
HAL Id: tel-01399476
https://theses.hal.science/tel-01399476v2

Submitted on 20 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Diverse modules and zero-knowledge
Fabrice Benhamouda

To cite this version:
Fabrice Benhamouda. Diverse modules and zero-knowledge. Cryptography and Security [cs.CR].
Université Paris sciences et lettres, 2016. English. �NNT : 2016PSLEE022�. �tel-01399476v2�

https://theses.hal.science/tel-01399476v2
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

de l’Université de recherche Paris Sciences et Lettres
PSL Research University

Préparée à l’École normale supérieure

Diverse modules and zero-knowledge

École doctorale n◦386
Sciences Mathématiques de Paris Centre

Spécialité Informatique

Soutenue par Fabrice
BEN HAMOUDA--GUICHOUX
le 1er juillet 2016

Dirigée par

Michel FERREIRA ABDALLA
et David POINTCHEVAL

ÉCOLE NORMALE

S U P É R I E U R E

RESEARCH UNIVERSITY PARIS

COMPOSITION DU JURY

M. FERREIRA ABDALLA Michel
École normale supérieure
Directeur de thèse

M. POINTCHEVAL David
École normale supérieure
Directeur de thèse

M. KILTZ Eike
Ruhr-Universität Bochum
Rapporteur

M. SHOUP Victor
New York University
Rapporteur

M. HOFHEINZ Dennis
Karlsruher Institut für Technologie
Membre du jury

M. JOUX Antoine
Université Pierre et Marie Curie
Membre du jury

M. REYZIN Leonid
Boston University
Membre du jury

Diverse modules and zero-knowledge

Fabrice Ben Hamouda--Guichoux

Thèse de doctorat dirigée par

Michel Ferreira Abdalla et David Pointcheval

Abstract

Smooth (or universal) projective hash functions were first introduced by Cramer and Shoup,
at Eurocrypt’02, as a tool to construct efficient encryption schemes, indistinguishable under
chosen-ciphertext attacks. Since then, they have found many other applications, including
password-authenticated key exchange, oblivious transfer, blind signatures, and zero-knowledge
arguments. They can be seen as implicit proofs of membership for certain languages. An
important question is to characterize which languages they can handle.

In this thesis, we make a step forward towards this goal, by introducing diverse modules. A
diverse module is a representation of a language, as a submodule of a larger module, where a
module is essentially a vector space over a ring. Any diverse module directly yields a smooth
projective hash function for the corresponding language, and almost all the known smooth
projective hash functions are constructed this way.

Diverse modules are also valuable in their own right. Thanks to their algebraic structural
properties, we show that they can be easily combined to provide new applications related to
zero-knowledge notions, such as implicit zero-knowledge arguments (a lightweight alternative
to non-interactive zero-knowledge arguments), and very efficient one-time simulation-sound
(quasi-adaptive) non-interactive zero-knowledge arguments for linear languages over cyclic
groups.

— iii —

Résumé

Les smooth (ou universal) projective hash functions ont été introduites par Cramer et Shoup,
à Eurocrypt’02, comme un outil pour construire des schémas de chiffrement efficaces et sûrs
contre les attaques à chiffrés choisis. Depuis, elles ont trouvé de nombreuses applications,
notamment pour la construction de schémas d’authentification par mot de passe, d’oblivious
transfer, de signatures en blanc, et de preuves à divulgation nulle de connaissance. Elles
peuvent êtres vues comme des preuves implicites d’appartenance à certains langages. Un
problème important est de caractériser pour quels langages de telles fonctions existent.

Dans cette thèse, nous avançons dans la résolution de ce problème en proposant la notion
de diverse modules. Un diverse module est une représentation d’un langage, comme un
sous-module d’un module plus grand, un module étant un espace vectoriel sur un anneau.
À n’importe quel diverse module est associée une smooth projective hash function pour le
même langage. Par ailleurs, presque toutes les smooth projective hash functions actuelles sont
construites de cette manière.

Mais les diverse modules sont aussi intéressants en eux-mêmes. Grâce à leur structure
algébrique, nous montrons qu’ils peuvent facilement être combinés pour permettre de nouvelles
applications, comme les preuves implicites à divulgation nulle de connaissance (une alternative
légère aux preuves non-interactives à divulgation nulle de connaissance), ainsi que des preuves
non-interactives à divulgation nulle de connaissance et one-time simulation-sound très efficaces
pour les langages linéaires sur les groupes cycliques.

— v —

Acknowledgments

Écrire des remerciements de thèse est un exercice périlleux et je souhaite d’avance m’excuser
de ne pas mentionner et remercier explicitement toutes les personnes qui m’ont aidé et
encouragé à un moment ou un autre de ma vie et qui par leurs paroles, leurs conseils ou leurs
critiques, ont éclairé mes réflexions et m’ont permis de progresser.

Je tiens tout d’abord à adresser mes plus vifs remerciements à mes deux directeurs de
thèse Michel Abdalla et David Pointcheval qui m’ont incité à étudier la cryptographie, m’ont
guidé pendant mon stage de M2 et ma thèse, m’ont offert de nombreuses opportunités de
recherche et de collaboration, et ont consciencieusement relu ce manuscrit.

I would like to thank my two reviewers Eike Kiltz and Victor Shoup who read and
commented very carefully my thesis. I know this is a long (and tedious) work and I am
grateful for it. I am also thankful to the other committee members : Dennis Hofheinz, Antoine
Joux, and Leonid Reyzin. Je tiens également à témoigner toute ma gratitude à Geoffroy
Couteau et Michele Minelli pour leur relecture attentive de cette thèse.

It was my great pleasure to collaborate with many researchers in cryptography, during
various visits and internships: Dan Page and Elisabeth Oswald for a very nice first research
experience in cryptography, during my M1 internship on side-channel attacks and residue
number systems at Bristol University (I thank David Naccache for recommending me to do
an internship in the Bristol Cryptography Group); Marc Joye whom I visited twice and who
always helped me a lot in difficult situations; Benoît Libert and his innumerable patents;
Mihir Bellare for spending a lot of time discussing with me during my one-week visit at San
Diego; Dan Boneh and Vinod Vaikuntanathan for their insightful discussions; Stephan Krenn
and Jan Camenisch during my visit at IBM Zürich; Léo Ducas and Ronald Cramer for a
very productive one-week visit at CWI; and the Cryptography Research Group of IBM T.J.
Watson, in particular Tal Rabin who warmly welcomed me for three months and who offered
me a postdoc position, but also Gilad Asharov, Craig Gentry, Shai Halevi, Charanjit Jutla,
Hugo Krawczyk, and Mor Weiss.

I would also like to thank all my co-authors: Michel Abdalla, Fabien Allard, Antoine
Amarilli, Michel Banâtre, Sonia Belaïd, Olivier Blazy, Florian Bourse, Jan Camenisch,
Céline Chevalier, Paul Couderc, Geoffroy Couteau, Houda Ferradi, Rémi Géraud, Javier
Herranz, Marc Joye, Stephan Krenn, Tancrède Lepoint, Benoît Libert, Helger Lipmaa, Vadim
Lyubashevsky, Phil MacKenzie, Claire Mathieu, Robin Morisset, David Naccache, Gregory
Neven, Alain Passelègue, Kenny Paterson, Krzysztof Pietrzak, David Pointcheval, Emmanuel
Prouff, Pablo Rauzy, Adrian Thillard, Jean-François Verdonck, Damien Vergnaud, Hoeteck
Wee, and Hang Zhou.

Je voudrais également remercier tous mes collègues de l’équipe Crypto de l’ENS, avec qui
j’ai aussi collaboré, discuté et passé des moments très agréables : Michel Abdalla, Nuttapong
Attrapadung, Sonia Belaïd, Olivier Blazy, Raphaël Bost, Florian Bourse, Yuanmi Chen,
Céline Chevalier, Jérémy Chotard, Mario Cornejo, Geoffroy Couteau, Angelo De Caro, Rafaël
Del Pino, Itai Dinur, Léo Ducas, Aurélien Dupin, Pierre-Alain Dupont, Pooya Farshim,
Houda Ferradi, Pierre-Alain Fouque, Georg Fuchsbauer, Romain Gay, Rémi Géraud, Dahmun

— vii —

viii Acknowledgments

Goudarzi, Aurore Guillevic, Duong Hieu Phan, Sorina Ionica, Louiza Khati, Tancrède Lepoint,
Baptiste Louf, Vadim Lyubashevsky, Pierrick Méaux, Thierry Mefenza, Michele Minelli, David
Naccache, Phong Nguyen, Anca Nitulescu, Alain Passelègue, Miriam Paiola, Thomas Peters,
David Pointcheval, Thomas Prest, Liz Quaglia, Răzvan Roşie, Sylvain Ruhault, Mario Strefler,
Adrian Thillard, Mehdi Tibouchi, Damien Vergnaud, and Hoeteck Wee. Je tiens également à
exprimer toute ma reconnaissance à l’équipe administrative du DI et au SPI, notamment
Jacques Beigbeder, Lise-Marie Bivard, Isabelle Delais, Nathalie Gaudechoux, Joëlle Isnard,
Valérie Mongiat et Ludovic Ricardou.

J’adresse mes sincères remerciements à la fondation CFM pour sa bourse de thèse généreuse
et à ceux qui m’ont soutenu pour l’obtenir : mes deux directeurs de thèse, Ahmed Bouajjani,
directeur adjoint de l’ED386, et Hubert Comon.

Je remercie tous mes amis, très spécialement Vaïa Machairas qui est toujours restée très
proche malgré la distance et tous les informaticiens de la promotion 2009 de l’ENS, en
particulier Antoine Amarilli, Yoann Bourse, Floriane Dardard, Marc Jeanmougin, Robin
Morisset, Ludovic Patey et Pablo Rauzy. I would also like to thank Marty Simmons and
Alan Green for their friendship and their warm welcome during my two visits to the US.

Je témoigne toute ma reconnaissance à Michel Bourdais, mon professeur de maths de
sixième-cinquième qui a éveillé mon vif intérêt pour les mathématiques. Je tiens aussi à
remercier les professeurs de physique Sophie Larasse et Pascal Brasselet, pour m’avoir ouvert
la voie de la recherche et m’avoir permis de présenter mes premiers exposés en public lors
des Olympiades de Physique sur un écoulement pas si simple, avec Philippe-Henri Blais et
Xavier Le Gall.

J’aimerais également remercier de tout mon cœur mes parents qui m’ont toujours aimé,
soutenu et tout fait pour me permettre de m’épanouir. Merci aussi à ma sœur Caroline et
mon frère Matthieu.

Enfin, je souhaiterais tout particulièrement remercier Hang Zhou qui me rend heureux en
partageant ma vie depuis plus de cinq ans.

Preface

The main goal of this thesis is to show the power of smooth (or universal) projective hash
functions and promote their use in many cryptographic protocols. It is mostly aimed at
cryptographers with some knowledge in protocol design. I hope they will find new tools or at
least a different viewpoint on some tools which they can apply to new problems. Nevertheless,
this thesis should be accessible to any person with a computer science background, despite
not including a general introduction to cryptography or its history. I rather tried to write
it both as a tutorial for diverse modules and as a reference thereof. This thesis is therefore
definitely not a collection of papers, but a major rewriting of some of my papers and also
includes a significant portion of unpublished work. In particular, it only covers a small
fraction of my work during my PhD thesis, to keep it neat, coherent, and relatively easy to
grasp. Furthermore, I have decided to use a more abstract approach and deliberately tried to
limit awfully complex notation using coordinates.

Diverse modules summarize my vision of smooth projective hash functions, which are a
powerful tool introduced by Cramer and Shoup in [CS02]. They can be seen as a particular
case of diverse groups, the main (and essentially only known) way to construct smooth
projective hash functions, which were also introduced by Cramer and Shoup in the same
paper. What makes them so powerful, at least from my point of view, is that diverse modules
have additional structural properties compared to groups. Thanks to these structural
properties, we can use a more algebraic viewpoint and more algebraic constructions.

This search for structure and use of algebraic methods is actually a feature in most
of my thesis and even before, starting with my work with Michel Abdalla and David
Pointcheval on tight forward-secure signatures [ABP13] where I mainly analyzed the structure
of residues modulo composite numbers. My work with Michel Abdalla, Alain Passelègue, and
Kenny Paterson on pseudorandom functions [ABPP14; ABP15a; ABP15b] culminated in a
completely algebraic framework, which shows the equivalence of some security definition with
the linear independence of some polynomials. And finally, even more recently, my work on
the randomness complexity of private circuits with Sonia Belaïd, Alain Passelègue, Emmanuel
Prouff, Adrian Thillard, and Damien Vergnaud [BBP+16] contains in its heart an algebraic
characterization of security based again on linear algebra.

— ix —

Contents

Abstract iii

Résumé v

Acknowledgments vii

Preface ix

1 Introduction 1

1.1 Proofs in Cryptography . 2
1.1.1 Provable Security and Mathematical Proofs 2
1.1.2 Arguments and Proofs . 2

1.2 Projective Hash Functions and Applications 4
1.2.1 Projective Hash Functions . 4
1.2.2 Applications . 5
1.2.3 Languages . 6

1.3 Our Results . 7
1.3.1 Diverse Modules and Diverse Vector Spaces 7
1.3.2 Operations on Diverse Modules . 7
1.3.3 Applications Related to Zero-knowledge 8
1.3.4 Associated Personal Publications . 9
1.3.5 Organization . 9

1.4 Our Other Contributions . 9
1.4.1 Other Contributions on Projective Hash Functions 10
1.4.2 Pseudorandom Functions . 11
1.4.3 Randomness Complexity of Private Circuits 12
1.4.4 Cryptosystems Based on Residue Symbols 13
1.4.5 Lattice-Based Zero-Knowledge Arguments 13
1.4.6 Forward-Secure Signature Schemes . 13
1.4.7 Security Proof of J-PAKE . 13
1.4.8 Coppersmith Methods and Analytic Combinatorics 14

Personal Publications . 14
Journal Papers . 14
Conference Papers . 14
Manuscripts . 16
Patent Applications . 16

2 Preliminaries 17

2.1 Notation and Preliminaries . 18
2.1.1 General Notation . 18
2.1.2 Preliminaries on Provable Security . 20

— xi —

xii Contents

2.1.3 Statistical and Computational Indistinguishability 22
2.1.4 Proof by Games or Hybrid Arguments 26
2.1.5 Cyclic Groups, Bilinear Groups, and Multilinear Groups 26

2.2 Cryptographic Primitives . 28
2.2.1 Collision-Resistant Hash Function Families 28
2.2.2 Encryption . 29
2.2.3 Randomness Extractors and Min Entropy 34

2.3 Languages . 35
2.3.1 Languages for Projective Hash Functions 36
2.3.2 Hard-Subset-Membership Languages 37
2.3.3 Language for Zero-Knowledge Arguments 39

2.4 Zero-Knowledge Arguments . 39
2.4.1 Overview . 39
2.4.2 Formal Definitions of Zero-Knowledge Arguments 42
2.4.3 Non-Interactive Zero-Knowledge Arguments 47

2.5 Projective Hash Functions . 48
2.5.1 Projective Hash Functions (PHFs) . 48
2.5.2 Smooth Projective Hash Functions (SPHFs) 49
2.5.3 Simple Applications of SPHFs . 50

3 Diverse Vector Spaces 55

3.1 First Examples, Definition, and Link with SPHFs 56
3.1.1 Step-by-Step Overview . 56
3.1.2 Definition . 62

3.2 Conjunctions and Disjunctions . 68
3.2.1 Conjunctions . 68
3.2.2 Disjunctions . 69

3.3 Application to Non-Interactive Zero-Knowledge Arguments 76
3.3.1 Overview . 76
3.3.2 Construction . 78
3.3.3 Completeness and Security . 79

3.4 More Examples . 80
3.4.1 Matrix Decisional Diffie-Hellman Assumptions (MDDH) 80
3.4.2 Cramer-Shoup Encryption . 82
3.4.3 Encryption of Plaintexts Satisfying a System of Quadratic Equations . 83

4 Diverse Modules 85

4.1 Universality and Smoothness . 86
4.1.1 Motivation . 86
4.1.2 Universal Projective Hash Functions 86
4.1.3 Weakly Universal Projective Hash Functions 87

4.2 Diverse Modules (DMs) . 88
4.2.1 Graded Rings . 89
4.2.2 Diverse Modules, Universal PHFs, and Tools for Composite Order . . 92
4.2.3 Link with Diverse Groups . 102

4.3 Conjunctions and Disjunctions . 103
4.3.1 Conjunctions . 103

Contents xiii

4.3.2 Disjunctions . 103
4.4 t-Universality, t-Smoothness, and t-Soundness 111

4.4.1 t-Universality and t-Smoothness . 112
4.4.2 t-Soundness . 114
4.4.3 Construction of t-Sound Tag-CS-DMs and Tag-CS-DVSs 115

5 Pseudorandomness 123
5.1 Pseudorandom Projective Hash Functions and Diverse Vector Spaces 124

5.1.1 Definition . 124
5.1.2 Construction from Hard-Subset-Membership Languages 124
5.1.3 Construction from MDDH . 126

5.2 Mixed Pseudorandomness . 129
5.2.1 Definition . 129
5.2.2 GL Disjunctions of a GL-DVS and a Pr-DVS 130
5.2.3 CS/KV Disjunctions of a DVS and a Pr-DVS 133

6 Applications of Diverse Modules 137
6.1 Honest-Verifier Zero-Knowledge Arguments 138

6.1.1 Two Dual Constructions From DMs 138
6.1.2 Extensions and Comparisons . 141

6.2 Non-Interactive Zero-Knowledge Arguments (NIZK) 145
6.2.1 First Constructions . 145
6.2.2 t-Time Simulation-Soundness . 147
6.2.3 Concrete Instantiation and Comparison 152
6.2.4 Application: Threshold Cramer-Shoup-like Encryption Scheme 153

6.3 Trapdoor Smooth Projective Hashing and Implicit Zero-Knowledge 160
6.3.1 Overview . 160
6.3.2 Trapdoor Smooth Projective Hash Functions (TSPHFs) 164
6.3.3 Implicit Zero-Knowledge Arguments (iZK) 170

7 Conclusion and Open Questions 177
7.1 Conclusion . 177
7.2 Open Questions . 178

Notation 181

Abbreviations 183

List of Illustrations 185
Figures . 185
Tables . 185

Bibliography 187

Chapter 1
Introduction

For a long time, the main purpose of cryptography was to allow two people who agreed with
each other on a secret bit string, called a secret key, to confidentially communicate, using
(secret-key) encryption.

Since the breakthrough discoveries of key exchange [DH76], public-key encryption, and
digital signatures [RSA78], the scope of cryptography has been vastly broadened. Key
exchange and public key encryption enable to confidentially talk to any person or entity
(like websites), even without knowing him or it beforehand, while digital signatures provide
authentication, or in other words, enable to ensure that a message comes from the right user
or entity. Contrary to written signatures, digital signatures cannot be forged and can be
easily checked by a computer.

Nowadays, cryptography is omnipresent in our day-to-day life, although often very hidden:
credit cards, access badges, online shopping, biometric passports, smartphones, emails,
and even access to most websites (following the trend of HTTPS everywhere) all utilize
cryptographic protocols. Most of these uses however only rely on encryption, key exchange,
and authentication via digital signatures.

But cryptography is even broader than these three important practical primitives. In this
thesis, we consider cryptographic protocols (or cryptosystems), around the counter-intuitive
concept of zero-knowledge. Zero-knowledge proofs enable a user, Alice, to prove to another
user, Bob, that some statement (for example Goldbach’s conjecture, a famous open problem
in mathematics) is true without revealing anything else. After running the corresponding
protocol, Bob will only be convinced that the statement is true but will have learned nothing
else. Although such protocols are still not mainstream, they are starting to be deployed in
the real world, as for electronic voting in [Helios].

The main objects of study in this thesis, namely diverse modules and smooth (or universal)
projective hash functions, can be considered even more intriguing: they enable to prove some
fact implicitly, still with a form of zero-knowledge. Concretely, using smooth projective hash
functions, Bob could send to Alice a treasure map in such a way that Alice could read it,
only if she knows a proof of Goldbach’s conjecture. But Bob would have no idea whether
Alice was able to read the treasure map (and find the treasure) or not.1 Diverse modules can
be seen as an algebraic framework for projective hash functions. In this thesis, we introduce
the notion of diverse modules, show many tools to manipulate them, and present various
applications related to zero-knowledge.

1Except by physically going to the place where the treasure is buried.

— 1 —

2 Chapter 1 Introduction

Towards this goal, we first introduce in more detail the notions of proofs in cryptography,
projective hash functions, and diverse modules. We then sketch the main ideas and concepts
in this thesis. Finally, we briefly summarize our other contributions that were not included
in this thesis.

1.1 Proofs in Cryptography

In modern cryptography, proofs play an important dual role. Not only are they at the heart
of provable security, but they are also both an important subject of study of cryptography
and an important tool to construct advanced cryptosystems or cryptographic protocols.

1.1.1 Provable Security and Mathematical Proofs

In [GM82], Goldwasser and Micali laid the foundations of provable security. A cryptosystem
or cryptographic protocol is provably secure if any adversary breaking the security of the
system can be transformed into an adversary breaking a problem which is supposed to be
hard. This transformation is called a reduction. Not only does this approach enable to rule
out many insecure protocols, but it also enables to focus cryptanalysis, the research of attacks
against cryptosystems, on a small number of simple well defined problems. These problems
include computing the factorization and discrete logarithms (inverse of exponentiation) in
some specific cyclic groups, together with associated weaker problems.

More generally, in mathematics and theoretical computer science, the main goal is to
find new results and to mathematically prove them. As such, mathematical proofs are an
important tool.

1.1.2 Arguments and Proofs

P versus NP. But proofs are not only a tool but an object of study in theoretical computer
science. One of the most important open problems in computer science is actually the
problem of P versus NP. It basically asks whether being able to efficiently check a proof of a
statement, is equivalent to being able to efficiently check if a statement is true or false. It is
one of the seven Millennium Prize Problems of the Clay Mathematics Institute.

More formally, we define a language L to be a set of bit strings. Bit strings can be used
to encode almost anything, including mathematical statements. We can for example consider
the language of the mathematical statements which are provable in the Zermelo–Fraenkel set
theory.

On the one hand, the class P is the class of languages L , such that there exists an algorithm
that takes as input a bit string x and that can decide in polynomial time (in the size of x),
whether x ∈ L . We generally consider this class as the class of easy-to-decide languages and
call polynomial-time algorithms, efficient algorithms.

On the other hand, the class NP is the class of languages L , such that there exists an
algorithm, that takes as input two bit strings x and w and that can decide in polynomial
time (in the size of x), whether w is a valid proof or witness that x ∈ L . We suppose that
for any word x ∈ L , there exists such a witness w , while otherwise no such witness exists.
For example, the language of provable mathematical statements (in the Zermelo-Fraenkel
set theory) with polynomial-size proofs is in NP. But this language is not known to be in P.
If it were, there would be no reason to give proofs of mathematical statements as finding a

1.1 Proofs in Cryptography 3

proof would be roughly as efficient as checking it! More generally, while the class P is clearly
included in NP, finding whether NP is included in P is a major open question, but most
researchers strongly believe that P (NP.

Interactive proofs. We can see an NP proof or witness as a mathematical proof, or equiva-
lently as a lecture, where the teacher (or prover) shows a proof of the statement “x ∈ L ” to
the students (or verifiers) who check the proof without asking any question. But as we know,
lectures are often interactive and this interactivity helps the students to better understand
the course.2

In two independent seminal papers, that won a Gödel prize, Babai [Bab85] and Goldwasser,
Micali, and Rackoff [GMR85] introduced the notion of interactive proofs or Arthur-Merlin
games.3 In an interactive proof, an all-powerful prover tries to convince a polynomial-time
verifier that x ∈ L , by interacting with him, through a protocol. If x ∈ L , the prover
should have a strategy to convince systematically the verifier (completeness property), while
otherwise, the prover should not be able to convince the verifier with probability more than
1/2 (soundness property). The verifier is indeed probabilistic: he is allowed to draw random
coins and act depending on them. Otherwise, the class of languages handled by interactive
proofs, denoted by IP, would just be the class P. On the contrary, in [Sha92], Shamir showed
that IP is equal to the class PSPACE, which corresponds to algorithms that use a polynomial
amount of space to store intermediate variables. In particular, the class PSPACE contains
the class NP.

Zero-knowledge. As pointed out by Goldwasser, Micali, and Rackoff in their seminal
paper [GMR85], an important question about interactive proofs in cryptography is whether
the prover reveals more information (or knowledge) to the verifier than the fact that x ∈ L .
Indeed, in cryptography, we often want to hide information. A proof that does not reveal
any information to the verifier besides the membership of the word to the language is called
zero-knowledge.

Using a zero-knowledge proof, a person, called Alice, could for example prove that the
Goldbach’s conjecture is true (or false) to another person, called Bob. Bob would be sure
that the conjecture is true, but would have absolutely no idea of how to mathematically
prove it, and would be unable to claim the discovery of the proof before Alice.

This concept might seem very counter-intuitive and impossible to achieve. Yet in [GMW91],
Goldreich, Micali, and Wigderson constructed zero-knowledge proofs for any language in NP,
under a very weak assumption, namely the existence of one-way functions. One-way functions
are functions that can efficiently be evaluated on any input but that are hard to invert. This
assumption is necessary to prove the existence of almost any cryptosystem (at least from a
theoretical point of view).4

Furthermore, in this construction, the prover runs in polynomial time if he is given a
witness w for the word x . Concretely, in the example of the Goldbach’s conjecture, this means

2This way of presenting interactive proofs is inspired by Micali’s talk “Proofs, Secrets, and Computation”,
given on Tuesday 26 May 2015, at Paris 6, France.

3There is a subtle difference between the two: in Arthur-Merlin games, the random coins used by the verifier
are public, while in interactive proofs, they are private. However, in [GS86], Goldwasser and Sipser showed
that they are basically equivalent, up to a loss of two rounds of interaction.

4We remark that the existence of one-way function implies that P is distinct from NP.

4 Chapter 1 Introduction

that if Alice has a mathematical proof of this conjecture, she can easily do a zero-knowledge
proof to Bob that the conjecture is true.

In this thesis, we always assume that the prover runs in polynomial time, when given
access to a witness. The efficiency of the prover is indeed important to be able to use the
resulting proof in real-world cryptographic protocols.

Applications. Zero-knowledge proofs have many applications in cryptography. They enable
to ensure that parties in a cryptosystem behaved honestly, and did not cheat during the
protocol. Most complex cryptographic systems from multi-party computation (where several
users, each holding a different input, want to compute a function of all these inputs) to
electronic voting (e-voting) or electronic cash [Cha82] (e-cash) often use forms of zero-
knowledge proofs or variants thereof.

Variants. We consider many variants of zero-knowledge proofs throughout this thesis.

Arguments. Zero-knowledge arguments are similar to zero-knowledge proofs, except that
soundness just holds against polynomial-time provers. It often enables to construct much
more efficient schemes. Moreover, arguments can replace proofs in most cryptosystems.

Common reference string. In this thesis, we often consider the common reference string
(CRS) model, in which the prover and the verifier both have access to a common bit string
chosen by some trusted party. In practice, such a bit string can be generated by a multi-party
computation between users who are believed not to collude. For example, for e-voting, all
the candidates and a few random citizens could generate together the CRS.

One major advantage of the CRS model is it enables to construct non-interactive zero-
knowledge proofs and arguments, which are impossible without CRS. In a non-interactive
proof of argument, the prover just sends one message (called the proof) to the verifier, which
can verify it (using the CRS). This proof is similar to a witness of an NP language, except
that sending a witness often gives too much knowledge to the verifier.

Honest-verifier zero-knowledge. Honest-verifier zero-knowledge arguments or proofs are
similar to zero-knowledge arguments or proofs, except that we only assume that the verifier
learns nothing if he behaves honestly and follows the protocol. This relaxation enables to
construct even more efficient schemes.

1.2 Projective Hash Functions and Applications

1.2.1 Projective Hash Functions

Smooth (or universal) projective hash functions, also called hash proof systems, were in-
troduced by Cramer and Shoup in their seminal paper [CS02]. They could be considered
even more intriguing than zero-knowledge proofs, as they not only resemble honest-verifier
zero-knowledge proofs but also are not explicit: the verifier does not necessarily know whether
the proof is valid or not.

Similarly to zero-knowledge proofs with efficient provers, smooth projective hash functions
are defined for an NP language L . The verifier can generate a (secret) bit string hk called

1.2 Projective Hash Functions and Applications 5

a hashing key. This hashing key defines a function which associates any possible word x

(inside or outside the language L) to some bit string H, called the hash value of the word x .
This function can be efficiently evaluated by anyone knowing the hashing key. Furthermore,
the verifier can derive from the hashing key, a projection key hp, which basically defines the
previous function only on L . The verifier can then send the projection key to the prover.

From this projection key hp and a witness w for a word x ∈ L , the prover can efficiently
compute a projected hash value pH which is equal to the hash value H computed by the
verifier. However, if x /∈ L , the prover cannot guess the hash value H computed by the
verifier. This is called the smoothness or universal property.

Being able to compute the hash value or projected hash value for some word x given only
the projection key hp can therefore be seen as a proof that x ∈ L . Moreover, an honest
verifier seeing such a projected hash value computed by a prover learns nothing as he could
have computed this value himself using the hashing key.

1.2.2 Applications

Smooth (or universal) projective hash functions have many applications.

Honest-verifier zero-knowledge proofs. A first application is the construction of two-round
honest-verifier zero-knowledge proofs: after having received a projection key from the verifier,
the prover just sends back the projected hash value pH, and the verifier checks that it
corresponds to the computed hash value H. It offers an (often more efficient) alternative
to Sigma-protocols [Cra97; CDS94], a classical efficient way of constructing honest-verifier
zero-knowledge proofs. This construction has been used for example to construct round-
optimal efficient blind signatures in [Cha82; BPV12; BBC+13c]. A blind signature scheme
enables Alice to make Bob sign a message without revealing it. Bob still controls the number
of messages signed for Alice, and Alice cannot sign a document she has not asked Bob to
sign. But Bob does not know which messages he is signing for Alice. Blind signatures are
in particular useful to build electronic cash [Cha82], as they allow the bank to blindly sign
electronic coins.

Use of the implicitness feature. The implicitness feature of smooth projective hash func-
tions allows for a broader range of applications. For example, the verifier can use the hash
value as a key to encrypt a message to the prover, in such a way that the prover can only
decrypt the message if he knows a witness for the word. But the verifier does not learn
whether the prover has a witness, and whether he was able to read the message. We actually
show in Section 2.5.3.3, that a variant of this protocol can be used to securely send a message
to a secret agent without the secret agent having to reveal that he is a secret agent. The
sender will never know if he was talking to a secret agent, but he will be sure that if he was
not, his interlocutor would not be able to read the message.

Password-authenticated key exchange. An important application is password-authenti-
cated key exchange. Such a protocol enables two users, Alice and Bob, to derive a fresh
random secret bit string (called a secret key) just from a common password. Contrary
to classical key exchanges (used for example by the HTTPS protocol on the web), the
authentication means, namely the common password, might be guessed by an adversary.
Password-authenticated key exchanges should therefore ensure that the only way for an

6 Chapter 1 Introduction

adversary to check if a password guess is valid consists in interacting with Alice and Bob.
In particular, it should be impossible for the adversary to look once at an execution of the
protocol between Alice and Bob, and then to find out the password using his own computer
by testing each possible password, without any interaction with Alice nor Bob.

Because of this strong property, classical zero-knowledge proofs often cannot be used
to construct password-authenticated key exchange schemes, as an adversary could check
whether the proof corresponds to a given password. The implicitness feature of projective
hash functions solves this issue and enables to construct efficient password-authenticated key
exchange in the CRS model [KOY09; GL06; JG04; GK10].

Oblivious transfer. Another important application of smooth projective hash functions is
the construction of oblivious transfer protocols [Rab81]. Intuitively, such protocols enable a
client Alice to ask a question to a server Bob and get the answer without Bob learning what
the question was. But Bob is still sure that Alice learned at most one answer to a single
question.

Encryption secure against chosen-ciphertext attacks. Finally, smooth projective hash
functions enable the construction of very efficient (public-key) encryption schemes, secure in
a strong model, called indistinguishability under chosen-ciphertext attacks. Intuitively, in
this model, the encryption scheme remains secure even if the adversary has access to a key
enabling the encryption (called an encryption key or public key), and even if it is allowed to
ask the decryption of messages (called plaintext) of its choice. This application was actually
the main purpose of the introduction of projective hashing by Cramer and Shoup in [CS02].

1.2.3 Languages

For the original application of smooth projective hash functions to encryption schemes, Cramer
and Shoup only needed projective hash functions for languages directly corresponding to
the cryptographic assumption on which they were relying, such as decisional Diffie-Hellman
(DDH), quadratic residuosity (QR), or decisional composite residuosity (DCR). With the
advent of many other applications, more complex languages begin being required, starting
with the languages of encrypted versions (formally called ciphertexts) of a given message
under some public encryption key.

Limitations. The first natural question is to know whether, like zero-knowledge proofs,
smooth projective hash functions can be constructed for any NP language. Unfortunately,
as they imply statistically sound witness encryption [GGSW13], this is not possible, unless
the polynomial hierarchy (which is a hierarchy of class of languages which can be seen as
variants and extensions of NP) collapses. Although it is not known whether the polynomial
hierarchy collapses, most researchers believe this cannot happen. We should point out that if
P = NP, then the polynomial hierarchy collapses, but there would also be no more theoretical
cryptography as we currently know it.

Diverse groups. Despite these limitations, we now know how to construct smooth projective
hash functions for a large variety of languages. Most of these constructions rely on diverse
groups, a notion introduced by Cramer and Shoup in their original paper [CS02].

1.3 Our Results 7

From a high level point of view, diverse groups are a way to represent a language as a
subgroup of a larger group, together with a large enough group of homomorphisms from this
larger group to the set of hash values. Languages represented by subgroups automatically
have an associated smooth (or universal) projective hash function.

1.3 Our Results

1.3.1 Diverse Modules and Diverse Vector Spaces

In this thesis, we introduce and study a particular case of diverse groups: diverse modules.
Diverse modules are a way to represent a language as a submodule of a larger module. We
recall that a module is a generalization of a vector space over a ring. In particular, a module
is a group and a submodule is a subgroup.

The additional structure of diverse modules compared to diverse groups provides two main
advantages. First, it removes the requirement to explicitly construct a large enough set of
homomorphisms, as such a set can be canonically constructed (as the set of linear maps for
the module to a free module over the base ring). This therefore simplifies the construction
and the description of diverse modules compared to diverse groups. Second, it enables to
combine generically diverse modules and to algebraically add new useful properties to the
associated projective hash function.

An important particular case of diverse modules is when the underlying ring is a finite
field of prime order. Such a diverse module is called a diverse vector space. Diverse vector
spaces were actually already presented by Cramer and Shoup [CS02] as an important case
of diverse groups. In this thesis, however, we go further and provide many tools for diverse
vector spaces.

1.3.2 Operations on Diverse Modules

While the main application of diverse modules and diverse vector spaces is to construct
smooth projective hash functions, we show in this thesis that working with diverse modules
provides many benefits over working directly with smooth projective hash functions.

One of them is that we can generically combine and enhance diverse modules. Given two
diverse modules for two languages L1 and L2, we can generically construct diverse modules
for the conjunction and the disjunction of these two languages. The conjunction of L1 and
L2 is the language of pairs (x1, x2) such that both x1 ∈ L1 and x2 ∈ L2, while the disjunction
of L1 and L2 is the language of pairs (x1, x2) such that x1 ∈ L1 or x2 ∈ L2.

We point out that Abdalla, Chevalier, and Pointcheval already showed in [ACP09] how
to generically construct a smooth projective hash function for the conjunction and the
disjunction of two languages for which they know smooth projective hash functions. However,
their construction is not algebraic and so cannot be combined with our other tools on
diverse modules and cannot be used in some of our direct applications of diverse modules.
Furthermore, their disjunction construction only works for a weak version of smooth projective
hash functions, where the projection key is allowed to depend on the word of the language.

Another important tool for diverse modules is what we call t-sound extension. While
smooth projective hash functions do not provide any security guarantee when the adversary
is given access to even a single hash value of a word x /∈ L , projective hash functions based

8 Chapter 1 Introduction

on t-sound extensions of diverse modules are smooth even when given access to t− 1 hash
values (of t− 1 words chosen by the adversary).

1.3.3 Applications Related to Zero-knowledge

Diverse modules enable to construct smooth projective hash functions, and therefore also
all the previous cryptographic protocols described as applications of smooth projective hash
functions. But diverse modules enable to go beyond that, thanks to their algebraic structure.

Non-interactive zero-knowledge arguments. One of the most interesting and counter-
intuitive applications of diverse modules is the construction of non-interactive zero-knowledge
arguments, with constant-size proofs. We have already seen that smooth projective hash
functions can be used to construct honest-verifier zero-knowledge arguments, where the
verifier sends a projection key hp and the prover sends back to the verifier the projected
hash value pH of the word x to be proven in the language L . The problem of this protocol
is that it is not zero-knowledge, as the verifier could maliciously generate the projection
key hp in such a way that the projected hash value pH sent by the prover may leak some
information about the witness used by the prover. Moreover, only the verifier (who generated
the projection key hp from some hashing key hk) can verify the projected hash value pH.

Still, we show how to construct a non-interactive zero-knowledge proof, using a strong
version of disjunctions of diverse modules, between the language in which we are interested,
and another helper language used to add public verifiability and zero-knowledge. The
resulting schemes work in any bilinear group and essentially correspond to the schemes
of Jutla and Roy in [JR13; JR14], but with a different proof, that we believe to be more
modular and simpler to understand. Furthermore contrary to the schemes of Jutla and
Roy, our schemes can be extended to the composite-order setting, using diverse modules,
and handle a stronger security notion, called one-time simulation-soundness, using 2-sound
extension. One interesting application of our one-time simulation-sound non-interactive
zero-knowledge argument is the construction of the most efficient threshold and structure-
preserving encryption scheme indistinguishable under chosen-ciphertext attacks.

We point out that Kiltz and Wee later improved our constructions to base them on slightly
weaker assumptions in [KW15].

Zero-knowledge variants of projective hash functions. As seen previously, smooth pro-
jective hash functions do not provide any guarantee when the projection key is maliciously
generated. In many protocols, this means that they only ensure a form of honest-verifier
zero-knowledge property.

Using disjunctions of diverse modules between the language we are interested in, and
another helper language, we construct trapdoor smooth projective hash functions and implicit
zero-knowledge arguments which can be seen as zero-knowledge variants of smooth projective
hash functions. Implicit zero-knowledge arguments in particular are a lightweight alternative
to non-interactive zero-knowledge arguments. They can be used to enforce semi-honest
behavior in multi-party computation [GMW87], at a relatively low cost.

We point out that the use of disjunctions for these constructions can be seen as dual of
their use for non-interactive zero-knowledge arguments. Details are given in Chapter 6.

1.4 Our Other Contributions 9

1.3.4 Associated Personal Publications

As explained in the preface, this thesis is not a collection of papers. However, it is mainly
based on three papers:

[BBC+13c] (a merge of [BBC+13b] and [BP13a]) in which we introduce diverse vector
spaces (under the name of “generic framework for smooth projective hash functions”)
and trapdoor smooth projective hash functions;

[ABP15c] in which we construct a strong form of disjunction of diverse vector spaces
using tensor products, and derive from it, constant-size non-interactive zero-knowledge
arguments;

[BCPW15] in which we introduce and construct implicit zero-knowledge arguments.

These three papers contain other applications that we are only discussing in the next section,
but not in the core of this thesis.

The formalization used in this thesis for diverse vector spaces and projective hash functions,
while based on the previous papers, has been improved to be coherent amongst the variants
of projective hash functions we consider. Moreover, all the work on diverse modules has yet
not been published.

1.3.5 Organization

This thesis is organized in seven chapters.
Chapter 1 is the introduction.
Chapter 2 introduces notation and preliminaries to understand the thesis. Besides standard

cryptographic preliminaries, we describe our formalization of languages, projective hash
functions, and some simple applications.

Chapter 3 presents diverse vector spaces together with generic conjunctions and disjunctions,
and an application to non-interactive zero-knowledge arguments. This chapter is both a
warm-up for diverse modules and an important particular case thereof. It is therefore didactic
and contains many examples to help the reader understand step-by-step the framework of
diverse vector spaces.

Chapter 4 defines diverse modules and provides many tools for diverse modules. As such,
it is the core of the thesis. It is also a very technical chapter. A very good understanding of
Chapter 3 is highly recommended before reading Chapter 4.

Chapter 5 introduces the notion of pseudorandomness and mixed pseudorandomness which
can be used to improve the efficiency of many applications based on diverse vector spaces.

Chapter 6 gives various applications of the techniques proposed in the three previous chap-
ters: honest-verifier zero-knowledge arguments, non-interactive zero-knowledge arguments,
trapdoor smooth projective hash functions, and implicit zero-knowledge arguments.

Chapter 7 shortly concludes the thesis and raises open questions.

1.4 Our Other Contributions

Besides what is exposed in this thesis, we worked on various other cryptographic subjects.

10 Chapter 1 Introduction

1.4.1 Other Contributions on Projective Hash Functions

We considered other applications of projective hash functions than the ones related to
zero-knowledge and presented in this thesis.

Password-authenticated key exchange and oblivious transfer. We constructed password-
authenticated key exchange and oblivious transfer schemes and variants thereof in various
models, in different articles with Michel Abdalla, Olivier Blazy, Céline Chevalier, David
Pointcheval, and Damien Vergnaud:

[BBC+13a] introduces the notion of language-authenticated key exchange, which is an
extension of password-authenticated key exchange, where not only the two parties share
a password, but they also hold a word in some language defined by this password. In
particular, it encompasses the notion of secret-handshake [BDS+03], where two users,
who belong to the same group (and who have a certificate proving so), want to establish
a key;

[BBC+13c] constructs the first smooth projective hash function for Cramer-Shoup encryp-
tion scheme [CS98] in which the projection key does not depend on the word. It then
uses this smooth projective hash function to construct the most efficient (at the time)
one-round password-authenticated key exchange in the Bellare-Pointcheval-Rogaway
model [BPR00] and in the universal composability framework [Can01; CHK+05] with
static corruptions. The schemes are based on [KV11];

[ABB+13] introduces the notion of smooth-projective-hash-functions-friendly commitment
schemes and uses it to construct oblivious transfer and password-authenticated key
exchange in the universal composability framework with adaptive corruptions (which
is stronger than static corruptions) assuming that the users can reliably erase data in
their memory;

[ABP14] goes even further and introduces the notion of explainable smooth projective hash
functions to construct oblivious transfer and password-authenticated key exchange
schemes in the universal composability framework with adaptive corruptions without
assuming the users can reliably erase data in their memory. The resulting schemes
are much more efficient than the previously known schemes in the same model. The
explainability property ensures that there is a way to exhibit a hashing key corresponding
to any hash value of a given word x /∈ L , even after having published the projection
key. This paper also provides the most efficient password-authenticated key exchange
schemes in the universal composability framework with adaptive corruption assuming
reliable erasures, in cyclic groups under the DDH assumption. Previous schemes were
either very inefficient [ACP09] or required pairings or bilinear groups [ABB+13; JR15];

[BP13b] studies password-authenticated key exchange in which the server does not store
the password of the user but only a somehow encoded version of it, such that if the
database of the server leaks, finding all the passwords takes a longer time;

[ABP15d; ABP16] introduce the notion of encryption scheme indistinguishable under plain-
text-checkable attacks. This is a weakening of the notion of indistinguishability un-
der chosen-ciphertext attacks, which is sufficient for the constructions of password-
authenticated key exchange schemes based on [KOY09; GL06; JG04; GK10]. This

1.4 Our Other Contributions 11

weakening allows for more efficient constructions of encryption schemes. We believe
that this new notion of encryption scheme might be useful in other contexts;

[ABP15c] also constructs the first one-round password-authenticated key exchange for a
group of three users.5

We should point out that after our papers, in [JR15], Jutla and Roy constructed a password-
authenticated key exchange scheme (in bilinear groups), which is more efficient that all our
constructions in the universal composability framework, with static and adaptive corruptions.

Other applications. In [BBC+13c], we also constructed blind signatures.
In [BJL16; BJL13], with Benoît Libert and Marc Joye, we constructed a generic aggregator-

oblivious encryption scheme with a relatively tight security reduction, which means that the
security of the scheme is really close to the hardness of the underlying problem and therefore
smaller parameters can be used compared to schemes with non-tight security reduction.
An aggregator-oblivious encryption scheme enables a special user, called an aggregator, to
compute the sum of the values of n other users U1, . . . , Un. Each user Ui encrypts its input
value xi using his secret key. The aggregator can then combine the resulting messages and
get the sum

∑n
i=1 xi using his own secret key. The aggregator should learn no more than the

sum of all the values, even if he colludes with some users.
Our construction is based on key-homomorphic smooth projective hash functions which

can be based on diverse modules (although this is not explicitly indicated in [BJL16]).

1.4.2 Pseudorandom Functions

In [ABPP14; ABP15a; ABP15b], with Michel Abdalla, Alain Passelègue, and Kenny Paterson,
we studied pseudorandom functions and variants thereof. A pseudorandom function is a
family of functions (FK) indexed by a bit string K called a key such that, when the key
K is chosen uniformly at random, FK looks indistinguishable from a random function. We
also consider the security of pseudorandom functions under related-key attacks, in which the
adversary can also get access to Fφ(K) for functions φ of its choice (in some set Φ). Moreover,
we construct multilinear and aggregate pseudorandom functions [CGV15]. The first ones are
similar to classical pseudorandom functions, except that FK looks indistinguishable from a
random multilinear function, while the second ones enable to efficiently evaluate an aggregate
(like a product) of the outputs of FK on a potentially exponential number of inputs.

Our main result is the introduction of a framework, called “polynomial linear pseudorandom-
ness security” in [ABP15b]. This framework can be used to very easily derive constructions
for all these schemes, under a classical assumption, namely the decisional d-Diffie-Hellman
inversion.

To present this framework, let us first recall the bracket notation introduced in [EHK+13]:
if G is a multiplicative cyclic group of prime order p generated by g, for any scalar x ∈ Zp,
we define [x] to be the group element gx, where Zp is the finite field of order p. Then,
we essentially show the following theorem: under the decisional d-Diffie-Hellman inversion
assumption, for any positive integer q, for any multivariate polynomials P1, . . . , Pq over Zp

5Actually, the construction works for any constant number of players, but requires multilinear maps with
properties, for which we do not know any instantiation due to recent attacks [GGH13; CHL+15; CGH+15;
HJ15; MF15; CLR15; Mar16].

12 Chapter 1 Introduction

with indeterminates T1, . . . , Tn (and degree at most d in each of these indeterminates), the
following q group elements:

[P1(a1, . . . , an)], . . . , [Pq(a1, . . . , an)] ,

with a1, . . . , an being n uniform secret scalars in Zp, are indistinguishable from the following
q group elements

[U(P1)], . . . , [U(Pq)] ,

where U is a random linear map from the set of multivariate polynomials to Zp.
This theorem is actually straightforward in the generic group model. The difficulty is to

prove the theorem under a standard assumption, namely the decisional d-Diffie-Hellman
assumption.

We also extend the theorem to weaker assumptions which are shown to hold in generic
groups with symmetric multilinear maps.

1.4.3 Randomness Complexity of Private Circuits

In [BBP+16], with Sonia Belaïd, Alain Passelègue, Emmanuel Prouff, Adrian Thillard, and
Damien Vergnaud, we study the construction of multiplication circuits secure in the d-probing
model, which has been introduced by Ishai, Sahai, and Wagner in [ISW03] to model the
security of real implementations of circuits against side-channel attacks. As discovered by
Kocher in [Koc96], in real life, an adversary has not only access to the inputs and the
outputs of cryptosystems, but has also often access to other information, called side-channel
information, such as the power consumption or the electromagnetic radiation of the device
that performs the protocol (for example, a credit card that authenticates itself to the bank
using some secret). In devices not protected against such side-channel attacks exploiting
this additional information, an adversary can often efficiently retrieve important secrets and
completely break everything.

The d-probing model is a theoretical model aiming at formalizing what information an
attacker can get from side-channel attacks. More precisely, in the d-probing model, we
suppose that the adversary can choose d wires (or probes) of the circuit implementing the
cryptosystem, and can get the value of these wires.

In [ISW03], Ishai, Sahai, Wagner showed how to generically transform any circuit into one
that is secure in the d-probing model. One important tool is the construction of a circuit
able to securely perform the and (or multiplication) of two bits. In [BBP+16], we revisit this
construction and try to optimize the number of random bits used by the transformed circuit
that is secure in the d-probing model.

On the theoretical side, we show a linear lower bound (in d) on the number of random bits,
together with an almost matching (non-constructive) upper bound of O(d·log d). These results
are obtained using an algebraic characterization of the d-probing model, which intensively
uses linear algebra.

On the practical side, we show a generic construction using half as much random bits
as the construction in [ISW03], together with optimal constructions for d = 2, 3, 4, which
match our lower bound. Furthermore, using our algebraic characterization, we develop a tool
which can find attacks on candidate schemes and which is orders of magnitude faster than
the previously known tool [BBD+15]. Although our new tool cannot prove the security of a

1.4 Our Other Contributions 13

scheme with 100% accuracy, contrary to the previous tool, it enables to quickly rule out bad
candidates and speed up the research of new secure schemes.

The constructions for small values of d are highly likely to be used in real life very soon, as
[ISW03] is actually already used in practice, and randomness generation has a very high cost
on embedded devices, such as credit cards.

1.4.4 Cryptosystems Based on Residue Symbols

In [BHJL16; JBL14], with Javier Herranz, Marc Joye, and Benoît Libert, we introduce a
new public-key encryption scheme based on quadratic residuosity (for some special moduli),
similar to the Goldwasser-Micali scheme [GM84]. Contrary to the latter scheme, our scheme
can encrypt a large number of bits in one single ciphertext.

1.4.5 Lattice-Based Zero-Knowledge Arguments

In [BCK+14; BKLP15], with Jan Camenisch, Stephan Krenn, Vadim Lyubashevsky, Gregory
Neven, and Krzysztof Pietrzak, we study lattice-based zero-knowledge arguments, based on
Sigma-protocols. Contrary to cyclic and factorization-based groups we are considering in this
thesis, lattice-based cryptosystems are noisy, which usually makes everything more complex.
In particular, while Sigma-protocols over cyclic groups are generally relatively easy to prove
secure, lattice-based ones are much more subtle. We need to carefully take care of the leakage
due to noise and of the issues with invertibility of the elements we are considering, as we are
working over rings of the form Zq[X]/(Xn + 1).

1.4.6 Forward-Secure Signature Schemes

In [ABP13], with Michel Abdalla and David Pointcheval, we studied forward-secure signature
schemes, and more precisely the tightness of the reductions of such schemes. In forward-secure
signature scheme, signatures and secret keys (used to sign messages) are associated to a time
period, for example the current year. A secret key for a given time period T can only be
used to produce signatures for this time period T or a subsequent one T ′ ≥ T . Furthermore,
a secret key for the period T can be updated to period T + 1.

The advantage of forward-secure signatures compared to classical digital signatures is
the following: if an adversary manages to steal a secret key at some time period T , it still
cannot sign messages for previous time periods. Only signatures for the time period T or a
subsequent time period might be fake signatures created by the adversary.

1.4.7 Security Proof of J-PAKE

In [ABM15], with Michel Abdalla and Philip MacKenzie, we proved the security of the
J-PAKE protocol. The J-PAKE protocol is a password-authenticated key exchange scheme
proposed by Hao and Ryan in [HR10]. It is included as an optional protocol in the OpenSSL
library [OpenSSL] (enabled using a configuration parameter during install, see directory
crypto/jpake), and has been used in various products, such as Firefox Sync [Firefox Sync]
and Nest products [Nest] (as part of the Thread protocol [Thread]). Its popularity is mainly
due to the fact that it is based on a different paradigm than other schemes, which seems
to avoid existing patents, since the scheme is even less efficient than the standard-model
schemes we propose in [ABP15d] and requires much stronger security assumptions.

14 Chapter 1 Introduction

To do the security reduction, we prove an intermediate result which is interesting in its
own right: Schnorr proofs [Sch91], one of the most efficient non-interactive zero-knowledge
arguments, satisfy a very strong security notion, namely simulation-extractability with
non-rewinding extractors, in the random oracle model, assuming algebraic adversaries.

1.4.8 Coppersmith Methods and Analytic Combinatorics

In [BCTV16], with Céline Chevalier, Adrian Thillard, and Damien Vergnaud, we revisit
attacks based on Coppersmith methods [Cop96b; Cop96a] and propose a framework based
on analytic combinatorics to significantly simplify their analyses.

Personal Publications

Journal Papers

[ABP16] Michel Abdalla, Fabrice Benhamouda, and David Pointcheval. “Public-Key
Encryption Indistinguishable Under Plaintext-Checkable Attacks”. In: IET
Information Security (2016). To appear. Full version of [ABP15d].

[BHJL16] Fabrice Benhamouda, Javier Herranz, Marc Joye, and Benoît Libert. “Efficient
Cryptosystems From 2k-th Power Residue Symbols”. In: Journal of Cryptology
(2016). issn: 1432-1378. doi: 10.1007/s00145-016-9229-5. url: http:

//dx.doi.org/10.1007/s00145-016-9229-5.

[BJL16] Fabrice Benhamouda, Marc Joye, and Benoît Libert. “A New Framework for
Privacy-Preserving Aggregation of Time-Series Data”. In: ACM Trans. Inf.
Syst. Secur. 18.3 (Mar. 2016). issn: 1094-9224/2016. doi: 10.1145/2873069.

Conference Papers

[ABP13] Michel Abdalla, Fabrice Ben Hamouda, and David Pointcheval. “Tighter
Reductions for Forward-Secure Signature Schemes”. In: PKC 2013. Ed.
by Kaoru Kurosawa and Goichiro Hanaoka. Vol. 7778. LNCS. Springer,
Heidelberg, Feb. 2013, pp. 292–311. doi: 10.1007/978-3-642-36362-7_19.

[ABB+13] Michel Abdalla, Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, and
David Pointcheval. “SPHF-Friendly Non-interactive Commitments”. In: ASI-
ACRYPT 2013, Part I. Ed. by Kazue Sako and Palash Sarkar. Vol. 8269.
LNCS. Springer, Heidelberg, Dec. 2013, pp. 214–234. doi: 10.1007/978-3-

642-42033-7_12.

[BBC+13a] Fabrice Ben Hamouda, Olivier Blazy, Céline Chevalier, David Pointcheval,
and Damien Vergnaud. “Efficient UC-Secure Authenticated Key-Exchange for
Algebraic Languages”. In: PKC 2013. Ed. by Kaoru Kurosawa and Goichiro
Hanaoka. Vol. 7778. LNCS. Springer, Heidelberg, Feb. 2013, pp. 272–291.
doi: 10.1007/978-3-642-36362-7_18.

http://dx.doi.org/10.1007/s00145-016-9229-5
http://dx.doi.org/10.1007/s00145-016-9229-5
http://dx.doi.org/10.1007/s00145-016-9229-5
http://dx.doi.org/10.1145/2873069
http://dx.doi.org/10.1007/978-3-642-36362-7_19
http://dx.doi.org/10.1007/978-3-642-42033-7_12
http://dx.doi.org/10.1007/978-3-642-42033-7_12
http://dx.doi.org/10.1007/978-3-642-36362-7_18

Personal Publications 15

[BBC+13c] Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval,
and Damien Vergnaud. “New Techniques for SPHFs and Efficient One-Round
PAKE Protocols”. In: CRYPTO 2013, Part I. Ed. by Ran Canetti and Juan
A. Garay. Vol. 8042. LNCS. Springer, Heidelberg, Aug. 2013, pp. 449–475.
doi: 10.1007/978-3-642-40041-4_25.

[ABPP14] Michel Abdalla, Fabrice Benhamouda, Alain Passelègue, and Kenneth G.
Paterson. “Related-Key Security for Pseudorandom Functions Beyond the
Linear Barrier”. In: CRYPTO 2014, Part I. Ed. by Juan A. Garay and
Rosario Gennaro. Vol. 8616. LNCS. Springer, Heidelberg, Aug. 2014, pp. 77–
94. doi: 10.1007/978-3-662-44371-2_5.

[BCK+14] Fabrice Benhamouda, Jan Camenisch, Stephan Krenn, Vadim Lyubashevsky,
and Gregory Neven. “Better Zero-Knowledge Proofs for Lattice Encryption
and Their Application to Group Signatures”. In: ASIACRYPT 2014, Part I.
Ed. by Palash Sarkar and Tetsu Iwata. Vol. 8873. LNCS. Springer, Heidelberg,
Dec. 2014, pp. 551–572. doi: 10.1007/978-3-662-45611-8_29.

[ABM15] Michel Abdalla, Fabrice Benhamouda, and Philip MacKenzie. “Security of
the J-PAKE Password-Authenticated Key Exchange Protocol”. In: 2015
IEEE Symposium on Security and Privacy. IEEE Computer Society Press,
May 2015, pp. 571–587. doi: 10.1109/SP.2015.41.

[ABP15a] Michel Abdalla, Fabrice Benhamouda, and Alain Passelègue. “An Algebraic
Framework for Pseudorandom Functions and Applications to Related-Key
Security”. In: CRYPTO 2015, Part I. Ed. by Rosario Gennaro and Matthew
J. B. Robshaw. Vol. 9215. LNCS. Springer, Heidelberg, Aug. 2015, pp. 388–
409. doi: 10.1007/978-3-662-47989-6_19.

[ABP15b] Michel Abdalla, Fabrice Benhamouda, and Alain Passelègue. “Multilinear
and Aggregate Pseudorandom Functions: New Constructions and Improved
Security”. In: ASIACRYPT 2015, Part I. Ed. by Tetsu Iwata and Jung Hee
Cheon. Vol. 9452. LNCS. Springer, Heidelberg, Nov. 2015, pp. 103–120. doi:
10.1007/978-3-662-48797-6_5.

[ABP15c] Michel Abdalla, Fabrice Benhamouda, and David Pointcheval. “Disjunctions
for Hash Proof Systems: New Constructions and Applications”. In: EURO-
CRYPT 2015, Part II. Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9057.
LNCS. Springer, Heidelberg, Apr. 2015, pp. 69–100. doi: 10.1007/978-3-

662-46803-6_3.

[ABP15d] Michel Abdalla, Fabrice Benhamouda, and David Pointcheval. “Public-
Key Encryption Indistinguishable Under Plaintext-Checkable Attacks”. In:
PKC 2015. Ed. by Jonathan Katz. Vol. 9020. LNCS. Springer, Heidelberg,
Mar. 2015, pp. 332–352. doi: 10.1007/978-3-662-46447-2_15.

[BCPW15] Fabrice Benhamouda, Geoffroy Couteau, David Pointcheval, and Hoeteck
Wee. “Implicit Zero-Knowledge Arguments and Applications to the Malicious
Setting”. In: CRYPTO 2015, Part II. Ed. by Rosario Gennaro and Matthew
J. B. Robshaw. Vol. 9216. LNCS. Springer, Heidelberg, Aug. 2015, pp. 107–
129. doi: 10.1007/978-3-662-48000-7_6.

http://dx.doi.org/10.1007/978-3-642-40041-4_25
http://dx.doi.org/10.1007/978-3-662-44371-2_5
http://dx.doi.org/10.1007/978-3-662-45611-8_29
http://dx.doi.org/10.1109/SP.2015.41
http://dx.doi.org/10.1007/978-3-662-47989-6_19
http://dx.doi.org/10.1007/978-3-662-48797-6_5
http://dx.doi.org/10.1007/978-3-662-46803-6_3
http://dx.doi.org/10.1007/978-3-662-46803-6_3
http://dx.doi.org/10.1007/978-3-662-46447-2_15
http://dx.doi.org/10.1007/978-3-662-48000-7_6

16 Chapter 1 Introduction

[BKLP15] Fabrice Benhamouda, Stephan Krenn, Vadim Lyubashevsky, and Krzysztof
Pietrzak. “Efficient Zero-Knowledge Proofs for Commitments from Learning
with Errors over Rings”. In: ESORICS 2015, Part I. Ed. by Günther Per-
nul, Peter Y. A. Ryan, and Edgar R. Weippl. Vol. 9326. LNCS. Springer,
Heidelberg, Sept. 2015, pp. 305–325. doi: 10.1007/978-3-319-24174-6_16.

[BBP+16] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff,
Adrian Thillard, and Damien Vergnaud. “Randomness Complexity of Private
Circuits for Multiplication”. In: EUROCRYPT 2016. LNCS. To appear.
Springer, Heidelberg, May 2016.

[BCTV16] Fabrice Benhamouda, Céline Chevalier, Adrian Thillard, and Damien
Vergnaud. “Easing Coppersmith Methods Using Analytic Combinatorics:
Applications to Public-Key Cryptography with Weak Pseudorandomness”.
In: PKC 2016, Part II. Ed. by Chen-Mou Cheng, Kai-Min Chung, Giuseppe
Persiano, and Bo-Yin Yang. Vol. 9615. LNCS. Springer, Heidelberg, Mar.
2016, pp. 36–66. doi: 10.1007/978-3-662-49387-8_3.

Manuscripts

[BBC+13b] Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and
Damien Vergnaud. New Smooth Projective Hash Functions and One-Round
Authenticated Key Exchange. Cryptology ePrint Archive, Report 2013/034.
http://eprint.iacr.org/2013/034. 2013.

[BP13a] Fabrice Benhamouda and David Pointcheval. Trapdoor Smooth Projective
Hash Functions. Cryptology ePrint Archive, Report 2013/341. http://

eprint.iacr.org/2013/341. 2013.

[BP13b] Fabrice Benhamouda and David Pointcheval. Verifier-Based Password-
Authenticated Key Exchange: New Models and Constructions. Cryptology
ePrint Archive, Report 2013/833. http://eprint.iacr.org/2013/833.
2013.

[ABP14] Michel Abdalla, Fabrice Benhamouda, and David Pointcheval. Removing
Erasures with Explainable Hash Proof Systems. Cryptology ePrint Archive,
Report 2014/125. http://eprint.iacr.org/2014/125. 2014.

Patent Applications

[BJL13] Fabrice Benhamouda, Marc Joye, and Benoît Libert. “Method for determining
a statistic value on data based on encrypted data”. Corresponds to [BJL16].
2013.

[JBL14] Marc Joye, Fabrice Benhamouda, and Benoît Libert. “Method and device
for cryptographic key generation”. Corresponds to [BHJL16]. 2014.

http://dx.doi.org/10.1007/978-3-319-24174-6_16
http://dx.doi.org/10.1007/978-3-662-49387-8_3
http://eprint.iacr.org/2013/034
http://eprint.iacr.org/2013/341
http://eprint.iacr.org/2013/341
http://eprint.iacr.org/2013/833
http://eprint.iacr.org/2014/125

Chapter 2
Preliminaries

In this chapter, we introduce the notation used throughout this manuscript and give some
cryptographic definitions and notions. The first two sections are classical in cryptography and
thus can be quickly skimmed. However, it is highly recommended to read Sections 2.3 and 2.5
very carefully, as they are important for the sequel. A list of notation and abbreviations is
provided at the end of the manuscript on pages 181 and 183.

Contents

2.1 Notation and Preliminaries . 18

2.1.1 General Notation . 18

2.1.2 Preliminaries on Provable Security 20

2.1.3 Statistical and Computational Indistinguishability 22

2.1.4 Proof by Games or Hybrid Arguments 26

2.1.5 Cyclic Groups, Bilinear Groups, and Multilinear Groups 26

2.2 Cryptographic Primitives . 28

2.2.1 Collision-Resistant Hash Function Families 28

2.2.2 Encryption . 29

2.2.3 Randomness Extractors and Min Entropy 34

2.3 Languages . 35

2.3.1 Languages for Projective Hash Functions 36

2.3.2 Hard-Subset-Membership Languages 37

2.3.3 Language for Zero-Knowledge Arguments 39

2.4 Zero-Knowledge Arguments . 39

2.4.1 Overview . 39

2.4.2 Formal Definitions of Zero-Knowledge Arguments 42

2.4.3 Non-Interactive Zero-Knowledge Arguments 47

2.5 Projective Hash Functions . 48

2.5.1 Projective Hash Functions (PHFs) 48

2.5.2 Smooth Projective Hash Functions (SPHFs) 49

2.5.3 Simple Applications of SPHFs . 50

— 17 —

18 Chapter 2 Preliminaries

2.1 Notation and Preliminaries

2.1.1 General Notation

Sets, integers, moduli, and associated rings and groups. We denote by Z the set of
integers and by N the set of non-negative integers. If a and b are two integers such that
a < b, we denote by {a, . . . , b} the set of integers between a and b (a and b included). If S is
a finite set, |S| denotes its size.

If M is a positive integer, (ZM ,+, ·) or ZM denotes the ring of integers modulo M .
Sometimes, we only see this ring ZM as just an additive group (ZM ,+). We also consider
the multiplicative subgroup (Z∗

M , ·) of (ZM ,+, ·): Z∗
M contains the invertible elements of the

ring ZM . This group has order φ(M), where φ is Euler’s totient function.
In most of our constructions, we work in groups ZM with known order M . In this case,

elements of ZM are represented by integers of the set {0, . . . ,M − 1}, and operations + and ·
over elements of ZM can be performed efficiently in polynomial time (in the size of M).
Furthermore, if x ∈ Z is an integer, x mod M is the remainder of the Euclidean division of x
by M . It can be seen both as an integer in {0, . . . ,M − 1} and as an element of ZM .

In cases where the order M is not known by our algorithms, elements might have multiple
representations whose sizes grow with each ring operation. We deal with this issue separately
when it happens.

When M = p is prime, the ring ZM = Zp is a finite field, and we always suppose that
M = p is public in this case.

If R is a ring, then R[X] denotes the ring of polynomials with coefficients in R.

Vector spaces, modules, and matrices. We intensively use vector spaces and modules in
this thesis. A module can basically be seen as a vector space over a ring, instead of over a
finite field. In this thesis, we focus on ZM -modules of the form Zn

M (with their canonical
basis) and their submodules. When M = p is prime, these are Zp-vector spaces.

Vectors are usually in bold (e.g., u, θ), while matrices are usually denoted by capital
letters (e.g., A, Γ) but are sometimes also just in bold (e.g., α in Chapter 4). By default
vectors are column vectors.

If u ∈ Zn
M is a vector, its coordinates or entries are u1, . . . , un (not in bold). We can also

write: u = (ui)i=1,...,n. Sometimes, we consider families of vectors (u1, . . . ,uk) (in bold).
The j-th coordinate of ui (with j ∈ {1, . . . , n} and i ∈ {1, . . . , k}) is denoted by ui,j . In
particular the canonical basis of Zn

M is the family (e1, . . . ,en), such that ei,j = 1 if i = j and
ei,j = 0 otherwise.

Similarly, if A ∈ Zn×k
M is a matrix with n rows and k columns, its entries are denoted by

Ai,j with i ∈ {1, . . . , n} and j ∈ {1, . . . , k}. We can also write: A = (Ai,j)i=1,...,n
j=1,...,k

. Sometimes,

we consider families of matrices (A1, . . . , Aℓ). In that case, the coordinates of the matrix Al

are denoted by Al,i,j .
If (u1, . . . ,uk) is a family of k vectors in Zn

M , the submodule of Zn
M generated (or spanned)

by these vectors is denoted by:

Span (u1, . . . ,uk) .

If A ∈ Zn×k
M is a matrix, then ColSpan (A) is the submodule generated by the columns of the

matrix A. It can also be seen as the image of the linear function φ from Zn
M to Zk

N , which

2.1 Notation and Preliminaries 19

associates a vector u ∈ Zn
M to A · u. The kernel of this function is denoted kerφ or kerA

and is the set of all vectors u ∈ Zn
M such that A · u = 0.

If A is a matrix, A⊺ is its transpose. The identity matrix for the module Zn
M is denoted

by Idn. The zero matrix with n rows and k columns is denoted by 0n×k or just by 0 when
the dimensions are clear from the context. The zero column (resp. row) vector of size n if
denoted by 0n (resp. 0⊺

n) or just by 0 (resp. 0⊺) when the dimensions are clear from context.

Prime decomposition. Let M ≥ 2 be a positive integer. We say that M = pe1

1 · · · p
er
r is

the prime decomposition of M if p1, . . . , pr are distinct prime numbers and e1, . . . , er are
positive integers. We recall that the prime decomposition of a positive integer is unique up
to the order of its prime factors p1, . . . , pr.

Legendre symbol, Jacobi symbol, and quadratic residue. Let p be a prime number and
x be an element of Zp. The Legendre symbol of x modulo p is:

(x

p

)

=

0 if x = 0 ∈ Zp ,

1 if ∃y ∈ Z∗
p, x = y2 ,

−1 otherwise.

Let M ≥ 2 be a positive integer and let M = pe1

1 · · · p
er
r be its prime decomposition. We

recall that there exists a canonical surjection from ZM to ZM ′ for any factor M ′ ≥ 1 of M .
Let x be an element of ZM . The image of the element x of ZM by this surjection is denoted
x mod M ′. The Jacobi symbol of x modulo M is:

(x

M

)

=
r
∏

i=1

(

x mod pi

pi

)ei

.

Furthermore, we say that x is a quadratic residue modulo M if and only if there exists an
element y ∈ Z∗

M such that x = y2. The Chinese remainder theorem (CRT)1 directly implies
that if x is a quadratic residue modulo M , its Jacobi symbol modulo M is equal to 1. The
converse is only true when M is a prime number.

Bit strings. The set of all bit strings is denoted by {0, 1}∗, while the set of bit strings of
length n is {0, 1}n. A bit string is often denoted by a lowercase letter, such as x or y. If
x ∈ {0, 1}∗, its length is |x| and the i-bit is x is xi (for i ∈ {1, . . . , |x|}). The exclusive or
between two bit string x and y of the same length is denoted by x xor y.

Miscellaneous. The value “true” is represented by 1, while the value “false” is represented
by 0. Logarithm log is always in basis 2: log = log2. The binary operator “:=” is used to
define a symbol. To indicate that some variable x is assigned the result of some computation,
e.g., y + z, we write x← y + z. In many cases, “:=” and “←” are used interchangeably.

If x is a real number, |x| is its absolute value.
When f and g are two functions from N to the set of real numbers, we write f = O(g) or

g = Ω(f) to indicate that there exists a constant c and an integer n0 ∈ N such that for any
integer n ≥ n0, |f(n)| ≤ c · |g(n)|.

1We recall the CRT in Section 4.2.2.3 when using it.

20 Chapter 2 Preliminaries

Algorithms, Turing machines, and interactive Turing machines. Algorithms are programs
for Turing machines. By default, algorithms are probabilistic, i.e., they can use an additional
tape of the Turing machine containing random bits (a.k.a., random coins). If A is an
algorithm, we write y $← A(x) to say that we execute the algorithm A on input x with fresh
random coins and that we store the result in y. If A is deterministic, we also write y ← A(x).
We write A(x; r) to explicitly indicate that A used the random coins r (seen as a bit string).
When we write “for any y $← A(x)”, we mean that we consider all the possible outputs A(x; r)
of the algorithm A on input x, for any possible random coins r.

An interactive Turing machine (ITM) is special kind of Turing machine with additional
tapes to communicate with other Turing machines: one communication input tape to receive
messages from other machines and one communication output tape to send messages to other
machines. It is used in the modelization of interactive protocols. In practice however, we
never formally describe an ITM but often use figures as Figure 2.8 on page 51.

By default algorithms and ITM are not supposed to run in polynomial time. If we want
them to be polynomial time, we say it explicitly. By polynomial time, we mean strong
polynomial time and not expected polynomial time. In most cases, this is without loss of
generality, as our algorithms are probabilistic anyway (and we often allow for errors).

We only consider uniform complexity: algorithms and Turing machines do not have access
to an advice string depending on the length of their input.

Sets and distributions. If S is a set, x $← S indicates that x is taken uniformly at random
from the set S (independently of everything else). Similarly, if D is a probability distribution,
x $← D indicates that x is drawn randomly according to D. We often use the term “random”
to mean “uniformly at random”.

Finally, we also write x, y $← S to indicate that x and y are drawn independently uniformly
at random from S.

2.1.2 Preliminaries on Provable Security

2.1.2.1 Security Parameters and Negligibility

Almost any cryptosystem can be broken with a powerful enough computer.2 The goal is just
to construct fast enough cryptosystems which cannot be broken by reasonable computers. In
practice, we often consider today that if 2128 elementary operations3 are required to break a
cryptosystem with high probability (e.g., 1/2), then this cryptosystem is considered secure.
Such a cryptosystem is said to provide K = 128 bits of security.

To properly formalize this idea of security, theoretical papers like this thesis use the notion
of a security parameter K ∈ N. We do as if all the algorithms of a cryptosystem take as input
a unary representation 1K of this security parameter and that all these algorithms run in
polynomial time in this security parameter. We then generally consider only attacks against
the cryptosystem which can be performed by polynomial time algorithms or adversaries.
Details for this are given in the next section.

2There exists purely information theoretic cryptography though, but even in that case, we may need to use a
security parameter.

3Elementary operations depend on the exact computer architecture but, in practice, there are not that many
differences between the computer architectures.

2.1 Notation and Preliminaries 21

But before going to the next section, we need the following notions. Let ε be a function
from N to reals between 0 and 1. We say that ε is negligible or 1− ε is overwhelming, if for
any k ∈ N, ε = O(1/Kk).

2.1.2.2 Adversaries and Experiments

Adversaries. Adversaries are probabilistic algorithms or Turing machines. They are often
denoted by calligraphic letters, such as A or B and may or may not run in polynomial time.
If they do not run in polynomial time, we say that they are unbounded. Adversaries may
need to be called multiple times. In that case, they may or may not carry a state st.

In any case, adversaries are always supposed to implicitly take as input a unary representa-
tion of the security parameter. As inputs to adversaries are always polynomial in the security
parameter, a polynomial-time adversary runs in time polynomial in the security parameter.

Experiments, games, and oracles. Security notions and security assumptions are often
described as experiments where an adversary is called one or several times with various inputs.
An adversary may also be given access to oracles, which are also Turing machines. The
running time of the oracles are not taken into account in the running time of the adversary:
a query to an oracle always only counts for one clock tick. We write AO1,O2(x) to say that
the adversary A is called with input x and has access to the oracles O1 and O2.

An experiment can also be seen as a game between an adversary A and an implicit
challenger which gives its input to the adversary and allows some oracle calls. In this thesis,
we use the terms experiment and game interchangeably.

As usual, experiments are parameterized by the security parameter K. Examples of
experiments can be found in Figure 2.4 on page 45.

Success probability. The success probability of an adversary A in an experiment Expexp is
the probability that this adversary outputs 1 in this experiment:

Succexp(A,K) := Pr [Expexp(A,K) = 1] .

It depends on the security parameter K. When the experiment Expexp corresponds to a
cryptographic assumption or to a security notion, we say that the assumption or the security
notion statistically holds when this success probability is negligible for any unbounded
adversary A. It perfectly holds when this success probability is 0 for any unbounded adversary
A. It (computationally) holds when this success probability is negligible for any polynomial-
time adversary A.

Advantage. Sometimes, a security notion or assumption consists in distinguishing two
experiments Expexp-0 and Expexp-1. In this case, we define the advantage of an adversary A
in distinguishing the experiments Expexp-b (where b is always supposed to be in {0, 1} in this
context) as:

Advexp(A,K) =
∣

∣

∣Pr
[

Expexp-1(A,K) = 1
]

− Pr
[

Expexp-0(A,K) = 1
]∣

∣

∣ .

When the experiments Expexp−b correspond to a cryptographic assumption or to a security
notion, we say that the assumption or the security notion statistically holds when this

22 Chapter 2 Preliminaries

advantage is negligible for any unbounded adversary A. It perfectly holds when this advantage
is 0 for any unbounded adversary A. It (computationally) holds when this advantage is
negligible for any polynomial-time adversary A.

Hardness and efficiency. An efficient algorithm is a algorithm running in polynomial time
(in the security parameter). A problem is said to be easy if it can be solved in polynomial time.
A problem is said to be hard if it cannot be solved in polynomial time, with non-negligible
probability.

2.1.3 Statistical and Computational Indistinguishability

We have already seen that the notion of advantage captures the general idea of indistingui-
shability of two experiments Expexp-0 and Expexp-1 (both statistical, when the adversary is
unbounded, and computational, when it runs in polynomial time). In many cases, these ex-
periments just consist in drawing an element from some distributions D0 and D1 respectively
and feeding it as input to the adversary. The output of the experiment is just the output of
the adversary.

In this section, we further study these particular cases and give some additional vocabulary
and tools.

2.1.3.1 Statistical Indistinguishability

Definition. To define statistical indistinguishability, we first need to define statistical dis-
tance. We suppose that the reader is familiar with basic probability and the notion of
distributions and random variables. There are many ways to define statistical distance in
mathematics and computer science. We use (one of) the most common one in cryptography,
which corresponds to the total variation distance.

Definition 2.1.1. Let D1 and D2 be two distributions over some finite set S. Let X1 and
X2 be two random variables sampled according to D1 and D2 respectively. Their ranges are
therefore the same finite set S. The statistical distance between D1 and D2 (or X1 and X2)
is:

Dist(D1,D2) := Dist(X1, X2) :=
1
2
·
∑

x∈S

|Pr [X1 = x]− Pr [X2 = x]| .

We use distributions and random variables interchangeably, depending on what is the most
convenient.

The following theorem gives a very useful and equivalent definition of statistical distance.

Theorem 2.1.2. Let X1 and X2 be two random variables with some finite range S. We
have:

Dist(X1, X2) = max
A
|Pr [A(X1) = 1]− Pr [A(X2) = 1]| ,

where the maximum is taken over all the possible adversaries taking as input an element of
S outputting a bit. The definition is equivalent whether the adversaries are probabilistic or
deterministic.

Proof. First, we remark that for any adversary A:

|Pr [A(X1) = 1]− Pr [A(X2) = 1]| =

∣

∣

∣

∣

∣

∑

x∈S

Pr [A(x) = 1] · (Pr [X1 = x]− Pr [X2 = x])

∣

∣

∣

∣

∣

,

2.1 Notation and Preliminaries 23

because for any x ∈ S, the events A(x) = 1 and X1 = 1 are independent (and A(x) = 1 and
X2 = 1 are independent too). If for some x ∈ S, 0 < Pr [A(x) = 1] < 1, then the above
expression can be increased by increasing or decreasing this probability. That shows that we
can restrict ourselves to deterministic adversaries.

Second, let A be a deterministic adversary and let B be the subset of S defined by:

B := {x ∈ S | A(x) = 1} .

We have:

|Pr [A(X1) = 1]− Pr [A(X2) = 1]|

= |Pr [X1 ∈ B]− Pr [X2 ∈ B]| = |Pr [X1 ∈ S \B]− Pr [X2 ∈ S \B]|

=
1
2
· (|Pr [X1 ∈ B]− Pr [X2 ∈ B]|+ |Pr [X1 ∈ S \B]− Pr [X2 ∈ S \B]|) .

Furthermore, for any subset C ⊆ S:

|Pr [X1 ∈ C]− Pr [X2 ∈ C]| ≤
∑

x∈C

|Pr [X1 = x]− Pr [X2 = x]| .

Therefore, we get:

|Pr [A(X1) = 1]− Pr [A(X2) = 1]|

≤
1
2
·

∑

x∈B

|Pr [X1 = x]− Pr [X2 = x]|+
∑

x∈S\B

|Pr [X1 = x]− Pr [X2 = x]|

= Dist(X1, X2) .

Thus, we have:

sup
A
|Pr [A(X1) = 1]− Pr [A(X2) = 1]| ≤ Dist(X1, X2) .

To conclude, let us now construct an adversary A such that:

|Pr [A(X1) = 1]− Pr [A(X2) = 1]| = Dist(X1, X2) .

Let B be the following set:

B := {x ∈ S | Pr [X1 = x] ≥ Pr [X2 = x]} ,

and A be the adversary which on input x ∈ S outputs 1 if and only if x ∈ B. Using the
previous analysis, we then have:

|Pr [A(X1) = 1]− Pr [A(X2) = 1]|

=
1
2
· (|Pr [X1 ∈ B]− Pr [X2 ∈ B]|+ |Pr [X1 ∈ S \B]− Pr [X2 ∈ S \B]|)

=
1
2
·

∣

∣

∣

∣

∣

∑

x∈B

(Pr [X1 = x]− Pr [X2 = x])

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∑

x∈S\B

(Pr [X1 = x]− Pr [X2 = x])

∣

∣

∣

∣

∣

∣

=
1
2
·

∑

x∈B

|Pr [X1 = x]− Pr [X2 = x]|+
∑

x∈S\B

|Pr [X1 = x]− Pr [X2 = x]|

= Dist(X1, X2) ,

24 Chapter 2 Preliminaries

where the last-but-one inequality comes from the fact that Pr [X1 = x]− Pr [X2 = x] has
the same sign for all x ∈ B on one hand, and for all x ∈ S \ B on the other hand. This
concludes the proof.

Definition 2.1.3. Let D1 and D2 two distributions over some finite set S. We say that D1

and D2 are ε-statistically indistinguishable or ε-close if their statistical distance Dist(D1,D2)
is at most ε.

Furthermore, if (D1,K)
K∈N

and (D2,K)
K∈N

are distribution ensembles (i.e., families of
distributions) over finite sets, we say that they are statistically indistinguishable if their
statistical distance Dist(D1,K,D2,K) is negligible in K.

For simplicity, we often say “distribution” instead of “distribution ensemble” and the
security parameter is often implicit.

Properties. Let us state some useful properties, which we use throughout the thesis some-
times without explicitly citing them, as they are classical.

Proposition 2.1.4. Let X1, X2, and X3 be three random variables with some finite range
S. Then, we have:

Dist(X1, X3) ≤ Dist(X1, X2) + Dist(X2, X3) .

This proposition is essentially what underlies the idea of proofs by games or hybrid
arguments (in the statistical case) sketched later in Section 2.1.4.

Proof. The proof follows directly from the triangular inequality.

Proposition 2.1.5 (data processing inequality). Let X1 and X2 be two random variables
with some finite range S. Let f be any function (not necessarily efficiently computable) from
S to some other finite set S ′. Then we have:

Dist(f(X1), f(X2)) ≤ Dist(X1, X2) .

This proposition essentially says that processing the output of two distributions using any
function f does not increase their statistical distance.

Proof. The proof follows directly from the triangular inequality.

Proposition 2.1.6. Let X1 and X2 be two random variables with some finite range S. Let
Y be a Bernoulli random variable independent from X1 and of parameter ε < 1: Y = 0 with
probability 1− ε and Y = 1 with probability ε. Let X ′

1 be another random variable such that:

Pr
[

X ′
1 = X1 | Y = 0

]

= 1 ,

or in other words, such that when Y = 0, X ′
1 coincides with X1. Then, we have:

Dist(X ′
1, X2) ≤ ε+ Dist(X1, X2) .

This proposition is an extension of Lemma 1 of [Sho01] to statistical distance.

2.1 Notation and Preliminaries 25

Proof. Let us just prove it when X2 = X1, i.e., let us prove that:

Dist(X ′
1, X1) ≤ ε .

The general version follows from Proposition 2.1.4.
We have:

2 · Dist(X ′
1, X1) =

∑

x∈S

∣

∣Pr
[

X ′
1 = x

]

− Pr [X1 = x]
∣

∣

=
∑

x∈S

∣

∣Pr [Y = 0] · Pr
[

X ′
1 = x | Y = 0

]

+ Pr [Y = 1] · Pr
[

X ′
1 = x | Y = 1

]

− Pr [X1 = x]
∣

∣

=
∑

x∈S

∣

∣(1− ε) · Pr
[

X ′
1 = x | Y = 0

]

+ ε · Pr
[

X ′
1 = x | Y = 1

]

− Pr [X1 = x]
∣

∣ .

As X ′
1 and X1 coincides when Y = 0, Pr [X ′

1 = x | Y = 0] = Pr [X1 = x], and:

2 · Dist(X ′
1, X1) =

∑

x∈S

∣

∣−ε · Pr [X1 = x] + ε · Pr
[

X ′
1 = x | Y = 1

]∣

∣

≤ ε ·
∑

x∈S

(

Pr [X1 = x] + Pr
[

X ′
1 = x | Y = 1

])

≤ 2 · ε .

This concludes the proof.

Proposition 2.1.7. Let M and N be two positive integers, such that N ≥M . Let UM and
UN be a uniform random variable over {0, . . . ,M − 1} and {0, . . . , N − 1}. Then the distance
between UM and UN is:

Dist(UN , UM) =
N −M

N
.

Proof. We have:

Dist(UN , UM) =
1
2
·

(

M−1
∑

x=0

∣

∣

∣

∣

1
N
−

1
M

∣

∣

∣

∣

+
N−1
∑

x=M

∣

∣

∣

∣

1
N
− 0

∣

∣

∣

∣

)

=
1
2
·

(

M ·
N −M

MN
+ (N −M) ·

1
N

)

=
N −M

N
.

Corollary 2.1.8. Let M and N be two positive integers, such that N ≥M . Let UM and UN

be a uniform random variable over {0, . . . ,M − 1} and {0, . . . , N − 1}. Then the distance
between UM and UN mod M is:

Dist(UN mod M, UM) ≤
N mod M

N
.

26 Chapter 2 Preliminaries

Proof. Let L := N−(N mod M) and let UL be a uniform random variable over {0, . . . , L−1}.
We remark that the distribution UL mod M is the same as the distribution of UM , as M
divides L. Therefore, we have:

Dist(UN mod M, UM) = Dist(UN mod N, UL mod M)

≤ Dist(UN , UL) =
N − L

N
=
N mod M

N
,

where the inequality comes from Proposition 2.1.5 and the second to last equality comes
from Proposition 2.1.7.

2.1.3.2 Computational Indistinguishability

Let us now recall the definition of computational indistinguishability.

Definition 2.1.9. Let D1 and D2 be two distribution ensembles which can be sampled in
polynomial time in K. Let A be a polynomial-time adversary outputting a bit. For any
security parameter K, the advantage of A in distinguishing D1 and D2 is:

AdvD1,D2(A,K) :=
∣

∣

∣Pr
[

A(x) = 1 | x $← D1

]

− Pr
[

A(x) = 1 | x $← D0

]∣

∣

∣ .

Then, D1 and D2 are said to be computationally indistinguishable if for any polynomial-time
adversary A, AdvD1,D2(A,K) is negligible in K.

If we remove the requirement that the adversary has to run in polynomial time, we get
exactly the notion of statistical indistinguishability, due to Theorem 2.1.2.

2.1.4 Proof by Games or Hybrid Arguments

Most of our security proofs are proofs by games (also called hybrid arguments) as defined
by Shoup in [Sho01; KR01; BR06]: to bound a success probability in some game G0

corresponding to some security notion, we construct of sequence of games. The first game is
G0, while the last game corresponds to some security notion or is such that the adversary
just cannot win. Furthermore, we prove that two consecutive games are indistinguishable
either perfectly, statistically, or computationally. In other words, we bound the difference of
success probabilities by a negligible quantity.

Similarly, to bound an advantage of an adversary in distinguishing two games G0 and G1,
we construct a sequence of indistinguishable games starting with G0 and ending with G1.

2.1.5 Cyclic Groups, Bilinear Groups, and Multilinear Groups

In this thesis, we use a lot cyclic groups and bilinear groups.

Cyclic groups. Cyclic groups are groups generated by a single element (and thus are
commutative or Abelian). A cyclic group of order M is isomorphic to the additive group
ZM . However, a given function or operation on a group of order M may have very different
complexities depending the exact group (representation) we are considering.

In this thesis, we denote a cyclic group of order M generated by g, by a tuple (M,G, g)
or just (M,G). The set of generators of the group G is denoted G∗. The group law is

2.1 Notation and Preliminaries 27

multiplicative and we suppose that it can be efficiently computed. In particular, this means
that given x ∈ ZM , the element gx can be efficiently computed too, which implies that
exponentiations can be efficiently computed.

However, for cyclic groups to be useful in cryptography, we often require that that the
reverse operation of exponentiation, which is called the discrete logarithm operation, is hard:
given two element g, gx ∈ G, it should be hard to compute the scalar x, which is called the
discrete logarithm of gx in basis g. The basis is often implicit. We often consider cyclic groups
of prime order M = p.

There are two main classes of cyclic groups in cryptography: multiplicative subgroups
of finite fields and (subgroups of) elliptic curves [Mil86; Kob87]. The latter is still used
in practice but is significantly less efficient for current security parameters. Current best
practices consist in using elliptic curves, such as Curve25519 [Ber06]. For security parameter
K, we can generally use elliptic curves of prime order of only 2K bits, as it is believed that
only generic attacks (in time square root of the order p, like Shank’s baby-step giant-step
attack [Sha71]) apply to reasonable elliptic curves. Group elements (i.e., points of the curve)
can then also be represented by about 2K + 1 bits, using point compression. For simplicity,
we term “+1” is often omitted.

As usual, when we are referring to one cyclic group (p,G, g), we are actually referring to a
family of cyclic groups indexed by the security parameter K.

Bilinear groups. Some constructions require additional structures such as pairings or bilinear
groups.

When (M,G1, g1), (M,G2, g2), and (M,GT , gT) are three cyclic groups of the same order M ,
(M,G1,G2,GT , e, g1, g2) or (M,G1,G2,GT , e) is called a bilinear group if e is a map (called a
pairing) from G1 ×G2 to GT satisfying the following properties:

• Bilinearity. For all (a, b) ∈ Z2
M , we have e(ga

1 , g
b
2) = e(g1, g2)ab;

• Non-degeneracy. The element e(g1, g2) = gT generates GT ;

• Efficiency. The function e is efficiently computable.

It is called a symmetric (or type 1) bilinear group if G1 = G2 = G. In this case, we denote
it (p,G,GT , e) and we suppose g = g1 = g2. Otherwise, if G1 6= G2, it is called an asymmetric
(or type 3)4 bilinear group.

Bilinear groups can be constructed from elliptic curves. Currently, asymmetric ones are
more efficient (both in term of time to compute the group law or the pairing e and in term
of the size of the representation of group elements).

For K = 128 bits of security, we can use asymmetric bilinear groups with prime order p of
about 256 bits, elements in G1 represented by about 256 bits, elements of G2 represented by
512 bits, and elements of GT represented by 3072 bits [BN06] (for the reader familiar with
elliptic curves, these elliptic curves have embedding degree 12).

Unfortunately, for prime order symmetric bilinear groups, due to recent attacks [Jou14;
GGMZ13; BGJT14; AMOR14], the best choice seem to be supersingular elliptic curves over
a prime order finite field, and therefore of embedding degree 2. These make parameters much
worse. Concretely, for K = 128 bits of security, elements of G are represented by about 1536

4Type 2 bilinear groups correspond to the case where there is an efficiently computable homomorphism from
G1 to G2. We never use this case in this thesis.

28 Chapter 2 Preliminaries

Table 2.1: Relative time of operations on two curves (one with pairing and one without)

Exponentiation

Curve \ Efficiency Pairing in G1 or G in G2

Curve25519 [Ber06] no pairing 1 ✗

[BGM+10] ≈ 8 ≈ 3 ≈ 6

bits, while elements of GT are represented by about 3072 bits, for a prime order p of about
256 bits.

Efficiency of cyclic and bilinear groups. Both cyclic and bilinear groups are considered
practical nowadays, at least for prime orders. For composite-order groups, we usually need
the order to be hard to factor which makes it much larger, as there exist sub-exponential
factorization algorithms [Gui13].

However, we should point out that operations over cyclic groups without efficient pairing
can be much faster, when using specific curves like Curve25519 [Ber06]. In Table 2.1, we show
the efficiency difference between two reasonable choices of curves with and without efficient
pairings respectively. Furthermore, curves without efficient pairings might be less susceptible
to recent breakthroughs in discrete log attacks [Jou14; GGMZ13; BGJT14; AMOR14; GKZ14].
For these reasons, it is usually preferable to construct protocols without pairings.

Additional notation. The element 1 might be either the element 1 ∈ ZM or the element
g0 ∈ G, g0

1 ∈ G1, . . . When this is not clear from context, we explicitly add an index and
write 1ZM

, 1G, . . .

2.2 Cryptographic Primitives

Let us now introduce some of the classical cryptographic primitives used throughout this
thesis.

2.2.1 Collision-Resistant Hash Function Families

Definition 2.2.1. A collision-resistant hash function family is defined by a tuple of two
polynomial-time algorithms HF = (H.Setup,H.Eval):

• H.Setup(1K) outputs a parameter par;

• H.Eval(par,m) deterministically outputs some bit string y ∈ {0, 1}∗, called the hash
value of the input m ∈ {0, 1}∗.

It should satisfy the following property:

• Collision resistance. A polynomial-time adversary cannot find two inputs m0 and m1

with the same hash value, with non-negligible probability. The success probability of an
adversary A against collision resistance is defined by the experiment Expcoll depicted
in Figure 2.1. HF is collision-resistant if this success probability is negligible for any
polynomial-time adversary A.

2.2 Cryptographic Primitives 29

Collision Resistance

Expcoll(A,K)
par

$← H.Setup(1K)
(m0,m1) $← A(par)
if H.Eval(par,m0) = H.Eval(par,m1) then

return 1
else

return 0

Figure 2.1: Experiment for Definition 2.2.1 (collision resistance)

Since the notation used in this definition is cumbersome, we often write: H $← HFK

or even just H $← HF , instead of par
$← H.Setup(1K), where H represents the function

m 7→ H.Eval(par,m). Furthermore, for the sake of simplicity, we suppose that H can take
several parameters and first converts them (efficiently) into a single bit string which is then
hashed. For example, we write H(u, v) (e.g., with u and v being two group elements), to say
that the bit string representation of the tuple (u, v) is hashed.

We use a family of functions depending on some parameter par instead of a single function
for theoretical reasons. Without it, a non-uniform adversary could just have a collision
hard-wired. This would not be such an issue with a uniform adversary, but the notion of
hash function family is easier to handle in theory. However, in practice, we can just use
SHA-256 [NIS12] for K = 128 bits of security, for example.

2.2.2 Encryption

Classical (a.k.a, symmetric or secret-key) encryption is one of the most fundamental primitives
in cryptography. It enables two users sharing a secret key K to communicate confidentially.
Each user encrypts the message he wants to send to the other user, using the key K; and the
other user decrypts the received encrypted message (a.k.a., ciphertext) to get the original
message back, using the same key K. Anybody who intercepts the ciphertext should not be
able to learn anything about the original message, without knowledge of the secret key K.

Public-key encryption schemes are more powerful: they enable to encrypt a message to a
user if we know his public key or encryption key ek. Decryption can only be realized using
the associated private key or decryption key dk which is kept private by the user. In this
thesis, we consider labeled public-key encryption scheme [Sho06], where “labeled” means that
a ciphertext can be associated to a label which can be seen as some public metadata.

2.2.2.1 Definition

Definition 2.2.2. An (labeled) encryption scheme is defined by a tuple of four polynomial-
time algorithms (Setup.gpar,KeyGen,Enc,Dec):

• Setup.gpar(1K) outputs some global parameters gpar;

• KeyGen(gpar) generates a pair (ek, dk), where ek is an encryption key (a.k.a., public
key) and dk is a decryption key (a.k.a., secret key); these two keys are supposed to
implicitly contain the global parameters gpar;

30 Chapter 2 Preliminaries

• Enc(ek, ℓ,m) generates a bit string c, called a ciphertext, encrypting the message (a.k.a.,
plaintext) m with label ℓ under the encryption key ek; the plaintext m is supposed to
be in some set M which might depend in the global parameters but which is efficiently
recognizable (i.e., testing whether m ∈M or not can be done in polynomial time in the
security parameter K); similarly the label ℓ is in some set Labels which is also efficiently
recognizable;

• Dec(dk, ℓ, c) decrypts the ciphertext c with label ℓ and outputs the corresponding plaintext
m or ⊥ if the decryption failed.

It should satisfy the following property:

• Perfect correctness. For any global parameters gpar
$← Setup.gpar(1K), for any key pair

(ek, dk) $← KeyGen(gpar), for any label ℓ, for any message m ∈M , for any ciphertext

c
$← Enc(ℓ, ek,m), we have Dec(dk, ℓ, c) = m (with probability 1, if Dec is probabilistic).

If no label is used, the scheme is called a non-labeled encryption scheme, the set Labels

is {⊥}, and the input ℓ is omitted in Enc and Dec.

The previous definition of encryption scheme does not provide any security guarantee: the
encryption procedure could just return c := m and it would still satisfy the above definition.
There are many possible security notions for encryption schemes. In this thesis, we only
consider two of them: indistinguishability under chosen plaintext attacks (IND-CPA) and
indistinguishability under chosen ciphertext attacks (IND-CCA).5

IND-CPA basically ensures that a ciphertext does not reveal any information about its
plaintext if we only know the encryption key ek but not the decryption key dk. Formally, we
have the following definition.

Definition 2.2.3. Let (Setup.gpar,KeyGen,Enc,Dec) be an encryption scheme. The advan-
tage of an adversary A against IND-CPA is defined by the experiments Expind-cpa-b depicted
in Figure 2.2. The encryption scheme is IND-CPA if this advantage is negligible in K, for
any polynomial-time adversary A.

We recall that the advantage Advind-cpa-b(A,K) of the adversary A against IND-CPA is
defined by

Advind-cpa(A,K) =
∣

∣

∣Pr
[

Expind-cpa-1(A,K) = 1
]

− Pr
[

Expind-cpa-0(A,K) = 1
]∣

∣

∣ ,

as explained in Section 2.1.2.2.
The ciphertext c∗ in Figure 2.2 is called the challenge ciphertext, while m0 and m1 are

called the challenge plaintexts. We notice that labels do not play an important role in an
IND-CPA encryption scheme: a non-labeled IND-CPA encryption scheme is also IND-CPA for
any set of labels Labels (if Enc and Dec simply ignores the label ℓ).

This notion is often too weak, as the adversary may be able to get the decryption of some
ciphertexts, when an encryption scheme is used in a larger protocol. IND-CCA ensures that a
(challenge) ciphertext does not reveal any information about its plaintext, even if one knows
the encryption key ek and even if one has access to an oracle which decrypts ciphertexts of
its choice. Obviously, the adversary is not allowed to ask for the decryption of the challenge
ciphertext itself, as this would yield to a trivial unavoidable attack. Formally, we have the
following definition.

5In this thesis, IND-CCA stands for IND-CCA-2. We never consider IND-CCA-1.

2.2 Cryptographic Primitives 31

IND-CPA IND-CCA

Expind-cpa-b(A,K)

gpar
$← Setup.gpar(1K)

(ek, dk)← KeyGen(gpar)
(st, ℓ∗,m0,m1)← A(ek)
c∗ ← Enc(ek, ℓ∗,mb)
b′ ← A(st, c∗)

return b′

Expind-cca-b(A,K)
L← empty list
gpar

$← Setup.gpar(1K)
(ek, dk)← KeyGen(gpar)
(st, ℓ∗m0,m1)← AODec(ek)
c∗ ← Enc(ek, ℓ∗,mb)
b′ ← AODec(st, c∗)
if (ℓ∗, c∗) ∈ L then return 0
else return b′

ODec(ℓ, c)
add (ℓ, c) to the list L
return Dec(dk, ℓ, c)

Figure 2.2: Experiments for Definition 2.2.3 (IND-CPA) and Definition 2.2.4 (IND-CCA)

Definition 2.2.4 (IND-CCA). Let (Setup.gpar,KeyGen,Enc,Dec) be an encryption scheme.
The advantage of an adversary A against IND-CCA is defined by the experiments Expind-cca-b

depicted in Figure 2.2. The encryption scheme is IND-CCA if this advantage is negligible in
K, for any polynomial-time adversary A.

Contrary to IND-CPA, for IND-CCA, labels play an important role: a non-labeled IND-CCA

encryption scheme is not IND-CCA for any set of labels Labels containing at least two distinct
labels ℓ1, ℓ2: an adversary can just ask for the encryption of two distinct messages m0,m1 ∈M

with label ℓ1, get the challenge ciphertext c∗, and decrypt it by querying ODec on (ℓ2, c∗).

In this thesis, by default, IND-CPA encryption schemes are supposed to be non-labeled,
while IND-CCA encryption schemes are supposed to be labeled.

2.2.2.2 ElGamal and the Decisional Diffie-Hellman Assumption (DDH)

The ElGamal encryption scheme [ElG85] is one of the most famous IND-CPA encryption
scheme. It is defined as follows:

• Setup.gpar(1K) generates a cyclic group (p,G, g) of prime order p and outputs the global
parameters gpar = (p,G, g);6 we suppose that there exists an efficiently computable
and efficiently reversible injective map G from the public set of messages M to the
group G;

• KeyGen(gpar) picks a random scalar z ∈ Zp, computes h := gz ∈ G, and outputs
(ek, dk) := (h, z);

• Enc(ek,m) computes M := G(m), picks a random scalar r $← Zp, and outputs the
ciphertext c := (u, v) := (gr, hr ·M) ∈ G2;

6Formally, gpar only contains a description of the group. But for the sake of simplicity, we write gpar = (p,G, g),
throughout this thesis.

32 Chapter 2 Preliminaries

• Dec(dk, c) computes m← G−1(v/uz) and outputs m.

Sometimes we want to directly encrypt messages m ∈ G, in that case G is just the identity
and m = M.

Correctness is straightforward. Proving the security of the ElGamal encryption scheme
requires to use some computational assumption. Let us therefore first recall the decisional
Diffie-Hellman (DDH) assumption.

Assumption 2.2.5 (DDH). Let (p,G, g) be a cyclic group of prime order p. The advantage
of an adversary A against the decisional Diffie-Hellman (DDH) assumption is defined by:

Advddh(A,K) :=
∣

∣

∣Pr
[

A(g, gz, gr, gzr) = 1 | z, r $← Zp

]

− Pr
[

A(g, gz, gr, gs) = 1 | z, r, s $← Zp

] ∣

∣

∣ .

The DDH assumption holds when the advantage of any polynomial-time adversary against it
is negligible.

Let us immediately introduce a useful definition for later.

Definition 2.2.6. Let (p,G, g) be a cyclic group of prime order p. We say that a tuple
(g, gz, gr, gzs) ∈ G4 (or (gz, gr, gzs) when g is implicit) is a DH tuple, if r = s. We also say
that a tuple (gr, gzs) is a DH tuple in basis (g, gz), if r = s.

We have the following well-known theorem.

Theorem 2.2.7 (IND-CPA security of ElGamal). The ElGamal encryption scheme is IND-

CPA under the DDH assumption. More formally, for any adversary A against IND-CPA for
ElGamal, there exists an adversary B against DDH with similar running time7 such that:

Advind-cpa(A,K) ≤ Advddh(B,K) .

2.2.2.3 Cramer-Shoup IND-CCA Encryption Scheme

Unfortunately, ElGamal is not IND-CCA as soon as the set of messages M contains two
distinct messages. Let us show this on the simpler case where M = G and G is the identity
function: the adversary just outputs the challenge plaintexts m0 = M0 := 1 ∈ G and
m1 = M1 := g2 ∈ G (for example), then it gets the challenge ciphertext c∗ = (u∗, v∗), and
asks to decrypt (u∗, v∗ · g) to ODec. If ODec outputs g, the adversary outputs 0, otherwise,
it outputs 1. This attack works because (u∗, v∗) is a ciphertext of m0 = 1 if and only if
(u∗, v∗ · g) is a ciphertext of g.

In [CS98], Cramer and Shoup proposed the first efficient IND-CCA encryption scheme under
DDH. The scheme is defined as follows:

• Setup.gpar(1K) generates a cyclic group (p,G, g) of prime order p and picks a collision-
resistant hash function H from a hash family HF .8 It then outputs the global parameters
gpar = (p,G, g,H); we suppose that there exists an efficiently computable and efficiently
reversible injective map G from the public set of messages M to the group G;

7This notion is informal and means that the difference of running time between the two adversaries is
reasonable: here it basically consists in a constant number of group operations. We could just have said
that B is polynomial-time if A is, but this is slightly less precise, in particular if we are interested in the
tightness of the security proof.

8A universal one-way hash function is sufficient when there is no label. But we do not try to optimize this.

2.2 Cryptographic Primitives 33

• KeyGen(gpar) picks two generators g1, g2
$← G∗, a tuple of five random scalars dk :=

(x1, x2, y1, y2, z) ∈ Z5
p, computes c ← gx1

1 gx2

2 , d ← gy1

1 g
y2

2 , and h ← gz
1 . It sets the

encryption key to ek := (g1, g2, c, d, h). It finally outputs (ek, dk).

• Enc(ℓ, ek,m) computes M := G(m), picks a random scalar r $← Zp, and outputs the
ciphertext

c := (ℓ, u1 := gr
1, u2 := gr

2, v := hr ·M, w := (cdξ)r) ,

where w is computed after ξ := H(ℓ, u1, u2, v);

• Dec(dk, c) first computes ξ = H(ℓ, u1, u2, v) and checks whether ux1+ξy1

1 · ux2+ξy2

2
?= w.

If the equality holds, it computes m ← G−1(v/uz
1) and outputs m. Otherwise, it

outputs ⊥.

This scheme is IND-CCA secure under DDH [CS98; CS02].

2.2.2.4 ElGamal and Cramer-Shoup Encryption for Vectors

ElGamal and Cramer-Shoup encryption schemes enable to encrypt one group element. In our
constructions, we often need to encrypt several group elements, or in other words, a vector of
group elements.

Vector encryption without randomness reuse. The first naive solution consists in encrypt-
ing each element of the vector independently and to concatenate the ciphertexts. A ciphertext
for a vector of n group elements consists of n ciphertexts. This perfectly works for ElGamal:
the resulting scheme is clearly IND-CPA. More generally, this would work for any IND-CPA

scheme.
Unfortunately, for Cramer-Shoup, the resulting scheme is no more IND-CCA: the adversary

can indeed mix and match the group elements inside the vectors and use the decryption
oracle to break IND-CCA. Fortunately, there is a very efficient way to solve this issue: use
the same value ξ for all the ciphertexts, as a hash over all the parts which do not depend
on ξ. Concretely, to encrypt a vector (M1, . . . ,Mn) ∈ Gn with label ℓ, we pick random scalars
r1, . . . , rn

$← Zp and output the ciphertext:

c := (ℓ, (ui,1 := gri

1 , ui,2 := gri

2 , vi := hri ·Mi, wi := (cdξ)ri)i=1,...,n) ,

where the group elements wi are computed after:

ξ := H(ℓ, (ui,1, ui,2, vi)i=1,...,n) .

This scheme is IND-CCA under DDH. This is a folklore result. A formal proof (of a slightly
stronger result) can be found in [BBC+13a].

Vector encryption with randomness reuse. The previous vector encryption schemes did
not increase the size of the encryption key: only the ciphertext size was increased. If we are
willing to increase the size of the encryption key, we can reduce the size of the ciphertext
using randomness reuse [Kur02; BBS03].

Let us first state the ElGamal encryption scheme with randomness reuse for vectors of n
group elements:

34 Chapter 2 Preliminaries

• Setup.gpar(1K) is the same as for classical ElGamal;

• KeyGen(gpar) picks a tuple of n independent random scalars dk := (z1, . . . , zn) $← Zn
p ,

computes the encryption key ek := (h1 := gz1 , . . . , hn := gzn) ∈ Gn, and outputs
(ek, dk);

• Enc(ek, (M1, . . . ,Mn)) picks a random scalar r $← Zp and outputs the ciphertext:

c := (u = gr, v1 := hr
1 ·M1, . . . , vn := hr

n ·Mn) ∈ Gn+1 ;

• Dec(dk, c) computes Mi = vi/u
zi

1 for i ∈ {1, . . . , n} and outputs (M1, . . . ,Mn).

This scheme is IND-CPA under DDH [Kur02; BBS03].
Let us now show the Cramer-Shoup encryption scheme with randomness reuse for vectors

of n group elements:

• Setup.gpar(1K) is the same as for classical Cramer-Shoup;

• KeyGen(gpar) picks two generators g1, g2
$← G∗, n + 4 random scalars dk := (x1, x2,

y1, y2, z1, . . . , zn) ∈ Z5
p, computes c := gx1

1 gx2

2 , d := gy1

1 g
y2

2 , and h1 := gz1

1 , . . . , hn := gzn

1 .
It sets the encryption key to ek := (g1, g2, c, d, h1, . . . , hn). It finally outputs (ek, dk).

• Enc(ℓ, ek,m) picks a random scalar r $← Zp, and outputs the ciphertext

c := (ℓ, u1 := gr
1, u2 := gr

2, v1 := hr
1 ·M1, . . . , vn := hr

n ·Mn, w := (cdξ)r) ,

where the group element w is computed after ξ := H(ℓ, u1, u2, v1, . . . , vn);

• Dec(dk, c) first computes ξ = H(ℓ, u1, u2, v1, . . . , vn) and checks whether ux1+ξy1

1 ·

ux2+ξy2

2
?= w. If the equality holds, it computes Mi = vi/u

zi

1 for i ∈ {1, . . . , n} and
outputs (M1, . . . ,Mn). Otherwise, it outputs ⊥.

This scheme is IND-CCA under DDH [Kur02; BBS03].

2.2.2.5 Variants of ElGamal and Cramer-Shoup

ElGamal and Cramer-Shoup encryption schemes can be slightly changed to be based on
variants of the DDH assumptions, including the decisional linear (DLin) assumption [BBS04]
or the matrix decisional Diffie-Hellman (MDDH) family of assumptions introduced by Escala
et al. in [EHK+13]. All our constructions can also be easily extended to these cases. We
even have done it explicitly in some of our papers, e.g. [BBC+13a; ABP15c]. However, for
the sake of simplicity, we focus on classical ElGamal and Cramer-Shoup in this thesis.

2.2.3 Randomness Extractors and Min Entropy

A randomness extractor enables to extract from some “sufficiently random” variable, a
uniform (or almost uniform) bit string of some given length. By “sufficiently random”, we
mean that it is hard to guess the value of this random variable. More precisely, let us first
define the notion of min entropy which formally characterizes this notion.

2.3 Languages 35

Definition 2.2.8. Let X be a random variable with some finite range S. The min entropy
of X is defined as:

− log max
x∈S

Pr [X = x] .

Then we can define a randomness extractor.

Definition 2.2.9. A randomness extractor for a distribution ensemble (DK)
K∈N over some

some finite sets (SK)
K∈N is a family of functions (ExtK)

K∈N, where ExtK is a function from

{0, 1}n(K) × SK to {0, 1}m(K), for some integers n(K) and m(K), such that the following two
distributions are statistically indistinguishable:

{

(seed,Ext(seed, x)) | seed
$← {0, 1}n(K);x $← DK

}

{

(seed, u) | seed
$← {0, 1}n(K);u $← {0, 1}m(K)

}

.

We insist on the fact that seed and x are chosen independently of each other, in the first
distribution.

In the sequel, as usual, the security parameter K is often omitted.
The value seed is called a seed. Extractors without seed (i.e., for which n = 0), are called

deterministic extractors. For some distributions, there exist deterministic extractors, for
example for uniform points of some elliptic curves [CFPZ09].

In most cases, we do not know of any deterministic extractor. Fortunately, the leftover
hash lemma enables the construction of an extractor for any distribution with min entropy
about at least 3K. More precisely, we have the following theorem [HILL99]:

Theorem 2.2.10. Let (DK)
K∈N be a family of distributions over some some finite sets

(SK)
K∈N. We suppose that elements of SK can be represented by strings of size at most k(K),

such that k(K) is polynomial in K. We then suppose without loss of generality that SK =
{0, 1}k(K). For any polynomial function m in K, we define a randomness extractor ExtK, by
ExtK(seed, x) = y ∈ {0, 1}m(K) where:

yi =
k(K)
∑

j=1

seed(i−1)·k(K)+j · xi for i ∈ {1, . . . ,m(K)} ,

where seed ∈ {0, 1}n(K), x ∈ {0, 1}k(K), and n(K) = k(K) ·m(K). If the min entropy of DK is
β(K), then the two distributions in Definition 2.2.9 are 2(m(K)−β(K))/2-close. This randomness
extractor is secure as soon as m(K)− β(K) = Ω(K).

Concretely, this means that we get an extractor with output size m(K) = K (and the two
distributions in Definition 2.2.9 are 2−K-close), if DK has min entropy at least 3K + 2.

This theorem works as soon as (ExtK(seed, ·))seed is a universal hash function family. But
we just need the existence of an extractor for this thesis and do not need to formally define
universal hash function families.

2.3 Languages

The notion of language is used throughout this thesis: not only for the central cryptographic
primitive of this thesis projective hash functions (PHFs) and the central notions of diverse

36 Chapter 2 Preliminaries

modules (DMs) and diverse vector spaces (DVSs); but also for many applications to zero-
knowledge arguments.

We start by defining (NP) languages for projective hash functions (PHFs), and some specific
languages for PHF called hard-subset-membership languages. We then show how languages for
zero-knowledge arguments differ from languages for PHF. Differences are purely syntactical.

2.3.1 Languages for Projective Hash Functions

We consider a family of NP languages (Llpar)lpar
, indexed by some parameter lpar, with

witness relation Rlpar, namely

Llpar = {x ∈ Xlpar | ∃w , Rlpar(x ,w) = 1} ,

where (Xlpar)lpar
is a family of sets. The (language) parameters lpar are generated by a

polynomial-time algorithm Setup.lpar which takes as input some global parameters gpar.
These global parameters are themselves generated by a polynomial-time algorithm Setup.gpar

which takes as input a unary representation of the security parameter K. They are always
supposed to be (implicitly) included in lpar. We suppose that membership in Xlpar and
Rlpar can be checked in polynomial-time in K. More precisely, there exist a polynomial-time
algorithm taking as input (lpar, x) and outputting 1 if x ∈ Xlpar, and 0 otherwise; and
another polynomial-time algorithm taking as input (lpar, x ,w) and outputting Rlpar(x ,w).
In particular, words x in Xlpar and witnesses w have polynomial length in K.

Language trapdoor ltrap for lpar. We suppose that Setup.lpar also outputs a (language)
trapdoor ltrap associated to lpar. This trapdoor is empty ⊥ in most cases, but for some
applications in Sections 5.2, 6.2 and 6.3, we require that ltrap contains enough information
to decide whether a word x ∈ X is in L or not (or slightly more information). We notice
that for most languages (we are interested in), it is easy to make Setup.lpar output such a
trapdoor, without changing the distribution of lpar.

When the trapdoor ltrap is used, we write (lpar, ltrap) $← Setup.lpar(gpar). When it is not
used, we just write lpar

$← Setup.lpar(gpar).

Example 2.3.1 (DDH language). The algorithm Setup.gpar(1K) generates global parameters
gpar = (p,G, g) where G is a cyclic group G of prime order p and generated by g. The
algorithm Setup.lpar(gpar) picks a random integer z in Z∗

p and outputs lpar = (gpar, g, h) with
h = gz, and ltrap = z. To simplify notation, we write gpar = (p,G, g) and lpar = (g, h),
where G stands for a description of G and where we do not explicitly write that lpar contains
gpar.

Then the DDH language in basis (g, h) is defined by X = G2 and:

R(x ,w) = 1 ⇐⇒ (u, v) = (gr, hr) with x = (u, v) ∈ X and w = r ∈ Zp .

This implies that:
L = {(u, v) ∈ G2 | ∃r ∈ Zp, (u, v) = (gr, hr)} . (2.1)

We remark that using ltrap, we efficiently check whether a word (u, v) is in the language or
not: for all (u, v) ∈ G2,

(u, v) ∈ L ⇐⇒ v = uz .

If we do not require that check to be possible in polynomial time, we can just set ltrap =⊥.

2.3 Languages 37

Global parameters gpar and language parameters lpar. As shown in the example, global
parameters gpar usually correspond to the description of the groups involved in the con-
struction, while lpar is what actually defines the language. Both are always public. The
reason why we separate gpar and lpar is that in the sequel, we will consider combinations
(conjunctions and disjunctions for example) of languages over the same groups or related
groups, and therefore we need to consider different parameters lpar corresponding to the
same global parameters gpar.

More generally, in this whole thesis, we suppose that global parameters are common to all
the primitives we consider.

Notation simplification. In the sequel, in most cases, the global parameters gpar and the
language parameters lpar are often omitted to simplify notation. Furthermore, when we talk
about a family of languages (Llpar), we implicitly also consider all the algorithms described
above. We even often just call the family of languages (Llpar) or (Llpar ⊆ Xlpar)lpar

, “the
language L ⊂ X ”. The fact that we are dealing with a family of languages instead of a
simple language, and the parameters lpar are implicit.

Finally, we say “for any lpar” to mean: for any security parameter K, any global parameters
gpar

$← Setup.gpar(K), and any parameters lpar
$← Setup.lpar(gpar). In addition, it is often

sufficient that everything holds with overwhelming probability instead of for any lpar. Finally,
in the sequel, we often define a language just by giving an equation like Equation (2.1), from
which the set X and the witness relation R can be easily deduced.

Historical note 2.3.2. There has been a large variety of formalizations of (family of)
languages for hash proof systems. The formalization we adopt in this thesis is inspired
from the one in [BBC+13c; ABP15c]. We tried to make it as expressive and formal as
possible, while keeping it relatively simple. Compared to [BBC+13c], for example, we have
added the notion of global parameters gpar, used to enable combination of languages (we only
enable to combine language with the same global parameters) but we removed the notion of
private parameter aux. We basically only need this private parameter for the constructions
of password authenticated key exchange (PAKE), and in this case, we can just put it in the
word x itself, and add a specific requirement on the PHF. Furthermore, as we do not focus on
PAKE in this thesis, avoiding this extra private parameter improves the readability.

2.3.2 Hard-Subset-Membership Languages

In our applications in Chapter 6, we often need to use specific languages which are called
hard-subset-membership languages. Informally, a hard subset membership language is a
language for which it hard to say whether an element is inside the language or not. We
should point out that, except for hard-subset-membership languages, we do not require that
L and X are efficiently samplable.

Formally, we have the following definition:

Definition 2.3.3. A hard-subset-membership (family of) languages (Llpar ⊆ Xlpar)lpar
is a

family of languages as defined in Section 2.3 with the following additional properties

• R-samplability. There exists a polynomial-time algorithm which takes as input a
parameter lpar and randomly sample words x from Llpar together with a valid witness w ,

according to some distribution (which might not be uniform). We write (x ,w) $← Rlpar

38 Chapter 2 Preliminaries

Hard Subset Membership

Expsub-memb-b(A,K)
gpar

$← Setup.gpar(1K)
(lpar, ltrap) $← Setup.lpar(gpar)
if b = 0 then

(x ,w) $← Rlpar

else
x

$← Xlpar \Llpar

return A(lpar, x)

Figure 2.3: Experiments for Definition 2.3.3 (hard subset membership)

to say that x and w are sampled by this algorithm. We also write x
$← Llpar when we

do not care about w . We suppose that for any lpar and any pair (x ,w) sampled by this
algorithm, we have Rlpar(x ,w) = 1.

• (X \L)-samplability. There exists a polynomial-time algorithm which takes as input
a parameter lpar and randomly sample words x form Xlpar \Llpar, according to some

distribution (which might not be uniform). We write x
$← Xlpar \Llpar to say that x is

sampled via this algorithm. We suppose that for any lpar and any x sampled by this
algorithm, we have x ∈ Xlpar \Llpar.

• hard-subset-membership. Randomly sampled words x from Llpar and from Xlpar \Llpar

(by the two previous algorithms respectively) are computationally indistinguishable,
without knowing ltrap. Formally, the advantage of an adversary A against subset-
membership is defined by the experiments Expsub-memb-b depicted in Figure 2.3. The
language is hard-subset-membership, if this advantage is negligible, for any polynomial-
time adversary A.

Remark 2.3.4. There are many ways to define hard-subset-membership languages. Here,
as we do not enforce samplability of general languages, we need to incorporate it in the
definition of hard-subset-membership languages. Furthermore, there are two ways to define the
hard-subset-membership property itself: distinguishing random words from L from random
words from X or from X \L . In the first case, we often require that the probability for a
random word from X to be in L is negligible. In all our applications, it is simpler to use
the second definition. If we want tighter reductions however, we might want to prefer the
first definition, for which a lot of languages (such as DDH, defined below) yield a random
self-reducible hard-subset-membership property.

Example 2.3.5 (DDH assumption). The hard-subset-membership property of the DDH

language as defined in Example 2.3.1 almost corresponds to the DDH assumption in Assump-
tion 2.2.5, when:

• (x ,w) $← Rlpar is sampled as follows: w := r $← Zp and x := (u, v) := (gr, hr);

• x
$← Xlpar \Llpar is sampled as follows: r $← Zp, s $← Zp \ {r}, and (u, v) := (gr, hs).

2.4 Zero-Knowledge Arguments 39

The only difference is that, in the DDH assumption, in the second case, s is completely
independent of r instead of being forced to be distinct from r. This does not matter as when
r, s $← Zp, the probability that r = s is only 1/p which is negligible.

2.3.3 Language for Zero-Knowledge Arguments

Languages for zero-knowledge arguments are defined similarly to languages for PHF. To easily
distinguish them in applications from languages for PHF, we add two dots: ẍ , ẅ , ¨lpar, L̈ , R̈,
Ẍ , ¨Setup.lpar instead of x , w , lpar, L , R, X , Setup.lpar. This notation is also used for the
language of other primitives such as implicit zero-knowledge argument (iZK) in Section 6.3.
Global parameters gpar are the same in all our applications.

In zero-knowledge arguments, we sometimes want to be able to extract part of the witness.
For that purpose, we often (but not always) split the witness for language for zero-knowledge
arguments in two parts: a part ẅ

K
which we want to prove knowledge of and so which

can be extracted, and a part ẅ
∃

for which we only want to prove existence: ẅ = (ẅ
K
, ẅ

∃
).

Concretely, languages are often written as follows:

L̈ = {̈x | K̈w
K
, ∃ẅ

∃
, R̈ (̈x , (ẅ

K
, ẅ

∃
)) = 1} ⊆ Ẍ ,

where the symbol Kis used instead of ∃ to indicate the extractable part of the witness. When
there is no extractable part, we either write ẅ

K
=⊥ or simply use w = ẅ

∃
.

2.4 Zero-Knowledge Arguments

Let us now introduce zero-knowledge arguments. We start by an informal overview of them,
before giving more formal definitions.

For the reader familiar with zero-knowledge arguments, we only consider non-rewinding
simulators and extractors in the common reference string (CRS) model. This is useful when
such proofs are used in concurrent settings or as building blocks for protocols in the universal
composability (UC) framework [Can01]. Furthermore, our arguments are in the quasi-adaptive
setting [JR13], in which the CRS depends on the language.

The same CRS can still be used a polynomial number of times to run the same protocols
between the same parties or different parties. In other words, the CRS is supposed to be
re-usable.

Reading note 2.4.1. Formal definitions of zero-knowledge arguments are quite complex
due to interactivity. Most of the paper should be understandable without a careful reading of
Section 2.4. Section 2.4.3 is much easier to follow, as it focuses on the non-interactive case.

2.4.1 Overview

2.4.1.1 Zero-Knowledge Arguments and Proofs

A zero-knowledge argument or zero-knowledge proof is a protocol enabling some prover to
prove that a word or statement ẍ is in a language L̈ . Informally, such a protocol has to
satisfy three properties:

• Completeness. An honest verifier always accepts a proof made by an honest prover for
a valid word and using a valid witness.

40 Chapter 2 Preliminaries

• Soundness. No adversary can make an honest verifier accept a proof of a word ẍ /∈ L̈ ,
either statistically (for zero-knowledge proofs) or computationally (for zero-knowledge
arguments).

• Zero-knowledge. It is possible to simulate (in polynomial-time) the interaction between
a (potentially malicious) verifier and an honest prover for any word ẍ ∈ L̈ without
knowing a witness ẅ .

Common reference string and rewinding. In this thesis, we are always in the common
reference string (CRS) model, where a trusted setup ZK.Setup generates some CRS crs. For
the simulation in the zero-knowledge property, the simulator generates himself the CRS crs

and can therefore add a trapdoor trap to it which enables him the simulation.
The implicit global parameters gpar (which often contain a description of the group used,

in case of use of cyclic groups of bilinear groups) are common to the argument and the
language.

Quasi-adaptivity. We are in the quasi-adaptive model introduced by Jutla and Roy [JR13],
which allows the CRS crs to depend on the parameters ¨lpar of the language. We suppose that
crs always implicitly contains ¨lpar and gpar. The soundness property still holds adaptively.

This quasi-adaptive model is sufficient for many applications as explained in [JR13].

Witness samplability. Our most efficient constructions assume that the setup ¨Setup.lpar

outputs a trapdoor ¨ltrap which satisfies some additional properties detailed when needed.
This slightly restricts the languages which can be considered.

We note however that ¨ltrap is never used in the protocols, but only in the proof of the
soundness and zero-knowledge property.

Argument versus proof. The only difference between argument and proof is the fact the
latter requires statistical soundness.

Tag. We consider arguments with tags, which are similar to labels from encryption scheme.
As labels are not useful for an IND-CPA encryption scheme, tags are not useful for a classical
zero-knowledge argument. However, they can be quite handy, for stronger variants such as
simulation-sound zero-knowledge arguments (described below). Later, in Remark 2.4.2, we
explain why we use the term “tag” instead of “label” for zero-knowledge arguments.

2.4.1.2 Variants

(Partial) extractability. As already mentioned in Section 2.3.3, we sometimes consider
another property: (partial) extractability which states that there exists an extractor able to
simulate a verifier and output a valid partial witness ẅ

K
from any successful interaction with

a polynomial-time adversary playing the role of a prover, on some word ẍ . By valid partial
witness, we mean that there exists ẅ

∃
such that R (̈x , (ẅ

K
, ẅ

∃
)) = 1.

We consider non-rewinding extractors that use a trapdoor in the CRS crs similarly to the
zero-knowledge simulators we consider.

In case ẅ
K
is not used (ẅ

K
=⊥), partial extractability is equivalent to soundness.

2.4 Zero-Knowledge Arguments 41

Honest-verifier zero-knowledge. For some applications, it suffices to consider a weaker
version of the zero-knowledge property, called honest-verifier zero-knowledge, which only
needs to hold with respect to honest verifiers.

Simulation-extractability/soundness. Simulation-extractibility is a stronger property than
extractibility. It states that extractability has to hold even if the adversary can ask for
simulated proofs of words of his choice (not necessarily in L̈). When ẅ

K
is not used, this

property is also called simulation-soundness.
Obviously, we have to add some restrictions on the proofs made by the adversary (from

which the extractor finds a partial witness). In this thesis, we use a tag-based approached:
proofs made by the adversary have to be done with a tag different from all the simulated
proofs. Except for this restriction, the adversary can adaptively choose the tags of the
simulated proofs. This is similar to the definition used by Kiltz and Wee in [KW15] for
simulation-sound non-interactive zero-knowledge arguments.

If the set of tags is exponential in the security parameter, we can transform this notion of
simulation-extractability into a more classical (stronger) one where the only restriction is
that the transcripts of the proofs made by the adversary is different (or do not match with)
any transcript of a simulated proof, using a one-time signature: the tag is a fresh public
key for the one-time signature scheme and the prover signs the whole transcript at the end
and sends the signature to the verifier. If we only want the pair tag-word of the proof made
by the adversary to be different from the pairs tag-word (tag, x) of the simulated proofs,
we just need to replace the tag by a hash value of the original tag and the word x , using a
collision-resistant hash function.

Remark 2.4.2. We use the term “tag” and not “label” as for IND-CCA labeled encryption
schemes, because the proof made by the adversary has to be for a different tag than the
simulated proofs, even if the transcripts are different. Instead, for IND-CCA, only queries with
the same label-ciphertext pair (ℓ, c) as the challenge label-ciphertext pair (ℓ∗, c∗) are forbideen.

Witness indistinguishability. Witness indistinguishability states that an adversary cannot
distinguish a proof made using one witness w1 or another witness w2 for the same word ẍ

(and the same tag tag). It is clearly weaker than zero-knowledge. We do not define this
property formally, as we just use it to show that some schemes are not zero-knowledge by
showing that they are not witness indistinguishable.

2.4.1.3 Non-Interactive Zero-Knowledge Arguments (NIZK)

An important particular case of zero-knowledge arguments are non-interactive zero-knowledge
arguments (NIZK). In a NIZK, the prover just sends one flow to the verifier, called the proof
and denoted π. The verifier can then directly check it.

Contrary to zero-knowledge arguments, which can be constructed without using a CRS,
NIZK (for non-trivial languages) cannot. NIZK can be used in many more applications than
interactive zero-knowledge arguments, but are usually more complex to construct and less
efficient.

42 Chapter 2 Preliminaries

2.4.2 Formal Definitions of Zero-Knowledge Arguments

In this section, we give formal definitions for partially-extractable zero-knowledge arguments,
using the formalism of Garay-MacKenzie-Yang (GMY) in [GMY06]. We use uniform ad-
versaries and non-rewinding extractors and simulators, without auxiliary information. This
not only simplifies definitions but also make them more useful when such proofs are used in
concurrent settings or as building blocks in protocols in the UC framework [Can01].

2.4.2.1 GMY Formalism

For two ITMs A and B, 〈A(privA), B(privB)〉crs(in) is the local output of B after an interactive
execution with A using CRS crs, common input in, private inputs privA and privB for A and
B respectively.9 The transcript tr of a machine is a tuple composed of its common input in,
the messages received on its communication input tape and the messages sent through its
communication output tape.

For any ITM A, we also denote by A its multi-session extension or protocol wrapper. A
works as follows:

• on input message (START, sid, in, priv), A starts a new interactive machine A with
session id sid (distinct from all the other session ids), common input in, private input
priv and a fresh random tape;

• on input message (MSG, sid,m), A sends the message m to the interactive machine
with session id sid (if it exists), and returns the output message of this machine.

All machines A started by A use the same CRS crs.
Let A 1 be the single-session extension of A, which works as A , except it only accepts

one START query. The output of A 1 is the tuple (in, tr, v) where in is the common input, tr

is the transcript of the machine A started by A 1 and v is the output of A. The output of
A is a tuple (in, tr,v) of three vectors, such that (ini, tri, vi) is the tuple that A 1 would

have output for the i-th machine started by A .
Two ITMs B and C are said to be coordinated if they have a single control (and, in

particular, a common state), but two distinct sets of input/output communication tapes. For
four interactive Turing machinesA, B, C andD, withB and C coordinated, (〈A,B〉, 〈C,D〉)crs

is the local output of D after an interactive execution with C and an interactive execution
between A and B, all using the CRS crs.

2.4.2.2 (Partially) Extractable Zero-Knowledge Arguments

Definition 2.4.3. A (labeled) (partially) extractable zero-knowledge argument for a lan-
guage L ⊆ X is a tuple ZK = (ZK.Setup,ZK.Prove,ZK.Ver,ZK.Sim = (ZK.Sim1,ZK.Sim2),
ZK.Ext = (ZK.Ext1,ZK.Ext2)), where:

• ZK.Setup is a polynomial-time algorithm which takes the global parameters gpar and
the language parameters ¨lpar as input and outputs a CRS crs which is implicitly given
as common input of all the other algorithms (except for ZK.Sim1); crs is supposed to
implicitly contain gpar and ¨lpar;

9The input tape is therefore separated in three parts: CRS, common input, and private input. This separation
is convenient to simplify notation.

2.4 Zero-Knowledge Arguments 43

• ZK.Prove is a polynomial-time ITM which takes a tag tag (in some set Tags) and a
word ẍ ∈ L̈ as common input and a valid witness (ẅ

K
, ẅ

∃
) as private input (i.e.,

R (̈x , (ẅ
K
, ẅ

∃
)) = 1) and is able to run a protocol (with a verifier ZK.Ver) to prove that

ẍ ∈ L̈ ;

• ZK.Ver is a polynomial-time ITM which takes a tag tag and a word ẍ as common input,
is able to run a protocol (with a prover ZK.Prove) and outputs 1 if it accepts the proof
of the prover and 0 otherwise;

• ZK.Sim1 is a polynomial-time algorithm which takes the global parameters gpar and
the language parameters ¨lpar as input and outputs a simulated (a.k.a., fake) CRS crs

together with a trapdoor trap;

• ZK.Sim2 is a polynomial-time ITM which takes the trapdoor trap as private input and
a tag tag with a word ẍ as common input, and is able to simulate a run of ZK.Prove

(without knowing ẅ
K
nor ẅ

∃
);

• ZK.Ext1 is a polynomial-time algorithm which takes the global parameters gpar and
the language parameters ¨lpar as input and outputs an extraction (a.k.a., fake) CRS crs

together with a trapdoor trap;

• ZK.Ext2 is a polynomial-time ITM which takes as private input the trapdoor trap and
as common input a tag tag and a word ẍ , and is able to simulate a run of ZK.Ver in
such a way that, if ZK.Ver accepts, it is able to extract a valid partial witness ẅ

K
for ẍ .

ZK.Ext outputs a pair (b, ẅ
K
) where b indicates if ZK.Ver accepts and ẅ

K
is a partial

witness;

such that the following properties are verified:

• Completeness. ZK is ε-complete, if for all global parameters gpar
$← Setup.gpar(1K),

for all language parameters lpar
$← Setup.lpar(1K), for all tags tag, for all ẍ ∈ L̈ , and

for all valid witnesses (ẅ
K
, ẅ

∃
) of ẍ :

Pr
[

crs
$← ZK.Setup(gpar, lpar); 〈ZK.Prove((ẅ

K
, ẅ

∃
)),ZK.Ver〉crs(tag, ẍ) = 1

]

≥ 1− ε;

• Soundness. A polynomial-time adversary cannot make a verifier accept a proof for a
word ẍ /∈ L̈ . Formally, the success probability of an ITM adversary A against soundness
is defined by the experiment Expsound depicted in Figure 2.4. ZK is sound if this success
probability is negligible for any polynomial-time ITM adversary A;

• (Unbounded) zero-knowledge. A polynomial-time adversary cannot distinguish nor-
mal proofs made by ZK.Prove from simulated proofs made by ZK.Sim. Formally, the
advantage of an ITM adversary A against zero-knowledge is defined by the experiment
Expzk-b depicted in Figure 2.4, where ZK.Sim′(trap) takes as common input a tag tag

and a word ẍ and as private input a witness (ẅ
K
, ẅ

∃
), runs ZK.Sim2(trap) with common

input tag and ẍ if R (̈x , (ẅ
K
, ẅ

∃
)) = 1 and aborts otherwise. ZK is zero-knowledge if

this advantage is negligible for any polynomial-time ITM adversary A;

• Extraction reference string indistinguishability. A polynomial-time adversary cannot
distinguish a normal CRS crs generated by ZK.Setup from one generated by ZK.Ext1.

44 Chapter 2 Preliminaries

Formally, the advantage of an adversary A against reference string indistinguishability
is defined by the experiment Expext-crs-ind-b depicted in Figure 2.4. ZK is extraction-
reference-string-indistinguishable if this advantage is negligible for any polynomial-time
adversary A.

• (Perfect) extractor indistinguishability. The extractor ZK.Ext behaves exactly the same
way as an honest verifier ZK.Ver, when the CRS is generated by ZK.Ext1. Formally, ZK is
extractor-indistinguishable if, for any word ẍ ∈ X , for any (crs, trap) $← ZK.Sim1(gpar),
for any (unbounded) adversary A, the distribution of 〈A, ZK.Ver 1〉 is identical to the

distribution of 〈A, ZK.Ext1(trap)
1
〉 when we restrict the output of ZK.Ext1 to the first

element b of the ordered pair (b, ẅ
K
);

• (Partial) extractability. When playing against the extractor ZK.Ext, a polynomial-time
adversary cannot make the extractor accept, while making it unable to extract a valid
partial witness ẅ

K
. Formally, the success probability of an ITM adversary A against

partial extractability is defined by the experiment Expext depicted in Figure 2.4. ZK is
(partially)-extractable if this success probability is negligible for any polynomial-time
ITM adversary A.

We remark that soundness is implied by the extraction reference string indistinguishability,
extractor indistinguishability, and partial extractability properties. Conversely, these three
properties are implied by soundness, when ẅ

K
is not used, and in that case, we get the

classical notion of zero-knowledge arguments (by using ZK.Setup and ZK.Ver as ZK.Ext1 and
ZK.Ext2, respectively, and setting trap =⊥ and ẅ

K
=⊥ in their respective outputs). However,

we keep soundness as a security requirement for simplicity.
When we talk about partial extractability, we sometimes mean partial extractability together

with extractor indistinguishability and extraction reference string indistinguishability. For
example, when we say that some property is implied by partial extractability, it means
it is implied by partial extractability, extractor indistinguishability, and reference string
indistinguishability.

When soundness holds statistically, ZK is also called a (partially extractable) zero-knowledge
proof. When it does not hold statistically, we remark that we need to be very careful as the
condition ẍ ∈ Ẍ \ L̈ in the experiment Expsound might not be testable in polynomial time.
The same issue arises with partial extractability.

As labels for IND-CPA encryption schemes, tags tag are not really useful and are omitted
if they are not used.

2.4.2.3 Extractable Honest-Verifier Zero-Knowledge Arguments

Definition 2.4.4. An extractable honest-verifier zero-knowledge argument for a language
L ⊆ X is a tuple ZK = (ZK.Setup,ZK.Prove,ZK.Ver,ZK.Sim=(ZK.Sim1,ZK.Sim2),ZK.Ext=
(ZK.Ext1,ZK.Ext2)), which satisfies the same properties as a zero-knowledge extractable
argument, except that ZK.Sim2 is now just a polynomial-time algorithm and not an ITM, and
the zero-knowledge property is replaced by the following weaker property:

• Honest-verifier zero-knowledge. A polynomial-time adversary cannot distinguish normal
proofs made by ZK.Prove from simulated proofs made by ZK.Sim, with regards to an
honest verifier. Formally, the advantage of an adversary A against honest-verifier

2.4 Zero-Knowledge Arguments 45

Soundness

Expsound(A,K)
gpar

$← Setup.gpar(1K)
(¨lpar, ¨ltrap) $← ¨Setup.lpar(gpar)
crs

$← ZK.Setup(gpar, ¨lpar)
((tag, ẍ), tr, b) $← 〈A(¨ltrap), ZK.Ver 1〉crs

if b = 1 and ẍ ∈ Ẍ ¨lpar \ L̈ ¨lpar then
return 1

else
return 0

Extraction Reference String Indistinguishability

Expext-crs-ind-0(A,K)
gpar

$← Setup.gpar(1K)
(¨lpar, ¨ltrap) $← ¨Setup.lpar(gpar)
crs

$← ZK.Setup(gpar, ¨lpar)
return A(crs, ¨ltrap)

Expext-crs-ind-1(A,K)
gpar

$← Setup.gpar(1K)
(¨lpar, ¨ltrap) $← ¨Setup.lpar(gpar)
(crs, trap) $← ZK.Ext1(gpar, ¨lpar)
return A(crs, ¨ltrap)

Zero-Knowledge

Expzk−0(A,K)
gpar

$← Setup.gpar(1K)
(¨lpar, ¨ltrap) $← ¨Setup.lpar(gpar)
crs

$← ZK.Setup(gpar, ¨lpar)
return 〈 ZK.Prove ,A(¨ltrap)〉crs

Expzk−1(A,K)
gpar

$← Setup.gpar(1K)
(¨lpar, ¨ltrap) $← ¨Setup.lpar(gpar)
(crs, trap) $← ZK.Sim1(gpar, ¨lpar)

return 〈 ZK.Sim′(trap) ,A(¨ltrap)〉crs

Partial Extractability

Expext(A,K)
gpar

$← Setup.gpar(1K)
(¨lpar, ¨ltrap) $← ¨Setup.lpar(gpar)
crs

$← ZK.Setup(gpar, ¨lpar)
((tag, ẍ), tr, (b, ẅ

K
)) $← 〈A(¨ltrap), ZK.Ext(trap)

1
〉crs

if b = 1 and ∀ẅ
∃
, R̈ (̈x , (ẅ

K
, ẅ

∃
)) = 0 then

return 1
else

return 0

Figure 2.4: Experiments for Definition 2.4.3 (zero-knowledge argument)

46 Chapter 2 Preliminaries

Honest-Verifier Zero-Knowledge

Exphvzk-0(A,K)
gpar

$← Setup.gpar(1K)
(¨lpar, ¨ltrap) $← ¨Setup.lpar(gpar)
crs

$← ZK.Setup(gpar, ¨lpar)
(st, (tag, ẍ), (ẅ

K
, ẅ

∃
)) $← A(crs, ¨ltrap)

if R (̈x , (ẅ
K
, ẅ

∃
)) = 1 then

b $← 〈ZK.Prove((ẅ
K
, ẅ

∃
)),ZK.Ver〉crs(tag, ẍ)

tr← the previous transcript
r ← the random tape of ZK.Ver

return A(st, tr, r)
else

return 0

Exphvzk-1(A,K)
gpar

$← Setup.gpar(1K)
(¨lpar, ¨ltrap) $← ¨Setup.lpar(gpar)
crs

$← ZK.Setup(gpar, ¨lpar)
(st, (tag, ẍ), (ẅ

K
, ẅ

∃
)) $← A(crs, ¨ltrap)

if R (̈x , (ẅ
K
, ẅ

∃
)) = 1 then

(tr, r) $← ZK.Sim2(crs, trap, (tag, ẍ))
return A(st, tr, r)

else
return 0

Figure 2.5: Experiments for Definition 2.4.4 (honest-verifier zero-knowledge)

zero-knowledge is defined by the experiments Exphvzk-b depicted in Figure 2.5. ZK is
honest-verifier zero-knowledge if this advantage is negligible for any polynomial-time
adversary A.

2.4.2.4 Simulation-(Partially)-Extractable Zero-Knowledge Arguments

Definition 2.4.5. A simulation-(partially)-extractable zero-knowledge argument for a lan-
guage L ⊆ X is a tuple ZK = (ZK.Setup,ZK.Prove,ZK.Ver,ZK.Sim = (ZK.Sim1,ZK.Sim2),
ZK.Ext = (ZK.Ext1,ZK.Ext2)), which verifies the same properties as a zero-knowledge ex-
tractable argument with ZK.Sim1 = ZK.Ext1 and an additional property:

• Simulation partial extractability. When playing against the extractor ZK.Ext, a poly-
nomial-time adversary cannot make the extractor accept, while making it unable to
extract a valid partial witness ẅ

K
, even if it has access to simulated proofs for any words

ẍ of its choice. Formally, the success probability of two coordinated ITM adversaries A1

and A2 against simulation partial extractability is defined by the experiment Expsim-ext

depicted in Figure 2.6. ZK is simulation-(partially)-extractable if this success probability
is negligible for any coordinated polynomial-time ITM adversaries A1 and A2.

2.4 Zero-Knowledge Arguments 47

Simulation-Extractability

Expsim-ext(A1,A2,K)
gpar

$← Setup.gpar(1K)
(¨lpar, ¨ltrap) $← ¨Setup.lpar(gpar)
(crs, trap) $← ZK.Sim1(gpar, ¨lpar)
(st, (tag, ẍ), (ẅ

K
, ẅ

∃
)) $← A(crs)

(̈x , tr, (b, ẅ
K
)) $← (〈 ZK.Sim2(trap) ,A1(¨ltrap)〉, 〈A2(¨ltrap), ZK.Ext 1〉)crs

let T be the set of tags used by ZK.Sim2

if b = 1 and ∀ẅ
∃
, R (̈x , (ẅ

K
, ẅ

∃
)) = 0 and tag /∈ T then

return 1
else

return 0

Figure 2.6: Experiment for Definition 2.4.5 (simulation-extractability)

Simulation partial extractability implies extractability. Furthermore, when ẅ
K
is not used,

simulation partial extractability (together with extraction reference string indistinguishability
and extractor indistinguishability) corresponds to simulation-soundness.

We also consider t-time simulation-extractability and t-time simulation-soundness that are
similar except that the simulator can only be called at most t times.

2.4.3 Non-Interactive Zero-Knowledge Arguments

Non-interactive zero-knowledge arguments are particular cases of zero-knowledge arguments,
except that ZK.Prove and ZK.Sim2 just output the proof π for the word ẍ on their commu-
nication output tape and do not use their communication input tapes, while ZK.Ver and
ZK.Ext2 just read this proof π from their communication input tapes and do not use their
communication output tapes. Security properties are defined exactly the same way.

As dealing with ITM is more cumbersome than with classical algorithms, we re-define NIZK

as a tuple of probabilistic polynomial-time algorithms NIZK = (NIZK.Setup,NIZK.Prove,
NIZK.Ver,NIZK.Sim = (NIZK.Sim1,NIZK.Sim2),NIZK.Ext = (NIZK.Ext1,NIZK.Ext2)), where:

• NIZK.Setup(gpar, ¨lpar) outputs a CRS crs;

• NIZK.Prove(crs, tag, ẍ , (ẅ
K
, ẅ

∃
)) outputs a proof π with tag tag for the word ẍ using

the witness (ẅ
K
, ẅ

∃
);

• NIZK.Ver(crs, tag, ẍ , π) outputs 1 if π is a valid proof with tag tag for ẍ , and outputs 0
otherwise;

• NIZK.Sim1(gpar, ¨lpar) outputs a CRS crs and a trapdoor trap;

• NIZK.Sim2(crs, trap, tag, ẍ) outputs a simulated proof π with tag tag for the word ẍ ;

• NIZK.Ext1(gpar, ¨lpar) outputs a CRS crs and a trapdoor trap;

• NIZK.Ext2(crs, trap, tag, ẍ , π) outputs a pair (b, ẅ
K
) where b = 1 if the proof is valid

and 0 otherwise, and ẅ
K
is a partial witness (if b = 1);

48 Chapter 2 Preliminaries

2.5 Projective Hash Functions

In this section, we define the central cryptographic primitive of this thesis: projective hash
functions (PHFs). As already explained in the introduction, a PHF is defined over an NP
language. We therefore first define the kind of languages we are considering before defining
PHF and some of its associated security notions: smoothness and universality.

PHFs have been introduced by Cramer and Shoup in their seminal paper [CS02]. We
follow Abdalla, Chevalier, and Pointcheval in [ACP09] for the formalization of PHFs and
their associated languages. In particular, we use long algorithm names for each function or
algorithm in a PHF, instead of short one letter names as in [CS02]. We also consider two
variants of smoothness which slightly differ from the original smoothness definition. These
differences are explained in more details in this section.

2.5.1 Projective Hash Functions (PHFs)

Definition 2.5.1. A projective hash function (PHF) for a language (Llpar) is defined by a
tuple of four polynomial-time algorithms (HashKG,ProjKG,Hash,ProjHash), where:

• HashKG(lpar) generates a hashing key hk for the language parameters lpar;

• ProjKG(hk, lpar, x) deterministically derives a projection key hp from the hashing key hk,
the language parameters lpar, and possibly the word x ∈ Xlpar;

• Hash(hk, lpar, x) deterministically outputs a hash value H from the hashing key hk, for
the word x ∈ Xlpar and the language parameters lpar;

• ProjHash(hp, lpar, x ,w) deterministically outputs a projected hash value pH from the
projection key hp, and the witness w , for the word x ∈ Llpar (i.e., Rlpar(x ,w) = 1) and
the language parameters lpar;

The set of hash values is called the range and is denoted by Π. It is often a cyclic group. We
suppose that it is possible to pick a uniform element of Π in polynomial time. We always
suppose that its size is exponential in the security parameter K so that the probability to
guess correctly a uniform hash value is negligible.

A PHF has to satisfy the following property:

• Perfect correctness. For any lpar and any word x ∈ Llpar with witness w (i.e., such

that Rlpar(x ,w) = 1), for any hk
$← HashKG(lpar) and for hp← ProjKG(hk, lpar),

Hash(hk, lpar, x) = ProjHash(hp, lpar, x ,w) .

Dependence of hp on x . Originally, in [CS02], the projection key hp was supposed to
be computed independently of x . That is, ProjKG did not take x as an input. In some
applications, the independence of hp and x is required. But, in other applications, such as
PAKE, as remarked by Gennaro and Lindell [KOY09; GL06], this is not required and allowing
hp to depend on x enables to get more efficient PHF for more languages. In this manuscript,
we consider both cases, and indicate in which case we are, whenever necessary.

Figure summary. Figure 2.7 summarizes the definition of PHF. The parameter lpar is implicit
and the dash arrow from x to ProjKG indicates that hp may or may not depend on x .

2.5 Projective Hash Functions 49

HashKG hk Hash

x

H

ProjKG

hp ProjHash

w

pH

H = pH if R(x ,w) = 1

hk
$← HashKG(lpar)

H ← Hash(hk, lpar, x)

hp ← ProjKG(hp, lpar)

pH ← ProjHash(hp, lpar, x ,w)

Figure 2.7: Summary of the definition of PHF

2.5.2 Smooth Projective Hash Functions (SPHFs)

To satisfy the correctness property of a PHF, we could just set hk = hp and not use any
witness at all. In addition to correctness, many security notions exist for PHFs. We start by
introducing one of the simplest ones: smoothness. Later in this manuscript, we will introduce
other security notions for PHF, both stronger (to construct more complex applications) and
weaker (to handle more languages). A smooth PHF is called a smooth projective hash function
(SPHF).

We consider two variants of smoothness. Both these variants are different from the original
smoothness definition of Cramer and Shoup, which supposed that words were randomly
chosen and so which cannot easily handle words generated by malicious adversaries. It should
however be remarked that all the constructions of SPHF in [CS02] satisfy both our smoothness
definitions.

Essentially, smoothness says that knowing only hp (but not hk), the hash value H of a
word x /∈ Llpar looks uniformly random in the set of possible hash values Π.

2.5.2.1 Smoothness for GL-SPHF and CS-SPHF

Definition 2.5.2. A PHF (HashKG,ProjKG,Hash,ProjHash) for a language L ⊆ X is ε-
GL/CS-smooth if for any lpar and any word x ∈ Xlpar \Llpar, the following distributions are
ε-close:

{

(hp,H) | hk
$← HashKG(lpar); hp← ProjKG(hk, lpar, x); H← Hash(hk, lpar, x)

}

{

(hp,H) | hk
$← HashKG(lpar); hp← ProjKG(hk, lpar, x); H

$← Π
}

.

A PHF is GL/CS-smooth if it is ε-GL/CS-smooth with ε negligible in K.

An SPHF satisfying this smoothness definition is called

• a CS-smooth projective hash function (CS-SPHF) if hp does not depend on x (i.e.,
ProjKG does not use its input x); the name CS-SPHF comes from the fact this kind of

50 Chapter 2 Preliminaries

SPHF is the closest one to the original notion of strong smoothness10 of Cramer and
Shoup, the only difference being that our smoothness holds for any word x ∈ Xlpar\Llpar,
while the original definition only holds on average on such words;

• a GL-smooth projective hash function (GL-SPHF) if hp may depend on x ; the name
GL-SPHF comes from the fact that this variant has been introduced by Gennaro and
Lindell in [GL06].

2.5.2.2 Smoothness for KV-SPHF

In [KV11], Katz and Vaikuntanathan remarked that in their one-round PAKE protocol, x

can be maliciously generated by the adversary after seeing hp. So the classical smoothness
notion is not sufficient here, since it only ensures that H looks uniformly random when hk and
hp are chosen independently of x . We therefore consider a stronger smoothness definition.
SPHFs satisfying this stronger security notion are called KV-smooth projective hash function
(KV-SPHF). Obviously the projection key hp of a KV-SPHF cannot depend on the word x .

Definition 2.5.3. A PHF (HashKG,ProjKG,Hash,ProjHash) for a language L ⊆ X is ε-KV-
smooth if for any lpar and any function11 f from the set of possible projection keys hp to
Xlpar \Llpar, the following distributions are ε-close:

{

(hp,H) | hk
$← HashKG(lpar); hp← ProjKG(hk, lpar); H← Hash(hk, lpar, f(hp))

}

{

(hp,H) | hk
$← HashKG(lpar); hp← ProjKG(hk, lpar); H

$← Π
}

.

A PHF is KV-smooth if it is ε-KV-smooth with ε negligible in K.

Remark 2.5.4. In general, an ε-smooth CS-SPHF is not necessarily an ε-smooth KV-SPHF.
For example, the projection key hp of a CS-SPHF might contain a random word in X \L

and its corresponding hash value, while the projection key of a KV-SPHF cannot. However, a
0-smooth (or perfectly smooth) CS-SPHF is also a 0-smooth (or perfectly smooth) KV-SPHF,
as in that case both distributions in the CS smoothness definition are actually equal and so
stay equal when conditioned on the value of hp.

2.5.3 Simple Applications of SPHFs

We now show some simple applications of SPHFs, with a dual goal: to help to better
understand what SPHFs and in the same time, and to give some intuition of their restrictions
(in particular regarding zero-knowledge) and how these restrictions have been lifted in our
works. More precisely, the main message we want to convey is the following:

An SPHF does not provide any security when the projection key is maliciously
generated. That often means that naive use of SPHF does not provide any kind
of zero-knowledge property but generally only an honest-verifier zero-knowledge
property.

We keep the description of the applications in this section slightly informal for readability.
Formal applications of the tools introduced in this thesis are later provided in particular in
Chapter 6.
10In [CS02], smoothness does not require ε to be negligible in K, but only strong smoothness requires that.
11Not necessarily computable in polynomial time: everything we do here is statistical.

2.5 Projective Hash Functions 51

Prover Verifier
Input: (x ,w) CRS: lpar Input: x

hp
←−−−−−−−−−

hk
$← HashKG(lpar)

hp← ProjKG(hk, lpar, x)
pH← ProjHash(hp, lpar, x ,w) pH

−−−−−−−−−→
H← Hash(hk, lpar, x)
if pH = H then accept
else reject

Figure 2.8: Honest-verifier zero-knowledge proof from an SPHF

2.5.3.1 Honest-Verifier Zero-Knowledge Proofs

The simplest application of SPHF for a language L ⊆ X is certainly the construction of
an honest-verifier zero-knowledge proof for the same language L̈ := L ⊆ X =: Ẍ . The
construction is depicted in Figure 2.8: the verifier generates a hashing key hk and an associated
projection key hp, sends the latter, and asks the prover to give him the hash value of the
word x the prover wants to prove to be in L . The verifier accepts if and only if the received
hash value is equal to the one he can compute using the hashing key hk.

On the one hand, if the prover knows a witness w for x , he can just compute this hash
value using the projection key hp and this witness w , and the verifier will accept the proof.
Thus, we get correctness.

On the other hand, if the word x is not in the language, the smoothness property ensures
that the hash value expected by the adversary is statistically indistinguishable from a random
value. As the size of the set Π is exponential in the security parameter K, the probability
that the prover can guess the hash value is negligible in K. Thus we get statistical soundness.

It remains to prove perfectly honest-verifier zero-knowledge. This is straightforward, as
when the verifier is honest, he already knows what the prover will send to him! So he definitely
can learn nothing and simulation is straightforward

We remark that the construction works for any variant of SPHF: GL-SPHF, CS-SPHF, and
KV-SPHF. When a KV-SPHF is used, the first flow can be sent before the word x is known,
and the protocol remains secure. This would not necessarily be the case with a GL-SPHF

(actually, the modified protocol cannot even be constructed if hp needs to depend on the
word x) or a CS-SPHF.

We might wonder if this construction is zero-knowledge and not only honest-verifier zero-
knowledge. Unfortunately, this is not the case. We can see two intuitive reasons for that. First,
given a projection key hp, an SPHF does not provide anyway to compute a corresponding
hash value H for a word x ∈ L if we do not know the witness. Actually, this is even worse
than that: if the language is hard-subset-membership, then it is computationally hard to tell
if x ∈ L or not, and if it is not, there is statistically no way to compute H. Second, even if
we manage to solve this issue, it is still possible that the verifier can construct the projection
key hp in some way it reveals information about the witness w used by the prover.

An important question in this thesis is to find ways to add zero-knowledge to SPHFs. The
main tool for that is the classical “or” trick.

52 Chapter 2 Preliminaries

2.5.3.2 Witness Encryption and Limitations of SPHF

In [GGSW13], Garg et al. introduced a new primitive called witness encryption, which can be
seen as a computational version of GL-SPHF. Intuitively, a witness encryption scheme enables
a user to encrypt a message m to any user who knows a witness for some word x . It can be
seen as a generalization of a classical encryption scheme which enables a user to encrypt a
message m to any user knowing the decryption key dk associated to some encryption key
x = ek.

Concretely, it is possible to construct witness encryption for any language handled by a
GL-SPHF. To encrypt some message m to some word x , we just pick a random hashing key hk,
derive a projection key hp from hk (and possibly x), and output the ciphertext c = (hp, c′)
with c′ := H xor m and H is the hash value of the word x .12 Anyone knowing a witness w for
the word x , can compute H as pH using the projection key hp and this witness w , and then
recover the message m by computing c′ xor pH.

In [GGSW13], Garg et al. showed that statistical witness encryption (and therefore SPHF)
cannot exist for any NP language13 unless the polynomial hierarchy collapses. This comes
from the fact that, as shown in Section 2.5.3.1, an SPHF for some language L directly yields a
statistical honest-verifier zero-knowledge proof for the same language, which implies that L is
in the complexity class SZK [GSV98]. But we know that SZK ⊆ AM∩ co-AM [For87; AH91],
and therefore the existence of an SPHF for any NP language implies that NP ⊆ AM∩ co-AM,
which in turn implies that the polynomial hierarchy collapses [BHZ87].

2.5.3.3 Sending a Message to a Secret Agent

A nice application of SPHF (and actually just of witness encryption too) is the following.
Let us suppose that Alice is a secret agent and she wants to receive some information (a
message m) from some informer, Bob. Alice has a certificate signed by the CIA that she is
a secret agent but does not want to reveal it to any informer, for obvious reasons. On the
other hand, the informer does not want to give m to a bad guy and really wants to be sure
that only an official secret agent will be able to read the message.

This seems completely infeasible, but SPHF enables to do it. Actually, it is not just
theoretical but efficient and practical, at least for the purely cryptographic part.

Suppose that there is some CRS containing an encryption key lpar = ek for an IND-CPA

encryption scheme. Also suppose that the secret agent has some certificate σ (under some
public key pk)14 and that the language L of valid encryption of valid certificates has an
associated SPHF:

L := {x | ∃r, ∃σ, x = Enc(ek, σ; r) and σ is a valid certificate for pk}

If the certificate is a Waters signature15 [Wat05] and the encryption scheme is ElGamal over
the same cyclic group, this is efficiently implementable, as checking a Waters signature can

12We assume that Π is just the set {0, 1}k for some large enough k and that the message m is in the same set.
We can use a randomness extractor to make Π of this form. Furthermore, if Π is a group, we can also
encode the message in Π and use the group operation on Π instead of xor.

13In our formalization of languages, we can see an NP language as a family of languages, with gpar = lpar = K,
and XK = {0, 1}K.

14A certificate needs to be associated to some public key.
15of some fixed message or even of some message satisfying some simple properties.

2.5 Projective Hash Functions 53

Informer Secret agent
Input: message m CRS: lpar = (ek, pk) Input: certificate σ

c
←−−−−−−−−−

c
$← Enc(ek, σ; r)
with fresh random coins r

hk
$← HashKG(lpar)

hp← ProjKG(hk, lpar)
H← Hash(hk, lpar, c)
c′ ← H xor m

hp, c′
−−−−−−−−−→

pH← ProjHash(hp, lpar, c, (r, σ))
m← c′ xor pH

Output the message m

Figure 2.9: Protocol enabling an informer to send a message m to a secret agent

be done using a simple pairing equation and SPHF can handle verification of pairing equation
of encrypted group elements (see Section 3.4.3).

The protocol is described in Figure 2.9. The secret agent encrypts its certificate under
the encryption key ek in the CRS and sents the resulting ciphertext c to the informer. The
informer generates a hashing key hk, derives a projection key hp, and uses the hash value H

of c under hk as a one-time pad (or mask) for the message m: c′ := H xor m.16 He then sends
the projection key hp together with c′. If the secret agent encrypted a valid certificate σ,
using the random coins r used by the encryption, the certificate, and hp, he can compute the
projected hash value pH (which is equal to H by correctness of the SPHF) and recover the
message from c′, as m = c′ xor pH.

If the secret agent is not a real secret agent, he does not know any certificate σ and
therefore has no way to produce a ciphertext c of a valid certificate. In other words, the
ciphertext c sent by a fake secret agent will not be in L . Thus, the smoothness of the SPHF

ensures that from the secret agent point of view (who only sees hp and c′ but not hk), H is
uniformly random and completely masks the message m.

We remark that this protocol actually ensures a very strong property of forward secrecy: if
the fake secret agent later becomes a real secret agent, it is already too late. As c /∈ Llpar,
there is no way for him to recover the message m sent to him while he was not a secret agent
yet. Furthermore this property holds statistically. Concretely, this means that the message
m remains completely hidden, even if later the encryption scheme used is broken, e.g., by
quantum computers.

When the informer is honest, he clearly learns nothing, as he knows exactly what a real
secret agent will get at the end. However, similarly to the honest-verifier zero-knowledge
protocol in Section 2.5.3.1, this protocol might not be secure in case of a malicious informer
(which corresponds to the verifier in Section 2.5.3.1): the informer might generate an invalid
projection key hp such that depending on the certificate of the secret agent, the secret agent
will read two different messages and later act differently. If everything ends when the secret
agent receives the message and nothing happens later, this does not matter; but this is a
rather restrictive model. In general, a stronger notion is required.

16See Footnote 12 on page 52 for the use of xor.

54 Chapter 2 Preliminaries

2.5.3.4 IND-CPA Encryption Scheme

A CS-SPHF for any hard-subset-membership language L can be used to construct an IND-CPA

encryption scheme in a straightforward manner. The construction is as follows:

• Setup.gpar(1K) generates the global parameters gpar
$← Setup.gpar(1K) and the language

parameters lpar
$← Setup.lpar(gpar′) for the language L and outputs the (encryption)

global parameters gpar′ := lpar;

• KeyGen(gpar′) generates a random hashing key hk
$← HashKG(lpar), derives the projec-

tion key hp← ProjKG(hk, lpar), and outputs (ek, dk) := (hp, hk);

• Enc(ek,m) generates a random pair (x ,w) $← Rlpar and outputs the ciphertext c := (x , c′)
with c′ := pH xor m where pH← ProjHash(hp, lpar, x ,w);17

• Dec(dk, c) outputs c′ xor H, where H← Hash(hk, lpar, x).

Correctness follows from the correctness of the SPHF.
To prove the IND-CPA security, note that the simulator can also generate the part c′ of

the ciphertext as c′ := H xor m where H← Hash(hk, lpar, x). Since, in that case it does not
need to use w , this is indistinguishable to the case where it generates x as x

$← Xlpar \Llpar,
thanks to hard subset membership. Finally, smoothness ensures that in this setting, H is
uniformly random in Π and therefore completely masks the message c′.

17See Footnote 12 on page 52 for the use of xor.

Chapter 3
Diverse Vector Spaces

As a warm-up for diverse modules (DMs) which constitute the core of this thesis and as an
important particular case, we introduce diverse vector spaces (DVSs). Intuitively, a DVS is a
way to describe languages which can be seen as subspaces of some vector space over some finite
field. Cramer and Shoup already showed in their seminal paper [CS02] that such languages
automatically admit SPHFs. This class of languages might seem very restrictive, but actually
encompasses many languages from Diffie-Hellman-like languages to tuples of ElGamal-like
ciphertexts satisfying a system of multi-exponentiation equations or even quadratic bilinear
pairing equations (when over a bilinear group). Furthermore, as far as we know, all the
existing constructions of SPHFs over cyclic groups follow from this construction (or are minor
variants thereof).

In this chapter, we first define DVSs and give an overview of the expressive power of DVSs

on some examples. We then show that DVSs can be combined together: given two DVSs, we
design a new DVS corresponding to their conjunction and disjunction (under some simple
conditions in some cases). Next, we show how to use disjunctions of DVSs to construct
constant-size non-interactive zero-knowledge proofs. We conclude with some more advanced
examples of DVSs.

Contents

3.1 First Examples, Definition, and Link with SPHFs 56

3.1.1 Step-by-Step Overview . 56

3.1.2 Definition . 62

3.2 Conjunctions and Disjunctions . 68

3.2.1 Conjunctions . 68

3.2.2 Disjunctions . 69

3.3 Application to Non-Interactive Zero-Knowledge Arguments 76

3.3.1 Overview . 76

3.3.2 Construction . 78

3.3.3 Completeness and Security . 79

3.4 More Examples . 80

3.4.1 Matrix Decisional Diffie-Hellman Assumptions (MDDH) 80

3.4.2 Cramer-Shoup Encryption . 82

3.4.3 Encryption of Plaintexts Satisfying a System of Quadratic Equations . 83

— 55 —

56 Chapter 3 Diverse Vector Spaces

3.1 First Examples, Definition, and Link with SPHFs

3.1.1 Step-by-Step Overview

In this overview, we introduce the various properties and elements of DVSs step by step.
We start with a very simple DVS for a very simple language: the DDH language, which
can directly be seen as a subspace of some vector space. We then extend DVS to more
complex languages which are not directly subspaces of some vector space, but which can be
transformed into; or languages for which the subspace might depend on the word x of the
language or even on some random coins to allow efficient batching.

3.1.1.1 The DDH Language as a Subspace of a Vector Space

Let (p,G, g) be a cyclic group and let us look back at the DDH language L defined in
Example 2.3.1:

L = {(u, v) ∈ G2 | ∃r ∈ Zp, (u, v) = (gr, hr)} (G2 = X .

If the group law of G is denoted additively, (G,), instead of multiplicatively, (G, ·), and if we
use the symbol • to denote exponentiation by a scalar, we could have written this language
as:

L = {(u, v) ∈ G2 | ∃r ∈ Zp, (u, v) = (r • g, r • h) .

This notation makes us think about matrix multiplication, and we would like to write:

L = {(u, v) ∈ G2 | ∃r ∈ Zp, (u, v) = r • (g, h)} .

Looking at (G, ·) or (G,) as (Zp,+), we could see L as the subspace of the vector space
X = G2 generated by the row vector (g, h). If we transpose everything to use more classical
notation, we get:

L =

{(

u
v

)

∈ G2

∣

∣

∣

∣

∣

∃r ∈ Zp,

(

u
v

)

= r •

(

g
h

)}

,

which can also be rewritten as:

L = Span

((

g
h

))

.

3.1.1.2 Constructing an SPHF for the DDH Language

Looking back at the definition of an SPHF, from a high level point of view, we can see a
(perfectly smooth) SPHF as a random function α : X → Π defined by some random hashing
key hk, for which it is possible to derive a projection key hp which only defines this function
α on L . In our case, as the language is a subspace, a (uniformly) random linear function
works, since the values of such a function on a subspace only defines this function on the
subspace and not outside the subspace.

Concretely, this function α can just be a random function from X ∗, the dual of X , i.e.,
the set of linear functions from X to G. Such a function α can be defined by row vector
α⊺ ∈ Z1×2

p , as follows: α(θ) = α⊺ • θ, for any vector θ ∈ G2. The hash value of a word x is
then

H := α(x) := α⊺ • x = uα1 · vα2 ,

3.1 First Examples, Definition, and Link with SPHFs 57

when x =

(

u
v

)

is seen as a column vector in G2. Then, the projection key hp and the

projected hash value pH for c with witness r = w are:

hp := γ := α(

(

g
h

)

) = α⊺ •

(

g
h

)

= gα1 · hα2 ∈ G pH := γ • r = γr ∈ G .

Correctness follows from the fact that if (u, v) = (gr, hr):

H = α⊺ • x = α⊺ •

(

g
h

)

• r = γ⊺ • r = pH .

Smoothness directly comes from the previous discussion: even knowing the function α on
every word in L does not give any information about its value outside L , as L is a vector
space. A formal proof is provided later in Section 3.1.2.3.

Historical note 3.1.1. This SPHF for the DDH language was explicitly proposed by Cramer
and Shoup in [CS02], but the ideas were already implicit in [CS98].

3.1.1.3 ElGamal: Introducing θ

Now that we have an SPHF for the DDH language, we can design an SPHF for the language
of pairs x = (m, c), where c is an ElGamal ciphertext of a message m in some message set M ,
under the public key lpar = ek = (g, h) ∈ G2 (see Section 2.2.2.2 for the definition of the
ElGamal encryption scheme):

L = {(m, c = (u, v)) ∈M ×G2 | ∃r ∈ Zp, (u, v) = (gr, hr · G(m))} ,

with G a reversible map from the message set M to G. We write M = G(m). We just need
to use the SPHF for the DDH language on the word (u, v/M):

hk := α⊺ $← Z1×2
p hp := γ⊺ := α⊺ ·

(

g
h

)

∈ G

H := α⊺ •

(

u
v/M

)

= uα1 · (v/M)α2 ∈ G pH := γ⊺ • r ∈ G .

We remark that, when the map G is not linear, the language L cannot be seen directly as
a subspace of some vector space over Zp or G. But still, we can construct an SPHF, because
we can map words x = (m, c = (u, v)) ∈ X to vectors (u, v/M)⊺ ∈ G2, which live in the
subspace of G2 generated by (g, h)⊺ if and only if c is an ElGamal ciphertext of m.

That is why, in the definition of a DVS, we do not require that the language is really a
subspace, but only that there exists an (efficiently computable) function θ from X to some
vector space X̂ such that: θ(x) is in some subspace L̂ of X̂ if and only if x ∈ L . In the
previous example:

θ(x) := (u, v/M)⊺ ∈ G2 =: X̂ with x = (m, c = (u, v)) ∈ X ,

and

L̂ := Span

((

g
h

))

(G2 =: X̂ .

58 Chapter 3 Diverse Vector Spaces

We should point out that there is no restriction at all on θ, except that it should be computable
in polynomial time.

The DDH language can also be represented this way by setting X̂ := X , L̂ := L , and θ
the identity function.

3.1.1.4 Introducing more Dimensions

In the previous examples, the subspace L̂ is of dimension 1 in a vector space X of dimension 2.
But there are no reasons to restrict ourselves to such small dimensions. Let us now show an
example of a language of higher dimension.

Example 3.1.2 (encryption of a DH tuple). The global parameters are gpar := (p,G, g), with
G being a cyclic group of prime order p generated by g, while the language parameters are
lpar := (g, h, g′, h′) ∈ G4 where ek := (g, h) is a random ElGamal encryption key, and where
g′ and h′ are two random generators of G. We consider the language of ElGamal encryption
of DH tuples as follows:

L = {(u1, v1, u2, v2)⊺ ∈ G4 | ∃r1, r2, r
′ ∈ Zp,

(u1, v1, u2, v2) = (gr1 , hr1 · g′r′

, gr2 , hr2 · h′r′

)} .

In other words, a word (u1, v1, u2, v2) is in the language if and only if the ciphertexts (u1, v1)
and (u2, v2) encrypt two elements u′ ∈ G and v′ ∈ G under ek, such that (g′, h′, u′, v′) is a
DH tuple.

This language can directly be seen as a DVS with θ the identity function:

L̂ := L = Span

g
h
1G
1G

,

1G
1G
g
h

,

1G
g′

1G
h′

= ColSpan (Γ) (G4 = X =: X̂ ,

where Γ is the matrix:

Γ :=

g 1G 1G
h 1G g′

1G g 1G
1G h h′

∈ G4×3 .

We can now define an SPHF as follows:

hk := α⊺ $← Z1×4
p

hp := γ⊺ :=

α

g
h
1G
1G

, α

1G
1G
g
h

, α

1G
g′

1G
h′

= α⊺ · Γ ∈ G1×3

H := α⊺ • x = uα1

1 · v
α2

1 · u
α3

2 · v
α4

2 ∈ G

pH := γ⊺ •

r1

r2

r′

∈ G .

The projection key hp is now a row vector of 3 elements, as it has to define the linear map α
over a subspace of dimension 3, namely L̂ .

3.1 First Examples, Definition, and Link with SPHFs 59

3.1.1.5 Introducing Dependence on Word (GL-SPHF)

In all the previous examples, the subspace L̂ of X̂ is independent of the word x . We can
also consider languages where L̂ depends on x , which we sometimes write L̂x instead of L̂ .
In this case however, we only get a GL-SPHF (compared to KV-SPHF in all the previous
examples), as the projection key hp depends on L̂ , or more precisely on the chosen basis
of L̂ .

Example 3.1.3 (encryption of a bit). The global parameters are gpar := (p,G, g), with G

being a cyclic group of prime order p generated by g, while the language parameters are
lpar := (g, h) ∈ G2 where ek := (g, h) is a random ElGamal encryption key. We consider the
language of ElGamal encryption of a bit:

L = {(u, v)⊺ ∈ G2 | ∃r ∈ Zp, ∃b ∈ {0, 1}, (u, v) = (gr, hr · gb)} .

This language cannot be directly be seen as a DVS, as b is a bit and not a scalar in Zp.
However, we can transform L into a subspace of the vector space X̂ := G4 using the following
function θ and the following space X̂ and subspace L̂x :

θ(x) := (u, v, 1G, 1G)⊺ ∈ G4 =: X̂ with x = (u, v)⊺ ∈ G2

L̂x := ColSpan (Γ(x)) (G4 =: X̂ with Γ(x) :=

g 1G 1G
h g 1G
1G u g
1G v/g h

.

Indeed, if x = (u, v)⊺ is a word in L with witness w = (r, b), then

θ(x) = Γ(x) • λ(x ,w) with λ(x ,w) =

r
b
−rb

. (3.1)

Conversely, if θ(x) ∈ L̂ , then there exists λ = (λ1, λ2, λ3)⊺ ∈ Z3
p such that θ(x) = Γ •λ, i.e.:

u = gλ1

v = hλ1 · gλ2

1G = uλ2 · gλ3

1G = (v/g)λ2 · hλ3 .

If we write (u, v) = (gr, hr · gb) (with r, b ∈ Zp, which is always possible), then the first
three equations ensure that λ1 = r, λ2 = b and λ3 = −rb, while the last equation ensures
that b(b − 1) = 0, i.e., b ∈ {0, 1}, as it holds that (hrgb/g)bh−rb = gb(b−1) = 1. Therefore,
θ(x) ∈ L̂ if and only if x ∈ L , which is exactly what we want.

We can now define an SPHF as follows:

hk := α⊺ $← G1×4 hp := γ⊺ := α⊺ · Γ(x) ∈ G1×3

H := α⊺ • θ(x) = uα1 · vα2 ∈ G pH := γ⊺ • λ(x ,w) ∈ G ,

with λ being defined as in Equation (3.1). Contrary to all the previous examples, hp depend
on x . Therefore, the above SPHF is only a GL-SPHF.

60 Chapter 3 Diverse Vector Spaces

3.1.1.6 Introducing Pairings and Quadratic Equations

All the previous examples were just over cyclic groups. We can actually handle more complex
languages over bilinear groups, or even ideal multilinear groups.

Let us consider an asymmetric bilinear group (p,G1,G2,GT , e). We naturally extend our
operations and • as follows, for any x, y ∈ Zp, u1, v1 ∈ G1, u2, v2 ∈ G2 and uT , vT ∈ GT :

x y = x+ y x • y = x · y

u1 v1 = u1 · v1 x • u1 = ux
1

u2 v2 = u2 · v2 x • u2 = ux
2

uT vT = uT · vT u1 • u2 = e(u1, u2) x • uT = ux
T
.

Here is now a simple example.

Example 3.1.4 (encryption of two elements (M1,M2) satisfying e(M1,M2) = E). The global
parameters are gpar := (p,G1,G2,GT , g1, g2), an asymmetric bilinear group of order p. The
language parameters are lpar := (g1, h1, g2, h2, E) ∈ G2

1 ×G2
2 ×GT where ek1 := (g1, h1) and

ek2 := (g2, h2) are two random ElGamal encryption keys in G1 and G2 respectively, while E
is a group element in GT . We consider the language of ElGamal encryptions of two elements
M1 ∈ G1 and M2 ∈ G2 such that e(M1,M2) = E:

L = {(u1, v1, u2, v2)⊺ ∈ G2 | ∃r1, r2 ∈ Zp, M1 ∈ G1, M2 ∈ G2,

(u1, v1, u2, v2) = (gr1 , hr1 ·M1, g
r2 , hr2 ·M2) and e(M1,M2) = E} .

This language cannot be directly be seen as a DVS, as it is quadratic. However, we can
transform L into a subspace of the vector space X̂ := G4

T
using the following function θ and

the following subspace L̂x :

θ(x) :=

−u1 • u2

u1 • v2

v1 • u2

v1 • v2 E

=

e(u1, u2)−1

e(u1, v2)
e(v1, u2)
e(v1, v2)/E

with x = (u1, v1, u2, v2)⊺

L̂x := ColSpan (Γ(x)) (G4
T

=: X̂ with Γ(x) :=

g1 • g2 1G1
1G2

1GT
g1 1G2

1GT
1G1

g2

h1 • h2 h1 h2

.

Indeed, if x = {(u1, v1, u2, v2)}⊺ is a word in L with witness w = (r1, r2,M1,M2), then

θ(x) = Γ(x) • λ(x ,w) with λ(x ,w) =

−r1r2

r1 • v2

r2 • v1

=

−r1r2

vr1

2
vr2

1

, (3.2)

as:

u1 • u2 = (r1 • g1) • (r2 • g2) = (r1r2) • (g1 • g2) ,

u1 • v2 = (r1 • g1) • v2 = (r1 • v2) • g1 ,

v1 • u2 = v1 • (r2 • g2) = (r2 • v1) • g2 ,

v1 • v2 E = v1 • v2 (v1 r1 • h1) • (v2 r2 • h2)

= r1 • h1 • r2 • h2 r1 • h1 • v2 v1 • r2 • h2

= (−r1r2) • (h1 • h2) (r1 • h1) • v2 (r2 • v1) • v2 .

3.1 First Examples, Definition, and Link with SPHFs 61

Conversely, if θ(x) ∈ L̂ , then there exists λ = (λ1, λ2, λ3)⊺ ∈ Zp × G1 × G2 such that
θ(x) = Γ • λ, which gives four equations (one per row of Γ). If we write (u1, v1, u2, v2) =
(gr1 , hr1 · M1, g

r2 , hr2

2 · M2) (with r1, r2 ∈ Zp, M1 ∈ G1, and M2 ∈ G2, which is always
possible), then the first three equations ensure that λ1 = −r1r2, λ2 = r1 • v2 and λ3 = r2 • v1,
while the last equation ensures that e(M1,M2) = M1 •M2 = E. Therefore, θ(x) ∈ L̂ if and
only if x ∈ L , which is exactly what we want.

We can now define an SPHF as follows:

hk := α⊺ $← Z1×4
p hp := γ⊺ := α⊺ · Γ(x) ∈ GT ×G1 ×G2

H := α⊺ • θ(x) ∈ GT pH := γ⊺ • λ(x ,w) ∈ GT ,

with λ being defined as in Equation (3.2).

3.1.1.7 Introducing Randomness and Batching

In some cases, we might want to slightly randomize everything to do some batching. Concretely,
let us suppose we want to construct an SPHF for the language of tuples of 42 DH pairs.
We could construct 42 SPHFs, one for each tuple, and then somehow do their conjunction,
e.g., just by multiplying the (projected) hash values of the 42 SPHFs to obtain the resulting
(projected) hash values. This was already proposed in [ACP09] and we actually show how to
do this algebraically in Section 3.2. However, in both cases, the projection key contains 42
group elements.

Let us show how to get a projection key containing only one group element (and one scalar,
which can be generated from the group element, as seen later). We remark that if (u1, v1),
. . . , (u42, v42) are 42 DH tuples in basis (g, h) ∈ G2, then for any ρ ∈ Zp:

(

u
v

)

:=

(

u1 ρ • u2 · · · ρ41 • u42

v1 ρ • v2 · · · ρ41 • v42

)

=

(

u1 · u
ρ
2 · · ·u

ρ41

42

v1 · v
ρ
2 · · · v

ρ41

42

)

is also a DH tuple. Conversely, let us suppose that (u, v) is a DH tuple, and let us prove that
(u1, v1), . . . , (u42, v42) are also DH tuples, except with probability 41/p. Let us write h = gz,
ui = gri , and vi = gsi , where z, ri, si ∈ Zp, for i ∈ {1, . . . , 42}. Let P (X) be the polynomial
in Zp[X] defined by:

P (X) =
42
∑

i=1

(si − zri) ·Xi−1 .

We remark that (u, v) is a DH tuple if and only if P (ρ) = 0. As P is a polynomial of degree 41,
it has at most 41 roots if it is non-zero. Furthermore, if P = 0, then (u1, v1), . . . , (u42, v42)
are all DH tuples. Therefore, except with probability 41/p, if (u, v) is a DH tuple, so are
(u1, v1), . . . , (u42, v42).

To construct an SPHF for the language of 42 DH tuples, we thus just need to construct an
SPHF for DDH language on (u, v). The hashing and projection keys for the new language are
the original hashing and projection key concatenated with ρ. The new (projected) hash value
for ((u1, v1), . . . , (u42, v42)) is the (projected) hash value for (u, v). The full construction is
detailed below.

The resulting SPHF is no more a KV-SPHF, as given ρ (part of the projection key), the
adversary can generate an invalid ((u1, v1), . . . , (u42, v42)) for which it can compute the
corresponding hash value: it just generates r1, . . . , r42, s1, . . . , s42 such P (ρ) = 0, and sets

62 Chapter 3 Diverse Vector Spaces

ui = gri , and vi = gsi , where z, ri, si ∈ Zp, for i ∈ {1, . . . , 42}. This strategy requires to
compute the discrete logarithm z of h, but we recall that we consider unbounded adversary
for smoothness. Nevertheless, the previous analysis still shows that the resulting SPHF is a
(41/p)-smooth CS-SPHF, using Proposition 2.1.6.

We could have chosen ρ in a subset of Zp of size 41 · 2K. In this case, we would have got
(1/2K)-smoothness instead of (41/p)-smoothness, with a similar analysis. Furthermore, we just
need ρ to be uniform and γ⊺ is already a uniform group element. So ρ can just be extracted
from the original projection key γ⊺ for the DDH language, using a deterministic randomness
extractor (see Section 2.2.3). Such an extractor exists for some elliptic curves [CFPZ09].
With this last optimization, the size of the projection key and the hashing key is the same for
the DDH language, i.e., the language of one DH tuple, than for the language of an arbitrary
number of DH tuples.

Example 3.1.5 (ℓ DH tuples). The global parameters are gpar := (p,G, g), with G being
a cyclic group of prime order p generated by g, while the language parameters are lpar :=
(g, h) ∈ G2. We consider the language of ℓ DH tuples (for ℓ ≥ 1):

L := {(u1, v1, . . . , uℓ, vℓ) ∈ G2ℓ | ∀i ∈ {1, . . . , ℓ}, ∃ri ∈ Zp, (ui, vi) = (gri , hri)} .

To get an efficient SPHF, we first pick a random scalar ρ $← {1, . . . , (ℓ−1)·2K} ⊆ Zp.1 Then,

we define the following function θ and the following space X̂ and subspace L̂ (corresponding
to the DDH language in basis (g, h)):

θ(x , ρ) :=

(

u1 ρ • u2 · · · ρℓ−1 • uℓ

v1 ρ • v2 · · · ρℓ−1 • vℓ

)

with x = (u1, v1, . . . , uℓ, vℓ) ∈ G2ℓ

L̂x := ColSpan (Γ(x)) (G2 =: X̂ with Γ(x) :=

(

g
h

)

.

We can now define a CS-SPHF as follows:

ρ $← {1, . . . , 2 · (ℓ− 1) · 2K} ⊆ Zp

hk := (α⊺, ρ) with α⊺ $← G1×4

hp := (γ⊺, ρ) with γ⊺ := α · Γ ∈ G1×2

H := α⊺ • θ(x) =
ℓ
∏

i=1

uρi−1α1

i ·
ℓ
∏

i=1

vρi−1α2

i

pH := γ⊺ • λ(w) with λ(x ,w) :=
ℓ
∑

i=1

riρ
i−1 .

As shown previously, this CS-SPHF is (1/2K)-smooth.
Furthermore, as Γ is independent of ρ and due to the way smoothness is proven, ρ

can instead be defined as Ext(γ⊺), where Ext is a deterministic randomness extractor (see
Section 2.2.3). Such an extractor exists for some elliptic curves [CFPZ09].

3.1.2 Definition

Let us now introduce more formally what a DVS is.
1We assume that (ℓ − 1) · 2K ≤ p.

3.1 First Examples, Definition, and Link with SPHFs 63

3.1.2.1 Graded Rings

As seen in the previous section, it is practical to see cyclic groups, bilinear groups, and even
multilinear groups as similar to the field Zp, with some restrictions on the multiplication.
Addition in Zp corresponds to the group operation, while multiplication in Zp corresponds to
the exponentiation of a group element by a scalar or to the pairing of two group elements, or
are impossible (e.g., for two group elements of a cyclic group without bilinear map) depending
on the case. This enables us to construct vector spaces over cyclic groups, bilinear groups,
and multilinear groups.

To make this more formal, in Section 4.2.1, we define a new notion called graded ring,2

which can be seen as a generalization of cyclic groups, bilinear groups, and multilinear groups.
In this chapter, however, we do not formally define graded rings and to avoid technical-

ities, the group of each element is implicit, and we suppose that above constraints on the
multiplications are satisfied. Furthermore, we only consider what will be called graded rings
over the finite field Zp of prime order p. This basically encompasses cyclic groups G, bilinear
groups (p,G1,G2,GT , e), and ideal (graded) multilinear groups [GGH13], of prime order p.
We use the term discrete logarithm of an element similarly to how this term is used with
elements of these various groups. The discrete logarithm of a scalar in Zp is the scalar itself.

Remark 3.1.6. For many properties, it is convenient to consider graded ring elements as
elements of Zp and not to care about the real group of each element, so that all multiplications
are allowed. In this case, we say that the property holds “when looking at the discrete logarithms
of all the elements”. Formally, it means that all the graded rings elements appearing in the
property should be replaced by their discrete logarithms.

The only new notion we will need is the notion of multiplicatively compatible sub-graded
rings. Informally, G1 and G2 are two multiplicatively compatible sub-graded rings of some
graded ring G, if it is possible to compute the product • of any element of G1 with any
element of G2, and the result is in G. Concretely, as a first approach, it is possible to consider
that G is a bilinear group (p,G1,G2,GT , e), and that G1 and G2 corresponds to G1 and G2:
if u1 ∈ G1 and u2 ∈ G2, u1 • u2 = e(u1, u2).

3.1.2.2 Diverse Vector Spaces DVSs

Definition 3.1.7. A diverse vector space (DVS) is defined by a tuple V = (pgpar,Ggpar,
(Xlpar,Llpar,Rlpar, nlpar, klpar,RGen,Γlpar,θlpar,λlpar)lpar

)
gpar

where:

• (Xlpar)lpar
, (Llpar)lpar

, (Rlpar)lpar
define a language as in Section 2.3, with implicit setup

algorithms Setup.gpar and Setup.lpar; we recall that lpar implicitly contains gpar;

• gpar corresponds to some global parameter generated by some polynomial-time algorithm
Setup.gpar;

• pgpar is a prime;

• Ggpar is a graded ring over the finite field Zpgpar ; we suppose that gpar contains a
description of Ggpar including its order pgpar;

2Graded rings were named after graded encodings systems [GGH13] and are unrelated to the mathematical
notion of graded rings.

64 Chapter 3 Diverse Vector Spaces

• nlpar and klpar are some positive integers;

• RGen is a polynomial-time algorithm which takes lpar as input and output some element
ρ from some set Rlpar, implicitly defined by RGen;

• Γlpar is a function (computable in polynomial time)3from the set Xlpar ×Rlpar to the set

of matrices G
ngpar×klpar
gpar ;

• θlpar is a function (computable in polynomial time)3from the set Xlpar ×Rlpar to the set
of column vectors G

ngpar
gpar ;

• λlpar is a function (computable in polynomial time)3from the set Xlpar ×Wlpar × Rlpar

(where Wlpar is the set of witness for words in Xlpar) to the set of column vectors G
kgpar
gpar ;

satisfying the following properties: for any security parameter K, any global parameters
gpar

$← Setup.gpar(1K), any language parameters lpar
$← Setup.lpar(gpar), and any word

x ∈ Xlpar:

• the group in which each coordinate of θlpar(x) lies (called the index of the coordinate,
in the formal description of graded rings in Section 4.2.1) is independent of x ;

• perfect correctness. For any witness w of x (Rlpar(x ,w) = 1), and any ρ ∈ Rlpar:

θlpar(x , ρ) = Γlpar(x , ρ) • λlpar(x ,w , ρ) ;

• statistical soundness. The DVS V is ε-sound if, when looking at the discrete logarithms
of all the elements (see Remark 3.1.6), when x ∈ Xlpar /∈ Llpar:

Pr
[

θlpar(x , ρ) ∈ ColSpan (Γ(x , ρ))
∣

∣

∣ ρ
$← RGen(lpar)

]

≤ ε .

The DVS is sound if it is ε-sound, with ε negligible in K.

The first property is purely technical and ensures that the hash values of all the words lie
in the same group. The second property, perfect correctness, ensures perfect correctness of
the associated SPHF defined later. The third property, statistical soundness, is used to prove
smoothness of the associated SPHF.

In the sequel, for the sake of simplicity, we often omit the indexes gpar and lpar, when they
are clear from the context. When we consider multiple DVSs, global parameters gpar are the
same for all the DVSs, but lpar might differ. Please also note that the graded ring Ggpar (and
its underlying field Zpgpar) only depends on the global parameters gpar and not on lpar.

Furthermore, we often write:

Γ := Γ(x , ρ) θ := θ(x , ρ) λ := λ(x ,w) := λ(x ,w , ρ) ,

when x or w is clear from context, or when the function is constant. We also omit RGen and
ρ when they are not used, and we write (ρ =⊥ and R = {⊥} in this case).

3By computable in polynomial time, we mean that there exists a polynomial-time algorithm taking as input
lpar and the input of the function (a tuple (x , ρ) or a tuple (x , w , ρ)).

3.1 First Examples, Definition, and Link with SPHFs 65

In particular, we often write:

V = (p,G,X ,L ,R, n, k,RGen,Γ,θ,λ) .

Finally, as in the overview, we write:

X̂ := Zn
p L̂x := ColSpan (Γ(x))

and we often omit the index x from L̂x when it is clear from context.

Let us now illustrate the definition of DVSs on two simple examples seen in the overview.

Example 3.1.8 (DVS for the DDH language). In this example, we formally give the DVS

for the DDH language sketched in Section 3.1.1.1. We use the same global parameters
gpar := (p,G, g) and language parameters lpar := (g, h) as in Example 2.3.1. We recall the
DDH language in basis (g, h):

L = {(u, v) ∈ G2 | ∃r ∈ Zp, (u, v) = (gr, hr)} (G2 = X .

We define the DVS for the DDH language as follows:

n := 2 k := 1

RGen(lpar) outputs ⊥

Γ(x , ρ) := Γ :=

(

g
h

)

θ(x , ρ) := θ :=

(

u
v

)

λ(x ,w , ρ) :=
(

r
)

,

where:

x = (u, v) w = r .

For the sake of completeness, we explicitly defined RGen to output ⊥ in this example. In
the remaining of the thesis, we just do not define RGen when we are not using it.

Example 3.1.9 (DVS for ElGamal). In this example, we formally give the DVS for the
ElGamal language sketched in Section 3.1.1.3. We use the same global parameters gpar =
(p,G, g) and language parameters lpar := ek := (g, h) as in Section 3.1.1.3. We recall the
ElGamal language under encryption key ek:

L = {(m, c = (u, v)) ∈M ×G2 | ∃r ∈ Zp, (u, v) = (gr, hr · G(m))} .

We define the DVS for this language as follows:

n := 2 k := 1

Γ(x) := Γ :=

(

g
h

)

θ(x) :=

(

u
v/G(m)

)

λ(x ,w) :=
(

r
)

,

where:

x = (m, c = (u, v)) w = r .

66 Chapter 3 Diverse Vector Spaces

3.1.2.3 The SPHF Associated to a DVS, GL-DVS, CS-DVS, and KV-DVS

Construction 3.1.10 (PHF from DVS). Let V = (p,G,X ,L ,R, n, k,RGen,Γ,θ,λ) be a
DVS. Then, we construct a PHF as follows:

• HashKG(lpar) picks a random row vector α⊺ $← Z1×n
p , generates a random element

ρ $← RGen(lpar) and outputs the hashing key hk := (α⊺, ρ);

• ProjKG(hk, lpar, x) outputs the projection key hp := (γ⊺, ρ), where hk = (α⊺, ρ) and

γ⊺ := α⊺ • Γlpar(x , ρ) ∈ G
1×k ;

• Hash(hk, lpar, x) outputs the hash value

H := α⊺ • θlpar(x , ρ) ∈ G ,

where hk = (α⊺, ρ);

• ProjHash(hp, lpar, x ,w) outputs the projected hash value

pH := γ⊺ • λlpar(x ,w , ρ) ∈ G .

As seen in the examples:

• in the general case, we say that V is a GL diverse vector space (GL-DVS) and we get a
GL-SPHF;

• if Γ is independent of x , we say that V is a CS diverse vector space (CS-DVS) and we
get a CS-SPHF;

• if Γ is independent of x and ρ is not used (ρ =⊥ and R = {⊥}), then we say that V is
a KV diverse vector space (KV-DVS) and we get a KV-SPHF. We remark that, in this
case, the DVS V is necessarily 0-sound (i.e., perfectly sound).

Actually, for the last case, we just need to suppose that the DVS V is perfectly sound. But
this is equivalent to the requirement that ρ is not used, as if V is perfectly sound, we can
just fix ρ to an arbitrary value. Therefore, we think that it makes more sense to consider the
(apparently stronger) condition R = {⊥}.

More formally, we have the following security results.

Theorem 3.1.11 (GL-SPHF from GL-DVS). Let V = (p,G,X ,L ,R, n, k,RGen,Γ,θ,λ) be
an ε-sound DVS or GL-DVS, then the PHF described in Construction 3.1.10 is an ε-smooth
GL-SPHF.

Corollary 3.1.12 (CS-SPHF from CS-DVS). Let V = (p,G,X ,L ,R, n, k,RGen,Γ,θ,λ) be
an ε-sound DVS such that the matrix Γ does not depend on x (i.e., V is a CS-DVS), then the
PHF described in Construction 3.1.10 described above is an ε-smooth CS-SPHF.

Corollary 3.1.13 (KV-SPHF from KV-DVS). Let V = (p,G,X ,L ,R, n, k,RGen,Γ,θ,λ) be
a perfectly sound (0-sound) DVS such that the matrix Γ does not depend on x and R = {⊥}
(i.e., V is a KV-DVS), then the PHF described in Construction 3.1.10 is a perfectly smooth
(or 0-smooth) KV-SPHF.

3.1 First Examples, Definition, and Link with SPHFs 67

Proof of Theorem 3.1.11. We need to prove correctness and smoothness.

Prefect correctness. When R(x ,w) = 1, hk = (α⊺, ρ) $← HashKG(lpar), hp = (γ⊺, ρ) ←
ProjKG(hk, lpar), H← Hash(hk, lpar, x), and pH← ProjHash(hp, lpar, x ,w), we have:

H = α⊺ • θ(x , ρ) by definition of Hash

= α⊺ • (Γ(x , ρ) • λ(x ,w , ρ)) by correctness of the DVS

= (α⊺ • Γ(x , ρ)) • λ(x ,w , ρ) by associativity of •

= γ⊺ • λ(x ,w , ρ) by definition of ProjKG

= pH by definition of ProjHash

This proves perfect correctness of the SPHF.

Smoothness. Let x ∈ X \L . Until the end of the proof, we are only looking at the discrete
logarithms of all the group elements we are considering. Let us suppose that ρ is such
that θ = θ(x , ρ) is linearly independent of the columns of Γ = Γ(x , ρ), which happens with
probability at least 1− ε, by ε-soundness of the DVS V.

Let us now prove that, in this case, the hash value H = α⊺ • θ is uniformly random given
only the projection key hp = (γ⊺ = α⊺ • Γ, ρ). Let us fix a row vector α⊺ ∈ Z1×n

p and its
associated row vector γ⊺ = α⊺ • Γ. Let H be a scalar in Zp.4 Let Sγ⊺,H be the set of vectors
α′⊺ corresponding to the vector γ⊺ = α⊺ • Γ and to the hash value H, i.e., Sα⊺,H is the set of
solutions α′⊺ ∈ Z1×n

p of the affine system:

α′⊺ •
(

Γ θ
)

=
(

γ⊺ H
)

. (3.3)

As θ /∈ ColSpan (Γ), there exists a row vector x∗⊺ ∈ Z1×n
p satisfying x∗⊺ • Γ = 0 and

x∗⊺ • θ = H α⊺ • θ. And α∗⊺ = α⊺ + x∗⊺ is a particular solution of Equation (3.3), as:

α∗⊺ •
(

Γ θ
)

=
(

α⊺ • Γ x∗⊺ • Γ α⊺ • θ x∗⊺ • θ
)

=
(

γ⊺ 0 α⊺ • θ (H α⊺ • θ)
)

=
(

γ⊺ H
)

.

Therefore, we have:

Sγ⊺,H =
{

α⊺ + x∗⊺ + x⊺

∣

∣

∣ x ∈ ker
(

Γ θ
)

⊺
}

, (3.4)

and the size of Sγ⊺,H is independent of H and γ⊺. This means that there is the same number
of hashing keys hk, corresponding to any given pair (hp,H) of a possible projection key hp

and a hash value H.
This implies that H looks uniformly random when only given hp, when ρ is such that

θ /∈ ColSpan (Γ), which happens with probability at least 1− ε (and when α⊺ $← Z1×n
p). We

conclude using Proposition 2.1.6.

Proof of Corollary 3.1.12. This is a straightforward corollary of Theorem 3.1.11, as the
smoothness definition for CS-SPHF is the same as for GL-SPHF. The only difference is that
hp does not depend on x , as Γ and ρ do not depend on x .

4We look at the discrete logarithm, so everything is a scalar. Otherwise, we would need to take a graded
ring element of correct index.

68 Chapter 3 Diverse Vector Spaces

Proof of Corollary 3.1.13. As the DVS V is perfectly sound, Corollary 3.1.12 ensures that
the resulting SPHF is perfectly GL/CS-smooth. Thanks to Remark 2.5.4, this means that
the SPHF is perfectly KV-smooth.

Remark 3.1.14. Similarly to what we did in Example 3.1.5, if Γ is independent of ρ and if
there exists a deterministic randomness extractor for the distribution of the random elements
γ⊺ = α⊺ • Γ (with α⊺ $← Z1×n

p)5 with large enough output to be used as random coins for
RGen, then we can set:

ρ $← RGen(lpar; Ext(γ⊺)) .

Looking at the proof of Theorem 3.1.11, this clearly defines a GL-SPHF or CS-SPHF.
In many applications, if there is not enough entropy in γ⊺, we can use a pseudorandom

number generator after the deterministic extractor. This is however no more a real SPHF, as
smoothness becomes computational.

3.2 Conjunctions and Disjunctions

Now that we have formally defined DVSs, we can start looking at important generic combina-
tions of DVSs: conjunctions and disjunctions.

3.2.1 Conjunctions

We define the conjunction of two languages L1 ⊆ X1 and L2 ⊆ X2 as the language:

L := L1 ×L2 = {(x1, x2) ∈ X1 ×X2 | x1 ∈ L1 and x2 ∈ L2} ⊆ X1 ×X2 =: X .

More formally:

R(x = (x1, x2), w = (w1,w2)) = 1 ⇐⇒ R1(x1,w1) = 1 and R2(x2,w2) = 1 . (3.5)

This is a generalization of the classical notion of conjunction: if X1 = X2, (x1, x1) ∈ L if and
only if x1 ∈ L1 ∩L2 (or in other words, x1 is in L1 and in L2).

Global parameters gpar are supposed to be the same and to be generated the same way
for L1, L2, and L : Setup.gpar1 = Setup.gpar2 = Setup.gpar. Parameters lpar for L are just
the concatenation of parameters lpar1 for L1 and lpar2 for L2. More precisely, on input gpar,
Setup.lpar generates (lpar1, ltrap1) $← Setup.lpar1(gpar) and (lpar2, ltrap2) $← Setup.lpar2(gpar)
and outputs (lpar := (lpar1, lpar2), ltrap := (ltrap1, ltrap2)).

Let V1 = (p,G,X1,L1,R1, n1, k1,RGen1,Γ1,θ1,λ1) and V2 = (p,G,X2,L2,R2, n2, k2,
RGen2,Γ2,θ2,λ2) be two DVSs over the same graded ring G. Let us first give the intuition of
the construction of a DVS V = (p,G,X ,L ,R, n, k,RGen,Γ,θ,λ) for the conjunction of L1

and L2, in the simple case where there is no ρ. We recall that a DVS is a way to represent a
language L ′ ⊆ X ′ as a subspace L̂ ′ of some vector space X̂ ′, through a map θ′ from X to
X̂ . To construct V, we can first map pairs x = (x1, x2) ∈ X to:

θ(x) =

(

θ1(x1)
θ2(x2)

)

∈ X̂1 × X̂2 =: X̂ .

5When Γ depends on x , this extractor has to work with any x . We remark that if the first column of Γ is
never zero, the first coordinate of γ⊺ is a uniform random group element. If more than one coordinate of
γ⊺ is used, linear relations between coordinates have to be taken into account.

3.2 Conjunctions and Disjunctions 69

Then, we remark that:

x ∈ L ⇐⇒ θ(x) ∈ L̂1 × L̂2 =: L̂ .

Furthermore, the set L̂ = L̂1 × L̂2 is a subspace of the vector space X = X1 × X2, as a
cartesian product of the subspace L̂1 of X1 and the subspace L̂2 of X2. Therefore, this
defines a DVS.

Formally, we have the following construction in the general case.

Construction 3.2.1 (conjunction of two DVSs). Let V1 = (p,G,X1,L1,R1, n1, k1,RGen1,
Γ1,θ1,λ1) and V2 = (p,G,X2,L2,R2, n2, k2,RGen2,Γ2,θ2,λ2) be two DVSs over the same
graded ring G. The conjunction DVS V = (p,G,X ,L ,R, n, k,RGen,Γ,θ,λ) of V1 and V2 is
defined as follows:

L := L1 ×L2 X := X1 ×X2

R is defined as in Equation (3.5)

n := n1 + n2 k := k1 + k2

RGen(lpar) outputs ρ := (ρ1, ρ2) where ρ1
$← RGen1(lpar1) and ρ2

$← RGen2(lpar2)

Γ(x , ρ) :=

(

Γ1(x1, ρ1) 0
0 Γ2(x2, ρ2)

)

θ(x , ρ) :=

(

θ1(x1, ρ1)
θ2(x2, ρ2)

)

λ(x ,w , ρ) :=

(

λ1(x1,w1, ρ1)
λ2(x2,w2, ρ2)

)

,

where:

x = (x1, x2) w = (w1,w2) .

We have the following lemma. Its proof is a simple variant of the proof of the slightly more
complicated Lemma 3.2.6.

Lemma 3.2.2. Let V1 and V2 be two DVSs. If V1 and V2 are ε1-sound and ε2-sound
respectively, then the conjunction DVS V of V1 and V2 defined in Construction 3.2.1 is a
(ε1 + ε2 − ε1ε2)-sound DVS.

Historical note 3.2.3. Conjunctions of SPHFs were already proposed in [ACP09], but were
not algebraic, because they used an xor operation. Furthermore they were performed at the
SPHF level, while we are doing conjunctions of DVSs. Conjunctions of DVSs were formally
introduced in [ABP15c] but were implicit in many previous papers.

3.2.2 Disjunctions

We define the disjunction of two languages L1 ⊆ X1 and L2 ⊆ X2 as the language:

L := (L1 ×X2)∪ (X1 ×L2) = {(x1, x2) ∈ X1×X2 | x1 ∈ L1 or x2 ∈ L2} ⊆ X1×X2 =: X .

More formally:

R(x = (x1, x2), w = (w1,w2)) = 1 ⇐⇒ R1(x1,w1) = 1 or R2(x2,w2) = 1 . (3.6)

70 Chapter 3 Diverse Vector Spaces

If w1 is a witness for x1, w = (w1,⊥) is a witness for x = (x1, x2), while if w2 is a witness
for x2, w = (⊥,w2) is a witness for x . This is a generalization of the classical notion of
disjunction: if X1 = X2, (x1, x1) ∈ L if and only if x1 ∈ L1 ∪L2 (or in other words, x1 is in
L1 or in L2).

Global parameters and language parameters are defined as in Section 3.2.1.

We remark that contrary to conjunctions, if X1 and X2 are two vector spaces and L1 and
L2 are subspaces of these two vector spaces respectively, then X is a vector space, but L

is not necessarily a subspace of X . Actually, L is a subspace of X if and only if L1 = X1

and L2 = X2. Even worse, the vector space spanned by L is X , so constructions need to be
much more subtle.

We propose two constructions:

• one for GL-DVSs which has the advantage of working with the same graded ring as the
original DVSs but which yield a GL-DVS even if the original DVSs are KV-DVSs;

• and one for CS-DVSs and KV-DVSs which preserve their CS/KV character but which
requires multiplicatively compatible sub-graded rings. Concretely, this means that we
require a bilinear map between elements of the first DVS and elements of the second
DVS.

3.2.2.1 Disjunctions of GL-DVSs

The construction is not really difficult but is hard to explain in English. One maybe not
completely helpful way to describe it is to say that we move θ1 and θ2 inside the matrix Γ
and we use the first row of Γ as a way to “select” θ1 or θ2. Let us now give the formulas
which should make this intuition clear.

Construction 3.2.4 (GL disjunction). Let V1 = (p,G,X1,L1,R1, n1, k1,RGen1,Γ1,θ1,λ1)
and V2 = (p,G,X2,L2,R2, n2, k2,RGen2,Γ2,θ2,λ2) two DVSs over the same graded ring G.
We define the GL disjunction V = (p,G,X ,L ,R, n, k,RGen,Γ,θ,λ) as follows:

L := (L1 ×X2) ∪ (X1 ×L2) X := X1 ×X2

R is defined as in Equation (3.6)

n := n1 + n2 + 1 k := k1 + k2 + 2

RGen(lpar) outputs ρ := (ρ1, ρ2) where ρ1
$← RGen1(lpar1) and ρ2

$← RGen2(lpar2)

Γ(x , ρ) :=

0⊺

k1
1Zp

0⊺

k2
1Zp

Γ1 θ1 0n1×k2
0n1

0n2×k1
0n2

Γ2 θ2

3.2 Conjunctions and Disjunctions 71

θ(x , ρ) :=

[⊤,−1]
[⊤, 0]

...
[⊤, 0]

∈ G
n
⊤ λ(x ,w , ρ) :=

λ1

−1Zp

0k2

0

if R(x1,w1) = 1

0k1

0

λ2

−1Zp

else, if R(x2,w2) = 1

,

where:

x = (x1, x2) w = (w1,w2) ,

and G⊤ is the group of the elements of maximal index (namely the group G if G = (p,G)
is a cyclic group and the group GT if G = (p,G1,G2,GT) is a bilinear group), while [⊤, x]
represents the element of discrete logarithm x ∈ Zp in G⊤.

It is important to remark that when x1 ∈ L1 and x2 ∈ L2, there exist at least two witnesses
for x : (w1,⊥) and (⊥,w2). Both witnesses might yield a different projected hash value pH, if
the projection key if not honestly generated.

Before proving the soundness of the construction, let us give an example of GL disjunction
of two DVSs.

Example 3.2.5 (GL disjunction of two DDH languages). The global parameters are gpar :=
(p,G, g), with G being a cyclic group of prime order p generated by g, while the language
parameters are lpar := (g1, h1, g2, h2) ∈ G4. We consider the language of the tuples (u1, v1,
u2, v2) such that (u1, v1) is a DH tuple in basis (g1, h1) or (u2, v2) is a DH tuple in basis
(g2, h2):

L := {(u1, v1, u2, v2) ∈ G4 | ∃(r1, r2) ∈ Z2
p, (u1, v1) = (gr1 , hr1) or (u2, v2) = (gr2 , hr2)} .

In other words, if (u1, v1, u2, v2) ∈ L , either (u1, v1) is an ElGamal ciphertext of 1G with
encryption key ek1 := (g1, h1), or (u2, v2) is an ElGamal ciphertext of 1G with encryption key
ek2 := (g2, h2), or both (u1, v1) and (u2, v2) are ElGamal ciphertexts of 1G.

This language is the disjunction of the DDH languages in basis (g1, h1) and (g2, h2) re-
spectively. Applying Construction 3.2.4 to Example 3.1.8, we get the following DVS for
L :

n := 5 k := 4

Γ(x) :=

0 g 0 g
g1 u1 0 0
h1 v1 0 0
0 0 g2 u2

0 0 h2 v2

72 Chapter 3 Diverse Vector Spaces

θ(x) :=

g−1

1G
1G
1G
1G

λ(x ,w) :=

r1

−1Zp

0

0

if (u1, v1) = (gr1 , hr1)

0

0

r2

−1Zp

otherwise, if (u2, v2) = (gr2 , hr2)

,

where:

x = (u1, v1, u2, v2) w = (r1, r2) .

Let us now prove the soundness of the construction.

Lemma 3.2.6. Let V1 = (p,G,X1,L1,R1, n1, k1,RGen1,Γ1,θ1,λ1) and V2 = (p,G,X2,
L2,R2, n2, k2,RGen2,Γ2,θ2,λ2) be two DVSs. If V1 and V2 are ε1-sound and ε2-sound
respectively, then the GL disjunction DVS V of V1 and V2 defined in Construction 3.2.4 is a
(ε1 + ε2 − ε1ε2)-sound DVS.

Proof. Correctness is straightforward. Let us prove soundness. For that, we are only looking
at the discrete logarithms of all the group elements we are considering.

We need to prove that if x = (x1, x2) ∈ X \L (i.e., x1 ∈ X1 \L1 and x2 ∈ X2 \L2), then
θ = θ(x , ρ) is linearly independent of the columns of Γ = Γ(x , ρ), with probability at least
ε1 + ε2 − ε1ε2 when ρ1

$← RGen1(lpar1), ρ2
$← RGen2(lpar2), and ρ := (ρ1, ρ2).

By ε1-soundness of V1 and ε2-soundness of V2-soundness, we know that θ1(x1, ρ1) and
θ2(x2, ρ2) are linearly independent of the columns of Γ1(x1, ρ1) and Γ2(x2, ρ) respectively with
probability at least 1− ε1 and 1− ε2. As these two events are independent, both happen at
the same time with probability at least (1− ε1) · (1− ε2) = 1− ε1 − ε2 + ε1ε2.

Let us now suppose we are in the case where both these events happen. We just need to
prove that in this case, θ is linearly independent of the columns of Γ. By contradiction, let us
suppose that there exists a vector λ ∈ Zk

p such that θ = Γ •λ. We necessarily have λk1+1 6= 0
or λk1+k2+1 6= 0 (or both), due to the first row of the matrix Γ, as the (k1 + 1)-th column of
Γ is (1Zp

,θ⊺1,0
⊺)⊺ and the (k1 + k2 + 1)-th column of Γ is its last column (1Zp

,0⊺,θ⊺2)⊺. If
λk1+1 6= 0, we get that θ1 is in the column span of Γ1, as we have:

θ1 = Γ1 • λ
′ with λ′ = −(λi)i=1,...,k1

/ λk1+1 . (3.7)

This is impossible. Similarly, if λk1+k2+2 6= 0, we get that θ2 is in the column span of Γ2

which is also impossible. That concludes the proof.

Historical note 3.2.7. Similarly to conjunctions of SPHFs, disjunctions of GL-SPHFs were
already proposed in [ACP09], but were not algebraic at all. Furthermore, converting them to
disjunctions of DVSs is not completely straightforward and was officially done for the first
time in [BCPW15].

3.2 Conjunctions and Disjunctions 73

3.2.2.2 Disjunctions of CS-DVSs and KV-DVSs

In the previous construction, the new matrix Γ necessarily depends on the word x , as it
embeds λ1 and λ2. To construct disjunction DVSs for CS-DVS and KV-DVS which preserve
the KV/CS character, we cannot use the same idea. Let us try to use the same trick as for
conjunctions and define:

θ(x) =

(

θ1(x1)
θ2(x2)

)

∈ X̂ =: X̂1 × X̂2 .

To get a DVS for the disjunction, we would then need to set:

L̂ = (L̂1 × X̂2) ∪ (X1 ×L2) .

Unfortunately, in that case, L̂ is not a subspace of X̂ (except if L̂1 = X̂1 and L̂2 = X̂2,
which is not a really interesting case) and even worse, Span

(

L̂

)

= X̂ . To solve this issue,
we use the tensor product ⊗ instead of the cartesian product ×, and θ becomes: θ = θ1⊗ θ2.
Intuitively, this adds more dimension which makes everything work.

Tensor product of vector spaces over graded rings. Before formally showing our construc-
tion, let us briefly recall notation and some properties for tensor product and adapt them to
vector spaces over graded rings. Let G1 and G2 be two multiplicatively compatible sub-graded
rings of G. Let V1 be a n1-dimensional vector space over G1 and V2 be a n2-dimensional
vector space over G2. Let (e1,i)i=1,...,n1

and (e2,i)i=1,...,n2
be bases of V1 and V2 respectively.

Then the tensor product V of V1 and V2, denoted V = V1⊗V2 is the n1n2-dimensional vector
space over G generated by the free family (e1,i ⊗ e2,j)i=1,...,n1

j=1,...,n2

. The operator ⊗ is bilinear,

and if u =
∑∑∑n1

i=1 ui • e1,i and v =
∑∑∑n2

j=1 vj • e2,j , then:

u⊗ v =
n1
∑∑∑

i=1

n2
∑∑∑

j=1

(ui • vj) • (e1,i ⊗ e2,j) .

More generally, we can define the tensor product of two matrices M ∈ G
k×m
1 and M ′ ∈

G
k′×m′

2 , T = M ⊗M ′ ∈ G
kk′×mm′

by

T(i−1)k′+i′,(j−1)m′+j′ = Mi,j •M
′
i′,j′ for

i = 1, . . . , k ,

i′ = 1, . . . , k′ ,

j = 1, . . . ,m ,

j′ = 1, . . . ,m′ .

In other words, T is the following matrix by blocks:

T =

M1,1 •M
′ . . . M1,m •M

′

...
...

Mk,1 •M
′ . . . Mk,m •M

′

.

And if M ∈ G
k×m
1 , M ′ ∈ G

k′×m′

2 , N ∈ G
m×n
1 , the we have:

(M ⊗M ′) • (N ⊗N ′) = (M •N)⊗ (M ′ •N ′) . (3.8)

This equality is essential: most of our proofs relying on tensor products use it.

74 Chapter 3 Diverse Vector Spaces

Construction. Let us now formally show the construction.

Construction 3.2.8 (CS/KV disjunction). Let V1 = (p,G1,X1,L1,R1, n1, k1,RGen1,Γ1,θ1,
λ1) and V2 = (p,G2,X2,L2,R2, n2, k2,RGen2,Γ2,θ2,λ2) two DVSs over two multiplicatively
compatible sub-graded rings G1 and G2 of some graded ring G. In particular, we suppose
that global parameters for L , L1, and L2 define the same graded ring G, but Γ1, θ1, and λ1

are only over G1, while Γ2, θ2, and λ2 are only over G2. We define the CS/KV disjunction
V = (p,G,X ,L ,R, n, k,RGen,Γ,θ,λ) as follows:

L := (L1 ×X2) ∪ (X1 ×L2) X := X1 ×X2

R is defined as in Equation (3.6)

n := n1 · n2 k := k1 · n2 + n1 · k2

RGen(lpar) outputs ρ := (ρ1, ρ2) where ρ1
$← RGen1(lpar1) and ρ2

$← RGen2(lpar2)

Γ(ρ) :=
(

Γ1 ⊗ Idn2
Idn1
⊗ Γ2

)

θ(x , ρ) := θ1 ⊗ θ2

λ(x ,w , ρ) :=

(

λ1 ⊗ θ2

0n1k2

)

if R(x1,w1) = 1
(

0k1n2

θ1 ⊗ λ2

)

otherwise, if R(x2,w2) = 1

,

where:

x = (x1, x2) w = (w1,w2) .

Before proving the soundness of the construction, let us show it on an example.

Example 3.2.9 (KV disjunction of two DDH languages). The global parameters gpar con-
sist of a bilinear group (p,G1,G2GT , e, g1, g2), while the language parameters are lpar :=
(g1, h1, g2, h2) ∈ G2

1 × G2
2. We consider the language of the tuples (u1, v1, u2, v2) such that

(u1, v1) is a DH tuple in basis (g1, h1) or (u2, v2) is a DH tuple in basis (g2, h2):

L := {(u1, v1, u2, v2) ∈ G4 | ∃(r1, r2) ∈ Z2
p, (u1, v1) = (gr1 , hr1) or (u2, v2) = (gr2 , hr2)} .

In other words, if (u1, v1, u2, v2) ∈ L , either (u1, v1) is an ElGamal ciphertext of 1G1
with

encryption key ek1 := (g1, h1), or (u2, v2) is an ElGamal ciphertext of 1G2
with encryption

key ek2 := (g2, h2), or both (u1, v1) and (u2, v2) are ElGamal ciphertexts of 1G1
and 1G2

respectively.

This language is the disjunction of the DDH languages in basis (g1, h1) and (g2, h2) re-
spectively. Applying Construction 3.2.8 to Example 3.1.8, we get the following DVS for

3.2 Conjunctions and Disjunctions 75

L :

n := 4 k := 4

Γ(x) :=

g1 0 g2 0
0 g1 h2 0
h1 0 0 g2

0 h1 0 h2

θ(x) :=

u1 • u2

u1 • v2

v1 • u2

v1 • v2

=

e(u1, u2)
e(u1, v2)
e(v1, u2)
e(v1, v2)

λ(x ,w) :=

r1 • u2

r1 • v2

0

0

=

ur1

2

vr1

2

0

0

if (u1, v1) = (gr1 , hr1)

0

0

r2 • u1

r2 • v1

=

0

0

ur2

1

vr2

1

otherwise, if (u2, v2) = (gr2 , hr2)

,

where:

x = (u1, v1, u2, v2) w = (r1, r2) .

Let us now prove the soundness of the construction.

Lemma 3.2.10. Let V1 = (p,G1,X1,L1,R1, n1, k1,RGen1,Γ1,θ1,λ1) and V2 = (p,G2,X2,
L2,R2, n2, k2,RGen2,Γ2,θ2,λ2) be two CS-DVSs over two multiplicatively compatible sub-
graded rings G1 and G2 of some graded ring G. If V1 and V2 are ε1-sound and ε2-sound
respectively, then the CS/KV disjunction DVS V of V1 and V2 defined in Construction 3.2.8
is a (ε1 + ε2 − ε1ε2)-sound CS-DVS.

We have the following immediate corollary.

Corollary 3.2.11. Let V1 = (p,G1,X1,L1,R1, n1, k1,RGen1,Γ1,θ1,λ1) and V2 = (p,G2,
X2,L2,R2, n2, k2,RGen2,Γ2,θ2,λ2) be two KV-DVSs over two multiplicatively compatible
sub-graded rings G1 and G2 of some graded ring G. Then the CS/KV disjunction DVS V of
V1 and V2 defined in Construction 3.2.8 is a KV-DVS.

Proof of Lemma 3.2.10. We start the proof as the proof of Lemma 3.2.6. Let x = (x1, x2) ∈
X \ L . We fix ρ such that θ1 /∈ ColSpan (Γ1) = L̂1 and θ2 /∈ ColSpan (Γ2) = L̂2. To
conclude the proof, we just need to prove that this implies that

θ = θ1 ⊗ θ2 /∈ ColSpan (Γ) = L̂ = L̂1 ⊗X2 + X1 ⊗ L̂2 ,

where the symbol + between vector spaces corresponds to the sum of vector spaces: if E and
F are two vector spaces then E + F = Span (E ∪ F).

76 Chapter 3 Diverse Vector Spaces

For i ∈ {1, 2}, let Ei be an arbitrary supplementary vector space of L̂i containing θi. We
have:

X̂1 = L̂1 ⊕ E1 X̂2 = L̂2 ⊕ E2 ,

where ⊕ denotes a direct sum of vector spaces. We then get:

L̂ = L̂1 ⊗ X̂2 + X̂1 ⊗ L̂2

=
(

L̂1 ⊗ L̂2 + L̂1 ⊗ E2

)

+
(

L̂1 ⊗ L̂2 + E1 ⊗ L̂2

)

= L̂1 ⊗ L̂2 ⊕ L̂1 ⊗ E2 ⊕ E1 ⊗ L̂2 ,

X̂ = X̂1 ⊗ X̂2

= L̂1 ⊗ L̂2 ⊕ L̂1 ⊗ E2 ⊕ E1 ⊗ L̂2 ⊕ E1 ⊗ E2 .

As θ1 ∈ E1 and θ2 ∈ E2, we have θ = θ1⊗θ2 ∈ E1⊗E2 /∈ L̂ . This concludes the proof.

The above proof was proposed by Victor Shoup, as a simplification of the original cum-
bersome proof in [ABP15c]. We thank him for this proof. In this thesis, we propose a third
proof of Lemma 3.2.10, as a straightforward corollary of Proposition 4.3.11. Contrary to the
above proof, this third proof uses no advanced tools on tensor products, but just rely on
Equation (3.8).

Historical note 3.2.12. Disjunctions of KV-DVSs were introduced in [ABP15c], while
disjunctions of CS-DVSs were never published before.

3.3 Application to Non-Interactive Zero-Knowledge Arguments

An important application of disjunctions of KV-DVSs is the construction of NIZK with
constant-size proofs. An SPHF for some language L̈ := L1 (which can be constructed from
some KV-DVS V1) can be seen as a designated-verifier and honest-verifier NIZK: only the user
(or verifier) generating the hashing key hk and publishing the projection key hp can verify
the validity of a proof of some word (which is the hash value of this word). Furthermore, the
verifier may cheat on the projection key to learn some information about the witness. To get
rid of these two limitations (designated and honest verifier), we use a second KV-DVS V2 for
a hard-subset-membership language, and we consider the KV disjunction V of V1 and V2.
This second KV-DVS V2 makes the proof publicly verifiable and zero-knowledge.

3.3.1 Overview

Let us construct a NIZK for some language L̈ = L1. We suppose that we have a KV-

DVS V1 = (p,G1,X1,L1,R1, n1, k1,RGen1,Γ1,θ1,λ1) for L1, together with another KV-DVS

V2 = (p,G2,X2,L2,R2, n2, k2,RGen2,Γ2,θ2,λ2) for a hard-subset-membership language L2,
such that G1 and G2 are two multiplicatively compatible sub-graded rings of some graded
ring G. Furthermore, we consider the disjunction KV-DVS V of V1 and V2.

For the sake of simplicity, we suppose that L2 = L̂2, X2 = X̂2 = Zn2
p , θ2 = θ2(x2) = x2

and λ2 = λ2(x2,w2) = w2, for any word x2 and any witness w2. The common reference
string of the NIZK is a projection key hp = γ⊺ for the disjunction of L1 and L2, while the

3.3 Application to Non-Interactive Zero-Knowledge Arguments 77

trapdoor (to simulate proofs) is the hashing key hk = α⊺. Essentially, a proof π⊺ = (πi2
)⊺i2

for a statement ẍ = x1 is just a vector of the hash values of (x1, e2,i2
) where (e2,i2

)i2
are the

scalar vectors of the canonical base of X̂2. These hash values are πi2
= α⊺ • (θ1 ⊗ e2,i2

), and
can also be computed from the projection key hp and a witness w1 for x1. We can also write:

π⊺ = α⊺ • (θ1 ⊗ Idn2
) .

The basic idea is that a valid proof for a word x1 ∈ L1 enables us to compute the projected
hash value H′ of (x1, x2) for any word x2 ∈ X̂2, by linearly combining elements of the proof,
since any word θ2 = x2 can be written as a linear combination of (e2,i2

)i2
:

H′ := π⊺ • θ2 =
∑∑∑

i2

πi2
• θ2,i2

=
∑∑∑

i2

α⊺ • (θ1 ⊗ e2,i2
) • θ2,i2

=
∑∑∑

i2

α⊺ • (θ1 ⊗ (θ2,i2
• e2,i2

)) = α⊺ • (θ1 ⊗ θ2) ,

if θ2 =
∑∑∑

i2
θ2,i2

• e1,i2
. Hence, for any word x2 ∈ L2 for which we know a witness, we

can compute the hash value of (x1, x2), either using a valid proof for x1 (as H′ above), or
directly using a witness w2 = λ2 of x2 = θ2 and the projection key hp (as for any SPHF for a
disjunction), as

pH := γ⊺ •

(

0k1n2

θ1 ⊗ λ2

)

.

To check a proof, we basically check whether for any word x2 ∈ L2 with witness λ2, these
two ways of computing the hash value of (x1, x2) yields the same result, i.e., we check whether

H′ = π⊺ • θ2 = γ⊺ •

(

0k1n2

θ1 ⊗ λ2

)

= pH .

Thanks to the linearity of the language L2, it is sufficient to make this test for a family of
words x2 which generate L2, such as the columns of Γ2. We recall that the witness w2 = λ2

for the j2-th column of Γ2 is just the j2-th vector in the canonical basis of Zk2
p . Therefore, to

check π⊺, we just need to check whether

π⊺ • Γ2
?= γ⊺ •

(

0k1n2×k2

θ1 ⊗ Idk2

)

.

The trapdoor, i.e., the hashing key hk, clearly enables us to simulate any proof, and
the resulting proofs are perfectly indistinguishable from normal ones, hence the perfect
zero-knowledge property. Moreover, the soundness comes from the fact that a proof for a
word x1 /∈ L1 can be used to solve the subset-membership problem for L2.

More precisely, let us consider a soundness adversary which takes as input the projection
key hp and which outputs a word x1 /∈ L1 and a valid proof π⊺ for x1. On the one hand,
such a valid proof enables us to compute the hash value H′ of (x1, x2) for any word x2 ∈ L2,
by linearly combining elements of the proofs (as seen above), and the validity of the proof
ensures the resulting value H′ is correct if x2 ∈ L2. On the other hand, we can also compute
a hash value H of (x1, x2) for any x2 ∈ X2 using the hashing key hk. Then, if x2 ∈ L2,
necessarily H = H′, while if x2 /∈ L2, the smoothness ensures that H looks completely random
when given only hp. Since H′ does not depend on hk but only on hp, it is different from
H with overwhelming probability. Therefore, we can use such an adversary to solve the
subset-membership problem for L2.

78 Chapter 3 Diverse Vector Spaces

3.3.2 Construction

Construction 3.3.1 (NIZK from disjunctions of KV-DVSs). We suppose that we have a KV-

DVS V1 = (p,G1,X1,L1,R1, n1, k1,RGen1,Γ1,θ1,λ1) for L̈ = L1, together with another KV-

DVS V2 = (p,G2,X2,L2,R2, n2, k2,RGen2,Γ2,θ2,λ2) for a hard-subset-membership language
L2, such that G1 and G2 are two multiplicatively compatible sub-graded rings of some graded
ring G. Furthermore, we consider the KV disjunction V = (p,G,X ,L ,R, n, k,RGen,Γ,θ,λ)
of V1 and V2. We recall that n = n1n2 and k = k1n2 + n1k2.

We construct a NIZK for L̈ := L1 as follows:

• NIZK.Setup(lpar1) generates language parameters lpar2
$← Setup.lpar2(gpar) for L2,

together with a hashing key hk and the associated projection key hp for V as follows:

hk := α⊺ $← Z1×n
p ,

hp := γ⊺ := α⊺ • Γ ∈ G
1×k ,

and outputs crs := (lpar2, hp). In the sequel, we split γ⊺ in two parts:

γ
⊺

1 := (γi)
⊺

i=1,...,k1n2
= α⊺ • (Γ1 ⊗ Idn2

) ∈ G
1×(k1n2)
1 ,

γ
⊺

2 := (γi)
⊺

i=k1n2+1,...,n = α⊺ • (Idn1
⊗ Γ2) ∈ G

1×(n1k2)
2 ;

• NIZK.Sim1(lpar1) works as NIZK.Setup except it also outputs the following trapdoor:

trap := hk = α⊺ ∈ Z1×n
p ;

• NIZK.Prove(crs, tag, x1,w1) outputs:

π⊺ := γ
⊺

1 • (λ1(x1,w1)⊗ Idn2
) ∈ G

1×n2

1 ;

• NIZK.Ver(crs, tag, x1,π
⊺) checks the following equation:

π⊺ • Γ2
?= γ

⊺

2 • (θ1(x1)⊗ Idk2
) ; (3.9)

• NIZK.Sim2(trap, tag, x1) outputs:

π⊺ := α⊺ • (θ1(x1)⊗ Idn2
) ∈ G

1×n2

1 .

Tags tag are not used in this construction.

We remark that the size of the proof π⊺ is independent of the language L1 and only
depend on the second DVS V2 which can be fixed. That is why, we say that our NIZK has
constant-size proofs.

3.3 Application to Non-Interactive Zero-Knowledge Arguments 79

3.3.3 Completeness and Security

Theorem 3.3.2. Let V1 = (p,G1,X1,L1,R1, n1, k1,RGen1,Γ1,θ1,λ1) and V2 = (p,G2,
X2,L2,R2, n2, k2,RGen2,Γ2,θ2,λ2) be two KV-DVSs over two multiplicatively compatible
sub-graded rings G1 and G2 of some graded ring G. We suppose that L2 is a hard-subset-
membership language.

Then the NIZK for L̈ = L1 in Construction 3.3.1 is perfectly complete, perfectly zero-
knowledge, and sound. More precisely, if A is a polynomial-time adversary against soundness
of the NIZK, we can construct an adversary B against hard subset membership of L2 with
similar running time such that:

Advsound(A,K) ≤ Advsub-memb(B,K) +
1
p
.

Proof. Completeness. If the proof π⊺ has been generated correctly, the left hand side of the
verification equation (Equation (3.9)) is equal to

γ
⊺

1 • (λ1 ⊗ Idn2
) • Γ2 = (α⊺ • (Γ1 ⊗ Idn2

)) • (λ1 ⊗ Idn2
) • (Id1 ⊗ Γ2)

= α⊺ • (Γ1 ⊗ Idn2
) • ((λ1 • Id1)⊗ (Idn2

• Γ2))

= α⊺ • (Γ1 ⊗ Idn2
) • (λ1 ⊗ Γ2)

= α⊺ • ((Γ1 • λ1)⊗ (Idn2
• Γ2)) ,

while the right hand side is equal to:

γ
⊺

2 • (θ1 ⊗ Idk2
) = α⊺ • (Idn1

⊗ Γ2) • (θ1 ⊗ Idk2
) = α⊺ • ((Idn1

• θ1)⊗ (Γ2 • Idk2
)) ,

which is the same as the left hand side, since Γ1 • λ1 = Idn1
• θ1 and Idn2

• Γ2 = Γ2 • Idk2
.

Hence the (perfect) completeness. Another way to see it, is that the i2-th column of the right
hand side of Equation (3.9) is the hash value of “(θ1,Γ2 • e2,i2

)” computed using the witness
λ2 = e2,i2

, while the i2-th column of the left hand side is this hash value computed using the
witness λ1.

Zero-Knowledge. The (perfect) zero-knowledge property comes from the fact that the normal
proof π⊺ for x1 ∈ L1 with witness w1 is:

π⊺ = γ
⊺

1 • (λ1⊗ Idn2
) = α⊺ • (Γ1⊗ Idn2

)• (λ1⊗ Idn2
) = α⊺ • ((Γ1 •λ1)⊗ (Idn2

• Idn2
)) , (3.10)

which is equal to the simulated proof for x1, as θ1 = Γ1 • λ1 and Idn2
• Idn2

= Idn2
.

Soundness. It remains to prove the soundness property, under the hard subset membership
of L2. We just need to show that if the adversary A is able to generate a valid proof π⊺ for
a word x1 /∈ L1, then we can use π⊺ to check if a word x2 is in L2 or not. More precisely,
we define the adversary B as follows: on input a word x2 ∈ X2, it runs A to get a proof
π⊺ for a word x1 ∈ X1, then it computes H be the hash value of (x1, x2) using hk, and the
value H′ := π⊺ • θ2. The adversary B then returns 0 if the proof π⊺ is correct (i.e., satisfies
Equation (3.9)) and H = H′ (indicating it guesses that x2 ∈ L2), and outputs 1 otherwise.

On the one hand, if x2 ∈ L2 (and whether x1 ∈ L1 or not), there exists a witness w2 such
that θ2(x2) = Γ2 • λ2(x2,w2) and so, thanks to Equation (3.9), we have:

H′ = π⊺ • Γ2 • λ2 = γ
⊺

2 • (θ1 ⊗ Idk2
) • λ2 = γ

⊺

2 • (θ1 ⊗ λ2) = H ,

80 Chapter 3 Diverse Vector Spaces

the last equality coming from the correctness of the SPHF and the fact the second to
last expression is just the hash value of (x1, x2) computed using ProjHash and witness w2.
Therefore, we have:

Pr
[

Expsub-memb-0(B,K) = 1
]

= Pr [π⊺ generated by A is not correct] ,

where Expsub-memb-0 is defined in Figure 2.3.
On the other hand, if x2 /∈ L2 and x1 /∈ L1, then (x1, x2) /∈ L . So H looks uniformly

random by smoothness and the probability that H′ = H is at most 1/|Π| = 1/p.

Pr
[

Expsub-memb-1(B,K) = 1
]

≥ Pr [π⊺ generated by A is not correct]

+ Pr [π⊺ is correct and x1 /∈ L1]− 1/p .

As the probability that π⊺ is correct and x1 /∈ L1 is exactly Advsound(A,K), we get the
expected result.

We remark that B does not need to check whether x1 ∈ L1. This is important as it might
not be possible to do this check in polynomial time.

Remark 3.3.3. In [KW15, Section 3.1], Kiltz and Wee proposed the same scheme, but
stated differently, without tensor products. They also manage to reduce the soundness to the
following computational assumption: it is hard to find a non-zero vector in β⊺ = G

1×n2

1 such
that β⊺ •Γ2 = 01×k2

. This assumption is weaker that the hard-subset-membership assumption
we are using as finding such a vector enables to solve the subset-membership problem: to
check whether x2 ∈ L2, we check whether β⊺ • θ2 = 0. As our scheme is identical to the one
in [KW15, Section 3.1], we could also reduce soundness to this computational assumption.

For the sake of completeness, here is a sketch of the reduction. We define an adversary B
against this computational assumption as follows: it runs A and get a proof π⊺ for a word
x1 ∈ X1. Then it outputs

β⊺ := π⊺ α⊺ • (θ1(x1)⊗ Idn2
) .

Equations (3.9) and (3.10) directly imply that β⊺ • Γ2 = 01×k2
. Therefore, we just need to

prove that β⊺ 6= 01×n2
with probability at least 1− 1/p. For any word x2 ∈ X2 \L2, we have:

β⊺ • θ2(x2) = π⊺ • θ2 α⊺ • (θ1(x1)⊗ Idn2
) • θ2 = H′ H ,

with H′ and H defined as in the proof above, because (θ1(x1)⊗ Idn2
) • θ2 = θ1 ⊗ θ2. But as

x2 /∈ L2, smoothness ensures that H is uniformly random and H′ − H is 0 with probability
1/p. Thus β⊺ 6= 01×n2

with probability at least 1− 1/p.

3.4 More Examples

3.4.1 Matrix Decisional Diffie-Hellman Assumptions (MDDH)

In an independent work [EHK+13], Escala et al. introduced an algebraic framework for Diffie-
Hellman-like assumptions, over cyclic groups. They generalized the DDH assumption and
many of its variants (such as the DLin assumption, introduced by Boneh, Boyen, and Shacham
in [BBS04]), into the matrix decisional Diffie-Hellman (MDDH) family of assumptions.

Let us provide a slight generalization of the MDDH assumption to any graded ring of prime
order.

3.4 More Examples 81

Definition 3.4.1. Let G be a graded ring of prime order p. Let n and k be two positive
integers. Let ṽ be some index for this graded ring. Let D be a distribution of matrices in
Zn×k

p (samplable in polynomial time), the D-MDDH assumption (over Gṽ) states that the
two following distributions are computationally indistinguishable:

{

([A], [A · r]) | A $← D; r $← Zk
p

}

{

([A], [u]) | A $← D;u $← Zn
p

}

,

where [A] is the matrix ([ṽ, Ai,j])i=1,...,n
j=1,...,k

∈ Gṽ.

Concretely, for G a cyclic group (p,G, g), [A] is the matrix (gAi,j)i=1,...,n
j=1,...,k

.

We can define an associated KV-DVS V = (p,G,X ,L ,R, n, k,RGen,Γ,θ,λ) as follows:

• Setup.gpar(1K) generates the graded ring gpar := G for the security parameter K;

• Setup.lpar(gpar) generates and random matrix A $← D and outputs lpar := [A] ∈ G
n×k
ṽ

and ltrap = A;

• the matrix Γlpar is exactly the matrix [A] = lpar;

• the functions θ and λ are the identity functions;

• the language is defined by:

L := L̂ := {[u] | ∃r ∈ Zk
p, u = A · r} ⊆ G

n
ṽ =: X̂ =: X .

The D-MDDH assumption corresponds the hard-subset-membership property of the lan-
guage L , up to an additive term 1/p, as the probability that a uniform vector [u] $← G

n is
in L is at most 1/p. Furthermore, we can define an SPHF associated to this DVS, which
exactly corresponds to the SPHF in [EHK+13].

We should point out that, although the work of Escala et al. is similar to our work regarding
this construction of SPHF, we looked at the problem from two distinct perspectives and for
different goals. Escala et al. provide a deep and insightful analysis of MDDH assumptions,
their relations (for different distributions D), and ways to prove them easily in generic
(multilinear) group models. On the other hand, we are more interested in SPHFs for more
complex languages and their applications to the construction of NIZK for example. Many of
our constructions use a DVS associated to a hard-subset-membership language, which can be
instantiated with any secure MDDH assumption. This difference of point of view also explains
the difference of notation in the two works: in [EHK+13], all the discrete logarithms of the
elements appearing in the assumptions are known (by the algorithm generating an instance
of the MDDH assumption) and the use of the bracket notation ([A]) is extremely practical
in that case, while in our work, the elements we consider might come from somewhere else
(such as an ElGamal public key) and their discrete logarithms might not be known.

82 Chapter 3 Diverse Vector Spaces

3.4.2 Cramer-Shoup Encryption

Similarly to the language of ElGamal ciphertexts in Section 3.1.1.3, we can also consider
the language of Cramer-Shoup ciphertexts (see Section 2.2.2.3). Global parameters gpar :=
(p,G, g,H), while language parameters lpar := ek := (g1, g2, c, d, h) ∈ G5 consist of a Cramer-
Shoup encryption key. The language is and defined by:

L = {(ℓ,m, c = (u1, u2, v, w)) ∈ {0, 1}∗ ×M ×G2 | ∃r ∈ Zp,

(u1, u2, v, w) = (gr
1, g

r
2, h

r · G(m), (cdξ)
r
) with ξ = H(ℓ, u1, u2, v)} ,

where G is a reversible map from the message set M to G. We write M = G(m).

GL-DVS. Constructing a GL-DVS for this language is similar to constructing a DVS for the
language of ElGamal ciphertexts. We can construct such a DVS V = (p,G,X ,L ,R, n, k,
RGen,Γ,θ,λ) as follows:

n := 4 k := 1

Γ(x) :=

g1

g2

h
cdξ

θ(x) :=

u1

u2

v/M
w

λ(x ,w) := r ,

where x = (ℓ,m, (u1, u2, v, w)), w = r, and ξ = H(ℓ, u1, u2, v).
This DVS is a GL-DVS as Γ depends on ξ which itself depends on x .

Historical note 3.4.2. The resulting GL-SPHF was known since [KOY09; GL06]. However,
the KV-SPHF resulting from the following KV-DVS is much more recent and was proposed
in [BBC+13c]. Its discovery helped constructing the most efficient one-round PAKE at the
time.

KV-DVS. To get a KV-DVS, we need to find a way to make Γ independent of ξ. The idea
is to add a row and a column to Γ. We can construct a KV-DVS V = (p,G,X ,L ,R, n, k,
RGen,Γ,θ,λ) for the language of Cramer-Shoup ciphertexts as follows:

n := 5 k := 2

Γ :=

g1 0
0 g1

g2 0
h 0
c d

θ(x) :=

u1

uξ
1
u2

v/M
w

λ(x ,w) :=

(

r
rξ

)

,

where x = (ℓ,m, (u1, u2, v, w)), w = r, and ξ = H(ℓ, u1, u2, v). Soundness comes from the
fact that if θ = Γ • λ and u1 = gr

1, then necessarily λ = (r, rξ)⊺.

Validity of Cramer-Shoup ciphertexts. If we remove from the matrix Γ and the vector θ
the row corresponding to the elements h and v/M (respectively), the previous two DVSs just
check the validity of a Cramer-Shoup ciphertext, without looking at the exact plaintext.

3.4 More Examples 83

All our examples of DVSs for languages using ElGamal ciphertexts (such as Examples 3.1.3
and 3.1.4 and Section 3.4.3) can therefore just be extended to DVSs for the same languages
using Cramer-Shoup ciphertexts by doing the conjunction of these DVSs with the DVSs

used to check validity of Cramer-Shoup ciphertexts. In most cases, matrices can be slightly
optimized or compressed. We leave these optimizations to the reader.

3.4.3 Encryption of Plaintexts Satisfying a System of Quadratic Equations

To demonstrate the power of DVSs, let us show how to construct a KV-DVS for the encryption
of plaintexts satisfying a system of bilinear equations.

Example 3.4.3. The global parameters are gpar := (p,G1,G2,GT , g1, g2), an asymmetric
bilinear group of prime order p. The language parameters are lpar := (g1, h1, g2, h2, gT , hT) ∈
G2

1 × G2
2 × G2

T
where ek1 := (g1, h1), ek2 := (g2, h2), and ekT := (gT , hT) are three random

ElGamal encryption keys in G1, G2, and GT respectively. Let ν1, ν2, and νT be three
non-negative integers. We consider the language of tuples

• of ElGamal ciphertexts (cω,i := (uω,i, vω,i))i=1,...,νω
of plaintexts (Mω,i)i=1,...,νω

under
the encryption key ekω, for ω ∈ {1, 2, T},

• and of group elements (Aω,i)i=1,...,νω
∈ Gνω

ω for ω ∈ {1, 2} and B ∈ GT ,

• and of scalars (ai,j)i=1,...,ν1

j=1,...,ν2

∈ Zν1×ν2
p and (aT ,i)i=1,...,νT

∈ ZνT
p ,

such that the following equation is satisfied:

ν1
∏

i=1

e(M1,i, A2,i) ·
ν2
∏

j=1

e(A1,j ,M2,j) ·
ν1
∏

i=1

ν2
∏

j=1

e(M1,i,M2,j)ai,j ·
νT
∏

k=1

M
aT ,k

T ,k = B .

This equation can also be written:

(

ν1
∑∑∑

i=1

A2,i •M1,i

)

ν2
∑∑∑

j=1

A1,j •M2,j

ν1
∑∑∑

i=1

n2
∑∑∑

j=1

ai,j •M1,i •M2,j

(nT
∑∑∑

k=1

aT ,k •MT ,k

)

= B .

The witness w for such a word is the tuple of scalars

w := ((r1,i)i=1,...,ν1
, (r2,i)i=1,...,ν2

, (rT ,i)i=1,...,νT
) ,

such that uω,i = g
rω,i
ω and vω,i = h

rω,i
ω ·Mω,i, for ω ∈ {1, 2, T} and i ∈ {1, . . . , νω}.

The KV-DVS is defined as follows:

n := 5

k := 4

Γ :=

g1 • g2 0 0 0
0 g1 0 0
0 0 g2 0
0 0 0 gT

h1 • h2 h1 h2 hT

=

e(g1, g2) 0 0 0
0 g1 0 0
0 0 g2 0
0 0 0 gT

e(h1, h2) h1 h2 hT

84 Chapter 3 Diverse Vector Spaces

θ :=

∑∑∑

i

∑∑∑

j ai,j • u1,i • u2,j
(

∑∑∑

i

∑∑∑

j ai,j • u1,i • e2,j

)

(
∑∑∑

iA2,i • u1,i)
(

∑∑∑

i

∑∑∑

j ai,j • e1,i • u2,j

) (

∑∑∑

j A1,j • u2,j

)

∑∑∑

i aT ,i • uT ,i
(

∑∑∑

i

∑∑∑

j ai,j • e1,i • e2,j

)

(
∑∑∑

iA2,i • e1,i)
(

∑∑∑

j A1,j • e2,j

)

(
∑∑∑

k aT ,k • eT ,k) B

=

∏

i

∏

j e(u1,i, u2,j)ai,j

(

∏

i

∏

j e(u1,i, e2,j)ai,j

)

· (
∏

i e(u1,i, A2,i))
(

∏

i

∏

j e(e1,i, u2,j)ai,j

)

·
(

∏

j e(A1,j , u2,j)
)

∏

i u
aT ,i

T ,i
(

∏

i

∏

j e(e1,i, e2,j)ai,j

)

· (
∏

i e(e1,i, A2,i)) ·
(

∏

j e(A1,j , e2,j)
)

· (
∏

k e(aT ,k, eT ,k)) ·B−1

λ :=

−
∑

i

∑

j ai,j · r1,i · r2,j
(

∑∑∑

i

∑∑∑

j r1,i • ai,j • e2,j

)

(
∑∑∑

iA2,i • r1,i)
(

∑∑∑

i

∑∑∑

j r2,i • ai,j • e1,j

) (

∑∑∑

j A1,j • r2,j

)

∑

k rT ,k

=

−
∑

i

∑

j ai,j · r1,i · r2,j
(

∏

i

∏

j e
r1,i·ai,j

2,j

)

·
(

∏

iA
r1,i

2,i

)

(

∏

i

∏

j e
r2,i·ai,j

1,j

)

·
(

∏

j A
r2,j

1,j

)

∑

k rT ,k

.

Using this example and conjunctions, we can easily construct DVSs for languages of
encryptions of plaintexts satisfying a system of quadratic equations.

Other examples of DVSs can also be found in [BBC+13c].

Chapter 4
Diverse Modules

This chapter constitutes the core of this thesis. It formally describes diverse modules (DMs),
which are extensions of DVSs to modules over rings ZM instead of just vector spaces (or
modules) over finite fields Zp. Contrary to DVSs, DMs also handle languages based on
the quadratic residuosity (QR) assumption and the decisional composite residuosity (DCR)
assumption for example.

The direct construction of a PHF from a DM is not smooth but satisfies a slightly weaker
notion called universality we recall in the first section. Then, we formally define DMs.
Finally, similarly to what we did for DVSs, we show some ways to combine or enhance
DMs: conjunctions, disjunctions, and t-sound extensions. A t-sound DM yield a t-universal
projective hash function. The notion of t-universality was introduced by Cramer and Shoup
in [CS02] for t = 2 and has many applications, such as (t− 1)-time simulation-sound NIZK,
when combined with disjunctions.

Contents

4.1 Universality and Smoothness . 86

4.1.1 Motivation . 86

4.1.2 Universal Projective Hash Functions 86

4.1.3 Weakly Universal Projective Hash Functions 87

4.2 Diverse Modules (DMs) . 88

4.2.1 Graded Rings . 89

4.2.2 Diverse Modules, Universal PHFs, and Tools for Composite Order . . 92

4.2.3 Link with Diverse Groups . 102

4.3 Conjunctions and Disjunctions . 103

4.3.1 Conjunctions . 103

4.3.2 Disjunctions . 103

4.4 t-Universality, t-Smoothness, and t-Soundness 111

4.4.1 t-Universality and t-Smoothness . 112

4.4.2 t-Soundness . 114

4.4.3 Construction of t-Sound Tag-CS-DMs and Tag-CS-DVSs 115

— 85 —

86 Chapter 4 Diverse Modules

4.1 Universality and Smoothness

We first show why smoothness is too strong when working over cyclic groups of composite
order. Then, we introduce the notion of universality and show how to transform a universal
PHF into a smooth PHF.

4.1.1 Motivation

Let us consider again the DDH language L over a cyclic group (M,G, g) defined in Exam-
ple 2.3.1:

L = {(u, v) ∈ G2 | ∃r ∈ ZM , (u, v) = (gr, hr)} (G2 = X .

We now use the letter M to denote the order of the group G. We recall the classical SPHF

for this language:

hk := α⊺ $← Z1×2
M hp := γ⊺ := α⊺ ·

(

g
h

)

∈ G

H := α⊺ •

(

u
v

)

= uα1 · vα2 pH := γ⊺ • r .

This PHF is perfectly smooth when M = p is a prime number.
We may want to extend the previous construction to the case where M is a composite

number M = pq, with p and q being two distinct prime numbers. Unfortunately, in this case,
the SPHF is not smooth anymore: if x = (gp, h2p) /∈ L , the hash value of x is

H = α⊺ •

(

gp

h2p

)

= p •α⊺ •

(

g
h2

)

and lies in Gq the subgroup of G of order q. It is therefore not at all indistinguishable from a
uniform element in G.

However, we still remark that the value H is uniformly random in Gq, given hp. Thus it
has high min entropy. Universality captures this notion of high min entropy.

We could use a randomness extractor (see Section 2.2.3) to extract from H a uniformly
random string (when x /∈ L). The seed seed can just be put in the projection key hp. This
works perfectly with CS/GL smoothness, as in this case the seed is really independent from
the word x . But with KV smoothness, this is not necessarily the case and such extractor
does not work. Luckily, in many cases, universality is a sufficient property and no extraction
is required.

Historical note 4.1.1. In [CS02], smoothness was introduced after universality. In this
thesis, we introduce the two notions in the reverse order.

4.1.2 Universal Projective Hash Functions

4.1.2.1 Universality

Definition 4.1.2. A PHF (HashKG,ProjKG,Hash,ProjHash) for a language L ⊆ X is ε-
universal if for any lpar, any word x ∈ Xlpar \Llpar, any projection key hp, and any hash

4.1 Universality and Smoothness 87

value H ∈ Π, we have

Pr
[

Hash(hk, lpar, x) = H and ProjKG(hk, lpar, x) = hp | hk
$← HashKG(lpar)

]

≤ ε · Pr
[

ProjKG(hk, lpar, x) = hp | hk
$← HashKG(lpar)

]

.

It is universal if it is ε-universal with ε is negligible in K.

Another way to look at universality is to say that the PHF is 1/2k-universal if the hash
value Hash(hk, lpar, x) of a word x ∈ Xlpar \Llpar has min entropy at least k, conditioned on
ProjKG(hk, lpar) = hp. Intuitively, a PHF is universal if it is hard to guess the hash value of a
word x ∈ Xlpar \Llpar, given only the projection key hp.

4.1.2.2 Approximate Universality

As noted by Cramer and Shoup in [CS02], it is often practical to consider an approximate
version of universality.

Definition 4.1.3. A PHF (HashKG,ProjKG,Hash,ProjHash) and a PHF (HashKG′,ProjKG′,
Hash′,ProjHash′) (with algorithms not necessarily running in polynomial time) for the same
language L ⊆ X are said to be ε-close, if for any lpar, the following distributions are ε-close:

{

(ProjKG(hk, lpar, x),Hash(hk, lpar, x))
x ∈Xlpar

| hk
$← HashKG(lpar)

}

{

(ProjKG′(hk, lpar, x),Hash′(hk, lpar, x))
x ∈Xlpar

| hk
$← HashKG′(lpar)

}

,

where (·, ·)
x ∈Xlpar

is a tuple of |Xlpar| pairs (·, ·), one for each x ∈ Xlpar.

In this section, we do not require algorithms (HashKG′,ProjKG′,Hash′,ProjHash′) to run in
polynomial time.

Definition 4.1.4. A PHF (HashKG,ProjKG,Hash,ProjHash) for a language L ⊆ X is ε′-
close to be ε-universal, if there exists an ε-universal PHF (HashKG′,ProjKG′,Hash′,ProjHash′)
(with algorithms not necessarily running in polynomial time) that is ε′-close to the PHF

(HashKG,ProjKG,Hash,ProjHash). It is close to be universal or approximately universal if it
is ε′-close to be ε-universal with ε′ and ε negligible in K.

It should be noted that an PHF that is close to be universal is not necessarily universal, as
it is possible that for one of its projection keys, there is only one possible hash value for some
word x ∈ X \L . We remark that if a KV-SPHF (resp. CS-SPHF, GL-SPHF) is ε′-close to an
ε-smooth KV-SPHF (resp. CS-SPHF, GL-SPHF), then the former KV-SPHF (resp. CS-SPHF,
GL-SPHF) is (ε′ + ε)-smooth.

4.1.3 Weakly Universal Projective Hash Functions

While the SPHFs we construct from KV-DVSs over Zp can easily be proven 1/p-universal,
this is not the case of the ones we construct from GL-DVSs or CS-DVSs. Let us now consider
a weaker form of approximation which enables us to define weak versions of universal PHFs

corresponding to GL-SPHFs and CS-SPHFs.

88 Chapter 4 Diverse Modules

4.1.3.1 Weakly Approximate Universality

Definition 4.1.5. A PHF (HashKG,ProjKG,Hash,ProjHash) and a PHF (HashKG′,ProjKG′,
Hash′,ProjHash′) (with algorithms not necessarily running in polynomial time) for the same
language L ⊆ X are said to be ε-weakly-close, if for any lpar, for any x ∈ Xlpar, the following
distributions are ε-close:

{

(ProjKG(hk, lpar, x),Hash(hk, lpar, x)) | hk
$← HashKG(lpar)

}

{

(ProjKG′(hk, lpar, x),Hash′(hk, lpar, x)) | hk
$← HashKG′(lpar)

}

.

Definition 4.1.6. A PHF (HashKG,ProjKG,Hash,ProjHash) for a language L ⊆ X is ε′-
weakly-close to be ε-universal, if there exists an ε-universal PHF (HashKG′,ProjKG′,Hash′,
ProjHash′) (with algorithms not necessarily running in polynomial time) that is ε′-weakly-close
to the PHF (HashKG,ProjKG,Hash,ProjHash). It is weakly close to be universal or weakly
approximately universal if it is ε′-weakly-close to be ε-universal with ε′ and ε negligible in K.

We remark that if a CS-SPHF (resp. GL-SPHF) is ε′-weakly-close to an ε-smooth CS-SPHF

(resp. GL-SPHF), then the former CS-SPHF (resp. GL-SPHF) is (ε′ + ε)-smooth. However,
this is not true with KV-SPHFs.

4.1.3.2 Weakly Approximate Universality and GL/CS Smoothness

A weakly approximate universal PHF can be transformed into a GL/CS-smooth PHF. We
recall that this does not work for KV smoothness. More precisely, we have the following
proposition.

Proposition 4.1.7. Let (HashKG,ProjKG,Hash,ProjHash) be an ε′-weakly-close to be ε-uni-
versal PHF. Let β = − log2 ε. Let m be a positive integer. Let Ext be the extractor defined
in Theorem 2.2.10. Let us define a PHF (HashKG′,ProjKG′,Hash′,ProjHash′) with range
Π′ = {0, 1}m as follows:

• HashKG′(lpar) generates a hashing key hk
$← HashKG(lpar) and a seed seed

$← Ext, and
outputs the new hashing key hk′ := (hk, seed);

• ProjKG′(hk′, lpar) computes the projection key hp ← ProjKG(hk) and outputs the new
projection key hp′ := (hp, seed);

• Hash′(hk′, lpar, x) computes the hash value H← Hash(hk, lpar, x) and outputs the new
hash value H′ := Ext(seed,H);

• ProjHash′(hp′, lpar, x ,w) computes the projected hash value pH ← ProjHash(hp, lpar,
x ,w) and outputs the new projected hash value pH′ := Ext(seed, pH).

Then, this new PHF is (ε′ + 2(m−β)/2)-GL/CS-smooth.

Proof. The proof is immediate from Theorem 2.2.10.

4.2 Diverse Modules (DMs)

Before introducing diverse modules, let us first formally define graded rings which were
sketched in Section 3.1.2.1.

4.2 Diverse Modules (DMs) 89

4.2.1 Graded Rings

Graded rings are a generalization of cyclic and bilinear groups and can be used as a prac-
tical abstraction of multilinear maps coming from the framework of Garg, Gentry and
Halevi [GGH13] and subsequent candidates [CLT13; CLT15; GGH15]. We should however
warn the reader that, unfortunately when this thesis was written, due to many attacks [GGH13;
CHL+15; CGH+15; HJ15; MF15; CLR15; Mar16], no current candidate multilinear map
seems to be useful for applications of hash proof systems, as such applications generally rely
on assumptions in the base groups and require encodings of 0. Understanding what ideal
multilinear maps can bring us is still an interesting theoretical question.

Furthermore, graded rings are useful even just to deal with cyclic groups, bilinear groups,
and groups arising from factorization-based assumptions (e.g., DCR and QR), as they enable
to simplify notation.

4.2.1.1 Set of Indexes

A set of indexes Λ is a finite subset of Nτ of the form {0, . . . , κ1} × · · · × {0, . . . , κτ}, where
τ, κ1, . . . , κτ are positive integers. In addition to considering the addition law + over Λ, we
also consider Λ as a bounded lattice, with the two following laws:

sup(ṽ, ṽ′) = (max(ṽ1, ṽ
′
1), . . . ,max(ṽτ , ṽ

′
τ)) inf(ṽ, ṽ′) = (min(ṽ1, ṽ

′
1), . . . ,min(ṽτ , ṽ

′
τ)).

We also write ṽ < ṽ′ (resp. ṽ ≤ ṽ′) if and only if for all i ∈ {1, . . . , τ}, ṽi < ṽ
′
i (resp. ṽi ≤ ṽ

′
i).

Let 0̄ = (0, . . . , 0) and ⊤ = (κ, . . . , κ), be the minimal and maximal elements.

4.2.1.2 Graded Rings

The (κ, τ)-graded ring over a finite commutative ring R is the set G = Λ×R = {[ṽ, x] | ṽ ∈
Λ, x ∈ R}, where Λ = {0, . . . , κ}τ , with two binary operations (, •) defined as follows:

• for every u1 = [ṽ1, x1], u2 = [ṽ2, x2] ∈ G: u1 u2 := [sup(ṽ1, ṽ2), x1 + x2];

• for every u1 = [ṽ1, x1], u2 = [ṽ2, x2] ∈ G: u1 • u2 := [ṽ1 + ṽ2, x1 · x2] if ṽ1 + ṽ2 ∈ Λ, or
⊥ otherwise, where ⊥ means the operation is undefined and cannot be done.

We remark that • is only a partial binary operation and we use the following convention:
⊥ u = u ⊥ = u • ⊥ = ⊥ • u = ⊥, for any u ∈ G ∪ {⊥}. Let Gṽ be the additive group
{u = [ṽ′, x] ∈ G | ṽ′ = ṽ} of graded ring elements of index ṽ.

Both and • are associative and commutative, over G ∪ {⊥}. More precisely, for any
u1, u2, u3 ∈ G∪{⊥}: u1 (u2 u3) = (u1 u2) u3, u1•(u2•u3) = (u1•u2)•u3, u1 u2 = u2 u1,
and u1 • u2 = u2 • u1. In particular, if u1 • (u2 • u3) 6= ⊥ (i.e., if this expression is well-
defined), then (u1 • u2) • u3 6= ⊥. In addition, the operation • is distributive over : for any
u1, u2, u3 ∈ G ∪ {⊥}, u1 • (u2 u3) = u1 • u2 u1 • u3.

We call elements of index 0̄ scalars and we write G0̄ the ring of scalars.
Thanks to the previous properties, we can make natural use of vector and matrix operations

over graded ring elements. In particular, we say that G
n and G

1×n are modules over the
graded ring G. The canonical basis (ei)

n
i=1 of Gn is defined as usual, except the vectors of

the canonical basis are of index 0̄ (i.e., are scalars).

90 Chapter 4 Diverse Modules

4.2.1.3 Sub-Graded Rings and Multiplicative Compatibility

A sub-graded ring of a Λ-graded ring G is a subset G≤ṽ = {u = [ṽ′, x] ∈ G | ṽ′ ≤ ṽ} of G,
where ṽ ∈ Λ. A sub-graded ring is itself a graded ring. Two sub-graded ring G1 = G≤ṽ1

and
G2 = G≤ṽ2

are said to be multiplicatively compatible if ṽ1 + ṽ2 ∈ Λ, or in other words, if it is
possible to multiply any element of G≤ṽ1

by an element of G≤ṽ2
.

4.2.1.4 Restrictions and Computational Assumptions

Representation. As usual, when we are referring to a graded ring, we are implicitly referring
to a family of graded rings indexed by the security parameter K. We suppose that graded
ring elements (including elements of the base ring R) can be represented by bit strings of
size polynomial in K, and that the size of the index set Λ if also polynomial in K.

We suppose that non-scalars have a unique representation. This makes notation simpler.
In case of non-unique representation, all our constructions can be adapted, as soon as we have
a way to randomize the representation and to extract a canonical representation (from which
addition and multiplication might not be allowed), as in current candidates for multilinear
maps [GGH13].

To handle cases where the order of the base ring is not known, we allow scalars to have
non-unique representations. Furthermore the size of their representations might increase
when addition and multiplication are performed. Details are given later.

Ring R = ZM . We also restrict ourselves to the case where R is of the form ZM with M ≥ 2
being some positive integer, as we have not found any graded ring over a more general base
ring that might be useful for PHFs in cryptography.

Computational assumptions. Let G be a graded ring over the base ring R = ZM and
let gpar be global parameters containing a description of G (later, we will often just write
gpar = G). The following operations are supposed to be polynomial in K:

• testing the membership to G,

• computing the index of an element (the representation might simply contain the index
of the element);

• addition and multiplication of two graded ring elements;

• computation of the elements [ṽ, 0], [ṽ, 1], and [ṽ,−1] for any index ṽ;1

• generation of random scalars (elements of index 0̄). We denote by GenScalar a
polynomial-time algorithm taking as input the parameters gpar defining the graded ring
and outputting a random scalar. The algorithm GenScalar is εGenScalar-almost-uniform,
if two following distributions are εGenScalar-close:

{

u $← GenScalar(gpar)
} {

u $← R
}

.

1We remark that this might not always be possible with some multilinear map candidates. As currently,
no candidate can be used for our construction, we do not investigate this issue more precisely, and we
consider ideal multilinear maps where these elements can be generated efficiently.

4.2 Diverse Modules (DMs) 91

We suppose that GenScalar is almost uniform, i.e., it is εGenScalar-uniform with εGenScalar

negligible in K. We denote by GenScalark×n the polynomial-time algorithm which takes

as input the global parameters gpar and generate a matrix A ∈ G0̄
k×n, by generating

each coefficient Ai,j independently as follows: Ai,j
$← GenScalar(gpar).

We do not require the order M of the ring R to be efficiently computable, although it
has to be finite (and at most exponential in K). Similarly, in general, we do not require the
inversion of scalars to be feasible in polynomial time. However, when we consider prime-order
graded rings, we always suppose that the order M = p is known.

4.2.1.5 Examples of Graded Rings

Cyclic groups and bilinear groups of prime order. Let us now show that cyclic groups and
bilinear groups of prime order p can be seen as graded rings over R = Zp:

Cyclic groups: Λ := {0, 1}. More precisely, elements [0, x] of index 0 correspond to scalars
x ∈ Zp and elements [1, x] of index 1 correspond to group elements gx ∈ G.

Asymmetric bilinear groups (p,G1,G2,GT , e, g1, g2): Λ := {0, 1}2. More precisely, we can
consider the following map: [(0, 0), x] corresponds to x ∈ Zp, [(1, 0), x] corresponds to
gx

1 ∈ G1, [(0, 1), x] corresponds to gx
2 ∈ G2 and [(1, 1), x] corresponds to e(g1, g2)x ∈ GT .

The two non-trivial sub-graded rings of this bilinear group are G≤(1,0) and G≤(0,1).
These two sub-graded rings are multiplicatively compatible, since (1, 0) + (0, 1) = (1, 1).
By abuse of notation, we often call these sub-graded rings: G1 and G2.

Symmetric bilinear groups (p,G,GT , e, g): Λ := {0, 1, 2}. More precisely, we can consider
the following map: [0, x] corresponds to x ∈ Zp, [1, x] corresponds to gx ∈ G, and [2, x]
corresponds to e(g, g)x ∈ GT .

The non-trivial sub-graded ring of this bilinear group is G≤1. This sub-graded ring is
multiplicatively compatible with itself, since 1 + 1 = 2. By abuse of notation, we often
call this sub-graded ring: G.

Cyclic groups and bilinear groups of composite order. Everything before can be extended
to the case of composite order cyclic group and bilinear groups, as used for example in the
BGN cryptosystem [BGN05].

Factorization-based groups. Let us now show two examples where the group order is hard
to compute.

Example 4.2.1 (JN). Let N = pq be a (public) modulus, with p and q two distinct (secret)
safe prime numbers, i.e., such that there exists two odd primes p′ and q′ such that p = 2p′ + 1
and q = 2q′ + 1. Unfortunately the multiplicative group Z∗

N is not cyclic and it seems hard to
add a graded ring structure to it.

Instead, we consider JN the subgroup of Z∗
N containing the elements of Jacobi symbol 1.

It is well known that this is a cyclic group of order M = 2N ′ where N ′ = p′q′. We can
then add a structure of graded ring over it like on classic cyclic groups, with Λ = {0, 1} and
R = ZM = Z2N ′. The only difference is that computing the order M and inverting a scalar
is hard, when p and q are not known.

92 Chapter 4 Diverse Modules

Elements of index ⊤ can be represented directly and uniquely by elements in JN : concretely,
if g is a generator of JN , we can represent [⊤, x] by gx ∈ JN . The difficulty is to represents
scalars G0̄ ≈ ZM . The naive way would be to represent them as elements of {0, . . . ,M − 1}.
The problem is that we do not necessarily know M , and M is hard to compute without knowing
the factorization of N . For this graded ring, we therefore use non-unique representation,
and represents a scalar by an integer not necessarily in {0, . . . ,M − 1}. Operations on
scalars correspond to operations on integers without reduction modulo M , so the size of the
representation is not a priori bounded. But in all our applications, this does not matter, as
only a constant number of operations are done over scalars. Some care should be taken when
such an integer is revealed, as this not only reveal its real value (modulo M) but also leak
some information about the previous operations. That is why, we often require that no scalars
are public (e.g., in a projection key).

Generating a random scalar (in ZM = Z2p′q′) can be done by picking uniformly at random
an integer x in {0, . . . , ⌊N/2⌋}. The distribution of x mod M is (1/2 · (1/p′ + 1/q′))-close to
be uniform, using Proposition 2.1.7, as ⌊N/2⌋ = 2p′q′ + p′ + q′.

Example 4.2.2 (J′
N2). Similarly to Example 4.2.1, we can also consider the group J′

N2 , the
subgroup of Z∗

N2 of elements x such that x mod N has Jacobi symbol 1. This is also a cyclic
group and its order is 2NN ′.

Historical note 4.2.3. Graded rings were first introduced in [BBC+13c]. However, before
this thesis, graded rings were always considered over a finite field R = Zp, similarly to what
we did in Chapter 3.

4.2.2 Diverse Modules, Universal PHFs, and Tools for Composite Order

4.2.2.1 Definition

A diverse module (DM) is defined similarly to a diverse vector space (DVS) except we consider
general graded rings over R = ZM , instead of graded rings over R = Zp with p being a prime
number. More formally, we have the following definition.

Definition 4.2.4. A diverse module (DM) is defined by a tuple M = (Mgpar, ,Ggpar, (Xlpar,
Llpar,Rlpar, nlpar, klpar,RGen,Γlpar,θlpar,λlpar)lpar

)
gpar

satisfying the same properties as a DVS

in Definition 3.1.7, except the graded ring is no more supposed to be over a finite field Zp but
instead is over ZM . Furthermore, in case of non-unique representation of scalars, we suppose
that no coordinate of Γlpar(x , ρ) has index 0̄.

The restriction on the coordinates of Γlpar(x , ρ) in case of non-unique representation of
scalars is just to ensure that the projection key (in the PHF construction) will not yield more
information than what it would in case of unique representation. Concretely, with the graded
ring JN defined in Example 4.2.1, if Γlpar(x , ρ) only contained scalars, the projection key of
the constructed PHF would contain γ⊺ = α⊺ • Γlpar(x , ρ) a scalar row vector (where α⊺ is
also a scalar row vector), which may reveal too much information on α⊺ if this is not reduced
modulo M . This restriction can be lifted, if we have a way to randomize the representations
of scalars, as in [GGH13].

We define GL diverse modules (GL-DMs), CS diverse modules (CS-DMs), and KV diverse
modules (KV-DMs), similarly to GL-DVSs, CS-DVSs, and KV-DVSs (see Section 3.1.2.3).

4.2 Diverse Modules (DMs) 93

4.2.2.2 The PHF associated to a DM

This is similar to the construction of a SPHF from a DVS (Construction 3.1.10) with several
differences:

• scalars are no more in Zp and generating a uniform scalar might not be perfect and
needs to be done with GenScalar;

• the resulting PHF is not necessarily smooth but only (weakly-)close to be universal;

• the row vector α⊺ ∈ Z1×n
p is extended into a matrix α⊺ ∈ Zm×n

M : in the previous
construction, α⊺ defined a (random) linear map from Zn

p to Zp, and now it defines
a (random) linear map from Zn

M to Zm
M ; this helps to make the universality error

probability negligible in K, when M contains a small prime factor p, as in that case,
even when the DM is perfectly sound, the resulting PHF is only (1/pm)-universal. This
extension could have been used with DVS but is often just completely useless in that
case, as 1/p is already negligible in K;

• and finally, the proofs are more involved as modules are much more complicated to
deal with than vector spaces.

More formally, we have the following construction.

Construction 4.2.5 (PHF from DM). Let M = (M,G,X ,L ,R, n, k,RGen,Γ,θ,λ) be a
DM. Let m be a positive integer. Then we construct a PHF as follows:

• HashKG(lpar) picks a random matrix α⊺ $← GenScalarm×n(gpar), generates a random

element ρ $← RGen(lpar), and outputs the hashing key hk := (α⊺, ρ);

• ProjKG(hk, lpar, x) outputs the projection key hp := (γ⊺, ρ), where hk = (α⊺, ρ) and

γ⊺ := α⊺ • Γlpar(x , ρ) ∈ G
m×k ;

• Hash(hk, lpar, x) outputs the hash value

H := α⊺ • θlpar(x , ρ) ∈ G
m ,

where hk = (α⊺, ρ);

• ProjHash(hp, lpar, x ,w) outputs the projected hash value

pH := α⊺ • λlpar(x ,w , ρ) ∈ G
m .

When p is a prime number, m = 1, and GenScalar uniformly samples an element from Zp,
we get exactly Construction 3.1.10.

We have the following security results.

Theorem 4.2.6 (weakly approximately universal PHF from GL-DM). Let M = (M,G,X ,
L ,R, n, k,RGen,Γ,θ,λ) be an ε-sound GL-DM with a εGenScalar-almost-uniform algorithm
GenScalar. Let p be the smallest prime factor of M . Then the PHF described in Construc-
tion 4.2.5 is (mnεGenScalar + ε)-weakly-close to be (1/pm)-universal. In particular if M is

sound, GenScalar almost uniform, and 1/pm is negligible in K, then the resulting PHF is
weakly approximately universal.

94 Chapter 4 Diverse Modules

Theorem 4.2.7 (approximately universal PHF from KV-DM). Let M = (M,G,X ,L ,R,
n, k,RGen,Γ,θ,λ) be a perfectly sound KV-DM with an εGenScalar-almost-uniform algorithm
GenScalar. Let p be the smallest prime factor of M . Then the PHF described in Construc-
tion 4.2.5 is (mnεGenScalar)-close to be (1/pm)-universal. In particular if εGenScalar almost

uniform and 1/pm is negligible in K, then the resulting PHF is approximately universal.

When M = p is a prime, the proofs of Theorem 4.2.6 and Theorem 4.2.7 are similar to the
proofs of Theorem 3.1.11. But when M is a composite number, this is not anymore the case.

4.2.2.3 Tools for Composite Order

Let us introduce some useful tools to deal with ZM when M ≥ 2 is a composite number.

Chinese remainder theorem (CRT). Let M ≥ 2 be a positive integer and M = pe1

1 · · · p
er
r

be its prime decomposition. The Chinese remainder theorem (CRT) helps us to move from
ZM to Zp

ei
i

. Let us recall a special case of this theorem.

Theorem 4.2.8 (CRT). Let M ≥ 2 be a positive integer and M = pe1

1 · · · p
er
r be its prime

decomposition. Then, the following map:

φ :

(

ZM → Zp
e1
1
× · · · × Zper

r

x 7→ φ(x) = (x mod pe1

1 , . . . , x mod per
r)

)

is a ring isomorphism. Its inverse φ−1 is denoted crt and defined by:

crt :

Zp
e1
1
× · · · × Zper

r
→ ZM

(x1, . . . , xr) 7→ crt(x1, . . . , xr) =
r
∑

i=1

xi ·
M

pei

i

·

(

M

pei

i

)−1

mod pei

i

.

We extend the notation crt(x1, . . . , xr) to vectors or matrices: if M1, . . . , Mr are matrices
in Zk×n

p
e1
1

, . . . , Zk×n
per

r
respectively, then crt(M1, . . . ,Mr) is the matrix M such that Mi,j =

crt(M1,i,j , . . . ,Mr,i,j).

Valuation. Let us define the notion of valuation.

Definition 4.2.9. Let p be a prime number and e be a positive integer. Let M = pe.
The valuation ν(x) of an element x ∈ ZM is the smallest non-negative integer k such that
x mod pk = 0.

We remark that 0 ≤ ν(x) ≤ e, and ν(x) = 0 if and only if x is invertible, while ν(x) = e if
and only if x = 0 (in ZM). Furthermore, if x and y are two elements in ZM , then

ν(x · y) = ν(x) + ν(y) .

Intuitively, the valuation ν(x) indicates “how much x is invertible”.
More precisely, we have the following lemma.

Lemma 4.2.10 (division modulo prime power). Let p be a prime number and e a positive
integer. Let M = pe. Let x and y be two elements in ZM . If ν(x) ≥ ν(y), there exists an
element z ∈ ZM such that z · y = x.

4.2 Diverse Modules (DMs) 95

Proof. Let us first prove the existence of z. We first remark that y/pν(y) (defined as an
integer, for example by looking at a representation of y in {0, . . . ,M − 1}) is invertible in
ZM . Let ỹ be the inverse of y/pν(y). Then, we can set z := (x/pν(y)) · ỹ, where x/pν(y) is well
defined as ν(x) ≥ ν(y). We indeed have:

z · y = (x/pν(y)) · ỹ · y = x ·
(

ỹ · (y/pν(y))
)

.

Existence of solutions to a particular system. For the proof of universality, we also use
the following proposition.

Proposition 4.2.11. Let p be a prime number, and e, n, and k be positive integers. Let
M = pe. Let A ∈ Zk×n

M be a matrix. Let b⊺ ∈ Z1×n
M be a row vector. If b⊺ is linearly

independent of the rows of the matrix A, then there exists a vector x ∈ Zn
M such that:

{

A · x = 0k

b⊺ · x = pe−1
,

or in other words:

(

A
b⊺

)

· x =

0
...
0

pe−1

.

Proof. Let Ā ∈ Z
(k+1)×n
M be the matrix:

Ā :=

(

A
b⊺

)

.

From a high level point of view, the proof consists in applying Gaussian elimination to the
matrix Ā, in which at each step we take the coefficient with the smallest valuation as pivot,
as in [Jou09, Section 3.3.3.1].

Formally, we do a proof by induction on k.

• Base case: k = 0. We just need that for any non-zero row vector b⊺ ∈ Z1×n
M , there

exists a column vector x ∈ Zn
M such that b⊺ · x = pe−1. Let us choose j∗ ∈ {1, . . . , n}

such that bj∗ 6= 0. Let c ∈ ZM be an arbitrary element such that bj∗ · c = pe−1. Such an
element exists according to Lemma 4.2.10, as ν(bj∗) ≤ e− 1 = ν(pe−1), because bj∗ 6= 0.
We can then construct a vector x ∈ Zn

M as follows: xj := 0 for j 6= j∗, and xj∗ := c.

• Induction case: k ≥ 1. We have two cases:

1. There exists an index j∗ such that the valuation ν(bj∗) is strictly smaller than
the valuations of all the entries of A: for all i ∈ {1, . . . , k} and j ∈ {1, . . . , n},
ν(Ai,j) ≥ ν(bj∗) + 1. In this case, let c ∈ ZM be an arbitrary element such that
bj∗ · c = pe−1 and let x ∈ Zn

M be the vector defined as follows: xj := 0 for j 6= j∗,
and xj∗ := c. We clearly have b⊺ · x = pe−1. To conclude this case, we just need
to prove that A · x = 0, or in other words that Ai,j∗ · c = 0, for any i ∈ {1, . . . , k}.
The latter equality comes from the fact that

ν(Ai,j∗ ·c) = ν(Ai,j∗)+ν(c) ≥ (ν(bj∗) + 1)+ν(c) = 1+ν(bj∗ ·c) = 1+ν(pe−1) = e .

96 Chapter 4 Diverse Modules

2. There does not exists such an index j∗. In this case, we arbitrarily take two indices
i∗ and j∗ such that the valuation of Ai∗,j∗ is minimum, among the valuations of all
the entries Ai,j of A, and therefore also over all the entries Āi,j of Ā. We transform
the matrix Ā as follows: for each i 6= i∗, we add to the i-th row of Ā the i∗-th
row of Ā multiplied by an arbitrary element ci ∈ ZM such that Ai∗,j∗ · ci = −Ai,j∗

(such an element exists thanks to Lemma 4.2.10). We also permute the i∗-row
with the first one, and the j∗-column with the first one. We write the resulting
matrix as follows:

Ā′ =

d e⊺

0

A
′′...

0
0 b′′⊺

with

d = Ai∗,j∗ ∈ ZM ,

e⊺ = (Ai∗,j)j∈{1,...,n}\{j∗}
⊺ ∈ Z

1×(n−1)
M ,

A′′ ∈ Z
(k−1)×(n−1)
M ,

b′′⊺ ∈ Z
1×(n−1)
M .

By induction hypothesis, there exists a column vector x′′ ∈ Zn−1
M such that

A′′ · x′′ = 0 and b′′⊺ · x′′ = pe−1. Let c be an arbitrary element c ∈ ZM such
that d · c = −e⊺ · x′′. Such an element exists according to Lemma 4.2.10, as the
valuation of d = Ai∗,j∗ is not larger than the valuation of ej for any j (by choice
of i∗ and j∗), and therefore it is not larger than the valuation of e⊺ · x′′. We can
then define

x′ =

(

c
x′′

)

∈ Zn
M .

We have

Ā′ · x′ =

0
...
0

pe−1

.

We can finally construct x ∈ Zn
M which corresponds to x′ with the first coordinate

and the j∗-th coordinate permuted. Since the row operations done on the matrix Ā
to obtain Ā′ can be undone by subtracting to the i-th row, the i∗-th row multiplied
by ci (for i 6= i∗), we have:

Ā · x =

0
...
0

pe−1

.

This concludes the proof of this case.

This concludes the proof.

Invertibility. Let us now introduce a convenient lemma that we do not use in the security
proof of Theorems 4.2.6 and 4.2.7, but that is useful in other contexts.

Lemma 4.2.12. Let M ≥ 2 be a positive integer. Let x ∈ ZM . The element x is invertible
in ZM if and only if, for any prime factor p dividing M , it is invertible modulo p.

4.2 Diverse Modules (DMs) 97

Proof. Let M = pe1

1 · · · p
er
r be the prime decomposition of M . The CRT theorem ensures that

if x is invertible in ZM , then it is invertible modulo pei

i for all i ∈ {1, . . . , r}, and thus also
modulo p for any prime factor p dividing M .

Conversely, let us suppose that x is invertible modulo p for any prime factor p of M . Using
the CRT theorem, we just need to prove the case where M is a prime power M = pe. This is
done by remarking that x is invertible modulo p if and only if it is coprime with p, which is
equivalent to being coprime with pe and therefore also to being invertible modulo pe.

Existence of specific vectors in kernel. Let us conclude with a proposition that we do not
use in the security proof of Theorems 4.2.6 and 4.2.7 but that is useful later. Furthermore, it
uses the same proof techniques as for Proposition 4.2.11.

Proposition 4.2.13. Let M ≥ 2 be a positive integer. Let A ∈ Zk×n
M be a matrix, with

k > n. There exists a vector x ∈ ZM such that one of its entries is invertible modulo M .
Then there exists a vector x ∈ Zn

M and an integer j ∈ {1, . . . , n}, such that A · x = 0 and xj

is invertible in ZM .

Proof. We start by remarking that thanks to the CRT (Theorem 4.2.8), we just need to
prove the theorem in the case where M is a power of a prime number: M = pe, where p is a
prime number and e is a positive integer. As for the proof of Proposition 4.2.11, from a high
level point of view, the proof consists in applying Gaussian elimination to the matrix Ā, in
which at each step we take the coefficient with the smallest valuation as pivot, as in [Jou09,
Section 3.3.3.1].

Let us now prove the proposition by induction on n.

• Base case: n = 1. The matrix A is just a row vector of at least 2 entries. We consider
two cases:

1. There exists an index j∗ such that A1,j∗ = 0. In this case, we can construct
x ∈ Zn

M as follows: xj := 0 for j 6= j∗, and xj∗ = 1.

2. Otherwise, we arbitrarily take an index j∗ such that the valuation ν(A1,j∗) is
minimum among the valuations of all the entries of A. Let j′ be another distinct
index and let c ∈ ZM be an arbitrary element such that A1,j′ = c · A1,j∗ . Then,
we can construct a vector x as follows: xj := 0 for j 6= j∗, j′, xj′ = 1, xj′ = 1, and
xj∗ = −c.

• Induction case: n ≥ 1. We arbitrarily take two indices i∗ and j∗ such that the valuation
ν(Ai∗,j∗) is minimum among the valuations of all the entries of A. We then transform
the matrix A similarly to what was done in the second case of the induction case of the
proof of Proposition 4.2.11 and conclude in a similar way. Basically, after permuting the
i∗-column and the first one, and after doing some invertible elementary row operations,
we get a matrix of the form:

A′ =

d e⊺

0

A
′′...

0

with

d = Ai∗,j∗ ∈ ZM ,

e⊺ = (Ai∗,j)j∈{1,...,n}\{j∗}
⊺ ∈ Z

1×(n−1)
M ,

A′′ ∈ Z
(k−1)×(n−1)
M .

We then use the induction hypothesis to construct a vector x′′ ∈ Zn−1
M such that

A′′ ·x′′ = 0 and at least one of the entry of this vector x′′ is invertible in ZM . Let c be

98 Chapter 4 Diverse Modules

an arbitrary element c ∈ ZM such that d ·c = −e⊺ ·x′′. Such an element exists according
to Lemma 4.2.10, as the valuation of d = Ai∗,j∗ is not larger than the valuation of ej

for any j (by choice of i∗ and j∗), and therefore it is not larger than the valuation of
e⊺ · x′′. We can then define

x′ =

(

c
x′′

)

∈ Zn
M .

We have A′ · x′ = 0. We can finally construct x ∈ Zn
M which corresponds to x′ with

the first coordinate and the j∗-th coordinate permuted.

This concludes the proof.

4.2.2.4 Security Proofs

Let us now prove Theorems 4.2.6 and 4.2.7. The first idea of the proof is to decompose the
order M into its factors pei

i and reduce the proof to the case where M is a prime power:
M = pei

i . Then, we follow the proof of Theorem 3.1.11, with one big difference: in the latter
proof, we need at some point to find a particular solution x∗⊺ to some linear system, namely
x∗⊺ • Γ = 0 and x∗⊺ • θ = “something”, with θ linearly independent of columns of Γ. When
we are over a field Zp (as in Theorem 3.1.11), it is easy to prove that such a solution always
exists. Here, however, we are over a ring of the form Zpe and we need to be very careful
about the “something” (namely, choose “something” to be pe−1) and use Proposition 4.2.11.

For the reader familiar with diverse groups, we give some additional intuition to this proof
in Section 4.2.3.

Proof of Theorem 4.2.6. Perfect correctness is proven exactly as for DVS (Theorem 3.1.11).
Let us now prove smoothness. Until the end of the proof, we are only looking at the discrete
logarithms of all the group elements we are considering. In particular, we suppose that all
the entries of our vectors and matrices are scalars in ZM .

Let us suppose that ρ is such that θ = θ(x , ρ) is linearly independent of the columns of
Γ = Γ(x , ρ), which happens with probability at least 1 − ε, by ε-soundness of the DVS V.
Furthermore, let us assume that α⊺ is sampled uniformly in Zm×n

M .
Let us now prove that, for any given projection key hp, the hash value H is uniform in some

set containing at least pm elements. This will prove that the PHF is (mnεGenScalar +2ε)-weakly-
close to be (1/pm)-universal, thanks to Proposition 2.1.6 and to εGenScalar-almost-uniformity
of GenScalar, which ensures that α⊺ $← Zm×n

M is (mnεGenScalar)-statistically-indistinguishable
from α⊺ $← GenScalarm×n(gpar).

Finally, we remark that we can focus on the case m = 1. The general case m ≥ 1 will
directly follow, as the rows of α⊺ are independent, and so are the coefficients of the vector
H = α⊺ • θ.

Case: M = p is a prime. Let us start with this simple case. We have M = p = p. We can
conclude the proof exactly as in the proof of Theorem 3.1.11: for any given projection key
hp, H is a uniformly random in Zp = Zp (a set of size at least p) given only hp.

Case: M = pe is a power of a prime e. The proof of Theorem 3.1.11 does not work anymore
directly. Actually, H might not be uniformly random in Zpe at all. For example, if the
valuation of all the coordinates of θ is e− 1, then the valuation of H is necessarily e− 1 or
e. We remark that there is basically only one problematic step: the existence of a vector

4.2 Diverse Modules (DMs) 99

x∗⊺ ∈ Z1×n
p satisfying x∗⊺ • Γ = 0 and x∗⊺ • θ = H α⊺ • θ, for some vector α⊺. Fortunately,

we can fix this step using Proposition 4.2.11.
Formally, let e∗ be the minimum non-negative integer such that there exists a vector

x⊺ ∈ Z1×n
p such that x⊺ • Γ = 0 and x⊺ • θ = pe∗

. Proposition 4.2.11 ensures that e∗ ≤ e− 1,
as θ /∈ ColSpan (Γ).

Let us now follow the proof of Theorem 3.1.11, and adapt it to our case. Let us fix a row
vector α⊺ ∈ Z1×k

p and its associated row vector γ⊺ = α⊺ • Γ. Let us prove that the hash
value H is uniform in the set

S′
γ⊺ = {H′ ∈ ZM | ν(H′ α⊺ • θ) ≥ e∗} .

First, let us show that a hash value H corresponding to γ⊺ is necessary in this set. By
contradiction, if this is not the case, there exists α′⊺ ∈ Z1×k

p such that:

{

α′⊺ • Γ = γ⊺ = α⊺ • Γ

e′ := ν(α′⊺ • θ α⊺ • θ) < e∗

Let x′⊺ = α′⊺ − α⊺ and let c be such that c • (x′⊺ • θ) = pe′

, which exists thanks to
Lemma 4.2.10 and to the fact that ν(x′⊺ • θ) = e′ = ν(pe′

). Finally, we get that x⊺ := c • x⊺

is such that x⊺ • Γ = 0 and x⊺ • θ = pe′

with e′ < e∗, which is impossible by choice of e∗.
This concludes this first step. This step was not necessary in the proof of Theorem 3.1.11
because the hash value was uniform in the whole set Zp.

Second, let H ∈ S′
γ⊺ and let us now show that the set Sγ⊺,H (as defined in the proof of

Theorem 3.1.11) contains a number of vectors α′⊺ independent of H. Let c ∈ ZM be such
that c · pe∗

= H α⊺ • θ, which exists as ν(H α⊺ • θ) ≥ e∗. Let x′∗⊺ ∈ Z1×n
M be such that

x′∗⊺ •Γ = 0 and x′∗⊺ • θ = pe∗

. This row vector exists by definition of e∗. Let x∗⊺ = c •x′∗⊺.
Then α∗⊺ = α⊺ + x∗⊺ is a particular solution of Equation (3.3) on page 67, as:

α∗⊺ •
(

Γ θ
)

=
(

α⊺ • Γ x∗⊺ • Γ α⊺ • θ x∗⊺ • θ
)

=
(

γ⊺ (c • 0) α⊺ • θ (c • pe∗

)
)

=
(

γ⊺ 0 α⊺ • θ (H α⊺ • θ)
)

=
(

γ⊺ H
)

.

Therefore, as in the proof of Theorem 3.1.11, we get:

Sγ⊺,H =
{

α⊺ + x∗⊺ + x⊺

∣

∣

∣ x ∈ ker
(

Γ θ
)

⊺
}

,

and the size of Sγ⊺,H is independent of H and γ⊺. This proves that H is uniform in S′
γ⊺ .

Furthermore, S′
γ⊺ contains pe−e∗

≥ p = p elements. This concludes the case M = pe.

Case: M is a general composite number. Let us now handle the case where M is a composite
number. Let M = pe1

1 · · · p
er
r be the prime decomposition of M .

Let us show that there exists at least one integer i ∈ {1, . . . , r} such that θ mod pei

i /∈
ColSpan (Γ mod pei

i). By contradiction, if this is not the case, this means that for all
i ∈ {1, . . . , r}, there exists a vector λi ∈ Zn

p
ei
i

, such that θ mod pei

i = Γ • λi mod pei

i . Let

λ = crt(λ1, . . . ,λr). We have θ = Γ • λ. This is impossible.

100 Chapter 4 Diverse Modules

Using the previous case, for all i such that θ mod pei

i /∈ ColSpan (Γ mod pei

i), H mod
pei

i is uniform in a set of size at least pi ≥ p. On the other hand, when θ mod pei

i ∈
ColSpan (Γ mod pei

i), H is completely determined by γ⊺. Using the CRT again, as what
happens modulo each pei

i is independent, we get that H is uniform in a set containing at least
p elements.

This concludes the general case.

Proof of Theorem 4.2.7. This proof is similar to the previous one. The only difference is that
the DM is perfectly sound. This only changes the beginning of the proof.

4.2.2.5 Reduced DMs

The proofs of Theorems 4.2.6 and 4.2.7 work by reducing the DM modulo the prime powers
pei

i in the prime decomposition of the order M . This idea is useful outside these proofs and
it is sometimes convenient to look at a reduced version of a DM.

Let us introduce some new notations. If M is a positive integer, M ′ is a factor of M , and
f is a function from some set S to the set of matrices Zk×n

M , then we denote by f mod M ′ the
function from S to the set of matrices Zk×n

M ′ defined by (f mod M ′)(x) = f(x) mod M ′, for
all x ∈ S. We can extend the modular reduction modM ′ to graded ring elements, by looking
at their discrete logarithm. The operation might not be performed in polynomial time.

Now we can introduce the notion of reduced DM.

Definition 4.2.14. Let M = (M,G,X ,L ,R, n, k,RGen,Γ,θ,λ) be a DM. Let M ′ ≥ 2 be a
factor of M . The reduced DM M modulo M ′ is denoted by M mod M ′ and is defined as:

(M,G,X ,L ,R, n, k,RGen,Γ mod M ′,θ mod M ′,λ mod M ′) .

The functions Γ, θ, and λ might not be efficiently computable. This does not matter, as
the only property we consider on reduced DM is soundness and it only works on the discrete
logarithms of the elements.

We have the following theorem.

Theorem 4.2.15 (PHF from reduced DM). Let M = (M,G,X ,L ,R, n, k,RGen,Γ,θ,λ) be
a DM with an εGenScalar-almost-uniform algorithm GenScalar. Let M ′ ≥ 2 be a factor of M ,
such that M mod M ′ is ε-sound. Let p be the smallest prime factor of M ′. Then the PHF

described in Construction 4.2.5 is (mnεGenScalar + ε)-weakly-close to be (1/pm)-universal. If
in addition M is a KV-DM, this PHF is (mnεGenScalar)-close to be (1/pm)-universal.

This is a refinement of Theorems 4.2.6 and 4.2.7, as when M ′ = M , we get the previous
theorems. But, in addition, when the smallest prime factor of M ′ is larger than the smallest
prime factor of M , this improves the bounds of the previous theorems. This is therefore
convenient, when M has some small prime factors but M ′ does not.

Proof. Let M = pe1

1 · · · p
er
r be the prime decomposition of M . Without loss of generality,

we can write M = p
e′

1

1 · · · p
e′

r′

r′ the prime decomposition of M ′, where r′ ≤ r, e′
1 ≤ e1, . . . ,

e′
r′ ≤ er′ . Let M ′′ be M ′′ = pe1

1 · · · p
er′

r′ . We remark that M ′′ divides M . The smallest prime
factor of M ′′ is the same as the smallest prime factor of M ′. Furthermore, if M mod M ′ is
ε-sound, so is M mod M ′′, as if a linear relation is satisfied modulo M ′′, it is also satisfied
modulo M ′. Therefore, we can suppose without loss of generality that M ′ = M ′′.

4.2 Diverse Modules (DMs) 101

We can now conclude using a proof similar to the one for the general case of Theorem 4.2.6:
the CRT basically ensures that everything that happened modulo M ′′ is independent of what
happens modulo M/M ′′, and modulo M ′′, we already get (weakly approximate) universality.

4.2.2.6 Simple Examples

One of the simplest example is the following.

Example 4.2.16 (DDH with composite order). We can trivially extend the DVS for the
DDH language over a cyclic group G of prime order p (Example 3.1.8) to a DM for the DDH

language over a cyclic group G of known composite order M . The DM is a perfectly sound
KV-DM and the resulting PHF is 1/p-universal, with p being the smallest prime factor of M .
Notice that, when M is a prime p, then M = p = p.

More generally, most examples in Chapter 3 directly work with cyclic groups of composite
order, with the important exception of disjunctions of languages which do not work as
expected as shown later.

In all the previous examples, the order M was known. Let us now show a simple example
of DM over a graded ring with a hard-to-compute order, namely over JN , with N = pq being
a product of two distinct secret safe primes.

Example 4.2.17 (QR). We work in the graded ring G = JN , with N being the product of
two distinct safe primes p = 2p′ + 1 and q = 2q′ + 1, as defined in Example 4.2.1. The global
parameters are gpar = (JN , g), with g a generator of JN . There are no language parameters
(lpar =⊥) and we consider the language of the quadratic residues of JN :

L := {u ∈ JN | ∃r, u = g2r} ⊆ X = JN .

We can define this language by a KV-DM with θ and λ the identity functions, and:

n := 1 k := 1

Γ :=
(

g2
)

.

Its reduction modulo 2 gives the following DM:

n := 1 k := 1

Γ :=
(

[⊤, 0]
)

θ(x) :=

{

1 if u is a quadratic residue

0 otherwise

λ(x ,w) := r mod 2 ,

where

x = u w = r .

It is also perfectly sound.

102 Chapter 4 Diverse Modules

4.2.3 Link with Diverse Groups

In this section, we discuss the link between diverse modules (DMs) and diverse groups
introduced by Cramer and Shoup in [CS02].

Let us first informally recall the notion of diverse groups and their associated PHFs. A
diverse group for a language L̂ ⊆ X̂ is a tuple (L̂ , X̂ ,Π,Φ) where:

• (X̂ ,) is a finite Abelian additive group;

• L̂ is a subgroup of X̂ ;

• (Π,) is a finite Abelian additive group;

• Φ is a subgroup of the group of homomorphisms from X̂ to Π;

satisfying the following property:

• Diversity. For any θ ∈ X̂ \L̂ , there exists a homomorphism φ ∈ Φ such that φ(L̂) = {0}
and φ(θ) 6= 0. For any set S ⊆ X̂ , φ(S) denotes the image of the set S by the function φ.

We also suppose that the language L̂ ⊆ X is generated by the elements h1, . . . , hk ∈ X̂
and that a witness λ of a word θ ∈ L̂ is a vector of integers λ ∈ Zk such that

θ = λ1 • θ1 · · · λk • hk .

We can then construct a PHF associated to such a diverse group, as follows:

• HashKG(lpar) picks a random homomorphism φ $← Φ and outputs the hashing key
hk := φ;

• ProjKG(hk, lpar) outputs the projection key hp := γ⊺ := (φ(h1), . . . , φ(hk)) ∈ Πk;

• Hash(hk, lpar, θ) outputs the hash value φ(θ) ∈ Π;

• ProjHash(hp, lpar, θ,λ) outputs the projected hash value

pH := λ1 • γ1 · · · λk • γk.

Cramer and Shoup showed that such a PHF is (1/p)-universal where p is the smallest prime
factor of the order of the quotient group X̂/L̂ .

We first remark that if M = (M,G,X ,L ,R, n, k,RGen,Γ,θ,λ) is a DM, then for any m,
if Π := Zm

M and Φ is the set of linear maps from X̂ = Zn
M to Π, then (L̂ , X̂ ,Π,Φ) is a diverse

group. Actually, the hard part of the proof of Theorem 4.2.6 consists in proving the existence
of some vector x′∗⊺ satisfying x′∗⊺ · Γ = 0 and x′∗⊺ · θ 6= 0, which exactly corresponds to the
diversity property.

We may wonder if any diverse group can also be represented by a diverse module. If we
forget about complexity of the various algorithms and if we are allowed to slightly change X̂ ,
Π, and Φ, this is actually the case. Let (L̂ , X̂ ,Π,Φ) be a diverse group. The fundamental
theorem of finitely generated Abelian groups says that we can decompose X̂ as:

X̂ = ZM1
× · · ·ZMr ,

4.3 Conjunctions and Disjunctions 103

with M1, . . . , MR being positive integers ≥ 2, such that Mi divides Mi+1 for all i ∈
{1, . . . , r − 1}. We can embed X̂ into the ZM -submodule Zr

M with M := Mr. From now on,
we suppose that X̂ = Zr

M . Then, L̂ can now be seen as a submodule of Zr
M , generated by

the column vectors h1, . . . , hk.
Next, if we restrict Π to

⋃

φ∈Φ φ(X), the group Π becomes a submodule of some module Zm
M .

We can then suppose that Π is exactly Zm
M . Finally, we remark that group homomorphisms

in Φ are also linear maps from X = Zn
M to Zm

M = Π. We can extend the group Φ to the
group of all linear maps. This keeps the diversity property.

At the end, we get a KV-DM with θ and λ the identity functions. However, we should
point out that while all the transformations we made are mathematically correct, they might
not be efficient at all, and it might be possible that the resulting KV-DM cannot be used to
construct a PHF.

Nevertheless, we do not know of any useful diverse group which cannot be seen as a diverse
module. And using diverse modules offers much more structure to work on.

4.3 Conjunctions and Disjunctions

Let us now study conjunctions and disjunctions of DMs. Conjunctions of DMs are similar to
conjunctions of DVSs. Disjunctions are much more subtle, when the order M is composite.

4.3.1 Conjunctions

To construct a DM corresponding to the conjunction of two languages L1 and L2 represented
by two DMs, we can use exactly the same construction as for DVSs (Construction 3.2.1).

Construction 4.3.1 (conjunction of two DMs). It is exactly the same as Construction 3.2.1
except that the order of the graded ring might now be a composite number M instead of
necessarily being a prime number p.

Everything works exactly the same, as when L̂1 and L̂2 are submodules of X̂1 and X̂2

respectively, L̂1 × L̂2 is also a submodule of X̂1 × X̂2.

Lemma 4.3.2. Let M1 and M2 be two DMs. If M1 and M2 are ε1-sound and ε2-sound
respectively, then the conjunction DM M of M1 and M2 defined in Construction 4.3.1 is a
(ε1 + ε2 − ε1ε2)-sound DM.

4.3.2 Disjunctions

We could hope that disjunctions also work as easily as conjunctions. Unfortunately, this
is not the case: the straightforward adaptations of Constructions 3.2.4 and 3.2.8 to DMs

yields DMs which are not sound, even for really simple examples, as the disjunction of DDH

languages of composite order (Examples 3.2.5 and 3.2.9).
Intuitively, in Constructions 3.2.4 and 3.2.8, the main issue is that due to linearity and

CRT, if θ ∈ ColSpan (Γ), this only implies that modulo each factor pei

i of M , θ1 mod pei

i ∈
ColSpan (Γ1 mod pei

i) or θ2 mod pei

i ∈ ColSpan (Γ2 mod pei

i). But if M has two distinct

104 Chapter 4 Diverse Modules

prime factors, it is perfectly possible that:

θ1 mod p ∈ ColSpan (Γ1 mod p)

θ2 mod p /∈ ColSpan (Γ2 mod p)

θ1 mod q /∈ ColSpan (Γ1 mod q)

θ2 mod q ∈ ColSpan (Γ2 mod q)

and therefore, θ1 /∈ ColSpan (Γ1) and θ2 /∈ ColSpan (Γ2), while θ ∈ ColSpan (Γ).
In this section, we show that the language, for which the disjunction of DMs (using

Constructions 3.2.4 and 3.2.8) is sound, still has some interesting properties and can be seen
as a “relaxed” disjunction of the two original languages. More precisely, we prove that if θ2 /∈
ColSpan (Γ2) and does not behave strangely modulo any factor of M , then θ ∈ ColSpan (Γ)
implies that θ1 ∈ ColSpan (Γ1) and x1 ∈ L . The notion of “not behaving strangely modulo
any factor of M” is slightly different for Construction 3.2.4 and Construction 3.2.8 and
is captured by the notions of non-degenerated words and strongly non-degenerated words
respectively. But first, we need to introduce this relaxed notion of soundness, and show its
influence on universality.

4.3.2.1 Relaxed Soundness and Relaxed Universality

Definition 4.3.3. A DM M = (M,G,X ,L ,R, n, k,RGen,Γ,θ,λ) is ε-S -sound, where S

is a subset of X , if for any word x ∈ S :

Pr
[

θlpar(x , ρ) ∈ ColSpan (Γlpar(x , ρ))
∣

∣

∣ ρ
$← RGen(lpar)

]

≤ ε .

when looking at the discrete logarithms of all the elements (see Remark 3.1.6). It is S -sound
if it is ε-S -sound, with ε negligible in K.

We remark that classical soundness (resp. ε-soundness) corresponds exactly to (X \L)-
soundness (resp. ε-(X \L)-soundness).

Definition 4.3.4. A PHF (HashKG,ProjKG,Hash,ProjHash) for a language L ⊆ X is ε-S -
universal, where S is a subset of X , if for any lpar, any word x ∈ Xlpar \Llpar, any projection
key hp, and any hash value H ∈ Π, we have

Pr
[

Hash(hk, lpar, x) = H and ProjKG(hk, lpar) = hp | hk
$← HashKG(lpar)

]

≤ ε · Pr
[

ProjKG(hk, lpar) = hp | hk
$← HashKG(lpar)

]

.

It is S -universal if it is ε-S -universal with ε is negligible in K.

We can extend Theorems 4.2.6, 4.2.7 and 4.2.15 to use relaxed soundness, as follows.

Theorem 4.3.5 (PHF from DM with relaxed soundness). Let M = (M,G,X ,L ,R, n, k,
RGen,Γ,θ,λ) be a DM with an εGenScalar-almost-uniform algorithm GenScalar. Let S be
a subset of X . Let M ′ ≥ 2 be a factor of M , such that M mod M ′ is ε-S -sound. Let
p be the smallest prime factor of M ′. Then the PHF described in Construction 4.2.5 is
(mnεGenScalar + ε)-weakly-close to be 1/pm-S -universal. If in addition M is a KV-DM, this
PHF is (mnεGenScalar)-close to be 1/pm-S -universal.

4.3 Conjunctions and Disjunctions 105

The proof is a straightforward adaptation of the one for Theorem 4.2.15.
We could have introduced this notion of relaxed soundness from the beginning and defined

everything using it. However, that would have made notation more complex. As in all our
applications, we only use these notions of relaxed soundness or relaxed universality with
disjunctions of DMs, we prefer to introduce these notions only here.

Another way to look at all these relaxed notions is to say that we are working with promise
languages: we only consider words that are either in the language L or in the set S , but we
do not consider words that are neither in L nor in S .

4.3.2.2 Disjunctions of GL-DVSs and Non-Degeneracy

Counter-example. Let us first show that the DM M in Example 3.2.5 is not sound, when
the prime order p is just replaced by a composite order M = pq, with p and q being two
distinct prime numbers. We recall that for any x ∈ Zp and any y ∈ Zq, crt(x, y) is the
unique element z ∈ ZM , such that z mod p = x and z mod q = y (see Section 4.2.2.3). We
have crt(x, x) = x, and in particular, crt(1, 1) = 1 and crt(−1,−1) = −1. Furthermore,
crt is a ring homomorphism from Zp × Zq to ZM . Concretely, this implies that for any
x, x′ ∈ Zp and any y, y′ ∈ Zq, we have crt(x, y) + crt(x′, y′) = crt(x + x′, y + y′) and
crt(x, y) · crt(x′, y′) = crt(x · x′, y · y′).

In the DM M, we have:

Γ(x) :=

0 g 0 g
g1 u1 0 0
h1 v1 0 0
0 0 g2 u2

0 0 h2 v2

θ(x) :=

g−1

1G
1G
1G
1G

.

We consider the word:

x = (u1 := g
crt(1,1)
1 , v1 := h

crt(1,0)
1 , u2 := g

crt(1,1)
2 , v2 := h

crt(0,1)
2) ∈ X \L .

This word x is not in L , as x1 := (u1, v1) is not a DH tuple in basis (g1, h1) and x2 := (u2, v2)
is not a DH in basis (g2, h2). But, we have θ = Γ(x) • λ with:

λ =

crt(1, 0)
crt(−1, 0)
crt(0, 1)

crt(0,−1)

.

Therefore M is not sound.
We remark that x1 mod p and x2 mod q are DH tuples in bases (g1, h1) and (g2, h2) respec-

tively (where mod works on the discrete logarithms of the elements, as already defined). In
some sense, x1 and x2 are degenerated modulo p and q respectively.

Non-degeneracy. Let us now introduce formally this notion of non-degenerated words.

Definition 4.3.6. Let M = (M,G,X ,L ,R, n, k,RGen,Γ,θ,λ) be a DM. A word x ∈ X is
(1− ε)-non-degenerated (in M) if for any prime factor p of the order M , when looking at
the discrete logarithms of all the elements (see Remark 3.1.6), we have:

Pr
[

θ(x , ρ) mod p /∈ ColSpan (Γ mod p) | ρ $← RGen(lpar)
]

≤ ε .

106 Chapter 4 Diverse Modules

It is non-degenerated (in M) if it is (1− ε)-non-degenerated with ε negligible in K.

We remark that any non-degenerated word x is necessarily in X \L . Furthermore, when
M = p is a prime number (i.e., when M is a DVS), then non-degenerated words are exactly
words in X \L .

Let us look at three examples.

Example 4.3.7 (QR). Let us consider the DM M = (M,G,X ,L ,R, n, k,RGen,Γ,θ,λ) for
the QR language. We use the notation of Example 4.2.17. In this DM, any word x = u = gr is
degenerated, as r mod p′ is linearly dependent of the columns of Γ mod p′ (where the modulo
is done on the discrete logarithms). But if we look at the reduction modulo 2 of this M, any
word in X \L is non-degenerated. Actually, modulo 2, this DM is even a DVS.

Example 4.3.8 (DDH). Let us now consider the DM M = (M,G,X ,L ,R, n, k,RGen,Γ,
θ,λ) for the DDH language for a cyclic group of composite order M . We use the notation
of Example 4.2.16. In this DM, there are many words that are not in the language L but
that are degenerated. For example, for any proper factor 1 < M ′ < M of M , the word
x = (gM ′

, h2·M ′

) is degenerated but is not a DH tuple.
However, a uniform word in X = G2 is non-degenerated with probability

∏

p prime factor of M

(1− 1/p) ,

as modulo p (a prime factor of M), a random word x is not a DH tuple with probability
1 − 1/p. In particular, if the smallest prime factor p of M has at least K bits, a uniform
word in X = G2 is non-degenerated with overwhelming probability. We use this property in
our construction of NIZK from DMs for example.

We can extend the previous example to any MDDH assumption.

Example 4.3.9 (MDDH). Let G be a graded ring of order M , ṽ be some index. Let D be
a distribution of matrices in Zn×k

M , with n > k. We can extend the D-MDDH assumption
recalled in Section 3.4.1 to this setting and construct a DM M = (M,G,X ,L ,R, n, k,RGen,
Γ,θ,λ) associated to the D-MDDH assumption.

Let us show that when all the prime factors of M have at least K bits, a uniform word
x = θ

$← X = G
n
ṽ is non-degenerated with overwhelming probability (for any matrix Γ = [A]).

For any prime factor p of M , and any matrix Γ ∈ G
n×k
ṽ , a uniform vector θ $← G

n
ṽ reduced

modulo p is not in the column space of Γ mod p, except with probability at most 1/p (as
modulo p, when looking at the discrete logarithms, the column space of Γ is a proper subspace
of Zn

p , because n > k). As in Example 4.3.9, the probability that a uniform word x
$← X is

non-degenerated is at most
∏

p prime factor of M

(1− 1/p) .

This probability is negligible when the smallest prime factor p of M has at least K bits.

Construction. We can define the GL disjunction of two GL-DMs as follows.

Construction 4.3.10 (GL disjunction). It is exactly the same as Construction 3.2.4 except
that the order of the graded ring might now be a composite number M instead of necessarily
being a prime number p.

4.3 Conjunctions and Disjunctions 107

As already explained, the disjunction DM of two DMs as defined in Construction 4.3.1
is not sound, but is S -sound for any set S of words (x1, x2) /∈ L , such as x1 or x2 is
non-degenerated. More formally, we have the following proposition.

Proposition 4.3.11. Let M1 = (M,G,X1,L1,R1, n1, k1,RGen1,Γ1,θ1,λ1) and M2 =
(M,G,X2,L2,R2, n2, k2,RGen2,Γ2,θ2,λ2) be two DMs, that are ε1-sound and ε2-sound re-
spectively. For i ∈ {1, 2}, let Si be the set of ε′

i-non-degenerated words of Mi, for some ε′
i.

Let ε := max(1− ε1 − ε
′
2 + ε1ε

′
2, 1− ε′

1 − ε2 + ε′
1ε2) and

S := ((X1 \L1)×S2 ∪ S1 × (X2 \L2))

Then, the GL disjunction DM M of M1 and M2 as defined in Construction 4.3.10 is
ε-S -sound.

Proof. In this proof, we only look at the discrete logarithms of all the elements. Let us
suppose that x = (x1, x2) ∈ (X1 \L1)×S2, and let us prove that

Pr
[

θ /∈ ColSpan (Γ(x , ρ)) | ρ $← RGen(lpar)
]

≤ 1− ε1 − ε
′
2 + ε1ε

′
2 .

The other case x = (x1, x2) ∈ S1 × (X2 \L2) is similar.
We suppose that ρ = (ρ1, ρ2) is such that, for all prime factor p of M :

{

θ1(x1, ρ1) /∈ ColSpan (Γ1(x1, ρ1)) ,

θ2(x2, ρ2) mod p /∈ ColSpan (Γ2(x2, ρ2) mod p) .

This happens with probability at least 1− ε1 − ε
′
2 + ε1ε

′
2.

By contradiction, let us suppose that there exists a vector λ ∈ Zk
p such that θ = Γ •λ. We

necessarily have λk1+1 + λk1+k2+1 = −1 (or both), due to the first row of the matrix Γ, as
the (k1 + 1)-th column of Γ is (1Zp

,θ⊺1,0
⊺)⊺ and the (k1 + k2 + 1)-th column of Γ is its last

column (1Zp
,0⊺,θ⊺2)⊺. With DVS (i.e., prime order M = p), we could conclude directly, by

saying that λk1+1 6= 0 or λk1+k2+1 6= 0, thus one of these two scalars is invertible, and use
this fact in an equation like Equation (3.7) (on page 72) or Equation (4.1). But here we
cannot, as a non-zero scalar is not necessarily invertible.

Let us now show that for any prime factor p of M , we have λk1+k2+1 mod p = 0. By
contradiction, if there exists some prime p dividing M such that λk1+k2+1 6= 0, λk1+k2+1 is
invertible modulo p, and we have:

θ2 mod p = Γ2 • λ
′ mod p with λ′ = −(λi)i=k1+2,...,k1+k2+1 / λk1+k2+1 mod p ,

which is impossible, as θ2 mod p /∈ ColSpan (Γ2 mod p).
Thus for any prime factor p of M , λk1+k2+1 mod p = 0 and therefore λk1+1 mod p = −1.

Lemma 4.2.12 implies that λk1+1 is invertible modulo M . And this time, we can conclude as
with DVSs:

θ1 = Γ1 • λ
′ with λ′ = −(λi)i=1,...,k1

/ λk1+1 . (4.1)

This is impossible, as θ1 mod p /∈ ColSpan (Γ1 mod p). And that concludes the proof.

4.3.2.3 Disjunctions of CS-DMs and Strongly Non-Degenerated Words

We might hope that disjunctions of CS-DMs work the same way as disjunctions of GL-DMs:
we can use the same construction as disjunctions of CS-DVSs (Construction 3.2.8) and just
“remove” the words which are degenerated to get relaxed soundness. Unfortunately, this is
not sufficient and we need to introduce a stronger non-degeneracy notion.

108 Chapter 4 Diverse Modules

Counter-examples. First, degenerated words create the same problem as for GL-DMs. If
we take Example 3.2.9 and just change the prime order p to a composite order M = pq with
p and q two distinct primes, we have the same counterexample as before. We recall that, in
this DM:

Γ(x) :=

g1 0 g2 0
0 g1 h2 0
h1 0 0 g2

0 h1 0 h2

θ(x) :=

u1 • u2

u1 • v2

v1 • u2

v1 • v2

=

e(u1, u2)
e(u1, v2)
e(v1, u2)
e(v1, v2)

.

We can consider the word:

x = (u1 := g
crt(1,1)
1 , v1 := h

crt(1,0)
1 , u2 := g

crt(1,1)
2 , v2 := h

crt(0,1)
2) ∈ X \L .

This word is not in L , as x1 := (u1, v1) is not a DH tuple in basis (g1, h1) and x2 := (u2, v2)
is not a DH tuple in basis (g2, h2). But, we have θ = Γ(x) • λ with:

λ =

crt(1, 0) • u2

crt(1, 0) • v2

crt(0, 1) • u1

crt(0, 1) • v1

=

crt(1, 0) • g2

0
crt(0, 1) • g1

0

as θ =

crt(1, 1) • g1 • g2

crt(0, 1) • g1 • h2

crt(1, 0) • h1 • g2

crt(0, 0) • h1 • h2

.

Second, even non-degenerated words may create problems. Let us show this on an example.
Let the global parameters consist of a bilinear group (M,G1,G2,GT , e, g1, g2) of composite
order M = p2 with p being a prime number. Let M1 = (M,G,X1,L1,R1, n1, k1,RGen1,Γ1,
θ1,λ1) be the KV-DM for the the DDH language in G1 = G1. Let M2 = (M,G,X2,L2,R2,
n2, k2,RGen2,Γ2,θ2,λ2) be the following KV-DM in G2 = G2:

L2 := {u2 ∈ G2 | ∃r2 ∈ ZM , u2 = gpr2

2 } ⊆ G2

n2 := 1 k2 := 1

Γ2(x2) :=
(

gp
2

)

θ2(x2) :=
(

u2

)

λ2(x2,w2) :=
(

r2

)

,

where:

x2 = (u2) w2 = (r2) .

Following Construction 3.2.8, the CS/KV disjunction of these two DMs is the following DM

4.3 Conjunctions and Disjunctions 109

M = (M,G,X ,L ,R, n, k,RGen,Γ,θ,λ):

L := {(u1, v1, u2) ∈ G2
1 ×G2 | ∃r1, r2 ∈ ZM , (u1, v1) = (gr1

1 , h
r1

1) or u2 = gpr2

2 }

n := 2 k := 1

Γ(x) :=

(

g1 gp
2 0

h1 0 gp
2

)

θ(x) :=

(

u1 • u2

v1 • u2

)

=

(

e(u1, u2)
e(v1, u2)

)

λ(x ,w) :=

r1 • u2

0

0

=

ur1

2

0

0

if (u1, v1) = (gr1 , hr1)

0

r2 • u1

r2 • v1

=

0

ur2

1

vr2

1

otherwise, if u2 = gpr2

where:

x = (u1, v1, u2) w = (r1, r2) .

Then, we can consider the word

x = (u1 := gp
1 , v1 := h2p

1 , u2 := g2)

which is not in L . Furthermore, u2 is non-degenerated. But we still have θ = Γ • λ with

λ =

0
g1

h2
1

.

Strong non-degeneracy. Let us now introduce the notion of strong non-degeneracy.

Definition 4.3.12. Let M = (M,G,X ,L ,R, n, k,RGen,Γ,θ,λ) be a DM. A word x ∈ X
is (1− ε)-strongly-non-degenerated (in M) if when looking at the discrete logarithms of all
the elements (see Remark 3.1.6):

Pr

[

∃x⊺ ∈ Z1×n
M ,

{

x⊺ • Γ = 0⊺ ∈ Z1×k
M

x⊺ • θ(x) = 1ZM

∣

∣

∣

∣

∣

ρ $← RGen(lpar)

]

.

It is strongly non-degenerated (in M) is it is (1− ε)-non-degenerated with ε negligible in K.

We remark that any strongly non-degenerated word x is in X \L . Furthermore, when
M = p is a prime number (i.e., when M is a DVS), then strongly non-degenerated words are
exactly words in X \L . And when M is a product of distinct prime numbers, then the CRT

ensures that non-degenerated words are exactly strongly non-degenerated words.
However, as seen in the above counter-example, this is not necessarily the case when M is

divisible by p2 for some prime p.
Let us give two examples.

110 Chapter 4 Diverse Modules

Example 4.3.13 (QR). For the DM M for the QR language (Examples 4.2.17 and 4.3.7),
the order is a product of three distinct primes 2, p′, and q′. Therefore, non-degenerated
words correspond to strongly non-degenerated words in this DM and any of its reductions. In
particular, any word x ∈ X \L is strongly non-degenerated in M mod 2.

Example 4.3.14 (MDDH). Let us consider DMs for D-MDDH language, over a graded ring
of composite order M , as in Example 4.3.9. We suppose that the smallest prime factor p of
M has at least K bits. If M is a product of distinct prime numbers, everything easily works
as before, since a non-degenerated word is also strongly non-degenerated: a uniform word
x ∈ X = G

n
ṽ is strongly non-degenerated with overwhelming probability.

Let us now prove that a uniform word in G
n
ṽ is strongly non-degenerated with overwhelming

probability in the general case, when M ≥ 2 is any positive integer. This works for any
distribution D. Let A be any arbitrary matrix in Zn×k

M . For this proof, we only look at the
discrete logarithms of the elements and forget their indices (in G). Proposition 4.2.13 (applied
on the transposed of A) shows that there exists a row vector x⊺ ∈ Zn

M such that x⊺ ·A = 0⊺

and one of the entry xj∗ of x⊺ is invertible in ZM . We remark that if a word θ ∈ Zn
M is such

that x⊺ · θ is invertible, then this word is strongly non-degenerated. When θ is a uniform
vector in Zn

M , x⊺ ·θ is uniformly random in ZM thanks to the term θi∗ ·xi∗ which is uniformly
random in ZM . As a uniform scalar element in ZM is invertible with probability:

∏

p prime factor of M

(1− 1/p) ,

we conclude that a random vector θ $← Zn
M is strongly non-degenerated with at least this

probability (which is overwhelming).

Construction. We can define the disjunction of two CS-DMs as follows.

Construction 4.3.15 (CS/KV disjunction). It is exactly the same as Construction 3.2.8
except that the order of the graded ring might now be a composite number M instead of
necessarily being a prime number p.

As already explained, the disjunction DM of two DMs as defined in Construction 4.3.15 is
not sound, but is S -sound for any set S of words (x1, x2) /∈ L , such as x1 or x2 is strongly
non-degenerated. More formally, we have the following proposition.

Proposition 4.3.16. Let M1 = (M,G1,X1,L1,R1, n1, k1,RGen1,Γ1,θ1,λ1) and M2 =
(M,G2,X2,L2,R2, n2, k2,RGen2,Γ2,θ2,λ2) be two CS-DMs over two multiplicatively compat-
ible sub-graded rings G1 and G2 of some graded ring G. We suppose that M1 and M2 are
ε1-sound and ε2-sound respectively. For i ∈ {1, 2}, let Si be the set of ε′

i-non-degenerated
words of Mi, for some ε′

i. Let ε := max(1− ε1 − ε
′
2 + ε1ε

′
2, 1− ε′

1 − ε2 + ε′
1ε2) and

S := ((X1 \L1)×S2) ∪ (S1 × (X2 \L2)) .

Then, the disjunction CS-DM M of M1 and M2 as defined in Construction 4.3.15 is an
ε-S -sound CS-DM. Furthermore, if M1 and M2 are KV-DMs and ε′

1 = ε′
2 = 0, then M is a

S -sound KV-DM.

We remark that this proposition directly implies Lemma 3.2.10, as when M = p is prime,
S = X \L . This gives a new proof of Lemma 3.2.10 using only Equation (3.8) on page 73
(and no more complex properties of tensors).

4.4 t-Universality, t-Smoothness, and t-Soundness 111

Proof. In this proof, we only look at the discrete logarithms of all the elements. Let us
suppose that x = (x1, x2) ∈ (X1 \L1)×S2, and let us prove that

Pr
[

θ /∈ ColSpan (Γ(x , ρ)) | ρ $← RGen(lpar)
]

≤ 1− ε1 − ε
′
2 + ε1ε

′
2 .

The other case x = (x1, x2) ∈ S1 × (X2 \L2) is similar.
We suppose that ρ = (ρ1, ρ2) is such that, there exists a row vector x⊺ ∈ Z1×n2

M such that:

θ1(x1, ρ1) /∈ ColSpan (Γ1(x1, ρ1)) ,

x⊺ • Γ2 = 0 ,

x⊺ • θ2(x2, ρ2) = 1 .

This happens with probability at least 1− ε1 − ε
′
2 + ε1ε

′
2.

By contradiction, let us suppose that there exists a vector λ ∈ Zk
M such that θ = Γ • λ.

We then remark that:

(Idn1
⊗ x⊺) • θ = (Idn1

⊗ x⊺) • (θ1 ⊗ θ2)

= (Idn1
• θ1)⊗ (x⊺ • θ2)

= θ1 ⊗ (1ZM
)

= θ1

and

(Idn1
⊗ x⊺) • Γ = (Idn1

⊗ x⊺) •
(

Γ1 ⊗ Idn2
Idn1
⊗ Γ2

)

=
(

(Idn1
⊗ x⊺) • (Γ1 ⊗ Idn2

) (Idn1
⊗ x⊺) • (Idn1

⊗ Γ2)
)

=
(

(Idn1
• Γ1)⊗ (x⊺ • Idn2

) (Idn1
• Idn1

)⊗ (x⊺ • Γ2)
)

=
(

Γ1 ⊗ x
⊺ Idn1

⊗ 0⊺

k2

)

=
(

Γ1 ⊗ x
⊺ 0n1×(n1k2)

)

.

As θ = Γ • λ, we have:
θ1 =

(

Γ1 ⊗ x
⊺ 0n1×(n1k2)

)

• λ ,

and thus:
θ1 ∈ ColSpan (Γ1 ⊗ x

⊺) .

If we write C1, . . . ,Ck1
the columns of the matrix Γ1, then the columns of the matrix Γ1⊗x

⊺

are of the form xi ·Cj . Therefore ColSpan (Γ1 ⊗ x
⊺) ⊆ ColSpan (Γ1) and θ1 ∈ ColSpan (Γ1).

This is impossible. This concludes the proof.

4.4 t-Universality, t-Smoothness, and t-Soundness

Universality and smoothness ensure a certain randomness of hash values of words outside the
language, when we are only given the projection key. This also holds when we are additionally
given hash values of words inside the language, as these hash values can be computed using
the projection key. But universality and smoothness do not guarantee anything when we are
also given a hash value of a word outside the language.

112 Chapter 4 Diverse Modules

That is why, we now introduce two stronger security notions for PHF: t-universality and t-
smoothness, which deal with this case, or more precisely with the case where we are also given
t−1 hash values of words potentially outside the language. We then show that if a CS-DVS or
CS-DM satisfies a new property called t-soundness, its associated PHF satisfies t-smoothness
and (weakly approximate) t-universality respectively. We conclude by constructing t-sound
CS-DVS or CS-DM from any classical CS-DVS or CS-DM.

Historical note 4.4.1. Cramer and Shoup defined a notion of 2-universality in [CS02].
Our notion is a slight variant of theirs with one main difference: the use of an explicit
tag. This enables to work with statistical definitions while having the possibility to plug in a
collision-resistant hash function to get efficiency improvements.

In this whole section, for the sake of simplicity, we only consider PHFs for which the
projection key hp does not depend on the word x . We could consider notions of t-universality
and t-smoothness for PHFs in which the projection key hp depends on the word x : in this
case, all the seen hash values would correspond to the same word but with different tags. Our
definitions and constructions in this section can easily be extended to this case. This case was
actually used in [BCPW15], but in this thesis, we improved the efficiency of the construction
in the latter paper and we got rid of the part using t-smoothness (see Section 6.3).

4.4.1 t-Universality and t-Smoothness

We first need to extend the notion of PHF to add a tag, before defining t-universality and
t-smoothness.

4.4.1.1 Tag-PHF

A tag-PHF is similar to a PHF, except that ProjHash and Hash takes an additional input,
called a tag tag ∈ Tags. More formally, we have the following definition:

Definition 4.4.2. A tag-PHF over (Llpar) is defined by a tuple of four polynomial-time
algorithms (HashKG,ProjKG,Hash,ProjHash), where:

• HashKG(lpar) generates a hashing key hk for the language parameters lpar;

• ProjKG(hk, lpar, x) deterministically derives a projection key hp from the hashing key hk,
the language parameters lpar, and possibly the word x ∈ Xlpar;

• Hash(hk, lpar, x , tag) deterministically outputs a hash value H from the hashing key hk,
for the word x ∈ Xlpar, the language parameters lpar, and the tag tag ∈ Tags; the set
Tags is supposed to be efficiently recognizable;

• ProjHash(hp, lpar, x ,w , tag) deterministically outputs a projected hash value pH from
the projection key hp, and the witness w , for the word x ∈ Llpar (i.e., Rlpar(x ,w) = 1),
the language parameters lpar, and the tag tag ∈ Tags.

A PHF has to satisfy the following property:

• Perfect correctness. For any lpar, for any word x ∈ Llpar with witness w (i.e., such

that Rlpar(x ,w) = 1), for any tag tag ∈ Tags, for any hk
$← HashKG(lpar) and for

hp← ProjKG(hk, lpar),

Hash(hk, lpar, x , tag) = ProjHash(hp, lpar, x ,w , tag) .

4.4 t-Universality, t-Smoothness, and t-Soundness 113

Tag-PHFs are often just called PHFs in the sequel.
As usual with tags or labels, the tag is no useful for basic universality or smoothness:

a smooth or universal PHF can be transformed in a tag-PHF for any tag set Tags just by
ignoring the tag tag. But tags are necessary for t-universality and t-smoothness.

4.4.1.2 t-Universality and t-Smoothness

Definition 4.4.3. A PHF (HashKG,ProjKG,Hash,ProjHash) for a language L ⊆ X is ε-t-
S -universal (where t is a positive integer and S is a subset of X) if the algorithm ProjKG

does not use its input x , and if for any lpar, any words x1, . . . , xt−1 ∈ Xlpar, any word xt ∈ S ,
any tags tag1, . . . , tagt−1 ∈ Tags, any tag tagt ∈ Tags distinct from tag1, . . . , tagt−1, any
projection key hp, and any hash values H1, . . . ,Ht ∈ Π, we have

Pr

Hash(hk, lpar, xt, tagt) = Ht;

ProjKG(hk, lpar) = hp;

∀i ∈ {1, . . . , t− 1},

Hash(hk, lpar, xi, tagi) = Hi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

hk
$← HashKG(lpar)

≤ ε · Pr

ProjKG(hk, lpar) = hp;

∀i ∈ {1, . . . , t− 1},

Hash(hk, lpar, xi, tagi) = Hi

∣

∣

∣

∣

∣

∣

∣

∣

hk
$← HashKG(lpar)

.

It is t-S -universal if it is ε-t-universal with ε is negligible in K. It is ε-t-universal (resp.
t-universal), if it ε-t-(X \L)-universal (resp. t-(X \L)-universal).

When t = 2, Tags = X and tag = x , we get back the notion of 2-universality of Cramer
and Shoup.

Definition 4.4.4. A PHF (HashKG,ProjKG,Hash,ProjHash) for a language L ⊆ X is ε-t-
CS-smooth if the algorithm ProjKG does not use its input x , and if for any lpar, any words
x1, . . . , xt−1 ∈ Xlpar, any word xt ∈ Xlpar \Llpar, any tags tag1, . . . , tagt−1 ∈ Tags, and any tag
tagt ∈ Tags distinct from tag1, . . . , tagt−1, then the following distributions are ε-close:

(hp,H1, . . . ,Ht)

∣

∣

∣

∣

∣

∣

∣

∣

∣

hk
$← HashKG(lpar);

hp← ProjKG(hk, lpar);
∀i ∈ {1, . . . , t− 1}, Hi ← Hash(hk, lpar, xi, tagi);
Ht ← Hash(hk, lpar, xt, tagt)

(hp,H1, . . . ,Ht)

∣

∣

∣

∣

∣

∣

∣

∣

∣

hk
$← HashKG(lpar);

hp← ProjKG(hk, lpar);
∀i ∈ {1, . . . , t− 1}, Hi ← Hash(hk, lpar, xi, tagi);
Ht

$← Π

.

A PHF is t-CS-smooth if it is ε-t-CS-smooth with ε negligible in K.

Definition 4.4.5. A PHF (HashKG,ProjKG,Hash,ProjHash) for a language L ⊆ X is ε-t-
KV-smooth if the algorithm ProjKG does not use its input x , and if for any lpar, any functions
f1, . . . , ft from the set of possible projection keys hp to Xlpar, and any functions g1, . . . , gt

from the set of possible projection keys hp to Tags such that the image of ft is included in

114 Chapter 4 Diverse Modules

Xlpar \Llpar, and for any projection key hp, gt(hp) is different from g1(hp), . . . , gt−1(hp), then
the following distributions are ε-close:

(hp,H1, . . . ,Ht)

∣

∣

∣

∣

∣

∣

∣

∣

∣

hk
$← HashKG(lpar);

hp← ProjKG(hk, lpar);
∀i ∈ {1, . . . , t− 1}, Hi ← Hash(hk, lpar, fi(hp), gi(hp));
Ht ← Hash(hk, lpar, ft(hp), gt(hp))

(hp,H1, . . . ,Ht)

∣

∣

∣

∣

∣

∣

∣

∣

∣

hk
$← HashKG(lpar);

hp← ProjKG(hk, lpar);
∀i ∈ {1, . . . , t− 1}, Hi ← Hash(hk, lpar, fi(hp), gi(hp));
Ht

$← Π

.

A PHF is t-KV-smooth if it is t-ε-KV-smooth with ε negligible in K.

4.4.2 t-Soundness

To construct t-universal and t-smooth PHFs, we first need to define the notion of t-sound
(and t-S -sound) tag-DMs and tag-DVSs. Then, we show that t-sound tag-DMs and tag-DVSs

directly provide (weakly approximate) t-universal and t-smooth PHFs.

4.4.2.1 t-Sound Tag-DM and Tag-DVS

Tag-DMs and tag-DVSs are similar to DMs and DVSs except that θ and λ take an additional
input: a tag tag ∈ Tags. Correctness is modified accordingly, as for tag-PHF. Similarly to
tag-PHFs, tag-DMs and tag-DVSs are often just called DMs and DVSs.

Definition 4.4.6. A DM M = (M,G,X ,L ,R, n, k,RGen,Γ,θ,λ) is ε-t-S -sound, where
S is a subset of X , if for any words x1, . . . , xt−1 ∈ Xlpar, any word xt ∈ S , any tags
tag1, . . . , tagt−1 ∈ Tags, any tag tagt ∈ Tags distinct from tag1, . . . , tagt−1:

Pr
[

θlpar(xt, ρ, tagt) ∈ ColSpan
((

Γlpar(ρ) θlpar(x1, ρ, tag1) . . . θlpar(xt−1, ρ, tagt−1)
))

∣

∣

∣

∣

ρ $← RGen(lpar)
]

≤ ε ,

when looking at the discrete logarithms of all the elements (see Remark 3.1.6). It is t-S -
sound, if it is ε-t-S -sound, with ε negligible in K. It is ε-t-sound (resp. t-sound), if it
ε-t-(X \L)-sound (resp. t-(X \L)-sound).

4.4.2.2 From t-Sound Tag-CS-DMs and Tag-CS-DVSs to (Weakly Approximate)
t-Universal and t-Smooth PHFs

We can construct a tag-PHF from a tag-CS-DM, in a straightforward way.

Construction 4.4.7 (tag-PHF from tag-CS-DM). Let M = (M,G,X ,L ,R, n, k,RGen,Γ,
θ,λ) be a tag-CS-DM. Let m be a positive integer. Then we construct a PHF as follows:

• HashKG(lpar) picks a random matrix α⊺ $← GenScalarm×n(gpar), generates a random

element ρ $← RGen(lpar), and outputs the hashing key hk := (α⊺, ρ);

4.4 t-Universality, t-Smoothness, and t-Soundness 115

• ProjKG(hk, lpar, x) outputs the projection key hp := (γ⊺, ρ), where hk = (α⊺, ρ) and

γ⊺ := α⊺ • Γlpar(x , ρ) ∈ G
m×k ;

• Hash(hk, lpar, x , tag) outputs the hash value

H := α⊺ • θlpar(x , ρ, tag) ∈ G
m ,

where hk = (α⊺, ρ);

• ProjHash(hp, lpar, x ,w , tag) outputs the projected hash value

pH := α⊺ • λlpar(x ,w , ρ, tag) ∈ G
m .

We can then extend Theorem 4.3.5 as follows.

Theorem 4.4.8 (tag-PHF from tag-CS-DM with t-soundness). Let M = (M,G,X ,L ,R,
n, k,RGen,Γ,θ,λ) be a tag-CS-DM with an εGenScalar-almost-uniform algorithm GenScalar.
Let S be a subset of X and t be a positive integer. Let M ′ ≥ 2 be a factor of M , such
that M mod M ′ is ε-t-S -sound. Let p be the smallest prime factor of M ′. Then the PHF

described in Construction 4.4.7 is (mnεGenScalar + 2ε)-weakly-close to be 1/pm-t-S -universal.
If in addition M is a KV-DM, this PHF is (mnεGenScalar)-close to be 1/pm-t-S -universal.

Similarly, in the case of a DVS, we have the following theorem, which is an extension of
Theorem 3.1.11.

Theorem 4.4.9 (tag-PHF from tag-CS-DVS with t-soundness). Let V = (p,G,X ,L ,R, n,
k,RGen,Γ,θ,λ) be an ε-t-sound tag-CS-DVS. Then the PHF described in Construction 4.4.7
is an ε-t-smooth CS-SPHF. If in addition V is a KV-DVS, this PHF is a perfectly t-smooth
KV-SPHF.

Both these theorems can be proven by remarking that we can just consider the hash values
of the words x1, . . . , xt−1 with tags tag1, . . . , tagt−1 as part of the projection key.

4.4.3 Construction of t-Sound Tag-CS-DMs and Tag-CS-DVSs

We now show how to construct t-sound tag-CS-DM and tag-CS-DVS, from any classical
CS-DM and CS-DVS. For that, we need introduce a useful tool: t-independent strongly
non-degenerated functions.

4.4.3.1 t-Independent Strongly Non-Degenerated Function

Definition. For our construction of t-sound tag-CS-DM and tag-CS-DVS, we need the
following tool.

Definition 4.4.10. Let t ≥ 1, s ≥ 1, and M ≥ 2 be integers. A t-independent strongly
non-degenerated function modulo M is a function φ from Tags to Zs

M for some positive
integer s, such that, for any elements tag1, . . . , tagt ∈ Tags, where tagt is different from
tag1, . . . , tagt−1, there exists a row vector x⊺ ∈ Z1×s

M , such that:

x⊺ ·
(

φ(tag1) . . . φ(tagt−1) φ(tagt)
)

=
(

0 . . . 0 1
)

.

116 Chapter 4 Diverse Modules

We remark that a t-independent strongly non-degenerated function modulo M from Tags

to Zs
M is also a t-independent strongly non-degenerated function modulo M from any subset

Tags′ ⊆ Tags to Zs
M .

We have the following straightforward lemma.

Lemma 4.4.11. Let t ≥ 1, s ≥ 1 and M ≥ 2 be integers. A function φ from Tags to Zs
M is

a t-independent strongly non-degenerated function modulo M , if and only if, for any integer
t′ ∈ {1, . . . , t}, for any distinct elements tag1, . . . , tagt′ ∈ Tags, there exists a row vector
x⊺ ∈ Z1×s

M , such that:

x⊺ ·
(

φ(tag1) . . . φ(tagt′−1) φ(tagt′)
)

=
(

0 . . . 0 1
)

.

First construction. Let us show now a first construction.

Theorem 4.4.12. Let t ≥ 1 and M ≥ 2 be integers. Let p be the smallest prime factor of
M and let Tags be the set {0, . . . , p − 1}. Let φ be the function defined as follows:

φ :

Tags → Zt
M

tag 7→

1
tag mod M
tag2 mod M

...
tagt−1 mod M

.

Then φ is a t-independent strongly non-degenerated function modulo M from Tags to Zs
M ,

with s = t.

Proof. Let tag1, . . . , tagt ∈ Tags be tags, such that tagt is different from tag1, . . . , tagt−1. Let
T ∈ Zs×t

M be the matrix:

T :=
(

φ(tag1) . . . φ(tagt)
)

=

1 . . . 1
tag1 mod M . . . tagt mod M

...
...

tagt−1
1 mod M . . . tagt−1

t mod M

.

We want to construct x⊺ ∈ Z1×t
M such that

x⊺ · T =
(

0 . . . 0 1
)

.

If M was a prime number, this would be completely straightforward, as T is a Vandermonde
matrix and therefore is full-rank, if we remove duplicated tags tagi, with i ∈ {1, . . . , t− 1}.
Here, M might be composite and we therefore provide a manual proof of the existence of x⊺.

Let P (X) ∈ ZM [X] be the polynomial defined as follows:

P (X) =
(X − tag1) · · · (X − tagt−1)

(tagt − tag1) · · · (tagt − tagt−1)
.

4.4 t-Universality, t-Smoothness, and t-Soundness 117

This polynomial is well-defined, as for any i ∈ {1, . . . , t − 1}, the integer tagt − tagi is in
{−p + 1, . . . , p − 1} \ {0}, so it is coprime with M , and thus invertible in ZM . Furthermore,
P (X) has degree t− 1 and is such that:

P (tagi) =

{

0 if i ∈ {1, . . . , t− 1} ,

1 if i = t .

Let x⊺ ∈ Z1×t
M be the vector such that P (X) = x1 + x2 ·X + · · ·+ xt ·X

t−1. We have:

x⊺ · T =
(

P (tag1) . . . P (tagt−1) P (tagt)
)

=
(

0 . . . 0 1
)

.

Second construction. The first construction is limited to subsets of Tags = {0, . . . , p − 1}
with p the smallest prime factor of M . When this prime p is small (e.g., when it is 2), this is
often insufficient.

We point out that this limitation is not a limitation of the proof, but really a limitation of
the construction. In any set of at least p + 1 integers Tags, there exist two distinct integers
tag1 and tag2 such that tag1 mod p = tag2 mod p because of the pigeonhole principal. The
matrix

T :=
(

φ(tag1) φ(tag2)
)

is therefore equal to
(

φ(tag1) φ(tag1)
)

modulo p and there cannot exists a vector x⊺ ∈ Z2
M

such that x⊺ · T = (0, 1). Therefore, φ is not even 2-independent strongly non-degenerated,
when Tags contains at least p + 1 integers.

The idea of the new construction is to work in field extensions. We start with the case
M = pe, where p is a prime number.

For this section, for any prime number p and any integer ν ≥ 1, we consider an arbitrary
linear isomorphism ψp,ν from from the finite field Fpν to the vector space Zν

p. Both ψp,ν

and its inverse ψ−1
p,ν are efficiently computable. Furthermore, we implicitly use the canonical

embeddings from Zp to Zpe and to Fpν .

Theorem 4.4.13. Let t, e, and ν be positive integers. Let M = pe, where p is a prime
number. Let Tags := {0, . . . , p− 1}ν = Zν

p. Let φ be the function defined as follows:

φ :

Tags → Z
1+ν·(t−1)
M

tag 7→

1
ψp,ν(ξ)
ψp,ν(ξ2)

...
ψp,ν(ξt−1)

,

where ξ := ψ−1
p,ν(tag) ∈ Fpν . Then φ is a t-independent strongly non-degenerated function

modulo M from Tags to Zs
M , with s = 1 + ν · (t− 1).

118 Chapter 4 Diverse Modules

Proof. We do the proof using Lemma 4.4.11 and by induction over e. More precisely, let
t′ ∈ {1, . . . , t} and let tag1, . . . , tagt′ be distinct tags in Tags. For all i ∈ {1, . . . , t′}, we define
ξi := ψ−1

p,ν(tagi). Let T ∈ Zs×t
M be the matrix:

T :=
(

φ(tag1) . . . φ(tagt′)
)

=

1 . . . 1
ψp,ν(ξ1) . . . ψp,ν(ξt′)
ψp,ν(ξ2

1) . . . ψp,ν(ξ2
t′)

...
...

ψp,ν(ξt−1
1) . . . ψp,ν(ξt−1

t′)

.

We construct x⊺ ∈ Z1×s
pe such that

x⊺ · T =
(

0 . . . 0 1
)

∈ Z1×t′

pe .

We do this by induction over e.

• Base case: e = 1. This case is a non-trivial extension to the proof of Theorem 4.4.12.
Basically, T can be seen as a Vandermonde matrix with coefficients in the extension
Fpν of Fp and extended as vectors over the base field Fp. Formally, let P (X) ∈ Fpν [X]
be the polynomial defined as follows:

P (X) =
(X − ξ1) · · · (X − ξt′−1)
(ξt′ − ξ1) · · · (ξt′ − ξt′−1)

.

The polynomial P (X) has degree t− 1 and is such that:

P (ξi) =

{

0 if i ∈ {1, . . . , t′ − 1} ,

1 if i = t′ .

Let x′⊺ ∈ F1×t
pν be the vector such that P (X) = x′

1 + x′
2 ·X + · · ·+ x′

t′ ·Xt′−1. For any
i ∈ {1, . . . , t′}, let Ai ∈ Zν×ν

p be the matrix corresponding to the multiplication by x′
i

in Fpν , i.e., such that for any y ∈ Fpν :

ψp,ν(x′
i · y) = Ai ·ψp,ν(y) .

Finally, let a⊺i ∈ Z1×ν
p be the first row of Ai and let x⊺ ∈ Zs

p be defined as follows:

x⊺ =
(

a1,1 a
⊺

2 a
⊺

3 . . . a
⊺

t′−1

)

.

We remark that for any ξ ∈ Fpν such that P (ξ) is in the base field Fp, we have:

x⊺ ·

1
ψp,ν(ξ)

...
ψp,ν(ξt−1)

= P (ξ) .

Therefore, we have:
x⊺ · T =

(

0 . . . 0 1
)

.

That concludes the case e = 1.

4.4 t-Universality, t-Smoothness, and t-Soundness 119

• Induction case: e ≥ 2. We use the induction hypothesis for e − 1 and get a vector
x′⊺ ∈ Z1×s

pe such that:

x′⊺ · T mod pe−1 =
(

0 . . . 0 1
)

In other words, there exists a vector y′ ∈ Z1×t′

such that:

x′⊺ · T =
(

0 . . . 0 1
)

+ pe−1 · y′ .

Using a proof similar at what we did in the base case, using P the Lagrange polynomial
of degree t′ − 1 satisfying P (ξi) = −yi modulo p for i ∈ {1, . . . , t′}, we get that there
exists a vector x′′⊺ such that:

x′′⊺ · T mod p = −y′ .

We conclude by setting x⊺ = x′⊺ + pe−1 · x′′⊺ and remarking that:

x⊺ · T =
(

0 . . . 0 1
)

+ pe−1 · y′ − pe−1 · y′ =
(

0 . . . 0 1
)

.

This concludes the proof.

Let us now show a construction for a generic composite number M = pe1

1 · · · p
er
r . This is

basically just a CRT combination of the functions φ from Theorem 4.4.13 modulo pei

i .

Theorem 4.4.14. Let t and ν be positive integers. Let M ≥ 2 be an integer. Let M =
pe1

1 · · · p
er
r be its prime decomposition. Let p be the smallest prime factor of M . Let Tags :=

{0, . . . , p−1}ν . Let φ1, . . . ,φr be the t-independent strongly non-degenerated functions defined
in Theorem 4.4.13 modulo pe1

1 , . . . , p
er
r respectively. Let φ be the function defined as follows:

φ :

(

Tags → Z
1+ν·(t−1)
M

tag 7→ crt(φ1(tag), . . . , φr(tag))

)

.

Then φ is a t-independent strongly non-degenerated function modulo M from Tags to Zs
M ,

with s = 1 + ν · (t− 1).

Proof. The proof is straightforward using the CRT and actually works for as long as φ1, . . . ,φr

are t-independent strongly non-degenerated functions modulo pe1

1 , . . . , p
er
r respectively.

4.4.3.2 Construction of t-Sound Tag-CS-DM and Tag-CS-DVS

From any CS-DM, we can now construct a t-sound tag-CS-DM corresponding to the same
language. The resulting tag-CSDM is called a t-sound extension of the former CS-DM.

Construction 4.4.15 (t-sound extension). Let M = (M,G,X ,L ,R, n, k,RGen,Γ,θ,λ) be
a CS-DM. Let t be a positive integer. Let φ be a t-independent strongly non-degenerated
function from some set Tags to Zs

M . Let us construct a t-sound tag-CS-DM M′ = (M,G,X ,
L ,R, n′, k′,RGen,Γ′,θ′,λ′), with p the smallest prime factor of M , as follows:

n′ := n · s k′ := k · s

Γ′(ρ) := Ids ⊗ Γ(ρ) =

Γ 0 . . . 0

0 Γ
...

...
. . . 0

0 . . . 0 Γ

120 Chapter 4 Diverse Modules

θ′(x , ρ, tag) := φ(tag)⊗ θ(x , ρ) =

φ1(tag) • θ(x , ρ)
...

φs(tag) • θ(x , ρ)

λ′(x ,w , ρ, tag) := φ(tag)⊗ λ(x ,w , ρ) =

φ1(tag) • λ(x ,w , ρ)
...

φs(tag) • λ(x ,w , ρ)

,

where:

φ(tag) =

φ1(tag)
...

φs(tag)

∈ Zs

M .

Let us now prove the security of the construction.

Proposition 4.4.16. IfM is an ε-S -sound CS-DM (resp. 0-S -sound KV-DM), then the DM

M′ defined in Construction 4.4.15 is an ε-t-S -sound CS-DM (resp. 0-t-S -sound KV-DM).

Proof. As expected with the tensor products and the use of strong non-degeneracy, we will
re-use the security proof of the disjunction of CS-DMs (Proposition 4.3.16).

Let x1, . . . , xt−1 ∈ Xlpar, xt ∈ S , tag1, . . . , tagt−1 ∈ Tags, and tagt ∈ Tags distinct from
tag1, . . . , tagt−1. We suppose that ρ is such that θ(x , ρ) /∈ ColSpan (Γ(ρ)). This happens
with probability at least 1− ε.

We want to prove that:

θ′(xt, ρ, tagt) /∈ ColSpan
((

Γ′(x , ρ) θ′(x1, ρ, tag1) . . . θ′(xt−1, ρ, tagt−1)
))

.

Let T ∈ Z
s×(t−1)
M be the matrix defined as:

T :=
(

φ(tag1) . . . φ(tagt−1)
)

.

We remark that for all i ∈ {1, . . . , t− 1}, if ei ∈ Zt−1
M the i-th vector of the canonical basis of

Zt−1
M :

θ′(xi, ρ, tagi) = φ(xi)⊗ θ(xi, ρ) = (T ⊗ Idn) • (ei ⊗ θ(xi, ρ)) ∈ ColSpan (T ⊗ Idn) .

We therefore just need to prove that:

θ′(xt, ρ, tagt) /∈ ColSpan
((

Γ′(x , ρ) T ⊗ Idn

))

,

or in other words:

φ(tagt)⊗ θ(xt) /∈ ColSpan
((

T ⊗ Idn Ids ⊗ Γ(x , ρ)
))

.

This is similar to what we prove for the disjunction of two CS-DMs: one with Γ1 := T
and one with Γ2 = Γ. Furthermore, by t-independent strong non-degeneracy of φ, we have
that there exists a row vector x⊺ ∈ Z1×s

M such that x⊺ · T = 0 and x⊺ · φ(tagt) = 1. In
other words, informally, φ(tagt) is strongly non-degenerated. We conclude exactly as in
Proposition 4.3.16.

4.4 t-Universality, t-Smoothness, and t-Soundness 121

Remark 4.4.17. For some applications, as NIZK, we use Construction 4.4.15 (to get t-
soundness) in conjunction with Construction 4.3.15 (CS/KV disjunction). Let us show that
these two operations “commute”, up to a permutation of the columns of Γ and the coefficients
of θ. This equivalence essentially comes from the associativity of tensor products. More
precisely, let M1 = (M,G1,X1,L1,R1, n1, k1,RGen1,Γ1,θ1,λ1) and M2 = (M,G2,X2,L2,
R2, n2, k2,RGen2,Γ2,θ2,λ2) be two DVSs. The DVS corresponding to the disjunction of a
t-sound extension of the DVS V1 and of the (unmodified) DVS V2 corresponds to the t-sound
extension of the disjunction of V1 and V2: the dimensions n and k together with the vector θ
are the same, while the matrix Γ and the vector λ are equal up to permutation of the columns
for Γ and of the entries for λ. With notation Construction 4.4.15, the former DVS is indeed
defined as follows:

n := (s · n1) · n2 k := (s · k1) · n2 + (s · n1) · k2

Γ :=
(

(Ids ⊗ Γ1)⊗ Idn2
(Ids ⊗ Idn1

)⊗ Γ2

)

=

Γ1 ⊗ Idn2
0 . . . 0 Idn1

⊗ Γ2 0 . . . 0

0 Γ1 ⊗ Idn2

... 0 Idn1
⊗ Γ2

...

. . .
. . . 0 . . .

. . . 0
0 . . . 0 Γ1 ⊗ Idn2

0 . . . 0 Idn1
⊗ Γ2

θ := (φ(tag)⊗ θ1)⊗ θ2

λ :=

(

(φ(tag)⊗ λ1)⊗ θ2

0sn1k2

)

if R(x1,w1) = 1
(

0sk1n2

(φ(tag)⊗ θ1)⊗ λ2

)

otherwise, if R(x2,w2) = 1

,

and the latter DVS is defined as follows:

n := s · (n1 · n2) k := s · (k1 · n2 + n1 · k2)

Γ := Ids ⊗
(

Γ1 ⊗ Idn2
Idn1
⊗ Γ2

)

=

Γ1 ⊗ Idn2
Idn1
⊗ Γ2 0 0 . . . 0

0 0 Γ1 ⊗ Idn2
Idn1
⊗ Γ2

...
...

...
. . .

. . . 0
0 0 . . . 0 Γ1 ⊗ Idn2

Idn1
⊗ Γ2

θ := (φ(tag)⊗ θ1)⊗ θ2

λ :=

φ(tag)⊗

(

λ1 ⊗ θ2

0sn1k2

)

if R(x1,w1) = 1

φ(tag)⊗

(

0sk1n2

θ1 ⊗ λ2

)

otherwise, if R(x2,w2) = 1

.

Chapter 5
Pseudorandomness

This chapter introduces the notion of pseudorandom projective hash functions (PrPHFs)
and pseudorandom diverse vector spaces (Pr-DVSs), together with the notion of mixed
pseudorandomness, used to improve the efficiency of some of our applications. We only work
with prime-order diverse modules (DMs), or in other words, with diverse vector spaces (DVSs),
as this is quite technical and already gives many interesting results.

A PrPHF is a PHF for which the hash value of a random word inside the language looks
uniform for an adversary who only knows the projection key (and but not a witness for this
word). A Pr-DVS is just a KV-DVS for which the associated PHF is pseudorandom. Any
SPHF or DVS for a hard-subset-membership language is a PrPHF or Pr-DVS. But there exist
more efficient constructions of PrPHFs and Pr-DVSs, in particular constructions for which
the associated language is trivial and the dimensions of the corresponding vector spaces (L̂
and X̂) are equal to 1. For a hard-subset-membership language, this is impossible as L̂ has
to be a proper non-zero subspace of X̂ .

In our applications like non-interactive zero-knowledge arguments (NIZK) and implicit
zero-knowledge arguments (iZK) (Sections 3.3, 6.2 and 6.3), we do not use directly a DVS

over a hard-subset-membership language, but we use the disjunction of such a DVS V2 with
a DVS V1 corresponding to the language we are interested in. When V2 is replaced a Pr-DVS

for a potentially trivial language, mixed pseudorandomness corresponds to the property we
need to prove the security of the resulting iZK or NIZK.

Contents

5.1 Pseudorandom Projective Hash Functions and Diverse Vector Spaces124

5.1.1 Definition . 124

5.1.2 Construction from Hard-Subset-Membership Languages 124

5.1.3 Construction from MDDH . 126

5.2 Mixed Pseudorandomness . 129

5.2.1 Definition . 129

5.2.2 GL Disjunctions of a GL-DVS and a Pr-DVS 130

5.2.3 CS/KV Disjunctions of a DVS and a Pr-DVS 133

— 123 —

124 Chapter 5 Pseudorandomness

5.1 Pseudorandom Projective Hash Functions (PrPHFs) and
Pseudorandom Diverse Vector Spaces (Pr-DVSs)

Let us start by defining and constructing PrPHFs and Pr-DVSs. We provide two construc-
tions: one completely generic from any KV-DVS associated to a hard-subset-membership
language, and one based on matrix decisional Diffie-Hellman (MDDH) assumptions (recalled
in Section 3.4.1) which is not generic but is more efficient.

5.1.1 Definition

Definition 5.1.1. A PHF (HashKG,ProjKG,Hash,ProjHash) for a language L ⊆ X is a
pseudorandom projective hash function (PrPHF) if it satisfies the following properties:

• R-samplability of L . As in Definition 2.3.3;

• KV/CS type. Projections keys do not depend on the word to be hashed, i.e., ProjKG

does not use its input x ;

• Pseudorandomness. The hash value of a random word x
$← L is computationally

indistinguishable from a random value from the range Π of the PHF. More formally,
the advantage of an adversary A against pseudorandomness is defined by the experi-
ments Exppsrnd-b depicted in Figure 5.1. The PHF is pseudorandom if this advantage is
negligible for any polynomial-time adversary A.

We remark that in the pseudorandomness experiment, contrary to most of the experiments
in this thesis but similarly to the experiments Expsub-memb-b for hard subset membership in
Figure 2.3, the adversary is not given access the trapdoor ltrap for the language.

A pseudorandom diverse vector space (Pr-DVS) is a KV-DVS for which the corresponding
PHF is a PrPHF.

The restrictions to KV-DVSs and to CS-type PHFs make everything simpler and we do not
know of any application for which lifting these restrictions would provide any benefit. That
is why we consider only this restricted setting.

5.1.2 Construction from Hard-Subset-Membership Languages

A KV-SPHF for a hard-subset-membership language is actually a Pr-DVS. More formally, we
have the following proposition.

Proposition 5.1.2. Let PHF (HashKG,ProjKG,Hash,ProjHash) be an ε-smooth KV-SPHF

over a hard-subset-membership language L . Then this PHF is a PrPHF. More precisely, for
any adversary A against pseudorandomness of the associated PHF, there exists an adversary
B against subset membership of L with similar running time1 such that:

Advpsrnd(A,K) ≤ 2 · Advsub-memb(B,K) + ε .

In particular, a KV-DVS for a hard-subset-membership language L is a Pr-DVS.

Proof. We do a proof by games:

1See Footnote 7 on page 32.

5.1 Pseudorandom Projective Hash Functions and Diverse Vector Spaces 125

Pseudorandomness

Exppsrnd-b(A,K)
gpar

$← Setup.gpar(1K)
(lpar, ltrap) $← Setup.lpar(gpar)
hk

$← HashKG(lpar)
hp← ProjKG(hk, lpar)
x

$← Llpar

if b = 1 then
H← Hash(hk, lpar, x)

else
H

$← Π
return A(lpar, x , hp,H)

Figure 5.1: Experiments for Definition 5.1.1 (pseudorandomness)

Game G0: This game corresponds to Exppsrnd-1.

Game G1: In this game, we sample x from Xlpar \Llpar instead of from Llpar. This game is
computationally indistinguishable from the previous one under hard-subset-membership.
More formally, we can construct an adversary B1 with running time similar to A such
that:

|Pr [G0 = 1]− Pr [G1 = 1]| ≤ Advsub-memb(B1,K) .

Game G2: In this game, we sample H at random from Π instead of computing it as the
hash value of x under hk. This game is statistically indistinguishable from the previous
one thanks to smoothness:

|Pr [G1 = 1]− Pr [G2 = 1]| ≤ ε .

Game G3: In this game, we sample x from Llpar again instead of from Xlpar \Llpar. This
game is computationally indistinguishable from the previous one under hard-subset-
membership. More formally, we can construct an adversary B2 with running time
similar to A such that:

|Pr [G2 = 1]− Pr [G3 = 1]| ≤ Advsub-memb(B2,K) .

Furthermore, this game exactly corresponds to Exppsrnd-0.

We therefore get:

Advpsrnd(A,K) = |Pr [G0 = 1]− Pr [G3 = 1]| ≤ Advsub-memb(B1,K)+ε+Advsub-memb(B2,K) .

We get the statement of the proposition by constructing an adversary B that draws a uniform
random integer i $← {1, 2} and runs Bi.

126 Chapter 5 Pseudorandomness

5.1.3 Construction from MDDH

As already explained, the previous construction works fine but is not optimal as a KV-DVS

V = (p,G,X ,L ,R, n, k,RGen,Γ,θ,λ) for a hard-subset-membership language L has to be
such that L̂ is a proper non-zero subspace of X̂ . This implies that n > k ≥ 1 and n ≥ 2.

Let us show a construction of Pr-DVS which does not have this limitation.

Construction 5.1.3. Let D be a distribution of matrices in Z
(k+1)×k
p samplable in polynomial

time. Let G be a graded ring of prime order p. Let ṽ be some index for this graded ring.
For pseudorandomness, we suppose that the D-MDDH assumption (recalled in Section 3.4.1)
holds in Gṽ.

We define a Pr-DVS as follows:

• Setup.gpar(1K) generates the graded ring gpar := G for the security parameter K;

• Setup.lpar(gpar) generates and random matrix A $← D, splits it in two matrices Ā ∈ Zk×k
p

and
¯
A ∈ Z1×k

p , such that:

A =

(

Ā

¯
A

)

.

and outputs lpar := [Ā] := [ṽ, Ā] ∈ G
n×k
ṽ and ltrap = A;

• the matrix Γlpar is exactly the matrix [Ā] = lpar;

• the functions θ and λ are the identity functions;

• the language is defined by:

L := L̂ := {[u] | ∃r ∈ Zk
p, u = Ā · r} ⊆ Gn =: X̂ =: X .

Concretely, the graded ring G is often a cyclic group (p,G, g) and the set Gṽ is the group
G. In this case, we recall that for any matrix B ∈ Zℓ×m

p , the matrix C = [B] ∈ Gℓ×m is
defined by Ci,j = gBi,j .

We remark that when the matrices A $← D are full-rank, then L = X and the language
is trivial. In this case, the above KV-DVS would be perfectly smooth, as X \L is empty.
But smoothness is completely vacuous, in this case. Furthermore, the language is clearly not
hard-subset-membership. Let us still show that the above KV-DVS is a Pr-DVS.

Proposition 5.1.4. Let D be a distribution of matrices in Z
(k+1)×k
p samplable in polynomial

time. Let G be a graded ring of prime order p. Let ṽ be some index for this graded ring. We
suppose that for any matrix A $← D, Ā is invertible, except with negligible probability ε. If
D-MDDH holds in Gṽ, then the KV-DVS defined in Construction 5.1.3 is a Pr-DVS. More
precisely, for any adversary A against pseudorandomness of the associated PHF, there exists
an adversary B against the D-MDDH assumption with similar running time2 such that:

Advpsrnd(A,K) ≤ Advmddh(B,K) + 4ε+ 2/p .

We remark that the condition that Ā is invertible with overwhelming probability is satisfied
by all the standard MDDH assumptions, including DDH, DLin, the κ-linear assumption [HK07;
Sha07], the cascade assumption, and the symmetric cascade assumption [EHK+13].

2See Footnote 7 on page 32.

5.1 Pseudorandom Projective Hash Functions and Diverse Vector Spaces 127

Proof. We do a proof by games.

Game G0: This game corresponds to Exppsrnd-1, except that we compute the hash value H

as pH using a witness w (which does not change anything by perfect correctness of the
DVS). We have:

w := λ
$← Zk

p x := θ := [Ā] • λ

hk := α⊺ $← Z1×k
p hp := γ⊺ := α⊺ • [Ā] H := γ⊺ • λ .

Game G1: In this game, we abort (and return 0) if Ā is not invertible. This game is
statistically indistinguishable from the previous one:

|Pr [G0 = 1]− Pr [G1 = 1]| ≤ ε .

Game G2: In this game, we generate an additional uniform random value αk+1
$← Zp and

compute hp as follows:

hp := γ⊺ := α⊺ • [Ā] αk+1 • [
¯
A] = α′⊺ • [A] where α′⊺ :=

(

α⊺ αk+1

)

.

As Ā is full-rank, in this game and the previous game, hp has the same distribution:
it is uniform over G

1×k
ṽ . Therefore, this game is perfectly indistinguishable from the

previous one:
Pr [G1 = 1] = Pr [G2 = 1] .

Game G3: In this game, we do not abort anymore when Ā is not invertible. This game is
statistically indistinguishable from the previous one:

|Pr [G2 = 1]− Pr [G3 = 1]| ≤ ε .

Game G4: In this game, we change the way H and θ are computed and defined:

θ′ := [A] • λ ∈ G
k+1
ṽ θ := (θ′

i)i=1,...,k H := α′⊺ • θ′ .

Concretely, this means that:

θ′ =

(

θ

θ′
k+1

)

.

Furthermore w = λ is no more used in this game. This game is perfectly indistingui-
shable from the previous game:

Pr [G3 = 1] = Pr [G4 = 1] .

Game G5: Let L ′ ⊆ X ′ be the canonical language corresponding to the D-MDDH assump-
tion, as in Section 3.4.1:

L
′ := {[u] | ∃r ∈ Zk

p, u = A · r} ⊆ G
k+1
ṽ =: X ′ .

In this game, we now generate θ′ as a uniform vector in X \L . We have:

θ′ $← X ′ \L
′

x := θ := (θ′
i)i=1,...,k α′⊺ $← Z1×(k+1)

p

hk := α⊺ := (α′
i)
⊺

i=1,...,k hp := γ⊺ := α′⊺ • [A] H := α′⊺ • θ′ .

128 Chapter 5 Pseudorandomness

This game is computationally indistinguishable from the previous one under the D-
MDDH assumption. More formally, we can construct an adversary B with running time
similar to A such that:

|Pr [G4 = 1]− Pr [G5 = 1]| ≤ Advmddh(B,K) + 1/p .

The additive term 1/p comes from the fact that the probability that a uniform vector
[u] ∈ G

k+1 is in L ′ is at most 1/p.

Game G6: In this game, we replace H by a random value in Gṽ. This game is statistically
indistinguishable from the previous one thanks to the smoothness of the SPHF with
hashing key α′, projection key γ, and hash value H, for the MDDH language L ′ ⊆ X ′

as defined in Section 3.4.1:

|Pr [G5 = 1]− Pr [G6 = 1]| ≤ 1/p .

Game G7: We remark that in the previous game θ′
k+1 is not used anymore (as it was only

used in the computation of H) and θ is just a random vector, so we compute everything
as follows:

x := θ
$← G

k
ṽ α′⊺ $← Z1×(k+1)

p

hk := α⊺ $← Z1×k
p hp := γ⊺ := α′⊺ • [A] H

$← Gṽ .

This game is perfectly indistinguishable from the previous game and:

Pr [G6 = 1] = Pr [G7 = 1] .

Game G8: This game exactly is Exppsrnd-0. Compared to the previous game, we just
changed

x := θ
$← G

k
ṽ

α′⊺ $← Z1×(k+1)
p

hp := γ⊺ := α′⊺ • [A]

to

w := λ
$← Zk

p

x := θ := [Ā] • λ

α⊺ $← Z1×k
p

hp := γ⊺ := α⊺ • [Ā]

.

When Ā is invertible, the distribution of (x , hp) is exactly the same in both cases.
Therefore, we can show that this game is indistinguishable from the previous one:

|Pr [G7 = 1]− Pr [G8 = 1]| ≤ ε .

We therefore get:

Advpsrnd(A,K) = |Pr [G0 = 1]− Pr [G3 = 1]| ≤ Advmddh(B,K) + 4ε+ 2/p .

That concludes the proof.

Let us show a simple concrete example

5.2 Mixed Pseudorandomness 129

Example 5.1.5 (Pr-DVS under DDH). The global parameters are gpar := (p,G, g), with G

being a cyclic group of prime order p generated by g. There are no language parameters
(lpar =⊥). The trivial language is defined as follows:

L = {u ∈ G | ∃r ∈ Zp, u = gr} (G = X .

The DVS is defined as follows:

n := 1 k := 1

Γ :=
(

g
)

θ(x) :=
(

u
)

λ(x ,w) :=
(

r
)

,

where

x = u w = r .

Historical note 5.1.6. While pseudorandomness was introduced by Gennaro and Lindell
in [GL03; GL06], it was always a consequence of the hard-subset-membership property.
The first constructions with trivial language were proposed in [ABP15c] and were based
on the κ-linear assumption [HK07; Sha07] which is a generalization of DDH and DLin.
Construction 5.1.3 is even more general and is inspired from [KW15]. When the distribution
D corresponds to the κ-linear assumption, we do not exactly get the construction of [ABP15c]
though, as in the latter construction, there was only one possible word in the trivial language.
But this difference has no impact in our applications.

5.2 Mixed Pseudorandomness

5.2.1 Definition

Definition 5.2.1. Let L be a language corresponding to the disjunction of two languages
L1 and L2 as defined in Section 3.2.2. A PHF (HashKG,ProjKG,Hash,ProjHash) is mixed-
pseudorandom if the hash value of a word (x1, x2) is computationally indistinguishable from a
random value, when x1 is chosen by the adversary in X1 \L1, while x2 is chosen at random
in L2. When x1 is chosen before the projection key, the PHF is said to be GL/CS-mixed-
pseudorandom (CS when ProjKG does not use its input x and GL otherwise). Otherwise,
the PHF is said to be KV-mixed-pseudorandom (in which case ProjKG should not use its
input x). The advantages of an adversary A against GL/CS and KV pseudorandomness are
defined by the experiments Expgl/cs-m-psrnd-b and Expkv-m-psrnd-b respectively, both depicted in
Figure 5.2. The PHF is mixed-pseudorandom if the corresponding advantage is negligible for
any polynomial-time adversary A.

A GL-DVS (resp. CS-DVS and KV-DVS) for a disjunction L of two languages L1 and L2

is said to be GL (resp. CS and KV)-mixed-pseudorandom if its associated PHF is GL (resp.
CS and KV)-mixed-pseudorandom.

We remark that in the experiments we explicitly defined ltrap = (ltrap1, ltrap2), as our
proof of mixed pseudorandomness for CS/KV disjunctions actually requires ltrap1 to contain
enough information so that for any ρ, it is possible to compute the discrete logarithms of
the entries of Γ1(ρ). We use a strong security notion in which the adversary is also given
access to ltrap1. This is convenient, as often ltrap1 contains a decryption key. However, as in
pseudorandomness, we do not give access to ltrap2 to the adversary.

130 Chapter 5 Pseudorandomness

Mixed Pseudorandomness

Expgl/cs-m-psrnd-b(A,K) and Expkv-m-psrnd-b(A,K)
gpar

$← Setup.gpar(1K)
(lpar = (lpar1, lpar2), ltrap = (ltrap1, ltrap2)) $← Setup.lpar(gpar)
hk

$← HashKG(lpar)
hp←⊥ ⊲ only in Expgl/cs-m-psrnd-b

hp← ProjKG(hk, lpar) ⊲ only in Expkv-m-psrnd-b

x2
$← L2,lpar2

(x1, st)
$← A(lpar, ltrap1, hp, x2)

x ← (x1, x2)
hp← ProjKG(hk, lpar, x) ⊲ only in Expgl/cs-m-psrnd-b

if b = 1 or x1 ∈ L1,lpar1
then

H← Hash(hk, lpar, x)
else

H
$← Π

return A(st, hp,H)

Figure 5.2: Experiments for Definition 5.2.1 (GL/CS and KV mixed pseudorandomness)

5.2.2 GL Disjunctions of a GL-DVS and a Pr-DVS

Let us show that the GL disjunction of a GL-DVS V1 and a Pr-DVS V2 is (GL) mixed-
pseudorandom, when the trapdoor ltrap1 output by Setup.lpar1 enables to check whether a
word x1 ∈ X1 is in L1 in polynomial time.

Theorem 5.2.2. Let V1 = (p,G,X1,L1,R1, n1, k1,RGen1,Γ1,θ1,λ1) and V2 = (p,G,X2,
L2,R2, n2, k2,RGen2,Γ2,θ2,λ2) be two DVSs. Let V be the disjunction GL-DVS of V1 and V2

as defined in Construction 3.2.4. We suppose that the trapdoor ltrap1 output by Setup.lpar1

enables to check whether a word x1 ∈ X1 is in L1 in polynomial time.
If V2 is a Pr-DVS, then V is mixed-pseudorandom. More precisely, for any adversary A

against mixed pseudorandomness of the PHF associated to V, there exists any adversary B
against pseudorandomness of the PHF associated to V2 with similar running time, such that:

Advgl/cs-m-psrnd(A,K) ≤ 2 · Advpsrnd(B,K) + ε ,

assuming V1 is ε-sound.

Proof. We first remark that the condition on the trapdoor ltrap1 makes the experiment
polynomial time.

We recall the definition of Γ and θ in Construction 3.2.4:

Γ(x , ρ) :=

0⊺

k1
1Zp

0⊺

k2
1Zp

Γ1 θ1 0n1×k2
0n1

0n2×k1
0n2

Γ2 θ2

θ(x , ρ) :=

[⊤,−1]
[⊤, 0]

...
[⊤, 0]

∈ G
n
⊤ .

We do a proof by games.

5.2 Mixed Pseudorandomness 131

Game G0: This game corresponds to Expgl/cs-m-psrnd-1. We recall that:

α⊺ $← Z1×n
p hk = (α⊺, ρ)

γ⊺ := α⊺ • Γ hp = (γ⊺, ρ)

H = α⊺ • θ = α1 .

In the last equality as in the whole proof, we are quite liberal regarding the indexes of
the graded ring elements.

Game G1: This game is the same as the previous one, except that γk is replaced by a
uniform random value (independent of everything else). This game is computationally
indistinguishable form the previous one, under pseudorandomness of V2, thanks to
Lemma 5.2.3 (below). We remark that we can also define this game as follows:

Γ′ :=

0⊺

k1
1Zp

0⊺

k2
1Zp

Γ1 θ1 0n1×k2
0n1

0n2×k1
0n2

Γ2 0n2

0⊺

k1
0 0⊺

k2
1Zp

α⊺ $← Z1×n
p α′

n
$← Zp

α′⊺ :=
(

α⊺ α′
n

)

θ′ :=

[⊤,−1]
[⊤, 0]

...
[⊤, 0]

∈ G
n+1
⊤

γ⊺ := α′⊺ • Γ′

H := α′⊺ • θ′ .

Compared to the matrix Γ, the matrix Γ′ has an additional row and its last column is
slightly different. The other entries are the same.

Game G2: In this game, we replace H by a uniform random element in G independent
of everything else. Thanks to the above description of the previous game, when θ1 is
linearly independent from the columns of Γ1, θ′ is linearly independent of the columns
of Γ′. As this happens with probability as least 1− ε by ε-soundness of V1, we get that:

|Pr [G1 = 1]− Pr [G2 = 1]| ≤ ε ,

by a proof similar to the smoothness proof of a PHF associated to a DVS (Theo-
rem 3.1.11).

Game G3: In this game, we compute again γk as in the first game. This game is com-
putationally indistinguishable form the previous one, under pseudorandomness of V2,
thanks to Lemma 5.2.4 (below). Furthermore, it corresponds to Expgl/cs-m-psrnd-1.

132 Chapter 5 Pseudorandomness

Lemma 5.2.3. For any adversary A, there exists an adversary B1 against pseudorandomness
of V2 with a similar running time, such that:

|Pr [G0 = 1]− Pr [G1 = 1]| ≤ Advpsrnd(B1,K) .

Proof. Let us show how to construct an adversary B1 against pseudorandomness of the PHF

associated to V2 with similar running time such that

|Pr [G0 = 1]− Pr [GG:glpsrnd−2 = 1]| ≤ Advpsrnd(B1,K) .

The adversary B1 receives gpar, lpar2, x2, hp2 = γ
⊺

2 = α
⊺

2 • Γ2 (where α⊺

2
$← Z1×n2

p), and

H2 = α
⊺

2 • θ2(x2) in the case b = 1 or H2
$← G in the case b = 0. Next, it generates

(lpar1, ltrap1) $← Setup.lpar(gpar) and runs A(lpar, ltrap1,⊥, x2) and gets back (x1, st). It then
computes the following elements:

ρ1
$← RGen1(lpar1)

α
⊺

1
$← Z1×(k1+1)

p

γ⊺ :=
(

α
⊺

1 • Γ′ γ
⊺

2 (α1,1 H2)
)

∈ G
1×(2+k1+k+2)

where Γ′ :=

(

0⊺

k1
1Zp

Γ1(x1, ρ1) θ1(x1, ρ1)

)

∈ G
(k1+1)×(n1+1) is the upper-left part of Γ,

H := α1,1 .

Then B1 runs A on inputs A(st, hp, x) (where x = (x1, x2)) and outputs what A outputs. Let
us prove that B1 exactly simulates Game G0 for A when B1 is run in Exppsrnd-b with b = 1,
and otherwise exactly simulates Game G1 for A when b = 0.

Case b = 1. In this case, we have:
H2 = α

⊺

2 • θ2 .

Let us define:
α⊺ =

(

α
⊺

1 α
⊺

2

)

.

We remark that we have:

γ⊺ = α⊺ • Γ H = α⊺ • θ .

This concludes this case, as α⊺ is clearly uniformly random in Z1×n
p .

Case b = 0. In this case, we have H2
$← G. This case is similar to the previous one, except

γk = α1,1 H2 is now a uniform random value (independent of α). This concludes this case
and the proof of the lemma.

Lemma 5.2.4. For any adversary A, there exists an adversary B2 against pseudorandomness
of V2 with a similar running time, such that:

|Pr [G2 = 1]− Pr [G3 = 1]| ≤ Advpsrnd(B2,K) .

Proof. The proof is the same as for Lemma 5.2.3, except that H is chosen uniformly at
random instead to be defined as α1,1.

5.2 Mixed Pseudorandomness 133

We therefore get:

Advgl/cs-m-psrnd(A,K) = |Pr [G0 = 1]− Pr [G3 = 1]|

≤ Advsub-memb(B1,K) + ε+ Advsub-memb(B2,K) .

We get the statement of the proposition by constructing an adversary B that draws a uniform
random integer i $← {1, 2} and runs Bi.

Remark 5.2.5. When V2 is a KV-DVS for a hard-subset-membership language (Section 5.1.2),
there is a much easier proof of mixed pseudorandomness of V: we start by sampling x2 from
X2 \L2 instead of from L2, which is indistinguishable under the hard-subset-membership
property, and then we remark that (x1, x2) /∈ L when x1 /∈ L1 and so smoothness directly
implies mixed pseudorandomness.

5.2.3 CS/KV Disjunctions of a DVS and a Pr-DVS

Let us now show that the DVS corresponding to the CS/KV disjunction of a DVS V1 and a
Pr-DVS V2 is mixed-pseudorandom, when the DVS V1 is witness samplable [JR14]. By witness
samplable, we mean that Setup.lpar1 generates a trapdoor ltrap1 in addition to the language
parameters lpar1, such that ltrap1 enables to efficiently compute the discrete logarithms of
the entries of Γ1(lpar1).

Theorem 5.2.6. Let V1 = (p,G1,X1,L1,R1, n1, k1,RGen1,Γ1,θ1,λ1) and V2 = (p,G2,X2,
L2,R2, n2, k2,RGen2,Γ2,θ2,λ2) be two DVSs over two multiplicatively sub-graded rings G1

and G2 of some graded ring G. We suppose that L1 is witness samplable. Let V be the
CS/KV disjunction of V1 and V2 as defined in Construction 3.2.8.

If V2 is a Pr-DVS, then V is GL/CS-mixed-pseudorandom. More precisely, if V1 is ε-sound,
for any adversary A against mixed pseudorandomness of the PHF associated to V, there exists
any adversary B against pseudorandomness of the PHF associated to V2 with similar running
time, such that:

Advgl/cs-m-psrnd(A,K) ≤ m1 · Advpsrnd(B,K) + 2ε ,

where m1 := n1 − maxlpar1
(dim L̂1,lpar1

), where dim L̂1,lpar1
is the dimension of the vector

space L̂1,lpar1
, or in other words the rank of Γ1,lpar1

.

Moreover, if V1 is a KV-DVS, then V is KV-mixed-pseudorandom with the same bound on
the advantage than above (with ε = 0).

Proof. Let us first prove the theorem when V1 is a KV-DVS (and ε = 0).
From a high level point of view, we show how to simulate Expkv-m-psrnd-b using hash values

of x2 (and the associated projection keys), so that if these hash values are valid, we are
exactly in the case b = 1, while if these hash values are uniformly random, we are exactly
in the case b = 0. Contrary to the proof of Theorem 5.2.2, we directly do the reduction to
Expkv-m-psrnd-b (without using an intermediate game) and we do not just need one hash value
and one projection key, but many of them.

That is why, we start by remarking that using a classical hybrid argument, the following

134 Chapter 5 Pseudorandomness

two distributions are computationally indistinguishable:

D1 :=

(γ⊺

2,H2)

∣

∣

∣

∣

∣

∣

∣

lpar2
$← Setup.lpar2(gpar); x2

$← L2;
α

⊺

2
$← Zm1×n2

p ; γ⊺

2 ← α
⊺

2 • Γ2 ∈ G
m1×k2

2 ;
H2 ← α

⊺

2 • θ2(x2) ∈ G
m1

2

D0 :=

(γ⊺

2,H2)

∣

∣

∣

∣

∣

∣

∣

lpar2
$← Setup.lpar2(gpar); x2

$← L2;
α

⊺

2
$← Zm1×n2

p ; γ⊺

2 ← α
⊺

2 • Γ2 ∈ G
m1×k2

2 ;
H2

$← G
m1

2

.

More formally, for any adversary B′ distinguishing these two distributions, we can construct
an adversary B against pseudorandomness, such that:

Adv(B′,K) ≤ m1 · Advpsrnd(B,K) .

Let us now simulate Expkv-m-psrnd-b using one sample (γ⊺

2,H2) from D0 or D1, such that if
this sample comes from D0, we simulate Expkv-m-psrnd-0, while if this sample comes from D1,
we simulate Expkv-m-psrnd-1. This will conclude the proof.

We use notation in Figure 5.2. First, using ltrap1, we compute the discrete logarithms of the
entries of Γ1 and we derive from them a matrix ∆ ∈ Zm1×n1

p such that ker Γ⊺

1 = ColSpan (∆),
or in other words, the solutions x⊺ ∈ Z1×n2

p of the linear equation x⊺ • Γ1 = 0⊺ are exactly
the row vectors x⊺ = δ⊺ •∆, with δ⊺ ∈ Z1×m1

p . The matrix ∆ can be computed by Gaussian
elimination.

We then define hp and H as follows:

γ
′⊺
2 :=

(

γ2,1,1 . . . γ2,1,k2
. . . γ2,m1,1 . . . γ2,m1,k2

)

∈ G
1×(mk2)
2

α′⊺ $← Z1×n
p

γ(1)⊺ := α′⊺ • (Γ1 ⊗ Idn2
) (5.1)

γ(2)⊺ := γ
′⊺
2 • (∆⊗ Idk2

) α′⊺ • (Idn1
⊗ Γ2) (5.2)

γ⊺ :=
(

γ(1)⊺ γ(2)⊺
)

hp := γ

H := H⊺

2 •∆ • θ1 α′⊺ • (θ1 ⊗ θ2) . (5.3)

Case b = 1. Let us now suppose that (γ⊺

2,H2) $← D1 and let us prove that hp and H are
distributed exactly as in Expkv-m-psrnd-1. For that purpose, let α⊺

2 ∈ Zm1×n2
p be the matrix

defined in D1 and let us set:

α
′⊺
2 :=

(

α2,1,1 . . . α2,1,n2
. . . α2,m1,1 . . . α2,m1,n2

)

∈ Z1×(m1n2)
p

α⊺ := α
′⊺
2 • (∆⊗ Idn2

) + α′⊺ ∈ Z1×n
p . (5.4)

We remark that α⊺ is uniformly random, thanks to α′⊺, and therefore is distributed as a
valid hashing key. Furthermore, looking at the definition of γ⊺

2, γ ′⊺
2 , α⊺

2, α′⊺
2 , and H2, we get:

γ
′⊺
2 = α

′⊺
2 • (Idm1

⊗ Γ2) (5.5)

H2 = α
′⊺
2 • (Idm1

⊗ θ2) , (5.6)

5.2 Mixed Pseudorandomness 135

and thus we have from Equations (5.1) and (5.4):

α⊺ • (Γ1 ⊗ Idn2
) = α

′⊺
2 • (∆⊗ Idn2

) • (Γ1 ⊗ Idn2
) + α′⊺ • (Γ1 ⊗ Idn2

)

= α
′⊺
2 • ((∆ • Γ1)⊗ Idn2

) α′⊺ • (Γ1 ⊗ Idn2
)

= γ(1)⊺ ,

since ∆ • Γ1 = 0 by definition of ∆. So γ(1)⊺ is the correct first part of the projection key
associated to α. And, from Equations (5.2) and (5.5), we get:

α⊺ • (Idn1
⊗ Γ2) = α

′⊺
2 • (∆⊗ Idn2

) • (Idn1
⊗ Γ2) + α′⊺ • (Idn1

⊗ Γ2)

= α
′⊺
2 • (∆⊗ Γ2) α′⊺ • (Idn1

⊗ Γ2)

= γ(2)⊺ ,

because

α
′⊺
2 • (∆⊗ Γ(2)) = α

′⊺
2 • (Idm1

⊗ Γ2) • (∆⊗ Idn2
) = γ

′⊺
2 • (∆⊗ Idn2

),

so that γ(2)⊺ is the correct second part of the projection key associated to α, and hp is the
projection key associated to α.

From Equations (5.6) and (5.3), we get:

H = α
′⊺

2
• (Idm1

⊗ θ2) •∆ • θ1 α′⊺ • (θ1 ⊗ θ2)

= α
′⊺

2
• ((∆ • θ1)⊗ θ2) α′⊺ • (θ1 ⊗ θ2)

= α
′⊺

2
• (∆⊗ Idn2

) • (θ1 ⊗ θ2) α′⊺ • (θ1 ⊗ θ2) ,

and by definition of α⊺ (Equation (5.4)), we have:

H = α • (θ1 ⊗ θ2) , (5.7)

hence H is the hash value of (x1, x2) under the hashing key α⊺. In this case, everything has
been generated as in the experiment Expkv-m-psrnd-1.

Case b = 0. Let us now suppose that (γ⊺

2,H2) $← D0 and let us prove that hp and H are
distributed exactly as in Expkv-m-psrnd-0. This case is similar to the previous, except for
Equation (5.6), as H2 is now uniformly random, or in other words, is defined as follows:

H2 = α
′′⊺
2 • (Idm1

⊗ θ′
2) , (5.8)

with θ′
2 being an arbitrary non-zero vector in Zk2

p and α′′⊺
2 being a uniform row vector in

Z1×m1n2
p (independent of α′⊺

2). Except for the above definition, in this case b = 1, we use the
same notation and definitions (in particular for α⊺) as for the case b = 1, We remark that
the proof that hp is the projection key for the hashing key α is still valid. Let us now look
at H. From Equations (5.8) and (5.3), using a similar reasoning as the one used to derive
Equation (5.7), we get that:

H = α′′⊺ • (θ1 ⊗ θ
′
2) ,

where
α′′⊺ = α

′′⊺
2 •∆ α′⊺ .

136 Chapter 5 Pseudorandomness

Since α′′⊺
2 is uniform and independent of everything else, and by definition of ∆, the row

vector α′′⊺ can be seen as an independent hashing key chosen uniformly at random among
the hashing keys satisfying:

α′′⊺ • (Γ1 ⊗ Idn2
) = α′⊺ • (Γ1 ⊗ Idn2

).

Since x1 /∈ L1, θ1 is linearly independent from the columns of Γ1, and θ1 ⊗ θ
′
2 is linearly

independent from the columns of Γ1⊗ Idn2
, hence H = α′′ • (θ1⊗θ

′
2) looks uniformly random

(with the same proof as for the smoothness of a SPHF associated to a DVS in Theorem 3.1.11).
Therefore, in this case, everything has been generated as in the experiment Expkv-m-psrnd-0.
This concludes the proof when V1 is a KV-DVS.

When V1 is a GL-DVS or a CS-DVS, we just abort when θ1 ∈ ColSpan (Γ1), which happens
with probability at most ε, by ε-soundness. We remark that checking this condition can be
done in polynomial time, as we know the discrete logarithms of the entries of Γ1 thanks to
ltrap1. This concludes the proof.

Historical note 5.2.7. The above proof is a rephrasing of the proof in [ABP15c]. The latter
proof was inspired by the proof of computational soundness of trapdoor smooth projective
hash functions (TSPHFs) in [BBC+13c].

Remark 5.2.5 also applies.

Chapter 6
Applications of Diverse Modules

This chapter shows four applications of DMs and DVSs related to zero-knowledge: honest-
verifier zero-knowledge arguments, non-interactive zero-knowledge arguments (NIZK), trapdoor
smooth projective hash functions (TSPHFs), and implicit zero-knowledge arguments (iZK).

On the one hand, the first two applications are classical primitives in cryptography. DMs

and DVSs offer a different perspective on honest-verifier zero-knowledge arguments and NIZK,
together with more efficient constructions in some cases. In particular, they enable us to
construct the most efficient threshold and structure-preserving IND-CCA encryption scheme,
to the best of our knowledge.

On the other hand, TSPHFs and iZK are new primitives which can be seen as zero-knowledge
versions of SPHFs. Not only are they lightweight alternatives to NIZK, but they also have
an implicitness flavor similar to SPHFs, which makes them suitable for applications like
password authenticated key exchange (PAKE) [BBC+13c] and our protocol for secret agents
in Section 2.5.3.3.

All these applications, except honest-verifier zero-knowledge arguments, heavily rely on
disjunctions of DMs and DVSs, and for the most efficient variants, on mixed pseudorandomness.

Contents

6.1 Honest-Verifier Zero-Knowledge Arguments 138

6.1.1 Two Dual Constructions From DMs 138

6.1.2 Extensions and Comparisons . 141

6.2 Non-Interactive Zero-Knowledge Arguments (NIZK) 145

6.2.1 First Constructions . 145

6.2.2 t-Time Simulation-Soundness . 147

6.2.3 Concrete Instantiation and Comparison 152

6.2.4 Application: Threshold Cramer-Shoup-like Encryption Scheme 153

6.3 Trapdoor Smooth Projective Hashing and Implicit Zero-Knowledge 160

6.3.1 Overview . 160

6.3.2 Trapdoor Smooth Projective Hash Functions (TSPHFs) 164

6.3.3 Implicit Zero-Knowledge Arguments (iZK) 170

— 137 —

138 Chapter 6 Applications of Diverse Modules

6.1 Honest-Verifier Zero-Knowledge Arguments

We have already seen in Section 2.5.3.1 that we can construct an honest-verifier zero-knowledge
argument for a language L̈ , from any SPHF for the same language L = L̈ .

In this section, we go further and show that from a DM there are two dual constructions of
honest-verifier zero-knowledge arguments: one via PHFs and another one via Sigma-protocols,
a.k.a, proofs “à la Schnorr” [Sch90; Cra97; CDS94]. We then extend these protocols to
support (partial) extractability and also any NP languages. Both these extensions work by
using a language L for the DM different from the language L̈ for the argument.

6.1.1 Two Dual Constructions From DMs

In this section, we want to construct an honest-verifier zero-knowledge proof for some language
L̈ , supposing that we have a DM M = (M,G,X ,L ,R, n, k,RGen,Γ,θ,λ) for the same
language L = L̈ . The first construction works for all the languages supported by DMs, in
particular for all the examples of DMs and DVSs in Chapters 3 and 4. The second construction
has some minor limitations on the representation of scalars, but it works at least in all the
examples where the order of the graded ring is public, and in particular for all the examples
of DVSs in Chapter 3. One of the most interesting example of DVS for both constructions is
the one from Section 3.4.3, which yields an honest-verifier zero-knowledge argument for the
language of ElGamal ciphertexts whose corresponding plaintexts satisfy a system of quadratic
equations.

As usual, let M ′ be a factor of M such that M mod M ′ is sound (M ′ can be M , but it is
better to choose a proper factor of M which is not divisible by a small prime, if possible). Let
p the smallest prime factor of M ′ and let m be a positive integer such that 1/pm is negligible.
In case of a DVS (i.e., M = p is a prime number), we choose M ′ = M = p and m = 1.

6.1.1.1 Via PHFs

We first construct a (weakly approximate) universal PHF from the DM M using Construc-
tion 4.2.5. Then, we use the PHF as in Section 2.5.3.1 (see Figure 2.8 on page 51). For the
sake of completeness, Figure 6.1 depicts the resulting 2-round protocol.

We have the following security theorem.

Theorem 6.1.1. Let M = (M,G,X ,L ,R, n, k,RGen,Γ,θ,λ) be a DM with an εGenScalar-
almost-uniform algorithm GenScalar. Let M ′ ≥ 2 be a factor of M , such that M mod M ′

is ε-sound. Let p be the smallest prime factor of M ′. We suppose that 1/pm is negligible
in K. Then the protocol described in Figure 6.1 is a perfectly complete, statistically sound,
and perfectly honest-verifier zero-knowledge proof.1 More precisely, the advantage of any
(potentially unbounded) adversary against soundness is at most mnεGenScalar + ε+ 1/pm.

Proof. Perfect completeness directly comes from the perfect correctness property of the
DM M.

Perfect honest-verifier zero-knowledge. Simulating a prover against an honest verifier is
straightforward: we generate the second flow using the hashing key (α⊺, ρ) as α⊺ • θ(x , ρ).

1In all the schemes of this section, the corresponding simulator is described in the proof.

6.1 Honest-Verifier Zero-Knowledge Arguments 139

Prover Verifier
Input: (̈x = x , ẅ = w) CRS: lpar Input: ẍ = x

hp
←−−−−−−−−−

ρ $← RGen(lpar)
α⊺ $← GenScalarm×n(gpar)
γ⊺ ← α⊺ • Γ(x , ρ) ∈ G

m×k

hp← (γ⊺, ρ)
(γ⊺, ρ)← hp

pH← γ⊺ • λ(x ,w , ρ) ∈ G
m pH

−−−−−−−−−→
H← α⊺ • θ(x , ρ)
if pH = H then

accept
else reject

Figure 6.1: Honest-verifier zero-knowledge proof from a DM via a PHF

Statistical soundness directly follows from Theorem 4.2.15 which shows that the PHF associated
to M is (mnεGenScalar + ε)-weakly-close to be 1/pm-universal.

Remark 6.1.2. We can improve the communication complexity by making the prover extract
a bit string of K bits from the projected hash value pH using a randomness extractor, and
sending this bit string instead of pH. As explained in Section 2.2.3, in some cases, this can
be done deterministically, as when G is a cyclic group defined over some elliptic curve of
prime order. But in general, we can always do it by making the verifier send a seed seed

for the randomness extractor together with the projection key hp. Since the size of the seed
seed might be even larger than the size of pH, in many cases, it is better to generate it using
a pseudorandom number generator (PRG), at the expense of making the soundness only
computational. A PRG is a cryptographic primitive which takes as input a (uniform) seed
PRG.seed ∈ {0, 1}K and output a longer bit string which is computationally indistinguishable
from random. The verifier just needs to send a seed PRG.seed for the PRG, and the seed seed

for the randomness extractor can be deduced from it.

6.1.1.2 Via Sigma-Protocols

Let us now show another construction of honest-verifier zero-knowledge proofs from the
same DM M, via Sigma-protocols [Cra97; CDS94]. Sigma-protocols are specific 3-round
honest-verifier zero-knowledge proofs, where the verifier only send some (public) random
coins, called a challenge. We do not give a precise definition here, as we do not need it.

We restrict ourselves to the case where there is a unique representation of scalars. If this is
not the case, we can use various techniques such as randomization of scalars (as in [GGH13])
or we can use larger representations for Λ (notation from Figure 6.2) to completely mask λ.
However, this goes beyond the scope of this thesis.

The protocol is depicted in Figure 6.2, where the integer q is such that 1/q is negligible in
the security parameter K and q ≤ p. If the DMM does not use ρ, then the resulting protocol
is a classical 3-round Sigma-protocol. Otherwise, it is a 4-round protocol.

We have the following security theorem.

140 Chapter 6 Applications of Diverse Modules

Prover Verifier
Input: (̈x = x , ẅ = w) CRS: lpar Input: ẍ = x

ρ
←−−−−−−−−− ρ $← RGen(lpar)

Λ $← GenScalark×m(gpar)
Θ← Γ(x , ρ) • Λ ∈ G

n×m Θ
−−−−−−−−−→

β
←−−−−−−−−− β⊺ $← {0, . . . , q − 1}1×m ⊆ Z1×m

M

Λ′ ← Λ λ(x ,w , ρ)•β⊺ ∈ Zk×m
M

Λ′
−−−−−−−−−→

if Γ(x , ρ) •Λ′ = Θ θ(x , ρ) •β⊺

then
accept

else reject

Figure 6.2: Honest-verifier zero-knowledge proof from a DM via a Sigma-Protocol

Theorem 6.1.3. Let M = (M,G,X ,L ,R, n, k,RGen,Γ,θ,λ) be a DM with an εGenScalar-
almost-uniform algorithm GenScalar and such that scalars in G have a unique representation.
Let M ′ ≥ 2 be a factor of M , such that M mod M ′ is ε-sound. Let p be the smallest prime
factor of M ′ and q ≤ p be a positive integer. We suppose that 1/qm is negligible in K. Then
the protocol described in Figure 6.1 is a perfectly complete, statistically sound, and perfectly
honest-verifier zero-knowledge proof. More precisely, the advantage of any (unbounded)
adversary against soundness is at most ε+ 1/qm, while the advantage of any (unbounded)
adversary against honest-verifier zero-knowledge is at most 2kmεGenScalar.

Proof. Perfect completeness is straightforward.

Statistical honest-verifier zero-knowledge. We can simulate a transcript with an honest verifier
on a word x ∈ L as follows:

β⊺ $← {0, . . . , q − 1}1×m ⊆ Z1×m
M

Λ′ $← GenScalark×m(gpar)

Θ← Γ(x , ρ) • Λ′ θ(x , ρ) • β⊺ .

If GenScalar outputs a perfectly uniform distribution, then both in the real world and in the
simulated world Λ′ are uniformly random (in the real world, this is because Λ is uniformly
random). Furthermore, Θ is also distributed the same way in the both worlds, as it is
uniquely defined by the equation Γ • Λ′ = Θ θ • β⊺. The simulation is therefore perfect
when GenScalar is perfect. When it is εGenScalar-almost-uniform, we just lose an additive term
of at most 2kmεGenScalar.

Statistical soundness. Let x /∈ L and let us suppose that ρ is such that θ(x , ρ) mod M ′ is
linearly independent of the columns of Γ(x , ρ) mod M ′. This happens with probability 1− ε.
Let us prove that for a given matrix Θ, there exists a unique challenge β⊺ ∈ {0, . . . , q − 1}1×m

such that there exists a valid response Λ′ ∈ Zk×m
M accepted by the verifier, i.e., such that:

Γ • Λ′ = Θ θ • β⊺ .

6.1 Honest-Verifier Zero-Knowledge Arguments 141

This will prove that the protocol is ε′-statistically sound, where

ε′ = ε+ 1/|{0, . . . , q − 1}1×m| = ε+ 1/q
m .

Let us now suppose by contradiction that there exist two distinct vectors β⊺

1 and β⊺

2 in
{0, . . . , q − 1}1×m, such that there exists two corresponding valid responses Λ′

1,Λ
′
2 ∈ Zk×m

M :

Γ • Λ′
1 = Θ θ • β⊺

1

Γ • Λ′
2 = Θ θ • β⊺

2 .

We can subtract these two equations and get:

Γ • (Λ′
1 − Λ′

2) = θ • (β⊺

1 − β
⊺

2) .

As β⊺

1 6= β
⊺

2, there exists an index i∗ such that β1,i∗ 6= β2,i∗ . In the previous equation, we
look at the i∗-th column, and we get:

Γ • λ′ = θ • (β1,i∗ − β2,i∗) ,

where λ′ is the i∗-th column of the matrix Λ′
1 − Λ′

2. As the integer β1,i∗ − β2,i∗ is non-zero
and is between −p + 1 and p − 1 (as q ≤ p), it is invertible modulo any prime dividing M
and so modulo M (according to Lemma 4.2.12). We get that θ is in the column space of Γ
which is impossible. This concludes the proof.

Remark 6.1.4. We can improve the communication complexity at the expense on relying
on computational soundness by using a PRG (see Remark 6.1.2 for a definition of PRG) to
generate the second flow of the verifier: in this case the verifier just needs to send a seed
PRG.seed which is a bit string in {0, 1}K.

Historical note 6.1.5. The first construction of honest-verifier zero-knowledge argument via
PHFs was implicit in many work on SPHF and was explicitly introduced in [BBC+13c]. The
second construction via Sigma-protocols was also implicit in many works on Sigma-protocols.

6.1.2 Extensions and Comparisons

6.1.2.1 Partial Extractability

Generic construction. In the CRS model, we can actually add partial extractability in a
blackbox way: the prover encrypts the extractable part of the witness ẅ

K
under a public key

for an IND-CPA encryption scheme (in the CRS) and then proves (using one of our previous
protocols) that the resulting ciphertext encrypts a valid partial witness ẅ

K
for the word

we are interested in. In the case of our second construction (Sigma-protocol), the resulting
protocol is actually an Omega-protocol [GMY06].

More formally, let us show how to construct partially extractable honest-verifier zero-
knowledge proofs for the following language:

L̈ = {̈x | K̈w
K
, ∃ẅ

∃
, R̈ (̈x , (ẅ

K
, ẅ

∃
)) = 1} ⊆ Ẍ ,

with the help of an IND-CPA encryption scheme (Setup.gpar,KeyGen,Enc,Dec), with a setup
Setup.gpar corresponding to the setup Setup.gpar for the DM M and with a message space
corresponding to the space of the extractable part of the witnesses.

142 Chapter 6 Applications of Diverse Modules

To generate the CRS crs and its trapdoor trap, we generate an encryption/decryption key
pair (ek, dk) $← KeyGen(gpar) and output crs := (lpar, ek) and trap := dk. The prover then
first sends a ciphertext c generated as follows:

c
$← Enc(ek, ẅ

K
; r) with fresh random coins r .

Then he runs any honest-verifier zero-knowledge argument ZK′ for the following language:

L := {(̈x , c) | ∃r, ∃ẅ
∃
, ∃ẅ

K
, c = Enc(ek, ẅ

K
; r) and R̈ (̈x , (ẅ

K
, ẅ

∃
)) = 1} . (6.1)

Instantiation. We can instantiate ZK′ with any of the construction in Section 6.1.1. In the
Sigma-protocol version, we can send c with ρ and this does not change the number of rounds,
when ρ is really used (ρ 6=⊥). In the PHF version, we can send c with H, when the DM is a
KV-DM. Otherwise, we need to add an initial flow to send the ciphertext c.

We should however point out that in the 2-round PHF version with a KV-DM, we cannot use
a non-deterministic randomness extractor to compress the last flow H (as in Remark 6.1.2).

Security. If the underlying protocol ZK′ for L is perfectly complete, sound, and honest-
verifier zero-knowledge, the resulting protocol for L̈ is perfectly complete, partially ex-
tractable, and honest-verifier zero-knowledge.

The simulator just encrypts an arbitrary bit string ẅ
K
and then simulates the protocol

ZK′. This is indistinguishable from an honest execution, under the IND-CPA property of the
encryption scheme and the honest-verifier zero-knowledge property of ZK′.

The extractor just acts as an honest verifier except he decrypts the ciphertext c at the end
to get the partial witness ẅ

K
. Extraction reference string indistinguishability and extractor

indistinguishability are perfect and straightforward as the extractor behaves exactly as an
honest verifier from the prover’s point of view. Perfect correctness of the encryption scheme
and soundness of ZK′ ensures that ẅ

K
is a valid partial witness, and so implies partial

extractibility. We point out that if we did no require the encryption scheme to be perfectly
correct, we would need to explicitly require that the encryption scheme is committing.

Concrete example: system quadratic pairing equations. Using a conjunction of the DVSs

introduced in Section 3.4.3, we can construct a 2-round zero-knowledge argument for languages
of the form:

L̈ :=

{

(

(At,1,i) t=1,...,s
i=1,...,ν1

, (At,2,j) t=1,...,s
j=1,...,ν2

, (at,i,j) t=1,...,s
i=1,...,ν1

j=1,...,ν2

, (at,T ,k) t=1,...,s
k=1,...,νT

, (Bt)t=1,...,s

)

∣

∣

∣

∣

∣

K(M1,i)i=1,...,ν1
, K(M2,i)i=1,...,ν2

, K(MT ,i)i=1,...,νT
, ∀t ∈ {1, . . . , s}

ν1
∏

i=1

e(M1,i, At,2,i) ·
ν2
∏

j=1

e(At,1,j ,M2,j) ·
ν1
∏

i=1

ν2
∏

j=1

e(M1,i,M2,j)at,i,j ·
νT
∏

k=1

M
at,T ,k

T ,k = Bt

}

⊆ Gsν1

1 ×Gsν2

2 × Zsν1ν2
p × ZsνT

p ×Gs
T

=: Ẍ ,

where s, ν1, ν2, νT are positive integers, and where (p,G1,G2,GT , e, g1, g2) is a prime order
bilinear group. These kinds of languages encompass the languages handled by Groth-Sahai
NIZK [GS08] and are actually more powerful, as they support indeterminates MT ,k in GT .

6.1 Honest-Verifier Zero-Knowledge Arguments 143

Table 6.1: Comparison of our constructions of (partially extractable) honest-verifier zero-
knowledge arguments from DMs

Communication complexity

Construction Rounds G ZM {0, 1}K other

Without extractability (ẅ
K
=⊥ and L = L̈)

PHF 2 mk 0 2 |ρ|
Sigma-protocol when ρ =⊥ 3 mn mk 1 0
Sigma-protocol when ρ 6=⊥ 4 mn mk 1 |ρ|

With extractability (ẅ
K
6=⊥ and L is defined as in Equation (6.1))

PHF with KV-DM 2 mk +m 0 0 |c|
PHF 3 mk 0 2 |ρ|+ |c|
Sigma-protocol 4 mn mk 1 |ρ|+ |c|

Basically, in the resulting argument, the prover proves that he knows a solution (M·,·) to a
system of s quadratic pairing equations defined by the word ẍ (which contains the coefficients
A·,·, a·,·,·, and B· of the quadratic equations).

If we allow for an additional round, in many cases, we can improve the communication
complexity by compressing the matrix Γ, using in particular batching methods such as the
ones in Example 3.1.5. We can also often improve the communication complexity by using
randomness reuse in the encryption, see Section 2.2.2.4.

Finally, for a composite order M , the same construction works as soon as m is such that
1/pm is negligible in K, where p is the smallest prime factor of M .

6.1.2.2 Comparison

Table 6.1 gives a comparison of the communication complexity of the two constructions
(using the improvement of Remarks 6.1.2 and 6.1.4). In general, k < n and the construction
via PHFs is more efficient. However, there might be DMs where this is not the case (in which
case, some columns of the matrix Γ are linearly dependent) and where group elements have a
much larger representation than scalars.

We recall that the dimensions k and n of the DM depends on the language L and of the
type of DM: GL-DM can often have much smaller dimensions than KV-DM. In particular,
these dimensions are different with and without partial extractability, because the language
L is not the same in these two cases.

6.1.2.3 Support of any NP Language

All the previous constructions require that the language we consider, or the language of
ciphertexts of partial witnesses can be handled by a DM. This already includes a large variety
of algebraic languages, but not all languages.

Let us show that we can extend the construction to any NP language L̈ ⊆ Ẍ , defined
by a circuit C (with gates of fan-in at most 2) taking as input the word ẍ and the witness
ẅ = ẅ

K
(we suppose that the whole witness is extractable without loss of generality) and

144 Chapter 6 Applications of Diverse Modules

outputting R (̈x , ẅ):
L̈ := {̈x | K̈w , C (̈x , ẅ) = 1} .

We use the same idea as for partial extractability: the prover encrypts additional information
in some ciphertexts and then uses an honest-verifier zero-knowledge argument for an extended
language L checking the validity of these ciphertexts with regards to the word ẍ . Concretely,
the prover encrypts using ElGamal the value of all the wires of the circuit C when evaluated
on (̈x , ẅ) and proves (using one of the previous constructions in Section 6.1.1) that:

• the ciphertexts of corresponding to the input wires of ẍ really encrypts the bits of ẍ ;

• the ciphertext corresponding to the output wire encrypts 1;

• each gate is evaluated correctly: if c1, c2 corresponds to two input wires of some gate
f , and c3 corresponds to the output wire the same gate, the plaintexts m1,m2,m3 of
c1, c2, c3 respectively have to satisfy f(x1, x2) = x3. This can be done naively using GL
disjunctions of conjunctions of basic DVS for ElGamal plaintexts (using Example 3.1.9):
(c1, c2, c3) is valid if “m1 = 0 and m2 = 0 and m3 = f(0, 0)” or “m1 = 0 and m2 = 1
and m3 = f(0, 1)” or. . .

This can obviously be optimized, e.g., by not encrypting ẍ nor the output wire, by using
more efficient DVSs, and by using randomness reuse. A slightly optimized version can be
found in [BCPW15]. Anyway, this construction is more a proof of concept of the power of
DVSs than a really practical construction.

If we restrict ourselves to languages defined by arithmetic branching programs, we also
provide a more efficient direct construction in [BCPW15].

In general, however, we believe that this thesis and these constructions should be seen as a
toolbox rather than as ready-to-use solutions to any problem, when it comes to practical
instantiations. For any concrete language, it is often better to directly design an optimized
DVS inspired by all the examples we give in this thesis, rather than using generic constructions.

6.1.2.4 Toward Zero-Knowledge

None of the previous constructions are proven to be zero-knowledge. For the construction
via a PHF, the obstacles to zero-knowledge have already been explained in Section 2.5.3.1,
while Sigma-protocols are known not to satisfy zero-knowledge in general.

For Sigma-protocols, zero-knowledge is usually added using the “or” trick: instead of
just proving that ẍ ∈ L̈ , we prove that ẍ ∈ L̈ or some word x ′ in the CRS crs is in some
hard-subset-membership language L ′. When x ′ /∈ L ′, we get soundness as before, while
when x ′ ∈ L ′, we can use a witness for x ′ to simulate a proof against any malicious verifier.
As the two settings x ′ ∈ L and x ′ /∈ L are indistinguishable by hard subset membership,
we get a secure zero-knowledge proof. This directly works with Sigma-protocols because
these protocols actually satisfy an additional property, namely witness indistinguishability: a
prover that uses a witness for x ′ is indistinguishable from a prover that uses a witness for ẍ .

For the protocols based on PHFs, we can try to use the same idea but this would not work
directly as these protocols are not witness indistinguishable: the projection key hp might
be maliciously generated in such a way that the projected hash value pH depends on the
witness used to compute it. For example, in Example 3.2.5, let us suppose that the malicious
verifier generates correctly hk = α⊺ together with γ1 and γ2, but picks γ3 and γ4 uniformly

6.2 Non-Interactive Zero-Knowledge Arguments (NIZK) 145

at random. Then, for a word x = (x1 = (u1, v1), x2 = (u2, v2)) such that x1 and x2 are both
DH tuples, the projected hash value pH computed using the witness w1 for x1 is equal to
its hash value H (that the malicious verifier can compute using hk), but the projected value
pH computed using the witness w2 for x2 is uniformly random (and it not equal to H with
overwhelming probability). That way, the malicious adversary can know whether the prover
used w1 or w2 to compute pH. This makes the “or” trick fails.

To get zero-knowledge, we need to ensure that the projection key hp is correctly generated.
That is exactly what we are doing with TSPHFs and iZK (see Section 6.3).

6.2 Non-Interactive Zero-Knowledge Arguments (NIZK)

We have already seen in Section 3.3 how to construct a (constant-size) NIZK using a disjunction
of two DVSs: one corresponding to the language L1 = L̈ of the NIZK and one for a hard-
subset-membership language L2. We first extend this construction to DMs and improve it
using mixed pseudorandomness at the expense of requiring L̈ to be witness samplable. We
then show how to construct stronger forms of NIZK, namely t-time simulation-sound NIZK

using t-sound extensions. We conclude by comparing our constructions with existing ones
and by showing a concrete application: the construction of a threshold Cramer-Shoup-like
encryption scheme.

6.2.1 First Constructions

6.2.1.1 Construction Based on Disjunctions with a Hard-Subset-Membership Language

We can extend the construction of NIZK based on KV disjunctions of DVSs (Construction 3.3.1)
to DMs.

Construction 6.2.1. Let M1 = (M,G1,X1,L1,R1, n1, k1,RGen1,Γ1,θ1,λ1) and M2 =
(M,G2,X2,L2,R2, n2, k2,RGen2,Γ2,θ2,λ2) be two KV-DMs over two multiplicatively com-
patible sub-graded rings G1 and G2 of some graded ring G. Let m be a positive integer.
Finally, let M = (M,G,X ,L ,R, n, k,RGen,Γ,θ,λ) be the KV disjunction of M1 and M2.
We recall that n = n1n2 and k = k1n2 + n1k2.

We construct a NIZK for the language L̈ := L1 as follows:

• NIZK.Setup(lpar1) generates language parameters lpar2
$← Setup.lpar2(gpar) for L2,

together with a hashing key hk and the associated projection key hp for V as follows:

hk := α⊺ $← GenScalarm×n(gpar) ,

hp := γ⊺ := α⊺ • Γ ∈ G
m×k ,

and outputs crs := (lpar2, hp). In the sequel, we split γ⊺ in two parts:

γ
⊺

1 := (γj,i) i=1,...,m
j=1,...,k1n2

= α⊺ • (Γ1 ⊗ Idn2
) ∈ G

m×(k1n2)
1 ,

γ
⊺

2 := (γj,i) i=1,...,m
j=k1n2+1,...,n

= α⊺ • (Idn1
⊗ Γ2) ∈ G

m×(n1k2)
2 ;

• NIZK.Sim1(lpar1) works as NIZK.Setup except it also outputs the following trapdoor:

trap := hk := α⊺ ∈ Zm×n
p ;

146 Chapter 6 Applications of Diverse Modules

• NIZK.Prove(crs, tag, x1,w1) outputs:

π⊺ := γ
⊺

1 • (λ1(x1,w1)⊗ Idn2
) ∈ G

m×n2

1 ;

• NIZK.Ver(crs, tag, x1,π
⊺) checks the following equation:

π⊺ • Γ2
?= γ

⊺

2 • (θ1(x1)⊗ Idk2
) ;

• NIZK.Sim2(trap, tag, x1) outputs:

π⊺ := α⊺ • (θ1(x1)⊗ Idn2
) ∈ G

m×n2

1 .

Tags tag are not used in this construction.

When the order M = p is prime, we can choose m = 1 and get Construction 3.3.1.
We have the following security theorem, which extends Theorem 3.3.2. The assumptions

on M1 and M2 are more complex due to the problems with degenerated words and small
factors of M .

Theorem 6.2.2. Let M1 = (p,G1,X1,L1,R1, n1, k1,RGen1,Γ1,θ1,λ1) and M2 = (p,G2,
X2,L2,R2, n2, k2,RGen2,Γ2,θ2,λ2) be two KV-DVSs over two multiplicatively compatible sub-
graded rings G1 and G2 of some graded ring G, with an εGenScalar-almost-uniform algorithm
GenScalar. Let M ′ ≥ 2 be a factor of M such that M1 mod M ′ and M2 mod M ′ are sound.
Let p be the smallest prime factor of M ′. We suppose that L2 is a hard-subset-membership

language, and that a random word x2
$← X2 \L2 is strongly non-degenerated in M2 mod M ′

with overwhelming probability 1− ε. We finally suppose that 1/pm is negligible in K.

Then the NIZK for L̈ = L1 in Construction 6.2.1 is perfectly complete, perfectly zero-
knowledge and sound. More precisely, if A is a polynomial-time adversary against soundness
of the NIZK, we can construct an adversary B against subset-membership for L2 with similar
running time such that:

Advsound(A,K) ≤ Advsub-memb(B,K) +mnεGenScalar +
1

pm
+ ε .

We remark that being strongly non-degenerated in M2 mod M ′ is weaker than being
strongly generated (in M2).

Proof. Perfect completeness and perfect zero-knowledge are proven exactly as for Theo-
rem 3.3.2, as the proof is just syntactical.

For soundness, everything is similar to the latter proof except for the end, when we want
to prove that if x2 /∈ L2 and x1 /∈ L1, then the hash value H looks uniformly random. This is
no more true. Instead, we look at M mod M ′ which can be seen as the KV disjunction of
M1 mod M ′ and M2 mod M ′. We suppose that x2 is strongly non-degenerated in M2 mod
M ′. This happens with overwhelming probability 1 − ε. The reduced DM M mod M ′ is
then sound for the set S = {x1, x2} (thanks to Proposition 4.3.16). We conclude by using
Theorem 4.4.8 which ensures that the resulting PHF is mnεGenScalar-close to be 1/pm-S -
universal, and so that the hash value H of (x1, x2) cannot be guessed by an adversary with
probability more than 1/pm (at least when εGenScalar = 0).

6.2 Non-Interactive Zero-Knowledge Arguments (NIZK) 147

6.2.1.2 Construction Based on Mixed Pseudorandomness

Let us now show how to improve the size of the proof, by using a Pr-DVS as second DVS V2

and mixed pseudorandomness, in the prime order case (i.e., when DMs are actually DVSs).
We need to add a slight restriction on the language of the NIZK L̈ = L1: it has to be witness
samplable (see Section 5.2.3).

Construction 6.2.3. The construction is exactly the same as Construction 3.3.1, except
that we do not require that L2 is a hard-subset-membership language but only that V2 is a
Pr-DVS. We also suppose that L1 is witness samplable.

We point out that we never use the trapdoor ltrap1 of L1 for witness samplability in the
NIZK scheme. It is only used for the proof.

Theorem 6.2.4. Let V1 = (p,G1,X1,L1,R1, n1, k1,RGen1,Γ1,θ1,λ1) and V2 = (p,G2,X2,
L2,R2, n2, k2,RGen2,Γ2,θ2,λ2) be two KV-DVSs over two multiplicatively compatible sub-
graded rings G1 and G2 of some graded ring G. We suppose that V2 is a Pr-DVS and that L1

is witness samplable.
Then the NIZK for L̈ = L1 in Construction 6.2.3 is perfectly complete, perfectly zero-

knowledge, and sound. More precisely, if A is a polynomial-time adversary against soundness
of the NIZK, we can construct an adversary B against pseudorandomness of V2 with similar
running time such that:

Advsound(A,K) ≤ m1 · Advpsrnd(B,K) +
1
p
.

where m1 := n1 − maxlpar1
(dim L̂1,lpar1

), where dim L̂1,lpar1
is the dimension of the vector

space L̂1,lpar1
, or in other words the rank of Γ1,lpar1

.

Proof. Perfect completeness and perfect zero-knowledge are proven exactly as for Theo-
rem 3.3.2, as the proof is just syntactical.

For soundness as for the proof of Theorem 6.2.2, everything is similar to the proof of
Theorem 3.3.2 except for the end, when we want to prove that if x2 /∈ L2 and x1 /∈ L1, then
the hash value H looks uniformly random. This is no more true statistically, but this directly
comes from mixed pseudorandomness. We conclude using Theorem 5.2.6.

There is a slight hidden subtlety: since the proof is no more statistical, we should be
careful that the games can be simulated in polynomial time. This was not the case before.
But now, the trapdoor ltrap1 enables to compute the discrete logarithms of the entries of
Γ1 and so enable to efficiently check whether a word x1 is in L1 or not. We remark that
this trapdoor is available to the adversary B in the experiments Expkv-m-psrnd-b for mixed
pseudorandomness.

6.2.2 t-Time Simulation-Soundness

Let us now extend the previous constructions to get t-time simulation-soundness.

6.2.2.1 Construction Based on Disjunctions with a Hard-Subset-Membership Language

If we try to do a proof of t-time simulation-soundness for the NIZK in Construction 3.3.1 for
example, we have the following problem: we cannot rely on smoothness to prove that the

148 Chapter 6 Applications of Diverse Modules

hash value H looks uniform at the end of the proof, as we may have used the hashing key
trap = hk to simulate t other proofs.

That is exactly why (t+ 1)-universality, (t+ 1)-smoothness, and (t+ 1)-soundness have
been invented: we just need to consider the (t+ 1)-sound extension of the KV disjunction
V or M. To make notation easier to follow however, we consider the KV disjunction of
a (t + 1)-sound extension of M1, and of M2. But we recall that this is equivalent to the
(t+ 1)-sound extension of the KV disjunction of M1 and M2 (see Remark 4.4.17).

Construction 6.2.5. Let M1 = (M,G1,X1,L1,R1, n1, k1,RGen1,Γ1,θ1,λ1) and M2 =
(M,G2,X2,L2,R2, n2, k2,RGen2,Γ2,θ2,λ2) be two KV-DMs over two multiplicatively com-
patible sub-graded rings G1 and G2 of some graded ring G, with an εGenScalar-almost-uniform
algorithm GenScalar. We suppose that M1 is a tag-KV-DM with tag set Tags, and for the
security proof, that it is (t+1)-sound (possibly modulo some integer M ′ such thatM2 mod M ′

is sound). We recall that such a KV-DM can be constructed in a blackbox way from any
KV-DM using Construction 4.4.15. Let m be a positive integer. Finally, let M = (M,G,X ,
L ,R, n, k,RGen,Γ,θ,λ) be the KV disjunction of M1 and M2.

We construct a NIZK for the language L̈ := L1 with tag set Tags as follows:

• NIZK.Setup(lpar1) generates language parameters lpar2
$← Setup.lpar2(gpar) for L2,

together with a hashing key hk and the associated projection key hp for V as follows:

hk := α⊺ $← GenScalarm×n(gpar) ,

hp := γ⊺ := α⊺ • Γ ∈ G
m×k ,

and outputs crs := (lpar2, hp). In the sequel, we split γ⊺ in two parts:

γ
⊺

1 := (γj,i) i=1,...,m
j=1,...,k1n2

= α⊺ • (Γ1 ⊗ Idn2
) ∈ G

m×(k1n2)
1 ,

γ
⊺

2 := (γj,i) i=1,...,m
j=k1n2+1,...,n

= α⊺ • (Idn1
⊗ Γ2) ∈ G

m×(n1k2)
2 ;

• NIZK.Sim1(lpar1) works as NIZK.Setup except it also outputs the following trapdoor:

trap := hk = α⊺ ∈ Zm×n
p ;

• NIZK.Prove(crs, tag, x1,w1) outputs:

π⊺ := γ
⊺

1 • (λ1(x1,w1, tag)⊗ Idn2
) ∈ G

m×n2

1 ;

• NIZK.Ver(crs, tag, x1,π
⊺) checks the following equation:

π⊺ • Γ2
?= γ

⊺

2 • (θ1(x1, tag)⊗ Idk2
) ;

• NIZK.Sim2(trap, tag, x1) outputs:

π⊺ := α⊺ • (θ1(x1, tag)⊗ Idn2
) ∈ G

m×n2

1 .

We have the following security theorem.

6.2 Non-Interactive Zero-Knowledge Arguments (NIZK) 149

Theorem 6.2.6. Let t be a positive integer. Let M1 = (p,G1,X1,L1,R1, n1, k1,RGen1,
Γ1,θ1,λ1) and M2 = (p,G2,X2,L2,R2, n2, k2,RGen2,Γ2,θ2,λ2) be two KV-DVSs over two
multiplicatively compatible sub-graded rings G1 and G2 of some graded ring G. Let M ′ ≥ 2
be a factor of M such that M1 mod M ′ is (t + 1)-sound and M2 mod M ′ is sound. Let
p be the smallest prime factor of M ′. We suppose that L2 is a hard-subset-membership

language, and that a random word x2
$← X2 \L2 is strongly non-degenerated in M2 mod M ′

with overwhelming probability 1− ε. We finally suppose that 1/pm is negligible in K.

Then the NIZK for L̈ = L1 in Construction 6.2.1 is perfectly complete, perfectly zero-
knowledge, and t-time simulation-sound. More precisely, if A is a polynomial-time adversary
against t-time simulation-soundness of the NIZK, we can construct an adversary B against
subset-membership for L2 with similar running time such that:

Advt-sim-sound(A,K) ≤ Advsub-memb(B,K) +mnεGenScalar +
1

pm
+ ε .

We recall t-time simulation-soundness directly implies soundness.
Construction 6.2.5 enables to build NIZK for the same languages as for normal NIZK in

Construction 6.2.1, as we can extend any KV-DM M1 to a (t + 1)-sound KV-DM, using
Construction 4.4.15. We remark that, as we only require M1 mod M ′ to be (t+ 1)-sound,
this previous construction can be slightly optimized: more precisely, we just need to use
t-independent strongly non-degenerated functions modulo M ′ instead of modulo M . In any
case, the dimensions n1 and k1 get multiplied by some integer s ≥ t+ 1. The exact value of s
depends on the tag set and the smallest prime factor p of M ′. Compared to Construction 6.2.1,
the size of the proof is exactly the same, and the size of the CRS is multiplied by s.

When M is a prime number, any word in X2 \L2 is strongly non-degenerated, and we can
choose M ′ = M = p, m = 1, and s = t+ 1 for the tag set Tags = ZM .

Proof. Perfect completeness and perfect zero-knowledge are proven exactly as for Theo-
rem 6.2.2, as the proof is just syntactical.

We need to prove the t-time simulation-soundness property. The proof is similar to the
proof of soundness for Theorem 6.2.2: instead of using universality we use (t+ 1)-universality
which follows from the fact that M is t-sound thanks to Remark 4.4.17.

6.2.2.2 Construction Based on Mixed Pseudorandomness

Let us now try to improve the previous construction using pseudorandomness in the prime
order case, as we did with normal NIZK in Construction 6.2.3. Unfortunately, this is not as
easy: Construction 6.2.5 seems difficult (if at all possible) to prove t-time simulation-sound
when the second DM M2 is just a Pr-DVS. The main problem is that the security proof of
mixed pseudo-randomness is not statistical, and an adversary for mixed pseudorandomness
has not access to hk = α, but has only access to some representation of α, which does not
allow to simulate proofs for words and tags chosen by the adversary.

We could actually do a completely manual proof, in the specific case whereM1 is constructed
via Construction 4.4.15 and if the t tags for the simulated proofs are known before the
generation of the CRS crs of the NIZK. This is already useful, as we can then bootstrap this
into a real t-time simulation-sound NIZK by using a one-time signature: the tag tag becomes
a public key for a one-time signature (and so can be chosen in advance before the generation
of the CRS in the security proof) and the whole NIZK proof is signed using this public key.

150 Chapter 6 Applications of Diverse Modules

However, the previous construction requires to use a one-time signature and therefore
increases the proof size. This increase is likely to be larger than the gain obtained using a
Pr-DVS instead of a KV-DVS for a hard-subset-membership language. Thus, let us instead
show how to construct a one-time simulation-sound NIZK with the same proof size, as the
normal NIZK from Construction 6.2.3. We focus on one-time simulation-soundness, as the
construction is already not straightforward and one-time simulation-soundness is already very
useful. In particular, it is sufficient to construct a threshold Cramer-Shoup-like encryption
scheme in Section 6.2.4.

Our solution is to use the tag bit by bit. So we just need to guess which bit is different
between the tag tag of the proof generated by the adversary and the tag tag′ for the
simulated proof. This idea is inspired from [CW13]. Concretely, we replace the first DVS

V1 in Construction 6.2.3 by its 2-sound extension (Construction 4.4.15) using the tag set
Tags = {0, 1}ν (for any positive integer ν) and the following 2-independent strongly non-
degenerated function modulo M = p:

φ :

Tags → Z2ν
p

tag 7→

tag1
1− tag1

tag2
1− tag2

...
tagν

1− tagν

.

Let us now show the construction in a more concrete way.

Construction 6.2.7. Let V1 = (p,G1,X1,L1,R1, n1, k1,RGen1,Γ1,θ1,λ1) and V2 = (p,G2,
X2,L2,R2, n2, k2,RGen2,Γ2,θ2,λ2) be two KV-DVSs over two multiplicatively compatible
sub-graded rings G1 and G2 of some graded ring G. For the security proof, we suppose that
V2 is a Pr-DVS. Furthermore, we consider the KV disjunction V = (p,G,X ,L ,R, n, k,RGen,
Γ,θ,λ) of V1 and V2. We recall that n = n1n2 and k = k1n2 + n1k2. Finally, let ν be some
positive integer, and let Tags be the tag set Tags = {0, 1}ν .

We construct a NIZK for L̈ := L1 as follows:

• NIZK.Setup(lpar1) generates language parameters lpar2
$← Setup.lpar2(gpar) for L2,

together with 2ν hashing key hkk,b and the associated projection keys hpk,b, for k ∈
{1, . . . , ν} and b ∈ {0, 1}, as follows:

hkk,b := α
⊺

k,b
$← Z1×n

p ,

hpk,b := γ
⊺

k,b := α⊺ • Γ ∈ G
1×k ,

and outputs crs := (lpar2, (hpk,b)k=1,...,ν
b=0,1

). In the sequel, we split γ⊺

k,b in two parts:

γ
⊺

k,b,1 := (γk,b,i)
⊺

i=1,...,k1n2
= α

⊺

k,b • (Γ1 ⊗ Idn2
) ∈ G

1×(k1n2)
1 ,

γ
⊺

k,b,2 := (γk,b,i)
⊺

i=k1n2+1,...,n = α
⊺

k,b • (Idn1
⊗ Γ2) ∈ G

1×(n1k2)
2 ;

6.2 Non-Interactive Zero-Knowledge Arguments (NIZK) 151

• NIZK.Sim1(lpar1) works as NIZK.Setup except it also outputs the following trapdoor:

trap := (hkk,b)k=1,...,ν
b=0,1

;

• NIZK.Prove(crs, tag, x1,w1) outputs:

π⊺ :=
ν
∑∑∑

k=1

γ
⊺

k,tagk,1 • (λ1(x1,w1)⊗ Idn2
) ∈ G

1×n2

1 ;

• NIZK.Ver(crs, tag, x1,π
⊺) checks the following equation:

π⊺ • Γ2
?=

ν
∑∑∑

k=1

γ
⊺

k,tagk,2 • (θ1(x1)⊗ Idk2
) ; (6.2)

• NIZK.Sim2(trap, tag, x1) outputs:

π⊺ :=
ν
∑∑∑

k=1

α
⊺

k,tagk
• (θ1(x1)⊗ Idn2

) ∈ G
1×n2

1 .

We can see the CRS and its associated trapdoor as 2ν CRSs and associated trapdoors
for Construction 6.2.3. A proof π⊺ is the sum of the ν proofs in Construction 6.2.3 for the
projection keys or CRSs hpk,tag. Everything works nicely thanks to the linearity of the proofs.

We insist on the fact that in this construction, contrary to Construction 6.2.5, V1 (or M1)
is a normal DVS (and not necessarily (t+ 1)-sound). The size of the proof is the same as the
one in Construction 6.2.3, while the CRS is 2ν times larger.

Theorem 6.2.8. Let V1 = (p,G1,X1,L1,R1, n1, k1,RGen1,Γ1,θ1,λ1) and V2 = (p,G2,X2,
L2,R2, n2, k2,RGen2,Γ2,θ2,λ2) be two KV-DVSs over two multiplicatively compatible sub-
graded rings G1 and G2 of some graded ring G. We suppose that V2 is a Pr-DVS and that L1

is witness samplable.
Then the NIZK for L̈ = L1 in Construction 6.2.7 is perfectly complete, perfectly zero-

knowledge, and one-time simulation-sound. More precisely, if A is a polynomial-time adver-
sary against one-time simulation-soundness of the NIZK, we can construct an adversary B
against pseudorandomness of V2 with similar running time such that:

Advsound(A,K) ≤ 2ν
(

m1 · Advpsrnd(B,K) +
1
p

)

.

where m1 := n1 − maxlpar1
(dim L̂1,lpar1

), where dim L̂1,lpar1
is the dimension of the vector

space L̂1,lpar1
, or in other words the rank of Γ1,lpar1

.

Proof. Perfect correctness and perfect zero-knowledge can be proven as in Theorem 3.3.2.
Let us prove one-time simulation-soundness, with a reduction to soundness of Construc-

tion 3.3.1 (for the same DVSs V1 and V2). Let us consider a polynomial-time adversary A that
generates a valid proof π⊺ for a word x1 /∈ L1 and a tag tag, after having asked for a proof
π′⊺ for a word x ′

1 ∈ X1 and a tag tag′ 6= tag. We construct a polynomial-time adversary B
against soundness of Construction 3.3.1.

152 Chapter 6 Applications of Diverse Modules

The adversary B guesses an index k∗ ∈ {1, . . . , ν} and a bit b∗ ∈ {0, 1} such that tag′ = 1−b∗

and tag = b∗. If the guess is incorrect, it returns a random bit at the end of the experiment.
There is at least one such pair and the adversary B guesses correctly with probability at least
1/(2ν).

The adversary B then gets a CRS hpk∗,b∗ from the soundness experiment. It also generates
honestly the hashing keys and projections keys hkk,b and hpk,b for (k, b) 6= (k∗, b∗). In
particular, this means that it can easily honestly simulate π′⊺. Furthermore, it computes:

π∗⊺ := π

ν
∑∑∑

k=1
k 6=k∗

α
⊺

k,tagk
• (θ1(x1)⊗ Idn2

) .

Using a proof like with Equation (3.10) on page 79, for k 6= k∗, we have:

α
⊺

k,tagk
• (θ1(x1)⊗ Idn2

) • Γ2 = γ
⊺

k,tagk,2 • (θ1(x1)⊗ Idk2
) .

From Equation (6.2), we get:

π∗⊺ • Γ2 = γ
⊺

k∗,tagk∗ ,2 • (θ1(x1)⊗ Idk2
) .

In other words, the adversary B has constructed a valid proof π∗⊺ for x1 under the CRS

hpk∗,b∗ . This concludes the proof.

6.2.3 Concrete Instantiation and Comparison

Prime order. Let us first focus on the prime order case, where G is a bilinear group
(p,G1,G2,GT , e, g1, g2), G1 corresponds to G1 and G2 corresponds to G2. The languages
L̈ we can handle are languages arising from KV-DVSs over G1, and so are basically linear
subspaces over G1. We can instantiate all our constructions under any D-MDDH assumption
on G2. For the ones using mixed pseudorandomness, we should use Construction 5.1.3 for
the second DVS V2, while for the other ones, we should use the construction in Section 3.4.1
for the second DM M2.

All our constructions, except the t-time simulation-sound NIZK for t > 1 (in Construc-
tion 6.2.5), were introduced in [ABP15c] and were later improved by Kiltz and Wee to
rely on computational assumptions (instead of decisional ones) in [KW15]. The schemes
common to both papers are the same up to a small difference: the schemes based on mixed
pseudorandomness used one more group element in the CRS in [ABP15c], because we did not
choose an optimal representation for the matrix Γ for the second DM.

Let us show an instantiation under the κ-linear assumption in G2. Concretely, we see
the κ-linear assumption as the D-MDDH assumption, with D being the following matrix
distribution:

D =

1 0 . . . 0

0 a2
...

...
. . . 0

0 . . . 0 ak

a1 . . . a1 a1

∈ Z(κ+1)×κ
p

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1, . . . , ak
$← Zp

.

6.2 Non-Interactive Zero-Knowledge Arguments (NIZK) 153

This is slightly non-standard: usually, as was implicitly done in [ABP15c], the top-left
element is a uniform scalar a1, while the last row only contain the scalar 1. This non-
standard representation (completely equivalent to the standard one) enables to reduce the
representation of the first κ rows of the matrix (denoted Ā in Section 5.1.3) by one element
and to get the same CRS size as Kiltz and Wee in [KW15]. We also recall that the κ-linear
assumption corresponds to the DDH assumption when κ = 1, and to the DLin assumption
when κ = 2.

Let us now compare our constructions in the DDH and DLin cases with other constructions of
(one-time simulation-sound or normal) NIZK. We recall that [KW15] improves the assumptions
from decisional to computational.

Table 6.2 compares NIZK for linear subspaces over G1. Some of the entries of this table
were derived from [JR14] and from [LPJY14]. The DDH (in G2) variant requires asymmetric
bilinear groups, while the DLin-based (and more generally, the one based on the κ-linear
assumption) can also work on symmetric bilinear groups.

First of all, as far as we know, our one-time simulation-sound NIZK was the most efficient
such NIZK with a constant-size proof: the single-theorem relatively-sound construction of
Libert et al. [LPJY14] is weaker than our one-time simulation-sound NIZK and requires at
least one more group element in the proof, while their universal simulation-sound construction
is much more inefficient. A direct application of our construction is our efficient structure-
preserving threshold IND-CCA encryption scheme, under DDH, in Section 6.2.4.

Second, the DLin version of our NIZK in Construction 6.2.1 is similar to the one by Libert
et al. [LPJY14], but our DLin version of our NIZK in Construction 6.2.3 is more efficient
(the proof has 2 group elements instead of 3). Furthermore, the ideas of the constructions
in [LPJY14] seem quite different.

Third, our NIZK in Construction 6.2.3 is similar to the one by Jutla and Roy in [JR14]
for DDH. However, in our opinion, our construction seems to be more modular and simpler
to understand. In addition, under the κ-linear assumption, with κ ≥ 2, our construction is
slightly more efficient in terms of CRS size and verification time.

Composite order. We can instantiate our NIZK constructions that are not based on pseudo-
randomness, in any bilinear group (M,G1,G2,GT , e, g1, g2) of composite order M , using any
sound DM M2 = (M,G,X2,L2,R2, n2, k2,RGen2,Γ2,θ2,λ2) over G2 such that a random
word in X2 \L2 is strongly non-degenerated with overwhelming probability. This include
DMs constructed from any D-MDDH assumptions, with D being a distribution of matrices in
Zn2×k2

M with n2 > k2, as long as the smallest prime factor p of M has at least K bits, using
Example 4.3.14. To our knowledge, our NIZK are the first constant-size NIZK for linear spaces
over bilinear groups of composite order.

6.2.4 Application: Threshold Cramer-Shoup-like Encryption Scheme

As already explained in Section 2.2.2.3, the Cramer-Shoup encryption scheme [CS98] is one of
the most efficient IND-CCA encryption schemes with a proof of security in the standard model.
In this section, we use notation from Section 2.2.2.3. We remark that, if we replace the last
part of a Cramer-Shoup ciphertext (i.e., the group element w) by a one-time simulation-sound
NIZK proof π to prove that the tuple (u1, u2) is a DH tuple in basis (g1, g2), we can obtain an
IND-CCA scheme supporting efficient threshold decryption. Intuitively, this comes from the

154 Chapter 6 Applications of Diverse Modules

fact that the resulting scheme becomes “publicly verifiable”, in the sense that, after verifying
the NIZK (which is publicly verifiable), we can obtain the underlying message via “simple”
algebraic operations which can easily be “distributed”.

Previous one-time simulation-sound NIZK were quite inefficient and the resulting scheme
would have been very inefficient compared to direct constructions of threshold IND-CCA

encryption schemes. However, using our new one-time simulation-sound NIZK based on mixed
pseudorandomness, we do not increase the size of the ciphertexts, in term of number of group
elements. In addition, while we need to use an asymmetric bilinear group (p,G1,G2,GT , e),
both the encryption and the decryption algorithms only do operations in the first group G1,
and ciphertexts only contain group elements in G1.

Constructions. Here is the formal construction.

Construction 6.2.9. We suppose that we have access to a one-time simulation-sound NIZK

working in a bilinear asymmetric group (p,G1,G2,GT , e) for the DDH language in G1:

L̈ ¨lpar = {(u1, u2) ∈ G2
2 | ∃r, (u1, u2) = (gr

1,1, g
r
1,2)} ⊆ G2

1 =: Ẍ ¨lpar ,

where ¨lpar = (g1,1, g1,2) is a tuple of two generators of G1. The scheme is defined as follows:

• Setup.gpar(1K) generates an asymmetric bilinear group (p,G1,G2,GT , e, g1, g2) of prime
order p and picks a collision-resistant hash function H from a hash family HF . It then
outputs the global parameters gpar = (p,G1,G2,GT , e, g1, g2,H); we suppose that there
exists an efficiently computable and efficiently reversible injective map G from the public
set of messages M to the group G1;

• KeyGen(gpar) picks two generators g1,1, g1,2
$← G∗, a random scalar z $← Zp, and a

CRS crs
$← NIZK.Setup(gpar, (g1,1, g1,2)) for the NIZK. It sets the encryption key to

ek := (g1,1, g1,2, crs) and the decryption key to dk := (z, crs). It finally outputs (ek, dk).

• Enc(ℓ, ek,m) computes M := G(m), picks a random scalar r $← Zp, and outputs the
ciphertext

c := (ℓ, u1 := gr
1, u2 := gr

2, v := hr ·M, π) ,

where π $← NIZK.Prove(crs, tag, (u1, v1), r) and tag := H(ℓ, u1, u2, v);

• Dec(dk, c) first computes tag = H(ℓ, u1, u2, v) and then checks the proof π. If this proof
is valid (NIZK.Ver(crs, tag, (u1, u2), π) = 1), it computes m ← G−1(v/uz

1) and outputs
m. Otherwise, it outputs ⊥.

The scheme is clearly perfectly correct if the NIZK is perfectly complete. We show later
that our scheme is IND-CCA if the NIZK is one-time simulation-sound and if DDH holds in
the group G1.

The NIZK can be instantiated as in Section 6.2.3 (in prime order groups, under DDH in G2):
using Construction 6.2.5 or Construction 6.2.7, with the second DM or DVS M2 being based
on the DDH language (namely Example 3.1.8 and Example 5.1.5). The resulting scheme is
secure under the symmetric external Diffie-Hellman (SXDH) assumption which just states
that the DDH assumption holds in G1 and in G2.

6.2 Non-Interactive Zero-Knowledge Arguments (NIZK) 155

Optimization of the decryption. The previous decryption procedure uses NIZK.Ver that
needs to compute pairings. However, we can use a different key generation and decryp-
tion procedures to check the NIZK proof without pairing: KeyGen generates the CRS us-
ing NIZK.Sim1 and keep the trapdoor trap in the decryption key. Then Dec checks that
NIZK.Sim2(trap, tag, (u1, u2)) = π instead of NIZK.Ver(crs, tag, (u1, u2), π) = 1. We recall
that NIZK.Sim2 only performs operations in G1.

We need to prove that this change has no effect on the correctness nor on the IND-CCA

property of the encryption scheme. Perfect correctness is directly implied by the fact that
simulated proof using trap are always accepted by NIZK.Ver, thanks to Equation (3.10) on
page 79.

For the IND-CCA property, let us show that no polynomial time adversary can generate a
proof accepted by NIZK.Ver that is different from the one generated by NIZK.Sim2, even if it
has access to everything (including the decryption key). Let us suppose that the adversary
manage to generate a proof π⊺ for some word x and some tag tag, distinct from the proof
π′⊺ = NIZK.Sim2(trap, tag, x). As both satisfy Equation (3.9) on page 79, using notation in
Construction 3.3.1, we have:2

(π⊺ − π′⊺) • Γ2 = 0⊺ .

In the case of Construction 6.2.7 with Example 5.1.5 as the second DVS, this is just impossible,
as we have Γ2 = (g2) ∈ G1×1

2 . In the case of Construction 6.2.5 with Example 3.1.8 as the
second DVS, we have:

Γ2 =

(

g2

h2

)

∈ G2×1
2 ,

and the vector π⊺ − π′⊺ ∈ G1×2
1 can be used to solve the DDH problem in basis (g2, h2): a

tuple (u2, v2) ∈ G2
2 is a DH tuple in basis (g2, h2) if and only

(π⊺ − π′⊺) •

(

u2

v2

)

= 1GT
.

This concludes the adaptation of the proof of the IND-CCA property.

Threshold and structure-preserving properties. The validity of the ciphertext can be
verified publicly, just knowing ek (or more precisely crs), and not dk, and then after this test
has been performed, we just need to compute v/uz

1, to get the message. We often say in this
case that the ciphertext is “publicly verifiable”, though it is not clear that a proper definition
exists.

In any case, this property just means that to threshold decrypt the ciphertext, we just need
to use Shamir’s threshold secret sharing over Zp [Sha79], exactly as in [SG02]. If in addition,
we want to be able to verify decryption shares without random oracle, we can replace the
Fiat-Shamir-based NIZK in [SG02] by one of ours.

Furthermore, our two schemes are structure-preserving [AFG+10]: they are “compatible”
with Groth-Sahai NIZK [GS08], in the sense that we can do a Groth-Sahai NIZK to prove
that we know the plaintext of a ciphertext for our encryption schemes.

2The constructions we use are like Construction 3.3.1, the only difference is the exact form of the two DVSs

V1 and V2.

156 Chapter 6 Applications of Diverse Modules

Comparison with existing schemes. A comparison with existing efficient IND-CCA encryp-
tion schemes based on cyclic or bilinear groups is given in Table 6.3, whose entries have been
partially derived from similar tables in [BMW05; Kil06].

The two other efficient threshold and structure-preserving IND-CCA encryption schemes
are those based on the Canetti-Halevi-Katz [CHK04] transform, the one of Boyen, Mei and
Waters [BMW05] and the one of Kiltz [Kil06]. But for all except the one of Kiltz, the plaintext
and one element of the ciphertext has to be in GT , which is not compatible with Groth-Sahai
NIZK [GS08] (proving that we know the plaintext of a ciphertext cannot efficiently be done
with Groth-Sahai NIZK for such encryption schemes). In addition, elements in GT have a
much longer representation than elements in G, G1 or G2. And, even though our second
encryption scheme uses exactly the same number of group elements as Kiltz’s encryption
scheme [Kil06], these groups elements are about 6 times smaller in practice (for K = 128 bits
of security), since we use an asymmetric pairing while Kiltz’s scheme uses a symmetric one
(see Section 2.1.5). So even our first construction is more efficient (regarding ciphertext size)
than Kiltz’s construction. To summarize, to the best of our knowledge, our two constructions
are the most efficient threshold and structure-preserving IND-CCA encryption schemes.

IND-CCA security proof. We have the following security theorem.

Theorem 6.2.10. The encryption scheme of Construction 6.2.9 is IND-CCA, if the underlying
NIZK is one-time simulation-sound, perfectly complete, and zero-knowledge, and if DDH holds
in the group G1.

Proof. The proof is quite straightforward and basically uses ideas in the security proof of the
Cramer-Shoup encryption scheme [CS98]. Here is a sketch of a sequence of games proving
the IND-CCA property:

Game G0: This is the game for Expind-cca-b for b = 0 (see Definition 2.2.4).

Game G1: In this game, we generate g1,2 as gt
1,1 (with t $← Zp) and reject all ciphertexts

c = (u1, u2, v, π) submitted to the decryption oracle for which u2 6= ut
1. This game is

indistinguishable from the previous one under the soundness of the NIZK, which ensures
that if the proof π is not rejected, (g1,1, g1,2, u1, u2) is a DDH tuple.

Game G2: In this game, we generate h as h = gz1

1,1g
z2

1,2 (with z1, z2
$← Zp) instead of h = gz

1,1.
In addition, we decrypt ciphertexts c = (u1, u2, v, π) by first rejecting if π is not a valid
proof or u2 6= ut

1 (as before) and then outputting v/(uz1

1 u
z2

2) (instead of v/uz
1). This

game is perfectly indistinguishable from the previous one, because h can be written
h = gz1+tz2

1,1 and uz1

1 u
z2

2 = uz1+tz2

1 .

Game G3: In this game, we do not check anymore that u2 = ut
1 and we generate g1,2

directly as a random group element in G1. This game is indistinguishable from the
previous one under the soundness of the NIZK.

Game G4: In this game, for the challenge ciphertext c∗ = (u∗
1, u

∗
2, v

∗, π∗), we compute v∗

as v∗ = u∗
1

z1u∗
2

z2 , instead of hr, where u1 = gr
1,1 and u2 = gr

1,2. This game is perfectly
indistinguishable from the previous one.

6.2 Non-Interactive Zero-Knowledge Arguments (NIZK) 157

Game G5: In this game, we simulate the proof π∗ in the challenge ciphertext C∗ = (u∗
1, u

∗
2,

v∗, π∗). This game is indistinguishable from the previous one under the zero-knowledge
property of the NIZK. In addition, in this game, knowledge of r in c∗ is no longer
required.

Game G6: In this game, we replace (u∗
1, u

∗
2) which was a DDH tuple in basis (g1,1, g1,2) by

a random tuple. This game is indistinguishable from the previous one under the DDH

assumption.

Game G7: In this game, we again generate g1,2 as gt
1,1 (with t $← Zp) and reject all

ciphertexts c = (u1, u2, v, π) submitted to the decryption oracle for which u2 6= ut
1. This

game is indistinguishable form the previous one under the one-time simulation-soundness
of the NIZK.

Game G8: As in the proof of Cramer and Shoup [CS98], it is easy to show that the only
information (from an information theoretic point of view) the adversary sees of z1 and
z2 except from c∗ is z1 + tz2. So u∗

1
z1u∗

2
z2 looks completely random to the adversary

if (u1, u2) is not a DDH tuple in basis (g1,1, g1,2) (which happens with probability
1− 1/p). Therefore we can replace v∗ by a random value, and this game is statistically
indistinguishable from the previous one.

Finally, we can redo all the previous games in the reverse order and see that the
experiment Expind-cca-b with b = 0 is indistinguishable from the experiment Expind-cca-b

with b = 1.

158 Chapter 6 Applications of Diverse Modules

Table 6.2: Comparison of NIZK for linear subspaces

WS Proof |π| CRS |crs| Pairings

Instantiations based on DDH in G2

Groth-Sahai [GS08] n+ 2k 5 2n(k + 2)
Jutla-Roy [JR13] ✓ n− k 2k(n− k) + 2 (n− k)(k + 2)
Jutla-Roy [JR14] ✓ 1 n+ k + 1 n+ 1
Cons. 6.2.1 2 n+ 2k + 1 n+ 2
Cons. 6.2.1.2 ✓ 1 n+ k n+ 1
Cons. 6.2.2.1 (t = 1) OTSS 2 2(n+ 2k) + 1 2n+ 2
Cons. 6.2.2.2 OTSS ✓ 1 2ν(2n+ 3k) νn+ 2

Instantiations based on DLin in G2

Groth-Sahai [GS08] 2n+ 3k 6 3n(k + 3)
Jutla-Roy [JR13] 2n− 2k 4k(n− k) + 3 2(n− k)(k + 2)
Libert et al. [LPJY14] 3 2n+ 3k + 3 2n+ 4
Libert et al. [LPJY14] RSS 4 4n+ 8t+ 5 2n+ 6
Jutla-Roy [JR14] ✓ 2 2(n+ k + 2) 2(n+ 2)
Cons. 6.2.1.1 3 2n+ 3k + 2 2n+ 3
Cons. 6.2.1.2 ✓ 2 2n+ 2k + 1 2n+ 2
Cons. 6.2.2.1 (t = 1) OTSS 3 2(2n+ 3k) + 2 4n+ 3
Cons. 6.2.2.2 OTSS ✓ 2 2ν(2n+ 3k) + 1 2νn+ 2

• n = n1, k = k1, and ν is the length of the tag tag; pairings: number of pairings
required to verify the proof;

• sizes | · | are measured in term of group elements (G1 and G2, or G if the bilinear
group is symmetric). Generators g1 ∈ G1 and g2 ∈ G2 (for DDH in G2) or g ∈ G

(for DLin) are not counted in the CRS;
• OTSS : one-time simulation-soundness; RSS : single-theorem relative simulation-

soundness [JR12] (weaker than OTSS);
• WS: witness samplability, i.e., requirement that Setup.lpar1 generates a trapdoor

ltrap1 allowing us to compute the discrete logarithms of Γ1. This slightly restricts
the set of languages which can be handled.

6.2 Non-Interactive Zero-Knowledge Arguments (NIZK) 159

Table 6.3: Comparison of IND-CCA encryption schemes over cyclic and bilinear groups

Time Complexitya Ciphertext Overhead

Scheme Assumption Encryption Decryption Public key Hybrid SPb Th.c

KD DDH [1,2,0] 0+[1,0,0] 4 G 2 G (+dem) n/a ✓

CS DDH [1,3,0] 0+[1,1,0] 5 G 3 G + G

CHK/BB1 BDDH [1,2,0] 1+[1,0,0] O(1)d 2 G + sig + GT ✓

CHK/BB2 q-BDDHI [1,2,0] 1+[0,1,1] O(1)d 2 G + sig + GT ✓

BK/BB1 BDDH [1,2,0] 1+[1,0,0] O(1)d 2 G + cm + GT

BK/BB2 q-BDDHI [1,2,0] 1+[0,1,1] O(1)d 2 G + cm + GT

BMW BDDH [1,2,0] 1+[0,1,0] 2 G + GT 2 G + GT ✓

Kiltz DLin [2,3,0] 0+[1,0,0] 5 G 4 Ge + Ge ✓

Ours 1 SXDH [2,3,0] 0+[2,1,0] 6 G1 4 G1 + G1 ✓

Ours 2 SXDH [0,4,0]+2K 0+[0,2,0]+2K (3+4K) G1 3 G1 + G1 ✓

• Ours 1: Construction 6.2.9 with Example 3.1.8;
• Ours 2: Construction 6.2.7 with Example 5.1.5;
• KD: Kurosawa-Desmedt [KD04], CS: Cramer-Shoup [CS98], CHK: Canetti-Halevi-

Katz transform [CHK04] for BB1/BB2 Boneh-Boyen IBE [BB04], BK: Boneh-Katz
transformation [BK05], BMW: Boneh-Mey-Waters [BMW05], Kiltz [Kil06]

• dem: data encapsulation mechanism; sig: verification key of a one-time signature
scheme + signature; cm: commitment + mac (message authentication code)

a (#pairing +) [#multi, #regular, #fix]-exponentiation (+ #multiplication) (in G

or G1), a multi-exponentiation being a computation of the form ab1

1 · · · a
bk

k , where
a1, . . . , ak ∈ G and b1, . . . , bk ∈ Zp; the number of multiplications is approximate and
only written when it depends on K, since multiplications are way faster than pairings
and exponentiations;

b number of other elements for the DEM part (data encapsulation mechanism — basically
the part containing the message) to make the scheme, a structure-preserving encryption
scheme; see text; concretely, in our scheme, the DEM part is v = h ·M;

c supports threshold decryption;
d depends on parameters for the signature/commitment/mac and if we use symmetric

or asymmetric groups, but a small constant in any case;
e G has to be a cyclic group from a symmetric bilinear group, and so element represen-

tation is often 50% bigger than for the other scheme where G is either just a cyclic
group, or can be the first group (G1) of an asymmetric bilinear group;

f supposing ν = 2K.

160 Chapter 6 Applications of Diverse Modules

6.3 Trapdoor Smooth Projective Hashing and Implicit
Zero-Knowledge

While SPHFs and universal PHFs enable to construct efficient honest-verifier zero-knowledge
arguments for languages for which there exists a DVS or a DM, they do not provide zero-
knowledge (see Sections 2.5.3.1 and 6.1.2.4). More generally, from a high-level point of
view, SPHFs and universal PHFs do not have a zero-knowledge flavor, but can only be
seen as honest-verifier zero-knowledge: nothing is guaranteed when the projection key hp

is maliciously generated. In security reductions, we do not have any trapdoor enabling to
compute the hash value of a word x ∈ L , for a projection key hp without knowing a witness
w for this word x nor the associated hashing key.

That is why, we now introduce two new primitives: trapdoor smooth projective hash
functions (TSPHFs) and implicit zero-knowledge arguments (iZK).

6.3.1 Overview

Before diving into technical details, let us informally introduce TSPHFs and iZK, some of
their applications, and the high level ideas for their constructions.

6.3.1.1 Trapdoor Smooth Projective Hash Functions (TSPHFs)

Overview and applications. TSPHFs are basically SPHFs with a CRS, such that there
is a way to generate the CRS with an additional trapdoor enabling to compute the hash
value of any word ẍ ∈ L̈ for any (potentially maliciously generated) projection key hp,
without knowing the associated hashing key. They were initially introduced in [BBC+13c]
to construct the most efficient (at the time) one-round PAKE in the UC model with static
corruptions. They can also replace universal PHFs in all the constructions in Section 6.1, to
get zero-knowledge instead of just honest-verifier zero-knowledge. Furthermore, they can
replace SPHFs in the secret agent application in Section 2.5.3.3 to get security against a
malicious informer.

Constructions. A naive way to construct a TSPHF is just to add to the projection key hp,
an extractable NIZK proving the knowledge of the hashing key hk. However, our constructions
of TSPHFs are much more efficient than this naive construction.

Let us give the intuition behind our constructions in the prime order case. Our construction
uses the classical “or trick”: we consider the disjunction of a DVS for the language L̈ = L1

for the TSPHF, with a DVS for a hard-subset-membership language L2. The CRS contains a
word x2 ∈ X2, and the hash value of a word ẍ = x1 is the hash value of the word (x1, x2).

On the one hand, if x2 ∈ L2 and we know a witness w2 for this fact, we can compute the
hash value of any word ẍ using this trapdoor w2. That way we get our zero-knowledge-like
property. On the other hand, if x2 ∈ X2 \L2, and if x1 /∈ L1 the hash value (x1, x2) looks
uniformly random given only the projection key, and we still get smoothness. We remark
that the two settings (x2 ∈ L2 and x2 ∈ X2 \L2) are computationally indistinguishable under
hard subset membership of L2.

As already remarked in Section 6.1.2.4, there might be an issue with this “or trick”: it
might be possible that for some maliciously generated projection keys hp, the projected hash
value computed using a witness w2 is different from the projected hash value computed using

6.3 Trapdoor Smooth Projective Hashing and Implicit Zero-Knowledge 161

Table 6.4: Duality of NIZK and TSPHF constructed from the disjunction of DMs

NIZK TSPHF

CRS for soundness/smoothness hp x2 ∈ X2 \L2

CRS for zero-knowledge hp x2 ∈ L2

Trapdoor hk w2

Verification public using CRS private using hk

Projection key honestly generated potentially malicious
Proof / hash value in G1 in G

the real witness w1. This would break the zero-knowledge property. Fortunately, if we use
CS/KV disjunctions of DVSs (Construction 3.2.8), we can easily check the validity of the
projection key.

Therefore, all our constructions of TSPHFs use the CS/KV disjunction of the two DVSs

V1 and V2, and thus require that these two DVSs are over two multiplicatively compatible
sub-graded rings of some graded ring G. Concretely, this often means that we have a
bilinear group (p,G1,G2,GT , e) and that the original language L̈ = L1 is over G1, while the
hard-subset-membership language L2 is over G2.

Finally, we can either extend our construction to DMs or extend it to use a Pr-DVS as
second DVS V2, similarly to what we did in Section 6.2 for constructions of NIZK.

Comparison with the constructions of NIZK. We remark that both our constructions of
NIZK and TSPHFs use a CS/KV disjunction of the language we are interested in, with a
hard-subset-membership language (or a Pr-DVS). The use of this second language is however
very different in both cases and can be seen as dual from each other.

In NIZK, the second language is used to add public verifiability of the proof, as checking the
hash value of a PHF requires the knowledge of the hashing key, which has to be kept secret
to ensure soundness (from smoothness). The CRS is a projection key and the hashing key is
its trapdoor. In particular, the projection key is always correctly generated. Furthermore the
proof of a NIZK is completely in the first sub-graded ring G1.

In TSPHFs, we do not try to achieve public verifiability: only the user who generated the
hashing key has the ability to check hash values without knowing a witness (if we forget
about the trapdoor). The projection key can be maliciously generated. The CRS contains a
word of the second language L2 and the trapdoor is its witness.

Table 6.4 summarizes these differences.

6.3.1.2 Implicit Zero-Knowledge Arguments (iZK)

Overview. One drawback of TSPHFs is that they necessarily require two multiplicatively
compatible sub-graded rings: one for the real language and one to add the zero-knowledge
property. Concretely, this means that we need bilinear groups. However, as explained in
Section 2.1.5, cyclic groups without pairings are likely to be safer and have faster group
operations. We might think that if we allow for a trapdoor GL-smooth projective hash function
(GL-TSPHF), we could replace the CS/KV disjunction (Construction 3.2.8 which is the reason
why we need pairings) in the TSPHF construction by a GL disjunction (Construction 3.2.4
which can work in a cyclic group). Unfortunately, we do not know any way (not requiring

162 Chapter 6 Applications of Diverse Modules

pairings) to efficiently check the validity of a projection key for a GL disjunction non-
interactively. And there really is an attack shown in Section 6.1.2.4, if we cannot do this
check.

That is why in [BCPW15], we introduced iZK which can be seen as generalizations of
TSPHFs, in which the user who has to generate the hash value (called the prover) is allowed
to first send a message to the user who generates the projection key (called the verifier).

To formalize the notion of iZK, we use an extension of the definition of witness encryp-
tion [GGSW13], rather than an extension of the definition of SPHFs. We recall that GL-SPHFs

are basically equivalent to statistically sound witness encryption schemes (see Section 2.5.3.2).
More precisely, we see iZK as key encapsulation mechanisms in which the public key iek

(corresponding to this above additional message) is associated with a word ẍ . The projection
key is part of what is called a ciphertext c, while the hash value is part of the associated
plaintext (a.k.a., ephemeral key) K. A prover knowing a witness ẅ for ẍ can generate an
encryption key iek together with its associated decryption key idk. The latter enables him to
decrypt any ciphertext c for iek and ẍ .

Intuitively, we want that if ẍ /∈ L̈ , a polynomial-time adversary cannot generate a public
key iek, such that it can distinguish the plaintext K corresponding to a ciphertext c for this
public key iek and this word ẍ , from a uniform plaintext K. This property is called soundness,
and basically corresponds to a computational version of smoothness.

We also want that there is a CRS and there is a way to generate it with a trapdoor enabling
to produce fake keys iek for any word ẍ ∈ L , together with fake decryption keys itk also
enabling to decrypt ciphertexts c for iek and ẍ .

Construction. We focus on the prime-order setting.
We consider the GL disjunction DVS V = (p,G,X ,L ,R, n, k,RGen,Γ,θ,λ) of a DVS for

the language L̈ = L1 we consider, with a DVS for a hard-subset-membership language L2.
We suppose that V1 does not use ρ, for this overview. The CRS crs contains a word x2 ∈ X2:
in the soundness setting, x2 ∈ X2 \L2, while in the zero-knowledge setting, x2 ∈ L2 and the
trapdoor of the CRS is trap = w2, a witness for x2. We recall that we need to find a way to
check the validity of a projection key for V, using the public key iek.

The first idea is the following: a valid projection key hp is a row vector of the form
hp = γ⊺ = α⊺ • Γ ∈ G

1×k for some row vector α⊺ ∈ Z1×n
p . The language of the valid

projection keys can therefore be seen as a DVS where the functions “θ” and “λ” are the
identity and the matrix “Γ” is the transpose of Γ. We can then try to use the SPHF associated
to this transposed DVS to check the validity of hp: the secret key idk contains a uniform
hashing key tk := α′⊺ $← Z1×k

p , while the public key iek contains the associated projection
key tp := γ ′⊺ := α′⊺ • Γ⊺ ∈ G

1×n.
The verifier then constructs the ciphertext c as a pair of a projection key hp = γ⊺ for the

original DVS V (with hk := α⊺ $← Z1×n
p a random hashing key) and its associated hash value

under tp: tpH := γ ′⊺ • α. The associated plaintext K is just the hash value of the word x :
K := H := α⊺ • θ(x) ∈ G, where x = (x1, x2).

To decrypt a ciphertext c = (hp = γ⊺, tpH), the prover first checks the validity of hp by
checking that tpH

?= tH =: α′⊺ • γ, and aborts if it is the case. Then, he computes the
plaintext as K := γ⊺ • λ(x , (w1,⊥)), with w1 a witness of x1.

It is easy to see that the construction is zero-knowledge, as for TSPHFs, since now the
verifier cannot cheat on the projection key. Unfortunately, soundness (or smoothness) does

6.3 Trapdoor Smooth Projective Hashing and Implicit Zero-Knowledge 163

not hold anymore: the prover can just choose tp = γ ′⊺ = θ(x) and then

tpH = γ ′⊺ •α = α⊺ • θ(x) = H = K .

In [BCPW15], we solved this issue by replacing M by its 2-sound extension (Construc-
tion 4.4.15 extended to the GL case) and by making the verifier chooses the tag tag as part of
the ciphertext. Since the prover does not know the tag tag when he generates iek and tp, the
previous attack does not work anymore. This technique works but approximately doubles
the size of c, iek, and idk, as it doubles the number of rows and of columns of the matrix Γ.
In this thesis, we propose a new solution which is much more efficient: we remove tpH from c

and instead add a random scalar ζ $← Zp in c. And the plaintext is now K = (ζ • H) tpH.
The idea is that, for any vector γ ′, there is only at most one value ζ ∈ Zp such that

ζ • θ(x) γ ′ ∈ ColSpan (Γ), if θ /∈ ColSpan (Γ). By contradiction, if there were two distinct
such scalars ζ, denoted by ζ1 and ζ2, we would have:

(ζ1 − ζ2) • θ ∈ ColSpan (Γ) .

As with TSPHFs, we can extend everything to composite order, or use a Pr-DVS as second
DVS.

Applications. As TSPHFs, iZK can be used to replace universal PHFs in the constructions in
Section 6.1 to get zero-knowledge, and also in the protocol for secret agents in Section 2.5.3.3
to get security against a malicious informer. This increases the number of rounds in some
cases.

A more interesting application is the original one proposed in [BCPW15]: enforcing semi-
honest behavior. Let us suppose that we have a two-party protocol secure against semi-honest
adversaries. If we want to transform it into a protocol secure against malicious adversaries, we
can follow the idea of Goldreich, Micali, and Wigderson in their seminal work [GMW87]: each
user proves that he generated correctly each of his flows using a zero-knowledge argument.

We notice that when a user Alice sends a flow to the other user Bob, Bob cannot send back
the next flow until he is sure that Alice’s flow has been generated correctly. Otherwise, he
might reveal too much information. Therefore, if we use interactive zero-knowledge arguments,
we will at least multiply the number of rounds of the initial protocol by three. We can
instead use non-interactive zero-knowledge arguments (NIZK), but this either requires strong
assumption such as random oracles [BR93; FS87], or bilinear groups [GS08], or is completely
inefficient. We could also use preprocessing NIZK, but known constructions [DMP90] are also
very inefficient.

On the other hand, iZK can be based on the DDH assumption in any cyclic group and
provide a lightweight alternative to NIZK. It is based on the following idea: in the previous
transform, Bob does not really need to know whether Alice generated correctly her flow or
not, he just needs to be sure that she does not learn anything about his next flow if her flow
was invalid. He can therefore use an iZK to encrypt his flow in such a way Alice will be able
to decrypt it only if she generated her flow correctly.

More precisely, to ensure semi-honest behavior, as depicted in Figure 6.3, each time Alice
sends a flow ẍ , she also sends a public key iek and keeps the associated secret key idk. To
answer back, Bob generates a key encapsulation c for iek and ẍ , of a random ephemeral key
K. Bob then use K to encrypt (using symmetric encryption or pseudo-random generators
and one-time pad) all the subsequent flows he sends to Alice.

164 Chapter 6 Applications of Diverse Modules

Interactive ZK

A
ẍ , π1

B
π2

...

π2n+1

ẍ ′ if argument valid

NIZK

A
ẍ , π

B
ẍ ′ if π valid

iZK

A
ẍ , iek

B
ẍ ′ xor K, c

• ẍ : original flow from (honest) Alice (A) to Bob (B);

• ẍ
′: the answer of B, which has to be sent after B is sure

that ẍ is valid;

• π1, . . . , π2n+1: flows of the interactive zero-knowledge
(ZK) argument;

• π: non-interactive zero-knowledge proof;

• iek, K, c: public key (associated to ẍ), ephemeral key com-
puted by B, ciphertext (which can be decrypted by A if
she generated honestly iek, using a witness that ẍ was
valid), respectively.

Figure 6.3: Enforcing semi-honest behavior of Alice (A) by Bob (B)

At the end, both users still needs to be check whether their last flows were valid, to know
whether the protocol succeeded or not. This can be done using a classical zero-knowledge
argument.

While the previous transformation with iZK is completely generic (see [BCPW15]), on
“non-algebraic” protocols, it is often not the best solution. For example, for Yao-based
protocols, cut-and-choose methods are more efficient [IKLP06; LP07; LP11; sS11; sS13;
Lin13; HKE13].

But, when the original semi-honest protocol is an algebraic protocol over some cyclic group
(p,G, g) and all the languages we need to consider can be handled by DVSs, we get very
efficient protocols. In [BCPW15], we give a concrete example of such protocol, to compute
the Hamming distance of two strings. The resulting protocol outperforms the state of the art.

6.3.2 Trapdoor Smooth Projective Hash Functions (TSPHFs)

6.3.2.1 Definition

Let us formally define trapdoor smooth projective hash function (TSPHF). As for SPHFs,
there are three variants: trapdoor GL-smooth projective hash function (GL-TSPHF), trapdoor
CS-smooth projective hash function (CS-TSPHF), and trapdoor KV-smooth projective hash
function (KV-TSPHF).

Definition 6.3.1 (GL-TSPHF). A GL-TSPHF (a.k.a, TSPHF) for a language (L̈ ¨lpar) is
defined by a tuple of eight polynomial-time algorithms (T.Setup,T.TSetup,HashKG,ProjKG,
Hash,ProjHash,VerHP,THash):

• T.Setup(gpar, ¨lpar) outputs a CRS crs for the global parameters gpar and the language
parameters ¨lpar; as usual, we suppose that crs implicitly contains gpar and ¨lpar;

• T.TSetup(gpar, ¨lpar) generates the (simulated) common reference string crs together
with a trapdoor trap for the global parameters gpar and the language parameters ¨lpar,
and outputs the pair (crs, trap);

6.3 Trapdoor Smooth Projective Hashing and Implicit Zero-Knowledge 165

• HashKG(crs, ¨lpar) generates a hashing key hk for the language parameters ¨lpar;

• ProjKG(crs, hk, ¨lpar, ẍ) deterministically derives a projection key hp from the hashing
key hk, the language parameters ¨lpar, and possibly the word ẍ ∈ Ẍ ¨lpar;

• Hash(crs, hk, ¨lpar, ẍ) deterministically outputs a hash value H from the hashing key hk,
for the word ẍ ∈ Xlpar and the language parameters ¨lpar;

• ProjHash(crs, hp, ¨lpar, ẍ , ẅ) deterministically outputs a projected hash value pH from the
projection key hp, and the witness ẅ , for the word ẍ ∈ L̈ ¨lpar (i.e., R̈ ¨lpar(̈x , ẅ) = 1) and

the language parameters ¨lpar;

• THash(crs, trap, hp, ¨lpar, ẍ) deterministically outputs a (trapdoor) hash value trapH from
the projection key hp, and the trapdoor trap, for the word ẍ ∈ L̈ ¨lpar and the language

parameters ¨lpar;

• VerHP(crs, hp, ¨lpar, ẍ) outputs 1 if hp is a valid projection key for the language parameters
¨lpar and the word ẍ , and 0 otherwise.

As for SPHF, the set of hash values is called the range and is denoted by Π. A GL-TSPHF

has to satisfy the following properties:

• Perfect correctness. For any ¨lpar:

– for any crs generated by crs
$← T.Setup(gpar, ¨lpar) or generated by (crs, trap) $←

T.TSetup(gpar, ¨lpar), for any word ẍ ∈ L̈ ¨lpar with witness ẅ (i.e., such that

Rlpar(̈x , ẅ) = 1), for any hk
$← HashKG(crs, ¨lpar) and for any hp ← ProjKG(crs,

hk, ¨lpar), we have:

Hash(crs, hk, ¨lpar, ẍ) = ProjHash(crs, hp, ¨lpar, ẍ , ẅ) ;

– for any (crs, trap) $← T.TSetup(gpar, ¨lpar), for any word ẍ ∈ Ẍ ¨lpar, for any hk
$←

HashKG(crs, ¨lpar) and for hp← ProjKG(crs, hk, ¨lpar), we have:

Hash(crs, hk, ¨lpar, ẍ) = THash(crs, trap, hp, ¨lpar, ẍ) ;

• Reference string indistinguishability (a.k.a, setup indistinguishability). A polynomial-
time adversary cannot distinguish a normal CRS generated by iSetup from a simulated
CRS generated by iTSetup. Formally, the advantage of an adversary A against reference
string indistinguishability is defined by the experiments Expcrs-ind-b depicted in Fig-
ure 6.4. The TSPHF is reference-string-indistinguishable, if this advantage is negligible
for any polynomial-time adversary A;

• Computational GL/CS smoothness. When the CRS crs is generated by T.Setup, for
any word ẍ ∈ Ẍ ¨lpar \ L̈ ¨lpar, a polynomial-time adversary cannot distinguish a hash
value (computed using the hashing key hk) from a uniform value in Π. Formally,
the advantage of an adversary A against computational smoothness is defined by the
experiments Expgl/cs-smooth-b depicted in Figure 6.4. The TSPHF is computationally
GL/CS-smooth, if this advantage is negligible for any polynomial-time adversary A;

166 Chapter 6 Applications of Diverse Modules

• Zero-knowledge. When the CRS crs is generated by T.TSetup, for any word ẍ ∈ L̈ ¨lpar

with witness ẅ , the trapdoor hash value trapH is indistinguishable from the projected
hash value pH. Formally, the advantage of an adversary A against zero-knowledge is
defined by the experiments Expzk-b depicted in Figure 6.4. The iZK is zero-knowledge,
if this advantage is negligible for any polynomial-time adversary A.

Remark 6.3.2 (Computational smoothness vs smoothness). We remark that if the SPHF part

of a TSPHF is smooth for any crs
$← T.Setup(gpar, ¨lpar), then the TSPHF is computationally

smooth, and computational smoothness even holds for any (potentially unbounded) adversary.
The converse is not true, as smoothness has to hold for any gpar and any ¨lpar. This minor
difference is just historical, and we do not know any application where it has an impact.

A CS-TSPHF is a GL-TSPHF such that the algorithm ProjKG does not use its input ẍ . Let
us now define KV-TSPHFs.

Definition 6.3.3 (KV-TSPHF). A KV-TSPHF is a CS-TSPHF where computational GL/CS
smoothness is replaced by the following property:

• Computational KV smoothness. Computational KV smoothness is similar to compu-
tational GL/CS smoothness except that the word ẍ can be adaptively chosen by the
adversary after being given the projection key hp. Formally, the advantage of an adver-
sary A against computational smoothness is defined by the experiments Expkv-smooth-b

depicted in Figure 6.4. The TSPHF is computationally KV-smooth, if this advantage
is negligible for any polynomial-time adversary A;

Historical note 6.3.4. Our definition of TSPHF is slightly different than the original one
in [BBC+13c]. The main difference is the separation between the setup T.Setup from the
setup T.TSetup. This enables to get statistical soundness in our first construction and to
avoid requiring to have a trapdoor ¨ltrap enabling to check in polynomial time whether a word
ẍ is in L̈ ¨lpar. We also have renamed the original “soundness” property to “zero-knowledge”,
and slightly changed it to make it more natural.

6.3.2.2 Construction Based on Disjunctions with a Hard-Subset-Membership Language

Prime-order setting. Let us start by the construction in the prime-order setting, which was
introduced in [ABP15c].

Construction 6.3.5 (TSPHF from disjunctions of DVSs). We suppose that we have a
DVS V1 = (p,G1,X1,L1,R1, n1, k1,RGen1,Γ1,θ1,λ1) for L̈ = L1, together with a KV-DVS

V2 = (p,G2,X2,L2,R2, n2, k2,RGen2,Γ2,θ2,λ2) for a hard-subset-membership language L2,
such that G1 and G2 are sub-graded rings of some graded ring G. Furthermore, we consider
the KV disjunction V = (p,G,X ,L ,R, n, k,RGen,Γ,θ,λ) of V1 and V2. We recall that
n = n1n2 and k = k1n2 + n1k2.

We construct a NIZK for L̈ = L1 as follows:

• T.Setup(lpar1) generates language parameters lpar2
$← Setup.lpar2(gpar) for L2, together

with a word x2
$← X2,lpar2

\L2,lpar2
. It then outputs crs := (lpar2, x2).

• T.TSetup(lpar1) generates language parameters lpar2
$← Setup.lpar2(gpar) for L2, to-

gether with a word and its witness: (x2,w2) $← R2,lpar2
. It then output crs := (lpar2, x2)

and trap := w2.

6.3 Trapdoor Smooth Projective Hashing and Implicit Zero-Knowledge 167

Reference String Indistinguishability Zero-Knowledge

Expcrs-ind-b(A,K)
gpar

$← Setup.gpar(1K)
(¨lpar, ¨ltrap) $← ¨Setup.lpar(gpar)
if b = 0 then

crs
$← T.Setup(gpar, ¨lpar)

else
(crs, trap) $← T.TSetup(gpar, ¨lpar)

return A(crs, ¨ltrap)

Expzk-b(A,K)
gpar

$← Setup.gpar(1K)
(¨lpar, ¨ltrap) $← ¨Setup.lpar(gpar)
(crs, trap) $← T.TSetup(gpar, ¨lpar)
(̈x , ẅ , hp, st) $← A(crs, trap, ¨ltrap)
if R ¨lpar(̈x , ẅ) = 0 then

return 0
if VerHP(crs, hp, ¨lpar, ẍ) = 0 then

return 0
if b = 0 then

H← ProjHash(crs, hp, ¨lpar, ẍ , ẅ)
else

H← THash(crs, trap, hp, ¨lpar, ẍ)

return A(st,H)

Computational smoothness

Expgl/cs-smooth-b(A,K) and Expkv-smooth-b(A,K)
gpar

$← Setup.gpar(1K)
(¨lpar, ¨ltrap) $← ¨Setup.lpar(gpar)
crs

$← T.Setup(gpar, ¨lpar)
hk

$← HashKG(crs, ¨lpar)
hp←⊥ ⊲ only in Expgl/cs-smooth-b

hp← ProjKG(crs, hk, ¨lpar) ⊲ only in Expkv-smooth-b

(̈x , st) $← A(crs, ¨ltrap, hp)
hp← ProjKG(crs, hk, ¨lpar, ẍ) ⊲ only in Expgl/cs-smooth-b

if b = 1 or ẍ ∈ L̈ ¨lpar then

H← Hash(crs, hk, ¨lpar, ẍ)
else

H
$← Π

return A(st, hp,H)

Figure 6.4: Experiments for Definitions 6.3.1 and 6.3.3 (TSPHF)

168 Chapter 6 Applications of Diverse Modules

• HashKG(crs, lpar1) generates and outputs a hashing key for V:

hk := (α⊺ $← Z1×n
p , ρ $← RGen(lpar)) ,

where lpar := (lpar1, lpar2).

• ProjKG(crs, hk, lpar1, x1) outputs the projection key hp := (γ⊺, ρ) where:

γ⊺ := α⊺ • Γlpar(x , ρ) ∈ G
1×k ,

where x := (x1, x2). In the sequel, we split γ⊺ in two parts:

γ
⊺

1 := (γi)
⊺

i=1,...,k1n2
= α⊺ • (Γ1 ⊗ Idn2

) ∈ G
1×(k1n2)
1 ,

γ
⊺

2 := (γi)
⊺

i=k1n2+1,...,n = α⊺ • (Idn1
⊗ Γ2) ∈ G

1×(n1k2)
2 ;

• Hash(crs, hk, lpar1, x1) outputs the hash value

H := α⊺ • θ(x , ρ) ∈ G ;

• ProjHash(crs, hp, lpar1, x1,w1) outputs the projected hash value

pH := γ⊺ • λ(x , (w1,⊥), ρ) = γ
⊺

1 • (λ1(x1,w1, ρ)⊗ θ2(x2, ρ)) ∈ G ;

• THash(crs, trap, hp, lpar1, x1) outputs the trapdoor hash value

trapH := γ⊺ • λ(x , (⊥,w2), ρ) = γ
⊺

2 • (θ1(x1, ρ)⊗ λ2(x2,w2, ρ)) ∈ G ;

• VerHP(crs, hp, lpar1, x1) checks the following equation:

γ
⊺

1 • (Idk1
⊗ Γ2) ?= γ

⊺

2 • (Γ1 ⊗ Idk2
) . (6.3)

The resulting TSPHF is a KV-TSPHF if V1 is a KV-DVS, a CS-TSPHF if V1 is a CS-DVS,
and a GL-TSPHF if V1 is a GL-DVS. More precisely, we have the following theorem.

Theorem 6.3.6. Let V1 = (p,G1,X1,L1,R1, n1, k1,RGen1,Γ1,θ1,λ1) and V2 = (p,G2,X2,
L2,R2, n2, k2,RGen2,Γ2,θ2,λ2) be two DVSs over two multiplicatively compatible sub-graded
rings G1 and G2 of some graded ring G. We suppose that L2 is a hard-subset-membership
language and that V2 is a KV-DVS.

Then the TSPHF for L̈ = L1 in Construction 6.3.5 is perfectly correct, reference-string-
indistinguishable, statistically GL/CS smooth, and perfectly zero-knowledge. More precisely,
if A is a polynomial-time adversary against reference string indistinguishability of the TSPHF,
we can construct an adversary B against subset-membership for L2 with similar running time
such that:

Advcrs-ind(A,K) ≤ Advsub-memb(B,K) .

And if A is a (potentially unbounded) adversary against computational GL/CS smoothness
and if V1 is ε-sound, then:

Advgl/cs-smooth(A,K) ≤ ε .

Furthermore, if V1 is a CS-DVS, then the resulting TSPHF is a CS-TSPHF. If V2 is a
KV-DVS, then the resulting TSPHF is a perfectly smooth KV-TSPHF.

6.3 Trapdoor Smooth Projective Hashing and Implicit Zero-Knowledge 169

Proof. Perfect correctness directly comes from perfect completeness of V.

Reference string indistinguishability is directly implied by hard subset membership of L2.

Computational smoothness. When crs = (lpar2, x2) is generated by T.Setup, x2 /∈ L2 and
therefore x = (x1, x2) ∈ L if and only x1 ∈ L1. Therefore computational smoothness holds
statistically, thanks to the smoothness property of the SPHF derived from the DVS V.

Perfect zero-knowledge. Let x1 be a word in L1 with witness w1, and let (crs = (lpar2, x2),
trap = w2) $← T.TSetup(lpar1). We have:

pH = γ
⊺

1 • (λ1 ⊗ θ2) = γ
⊺

1 • ((Idk1
• λ1)⊗ (Γ2 • λ2)) = γ

⊺

1 • (Idk1
⊗ Γ2) • (λ1 ⊗ λ2) ,

trapH = γ
⊺

1 • (θ1 ⊗ λ2) = γ
⊺

1 • ((Γ1 • λ1)⊗ (Idk2
• λ2)) = γ

⊺

1 • (Γ1 ⊗ Idk2
) • (λ1 ⊗ λ2) .

If hp = (γ⊺, ρ) is accepted by VerHP, then Equation (6.3) is satisfied, and thus pH = trapH.
Therefore, zero-knowledge holds perfectly.

Composite-order setting. The construction can be extended to the composite-order setting
(replacing DVSs V1 and V2 by DMs M1 and M2), in the CS-TSPHF and GL-TSPHF case, as
long as, with overwhelming probability, a random word x2 is strongly non-degenerated in
M2 mod M ′ with M ′ a factor of the order M of the DMs, such that M1 mod M ′ is sound.
We just need to change α⊺ $← Z1×n

p into α⊺ $← Zm×n
M for some large enough integer m, and

to extract from the hash value (H, pH, or trapH) a uniform bit string, by using a randomness
extractor. The seed for the randomness extractor seed is generated by HashKG and added to
hk and hp.

If we can use a deterministic randomness extractor, we could also get a KV-TSPHF using the
same construction starting with a KV-DM M1. Unfortunately, while we know a randomness
extractor for any distribution with high enough min-entropy (see Section 2.2.3), there does
not necessarily exist a deterministic randomness extractor for the distributions of hash values
coming from PHFs from DMs.

6.3.2.3 Construction Based on Mixed Pseudorandomness

Similarly to NIZK, we can optimize the previous construction in the prime-order setting by
replacing the second DVS V2 by a Pr-DVS. We need to suppose that L̈ is witness samplable
(see Section 5.2.3).

Construction 6.3.7. The construction is the same as Construction 6.3.5, except that:

• T.Setup behaves like T.TSetup and picks x2
$← L2 instead of x2

$← X2 \L2;

• we do not require that L2 is a hard-subset-membership language but only that V2 is a
Pr-DVS;

• we also suppose that L1 is witness samplable.

We point out that we never use the trapdoor ltrap1 of L1 (for witness samplability) in the
TSPHF scheme. It is only used for the proof.

170 Chapter 6 Applications of Diverse Modules

Theorem 6.3.8. Let V1 = (p,G1,X1,L1,R1, n1, k1,RGen1,Γ1,θ1,λ1) and V2 = (p,G2,X2,
L2,R2, n2, k2,RGen2,Γ2,θ2,λ2) be two DVSs over two multiplicatively compatible sub-graded
rings G1 and G2 of some graded ring G. We suppose that V2 is a Pr-DVS and that L1 is
witness samplable.

Then the TSPHF for L̈ = L1 in Construction 6.3.7 is perfectly correct, perfectly reference-
string-indistinguishable, computationally GL/CS-smooth, and perfectly zero-knowledge. More
precisely, if A is a polynomial-time adversary against GL/CS smoothness of the TSPHF, we
can construct an adversary B against pseudorandomness of V2 with similar running time
such that:

Advcrs-ind(A,K) ≤ m1 · Advpsrnd(B,K) + ε ,

where m1 := n1 − maxlpar1
(dim L̂1,lpar1

), where dim L̂1,lpar1
is the dimension of the vector

space L̂1,lpar1
, or in other words the rank of Γ1,lpar1

. Furthermore, if V1 is a CS-DVS, then
the resulting TSPHF is a CS-TSPHF. If V2 is a KV-DVS, then the resulting TSPHF is a
KV-TSPHF.

Proof. Perfect correctness and perfect zero-knowledge are proven exactly as for Theorem 6.3.6,
while perfect reference string indistinguishability is trivial.

Finally, computational smoothness is directly implied by mixed pseudorandomness and
Theorem 5.2.6.

Historical note 6.3.9. When the second DVS V2 corresponds to the DDH assumption
(Example 5.1.5), we get the construction in [BBC+13c].

6.3.3 Implicit Zero-Knowledge Arguments (iZK)

6.3.3.1 Definition and Direct Application

Definition. Let us formally define iZK.

Definition 6.3.10 (iZK). An iZK for a language (L̈ ¨lpar) is defined by a tuple of seven
polynomial-time algorithms (iSetup, iKG, iTKG, iEnc, iDec, iTDec), where:

• iSetup(gpar, ¨lpar) outputs a CRS crs for the global parameters gpar and the language
parameters ¨lpar; as usual, we suppose that crs implicitly contains gpar and ¨lpar;

• iTSetup(gpar, ¨lpar) generates the (simulated) common reference string crs together with
a trapdoor trap for the global parameters gpar and the language parameters ¨lpar, and
outputs the pair (crs, trap);

• iKG(crs, ẍ , ẅ) generates an encryption/decryption (a.k.a., public/secret) key pair (iek,
idk), associated to a word ẍ ∈ L̈ ¨lpar, with witness ẅ ;

• iTKG(crs, trap, ẍ) generates a encryption/trapdoor (a.k.a., public/trapdoor) key pair
(iek, itk), associated to a word ẍ ∈ Ẍ ¨lpar;

• iEnc(crs, iek, ẍ) outputs a pair (c,K), where c is a ciphertext corresponding to the
plaintext K (an ephemeral key), for the public key iek and the word ẍ ∈ Ẍ ¨lpar;

• iDec(crs, idk, c) determistically decrypts the ciphertext c using the decryption key idk

and outputs the ephemeral key K;

6.3 Trapdoor Smooth Projective Hashing and Implicit Zero-Knowledge 171

• iTDec(crs, itk, c) determistically decrypts the ciphertext c using the trapdoor key itk and
outputs the ephemeral key K.

The set of plaintexts or ephemeral keys is denoted Π. An iZK has to satisfies the following
properties:

• Perfect correctness. The encryption is the reverse operation of the decryption, with or
without a trapdoor: for any ¨lpar:

– for any crs generated by crs
$← iSetup(gpar, ¨lpar) or generated by (crs, trap) $←

iTSetup(gpar, ¨lpar), for any word ẍ ∈ L̈ ¨lpar with witness ẅ (i.e., Rlpar(̈x , ẅ) = 1),

for any key pair (iek, idk) $← iKG(crs, ẍ , ẅ), and any (c,K) $← iEnc(iek, ẍ), we have
K = iDec(idk, c);

– for any (crs, trap) $← iTSetup(gpar, ¨lpar), for any word ẍ ∈ Ẍ ¨lpar, for any key pair

(iek, itk) $← iTKG(trap, ẍ) and (c,K) $← iEnc(iek, ẍ), we have K = iTDec(itk, c);

• Reference string indistinguishability (a.k.a, setup indistinguishability). A polynomial-
time adversary cannot distinguish a normal CRS generated by iSetup from a trapdoor CRS

generated by iTSetup. Formally, the advantage of an adversary A against reference string
indistinguishability is defined by the experiments Expcrs-ind-b depicted in Figure 6.5.
The iZK is reference-string-indistinguishable, if this advantage is negligible for any
polynomial-time adversary A.

• Soundness. When the CRS crs is generated by iSetup, and when ẍ /∈ L , the distribution
of K is indistinguishable from the uniform distribution, even given c. Formally, the
advantage of an adversary A against soundness is defined by the experiments Expsound-b

depicted in Figure 6.5. The iZK is sound, if this advantage is negligible for any
polynomial-time adversary A.

• Zero-knowledge. When the CRS crs is generated by iTSetup, keys generation by iKG and
decryption by iDec are indistinguishable from key generation by iTKG and decryption
by iTDec. Formally, the advantage of an adversary A against zero-knowledge is defined
by the experiments Expzk-b depicted in Figure 6.5. The iZK is zero-knowledge, if this
advantage is negligible for any polynomial-time adversary A.

Historical note 6.3.11. In [BCPW15], we defined our security notions with a “composable”
security flavor, as Groth and Sahai in [GS08]: soundness and zero-knowledge were statistical
properties, the only computational property was the setup indistinguishability property. Here,
we allow computational soundness and computational zero-knowledge, to enable more efficient
instantiations based on pseudorandomness. This weaker definition still works for all the
applications in [BCPW15].

Furthermore, our definition does not include labels nor tags, as they are not useful for
basic soundness, and contrary to [BCPW15], we do not consider simulation-soundness in
this thesis.

Direct application. As already noted, iZK can replace PHFs in the honest-verifier zero-
knowledge arguments in Sections 2.5.3.1 and 6.1 to get zero-knowledge arguments. A concrete
example of such a scheme is depicted in Figure 6.6.

172 Chapter 6 Applications of Diverse Modules

Reference String Indistinguishability Zero-Knowledge

Expcrs-ind-b(A,K)
gpar

$← Setup.gpar(1K)
(¨lpar, ¨ltrap) $← ¨Setup.lpar(gpar)
if b = 0 then

crs
$← iSetup(gpar, ¨lpar)

else
(crs, trap) $← iTSetup(gpar, ¨lpar)

return A(crs, ¨ltrap)

Expzk-b(A,K)
gpar

$← Setup.gpar(1K)
(¨lpar, ¨ltrap) $← ¨Setup.lpar(gpar)
(crs, trap) $← iTSetup(gpar, ¨lpar)
(̈x , ẅ , st) $← A(crs, trap, ¨ltrap)
if R ¨lpar(̈x , ẅ) = 0 then

return 0
if b = 0 then

(iek, idk) $← iKG(crs, ẍ , ẅ)
else

(iek, itk) $← iTKG(crs, trap, ẍ)

(c, st) $← A(st, iek)
if b = 0 then

K′ ← iDec(crs, idk, c)
else

K′ ← iTDec(crs, itk, c)

return A(st,K′)

Soundness

Expsound-b(A,K)
gpar

$← Setup.gpar(1K)
(¨lpar, ¨ltrap) $← ¨Setup.lpar(gpar)
crs

$← iSetup(gpar, ¨lpar)
(iek, ẍ , st) $← A(crs)
(c,K) $← iEnc(crs, ẍ)
if b = 0 and ẍ /∈ L̈ ¨lpar then

K
$← Π

return A(st, c,K)

Figure 6.5: Experiments for Definition 6.3.10 (iZK)

Prover Verifier
Input: (̈x , ẅ) CRS: crs Input: ẍ

(iek, idk) $← iKG(crs, ẍ , ẅ) iek
−−−−−−−−−→

c
←−−−−−−−−− (c,K) $← iEnc(crs, iek)

K′ ← iDec(crs, idk, c) K′
−−−−−−−−−→

if K = K′ then
accept

else reject

Figure 6.6: Zero-knowledge proof from an iZK

6.3 Trapdoor Smooth Projective Hashing and Implicit Zero-Knowledge 173

6.3.3.2 Construction Based on Disjunctions with a Hard-Subset-Membership Language

Prime-order setting. Let us start by the construction in the prime-order setting, which is an
improved (and extended to any hard-subset-membership language) version of the construction
in [BCPW15].

Construction 6.3.12 (iZK from disjunctions of DVSs). We suppose that we have a DVS

V1 = (p,G,X1,L1,R1, n1, k1,RGen1,Γ1,θ1,λ1) for L̈ = L1, together with a KV-DVS V2 =
(p,G,X2,L2,R2, n2, k2,RGen2,Γ2,θ2,λ2) for a hard-subset-membership language L2. We
suppose that Γ1 does not depend on ρ1, but θ1 can depend on ρ. Therefore, Γ does not depend
on ρ. Furthermore, we consider the GL disjunction V = (p,G,X ,L ,R, n, k,RGen,Γ,θ,λ)
of V1 and V2. We recall that n = n1 + n2 + 2 and k = k1 + k2 + 1.

We construct an iZK for L̈ := L1 as follows:

• iSetup(lpar1) generates language parameters lpar2
$← Setup.lpar2(gpar) for L2, together

with a word x2
$← X2,lpar2

\L2,lpar2
. It then outputs crs := (lpar2, x2).

• iTSetup(lpar1) generates language parameters lpar2
$← Setup.lpar2(gpar) for L2, together

with a word and its witness: (x2,w2) $← R2,lpar2
. It then output crs := (lpar2, x2) and

trap := w2.

• iKG(crs, x1,w1) outputs a pair (iek, idk), where:

tk := α′⊺ $← Z1×k
p tp := γ ′⊺ := α′⊺ • Γ⊺(x) ∈ G

1×n

iek := tp idk := (x1, tk,w1) ,

where x = (x1, x2);

• iTKG(crs, trap, x1) outputs a pair (iek, idk) where:

tk := α′⊺ $← Z1×k
p tp := γ ′⊺ := α′⊺ • Γ⊺(x) ∈ G

1×n

iek := tp itk := (x1, tk, trap) ;

• iEnc(crs, iek, x1) outputs a pair (c,K) where:

ρ $← RGen(¨lpar) ζ $← Zp

hk := α⊺ $← Z1×n
p hp := γ⊺ := α⊺ • Γ(x) ∈ G

1×k

tpH := γ ′ •α ∈ G H := α⊺ • θ(x , ρ) ∈ G

c := (ζ, hp, ρ) K := (ζ • H) tpH ∈ G ;

• iDec(crs, idk, c) outputs K′ where:

tH := α′⊺ • γ ∈ G

pH := γ⊺ • λ(x , (w1,⊥), ρ)

K′ := (ζ • pH) tH ∈ G ;

174 Chapter 6 Applications of Diverse Modules

• iTDec(crs, itk, c) outputs K′ where:

tH := α′⊺ • γ ∈ G

pH := γ⊺ • λ(x , (⊥,w2), ρ)

K′ := (ζ • pH) tH ∈ G ;

We have the following security theorem.

Theorem 6.3.13. Let V1 = (p,G1,X1,L1,R1, n1, k1,RGen1,Γ1,θ1,λ1) and V2 = (p,G2,X2,
L2,R2, n2, k2,RGen2,Γ2,θ2,λ2) be two DVSs. We suppose that Γ1 does not depend on ρ1.
We suppose that L2 is a hard-subset-membership language and V2 is a KV-DVS.

Then the iZK for L̈ = L1 in Construction 6.3.12 is perfectly correct, reference-string-
indistinguishable, statistically sound, and perfectly zero-knowledge. More precisely, if A is
a polynomial-time adversary against reference string indistinguishability of the iZK, we can
construct an adversary B against subset-membership for L2 with similar running time such
that:

Advcrs-ind(A,K) ≤ Advsub-memb(B,K) .

And if A is a (potentially unbounded) adversary against soundness, and if V1 is ε-sound then:

Advsound(A,K) ≤ 1/p+ ε .

Proof. Perfect correctness directly comes from perfect completeness of V.

Reference string indistinguishability is directly implied by hard subset membership of L2.

Soundness. Let x1 ∈ X1 \ L1, x2 ∈ X2 \ L2, and tp := γ ′⊺ ∈ G
1×n. We suppose that

θ /∈ ColSpan (Γ), which happens with probability at least 1− ε by ε-soundness of V1 implied
by ε-soundness of V. Let us first prove that there exists at most one scalar ζ ∈ Zp such that

(ζ • θ(x)) γ ′ ∈ ColSpan (Γ) ,

where x = (x1, x2). Let us suppose by contradiction that this is not the case and that there
exist two distinct scalars ζ1 and ζ2 such that:

(ζ1 • θ(x)) γ ′ ∈ ColSpan (Γ) , (ζ2 • θ(x)) γ ′ ∈ ColSpan (Γ) .

By subtracting the values on the left-hand sides, we get:

(ζ1 − ζ2) • θ(x) ∈ ColSpan (Γ) ,

and as ζ1 6= ζ2, θ(x) ∈ ColSpan (Γ). This is impossible.
Let us now suppose that ζ ∈ Zp is chosen such that

(ζ • θ(x)) γ ′ /∈ ColSpan (Γ) ,

which happens with probability at least 1− 1/p. We then remark that:

K = (ζ • H) tpH = α⊺ • ((ζ • θ(x)) γ ′) .

In other words, we can see K as the “hash value” of “((ζ • θ(x)) γ ′)”, and therefore K is
uniformly random from the point of view of the adversary;

Perfect zero-knowledge. We separate the analysis in two cases:

6.3 Trapdoor Smooth Projective Hashing and Implicit Zero-Knowledge 175

1. the projection key hp provided by the adversary in c is valid, i.e., there exists α⊺ ∈ Z1×n
p ,

such that hp = γ⊺ = α⊺ • Γ. In this case, the projected hash value pH computed using
the valid witness w1 (in iDec) is the same as the one computed using the valid witness
w2 (in iTDec). And iDec and iTDec output the same value, if they used the same tk;

2. otherwise, γ /∈ ColSpan (Γ⊺). In this case, we can see tk and tp as the hashing
key and the projection key for the language of valid (transposed) projection keys
(ColSpan (Γ⊺) ⊆ G

k), and tH as the hash value of γ. By smoothness, this hash value
is uniformly random from the point of the adversary. Therefore, iDec and iTDec both
output a uniform graded ring element.

This concludes the proof.

Remark 6.3.14 (reducing the ciphertext size). Similarly to Example 3.1.5, ζ can instead be
defined as Ext(γ⊺), where Ext is a deterministic randomness extractor (see Section 2.2.3). Such
an extractor exists for some elliptic curves [CFPZ09]. The security proof still works in this
case, the only difference is the bound for soundness. Concretely, if ζ ∈ {0, . . . , 2m − 1} ⊆ Zp

(the extractor extracts m bits of entropy), if A is a (potentially unbounded) adversary against
soundness, and if V1 is ε-sound, then:

Advsound(A,K) ≤ 1/2m + ε .

Remark 6.3.15 (iZK for any NP language). We can construct iZK for any NP language
using the same ideas as for constructing NIZK from disjunctions of DVSs for any NP language,
in Section 6.1.2.3. Concretely, if the NP language is defined by a circuit C, we just add an
ElGamal public key in crs and the prover adds ciphertexts encrypting the value of each wire
of the circuit evaluated on ẍ and ẅ , to the public key K. The language L1 is used to check
the validity of all these ciphertexts (inputs, output and gates), as in Section 6.1.2.3.

Composite-order setting. The construction can be extended to the composite-order setting,
as for TSPHFs in Section 6.3.2.2, using m scalars ζ1, . . . , ζm.

6.3.3.3 Construction Based on Mixed Pseudorandomness

Similarly to NIZK and TSPHFs, we can optimize the previous construction in the prime-order
setting by replacing the second DVS V2 by a Pr-DVS. We need to suppose that L̈ is such
that the trapdoor ltrap1 output by Setup.lpar1 enables to check whether a word x1 ∈ X1 is in
L1 in polynomial time.

Construction 6.3.16. The construction is the same as Construction 6.3.5, except that:

• iSetup behaves like iTSetup and picks x2
$← L2 instead of x2

$← X2 \L2;

• we do not require that L2 is a hard-subset-membership language but only that V2 is a
Pr-DVS;

• we also suppose that the trapdoor ltrap1 output by Setup.lpar1 enables to check whether
a word x1 ∈ X1 is in L1 in polynomial time.

We point out that we never use the trapdoor ltrap1 of L1 for witness samplability in the
TSPHF scheme. It is only used for the proof.

176 Chapter 6 Applications of Diverse Modules

Theorem 6.3.17. Let V1 = (p,G,X1,L1,R1, n1, k1,RGen1,Γ1,θ1,λ1) and V2 = (p,G,X2,
L2,R2, n2, k2,RGen2,Γ2,θ2,λ2) be two DVSs. We suppose that Γ1 does not depend on ρ1.
We suppose that V2 is a Pr-DVS and that the trapdoor ltrap1 output by Setup.lpar1 enables to
check whether a word x1 ∈ X1 is in L1 in polynomial time.

Then the iZK for L̈ = L1 in Construction 6.3.16 is perfectly correct, perfectly reference-
string-indistinguishable, computationally sound, and perfectly zero-knowledge. More precisely,
if A is a polynomial-time adversary against soundness of the iZK, we can construct an
adversary B against pseudorandomness of V2 with similar running time such that:

Advcrs-ind(A,K) ≤ m1 · Advpsrnd(B,K) + 1/p ,

where m1 := n1 − maxlpar1
(dim L̂1,lpar1

), where dim L̂1,lpar1
is the dimension of the vector

space L̂1,lpar1
, or in other words the rank of Γ1,lpar1

.

Proof. Perfect correctness and perfect zero-knowledge are proven exactly as for Theorem 6.3.13,
while perfect reference string indistinguishability is trivial.

Finally, computational smoothness is implied by mixed pseudorandomness and Theo-
rem 5.2.6, using a proof similar to the one in Theorem 6.3.13.

Historical note 6.3.18. This construction is completely new.

Chapter 7
Conclusion and Open Questions

7.1 Conclusion

In this thesis, we introduced the notion of diverse modules (DMs) that are a fruitful way to
represent many algebraic languages used in cryptographic schemes. As a particular case of
diverse groups [CS02], DMs also yield an (approximate or weakly approximate) universal
projective hash function (PHF) for the language they represent. Most, if not all, languages for
which we know a universal PHF can be represented by DMs. While characterizing the class
of languages admitting a universal PHF remain an interesting open problem, the structural
properties of DMs enable us to better understand the class of languages represented by
DMs. In particular, we showed in this thesis that this class is closed under conjunction, and
approximately closed under disjunction. DMs can also be efficiently extended, via t-sound
extensions, to yield stronger forms of universal PHFs, namely t-universal PHFs, which provide
even more applications.

DMs are also valuable in their own right. Using disjunctions and t-sound extensions,
we showed how to construct non-interactive zero-knowledge arguments (NIZK), trapdoor
smooth projective hash functions (TSPHFs), and implicit zero-knowledge arguments (iZK).
Even though NIZK is a standard primitive in cryptography, DMs shed a new light on it
and provided more efficient instantiations. TSPHFs and iZK, on the other hand, were both
introduced in this thesis as zero-knowledge variants of PHFs and lightweight alternatives to
costly NIZK, in particular for password authenticated key exchange (PAKE) in the UC model
and for enforcing semi-honest behavior in multi-party computation.

DVSs, which are DMs over prime-order fields, are an important particular case of DMs.
While DVSs were already proposed in [CS02], we provide a more in-depth analysis of them. In
addition to present conjunctions, disjunctions, and t-sound extensions of DVSs, as a warm-up
for the same operations on DMs, we introduced pseudorandom diverse vector spaces (Pr-DVSs),
which are alternatives to DVSs for hard-subset-membership languages. We analyzed the
behavior of Pr-DVSs with respect to disjunctions, and called the resulting property: mixed
pseudorandomness. This enabled us to improve the efficiency of our constructions of NIZK,
TSPHFs, and iZK, in the prime-order setting.

— 177 —

178 Chapter 7 Conclusion and Open Questions

7.2 Open Questions

In this section, I would like to highlight some open questions that draw me into the direction
of constructing diverse modules and that I dreamed of solving during my thesis. Now, I just
dream they will be solved during my lifetime.

There are of course many other technical interesting questions ranging from:

Question 7.1. Can we construct a one-time simulation-sound NIZK with short CRS (inde-
pendent of the security parameter)?

to:

Question 7.2. Can we construct lower bounds for the size of DVS or DM for a given
language?

These questions might be much more tractable but, from my point of view, they are also
much less interesting than the following open questions.

Class of languages. The first open question is naturally the following:

Question 7.3. Can we characterize the class of languages captured by SPHFs (or universal
PHFs)?

On the one hand, we know that there does not exist even a GL-SPHF for a NP-complete
language unless the polynomial hierarchy collapses. On the other hand, the only languages
for which we know of an SPHF are the ones represented by DMs. We do not even know if
GL-SPHFs, CS-SPHFs, and KV-SPHFs capture the same class of languages.

This leads to some simpler open questions:

Question 7.4. Are the classes of languages captured by GL-SPHF, CS-SPHF, and KV-SPHF

the same?

Question 7.5. Can we construct an SPHF for a language which cannot be expressed as a
diverse module (DM)?

Other simpler open questions related to the closure of the class of languages captured by
SPHF. In [ACP09], Abdalla, Chevalier and Pointcheval already showed that it is closed by
conjunction for KV-SPHFs, CS-SPHFs, and GL-SPHFs, and it is closed by disjunction for
GL-SPHFs.

Question 7.6. Are the classes of languages captured by GL-SPHFs, CS-SPHFs, and KV-SPHFs

closed by complement?

Question 7.7. Are the classes of languages captured by CS-SPHFs and KV-SPHFs closed by
disjunction?

Lattice-based languages Other important languages for which the construction of SPHFs

is very interesting are lattice-based languages. In [KV09], Katz and Vaikuntanathan manage
to construct the first and only known (approximate) SPHF for a lattice-based language:
the language of ciphertexts of some given plaintext for an LWE-based IND-CCA encryption
scheme. This encryption scheme uses a special decryption procedure to ensure smoothness
on any ciphertext which cannot be decrypted correctly. In particular, its time complexity is
linear in the size of the finite field over which the encryption scheme is defined. This makes
the use of superpolynomial finite fields impossible.

7.2 Open Questions 179

Witness encryption Finally, we can look at a computational relaxation of the smoothness
property. Witness encryption [GGSW13] basically corresponds to computationally smooth
GL-SPHF. Some candidate constructions of witness encryption for any NP language were
proposed based on multilinear maps [GGSW13; GLW14] or iO [GGH+13]. But, these two
assumptions are currently not very well understood.

Question 7.8. Can we construct a witness encryption scheme for any NP language without
multilinear maps or iO?

Notation

General
N set of non-negative integers
p, p1, p2, . . . prime numbers
Z set of integers
(ZM ,+, ·) or ZM ring of integers modulo M , with M ≥ 1 being an integer
(ZM ,+) ZM seen as an additive group
(Z∗

M , ·) or Z∗
M multiplicative subgroup of ZM

(Fpe ,+, ·) or Fpe finite field of order pe

G,G1, . . . cyclic groups
G∗ set of generators of G
(M,G) cyclic group of order M
(M,G, g) cyclic group of order M and generated by g
(M,G,GT , e) symmetric bilinear group of order M
(M,G1,G2,GT , e) asymmetric bilinear group of order M
R[X] ring of polynomials with coefficients in the ring R
|S| cardinal of the set S

Bit Strings
{0, 1}n set of bit strings of length n
{0, 1}∗ set of all bitstrings
x xor y exclusive or between x, y ∈ {0, 1}n

Assignation

y $← S y = uniform element from the set S
y $← D y = random element drawn according to distribution D
y $← A(x) x = result of A on input x with fresh random coins
y ← A(x) same when A is deterministic
y ← A(x; r) same with random coins r
:= definition

Vectors and Matrices
u,x, . . . column vectors: u = (ui)i=1,...,n

u⊺,x⊺, . . . row vectors: u⊺ = (ui)
⊺

i=1,...,n

— 181 —

182 Notation

Provable Security
K security parameter
1K unary representation of the security parameter
A,B, . . . adversaries
f = O(g) ∃n0, c, ∀n ≥ n0, |f(x)| ≤ c · |g(x)|
g = Ω(f) same
Expexp experiment for the security notion/assumption “exp”
Expexp(A,K) value returned by Expexp when executed with A and K

Succexp(A,K) success probability of A in Expexp:
Succexp(A,K) := Pr [Expexp(A,K) = 1]

Expexp-b pair of two experiments (b ∈ {0, 1})
Expexp-b(A,K) similar to Expexp(A,K)
Advexp(A,K) advantage of A in distinguishing the experiments Expexp-b:

Advexp(A,K) =
∣

∣

∣Pr
[

Expexp-1(A,K) = 1
]

− Pr
[

Expexp-0(A,K) = 1
]∣

∣

∣

Projective Hash Functions
hk hashing key
hp projection key
H hash value
pH projected hash value

Graded Rings
G graded ring
[ṽ, x] element of index ṽ and discrete logarithm x
[x] when the index is clear from context: when G = (p,G, g), [x] = gx

[ṽ, A] or [A] extension to matrices
0̄ and ⊤ minimum and maximum indices

Miscellaneous
K used instead of ∃ to indicate the extractable part of a witness in a

language (see Section 2.3.3)

Abbreviations

BDDH bilinear decisional Diffie-Hellman. 159

BDDHI bilinear decisional Diffie-Hellman inversion. 159

CRS common reference string. 4, 6, 39–44, 47, 51–53, 139–142, 144, 149, 151–155, 160–162,
164–166, 170–172, 178

CRT Chinese remainder theorem. 19, 94, 97, 100, 101, 103, 109, 119

CS-DM CS diverse module. xiii, 85, 92, 107, 110, 112, 114, 115, 119, 120

CS-DVS CS diverse vector space. xiii, 66, 70, 73, 75, 76, 85, 87, 92, 107, 112, 114, 115, 119,
129, 136, 168, 170

CS-SPHF CS-smooth projective hash function. 49–51, 54, 62, 66–68, 87, 88, 115, 178

CS-TSPHF trapdoor CS-smooth projective hash function. 164, 166, 168–170

DCR decisional composite residuosity. 6, 85, 89

DDH decisional Diffie-Hellman. 6, 10, 31–34, 36, 38, 39, 56–58, 61, 62, 65, 71, 74, 80, 86,
101, 103, 106, 108, 126, 129, 153–159, 163, 170

DLin decisional linear. 34, 80, 126, 129, 153, 158, 159

DM diverse module. xii, xiii, 35, 55, 85, 88, 89, 91–93, 95, 97, 99–110, 114, 120, 123, 137–143,
145–147, 149, 152–154, 160, 161, 169, 177, 178, 185

DVS diverse vector space. xiii, 36, 55–60, 62–75, 78, 81–85, 92, 93, 98, 101, 103, 106, 107,
109, 114, 115, 121, 123, 127, 129–131, 133, 136–138, 142, 144, 145, 147, 150–152, 154,
155, 160–164, 166, 168–170, 173–178

GL-DM GL diverse module. 92, 93, 106–108, 143

GL-DVS GL diverse vector space. xiii, 66, 70, 82, 87, 92, 105, 123, 129, 130, 136, 168

GL-SPHF GL-smooth projective hash function. 49–52, 59, 66–68, 72, 82, 87, 88, 162, 178,
179

GL-TSPHF trapdoor GL-smooth projective hash function. 161, 164–166, 168, 169

IND-CCA indistinguishability under chosen ciphertext attacks. 30–34, 41, 137, 153–156, 159,
178, 185

IND-CPA indistinguishability under chosen plaintext attacks. 30–34, 40, 44, 52, 54, 141,
142, 185

— 183 —

184 Abbreviations

iO indistinguishable obfuscation. 179

ITM interactive Turing machine. 20, 42–44, 46, 47

iZK implicit zero-knowledge argument. xiii, 39, 123, 137, 145, 160–164, 166, 170–177, 185

KV-DM KV diverse module. 92, 94, 100, 101, 103, 104, 108, 110, 115, 120, 142, 143, 145,
148, 149, 169

KV-DVS KV diverse vector space. 66, 70, 73, 75, 76, 78, 79, 81–83, 87, 92, 115, 123, 124,
126, 129, 133, 136, 146, 147, 149–152, 166, 168, 170, 173, 174

KV-SPHF KV-smooth projective hash function. 50, 51, 59, 61, 66, 82, 87, 88, 115, 124, 178

KV-TSPHF trapdoor KV-smooth projective hash function. 164, 166, 168–170

MDDH matrix decisional Diffie-Hellman. xii, xiii, 34, 55, 80, 81, 106, 110, 123, 124, 126–128,
152, 153

NIZK non-interactive zero-knowledge argument. xiii, 41, 47, 76, 78, 79, 81, 85, 106, 121, 123,
137, 142, 145–161, 163, 164, 166, 169, 175, 177, 178, 185

PAKE password authenticated key exchange. 37, 48, 50, 82, 137, 160, 177

PHF projective hash function. xii, 17, 35–37, 39, 48–50, 66, 85–88, 90, 92–94, 98, 100–104,
112–115, 123, 124, 126, 129–133, 138, 139, 141–144, 146, 160, 161, 163, 169, 171, 177,
178, 185

Pr-DVS pseudorandom diverse vector space. xiii, 123, 124, 126, 129, 130, 133, 147, 149–151,
161, 163, 169, 170, 175–177

PRG pseudorandom number generator. 139, 141

PrPHF pseudorandom projective hash function. 123, 124

QR quadratic residuosity. 6, 85, 89, 101, 106, 110

SPHF smooth projective hash function. xii, 17, 49–59, 61–69, 72, 76, 77, 80, 81, 86, 87, 93,
123, 128, 136–138, 141, 160, 162, 164–166, 169, 178, 185

SXDH symmetric external Diffie-Hellman. 154, 159

TSPHF trapdoor smooth projective hash function. xiii, 136, 137, 145, 160–170, 175, 177,
185

UC universal composability. 39, 42, 160, 177

List of Illustrations

Figures

2.1 Experiment for Definition 2.2.1 (collision resistance) 29
2.2 Experiments for Definition 2.2.3 (IND-CPA) and Definition 2.2.4 (IND-CCA) . 31
2.3 Experiments for Definition 2.3.3 (hard subset membership) 38
2.4 Experiments for Definition 2.4.3 (zero-knowledge argument) 45
2.5 Experiments for Definition 2.4.4 (honest-verifier zero-knowledge) 46
2.6 Experiment for Definition 2.4.5 (simulation-extractability) 47
2.7 Summary of the definition of PHF . 49
2.8 Honest-verifier zero-knowledge proof from an SPHF 51
2.9 Protocol enabling an informer to send a message m to a secret agent 53

5.1 Experiments for Definition 5.1.1 (pseudorandomness) 125
5.2 Experiments for Definition 5.2.1 (GL/CS and KV mixed pseudorandomness) 130

6.1 Honest-verifier zero-knowledge proof from a DM via a PHF 139
6.2 Honest-verifier zero-knowledge proof from a DM via a Sigma-Protocol 140
6.3 Enforcing semi-honest behavior of Alice (A) by Bob (B) 164
6.4 Experiments for Definitions 6.3.1 and 6.3.3 (TSPHF) 167
6.5 Experiments for Definition 6.3.10 (iZK) . 172
6.6 Zero-knowledge proof from an iZK . 172

Tables

2.1 Relative time of operations on two curves (one with pairing and one without) 28

6.1 Comparison of our constructions of (partially extractable) honest-verifier zero-
knowledge arguments from DMs . 143

6.2 Comparison of NIZK for linear subspaces . 158
6.3 Comparison of IND-CCA encryption schemes over cyclic and bilinear groups . 159
6.4 Duality of NIZK and TSPHF constructed from the disjunction of DMs 161

— 185 —

Bibliography

[ABB+13] Michel Abdalla, Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, and
David Pointcheval. “SPHF-Friendly Non-interactive Commitments”. In: ASI-
ACRYPT 2013, Part I. Ed. by Kazue Sako and Palash Sarkar. Vol. 8269.
LNCS. Springer, Heidelberg, Dec. 2013, pp. 214–234. doi: 10.1007/978-3-

642-42033-7_12 (cit. on p. 10).

[ABM15] Michel Abdalla, Fabrice Benhamouda, and Philip MacKenzie. “Security of
the J-PAKE Password-Authenticated Key Exchange Protocol”. In: 2015
IEEE Symposium on Security and Privacy. IEEE Computer Society Press,
May 2015, pp. 571–587. doi: 10.1109/SP.2015.41 (cit. on p. 13).

[ABP13] Michel Abdalla, Fabrice Ben Hamouda, and David Pointcheval. “Tighter
Reductions for Forward-Secure Signature Schemes”. In: PKC 2013. Ed.
by Kaoru Kurosawa and Goichiro Hanaoka. Vol. 7778. LNCS. Springer,
Heidelberg, Feb. 2013, pp. 292–311. doi: 10.1007/978-3-642-36362-7_19

(cit. on pp. ix, 13).

[ABP14] Michel Abdalla, Fabrice Benhamouda, and David Pointcheval. Removing
Erasures with Explainable Hash Proof Systems. Cryptology ePrint Archive,
Report 2014/125. http://eprint.iacr.org/2014/125. 2014 (cit. on p. 10).

[ABP15a] Michel Abdalla, Fabrice Benhamouda, and Alain Passelègue. “An Algebraic
Framework for Pseudorandom Functions and Applications to Related-Key
Security”. In: CRYPTO 2015, Part I. Ed. by Rosario Gennaro and Matthew
J. B. Robshaw. Vol. 9215. LNCS. Springer, Heidelberg, Aug. 2015, pp. 388–
409. doi: 10.1007/978-3-662-47989-6_19 (cit. on pp. ix, 11).

[ABP15b] Michel Abdalla, Fabrice Benhamouda, and Alain Passelègue. “Multilinear
and Aggregate Pseudorandom Functions: New Constructions and Improved
Security”. In: ASIACRYPT 2015, Part I. Ed. by Tetsu Iwata and Jung Hee
Cheon. Vol. 9452. LNCS. Springer, Heidelberg, Nov. 2015, pp. 103–120. doi:
10.1007/978-3-662-48797-6_5 (cit. on pp. ix, 11).

[ABP15c] Michel Abdalla, Fabrice Benhamouda, and David Pointcheval. “Disjunctions
for Hash Proof Systems: New Constructions and Applications”. In: EURO-
CRYPT 2015, Part II. Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9057.
LNCS. Springer, Heidelberg, Apr. 2015, pp. 69–100. doi: 10.1007/978-3-

662-46803-6_3 (cit. on pp. 9, 11, 34, 37, 69, 76, 129, 136, 152, 153, 166).

[ABP15d] Michel Abdalla, Fabrice Benhamouda, and David Pointcheval. “Public-
Key Encryption Indistinguishable Under Plaintext-Checkable Attacks”. In:
PKC 2015. Ed. by Jonathan Katz. Vol. 9020. LNCS. Springer, Heidelberg,
Mar. 2015, pp. 332–352. doi: 10.1007/978-3-662-46447-2_15 (cit. on
pp. 10, 13, 14, 188).

— 187 —

http://dx.doi.org/10.1007/978-3-642-42033-7_12
http://dx.doi.org/10.1007/978-3-642-42033-7_12
http://dx.doi.org/10.1109/SP.2015.41
http://dx.doi.org/10.1007/978-3-642-36362-7_19
http://eprint.iacr.org/2014/125
http://dx.doi.org/10.1007/978-3-662-47989-6_19
http://dx.doi.org/10.1007/978-3-662-48797-6_5
http://dx.doi.org/10.1007/978-3-662-46803-6_3
http://dx.doi.org/10.1007/978-3-662-46803-6_3
http://dx.doi.org/10.1007/978-3-662-46447-2_15

188 Bibliography

[ABP16] Michel Abdalla, Fabrice Benhamouda, and David Pointcheval. “Public-Key
Encryption Indistinguishable Under Plaintext-Checkable Attacks”. In: IET
Information Security (2016). To appear. Full version of [ABP15d] (cit. on
p. 10).

[ABPP14] Michel Abdalla, Fabrice Benhamouda, Alain Passelègue, and Kenneth G.
Paterson. “Related-Key Security for Pseudorandom Functions Beyond the
Linear Barrier”. In: CRYPTO 2014, Part I. Ed. by Juan A. Garay and
Rosario Gennaro. Vol. 8616. LNCS. Springer, Heidelberg, Aug. 2014, pp. 77–
94. doi: 10.1007/978-3-662-44371-2_5 (cit. on pp. ix, 11).

[ACP09] Michel Abdalla, Céline Chevalier, and David Pointcheval. “Smooth Projective
Hashing for Conditionally Extractable Commitments”. In: CRYPTO 2009.
Ed. by Shai Halevi. Vol. 5677. LNCS. Springer, Heidelberg, Aug. 2009,
pp. 671–689 (cit. on pp. 7, 10, 48, 61, 69, 72, 178).

[AFG+10] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and
Miyako Ohkubo. “Structure-Preserving Signatures and Commitments to
Group Elements”. In: CRYPTO 2010. Ed. by Tal Rabin. Vol. 6223. LNCS.
Springer, Heidelberg, Aug. 2010, pp. 209–236 (cit. on p. 155).

[AH91] William Aiello and Johan Hastad. “Relativized perfect zero knowledge is not
BPP”. In: Information and Computation 93.2 (1991), pp. 223–240 (cit. on
p. 52).

[AMOR14] Gora Adj, Alfred Menezes, Thomaz Oliveira, and Francisco Rodríguez-
Henríquez. “Weakness of F36509 for Discrete Logarithm Cryptography”. In:
PAIRING 2013. Ed. by Zhenfu Cao and Fangguo Zhang. Vol. 8365. LNCS.
Springer, Heidelberg, Nov. 2014, pp. 20–44. doi: 10.1007/978- 3- 319-

04873-4_2 (cit. on pp. 27, 28).

[Bab85] László Babai. “Trading Group Theory for Randomness”. In: Proceedings
of the 17th Annual ACM Symposium on Theory of Computing, May 6-8,
1985, Providence, Rhode Island, USA. Ed. by Robert Sedgewick. ACM, 1985,
pp. 421–429. doi: 10.1145/22145.22192. url: http://doi.acm.org/10.

1145/22145.22192 (cit. on p. 3).

[BB04] Dan Boneh and Xavier Boyen. “Efficient Selective-ID Secure Identity Based
Encryption Without Random Oracles”. In: EUROCRYPT 2004. Ed. by
Christian Cachin and Jan Camenisch. Vol. 3027. LNCS. Springer, Heidelberg,
May 2004, pp. 223–238 (cit. on p. 159).

[BBC+13a] Fabrice Ben Hamouda, Olivier Blazy, Céline Chevalier, David Pointcheval,
and Damien Vergnaud. “Efficient UC-Secure Authenticated Key-Exchange for
Algebraic Languages”. In: PKC 2013. Ed. by Kaoru Kurosawa and Goichiro
Hanaoka. Vol. 7778. LNCS. Springer, Heidelberg, Feb. 2013, pp. 272–291.
doi: 10.1007/978-3-642-36362-7_18 (cit. on pp. 10, 33, 34).

[BBC+13b] Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and
Damien Vergnaud. New Smooth Projective Hash Functions and One-Round
Authenticated Key Exchange. Cryptology ePrint Archive, Report 2013/034.
http://eprint.iacr.org/2013/034. 2013 (cit. on p. 9).

http://dx.doi.org/10.1007/978-3-662-44371-2_5
http://dx.doi.org/10.1007/978-3-319-04873-4_2
http://dx.doi.org/10.1007/978-3-319-04873-4_2
http://dx.doi.org/10.1145/22145.22192
http://doi.acm.org/10.1145/22145.22192
http://doi.acm.org/10.1145/22145.22192
http://dx.doi.org/10.1007/978-3-642-36362-7_18
http://eprint.iacr.org/2013/034

189

[BBC+13c] Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval,
and Damien Vergnaud. “New Techniques for SPHFs and Efficient One-Round
PAKE Protocols”. In: CRYPTO 2013, Part I. Ed. by Ran Canetti and Juan
A. Garay. Vol. 8042. LNCS. Springer, Heidelberg, Aug. 2013, pp. 449–475.
doi: 10.1007/978-3-642-40041-4_25 (cit. on pp. 5, 9–11, 37, 82, 84, 92,
136, 137, 141, 160, 166, 170).

[BBD+15] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, and Pierre-Yves Strub. “Verified Proofs of Higher-Order
Masking”. In: EUROCRYPT 2015, Part I. Ed. by Elisabeth Oswald and
Marc Fischlin. Vol. 9056. LNCS. Springer, Heidelberg, Apr. 2015, pp. 457–485.
doi: 10.1007/978-3-662-46800-5_18 (cit. on p. 12).

[BBP+16] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff,
Adrian Thillard, and Damien Vergnaud. “Randomness Complexity of Private
Circuits for Multiplication”. In: EUROCRYPT 2016. LNCS. To appear.
Springer, Heidelberg, May 2016 (cit. on pp. ix, 12).

[BBS03] Mihir Bellare, Alexandra Boldyreva, and Jessica Staddon. “Randomness
Re-use in Multi-recipient Encryption Schemeas”. In: PKC 2003. Ed. by
Yvo Desmedt. Vol. 2567. LNCS. Springer, Heidelberg, Jan. 2003, pp. 85–99
(cit. on pp. 33, 34).

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. “Short Group Signatures”.
In: CRYPTO 2004. Ed. by Matthew Franklin. Vol. 3152. LNCS. Springer,
Heidelberg, Aug. 2004, pp. 41–55 (cit. on pp. 34, 80).

[BCK+14] Fabrice Benhamouda, Jan Camenisch, Stephan Krenn, Vadim Lyubashevsky,
and Gregory Neven. “Better Zero-Knowledge Proofs for Lattice Encryption
and Their Application to Group Signatures”. In: ASIACRYPT 2014, Part I.
Ed. by Palash Sarkar and Tetsu Iwata. Vol. 8873. LNCS. Springer, Heidelberg,
Dec. 2014, pp. 551–572. doi: 10.1007/978-3-662-45611-8_29 (cit. on
p. 13).

[BCPW15] Fabrice Benhamouda, Geoffroy Couteau, David Pointcheval, and Hoeteck
Wee. “Implicit Zero-Knowledge Arguments and Applications to the Malicious
Setting”. In: CRYPTO 2015, Part II. Ed. by Rosario Gennaro and Matthew
J. B. Robshaw. Vol. 9216. LNCS. Springer, Heidelberg, Aug. 2015, pp. 107–
129. doi: 10.1007/978-3-662-48000-7_6 (cit. on pp. 9, 72, 112, 144,
162–164, 171, 173).

[BCTV16] Fabrice Benhamouda, Céline Chevalier, Adrian Thillard, and Damien
Vergnaud. “Easing Coppersmith Methods Using Analytic Combinatorics:
Applications to Public-Key Cryptography with Weak Pseudorandomness”.
In: PKC 2016, Part II. Ed. by Chen-Mou Cheng, Kai-Min Chung, Giuseppe
Persiano, and Bo-Yin Yang. Vol. 9615. LNCS. Springer, Heidelberg, Mar.
2016, pp. 36–66. doi: 10.1007/978-3-662-49387-8_3 (cit. on p. 14).

[BDS+03] Dirk Balfanz, Glenn Durfee, Narendar Shankar, Diana K. Smetters, Jessica
Staddon, and Hao-Chi Wong. “Secret Handshakes from Pairing-Based Key
Agreements”. In: 2003 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, May 2003, pp. 180–196 (cit. on p. 10).

http://dx.doi.org/10.1007/978-3-642-40041-4_25
http://dx.doi.org/10.1007/978-3-662-46800-5_18
http://dx.doi.org/10.1007/978-3-662-45611-8_29
http://dx.doi.org/10.1007/978-3-662-48000-7_6
http://dx.doi.org/10.1007/978-3-662-49387-8_3

190 Bibliography

[Ber06] Daniel J. Bernstein. “Curve25519: New Diffie-Hellman Speed Records”. In:
PKC 2006. Ed. by Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal
Malkin. Vol. 3958. LNCS. Springer, Heidelberg, Apr. 2006, pp. 207–228
(cit. on pp. 27, 28).

[BGJT14] Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, and Emmanuel Thomé.
“A Heuristic Quasi-Polynomial Algorithm for Discrete Logarithm in Finite
Fields of Small Characteristic”. In: EUROCRYPT 2014. Ed. by Phong Q.
Nguyen and Elisabeth Oswald. Vol. 8441. LNCS. Springer, Heidelberg, May
2014, pp. 1–16. doi: 10.1007/978-3-642-55220-5_1 (cit. on pp. 27, 28).

[BGM+10] Jean-Luc Beuchat, Jorge E. González-Díaz, Shigeo Mitsunari, Eiji Okamoto,
Francisco Rodríguez-Henríquez, and Tadanori Teruya. “High-Speed Software
Implementation of the Optimal Ate Pairing over Barreto-Naehrig Curves”.
In: PAIRING 2010. Ed. by Marc Joye, Atsuko Miyaji, and Akira Otsuka.
Vol. 6487. LNCS. Springer, Heidelberg, Dec. 2010, pp. 21–39 (cit. on p. 28).

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. “Evaluating 2-DNF Formulas on
Ciphertexts”. In: TCC 2005. Ed. by Joe Kilian. Vol. 3378. LNCS. Springer,
Heidelberg, Feb. 2005, pp. 325–341 (cit. on p. 91).

[BHJL16] Fabrice Benhamouda, Javier Herranz, Marc Joye, and Benoît Libert. “Efficient
Cryptosystems From 2k-th Power Residue Symbols”. In: Journal of Cryptology
(2016). issn: 1432-1378. doi: 10.1007/s00145-016-9229-5. url: http:

//dx.doi.org/10.1007/s00145-016-9229-5 (cit. on pp. 13, 16, 197).

[BHZ87] Ravi B Boppana, Johan Hastad, and Stathis Zachos. “Does co-NP have
short interactive proofs?” In: Information Processing Letters 25.2 (1987),
pp. 127–132 (cit. on p. 52).

[BJL13] Fabrice Benhamouda, Marc Joye, and Benoît Libert. “Method for determining
a statistic value on data based on encrypted data”. Corresponds to [BJL16].
2013 (cit. on p. 11).

[BJL16] Fabrice Benhamouda, Marc Joye, and Benoît Libert. “A New Framework for
Privacy-Preserving Aggregation of Time-Series Data”. In: ACM Trans. Inf.
Syst. Secur. 18.3 (Mar. 2016). issn: 1094-9224/2016. doi: 10.1145/2873069

(cit. on pp. 11, 16, 190).

[BK05] Dan Boneh and Jonathan Katz. “Improved Efficiency for CCA-Secure Cryp-
tosystems Built Using Identity-Based Encryption”. In: CT-RSA 2005. Ed. by
Alfred Menezes. Vol. 3376. LNCS. Springer, Heidelberg, Feb. 2005, pp. 87–103
(cit. on p. 159).

[BKLP15] Fabrice Benhamouda, Stephan Krenn, Vadim Lyubashevsky, and Krzysztof
Pietrzak. “Efficient Zero-Knowledge Proofs for Commitments from Learning
with Errors over Rings”. In: ESORICS 2015, Part I. Ed. by Günther Pernul,
Peter Y. A. Ryan, and Edgar R. Weippl. Vol. 9326. LNCS. Springer, Hei-
delberg, Sept. 2015, pp. 305–325. doi: 10.1007/978-3-319-24174-6_16

(cit. on p. 13).

http://dx.doi.org/10.1007/978-3-642-55220-5_1
http://dx.doi.org/10.1007/s00145-016-9229-5
http://dx.doi.org/10.1007/s00145-016-9229-5
http://dx.doi.org/10.1007/s00145-016-9229-5
http://dx.doi.org/10.1145/2873069
http://dx.doi.org/10.1007/978-3-319-24174-6_16

191

[BMW05] Xavier Boyen, Qixiang Mei, and Brent Waters. “Direct Chosen Ciphertext
Security from Identity-Based Techniques”. In: ACM CCS 05. Ed. by Vijay-
alakshmi Atluri, Catherine Meadows, and Ari Juels. ACM Press, Nov. 2005,
pp. 320–329 (cit. on pp. 156, 159).

[BN06] Paulo S. L. M. Barreto and Michael Naehrig. “Pairing-Friendly Elliptic
Curves of Prime Order”. In: SAC 2005. Ed. by Bart Preneel and Stafford
Tavares. Vol. 3897. LNCS. Springer, Heidelberg, Aug. 2006, pp. 319–331
(cit. on p. 27).

[BP13a] Fabrice Benhamouda and David Pointcheval. Trapdoor Smooth Projective
Hash Functions. Cryptology ePrint Archive, Report 2013/341. http://

eprint.iacr.org/2013/341. 2013 (cit. on p. 9).

[BP13b] Fabrice Benhamouda and David Pointcheval. Verifier-Based Password-
Authenticated Key Exchange: New Models and Constructions. Cryptology
ePrint Archive, Report 2013/833. http://eprint.iacr.org/2013/833.
2013 (cit. on p. 10).

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. “Authenticated Key
Exchange Secure against Dictionary Attacks”. In: EUROCRYPT 2000. Ed. by
Bart Preneel. Vol. 1807. LNCS. Springer, Heidelberg, May 2000, pp. 139–155
(cit. on p. 10).

[BPV12] Olivier Blazy, David Pointcheval, and Damien Vergnaud. “Round-Optimal
Privacy-Preserving Protocols with Smooth Projective Hash Functions”. In:
TCC 2012. Ed. by Ronald Cramer. Vol. 7194. LNCS. Springer, Heidelberg,
Mar. 2012, pp. 94–111 (cit. on p. 5).

[BR06] Mihir Bellare and Phillip Rogaway. “The Security of Triple Encryption and a
Framework for Code-Based Game-Playing Proofs”. In: EUROCRYPT 2006.
Ed. by Serge Vaudenay. Vol. 4004. LNCS. Springer, Heidelberg, May 2006,
pp. 409–426 (cit. on p. 26).

[BR93] Mihir Bellare and Phillip Rogaway. “Random Oracles are Practical: A
Paradigm for Designing Efficient Protocols”. In: ACM CCS 93. Ed. by
V. Ashby. ACM Press, Nov. 1993, pp. 62–73 (cit. on p. 163).

[Can01] Ran Canetti. “Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols”. In: 42nd FOCS. IEEE Computer Society Press, Oct.
2001, pp. 136–145 (cit. on pp. 10, 39, 42).

[CC04] Christian Cachin and Jan Camenisch, eds. EUROCRYPT 2004. Vol. 3027.
LNCS. Springer, Heidelberg, May 2004.

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. “Proofs of Par-
tial Knowledge and Simplified Design of Witness Hiding Protocols”. In:
CRYPTO’94. Ed. by Yvo Desmedt. Vol. 839. LNCS. Springer, Heidelberg,
Aug. 1994, pp. 174–187 (cit. on pp. 5, 138, 139).

[CFPZ09] Céline Chevalier, Pierre-Alain Fouque, David Pointcheval, and Sébastien
Zimmer. “Optimal Randomness Extraction from a Diffie-Hellman Element”.
In: EUROCRYPT 2009. Ed. by Antoine Joux. Vol. 5479. LNCS. Springer,
Heidelberg, Apr. 2009, pp. 572–589 (cit. on pp. 35, 62, 175).

http://eprint.iacr.org/2013/341
http://eprint.iacr.org/2013/341
http://eprint.iacr.org/2013/833

192 Bibliography

[CG13a] Ran Canetti and Juan A. Garay, eds. CRYPTO 2013, Part I. Vol. 8042.
LNCS. Springer, Heidelberg, Aug. 2013.

[CG13b] Ran Canetti and Juan A. Garay, eds. CRYPTO 2013, Part II. Vol. 8043.
LNCS. Springer, Heidelberg, Aug. 2013.

[CGH+15] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, Hemanta
K. Maji, Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi.
“Zeroizing Without Low-Level Zeroes: New MMAP Attacks and their Limita-
tions”. In: CRYPTO 2015, Part I. Ed. by Rosario Gennaro and Matthew J. B.
Robshaw. Vol. 9215. LNCS. Springer, Heidelberg, Aug. 2015, pp. 247–266.
doi: 10.1007/978-3-662-47989-6_12 (cit. on pp. 11, 89).

[CGV15] Aloni Cohen, Shafi Goldwasser, and Vinod Vaikuntanathan. “Aggregate
Pseudorandom Functions and Connections to Learning”. In: TCC 2015, Part
II. Ed. by Yevgeniy Dodis and Jesper Buus Nielsen. Vol. 9015. LNCS. Springer,
Heidelberg, Mar. 2015, pp. 61–89. doi: 10.1007/978-3-662-46497-7_3

(cit. on p. 11).

[Cha82] David Chaum. “Blind Signatures for Untraceable Payments”. In: CRYPTO’82.
Ed. by David Chaum, Ronald L. Rivest, and Alan T. Sherman. Plenum
Press, New York, USA, 1982, pp. 199–203 (cit. on pp. 4, 5).

[CHK+05] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D.
MacKenzie. “Universally Composable Password-Based Key Exchange”. In:
EUROCRYPT 2005. Ed. by Ronald Cramer. Vol. 3494. LNCS. Springer,
Heidelberg, May 2005, pp. 404–421 (cit. on p. 10).

[CHK04] Ran Canetti, Shai Halevi, and Jonathan Katz. “Chosen-Ciphertext Security
from Identity-Based Encryption”. In: EUROCRYPT 2004. Ed. by Christian
Cachin and Jan Camenisch. Vol. 3027. LNCS. Springer, Heidelberg, May
2004, pp. 207–222 (cit. on pp. 156, 159).

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien
Stehlé. “Cryptanalysis of the Multilinear Map over the Integers”. In: EURO-
CRYPT 2015, Part I. Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9056.
LNCS. Springer, Heidelberg, Apr. 2015, pp. 3–12. doi: 10.1007/978-3-662-

46800-5_1 (cit. on pp. 11, 89).

[CLR15] Jung Hee Cheon, Changmin Lee, and Hansol Ryu. Cryptanalysis of the
New CLT Multilinear Maps. Cryptology ePrint Archive, Report 2015/934.
http://eprint.iacr.org/2015/934. 2015 (cit. on pp. 11, 89).

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. “Practical
Multilinear Maps over the Integers”. In: CRYPTO 2013, Part I. Ed. by Ran
Canetti and Juan A. Garay. Vol. 8042. LNCS. Springer, Heidelberg, Aug.
2013, pp. 476–493. doi: 10.1007/978-3-642-40041-4_26 (cit. on p. 89).

[CLT15] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. “New Multi-
linear Maps Over the Integers”. In: CRYPTO 2015, Part I. Ed. by Rosario
Gennaro and Matthew J. B. Robshaw. Vol. 9215. LNCS. Springer, Heidelberg,
Aug. 2015, pp. 267–286. doi: 10.1007/978-3-662-47989-6_13 (cit. on
p. 89).

http://dx.doi.org/10.1007/978-3-662-47989-6_12
http://dx.doi.org/10.1007/978-3-662-46497-7_3
http://dx.doi.org/10.1007/978-3-662-46800-5_1
http://dx.doi.org/10.1007/978-3-662-46800-5_1
http://eprint.iacr.org/2015/934
http://dx.doi.org/10.1007/978-3-642-40041-4_26
http://dx.doi.org/10.1007/978-3-662-47989-6_13

193

[Cop96a] Don Coppersmith. “Finding a Small Root of a Bivariate Integer Equation;
Factoring with High Bits Known”. In: EUROCRYPT’96. Ed. by Ueli M.
Maurer. Vol. 1070. LNCS. Springer, Heidelberg, May 1996, pp. 178–189
(cit. on p. 14).

[Cop96b] Don Coppersmith. “Finding a Small Root of a Univariate Modular Equation”.
In: EUROCRYPT’96. Ed. by Ueli M. Maurer. Vol. 1070. LNCS. Springer,
Heidelberg, May 1996, pp. 155–165 (cit. on p. 14).

[Cra05] Ronald Cramer, ed. EUROCRYPT 2005. Vol. 3494. LNCS. Springer, Heidel-
berg, May 2005.

[Cra97] Ronald Cramer. “Modular design of secure yet practical cryptographic pro-
tocols”. 1997 (cit. on pp. 5, 138, 139).

[CS02] Ronald Cramer and Victor Shoup. “Universal Hash Proofs and a Paradigm
for Adaptive Chosen Ciphertext Secure Public-Key Encryption”. In: EU-
ROCRYPT 2002. Ed. by Lars R. Knudsen. Vol. 2332. LNCS. Springer,
Heidelberg, Apr. 2002, pp. 45–64 (cit. on pp. ix, 4, 6, 7, 33, 48–50, 55, 57,
85–87, 102, 112, 177).

[CS98] Ronald Cramer and Victor Shoup. “A Practical Public Key Cryptosys-
tem Provably Secure Against Adaptive Chosen Ciphertext Attack”. In:
CRYPTO’98. Ed. by Hugo Krawczyk. Vol. 1462. LNCS. Springer, Heidelberg,
Aug. 1998, pp. 13–25 (cit. on pp. 10, 32, 33, 57, 153, 156, 157, 159).

[CW13] Jie Chen and Hoeteck Wee. “Fully, (Almost) Tightly Secure IBE and Dual
System Groups”. In: CRYPTO 2013, Part II. Ed. by Ran Canetti and Juan A.
Garay. Vol. 8043. LNCS. Springer, Heidelberg, Aug. 2013, pp. 435–460. doi:
10.1007/978-3-642-40084-1_25 (cit. on p. 150).

[DH76] Whitfield Diffie and Martin E. Hellman. “New Directions in Cryptography”.
In: IEEE Transactions on Information Theory 22.6 (1976), pp. 644–654
(cit. on p. 1).

[DMP90] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. “Non-Interactive
Zero-Knowledge with Preprocessing”. In: CRYPTO’88. Ed. by Shafi Gold-
wasser. Vol. 403. LNCS. Springer, Heidelberg, Aug. 1990, pp. 269–282 (cit. on
p. 163).

[DN15] Yevgeniy Dodis and Jesper Buus Nielsen, eds. TCC 2015, Part II. Vol. 9015.
LNCS. Springer, Heidelberg, Mar. 2015.

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. “An
Algebraic Framework for Diffie-Hellman Assumptions”. In: CRYPTO 2013,
Part II. Ed. by Ran Canetti and Juan A. Garay. Vol. 8043. LNCS. Springer,
Heidelberg, Aug. 2013, pp. 129–147. doi: 10.1007/978-3-642-40084-1_8

(cit. on pp. 11, 34, 80, 81, 126).

[ElG85] Taher ElGamal. “A Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms”. In: IEEE Transactions on Information Theory 31
(1985), pp. 469–472 (cit. on p. 31).

[Firefox Sync] Firefox Sync. url: https://www.mozilla.org/en- US/firefox/sync/

(cit. on p. 13).

http://dx.doi.org/10.1007/978-3-642-40084-1_25
http://dx.doi.org/10.1007/978-3-642-40084-1_8
https://www.mozilla.org/en-US/firefox/sync/

194 Bibliography

[For87] Lance Fortnow. “The Complexity of Perfect Zero-Knowledge (Extended
Abstract)”. In: 19th ACM STOC. Ed. by Alfred Aho. ACM Press, May 1987,
pp. 204–209 (cit. on p. 52).

[Fra04] Matthew Franklin, ed. CRYPTO 2004. Vol. 3152. LNCS. Springer, Heidelberg,
Aug. 2004.

[FS87] Amos Fiat and Adi Shamir. “How to Prove Yourself: Practical Solutions to
Identification and Signature Problems”. In: CRYPTO’86. Ed. by Andrew M.
Odlyzko. Vol. 263. LNCS. Springer, Heidelberg, Aug. 1987, pp. 186–194
(cit. on p. 163).

[GG14a] Juan A. Garay and Rosario Gennaro, eds. CRYPTO 2014, Part I. Vol. 8616.
LNCS. Springer, Heidelberg, Aug. 2014.

[GG14b] Juan A. Garay and Rosario Gennaro, eds. CRYPTO 2014, Part II. Vol. 8617.
LNCS. Springer, Heidelberg, Aug. 2014.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and
Brent Waters. “Candidate Indistinguishability Obfuscation and Functional
Encryption for all Circuits”. In: 54th FOCS. IEEE Computer Society Press,
Oct. 2013, pp. 40–49 (cit. on p. 179).

[GGH13] Sanjam Garg, Craig Gentry, and Shai Halevi. “Candidate Multilinear Maps
from Ideal Lattices”. In: EUROCRYPT 2013. Ed. by Thomas Johansson
and Phong Q. Nguyen. Vol. 7881. LNCS. Springer, Heidelberg, May 2013,
pp. 1–17. doi: 10.1007/978-3-642-38348-9_1 (cit. on pp. 11, 63, 89, 90,
92, 139).

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. “Graph-Induced Multilinear
Maps from Lattices”. In: TCC 2015, Part II. Ed. by Yevgeniy Dodis and
Jesper Buus Nielsen. Vol. 9015. LNCS. Springer, Heidelberg, Mar. 2015,
pp. 498–527. doi: 10.1007/978-3-662-46497-7_20 (cit. on p. 89).

[GGMZ13] Faruk Göloglu, Robert Granger, Gary McGuire, and Jens Zumbrägel. “On
the Function Field Sieve and the Impact of Higher Splitting Probabilities —
Application to Discrete Logarithms in F21971 and F23164”. In: CRYPTO 2013,
Part II. Ed. by Ran Canetti and Juan A. Garay. Vol. 8043. LNCS. Springer,
Heidelberg, Aug. 2013, pp. 109–128. doi: 10.1007/978-3-642-40084-1_7

(cit. on pp. 27, 28).

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. “Witness en-
cryption and its applications”. In: 45th ACM STOC. Ed. by Dan Boneh, Tim
Roughgarden, and Joan Feigenbaum. ACM Press, June 2013, pp. 467–476
(cit. on pp. 6, 52, 162, 179).

[GK10] Adam Groce and Jonathan Katz. “A new framework for efficient password-
based authenticated key exchange”. In: ACM CCS 10. Ed. by Ehab Al-Shaer,
Angelos D. Keromytis, and Vitaly Shmatikov. ACM Press, Oct. 2010, pp. 516–
525 (cit. on pp. 6, 10).

http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://dx.doi.org/10.1007/978-3-662-46497-7_20
http://dx.doi.org/10.1007/978-3-642-40084-1_7

195

[GKZ14] Robert Granger, Thorsten Kleinjung, and Jens Zumbrägel. “Breaking ’128-bit
Secure’ Supersingular Binary Curves - (Or How to Solve Discrete Logarithms
in F24·1223 and F212·367)”. In: CRYPTO 2014, Part II. Ed. by Juan A. Garay
and Rosario Gennaro. Vol. 8617. LNCS. Springer, Heidelberg, Aug. 2014,
pp. 126–145. doi: 10.1007/978-3-662-44381-1_8 (cit. on p. 28).

[GL03] Rosario Gennaro and Yehuda Lindell. “A Framework for Password-Based
Authenticated Key Exchange”. In: EUROCRYPT 2003. Ed. by Eli Biham.
Vol. 2656. LNCS. http://eprint.iacr.org/2003/032.ps.gz. Springer,
Heidelberg, May 2003, pp. 524–543 (cit. on p. 129).

[GL06] Rosario Gennaro and Yehuda Lindell. “A Framework for Password-Based
Authenticated Key Exchange”. In: ACM Transactions on Information and
System Security 9.2 (2006), pp. 181–234 (cit. on pp. 6, 10, 48, 50, 82, 129).

[GLW14] Craig Gentry, Allison B. Lewko, and Brent Waters. “Witness Encryption
from Instance Independent Assumptions”. In: CRYPTO 2014, Part I. Ed. by
Juan A. Garay and Rosario Gennaro. Vol. 8616. LNCS. Springer, Heidelberg,
Aug. 2014, pp. 426–443. doi: 10.1007/978-3-662-44371-2_24 (cit. on
p. 179).

[GM82] Shafi Goldwasser and Silvio Micali. “Probabilistic Encryption and How to
Play Mental Poker Keeping Secret All Partial Information”. In: Proceedings
of the 14th Annual ACM Symposium on Theory of Computing, May 5-7,
1982, San Francisco, California, USA. Ed. by Harry R. Lewis, Barbara B.
Simons, Walter A. Burkhard, and Lawrence H. Landweber. ACM, 1982,
pp. 365–377. isbn: 0-89791-067-2. doi: 10 . 1145 / 800070 . 802212. url:
http://doi.acm.org/10.1145/800070.802212 (cit. on p. 2).

[GM84] Shafi Goldwasser and Silvio Micali. “Probabilistic Encryption”. In: Journal
of Computer and System Sciences 28.2 (1984), pp. 270–299 (cit. on p. 13).

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The Knowledge Com-
plexity of Interactive Proof-Systems (Extended Abstract)”. In: Proceedings
of the 17th Annual ACM Symposium on Theory of Computing, May 6-8,
1985, Providence, Rhode Island, USA. Ed. by Robert Sedgewick. ACM, 1985,
pp. 291–304. doi: 10.1145/22145.22178. url: http://doi.acm.org/10.

1145/22145.22178 (cit. on p. 3).

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. “How to Prove all NP-
Statements in Zero-Knowledge, and a Methodology of Cryptographic Protocol
Design”. In: CRYPTO’86. Ed. by Andrew M. Odlyzko. Vol. 263. LNCS.
Springer, Heidelberg, Aug. 1987, pp. 171–185 (cit. on pp. 8, 163).

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. “Proofs That Yield
Nothing But Their Validity Or All Languages in NP Have Zero-Knowledge
Proof Systems”. In: Journal of the ACM 38.3 (1991), pp. 691–729 (cit. on
p. 3).

[GMY06] Juan A. Garay, Philip D. MacKenzie, and Ke Yang. “Strengthening Zero-
Knowledge Protocols Using Signatures”. In: Journal of Cryptology 19.2 (Apr.
2006), pp. 169–209 (cit. on pp. 42, 141).

http://dx.doi.org/10.1007/978-3-662-44381-1_8
http://eprint.iacr.org/2003/032.ps.gz
http://dx.doi.org/10.1007/978-3-662-44371-2_24
http://dx.doi.org/10.1145/800070.802212
http://doi.acm.org/10.1145/800070.802212
http://dx.doi.org/10.1145/22145.22178
http://doi.acm.org/10.1145/22145.22178
http://doi.acm.org/10.1145/22145.22178

196 Bibliography

[GR15] Rosario Gennaro and Matthew J. B. Robshaw, eds. CRYPTO 2015, Part I.
Vol. 9215. LNCS. Springer, Heidelberg, Aug. 2015.

[GS08] Jens Groth and Amit Sahai. “Efficient Non-interactive Proof Systems for
Bilinear Groups”. In: EUROCRYPT 2008. Ed. by Nigel P. Smart. Vol. 4965.
LNCS. Springer, Heidelberg, Apr. 2008, pp. 415–432 (cit. on pp. 142, 155,
156, 158, 163, 171).

[GS86] Shafi Goldwasser and Michael Sipser. “Private Coins versus Public Coins
in Interactive Proof Systems”. In: Proceedings of the 18th Annual ACM
Symposium on Theory of Computing, May 28-30, 1986, Berkeley, California,
USA. Ed. by Juris Hartmanis. ACM, 1986, pp. 59–68. isbn: 0-89791-193-8. doi:
10.1145/12130.12137. url: http://doi.acm.org/10.1145/12130.12137

(cit. on p. 3).

[GSV98] Oded Goldreich, Amit Sahai, and Salil P. Vadhan. “Honest-Verifier Statistical
Zero-Knowledge Equals General Statistical Zero-Knowledge”. In: 30th ACM
STOC. ACM Press, May 1998, pp. 399–408 (cit. on p. 52).

[Gui13] Aurore Guillevic. “Arithmetic of pairings on algebraic curves for cryptogra-
phy”. PhD thesis. École normale supérieure, Paris, Dec. 2013. url: https:

//tel.archives-ouvertes.fr/tel-00921940 (cit. on p. 28).

[Helios] Helios. https://vote.heliosvoting.org (cit. on p. 1).

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A Levin, and Michael Luby. “A
pseudorandom generator from any one-way function”. In: SIAM Journal on
Computing 28.4 (1999), pp. 1364–1396 (cit. on p. 35).

[HJ15] Yupu Hu and Huiwen Jia. Cryptanalysis of GGH Map. Cryptology ePrint
Archive, Report 2015/301. http://eprint.iacr.org/2015/301. 2015
(cit. on pp. 11, 89).

[HK07] Dennis Hofheinz and Eike Kiltz. “Secure Hybrid Encryption from Weakened
Key Encapsulation”. In: CRYPTO 2007. Ed. by Alfred Menezes. Vol. 4622.
LNCS. Springer, Heidelberg, Aug. 2007, pp. 553–571 (cit. on pp. 126, 129).

[HKE13] Yan Huang, Jonathan Katz, and David Evans. “Efficient Secure Two-Party
Computation Using Symmetric Cut-and-Choose”. In: CRYPTO 2013, Part
II. Ed. by Ran Canetti and Juan A. Garay. Vol. 8043. LNCS. Springer,
Heidelberg, Aug. 2013, pp. 18–35. doi: 10.1007/978-3-642-40084-1_2

(cit. on p. 164).

[HR10] Feng Hao and Peter Ryan. “J-PAKE: Authenticated Key Exchange with-
out PKI”. English. In: Transactions on Computational Science XI. Ed. by
MarinaL. Gavrilova, C.J.Kenneth Tan, and EdwardDavid Moreno. Vol. 6480.
Lecture Notes in Computer Science. LNCS, 2010, pp. 192–206. isbn: 978-3-
642-17696-8. doi: 10.1007/978-3-642-17697-5_10 (cit. on p. 13).

[IC15] Tetsu Iwata and Jung Hee Cheon, eds. ASIACRYPT 2015, Part I. Vol. 9452.
LNCS. Springer, Heidelberg, Nov. 2015.

[IKLP06] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. “Black-box
constructions for secure computation”. In: 38th ACM STOC. Ed. by Jon M.
Kleinberg. ACM Press, May 2006, pp. 99–108 (cit. on p. 164).

http://dx.doi.org/10.1145/12130.12137
http://doi.acm.org/10.1145/12130.12137
https://tel.archives-ouvertes.fr/tel-00921940
https://tel.archives-ouvertes.fr/tel-00921940
https://vote.heliosvoting.org
http://eprint.iacr.org/2015/301
http://dx.doi.org/10.1007/978-3-642-40084-1_2
http://dx.doi.org/10.1007/978-3-642-17697-5_10

197

[Ish11] Yuval Ishai, ed. TCC 2011. Vol. 6597. LNCS. Springer, Heidelberg, Mar.
2011.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. “Private Circuits: Securing
Hardware against Probing Attacks”. In: CRYPTO 2003. Ed. by Dan Boneh.
Vol. 2729. LNCS. Springer, Heidelberg, Aug. 2003, pp. 463–481 (cit. on pp. 12,
13).

[JBL14] Marc Joye, Fabrice Benhamouda, and Benoît Libert. “Method and device
for cryptographic key generation”. Corresponds to [BHJL16]. 2014 (cit. on
p. 13).

[JG04] Shaoquan Jiang and Guang Gong. “Password Based Key Exchange with
Mutual Authentication”. In: SAC 2004. Ed. by Helena Handschuh and Anwar
Hasan. Vol. 3357. LNCS. Springer, Heidelberg, Aug. 2004, pp. 267–279 (cit.
on pp. 6, 10).

[Jou09] Antoine Joux. Algorithmic cryptanalysis. CRC Press, 2009 (cit. on pp. 95,
97).

[Jou14] Antoine Joux. “A New Index Calculus Algorithm with Complexity L(1/4 +
o(1)) in Small Characteristic”. In: SAC 2013. Ed. by Tanja Lange, Kristin
Lauter, and Petr Lisonek. Vol. 8282. LNCS. Springer, Heidelberg, Aug. 2014,
pp. 355–379. doi: 10.1007/978-3-662-43414-7_18 (cit. on pp. 27, 28).

[JR12] Charanjit S. Jutla and Arnab Roy. “Relatively-Sound NIZKs and Password-
Based Key-Exchange”. In: PKC 2012. Ed. by Marc Fischlin, Johannes Buch-
mann, and Mark Manulis. Vol. 7293. LNCS. Springer, Heidelberg, May 2012,
pp. 485–503 (cit. on p. 158).

[JR13] Charanjit S. Jutla and Arnab Roy. “Shorter Quasi-Adaptive NIZK Proofs for
Linear Subspaces”. In: ASIACRYPT 2013, Part I. Ed. by Kazue Sako and
Palash Sarkar. Vol. 8269. LNCS. Springer, Heidelberg, Dec. 2013, pp. 1–20.
doi: 10.1007/978-3-642-42033-7_1 (cit. on pp. 8, 39, 40, 158).

[JR14] Charanjit S. Jutla and Arnab Roy. “Switching Lemma for Bilinear Tests and
Constant-Size NIZK Proofs for Linear Subspaces”. In: CRYPTO 2014, Part
II. Ed. by Juan A. Garay and Rosario Gennaro. Vol. 8617. LNCS. Springer,
Heidelberg, Aug. 2014, pp. 295–312. doi: 10.1007/978-3-662-44381-1_17

(cit. on pp. 8, 133, 153, 158).

[JR15] Charanjit S. Jutla and Arnab Roy. “Dual-System Simulation-Soundness with
Applications to UC-PAKE and More”. In: ASIACRYPT 2015, Part I. Ed. by
Tetsu Iwata and Jung Hee Cheon. Vol. 9452. LNCS. Springer, Heidelberg,
Nov. 2015, pp. 630–655. doi: 10.1007/978-3-662-48797-6_26 (cit. on
pp. 10, 11).

[KD04] Kaoru Kurosawa and Yvo Desmedt. “A New Paradigm of Hybrid Encryption
Scheme”. In: CRYPTO 2004. Ed. by Matthew Franklin. Vol. 3152. LNCS.
Springer, Heidelberg, Aug. 2004, pp. 426–442 (cit. on p. 159).

[KH13] Kaoru Kurosawa and Goichiro Hanaoka, eds. PKC 2013. Vol. 7778. LNCS.
Springer, Heidelberg, Feb. 2013.

http://dx.doi.org/10.1007/978-3-662-43414-7_18
http://dx.doi.org/10.1007/978-3-642-42033-7_1
http://dx.doi.org/10.1007/978-3-662-44381-1_17
http://dx.doi.org/10.1007/978-3-662-48797-6_26

198 Bibliography

[Kil06] Eike Kiltz. “Chosen-Ciphertext Security from Tag-Based Encryption”. In:
TCC 2006. Ed. by Shai Halevi and Tal Rabin. Vol. 3876. LNCS. Springer,
Heidelberg, Mar. 2006, pp. 581–600 (cit. on pp. 156, 159).

[Kob87] Neal Koblitz. “Elliptic curve cryptosystems”. In: Mathematics of computation
48.177 (1987), pp. 203–209 (cit. on p. 27).

[Koc96] Paul C. Kocher. “Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems”. In: CRYPTO’96. Ed. by Neal Koblitz. Vol. 1109.
LNCS. Springer, Heidelberg, Aug. 1996, pp. 104–113 (cit. on p. 12).

[KOY09] Jonathan Katz, Rafail Ostrovsky, and Moti Yung. “Efficient and secure
authenticated key exchange using weak passwords”. In: Journal of the ACM
57.1 (2009). doi: 10.1145/1613676.1613679 (cit. on pp. 6, 10, 48, 82).

[KR01] Joe Kilian and Phillip Rogaway. “How to Protect DES Against Exhaustive
Key Search (an Analysis of DESX)”. In: Journal of Cryptology 14.1 (2001),
pp. 17–35 (cit. on p. 26).

[Kur02] Kaoru Kurosawa. “Multi-recipient Public-Key Encryption with Shortened
Ciphertext”. In: PKC 2002. Ed. by David Naccache and Pascal Paillier.
Vol. 2274. LNCS. Springer, Heidelberg, Feb. 2002, pp. 48–63 (cit. on pp. 33,
34).

[KV09] Jonathan Katz and Vinod Vaikuntanathan. “Smooth Projective Hashing
and Password-Based Authenticated Key Exchange from Lattices”. In: ASI-
ACRYPT 2009. Ed. by Mitsuru Matsui. Vol. 5912. LNCS. Springer, Heidel-
berg, Dec. 2009, pp. 636–652 (cit. on p. 178).

[KV11] Jonathan Katz and Vinod Vaikuntanathan. “Round-Optimal Password-Based
Authenticated Key Exchange”. In: TCC 2011. Ed. by Yuval Ishai. Vol. 6597.
LNCS. Springer, Heidelberg, Mar. 2011, pp. 293–310 (cit. on pp. 10, 50).

[KW15] Eike Kiltz and Hoeteck Wee. “Quasi-Adaptive NIZK for Linear Subspaces
Revisited”. In: EUROCRYPT 2015, Part II. Ed. by Elisabeth Oswald and
Marc Fischlin. Vol. 9057. LNCS. Springer, Heidelberg, Apr. 2015, pp. 101–128.
doi: 10.1007/978-3-662-46803-6_4 (cit. on pp. 8, 41, 80, 129, 152, 153).

[Lin13] Yehuda Lindell. “Fast Cut-and-Choose Based Protocols for Malicious and
Covert Adversaries”. In: CRYPTO 2013, Part II. Ed. by Ran Canetti and
Juan A. Garay. Vol. 8043. LNCS. Springer, Heidelberg, Aug. 2013, pp. 1–17.
doi: 10.1007/978-3-642-40084-1_1 (cit. on p. 164).

[LP07] Yehuda Lindell and Benny Pinkas. “An Efficient Protocol for Secure Two-
Party Computation in the Presence of Malicious Adversaries”. In: EURO-
CRYPT 2007. Ed. by Moni Naor. Vol. 4515. LNCS. Springer, Heidelberg,
May 2007, pp. 52–78 (cit. on p. 164).

[LP11] Yehuda Lindell and Benny Pinkas. “Secure Two-Party Computation via Cut-
and-Choose Oblivious Transfer”. In: TCC 2011. Ed. by Yuval Ishai. Vol. 6597.
LNCS. Springer, Heidelberg, Mar. 2011, pp. 329–346 (cit. on p. 164).

http://dx.doi.org/10.1145/1613676.1613679
http://dx.doi.org/10.1007/978-3-662-46803-6_4
http://dx.doi.org/10.1007/978-3-642-40084-1_1

199

[LPJY14] Benoît Libert, Thomas Peters, Marc Joye, and Moti Yung. “Non-malleability
from Malleability: Simulation-Sound Quasi-Adaptive NIZK Proofs and CCA2-
Secure Encryption from Homomorphic Signatures”. In: EUROCRYPT 2014.
Ed. by Phong Q. Nguyen and Elisabeth Oswald. Vol. 8441. LNCS. Springer,
Heidelberg, May 2014, pp. 514–532. doi: 10.1007/978-3-642-55220-5_29

(cit. on pp. 153, 158).

[Mar16] Léo Ducas Martin Albrecht Shi Bai. A subfield lattice attack on overstretched
NTRU assumptions: Cryptanalysis of some FHE and Graded Encoding
Schemes. Cryptology ePrint Archive, Report 2016/127. http://eprint.

iacr.org/. 2016 (cit. on pp. 11, 89).

[Mau96] Ueli M. Maurer, ed. EUROCRYPT’96. Vol. 1070. LNCS. Springer, Heidelberg,
May 1996.

[MF15] Brice Minaud and Pierre-Alain Fouque. Cryptanalysis of the New Multilinear
Map over the Integers. Cryptology ePrint Archive, Report 2015/941. http:

//eprint.iacr.org/2015/941. 2015 (cit. on pp. 11, 89).

[Mil86] Victor S. Miller. “Use of Elliptic Curves in Cryptography”. In: CRYPTO’85.
Ed. by Hugh C. Williams. Vol. 218. LNCS. Springer, Heidelberg, Aug. 1986,
pp. 417–426 (cit. on p. 27).

[Nest] Nest. url: http://nest.com (cit. on p. 13).

[NIS12] NIST. FIPS PUB 180-4, Secure Hash Standard (SHS). 2012 (cit. on p. 29).

[NO14] Phong Q. Nguyen and Elisabeth Oswald, eds. EUROCRYPT 2014. Vol. 8441.
LNCS. Springer, Heidelberg, May 2014.

[Odl87] Andrew M. Odlyzko, ed. CRYPTO’86. Vol. 263. LNCS. Springer, Heidelberg,
Aug. 1987.

[OF15a] Elisabeth Oswald and Marc Fischlin, eds. EUROCRYPT 2015, Part I.
Vol. 9056. LNCS. Springer, Heidelberg, Apr. 2015.

[OF15b] Elisabeth Oswald and Marc Fischlin, eds. EUROCRYPT 2015, Part II.
Vol. 9057. LNCS. Springer, Heidelberg, Apr. 2015.

[OpenSSL] OpenSSL Project. url: http://www.openssl.org (cit. on p. 13).

[Rab81] Michael Rabin. How to exchange secrets with oblivious transfer. Tech. rep.
Technical Report TR-81. Aiken Computation Lab, Harvard University, 1981
(cit. on p. 6).

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. “A Method for
Obtaining Digital Signature and Public-Key Cryptosystems”. In: Communi-
cations of the Association for Computing Machinery 21.2 (1978), pp. 120–126
(cit. on p. 1).

[Sch90] Claus-Peter Schnorr. “Efficient Identification and Signatures for Smart Cards”.
In: CRYPTO’89. Ed. by Gilles Brassard. Vol. 435. LNCS. Springer, Heidel-
berg, Aug. 1990, pp. 239–252 (cit. on p. 138).

[Sch91] Claus-Peter Schnorr. “Efficient Signature Generation by Smart Cards”. In:
Journal of Cryptology 4.3 (1991), pp. 161–174 (cit. on p. 14).

http://dx.doi.org/10.1007/978-3-642-55220-5_29
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2015/941
http://eprint.iacr.org/2015/941
http://nest.com
http://www.openssl.org

200 Bibliography

[Sed85] Robert Sedgewick, ed. Proceedings of the 17th Annual ACM Symposium on
Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA. ACM,
1985.

[SG02] Victor Shoup and Rosario Gennaro. “Securing Threshold Cryptosystems
against Chosen Ciphertext Attack”. In: Journal of Cryptology 15.2 (2002),
pp. 75–96 (cit. on p. 155).

[Sha07] Hovav Shacham. A Cramer-Shoup Encryption Scheme from the Linear As-
sumption and from Progressively Weaker Linear Variants. Cryptology ePrint
Archive, Report 2007/074. http://eprint.iacr.org/2007/074. 2007
(cit. on pp. 126, 129).

[Sha71] Daniel Shanks. “Class number, a theory of factorization, and genera”. In:
Proc. Symp. Pure Math. Vol. 20. 1971, pp. 415–440 (cit. on p. 27).

[Sha79] Adi Shamir. “How to Share a Secret”. In: Communications of the Association
for Computing Machinery 22.11 (Nov. 1979), pp. 612–613 (cit. on p. 155).

[Sha92] Adi Shamir. “IP = PSPACE”. In: J. ACM 39.4 (1992), pp. 869–877. doi:
10.1145/146585.146609. url: http://doi.acm.org/10.1145/146585.

146609 (cit. on p. 3).

[Sho01] Victor Shoup. “OAEP Reconsidered”. In: CRYPTO 2001. Ed. by Joe Kilian.
Vol. 2139. LNCS. Springer, Heidelberg, Aug. 2001, pp. 239–259 (cit. on pp. 24,
26).

[Sho06] Information technology – Security techniques – Encryption algorithms – Part
2: Asymmetric ciphers. Standard. Geneva, CH: International Organization
for Standardization, 2006 (cit. on p. 29).

[sS11] abhi shelat and Chih-Hao Shen. “Two-Output Secure Computation with
Malicious Adversaries”. In: EUROCRYPT 2011. Ed. by Kenneth G. Paterson.
Vol. 6632. LNCS. Springer, Heidelberg, May 2011, pp. 386–405 (cit. on p. 164).

[SS13] Kazue Sako and Palash Sarkar, eds. ASIACRYPT 2013, Part I. Vol. 8269.
LNCS. Springer, Heidelberg, Dec. 2013.

[sS13] abhi shelat and Chih-Hao Shen. “Fast two-party secure computation with
minimal assumptions”. In: ACM CCS 13. Ed. by Ahmad-Reza Sadeghi,
Virgil D. Gligor, and Moti Yung. ACM Press, Nov. 2013, pp. 523–534 (cit. on
p. 164).

[Thread] Thread Protocol. url: http://www.threadgroup.org (cit. on p. 13).

[Wat05] Brent R. Waters. “Efficient Identity-Based Encryption Without Random
Oracles”. In: EUROCRYPT 2005. Ed. by Ronald Cramer. Vol. 3494. LNCS.
Springer, Heidelberg, May 2005, pp. 114–127 (cit. on p. 52).

http://eprint.iacr.org/2007/074
http://dx.doi.org/10.1145/146585.146609
http://doi.acm.org/10.1145/146585.146609
http://doi.acm.org/10.1145/146585.146609
http://www.threadgroup.org

Résumé
Les smooth (ou universal) projective hash functions

ont été introduites par Cramer et Shoup, à Euro-
crypt’02, comme un outil pour construire des schémas
de chiffrement efficaces et sûrs contre les attaques à
chiffrés choisis. Depuis, elles ont trouvé de nombreuses
applications, notamment pour la construction de sché-
mas d’authentification par mot de passe, d’oblivious

transfer, de signatures en blanc, et de preuves à divul-
gation nulle de connaissance. Elles peuvent êtres vues
comme des preuves implicites d’appartenance à cer-
tains langages. Un problème important est de carac-
tériser pour quels langages de telles fonctions existent.

Dans cette thèse, nous avançons dans la résolution de
ce problème en proposant la notion de diverse mo-

dules. Un diverse module est une représentation d’un
langage, comme un sous-module d’un module plus
grand, un module étant un espace vectoriel sur un
anneau. À n’importe quel diverse module est associée
une smooth projective hash function pour le même lan-
gage. Par ailleurs, presque toutes les smooth projective

hash functions actuelles sont construites de cette ma-
nière.

Mais les diverse modules sont aussi intéressants en
eux-mêmes. Grâce à leur structure algébrique, nous
montrons qu’ils peuvent facilement être combinés
pour permettre de nouvelles applications, comme les
preuves implicites à divulgation nulle de connaissance
(une alternative légère aux preuves non-interactives
à divulgation nulle de connaissance), ainsi que
des preuves non-interactives à divulgation nulle de
connaissance et one-time simulation-sound très effi-
caces pour les langages linéaires sur les groupes cy-
cliques.

Mots Clés
cryptographie, module, espace vectoriel, preuve à di-
vulgation nulle de connaissance, smooth projective

hash function, hash proof system

Abstract
Smooth (or universal) projective hash functions were
first introduced by Cramer and Shoup, at Euro-
crypt’02, as a tool to construct efficient encryption
schemes, indistinguishable under chosen-ciphertext at-
tacks. Since then, they have found many other ap-
plications, including password-authenticated key ex-
change, oblivious transfer, blind signatures, and zero-
knowledge arguments. They can be seen as implicit
proofs of membership for certain languages. An im-
portant question is to characterize which languages
they can handle.

In this thesis, we make a step forward towards this
goal, by introducing diverse modules. A diverse mod-
ule is a representation of a language, as a submodule
of a larger module, where a module is essentially a
vector space over a ring. Any diverse module directly
yields a smooth projective hash function for the corre-
sponding language, and almost all the known smooth
projective hash functions are constructed this way.

Diverse modules are also valuable in their own right.
Thanks to their algebraic structural properties, we
show that they can be easily combined to provide new
applications related to zero-knowledge notions, such
as implicit zero-knowledge arguments (a lightweight
alternative to non-interactive zero-knowledge argu-
ments), and very efficient one-time simulation-sound
(quasi-adaptive) non-interactive zero-knowledge argu-
ments for linear languages over cyclic groups.

Keywords
cryptography, module, vector space, zero-knowledge,
smooth projective hash function, hash proof system

	Abstract
	Résumé
	Acknowledgments
	Preface
	Introduction
	Proofs in Cryptography
	Provable Security and Mathematical Proofs
	Arguments and Proofs

	Projective Hash Functions and Applications
	Projective Hash Functions
	Applications
	Languages

	Our Results
	Diverse Modules and Diverse Vector Spaces
	Operations on Diverse Modules
	Applications Related to Zero-knowledge
	Associated Personal Publications
	Organization

	Our Other Contributions
	Other Contributions on Projective Hash Functions
	Pseudorandom Functions
	Randomness Complexity of Private Circuits
	Cryptosystems Based on Residue Symbols
	Lattice-Based Zero-Knowledge Arguments
	Forward-Secure Signature Schemes
	Security Proof of J-PAKE
	Coppersmith Methods and Analytic Combinatorics

	Personal Publications
	Journal Papers
	Conference Papers
	Manuscripts
	Patent Applications

	Preliminaries
	Notation and Preliminaries
	General Notation
	Preliminaries on Provable Security
	Security Parameters and Negligibility
	Adversaries and Experiments

	Statistical and Computational Indistinguishability
	Statistical Indistinguishability
	Computational Indistinguishability

	Proof by Games or Hybrid Arguments
	Cyclic Groups, Bilinear Groups, and Multilinear Groups

	Cryptographic Primitives
	Collision-Resistant Hash Function Families
	Encryption
	Definition
	ElGamal and the Decisional Diffie-Hellman Assumption (DDH)
	Cramer-Shoup IND-CCA Encryption Scheme
	ElGamal and Cramer-Shoup Encryption for Vectors
	Variants of ElGamal and Cramer-Shoup

	Randomness Extractors and Min Entropy

	Languages
	Languages for Projective Hash Functions
	Hard-Subset-Membership Languages
	Language for Zero-Knowledge Arguments

	Zero-Knowledge Arguments
	Overview
	Zero-Knowledge Arguments and Proofs
	Variants
	Non-Interactive Zero-Knowledge Arguments (NIZK)

	Formal Definitions of Zero-Knowledge Arguments
	GMY Formalism
	(Partially) Extractable Zero-Knowledge Arguments
	Extractable Honest-Verifier Zero-Knowledge Arguments
	Simulation-(Partially)-Extractable Zero-Knowledge Arguments

	Non-Interactive Zero-Knowledge Arguments

	Projective Hash Functions
	Projective Hash Functions (PHFs)
	Smooth Projective Hash Functions (SPHFs)
	Smoothness for GL-SPHF and CS-SPHF
	Smoothness for KV-SPHF

	Simple Applications of SPHFs
	Honest-Verifier Zero-Knowledge Proofs
	Witness Encryption and Limitations of SPHF
	Sending a Message to a Secret Agent
	IND-CPA Encryption Scheme

	Diverse Vector Spaces
	First Examples, Definition, and Link with SPHFs
	Step-by-Step Overview
	The DDH Language as a Subspace of a Vector Space
	Constructing an SPHF for the DDH Language
	ElGamal: Introducing theta
	Introducing more Dimensions
	Introducing Dependence on Word (GL-SPHF)
	Introducing Pairings and Quadratic Equations
	Introducing Randomness and Batching

	Definition
	Graded Rings
	Diverse Vector Spaces DVSs
	The SPHF Associated to a DVS, GL-DVS, CS-DVS, and KV-DVS

	Conjunctions and Disjunctions
	Conjunctions
	Disjunctions
	Disjunctions of GL-DVSs
	Disjunctions of CS-DVSs and KV-DVSs

	Application to Non-Interactive Zero-Knowledge Arguments
	Overview
	Construction
	Completeness and Security

	More Examples
	Matrix Decisional Diffie-Hellman Assumptions (MDDH)
	Cramer-Shoup Encryption
	Encryption of Plaintexts Satisfying a System of Quadratic Equations

	Diverse Modules
	Universality and Smoothness
	Motivation
	Universal Projective Hash Functions
	Universality
	Approximate Universality

	Weakly Universal Projective Hash Functions
	Weakly Approximate Universality
	Weakly Approximate Universality and GL/CS Smoothness

	Diverse Modules (DMs)
	Graded Rings
	Set of Indexes
	Graded Rings
	Sub-Graded Rings and Multiplicative Compatibility
	Restrictions and Computational Assumptions
	Examples of Graded Rings

	Diverse Modules, Universal PHFs, and Tools for Composite Order
	Definition
	The PHF associated to a DM
	Tools for Composite Order
	Security Proofs
	Reduced DMs
	Simple Examples

	Link with Diverse Groups

	Conjunctions and Disjunctions
	Conjunctions
	Disjunctions
	Relaxed Soundness and Relaxed Universality
	Disjunctions of GL-DVSs and Non-Degeneracy
	Disjunctions of CS-DMs and Strongly Non-Degenerated Words

	t-Universality, t-Smoothness, and t-Soundness
	t-Universality and t-Smoothness
	Tag-PHF
	t-Universality and t-Smoothness

	t-Soundness
	t-Sound Tag-DM and Tag-DVS
	From t-Sound Tag-CS-DMs and Tag-CS-DVSs to (Weakly Approximate) t-Universal and t-Smooth PHFs

	Construction of t-Sound Tag-CS-DMs and Tag-CS-DVSs
	t-Independent Strongly Non-Degenerated Function
	Construction of t-Sound Tag-CS-DM and Tag-CS-DVS

	Pseudorandomness
	Pseudorandom Projective Hash Functions and Diverse Vector Spaces
	Definition
	Construction from Hard-Subset-Membership Languages
	Construction from MDDH

	Mixed Pseudorandomness
	Definition
	GL Disjunctions of a GL-DVS and a Pr-DVS
	CS/KV Disjunctions of a DVS and a Pr-DVS

	Applications of Diverse Modules
	Honest-Verifier Zero-Knowledge Arguments
	Two Dual Constructions From DMs
	Via PHFs
	Via Sigma-Protocols

	Extensions and Comparisons
	Partial Extractability
	Comparison
	Support of any NP Language
	Toward Zero-Knowledge

	Non-Interactive Zero-Knowledge Arguments (NIZK)
	First Constructions
	Construction Based on Disjunctions with a Hard-Subset-Membership Language
	Construction Based on Mixed Pseudorandomness

	t-Time Simulation-Soundness
	Construction Based on Disjunctions with a Hard-Subset-Membership Language
	Construction Based on Mixed Pseudorandomness

	Concrete Instantiation and Comparison
	Application: Threshold Cramer-Shoup-like Encryption Scheme

	Trapdoor Smooth Projective Hashing and Implicit Zero-Knowledge
	Overview
	Trapdoor Smooth Projective Hash Functions (TSPHFs)
	Implicit Zero-Knowledge Arguments (iZK)

	Trapdoor Smooth Projective Hash Functions (TSPHFs)
	Definition
	Construction Based on Disjunctions with a Hard-Subset-Membership Language
	Construction Based on Mixed Pseudorandomness

	Implicit Zero-Knowledge Arguments (iZK)
	Definition and Direct Application
	Construction Based on Disjunctions with a Hard-Subset-Membership Language
	Construction Based on Mixed Pseudorandomness

	Conclusion and Open Questions
	Conclusion
	Open Questions

	Notation
	Abbreviations
	List of Illustrations
	Figures
	Tables

	Bibliography

