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Mathematical notation

non-negative real numbers {x € R: x > 0}

upper half of the unit sphere {x € R?> x Ry : ||x|| = 1}

Nabla operator ( 2 .3 ) or ( ¢ 4 .9 ) (depending on

dx1” 0xp dx1’ 9xp” dx3

whether x € R? or x € R3)

Euclidean norm /x% +x3 or /x7 + x5 + x3 (depending on
whether x € R? or x € R3)

Dirac delta distribution centred in a

Model variables and parameters

spatial density of leaf area in x € R [m? m3] (static or at time
t € Ry or in year n € INp, depending on context)

spatial density of horizontal leaf area in x € R? [m®>m™] (static
or at time t € IR, depending on context)

distance from roots to foliage in x € R® along the branch net-
work [m]

specific leaf area [m* g™*]
specific wood volume [m3 g™]

photosynthetically active radiation [] time™] (at time t € R or
over year n € IN, depending on context)

radiation use efficiency [g]™]

pipe model theory parameter [m™]



PREFACE

Half a billion years after their first appearance, land plants have
penetrated into almost every spot of the continents, permeating and
enabling past and present terrestrial biological diversity of inestimable
value. Their ecosystem services to humans include oxygen, food,
remedies, material, energy as well as social and aesthetic aspects. In-
separably tied to their abiotic environment, plants reduce erosion and
mass movements, remove aerosols, affect the water cycle and regulate
local up to global atmospheric dynamics. In a global carbon cycle
that is increasingly affected by anthropogenic activity, their role as
sinks, by assimilating atmospheric carbon through photosynthesis,
and as sources through respiration, decomposition or burning, is well
recognized (IPCC, 2000). The unprecedentedness of anticipated or
suspected climatic change, such as higher temperature and photosyn-
thetically active radiation as well as decreased precipitation (IPCC,
2007), and their uncertain impact on and interaction with the global
vegetation stress the need for models allowing reliable predictions
today, in order to ensure the own sustainability as well as continued
efficient provision of ecosystem services of the plant kingdom.

Quantitative plant models, both for such practical use and decision
support, but likewise for the less application-oriented purpose of
advancing botanical knowledge for its own sake, are written in the lan-
guage of mathematics. Mathematical formalism allows to bridge the
gap from an initial biological hypothesis to its validation or falsifica-
tion in comparison to real data — a continual interaction that ultimately
culminates in scientific progress (Thornley and Johnson, | 2000). Plant
modelling has largely benefited from the development of sophisticated
mathematical concepts and methods that allowed the concise, efficient
and elegant formulation of biological processes or phenomena as well
as their implementation for computational processing.

This thesis aims at contributing to the field of mathematical plant
modelling by introducing and applying new methodology. This in-
cludes the novel characterisation of the spatial distribution of leaves in
terms of spatial densities. The success story of density-based models
in theoretical population ecology encourages to apply the fundamental
idea to the description of foliage in an attempt to overcome challenges
currently faced by prevailing concepts. Indeed, the realistic yet effi-
cient representation of plant architecture is an important open question
reaching from the scale of a single large tree to that of global vegeta-
tion models. We believe that density approaches can give new impetus
in this matter. Models in this thesis are largely based on the concept of
teleonomy, i.e. a supposed goal-directedness of growth processes, and
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its application to spatial dynamics. Teleonomic modelling has proven
realistic and efficient across many scales, from organ to ecosystem
level. Yet, applications in conjunction with spatial dynamics are still
scarce, a gap this thesis attempts to contribute to fill. In combination,
these two approaches are used to model the spatial dynamics of crown
development in crops and trees, with a particular focus on the local
plastic response to light resources as well as competition for these,
which poses a current major challenge for functional-structural plant
models.

Considering spatial foliage density in plant growth models implies
the inevitable sacrifice of topological structure, i.e. information on
the network of branches, which limits the number of physiological
functions, especially small-scale transport processes that can be ac-
counted for mechanistically. This as well as the density scale in general
suggest the framework to be used in models focussing rather on the
macroscopic (but nonetheless local) tendencies of crown dynamics,
and make simplifications appropriate to this objective. Throughout
this thesis, these serve the purpose of keeping the number of model
parameters small without forfeiting the key dynamical mechanisms.
We thus aim at identifying a concise, simple and effective as possible
set of mechanisms required to realistically capture complex spatial
effects of plant growth over time.

THESIS OUTLINE

In part [l of this thesis, we develop and contextualise the conceptual
and methodological bases later used in the models presented in part
Chapter [1] revisits types of plant growth models with a special focus
on functional-structural models, in which physiological functioning is
coupled with a spatial structure, and discusses their contribution as
well as current challenges. Current ways to characterize the distribu-
tion of foliage in spatially explicit models are subsequently critically
reviewed, seamlessly followed on by the introduction and discussion
of spatial density-based characterizations of foliage in chapter 2| Based
on this, chapter 3| presents a series of general principles and modelling
techniques used throughout the subsequent modelling part

In chapter |4} we present a two-dimensional time-continuous conti-

nuity equation model for the foliation and growth dynamics of crops.

A rigorous mathematical analysis of the model equations allows a
significantly simpler expression of the solution as well as faster simu-
lations. The model is tested against empirical data from sugar beet. As
a transition from this two-dimensional , continuous-time setting to the
later, extensively studied three-dimensional, discrete-time approach
for trees, chapter [5| explores the suitability of a continuity equation
framework for the modelling of tree crown dynamics in three dimen-
sions over several growth cycles. We discuss conceptual difficulties
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of this approach as well as two propositions to partially circumvent
them. A focal point of this thesis in the form of a time-discrete model,
describing the evolution of leaf density from one year to the next,
is presented in chapter [f} Simulation results are compared against
various types of empirical observations for European beech, reaching
from long-term forest inventory data to Lidar-recorded spatial data.
The model generates a series of remarkable emergent properties, and
motivates hypotheses on the morphological crown dynamics of beech.
In addition to the previous light-only dependence of local biomass pro-
duction, the impact of soil water availability is incorporated into the
latter growth model by means of a novel hydraulic model describing
the mechanistic balancing of leaf water potential and transpiration, fol-
lowed by a comparison of simulation results to an extensive long-term
empirical data set. Chapter 7| supplements the previous tree models in
that it presents a method to assign a realistic possible branch system
to a given leaf distribution. Chaptef{doncludes and discusses future
perspectives.



Part |I.

Preliminaries



1

PRINCIPLES OF SPATIAL PLANT MODELLING

In the first section [1.1{ of this introductory chapter, we revisit different
categories of present-day approaches in plant modelling, in particular
classified into empirical, process-based, architectural and functional-
structural models, with an additional reference to teleonomic models.
This is followed by a critical review of current ways of representing
plant architecture in these models in section{.2,|motivating the intro-
duction and application of spatial density-based characterisations of
foliage in the subsequent chapter

1.1 TYPES OF PLANT GROWTH MODELS
1.1.1  Empirical models

Empirical models describe plant behaviour directly by fitting a particu-
lar type of equation or system thereof to an empirically acquired data
set. They do not account for physical laws, biological information such
as physiological processes involved in growth and morphogenesis,
or knowledge of the structure of the system (Thornley and Johnson,
2000). Empirical models summarize real data; predictions are made
by means of interpolation or regression. Without the need for either
mechanistic or teleonomic hypotheses (cf. section [1.1.5), empirical
relationships are relatively simple to establish and can make robust
and reliable predictions as long as anticipated growth conditions are
within the scope of preceding observations. They reach their bound-
aries when the latter condition is no longer satisfied, i.e. when being
confronted to stand structures, species distributions or site conditions
beyond the range on which they were calibrated (Lacointe, |2000). This
shortcoming is of particular concern in light of climatic change, and
has contributed to the development of process-based models, which
attempt to capture plant dynamics mechanistically.

1.1.2 Process-based models

Classical process-based models (see |[Landsberg), 1986, for an overview
of the basic properties) characterize plants in terms of compartments
such as foliage, shoots and roots, and express these and related vari-
ables in terms of total quantities such as weight, surface area per unit



1.1 TYPES OF PLANT GROWTH MODELS

soil surface or nitrogen content (Vos et al., 2007). The set of organs

of a particular type is simplified to an average organ that represents

functional traits without individual, let alone spatial differentiation.

The leaf area index (cf. section is the classical variable used to

characterize foliage and compute light interception in process-based

models, mostly using Beer-Lambert’s law and appropriate extinction
coefficients (e.g. Baldocchi et al., 2000;| Lai et al}, 2000). Global values
for photosynthesis, respiration and resource allocation, possibly cou-
pled to nutrient and water cycles, determine a plant’s carbon balance
and growth (Sievanen et al.,2000).

The idea of unveiling causal relationships both within a plant and
with its environment predestines process-based models for the pre-
diction of unprecedented environmental conditions (Bossel, 1996), for
instance with regard to altered water and nutrient availability, tem-
perature, polluants, herbivores or human intervention (Le Roux et al.,
2001).

The leaf area index does not capture canopy structure and hetero-
geneity which however strongly affects light interception and thus
photosynthesis (Vos et al, 2010). Likewise, the distribution of car-
bon between productive and non-productive tissues (Givnish), 1988;
Nikinmaa, 1992} [Le Roux et al.,, 2001) and gas-exchange properties
of foliage (Landsberg and Gower, 1997) depend highly on the spatial
structure of the tree (Sievanen et al.,, 2000). Modelling inner-plant
water and nutrient transport processes (Perttunen et al.z996) as well
as plant-environment interactions such as radiation transfer and local
light interception (Sarlikioti et al., |2011), requires a realistic 3D charac-
terisation of the plant’s structure. The relationship is bilateral since
the plant’s structural development depends on the local physiological
processes (Sievanen et al., [2000).

Additional problems in which explicit information about the spatial
structure of a plant is important, include competition phenomena
within and between species, tree-herbivory interactions, the optimisa-
tion of spatial structure in production systems (e.g. through pruning),
the exploration of hypotheses involving a strong interaction of struc-
ture and physiology as well as the visualisation of growth processes,
e.g. for teaching purposes (Siev dnen et al., 2000; Vos et al., 2007).

1.1.3  Architectural models

Parallel to and for a long time independent from process-based models,
the development of architectural models, also named morphological,
structural or geometric growth models, took place. Originally, these
aimed merely at the dynamic description of plant structure in terms
of positions, orientations and shapes of plant organs. Plants are
described as closed cybernetic systems with an autonomous devel-
opment, and interactions with their environment are not taken into

10



1.1 TYPES OF PLANT GROWTH MODELS

account (Vos et al., [2007). The work of [Honda (1971) and follow-up
models represent this approach. Most notable is the work of Lin:
denmayer| (1968a,b) that gave rise to the long-lasting formalism of
L-systems (Prusinkiewicz and Lindenmayer, |1990), a parallel rewriting
system and formal grammar that exploits the modularity of plants,
i.e. their composition of repetitive units (de Reftye et al.,| 1988, Room

et al |1994).

1.1.4 Functional-structural models

Kurth| (1994) addressed the hitherto scarce integration of physiologi-
cal processes into the dynamics of architectural models, or inversely,
the extension of process-based models by their architectural counter-
parts. Implementing this combination, Sorrensen-Cothern et al. (1993),
Perttunen et al.| (1996), Kurth! (1996) and de Reftye et al.|(1997) were
among the first to inaugurate the era of functional-structural mod-
els (Sievanen et al., [2000; Godin and Sinoquet, 2005; Vos et al., |2007;
Hanan and Prusinkiewicz,2008; Sievanen et al.,2014). This approach

is exemplified by the extension of the originally purely architectural
L-systems by physiological components, resulting in context sensitive,
parametric or open L-systems, in which rewriting rules are affected by
the local environments of plant modules (Prusinkiewicz and Linden+
mayer, 1990; Mech and Prusinkiewicz, 1996; [Kurth and Slobodal 1997)

or the interactions between the latter (e.g. Mathieu et al.,| 2008, 2009).

Functional-structural models thus focus on the inseparable feedback
between structure and function (Vos et al), |2010): Structure affects
function in that for instance it defines local light conditions that affect
photosynthesis, while structural developments, such as bud breaking
and shoot proliferation, are themselves simultaneously controlled by
function.

The definition of functional-structural models is often based on the
notion of elementary units or modules, which constitute plants in
terms of a collective and interconnected network (Sievidnen et al., |2000;
Barthélémy and Caraglio} 2007; Sievanen et al,, 2014). This unit is
commonly a metamer, i.e. a single internode possibly bearing axillary
buds or leaves at its tip. This characterisation of the plant contains a
geometrical and a topological component: The former identifies the
locations of plant parts in 3D space, which is particularly useful to
model interactions with the environment, while the latter addresses
the physical connections between these plant parts, which is used to
model the inner-plant transport processes (Le Roux et al., [2001; Godin
and Sinoquet, |2005).

In spite of these arguments in favour of an explicit 3D geometrical-
topological structure, it is not without reason that empirical and
process-based models are still the standard tool for plant modelling

11
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at the community level and beyond (Le Roux et al.,, |2001). Firstly,
the parametrisation of functional-structural models can be very data
demanding (Sievanen et al, |2000; Letort et al., |2008). The spatial
roughness of process-based models is accompanied by an aggregation
and averaging of several parameters which in functional-structural
models are by construction non-constant (e.g. |Dauzat, [1993). A high
sensitivity of its parameters challenges a model’s robustness and
makes it susceptible to serious error propagation. Secondly, the level
of detail and potentially large number of elementary units of most
functional-structural plant models can be challenging in terms of the
computational performance of simulations. Indeed, this has led some
tree growth models to artificially limit the number of potential mod-
ules (e.g. 5000 in the model by [Sterck and Schieving| (2007) and 10000
in the LIGNUM model (Sievanen et al.,[2000)), which imposes problem-
atic limits to the age and size of individuals than can be simulated. In
particular, Sievdnen et al. (2000) ascribed computational heaviness to a
potential pairwise comparison of individual modules, e.g. in a source-
sink allocation model as well as to problems of scale, e.g. computing
leaf-specific hourly photosynthesis throughout years. Cescatti (1997)
adds the high computational demand due to the complex simulation
of radiative transfer to this list. The method of structural factorisa-
tion developed by Courrede et al. |(2006) reduces computational time
significantly by utilising the repetitiveness of patterns generated by
L-systems. However, specifically designed for models with merely a
topological and without a geometrical structure, applying it to the
general spatial case with locally varying environmental conditions
such as light incidence is not straightforward.

Sievanen et al.|(2000) concluded a fundamental impossibility of sim-
ulating deliberately large trees using topological functional-structural
models — which curiously stands in direct contradiction to the very
requirement for the elementary unit in these models, namely being
”small enough to allow its micro environment to be treated as spatially
homogeneous, but [...] large enough to ensure that the number of
units does not become prohibitively large when simulating big trees”
(Sievénen et al., |2000) (a definition that, moreover, cell biologists might
not unduly challenge as being arbitrary).

The increase in computational power over the past one and a half
decades has not been able to fundamentally change this situation. For
instance, pairwise comparison of n modules requires (’)(nz) operations,
illustrating that the computational demand of simulations of old
trees with a number of metamers exceeding the above-mentioned
limits by about two orders of magnitude is out of proportion to the
increase in computational power ever since. It is thus not surprising
that present-day topological tree growth models still focus on the
simulation of young individuals, rarely exceeding the sapling stage
(Sievanen et al., [2008; [Hemmerling et al., 2008} Lu et al., 2011; Wang

12
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et al., 2012} [Lintunen et al., |2012; Nikinmaa et al., 2014; |Gao et al.
2014).

1.1.5 Teleonomic models

Thornley and Johnson| (2000) considered the concept of hierarchies
of organisation levels in plants, given, for example, by biosphere >
ecosystem > stand > plant > organ > tissue > cell. In this termi-
nology, empirical models, which do not address lower level causal
mechanisms nor interpret a fitted relationship in the framework of
higher-level purpose, describe the behaviour of one hierarchical level
merely in terms of attributes of that particular level. In contrast, mech-
anistic models, i.e. process-based and functional-structural models in
the previous terminology, try to explain processes at a given hierarchi-
cal level by understanding the behaviour of lower levels: A system is
reductionistically broken down into its components, studied and rein-
tegrated to explain responses at the higher level. Lastly, teleonomic
models attempt to understand behaviour at lower levels by consider-
ing constraints or requirements at a higher level. In an evolutionary
context, the latter may refer to the maximisation of growth rate. De+
war (2010) provided a discussion of similar and alternative objectives.
Such an apparent goal or purpose (cf. Monod 1972) then determines
the behaviour at the lower levels that is needed to attain it. As an
example from phyllotaxis, the successive leaves along a plant stem
often draw the golden angle. Instead of attempting to reproduce the
complex biophysical and biochemical mechanisms at the microscale,
teleonomic models assuming the maximisation of light interception
(Leigh| 1972) or, alternatively, the optimal packing density (Ridley,
1982) as higher goals, which lower level mechanisms supposedly work
towards, have been proposed, and managed indeed to explain the
observed pattern.

A priori, teleonomic approaches can be used at any level of detail,
in spatially explicit just as well as in compartmental models. Fisher
(1992) and [Farnsworth and Niklas|(1995) revisited architectural models
in the context of optimizing light interception, while Mikeld et al.
(2002) provided a review of functional teleonomic and optimisation
models at the plant level. Canell and Dewar| (1994) and Le Roux
et al. (2001) addressed teleonomy in the context of carbon allocation
models. Strigul et al.| (2008) and Dewar et al.|(2008) made teleonomic
assumptions for structure and function, respectively, at the landscape
scale and beyond. Miscellaneous recent approaches in the field were
summarised by McMurtrie and Dewar|(2013).

13
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1.2 REPRESENTATION OF FOLIAGE IN SPATIAL PLANT MODELS

As integral as controversial to plant modelling is the choice of the
appropriate level of model detail and complexity, and the decision as
to which processes are necessary to consider explicitly and which can
be simplified in consideration of realism, clarity, robustness, computa-
tional efficiency and even theoretical analysability. Not surprisingly,
scientific debate on the legitimacy of assumptions and simplifications
is a constant companion in the field of plant modelling (e.g. Thornley
and Johnson, 2000; Bugmann, 2001} Sievanen et al., |2014, and refer-
ences therein). In this section we review different ways to characterize
the shape and structure of plant crowns as well as the spatial distri-
bution of foliage in order of detail and complexity. We follow the
categorisation of representation of plant architecture in terms of global,
spatial, geometric and topological information suggested by Godin
(2000) and complete it with model examples.

1.2.1  Global representations

A global representation refers to the crown being described only in
terms of an enveloping surface. These reach from simple forms such as
(truncated) spheres, ellipses, cylinders, cones and paraboloids to more
complex asymmetric and composite surface parametrisations (see
references in Sinoquet and Andrieu, 1993; Cescatti, 1997, Godin and
Sinoquet, 2005). Leaf distribution is commonly assumed homogeneous
within a crown envelope (but see section [2.1.1).

Stem base

(©

Figure 1.: Examples of global geometric representations. (a) A simple
cone, adapted from|Mawson et al. (1976), (b) Axisymmetric
crown composed of a truncated paraboloid and an upside
down conical frustum, from Pretzsch| (2009). (c) complex
asymmetric surface parametrisation, from |Cescatti (1997).

In principle, these representations can be incorporated into functional-
structural models. For instance, the dynamics of the variables that
define crown shape in figure [1p (crown height, radius etc.) are coupled
to other, empirically described dynamic growth variables, which in

14
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turn depend on the present structure of the tree and its competitors
(see |Pretzsch et al., |2006).

1.2.2  Spatial representations

Godin| (2000) referred to a spatial representation when plant archi-
tecture is expressed as an assembly of regular cells or voxels in 3D
space, containing plant components and information on biological
attributes such as leaf density. Beyond the original definition by Godin
(2000) with a focus on cubic voxels, it appears reasonable to extend
the notion of cells to a more general set of geometric bodies, such
as the disks, disk segments and annuli considered in the WHORL
model (Sorrensen-Cothern et al||1993), figure , the BALANCE model
(Grote and Pretzsch) 2002} Rotzer et al., 2010), figure , and, similarly,
the two-dimensional model by Sonntag| (1996) based on a quadratic
tessellation of space, which immediately translates into a 3D model
after rotation around the vertical axis, figure . All of the above
models contain functional-structural properties in that, for instance,
light incidence in a cell depends on leaf density in surrounding cells,
while, in turn, cell-specific photosynthesis affects local leaf density.

|...... Radiation _

12 dim. grid

X ) i
Growth plasticity; C; = T T <4
sectors < U

grow and die
ndependently ~

= new foliage, %
extension

| RR

Fine roots $
U

1Us

(a) (b) (©

Figure 2.: Examples of spatial representations. (a) and (b) Crown struc-

ture is characterized by vertically stacked disks, composed

of segments, adapted from Sorrensen-Cothern et al.| (1993)

and Grote and Pretzsch (2002), respecitively. (c) Space (2D,

implying radial symmetry) is divided into quadratic cells
containing leaf area, from [Sonntag| (1996).

1.2.3 Geometric representation

Geometric representations differ from spatial representations in that
they explicitly describe the spatial distribution of plant organs, i.e. no
longer based on an imposed cell-structurisation of space or the plant,
however not yet taking into account the connections between them.
Godin| (2000) mentioned the spatial distribution of leaves or roots as
examples. Indeed the latter has been considered in density-based
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1.2 REPRESENTATION OF FOLIAGE IN SPATIAL PLANT MODELS

root growth models for over a decade (Reddy and Pachepsky, 2001;
Dupuy et al| |2005, [2010), figure [3 It is all the more surprising that,
to our knowledge, the former has not been considered in any plant
growth model prior to this work. We return to the spatial leaf density
and related variables in the chapter [2| before using it for modelling
purposes.

>

Depth (m)

. : -
-1
0 05 1 15 2 0 05 1 15 2

Radial Distance (n)

Figure 3.: From geometrical-topological root structure to spatial root
density, adapted from Dupuy et al.| (2010).

1.2.4 Topological representation

Finally, topological representations account for the interconnected
network of plant organs. Explicit and mechanistic modelling of any
inner-plant substance transport processes requires a topological frame-
work. Branching processes are central to such growth models, and
it is thus not surprising that there lies the main application area for
L-systems. Apart from few exceptions like the Greenlab model (Yan
et al., |2004; Cournede et al., 2006) topological models include a geo-
metrical structure, since otherwise one of the main criticisms towards
non-structural process-based models, namely the lack of an accurate
description of local light incidence, would equally apply.

The generic shape of foliage is all but uniform in topological models.
The scale ranges from detailed polygon meshes (Allen et al) | 2005) to
simplified geometries such as ellipsoids (Sterck et al., 2005), rhombi
(Rauscher et al, [1990), figure [4h — the former include leaf orientations
in terms of azimuth and inclination — or spheres (Takenaka) |1994),
figure [gb. Sometimes foliage is merely described as a cylinder mantle
surrounding wood segments (Kellomaki and Strandman, 1995; Pert:
tunen et al.,[1998), figure [4k.

Although exceptions confirm the rule (there are topological models
without geometrical structure), the above categories of representation
can essentially be ordered according to their level of detail:

global C spatial C geometrical C topological representation

Smoothing the distribution of organs in a topological representation
and ignoring organ connections yields a geometric representation.
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l2
U}g:

Figure 4.: Examples of topological representations. Foliage repre-
sented as (a) thombi, from Rauscher et al.| (1990), (b) spheres,
adapted from Takenaka|(1994), and (c) mantles around wood
segments, adapted from (Perttunen et al., 1998).

Discretising a geometric density according to a particular predefined
cell structure results in a spatial representation, which, after merging
individual cells into one geometric body, becomes a global representa-
tion.

1.2.5 Conclusion

Global models as presented in section are only to a limited
extend suitable to allow for crown plasticity. Their often homogeneous
interior does not account for the influential spatial distribution of
leaves (Cescatti, 1997). More importantly though, their empirically
predefined shape parametrisations, no matter how complex, represent
too tight a corset that cannot allow for the actual variability in crown
structure and shape in response to local biotic or abiotic growth
conditions, including the local availability of growth resources and
competition with surrounding individuals.

Models based on spatial representations discussed in section [1.2.2]
face the same issue if the underlying cell-structure or other shape
constraints restrict variability and plasticity. In the BALANCE model
(Grote and Pretzschl, 2002} R6tzer et al., |2010) for instance, the radii
of the vertically arranged disks interpolate an empirical equation that
predefines and constrains crown shape in an identical manner.

Section [1.1.4] already pointed out major challenges faced by growth
models based on topological representations presented in section[1.2.4]
most notably with regard to the simulation of old and large individuals
where the number of organs exceeds computational feasibility. In
addition to that, most topological models have difficulties allowing
for arbitrary spatial plasticity as well: Whereas shoot longitudinal
growth is indeed often modelled more or less mechanistically, the
branching angle and phyllotaxy are mostly predefined (Takenaka)
1994; [Perttunen et al., |1998; [Balandier et al., 2000). Yet all of these
variables have a strong impact on tree form as early demonstrated by
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Honda| (1971). Fixing crucial architectural parameters such as these
a priori puts barriers to plasticity problems these models are able to
address.



2

LEAF AREA DENSITIES

Section [1.2| of the previous chapter already pointed to challenges of
global, spatial and topological representations of crown morphology
and foliage in the sense of Godin| (2000) in certain modelling contexts.
In response to this methodological gap, we investigate the capacity
of a geometrical representation, specifically in terms of the three-
and two-dimensional concepts of leaf area density and horizontal
leaf area density, respectively. This chapter defines, motivates and
contextualises these notions, while bearing in mind empirical methods
and records.

2.1 LEAF AREA DENSITY

The most important role in the spatial characterisation of tree crowns
throughout this thesis is played by the leaf area density &(x) > 0
[m2m3], where x = (x1,x2,x3) € R? x R, identifies a position in 3D
space, R? x {0} representing the local horizon. Following the defini-
tion of the related classical leaf area index (see section [2.3.2), &(x, t)
is defined as the spatial density of one-sided green leaf area in x at
time f (see also Sinoquet and Andrieu, 1993). A particularly important
property of the leaf area density is its continuous dependence on the
space variable x.

For a given bounded phase space, computing leaf area density is
basically independent of the number of leaves, which predestines it
for old and large trees. As opposed to global, spatial and even certain
topological models in the sense of (Godin| (2000), leaf area density is
not restrictive in terms of shape or in any other way, which suggests it
in particular for the modelling of plasticity and spatial variability.

A key argument in favour of the use of leaf area density is the
supposedly needless over-complication of a topologically character-
ized crown structure on a more macroscopic scale. Consider the two
photographs in figure 5| showing the the Bavaria Buche, a famous Euro-
pean beech tree in southern Germany, estimated to have been between
500 and 800 years old, measuring 22 meters in height and more than
30 meters in crown diameter by the time it was destroyed by lightning
in autumn 2013 (Kratzer, 2013). The number of metamers within its
very complex topological branch system (figure [5p) is beyond present
modelability (cf. section ). And yet this does not seem to matter
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2.1 LEAF AREA DENSITY

(b)

Figure 5.: Bavaria Buche in 1988 before and after foliation. With kind
permission by Christoph Reischl.

with regard to the apparent regularity of the distribution of foliage
we observe in figure jb. Or else, the tree achieves this very regularity
by adapting its topology accordingly. Indeed, individuals of the same
species and the same age growing in similar environmental conditions
can show very similar foliage distributions although exhibiting very
different branch system topologies. This is particularly true for old
and large trees which are beyond the feasibility of present topological
functional-structural models. The apparent higher hierarchical goal
of attaining a certain leaf distribution seems to govern processes on
the lower topological level. In this thesis, we thus closely follow an
idea formulated by Thornley and Johnson| (2000) in conjunction with
the definition of teleonomic models: "It is of course assumed that
the diversity of the possible mechanisms at the lower levels is able to
satisfy these [higher level] requirements”. Hence, we focus on sup-
posed higher level drivers for the dynamics of the spatial distribution
of foliage, under the tacit assumption that a plastic tree will find a
topological way;, i.e. in terms of bifurcations at the right time and the
right place, to enable a given distribution. This allows to simulate
crown dynamics, in particular those of old trees, in an unrestrictedly
plastic, yet minimally complicated model framework.

It should not be overlooked that characterizing foliage in terms of
spatial leaf area density is not merely an attempt to make simulations
of crown dynamics more efficient and robust compared to topological
models. The concept has considerable value in itself and is able to
address questions that models based on global, spatial or topological
representations will have difficulty responding to, e.g. exploring the
isolated impact of unrestrained phototropism on morphological crown
dynamics discussed in detail in section [3.3]
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2.1 LEAF AREA DENSITY

2.1.1  Empirical measurements and use in models

We have found only a single example of an empirical measurement that
comes close to determining leaf area density. Fleckl{oo1) established
total leaf area of large branches and divided this quantity by the
volume of a branch-enveloping polyhedron. This branch-specific leaf
area density distinguishes itself from leaf area density as defined here
in that it is not local in the narrow sense, not defined in the space
between branches and thus in particular not spatially continuous.
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Figure 6.: Empirical branch-specific
leaf density of a beech
tree, adapted from Fleck
(2001)).
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Some tree models based on a global representation do not assume a
homogeneous distribution of leaves in the crown envelope (Wang et al.,
1990; Wang and Jarvis, 1990; Baldwin et al., |1997; Porté et al., 2000).
Instead, local leaf area density is empirically described in terms of the
product of two functions, often based on Beta or Weibull distributions,
taking height and distance from the trunk as arguments, respectively.
The assumptions of independence of the horizontal and vertical dis-
tributions of leaf area density as well as the axial symmetry of the
density, in order to simplify the acquisition procedure, are debatable.

To our knowledge, no functional-structural tree growth model de-
scribing the dynamics of leaf area density as defined here exists to
date. The theoretical 2D approach by Sonntag| (1996) (cf. figure 2p),
essentially a cellular automaton model, however, is worth mentioning
in this context. In a non-topological way similar to the one pursued
throughout this thesis, space is divided into cells that contain a cell-
specific amount of leaf area density which affects and is affected by
spatial tree growth dynamics. Yet, some of the model assumptions do
not apply in a reasonable way if the size of a cell would tend to zero,
which demonstrates the incompatibility with the present spatially
continuous leaf area density concept.
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2.2 HORIZONTAL LEAF AREA DENSITY

In the case when the vertical structure of a plant or plant community
is secondary to the horizontal occupation of space, the horizontal leaf
area density, #(x) [m>m™?] for x = (x1,x2) € R? can be a suitable
variable to describe foliage distribution in a less complex and compu-
tationally demanding way than the 3D leaf area density. It is formally
defined as the vertical integral over the latter variable,

MN(x1,x0) = /000&(361,X2,X3)dx3-

It contains information about the total quantity of foliage above a given
ground position, but not on its vertical distribution. The horizontal
leaf area density is particularly suited for modelling spatial dynamics
if the following assumptions are satisfied:

o Radiation can reasonably be simplified to be vertical only

o Inter-individuals crown overlap is either negligible or sufficiently
even

o Intra-individual processes are only little affected by height

In particular Beer-Lambert’s law (see section plays a significant
role with regard to the first two assumptions.

A few empirical parametrisations of # exist, mostly for crops, and
can be found in the works of Fukai and Loomis (1976), Myneni et al.
(1986), Cohen and Fuchs| (1987), Wang et al. (1990) and Sinoquet et al.
(1991). Common acquisition techniques include the stratified clipping
method and the silhouette method (see Sinoquet and Andrieu, 1993
for details).

2.3 RELATED VARIABLES

In 1981, |Ross| asserted that “Experimental data on the horizontal
variability and two-or three-dimensional distribution of phytomass
and phytoarea are very scarce” — a fact that is as true today as it was
three and a half decades ago. This is all the more surprising given
that two very related variables, the vertical leaf area distribution and
especially the leaf area index have experienced considerable popularity.
We return to specific shortcomings of these variables in contrast to
& and & in the context of the computation of light interception in

section

2.3.1 Vertical area leaf density

The horizontal leaf area density # was defined as the vertical integral
over the leaf area density . Taking the normalized horizontal integral
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2.3 RELATED VARIABLES

instead, yields the vertical leaf area density LAD, [m*> m?3] in height
X3 as

1
LADy(x3) = o e & (x1,x2,x3) dxq dxo, (1)

where crA denotes the crown projection area, i.e. the area of the
projection of the support of & onto the xjx;-plane.

Vertical leaf area density is often used to quantify the vertical vari-
ation in light transmittance within the canopy (Vose et al., |1995).
Although the horizontal homogeneity of the LAD, variable is not
without controversy (Wang and Jarvis, 1990; Stenberg et al., 1994;
Cescatti, [1997), its range of applications covers canopy gas exchange
models (see Meir et al., |2000| and references therein) as well as models
for forest structure and productivity, water use and atmospheric depo-
sition to the forest canopy (see Vose and Swank, 1990, and references
therein).

Meir et al. (2000) revisited methods for determining LAD,, which in-
clude destructive sampling (Kato et al.,|1978; Hollinger, 1989; McWilliam
et al} |1993) and the optical point-quadrat method (MacArthur and
Horn| 1969; |Aber, |1979). All in all, measuring and estimating LAD,
remains difficult and tedious. Empirical parametrisations of x3 —
LADy (x3), often based on Beta or Weibull functions, have been pre-
sented by Allen| (1974), Waring| (1983), Wang et al.| (1990), Mori et al.
(1991), Maguire and Bennett| (1996), Cescatti (1997), Jerez et al. (2005),
Weiskittel et al.|(2009) and Nelson et al. |(2014).

Due to the lack of horizontal information, vertical leaf area density
is only of limited value for problems of spatial competition (but
Kikuzawa and Umekil (1996) used it to study vertical competition in a
multi-layer forest) and the horizontal occupation of space. Moreover,
it requires a priori knowledge on an additional parameter, the crown
projection area crA — without which, different degrees of horizontal
crown expansion, e.g. in the case of columnar versus spreading trees,
would no longer be comparable.

2.3.2  Leaf area index

Watson| (1947) defined the leaf area index LAI [m*m™] as the total
one-sided area of leaf tissue per unit ground surface area. In terms of
the formerly defined variables, it computes as

LAI = / LAD, (x3) dxs
0

1
_ . dx, d
o ]Rzﬁ(xl,xz) x1dx;
1
= — , X2, dxidx, d
. IRS&(M X2, x3) dx1 dxo dx3
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The simplicity of this non-spatial variable has not derogated its exten-
sive use in, among others, productivity models, and soil-vegetation-
atmosphere transfer models (see Meir et al., 2000, and references
therein) as well as models of light interception and productivity, de-
position of atmospheric chemicals, evapotranspiration, and site water
balance (see |Vose et al.;1995,|and references therein). The popularity
and wide-spread applications of the LAI are reflected in the large
number of reviews of estimation methods, including those by Kvet
and Marshall| (1971), Ross| (1981)), Chason et al| (1991), Smith et al.
(1991), Fassnacht et al. (1994), [Dufréne and Bréda|(1995), Kiissner and
Mosandl| (2000) and |Brédal (2003).

(At times, the non-spatial variable LAD = . - LAl where H denotes
tree or canopy height is also called leaf area density and is obviously
not to be confused with the local leaf area density & = &(x).)

In the following, for the sake of brevity and better readability, we
write (horizontal) leaf density in place of (horizontal) leaf area density.

2.4 SPATIAL DENSITY IN DYNAMIC POPULATION MODELS

Modern theoretical ecology could not be imagined without spatial
density-based models. By arguing that a large enough biological pop-
ulation can reasonably be described in terms of a spatially continuous
density distribution, modellers take a step back from the individual
members of the population and consider the bigger picture. Whereas
movement, reproduction and death patterns of a singular individual
can be extremely complicated to describe, let alone predict, these
effects may average out at the scale of the population. The most
prominent example of this is the relatedness of the random walk and
Brownian motion to the diffusion process modelled by the fundamen-
tal solution of the heat equation on the individual and collective scale,
respectively. Indeed, the smoothness of the spatial density with respect
to both space and in many applications also time suggests describing
its spatio-temporal dynamics in terms of continuity equations. For a
spatial density u = (x,t) where t € R denotes time, the basic form
of such a model reads

au:f_vx']/ (2)

where the reaction term f accounts for local birth and death rates,
e.g. in a logistic way, and | is a flux that transports individuals
through space under conservation of total mass. In many applications
J is given by an advection-diffusion flux, i.e. | = =DV u+v-u
for a velocity field v and a diffusivity D > 0, which reduces to
the extensively studied classical reaction-diffusion equation when
v = 0. Coupled systems of such equations allow to include interactions
between several populations. We refer to the standard works by |(Okubo
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and Levin| (2002) and Cantrell| (2013) on reaction-(advection-)diffusion
in ecological modelling and to the review by |Pierre| (2010) on results
on the existence of global solutions of reaction-diffusion systems. In
plant modelling, |[El Hamidi et al| (2008) provided an example of this
approach on the ecosystem scale by considering the spatial density of
plant individuals and using it to describe competition.

The suitability of spatial density in the ecological context increases
with an increasing number of members of a population. The large
number of leaves — or, in a manner of speaking, members of a (strongly
interconnected) leaf population — especially in old trees, locally ac-
counting for units of leaf area, offers strong support for the spatial
density approach.

The model presented in chapter 4} describing the continuous expan-
sion of the foliage of crops over the course of one season, is indeed
based on (2). In chapter|s|, we explore how the evolution of leaf density
of trees over several growth cycles can be expressed in the framework
of continuity equations.

25



GENERAL MODEL FEATURES

Having introduced leaf density and horizontal leaf density as the basic
modules of the plant growth models presented in the subsequent
chapters and [f of this thesis, here, we present several basic
characteristics that are shared by the different models.

3.1 BEER-LAMBERT’S LAW

Foliage characterized in terms of leaf density has the properties of
a continuous light-absorbing medium, through which travelling ra-
diation decreases in intensity according to Beer-Lambert’s law (see
for example Ingle Jr and Crouch|(1988) for the straightforward mech-
anistic derivation). For a photosynthetically active radiation PAR(?v)
reaching a tree with given leaf density & from direction v € S%, the
radiation in a point x € R? is thus given by

(o) exp (< [ 0 NG T@)-MOE), 6

where N(x) € S7 and T(x) € [0,1] denote the average normal to the
leaf surface and leaf transmittance inx, respectively. Accordingly, the
total radiation inx reads

/52 PAR(D) - exp (— /X+R+'UU.N(5) CT(E) - &(E) dg) Jo.

+

For the simplified case of merely vertical light incidencey = (0,0, 1),
PAR(7V) = PAR, and constant leaf angles and transmittance throughout
the crown, @ reduces to

PAR - eXp (—)\ . /xoo - (x1,x2,83) d53> ’ @)

3

with the extinction coefficient
A=N;-T€]|0,1]. 6)

@ points to a key motivation of the variable #, since the radiation
reaching the ground point (x1, x,0) can be expressed as

PAR - exp(—A - #(x1,x2)). (6)
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3.1 BEER-LAMBERT’'S LAW

Hence, if we make do with the above simplifications and are merely
interested in the globally intercepted radiation, considering # pro-
vides the same amount of information as the much more complexé.

Leaf transmittance is normally merely species-specific and does not
vary within the crown, i.e. T(x) = T. The variable N(x), accounting
for leaf inclination, can principally be chosen according to species-
specific leaf angle distribution functions (see Ross| 1981, Sinoquet and
Andrieu, 1993, and in particular the comparative review by Wang
et al., 2007). Due to the tediousness of the measurements involved in
determining leaf inclinations in trees (Sarlikioti et al., 2011), the simple
approach of assuming constant leaf inclinations is still very common
(Sinoquet and Andrieu) 1993, e.g. in the models by Higashide, |2009
and Najla et al., 2009). It is also inevitable in conjunction with hori-
zontal leaf density #. We make the same simplification, N(x) = N, in
the models based on leaf density.

Beer-Lambert’s law has experienced popularity in numerous spatial
(Sorrensen-Cothern et al., [1993; Sonntag), |1996; |Grote and Pretzsch)
2002) and topological (Takenaka) 1994, Kellomdki and Strandman)
1995; Rauscher et al.,|1990; Balandier et al., |2000) models. Historically,
Nilson (1971) first motivated the application of Beer-Lambert’s law to
light transmittance on the scale of an LAl-characterised stand, trigger-
ing extensive follow-up use in process-based models. The associated
theoretical assumptions, notably the uniformity of the distribution of
leaves in the canopy, have been subject to criticism (Sinoquet et al., 2005,
and references therein). The LAl-based application of Beer-Lambert’s
law should thus be understood rather as an empirical remedy, and be
distinguished from the more mechanistic application in conjunction
with leaf density &.

As in the case of LAI, information on the vertical leaf density LAD,
(cf. (1)) is also not sufficient to deduce light interception in a reliable
mechanistic way. As a counterexample, consider for some radius 7,
height /1 and constant &, the two leaf densities

& if [[(x, )| <7, 0<x3<h
&1 (x) =

0 else

ry if [[(x1, x)|| <r, h—e<x3<h
&z(x) = 7'[1’2 -;-(5(0’0)(9(1,3(2) if 0 S X3 < h—e

0 else

In the first case, leaf density fills a cylinder uniformly, in the second
case it is essentially concentrated on the vertical axis. Both have the
same vertical leaf density

LADy(x3) =& for0<x3<h
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as well as crown projection area 717> for all 0 < € < h. However,
the total amounts of intercepted vertical light by &; and &, equal
nr?- (1—exp(—h-&)) and 7i7% - (1 —exp(—€ - &)) - 0, respectively,
which can differ arbitrarily.

In summary, we argue that both & and even # can provide mech-
anistic and thus more reliable information on intercepted radiation
compared to LAI and LAD;.

3.2 RADIATION USE EFFICIENCY

Models throughout this thesis assume a linear response of dry mat-
ter production to light incidence in accordance with the concept of
radiation use efficiency introduced by Monteith (1972, 1977). The
existence of this relationship is particularly curious in view of the
strongly non-linear response of leaf photosynthesis to light incidence.
Medlyn (1998) provided an extensive discussion on the physiological
basis of the linearity.

Monteith’s conversion efficiency has been used in many other
growth models both at the scale of the whole tree (e.g. West, 1993}
Bartelink et al., |1997) and, as done in this thesis, at the local shoot
level (Sorrensen-Cothern et al., |1993; [Takenaka, 1994; Kellomaki and
Strandman) 1995).

Curiously, radiation use efficiency RUE not only reduces model pa-
rameters and simplifies computations, it is also a necessity for the
very use of horizontal leaf density #. Again assuming vertical radia-
tion and constant leaf angles and transmittance, the light-dependent
production of dry matter in x € R? for a given leaf density & and
photosynthetically active radiation PAR reads

[ee]

RUE - PAR - A - do(x) - exp (—/\ /x &(x1,x2,03) d§3> / 7)

3

and the total net production above the ground point (x1, x2,0) equals

[oe]

/000 RUE - PAR - A - do(x) - exp (—A-/X &(xl,xz,ég)d§3> dxs
= RUE-PAR- (1 —exp (—A - #d(x1,x2))).

(8)

3

In fact, if the relationship between net production and light incidence
were anything but linear, the integral in the first line of [§) could not
be reduced to an expression in terms of #. The existence of RUE thus
enables the reasonable use of #.

3.3 PLASTICITY, PHOTOTROPISM AND TELEONOMY

In most contexts, crown plasticity refers to a tree’s ability to locally
adapt its above-ground form in order to capture light as much and



3.3 PLASTICITY, PHOTOTROPISM AND TELEONOMY

efficiently as possible. This comprises not only phototropism on the
shoot level, i.e. the directional growth towards light (see the extensive
reviews by [lino, 1990; Whippo, 2006; Hohm and Fankhauser, 2013
for physiological and ecological details), but also light-dependent
branch growth rates (Strigul et al., |2008) as well as the physiological
degradation of shaded branches (Stoll and Schmid, |1998). Strigul
et al. (2008) mentioned plasticity patterns in conifers, broad-leaf trees,
tropical and temperate forests, and address reasons for differences
in their respective magnitudes in terms of different histories and
ecological strategies (see also Kleunen and Fischer, 2005).

In a landscape-scale model, based on a global representation of
tree crown shape, plasticity in regard to light and competition for it
has culminated in the perfect plasticity approximation (Strigul et al.,
2008), where the assumption of trees growing almost unrestrictedly
toward the most open space simplifies stand structure in computations.
Sorrensen-Cothern et al.| (993)|modelled plasticity based on a spatial
architectural representation. Phototropic plasticity is also incorporated
in various ways in several topological tree growth models, e.g. when
the longitudinal growth or the production of new shoots is related to
the local light climate (e.g. [Takenaka, |1994; Ballaré, 1994; Kellomaki
and Strandman, |1995; |Sterck et al} 2005; Qu and Wang) 2011).

Several of the above mentioned approaches implicitly feature teleo-
nomic characteristics: The interception of light is considered in con-
junction with biomass production, and thus plasticity for the sake of
light interception can be seen as serving the higher purpose of growth
maximisation. Models in this thesis are strongly based on this last
rationale. Indeed, since net biomass production is proportional to
local leaf density and local light interception, the direction of the local
light gradient (cf. (4)),

[e0]

V. PAR - exp <—/\-/x &(xhxz,és)df::s) € R, (9)

(analogous for the case of non-vertical radiation, according to (3))
coincides in fact with the direction of the greatest increase net biomass
productivity, i.e. net biomass production [}) divided by the local leaf
density &(x). The local expansion towards the light — or equivalently,
in a manner of speaking, the direction most favourable in terms of
anticipated future local biomass productivity —i.e. in the direction of
the light gradient (p) and its analogue for horizontal leaf density,

V. PAR - exp (—A - #(x1, %)) € R?, (10)

play a central role in the spatial model dynamics in this thesis.
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3.4 COMPETITION FOR LIGHT

Competition for light in plant communities is considered to dominate
competition for all other resources (Sorrensen-Cothern et al |1993),
and it plays a fundamental role in this thesis. In the case of a popu-
lation of m plants with leaf densities &;, ..., &, potentially shading
each other, the generalisation of @ for the light incidence in a point
x € R3 is given by

PAR - exp (— /oo Ai - doi(x1,x2,83) dC?)) : (11)
X3 =1

The case of non-vertical radiation (cf. (3)) is analogous. Similarly, the
generalisation of (6) and analogue of for the case of n horizontal
leaf densities #q, ..., #,; reads

PAR - €Xp (— f:)&i . Qi(xl,x2)> . (12)

i=1

Now, if the local expansion of a plant follows the spatial gradient of
or ([12), its horizontal expansion will come to a rest when meeting
another crown, since this region is already shaded by the competitor,
hence the x;x;-entries of the light gradient vanish. In teleonomic
terms, at this point, an additional horizontal expansion is no longer
beneficial in terms of the maximisation of biomass production. Here,
we follow Sorrensen-Cothern et al. (1993) in the assumption that the
local response to shading does not depend on whether it is caused by
external or self-shading.

This particular model mechanism of spontaneous self-organisation
and adaptation to the current competitive environment brings about
a realistic reduced horizontal expansion of a simulated crown under
competition compared to that of a solitary individual. However, a
lesser occupation of horizontal space than in the case of the spatially
isolated crown implies a higher degree of self-shading for the indi-
vidual, and thus a lesser biomass production in the middle and long
term.

The empirical data used for model validation in this thesis thus
focusses on density experiments in crops and trees. The data sets
themselves demonstrate the strong dependence of the magnitude of
growth and size variables on field or stand density. In other models,
this dependence is often taken into account in terms of density-specific
parameters or empirical competition indices (reviewed thoroughly by
Burkhart and Tomé, 2012), to which the challenges described in section
apply. In contrast, in our models, parameters are merely species-
specific, and competition effects are entirely accounted for by the
above described mechanisms.
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3.4.1 Perodic boundary conditions

In the applied models in chapters [ and [, we compare model simu-
lations to data from even-aged monospecies stands which are either
planted in a regular pattern from the start, in the case of crops, or,
in the case of mature tree stands, which developed a spatially even
distribution over a long period of competition (Cooper, 1961; Ford,
1975; Kenkel, [1988). We take advantage of the regular horizontal spac-
ing in these cases by simulating merely an average plant growing on
a two-dimensional unit cell, whose centre represents the position of
the seed and later stem base. Surrounding competitors are taken into
account by simulating the occurrence of foliage, as well as local light

conditions in particular, beyond the cell as the periodic continuation of
those within (cf. Rapaport, 2004). A competitor’s foliage perceived by
the simulated plant growing towards the cell border is thus given by
its own at the opposite side of the cell. This allows for the symmetry of
growth among regularly spaced plants of a homogeneous community,
in which each member grows and shades its environment in similar
measure. This approach is justified if the number of individuals at the
border of the stand is small compared to the number of individuals in
the regularly spaced interior, which is the case for our data sets.

The size and shape of the unit cell is either defined, if known, by
the plant positions. In the regularly planted field simulated in chapter
in which seed positions lie on a regular two-dimensional grid, a
plant’s cell is given by the rectangular tile of the Voronoi tessellation
with the plants” sowing positions as generating point set. If merely the
stand density sD [m™], i.e. number of individuals per unit stand area,
is known, as in chapter @ the area of the cell is given by s%' and its
shape can be defined as a disk. Over the course of a field experiment,
stand density gradually decreases as the result of occasional harvest
or natural death of single individuals, thus reducing the pressure of
spatial competition on the remaining members of the populations. In
simulations, this is accounted for by dynamically increasing the size
of the simulated average plant’s cell, i.e. expanding its boundary, out
from the cell centre corresponding to the appropriate stand density at
the respective point in time.

3.5 BIOMASS ALLOCATION

Lacointe| (2000) and [Le Roux et al.| (2001) classified models for the
allocation of produced biomass in trees, distinguishing between ap-
proaches based on empirical coefficients and allometric relationships,
teleonomy (often denoted functional balance in this context), transport-
resistance models, and sink interactions. Here, we briefly address the
tirst two of these categories as these are applied in models in this
thesis, and refer to the above mentioned reviews as well as the more
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recent one by [Franklin et al.| (2012) for a broader overview of the
alternative approaches, further details and examples.

In a first step, the partitioning of biomass between different plant
compartments or organs can be assessed empirically. Brouwer ( 1962)
observed that for constant environmental conditions, allocation coeffi-
cients of shoots and roots are roughly constant. In other cases, specific
plant ontogeny can lead to coefficients that vary over time (cf. |Le Roux
et al., |2001). We apply such a time-depended empirical approach in
the crop model presented in section

The empirical findings of Brouwer| (1962) can also be interpreted
from a teleonomic point of view. If the rate of uptake of a particular
resource is assumed proportional to the mass of the organ type it is
assimilated or acquired by, and if the internal physiological processes
of the plant require a certain fixed ratio of the different resources,
then, in order to maximize functioning, the allocation coefficients
quantifying the partitioning of produced biomass to the different
compartments and thus determining mass increments will tend to
constants. These might change, for instance, because changing en-
vironmental conditions lead to the violation of the first assumption.
Historically, Davidson! (1969) first described this idea mathematically,
giving rise to a large number of follow-up approaches in the modelling
of shoot-root-allocation ratios (see [Thornley and Parsons) 2014, and
references therein).

3.5.1 The pipe model theory

A similar rationale underlies the pipe model theory (Shinozaki et al.,
1964) for trees. Observations of a species-specific constant ratio be-
tween the conductive cross-sectional area of a branch and the leaf mass
attached to it and its daughter branches gave rise to the conceptual
image of a sapwood pipe leading from the roots up to a leaf, in charge
of its hydraulic as well as mechanical support. In particular, a pipe’s
mass is assessed proportional to the product of the leaf mass at its tip
and the root-to-leaf distance along the branch system. Branches and
ultimately the trunk are the result of joining pipes. This functional
explanation follows Leonardo da Vinci’s observation of the preserva-
tion of cross-sectional areas at branching points in the early sixteenth
century (Richter, 1970).

The theory goes on to attribute the transformation of conductive sap-
wood into heartwood to the abscission of leaves causing a functional
shutdown of the appropriate pipes. This also explains the tapering of
the below-crown part of the trunk despite the absence of first order
branching points: This part contains pipes that once connected to
branches that were shed at some point in time, cf. figure

Besides extensive empirical findings in support of the theory, it is
has also been subject to controversy, as the ratio of sapwood area
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Figure 7.: Original caption: “Diagrammatic representation of the pipe
model of tree form, showing the successive accumulation of
disused pipes in the trunk associated with the progress of
tree growth”, from Shinozaki et al. (1964).

to leaf mass or leaf area has been observed to vary with tree height
and age, site quality, stand vigour and density, water availability and
average vapour pressure deficit in some cases (West, [1993; Mencuccini
and Grace, [1995; [White et al.,|1998; Mokany et al., 2003, and references
therein). However, to date, these variations as well as hypotheses
on their origins and suggestions for improvements are not uniform
enough to point to an obvious general direction as to how to adjust
the original theory (Beyer, R., Lehnebach, R., Letort, V., Heuret, P,
unpublished manuscript).

In this thesis, we follow in the tradition of numerous approaches
that applied the original pipe model theory in conjunction with the
allocation of biomass in trees, including but not limited to the works
by Mikeld |(1986), Prentice et al. |l993), Flauhs et al. (t995), Perttunen

et al.|(1996), Williams et al.| (1996), |Allen et al.| (2005)), Kubo and Ko+

hyama (2005), Cournéde et al.| (2006), Sterck and Schieving| (2007) and
Mathieu et al.| (2009).

It should be noted that the application of the pipe model theory
in these models, just as in ours, is essentially identical to the use of
the Prefsler law, which postulates a proportionality of leaf mass to the
area of the annulus that is the last tree ring (Prefiler| 1865). Under
the assumption of a constant specific wood volume, the appropriate
proportionality constant plays the same role as the pipe parameter of
Shinozaki et al. (P in the equations below). On a quantitative level, the
two propositions thus amount to the same, differing merely in their
more conceptually and empirically oriented perspectives, respectively.

In the tree models presented in this thesis, the allocation of a given,
locally available biomass quantity B(x) in a point x comprises its
partitioning into p - B(x) units of new leaf mass in x (inducing an
increase in &(x)), and (1 — p) - B(x) units of sapwood mass for the
pipe that is mechanically and hydraulically supporting the new foliage,
p € [0,1] denoting a partitioning factor yet to be determined.
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Denoting the length of the pipe leading from the roots to x along the
branch network by | x||y (see below), the pipe model theory requires
the equation

leaf pipe
mass length
——
(1—p)-B(x)=P-p-B(x)-[lx[ly (13)
mass available mass required
for the pipe for the pipe

for a given, species-specific pipe model proportionality factor P > 0
[m™] to hold. Solving yields the partitioning factor

1

_— 1
T+ [xly (14)

p=rpx)=
In the context of leaf density, the pipe model theory allows to deduce
the total sapwood mass of a tree with given & as

SLA

[P #0) lxl (15)
e —
leaf mass density

where sLA [m? g'] denotes specific leaf area, supposed constant. More-
over, the area of the sapwood part of a cross-section of the trunk at its
base (not accounting for bulking) equals

/ - do(x) - swvdx,
RS~ SLA

where swv [m3 g™ ] denotes specific wood volume, also assumed con-
stant.

The spatially continuous and in particular non-topological nature
of the leaf density concept implies that a sensible function || - ||y that
maps a leaf position x € R? to its distance to the roots is not obvious.
Here, we use the following heuristic approximation length of the
root-to-leaf path to x:

||XHY=x3—M 5. M%)l

tan(¢) sin(¢) (16)
[[(x1,x2) |
= 2 CARAL 221
x3+ (2 — cos(@)) sin(g)
The idealised pathway thus consists of three segments: A trunk-
associated segment leading from the origin up to heights — ”(%,

where a branch-associated segment of length 1Cer, (xZ)

I I leading straight

to x, bifurcates at the given angle ¢ € [7, [ Wthh represents the

average angle that the trunk confines with first order branches. Fol-
lowing Sonntag| (1996)), root length is assumed to be equal to branch
length, thus the factor 2 in the second summand in the first line of

(16).
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All models presented in this thesis proved to be highly insensitive to
the particular choice of ||x||y in (6). Specifically, varying the average
branching angle ¢ had virtually no impact on simulation results. This
is not surprising given that the upper ground part of || x||y basically
ranges between ||x|| and x3 + || (x1, x2) ||, and these values differ only
very little for typical leaf positions x during the entire growth process
(in particular, crown radius is commonly one magnitude smaller than
tree height). The insensitivity extends to the assumption regarding
root length. For instance, alternatively following [Valentine (1985)
by assuming of a proportionality between pipe length below and
above ground, i.e. root- and stembase-to-leaf length, respectively, and

assessing [|x|ly = (1+C) - (x34 (1 —cos(g)) - ”(sfrll’(xqf))”) for reasonable

C €]0,1[, had again no measurable impact.
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Models
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CONTINUOUS-TIME MODELLING OF CROP
GROWTH

We start off the applications of the spatial density-based characteri-
sation of foliage to plant growth modelling with a two-dimensional
model for crops, based on horizontal leaf density &% = #(x, t), where
x € R? for the remainder of this chapter. The relatively small height
of crops as opposed to trees motivates the use of this simpler variable,
before, in the subsequent, tree-oriented chapters, we will be primarily
concerned with the 3D leaf density &.

We model growth over the course of one year, and describe the
continuous expansion and increase of foliage during that time with
an equation of the form (2), more specifically

aatQ(x,t) =a(x,t) —s(x,t) — Vi J(x,1). (17)
The reaction term a — s comprises the allocation of produced biomass
to foliage as well as leaf senescence. In the model, these two terms are
obtained by first computing global allocation and senescence at the
whole-plant scale, a4 = a4(t) and s4 = s4(t), and then applying a
weight function to obtain the local terms a(x,t) and s(x, t). The flux
term | essentially describes a motion towards the light in the spirit of
section j.3]

Section |4.1| presents model hypotheses and equations for the indi-
vidual plant as well as a population. In Section we demonstrate
how the model can be related to the porous medium equation, before
using this transformation to obtain certain theoretical results as well
as to speed up the computations. In section the model is tested
against experimental data from three sugar beet populations varying
in density.

The complete model was previously presented by |Beyer et al.
(2015a).

4.1 MODEL DESCRIPTION
In this section we present the biological concepts which form the basis

for our model. The equations are specifically derived for the case
of sugar beet, which has two kinds of organ compartments, foliage
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and roots. In principle, they generalize to other plants by considering
further types of compartments (e.g. stem and fruit in the case of
sunflower or maize).

The time domain for the validity of the model is limited to the
classical cropping season of the sugar beet, from sowing to harvest.
Botanically, sugar beet is a biannual plant featuring a very different
development in the second year.

According to the considerations on Beer-Lambert’s law and radia-
tion use efficiency in sections [3.1]and [3.2] respectively, the net biomass
production [gs™] of a horizontal leaf density # at time t reads

b(t) = RUE - PAR(f) - /R 1—exp(—A - #(x, 1)) dx (18)

for a photosynthetically active radiation PAR(#) [Jm™s™] reaching the
plant from above at time t, a radiation use efficiency RUE [g T]™] and
an extinction coefficient A.

The global allocation and sensequence functional terms specified in
the following are inspired by the LNAS model presented by Cournede
et al| (2013) and (Chen and Cournede (2014). For the specific case
of sugar beet, the totally produced biomass is divided between
the plant’s two organ compartments foliage and root system. Total
allocation to foliage and roots [gs™], respectively, at time ¢ are

aa(t) = v(t) - b(t)
a,(t) = (1 —=7(t)-b(t)
for a time-dependent ratio (f) € [0,1] governing the partitioning.

Following |Guerif and Duke| (1998), we use the following empirical
function to describe it:

(19)

Y(t) = v0+ (vF — 70) - Fa(T(1)), (20)

where F, denotes the cumulative distribution function of a log-normal
law with an underlying normal law of mean y, and standard deviation
0. Its argument T(t) = f(f T(u) du [°Cdays] denotes thermal time,
where T(t) (in °C) is the temperature at time t. The values y( and
7 denote the initial and eventual foliage-to-root biomass distribution
ratio, respectively.

The quotient of cumulative senescent leaf mass and cumulative
green leaf mass is 0 at t = 0, and monotonically tends to 1 as ¢
becomes large. This motivates to describe the course of the global leaf
senescence, sq(t) [gs™] over time by means of a time-delayed version
of a cumulative distribution function F; of a log-normal law with an
underlying normal law of mean y;; and standard deviation o5, i.e.

fot sa(u) du

a4(0) + fot aa(u) du =50, ()
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4.1 MODEL DESCRIPTION

where a4(0) = 90 - b(0), b(0) = by is the mass of the seed at time
t =0, and

7

0 else

Bt = { F(t(t)— ) ift(t) >

T, > 0 denotes the thermal time at which senescence starts. Hence

sa(t) = S(R() - 4a(0), (z2)

where Aq () = aq(0) + fot a4 (1) du denotes the cumulative produc-
tion of foliage until tlme t. For later use we also define the cumulative
leaf senescence Sg (t) fo sa(u

The increase and decrease of fohage hitherto computed at the whole-
plant scale are now transferred to the local level in terms of functions
a and s satisfying

/]Rz a(x,t)dx = ag(t)-sLa and /]Rz s(x,t)dx = sa(t) -SLa,

sLA denoting specific leaf area [m? g™], which is assumed to be constant
over the growth process. We make the simple approach of the local
allocation to foliage being proportional to the existing local foliage
quantity:

Ay t)
a(x,t) = f]Rz 1 d a.(t) - SLA (
o) 23)
s(x, t) = -s.(t) - SLA

f]RZ (x,t)d

This completes the reaction term of (7).
We now specify the propagation term | = J(x, ) of (17), using a
slightly different form than (10):

J(x,t) = —k-a(x,t)- V. #(x,1) (24)

with a mobility constant k > 0. The flux magnitude thus corresponds
to the local allocation of foliage. The gradient we use here, V. #(x, ),
pointing in the direction of the greatest rate of decrease in horizontal
leaf density — inducing a motion away from high and towards low &,
corresponding to shaded and lit regions, respectively — points in the
same direction as the local light gradient,

Viexp(—A-d(x, 1)) = —A-exp(—A-d(x,t)) - Vid(x,1)

We thus merely omit the exponential diffusion coefficient affecting the
local flux magnitude, while preserving the direction of the phototropic
flux (cf. [3.3). This choice will later allow a rigorous mathematical
treatment of (17).
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4.2 REDUCTION TO THE POROUS MEDIUM EQUATION

The description of a population P of plants in a field requires a few
modifications in order to take inter-individual competition for light
into account. An indexed equivalent of reads

;Q(p) = ") — 5P — v, J») for every plant p € P.

In this setting, the portion of light reaching a ground point x now
equals exp (— A - L,cp A")(x,t)), as detailed in section The
generalisation of the biomass production for plant p € P reads

b(P)(£) =RUE - PAR(#)-

&) (x,1) .
R Lrcp ®7(x 1) (1-exp (A L,cp 47 (x0)) dr.

a0V (xt)
Lrep U9 (xt)
different individuals, and is the natural choice in absence of informa-

tion on the vertical distribution of the foliage of the members of P.
Nevertheless, strictly speaking, it makes the tacit presupposition that
the relative vertical profiles are similar, which had been one of the
conditions for the reasonable use of # in section

Based on b(?)(t), total allocation and senescence, as well as the local
reaction terms, a(P) and s(P), are computed for each plant just as before.
In particular, the functions p, F, and l?s in and are the same
for each individual. Lastly, the generalisation of the flux terife4) fpr
plant p reads

The weight coefficient assigns intercepted light to the

JW) (x,t) = —k - a'P) (x,y,1) - V, (Z 4(”)(x,t)> .

eP

4.2 REDUCTION TO THE POROUS MEDIUM EQUATION

The obtained system of equations, containing the relatively heavy to
numerically compute continuity equation (17), can be significantly
simplified in the case of a single plant, i.e. one which is not (yet)
exposed to competition. This is achieved by transforming it into the
well-studied porous medium equation, for which an explicit solution
is known for specific initial conditions.

Proposition 1. Consider a single, spatially isolated plant with hori-
zontal leaf density # = #(x,t). Let & be subject to parabolic initial
conditions and no further boundary conditions. Then t — Aq(t) can
be expressed in terms of a first-order ordinary differential equation.

Proof. We will derive the desired equation constructively: Entering
the equality

SLA - /Rz &5, 1) dx = Aa(t) — Sa(t). (25)
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into the definitions of a4, s4 and J, becomes

d . k-a. S.
Ja=v. (A._S‘ o vx4>+¢ e

where we dropped the arguments x, ¢ for short. Let v(x, t) = %,
then

d
&v:koag'vx-(wvxv).

Let H(t) = & - Ap(t) + Hy, with Hy depending on the chosen initial
conditions (see below), and define the new variable = H(t) and the
function w = w(x,v) such that v(x,t) = w(x, H(t)). This yields the
porous medium equation

d
W= Vi Qw-Vyw) . (26)

For parabolic initial conditions and no further boundary conditions,
an explicit solution of over the whole R? is in fact known as the
Zel’dovich-Kompaneets-Barenblatt solution (Vazquezooy). [It reads

[

w(x,v) = max <O, f/?/ - 161/> (27)

for v > 0, where the constant C is chosen to be in accordance with the
given initial conditions: We have

/ w(x,v)dx = 87C?,
R2

independently of v. Applying this to the definition of w yields for
t=0
Aa(0) - 87C% = /2 &(x,0) dx,
R

and the latter term equals SL& ) Hence C = \/ﬁ The value of the

constant Hy follows after fixing the radius of the initial support of &
at t = 0, which we do by choosing #(-,0) as a Dirac delta function.
By definition of w we have

M(5t) = (Aa(0)=Sa(0) - (3 Aa() +HO) . (a9

Recalling Sq (t) = Fs(t) - Aa(t) and LAa(t) = aa(t), (18) reads

@ Aa(t) = (t) - RUE - Pa(t)

1—exp< A-Aa(t)-(1—=Fs(t))-w (x’; A.()+Ho>> dx.
(29)
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4.2 REDUCTION TO THE POROUS MEDIUM EQUATION

Entering into yields after a change of variables

R(H(t)) B(t) - Aal(t) 2
/0 (1_eXp< H() '<C_16.,/H(t)>>>'rdr’

where R(t) = /16 - C - \/t, C1(t) = 87 - RUE - PAR(t) - (t) and Co(t) =
—A - (1 — Gs(t)) for short. The upper integration limit R(t) is the
radius of the disk-shaped support of the appropriate w, beyond which

w and therefore the entire integrand vanish. Finally, we have

tth‘ = CC14/2k - Ag +4Ho+

kCi - Ag +2HoC (1 — exp ( 26Co - Aa )) (30)

CZ‘A‘ \/Zk-A‘—|—4H0

as desired.
O

Corollary 1. Under the same assumptions as in proposition 1, the dy-
namics of # are known up to an explicitly known ordinary differential
equation as well.

Proof. A solution of (30) provides # via minding (27). O

Remark 1. Since a ,(t) = 1;&(;) - L Ap(t), cf. (19), root allocation is
also known up to an ordinary differential equation. Alternatively, the

ordinary integral equation

_ 1) T opw)
0= S0 () g a0 )

holds, where f is as in £ A (t) = f(Aa(t)) in (39).

Remark 2. A key theoretical property of solution (as also for
solutions of a more general porous medium equation) is that it has a
compact support for all fixed times (Vazquez, |2007). This is conserved
under the carried out transformations and thus holds for & as well.
Not least, this feature, known as finite speed of propagation, is a
desirable one from a biological point of view.

It also implies the existence of a so-called free boundary, dynam-
ically separating regions with foliage, # > 0, from those without,
& = 0. In our case this boundary can for each t > 0 be straight-
forwardly determined as the circle centred in the sowing position

with radius /16 - C - \/H(t), while the speed of propagation is the
derivative with respect to t of this expression.
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4.3 SIMULATIONS

For an isolated plant with no further boundary constraints, we can
resort to for the entire length of a simulation. Figureéﬂllustrates
the behaviour of # as well as total root and leaf allocation, A \/(t) and
Aa(t), respectively, over time.

a 900
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700
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500
50+ 400
300
25+ 200

100

0 20 40 60 80 100120140160
time (days)

(a) (b)

Figure 8.: Simulation of an isolated plant. Model parameters are
the ones used in section (a) Vertical cross-section
of the axially symmetric graph of #(x,t) for various times
t [days]. We notably observe the properties theoretically
derived before. (b) Total root A \/(t) (solid line) and leaf
mass Aa(t) (dashed line) production [g].

4.3.1  Spatially homogeneous field

A regularly spaced field such as the one considered in section
below is simulated according to the procedure detailed in section
We simulate a single, average plant on a rectangular cell, with
length and width corresponding to half of the vertical and horizontal
distance of the sowing positions, respectively, while accounting for its
competitors, growing and shading symmetrically, through periodic
cell boundary conditions.

In this context and against the background of numerical compu-
tation, the benefit of the transformation carried out in section
becomes apparent: Starting from sowing at t = 0, we can compute the
growth dynamics of a plant in a homogeneous field by resorting to the
ordinary differential equation instead of the partial differential
equation (17), up to the moment when the plant’s foliage first reaches
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the Voronoi cell boundary, corresponding to canopy closure.

From that moment onward, is used to compute growth. How-
ever, in our simulations we observe that in the further course of time,
the space between neighbouring plants is progressively filled with
foliage and that, in fact, the quantity

max #(x, ) —min #(x, ),

xeX XEX
where ¥ C R? denotes the plant’s Voronoi cell, tends to zero as ¢
becomes large. Accepting the respective computational error, this
suggests to pass on to the case of a spatially uniform & = &(t) once

the above difference falls below a suitably small value.
In this case, having V.# = 0,[(1}7) reduces to

j*(t) _ aﬁ(t) — S‘(t) .

7 5 SLA. (31)

where |Z| denotes the area of X. Integration yields

‘(t) _ AQ(t)‘ _|Sﬁ(t) . SLA
X
RIS TOIENCIN

Entering this into (18), minding (19), results in the ordinary differential
equation

;tA‘(t) = RUE(t) - PAR(#) - y(t) - |Z]-

(1 —E(t)) - Aga(t)
l—exp|—A- 5| *SLA .

(32)
This particular case corresponds to the approach by Cournede et al.
(2008), where however |Z| is additionally a function of time.

Hence the only time interval in which the direct use of is actu-
ally inevitable begins at the moment of canopy closure and ends when
the plant’s Voronoi cell is covered with foliage in a quasi-uniform
manner. For both the time periods before and after that, it is merely
an ordinary differential equation which is to be numerically dealt with.

As an aside, we note that an explicit solution of is readily found
for t < 7, i.e. in case of a very dense field for which # is quasi-
uniform from some time t onward before senescence first takes effect.
In this case, entering the right hand side of into minding
F = sq = 0 yields

%Q(t) = RUE - PAR(£) - ¥ (£) - [Z] - (1 — exp(=A - & (1))
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Substituting
o(t) = exp(A - &(t))

yields

%v(t) — A RUE- PAR(E) - 4(8) - [Z] - (0(8) — 1)

which has the solution
t
v(t) = (exp(A-M(tp)) — 1) -exp </ A - RUE - PAR(t) - y(¢) - |Z] dt) +1
0
for t € [t, 7).

4.3.1.1  Comparison to data

Field experiments were conducted in 2008 in the Beauce plain near
Pithiviers, France, N48°10" 12”, E2°15"7” by the French Technical In-
dustrial Sugarbeet Institute (I.T.B., Paris). A single commercial cultivar
(Radar) was sown on April 11 with a distance of 50 cm in between
rows and two different distances between seed-plots, 18 cm and 12 cm.
After plant emergence (corresponding to the date when 80% of the
final population was reached), which occurred on April 28, the most
uniform sections of a large sugar beet field were selected for the trials.
Two weeks later, one plant out of two was removed in a subset of the
lower density section, yielding a configuration with 36 cm between
two plants of a row. The three populations thus correspond to 5.4,
10.9 and 16.4 plantsm™. Irrigation and fertilisation were conducted
for all densities to ensure unstressed conditions. [Lemaire et al. (£009)
provided further details. Daily mean values of air temperature [°C]
and solar radiation [J m™] were obtained from French meteorological
advisory services (Météo France) 5 km away from the experimental
site.

The seed mass by, the specific leaf area sLA and the thermal time
until senescence T; could be deduced from direct measurement, and
were found to be 0.003 g, 0.013 m* g™ and 400 C° days, respectively.
Following |Andrieu et al|(1997) and Hodanové| (1972), the extinction
coefficient A was set to 0.7. Parameters o, ¢, Ya, O, Ps, 0s (cf. (18),
(20), respectively) correspond to those identified by Cournede
et al. (2013).

The two remaining parameters, the radiation use efficiency RUE and
the diffusion coefficient k, were estimated by model inversion, using
the experimental data of the three configuration densities. Table
summarizes.

RUE k 1 Yf Ma  Oa Us O, A by SLA T
43 30 09 02 57 105 80 037 07 0.003 0.013 400

Table 1.: Values of model parameters, newly estimated ones indicated
in bold.

45



4.3 SIMULATIONS

Figure[g|illustrates the results of simulations of the three different
density scenarios, using the estimated parameters. The graphs accord
well with the given data for A , and Ag, which vary considerably in
magnitude among the three densities. The fact that the model adapts
well to these different conditions, despite a common set of parameters
for all scenarios, corresponds precisely to the phenomenon described
in section [.4]
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Figure 9.: Comparison of simulations using the parameters listed in
table [1| to experimental data on A ,(t) (solid line, bullets)
and Ag(t) (dashed line, triangles) [g], per plant, for three
different field densities.

Model variables corresponding to different densities are obviously
identical up to the moment when one plant’s foliage first meets that
of a neighbour (canopy closure). This is an advantage of the present
model over comparable ones where some parameters and thus the
growth dynamics depend on the field density throughout the entire
simulation, e.g. the Greenlab model for sugar beet (Lemaire et al.,
2009) or maize (Ma et al., |2008).

Inversely, the data available to us allows to deduce from the points in
time, when the production curves corresponding to different densities
tirst begin to significantly deviate from one another, the moments
when in the lower density cases neighbouring plants enter competition.
Our simulations show that the parametrized model, in terms of the
speed of spatial propagation of # (cf. remark 2), is indeed well in
accordance with these times, specified by Lemaire et al.| (2009).

4.3.2 Heterogeneous field

An irregularly planted, heterogeneous field has to be approached in
the way presented at the of section taking each plant individually
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4.3 SIMULATIONS

into account. The possibility of speeding up the simulation for early
times remains unaffected by this: For as long as the foliage of a
particular plant p € P does not meet that of any other plant, i.e. for
those t € R for which

O (x,t) >0 = & (x,t)=0 forall me P\ {p}

holds for all x € R?, the growth of plant p can be computed via (30).

Moreover, we note the experimental observation that, under periodic
boundary conditions, the field as a whole tends to a spatially uniform
cumulative leaf area index:

max Y | &) (x,t) — min ) O (x,t) — 0.

2 2
xeR TeP xeR TeP t—o0

Thus, if the centre of attention lies merely on the overall production
of the field rather than the evolution of its individuals, as before, one
may pass on to a uniform cumulative # and the appropriate ordinary
differential equation once the computational error can be said to be
sufficiently small - and hence, in a manner of speaking, treat the entire
field as a single plant with a uniform horizontal leaf density.

As an illustration of the model’s performance in a heterogeneous
case we take on an exercise carried out by Cournede et al.| (2008):
Three field scenarios, depicted in figure [10, corresponding to different
success rates of germination, are considered. This is motivated by the
interest in identifying effects of compensation of the lower density
fields compared to the high density one.

© o o o o
© © o © o
o [@ o [@ o =
© © o © o |z
© o o o o
(@) (b)

Figure 10.: (a) Three field scenarios of (i) all indicated 25 plants, (ii)
the 23 not marked with a square and (iii) the 21 not marked
with a circle, respectively. The distances between neigh-
bouring sowing locations are 50 cm horizontally and 18 cm
vertically. (b) Cumulative biomass production fot b(u)du
over time f of scenarios (ii) and (iii) divided by that of (i).
The initial ratios of % and % caused by the missing plants,
gradually increase, indicating a compensation effect due
to less intense competition.

Running the three simulations (using the system parameters ob-
tained in section |4.3.1.1) and plotting the ratio of the total biomass
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production of each of the heterogeneous fields with 23 and 21 plants,
respectively, to the total biomass production of the homogeneous field
with 25 plants, points indeed to a compensation effect: The initial
production deficit due to the missing, ungerminated plants, is partly
compensated for by the growth of the others, which are subject to less
inter-individual competition than in the homogeneous case. These
results are also in good accordance with those observed by Cournede
et al.| (2008).

4.4 DISCUSSION

In summary, our time-continuous model based on horizontal leaf
density successfully captures density-dependent growth dynamics
of sugar beet. With merely species-specific model parameters, the
model mechanism of spatial expansion in the direction of the great-
est decrease of horizontal leaf density brings about a spontaneous
adaptation with respect to competitors. By simplifying the mobility
coefficient of the actual spatial gradient of light incidence, we were
able to describe the dynamics of # in terms of a partial differential
equation that could be related to the porous medium equation, thus
allowing to express its solution in terms of an ordinary differential
equation for the case of a single plant. The model framework is generic
enough to allow not only other organ compartments beyond foliage
and roots considered here, but also additional physiological processes
and constraints, which have been kept to a minimum in this approach,
to be incorporated.

Depending on the intended purpose of the model, the use of hori-
zontal leaf density # is not inevitably limited to plants that are small
in height. We illustrate this by means of the following modelling
perspective: Over a wide range of conditions, the insensitivity of tree
height to stand density has been observed (Lanner, 1985). Moreover, in
the long term, mono-species even-aged stands generally tend towards
a regular horizontal distribution of individuals (Cooper, 1961; Ford,
1975; Kenkel| 1988). These observations suggest an alignment of the
vertical leaf area profiles across the individuals, which strongly moti-
vates the use of horizontal leaf density # to model canopy dynamics
in such scenarios in place of the more complex and computation-
ally heavy 3D leaf density . Introducing empirical functions for
height-related processes where necessary could make up for the lack
of vertical information in #. A particularly interesting phenomenon to
model in this context are gap dynamics, more specifically the closure
of a light gap resulting from a fallen branch or tree by the surrounding
crowns. Figure [11|shows the vertical projection of a terrestrial laser
scan taken in a pure, even-aged beech stand. The gap induced by the
removal of a tree is visibly closed as the surrounding crowns locally
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4.4 DISCUSSION

extent their crowns along the light gradient pointing towards the inte-
rior of the gap. In the case of an approximate vertical homogeneity
across individual crowns, this process is essentially a horizontal one,
suggesting the use of # for an efficient modelling approach.

bu 2006 bu 2008 bu 2010 bu 2012
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Figure 11.: Vertical projections of eight Lidar-recorded 69+4 year-old
beech tree crowns reconquering a gap over a duration of
six years near Freising, Germany. The vertices of the green

polygon mark the stem bases. With kind permission from
Dominik Bayer.



CONTINUOUS-TIME MODELLING OF TREE
GROWTH

The formation and continuous expansion of leaves during organo-
genesis lends itself to a description in terms of the general continuity
equation (), and has been illustrated in the previous chapter. In this
and the following chapters, we turn our focus to the dynamics of
tree crowns, for which the three-dimensional leaf density & is a more
appropriate variable than the previously considered horizontal leaf
density #, which lacks information in the now more important vertical
direction. In particular, the interplay of foliage and wood, which we
approach by means of the pipe model theory (section| 3.5.}1), calls for
new modelling techniques.

Modelling leaf density dynamics of trees at a large time scale, i.e.
the evolution of t — &(-,t) over several years, instead of the short
time scale period of foliation, proves to be conceptually more challeng-
ing, although at first glance, it might appear amenable to (2) as well:
Emblematically speaking, a tree’s leaf density gradually moves up-
ward and horizontally outward over the years, while simultaneously
increasing in total quantity.

Upon closer look, however, the compatibility of leaf density dy-
namics and (2) becomes arguable from a mechanistic point of view.
Whereas the reaction term f could still reasonably be related to the
formation of new foliage during bud break, the flux term | lacks
a biophysical basis. Leaves do not move in the sense of biological
populations; instead, the abstract expansive motion of leaf area in the
course of the tree’s growth is the consequence of old leaves falling and
new ones forming in different positions. What is more, the process
is accompanied by a corresponding formation of sapwood. This last
mechanism is also the reason why the formation of new leaves cannot
be considered as merely a local process: Whether in terms of the
pipe model theory or a different rule, the allocation of biomass locally
produced by a leaf occurs at the global scale, manifesting itself from
the tip of a branch all the way down to the roots. Now, if we aim
to describe the motion of leaf density in a time-continuous way, we
can certainly not account for the above mechanism by incorporating
the formation of new sapwood pipes for a continuously moving leaf
density at each infinitesimal time step: The toal sapwood mass corre-
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CONTINUOUS-TIME MODELLING OF TREE GROWTH

sponding to some leaf density & is a positive quantity (namely (15)),
and cannot be covered by the infinitsimal amount of biomass produced
by & in an infinitesimal time step. Quite apart from that, forming an
entire set of pipes, corresponding to the appropriate leaf density, at
each infinitesimal would imply an infinite amount of sapwood after
any given positive time interval.

These considerations lead to the sobering revelation that while an
equation of the type (k] may principally have the potential to capture
leaf density dynamics, it is a priori unable to do so by reflecting the
actual underlying mechanisms. Nevertheless, continuity equations
have proven to allow concise and efficient descriptions of natural
phenomena, motivating the aims of this chapter, which are to explore,
within the above-described constraints, remaining possibilities of de-
scribing the evolution of leaf density for trees on a large time scale in
this particular framework. In this way, the chapter forms a transition
from the previous one, based on a similar technical setting in 2D,
to the consecutive ones, likewise focussing on trees in three dimen-
sions, yet in a more biologically appropriate discrete-time approach.
As opposed to those, this more theoretical excursus puts a stronger
emphasis on conceptual modelling as well as qualitative dynamics
rather than quantitative evaluation. Our aims are thus to explore how
a continuity equation approach can be accommodated to tree crown
dynamics, to identify the potential of the former for the description of
the latter and to better understand their interplay.

Throughout the following, we define two principles as basic require-
ments for any reasonable approach, namely

o a consistent mass budget in the way that all of the biomass
produced by a given leaf density is indeed allocated (cf. section

B.3)

o the balance between leaf area quantity and location on the one
hand, and corresponding sapwood pipe mass on the other hand,
formulated in the pipe model theory (section [3.5.1), being main-
tained at all times

Against the background of the a priori constraints of a continuity
equation approach described above, this chapter presents two model
approaches that allow for the above two guidelines in two conceptually
different ways. In section we describe crown dynamics from a top
down perspective, that puts aside local processes, by accommodating
biomass production and allocation as well as the pipe model theory
at the global tree scale. In contrast, as well as in response to certain
shortcomings of the latter, section 5.2 presents a fully local approach,
in which locally produced biomass is also allocated locally. Since,
as follows from the above considerations, this is not possible via
describing the actual mechanisms, we devise a hypothetical process
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5.1 A GLOBAL APPROACH 52

different from the real one, but which exhibits very similar features to
those of actual organogenesis while being expressible in terms of [(2).
Section |5.3 concludes with a comparative discussion.

Without comparison to empirical data, we restrict ourselves to a
qualitative analysis of the spatial model dynamics in this chapter. For
the sake of convenience, we assume vertical and supposedly constant
light incidence.

51 A GLOBAL APPROACH
5.1.1  Model description

In this first approach, the conceptual inconsistency of a flux term
J, describing the gradual motion of leaf density from a top-down
perspective, and a biologically motivated reaction term f is avoided
by considering the relative leaf density subject to a mass-conserving
transport equation, i.e. (2) with f = 0, based on which absolute leaf
density is deduced by filling the relative leaf density by means of
information on whole-tree-level mass.

This model was previously presented by Beyer et al. (2014).

We consider the relative leaf density

9 J.(x, t)
S(xt) = — "
C = TG
from which, at any time ¢, absolute leaf density (-, f) is inferred via
&(x,t) =c(t) - &(x,t) (33)

for an appropriate total leaf area quantity c(t) > 0. Throughout the
simulation, & is subject to the transport equation

ﬂs(xrt) = _vx : ](xrt) (34)

ot
for a flux term | € R®. This formulation implies [is &(x,t)dx =1 for
all times ¢, as desired. Similar as in chapter |4) we choose

](xr t) =k- &(X, t) : VxL(xr t)/ (35)

(cf. section [3.3) where

[e°]

L(x,t) = PAR - exp (—/\ / &(x1,x2,83,1) ng)

3
denotes the light incidence in the point x € R at time ¢ (based on the
absolute leaf density) for an instantaneous photosynthetically active
radiation PAR reaching the tree, as described in detail in section (cf.

@)-



5.1 A GLOBAL APPROACH

In order to determine c¢(t), we compute the total instantaneous
biomass production at time f at the tree level, which reads

B(t) = /R RUE - A - do(x, 1) - L(x, 1) dx,

as detailed in section [3.2] (cf. (7)), RUE denoting radiation use efficiency.
Assuming that produced biomass is instantly allocated, and addition-
ally, becomes senescent after a certain time span 7; no matter to which
compartment it was allocated (e.g. the pipe model theory (section
implies that a leaf and its sapwood pipe becomes senescent at
the same time), the living biomass at time ¢ is given by

M(t) = /Ot B(u) — B(u — 75) du. (36)

This mass M(t) consists of foliage and sapwood mass, and thus,
following the pipe model theory, the equation

M(t):/]R LI xtdx+/ K1) P |x|ydx

3 SLA

total leaf mass total sapwood mass, cf.

(37)
is required to hold, from which we obtain

M(t)
Jrs o - (2, 8) - (14 P [Jx]ly) dx’

The model is completed by an initial condition, which we take to be
Dirac in the origin, &(x,0) = dy(x).

In summary, at any point in time, leaf density & is obtained by
rescaling & minding the total living mass, (36), and the pipe model
theory, (37). This approach can be related to a simple centralistic,
common pool biomass distribution scheme (cf. Marcelis, | 1994, Kurth
and Sloboda) 1997). Simultaneously, & determines the dynamics of &

in (34).

c(t) =

5.1.2  Simulations

Measureable model parameters used in the following simulations cor-
respond to those referenced in table |2} the remaining ones were set to
k =6, PAR - RUE = 0.05, P = 0.1 and 7; = 1, different values yield very
similar qualitative dynamics. Figure [12[ shows the evolution of leaf
density t — &(-, ) for a spatially isolated tree with no surrounding
competitors. The light gradient induces a half-spherical-like vertical
and horizontal expansion, resulting in an overall broad crown shape.
Although leaf density in the centre of the crown envelope is significant,
we observe the predominant presence of foliage at the upper crown
hull.

53



5.1 A GLOBAL APPROACH

Figure 12.: Qualitative leaf density dynamics of a spatially isolated
simulated tree (vertical cross section) at (a) 20, (b) 70 and
(c) 150 years. Black colouring represent the maximal leaf
density at the respective time, gray areas have linearly less
leaf density. Note the high degree of self-similarity across
time.

Figure [13|illustrates the model behaviour in a competition scenario.

As described in detail in section competitors of the same age
around the simulated tree are accounted for by means of periodic
boundary conditions across the boundary of a cell in which the tree
grows and whose surface area is the inverse of the exogenously given
stand density at the appropriate moment in time. Here we used the
time-dependent stand density shown in figure 15, sub-plot 3.

As described in detail in section[3.4} competition with surrounding
individuals results in the limitation of the horizontal expansion of the
simulated tree due to the light gradient vanishing at the boundary of
the cell in which it grows, given that leaf density and consequently
local light conditions on the other side of the boundary are simulated
equal to those within. Apart from that, the pattern remains similar
to the isolated case in figure g2 namely in terms of the curved shape
and increased concentration of foliage at the top of the tree, but also
the persistence of leaves in the interior part.

02 4 8 02 4 gmMeErs

(@) (b)

Figure 13.: Qualitative leaf density dynamics of a simulated tree in
competition with neighbours at (a) 25, (b) 60, (c) 9o and
(d) 140 years. Time-dependent stand density, defining the
boundary region (cf. section for details), corresponds
to the one shown in figure [15, sub-plot 3 (cf. also section
0.2.1).
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The overall crown shape generated by the model can be related
to a broad crown morphology, and the higher concentration of leaf
density at the hull, particularly at the top, reflects many species” crown
structure. Nevertheless, the considerable density in the crown interior
in both the isolated and the competition scenario remains arguable. It
is in particular the result of the global rescaling [(33), where available
biomass is distributed even to regions where, realistically, significant
quantities of leaves are no longer formed. This demonstrates the need
for local control over modelled foliage dynamics and motivates the
subsequent section based on a different methodological approach.

5.2 A LOCAL APPROACH

The key drawback of the previous approach is a simplistic redistri-
bution of available biomass following a global-scale determination of
it. In this section, we present a contrasting alternative that strongly
focusses on the locality of biomass production and allocation. The
continuity equation (2) lends itself to the general objective of a local
process description, however, as reasoned in the introduction to this
chapter, this equation type is not compatible with the actual biophys-
ical mechanisms. This, in turn, leaves only one possibility from a
modelling point of view, which is to describe a different, hypothetical
process, inspired by actual organogenesis and generating dynamics
very similar to the real ones, but which has the property of being
expressible in terms of(d)] In this section we describe a possible such
approach.

In the introduction to this chapter we noted the impossibility of
coupling the continuous motion of leaf density with the simultaneous
formation of a complete set of corresponding new sapwood pipes at
every infinitesimal time step. This motivates the basic approach of
this section’s model to extent existing pipes while the leaves that they
support are moving. In the following section, we motivate and formal-
ize this approach in detail. For the sake of clarity, we initially ignore
the processes of biomass allocation to foliage and the senescence of
old leaves — as well as the senescence of sapwood associated therewith
in the framework of the pipe model theory —, and incorporate these
afterwards, thus defining the complete model.

5.2.1 Model description

MASS-CONSERVING MOVEMENT OF LEAF DENSITY Under the tem-
porary premise of a conservation of total leaf area following from the
non-consideration of leaf formation as well as abscission, we start off
with the equation

DRt = Ve (K (50 (x1) (38)
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for the motion of leaf density along the vector field
J(x,t) = &(x,t) - ViL(x, 1), (39)

similar to (35), and with a local magnitude coefficient k*(x, t) > 0 that
we derive in the following, subject to the two basic principles itemized
at the end of the introduction to this chapter. Note that total leaf
area is indeed conserved in (3§), reflecting the specific above defined
scenario.

Since we do not account for the senescence of foliage in this section,
we also set aside the senescence of sapwood, in view the tight link
between these two components in the pipe model theory. This setting
requires the sapwood pipes corresponding to a leaf density at a time f +
dt to be built on those at time ¢, which support the leaf density at this
point in time. Consequently, in order to provide the continued support
of a moving leaf density, the existing pipes need to be extended
appropriately. Extending the sapwood pipe supporting foliage in x at

time t according to the infinitesimal movement of that foliage at time
t as formulated in @), requires

1

K1) - Vi llxlly - Pr o (40)

units of biomass, V(. [|x|ly denoting the directional derivative of the
pipe length function with respect to J.

This local demand for biomass is covered with the instantaneous
local biomass production in x at time ¢, i.e. (cf. (7), section

b(x,t) = RUE-PAR- A - (X, 1) - exp <—/xoo)t - do(x1,x2,3,1) d§3> .

(41)
Equalling the locally available b(x,t) with the (k*-dependent) locally
demanded biomass in (40), yields

b(x,t)-swv

K(x,t) = =——14———
50 = G llxly P

(42)
for the magnitude of the local leaf density motion in (38). The figure on
the right illustrates the basic mechanism. Every moving leaf remains
attached to its constantly extending sapwood pipe, thus allowing for
the pipe model theory at all times. The approach is also consistent in
terms of mass balance, since all of the produced biomass is indeed
allocated (implicitly, to the sapwood pipe extensions).
Emblematically speaking, moving leaves

leave a trail of sapwood along their trajec- —
tory defined by J. The resulting local de- 4 biomass
mand for sapwood mass is precisely met by |
the local biomass production. A different
perspective on the mechanism is to inter-
pret the mass-conserving motion of a leaf

t t+dt
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density (in an appropriate direction) as the result of the local allocation
of locally produced biomass to the longitudinal growth of shoots that
push along the leaves they support.

Under the given premises of this section, only the particular choice
of k*(x,t) in for the mobility coefficient in (38) ensures a consis-
tent mass budget, while simultaneously preserving the pipe model
balance: For higher values, leaves move too fast in order for the appro-
priate necessary pipe extensions to be constructed by means of what
is available in terms of instantaneously produced biomass. For lower
values, on the other hand, leaves move so slow that there is a surplus
of available biomass that is not used for the extension of the pipes. In
the next paragraph, we use this last feature in the context of allocation
to foliage, while additionally accounting for leaf abscission.

Note that

Vi(xh

since | generally points away from the origin, and ||x||y is approxi-
mately of the same order of magnitude as ||x|| for typical x in this
scenario (i.e. ||(x1,x2)|| < x3; on the x3-axis we have equality). Thus,
the denominator of k*(x,t) contains a factor approximately equal to
|J(x, )|, which implies that the magnitude of the total fluxk - | does
not depend much on the actual local length of J. In the given setting,
this is not surprising when recalling that the degree of extension of
supporting sapwood pipes is primarily governed by the local biomass
production.

FOLIAGE FORMATION AND ABSCISSION The basic idea to incor-
porate the formation of new foliage based on locally produced biomass
is to choose the mobility coefficient k(x, t) for the motion of leaf density
smaller than k*(x, t) in (42), and to use the remainder, i.e.

1
b(x,t) —k(x,t)-V x|y - P —
(5,1 =K, ) Vel P =
locally biomass locally
available . .
biomass required for &-motion

for the creation of new foliage in x at time t. The latter, of course,
requires the simultaneous formation of new root-to-leaf sapwood
pipes in order to continue accommodating the pipe model theory.
Altogether, assigning the above quantity to the formation of new
foliage and the appropriate sapwood pipes results in an increase of
leaf density in x by

sta-p(x) - (000 1) = k) Tyl P o) @)

where p(x) = m as in (14), detailed in section E
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Lastly, we incorporate the senescence and abscission of old leaves.
This is not a straightforward step, as in our current setting, we are
unable to differentiate between old foliage that has existed and been
subject to a motion for a longer time than leaves that have only just
been formed, and it would not seem reasonable to treat them equally.
We thus introduce an age-dependency of the leaf density variable,

&(x,t) =&(x,t,a) witha e [0,A4],

with fOA & (x,t,a) da numbering the total leaf density in x at time
t. Leaves that are newly created, as described above, are assigned
age 0. They subsequently age, while being subject to the described
motion. At the final age of A, they fall off, thereby decreasing the total
leaf density in the respective point. In this setting, sapwood pipes
corresponding to dropped leaves persist, and, in biological terms,
become non-conductive and turn into heartwood, in accordance with
the pipe model theory.

For the sake of convenience, we assume that neither biomass produc-
tion nor leaf transport depend on leaf age, i.e. &(x,t) in the flu@g)
and the biomass production (41)) is simply replaced by fOA &(x,t,a)da.
With this in mind, our full model reads

d d
50t a) = =V (k(x 1) - J(x, 1) — 5 &(x,1,a) (442)
1
&(x,t,0) =sLa-p(x)- (b(x,t) —k(x,t) - Viplxlly-P- swv)
(44b)
&(x,t,A) =0 (44¢)
&(x,0,2) = {*O(x) e =0 (44)
0 else

(44k) describes the (age-independent) spatial motion of leaf density,
similar to the preliminary (38), as well as the ageing process. The
two boundary conditions ) and @}:) account for the formation of
new (a = 0) foliage (cf. [43)) and the abscission of old (2 = A) leaves,
respectively. Again we use &(x) = Jp(x) for the initial condition

(a4)-

SPECIFYING THE MOBILITY COEFFICIENT For k = k*, (44b) re-
duces to d(x,t,0) = 0 for all x and all ¢ > 0, resulting in the complete
disappearance of foliage after A time steps. On the other hand, for

k =0, (44h) and (44b) reduce to
0 d
gﬂo(x, t,a) = _ﬁ.‘(x’ t,a)
&(x,t,0) =sLa-p(x)-b(x,t)

respectively, without any spatial expansion of leaf density whatsoever.
A sensible k(x, t) thus lies between 0 and k*(x, t). In the following, we
propose a possible value.
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For arbitrary but fixed k(x,t) denote by

1
Tk(xf t) k(x, t) v](x,t)HxHY p SWV (45)
and F(x,t) = p(x) - (b(x,t) — Ti(x, 1))

the biomasses that are locally used for the extension of existing shoots
and for the formation of new leaf area, respectively, cf. (43). Ti(x,¢)
can also be interpreted as the cumulative longitudinal growth of
unit shoots supporting a given number of units of leaf density in
x, and Fy(x,t) as the cumulative formation of new leaves in x. The
quotient of these two quantities, i.e. the ratio of leaf formations to
shoot longitudinal growth in x may be related to the phyllochrone,
the interval between leaf appearances along a shoot. The simplifying
assumption of a constant phyllochrone (cf.|Davidson et al., |2015) thus
motivates the approach

Fe(x,t) = c- Ti(x, t)
for a global constant ¢ > 0. Inserting this into (45) yields
p(x)-b(x,t)-swv
(p(x) +¢) - Vypllxlly - P

Indeed k.(x,t) € ]0,k*(x, t)[ as desired since k.(x,t) = pf}f)x}rc k*(x,1).
¢ = 0 and ¢ = oo correspond to the two degenerate cases described
above, illustrating that in practice the parameter - plays the role of a

mobility constant: the larger 1, the faster the transport of leaf area.

ke(x,t) =

(46)

5.2.2  Simulations

Measureable model parameters used in the simulations correspond
again to those referenced in table 2| the remaining ones were exem-
plarily set to c = 1, PAR - RUE = 4, P = 0.43 and A = 1. For the above
choice of k in our model —d), figure shows the evolution of
leaf density in a competition scenario. The pattern is rather different
from the one in figures{2 hnd 13.]We no longer observe the arguable
occurrence of foliage within the crown, and instead merely at the
hull. This is due to foliage systematically moving away from the place
of its formation before eventually disappearing due to abscission,
thus gradually evacuating lower level regions. This last process is
increasingly delayed with increasing leaf life span A, inducing a more
gradual decrease of leaf density towards the interior of the crown and
downwards (not shown). The generated crown shape is conic rather
than round, and, as such, characteristic of many conifer trees.

5.3 DISCUSSION

As a transition from the continuous-time, two-dimensional crop model
of chapter [4] to the applied 3D tree model with a discrete, one year
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Figure 14.: Qualitative leaf density
L2 dynamics of a simu-
r lated tree in competition
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time step presented in the subsequent chapter[6| we explored the com-
patibility of a continuity equation approach with the spatio-temporal
growth of trees — an idea that, although seemingly suggesting itself,
proved controversial upon closer inspection, notably due to the partic-
ular nature of leaf organogenesis and its relation to wood formation.
Within these constraints, we presented two conceptually different ap-
proaches in order to study to what extent these limits can be bent
or overcome. Despite the difficulties of the general framework, we
managed to incorporate key desirable features in both models, namely
a consistent mass balance and the continual satisfaction of the pipe
model theory.

Our first, top-down model presented in section |5.1| generated an
interesting crown shape, some desirable properties of which we en-
counter again in the discrete-time model presented in the next chapter.
Yet the global allocation scheme led to arguable effects that demon-
strated the need for a more local approach, which we subsequently
developed in section|5.2] In the first two parts of section in partic-
ular, we endeavoured to show how the developed model mechanisms,
even though at times contrasting real organogenesis, follow straight
from an initial set of objectives and constraints that had been kept as
general as possible. Within this framework, we proceeded in a more
specific direction, when specifying the mobility coefficient and thus
the partitioning of available biomass between the formation of new
leaves and the biomass-demanding transport of foliage. Indeed, fea-
turing a concentration of leaf density at the crown hull, the key deficit
of the model presented in [5.1) no longer appeared in this approach.
Future work, based on the general framework laid out here, could
explore choices for the mobility coefficient k beyond the one in (46).

In view of certain biologically controversial technical aspects, we
have omitted a more extensive parameterisation and evaluation of
the approaches in this chapter in favour of a more extensive study
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5.3 DISCUSSION

and data-based analysis of the tree growth model presented in the
following chapter. As a time-discrete approach, it will not face the con-
ceptual challenges highlighted throughout this chapter, thus allowing
for a more biologically sound framework.
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DISCRETE-TIME MODELLING OF TREE GROWTH

In this chapter we present a growth model in discrete time for rhythmi-
cally growing trees (in the sense of |[Halk et al., 1978, and Barthélémy
and Caraglio, 2007), where leaf density is computed from one year
to the next. By &(x,n) we denote the supposedly constant leaf den-
sity in x during the vegetational period (between foliation and leaf
senescence) of year n € INy. Instead of the previously considered
continuous evolution t — &(-, ), the leaf density & (-, n + 1) of year
n 4+ 1 is now inferred from the previous year’s leaf density (-, 7).
This model was presented by Beyer et al. (2015b).

6.1 MODEL DESCRIPTION

In a first step, we consider the case of vertical radiation, and address
the impact of different light models in section Denoting the
cumulative photosynthetically active radiation that reaches the tree
with a given leaf density & from above in year n by Par(n), the
cumulative radiation reaching the point x € IR? in year 1 reads, similar
as before,

[ee]

L(x,n) = paR(n) - exp <—/x AMx,n) - #(x1,x2,83,1) df§3> . (47)

3

and the cumulative biomass production in x in year 7 is given by
B(x,n) =RUE- L(x,n) - A(x,n) - &(x,n), (48)

as described in detail in sections |3.1/and respectively.

To infer the leaf density (-, 1 + 1), the scalar field B(:, n) is now
translated along the local light gradient field V,L(-,n), according
to the principles of unconstrained phototropic plasticity as well as
dynamic maximization of light interception and biomass production
(cf. section [3.3). Specifically, the locally produced quantity B(x, n) is
moved from x to the position

x+k-VyL(x,n),

where it is subsequently allocated, k > 0 denoting a mobility constant.
The locality of this mechanism explicitly reflects the concept of branch
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6.1 MODEL DESCRIPTION

autonomy, the empirically established observation that branches are
largely functionally independent, i.e. carbon uptake and export of
a specific branch along the way to the roots is independent of the
rest of the tree (Sprugel et al., 1991). The concept is closely related
to the modularity in plants, i.e. the idea of plant components acting
and responding as independent units (Sprugel et al.1991; Sorrensen-
Cothern et al., 1993, and references therein).

Hence, inversely, for a given point x € R?, the total biomass as-
signed to it for allocation equals

B(x,n)= ) B(Zn). (49)
FER3:
x=+k-VL(¢n)

Similar as in section the allocation of B(x,n) in x comprises
its partitioning between new foliage in x and supporting sapwood
according to the pipe model theory. As described in detail in section
B33

B(x,n) =sLA-p(x)-B(x,n)
numbers the increment of leaf density in x for year n 4-1 as the result
of the production in year 1, with

p(x) !

1+ Px]ly]

as in (14), in accordance with the pipe model theory, and sLA denoting
specific leaf area. Simultaneously, the massB(x,n) - (1 — p(x)) forms
the appropriate sapwood pipe.

Assuming the senescence and abscission of leaves to be a matter of
time only, i.e. foliage that was created ngs.n > 0 years ago falls, the leaf
density of year n + 1 in x is given by

S(x,n+1)=d(x,n)+B(x,n) —B(x,n — Ngen ). (50)

For the particular case of deciduous trees where 75, = 1, this simpli-
fies to
&(x,n+1) =B(x,n).

This discrete dynamical system is completed by an initial condi-
tion, which we describe to be Dirac in the origin x = (0, 0,0), ie.
% (x,0) = &o(x) = 6(x) and where [i; do(x)dx equals the surface
area of the cotyledon.

Along the creation of foliage, new sapwood pipes are formed as
described above. Pipes corresponding to dropped foliage persist, yet
gradually become non-conductive and, over time, turn into heartwood
(Shinozaki et al., 1964} Valentine} |1988; Sterck and Schieving), 2007).
Thus, taking into account all pipes that have ever been formed, yields

é/wb’(x,k) -p(x)-P-swvdx
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6.2 SIMULATIONS 64

for the cross-sectional area at the trunk base, C(n), in year n, swv
denoting specific wood volume. As in the pipe model theory, swelling
effects are not accounted for. The diameter is computed as 2,/C(n) /.

As an extra, it corresponds to our approximation of ||x||y defined in
that the foliage supported by a first order branch bifurcating from
the trunk at height # > 0 is assumed to lie on the cone surface

9K(h) = {x € R>: ||(x1,12)| - cos(8) = (x3 — h) -sin(6)},

which implies that the trunk’s cross-sectional area at height / in year

n equals
n

) / B(x,k)-p(x)-P-swvdx,

k=0
UaK(n)
n>h

which in fact yields the complete geometry of the trunk.

The model extends straightforwardly in order to account for compe-
tition for light among m individuals with leaf densities & (-, 1), ...,
&, (-, 1) in year n as detailed in section For this case, the light
reaching the foliage of tree i € {1,...,m} in x changes from to

~ Ai(x,n) - di(x,n)
it Aj(x,n) - &j(x,n)

exp (—/xoo m1 /\j(x,n) . Joj(x,n) dX3> ,
3]

Li(x,n) = PAR(n)

where the fraction nl)‘i(xf") i (x_’ ") __is the part of the radiation incidence
Ej:l A/(x,n)‘&](x,n)

in x that is attributed to tree i. In particular, it reduces to 1 if tree
crowns do not occupy common space.

Accordingly, (48), and change to
Bi(x,n) =RUE- Li(x,n) - Ai(x,n) - &;(x,n)
Bi(x,n) = Z B;(&,n)

CERS:
x=C+k-VyL;(&n)

&i(x,n+1) = &i(x,n) +sLa- p(x) - (Bi(x,n) — Bi(x,n — Ngen))

respectively, for each individual i € {1,...,m} of the population.

6.2 SIMULATIONS

DATA SET DESCRIPTION European beech (Fagus sylvatica L.) is the
most important deciduous tree species in the natural forests of Central
Europe (Ellenberg), [1996). Its overwhelming inner crown variability
and crown plasticity, particularly in response to light, compared to
other native trees species (Pretzsch) 2014) suggest it for an application
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of our model. Originally established in 1871 at the age of 48 years, the
long-term experimental plot Fabrikschleichach 15 of European beech
is among the oldest of the world. It is located in the sub-montane zone
470 m above sea level (10°34'16”E, 49°55’07”N) in the ecological region
"Frankischer Keuper und Albvorland, Wuchsbezirk Steigerwald”. The
mean annual temperature is 7.5 °C with a precipitation of 820 mm.
During the vegetation period of 150 days (days > 10 °C), the tempera-
ture averages 14.5 °C accompanied by 420 mm of precipitation. The
survey area represents very good growth conditions for beech (Franz
et al., 1995).

Different thinning treatments have been applied on three sub-plots
of the site, resulting in different stand densities shown in figure :
While merely dead trees have been removed in sub-plot 1, sub-plot 2
has been moderately and sub-plot 3 heavily thinned (see [Verein der
deutschen Forstlichen Versuchsanstalten, |1902; |Gutmann, |1926, for
details).

o
0o
1

— 16
= —e—sub-plot 1
3 14
3 —e—sub-plot 2
£ 12
E —+—sub-plot 3 X L.
=10 Figure 15.: Stand densities over
2 %] time. Redrawn from
s 6]
& J ] Pretzsch et al|(1994).
2 4l
£,
0 T T T T

40 80 120 160
Age (years)

6.2.1  Comparison to long-term data

As the model does not cover tree mortality and harvesting, the number
of trees per unit area over time is an input variable (figure [15). As
detailed in section in place of the entire stands, we simulated a
single average tree for each stand, while accounting for competition by
means of dynamic periodic boundary conditions along a cell, in which
the tree grows and whose surface area corresponds to the density of
the stand at the appropriate time (cf. section| 3.4}1).

Table [2[ summarizes the model parameters, three of which were
estimated by model inversion based on the data of sub-plot 1 and
3 shown in figures ,c. As in |Letort et al.| (2008), PAR, assumed
constant, and RUE are merged.

Figures|16{and [17]show the results of simulations against the empiri-
cal height, diameter at breast height and, only for one moment in time,
mean crown radii data, from the three different sub-plots, respectively.
Note that the data of sub-plot 2 and the one in figure [17] were not
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6.2 SIMULATIONS

Parameter Value Reference

swv [m3 g™'] 0.0013 Bouriaud et al.|(2004))
SLA [m* g™'] 0.0232 Bouriaud et al.| (2003)
N(x,n) [1] (0,0,1)  Monsi and Saekil (2005)
A [1] 1.0 Wang et al.| (2004)

e [°] 138.5 Bayer et al.|(2013)

| &y [m?] 6.01-sLa  (Coll et al.| (2004)
RUE-PAR [gm™y™'] 14.72

k[1] 0.0013

P [m™] 0.43

Table 2.: Model parameters. Unreferenced parameters were estimated
(see text).

Age (years)

(a) sub-plot 1 (b) sub-plot 2 (c) sub-plot 3

Figure 16.: Comparison of simulated to empirical stand average and
standard deviation data of tree height (dashed line, circles,
left axis) and diameter at breast height (solid line, circles,
right axis) over time and three sub-plots differing in stand
density.

used for the calibration and can thus be used for the validation of the
model’s predictive capacity.

Figure shows the cross-section of the crown corresponding to
the simulations of sub-plot 1 in the course of time. The shape is indeed
similar to that of a typical beech crown in such growth conditions
(figure [18p).

As a contrast, figure shows the simulated crown of an at all times
spatially isolated tree. The artificial absence of any vegetal competition
in the simulation can only partially account for the unrestrained
horizontal expansion that is not realistic during the early growth
shown in the figure. We come back to this aspect of the model in detail
and discuss possible implications as to other growth determinants at
early stages in section[6.3} Irrespective of this, we note that in terms of
shape, the simulated tree bears indeed some resemblance to a mature
singular beech tree (figure [19b).
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6.2 SIMULATIONS

Figure 17.: Simulated (triangle) and em-
pirical mean crown radii (bul-
let) with standard deviations
at 180 years.
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Figure 18.: (a) Vertical cross-section of a simulated crown over time.
(b) Schematic representation of the crown structure of adult
beech in even-aged pure stands, adapted from Pretzsch

(2014).

6.2.2  Comparison to laser scanned crowns

Terrestrial laser scanning (TLS) can provide a large amount of informa-
tion on tree geometry beyond the traditional measures of tree height,
crown height and crown radii in terms of forest and individual tree
parameters (Van Leeuwen and Nieuwenhuis, 2010; [Pretzsch), 2011)
and even the inner structure of tree crowns (Bayer et al., 2013). In
this section we test empirical laser scans against the spatial output of
our model, which, to our knowledge, is an unprecedented validation
method in the area of individual tree growth models.

Scans were acquired for sub-plot 3 of the experimental site in March
2012 using the Riegl LMS-Z420i laser scanning system. Its infrared
laser beams do typically not penetrate tree compartments, hence a
dense canopy can significantly distort a scan image. This motivated
to scan trees in leafless conditions and to compare the model’s leaf
area density to a spatial twig density as described below. For the
same reason we used a the last-pulse (or last-target) distance mea-
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10 -75 (25yrs)

# —-8.7 (20yrs)
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Figure 19.: (a) Vertical cross-section of a simulated singular tree over
20 years. Note the self-similarity of the shapes, which
extends to older crowns in equal measure (not shown). (b)
Bavaria Buche (cf. section .

surement mode in which the last echo of the laser impulse is used
for distance recording, allowing the laser beam to penetrate the tree
crown further than using the regular, first-pulse mode. In order to
cover the trees thoroughly and minimize additional distortion, we took
a total of 10 upright and tilted scans from five regularly distributed
positions within the stand, and merged those into one image. Bayer
et al. (2013) elaborated further on general technical and procedural
details, and also addressed the impracticality of applying automatic
skeletonisation algorithms to scans at the forest stand scale.

Figure 20.: Tree laser scan
point cloud and
isolated  twig
structures.

Individual trees and subsequently their respective twigs were man-
ually isolated from the final scan image (figure [20). To avoid un-
necessary tediousness, we focused on twigs in the upper part of the
crown where leaf density is actually significant (cf. also figure [18p).
Altogether we obtained a total of 10 samples.

We presume that 3D twig density and leaf area density essentially
differ only by a multiplicative constant. Equivalently, relative twig
density and relative leaf area density, both normed such that their
integrals equal 1, should roughly coincide. For the same grid used
in the numerical model computations, the former is obtained from
a given laser scan point cloud by first assigning to each voxel the
number of laser points it contains. Dividing this absolute frequency
by the total number of points and the voxel volume yields a (step-
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function) density with integral 1 for each sample. Denote these by
Gi(x), x €R3, i=1,...,m with m = 10. Now, let

x—a(x) =

I
—

1
m
i

1 &
G(x)  and o-a:\/m-zua—aiuz
i=1

denote their mean and standard deviation, respectively, where || - ||
1
is an LP-norm (i.e. || f|| = ([gs |f(x)|P dx)7). Figure |21/ gives a visual
comparison of a(x) and the relative simulated density % of the
R

appropriate time.

The positive density in lower regions may on the one hand be
attributed to the relatively small size of ten samples that we were
able to obtain: Whereas single unusually low branches resulting from
randomness have presumably little relevance in the case of a large
sample set, they may act distortively otherwise. On the other hand, it
may also challenge the idealized foliage distribution of figure [18b to
some extent. In any case, we observe an increased concentration of
the empirical density in the upper regions that are in fact close to the
simulated one (figure 21b).

(b)

(@) (©

Figure 21.: (a) Oblique, (b) side and (c) top view of mean empirical
(right) and simulated (left) relative twig- and leaf area
density, @ and f%’ respectively. The figures also illustrate
the agreement of real and simulated height (figure [16],
top right) and crown radius (figure |17/ right). See text for
quantitative comparison.

We can quantitatively compare the empirical densities to the sim-

ulated one by computing their distance dg, , = H ﬁ —@;|| and com-

paring it to the sample standard deviation ¢,. Indeed, ﬁ appears
to be well contained in the ¢,-ball about @ for all L” norms: In par-
ticular, we obtained dg , = 0.0138 < 0.0182 = ¢, in the L? norm and
dg, . = 0.0035 < 0.0254 = 0 in the L* norm, respectively. Thus, the
simulated crown is within the standard range of crown shapes at the
given age and growth conditions, as desired.
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6.2.3 Comparison to allometric rules

Allometric scaling laws establish relations between different growth
dimensions of an organism. For two such quantities x and y, an
allometric equation is of the form x « yf. Allometrically relating
characteristic dimensions of trees has proven expedient and although
in general the investigated allometric exponents 8 do vary, depending
on specific conditions (Pretzsch and Dieler, [2012), that corridor is in
fact rather narrow (Pretzsch, 2010). The 3/4-power law has received
particular attention, which, in its broadest formulation states that an
organism’s metabolic rate Q scales to its body mass W as Q M3,
The relationship has been observed in many particular cases across
several length scales (see references in West et al |1999a). |Pretzsch
(2006) found empirical evidence from long-term experimental plots,
including the one presented in section that is supportive of the
3/4-power scaling.

West et al| (1997) initiated a series of models associated to the term
of metabolic scaling theory, aiming to explain the relationship in an
as general as possible theoretical framework. In the plant specific
follow-up model by West et al.| (1999a), the law is derived from the
optimization of different hydrodynamic and energetic properties of
a space-filling, fractal-like network of root-to-petiole tubes. Whereas
individual tube radii are assumed constant throughout the tree in the
original model, this assumption is relaxed in follow-up work (West
et al., 1999a), in which conductive pipes, loosely embedded into non-
conducting heartwood, are allowed to vary in diameter along their
path.

This often called metabolic scaling theory has been heavily con-
tested both conceptually and empirically. We refer to |Petit and An-:
todillo (2009) for an extensive list of references challenging logical and
mathematical assertions, as well as a critical discussion of arguable
anatomical and physiological assumptions and conclusions of the
theory.

This criticism of the "WBE models’, and at the same time the in-
disputable occurrence of the 3/4-rule in the flora, have motivated to
put the development of plant models that can reproduce the rule in a
more realistic, yet simple as possible framework on the agenda of the
functional-structural plant modelling community — a project, which to
date, has not culminated in success (Michael Renton, personal commu-
nication). We check our parameterized model for whether the 3/4-rule
appears as an emergent property.

The model provides the total mass of the tree and its total net
biomass production (~ metabolic rate) in year n as

Ngen—1 s n :
win = 3 [ Ry [ RED e
i=0

i=0 R3 SLA SLA

total leaf mass total wood mass
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and

Q(n) = /}RBB(x,n)dx

respectively. Figure [22| shows log(Q(n)) against log(W(n)) in the
same three simulation contexts as before. The close linear regressions
based on the last 173 (of total 180) simulated years yield allometric
exponents 0.765, 0.762, 0.773 for the three sub-plot conditions, re-
spectively. Including the first 7 years as well yields slightly deviant
exponents 0.787, 0.785, 0.794 respectively. We address the arguable
applicability of the model in very early growth stages in section
Altogether, our model simulations are in very good agreement with
the desired value of 0.75, even across different stand density scenarios.

4,5

2 4
4 35 3,5
3,5 3 3 -
3 2,5 25
2,5 g F i

i
1,5 - 1 = 1

log(Q(ny
log(Q(n))
log(Q(n))

-1,5 -0,5 0,5 1,5 25 -1,5 -0,5 0,5 1,5 25 -1,5 0,5 2,5
log(W(n)) log(W(n)) log(W(n))

sub-plot 1 sub-plot 2 sub-plot 3

Figure 22.: log(Q(n)) against log(W(n)) for n = 1,...,7 (grey
squares) and n = 8,...,180 (circles), the latter with linear
regression lines with slopes 0.765, 0.762, 0.773, respectively.
In all cases R? > 0.95. These lines are undistinguishable
from suitable ones with slope 0.75.

6.3 DISCUSSION

Our discrete-time model based on leaf density & and the local expan-
sion thereof along the local light gradient VL accurately reproduced
(figure [16p,c) and predicted (figures[16b, and [22) the growth
of European beech in even-aged pure stand conditions. The sponta-
neous self-organization of simulated tree crowns depending on the
competitive situations present in the different sub-plots demonstrated
the model’s adaptability.

6.3.1 Emergent properties

Section [3.4] already discussed the model property of a reduced hor-

izontal expansion and consequently decreased biomass production

and thus trunk diameter growth (figure in the case of higher

competition, despite a common set of model process parameters.
The property of the experimental data set that tree height appears

to vary only little between the different densities (figure[16) has been
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observed for a reasonable range of stand densities (Lanner, 1985). It is
also an emergent phenomenon of the model.

The same holds for the decreasing slope of the tree height curve.
With increasing height, increasingly longer soil-to-leaf pathways re-
quire more biomass for the formation of the appropriate sapwood
pipes according to the pipe model theory — biomass that is not avail-
able for foliage. This leads to relatively lower local leaf densities which
in turn result in a smaller light gradient and thus a decelerated height
growth, in terms of our model. In a theoretical analysis, Makeld| (1986)
had already linked the pipe model theory to the slowdown of height
growth.

One of the most striking features of the model is the emergence
of the 3/4-rule, especially across different competitive conditions. We
believe our model to be based on less controversial assumptions than
the WBE model while at the same time not being less concise. Al-
though we have not yet been able to derive this property rigorously,
we believe that our approach represents a major step in the quest for
functional-structural plant models to generate the rule.

6.3.2 Conclusions

Under the given additional model assumptions, the crown shapes
in (figure[18a) and off (figure [19h) competition — as a matter of fact
qualitatively practically independent of the parameter values — could
be regarded as the morphology of a tree whose spatial expansion is
solely determined by positive phototropism. This may give a qualita-
tive impression of the extent to which a species” growth follows this
principle or, inversely, for which other determinants and architectural
constraints are more influential. In particular, it suggests the crown
form of European beech to be strongly determined by the imperative
of local growth towards light. Indeed, compared to most other Central
European tree species, European beech is known for its high crown
plasticity and efficient space occupation, expressed for instance in
terms of a highly variable crown size vs. stem size allometry (Pretzsch,
2014)) and its ability to quickly close light gaps caused by natural or
human disturbances (Dieler and Pretzsch| |2013).

Our model would predict the shape of an at all times perfectly
isolated beech tree to be similar to figure even in early growth
stages — which is not the case. Instead, at early ages, vertical growth
dominates horizontal expansion (Krahl-Urban, 1962; Roloff, 2001),
pointing out a limitation of the model and indicating that in this phase
other growth strategies prevail. The vertical escape from herbivores
and even more importantly, other competitors such as grasses and
shrubs which are not considered in our model, suggests itself as
an explanation (King, 1990; Peters, 1997). Curiously, we observed
the same increased allocation of biomass more towards vertical than
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horizontal growth in our competition simulations (figure ) This
could suggest that this very behaviour is genetically imprinted to such
an extent, that, in juvenile stages, it applies whether the tree grows
in isolation or not, before eventually, in later stages (seen in figure
[19), the plasticity in terms of almost unconstrained local phototropism
prevails (King, 1990). It could explain the peculiarity of beech to start
with rather slim crowns followed by a wider and wider extension
as the evolutionary outcome of coping with the selective pressure.
We hypothesize that beech as a late-successional species which has
to establish and grow in the deep shade invests into height growth
on the expense of lateral expansion in the early stage. This enables
surviving in or even growing out of the understory phase. This
strategy of coping with crowding changes completely in favour of
lateral extension as soon as beech arrives in the overstory. At this
point, its efficient space occupation by lateral extension outcompetes
neighbors (Pretzsch,|2006, 2010).

Lastly, the applicability of the model in young stages may be ar-
guable in light of the factual strong impact of topology during very
early growth. Spatial foliage distribution at this point could be consid-
ered too irregular for leaf area density to be reasonably applied.

3D Laser scan data has an invaluable potential in the field of
structure-based plant modelling as it can assess tree geometry in
unprecedented detail. Here, we have attempted a first step in the di-
rection of Lidar-based individual tree growth model validation. While
currently still facing technical and methodological challenges, this
tield is bound to gain popularity in the coming decades as the devel-
opment of fast, mobile and ultra-high-definition laser scanners along
with the appropriate data treatment algorithms advances.

64 IMPACT OF THE LIGHT MODEL

So far, we have simplified light incidence as being vertical only, i.e.
PAR(V) = 15— (0,0,1)} (V) - PAR

for v € S%. While this is not an uncommon assumption in functional-
structural (e.g. Sorrensen-Cothern et al.,1993) or process-based models
(e.g. Norby et al,, |2001), reality is more complex. In this section
we investigate the effects of choosing a different light model in the
previously presented tree growth model by means of replacing vertical
light incidence by common altitude- and azimuth-dependent models
for diffuse and direct radiation, respectively. Throughout this section,
we consider the northern hemisphere and let R?> x {0} denote the
local horizon.

A standard approach to assess diffuse radiation is the still radially
symmetric but elevation-dependent standard overcast sky model pro-
posed by Moon and Spencer|(1942) (see also|Ross,| 1981). For a given
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vertical light incidence PAR, radiation from direction v € S? is given
by

1+ 2-sin(0)

PAR(V) = PAR - 3

U3
,  Wwhere 6 = arctan <H(01/UZ)H) (51)
denotes the elevation angle, i.e. the angle that v draws with the local
horizon. Some topological tree growth models make exclusive use
of this light model, i.e. without additional direct radiation, tacitly
assuming the latter to be relatively negligible in comparison to diffuse
light (Takenaka) 1994; |Perttunen et al., 1996).

As for direct radiation, for the sake of illustration, and similar to
Hollinger| (1989) and Mariscal et al.| (2004), we consider the simplified
case of an equinox, where the course of the sun is locally perceived
by an observer as a half-circle rotated by a € [0°,90°], the elevation
angle of the sun at twelve o’clock in local solar time, about the vector
(0,—1,0) pointing west, i.e. the set

cos(t)
E= cos(a)-sin(t) | :t€[m2n] | c S
— sin(a) - sin(#)

Similar to Brisson et al.| (2004)), for v € K, we approximate radiation
intensity by a cosine function of the hour angleh = h(v) = arccos(v -
(0, — cos(a),sin(a))) € [—90°,90°] , which is 0° at solar noon, yielding

PAR(V) = L,k (v) - PAR - 1+ COS(22 h(©)) (52)

for the radiation from v € Si. In the graphical results below, we used
x = 45° for the elevation angle; results were very similar for other
plausible values.

Figure [23| compares the spatial output of simulations run based on
merely vertical radiation, diffuse radiation in terms of the standard
overcast sky model as well as direct radiation as described above,
respectively, where the total amount of incoming radiation is the same
for all three cases. Not surprisingly, a higher portion of vertical as
opposed to oblique light induces a more pronounced height growth.
Apart from this vertical translation of the leaf density profiles, we
observe a very slightly more upward-curved shape in the case of
the standard overcast sky model compared to the one with vertical
radiation, as well as a slight inclination of leaf density towards the
south for the case of direct radiation. While all of these features could
have been expected qualitatively, the high degree of similarity of the
leaf density shapes (modulo height) across the different light models
is remarkable.

Several factors contribute to this phenomenon. Firstly, as described
in and (52), respectively, steeper radiation has a greater effect than
oblique and flat one because it is stronger by nature. Even more impor-
tantly, a relatively larger portion of the latter simply passes through the
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Figure 23.: Middle vertical cross-section of simulated leaf densities
based on (a) vertical radiation (analogous to figure ,
(b) the standard overcast sky model (c) direct radiation
as specified in the text at 40, 65, 100 and 140 years. The
competition scenario is again based on sub-plot 3, as in

figure

horizontally oriented leaves, as opposed to vertical radiation, which is
efficiently absorbed and contributes most to the local light gradient.
Moreover, especially in the case of the standard overcast sky model,
the effects of light coming from opposite directions may to some ex-
tend cancel each other out. In addition, the pipe model theory might
play a small role in that it decreases the incentive to disproportionately
veer away from the crown centre. Lastly, flat radiation is more likely
to be intercepted by neighbouring competitors before even reaching a
crown than is steep radiation, an effect particularly visible in terms of
the non-occurrence of more foliage at the lower southern side of the
tree in figure [23k. In particular, this last case demonstrates the high
priority of a crown in our model to close light gaps around it (which
appear in simulations in terms of a uniform expansion, out from the
stem base centre, of the cell assigned to the tree as the result of the
gradual mortality- and harvest-induced decrease of stand density, cf.
section , no matter the orientation, over a considerably weaker
tendency to grow south.

As described above, an equal amount of total incoming radiation
does not imply the total amount of intercepted radiation to be the
same in the three scenarios. However, a suitable increase in the
radiation constant PAR in and results indeed in the adjustment
of the heights, yielding an overall similar spatio-temporal pattern as
in the case of vertical radiation — and vice versa (not shown). Since
realistic light incidence is a consequence of the combination of diffuse
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and direct radiation, this suggests that the merged model parameter
RUE - PAR in table [2l may have been underestimated.

In summary, this section illustrated the relatively small impact of
the choice of the light model on the essential model dynamics. We
conclude the simplification of vertical light incidence to have been a
reasonable step.

65 INCORPORATING WATER DEPENDENCE

In the previous model, biomass production B(x,n) (cf. ) was
merely light-dependent. In a more general framework, the incorpo-
ration of the stand-specific water conditions and their effect on tree
growth would be desirable. In this section, we develop a submodel for
the determination of light and water-dependent biomass production
and subsequently integrate it into the tree growth model presented
in the previous section before testing the extended model against a
series of sites of even-aged pure beech stands, differing in local water
availability.

In the following submodel, we determine transpiration rate E
[kg m™s™"] at the local leaf level, and later relate this quantity to annual
net biomass production B(x, n) via a water use efficiency parameter.
Comparable existing models mostly focus on stomatal conductance gs
instead of leaf transpiration rate E, the two variables being related via

E=u- <1+1> - VPD,
s b4

where g, denotes the boundary layer conductance to water vapour,
vpPD the vapor pressure deficit, and « a physical parameter depending
on atmospheric pressure, temperature, wind speed and shoot anatomy
(Damour et al} 2010). For negligible g3, as argued, among others, by
Monteith| (1995), and constant atmospheric conditions, we have indeed

E o gs.

6.5.1 Model description

Models of stomatal conductance g at the leaf level commonly postu-
late a one-sided dependence of g; on different environmental factors
(Damour et al., 2010). In particular the multiplicative approach of
Jarvis| (1976), expressing gs as a product of empirical functions of light
intensity, leaf temperature, vapour pressure deficit, ambient carbon
dioxide concentration and leaf water potential, which we denote by
¥ (¢), has had a lasting effect. In order to assess water stress more
explicitly, follow-up work replaced the response to leaf water potential
by a response to soil water deficit (Stewart, 1988), instant pre-dawn
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leaf water potential (Misson et al) |2004) as well as pre-dawn leaf
water potential aggregated over a period of time (White et al., 1999;
MacFarlane et al., [2004), the latter two variables being assumed to be
a surrogate for soil water potential.

Hydraulic models take a more mechanistic approach: In their sim-
plest form, stomatal conductance is assumed proportional to the hy-
draulic conductivity of the soil-to leaf pathway divided by the area of
the leaf and the water potential gradient between the soil and the leaf
(Oren et al.|,| 1999). Hydraulic conductivity is often deduced from ag-
gregating segments that make up tree architecture (Tyree, 1988; Sperry
et al., [1998; Tuzet et al., 2003), a method that has recently benefited
from laser scan imagery (Hentschel et al., |2013).

However, the one-sidedness of existing models of expressing stom-
atal conductance as a decreasing function of leaf water potential ¥ (¢),
which is either a direct argument or pre-calculated based on empir-
ical or hydraulical relationships, neglects the crucial co-regulatory
property of leaf water potential and stomatal conductance. Indeed,
the response of g; to ¥ (¢) is well documented for many species and
conditions, and Damour et al.| (2010) argue in favour of an underlying
mechanistic basis “because it is well demonstrated that stomatal move-
ments result from variations in leaf (or guard cell) water status, which
result themselves from variations of evaporation in the substomatal
cavity, and thus of the transpiration flux”. But there is also a direct
mechanistic impact of gs on ¥ (¢): By an analogy to Ohm’s law, water
potential along a soil-to-leaf water column can be expressed in terms
of leaf transpiration E, local hydraulic resistances along the pathway,
height and soil water potential (see below).

Altogether, other things being equal, E decreases with decreasing
¥ (¢) while ¥(¢) decreases with increasing E. In the following, we
determine the equilibrium between these counteracting mechanisms,
sometimes denoted hydraulic homeostatis.

The cohesion-tension theory (Tyree and Zimmermann,| 2002) states
that water ascends from the soil as a result of the transpiration of
water from leaves, which induces a water potential gradient along a
connected and tense water column from root to leaf, that is embedded
in a conducting system of fine capillaries. Increasing transpiration re-
quires faster water flow, implying steeper pressure gradients of water
potential. This additionally amplifies with increasing height due to
the gravitational pull. An increased tension in the xylem sap increases
the risk of cavitation, the rupture of the water column, and the dan-
gerous formation of embolisms. These air-blockings of the vascular
system reduce hydraulic conductivity, making even steeper potential
gradients in the remaining conductive conduits necessary in order
to maintain water flux — a vicious circle that would ultimately result
in a fully embolized xylem, null water conductance and catastrophic
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turgor loss. By decreasing the aperture of the stomata in the leaves,
trees can limit transpirational water loss and hence root-to-leaf water
potential gradients and cavitation risk. However, closing the stomata
implies a reduced carbon assimilation and production of dry matter.
The result of this trade-off is a homeostatic balance which we formally
determine in the following.

Let A [m?] denote the surface area of the leaf and E its transpiration
rate at a given moment. Let £ [m] denote the length of the branch path
leading from the soil to the leaf. Under steady-state conditions, the
water potential ¥(s) < 0 [MPa], s € [0, /], along this path obeys the
differential equation

d _ E-A d height
%‘F(S) S TRe) P s (53)

(Tyree and Zimmermann, |2002), where ¥(0) and ¥ (¢) represent soil
and leaf water potential respectively. The last term of is due to
gravitational force, p = 1000 kgm™ and ¢ = 9,81 ms™ denoting the
density of water and the acceleration due to gravity, respectively. K(s)
[kg ms™* MPa™] is the hydraulic conductivity of the branch segment s
units away from the roots. is essentially an analogue to Ohm’s law
for water transport, an idea that historically traces back to Gradmann
(1928).
For the hydraulic conductivity, the relation

K(s) = a-Cb(s) (54)

is empirically documented (Iyree et al., 1991} Yang and Tyree, 1993}
Patino et al., 1995; Zotz et al |1998) where C(s) denotes the branch
cross-sectional area at s, and a,b > 0 are constants.

Thus, for a given average soil water potential ¥(0) = ¥, solves
to

f 1

where h denotes the height of the leaf.

Tyree and Zimmermann! (2002) asserted a sigmoid relationship of
transpiration rate E against leaf water potential ¥ (¢), in the way that
E is maximal for ¥(¢) = 0 and decreases sigmoidly to 0 as ¥ (¥)
decreases. This corresponds to the closure of stomata in case of low
leaf water potential in order to prevent cavitation as described above.
Based on the simple algebraic sigmoid function x — %M (which,
as opposed to alternative sigmoid function types such as the logistic
function used in the regression by Tyree and Zimmermann (2002), will
later allow explicit calclulations) let

Y(0)+ p )

. 6
T+p- [Y()+p1l P2 (56)

E(Y(£)) = ps
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describe this response of E to ¥ (¢). The parameters p1, p» and p3 affect
horizontal translation, steepness and vertical dilation, respectively. We
have E >0, E’ > 0and E — 0 as ¥(¢) — —oo as desired.
Inserting (56) into (55) for E results in the following equation for
¥ (0):
Y(0)+ p1
1+ pa- [Y(0) + pal

‘P(ﬁ) =Cy+cq- ’ (57)

where for short

61
=—A- | ———ds- <
c1 /0 2 Ch(s) ds-p3 <0

czzzc—l—pg-h—i—‘I’o <0
p2

Equation reflects the coupling of transpiration rate E and leaf
water potential ¥ (¢): On the one hand, ¥ () decreases with increasing
E, cf. , on the other hand, E decreases with decreasing ¥ (¢), cf.
(56), respectively, other things being equal. The equation’s unique
non-positive solution describes the balance between these two coun-
teracting mechanisms. It reads

1
— |- +1—1/(cz—c1+1)2+4p3c —c)
m (3 1 \/(3 1+1) p5Cap1 — C4
forcy < —py
() =
1
zp-<C3—|—Cl—1—|—\/(C3+C1—1)2+4P%C2p1—|—C4>
2
forc; > —p1
(58)

where we abbreviated c3 := capy — p1p2 and cs := 4pa(c1p1 + ¢2).
With the balanced value of ¥ (¢) now at hand, transpiration rate E
follows from (56). Altogether, this defines an explicit function

E= fi(¥o) (59)
6.5.2 Properties

HYDRAULIC LIMITATION OF GROWTH Equation describes that,
other things being equal, ¥ (¢) decreases with height / as well as (ulti-
mately) branch path length ¢, and thus, as described in (56), so does
E. Provided a monotonic correlation between E and leaf net biomass
production, the same is true for the latter variable, i.e. increasing
height has a decreasing effect on biomass production, other things
being equal. This is a quantification of the hydraulic limitation hy-
pothesis (Ryan and Yoder, 1997), which links this very property to the
deceleration and eventual limitation of tree height growth.

Despite further supportive evidence (e.g. Hubbard et al) |1999),
Ryan et al.| (2006) challenged the theory and suggested other causes.
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In particular, the authors argue that low leaf water potential affects
turgor pressure, thus limiting growth in terms of cell expansion and
division. This sink-oriented perspective is conceptually quite different
from the more classical source-oriented one that is inherent to the
hydraulic limitation hypothesis (as well as to the models in this thesis).
Nevertheless, while the debate on the exact biological mechanisms is
still ongoing, Fatichi et al.|(2014) note that, in practical plant modelling,
the two approaches might just amount to the same outcome.

LOCATION OF THE MAIN RESISTANCES The cumulative hydraulic
resistance of the soil-to-leaf pathway is given by fof aéw Our above
considerations allow to assess this property theoretically: For illustra-
tion, we consider an allometric height /1 to stem cross-sectional area
¢ relation 1 = a - ¢® and assume, for the sake of the argument, this
relation to be scale-invariant, so that the cross-sectional area of a tree

1
of total height H is equal to Cy(h) = (H—_h) * at height it € [0, H]. For

a
a leaf located at the tip ot the trunk/{ = H, the cumulative resistance

along its pathway up to heighth € [0, H| reads

b
b

Rialh) = /oh . c1z<s> . (Z ) ((H=mts—mt).

In the case of European beech (Fagus sylvatica L.), we use a =
65.61 and b = 0.38 obtained from a height-to-diameter allometry by
Bartelink| (1997) after replacing the diameter by /2c/m, as well as
a = 51174.9 and b = 1.85 from fairly concordant results by Cochard
et al.|(2000) and Cruiziat et al|(2002). Altogether we have Ry(h) =
3541.48 - ((H — h)~3% — H=3%7). Figure 24| shows Cy(h) and Ry (h)
against i for H = 30 m; the profiles are virtually identical for different
tree heights. This simple calculation illustrates the disproportionately
strong impact of the smallest and final parts of the branch path as
opposed to a negligible effect of thicker branches and the trunk —
which clearly remains true even if the assumption of a scale-invariant
allometry is not strictly true.

In other words, the branch path parts that actually matter in the
calculation of total hydraulic resistance up to an arbitrary leaf depend
very little on the leaf’s actual position in the tree, the tree’s size or age.
This is in agreement with the theoretical considerations by |West et al.
(1999a), Enquist (2000) and Becker et al.| (2000), who demonstrated that
an appropriate tapering of the vascular conduits results indeed in a
hydraulic resistance that is independent of the path length. Empirical
evidence was presented by Yang and Tyree| (1993) and [Iyree and
Zimmermann| (2002) (and references therein), who found that the
major part of the total water flow resistance was located in the smallest
branch parts. In practical applications of our model, this justifies to

replace the a priori branch path-dependent term fog ﬁ ds by a

b(s)
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constant value — which is a particularly convenient step in a leaf
density-based growth model, in which root-to-leaf branch diameters

C(s) are not readily available.

HEIGHT AND SOIL WATER POTENTIAL Curiously, in the roles
of soil water potential, ¥y, and height, in terms of pg - h, are in-
terchangeable. Provided that the effect of height on foz —5(s)ds is
negligible, which is reasonable as argued in the previous paragraph,
this would in theory imply that, if water is the limiting factor to height

in the sense of section [6.5.2, an increase of Yy by 1 Pa enables an
increase in height by —- ~ 0.1 mm. Experimental data would be

desirable to test this hypothesis.

6.5.3 Model integration

In the style of Jarvis (1976) and follow-up work, the dependence of E
on Yy determined in (59), can be straightforwardly extended to other
environmental variables such as light intensity, temperature or water
pressure deficit in a multiplicative way. Towards an implementation
of the above considerations into the tree growth model presented in
the previous section, we do this for the light variable, i.e.

E(Yo,L) = f1(Yo) - f2(L), (60)

where now L denotes instantaneous radiation. Here, f, € [0,1] de-
scribes the relative response of E to light intensity at fixed ¥(¢) =0
(rescaled such that its supremum equals 1), and where f; is as in (59)
and describes the response of E to ¥y at maximal radiation f, = 1.

This affects the calculation in section only in that the constants
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c1,¢2 in (57) change. This is due to the fact that radiation, unlike water
potential, is an exogenous variable.

It is important to note that unlike Jarvis (1976) and followers, (60)
is not a multiplicative approach in the narrow sense (c.f. Damour
et al., 2010) since varying L ultimately also affects ¥(¢) by inducing a
different E-¥ (¢) balance (see also figure [25). The actual response of E
to varying L is thus more complex than the term f.

We note that due to f, being rescaled, we can replace L by

[ee]

Lyer(x, 1) = exp ( —/ A(x,n) - do(x,n) dxs),
X3

i.e. the relative portion of the total radiation reaching x, under the

assumption of a constant average radiation, as done in section

We can now use the previous considerations for a light and water-
dependent net biomass production function later used in an extension
of the previously presented tree growth model. We define

B(x,n) = i~ &(x,n) - E(x,n), (61)

where E(x,n) = E(¥o,L(x,n)) denotes local transpiration rate, and
the parameter y is the product of vegetation period length and wa-
ter use efficiency, both taken as constant. The latter in particular
is assumed constant as observed by Wong et al. (1979), Mott (1988)
and Buckley et al|(2003), and derived theoretically in the stomatal

optimization theory (Cowan,| 1977; Cowan and Farquhar, 1977) inde-

pendent of light conditions. Biomass production has been computed
from transpiration through a water use efficiency coefficient in earlier
works, notably by |Howell and Musick] (1984).

As for the relative response to radiation f, € [0,1], in the style of
the original model of section we simplify radiation as constant,
and describe the response of biomass production to light incidence
at fixed ¥(¢) = 0 in terms of a linear function, hence f, = L. For
given L. (x,n) and given soil water potential ¥, we compute local
transpiration rateE(x, n). As argued in section6e approximate

f(f - clb(s) ds = R for a constant total hydraulic resistance independent
of x.

The function f; can be obtained from data on European beech from
Lemoine et al.| (2002) on the dependency ¥ (/) — g after replacing
E = 0.0166 - g5 (fitted with data from Cochard et al., 2000). This pro-
vides the three parameters in (57), their values are given in table g} For
this set of parameters, figure illustrates the balanced value of tran-
spiration rate against light intensity as well as, for illustration, total
hydraulic resistance in three different height and soil water potential

scenarios.
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Light Intensity

Figure 25.: Balanced transpiration as a function of local relative light
incidence L,. as well as (the fixed) total hydraulic resis-
tance R for pg-h+ ¥y € {0,1,1.5} (upper, middle and
lower surface, respectively). Although we chose f, to be
linear, the actual response of E against L is slightly concave
due since the immediate increase of E at a higher light in-
cidence results in a decrease in leaf water potential which
is responsible for an additional decrease of E.

The modified biomass production function (61)) is now in the tree
growth model presented in section§ jused in place of (48)] To empha-
sise the teleonomic component of the spatial expansion, we replace the
local light gradient VL, along which produced biomass was trans-

lated prior to its allocation, by the productivity gradient V, 2((3;’;)) -

which, in contrast to the original model (there we had L « %) is no
longer necessarily equivalent to the light gradient. It now points in the
direction of the greatest increase in light and productivity with regard
to light and water availability. All other previous model mechanisms
remain unchanged.

In the simulations presented in the following section, we used a site-
specific yet otherwise constant soil water potential ¥y. Considering
a long-term average instead of a time-dependent soil water potential
follows the approaches of White et al,| (1999) and MacFarlane et al.
(2004) in which stomatal conductance responds to integrated values
of pre-dawn water potential (as estimate for soil water potential near
roots), arguing that water stress is indeed more relevant in the long
rather than short term.
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6.5.4 Simulations

DATA SET DESCRIPTION We tested our modified model against 24
even-aged pure stands of European beech (Fagus sylvatica L.) from
eight different sites throughout southern Germany, similar to and
including the one described in section

In the same way as described in section different thinning
treatments have been applied on sub-plots 1, 2 and 3 of each site,
resulting in high, medium and low stand density, respectively. Table
summarizes characteristic stand variables. Additional details can be
found in |[Kennel (1972).

Experimental site  Latitude Longitude Altitude
Mean annual ~ Mean annual
temperature  precipitation

Kirchheimbolanden 11 7°93'07”E 49°63'21”N 610 m
7.0°C 660 mm
Waldbrunn 14 9°80'27”E 49°72/23”"N 360 m
8.5°C 710 mm
Fabrikschleichach 15 10°57'12”E 49°91'86”N 470 m
7.5°C 820 mm
Elmstein-Nord 20 7°91'86”E 49°39'08”"N 400 m
8.0 °C 780mm
Lohr-West 24  9°50'62”E 49°99'10”"N 430 m
7.5°C 960 mm
Mittelsinn 25  9°51'54”E 50°19'50”"N 505 m
7.0°C 1020 mm
Rothenburg 26  9°44'69”E 49°97'42"N 475 m
7.0 °C 1050 mm
Hain 27 9°33'47”E 49°99'25”"N 420 m
7.0 °C 1080 mm

Table 3.: Details of the experimental sites. Stand densities over time,
affected by harvest and natural mortality, are qualitatively
similar to those shown in figure |15 and can be found in
Kennel (1972).

Standard deviation values for tree height and trunk diameter at
breast height were not available for the sites Kirchheimbolanden 11,
Waldbrunn 14, Lord-West 24 and Rothenburg 26. In figure |26} to give a
rough impression, we thus used estimates based on a fairly reasonable
linear regression of standard deviation against mean value derived
from the remaining sites.

6.5.4.1  Comparison to long-term data

The simulation procedure is identical to the one described in section
Parameters not related to the modified computation of biomass
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production are the same as in table |2, Newly added species-specific
parameters are summarised in tablej| Site-specific average soil water
potentials were not available by measurement and were thus esti-
mated by model inversion (tabl The range of values is realistic as
plants are known to function within—0.006 MPa to —1.6 MPa (Horn
et al., 2010). Table [5| also shows empirically measured site-specific
top tree heights (averaged over the three stand densities), which are
a good indicator for soil water conditions (Martin Nickel, personal
communication). Indeed, we note a strong positive correlation with
the estimated site-specific soil water potentials, as desired.

Parameter Value Reference

p1 357 Lemoine et al.| (2002)
p2 1.8 Lemoine et al.| (2002)
p3 3 Lemoine et al.| (2002)

A [m?] 0.0015 [Barnal (2004), Meier and Leuschner| (2008)
R [m™*s™*] 800
plyl 0.041

Table 4.: Model parameters. Unreferenced parameters were estimated.
Additional ones are the same as in table

Site Yo [MPa] Top height [m]

Kirchheimbolanden 11 —0.05 29.0
Waldbrunn 14 —0.2 26.8
Fabrikschleichach 15 —0.15 28.4
Elmstein-Nord 20 0 29.7
Lohr-West 24 —-0.6 25.7
Rothenburg 26 ~ —0.05 29.3

Hain 27 0 31.8

Mittelsinn 25 —0.8 23.1

Table 5.: Site-specific average soil water potentials ¥y, estimated to the
nearest twentieth. The values are well positively correlated
(r > 0.9) with the empirical stand-specific top heights.

The spatial leaf density dynamics in all cases are virtually the same
as in the light-only case shown in figures [18 and Figure [26] il-
lustrates model simulations against the empirical data. Overall, our
results correspond well to observations across the different sites as
well as, as before, across the different stand densities.
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Figure 26.: Comparison of simulated to empirical stand average and
standard deviation (partially estimated, see text) data of
tree height [m] (dashed line, circles, left axis ) and diameter
at breast height [cm] (solid line, circles, right axis) over
time [years] and three sub-plots differing in stand density.
Transparent lines illustrate the case of leaf water potential
¥ ({) artificially being set to 0, thus nullifying the effect of
the hydraulic submodel, see text.

Incorporating water availability and hydraulic effects into our tree
growth model in the way described hitherto has a curious impact: If we
artificially set ¥ (¢) to 0 for comparison (figure |26 transparent lines),
thus running simulations for the case of perfectly unconstrained water
supply and effectively reducing the model to the previous version in
which biomass production and spatial expansion depended merely on
light, reveals an almost unchanged trunk diameter growth, as well as,
as could be expected, an increase in height growth. We address the
latter property before turning to the more striking former one.

Under equal light and local leaf density conditions, local biomass
production decreases with increasing height due to a resulting lower
leaf water potential and consequently transpiration rate. Hence, the
third entry of the productivity gradient decreases in magnitude with
increasing height. Height growth in the first place both in the modified
and the original model in section |6.1]is a consequence of the local
attempt to avoid inter-individual and, at least to an equal extent, intra-
individual competition for light (recall the concept of modularity).
The incentive to do so by growing in height is lessened by the above-
described impact of hydraulic limitation on the vertical component of
the productivity gradient governing the crown’s vertical expansion.
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The upward motion of a leaf density under water constraints will
thus continuously decelerate, compared to the scenario of a light-only
dependency.

This observation is also essential as to why trunk diameter growth
is relatively less affected by water conditions in our simulations: A
crown — or more precisely, a canopy, since, surrounding competitors
are affected and respond in an identical way, which is crucial - set-
tling for a smaller height, due to the above-described mechanism of a
mitigated incentive to escape competition for light, can use a larger
portion of produced biomass for the allocation to foliage as opposed
to supporting sapwood in terms of the pipe model theory (recall that
the partitioning coefficient p(x) in ({4)] decreases with height). Other
things being equal, this induces an increased future production of a
lower compared to a higher located and otherwise similar crown. It
appears that this effect compensates to a considerable extend for the
inherently lower biomass production of a water-constrained crown in
comparison to its unconstrained counterpart where ¥ (¢) = 0, other
things being equal, altogether bringing about a similar trunk diameter
growth.

It is striking that with the exception of the very dry sites Lohr-
West 24 and Mittelsinn 25, the difference in simulation output of
the complete model and the one where the hydraulic mechanism is
overridden, i.e. essentially the model from sectio®[1, s marginal. In
these cases, soil water potential ¥y is not low enough to bring leaf
water potentials close to the inflexion point of the function(§6)] close
and below which hydraulic limitations become more pronounced.
Above all, this strongly confirms the predictive power of the only
light-dependent model of section [6.1|in overall moist conditions.

6.5.5 Discussion

We have demonstrated that the relationship between leaf water poten-
tial and transpiration is not unilateral as tacitly assumed by existing
models, but interactive, given that transpiration levels affect the speed
at which a soil-to-leaf water column moves and thereby that the water
potential gradient along it, as well as ultimately the end value ¥ (?).

The possibility of including additional environmental parameters
in this framework remains unaffected. We illustrated this by incorpo-
rating the effect of light incidence in terms of a semi-multiplicative
approach, in which the ultimate effect of the arguments is more com-
plex than their response term as such. This is notably in response
to one of the major criticisms of the widely-used multiplicative ap-
proaches, namely the supposedly independent action of the different
factors (Damour et al., po10).
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Our model is based on several simplifications which suggested it
to be applied in a long-term and large-scale scenario. We did this by
integrating it into our previously developed tree growth model and
running simulations for a stand-average tree over a long period of
time.

Adapting our model to small-scale and short-term processes and
relaxing these simplifications begins with including other environmen-
tal, in particular atmospheric parameters. Moreover, the steady-state
assumption of the tree’s water balance is an idealisation, given that
water storage in trees underlies diurnal fluctuations (Tyree and Zim+
mermann, 2002). Nevertheless, in the long term, it may be a reasonable
simplification. Linked to this is the non-consideration of the horizontal
transport of water (see Tyree and Zimmermanreoo2) within the tree
in our model. Although this is an important process, it plays a consid-
erably smaller role than vertical movement — an observation that gave
rise to the concept of hydraulic branch autonomy (Sprugel et al., 1991).
We tacitly assumed the establishment of an E-¥(¢) equilibrium for
given environmental conditions, such as lightL and soil water poten-
tial ¥ in our model, to occur infinitely fast. Indeed, it has been shown

that stomata open and close very quick (Saliendra et al.,| 1995, Salleo

et al., 2000, |2001)). Still, applying the model to a much smaller time
scale would call for a modifications e.g. in terms of a smooth change
in stomata aperture in response to changing environmental conditions
as well as a delay in its interaction with water potential. The balancing
between the probability for embolism formation, which, in so-called
vulnerability curves, is described as a function of water potential, and
the repair of embolisms (see Tyree and Zimmermann, 2002) is only
implicitly accounted for in our model, and could be addressed from
a more mechanistic point of view. Lastly, our assumption of average,
spatially and temporally constant soil water potentials leaves room for
refinement, although such values are tedious to trace experimentally.

In our model, soil water potential is a given, exogenous parameters,
whereas in reality it is subject to the functioning of the individual
tree and the larger stand community. While in this thesis, we focus
on above-ground functional-structural dynamics, a possible next step
would be to couple our crown models with a suitable root growth
model — e.g. in the style of density-based approaches mentioned in
section —and incorporate the below-ground local competition for
water and its impact on local soil water potentials.

In this thesis, we have incorporated root growth in terms of sim-
plifying assumptions in conjunction with the pipe model theory (see
section[3.5.1). In general, the partitioning of available biomass between
shoots and roots is a complex modelling domain (Wilson, 1988). In
accordance with the basic idea of the teleonomic root models men-
tioned in section here, we sketch a perspective for a teleonomic
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generalization of the water-dependent tree growth model presented
in this section. Based on a formalisation of the positive correlation
between the average soil water potential that a tree has access to and
its root mass, the partitioning of biomass between shoots and roots
can be seen as an optimization problem: There is a trade-off between
allocating biomass to the shoots, which increases biomass production
by means of higher leaf area, and allocating biomass to roots, which
increases biomass production by means of a higher soil water potential.
A suitable model would determine the optimal balance between these
two alternatives.
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ASSIGNING A BRANCH STRUCTURE

The non-consideration of branch topology in the previous chapters has
facilitated the efficient modelling of the spatial dynamics of the leaf
distribution. However, an important aspect of the tree’s morphology
is currently not part of the spatial output of the tree models presented
in chapters fland p] Thus, in this chapter, we investigate in what way
the provided leaf density can be used to derive a complete description
of the tree’s geometry, namely a realistic branch system.

The problem we address is a static one: We aim at assigning a
branch structure merely to the leaf density output at a given fixed
point in time, & = &(x), without it having an impact on future model
dynamics. In particular, a branch structure determined for a leaf
density at some time t; is a priori not required to be consistent with
a branch structure determined at a time t, > t;; this would already
imply a topological approach.

In a first step, the subsequent method determines for a given finite
set of points (leaf positions) a set of lines connecting those down to the
stem base. In the context of leaf density &, the points can be regarded
as realizations of the probability distribution on R3

X 7&(36)
Jio ®(@)de

We address the issue of an infinite number of points in section
Approaches that are related to the one presented in this chapter have
appeared in the domains of computer graphics as well as photograph-
based reconstructions of tree structures. In the model by Runions
et al.| (2007), the constructed branch system is composed of adjacent
particles that are iteratively strung together in order to gradually pass
through a set of points that is evenly distributed in a given crown
envelope. The approach focusses on the space filling of the crown,
and conceptually appears to be not straightforwardly generalizable
to a given distribution of leaves, which is our target set. In the model
by Neubert et al.| (2007), a branch structure is formed by the paths of
points starting at the leaf positions and being transported down to the
stem base along a vector field that is defined based on an a priori given
trunk and primary branch structure. On the same basis, Sakaguchi
(1998) uses L-systems to generate a more detailed branch skeleton

(62)
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that fills a given crown envelope. The last two models thus require
a rudimentary skeleton as input, whereas our model constructs the
latter from scratch.

7.1 MODEL DESCRIPTION

In his trailblazing article for the systematization of tree structure,
Leopold| (1971) wrote “By analogy [to river systems] it seems possi-
ble that the branching patterns of trees and of other biologic forms
are governed by [...] tendencies which are analogous to minimum
energy expenditure [...]. In the case of trees it might be supposed
that [this] involves minimizing the total length of all branches and
stems.” and hypothesized that “the form which is most probable also
tends to minimize the total length of all paths within the applicable
constraints”. Leopold’s point of view is clearly a teleonomic one: For
a given distribution of leaves, he assumes the minimization of the
total length of the branch network and thus of wood mass, implying a
maximization of leaf mass and hence future biomass production.
The following algorithm is strongly based on Leopold’s hypothesis.
We construct a set S of possible branch systems that connect the leaf
positions to the stem base via line segments and bifurcations, and
which is essentially formed only under the constraint of given branch-
ing angles. S covers a very large, if not exhaustive set of skeletons, of
which, in the end, we identify the system with the shortest total length.

Let xq,...,xn C R% x R+ denote leaf positions of a tree with a verti-
cal trunk rooting in (0,0, 0). This last assumption is made without loss
of generality and can be readily relaxed. For the sake of convenience
we assume that x; = (0,0, %) where &k denotes the height of the tree.

For later use, let " denote the set of ordered lists of length n,
composed of natural numbers. For lists a = aa;...a, € L" and
b=0b1by...b, € L™, with a;,b;,n,m € IN, we define the concatenation
of a and b by

ab=ay...a,by...b, € L™,

a is by definition contained in b, a Cy, b, if a is the tail of b, i.e. if
m>n and a; =b,_,; fori=1,...,n.
a and b are called compatible, a ~, b, if either a; # b; for all i, j, or
dipy>0: a,_j=b,_;foralli=0,...,i
and {ay,...,a,_j,—1} N {b1,..., by_i—1} = 2.

Compeatibility is a symmetric and reflexive but not transitive relation.
For two points x,y € R® denote by xy and ¥y the line and line
segment through x and y, respectively. With

z) y—z

Puale) =2+ (x=2)- (r-2) - 22
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denoting the orthogonal projection of x onto the line through y and z,
let vz
P};P,z(x) = Py,z(x) - M : ||Py,z(x) — XH -tan(cp)

be the oblique projection, where the angle that x Pf -(x) draws with
Yz is .

We follow Honda (1971) in that branches are straight, and a ramifica-
tion comprises the bifurcation of one mother branch into two daughter
ones. A necessary input for the subsequent algorithm are the branch-
ing angles, i.e. the angle between a mother and daughter branch. We
assume these to be only dependent on branching order. This is an
assumption common in many topological models (e.g. Takenaka 1994;
Perttunen et al.,|1996) and, in a particular case, empirically confirmed
by Mékeld and Vanninen| (1998). It can principally be relaxed, e.g. by
introducing a dependence on the ratio of height and crown diameter
of the given leaf density as a global proxy for competition. Denote by
@n the bifurcation of an order n branch from an order n — 1 branch
in the botanical (or Hack’s) ordering system (e.g[Borchert and Slade)
1981)), which is the appropriate one here.

The starting point of the following procedure is a given line segment
representing the trunk. Iteratively, we construct new line segments
leading from the leaves to branching points on line segments formed
in the previous step; starting by connecting all leaves to the trunk in
the first step, then looking for connections between the leaves and
these branches, and so forth.

Next, we describe the method in detail. Although the basic ideas
are generally intuitive, the formalism is at times rather cumbersome.
Parallel to its development, boxes throughout the text aim to illustrate
the specific steps for an exemplary set of given leaf positions.

In the following we consider the sets G, and T}, formally defined
in and illustrated in the box below. We denote by G/, C R® all
possible points where an order n branch directed and terminating
at x; bifurcates from an order n — 1 branch, where the latter is given
by a line segment through a different leaf position x; and one of its

appropriate order n — 1 branching points. In order for P(“og)l (xi) -
n)ksXj
i.e. the oblique projection of x; onto the line through x; and the kth

element of G}, — to be indeed added to the set G/ 41, it must satisfy
the two conditions of lying indeed on the line segment (not just
the line), and (65) of a daughter branch not being longer than the
remaining mother branch, reflecting the concept of apical dominance
which we assume here.

A particular branching point in G/ 1 associated to leaf position x;
is thus defined by a different leaf position x;, j # i as well as one of

the branching points associated to x;, each of which is, on its part,
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7.1 MODEL DESCRIPTION

associated to a leaf position x;, k # j, and so on. The set T} C L"*!
captures this topological history of bifurcations for branches of order
n terminating at x;. In particular |G| = |T%|. Formally,

Tt ={1}, Ti =@ fori>1 G} =1{(0,0,0}, Gl =@ fori>1

} m|Th| . m |Gl

=0 U fuh}  ca=U U {mn @) 6
j=1 k=1 j=1 k=1
j#i Tijkn j#i Tijkn

where 0; x , is by definition true if and only if

Pn+1
max | ||[P7" X;) — X;
(‘ (G{r)erf( i)~

One might want to specify additionally restrictive criteria, e.g. re-
garding the angle potential branches defined by an end point x; and a
potential branching pointP((”c";’j*)1 (x;) draw with the horizontal plane,

n)kiXj

Pn+1 N j
P(G{;)k,xj(xl) (Gn)x

4

) <[l - @il
(64)
(65)

P (x) — x;

p(Pn+1 1) — x;
(Gé)k/xj ( l) )

(G] ks Xj

i.e.

Pn+1 . _

2 2
P(Pn_+1 ; o P?n_#rl ; o
(i), o)+ (2, 0), )

for some upper limit ¢, which seems reasonable in the case of many
plagiotropic species. This and other possible criteria referring to
branching angles (e.g.[Honda,1971;/HHonda et al.,1982) or the branch
length ratio, i.e. the length ratio of mother and daughter branch
(publicised by Whitney, |1976, Oohata and Shidei, |1971 and [Leopold,
1971, but questioned by Borchert and Slade, 1981), which could be
restricted to a suitable interval

have not been accounted for in the following, in view of the supposedly
little restricted plasticity of our target species beech.

<

arctan

Pn+1 R
P(Gé)erj(XZ) ti

RSN

€ [Ry/ Ry
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X2 Xa

T = {1} T=0 Ti=0 T, =0
T? =g T3 = {21} ;=0 7 =9
TP =0 T3 = {31} T3=0 T, =9
Ti=0 Ty = {41} Ty = {431} T{=0
=0 T3 = {51} T3 = {531,541} T; = {5431}

2D example of the iterative construction of branch segments. In

step n > 1, leaves are connected to branch structures established

in the previous step in accordance with the criteria [64) and [(65).
We used ¢, = 137.5° for all n. Below the figure: Topologies cor-
responding to the branching points Gi,. For instance, in step 3,

a branch connection from x4 is drawn to a branch leading to x3

which, on its part, had been connected to a branch to x; in the

previous step. Hence 431 € T;*. For n > 5, T,i = & for all i.

Let N be the smallest number for which Gf\] =9 for all i, and
define

. N . . N .
G=JG, and T'=(JT,,
n=1 =1

i.e. the sets of branching points for x; of arbitrary order, and the
appropriate topological information. For some t € TV x ... x T™, t;
gives a topological history of bifurcations leading to the leaf position
xx- However, not all the different histories in + may be compatible.
Thus we define

T = {(tl,...,tm) S Tl X .ooox T t; ~ t]forallz,]}

In the above example T = {(1,21,31,41,51), (1,21,31,41,531),
(1,21,31,41, 541), (1,21,31,41,51), (1,21,31,431,51),(1,21,31,
431,531), (1,21,31,431,5431) }.

and for the index set
K= {(kl,...,km) CeT: t= (T,}l,...,T,?fn)}
let

G={(g-gm € (G x - x (@M}
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be the set of branching points whose topologies correspond to ele-
ments of the set of compatible topologies T.

The set of all admissible skeletons for the leaves xi,...,X;, ex-
pressed in terms of line segments, is now given by

S={mgy...u xmgm}(gl,...,gm)ec

Left: Three (of total six) admissible skeletons. The second skele-
ton in the first box is admissible as well. Right: An inadmissible
skeleton. Its topology reads (1,21,31,431,541) ¢ T; the last two
entries are incompatible.

For reasonably distributed x;, S will be non-empty. According to
Leopold’s hypothesis, we choose the one with the shortest total length:

m
s* =argmin ) _ [s;| .
seS i=1

BRANCH THICKNESSES Prior to the introduction of the conceptual
pipe model theory, [Shinozaki et al.|(1964) empirically established a pro-
portionality between the total cross-sectional area of branches above
crown break to the amount of foliage they support. As previously
done e.g. by Runions et al.| £007), we can assign cross-sectional areas
to the previously determined branch segments above crown break
under this assumption. Lett € T and g € G denote the topology and
set of branching points that correspond to somes € S. The subset

V= {tict: #j: tf CoLt;}

strips t of redundant information.

For s = s*: t = {1,21,31,431,5431} and ¢/ = {21,5431}. In
particular t covers all the information of t;, t3, t4 and ts.

The branches, characterised as a set of the appropriate indices of the
leaves they terminate at, that bifurcate from branch i are

bi={tjet': tj, =i}
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For s =s*: b; = {2,3}, b =9, by = {4}, by = {5}, bs = 2.

The number of leaves supported by branch i is thus

=1+ E (indy (i) - 1),

j=1

where indy (i) returns the index of 7 in t;- ifi e t;- and 0 else.
]

Fors=s*11=1+1+3=5,L,=14+04+0=1,13=140+2=
3, 4,=14+0+1=2,15=1+0+0=1.

Without loss of generality, let ¢i,..., gfbv| denote the branching
points on branch i ordered such that

gt = xill < ... < ligh, — xill

The number of pipes that join branch i at the branching point g} is .
Denoting the end points of branch i by ¢/ := x; and gbel L1 = 8i, the

number of leaves L. supported be the branch segment gi ¢' 41 equals

Ly=14+Y I fork=0,...,b].

For s = s*: The trunk (branch 1) in particular is devided into 3
segments, supporting — from leaf to stem base -1, 2 and 5 leaves
respectively.

Assuming a proportionality of branch cross-sectional area to the
number of leaves supported by it, the cross-sectional area of branch
segment gi gl 41 is given by P - Li where P, denotes petiole cross-
sectional area. Shinozaki et al. (1964) claims this to be true with the
exception of the below-crown trunk segment, i.e. (0,0,0), g|1b1‘, which
needs to be considered separately. Among other approaches, Oohata
and Shinozaki| (1979) proposed a straightforward to apply model for
below-crown trunk tapering, depending merely on species-specific
parameters as well as the cross-sectional area at crown break and the
above-crown tree mass, both of which are provided by the presented
algorithm.

7.2 SIMULATIONS AND DISCUSSION

All subsequent results are based on leaf positions given by realizations
of the probability distribution associated to the simulated leaf density
shown in figure [21]according to (62). In practice, the algorithm quickly
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N /4?.“ The final skeleton s* with the

appropriate segment thicknesses
(not considering trunk tapering).

generates a number of complex combinatorial structures that drasti-
cally slow down computational speed to the point where a number of
leaves beyond the order of twenty becomes to intensive. Testing lists
for compatibility is a particular bottleneck in this process. Figure
illustrates the fast increase of computational time against the number
of given leaf positions.

2

10

Figure 27.: Computational time
o averaged over 100
: randomly chosen sets
£ of leaf positions for
each given number of

T mierotiemes " leaves.

5 100
g

1072,

Nevertheless, the method yields realistic results for the system of
main branches as exemplified in figure In particular, it can thus
complement the above-mentioned reconstruction models by Sakaguchi
(1998) and Neubert et al. (2007), which require this very structure as
an input based on which more complex skeletons are generated.

-~ /
27 e
= -

4

Figure 28.: Oblique top and side view of an example of a skeleton
generated from thirteen randomly chosen leaf positions
(green points). We used ¢, = 138.5° (cf.|Bayer et al.,|2013)
for all n. The transparent surface represents the crown’s
convex hull.

Formally, a leaf density, whose support has a non-empty interior,
is an infinite set of points. The task of assigning a branch network to
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such a structure may thus be assumed linked to fractal geometry, a
tield that has traditionally been stimulated by and interacting with
plant modelling (e.g. Mandelbrot, 1983; Smith, |1984; Palmer, 1988;
Zeide, |1991). In particular, West et al.| (1999b) elaborated on the idea
of two-dimensional foliage being arranged in a fractal way such as to
virtually fill a three-dimensional space.

Theoretically, the iteration step of the algorithm presented here can
be reasonably generalized to an infinite set of points. However, in
general the existence of N € IN such that for all n > N we have
G, = T} = @ cannot be expected. Meanwhile, the question whether
the skeleton converges in a reasonable sense, e.g. in the way that s*(n)
and s*(n + 1) share the same branch system up to order m where
m grows beyond all bounds as n becomes large, s*(n) denoting the
shortest of all admissible skeletons up to iteration step n, remains
open.
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The aim of this thesis was to introduce, explore and apply leaf area
density & and horizontal leaf area density # as means to charac-
terise the local distribution of foliage and thus crown morphology in
dynamic plant growth models. This has indeed proven an efficient
middle-way between computationally expensive small-scale models
with a topological architecture and large-scale models based on a de-
scription of crown shape in terms of rigid structures such as envelopes.
In an intentionally concise framework, our applied models managed
to generate a series of empirically documented, complex emergent
phenomena, and motivated biological hypotheses on the drivers of
spatial growth. In the spirit of teleonomic modelling, the approach of
a spatial expansion along the local productivity gradient allowed to
set aside the otherwise complex modelling of branching processes at
a lower hierarchical level, and instead describe goal-directed crown
expansion in a direct way. This mechanism accounted for a sponta-
neous adaptation to competition for light and captured the resulting
reduction in growth rate — a property well reflected in the comparison
to empirical data sets from density experiments. Across different
plant types from crops to forest stands, as well as against diverse
data types from long-term biometrical observations to 3D spatial data,
our approaches allowed realistic simulations of growth dynamics,
plasticity and spontaneous local adaptability to different competitive
conditions with only few parameters — key challenges for present day
functional-structural plant models.

The deliberate simplicity of our models leaves room for refinements
in terms of additional ecophysiological parameters and processes.
Monteith’s radiation use efficiency concept is a powerful and reason-
able simplification at large time scales, but could be replaced by more
sophisticated models for photosynthesis and biomass production in
response to light incidence (cf. Marcelis et al,, |1998; Farquhar et al.|
2001} Yin and Struik, 2009; Ye| 2010). These could additionally account
for soil nutrients as well as atmospheric variables, such as temperature,
vapour pressure deficit or carbon dioxide concentration, which we
tacitly assumed as constant. Perspectives for introducing more detail
in our hydraulic model have been itemised in section
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In this thesis, we have made do with the assertions of the pipe
model theory. Criticism concerning not only the postulated constancy
of the ratio of leaf mass to supportive sapwood cross-sectional area,
but also with regard to the simplified transformation of sapwood to
heartwood as well as the implicit neglect of maintenance respiration
leave room for improvement in the appropriate model mechanisms.
Empirical and conceptual contributions to these questions are part
of an in-depth survey on the pipe model theory and follow-up arti-
cles, which has been conducted in parallel to this thesis (Beyer, R.,
Lehnebach, R., Letort, V., Heuret, P., unpublished manuscript).

Spatial leaf distributions obtained in the simulations throughout
this thesis featured a high degree of regularity. In section we
argued this to be a realistic property in consideration of the high
irregularity of the underlying branch network, and in section we
demonstrated that our simulated crowns can indeed approximate a
population’s average. Nevertheless, our simulations clearly represent
a generic ideal type (cf. also figure 8] which contrasts with a typical
individual crown that commonly features a more heterogeneous leaf
distribution. At this scale, the limits of our approach of unconstrained
plasticity and teleonomy, and namely the assumption of the negligibil-
ity of the effects of branch topology and its dynamics, become visible.
From a modelling point of view, the possibility of a hybrid approach,
introducing a simple trunk and main branches topology, coupled to
and somewhat constraining and channelling the expansion of leaf
density, raises serious conceptual problems that we will not address
in detail here. A more promising perspective for the generation of
heterogeneous patterns appears to be the introduction of stochasticity
in the deterministic models presented here, e.g. with regard to the
magnitude or direction of the mobility coefficient of the transport
gradient, or the leaf angle distribution. Light gaps resulting from such
a mechanism could induce an expansion of leaf density in an atypical
direction at the next time step.

In section we showed that horizontal leaf density provides the
same amount of information on biomass production based on radia-
tion use efficiency as does leaf density &, under the assumption of
vertical light incidence, which in section |6.4| we justified in our particu-
lar modelling framework by comparing it to alternative light models. If
information on 3D crown shape is not of interest in a specific scenario,
these considerations motivate to approach the modelling of homoge-
neous, even-aged forests in terms of a horizontal leaf density-based
model. In section we argued that in this case, vertical profiles
are of considerably less importance for inter-individual competition
(among other reasons because they can be expected to be similar) than
the horizontal occupation of space, suggesting the use of # with the
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objective of computationally efficient simulations at the landscape
scale. Due to Vyexp(—A-#(x)) = —A-exp(—A - &(x)) - V.Mb(x),
equations describing phototropism in the case of horizontal leaf den-
sity are merely quasi-linear (and potentially even more simple if the
magnitude coefficient exp(—A - #(x)) is additionally simplified). This
opens up exciting opportunities in terms of theoretical analysis and
simplification up to partial solvability, and thereby additional compu-
tational speed-up (as exemplified in section [4.2), not exclusively but
particularly in a sensible continuous-time setting, i.e. in the form of a
reaction-diffusion equation — potentially based on the two-dimensional
adaptation of an approach presented in chapter
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APPENDIX

9.1 NUMERICAL DETAILS

This section discusses selected details for the numerical implemen-
tations of the models presented in the preceding chapters. Being
technically very related to the time-continuous tree models of chapter
addressed in the following, we omit numerical particulars of the
two-dimensional crop model of chapter 4] For the sake of clarity and
generality, we omit the time variable unless it is essential.

Models in chapters 4] [f|and [6]were implemented in a finite volume
scheme (e.g. Toro, 2009), in which we consider the cell-specific leaf

density
1

R = T, 40

on a regular mesh with cells
T =[i-Ax, (i+1)-Ax[x[j-Ax,(j+1) - Ax[ x [k-Ax, (k+1) - Ax|

fori,j € Z, k € Ng and small Ax. For a given &, the local light
incidence Lyj in X in the case of vertical radiation, i.e. (4), reads

Zijk = PAR - exp (—)\ : Z;ij,{ : Ax) .

x>k

The general case of light incidence from an arbitrary direction v € S%
is conceptually similar and only technically more extensive: For a
given v, the sum in the above exponential term ranges over all cells
Yy whose intersection with the line through the centre of Z;j; and
pointing in the directionv is non-empty. Ax is replaced by the length
of this intersection (which is at most v/3 - Ax), and A is adjusted
depending on v as detailed in section In this case, the potential
interception of radiation by competitors before it reaches the simulated
tree is accounted for by means of periodic boundary conditions. Based
on a given total light incidence, cell-specific biomass production is
computed straightforwardly.
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9.1 NUMERICAL DETAILS

Numerically, the flux vector field ] = & - VL used in the continuous-
time models of section [5 (cf. and (39)) is defined at the faces of
the grid cells, namely

—(1) ;iﬂjk + Iijk ‘ Lit1jk — Lijk

Z]k - 2 Ax
—2) _ ijr1c + i Lij+1k — Lijk
L Ax
—3) _ ijkr1 + i ‘ Lije1 — Lijk
ijk 2 Ax

at the borders of % and X 1, Zjji1x, Zijkr1, respectively. The
numerical analogon of V, - ] in (34), and similarly in(44), reads

—1) - —@) @) -
"bl(]‘k) B ‘Pz(f)ljk n 4)z(jk) - ¢z(j21k N (Pz(jk) - ‘Pz(jk)q
Ax Ax Ax

For a given ;ijk(t), the leaf density ;ijk(t + At) at the next time step,
with At small, is then inferred by means of a standard Runge Kutta
scheme.

In the time-discrete case of chapter [ we formally considered the
translation of the biomass produced in a point x to the point x +
V.L(x,n) (analogous for the water-dependent case). In a finite volume
framework, this process is accounted for as follows: Having computed
the biomass ?]k produced in the cell Zi]-k, we assign vectors to its
vertices, representing the local light gradients in these positions. These
vertex-specific gradients are defined based on the gradients at the
adjacent cell faces (see above). For short, we denote

ALij  Liyijk — Lijk

Ax; Ax
AL Lijy1x — Lijk
AX2 Ax
ALjjc  Lijks1 — Lijk
AX3 Ax

In the following we consider the upper rear right vertex of Ly, i.e.
((+1)-Ax,(j+1)-Ax,(k+1) - Ax) . The most sensible definition
of the light gradient in this point is given by the average over the
appropriate four adjacent difference quotients, yielding

ALjg | ALjik | ALjgtr | ALjrakn
1 | A N N - N - s
o ijk i+1jk ij+1k i+1j+1k
4 Axo + Axy + Axy + Axy (66)

ALjj | ALipje | ALjjyr | ALipgjen
Axé + Ax3] + Ai{s + Ax;
Figure [20h illustrates this for the third entry of (66).
Translating all vertices of X by the appropriate vectors analogous
to results in eight points vjj, ..., vi11j11k+1 defining a polytope
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AX » AI-i+1j+1 k
Ax

ALy
: AI;/ zi+1j+1l¢f

(@) (b)

Figure 29.: (a) The vertical entry of the light gradient in the upper rear
right vertex of ¥, (dashed line) is defined as the average
over the those of the adjacent cells (dotted lines). (b) The
three entries of the translation vector at the vertex shown
correspond to the appropriate difference quotients at the
three adjacent faces of Xjj.

Pijx. Let Vjj denote its total , and Vg{k/ € [0, (Ax)3] the volume of

o . . . . i’k
its intersection with an arbitrary cell ;s (hence Yk Vlzﬂg = Vijk)-

Then B - % is the amount of biomass produced in and transported
from ¥ to the cell Z;yp. Hence, the numerical analogue of (]4.__9[), ie.
the biomass available for allocation in an arbitrary cell £;;, reads

i

V)
J— k/
B = By - _He
! i,;c, T Vi

The computational bottleneck of this procedure is the determination

of the intersection volumes Vil].,,{k,, which can be complex polytopes. A
considerably faster way consists of defining the three entries of the
vertex-specific light gradient as the appropriate difference quotients
of the adjacent faces of the cell as illustrated in figure pgh. Hence the
third entries of the gradients corresponding to the four top vertices

L; . .
are all equal to A;’(’;, etc. In particular, in place of we have

BLik 67)

for the gradient at the upper rear right vertex of X;jx. This approach
has the advantage that the resulting polytope is a cuboid, and hence
so are the intersections with the cellsX i, cf. figure speeding up

the computations of the Vllﬂi ¢ significantly. A conceptual downside
of this approximation is the fact that the images of the faces shared
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9.2 FRENCH SUMMARY / RESUME FRANGAIS

by adjacent cells (e.g. the top face of X;; and the bottom face of
Zjjk+1) under the above-described translational motion are no longer
necessarily the same. However, the error is negligible for sufficiently
small Ax since the appropriate gradients of adjacent cells converge to
one another as Ax — 0, e.g. (b7) converges to (66).

ZA) . )
izum Figure 30.: [llustration of the proce-
. dure (projected onto the
' : ,i\ ! xp-plane). Dashed lines
byt i indicate the different face-
xgi i A';K: specific difference quo-
: L tients which define the
é— zi,-kl . translational motion of
A ! Al the vertices of Xjj.
ive Ax,
Ax

With the exception of the algorithm presented in chapter [7, which
was written in Matlab, the models in this thesis have been imple-
mented in PYGMALION, a C++ platform offering a generic frame-
work for the development, analysis and evaluation of dynamical plant
growth models (see Cournede et al., 2013, for details). In this thesis,
we used the generalized least squares method for parameter estima-
tion as well as the standardized regression coefficients method for
sensitivity analysis, which are part of PYGMALION's built-in toolbox.

9.2 FRENCH SUMMARY / RESUME FRANGCAIS

Les modeles structure-fonction de la croissance des plantes (FSPMs)
combinent la description du fonctionnement biophysique et du dve-
loppement architectural des plantes. Cette approche permet de pren-
dre en compte les nombreuses interactions entre les deux processus.
On peut distinguer deux grandes familles de FSPM : d’une part
les modeles décrivant finement la structure de la plante au niveau
de l'organe et d’autre part les modeles a plus grande échelle qui
s’intéressent directement a la forme du houppier. La paramétrisation
du premier type de modele est souvent difficile car elle nécessite
des données expérimentales trés riches, ce qui se caractérise en pra-
tique par un manque de robustesse de ces modeles (en tant qu’outil
prédictif). A l'inverse, les modéles a plus grande échelle mettent
généralement en ceuvre des lois empiriques (sur les formes de houp-
pier par exemple) qui ne permettent pas de d écrire la plasticité de la
croissance, et ’adaptation de la plante a des conditions environnemen-
tales différentes.
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Pour répondre a cette problématique duale, robustesse versus adapt-
abilité, nous nous tournons vers un nouveau paradigme : le concept de
densité spatiale. Les modeles basés sur le concept de densité spatiale
sont tres présents en écologie des populations. L'idée sous-jacente est
que le comportement d’une population assez large d’agents peut ttre
raisonnablement bien représenté par la variation continue d"une den-
sité : le mouvement, la reproduction ou la mort de chaque individu est
difficile a décrire ou prédire, alors qu’il est plus facile d’appréhender
la moyenne de ces processus a 1’échelle de la population. Par exemple,
I’évolution spatiale d"une population #sultant de la marche aBatoire
d’individus peut ttre modélisée du point de vue collectif par une
densité continue solution de I'équation de la chaleur.

Ainsi, cette these applique le concept de densité spatiale a la car-
actérisation de la distribution spatiale de feuillage dans les plantes.
Les modeles de densité permettent une description locale ouvrant la
voie a une prise en compte fine des processus de croissance et de la
plasticité des plantes, tout en ne décrivant pas chaque feuille individu-
ellement, ce qui permet de modéliser des vieux et grands arbres, dont
le nombre de feuilles est sinon trop lourd a gérer du point de vue des
calculs.

Plus spécifiquement, la densité de surface foliaire en 3D ou sa
projection verticale sur le sol en 2D sont les deux variables clés que
nous allons considérer. Dans les deux cas, ces variables vont servir
a calculer l'interception de lumiére par la loi de Beer-Lambert et la
production de biomasse grce au concept d’efficience d’utilisation de
la lumiere (radiation use efficiency). Le mécanisme central qui est
considéré pour les différentes approches développées dans cette these
est celui de I'expansion locale de la surface foliaire dans la direction
du gradient de lumiére. Par ce concept téléonomique, nous faisons
I’hypothese que la plante cherche par son développement a optimiser

la productivit é de la surface foliaire pour la production de biomasse.

Ce principe induit ainsi un développement horizontal et vertical du
feuillage vers 1'extérieur du houppier. Le développement horizontal
cesse quand on s’approche trop de plantes voisines, leur ombrage
diminuant le gradient de lumiere et donc 1’expansion de densité de
surface foliaire dans ces directions.

Nous présentons tout d’abord un modele décrivant la dynamique
d’expansion horizontale de la densi de surface foliaire (en2D) pour
un couvert de faible hauteur. Il est appliqué a un champ de betteraves
pour une campagne culturale. La production de biomasse est donc
déduite de la distribution de densité de surface foliaire par la loi de
Beer-Lambert, puis I'évolution et ’expansion de densité de surface
foliaire est modélisée par une équation de ®#action-diffusion, prenant
en compte I'allocation de biomasse et le développement dans les di-
rections de plus forts gradients. Pour une plante isolée, cette équation
peut Itre transformée en une équation des milieux poreux pour laque-
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lle une solution est connue, permettant de réduire le probleme a
la résolution d’une équation différentielle ordinaire. Le modele de
réaction-diffusion est également généralisé au cas d"une population
de plantes, et confronté a des données expérimentales pour 3 densités
différentes (du simple au triple). Nous montrons alors que le modle
reproduit naturellement les données observées pour les trois densités,
par simple changement de la configuration des plantes dans le champ
et sans parametre supplémentaire.

Ensuite, nous explorons I'extension du modele 2D précédent aux
arbres, en 3 dimensions. Cette approche continue en temps et es-
pace ne correspond pas de fagon stricte a 'organogenese discréte
réellement a I'ceuvre dans le développement des arbres, mais permet
d’explorer les bilans de production et d’allocation sur la densité de
surface foliaire et les cernes. Deux approches, une globale et une
locale sont proposées. L'approche locale, plus proche des processus
de développement architectural de 1’arbre, ouvre la voie a une formu-
lation en temps discret étudiée par la suite et qui est notre proposition
majeure pour la modélisation de la croissance des arbres base sur le
concept de densité de surface foliaire.

Le mécanisme clé a I'ceuvre dans ce modele est la translation de
la biomasse produite localement dans la direction du gradient de
lumiere et en réalisant 1’allocation conjointe en termes de densité de
surface foliaire et d’aubier nécessaire au support fonctionnel de cette
densité foliaire selon la théorie du “pipe model”. Les résultats du
modele sont compar és a un large jeu de donn ées exp érimentales sur
des plantations de hitres européens a différentes densités. Celui-ci
montre de remarquables capacités d'une part a prévoir les variables

biométriques importantes (hauteur, diametre du tronc) ainsi que cer-
taines relations d’allométrie, et d’autre part a générer des formes de
houppier en accord avec les formes observées, ceci pour les différents
scénarios de compétition et comme propriété émergente du modele.

Le modele est également généralisé pour une prise en compte ex-
plicite de la teneur en eau du sol en introduisant une composante
hydraulique permettant de décrire 1’équilibre mécaniste entre le po-
tentiel hydrique dans les feuilles et la transpiration par lar égulation
stomatale. De la mime fagon, le modéle hydraulique a pu tre validé en
confrontant les résultats des simulations a des données expérimentales
de suivi forestier de long terme sur plusieurs sites de conditions hy-
driques tres différentes.

Finalement, de fagcon a relier notre modele de densité a la modélisation
structurelle, nous proposons une méthode permettant de reconstruire
une structure de branchement réaliste pour un houppier caractérisé
par une certaine densité de surface foliaire. La reconstruction est basée
sur les angles de branchement (connus par observations botaniques)
et sur le principe téléonomique de minimisation de la longueur du
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réseau hydraulique nécessaire au maintien fonctionnel de la surface
foliaire.

En conclusion, cette thése démontre le potentiel du concept de den-
sité de surface foliaire en modélisation de la croissance des plantes, par
sa capacité a reproduire les comportements locaux sans compromettre
l'efficacité et la robustesse. Il est particulierement a noter que la dy-
namique de la densité de surface est pilotée de facon trés compacte par
I’équation aux dérivées partielles et avec une économie de parametres
remarquable. Le modele, validé sur de riches données expérimentales,
génere certaines propriétés émergentes complexes et simule naturelle-
ment 'adaptation a des conditions environnementales variées, a la
fois en termes de compétition lumineuse ou de disponibilité en eau.
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Titre : Modélisation téléonomique de la dynamique de croissance des plantes a
partir du concept de densité foliairé

Keywords : modéles structure-fonction de plantes, phototropisme, plasticité du houppier,
propriétés émergentes, équations aux dérivées partielles

Résumé : Les modeéles structure-fonction de la croissance des plantes (FSPMs) combinent la description du
fonctionnement biophysique et du développement architectural des plantes. On peut distinguer deux grandes
familles de FSPM : d’une part les modéles décrivant finement la structure de la plante au niveau de l'organe
et d’autre part les modéles a plus grande échelle qui s’intéressent directement & la forme du houppier. La
paramétrisation du premier type de modéle est souvent difficile car elle nécessite des données expérimentales
trés riches. A linverse, les modéles & plus grande échelle mettent généralement en ceuvre des lois empiriques
qui ne permettent pas de décrire la plasticité de la croissance, et 1’adaptation de la plante & des conditions
environnementales différentes.

Pour répondre & ces problématiques, nous nous tournons vers un nouveau paradigme : Motivé par le succés du
concept de la densité spatiale dans les modéles en écologie des populations, cette thése caractérise la distribution
spatiale de feuillage dans les plantes par la densité de surface foliaire , ce qui permet une description locale
ouvrant la voie & une prise en compte de la plasticité des plantes, tout en ne décrivant pas chaque feuille
individuellement, ce qui permet de modéliser des vieux et grands arbres, dont le nombre de feuilles est sinon
trop lourd & gérer du point de vue des calculs. Cette thése présente des modéles dynamiques de croissance
développés spécifiquement pour les plantes agricoles et les arbres. Nous explorons des approches mathématiques
différentes en temps discréte et continue, tout en examinant d’un ceil critique leurs aptitudes conceptuelles ainsi
que des possibilités de simplifications et de solutions analytiques dans I’optique de ’accélération des simulations.
La densité foliaire permet le calcul de l'interception de lumiére par la loi de Beer-Lambert et la production de
biomasse grace au concept d’efficience d’utilisation de la lumiére. Le mécanisme central qui est considéré pour
les différentes approches développées dans cette thése est celui de ’expansion locale de la surface foliaire dans la
direction du gradient de lumiére. Par ce concept téléonomique, nous faisons I’hypothése que la plante cherche par
son développement & optimiser la productivité de la surface foliaire pour la production de biomasse. Ce principe
induit ainsi un développement horizontal et vertical du feuillage vers extérieur du houppier. Le développement
horizontal cesse quand on s’approche trop de plantes voisines, leur ombrage diminuant le gradient de lumiére
et donc 'expansion de densité de surface foliaire dans ces directions. Le modéle de production de biomasse
est également généralisé pour une prise en compte explicite de la teneur en eau du sol en introduisant une
composante hydraulique permettant de décrire I’équilibre mécaniste entre le potentiel hydrique dans les feuilles
et la transpiration par la régulation stomatale. Finalement, nous prenons en compte ’allocation de biomasse
produite & d’autres compartiments de la plante tels que les racines et le bois selon la théorie du’ pipe model’.
Les résultats des modéles sont comparés & un large jeu de données expérimentales sur des plantations & différentes
densités et conditions environnementales. Celui-ci montre de remarquables capacités d’une part & prévoir les
variables biométriques importantes (hauteur, diameétre du tronc) ainsi que certaines relations d’allométrie, et
d’autre part & générer des formes de houppier en accord avec les formes observées, ceci pour les différents
scénarios de compétition et comme propriété émergente du modéle. Ainsi, cette thése démontre le potentiel du
concept de densité de surface foliaire en modélisation de la croissance des plantes, par sa capacité a reproduire les
comportements locaux et 'adaptation & des conditions environnementales variées sans compromettre I'efficacité
et la robustesse.
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Abstract : Functional-structural plant growth models (FSPMs) have emerged as the synthesis of mechanistic
process-based models, and geometry-focussed architectural models. In terms of spatial scale, these models can
essentially be divided into small-scale models featuring a topologic al architecture — often facing data-demanding
parametrisations, parameter sensitivity, as well as computational heaviness, which imposes problematic limits to
the age and size of in dividuals than can be simulated — and large-scale models based on a description of crown
shape in terms of rigid structures such as empirical crown envelopes — commonly strug gling to allow for spatial
variability and plasticity in crown structure and shape in response to local biotic or abiotic growth conditions.
In response to these limitations, and motivated not least by the success-story of spatial density approaches in
theoretical populations ecology, the spatial distribution of foliage in plants in this thesis is characterised in terms
of spatial leaf density, which allows for a com pletely local description that is a priori unrestricted in terms of
plasticity, while being robust and computationally efficient. The thesis presents dynamic growth models specific
ally developed for crops and trees, exploring different mathematical frameworks in continu ous and discrete time,
while critically discussing their conceptual suitability and exploring analyt ical simplifications and solutions to
accelerate simulations.

The law of Beer-Lambert on the passing of light though an absorbing medium allows to infer the local light
conditions based on which local biomass production can be computed via a radiation use efficiency. A key
unifying mechanism of the different models is the local ex pansion of leaf density in the direction of the light
gradient, which coincides with the direction most promising with regard to future biomass productivity. This
aspect falls into the line of teleonomic and optimization-oriented plant growth models, and allows to set aside the
otherwise complex modelling of branching processes. The principle induces an expans ive horizontal and upward-
directed motion of foliage. Moreover, it mechanistically accounts for a slow-down of the horizontal expansion as
soon as a neighbouring competitor’s crown is reached, since the appropriate region is already shaded, implying
a corresponding adapta tion of the light gradient. This automatically results in narrower crowns in scenarios
of in creased competition, ultimately decreasing biomass production and future growth due to lesser amount of
intercepted light. In an extension, the impact of water availability is incor porated into the previously light-only
dependency of biomass production by means of a novel hydraulic model describing the mechanistic balancing of
leaf water potential and tran spiration in the context of stomatal control. The allocation of produced biomass
to other plant compartments such as roots and above-ground wood, e.g. by means of the pipe model theory, is
readily coupled to leaf density dynamics.

Simulation results are compared against a variety of empirical observations, ranging from long-term forest inven-
tory data to laser-recorded spatial data, covering multiple abi otic environmental conditions and growth resources
as well as stand densities and thus de grees of competition. The models generate a series of complex emergent,
properties includ ing the realistic prediction of biometric growth parameters, the spontaneous adaptability and
plasticity of crown morphologies in different competitive scenarios, the empirically documented insensitivity of
height to stand density, the accurate deceleration of height growth, as well as popular allometric relationships
— altogether demonstrating the potential of leaf density based approaches for efficient and robust plant growth
modelling.
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