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Abstract

Programs are everywhere in our daily life: computers and phones but also fridges,
planes and so on. The main actor in the process of creating these programs is human
beings. As thorough as they can be, humans are known to make involuntary errors without
their awareness. Thus, once finished an already hard phase of writing a program, they
have to face the maintenance phase on which they have to deal with errors they had
previously made. All long their development task, developers have to continuously face
their (or their colleagues) errors. This key observation arises the need of aiding developers
in their development/maintenance tasks.

Thus, for assisting developers, a large number of tools exist, some still in development,
others are integrated in the IDE (debugging, test suites, refactoring, etc.). Some of these
tools are manual, while others propose automatic assistance. To be effective, automated
tools should capture in the best way as possible how the program is structured and works.
For this purpose, one particularly well-suited data structure is graphs, materializing how
concepts relate to each other. Using such data structures for proposing assistance tools
to developers is a quite promising way to proceed.

In this thesis, we concentrate on tools based on a graph representation of the program.
Two big challenges on which we concentrate in this thesis are change impact analysis
(CIA) and fault localization (FL). The former concentrates on the determination of the
impacts of a potential change which may be issued by the developer while the latter
identifies a fault based on what happened during program execution. Both concepts are
complementary: the former concentrates on antemortem sight of the problem on which
one wants to identify a fault before the failure occurs while the latter concentrates on
postmortem sight on which real failures are analyzed to define a way to go back to their
sources.

In this thesis, we face two main problems: (i) the lack of a systematic evaluation
methodology or framework to assess the performance of change impact analysis techniques
and (ii) most current fault localization techniques focus on a specific set of elements
reported by their approach without thinking about how they depend on each other across
the program as a whole.

In this thesis, we aim at finding solutions to these problems. We present four contri-
butions to address the two presented problems. The two first contributions concentrate
mainly on the change impact analysis side of this thesis while the third works on the fault
localization side. The last contribution is a possible application for future works. In a few
words, this thesis explores the causes and consequences of failures on computer programs
by proposing tools based on graphs.
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1

Introduction

‘ ‘Anyone who has never made a mistake has never tried anything new.”

— Albert Einstein

1.1 Context

Our today’s life is surrounded by machines. A large range of our daily tasks are ensured by
computer systems. In order to be able to accomplish anything, computer systems require
that each task be clearly defined. This is achieved by the means of computer programs.
Developers are the key people who are responsible for creating these programs by writing
source code in a way the computer is able to understand.

Unfortunately, developers are humans, and humans are well-known to make mistakes.
There is no exception for computer programs: as they are written by humans, they are
error-prone. These errors, embedded in the software source code, are a part of the running
logic and lead to various undesired run-time behaviors: unexpected program terminations,
unresponsive UI components (such as buttons, menu item, etc.), or even system crashes.

Debugging tasks can quickly become a brain-teaser for the developer as source code
can be made of thousands of lines of code, split in hundreds of files. As a consequence,
the number of possible source code locations for a fault can be very high. Moreover,
some errors may not be detected by the compiler and remain silent until the program
is executed: an example of such an error is a null pointer exception which is caused by
calling a method on an object variable which in fact contains a null value.

Furthermore, when a code change is introduced in a program, it can have side effects.
Indeed, a developer can introduce a change C1 in his source code which make another
piece of source code somewhere else in the program defective. These side effects can
appear in a totally different point than where the original changes have been made. At
the same time, when a developer or a software tester identifies an undesired behavior
in the program, the obvious task is to correct the source code in order to make it work
correctly. However, the precondition is to locate the fault in the source code: this step may
be harder to achieve than fixing the problem itself. For instance, a developer working on a
calculator application may change arithmetic-related code, e.g., division function. Then,
when running the program, the user interface buttons of the calculator may not respond
anymore. At first sight, the developer may think the button source code is defective while
the root cause may be the arithmetic-related change.

1



2 Chapter 1. Introduction

Towards the omnipresence of these faults and the difficulty to locate them, a large
range of approaches have been proposed to assist in debugging and fixing tasks. It begins
early in the development stage with the software documentation: the developer adds
comments his source code. They are neither compiled nor executed lines of code which
help the developer to remember what he has done. Moreover, using an efficient logging
system can help the developer as well as anyone else working on the code to identify where
he should search and fix the source code.

Software testing is a popular approach in which the developer writes simple use cases
of his code which will be run again and again during the development phase to ensure
that any fault has been introduced in previously developed code.

Bug report systems and issue tracking systems propose to other people to report and
discuss failures they face with a program. Thanks to Version Control Systems (a.k.a.
VCS), such as Git or Subversion, developers can easily collaborate on projects and benefit
from useful features such as source code versioning, i.e., tracing the history of program
changes back.

A large number of techniques have been proposed by the software engineering research
community for assisting developers when facing faults. These techniques are intended to
help developers in detecting, locating and even fixing faults. Some tools are not only
related to faults, but are also intended for assisting the developers with numerous tasks
which may be tedious to handle manually and which may even lead to new faults. As an
example, refactoring proposes to automatically handle moving pieces of code, renaming
methods and so on, while ensuring the program coherence.

These approaches generally use any software artifacts to achieve their purpose. These
artifacts include the source code itself, but also everything previously cited: documenta-
tion, bug reports, software testing, version control systems information, etc. For instance,
in this thesis, we use the program source code to produce graphs (presented in Sec-
tion 2.1.3) which expose the links between different program parts, and the program tests
as a way to observe the program failures. These pieces of information are used for change
impact analysis (presented in Section 2.2) on which we want to estimate the impacted
tests based on a specific change and fault localization (presented in Section 2.3) on which
we determine a fault in the code based on a set of failing tests.

In conclusion, detecting, locating and fixing program faults is time-demanding, tedious
and difficult. Any change can break other program parts. For this reason, many tools are
proposed to assist developers in their daily tasks. As time goes by, systems are becoming
more and more complex, this assistance will thus be more and more appreciated.

1.2 Problems

In this thesis, we concentrate on problems related to propagation analysis. Propagation
analysis consists in analyzing how a change inserted somewhere in the source code spreads
through the software method callers, dependent variables and fields, etc. in such a way
that it will have influence in other parts of the program. An obvious example is a failure
due to the propagation of a fault inserted somewhere in the program.

In this failure perspective, the propagation problem can be seen from two points of
view: antemortem and postmortem propagation. Antemortem propagation consists in
reporting possible impacts of a change (i.e., a fault) to the developer while he is typing it
down on his source code editor, without requiring to run the code to notice the impacts
(i.e., a failure). Analyzing the propagation in this way is known as change impact analysis
(CIA).
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Figure 1.1: Problems and contributions of this thesis.

Problem 1

For existing change impact analysis techniques, there is no systematic evaluation
methodology or framework to assess their performances. The performance is defined
by the ability to locate elements really impacted by a change.

Postmortem propagation consists in reporting a set of elements (i.e., potential faults)
which are responsible of a specific impact (i.e., program or system failure). In this ap-
proach, the fault detection is done once the failure occurs, that is, once the developer
runs his code. Analyzing the propagation in this way is known as fault localization. In
essence, the fault localization process tries to capture causality relationships between code
elements.

Problem 2

Most current fault localization techniques do not consider the whole program, they
focus on a specific set of elements reported by their approach without thinking to
how they depend on each other across the program as a whole.

In this thesis, we tackle these problems based on two intuitions. The first intuition
is that software graphs are data structures materializing how code elements are intercon-
nected. They offer a global vision of the interactions between the different concepts they
materialize. Thus, they are a good candidate for exploring propagation and its inherent
causality. The second intuition is that synthetic data are good candidates for simulating
hard-to-obtain software information such as atomic software changes. In change impact
analysis and fault localization, software mutants can be used as synthetic faults.

1.3 Contributions

The contributions of this thesis are answers to problems presented in Section 1.2. Fig-
ure 1.1 is a simplified representation of how these problems and the contributions proposed
in this thesis are articulated. As we can see, the source code can be used for three different
purposes:

1. producing a call graph;

2. generating software mutants ;
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3. deriving some properties to feed a graph generator.

Based on these graphs and mutants, we propose four contributions that are presented
in the remaining of this section. On the first three contributions, we extensively rely
on program test suites: we consider them as an accurate way to observe impacts on a
program. Thus, these contributions work at the method level.

Two contributions are related to change impact analysis, i.e., determinate potential
impacts (failures) related to a change (faults).

Contribution 1

An evaluation framework for assessing the performance of a change impact analysis
technique inspired from mutation testing.

The first contribution addresses the first problem. This framework is based on syn-
thetic seeded faults obtained using mutation testing. The performances are assessed based
on the program test execution result, i.e., the ability of the change impact analysis tech-
nique to report the tests which actually fail on run-time. Any change impact analysis
technique would be assessable using this framework. We evaluate impact prediction of
four types of call graphs. This evaluation enables us to study how the error propagates
and is based on 16,922 mutants created from 10 open-source Java projects using 5 classic
mutation operators.

Contribution 2

A novel change impact analysis technique based on information learned from past
impacts and call graph.

The second contribution is a novel call graph-based change impact analysis approach.
We use software mutants and their execution profile to learn causes of failures on the call
graph resulting in a new type of graph, the causal graph. We evaluate our system using
our evaluation framework (Contribution 1) and considering 9 open-source Java projects
totaling 450,000+ lines of code. We simulate 16,682 changes and their actual impact
through code mutations, as done in mutation testing.

Contribution 3

A new fault localization algorithm, built on an approximation of causality based on
call graphs.

The third contribution makes use of graphs and mutants to evaluate their potential
for fault localization, i.e., determinate causes (faults) of specific impacts (failures). We
propose to use similar causal graphs as these used in Contribution 2. They are used to
assist popular fault localization techniques in order to improve their performance. We
evaluate our approach on the fault localization benchmark of Steimann et al. totaling
5,836 faults. This third contribution addresses the second problem.

Contribution 4

A generative model to create synthetic software graphs.
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As we extensively work with synthetic faults, i.e., software mutants, we want to push
further the experiments in generating software graphs for propagation analysis. Our last
contribution is the first step toward this goal: we propose a new generative model of
synthetic software dependency graphs. This model is used to generate synthetic graphs
aiming at being similar to real ones. We extract the dependency graph of 50 open-source
Java projects, totaling 23,178 nodes and 108,404 edges that we compare to generated
graphs for assessing their fitness.

To sum up, we propose in this thesis four contributions for software engineering as-
sistance. Two are used in the improvement of change impact analysis, one for fault
localization and the last is a first step for future research.

1.4 Outline

The remaining of this thesis is structured as follows. In Chapter 2, we present the con-
cepts as well as the works related to this thesis. In Chapter 3, we present our evalua-
tion framework for change impact analysis and assess it with four flavors of call graphs
(Contribution 1). In Chapter 4, we propose to use a learning technique to improve call
graph-based change impact analysis (Contribution 2). In Chapter 5, we present a call
graph-based fault localization technique used to improve the state-of-the-art ones (Con-
tribution 3). In Chapter 6, we present our generative model for software dependency
graphs (Contribution 4). In Chapter 7, we conclude this thesis and present perspectives.

1.5 Publications

In this section, we present the publications related to contributions presented in Sec-
tion 1.3.

1.5.1 Published

[1] Vincenzo Musco, Antonin Carette, Martin Monperrus, and Philippe Preux. A Learn-
ing Algorithm for Change Impact Prediction. In Proceedings of the 5th International
Workshop on Realizing Artificial Intelligence Synergies in Software Engineering co-
located with ICSE, RAISE ’16, pages 8–14, 2016.

[2] Vincenzo Musco, Martin Monperrus, and Philippe Preux. An Experimental Protocol
for Analyzing the Accuracy of Software Error Impact Analysis. In Proceedings of the
10th International Workshop on Automation of Software Test co-located with ICSE,
AST ’15, pages 60–64, 2015.

[3] Vincenzo Musco, Martin Monperrus, and Philippe Preux. A Large-scale Study of Call
Graph-based Impact Prediction using Mutation Testing. Software Quality Journal,
2016. To appear.

[4] Vincenzo Musco, Martin Monperrus, and Philippe Preux. Mutation-based graph in-
ference for fault localization. In Proceedings of the International Working Conference
on Source Code Analysis and Manipulation, October 2016.

Publications [2, 3] covers contribution 1, publication [1] covers contribution 2 and pub-
lication [4] covers contribution 3.
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1.5.2 Under Submission

[1] Vincenzo Musco, Martin Monperrus, and Philippe Preux. A Generative Model of
Software Dependency Graphs to Better Understand Software Evolution. Journal of
Software: Evolution and Process, 2016. Minor Revision.

Publication [1] covers contribution 4.

1.5.3 To be Submitted

[1] Vincenzo Musco, Martin Monperrus, and Philippe Preux. Strogoff: A Recommenda-
tion System for Finding Sensitive Method Callers with Weighted Call Graphs.

Publication [1] covers contribution 2.

1.6 Reproducible Research

Many existing publications lack public implementations and, as a consequence, are hardly
reproducible. As we opted for open-science, all our source code and dataset used to
run our experiments are freely available online. For more information, please refer to
Appendix A.
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State of the Art

‘ ‘Smart people learn from their mistakes. But the real sharp ones learn
from the mistakes of others”

— Brandon Mull , Fablehaven

In this chapter, works related to this thesis are presented. This chapter is split in four
parts. Section 2.1 presents essential definitions and concepts used in this thesis. Then, in
the three following sections, we present related works. Section 2.2 covers change impact
analysis related to contributions 1 and 2. Section 2.3 covers fault localization related to
contributions 3 and Section 2.4 covers generative graph models for software engineering
related to contributions 4.

2.1 Essential Definitions

In this section, we present fundamental yet essential concepts of software engineering used
in this manuscript.

2.1.1 Errors

This manuscript deals with the detection of errors in programs. We present here a termi-
nology used in software engineering based on the error stage.

Many terms are used to refer to software errors and even if they are frequently used
interchangeably, they have not exactly the same meaning. To avoid confusion, in this
manuscript, we use exclusively the terms fault, error and failure presented by Avizienis
et al. [14] defined as:

Fault the physical presence in source code of elements which do not comply with the
software specification and can lead to future program malfunctions;

Error the state of a program once a fault has been activated, i.e., the fault code has been
run by the system and has started altering the correct state of the system. At this
step, the system may continue to run without concrete observable malfunctions;

Failure a program which has deviated from the expected behavior. When a failure oc-
curs, the expected behavior is not anymore respected, resulting in noticeable conse-
quences such as unexpected program terminations due to a null pointer exception.

7
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Figure 2.1: In the development phase, the fault occurs in the source code. In the running
phase, the error is present in the system memory and the failure is the manifestation of a
fault

A failure can go beyond the scope of the program and reach the whole system,
e.g., resulting in kernel crashes observable with the infamous BSOD1 in Microsoft
operating systems.

Figure 2.1 illustrates these concepts. As we can see, faults occur in the development
phase, while errors and failures occur during the running phase.

2.1.2 Software Testing and Mutation Testing

Contribution 1, 2 and 3 presented in Section 1.3 mainly rely on software testing and
mutation testing concepts. In this Section, we briefly present these concepts. Mutation
testing is based on software testing as shown in Figure 2.2 which illustrates them.

2.1.2.1 Software Testing

When a developer decides to change some parts of his software code, he cannot directly
estimate the impacts of his change. Generally, a developer has a rough estimation of these
impacts, however, effects beyond his estimations may be possible.

The main goal of software testing [115] is to develop special content along with the
source code which will be used to ensure the software execution does not deviate from its
expected behavior.

Software testing is defined using test suites, which are classes grouping test cases
related to similar software functionalities. Test cases are used to describe the expected
behavior based on three components:

1. a set of input data used for testing. These can be of different nature: parameters,
fields, global variables, etc.;

2. a test scenario describing the computation to perform on the input data and the
values to return;

3. a test oracle determining if the returned values are acceptable or not. In other
terms, it determines if the test should pass (i.e., succeed) or fail.

In this way, the developer can ensure his changes have not broken the initial logic by
running the test suite of the program. If all tests pass, this indicates that the execution

1Blue screen of death
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Figure 2.2: Illustration of software testing and mutation testing. Produced (three) mu-
tants are in the gray dashed box. Test execution for mutants is in the gray dotted box.
Passing tests are black, failing are white ones.

logic remains unchanged for other software parts. However, if at least one test fails,
it means the change has an impact somewhere in the program. As a consequence, the
developer will have to check his code to fix the problem.

In order to be useful, software testing requires that the test suite be well-designed.
A good testing design requires that each piece of code have a test which is related to it
in a way to ensure a good code coverage. The code coverage describes the proportion of
statements which is covered (i.e., executed) by the tests. A high coverage means that tests
run a large number of statements (e.g., each branch of a if-statement, each methods). A
poor code coverage implies that test suite does not run a large number of code statements.

Figure 2.2 illustrates the testing process (as well as mutation process presented in the
next section). As we can see, the testing framework takes as input test suites and the
source code (S) and produces test results (for S, the first result has to be considered). In
this example, we can see a test suite made of three test cases. All three test pass (black
circle).

2.1.2.2 Mutation Testing

Mutation testing [32, 3, 33] is an approach intended to improve the code coverage of test
suites. This approach is based on creating several copies of a program, called mutants, in
which one (or several) small change(s) is (are) introduced.

By running test suites on each mutant, these are used to exhibit source code parts
which require more testing. Indeed, each time we change a part of the code (i.e., we
mutate the code), we introduce a little fault which should be detected by our test suites.
If the change is not detected, it indicates that the change is not properly covered by test
suites.

This is visible by observing the whole test suite results. If all test pass, the mutant is



10 Chapter 2. State of the Art

said to be alive and implies the test coverage could be improved. In the opposite case, if
at least one test fails, the mutant is said to be killed and implies that the test covers the
part which has been mutated.

The type and the way elements are changed is defined by a mutation operator. Thus,
a mutation operator defines:

1. the domain in which code elements should be included in order to be a candidate
for mutation;

2. the logic used to concretely achieve the mutation.

As an example, let us consider an arithmetic mutation operator. Its domain includes
binary operations which involve an arithmetic operator such as +, -, * and / between
the left and right operand. The mutation logic is to replace the arithmetic operator by
any other one. Thus, the 1 == 2 expression is not included in the domain and cannot be
mutated using this mutation operator. On the other side, the expression 1 + 2 belongs
to the domain, its mutation will result in expressions such as 1 - 2, 1 * 2 and 1 / 2.

Figure 2.2 illustrates the mutation testing process. As we can see, the mutation
framework takes as input a mutation operator and a source code (S). It produces some
mutants (in this example, three mutants are produced: S1, S2 and S3 in the gray dashed
box). Then, we feed these mutants to the testing framework (one at a time) as well as
the test suites to obtain test results. In this example, results related to our mutants are
ones in the gray dotted box. We can see that, for S1, all test pass (black circles), which
means that S1 is an alive mutant. For S2 and S3, we see that there is one failing test in
each (white circle) which means that these mutants are killed.

More information about research in mutation testing is presented in the survey pro-
posed by Jia and Harman [72].

2.1.3 Graphs for Software Engineering

As presented in Section 1, our first intuition is that graphs are good candidates to explore
propagation. In this section, we present graphs and all concepts related to graphs which
are of interest in the scope of this manuscript. Curious readers interested in graph theory
can read good references in the domain among [57, 28, 27, 157, 53, 120].

2.1.3.1 Graph Definition

A graph, also known as network, is a mathematical tool used to model a large number of
problems which involve concepts and connections between these. A graph G is made of
two sets: a set of nodes N (also called vertices) defining concepts and a set of edges E
describing the connections between concepts. An example of such a graph is the connec-
tion of peripherals in a network where nodes are network devices (e.g., computer, router)
and edges are added between two peripherals every time they are physically or logically
connected together. A formal definition of a graph is given by Equation (2.1).

G = {N,E} (2.1)

Where the edges E can be defined using a pair given in Equation (2.2).

E = (n1, n2) (2.2)

with n1, n2 ∈ N . If (n1, n2) ∈ E, then n1 and n2 are said to be adjacent or neighbors.
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(a) Computer Network (b) Trophic Network

Figure 2.3: (a) illustrates a computer network graph made of 6 nodes and 5 edges. As
the communication is bidirectional they can be undirected. (b) shows a trophic network
made of 5 nodes and 6 edges. As the concept of “who eats who” is important, they must
be directed.

A graph can be either undirected or directed : in the former, edges direction is not
taken into consideration while it is in the latter. Directed graphs are also named digraphs.
The usage of direction is defined by the modeled concept.

Figure 2.3 gives an example of each type of graph. Figure 2.3a illustrates a network
example: an undirected graph is used as peripherals communicate in both directions (i.e.,
if two peripherals are physically or logically connected together, they can both communi-
cate with each other). Figure 2.3b shows an example of directed graph: the predator-prey
graph models how an organism eats another. Indeed, there is a relation between the hawk
and the rabbit as the former eats the latter. But this observation is valid in one direction
only: the rabbit does not eat the hawk.

Equation (2.2) is used to express both directed and undirected edge. In the former,
this pair is ordered as the order expresses the direction of the relationship. Thus, Equa-
tion (2.2) expresses a directed edge going from n1 to n2 such as n1 −→ n2. In the latter,
the pair is not ordered as the direction is not important.

A large amount of information can be embedded in nodes and edges. This can be
labels (e.g., the IP address of a peripheral, an organism class), weights or any other type
of data.

A path is an ordered list of nodes for which each pair of nodes in the list is connected
by an edge in the graph. The path length is the number of pairs in this list. and the
shortest path between two pairs of node is the path with the smallest length among all
possible paths between these two nodes.

In this thesis, we distinguish two types of graphs: these resulting from an analysis of
software systems and these created by a generative model. The former are qualified as
“empirical” or “true”, the latter being qualified as “synthetic” or “artificial”.

2.1.3.2 Graph Degrees

The in-degree and the out-degree of a node n1 are respectively the number of edges going to
n1 (i.e., the number of edges (·, n1)) and the number of edges leaving n1 (i.e., the number
of edges (n1, ·)). We use the term degree to refer to both of these concepts and terms
in-degree and out-degree when the distinction is necessary. In- and out-degree concepts
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Figure 2.4: In-edges and out-edges for a simple digraph example.

do not exist for undirected graphs. Figure 2.4 illustrates a graph made of 4 nodes. Let us
consider the black node, it contains three entering edges (dashed ones) and one leaving
edge (plain one). Thus, as a consequence, the in-degree of this node is 3, its out-degree is
1 and its general degree is 3 + 1 = 4.

The degree distribution of a graph is the proportion of each degree in this graph. The
total of these proportions sums to 1. In this thesis, we consider cumulative distribution
functions (CDF) of degrees which express the proportion of nodes whose degree is smaller
or equal to a given value. The main reason is that noncumulative distributions are to
be avoided as they are sources of mistakes [91]. Cumulative distributions are more ap-
propriate to analyze noisy and right-skewed distributions [119]. The inverse cumulative
distribution functions of degrees (ICDF) is the inverse of the cumulative distribution, i.e.,
the proportion of nodes whose degree is greater or equal to a given value k as expressed
by Equation (2.3) where n is the number of nodes in the graph.

ICDF (k) = n− CDF (k − 1) (2.3)

Figure 2.5 illustrates these concepts for a simple digraph made of 14 nodes and 16
edges. Upper histograms illustrate the out-degree functions and the lower ones illustrate
the in-degree functions. Leftmost histograms illustrate degree function (DF), central ones
illustrate the cumulative degree function (CDF) and the rightmost illustrates the inverse
cumulative degree function (ICDF). The small gray number of nodes on top of each bar
reports the number for considered degree. Thus, considering in-edges, we can observe
that there are 2 nodes with no in-edge and 9 nodes with in-degree 1. Now, if we consider
the CDF for in-edges, we observe that there are 11 nodes which have an in-degree lower
or equal to 1. For the ICDF, there are 12 nodes which have an in-degree higher or equal
to 1.

2.1.3.3 Graph Metrics

There are a host of properties that describe various aspects of a graph, the relation between
these properties being more or less understood. Let us mention the properties we consider
in this manuscript:

Density the graph density expresses the proportion of pairs of nodes being connected in
the graph. The graph density is computed using formula (2.4);

δ = |E|
|N | × (|N | − 1) (2.4)

Diameter the length of the longest shortest path between any pair of nodes;

Average shortest path length the average length of the shortest path between any
pair of nodes;
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Figure 2.5: An example of directed graph with its corresponding in- and out-degree func-
tion (DF), cumulative degree function (CDF) and inverse cumulative degree function
(ICDF).

Transitivity (a.k.a. clustering coefficient) indicates how elements are connected to each
other. It is defined by the number of triangles divided by the number of paths of
length 2 found in the graph. We define a path of length two as two edges between
three nodes n1, n2 and n3 such as n1 is connected to n2 and n2 is connected to n3.
A triangle is a closed path of length 2 such as on the previous example, there is a
third edge connecting n3 to n1. Figure 2.6 illustrates these concepts, Equation (2.5)
shows a formal definition of the transitivity C;

C = number of triangles

number of paths of length 2 (2.5)

Modularity is a metric used to define how nodes groups are split in modules. A module
is defined as a subset of nodes which have a dense connection between them (i.e.,
contain more edges between them) than with the other nodes of the graph.

The transitivity and the modularity are two different measures of whether there exist
some subsets of nodes which are more connected to each other than the average. Though
the exact relation between these two metrics is not yet clear, there are some similarities
[123].

2.1.3.4 Software Graph Granularities

Granularity is defined by the Oxford dictionary as “the scale or level of detail present in
a set of data or other phenomenon”. When working with software data, this granularity
concept is central and should be taken into consideration depending on what phenomenon
we want to study.

At coarser granularities, we consider more global concepts while finer ones allow to deal
with more detailed concepts. As an example, in Java programming language, packages are
more global than classes. Classes are grouped in packages, thus working at the package
granularity would imply that many classes are “hidden” behind a specific package.

Coarser granularities result in a smaller amount of data, offering the advantage of
being easy to manipulate, but the drawback is offering a poor precision because finer
concepts are hidden behind coarser ones. At the opposite, a finer granularity proposes to
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Figure 2.6: Example of a path of lenth 2 (solid lines) and a triangle (solid and dashed
lines together).

obtain a larger amount of data which offers a better precision, but requires more resources
and time to process as the amount of data can be very important.

Considering the graph perspective, as graphs can illustrate the interconnection of
software concepts, they potentially can materialize concepts of any granularities (some
authors also mix concepts from several granularities [49, 128]).

Figure 2.7 illustrates some granularities existing in software engineering and more
specifically in Java object-oriented programming language. We observe the following
granularities (from coarser to finer):

1. system: interactions between machines;

2. software: interaction of programs and libraries in the system itself;

3. package: group of classes generally intended to achieve same type functionalities;

4. class: concepts containing methods and fields which are intended to be initialized
as an object by the mean of a constructor;

5. feature: one service proposed by a class and its internal state, i.e., methods and
fields;

6. (basic) block: a set of consecutive program instructions which contains one entry
point;

7. instruction: one command in a source code;

8. token: one item which assembled with other tokens forms instructions.

These are vertical granularities as they can be seen as a Russian nesting doll where
each upper level is a generalization of the lower one. Note that as presented previously,
coarser granularities indicate a poor precision than finer ones, but in some cases, a coarser
granularity is required to analyze some concepts. As an example, in order to study
interconnections of systems in a network, considering finer granularities is meaningless.

Horizontal granularity defines for each vertical granularity, how many different types
of information can be embedded. Examples of horizontal granularities are:

• at the system vertical granularity: standalone applications, system libraries, user
libraries, etc.;

• at the feature vertical granularity: methods, fields, inheritance information, etc.

When working at the software vertical granularity, data can be split in two types: ap-
plication and library data. Application data belongs to core software itself. Library data
belongs to an external library or programs called by the core program.
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Figure 2.7: Software granularities for Java programming language (not exhaustive).

For instance, in a software graph, application nodes are related to core program con-
cepts while library nodes are related to external library ones. Thus, if the graph is based
on a Java program, a class of the software package “Eclipse” may use a class in java.util

library. The former is an application node, the latter is a library node.

As a consequence, two types of edges exist:

• app-app edges application nodes to application nodes, we call them endo-dependencies,
they express that a core element depends on another core element;

• app-lib edges application nodes to library nodes, we call them exo-dependencies,
they express that a core element depends on a library element.

For example, if a software method calls the System.out.println method, it is an exo-
dependency as this method is member of the Java standard library. Exo-dependencies
can occur at each granularity level, even if in lower ones, it is less meaningful to take this
concept into consideration.

Figure 2.8a emphasizes endo-dependencies and Figure 2.8b shows exo-dependencies
with dashed arrows crossing the system boundary.

2.1.3.5 Software Graph Types

A large number of graphs can be obtained from a program, each one focusing on par-
ticular characteristics. Hence, nodes and edges can have various meanings. A common
observation is that software graphs are generally directed.

In the remaining of this section, we present some of the most common software graphs.
However, this list is far from being exhaustive. We present here only graphs which are
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(a) endo-dependencies (b) exo-dependencies

Figure 2.8: Illustration of the set of (a) endo-dependencies and (b) exo-dependencies in a
dependency graph.

produced from the program source code. Other types of graphs exist (such as the col-
laboration graph materializing relations between developers and the source code) but are
out of the scope of this thesis.

Dependency Graph a high-level graph materializing the dependence relationship exist-
ing between modules of same nature (e.g., packages, classes). A concept A depends
on a concept B if A makes any type of usage of B. Thus, in this graph, nodes are
modules (e.g., packages, classes) and edges reflect that an element uses another one
(e.g., function call, inheritance, field access). As an example, the package depen-
dency graph reports which package depends on another; nodes are packages and
an edge is added from package A to package B if any piece of code defined in the
package A depends on (i.e., uses) any piece of code defined in the package B. A class
dependency graph illustrates Java classes usages: each node is a class and each edge
illustrates the fact a class uses another class (no matter how, e.g., method, field, con-
structor, . . . ). Dependency graphs for packages, classes and features granularities
can be obtained in Java using the DepFinder tool 2.

Call Graph (CG) represents the interactions between subroutines (e.g., functions, meth-
ods) of a program. Grove et al. [56] define “the program call graph [as] a directed
graph that represents the calling relationships between the program’s procedures (...)
each procedure is represented by a single node in the graph”. Thus, in a call graph,
each node is a subroutine and each edge is the invocation of a subroutine by another
one. The source node of an edge is named caller and the destination node is named
callee, the edge connecting a caller to a callee represents a call site. The call graph is
a dependency graph at the feature vertical granularity level including only method
calls. However, there is no unique definition and many types of call graphs can be
obtained from a same program. Ryder has been one of the first to publish a paper
about creating a call graph [138]. It is possible to include or not some language
specific concepts. As an example, the Class Hierarchy Analysis (CHA) call graph
[41] is a well-known type of call graph which includes inheritance concepts. Call
graph are largely studied in related works for years [112, 151, 159].

Control Flow Graph (CFG) illustrates all paths that can be taken by a procedure
execution. On such a graph, each node is a block (defined in Section 2.1.3.4) and
an edge is added every time there is a flow from a block to another. It was first
introduced by Allen [8] in 1970.

2http://depfind.sourceforge.net/

http://depfind.sourceforge.net/
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Data Dependence Graph (a.k.a. as Def/Use Graph) exposes the dependence of data
in a basic block [125, 66]. In this graph, each node is a statement and an edge is
added when there is a data dependence between two statements. Let S and T be
two statements, T follows S. There is a data dependence from T to S if there is a
common variable between both statements which is assigned by S and read by T.
The opposite situation is called an anti-dependence. If both statements assign a
common variable, then they are output dependent.

Interprocedural Control Flow Graph (ICFG) [65, 84] is an adaptation of the Con-
trol Flow Graph for interprocedural calls (i.e., functions and methods). An Inter-
procedural Control Flow Graph is a graph which contains the union of all control
flow graphs we can obtain for each procedure of the program.

Program Dependence Graph (PDG) is made of two subgraphs: the control flow
graph and the data dependence graph. Similarly as the control flow graph, it is
intended to represent only one single-procedure programs. This graph has been
introduced in 1987 by Ferrante et al. [49, 67]. A generalization is the System De-
pendence Graph (SDG)[68, 67] which is a collection of PDG, one for each procedure
of the program.

Abstract Syntax Tree (AST) [5] is used to represent syntactic code elements (i.e.,
tokens such as if, return, etc.) in a hierarchical view. This is a special case as the
abstract syntax tree is a tree. Each syntactic element is presented as a node and
each descending edge (children nodes) describes in more details the content of the
upper node.

Many other graphs have been proposed in related works. As an example, Callahan
presents the Program Summary Graph [35] which includes parameters and global variable
flows. Harrold and Mallory [59] proposes the Unified Interprocedural Graph, a merge of
four types of graphs including the call graph, the program summary graph, the interpro-
cedural control flow graph and the system dependence graph. The Annotated Dependency
Graph (ADG) proposed by Hassan and Holt [62] which is a dependency graph annotated
with information obtained from the source code repository.

2.1.3.6 Static vs. Dynamic Software Graph Extraction

Software graphs are extracted from a program by analyzing it. This analysis can be made
in a static or a dynamic manner.

Static analysis consists in exploring the files content to obtain the required information
used to extract the graph. These files include source files, bytecode, binaries, etc. The
graph is thus obtained by examining declared code in these files and enumerating all
possible connections based on the specification of the program.

Dynamic analysis works on different artifacts as we do not examine the software files
as in static analysis, but extract the graph from the behavior of the program when it is
executed. Elements such as logs, test results, stack traces, etc. are used to gather software
information and build a graph. Depending on the type of data to extract, and especially
for building a graph, dynamic analysis can require a prior instrumentation phase to force
the program to report required information.

The major difference between the two approaches is that a static analysis is exhaustive
as all possibilities are taken into consideration. The dynamic approach is more context-
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dependent as obtained information is dependent on the execution context such as input
values, system state, etc.

As an example, if a class A defines a foo method and contains subclasses which override
a method foo, a static approach will consider that invoking the foo method on an object
A may in fact be an invocation in any overridden foo method. In a dynamic approach,
only one of these methods would be invoked, depending on the context of the execution.

Both can be seen as a strength and as a weakness. Static analysis is exhaustive, which
means that too much information may be extracted resulting in imprecise or non-realistic
results (i.e., never-occurring scenario). Moreover, the amount of obtained information
can be quite important, but the main advantage is that as no execution is required, the
needed time to compute a graph this way may be shorter than with a dynamic approach.

Dynamic analysis depends on the execution scenario, which means it may miss some
cases which would occur in other execution scenarios. As a consequence, its results may
be appropriate only for a specific execution, the scenario may miss a result A which would
occur in a large number of other scenarios. As a consequence, it results in a smaller amount
of information but the execution time is generally more important as the program has to
be executed (and even instrumented before).

2.2 Change Impact Analysis

In this section, we present works related to change impact analysis which are of interest
for this thesis. These are related to contributions 1 and 2 presented in Section 1.3. In
contribution 1, we propose a framework for evaluating change impact analysis techniques;
in contribution 2, we present a novel technique for change impact analysis based on past
impacts and call graphs.

In Section 2.2.1 and 2.2.2, we introduce respectively the taxonomy and terminology for
change impact analysis. In Section 2.2.3, we illustrate change impact analysis based on a
modern example. Then, in Section 2.2.4, we present techniques based on call graphs; in
Section 2.2.5, ones based on other types of graphs and in Section 2.2.6, other techniques
of interest. In Section 2.2.7, we discuss these related works.

A lot of literature has been proposed for years. Curious readers which want a broader
view of change impact analysis can refer to surveys such as the reference book of Bohner
and Arnold [26], the general survey including the graph-based approach by Li et al. [88]
and Lehnert [86], the survey by Tip [150] and another by De Lucia [40] which extensively
studies change impact analysis using slicing techniques.

Bohner has defined Change Impact Analysis (a.k.a. CIA) as “the determination of
potential effects to a subject system resulting from a proposed software change” [25].
Indeed, software is made of interconnected pieces of code; for instance, at the method level,
methods are connected when a method calls another one. Through these connections, the
effects of a change in a given part of the code can propagate to many other parts of the
program. Acting like a ripple, these other parts may potentially be anywhere.

2.2.1 Taxonomy of Change Impact Analysis

Many categorizations of change impact analysis exist in related works. Bohner and Arnold
propose two types of analyses: dependency analysis and traceability analysis [26]. The
former analyzes the source code of the program at a relatively fine granularity (e.g.,
methods call, data usage, control statements, . . . ) while the latter compares elements at
a coarser granularity such as documentation and specifications (e.g., UML).
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Figure 2.9: Illustration of Bohner’s sets

Kilpinen [76] has proposed a taxonomy in 2008. According to this, a change impact
analysis technique belongs to one of the three groups:

1. Dependency impact analysis for techniques which study internal elements of the
source code at a relatively fine granularity (e.g., methods, classes);

2. Traceability impact analysis technique if the technique cross data of different ab-
straction (at coarser granularity) levels such as documentation, specifications (e.g.,
UML) and source elements;

3. Experimental impact analysis technique made of an approach which requires manual
inspection of software artifacts.

Lehnert [87, 86] propose a more complex and structured taxonomy to compare change
impact analysis techniques. It categorizes proposed techniques according to several crite-
ria. Main criteria include:

1. the scope of the analysis (static/dynamic/online source code, architecture/requirements
model or miscellaneous artifacts such as documentation or configuration);

2. the granularity;

3. the used techniques are divided in ten different categories including call graphs and
dependency graphs;

4. the experimental result (based on the size of the system, the precision, the recall
and the time).

Lehnert’s taxonomy is quite complex, we do not report here the entire taxonomy.

2.2.2 Terminology of Change Impact Analysis

In this thesis, we use the terminology of Bohner [25] intended for expressing impact
prediction problems. In this terminology, the SIS set (i.e., Starting Impact Set) contains
all software parts that can potentially be impacted by a change.

When an element in the program is changed, Bohner terminology proposes these sets
to deal with the estimated impacts of a technique:

Candidate Impact Set (CIS) made of software parts predicted as impacted by a change
impact analysis technique;
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Actual Impact Set (AIS) made of software parts which are actually impacted by the
change. This set is also called the “Estimated Impact Set” (EIS) [13].

False Negative Impact Set (FNIS) made of missed impacts by the change impact
analysis technique. Bohner names this set the “Discovered Impact Set” (DIS), but
this naming can be confusing in our context, reason why we rename it;

False Positive Impact Set (FPIS) made of overestimated impacts returned by the
change impact technique.

Moreover, to complete this list of sets, we propose the “Well-Predicted Impact Set”
(WPIS) made of software parts predicted as impacted by a change impact analysis tech-
nique and which are actually impacted by the change. All these sets are subsets of the
SIS set. Equations (2.6), (2.7) and (2.8) formally define these sets using the AIS and
CIS sets. Figure 2.9 proposes an illustration of these sets.

WPIS = AIS ∩ CIS; (2.6)

FNIS = AIS − CIS; (2.7)

FPIS = CIS − AIS; (2.8)

2.2.3 Modern Implementation of Change Impact Analysis

Integrated Development Environments (a.k.a. IDE) are the primary tools used by devel-
opers to write and maintain software. An IDE provides a large range of features to ease
the whole pipeline of creating programs. Its assistance ranges from modeling to testing
and running, with advanced features such as code generation and refactoring.

A well-known and useful IDE feature consists in finding method callers. In this thesis,
we refer to such a feature as FindCallers. Given a method foo(), the FindCallers feature
returns to the developer the set of methods calling foo(). This feature can be called
recursively on a found method to explore deep chained calls through the program code.
This feature is of great importance: when a developer changes a piece of code, he can ask
which methods depend on the changed one. The developer is able to identify the methods
depending on it and thus prevents errors due to the propagation of the impact from this
change. Thus the FindCallers feature can be seen as an impact analysis tool.

Two well-known IDEs are Eclipse 3 and IntelliJ IDEA 4. Both IDEs include the Find-
Callers feature. Figure 2.10 shows the corresponding UI for IntelliJ. As we can see, the
IDE shows recursively the methods calling set(int,int,int) of the MutableObjectId

object. By simply clicking on the gray triangle next to the method label, the IDE com-
putes the next set of methods calling the selected method. This process can be repeated
recursively to explore the call stack as deep as we want. Note the figure also shows the
recursive calls, which means a method calling one already called can be expanded indef-
initely. In the Figure, we observe that the NoteMapMerger.mergeFanoutBucket(...)

method calls the NoteMapMerger.merge(...) method which calls back the NoteMap-

Merger.mergeFanoutBucket(...) and so forth indefinitely.
In practice, many terms are used to refer to the call site concept, presented in Sec-

tion 2.1.3.5: a reference (in Eclipse), a call or usage (in IntelliJ, as shown in Figure 2.10).
In this thesis, we consider these terms are equivalent and we use the term call site to the
maximum possible extent.

3http://www.eclipse.org
4http://www.jetbrains.com

http://www.eclipse.org
http://www.jetbrains.com
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Figure 2.10: An example of the FindCallers feature in IntelliJ IDEA 2016.1. The IDE
shows recursively the methods calling the method MutableObjectId.set(...) in the
Jgit project.

2.2.4 Call Graph-based Approaches

Ryder and Tip [137] have proposed an approach for change impact analysis based on
static call graphs. Their approach is divided in two phases: first, they extract atomic all
changes from changes observed between two versions of a program. Secondly, they use
static software call graph to estimate the impacted tests of each change and changes that
may affect a test.

Ren et al. [134, 133] proposes a concrete implementation as an Eclipse Plugin, of the
approach presented by Ryder and Tip entitled Chianti. They use atomic changes obtained
from a version control system and call graphs in order to find the number of affected tests.
They also compare, for each test, the average percentage of changes affecting it. They
perform an evaluation on 20 commits of a program. In [134], they base their study on
static call graphs while in [133], they rely on dynamic ones.

Challet and Lombardoni [38] propose a theoretical reflection about impact analysis
using function call graphs; they refer to these as“bug basins”. However, no implementation
or evaluation is proposed in the paper.

Zhang et al. [163] propose a new approach entitled “FaultTracer” which is based on
Chianti [133]. They propose an “extended call graph” to improve Chianti results for
affected tests.

Law and Rothermel [85] propose an approach for impact analysis; their technique is
based on a code instrumentation to analyze execution stack traces. They compare their
technique against simple call-graphs on 38 real fault of the “Space” project.

Badri et al. [17] perform impact prediction based on control call graphs: a flow graph
in which each non-method call instructions are removed. They empirically evaluate their
method on two projects and take as a baseline the call graph. To obtain an actual impact
set, they use a version control system to find changes. They report that the control call
graph is more precise and is a perfect trade-off between the call graph and the analysis
made by Rothermel by simply observing set sizes and not using metrics.

German et al. [51] propose to use a time aware approach to predict impacts. They
propose the “Change Impact Graph”, a call graph containing time information about the
last version of methods. They mark nodes which have changed and nodes which are
affected by these changes. Based on these, they prune the graph to use a smaller graph.
They assess their finding on only one C program and study only 5 bug fixing cases.



22 Chapter 2. State of the Art

2.2.5 Other Graph-based Approaches

Many authors propose reflections and formal models to think about the concept of propa-
gation. In 1990, Luqi [99] proposed a formal graph model for software evolution. Podgurski
and Clark [129] proposed a discussion around semantic and syntactic dependence based
on control and data flow graphs. Three years later, Loyall and Mathisen [96] extended
this reflection to an interprocedural extent and proposed a prototype system for software
maintenance. This prototype has been tested on a program in ADA [97, 98].

Li and Offutt [90] propose an approach for estimating change impact of object-oriented
software based on control flow graph (CFG) and data flow graph (Def-Use). The author
discuss the nature of changes (e.g., inheritance) and their impacts. No concrete evaluation
is proposed.

Robillard and Murphy [136] introduce the “concern graph” for reasoning on the imple-
mentation of features (e.g., methods calls, fields accesses, object creation). They propose
the “Feature Exploration and Analysis Tool (FEAT)” used by developers to explore the
generated graph. They propose two case studies involving developers which have to use
the FEAT tool in their development tasks. However, no empirical evaluation is performed.

Hattori et al. [64, 63] use an approach named Impala, based on a graph made of
entities (i.e., class, methods and fields) to study the propagation. This graph contains
edges marked by the type of dependency. Their approach consists in a set of algorithms
for obtaining the impacted nodes based on a depth criterion to stop searching propagation
after n calls. They retrieve concrete commits in a version control system, isolate a change
and use Impala with various depth values to obtain impacts. Then, they compare with real
change. Their evaluation is made on three projects. Their main goals is to (i) show that
precision and recall are good tools as evaluation of the performance for impact analysis
techniques; (ii) illustrate a correlation between precision and depth criterion.

Walker et al. [155] propose an impact analysis tool named TRE. Their approach uses
conditional probability dependency graphs where nodes are classes and edges are added
when a class A depends on a class B. The conditional probabilities are extracted from a
version control system and defined by the number of times two classes are changed on the
same commit. Then, the technical risk for a change is determined based on the conditional
probability dependency graph. They work on the class granularity and give no concrete
information about the evaluation.

Zimmermann and Nagappan [167] propose to use dependency graphs to estimate the
most critical parts of a piece of software. Their approach uses network measures and
complexity metrics to make the predictions. They assess their findings using some popular
though proprietary software, where they are able to determine software parts that can
cause issues.

Petrenko and Rajlich [128] propose to use a graph made of entities coming from three
dependency levels: class, method and field in a graph entitled Class and Member Depen-
dency Graph. This graph should lead to a more precise impact analysis. This is built
according to the Java AST, it is thus a static analysis. They assess their result on two
programs, with different versions from a version control system. They report a 100%
recall and precision values; however, no baseline is considered to compare with.

Breech et al. [30] propose to use value propagation information to improve two exist-
ing approaches: the icfg propagation [96] and the PathImpact [85]. They use propagation
information presented as influences, resulting in the concept of “influence graph”. Au-
thors assess their finding on eight C programs, by computing precision and recall metrics.
However, they just compare the size of impact sets without ground truth.
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Huang and Song [69, 70] propose a dynamic impact prediction technique specially
designed for object-oriented systems. In their first version [69], after instrumenting the
code and applying Execute after-set to get traces for knowing who calls who for a change,
they take method calls and fields access into consideration for related items by analyzing
the dependency graph (estimated by object type access). In their second version [70], they
also take the CHA aspect into consideration. Their evaluation is made on Java software;
their baseline is the CollectEA approach [12]. They show on small cases that they have no
imprecision on their set compared to CollectEA. They state an improvement in precision
because of the impacted set size reduction. Their baseline is obtained by comparing
different versions from a version control system.

Maia et al. [103] propose a hybrid approach mixing static and dynamic approaches
to improve predictions. The static approach is rather similar to the one presented by
Hattori [63]. The dynamic one is a trace printing exclusively for method entering/leaving
and field reading/writing. Moreover, they rank entities from the static analysis with the
dynamic one. They assess their finding with five programs and compare false positives
and negatives, precision and recall against Impala [63] and CollectEA [12]. It is better for
the recall but not for the precision. Data is taken from a version control system.

2.2.6 Other Approaches

Sun et al. [148] propose an evaluation framework for static change impact analysis. It
operates at the class granularity. The actual changes are obtained from code and bug
repositories. They evaluate three change impact analysis techniques (Columbus, ROSE
and IRC2M) based on five Java programs.

Do and Rothermel [44] describe a protocol to study test case prioritization techniques
based on mutation. They use mutants to determine which test is impacted by the change.

Some authors take a machine learning approach for the change impact analysis prob-
lem. Jeong and Kim [71] use machine learning on bug tossing graphs (graphs exposing
the reassignment of a bug) for bug triage. Kim et al. [77] use machine learning on crash
graphs which is an aggregated view of multiple crashes. However, both graphs are repre-
sentations of the relationship between bugs and not software parts. Elish and Elish [47]
use support vector machines to predict defect-prone modules in four projects. Tian and
Noore [149] predict software cumulative failure time using neural networks. Anvik et al.
[11] use classification to do bug triage (affecting a bug to a developper).

In 1990, a classic paper by Moriconi and Winkler [108] studied error propagation, but
they did it with the goal of having a perfect approximation. Their approach is based
on inference rules. Their work is more theoretical in essence, assessed only on small toy
examples.

Michael and Jones [105] alter variables during the program execution in order to study
how this affects (“perturbates” in their phrasing) the program. They focus on data-state
perturbation.

Apiwattanapong et al. [12] propose a dynamic impact technique based on code in-
strumentation and their idea comes from the CoverageImpact [124] and PathImpact [85].
They assess their approach on two programs. Test cases are entry points for a dynamic
analysis. The impact to predict is determined by comparing different versions obtained
from a version control system.

Ahsan and Wotawa [6] use labeling and classification on bug reports data to improve
prediction of defects. They compute the precision and the recall, but based on expected
sets from bug reports.
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Antoniol et al. [10] also address impact analysis by taking as input software documen-
tation artifacts (i.e., bug reports or modification requests). Gethers and colleagues [52]
adopt a similar methodology.

Cai et al. [34] propose a novel technique for impact prediction. Their technique is
dynamic and requires a code instrumentation phase. It is based on assigning sensibil-
ity measurement to statements of a static slice. Moreover, their implementation is not
publicly available for a quantitative comparison.

Binkley et al. [24, 23] propose observation-based slicing (a.k.a. ORBS). They propose
to slice a piece of software in a “delete–execute–observe” paradigm. In this paradigm,
effects of a change are observed after (e.g., by running test cases). Their technique focuses
on a quite low granularity (i.e., statements).

2.2.7 Discussion

The evaluation of a change impact analysis requires two sets to be compared together:
the actual and the candidate impact set, that is respectively the real and the estimated
impacts. Most works in the change impact analysis literature try to obtain the actual
impacts from real changes. This process is based on extracted information from different
versions of a software repository by doing source code difference. Obtaining the data this
way cannot guarantee that we are looking at an isolate change, which can result in bias
in result interpretation. Moreover, it forces authors to define and isolate atomic changes
which is a time-demanding process. Thus, a large part of contributions focus on the mean-
ing of a change in order to extract atomic changes from these. As a consequence, a large
number of publications in change impact analysis suffer from a lack of large empirical eval-
uations. To our knowledge, no author has proposed a technique to obtain automatically
a large set of atomic changes from a specific program.

2.3 Fault Localization

Fault Localization is the process of finding the position of a fault in a program source
code. Fault localization can be manually handled by a developer or can be achieved
automatically using advanced techniques.

Automatic fault localization is a field of software engineering which aims at auto-
matically identifying a faulty element in a source code. A faulty element can be of any
granularity (e.g., statement, method, class). An automatic fault localization is based on
an algorithm intended to identify suspicious elements in the source code.

In essence, the fault localization process tries to capture causality relationships between
code elements. Indeed, early works in fault localization were based on program slices [4],
which are refined versions of the most obvious causal relationship: the bug must lie
somewhere in the code that has been executed.

In this thesis, we mainly consider three families of fault localization techniques: spectrum-
based, graph-based and mutation-based ones. However, curious readers are invited to read
surveys on the topic such as ones proposed by Steinder and Sethi [146] or by Wong et al.
[158].

2.3.1 Spectrum-based Fault Localization

Spectrum-based fault localization is a popular fault localization technique. In these tech-
niques, “spectrum” refers to the behavioral traces of the program when executing the test
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cases [60].

A spectrum-based fault localization algorithm generally attributes a suspiciousness
score to code elements. The suspiciousness score is the likelihood for a code element to
be faulty. The higher the score is, the higher are the chance the element is the faulty one.
Once all code elements contain a suspiciousness score, the developer can examine code
elements in descending order of their suspiciousness score. It is computed based on test
execution results (i.e., passing/failing tests).

The performance of a spectrum-based fault localization algorithm can be determined
by computing its wasted effort. The wasted effort is the number of elements the developer
will examine before examining the faulty one. The lower the wasted effort is, the faster
the developer will find and fix a fault.

Spectrum-based fault localization techniques are also causal to a certain extent, but
with a really strong approximation: the causal relations are only captured by the fact that
an element is covered by passing or failing test cases. As most fault localization techniques
are spectrum-based, we concentrate on such approaches in this thesis. Moreover, we refer
to automatic spectrum-based fault localization as “fault localization” for short.

The state-of-the-art in spectrum-based fault localization necessarily includes Tarantula
by Jones et al. [73]. Another well-cited metric is is the Jaccard and Ochiai ones [2]. Xie
et al. [160] propose a theoretical analysis on multiple ranking metrics of fault localization
and divide these metrics into categories according to their effectiveness.

Santelices et al. [139] combine multiple types of code coverage to find out the faulty
statements in a program. Baah et al. [16] employ an outcome model to find out the
dynamic program dependencies for fault localization. Xu et al. [161] develop a noise-
reduction framework for localizing faults. DiGiuseppe and Jones [42] has recently proposed
a semantic fault diagnosis approach, which employs natural language processing to detect
the fault locations. Xuan and Monperrus [162] develop a learning-based approach to
combine multiple ranking metrics for fault localizing.

To our knowledge, only Baah et al. [15] and Shu et al. [143] have set notable milestones
using causal inference for better approximating causal effects in fault localization.

2.3.2 Graph-based Approaches

Stoerzer et al. proposed “JUnit/CIA”, a variant of Chianti which classifies each change as
green, yellow or red [147]. The classifier is defined according to the nature of the change:
improved and/or worsened test execution. This reduces the set of methods to inspect.
They propose an implementation as an Eclipse plugin (extension of the Chianti Eclipse
plugin).

Three years later, Ren et al. proposed a heuristic for ranking the method changes
which cause a test to fail [132]. This heuristic is based on graph metrics: the number
of ancestors and descendants in the call graph for the changed method is linked to the
probability to be responsible of the failure. This probability increases even more if caller
and callee are changed together. They assess their approach on three pairs of versions of
the Eclipse JDT project.

Zhang et al. [163] propose an approach entitled “FaultTracer” also based on Chianti
[133]. Their approach (i) extends the dynamic call graph used by Chianti with field
access information; (ii) uses fault localization approaches (i.e., suspiciousness score) in
order to prioritize the candidate changes. Their evaluation is compared to a personal
implementation of Chianti (as the code is not available) for 22 failures on four projects.
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They consider four fault localization suspiciousness score metrics: Tarantula [73], SBI
[92], Jaccard and Ochiai [2].

Ko and Myers [80] propose an original approach entitled “Whyline”. Their approach is
not directly intended for fault localization in the conventional way. Instead, they propose
a debugging tool on which the developer can ask questions based on the execution trace.
These questions are related to a behavior of the program during the execution and can
be, per se, seen as a fault. “Whyline” uses different approaches such as static/dynamic
slicing, static call graphs and other algorithms to explain what is the cause of such a
consequence. They assess the performance of their tool on five Java programs.

Zhao et al. [165, 166] propose the “FP” technique. It uses coverage information
obtained from a program control flow graph to establish suspiciousness of code blocks.
They assess their approach with three C programs from the SIR benchmark suite [43].
They compare their result with the classic Tarantula approach. Moreover, they also
improve their result by creating an hybrid approach: Tarantula approach is used and,
after inspecting 10% of the code, it switches to FP to speed up the process.

Renieris and Reiss [135] propose an approach based on software traces. They consider
two types of traces: traces of successful runs and of faulty ones. Their approach tries to
find the successful run which is closer to the faulty one. Reports are produced and scored
using the program dependence graph (PDG).

Liu et al. [94] propose a machine learning approach. They use graph mining and
support vector machine (SVM) on “software behavior graphs” in order to classify program
execution traces.

Some authors propose to use regression models as a fault localization algorithm. Baah
et al. [15] build a regression model using spectrum information and data extracted from a
program dependence graph (i.e., at the statement granularity). They assess their approach
on faults from the Siemens, Sed and Space datasets. Shu et al. [143] use a similar approach
but based on dynamic call graphs (i.e., at the method granularity) mixed with dynamic
data dependencies. They assess their approach on faults randomly selected from a bug
database for four programs.

2.3.3 Mutation-based Approaches

Mutation-based fault localization has been recently proposed. The central idea of mutation-
based fault localization is to localize faults by injecting faults.

Baudry et al. [20] leverage the concept of dynamic basic blocks to maximize the ability
of diagnosing faults with a test suite. They base their study on biology concepts and
propose to use software mutation to simulate faults. They use the JMutator framework to
mutate code according to seven mutation operators on two Java object-oriented programs.
The approach proposed by Baudy et al. to use mutants as simulated faults has been
investigated by Ali et al. [7]. They conclude that there is “no reason to believe that
mutants are unsuitable as candidates for faulty versions for the purpose of studying FL
algorithms”.

Zhang et al. [164] propose “FIFL”, a fault injecting approach to localize faulty changes
in evolving Java programs. This approach is based on the “FaultTracer” approach [163],
itself based on Chianti [133]. In this variant, mutation is used to inject fault in order to
improve the fault localization results. Here, candidate changes are ranked based on the
suspiciousness of mutants, resulting in an improvement of FaultTracer efficiency. They
assess their model on 26 pairs of versions taken from nine projects. They consider four
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fault localization suspiciousness score metrics: Tarantula [73], SBI [92], Jaccard and Ochiai
[2]. The mutation part of the contribution is done using the Javalanche framework [140].

Mun et al. [111] propose the “MUtation-baSEd fault localization technique (MUSE)”:
an approach based on both test suite and mutation of faulty and correct statements in
the program. Suspiciousness in this approach is computed based on the change of test
execution after mutation, i.e., tests that fail (or pass resp.) before mutation and do
pass (or fail resp.) after. Moreover, they propose the “Locality Information Loss (LIL)”
metric for determining how a fault localization technique is suited for automatic fault
repair/human debuggers. They assess their approach on fourteen faulty versions from
five C projects from the SIR benchmark suite [43]. They use the “Proteum mutation”
framework [104] for their approach.

Papadakis and Le Traon [126] develop “Metallaxis-FL”, a mutation-based technique
for fault localization on C programs. Their work shows that test cases that are able to
kill mutants can enable accurate fault localization based on the point where the mutation
occurred. Suspiciousness score is computed using the well-known Ochiai formula [2]. They
evaluate their approach on two sets of C programs: the Siemens suite composed of 132
faults in seven programs (enriched of 100 mutant-based faults) and 40 faults from four
projects from the SIR benchmark suite [43]. Similarly as Mun, they use the “Proteum
mutation” framework [104].

2.3.4 Discussion

A large number of contributions in fault localization are based on the supposition that the
faulty method must lie in between a test and the executed statements. Most spectrum-
based fault localization contributions obtain these statement by software slicing. The
limitation with this approach is that the technique is based on a limited view of the
program. Indeed, as slicing reports lines of code, they do not consider how these lines are
in relation to one another. That is, there is no information of how these statements are
related (e.g., in which method, which other method calls them).

On the other side, some approaches are based on a more global view of the problem.
An example of such approaches is ones which use software graphs for fault localization.
Indeed, software graphs offer the advantage to materialize all interconnection information
between software elements (which may be of different nature, depending on the chosen
granularity). However, to our knowledge, no works propose to conciliate both aspects,
that is, the one reported by spectrum-based fault localization and the other with a more
general insight of software such as one could obtain by using software graphs.

2.4 Generative Models of Software Data

As presented in Section 1.2, our second intuition is that synthetic data is a good candidate
for obtaining missing or hard-to-obtain data. In the first to third contribution, we use
mutants as synthetic data for simulating software faults.

In the last part of this thesis, we want to explore other types of synthetic data such
as synthetic software graphs. In this section, we explore existing graph models (related
or not to software engineering).

Oxford dictionary defines a model such as “a simplified description, especially a math-
ematical one, of a system or process, to assist calculations and predictions”. Thus, a
generative model is an algorithm which produces random observable data. A generative
model takes a set of parameters as input (such as the number of nodes or a threshold).
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A generative model may be deterministic or stochastic: for a given set of parameters, a
deterministic one always generates the exact same graph whereas a stochastic one gener-
ates a new graph each time it is run. A generative model for graphs is an algorithm that
generates graphs.

2.4.1 Generic Generative Models

The simplest and earliest ones are the models independently introduced by Gilbert, Erdös
and Rényi in 1959, both known as Erdos-Rényi models [48]: ER(n,m) generates a random
graph with n nodes and m edges chosen uniformly at random and ER(n, p) generates a
random graph with n nodes and any pair of nodes being connected with a probability
p. These are very nice theoretical models, but no graph observed in practice is ER: they
have properties that real graphs do not have and it is not possible to generate ER graphs
that share the properties of real graphs.

Watts and Stogatz proposed in 1998 a model for undirected graphs entitled the Small-
world graphs [156]. It starts from a regular graph of n nodes, each connected to k neigh-
bors. Then, with a probability p (with p ∈ [0 : 1]), it reconnects an edge randomly to
another. Then, with p raising to 1, we obtain a random graph such as the Erdos-Rényi
one and with intermediate values, we obtain small-world graphs.

Barabási and Albert proposed in 1999 a well-known model entitled Scale-free graph
[18]. This model uses a preferential attachment , which means the more a node is attached
(i.e., the number of edges connecting to it), the more it is susceptible to receiving new
attachments. In other terms, the graph is generated incrementally, adding one node at
each iteration and connecting this node to already existing nodes. The idea is that the
more connections a node already has, the more likely it is to be connected to the new
node (“rich get richer” principle). Though it is a relatively old idea dating back at least
to 1925, this sort of graphs has gained considerable attention these last years. Indeed, it
was observed that many real graphs may be described by such a preferential attachment
process. Such graphs have the degree distribution (cf. Section 2.1.3.2) that usually follows
a power law or a log-normal law; there is some controversy on this point [118, 107, 46],
also in the field of software engineering [109, 110].

2.4.2 Software Generative Models

Some other authors have proposed models for generating software graphs.

Valverde and Solé use a model of duplication and rewiring to generate software graphs
with similar motifs [153]. Moreover, they observe the tendency of software graphs to follow
a growth mechanism similar to the one presented by Krapivsky and Redner [82] as well as
an asymmetry between the in-degree and out-degree distributions [152]. This asymmetry
has been reported by other authors such as Myers [114], Challet and Lombardoni [38] and
Baxter and Frean [21].

Myers [114] propose a generative model based on binary strings to materialize the
software evolution rules. Baxter and Frean propose a generative model of software graphs
[21], based on a preferential attachment which depends on the node degree distributions.
Their model requires as input a fixed edge number. Both works [114, 21] study a large
amount of graph and software metrics.

Maddison and Tarlow [102] propose a generative model of source code at the abstract
syntax tree level. Li et al. [89] also propose a generative model based on the “modular
attachment mechanism”.
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Chaikalis and Chatzigeorgiou [36] propose a graph-based predictive model at the class
level. Their goal is to predict the growth and coupling of future versions.

Lin and Whitehead [93] have studied power laws on software change size and they
propose a generative model for such distributions. They work a the AST granularity and
only focus on change sizes.

Some authors have studied other structure characteristics on different kinds of graphs
without proposing any concrete generative model. Louridas et al. [95] study the “perva-
sive” presence of power-law distributions in software dependency graphs at the class and
feature level for a large range of programs written in various languages. Harman et al.
[58] focus on dependency clusters to demonstrate the widespread existence of clusters in
software source code. Mitchell and Mancoridis [106] use clustering techniques to infer an
aggregated view of a software system; their goal is to improve debugging and refactoring.
However, they do not focus on generalities about software.

2.4.3 Discussion

In related works, a large number of graph models are proposed in various domains, and
only a few are intended for software graphs. As this topic tends to be quite theoretical,
many contributions are only at the theory stage, sometimes demonstrated with mathe-
matical tools, but less commonly assessed empirically. Almost no implementation can be
found online and only a small number of authors propose a pseudo-code or algorithmic
description of their approach. The lack of available implementations makes empirical
comparisons with existing models difficult: the definition of these models may be misun-
derstood, leading to wrong implementations. To the best of our knowledge, no author has
proposed a generative model for software dependency graphs which is extensively assessed
in an empirical manner, based on a large corpus of real software graphs.
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An Evaluation Framework for Change
Impact Analysis

‘ ‘I have not failed. I’ve just found 10,000 ways that won’t work.”

— Thomas Alva Edison

This chapter at a glance...

In this chapter, the following contributions are presented:

• an algorithm to numerically analyze the accuracy of an impact analysis tech-
nique based on mutation testing;

• the definition of four kinds of call graphs for impact prediction.

• a large-scale impact prediction experiment on 10 open-source Java projects
and 16,922 mutants comparing these four kinds of call graphs.

The following publications are related to this chapter:

[1] Vincenzo Musco, Martin Monperrus, and Philippe Preux. An Experimental
Protocol for Analyzing the Accuracy of Software Error Impact Analysis. In
Proceedings of the 10th International Workshop on Automation of Software Test
co-located with ICSE, AST ’15, pages 60–64, 2015.

[2] Vincenzo Musco, Martin Monperrus, and Philippe Preux. A Large-scale Study of
Call Graph-based Impact Prediction using Mutation Testing. Software Quality
Journal, 2016. To appear.
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Change impact analysis consists in analyzing and reporting potential impacts for a
specific change in a software package. One challenge in this research area is to propose an
approach for automatically assessing the performance of an impact prediction technique
over a large dataset.

Let us explain this challenge: the performance of a large number of prediction tech-
niques proposed in related works are poorly or not assessed in an empirical manner (i.e.,
with real data). When an assessment is presented, it is generally based on a small amount
of changes. This is due to the commonly used approach: real changes are obtained from
different versions of a program using the version control system.

The problem with this approach is that a commit does not necessary exhibit one single
change. Thus, it implies one more precondition: changes must be split down in atomic
changes. Moreover, even once these changes have been reverted, observing the impact to
which they relate is not straightforward. In our work, we propose a solution allowing to
assess the performance of a technique based on a large number of changes without dealing
with such constraints.

In this chapter, we present a novel evaluation framework for change impact analysis.
Our key idea for producing a large number of changes in a program is to use mutation
testing. Indeed, mutation testing will create a large number of copies of the program
source code, on which one small change is introduced in each. This is based on the
observation made by Ali et al. [7] that there is no reason to think that a software mutant
cannot amount to a software fault.

To reason on the impact of a change, we use the test suite execution. We use test
failures as a way to observe the actual impact of a change in the program. Indeed, if the
test passes before the change and fails after, there are great chances that this is due to
the change itself. To assess the performance of a change impact analysis technique, we
use precision and recall metrics to express how accurate the technique is.

To do so, we propose to run our evaluation framework on call graphs used for change
impact analysis. However, as there is no unique call graph definition per se, we investigate
the performance for impact prediction of four types of call graphs, each one having its
particularity. The first taken from an external implementation, and the three others are
proposed by us: with and without call hierarchy analysis and taking into consideration
data dependencies.

We run our protocol on 10 mainstream open-source Java software packages. For each
of them, we create a total of 16,922 mutants using 5 different mutation operators. Then
we compare the precision and recall of the prediction depending on the call graph that
is used. Our results show that the sophistication indeed increases the completeness of
impact prediction (higher recall). However, and surprisingly to us, the simplest call graph
gives the highest trade-off between precision and recall for impact prediction (as computed
by the F-Score).

This chapter is structured as follows. In Section 3.1, an overview of the approach is
presented. In Section 3.2, four types of call graphs for impact prediction are presented.
Section 3.3 lists the research questions on which we focus in this chapter. In Section 3.4,
our experimental evaluation is explained. It is based on four metrics: the precision, the
recall, the F -score and the completeness. Moreover, the dataset, the configuration and
results of this work are presented. Section 3.5 concludes this chapter.
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3.1 Main Algorithm

We propose a novel approach for evaluating a change impact analysis technique I. The
evaluation is based on the concept of actual impact set and candidate impact set presented
in Section 2.2.2. The closer the actual impact set and the candidate impact set determined
by I are, the more accurate is the technique.

Our evaluation consists in assessing repetitively the impact prediction technique I
with a changed version of a program to determine how accurate the prediction is. These
changed versions of the program are artificially obtained using mutation testing which are
then used for determining the accuracy of a change impact analysis technique.

Software mutants are used here as a way to simulate artificial faults. Indeed, a mu-
tation consists in a random change in the source code. This is likely to result in an
unexpected (i.e., faulty) behavior, and thus in failing test cases. Running the test cases
on mutants produces the actual impact set of failing tests. These failing test cases are the
actual impact set.

Then, using a change impact technique I, the candidate impact set is obtained.
Algorithm 3.1 illustrates the global process of generating changes, obtaining the actual

impacts (i.e., the AIS – Actual Impact Set) and the estimated impact (i.e., the CIS –
Candidate Impact Set) using an impact prediction technique I.

Algorithm 3.1: Computes the candidate and actual impacted sets using mutation
injection, test execution and call graph.

Input: Σ the software package. I an impact prediction technique. mop a mutation
operator.

Output: a map containing for each mutant (key) the CIS and AIS sets.
1 begin
2 IP ← empty map()
3 T ← testCases(Σ)
4 for each e in filterElements(Σ,mop) do
5 for each m in mutants(Σ, e,mop) do
6 if m compiles and is killed then
7 CISm ← impactedTests(m, I)
8 AISm ← failingTests(m,T )
9 IPm ← {AISm, CISm}

10 return IP

This algorithm takes as input:

1. the software package under study;

2. an impact prediction technique;

3. a mutation operator that is responsible for mutation injection.

The output of the algorithm is a map which contains for each mutant, the actual
impact set (AIS) and the candidate impact set (CIS). In line 3, we get the set of test
cases (testCases) from the input software Σ. In lines 4–6, we select, mutate and test the
appropriate elements in the software package. The selection operation is made with the
filterElements function and the mutation operation is done with the mutants function.
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Table 3.1: The four types of call graph we define for error impact prediction.

Name Hierarchy Fields Description

CS No No Call graph extracted using JavaPDG [142].
CB No No Call graph considering only method calls. Calls to inherited

methods are resolved.
CH Yes No CB with Class Hierarchy Analysis (CHA), a standard call

graph in object-oriented static analysis.
CF Yes Yes CH with field analysis: each read/write access to a field may

propagate an error.

Appropriate elements are syntactic entities to which the specific change can be applied. In
line 7, we determine the test cases impacted by the mutation (impactedTests) according
to the impact prediction technique I (i.e., the candidate impact set). In line 8, the function
failingTests returns the set of test cases that fail when running the mutated version of
the program (i.e., the actual impact set).

Some mutants are said to be unbounded. An unbounded mutant is a mutant for
which an impact prediction technique is not able to predict anything because of a lack
of information (which is different from predicting no impact). The reason for which this
happens is related to the prediction technique under consideration. For the one considered
in this thesis, the unbounded mutants are discussed in Section 3.2.

3.2 Application to Call Graph Based Impact

Prediction

In this chapter, call graphs are used to obtain the candidate impact set. Thus, our
evaluation framework enable us to evaluate the impact prediction potential of a call graph.

Call graphs model how software methods are called. If an error is present in a software
method, methods calling it may themselves be impacted by the error. Exploring the call
graph is a way for estimating the impact of a change. As an example, a drawSquare

method calls a drawLine one. In the resulting call graph, there is an edge such as
drawSquare −→ drawLine. If the drawLine method has been changed, this is likely
that the drawSquare method which calls it (i.e., depends on it) will be also impacted by
the change.

Figure 3.1 illustrates an example of error-introducing change. This figure is based
on real data obtained in our experiments. This illustration includes both concepts: the
call graph per se and the Bohner sets presented in Section 2.2.2. Each node represents a
method and each edge represents a call to a method. The blue cross is the node where the
change (i.e., the mutation) occurs. Purple stars are missed test cases (i.e., detected only by
the test suite execution), red diamonds are incorrectly predicted test cases (i.e., predicted
by the call graph but not by the test suite execution), green boxes are correctly predicted
test cases (i.e., found by both techniques) and black circles are application nodes. As an
example, the graph illustrated on Figure 3.1 is composed of 78 nodes with 13 correctly
predicted, 7 missed test cases, 36 incorrectly predicted nodes and 21 application nodes. In
the example, we notice the multiple propagation paths that exist from the node in which
the error has been introduced to the impacted test nodes.

Call graph is defined in such a way that it allows many variations. Thus, in this
chapter, we consider a family of four different types of call graphs we use for impact pre-
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Figure 3.1: Visualization of the effect of a particular mutation. Black circles are the nodes
that propagate the mutation injected in the node denoted with a blue cross. Nodes illus-
trated by green boxes, red diamonds and purple stars are test cases related to the injected
mutation. Green boxes nodes are test cases that are correctly predicted as impacted by
the injected mutation; these are true positives. Red diamonds nodes are test cases that
are predicted as impacted, but are not; these are false positives. Purple stars nodes are
test cases that should have been predicted as being impacted but have not been; these
are false negatives.

diction. These are listed in Table 3.1 and their key differences are illustrated in Figure 3.2.
Each member of this family abstracts a particular way error may propagate in a piece of
software. A discussion about the reason we choose to use call graphs as a change impact
prediction technique is presented in Section 3.4.5.1. To the best of our knowledge, no
author has proposed to use such variants of call graphs from the point of view of change
impact prediction. Consequently, no accuracy comparison study of these call graphs has
ever been made before.

The first one is the call graph obtained using the JavaPDG tool by Shu et al. [142].
We refer to such a call graph as CS, where ”S” refers to the first author of the paper.
In such a call graph, overriding methods are not resolved. Thus, if the method A.foo()

overrides the method B.foo(), and the method C.bar() calls A.foo(), the call graph
will contain a call from C.bar() to A.foo(). Figure 3.2 gives another example of this
point: methods biz1() and biz2() both call the same method, but the former calls it on
an object B and the latter on an object A. However, in the call graph, both are resolved
with the same node.

CB is a similar basic call graph which uses the signature of the class according to the
static type of the receiver, as illustrated in Figure 3.2. We see that in this call graph, the
method biz1() and biz2() both call a foo() method, but the former on a B object and
the latter on a A object. Formally, for CS and CB, if method m calls method n, there is an
edge nodem −→ noden. However, errors may propagate through edges that are neither
in CS nor in CB. Thus, we propose two other flavors enriching CB by handling some
object-oriented programming concepts.

CH takes class hierarchy analysis into consideration (a.k.a. CHA)[41] to take inher-
itance and interface implementation into consideration. To do so, for each method, we
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(a) Source code (b) Extracted call graphs

Figure 3.2: (a) a simple Java source code and (b) the four types of graphs obtained from
it: CS, CB, CH and CF .

explore the classes extended and the interfaces implemented by the class in which the
method is defined. We add edges from the parent definition method to the overridden
method in the hierarchy. Formally, if a method m implements an abstract class or an
interface method n, there is an edge noden −→ nodem. This is illustrated on Figure 3.2
where we observe that an edge has been added from A.foo() to B.foo().

CF takes class hierarchy analysis but also reads and writes to fields into consideration.
Indeed, when a method writes to a field, it modifies its content and thus, potentially
inserts an error in it. In the opposite situation, a method which reads a variable in
which an error has been inserted may be impacted by this error. Thus, when writing to
a variable, the propagation goes from the method to the variable, but on the opposite
way, when reading, the propagation goes from the variable to the method. Formally, if
method m reads the field f, there is an edge nodem −→ nodef . If m writes the field f, there
is an edge nodem ←− nodef . This is illustrated on Figure 3.2: a node has been added
for the bar field and two edges have been added: one from C.biz2() to C#bar for the
read operation and one from C#bar to C.biz1() for the write operation. This feature is
similar to the method-level data dependency edge presented by Shu et al. [143] with the
difference that we add a node and two edges between the calls where they directly add an
edge. However, from a propagation point of view, both approaches are totally equivalent.

Figure 3.3 illustrates a simple application of the Algorithm 3.1 using a call graph as an
impact prediction technique. Three types of nodes are presented: application nodes (plain
circle), test nodes (circle with a T) and the changed node which is itself an application
node (double circle). The mul method is a multiplication method. As we can see, both the
power method (pow) and the factorial method (fac) use the multiplication one. Moreover,
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Figure 3.3: Example of a call graph in which a change has been introduced. It includes
application nodes, test nodes and call edges. The rectangles illustrate Bohner’s sets.

another operand method (op) is also defined but not called explicitly in the call graph.
This method uses reflection (which is not resolved statically) to call the mul method,
resulting in the absence of edge between op and mul. Moreover, each method has its
associated test method prefixed by test.

All test nodes belong to the System Impact Set (SIS) and are all potentially impacted.
We use mutation injection to produce a change to the mul method. Running test cases
on the changed version of the code gives a list of failing and passing test cases. As these
results are obtained by the execution of the program, the failing test cases make the actual
impact set (AIS). In this example, we suppose that there are two actually impacted test
cases: testMul and testOp illustrated by the thin box.

We use call graphs as an impact prediction technique. This is achieved by computing
transitive closures. A transitive closure T (n) for a node n returns the list of all nodes which
can be reached by any path from n. As we can see in our example, to determine which
nodes are connected to the impacted one (the mul method node), we need to compute the
transitive closure by recursively exploring the edges in the reverse direction. Therefore,
we reach two test nodes: testPow and testMul. These form the candidate impact set
(CIS), illustrated by the thick box.

We observe two other sets. The testPow test method is a false positive as it is reported
as impacted by our impact prediction technique but does not actually fail when running
the test cases. This test case belongs to the False Positives Impact Set (FPIS) illustrated
by a dotted box. On the other hand, the testOp test method is a false negative: running
the test cases reports this test method as impacted, but there is no path from the impacted
method (mul) to the testOp test method. This test case belongs to the False Negatives
Impact Set (FNIS) illustrated by a dashed box.

Let us now discuss the case of unbounded mutants presented in Section 3.1. N contains
all mutants for which the prediction is not possible because of the call graph. This
happens for different reasons: certain call graphs such as the CS may contain only nodes
corresponding to the first definition of a method and do not resolve the inherited ones.
Thus if the change occurs in an overridden method, it would not be found in the call
graph. Another scenario is when the mutation occurs in a method which is defined but
not actually called in the code (e.g., as equals).

3.3 Research Questions

In this section, we present the research question we want to answer in this chapter.

Research Question 3.1 What is the difference between the different types of call graphs
in terms of impact prediction accuracy? We determine the prediction capabilities offered
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by each call graph and whether field analysis and inheritance analysis improve or decrease
the prediction of error propagation.

Research Question 3.2 Is impact prediction project-dependent or mutation-dependent?
It may happen that one call graph is good for predicting the error propagation given
a specific mutation operator. This is what we call mutation-dependent error impact
prediction. The same question may be raised regarding projects. Answering this question
allows us to determine the level of genericity of our approach.

Research Question 3.3 What are the reasons of the bad accuracy of impact prediction
using call graphs? To answer this question, we manually investigate some cases where
the prediction is poor to better understand the reasons leading to a discrepancy between
predictions and the actual execution of code.

Research Question 3.4 What is the trade-off between the accuracy and the time needed
to compute the impact prediction? Running the test suite is a good and precise way to
know the actual impact of a change, but this requires important execution time. On the
other hand, a method based on call graphs is cheap in time but less precise in its prediction.
As explained above, it may over-estimate or under-estimate the actual propagation of a
change. We want to better characterize the trade-off between accuracy and time needed
for impact analysis.

Research Question 3.5 How rich are the test executions? In our context, the richness
of a test relates to the number of program elements (i.e., methods) involved in testing.
We would like to know whether many nodes are involved in error propagation.

3.4 Experimental Evaluation

In this section, we present our evaluation protocol as well as the dataset and mutation
operators considered. Then, based on these, we present our results.

3.4.1 Evaluation Protocol

We present here the metrics used for assessing the performance of a change impact analysis
technique based on the approach presented in Section 3.1. Section 3.4.1.1 presents metrics
intended for computing the performance of one fault (i.e., mutant). Then, Section 3.4.1.2
presents metrics used to compute the global accuracy over all considered faults.

3.4.1.1 One-Impact Mutant-Level Accuracy Metrics

In this section, we define 3 metrics used to analyze the output of Algorithm 3.1 for each
mutant (i.e., each prediction). These 3 metrics quantify and characterize the accuracy of
an error impact analysis.

The precision P is the proportion of test cases predicted by the impact prediction
technique which are actually impacted. It is computed using Equation (3.1). The recall
R is the proportion of test cases predicted by the call graph with regards to all test
cases that are actually impacted. It is computed using Equation (3.2). The F-score F
combines both metrics by computing their harmonic mean as in Equation (3.3). The
precision, recall, and F-score are computed for a given mutant m. We have:
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Pm = |AISm ∩ CISm|
|CISm|

(3.1)

Rm = |AISm ∩ CISm|
|AISm|

(3.2)

Fm = 2× Pm ×Rm

Pm +Rm

(3.3)

where vertical bars such as |E| denote the cardinality of the set E.

3.4.1.2 Global Accuracy Metrics

In this section, we present the metrics used to determine the accuracy of a change impact
analysis technique I as a whole. This is a global accuracy over observations made on
results over all impacts presented in Section 3.4.1.1.

Let K be the set of all killed mutants considered in a given experiment. A mutant is
considered as killed as soon as at least one test case fails after running the mutant, while
it did not fail on the un-mutated version of the program. The accuracy of a change impact
prediction technique is characterized by the average of the precision (P ), the recall (R)
and the F -scores (F ) over all elements of K.

Moreover, inspired by Arnold et al. [13], we define four sets to categorize the four
types of possible predictions: S (same), O (overestimate), U (underestimate) and D
(different). These are based on Bohner’s sets presented in Section 2.2.2. Each mutant
belongs to either one of these 4 sets. For a given mutant, we compute FPIS and FNIS.
Then, there are four cases:

• if FPIS = FNIS = ∅, the mutant belongs to the S set. It implies that the CIS
and the AIS are strictly equal (AIS ∩ CIS = AIS = CIS)). |S||K| is the proportion
of cases for which our method finds all and only actual impacts, which implies we
cannot do better predictions for these cases;

• if FPIS 6= ∅ and FNIS = ∅, the mutant belongs to the O set. In this case, we have
AIS ⊂ CIS. The change impact analysis technique is able to determine all impacts
but it over-estimates them as it returns more impacts than actually happens. These
scenarios are not perfect but are considered as safe [13] as they return at least all
the impacted elements;

• if FPIS = ∅ and FNIS 6= ∅, then the mutant belongs to the U set. In this case,
we have CIS ⊂ AIS. The change impact analysis technique under-estimates the
impact set as it returns less elements than the number of elements actually impacted;

• if FPIS 6= ∅ and FNIS 6= ∅, then the mutant belongs to the D set. The change
impact analysis technique returns different impacts than the actual ones (even if
some impacts may be estimated correctly).

In the two last cases, the change impact analysis technique under study misses impact
candidates. Equation (3.4) shows that these 4 sets are disjoint, and each killed mutant
belongs to either one of these 4 sets. {S,O,U ,D} is a partition of the set of killed mutants
K.

|S|+ |O|+ |U|+ |D| = |K| (3.4)
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Algorithm 3.2 describes how each mutant is assigned to a set. As an example, the
previously presented example Figure 3.1 belongs to the D set as there are missed and
incorrectly predicted test cases.

Algorithm 3.2: Computes the sets S, O, U and D for a set of mutants and their
actual and candidate impact sets.

Input: IP the map containing each mutant and its actual and candidate impact
sets (obtained using Algorithm 3.1)

Output: S, O, U and D: sets of mutants as defined in the text.
1 begin
2 S ← O ← U ← D ← ∅
3 for each m in IP do
4 AIS,CIS ← IPm

5 FPIS ← CIS − (AIS ∩ CIS)
6 FNIS ← AIS − (AIS ∩ CIS)
7 if FPIS = ∅ and FNIS = ∅ then
8 S ← S ∪ {m}
9 else if FPIS 6= ∅ and FNIS = ∅ then

10 O ← O ∪ {m}
11 else if FPIS = ∅ and FNIS 6= ∅ then
12 U ← U ∪ {m}
13 else
14 D ← D ∪ {m}

15 return S, O, U , D

We also define the set C (complete) as being the set of mutants for which the candidate
impact set contains all actually impacted methods, maybe more. In other words, for these
mutants, the change impact analysis method does not miss any impact. Formally, we
define the set C by Equation (3.5).

C = S ∪ O (3.5)

Table 3.2: Statistics about the projects considered in this chapter.

Project Name

Short Full Version Commit LOC

Codec Apache Commons Codec 1.11 r1676715 17,531
Coll. Apache Commons Collections 4.1 r1610049 55,081
Gson Google Gson 2.3.2 #fcfd397 20,072
Io Apache Commons Io 2.5 r1684201 26,528
Jgit JGit 4.1.0 #3c33d09 133,865
Joda. Joda-time 2.8.1 #6da4053 85,000
Lang Apache Commons Lang 3.5 #6965455 67,509
Shindig Shindig 2.5.3 r1687149 15,710
Sonar. Sonarqube 5.2 #1385dd3 29,342
Spojo Spojo 1.0.7 #8fb2194 3,371

Total 454,009
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We define the completeness as pC = |C|
|K| . It quantifies the extent to which a given call

graph approximates the impact of a given mutation. pS = |S|
|K| quantifies the extent to

which a given call graph perfectly determines the impact of a given mutation.
Unbounded mutants N presented in Section 3.1 belong to the U set (N ⊂ U). The

precision and recall for these unbound mutants are both equal to 0. Thus, mutants in N
set are removed from K (and consequently from U). Clearly, the set of mutants belonging
to N depends on the call graph being used. This point is visible in the experimental
section, where we give the cardinality of N for each type of call graph we work with.

3.4.2 Dataset

We consider a dataset composed of 10 Java software packages. It is composed of the
following projects: Apache Commons Lang, Apache Commons Collections, Apache Com-
mons Codec, Apache Commons Io, Google Gson, Jgit, Jodatime, Apache Shindig, Spojo
and Sonarqube. When the project is made of several subprojects, we consider only the
main one. Tables 3.2 and 3.3 report the key descriptive statistics about these projects.
Table 3.2 gives the name, the version, the git commit-id (starting with #) or the svn re-
vision number (starting with ’r’) and the number of lines of code (computed using cloc1)
of the program being analyzed. Table 3.3 describes the different call graphs under inves-
tigation. This table is made of four pairs of columns which give the number of nodes and
edges composing each call graph, namely CS (call graph obtained using JavaPDG tool),
CB (our basic call graph), CH (our call graph with CHA) and CF (our call graph with
CHA and fields).

We observe that the CS contains less nodes and edges than CB, CH and CF (excepted
for Gson, where the CS has more nodes than CB). This is due to the fact that CS does not
resolve the inherited method name, which means that if a method A.foo calls a method
B.bar which extends C.bar, the graph only contains calls to the super method C.bar.

Since we have the same number of nodes for CB and CH , this validates our implemen-
tation because we just added calls between some classes belonging to the same hierarchy.
These methods are already present in CB, they are just called by the callee. In CH , we
add edges between methods belonging to the same hierarchy, (i.e., overridden methods).
The number of nodes and edges increases in CF because we introduce nodes and edges to
reflect fields and their use (reads and writes).

3.4.3 Mutation Operators

Our technique requires mutation operators. We consider the five mutation operators
presented by King and Offutt [79]. As shown by Offutt et al., these five operators are
sufficient to effectively implement mutation testing [122]. These operators are listed in
Table 3.4: the leftmost column is the three letter acronym used by King and Offutt,
the central column is the full name, and the rightmost column lists the set of operators
implied in the mutation. A mutation operator changes a single atomic element. Any
software source code elements may be considered in a mutation.

As these operators are originally intended for the Fortran programming language, we
adapted them in order to make them compatible with Java programming language (see
the Java operators implied in the rightmost column of Table 3.4). Our Fortran to Java
adaptations of the operators are:

1http://cloc.sourceforge.net/

http://cloc.sourceforge.net/
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Table 3.3: Statistics about the call graphs for considered projects.

CS CB CH CF

Project #N #E #N #E #N #E #N #E

Codec 1,338 1,959 1,490 2,218 1,490 2,336 1,884 3,588
Coll. 6,008 7,747 6,678 9,252 6,678 12,047 7,637 17,178
Gson 2,630 5,492 2,480 5,381 2,480 5,674 3,317 9,101
Io 2,382 3,634 2,662 3,974 2,662 4,198 3,305 7,004
Jgit 11,571 31,647 12,560 35,953 12,560 37,679 17,350 60,458
Joda. 8,531 23,283 9,809 31,329 9,809 33,991 11,879 44,956
Lang 6,033 8,892 6,220 9,004 6,220 9,345 7,577 16,094
Shindig 1,410 2,020 1,933 2,373 1,933 2,621 2,723 5,096
Sonar. 3,126 5,025 4,322 5,737 4,322 5,852 5,960 10,706
Spojo 306 630 417 884 417 917 521 1,331

Total 43,335 90,329 48,571 106,105 48,571 114,660 62,153 175,512

• Absolute value insertion (ABS) in which each numerical expression (variable or
method call) or literal is replaced by its absolute value;

• Arithmetic operator replacement (AOR) in which each arithmetic expression using
Java arithmetic operators +, -, *, /, % is replaced by a new arithmetic expression
with the same operands but where the operator is changed into another one of the
same family, chosen uniformly at random. Two other mutation candidates are also
the left and the right operand alone, after removing the operator and one of the two
operands;

• Logical connector replacement (LCR) in which each logical expression using Java
logical operators && and || is replaced by a new logical expression with the same
operands but where the logical operator is changed by another one. Moreover, each
logical expression may also be mutated by the constants true and false. Two other
mutation candidates are also the left and the right operand alone, after removing
the operator and one of the two operands;

• Relational operator replacement (ROR) in which each relational expression using
Java relational operators <, <=, >, >=, == and != is mutated to a relational expression
with the same operands but where the relational operator is changed with another
one. Moreover, each relational expression may be replaced by the constants true

and false;

• Unary operator inversion (UOI) in which each arithmetic and logical expression is
mutated. Arithmetic expressions are mutated to their opposite value (i.e., multi-
plied by -1), their incremented value (i.e., add 1) and their decremented value (i.e.,
subtract 1). Logical expressions are complemented (i.e., apply the not (!) Java
operator).

3.4.4 Empirical Results

We now address the research questions introduced in Section 3.3. In particular, we present
the accuracy for error impact analysis obtained with the different types of call graphs.
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Table 3.4: List of mutation operators considered. Java operators T and F stand re-
spectively for true and false boolean types. With binary operators, L and R stand
respectively for left operand and right operand.

ID Name Java operators

ABS Absolute value insertion java.lang.Math.abs()
AOR Arithmetic operator replacement +, −, ∗, /, %, L, R
LCR Logical connector replacement &&, ||, T , F , L, R
ROR Relational operator replacement <, <=, >, >=, ==, ! =, T , F
UOI Unary operator inversion !, ++, −−

Research Question 3.1 What is the difference between the different types of call graphs
in terms of impact prediction accuracy?

To answer this question, we compute the metrics presented in Section 3.4.1.2. Their
values are given in Tables 3.5, 3.6 and 3.7. In the three tables, the first and second
columns give the project name and the mutation operator and the end of the table is split
into four parts, one for each type of call graphs (CS, CB, CH and CF ).

In Table 3.5, the third column gives the number of killed mutants for the project. The
four remaining columns shows the number of mutants for which there is no node in the
graph which corresponds to the method being mutated, or for which the corresponding
node has no neighbor, i.e., contains no in/out edges. Each column is related to a different
type of call graph.

In Table 3.6, the pS column is the proportion of mutants for which the impact pre-
diction is perfect (the failing test cases obtained from the call graph are exactly the ones
obtained by test suite execution). The pC column is the proportion of mutants for which
the impact prediction is complete, i.e., include all failing test cases.

In Table 3.7, the P , R and F columns report respectively the precision, recall and
F-score averaged over all considered mutants. For each line, the value in bold font is the
best F-score obtained among the four types of call graph.

The first observation is that CS has an important number of unbound mutants, more
than 50% in some cases such as Codec with ABS mutation operator. The three other call
graphs have less unbound mutants. Further investigations show that the main reason of
unbound mutants for CS is that the mutation occurs in an inherited node method which
is not resolved by CS (as presented in Section 3.2). For CB, CH and CF , unbound nodes
are always nodes which are isolated (i.e., no connected edges). We noticed that in CB,
CH and CF , these nodes are not always called in the program. Examples of such methods
are equals, compare or some state testing method such as isInAlphabet for Apache
Commons Codec project.

This explains low scores for CS as every unbound mutant has a precision and a recall
equal to 0. This strongly highlights the fact this graph is not complete enough to perform
good impact prediction analysis.

Considering the F-score values (F), we see that CB is the one which gives the best
F-scores (in 18 cases out of 50, that is in more than 30% of cases) which indicates it is the
best suited call graph for impact prediction. However, CH F-scores are close to the CB

ones: in 10 cases out of 50, CH has similar values and in 16 cases out of 50 it has better
ones, which means that CH is also a good candidate for impact prediction.
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Table 3.5: Mutation statistics based on four different call graphs. |K| is the number of
killed mutants. CS, CB, CH and CF are the number of unbound mutants (|N |) for each
project and mutation operator based on each call graph type.

Project Op. |K| CS CB CH CF

Codec ABS 302 170 5 3 0
AOR 458 157 6 5 0
LCR 497 128 9 0 0
ROR 484 173 14 5 0
UOI 470 139 6 3 0

Coll. ABS 220 71 13 9 0
AOR 380 194 59 15 0
LCR 332 69 23 16 3
ROR 381 83 37 16 0
UOI 386 150 44 17 1

Io ABS 251 102 6 6 2
AOR 387 242 4 4 4
LCR 446 102 4 0 0
ROR 454 154 10 6 4
UOI 351 175 4 3 3

Lang ABS 278 145 2 0 0
AOR 480 307 14 1 0
LCR 447 162 8 1 0
ROR 466 217 7 1 0
UOI 452 242 8 0 0

Gson ABS 225 19 5 5 0
AOR 310 1 0 0 0
LCR 431 43 32 32 21
ROR 703 82 28 27 4
UOI 418 12 12 12 9

Project Op. |K| CS CB CH CF

Jgit ABS 199 90 1 0 0
AOR 386 189 5 0 0
LCR 334 87 3 2 0
ROR 356 129 4 1 0
UOI 405 187 6 2 0

Joda. ABS 294 109 0 0 0
AOR 541 205 16 0 0
LCR 438 143 0 0 0
ROR 426 116 4 1 0
UOI 499 168 7 1 1

Shindig ABS 247 51 19 19 0
AOR 314 61 26 22 0
LCR 300 25 25 12 4
ROR 338 36 23 18 2
UOI 251 32 21 18 1

Sonar. ABS 288 68 39 39 3
AOR 253 39 0 0 0
LCR 177 17 22 22 5
ROR 462 87 28 28 7
UOI 172 20 9 9 1

Spojo ABS 8 0 0 0 0
AOR 20 0 0 0 0
LCR 48 0 0 0 0
ROR 142 0 0 0 0
UOI 15 0 0 0 0

If a call graph shows better F-scores, the observation is valid for all mutation operators
of the project, which indicates the impact prediction technique is project-dependent (see
Research Question 3.2).

Let us now consider the pC metric, which indicates whether the prediction is sound
(in which proportion of mutations impact that actually happens is not missed). From
CS to CB, we have an average increase of pC around 20%. Then, considering fields and
hierarchy indeed better captures the error propagation: the pC metric increases in average
of 15% when taking into consideration class hierarchy analysis (from CB to CH) and of
5% when also considering fields (CH to CF ). However, if we look at the increase project
by project, we see important differences. Considering the inclusion of hierarchy (from CB

to CH), Gson and Jodatime have high pC average increases of respectively 49% and 41%,
which implies a high usage of hierarchy in these projects. At the opposite, Collections and
Io have lower pC values with both an average increase of 1.8%. The pC value can reach
values as high as 100% for Spojo. The best increases are for Lang (or Io resp.) with AOR
mutation operator where pC raises from CS to CB from 31% to 90% (or from 27% to 86%
resp.) and for Gson with ROR mutation operator where pC raises from CB to CH from
36% to 93%.

A high recall value indicates that the prediction includes the actual impacted test
cases. Thus, the complete set value is strongly linked with the recall. Indeed, we observe
that the complete set value (pC) is high when the recall value (R) is high. This is also a
piece of evidence of the correctness of our experimental evaluation technique.

CB gives the best precision values of all other call graphs. Precision decreases when
taking into account the hierarchy or the access to fields (CH and CF ). This makes us
think that more nodes/edges are added, more impacted test cases can be found, which
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Table 3.6: Proportion of predictions in pS and pC sets for each call graphs. pS = |S|
|K| is

the proportion of mutants for which the predicted impact exactly matches the actual one.
pC = |C|

|K| is the proportion of mutants for which the prediction is complete (i.e., does not

miss any impacted test case).

CS CB CH CF

Project Op. pS pC pS pC pS pC pS pC

Codec ABS 2% 26% 3% 62% 2% 79% 1% 88%
AOR 3% 40% 3% 70% 0% 81% 0% 86%
LCR 0% 43% 2% 62% 1% 83% 1% 89%
ROR 4% 32% 5% 55% 2% 78% 2% 82%
UOI 3% 42% 4% 66% 1% 79% 1% 85%

Coll. ABS 12% 20% 25% 35% 25% 37% 18% 41%
AOR 10% 12% 35% 43% 34% 44% 30% 49%
LCR 20% 39% 28% 51% 28% 52% 22% 55%
ROR 12% 21% 18% 32% 16% 36% 13% 39%
UOI 17% 21% 36% 44% 34% 45% 27% 51%

Io ABS 13% 38% 23% 71% 23% 72% 21% 79%
AOR 14% 27% 27% 86% 27% 86% 27% 89%
LCR 6% 60% 10% 82% 10% 85% 9% 88%
ROR 14% 47% 24% 76% 24% 79% 20% 86%
UOI 14% 38% 26% 82% 26% 84% 25% 88%

Lang ABS 19% 43% 42% 92% 42% 95% 40% 96%
AOR 9% 31% 40% 90% 40% 95% 36% 95%
LCR 16% 59% 27% 89% 27% 95% 26% 95%
ROR 22% 49% 43% 90% 43% 94% 38% 96%
UOI 15% 40% 41% 88% 40% 93% 35% 94%

Gson ABS 1% 38% 1% 42% 1% 96% 1% 97%
AOR 1% 57% 1% 60% 1% 99% 0% 99%
LCR 2% 37% 2% 38% 1% 81% 0% 85%
ROR 2% 34% 2% 36% 2% 93% 2% 94%
UOI 2% 41% 2% 42% 2% 92% 0% 94%

Jgit ABS 2% 16% 2% 35% 2% 56% 2% 70%
AOR 1% 18% 3% 44% 2% 62% 2% 69%
LCR 0% 25% 1% 48% 1% 66% 1% 76%
ROR 2% 21% 3% 44% 3% 62% 1% 73%
UOI 1% 19% 3% 47% 2% 65% 2% 73%

Joda. ABS 14% 33% 19% 50% 19% 86% 19% 89%
AOR 11% 25% 13% 33% 11% 87% 11% 89%
LCR 8% 27% 9% 49% 9% 83% 9% 84%
ROR 16% 35% 19% 47% 19% 81% 18% 85%
UOI 13% 27% 15% 37% 13% 85% 13% 86%

Shindig ABS 25% 54% 28% 67% 28% 81% 26% 87%
AOR 31% 57% 39% 75% 40% 87% 36% 91%
LCR 14% 54% 15% 60% 15% 71% 15% 78%
ROR 18% 48% 20% 54% 20% 68% 18% 75%
UOI 27% 56% 32% 68% 32% 80% 30% 84%

Sonar. ABS 33% 51% 43% 74% 43% 77% 40% 81%
AOR 26% 79% 28% 91% 28% 91% 26% 91%
LCR 25% 57% 27% 68% 24% 76% 21% 78%
ROR 30% 61% 34% 78% 34% 82% 33% 84%
UOI 28% 72% 31% 81% 30% 84% 28% 85%

Spojo ABS 0% 62% 0% 62% 0% 62% 0% 62%
AOR 0% 0% 0% 10% 0% 10% 0% 10%
LCR 0% 92% 0% 92% 0% 100% 0% 100%
ROR 2% 67% 5% 72% 4% 86% 4% 90%
UOI 0% 73% 0% 73% 0% 80% 0% 80%
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Table 3.7: The main metrics of impact prediction based on four different call graphs. P
is the precision averaged over all killed mutants, R is the recall averaged over all killed
mutants, and accordingly, F is the F -score averaged over all killed mutants.

CS CB CH CF

Project Op. P R F P R F P R F P R F

Codec ABS 0.24 0.30 0.15 0.43 0.68 0.31 0.25 0.87 0.29 0.18 0.93 0.21
AOR 0.36 0.43 0.23 0.42 0.75 0.34 0.25 0.89 0.30 0.19 0.92 0.23
LCR 0.25 0.49 0.21 0.36 0.68 0.28 0.17 0.91 0.24 0.15 0.95 0.21
ROR 0.37 0.39 0.26 0.51 0.65 0.39 0.29 0.88 0.33 0.24 0.90 0.26
UOI 0.39 0.47 0.26 0.48 0.73 0.39 0.28 0.88 0.32 0.23 0.91 0.26

Coll. ABS 0.57 0.22 0.19 0.84 0.42 0.38 0.74 0.44 0.39 0.51 0.49 0.30
AOR 0.43 0.13 0.12 0.89 0.47 0.45 0.77 0.48 0.44 0.58 0.54 0.39
LCR 0.65 0.41 0.35 0.81 0.56 0.48 0.70 0.57 0.47 0.53 0.60 0.35
ROR 0.66 0.26 0.23 0.82 0.39 0.33 0.62 0.44 0.32 0.44 0.47 0.27
UOI 0.54 0.23 0.22 0.88 0.49 0.47 0.75 0.51 0.46 0.55 0.57 0.38

Io ABS 0.42 0.43 0.32 0.64 0.78 0.53 0.58 0.79 0.50 0.50 0.83 0.43
AOR 0.27 0.29 0.22 0.52 0.89 0.51 0.49 0.90 0.49 0.40 0.92 0.38
LCR 0.32 0.66 0.30 0.43 0.88 0.43 0.39 0.90 0.41 0.30 0.92 0.32
ROR 0.42 0.52 0.36 0.62 0.84 0.57 0.55 0.87 0.54 0.41 0.91 0.41
UOI 0.32 0.41 0.27 0.55 0.88 0.53 0.51 0.90 0.51 0.41 0.92 0.41

Lang ABS 0.32 0.44 0.32 0.68 0.94 0.70 0.64 0.98 0.70 0.56 0.99 0.61
AOR 0.20 0.32 0.19 0.68 0.91 0.66 0.61 0.99 0.67 0.50 0.99 0.55
LCR 0.33 0.60 0.35 0.55 0.90 0.55 0.48 0.97 0.56 0.45 0.97 0.52
ROR 0.34 0.51 0.37 0.67 0.94 0.69 0.64 0.97 0.69 0.54 0.98 0.59
UOI 0.30 0.41 0.29 0.71 0.90 0.69 0.64 0.98 0.70 0.52 0.98 0.56

Gson ABS 0.27 0.61 0.24 0.31 0.66 0.21 0.13 0.97 0.16 0.11 0.98 0.14
AOR 0.19 0.78 0.20 0.17 0.83 0.20 0.09 1.00 0.13 0.07 1.00 0.12
LCR 0.41 0.53 0.22 0.47 0.56 0.21 0.24 0.88 0.19 0.20 0.89 0.15
ROR 0.36 0.54 0.22 0.43 0.58 0.21 0.17 0.94 0.17 0.15 0.95 0.15
UOI 0.35 0.63 0.24 0.34 0.68 0.24 0.19 0.95 0.20 0.15 0.96 0.17

Jgit ABS 0.31 0.25 0.12 0.50 0.54 0.22 0.23 0.87 0.22 0.11 0.94 0.12
AOR 0.23 0.31 0.13 0.47 0.65 0.27 0.23 0.90 0.24 0.14 0.94 0.15
LCR 0.34 0.38 0.13 0.40 0.63 0.20 0.19 0.88 0.20 0.11 0.94 0.11
ROR 0.34 0.33 0.15 0.49 0.62 0.26 0.26 0.88 0.25 0.15 0.94 0.15
UOI 0.25 0.28 0.11 0.45 0.64 0.24 0.22 0.91 0.24 0.13 0.95 0.14

Joda. ABS 0.47 0.35 0.25 0.74 0.56 0.39 0.38 0.97 0.42 0.35 0.98 0.38
AOR 0.50 0.27 0.19 0.82 0.38 0.27 0.28 0.97 0.33 0.26 0.98 0.30
LCR 0.46 0.33 0.18 0.61 0.57 0.30 0.29 0.95 0.33 0.24 0.96 0.27
ROR 0.57 0.39 0.28 0.76 0.54 0.38 0.41 0.93 0.41 0.37 0.95 0.37
UOI 0.53 0.30 0.22 0.80 0.42 0.30 0.31 0.97 0.36 0.29 0.98 0.33

Shindig ABS 0.56 0.59 0.43 0.68 0.75 0.56 0.60 0.86 0.57 0.53 0.90 0.52
AOR 0.54 0.60 0.44 0.65 0.79 0.58 0.63 0.87 0.60 0.60 0.91 0.57
LCR 0.55 0.61 0.37 0.59 0.68 0.40 0.51 0.74 0.41 0.49 0.80 0.40
ROR 0.62 0.55 0.38 0.68 0.64 0.45 0.57 0.76 0.47 0.53 0.82 0.47
UOI 0.61 0.63 0.47 0.69 0.74 0.56 0.66 0.81 0.57 0.62 0.86 0.55

Sonar. ABS 0.63 0.56 0.49 0.80 0.78 0.66 0.79 0.81 0.67 0.76 0.84 0.68
AOR 0.50 0.81 0.53 0.57 0.93 0.59 0.57 0.93 0.59 0.51 0.94 0.55
LCR 0.70 0.63 0.50 0.75 0.73 0.57 0.68 0.78 0.53 0.64 0.78 0.49
ROR 0.60 0.65 0.51 0.70 0.82 0.62 0.69 0.85 0.63 0.67 0.86 0.61
UOI 0.59 0.75 0.51 0.66 0.85 0.58 0.64 0.86 0.58 0.59 0.87 0.54

Spojo ABS 0.42 0.62 0.08 0.42 0.62 0.08 0.42 0.62 0.08 0.42 0.62 0.08
AOR 1.00 0.00 0.00 0.45 0.13 0.12 0.45 0.13 0.12 0.45 0.13 0.12
LCR 0.31 0.96 0.41 0.31 0.96 0.41 0.28 1.00 0.40 0.27 1.00 0.38
ROR 0.55 0.69 0.36 0.46 0.78 0.45 0.36 0.90 0.44 0.31 0.92 0.39
UOI 0.63 0.76 0.49 0.63 0.76 0.49 0.59 0.80 0.49 0.58 0.80 0.48
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also means, more false positives.
Moreover, the precision varies greatly depending on the mutation operators and project:

if we consider CH , it goes from lower values such as 0.09 for Gson with AOR mutation
operator to higher ones such as 0.79 for Sonarqube with ABS mutation operator. This ob-
servation underlines again the project-dependent side of the impact prediction technique
(see Research Question 3.2).

The four types of call graph under consideration are not equivalent for impact pre-
diction. According to our protocol, the best one is CB, which does not consider
Class Hierarchy Analysis and field analysis. The main reason is that the sophisti-
cation of Class Hierarchy Analysis and field analysis increases the recall of impact
prediction but decreases too much the precision.

Research Question 3.2 Is impact prediction project-dependent or mutation-dependent?

Let us again consider Table 3.6. Now, we focus on the difference between projects and
mutation operators:

• the values differ strongly from one project to another for a given mutation oper-
ator (e.g., considering the ABS mutation operator with CB, 3% in pS for Apache
Commons Codec, 19% for Jodatime and 43% for Sonarqube);

• the values differ less from a mutation operator to another for a given project (e.g.,
considering the Apache Commons Codec with CB, values range from 2% in pS for
LCR mutation operator to 5% for ROR mutation operator).

These observations highlight the fact that the accuracy of the call graph impact pre-
diction technique depends more on the project than on the mutation operator. Though
instantiated through software projects, this observation really concerns the architecture
of the software project, or the development patterns (e.g., extensive usage of hierarchy, of
reflection) employed to realize the project.

Similar observations have already been reported in Research Question 3.1: the fact
that a call graph shows better F-scores for all mutations operators of the project and the
fact that the precision may have really low or high values depending on the project.

Call graph-based impact prediction is influenced by the structure of call graphs
and by the mutation operators used in the experiment. The project-dependence is
higher than the mutation operator dependence.

Research Question 3.3 What are the reasons of the bad accuracy of impact prediction
using call graphs?

The answer to Research Question 3.1 has reported both low and high accuracy of
impact prediction using call graphs. To gain even better knowledge about call graphs,
we have performed an investigation on a set of cases for which the prediction error is
particularly bad. We now discuss our main findings.

Our technique is based on a static call graph. Hence, the call graph does not handle
the use of Java Reflection mechanism. The reflection mechanism is resolved at run-time
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while the call graph is built in a static manner. Obviously, this leads to discrepancies
between the results of our analysis, and the outcome of the execution. However, we may
detect the use of reflection in a project since then, the source code refers to some specific
classes/packages in the Java library (package java.reflect). In practice, we may raise
a warning to the user about the use of reflection mechanism so that he would take special
care when interpreting the impact.

We also notice that the test cases are not independent from each other. Since mutation
analysis is costly, we execute them in parallel. In the case of Apache Common Io, the
parallel execution of tests sometimes results in failing test cases, where the failure is due
to parallel execution and not the mutation itself. The reason is that Apache Common
Io extensively uses the hard drive. As our parallel test cases run on the same hard drive
space (i.e., folder), they try to read/write/create identical folders/files. Consequently,
some test cases fail due to this parallel I/O but it is not due to the mutant itself. There
are different ways to address this problem: the easiest one is to run one instance of test
at a time in a manner that the I/O is not shared. Another way is to duplicate the project
for each mutation operator in a way that if they run in parallel, each one benefits of its
own drive space.

The bad accuracy is related to a low recall and/or a low precision. The low recall
of call graph-based impact prediction is caused by missing edges in the graphs
(e.g., because of reflection). The low precision is caused by too many edges in the
considered graphs, especially for CH and CF .

Research Question 3.4 What is the trade-off between the accuracy and the time needed
to compute the impact prediction?

Now that we have a clearer understanding of the precision and recall of call graph-
based impact prediction, we concentrate on the execution time of the prediction.

Table 3.8 gives the computation time for each project (column 1) of our dataset. Each
time related to the call graph is given for the four types of call graph (CS, CB, CH and
CF ). These times are:

• ttest, the time required to run the test suite (column 2);

• the time required to build the call graph for each call graph type (columns 3, 5, 7,
and 9);

• the average time of impact prediction based on the call graph, i.e., computing one
impact prediction (column 4, 6, 8, 10).

The average time of impact prediction is expressed in milliseconds, for instance it takes
0.11 millisecond in average to make an impact prediction in Apache Commons Codec with
CH .

First, we observe the time needed to generate call graphs with JavaPDG (CS). We
observe that it takes several hours to generate the call graph with all elements. For the
smallest project, Spojo, it takes 16 minutes. For the largest, Jgit, it takes almost 2 days
of computation. This aspect is linked to the fact that JavaPDG also builds a finer graph
(the Program Dependence Graph) before extracting the call graph. Thus, using JavaPDG
has an important cost in time.



3.4. Experimental Evaluation 49

Table 3.8: Main computation time to run each test suite, to build each call graph and to
predict one impact using each call graph.

CS CB CH CF

Project ttest build pred. build pred. build pred. build pred.

Codec 32.2s 3h+ 0.09ms 0.78s 0.04ms 0.96s 0.11ms 0.90s 0.17ms
Coll. 38.9s 9h+ 2.03ms 4.14s 0.03ms 3.78s 0.08ms 3.98s 0.48ms
Gson 13.7s 2h+ 0.34ms 1.01s 0.54ms 1.16s 1.66ms 0.90s 3.23ms
Io 90.1s 3h+ 0.21ms 1.51s 0.05ms 0.91s 0.05ms 0.86s 0.35ms
Jgit 195.5s 40h+ 5.25ms 10.80s 0.99ms 6.52s 3.48ms 6.03s 40.29ms
Joda. 31.2s 25h+ 2.55ms 8.12s 0.61ms 4.92s 10.50ms 4.36s 23.14ms
Lang 40.0s 15h+ 1.81ms 2.82s 0.05ms 2.75s 0.06ms 2.75s 0.31ms
Shindig 14.1s 1h+ 0.17ms 0.65s 0.02ms 0.58s 0.04ms 0.63s 0.08ms
Sonar. 387.3s 3h+ 0.76ms 1.74s 0.02ms 1.42s 0.01ms 1.25s 0.10ms
Spojo 2.7s 16m 0.06ms 0.22s 0.04ms 0.24s 0.07ms 0.25s 0.12ms

If we focus on CB, CH and CF , we observe that building these graphs takes from 1
to 11 seconds (with an average time of 2.6 seconds) for all projects and call graphs being
considered. Furthermore, it takes less than 5 seconds for almost all projects (except for
Jgit and Jodatime which are the two largest projects, which both require respectively up
to 10.8s and 8.1s). The building process seems to last longer with lighter types of the
graph (i.e., CB) than with heavier ones (i.e., CF ). However, our implementation always
lists all elements, but just filter out some nodes depending on the type of graph. Thus,
these differences in time are more probably explained by the system load at the moment
of the generation.

Once the graph is built, determining an impact takes less than 45ms for all projects,
and even less than 5ms seconds for all projects except again for Jgit and Jodatime. These
observations also apply to graphs generated using JavaPDG: all predictions are made in
less than 5ms (except for Jgit: 5.25ms). We observe that prediction times using JavaPDG
are generally larger. These differences are likely to be related to the fact that the graph
is obtained by third-party software, the data returned is not exactly the same as ours.
Thus, some additional on-the-fly data transformations are required to find good nodes in
the graph. Overall, these prediction times are equivalent.

If we compare the prediction for CB, CH and CF , we can see that the prediction time
increases with the size of the program and the graph. Thus, CF which is the largest graph
(as it contains more nodes and edges) increases the required time for prediction, but this
increase remains reasonable (maximum absolute value of 41ms). This is expected since
prediction is based on path enumeration in the graph. Prediction with a lighter version
of the call graph (CB) performs impact analysis in less than 1ms for all cases.

Actual impacts can be determined directly by running the program test cases. Thus,
if we look at the time required for the execution of the test cases, we see that the minimal
time required is 3 seconds for the smallest project (Spojo) and can reach values as high as
387.3 seconds for Sonarqube. The time required to build the call graph is smaller to the
time required to run test cases for software. This shows that using call graphs to predict
impacts costs less than running test suites. If we consider Apache Common Codec, the
time required to build a call graph is more than 33 times smaller than the time required
to run the entire test suite. And by comparison, the time to make a prediction is orders of
magnitude smaller than the time to run the test suite. This observation is interesting as it
underlines the fact that using an impact prediction technique based on a call graph gives
a quick insight of what are the consequences to the tests according to a change. Then, it



50 Chapter 3. An Evaluation Framework for Change Impact Analysis

is possible to run first the returned test to directly find failing ones, which represents a
gain of time for the developer.

Furthermore, the call graph has the advantage that during software evolution, many
changes would have no impact on it (e.g., changing an operator, shifting a line in the code).
Thus, the same call graph can be used for predicting the impact of several simultaneous
changes before requiring graph regeneration. Moreover, when it is required to recompute
it, the time to build the call graph is reasonable, within seconds for our dataset with a
maximum of 11 seconds for Jgit. This makes it possible to use such an impact prediction
on the fly in the development environment (IDE).

This opens interesting research avenues, where one first performs very fast approxi-
mation of error propagation before performing more sophisticated static analyses. This
can even be used in a pre-processing step for a dynamic analysis.

Now consider that large companies have hundreds of thousands of interrelated test
cases, as in the case of Google [141]. It is likely that these scenarios will be more and
more common, and that low-level, detailed analysis of the computation will fail to scale.
We think that such settings will need very fast approximation of impacts. The preliminary
performance results we report here, with un-optimized software, make us confident that
this is indeed possible.

Call graph-based impact prediction is orders of magnitude faster than actually run-
ning the test suite. The time cost to build the call graph is also much smaller.
In a software codebase with a very large number of methods and test cases, the
imprecision of call graph-based impact prediction is compensated by the gain in
execution time. Passing from CB to CF makes prediction times slower, but these
times remains acceptable for prediction and much faster than running test cases.

Research Question 3.5 How rich are the test executions?

In this question, we want to determine what is the number of impacted nodes returned
by our call graph-based impact prediction technique.

Figure 3.4 shows box plots for each project with the number of impacted nodes for
each ABS mutation found with CB call graph. As we can see, most graphs have a size
smaller or equal to 100. The median size is low for all projects, ranging from 1 to 10
excepted for Apache Common Codec, JGit and Gson which have respectively 25, 30 and
47 as median size value.

However, there exist complex test scenarios: Sonarqube, Jgit and Jodatime have out-
liers which go up to respectively 509, 2647 and 4564 impacted nodes. We removed these
outliers from Figure 3.4 for readability. Moreover, if we look at Gson, we can see that
more than having a higher median size of 47, the size of graphs ranges from 1 to 757. We
observe a similar situation for JGit for which the size of graphs ranges from 1 to 367.

If we look at the example on Figure 3.1, the size of the graph is 78 nodes, and the
impact propagation is not straightforward.

The richness of a test execution is generally small (lower than 50); however, some
cases can be quite complex with impacted nodes set size reaching up to 4,000 nodes.
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Figure 3.4: Number of impacted nodes for ABS mutants for each project.

3.4.5 Discussion

We discuss here choices regarding the type of graph we considered and limitations, that
is, the reasons for which we cannot compare easily with other techniques and the threats
to validity.

3.4.5.1 Other Software Graphs

We present here what motivated our choice of the call graph as a change impact anal-
ysis technique. Other software graphs can be used for impact prediction Two examples
discussed here are:

• the program dependence graph (a.k.a. PDG) which contains more nodes/edges than
the call graph as it contains more low-level elements (i.e., code instructions) from
the source code;

• the class or the package dependency graph which contains less nodes/edges than
the call graph as it contains only dependencies between classes or packages. That
is, an edge is added between a class or a package A and a class or a package B every
time a method of A access to any element (e.g., class, method, field constant) of the
class or package B.

If we consider a finer granularity graph (such as the program dependence graph, a.k.a.
PDG), it will hardly scale with large programs. This intuition is validated with our first
experiments: the time required for building PDG with the well-known program JavaPDG
are important (cf. Table 3.8). Building a graph for all programs of our experimental
dataset took more than 4 days (with an average time per project of more than 10 hours).

To the opposite, coarser granularity (such as a class or package dependence graph)
contains less information. An impact prediction for a change in a method Pkg.Foo.bar()
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is interpreted as a change introduced in the Pkg.Foo class or in the package Pkg. As a
consequence, the resulting impacts are inevitably of the same granularity (i.e., classes or
packages). This results in considering all tests of a test class (or a package) as also failing.
That is, considering the amount of methods or fields a class can contain (and the number
of class a package can contain), the resulting prediction will be inevitably bad, and it
would be difficult to precisely locate where the impacts are. To better understand this
point, we have computed the class and package dependency graphs for the projects in our
dataset. We observe that we have more or less 10 times less nodes from call graph to class
dependency graph and less than 30 nodes for the package dependency graph. Similar
observation can be made regarding the edges. Now if we consider our smaller project
(Spojo) which contains 330 methods (nodes) and 890 calls (edges), we observe that the
class dependency graph contains only 37 classes (nodes) and 69 dependencies (edges).
These results become even worse with the package dependency graph which contains only
7 packages (nodes) and 13 dependencies (edges).

To sum up, we use call graphs for impact prediction because it exhibits a good trade-
off between performance and cost. Moreover as a test is a method, it is also a natural
unit of decomposition.

3.4.5.2 Comparison against Impact Prediction Techniques

In this chapter, we focus on characterizing the efficiency of different call graphs for im-
pact prediction (depending on which features we include in the call graph computation
– inheritance and fields). Comparing the accuracy of this technique to existing ones is
another research question. We wanted to answer to such a research question but this is
impossible so far. We identify two reasons that make such a comparative study a complex
challenge.

The first reason is that the proposed tools do not necessarily work at the same granu-
larity and/or language. As an example, some may observe code statements or C language
[131]. The second reason is that the techniques which can be compared to ours [88] do
not provide a publicly available implementation (even by contacting directly the authors).
The latter reason is why we make all our implementation publicly available. To sum up,
due to lack of open tools, a comparative evaluation of impact prediction on Java software
at the level of method is not possible.

3.4.5.3 Threats to Validity

At a conceptual level, the main threat to the validity of our experimental results is that
we consider the test suite execution as ground truth. However, it may be the case that
the test cases miss the assertions that would detect the actually propagated error and
thus fail. This threat is mitigated by our manual analysis.

Our large scale experiment confirms known and yet essential facts to be taken into
account when doing mutation analysis. One of such consideration is the fact a single
mutant sometimes makes an entire test suite broken. As an example, if we use a static
field in a test class which is initialized by default with a mutated constructor then, if the
mutation has made the constructor ineffective, it results in an unexpected behavior and
an entire test class cannot be initialized. In such a situation, the test suite is reported as
failing, and consequently, all test cases belonging to the test suite are reported similarly.

Another example is the fact a test may hang. Indeed, let us imagine the mutation
changes a loop condition which results in an infinite looping. To circumvent this problem,
we add a timeout for each test. This way, we can determine if some hangs or not. It is
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equally important to use a reasonable timeout value for the project to avoid considering
a test as hanging when it is not.

3.5 Conclusion

In this chapter, we proposed an evaluation framework for change impact analysis. This
framework is based on actual impacts obtained from test suite execution and based on
synthetic faults produced with mutation testing techniques. This novel technique is fully
automated and enables us to compute standard precision and recall measures.

Specifically, we have executed our protocol on 10 mainstream open-source Java soft-
ware packages. The analysis of the predicted impact of 16,922 mutants shows that one
of the call graphs provides a good trade-off between precision and recall. Moreover, this
call graph offers good execution times; this let us use it in real execution scenarios such
as real-time tools for assisting a developer while he is editing his source code; it may also
be used as a tool for regression test selection.
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Causal Graph for Change Impact
Analysis

‘ ‘Doubt is an uncomfortable condition, but certainty is a ridiculous one.”

— Voltaire

This chapter at a glance...

In this chapter, the following contributions are presented:

• the definition of the causal graph, a weighted call graphs in the context of
change impact analysis;

• an approach for learning the likelihood of impact propagation in software,
where mutation testing data is used to learn the call graph weights;

• an experimentation made on 9 popular Java open-source programs, totaling
450,000+ lines of code. The experiment shows that our approach recommends
impacted method callers accurately.

The following publications are related to this chapter:

[1] Vincenzo Musco, Antonin Carette, Martin Monperrus, and Philippe Preux. A
Learning Algorithm for Change Impact Prediction. In Proceedings of the 5th
International Workshop on Realizing Artificial Intelligence Synergies in Software
Engineering co-located with ICSE, RAISE ’16, pages 8–14, 2016.

[2] Vincenzo Musco, Martin Monperrus, and Philippe Preux. Strogoff: A Recom-
mendation System for Finding Sensitive Method Callers with Weighted Call
Graphs.
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In Chapter 3, we presented a framework to assess the performance of a change impact
analysis. In this chapter, we propose to define the causal graph, a new type of graph
obtained using a learning perspective on top of class hierarchy analysis call graphs. The
causal graph intends to better explain the cause-effect relationship between code elements
and failing tests. The causal graph is then used to better filter the returned elements by
an IDE.

An Integrated Development Environment (IDE) can be considered today as the ex-
oskeleton of professional developers. It enables developers to write code faster, of better
quality, with more ease. A typical IDE contains a number of sophisticated features: refac-
toring, navigation, binding to collaborative development systems such as issue trackers,
etc. Research has proposed over time a number of improvements for IDEs, such as break-
through user-interfaces [29]. Among these proposals, some are recommendation systems.
The key intuition is that when a developer manipulates a set of items (either code el-
ements, issues or others), there must be an order and/or filtering that is better than a
random or lexicographical one.

One of such recommendation systems is the “FindCallers” feature proposed by an
IDE to the developer. Finding callers, a.k.a. “Method Reference Finder”, is key for two
development tasks in particular: understanding how a method is used and the possible
impacts of a change. In this chapter, we propose to take advantage of the change impact
analysis potential of call graphs to filter “FindCallers” elements proposed by an IDE to
the developer.

We propose to learn how the impact has probably propagated according to a set of
changes and their actual impacts. This approach is entitled Strogoff and works as follow.
A call graph is built and its edges are decorated with weights ranging from 0 to 1 and
representing the likelihood of being subject to error propagation. These weight are learned
using the results of mutation testing in an unconventional way. We use a shortest path
algorithm to determine the shortest path between a change and a test because the edges
belonging to this path are more likely to propagate the impact. The weights are updated
using two different approaches: a simpler one which consists in directly setting the highest
weight, and a second one which gradually increases it each time the edge is member of a
shortest path. Finally, the method call sites are filtered according to the learned weights,
i.e., only keeps the sensitive call sites (defined in Section 2.1.3.5).

The performance of Strogoff to filter the “FindCallers” elements is assessed using the
evaluation framework (as well as the dataset) presented in Chapter 3. We consider 9 Java
open-source application totaling 450,545 lines of code. The corresponding call graphs
contain 46,244 nodes and 114,390 edges (call sites). We build a set of 16,682 changes
and their actual impact through code mutations. We learn the call graph weights based
on these changes with two different algorithms. Then, we simulate scenarios of searching
for call sites pointing to a method under consideration and find that our approach can
predict the sensitive methods with a precision of 65%, a recall of 76%, corresponding to
a F -score of 58%.

This chapter is structured as follows. In Section 4.1, we present an overview of our
approach. In Section 4.2 and 4.3, we present respectively the learning phase and the
prediction phase: the two main phases composing the whole approach. In Section 4.4, we
pose our research question. In Section 4.5, we present our experimental evaluation and
our results which allows us to answer to our research questions. In Section 4.6, we discuss
the threat to validity of work presented in this chapter. In Section 4.7, we conclude this
chapter.
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4.1 Approach Overview

A call graph contains information about the methods and the way they call each other.
Our intuition is that call graphs are an approximation of causality. Causality is defined
by the Oxford dictionary as “the relationship between causes and effects”. Indeed, if A

calls B, a bug in B might result in a buggy output for A. However, this assumption does
not always hold in practice because the ideal perfect causal graph is not known. A call
graph is indeed only an approximation of cause-effect chains.

In this chapter, we define the causal graph, a graph obtained from a class hierarchy
analysis call graph (cf. Section 3.2) which tries to better approximate the causality. In
this chapter, a causal graph is a call graph with class hierarchy analysis made stochastic
by adding weights on the call graph edges. These weights range from 0 to 1 where 0 means
that the edge never propagates the impact, while 1 means that the edge always propagates
it. A value in between means the impact is more or less likely to be propagated, so that
sometimes the impact is propagated, sometimes it is not. The initial weights are set to 0,
meaning that we start by assuming that no impact is propagated at all. In this approach,
we note that nodes are never causal per se, only edges can be deemed as causal.

Mutation testing is used for gathering a learning corpus from which we learn real
impacts of a specific change (i.e., the mutation). The causal graph weights are learned
from past executions, used to better capture the causality between application and test
methods, i.e., the causes (faults in application methods) leading to a specific effect (the
failing test).

We proposes Strogoff: a new recommendation system for finding more relevant call
sites in the FindCallers feature presented in Section 2.2.3. Our idea is that some method
calls are more relevant to the others and should be recommended first. The relevance
criterion is the likelihood to propagate errors. Strogoff, learns the relevance and recom-
mends call sites accordingly. Strogoff’s recommended call sites are called “sensitive call
sites”.

In this chapter, a causal graph edge with a high weight close to one is called a sensitive
method call site, because it is likely to propagate an error. In an IDE, the suggested
method callers correspond to the origin of call graph edges pointing a given method.
Thus, we propose that the IDE emphasizes sensitive method callers based on call graph
edge weights. As an example, in Figure 2.10, it will result in the introduction of a filter
so that the developer sees first the methods most likely to be impacted by a change in
MutableObjectId.set.

Our approach is composed of two distinct phases. The learning phase consists of
learning the weights based on a set M of changes and their actual impacts. In the context
of call graphs, a change is modeled as a modified call graph node and an impact is a
set of nodes whose behavior is impacted by the change. The prediction phase is when a
developer is about to change a method (i.e., a node of the call graph), Strogoff computes
the set of sensitive method call sites. The prediction represents all methods that may be
broken by the change to come.

Figure 4.1 illustrates the causal graph extracted from the call graph presented in
Figure 3.1 using the Strogoff’s technique. The causal graph obtained is the previous
call graph decorated with weights. Assume that a change has occurred at the method
denoted by a blue cross. The edges represent method call sites and the thickness of the
edges represents the weight of the edge after learning. A thicker edge means a weight
close to 1 and a thinner means a weight close to 0.2. The dashed edges are these which
have a weight smaller than 0.2 and which are not considered for propagation. The black



58 Chapter 4. Causal Graph for Change Impact Analysis

Figure 4.1: An illustration of Strogoff’s technique based on weighted call graphs. Edges
with a low weight (< 0.2) are considered as non-propagating the impact of the change.

circles, green squares and red diamonds represent nodes predicted as impacted by our
approach. The prediction is of high accuracy because the weights of the two edges (a)
and (b) is low after learning. Consequently, the impact of the change is stopped and does
not ripple to the left-hand side of the graph. On the contrary, a basic impact prediction
based on a transitive closure on the call graph would predict far too many tests (all the
true negatives would become false positives).

4.2 Learning Phase

Strogoff’s learning is made of two components, obtaining learning data and computing
the call graph weights.

4.2.1 Input Learning Data

Strogoff takes as input the actual impact sets for a list M of changed methods m using
an impact oracle I(m). In this chapter, I is based on mutation testing similarly as it
is in Chapter 3: the changed methods m and their impact can here be seen as a set of
“learning examples”. The core algorithm of Strogoff estimates the edge weights based on
these examples. For instance, in the experiments presented in this chapter, we estimate
weights based on 16,682 (mutant, impact) pairs.

4.2.2 Computing Weights

The core call graph weight learning algorithm is shown in Algorithm 4.1.
For all nodes m that must be changed in the program (line 3) and each actually

impacted node t determined using I (line 4), we update the weight of edges belonging
to the shortest path (cf. Section 2.1.3) from m to t following an update algorithm (line
5). The rationale of using the shortest paths is twofold. First, it is required so that the
approach scales to large software (up to thousands of nodes and edges as shown later in
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Algorithm 4.1: The call graph weight learning algorithm using call graph.
update weight is a sub-algorithm which updates the weights.

Input: G the call graph, M the list of methods m that must be changed, I the
impact oracle.

Output: a weighted graph
1 begin
2 L← G with weights = 0 for all edges
3 for each m ∈M do
4 for each t ∈ I(m) do
5 update weight(m, t, L)

6 return L;

the evaluation). Second, it reflects the idea that at run-time, shortest paths are more
likely to be executed and propagate the error than longer ones. Moreover, it may be
theoretically possible to consider all the paths, nevertheless it is impossible in practice.

In this chapter, we propose two algorithms for updating the weights, Binary and
Dichotomic that are presented next.

4.2.2.1 Binary Update Algorithm

This algorithm assumes a binary impact propagation: given a mutant and a test, either
the impact is always propagated when the test is run, or it is never impacted. Thus, the
model consists in assigning 0 or 1 to the edge weights as follows. If at least one impact
has been observed between a graph node and the changed node, then all edges belonging
to the shortest path going from the former to the latter are labeled as 1; otherwise, these
edges are labeled with a 0. The intuition is that the shortest path is more likely to have
propagated the impact, or at least, that the actual impact path has followed edges of the
shortest path. The good effectiveness presented in our experimental section validates this
intuition.

Thus, this approach considers that if an edge has once propagated an impact, it will
always do so. Algorithm 4.2 formalizes this idea. This algorithm is deterministic. Thus,
running the same algorithm twice on the same data produces exactly the same result.

Algorithm 4.2: Algorithm Binary for updating the edge weights in paths between
a node and the changed point.

Input: m the node which has changed, t the considered impacted node and L the
weighted call graph

Output: the weights of L are updated
1 begin
2 for each edge in the shortest path from m to t in L do
3 wedge ← 1

4.2.2.2 Dichotomic Update Algorithm

We now explore a more realistic model where impact propagation is not straightforward
as it may be conditioned by the current execution state. This means that some edges
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propagate impacts but only sometimes, in particular cases (e.g., the propagation occurs
if coming from the if-branch of a condition and not if coming from the else branch). This
is represented by a weight that is neither 0 nor 1 but in between.

The Dichotomic algorithm updates the weights according to an estimation of the
probability that a node would be broken by a change. This estimation is based on training
data using Equation (4.1)

pt,m = αt

βm

; (4.1)

where αt is the number of times the node t is impacted over all changes occurring on
the same method m and βm is the number of times the method has been changed.

The idea of Algorithm Dichotomic (Algorithm 4.3) is to slowly converge to pt,m, exam-
ple after example. For each training example, the weight w of each edge which belongs to
a path between a changed node m and an impacted node t is computed in a dichotomic
way: the new weight is the mean value between the current weight and the empirical
probability.

Algorithm 4.3: Algorithm Dichotomic for updating the edge weights between a
node and the changed point.

Input: m the node which has changed, t the considered impacted node, pt,m the
empirical probability for (m, t) and L the weighted call graph

Output: the weights of L are updated
1 begin
2 for each edge in the shortest path from m to t in L do
3 wedge ← (wedge + pt,m)/2

4.3 Prediction Phase

Algorithm 4.4: The impact prediction algorithm that uses the learned weights of
the call graph

Input: L the weighted call graph, n the changed node, th the threshold
Output: the set of nodes which are predicted as impacted

1 begin
2 CIS ← {}
3 for each node i connected to n in L do
4 if i is not visited then
5 mark node i as visited
6 if wi >= th then
7 CIS ← CIS ∪ {i}
8 CIS ← CIS ∪ visit(i)

9 return CIS

At prediction time, Strogoff is based on Algorithm 4.4. This algorithm takes as input
the node n corresponding to a method in the code for which a developer wants to know
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the sensitive calls sites. It also takes as input a value th lying in the range [0, 1], that will
act as threshold on call graph edges. It returns a candidate impacted set CIS composed
of all nodes predicted as impacted (i.e., nodes corresponding to sensitive methods). To do
so, starting at the node being changed, the graph edges are followed to determine which
nodes can be reached. The weights are used to prune some edges which are unlikely to
propagate the change, according to the threshold value th (line 6). If the weight is lower
than the threshold value, the edge is considered not to propagate the impact.

4.4 Research Questions

We are especially interested in answering the following research questions.

Research Question 4.1 Does Strogoff’s algorithm improve the accuracy of finding sen-
sitive method call sites? In this question, we want to determine whether our prediction
algorithm based on learning can improve the prediction scores compared to a standard
IDE approach such as the one described in 4.5.1.2.

Research Question 4.2 For the Dichotomic approach, what are the best threshold values
to be used on call graph weights?

The Dichotomic Algorithm requires a threshold value to decide whether a weighted
call graph edge propagates an impact or not. This research question determines the
importance of this value for the Dichotomic and enables us to set the best threshold value
for each project.

Research Question 4.3 What is the execution time of Strogoff?
In this question, we focus on the time required to run each part of Strogoff’s pipeline.

Answering this question helps us to assess whether Strogoff can be used for real in an
IDE.

4.5 Experimental Evaluation

We explain how we evaluate our approach, the dataset and the configuration parameters
we use in our experimental evaluation.

4.5.1 Evaluation Protocol

Our evaluation framework presented in Chapter 3 is used to evaluate the ability of causal
graph to predict sensitive call-sites from a specific changed point.

The evaluation follows several steps:

1. similarly as in Section 3.1, we create mutants for a software application and compute
their impacts, they simulate changes;

2. similarly as in Section 3.2, we extract the corresponding call graphs with class
hierarchy analysis;

3. we split the dataset of mutants in a training set and a testing set;

4. we run our learning algorithm based on the mutants of the training set. This results
in a weighted call graph.
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Figure 4.2: Illustration of the k-fold cross validation process.

5. we use the learned weights to compute the sensitive callers in the testing set. That
is, the mutated method of the testing set simulate the method for which a developer
asks for sensitive callers.

For each mutant of the testing set:

• we predict the impact set for each mutant with our technique, using the weights
learned in the previous step;

• similarly as in Section 3.4.1, we compute performance metrics by comparing the
predicted impact set and the actual impact set. Since the impact is only computed
on test nodes, we remove application nodes from the impacted nodes in the predicted
set of sensitive callers.

This measures the effectiveness of our approach.

In addition, we use 10-fold cross-validation [81]: for each program, we partition the
mutants into 10 subsets of equal size. We take 9 subsets to train the model (with Algo-
rithm 4.1) and the one remaining is used to assess the model (with Algorithm 4.4). This
process is run 10 times. We compute the mean value of the evaluation metrics considered
over these 10 runs. Figure 4.2 illustrates the k-fold process.

For Dichotomic, we use a project-dependent threshold value for prediction. Re-
search Question 4.2 focuses on the determination of the best threshold per project. This
value is the best one according to a systematic grid search of all thresholds ranging from
0 to 1 with an increment of 0.1.

4.5.1.1 Evaluation and Dataset

The evaluation of the performances of our impact prediction techniques is similar to one
presented in Section 3.4.1.1. Our key goal is to improve the F -score of impact prediction
as it takes into consideration both precision and recall.

Dataset considered in this chapter is made of 9 out of 10 projects from ones presented
in Section 3.4.2. We removed Spojo from the dataset as it is too small to efficiently
learn anything with it. Thus, we consider 16,682 mutants from the 16,922 considered in
Chapter 3. The key descriptive statistics about these projects can be found on Table 3.2
and 3.3. Mutation operators are the same as ones considered in Section 3.4.3.
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4.5.1.2 Comparison

We compare Strogoff against the current IDE technique to find callers, the one that we
generically call FindCallers in this thesis. However, it is impossible to automatically run
the actual code that does this, in isolation of the rest of the IDE, incl. the graphical
interface thread. For this reason, we implement FindCallers as follows. FindCallers
(referred to IDE in the following tables) returns the callers according to the class hierarchy
analysis call graph we use. In our experiment, beyond computing the direct caller, we
also consider the transitive closure of all sensitive method callers potentially impacted by
the change. This reimplementation has another advantage, it means that both Strogoff
and FindCallers are based on the same graph, which removes an uncontrolled variable.

4.5.2 Empirical Results

In this section, we answer our research questions.

Research Question 4.1 Does Strogoff’s algorithm improve the accuracy of finding sen-
sitive method call sites?

Table 4.1 gives the value of the evaluation metrics presented in Section 4.5.1.1. The
first and second column are respectively the name of the package and the mutation op-
erator. Then we have three multi-columns, one for each metric (precision, recall and
F -score). Each multi-column is made of three columns which are the value obtained us-
ing a standard IDE approach (IDE), the value obtained with the Binary algorithm and
the value obtained with the Dichotomic algorithm. These values are the average over
ten-fold cross validation. For each multi-column, the best value is shown in bold face.
We consider in this experiment the same number of mutants as the ones in Chapter 3,
presented in Table 3.5, column |K|.

First, if we compare the performance of the IDE approach (IDE) and the two learning
algorithms, we observe that in almost all cases, both the precision and the F -score are im-
proved using our learning recommendation algorithms. For precision, in all cases excepted
Jgit with ABS operator, Dichotomic reports better values. For F -score, Dichotomic re-
ports the best values over IDE except for Jgit with ABS operator and Jodatime AOR
which reports same F -scores. For the recall, in 23 cases out of 45 our learning algorithms
give better recall scores and in 3 cases out of 45 they are equivalent.

Figure 4.3 shows a scatter plot of the average F -scores obtained for all projects and
mutation operators for FindCallers IDE (x-axis) and Dichotomic (y-axis). The line repre-
sents y = x. Since all points are in the upper-left part, above y = x, this figure graphically
highlights that Dichotomic much improves the prediction. In addition, we also graphically
note that some operators are really far from y = x, which means a strong improvement.

For the precision, the best improvement using Binary is for the Shindig project with
the ABS operator where the precision raises from 0.57 for IDE to 0.79 (+0.22). The
best improvement using Dichotomic is for Io with LCR operator where values raise from
0.39 for IDE to 0.86 (+0.47) for Dichotomic. Overall, Binary and Dichotomic algorithms
provide respectively an average precision improvement of 0.07 and 0.21 when averaged
over all projects and all mutation operators.

For the recall, the values are quite stable, the best improvement for Binary and Di-
chotomic algorithms are both with Collections with ABS operator. For Binary, the recall
is improved from 0.46 to 0.71 (+0.025). For Dichotomic, the recall is improved from 0.46
to 0.75 (+0.29). Globally, there is no large improvement on the recall compared to the
IDE standard approach. there is even a small decrease of −0.11 in recall for Dichotomic.
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Table 4.1: Comparative effectiveness of Strogoff and the FindCallers IDE technique for
predicting the sensitive call sites (recursively). The bold faced values indicate the best
results for a single metric (up to rounding precision). The higher, the better.

Precision Recall F -score

Package Op. IDE Bin Dic IDE Bin Dic IDE Bin Dic

Codec ABS 0.24 0.34 0.44 0.88 0.89 0.84 0.30 0.41 0.43
AOR 0.24 0.40 0.47 0.90 0.92 0.84 0.30 0.48 0.54
ROR 0.28 0.37 0.40 0.89 0.90 0.84 0.33 0.44 0.46
LCR 0.17 0.27 0.40 0.91 0.92 0.74 0.24 0.35 0.43
UOI 0.28 0.40 0.47 0.89 0.91 0.87 0.33 0.47 0.53

All 0.24 0.36 0.44 0.89 0.91 0.83 0.30 0.43 0.48

Coll. ABS 0.73 0.80 0.90 0.46 0.71 0.75 0.40 0.70 0.75
AOR 0.76 0.83 0.92 0.50 0.70 0.76 0.46 0.69 0.76
ROR 0.61 0.67 0.85 0.45 0.66 0.73 0.34 0.59 0.70
LCR 0.69 0.77 0.86 0.60 0.81 0.80 0.50 0.72 0.77
UOI 0.74 0.81 0.89 0.53 0.75 0.80 0.48 0.71 0.77

All 0.70 0.78 0.88 0.51 0.72 0.76 0.43 0.68 0.75

Gson ABS 0.11 0.19 0.46 1.00 0.96 0.49 0.16 0.23 0.26
AOR 0.09 0.14 0.48 1.00 0.99 0.55 0.13 0.21 0.28
ROR 0.14 0.15 0.31 0.98 0.98 0.54 0.18 0.19 0.23
LCR 0.18 0.21 0.41 0.95 0.94 0.47 0.20 0.23 0.30
UOI 0.17 0.19 0.33 0.98 0.97 0.70 0.21 0.23 0.29

All 0.14 0.17 0.40 0.98 0.97 0.55 0.18 0.22 0.27

Io ABS 0.57 0.62 0.80 0.81 0.89 0.68 0.51 0.65 0.66
AOR 0.48 0.56 0.93 0.91 0.96 0.82 0.49 0.62 0.83
ROR 0.54 0.57 0.73 0.88 0.91 0.74 0.55 0.62 0.67
LCR 0.39 0.44 0.86 0.90 0.94 0.58 0.41 0.52 0.61
UOI 0.50 0.54 0.88 0.90 0.95 0.67 0.52 0.61 0.69

All 0.50 0.55 0.84 0.88 0.93 0.70 0.50 0.60 0.69

Jgit ABS 0.23 0.21 0.21 0.87 0.83 0.80 0.22 0.22 0.22
AOR 0.23 0.26 0.34 0.90 0.89 0.83 0.24 0.29 0.34
ROR 0.25 0.30 0.36 0.89 0.86 0.77 0.25 0.32 0.34
LCR 0.19 0.23 0.34 0.89 0.85 0.65 0.20 0.25 0.28
UOI 0.22 0.29 0.37 0.91 0.91 0.80 0.24 0.33 0.34

All 0.22 0.26 0.33 0.89 0.87 0.77 0.23 0.28 0.30

Joda. ABS 0.38 0.44 0.48 0.97 0.85 0.81 0.42 0.44 0.46
AOR 0.28 0.28 0.49 0.97 0.95 0.64 0.33 0.32 0.33
ROR 0.41 0.42 0.49 0.94 0.87 0.79 0.41 0.42 0.43
LCR 0.29 0.30 0.53 0.95 0.92 0.70 0.33 0.34 0.39
UOI 0.31 0.32 0.41 0.97 0.95 0.85 0.36 0.36 0.38

All 0.33 0.35 0.48 0.96 0.91 0.76 0.37 0.37 0.40

Lang ABS 0.64 0.73 0.83 0.98 0.87 0.83 0.70 0.73 0.78
AOR 0.61 0.78 0.82 0.99 0.95 0.92 0.68 0.81 0.83
ROR 0.64 0.67 0.73 0.98 0.88 0.84 0.69 0.68 0.70
LCR 0.48 0.54 0.68 0.97 0.86 0.80 0.56 0.57 0.66
UOI 0.64 0.78 0.82 0.98 0.94 0.93 0.70 0.81 0.83

All 0.60 0.70 0.78 0.98 0.90 0.86 0.66 0.72 0.76

Shindig ABS 0.57 0.79 0.90 0.93 0.96 0.83 0.62 0.82 0.81
AOR 0.61 0.78 0.91 0.93 0.96 0.91 0.64 0.82 0.89
ROR 0.55 0.60 0.78 0.80 0.88 0.71 0.50 0.63 0.64
LCR 0.49 0.52 0.84 0.77 0.88 0.57 0.43 0.57 0.60
UOI 0.63 0.70 0.93 0.87 0.93 0.74 0.61 0.74 0.77

All 0.57 0.68 0.87 0.86 0.92 0.75 0.56 0.71 0.74

Sonar. ABS 0.76 0.78 0.91 0.93 0.89 0.83 0.78 0.79 0.81
AOR 0.57 0.75 0.84 0.93 0.96 0.95 0.59 0.79 0.85
ROR 0.67 0.68 0.79 0.91 0.91 0.79 0.67 0.72 0.75
LCR 0.64 0.66 0.85 0.89 0.90 0.80 0.61 0.73 0.80
UOI 0.62 0.77 0.79 0.91 0.94 0.89 0.61 0.79 0.79

All 0.65 0.73 0.84 0.91 0.92 0.85 0.65 0.76 0.80

Total 0.44 0.51 0.65 0.87 0.89 0.76 0.43 0.53 0.58



4.5. Experimental Evaluation 65

Figure 4.3: The performance improvement of the Dichotomic algorithm impact prediction
over the FindCallers IDE technique. One point represents a mutation operator for a given
project and is located at coordinates (x = FIDE, y = FDichotomic).

For the F -score, the best improvement is obtained on the Collections project. For
Binary the best improvement is for ABS operator on which the F -score raises from 0.40
to 0.70 (+0.30). For Dichotomic, the best improvement is for ROR operator where the
values raise from 0.34 to 0.70 (+0.36). Globally, Binary and Dichotomic algorithms lead
respectively an average F -score improvement of 0.10 and 0.15.

If we compare the two approaches, we can see that the Dichotomic algorithm has
better precision values than the Binary for 44 cases out of 45. But, Dichotomic only has
better recall in 4 cases out of 45. F -scores are also better for the Dichotomic algorithm in
42 cases out of 45 than the Binary one (in 2 cases, they have the same score and in 1 case,
Binary reports better value). All these observations suggest that Dichotomic algorithm is
better than Binary.

To ensure that the performance difference between Dichotomic and Binary is signif-
icantly different, we run a Mann-Whitney-Wilcoxon statistical test on precisions, recalls
and F -scores. The null hypothesis (H0) is: “the metrics (either precision, or recall, or F -
score) obtained for the Binary and the Dichotomic algorithms are drawn from the same
distribution”. The obtained p-values for precision, recall and F -score is of 2.2 × 10−16.
For each metric, the conclusion is then that the null hypothesis is rejected, which means
that Dichotomic is better in a statistically valid sense.

Moreover, we compute the Cohen’s d effect size [39, 75] to determine the magnitude
between the measurements. It is computed by the difference between two sample means
over the pooled standard deviation [39]. The Cohen’s d effect size is of 0.37 for the
precision, 0.52 for the recall and 0.13 for the F -score. The reported Cohen’s d effect size
for the F -score is low which implies that both techniques are almost equivalent from a
practical point of view.
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Figure 4.4: The impact of the prediction threshold (x-axis) on the F -score (y-axis). Low
(< 0.1) and high (> 0.5) thresholds yield bad performances, the rest forms a plateau –
Binary is a dashed line and Dichotomic is a plain one.

To sum up, using weighted call graphs is effective for identifying sensitive call sites.
It is more effective than the default IDE approach that makes no difference between
call sites. Among the two weight-learning algorithms we propose in this chapter,
the best one is the Dichotomic approach, however only to a small extent.

Research Question 4.2 For the Dichotomic approach, what are the best threshold values
to be used on call graph weights?

We now focus on Dichotomic because it is the best algorithm for learning the weights,
as seen in the previous RQ. We want to study the impact of the threshold used for sen-
sitivity. Figure 4.4 shows the F -scores obtained for each project using different threshold
values. Recall that a threshold t is used at prediction time: if the weight of an edge is
higher than t, then we consider that the impact propagates and the caller is sensitive.

In general, we note an inverse U shape for most curves. This means that a very low
threshold yields a bad performance, as well as a high threshold. This can be explained as
follows. A low threshold means that most edges are considered as propagating the impact.
In this case, the precision drops too much (indeed, the F -score for a threshold of zero is
exactly the one of the IDE case). On the other hand, a high threshold means that very
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Figure 4.5: Histogram of the weights learned using the Binary (light gray) and the Di-
chotomic (dark gray) algorithms aggregated over all projects and all mutation operators.
Each bin represents the amount of weights whose value lies in the range [x, x+0.1[, where
x is the value indicated under the bin. Dichotomic and Binary have the same number of
disabled edges (weight equals to zero), but Dichotomic is much finer for the other sensitive
edges.

few edges are considered as propagating. Since the Dichotomic convergence slowly raises
from 0, the bad performance of high threshold values is due to the fact the threshold is
too high with respect to the convergence to the empirical probability used in Dichotomic.

For all projects except Shindig, the best threshold is lower or equal to 0.5. For 5
projects out of 9 (Collections, Io, Jgit, Jodatime and Sonarqube) the best threshold is
around 0.5. For Codec and Lang, the best threshold is around 0.3 and for Gson, the best
one is 0.4. Regarding Shindig, the best threshold is around 0.7.

Figure 4.5 shows an histogram of the weights obtained with both algorithms over
the 9 software projects. As expected, for Binary, we observe that all values are either
0 or 1. For Dichotomic, we observe that most edges have a weight between 0 and 0.1.
Then, the distribution is rather flat with learned weights spread over the remaining values.
This figure confirms that learning indeed happens. Edges that have never been visited
are still at zero. Edges that are involved only in few propagation have a small weight.
Consequently, a threshold around 0.2 indeed drops all edges with a small weight, these
that are unlikely to propagate an impact.

To predict that an edge propagates an impact or not, very low and very high
thresholds are both bad according to our experiment. A good threshold value lies
between 0.3 and 0.5 depending on the project. This is the range that would be used
in development environments.

Research Question 4.3 What is the execution time of Strogoff?

We now study the execution performance of Strogoff. Table 4.2 reports all execution
times involved in Strogoff. The first column is the package name. The second column
is the time required to generate the code of one mutant. The third column is the time
required to run the full test suite of the program once. This time is the time required for
running the tests without mutation. Indeed, in some scenarios this time can be larger as
some tests hang (e.g., due to an infinite loop). The fourth column is the time required to
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Table 4.2: Execution time of Strogoff. The values are averaged over all mutation operators.

Project Mutate Test Graph Learn Predict

Codec 48.0ms 32.2s 2.7s 0.291s 0.16ms
Collections 175.8ms 38.9s 7.8s 0.368s 0.04ms
Gson 136.1ms 13.7s 3.7s 4.414s 1.41ms
Io 39.1ms 90.1s 3.4s 0.108s 0.05ms
Jgit 154.3ms 195.5s 10.8s 114.026s 4.11ms
Jodatime 135.1ms 31.1s 8.7s 73.669s 10.89ms
Lang 136.1ms 40.0s 7.2s 0.478s 0.06ms
Shindig 267.6ms 14.1s 2.6s 0.094s 0.03ms
Sonarqube 167.7ms 387.3s 4.4s 0.181s 0.02ms

generate the call graph from source code. The fifth column is the time required to learn
over mutants and the last column is the time required to perform one prediction using
the previously learned information. The learning and prediction times are the mean value
over all executions (over all mutation operators).

As an example, if we consider the Apache Commons Codec package, it requires 48ms
to generate one mutant and 32.2 seconds to compute its impacts (a total of 32.248s). This
means that for generating 100 mutants, one needs around one hour (32.248 × 100). For
the same project, we obtain a call graph is 2.7 seconds and we can learn over with the
mutants in 291ms. Finally, an impact can estimated in less than a millisecond (0.16ms).

As we can observe, the slowest part of the work is to generate the mutants and running
the tests on them. If generating one mutant always takes less than one second on average,
running the tests on the mutants takes a minimum of 13.7 seconds for Gson and up to
6 minutes for Sonarqube. As one requires a large number of mutants to correctly learn
impact information, this process is quite heavy and it is the dominating time factor of
Strogoff. However, this process does not take place in the IDE: it can be performed during
the night on continuous integration or regression servers.

The time required for generating the graph takes from 2.6 seconds for Shindig to 10.8
seconds for Jgit. This is short enough so that the call graph can be regenerated for each
code change. Regarding the learning time, we observe that it generally takes less than one
second except for Jodatime and Jgit which take less than 2 minutes. This is acceptable.

The prediction time is the most important one as it is the time required for a de-
veloper to obtain its suspicious methods in the IDE directly. We observe that this time
is generally small: less than one millisecond except for Jodatime, JGit and Gson which
require respectively 10.89ms, 4.11ms and 1.41ms. In all cases the required time is less
than one second which is acceptable in a user interface. This shows that developers can
indeed obtain more information about sensitive call sites while coding.

To sum up, Strogoff can be used in an IDE. However, mutation testing must be
done offline. The rest of the approach – call graph extraction, weights learning and
sensitive caller prediction – is fast enough to be performed online, in the IDE.



4.6. Threats to Validity 69

4.6 Threats to Validity

In this section, we present now the major threats to validity of the works presented in
this chapter.

4.6.1 Internal Validity

Our results are of computational nature. A major bug in our software can invalidate our
findings. We have published all our code on Github so as to facilitate reproduction and
falsification of our results, if necessary.

4.6.2 Construct Validity

In our evaluation, we use synthetic changes for exploring the performance of our technique.
Our motivation for using synthetic changes is to have a large amount of data, which is
necessary for learning. Another option would be to use actual usages of the FindCallers
features in IDEs. However, these are difficult to obtain, unless one ships instrumented
IDEs to real developers.

In this chapter, we use 600 mutants per mutation operator and per project. After
removing equivalent mutants (i.e., mutants which do not break any test) we have an
average number of 371 mutants per project and per mutation operator. Using ten-fold
cross validation, this results in testing sets of 37 items on average. Since the aggregated
performance measures (precision, recall and F -score) are rather stable over folds, we have
confidence that this is enough to back up our conclusions. However future work with more
mutants is required.

4.6.3 External Validity

The impact prediction depends very much on the structure of the call graphs [113]. For
instance, the presence of large utility methods, with many incoming and outgoing edges
has a direct impact on the prediction performance. Our results may only be valid for Java
software, or even worse only valid for the projects under study. Future work in this field
will strengthen the external validity of our findings.

4.7 Conclusion

In this chapter, we have presented Strogoff, an approach used to reason about the likeli-
hood of impact propagation based on a weighted call graph also named the causal graph.
This weighted call graph is used to predict sensitive call sites in a similar fashion as stan-
dard Integrated Development Environments (IDE) used by a large number of developers
today. The weights are learned based on mutation testing data. Our experiments based
on 16,682 killed mutants in 9 subject program totaling 46,244 call graph nodes, show
that our technique is more effective than using a call graph alone, as done in today’s
development environments.

Our experiments showed really good performances. The prediction, once the learning
phase is done, can be achieved in less than 15ms. However, the learning phase, based on
mutation testing, required more time to complete. In a concrete usage, the learning phase
may be done offline from time to time, offering the opportunity to developers working
on a same program to run as many predictions as they want with the learned data. The
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average improve of the F -Score is of 0.15, going from 0.43 with a simple call graph to 0.58
with the causal graph. Considered the simplicity of the learning logic, these results are
encouraging to further investigate the field, using more complex learning approaches and
proposing other types of recommendation systems.
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Causal Graph for Fault Localization

‘ ‘The best way to predict the future is to invent it.”

— Alan Kay

This chapter at a glance...

In this chapter, the following contributions are presented:

• a new fault localization algorithm, called Vautrin, that uses a graph-based
approximation of causality for fault localization;

• an empirical evaluation of Vautrin on 5,386 faults from the Steimann’s dataset,
showing that Vautrin outperforms the state of the art, both in terms of wasted
effort and perfect fault localization prediction.

The following publication is related to this chapter:

[1] Vincenzo Musco, Martin Monperrus, and Philippe Preux. Mutation-based graph
inference for fault localization. In Proceedings of the International Working
Conference on Source Code Analysis and Manipulation, October 2016.
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In Chapter 3 and 4 we used call graphs and mutation testing to perform change
impact analysis on Java programs. Moreover, in Chapter 4, we presented the causal
graph, a special type of call graph intended to better approximate the cause-effect between
software methods and tests. In this chapter, we use information learned in causal graphs
to perform fault localization.

Fault localization is the process of identifying the elements of software that are faulty,
i.e., elements that are responsible of a bug. A classic way of stating the fault localization
problem is that the bug is reproduced and asserted by a failing test case, and the goal
is to predict the function that contains the buggy code. In essence, the fault localization
process tries to capture causality relationships between code elements [15, 143].

Indeed, early works in fault localization were based on program slices [4], which are
refined versions of the most obvious causal relationship: the bug must lie somewhere in the
code that has been executed. Spectrum-based fault localization is also causal to a certain
extent, but with a really strong approximation: the causal relations are only captured
by the fact that an element is covered by passing or failing test cases. That is, fault
localization is only an approximation of the true cause-effect chain of error propagation
that happens at run-time. To our knowledge, only Baah et al. [15] and Shu et al. [143]
have set notable milestones using causal inference for better approximating causal effects
in fault localization.

We propose Vautrin, a fault localization approach which approximates causality by
analyzing what happens between a failing test and a method using causal graphs as
defined in Section 4.1. Similarly as Strogoff, Vautrin is based on the assumption that
mutants and their execution profiles do contain valuable information that can be used
to approximate the causality. Based on information contained in the causal graph and a
set of failing tests, Vautrin determines potential graph-suspicious elements. As Vautrin
does not allow to order elements but just filter out, when multiple methods are graph-
suspicious, they are ranked using standard spectrum-based suspiciousness scores. In this
chapter, we considered the five following: Tarantula, Ochiai, Zoltar, Naish and Steimann.

To evaluate our algorithm, we consider the fault localization benchmark from Steimann
et al. [145] published at ISSTA’13 composed of ten Java programs and 6 different mutation
operators. The performance assessment is made using the “wasted effort” metric, as well
as the less-used one: the “perfect prediction” which reports the number of cases the fault
localization algorithm reports directly the real fault.

We show that our method-level fault localization algorithm outperforms the most
recent algorithms, including Ochiai [1] and Naish [116]. The improvement ranges from a
minimum of 3% to 55% less methods to consider after fault localization. Using our new
technique, over the whole Steimann’s dataset, the number of perfect predictions is 2,310
out of 5,836 which means a percentage of 40%, representing an improvement of 14% over
the related works.

The chapter is structured as follows. In Section 5.1, we present our technical contribu-
tion by presenting our general intuition before introducing Vautrin, our fault localization
algorithm. In Section 5.2, we introduce the research questions under investigation. In
Section 5.3, we present our empirical protocol, report our evaluation results and answer
to our research questions. In Section 5.4, we discuss the threats to validity of our work.
Finally, we conclude in Section 5.5.
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(a) Call graph (b) Causal graph

Figure 5.1: Example of (a) a call graph, and (b) the causal graph extracted from (a) using
our technique. The causal graph only contains edges for which causal evidence exists.

5.1 Technical Contribution

In this section, we present how we can use graphs for reasoning in terms of fault localization
(Section 5.1.1). Then, in Section 5.1.2, we present the algorithm used to practically
perform causal graph-based fault localization.

5.1.1 Intuition

Fault localization is a field of software engineering which aims at automatically identify-
ing a faulty element in a source code. A faulty element can be of any granularity (e.g.,
statement, method, class). Most fault localization techniques are spectrum-based tech-
niques where “spectrum” refers to the behavioral traces of the program when executing
the tests [60].

We introduce Vautrin, a novel fault localization approach working at the method
level and using another source of information: the causal graph presented in Section 4.1.
Vautrin is built on the assumption that if two tests fail, the bug might lie at the intersection
of the nodes reachable from both tests.

The figure 5.1 illustrates a call graph for a simple program composed of 6 methods
and 5 tests. Passing tests are nodes with a solid green border, and failing tests are nodes
with a dashed red border. The faulty method is marked with an exclamation point. We
compute the transitive closure (as presented in Section 3.2) of each failing test t1, t2

and t4, that is the set of nodes reachable from each failing test. This transitive closure
is represented with dashed lines on the figure. The intersection of the transitive closures
gives a set of three nodes m3, m4, and m6 (marked as plain black nodes), which contains
the faulty method. In this chapter, the methods in the intersection are called the graph-
suspicious methods (as opposed to spectrum-suspicious ones which are nodes determined
using a spectrum-based fault localization algorithm). Conversely, other application nodes
are marked with white nodes and are not suspicious.

In our example, method m2 calls method m5. Let us imagine that method m5 is a
logging method. In such a case, a logging function is unlikely to propagate a fault as it
only prints strings to a file. Thus, there is a difference between the causality flow and
the method call flow. Some method calls may not alter the state of the system and thus
should not be considered as causal. Moreover, a test may not call a method at run-time.
This occurs when the method invocation is optional, e.g., when located in a conditional
block. In such cases, the causality of these edges should also be reconsidered. Indeed,
the call graph contains all possible connections that are found by statically analyzing the
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source code1. Our idea is to only keep the call graph edges for which there exist pieces of
evidence that they are causal.

For this purpose, we use the causal graph and the learning approach presented in
Chapter 4. However, in this chapter, we consider a narrower vision of the causal graph
as we only consider the binary learning algorithm presented in Section 4.2.2.1. As a
consequence, our causal graph only have edges with weights of 0 or 1. To ease the reading
of this chapter, we consider that if the weight is equal to 0, the edge is removed from the
causal graph.

Figure 5.1b illustrates such a causal graph extracted from the call graph presented
in Figure 5.1a. This causal graph contains the edges of the call graph except the ones
between m2 and m5 and between m3 and m6 for which causal evidence does not exist.

To explain the extraction process, let us assume that a first mutant in method m3

results in 4 failing test cases: t1, t2, t3 and t4. The algorithm will result in 4 paths:
one from t1 to m3, a second from t2 to m3, a third from t3 to m3 and a last one from
t4 to m3. After processing this mutant, the causal graph contains 6 causal edges. Let us
now imagine that we generate a second mutant occurring on m4 resulting in two failing
tests: t4 and t5. The graph analysis of this second mutant results in two paths: the first
from t4 to m4 and the second from t5 to m4, this results in adding two more causal edges.
With these two mutations, we obtain the causal graph shown in Figure 5.1b.

After the extraction, we observe that the set of faulty nodes based on graph analysis,
contains one less node and still contains the faulty one.

Then, when a fault has to be localized, Vautrin computes the intersection of the
transitive closure of each failing test according to the causal graph. The nodes belonging
to this intersection form the set of “graph-suspicious nodes”. If the intersection is made
of several nodes, Vautrin uses an external spectrum-based fault localization algorithm to
rank them.

5.1.2 Algorithm

Once a causal graph has been obtained, a prediction algorithm is used at a production
stage, i.e., a developer wants to debug a new fault. This algorithm is executed at run-time
within a debugging session once a developer needs fault localization assistance. During
this phase, Vautrin takes as input a set of failing tests and produces an ordered list of
suspicious elements. The first element of this list is the most suspicious method, and the
last element is the less suspicious method.

The prediction algorithm takes as input a set Tf of failing tests and returns the list
of methods ranked according to their suspiciousness. It takes as input the causal graph,
first computes graph-suspiciousness, then computes spectrum suspiciousness and combines
both into a localization diagnosis. This is given in Algorithm 5.1.

On line 2, all nodes in L are put into the set I, which means that by default all nodes
are considered as graph-suspicious. Then, each failing test of the fault under debug is
explored (line 3). For each failing test, we compute the nodes belonging to the transitive
closure from the failing test (line 4). The resulting set of nodes is intersected with I
(line 5). In this manner, by progressively exploring all failing tests, nodes are removed
from the set I, because they are not considered as graph-suspicious.

Finally, a standard spectrum-based fault localization algorithm is used to determine
the score of each element in I (line 6). This fault localization algorithm can be any

1Some calls may be missed which are not statically observable, such as these resulting from the use
of reflection.
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Algorithm 5.1: Vautrin’s prediction algorithm using a causal graph L and failing
tests Tf to estimate the suspiciousness of a method.

Input: L a causal graph. Tf the list of failing tests.
Output: I: ranked suspicious nodes

1 begin
2 I ← all nodes of L

/* Compute graph suspiciousness */

3 for each t ∈ Tf do
4 F ← transitive closure from t in L
5 I ← I ∩ {F}
6 S ← compute spectrum suspiciousness
7 sort elements in I according to S
8 return I

spectrum-based fault localization algorithm. According to our investigations, the best
fault localization algorithm to use during prediction phase is the Steimann’s one [145]
(cf. Research Question 5.6); thus, this is the one that is used by default in Vautrin and
that we consider in the evaluation. On line 7, elements are ordered in descending order
according to the spectrum suspiciousness. The first element is the most suspicious. For
instance, considering again Figure 5.1(b), we can assume that a good spectrum-based
suspiciousness score ranks m3 as more suspicious than m4.

Note that I may be empty if the causal graph is disconnected or incorrect (that is,
the approximation of the causality of some edges is wrong). In such a scenario, Vautrin is
not able to predict anything based on graph suspiciousness. Thus, it uses a fallback mode
in which the scores are computed without using the causal graph, only using spectrum
suspiciousness. Consequently, Vautrin necessarily gives results that are at least as good
as the one returned by the underlying spectrum-based fault localization algorithm. In
other words, Vautrin never degrades the spectrum-based diagnostic if it is already good.

5.2 Research Questions

In this section, we present the research questions we raise and address in this paper.

Research Question 5.1 Does Vautrin localize faults with less wasted effort than the state
of the art? In this question, we focus on the improvement we achieve using Vautrin with
respect to a classic evaluation metric in fault localization: the wasted effort. Since Vautrin
works at the method level, the wasted effort is measured as the number of methods being
inspected before the faulty one is reached.

Research Question 5.2 Does Vautrin give better perfect predictions than the state of
the art? Beyond the wasted effort, a fault localization technique is said to make a perfect
prediction when the faulty element is ranked at the top of the list. In such cases, the
developer wastes no time. Up to our knowledge, this evaluation metric has not been
extensively studied so far.

Research Question 5.3 What is the execution time cost of fault localization with Vautrin?
In this question, we want to analyze the computational cost of preparing the graph for
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fault localization, and thus assess whether the approach is usable in practice by a devel-
oper.

Research Question 5.4 To what extent does Vautrin fall back to the traditional, graph-
less, fault localization? As explained in Section 5.1.2, there are cases in which the obtained
causal graph is disconnected. When this happens, it falls back into a mode where the
Steimann’s spectrum-based suspicious score is used alone. With this question, we study
whether our fault localization algorithm is able to improve many cases or whether it only
works for a small proportion of fault localization tasks.

Research Question 5.5 Do non-causal edges have an impact on fault localization effec-
tiveness? Vautrin builds the causal graph by only considering causal edges of the call
graph, this is the essence of the intuition presented in Section 5.1. We want to assess to
which extent the causal graph improves the fault localization effectiveness.

Research Question 5.6 What is the best spectrum metric to be used with Vautrin?
Vautrin computes graph-suspicious nodes according to the causal graph. When several
nodes are graph-suspicious, Vautrin requires a spectrum-based metric to extract the most
suspicious ones. In this Research Question, we determine which is the best spectrum-based
metric to use with Vautrin.

5.3 Experimental Evaluation

We now present the evaluation of Vautrin based on the presented research questions. This
includes the considered metrics and dataset. Then, we present our empirical results.

5.3.1 Evaluation Protocol

To evaluate Vautrin, we measure its ability to localize the source of a fault. To that
end, we use a dataset that has been proposed by Steimann et al. at ISSTA’13 [145]
and the empirical results published therein. This dataset is based on a set of 10 subject
programs. For each program, a set of mutants has been generated. For each mutant, a
set of tests is executed; some pass, others fail leading to a “fault”. Then, the question
is: which method is at the origins of the fault? As we use mutation testing to assess our
model, the performance measured of our fault localization method depends on the set of
mutants being derived from software and from the set of tests being executed. Measuring
this performance on a single set of mutants and test nodes is not meaningful as it is not
reflecting the performance of the fault localization method in general, that is for any set
of mutants and for any set of tests. We address this issue by performing a cross-validation
such as done in Section 4.5.1

5.3.1.1 Evaluation Metrics

In this section, we present the metrics we use to evaluate our approach. We use the wasted
effort to determine the accuracy of a fault localization algorithm. For each fault, the fault
localization algorithm assigns a suspiciousness score to each method. Let us denote m∗

the method at the origins of the fault. Then, for this fault, the wasted effort is simply
the number of methods that will be investigated before m∗; phrased in other terms, the
wasted effort is the number of methods for which the score is higher that the score of m∗.
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Equation (5.1) defines the wasted effort in a more formal way. M is the number of
methods being considered and S(m∗) is the score for method m∗.

W (m∗) =
M∑

i=1
1[S(i) > S(m∗)] +

∑M
i=1 1[S(i) = S(m∗)]

2 (5.1)

The wasted effort estimates the effort for a developer to find the origin of a fault if
he/she considers all suspicious methods ordered by their suspiciousness score. However, we
think this metric, even if valuable, is not representative of the ability of a fault localization
algorithm to assist fault localization. When a developer uses a tool to assist him/her to
localize a fault, he/she wants to save time: if he/she gets a list of suspicious methods,
he/she will probably have a look at the first one, but if this method is not the faulty one,
he/she will hardly have a look to the following method(s).

This is the reason why we use a second evaluation metric we call the perfect prediction.
This metric is the number of faults for which the wasted effort is zero. In other words,
this metric is the number of faults for which the fault localization algorithm proposes
the faulty method (m∗) at the top of the list of suspicious elements, at position #1. It
corresponds to the evaluation metric “is in top-k” (used for instance in [162]) with k = 1.
Formally, the perfect prediction P is given in Equation (5.2) with N being the number
of faults being considered. Another evaluation metric is MAP (mean average precision),
but it does not reflect as well as perfect prediction the fact that the developer builds trust
based on the top result.

P =
N∑

f=1
1[Wf = 0] (5.2)

5.3.1.2 Comparison

We conduct a comparative evaluation. We consider 5 fault localization algorithms of the
literature: Tarantula[73], Ochiai[1], Zoltar[54], Naish[116] and Steimann[145]. Tarantula
and Ochiai are largely used in the fault localization literature, e.g., [1, 116, 139]. Thus,
for historical reasons, we consider these fault localization algorithms, even if they are not
among these performing the best. Zoltar, Naish and Steimann are currently the most
accurate fault localization algorithm. Shu et al. [143] also do method-level fault local-
ization. We considered them for a quantitative comparison, however, their heavyweight
implementation is not available (we have asked for it).

In the remaining of this section, we present these fault localization algorithms. When
running the software tests T , we obtain: Tp the set of passing tests and Tf the set of
failing tests. If we consider an execution from the point of view of a specific code element
e, only a subset of T does actually call the code element e. Let E be the set of tests which
actually call e. Then, Ep is a subset of Tp made only of passing tests actually calling e.
Ef is a subset of Tf made only of failing tests actually calling e. N is the set of tests
which do not call e, that is N = T −E, and accordingly Np = Tp−Ep and Nf = Tf −Ef .

According to these sets, a fault localization algorithm is used to assign a suspiciousness
score to each code element e. The higher the score, the higher the chance the code element
is faulty. As this suspiciousness is determined using the spectrum-based fault localization,
we refer to it in this thesis as the spectrum suspiciousness. In this chapter, we consider
the following suspiciousness metrics. Tarantula was proposed by Jones et al. in 2002
[73]. To rank and determine the origins of a fault, Tarantula takes into consideration the
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proportion of executed passing and failing tests.

T =
|Ef |
|Tf |

|Ef |
|Tf |

+ |Ep|
|Tp|

(5.3)

Ochiai, a biology metric also used as fault localization algorithm by Abreu et al. [1],
focuses only on failing tests (Tf ) and executed tests (Ep and Ef ). Equation (5.4) defines
this fault localization algorithm.

O = |Ef |√
(|Ep|+ |Ef |)× |Tf |

(5.4)

Zoltar was proposed by Gonzalez in 2007 [54]. Equation (5.5) defines the Zoltar fault
localization algorithm. This fault localization algorithm considers the executed tests (Ep

and Ef ) and non-executed tests (Np and Nf ).

Z = |Ef |
|Ef |+ |Ep|+ |Nf |+ 10000×|Ep|+|Nf |

|Ef |

(5.5)

Naish et al. proposed a fault localization algorithm that is perfect under certain assump-
tions [116]. This fault localization algorithm is based on the non-executed tests (Np and
Nf ): if at least one non-executed test fails (Nf ), then the code element is not suspicious.
Otherwise, its suspiciousness score is simply the number of non-executed passing tests
(Np). Equation (5.6) defines this fault localization algorithm.

N =

−1, if |Nf | > 0
|Np|, otherwise

(5.6)

Steimann et al.’s metric T∗ was proposed in 2013 [145]. This fault localization algorithm
is strongly based on the Tarantula one as defined in Equation (5.7) (the T in the equation
refers to the Tarantula score). To avoid confusion, we refer to the T∗ fault localization
algorithm of Steimann as S.

S = T ∗max( |Ep|
|Tp|

,
|Ef |
|Tf |

) (5.7)

5.3.1.3 Dataset

We consider the dataset proposed by Steimann et al. in ISSTA ’13 [145]. Their dataset is
made of 10 subject programs (they call them“probands”) totaling 5386 one-point mutants.
The dataset is composed of execution information for the non-mutated subject program
(i.e., the reference) and a collection of mutated version of the subject program. It provides
following information for each mutated version of the program:

• the list of executed tests;

• their execution result (passing or failing);

• the list of methods contained in the program;

• the mutation operator if applicable;

• a list of methods executed by each test (the method-level spectrum).
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Table 5.1: Descriptive statistics of the fault dataset used in this experiment. # of nodes
and edges respectively correspond to the number of methods and the number of method
calls.

Graph

Program Version LOC #Classes #Tests #Mutants #Nodes #Edges

AC Codec 1.3 2,446 25 188 543 488 825
Daikon 4.6.4 147,153 1,109 157 352 48,689 63,250
Draw2d 3.4.2 22,895 317 89 570 12,298 16,091
Eventbus 1.4 3,572 53 91 577 2,377 2,930
Htmlparser 1.6 21,764 161 600 599 7,905 11,895
Jaxen 1.1.5 12,466 205 695 600 3,171 6,513
Jester 1.37b 1,621 46 64 411 467 645
Jexel 1.0.0b13 1,349 46 335 537 984 1,753
Jparsec 2.0 4,950 122 510 598 5,263 6,723
AC Lang 3.0 18,400 135 1,666 599 6,730 8,906

Total 236,616 2,219 4,395 5,386 88,372 119,531

We produce the subject program call graphs: the dataset totals 88,372 nodes and
119,531 edges. Table 5.1 shows the 10 subject programs under study. The first column is
the subject program name, the second is the considered version, the third is the number
of lines of code2, the fourth is the number of classes for the subject program, the #Tests
column contains the number of tests in the program, and the #Mutants gives the number
of available one-change mutants (i.e., a mutant where only one point in the code has been
changed). The last two columns are call graph information: the number of nodes and the
number of edges which correspond respectively to the number of methods and the number
of method calls. All the programs are daily used ones and consist in a total of 230,000+
lines of code and 4,000+ test cases. They can be considered as realistic.

5.3.1.4 Mutation Operators

The following mutation operators are considered in the Steimann’s dataset:

• Negate Decision (ND): if or while statement conditions are negated;

• Replace Constant (RC): integer constants C are replaced by 0, 1, −1, C+1 or C−1;

• Delete Statement (DS): deletion of a statement;

• Replace Operator (RO): replacement of an arithmetic, relational, logical, bitwise
logical, increment/decrement or arithmetic- assignment operator by an operator
from the same class;

• Assign Null (AN): replacement of the right hand side of assignment by null;

• Return Null (RN): replacement of return expressions by null.

These mutation operators are ones presented in [7, 9, 117, 144].

2computed using CLOC (http://cloc.sourceforge.net/)

http://cloc.sourceforge.net/
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Table 5.2: Average wasted effort, in number of inspected methods, for different fault
localization algorithms over the benchmark of [145]. The lower, the better. The best
scores are bold-faced.

Software T O Z N S V Impr.
2002 2006 2007 2011 2013 2016

AC Codec 6.01 3.08 2.85 2.86 2.66 1.81 47%
Daikon 142.07 125.22 124.78 149.30 124.65 121.07 3%
Draw2d 35.41 25.26 23.98 34.12 24.01 15.46 55%
Eventbus 17.56 6.16 9.69 50.51 5.99 4.42 36%
Htmlparser 21.59 6.11 5.13 21.20 4.82 3.30 46%
Jaxen 49.62 18.29 9.27 12.00 11.30 7.59 49%
Jester 4.60 2.76 2.55 2.34 2.38 1.57 52%
Jexel 15.96 9.06 7.06 6.69 6.64 5.65 18%
Jparsec 15.62 3.95 3.00 21.90 4.39 3.53 24%
AC Lang 4.87 2.76 2.69 18.10 2.68 2.40 12%

Average 31.33 20.27 19.10 31.90 18.95 16.68 14%

5.3.2 Empirical Results

Research Question 5.1 Does Vautrin localize faults with less wasted effort than the state
of the art?

As presented in Section 5.3.1.1, the wasted effort is the number of wrongly predicted
methods returned by the fault localization algorithm before finding the good one. The
lower this value, the better, because it directly relates to the time spent by a developer to
analyze inaccurate results. For instance, if the wasted effort is 5, this means that a fault
localization algorithm has reported 5 non-faulty methods before reporting the actually
faulty one.

Table 5.2 shows the average wasted effort for each subject program of our dataset3.
The first column is the program name and the second to the sixth column give the average
wasted effort for respectively Tarantula, Ochiai, Zoltar, Naish and Steimann (the unit is
an absolute number of methods to inspect, because in this chapter, we perform fault
localization at the method level). The two last columns are the average wasted effort
with our fault localization algorithm, Vautrin and the relative improvement obtained
using Vautrin compared to Steimann.

As an example, if we consider the Jaxen subject program, the faulty method is ranked
on average at the 11th position using Steimann’s fault localization algorithm. For the
same subject program, it is ranked at the 7th position with Vautrin. From a software
engineering point-of-view, this means that a developer who uses our fault localization
algorithm will have to analyze 3.71 less methods on average if he uses Vautrin’s fault
localization algorithm instead of the Steimann’s one.

First, by comparing existing fault localization algorithm listed in Table 5.2 (column
2-6), on this dataset, the best fault localization algorithm so far is Steimann: it scores
better in 6 cases out of 10. Thus, in the rest of this question, we always refer to it for
comparison, and consider it at “the state-of-the-art” (we note that this is always qualified
with respect to the dataset under consideration, another system may be better on another
dataset). In all cases, Vautrin improves the performances of Steimann’s fault localization

3the lower the better in general, there may be isolated bugs that are better localized with one approach
even if the average performance over all bugs is worse
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Table 5.3: Number of perfect predictions for different fault localization algorithms (i.e.
the faulty method is ranked at top). The higher, the better. Best score are bold-faced.

Software #Faults T O Z N S V Impr.
2002 2006 2007 2011 2013 2016

AC Codec 543 77 221 228 237 237 251 6%
Daikon 352 27 38 38 39 39 42 8%
Draw2d 570 48 84 85 87 86 106 23%
Eventbus 577 26 131 135 103 148 163 10%
Htmlparser 599 113 193 197 200 204 237 16%
Jaxen 600 121 229 252 257 249 301 21%
Jester 411 30 45 45 49 49 105 114%
Jexel 537 86 293 301 341 331 349 5%
Jparsec 598 69 199 206 216 214 325 52%
AC Lang 599 233 384 392 407 408 431 6%

Total 5,386 830 1,817 1,879 1,936 1,965 2,310 18%

algorithm as the wasted effort values are always lower for Vautrin. The lowest relative
improvement is for Daikon which have a wasted effort of 124.65 methods using Steimann
and 121.07 methods using Vautrin, which represents a relative improvement of only 3%.
The highest relative and absolute improvement is for Draw2d. Its relative improvement
is 55%, with a wasted effort of 24.01 using Steimann and 15.46 using Vautrin. This
represents an absolute improvement of 8.55 methods. In other words, a developer would
not waste his time in uselessly inspecting 8 methods. The only case on which Vautrin has
worse results than one of the other considered fault localization algorithms is for Jparsec
for which the wasted effort goes from 3 using Zoltar to 3.53 using Vautrin.

Recall that our core intuition is that the spectrum-based fault localization algorithm
misses causal information about the propagation of a fault in the program. Using our ap-
proach based on call graph enriches the fault localization process with causal information.
Our empirical observations validate this core intuition. Using a causal graph obtained
from the call graph for filtering out suspicious methods gives better results.

On the considered dataset, Vautrin consistently improves the wasted effort for
method-level fault localization, from 3% to 55%, with an average of 14%.

Research Question 5.2 Does Vautrin give better perfect predictions than the state of
the art?

As presented in Section 5.3.1.1, a perfect prediction is a prediction where the faulty
method is ranked at the top, and is the single method predicted at rank #1 (i.e., has a
wasted effort equal to zero). In such a case, the developer does not wait a single minute,
and the method that he starts to analyze is the one in which he will write the fix.

Table 5.3 reports the number of perfect predictions for the faults in the dataset (on
average of the cross-validation). The first column is the subject program name, the second
column is the number of fault considered and the third to the seventh column give the
perfect prediction rate for respectively Tarantula, Ochiai, Zoltar, Naish and Steimann.
The two last columns are the number of perfect predictions with our fault localization
algorithm, Vautrin and the relative improvement obtained using Vautrin compared to
Steimann.

As an example, if we consider the 598 faults for JParsec subject program in the dataset,
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there are 214/598 of them (36%) for which Steimann makes a perfect prediction. For
the same subject program, Vautrin’s perfect predictions are 325/598 cases (54%), which
represents a relative improvement of 52%.

If we observe only the fault localization algorithm under comparison (and not our
technique), we observe that Naish and Steimann are the two fault localization algorithm
with the highest number of perfect predictions. In 4 cases out of 10 Naish gives the
highest number of perfect predictions, in 3 cases out of 10, Steimann does, and in the 3
remaining cases, both have the same number of perfect predictions. Now, we compare
against Steimann as we have done in Research Question 5.1. Thus, the improvement may
be slightly overestimated in cases where Naish reports better perfect prediction scores
than Steimann.

For 10 programs out of 10, Vautrin obtains a higher number of perfect predictions
than using Steimann. The best relative improvement is for Jester for which the number
of perfect predictions is 49 for Steimann and 105 for Vautrin, which represents a relative
improvement of 114% (more than twice as many perfect perfections). The smallest relative
improvement is for Jexel which goes from 331 with Steimann to 349 with Vautrin, that
is, an improvement of 5%.

To sum up, Vautrin also achieves the best result according to the amount of perfect
predictions. On the benchmark under consideration, there are 18% more faults
which are perfectly predicted using our technique.

Research Question 5.3 What is the execution time cost of fault localization with Vautrin?

As presented in Section 5.3.1, our approach is composed of four steps: generating the
graph, performing mutation analysis, obtaining the causal graph and predicting faulty
elements when facing a fault. Since we use an existing dataset, we do not have two impor-
tant measures. The first is the time needed for the generation of mutants. The second is
the time required for analyzing the subject program spectrum, i.e., the execution of tests
for obtaining the propagation paths. These are used to compute spectrum suspiciousness.

We compute the time cost for all steps but the two cited and report them in Table 5.4.
The first column is the name of the subject program. The second column is the time for
generating the call graph. The third column is the time required for computing causal
edges based on mutation results. This time is for one fold in our setup, i.e., for 90% of the
available mutants (e.g., 488 mutants for codec). The last column is the average time for
predicting the faulty method for one single fault. All times are expressed in seconds. All
experiments were made on a HP EliteBook 8570w Mobile Workstation, i7-3740QM quad
core, 2.7Ghz, under Arch Linux. As an example, let us consider Jester: each of the three
steps lasts less than one second.

If we take a look at the graph generation times, we observe that the generation of 9
out of 10 graphs takes less than 5 seconds. The only exception is Daikon with the slowest
time: 27 seconds. The average time is 4 seconds. The time required to obtain a causal
graph is generally fast as it takes less than a second in 7 cases out of 10. In the three
remaining cases, it takes up to 8 seconds. These two phases are meant to be done offline,
for instance every night on a continuous integration server. This experiment suggests that
the graph building phase and the causal graph extraction phase do not take too long for
this scenario. However, we expect the time for mutation analysis to be much larger.
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Table 5.4: Times (in seconds) required for each steps of Vautrin for which we have the
measures. The mutation and spectrum analysis time is not reported in the benchmark
paper [145].

Offline Online

Graph Causal Graph Graph-Susp.

AC Codec 1s < 1s < 1s
Daikon 27s < 1s < 1s
Draw2d 2s 2s < 1s
Eventbus 2s < 1s < 1s
Htmlparser 2s 6s < 1s
Jaxen 2s 8s < 1s
Jester < 1s < 1s < 1s
Jexel < 1s < 1s < 1s
Jparsec 2s < 1s < 1s
AC Lang 4s < 1s < 1s

Average 4s 2s < 1s

Regarding the prediction times, it always takes less than 1 second (with an average time
of 45ms). This step is meant to be done on-the-fly within the development environment.
To this extent, it is acceptable for developers to wait for a couple of milliseconds to get
the fault localization diagnosis.

For developer usage, Vautrin does not impose a significant overhead compared to
spectrum-based fault localization. In addition to the time required to run the test
suite, it adds a step which lasts less than 1 second.

Research Question 5.4 To what extent does Vautrin fall back to the traditional, graph-
less, fault localization?

As presented in Section 5.1.2, Vautrin uses a causal graph to filter out suspicious meth-
ods. However, it happens that the intersection of reachable nodes is empty. In this case,
Vautrin returns fallback ranking from the Steimann’s fault localization algorithm. We
analyze the number of cases with fallback from the results already discussed in Research
Question 5.1 and 5.2. For the sake of space, we do not report the whole data.

The worst case is Daikon, for which Vautrin falls back in 82% of the time which means
that for 290 faults over 352, we are not able to improve the score given by Steimann’s
fault localization algorithm. For Daikon, Vautrin is able to perform graph-based causal
reasoning in 62 cases. On the other side, for 5 subject programs out of 10, fallback happens
in less than 25% of the considered faults: Jester, Jexel, Codec, Htmlparser and Eventbus
which fall back in respectively 8%, 12%, 15%, 22% and 22% of the faults. For Jester,
Vautrin does graph-based reasoning in 378 faults over 411. In total, for 3,883 faults over
5,386, Vautrin predicts faulty elements based on the intersection of transitively reachable
nodes.

For the majority of faults (72%), Vautrin has enough information to go beyond
simple spectrum-based analysis and to perform graph-based reasoning.
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Research Question 5.5 Do non-causal edges have an impact on fault localization effec-
tiveness?

To answer this question, we look at the improvement in terms of wasted effort and
perfect prediction for the dataset with and without considering causal edges. For sake
of space, we discuss the empirical results inline. In 9 programs out of 10, considering
causal edges improves the average wasted effort. The improvement of performances using
the raw call graph and the causal one ranges from 0.21 method for AC Lang to 7.15
methods for Draw2d. However, in 1 case out of 10 (Daikon), there is a decrease in the
average wasted effort when considering causal edges. This again suggests that Daikon is
an outlier, for which Vautrin’s technique for approximating the causal relationship is not
working. We explain the reason behind this result at the end of this section. Considering
the perfect predictions, using causal graph with mutants does improve the prediction for
all programs compared to performance when using call graphs directly.

To further understand the propagation using causal graph, we have measured the
proportion of edges considered as causal in the causal graph. It depends much on the
subject program: in all cases, Vautrin considers from 0.4% to 63.3% of edges as causal.
In 8 cases out of 10, Vautrin considers more than 15% of the edges as causal. The two
remaining cases only consider less than 5% of the edges as causal. Daikon is the smallest
causal graph with 0.4% of the causal edges. We remark that this proportion of causal
edges is connected to the frequency in which the approach fallback. Indeed, the less
edges are considered, the more the graph is sparse. This implies that in many cases, the
intersection of reachable nodes is empty because of sparseness. That is the reason why
Daikon fallbacks so frequently (for 82% of faults): because its causal graph consider so
few edges. To us, given that Daikon has a call-graph with a large number of nodes, this
means that the number of mutants is too small to sufficiently approximate the causality,
which leads to poor results.

To sum up, our approximation of causal effects based on mutants and call graphs is
an important factor behind the effectiveness of Vautrin reported in RQ1 and RQ2.
Over the considered dataset, Vautrin finds 9% of edges on average for which causal
evidence exists and are kept from the call graph.

Research Question 5.6 What is the best spectrum metric to be used with Vautrin?

As presented in Section 5.1, within an equivalence class of graph-suspicious elements,
Vautrin uses a spectrum-based metric to assign scores to rank suspicious elements. In
all experiments, we have used Steimann for spectrum suspiciousness, because it is the
best according to the experiment reported in Table 5.2. What if we use Vautrin with
the other fault localization algorithm presented in Section 5.3.1.2? We now report on the
fault localization effectiveness with other spectrum suspiciousness plugged into Vautrin.
We note Vautrin/Y when we consider Vautrin using the score obtained using the Y fault
localization algorithm. Thus, Vautrin/Steimann stands for our approach using the scores
obtained using the Steimann’s fault localization algorithm. Due to space limitation, we
do not report the whole data.

We observe that Vautrin/Steimann is the best combination in 4 cases out of 10 for the
average wasted effort and 7 cases out of 10 for the perfect prediction. Vautrin/Zoltar is the
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best in 5 cases out of 10 for the average wasted effort and 1 cases out of 10 for the perfect
prediction. Vautrin/Naish is the best in 1 case out of 10 for the average wasted effort and
in 6 cases out of 10 for the perfect prediction. Regarding wasted effort, Vautrin/Zoltar
may be a better alternative (5 versus 4 for Vautrin/Steimann). But, we have to keep
in mind that this combination always produces worse results when we consider perfect
predictions. Regarding perfect prediction, Vautrin/Naish is an acceptable alternative (6
versus 7 for Vautrin/Steimann), yet not good for wasted effort. This observation suggests
that these two evaluation metrics are not necessarily completely correlated: they capture
two different aspects of the fault localization process. If we want to maximize effectiveness
with respect to both evaluation metrics (wasted effort and perfect prediction), the best
candidate seems to be the Vautrin/Steimann fault localization algorithm, which further
validates the choice of Steimann’s suspiciousness metric as default choice.

In addition, we setup a small experiment which consists in using a random function
for computing the suspiciousness score. Naturally, this experiment shows that the wasted
efforts with such a random spectrum fault localization algorithm are really bad (rang-
ing from 74 to 1,058). But, we also observe that applying the graph fault localization
algorithm on top of random scores, gives a minimum improvement of 19%, an average
improvement of 211% and a maximum improvement up to 540%. This shows that the
causality approximation by computing causal edges is indeed effective, even using the
worst possible suspiciousness metric we can imagine.

To sum up, to discriminate within an equivalence class of graph-suspicious elements,
the best spectrum-based metric to be used with Vautrin is Steimann’s as it outper-
forms the other ones as much with respect to the wasted effort as with respect to
the number of perfect predictions.

5.4 Threats to Validity

Our results are of computational nature. A major bug in our software can invalidate our
findings. We have published all our code on Github so as to facilitate reproduction and
falsification of our results, if necessary.

Our approach uses mutants for two different purposes. The first is to obtain a causal
graph, the second is for assessing the fault localization effectiveness. There are threats to
validity for both aspects.

For obtaining a causal graph, the quantity and the characteristics of the mutants can
impact our findings. The characteristics of the mutation include the operator and the
candidate element for mutation. It may be possible that the considered operators and
elements may not be the best ones for approximating the causality. However, to avoid
being biased by the dataset, we considered an external, peer-reviewed one, that is unbiased
with respect to our approach.

For assessing the fault localization, the dataset of Steimann et al. composed of mu-
tants, are considered as artificial faults. There is little evidence that a mutation is always
equivalent to a real fault [74, 9].

We consider in this chapter the 10 Java subject programs from Steimann et al.’s
dataset to conduct our experiments. However, these 10 programs may have specific graph
structures due to developer choices and/or to the used programming language. As a
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consequence, our results may only be valid for Java subjects, or even worse, only valid for
the subject programs under study.

5.5 Conclusion

We have presented Vautrin, a novel approach for fault localization. Vautrin is based on
the idea of approximating causal effects at the method level: it consists of extracting an
approximate causal graph out of a call graph based on execution information obtained
from mutation testing.

We have evaluated our approach on the dataset by Steimann et al. The evaluation
setup results in 5,386 fault localization diagnosis. Overall, Vautrin is able to make 2,310
perfect predictions, which means that it predicts the faulty method on the top of ranked
ones. Our experiments show that Vautrin outperforms the most recent algorithms with
an improvement of wasted effort ranging from 3% to 55% and an improvement of up to
114% for the number of perfect predictions.
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Generation of Synthetic Software
Dependency Graphs

‘ ‘Men are not disturbed by things, but the view they take of things.”

— Epictetus

This chapter at a glance...

In this chapter, the following contributions are presented:

• empirical evidence of the common asymmetric structure of dependency graphs
in object-oriented software systems written in Java;

• a generative model of software dependency graphs called GD-GND;

• the validation of the generative model regarding its ability to fit 50 graphs of
real software systems totaling 17,209 nodes and 61,824 edges;

• a speculative explanation of the evolution rules of software.

The following publication is related to this chapter:

[1] Vincenzo Musco, Martin Monperrus, and Philippe Preux. A Generative Model of
Software Dependency Graphs to Better Understand Software Evolution. Journal
of Software: Evolution and Process, 2016. Minor Revision.

87



88 Chapter 6. Generation of Synthetic Software Dependency Graphs

In this thesis, one of our main goals is to use software graphs and synthetic data to aid
developers in their development tasks. In the previous chapters, we presented how call
graphs with synthetic faults (generated using mutation testing) can be used to perform
change impact analysis and fault localization.

In this last chapter, we propose to change the type of synthetic data from generated
faults to generated graphs. Indeed, we want to obtain synthetic graphs which look like
real ones and which can be used in the learning and prediction processes presented in
previous chapters.

We propose here initial works regarding the generation of such graphs. In this chapter,
we consider software dependency graphs of object-oriented software, where each node
represents a class and each edge corresponds to a compile-time dependency. Call graph
(and causal ones) presented in previous chapters are also dependency graphs at the feature
granularity, where only methods are considered. We decide to consider dependency graph
at the class granularity in order to get a global view of the program without call graphs
side effects. That is, we reduce the chances to have too large graphs as ones obtained
using a static extraction process or to have missing edges that would occur in a dynamic
extraction process.

In the first part of this chapter, we present a study which puts the light on the common
topologies which exist in software dependency graphs. Indeed, finding a common topology
in software graphs is a precondition to propose a generative model as we must know
the topology of the generated data. To that extent, we extracted graphs from 50 Java
programs and run statistical comparisons between each pair of program, regarding the in-
and out-degree distribution.

In the second part, we propose a generative model of software dependency graphs.
As presented in our intuition in Chapter 1, we want to explore the ability of synthetic
data to be used to improve software engineering research. In the rest of this manuscript,
we considered software mutants as synthetic data. We propose here to explore another
direction where the previous synthetic data (i.e., the mutants) is replaced by another type
of synthetic data: generated software graphs.

We propose a generative model based on GNC (Growing Network model with Copy-
ing), a generic generation model proposed by Krapivski et al. [82]. We call our model
“Generalized Double GNC ” (GD-GNC) as it uses the GNC attachment primitive. We
assess it against real software data used in the first part of this chapter, as well as the one
from Baxter and Frean [21], which is, according to our investigation, one of the only other
models intended to generate similar software graphs than ours. We use similar compar-
isons than ones used for the common structure to compare both models. We also explore
some other properties such as the diameter, average shortest path length, transitivity and
modularity.

Then, based on the GD-GNC primitives, we attempt a speculative explanation of
the evolution rules which drive programs. Indeed, if this model produces graphs that fit
the empirical data, it would mean that the generative operations are good candidates to
describe the core operations which result in software graph structure. In other words, a
good generative model may encode the evolution rules that are behind the graph structure
of software systems.

This chapter is structured as follows. In Section 6.1, we present our works related
to the common structure of dependency graphs. In Section 6.2, we propose GD-GNC,
our generative model. In Section 6.3, we present the evaluation of GD-GNC as well as a
speculative discussion of evolution rules in programs. In Section 6.4, we discuss the threats
to validity and the practical implications. In Section 6.5, we conclude this chapter.



6.1. Common Structure of Dependency Graphs 89

(a) in-degree

100 101 102 103 104

In-degrees

10-3

10-2

10-1

100

C
u
m

u
la

ti
v
e
 f

re
q
u
e
n
cy

App-App
App-Lib
App-App+Lib

(b) out-degree

100 101 102

Out-degrees

10-3

10-2

10-1

100

C
u
m

u
la

ti
v
e
 f

re
q
u
e
n
cy

App-App
App-Lib
App-App+Lib

Figure 6.1: Node in- and out-degree distributions for the software package Ant. Three
kinds of dependency are considered: app-app, app-lib and both. X-axis are degrees and
y-axis is inverse cumulative degree frequencies. Both axes are on logarithmic scale. It is
important to differentiate endo- and exo- dependencies because their topology is different.

6.1 Common Structure of Dependency Graphs

We want to determine whether there exist structures shared by different software appli-
cations. As the production of these software packages is influenced by different factors
(management and development teams, development techniques, etc.), it is a priori ex-
pected that there is no common structure. To the opposite, finding common structures
would be an interesting fact as it would mean that there exist common evolution mecha-
nisms shared across application domains and development styles. Hence, our first research
question is:

Research Question 6.1 Are there common structures of node degree distributions in
software dependency graphs?

6.1.1 Protocol

Our protocol consists in a technique to extract graphs from software code, applied to a
given dataset and a statistically-sound analysis method.

6.1.1.1 Dependency Graph Extraction

We now present our method to extract dependency graphs. We consider object-oriented
software written in Java. As presented in Section 2.1.3.4, different horizontal and vertical
granularities may be considered to generate software graphs. In this chapter, we focus
on the class vertical granularity (i.e., one node represents one class), as this is the most
important modularity unit in object-oriented software. Among horizontal granularities,
two important types are endo- and exo-dependencies also discussed in 2.1.3.4. In this
chapter, we only consider endo-dependencies, that is, edges connecting internal nodes of
the project to each other and not these connecting to external libraries because we aim at
understanding the inner structure of software graphs, regardless of the number of libraries
that are included and the amount of calls to library functions.

Figure 6.1 illustrates the difference between both dependencies as a line chart plotting
the inverse cumulative distributions of degrees for endo- (app-app), exo- (app-lib) and both
dependencies for Apache Commons Ant 1.9.2. Two distributions have to be considered
as these graphs are directed: one for in-degree (6.1a) and one for out-degree (6.1b).
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Plots are on a logarithmic scale. We see that endo- and exo-dependencies have close
yet different distributions. For in-degree, the slope is different. If we consider only app-
lib dependencies, i.e., we exclude app-app links (straight thin line), the number of zero
in-degree nodes strongly increases because lib nodes never connect to an app node.

The dependency graph is extracted using Dependency Finder1. This mature and open-
source tool takes as input Java bytecode and outputs all dependencies being found. In
this section, graph metrics are computed using the NetworkX2 library. The dependencies
are computed on the main source; test cases are not considered. We use Dependency
Finder in class mode (hence discarding package-level dependencies).

The discrimination between endo-dependencies is done using a filter on the package
of the source and the destination of the dependency edge. For each subject, we define a
package prefix (e.g. “org.myapp”) and if both the source and destination fully-qualified
classes start with this prefix, it is considered endo- otherwise it is considered as exo-
dependency.

6.1.1.2 Dataset

To determine an acceptable dataset size, we examined the dataset size in related publi-
cations: they range from 1 to 12 [21, 22, 95, 152, 130, 114, 82]. We aim at building a
dataset that is at least as big as these used in previous works. Also, we aim at reusing a
peer-reviewed dataset of Java applications in order to mitigate the risk of cherry-picking.

SF100 [50] is a dataset that meets our requirements3. It contains 100 Java applications,
given as Jar files containing the classes in Java bytecode. In a pilot experiment, we
realized that SF100 contains many Java projects that are too small (a few classes only).
However, to observe the structural properties we are interested in, a certain size of graphs
is necessary. Consequently, in our experiments, we consider the 50 largest projects of
SF100, that is all projects containing at least 56 classes.

The resulting dataset is presented in Table 6.1. For each program, this table contains
its name, the number of nodes |N | and the number of edges |E| contained in the graphs
we extract and the graph density δ (cf. Section 2.1.3.3).

The graph size ranges from 56 to 6818 nodes, from 116 to 24096 edges and has a graph
density γ value ranging from 0.001 to 0.070.

6.1.1.3 Comparison of Degree Distributions

We want to compare the degree distributions of a set of graphs, i.e., software.
To compare two degree distributions, we use the Kolmogorov-Smirnov statistic K

given by Equation (6.1) in which sup is the supremum of a set, F1 and F2 are the degree
distributions to compare and x ranges over degree values.

KF1,F2 = sup
x
|F1(x)− F2(x)| (6.1)

K is a numerical value that indicates how close two distributions are: the lower K, the
closer the distributions. K does not depend on any hypothesis made on the distribution:
the Kolmogorov-Smirnov test is non parametric.

1http://depfind.sourceforge.net/
2http://networkx.lanl.gov/
3The dataset can be downloaded at http://www.evosuite.org/files/SF100-20120316.tar.gz

http://depfind.sourceforge.net/
http://networkx.lanl.gov/
http://www.evosuite.org/files/SF100-20120316.tar.gz
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Table 6.1: The 50 Java programs considered in our experiments: we provide their names
and basic statistics of their dependency graphs: the number of nodes |N |, the number of
edges |E|, and the density γ. all projects total 17,209 nodes and 61,824 edges.

Project |N| |E| δ

a4j 84 127 0.018
apbsmem 64 123 0.031
at-robots2-j 302 1,128 0.012
beanbin 88 281 0.037
caloriecount 968 2,595 0.003
corina 1016 3,774 0.004
db-everywhere 93 352 0.041
dom4j 212 1036 0.023
echodep 143 428 0.021
feudalismgame 59 178 0.052
fim1 127 323 0.020
follow 97 290 0.031
geo-google 120 279 0.020
gfarcegestionfa 65 185 0.044
glengineer 60 251 0.071
heal 97 386 0.041
hft-bomberman 138 555 0.029
httpanalyzer 78 171 0.028
ifx-framework 6,818 24,096 0.001
javathena 56 116 0.038
jaw-br 124 305 0.020
jcvi-javacommon 1,024 4,152 0.004
jdbacl 184 490 0.015
jhandballmoves 111 421 0.034
jigen 90 262 0.033

Project |N| |E| δ

jiggler 187 825 0.024
jiprof 151 367 0.016
jmca 56 146 0.047
jnfe 212 526 0.012
jsecurity 136 336 0.018
jtailgui 58 168 0.051
jwbf 102 472 0.046
lagoon 90 270 0.034
lhamacaw 173 1,344 0.045
lilith 850 3,075 0.004
lotus 59 178 0.052
nutzenportfolio 83 271 0.040
objectexplorer 84 439 0.063
openhre 112 395 0.032
openjms 811 3,081 0.005
petsoar 79 181 0.029
quickserver 107 357 0.031
sbmlreader2 83 311 0.046
schemaspy 120 418 0.029
summa 759 3,791 0.007
twfbplayer 152 451 0.020
water-simulator 120 386 0.027
wheelwebtool 131 520 0.031
xbus 207 968 0.023
xisemele 69 244 0.052

6.1.2 Results

Figure 6.2 shows the plot of the in-degree (6.2a) and out-degree distributions (6.2b) for
our dataset. The scale is bi-logarithmic. There is a different line and a different color for
each software of the dataset. We make two observations.

First, the in-degree distribution looks different from the out-degree distributions. The
out-degree inverse cumulative distributions is more bended, while the in-degree inverse
cumulative distributions is straighter. This observation has already been made in previous
works [152, 114, 38]: in-degree distributions and out-degree distributions are different. As
mentioned above, some have seen power laws in these distributions. This observation
has been disputed, indeed others may see log-normal distributions. This controversy has
already been studied [95, 130] and thus remains out of the scope of this thesis.

Second, the position and the shape of distributions are graphically similar, this indi-
cates there are common structures across software applications. In order to assess this
observation in a statistical manner, we now express our null hypothesis and the alternate
hypothesis:
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Figure 6.2: Inverse cumulative in- and out-degree distribution for the 50 software appli-
cations of our dataset (axes on a logarithmic scale).

Null Hypothesis (H0): Samples from the software in-degree distributions (or
out-degree distributions resp.) are drawn from the same distribution.

Alternative Hypothesis (H1): Samples from the software in-degree distributions
(or out-degree distributions resp.) are not drawn from the same distribution.

Using the two-sample Kolmogorov-Smirnov test on each pair of degree distributions
of the dataset, we can statistically determine the presence of a similar structure across
software applications in our dataset. Based on the statistic K, we can decide on rejecting
or not H0 according to a given confidence level. If H0 is not rejected, we gain confidence
about the common structure for these two programs. On the other hand, if H0 is rejected,
the test outcome cannot be used to conclude about the common structure (which does not
necessarily mean that the two software graphs are not drawn from the same distribution).

Table 6.2 gives the results of running 2,450 two-sample Kolmogorov-Smirnov tests with
a confidence level α of 0.01 (we need to test each pair of software, hence C2

50 = 1, 225 tests,
which is doubled (2 × 1, 225 = 2, 450) since we test in-degrees and out-degrees). In this
table, the rows provide the results for in-degree, out-degree, and both distributions. The
second and third columns provide the number and the ratio of tests for which the two-
sample Kolmogorov-Smirnov test has rejected H0. The fourth and fifth columns provide
the information when H0 cannot be rejected.

As we can see, for 79% of the tested pairs, the common distribution hypothesis cannot
be rejected. However, this affirmation does not necessarily involve that there is a unique
distribution shared by all these programs. On the other hand, for the remaining 21% of
tested pairs for which H0 is rejected at this confidence level, no conclusion can be drawn.

6.1.3 Summary

For the majority of subjects, there is not enough evidence to reject the hypothesis of a
common structure. What is the reason behind this common structure? It is not due to the
fact that all applications were developed by the same team. They were indeed developed
by different people with different background from all over the world. In this paper, we
explore a specific assumption: the way people evolve software is similar across projects,
and as a result, software applications share a common structure eventually.
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Table 6.2: Number of times the H0 hypothesis is rejected or accepted for in-degree, out-
degree and both cumulative degree distributions according to the two-sample Kolmogorov-
Smirnov test with a confidence level α of 0.01.

H0 Rejected H0 Not rejected

Count Ratio Count Ratio

In 208/1,225 17% 1,017/1,225 83%
Out 300/1,225 24% 925/1,225 76%

Total 508/2,450 21% 1,942/2,450 79%

6.2 A Generative Model for Dependency Graphs

In this section, we present a new generative model of software dependency graphs. This
model generates an arbitrary number of artificial dependencies. It is parametrized by
three values: the expected number of nodes and two probabilities.

6.2.1 Assumptions

Our model is built on three assumptions on how software evolution works.

Assumption #1 (increment) When creating new features (new classes), they are
built on top of existing classes. Hence when a new node is added to the generated graph,
it is directly connected to existing nodes.

Assumption #2 (remix) New features (new classes) depend on classes that are de-
signed to be used together or at least that are compatible with each other.

Assumption #3 (refactoring) Developers sometimes identify reusable units. In that
case, they create a new class. This new unit of reusable functionalities is used later on.

6.2.2 The Generalized Double GNC Algorithm (GD-GNC)

We name our generative model of software dependency graphs GD-GNC. It generalizes
the GNC model:

GNC [82] this model is an iterative algorithm where, at each iteration, a new node ni is
added to the graph and connected at random to a set of already existing nodes. In GNC,
an existing node nj is selected according to a uniform distribution and directed edges are
created from the new node ni to this node nj along with all its successors. This “GNC-
Attach” primitive is illustrated in Figure 6.3. Algorithm 6.1 shows the core primitive for
attaching nodes using GNC. GNC requires one parameter: the number of nodes of the
resulting graph. It executes n times the core function to create a graph with n nodes.

GD-GNC implements the three assumptions presented in Section 6.2.1 in an algorith-
mic way. Its pseudo-code is shown in Algorithm 6.2.

It consists in a main loop which at each iteration:

1. adds a new node ni to the existing graph (Assumption #1 – increment);
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Figure 6.3: Illustration of GNC-Attach, the GNC primitive operation. The gray node ni is
a new node added to the graph using the GNC primitive. The central node nj is selected
uniformly at random and a directed edge is added from the new node to it (dashed edge).
Then, a directed edge is also added from the added node to all successors of nj (dotted
edges).

Algorithm 6.1: GNC-Attach Algorithm.

Input: GN ,E the digraph to which a new node ni is going to be added. GN ,E is
composed of two elements: the set of existing nodes (N ) and the set of
existing directed edges (E).

Output: GN ,E has been updated with a new node, and a set of new directed edges.
1 Function GNC_Attach(GN ,E , ni) is
2 Select uniformly at random a node nj in GN ,E
3 Add an edge from ni to nj

4 for all edges (nj, nd) leaving nj do
5 Add an edge from ni to nd

2. selects an existing node nj uniformly at random;

3. adds edges leaving ni:

• with probability p, ni is connected to nj in the same way as in the GNC-Attach
algorithm (i.e., a directed edge is created from ni to nj and from ni to each
successor of the node nj); With probability q, we repeat this GNC-attachment
once: an existing node is selected uniformly at random; if this selects the same
node as previously, this second operation aborts (Assumption #2 – remix).

• with probability 1−p, nj is connected to ni (Assumption #3 – refactoring).

6.2.2.1 Relation to Assumption #1 and #2

The first operation of the model is a node creation followed by an attachment to existing
nodes using a GNC-Attach. This represents the creation of a new class implementing a
new feature. This new feature depends upon existing classes. The point of being attached
to all dependent classes of a class means that these classes are already used, depending
upon each other. If class X depends on classes A, B and C, it means that A, B and C
interact together in a way that is defined by X. When a new node ni is connected to X by
way of a GNC-Attach, it is also connected to A, B and C. In other words, the new class
ni creates a novel interaction between A, B, and C. Executing GNC-Attach twice reflects
the fact that the new class mixes two existing groups of classes. In the model, there is
never more than two groups of already interacting classes being linked from a new node
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Algorithm 6.2: Iterative algorithm for the ”GD-GNC” generative model.

Input: N the number of iterations to execute, p the probability to perform a
GNC-Attach, and q the probability to do a double GNC-Attach.

Output: a digraph GN ,E is composed of two sets: nodes (N ) and directed edges
(E)

1 begin
2 N ← ∅
3 E ← ∅
4 for i ∈ {1, ..., N} do
5 Create a node ni and add it to N
6 if rand() ≤ p then
7 GNC_Attach(GN ,E ,ni)

8 if rand() ≤ q then
9 GNC_Attach(GN ,E ,ni)

10 else
11 Select uniformly at random a node nj in GN ,E
12 Add an edge from nj to ni

(a new feature). We did experiments allowing more than 2 successive GNC-Attach in the
GD-GNC main loop: this has never significantly increased the fit to real data. Figure 6.4
illustrates the in- (6.4a) and out- (6.4b) degree distribution for a graph generated with
1000 nodes using the GNC-Attach primitive run one, two and three times. As we can
see, running a third time the GNC-Attach primitive does not improve the resulting plot.
Moreover, it makes the plot running out from the ranges observed on empirical software.
Thus, the best fit is between one to two times the GNC-Attach primitive. These groups
were already interacting together separately (as witnessed by the fact that another class
depends on the classes of each group). The new call brings the two groups together to
provide one class with new and useful functionalities.

6.2.2.2 Relation to Assumption #3

The second core operation of GD-GNC (the top-level else condition) is a reverse attach-
ment from an existing node to the added node. It represents a refactoring operation,
where a piece of code is extracted from an existing class, in order to ease reuse and to
simplify the code. Once the refactoring is performed, the newly created class is ready
for being reused. This can happen in subsequent iterations of the algorithm with the
GNC-Attach.

6.2.2.3 Analysis

We note that this model never modifies existing edges: at each iteration, GD-GNC adds
a single node and a set of edges. We emphasize the fact that no explicit preferential
attachment is explicitly coded in the algorithm. However, an implicit preferential attach-
ment is still present. GNC-Attach connects a new node to an existing one, but also to all
successors of this existing node. As a consequence, if a node has a high in-degree, it has
a higher probability of receiving a new edge.
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Figure 6.4: Inverse cumulative degree distributions for in- and out-degree for a 1000 nodes
graph generated with the GNC-Attach primitive run one (plain), two (dashed) and three
times (dotted).

6.2.2.4 Parameters

Two parameters are required by GD-GNC and influence the growth of the graph. p deter-
mines whether the new node ni must be added following GNC-Attach or it is connected
to by an existing node. Hence, there is a proportion of p nodes that have no outgoing
edges (sink nodes). q is the probability of a second attach conditioned on p. Increasing
the number of GNC-Attach impacts the in-degree distribution, the distribution decreases
more slowly when q increases. Regarding the out-degree, the convexity of the distribution
increases as q increases. GD-GNC is a generalization of GNC-Attach: GNC-Attach is a
special case where p = 1 and q = 0. Figure 6.5 illustrates the influence of the p parameter
on the generated graph using the GD-GNC algorithm where q = 0.5 for a generated graph
containing 1000 nodes. The figure shows the proportion of nodes (x-axis) which have a
certain in-/out- degree (y-axis). Figure 6.5a is for in-degree and Figure 6.5b for out-
degree. As we can see, as p increases, the number of nodes with a null in-degree increases
and out-degree decreases. The interesting point with this figure is to notice how we can
approximately fix the number of null in-/out-degree nodes thanks to the p parameter.

6.3 Experimental Evaluation

In this section, we want to determine whether GD-GNC can generate graphs that are
similar to real software graphs.

6.3.1 Comparison

We have explored several generative models described in the related work. We emphasize
the fact that we are interested in models that may be interpreted in terms of rules of
software development. However, according to our experiments, Baxter and Frean’s model
[21] is the only one which gives reasonable in- and out-degree distributions. The other ones
are discarded because the resulting degree distributions are really different from the ones
we observe in our dataset. Hence, we consider Baxter and Frean’s model as a baseline.
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(a) in-degree (b) out-degree

Figure 6.5: Influence of the p parameter on the generated graph using the GD-GNC
algorithm where q = 0.5 for a generated graph containing 1000 nodes.

Baxter and Frean’s model [21] encodes preferential attachment based on the out-degree
of nodes. Its logic is based on:

1. edge creation;

2. edge transfer between nodes of the graph: a transfer means that either the source
or the destination of an edge is modified and points to another node of the graph.

Hence, we formulate our research question as:

Research Question 6.2 How does GD-GNC compare to other generative models? We
consider Baxter & Frean’s model which is the best model up to date.

6.3.2 Protocol

To address this question, we first run a parameter optimization (Section 6.3.2.2) for each
model (GD-GNC and Baxter & Frean) on all programs of our dataset. Table 6.3 reports
the best parameter determined for each project. Then, we generate 30 synthetic graphs
with each model, using the best parameters found for fitting each program. Finally, we
compute the inverse cumulative degree distribution of each graph and we compute the
fitness value according to its ∆ value defined by Equation (6.2).

6.3.2.1 Error metric

To statistically determine which model generates the closest graph to the true one, we
compare the Kolmogorov-Smirnov statistic K (as presented on section 6.1.1.3) for in-
degree and out-degree cumulative degree distribution of the generated graph G and the
real graph R. For this purpose, we define the ∆ function, as shown in Equation (6.2),
which is the maximum between the two Kolmogorov-Smirnov distances: the distance
KRin,Gin

between the in-degree cumulative distribution of the artificial graph Gin and the
real one Rin, and likewise for the out-degree distribution (KRout,Gout , Gout, Rout resp.).

∆R,G = max(KRin,Gin
, KRout,Gout) (6.2)
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Table 6.3: Result of the grid-search for determining the best parameters for Baxter &
Frean and GD-GNC generative models according each programs of the dataset

Baxter GD-GNC

Project γ p q

a4j 0.9 0.3 0.7
apbsmem 0.1 0.7 0.8
at-robots2-j 0.1 0.4 1.0
beanbin 0.2 1.0 0.6
caloriecount 0.2 0.4 1.0
corina 0.1 0.6 0.7
db-everywhere 0.3 0.8 0.7
dom4j 0.2 1.0 1.0
echodep 0.1 0.4 1.0
feudalismgame 0.2 0.5 0.6
fim1 0.1 0.5 0.9
follow 1.0 0.3 0.9
geo-google 1.0 0.6 0.8
gfarcegestionfa 0.1 0.4 0.9
glengineer 0.1 0.4 0.5
heal 0.1 0.3 0.8
hft-bomberman 0.1 0.5 0.8
httpanalyzer 1.0 0.4 0.9
ifx-framework 1.0 0.5 0.9
javathena 0.1 0.5 0.8
jaw-br 1.0 0.7 0.9
jcvi-javacommon 0.1 0.5 0.9
jdbacl 1.0 0.5 0.5
jhandballmoves 0.1 0.4 0.9
jigen 0.2 0.6 0.6

Baxter GD-GNC

Project γ p q

jiggler 0.4 0.9 0.2
jiprof 0.2 0.4 0.5
jmca 0.2 1.0 0.2
jnfe 0.3 0.4 0.9
jsecurity 0.3 0.5 0.5
jtailgui 0.2 0.6 0.9
jwbf 0.1 0.6 1.0
lagoon 0.2 0.7 1.0
lhamacaw 0.2 0.9 0.9
lilith 0.1 0.5 0.8
lotus 0.1 0.5 0.9
nutzenportfolio 0.1 0.4 1.0
objectexplorer 0.1 0.4 1.0
openhre 0.1 0.5 1.0
openjms 0.3 0.4 0.9
petsoar 0.3 0.5 0.3
quickserver 1.0 0.3 1.0
sbmlreader2 0.1 0.6 1.0
schemaspy 0.1 1.0 1.0
summa 0.2 0.6 0.7
twfbplayer 0.1 0.6 1.0
water-simulator 0.1 0.5 0.9
wheelwebtool 0.2 0.5 0.7
xbus 0.4 0.8 0.2
xisemele 0.1 0.6 0.8

Combining in-degree and out-degree distributions is necessary because both distri-
bution are intimately related to each other: considering only in-degree or out-degree
distribution would be meaningless as a good in-distribution does not necessarily involve
a good out-distribution and vice-versa. ∆ is a measure of error and we aim to minimize
it (the lower the better).

6.3.2.2 Parameter Optimization

To determine the best values of p and q to generate graphs as close as possible to real ones,
we perform a grid-search of the space of parameters, trying each value for p and q between
0 and 1 with a step of 0.1. For each parameter value, we generate 30 graphs. Then, we
use the K statistic to assess the fitness between the true graph and the generated one.
The graph with the smallest K value is the one that is mostly similar to the real graph.
Table 6.3 reports the best parameters found for each program of the dataset.

6.3.3 Results

For each program in our dataset, Table 6.4 gives the average fit error ∆ of Baxter & Frean’s
model (column labeled B) and GD-GNC (column labeled G). The column labeled p gives
the p-value determined using the Mann-Whitney test; this p-value assesses whether one
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Table 6.4: Average ∆ error of GD-GNC (G) and Baxter & Frean’s models (B) expressed
in 10−3. The third column gives the p-value determined using the Mann-Whitney test:
it assesses whether GD-GNC is significantly different from Baxter & Frean’s model. The
last column gives the effect size according to Cohen’s formula (d).

Project B G p d

a4j 1.56 1.67 0.43 -0.12
apbsmem 1.50 1.71 0.00 0.70
at-robots2-j 1.77 2.33 0.23 -0.39
beanbin 2.26 1.53 0.00 1.92
caloriecount 1.47 1.08 0.00 1.33
corina 1.46 1.79 0.12 -0.40
db-everywhere 2.16 1.08 0.00 1.97
dom4j 1.65 1.09 0.00 1.87
echodep 1.98 2.17 0.15 -0.37
feudalismgame 2.13 1.68 0.12 0.35
fim1 1.74 2.21 0.01 -0.72
follow 1.67 2.93 0.00 -1.42
geo-google 1.67 2.80 0.00 -3.64
gfarcegestionfa 1.96 2.19 0.00 -1.24
glengineer 1.93 1.85 0.01 -0.79
heal 1.24 1.71 0.06 -0.56
hft-bomberman 1.33 1.56 0.88 -0.16
httpanalyzer 1.67 2.81 0.00 -3.00
ifx-framework 1.67 2.11 0.64 -0.36
javathena 1.52 1.94 0.00 -1.04
jaw-br 1.67 2.45 0.00 -0.76
jcvi-javacommon 1.46 1.81 0.08 -0.43
jdbacl 1.67 2.67 0.00 -2.05
jhandballmoves 1.91 2.09 0.76 0.10
jigen 1.32 1.20 0.03 0.61

Projet B G p d

jiggler 1.89 1.17 0.00 2.06
jiprof 1.20 1.40 0.01 -0.76
jmca 2.16 1.64 0.00 0.87
jnfe 1.94 2.24 0.52 -0.27
jsecurity 1.84 1.70 0.02 0.63
jtailgui 1.82 1.67 0.22 -0.21
jwbf 1.66 1.15 0.13 0.53
lagoon 1.40 1.45 0.91 0.04
lhamacaw 1.66 1.14 0.00 1.44
lilith 2.17 2.30 0.00 -0.86
lotus 1.27 1.30 0.11 0.30
nutzenportfolio 1.15 1.49 0.34 -0.34
objectexplorer 1.72 1.79 0.44 -0.26
openhre 1.80 2.03 0.00 -0.84
openjms 1.18 1.28 0.51 0.13
petsoar 1.24 1.39 0.11 -0.39
quickserver 1.67 2.68 0.00 -1.40
sbmlreader2 1.60 1.79 0.22 -0.33
schemaspy 1.86 1.97 0.02 -0.63
summa 1.96 1.39 0.00 2.78
twfbplayer 1.37 1.49 0.63 -0.16
water-simulator 1.59 1.76 0.08 -0.43
wheelwebtool 2.08 2.03 0.48 -0.10
xbus 2.57 1.05 0.00 2.60
xisemele 1.90 2.58 0.02 -0.76

model is significantly better than the other one. The last column labeled d gives the effect
size according to Cohen’s d effect size (cf. Section 4.5.2).

These number are interpreted as follows: p is used to ensure B and G do not belong to
the same population with a confidence level of 0.01 (p < 0.01). The Cohen’s d effect size
is used to estimate if the mean of ∆ increases or decreases from B to G. In other words,
if d > 0, it implies that ∆ decreases between B and G and thus implies that GD-GNC is
statistically better.

We observe that GD-GNC in-degree and out-degree distributions are better than Bax-
ter & Frean’s ones in 18/50 cases (d > 0). In these cases, the GD-GNC algorithm tends to
produce synthetic software graphs whose in- and out-degree distributions better fit these
of real software dependency graphs.

We now move to a statistical assessment of the fit.

Null Hypothesis (H0): the ∆ error values obtained for GD-GNC and the ones
obtained from Baxter & Frean model belong to an identical population.

Alternative Hypothesis (H1): the ∆ error values obtained for GD-GNC and the
ones obtained from Baxter & Frean model belong to a different population.



100 Chapter 6. Generation of Synthetic Software Dependency Graphs

Now considering the p-value, there are 10 subjects that are more similar to the real
graphs using GD-GNC (i.e., d > 0 and p < 0.01) and in the other way, there are 12 subjects
for which Baxter & Frean’s model is significantly better (i.e., d < 0 and p < 0.01). For 28
subjects, there is not enough evidence to say that one model or the other is significantly
better. To sum up, according to our experiments on the degree distributions, there are 10
subjects for which our GD-GNC model better models the software dependency structure.

6.3.4 Scalar Properties

Though focusing on the presentation of the degree distribution, we also studied many
other graph properties. We report the key observations in this section.

Regarding the size of the generated graph:

• Baxter and Frean’s model generates graphs that have the correct number of edges,
but they do not have the correct number of nodes. The number of nodes of these
graphs ranges between half of the real graph and 2.5 times larger. For a given real
graph, the graphs generated with Baxter and Frean’s model have their number of
nodes that varies a lot. The coefficient of linear correlation between the number of
nodes of the synthetic graphs and the real graphs is 0.82.

• GD-GNC generates graphs with the correct number of nodes, and generally with
a number of edges which is varying between half and 3 times the number of edges
of the empirical graph. The coefficient of linear correlation between the number of
edges of the GD-GNC graphs and the real graphs is 0.96.

Regarding the diameter and average shortest path length, GD-GNC generates graphs
whose the diameter is within a factor of 2 with regards to the empirical graphs: the cor-
relation between the diameter of the empirical graph and the diameter of the GD-GNC
graphs is 0.59. Baxter and Frean’s generates graphs whose the diameter is typically very
different from the empirical one: the correlation between the diameter of the empirical
graph and the diameter of Baxter and Frean’s graphs is 0.37. The same sort of observa-
tion may be made about the expected relation between the diameter and the number of
nodes n of a scale-free graph: the diameter scales with O(log(n)/ log(log(n))). GD-GNC
graphs follow this relation quite well, which is not the case for Baxter and Frean’s graphs.
Likewise, the average shortest path length exhibit the same behavior.

Regarding the transitivity or clustering coefficient C, the correlation between the value
of C for empirical graphs and its value for graphs generated by GD-GNC is 0.38, the one
between empirical graphs and Baxter and Frean’s graphs is 0.51.

Regarding the modularity Q, the correlation between the value of Q of empirical graphs
and its value for graphs generated by GD-GNC is 0.72, the one between empirical graphs
and Baxter and Frean’s graphs is 0.23.

To sum up, considering the different metrics we have used to compare the performance
of GD-GNC with regards to other models is not an easy task. However, as reported above,
most often, for each metric, the properties of graphs generated with GD-GNC are more
similar to these generated by Baxter and Frean’s model.

6.4 Discussion

We now put aside technical considerations and discuss the meaning and validity of our
empirical results.



6.5. Conclusion 101

6.4.1 Threats to Validity

Let us now discuss the threats to the validity of our findings. First, we have optimized
our model with respect to the fit to in-degree and out-degree distributions. Even if the
degree distributions capture many topological properties of graphs, it is only one feature
of the structure of the dependency graph. One threat to the validity of our conclusions
is that some other important topological properties of software dependency graphs have
minor or no impact to degree distributions.

Second, our experiments are done on a dataset of 50 Java software systems. Our
findings may only hold for object-oriented code, Java software or even worse, to this
particular dataset only. However, for us, a sign of hope is that the degree distributions
on other programming languages and systems that are reported in previous works look
qualitatively the same [95, 152, 114].

Third, our evolution model is completely expressed in abstract graph terms. We have
reformulated the algorithm from a software engineering perspective in Section 6.2. It may
be the case that we have correctly extracted the core operations but that, at the same
time, we have misinterpreted their meaning. We look forward to more work in this area,
to discuss with the community in order to see the emergence of a consensus on the core
software evolution mechanisms.

6.4.2 Practical Implications

For Researchers Our model and experiments have shown that remix is likely a fun-
damental phenomenon of software evolution. Our model is another piece of evidence
suggesting that remix-oriented software engineering is key, strengthening existing argu-
ments [19, 61]. We note that research has already made significant advances in supporting
remix of groups of classes. For instance, code-completion can work at the level of groups
of classes [121] and documentation can be generated to explain common remix strategies
[31]. Our results call for more contributions on that topic.

For Practitioners The generative model is primarily intended to validate fundamental
hypotheses about software evolution. As such, no practitioner directly uses the model
to generate new graphs. Speculatively, we envision that people who write static analysis
based on dependency graphs use synthetic graphs generated by our model to validate the
scalability of their technique.

6.5 Conclusion

In this chapter, we wanted to use synthetic software graphs in our experiments. The
first step was to determine the possibility to generate such graphs. To this extent, we
have studied the existence of common structures in many software dependency graphs
and devised an experimental protocol to understand the evolution principles that result
in such a common structure.

Once we have identified common properties, i.e., the cumulative degree distribution,
we have introduced a new generative model: GD-GNC. This model generates graphs
whose degree distribution is very close to that of real software: this closeness is assessed
with statistical tests.

This is a piece of evidence that the evolution rules encoded in the generative model
resemble the actual ones: new features are based on the perpetual remix of existing



102 Chapter 6. Generation of Synthetic Software Dependency Graphs

interacting classes and refactoring mostly consists in extracting a reusable class from an
existing class.



7

Conclusion

‘ ‘Well done is better than well said.”

— Benjamin Franklin

In this last chapter, we conclude this thesis. This conclusion is divided in two parts:
first, in Section 7.1, we propose a summary of the work presented in this thesis. Then, in
Section 7.2, we present interesting future directions.

7.1 Summary

In this thesis, we answered our two problems presented in Chapter 1 by the mean of
graphs and synthetic data obtained using mutation testing.

The first problem was the absence of a systematic evaluation methodology for change
impact analysis. The second was that current fault localization techniques do not consider
the whole program, ignoring how elements depend on each other. These problems were
addressed during my thesis. To that extent, four contributions were proposed.

The first contribution was a direct answer to the first problem. We proposed an evalua-
tion framework for change impact analysis techniques based on a large number of changes.
The approach uses synthetic seeded faults to bypass the limitation of real changes: thanks
to mutation testing, we ensure that the inserted change is unique. Hence, we can observe
impacts related to this single change. Based on this framework, we conducted a study on
four different types of call graphs to determine their potential for change impact analysis.
Each call graph expresses a programming feature in a way that we analyzed what are the
elements that are most responsible of propagation in the software graph.

The second contribution was Vautrin, a tool intended to filter call sites returned by
an IDE based on previous executions of the program. Vautrin relies on the concept of
causal graph: a call graph on which edges are decorated with weights ranging from 0 to
1. These weights express the likelihood of an edge to propagate a fault. During a learning
phase, real test executions are analyzed to capture the causes-effects of bugs and tests in
the whole graph. Based on this phase, graph edges weights are updated. A threshold is
used to disable some edges and thus filter out the reported impacts.

The third contribution was Strogoff, a new fault localization technique based on a
similar learning phase as Vautrin, but where the causal graph is now used to propose a
solution intended for fault localization. Indeed, based on the causal graph, the ability
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of determining faulty points based on failing tests enables us to improve the state of the
art according to the major evaluation metrics. We used the nodes reported as suspicious
based on the causal graph in conjunction with classic spectrum-based fault localization
techniques to improve their performance. This third contribution is an answer to our
second problem as using the causal graph allows to reason on the program as a whole and
not only have a limited view of executed elements.

Our last contribution was a generative model for software dependency graphs. This
model was proposed in an effort of finding other synthetic data to use in our research. We
first studied the presence of some properties in 50 real Java software graphs. We found
that these graphs have a common topology regarding their in- and out-degree distribution.
Based on this empirical observation, we proposed GD-GNC, a generative model based
on GNC. This generative model is able to generate software graphs with similar degree
distribution to real software graphs. This fitness was assessed with real distributions and
with an existing model intended for same purposes: the Baxter and Frean’s one. We
concluded this chapter by a speculative discussion of phenomena which motivate such a
structure.

7.2 Perspectives

We now present the possible future directions. We structure this section in five aspects
that are: improving the propagation profile, improving the time performance, consider-
ing other types of software graphs, considering propagation profiles obtained using other
granularities and using alternative evaluations for generative models.

7.2.1 Better Propagation Profiles

Our contributions are based on propagation profiles using synthetic faults obtained using
mutation testing. A first perspective is to better improve the propagation profile obtained
from these mutants.

A way to proceed is to mutate in a cleverer manner. Indeed, in Chapter 3, 4 and 5,
mutation is made in a random manner. Instead, it would be possible to mutate in a way
to ensure the whole call graph is covered. As an example, mutate each line or each block
of the program source code is worth considering.

Many different mutation operators could be used instead of the five mutation operators
presented by Offutt [122]. We proceeded this way as we wanted to focus on performance
measures based on basic and largely studied ones. However, considering other operators
can yield to different results and observations on the data as the propagation profile
may differ (i.e., depending on the mutation operator, different types of impacts may be
observable). As example of other operators, we can cite ones by Kim et al. [78] and Ma et
al. [100] who have proposed operators that are better-suited to object-oriented programs.
Ma et al. [101] have even proposed operators for Java programming languages composed
of a large number of operators.

Another possible direction is to use advanced machine learning techniques, e.g., clas-
sification, made on a set of data observations. Therefore, it is possible to define a set
of attributes from the software source code such as modifiers, visibility, number of lines
of code, number and types of parameters, etc. A classification algorithm could use such
information to learn association rules between these attributes and the appearance of a
failure in the program. With a large corpus of failures, the model could become more
precise and be used to help in change impact analysis or fault localization technique.
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7.2.2 Faster Computation of Propagation Profiles

A second perspective is to speed up the computation of our causal graph based on muta-
tions. A possible approach is to tailor mutation analysis, i.e., to determine how to conduct
the generation of mutants in order to maximize the quantity of information learned about
impact propagation and to minimize the number of required mutants. Consequently, in-
stead of mutating in a totally random manner, one idea is to choose the mutation operator
in a clever way, depending on the code element under consideration.

In this way, we could mutate in a manner to better cover the code and improve the
quality of learned information for studying propagation. This results in decreasing the
number of generated mutants as we avoid to generate mutants which will report similar
propagation information in the graph. As a consequence, if less mutants are required, the
approach will be faster.

7.2.3 Other Types of Software Graphs

In this thesis, we used a static approach for building the call graphs used in our ex-
periments. Instead of obtaining the graph by statically analyzing the source code, one
direction would be to use a dynamic approach which will return a graph containing only
nodes/edges really called at run-time. The dynamic call graph would certainly have less
edges than the static one as many calls would not occur in real execution. This can lead
in an improvement regarding execution time, as well as surprising discoveries. Indeed,
edges not called in the dynamic analysis may act as a filter that would remove some false
positives reported by the static approach. However, the time required to obtain the data
(i.e., the graph) would be longer as dynamic approaches generally instrument and execute
the code, which is more expensive to compute than a static approach.

In Chapter 3, 4 and 5, we considered the class hierarchy analysis call graph. In such an
approach, the obtained graph is not too dense to be handled by a computer quickly and
easily, but not too sparse in order to be able to learn concrete things from it. However,
better performances can be obtained by pruning the graph based on phenomena which
are not likely to propagate a fault. As an example, all cycles where A is connected to B,
B is connected to C and C is connected to A can easily be removed as, in a propagation
point of view, they may be useless as such cycles increase the size and complexity of the
graph. The same observation can be made for isolated nodes or nodes with only one edge
in specific cases. However, their removal should not be systematic. We must promptly
understand their usefulness in the approach under investigation. If we want to be able
to detect impacts on these nodes or if they play a central role in our impact prediction
process, they should not be removed. For instance, we use tests in our approaches, tests
are generally isolated nodes with a few (and possibly only one) edges. As the tests are
central in our propagation analysis, they should not be removed.

7.2.4 Propagation Profiles at Other Granularities

Graphs studied in this manuscript are not the only good candidates for studying software
engineering. Other granularities may be explored to speed up the process on very large
projects. Moreover, even if some types of graphs are slow to compute and to work with,
due to their size, some types of edges may be extracted from these to work with hybrid
granularity graphs. As an example, the program dependence graph can give much more
details about the propagation, but the fact they are dense would require more time and
memory to work with these. An hybrid approach would have the speed advantage of the
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call graph and the details (or at least partial details) of the program dependence graph. As
a consequence, discovering some elements in source code which are subject to propagate
the error could enable to embed some finer granularity nodes/edges to better materialize
the propagation phenomenon.

7.2.5 Alternative Evaluation of Generative Models

A direction which would be interesting is to study graph motifs as an alternative evaluation
metric for our generative model. Graph motifs are patterns consisting of a small amount
of nodes connected to each other in a certain way.

These may turn to be valuable to determine the appropriateness of generated graphs
and to study software shapes in a dependency graph. We hypothesize two kinds of mo-
tifs: ones resulting from design patterns introduced at once in software and others that
are evolving, kinds of “emergent design patterns”. Identifying them would sketch a new
interesting light on software evolution.
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Most of the source code can be downloaded from the following URLs:

https://www.github.com/v-m

https://www.github.com/v-m/PropagationAnalysis

https://www.github.com/v-m/PropagationAnalysis-dataset

https://www.github.com/v-m/gdgnc

The second and third URLs are respectively the source code for propagation analysis
research and the considered dataset. The last URL contains the code and dataset used
for the generative model.

The source code related to propagation analysis is made of four tools:

1. simple mutation framework (smf), our mutation tool. Several mutation tools ex-
ist, for instance Javalanche1, or Pitest2. However, we need a full control over the
mutation process and on extracted information. So, we have implemented ours.

2. softminer, a tool for extracting call graphs from Java source code;

3. pminer implements the prediction analysis (Algorithms 3.1 and 3.2, propagation
prediction from call graphs and accuracy computations);

4. softwearn is responsible of the learning part (i.e., learning weights for call graphs).

Both smf and softminer use Spoon [127], an open-source library for analyzing and trans-
forming Java source code.

Graphs used for change impact analysis contributions are obtained using Git tag g1

of the project.
Dependency graphs used in Chapter 6 are obtained using the Dependency Finder

tool3.

1http://javalanche.org
2http://pitest.org
3http://depfind.sourceforge.net/
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B

Details on Parameter Optimization

In this appendix, we report detailed plots related to Figure 4.4 in Chapter 4. Here, we
show the threshold searched for each project and each mutation operator considering the
Dichotomic algorithm.
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Figure B.1: The impact of the prediction threshold (x-axis) on the F -score (y-axis) for
each considered mutation operator.
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C

Generative Model – Other directions

C.1 Generic Graphs

In Chapter 6, we have made a preliminary study with other generative models in order
to ensure none of them are already well suited to generate software dependency graphs.
We want to answer the question: “Do existing generative models of directed graphs fit the
topology of software graphs at the class granularity ?”

To answer this question, we searched in the literature for various digraphs genera-
tive models and generated graphs with the same number of nodes and/or edges numbers
depending on the required model parameters. Parameters are configured using the pa-
rameter optimization approach presented on Section 6.3.2.2.

We execute the described procedure for some programs and notice same observations.
We use the following generative models (the given parameters are optimized in order to
have degree distributions as close as possible of the software applications – here values for
Ant 1.9.2 are shown as an example):

• Erdös and Rényi [48] with parameter p = 0.1;

• Dorogvtsev et al. [45] with parameters m = 4, A = 1;

• Kumar et al. [83] with parameters copyfactor = 0.2, d = 5;

• Vazquez [154] with parameter p = 0.3,

• Grindrod [55] with parameters α = 0, λ = 0;

• R-MAT of Chakrabarti et al. [37] with parameters a = 0, b = 0.3, c = 0.6, d = 0.1;

• GNC of Krapivsky and Redner [82];

• Baxter and Frean [21] with parameters γ = 0.3.

A visual representation of the generated graph degree distributions is shown on Figure
C.1. Each line plots the inverse cumulative degree distribution for in- (C.1a) and out-
(C.1b) degrees. On x-axis are the degrees and on y-axis are the cumulative frequency.
The goal of this figure is to compare the shape of the synthetic distributions against the
shape of empirical software data. We see that most models produce graphs whose degree
distributions do not fit at all our data.
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Figure C.1: Plot of the inverse cumulative degree distributions for ant 1.9.2 and for graphs
generated using various models.

The model proposed by Baxter & Frean in 2008 [48] is the only one which is intended
to generate software graphs. The overall fit of this model is good. However, some other
models such as ones proposed by Dorogovtsev [45] or even by Kumar [83] can have a
better fit than Baxter ones on in-degree.

The GNC model is different from others as it requires no external parameter at all. Its
implementation is uniformly random and simple to understand and implement. Despite
of its simplicity, it has a high ability to fit in-degrees distributions of our software graphs.
The out-degree distribution is far from being perfect but compared to other models, and
keeping in mind the lightweight of its logic, the fitness is not so bad.

To sum up, among the considered models; Baxter & Frean’s one has the best fit of
degree distributions with the software dependency graphs of our dataset. GNC is very
simple, yet has a good fit for the in-degree distributions.

C.2 Different Versions

We also began to study another idea. The question we wanted to answer was “Is the
GD-GNC model able to simulate the graph evolution that occurs between two versions of
a same software application?”

To answer this question, we adapt our generation algorithm by passing as input a
software class graph from an older release of the program. The model logic remains the
same as previously, we pass to it the number of nodes contained in the last graph version
so it will stop once the total number of nodes in the graph is equal to the expected number
of nodes.

The adapted algorithm is executed on some programs and we observe an improvement
for each new generated graph. As an example, Figure C.2 shows the inverse cumula-
tive degree distribution from two generations for the Jtds application, one starting from
scratch, and the other starting from the software dependency graph of a previous version
of jtds (v.0.1). The x-axis is degrees and y-axis is the cumulative frequency. The dashed
line shows when the generation starts from scratch and the solid thin line from a previous
version of Jtds. In order to generate accurate graph, we optimize parameters as done in
Section 6.3.2.2 before for each version (we notice parameters are globally the same for
both versions of a same program).

We see that starting from a previous version improves the fit at the end of the genera-
tion. It means that our model does not break the existing topology but more importantly,
it uses the existing topology to direct the creation and connection of new nodes. In other
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Figure C.2: Plot of the inverse cumulative in- and out- degree distribution for generated
graphs using GD-GNC. These generations produce graphs having the same nodes number
as Jtds v.1.3.1 at class granularity when starting the generation from scratch (dashed line)
and from a previous version 0.1 (solid thin line)

words, from the point of view of degree distributions, the model simulates the evolution
of jtds between v0.1 and v1.3.1.

To sum up, our model is able to simulate the evolution which occurs between two
dependency graphs of two different versions of a software application. The synthesized
graphs better fit when starting from a past real software graph instead of starting from
scratch.
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