. To specify the dynamics of spins up, we use a time-
dependent lattice model which mimics chiral classical “cyclotron” orbits on a square
lattice [RLBL13]. We distinguish two sublattices A and B on the square lattice (see
figure 4.18) and define the corresponding step Hamiltonian for spins ↑ as

H↑↑
1 = J TA→B

+x + h.c. + ∆σz (4.170a)
H↑↑

2 = J TB→A
−y + h.c. + ∆σz (4.170b)

H↑↑
3 = J TA→B

−x + h.c. + ∆σz (4.170c)
H↑↑

4 = J TB→A
+y + h.c. + ∆σz (4.170d)

H↑↑
5 = 0. (4.170e)

where e.g. TA→B
+x is the translation operator by one horizontal lattice spacing from

sublattice A to B, see figure 4.18, and ∆σz is a staggered potential on the A/B
sublattice. Hamiltonians H↓↓

α for spin ↓ states are deduced by the TRI constraints,
and correspond to orbits cycling in opposite direction.

Time-reversal preserving spin-flip terms may be added to the dynamics by setting
nonzero off-diagonal blocks H↓↑

α obtained from H↑↑
α by replacing J by J ′, and by

setting H↑↓(t, k) = −H↓↑(−t,−k), as imposed by the TRI constraint (4.167).

On the one hand, the quasienergy spectrum of the Floquet operator in a strip
geometry (periodic in the x direction, but finite in the y direction) is shown on figure
4.19 for various parameters. On the other hand, the K invariants are computed from
formula (4.161) in a situation without spin-flip, and the spin-flip terms are turned on
while making sure that the gap do not close (a direct computation of the K invariant
should be possible but was not done, see paragraph 3.4.5). The number of Kramers
pairs of helical edge states on each interface is indeed accurately predicted by the
invariant. Indeed, breaking time-reversal invariance spoils the existence of protected
edge states, as illustrated on figure 4.20 (where in (d), a term H↑↓

5 (k) = +H↓↑
1 (−k)

was added).

3.4.5 Tobedone: numerical computationof theK invariant in thegeneral case

In principle, it should be possible to numerically evaluate the K invariant in the gen-
eral case, simply by discretizing the degree integral of V̂ε (in this paragraph, the index
ε will be dropped to shorten notations). However, for this method to be practically
applicable, the contraction V̂ε(T/2 ≤ t ≤ T ) must be constructed explicitly. This is
at least possible when Vε(T/2) is gapped at quasi-energy η = −π. In general, the
logarithm (similar to an effective Hamiltonian)

Gε,η(k) = i
T/2 log−η Vε(T/2, k) (4.171)
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Figure 4.19: Quasienergy spectra of the TRI periodic evolution for a strip geometry.
The spectra reveal helical edge states in gap ϵ = 0 and/or π. The parity of the
number of pairs of edge states in a bulk gap localized on each boundary is given by
the corresponding value Kϵ. Colors correspond to the density of states along y: red
and purple states are localized at opposite edges (see inset). The parameters are (a)
J = 3π, J ′ = π, ∆ = 0, (b) J = 3π/2, J ′ = 1/2, ∆ = π/2, (c) J = −5π, J ′ = 1/2,
∆ = 9π/2, (d) J = 15π/2, J ′ = π, ∆ = 2π. For clarity, in the case (a), a small
boundary mass term was added to distinguish edge states.

where e−iη is in a spectral gap of Vε(T/2) satisfies

ΘGε,η(k)Θ−1 = −Gε,−η−2π(−k) (4.172)

where we used the logarithm identity logα(z) = log2π−α(z), so for η = −π

ΘGε,−π(k)Θ−1 = −Gε,−π(−k) (4.173)

and it provides a contraction

V̂ε(T/2 ≤ t ≤ T ) = ei(t−T )Gε,−π(k) (4.174)

with V̂ε(T/2) = V (T/2), V̂ε(T ) = Id, and for T/2 ≤ t ≤ T ,

ΘV̂ε(t, k)Θ−1 = V̂ε(t,−k). (4.175)

Numerical explorations show that Vε(T/2) is gapped in interesting situations, but this
method still has to be implemented, which was not done for lack of time, and due to
difficulties with the numerics.

3.4.6 TheK invariant in three dimensions

As a follow-up of our work on the two-dimensional time-reversal invariant Floquet
systems, my co-advisor Krzysztof Gawędzki extended the construction of the K index
to a more general context, which in particular includes three-dimensional Floquet
systems [Gaw15]. The main idea is that in space dimension d = 3 (with fermionic
time-reversal invariance), the map on the Brillouin 3-torus defined by

V̌ε(k) = Vε(T/2, k) (4.176)
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Figure 4.20: Effect on TR preserving and breaking spin-flip terms. Quasi-energy
spectra for a strip geometry (inset) for J = 3π and ∆ = 0. We consider (a) spin
↑ only, (b) spin ↑ and spin ↓ with no coupling (J ′ = 0), (c) spin ↑ and spin ↓ with
J ′ = 1/2, (d) spin ↑ and spin ↓ with J ′ = 1/2 and time-reversal breaking term.
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Figure 4.21: Illustration of theZ2 nature of the invariant. (a) Extended lattice model
with hopping terms J2, spin up (red solid lines) and spin down (blue dashed lines).
(b) Quasi-energy spectrum of the extended lattice model for a ribbon geometry with
J2 = 5π/2, J = 0, ∆ = π and J ′ = 1. The number of edge states in a gap is not the
same at quasi-energies ϵ1 and ϵ2, but the parity is fixed and given by the K index.
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is very similar to the map V 2d
ε (t, k) defined on S1 × BZ2 ≃ T 3 in space dimension

d = 2, as
ΘV̌ε(k)Θ−1 = V̌ε(−k) (4.177)

with k ∈ BZ3 ≃ T 3. A construction similar to the one in [CDFG15a], but taking
account the possible winding numbers in the kx, ky and kz directions enables to
associate a Z2-valued index K to any Θ-equivariant map V : T 3 → U(N), i.e. which
satisfies

ΘVΘ−1 = V ◦ ρ (4.178)

where ρ(x) = −x for x ∈ T 3. This construction depends on a choice of the funda-
mental domain for ρ, and the independence of the index on this choice is a nontrivial
fact, which was proven by Krzysztof using the framework of equivariant bundle gerbes
[Gaw15]. In this context, the two-dimensional index (4.160) can be defined as

K2d
ε = K(V 2d

ε ) (4.179)

where x = (t, k) and k ∈ BZ2. This alternative definition indeed matches the previous
one. Furthermore, equipped with this index, the topological invariant characterized
a fermionic-time-reversal invariant evolution in space dimension d = 3 can be defined
as

K3d
ε = K(V̌ε) (4.180)

where this time x = k for k ∈ BZ3. This invariant is the generalization for time-
periodic evolutions of the strong Kane-Mele invariant [FKM07], and like the two-
dimensional version, it is related to the strong Kane-Mele invariant of quasi-energy
bands by

K3d
ε [U ] − K3d

ε′ [U ] = KM3d[Pεε′ ] (4.181)

where Pε,ε′(k) is the spectral projector on states with quasi-energy between ε and
ε′.

The existence of a generalization to Floquet systems of the three-dimensional
strong Kane-Mele invariant is in agreement with the results of Nathan and Rudner
[NR15] and with the K-theoretic results of Roy and Harper [RH16].

4 Conclusion and perspectives

4.1 Bulk invariants

As we have seen in this chapter, bulk topological invariants for time-periodic evolu-
tions of crystals can be defined from the periodized evolution operators Vε(t, k) in a
large number of cases (in color in table 4.1). Defining similar bulk invariants to take
into account the missing Z2 classes of this table is the most obvious follow-up. This
would confirm the results of Nathan and Rudner [NR15] and Roy and Harper [RH16]
according to which the equilibrium classification is essentially exported to Floquet
systems, but with gap invariants. However, with the time-dependency of Floquet
systems new possibilities may arise which cannot be cast in this classification: for
example, the reversal points of time-reversal and chiral symmetry may not coincide.
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Continuing on the topic of bulk invariants, a natural question is whether “topological
crystalline insulators” [Fu11; CTSR15] have a Floquet generalization. On the one
hand, defining a mirror W invariant should be quite easy. On the other hand, band
invariants for TCI generically do not have a summation property, and for example
the mirror Chern number does not [CYR13] (in contrast, the Chern number of a com-
posite band is the sum of the Chern numbers of the independent bands composing
it); this compromises the existence of a simple relation like equation (4.73) between
band invariants and gap invariants. This loss will certainly increase the complexity
of a theory of topological Floquet-crystalline phases, but not prevent it.

symmetries space dimension
Θ C Γ 1 2 3 4 5 6 7 8

complex
AZ classes

A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0

real
AZ classes

AI + 0 0 0 0 0 2Z 0 Z2 Z2 Z
BDI + + 1 Z 0 0 0 2Z 0 Z2 Z2
D 0 + 0 Za

2 Z 0 0 0 2Z 0 Z2
DIII − + 1 Z2 Zb

2 Z 0 0 0 2Z 0
AII − 0 0 0 Z2 Z2 Z 0 0 0 2Z
CII − − 1 2Z 0 Zb

2 Z2 Z 0 0 0
C 0 − 0 0 2Z 0 Z2 Z2 Z 0 0
CI + − 1 0 0 2Z 0 Z2 Z2 Z 0

Table 4.1: Periodic table of (Floquet) topological phases. The periodic table 3.3 (page
108) is reproduced. Here, the labels 0, Z, etc. indicate the gap invariants available
in the corresponding CAZ class and space dimension. Colored cells indicates the
invariants already identified in the periodized evolution operator framework (this
obviously also includes the always trivial phases 0). Cells in red correspond to phases
characterized by the W invariant, and it is also the case of orange cells, where a
non-vanishing W is compatible with additional symmetries. Similarly, cells in blue
correspond to phases characterized by the chiral G invariant, and it is also the case
of purple cells, where a non-vanishing G is compatible with additional symmetries.
Finally, the green cells correspond to the fermionic-TRI invariants in d = 2, 3. The
remaining cells where the definition of the invariant remains to be done are all Z2
invariants. Some of them, labeled by an exponent (a) are already known in another
formulation from Jiang et al. [JKAA11]. Others, labeled by an exponent (b) are
expected to be closely related to known invariants in the upper or lower CAZ class.

4.2 Observables vs. invariants

An open question is what physical quantities are related to gap and bulk invariants.
We expect the following:
– As discussed previously, gap invariants are expected to give the number of edge

modes. Hence, they should be related to scattering experiments which essentially
probe the existence (and robustness) of an edge state e.g. at a fixed energy. This
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is what happens when energy is injected on the edge. In particular, we expect
in analogy with equilibrium systems that conductances should be related to gap
invariants. A more precise discussion of this relation is found in the context of
electronic solid-state physics in the next chapter. Indeed, strong experimental
evidences of the relation between nontrivial bulk invariants and the existence of
protected edge states were found in various contexts, even in the anomalous case
[HPWP15; GGSY16; MSVA16; MZNS16].

– On the other hand, topological insulators were predicted to give rise to peculiar
electromagnetic responses functions (or more generally, responses functions to a
gauge field coupled to the TI) [QHZ08; EMV09; QLZZ09]; for example, three-
dimensional Kane-Mele insulators are predicted to have a magnetoelectric response,
due to a topological theta-term in the effective field theory for the electromagnetic
gauge field in presence of the topological insulator. In particular, this peculiar
magnetoelectric response leads to quantized Faraday rotation, which was recently
observed experimentally [DSPA16] in strained HgTe. Indeed, we expect similar
effects in a Floquet system. However, it is not clear to the author whether such a
response function is a property of the fundamental state or a property of the full
spectrum (including empty states). In the first case, I expect that band invariants
should be related to the response functions, and for example an anomalous system
would not display a signature of its bulk topology through response functions. In
the second case, it is possible that the gap invariants are relevant quantities to study
the response functions. Answering this question is particularly interesting as an
ongoing effort is based on topological response functions to characterize topological
phases in terms of anomalies, a very general point of view allowing generalizations
beyond the translationally-invariant interaction-less case [RML12; WW13; Lud15;
Wit16]. An extension of this point of view to Floquet systems would be highly
relevant.

– A related topic to both of those points is the generalization to Floquet systems
of the Green function approach to (bulk) topological invariants [Vol88a; Gur11;
EG11], which (i) appear as prefactors of the topological terms of the effective
action and (ii) are an important tool to formalize the bulk-edge correspondence,
which is still not fully understood. In particular, it should be possible to relate
analytically scattering (edge) invariants [FM16; TAD14] and bulk invariants, at
least in simple situations.

4.3 Some other perspectives

Another crucial question relevant to understand the experimental manifestations of
Floquet topological phases is what are the effects of imperfections and disorder? In
particular, imperfections/disorder in the modulation of the drive are always present
in experiments. In contrast, the effect of variations of the amplitude, frequency and
phase of the driving field are not understood theoretically. Physically, we expect
an effective broadening of the quasi-energy bands, and a corresponding reduction
of the quasi-energy gap, but as long as the parameters are “sufficiently” peaked in
a single region of the topological phase diagram, we expect topological properties
to resist disorder. Beyond such qualitative arguments, a full study is required and
still lacking. A disorder in frequency corresponding to a quasi-monochromatic source



163

would be particularly interesting to understand. Alas, even the Floquet operator is
not clearly defined in such a situation (see however [VPM16] and reference therein).
To define invariants, non-commutative geometry may be of some help (the odd and
even Chern invariants both have equivalents formulations in the NCG framework,
see e.g. [PS16]), but their precise formulation is far from straightforward. An easier
preliminary task consists of using numerical simulations to refine and validate our
physical intuitions. Time-resolved simulations are particularly well-suited to study
disorder in the modulation, and my work transport (see the next chapter, page 165)
is a first step in this direction.

In experiments, in addition to imperfections and disorder in the lattice system,
there are potentially more harmful dissipative processes. We do not expect a single
answer to the question of whether topology does survive to dissipative processes or
not. In particular, there is a sharp contrast between classical systems, where damping
(or amplification) can be taken into account in a “single-particle” description, and
quantum systems (solids and cold atoms) where a full description requires (i) a many-
body approach and (ii) to take into account the quantum nature of the driving field
and the dissipative reservoirs.

In quantum systems, the generalization of (even undriven) topological insulators
to interacting systems is a vast and topical subject that I will not develop here. On
the other hand, a crucial topic specific to driven systems is the domain of validity of
the effective Floquet description. In an illuminated sheet of graphene, for example,
the full description of the system should at least include a quantum electromagnetic
field and a quantum phonon bath (in addition to electronic reservoirs in transport
setups). It is not clear to what extent topological properties survive in this context
(and how to define them). There are a few studies on the subject, with Floquet
systems connected to a phonon bath [DOM14] and with a quantized electromagnetic
field [GD15]. Indeed, the effect of dissipation is also relevant for equilibrium systems,
but is more pressing here as energy is injected by the driving field. Taking into account
the quantum nature of the driving field may be less crucial (though interesting), as
classical light should be well-described by the Floquet approach.

In classical wave systems, like mechanical structures or photonic crystals, a pe-
riodic driving is a natural route to induce topological properties. In such systems,
non-linearities are nearly always present to some extent, and the question of the inter-
play between non-linear behavior and topology becomes of fundamental importance.
In the non-linear regime, topological classical wave systems depart from their quantum
counterparts, and promise both new physical phenomena and technological applica-
tions. For example, the effect of topological states on solitons was explored in optical
[LC16] and mechanical [CUV14; VUG14] systems; similarly, non-linear dynamics can
be affected by a underlying topological state [GTB16]. A very promising phenomenon
is the self-induced topological transitions (e.g. at large enough amplitude) which were
proposed in non-linear optical systems [LPRS13; HKA16].

On the fundamental side, the Laughlin argument [Lau81] relates the quantized Hall
conductivity of a 2D system to the quantized adiabatic charge transport through a
quasi-one dimensional Thouless pump [Tho83], a perspective related to the previously
mentioned anomalies point of view. Extending this argument to periodically-driven
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systems leads to considering topological “Floquet adiabatic pumps”, the study of
which requires an adiabatic Floquet theory, i.e. (t, t′) Floquet theory [BH89; PM93].
There are several studies on the geometric phases in such systems which may serve as
a ground for such as study, see [Vie09] and the reference therein. Notably, the article
of Viennot [Vie09] relates geometric phases to gerbe holonomies stemming from “the
appearance of changes in the Floquet blocks at the transitions between two local
charts of the parameter manifold”, a behavior reminiscent of Nathan and Rudner’s
[NR15] interpretation of anomalous phases as arising from singularities on the edges
of the phase Floquet/Brillouin zones at intermediate times (it is unclear to the author
of these lines whether such behaviors are actually related or not).



Chapter 5

Transport properties of (topologi-
cal) Floquet states
1 Overview
Transport measurement are a tool of choice to study the properties of electrons in
condensed matter. Indeed, robust quantized conductances are the hallmark of two-
dimensional topological phases, from the IQHE to Kane-Mele insulators (see the para-
graphs 1.1 and 1.2 of the Introduction, on pages 4 and 11 ). A natural question is
whether the topological properties of Floquet states manifest themselves on transport
properties in a solid state setting (on the topic of the realizability of Floquet states
in electronic condensed matter, see the paragraph 1.4.1 of the Introduction, page 25).
As the system is periodically driven, averaging over (at least) one driving period will
certainly be required to obtain stationary transport properties. Up to this techni-
cal difference, we expect in analogy with equilibrium systems (i) a signature of the
presence of edge states, for example as a quantized average conductance, and (ii) a
signature of their chiral (or helical, etc.) character, which should manifest itself in
multiterminal setups.

In this chapter, I will present the results of time-resolved numerical simulations
of electronic transport in two-dimensional Floquet systems, with a focus on topo-
logical states. This work should be understood as a proof-of-concept and as a first
step towards a more systematic study: there is no disorder, and the driven interface
transparency is not fully understood yet. The time-resolved simulations are based on
the tkwant code developed by the group of Xavier Waintal, based on their algorithmic
work on the subject [GWSH14]. This code enables us to compute (time-averaged)
differential conductances of a Floquet system for both a two-terminal and a three-
terminal geometry. The multi-terminal differential conductances indeed probe the
chiral nature of the topological state, and we observe that in the case at hand, the
conductances seem to be quantized. Hence, DC transport appears as an accurate
probe of Floquet topological states. This requires that this DC transport is described
by the effective unitary Floquet description. The validity of this description implies
that the dissipation occurs mostly inside the leads, i.e. that the system is small enough
for the travel times through it to be small compared with times scales of other source
of dissipation (phonons, photons, etc). In that situation, the differential conductance
of the system depends on the intermediate time evolution of the driven system and

165
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can be accurately described starting from the unitary dynamics of the driven system
and its associated topological properties. This should be the case for small enough
samples in which transport remains ballistic on the length scale of the sample, even
in the presence of dissipation or weak interactions.

2 Electronic transport inaperiodicallydrivensystem

2.1 Generalized Landauer-Büttiker formalism

R

µ1, T1

µ3, T3

µ4, T4 µ2, T2

Figure 5.1: Mesoscopic transport setup. A central scattering region R (light gray) is
connected to electronic reservoirs at fixed temperatures Tℓ and chemical potentials µℓ

through ideal quasi-one-dimensional leads (dark gray).

The standard setup for mesoscopic transport is composed of a central scattering
region R, which constitutes the system of interest, connected through several semi-
infinite metallic leads to electronic reservoirs at equilibrium, with fixed chemical
potential and temperature, see figure 5.1. The leads are assumed to be quasi-one
dimensional systems, with several channels corresponding to the transverse modes
of the semi-infinite lead. In the longitudinal direction, the wave functions in the lead
are plane waves e−iqx, where q is the longitudinal momentum. Hence, the modes of
the lead separate into incoming and outgoing modes distinguished by, respectively,
#”q · #”n < 0 and #”q · #”n < 0, where #”n is the normal to the interface defined as going
out of the scattering region. The main idea is that by measuring the currents flowing
from one lead to another, scattering properties of the system can be probed, which
depends on the available states on the system. More specifically, the differential
conductances are relevant quantities, related to the transmission coefficients from one
lead to another through the Landauer-Büttiker formalism [Lan57; Lan70; BILP85;
Büt86; Büt88b] (a review is found in the beginning of [Bee97]). In particular, such
quantities allow to probe the existence and nature of edge states, and thus to probe
the topological nature of a state of matter, as demonstrated for the quantum Hall
effect by Büttiker [Büt88a].
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Here, the system R is periodically driven in time, so quantities of interest like
the current or the differential conductances are expected to depend on time. After
a transient regime, we expect the scattering amplitudes to acquire the periodicity in
time of the driven central region. In such a steady state, we expect that the rolling av-
erage over a driving period T should not depend on time, and in the following we will
consider this kind of suitably averaged quantities. The study of out-of-equilibrium
transport, and in particular of time-dependent transport is naturally described in
the Keldysh framework. However, for a system without interactions between elec-
trons, the steady-state can be studied with the simpler Floquet scattering formalism
[JWM94; KLH05; MB02; AM06; SKRG08]. Note that even without interactions
between electrons, transient regimes are not described in this framework.

In this section, I focus on the results required to discuss the results of the numer-
ical simulation. Details on the formalism, including a derivation of the generalized
Landauer and Fisher-Lee formulas, are included in the appendix B, page 187.

The rolling average over a period T of the current leaving each lead

Iℓ(t) = 1
T

∫ t+T

t

dt′ ⟨Ĵℓ(t′)⟩ (5.1)

where ⟨Ĵℓ(t′)⟩ is the expectation value of the current leaving lead ℓ at time t′ can
be expressed in a scattering form. This average current satisfies a relation [MB02;
KLH05; SKRG08]:

Iℓ(t) = e

h

∫
dE

∑
ℓ′ ̸=ℓ

[Tℓℓ′(t, E)fℓ′(E) − Tℓ′ℓ(t, E)fℓ(E)] , (5.2)

where fℓ(E) is the Fermi-Dirac distribution of the lead ℓ at equilibrium at the chemical
potential µℓ, and Tℓ′ℓ(E) are the time-averaged transmission coefficients from lead ℓ
to lead ℓ′ with an injection energy E. We define the differential conductance Gℓℓ′(t, E)
as the sensitivity of the current leaving the lead ℓ to variations of the electrochemical
potential µℓ′ of the lead(1) ℓ′, namely by

Gℓℓ′(t, E) ≡ −e dIℓ

dµℓ′

⏐⏐⏐⏐
µℓ′ =µsys+E

. (5.3)

where µsys is the chemical potential of the scattering region. This definition is not
symmetrized in the various chemical potentials µℓ. Implicitly, it assumes the possi-
bility to independently control the electrochemical potential of all leads and of the
scattering region. In the long time stationary regime on which we focus where t → ∞,
the average conductances Gℓℓ′(t, E) are expected to reach a stationary value, which
we denote by

G∞
ℓℓ′(E) = lim

t→∞
Gℓℓ′(t, E). (5.4)

The existence of such a limit is not an obvious facts. It is in fact tightly related to the
existence of a stationary Floquet phase described by an effective unitary evolution,

(1)See [GWSH14] for a discussion on the distinction between chemical and electrical potential drops
at the interface between the system and an electrode. Such subtleties are quietly neglected in the
following.
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which is questionable in a solid state setting (see the paragraph 1.4.1 of the Introduc-
tion, page 25). Recent theoretical studies have shown that well-designed reservoirs
could even stabilize the filling of the quasi-energy band in such a phase [SBLR15]. We
expect the time scale associated to the transient regime to be mainly controlled by
dissipative processes, but a full modelization taking into account the driving field, the
various dissipative processes and the coupling to the leads would be required to fully
understand those issues. Here, we will assume that the stationary state described by
G∞

ℓℓ′ can actually be reached, and focus on its properties.

We obtain from Eq. (5.2) the zero temperature time-averaged differential conduc-
tances

G∞
ℓℓ′(E) = e2

h
Tℓℓ′(E) for ℓ ̸= ℓ′ (5.5a)

G∞
ℓℓ (E) = −e2

h

∑
ℓ′ ̸=ℓ

Tℓ′ℓ(E) (5.5b)

which satisfy the rule ∑
ℓ

Gℓ,ℓ′(E) = 0 (5.6)

for any ℓ′. Formula (5.5) is the generalization to Floquet systems of the standard
Landauer-Büttiker formula for the differential conductance of multiterminal equi-
librium systems.

2.2 Generalized Fisher-Lee relation

The average transmission coefficients Tℓℓ′(E) can be related to the Floquet-Green
functions of the system, in a way analogous to the case of undriven conductors [FL81].

On the one hand, the retarded Green function G(t, t′) is defined as the solution
of the Schrödinger equation(

iℏ d
dt −Hsys(t) + Σ

)
G(t, t′) = δ(t− t′) (5.7)

describing the scattering region, where a non-Hermitian self-energy term Σ takes into
account the coupling to the leads (see appendix A for details). It is related to the
corresponding evolution operator by

G(t, t′) = 1
iℏH(t− t′)U(t, t′) (5.8)

where H is the Heaviside step function. The mixed time-energy representation
of the retarded Green function is defined by

G(t, E) = 1
iℏ

∫
dτ eiEτ/ℏG(t, t− τ), (5.9)

which can be decomposed into harmonics called the Floquet-Green functions

G(p)(E) = 1
T

∫ T

0
dt eipωt G(t, E). (5.10)
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Floquet theory enables to express the Green-Floquet functions of the scattering region
as

G(p)(E) =
∑
r,α

|u(p+r)
α ⟩ ⟨ũ(r)

α |
E − [εα + rℏω − iℏγα] . (5.11)

where ⟨ũ(p)
α | and |u(p)

α ⟩ are respectively the left and right Floquet sideband modes
and εα − iℏγα is the complex quasi-energy associated to the Floquet mode |ψα⟩ (see
appendix A page 186 for details). A perturbation theory at low coupling with the
leads enables to replace, at first order, the Floquet sideband modes and quasi-energies
by their equivalent for the uncoupled problem, and to express the inverse lifetime
γα.

On the other hand, the transmission coefficients can also be decomposed into
harmonics as

Tℓ′ℓ(E) =
∑
p∈Z

T
(p)
ℓ′ℓ (E), (5.12)

where each T
(p)
ℓ′ℓ (E) is the transmission coefficient for an electron injected in lead ℓ

at the energy E = µℓ and leaving the system in lead ℓ′ at the energy E + pℏω, i.e.
after having exchanged p quanta with the driving perturbation (see figure 5.2). They
are related to the Floquet-Green functions by the generalized Fisher-Lee relation
[KLH05; SKRG08; AM06]

T
(p)
ℓ′ℓ (E) = Tr

[
G†(p)(E)Γ̂ℓ′(E + pℏω)G(p)(E)Γ̂ℓ(E)

]
(5.13)

where Γ̂ℓ(E) is the coupling operator at energy E between the system and the elec-
trode ℓ. This is the generalization to Floquet systems of the Fisher-Lee relation in
undriven systems [FL81].

In a low-coupling regime where the damping rates γα are sufficiently small (see
paragraph 4.3, page 180), the preceding analysis implies that the transmission coeffi-
cient Tℓ′ℓ(E)) and thus the differential conductance Gℓ′ℓ(E) vanish when the injection
energy E corresponds to a quasi-energy gap (that is to say, E ̸= ϵα +nℏω for all states
α and sidebands n). This property allows one to probe the existence of gaps in the
quasi-energy spectrum of the Floquet operator [KOBF11]. Moreover, we expect the
differential conductance to be essentially proportional to the density of quasi-energy
states.

3 Numerical simulations of DC transport

3.1 Methods

In practice, both a two-terminal geometry and a three-terminal geometry are con-
sidered. The time-dependent tight-binding model presented in the section 3.2.5 of
chapter 4 (page 131) is implemented on a finite lattice, to which leads are attached.
The leads are modeled by a simple tight-binding Hamiltonian on a square lattice
with nearest neighbors hoppings with amplitude J0 = 8 (so the bandwidth is 8J0,
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E

Einj
R T

(0)
ℓ′ℓ (Einj)

T
(1)
ℓ′ℓ (Einj)

T
(−1)
ℓ′ℓ (Einj)

ℏω

scattering
regionlead ℓ lead ℓ′

Figure 5.2: Sideband picture of Floquet scattering. A flow of electrons is injected in
the scattering region from the lead ℓ at a well-defined, fixed energy Einj. They travel
in the scattering region, where they may absorb or emit quanta ℏω of the driving
field (“photons”). Finally, they leave the scattering region in the outgoing modes
of leads ℓ′, at energies Einj + pℏω where |p| is the number of absorbed (p > 0) or
emitted (p < 0) photons. The sideband transmission coefficient Tℓ′ℓ(E) gives the
corresponding amplitude.

but the density of states is obviously not constant on the whole bandwidth). An
onsite potential is added to the lead Hamiltonian to reduce mismatches between the
incoming (and outgoing) states of the leads and the scattering states of the central
region. The time-dependent numerical calculations are performed using a numerical
method developed in the group of Xavier Waintal and described in [GWSH14]. This
method is mainly based on the resolution of a Schrödinger equation with an addi-
tional term taking into account the coupling to the leads. Although the technique is
based on wavefunctions, it is mathematically equivalent to more standard, but less ef-
ficient Green function approaches, and enables new kinds of time-resolved simulations
[WW16a; WW16b]. The group of Xavier Waintal and in particular Joseph Weston
developed an implementation of this method called tkwant, which is based on the
kwant package [GWAW14]. I refer the reader to the article [GWSH14] and to the
PhD thesis of Joseph for more details.

3.2 Two-terminaldifferential conductances: probingthequasi-energy
band structure

First, the (averaged) differential conductance GRL(t) is computed in a two-terminal
setup through a sample of width W = 60 and length L = 30 sites. After a transient
regime, the (rolling-averaged) differential conductance Ḡ(t) converges to a finite value
(see figures 5.3 and 5.4). This transient regime can be understood as the time of flight
of the state injected at the left lead to the right lead after the driving perturbation
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has been turned on and the Floquet states developed inside the system. When the
chemical potential of the incoming lead lies in a topological quasi-energy gap of the
scattering region, transport occurs through a chiral state localized near the edge
of the sample. We can easily evaluate the travel length L. On the other hand,
the expected (quasi-)group velocity is extracted from the slope of the quasi-energy
dispersion relation from Fig. 5.5 through

vg = 1
ℏ

dε
dk , (5.14)

and we obtain
vg ≈ (0.15 ± 0.01) aω (5.15)

where a is the lattice spacing and ω the driving frequency. This correlates perfectly
with the time ∆t between the switching on of the driving field and the first increase
from zero of the conductance: from the curve on figures 5.3 and 5.4 we find

L

∆t ≈ (0.14 ± 0.01) aω (5.16)

in excellent agreement with (5.15). From the theoretical point of view, the relation
between the quasi-group velocity and the duration of the transient regime is not
obvious. On the one hand, vg is the most simple dimensionally relevant quantity at
hand. As there are no other ingredients in the numerical simulation, it is natural
that it appears. On the other hand, we expect that other time-scales related to the
coupling between the driving field and the system and between the dissipating baths
and the system (which are not taken into account in this effective description) should
control the duration of the transient regimes.

After this transient regime, the differential conductance GRL(t) reaches a long
time stationary limit G∞

RL, as shown in the inset of figures 5.3 and 5.4. As expected,
this asymptotic differential conductance is sensitive to the quasi-energy spectrum of
the driven system. As shown on the left plot of figures 5.3 and 5.4, G∞

RL reaches high
values in a spectral band, but vanishes when the chemical potential µL −µsys lies in a
trivial spectral gap of the Floquet operator. The value of the differential conductance
is correlated with the density of quasi-energy states. When the bulk quasi-energy gap
is topological, the presence of the associated chiral states at the edge of the system
shown in figure 5.5 leads to an almost perfectly quantized two terminal conductance
as shown in the right plot of figures 5.3 and 5.4.

The correlation between the differential conductance as a function of the chemical
potential µL − µsys = E and the quasi-energy spectrum of the system is better visu-
alized when plotting long time limit of the conductances G∞

ℓℓ′ as a function of E. In
the numerical simulation, the chemical potential of the scattering region is taken as a
reference, and we set µsys = 0. The numerical results are plotted in figure 5.5 for both
a trivial and a topological gapped Floquet system, along with the quasi-energy band
structures of the unconnected driven systems on a semi-infinite strip. The differential
conductance vanishes only inside a trivial gap, except at the edge of the gap where
finite size effects occurs due to imperfect transparencies of the contact with the leads,
as shown on a magnified view around the gap ϵ = 0 in figure 5.6. This demonstrates
both that the quasi-energy spectrum of the finite system connected to infinite leads
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Figure 5.3: Transient behavior of two-terminal conductances in a band. We plot the
two-terminal differential conductances as a function of time, in the transient regime,
for the topologically trivial situation (a) of figure 5.5. Here, the incoming chemical
potential is set in a quasi-energy band (µL/ℏω = −0.14, green arrow in figure 5.5(b)).
Longer simulations shown in inset were carried out to ensure convergence (not fully
reached at t/T = 100). The asymptotic value is denoted by G∞

RL.
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Figure 5.4: Transient behavior of two-terminal conductances in gaps. We plot the
two-terminal differential conductances as a function of time, in the transient regime,
for the topologically trivial situation (a) of figure 5.5 (in blue) and for the topologically
non-trivial situation (b) of figure 5.5 (in red). Here, the incoming chemical potential
is set in the quasi-energy gap ε = 0 (µL/ℏω = 0.02, red and blue arrows in figure
5.5). Longer simulations shown in inset were carried out to ensure convergence (not
reached at t/T = 100). The asymptotic value are denoted by G∞

RL.
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Figure5.5: Comparisonofquasi-energyspectraand two-terminaldifferential conduc-
tances. We plot (i) the quasi-energy spectrum of the driven half-BHZ model in an
infinitely long ribbon, as a function of the quasi-momentum kx in the direction of
the ribbon and (ii) the asymptotic two-terminal differential conductances G∞

RL(E) for
a finite system connected to infinite leads as a function of the chemical potential of
the left lead, in two situations (a) and (b). In the trivial case (a), we find that the
differential conductance vanishes in both gaps. In the topological case (b), states lo-
calized on the sides of the ribbon appear inside the topological gap ϵ = 0, and in this
gap the differential conductance G∞

RL is quantized, with G = 1e2/h. In both cases,
the undriven Hamiltonian has parameters M = −1.0, J = 1.5, A = 4.0, B = 1.5
and the driving angular frequency is ω = 20. The driving amplitude is (a) F = 2
and (b) F = 8; such parameters correspond to bulk Floquet topological invariants (a)
W0 = 0 = Wπ and (b) W0 = 1 and Wπ = 0. The quasi-energy spectra are obtained
for strip of width W = 60 sites by diagonalization in Sambe space with 5 sidebands.
Colors are computed from the mean position of the states: a green color ( ) indicates
a (delocalized) state with average position in the center of the ribbon; a orange/red
color ( ) indicates a state located at the top edge of the ribbon, whereas a blue/violet
color ( ) indicates a state located at the bottom of the ribbon. Conductances are
computed for a finite sample of size W × L = 60 × 30 sites. Colored arrows indicate
the chemical potential of the incoming lead used in the computations of figures 5.3
and 5.4.
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Figure 5.6: Zoom of the asymptotic two-terminal differential conductances. Zoom of
figure 5.5: asymptotic two-terminal differential conductance G∞

RL in units of e2/h with
respect to the chemical potential of the left lead (black dots and lines) around the
quasi-energy gap ϵ = 0 for a trivial (blue) and topological gap (red). The reference
energy µL = 0 corresponds to an unbiased lead whose chemical potential identifies
with the one of the driven system µsys = 0. The differential conductance vanishes in
the quasi-energy gaps for a trivial spectral gap, but reaches an approximately constant
and quantized value G = e2/h within the topological gap with one chiral edge mode.

is sufficiently close to the spectrum of the isolated infinite strip, and that the differ-
ential conductance is an accurate probe of this spectrum for the open system. In the
topological case the asymptotic differential conductance remains constant and equal
to the number n = 1 of edge states (in units of e2/h) inside the topological gap as
shown in figure 5.6. There are small deviations from G∞

RL = 1 e2/h ≡ G0 visible in
figure 5.6. More precisely, we find numerically that

0.83 ≤ G∞
RL/G0 ≤ 0.96. (5.17)

This deviation to exact quantization is attributed to an imperfect transparency of the
interface, in a general sense, as discussed in section 4, page 177.

3.3 Multiterminal geometry

A crucial characteristic of the topological edge states associated with a nontrivial W
bulk invariant is their chiral nature. To test the chirality of the topological edge states,
we have computed differential conductances in a three-terminal geometry shown in
figure 5.8, where the width of the contact with the electrodes is W = 30 sites, and
the total length (between L and R contacts) is 50 sites. This corresponds to all three
arms having a length of 10 sites. In this geometry, we monitor the two differential
conductances

GR,T (E) = −e dIR

dµT

⏐⏐⏐⏐
µT =µsys+E

and GL,T (E) = −e dIL

dµT

⏐⏐⏐⏐
µT =µsys+E

(5.18)
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where IR,L are the average currents leaving the R,L contacts. The chemical potential
of the system is still set to µsys = 0 (as if imposed e.g. by a backgate).

Again, we first consider the case of a topological gap ϵ = 0 (case (b) of fig-
ure 5.5), and we set the chemical potential of the top lead µT inside this gap.
The time evolution of the differential conductances are shown in figure 5.7: af-
ter a transient regime, the differential conductances converge to asymptotic values
G∞

LT = 0.0002 ± 0.0001 e2/h and G∞
RT = 0.94 ± 0.01 e2/h. The value of G∞

LT is in
agreement with the two terminal results, while the vanishing of G∞

RT is in perfect
agreement with the chiral nature of the edge state moving clockwise for the chosen
parameters.

In contrast, probing the bulk modes by setting the chemical potential inside a bulk
Floquet band leads to the behavior displayed in figure 5.8. After a longer transient
regime due to slower group velocities, both conductances converge towards large finite
values, confirming the absence of chirality for these bulk states.

The spatial structure of Floquet states is shown in insets of figures 5.7 and 5.8,
which represent a color map of the local density of states |ψ(t, x)|2 in the (near-)
stationary regime. We observe that the topological edge states are indeed localized at
the edge, while the bulk states are delocalized in the whole sample. The chiral nature
of the states injected in the top lead is clearly apparent and confirms the transport
results.
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Figure 5.7: Three-terminal conductances in a topological quasi-energy gap. The
three-terminal differential conductances GLT (violet) and GRT (orange) are plotted
as functions of time for a chemical potential of the top lead in a topological bulk gap
(µL/ℏω = 0.02). After an initial transient regime, the nonlocal conductances reach
asymptotic values G∞

LT = 0.0002 ± 0.0001 e2/h and G∞
RT = 0.94 ± 0.01 e2/h. The si-

multaneous vanishing of G∞
LT and the quantization of G∞

RT to the two-terminal value
demonstrates the chiral nature of topological edge states. This is corroborated by the
local density of states |ψ(t, x)|2 in the stationary regime (at t/T = 1000) shown in
inset, which is entirely localized around the T → R edge, demonstrating furthermore
the high transparency of the R contact for this edge mode. Simulations are done with
a width of the contacts W = 30 sites and a total length of 50 sites.
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Figure5.8: Three-terminal conductances inaquasi-energyband. The three-terminal
differential conductance GLT (violet) and GRT (orange) are plotted as functions of
time for a chemical potential of the top lead in a quasi-energy band (µL/ℏω = −0.14).
A longer transient regime is observed, in agreement with smaller group velocities
than for the edge states, and large asymptotic values for both GLT and GRT are
reached, confirming the non-chiral nature of the corresponding Floquet states. The
local density of states |ψ(t, x)|2 shown in inset for at t/T = 1800 demonstrates the
delocalized nature of the Floquet states.
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4 Discussion and perspectives

The aim of the current section is three-fold. First, a literature review puts the work
presented in this chapter in perspective. In particular, a key point of our study
is the use of time-resolved simulations, and in view of the literature, I discuss the
advantages of such a method and the perspectives it offers. The deviations (5.17)
to exact quantization in presence of topological edge states were initially attributed
to the finite dispersion relation of the leads, which does not fully satisfy the wide
band approximation and leads to imperfect transparencies of the contacts due to a
mismatch between spatial wave functions. However, they may also appear as a more
general kind of imperfect transparency, and as a signature of the “photon-inhibited
transport” [FP15] requiring a Floquet sum rule [KS13; FP15; FP16] on the incoming
sidebands to recover quantized conductances. This behavior should depend on the
strength on the coupling between the leads and the scattering region, and I present a
work in progress towards its understanding.

4.1 Literature review

Several studies on the transport in topological Floquet systems exist, which I will now
review.

In condensed matter, the study of Floquet topological systems comes in great part
from the study of photoinduced electric properties, starting with Yao, MacDonald and
Niu [YMN07] and Oka and Aoki [OA09], who already study transport properties of an
illuminated sheet of graphene, in particular to show the existence of a photoinduced
DC Hall current.

Kitagawa, Oka, Brataas, Fu and Demler [KOBF11] aim at generalizing the usual
approach to transport to Floquet systems. Building on the Floquet scattering formal-
ism (see later), they express (i) a Floquet-Landauer formula and (ii) a Floquet-Fisher-
Lee relation relating (a) the average current and conductances to the suitably define
transmission coefficients, and (b) the transmission coefficients to the Floquet-Green
function of the system of interest. In particular, they show that a gapped effec-
tive Hamiltonian should lead to vanishing conductances. Turning to the example of
graphene under an off-resonant circularly polarized light of weak intensity, Kitagawa
et al. also show, in a high-frequency perturbative expansion close to the Dirac points,
that a topological Floquet system displays nearly quantized Hall conductance.

Gu, Fertig, Arovas and Auerbach [GFAA11] consider a ribbon of illuminated
graphene connected to symmetrically biased two leads at equilibrium. Through nu-
merical simulations of two-terminal conductance for various ribbon length L, they
demonstrate a ballistic behaviour (for large L, the conductance G saturates to a con-
stant value essentially quantized to e2/h) in presence of topological edge states. On
a ribbon with periodic boundary conditions (i.e. a cylinder), where edge states are
removed in the direction of transport, they observe for short ribbons a superdiffusive
evanescent bulk transport (where G ∼ 1/Lb with b < 1 instead of b = 1) in the
quasi-energy gap.
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Kundu and Seradjeh [KS13] study a different system: they consider transport in
the Floquet generalization [JKAA11] of a one-dimensional Kitaev chain [Kit01], sup-
porting unpaired “Floquet-Majorana fermions” at its ends. Kundu et al. consider a
two-terminal setup with symmetric biases ±V and compute analytically and numeri-
cally (with disorder) the corresponding differential conductanceG(V ) = dI/dV . They
find (i) that G(0) and/or G(ℏω/2) are not quantized in the presence of a Floquet-
Majorana mode at the corresponding quasi-energy, but (ii) that the expected quanti-
zation is recovered after the application of a “Floquet sum rule” consisting in summing
the differential conductances G(V + nℏω) over all harmonics n ∈ Z. Notably, this
work includes a study of the low-frequency regime.

Foa Torres, Perez-Piskunow, Balseiro and Usaj [TPBU14] consider illuminated
graphene, like Gu et al. [GFAA11] and Kitagawa et al. [KOBF11]. The major
differences are that Foa Torres et al. [TPBU14] consider (i) a multiterminal setup
and (ii) only illuminate a central spot, away of which they smoothly turn off the
driving before reaching the leads. Through numerical simulations based on Kwant
code [GWAW14], they find that driving-induced topological edge states are not always
accompanied by the expected quantized conductances. This discrepancy is attributed
to a mismatch between the states in the illuminated spot and the states outside of
this spot.

Kundu, Fertig and Seradjeh [KFS14] consider the bulk transport in a cylinder
of illuminated graphene, at the transition between topologically distinct topological
Floquet phases. Through numerical simulations, they observe that in certain cases,
the bulk conductivity may be significantly reduced from the expected value of e2/h
due to mismatches between the wave functions of the lead and the wave functions in
the illuminated sample. In other cases, the usual value is observed. Notably, they
observe that in the situations when there is a mismatch, a small amount of disorder
near the leads enhances the bulk conductivity with respect to the clean situations, as
it allows a mixing between the mismatched states.

Farrell and Pereg-Barnea [FP16; FP15] use both analytical and numerical compu-
tation to show that in Floquet analogues of a two-dimensional QSHE, conductances
expected to be quantized to 2e2/h can be significantly smaller, and that a Floquet
sum rule similar to the one first proposed by Kundu et al. [KS13], where the differ-
ential conductance is summed over the incoming sidebands, is necessary to recover
the usual conductance quantization. This sum rule is necessary because states com-
ing from the reservoirs do not fully access the Floquet sidebands: only a proportion
⟨u(p) | u(p)⟩ of the electric flux absorb the right number of photons to populate the
sideband p. Through numerical computations, they show that this result still holds in
disordered systems. Even if it is not the main focus of their papers, their conclusions
also apply to transport Chern insulators, like illuminated graphene.

The global picture emerging from this corpus is that at least in certain situations,
instead of a quantized transmission coefficient Tℓ,ℓ′(E) for energies E in a topological
gap, like in equilibrium system, Floquet transmission coefficients are not directly
quantized. Instead, a Floquet sum rule [KS13; FP15; FP16] has to be applied, and
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the quantity

T̃ℓ,ℓ′(E) =
∑
m∈Z

Tℓ,ℓ′(E +mℏω) =
∑

m,n∈Z
T

(n)
ℓ,ℓ′ (E +mℏω) (5.19)

is quantized. When this sum rule is not applied, various kinds of deviations from
quantization may be observed, which is consistent with the results of Foa Torres
et al. [TPBU14] and Kundu et al. [KFS14]. With a high-frequency off-resonant
light of weak amplitude, the conductance is essentially contained in the component
Tℓ,ℓ′(E) corresponding to the incoming sideband m = 0, because the scalar products
⟨u(0)

α | u(0)
α ⟩ are very close to the unity, so essentially only one component contributes

to the sum (5.19). This corresponds to the situation studied by Kitagawa et al.
[KOBF11].

4.2 Why using time-resolved simulations for Floquet transport?

The standard method used in the literature to study transport in periodically driven
systems is to fully exploit the time periodicity and Floquet theory to numerically com-
pute e.g. current or differential conductances through the Floquet-Landauer formal-
ism. Obvious advantages of this method is that (i) it is computationally efficient com-
pared to a time-resolved simulation and (ii) it directly includes the time-periodicity,
which should help connecting the observable and analytically accessible quantities.
However, a time-resolved numerical simulation, despite its numerical cost, also offers
several advantages. The first obvious advantage is that transient regimes may be
accessed. In our simulations, they are not directly experimentally relevant because
transient regimes are not universal. Yet, features like the velocity of a wave packet
should be experimentally accessible. The full modelization of the system including
such processes is challenging but should be possible.

The robustness to imperfections and disorder is the hallmark of topological states.
We therefore expect that e.g. an obstacle at the edge or a small fluctuation of the
driving field should not modify the edge states, nor the edge state transport, at least
if they do not break the symmetry(ies) protecting the topology. Transport signa-
tures constitute an appropriate platform for the study of disordered Floquet systems,
especially with a “disordered” driving field (in amplitude, frequency and/or phase),
a situation which explicitly requires time-resolved numerics. In such situations, the
definition of bulk invariants – and even of the quasi-energy spectrum – is not straight-
forward. On the other hand, it is conceptually easy to observe the effect of various
kinds of disorder on the transport signatures. However, it may be technically chal-
lenging, especially if a large number of disorder realizations are required. Indeed, the
effect of disorder on Floquet topological phases is not fully understood. In particular,
the effect of an imperfect driving field is only known from experimental observations.
The aforementioned transport studies indeed observe that a static disorder do not
significantly affect the edge state transport, even though a few peculiar behaviors are
observed in the bulk transport. Beyond such observations, there are studies on the
control of conductance statistics by an a driving field by Kitagawa et al. [KOD12]
and Gopar et al. [GM10], on so-called Floquet-Anderson topological phases by Ti-
tum et al. [TLRR15; TBRR16], and on disordered discrete-time quantum walks by
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Rakovszky et al. [RA15], Edge et al. [EA15], Gannot [Gan15] and Verga [Ver16]. In
particular, Edge et al. and Titum et al. observe transitions which seem to be in the
quantum Hall effect universality class, and Rakovszky et al. and Gannot et al explore
the interplay with symmetries. Finally, Fleury et al. [FKA15] observe the (lack of)
effect of disorder in the phase of the driving field. Another approach is the scattering
characterization of Floquet states developed by Fulga et al. [FM16] and Tarasinski
et al. [TAD14], which also allows them to study disordered Floquet systems.

Finally, the transport through a system submitted to a time-periodic drive is well-
understood in the context of nanostructures like tunnel junctions [KLH05; PA04;
TG63], where the driving induces photon-assisted tunneling. Here, the setup is not
exactly the same: in contrast with tunnel junctions, the system is not separated
from the leads by insulating barriers(2). Hence, the behavior of the interface between
the time-dependent scattering region and the time-independent may differ from the
known behavior of tunnel junctions. The time-resolved numerical simulations do not
require particular assumptions on the interface, and may serve as a way to explore
the different regimes through a controlled tight-binding description.

4.3 Floquet sum rule andquantized conductances at strong andweak
coupling limits

Starting from the main results of Floquet scattering formalism, namely the Floquet-
Landauer and the Floquet-Fisher-Lee formulas, we may hope to understand whether
deviations to quantized conductance are to be expected, and if so, what are the phys-
ical parameters controlling such deviations. Unfortunately, the Fisher-Lee formula is
not straightforwardly applied analytically. In order to obtain a simplified picture con-
taining only the relevant ingredients, I will use several simplifying hypotheses which
are not fully justified. The reader is hence advised to proceed with caution with the
contents of the current section, which are exploratory.

4.3.1 The case of a static system

As the simplifications that I need are not fully controlled, it is useful to first consider
a static system where the physics is well understood. The static system is described
by its eigenstates |ψα⟩ associated to eigen-energies Eα, and damping rates γα. The
transmission coefficient(s) of equation (5.113) of appendix B (page 198) is replaced
by a single transmission coefficient depending on the injection energy E, expressed
as

Tℓℓ′(E) = Tr
[∑

α

|ψα⟩⟨ψα|
E − [Eα + iℏγα]Γ

ℓ(E)
∑

α

|ψα⟩⟨ψα|
E − [Eα − iℏγα]Γ

ℓ′
(E)
]
. (5.20)

For concreteness, focus on the case of Chern insulator with a chiral edge state at
zero energy. As long as damping rates are small enough, only the chiral edge state ψ

(2)In terms of the quantities introduced in the analysis of appendix B where we follow [KLH05],
the coupling Γ to the leads may be of the same order of magnitude (or even greater) than the tight-
binding hopping amplitude t inside the scattering region, in contrast with the case of nanostructures
where Γ ≪ t, with e.g. typical values of Γ/t = 0.1 [KLH05].
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contributes at E = 0, so

Tℓℓ′(0) = 1
γ2 Tr

[
|ψ⟩⟨ψ| Γℓ(0) |ψ⟩⟨ψ| Γℓ′

(0)
]
. (5.21)

As the trace in this equation is a trace on the interfaces, or equivalently the transverse
Hilbert space, we focus on the transverse part of both the coupling coefficients and the
eigenstates. First, the state |ψ⟩ is replaced by its transverse component |ψ̂⟩. Second,
the coupling operator Γℓ(0) are be replaced by transverse identity operators γℓ(0)Id;
this assumes that the interface are transparent enough so the transverse modes of
the leads can accurately reconstruct (and host) any transverse mode of the scattering
region. Of course, this simplified approach does not account for the chirality of the
edge mode (so e.g. in a multiterminal setup, a non-zero quantized Tℓ,ℓ′(0) = 1 should
correspond to a vanishing Tℓ′,ℓ(0) = 0). The transmission coefficient becomes

Tℓℓ′(0) ≃ γℓ(0)γℓ′(0)
γ2 Tr

[
|ψ̂⟩⟨ψ̂| |ψ̂⟩⟨ψ̂|

]
≃ Tr

[
|ψ̂⟩⟨ψ̂| |ψ̂⟩⟨ψ̂|

]
(5.22)

where indeed
Tr
[
|ψ̂⟩⟨ψ̂| |ψ̂⟩⟨ψ̂|

]
= 1 (5.23)

In a situation where ℓ and ℓ′ are connected in the right order by a chiral edge state,
we indeed expect

Tℓℓ′(0) = 1. (5.24)

4.3.2 The case of a driven system

We now move on to the case of a driven system, where again we focus on the transverse
part of the Floquet sideband modes, and assume a good contact in the wide band
limit to replace the coupling operators by transverse identities, so up to a prefactor
accounting for the chirality of edge states, the equation (5.113) of appendix B (page
198) becomes

T
(p)
ℓℓ′ (E) ≃ γ2

∑
s,α
r,β

⟨û(p+s)
α | û(p+r)

β ⟩ ⟨û(r)
β | û(s)

α ⟩[
E − [εα + sℏω + iℏγα]

][
E − [εβ + rℏω − iℏγβ ]

] . (5.25)

Due to the equation (4.32) (page 116) applied to the first scalar product, the full
transmission coefficient summed over outgoing sidebands is

Tℓℓ′(E) =
∑
p∈Z

T
(p)
ℓℓ′ (E) ≃

∑
s,α
r,β

γ2 δα,βδr,s ⟨û(r)
β | û(s)

α ⟩[
E − [εα + sℏω + iℏγα]

][
E − [εβ + rℏω − iℏγβ ]

]
(5.26)

that is to say

Tℓℓ′(E) ≃
∑
s,α

γ2[(
E − (εα + sℏω)

)2 + (ℏγα)2
] ⟨û(s)

α | û(s)
α ⟩ (5.27)
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Consider as a “first Floquet zone” that quasi-energies are by convention taken in the
range −ℏω/2 < εα ≤ ℏω/2. The incoming energy E is uniquely written as E = ε+nℏω
with −ℏω/2 < ε ≤ ℏω/2 and n ∈ Z.

In a regime where the damping rates are small enough such that γ ≪ ω, only the
n = s term contributes (else the Lorentzian peak will be vanishingly small), so

Tℓℓ′(ε+ nℏω) ≃
∑

α

γ2

(ε− εα)2 + (ℏγα)2 ⟨û(n)
α | û(n)

α ⟩ . (5.28)

Here,
⟨û(n)

α | û(n)
α ⟩ ≠ 1 (5.29)

in the general case. Instead, Floquet sideband modes satisfy the normalization rela-
tion (4.32) (page 116), which is at the origin of the Floquet sum rule introduced by
Kundu et al. [KS13] and Farell et al. [FP16], where the transmission coefficients also
have to be summed over incoming sidebands so that∑

n∈Z
⟨û(n)

α | û(n)
α ⟩ = 1 (5.30)

Again, the additional prefactors due to the coupling with the leads should balance
each other to give a quantized conductance, and we expect∑

n∈Z
Tℓℓ′(ε− nℏω) = 1 (5.31)

when there is one chiral edge state connecting leads ℓ and ℓ′ in the right order.

The condition γ ≪ ω corresponds to a weak coupling between the scattering
region and the leads, which may not be the case. Another interesting regime is a
very strong coupling regime where γ ≫ (2N + 1)ω where 2N + 1 is the number
of relevant sidebands (with nonvanishing weight). Namely, we assume that N is the
smallest integer such that ∑

−N≤n≤N

⟨û(n)
α | û(n)

α ⟩ ≈ 1 (5.32)

I will call the quantity ∆F = (2N + 1)ℏω the Floquet bandwidth. In this situa-
tion, the Lorentzian in equation (5.27) is approximately constant on a range 2Nℏω,
and

Tℓℓ′(ε) ≃
∑

−N≤s≤N,α

⟨û(s)
α | û(s)

α ⟩ (5.33)

and equation (5.32) ensures that this last sum is in fact 1.

4.3.3 Summary

To conclude, we identified two particular regimes (see figure 5.9), depending on the
strength on the coupling γ between the leads and the scattering region with respect
to the driving frequency:
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– at weak coupling γ ≪ ω, a sum rule on incoming energies E has to be applied to
the transmission coefficients Tℓℓ′(E) to recover quantized conductance;

– at very strong coupling γ ≫ ω, no sum rule is necessary, as the transmission
coefficients Tℓℓ′(E) are directly quantized.

More precisely, the very strong coupling regime is only attained when coupling ℏγ
is large with respect to the “Floquet bandwidth” ∆F which captures the sidebands
with nonvanishing weight. For intermediate couplings, there is a crossover where we
expect that neither Tℓℓ′ nor the quantity T̃ℓℓ′ obtained by the Floquet sum rule should
be quantized.

E

0 2ℏωℏω−ℏω−2ℏω

(a) low coupling regime

E

0 2ℏωℏω−ℏω−2ℏω

∆F
(b) strong coupling regime

Figure 5.9: Strong anweak coupling regimes. In red, the Lorentzian prefactor (E2 +
γ2)−1 in the sum appearing in Tℓℓ′ is plotted as a function of the argument E. At
weak coupling, the Lorentzian is very peaked and selects only one sideband. On the
other hand, at strong coupling, the Lorentzian is very large and all relevant sidebands
contribute approximately with the same weight.

4.4 Back to numerical data

To elucidate the origin of the deviation (5.17) to exact quantization, we compute the
sideband distribution of the topological edge state of figure 5.6. As it crosses ε = 0
at k = 0, we focus on the kx = 0 component, where we find that, in a semi-infinite
ribbon,

⟨u(0) | u(0)⟩ ≃ 0.78 whereas ⟨u(±1) | u(±1)⟩ ≃ 0.11. (5.34)

and nearly vanishing components on the other sidebands, see figure 5.10(a). Similar
values are found for small but finite values of the longitudinal momentum kx.

Preliminary results on a situation where two edge states appear in the gap ε = π
(for the same undriven Hamiltonian parameters, ω = 6.5 and F = 5.7, see the phase
diagram of model on the figure 4.8 at page 134) show a lack of quantization of the con-
ductance, which approximately is G∞

RL/G0 ≃ 0.6 ± 0.1 inside the topological gap, in
contrast with an “expected” value counting the edge states of G∞

RL,cnt/G0 = 2. Again,
we initially attributed this lack of quantization to a mismatch of wavefunctions, pos-
sibly related to the spatial structure of the edge modes (located at finite longitudinal
momenta ±k0

x instead of kx = 0). The numerical computation of the sideband distri-
bution reveals that the component ⟨u(0) | u(0)⟩ ≃ 0.11 (at k0

x) is very small, as seen
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on figure 5.10(b), hinting that the lack of quantization may be attributed to a too
weak coupling between the leads and the central region.
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Figure 5.10: Sideband weights of the topological edge state. Sideband weights of
the topological edge state(s) of the harmonically-driven half-BHZ model (a) for the
parameters of figure 5.5 and (b) for the same undriven Hamiltonian parameters, ω =
6.5 and F = 5.7. The weights ⟨u(p)|u(p)⟩ are computed on a semi-periodic ribbon
of width 20 from a Sambe Hamiltonian truncated to 21 sidebands. The sideband
weights sum to unity (as expected, but this property is imposed by the numerical
computation here).

Interestingly, we do not observe that

G∞
RL/G0 = ⟨u(0) | u(0)⟩ ×Ns (5.35)

where Ns is the number of topological edge states: the numerical values are higher in
the two examples at hand. It is adventurous to generalize from such a small sample,
but we can observe that in the two examples at hand, we do observe the empirical
relation

G∞
RL/G0 ≃

[
⟨u(0) | u(0)⟩ + 1

2 ⟨u(−1) | u(−1)⟩ + 1
2 ⟨u(1) | u(1)⟩

]
×Ns (5.36)

which is a hint that the coupling regime is probably intermediate.

Several steps are missing to fully understand the (lack of) quantization in presence
of edge states. First, it is necessary to compute the transmission coefficients T (p)(E+
qℏω) for different injection energies. An important difficulty for such a task is to
produce leads with a large enough bandwidth, so that the wide-band approximation
is valid. For static systems, this is possible, though not completely trivial and not
systematic. In the case of Floquet transport, probing transport at different (incoming)
sidebands requires an enormous bandwidth (essentially Nℏω, where N is the number
of sidebands to probe). Increasing the hopping terms helps to get a large bandwidth,
but a too high hopping parameter J0 also spoils the transparency, at least with a fixed
lattice. Using a smaller lattice for the leads may help, but requires to carefully design
the interface. Second, a numerical evaluation of the coupling strength γ is required
to determine what coupling regime (weak, strong, or intermediate) is relevant in
the simulations. Such a numerical evaluation should not pose particular difficulties.
Tuning the coupling constant of the numerical simulation from weak to strong coupling
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would allow to confirm the simplified picture developed in section 4.3 (at low coupling,
a quantized conductance should be recovered after applying a sum rule; in contrast,
in the strong coupling regime, the conductance should be directly quantized).

5 Conclusion and perspectives
The original motivations for this work were to set ground for time-resolved transport
simulations of Floquet systems, which should allow to study such systems with defects
and disorder, and in particular with imperfections in the driving. From the conceptual
point of view, this is an easy task. However, a proper analysis of disordered systems
requires averages on a large number of disordered configurations (e.g. to access level
spacing or conductance statistics), and at the moment the numerical cost of time-
resolved simulations is prohibitive. They may become possible in near future thanks to
refined algorithms and/or smaller systems (if we manage to obtain good transparency
even at small widths).

It appears that a preliminary task is to fully understand the interface between the
driven scattering region and the static lead in the relevant context. All the framework
of Floquet scattering has already been developed to study phenomena like photon-
assisted tunneling [TG63; PA04; KLH05], but it is not clear whether the regime should
be the same to probe topological edge states. In particular, it is not clear whether the
“Floquet sum rule” should be valid in all regimes, or only for a tunnel interface i.e. for
a low coupling between the system and the leads. Understanding the different coupling
regimes and their consequences on transport signatures of topological Floquet states
is a necessary first step. Another important question that we did not address is to
what extent the driving field leaks in the leads. Experimentally, it is not reasonable
to expect the driving field to switch from zero to a large finite amplitude on the length
scale of one lattice spacing. We may either assume that only a part of the sample
is submitted to the driving field (e.g. a laser spot): this is the route taken by Foa
Torres, et al. [TPBU14]. This setup is questionable when the undriven system is
an insulator: outside of the illuminated spot, we expect the system to be insulating,
which should prevent the observation of any interesting feature if the undriven region
is too large (note however that this setup would be similar to a tunnel junction).
Another possibility is to consider a decreasing driving field inside the leads. This
kind of setup is more controlled: it is reasonable to expect that the lead will remain
conducting even under the driving field, and it is possible to ensure that it is the case.
Here, the behavior of the lead and of the scattering region can be understood and
controlled separately. In such a setup, the lead will also develop Floquet sidebands
(similar to the Floquet/Volkov states in time-resolved ARPES measurements, see
paragraph 1.4.1 of the Introduction, page 25), which complicates the analysis.

Despite such difficulties, transport measurements are a promising way to probe and
understand topological Floquet states in electronic systems. Even if the experimental
technology is not yet ready to realize and probe such electronic Floquet systems,
transport simulations may be in the near future a good numerical tool to understand
the robustness of Floquet states to various perturbations.
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Appendix A – Floquet theory with a self-energy term
To describe transport properties, we need to consider a system connected to leads.
An accurate description should take into account the (quantum) degrees of freedom of
the reservoirs, and the system of interest should be treated as a subsystem described
by a partial density operator. Despite several studies (see the general introduction,
paragraph 1.4.1, page 25) in this direction, the description (and the fate) of topolog-
ical properties of Floquet systems in such a situation is not known at the moment.
However, from physical grounds and by analogy with experimental situations out-
side of the electronic solid state realm, we expect that an effective description of the
coupling with the leads should, to an extent, leave topological properties unharmed.
Hence, we will assume that the elimination of the degrees of freedom of the environ-
ment can be taken into account by adding a non-hermitian self-energy term in the
Hamiltonian. It is the case in the wide-band limit (see paragraph B.2.3, page 196),
where the coupling to the leads do not depend on energy, Γ(E) ≃ Γ, and gives rise to
the anti-Hermitian term Σ = iΓ. Such a self-energy broadens the Floquet levels by
giving the corresponding Floquet eigenstates a finite lifetime. Indeed, the self-energy
may also contain other sources of broadening, but we assume that the coupling to the
leads is the dominant source of dissipation.

Hence, we are left with a time-dependent Schrödinger equation

iℏ d
dt |ψ(t)⟩ = (H(t) − iΣ) |ψ(t)⟩ , (5.37)

with a time-periodic Hamiltonian H(t+T ) = H(t) and an Hermitian self-energy term
Σ. The corresponding evolution operator U(t, t′) is not unitary anymore, but we will
assume that it is always invertible and diagonalisable. A few amendments have to be
made to the usual Floquet theory in this case: as U(T ) is not necessarily unitary, the
spectral theorem do not apply. However, we have assumed that it is diagonalizable,
so there is a bi-orthonormal basis of left- and right-eigenstates ⟨ϕ̃α| and |ϕα⟩ such
that

U(T ) |ϕα⟩ = λα |ϕα⟩
⟨ϕ̃α|U(T ) = ⟨ϕ̃α|λα

(5.38)

and
⟨ϕ̃α | ϕβ⟩ = δαβ and

∑
α

|ϕα⟩ ⟨ϕ̃α| = Id. (5.39)

The corresponding eigenvalues are written as

λα = exp
[
−i
(εα

ℏ
− iγα

)
T
]
. (5.40)

In this appendix, the eigenvalues λα are called the Floquet eigenvalues, the quantities
εα are the quasi-energies and γα the Floquet inverse lifetimes or damping rates.

Essentially, all Floquet theory can be translated in this situation by replacing the
bras ⟨ϕα| by the proper left-eigenstates ⟨ϕ̃α|. Indeed, they coincide when Σ = 0. In
particular, there are left and right Floquet modes

|uα(t)⟩ = exp
[
i
(εα

ℏ
− iγα

)
t
]

|ψα(t)⟩ = |uα(t+ T )⟩ , (5.41)
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and
⟨ũα(t)| = ⟨ψ̃α(t)| exp

[
−i
(εα

ℏ
− iγα

)
t
]

= ⟨ũα(t+ T )| (5.42)

which are decomposed in Fourier series as left- and right-sideband modes |u(p)
α ⟩ and

⟨ũ(p)
α | (see the section 2.2 of chapter 4 for the detailed standard case, page 2.2).

The evolution operator can therefore be expanded as

U(t, t′) =
∑

α

exp
[
−i
(εα

ℏ
− iγα

)
(t− t′)

]
|uα(t)⟩ ⟨ũα(t′)| . (5.43)

where the time-periodic part containing Floquet modes describes the short time-
scale dynamics, whereas the exponentials containing quasi-energies εα and inverse
lifetimes γα of Floquet modes describe the long time-scale dynamics. Indeed, this
expression can be further expanded in terms of the Fourier modes of the Floquet
modes (the Floquet sidebands) as

U(t, t′) =
∑

α

∑
p,p′∈Z

exp
[
−i
(εα

ℏ
− iγα

)
(t− t′) − iω(pt− p′t′)

]
|u(p)

α ⟩ ⟨ũ(p′)
α | . (5.44)

Appendix B – Floquetscattering formalism: computationof
the transmission coefficients

In the following section, we adapt the approach of Kohler, Lehmann and Hänggi
[KLH05] to describe the scattering through a two-dimensional driven system con-
nected to electronic reservoirs, such as the example depicted in the figure 5.1. We
follow closely the approach of [KLH05], with notable differences only due to the ge-
ometry of the system.

B.1 Description of the setup

We consider a system composed of a central scattering region R, which constitutes the
system of interest, connected through several semi-infinite leads to electronic reser-
voirs at equilibrium, with fixed chemical potential and temperature (the temperature
will be assumed to be zero in the following). The scattering region is described by a
(periodic) time-dependent tight-binding Hamiltonian

Hsys =
∑

nn′∈R
Hnn′(t)c†

ncn′ with Hnn′(t+ T ) = Hnn′(t). (5.45)

Here, cn is the annihilation operator of an electron in the localized state n, and the
index n takes into account the position in the Bravais lattice as well as internal degrees
of freedom (sublattice, spin, orbital, etc.)

A number Nleads of semi-infinite leads are connected to this system by ideal con-
tacts. Wave functions in the semi-infinite lead are assumed to read

ψαq(x, y) = 1√
L

e−iqxχα(y) (5.46)
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where x = 0 corresponds to the interface with the system and where the transverse
modes |χ⟩ are assumed to not depend on the longitudinal momentum q, and to form
an orthonormal basis of the ∑

α

|χα⟩⟨χα| = Idtransverse. (5.47)

Incoming and outgoing modes are distinguished by, respectively, #”q · #”n < 0 and
#”q · #”n < 0, where #”n is the normal to the interface, defined as going out of the scattering
region. Incoming and outgoing modes have a well-defined energy given by a dispersion
relation of the form Eℓαq. The leads are described by the Hamiltonian

Hleads =
Nleads∑

ℓ=1

∑
α,q

Eℓαqc
†
ℓαqcℓαq. (5.48)

where α label the transverse modes of the semi-infinite lead and q the longitudinal
momentum.

The annihilation operator of a state localized in a lead at position (x, y) is

cℓ(x, y) =
∑
α,q

cℓαqχ
∗
ℓαq(y)eiqx. (5.49)

At the interface with the scattering region where x = 0, we consider

cℓ,n = cℓ(x = 0, y = yℓ,n) =
∑
α,q

cℓαqχ
∗
ℓαq(yℓ,n) (5.50)

where yℓ,n is the transverse position of the site n at the interface with lead ℓ. It
is more convenient to forget about internal degrees of freedom in the leads. Taking
them into account can easily be achieved by separating each lead and reservoir into
sub-leads and sub-reservoirs, each of which accounts for an internal degree of freedom.
The contacts between the leads and the scattering region are then described by the
Hamiltonian

Hcontacts =
Nleads∑

ℓ=1

∑
n∈Iℓ

Vℓc
†
ℓ,ncn + h.c. (5.51)

where Iℓ is the set of all sites of the scattering region which are located at the interface
with the lead ℓ. To simplify, we will assume that the hopping term Vℓ does not
depend on the site n. In terms of the transverse modes ladder operators, the contact
Hamiltonian reads

Hcontacts =
Nleads∑

ℓ=1

∑
n∈Iℓ

∑
α,q

Vℓχ
∗
ℓα(yℓ,n)c†

ℓαqcn + h.c.. (5.52)

Following Kohler et al. [KLH05] (and before them Jauho et al. [JWM94]), we
assume that at an initial time t0, far in the past, leads are at equilibrium at temper-
ature T and chemical potential µℓ. We may adopt the full Landauer-Büttiker setup
and assume that the leads are at equilibrium with the reservoirs, in a grand-canonical
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situation, or rather assume that they are large enough to act as their own reservoirs.
In both cases, the leads are described at time t0 by the density operator

ρ0 ∝ e−β(Hleads−
∑

ℓ
µℓNℓ) (5.53)

where β = 1/kT , where k is Boltzmann constant, and where the operator

Nℓ =
∑
αq

c†
ℓαqcℓαq (5.54)

describes the number of electrons in the lead. The current operator going in (or out
of) the lead will be computed as the change in Nℓ, so a lead with a finite number
of electrons is required and it is not possible to assume the leads to be strictly at
equilibrium at all times. The average with respect to this density operator is defined
as

⟨A⟩0 = tr(ρ0A) (5.55)

and is determined by
⟨c†

ℓ′αqcℓαq⟩0 = fℓ(Eℓαq)δℓℓ′ (5.56)

where again,
fℓ(E) = 1

1 + eβ(E−µℓ) (5.57)

is the Fermi-Dirac distribution function of the reservoir ℓ.

B.2 Computation of the currents

In this paragraph, we seek to compute the operator describing the net current going
out of the lead ℓ (and into the central region), defined as

Iℓ(t) = − i(−e)
ℏ

[H(t), Nℓ] , (5.58)

in terms of the transmission coefficients (which shall be defined later), and to express
the transmission coefficients in terms of the Green function of the scattering region.
This Green function, where the presence of the reservoirs is taken into account as
a purely imaginary self-energy term, will be decomposed in Fourier harmonics, the
Green-Floquet functions, which correspond to the sidebands of the periodically driven
system, i.e. to the transport processes with a fixed number of absorptions/emissions of
the driving field quanta. This descriptions allows to relate the transport processes and
the spectrum of the Floquet operator U(T ) (or equivalently of the Sambe Hamiltonian,
see section 2.2.5 of chapter 4, page 117).

The first step is to describe the dynamics of the system in a way which enables
to trace out the reservoirs’ degrees of freedom to end up with a set of Heisenberg
equation of motion for the scattering region only, and which only depends on the
initial equilibrium distribution functions of the leads. In a second time, the equations
of motions are formally solved by Green functions, which enables to obtain a compact
expression for the currents.
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The Heisenberg equations of motion for the annihilation operators in the leads
are

dcℓαq

dt = ∂cℓαq

∂t
+ 1

iℏ [cℓαq, H(t)] = 1
iℏ [cℓαq, Hleads +Hcontacts] (5.59)

rewritten from (5.52) as

dcℓαq

dt = 1
iℏ

(
Eℓαqcℓαq +

∑
n∈Iℓ

Vℓχ
∗
ℓα(n)cn

)
. (5.60)

This equation is integrated as

cℓαq(t) = cℓαq(t0)e−iEℓαq(t−t0)/ℏ +
∑
n∈Iℓ

Vℓχ
∗
ℓα(n)
iℏ

∫ t−t0

0
dτ e−iEℓαqτ/ℏ cn(t− τ). (5.61)

Similarly, the Heisenberg equations of motion for the annihilation operators in the
scattering region are

dcn

dt = 1
iℏ [cn, Hsys +Hcontacts] , (5.62)

which can be rewritten as

dcn

dt = 1
iℏ
∑
n′

Hnn′(t)cn′(t) + 1
iℏ

Nleads∑
ℓ=1

[n ∈ Iℓ]
∑
αq

V ∗
ℓ χℓαq(yℓ,n)cℓαq(t) (5.63)

where [P ] is the Iverson bracket, defined for a proposition P as [P ] = 1 when P is
true and [P ] = 0 when P is false.

Using the integrated expression 5.61 for the ladder operators in the leads, this
yields

dcn

dt = 1
iℏ
∑
n′

Hnn′(t)cn′(t) +
Nleads∑

ℓ=1
[n ∈ Iℓ] ξℓ

n(t)

− 1
ℏ

Nleads∑
ℓ=1

[n ∈ Iℓ]
∑

n′∈Iℓ

∫ ∞

0
dτΓℓ

nn′(τ)cn′(t− τ)
(5.64)

with
Γℓ(t) = |Vℓ|2

ℏ
∑
αq

|χα⟩⟨χα| e−iEℓαqt/ℏ (5.65)

and
ξℓ

n(t) = V ∗
ℓ

iℏ
∑
αq

χℓα(n)e−iEℓαq(t−t0)cℓαq(t0). (5.66)

The response function Γℓ(t) of the lead is related by a Fourier transform to its
spectral density

Γℓ(E) = 2π
∑
αq

|Vℓ|2 |χα⟩⟨χα| δ(E − Eℓαq). (5.67)
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The noise operator ξℓ(t) in the equation of motion takes into account the coupling
with the leads initially at equilibrium, and is fully determined by the average values
(with respect to the initial density operator ρ0)

⟨ξℓ
n(t)⟩0 = 0 (5.68)

and

⟨[ξℓ′
n′(t′)]†ξℓ

n(t)⟩0 = 1
ℏ2 δℓℓ′

∑
qα

|Vℓ|2 e−iEℓqα(t−t′)/ℏχ∗
ℓα(n′)χℓα(n)fℓ(E)

= δℓℓ′

∫ dE
2πℏ2 e−iE(t−t′)/ℏΓℓ

nn′(E)fℓ(E).
(5.69)

In other words, it is a delta-correlated Gaussian noise, similar to a Langevin fluctu-
ating force, which is determined by the (equilibrium) statistics of the leads at time
t0. The other expectation values, if required, can be computed thanks to Wick the-
orem applied to the ladder operator at t0. Through a Fourier transform of the noise
operator

ξℓ
n(E) =

∫
dt eiEt/ℏ ξℓ

n(t) i.e. ξℓ
n(t) = 1

h

∫
dt e−iEt/ℏ ξℓ

n(E) (5.70)

this set of average values is simply expressed as

⟨ξℓ
n(E)⟩0 = 0 and ⟨[ξℓ′

n′(E′)]†ξℓ
n(E)⟩0 = 2πδℓℓ′Γℓ

nn′(E)fℓ(E)δ(E − E′). (5.71)

The correlation function is related to the spectral distribution Γℓ and to the equilib-
rium Fermi-Dirac distribution of the lead.

B.2.1 Floquet-Green functions

It is possible to formally solve the set of Heisenberg equations of motions for the
annihilation operators in the scattering region through the retarded Green function
of the system. In this approach, the coupling to the leads appears both in the equation
of motion of the Green function through the response function and as a source of this
equation through the noise operator(3). First, the retarded Green function is solution
of an integro-differential equation corresponding to the Heisenberg equations (5.64),
which in the limit t0 → ∞ reads(

iℏ d
dt −Hsys(t)

)
G(t, t′) + i

∫ t−t0

0
dτ Γ(τ)G(t− τ, t′) = δ(t− t′) (5.72)

where we defined

Γ(t) =
Nleads∑

ℓ=1
Γℓ(t) (5.73)

(3)Again, this is similar to what happens in a Langevin equation

m
dv
dt

= −mγv + ξ(t) or m
dv
dt

+mγv = ξ(t)

where the coupling to the fluid appears both in the viscous drag force −mγv and in the random
Langevin force ξ(t). In the electronic problem, the viscous damping is replaced by a self-energy term
(contained in the response functions Γℓ) and the Langevin force is replaced by the noise operators
of the leads ξℓ(E).
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It is convenient to use the mixed time-energy representation defined by the Fourier
transform

G(t, E) =
∫

dτ eiEτ/ℏG(t, t− τ). (5.74)

The retarded Green function is related to the evolution operator U(t, t′) of the
scattering region through

G(t, t′) = 1
iℏU(t, t′)Θ(t− t′). (5.75)

Due to the time-periodicity of the driving field, we have U(t+T, t′ +T ) = U(t, t′), so
mixed time-energy Green functions are also time-periodic,

G(t+ T,E) = G(t, E). (5.76)

Hence, it is possible to Fourier transform them to define Green-Floquet func-
tions

G(p)(E) = 1
T

∫ T

0
dt eipωt G(t, E) (5.77)

which describe the propagation of an electron with initial (injection) energy E ab-
sorbing (when p > 0) or emitting (when p < 0) |p| photons(4).

Finally, the solutions to the Heisenberg equations of motion for annihilation op-
erator of the scattering region read

cn(t) = iℏ
Nleads∑

ℓ=1

∑
m∈Iℓ

∫ ∞

0
dτ Gnm(t, t− τ) ξℓ

m(t− τ) (5.78)

where
Gnm(t, t− τ) = ⟨n | G(t, t− τ) | m⟩ . (5.79)

are the matrix elements of the Green function. Alternatively, in terms of the mixed
time-energy Green function (with similarly defined matrix elements), they read

cn(t) = i
2π
∑

ℓ

∑
m∈Iℓ

∫
dE e−iEt/ℏGnm(t, E) ξℓ

m(E). (5.80)

B.2.2 Current

The current going out of the lead ℓ into the scattering region is computed as the
variation in time of the number of electrons in the lead

Iℓ(t) = −e
iℏ [H(t), Nℓ] = −e

iℏ [Hcontacts, Nℓ] , (5.81)

that is
Iℓ(t) = −e

iℏ
∑
n∈Iℓ

∑
q

Vℓc
†
ℓqα(t)cn(t) + h.c.. (5.82)

(4)It is usual to call “photons” the quanta of the time-periodic driving field, even if it is not an
electromagnetic field.
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Using equations (5.61) and the definitions (5.65) and (5.66), the current operator is expressed as

Iℓ = −e
(∑

n∈Iℓ

c†
n(t)ξℓ

n(t) + h.c.
)

+ e

ℏ

⎛⎝ ∑
m,n∈Iℓ

∫ t−t0

0
dτ c†

n(t)Γℓ
nm(τ)cm(t− τ) + h.c.

⎞⎠ (5.83)

The average current (with respect to the initial equilibrium distribution) ⟨Iℓ(t)⟩0 can be expressed using the expressions (5.80)
of the annihilation operators in the scattering region in terms of the Green functions as

⟨Iℓ(t)⟩0 = ie
2πh

Nleads∑
ℓ′=1

∑
n∈Iℓ

m∈Iℓ′

∫
dEdE′ [ei(E′−E)tG∗

nm(t, E′) ⟨[ξℓ′
m(E′)]†ξℓ

n(E)⟩ − e−i(E′−E)tGnm(t, E′) ⟨[ξℓ′
n (E′)]†ξℓ

m(E)⟩
]

+ e

2πh

[ Nleads∑
ℓ′,ℓ′′=1

∑
n,m∈Iℓ

n′∈Iℓ′
m′′∈Iℓ′′

∫ t−t0

0
dτ
∫

dE′dE′′ eiE′t/ℏe−iE′′(t−τ)/ℏG∗
nn′(t, E′)Γℓ(τ)Gmm′′(t− τ, E′′) ⟨[ξℓ′

n′(E′)]†ξℓ′′
m′′(E′′)⟩ + c.c.

] (5.84)

which becomes after replacing the average values (5.71) with their expressions and reindexing,

⟨Iℓ(t)⟩0 = ie
h

∑
n,m∈Iℓ

∫
dE (G∗

nm(t, E) −Gmn(t, E)) Γℓ
nm(E)fℓ(E)

+ e

h

⎛⎜⎜⎝Nleads∑
ℓ′=1

∑
n,m∈Iℓ

n′,m′∈Iℓ′

∫
dE

∫ t−t0

0
dτ eiEτ/ℏG∗

nn′(t, E)Γℓ
nm(τ)Gmm′(t− τ, E)Γℓ′

m′n′(E)fℓ′(E) + c.c.

⎞⎟⎟⎠ .

(5.85)

A crucial technical point of the method of Kohler et al. [KLH05] enables to express the current in the standard scattering
form by replacing the backscattering terms in its expression. Using the matrix elements between ⟨m| and |n⟩ of the relation (38)
of reference [KLH05] (the demonstration of this relation is exactly the same in our case), with E = E′ and after inserting closure
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G∗
nm(t, E) −Gmn(t, E) = iℏ d

dt

(∑
r∈R

G∗
rm(t, E)Grn(t, E)

)
+ 2i Re

⎡⎣∫ t−t0

0
dτ eiEτ/ℏ

Nleads∑
ℓ=1

∑
nℓ,mℓ∈Iℓ

G∗
mℓm(t, E)Γℓ

mℓnℓ
(τ)Gnℓn(t− τ, E)

⎤⎦
(5.86)

This identity allows to replace backscattering terms in the current, and we obtain

⟨Iℓ(t)⟩0 = −e
2π

∑
n,m∈Iℓ

∫
dE d

dt

(∑
r∈R

G∗
rm(t, E)Grn(t, E)

)
Γℓ

nm(E)fℓ(E)

− 2e
h

Re

⎡⎢⎢⎣∫ dE
∫ t−t0

0
dτ eiEτ/ℏ

Nleads∑
ℓ′=1

∑
n,m∈Iℓ

n′,m′∈Iℓ′

G∗
m′m(t, E)Γℓ′

m′n′(τ)Gn′n(t− τ, E)Γℓ
nm(E)fℓ(E)

⎤⎥⎥⎦

+ 2e
h

Re

⎡⎢⎢⎣∫ dE
∫ t−t0

0
dτ eiEτ/ℏ

Nleads∑
ℓ′=1

∑
m,n∈Iℓ

m′,n′∈Iℓ′

G∗
mm′(t, E)Γℓ

mn(τ)Gnn′(t− τ, E)Γℓ′
n′m′(E)fℓ′(E)

⎤⎥⎥⎦

(5.87)

which can be cast into the scattering form

⟨Iℓ(t)⟩0 = e

h

∫
dE

⎡⎣∑
ℓ′ ̸=ℓ

Tℓℓ′(E, t)fℓ′(E) −
∑
ℓ′ ̸=ℓ

Tℓ′ℓ(E, t)fℓ(E)

⎤⎦− dqℓ

dt (5.88)

where the transmission coefficients are

Tℓℓ′(E, t) = 2 Re

⎡⎢⎢⎣∫ t−t0

0
dτ eiEτ/ℏ

∑
m,n∈Iℓ

m′,n′∈Iℓ′

G∗
mm′(t, E)Γℓ

mn(τ)Gnn′(t− τ, E)Γℓ′
n′m′(E)

⎤⎥⎥⎦ (5.89)
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and where

qℓ(t) = e

2π
∑

n,m∈Iℓ

∫
dE

∑
r∈R

G∗
rm(t, E)Gr,n(t, E)Γℓ

nm(E)fℓ(E) (5.90)

can be interpreted as a transient oscillating charge which do not contribute to the
average value over one time period.

For example, when there are only two terminals, say one on the right (R) and one
on the left (L), we have

IR = e

h

∫
dE [TRL(E, t)fL(E) − TLR(E, t)fR(E)] − dqR

dt . (5.91)

As the mixed time-energy Green function is time-periodic, see equation (5.76), the
oscillating charge qℓ(t) is also time-periodic so the contribution of its derivative to the
current disappears in the average over one driving period. Using rolling time-averaged
quantities over a driving period is relevant in particular when the driving period T is
significantly smaller than the response time of the detector τd. Therefore, we consider
the time-averaged current

Iℓ = ⟨Iℓ⟩0
T = 1

T

∫ t1+T

t1

dt ⟨Iℓ(t)⟩0 . (5.92)

In the steady state, the average current do not depend on the initial time t1, and
we will assume that it is the case in the following. As the Fermi-Dirac distribution
functions of the leads do not depend on time, only the transmission coefficients depend
on time, and

⟨Iℓ(t)⟩0
T = e

h

∫
dE

⎡⎣∑
ℓ′ ̸=ℓ

Tℓℓ′(E)T
fℓ′(E) −

∑
ℓ′ ̸=ℓ

Tℓ′ℓ(E)T
fℓ(E)

⎤⎦ , (5.93)

where we defined averaged transmission coefficients

Tℓℓ′(E)T = 1
T

∫ t1+T

t1

dt Tℓℓ′(E, t). (5.94)

The averaged transmission coefficients are expressed in terms of the Green-Floquet
functions (5.77) as

Tℓℓ′(E)T =
∑
p∈Z

T
(p)
ℓℓ′ (E), (5.95)

with sideband transmission coefficients

T
(p)
ℓℓ′ (E) =

∑
m,n∈Iℓ

m′,n′∈Iℓ′

(G(p)
mm′(E))∗Γℓ

mn(E + pℏω)G(p)
nn′(E)Γℓ′

n′m′(E) (5.96)

which can be expressed as a trace on the interfaces as

T
(p)
ℓℓ′ (E) = Tr

[
[G(p)(E)]†Γℓ(E + pℏω)G(p)(E)Γℓ′

(E)
]
. (5.97)
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In terms of these coefficients, the average current reads

Iℓ = e

h

∑
p∈Z

∫
dE

⎡⎣∑
ℓ′ ̸=ℓ

T
(p)
ℓℓ′ (E)fℓ′(E) −

∑
ℓ′ ̸=ℓ

T
(p)
ℓ′ℓ (E)fℓ(E)

⎤⎦ (5.98)

B.2.3 Coupling operator in the wide-band limit

In the wide-band limit, the energy bands of the leads are assumed to have a signif-
icantly larger bandwidth than the scattering region, and a nearly constant density of
states, so that the response functions Γℓ(E) do not depend on the energy E (on the
considered energy range),

Γℓ(E) ≈ Γℓ (5.99)
so the coupling operator reads

Γ =
∑

ℓ

∑
β

Γ̃ℓ |χℓβ⟩⟨χℓβ | . (5.100)

In the time representation, this means that the response of the leads is instantaneous,
i.e. that the integral kernels

Γℓ(t) ≈ Γℓδ(t) (5.101)
are memory-free. This limit is very useful technically, but is not always relevant,
neither in solid state experiments nor in our numerical simulations (where the leads
are described by a tight-binding Hamiltonian). This may lead to deviations from the
theoretical predictions.

B.3 Relating conductances and the quasi-energy spectrum

Floquet theory enables to compute the evolution operator, and therefore the retarded
Green function. This allows to relate transmission coefficients (obtained from the
Green function) to the quasi-energy spectrum of the scattering region.

B.3.1 General case

The evolution of the scattering region is described by equation (5.72) which is solved
by the retarded Green function. In the wide-band limit (see paragraph B.2.3), equa-
tion (5.72) becomes a differential equation (not integro-differential). In terms of the
mixed time-energy Green function (5.74), it reads[

iℏ d
dt − (Hsys − Σ)

]
G(t, E) = 1 (5.102)

where
Σ = iΓ (5.103)

us a non-Hermitian self-energy term (Γ is Hermitian) which takes into account the
dissipative processes due to the coupling to the leads. To relate Floquet theory to the
Green function G(E, t), it is useful to come back to the Schrödinger equation

iℏ d
dt |ψ⟩ = (Hsys − Σ) |ψ⟩ (5.104)
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solved by the retarded Green function. The corresponding non-Hermitian evolution is
described by the generalized Floquet theory of section A, page 186 and the evolution
operator can be expanded in terms of the harmonics of the Floquet modes using
equation (5.44). As the Green function is related to the evolution operator by

G(t, t′) = 1
iℏH(t− t′)U(t, t′) (5.105)

where H is the Heaviside step function, the Green-Floquet function reads

G(p)(E) =
∑
r,α

|u(p+r)
α ⟩ ⟨ũ(r)

α |
E − [εα + rℏω − iℏγα] . (5.106)

B.3.2 Low-coupling limit

In a low-coupling limit where the self-energy term can be treated as a perturbation, the
behavior of the scattering region coupled to the leads can be related to the behavior
of an uncoupled scattering region, which is understood. In practice, we will use first
order perturbation theory to solve equation (5.37). At zeroth order,(

Hsys − iℏ d
dt |ψ⟩

)
|u[0]

α (t)⟩ = ε[0]
α |u[0]

α (t)⟩ (5.107)

where the exponent in square brackets indicates the order in perturbation theory (not
to be confused with the index in parentheses, which indicates the Floquet harmonic).
As the unperturbed evolution is unitary, |u[0]

α (t)⟩ = |ũ[0]
α (t)⟩. To first order, complex

quasi-energies become
ε[1]

α = ε[1]
α − iℏγ[1]

α (5.108)

where
ε[1]

α = ε[0]
α (5.109)

and

γ[1]
α = 1

ℏ

∫ T

0

dt
T

⟨u[0]
α (t) | Γ | u[0]

α (t)⟩ = 1
ℏ

Nleads∑
ℓ=1

∑
β

∑
p∈Z

Γ̃ℓ

⏐⏐⏐⟨χℓβ | u[0],(p)
α ⟩

⏐⏐⏐2 . (5.110)

In the wide-band limit, the coupling operator reads

Γ =
∑

ℓ

∑
β

Γ̃ℓ |χℓβ⟩⟨χℓβ | . (5.111)

There is no correction to eigenstates at first order, so

|u[1]
α (t)⟩ = |ũ[1]

α (t)⟩ = |u[0]
α (t)⟩ . (5.112)

In the following, we use first order quantities and omit the corresponding index to
simplify notations.
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From equations (5.97) and (5.106), the harmonic p of the averaged transmission
coefficient is computed as

T
(p)
ℓℓ′ (E) = Tr

⎡⎢⎣∑
s,α
r,β

|u(s)
α ⟩ ⟨u(p+s)

α |
E − [εα + sℏω + iℏγα]Γ

ℓ(E + pℏω)
|u(p+r)

β ⟩ ⟨u(r)
β |

E − [εβ + rℏω − iℏγβ ]Γ
ℓ′

(E)

⎤⎥⎦ .
(5.113)

B.4 Effect of an electric potential drop

Numerically, it may be convenient to use an electric potential drop ∆Vℓ between
the lead ℓ and the scattering region instead of setting chemical potentials as on-site
potentials. Here again, the reader is referred to [GWSH14] for a discussion on the
distinction between chemical and electrical potential drops at the interface between
the scattering region and the lead. Such an electric potential drop is taken into
account by modifying the contact Hamiltonian into

Hcontacts =
Nleads∑

ℓ=1

∑
n∈Iℓ

∑
q

Vℓei∆Vℓtc†
ℓ,y=yℓ(n)cn + h.c. (5.114)

The same computation leads to transmission coefficients

T
(p)
ℓℓ′ (E,∆Vℓ,∆Vℓ′) = T

(p)
ℓℓ′ (E + ∆Vℓ′). (5.115)

In other words, in the wide band limit, the transmission coefficient T (p)
ℓℓ′ are effectively

considered at an injection energy E + ∆Vℓ′ instead of E: in particular, varying the
injection energy or the potential drop at the incoming lead should give the same
result.



Chapter 6

Résumé en français
1 Introduction générale

L’étude des phénomènes physiques met généralement en jeu des observables locales,
ou les corrélations entre des quantités locales. Dans certaines situations, des quantités
“globales” qui ne dépendent pas des détails locaux de la description sont nécessaires.
Dans le cadre de la physique du solide, les outils topologiques ont été utilisés pour
la première fois pour caractériser les défauts d’une phase ordonnée [Mer79] : une
telle phase ordonnée de la matière est caractérisée par un paramètre d’ordre, et les
défauts topologiques apparaissent comme des configurations particulières du champ
de paramètre d’ordre qui présentent des singularités. Par exemple, un film à deux
dimensions d’hélium IV superfluide est décrit par un champ de paramètre d’ordre
complexe ψ(x) = ψ0(x) eiθ(x) qui caractérise la brisure de symétrie U(1). À deux
dimensions, un exemple de défaut associé à un paramètre d’ordre U(1) est un vortex,
où le paramètre d’ordre ψ s’annule. La circulation autour du défaut est un entier
appelé la charge topologique du vortex, qui mesure combien de fois la phase θ(x)
s’enroule le long d’une boucle entourant le vortex. Cette charge topologique ne dépend
pas des détails de la configuration du champ de paramètre d’ordre : elle est laissée
invariante par des modification lisses du paramètre d’ordre à l’intérieur de la région
entourée par la boucle : c’est la raison pour laquelle on dit qu’il s’agit d’une quantité
topologique.

La topologie s’occupe de propriétés globales, qui sont invariantes sous l’action
de certaines transformations, comme les déformations lisses. Ces propriétés globales
peuvent distinguer des objets qui se ressemblent localement, ou au contraire rassem-
bler des objets qui semblent différents à première vue. L’exemple archétypal d’une
telle propriété globale est le nombre de trous (ou genre g) d’une surface bidimension-
nelle (voir les figures 6.1 et 6.2). Par exemple, une sphère n’a aucun trou, alors qu’un
tore a un trou: il n’est ainsi pas possible de déformer continûment une sphère en un
tore. Pour définir précisément ce que signifie pour deux objets d’être topologique-
ment équivalents, il faut préciser quelles sont les transformations autorisées. Dans
cette introduction, nous nous contenterons d’une image intuitive : on imagine que les
objets sont faits en pâte à modeler et que les transformations autorisées consistent
à déformer la pâte à modeler, mais sans la déchirer ni coller deux parties ensemble.
Ainsi, une tasse à café a une anse, et correspond donc à une surface de genre 1, qui
peut être déformée en un tore sans déchirure ni collage.
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g = 0 g = 1 g = 2

Figure 6.1: Genre de quelques surfaces à deux dimensions. Le genre g d’une surface
fermée à deux dimensions compte essentiellement le nombre de “trous” (ou “anses”)
de la surface. Une sphère n’a pas de trou (genre 02), un tore a un trou (genre 1), etc.
En fait, toute surface (variété à deux dimensions) fermée orientable est homéomorphe
à une somme connexe de g tores. Le genre est relié par le théorème de Chern-Gauss-
Bonnet à la caractéristique d’Euler de la surface χ = 2−2g, un invariant homologique
qui peut être calculé en intégrant la courbure locale de la surface.

Le caractère topologique des vortex leur assure une certaine robustesse (vis-à-vis
des déformations continues du paramètre d’ordre), ce qui permet de les traiter comme
des objets indépendants, qui se comportent comme des charges électriques – ce qui
conduit à une analogie très fructueuse. Par exemple, comme on peut s’y attendre,
deux vortex de charges opposées peuvent s’annihiler quand ils se rencontrent, et un
vortex de charge +2 peut se scinder en deux vortex de charge +1, etc. Dans le cas des
défauts, les méthodes topologiques servent à caractériser les différentes configurations
d’une phase ordonnée donnée. La topologie peut aussi avoir le rôle très différent de
distinguer différentes phases de la matière qui ont même symétrie, et qui ne peuvent
donc pas être différenciées par un paramètre d’ordre. C’est le cas des phases topo-
logiques de la matière comme l’effet Hall quantique, qui fait l’objet de la prochaine
section.

1.1 L’effet Hall quantique

La découverte de l’effet Hall quantique par von Klitzing, Dorda et Pepper [KDP80]
en 1980, puis de sa nature topologique par TKNN (Thouless, Kohmoto, Nightingale
et den Nijs) [TKNN82] ainsi qu’Avron, Seiler et Simon [ASS83; Sim83] a donné l’essor
à un nouveau champ d’étude, en matière condensée et au delà. L’effet Hall quantique
a d’abord un intérêt fondamental, tant du point de vue théorique qu’expérimental
: l’effet Hall quantique entier est le premier exemple d’une phase de la matière
qui échappe au paradigme de Landau, puisqu’elle n’est pas associée à un paramètre
d’ordre local ; il s’agit de plus d’une situation décrite par une théorie élégante, qui
relie des constructions mathématiques assez modernes à des situations réalisables
expérimentalement. D’autre part, l’effet Hall quantique entier présente un intérêt
pratique pour la métrologie, puisqu’il permet une mesure très précise et reproductible
de la constante fondamentale e2/h (avec une incertitude relative inférieure à 10−9),
qui est utilisée comme référence de résistance électrique [WK11; JJ06]. Enfin, l’effet
Hall quantique et ses dérivés (comme l’effet Hall quantique fractionnaire) sont désor-
mais utilisés comme plateforme pour l’étude fondamentale de la mécanique quantique
(en particulier de la décohérence) dans le champ de l’optique quantique électronique
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Figure 6.2: Topologie des surfaces à 2D. Un bol et une sphère ont comme genre g = 0.
Une tasse et un tore ont comme genre g = 1.

[BFPB13], ainsi que pour développer le champ de l’informatique quantique [Kit03;
NSSF08; JOPS10].

Commençons par rappeler ce qui se passe dans l’effet Hall “classique”. Lorsqu’un
gaz d’électrons bidimensionnel est soumis à un champ magnétique transverse B, la
densité de courant J et le champ électrique E dans le plan sont reliés à la réponse
linéaire par

Jµ = σµνEν (6.1)

où σ est le tenseur de conductivité 2 × 2. Dans le cadre de la théorie semi-classique
de Drude (voir e.g. [Pot07])

σ = σ0
1 + (ωcτ)2

(
1 ωcτ

−ωcτ 1

)
(6.2)

où
σ0 = ne2τ

m∗ (6.3)

est la conductivité à champ magnétique nul et où

ωc = eB

m∗ (6.4)

est la pulsation cyclotron, proportionnelle au champ magnétique, n la densité élec-
tronique, τ un temps de relaxation (un temps caractéristique de la relaxation des
électrons vers l’équilibre, principalement due aux processus de collision), m∗ la masse
effective des électrons et e la charge fondamentale. Quand le champ magnétique est as-
sez fort ou le temps de relaxation assez grand pour que que ωcτ ≫ 1, les composantes
diagonales σxx et σyy peuvent être négligées devant les composantes antidiagonales
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σxy = −σyx; dans ce cas, la conductance de Hall est à peu près σxy = e2

h ν où on a
introduit le paramètre sans dimension ν = hn/eB. Expérimentalement, les différentes
composantes du tenseur de conductivité sont généralement mesurées avec une barre
de Hall, comme représenté sur la figure 6.3, ce qui permet d’éviter des problèmes
de résistance de contact, et de mesurer à la fois la conductance longitudinale et la
conductance de Hall (à deux dimensions, les conductances et les conductivités sont
reliées par un paramètre géométrique sans dimension, du moins quand le tenseur de
conductivité est uniforme dans l’échantillon, qui se trouve être 1 dans le cas de la
conductance de Hall [Goe11]).

2 3

6 5

1 4

V

UL

V UH
I I

Figure 6.3: Dispositif de barre de Hall. Dans un dispositif de barre de Hall, on fait
passer à travers l’échantillon un courant I par les terminaux 1 et 4. Pendant ce temps,
on mesure la tension longitudinale UL, par exemple entre les terminaux 2 et 3, ainsi
que la tension transverse UH, par exemple entre les terminaux 3 et 5. On obtient
alors les résistances longitudinale et de Hall RL = UL/I et RH = UH/I.

Un comportement surprenant appelé l’effet Hall quantique a lieu lorsqu’un gaz
d’électrons faiblement désordonné est soumis à un champ magnétique intense à basse
température (quand ℏωc ≫ kBT ): en 1980, von Klitzing, Dorda et Pepper [KDP80]
observèrent que la courbe de la conductance de Hall σxy en fonction de l’inverse du
champ magnétique 1/B montre des plateaux, où la valeur de σxy est très précisément
quantifiée en multiples entiers de e2/h, c’est-à-dire que

σxy = e2

h
ν̃ où ν̃ ∈ Z. (6.5)

L’entier ν̃ est la quantité sans dimension ν = hn/eB arrondie à l’entier le plus proche,
et la conductance de Hall σxy saute d’un plateau à l’autre. Les transitions entre
plateaux sont accompagnées d’un pic de conductance longitudinale σxx, qui est nulle
ailleurs, comme représenté figure 6.4. Expérimentalement, on mesure généralement
la résistivité de Hall ρxy ainsi que la résistivité longitudinale ρxx, composantes du
tenseur de résistivité ρ = σ−1. C’est par exemple le cas sur la figure 6.5. Pour
relier ces deux points de vue, remarquons que tant que σxy n’est pas nulle (donc
tant que B ̸= 0), ρxx = 0 ssi σxx = 0. De plus, quand σxx (ou ρxx) s’annule, on
a ρxy = −1/σxy de sorte que si l’une des deux quantités est quantifiée, l’autre l’est
aussi. La quantification de σxy est universelle : elle n’est pas affectée par la géométrie
précise du système, ni par les impuretés ou le désordre ; et la même valeur, avec une
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très grande précision, est obtenue dans divers systèmes comme les interfaces oxyde-
semiconducteur dans les MOSFET, les hétérojonctions de semiconducteurs ou encore
le graphène. Cette universalité et cette invariance vis-à-vis des perturbations laissent
penser que la conductance de Hall quantifiée est reliée à un invariant topologique :
c’est effectivement le cas, et la quantité ν̃ est un invariant topologique du fondamental
du système, le “premier nombre de Chern associé au projecteur de Fermi” (voir le
chapitre 2).

ν

σxy

e2/h

σxx

e2/h

1

1

2

2

3

3

4

4

0

Figure 6.4: Image simplifiée de l’effet Hall quantique. Dans une image idéalisée, on
observe des plateaux quantifiés de conductance de Hall autour des valeurs entières
ν̃ ∈ Z du paramètre sans dimension ν = hn/eB, sur lesquels la conductance de Hall
est égale à ν̃e2/h. Une transition brutale a lieu aux valeurs demi-entières de ν. La
conductivité longitudinale est nulle, à part au voisinage des transitions entre plateaux,
où elle est très grande.

Pour décrire le gaz d’électrons bidimensionnel dans lequel à lieu l’effet Hall quan-
tique entier (ou IQHE, pour integer quantum Hall effect), une description simplifiée
qui néglige les effets des interactions est suffisante, et on se concentre donc sur le
problème à une particule. Le hamiltonien de Landau décrivant un électron à deux
dimensions et sous un champ magnétique B constant est

H = 1
2m∗ (P + eA)2 = 1

2m∗ Π2 (6.6)

où P est l’opérateur impulsion, A est le potentiel vecteur, et où Π = P + eA. Ce
hamiltonien peut être réécrit comme celui d’un oscillateur harmonique

H = ℏωc

(
a†a+ 1

2

)
om a† = 1√

2ℏeB
(Πx + iΠy) (6.7)

avec [a, a†] = Id. Son spectre est donc

En = ℏωc

(
n+ 1

2

)
. (6.8)
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Figure 6.5: Résistance de Hall et résistance longitudinale dans l’effet Hall quantique.
Courbes expérimentales de la résistance de Hall (en noir) et de la résistance longitu-
dinale (en rouge) dans une hétérostructure de GaAs-AlGaAs en fonction du champ
magnétique, à 8 mK. Adapté de [Kli86].

Chaque énergie En est fortement dégénérée, puisqu’il y a NA = A/(2πℓ2
B) états

d’énergie En dans une surface d’aire A, où ℓB =
√

ℏ/eB est la longueur magnétique.
L’ensemble des états dégénérés d’énergie En est appelé le nème niveau de Landau, ou
la nème bande de Landau lorsqu’elle est élargie par le désordre.

De par plusieurs aspects, les niveaux de Landau sont très proches des bandes
d’énergie d’un cristal isolant : ils sont séparés les uns des autres par des gaps d’énergie,
et contiennent un grand nombre d’états. Lorsque du désordre est présent, il est
possible de placer le potentiel chimique dans un gap entre deux niveaux de Landau :
dans cette situation, le système est similaire à un isolant de bande. Il s’agit néanmoins
d’un isolant aux propriétés très particulières, ce qu’on peut illustrer à l’aide d’une
description semi-classique (voir la figure 6.6) : sous un champ magnétique intense,
les états d’un niveau de Landau dérivent le long d’équipotentielles du potentiel de
confinement et de désordre. Dans le volume(1), le système est isolant : chaque électron
est confiné sur une orbite fermée, et ne peut pas transporter de courant. Au bord,

(1)Je traduis l’anglais bulk par volume : ce terme sous-entend qu’on se situe loin des interfaces ou
bords du système, dans une région où leur influence est négligeable.
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par contre, les électrons peuvent se déplacer le long de l’interface, ce qui donne lieu
à un mouvement global. En d’autres termes, au bord du système, le potentiel de
confinement courbe les niveaux de Landau (dont la relation de dispersion de volume
est plate), ce qui fait que les niveaux de Landau qui dans le volume du système
sont sous le potentiel chimique sont forcés de le traverser près du bord. Il apparaît
ainsi des états qui conduisent le courant, confinés près des bords de l’échantillon :
les états de bord unidirectionnels. Le bord du système est donc un métal à une
dimension. Les états de bord sont chiraux (ou unidirectionnels), c’est-à-dire qu’ils
peuvent aller de la gauche vers la droite, par exemple, mais pas de la droite vers la
gauche. Ce comportement chiral peut être expliqué dans une approche semi-classique
en termes de sauts entre orbites cyclotron près du bord [Büt88a] (voir la figure 6.6).
Une conséquence importante de cette propriété est qu’il n’y a pas d’états disponibles
permettant la rétrodiffusion des électrons, même en présence d’impuretés : les états de
bord peuvent être déformés lorsque le bord est rugueux, ou quand il y a des impuretés,
mais ils se déplacent toujours dans la même direction, sans dissipation. L’existence de
tels états chiraux robustes provient en dernière analyse de la topologie non-triviale des
états de volume. Une bande d’énergie est un objet bien défini, décrit par un ensemble
de relations de dispersion et par les états propres correspondants (ou si on se contente
des informations essentielles, comme on va le voir plus tard, d’un domaine d’énergie et
d’un projecteur spectral). En tant que tel, elle peut avoir une topologie non-triviale,
contenue dans les états propres. De la même manière que les surfaces fermées ont un
certain nombre d’anses g, une bande d’énergie peut avoir des propriétés topologiques,
décrites (dans le cas présent) par leur premier nombre de Chern C1. Une bande
triviale, par exemple obtenue par un modèle de liaisons fortes avec des intégrales de
saut tendant vers zéro, a un nombre de Chern nul. C’est aussi le cas des bandes
d’énergie des matériaux usuels, comme l’air ou le vide. Au contraire, une bande de
Landau a un nombre de Chern non nul. Cette propriété topologique est préservée
tant que la bande est bien définie, c’est-à-dire séparée de toutes les autres bandes.
Lorsqu’un gap se ferme et que deux bandes se touchent, elles peuvent échanger leurs
propriétés topologiques : par exemple, deux (sous-)bandes avec des nombres de Chern
opposés peuvent être transformées en deux bandes triviales lorsqu’elles se rencontrent
(de manière à ce que le nombre de Chern total, pour l’ensemble des deux bandes, soit
conservé). Tant que les bandes sont séparées les unes des autres, néanmoins, leurs
propriétés topologiques sont laissées invariantes par les perturbations. En particulier,
cela explique la robustesse des états de bord “topologiquement protégés”. Dans le cas
de l’effet Hall quantique, le nombre d’états de bord est donné par le nombre de bandes
de Landau en dessous du niveau de Fermi ; en général, il est donné par le nombre de
Chern de l’ensemble des bandes en dessous du niveau de Fermi. Dans les expériences
de transport, le courant de Hall est transporté par les états de bord, chacun d’eux
contribuant d’un facteur e2/h à la conductance de Hall [Büt88a], ce qui implique
que ν̃ = C1 dans l’équation (6.5). La nature topologique de cette quantité explique
que les plateaux de Hall soient si précisément quantifiés. (Je renvoie le lecteur aux
revues [PKG90; DP08; CJOD99; Goe11; DPR06] pour plus de détails sur l’effet Hall
quantique.)

L’effet Hall quantique est le premier exemple d’une famille de phénomènes appelés
isolants topologiques, où des états de bord topologiquement protégés apparaissent au
bord du système, à cause de la topologie non-triviale de ses bandes de volume. Ce
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principe général est appelé la correspondance bord-volume : dès que le volume du
système est non-trivial, des états de bord topologiquement protégés apparaissent au
bord d’un échantillon de taille finie, et inversement, des états de bord topologiquement
protégés indiquent une topologie non-triviale du volume du système(2).
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Figure 6.6: Orbites rebondissantes (skipping orbits) et états de bord. Un échantillon
de taille finie peut être modélisé par un potentiel de confinement qui courbe les niveaux
de Landau au voisinage du bord (ici en y = ±W/2). Par conséquent, même si le
système est un isolant dans son volume, et que le potentiel chimique est fixé entre deux
niveaux de Landau, il y aura des états métalliques croisant le potentiel chimique près
du bord (en bleu et rouge), et qui correspondent aux états de bord. Ces états de bord
peuvent être représentés schématiquement comme des orbites cyclotron rebondissant
sur les interfaces, ce qui conduit à un mouvement chiral. Les états de bord chiraux
résultats, qui sont une propriété commune de l’IQHE et des isolants de Chern, sont
représentés sur l’image de droite.

Un gaz d’électrons désordonné sous un champ magnétique intense a le défaut de ne
pas facilement être décrit dans le cadre de la théorie de Bloch. D’une part, le champ
magnétique nécessite de considérer une super-cellule unité (pour des valeurs ration-
nelles du flux magnétiques adimensionné), qui dépend de l’amplitude du champ; sous
un très fort champ magnétique, il s’agit du problème de Harper-Hofstadter [Har55;
Hof76], qui recèle des phénomènes remarquables, mais très complexes. D’autre part,
un système désordonné n’a pas d’invariance par translation, et ne peut donc pas être

(2)En fait, lorsqu’une symétrie est nécessaire pour définir l’invariant de volume (voir plus loin), et
que la dimension d’espace est adéquate, il est possible au système de briser la symétrie à l’interface
plutôt que de former des états de bord à l’interface, une situation décrite en premier par Ezawa,
Tanaka et Nagaosa [ETN13].
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décrit par la théorie de Bloch. Or, le désordre joue un rôle essentiel dans l’effet
Hall quantique : la description par la mécanique quantique d’un gaz d’électrons bidi-
mensionnel sans aucun désordre prévoit simplement l’effet Hall classique usuel. Une
compréhension cohérente de la nature topologique de l’effet Hall quantique nécessite
de prendre en compte le désordre dès le début, et définir des invariants topologiques
dans cette situation nécessite de recourir au cadre de la géométrie non-commutative
[BEB94], un outil mathématique élégant, mais complexe conceptuellement et techni-
quement. Il est néanmoins possible de comprendre les propriétés clés de l’effet Hall
quantique (et plus généralement des isolants topologiques) dans le cadre de la théorie
des bandes. Haldane [Hal88] est le premier à avoir découvert un exemple de modèle
implémenté sur réseau, sans flux magnétique net (ainsi la périodicité du réseau est
maintenue, et la théorie de Bloch s’applique), qui montre les mêmes propriétés to-
pologiques que l’effet Hall quantique. De tels modèles, désormais appelés isolants de
Chern, sont plus faciles à étudier théoriquement. Cet avantage a permis une série de
développements, parmi lesquels

– l’inclusion de symétries dans la description : les symétries ajoutent des contraintes
qui permettent l’existence (ou non) de différentes classes de propriétés topologiques;

– l’extension à d’autres domaines de la physique : l’existence d’analogues de l’effet
Hall quantique dans d’autres domaines a été discutée dès 1988 dans le cas de films
hélium 3 par Volovik [Vol88a], puis en 2005 dans des cristaux photoniques par
Haldane et Raghu [HR08; RH08]; on sait désormais que des analogues de l’effet Hall
quantique (et de ses dérivés avec des symétries supplémentaires) sont envisageables
dans tous les systèmes ondulatoires (optique, acoustique, mécanique, atomes froids,
etc.);

– la possibilité d’induire des propriétés topologiques à travers des interactions [RQHZ08],
de la dissipation [RL09; ZRPL15; DRBZ11; BBKR13; BD15; RLL16], ou un forçage
extérieur (voir plus loin).

Cette liste n’a pas vocation à être complète, mais souligne les trois principales direc-
tions qui, à mon sens, s’entrecroisent dans cette thèse.

Le cadre de la théorie des bandes de Bloch topologique est le suivant : on associe
à un système invariant par translation un hamiltonien de Bloch H(k), où k est un
réseau réciproque vivant dans la zone de Brillouin, qui est un tore puisque k n’est
défini que modulo un vecteur du réseau réciproque. Le spectre de H(k) fournit une
structure de bande décrite par des niveaux d’énergie Ei(k), qui peut avoir des gaps
spectraux. Dans ce cas, un projecteur spectral associé à une famille de projecteurs
P (k) décrit les états propres de la bande située entre deux gaps. Par exemple, un
hamiltonien de Bloch deux par deux a des états propres ψ±(k) d’énergies E±(k); si
E+(k) > µ > E−(k), on définit P±(k) = |ψ±(k)⟩⟨ψ±(k)|. Il est possible d’associer
des invariants topologiques (comme le premier nombre de Chern) à la famille de
projecteurs P , et ces invariants ne changent pas quand H est modifié, tant que le gap
ne se ferme pas.

Considérons désormais une interface entre deux isolants topologiquement inéqui-
valents : le système à gauche de l’interface est supposé trivial, alors que celui à droite
est supposé non-trivial. Loin de l’interface, le système n’est en quelque sorte pas au
courant de l’existence d’une interface : c’est donc un isolant de volume, qui peut être
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décrit comme s’il était infini, et la théorie de Bloch (topologique) s’applique. Près
de l’interface, cette description n’est plus forcément valide, mais acceptons provisoi-
rement d’utiliser un hamiltonien de Bloch dépendant de la position, et plus particu-
lièrement de la distance à l’interface : pour qu’il soit possible de passer d’un isolant
trivial à un isolant non-trivial, il y a forcément un endroit près de l’interface où le gap
se ferme (de sorte que les invariants topologiques ne peuvent pas y être définis), ce
qui conduit à des états de bord métalliques. Il est possible de rendre cette description
partiellement rigoureuse en utilisant des fonctions de Green, une méthode développée
par Volovik [Vol88a] et étendue de manière significative par Gurarie et Essin [Gur11;
EG11]. Cette méthode a aussi été étendue [RLBL13; NR15] au cas des phases topo-
logiques dans des systèmes soumis à un forçage périodique (ou phases topologiques
de Floquet).

1.2 Symétries et isolants topologiques
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Figure 6.7: Signatures de transport des états de bord topologiques du QSHE dans des
puits quantiques de HgTe. On trace la résistance quatre terminaux longitudinale
R14,23 en fonction de la tension de grille Vg − Vref dans un puits quantique de HgTe-
CdTe trivial (courbe noire) et topologique (courbes roulge, verte et bleue) à 30 mK.
Dans le cas topologique (lorsqu’il y a une inversion de bande), R14,23 atteint une
valeur quantifiée de 2 e2/h, comme on l’attend d’après le formalisme de Landauer-
Büttiker appliqué au transport par les états de bord (à part dans la courbe bleue, qui
correspond à un échantillon de taille plus importante où la conductance est réduite
par des processus inélastiques qui permettent de la rétrodiffusion. Dans la situation
triviale (courbe noire), la résistance est très grande dans le gap : c’est le comporte-
ment qu’on attend pour un isolant usuel. Adapted from [KWBR07]. Reprinted with
permission from AAAS.

L’étude de l’effet Hall quantique était un sous-domaine bien établi de la ma-
tière condensée lorsque furent publiés les articles de Kane et Mele en 2005 [KM05a;
KM05b]. Ils proposèrent une “version invariante par renversement du temps” de
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l’effet Hall quantique (la brisure de l’invariance par renversement du temps est un
ingrédient essentiel de l’IQHE et des isolants de Chern), appelée “effet Hall quantique
de spin” (QSHE, pour “quantum spin Hall effect”). Dans cet effet, les ingrédients
essentiels sont une inversion de bande au voisinage d’un point de symétrie de la zone
de Brillouin et un fort couplage spin-orbite, qui génère de manière effective un champ
magnétique dépendant de l’impulsion et du spin. Un an plus tard, Bernevig, Hu-
ghes et Zhang [BHZ06] proposèrent un schéma de réalisation expérimentale dans des
puits quantiques d’HgTe-CdTe, qui fut réalisé un an après par König et collabora-
teurs [KWBR07], dans le groupe de Molenkamp (voir figure 6.7). Fu, Kane et Mele
[FKM07], Roy [Roy09], ainsi que Moore et Balents [MB07] découvrirent alors qu’une
version à trois dimensions de cet isolant topologique invariant par renversement du
temps était possible. Cette version fut rapidement observée expérimentalement dans
du Bi1-xSbx par Hsieh et collaborateurs [HQWX08] dans le groupe d’Hasan, par des
mesures de spectroscopie de photoémission angulairement résolue (ARPES). Ils ob-
servèrent la signature caractéristique d’états de surface : une relation de dispersion de
Dirac pour les électrons de surface, à des énergies correspondant au gap de volume du
matériau, comme prévu par la théorie des bandes topologique. D’autres matériaux
ayant une topologie de Kane-Mele non-triviale en trois dimensions ont ensuite été
découverts, parmi lesquels Bi2Se3; on reproduit à la figure 6.8 un spectre ARPES ex-
périmental des états topologiques de surface de ce matériau, tiré de [XQHW09].

Dans un système électronique invariant par renversement du temps (TRI), il n’est
pas possible d’avoir un isolant de Chern non-trivial. Le renversement du temps est re-
présenté par un opérateur anti-unitaire Θ avec Θ2 = −Id pour les particules avec spin
demi-entier. Dans un système invariant par renversement du temps, le hamiltonien
de Bloch satisfait ΘH(k)Θ−1 = H(−k), et ainsi chaque état propre ψ(k) de H(k) a
un partenaire de Kramers Θψ(k) qui est état propre de H(−k). Les contributions des
partenaires de Kramers à la topologie d’un isolant de Chern sont opposées et se com-
pensent mutuellement Il a été montré par Kane et Mele qu’il est néanmoins possible
de contourner cette annulation en définissant un invariant plus fin, qui caractérise la
topologie des systèmes invariants par renversement du temps. Pour comprendre la
topologie de Kane-Mele, le plus simple est de s’intéresser à leur manifestation expé-
rimentale la plus frappante, les états de bord. Alors que les isolants de Chern ont
des états de bord chiraux caractéristiques, les isolants de Kane-Mele sont caractérisés
par des états de bord hélicaux, qui sont essentiellement des paires de Kramers d’états
de bord chiraux, avec des chiralités opposées (voir figure 6.9). Comme ces états de
bord contra-propagatifs forment une paire de Kramers, la rétrodiffusion d’un état de
bord vers son partenaire contra-propagatif n’est pas autorisée. Tant que l’invariance
par renversement du temps (avec Θ2 = −Id) n’est pas brisée, en dimensions d’espace
d = 2 et d = 3, une quantité topologique appelée l’invariant de Kane-Mele KM ∈ Z2
(associé à la bande de valence) peut être défini. En termes d’états de bord, cela si-
gnifie qu’une paire de Kramers d’états de bord est topologiquement distincte d’une
absence complète d’états de bord, mais que deux paires de Kramers d’états de bord
sont topologiquement équivalent à l’absence complète d’états de bord, puisque la ré-
trodiffusion est possible dans ce cas (c’est pourquoi KM ∈ Z2). En fait, l’invariant de
Kane-Mele peut être défini directement sans partir d’une situation où une composante
du spin est conservée, et il est même possible de concevoir un modèle jouet où seuls
des termes de saut ne conservant pas le spin sont présents, mais qui est malgré tout
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Figure 6.8: Signature en ARPES signature des états de surface topologiques dans
Bi2Se3. Spectre ARPES de la relation de dispersion électronique de surface (à deux
dimensions) de l’isolant topologique invariant par renversement du temps à trois di-
mensions Bi2Se3 (111) près du point Γ, le long des lignes Γ−M (à gauche) et Γ−K (à
droite) de la zone de Brillouin de surface. Ces données démontrent l’existence d’états
de surface avec une relation de dispersion linéaire dans le gap de volume de Bi2Se3.
Adapted from [XQHW09]. Reprinted by permission from Macmillan Publishers Ltd,
Nature Physics, copyright 2009.

invariance par renversement du temps, et topologiquement non-triviale du point de
vue de la topologie de Kane-Mele.

Un exemple peut aider à illustrer ce qui a lieu dans un tel système : quand une
projection du spin est conservée, il est possible d’associer des premiers nombres de
Chern C↑↓ à chaque espèce de spin. Dans un système invariant par renversement du
temps C↑ = −C↓. Lorsque C↑ = −C↓ = 1, chaque espèce de spin est dans une phase
isolant de Chern, ce qui donne lieu, dans un échantillon fini, à une paire de Kramers
composée d’un état de bord allant e.g. vers la droite pour les spins pointant vers le
haut et d’un état allant vers la gauche pour les spins pointant vers le bas. Dans cette
situation, l’invariant de Kane-Mele se simplifie en

KM = C↑ − C↓
2 mod. 2 = C↑ mod. 2. (6.9)

Si l’on part de cette situation et qu’on allume des perturbations qui brisent la symétrie
de rotation de spin, mais maintiennent l’invariance par renversement du temps, la
composante de spin choisie n’est plus conservée. Ainsi, ni C↑ ni C↓ ne restent bien
définis. Par contre, l’invariant de Kane-Mele KM reste bien défini et ne change pas
tant que le gap séparant la bande de valence de la bande de conduction reste ouvert
(et que l’invariance par renversement du temps est préservée).
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Figure 6.9: États de bord d’un isolant de Kane-Mele. Dans un isolant de Kane-Mele
(aussi appelé QSHE), deux états de bord contra-propagatifs (dits hélicaux) forment
une paire de Kramers, sur chaque interface. Par conséquent, la rétrodiffusion d’un
état de bord vers son partenaire contra-propagatif n’est pas autorisée.

La découverte de Kane et Mele (ainsi que celle du graphene en 2004) a focalisé
l’attention de la communauté de matière condensée sur la physique topologique, et
un énorme nombre de résultats ont été produits (ou redécouverts ...) depuis (de
bons articles de revue comprennent [Lud15; CTSR15; HK10; QZ11; BLD16]). Il
a été compris que (i) il y a des systèmes analogues à l’effet Hall quantique dans
des dimensions d’espace autres que d = 2 et (ii) que les symétries donnent lieu à
des invariants topologiques différents et/ou plus fins, ce qui a conduit à décrire des
phénomènes bien connus comme les parois de domaines du modèle de Su-Schrieffer-
Heeger du polyacétylène [SSH79] ou les fermions de Majorana non appariés dans
la chaîne de Kitaev [Kit01] dans le langage des isolants topologiques, ainsi que de
concevoir et réaliser de nouveaux types d’isolants topologiques.

Une étape importante dans le sujet des isolants topologiques a été réalisée par
Schnyder, Ryu, Furusaki et Ludwig [SRFL08; SRFL09; RSFL10] ainsi que Kitaev
[Kit09], qui ont développé une classification des phases topologiques selon leurs symé-
tries non-spatiales, appelée le “tableau périodique des isolants topologiques”. L’idée
principale est qu’il existe trois symétries fondamentales particulières, qui n’agissent
que sur les degrés de liberté interne (c’est-à-dire localement dans l’espace) : le ren-
versement du temps Θ, la conjugaison de charge C (aussi appelée symétrie particule-
trou), et la symétrie chirale Γ (reliée à Θ et C par Γ = ΘC s’ils sont définis, éven-
tuellement à une phase près). Le renversement du temps et la conjugaison de charge
sont représentés par des opérateurs anti-unitaires dont le carré est +Id ou −Id, alors
que Γ est unitaire (mais n’est pas une symétrie implémentée unitairement, puisque
Γ anticommute avec le hamiltonien). Il y a dix manières de combiner ces symétries
potentielles d’un hamiltonien à une particule H, appelées des classes de symétrie
(qui avaient déjà été découvertes par Altland et Zirnbauer dans le contexte des sys-
tèmes désordonnés [AZ97], et qui sont reliés aux espaces symétriques de Cartan).
Par exemple, le hamiltonien peut n’avoir aucune symétrie : dans ce cas, on dit qu’il
est dans la classe A, et c’est par exemple le cas de l’IQHE et des isolants de Chern.
Il est aussi possible que H soit invariant par renversement du temps, avec un opé-
rateur de renversement du temps dont le carré est −Id, mais sans invariance par
conjugaison de charge, ni par symétrie chirale : dans ce cas, H est dans la classe
AII ; c’est le cas des isolants de Kane-Mele. Plusieurs approches ont été dévelop-
pées pour obtenir cette classification : Schnyder, Ryu, Furusaki et Ludwig [SRFL08;
SRFL09; RSFL10] utilisent une méthode fondée sur la (ou l’absence de) localisation
d’Anderson des états de Dirac apparaissant dans la description de basse énergie du
bord d’un isolant topologique, alors que la description par la K-théorie développée
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par Kitaev [Kit09] se concentre sur la classification des hamiltoniens de volume. Le
fait que ces deux approches s’accordent n’est pas évident, et c’est en fait le cœur de
la correspondance bord-volume. Un autre point de vue sur cette classification fondé
sur les anomalies a émergé de l’étude de la réponse électromagnétique de l’effet Hall
quantique, et plus généralement de l’étude de champs de jauge couplés aux isolants
topologiques [RML12]. Les symétries spatiales/cristallographiques (qui sont unitaire-
ment réalisées) contraignent et enrichissent aussi les propriétés topologiques possibles,
mais d’une manière moins robuste : la correspondance bord-volume n’est dans ce cas
valable que lorsque les bords sont laissés invariants par les symétries pertinentes, au
moins en moyenne. Malgré une intense activité, partiellement revue dans [CTSR15]
(voir aussi les articles plus récents [WL16; SSG15; DL16]) une classification complète
de ces phases topologiques plus fines n’est, à la connaissance de l’auteur, pas encore
réalisée.

1.3 Phases topologiques en dehors de la physique du solide

La propagation d’ondes linéaire dans un milieu spatialement périodique est décrite
dans le cadre de la théorie de Bloch par des relations de dispersion ω(k) qui s’organisent
en une structure de bande, de la même manière que dans le cas d’électrons dans un
cristal. Un tel système peut donc être caractérisé par des invariants topologiques,
et supporter des états de bord topologiques dans un échantillon fini, à condition
qu’il puisse y avoir des interférences entre les ondes, et que la structure de phases
pertinente puisse être mise en place dans le milieu. Cela n’est pas une surprise
dans la mesure où une topologie non-triviale se manifeste sous la forme de mo-
tifs particuliers de la phase géométrique, qui sont à l’origine des états de bord :
les phases géométriques (phases de Pancharatnam–Berry [Pan56; Ber84] et angles
de Hannay [Han85]) sont connus dans les systèmes classiques comme dans les sys-
tèmes quantiques [CJ04]. De telles propriétés ont été prédites (et souvent obser-
vées) dans des domaines très variés : dans des systèmes mécaniques [PP09; BJKP11;
KL13; CUV14; VUG14; PCV15; SH15; NKRV15], des ondes acoustiques [YGSL15;
KFMA15; FKA15; XMYS15], des ondes électromagnétiques, en particulier de la lu-
mière visible et des micro-ondes [HR08; RH08; WCJS09; HDLT11; KMTK12; FYF12;
RZPL13; HMFM13; LJS14; MGFV16; CJNM16], des systèmes opto-mécaniques
[PBSM15], des gaz d’atomes froids [JMDL14; ALSA14; AALB13; MSKB13], des cir-
cuits électriques linéaires [NOSS15; AGJ15] et des réseaux de réactions (bio)chimiques
[MV16]. Cet ensemble de travaux a eu une importance considérable, dans la mesure
où il a permis de comprendre (et de confirmer expérimentalement) que les propriétés
topologiques d’une structure de bande de Bloch et les états de bord associés sont
des propriétés essentiellement ondulatoires, que l’on peut retrouver dans tous les do-
maines de la physique, ce qui a provoqué un intérêt considérable dans le domaine,
des découvertes fondamentales passionnantes et des perspectives d’applications très
prometteuses.
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1.3.1 Ondes électromagnétiques: cristaux photoniques dans le domaine optique et
micro-ondes

Une fructueuse analogie entre les systèmes optiques et électroniques [HL90; JJWM11]
a émergé dans les années 80, en particulier après la conceptualisation de la notion de
cristal photonique [Yab87; Joh87]. Les cristaux photoniques sont caractérisés par une
structure de bande photonique, pouvant avoir des gaps (photoniques), de manière
analogue aux systèmes électroniques. L’idée générale [JJWM11; NL14] est que les
équations de Maxwell dynamiques peuvent être réécrites sous la forme d’une équation
de Schrödinger

i∂tψ = Mψ (6.10)

où l’opérateur de Maxwell M et le champ électromagnétique ψ sont définis par

ψ =
(
E
H

)
et M =

(
ε 0
0 µ

)−1 ( 0 i curl
−i curl 0

)
. (6.11)

Ici, E et H sont respectivement les champs électrique et magnétique mésoscopiques,
ε et µ sont respectivement les tenseurs de permittivité diélectrique et de perméabi-
lité magnétique locaux, qui décrivent la réponse du matériau dans lequel le champ
électromagnétique se propage. Ils sont supposés être constants dans le temps, mais
peuvent varier dans l’espace. Dans les milieux bi-anisotropes et bi-isotropes comme
les milieux optiquement actifs, l’opérateur de Maxwell a aussi des composantes dia-
gonales. En l’absence de sources, les deux autres équations de Maxwell donnent
les contraintes div(µH) = 0 et div(εE) = 0. En prenant le carré de l’équation de
Maxwell-Schrödinger, on obtient l’équation d’onde du second ordre

(∂2
t +M2)ψ = 0 (6.12)

où les évolutions des champs magnétique et électrique sont découplées. Dans un
cristal photonique, la permittivité et la perméabilité ε(x) et µ(x) varient périodique-
ment dans l’espace. La transformée de Fourier permet de décomposer l’opérateur de
Maxwell M en une famille d’opérateurs de Bloch-Maxwell M(k), où k est la quasi-
impulsion, dont les valeurs propres donnent la relation de dispersion ωn(k) du cristal
photonique.

Haldane et Raghu [HR08; RH08] ont réalisé en 2005 qu’il est possible d’induire
des propriétés topologiques dans un tel cristal photonique gappé si l’invariance par
renversement du temps est brisée par effet Faraday dans un milieu gyromagnétique où
µ n’est pas un tenseur symétrique(3). Cette idée a été confirmée expérimentalement
[WCJS09] par Wang, Chong, Joannopoulos et Soljačić, qui ont observé des modes
électromagnétiques unidirectionnels protégés contre la rétrodiffusion dans un cristal
photonique topologiquement non-trivial dans le régime des micro-ondes, réalisé à par-
tir d’un réseau de bâtonnets cylindriques de ferrite de rayon de l’ordre du centimètre,

(3)Habituellement, la perméabilité et la permittivité sont des tenseurs symétriques. Néanmoins,
sous un champ magnétique extérieur B0, les tenseurs ϵ et µ peuvent ne pas être symétriques : dans
ce cas, le milieu est dit gyrotropique. Le renversement du champ magnétique transpose les tenseurs,
avec ϵ(−B0) = ϵT (B0) et µ(−B0) = µT (B0). Quand seul µ (resp. ε) est concerné, le matériau est
dit gyromagnétique (resp. gyroélectrique).
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soumis à un champ magnétique. À partir de mesures de diffusion utilisant deux an-
tennes et un analyseur de réseau, dont le principe est essentiellement d’envoyer et de
recevoir de la lumière micro-ondes pour mesurer la matrice de répartition (scattering
matrix), ils ont montré l’existence de modes non-réciproques (chiraux) localisés près
du bord, en accord avec les prédictions théoriques, voir figures 6.11 et 6.10. En ajou-
tant un obstacle métallique, ils ont aussi montré la robustesse de ces états de bord
chiraux.

B

A B

A’ B’

Figure 6.10: Cristal photonique avec un bord et des antennes de mesure. Le cristal
photonique utilisé par [WCJS09] est composé de bâtonnets cylindriques ferrimagné-
tiques sous un champ magnétique. Une interface constituée d’un mur de métal joue
le même rôle qu’une interface avec le vide dans un système électronique (de l’air ou
du vide autoriseraient des pertes par radiation). Deux antennes sont utilisées pour
mesurer la transmission directe et inverse de la lumière micro-onde dans le cristal pho-
tonique. Il est possible de sonder le volume (avec les antennes A’ et B’) ou les bords
(avec les antennes A et B), voir figure 1.11. Ce dispositif a permis à Wang et col-
laborateurs [WCJS09] de démontrer l’existence de modes non-réciproques (chiraux)
situés près du bord, en accord avec les prédictions théoriques.

Divers travaux théoriques et expérimentaux ont eu lieu à la suite de ces investiga-
tions ; une revue récente est [LJS14]. Du point de vue fondamental, la classification
des isolants topologiques photoniques a été étudiée par De Nittis et Lein [NL14]. Les
systèmes dans le domaine des micro-ondes comme celui utilisé par Wang et collabo-
rateurs ont aussi été employés pour réaliser expérimentalement la fusion de cônes de
Dirac [BKMM13] et pour observer des effets topologiques faibles [BKMM14] dans du
graphène artificiel. Aux longueurs d’onde des micro-ondes, un analyseur de réseau
peut permettre de sonder la phase des états propres, ce qui est particulièrement utile
pour étudier les systèmes topologiques. Ce genre d’expérience de diffusion a été ef-
fectué par Hu et al. [HPWP15] dans un système de résonateurs optiques annulaires
[LC13] qui peut être décrit comme un réseau orienté de diffusion [PC14; TD15] si-
milaire au modèle de Chalker-Coddington [CC88; HC96]. Une autre branche de ce
champ de recherche est particulièrement pertinent ici. Pour la lumière visible, les
effets gyrotropiques sont généralement très petits, et une extension de la méthode
utilisée par Wang et al. [WCJS09] semble hors d’atteinte expérimentale. Une possi-
bilité pour passer outre cette difficulté a été proposée et réalisée expérimentalement
par Rechtsman et collaborateurs [RZPL13], qui ont utilisé des guides d’onde en forme
d’hélices arrangés en un réseau bidimensionnel pour réaliser un isolant topologique
de Floquet à deux dimensions. Dans leur dispositif, la direction (spatiale) de propa-
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Figure 6.11: Signatures de diffusion des états de bord photoniques chiraux. La struc-
ture de bande photonique (projetée) pour les modes transverses magnétiques f(k) du
cristal photonique conçu par [WCJS09], dont l’allure est représentée en (b), présente
des gaps topologiques, qui accueillent des états de bord topologiques (en rouge). Une
signature de ces états de bord est obtenue par des mesures de coefficients de trans-
mission : dans le volume (a), la transmission est réciproque : il n’y a pas de différence
significative entre la transmission directe (en bleu) et indirecte (en rouge). (c) Au
contraire, sur le bord, la transmission dans la direction inverse est nettement infé-
rieure à la transmission dans la direction directe. Dans la structure de bande (b),
les premiers nombres de Chern des bandes sont indiqué en bleu. Ils sont compatibles
avec l’existence de l’état de bord rouge. Un état de bord supplémentaire devrait appa-
raître dans le gap séparant les deux bandes de plus haute fréquences, mais [WCJS09]
expliquent que ces bandes ont des bords mal définis à cause d’une absorption impor-
tante à ces fréquences, due à la proximité avec la résonance ferromagnétique, ce qui
explique sans doute que cet état de bord supplémentaire ne soit pas indiqué. Adapted
from [WCJS09]. Reprinted by permission from Macmillan Publishers Ltd, Nature,
copyright 2009.
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gation de la lumière (dans les guides d’onde) ne joue pas le même rôle que les deux
directions orthogonales, et il est commode de prendre cette particularité en compte
pour simplifier les équations de Maxwell dynamiques. Les guides d’onde sont obte-
nus en illuminant un verre comme la silice avec des impulsions laser ultracourtes,
qui modifient légèrement l’indice de réfraction, changeant sa valeur initiale n0 en un
indice dépendant de la position n0 + δn(x). Cette méthode permet de fabriquer des
guides d’onde bien contrôlés pour la lumière visible. Dans l’approximation paraxiale
où la lumière se propage essentiellement selon l’axe du guide d’onde z, l’équation de
Helmholtz qui gouverne la partie spatiale ϕ d’un champ électromagnétique monochro-
matique ψ(t, x) = ϕ(x)e−iωt à pulsation ω prend la forme

i∂zϕ = − 1
2k0

∇2
⊥ϕ− k0δn

n0
ϕ (6.13)

où ∇⊥ = ∂2
x + ∂2

y , k0 = 2πn0/λ, et λ = 2πc/ω est la longueur d’onde dans le vide de
la radiation. La propagation de la lumière le long du guide d’onde est similaire à une
évolution dans le temps, où le temps t est remplacé par la distance z de propagation le
long de l’axe du guide d’onde. L’équation de propagation est similaire à une équation
de Schrödinger où l’indice optique dépendant de la position joue le rôle du potentiel
(voir e.g. [Lon09; SN10] pour des détails). Par exemple, lorsque deux guides d’onde
sont suffisamment proches l’un de l’autre, ils peuvent échanger de la lumière par cou-
plage évanescent : ainsi, la lumière envoyée initialement dans un des guides d’onde
oscille entre les deux guides au cours de sa propagation, de manière analogue aux
oscillations de Rabi. Tant que les guides d’onde ne sont pas trop fortement couplés, il
est ainsi possible de décrire un arrangement de guides d’onde parallèles par une théo-
rie de couplage de modes analogue à une description de liaisons fortes en physique
du solide (voir e.g. [YY06; SN10]). De plus, la forme en hélice des guides d’onde
peut être prise en compte dans cette description comme une modulation périodique
des paramètres de la théorie de couplage de modes/liaisons fortes dans la direction
de propagation (voir e.g. [Lon09; SN10]). Les équations décrivant la propagation
sont donc formellement équivalentes à l’équation d’évolution d’un hamiltonien de liai-
son fortes modulé périodiquement dans le temps. Une modulation sinusoïdale des
guides d’onde imite l’interaction d’un électron avec un champ électrique linéairement
polarisé. Les guides d’ondes en hélice utilisés par Rechtsman et collaborateurs cor-
respondent à une polarisation circulaire, et ils ont comme attendu observé, pour des
paramètres bien choisis, une propagation chirale de la lumière sur le bord du système,
même en présence de défauts.

1.3.2 Ondesmécaniques : phonons dans des réseaux de billes et ressorts

Suite aux travaux de Prodan et collaborateurs [PP09; BJKP11] qui ont identifié
des modes phonon topologiques dans des systèmes inspirés de la biologie, Kane et
Lubensky [KL13] ont développé un cadre permettant de caractériser les propriétés to-
pologiques des systèmes périodiques de billes et ressorts, en analogie avec les systèmes
électroniques. En particulier, ils ont donné une formulation précise (du point de vue
de la physique) sur la correspondance bord-volume dans les réseaux mécaniques. Dans
ces réseaux mécaniques, des billes reliées les unes aux autres par des ressorts hookéens
sont disposés périodiquement dans l’espace. Le spectre de phonons s’organise ainsi
en bandes de Bloch ωi(k), où k est la quasi-impulsion, et une bande de Bloch isolée
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des autres par des gaps peut être topologiquement non-triviale. Le réseau mécanique
possède deux types de degrés de liberté : les déplacements des billes, et les extensions
des ressorts, définis dans les deux cas par rapport à une configuration d’équilibre. La
relation géométrique entre les déplacements ui et les extensions em est contenue dans
la matrice de rigidité R définie par

em = Rmiui. (6.14)

De même, la relation géométrique entre les tensions Tm des liens et les forces Fi

s’appliquant sur les billes est contenue dans la matrice d’équilibre Q ≡ RT telle
que

Fi = QimTm. (6.15)
Du point de vue de la dynamique, la tension Tm d’un lien hookéen est reliée à son
extension par Tm = −Kmem, et la force Fi sur une bille est donnée par la loi de
Newton Fi = Miüi. Quant toutes les raideurs et toutes les masses sont égales, Km =
K et Mi = M , il est pratique de définir ω0 =

√
K/M , et l’équation du mouvement

s’écrit
i d
dtψ = Hψ (6.16)

où
H = ω0

(
0 Q
QT 0

)
et ψ =

(
u̇

−iω0e

)
. (6.17)

Encore une fois, la transformée de Fourier permet d’exploiter la périodicité spatiale du
système, et on obtient une famille de hamiltoniens de Bloch matriciels H(k). Quand
cette famille d’hamiltoniens de Bloch est gappée, les invariants topologiques peuvent
être définis et calculés de la manière habituelle. Un gap à fréquence nulle dans le
spectre d’excitation du système n’est possible que si le système est isostatique, c’est-
à-dire quand le nombre de contraintes (dues aux liens) est égal au nombre de degrés
de liberté des billes, et dans ce cas, une symétrie de structure (une symétrie chirale
dans le langage des isolants topologiques) visible à la forme antidiagonale par blocs
de H peut être utilisée pour protéger des phases topologiques. Une description hamil-
tonienne des systèmes mécaniques (topologiques) ne se limitant pas aux systèmes de
billes et ressorts, ainsi qu’une classification des phases topologiques correspondantes
(à fréquence nulle et finie) a récemment été développée par Süsstrunk et Huber [SH16]
dans un article très clair.

Kane et Lubensky ont proposé un analogue mécanique du modèle deSu-Schrieffer-
Heeger du polyacétylène, qui a été réalisé expérimentalement par Chen et al. [CUV14].
Mis à part aux points de transition, le volume du système est isolant, ce qui signifie
qu’il n’y a pas de mode à fréquence nulle. Dans un système mécanique avec des
liens de très grande raideur (par exemple si on remplace les ressorts par des tiges
en plastique), aucun mouvement n’est possible. À l’interface entre deux isolants
mécaniques topologiquement distincts, par contre, il existe un mode de fréquence
nulle robuste, et le mouvement n’est possible qu’à travers ce mode de bord topologique
(voir figure 6.12). Ici, le mouvement n’est pas infinitésimal, parce qu’un soliton couplé
à la paroi de domaine séparant les deux phases topologiquement différentes peut se
propager le long de la chaîne [CUV14; VUG14], un comportement proche de ce qu’on
observe dans le polyacétylène [JR76].
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Figure 6.12: Isolant topologique mécanique en LEGO. Une version en LEGO du mo-
dèle SSH mécanique, conçue par Vitelli et al. [VUG14]. Les deux phases isolantes
correspondent aux zones où les tiges rouges pointent vers la droite ou vers la gauche
de leur point d’attache. Dans ces zones, aucun mouvement n’est possible (à fré-
quence nulle). À l’interface entre les deux phases topologiquement inéquivalentes, au
contraire, il y a un degré de liberté à fréquence nulle, qui correspond à un mouvement
libre. Si on pousse légèrement les tiges vertes ou rouges près de l’interface, la paroi de
domaine peut se déplacer, e.g. de (a) à (b), et se propager tout le long du système.

Une autre réalisation expérimentale d’un système mécanique topologique est due
à Nash et collaborateurs [NKRV15], qui ont utilisé un réseau de gyroscopes couplés
pour créer un métamatériau bidimensionnel comportant des états de bord chiraux
(un analogue du modèle de Haldane). J’invite le lecteur à aller voir leurs vidéos. Ici,
encore une fois, un mouvement périodique dans le temps est utilisé pour induire des
propriétés topologiques.

1.4 Induiredespropriétés topologiquesparun forçagepériodiquedans
le temps

Nous avons déjà mentionné qu’une modulation périodique dans le temps (ou son
équivalent en propagation paraxiale) peut être utilisé pour induire des propriétés to-
pologiques dans les systèmes photoniques et mécaniques. Ces méthodes proviennent
de la physique du solide, où il a été proposé de contrôler par la lumière les propriétés
topologiques de systèmes électroniques, une idée qui se heurte à des difficultés expé-
rimentales. L’idée d’induire une transition de phase topologique par une excitation
périodique dans le temps, par exemple en éclairant par un laser une feuille de gra-
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phène, a été proposée en 2009 par Oka et Aoki [OA09], qui ont rapidement été suivis
par Inoue et Tanaka [IT10], puis Lindner, Refael et Galitski [LRG11] qui proposèrent
un “isolant topologique de Floquet” où l’effet Hall quantique de spin est induit par
la lumière. Des idées du même ordre avaient déjà été développées (du point de vue
théorique) au début des années 2000 dans le domaine des atomes froids ; l’état du
domaine de recherche en 2007 est revu dans l’article [LSAD07].

En première approximation, un hamiltonien (de Bloch) H0(k) soumis à une per-
turbation périodique dans le temps W (t) = W (t + T ) peut être remplacé par un
“hamiltonien effectif” indépendant du temps, qui décrit la dynamique stroboscopique
à long temps du système, après un nombre entier de périodes (i.e. aux temps nT , où
n ∈ Z). Pour une perturbation monochromatique

W (t) = W1(k)eiωt +W−1(k)e−iωt (6.18)

ce hamiltonien effectif est, au premier ordre,

Heff(k) = H0(k) + 1
ω

[W1(k),W−1(k)] +O

(
1
ω2

)
. (6.19)

En partant d’une phase critique avec des cônes de Dirac (comme le graphène), il
est ainsi possible d’induire des propriétés topologiques à condition que le signe des
masses aux différents points de Dirac puisse être contrôlé. C’est le cas du couplage
avec une onde électromagnétique dans le graphène, qui induit des masses opposées
dans les deux vallées [OA09; IT10]; de manière analogue, dans le dispositif utilisé
par [RZPL13], les guides d’onde en hélice imitent justement le couplage avec de la
lumière polarisée circulairement. Pour donner une idée de ce qui se passe, nous allons
nous concentrer sur le hamiltonien de basse énergie au voisinage d’un seul cône de
Dirac

H0(q) = qxσx + qyσy (6.20)
et prendre une perturbation simple, avec W1 = W/4 (σx + iσy) et W−1 = W †

1 . On
obtient

Heff(q) = qxσx + qyσy + W 2

ω
σz + termes d’ordre plus élevé. (6.21)

Il est ainsi possible de gapper le point de Dirac avec une masse dépendant de W . Dans
le graphène, la perturbation correspondant à une lumière polarisée circulairement est
W1 ou W †

1 , selon la vallée concernée, et les masses ±W 2/ω dans les deux vallées
sont donc bien opposées. Une perturbation plus simple, identique dans les deux
vallées, peut aussi induire des propriétés topologiques, mais à un ordre plus haut en
perturbation.

À première vue, le hamiltonien effectif indépendant du temps Heff est suffisant
pour comprendre la topologie de ces systèmes forcés périodiquement : le forçage
peut conduire à un hamiltonien effectif Heff non-trivial à partir d’un hamiltonien
non-perturbé H0 trivial. Le sens ce hamiltonien effectif doit cependant être précisé.
Dans un système forcé, l’énergie n’est plus conservée, puisqu’elle peut être échangée
avec le champ excitateur. Néanmoins, la périodicité temporelle du forçage assure que
l’énergie n’est échangée que par quanta de ℏω (où ω est la pulsation de forçage), et
la quantité

ε = E mod. ℏω (6.22)
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Figure 6.13: Un spectre de quasi-énergie. Le spectre de l’opérateur unitaire
d’évolution après une période U(T ) est appelé spectre de quasi-énergie, et il s’organise
sur le cercle unité U(1). Comme dans le cas des systèmes statiques, le spectre de quasi-
énergie d’un cristal est composé de bandes (dans cet exemple, il y a deux bandes, une
en bleu et une en rouge), séparées par des gaps.

appelée quasi-énergie reste conservée. Ainsi, un système forcé périodiquement est
caractérisé par son spectre de quasi-énergie (et les états propres correspondants) à la
place d’un spectre d’énergie. Ce spectre de quasi-énergie apparaît comme le spectre
du hamiltonien effectif Heff ou, à une exponentielle près, comme le spectre sur le
cercle de l’opérateur d’évolution après une période U(T ) = e−iT Heff , qu’on appelle
souvent l’opérateur de Floquet. Par suite, les quasi-énergies sont essentiellement des
phases, c’est-à-dire des quantités périodiques, qui vivent sur un cercle, comme on le
montre figure 6.13. L’opérateur de Floquet U(T ) est bien défini, mais le hamiltonien
effectif n’est pas défini de manière unique : un choix de branche pour le logarithme
complexe est nécessaire. La périodicité des quasi-énergies peut sembler inoffensive.
À la place de bandes de quasi-énergie dans le spectre du hamiltonien, des bandes
de quasi-énergie apparaissent dans le spectre de l’opérateur de Floquet U(T ), et on
pourrait espérer décrire la topologie des systèmes forcés périodiquement de la même
manière que pour les systèmes statiques, à travers la topologie des bandes de quasi-
énergie. Il se trouve que ces phases hors d’équilibre ont une topologie plus riche que les
phases d’équilibre : un système où tous les invariants de bande s’annulent peut tout
de même avoir des propriétés topologiques non-triviales, dans des situations appelées
des phases topologiques “anomales”.

Ces propriétés particulières des systèmes forcés périodiquement ont été remarquées
par Kitagawa et al. [KBRD10], puis rapidement observées dans des expériences dans
le domaine optique [KBFR12]) et comprises en 2013 par Rudner, Lindner, Berg, et
Levin [RLBL13]. Ces auteurs ont développé un nouveau cadre technique pour décrire
complètement les propriétés topologiques d’une évolution unitaire dans un système
à deux dimensions d’espace, soumis à une excitation périodique dans le temps, et
sans symétrie particulière, qui permet de rendre compte correctement de l’existence
d’états de bord chiraux au bord d’un échantillon fini. La raison de la particularité de
ces phases anomales est la périodicité du spectre de quasi-énergie. Dans un système
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à l’équilibre avec deux bandes d’énergie, il peut y avoir des états de bord dans le gap
de volume situé (en énergie) entre les deux bandes(4). Dans un système de Floquet
avec deux bandes de quasi-énergie, il y a deux gaps de volume, et chacun d’eux peut
accueillir des états de bord dans un système fini, comme on le voit sur la figure
6.14. Bien entendu, cette observation se généralise à plus que deux bandes. Dans
les systèmes fermioniques, la périodicité de la quasi-énergie souligne la question du
remplissage thermodynamique des bandes de quasi-énergie : il n’y a pas de “bas de
bande” où commencer le remplissage. Il n’est donc pas raisonnable de s’attendre à un
comportement indépendant du champ excitateur et des bains et réservoirs auxquels
le système est relié.

C1 = 0

C1 = 0

̸=

C1 = 0

C1 = 0

Figure 6.14: Systèmes trivial et topologique anomal. Les spectres de quasi-énergie
de deux systèmes avec des bords, qui ont la même structure de bande de volume
(bandes bleue et rouge) mais ont des différentes propriétés topologiques de volume,
qui se manifestent par des relations de dispersion au bord différentes (en tirets violets).
Malgré cette différence, les deux systèmes ont les mêmes invariants de bande de vo-
lume (les premiers nombres de Chern C1), qui ne sont pas suffisants pour pleinement
caractériser le système [RLBL13].

La méthode développée par Rudner et al. [RLBL13] consiste à définir des inva-
riants de gap qui sont directement reliés (égaux) au nombre d’états de bord (comptés
algébriquement avec chiralité) qui rempliraient le gap de volume concerné dans un
système avec des bords. Ce point de vue est particulièrement bien adapté aux si-
tuations où il est possible de sonder la réponse du système à quasi-énergie fixée, par
exemple lors d’expériences de diffusion (scattering), sans qu’il soit nécessaire d’avoir
un remplissage particulier des états. C’est le cas dans plusieurs systèmes classiques
(une belle expérience dans des cristaux photoniques peut être trouvée dans [SLIY15]).
Au contraire, les phases topologiques sont généralement comprises à travers la topo-
logie de l’état fondamental, un point de vue très fructueux qui a été étendu aux
phases en interaction comme l’effet Hall quantique fractionnaire, et a conduit à la
notion d’ordre topologique, introduite par Xiao-Gang Wen [Wen90]. Un bon nombre

(4)Pour traiter les deux situations sur le même pied, on peut considérer qu’un hamiltonien constant
est en fait périodique dans le temps, avec une période T assez petite pour que Tσ(H) ⊂] − π, π[,
c’est-à dire quelle que la structure de bande enroulée sur le cercle ne s’enroule pas sur elle-même.i.e.
so that the band structure laid on the circle does not overlap with itself. Dans cette situation, les
“gaps d’énergie” allant du haut de la bande de conduction à +∞ et du bas de la bande de valence
à −∞ correspondent au gap de quasi-énergie autour de e±iπ = −1, qui ne peut par conséquent pas
supporter d’état de bord.
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de développements ont eu lieu dans cette direction, en particulier pour classer les
phases topologiques protégées par symétrie (SPT, pour symmetry protected topologi-
cal phases, une formalisation particulière de ce qu’on appelle isolant topologique ici)
à travers l’état fondamental de hamiltoniens gappés, par des méthodes de cohomo-
logie des groupes [CGLW13; GW14; CGLW12; Wit16]. Dans le cas des systèmes
forcés périodiquement topologiques, plusieurs raisons laissent penser que cette des-
cription pourrait ne pas être entièrement pertinente : (i) dans les phases anomales,
les invariants topologiques associés à une bande sont toujours nuls, mais le système
manifeste néanmoins ses propriétés topologiques par l’apparition d’états de bord dans
un système fini ; (ii) le fondamental n’est pas bien défini, puisque le remplissage des
bandes de Floquet n’est pas univoque, et dépend fortement des détails du couplage
avec l’environnement.

L’idée d’induire des propriétés topologiques à travers un forçage périodique, et
par suite, les propriétés particulières des phases topologiques de Floquet, sont bien
entendu intéressantes du point de vue fondamental. Au delà de cet intérêt fonda-
mental, les phases topologiques de Floquet offrent un moyen commode de réaliser
des phases topologiques en dehors du domaine de la physique du solide. Dans les
atomes froids, l’idée d’utiliser des réseaux optiques modulés périodiquement dans le
temps pour contrôler les paramètres de saut est bien établie, et je renvoie le lecteur
aux revues récentes [Hol15; GD14] pour plus de détails. En particulier, contrôler les
amplitudes tunnel permet de créer des champs de jauge artificiels [HTCÖ12]. Une
application évidente d’une telle méthode est la simulation d’isolants topologiques :
mentionnons les réalisations expérimentales du modèle de Haldane [JMDL14] et du
hamiltonien de Harper-Hofstadter [ALSA14; AALB13; MSKB13]). De manière plus
ou moins indépendante, comme on l’a vu, les mêmes concepts ont aussi été utilisées
pour concevoir et réaliser des phases topologiques (i) dans des systèmes mécaniques,
expérimentalement avec un réseau de gyroscopes reliés par des ressorts [NKRV15],
et théoriquement avec des gyroscopes [WLB15] et dans un référentiel en rotation
[WLZ15; KH15], ainsi que (ii) avec de la lumière [KBFR12; RZPL13], dans un dispo-
sitif où l’évolution périodique en temps est remplacé par une modulation périodique
dans la (d + 1)ème dimension d’espace selon laquelle la propagation a lieu. Tous
comptes faits, je considère que les systèmes forcés périodiquement (et les champs
de jauge artificiels correspondants) sont un outil important pour étendre la notion
d’isolant topologique en dehors du cadre où elle a été initialement découverte.

Enfin, le cadre développé pour l’étude des phases topologiques des systèmes forcés
périodiquement, qui peut aussi être appliqué aux systèmes à l’équilibre, pourrait
servir comme plateforme pour une meilleure compréhension des phases topologiques.
Par exemple, les états de bord d’une phase anomale sont (ou du moins semblent
être) de la même nature que les états de bord topologiques habituels. Pourtant,
les systèmes anomaux ne sont pas caractérisés par des invariants de bande : cet
écart au comportement habituel pourrait servir d’outil pour comprendre les limites
des caractérisations connues des états topologiques, et de les étendre d’une manière
mieux adaptée aux systèmes hors matière condensée.
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1.4.1 Phases topologiques de Floquet dans les systèmes électroniques

La réalisation expérimentale d’états de Floquet topologiques dans le cadre de la ma-
tière condensée électronique pose un certain nombre de défis, qui n’ont pas encore
tous été résolus. La théorie de Floquet est une approche de haute fréquence, qui a du
sens lorsque le forçage est rapide par rapport aux échelles de temps caractéristiques
du système non-perturbé. Dans ce régime de très haute fréquence, le système ressent
essentiellement un potentiel effectif statique. La limite opposée est celle d’un forçage
adiabatique très lent, pendant lequel l’état du système suit les états propres instan-
tanés du hamiltonien dépendant du temps. Si l’on part d’une limite de très haute
fréquence, le régime où des comportements intéressants peuvent être observés est ty-
piquement atteint lorsque la fréquence de forçage devient comparable aux échelles
de temps naturelles du système non-perturbé. Néanmoins, plusieurs difficultés appa-
raissent lorsque la fréquence est “trop basse” : premièrement, à basse fréquence, les
bandes d’énergie non-perturbées s’enroulent un grand nombre de fois sur le cercle, et
obtenir un gap de taille raisonnable semble difficile. À encore plus basse fréquence,
le spectre de quasi-énergie n’a plus vraiment de sens, les séries perturbatives ne sont
plus pertinentes, et la théorie de Floquet n’est plus d’aucune aide. Ainsi, pour avoir
des résultats intéressants et pourvus de sens, la largeur de bande doit être comparable
à (ou du moins de l’ordre de) la fréquence d’excitation. Par exemple, la largeur de
bande du graphène est de l’ordre de 6t où t ≈ 3 eV, et on peut donc s’attendre à ce
que l’ordre de grandeur de l’amplitude du rayonnement nécessaire soit dans la gamme
de l’ultraviolet lointain, avec f ∼ 6t/h ∼ 1 × 1015 Hz. Un tel rayonnement ionisant
va endommager le système. Le problème est encore pire lorsqu’on souhaite obtenir
un gap de taille raisonnable dans le spectre de Floquet : une très forte intensité lumi-
neuse est nécessaire à ces fréquences, qu’on pourrait imaginer obtenir avec un laser.
Si l’effet de la lumière est pris en compte par couplage minimal p → p− eA dans un
hamiltonien de Dirac H(p) = vFp · σ, le gap est de l’ordre de [CPRT11]

∆ ∼ αv2
FI

ω3 (6.23)

où I ∼ c ε0 ω
2A2 est l’intensité du faisceau laser, en W · m−2 (voir e.g. [Pas16]),

et α ≈ 1/137 est la constante de structure fine. Avec la pulsation estimée ω ∼
1 × 1016 rad · s−1, un gap de 10 meV nécessiterait I ∼ 1 × 1017 W · m−2 avec vF ∼
1 × 106 m · s−1 dans le graphène. Une si forte intensité laser risque d’avoir un effet
délétère sur la stabilité de la feuille de graphène, ne serait-ce que par chauffage.
Plusieurs propositions ont des estimations légèrement plus optimistes de la pulsation
et de l’intensité laser nécessaires [CPRT11; UPTB14; PUBT14; QGS16], mais qui
restent néanmoins pour l’instant hors de portée expérimentale . Malgré ces ordres
de grandeur décevants, tout espoir n’est pas perdu, puisque des états de Floquet ont
été détectés sans ambiguïté dans le groupe de Gedik par Mahmood et collaborateurs
[MCAG16] (à la suite de précédents travaux [WSJG13]), qui ont utilisé des expériences
de pompe-sonde associées à des méthodes de spectroscopie de photoémission résolue
en angle et en temps (Tr-ARPES) sur les états de surface de l’isolant topologique
Bi2Se3 pour induire des états de Floquet avec la lumière de pompe, puis les observer
avec la lumière de sonde. En particulier, ils ont pu distinguer la contribution des états
de Volkov (qui sont dans ce cas les états de Floquet des électrons libres en dehors de
l’échantillon, mais près de sa surface) et les états de Bloch-Floquet du cristal, voir
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figure 6.15. Pour donner un ordre de grandeur, la lumière de pompe utilisée pour
induire les états de Floquet est dans la gamme infrarouge, avec ω ∼ 1014 Hz et I ∼
1012 W2 · m−1. Même si ces travaux sont encore loin de la réalisation expérimentale de
phases topologiques de Floquet, ils sont particulièrement prometteurs, et démontrent
qu’il est effectivement possible d’induire des états de Floquet dans un cristal, au moins
pour de courtes durées (environ une picoseconde).
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Figure 6.15: Signature en Tr-ARPES signature des états de Bloch-Floquet. Spectres
d’ARPES résolue en temps issus de [MCAG16], montrant des états de Bloch-Floquet.
(a) Avant l’excitation de forte amplitude, l’ARPES permet d’observer un cône de Di-
rac à la surface de Bi2Se3 ainsi que de bandes de volume. (b) Après que la pompe
ait excité l’échantillon, plusieurs “répliques” (ou “bandes latérales”) du cône de Di-
rac original sont observées dans le spectre d’ARPES résolue en temps, translatés en
énergie de multiples de ℏω ≃ 0.16 eV, où ω est la pulsation de la lumière de pompe.
Des croisements évités peuvent être observés entre les bandes latérales de Floquet.
Dans ce spectre, il y a un mélange de contributions des états de Floquet et des états
de Volkov (qui, seuls, conduisent essentiellement à la même signature), mais Mah-
mood et al. ont réussi à prouver expérimentalement que les états de Bloch-Floquet
states existent bel et bien dans le cristal. Adapted from [MCAG16]. Reprinted by
permission from Macmillan Publishers Ltd, Nature Physics, copyright 2016.

Même quand (si ?) les difficultés à réaliser des états de Floquet topologiques dans
le cadre de la matière condensée électronique seront surmontées, il sera nécessaire de
résoudre ou d’éviter le problème du remplissage des bandes de quasi-énergie. Dans
un tel système hors d’équilibre, une source de dissipation est essentielle pour espérer
atteindre un état stationnaire hors d’équilibre pouvant être décrit par une évolution
effective unitaire[TOA09; BDP15; DOM14; DOM15], puisque le champ excitateur
agit comme source d’énergie. Une question importante, dans ce contexte, est celle du
remplissage de la structure de bandes dans le régime stationnaire [SBLR15; INC15;
LDM14], puisque les observables à long temps, comme les propriétés de transport ou
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de réponse sont déterminées par l’état stationnaire.

Dans la suite, nous allons supposer qu’un état stationnaire est atteint, et nous
n’allons pas nous concentrer sur la thermodynamique (le remplissage), mais plutôt sur
la structure dynamique (l’opérateur d’évolution et le hamiltonien effectif) du système.
Cela n’est pas un problème, puisque les propriétés topologiques de la structure de
bande sont indépendantes de son remplissage. Dans ce cadre, nous allons cependant
éviter d’utiliser le mot “isolant” (en particulier dans “isolant de Floquet”) pour se
référer à un système gappé, du moins tant que le remplissage des bandes de quasi-
énergie n’est pas précisé.

2 But de ce travail

2.1 Topologie des systèmes soumis à une excitation périodique dans
le temps

Les premières propositions visant à induire des états topologiques par un forçage pé-
riodique dans le temps ont été conçues dans une situation sans aucune symétrie (dans
la classe A) par Oka et Aoki [OA09] ainsi qu’Inoue et Tanaka [IT10] (des idées du
même ordre étaient aussi présentes dans la littérature des atomes froids, en parti-
culier pour réaliser des champs de jauge artificiels). Un an après, Lindner, Refael
et Galitski [LRG11] ont proposé une idée similaire pour des systèmes fermioniques
invariants par renversement du temps (dans la classe AII, comme les isolants de Kane-
Mele). La même année, Jiang et collaborateurs [JKAA11] ont proposé d’utiliser un
forçage périodique pour induire des fermions de Majorana dans une chaîne 1D avec sy-
métrie particule-trou (dans la classe D). En même temps, Kitagawa et collaborateurs
[KRBD10; KBRD10] faisaient un premier pas vers une classification topologique des
systèmes forcés périodiquement. Une avancée majeure a été faite par Rudner, Lindner,
Berg, et Levin en 2013 [RLBL13], qui ont réalisé que les invariants caractérisant la to-
pologie des systèmes à l’équilibre ne sont pas suffisants pour entièrement caractériser
les systèmes forcés périodiquement, et ont développé une méthode permettant de dé-
crire de manière satisfaisante la topologie des systèmes à deux dimensions sans aucune
symétrie (dans la classe A. Au vu de l’importance des symétries dans les systèmes to-
pologiques, il est crucial de généraliser cette méthode aux autres classes de symétrie.
En utilisant des méthodes différentes, Asbóth, Tarasinski et Delplace [ATD14] ont
défini un invariant pour les systèmes chiraux à une dimension forcés périodiquement
(dans la classe AIII, comme le modèle SSH). Un des objectifs de cette thèse était
de définir un tel invariant pour les systèmes avec invariants par un renversement du
temps fermionique (dans la classe AII, comme les isolants de Kane-Mele), un but qui
a été atteint en utilisant le cadre de Rudner et collaborateurs. J’ai aussi réinterprété
les résultats de Asbóth et al. dans ce même cadre, et étendu la définition des inva-
riants de Floquet à toutes les dimensions d’espace pour les classes complexes (A et
AIII). L’objet principal de cette approche est l’opérateur d’évolution unitaire U(t, k).
Lorsque le spectre de l’opérateur de Floquet U(T, k) (le spectre de quasi-énergie)
possède des gaps, il est possible de définir des versions périodisées de l’opérateur
d’évolution Vε(t, k) = Vε(t+T, k), qui dépendent de manière cruciale du choix du gap
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ε dans le spectre de quasi-énergie. Dans la classe A, la théorie de l’homotopie permet
de définir un invariant topologique de volume à partir de l’application unitaire Vε:
son enroulement (ou degré)

Wε[U ] = deg(Vε) ∈ Z (6.24)

qui compte le nombre d’états de bord chiraux dans le gap de volume ε qui apparaissent
dans un échantillon de taille finie [RLBL13]. Il s’agit d’un invariant de gap, par
opposition e.g. aux invariants de Chern, qui sont des invariants de bande, en
ce qu’ils caractérisent les bandes de (quasi-)énergie. Il y a une relation entre ces
invariants : la différence entre les W dans deux gaps différents donne le nombre de
Chern de la bande de quasi-énergie située entre les deux gaps,

Wε′ [U ] −Wε[U ] = C1[Pε,ε′ ]. (6.25)

J’ai étendu cette définition à toutes les dimensions paires d, où le (d/2)-ème invariant
de Chern apparaît [Fru16]. Dans la classe AII, où le renversement du temps Θ2 = −Id
est présent, c’est-à-dire quand

ΘH(t, k)Θ−1 = H(−t,−k) (6.26)

l’invariant Wε[U ] est toujours nul à deux dimensions, un comportement similaire à
celui du premier nombre de Chern dans cette situation. Cependant, en dimensions
d = 2, 3, il est possible de définir un nouvel invariant

Kε[U ] ∈ Z2 (6.27)

qui compte les états de bord hélicaux dans le gap de volume ε qui apparaissent dans
un échantillon de taille finie [CDFG15b]. C’est une quantité à valeurs dans Z2, comme
l’invariant de Kane-Mele. De manière analogue au cas précédent, la différence entre
les K de deux gaps donne l’invariant de Kane-Mele de la bande correspondante

Kε′ [U ] −Kε[U ] = KM[Pε,ε′ ]. (6.28)

Dans la classe AIII, quand la symétrie chirale est présente, c’est-à-dire que

ΓH(t, k)Γ−1 = H(−t, k) (6.29)

il y a une contrainte sur les gaps chiraux ε = 0 et π (appelés aussi gaps réels), qui
implique l’annulation de W0/π[U ] en dimension paire. Dans toutes les dimensions
impaires, W n’est pas défini, mais il est possible de définir des invariants de gap
chiraux pour les gap chiraux,

Gε[U ] ∈ Z (ε = 0 ou π) (6.30)

et encore une fois, leur différence donne l’invariant de bande chiral usuel [Fru16].

Je conjecture que cette structure est générale, et se retrouve pour toutes les classes
de Cartan-Altland-Zirnbauer. Tous les isolants (ou supraconducteurs) topologiques
connus devraient pouvoir être caractérisés par des invariants de gap, qui s’étendent
naturellement aux systèmes de Floquet. Les travaux de Nathan et Rudner [NR15]
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ainsi que de Roy et Harper [RH16] sont des indices allant dans ce sens. Dans le cha-
pitre 4 de cette thèse, je montre que les invariants de volume W et G caractérisent
toutes les classes Z (et 2/ZZ) du tableau périodique des isolants topologiques ; en
particulier, les contraintes auxquelles les symétries anti-unitaires soumettent ces inva-
riants permettent de retrouver une grande partie du tableau périodique (à l’exception,
en fait, des invariants Z2).

Il serait particulièrement intéressant d’observer des états de Floquet topologiques
dans un contexte de physique du solide. Comme je l’ai déjà mentionné, c’est aussi un
défi expérimental. En matière condensée électronique, les mesures de transport consti-
tuent une manière naturelle de sonder les états topologiques, comme par exemple
dans le cas des effets Hall quantiques [Büt88a] ainsi que des isolants de Kane-Mele
[RBBM09; Büt09]. On s’attend à observer l’analogue d’une quantification de la
conductance dans les systèmes soumis à un forçage périodique, même s’il n’est pas
forcément évident que cette quantification devrait toujours avoirs lieu. Le transport
dans des systèmes forcés périodiquement a déjà été étudié théoriquement dans di-
verses configurations [KOBF11; GFAA11; KS13; TPBU14; FP16]. J’ai utilisé des
simulations numériques résolues en temps pour étudier les propriétés de transport
d’états topologiques de Floquet. On observe comme attendu que la conductance dif-
férentielle moyenne est quantifiée dans un gap de volume topologique [FDWW16],
dans une situation où le transport reste balistique et où la dissipation est principale-
ment due au couplage avec les contacts métalliques. De plus, la conductance à trois
terminaux permet de sonder la nature chirale des états de bord.

3 Organisation de la thèse et publications associées
Durant ma thèse, j’ai contribué à plusieurs articles publiés dans des revues à comité
de lecture.

1. An Introduction to Topological Insulators,
Michel Fruchart, David Carpentier
Comptes Rendus Physique 14 (2013) 779-815
doi:10.1016/j.crhy.2013.09.013, arXiv:1310.0255
Cet article de revue a pour but de fournir une introduction simple et autosuffisante
aux isolants topologiques de Chern et de Kane-Mele.

2. Parallel Transport and Band Theory in Crystals,
Michel Fruchart, David Carpentier, Krzysztof Gawędzki
EPL 106, 60002 (2014)
doi:10.1209/0295-5075/106/60002, arXiv:1403.2836
Dans les cristaux sur des réseaux qui ne sont pas de Bravais, la définition du
hamiltonien de Bloch matriciel n’est pas unique : il y a plusieurs manières inéqui-
valentes de représenter l’opérateur hamiltonien comme une matrice dépendant de
k. De manière similaire (mais indépendante), il y a plusieurs choix inéquivalents de
transport parallèle, et donc de courbures de Berry. C’est surprenant, parce que la
courbure de Berry (au contraire de la connexion de Berry) est invariante de jauge,
et est donc généralement considérée comme une quantité physique. Dans cet ar-
ticle, nous montrons qu’il existe une courbure de Berry “canonique” qui ne dépend

http://dx.doi.org/10.1016/j.crhy.2013.09.013
http://arxiv.org/abs/1310.0255
http://dx.doi.org/10.1209/0295-5075/106/60002
http://arxiv.org/abs/1403.2836
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pas du choix du domaine fondamental (ou cellule unité) utilisé pour décrire le cris-
tal, qui est directement reliée à l’opérateur position, et qui respecte les symétries
du cristal. Il est remarquable que cette courbure de Berry canonique ne soit pas
périodique dans l’espace réciproque. Comme ce sujet n’est relié qu’indirectement
aux travaux développés dans cette thèse, je ne l’exposerai pas en détail.

3. Topological index for periodically driven time-reversal invariant 2D systems,
David Carpentier, Pierre Delplace, Michel Fruchart, Krzysztof Gawędzki
Phys. Rev. Lett. 114, 106806 (2015)
doi:10.1103/PhysRevLett.114.106806, arXiv:1407.7747
Cet article définit un invariant topologique pour les systèmes forcés périodiquement
invariants par un renversement du temps fermionique (dans la classe AII), en deux
dimensions, c’est-à-dire une extension de l’invariant de Kane-Mele aux systèmes
de Floquet. Son contenu est discuté en détail dans la section 3.4 du chapitre 4,
page 152.

4. Construction and properties of a topological index for periodically driven time-
reversal invariant 2D crystals,
David Carpentier, Pierre Delplace, Michel Fruchart, Krzysztof Gawędzki, Clément
Tauber
Nuclear Physics B 896 (2015) 779-834
doi:10.1016/j.nuclphysb.2015.05.009, arXiv:1503.04157
Cet article détaille les preuves des résultats exposés dans l’article précédent. Pour
éviter une répétition inutile de sujets techniques, je n’inclurai pas son contenu dans
cette thèse, et le lecteur recherchant des preuves ou des détails techniques sur la
construction de l’indice K est invité à ce référer à cet article.

5. Probing (topological) Floquet states through DC transport,
Michel Fruchart, Pierre Delplace, Joseph Weston, Xavier Waintal, David Carpen-
tier
Physica E 75 (2016) 287-294
doi:10.1016/j.physe.2015.09.035, arXiv:1507.00152
Les mesures de transport sont la méthode usuelle pour sonder les états de bord
topologiques. Dans cet article, nous utilisons des simulations numériques résolues
en temps pour sonder les propriétés de transport d’états de Floquet (topologiques)
dans un régime où nous nous attendons à comprendre les résultats, dans le but
de préparer le terrain pour des explorations plus hasardeuses. Malgré des résul-
tats encourageants, il s’avère que même ce régime simple n’est pas complètement
compris. Ce sujet est discuté en détails dans le chapitre 5, page 165.

6. Complex classes of periodically driven topological lattice systems,
Michel Fruchart, Phys. Rev. B 93, 115429 (2016)
doi:10.1103/PhysRevB.93.115429, arXiv:1511.06755. Cet article étend des travaux
précédents pour rassembler dans un même cadre unifié les invariants topologiques
connus pour les classes CAZ complexes A et AIII, et étend leurs définitions à
toutes les dimensions d’espace. En particulier, un invariant topologique pour les
systèmes de Floquet chiraux à trois dimensions est défini. Le contenu de cet article
est discuté en détail dans les sections 3.2 et 3.3 du chapitre 4, respectivement aux
pages 126 et 143.

7. Anomalous topological directed scattering networks
Pierre Delplace, Michel Fruchart, Clément Tauber

http://dx.doi.org/10.1103/PhysRevLett.114.106806
http://arxiv.org/abs/1407.7747
http://dx.doi.org/10.1016/j.nuclphysb.2015.05.009
http://arxiv.org/abs/1503.04157
http://dx.doi.org/10.1016/j.physe.2015.09.035
http://arxiv.org/abs/1507.00152
http://dx.doi.org/10.1103/PhysRevB.93.115429
http://arxiv.org/abs/1511.06755
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en préparation.
Les réseaux orientés de diffusion comme le modèle de Chalker-Coddington [CC88;
HC96] sont décrits par des opérateurs d’évolution exprimés en termes de matrices
de diffusion. Chong et collaborateurs [PC14] ont identifié une réalisation “sta-
tique” de systèmes de Floquet, et plus précisément de “marches quantiques à temps
discrets” (DTQW). En particulier, ils ont été les premiers à observer expérimen-
talement des phases de Floquet topologiques anomales (où tous les invariants de
bandes sont nuls), dans des systèmes de ce type [HPWP15; GGSY16]. Cet ar-
ticle est dédié à l’équivalence entre deux points de vue assez différents sur ces
systèmes. Dans la formulation de Ho et Chalker [HC96] apparaissent à la fois
l’opérateur d’évolution à une étape du réseau orienté et un opérateur d’évolution à
deux étapes qui fournit la formulation de type Floquet/DTQW utilisée par Chong
et collaborateurs. Le premier point de vue s’occupe de l’ensemble des degrés de
liberté, et la nature orientée du réseau se traduit par une “contrainte de structure”
qui est à l’origine de la possibilité d’une topologie non-triviale. Le second point
de vue, qui ne garde que la moitié des degrés de liberté pour adhérer plus ferme-
ment à l’analogie avec une évolution à temps discret, est rendu possible par cette
contrainte de structure. En plus de la contrainte de structure, toujours présente,
on identifie aussi une (pseudo-)symétrie sans équivalent dans les systèmes hamil-
toniens, qui est associée à une rotation des quasi-énergies. Cette symétrie peut
forcer les invariants de bande (le premier nombre de Chern) à s’annuler, malgré
un brisure explicite de l’invariance par renversement du temps. Cet article est en
préparation au moment de l’écriture de cette thèse.
Cette thèse est organisée comme suit.

– Une introduction générale (dont vous êtes en train de lire la version française)
commence à la page 3.

– Un chapitre assez technique 2, débutant à la page 33, expose rapidement la topo-
logie des fibrés vectoriels.

– Le chapitre 3, qui commence à la page 57, fait une revue des isolants topologiques
d’équilibre usuels, et de leur classification.

– Le chapitre 4, commençant à la page 109 est le cœur de cette thèse, et est dédié
à la topologie des systèmes forcés périodiquement/de Floquet, en particulier en
présence de symétries.

– Enfin, le chapitre 5 qui commence à la page 165 est une autre partie importante
de ce travail, et est dédié aux signatures de transport des états de Floquet (en
particulier topologiques).

– Une version française de l’introduction générale (que vous êtes en train de lire)
commence à la page 199.
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