Stephan Krenn

Jan Camenisch

Gilad Asharov

Craig Gentry

Shai Halevi

Charanjit Jutla

Hugo Krawczyk

Mor Weiss

Michel Abdalla

Fabien Allard

Antoine Amarilli

Michel Banâtre

Sonia Belaïd

Olivier Blazy

Florian Bourse

Céline Chevalier

Paul Couderc

Geoffroy Couteau

Houda Ferradi

Rémi Géraud

Javier Herranz

Marc Joye

Tancrède Lepoint

Benoît Libert

Helger Lipmaa

Vadim Lyubashevsky

Phil Mackenzie

Claire Mathieu

Robin Morisset

David Naccache

Gregory Neven

Alain Passelègue

Kenny Paterson

Krzysztof Pietrzak

David Pointcheval

Emmanuel Prouff

Pablo I Rauzy

Adrian Thillard

Jean-François Verdonck

Damien Vergnaud

Hoeteck Wee

Hang Zhou

Je

Nuttapong Attrapadung

Raphaël Bost

Yuanmi Chen

Jérémy Chotard

Mario Cornejo

Rafaël Angelo De Caro

Del Pino

Itai Dinur

Léo Ducas

Aurélien Dupin

Pierre-Alain Dupont

Pooya Farshim

Pierre-Alain Fouque

Georg Fuchsbauer

Romain Gay

Phong Nguyen

Anca Nitulescu

Miriam Paiola

Thomas Peters

Thomas Prest

Liz Quaglia

Răzvan Roşie

Sylvain Ruhault

Mario Strefler

Mehdi Tibouchi

Jacques Beigbeder

Lise-Marie Bivard

Isabelle Delais

Nathalie Gaudechoux

Joëlle Isnard

Valérie Mongiat

Ricardou Ludovic

J'

Yoann Bourse

Floriane Dardard

Marc Jeanmougin

Ludovic Patey

Smooth (or universal) projective hash functions were first introduced by Cramer and Shoup, at Eurocrypt'02, as a tool to construct efficient encryption schemes, indistinguishable under chosen-ciphertext attacks. Since then, they have found many other applications, including password-authenticated key exchange, oblivious transfer, blind signatures, and zero-knowledge arguments. They can be seen as implicit proofs of membership for certain languages. An important question is to characterize which languages they can handle.

In this thesis, we make a step forward towards this goal, by introducing diverse modules. A diverse module is a representation of a language, as a submodule of a larger module, where a module is essentially a vector space over a ring. Any diverse module directly yields a smooth projective hash function for the corresponding language, and almost all the known smooth projective hash functions are constructed this way.

Diverse modules are also valuable in their own right. Thanks to their algebraic structural properties, we show that they can be easily combined to provide new applications related to zero-knowledge notions, such as implicit zero-knowledge arguments (a lightweight alternative to non-interactive zero-knowledge arguments), and very efficient one-time simulation-sound (quasi-adaptive) non-interactive zero-knowledge arguments for linear languages over cyclic groups.

iii -

Résumé

Les smooth (ou universal) projective hash functions ont été introduites par Cramer et Shoup, à Eurocrypt'02, comme un outil pour construire des schémas de chiffrement efficaces et sûrs contre les attaques à chiffrés choisis. Depuis, elles ont trouvé de nombreuses applications, notamment pour la construction de schémas d'authentification par mot de passe, d'oblivious transfer, de signatures en blanc, et de preuves à divulgation nulle de connaissance. Elles peuvent êtres vues comme des preuves implicites d'appartenance à certains langages. Un problème important est de caractériser pour quels langages de telles fonctions existent.

Dans cette thèse, nous avançons dans la résolution de ce problème en proposant la notion de diverse modules. Un diverse module est une représentation d'un langage, comme un sous-module d'un module plus grand, un module étant un espace vectoriel sur un anneau. À n'importe quel diverse module est associée une smooth projective hash function pour le même langage. Par ailleurs, presque toutes les smooth projective hash functions actuelles sont construites de cette manière.

Mais les diverse modules sont aussi intéressants en eux-mêmes. Grâce à leur structure algébrique, nous montrons qu'ils peuvent facilement être combinés pour permettre de nouvelles applications, comme les preuves implicites à divulgation nulle de connaissance (une alternative légère aux preuves non-interactives à divulgation nulle de connaissance), ainsi que des preuves non-interactives à divulgation nulle de connaissance et one-time simulation-sound très efficaces pour les langages linéaires sur les groupes cycliques.

v -Écrire des remerciements de thèse est un exercice périlleux et je souhaite d'avance m'excuser de ne pas mentionner et remercier explicitement toutes les personnes qui m'ont aidé et encouragé à un moment ou un autre de ma vie et qui par leurs paroles, leurs conseils ou leurs critiques, ont éclairé mes réflexions et m'ont permis de progresser.

Je tiens tout d'abord à adresser mes plus vifs remerciements à mes deux directeurs de thèse Michel Abdalla et David Pointcheval qui m'ont incité à étudier la cryptographie, m'ont guidé pendant mon stage de M2 et ma thèse, m'ont offert de nombreuses opportunités de recherche et de collaboration, et ont consciencieusement relu ce manuscrit.

I would like to thank my two reviewers Eike Kiltz and Victor Shoup who read and commented very carefully my thesis. I know this is a long (and tedious) work and I am grateful for it. I am also thankful to the other committee members : Dennis Hofheinz, Antoine Joux, and Leonid Reyzin. Je tiens également à témoigner toute ma gratitude à Geoffroy Couteau et Michele Minelli pour leur relecture attentive de cette thèse.

It was my great pleasure to collaborate with many researchers in cryptography, during

Introduction

For a long time, the main purpose of cryptography was to allow two people who agreed with each other on a secret bit string, called a secret key, to confidentially communicate, using (secret-key) encryption.

Since the breakthrough discoveries of key exchange [START_REF] Diffie | New Directions in Cryptography[END_REF], public-key encryption, and digital signatures [START_REF] Rivest | A Method for Obtaining Digital Signature and Public-Key Cryptosystems[END_REF], the scope of cryptography has been vastly broadened. Key exchange and public key encryption enable to confidentially talk to any person or entity (like websites), even without knowing him or it beforehand, while digital signatures provide authentication, or in other words, enable to ensure that a message comes from the right user or entity. Contrary to written signatures, digital signatures cannot be forged and can be easily checked by a computer.

Nowadays, cryptography is omnipresent in our day-to-day life, although often very hidden: credit cards, access badges, online shopping, biometric passports, smartphones, emails, and even access to most websites (following the trend of HTTPS everywhere) all utilize cryptographic protocols. Most of these uses however only rely on encryption, key exchange, and authentication via digital signatures.

But cryptography is even broader than these three important practical primitives. In this thesis, we consider cryptographic protocols (or cryptosystems), around the counter-intuitive concept of zero-knowledge. Zero-knowledge proofs enable a user, Alice, to prove to another user, Bob, that some statement (for example Goldbach's conjecture, a famous open problem in mathematics) is true without revealing anything else. After running the corresponding protocol, Bob will only be convinced that the statement is true but will have learned nothing else. Although such protocols are still not mainstream, they are starting to be deployed in the real world, as for electronic voting in [Helios].

The main objects of study in this thesis, namely diverse modules and smooth (or universal) projective hash functions, can be considered even more intriguing: they enable to prove some fact implicitly, still with a form of zero-knowledge. Concretely, using smooth projective hash functions, Bob could send to Alice a treasure map in such a way that Alice could read it, only if she knows a proof of Goldbach's conjecture. But Bob would have no idea whether Alice was able to read the treasure map (and find the treasure) or not.1 Diverse modules can be seen as an algebraic framework for projective hash functions. In this thesis, we introduce the notion of diverse modules, show many tools to manipulate them, and present various applications related to zero-knowledge.

Provable Security and Mathematical Proofs

In [START_REF] Goldwasser | Probabilistic Encryption and How to Play Mental Poker Keeping Secret All Partial Information[END_REF], Goldwasser and Micali laid the foundations of provable security. A cryptosystem or cryptographic protocol is provably secure if any adversary breaking the security of the system can be transformed into an adversary breaking a problem which is supposed to be hard. This transformation is called a reduction. Not only does this approach enable to rule out many insecure protocols, but it also enables to focus cryptanalysis, the research of attacks against cryptosystems, on a small number of simple well defined problems. These problems include computing the factorization and discrete logarithms (inverse of exponentiation) in some specific cyclic groups, together with associated weaker problems.

More generally, in mathematics and theoretical computer science, the main goal is to find new results and to mathematically prove them. As such, mathematical proofs are an important tool.

Arguments and Proofs

P versus NP. But proofs are not only a tool but an object of study in theoretical computer science. One of the most important open problems in computer science is actually the problem of P versus NP. It basically asks whether being able to efficiently check a proof of a statement, is equivalent to being able to efficiently check if a statement is true or false. It is one of the seven Millennium Prize Problems of the Clay Mathematics Institute.

More formally, we define a language L to be a set of bit strings. Bit strings can be used to encode almost anything, including mathematical statements. We can for example consider the language of the mathematical statements which are provable in the Zermelo-Fraenkel set theory.

On the one hand, the class P is the class of languages L , such that there exists an algorithm that takes as input a bit string x and that can decide in polynomial time (in the size of x), whether x ∈ L . We generally consider this class as the class of easy-to-decide languages and call polynomial-time algorithms, efficient algorithms.

On the other hand, the class NP is the class of languages L , such that there exists an algorithm, that takes as input two bit strings x and w and that can decide in polynomial time (in the size of x), whether w is a valid proof or witness that x ∈ L . We suppose that for any word x ∈ L , there exists such a witness w , while otherwise no such witness exists. For example, the language of provable mathematical statements (in the Zermelo-Fraenkel set theory) with polynomial-size proofs is in NP. But this language is not known to be in P. If it were, there would be no reason to give proofs of mathematical statements as finding a a hashing key. This hashing key defines a function which associates any possible word x (inside or outside the language L) to some bit string H, called the hash value of the word x . This function can be efficiently evaluated by anyone knowing the hashing key. Furthermore, the verifier can derive from the hashing key, a projection key hp, which basically defines the previous function only on L . The verifier can then send the projection key to the prover.

From this projection key hp and a witness w for a word x ∈ L , the prover can efficiently compute a projected hash value pH which is equal to the hash value H computed by the verifier. However, if x / ∈ L , the prover cannot guess the hash value H computed by the verifier. This is called the smoothness or universal property.

Being able to compute the hash value or projected hash value for some word x given only the projection key hp can therefore be seen as a proof that x ∈ L . Moreover, an honest verifier seeing such a projected hash value computed by a prover learns nothing as he could have computed this value himself using the hashing key.

Applications

Smooth (or universal) projective hash functions have many applications.

Honest-verifier zero-knowledge proofs.

A first application is the construction of two-round honest-verifier zero-knowledge proofs: after having received a projection key from the verifier, the prover just sends back the projected hash value pH, and the verifier checks that it corresponds to the computed hash value H. It offers an (often more efficient) alternative to Sigma-protocols [Cra97; CDS94], a classical efficient way of constructing honest-verifier zero-knowledge proofs. This construction has been used for example to construct roundoptimal efficient blind signatures in [START_REF] Chaum | Blind Signatures for Untraceable Payments[END_REF][START_REF] Blazy | Round-Optimal Privacy-Preserving Protocols with Smooth Projective Hash Functions[END_REF]BBC+13c]. A blind signature scheme enables Alice to make Bob sign a message without revealing it. Bob still controls the number of messages signed for Alice, and Alice cannot sign a document she has not asked Bob to sign. But Bob does not know which messages he is signing for Alice. Blind signatures are in particular useful to build electronic cash [START_REF] Chaum | Blind Signatures for Untraceable Payments[END_REF], as they allow the bank to blindly sign electronic coins.

Use of the implicitness feature. The implicitness feature of smooth projective hash functions allows for a broader range of applications. For example, the verifier can use the hash value as a key to encrypt a message to the prover, in such a way that the prover can only decrypt the message if he knows a witness for the word. But the verifier does not learn whether the prover has a witness, and whether he was able to read the message. We actually show in Section 2.5.3.3, that a variant of this protocol can be used to securely send a message to a secret agent without the secret agent having to reveal that he is a secret agent. The sender will never know if he was talking to a secret agent, but he will be sure that if he was not, his interlocutor would not be able to read the message.

Password-authenticated key exchange. An important application is password-authenticated key exchange. Such a protocol enables two users, Alice and Bob, to derive a fresh random secret bit string (called a secret key) just from a common password. Contrary to classical key exchanges (used for example by the HTTPS protocol on the web), the authentication means, namely the common password, might be guessed by an adversary. Password-authenticated key exchanges should therefore ensure that the only way for an adversary to check if a password guess is valid consists in interacting with Alice and Bob. In particular, it should be impossible for the adversary to look once at an execution of the protocol between Alice and Bob, and then to find out the password using his own computer by testing each possible password, without any interaction with Alice nor Bob.

Because of this strong property, classical zero-knowledge proofs often cannot be used to construct password-authenticated key exchange schemes, as an adversary could check whether the proof corresponds to a given password. The implicitness feature of projective hash functions solves this issue and enables to construct efficient password-authenticated key exchange in the CRS model [KOY09; GL06; JG04; GK10].

Oblivious transfer.

Another important application of smooth projective hash functions is the construction of oblivious transfer protocols [START_REF] Michael Rabin | How to exchange secrets with oblivious transfer[END_REF]. Intuitively, such protocols enable a client Alice to ask a question to a server Bob and get the answer without Bob learning what the question was. But Bob is still sure that Alice learned at most one answer to a single question.

Encryption secure against chosen-ciphertext attacks. Finally, smooth projective hash functions enable the construction of very efficient (public-key) encryption schemes, secure in a strong model, called indistinguishability under chosen-ciphertext attacks. Intuitively, in this model, the encryption scheme remains secure even if the adversary has access to a key enabling the encryption (called an encryption key or public key), and even if it is allowed to ask the decryption of messages (called plaintext) of its choice. This application was actually the main purpose of the introduction of projective hashing by Cramer and Shoup in [START_REF] Cramer | Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption[END_REF].

Languages

For the original application of smooth projective hash functions to encryption schemes, Cramer and Shoup only needed projective hash functions for languages directly corresponding to the cryptographic assumption on which they were relying, such as decisional Diffie-Hellman (DDH), quadratic residuosity (QR), or decisional composite residuosity (DCR). With the advent of many other applications, more complex languages begin being required, starting with the languages of encrypted versions (formally called ciphertexts) of a given message under some public encryption key.

Limitations.

The first natural question is to know whether, like zero-knowledge proofs, smooth projective hash functions can be constructed for any NP language. Unfortunately, as they imply statistically sound witness encryption [START_REF] Garg | Witness encryption and its applications[END_REF], this is not possible, unless the polynomial hierarchy (which is a hierarchy of class of languages which can be seen as variants and extensions of NP) collapses. Although it is not known whether the polynomial hierarchy collapses, most researchers believe this cannot happen. We should point out that if P = NP, then the polynomial hierarchy collapses, but there would also be no more theoretical cryptography as we currently know it.

Diverse groups. Despite these limitations, we now know how to construct smooth projective hash functions for a large variety of languages. Most of these constructions rely on diverse groups, a notion introduced by Cramer and Shoup in their original paper [START_REF] Cramer | Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption[END_REF].

From a high level point of view, diverse groups are a way to represent a language as a subgroup of a larger group, together with a large enough group of homomorphisms from this larger group to the set of hash values. Languages represented by subgroups automatically have an associated smooth (or universal) projective hash function.

Our Results

Diverse Modules and Diverse Vector Spaces

In this thesis, we introduce and study a particular case of diverse groups: diverse modules. Diverse modules are a way to represent a language as a submodule of a larger module. We recall that a module is a generalization of a vector space over a ring. In particular, a module is a group and a submodule is a subgroup.

The additional structure of diverse modules compared to diverse groups provides two main advantages. First, it removes the requirement to explicitly construct a large enough set of homomorphisms, as such a set can be canonically constructed (as the set of linear maps for the module to a free module over the base ring). This therefore simplifies the construction and the description of diverse modules compared to diverse groups. Second, it enables to combine generically diverse modules and to algebraically add new useful properties to the associated projective hash function.

An important particular case of diverse modules is when the underlying ring is a finite field of prime order. Such a diverse module is called a diverse vector space. Diverse vector spaces were actually already presented by Cramer and Shoup [START_REF] Cramer | Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption[END_REF] as an important case of diverse groups. In this thesis, however, we go further and provide many tools for diverse vector spaces.

Operations on Diverse Modules

While the main application of diverse modules and diverse vector spaces is to construct smooth projective hash functions, we show in this thesis that working with diverse modules provides many benefits over working directly with smooth projective hash functions.

One of them is that we can generically combine and enhance diverse modules. Given two diverse modules for two languages L 1 and L 2 , we can generically construct diverse modules for the conjunction and the disjunction of these two languages. The conjunction of L 1 and L 2 is the language of pairs (x 1 , x 2) such that both x 1 ∈ L 1 and x 2 ∈ L 2 , while the disjunction of L 1 and L 2 is the language of pairs (x 1 , x 2) such that x 1 ∈ L 1 or x 2 ∈ L 2 .

We point out that Abdalla, Chevalier, and Pointcheval already showed in [START_REF] Abdalla | Smooth Projective Hashing for Conditionally Extractable Commitments[END_REF] how to generically construct a smooth projective hash function for the conjunction and the disjunction of two languages for which they know smooth projective hash functions. However, their construction is not algebraic and so cannot be combined with our other tools on diverse modules and cannot be used in some of our direct applications of diverse modules. Furthermore, their disjunction construction only works for a weak version of smooth projective hash functions, where the projection key is allowed to depend on the word of the language.

Another important tool for diverse modules is what we call t-sound extension. While smooth projective hash functions do not provide any security guarantee when the adversary is given access to even a single hash value of a word x / ∈ L , projective hash functions based on t-sound extensions of diverse modules are smooth even when given access to t -1 hash values (of t -1 words chosen by the adversary).

Applications Related to Zero-knowledge

Diverse modules enable to construct smooth projective hash functions, and therefore also all the previous cryptographic protocols described as applications of smooth projective hash functions. But diverse modules enable to go beyond that, thanks to their algebraic structure.

Non-interactive zero-knowledge arguments. One of the most interesting and counterintuitive applications of diverse modules is the construction of non-interactive zero-knowledge arguments, with constant-size proofs. We have already seen that smooth projective hash functions can be used to construct honest-verifier zero-knowledge arguments, where the verifier sends a projection key hp and the prover sends back to the verifier the projected hash value pH of the word x to be proven in the language L . The problem of this protocol is that it is not zero-knowledge, as the verifier could maliciously generate the projection key hp in such a way that the projected hash value pH sent by the prover may leak some information about the witness used by the prover. Moreover, only the verifier (who generated the projection key hp from some hashing key hk) can verify the projected hash value pH.

Still, we show how to construct a non-interactive zero-knowledge proof, using a strong version of disjunctions of diverse modules, between the language in which we are interested, and another helper language used to add public verifiability and zero-knowledge. The resulting schemes work in any bilinear group and essentially correspond to the schemes of Jutla and Roy in [JR13; JR14], but with a different proof, that we believe to be more modular and simpler to understand. Furthermore contrary to the schemes of Jutla and Roy, our schemes can be extended to the composite-order setting, using diverse modules, and handle a stronger security notion, called one-time simulation-soundness, using 2-sound extension. One interesting application of our one-time simulation-sound non-interactive zero-knowledge argument is the construction of the most efficient threshold and structurepreserving encryption scheme indistinguishable under chosen-ciphertext attacks.

We point out that Kiltz and Wee later improved our constructions to base them on slightly weaker assumptions in [START_REF] Kiltz | Quasi-Adaptive NIZK for Linear Subspaces Revisited[END_REF].

Zero-knowledge variants of projective hash functions. As seen previously, smooth projective hash functions do not provide any guarantee when the projection key is maliciously generated. In many protocols, this means that they only ensure a form of honest-verifier zero-knowledge property.

Using disjunctions of diverse modules between the language we are interested in, and another helper language, we construct trapdoor smooth projective hash functions and implicit zero-knowledge arguments which can be seen as zero-knowledge variants of smooth projective hash functions. Implicit zero-knowledge arguments in particular are a lightweight alternative to non-interactive zero-knowledge arguments. They can be used to enforce semi-honest behavior in multi-party computation [START_REF] Goldreich | How to Prove all NP-Statements in Zero-Knowledge, and a Methodology of Cryptographic Protocol Design[END_REF], at a relatively low cost.

We point out that the use of disjunctions for these constructions can be seen as dual of their use for non-interactive zero-knowledge arguments. Details are given in Chapter 6.

Associated Personal Publications

As explained in the preface, this thesis is not a collection of papers. However, it is mainly based on three papers:

[BBC+13c] (a merge of [BBC+13b] and [BP13a]) in which we introduce diverse vector spaces (under the name of "generic framework for smooth projective hash functions") and trapdoor smooth projective hash functions;

[ABP15c] in which we construct a strong form of disjunction of diverse vector spaces using tensor products, and derive from it, constant-size non-interactive zero-knowledge arguments;

[BCPW15] in which we introduce and construct implicit zero-knowledge arguments.

These three papers contain other applications that we are only discussing in the next section, but not in the core of this thesis. The formalization used in this thesis for diverse vector spaces and projective hash functions, while based on the previous papers, has been improved to be coherent amongst the variants of projective hash functions we consider. Moreover, all the work on diverse modules has yet not been published.

Our Other Contributions

Besides what is exposed in this thesis, we worked on various other cryptographic subjects.

weakening allows for more efficient constructions of encryption schemes. We believe that this new notion of encryption scheme might be useful in other contexts;

[ABP15c] also constructs the first one-round password-authenticated key exchange for a group of three users. 5We should point out that after our papers, in [START_REF] Jutla | Dual-System Simulation-Soundness with Applications to UC-PAKE and More[END_REF], Jutla and Roy constructed a passwordauthenticated key exchange scheme (in bilinear groups), which is more efficient that all our constructions in the universal composability framework, with static and adaptive corruptions.

Other applications. In [BBC+13c], we also constructed blind signatures.

In [BJL16;BJL13], with Benoît Libert and Marc Joye, we constructed a generic aggregatoroblivious encryption scheme with a relatively tight security reduction, which means that the security of the scheme is really close to the hardness of the underlying problem and therefore smaller parameters can be used compared to schemes with non-tight security reduction. An aggregator-oblivious encryption scheme enables a special user, called an aggregator, to compute the sum of the values of n other users U 1 , . . . , U n . Each user U i encrypts its input value x i using his secret key. The aggregator can then combine the resulting messages and get the sum n i=1 x i using his own secret key. The aggregator should learn no more than the sum of all the values, even if he colludes with some users.

Our construction is based on key-homomorphic smooth projective hash functions which can be based on diverse modules (although this is not explicitly indicated in [BJL16]).

Pseudorandom Functions

In [ABPP14; ABP15a; ABP15b], with Michel Abdalla, Alain Passelègue, and Kenny Paterson, we studied pseudorandom functions and variants thereof. A pseudorandom function is a family of functions (F K) indexed by a bit string K called a key such that, when the key K is chosen uniformly at random, F K looks indistinguishable from a random function. We also consider the security of pseudorandom functions under related-key attacks, in which the adversary can also get access to F φ(K) for functions φ of its choice (in some set Φ). Moreover, we construct multilinear and aggregate pseudorandom functions [START_REF] Cohen | Aggregate Pseudorandom Functions and Connections to Learning[END_REF]. The first ones are similar to classical pseudorandom functions, except that F K looks indistinguishable from a random multilinear function, while the second ones enable to efficiently evaluate an aggregate (like a product) of the outputs of F K on a potentially exponential number of inputs.

Our main result is the introduction of a framework, called "polynomial linear pseudorandomness security" in [ABP15b]. This framework can be used to very easily derive constructions for all these schemes, under a classical assumption, namely the decisional d-Diffie-Hellman inversion.

To present this framework, let us first recall the bracket notation introduced in [EHK+13]: if G is a multiplicative cyclic group of prime order p generated by g, for any scalar x ∈ Z p , we define [x] to be the group element g x , where Z p is the finite field of order p. Then, we essentially show the following theorem: under the decisional d-Diffie-Hellman inversion assumption, for any positive integer q, for any multivariate polynomials P 1 , . . . , P q over Z p with indeterminates T 1 , . . . , T n (and degree at most d in each of these indeterminates), the following q group elements:

[P 1 (a 1 , . . . , a n)], . . . , [P q (a 1 , . . . , a n)] ,

with a 1 , . . . , a n being n uniform secret scalars in Z p , are indistinguishable from the following q group elements [U (P 1)], . . . , [U (P q)] ,

where U is a random linear map from the set of multivariate polynomials to Z p . This theorem is actually straightforward in the generic group model. The difficulty is to prove the theorem under a standard assumption, namely the decisional d-Diffie-Hellman assumption.

We also extend the theorem to weaker assumptions which are shown to hold in generic groups with symmetric multilinear maps.

Randomness Complexity of Private Circuits

In [BBP+16], with Sonia Belaïd, Alain Passelègue, Emmanuel Prouff, Adrian Thillard, and Damien Vergnaud, we study the construction of multiplication circuits secure in the d-probing model, which has been introduced by Ishai, Sahai, and Wagner in [START_REF] Ishai | Private Circuits: Securing Hardware against Probing Attacks[END_REF] to model the security of real implementations of circuits against side-channel attacks. As discovered by Kocher in [START_REF] Paul | Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems[END_REF], in real life, an adversary has not only access to the inputs and the outputs of cryptosystems, but has also often access to other information, called side-channel information, such as the power consumption or the electromagnetic radiation of the device that performs the protocol (for example, a credit card that authenticates itself to the bank using some secret). In devices not protected against such side-channel attacks exploiting this additional information, an adversary can often efficiently retrieve important secrets and completely break everything.

The d-probing model is a theoretical model aiming at formalizing what information an attacker can get from side-channel attacks. More precisely, in the d-probing model, we suppose that the adversary can choose d wires (or probes) of the circuit implementing the cryptosystem, and can get the value of these wires.

In [START_REF] Ishai | Private Circuits: Securing Hardware against Probing Attacks[END_REF], Ishai, Sahai, Wagner showed how to generically transform any circuit into one that is secure in the d-probing model. One important tool is the construction of a circuit able to securely perform the and (or multiplication) of two bits. In [BBP+16], we revisit this construction and try to optimize the number of random bits used by the transformed circuit that is secure in the d-probing model.

On the theoretical side, we show a linear lower bound (in d) on the number of random bits, together with an almost matching (non-constructive) upper bound of O(d•log d). These results are obtained using an algebraic characterization of the d-probing model, which intensively uses linear algebra.

On the practical side, we show a generic construction using half as much random bits as the construction in [START_REF] Ishai | Private Circuits: Securing Hardware against Probing Attacks[END_REF], together with optimal constructions for d = 2, 3, 4, which match our lower bound. Furthermore, using our algebraic characterization, we develop a tool which can find attacks on candidate schemes and which is orders of magnitude faster than the previously known tool [START_REF] Barthe | Verified Proofs of Higher-Order Masking[END_REF]. Although our new tool cannot prove the security of a scheme with 100% accuracy, contrary to the previous tool, it enables to quickly rule out bad candidates and speed up the research of new secure schemes.

The constructions for small values of d are highly likely to be used in real life very soon, as [START_REF] Ishai | Private Circuits: Securing Hardware against Probing Attacks[END_REF] is actually already used in practice, and randomness generation has a very high cost on embedded devices, such as credit cards.

Cryptosystems Based on Residue Symbols

In [BHJL16; JBL14], with Javier Herranz, Marc Joye, and Benoît Libert, we introduce a new public-key encryption scheme based on quadratic residuosity (for some special moduli), similar to the Goldwasser-Micali scheme [START_REF] Goldwasser | Probabilistic Encryption[END_REF]. Contrary to the latter scheme, our scheme can encrypt a large number of bits in one single ciphertext.

Lattice-Based Zero-Knowledge Arguments

In [BCK+14; BKLP15], with Jan Camenisch, Stephan Krenn, Vadim Lyubashevsky, Gregory Neven, and Krzysztof Pietrzak, we study lattice-based zero-knowledge arguments, based on Sigma-protocols. Contrary to cyclic and factorization-based groups we are considering in this thesis, lattice-based cryptosystems are noisy, which usually makes everything more complex. In particular, while Sigma-protocols over cyclic groups are generally relatively easy to prove secure, lattice-based ones are much more subtle. We need to carefully take care of the leakage due to noise and of the issues with invertibility of the elements we are considering, as we are working over rings of the form Z q [X]/(X n + 1).

Forward-Secure Signature Schemes

In [ABP13], with Michel Abdalla and David Pointcheval, we studied forward-secure signature schemes, and more precisely the tightness of the reductions of such schemes. In forward-secure signature scheme, signatures and secret keys (used to sign messages) are associated to a time period, for example the current year. A secret key for a given time period T can only be used to produce signatures for this time period T or a subsequent one T ′ ≥ T . Furthermore, a secret key for the period T can be updated to period T + 1.

The advantage of forward-secure signatures compared to classical digital signatures is the following: if an adversary manages to steal a secret key at some time period T , it still cannot sign messages for previous time periods. Only signatures for the time period T or a subsequent time period might be fake signatures created by the adversary.

Security Proof of J-PAKE

In [ABM15], with Michel Abdalla and Philip MacKenzie, we proved the security of the J-PAKE protocol. The J-PAKE protocol is a password-authenticated key exchange scheme proposed by Hao and Ryan in [START_REF] Hao | J-PAKE: Authenticated Key Exchange without PKI[END_REF]. It is included as an optional protocol in the OpenSSL library [OpenSSL] (enabled using a configuration parameter during install, see directory crypto/jpake), and has been used in various products, such as Firefox Sync [Firefox Sync] and Nest products [Nest] (as part of the Thread protocol [Thread]). Its popularity is mainly due to the fact that it is based on a different paradigm than other schemes, which seems to avoid existing patents, since the scheme is even less efficient than the standard-model schemes we propose in [ABP15d] and requires much stronger security assumptions.

To do the security reduction, we prove an intermediate result which is interesting in its own right: Schnorr proofs [START_REF] Schnorr | Efficient Signature Generation by Smart Cards[END_REF], one of the most efficient non-interactive zero-knowledge arguments, satisfy a very strong security notion, namely simulation-extractability with non-rewinding extractors, in the random oracle model, assuming algebraic adversaries.

Coppersmith Methods and Analytic Combinatorics

In [BCTV16], with Céline Chevalier, Adrian Thillard, and Damien Vergnaud, we revisit attacks based on Coppersmith methods [START_REF] Coppersmith | Finding a Small Root of a Univariate Modular Equation[END_REF][START_REF] Coppersmith | Finding a Small Root of a Bivariate Integer Equation; Factoring with High Bits Known[END_REF] and propose a framework based on analytic combinatorics to significantly simplify their analyses.

Personal Publications

Journal Papers

Notation and Preliminaries

General Notation

Sets, integers, moduli, and associated rings and groups. We denote by Z the set of integers and by N the set of non-negative integers. If a and b are two integers such that a < b, we denote by {a, . . . , b} the set of integers between a and b (a and b included). If S is a finite set, |S| denotes its size.

If M is a positive integer, (Z M , +, •) or Z M denotes the ring of integers modulo M . Sometimes, we only see this ring Z M as just an additive group (Z M , +). We also consider the multiplicative subgroup (Z * M , •) of (Z M , +, •): Z * M contains the invertible elements of the ring Z M . This group has order φ(M), where φ is Euler's totient function.

In most of our constructions, we work in groups Z M with known order M . In this case, elements of Z M are represented by integers of the set {0, . . . , M -1}, and operations + and • over elements of Z M can be performed efficiently in polynomial time (in the size of M). Furthermore, if x ∈ Z is an integer, x mod M is the remainder of the Euclidean division of x by M . It can be seen both as an integer in {0, . . . , M -1} and as an element of Z M .

In cases where the order M is not known by our algorithms, elements might have multiple representations whose sizes grow with each ring operation. We deal with this issue separately when it happens.

When M = p is prime, the ring Z M = Z p is a finite field, and we always suppose that M = p is public in this case.

If R is a ring, then R[X] denotes the ring of polynomials with coefficients in R.

Vector spaces, modules, and matrices. We intensively use vector spaces and modules in this thesis. A module can basically be seen as a vector space over a ring, instead of over a finite field. In this thesis, we focus on Z M -modules of the form Z n M (with their canonical basis) and their submodules. When M = p is prime, these are Z p -vector spaces.

Vectors are usually in bold (e.g., u, θ), while matrices are usually denoted by capital letters (e.g., A, Γ) but are sometimes also just in bold (e.g., α in Chapter 4). By default vectors are column vectors.

If u ∈ Z n M is a vector, its coordinates or entries are u 1 , . . . , u n (not in bold). We can also write: u = (u i) i=1,...,n . Sometimes, we consider families of vectors (u 1 , . . . , u k) (in bold). The j-th coordinate of u i (with j ∈ {1, . . . , n} and i ∈ {1, . . . , k}) is denoted by u i,j . In particular the canonical basis of Z n M is the family (e 1 , . . . , e n), such that e i,j = 1 if i = j and e i,j = 0 otherwise.

Similarly, if A ∈ Z n×k M is a matrix with n rows and k columns, its entries are denoted by A i,j with i ∈ {1, . . . , n} and j ∈ {1, . . . , k}. We can also write: A = (A i,j) i=1,...,n j=1,...,k . Sometimes, we consider families of matrices (A 1 , . . . , A ℓ). In that case, the coordinates of the matrix A l are denoted by A l,i,j .

If (u 1 , . . . , u k) is a family of k vectors in Z n M , the submodule of Z n M generated (or spanned) by these vectors is denoted by: Span (u 1 , . . . , u k) .

If A ∈ Z n×k M is a matrix, then ColSpan (A) is the submodule generated by the columns of the matrix A. It can also be seen as the image of the linear function φ from Z n M to Z k N , which associates a vector u ∈ Z n M to A • u. The kernel of this function is denoted ker φ or ker A and is the set of all vectors u ∈ Z n M such that A • u = 0. If A is a matrix, A ⊺ is its transpose. The identity matrix for the module Z n M is denoted by Id n . The zero matrix with n rows and k columns is denoted by 0 n×k or just by 0 when the dimensions are clear from the context. The zero column (resp. row) vector of size n if denoted by 0 n (resp. 0 ⊺ n) or just by 0 (resp. 0 ⊺) when the dimensions are clear from context.

Prime decomposition.

Let M ≥ 2 be a positive integer. We say that M = p e1 1 • • • p er r is the prime decomposition of M if p 1 , . . . , p r are distinct prime numbers and e 1 , . . . , e r are positive integers. We recall that the prime decomposition of a positive integer is unique up to the order of its prime factors p 1 , . . . , p r .

Legendre symbol, Jacobi symbol, and quadratic residue. Let p be a prime number and x be an element of Z p . The Legendre symbol of x modulo p is:

x p =        0 if x = 0 ∈ Z p , 1 if ∃y ∈ Z * p , x = y 2 , -1 otherwise.
Let M ≥ 2 be a positive integer and let M = p e 1 1 • • • p er r be its prime decomposition. We recall that there exists a canonical surjection from Z M to Z M ′ for any factor M ′ ≥ 1 of M . Let x be an element of Z M . The image of the element x of Z M by this surjection is denoted x mod M ′ . The Jacobi symbol of x modulo M is:

x M = r i=1 x mod p i p i e i .
Furthermore, we say that x is a quadratic residue modulo M if and only if there exists an element y ∈ Z * M such that x = y 2 . The Chinese remainder theorem (CRT) 1 directly implies that if x is a quadratic residue modulo M , its Jacobi symbol modulo M is equal to 1. The converse is only true when M is a prime number.

Bit strings.

The set of all bit strings is denoted by {0, 1} * , while the set of bit strings of length n is {0, 1} n . A bit string is often denoted by a lowercase letter, such as x or y. If x ∈ {0, 1} * , its length is |x| and the i-bit is x is x i (for i ∈ {1, . . . , |x|}). The exclusive or between two bit string x and y of the same length is denoted by x xor y.

Miscellaneous. The value "true" is represented by 1, while the value "false" is represented by 0. Logarithm log is always in basis 2: log = log 2 . The binary operator ":=" is used to define a symbol. To indicate that some variable x is assigned the result of some computation, e.g., y + z, we write x ← y + z. In many cases, ":=" and "←" are used interchangeably.

If x is a real number, |x| is its absolute value. When f and g are two functions from N to the set of real numbers, we write f = O(g) or g = Ω(f) to indicate that there exists a constant c and an integer n 0 ∈ N such that for any

integer n ≥ n 0 , |f (n)| ≤ c • |g(n)|.
Algorithms, Turing machines, and interactive Turing machines. Algorithms are programs for Turing machines. By default, algorithms are probabilistic, i.e., they can use an additional tape of the Turing machine containing random bits (a.k.a., random coins). If A is an algorithm, we write y $ ← A(x) to say that we execute the algorithm A on input x with fresh random coins and that we store the result in y. If A is deterministic, we also write y ← A(x). We write A(x; r) to explicitly indicate that A used the random coins r (seen as a bit string). When we write "for any y $ ← A(x)", we mean that we consider all the possible outputs A(x; r) of the algorithm A on input x, for any possible random coins r.

An interactive Turing machine (ITM) is special kind of Turing machine with additional tapes to communicate with other Turing machines: one communication input tape to receive messages from other machines and one communication output tape to send messages to other machines. It is used in the modelization of interactive protocols. In practice however, we never formally describe an ITM but often use figures as Figure 2.8 on page 51.

By default algorithms and ITM are not supposed to run in polynomial time. If we want them to be polynomial time, we say it explicitly. By polynomial time, we mean strong polynomial time and not expected polynomial time. In most cases, this is without loss of generality, as our algorithms are probabilistic anyway (and we often allow for errors).

We only consider uniform complexity: algorithms and Turing machines do not have access to an advice string depending on the length of their input.

Sets and distributions.

If S is a set, x $ ← S indicates that x is taken uniformly at random from the set S (independently of everything else). Similarly, if D is a probability distribution,

x $ ← D indicates that x is drawn randomly according to D. We often use the term "random" to mean "uniformly at random".

Finally, we also write x, y $ ← S to indicate that x and y are drawn independently uniformly at random from S.

Preliminaries on Provable Security

Security Parameters and Negligibility

Almost any cryptosystem can be broken with a powerful enough computer. 2 The goal is just to construct fast enough cryptosystems which cannot be broken by reasonable computers. In practice, we often consider today that if 2 128 elementary operations3 are required to break a cryptosystem with high probability (e.g., 1/2), then this cryptosystem is considered secure. Such a cryptosystem is said to provide K = 128 bits of security.

To properly formalize this idea of security, theoretical papers like this thesis use the notion of a security parameter K ∈ N. We do as if all the algorithms of a cryptosystem take as input a unary representation 1 K of this security parameter and that all these algorithms run in polynomial time in this security parameter. We then generally consider only attacks against the cryptosystem which can be performed by polynomial time algorithms or adversaries. Details for this are given in the next section.

But before going to the next section, we need the following notions. Let ε be a function from N to reals between 0 and 1. We say that ε is negligible or

1 -ε is overwhelming, if for any k ∈ N, ε = O(1/K k).

Adversaries and Experiments

Adversaries. Adversaries are probabilistic algorithms or Turing machines. They are often denoted by calligraphic letters, such as A or B and may or may not run in polynomial time. If they do not run in polynomial time, we say that they are unbounded. Adversaries may need to be called multiple times. In that case, they may or may not carry a state st.

In any case, adversaries are always supposed to implicitly take as input a unary representation of the security parameter. As inputs to adversaries are always polynomial in the security parameter, a polynomial-time adversary runs in time polynomial in the security parameter.

Experiments, games, and oracles. Security notions and security assumptions are often described as experiments where an adversary is called one or several times with various inputs. An adversary may also be given access to oracles, which are also Turing machines. The running time of the oracles are not taken into account in the running time of the adversary: a query to an oracle always only counts for one clock tick. We write A O 1 ,O 2 (x) to say that the adversary A is called with input x and has access to the oracles O 1 and O 2 .

An experiment can also be seen as a game between an adversary A and an implicit challenger which gives its input to the adversary and allows some oracle calls. In this thesis, we use the terms experiment and game interchangeably.

As usual, experiments are parameterized by the security parameter K. Examples of experiments can be found in Figure 2.4 on page 45.

Success probability.

The success probability of an adversary A in an experiment Exp exp is the probability that this adversary outputs 1 in this experiment:

Succ exp (A, K) := Pr [Exp exp (A, K) = 1] .
It depends on the security parameter K. When the experiment Exp exp corresponds to a cryptographic assumption or to a security notion, we say that the assumption or the security notion statistically holds when this success probability is negligible for any unbounded adversary A. It perfectly holds when this success probability is 0 for any unbounded adversary A. It (computationally) holds when this success probability is negligible for any polynomialtime adversary A.

Advantage. Sometimes, a security notion or assumption consists in distinguishing two experiments Exp exp-0 and Exp exp-1 . In this case, we define the advantage of an adversary A in distinguishing the experiments Exp exp-b (where b is always supposed to be in {0, 1} in this context) as:

Adv exp (A, K) = Pr Exp exp-1 (A, K) = 1 -Pr Exp exp-0 (A, K) = 1 .
When the experiments Exp exp-b correspond to a cryptographic assumption or to a security notion, we say that the assumption or the security notion statistically holds when this advantage is negligible for any unbounded adversary A. It perfectly holds when this advantage is 0 for any unbounded adversary A. It (computationally) holds when this advantage is negligible for any polynomial-time adversary A.

Hardness and efficiency.

An efficient algorithm is a algorithm running in polynomial time (in the security parameter). A problem is said to be easy if it can be solved in polynomial time.

A problem is said to be hard if it cannot be solved in polynomial time, with non-negligible probability.

Statistical and Computational Indistinguishability

We have already seen that the notion of advantage captures the general idea of indistinguishability of two experiments Exp exp-0 and Exp exp-1 (both statistical, when the adversary is unbounded, and computational, when it runs in polynomial time). In many cases, these experiments just consist in drawing an element from some distributions D 0 and D 1 respectively and feeding it as input to the adversary. The output of the experiment is just the output of the adversary.

In this section, we further study these particular cases and give some additional vocabulary and tools.

Statistical Indistinguishability

Definition. To define statistical indistinguishability, we first need to define statistical distance. We suppose that the reader is familiar with basic probability and the notion of distributions and random variables. There are many ways to define statistical distance in mathematics and computer science. We use (one of) the most common one in cryptography, which corresponds to the total variation distance. Definition 2.1.1. Let D 1 and D 2 be two distributions over some finite set S. Let X 1 and X 2 be two random variables sampled according to D 1 and D 2 respectively. Their ranges are therefore the same finite set S. The statistical distance between D 1 and D 2 (or X 1 and X 2) is:

Dist(D 1 , D 2) := Dist(X 1 , X 2) := 1 2 • x∈S |Pr [X 1 = x] -Pr [X 2 = x]| .
We use distributions and random variables interchangeably, depending on what is the most convenient.

The following theorem gives a very useful and equivalent definition of statistical distance.

Theorem 2.1.2. Let X 1 and X 2 be two random variables with some finite range S. We have:

Dist(X 1 , X 2) = max A |Pr [A(X 1) = 1] -Pr [A(X 2) = 1]| ,
where the maximum is taken over all the possible adversaries taking as input an element of S outputting a bit. The definition is equivalent whether the adversaries are probabilistic or deterministic.

Proof. First, we remark that for any adversary A:

|Pr [A(X 1) = 1] -Pr [A(X 2) = 1]| = x∈S Pr [A(x) = 1] • (Pr [X 1 = x] -Pr [X 2 = x]) ,
because for any x ∈ S, the events A(x) = 1 and X 1 = 1 are independent (and A(x) = 1 and X 2 = 1 are independent too). If for some x ∈ S, 0 < Pr [A(x) = 1] < 1, then the above expression can be increased by increasing or decreasing this probability. That shows that we can restrict ourselves to deterministic adversaries. Second, let A be a deterministic adversary and let B be the subset of S defined by:

B := {x ∈ S | A(x) = 1} .
We have:

|Pr [A(X 1) = 1] -Pr [A(X 2) = 1]| = |Pr [X 1 ∈ B] -Pr [X 2 ∈ B]| = |Pr [X 1 ∈ S \ B] -Pr [X 2 ∈ S \ B]| = 1 2 • (|Pr [X 1 ∈ B] -Pr [X 2 ∈ B]| + |Pr [X 1 ∈ S \ B] -Pr [X 2 ∈ S \ B]|) .
Furthermore, for any subset C ⊆ S:

|Pr [X 1 ∈ C] -Pr [X 2 ∈ C]| ≤ x∈C |Pr [X 1 = x] -Pr [X 2 = x]| .
Therefore, we get:

|Pr [A(X 1) = 1] -Pr [A(X 2) = 1]| ≤ 1 2 •   x∈B |Pr [X 1 = x] -Pr [X 2 = x]| + x∈S\B |Pr [X 1 = x] -Pr [X 2 = x]|   = Dist(X 1 , X 2) .
Thus, we have:

sup A |Pr [A(X 1) = 1] -Pr [A(X 2) = 1]| ≤ Dist(X 1 , X 2) .
To conclude, let us now construct an adversary A such that:

|Pr [A(X 1) = 1] -Pr [A(X 2) = 1]| = Dist(X 1 , X 2) .
Let B be the following set:

B := {x ∈ S | Pr [X 1 = x] ≥ Pr [X 2 = x]} ,
and A be the adversary which on input x ∈ S outputs 1 if and only if x ∈ B. Using the previous analysis, we then have:

|Pr [A(X 1) = 1] -Pr [A(X 2) = 1]| = 1 2 • (|Pr [X 1 ∈ B] -Pr [X 2 ∈ B]| + |Pr [X 1 ∈ S \ B] -Pr [X 2 ∈ S \ B]|) = 1 2 •   x∈B (Pr [X 1 = x] -Pr [X 2 = x]) + x∈S\B (Pr [X 1 = x] -Pr [X 2 = x])   = 1 2 •   x∈B |Pr [X 1 = x] -Pr [X 2 = x]| + x∈S\B |Pr [X 1 = x] -Pr [X 2 = x]|   = Dist(X 1 , X 2) ,
where the last-but-one inequality comes from the fact that Pr [

X 1 = x] -Pr [X 2 =
x] has the same sign for all x ∈ B on one hand, and for all x ∈ S \ B on the other hand. This concludes the proof.

distance Dist(D 1,K , D 2,K) is negligible in K.
For simplicity, we often say "distribution" instead of "distribution ensemble" and the security parameter is often implicit.

Properties. Let us state some useful properties, which we use throughout the thesis sometimes without explicitly citing them, as they are classical. Proposition 2.1.4. Let X 1 , X 2 , and X 3 be three random variables with some finite range S. Then, we have:

Dist(X 1 , X 3) ≤ Dist(X 1 , X 2) + Dist(X 2 , X 3) .
This proposition is essentially what underlies the idea of proofs by games or hybrid arguments (in the statistical case) sketched later in Section 2.1.4.

Proof. The proof follows directly from the triangular inequality. Proposition 2.1.5 (data processing inequality). Let X 1 and X 2 be two random variables with some finite range S. Let f be any function (not necessarily efficiently computable) from S to some other finite set S ′ . Then we have:

Dist(f (X 1), f (X 2)) ≤ Dist(X 1 , X 2) .
This proposition essentially says that processing the output of two distributions using any function f does not increase their statistical distance.

Proof. The proof follows directly from the triangular inequality. Proposition 2.1.6. Let X 1 and X 2 be two random variables with some finite range S. Let Y be a Bernoulli random variable independent from X 1 and of parameter ε < 1: Y = 0 with probability 1 -ε and Y = 1 with probability ε. Let X ′ 1 be another random variable such that:

Pr X ′ 1 = X 1 | Y = 0 = 1 ,
or in other words, such that when Y = 0, X ′ 1 coincides with X 1 . Then, we have:

Dist(X ′ 1 , X 2) ≤ ε + Dist(X 1 , X 2) .
This proposition is an extension of Lemma 1 of [START_REF] Shoup | OAEP Reconsidered[END_REF] to statistical distance.

Proof. Let us just prove it when X 2 = X 1 , i.e., let us prove that:

Dist(X ′ 1 , X 1) ≤ ε .
The general version follows from Proposition 2.1.4. We have:

2 • Dist(X ′ 1 , X 1) = x∈S Pr X ′ 1 = x -Pr [X 1 = x] = x∈S Pr [Y = 0] • Pr X ′ 1 = x | Y = 0 + Pr [Y = 1] • Pr X ′ 1 = x | Y = 1 -Pr [X 1 = x] = x∈S (1 -ε) • Pr X ′ 1 = x | Y = 0 + ε • Pr X ′ 1 = x | Y = 1 -Pr [X 1 = x] . As X ′ 1 and X 1 coincides when Y = 0, Pr [X ′ 1 = x | Y = 0] = Pr [X 1 = x]
, and:

2 • Dist(X ′ 1 , X 1) = x∈S -ε • Pr [X 1 = x] + ε • Pr X ′ 1 = x | Y = 1 ≤ ε • x∈S Pr [X 1 = x] + Pr X ′ 1 = x | Y = 1 ≤ 2 • ε .
This concludes the proof.

Proposition 2.1.7. Let M and N be two positive integers, such that N ≥ M . Let U M and U N be a uniform random variable over {0, . . . , M -1} and {0, . . . , N -1}. Then the distance between U M and U N is:

Dist(U N , U M) = N -M N .
Proof. We have:

Dist(U N , U M) = 1 2 • M -1 x=0 1 N - 1 M + N -1 x=M 1 N -0 = 1 2 • M • N -M M N + (N -M) • 1 N = N -M N .
Corollary 2.1.8. Let M and N be two positive integers, such that N ≥ M . Let U M and U N be a uniform random variable over {0, . . . , M -1} and {0, . . . , N -1}. Then the distance between U M and U N mod M is:

Dist(U N mod M, U M) ≤ N mod M N .
Proof. Let L := N -(N mod M) and let U L be a uniform random variable over {0, . . . , L-1}.

We remark that the distribution U L mod M is the same as the distribution of U M , as M divides L. Therefore, we have:

Dist(U N mod M, U M) = Dist(U N mod N, U L mod M) ≤ Dist(U N , U L) = N -L N = N mod M N ,
where the inequality comes from Proposition 2.1.5 and the second to last equality comes from Proposition 2.1.7.

Computational Indistinguishability

Let us now recall the definition of computational indistinguishability.

Definition 2.1.9. Let D 1 and D 2 be two distribution ensembles which can be sampled in polynomial time in K. Let A be a polynomial-time adversary outputting a bit. For any security parameter K, the advantage of A in distinguishing D 1 and D 2 is:

Adv D 1 ,D 2 (A, K) := Pr A(x) = 1 | x $ ← D 1 -Pr A(x) = 1 | x $ ← D 0 .
Then, D 1 and D 2 are said to be computationally indistinguishable if for any polynomial-time adversary A,

Adv D 1 ,D 2 (A, K) is negligible in K.
If we remove the requirement that the adversary has to run in polynomial time, we get exactly the notion of statistical indistinguishability, due to Theorem 2.1.2.

Proof by Games or Hybrid Arguments

Most of our security proofs are proofs by games (also called hybrid arguments) as defined by Shoup in [Sho01; KR01; BR06]: to bound a success probability in some game G 0 corresponding to some security notion, we construct of sequence of games. The first game is G 0 , while the last game corresponds to some security notion or is such that the adversary just cannot win. Furthermore, we prove that two consecutive games are indistinguishable either perfectly, statistically, or computationally. In other words, we bound the difference of success probabilities by a negligible quantity.

Similarly, to bound an advantage of an adversary in distinguishing two games G 0 and G 1 , we construct a sequence of indistinguishable games starting with G 0 and ending with G 1 .

Cyclic Groups, Bilinear Groups, and Multilinear Groups

In this thesis, we use a lot cyclic groups and bilinear groups.

Cyclic groups.

Cyclic groups are groups generated by a single element (and thus are commutative or Abelian). A cyclic group of order M is isomorphic to the additive group Z M . However, a given function or operation on a group of order M may have very different complexities depending the exact group (representation) we are considering.

In this thesis, we denote a cyclic group of order M generated by g, by a tuple (M, G, g) or just (M, G). The set of generators of the group G is denoted G * . The group law is multiplicative and we suppose that it can be efficiently computed. In particular, this means that given x ∈ Z M , the element g x can be efficiently computed too, which implies that exponentiations can be efficiently computed.

However, for cyclic groups to be useful in cryptography, we often require that that the reverse operation of exponentiation, which is called the discrete logarithm operation, is hard: given two element g, g x ∈ G, it should be hard to compute the scalar x, which is called the discrete logarithm of g x in basis g. The basis is often implicit. We often consider cyclic groups of prime order M = p.

There are two main classes of cyclic groups in cryptography: multiplicative subgroups of finite fields and (subgroups of) elliptic curves [START_REF] Victor | Use of Elliptic Curves in Cryptography[END_REF][START_REF] Koblitz | Elliptic curve cryptosystems[END_REF]. The latter is still used in practice but is significantly less efficient for current security parameters. Current best practices consist in using elliptic curves, such as Curve25519 [START_REF] Daniel | Curve25519: New Diffie-Hellman Speed Records[END_REF]. For security parameter K, we can generally use elliptic curves of prime order of only 2K bits, as it is believed that only generic attacks (in time square root of the order p, like Shank's baby-step giant-step attack [START_REF] Shanks | Class number, a theory of factorization, and genera[END_REF]) apply to reasonable elliptic curves. Group elements (i.e., points of the curve) can then also be represented by about 2K + 1 bits, using point compression. For simplicity, we term "+1" is often omitted.

As usual, when we are referring to one cyclic group (p, G, g), we are actually referring to a family of cyclic groups indexed by the security parameter K.

Bilinear groups. Some constructions require additional structures such as pairings or bilinear groups.

When (M, G 1 , g 1), (M, G 2 , g 2), and (M, G T , g T) are three cyclic groups of the same order

M , (M, G 1 , G 2 , G T , e, g 1 , g 2) or (M, G 1 , G 2 , G T , e) is called a bilinear group if e is a map (called a pairing) from G 1 × G 2 to G T satisfying the following properties: • Bilinearity. For all (a, b) ∈ Z 2 M , we have e(g a 1 , g b 2) = e(g 1 , g 2) ab ;
• Non-degeneracy. The element e(g 1 , g 2) = g T generates G T ;

• Efficiency. The function e is efficiently computable.

It is called a symmetric (or type 1) bilinear group if G 1 = G 2 = G. In this case, we denote it (p, G, G T , e) and we suppose g = g 1 = g 2 . Otherwise, if G 1 = G 2 , it is called an asymmetric (or type 3) 4 bilinear group.

Bilinear groups can be constructed from elliptic curves. Currently, asymmetric ones are more efficient (both in term of time to compute the group law or the pairing e and in term of the size of the representation of group elements).

For K = 128 bits of security, we can use asymmetric bilinear groups with prime order p of about 256 bits, elements in G 1 represented by about 256 bits, elements of G 2 represented by 512 bits, and elements of G T represented by 3072 bits [START_REF] Paulo | Pairing-Friendly Elliptic Curves of Prime Order[END_REF] (for the reader familiar with elliptic curves, these elliptic curves have embedding degree 12).

Unfortunately, for prime order symmetric bilinear groups, due to recent attacks [Jou14; GGMZ13; BGJT14; AMOR14], the best choice seem to be supersingular elliptic curves over a prime order finite field, and therefore of embedding degree 2. These make parameters much worse. Concretely, for K = 128 bits of security, elements of G are represented by about 1536

Exponentiation Curve \ Efficiency Pairing in G 1 or G in G 2 Curve25519 [Ber06] no pairing 1 ✗ [BGM+10] ≈ 8 ≈ 3 ≈ 6
bits, while elements of G T are represented by about 3072 bits, for a prime order p of about 256 bits.

Efficiency of cyclic and bilinear groups. Both cyclic and bilinear groups are considered practical nowadays, at least for prime orders. For composite-order groups, we usually need the order to be hard to factor which makes it much larger, as there exist sub-exponential factorization algorithms [START_REF] Guillevic | Arithmetic of pairings on algebraic curves for cryptography[END_REF]. However, we should point out that operations over cyclic groups without efficient pairing can be much faster, when using specific curves like Curve25519 [START_REF] Daniel | Curve25519: New Diffie-Hellman Speed Records[END_REF]. In Table 2.1, we show the efficiency difference between two reasonable choices of curves with and without efficient pairings respectively. Furthermore, curves without efficient pairings might be less susceptible to recent breakthroughs in discrete log attacks [Jou14; GGMZ13; BGJT14; AMOR14; GKZ14]. For these reasons, it is usually preferable to construct protocols without pairings.

Additional notation.

The element 1 might be either the element 1 ∈ Z M or the element g 0 ∈ G, g 0 1 ∈ G 1 , . . . When this is not clear from context, we explicitly add an index and write 1 Z M , 1 G , . . .

Cryptographic Primitives

Let us now introduce some of the classical cryptographic primitives used throughout this thesis. Since the notation used in this definition is cumbersome, we often write:

Collision-Resistant Hash Function Families

H $ ← H F K or even just H $ ← H F, instead of par $ ← H.Setup(1 K)
, where H represents the function m → H.Eval(par, m). Furthermore, for the sake of simplicity, we suppose that H can take several parameters and first converts them (efficiently) into a single bit string which is then hashed. For example, we write H(u, v) (e.g., with u and v being two group elements), to say that the bit string representation of the tuple (u, v) is hashed.

We use a family of functions depending on some parameter par instead of a single function for theoretical reasons. Without it, a non-uniform adversary could just have a collision hard-wired. This would not be such an issue with a uniform adversary, but the notion of hash function family is easier to handle in theory. However, in practice, we can just use SHA-256 [START_REF]FIPS[END_REF] for K = 128 bits of security, for example.

Encryption

Classical (a.k.a, symmetric or secret-key) encryption is one of the most fundamental primitives in cryptography. It enables two users sharing a secret key K to communicate confidentially. Each user encrypts the message he wants to send to the other user, using the key K; and the other user decrypts the received encrypted message (a.k.a., ciphertext) to get the original message back, using the same key K. Anybody who intercepts the ciphertext should not be able to learn anything about the original message, without knowledge of the secret key K.

Public-key encryption schemes are more powerful: they enable to encrypt a message to a user if we know his public key or encryption key ek. Decryption can only be realized using the associated private key or decryption key dk which is kept private by the user. In this thesis, we consider labeled public-key encryption scheme [Sho06], where "labeled" means that a ciphertext can be associated to a label which can be seen as some public metadata.

Definition

Definition 2.2.2. An (labeled) encryption scheme is defined by a tuple of four polynomialtime algorithms (Setup.gpar, KeyGen, Enc, Dec):

• Setup.gpar(1 K) outputs some global parameters gpar;

• KeyGen(gpar) generates a pair (ek, dk), where ek is an encryption key (a.k.a., public key) and dk is a decryption key (a.k.a., secret key); these two keys are supposed to implicitly contain the global parameters gpar;

• Enc(ek, ℓ, m) generates a bit string c, called a ciphertext, encrypting the message (a.k.a., plaintext) m with label ℓ under the encryption key ek; the plaintext m is supposed to be in some set M which might depend in the global parameters but which is efficiently recognizable (i.e., testing whether m ∈ M or not can be done in polynomial time in the security parameter K); similarly the label ℓ is in some set Labels which is also efficiently recognizable;

• Dec(dk, ℓ, c) decrypts the ciphertext c with label ℓ and outputs the corresponding plaintext m or ⊥ if the decryption failed.

It should satisfy the following property:

• Perfect correctness. For any global parameters gpar $ ← Setup.gpar(1 K), for any key pair (ek, dk) $ ← KeyGen(gpar), for any label ℓ, for any message m ∈ M , for any ciphertext c $ ← Enc(ℓ, ek, m), we have Dec(dk, ℓ, c) = m (with probability 1, if Dec is probabilistic).

If no label is used, the scheme is called a non-labeled encryption scheme, the set Labels is {⊥}, and the input ℓ is omitted in Enc and Dec.

The previous definition of encryption scheme does not provide any security guarantee: the encryption procedure could just return c := m and it would still satisfy the above definition. There are many possible security notions for encryption schemes. In this thesis, we only consider two of them: indistinguishability under chosen plaintext attacks (IND-CPA) and indistinguishability under chosen ciphertext attacks (IND-CCA). 5IND-CPA basically ensures that a ciphertext does not reveal any information about its plaintext if we only know the encryption key ek but not the decryption key dk. Formally, we have the following definition. We recall that the advantage Adv ind-cpa-b (A, K) of the adversary A against IND-CPA is defined by

Adv ind-cpa (A, K) = Pr Exp ind-cpa-1 (A, K) = 1 -Pr Exp ind-cpa-0 (A, K) = 1 , as explained in Section 2.1.2.2.
The ciphertext c * in Figure 2.2 is called the challenge ciphertext, while m 0 and m 1 are called the challenge plaintexts. We notice that labels do not play an important role in an IND-CPA encryption scheme: a non-labeled IND-CPA encryption scheme is also IND-CPA for any set of labels Labels (if Enc and Dec simply ignores the label ℓ).

This notion is often too weak, as the adversary may be able to get the decryption of some ciphertexts, when an encryption scheme is used in a larger protocol. IND-CCA ensures that a (challenge) ciphertext does not reveal any information about its plaintext, even if one knows the encryption key ek and even if one has access to an oracle which decrypts ciphertexts of its choice. Obviously, the adversary is not allowed to ask for the decryption of the challenge ciphertext itself, as this would yield to a trivial unavoidable attack. Formally, we have the following definition. Contrary to IND-CPA, for IND-CCA, labels play an important role: a non-labeled IND-CCA encryption scheme is not IND-CCA for any set of labels Labels containing at least two distinct labels ℓ 1 , ℓ 2 : an adversary can just ask for the encryption of two distinct messages m 0 , m 1 ∈ M with label ℓ 1 , get the challenge ciphertext c * , and decrypt it by querying ODec on (ℓ 2 , c *).

IND-CPA IND-CCA

Exp ind-cpa-b (A, K) gpar $ ← Setup.gpar(1 K) (ek, dk) ← KeyGen(gpar) (st, ℓ * , m 0 , m 1) ← A(ek) c * ← Enc(ek, ℓ * , m b) b ′ ← A(st, c *) return b ′ Exp ind-cca-b (A, K) L ← empty list gpar $ ← Setup.gpar(1 K) (ek, dk) ← KeyGen(gpar) (st, ℓ * m 0 , m 1) ← A ODec (ek) c * ← Enc(ek, ℓ * , m b) b ′ ← A ODec (st, c *) if (ℓ * , c *) ∈ L then return 0 else return b ′ ODec(ℓ, c) add (ℓ, c) to the list L return Dec(dk, ℓ, c)
In this thesis, by default, IND-CPA encryption schemes are supposed to be non-labeled, while IND-CCA encryption schemes are supposed to be labeled.

ElGamal and the Decisional Diffie-Hellman Assumption (DDH)

The ElGamal encryption scheme [START_REF] Elgamal | A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms[END_REF] is one of the most famous IND-CPA encryption scheme. It is defined as follows:

• Setup.gpar(1 K) generates a cyclic group (p, G, g) of prime order p and outputs the global parameters gpar = (p, G, g); 6 we suppose that there exists an efficiently computable and efficiently reversible injective map G from the public set of messages M to the group G;

• KeyGen(gpar) picks a random scalar z ∈ Z p , computes h := g z ∈ G, and outputs (ek, dk) := (h, z);

• Enc(ek, m) computes M := G(m), picks a random scalar r $ ← Z p , and outputs the ciphertext c := (u, v) := (g r , h r • M) ∈ G 2 ;

• Dec(dk, c) computes m ← G -1 (v/u z) and outputs m.

Sometimes we want to directly encrypt messages m ∈ G, in that case G is just the identity and m = M.

Correctness is straightforward. Proving the security of the ElGamal encryption scheme requires to use some computational assumption. Let us therefore first recall the decisional Diffie-Hellman (DDH) assumption. Assumption 2.2.5 (DDH). Let (p, G, g) be a cyclic group of prime order p. The advantage of an adversary A against the decisional Diffie-Hellman (DDH) assumption is defined by:

Adv ddh (A, K) := Pr A(g, g z , g r , g zr) = 1 | z, r $ ← Z p -Pr A(g, g z , g r , g s) = 1 | z, r, s $ ← Z p .
The DDH assumption holds when the advantage of any polynomial-time adversary against it is negligible.

Let us immediately introduce a useful definition for later.

Definition 2.2.6. Let (p, G, g) be a cyclic group of prime order p. We say that a tuple (g, g z , g r , g zs) ∈ G 4 (or (g z , g r , g zs) when g is implicit) is a DH tuple, if r = s. We also say that a tuple (g r , g zs) is a DH tuple in basis (g, g z), if r = s.

We have the following well-known theorem.

Adv ind-cpa (A, K) ≤ Adv ddh (B, K) .

Cramer-Shoup IND-CCA Encryption Scheme

Unfortunately, ElGamal is not IND-CCA as soon as the set of messages M contains two distinct messages. Let us show this on the simpler case where M = G and G is the identity function: the adversary just outputs the challenge plaintexts m 0 = M 0 := 1 ∈ G and m 1 = M 1 := g 2 ∈ G (for example), then it gets the challenge ciphertext c * = (u * , v *), and asks to decrypt (u * , v * • g) to ODec. If ODec outputs g, the adversary outputs 0, otherwise, it outputs 1. This attack works because (u

* , v *) is a ciphertext of m 0 = 1 if and only if (u * , v * • g) is a ciphertext of g.
In [START_REF] Cramer | A Practical Public Key Cryptosystem Provably Secure Against Adaptive Chosen Ciphertext Attack[END_REF], Cramer and Shoup proposed the first efficient IND-CCA encryption scheme under DDH. The scheme is defined as follows:

• Setup.gpar(1 K) generates a cyclic group (p, G, g) of prime order p and picks a collisionresistant hash function H from a hash family H F.8 It then outputs the global parameters gpar = (p, G, g, H); we suppose that there exists an efficiently computable and efficiently reversible injective map G from the public set of messages M to the group G;

• KeyGen(gpar) picks two generators g 1 , g 2 $ ← G * , a tuple of five random scalars dk :

= (x 1 , x 2 , y 1 , y 2 , z) ∈ Z 5 p , computes c ← g x 1 1 g x 2 2 , d ← g y 1 1 g y 2 2
, and h ← g z 1 . It sets the encryption key to ek := (g 1 , g 2 , c, d, h). It finally outputs (ek, dk).

• Enc(ℓ, ek, m) computes M := G(m), picks a random scalar r $ ← Z p , and outputs the ciphertext c := (ℓ, u 1 := g r 1 , u 2 := g r 2 , v := h r • M, w := (cd ξ) r) , where w is computed after ξ := H(ℓ, u 1 , u 2 , v);

• Dec(dk, c) first computes ξ = H(ℓ, u 1 , u 2 , v) and checks whether u

x 1 +ξy 1 1 • u x 2

ElGamal and Cramer-Shoup Encryption for Vectors

ElGamal and Cramer-Shoup encryption schemes enable to encrypt one group element. In our constructions, we often need to encrypt several group elements, or in other words, a vector of group elements.

Vector encryption without randomness reuse. The first naive solution consists in encrypting each element of the vector independently and to concatenate the ciphertexts. A ciphertext for a vector of n group elements consists of n ciphertexts. This perfectly works for ElGamal: the resulting scheme is clearly IND-CPA. More generally, this would work for any IND-CPA scheme.

Unfortunately, for Cramer-Shoup, the resulting scheme is no more IND-CCA: the adversary can indeed mix and match the group elements inside the vectors and use the decryption oracle to break IND-CCA. Fortunately, there is a very efficient way to solve this issue: use the same value ξ for all the ciphertexts, as a hash over all the parts which do not depend on ξ. Concretely, to encrypt a vector (M 1 , . . . , M n) ∈ G n with label ℓ, we pick random scalars r 1 , . . . , r n $ ← Z p and output the ciphertext:

c := (ℓ, (u i,1 := g r i 1 , u i,2 := g r i 2 , v i := h r i • M i , w i := (cd ξ) r i) i=1,...,n) ,
where the group elements w i are computed after:

ξ := H(ℓ, (u i,1 , u i,2 , v i) i=1,...,n) .
This scheme is IND-CCA under DDH. This is a folklore result. A formal proof (of a slightly stronger result) can be found in [START_REF] Ben Hamouda | Efficient UC-Secure Authenticated Key-Exchange for Algebraic Languages[END_REF].

Vector encryption with randomness reuse. The previous vector encryption schemes did not increase the size of the encryption key: only the ciphertext size was increased. If we are willing to increase the size of the encryption key, we can reduce the size of the ciphertext using randomness reuse [START_REF] Kurosawa | Multi-recipient Public-Key Encryption with Shortened Ciphertext[END_REF][START_REF] Bellare | Randomness Re-use in Multi-recipient Encryption Schemeas[END_REF]. Let us first state the ElGamal encryption scheme with randomness reuse for vectors of n group elements:

• Setup.gpar(1 K) is the same as for classical ElGamal;

• KeyGen(gpar) picks a tuple of n independent random scalars dk := (z 1 , . . . , z n) $ ← Z n p , computes the encryption key ek := (h 1 := g z 1 , . . . , h n := g zn) ∈ G n , and outputs (ek, dk);

• Enc(ek, (M 1 , . . . , M n)) picks a random scalar r $ ← Z p and outputs the ciphertext:

c := (u = g r , v 1 := h r 1 • M 1 , . . . , v n := h r n • M n) ∈ G n+1 ; • Dec(dk, c) computes M i = v i /u z i 1 for i ∈ {1, . . . ,
= (x 1 , x 2 , y 1 , y 2 , z 1 , . . . , z n) ∈ Z 5 p , computes c := g x 1 1 g x 2 2 , d := g y 1 1 g y 2 2
, and h 1 := g z 1 1 , . . . , h n := g zn 1 . It sets the encryption key to ek := (g 1 , g 2 , c, d, h 1 , . . . , h n). It finally outputs (ek, dk).

• Enc(ℓ, ek, m) picks a random scalar r $ ← Z p , and outputs the ciphertext

c := (ℓ, u 1 := g r 1 , u 2 := g r 2 , v 1 := h r 1 • M 1 , . . . , v n := h r n • M n , w := (cd ξ) r) ,
where the group element w is computed after ξ := H(ℓ, u 1 , u 2 , v 1 , . . . , v n);

• Dec(dk, c) first computes ξ = H(ℓ, u 1 , u 2 , v 1 , . . . , v n) and checks whether u

Variants of ElGamal and Cramer-Shoup

ElGamal and Cramer-Shoup encryption schemes can be slightly changed to be based on variants of the DDH assumptions, including the decisional linear (DLin) assumption [START_REF] Boneh | Short Group Signatures[END_REF] or the matrix decisional Diffie-Hellman (MDDH) family of assumptions introduced by Escala et al. in [START_REF] Escala | An Algebraic Framework for Diffie-Hellman Assumptions[END_REF]. All our constructions can also be easily extended to these cases. We even have done it explicitly in some of our papers, e.g. [START_REF] Ben Hamouda | Efficient UC-Secure Authenticated Key-Exchange for Algebraic Languages[END_REF]ABP15c]. However, for the sake of simplicity, we focus on classical ElGamal and Cramer-Shoup in this thesis.

Randomness Extractors and Min Entropy

A randomness extractor enables to extract from some "sufficiently random" variable, a uniform (or almost uniform) bit string of some given length. By "sufficiently random", we mean that it is hard to guess the value of this random variable. More precisely, let us first define the notion of min entropy which formally characterizes this notion. Definition 2.2.8. Let X be a random variable with some finite range S. The min entropy of X is defined as:

log max

x∈S Pr [X = x] .
Then we can define a randomness extractor.

Definition 2.2.9. A randomness extractor for a distribution ensemble (D K) K∈N over some some finite sets (S K) K∈N is a family of functions (Ext K) K∈N , where Ext K is a function from {0, 1} n(K) × S K to {0, 1} m(K) , for some integers n(K) and m(K), such that the following two distributions are statistically indistinguishable:

(seed, Ext(seed, x)) | seed $ ← {0, 1} n(K) ; x $ ← D K (seed, u) | seed $ ← {0, 1} n(K) ; u $ ← {0, 1} m(K) .
We insist on the fact that seed and x are chosen independently of each other, in the first distribution.

In the sequel, as usual, the security parameter K is often omitted. The value seed is called a seed. Extractors without seed (i.e., for which n = 0), are called deterministic extractors. For some distributions, there exist deterministic extractors, for example for uniform points of some elliptic curves [START_REF] Chevalier | Optimal Randomness Extraction from a Diffie-Hellman Element[END_REF].

In most cases, we do not know of any deterministic extractor. Fortunately, the leftover hash lemma enables the construction of an extractor for any distribution with min entropy about at least 3K. More precisely, we have the following theorem [HILL99]: Theorem 2.2.10. Let (D K) K∈N be a family of distributions over some some finite sets (S K) K∈N . We suppose that elements of S K can be represented by strings of size at most k(K), such that k(K) is polynomial in K. We then suppose without loss of generality that S K = {0, 1} k(K) . For any polynomial function m in K, we define a randomness extractor Ext K , by Ext K (seed, x) = y ∈ {0, 1} m(K) where:

y i = k(K) j=1 seed (i-1)•k(K)+j • x i for i ∈ {1, . . . , m(K)} ,
where seed ∈ {0, 1} n(K) , x ∈ {0, 1} k(K) , and n(K) = k(K) • m(K). If the min entropy of D K is β(K), then the two distributions in Definition 2.2.9 are 2 (m(K)-β(K))/2 -close. This randomness extractor is secure as soon as m(K) -β(K) = Ω(K).

Concretely, this means that we get an extractor with output size m(K) = K (and the two distributions in Definition 2.2.9 are 2 -K -close), if D K has min entropy at least 3K + 2.

This theorem works as soon as (Ext K (seed, •)) seed is a universal hash function family. But we just need the existence of an extractor for this thesis and do not need to formally define universal hash function families.

Languages

The notion of language is used throughout this thesis: not only for the central cryptographic primitive of this thesis projective hash functions (PHFs) and the central notions of diverse modules (DMs) and diverse vector spaces (DVSs); but also for many applications to zeroknowledge arguments.

We start by defining (NP) languages for projective hash functions (PHFs), and some specific languages for PHF called hard-subset-membership languages. We then show how languages for zero-knowledge arguments differ from languages for PHF. Differences are purely syntactical.

Languages for Projective Hash Functions

We consider a family of NP languages (L lpar) lpar , indexed by some parameter lpar, with witness relation R lpar , namely

L lpar = {x ∈ X lpar | ∃w , R lpar (x , w) = 1} ,
where (X lpar) lpar is a family of sets. The (language) parameters lpar are generated by a polynomial-time algorithm Setup.lpar which takes as input some global parameters gpar. These global parameters are themselves generated by a polynomial-time algorithm Setup.gpar which takes as input a unary representation of the security parameter K. They are always supposed to be (implicitly) included in lpar. We suppose that membership in X lpar and R lpar can be checked in polynomial-time in K. More precisely, there exist a polynomial-time algorithm taking as input (lpar, x) and outputting 1 if x ∈ X lpar , and 0 otherwise; and another polynomial-time algorithm taking as input (lpar, x , w) and outputting R lpar (x , w). In particular, words x in X lpar and witnesses w have polynomial length in K.

Language trapdoor ltrap for lpar. We suppose that Setup.lpar also outputs a (language) trapdoor ltrap associated to lpar. This trapdoor is empty ⊥ in most cases, but for some applications in Sections 5.2, 6.2 and 6.3, we require that ltrap contains enough information to decide whether a word x ∈ X is in L or not (or slightly more information). We notice that for most languages (we are interested in), it is easy to make Setup.lpar output such a trapdoor, without changing the distribution of lpar.

When the trapdoor ltrap is used, we write (lpar, ltrap) $ ← Setup.lpar(gpar). When it is not used, we just write lpar $ ← Setup.lpar(gpar).

Example 2.3.1 (DDH language). The algorithm Setup.gpar(1 K) generates global parameters gpar = (p, G, g) where G is a cyclic group G of prime order p and generated by g. The algorithm Setup.lpar(gpar) picks a random integer z in Z * p and outputs lpar = (gpar, g, h) with h = g z , and ltrap = z. To simplify notation, we write gpar = (p, G, g) and lpar = (g, h), where G stands for a description of G and where we do not explicitly write that lpar contains gpar.

Then the DDH language in basis (g, h) is defined by X = G 2 and:

R(x , w) = 1 ⇐⇒ (u, v) = (g r , h r) with x = (u, v) ∈ X and w = r ∈ Z p .
This implies that:

L = {(u, v) ∈ G 2 | ∃r ∈ Z p , (u, v) = (g r , h r)} . (2.1)
We remark that using ltrap, we efficiently check whether a word (u, v) is in the language or not: for all

(u, v) ∈ G 2 , (u, v) ∈ L ⇐⇒ v = u z .
If we do not require that check to be possible in polynomial time, we can just set ltrap =⊥.

Global parameters gpar and language parameters lpar. As shown in the example, global parameters gpar usually correspond to the description of the groups involved in the construction, while lpar is what actually defines the language. Both are always public. The reason why we separate gpar and lpar is that in the sequel, we will consider combinations (conjunctions and disjunctions for example) of languages over the same groups or related groups, and therefore we need to consider different parameters lpar corresponding to the same global parameters gpar. More generally, in this whole thesis, we suppose that global parameters are common to all the primitives we consider. Notation simplification. In the sequel, in most cases, the global parameters gpar and the language parameters lpar are often omitted to simplify notation. Furthermore, when we talk about a family of languages (L lpar), we implicitly also consider all the algorithms described above. We even often just call the family of languages (L lpar) or (L lpar ⊆ X lpar) lpar , "the language L ⊂ X ". The fact that we are dealing with a family of languages instead of a simple language, and the parameters lpar are implicit.

Finally, we say "for any lpar" to mean: for any security parameter K, any global parameters gpar $ ← Setup.gpar(K), and any parameters lpar $ ← Setup.lpar(gpar). In addition, it is often sufficient that everything holds with overwhelming probability instead of for any lpar. Finally, in the sequel, we often define a language just by giving an equation like Equation (2.1), from which the set X and the witness relation R can be easily deduced.

Historical note 2.3.2.

There has been a large variety of formalizations of (family of) languages for hash proof systems. The formalization we adopt in this thesis is inspired from the one in [BBC+13c;ABP15c]. We tried to make it as expressive and formal as possible, while keeping it relatively simple. Compared to [BBC+13c], for example, we have added the notion of global parameters gpar, used to enable combination of languages (we only enable to combine language with the same global parameters) but we removed the notion of private parameter aux. We basically only need this private parameter for the constructions of password authenticated key exchange (PAKE), and in this case, we can just put it in the word x itself, and add a specific requirement on the PHF. Furthermore, as we do not focus on PAKE in this thesis, avoiding this extra private parameter improves the readability.

Hard-Subset-Membership Languages

In our applications in Chapter 6, we often need to use specific languages which are called hard-subset-membership languages. Informally, a hard subset membership language is a language for which it hard to say whether an element is inside the language or not. We should point out that, except for hard-subset-membership languages, we do not require that L and X are efficiently samplable.

Formally, we have the following definition: to say that x and w are sampled by this algorithm. We also write x $ ← L lpar when we do not care about w . We suppose that for any lpar and any pair (x , w) sampled by this algorithm, we have R lpar (x , w) = 1.

• (X \ L)-samplability. There exists a polynomial-time algorithm which takes as input a parameter lpar and randomly sample words x form X lpar \ L lpar , according to some distribution (which might not be uniform). We write x $ ← X lpar \ L lpar to say that x is sampled via this algorithm. We suppose that for any lpar and any x sampled by this algorithm, we have x ∈ X lpar \ L lpar .

• hard-subset-membership. • (x , w) $ ← R lpar is sampled as follows: w := r $ ← Z p and x := (u, v) := (g r , h r);

• x $ ← X lpar \ L lpar is sampled as follows: r $ ← Z p , s $ ← Z p \ {r}, and (u, v) := (g r , h s).
The only difference is that, in the DDH assumption, in the second case, s is completely independent of r instead of being forced to be distinct from r. This does not matter as when r, s $ ← Z p , the probability that r = s is only 1/p which is negligible.

Language for Zero-Knowledge Arguments

Languages for zero-knowledge arguments are defined similarly to languages for PHF. To easily distinguish them in applications from languages for PHF, we add two dots: ẍ , ẅ , lpar, L , R, Ẍ , Setup.lpar instead of x , w , lpar, L , R, X , Setup.lpar. This notation is also used for the language of other primitives such as implicit zero-knowledge argument (iZK) in Section 6.3. Global parameters gpar are the same in all our applications. In zero-knowledge arguments, we sometimes want to be able to extract part of the witness. For that purpose, we often (but not always) split the witness for language for zero-knowledge arguments in two parts: a part ẅ K which we want to prove knowledge of and so which can be extracted, and a part ẅ∃ for which we only want to prove existence: ẅ = (ẅ K , ẅ∃). Concretely, languages are often written as follows:

L = {ẍ | Kẅ K , ∃ẅ ∃ , R(ẍ , (ẅ K , ẅ∃)) = 1} ⊆ Ẍ ,
where the symbol K is used instead of ∃ to indicate the extractable part of the witness. When there is no extractable part, we either write ẅ K =⊥ or simply use w = ẅ∃ .

Zero-Knowledge Arguments

Let us now introduce zero-knowledge arguments. We start by an informal overview of them, before giving more formal definitions.

For the reader familiar with zero-knowledge arguments, we only consider non-rewinding simulators and extractors in the common reference string (CRS) model. This is useful when such proofs are used in concurrent settings or as building blocks for protocols in the universal composability (UC) framework [START_REF] Canetti | Universally Composable Security: A New Paradigm for Cryptographic Protocols[END_REF]. Furthermore, our arguments are in the quasi-adaptive setting [START_REF] Jutla | Shorter Quasi-Adaptive NIZK Proofs for Linear Subspaces[END_REF], in which the CRS depends on the language.

The same CRS can still be used a polynomial number of times to run the same protocols between the same parties or different parties. In other words, the CRS is supposed to be re-usable.

Reading note 2.4.1. Formal definitions of zero-knowledge arguments are quite complex due to interactivity. Most of the paper should be understandable without a careful reading of Section 2.4. Section 2.4.3 is much easier to follow, as it focuses on the non-interactive case.

Overview

Zero-Knowledge Arguments and Proofs

A zero-knowledge argument or zero-knowledge proof is a protocol enabling some prover to prove that a word or statement ẍ is in a language L . Informally, such a protocol has to satisfy three properties:

• Completeness. An honest verifier always accepts a proof made by an honest prover for a valid word and using a valid witness.

• Soundness. No adversary can make an honest verifier accept a proof of a word ẍ / ∈ L , either statistically (for zero-knowledge proofs) or computationally (for zero-knowledge arguments).

• Zero-knowledge. It is possible to simulate (in polynomial-time) the interaction between a (potentially malicious) verifier and an honest prover for any word ẍ ∈ L without knowing a witness ẅ .

Common reference string and rewinding. In this thesis, we are always in the common reference string (CRS) model, where a trusted setup ZK.Setup generates some CRS crs. For the simulation in the zero-knowledge property, the simulator generates himself the CRS crs and can therefore add a trapdoor trap to it which enables him the simulation.

The implicit global parameters gpar (which often contain a description of the group used, in case of use of cyclic groups of bilinear groups) are common to the argument and the language.

Quasi-adaptivity. We are in the quasi-adaptive model introduced by Jutla and Roy [START_REF] Jutla | Shorter Quasi-Adaptive NIZK Proofs for Linear Subspaces[END_REF], which allows the CRS crs to depend on the parameters lpar of the language. We suppose that crs always implicitly contains lpar and gpar. The soundness property still holds adaptively.

This quasi-adaptive model is sufficient for many applications as explained in [START_REF] Jutla | Shorter Quasi-Adaptive NIZK Proofs for Linear Subspaces[END_REF].

Witness samplability. Our most efficient constructions assume that the setup Setup.lpar outputs a trapdoor ltrap which satisfies some additional properties detailed when needed. This slightly restricts the languages which can be considered. We note however that ltrap is never used in the protocols, but only in the proof of the soundness and zero-knowledge property.

Argument versus proof.

The only difference between argument and proof is the fact the latter requires statistical soundness.

Tag. We consider arguments with tags, which are similar to labels from encryption scheme. As labels are not useful for an IND-CPA encryption scheme, tags are not useful for a classical zero-knowledge argument. However, they can be quite handy, for stronger variants such as simulation-sound zero-knowledge arguments (described below). Later, in Remark 2.4.2, we explain why we use the term "tag" instead of "label" for zero-knowledge arguments.

Variants

(Partial) extractability. As already mentioned in Section 2.3.3, we sometimes consider another property: (partial) extractability which states that there exists an extractor able to simulate a verifier and output a valid partial witness ẅ K from any successful interaction with a polynomial-time adversary playing the role of a prover, on some word ẍ . By valid partial witness, we mean that there exists ẅ∃ such that R(ẍ , (ẅ K , ẅ∃)) = 1.

We consider non-rewinding extractors that use a trapdoor in the CRS crs similarly to the zero-knowledge simulators we consider.

In case ẅ K is not used (ẅ K =⊥), partial extractability is equivalent to soundness.

Honest-verifier zero-knowledge. For some applications, it suffices to consider a weaker version of the zero-knowledge property, called honest-verifier zero-knowledge, which only needs to hold with respect to honest verifiers.

Simulation-extractability/soundness. Simulation-extractibility is a stronger property than extractibility. It states that extractability has to hold even if the adversary can ask for simulated proofs of words of his choice (not necessarily in L). When ẅ K is not used, this property is also called simulation-soundness.

Obviously, we have to add some restrictions on the proofs made by the adversary (from which the extractor finds a partial witness). In this thesis, we use a tag-based approached: proofs made by the adversary have to be done with a tag different from all the simulated proofs. Except for this restriction, the adversary can adaptively choose the tags of the simulated proofs. This is similar to the definition used by Kiltz and Wee in [START_REF] Kiltz | Quasi-Adaptive NIZK for Linear Subspaces Revisited[END_REF] for simulation-sound non-interactive zero-knowledge arguments.

If the set of tags is exponential in the security parameter, we can transform this notion of simulation-extractability into a more classical (stronger) one where the only restriction is that the transcripts of the proofs made by the adversary is different (or do not match with) any transcript of a simulated proof, using a one-time signature: the tag is a fresh public key for the one-time signature scheme and the prover signs the whole transcript at the end and sends the signature to the verifier. If we only want the pair tag-word of the proof made by the adversary to be different from the pairs tag-word (tag, x) of the simulated proofs, we just need to replace the tag by a hash value of the original tag and the word x , using a collision-resistant hash function.

Remark 2.4.2. We use the term "tag" and not "label" as for IND-CCA labeled encryption schemes, because the proof made by the adversary has to be for a different tag than the simulated proofs, even if the transcripts are different. Instead, for IND-CCA, only queries with the same label-ciphertext pair (ℓ, c) as the challenge label-ciphertext pair (ℓ * , c *) are forbideen.

Witness indistinguishability.

Witness indistinguishability states that an adversary cannot distinguish a proof made using one witness w 1 or another witness w 2 for the same word ẍ (and the same tag tag). It is clearly weaker than zero-knowledge. We do not define this property formally, as we just use it to show that some schemes are not zero-knowledge by showing that they are not witness indistinguishable.

Non-Interactive Zero-Knowledge Arguments (NIZK)

An important particular case of zero-knowledge arguments are non-interactive zero-knowledge arguments (NIZK). In a NIZK, the prover just sends one flow to the verifier, called the proof and denoted π. The verifier can then directly check it.

Contrary to zero-knowledge arguments, which can be constructed without using a CRS, NIZK (for non-trivial languages) cannot. NIZK can be used in many more applications than interactive zero-knowledge arguments, but are usually more complex to construct and less efficient.

Formal Definitions of Zero-Knowledge Arguments

In this section, we give formal definitions for partially-extractable zero-knowledge arguments, using the formalism of Garay-MacKenzie-Yang (GMY) in [START_REF] Garay | Strengthening Zero-Knowledge Protocols Using Signatures[END_REF]. We use uniform adversaries and non-rewinding extractors and simulators, without auxiliary information. This not only simplifies definitions but also make them more useful when such proofs are used in concurrent settings or as building blocks in protocols in the UC framework [START_REF] Canetti | Universally Composable Security: A New Paradigm for Cryptographic Protocols[END_REF].

GMY Formalism

For two ITMs A and B, A(priv A), B(priv B) crs (in) is the local output of B after an interactive execution with A using CRS crs, common input in, private inputs priv A and priv B for A and B respectively.9 The transcript tr of a machine is a tuple composed of its common input in, the messages received on its communication input tape and the messages sent through its communication output tape.

For any ITM A, we also denote by A its multi-session extension or protocol wrapper. A works as follows:

• on input message (START, sid, in, priv), A starts a new interactive machine A with session id sid (distinct from all the other session ids), common input in, private input priv and a fresh random tape;

• on input message (MSG, sid, m), A sends the message m to the interactive machine with session id sid (if it exists), and returns the output message of this machine.

All machines A started by A use the same CRS crs.

Let A 1 be the single-session extension of A, which works as A , except it only accepts one START query. The output of A 1 is the tuple (in, tr, v) where in is the common input, tr is the transcript of the machine A started by A 1 and v is the output of A. The output of A is a tuple (in, tr, v) of three vectors, such that (in i , tr i , v i) is the tuple that A 1 would have output for the i-th machine started by A .

Two ITMs B and C are said to be coordinated if they have a single control (and, in particular, a common state), but two distinct sets of input/output communication tapes. For four interactive Turing machines A, B, C and D, with B and C coordinated, (A, B , C, D) crs is the local output of D after an interactive execution with C and an interactive execution between A and B, all using the CRS crs. when we restrict the output of ZK.Ext 1 to the first element b of the ordered pair (b, ẅ K);

(Partially) Extractable

• (Partial) extractability. When playing against the extractor ZK.Ext, a polynomial-time adversary cannot make the extractor accept, while making it unable to extract a valid partial witness ẅ K . Formally, the success probability of an ITM adversary A against partial extractability is defined by the experiment Exp ext depicted in Figure 2.4. ZK is (partially)-extractable if this success probability is negligible for any polynomial-time ITM adversary A.

We remark that soundness is implied by the extraction reference string indistinguishability, extractor indistinguishability, and partial extractability properties. Conversely, these three properties are implied by soundness, when ẅ K is not used, and in that case, we get the classical notion of zero-knowledge arguments (by using ZK.Setup and ZK.Ver as ZK.Ext 1 and ZK.Ext 2 , respectively, and setting trap =⊥ and ẅ K =⊥ in their respective outputs). However, we keep soundness as a security requirement for simplicity.

When we talk about partial extractability, we sometimes mean partial extractability together with extractor indistinguishability and extraction reference string indistinguishability. For example, when we say that some property is implied by partial extractability, it means it is implied by partial extractability, extractor indistinguishability, and reference string indistinguishability.

When soundness holds statistically, ZK is also called a (partially extractable) zero-knowledge proof. When it does not hold statistically, we remark that we need to be very careful as the condition ẍ ∈ Ẍ \ L in the experiment Exp sound might not be testable in polynomial time. The same issue arises with partial extractability.

As labels for IND-CPA encryption schemes, tags tag are not really useful and are omitted if they are not used.

Extractable Honest-Verifier Zero-Knowledge Arguments

Definition 2.4.4. An extractable honest-verifier zero-knowledge argument for a language L ⊆ X is a tuple ZK = (ZK.Setup, ZK.Prove, ZK.Ver, ZK.Sim = (ZK.Sim 1 , ZK.Sim 2), ZK.Ext = (ZK.Ext 1 , ZK.Ext 2)), which satisfies the same properties as a zero-knowledge extractable argument, except that ZK.Sim 2 is now just a polynomial-time algorithm and not an ITM, and the zero-knowledge property is replaced by the following weaker property:

• Honest-verifier zero-knowledge. A polynomial-time adversary cannot distinguish normal proofs made by ZK.Prove from simulated proofs made by ZK.Sim, with regards to an honest verifier. Formally, the advantage of an adversary A against honest-verifier Soundness Honest-Verifier Zero-Knowledge

Exp sound (A, K) gpar $ ← Setup.gpar(1 K) (lpar, ltrap) $ ← Setup.lpar(gpar) crs $ ← ZK.Setup(gpar, lpar) ((tag,ẍ), tr, b) $ ← A(ltrap), ZK.Ver 1 crs if b = 1 and ẍ ∈ Ẍ lpar \ L lpar then return 1 else return 0 Extraction Reference String Indistinguishability Exp ext-crs-ind-0 (A, K) gpar $ ← Setup.gpar(1 K) (lpar, ltrap) $ ← Setup.lpar(gpar) crs $ ← ZK.Setup(gpar, lpar) return A(crs, ltrap) Exp ext-crs-ind-1 (A, K) gpar $ ← Setup.gpar(1 K) (lpar, ltrap) $ ← Setup.lpar(gpar) (crs, trap) $ ← ZK.Ext 1 (gpar, lpar) return A(crs, ltrap) Zero-Knowledge Exp zk-0 (A, K) gpar $ ← Setup.gpar(1 K) (lpar, ltrap) $ ← Setup.lpar(gpar) crs $ ← ZK.Setup(gpar, lpar) return ZK.Prove , A(ltrap) crs Exp zk-1 (A, K) gpar $ ← Setup.gpar(1 K) (lpar, ltrap) $ ← Setup.lpar(gpar) (crs, trap) $ ← ZK.Sim 1 (gpar, lpar) return ZK.Sim ′ (trap) , A(ltrap) crs Partial Extractability Exp ext (A, K) gpar $ ← Setup.gpar(1 K) (lpar, ltrap) $ ← Setup.lpar(gpar) crs $ ← ZK.Setup(gpar, lpar) ((tag,ẍ), tr, (b, ẅ K)) $ ← A(ltrap), ZK.Ext(trap) 1 crs if b = 1 and ∀ẅ ∃ , R(ẍ , (ẅ K , ẅ∃)) = 0 then return 1 else return 0
Exp hvzk-0 (A, K) gpar $ ← Setup.gpar(1 K) (lpar, ltrap) $ ← Setup.lpar(gpar) crs $ ← ZK.Setup(gpar, lpar) (st, (tag,ẍ), (ẅ K , ẅ∃)) $ ← A(crs, ltrap) if R(ẍ , (ẅ K , ẅ∃)) = 1 then b $ ← ZK.Prove((ẅ K , ẅ∃)), ZK.
Ver crs (tag,ẍ) tr ← the previous transcript r ← the random tape of ZK.Ver return A(st, tr, r) else return 0 • Simulation partial extractability. When playing against the extractor ZK.Ext, a polynomial-time adversary cannot make the extractor accept, while making it unable to extract a valid partial witness ẅ K , even if it has access to simulated proofs for any words ẍ of its choice. Formally, the success probability of two coordinated ITM adversaries A 1 and A 2 against simulation partial extractability is defined by the experiment Exp sim-ext depicted in Figure 2.6. ZK is simulation-(partially)-extractable if this success probability is negligible for any coordinated polynomial-time ITM adversaries A 1 and A 2 . Simulation partial extractability implies extractability. Furthermore, when ẅ K is not used, simulation partial extractability (together with extraction reference string indistinguishability and extractor indistinguishability) corresponds to simulation-soundness.

Exp hvzk-1 (A, K) gpar $ ← Setup.gpar(1 K) (lpar, ltrap) $ ← Setup.lpar(gpar) crs $ ← ZK.Setup(gpar, lpar) (st, (tag,ẍ), (ẅ K , ẅ∃)) $ ← A(crs, ltrap) if R(ẍ , (ẅ K , ẅ∃)) = 1 then (tr, r) $ ← ZK.Sim 2 (crs, trap, (tag,ẍ)) return A(st,

Simulation-Extractability

Exp sim-ext (A 1 , A 2 , K) gpar $ ← Setup.gpar(1 K) (lpar, ltrap) $ ← Setup.lpar(gpar) (crs, trap) $ ← ZK.Sim 1 (gpar, lpar) (st, (tag,ẍ), (ẅ K , ẅ∃)) $ ← A(crs) (ẍ , tr, (b, ẅ K)) $ ← (ZK.Sim 2 (trap) , A 1 (ltrap) , A 2 (
We also consider t-time simulation-extractability and t-time simulation-soundness that are similar except that the simulator can only be called at most t times.

Non-Interactive Zero-Knowledge Arguments

Non-interactive zero-knowledge arguments are particular cases of zero-knowledge arguments, except that ZK.Prove and ZK.Sim 2 just output the proof π for the word ẍ on their communication output tape and do not use their communication input tapes, while ZK.Ver and ZK.Ext 2 just read this proof π from their communication input tapes and do not use their communication output tapes. Security properties are defined exactly the same way.

As dealing with ITM is more cumbersome than with classical algorithms, we re-define NIZK as a tuple of probabilistic polynomial-time algorithms NIZK = (NIZK.Setup, NIZK.Prove, NIZK.Ver, NIZK.Sim = (NIZK.Sim 1 , NIZK.Sim 2), NIZK.Ext = (NIZK.Ext 1 , NIZK.Ext 2)), where:

• NIZK.Setup(gpar, lpar) outputs a CRS crs;

• NIZK.Prove(crs, tag,ẍ , (ẅ K , ẅ∃)) outputs a proof π with tag tag for the word ẍ using the witness (ẅ K , ẅ∃);

• NIZK.Ver(crs, tag,ẍ , π) outputs 1 if π is a valid proof with tag tag for ẍ , and outputs 0 otherwise;

• NIZK.Sim 1 (gpar, lpar) outputs a CRS crs and a trapdoor trap;

• NIZK.Sim 2 (crs, trap, tag,ẍ) outputs a simulated proof π with tag tag for the word ẍ ;

• NIZK.Ext 1 (gpar, lpar) outputs a CRS crs and a trapdoor trap;

• NIZK.Ext 2 (crs, trap, tag,ẍ , π) outputs a pair (b, ẅ K) where b = 1 if the proof is valid and 0 otherwise, and ẅ K is a partial witness (if b = 1);

Projective Hash Functions

In this section, we define the central cryptographic primitive of this thesis: projective hash functions (PHFs). As already explained in the introduction, a PHF is defined over an NP language. We therefore first define the kind of languages we are considering before defining PHF and some of its associated security notions: smoothness and universality.

PHFs have been introduced by Cramer and Shoup in their seminal paper [START_REF] Cramer | Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption[END_REF]. We follow Abdalla, Chevalier, and Pointcheval in [START_REF] Abdalla | Smooth Projective Hashing for Conditionally Extractable Commitments[END_REF] for the formalization of PHFs and their associated languages. In particular, we use long algorithm names for each function or algorithm in a PHF, instead of short one letter names as in [START_REF] Cramer | Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption[END_REF]. We also consider two variants of smoothness which slightly differ from the original smoothness definition. These differences are explained in more details in this section.

Projective Hash Functions (PHFs)

Definition 2.5.1. A projective hash function (PHF) for a language (L lpar) is defined by a tuple of four polynomial-time algorithms (HashKG, ProjKG, Hash, ProjHash), where:

• HashKG(lpar) generates a hashing key hk for the language parameters lpar;

• ProjKG(hk, lpar, x) deterministically derives a projection key hp from the hashing key hk, the language parameters lpar, and possibly the word x ∈ X lpar ;

• Hash(hk, lpar, x) deterministically outputs a hash value H from the hashing key hk, for the word x ∈ X lpar and the language parameters lpar;

• ProjHash(hp, lpar, x , w) deterministically outputs a projected hash value pH from the projection key hp, and the witness w , for the word x ∈ L lpar (i.e., R lpar (x , w) = 1) and the language parameters lpar;

The set of hash values is called the range and is denoted by Π. It is often a cyclic group. We suppose that it is possible to pick a uniform element of Π in polynomial time. We always suppose that its size is exponential in the security parameter K so that the probability to guess correctly a uniform hash value is negligible.

A PHF has to satisfy the following property:

• Perfect correctness. For any lpar and any word x ∈ L lpar with witness w (i.e., such that R lpar (x , w) = 1), for any hk $ ← HashKG(lpar) and for hp ← ProjKG(hk, lpar), Hash(hk, lpar, x) = ProjHash(hp, lpar, x , w) .

Dependence of hp on x . Originally, in [START_REF] Cramer | Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption[END_REF], the projection key hp was supposed to be computed independently of x . That is, ProjKG did not take x as an input. In some applications, the independence of hp and x is required. But, in other applications, such as PAKE, as remarked by Gennaro and Lindell [KOY09; GL06], this is not required and allowing hp to depend on x enables to get more efficient PHF for more languages. In this manuscript, we consider both cases, and indicate in which case we are, whenever necessary.

Smooth Projective Hash Functions (SPHFs)

To satisfy the correctness property of a PHF, we could just set hk = hp and not use any witness at all. In addition to correctness, many security notions exist for PHFs. We start by introducing one of the simplest ones: smoothness. Later in this manuscript, we will introduce other security notions for PHF, both stronger (to construct more complex applications) and weaker (to handle more languages). A smooth PHF is called a smooth projective hash function (SPHF).

We consider two variants of smoothness. Both these variants are different from the original smoothness definition of Cramer and Shoup, which supposed that words were randomly chosen and so which cannot easily handle words generated by malicious adversaries. It should however be remarked that all the constructions of SPHF in [START_REF] Cramer | Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption[END_REF] satisfy both our smoothness definitions.

Essentially, smoothness says that knowing only hp (but not hk), the hash value H of a word x / ∈ L lpar looks uniformly random in the set of possible hash values Π.

Smoothness for GL-SPHF and CS-SPHF

Definition 2.5.2. A PHF (HashKG, ProjKG, Hash, ProjHash) for a language L ⊆ X is ε-GL/CS-smooth if for any lpar and any word x ∈ X lpar \ L lpar , the following distributions are ε-close:

(hp, H) | hk $ ← HashKG(lpar); hp ← ProjKG(hk, lpar, x); H ← Hash(hk, lpar, x) (hp, H) | hk $ ← HashKG(lpar); hp ← ProjKG(hk, lpar, x); H $ ← Π . A PHF is GL/CS-smooth if it is ε-GL/CS-smooth with ε negligible in K.
An SPHF satisfying this smoothness definition is called

• a CS-smooth projective hash function (CS-SPHF) if hp does not depend on x (i.e., ProjKG does not use its input x); the name CS-SPHF comes from the fact this kind of SPHF is the closest one to the original notion of strong smoothness10 of Cramer and Shoup, the only difference being that our smoothness holds for any word x ∈ X lpar \L lpar , while the original definition only holds on average on such words;

• a GL-smooth projective hash function (GL-SPHF) if hp may depend on x ; the name GL-SPHF comes from the fact that this variant has been introduced by Gennaro and Lindell in [START_REF] Gennaro | A Framework for Password-Based Authenticated Key Exchange[END_REF].

Smoothness for KV-SPHF

In [START_REF] Katz | Round-Optimal Password-Based Authenticated Key Exchange[END_REF], Katz and Vaikuntanathan remarked that in their one-round PAKE protocol, x can be maliciously generated by the adversary after seeing hp. So the classical smoothness notion is not sufficient here, since it only ensures that H looks uniformly random when hk and hp are chosen independently of x . We therefore consider a stronger smoothness definition.

SPHFs satisfying this stronger security notion are called KV-smooth projective hash function (KV-SPHF). Obviously the projection key hp of a KV-SPHF cannot depend on the word x .

Definition 2.5.3. A PHF (HashKG, ProjKG, Hash, ProjHash) for a language L ⊆ X is ε-KVsmooth if for any lpar and any function11 f from the set of possible projection keys hp to X lpar \ L lpar , the following distributions are ε-close:

(hp, H) | hk $ ← HashKG(lpar); hp ← ProjKG(hk, lpar); H ← Hash(hk, lpar, f (hp)) (hp, H) | hk $ ← HashKG(lpar); hp ← ProjKG(hk, lpar); H $ ← Π . A PHF is KV-smooth if it is ε-KV-smooth with ε negligible in K.
Remark 2.5.4. In general, an ε-smooth CS-SPHF is not necessarily an ε-smooth KV-SPHF.

For example, the projection key hp of a CS-SPHF might contain a random word in X \ L and its corresponding hash value, while the projection key of a KV-SPHF cannot. However, a 0-smooth (or perfectly smooth) CS-SPHF is also a 0-smooth (or perfectly smooth) KV-SPHF, as in that case both distributions in the CS smoothness definition are actually equal and so stay equal when conditioned on the value of hp.

Simple Applications of SPHFs

We now show some simple applications of SPHFs, with a dual goal: to help to better understand what SPHFs and in the same time, and to give some intuition of their restrictions (in particular regarding zero-knowledge) and how these restrictions have been lifted in our works. More precisely, the main message we want to convey is the following:

An SPHF does not provide any security when the projection key is maliciously generated. That often means that naive use of SPHF does not provide any kind of zero-knowledge property but generally only an honest-verifier zero-knowledge property.

We keep the description of the applications in this section slightly informal for readability. Formal applications of the tools introduced in this thesis are later provided in particular in Chapter 6.

Prover

Verifier Input: (x , w) CRS: lpar Input:

x hp ← --------- hk $ ← HashKG(lpar) hp ← ProjKG(hk, lpar, x) pH ← ProjHash(hp, lpar, x , w) pH ---------→ H ← Hash(hk, lpar, x) if pH = H then accept else reject Figure 2
.8: Honest-verifier zero-knowledge proof from an SPHF

Honest-Verifier Zero-Knowledge Proofs

The simplest application of SPHF for a language L ⊆ X is certainly the construction of an honest-verifier zero-knowledge proof for the same language L := L ⊆ X =: Ẍ . The construction is depicted in Figure 2.8: the verifier generates a hashing key hk and an associated projection key hp, sends the latter, and asks the prover to give him the hash value of the word x the prover wants to prove to be in L . The verifier accepts if and only if the received hash value is equal to the one he can compute using the hashing key hk.

On the one hand, if the prover knows a witness w for x , he can just compute this hash value using the projection key hp and this witness w , and the verifier will accept the proof. Thus, we get correctness.

On the other hand, if the word x is not in the language, the smoothness property ensures that the hash value expected by the adversary is statistically indistinguishable from a random value. As the size of the set Π is exponential in the security parameter K, the probability that the prover can guess the hash value is negligible in K. Thus we get statistical soundness.

It remains to prove perfectly honest-verifier zero-knowledge. This is straightforward, as when the verifier is honest, he already knows what the prover will send to him! So he definitely can learn nothing and simulation is straightforward

We remark that the construction works for any variant of SPHF: GL-SPHF, CS-SPHF, and KV-SPHF. When a KV-SPHF is used, the first flow can be sent before the word x is known, and the protocol remains secure. This would not necessarily be the case with a GL-SPHF (actually, the modified protocol cannot even be constructed if hp needs to depend on the word x) or a CS-SPHF.

We might wonder if this construction is zero-knowledge and not only honest-verifier zeroknowledge. Unfortunately, this is not the case. We can see two intuitive reasons for that. First, given a projection key hp, an SPHF does not provide anyway to compute a corresponding hash value H for a word x ∈ L if we do not know the witness. Actually, this is even worse than that: if the language is hard-subset-membership, then it is computationally hard to tell if x ∈ L or not, and if it is not, there is statistically no way to compute H. Second, even if we manage to solve this issue, it is still possible that the verifier can construct the projection key hp in some way it reveals information about the witness w used by the prover.

An important question in this thesis is to find ways to add zero-knowledge to SPHFs. The main tool for that is the classical "or" trick.

Witness Encryption and Limitations of SPHF

In [START_REF] Garg | Witness encryption and its applications[END_REF], Garg et al. introduced a new primitive called witness encryption, which can be seen as a computational version of GL-SPHF. Intuitively, a witness encryption scheme enables a user to encrypt a message m to any user who knows a witness for some word x . It can be seen as a generalization of a classical encryption scheme which enables a user to encrypt a message m to any user knowing the decryption key dk associated to some encryption key

x = ek.
Concretely, it is possible to construct witness encryption for any language handled by a GL-SPHF. To encrypt some message m to some word x , we just pick a random hashing key hk, derive a projection key hp from hk (and possibly x), and output the ciphertext c = (hp, c ′) with c ′ := H xor m and H is the hash value of the word x .12 Anyone knowing a witness w for the word x , can compute H as pH using the projection key hp and this witness w , and then recover the message m by computing c ′ xor pH.

In [START_REF] Garg | Witness encryption and its applications[END_REF], Garg et al. showed that statistical witness encryption (and therefore SPHF) cannot exist for any NP language13 unless the polynomial hierarchy collapses. This comes from the fact that, as shown in Section 2.5.3.1, an SPHF for some language L directly yields a statistical honest-verifier zero-knowledge proof for the same language, which implies that L is in the complexity class SZK [START_REF] Goldreich | Honest-Verifier Statistical Zero-Knowledge Equals General Statistical Zero-Knowledge[END_REF]. But we know that SZK ⊆ AM ∩ co-AM [For87; AH91], and therefore the existence of an SPHF for any NP language implies that NP ⊆ AM ∩ co-AM, which in turn implies that the polynomial hierarchy collapses [START_REF] Ravi B Boppana | Does co-NP have short interactive proofs?[END_REF].

Sending a Message to a Secret Agent

A nice application of SPHF (and actually just of witness encryption too) is the following. Let us suppose that Alice is a secret agent and she wants to receive some information (a message m) from some informer, Bob. Alice has a certificate signed by the CIA that she is a secret agent but does not want to reveal it to any informer, for obvious reasons. On the other hand, the informer does not want to give m to a bad guy and really wants to be sure that only an official secret agent will be able to read the message.

This seems completely infeasible, but SPHF enables to do it. Actually, it is not just theoretical but efficient and practical, at least for the purely cryptographic part.

Suppose that there is some CRS containing an encryption key lpar = ek for an IND-CPA encryption scheme. Also suppose that the secret agent has some certificate σ (under some public key pk)14 and that the language L of valid encryption of valid certificates has an associated SPHF:

L := {x | ∃r, ∃σ, x = Enc(ek, σ; r) and σ is a valid certificate for pk}
If the certificate is a Waters signature15 [Wat05] and the encryption scheme is ElGamal over the same cyclic group, this is efficiently implementable, as checking a Waters signature can

Informer

Secret agent Input: message m CRS: lpar = (ek, pk)

Input: certificate σ c ← --------- c $ ← Enc(ek, σ; r) with fresh random coins r hk $ ← HashKG(lpar) hp ← ProjKG(hk, lpar) H ← Hash(hk, lpar, c) c ′ ← H xor m hp, c ′ ---------→ pH ← ProjHash(hp, lpar, c, (r, σ)) m ← c ′ xor pH Output the message m Figure 2
.9: Protocol enabling an informer to send a message m to a secret agent be done using a simple pairing equation and SPHF can handle verification of pairing equation of encrypted group elements (see Section 3.4.3).

The protocol is described in Figure 2.9. The secret agent encrypts its certificate under the encryption key ek in the CRS and sents the resulting ciphertext c to the informer. The informer generates a hashing key hk, derives a projection key hp, and uses the hash value H of c under hk as a one-time pad (or mask) for the message m: c ′ := H xor m. 16 He then sends the projection key hp together with c ′ . If the secret agent encrypted a valid certificate σ, using the random coins r used by the encryption, the certificate, and hp, he can compute the projected hash value pH (which is equal to H by correctness of the SPHF) and recover the message from c ′ , as m = c ′ xor pH.

If the secret agent is not a real secret agent, he does not know any certificate σ and therefore has no way to produce a ciphertext c of a valid certificate. In other words, the ciphertext c sent by a fake secret agent will not be in L . Thus, the smoothness of the SPHF ensures that from the secret agent point of view (who only sees hp and c ′ but not hk), H is uniformly random and completely masks the message m.

We remark that this protocol actually ensures a very strong property of forward secrecy: if the fake secret agent later becomes a real secret agent, it is already too late. As c / ∈ L lpar , there is no way for him to recover the message m sent to him while he was not a secret agent yet. Furthermore this property holds statistically. Concretely, this means that the message m remains completely hidden, even if later the encryption scheme used is broken, e.g., by quantum computers.

When the informer is honest, he clearly learns nothing, as he knows exactly what a real secret agent will get at the end. However, similarly to the honest-verifier zero-knowledge protocol in Section 2.5.3.1, this protocol might not be secure in case of a malicious informer (which corresponds to the verifier in Section 2.5.3.1): the informer might generate an invalid projection key hp such that depending on the certificate of the secret agent, the secret agent will read two different messages and later act differently. If everything ends when the secret agent receives the message and nothing happens later, this does not matter; but this is a rather restrictive model. In general, a stronger notion is required.

IND-CPA Encryption Scheme

A CS-SPHF for any hard-subset-membership language L can be used to construct an IND-CPA encryption scheme in a straightforward manner. The construction is as follows:

• Setup.gpar(1 K) generates the global parameters gpar $ ← Setup.gpar(1 K) and the language parameters lpar $ ← Setup.lpar(gpar ′) for the language L and outputs the (encryption) global parameters gpar ′ := lpar;

• KeyGen(gpar ′) generates a random hashing key hk $ ← HashKG(lpar), derives the projection key hp ← ProjKG(hk, lpar), and outputs (ek, dk) := (hp, hk);

• Enc(ek, m) generates a random pair (x , w) $ ← R lpar and outputs the ciphertext c := (x , c ′) with c ′ := pH xor m where pH ← ProjHash(hp, lpar, x , w);17

• Dec(dk, c) outputs c ′ xor H, where H ← Hash(hk, lpar, x).

Correctness follows from the correctness of the SPHF.

To prove the IND-CPA security, note that the simulator can also generate the part c ′ of the ciphertext as c ′ := H xor m where H ← Hash(hk, lpar, x). Since, in that case it does not need to use w , this is indistinguishable to the case where it generates x as x $ ← X lpar \ L lpar , thanks to hard subset membership. Finally, smoothness ensures that in this setting, H is uniformly random in Π and therefore completely masks the message c ′ .

Chapter 3 Diverse Vector Spaces

As a warm-up for diverse modules (DMs) which constitute the core of this thesis and as an important particular case, we introduce diverse vector spaces (DVSs). Intuitively, a DVS is a way to describe languages which can be seen as subspaces of some vector space over some finite field. Cramer and Shoup already showed in their seminal paper [START_REF] Cramer | Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption[END_REF] that such languages automatically admit SPHFs. This class of languages might seem very restrictive, but actually encompasses many languages from Diffie-Hellman-like languages to tuples of ElGamal-like ciphertexts satisfying a system of multi-exponentiation equations or even quadratic bilinear pairing equations (when over a bilinear group). Furthermore, as far as we know, all the existing constructions of SPHFs over cyclic groups follow from this construction (or are minor variants thereof).

In this chapter, we first define DVSs and give an overview of the expressive power of DVSs on some examples. We then show that DVSs can be combined together: given two DVSs, we design a new DVS corresponding to their conjunction and disjunction (under some simple conditions in some cases). Next, we show how to use disjunctions of DVSs to construct constant-size non-interactive zero-knowledge proofs. We conclude with some more advanced examples of DVSs. -55 -

Contents

First

First Examples, Definition, and Link with SPHFs

Step-by-Step Overview

In this overview, we introduce the various properties and elements of DVSs step by step. We start with a very simple DVS for a very simple language: the DDH language, which can directly be seen as a subspace of some vector space. We then extend DVS to more complex languages which are not directly subspaces of some vector space, but which can be transformed into; or languages for which the subspace might depend on the word x of the language or even on some random coins to allow efficient batching.

The DDH Language as a Subspace of a Vector Space

Let (p, G, g) be a cyclic group and let us look back at the DDH language L defined in Example 2.3.1:

L = {(u, v) ∈ G 2 | ∃r ∈ Z p , (u, v) = (g r , h r)} G 2 = X .
If the group law of G is denoted additively, (G,), instead of multiplicatively, (G, •), and if we use the symbol • to denote exponentiation by a scalar, we could have written this language as:

L = {(u, v) ∈ G 2 | ∃r ∈ Z p , (u, v) = (r • g, r • h) .
This notation makes us think about matrix multiplication, and we would like to write:

L = {(u, v) ∈ G 2 | ∃r ∈ Z p , (u, v) = r • (g, h)} .
Looking at (G, •) or (G,) as (Z p , +), we could see L as the subspace of the vector space X = G 2 generated by the row vector (g, h). If we transpose everything to use more classical notation, we get:

L = u v ∈ G 2 ∃r ∈ Z p , u v = r • g h ,
which can also be rewritten as:

L = Span g h .

Constructing an SPHF for the DDH Language

Looking back at the definition of an SPHF, from a high level point of view, we can see a (perfectly smooth) SPHF as a random function α : X → Π defined by some random hashing key hk, for which it is possible to derive a projection key hp which only defines this function α on L . In our case, as the language is a subspace, a (uniformly) random linear function works, since the values of such a function on a subspace only defines this function on the subspace and not outside the subspace.

Concretely, this function α can just be a random function from X * , the dual of X , i.e., the set of linear functions from X to G. Such a function α can be defined by row vector α ⊺ ∈ Z 1×2 p , as follows: α(θ) = α ⊺ • θ, for any vector θ ∈ G 2 . The hash value of a word x is then

H := α(x) := α ⊺ • x = u α 1 • v α 2 , when x = u v
is seen as a column vector in G 2 . Then, the projection key hp and the projected hash value pH for c with witness r = w are:

hp := γ := α(g h) = α ⊺ • g h = g α 1 • h α 2 ∈ G pH := γ • r = γ r ∈ G .
Correctness follows from the fact that if (u, v) = (g r , h r):

H = α ⊺ • x = α ⊺ • g h • r = γ ⊺ • r = pH .
Smoothness directly comes from the previous discussion: even knowing the function α on every word in L does not give any information about its value outside L , as L is a vector space. A formal proof is provided later in Section 3.1.2.3.

Historical note 3.1.1. This SPHF for the DDH language was explicitly proposed by Cramer and Shoup in [START_REF] Cramer | Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption[END_REF], but the ideas were already implicit in [START_REF] Cramer | A Practical Public Key Cryptosystem Provably Secure Against Adaptive Chosen Ciphertext Attack[END_REF].

ElGamal: Introducing θ

Now that we have an SPHF for the DDH language, we can design an SPHF for the language of pairs x = (m, c), where c is an ElGamal ciphertext of a message m in some message set M , under the public key lpar = ek = (g, h) ∈ G 2 (see Section 2.2.2.2 for the definition of the ElGamal encryption scheme):

L = {(m, c = (u, v)) ∈ M × G 2 | ∃r ∈ Z p , (u, v) = (g r , h r • G(m))} ,
with G a reversible map from the message set M to G. We write M = G(m). We just need to use the SPHF for the DDH language on the word (u, v/M):

hk := α ⊺ $ ← Z 1×2 p hp := γ ⊺ := α ⊺ • g h ∈ G H := α ⊺ • u v/M = u α 1 • (v/M) α 2 ∈ G pH := γ ⊺ • r ∈ G .
We remark that, when the map G is not linear, the language L cannot be seen directly as a subspace of some vector space over Z p or G. But still, we can construct an SPHF, because we can map words

x = (m, c = (u, v)) ∈ X to vectors (u, v/M) ⊺ ∈ G 2 , which live in the subspace of G 2 generated by (g, h) ⊺ if and only if c is an ElGamal ciphertext of m.
That is why, in the definition of a DVS, we do not require that the language is really a subspace, but only that there exists an (efficiently computable) function θ from X to some vector space X such that: θ(x) is in some subspace L of X if and only if x ∈ L . In the previous example:

θ(x) := (u, v/M) ⊺ ∈ G 2 =: X with x = (m, c = (u, v)) ∈ X , and L := Span g h G 2 =: X .
We should point out that there is no restriction at all on θ, except that it should be computable in polynomial time.

The DDH language can also be represented this way by setting X := X , L := L , and θ the identity function.

Introducing more Dimensions

In the previous examples, the subspace L is of dimension 1 in a vector space X of dimension 2. But there are no reasons to restrict ourselves to such small dimensions. Let us now show an example of a language of higher dimension.

Example 3.1.2 (encryption of a DH tuple). The global parameters are gpar := (p, G, g), with G being a cyclic group of prime order p generated by g, while the language parameters are lpar := (g, h, g ′ , h ′) ∈ G 4 where ek := (g, h) is a random ElGamal encryption key, and where g ′ and h ′ are two random generators of G. We consider the language of ElGamal encryption of DH tuples as follows:

L = {(u 1 , v 1 , u 2 , v 2) ⊺ ∈ G 4 | ∃r 1 , r 2 , r ′ ∈ Z p , (u 1 , v 1 , u 2 , v 2) = (g r 1 , h r 1 • g ′r ′ , g r 2 , h r 2 • h ′r ′)} .
In other words, a word

(u 1 , v 1 , u 2 , v 2) is in the language if and only if the ciphertexts (u 1 , v 1) and (u 2 , v 2) encrypt two elements u ′ ∈ G and v ′ ∈ G under ek, such that (g ′ , h ′ , u ′ , v ′) is a DH tuple.
This language can directly be seen as a DVS with θ the identity function:

L := L = Span           g h 1 G 1 G      ,      1 G 1 G g h      ,      1 G g ′ 1 G h ′           = ColSpan (Γ) G 4 = X =: X ,
where Γ is the matrix:

Γ :=      g 1 G 1 G h 1 G g ′ 1 G g 1 G 1 G h h ′      ∈ G 4×3 .
We can now define an SPHF as follows:

hk := α ⊺ $ ← Z 1×4 p hp := γ ⊺ :=      α           g h 1 G 1 G           , α           1 G 1 G g h           , α           1 G g ′ 1 G h ′                = α ⊺ • Γ ∈ G 1×3 H := α ⊺ • x = u α 1 1 • v α 2 1 • u α 3 2 • v α 4 2 ∈ G pH := γ ⊺ •    r 1 r 2 r ′    ∈ G .
The projection key hp is now a row vector of 3 elements, as it has to define the linear map α over a subspace of dimension 3, namely L .

Introducing Dependence on Word (GL-SPHF)

In all the previous examples, the subspace L of X is independent of the word x . We can also consider languages where L depends on x , which we sometimes write Lx instead of L .

In this case however, we only get a GL-SPHF (compared to KV-SPHF in all the previous examples), as the projection key hp depends on L , or more precisely on the chosen basis of L .

Example 3.1.3 (encryption of a bit). The global parameters are gpar := (p, G, g), with G being a cyclic group of prime order p generated by g, while the language parameters are lpar := (g, h) ∈ G 2 where ek := (g, h) is a random ElGamal encryption key. We consider the language of ElGamal encryption of a bit:

L = {(u, v) ⊺ ∈ G 2 | ∃r ∈ Z p , ∃b ∈ {0, 1}, (u, v) = (g r , h r • g b)} .
This language cannot be directly be seen as a DVS, as b is a bit and not a scalar in Z p . However, we can transform L into a subspace of the vector space X := G 4 using the following function θ and the following space X and subspace Lx :

θ(x) := (u, v, 1 G , 1 G) ⊺ ∈ G 4 =: X with x = (u, v) ⊺ ∈ G 2 Lx := ColSpan (Γ(x)) G 4 =: X with Γ(x) :=      g 1 G 1 G h g 1 G 1 G u g 1 G v/g h      . Indeed, if x = (u, v) ⊺ is a word in L with witness w = (r, b), then θ(x) = Γ(x) • λ(x , w) with λ(x , w) =    r b -rb    .
(3.1)

Conversely, if θ(x) ∈ L , then there exists λ = (λ 1 , λ 2 , λ 3) ⊺ ∈ Z 3 p such that θ(x) = Γ • λ, i.e.:              u = g λ 1 v = h λ 1 • g λ 2 1 G = u λ 2 • g λ 3 1 G = (v/g) λ 2 • h λ 3 . If we write (u, v) = (g r , h r • g b) (with r, b ∈ Z p , which is always possible), then the first three equations ensure that λ 1 = r, λ 2 = b and λ 3 = -rb, while the last equation ensures that b(b -1) = 0, i.e., b ∈ {0, 1}, as it holds that (h r g b /g) b h -rb = g b(b-1) = 1. Therefore, θ(x) ∈ L if and only if x ∈ L ,

which is exactly what we want.

We can now define an SPHF as follows:

hk := α ⊺ $ ← G 1×4 hp := γ ⊺ := α ⊺ • Γ(x) ∈ G 1×3 H := α ⊺ • θ(x) = u α 1 • v α 2 ∈ G pH := γ ⊺ • λ(x , w) ∈ G ,
with λ being defined as in Equation (3.1). Contrary to all the previous examples, hp depend on x . Therefore, the above SPHF is only a GL-SPHF.

Introducing Pairings and Quadratic Equations

All the previous examples were just over cyclic groups. We can actually handle more complex languages over bilinear groups, or even ideal multilinear groups.

Let us consider an asymmetric bilinear group (p, G 1 , G 2 , G T , e). We naturally extend our operations and • as follows, for any x, y

∈ Z p , u 1 , v 1 ∈ G 1 , u 2 , v 2 ∈ G 2 and u T , v T ∈ G T : x y = x + y x • y = x • y u 1 v 1 = u 1 • v 1 x • u 1 = u x 1 u 2 v 2 = u 2 • v 2 x • u 2 = u x 2 u T v T = u T • v T u 1 • u 2 = e(u 1 , u 2) x • u T = u x T .
Here is now a simple example.

Example 3.1.4 (encryption of two elements (M 1 , M 2) satisfying e(M 1 , M 2) = E). The global parameters are gpar := (p, G 1 , G 2 , G T , g 1 , g 2),
an asymmetric bilinear group of order p. The language parameters are lpar :

= (g 1 , h 1 , g 2 , h 2 , E) ∈ G 2 1 × G 2 2 × G T
where ek 1 := (g 1 , h 1) and ek 2 := (g 2 , h 2) are two random ElGamal encryption keys in G 1 and G 2 respectively, while E is a group element in G T . We consider the language of ElGamal encryptions of two elements

M 1 ∈ G 1 and M 2 ∈ G 2 such that e(M 1 , M 2) = E: L = {(u 1 , v 1 , u 2 , v 2) ⊺ ∈ G 2 | ∃r 1 , r 2 ∈ Z p , M 1 ∈ G 1 , M 2 ∈ G 2 , (u 1 , v 1 , u 2 , v 2) = (g r 1 , h r 1 • M 1 , g r 2 , h r 2 • M 2) and e(M 1 , M 2) = E} .
This language cannot be directly be seen as a DVS, as it is quadratic. However, we can transform L into a subspace of the vector space X := G 4 T using the following function θ and the following subspace Lx :

θ(x) :=      -u 1 • u 2 u 1 • v 2 v 1 • u 2 v 1 • v 2 E      =      e(u 1 , u 2) -1 e(u 1 , v 2) e(v 1 , u 2) e(v 1 , v 2)/E      with x = (u 1 , v 1 , u 2 , v 2) ⊺ Lx := ColSpan (Γ(x)) G 4 T =: X with Γ(x) :=      g 1 • g 2 1 G 1 1 G 2 1 G T g 1 1 G 2 1 G T 1 G 1 g 2 h 1 • h 2 h 1 h 2      . Indeed, if x = {(u 1 , v 1 , u 2 , v 2)} ⊺ is a word in L with witness w = (r 1 , r 2 , M 1 , M 2), then θ(x) = Γ(x) • λ(x , w) with λ(x , w) =    -r 1 r 2 r 1 • v 2 r 2 • v 1    =    -r 1 r 2 v r 1 2 v r 2 1    , (3.2)
as:

u 1 • u 2 = (r 1 • g 1) • (r 2 • g 2) = (r 1 r 2) • (g 1 • g 2) , u 1 • v 2 = (r 1 • g 1) • v 2 = (r 1 • v 2) • g 1 , v 1 • u 2 = v 1 • (r 2 • g 2) = (r 2 • v 1) • g 2 , v 1 • v 2 E = v 1 • v 2 (v 1 r 1 • h 1) • (v 2 r 2 • h 2) = r 1 • h 1 • r 2 • h 2 r 1 • h 1 • v 2 v 1 • r 2 • h 2 = (-r 1 r 2) • (h 1 • h 2) (r 1 • h 1) • v 2 (r 2 • v 1) • v 2 . Conversely, if θ(x) ∈ L , then there exists λ = (λ 1 , λ 2 , λ 3) ⊺ ∈ Z p × G 1 × G 2 such that θ(x) = Γ • λ, which gives four equations (one per row of Γ). If we write (u 1 , v 1 , u 2 , v 2) = (g r 1 , h r 1 • M 1 , g r 2 , h r 2 2 • M 2) (with r 1 , r 2 ∈ Z p , M 1 ∈ G 1 , and M 2 ∈ G 2 ,

which is always possible), then the first three equations ensure that λ

1 = -r 1 r 2 , λ 2 = r 1 • v 2 and λ 3 = r 2 • v 1 , while the last equation ensures that e(M 1 , M 2) = M 1 • M 2 = E. Therefore, θ(x) ∈ L if and only if x ∈ L , which is exactly what we want.
We can now define an SPHF as follows:

hk := α ⊺ $ ← Z 1×4 p hp := γ ⊺ := α ⊺ • Γ(x) ∈ G T × G 1 × G 2 H := α ⊺ • θ(x) ∈ G T pH := γ ⊺ • λ(x , w) ∈ G T ,
with λ being defined as in Equation (3.2).

Introducing Randomness and Batching

In some cases, we might want to slightly randomize everything to do some batching. Concretely, let us suppose we want to construct an SPHF for the language of tuples of 42 DH pairs. We could construct 42 SPHFs, one for each tuple, and then somehow do their conjunction, e.g., just by multiplying the (projected) hash values of the 42 SPHFs to obtain the resulting (projected) hash values. This was already proposed in [START_REF] Abdalla | Smooth Projective Hashing for Conditionally Extractable Commitments[END_REF] and we actually show how to do this algebraically in Section 3.2. However, in both cases, the projection key contains 42 group elements.

Let us show how to get a projection key containing only one group element (and one scalar, which can be generated from the group element, as seen later). We remark that if (u 1 , v 1), . . . , (u 42 , v 42) are 42 DH tuples in basis (g, h) ∈ G 2 , then for any ρ ∈ Z p :

u v := u 1 ρ • u 2 • • • ρ 41 • u 42 v 1 ρ • v 2 • • • ρ 41 • v 42 = u 1 • u ρ 2 • • • u ρ 41 42 v 1 • v ρ 2 • • • v ρ 41 42
is also a DH tuple. Conversely, let us suppose that (u, v) is a DH tuple, and let us prove that (u 1 , v 1), . . . , (u 42 , v 42) are also DH tuples, except with probability 41/p. Let us write h = g z , u i = g r i , and v i = g s i , where z, r i , s i ∈ Z p , for i ∈ {1, . . . , 42}. Let P (X) be the polynomial in Z p [X] defined by:

P (X) = 42 i=1 (s i -zr i) • X i-1 .
We remark that (u, v) is a DH tuple if and only if P (ρ) = 0. As P is a polynomial of degree 41, it has at most 41 roots if it is non-zero. Furthermore, if P = 0, then (u 1 , v 1), . . . , (u 42 , v 42) are all DH tuples. Therefore, except with probability 41/p, if (u, v) is a DH tuple, so are (u 1 , v 1), . . . , (u 42 , v 42).

To construct an SPHF for the language of 42 DH tuples, we thus just need to construct an SPHF for DDH language on (u, v). The hashing and projection keys for the new language are the original hashing and projection key concatenated with ρ. The new (projected) hash value for ((u 1 , v 1), . . . , (u 42 , v 42)) is the (projected) hash value for (u, v). The full construction is detailed below.

The resulting SPHF is no more a KV-SPHF, as given ρ (part of the projection key), the adversary can generate an invalid ((u 1 , v 1), . . . , (u 42 , v 42)) for which it can compute the corresponding hash value: it just generates r 1 , . . . , r 42 , s 1 , . . . , s 42 such P (ρ) = 0, and sets u i = g r i , and v i = g s i , where z, r i , s i ∈ Z p , for i ∈ {1, . . . , 42}. This strategy requires to compute the discrete logarithm z of h, but we recall that we consider unbounded adversary for smoothness. Nevertheless, the previous analysis still shows that the resulting SPHF is a (41/p)-smooth CS-SPHF, using Proposition 2.1.6.

We could have chosen ρ in a subset of Z p of size 41 • 2 K . In this case, we would have got (1/2 K)-smoothness instead of (41/p)-smoothness, with a similar analysis. Furthermore, we just need ρ to be uniform and γ ⊺ is already a uniform group element. So ρ can just be extracted from the original projection key γ ⊺ for the DDH language, using a deterministic randomness extractor (see Section 2.2.3). Such an extractor exists for some elliptic curves [START_REF] Chevalier | Optimal Randomness Extraction from a Diffie-Hellman Element[END_REF]. With this last optimization, the size of the projection key and the hashing key is the same for the DDH language, i.e., the language of one DH tuple, than for the language of an arbitrary number of DH tuples.

Example 3.1.5 (ℓ DH tuples). The global parameters are gpar := (p, G, g), with G being a cyclic group of prime order p generated by g, while the language parameters are lpar := (g, h) ∈ G2 . We consider the language of ℓ DH tuples (for ℓ ≥ 1):

L := {(u 1 , v 1 , . . . , u ℓ , v ℓ) ∈ G 2ℓ | ∀i ∈ {1, . . . , ℓ}, ∃r i ∈ Z p , (u i , v i) = (g r i , h r i)} .
To get an efficient SPHF, we first pick a random scalar ρ $ ← {1, . . . , (ℓ-1)•2 K } ⊆ Z p .1 Then, we define the following function θ and the following space X and subspace L (corresponding to the DDH language in basis (g, h)):

θ(x , ρ) := u 1 ρ • u 2 • • • ρ ℓ-1 • u ℓ v 1 ρ • v 2 • • • ρ ℓ-1 • v ℓ with x = (u 1 , v 1 , . . . , u ℓ , v ℓ) ∈ G 2ℓ Lx := ColSpan (Γ(x)) G 2 =: X with Γ(x) := g h .
We can now define a CS-SPHF as follows:

ρ $ ← {1, . . . , 2 • (ℓ -1) • 2 K } ⊆ Z p hk := (α ⊺ , ρ) with α ⊺ $ ← G 1×4 hp := (γ ⊺ , ρ) with γ ⊺ := α • Γ ∈ G 1×2 H := α ⊺ • θ(x) = ℓ i=1 u ρ i-1 α 1 i • ℓ i=1 v ρ i-1 α 2 i pH := γ ⊺ • λ(w) with λ(x , w) := ℓ i=1 r i ρ i-1 .

As shown previously, this

CS-SPHF is (1/2 K)-smooth.
Furthermore, as Γ is independent of ρ and due to the way smoothness is proven, ρ can instead be defined as Ext(γ ⊺), where Ext is a deterministic randomness extractor (see Section 2.2.3). Such an extractor exists for some elliptic curves [START_REF] Chevalier | Optimal Randomness Extraction from a Diffie-Hellman Element[END_REF].

Definition

Let us now introduce more formally what a DVS is.

Graded Rings

As seen in the previous section, it is practical to see cyclic groups, bilinear groups, and even multilinear groups as similar to the field Z p , with some restrictions on the multiplication. Addition in Z p corresponds to the group operation, while multiplication in Z p corresponds to the exponentiation of a group element by a scalar or to the pairing of two group elements, or are impossible (e.g., for two group elements of a cyclic group without bilinear map) depending on the case. This enables us to construct vector spaces over cyclic groups, bilinear groups, and multilinear groups.

To make this more formal, in Section 4.2.1, we define a new notion called graded ring,2 which can be seen as a generalization of cyclic groups, bilinear groups, and multilinear groups.

In this chapter, however, we do not formally define graded rings and to avoid technicalities, the group of each element is implicit, and we suppose that above constraints on the multiplications are satisfied. Furthermore, we only consider what will be called graded rings over the finite field Z p of prime order p. This basically encompasses cyclic groups G, bilinear groups (p, G 1 , G 2 , G T , e), and ideal (graded) multilinear groups [START_REF] Garg | Candidate Multilinear Maps from Ideal Lattices[END_REF], of prime order p. We use the term discrete logarithm of an element similarly to how this term is used with elements of these various groups. The discrete logarithm of a scalar in Z p is the scalar itself.

Remark 3.1.6. For many properties, it is convenient to consider graded ring elements as elements of Z p and not to care about the real group of each element, so that all multiplications are allowed. In this case, we say that the property holds "when looking at the discrete logarithms of all the elements". Formally, it means that all the graded rings elements appearing in the property should be replaced by their discrete logarithms.

The only new notion we will need is the notion of multiplicatively compatible sub-graded rings. Informally, G 1 and G 2 are two multiplicatively compatible sub-graded rings of some graded ring G, if it is possible to compute the product • of any element of G 1 with any element of G 2 , and the result is in G. Concretely, as a first approach, it is possible to consider that G is a bilinear group (p, G 1 , G 2 , G T , e), and that G 1 and G 2 corresponds to G 1 and G

2 : if u 1 ∈ G 1 and u 2 ∈ G 2 , u 1 • u 2 = e(u 1 , u 2).

Diverse Vector Spaces DVSs

Definition 3.1.7. A diverse vector space (DVS) is defined by a tuple V = (p gpar , G gpar , (X lpar , L lpar , R lpar , n lpar , k lpar , RGen, Γ lpar , θ lpar , λ lpar) lpar) gpar where:

• (X lpar) lpar , (L lpar) lpar , (R lpar) lpar define a language as in Section 2.3, with implicit setup algorithms Setup.gpar and Setup.lpar; we recall that lpar implicitly contains gpar;

• gpar corresponds to some global parameter generated by some polynomial-time algorithm Setup.gpar;

• p gpar is a prime;

• G gpar is a graded ring over the finite field Z pgpar ; we suppose that gpar contains a description of G gpar including its order p gpar ;

• n lpar and k lpar are some positive integers;

• RGen is a polynomial-time algorithm which takes lpar as input and output some element ρ from some set R lpar , implicitly defined by RGen; • perfect correctness. For any witness w of x (R lpar (x , w) = 1), and any ρ ∈ R lpar :

θ lpar (x , ρ) = Γ lpar (x , ρ) • λ lpar (x , w , ρ) ;
• statistical soundness. The DVS V is ε-sound if, when looking at the discrete logarithms of all the elements (see Remark 3.1.6), when x ∈ X lpar / ∈ L lpar :

Pr θ lpar (x , ρ) ∈ ColSpan (Γ(x , ρ)) ρ $ ← RGen(lpar) ≤ ε . The DVS is sound if it is ε-sound, with ε negligible in K.
The first property is purely technical and ensures that the hash values of all the words lie in the same group. The second property, perfect correctness, ensures perfect correctness of the associated SPHF defined later. The third property, statistical soundness, is used to prove smoothness of the associated SPHF.

In the sequel, for the sake of simplicity, we often omit the indexes gpar and lpar, when they are clear from the context. When we consider multiple DVSs, global parameters gpar are the same for all the DVSs, but lpar might differ. Please also note that the graded ring G gpar (and its underlying field Z pgpar) only depends on the global parameters gpar and not on lpar.

Furthermore, we often write:

Γ := Γ(x , ρ) θ := θ(x , ρ) λ := λ(x , w) := λ(x , w , ρ) ,
when x or w is clear from context, or when the function is constant. We also omit RGen and ρ when they are not used, and we write (ρ =⊥ and R = {⊥} in this case).

In particular, we often write:

V = (p, G, X , L , R, n, k, RGen, Γ, θ, λ) .
Finally, as in the overview, we write:

X := Z n p Lx := ColSpan (Γ(x))
and we often omit the index x from Lx when it is clear from context.

Let us now illustrate the definition of DVSs on two simple examples seen in the overview.

Example 3.1.8 (DVS for the DDH language). In this example, we formally give the DVS for the DDH language sketched in Section 3.1.1.1. We use the same global parameters gpar := (p, G, g) and language parameters lpar := (g, h) as in Example 2.3.1. We recall the DDH language in basis (g, h):

L = {(u, v) ∈ G 2 | ∃r ∈ Z p , (u, v) = (g r , h r)} G 2 = X .
We define the DVS for the DDH language as follows:

n := 2 k := 1 RGen(lpar) outputs ⊥ Γ(x , ρ) := Γ := g h θ(x , ρ) := θ := u v λ(x , w , ρ) := r ,
where:

x = (u, v) w = r .
For the sake of completeness, we explicitly defined RGen to output ⊥ in this example. In the remaining of the thesis, we just do not define RGen when we are not using it.

Example 3.1.9 (DVS for ElGamal). In this example, we formally give the DVS for the ElGamal language sketched in Section 3.1.1.3. We use the same global parameters gpar = (p, G, g) and language parameters lpar := ek := (g, h) as in Section 3.1.1.3. We recall the ElGamal language under encryption key ek:

L = {(m, c = (u, v)) ∈ M × G 2 | ∃r ∈ Z p , (u, v) = (g r , h r • G(m))} .
We define the DVS for this language as follows:

n := 2 k := 1 Γ(x) := Γ := g h θ(x) := u v/G(m) λ(x , w) := r ,
where:

x = (m, c = (u, v)) w = r .

The SPHF Associated to a DVS, GL-DVS, CS-DVS, and KV-DVS

Construction 3.1.10 (PHF from DVS). Let V = (p, G, X , L , R, n, k, RGen, Γ, θ, λ) be a DVS. Then, we construct a PHF as follows:

• HashKG(lpar) picks a random row vector α ⊺ $ ← Z 1×n p , generates a random element ρ $ ← RGen(lpar) and outputs the hashing key hk := (α ⊺ , ρ);

• ProjKG(hk, lpar, x) outputs the projection key hp := (γ ⊺ , ρ), where hk = (α ⊺ , ρ) and

γ ⊺ := α ⊺ • Γ lpar (x , ρ) ∈ G 1×k ;
• Hash(hk, lpar, x) outputs the hash value

H := α ⊺ • θ lpar (x , ρ) ∈ G ,
where hk = (α ⊺ , ρ);

• ProjHash(hp, lpar, x , w) outputs the projected hash value

pH := γ ⊺ • λ lpar (x , w , ρ) ∈ G .

As seen in the examples:

• in the general case, we say that V is a GL diverse vector space (GL-DVS) and we get a GL-SPHF;

• if Γ is independent of x , we say that V is a CS diverse vector space (CS-DVS) and we get a CS-SPHF;

• if Γ is independent of x and ρ is not used (ρ =⊥ and R = {⊥}), then we say that V is a KV diverse vector space (KV-DVS) and we get a KV-SPHF. We remark that, in this case, the DVS V is necessarily 0-sound (i.e., perfectly sound).

Actually, for the last case, we just need to suppose that the DVS V is perfectly sound. But this is equivalent to the requirement that ρ is not used, as if V is perfectly sound, we can just fix ρ to an arbitrary value. Therefore, we think that it makes more sense to consider the (apparently stronger) condition R = {⊥}.

More formally, we have the following security results.

Theorem 3.1.11 (GL-SPHF from GL-DVS). Let V = (p, G, X , L , R, n, k, RGen, Γ, θ, λ) be an ε-sound DVS or GL-DVS, then the PHF described in Construction 3.1.10 is an ε-smooth GL-SPHF.

Corollary 3.1.12 (CS-SPHF from CS-DVS). Let V = (p, G, X , L , R, n, k, RGen, Γ, θ, λ) be an ε-sound DVS such that the matrix Γ does not depend on x (i.e., V is a CS-DVS), then the PHF described in Construction 3.1.10 described above is an ε-smooth CS-SPHF.

Corollary 3.1.13 (KV-SPHF from KV-DVS). Let V = (p, G, X , L , R, n, k, RGen, Γ, θ, λ) be a perfectly sound (0-sound) DVS such that the matrix Γ does not depend on x and R = {⊥} (i.e., V is a KV-DVS), then the PHF described in Construction 3.1.10 is a perfectly smooth (or 0-smooth) KV-SPHF.

Proof of Theorem 3.1.11. We need to prove correctness and smoothness.

Prefect correctness. When R(x , w) = 1, hk = (α ⊺ , ρ) $ ← HashKG(lpar), hp = (γ ⊺ , ρ) ← ProjKG(hk, lpar), H ← Hash(hk, lpar, x), and pH ← ProjHash(hp, lpar, x , w), we have:

H = α ⊺ • θ(x , ρ) by definition of Hash = α ⊺ • (Γ(x , ρ) • λ(x , w , ρ)) by correctness of the DVS = (α ⊺ • Γ(x , ρ)) • λ(x , w , ρ) by associativity of • = γ ⊺ • λ(x , w , ρ) by definition of ProjKG = pH by definition of ProjHash
This proves perfect correctness of the SPHF.

Smoothness. Let x ∈ X \ L . Until the end of the proof, we are only looking at the discrete logarithms of all the group elements we are considering. Let us suppose that ρ is such that θ = θ(x , ρ) is linearly independent of the columns of Γ = Γ(x , ρ), which happens with probability at least 1 -ε, by ε-soundness of the DVS V.

Let us now prove that, in this case, the hash value H = α ⊺ • θ is uniformly random given only the projection key hp = (γ ⊺ = α ⊺ • Γ, ρ). Let us fix a row vector α ⊺ ∈ Z 1×n p and its associated row vector γ ⊺ = α ⊺ • Γ. Let H be a scalar in Z p . 4 Let S γ ⊺ ,H be the set of vectors α ′⊺ corresponding to the vector γ ⊺ = α ⊺ • Γ and to the hash value H, i.e., S α ⊺ ,H is the set of solutions α ′⊺ ∈ Z 1×n p of the affine system:

α ′⊺ • Γ θ = γ ⊺ H . (3.3)
As θ / ∈ ColSpan (Γ), there exists a row vector

x * ⊺ ∈ Z 1×n p satisfying x * ⊺ • Γ = 0 and x * ⊺ • θ = H α ⊺ • θ. And α * ⊺ = α ⊺ + x * ⊺
is a particular solution of Equation (3.3), as:

α * ⊺ • Γ θ = α ⊺ • Γ x * ⊺ • Γ α ⊺ • θ x * ⊺ • θ = γ ⊺ 0 α ⊺ • θ (H α ⊺ • θ) = γ ⊺ H .
Therefore, we have:

S γ ⊺ ,H = α ⊺ + x * ⊺ + x ⊺ x ∈ ker Γ θ ⊺ , (3.4)
and the size of S γ ⊺ ,H is independent of H and γ ⊺ . This means that there is the same number of hashing keys hk, corresponding to any given pair (hp, H) of a possible projection key hp and a hash value H. This implies that H looks uniformly random when only given hp, when ρ is such that θ / ∈ ColSpan (Γ), which happens with probability at least 1 -ε (and when α ⊺ $ ← Z 1×n p). We conclude using Proposition 2.1.6.

Proof of Corollary 3.1.12. This is a straightforward corollary of Theorem 3.1.11, as the smoothness definition for CS-SPHF is the same as for GL-SPHF. The only difference is that hp does not depend on x , as Γ and ρ do not depend on x .

Proof of Corollary 3.1.13. As the DVS V is perfectly sound, Corollary 3.1.12 ensures that the resulting SPHF is perfectly GL/CS-smooth. Thanks to Remark 2.5.4, this means that the SPHF is perfectly KV-smooth.

Remark 3.1.14. Similarly to what we did in Example 3.1.5, if Γ is independent of ρ and if there exists a deterministic randomness extractor for the distribution of the random elements

γ ⊺ = α ⊺ • Γ (with α ⊺ $ ← Z 1×n p
) 5 with large enough output to be used as random coins for RGen, then we can set:

ρ $ ← RGen(lpar; Ext(γ ⊺)) .
Looking at the proof of Theorem 3.1.11, this clearly defines a GL-SPHF or CS-SPHF. In many applications, if there is not enough entropy in γ ⊺ , we can use a pseudorandom number generator after the deterministic extractor. This is however no more a real SPHF, as smoothness becomes computational.

Conjunctions and Disjunctions

Now that we have formally defined DVSs, we can start looking at important generic combinations of DVSs: conjunctions and disjunctions.

Conjunctions

We define the conjunction of two languages L 1 ⊆ X 1 and L 2 ⊆ X 2 as the language:

L := L 1 × L 2 = {(x 1 , x 2) ∈ X 1 × X 2 | x 1 ∈ L 1 and x 2 ∈ L 2 } ⊆ X 1 × X 2 =: X .
More formally:

R(x = (x 1 , x 2), w = (w 1 , w 2)) = 1 ⇐⇒ R 1 (x 1 , w 1) = 1 and R 2 (x 2 , w 2) = 1 . (3.5)
This is a generalization of the classical notion of conjunction: if

X 1 = X 2 , (x 1 , x 1) ∈ L if and only if x 1 ∈ L 1 ∩ L 2 (or in other words, x 1 is in L 1 and in L 2).
Global parameters gpar are supposed to be the same and to be generated the same way for L 1 , L 2 , and L : Setup.gpar 1 = Setup.gpar 2 = Setup.gpar. Parameters lpar for L are just the concatenation of parameters lpar 1 for L 1 and lpar 2 for L 2 . More precisely, on input gpar, Setup.lpar generates (lpar 1 , ltrap 1) $ ← Setup.lpar 1 (gpar) and (lpar 2 , ltrap 2) $ ← Setup.lpar 2 (gpar) and outputs (lpar := (lpar 1 , lpar 2), ltrap := (ltrap 1 , ltrap 2)). p,G,X ,L ,R,n,k,RGen,Γ,θ,λ) for the conjunction of L 1 and L 2 , in the simple case where there is no ρ. We recall that a DVS is a way to represent a language L ′ ⊆ X ′ as a subspace L ′ of some vector space X ′ , through a map θ ′ from X to X . To construct V, we can first map pairs x = (x 1 , x 2) ∈ X to:

Let V 1 = (p, G, X 1 , L 1 , R 1 , n 1 , k 1 , RGen 1 , Γ 1 , θ 1 , λ 1) and V 2 = (p, G, X 2 , L 2 , R 2 , n 2 , k 2 , RGen 2 , Γ 2 , θ 2 , λ 2)
θ(x) = θ 1 (x 1) θ 2 (x 2) ∈ X1 × X2 =: X .
Then, we remark that:

x ∈ L ⇐⇒ θ(x) ∈ L1 × L2 =: L .
Furthermore, the set L = L1 × L2 is a subspace of the vector space X = X 1 × X 2 , as a cartesian product of the subspace L1 of X 1 and the subspace L2 of X 2 . Therefore, this defines a DVS. Formally, we have the following construction in the general case.

Construction 3.2.1 (conjunction of two DVSs).

Let V 1 = (p, G, X 1 , L 1 , R 1 , n 1 , k 1 , RGen 1 , Γ 1 , θ 1 , λ 1) and V 2 = (p, G, X 2 , L 2 , R 2 , n 2 , k 2 , RGen 2 , Γ 2 , θ 2 , λ 2) be two DVSs over the same graded ring G. The conjunction DVS V = (p, G, X , L , R, n, k, RGen, Γ, θ, λ) of V 1 and V 2 is
defined as follows:

L := L 1 × L 2 X := X 1 × X 2
R is defined as in Equation (3.5)

n := n 1 + n 2 k := k 1 + k 2 RGen(lpar) outputs ρ := (ρ 1 , ρ 2) where ρ 1 $ ← RGen 1 (lpar 1) and ρ 2 $ ← RGen 2 (lpar 2) Γ(x , ρ) := Γ 1 (x 1 , ρ 1) 0 0 Γ 2 (x 2 , ρ 2) θ(x , ρ) := θ 1 (x 1 , ρ 1) θ 2 (x 2 , ρ 2) λ(x , w , ρ) := λ 1 (x 1 , w 1 , ρ 1) λ 2 (x 2 , w 2 , ρ 2) ,
where:

x = (x 1 , x 2) w = (w 1 , w 2) .
We have the following lemma. Its proof is a simple variant of the proof of the slightly more complicated Lemma 3.2.6. [START_REF] Abdalla | Smooth Projective Hashing for Conditionally Extractable Commitments[END_REF], but were not algebraic, because they used an xor operation. Furthermore they were performed at the SPHF level, while we are doing conjunctions of DVSs. Conjunctions of DVSs were formally introduced in [ABP15c] but were implicit in many previous papers.

Lemma 3.2.2. Let V 1 and V 2 be two DVSs. If V 1 and V 2 are ε 1 -sound and ε 2 -sound respectively, then the conjunction DVS V of V 1 and V 2 defined in Construction 3.2.1 is a (ε 1 + ε 2 -ε 1 ε 2)-sound DVS.

Historical note 3.2.3. Conjunctions of SPHFs were already proposed in

Disjunctions

We define the disjunction of two languages L 1 ⊆ X 1 and L 2 ⊆ X 2 as the language:

L := (L 1 × X 2) ∪ (X 1 × L 2) = {(x 1 , x 2) ∈ X 1 × X 2 | x 1 ∈ L 1 or x 2 ∈ L 2 } ⊆ X 1 × X 2 =: X . More formally: R(x = (x 1 , x 2), w = (w 1 , w 2)) = 1 ⇐⇒ R 1 (x 1 , w 1) = 1 or R 2 (x 2 , w 2) = 1 . (3.6)
If w 1 is a witness for x 1 , w = (w 1 , ⊥) is a witness for x = (x 1 , x 2), while if w 2 is a witness for x 2 , w = (⊥, w 2) is a witness for x . This is a generalization of the classical notion of disjunction: if

X 1 = X 2 , (x 1 , x 1) ∈ L if and only if x 1 ∈ L 1 ∪ L 2 (or in other words, x 1 is in L 1 or in L 2).
Global parameters and language parameters are defined as in Section 3.2.1.

We remark that contrary to conjunctions, if X 1 and X 2 are two vector spaces and L 1 and L 2 are subspaces of these two vector spaces respectively, then X is a vector space, but L is not necessarily a subspace of X . Actually, L is a subspace of X if and only if L 1 = X 1 and L 2 = X 2 . Even worse, the vector space spanned by L is X , so constructions need to be much more subtle.

We propose two constructions:

• one for GL-DVSs which has the advantage of working with the same graded ring as the original DVSs but which yield a GL-DVS even if the original DVSs are KV-DVSs;

• and one for CS-DVSs and KV-DVSs which preserve their CS/KV character but which requires multiplicatively compatible sub-graded rings. Concretely, this means that we require a bilinear map between elements of the first DVS and elements of the second DVS.

Disjunctions of GL-DVSs

The construction is not really difficult but is hard to explain in English. One maybe not completely helpful way to describe it is to say that we move θ 1 and θ 2 inside the matrix Γ and we use the first row of Γ as a way to "select" θ 1 or θ 2 . Let us now give the formulas which should make this intuition clear.

Construction 3.2.4 (GL disjunction). Let V 1 = (p, G, X 1 , L 1 , R 1 , n 1 , k 1 , RGen 1 , Γ 1 , θ 1 , λ 1) and V 2 = (p, G, X 2 , L 2 , R 2 , n 2 , k 2 , RGen 2 , Γ 2 , θ 2 , λ 2)
two DVSs over the same graded ring G.

We define the GL disjunction V = (p, G, X , L , R, n, k, RGen, Γ, θ, λ) as follows:

L := (L 1 × X 2) ∪ (X 1 × L 2) X := X 1 × X 2 R is defined as in Equation (3.6) n := n 1 + n 2 + 1 k := k 1 + k 2 + 2 RGen(lpar) outputs ρ := (ρ 1 , ρ 2) where ρ 1 $ ← RGen 1 (lpar 1) and ρ 2 $ ← RGen 2 (lpar 2) Γ(x , ρ) :=       0 ⊺ k 1 1 Zp 0 ⊺ k 2 1 Zp Γ 1 θ 1 0 n 1 ×k 2 0 n 1 0 n 2 ×k 1 0 n 2 Γ 2 θ 2       θ(x , ρ) :=       [⊤, -1] [⊤, 0] . . . [⊤, 0]       ∈ G n ⊤ λ(x , w , ρ) :=                                           λ 1 -1 Zp 0 k 2 0        if R(x 1 , w 1) = 1        0 k 1 0 λ 2 -1 Zp        else, if R(x 2 , w 2) = 1
, where:

x = (x 1 , x 2) w = (w 1 , w 2) ,
and G ⊤ is the group of the elements of maximal index (namely the group

G if G = (p, G) is a cyclic group and the group G T if G = (p, G 1 , G 2 , G T) is a bilinear group), while [⊤, x] represents the element of discrete logarithm x ∈ Z p in G ⊤ .
It is important to remark that when x 1 ∈ L 1 and x 2 ∈ L 2 , there exist at least two witnesses for x : (w 1 , ⊥) and (⊥, w 2). Both witnesses might yield a different projected hash value pH, if the projection key if not honestly generated.

Before proving the soundness of the construction, let us give an example of GL disjunction of two DVSs.

Example 3.2.5 (GL disjunction of two DDH languages). The global parameters are gpar := (p, G, g), with G being a cyclic group of prime order p generated by g, while the language parameters are lpar := (g 1 , h 1 , g 2 , h 2) ∈ G 4 . We consider the language of the tuples

(u 1 , v 1 , u 2 , v 2) such that (u 1 , v 1) is a DH tuple in basis (g 1 , h 1) or (u 2 , v 2) is a DH tuple in basis (g 2 , h 2): L := {(u 1 , v 1 , u 2 , v 2) ∈ G 4 | ∃(r 1 , r 2) ∈ Z 2 p , (u 1 , v 1) = (g r 1 , h r 1) or (u 2 , v 2) = (g r 2 , h r 2)} .
In other words, if

(u 1 , v 1 , u 2 , v 2) ∈ L , either (u 1 , v 1) is an ElGamal ciphertext of 1 G with encryption key ek 1 := (g 1 , h 1), or (u 2 , v 2) is an ElGamal ciphertext of 1 G with encryption key ek 2 := (g 2 , h 2), or both (u 1 , v 1) and (u 2 , v 2) are ElGamal ciphertexts of 1 G .
This language is the disjunction of the DDH languages in basis (g 1 , h 1) and (g 2 , h 2) respectively. Applying Construction 3.2.4 to Example 3.1.8, we get the following DVS for L :

n := 5 k := 4 Γ(x) :=        0 g 0 g g 1 u 1 0 0 h 1 v 1 0 0 0 0 g 2 u 2 0 0 h 2 v 2        θ(x) :=        g -1 1 G 1 G 1 G 1 G        λ(x , w) :=                                           r 1 -1 Zp 0 0        if (u 1 , v 1) = (g r 1 , h r 1)        0 0 r 2 -1 Zp        otherwise, if (u 2 , v 2) = (g r 2 , h r 2)
, where:

x = (u 1 , v 1 , u 2 , v 2) w = (r 1 , r 2) .
Let us now prove the soundness of the construction.

Lemma 3.2.6.

Let V 1 = (p, G, X 1 , L 1 , R 1 , n 1 , k 1 , RGen 1 , Γ 1 , θ 1 , λ 1) and V 2 = (p, G, X 2 , L 2 , R 2 , n 2 , k 2 , RGen 2 , Γ 2 , θ 2 , λ 2) be two DVSs. If V 1 and V 2 are ε 1 -sound and ε 2 -sound respectively, then the GL disjunction DVS V of V 1 and V 2 defined in Construction 3.2.4 is a (ε 1 + ε 2 -ε 1 ε 2)-sound DVS.
Proof. Correctness is straightforward. Let us prove soundness. For that, we are only looking at the discrete logarithms of all the group elements we are considering.

We need to prove that if

x = (x 1 , x 2) ∈ X \ L (i.e., x 1 ∈ X 1 \ L 1 and x 2 ∈ X 2 \ L 2), then θ = θ(x , ρ) is linearly independent of the columns of Γ = Γ(x , ρ), with probability at least ε 1 + ε 2 -ε 1 ε 2 when ρ 1 $ ← RGen 1 (lpar 1), ρ 2 $ ← RGen 2 (lpar 2)
, and ρ := (ρ 1 , ρ 2). By ε 1 -soundness of V 1 and ε 2 -soundness of V 2 -soundness, we know that θ 1 (x 1 , ρ 1) and θ 2 (x 2 , ρ 2) are linearly independent of the columns of Γ 1 (x 1 , ρ 1) and Γ 2 (x 2 , ρ) respectively with probability at least 1 -ε 1 and 1 -ε 2 . As these two events are independent, both happen at the same time with probability at least (1

-ε 1) • (1 -ε 2) = 1 -ε 1 -ε 2 + ε 1 ε 2 .
Let us now suppose we are in the case where both these events happen. We just need to prove that in this case, θ is linearly independent of the columns of Γ. By contradiction, let us suppose that there exists a vector λ ∈ Z k p such that θ = Γ • λ. We necessarily have λ k 1 +1 = 0 or λ k 1 +k 2 +1 = 0 (or both), due to the first row of the matrix Γ, as the (k

1 + 1)-th column of Γ is (1 Zp , θ ⊺ 1 , 0 ⊺) ⊺ and the (k 1 + k 2 + 1)-th column of Γ is its last column (1 Zp , 0 ⊺ , θ ⊺ 2)
⊺ . If λ k 1 +1 = 0, we get that θ 1 is in the column span of Γ 1 , as we have:

θ 1 = Γ 1 • λ ′ with λ ′ = -(λ i) i=1,...,k 1 / λ k 1 +1 . (3.7)
This is impossible. Similarly, if λ k 1 +k 2 +2 = 0, we get that θ 2 is in the column span of Γ 2 which is also impossible. That concludes the proof.

Historical note 3.2.7. Similarly to conjunctions of SPHFs, disjunctions of GL-SPHFs were already proposed in [START_REF] Abdalla | Smooth Projective Hashing for Conditionally Extractable Commitments[END_REF], but were not algebraic at all. Furthermore, converting them to disjunctions of DVSs is not completely straightforward and was officially done for the first time in [BCPW15].

Disjunctions of CS-DVSs and KV-DVSs

In the previous construction, the new matrix Γ necessarily depends on the word x , as it embeds λ 1 and λ 2 . To construct disjunction DVSs for CS-DVS and KV-DVS which preserve the KV/CS character, we cannot use the same idea. Let us try to use the same trick as for conjunctions and define:

θ(x) = θ 1 (x 1) θ 2 (x 2) ∈ X =: X1 × X2 .
To get a DVS for the disjunction, we would then need to set:

L = (L1 × X2) ∪ (X 1 × L 2) .
Unfortunately, in that case, L is not a subspace of X (except if L1 = X1 and L2 = X2 , which is not a really interesting case) and even worse, Span L = X . To solve this issue, we use the tensor product ⊗ instead of the cartesian product ×, and θ becomes:

θ = θ 1 ⊗ θ 2 .
Intuitively, this adds more dimension which makes everything work.

Tensor product of vector spaces over graded rings. Before formally showing our construction, let us briefly recall notation and some properties for tensor product and adapt them to vector spaces over graded rings. Let G 1 and G 2 be two multiplicatively compatible sub-graded rings of G. Let V 1 be a n 1 -dimensional vector space over G 1 and V 2 be a n 2 -dimensional vector space over G 2 . Let (e 1,i) i=1,...,n 1 and (e 2,i) i=1,...,n 2 be bases of V 1 and V 2 respectively. Then the tensor product . The operator ⊗ is bilinear,

V of V 1 and V 2 , denoted V = V 1 ⊗ V 2 is the n 1 n 2 -dimensional
and if u = n 1 i=1 u i • e 1,i and v = n 2 j=1 v j • e 2,j
, then:

u ⊗ v = n 1 i=1 n 2 j=1 (u i • v j) • (e 1,i ⊗ e 2,j) .
More generally, we can define the tensor product of two matrices M ∈ G k×m

1 and M ′ ∈ G k ′ ×m ′ 2 , T = M ⊗ M ′ ∈ G kk ′ ×mm ′ by T (i-1)k ′ +i ′ ,(j-1)m ′ +j ′ = M i,j • M ′ i ′ ,j ′ for              i = 1, . . . , k , i ′ = 1, . . . , k ′ , j = 1, . . . , m , j ′ = 1, . . . , m ′ .
In other words, T is the following matrix by blocks:

T =    M 1,1 • M ′ . . . M 1,m • M ′ M k,1 • M ′ . . . M k,m • M ′    . And if M ∈ G k×m 1 , M ′ ∈ G k ′ ×m ′ 2 , N ∈ G m×n 1
, the we have:

(M ⊗ M ′) • (N ⊗ N ′) = (M • N) ⊗ (M ′ • N ′) . (3.8)
This equality is essential: most of our proofs relying on tensor products use it.

Construction. Let us now formally show the construction.

Construction 3.2.8 (CS/KV disjunction). Let V 1 = (p, G 1 , X 1 , L 1 , R 1 , n 1 , k 1 , RGen 1 , Γ 1 , θ 1 , λ 1) and V 2 = (p, G 2 , X 2 , L 2 , R 2 , n 2 , k 2 , RGen 2 , Γ 2 , θ 2 , λ 2)
two DVSs over two multiplicatively compatible sub-graded rings G 1 and G 2 of some graded ring G. In particular, we suppose that global parameters for L , L 1 , and L 2 define the same graded ring G, but Γ 1 , θ 1 , and λ 1 are only over G 1 , while Γ 2 , θ 2 , and λ 2 are only over G 2 . We define the CS/KV disjunction V = (p, G, X , L , R, n, k, RGen, Γ, θ, λ) as follows:

L := (L 1 × X 2) ∪ (X 1 × L 2) X := X 1 × X 2 R is defined as in Equation (3.6) n := n 1 • n 2 k := k 1 • n 2 + n 1 • k 2 RGen(lpar) outputs ρ := (ρ 1 , ρ 2) where ρ 1 $ ← RGen 1 (lpar 1) and ρ 2 $ ← RGen 2 (lpar 2) Γ(ρ) := Γ 1 ⊗ Id n 2 Id n 1 ⊗ Γ 2 θ(x , ρ) := θ 1 ⊗ θ 2 λ(x , w , ρ) :=              λ 1 ⊗ θ 2 0 n 1 k 2 if R(x 1 , w 1) = 1 0 k 1 n 2 θ 1 ⊗ λ 2 otherwise, if R(x 2 , w 2) = 1
, where:

x = (x 1 , x 2) w = (w 1 , w 2) .
Before proving the soundness of the construction, let us show it on an example.

Example 3.2.9 (KV disjunction of two DDH languages). The global parameters gpar consist of a bilinear group (p, G 1 , G 2 G T , e, g 1 , g 2), while the language parameters are lpar :=

(g 1 , h 1 , g 2 , h 2) ∈ G 2 1 × G 2 2 .
We consider the language of the tuples

(u 1 , v 1 , u 2 , v 2) such that (u 1 , v 1) is a DH tuple in basis (g 1 , h 1) or (u 2 , v 2) is a DH tuple in basis (g 2 , h 2): L := {(u 1 , v 1 , u 2 , v 2) ∈ G 4 | ∃(r 1 , r 2) ∈ Z 2 p , (u 1 , v 1) = (g r 1 , h r 1) or (u 2 , v 2) = (g r 2 , h r 2)} .
In other words, if

(u 1 , v 1 , u 2 , v 2) ∈ L , either (u 1 , v 1) is an ElGamal ciphertext of 1 G 1 with encryption key ek 1 := (g 1 , h 1), or (u 2 , v 2) is an ElGamal ciphertext of 1 G 2 with encryption key ek 2 := (g 2 , h 2), or both (u 1 , v 1) and (u 2 , v 2) are ElGamal ciphertexts of 1 G 1 and 1 G 2 respectively.
This language is the disjunction of the DDH languages in basis (g 1 , h 1) and (g 2 , h 2) respectively. Applying Construction 3.2.8 to Example 3.1.8, we get the following DVS for L :

n := 4 k := 4 Γ(x) :=      g 1 0 g 2 0 0 g 1 h 2 0 h 1 0 0 g 2 0 h 1 0 h 2      θ(x) :=      u 1 • u 2 u 1 • v 2 v 1 • u 2 v 1 • v 2      =      e(u 1 , u 2) e(u 1 , v 2) e(v 1 , u 2) e(v 1 , v 2)      λ(x , w) :=                                           r 1 • u 2 r 1 • v 2 0 0        =        u r 1 2 v r 1 2 0 0        if (u 1 , v 1) = (g r 1 , h r 1)        0 0 r 2 • u 1 r 2 • v 1        =        0 0 u r 2 1 v r 2 1        otherwise, if (u 2 , v 2) = (g r 2 , h r 2)
, where:

x = (u 1 , v 1 , u 2 , v 2) w = (r 1 , r 2) .
Let us now prove the soundness of the construction.

Lemma 3.2.10.

Let V 1 = (p, G 1 , X 1 , L 1 , R 1 , n 1 , k 1 , RGen 1 , Γ 1 , θ 1 , λ 1) and V 2 = (p, G 2 , X 2 , L 2 , R 2 , n 2 , k 2 , RGen 2 , Γ 2 , θ 2 , λ 2
) be two CS-DVSs over two multiplicatively compatible subgraded rings G 1 and G 2 of some graded ring G. If V 1 and V 2 are ε 1 -sound and ε 2 -sound respectively, then the CS/KV disjunction

DVS V of V 1 and V 2 defined in Construction 3.2.8 is a (ε 1 + ε 2 -ε 1 ε 2)-sound CS-DVS.
We have the following immediate corollary.

Corollary 3.2.11.

Let V 1 = (p, G 1 , X 1 , L 1 , R 1 , n 1 , k 1 , RGen 1 , Γ 1 , θ 1 , λ 1) and V 2 = (p, G 2 , X 2 , L 2 , R 2 , n 2 , k 2 , RGen 2 , Γ 2 , θ 2 , λ 2) be two KV-DVSs over two multiplicatively compatible sub-graded rings G 1 and G 2 of some graded ring G. Then the CS/KV disjunction DVS V of V 1 and V 2 defined in Construction 3.2.8 is a KV-DVS.
Proof of Lemma 3.2.10. We start the proof as the proof of Lemma 3.2.6. Let x = (x 1 , x 2) ∈ X \ L . We fix ρ such that θ 1 / ∈ ColSpan (Γ 1) = L1 and θ 2 / ∈ ColSpan (Γ 2) = L2 . To conclude the proof, we just need to prove that this implies that

θ = θ 1 ⊗ θ 2 / ∈ ColSpan (Γ) = L = L1 ⊗ X 2 + X 1 ⊗ L2 ,
where the symbol + between vector spaces corresponds to the sum of vector spaces: if E and F are two vector spaces then E + F = Span (E ∪ F).

For i ∈ {1, 2}, let E i be an arbitrary supplementary vector space of Li containing θ i . We have:

X1 = L1 ⊕ E 1 X2 = L2 ⊕ E 2 ,
where ⊕ denotes a direct sum of vector spaces. We then get:

L = L1 ⊗ X2 + X1 ⊗ L2 = L1 ⊗ L2 + L1 ⊗ E 2 + L1 ⊗ L2 + E 1 ⊗ L2 = L1 ⊗ L2 ⊕ L1 ⊗ E 2 ⊕ E 1 ⊗ L2 , X = X1 ⊗ X2 = L1 ⊗ L2 ⊕ L1 ⊗ E 2 ⊕ E 1 ⊗ L2 ⊕ E 1 ⊗ E 2 .
As

θ 1 ∈ E 1 and θ 2 ∈ E 2 , we have θ = θ 1 ⊗ θ 2 ∈ E 1 ⊗ E 2 / ∈ L .
This concludes the proof.

The above proof was proposed by Victor Shoup, as a simplification of the original cumbersome proof in [ABP15c]. We thank him for this proof. In this thesis, we propose a third proof of Lemma 3.2.10, as a straightforward corollary of Proposition 4.3.11. Contrary to the above proof, this third proof uses no advanced tools on tensor products, but just rely on Equation (3.8).

Historical note 3.2.12. Disjunctions of KV-DVSs were introduced in [ABP15c], while disjunctions of CS-DVSs were never published before.

Application to Non-Interactive Zero-Knowledge Arguments

An important application of disjunctions of KV-DVSs is the construction of NIZK with constant-size proofs. An SPHF for some language L := L 1 (which can be constructed from some KV-DVS V 1) can be seen as a designated-verifier and honest-verifier NIZK: only the user (or verifier) generating the hashing key hk and publishing the projection key hp can verify the validity of a proof of some word (which is the hash value of this word). Furthermore, the verifier may cheat on the projection key to learn some information about the witness. To get rid of these two limitations (designated and honest verifier), we use a second KV-DVS V 2 for a hard-subset-membership language, and we consider the KV disjunction V of V 1 and V 2 . This second KV-DVS V 2 makes the proof publicly verifiable and zero-knowledge.

Overview

Let us construct a NIZK for some language L = L 1 . We suppose that we have a KV-DVS

V 1 = (p, G 1 , X 1 , L 1 , R 1 , n 1 , k 1 , RGen 1 , Γ 1 , θ 1 , λ 1) for L 1 , together with another KV-DVS V 2 = (p, G 2 , X 2 , L 2 , R 2 , n 2 , k 2 , RGen 2 , Γ 2 , θ 2 , λ 2)
for a hard-subset-membership language L 2 , such that G 1 and G 2 are two multiplicatively compatible sub-graded rings of some graded ring G. Furthermore, we consider the disjunction KV-DVS V of V 1 and V 2 .

For the sake of simplicity, we suppose that L 2 = L2 ,

X 2 = X2 = Z n 2 p , θ 2 = θ 2 (x 2) = x 2 and λ 2 = λ 2 (x 2 , w 2) = w 2 ,
for any word x 2 and any witness w 2 . The common reference string of the NIZK is a projection key hp = γ ⊺ for the disjunction of L 1 and L 2 , while the trapdoor (to simulate proofs) is the hashing key hk = α ⊺ . Essentially, a proof π ⊺ = (π i 2) ⊺ i 2 for a statement ẍ = x 1 is just a vector of the hash values of (x 1 , e 2,i 2) where (e 2,i 2) i 2 are the scalar vectors of the canonical base of X2 . These hash values are π i 2 = α ⊺ • (θ 1 ⊗ e 2,i 2), and can also be computed from the projection key hp and a witness w 1 for x 1 . We can also write:

π ⊺ = α ⊺ • (θ 1 ⊗ Id n 2) .
The basic idea is that a valid proof for a word x 1 ∈ L 1 enables us to compute the projected hash value H ′ of (x 1 , x 2) for any word x 2 ∈ X2 , by linearly combining elements of the proof, since any word θ 2 = x 2 can be written as a linear combination of (e 2,i 2) i 2 :

H ′ := π ⊺ • θ 2 = i 2 π i 2 • θ 2,i 2 = i 2 α ⊺ • (θ 1 ⊗ e 2,i 2) • θ 2,i 2 = i 2 α ⊺ • (θ 1 ⊗ (θ 2,i 2 • e 2,i 2)) = α ⊺ • (θ 1 ⊗ θ 2) , if θ 2 = i 2 θ 2,i 2 • e 1,i 2 .
Hence, for any word x 2 ∈ L 2 for which we know a witness, we can compute the hash value of (x 1 , x 2), either using a valid proof for x 1 (as H ′ above), or directly using a witness w 2 = λ 2 of x 2 = θ 2 and the projection key hp (as for any SPHF for a disjunction), as

pH := γ ⊺ • 0 k 1 n 2 θ 1 ⊗ λ 2 .
To check a proof, we basically check whether for any word x 2 ∈ L 2 with witness λ 2 , these two ways of computing the hash value of (x 1 , x 2) yields the same result, i.e., we check whether

H ′ = π ⊺ • θ 2 = γ ⊺ • 0 k 1 n 2 θ 1 ⊗ λ 2 = pH .
Thanks to the linearity of the language L 2 , it is sufficient to make this test for a family of words x 2 which generate L 2 , such as the columns of Γ 2 . We recall that the witness w 2 = λ 2 for the j 2 -th column of Γ 2 is just the j 2 -th vector in the canonical basis of Z k 2 p . Therefore, to check π ⊺ , we just need to check whether

π ⊺ • Γ 2 ? = γ ⊺ • 0 k 1 n 2 ×k 2 θ 1 ⊗ Id k 2 .
The trapdoor, i.e., the hashing key hk, clearly enables us to simulate any proof, and the resulting proofs are perfectly indistinguishable from normal ones, hence the perfect zero-knowledge property. Moreover, the soundness comes from the fact that a proof for a word x 1 / ∈ L 1 can be used to solve the subset-membership problem for L 2 . More precisely, let us consider a soundness adversary which takes as input the projection key hp and which outputs a word x 1 / ∈ L 1 and a valid proof π ⊺ for x 1 . On the one hand, such a valid proof enables us to compute the hash value H ′ of (x 1 , x 2) for any word x 2 ∈ L 2 , by linearly combining elements of the proofs (as seen above), and the validity of the proof ensures the resulting value H ′ is correct if x 2 ∈ L 2 . On the other hand, we can also compute a hash value H of (x 1 , x 2) for any x 2 ∈ X 2 using the hashing key hk. Then, if

x 2 ∈ L 2 , necessarily H = H ′ , while if x 2 /
∈ L 2 , the smoothness ensures that H looks completely random when given only hp. Since H ′ does not depend on hk but only on hp, it is different from H with overwhelming probability. Therefore, we can use such an adversary to solve the subset-membership problem for L 2 .

Construction

Construction 3.3.1 (NIZK from disjunctions of KV-DVSs). We suppose that we have a KV-DVS

V 1 = (p, G 1 , X 1 , L 1 , R 1 , n 1 , k 1 , RGen 1 , Γ 1 , θ 1 , λ 1) for L = L 1 , together with another KV- DVS V 2 = (p, G 2 , X 2 , L 2 , R 2 , n 2 , k 2 , RGen 2 , Γ 2 , θ 2 , λ 2)
for a hard-subset-membership language L 2 , such that G 1 and G 2 are two multiplicatively compatible sub-graded rings of some graded ring G. Furthermore, we consider the KV disjunction

V = (p, G, X , L , R, n, k, RGen, Γ, θ, λ) of V 1 and V 2 . We recall that n = n 1 n 2 and k = k 1 n 2 + n 1 k 2 .
We construct a NIZK for L := L 1 as follows:

• NIZK.Setup(lpar 1) generates language parameters lpar 2 $ ← Setup.lpar 2 (gpar) for L 2 , together with a hashing key hk and the associated projection key hp for V as follows:

hk := α ⊺ $ ← Z 1×n p , hp := γ ⊺ := α ⊺ • Γ ∈ G 1×k ,
and outputs crs := (lpar 2 , hp). In the sequel, we split γ ⊺ in two parts:

γ ⊺ 1 := (γ i) ⊺ i=1,...,k 1 n 2 = α ⊺ • (Γ 1 ⊗ Id n 2) ∈ G 1×(k 1 n 2) 1 , γ ⊺ 2 := (γ i) ⊺ i=k 1 n 2 +1,...,n = α ⊺ • (Id n 1 ⊗ Γ 2) ∈ G 1×(n 1 k 2) 2 ;
• NIZK.Sim 1 (lpar 1) works as NIZK.Setup except it also outputs the following trapdoor:

trap := hk = α ⊺ ∈ Z 1×n p ;
• NIZK.Prove(crs, tag, x 1 , w 1) outputs:

π ⊺ := γ ⊺ 1 • (λ 1 (x 1 , w 1) ⊗ Id n 2) ∈ G 1×n 2 1 ;
• NIZK.Ver(crs, tag, x 1 , π ⊺) checks the following equation:

π ⊺ • Γ 2 ? = γ ⊺ 2 • (θ 1 (x 1) ⊗ Id k 2) ;
(3.9)

• NIZK.Sim 2 (trap, tag, x 1) outputs:

π ⊺ := α ⊺ • (θ 1 (x 1) ⊗ Id n 2) ∈ G 1×n 2 1 .
Tags tag are not used in this construction.

We remark that the size of the proof π ⊺ is independent of the language L 1 and only depend on the second DVS V 2 which can be fixed. That is why, we say that our NIZK has constant-size proofs.

Completeness and Security

Theorem 3.3.2. Let V 1 = (p, G 1 , X 1 , L 1 , R 1 , n 1 , k 1 , RGen 1 , Γ 1 , θ 1 , λ 1) and V 2 = (p, G 2 , X 2 , L 2 , R 2 , n 2 , k 2 , RGen 2 , Γ 2 , θ 2 , λ 2
) be two KV-DVSs over two multiplicatively compatible sub-graded rings G 1 and G 2 of some graded ring G. We suppose that L 2 is a hard-subsetmembership language.

Then the NIZK for L = L 1 in Construction 3.3.1 is perfectly complete, perfectly zeroknowledge, and sound. More precisely, if A is a polynomial-time adversary against soundness of the NIZK, we can construct an adversary B against hard subset membership of L 2 with similar running time such that:

Adv sound (A, K) ≤ Adv sub-memb (B, K) + 1 p .
Proof. Completeness. If the proof π ⊺ has been generated correctly, the left hand side of the verification equation (Equation (3.9)) is equal to

γ ⊺ 1 • (λ 1 ⊗ Id n 2) • Γ 2 = (α ⊺ • (Γ 1 ⊗ Id n 2)) • (λ 1 ⊗ Id n 2) • (Id 1 ⊗ Γ 2) = α ⊺ • (Γ 1 ⊗ Id n 2) • ((λ 1 • Id 1) ⊗ (Id n 2 • Γ 2)) = α ⊺ • (Γ 1 ⊗ Id n 2) • (λ 1 ⊗ Γ 2) = α ⊺ • ((Γ 1 • λ 1) ⊗ (Id n 2 • Γ 2)) ,
while the right hand side is equal to:

γ ⊺ 2 • (θ 1 ⊗ Id k 2) = α ⊺ • (Id n 1 ⊗ Γ 2) • (θ 1 ⊗ Id k 2) = α ⊺ • ((Id n 1 • θ 1) ⊗ (Γ 2 • Id k 2)) ,
which is the same as the left hand side, since

Γ 1 • λ 1 = Id n 1 • θ 1 and Id n 2 • Γ 2 = Γ 2 • Id k 2 .
Hence the (perfect) completeness. Another way to see it, is that the i 2 -th column of the right hand side of Equation (3.9) is the hash value of "(θ 1 , Γ 2 • e 2,i 2)" computed using the witness λ 2 = e 2,i 2 , while the i 2 -th column of the left hand side is this hash value computed using the witness λ 1 .

Zero-Knowledge. The (perfect) zero-knowledge property comes from the fact that the normal proof π ⊺ for x 1 ∈ L 1 with witness w 1 is:

π ⊺ = γ ⊺ 1 • (λ 1 ⊗ Id n 2) = α ⊺ • (Γ 1 ⊗ Id n 2) • (λ 1 ⊗ Id n 2) = α ⊺ • ((Γ 1 • λ 1) ⊗ (Id n 2 • Id n 2)) , (3.10)
which is equal to the simulated proof for x 1 , as

θ 1 = Γ 1 • λ 1 and Id n 2 • Id n 2 = Id n 2 .
Soundness. It remains to prove the soundness property, under the hard subset membership of L 2 . We just need to show that if the adversary A is able to generate a valid proof π ⊺ for a word x 1 / ∈ L 1 , then we can use π ⊺ to check if a word x 2 is in L 2 or not. More precisely, we define the adversary B as follows: on input a word x 2 ∈ X 2 , it runs A to get a proof π ⊺ for a word x 1 ∈ X 1 , then it computes H be the hash value of (x 1 , x 2) using hk, and the value H ′ := π ⊺ • θ 2 . The adversary B then returns 0 if the proof π ⊺ is correct (i.e., satisfies Equation (3.9)) and H = H ′ (indicating it guesses that x 2 ∈ L 2), and outputs 1 otherwise.

On the one hand, if x 2 ∈ L 2 (and whether x 1 ∈ L 1 or not), there exists a witness w 2 such that θ 2 (x 2) = Γ 2 • λ 2 (x 2 , w 2) and so, thanks to Equation (3.9), we have:

H ′ = π ⊺ • Γ 2 • λ 2 = γ ⊺ 2 • (θ 1 ⊗ Id k 2) • λ 2 = γ ⊺ 2 • (θ 1 ⊗ λ 2) = H ,
the last equality coming from the correctness of the SPHF and the fact the second to last expression is just the hash value of (x 1 , x 2) computed using ProjHash and witness w 2 . Therefore, we have:

Pr Exp sub-memb-0 (B, K) = 1 = Pr [π ⊺ generated by A is not correct] ,
where Exp sub-memb-0 is defined in Figure 2.3. On the other hand, if x 2 / ∈ L 2 and x 1 / ∈ L 1 , then (x 1 , x 2) / ∈ L . So H looks uniformly random by smoothness and the probability that

H ′ = H is at most 1/|Π| = 1/p. Pr Exp sub-memb-1 (B, K) = 1 ≥ Pr [π ⊺ generated by A is not correct] + Pr [π ⊺ is correct and x 1 / ∈ L 1] -1/p .
As the probability that π ⊺ is correct and x 1 / ∈ L 1 is exactly Adv sound (A, K), we get the expected result.

We remark that B does not need to check whether x 1 ∈ L 1 . This is important as it might not be possible to do this check in polynomial time.

Remark 3.3.3. In [KW15, Section 3.1], Kiltz and Wee proposed the same scheme, but stated differently, without tensor products. They also manage to reduce the soundness to the following computational assumption: it is hard to find a non-zero vector in

β ⊺ = G 1×n 2 1 such that β ⊺ • Γ 2 = 0 1×k 2 .
This assumption is weaker that the hard-subset-membership assumption we are using as finding such a vector enables to solve the subset-membership problem: to check whether x 2 ∈ L 2 , we check whether β ⊺ • θ 2 = 0. As our scheme is identical to the one in [KW15, Section 3.1], we could also reduce soundness to this computational assumption.

For the sake of completeness, here is a sketch of the reduction. We define an adversary B against this computational assumption as follows: it runs A and get a proof π ⊺ for a word

x 1 ∈ X 1 . Then it outputs β ⊺ := π ⊺ α ⊺ • (θ 1 (x 1) ⊗ Id n 2) .
Equations (3.9) and (3.10) directly imply that β ⊺ • Γ 2 = 0 1×k 2 . Therefore, we just need to prove that β ⊺ = 0 1×n 2 with probability at least 1 -1/p. For any word x 2 ∈ X 2 \ L 2 , we have:

β ⊺ • θ 2 (x 2) = π ⊺ • θ 2 α ⊺ • (θ 1 (x 1) ⊗ Id n 2) • θ 2 = H ′ H ,
with H ′ and H defined as in the proof above, because

(θ 1 (x 1) ⊗ Id n 2) • θ 2 = θ 1 ⊗ θ 2 . But as x 2 / ∈ L 2 ,
smoothness ensures that H is uniformly random and H ′ -H is 0 with probability 1/p. Thus β ⊺ = 0 1×n 2 with probability at least 1 -1/p.

More Examples

Matrix Decisional Diffie-Hellman Assumptions (MDDH)

In an independent work [START_REF] Escala | An Algebraic Framework for Diffie-Hellman Assumptions[END_REF], Escala et al. introduced an algebraic framework for Diffie-Hellman-like assumptions, over cyclic groups. They generalized the DDH assumption and many of its variants (such as the DLin assumption, introduced by Boneh, Boyen, and Shacham in [START_REF] Boneh | Short Group Signatures[END_REF]), into the matrix decisional Diffie-Hellman (MDDH) family of assumptions.

Let us provide a slight generalization of the MDDH assumption to any graded ring of prime order. Definition 3.4.1. Let G be a graded ring of prime order p. Let n and k be two positive integers. Let ṽ be some index for this graded ring. Let D be a distribution of matrices in Z n×k p (samplable in polynomial time), the D-MDDH assumption (over G ṽ) states that the two following distributions are computationally indistinguishable:

([A], [A • r]) | A $ ← D; r $ ← Z k p ([A], [u]) | A $ ← D; u $ ← Z n p ,
where

[A] is the matrix ([ṽ, A i,j]) i=1,...,n j=1,...,k ∈ G ṽ.
Concretely, for G a cyclic group (p, G, g), [A] is the matrix (g A i,j) i=1,...,n j=1,...,k

.

We can define an associated KV-DVS V = (p, G, X , L , R, n, k, RGen, Γ, θ, λ) as follows:

• Setup.gpar(1 K) generates the graded ring gpar := G for the security parameter K;

• Setup.lpar(gpar) generates and random matrix A $ ← D and outputs lpar := [A] ∈ G n×k ṽ and ltrap = A;

• the matrix Γ lpar is exactly the matrix [A] = lpar;

• the functions θ and λ are the identity functions;

• the language is defined by:

L := L := {[u] | ∃r ∈ Z k p , u = A • r} ⊆ G n ṽ =: X =: X .
The D-MDDH assumption corresponds the hard-subset-membership property of the language L , up to an additive term 1/p, as the probability that a uniform vector [u] $ ← G n is in L is at most 1/p. Furthermore, we can define an SPHF associated to this DVS, which exactly corresponds to the SPHF in [START_REF] Escala | An Algebraic Framework for Diffie-Hellman Assumptions[END_REF].

We should point out that, although the work of Escala et al. is similar to our work regarding this construction of SPHF, we looked at the problem from two distinct perspectives and for different goals. Escala et al. provide a deep and insightful analysis of MDDH assumptions, their relations (for different distributions D), and ways to prove them easily in generic (multilinear) group models. On the other hand, we are more interested in SPHFs for more complex languages and their applications to the construction of NIZK for example. Many of our constructions use a DVS associated to a hard-subset-membership language, which can be instantiated with any secure MDDH assumption. This difference of point of view also explains the difference of notation in the two works: in [START_REF] Escala | An Algebraic Framework for Diffie-Hellman Assumptions[END_REF], all the discrete logarithms of the elements appearing in the assumptions are known (by the algorithm generating an instance of the MDDH assumption) and the use of the bracket notation ([A]) is extremely practical in that case, while in our work, the elements we consider might come from somewhere else (such as an ElGamal public key) and their discrete logarithms might not be known.

Cramer-Shoup Encryption

Similarly to the language of ElGamal ciphertexts in Section 3.1.1.3, we can also consider the language of Cramer-Shoup ciphertexts (see Section 2.2.2.3). Global parameters gpar := (p, G, g, H), while language parameters lpar := ek := (g 1 , g 2 , c, d, h) ∈ G 5 consist of a Cramer-Shoup encryption key. The language is and defined by:

L = {(ℓ, m, c = (u 1 , u 2 , v, w)) ∈ {0, 1} * × M × G 2 | ∃r ∈ Z p , (u 1 , u 2 , v, w) = (g r 1 , g r 2 , h r • G(m), (cd ξ) r) with ξ = H(ℓ, u 1 , u 2 , v)} ,
where G is a reversible map from the message set M to G. We write M = G(m).

GL-DVS.

Constructing a GL-DVS for this language is similar to constructing a DVS for the language of ElGamal ciphertexts. We can construct such a DVS V = (p, G, X , L , R, n, k, RGen, Γ, θ, λ) as follows:

n := 4 k := 1 Γ(x) :=      g 1 g 2 h cd ξ      θ(x) :=      u 1 u 2 v/M w      λ(x , w) := r , where x = (ℓ, m, (u 1 , u 2 , v, w)), w = r, and ξ = H(ℓ, u 1 , u 2 , v).
This DVS is a GL-DVS as Γ depends on ξ which itself depends on x .

Historical note 3.4.2. The resulting GL-SPHF was known since [START_REF] Katz | Efficient and secure authenticated key exchange using weak passwords[END_REF][START_REF] Gennaro | A Framework for Password-Based Authenticated Key Exchange[END_REF]. However, the KV-SPHF resulting from the following KV-DVS is much more recent and was proposed in [BBC+13c]. Its discovery helped constructing the most efficient one-round PAKE at the time.

KV-DVS.

To get a KV-DVS, we need to find a way to make Γ independent of ξ. The idea is to add a row and a column to Γ. We can construct a KV-DVS V = (p, G, X , L , R, n, k, RGen, Γ, θ, λ) for the language of Cramer-Shoup ciphertexts as follows:

n := 5 k := 2 Γ :=        g 1 0 0 g 1 g 2 0 h 0 c d        θ(x) :=        u 1 u ξ 1 u 2 v/M w        λ(x , w) := r rξ ,
where x = (ℓ, m, (u 1 , u 2 , v, w)), w = r, and ξ = H(ℓ, u 1 , u 2 , v). Soundness comes from the fact that if θ = Γ • λ and u 1 = g r 1 , then necessarily λ = (r, rξ) ⊺ .

Validity of Cramer-Shoup ciphertexts.

If we remove from the matrix Γ and the vector θ the row corresponding to the elements h and v/M (respectively), the previous two DVSs just check the validity of a Cramer-Shoup ciphertext, without looking at the exact plaintext.

All our examples of DVSs for languages using ElGamal ciphertexts (such as Examples 3.1.3 and 3.1.4 and Section 3.4.3) can therefore just be extended to DVSs for the same languages using Cramer-Shoup ciphertexts by doing the conjunction of these DVSs with the DVSs used to check validity of Cramer-Shoup ciphertexts. In most cases, matrices can be slightly optimized or compressed. We leave these optimizations to the reader.

Encryption of Plaintexts Satisfying a System of Quadratic Equations

To demonstrate the power of DVSs, let us show how to construct a KV-DVS for the encryption of plaintexts satisfying a system of bilinear equations.

Example 3.4.3. The global parameters are gpar := (p, G 1 , G 2 , G T , g 1 , g 2), an asymmetric bilinear group of prime order p. The language parameters are lpar :

= (g 1 , h 1 , g 2 , h 2 , g T , h T) ∈ G 2 1 × G 2 2 × G 2
T where ek 1 := (g 1 , h 1), ek 2 := (g 2 , h 2), and ek T := (g T , h T) are three random ElGamal encryption keys in G 1 , G 2 , and G T respectively. Let ν 1 , ν 2 , and ν T be three non-negative integers. We consider the language of tuples • of ElGamal ciphertexts (c ω,i := (u ω,i , v ω,i)) i=1,...,νω of plaintexts (M ω,i) i=1,...,νω under the encryption key ek ω , for ω ∈ {1, 2, T },

• and of group elements

(A ω,i) i=1,...,νω ∈ G νω ω for ω ∈ {1, 2} and B ∈ G T ,
• and of scalars

(a i,j) i=1,...,ν 1 j=1,...,ν 2 ∈ Z ν 1 ×ν 2 p and (a T ,i) i=1,...,ν T ∈ Z ν T p ,
such that the following equation is satisfied:

ν 1 i=1 e(M 1,i , A 2,i) • ν 2 j=1 e(A 1,j , M 2,j) • ν 1 i=1 ν 2 j=1 e(M 1,i , M 2,j) a i,j • ν T k=1 M a T ,k T ,k = B .
This equation can also be written:

ν 1 i=1 A 2,i • M 1,i   ν 2 j=1 A 1,j • M 2,j     ν 1 i=1 n 2 j=1 a i,j • M 1,i • M 2,j   n T k=1 a T ,k • M T ,k = B .
The witness w for such a word is the tuple of scalars

w := ((r 1,i) i=1,...,ν 1 , (r 2,i) i=1,...,ν 2 , (r T ,i) i=1,...,ν T) , such that u ω,i = g r ω,i ω and v ω,i = h r ω,i ω • M ω,i , for ω ∈ {1, 2, T } and i ∈ {1, . . . , ν ω }.
The KV-DVS is defined as follows:

n := 5 k := 4 Γ :=        g 1 • g 2 0 0 0 0 g 1 0 0 0 0 g 2 0 0 0 0 g T h 1 • h 2 h 1 h 2 h T        =        e(g 1 , g 2) 0 0 0 0 g 1 0 0 0 0 g 2 0 0 0 0 g T e(h 1 , h 2) h 1 h 2 h T        θ :=          i j a i,j • u 1,i • u 2,j i j a i,j • u 1,i • e 2,j (i A 2,i • u 1,i) i j a i,j • e 1,i • u 2,j j A 1,j • u 2,j i a T ,i • u T ,i i j a i,j • e 1,i • e 2,j (i A 2,i • e 1,i) j A 1,j • e 2,j (k a T ,k • e T ,k) B          =          i j e(u 1,i , u 2,j) a i,j i j e(u 1,i , e 2,j) a i,j • (i e(u 1,i , A 2,i)) i j e(e 1,i , u 2,j) a i,j • j e(A 1,j , u 2,j) i u a T ,i T ,i i j e(e 1,i , e 2,j) a i,j • (i e(e 1,i , A 2,i)) • j e(A 1,j , e 2,j) • (k e(a T ,k , e T ,k)) • B -1          λ :=       -i j a i,j • r 1,i • r 2,j i j r 1,i • a i,j • e 2,j (i A 2,i • r 1,i) i j r 2,i • a i,j • e 1,j j A 1,j • r 2,j k r T ,k       =       -i j a i,j • r 1,i • r 2,j i j e r 1,i •a i,j 2,j • i A r 1,i 2,i i j e r 2,i •a i,j 1,j • j A r 2,j 1,j k r T ,k      
.

Using this example and conjunctions, we can easily construct DVSs for languages of encryptions of plaintexts satisfying a system of quadratic equations.

Other examples of DVSs can also be found in [BBC+13c].

Chapter 4 Diverse Modules

This chapter constitutes the core of this thesis. It formally describes diverse modules (DMs), which are extensions of DVSs to modules over rings Z M instead of just vector spaces (or modules) over finite fields Z p . Contrary to DVSs, DMs also handle languages based on the quadratic residuosity (QR) assumption and the decisional composite residuosity (DCR) assumption for example.

The direct construction of a PHF from a DM is not smooth but satisfies a slightly weaker notion called universality we recall in the first section. Then, we formally define DMs. Finally, similarly to what we did for DVSs, we show some ways to combine or enhance DMs: conjunctions, disjunctions, and t-sound extensions. A t-sound DM yield a t-universal projective hash function. The notion of t-universality was introduced by Cramer and Shoup in [START_REF] Cramer | Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption[END_REF] for t = 2 and has many applications, such as (t -1)-time simulation-sound NIZK, when combined with disjunctions.

Universality and Smoothness

We first show why smoothness is too strong when working over cyclic groups of composite order. Then, we introduce the notion of universality and show how to transform a universal PHF into a smooth PHF.

Motivation

Let us consider again the DDH language L over a cyclic group (M, G, g) defined in Example 2.3.1:

L = {(u, v) ∈ G 2 | ∃r ∈ Z M , (u, v) = (g r , h r)} G 2 = X .
We now use the letter M to denote the order of the group G. We recall the classical SPHF for this language:

hk := α ⊺ $ ← Z 1×2 M hp := γ ⊺ := α ⊺ • g h ∈ G H := α ⊺ • u v = u α 1 • v α 2 pH := γ ⊺ • r .
This PHF is perfectly smooth when M = p is a prime number. We may want to extend the previous construction to the case where M is a composite number M = pq, with p and q being two distinct prime numbers. Unfortunately, in this case, the SPHF is not smooth anymore: if x = (g p , h 2p) / ∈ L , the hash value of x is

H = α ⊺ • g p h 2p = p • α ⊺ • g h 2
and lies in G q the subgroup of G of order q. It is therefore not at all indistinguishable from a uniform element in G. However, we still remark that the value H is uniformly random in G q , given hp. Thus it has high min entropy. Universality captures this notion of high min entropy.

We could use a randomness extractor (see Section 2.2.3) to extract from H a uniformly random string (when x / ∈ L). The seed seed can just be put in the projection key hp. This works perfectly with CS/GL smoothness, as in this case the seed is really independent from the word x . But with KV smoothness, this is not necessarily the case and such extractor does not work. Luckily, in many cases, universality is a sufficient property and no extraction is required. Historical note 4.1.1. In [START_REF] Cramer | Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption[END_REF], smoothness was introduced after universality. In this thesis, we introduce the two notions in the reverse order.

Universal Projective Hash Functions

Universality

Definition 4.1.2. A PHF (HashKG, ProjKG, Hash, ProjHash) for a language L ⊆ X is εuniversal if for any lpar, any word x ∈ X lpar \ L lpar , any projection key hp, and any hash value H ∈ Π, we have Pr Hash(hk, lpar, x) = H and ProjKG(hk, lpar, x) = hp | hk $ ← HashKG(lpar)

≤ ε • Pr ProjKG(hk, lpar, x) = hp | hk $ ← HashKG(lpar) . It is universal if it is ε-universal with ε is negligible in K.
Another way to look at universality is to say that the PHF is 1/2 k -universal if the hash value Hash(hk, lpar, x) of a word x ∈ X lpar \ L lpar has min entropy at least k, conditioned on ProjKG(hk, lpar) = hp. Intuitively, a PHF is universal if it is hard to guess the hash value of a word x ∈ X lpar \ L lpar , given only the projection key hp.

Approximate Universality

As noted by Cramer and Shoup in [START_REF] Cramer | Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption[END_REF], it is often practical to consider an approximate version of universality. Definition 4.1.3. A PHF (HashKG, ProjKG, Hash, ProjHash) and a PHF (HashKG ′ , ProjKG ′ , Hash ′ , ProjHash ′) (with algorithms not necessarily running in polynomial time) for the same language L ⊆ X are said to be ε-close, if for any lpar, the following distributions are ε-close:

(ProjKG(hk, lpar, x), Hash(hk, lpar, x)) x ∈X lpar | hk $ ← HashKG(lpar) (ProjKG ′ (hk, lpar, x), Hash ′ (hk, lpar, x)) x ∈X lpar | hk $ ← HashKG ′ (lpar) , where (•, •) x ∈X lpar is a tuple of |X lpar | pairs (•, •), one for each x ∈ X lpar .
In this section, we do not require algorithms (HashKG ′ , ProjKG ′ , Hash ′ , ProjHash ′) to run in polynomial time. Definition 4.1.4. A PHF (HashKG, ProjKG, Hash, ProjHash) for a language L ⊆ X is ε ′close to be ε-universal, if there exists an ε-universal PHF (HashKG ′ , ProjKG ′ , Hash ′ , ProjHash ′) (with algorithms not necessarily running in polynomial time) that is ε ′ -close to the PHF (HashKG, ProjKG, Hash, ProjHash). It is close to be universal or approximately universal if it is ε ′ -close to be ε-universal with ε ′ and ε negligible in K.

It should be noted that an PHF that is close to be universal is not necessarily universal, as it is possible that for one of its projection keys, there is only one possible hash value for some word x ∈ X \ L . We remark that if a KV-SPHF (resp. CS-SPHF, GL-SPHF) is ε ′ -close to an ε-smooth KV-SPHF (resp. CS-SPHF, GL-SPHF), then the former KV-SPHF (resp. CS-SPHF, GL-SPHF) is (ε ′ + ε)-smooth.

Weakly Universal Projective Hash Functions

While the SPHFs we construct from KV-DVSs over Z p can easily be proven 1/p-universal, this is not the case of the ones we construct from GL-DVSs or CS-DVSs. Let us now consider a weaker form of approximation which enables us to define weak versions of universal PHFs corresponding to GL-SPHFs and CS-SPHFs.

Weakly Approximate Universality

Definition 4.1.5. A PHF (HashKG, ProjKG, Hash, ProjHash) and a PHF (HashKG ′ , ProjKG ′ , Hash ′ , ProjHash ′) (with algorithms not necessarily running in polynomial time) for the same language L ⊆ X are said to be ε-weakly-close, if for any lpar, for any x ∈ X lpar , the following distributions are ε-close:

(ProjKG(hk, lpar, x), Hash(hk, lpar, x)) | hk $ ← HashKG(lpar) (ProjKG ′ (hk, lpar, x), Hash ′ (hk, lpar, x)) | hk $ ← HashKG ′ (lpar) .

Definition 4.1.6. A PHF (HashKG, ProjKG, Hash, ProjHash) for a language L ⊆ X is ε ′weakly-close to be ε-universal, if there exists an ε-universal PHF (HashKG ′ , ProjKG ′ , Hash ′ , ProjHash ′) (with algorithms not necessarily running in polynomial time) that is ε ′ -weakly-close to the PHF (HashKG, ProjKG, Hash, ProjHash). It is weakly close to be universal or weakly approximately universal if it is ε ′ -weakly-close to be ε-universal with ε ′ and ε negligible in K.

We remark that if a CS-SPHF (resp. GL-SPHF) is ε ′ -weakly-close to an ε-smooth CS-SPHF (resp. GL-SPHF), then the former CS-SPHF (resp. GL-SPHF) is (ε ′ + ε)-smooth. However, this is not true with KV-SPHFs.

Weakly Approximate Universality and GL/CS Smoothness

A weakly approximate universal PHF can be transformed into a GL/CS-smooth PHF. We recall that this does not work for KV smoothness. More precisely, we have the following proposition.

Proposition 4.1.7. Let (HashKG, ProjKG, Hash, ProjHash) be an ε ′ -weakly-close to be ε-universal PHF. Let β = -log 2 ε. Let m be a positive integer. Let Ext be the extractor defined in Theorem 2.2.10. Let us define a PHF (HashKG ′ , ProjKG ′ , Hash ′ , ProjHash ′) with range Π ′ = {0, 1} m as follows:

• HashKG ′ (lpar) generates a hashing key hk $ ← HashKG(lpar) and a seed seed $ ← Ext, and outputs the new hashing key hk ′ := (hk, seed);

• ProjKG ′ (hk ′ , lpar) computes the projection key hp ← ProjKG(hk) and outputs the new projection key hp ′ := (hp, seed);

• Hash ′ (hk ′ , lpar, x) computes the hash value H ← Hash(hk, lpar, x) and outputs the new hash value H ′ := Ext(seed, H);

• ProjHash ′ (hp ′ , lpar, x , w) computes the projected hash value pH ← ProjHash(hp, lpar,

x , w) and outputs the new projected hash value pH ′ := Ext(seed, pH).

Then, this new PHF is

(ε ′ + 2 (m-β)/2)-GL/CS-smooth.
Proof. The proof is immediate from Theorem 2.2.10.

Diverse Modules (DMs)

Before introducing diverse modules, let us first formally define graded rings which were sketched in Section 3.1.2.1.

Graded Rings

Graded rings are a generalization of cyclic and bilinear groups and can be used as a practical abstraction of multilinear maps coming from the framework of Garg, Gentry and Halevi [START_REF] Garg | Candidate Multilinear Maps from Ideal Lattices[END_REF] and subsequent candidates [CLT13; CLT15; GGH15]. We should however warn the reader that, unfortunately when this thesis was written, due to many attacks [GGH13; CHL+15; CGH+15; HJ15; MF15; CLR15; Mar16], no current candidate multilinear map seems to be useful for applications of hash proof systems, as such applications generally rely on assumptions in the base groups and require encodings of 0. Understanding what ideal multilinear maps can bring us is still an interesting theoretical question. Furthermore, graded rings are useful even just to deal with cyclic groups, bilinear groups, and groups arising from factorization-based assumptions (e.g., DCR and QR), as they enable to simplify notation.

Set of Indexes

A set of indexes Λ is a finite subset of N τ of the form {0, . . . , κ 1 } × • • • × {0, . . . , κ τ }, where τ, κ 1 , . . . , κ τ are positive integers. In addition to considering the addition law + over Λ, we also consider Λ as a bounded lattice, with the two following laws: sup(ṽ, ṽ′) = (max(ṽ 1 , ṽ′ 1), . . . , max(ṽ τ , ṽ′ τ)) inf(ṽ, ṽ′) = (min(ṽ 1 , ṽ′ 1), . . . , min(ṽ τ , ṽ′ τ)).

We also write ṽ < ṽ′ (resp. ṽ ≤ ṽ′) if and only if for all i ∈ {1, . . . , τ }, ṽi < ṽ′ i (resp. ṽi ≤ ṽ′ i). Let 0 = (0, . . . , 0) and ⊤ = (κ, . . . , κ), be the minimal and maximal elements.

Graded Rings

The (κ, τ)-graded ring over a finite commutative ring R is the set G = Λ × R = {[ṽ, x] | ṽ ∈ Λ, x ∈ R}, where Λ = {0, . . . , κ} τ , with two binary operations (, •) defined as follows:

• for every u 1 = [ṽ 1 , x 1], u 2 = [ṽ 2 , x 2] ∈ G: u 1 u 2 := [sup(ṽ 1 , ṽ2), x 1 + x 2]; • for every u 1 = [ṽ 1 , x 1], u 2 = [ṽ 2 , x 2] ∈ G: u 1 • u 2 := [ṽ 1 + ṽ2 , x 1 • x 2] if ṽ1 + ṽ2 ∈ Λ, or
⊥ otherwise, where ⊥ means the operation is undefined and cannot be done.

We remark that • is only a partial binary operation and we use the following convention:

⊥ u = u ⊥ = u • ⊥ = ⊥ • u = ⊥, for any u ∈ G ∪ {⊥}.
Let G ṽ be the additive group {u = [ṽ ′ , x] ∈ G | ṽ′ = ṽ} of graded ring elements of index ṽ.

Both and • are associative and commutative, over G ∪ {⊥}. More precisely, for any

u 1 , u 2 , u 3 ∈ G∪{⊥}: u 1 (u 2 u 3) = (u 1 u 2) u 3 , u 1 •(u 2 •u 3) = (u 1 •u 2)•u 3 , u 1 u 2 = u 2 u 1 , and u 1 • u 2 = u 2 • u 1 . In particular, if u 1 • (u 2 • u 3) = ⊥ (i.e., if this expression is well- defined), then (u 1 • u 2) • u 3 = ⊥. In addition, the operation • is distributive over : for any u 1 , u 2 , u 3 ∈ G ∪ {⊥}, u 1 • (u 2 u 3) = u 1 • u 2 u 1 • u 3 .
We call elements of index 0 scalars and we write G 0 the ring of scalars. Thanks to the previous properties, we can make natural use of vector and matrix operations over graded ring elements. In particular, we say that G n and G 1×n are modules over the graded ring G. The canonical basis (e i) n i=1 of G n is defined as usual, except the vectors of the canonical basis are of index 0 (i.e., are scalars).

Sub-Graded Rings and Multiplicative Compatibility

A sub-graded ring of a Λ-graded ring G is a subset G ≤ṽ = {u = [ṽ ′ , x] ∈ G | ṽ′ ≤ ṽ} of G, where ṽ ∈ Λ. A sub-graded ring is itself a graded ring. Two sub-graded ring G 1 = G ≤ṽ 1 and G 2 = G ≤ṽ 2 are said to be multiplicatively compatible if ṽ1 + ṽ2 ∈ Λ, or in other words, if it is possible to multiply any element of G ≤ṽ 1 by an element of G ≤ṽ 2 .

Restrictions and Computational Assumptions

Representation. As usual, when we are referring to a graded ring, we are implicitly referring to a family of graded rings indexed by the security parameter K. We suppose that graded ring elements (including elements of the base ring R) can be represented by bit strings of size polynomial in K, and that the size of the index set Λ if also polynomial in K.

We suppose that non-scalars have a unique representation. This makes notation simpler. In case of non-unique representation, all our constructions can be adapted, as soon as we have a way to randomize the representation and to extract a canonical representation (from which addition and multiplication might not be allowed), as in current candidates for multilinear maps [START_REF] Garg | Candidate Multilinear Maps from Ideal Lattices[END_REF].

To handle cases where the order of the base ring is not known, we allow scalars to have non-unique representations. Furthermore the size of their representations might increase when addition and multiplication are performed. Details are given later.

Ring R = Z M . We also restrict ourselves to the case where R is of the form Z M with M ≥ 2 being some positive integer, as we have not found any graded ring over a more general base ring that might be useful for PHFs in cryptography.

Computational assumptions.

Let G be a graded ring over the base ring R = Z M and let gpar be global parameters containing a description of G (later, we will often just write gpar = G). The following operations are supposed to be polynomial in K:

• testing the membership to G,

• computing the index of an element (the representation might simply contain the index of the element);

• addition and multiplication of two graded ring elements;

• computation of the elements [ṽ, 0], [ṽ, 1], and [ṽ, -1] for any index ṽ;1

• generation of random scalars (elements of index 0). We denote by GenScalar a polynomial-time algorithm taking as input the parameters gpar defining the graded ring and outputting a random scalar. The algorithm GenScalar is ε GenScalar -almost-uniform, if two following distributions are ε GenScalar -close:

u $ ← GenScalar(gpar) u $ ← R .
We suppose that GenScalar is almost uniform, i.e., it is ε GenScalar -uniform with ε GenScalar negligible in K. We denote by GenScalar k×n the polynomial-time algorithm which takes as input the global parameters gpar and generate a matrix A ∈ G 0k×n , by generating each coefficient A i,j independently as follows: A i,j $ ← GenScalar(gpar).

We do not require the order M of the ring R to be efficiently computable, although it has to be finite (and at most exponential in K). Similarly, in general, we do not require the inversion of scalars to be feasible in polynomial time. However, when we consider prime-order graded rings, we always suppose that the order M = p is known.

Examples of Graded Rings

Cyclic groups and bilinear groups of prime order. Let us now show that cyclic groups and bilinear groups of prime order p can be seen as graded rings over R = Z p : Cyclic groups: Λ := {0, 1}. More precisely, elements [0, x] of index 0 correspond to scalars

x ∈ Z p and elements [1, x] of index 1 correspond to group elements g x ∈ G.

Asymmetric bilinear groups (p, G 1 , G 2 , G T , e, g 1 , g 2): Λ := {0, 1} 2 . More precisely, we can consider the following map:

[(0, 0), x] corresponds to x ∈ Z p , [(1, 0), x] corresponds to g x 1 ∈ G 1 , [(0, 1), x] corresponds to g x 2 ∈ G 2 and [(1, 1), x] corresponds to e(g 1 , g 2)
x ∈ G T . The two non-trivial sub-graded rings of this bilinear group are G ≤(1,0) and G ≤(0,1) . These two sub-graded rings are multiplicatively compatible, since (1, 0) + (0, 1) = (1, 1). By abuse of notation, we often call these sub-graded rings: G 1 and G 2 .

Symmetric bilinear groups (p, G, G

T , e, g): Λ := {0, 1, 2}. More precisely, we can consider the following map: [0, x] corresponds to x ∈ Z p , [1, x] corresponds to g x ∈ G, and [2, x] corresponds to e(g, g) x ∈ G T .

The non-trivial sub-graded ring of this bilinear group is G ≤1 . This sub-graded ring is multiplicatively compatible with itself, since 1 + 1 = 2. By abuse of notation, we often call this sub-graded ring: G.

Cyclic groups and bilinear groups of composite order. Everything before can be extended to the case of composite order cyclic group and bilinear groups, as used for example in the BGN cryptosystem [START_REF] Boneh | Evaluating 2-DNF Formulas on Ciphertexts[END_REF].

Factorization-based groups. Let us now show two examples where the group order is hard to compute.

Example 4.2.1 (J N). Let N = pq be a (public) modulus, with p and q two distinct (secret) safe prime numbers, i.e., such that there exists two odd primes p ′ and q ′ such that p = 2p ′ + 1 and q = 2q ′ + 1. Unfortunately the multiplicative group Z * N is not cyclic and it seems hard to add a graded ring structure to it.

Instead, we consider J N the subgroup of Z * N containing the elements of Jacobi symbol 1. It is well known that this is a cyclic group of order M = 2N ′ where N ′ = p ′ q ′ . We can then add a structure of graded ring over it like on classic cyclic groups, with Λ = {0, 1} and R = Z M = Z 2N ′ . The only difference is that computing the order M and inverting a scalar is hard, when p and q are not known.

Elements of index ⊤ can be represented directly and uniquely by elements in J N : concretely, if g is a generator of J N , we can represent [⊤, x] by g x ∈ J N . The difficulty is to represents scalars G 0 ≈ Z M . The naive way would be to represent them as elements of {0, . . . , M -1}. The problem is that we do not necessarily know M , and M is hard to compute without knowing the factorization of N . For this graded ring, we therefore use non-unique representation, and represents a scalar by an integer not necessarily in {0, . . . , M -1}. Operations on scalars correspond to operations on integers without reduction modulo M , so the size of the representation is not a priori bounded. But in all our applications, this does not matter, as only a constant number of operations are done over scalars. Some care should be taken when such an integer is revealed, as this not only reveal its real value (modulo M) but also leak some information about the previous operations. That is why, we often require that no scalars are public (e.g., in a projection key).

Generating a random scalar (in Z M = Z 2p ′ q ′) can be done by picking uniformly at random an integer x in {0, . . . , ⌊N/2⌋}. The distribution of x mod M is (1/2 • (1/p ′ + 1/q ′))-close to be uniform, using Proposition 2.1.7, as ⌊N/2⌋ = 2p ′ q ′ + p ′ + q ′ . Example 4.2.2 (J ′ N 2). Similarly to Example 4.2.1, we can also consider the group J ′ N 2 , the subgroup of Z * N 2 of elements x such that x mod N has Jacobi symbol 1. This is also a cyclic group and its order is 2N N ′ . [BBC+13c]. However, before this thesis, graded rings were always considered over a finite field R = Z p , similarly to what we did in Chapter 3.

Historical note 4.2.3. Graded rings were first introduced in

Diverse Modules, Universal PHFs, and Tools for Composite Order

Definition

A diverse module (DM) is defined similarly to a diverse vector space (DVS) except we consider general graded rings over R = Z M , instead of graded rings over R = Z p with p being a prime number. More formally, we have the following definition. Definition 4.2.4. A diverse module (DM) is defined by a tuple M = (M gpar , , G gpar , (X lpar , L lpar , R lpar , n lpar , k lpar , RGen, Γ lpar , θ lpar , λ lpar) lpar) gpar satisfying the same properties as a DVS in Definition 3.1.7, except the graded ring is no more supposed to be over a finite field Z p but instead is over Z M . Furthermore, in case of non-unique representation of scalars, we suppose that no coordinate of Γ lpar (x , ρ) has index 0.

The restriction on the coordinates of Γ lpar (x , ρ) in case of non-unique representation of scalars is just to ensure that the projection key (in the PHF construction) will not yield more information than what it would in case of unique representation. Concretely, with the graded ring J N defined in Example 4.2.1, if Γ lpar (x , ρ) only contained scalars, the projection key of the constructed PHF would contain γ ⊺ = α ⊺ • Γ lpar (x , ρ) a scalar row vector (where α ⊺ is also a scalar row vector), which may reveal too much information on α ⊺ if this is not reduced modulo M . This restriction can be lifted, if we have a way to randomize the representations of scalars, as in [START_REF] Garg | Candidate Multilinear Maps from Ideal Lattices[END_REF].

We define GL diverse modules (GL-DMs), CS diverse modules (CS-DMs), and KV diverse modules (KV-DMs), similarly to GL-DVSs, CS-DVSs, and KV-DVSs (see Section 3.1.2.3).

The PHF associated to a DM

This is similar to the construction of a SPHF from a DVS (Construction 3.1.10) with several differences:

• scalars are no more in Z p and generating a uniform scalar might not be perfect and needs to be done with GenScalar;

• the resulting PHF is not necessarily smooth but only (weakly-)close to be universal;

• the row vector α ⊺ ∈ Z 1×n p is extended into a matrix α ⊺ ∈ Z m×n M : in the previous construction, α ⊺ defined a (random) linear map from Z n p to Z p , and now it defines a (random) linear map from Z n M to Z m M ; this helps to make the universality error probability negligible in K, when M contains a small prime factor p, as in that case, even when the DM is perfectly sound, the resulting PHF is only (1/p m)-universal. This extension could have been used with DVS but is often just completely useless in that case, as 1/p is already negligible in K;

• and finally, the proofs are more involved as modules are much more complicated to deal with than vector spaces.

More formally, we have the following construction.

Construction 4.2.5 (PHF from DM). Let M = (M, G, X , L , R, n, k, RGen, Γ, θ, λ) be a DM. Let m be a positive integer. Then we construct a PHF as follows:

• HashKG(lpar) picks a random matrix α ⊺ $ ← GenScalar m×n (gpar), generates a random element ρ $ ← RGen(lpar), and outputs the hashing key hk := (α ⊺ , ρ);

• ProjKG(hk, lpar, x) outputs the projection key hp := (γ ⊺ , ρ), where hk = (α ⊺ , ρ) and

γ ⊺ := α ⊺ • Γ lpar (x , ρ) ∈ G m×k ;
• Hash(hk, lpar, x) outputs the hash value

H := α ⊺ • θ lpar (x , ρ) ∈ G m ,
where hk = (α ⊺ , ρ);

• ProjHash(hp, lpar, x , w) outputs the projected hash value

pH := α ⊺ • λ lpar (x , w , ρ) ∈ G m .
When p is a prime number, m = 1, and GenScalar uniformly samples an element from Z p , we get exactly Construction 3.1.10.

We have the following security results. When M = p is a prime, the proofs of Theorem 4.2.6 and Theorem 4.2.7 are similar to the proofs of Theorem 3.1.11. But when M is a composite number, this is not anymore the case.

Tools for Composite Order

Let us introduce some useful tools to deal with Z M when M ≥ 2 is a composite number.

Chinese remainder theorem (CRT). Let

φ : Z M → Z p e 1 1 × • • • × Z p er r x → φ(x) = (x mod p e 1 1 , . . . , x mod p er r)
is a ring isomorphism. Its inverse φ -1 is denoted crt and defined by:

crt :     Z p e 1 1 × • • • × Z p er r → Z M (x 1 , . . . , x r) → crt(x 1 , . . . , x r) = r i=1 x i • M p e i i •   M p e i i -1 mod p e i i       .
We extend the notation crt(x 1 , . . . , x r) to vectors or matrices: if M 1 , . . . , M r are matrices in Z k×n p e 1 1 , . . . , Z k×n p er r respectively, then crt(M 1 , . . . , M r) is the matrix M such that M i,j = crt(M 1,i,j , . . . , M r,i,j).

Valuation. Let us define the notion of valuation.

Definition 4.2.9. Let p be a prime number and e be a positive integer. Let M = p e . The valuation ν(x) of an element x ∈ Z M is the smallest non-negative integer k such that x mod p k = 0.

We remark that 0 ≤ ν(x) ≤ e, and ν(x) = 0 if and only if x is invertible, while ν(x) = e if and only if x = 0 (in Z M). Furthermore, if x and y are two elements in Z M , then

ν(x • y) = ν(x) + ν(y) .
Intuitively, the valuation ν(x) indicates "how much x is invertible". More precisely, we have the following lemma. Lemma 4.2.10 (division modulo prime power). Let p be a prime number and e a positive integer. Let M = p e . Let x and y be two elements in Z M . If ν(x) ≥ ν(y), there exists an element z ∈ Z M such that z • y = x.

Proof. Let us first prove the existence of z. We first remark that y/p ν(y) (defined as an integer, for example by looking at a representation of y in {0, . . . , M -1}) is invertible in Z M . Let ỹ be the inverse of y/p ν(y) . Then, we can set z := (x/p ν(y)) • ỹ, where x/p ν(y) is well defined as ν(x) ≥ ν(y). We indeed have:

z • y = (x/p ν(y)) • ỹ • y = x • ỹ • (y/p ν(y)) .
Existence of solutions to a particular system. For the proof of universality, we also use the following proposition. M such that:

A • x = 0 k b ⊺ • x = p e-1 ,
or in other words:

A b ⊺ • x =       0 . . . 0 p e-1       . Proof. Let Ā ∈ Z (k+1)×n M be the matrix: Ā := A b ⊺ .
From a high level point of view, the proof consists in applying Gaussian elimination to the matrix Ā, in which at each step we take the coefficient with the smallest valuation as pivot, as in [Jou09, Section 3.3.3.1]. Formally, we do a proof by induction on k.

• Base case: k = 0. We just need that for any non-zero row vector b ⊺ ∈ Z 1×n M , there exists a column vector x ∈ Z n M such that b ⊺ • x = p e-1 . Let us choose j * ∈ {1, . . . , n} such that b j * = 0. Let c ∈ Z M be an arbitrary element such that b j * • c = p e-1 . Such an element exists according to Lemma 4.2.10, as ν(b j *) ≤ e -1 = ν(p e-1), because b j * = 0. We can then construct a vector x ∈ Z n M as follows: x j := 0 for j = j * , and x j * := c. • Induction case: k ≥ 1. We have two cases:

1. There exists an index j * such that the valuation ν(b j *) is strictly smaller than the valuations of all the entries of A: for all i ∈ {1, . . . , k} and j ∈ {1, . . . , n}, ν(A i,j) ≥ ν(b j *) + 1. In this case, let c ∈ Z M be an arbitrary element such that b j * • c = p e-1 and let x ∈ Z n M be the vector defined as follows: x j := 0 for j = j * , and x j * := c. We clearly have b ⊺ • x = p e-1 . To conclude this case, we just need to prove that A • x = 0, or in other words that A i,j * • c = 0, for any i ∈ {1, . . . , k}. The latter equality comes from the fact that

ν(A i,j * •c) = ν(A i,j *)+ν(c) ≥ (ν(b j *) + 1)+ν(c) = 1+ν(b j * •c) = 1+ν(p e-1) = e .
2. There does not exists such an index j * . In this case, we arbitrarily take two indices i * and j * such that the valuation of A i * ,j * is minimum, among the valuations of all the entries A i,j of A, and therefore also over all the entries Āi,j of Ā. We transform the matrix Ā as follows: for each i = i * , we add to the i-th row of Ā the i * -th row of Ā multiplied by an arbitrary element c i ∈ Z M such that A i * ,j * • c i = -A i,j * (such an element exists thanks to Lemma 4.2.10). We also permute the i * -row with the first one, and the j * -column with the first one. We write the resulting matrix as follows:

Ā′ =         d e ⊺ 0 A ′′ . . . 0 0 b ′′⊺         with              d = A i * ,j * ∈ Z M , e ⊺ = (A i * ,j) j∈{1,...,n}\{j * } ⊺ ∈ Z 1×(n-1) M , A ′′ ∈ Z (k-1)×(n-1) M , b ′′⊺ ∈ Z 1×(n-1) M .
By induction hypothesis, there exists a column vector ′′ . Such an element exists according to Lemma 4.2.10, as the valuation of d = A i * ,j * is not larger than the valuation of e j for any j (by choice of i * and j *), and therefore it is not larger than the valuation of e ⊺ • x ′′ . We can then define

x ′′ ∈ Z n-1 M such that A ′′ • x ′′ = 0 and b ′′⊺ • x ′′ = p e-1 . Let c be an arbitrary element c ∈ Z M such that d • c = -e ⊺ • x
x ′ = c x ′′ ∈ Z n M .
We have

Ā′ • x ′ =       0 . . . 0 p e-1       .
We can finally construct x ∈ Z n M which corresponds to x ′ with the first coordinate and the j * -th coordinate permuted. Since the row operations done on the matrix Ā to obtain Ā′ can be undone by subtracting to the i-th row, the i * -th row multiplied by c i (for i = i *), we have:

Ā • x =       0 . . . 0 p e-1       .
This concludes the proof of this case. This concludes the proof.

Invertibility.

Let us now introduce a convenient lemma that we do not use in the security proof of Theorems 4.2.6 and 4.2.7, but that is useful in other contexts. Lemma 4.2.12. Let M ≥ 2 be a positive integer. Let x ∈ Z M . The element x is invertible in Z M if and only if, for any prime factor p dividing M , it is invertible modulo p.

Proof. Let M = p e 1 1 • • • p er r be the prime decomposition of M . The CRT theorem ensures that if x is invertible in Z M , then it is invertible modulo p e i i for all i ∈ {1, . . . , r}, and thus also modulo p for any prime factor p dividing M .

Conversely, let us suppose that x is invertible modulo p for any prime factor p of M . Using the CRT theorem, we just need to prove the case where M is a prime power M = p e . This is done by remarking that x is invertible modulo p if and only if it is coprime with p, which is equivalent to being coprime with p e and therefore also to being invertible modulo p e .

Existence of specific vectors in kernel.

Let us conclude with a proposition that we do not use in the security proof of Theorems 4.2.6 and 4.2.7 but that is useful later. Furthermore, it uses the same proof techniques as for Proposition 4.2.11. Proposition 4.2.13. Let M ≥ 2 be a positive integer. Let A ∈ Z k×n M be a matrix, with k > n. There exists a vector x ∈ Z M such that one of its entries is invertible modulo M . Then there exists a vector x ∈ Z n M and an integer j ∈ {1, . . . , n}, such that A • x = 0 and x j is invertible in Z M .

Proof. We start by remarking that thanks to the CRT (Theorem 4.2.8), we just need to prove the theorem in the case where M is a power of a prime number: M = p e , where p is a prime number and e is a positive integer. As for the proof of Proposition 4.2.11, from a high level point of view, the proof consists in applying Gaussian elimination to the matrix Ā, in which at each step we take the coefficient with the smallest valuation as pivot, as in [Jou09, Section 3.3.3.1].

Let us now prove the proposition by induction on n.

• Base case: n = 1. The matrix A is just a row vector of at least 2 entries. We consider two cases:

1. There exists an index j * such that A 1,j * = 0. In this case, we can construct x ∈ Z n M as follows: x j := 0 for j = j * , and x j * = 1. 2. Otherwise, we arbitrarily take an index j * such that the valuation ν(A 1,j *) is minimum among the valuations of all the entries of A. Let j ′ be another distinct index and let c ∈ Z M be an arbitrary element such that A 1,j ′ = c • A 1,j * . Then, we can construct a vector x as follows: x j := 0 for j = j * , j ′ , x j ′ = 1, x j ′ = 1, and x j * = -c.

• Induction case: n ≥ 1. We arbitrarily take two indices i * and j * such that the valuation ν(A i * ,j *) is minimum among the valuations of all the entries of A. We then transform the matrix A similarly to what was done in the second case of the induction case of the proof of Proposition 4.2.11 and conclude in a similar way. Basically, after permuting the i * -column and the first one, and after doing some invertible elementary row operations, we get a matrix of the form:

A ′ =       d e ⊺ 0 A ′′ . . . 0       with        d = A i * ,j * ∈ Z M , e ⊺ = (A i * ,j) j∈{1,...,n}\{j * } ⊺ ∈ Z 1×(n-1) M , A ′′ ∈ Z (k-1)×(n-1) M .
We then use the induction hypothesis to construct a vector x ′′ ∈ Z n-1 M such that A ′′ • x ′′ = 0 and at least one of the entry of this vector x ′′ is invertible in Z M . Let c be an arbitrary element c ∈ Z M such that d•c = -e ⊺ •x ′′ . Such an element exists according to Lemma 4.2.10, as the valuation of d = A i * ,j * is not larger than the valuation of e j for any j (by choice of i * and j *), and therefore it is not larger than the valuation of e ⊺ • x ′′ . We can then define

x ′ = c x ′′ ∈ Z n M .
We have A ′ • x ′ = 0. We can finally construct x ∈ Z n M which corresponds to x ′ with the first coordinate and the j * -th coordinate permuted. This concludes the proof.

Security Proofs

Let us now prove Theorems 4.2.6 and 4.2.7. The first idea of the proof is to decompose the order M into its factors p e i i and reduce the proof to the case where M is a prime power: M = p e i i . Then, we follow the proof of Theorem 3.1.11, with one big difference: in the latter proof, we need at some point to find a particular solution x * ⊺ to some linear system, namely x * ⊺ • Γ = 0 and x * ⊺ • θ = "something", with θ linearly independent of columns of Γ. When we are over a field Z p (as in Theorem 3.1.11), it is easy to prove that such a solution always exists. Here, however, we are over a ring of the form Z p e and we need to be very careful about the "something" (namely, choose "something" to be p e-1) and use Proposition 4.2.11.

For the reader familiar with diverse groups, we give some additional intuition to this proof in Section 4.2.3.

Proof of Theorem 4.2.6. Perfect correctness is proven exactly as for DVS (Theorem 3.1.11). Let us now prove smoothness. Until the end of the proof, we are only looking at the discrete logarithms of all the group elements we are considering. In particular, we suppose that all the entries of our vectors and matrices are scalars in Z M .

Let us suppose that ρ is such that θ = θ(x , ρ) is linearly independent of the columns of Γ = Γ(x , ρ), which happens with probability at least 1 -ε, by ε-soundness of the DVS V. Furthermore, let us assume that α ⊺ is sampled uniformly in Z m×n M . Let us now prove that, for any given projection key hp, the hash value H is uniform in some set containing at least p m elements. This will prove that the PHF is (mnε GenScalar +2ε)-weaklyclose to be (1/p m)-universal, thanks to Proposition 2.1.6 and to ε GenScalar -almost-uniformity of GenScalar, which ensures that α ⊺ $ ← Z m×n M is (mnε GenScalar)-statistically-indistinguishable from α ⊺ $ ← GenScalar m×n (gpar). Finally, we remark that we can focus on the case m = 1. The general case m ≥ 1 will directly follow, as the rows of α ⊺ are independent, and so are the coefficients of the vector H = α ⊺ • θ.

Case: M = p is a prime. Let us start with this simple case. We have M = p = p. We can conclude the proof exactly as in the proof of Theorem 3.1.11: for any given projection key hp, H is a uniformly random in Z p = Z p (a set of size at least p) given only hp.

Case: M = p e is a power of a prime e. The proof of Theorem 3.1.11 does not work anymore directly. Actually, H might not be uniformly random in Z p e at all. For example, if the valuation of all the coordinates of θ is e -1, then the valuation of H is necessarily e -1 or e. We remark that there is basically only one problematic step: the existence of a vector

x * ⊺ ∈ Z 1×n p satisfying x * ⊺ • Γ = 0 and x * ⊺ • θ = H α ⊺ •
θ, for some vector α ⊺ . Fortunately, we can fix this step using Proposition 4.2.11.

Formally, let e * be the minimum non-negative integer such that there exists a vector x ⊺ ∈ Z 1×n p such that x ⊺ • Γ = 0 and x ⊺ • θ = p e * . Proposition 4.2.11 ensures that e * ≤ e -1, as θ / ∈ ColSpan (Γ). Let us now follow the proof of Theorem 3.1.11, and adapt it to our case. Let us fix a row vector α ⊺ ∈ Z 1×k p and its associated row vector γ ⊺ = α ⊺ • Γ. Let us prove that the hash value H is uniform in the set

S ′ γ ⊺ = {H ′ ∈ Z M | ν(H ′ α ⊺ • θ) ≥ e * } .
First, let us show that a hash value H corresponding to γ ⊺ is necessary in this set. By contradiction, if this is not the case, there exists α ′⊺ ∈ Z 1×k p such that:

α ′⊺ • Γ = γ ⊺ = α ⊺ • Γ e ′ := ν(α ′⊺ • θ α ⊺ • θ) < e * Let x ′⊺ = α ′⊺ -α ⊺ and let c be such that c • (x ′⊺ • θ) = p e ′ ,
which exists thanks to Lemma 4.2.10 and to the fact that ν(x ′⊺ • θ) = e ′ = ν(p e ′). Finally, we get that x ⊺ := c • x ⊺ is such that x ⊺ • Γ = 0 and x ⊺ • θ = p e ′ with e ′ < e * , which is impossible by choice of e * . This concludes this first step. This step was not necessary in the proof of Theorem 3.1.11 because the hash value was uniform in the whole set Z p .

Second, let H ∈ S ′ γ ⊺ and let us now show that the set S γ ⊺ ,H (as defined in the proof of Theorem 3.1.11) contains a number of vectors

α ′⊺ independent of H. Let c ∈ Z M be such that c • p e * = H α ⊺ • θ, which exists as ν(H α ⊺ • θ) ≥ e * . Let x ′ * ⊺ ∈ Z 1×n M be such that x ′ * ⊺ • Γ = 0 and x ′ * ⊺ • θ = p e * .
α * ⊺ • Γ θ = α ⊺ • Γ x * ⊺ • Γ α ⊺ • θ x * ⊺ • θ = γ ⊺ (c • 0) α ⊺ • θ (c • p e *) = γ ⊺ 0 α ⊺ • θ (H α ⊺ • θ) = γ ⊺ H .
Therefore, as in the proof of Theorem 3.1.11, we get:

S γ ⊺ ,H = α ⊺ + x * ⊺ + x ⊺ x ∈ ker Γ θ ⊺ ,
and the size of S γ ⊺ ,H is independent of H and γ ⊺ . This proves that H is uniform in S ′ γ ⊺ . Furthermore, S ′ γ ⊺ contains p e-e * ≥ p = p elements. This concludes the case M = p e . Case: M is a general composite number. Let us now handle the case where M is a composite number. Let M = p e 1 1 • • • p er r be the prime decomposition of M . Let us show that there exists at least one integer i ∈ {1, . . . , r} such that θ mod p e i i / ∈ ColSpan (Γ mod p e i i). By contradiction, if this is not the case, this means that for all i ∈ {1, . . . , r}, there exists a vector λ i ∈ Z n p e i i , such that θ mod p e i i = Γ • λ i mod p e i i . Let λ = crt(λ 1 , . . . , λ r). We have θ = Γ • λ. This is impossible.

Using the previous case, for all i such that θ mod p e i i / ∈ ColSpan (Γ mod p e i i), H mod p e i i is uniform in a set of size at least p i ≥ p. On the other hand, when θ mod p e i i ∈ ColSpan (Γ mod p e i i), H is completely determined by γ ⊺ . Using the CRT again, as what happens modulo each p e i i is independent, we get that H is uniform in a set containing at least p elements.

This concludes the general case.

Proof of Theorem 4.2.7. This proof is similar to the previous one. The only difference is that the DM is perfectly sound. This only changes the beginning of the proof.

Reduced DMs

The proofs of Theorems 4.2.6 and 4.2.7 work by reducing the DM modulo the prime powers p e i i in the prime decomposition of the order M . This idea is useful outside these proofs and it is sometimes convenient to look at a reduced version of a DM.

Let us introduce some new notations. If M is a positive integer, M ′ is a factor of M , and f is a function from some set S to the set of matrices Z k×n M , then we denote by f mod M ′ the function from S to the set of matrices Z k×n M ′ defined by (f mod M ′)(x) = f (x) mod M ′ , for all x ∈ S. We can extend the modular reduction modM ′ to graded ring elements, by looking at their discrete logarithm. The operation might not be performed in polynomial time.

Now we can introduce the notion of reduced DM.

Definition 4.2.14.

Let M = (M, G, X , L , R, n, k, RGen, Γ, θ, λ) be a DM. Let M ′ ≥ 2 be a factor of M . The reduced DM M modulo M ′ is denoted by M mod M ′ and is defined as: (M, G, X , L , R, n, k, RGen, Γ mod M ′ , θ mod M ′ , λ mod M ′) .
The functions Γ, θ, and λ might not be efficiently computable. This does not matter, as the only property we consider on reduced DM is soundness and it only works on the discrete logarithms of the elements.

We have the following theorem.

Theorem 4.2.15 (PHF from reduced DM). Let M = (M, G, X , L , R, n, k, RGen, Γ, θ, λ) be a DM with an ε GenScalar -almost-uniform algorithm GenScalar. Let M ′ ≥ 2 be a factor of M , such that M mod M ′ is ε-sound. Let p be the smallest prime factor of M ′ . Then the PHF described in Construction 4.2.5 is

(mnε GenScalar + ε)-weakly-close to be (1/p m)-universal. If in addition M is a KV-DM, this PHF is (mnε GenScalar)-close to be (1/p m)-universal.
This is a refinement of Theorems 4.2.6 and 4.2.7, as when M ′ = M , we get the previous theorems. But, in addition, when the smallest prime factor of M ′ is larger than the smallest prime factor of M , this improves the bounds of the previous theorems. This is therefore convenient, when M has some small prime factors but M ′ does not.

Proof. Let M = p e 1 1 • • • p er r be the prime decomposition of M . Without loss of generality, we can write

M = p e ′ 1 1 • • • p e ′ r ′ r ′ the prime decomposition of M ′ , where r ′ ≤ r, e ′ 1 ≤ e 1 , . . . , e ′ r ′ ≤ e r ′ . Let M ′′ be M ′′ = p e 1 1 • • • p e r ′
r ′ . We remark that M ′′ divides M . The smallest prime factor of M ′′ is the same as the smallest prime factor of M ′ . Furthermore, if M mod M ′ is ε-sound, so is M mod M ′′ , as if a linear relation is satisfied modulo M ′′ , it is also satisfied modulo M ′ . Therefore, we can suppose without loss of generality that M ′ = M ′′ .

We can now conclude using a proof similar to the one for the general case of Theorem 4.2.6: the CRT basically ensures that everything that happened modulo M ′′ is independent of what happens modulo M/M ′′ , and modulo M ′′ , we already get (weakly approximate) universality.

Simple Examples

One of the simplest example is the following.

Example 4.2.16 (DDH with composite order). We can trivially extend the DVS for the DDH language over a cyclic group G of prime order p (Example 3.1.8) to a DM for the DDH language over a cyclic group G of known composite order M . The DM is a perfectly sound KV-DM and the resulting PHF is 1/p-universal, with p being the smallest prime factor of M . Notice that, when M is a prime p, then M = p = p.

More generally, most examples in Chapter 3 directly work with cyclic groups of composite order, with the important exception of disjunctions of languages which do not work as expected as shown later.

In all the previous examples, the order M was known. Let us now show a simple example of DM over a graded ring with a hard-to-compute order, namely over J N , with N = pq being a product of two distinct secret safe primes.

Example 4.2.17 (QR). We work in the graded ring G = J N , with N being the product of two distinct safe primes p = 2p ′ + 1 and q = 2q ′ + 1, as defined in Example 4.2.1. The global parameters are gpar = (J N , g), with g a generator of J N . There are no language parameters (lpar =⊥) and we consider the language of the quadratic residues of J N :

L := {u ∈ J N | ∃r, u = g 2r } ⊆ X = J N .
We can define this language by a KV-DM with θ and λ the identity functions, and:

n := 1 k := 1 Γ := g 2 .
Its reduction modulo 2 gives the following DM:

n := 1 k := 1 Γ := [⊤, 0] θ(x) := 1 if u is a quadratic residue 0 otherwise λ(x , w) := r mod 2 ,
where

x = u w = r .
It is also perfectly sound.

Link with Diverse Groups

In this section, we discuss the link between diverse modules (DMs) and diverse groups introduced by Cramer and Shoup in [START_REF] Cramer | Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption[END_REF].

Let us first informally recall the notion of diverse groups and their associated PHFs. A diverse group for a language L ⊆ X is a tuple (L , X , Π, Φ) where:

• (X ,) is a finite Abelian additive group;

• L is a subgroup of X ;

• (Π,) is a finite Abelian additive group;

• Φ is a subgroup of the group of homomorphisms from X to Π; satisfying the following property:

• Diversity. For any θ ∈ X \ L , there exists a homomorphism φ ∈ Φ such that φ(L) = {0} and φ(θ) = 0. For any set S ⊆ X , φ(S) denotes the image of the set S by the function φ.

We also suppose that the language L ⊆ X is generated by the elements h 1 , . . . , h k ∈ X and that a witness λ of a word θ ∈ L is a vector of integers λ ∈ Z k such that

θ = λ 1 • θ 1 • • • λ k • h k .
We can then construct a PHF associated to such a diverse group, as follows:

• HashKG(lpar) picks a random homomorphism φ $ ← Φ and outputs the hashing key hk := φ;

• ProjKG(hk, lpar) outputs the projection key hp := γ ⊺ := (φ(h 1), . . . , φ(h k)) ∈ Π k ;

• Hash(hk, lpar, θ) outputs the hash value φ(θ) ∈ Π;

• ProjHash(hp, lpar, θ, λ) outputs the projected hash value

pH := λ 1 • γ 1 • • • λ k • γ k .
Cramer and Shoup showed that such a PHF is (1/p)-universal where p is the smallest prime factor of the order of the quotient group X / L . We first remark that if M = (M, G, X , L , R, n, k, RGen, Γ, θ, λ) is a DM, then for any m, if Π := Z m M and Φ is the set of linear maps from X = Z n M to Π, then (L , X , Π, Φ) is a diverse group. Actually, the hard part of the proof of Theorem 4.2.6 consists in proving the existence of some vector x ′ * ⊺ satisfying x ′ * ⊺ • Γ = 0 and x ′ * ⊺ • θ = 0, which exactly corresponds to the diversity property.

We may wonder if any diverse group can also be represented by a diverse module. If we forget about complexity of the various algorithms and if we are allowed to slightly change X , Π, and Φ, this is actually the case. Let (L , X , Π, Φ) be a diverse group. The fundamental theorem of finitely generated Abelian groups says that we can decompose X as:

X = Z M 1 × • • • Z Mr ,
with M 1 , . . . , M R being positive integers ≥ 2, such that M i divides M i+1 for all i ∈ {1, . . . , r -1}. We can embed X into the Z M -submodule Z r M with M := M r . From now on, we suppose that X = Z r M . Then, L can now be seen as a submodule of Z r M , generated by the column vectors h 1 , . . . , h k .

Next, if we restrict Π to φ∈Φ φ(X), the group Π becomes a submodule of some module Z m M . We can then suppose that Π is exactly Z m M . Finally, we remark that group homomorphisms in Φ are also linear maps from X = Z n M to Z m M = Π. We can extend the group Φ to the group of all linear maps. This keeps the diversity property.

At the end, we get a KV-DM with θ and λ the identity functions. However, we should point out that while all the transformations we made are mathematically correct, they might not be efficient at all, and it might be possible that the resulting KV-DM cannot be used to construct a PHF.

Nevertheless, we do not know of any useful diverse group which cannot be seen as a diverse module. And using diverse modules offers much more structure to work on.

Conjunctions and Disjunctions

Let us now study conjunctions and disjunctions of DMs. Conjunctions of DMs are similar to conjunctions of DVSs. Disjunctions are much more subtle, when the order M is composite.

Conjunctions

To construct a DM corresponding to the conjunction of two languages L 1 and L 2 represented by two DMs, we can use exactly the same construction as for DVSs (Construction 3.2.1).

Construction 4.3.1 (conjunction of two DMs). It is exactly the same as Construction 3.2.1 except that the order of the graded ring might now be a composite number M instead of necessarily being a prime number p.

Everything works exactly the same, as when L1 and L2 are submodules of X1 and X2 respectively, L1 × L2 is also a submodule of X1 × X2 .

(ε 1 + ε 2 -ε 1 ε 2)-sound DM.

Disjunctions

We could hope that disjunctions also work as easily as conjunctions. Unfortunately, this is not the case: the straightforward adaptations of Constructions 3.2.4 and 3.2.8 to DMs yields DMs which are not sound, even for really simple examples, as the disjunction of DDH languages of composite order (Examples 3.2.5 and 3.2.9).

Intuitively, in Constructions 3.2.4 and 3.2.8, the main issue is that due to linearity and CRT, if θ ∈ ColSpan (Γ), this only implies that modulo each factor p e i i of M , θ 1 mod p e i i ∈ ColSpan (Γ 1 mod p e i i) or θ 2 mod p e i i ∈ ColSpan (Γ 2 mod p e i i). But if M has two distinct prime factors, it is perfectly possible that:

             θ 1 mod p ∈ ColSpan (Γ 1 mod p) θ 2 mod p / ∈ ColSpan (Γ 2 mod p) θ 1 mod q / ∈ ColSpan (Γ 1 mod q) θ 2 mod q ∈ ColSpan (Γ 2 mod q)
and therefore, θ 1 / ∈ ColSpan (Γ 1) and θ 2 / ∈ ColSpan (Γ 2), while θ ∈ ColSpan (Γ). In this section, we show that the language, for which the disjunction of DMs (using Constructions 3.2.4 and 3.2.8) is sound, still has some interesting properties and can be seen as a "relaxed" disjunction of the two original languages. More precisely, we prove that if θ 2 / ∈ ColSpan (Γ 2) and does not behave strangely modulo any factor of M , then θ ∈ ColSpan (Γ) implies that θ 1 ∈ ColSpan (Γ 1) and x 1 ∈ L . The notion of "not behaving strangely modulo any factor of M " is slightly different for Construction 3.2.4 and Construction 3.2.8 and is captured by the notions of non-degenerated words and strongly non-degenerated words respectively. But first, we need to introduce this relaxed notion of soundness, and show its influence on universality. R,n,k,RGen,Γ,θ,λ) is ε-S -sound, where S is a subset of X , if for any word x ∈ S :

Relaxed Soundness and Relaxed Universality

Definition 4.3.3. A DM M = (M, G, X , L ,
Pr θ lpar (x , ρ) ∈ ColSpan (Γ lpar (x , ρ)) ρ $ ← RGen(lpar) ≤ ε .
when looking at the discrete logarithms of all the elements (see Remark 3.1.6). It is S -sound if it is ε-S -sound, with ε negligible in K.

We remark that classical soundness (resp. ε-soundness) corresponds exactly to (X \ L)soundness (resp. ε-(X \ L)-soundness). Definition 4.3.4. A PHF (HashKG, ProjKG, Hash, ProjHash) for a language L ⊆ X is ε-Suniversal, where S is a subset of X , if for any lpar, any word x ∈ X lpar \ L lpar , any projection key hp, and any hash value H ∈ Π, we have Pr Hash(hk, lpar, x) = H and ProjKG(hk, lpar) = hp | hk $ ← HashKG(lpar)

≤ ε • Pr ProjKG(hk, lpar) = hp | hk $ ← HashKG(lpar) . It is S -universal if it is ε-S -universal with ε is negligible in K.
We can extend Theorems 4.2.6, 4.2.7 and 4.2.15 to use relaxed soundness, as follows.

Theorem 4.3.5 (PHF from DM with relaxed soundness). Let M = (M, G, X , L , R, n, k, RGen, Γ, θ, λ) be a DM with an ε GenScalar -almost-uniform algorithm GenScalar. Let S be a subset of X . Let M ′ ≥ 2 be a factor of M , such that M mod M ′ is ε-S -sound. Let p be the smallest prime factor of M ′ . Then the PHF described in Construction 4.2.5 is

(mnε GenScalar + ε)-weakly-close to be 1/p m -S -universal. If in addition M is a KV-DM, this PHF is (mnε GenScalar)-close to be 1/p m -S -universal.
The proof is a straightforward adaptation of the one for Theorem 4.2.15. We could have introduced this notion of relaxed soundness from the beginning and defined everything using it. However, that would have made notation more complex. As in all our applications, we only use these notions of relaxed soundness or relaxed universality with disjunctions of DMs, we prefer to introduce these notions only here.

Another way to look at all these relaxed notions is to say that we are working with promise languages: we only consider words that are either in the language L or in the set S , but we do not consider words that are neither in L nor in S .

Disjunctions of GL-DVSs and Non-Degeneracy

Counter-example. Let us first show that the DM M in Example 3.2.5 is not sound, when the prime order p is just replaced by a composite order M = pq, with p and q being two distinct prime numbers. We recall that for any x ∈ Z p and any y ∈ Z q , crt(x, y) is the unique element z ∈ Z M , such that z mod p = x and z mod q = y (see Section 4.2.2.3). We have crt(x, x) = x, and in particular, crt(1, 1) = 1 and crt(-1, -1) = -1. Furthermore, crt is a ring homomorphism from Z p × Z q to Z M . Concretely, this implies that for any x, x ′ ∈ Z p and any y, y ′ ∈ Z q , we have crt(x, y)

+ crt(x ′ , y ′) = crt(x + x ′ , y + y ′) and crt(x, y) • crt(x ′ , y ′) = crt(x • x ′ , y • y ′).
In the DM M, we have:

Γ(x) :=        0 g 0 g g 1 u 1 0 0 h 1 v 1 0 0 0 0 g 2 u 2 0 0 h 2 v 2        θ(x) :=        g -1 1 G 1 G 1 G 1 G       
.

We consider the word:

x = (u 1 := g crt(1,1) 1 , v 1 := h crt(1,0) 1 , u 2 := g crt(1,1) 2 , v 2 := h crt(0,1) 2) ∈ X \ L .
This word x is not in L , as x 1 := (u 1 , v 1) is not a DH tuple in basis (g 1 , h 1) and

x 2 := (u 2 , v 2)
is not a DH in basis (g 2 , h 2). But, we have θ = Γ(x) • λ with:

λ =      crt(1, 0) crt(-1, 0) crt(0, 1) crt(0, -1)      .
Therefore M is not sound.

We remark that x 1 mod p and x 2 mod q are DH tuples in bases (g 1 , h 1) and (g 2 , h 2) respectively (where mod works on the discrete logarithms of the elements, as already defined). In some sense, x 1 and x 2 are degenerated modulo p and q respectively. Non-degeneracy. Let us now introduce formally this notion of non-degenerated words.

Definition 4.3.6. Let M = (M, G, X , L , R, n, k, RGen, Γ, θ, λ) be a DM. A word x ∈ X is (1 -ε)-non-degenerated (in M) if for
any prime factor p of the order M , when looking at the discrete logarithms of all the elements (see Remark 3.1.6), we have:

Pr θ(x , ρ) mod p / ∈ ColSpan (Γ mod p) | ρ $ ← RGen(lpar) ≤ ε . It is non-degenerated (in M) if it is (1 -ε)-non-degenerated with ε negligible in K.
We remark that any non-degenerated word x is necessarily in X \ L . Furthermore, when M = p is a prime number (i.e., when M is a DVS), then non-degenerated words are exactly words in X \ L .

Let us look at three examples.

Example 4.3.7 (QR). Let us consider the DM M = (M, G, X , L , R, n, k, RGen, Γ, θ, λ) for the QR language. We use the notation of Example 4.2.17. In this DM, any word x = u = g r is degenerated, as r mod p ′ is linearly dependent of the columns of Γ mod p ′ (where the modulo is done on the discrete logarithms). But if we look at the reduction modulo 2 of this M, any word in X \ L is non-degenerated. Actually, modulo 2, this DM is even a DVS.

Example 4.3.8 (DDH). Let us now consider the DM M = (M, G, X , L , R, n, k, RGen, Γ, θ, λ) for the DDH language for a cyclic group of composite order M . We use the notation of Example 4.2.16. In this DM, there are many words that are not in the language L but that are degenerated. For example, for any proper factor 1 < M ′ < M of M , the word

x = (g M ′ , h 2•M ′) is degenerated but is not a DH tuple.
However, a uniform word in X = G 2 is non-degenerated with probability

p prime factor of M (1 -1/p) ,
as modulo p (a prime factor of M), a random word x is not a DH tuple with probability 1 -1/p. In particular, if the smallest prime factor p of M has at least K bits, a uniform word in X = G 2 is non-degenerated with overwhelming probability. We use this property in our construction of NIZK from DMs for example.

We can extend the previous example to any MDDH assumption.

Example 4.3.9 (MDDH). Let G be a graded ring of order M , ṽ be some index. Let D be a distribution of matrices in Z n×k M , with n > k. We can extend the D-MDDH assumption recalled in Section 3.4.1 to this setting and construct a DM M = (M, G, X , L , R, n, k, RGen, Γ, θ, λ) associated to the D-MDDH assumption.

Let us show that when all the prime factors of M have at least K bits, a uniform word x = θ $ ← X = G n ṽ is non-degenerated with overwhelming probability (for any matrix Γ = [A]). For any prime factor p of M , and any matrix Γ ∈ G n×k ṽ , a uniform vector θ $ ← G n ṽ reduced modulo p is not in the column space of Γ mod p, except with probability at most 1/p (as modulo p, when looking at the discrete logarithms, the column space of Γ is a proper subspace of Z n p , because n > k). As in Example 4.3.9, the probability that a uniform word x $ ← X is non-degenerated is at most

p prime factor of M (1 -1/p) .
This probability is negligible when the smallest prime factor p of M has at least K bits.

Construction. We can define the GL disjunction of two GL-DMs as follows.

Construction 4.3.10 (GL disjunction). It is exactly the same as Construction 3.2.4 except that the order of the graded ring might now be a composite number M instead of necessarily being a prime number p.

As already explained, the disjunction DM of two DMs as defined in Construction 4.3.1 is not sound, but is S -sound for any set S of words (x 1 , x 2) / ∈ L , such as x 1 or x 2 is non-degenerated. More formally, we have the following proposition.

Proposition 4.3.11. Let M 1 = (M, G, X 1 , L 1 , R 1 , n 1 , k 1 , RGen 1 , Γ 1 , θ 1 , λ 1) and M 2 = (M, G, X 2 , L 2 , R 2 , n 2 , k 2 , RGen 2 , Γ 2 ,
θ 2 , λ 2) be two DMs, that are ε 1 -sound and ε 2 -sound respectively. For i ∈ {1, 2}, let S i be the set of ε ′ i -non-degenerated words of M i , for some

ε ′ i . Let ε := max(1 -ε 1 -ε ′ 2 + ε 1 ε ′ 2 , 1 -ε ′ 1 -ε 2 + ε ′ 1 ε 2) and S := ((X 1 \ L 1) × S 2 ∪ S 1 × (X 2 \ L 2))
Then, the GL disjunction DM M of M 1 and M 2 as defined in Construction 4.3.10 is ε-S -sound.

Proof. In this proof, we only look at the discrete logarithms of all the elements. Let us suppose that x = (x 1 , x 2) ∈ (X 1 \ L 1) × S 2 , and let us prove that

Pr θ / ∈ ColSpan (Γ(x , ρ)) | ρ $ ← RGen(lpar) ≤ 1 -ε 1 -ε ′ 2 + ε 1 ε ′ 2 . The other case x = (x 1 , x 2) ∈ S 1 × (X 2 \ L 2) is similar.
We suppose that ρ = (ρ 1 , ρ 2) is such that, for all prime factor p of M :

θ 1 (x 1 , ρ 1) / ∈ ColSpan (Γ 1 (x 1 , ρ 1)) , θ 2 (x 2 , ρ 2) mod p / ∈ ColSpan (Γ 2 (x 2 , ρ 2) mod p) .
This happens with probability at least 1

-ε 1 -ε ′ 2 + ε 1 ε ′ 2 .
By contradiction, let us suppose that there exists a vector λ ∈ Z k p such that θ = Γ • λ. We necessarily have λ k 1 +1 + λ k 1 +k 2 +1 = -1 (or both), due to the first row of the matrix Γ, as the (k

1 + 1)-th column of Γ is (1 Zp , θ ⊺ 1 , 0 ⊺) ⊺ and the (k 1 + k 2 + 1)-th column of Γ is its last column (1 Zp , 0 ⊺ , θ ⊺ 2) ⊺ .
With DVS (i.e., prime order M = p), we could conclude directly, by saying that λ k 1 +1 = 0 or λ k 1 +k 2 +1 = 0, thus one of these two scalars is invertible, and use this fact in an equation like Equation (3.7) (on page 72) or Equation (4.1). But here we cannot, as a non-zero scalar is not necessarily invertible.

Let us now show that for any prime factor p of M , we have λ k 1 +k 2 +1 mod p = 0. By contradiction, if there exists some prime p dividing M such that λ k 1 +k 2 +1 = 0, λ k 1 +k 2 +1 is invertible modulo p, and we have:

θ 2 mod p = Γ 2 • λ ′ mod p with λ ′ = -(λ i) i=k 1 +2,...,k 1 +k 2 +1 / λ k 1 +k 2 +1 mod p ,
which is impossible, as θ 2 mod p / ∈ ColSpan (Γ 2 mod p). Thus for any prime factor p of M , λ k 1 +k 2 +1 mod p = 0 and therefore λ k 1 +1 mod p = -1. Lemma 4.2.12 implies that λ k 1 +1 is invertible modulo M . And this time, we can conclude as with DVSs:

θ 1 = Γ 1 • λ ′ with λ ′ = -(λ i) i=1,...,k 1 / λ k 1 +1 . (4.1)
This is impossible, as θ 1 mod p / ∈ ColSpan (Γ 1 mod p). And that concludes the proof.

Disjunctions of CS-DMs and Strongly Non-Degenerated Words

We might hope that disjunctions of CS-DMs work the same way as disjunctions of GL-DMs: we can use the same construction as disjunctions of CS-DVSs (Construction 3.2.8) and just "remove" the words which are degenerated to get relaxed soundness. Unfortunately, this is not sufficient and we need to introduce a stronger non-degeneracy notion.

Counter-examples. First, degenerated words create the same problem as for GL-DMs. If we take Example 3.2.9 and just change the prime order p to a composite order M = pq with p and q two distinct primes, we have the same counterexample as before. We recall that, in this DM:

Γ(x) :=      g 1 0 g 2 0 0 g 1 h 2 0 h 1 0 0 g 2 0 h 1 0 h 2      θ(x) :=      u 1 • u 2 u 1 • v 2 v 1 • u 2 v 1 • v 2      =      e(u 1 , u 2) e(u 1 , v 2) e(v 1 , u 2) e(v 1 , v 2)     
.

We can consider the word:

x = (u 1 := g crt(1,1) 1 , v 1 := h crt(1,0) 1 , u 2 := g crt(1,1) 2 , v 2 := h crt(0,1) 2) ∈ X \ L .
This word is not in L , as x 1 := (u 1 , v 1) is not a DH tuple in basis (g 1 , h 1) and

x 2 := (u 2 , v 2)
is not a DH tuple in basis (g 2 , h 2). But, we have θ = Γ(x) • λ with:

λ =      crt(1, 0) • u 2 crt(1, 0) • v 2 crt(0, 1) • u 1 crt(0, 1) • v 1      =      crt(1, 0) • g 2 0 crt(0, 1) • g 1 0      as θ =      crt(1, 1) • g 1 • g 2 crt(0, 1) • g 1 • h 2 crt(1, 0) • h 1 • g 2 crt(0, 0) • h 1 • h 2     
.

Second, even non-degenerated words may create problems. Let us show this on an example. Let the global parameters consist of a bilinear group (M, G 1 , G 2 , G T , e, g 1 , g 2) of composite order M = p 2 with p being a prime number. Let

M 1 = (M, G, X 1 , L 1 , R 1 , n 1 , k 1 , RGen 1 , Γ 1 , θ 1 , λ 1) be the KV-DM for the the DDH language in G 1 = G 1 . Let M 2 = (M, G, X 2 , L 2 , R 2 , n 2 , k 2 , RGen 2 , Γ 2 , θ 2 , λ 2) be the following KV-DM in G 2 = G 2 : L 2 := {u 2 ∈ G 2 | ∃r 2 ∈ Z M , u 2 = g pr 2 2 } ⊆ G 2 n 2 := 1 k 2 := 1 Γ 2 (x 2) := g p 2 θ 2 (x 2) := u 2 λ 2 (x 2 , w 2) := r 2 ,
where:

x 2 = (u 2) w 2 = (r 2) .
Following Construction 3.2.8, the CS/KV disjunction of these two DMs is the following DM M = (M, G, X , L , R, n, k, RGen, Γ, θ, λ):

L := {(u 1 , v 1 , u 2) ∈ G 2 1 × G 2 | ∃r 1 , r 2 ∈ Z M , (u 1 , v 1) = (g r 1 1 , h r 1 1) or u 2 = g pr 2 2 } n := 2 k := 1 Γ(x) := g 1 g p 2 0 h 1 0 g p 2 θ(x) := u 1 • u 2 v 1 • u 2 = e(u 1 , u 2) e(v 1 , u 2) λ(x , w) :=                            r 1 • u 2 0 0     =     u r 1 2 0 0     if (u 1 , v 1) = (g r 1 , h r 1)     0 r 2 • u 1 r 2 • v 1     =     0 u r 2 1 v r 2 1     otherwise, if u 2 = g pr 2
where:

x = (u 1 , v 1 , u 2) w = (r 1 , r 2) .
Then, we can consider the word

x = (u 1 := g p 1 , v 1 := h 2p 1 , u 2 := g 2) which is not in L . Furthermore, u 2 is non-degenerated. But we still have θ = Γ • λ with λ =    0 g 1 h 2 1    .
Strong non-degeneracy. Let us now introduce the notion of strong non-degeneracy.

Definition 4.3.12. Let M = (M, G, X , L , R, n, k, RGen, Γ, θ, λ) be a DM. A word x ∈ X is (1 -ε)-strongly-non-degenerated (in M) if when looking at the discrete logarithms of all the elements (see Remark 3.1.6):

Pr ∃x ⊺ ∈ Z 1×n M , x ⊺ • Γ = 0 ⊺ ∈ Z 1×k M x ⊺ • θ(x) = 1 Z M ρ $ ← RGen(lpar) . It is strongly non-degenerated (in M) is it is (1 -ε)-non-degenerated with ε negligible in K.
We remark that any strongly non-degenerated word x is in X \ L . Furthermore, when M = p is a prime number (i.e., when M is a DVS), then strongly non-degenerated words are exactly words in X \ L . And when M is a product of distinct prime numbers, then the CRT ensures that non-degenerated words are exactly strongly non-degenerated words.

However, as seen in the above counter-example, this is not necessarily the case when M is divisible by p 2 for some prime p.

Let us give two examples.

Example 4.3.13 (QR). For the DM M for the QR language (Examples 4.2.17 and 4.3.7), the order is a product of three distinct primes 2, p ′ , and q ′ . Therefore, non-degenerated words correspond to strongly non-degenerated words in this DM and any of its reductions. In particular, any word x ∈ X \ L is strongly non-degenerated in M mod 2.

Example 4.3.14 (MDDH). Let us consider DMs for D-MDDH language, over a graded ring of composite order M , as in Example 4.3.9. We suppose that the smallest prime factor p of M has at least K bits. If M is a product of distinct prime numbers, everything easily works as before, since a non-degenerated word is also strongly non-degenerated: a uniform word

x ∈ X = G n ṽ is strongly non-degenerated with overwhelming probability. Let us now prove that a uniform word in G n ṽ is strongly non-degenerated with overwhelming probability in the general case, when M ≥ 2 is any positive integer. This works for any distribution D. Let A be any arbitrary matrix in Z n×k M . For this proof, we only look at the discrete logarithms of the elements and forget their indices (in G). Proposition 4.2.13 (applied on the transposed of A) shows that there exists a row vector

x ⊺ ∈ Z n M such that x ⊺ • A = 0 ⊺ and one of the entry x j * of x ⊺ is invertible in Z M . We remark that if a word θ ∈ Z n M is such that x ⊺ • θ is invertible, then this word is strongly non-degenerated. When θ is a uniform vector in Z n M , x ⊺ • θ is uniformly random in Z M thanks to the term θ i * • x i * which is uniformly random in Z M .
As a uniform scalar element in Z M is invertible with probability:

p prime factor of M (1 -1/p) ,
we conclude that a random vector θ $ ← Z n M is strongly non-degenerated with at least this probability (which is overwhelming).

Construction. We can define the disjunction of two CS-DMs as follows.

Construction 4.3.15 (CS/KV disjunction). It is exactly the same as Construction 3.2.8 except that the order of the graded ring might now be a composite number M instead of necessarily being a prime number p.

As already explained, the disjunction DM of two DMs as defined in Construction 4.3.15 is not sound, but is S -sound for any set S of words (x 1 , x 2) / ∈ L , such as x 1 or x 2 is strongly non-degenerated. More formally, we have the following proposition.

Proposition 4.3.16. Let M 1 = (M, G 1 , X 1 , L 1 , R 1 , n 1 , k 1 , RGen 1 , Γ 1 , θ 1 , λ 1) and M 2 = (M, G 2 , X 2 , L 2 , R 2 , n 2 , k 2 , RGen 2 , Γ 2 , θ 2 , λ 2
) be two CS-DMs over two multiplicatively compatible sub-graded rings G 1 and G 2 of some graded ring G. We suppose that M 1 and M 2 are ε 1 -sound and ε 2 -sound respectively. For i ∈ {1, 2}, let S i be the set of

ε ′ i -non-degenerated words of M i , for some ε ′ i . Let ε := max(1 -ε 1 -ε ′ 2 + ε 1 ε ′ 2 , 1 -ε ′ 1 -ε 2 + ε ′ 1 ε 2) and S := ((X 1 \ L 1) × S 2) ∪ (S 1 × (X 2 \ L 2)) .
Then, the disjunction CS-DM M of M 1 and M 2 as defined in Construction 4.3.15 is an ε-S -sound CS-DM. Furthermore, if M 1 and M 2 are KV-DMs and ε

′ 1 = ε ′ 2 = 0, then M is a S -sound KV-DM.
We remark that this proposition directly implies Lemma 3.2.10, as when M = p is prime, S = X \ L . This gives a new proof of Lemma 3.2.10 using only Equation (3.8) on page 73 (and no more complex properties of tensors).

Proof. In this proof, we only look at the discrete logarithms of all the elements. Let us suppose that x = (x 1 , x 2) ∈ (X 1 \ L 1) × S 2 , and let us prove that

Pr θ / ∈ ColSpan (Γ(x , ρ)) | ρ $ ← RGen(lpar) ≤ 1 -ε 1 -ε ′ 2 + ε 1 ε ′ 2 .
The other case

x = (x 1 , x 2) ∈ S 1 × (X 2 \ L 2) is similar.
We suppose that ρ = (ρ 1 , ρ 2) is such that, there exists a row vector x ⊺ ∈ Z 1×n 2 M such that:

       θ 1 (x 1 , ρ 1) / ∈ ColSpan (Γ 1 (x 1 , ρ 1)) , x ⊺ • Γ 2 = 0 , x ⊺ • θ 2 (x 2 , ρ 2) = 1 .
This happens with probability at least 1

-ε 1 -ε ′ 2 + ε 1 ε ′ 2 .
By contradiction, let us suppose that there exists a vector λ ∈ Z k M such that θ = Γ • λ. We then remark that:

(Id n 1 ⊗ x ⊺) • θ = (Id n 1 ⊗ x ⊺) • (θ 1 ⊗ θ 2) = (Id n 1 • θ 1) ⊗ (x ⊺ • θ 2) = θ 1 ⊗ (1 Z M) = θ 1 and (Id n 1 ⊗ x ⊺) • Γ = (Id n 1 ⊗ x ⊺) • Γ 1 ⊗ Id n 2 Id n 1 ⊗ Γ 2 = (Id n 1 ⊗ x ⊺) • (Γ 1 ⊗ Id n 2) (Id n 1 ⊗ x ⊺) • (Id n 1 ⊗ Γ 2) = (Id n 1 • Γ 1) ⊗ (x ⊺ • Id n 2) (Id n 1 • Id n 1) ⊗ (x ⊺ • Γ 2) = Γ 1 ⊗ x ⊺ Id n 1 ⊗ 0 ⊺ k 2 = Γ 1 ⊗ x ⊺ 0 n 1 ×(n 1 k 2) .
As θ = Γ • λ, we have:

θ 1 = Γ 1 ⊗ x ⊺ 0 n 1 ×(n 1 k 2) • λ ,
and thus:

θ 1 ∈ ColSpan (Γ 1 ⊗ x ⊺) .
If we write C 1 , . . . , C k 1 the columns of the matrix Γ 1 , then the columns of the matrix Γ 1 ⊗ x ⊺ are of the form

x i • C j . Therefore ColSpan (Γ 1 ⊗ x ⊺) ⊆ ColSpan (Γ 1) and θ 1 ∈ ColSpan (Γ 1)
. This is impossible. This concludes the proof.

t-Universality, t-Smoothness, and t-Soundness

Universality and smoothness ensure a certain randomness of hash values of words outside the language, when we are only given the projection key. This also holds when we are additionally given hash values of words inside the language, as these hash values can be computed using the projection key. But universality and smoothness do not guarantee anything when we are also given a hash value of a word outside the language.

That is why, we now introduce two stronger security notions for PHF: t-universality and tsmoothness, which deal with this case, or more precisely with the case where we are also given t -1 hash values of words potentially outside the language. We then show that if a CS-DVS or CS-DM satisfies a new property called t-soundness, its associated PHF satisfies t-smoothness and (weakly approximate) t-universality respectively. We conclude by constructing t-sound CS-DVS or CS-DM from any classical CS-DVS or CS-DM. Historical note 4.4.1. Cramer and Shoup defined a notion of 2-universality in [START_REF] Cramer | Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption[END_REF]. Our notion is a slight variant of theirs with one main difference: the use of an explicit tag. This enables to work with statistical definitions while having the possibility to plug in a collision-resistant hash function to get efficiency improvements.

In this whole section, for the sake of simplicity, we only consider PHFs for which the projection key hp does not depend on the word x . We could consider notions of t-universality and t-smoothness for PHFs in which the projection key hp depends on the word x : in this case, all the seen hash values would correspond to the same word but with different tags. Our definitions and constructions in this section can easily be extended to this case. This case was actually used in [BCPW15], but in this thesis, we improved the efficiency of the construction in the latter paper and we got rid of the part using t-smoothness (see Section 6.3).

t-Universality and t-Smoothness

We first need to extend the notion of PHF to add a tag, before defining t-universality and t-smoothness.

Tag-PHF

A tag-PHF is similar to a PHF, except that ProjHash and Hash takes an additional input, called a tag tag ∈ Tags. More formally, we have the following definition: Definition 4.4.2. A tag-PHF over (L lpar) is defined by a tuple of four polynomial-time algorithms (HashKG, ProjKG, Hash, ProjHash), where:

• HashKG(lpar) generates a hashing key hk for the language parameters lpar;

• ProjKG(hk, lpar, x) deterministically derives a projection key hp from the hashing key hk, the language parameters lpar, and possibly the word x ∈ X lpar ;

• Hash(hk, lpar, x , tag) deterministically outputs a hash value H from the hashing key hk, for the word x ∈ X lpar , the language parameters lpar, and the tag tag ∈ Tags; the set Tags is supposed to be efficiently recognizable;

• ProjHash(hp, lpar, x , w , tag) deterministically outputs a projected hash value pH from the projection key hp, and the witness w , for the word x ∈ L lpar (i.e., R lpar (x , w) = 1), the language parameters lpar, and the tag tag ∈ Tags.

A PHF has to satisfy the following property:

• Perfect correctness. For any lpar, for any word x ∈ L lpar with witness w (i.e., such that R lpar (x , w) = 1), for any tag tag ∈ Tags, for any hk $ ← HashKG(lpar) and for hp ← ProjKG(hk, lpar), Hash(hk, lpar, x , tag) = ProjHash(hp, lpar, x , w , tag) .

Tag-PHFs are often just called PHFs in the sequel. As usual with tags or labels, the tag is no useful for basic universality or smoothness: a smooth or universal PHF can be transformed in a tag-PHF for any tag set Tags just by ignoring the tag tag. But tags are necessary for t-universality and t-smoothness.

t-Universality and t-Smoothness

Definition 4.4.3. A PHF (HashKG, ProjKG, Hash, ProjHash) for a language L ⊆ X is ε-t-S -universal (where t is a positive integer and S is a subset of X) if the algorithm ProjKG does not use its input x , and if for any lpar, any words x 1 , . . . , x t-1 ∈ X lpar , any word x t ∈ S , any tags tag 1 , . . . , tag t-1 ∈ Tags, any tag tag t ∈ Tags distinct from tag 1 , . . . , tag t-1 , any projection key hp, and any hash values H 1 , . . . , H t ∈ Π, we have

Pr                     Hash(hk, lpar, x t , tag t) = H t ; ProjKG(hk, lpar) = hp; ∀i ∈ {1, . . . , t -1}, Hash(hk, lpar, x i , tag i) = H i hk $ ← HashKG(lpar)        ≤ ε • Pr            ProjKG(hk, lpar) = hp; ∀i ∈ {1, . . . , t -1}, Hash(hk, lpar, x i , tag i) = H i hk $ ← HashKG(lpar)     . It is t-S -universal if it is ε-t-universal with ε is negligible in K. It is ε-t-universal (resp. t-universal), if it ε-t-(X \ L)-universal (resp. t-(X \ L)-universal).
When t = 2, Tags = X and tag = x , we get back the notion of 2-universality of Cramer and Shoup. Definition 4.4.4. A PHF (HashKG, ProjKG, Hash, ProjHash) for a language L ⊆ X is ε-t-CS-smooth if the algorithm ProjKG does not use its input x , and if for any lpar, any words x 1 , . . . , x t-1 ∈ X lpar , any word x t ∈ X lpar \ L lpar , any tags tag 1 , . . . , tag t-1 ∈ Tags, and any tag tag t ∈ Tags distinct from tag 1 , . . . , tag t-1 , then the following distributions are ε-close:

         (hp, H 1 , . . . , H t) hk $ ← HashKG(lpar); hp ← ProjKG(hk, lpar); ∀i ∈ {1, . . . , t -1}, H i ← Hash(hk, lpar, x i , tag i); H t ← Hash(hk, lpar, x t , tag t)                   (hp, H 1 , . . . , H t) hk $ ← HashKG(lpar); hp ← ProjKG(hk, lpar); ∀i ∈ {1, . . . , t -1}, H i ← Hash(hk, lpar, x i , tag i); H t $ ← Π          . A PHF is t-CS-smooth if it is ε-t-CS-smooth with ε negligible in K.
Definition 4.4.5. A PHF (HashKG, ProjKG, Hash, ProjHash) for a language L ⊆ X is ε-t-KV-smooth if the algorithm ProjKG does not use its input x , and if for any lpar, any functions f 1 , . . . , f t from the set of possible projection keys hp to X lpar , and any functions g 1 , . . . , g t from the set of possible projection keys hp to Tags such that the image of f t is included in X lpar \ L lpar , and for any projection key hp, g t (hp) is different from g 1 (hp), . . . , g t-1 (hp), then the following distributions are ε-close:

         (hp, H 1 , . . . , H t) hk $
← HashKG(lpar); hp ← ProjKG(hk, lpar); ∀i ∈ {1, . . . , t -1}, H i ← Hash(hk, lpar, f i (hp), g i (hp)); H t ← Hash(hk, lpar, f t (hp), g t (hp))

                  (hp, H 1 , . . . , H t) hk $
← HashKG(lpar); hp ← ProjKG(hk, lpar); ∀i ∈ {1, . . . , t -1}, H i ← Hash(hk, lpar, f i (hp), g i (hp));

H t $ ← Π          . A PHF is t-KV-smooth if it is t-ε-KV-smooth with ε negligible in K.

t-Soundness

To construct t-universal and t-smooth PHFs, we first need to define the notion of t-sound (and t-S -sound) tag-DMs and tag-DVSs. Then, we show that t-sound tag-DMs and tag-DVSs directly provide (weakly approximate) t-universal and t-smooth PHFs.

t-Sound Tag-DM and Tag-DVS

Tag-DMs and tag-DVSs are similar to DMs and DVSs except that θ and λ take an additional input: a tag tag ∈ Tags. Correctness is modified accordingly, as for tag-PHF. Similarly to tag-PHFs, tag-DMs and tag-DVSs are often just called DMs and DVSs. Definition 4.4.6.

A DM M = (M, G, X , L , R, n, k, RGen, Γ, θ, λ) is ε-t-S -sound,
where S is a subset of X , if for any words x 1 , . . . , x t-1 ∈ X lpar , any word x t ∈ S , any tags tag 1 , . . . , tag t-1 ∈ Tags, any tag tag t ∈ Tags distinct from tag 1 , . . . , tag t-1 : Pr θ lpar (x t , ρ, tag t) ∈ ColSpan Γ lpar (ρ) θ lpar (x 1 , ρ, tag 1) . . . θ lpar (x t-1 , ρ, tag t-1) ρ $ ← RGen(lpar) ≤ ε , when looking at the discrete logarithms of all the elements (see Remark 3

.1.6). It is t-S - sound, if it is ε-t-S -sound, with ε negligible in K. It is ε-t-sound (resp. t-sound), if it ε-t-(X \ L)-sound (resp. t-(X \ L)-sound).

From t-Sound Tag-CS-DMs and Tag-CS-DVSs to (Weakly Approximate) t-Universal and t-Smooth PHFs

We can construct a tag-PHF from a tag-CS-DM, in a straightforward way.

Construction 4.4.7 (tag-PHF from tag-CS-DM). Let M = (M, G, X , L , R, n, k, RGen, Γ, θ, λ) be a tag-CS-DM. Let m be a positive integer. Then we construct a PHF as follows:

• HashKG(lpar) picks a random matrix α ⊺ $ ← GenScalar m×n (gpar), generates a random element ρ $ ← RGen(lpar), and outputs the hashing key hk := (α ⊺ , ρ);

• ProjKG(hk, lpar, x) outputs the projection key hp := (γ ⊺ , ρ), where hk = (α ⊺ , ρ) and

γ ⊺ := α ⊺ • Γ lpar (x , ρ) ∈ G m×k ;
• Hash(hk, lpar, x , tag) outputs the hash value

H := α ⊺ • θ lpar (x , ρ, tag) ∈ G m ,
where hk = (α ⊺ , ρ);

• ProjHash(hp, lpar, x , w , tag) outputs the projected hash value

pH := α ⊺ • λ lpar (x , w , ρ, tag) ∈ G m .
We can then extend Theorem 4.3.5 as follows.

Theorem 4.4.8 (tag-PHF from tag-CS-DM with t-soundness). Let M = (M, G, X , L , R, n, k, RGen, Γ, θ, λ) be a tag-CS-DM with an ε GenScalar -almost-uniform algorithm GenScalar.

Let S be a subset of X and t be a positive integer. Let M ′ ≥ 2 be a factor of M , such that M mod M ′ is ε-t-S -sound. Let p be the smallest prime factor of M ′ . Then the PHF described in Construction 4.4.7 is (mnε GenScalar + 2ε)-weakly-close to be 1/p m -t-S -universal.

If in addition M is a KV-DM, this PHF is (mnε GenScalar)-close to be 1/p m -t-S -universal.

Similarly, in the case of a DVS, we have the following theorem, which is an extension of Theorem 3.1.11. Theorem 4.4.9 (tag-PHF from tag-CS-DVS with t-soundness).

Let V = (p, G, X , L , R, n, k, RGen, Γ, θ, λ) be an ε-t-sound tag-CS-DVS. Then the PHF described in Construction 4.4.7 is an ε-t-smooth CS-SPHF. If in addition V is a KV-DVS, this PHF is a perfectly t-smooth KV-SPHF.
Both these theorems can be proven by remarking that we can just consider the hash values of the words x 1 , . . . , x t-1 with tags tag 1 , . . . , tag t-1 as part of the projection key.

Construction of t-Sound Tag-CS-DMs and Tag-CS-DVSs

We now show how to construct t-sound tag-CS-DM and tag-CS-DVS, from any classical CS-DM and CS-DVS. For that, we need introduce a useful tool: t-independent strongly non-degenerated functions.

t-Independent Strongly Non-Degenerated Function

Definition. For our construction of t-sound tag-CS-DM and tag-CS-DVS, we need the following tool. Definition 4.4.10. Let t ≥ 1, s ≥ 1, and M ≥ 2 be integers. A t-independent strongly non-degenerated function modulo M is a function φ from Tags to Z s M for some positive integer s, such that, for any elements tag 1 , . . . , tag t ∈ Tags, where tag t is different from tag 1 , . . . , tag t-1 , there exists a row vector x ⊺ ∈ Z 1×s M , such that:

x ⊺ • φ(tag 1) . . . φ(tag t-1) φ(tag t) = 0 . . . 0 1 .
We remark that a t-independent strongly non-degenerated function modulo M from Tags to Z s M is also a t-independent strongly non-degenerated function modulo M from any subset Tags ′ ⊆ Tags to Z s M . We have the following straightforward lemma. Lemma 4.4.11. Let t ≥ 1, s ≥ 1 and M ≥ 2 be integers. A function φ from Tags to Z s M is a t-independent strongly non-degenerated function modulo M , if and only if, for any integer t ′ ∈ {1, . . . , t}, for any distinct elements tag 1 , . . . , tag t ′ ∈ Tags, there exists a row vector x ⊺ ∈ Z 1×s M , such that:

x ⊺ • φ(tag 1) . . . φ(tag t ′ -1) φ(tag t ′) = 0 . . . 0 1 .

First construction.

Let us show now a first construction.

Theorem 4.4.12. Let t ≥ 1 and M ≥ 2 be integers. Let p be the smallest prime factor of M and let Tags be the set {0, . . . , p -1}. Let φ be the function defined as follows:

φ :           Tags → Z t M tag →         1 tag mod M tag 2 mod M . . . tag t-1 mod M                   .
Then φ is a t-independent strongly non-degenerated function modulo M from Tags to Z s M , with s = t.

Proof. Let tag 1 , . . . , tag t ∈ Tags be tags, such that tag t is different from tag 1 , . . . , tag t-1 . Let T ∈ Z s×t M be the matrix:

T := φ(tag 1) . . . φ(tag t) =       1 . . . 1 tag 1 mod M . . . tag t mod M tag t-1 1 mod M . . . tag t-1 t mod M       . We want to construct x ⊺ ∈ Z 1×t M such that x ⊺ • T = 0 . . . 0 1 .
If M was a prime number, this would be completely straightforward, as T is a Vandermonde matrix and therefore is full-rank, if we remove duplicated tags tag i , with i ∈ {1, . . . , t -1}. Here, M might be composite and we therefore provide a manual proof of the existence of x ⊺ .

Let P (X) ∈ Z M [X] be the polynomial defined as follows:

P (X) = (X -tag 1) • • • (X -tag t-1) (tag t -tag 1) • • • (tag t -tag t-1)
.

This polynomial is well-defined, as for any i ∈ {1, . . . , t -1}, the integer tag ttag i is in {-p + 1, . . . , p -1} \ {0}, so it is coprime with M , and thus invertible in Z M . Furthermore, P (X) has degree t -1 and is such that:

P (tag i) = 0 if i ∈ {1, . . . , t -1} , 1 if i = t . Let x ⊺ ∈ Z 1×t M be the vector such that P (X) = x 1 + x 2 • X + • • • + x t • X t-1 .
We have:

x ⊺ • T = P (tag 1) . . . P (tag t-1) P (tag t) = 0 . . . 0 1 .

Second construction.

The first construction is limited to subsets of Tags = {0, . . . , p -1} with p the smallest prime factor of M . When this prime p is small (e.g., when it is 2), this is often insufficient. We point out that this limitation is not a limitation of the proof, but really a limitation of the construction. In any set of at least p + 1 integers Tags, there exist two distinct integers tag 1 and tag 2 such that tag 1 mod p = tag 2 mod p because of the pigeonhole principal. The matrix

T := φ(tag 1) φ(tag 2)
is therefore equal to φ(tag 1) φ(tag 1) modulo p and there cannot exists a vector x ⊺ ∈ Z 2 M such that x ⊺ • T = (0, 1). Therefore, φ is not even 2-independent strongly non-degenerated, when Tags contains at least p + 1 integers.

The idea of the new construction is to work in field extensions. We start with the case M = p e , where p is a prime number.

For this section, for any prime number p and any integer ν ≥ 1, we consider an arbitrary linear isomorphism ψ p,ν from from the finite field F p ν to the vector space Z ν p . Both ψ p,ν and its inverse ψ -1 p,ν are efficiently computable. Furthermore, we implicitly use the canonical embeddings from Z p to Z p e and to F p ν . Theorem 4.4.13. Let t, e, and ν be positive integers. Let M = p e , where p is a prime number. Let Tags := {0, . . . , p -1} ν = Z ν p . Let φ be the function defined as follows:

φ :            Tags → Z 1+ν•(t-1) M tag →         1 ψ p,ν (ξ) ψ p,ν (ξ 2)
. . .

ψ p,ν (ξ t-1)                   
,

where ξ := ψ -1 p,ν (tag) ∈ F p ν . Then φ is a t-independent strongly non-degenerated function modulo M from Tags to Z s M , with s = 1 + ν • (t -1).
Proof. We do the proof using Lemma 4.4.11 and by induction over e. More precisely, let t ′ ∈ {1, . . . , t} and let tag 1 , . . . , tag t ′ be distinct tags in Tags. For all i ∈ {1, . . . , t ′ }, we define ξ i := ψ -1 p,ν (tag i). Let T ∈ Z s×t M be the matrix:

T := φ(tag 1) . . . φ(tag t ′) =         1 . . . 1 ψ p,ν (ξ 1) . . . ψ p,ν (ξ t ′) ψ p,ν (ξ 2 1) . . . ψ p,ν (ξ 2 t ′) ψ p,ν (ξ t-1 1) . . . ψ p,ν (ξ t-1 t ′)         . We construct x ⊺ ∈ Z 1×s p e such that x ⊺ • T = 0 . . . 0 1 ∈ Z 1×t ′ p e .
We do this by induction over e.

• Base case: e = 1. This case is a non-trivial extension to the proof of Theorem 4.4.12. Basically, T can be seen as a Vandermonde matrix with coefficients in the extension F p ν of F p and extended as vectors over the base field F p . Formally, let P (X) ∈ F p ν [X] be the polynomial defined as follows:

P (X) = (X -ξ 1) • • • (X -ξ t ′ -1) (ξ t ′ -ξ 1) • • • (ξ t ′ -ξ t ′ -1
) .

The polynomial P (X) has degree t -1 and is such that:

P (ξ i) = 0 if i ∈ {1, . . . , t ′ -1} , 1 if i = t ′ .
Let x ′⊺ ∈ F 1×t p ν be the vector such that

P (X) = x ′ 1 + x ′ 2 • X + • • • + x ′ t ′ • X t ′ -1 .
For any i ∈ {1, . . . , t ′ }, let A i ∈ Z ν×ν p be the matrix corresponding to the multiplication by x ′ i in F p ν , i.e., such that for any y ∈ F p ν :

ψ p,ν (x ′ i • y) = A i • ψ p,ν (y) . Finally, let a ⊺ i ∈ Z 1×ν p
be the first row of A i and let x ⊺ ∈ Z s p be defined as follows:

x ⊺ = a 1,1 a ⊺ 2 a ⊺ 3 . . . a ⊺ t ′ -1 .
We remark that for any ξ ∈ F p ν such that P (ξ) is in the base field F p , we have:

x ⊺ •       1 ψ p,ν (ξ) . . . ψ p,ν (ξ t-1)       = P (ξ) .
Therefore, we have:

x ⊺ • T = 0 . . . 0 1 .
That concludes the case e = 1.

• Induction case: e ≥ 2. We use the induction hypothesis for e -1 and get a vector x ′⊺ ∈ Z 1×s p e such that:

x ′⊺ • T mod p e-1 = 0 . . . 0 1

In other words, there exists a vector y ′ ∈ Z 1×t ′ such that:

x ′⊺ • T = 0 . . . 0 1 + p e-1 • y ′ .
Using a proof similar at what we did in the base case, using P the Lagrange polynomial of degree t ′ -1 satisfying P (ξ i) = -y i modulo p for i ∈ {1, . . . , t ′ }, we get that there exists a vector x ′′⊺ such that:

x ′′⊺ • T mod p = -y ′ .
We conclude by setting x ⊺ = x ′⊺ + p e-1 • x ′′⊺ and remarking that:

x ⊺ • T = 0 . . . 0 1 + p e-1 • y ′ -p e-1 • y ′ = 0 . . . 0 1 .
This concludes the proof.

Let us now show a construction for a generic composite number M = p e 1 1 • • • p er r . This is basically just a CRT combination of the functions φ from Theorem 4.4.13 modulo p e i i . Theorem 4.4.14. Let t and ν be positive integers. Let M ≥ 2 be an integer. Let M = p e 1 1 • • • p er r be its prime decomposition. Let p be the smallest prime factor of M . Let Tags := {0, . . . , p -1} ν . Let φ 1 , . . . , φ r be the t-independent strongly non-degenerated functions defined in Theorem 4.4.13 modulo p e 1 1 , . . . , p er r respectively. Let φ be the function defined as follows:

φ : Tags → Z 1+ν•(t-1) M tag → crt(φ 1 (tag), . . . , φ r (tag)) .
Then φ is a t-independent strongly non-degenerated function modulo M from Tags to Z s M , with s = 1 + ν • (t -1).

Proof. The proof is straightforward using the CRT and actually works for as long as φ 1 , . . . , φ r are t-independent strongly non-degenerated functions modulo p e 1 1 , . . . , p er r respectively.

Construction of t-Sound Tag-CS-DM and Tag-CS-DVS

From any CS-DM, we can now construct a t-sound tag-CS-DM corresponding to the same language. The resulting tag-CSDM is called a t-sound extension of the former CS-DM.

Construction 4.4.15 (t-sound extension). Let M = (M, G, X , L , R, n, k, RGen, Γ, θ, λ) be a CS-DM. Let t be a positive integer. Let φ be a t-independent strongly non-degenerated function from some set Tags to

Z s M . Let us construct a t-sound tag-CS-DM M ′ = (M, G, X , L , R, n ′ , k ′ , RGen, Γ ′ , θ ′ , λ ′)
, with p the smallest prime factor of M , as follows:

n ′ := n • s k ′ := k • s Γ ′ (ρ) := Id s ⊗ Γ(ρ) =        Γ 0 . . . 0 0 Γ 0 0 . . . 0 Γ        θ ′ (x , ρ, tag) := φ(tag) ⊗ θ(x , ρ) =    φ 1 (tag) • θ(x , ρ) . . . φ s (tag) • θ(x , ρ)    λ ′ (x , w , ρ, tag) := φ(tag) ⊗ λ(x , w , ρ) =    φ 1 (tag) • λ(x , w , ρ) . . . φ s (tag) • λ(x , w , ρ)    ,
where:

φ(tag) =    φ 1 (tag) . . . φ s (tag)    ∈ Z s M .
Let us now prove the security of the construction. Proof. As expected with the tensor products and the use of strong non-degeneracy, we will re-use the security proof of the disjunction of CS-DMs (Proposition 4.3.16). Let x 1 , . . . , x t-1 ∈ X lpar , x t ∈ S , tag 1 , . . . , tag t-1 ∈ Tags, and tag t ∈ Tags distinct from tag 1 , . . . , tag t-1 . We suppose that ρ is such that θ(x , ρ) / ∈ ColSpan (Γ(ρ)). This happens with probability at least 1 -ε.

We want to prove that:

θ ′ (x t , ρ, tag t) / ∈ ColSpan Γ ′ (x , ρ) θ ′ (x 1 , ρ, tag 1) . . . θ ′ (x t-1 , ρ, tag t-1
) .

Let T ∈ Z s×(t-1) M

be the matrix defined as:

T := φ(tag 1) . . . φ(tag t-1) .

We remark that for all i ∈ {1, . . . , t -1}, if e i ∈ Z t-1 M the i-th vector of the canonical basis of Z t-1 M :

θ ′ (x i , ρ, tag i) = φ(x i) ⊗ θ(x i , ρ) = (T ⊗ Id n) • (e i ⊗ θ(x i , ρ)) ∈ ColSpan (T ⊗ Id n) .
We therefore just need to prove that:

θ ′ (x t , ρ, tag t) / ∈ ColSpan Γ ′ (x , ρ) T ⊗ Id n ,
or in other words:

φ(tag t) ⊗ θ(x t) / ∈ ColSpan T ⊗ Id n Id s ⊗ Γ(x , ρ) .
This is similar to what we prove for the disjunction of two CS-DMs: one with Γ 1 := T and one with Γ 2 = Γ. Furthermore, by t-independent strong non-degeneracy of φ, we have that there exists a row vector x ⊺ ∈ Z 1×s M such that x ⊺ • T = 0 and x ⊺ • φ(tag t) = 1. In other words, informally, φ(tag t) is strongly non-degenerated. We conclude exactly as in Proposition 4.3.16.

Remark 4.4.17. For some applications, as NIZK, we use Construction 4.4.15 (to get tsoundness) in conjunction with Construction 4.3.15 (CS/KV disjunction). Let us show that these two operations "commute", up to a permutation of the columns of Γ and the coefficients of θ. This equivalence essentially comes from the associativity of tensor products. More precisely, let

M 1 = (M, G 1 , X 1 , L 1 , R 1 , n 1 , k 1 , RGen 1 , Γ 1 , θ 1 , λ 1) and M 2 = (M, G 2 , X 2 , L 2 , R 2 , n 2 , k 2 , RGen 2 , Γ 2 , θ 2 , λ 2
) be two DVSs. The DVS corresponding to the disjunction of a t-sound extension of the DVS V 1 and of the (unmodified) DVS V 2 corresponds to the t-sound extension of the disjunction of V 1 and V 2 : the dimensions n and k together with the vector θ are the same, while the matrix Γ and the vector λ are equal up to permutation of the columns for Γ and of the entries for λ. With notation Construction 4.4.15, the former DVS is indeed defined as follows:

n := (s • n 1) • n 2 k := (s • k 1) • n 2 + (s • n 1) • k 2 Γ := (Id s ⊗ Γ 1) ⊗ Id n 2 (Id s ⊗ Id n 1) ⊗ Γ 2 =        Γ 1 ⊗ Id n 2 0 . . . 0 Id n 1 ⊗ Γ 2 0 . . . 0 0 Γ 1 ⊗ Id n 2 . . . 0 Id n 1 ⊗ Γ 2 0 0 0 . . . 0 Γ 1 ⊗ Id n 2 0 . . . 0 Id n 1 ⊗ Γ 2        θ := (φ(tag) ⊗ θ 1) ⊗ θ 2 λ :=              (φ(tag) ⊗ λ 1) ⊗ θ 2 0 sn 1 k 2 if R(x 1 , w 1) = 1 0 sk 1 n 2 (φ(tag) ⊗ θ 1) ⊗ λ 2 otherwise, if R(x 2 , w 2) = 1
, and the latter DVS is defined as follows:

n := s • (n 1 • n 2) k := s • (k 1 • n 2 + n 1 • k 2) Γ := Id s ⊗ Γ 1 ⊗ Id n 2 Id n 1 ⊗ Γ 2 =        Γ 1 ⊗ Id n 2 Id n 1 ⊗ Γ 2 0 0 . . . 0 0 0 Γ 1 ⊗ Id n 2 Id n 1 ⊗ Γ 2 0 0 0 . . . 0 Γ 1 ⊗ Id n 2 Id n 1 ⊗ Γ 2        θ := (φ(tag) ⊗ θ 1) ⊗ θ 2 λ :=              φ(tag) ⊗ λ 1 ⊗ θ 2 0 sn 1 k 2 if R(x 1 , w 1) = 1 φ(tag) ⊗ 0 sk 1 n 2 θ 1 ⊗ λ 2 otherwise, if R(x 2 , w 2) = 1 .
Chapter 5

Pseudorandomness

This chapter introduces the notion of pseudorandom projective hash functions (PrPHFs) and pseudorandom diverse vector spaces (Pr-DVSs), together with the notion of mixed pseudorandomness, used to improve the efficiency of some of our applications. We only work with prime-order diverse modules (DMs), or in other words, with diverse vector spaces (DVSs), as this is quite technical and already gives many interesting results. A PrPHF is a PHF for which the hash value of a random word inside the language looks uniform for an adversary who only knows the projection key (and but not a witness for this word). A Pr-DVS is just a KV-DVS for which the associated PHF is pseudorandom. Any SPHF or DVS for a hard-subset-membership language is a PrPHF or Pr-DVS. But there exist more efficient constructions of PrPHFs and Pr-DVSs, in particular constructions for which the associated language is trivial and the dimensions of the corresponding vector spaces (L and X) are equal to 1. For a hard-subset-membership language, this is impossible as L has to be a proper non-zero subspace of X .

In our applications like non-interactive zero-knowledge arguments (NIZK) and implicit zero-knowledge arguments (iZK) (Sections 3.3, 6.2 and 6.3), we do not use directly a DVS over a hard-subset-membership language, but we use the disjunction of such a DVS V 2 with a DVS V 1 corresponding to the language we are interested in. When V 2 is replaced a Pr-DVS for a potentially trivial language, mixed pseudorandomness corresponds to the property we need to prove the security of the resulting iZK or NIZK.

Contents

Pseudorandom Projective Hash Functions and Diverse Vector Spaces124

Pseudorandom Projective Hash Functions (PrPHFs) and Pseudorandom Diverse Vector Spaces (Pr-DVSs)

Let us start by defining and constructing PrPHFs and Pr-DVSs. We provide two constructions: one completely generic from any KV-DVS associated to a hard-subset-membership language, and one based on matrix decisional Diffie-Hellman (MDDH) assumptions (recalled in Section 3.4.1) which is not generic but is more efficient.

Definition

Definition 5.1.1. A PHF (HashKG, ProjKG, Hash, ProjHash) for a language L ⊆ X is a pseudorandom projective hash function (PrPHF) if it satisfies the following properties:

• R-samplability of L . As in Definition 2.3.3;

• KV/CS type. Projections keys do not depend on the word to be hashed, i.e., ProjKG does not use its input x ;

• Pseudorandomness. The hash value of a random word x $ ← L is computationally indistinguishable from a random value from the range Π of the PHF. More formally, the advantage of an adversary A against pseudorandomness is defined by the experiments Exp psrnd-b depicted in Figure 5.1. The PHF is pseudorandom if this advantage is negligible for any polynomial-time adversary A.

We remark that in the pseudorandomness experiment, contrary to most of the experiments in this thesis but similarly to the experiments Exp sub-memb-b for hard subset membership in Figure 2.3, the adversary is not given access the trapdoor ltrap for the language.

A pseudorandom diverse vector space (Pr-DVS) is a KV-DVS for which the corresponding PHF is a PrPHF.

The restrictions to KV-DVSs and to CS-type PHFs make everything simpler and we do not know of any application for which lifting these restrictions would provide any benefit. That is why we consider only this restricted setting.

Construction from Hard-Subset-Membership Languages

A KV-SPHF for a hard-subset-membership language is actually a Pr-DVS. More formally, we have the following proposition. Proposition 5.1.2. Let PHF (HashKG, ProjKG, Hash, ProjHash) be an ε-smooth KV-SPHF over a hard-subset-membership language L . Then this PHF is a PrPHF. More precisely, for any adversary A against pseudorandomness of the associated PHF, there exists an adversary B against subset membership of L with similar running time1 such that:

Adv psrnd (A, K) ≤ 2 • Adv sub-memb (B, K) + ε .
In particular, a KV-DVS for a hard-subset-membership language L is a Pr-DVS.

Proof. We do a proof by games: Game G 1 : In this game, we sample x from X lpar \ L lpar instead of from L lpar . This game is computationally indistinguishable from the previous one under hard-subset-membership. More formally, we can construct an adversary B 1 with running time similar to A such that:

Pseudorandomness Exp psrnd-b (A, K) gpar $ ← Setup.gpar(1 K) (lpar, ltrap) $ ← Setup.lpar(gpar) hk $ ← HashKG(lpar) hp ← ProjKG(hk, lpar) x $ ← L lpar if b = 1 then H ← Hash(hk, lpar, x) else H $ ← Π return A(lpar, x , hp, H)
|Pr [G 0 = 1] -Pr [G 1 = 1]| ≤ Adv sub-memb (B 1 , K) .
Game G 2 : In this game, we sample H at random from Π instead of computing it as the hash value of x under hk. This game is statistically indistinguishable from the previous one thanks to smoothness:

|Pr [G 1 = 1] -Pr [G 2 = 1]| ≤ ε .
Game G 3 : In this game, we sample x from L lpar again instead of from X lpar \ L lpar . This game is computationally indistinguishable from the previous one under hard-subsetmembership. More formally, we can construct an adversary B 2 with running time similar to A such that:

|Pr [G 2 = 1] -Pr [G 3 = 1]| ≤ Adv sub-memb (B 2 , K) .
Furthermore, this game exactly corresponds to Exp psrnd-0 .

We therefore get:

Adv psrnd (A, K) = |Pr [G 0 = 1] -Pr [G 3 = 1]| ≤ Adv sub-memb (B 1 , K)+ε+Adv sub-memb (B 2 , K) .
We get the statement of the proposition by constructing an adversary B that draws a uniform random integer i $ ← {1, 2} and runs B i .

Construction from MDDH

As already explained, the previous construction works fine but is not optimal as a KV-DVS V = (p, G, X , L , R, n, k, RGen, Γ, θ, λ) for a hard-subset-membership language L has to be such that L is a proper non-zero subspace of X . This implies that n > k ≥ 1 and n ≥ 2.

Let us show a construction of Pr-DVS which does not have this limitation.

Construction 5.1.3. Let D be a distribution of matrices in Z (k+1)×k p samplable in polynomial time. Let G be a graded ring of prime order p. Let ṽ be some index for this graded ring. For pseudorandomness, we suppose that the D-MDDH assumption (recalled in Section 3.4.1) holds in G ṽ.

We define a Pr-DVS as follows:

• Setup.gpar(1 K) generates the graded ring gpar := G for the security parameter K;

• Setup.lpar(gpar) generates and random matrix A $ ← D, splits it in two matrices Ā ∈ Z k×k p and Ā ∈ Z 1×k p , such that:

A = Ā Ā .
and outputs lpar := [Ā] := [ṽ, Ā] ∈ G n×k ṽ and ltrap = A;

• the matrix Γ lpar is exactly the matrix [Ā] = lpar;

• the functions θ and λ are the identity functions;

• the language is defined by:

L := L := {[u] | ∃r ∈ Z k p , u = Ā • r} ⊆ G n =: X =: X .
Concretely, the graded ring G is often a cyclic group (p, G, g) and the set G ṽ is the group G. In this case, we recall that for any matrix B ∈ Z ℓ×m p , the matrix

C = [B] ∈ G ℓ×m is defined by C i,j = g B i,j .
We remark that when the matrices A $ ← D are full-rank, then L = X and the language is trivial. In this case, the above KV-DVS would be perfectly smooth, as X \ L is empty. But smoothness is completely vacuous, in this case. Furthermore, the language is clearly not hard-subset-membership. Let us still show that the above KV-DVS is a Pr-DVS. Proposition 5.1.4. Let D be a distribution of matrices in Z (k+1)×k p samplable in polynomial time. Let G be a graded ring of prime order p. Let ṽ be some index for this graded ring. We suppose that for any matrix A $ ← D, Ā is invertible, except with negligible probability ε. If D-MDDH holds in G ṽ, then the KV-DVS defined in Construction 5.1.3 is a Pr-DVS. More precisely, for any adversary A against pseudorandomness of the associated PHF, there exists an adversary B against the D-MDDH assumption with similar running time2 such that:

Adv psrnd (A, K) ≤ Adv mddh (B, K) + 4ε + 2/p .
We remark that the condition that Ā is invertible with overwhelming probability is satisfied by all the standard MDDH assumptions, including DDH, DLin, the κ-linear assumption [HK07; Sha07], the cascade assumption, and the symmetric cascade assumption [START_REF] Escala | An Algebraic Framework for Diffie-Hellman Assumptions[END_REF]. This game is computationally indistinguishable from the previous one under the D-MDDH assumption. More formally, we can construct an adversary B with running time similar to A such that:

|Pr [G 4 = 1] -Pr [G 5 = 1]| ≤ Adv mddh (B, K) + 1/p .
The additive term 1/p comes from the fact that the probability that a uniform vector [u] ∈ G k+1 is in L ′ is at most 1/p. Game G 6 : In this game, we replace H by a random value in G ṽ. This game is statistically indistinguishable from the previous one thanks to the smoothness of the SPHF with hashing key α ′ , projection key γ, and hash value H, for the MDDH language L ′ ⊆ X ′ as defined in Section 3.4.1:

|Pr [G 5 = 1] -Pr [G 6 = 1]| ≤ 1/p .
Game G 7 : We remark that in the previous game θ ′ k+1 is not used anymore (as it was only used in the computation of H) and θ is just a random vector, so we compute everything as follows:

x := θ $ ← G k ṽ α ′⊺ $ ← Z 1×(k+1) p hk := α ⊺ $ ← Z 1×k p hp := γ ⊺ := α ′⊺ • [A] H $ ← G ṽ .
This game is perfectly indistinguishable from the previous game and:

Pr [G 6 = 1] = Pr [G 7 = 1] .
Game G 8 : This game exactly is Exp psrnd-0 . Compared to the previous game, we just changed

       x := θ $ ← G k ṽ α ′⊺ $ ← Z 1×(k+1) p hp := γ ⊺ := α ′⊺ • [A] to              w := λ $ ← Z k p x := θ := [Ā] • λ α ⊺ $ ← Z 1×k p hp := γ ⊺ := α ⊺ • [Ā]
.

When Ā is invertible, the distribution of (x , hp) is exactly the same in both cases. Therefore, we can show that this game is indistinguishable from the previous one:

|Pr [G 7 = 1] -Pr [G 8 = 1]| ≤ ε .
We therefore get:

Adv psrnd (A, K) = |Pr [G 0 = 1] -Pr [G 3 = 1]| ≤ Adv mddh (B, K) + 4ε + 2/p .
That concludes the proof.

Let us show a simple concrete example

Mixed Pseudorandomness

Exp gl/cs-m-psrnd-b (A, K) and Exp kv-m-psrnd-b (A, K) gpar $ ← Setup.gpar(1 K) (lpar = (lpar 1 , lpar 2), ltrap = (ltrap 1 , ltrap 2)) $ ← Setup.lpar(gpar) hk $ ← HashKG(lpar) hp ←⊥ ⊲ only in Exp gl/cs-m-psrnd-b hp ← ProjKG(hk, lpar)

⊲ only in Exp kv-m-psrnd-b

x 2 $ ← L 2,lpar 2 (x 1 , st) $ ← A(lpar, ltrap 1 , hp, x 2) x ← (x 1 , x 2) hp ← ProjKG(hk, lpar, x) ⊲ only in Exp gl/cs-m-psrnd-b if b = 1 or x 1 ∈ L 1,lpar 1 then H ← Hash(hk, lpar, x) else H $ ← Π return A(st, hp, H)

GL Disjunctions of a GL-DVS and a Pr-DVS

Let us show that the GL disjunction of a GL-DVS V 1 and a Pr-DVS V 2 is (GL) mixedpseudorandom, when the trapdoor ltrap 1 output by Setup.lpar 1 enables to check whether a word x 1 ∈ X 1 is in L 1 in polynomial time.

Theorem 5.2.2. Let

V 1 = (p, G, X 1 , L 1 , R 1 , n 1 , k 1 , RGen 1 , Γ 1 , θ 1 , λ 1) and V 2 = (p, G, X 2 , L 2 , R 2 , n 2 , k 2 , RGen 2 , Γ 2 ,
θ 2 , λ 2) be two DVSs. Let V be the disjunction GL-DVS of V 1 and V 2 as defined in Construction 3.2.4. We suppose that the trapdoor ltrap 1 output by Setup.lpar 1 enables to check whether a word x 1 ∈ X 1 is in L 1 in polynomial time.

If V 2 is a Pr-DVS, then V is mixed-pseudorandom. More precisely, for any adversary A against mixed pseudorandomness of the PHF associated to V, there exists any adversary B against pseudorandomness of the PHF associated to V 2 with similar running time, such that:

Adv gl/cs-m-psrnd (A, K) ≤ 2 • Adv psrnd (B, K) + ε , assuming V 1 is ε-sound.
Proof. We first remark that the condition on the trapdoor ltrap 1 makes the experiment polynomial time.

We recall the definition of Γ and θ in Construction 3.2.4:

Γ(x , ρ) :=       0 ⊺ k 1 1 Zp 0 ⊺ k 2 1 Zp Γ 1 θ 1 0 n 1 ×k 2 0 n 1 0 n 2 ×k 1 0 n 2 Γ 2 θ 2       θ(x , ρ) :=       [⊤, -1] [⊤, 0] . . . [⊤, 0]       ∈ G n ⊤ .
We do a proof by games.

Game G 0 : This game corresponds to Exp gl/cs-m-psrnd-1 . We recall that:

α ⊺ $ ← Z 1×n p hk = (α ⊺ , ρ) γ ⊺ := α ⊺ • Γ hp = (γ ⊺ , ρ) H = α ⊺ • θ = α 1 .
In the last equality as in the whole proof, we are quite liberal regarding the indexes of the graded ring elements.

Game G 1 : This game is the same as the previous one, except that γ k is replaced by a uniform random value (independent of everything else). This game is computationally indistinguishable form the previous one, under pseudorandomness of V 2 , thanks to Lemma 5.2.3 (below). We remark that we can also define this game as follows:

Γ ′ :=          0 ⊺ k 1 1 Zp 0 ⊺ k 2 1 Zp Γ 1 θ 1 0 n 1 ×k 2 0 n 1 0 n 2 ×k 1 0 n 2 Γ 2 0 n 2 0 ⊺ k 1 0 0 ⊺ k 2 1 Zp          α ⊺ $ ← Z 1×n p α ′ n $ ← Z p α ′⊺ := α ⊺ α ′ n θ ′ :=       [⊤, -1] [⊤, 0] . . . [⊤, 0]       ∈ G n+1 ⊤ γ ⊺ := α ′⊺ • Γ ′ H := α ′⊺ • θ ′ .
Compared to the matrix Γ, the matrix Γ ′ has an additional row and its last column is slightly different. The other entries are the same.

Game G 2 : In this game, we replace H by a uniform random element in G independent of everything else. Thanks to the above description of the previous game, when θ 1 is linearly independent from the columns of Γ 1 , θ ′ is linearly independent of the columns of Γ ′ . As this happens with probability as least 1 -ε by ε-soundness of V 1 , we get that:

|Pr [G 1 = 1] -Pr [G 2 = 1]| ≤ ε ,
by a proof similar to the smoothness proof of a PHF associated to a DVS (Theorem 3.1.11).

Game G 3 : In this game, we compute again γ k as in the first game. This game is computationally indistinguishable form the previous one, under pseudorandomness of V 2 , thanks to Lemma 5.2.4 (below). Furthermore, it corresponds to Exp gl/cs-m-psrnd-1 .

Lemma 5.2.3. For any adversary A, there exists an adversary B 1 against pseudorandomness of V 2 with a similar running time, such that:

|Pr [G 0 = 1] -Pr [G 1 = 1]| ≤ Adv psrnd (B 1 , K) .
Proof. Let us show how to construct an adversary B 1 against pseudorandomness of the PHF associated to V 2 with similar running time such that

|Pr [G 0 = 1] -Pr [G G:glpsrnd-2 = 1]| ≤ Adv psrnd (B 1 , K) .
The adversary B 1 receives gpar, lpar 2 ,

x 2 , hp 2 = γ ⊺ 2 = α ⊺ 2 • Γ 2 (where α ⊺ 2 $ ← Z 1×n 2 p
), and

H 2 = α ⊺ 2 • θ 2 (x 2) in the case b = 1 or H 2 $
← G in the case b = 0. Next, it generates (lpar 1 , ltrap 1) $ ← Setup.lpar(gpar) and runs A(lpar, ltrap 1 , ⊥, x 2) and gets back (x 1 , st). It then computes the following elements:

ρ 1 $ ← RGen 1 (lpar 1) α ⊺ 1 $ ← Z 1×(k 1 +1) p γ ⊺ := α ⊺ 1 • Γ ′ γ ⊺ 2 (α 1,1 H 2) ∈ G 1×(2+k 1 +k+2)
where Γ ′ :=

0 ⊺ k 1 1 Zp Γ 1 (x 1 , ρ 1) θ 1 (x 1 , ρ 1) ∈ G (k 1 +1)×(n 1 +1) is the upper-left part of Γ, H := α 1,1 .
Then B 1 runs A on inputs A(st, hp, x) (where x = (x 1 , x 2)) and outputs what A outputs. Let us prove that B 1 exactly simulates Game G 0 for A when B 1 is run in Exp psrnd-b with b = 1, and otherwise exactly simulates Game G 1 for A when b = 0.

Case b = 1. In this case, we have:

H 2 = α ⊺ 2 • θ 2 . Let us define: α ⊺ = α ⊺ 1 α ⊺ 2 .
We remark that we have:

γ ⊺ = α ⊺ • Γ H = α ⊺ • θ .
This concludes this case, as α ⊺ is clearly uniformly random in Z 1×n p .

Case b = 0. In this case, we have H 2 $ ← G. This case is similar to the previous one, except γ k = α 1,1 H 2 is now a uniform random value (independent of α). This concludes this case and the proof of the lemma. Lemma 5.2.4. For any adversary A, there exists an adversary B 2 against pseudorandomness of V 2 with a similar running time, such that:

|Pr [G 2 = 1] -Pr [G 3 = 1]| ≤ Adv psrnd (B 2 , K) .
Proof. The proof is the same as for Lemma 5.2.3, except that H is chosen uniformly at random instead to be defined as α 1,1 .

We therefore get:

Adv gl/cs-m-psrnd (A, K) = |Pr [G 0 = 1] -Pr [G 3 = 1]| ≤ Adv sub-memb (B 1 , K) + ε + Adv sub-memb (B 2 , K) .
We get the statement of the proposition by constructing an adversary B that draws a uniform random integer i $ ← {1, 2} and runs B i .

Remark 5.2.5. When V 2 is a KV-DVS for a hard-subset-membership language (Section 5.1.2), there is a much easier proof of mixed pseudorandomness of V: we start by sampling x 2 from X 2 \ L 2 instead of from L 2 , which is indistinguishable under the hard-subset-membership property, and then we remark that (x 1 , x 2) / ∈ L when x 1 / ∈ L 1 and so smoothness directly implies mixed pseudorandomness.

CS/KV Disjunctions of a DVS and a Pr-DVS

Let us now show that the DVS corresponding to the CS/KV disjunction of a DVS V 1 and a Pr-DVS V 2 is mixed-pseudorandom, when the DVS V 1 is witness samplable [START_REF] Jutla | Switching Lemma for Bilinear Tests and Constant-Size NIZK Proofs for Linear Subspaces[END_REF]. By witness samplable, we mean that Setup.lpar 1 generates a trapdoor ltrap 1 in addition to the language parameters lpar 1 , such that ltrap 1 enables to efficiently compute the discrete logarithms of the entries of Γ 1 (lpar 1). Theorem 5.2.6.

Let V 1 = (p, G 1 , X 1 , L 1 , R 1 , n 1 , k 1 , RGen 1 , Γ 1 , θ 1 , λ 1) and V 2 = (p, G 2 , X 2 , L 2 , R 2 , n 2 , k 2 , RGen 2 , Γ 2 ,
θ 2 , λ 2) be two DVSs over two multiplicatively sub-graded rings G 1 and G 2 of some graded ring G. We suppose that L 1 is witness samplable. Let V be the CS/KV disjunction of V 1 and V 2 as defined in Construction 3.2.8.

If V 2 is a Pr-DVS, then V is GL/CS-mixed-pseudorandom. More precisely, if V 1 is ε-sound, for any adversary A against mixed pseudorandomness of the PHF associated to V, there exists any adversary B against pseudorandomness of the PHF associated to V 2 with similar running time, such that:

Adv gl/cs-m-psrnd (A, K) ≤ m 1 • Adv psrnd (B, K) + 2ε ,
where m 1 := n 1 -max lpar 1 (dim L1,lpar 1), where dim L1,lpar 1 is the dimension of the vector space L1,lpar 1 , or in other words the rank of Γ 1,lpar 1 .

Moreover, if V 1 is a KV-DVS, then V is KV-mixed-pseudorandom with the same bound on the advantage than above (with ε = 0).

Proof. Let us first prove the theorem when V 1 is a KV-DVS (and ε = 0).

From a high level point of view, we show how to simulate Exp kv-m-psrnd-b using hash values of x 2 (and the associated projection keys), so that if these hash values are valid, we are exactly in the case b = 1, while if these hash values are uniformly random, we are exactly in the case b = 0. Contrary to the proof of Theorem 5.2.2, we directly do the reduction to Exp kv-m-psrnd-b (without using an intermediate game) and we do not just need one hash value and one projection key, but many of them.

That is why, we start by remarking that using a classical hybrid argument, the following two distributions are computationally indistinguishable:

D 1 :=      (γ ⊺ 2 , H 2) lpar 2 $ ← Setup.lpar 2 (gpar); x 2 $ ← L 2 ; α ⊺ 2 $ ← Z m 1 ×n 2 p ; γ ⊺ 2 ← α ⊺ 2 • Γ 2 ∈ G m 1 ×k 2 2 ; H 2 ← α ⊺ 2 • θ 2 (x 2) ∈ G m 1 2      D 0 :=      (γ ⊺ 2 , H 2) lpar 2 $ ← Setup.lpar 2 (gpar); x 2 $ ← L 2 ; α ⊺ 2 $ ← Z m 1 ×n 2 p ; γ ⊺ 2 ← α ⊺ 2 • Γ 2 ∈ G m 1 ×k 2 2 ; H 2 $ ← G m 1 2      .
More formally, for any adversary B ′ distinguishing these two distributions, we can construct an adversary B against pseudorandomness, such that:

Adv(B ′ , K) ≤ m 1 • Adv psrnd (B, K) .
Let us now simulate Exp kv-m-psrnd-b using one sample (γ ⊺ 2 , H 2) from D 0 or D 1 , such that if this sample comes from D 0 , we simulate Exp kv-m-psrnd-0 , while if this sample comes from D 1 , we simulate Exp kv-m-psrnd-1 . This will conclude the proof.

We use notation in Figure 5.2. First, using ltrap 1 , we compute the discrete logarithms of the entries of Γ 1 and we derive from them a matrix ∆ ∈ Z m 1 ×n 1 p such that ker Γ ⊺ 1 = ColSpan (∆), or in other words, the solutions x ⊺ ∈ Z 1×n 2 p of the linear equation x ⊺ • Γ 1 = 0 ⊺ are exactly the row vectors x ⊺ = δ ⊺ • ∆, with δ ⊺ ∈ Z 1×m 1 p . The matrix ∆ can be computed by Gaussian elimination.

We then define hp and H as follows:

γ ′⊺ 2 := γ 2,1,1 . . . γ 2,1,k 2 . . . γ 2,m 1 ,1 . . . γ 2,m 1 ,k 2 ∈ G 1×(mk 2) 2 α ′⊺ $ ← Z 1×n p γ (1) ⊺ := α ′⊺ • (Γ 1 ⊗ Id n 2) (5.1) γ (2) ⊺ := γ ′⊺ 2 • (∆ ⊗ Id k 2) α ′⊺ • (Id n 1 ⊗ Γ 2) (5.
2)

γ ⊺ := γ (1) ⊺ γ (2) ⊺ hp := γ H := H ⊺ 2 • ∆ • θ 1 α ′⊺ • (θ 1 ⊗ θ 2) . (5

.3)

Case b = 1. Let us now suppose that (γ ⊺ 2 , H 2) $ ← D 1 and let us prove that hp and H are distributed exactly as in Exp kv-m-psrnd-1 . For that purpose, let α ⊺ 2 ∈ Z m 1 ×n 2 p be the matrix defined in D 1 and let us set:

α ′⊺ 2 := α 2,1,1 . . . α 2,1,n 2 . . . α 2,m 1 ,1 . . . α 2,m 1 ,n 2 ∈ Z 1×(m 1 n 2) p α ⊺ := α ′⊺ 2 • (∆ ⊗ Id n 2) + α ′⊺ ∈ Z 1×n p .
(5.4)

We remark that α ⊺ is uniformly random, thanks to α ′⊺ , and therefore is distributed as a valid hashing key. Furthermore, looking at the definition of γ ⊺ 2 , γ ′⊺ 2 , α ⊺ 2 , α ′⊺ 2 , and H 2 , we get:

γ ′⊺ 2 = α ′⊺ 2 • (Id m 1 ⊗ Γ 2) (5.5) H 2 = α ′⊺ 2 • (Id m 1 ⊗ θ 2) , (5.6)
and thus we have from Equations (5.1) and (5.4):

α ⊺ • (Γ 1 ⊗ Id n 2) = α ′⊺ 2 • (∆ ⊗ Id n 2) • (Γ 1 ⊗ Id n 2) + α ′⊺ • (Γ 1 ⊗ Id n 2) = α ′⊺ 2 • ((∆ • Γ 1) ⊗ Id n 2) α ′⊺ • (Γ 1 ⊗ Id n 2)
= γ (1) ⊺ , since ∆ • Γ 1 = 0 by definition of ∆. So γ (1) ⊺ is the correct first part of the projection key associated to α. And, from Equations (5.2) and (5.5), we get:

α ⊺ • (Id n 1 ⊗ Γ 2) = α ′⊺ 2 • (∆ ⊗ Id n 2) • (Id n 1 ⊗ Γ 2) + α ′⊺ • (Id n 1 ⊗ Γ 2) = α ′⊺ 2 • (∆ ⊗ Γ 2) α ′⊺ • (Id n 1 ⊗ Γ 2) = γ (2) ⊺ , because α ′⊺ 2 • (∆ ⊗ Γ (2)) = α ′⊺ 2 • (Id m 1 ⊗ Γ 2) • (∆ ⊗ Id n 2) = γ ′⊺ 2 • (∆ ⊗ Id n 2),
so that γ (2) ⊺ is the correct second part of the projection key associated to α, and hp is the projection key associated to α.

From Equations (5.6) and (5.3), we get:

H = α ′⊺ 2 • (Id m 1 ⊗ θ 2) • ∆ • θ 1 α ′⊺ • (θ 1 ⊗ θ 2) = α ′⊺ 2 • ((∆ • θ 1) ⊗ θ 2) α ′⊺ • (θ 1 ⊗ θ 2) = α ′⊺ 2 • (∆ ⊗ Id n 2) • (θ 1 ⊗ θ 2) α ′⊺ • (θ 1 ⊗ θ 2) ,
and by definition of α ⊺ (Equation (5.4)), we have:

H = α • (θ 1 ⊗ θ 2) , (5.7)
hence H is the hash value of (x 1 , x 2) under the hashing key α ⊺ . In this case, everything has been generated as in the experiment Exp kv-m-psrnd-1 .

Case b = 0. Let us now suppose that (γ ⊺ 2 , H 2) $ ← D 0 and let us prove that hp and H are distributed exactly as in Exp kv-m-psrnd-0 . This case is similar to the previous, except for Equation (5.6), as H 2 is now uniformly random, or in other words, is defined as follows:

H 2 = α ′′⊺ 2 • (Id m 1 ⊗ θ ′ 2) , (5.8)
with θ ′ 2 being an arbitrary non-zero vector in Z k 2 p and α ′′⊺ 2 being a uniform row vector in Z 1×m 1 n 2 p (independent of α ′⊺ 2). Except for the above definition, in this case b = 1, we use the same notation and definitions (in particular for α ⊺) as for the case b = 1, We remark that the proof that hp is the projection key for the hashing key α is still valid. Let us now look at H. From Equations (5.8) and (5.3), using a similar reasoning as the one used to derive Equation (5.7), we get that:

H = α ′′⊺ • (θ 1 ⊗ θ ′ 2) , where α ′′⊺ = α ′′⊺ 2 • ∆ α ′⊺ .
Since α ′′⊺ 2 is uniform and independent of everything else, and by definition of ∆, the row vector α ′′⊺ can be seen as an independent hashing key chosen uniformly at random among the hashing keys satisfying:

α ′′⊺ • (Γ 1 ⊗ Id n 2) = α ′⊺ • (Γ 1 ⊗ Id n 2).
Since x 1 / ∈ L 1 , θ 1 is linearly independent from the columns of Γ 1 , and

θ 1 ⊗ θ ′ 2 is linearly independent from the columns of Γ 1 ⊗ Id n 2 , hence H = α ′′ • (θ 1 ⊗ θ ′
2) looks uniformly random (with the same proof as for the smoothness of a SPHF associated to a DVS in Theorem 3.1.11). Therefore, in this case, everything has been generated as in the experiment Exp kv-m-psrnd-0 . This concludes the proof when V 1 is a KV-DVS.

When V 1 is a GL-DVS or a CS-DVS, we just abort when θ 1 ∈ ColSpan (Γ 1), which happens with probability at most ε, by ε-soundness. We remark that checking this condition can be done in polynomial time, as we know the discrete logarithms of the entries of Γ 1 thanks to ltrap 1 . This concludes the proof. Historical note 5.2.7. The above proof is a rephrasing of the proof in [ABP15c]. The latter proof was inspired by the proof of computational soundness of trapdoor smooth projective hash functions (TSPHFs) in [BBC+13c].

Remark 5.2.5 also applies.

Honest-Verifier Zero-Knowledge Arguments

We have already seen in Section 2.5.3.1 that we can construct an honest-verifier zero-knowledge argument for a language L , from any SPHF for the same language L = L .

In this section, we go further and show that from a DM there are two dual constructions of honest-verifier zero-knowledge arguments: one via PHFs and another one via Sigma-protocols, a.k.a, proofs "à la Schnorr" [Sch90; Cra97; CDS94]. We then extend these protocols to support (partial) extractability and also any NP languages. Both these extensions work by using a language L for the DM different from the language L for the argument.

Two Dual Constructions From DMs

In this section, we want to construct an honest-verifier zero-knowledge proof for some language L , supposing that we have a DM M = (M, G, X , L , R, n, k, RGen, Γ, θ, λ) for the same language L = L . The first construction works for all the languages supported by DMs, in particular for all the examples of DMs and DVSs in Chapters 3 and 4. The second construction has some minor limitations on the representation of scalars, but it works at least in all the examples where the order of the graded ring is public, and in particular for all the examples of DVSs in Chapter 3. One of the most interesting example of DVS for both constructions is the one from Section 3.4.3, which yields an honest-verifier zero-knowledge argument for the language of ElGamal ciphertexts whose corresponding plaintexts satisfy a system of quadratic equations.

As usual, let M ′ be a factor of M such that M mod M ′ is sound (M ′ can be M , but it is better to choose a proper factor of M which is not divisible by a small prime, if possible). Let p the smallest prime factor of M ′ and let m be a positive integer such that 1/p m is negligible. In case of a DVS (i.e., M = p is a prime number), we choose M ′ = M = p and m = 1.

Via PHFs

We first construct a (weakly approximate) universal PHF from the DM M using Construction 4.2.5. Then, we use the PHF as in Section 2.5.3.1 (see Figure 2.8 on page 51). For the sake of completeness, Figure 6.1 depicts the resulting 2-round protocol.

We have the following security theorem. Theorem 6.1.1. Let M = (M, G, X , L , R, n, k, RGen, Γ, θ, λ) be a DM with an ε GenScalaralmost-uniform algorithm GenScalar. Let M ′ ≥ 2 be a factor of M , such that M mod M ′ is ε-sound. Let p be the smallest prime factor of M ′ . We suppose that 1/p m is negligible in K. Then the protocol described in Figure 6.1 is a perfectly complete, statistically sound, and perfectly honest-verifier zero-knowledge proof.1 More precisely, the advantage of any (potentially unbounded) adversary against soundness is at most mnε GenScalar + ε + 1/p m .

Proof. Perfect completeness directly comes from the perfect correctness property of the DM M.

Perfect honest-verifier zero-knowledge. Simulating a prover against an honest verifier is straightforward: we generate the second flow using the hashing key (α ⊺ , ρ) as α ⊺ • θ(x , ρ).

Prover Verifier Input: (ẍ = x , ẅ = w) CRS: lpar

Input: ẍ = x hp ← --------- ρ $ ← RGen(lpar) α ⊺ $ ← GenScalar m×n (gpar) γ ⊺ ← α ⊺ • Γ(x , ρ) ∈ G m×k hp ← (γ ⊺ , ρ) (γ ⊺ , ρ) ← hp pH ← γ ⊺ • λ(x , w , ρ) ∈ G m pH ---------→ H ← α ⊺ • θ(x , ρ)
if pH = H then accept else reject Figure 6.1: Honest-verifier zero-knowledge proof from a DM via a PHF Statistical soundness directly follows from Theorem 4.2.15 which shows that the PHF associated to M is (mnε GenScalar + ε)-weakly-close to be 1/p m -universal. Remark 6.1.2. We can improve the communication complexity by making the prover extract a bit string of K bits from the projected hash value pH using a randomness extractor, and sending this bit string instead of pH. As explained in Section 2.2.3, in some cases, this can be done deterministically, as when G is a cyclic group defined over some elliptic curve of prime order. But in general, we can always do it by making the verifier send a seed seed for the randomness extractor together with the projection key hp. Since the size of the seed seed might be even larger than the size of pH, in many cases, it is better to generate it using a pseudorandom number generator (PRG), at the expense of making the soundness only computational. A PRG is a cryptographic primitive which takes as input a (uniform) seed PRG.seed ∈ {0, 1} K and output a longer bit string which is computationally indistinguishable from random. The verifier just needs to send a seed PRG.seed for the PRG, and the seed seed for the randomness extractor can be deduced from it.

Via Sigma-Protocols

Let us now show another construction of honest-verifier zero-knowledge proofs from the same DM M, via Sigma-protocols [START_REF] Cramer | Modular design of secure yet practical cryptographic protocols[END_REF][START_REF] Cramer | Proofs of Partial Knowledge and Simplified Design of Witness Hiding Protocols[END_REF]. Sigma-protocols are specific 3-round honest-verifier zero-knowledge proofs, where the verifier only send some (public) random coins, called a challenge. We do not give a precise definition here, as we do not need it.

We restrict ourselves to the case where there is a unique representation of scalars. If this is not the case, we can use various techniques such as randomization of scalars (as in [START_REF] Garg | Candidate Multilinear Maps from Ideal Lattices[END_REF]) or we can use larger representations for Λ (notation from Figure 6.2) to completely mask λ. However, this goes beyond the scope of this thesis.

The protocol is depicted in Figure 6.2, where the integer q is such that 1/q is negligible in the security parameter K and q ≤ p. If the DM M does not use ρ, then the resulting protocol is a classical 3-round Sigma-protocol. Otherwise, it is a 4-round protocol.

We have the following security theorem.

Prover Verifier Input: (ẍ = x , ẅ = w) CRS: lpar Let M ′ ≥ 2 be a factor of M , such that M mod M ′ is ε-sound. Let p be the smallest prime factor of M ′ and q ≤ p be a positive integer. We suppose that 1/q m is negligible in K. Then the protocol described in Figure 6.1 is a perfectly complete, statistically sound, and perfectly honest-verifier zero-knowledge proof. More precisely, the advantage of any (unbounded) adversary against soundness is at most ε + 1/q m , while the advantage of any (unbounded) adversary against honest-verifier zero-knowledge is at most 2kmε GenScalar .

Input: ẍ = x ρ ← ---------ρ $ ← RGen(lpar) Λ $ ← GenScalar k×m (gpar) Θ ← Γ(x , ρ) • Λ ∈ G n×m Θ ---------→ β ← ---------β ⊺ $ ← {0, . . . , q -1} 1×m ⊆ Z 1×m M Λ ′ ← Λ λ(x , w , ρ) • β ⊺ ∈ Z k×m M Λ ′ ---------→ if Γ(x , ρ) • Λ ′ = Θ θ(x , ρ) • β ⊺ then accept else reject
Proof. Perfect completeness is straightforward.

Statistical honest-verifier zero-knowledge. We can simulate a transcript with an honest verifier on a word x ∈ L as follows:

β ⊺ $ ← {0, . . . , q -1} 1×m ⊆ Z 1×m M Λ ′ $ ← GenScalar k×m (gpar) Θ ← Γ(x , ρ) • Λ ′ θ(x , ρ) • β ⊺ .
If GenScalar outputs a perfectly uniform distribution, then both in the real world and in the simulated world Λ ′ are uniformly random (in the real world, this is because Λ is uniformly random). Furthermore, Θ is also distributed the same way in the both worlds, as it is uniquely defined by the equation Γ

• Λ ′ = Θ θ • β ⊺ .
The simulation is therefore perfect when GenScalar is perfect. When it is ε GenScalar -almost-uniform, we just lose an additive term of at most 2kmε GenScalar .

Statistical soundness. Let x /

∈ L and let us suppose that ρ is such that θ(x , ρ) mod M ′ is linearly independent of the columns of Γ(x , ρ) mod M ′ . This happens with probability 1 -ε. Let us prove that for a given matrix Θ, there exists a unique challenge β ⊺ ∈ {0, . . . , q -1} 1×m such that there exists a valid response Λ ′ ∈ Z k×m M accepted by the verifier, i.e., such that:

Γ • Λ ′ = Θ θ • β ⊺ .
To generate the CRS crs and its trapdoor trap, we generate an encryption/decryption key pair (ek, dk) $ ← KeyGen(gpar) and output crs := (lpar, ek) and trap := dk. The prover then first sends a ciphertext c generated as follows: c $ ← Enc(ek, ẅ K ; r) with fresh random coins r .

Then he runs any honest-verifier zero-knowledge argument ZK ′ for the following language: L := {(ẍ , c) | ∃r, ∃ẅ ∃ , ∃ẅ K , c = Enc(ek, ẅ K ; r) and R(ẍ , (ẅ K , ẅ∃)) = 1} .

(6.1)

Instantiation. We can instantiate ZK ′ with any of the construction in Section 6.1.1. In the Sigma-protocol version, we can send c with ρ and this does not change the number of rounds, when ρ is really used (ρ =⊥). In the PHF version, we can send c with H, when the DM is a KV-DM. Otherwise, we need to add an initial flow to send the ciphertext c.

We should however point out that in the 2-round PHF version with a KV-DM, we cannot use a non-deterministic randomness extractor to compress the last flow H (as in Remark 6.1.2).

Security. If the underlying protocol ZK ′ for L is perfectly complete, sound, and honestverifier zero-knowledge, the resulting protocol for L is perfectly complete, partially extractable, and honest-verifier zero-knowledge.

The simulator just encrypts an arbitrary bit string ẅ K and then simulates the protocol ZK ′ . This is indistinguishable from an honest execution, under the IND-CPA property of the encryption scheme and the honest-verifier zero-knowledge property of ZK ′ .

The extractor just acts as an honest verifier except he decrypts the ciphertext c at the end to get the partial witness ẅ K . Extraction reference string indistinguishability and extractor indistinguishability are perfect and straightforward as the extractor behaves exactly as an honest verifier from the prover's point of view. Perfect correctness of the encryption scheme and soundness of ZK ′ ensures that ẅ K is a valid partial witness, and so implies partial extractibility. We point out that if we did no require the encryption scheme to be perfectly correct, we would need to explicitly require that the encryption scheme is committing. Concrete example: system quadratic pairing equations. Using a conjunction of the DVSs introduced in Section 3.4.3, we can construct a 2-round zero-knowledge argument for languages of the form:

L := (A t
K(M 1,i) i=1,...,ν 1 , K(M 2,i) i=1,...,ν 2 , K(M T ,i) i=1,...,ν T , ∀t ∈ {1, . . . , s} ν 1 i=1 e(M 1,i , A t,2,i) • ν 2 j=1 e(A t,1,j , M 2,j) • ν 1 i=1 ν 2 j=1 e(M 1,i , M 2,j) a t,i,j • ν T k=1 M a t,T ,k T ,k = B t ⊆ G sν 1 1 × G sν 2 2 × Z sν 1 ν 2 p × Z sν T p
× G s T =: Ẍ , where s, ν 1 , ν 2 , ν T are positive integers, and where (p, G 1 , G 2 , G T , e, g 1 , g 2) is a prime order bilinear group. These kinds of languages encompass the languages handled by Groth-Sahai NIZK [START_REF] Groth | Efficient Non-interactive Proof Systems for Bilinear Groups[END_REF] and are actually more powerful, as they support indeterminates M T ,k in G T . If we allow for an additional round, in many cases, we can improve the communication complexity by compressing the matrix Γ, using in particular batching methods such as the ones in Example 3.1.5. We can also often improve the communication complexity by using randomness reuse in the encryption, see Section 2.2.2.4.

Finally, for a composite order M , the same construction works as soon as m is such that 1/p m is negligible in K, where p is the smallest prime factor of M .

Comparison

Table 6.1 gives a comparison of the communication complexity of the two constructions (using the improvement of Remarks 6.1.2 and 6.1.4). In general, k < n and the construction via PHFs is more efficient. However, there might be DMs where this is not the case (in which case, some columns of the matrix Γ are linearly dependent) and where group elements have a much larger representation than scalars.

We recall that the dimensions k and n of the DM depends on the language L and of the type of DM: GL-DM can often have much smaller dimensions than KV-DM. In particular, these dimensions are different with and without partial extractability, because the language L is not the same in these two cases.

Support of any NP Language

All the previous constructions require that the language we consider, or the language of ciphertexts of partial witnesses can be handled by a DM. This already includes a large variety of algebraic languages, but not all languages.

Let us show that we can extend the construction to any NP language L ⊆ Ẍ , defined by a circuit C (with gates of fan-in at most 2) taking as input the word ẍ and the witness ẅ = ẅ K (we suppose that the whole witness is extractable without loss of generality) and outputting R(ẍ , ẅ):

L := {ẍ | Kẅ , C(ẍ , ẅ) = 1} .
We use the same idea as for partial extractability: the prover encrypts additional information in some ciphertexts and then uses an honest-verifier zero-knowledge argument for an extended language L checking the validity of these ciphertexts with regards to the word ẍ . Concretely, the prover encrypts using ElGamal the value of all the wires of the circuit C when evaluated on (ẍ , ẅ) and proves (using one of the previous constructions in Section 6.1.1) that:

• the ciphertexts of corresponding to the input wires of ẍ really encrypts the bits of ẍ ;

• the ciphertext corresponding to the output wire encrypts 1;

• each gate is evaluated correctly: if c 1 , c 2 corresponds to two input wires of some gate f , and c 3 corresponds to the output wire the same gate, the plaintexts m 1 , m 2 , m3 of c 1 , c 2 , c 3 respectively have to satisfy f (x 1 , x 2) = x 3 . This can be done naively using GL disjunctions of conjunctions of basic DVS for ElGamal plaintexts (using Example 3.1.9): (c 1 , c 2 , c 3) is valid if "m 1 = 0 and m 2 = 0 and m 3 = f (0, 0)" or "m 1 = 0 and m 2 = 1 and m 3 = f (0, 1)" or. . . This can obviously be optimized, e.g., by not encrypting ẍ nor the output wire, by using more efficient DVSs, and by using randomness reuse. A slightly optimized version can be found in [BCPW15]. Anyway, this construction is more a proof of concept of the power of DVSs than a really practical construction.

If we restrict ourselves to languages defined by arithmetic branching programs, we also provide a more efficient direct construction in [BCPW15].

In general, however, we believe that this thesis and these constructions should be seen as a toolbox rather than as ready-to-use solutions to any problem, when it comes to practical instantiations. For any concrete language, it is often better to directly design an optimized DVS inspired by all the examples we give in this thesis, rather than using generic constructions.

Toward Zero-Knowledge

None of the previous constructions are proven to be zero-knowledge. For the construction via a PHF, the obstacles to zero-knowledge have already been explained in Section 2.5.3.1, while Sigma-protocols are known not to satisfy zero-knowledge in general.

For Sigma-protocols, zero-knowledge is usually added using the "or" trick: instead of just proving that ẍ ∈ L , we prove that ẍ ∈ L or some word x ′ in the CRS crs is in some hard-subset-membership language L ′ . When x ′ / ∈ L ′ , we get soundness as before, while when x ′ ∈ L ′ , we can use a witness for x ′ to simulate a proof against any malicious verifier. As the two settings x ′ ∈ L and x ′ / ∈ L are indistinguishable by hard subset membership, we get a secure zero-knowledge proof. This directly works with Sigma-protocols because these protocols actually satisfy an additional property, namely witness indistinguishability: a prover that uses a witness for x ′ is indistinguishable from a prover that uses a witness for ẍ .

For the protocols based on PHFs, we can try to use the same idea but this would not work directly as these protocols are not witness indistinguishable: the projection key hp might be maliciously generated in such a way that the projected hash value pH depends on the witness used to compute it. For example, in Example 3.2.5, let us suppose that the malicious verifier generates correctly hk = α ⊺ together with γ 1 and γ 2 , but picks γ 3 and γ 4 uniformly • NIZK.Prove(crs, tag, x 1 , w 1) outputs:

π ⊺ := γ ⊺ 1 • (λ 1 (x 1 , w 1) ⊗ Id n 2) ∈ G m×n 2 1 ;
• NIZK.Ver(crs, tag, x 1 , π ⊺) checks the following equation:

π ⊺ • Γ 2 ? = γ ⊺ 2 • (θ 1 (x 1) ⊗ Id k 2) ;
• NIZK.Sim 2 (trap, tag, x 1) outputs:

π ⊺ := α ⊺ • (θ 1 (x 1) ⊗ Id n 2) ∈ G m×n 2 1 .
Tags tag are not used in this construction.

When the order M = p is prime, we can choose m = 1 and get Construction 3.3.1.

We have the following security theorem, which extends Theorem 3.3.2. The assumptions on M 1 and M 2 are more complex due to the problems with degenerated words and small factors of M .

Theorem 6.2.2. Let

M 1 = (p, G 1 , X 1 , L 1 , R 1 , n 1 , k 1 , RGen 1 , Γ 1 , θ 1 , λ 1) and M 2 = (p, G 2 , X 2 , L 2 , R 2 , n 2 , k 2 , RGen 2 , Γ 2 , θ 2 , λ 2
) be two KV-DVSs over two multiplicatively compatible subgraded rings G 1 and G 2 of some graded ring G, with an ε GenScalar -almost-uniform algorithm GenScalar. Let M ′ ≥ 2 be a factor of M such that M 1 mod M ′ and M 2 mod M ′ are sound. Let p be the smallest prime factor of M ′ . We suppose that L 2 is a hard-subset-membership language, and that a random word x 2 $ ← X 2 \ L 2 is strongly non-degenerated in M 2 mod M ′ with overwhelming probability 1 -ε. We finally suppose that 1/p m is negligible in K.

Then the NIZK for L = L 1 in Construction 6.2.1 is perfectly complete, perfectly zeroknowledge and sound. More precisely, if A is a polynomial-time adversary against soundness of the NIZK, we can construct an adversary B against subset-membership for L 2 with similar running time such that:

Adv sound (A, K) ≤ Adv sub-memb (B, K) + mnε GenScalar + 1 p m + ε .
We remark that being strongly non-degenerated in M 2 mod M ′ is weaker than being strongly generated (in M 2).

Proof. Perfect completeness and perfect zero-knowledge are proven exactly as for Theorem 3.3.2, as the proof is just syntactical.

For soundness, everything is similar to the latter proof except for the end, when we want to prove that if x 2 / ∈ L 2 and x 1 / ∈ L 1 , then the hash value H looks uniformly random. This is no more true. Instead, we look at M mod M ′ which can be seen as the KV disjunction of M 1 mod M ′ and M 2 mod M ′ . We suppose that x 2 is strongly non-degenerated in M 2 mod M ′ . This happens with overwhelming probability 1 -ε. The reduced DM M mod M ′ is then sound for the set S = {x 1 , x 2 } (thanks to Proposition 4.3.16). We conclude by using Theorem 4.4.8 which ensures that the resulting PHF is mnε GenScalar -close to be 1/p m -Suniversal, and so that the hash value H of (x 1 , x 2) cannot be guessed by an adversary with probability more than 1/p m (at least when ε GenScalar = 0). hash value H looks uniform at the end of the proof, as we may have used the hashing key trap = hk to simulate t other proofs.

That is exactly why (t + 1)-universality, (t + 1)-smoothness, and (t + 1)-soundness have been invented: we just need to consider the (t + 1)-sound extension of the KV disjunction V or M. To make notation easier to follow however, we consider the KV disjunction of a (t + 1)-sound extension of M 1 , and of M 2 . But we recall that this is equivalent to the (t + 1)-sound extension of the KV disjunction of M 1 and M 2 (see Remark 4.4.17). Construction 6.2.5.

Let M 1 = (M, G 1 , X 1 , L 1 , R 1 , n 1 , k 1 , RGen 1 , Γ 1 , θ 1 , λ 1) and M 2 = (M, G 2 , X 2 , L 2 , R 2 , n 2 , k 2 , RGen 2 , Γ 2 , θ 2 , λ 2
) be two KV-DMs over two multiplicatively compatible sub-graded rings G 1 and G 2 of some graded ring G, with an ε GenScalar -almost-uniform algorithm GenScalar. We suppose that M 1 is a tag-KV-DM with tag set Tags, and for the security proof, that it is (t+1)-sound (possibly modulo some integer M ′ such that M 2 mod M ′ is sound). We recall that such a KV-DM can be constructed in a blackbox way from any KV-DM using Construction 4.4.15. Let m be a positive integer. Finally, let M = (M, G, X , L , R, n, k, RGen, Γ, θ, λ) be the KV disjunction of M 1 and M 2 .

We construct a NIZK for the language L := L 1 with tag set Tags as follows:

• NIZK.Setup(lpar 1) generates language parameters lpar 2 $ ← Setup.lpar 2 (gpar) for L 2 , together with a hashing key hk and the associated projection key hp for V as follows:

hk := α ⊺ $ ← GenScalar m×n (gpar) , hp := γ ⊺ := α ⊺ • Γ ∈ G m×k ,
and outputs crs := (lpar 2 , hp). In the sequel, we split γ ⊺ in two parts:

γ ⊺ 1 := (γ j,i) i=1,...,m j=1,...,k 1 n 2 = α ⊺ • (Γ 1 ⊗ Id n 2) ∈ G m×(k 1 n 2) 1 , γ ⊺ 2 := (γ j,i) i=1,...,m j=k 1 n 2 +1,...,n = α ⊺ • (Id n 1 ⊗ Γ 2) ∈ G m×(n 1 k 2) 2 ;
• NIZK.Sim 1 (lpar 1) works as NIZK.Setup except it also outputs the following trapdoor:

trap := hk = α ⊺ ∈ Z m×n p ;
• NIZK.Prove(crs, tag, x 1 , w 1) outputs:

π ⊺ := γ ⊺ 1 • (λ 1 (x 1 , w 1 , tag) ⊗ Id n 2) ∈ G m×n 2 1 ;
• NIZK.Ver(crs, tag, x 1 , π ⊺) checks the following equation:

π ⊺ • Γ 2 ? = γ ⊺ 2 • (θ 1 (x 1 , tag) ⊗ Id k 2) ;
• NIZK.Sim 2 (trap, tag, x 1) outputs:

π ⊺ := α ⊺ • (θ 1 (x 1 , tag) ⊗ Id n 2) ∈ G m×n 2 1 .
We have the following security theorem.

However, the previous construction requires to use a one-time signature and therefore increases the proof size. This increase is likely to be larger than the gain obtained using a Pr-DVS instead of a KV-DVS for a hard-subset-membership language. Thus, let us instead show how to construct a one-time simulation-sound NIZK with the same proof size, as the normal NIZK from Construction 6.2.3. We focus on one-time simulation-soundness, as the construction is already not straightforward and one-time simulation-soundness is already very useful. In particular, it is sufficient to construct a threshold Cramer-Shoup-like encryption scheme in Section 6.2.4.

Our solution is to use the tag bit by bit. So we just need to guess which bit is different between the tag tag of the proof generated by the adversary and the tag tag ′ for the simulated proof. This idea is inspired from [START_REF] Chen | Fully, (Almost) Tightly Secure IBE and Dual System Groups[END_REF]. Concretely, we replace the first DVS V 1 in Construction 6.2.3 by its 2-sound extension (Construction 4.4.15) using the tag set Tags = {0, 1} ν (for any positive integer ν) and the following 2-independent strongly nondegenerated function modulo M = p:

Construction 6.2.7. Let V 1 = (p, G 1 , X 1 , L 1 , R 1 , n 1 , k 1 , RGen 1 , Γ 1 , θ 1 , λ 1) and V 2 = (p, G 2 , X 2 , L 2 , R 2 , n 2 , k 2 , RGen 2 , Γ 2 ,
θ 2 , λ 2) be two KV-DVSs over two multiplicatively compatible sub-graded rings G 1 and G 2 of some graded ring G. For the security proof, we suppose that V 2 is a Pr-DVS. Furthermore, we consider the KV disjunction V = (p, G, X , L , R, n, k, RGen, Γ, θ, λ) of V 1 and V 2 . We recall that n = n 1 n 2 and k = k 1 n 2 + n 1 k 2 . Finally, let ν be some positive integer, and let Tags be the tag set Tags = {0, 1} ν .

We construct a NIZK for L := L 1 as follows:

• NIZK.Setup(lpar 1) generates language parameters lpar 2 $ ← Setup.lpar 2 (gpar) for L 2 , together with 2ν hashing key hk k,b and the associated projection keys hp k,b , for k ∈ {1, . . . , ν} and b ∈ {0, 1}, as follows:

hk k,b := α ⊺ k,b $ ← Z 1×n p , hp k,b := γ ⊺ k,b := α ⊺ • Γ ∈ G 1×k ,
and outputs crs := (lpar 2 , (hp k,b) k=1,...,ν b=0,1

). In the sequel, we split γ ⊺ k,b in two parts:

γ ⊺ k,b,1 := (γ k,b,i) ⊺ i=1,...,k 1 n 2 = α ⊺ k,b • (Γ 1 ⊗ Id n 2) ∈ G 1×(k 1 n 2) 1 , γ ⊺ k,b,2 := (γ k,b,i) ⊺ i=k 1 n 2 +1,...,n = α ⊺ k,b • (Id n 1 ⊗ Γ 2) ∈ G 1×(n 1 k 2) 2 ;
The adversary B guesses an index k * ∈ {1, . . . , ν} and a bit b * ∈ {0, 1} such that tag ′ = 1-b * and tag = b * . If the guess is incorrect, it returns a random bit at the end of the experiment. There is at least one such pair and the adversary B guesses correctly with probability at least 1/(2ν).

The adversary B then gets a CRS hp k * ,b * from the soundness experiment. It also generates honestly the hashing keys and projections keys hk k,b and hp k,b for (k, b) = (k * , b *). In particular, this means that it can easily honestly simulate π ′⊺ . Furthermore, it computes:

π * ⊺ := π ν k=1 k =k * α ⊺ k,tag k • (θ 1 (x 1) ⊗ Id n 2) .
Using a proof like with Equation (3.10) on page 79, for k = k * , we have:

α ⊺ k,tag k • (θ 1 (x 1) ⊗ Id n 2) • Γ 2 = γ ⊺ k,tag k ,2 • (θ 1 (x 1) ⊗ Id k 2) .
From Equation (6.2), we get:

π * ⊺ • Γ 2 = γ ⊺ k * ,tag k * ,2 • (θ 1 (x 1) ⊗ Id k 2) .
In other words, the adversary B has constructed a valid proof π * ⊺ for x 1 under the CRS hp k * ,b * . This concludes the proof.

Concrete Instantiation and Comparison

Prime order. Let us first focus on the prime order case, where G is a bilinear group

(p, G 1 , G 2 , G T , e, g 1 , g 2), G 1 corresponds to G 1 and G 2 corresponds to G 2 .
The languages L we can handle are languages arising from KV-DVSs over G 1 , and so are basically linear subspaces over G 1 . We can instantiate all our constructions under any D-MDDH assumption on G 2 . For the ones using mixed pseudorandomness, we should use Construction 5.1.3 for the second DVS V 2 , while for the other ones, we should use the construction in Section 3.4.1 for the second DM M 2 . All our constructions, except the t-time simulation-sound NIZK for t > 1 (in Construction 6.2.5), were introduced in [ABP15c] and were later improved by Kiltz and Wee to rely on computational assumptions (instead of decisional ones) in [START_REF] Kiltz | Quasi-Adaptive NIZK for Linear Subspaces Revisited[END_REF]. The schemes common to both papers are the same up to a small difference: the schemes based on mixed pseudorandomness used one more group element in the CRS in [ABP15c], because we did not choose an optimal representation for the matrix Γ for the second DM.

Let us show an instantiation under the κ-linear assumption in G 2 . Concretely, we see the κ-linear assumption as the D-MDDH assumption, with D being the following matrix distribution:

D =                           1 0 . . . 0 0 a 2 0 0 . . . 0 a k a 1 . . . a 1 a 1          ∈ Z (κ+1)×κ p a 1 , . . . , a k $ ← Z p                 
. This is slightly non-standard: usually, as was implicitly done in [ABP15c], the top-left element is a uniform scalar a 1 , while the last row only contain the scalar 1. This nonstandard representation (completely equivalent to the standard one) enables to reduce the representation of the first κ rows of the matrix (denoted Ā in Section 5.1.3) by one element and to get the same CRS size as Kiltz and Wee in [START_REF] Kiltz | Quasi-Adaptive NIZK for Linear Subspaces Revisited[END_REF]. We also recall that the κ-linear assumption corresponds to the DDH assumption when κ = 1, and to the DLin assumption when κ = 2.

Let us now compare our constructions in the DDH and DLin cases with other constructions of (one-time simulation-sound or normal) NIZK. We recall that [START_REF] Kiltz | Quasi-Adaptive NIZK for Linear Subspaces Revisited[END_REF] improves the assumptions from decisional to computational. Table 6.2 compares NIZK for linear subspaces over G 1 . Some of the entries of this table were derived from [START_REF] Jutla | Switching Lemma for Bilinear Tests and Constant-Size NIZK Proofs for Linear Subspaces[END_REF] and from [START_REF] Libert | Non-malleability from Malleability: Simulation-Sound Quasi-Adaptive NIZK Proofs and CCA2-Secure Encryption from Homomorphic Signatures[END_REF]. The DDH (in G 2) variant requires asymmetric bilinear groups, while the DLin-based (and more generally, the one based on the κ-linear assumption) can also work on symmetric bilinear groups.

First of all, as far as we know, our one-time simulation-sound NIZK was the most efficient such NIZK with a constant-size proof: the single-theorem relatively-sound construction of Libert et al. [START_REF] Libert | Non-malleability from Malleability: Simulation-Sound Quasi-Adaptive NIZK Proofs and CCA2-Secure Encryption from Homomorphic Signatures[END_REF] is weaker than our one-time simulation-sound NIZK and requires at least one more group element in the proof, while their universal simulation-sound construction is much more inefficient. A direct application of our construction is our efficient structurepreserving threshold IND-CCA encryption scheme, under DDH, in Section 6.2.4.

Second, the DLin version of our NIZK in Construction 6.2.1 is similar to the one by Libert et al. [START_REF] Libert | Non-malleability from Malleability: Simulation-Sound Quasi-Adaptive NIZK Proofs and CCA2-Secure Encryption from Homomorphic Signatures[END_REF], but our DLin version of our NIZK in Construction 6.2.3 is more efficient (the proof has 2 group elements instead of 3). Furthermore, the ideas of the constructions in [START_REF] Libert | Non-malleability from Malleability: Simulation-Sound Quasi-Adaptive NIZK Proofs and CCA2-Secure Encryption from Homomorphic Signatures[END_REF] seem quite different.

Third, our NIZK in Construction 6.2.3 is similar to the one by Jutla and Roy in [JR14] for DDH. However, in our opinion, our construction seems to be more modular and simpler to understand. In addition, under the κ-linear assumption, with κ ≥ 2, our construction is slightly more efficient in terms of CRS size and verification time.

Composite order. We can instantiate our NIZK constructions that are not based on pseudorandomness, in any bilinear group (M, G 1 , G 2 , G T , e, g 1 , g 2) of composite order M , using any sound DM M

2 = (M, G, X 2 , L 2 , R 2 , n 2 , k 2 , RGen 2 , Γ 2 , θ 2 , λ 2) over G 2 such
that a random word in X 2 \ L 2 is strongly non-degenerated with overwhelming probability. This include DMs constructed from any D-MDDH assumptions, with D being a distribution of matrices in Z n 2 ×k 2 M with n 2 > k 2 , as long as the smallest prime factor p of M has at least K bits, using Example 4.3.14. To our knowledge, our NIZK are the first constant-size NIZK for linear spaces over bilinear groups of composite order.

Application: Threshold Cramer-Shoup-like Encryption Scheme

As already explained in Section 2.2.2.3, the Cramer-Shoup encryption scheme [START_REF] Cramer | A Practical Public Key Cryptosystem Provably Secure Against Adaptive Chosen Ciphertext Attack[END_REF] is one of the most efficient IND-CCA encryption schemes with a proof of security in the standard model. In this section, we use notation from Section 2.2.2.3. We remark that, if we replace the last part of a Cramer-Shoup ciphertext (i.e., the group element w) by a one-time simulation-sound NIZK proof π to prove that the tuple (u 1 , u 2) is a DH tuple in basis (g 1 , g 2), we can obtain an IND-CCA scheme supporting efficient threshold decryption. Intuitively, this comes from the fact that the resulting scheme becomes "publicly verifiable", in the sense that, after verifying the NIZK (which is publicly verifiable), we can obtain the underlying message via "simple" algebraic operations which can easily be "distributed".

Previous one-time simulation-sound NIZK were quite inefficient and the resulting scheme would have been very inefficient compared to direct constructions of threshold IND-CCA encryption schemes. However, using our new one-time simulation-sound NIZK based on mixed pseudorandomness, we do not increase the size of the ciphertexts, in term of number of group elements. In addition, while we need to use an asymmetric bilinear group (p, G 1 , G 2 , G T , e), both the encryption and the decryption algorithms only do operations in the first group G 1 , and ciphertexts only contain group elements in G 1 .

Constructions.

Here is the formal construction. Construction 6.2.9. We suppose that we have access to a one-time simulation-sound NIZK working in a bilinear asymmetric group (p, G 1 , G 2 , G T , e) for the DDH language in G 1 :

L lpar = {(u 1 , u 2) ∈ G 2 2 | ∃r, (u 1 , u 2) = (g r 1,1 , g r 1,2)} ⊆ G 2 1 =: Ẍ lpar ,
where lpar = (g 1,1 , g 1, 2) is a tuple of two generators of G 1 . The scheme is defined as follows:

• Setup.)) for the NIZK. It sets the encryption key to ek := (g 1,1 , g 1,2 , crs) and the decryption key to dk := (z, crs). It finally outputs (ek, dk).

• Enc(ℓ, ek, m) computes M := G(m), picks a random scalar r $ ← Z p , and outputs the ciphertext c := (ℓ,

u 1 := g r 1 , u 2 := g r 2 , v := h r • M, π) ,
where π $ ← NIZK.Prove(crs, tag, (u 1 , v 1), r) and tag := H(ℓ, u 1 , u 2 , v);

• Dec(dk, c) first computes tag = H(ℓ, u 1 , u 2 , v) and then checks the proof π. If this proof is valid (NIZK.Ver(crs, tag, (u 1 , u 2), π) = 1), it computes m ← G -1 (v/u z 1) and outputs m. Otherwise, it outputs ⊥.

The scheme is clearly perfectly correct if the NIZK is perfectly complete. We show later that our scheme is IND-CCA if the NIZK is one-time simulation-sound and if DDH holds in the group G 1 .

The NIZK can be instantiated as in Section 6.2.3 (in prime order groups, under DDH in G 2): using Construction 6.2.5 or Construction 6.2.7, with the second DM or DVS M 2 being based on the DDH language (namely Example 3.1.8 and Example 5.1.5). The resulting scheme is secure under the symmetric external Diffie-Hellman (SXDH) assumption which just states that the DDH assumption holds in G 1 and in G 2 .

Optimization of the decryption. The previous decryption procedure uses NIZK.Ver that needs to compute pairings. However, we can use a different key generation and decryption procedures to check the NIZK proof without pairing: KeyGen generates the CRS using NIZK.Sim 1 and keep the trapdoor trap in the decryption key. Then Dec checks that NIZK.Sim 2 (trap, tag, (u 1 , u 2)) = π instead of NIZK.Ver(crs, tag, (u 1 , u 2), π) = 1. We recall that NIZK.Sim 2 only performs operations in G 1 .

We need to prove that this change has no effect on the correctness nor on the IND-CCA property of the encryption scheme. Perfect correctness is directly implied by the fact that simulated proof using trap are always accepted by NIZK.Ver, thanks to Equation (3.10) on page 79.

For the IND-CCA property, let us show that no polynomial time adversary can generate a proof accepted by NIZK.Ver that is different from the one generated by NIZK.Sim 2 , even if it has access to everything (including the decryption key). Let us suppose that the adversary manage to generate a proof π ⊺ for some word x and some tag tag, distinct from the proof π ′⊺ = NIZK.Sim 2 (trap, tag, x). As both satisfy Equation (3.9) on page 79, using notation in Construction 3.3.1, we have:

2 (π ⊺ -π ′⊺) • Γ 2 = 0 ⊺ .
In the case of Construction 6.2.7 with Example 5.1.5 as the second DVS, this is just impossible, as we have Γ 2 = (g 2) ∈ G 1×1 2 . In the case of Construction 6.2.5 with Example 3.1.8 as the second DVS, we have:

Γ 2 = g 2 h 2 ∈ G 2×1 2 ,
and the vector π

⊺ -π ′⊺ ∈ G 1×2 1 can be used to solve the DDH problem in basis (g 2 , h 2): a tuple (u 2 , v 2) ∈ G 2 2 is a DH tuple in basis (g 2 , h 2) if and only (π ⊺ -π ′⊺) • u 2 v 2 = 1 G T .
This concludes the adaptation of the proof of the IND-CCA property.

Threshold and structure-preserving properties. The validity of the ciphertext can be verified publicly, just knowing ek (or more precisely crs), and not dk, and then after this test has been performed, we just need to compute v/u z 1 , to get the message. We often say in this case that the ciphertext is "publicly verifiable", though it is not clear that a proper definition exists.

In any case, this property just means that to threshold decrypt the ciphertext, we just need to use Shamir's threshold secret sharing over Z p [START_REF] Shamir | How to Share a Secret[END_REF], exactly as in [START_REF] Shoup | Securing Threshold Cryptosystems against Chosen Ciphertext Attack[END_REF]. If in addition, we want to be able to verify decryption shares without random oracle, we can replace the Fiat-Shamir-based NIZK in [START_REF] Shoup | Securing Threshold Cryptosystems against Chosen Ciphertext Attack[END_REF] by one of ours. Furthermore, our two schemes are structure-preserving [AFG+10]: they are "compatible" with Groth-Sahai NIZK [START_REF] Groth | Efficient Non-interactive Proof Systems for Bilinear Groups[END_REF], in the sense that we can do a Groth-Sahai NIZK to prove that we know the plaintext of a ciphertext for our encryption schemes.

KD DDH [1,2,0] 0+[1,0,0] 4 G 2 G (+dem) n/a ✓ CS DDH [1,3,0] 0+[1,1,0] 5 G 3 G + G CHK/BB1 BDDH [1,2,0] 1+[1,0,0] O(1) d 2 G + sig + G T ✓ CHK/BB2 q-BDDHI [1,2,0] 1+[0,1,1] O(1) d 2 G + sig + G T ✓ BK/BB1 BDDH [1,2,0] 1+[1,0,0] O(1) d 2 G + cm + G T BK/BB2 q-BDDHI [1,2,0] 1+[0,1,1] O(1) d 2 G + cm + G T BMW BDDH [1,2,0] 1+[0,1,0] 2 G + G T 2 G + G T ✓ Kiltz DLin [2,3,0] 0+[1,0,0] 5 G 4 G e + G e ✓ Ours 1 SXDH [2,3,0] 0+[2,1,0] 6 G 1 4 G 1 + G 1 ✓ Ours 2 SXDH [0,4,0]+2K 0+[0,2,0]+2K (3+4K) G 1 3 G 1 + G 1 ✓
• Ours 1: Construction 6.2.9 with Example 3.1.8;

• Ours 2: Construction 6. the part containing the message) to make the scheme, a structure-preserving encryption scheme; see text; concretely, in our scheme, the DEM part is v = h • M; c supports threshold decryption; d depends on parameters for the signature/commitment/mac and if we use symmetric or asymmetric groups, but a small constant in any case; e G has to be a cyclic group from a symmetric bilinear group, and so element representation is often 50% bigger than for the other scheme where G is either just a cyclic group, or can be the first group (G 1) of an asymmetric bilinear group; f supposing ν = 2K.

Trapdoor Smooth Projective Hashing and Implicit Zero-Knowledge

While SPHFs and universal PHFs enable to construct efficient honest-verifier zero-knowledge arguments for languages for which there exists a DVS or a DM, they do not provide zeroknowledge (see Sections 2.5.3.1 and 6.1.2.4). More generally, from a high-level point of view, SPHFs and universal PHFs do not have a zero-knowledge flavor, but can only be seen as honest-verifier zero-knowledge: nothing is guaranteed when the projection key hp is maliciously generated. In security reductions, we do not have any trapdoor enabling to compute the hash value of a word x ∈ L , for a projection key hp without knowing a witness w for this word x nor the associated hashing key.

That is why, we now introduce two new primitives: trapdoor smooth projective hash functions (TSPHFs) and implicit zero-knowledge arguments (iZK).

Overview

Before diving into technical details, let us informally introduce TSPHFs and iZK, some of their applications, and the high level ideas for their constructions.

Trapdoor Smooth Projective Hash Functions (TSPHFs)

Overview and applications. TSPHFs are basically SPHFs with a CRS, such that there is a way to generate the CRS with an additional trapdoor enabling to compute the hash value of any word ẍ ∈ L for any (potentially maliciously generated) projection key hp, without knowing the associated hashing key. They were initially introduced in [BBC+13c] to construct the most efficient (at the time) one-round PAKE in the UC model with static corruptions. They can also replace universal PHFs in all the constructions in Section 6.1, to get zero-knowledge instead of just honest-verifier zero-knowledge. Furthermore, they can replace SPHFs in the secret agent application in Section 2.5.3.3 to get security against a malicious informer.

Constructions.

A naive way to construct a TSPHF is just to add to the projection key hp, an extractable NIZK proving the knowledge of the hashing key hk. However, our constructions of TSPHFs are much more efficient than this naive construction.

Let us give the intuition behind our constructions in the prime order case. Our construction uses the classical "or trick": we consider the disjunction of a DVS for the language L = L 1 for the TSPHF, with a DVS for a hard-subset-membership language L 2 . The CRS contains a word x 2 ∈ X 2 , and the hash value of a word ẍ = x 1 is the hash value of the word (x 1 , x 2).

On the one hand, if x 2 ∈ L 2 and we know a witness w 2 for this fact, we can compute the hash value of any word ẍ using this trapdoor w 2 . That way we get our zero-knowledge-like property. On the other hand, if x 2 ∈ X 2 \ L 2 , and if x 1 / ∈ L 1 the hash value (x 1 , x 2) looks uniformly random given only the projection key, and we still get smoothness. We remark that the two settings (x 2 ∈ L 2 and x 2 ∈ X 2 \ L 2) are computationally indistinguishable under hard subset membership of L 2 .

As already remarked in Section 6.1.2.4, there might be an issue with this "or trick": it might be possible that for some maliciously generated projection keys hp, the projected hash value computed using a witness w 2 is different from the projected hash value computed using Therefore, all our constructions of TSPHFs use the CS/KV disjunction of the two DVSs V 1 and V 2 , and thus require that these two DVSs are over two multiplicatively compatible sub-graded rings of some graded ring G. Concretely, this often means that we have a bilinear group (p, G 1 , G 2 , G T , e) and that the original language L = L 1 is over G 1 , while the hard-subset-membership language L 2 is over G 2 .

Finally, we can either extend our construction to DMs or extend it to use a Pr-DVS as second DVS V 2 , similarly to what we did in Section 6.2 for constructions of NIZK.

Comparison with the constructions of NIZK. We remark that both our constructions of NIZK and TSPHFs use a CS/KV disjunction of the language we are interested in, with a hard-subset-membership language (or a Pr-DVS). The use of this second language is however very different in both cases and can be seen as dual from each other.

In NIZK, the second language is used to add public verifiability of the proof, as checking the hash value of a PHF requires the knowledge of the hashing key, which has to be kept secret to ensure soundness (from smoothness). The CRS is a projection key and the hashing key is its trapdoor. In particular, the projection key is always correctly generated. Furthermore the proof of a NIZK is completely in the first sub-graded ring G 1 .

In TSPHFs, we do not try to achieve public verifiability: only the user who generated the hashing key has the ability to check hash values without knowing a witness (if we forget about the trapdoor). The projection key can be maliciously generated. The CRS contains a word of the second language L 2 and the trapdoor is its witness. Table 6.4 summarizes these differences.

Implicit Zero-Knowledge Arguments (iZK)

Overview. One drawback of TSPHFs is that they necessarily require two multiplicatively compatible sub-graded rings: one for the real language and one to add the zero-knowledge property. Concretely, this means that we need bilinear groups. However, as explained in Section 2.1.5, cyclic groups without pairings are likely to be safer and have faster group operations. We might think that if we allow for a trapdoor GL-smooth projective hash function (GL-TSPHF), we could replace the CS/KV disjunction (Construction 3.2.8 which is the reason why we need pairings) in the TSPHF construction by a GL disjunction (Construction 3.2.4 which can work in a cyclic group). Unfortunately, we do not know any way (not requiring pairings) to efficiently check the validity of a projection key for a GL disjunction noninteractively. And there really is an attack shown in Section 6.1.2.4, if we cannot do this check.

That is why in [BCPW15], we introduced iZK which can be seen as generalizations of TSPHFs, in which the user who has to generate the hash value (called the prover) is allowed to first send a message to the user who generates the projection key (called the verifier).

To formalize the notion of iZK, we use an extension of the definition of witness encryption [START_REF] Garg | Witness encryption and its applications[END_REF], rather than an extension of the definition of SPHFs. We recall that GL-SPHFs are basically equivalent to statistically sound witness encryption schemes (see Section 2.5.3.2).

More precisely, we see iZK as key encapsulation mechanisms in which the public key iek (corresponding to this above additional message) is associated with a word ẍ . The projection key is part of what is called a ciphertext c, while the hash value is part of the associated plaintext (a.k.a., ephemeral key) K. A prover knowing a witness ẅ for ẍ can generate an encryption key iek together with its associated decryption key idk. The latter enables him to decrypt any ciphertext c for iek and ẍ .

Intuitively, we want that if ẍ / ∈ L , a polynomial-time adversary cannot generate a public key iek, such that it can distinguish the plaintext K corresponding to a ciphertext c for this public key iek and this word ẍ , from a uniform plaintext K. This property is called soundness, and basically corresponds to a computational version of smoothness.

We also want that there is a CRS and there is a way to generate it with a trapdoor enabling to produce fake keys iek for any word ẍ ∈ L , together with fake decryption keys itk also enabling to decrypt ciphertexts c for iek and ẍ .

Construction. We focus on the prime-order setting.

We consider the GL disjunction DVS V = (p, G, X , L , R, n, k, RGen, Γ, θ, λ) of a DVS for the language L = L 1 we consider, with a DVS for a hard-subset-membership language L 2 . We suppose that V 1 does not use ρ, for this overview. The CRS crs contains a word x 2 ∈ X 2 : in the soundness setting, x 2 ∈ X 2 \ L 2 , while in the zero-knowledge setting, x 2 ∈ L 2 and the trapdoor of the CRS is trap = w 2 , a witness for x 2 . We recall that we need to find a way to check the validity of a projection key for V, using the public key iek.

The first idea is the following: a valid projection key hp is a row vector of the form hp = γ ⊺ = α ⊺ • Γ ∈ G 1×k for some row vector α ⊺ ∈ Z 1×n p . The language of the valid projection keys can therefore be seen as a DVS where the functions "θ" and "λ" are the identity and the matrix "Γ" is the transpose of Γ. We can then try to use the SPHF associated to this transposed DVS to check the validity of hp: the secret key idk contains a uniform hashing key tk := α ′⊺ $ ← Z 1×k p , while the public key iek contains the associated projection key tp := γ

′⊺ := α ′⊺ • Γ ⊺ ∈ G 1×n .
The verifier then constructs the ciphertext c as a pair of a projection key hp = γ ⊺ for the original DVS V (with hk := α ⊺ $ ← Z 1×n p a random hashing key) and its associated hash value under tp: tpH := γ ′⊺ • α. The associated plaintext K is just the hash value of the word x :

K := H := α ⊺ • θ(x) ∈ G, where x = (x 1 , x 2).
To decrypt a ciphertext c = (hp = γ ⊺ , tpH), the prover first checks the validity of hp by checking that tpH ?

= tH =: α ′⊺ • γ, and aborts if it is the case. Then, he computes the plaintext as K := γ ⊺ • λ(x , (w 1 , ⊥)), with w 1 a witness of x 1 .

It is easy to see that the construction is zero-knowledge, as for TSPHFs, since now the verifier cannot cheat on the projection key. Unfortunately, soundness (or smoothness) does not hold anymore: the prover can just choose tp = γ ′⊺ = θ(x) and then

tpH = γ ′⊺ • α = α ⊺ • θ(x) = H = K .
In [BCPW15], we solved this issue by replacing M by its 2-sound extension (Construction 4.4.15 extended to the GL case) and by making the verifier chooses the tag tag as part of the ciphertext. Since the prover does not know the tag tag when he generates iek and tp, the previous attack does not work anymore. This technique works but approximately doubles the size of c, iek, and idk, as it doubles the number of rows and of columns of the matrix Γ. In this thesis, we propose a new solution which is much more efficient: we remove tpH from c and instead add a random scalar ζ $ ← Z p in c. And the plaintext is now K = (ζ • H) tpH. The idea is that, for any vector γ ′ , there is only at most one value

ζ ∈ Z p such that ζ • θ(x) γ ′ ∈ ColSpan (Γ), if θ / ∈ ColSpan (Γ)
. By contradiction, if there were two distinct such scalars ζ, denoted by ζ 1 and ζ 2 , we would have:

(ζ 1 -ζ 2) • θ ∈ ColSpan (Γ) .
As with TSPHFs, we can extend everything to composite order, or use a Pr-DVS as second DVS.

Applications. As TSPHFs, iZK can be used to replace universal PHFs in the constructions in Section 6.1 to get zero-knowledge, and also in the protocol for secret agents in Section 2.5.3.3 to get security against a malicious informer. This increases the number of rounds in some cases.

A more interesting application is the original one proposed in [BCPW15]: enforcing semihonest behavior. Let us suppose that we have a two-party protocol secure against semi-honest adversaries. If we want to transform it into a protocol secure against malicious adversaries, we can follow the idea of Goldreich, Micali, and Wigderson in their seminal work [START_REF] Goldreich | How to Prove all NP-Statements in Zero-Knowledge, and a Methodology of Cryptographic Protocol Design[END_REF]: each user proves that he generated correctly each of his flows using a zero-knowledge argument.

We notice that when a user Alice sends a flow to the other user Bob, Bob cannot send back the next flow until he is sure that Alice's flow has been generated correctly. Otherwise, he might reveal too much information. Therefore, if we use interactive zero-knowledge arguments, we will at least multiply the number of rounds of the initial protocol by three. We can instead use non-interactive zero-knowledge arguments (NIZK), but this either requires strong assumption such as random oracles [BR93; FS87], or bilinear groups [START_REF] Groth | Efficient Non-interactive Proof Systems for Bilinear Groups[END_REF], or is completely inefficient. We could also use preprocessing NIZK, but known constructions [START_REF] De Santis | Non-Interactive Zero-Knowledge with Preprocessing[END_REF] are also very inefficient.

On the other hand, iZK can be based on the DDH assumption in any cyclic group and provide a lightweight alternative to NIZK. It is based on the following idea: in the previous transform, Bob does not really need to know whether Alice generated correctly her flow or not, he just needs to be sure that she does not learn anything about his next flow if her flow was invalid. He can therefore use an iZK to encrypt his flow in such a way Alice will be able to decrypt it only if she generated her flow correctly.

More precisely, to ensure semi-honest behavior, as depicted in Figure 6.3, each time Alice sends a flow ẍ , she also sends a public key iek and keeps the associated secret key idk. To answer back, Bob generates a key encapsulation c for iek and ẍ , of a random ephemeral key K. Bob then use K to encrypt (using symmetric encryption or pseudo-random generators and one-time pad) all the subsequent flows he sends to Alice.

Interactive ZK

A

ẍ , π 1 B π 2 . . .

π 2n+1 ẍ ′ if argument valid NIZK A ẍ , π B ẍ ′ if π valid iZK A ẍ , iek B ẍ ′ xor K, c
• ẍ : original flow from (honest) Alice (A) to Bob (B);

• ẍ ′ : the answer of B, which has to be sent after B is sure that ẍ is valid;

• π1, . . . , π2n+1: flows of the interactive zero-knowledge (ZK) argument;

• π: non-interactive zero-knowledge proof;

• iek, K, c: public key (associated to ẍ), ephemeral key computed by B, ciphertext (which can be decrypted by A if she generated honestly iek, using a witness that ẍ was valid), respectively. At the end, both users still needs to be check whether their last flows were valid, to know whether the protocol succeeded or not. This can be done using a classical zero-knowledge argument.

While the previous transformation with iZK is completely generic (see [BCPW15]), on "non-algebraic" protocols, it is often not the best solution. For example, for Yao-based protocols, cut-and-choose methods are more efficient [IKLP06; LP07; LP11; sS11; sS13; Lin13; HKE13].

But, when the original semi-honest protocol is an algebraic protocol over some cyclic group (p, G, g) and all the languages we need to consider can be handled by DVSs, we get very efficient protocols. In [BCPW15], we give a concrete example of such protocol, to compute the Hamming distance of two strings. The resulting protocol outperforms the state of the art.

Trapdoor Smooth Projective Hash Functions (TSPHFs)

Definition

Let us formally define trapdoor smooth projective hash function (TSPHF). As for SPHFs, there are three variants: trapdoor GL-smooth projective hash function (GL-TSPHF), trapdoor CS-smooth projective hash function (CS-TSPHF), and trapdoor KV-smooth projective hash function (KV-TSPHF). Definition 6.3.1 (GL-TSPHF). A GL-TSPHF (a.k.a, TSPHF) for a language (L lpar) is defined by a tuple of eight polynomial-time algorithms (T.Setup, T.TSetup, HashKG, ProjKG, Hash, ProjHash, VerHP, THash):

• T.Setup(gpar, lpar) outputs a CRS crs for the global parameters gpar and the language parameters lpar; as usual, we suppose that crs implicitly contains gpar and lpar;

• T.TSetup(gpar, lpar) generates the (simulated) common reference string crs together with a trapdoor trap for the global parameters gpar and the language parameters lpar, and outputs the pair (crs, trap);

• HashKG(crs, lpar) generates a hashing key hk for the language parameters lpar;

• ProjKG(crs, hk, lpar,ẍ) deterministically derives a projection key hp from the hashing key hk, the language parameters lpar, and possibly the word ẍ ∈ Ẍ lpar ;

• Hash(crs, hk, lpar,ẍ) deterministically outputs a hash value H from the hashing key hk, for the word ẍ ∈ X lpar and the language parameters lpar;

• ProjHash(crs, hp, lpar,ẍ , ẅ) deterministically outputs a projected hash value pH from the projection key hp, and the witness ẅ , for the word ẍ ∈ L lpar (i.e., R lpar (ẍ , ẅ) = 1) and the language parameters lpar;

• THash(crs, trap, hp, lpar,ẍ) deterministically outputs a (trapdoor) hash value trapH from the projection key hp, and the trapdoor trap, for the word ẍ ∈ L lpar and the language parameters lpar;

• VerHP(crs, hp, lpar,ẍ) outputs 1 if hp is a valid projection key for the language parameters lpar and the word ẍ , and 0 otherwise.

As for SPHF, the set of hash values is called the range and is denoted by Π. A GL-TSPHF has to satisfy the following properties:

• Perfect correctness. For any lpar:

for any crs generated by crs $ ← T.Setup(gpar, lpar) or generated by (crs, trap) $ ← T.TSetup(gpar, lpar), for any word ẍ ∈ L lpar with witness ẅ (i.e., such that R lpar (ẍ , ẅ) = 1), for any hk $ ← HashKG(crs, lpar) and for any hp ← ProjKG(crs, hk, lpar), we have: Hash(crs, hk, lpar,ẍ) = ProjHash(crs, hp, lpar,ẍ , ẅ) ; -for any (crs, trap) $ ← T.TSetup(gpar, lpar), for any word ẍ ∈ Ẍ lpar , for any hk $ ← HashKG(crs, lpar) and for hp ← ProjKG(crs, hk, lpar), we have: Hash(crs, hk, lpar,ẍ) = THash(crs, trap, hp, lpar,ẍ) ; • Computational GL/CS smoothness. When the CRS crs is generated by T.Setup, for any word ẍ ∈ Ẍ lpar \ L lpar , a polynomial-time adversary cannot distinguish a hash value (computed using the hashing key hk) from a uniform value in Π. Formally, the advantage of an adversary A against computational smoothness is defined by the experiments Exp gl/cs-smooth-b depicted in Figure 6.4. The TSPHF is computationally GL/CS-smooth, if this advantage is negligible for any polynomial-time adversary A;

• Zero-knowledge. When the CRS crs is generated by T.TSetup, for any word ẍ ∈ L lpar with witness ẅ , the trapdoor hash value trapH is indistinguishable from the projected hash value pH. Formally, the advantage of an adversary A against zero-knowledge is defined by the experiments Exp zk-b depicted in Figure 6.4. The iZK is zero-knowledge, if this advantage is negligible for any polynomial-time adversary A.

Remark 6.3.2 (Computational smoothness vs smoothness). We remark that if the SPHF part of a TSPHF is smooth for any crs $ ← T.Setup(gpar, lpar), then the TSPHF is computationally smooth, and computational smoothness even holds for any (potentially unbounded) adversary. The converse is not true, as smoothness has to hold for any gpar and any lpar. This minor difference is just historical, and we do not know any application where it has an impact.

A CS-TSPHF is a GL-TSPHF such that the algorithm ProjKG does not use its input ẍ . Let us now define KV-TSPHFs. Definition 6.3.3 (KV-TSPHF). A KV-TSPHF is a CS-TSPHF where computational GL/CS smoothness is replaced by the following property:

• Computational KV smoothness. Computational KV smoothness is similar to computational GL/CS smoothness except that the word ẍ can be adaptively chosen by the adversary after being given the projection key hp. Formally, the advantage of an adversary A against computational smoothness is defined by the experiments Exp kv-smooth-b depicted in Figure 6.4. The TSPHF is computationally KV-smooth, if this advantage is negligible for any polynomial-time adversary A; Historical note 6.3.4. Our definition of TSPHF is slightly different than the original one in [BBC+13c]. The main difference is the separation between the setup T.Setup from the setup T.TSetup. This enables to get statistical soundness in our first construction and to avoid requiring to have a trapdoor ltrap enabling to check in polynomial time whether a word ẍ is in L lpar . We also have renamed the original "soundness" property to "zero-knowledge", and slightly changed it to make it more natural.

Construction Based on Disjunctions with a Hard-Subset-Membership Language

Prime-order setting. Let us start by the construction in the prime-order setting, which was introduced in [ABP15c]. Construction 6.3.5 (TSPHF from disjunctions of DVSs). We suppose that we have a DVS V 1 = (p, G 1 , X 1 , L 1 , R 1 , n 1 , k 1 , RGen 1 , Γ 1 , θ 1 , λ 1) for L = L 1 , together with a KV-DVS V 2 = (p, G 2 , X 2 , L 2 , R 2 , n 2 , k 2 , RGen 2 , Γ 2 , θ 2 , λ 2) for a hard-subset-membership language L 2 , such that G 1 and G 2 are sub-graded rings of some graded ring G. Furthermore, we consider the KV disjunction V = (p, G, X , L , R, n, k, RGen, Γ, θ, λ) of V 1 and V 2 . We recall that n = n 1 n 2 and k = k 1 n 2 + n 1 k 2 . We construct a NIZK for L = L 1 as follows:

• T.Setup(lpar 1) generates language parameters lpar 2 $ ← Setup.lpar 2 (gpar) for L 2 , together with a word x 2 $ ← X 2,lpar 2 \ L 2,lpar 2 . It then outputs crs := (lpar 2 , x 2).

• T.TSetup(lpar 1) generates language parameters lpar 2 $ ← Setup.lpar 2 (gpar) for L 2 , together with a word and its witness: (x 2 , w 2) $ ← R 2,lpar 2 . It then output crs := (lpar 2 , x 2) and trap := w 2 .

• HashKG(crs, lpar 1) generates and outputs a hashing key for V:

hk := (α ⊺ $ ← Z 1×n p , ρ $ ← RGen(lpar)) ,
where lpar := (lpar 1 , lpar 2).

• ProjKG(crs, hk, lpar 1 , x 1) outputs the projection key hp := (γ ⊺ , ρ) where:

γ ⊺ := α ⊺ • Γ lpar (x , ρ) ∈ G 1×k ,
where x := (x 1 , x 2). In the sequel, we split γ ⊺ in two parts:

γ ⊺ 1 := (γ i) ⊺ i=1,...,k 1 n 2 = α ⊺ • (Γ 1 ⊗ Id n 2) ∈ G 1×(k 1 n 2) 1 , γ ⊺ 2 := (γ i) ⊺ i=k 1 n 2 +1,...,n = α ⊺ • (Id n 1 ⊗ Γ 2) ∈ G 1×(n 1 k 2) 2
;

• Hash(crs, hk, lpar 1 , x 1) outputs the hash value

H := α ⊺ • θ(x , ρ) ∈ G ;
• ProjHash(crs, hp, lpar 1 , x 1 , w 1) outputs the projected hash value

pH := γ ⊺ • λ(x , (w 1 , ⊥), ρ) = γ ⊺ 1 • (λ 1 (x 1 , w 1 , ρ) ⊗ θ 2 (x 2 , ρ)) ∈ G ;
• THash(crs, trap, hp, lpar 1 , x 1) outputs the trapdoor hash value

trapH := γ ⊺ • λ(x , (⊥, w 2), ρ) = γ ⊺ 2 • (θ 1 (x 1 , ρ) ⊗ λ 2 (x 2 , w 2 , ρ)) ∈ G ;
• VerHP(crs, hp, lpar 1 , x 1) checks the following equation:

γ ⊺ 1 • (Id k 1 ⊗ Γ 2) ? = γ ⊺ 2 • (Γ 1 ⊗ Id k 2) . (6.
3)

The resulting TSPHF is a KV-TSPHF if V 1 is a KV-DVS, a CS-TSPHF if V 1 is a CS-DVS, and a GL-TSPHF if V 1 is a GL-DVS. More precisely, we have the following theorem. Theorem 6.3.6. Let V 1 = (p, G 1 , X 1 , L 1 , R 1 , n 1 , k 1 , RGen 1 , Γ 1 , θ 1 , λ 1) and V 2 = (p, G 2 , X 2 , L 2 , R 2 , n 2 , k 2 , RGen 2 , Γ 2 , θ 2 , λ 2) be two DVSs over two multiplicatively compatible sub-graded rings G 1 and G 2 of some graded ring G. We suppose that L 2 is a hard-subset-membership language and that V 2 is a KV-DVS.

Then the TSPHF for L = L 1 in Construction 6.3.5 is perfectly correct, reference-stringindistinguishable, statistically GL/CS smooth, and perfectly zero-knowledge. More precisely, if A is a polynomial-time adversary against reference string indistinguishability of the TSPHF, we can construct an adversary B against subset-membership for L 2 with similar running time such that:

Adv crs-ind (A, K) ≤ Adv sub-memb (B, K) .

And if A is a (potentially unbounded) adversary against computational GL/CS smoothness and if V 1 is ε-sound, then: Adv gl/cs-smooth (A, K) ≤ ε .

Furthermore, if V 1 is a CS-DVS, then the resulting TSPHF is a CS-TSPHF. If V 2 is a KV-DVS, then the resulting TSPHF is a perfectly smooth KV-TSPHF. Theorem 6.3.8. Let V 1 = (p, G 1 , X 1 , L 1 , R 1 , n 1 , k 1 , RGen 1 , Γ 1 , θ 1 , λ 1) and V 2 = (p, G 2 , X 2 , L 2 , R 2 , n 2 , k 2 , RGen 2 , Γ 2 , θ 2 , λ 2) be two DVSs over two multiplicatively compatible sub-graded rings G 1 and G 2 of some graded ring G. We suppose that V 2 is a Pr-DVS and that L 1 is witness samplable.

Then the TSPHF for L = L 1 in Construction 6.3.7 is perfectly correct, perfectly referencestring-indistinguishable, computationally GL/CS-smooth, and perfectly zero-knowledge. More precisely, if A is a polynomial-time adversary against GL/CS smoothness of the TSPHF, we can construct an adversary B against pseudorandomness of V 2 with similar running time such that:

Adv crs-ind (A, K) ≤ m 1 • Adv psrnd (B, K) + ε , where m 1 := n 1 -max lpar 1 (dim L1,lpar 1), where dim L1,lpar 1 is the dimension of the vector space L1,lpar 1 , or in other words the rank of Γ 1,lpar 1 . Furthermore, if V 1 is a CS-DVS, then the resulting TSPHF is a CS-TSPHF. If V 2 is a KV-DVS, then the resulting TSPHF is a KV-TSPHF.

Proof. Perfect correctness and perfect zero-knowledge are proven exactly as for Theorem 6.3.6, while perfect reference string indistinguishability is trivial. Finally, computational smoothness is directly implied by mixed pseudorandomness and Theorem 5.2.6. Historical note 6.3.9. When the second DVS V 2 corresponds to the DDH assumption (Example 5.1.5), we get the construction in [BBC+13c].

Implicit Zero-Knowledge Arguments (iZK)

Definition and Direct Application

Definition. Let us formally define iZK. Definition 6.3.10 (iZK). An iZK for a language (L lpar) is defined by a tuple of seven polynomial-time algorithms (iSetup, iKG, iTKG, iEnc, iDec, iTDec), where:

• iSetup(gpar, lpar) outputs a CRS crs for the global parameters gpar and the language parameters lpar; as usual, we suppose that crs implicitly contains gpar and lpar;

• iTSetup(gpar, lpar) generates the (simulated) common reference string crs together with a trapdoor trap for the global parameters gpar and the language parameters lpar, and outputs the pair (crs, trap);

• iKG(crs,ẍ , ẅ) generates an encryption/decryption (a.k.a., public/secret) key pair (iek, idk), associated to a word ẍ ∈ L lpar , with witness ẅ ;

• iTKG(crs, trap,ẍ) generates a encryption/trapdoor (a.k.a., public/trapdoor) key pair (iek, itk), associated to a word ẍ ∈ Ẍ lpar ;

• iEnc(crs, iek,ẍ) outputs a pair (c, K), where c is a ciphertext corresponding to the plaintext K (an ephemeral key), for the public key iek and the word ẍ ∈ Ẍ lpar ;

• iDec(crs, idk, c) determistically decrypts the ciphertext c using the decryption key idk and outputs the ephemeral key K;

• iTDec(crs, itk, c) determistically decrypts the ciphertext c using the trapdoor key itk and outputs the ephemeral key K.

The set of plaintexts or ephemeral keys is denoted Π. An iZK has to satisfies the following properties:

• Perfect correctness. The encryption is the reverse operation of the decryption, with or without a trapdoor: for any lpar:

for any crs generated by crs $ ← iSetup(gpar, lpar) or generated by (crs, trap) $ ← iTSetup(gpar, lpar), for any word ẍ ∈ L lpar with witness ẅ (i.e., R lpar (ẍ , ẅ) = 1), for any key pair (iek, idk) $ ← iKG(crs,ẍ , ẅ), and any (c, K) $ ← iEnc(iek,ẍ), we have K = iDec(idk, c); -for any (crs, trap) $ ← iTSetup(gpar, lpar), for any word ẍ ∈ Ẍ lpar , for any key pair (iek, itk) $ ← iTKG(trap,ẍ) and (c, K) $ ← iEnc(iek,ẍ), we have K = iTDec(itk, c);

• Reference string indistinguishability (a.k.a, setup indistinguishability). A polynomialtime adversary cannot distinguish a normal CRS generated by iSetup from a trapdoor CRS generated by iTSetup. Formally, the advantage of an adversary A against reference string indistinguishability is defined by the experiments Exp crs-ind-b depicted in Figure 6.5.

The iZK is reference-string-indistinguishable, if this advantage is negligible for any polynomial-time adversary A.

• Soundness. When the CRS crs is generated by iSetup, and when ẍ / ∈ L , the distribution of K is indistinguishable from the uniform distribution, even given c. Formally, the advantage of an adversary A against soundness is defined by the experiments Exp sound-b depicted in Figure 6.5. The iZK is sound, if this advantage is negligible for any polynomial-time adversary A.

• Zero-knowledge. When the CRS crs is generated by iTSetup, keys generation by iKG and decryption by iDec are indistinguishable from key generation by iTKG and decryption by iTDec. Formally, the advantage of an adversary A against zero-knowledge is defined by the experiments Exp zk-b depicted in Figure 6.5. The iZK is zero-knowledge, if this advantage is negligible for any polynomial-time adversary A.

Historical note 6.3.11. In [BCPW15], we defined our security notions with a "composable" security flavor, as Groth and Sahai in [START_REF] Groth | Efficient Non-interactive Proof Systems for Bilinear Groups[END_REF]: soundness and zero-knowledge were statistical properties, the only computational property was the setup indistinguishability property. Here, we allow computational soundness and computational zero-knowledge, to enable more efficient instantiations based on pseudorandomness. This weaker definition still works for all the applications in [BCPW15]. Furthermore, our definition does not include labels nor tags, as they are not useful for basic soundness, and contrary to [BCPW15], we do not consider simulation-soundness in this thesis.

Direct application.

As already noted, iZK can replace PHFs in the honest-verifier zeroknowledge arguments in Sections 2.5.3.1 and 6.1 to get zero-knowledge arguments. A concrete example of such a scheme is depicted in Figure 6.6.

• iTDec(crs, itk, c) outputs K ′ where:

tH := α ′⊺ • γ ∈ G pH := γ ⊺ • λ(x , (⊥, w 2), ρ) K ′ := (ζ • pH) tH ∈ G ;
We have the following security theorem.

Theorem 6.3.13. Let V 1 = (p, G 1 , X 1 , L 1 , R 1 , n 1 , k 1 , RGen 1 , Γ 1 , θ 1 , λ 1) and V 2 = (p, G 2 , X 2 , L 2 , R 2 , n 2 , k 2 , RGen 2 , Γ 2 , θ 2 , λ 2) be two DVSs. We suppose that Γ 1 does not depend on ρ 1 . We suppose that L 2 is a hard-subset-membership language and V 2 is a KV-DVS.

Then the iZK for L = L 1 in Construction 6.3.12 is perfectly correct, reference-stringindistinguishable, statistically sound, and perfectly zero-knowledge. More precisely, if A is a polynomial-time adversary against reference string indistinguishability of the iZK, we can construct an adversary B against subset-membership for L 2 with similar running time such that:

Adv crs-ind (A, K) ≤ Adv sub-memb (B, K) .

And if A is a (potentially unbounded) adversary against soundness, and if V 1 is ε-sound then:

Adv sound (A, K) ≤ 1/p + ε .

Proof. Perfect correctness directly comes from perfect completeness of V.

Reference string indistinguishability is directly implied by hard subset membership of L 2 .

Soundness. Let x 1 ∈ X 1 \ L 1 , x 2 ∈ X 2 \ L 2 , and tp := γ ′⊺ ∈ G 1×n . We suppose that θ / ∈ ColSpan (Γ), which happens with probability at least 1 -ε by ε-soundness of V 1 implied by ε-soundness of V. Let us first prove that there exists at most one scalar ζ ∈ Z p such that which happens with probability at least 1 -1/p. We then remark that:

K = (ζ • H) tpH = α ⊺ • ((ζ • θ(x)) γ ′) .
In other words, we can see K as the "hash value" of "((ζ • θ(x)) γ ′)", and therefore K is uniformly random from the point of view of the adversary; Perfect zero-knowledge. We separate the analysis in two cases:

1. the projection key hp provided by the adversary in c is valid, i.e., there exists α ⊺ ∈ Z 1×n p , such that hp = γ ⊺ = α ⊺ • Γ. In this case, the projected hash value pH computed using the valid witness w 1 (in iDec) is the same as the one computed using the valid witness w 2 (in iTDec). And iDec and iTDec output the same value, if they used the same tk;

otherwise, γ /

∈ ColSpan (Γ ⊺). In this case, we can see tk and tp as the hashing key and the projection key for the language of valid (transposed) projection keys (ColSpan (Γ ⊺) ⊆ G k), and tH as the hash value of γ. By smoothness, this hash value is uniformly random from the point of the adversary. Therefore, iDec and iTDec both output a uniform graded ring element. This concludes the proof. Remark 6.3.14 (reducing the ciphertext size). Similarly to Example 3.1.5, ζ can instead be defined as Ext(γ ⊺), where Ext is a deterministic randomness extractor (see Section 2.2.3). Such an extractor exists for some elliptic curves [START_REF] Chevalier | Optimal Randomness Extraction from a Diffie-Hellman Element[END_REF]. The security proof still works in this case, the only difference is the bound for soundness. Concretely, if ζ ∈ {0, . . . , 2 m -1} ⊆ Z p (the extractor extracts m bits of entropy), if A is a (potentially unbounded) adversary against soundness, and if V 1 is ε-sound, then:

Adv sound (A, K) ≤ 1/2 m + ε . Remark 6.3.15 (iZK for any NP language). We can construct iZK for any NP language using the same ideas as for constructing NIZK from disjunctions of DVSs for any NP language, in Section 6.1.2.3. Concretely, if the NP language is defined by a circuit C, we just add an ElGamal public key in crs and the prover adds ciphertexts encrypting the value of each wire of the circuit evaluated on ẍ and ẅ , to the public key K. The language L 1 is used to check the validity of all these ciphertexts (inputs, output and gates), as in Section 6.1.2.3.

Composite-order setting. The construction can be extended to the composite-order setting, as for TSPHFs in Section 6.3.2.2, using m scalars ζ 1 , . . . , ζ m .

Construction Based on Mixed Pseudorandomness

Similarly to NIZK and TSPHFs, we can optimize the previous construction in the prime-order setting by replacing the second DVS V 2 by a Pr-DVS. We need to suppose that L is such that the trapdoor ltrap 1 output by Setup.lpar 1 enables to check whether a word x 1 ∈ X 1 is in L 1 in polynomial time. Construction 6.3.16. The construction is the same as Construction 6.3.5, except that:

• iSetup behaves like iTSetup and picks x 2 $ ← L 2 instead of x 2 $ ← X 2 \ L 2 ;

• we do not require that L 2 is a hard-subset-membership language but only that V 2 is a Pr-DVS;

• we also suppose that the trapdoor ltrap 1 output by Setup.lpar 1 enables to check whether a word x 1 ∈ X 1 is in L 1 in polynomial time.

We point out that we never use the trapdoor ltrap 1 of L 1 for witness samplability in the TSPHF scheme. It is only used for the proof. Theorem 6.3.17. Let V 1 = (p, G, X 1 , L 1 , R 1 , n 1 , k 1 , RGen 1 , Γ 1 , θ 1 , λ 1) and V 2 = (p, G, X 2 , L 2 , R 2 , n 2 , k 2 , RGen 2 , Γ 2 , θ 2 , λ 2) be two DVSs. We suppose that Γ 1 does not depend on ρ 1 . We suppose that V 2 is a Pr-DVS and that the trapdoor ltrap 1 output by Setup.lpar 1 enables to check whether a word x 1 ∈ X 1 is in L 1 in polynomial time.

Then the iZK for L = L 1 in Construction 6.3.16 is perfectly correct, perfectly referencestring-indistinguishable, computationally sound, and perfectly zero-knowledge. More precisely, if A is a polynomial-time adversary against soundness of the iZK, we can construct an adversary B against pseudorandomness of V 2 with similar running time such that:

Adv crs-ind (A, K) ≤ m 1 • Adv psrnd (B, K) + 1/p , where m 1 := n 1 -max lpar 1 (dim L1,lpar 1), where dim L1,lpar 1 is the dimension of the vector space L1,lpar 1 , or in other words the rank of Γ 1,lpar 1 .

Proof. Perfect correctness and perfect zero-knowledge are proven exactly as for Theorem 6.3.13, while perfect reference string indistinguishability is trivial.

Finally, computational smoothness is implied by mixed pseudorandomness and Theorem 5.2.6, using a proof similar to the one in Theorem 6.3.13. Historical note 6.3.18. This construction is completely new.

Chapter 7 Conclusion and Open Questions

Conclusion

In this thesis, we introduced the notion of diverse modules (DMs) that are a fruitful way to represent many algebraic languages used in cryptographic schemes. As a particular case of diverse groups [START_REF] Cramer | Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption[END_REF], DMs also yield an (approximate or weakly approximate) universal projective hash function (PHF) for the language they represent. Most, if not all, languages for which we know a universal PHF can be represented by DMs. While characterizing the class of languages admitting a universal PHF remain an interesting open problem, the structural properties of DMs enable us to better understand the class of languages represented by DMs. In particular, we showed in this thesis that this class is closed under conjunction, and approximately closed under disjunction. DMs can also be efficiently extended, via t-sound extensions, to yield stronger forms of universal PHFs, namely t-universal PHFs, which provide even more applications.

DMs are also valuable in their own right. Using disjunctions and t-sound extensions, we showed how to construct non-interactive zero-knowledge arguments (NIZK), trapdoor smooth projective hash functions (TSPHFs), and implicit zero-knowledge arguments (iZK). Even though NIZK is a standard primitive in cryptography, DMs shed a new light on it and provided more efficient instantiations. TSPHFs and iZK, on the other hand, were both introduced in this thesis as zero-knowledge variants of PHFs and lightweight alternatives to costly NIZK, in particular for password authenticated key exchange (PAKE) in the UC model and for enforcing semi-honest behavior in multi-party computation.

DVSs, which are DMs over prime-order fields, are an important particular case of DMs. While DVSs were already proposed in [START_REF] Cramer | Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption[END_REF], we provide a more in-depth analysis of them. In addition to present conjunctions, disjunctions, and t-sound extensions of DVSs, as a warm-up for the same operations on DMs, we introduced pseudorandom diverse vector spaces (Pr-DVSs), which are alternatives to DVSs for hard-subset-membership languages. We analyzed the behavior of Pr-DVSs with respect to disjunctions, and called the resulting property: mixed pseudorandomness. This enabled us to improve the efficiency of our constructions of NIZK, TSPHFs, and iZK, in the prime-order setting.

-177 -

Open Questions

In this section, I would like to highlight some open questions that draw me into the direction of constructing diverse modules and that I dreamed of solving during my thesis. Now, I just dream they will be solved during my lifetime.

There are of course many other technical interesting questions ranging from:

Question 7.1. Can we construct a one-time simulation-sound NIZK with short CRS (independent of the security parameter)?

to:

Question 7.2. Can we construct lower bounds for the size of DVS or DM for a given language?

These questions might be much more tractable but, from my point of view, they are also much less interesting than the following open questions.

Class of languages.

The first open question is naturally the following: Question 7.3. Can we characterize the class of languages captured by SPHFs (or universal PHFs)?

On the one hand, we know that there does not exist even a GL-SPHF for a NP-complete language unless the polynomial hierarchy collapses. On the other hand, the only languages for which we know of an SPHF are the ones represented by DMs. We do not even know if GL-SPHFs, CS-SPHFs, and KV-SPHFs capture the same class of languages.

This leads to some simpler open questions: Lattice-based languages Other important languages for which the construction of SPHFs is very interesting are lattice-based languages. In [START_REF] Katz | Smooth Projective Hashing and Password-Based Authenticated Key Exchange from Lattices[END_REF], Katz and Vaikuntanathan manage to construct the first and only known (approximate) SPHF for a lattice-based language: the language of ciphertexts of some given plaintext for an LWE-based IND-CCA encryption scheme. This encryption scheme uses a special decryption procedure to ensure smoothness on any ciphertext which cannot be decrypted correctly. In particular, its time complexity is linear in the size of the finite field over which the encryption scheme is defined. This makes the use of superpolynomial finite fields impossible.

Résumé

Les smooth (ou universal) projective hash functions ont été introduites par Cramer et Shoup, à Eurocrypt'02, comme un outil pour construire des schémas de chiffrement efficaces et sûrs contre les attaques à chiffrés choisis. Depuis, elles ont trouvé de nombreuses applications, notamment pour la construction de schémas d'authentification par mot de passe, d'oblivious transfer, de signatures en blanc, et de preuves à divulgation nulle de connaissance. Elles peuvent êtres vues comme des preuves implicites d'appartenance à certains langages. Un problème important est de caractériser pour quels langages de telles fonctions existent.

Dans cette thèse, nous avançons dans la résolution de ce problème en proposant la notion de diverse modules. Un diverse module est une représentation d'un langage, comme un sous-module d'un module plus grand, un module étant un espace vectoriel sur un anneau. À n'importe quel diverse module est associée une smooth projective hash function pour le même langage. Par ailleurs, presque toutes les smooth projective hash functions actuelles sont construites de cette manière.

Mais les diverse modules sont aussi intéressants en eux-mêmes. Grâce à leur structure algébrique, nous montrons qu'ils peuvent facilement être combinés pour permettre de nouvelles applications, comme les preuves implicites à divulgation nulle de connaissance (une alternative légère aux preuves non-interactives à divulgation nulle de connaissance), ainsi que des preuves non-interactives à divulgation nulle de connaissance et one-time simulation-sound très efficaces pour les langages linéaires sur les groupes cycliques.

Mots Clés

cryptographie, module, espace vectoriel, preuve à divulgation nulle de connaissance, smooth projective hash function, hash proof system Abstract Smooth (or universal) projective hash functions were first introduced by Cramer and Shoup, at Eurocrypt'02, as a tool to construct efficient encryption schemes, indistinguishable under chosen-ciphertext attacks. Since then, they have found many other applications, including password-authenticated key exchange, oblivious transfer, blind signatures, and zeroknowledge arguments. They can be seen as implicit proofs of membership for certain languages. An important question is to characterize which languages they can handle.

In this thesis, we make a step forward towards this goal, by introducing diverse modules. A diverse module is a representation of a language, as a submodule of a larger module, where a module is essentially a vector space over a ring. Any diverse module directly yields a smooth projective hash function for the corresponding language, and almost all the known smooth projective hash functions are constructed this way.

Diverse modules are also valuable in their own right. Thanks to their algebraic structural properties, we show that they can be easily combined to provide new applications related to zero-knowledge notions, such as implicit zero-knowledge arguments (a lightweight alternative to non-interactive zero-knowledge arguments), and very efficient one-time simulation-sound (quasi-adaptive) non-interactive zero-knowledge arguments for linear languages over cyclic groups.

Definition 2 . 2 . 3 .

 223 Let (Setup.gpar, KeyGen, Enc, Dec) be an encryption scheme. The advantage of an adversary A against IND-CPA is defined by the experiments Exp ind-cpa-b depicted in Figure2.2. The encryption scheme is IND-CPA if this advantage is negligible in K, for any polynomial-time adversary A.

 +ξy

2

 2

2 ?

 2 = w. If the equality holds, it computes m ← G -1 (v/u z 1) and outputs m. Otherwise, it outputs ⊥. This scheme is IND-CCA secure under DDH [CS98; CS02].

Figure 2 . 4 :

 24 Figure 2.4: Experiments for Definition 2.4.3 (zero-knowledge argument)

tr, r) else return 0 Figure 2 . 5 :

 025 Figure 2.5: Experiments for Definition 2.4.4 (honest-verifier zero-knowledge)

T then return 1 else return 0 Figure 2 . 6 :

 026 Figure 2.6: Experiment for Definition 2.4.5 (simulation-extractability)

Figure summary .HFigure 2 . 7 :

 summary27 Figure summary.Figure 2.7 summarizes the definition of PHF. The parameter lpar is implicit and the dash arrow from x to ProjKG indicates that hp may or may not depend on x .

 be two DVSs over the same graded ring G. Let us first give the intuition of the construction of a DVS V = (

Contents 4 . 1

 41 Universality and Smoothness . 86 4.1.1 Motivation .

Proposition 4. 2 . 11 .

 211 Let p be a prime number, and e, n, and k be positive integers. Let M = p e . Let A ∈ Z k×n M be a matrix. Let b ⊺ ∈ Z 1×n M be a row vector. If b ⊺ is linearly independent of the rows of the matrix A, then there exists a vector x ∈ Z n

 This row vector exists by definition of e * . Let x * ⊺ = c • x ′ * ⊺ . Then α * ⊺ = α ⊺ + x * ⊺ is a particular solution of Equation (3.3) on page 67, as:

Lemma 4.3. 2 .

 2 Let M 1 and M 2 be two DMs. If M 1 and M 2 are ε 1 -sound and ε 2 -sound respectively, then the conjunction DM M of M 1 and M 2 defined in Construction 4.3.1 is a

Proposition 4.4. 16 .

 16 If M is an ε-S -sound CS-DM (resp. 0-S -sound KV-DM), then the DM M ′ defined in Construction 4.4.15 is an ε-t-S -sound CS-DM (resp. 0-t-S -sound KV-DM).

5. 1

 1 .1 Definition . 124 5.1.2 Construction from Hard-Subset-Membership Languages 124 5.1.3 Construction from MDDH . 126 5.2 Mixed Pseudorandomness . 129 5.2.1 Definition . 129 5.2.2 GL Disjunctions of a GL-DVS and a Pr-DVS 130 5.2.3 CS/KV Disjunctions of a DVS and a Pr-DVS 133 -123 -

Figure 5 . 1 :

 51 Figure 5.1: Experiments for Definition 5.1.1 (pseudorandomness)

Figure 5 . 2 :

 52 Figure 5.2: Experiments for Definition 5.2.1 (GL/CS and KV mixed pseudorandomness)

Figure 6 . 2 :

 62 Figure 6.2: Honest-verifier zero-knowledge proof from a DM via a Sigma-Protocol

 2.7 with Example 5.1.5; • KD: Kurosawa-Desmedt [KD04], CS: Cramer-Shoup [CS98], CHK: Canetti-Halevi-Katz transform [CHK04] for BB1/BB2 Boneh-Boyen IBE [BB04], BK: Boneh-Katz transformation [BK05], BMW: Boneh-Mey-Waters [BMW05], Kiltz [Kil06] • dem: data encapsulation mechanism; sig: verification key of a one-time signature scheme + signature; cm: commitment + mac (message authentication code) a (#pairing +) [#multi, #regular, #fix]-exponentiation (+ #multiplication) (in G or G 1), a multi-exponentiation being a computation of the form a b 1 1 • • • a b k k , where a 1 , . . . , a k ∈ G and b 1 , . . . , b k ∈ Z p ; the number of multiplications is approximate and only written when it depends on K, since multiplications are way faster than pairings and exponentiations; b number of other elements for the DEM part (data encapsulation mechanism -basically

Figure 6 . 3 :

 63 Figure 6.3: Enforcing semi-honest behavior of Alice (A) by Bob (B)

•

 Reference string indistinguishability (a.k.a, setup indistinguishability). A polynomialtime adversary cannot distinguish a normal CRS generated by iSetup from a simulated CRS generated by iTSetup. Formally, the advantage of an adversary A against reference string indistinguishability is defined by the experiments Exp crs-ind-b depicted in Figure 6.4. The TSPHF is reference-string-indistinguishable, if this advantage is negligible for any polynomial-time adversary A;

 (ζ • θ(x))γ ′ ∈ ColSpan (Γ) , where x = (x 1 , x 2). Let us suppose by contradiction that this is not the case and that there exist two distinct scalars ζ 1 and ζ 2 such that:(ζ 1 • θ(x)) γ ′ ∈ ColSpan (Γ) , (ζ 2 • θ(x)) γ ′ ∈ ColSpan (Γ) .By subtracting the values on the left-hand sides, we get:(ζ 1 -ζ 2) • θ(x) ∈ ColSpan (Γ) ,and asζ 1 = ζ 2 , θ(x) ∈ ColSpan (Γ). This is impossible. Let us now suppose that ζ ∈ Z p is chosen such that (ζ • θ(x)) γ ′ / ∈ ColSpan (Γ) ,

Question 7. 4 .Question 7 . 5 .

 475 Are the classes of languages captured by GL-SPHF, CS-SPHF, and KV-SPHF the same? Can we construct an SPHF for a language which cannot be expressed as a diverse module (DM)? Other simpler open questions related to the closure of the class of languages captured by SPHF. In [ACP09], Abdalla, Chevalier and Pointcheval already showed that it is closed by conjunction for KV-SPHFs, CS-SPHFs, and GL-SPHFs, and it is closed by disjunction for GL-SPHFs. Question 7.6. Are the classes of languages captured by GL-SPHFs, CS-SPHFs, and KV-SPHFs closed by complement? Question 7.7. Are the classes of languages captured by CS-SPHFs and KV-SPHFs closed by disjunction?

 Let D 1 and D 2 two distributions over some finite set S. We say that D 1 and D 2 are ε-statistically indistinguishable or ε-close if their statistical distance Dist(D 1 , D 2) is at most ε. Furthermore, if (D 1,K) K∈N and (D 2,K) K∈N are distribution ensembles (i.e., families of distributions) over finite sets, we say that they are statistically indistinguishable if their statistical

Definition 2.1.3.

Table 2 .

 2 1: Relative time of operations on two curves (one with pairing and one without)

Definition 2.2.1.

	Collision Resistance
	Exp coll (A, K)
	par $ ← H.Setup(1 K)
	(m 0 , m 1) $ ← A(par)
	if H.Eval(par, m 0) = H.Eval(par, m 1) then
	return 1
	else
	return 0
	Figure 2.1: Experiment for Definition 2.2.1 (collision resistance)

A collision-resistant hash function family is defined by a tuple of two polynomial-time algorithms H F = (H.Setup, H.Eval):

• H.Setup(1 K) outputs a parameter par;

• H.Eval(par, m) deterministically outputs some bit string y ∈ {0, 1} * , called the hash value of the input m ∈ {0, 1} * .

It should satisfy the following property:

• Collision resistance. A polynomial-time adversary cannot find two inputs m 0 and m 1 with the same hash value, with non-negligible probability. The success probability of an adversary A against collision resistance is defined by the experiment Exp coll depicted in Figure

2

.1. H F is collision-resistant if this success probability is negligible for any polynomial-time adversary A.

Theorem 2.2.7 (

 IND-CPA security of ElGamal). The ElGamal encryption scheme is IND-CPA under the DDH assumption. More formally, for any adversary A against IND-CPA for ElGamal, there exists an adversary B against DDH with similar running time 7 such that:

 n} and outputs (M 1 , . . . , M n).

	This scheme is IND-CPA under DDH [Kur02; BBS03].
	Let us now show the Cramer-Shoup encryption scheme with randomness reuse for vectors
	of n group elements:
	• Setup.gpar(1 K) is the same as for classical Cramer-Shoup;
	• KeyGen(gpar) picks two generators g 1 , g 2

$

← G * , n + 4 random scalars dk :

 Randomly sampled words x from L lpar and from X lpar \ L lpar

	(by the two previous algorithms respectively) are computationally indistinguishable,
	without knowing ltrap. Formally, the advantage of an adversary A against subset-
	membership is defined by the experiments Exp sub-memb-b depicted in Figure 2.3. The
	language is hard-subset-membership, if this advantage is negligible, for any polynomial-
	time adversary A.
	Remark 2.3.4. There are many ways to define hard-subset-membership languages. Here,
	as we do not enforce samplability of general languages, we need to incorporate it in the
	definition of hard-subset-membership languages. Furthermore, there are two ways to define the
	hard-subset-membership property itself: distinguishing random words from L from random
	words from X or from X \ L . In the first case, we often require that the probability for a
	random word from X to be in L is negligible. In all our applications, it is simpler to use
	the second definition. If we want tighter reductions however, we might want to prefer the
	first definition, for which a lot of languages (such as DDH, defined below) yield a random
	self-reducible hard-subset-membership property.
	Example 2.3.5 (DDH assumption). The hard-subset-membership property of the DDH
	language as defined in Example 2.3.1 almost corresponds to the DDH assumption in Assump-
	tion 2.2.5, when:

Zero-Knowledge Arguments Definition 2.4.3. A

 (labeled) (partially) extractable zero-knowledge argument for a language L ⊆ X is a tuple ZK = (ZK.Setup, ZK.Prove, ZK.Ver, ZK.Sim = (ZK.Sim 1 , ZK.Sim 2), ZK.Ext = (ZK.Ext 1 , ZK.Ext 2)), where: • ZK.Ext 2 is a polynomial-time ITM which takes as private input the trapdoor trap and as common input a tag tag and a word ẍ , and is able to simulate a run of ZK.Ver in such a way that, if ZK.Ver accepts, it is able to extract a valid partial witness ẅ K for ẍ . ZK.Ext outputs a pair (b, ẅ K) where b indicates if ZK.Ver accepts and ẅ

	• ZK.Prove is a polynomial-time ITM which takes a tag tag (in some set Tags) and a word ẍ ∈ L as common input and a valid witness (ẅ K , ẅ∃) as private input (i.e., R(ẍ , (ẅ K , ẅ∃)) = 1) and is able to run a protocol (with a verifier ZK.Ver) to prove that ẍ ∈ L ;
	• ZK.Ver is a polynomial-time ITM which takes a tag tag and a word ẍ as common input,
	is able to run a protocol (with a prover ZK.Prove) and outputs 1 if it accepts the proof
	of the prover and 0 otherwise;
	• ZK.Sim 1 is a polynomial-time algorithm which takes the global parameters gpar and the language parameters lpar as input and outputs a simulated (a.k.a., fake) CRS crs
	together with a trapdoor trap;
	• ZK.Sim 2 is a polynomial-time ITM which takes the trapdoor trap as private input and a tag tag with a word ẍ as common input, and is able to simulate a run of ZK.Prove
	(without knowing ẅ K nor ẅ∃);
	• ZK.Ext 1 is a polynomial-time algorithm which takes the global parameters gpar and the language parameters lpar as input and outputs an extraction (a.k.a., fake) CRS crs
	together with a trapdoor trap;
	K is a partial
	witness;
	such that the following properties are verified:
	• Completeness. ZK is ε-complete, if for all global parameters gpar $ ← Setup.gpar(1 K), for all language parameters lpar $ ← Setup.lpar(1 K), for all tags tag, for all ẍ ∈ L , and
	for all valid witnesses (ẅ K , ẅ∃) of ẍ :
	Pr crs $ ← ZK.Setup(gpar, lpar); ZK.Prove((ẅ K , ẅ∃)), ZK.Ver crs (tag,ẍ) = 1 ≥ 1 -ε;
	• Soundness. A polynomial-time adversary cannot make a verifier accept a proof for a word ẍ / ∈ L . Formally,
	• ZK.Setup is a polynomial-time algorithm which takes the global parameters gpar and the language parameters lpar as input and outputs a CRS crs which is implicitly given
	as common input of all the other algorithms (except for ZK.Sim 1); crs is supposed to implicitly contain gpar and lpar;

the success probability of an ITM adversary A against soundness is defined by the experiment Exp sound depicted in Figure 2.4. ZK is sound if this success probability is negligible for any polynomial-time ITM adversary A;

 for any (unbounded) adversary A, the distribution of A, ZK.Ver 1 is identical to the distribution of A, ZK.Ext 1 (trap) 1

	• (Unbounded) zero-knowledge. A polynomial-time adversary cannot distinguish nor-
	mal proofs made by ZK.Prove from simulated proofs made by ZK.Sim. Formally, the
	advantage of an ITM adversary A against zero-knowledge is defined by the experiment
	Exp zk-b depicted in Figure 2.4, where ZK.Sim ′ (trap) takes as common input a tag tag
	and a word ẍ and as private input a witness (ẅ K , ẅ∃), runs ZK.Sim 2 (trap) with common input tag and ẍ if R(ẍ , (ẅ K , ẅ∃)) = 1 and aborts otherwise. ZK is zero-knowledge if
	this advantage is negligible for any polynomial-time ITM adversary A;

• Extraction reference string indistinguishability. A polynomial-time adversary cannot distinguish a normal CRS crs generated by ZK.Setup from one generated by ZK.Ext 1 . Formally, the advantage of an adversary A against reference string indistinguishability is defined by the experiment Exp ext-crs-ind-b depicted in Figure 2.4. ZK is extractionreference-string-indistinguishable if this advantage is negligible for any polynomial-time adversary A. • (Perfect) extractor indistinguishability. The extractor ZK.Ext behaves exactly the same way as an honest verifier ZK.Ver, when the CRS is generated by ZK.Ext 1 . Formally, ZK is extractor-indistinguishable if, for any word ẍ ∈ X , for any (crs, trap) $ ← ZK.Sim 1 (gpar),

Examples, Definition, and Link with SPHFs

 Matrix Decisional Diffie-Hellman Assumptions (MDDH) 80 3.4.2 Cramer-Shoup Encryption . 82 3.4.3 Encryption of Plaintexts Satisfying a System of Quadratic Equations . 83

. 56 3.1.1 Step-by-Step Overview . 56 3.1.2 Definition . 62 3.2 Conjunctions and Disjunctions . 68 3.2.1 Conjunctions . 68 3.2.2 Disjunctions . 69 3.3 Application to Non-Interactive Zero-Knowledge Arguments 76 3.3.1 Overview . 76 3.3.2 Construction . 78 3.3.3 Completeness and Security . 79 3.4 More Examples . 80 3.4.1

 • Γ lpar is a function (computable in polynomial time) 3 from the set X lpar × R lpar to the set of matrices G lpar is a function (computable in polynomial time) 3 from the set X lpar × W lpar × R lpar (where W lpar is the set of witness for words in X lpar) to the set of column vectors G

	ngpar×k lpar gpar
	kgpar gpar ;
	satisfying the following properties: for any security parameter K, any global parameters
	gpar $ ← Setup.gpar(1 K), any language parameters lpar $ ← Setup.lpar(gpar), and any word
	x ∈ X

;

• θ lpar is a function (computable in polynomial time) 3 from the set X lpar × R lpar to the set of column vectors G ngpar gpar ;

• λ lpar :

• the group in which each coordinate of θ lpar (x) lies (called the index of the coordinate, in the formal description of graded rings in Section 4.2.1) is independent of x ;

 4.2.2 Diverse Modules, Universal PHFs, and Tools for Composite Order . . 92 4.2.3 Link with Diverse Groups .

	103
	4.4 t-Universality, t-Smoothness, and t-Soundness 111
	4.4.1 t-Universality and t-Smoothness . 112
	4.4.2 t-Soundness . 114
	4.4.3 Construction of t-Sound Tag-CS-DMs and Tag-CS-DVSs 115
	-85 -

. 86 4.1.2 Universal Projective Hash Functions 86 4.1.3 Weakly Universal Projective Hash Functions 87 4.2 Diverse Modules (DMs) . 88 4.2.1 Graded Rings . 89 102 4.3 Conjunctions and Disjunctions . 103 4.3.1 Conjunctions . 103 4.3.2 Disjunctions .

 GenScalar -almost-uniform algorithm GenScalar. Let p be the smallest prime factor of M . Then the PHF described in Construction 4.2.5 is (mnε GenScalar)-close to be (1/p m)-universal. In particular if ε GenScalar almost uniform and 1/p m is negligible in K, then the resulting PHF is approximately universal.

Theorem 4.2.6 (weakly approximately universal PHF from GL-DM). Let M = (M, G, X , L , R, n, k, RGen, Γ, θ, λ) be an ε-sound GL-DM with a ε GenScalar -almost-uniform algorithm GenScalar. Let p be the smallest prime factor of M . Then the PHF described in Construction 4.2.5 is (mnε GenScalar + ε)-weakly-close to be (1/p m)-universal. In particular if M is sound, GenScalar almost uniform, and 1/p m is negligible in K, then the resulting PHF is weakly approximately universal. Theorem 4.2.7 (approximately universal PHF from KV-DM). Let M = (M, G, X , L , R, n, k, RGen, Γ, θ, λ) be a perfectly sound KV-DM with an ε

 M ≥ 2 be a positive integer and M = p e 1

	1 • • • p er r be its prime decomposition. The Chinese remainder theorem (CRT) helps us to move from
	Z M to Z p e i i	. Let us recall a special case of this theorem.

Theorem 4.2.8 (CRT). Let M ≥ 2 be a positive integer and M = p e 1 1 • • • p er r be its prime decomposition. Then, the following map:

Table 6 .

 6 1: Comparison of our constructions of (partially extractable) honest-verifier zeroknowledge arguments from DMs Basically, in the resulting argument, the prover proves that he knows a solution (M •,•) to a system of s quadratic pairing equations defined by the word ẍ (which contains the coefficients A •,• , a •,•,• , and B • of the quadratic equations).

	Communication complexity

Table 6 .

 6 3: Comparison of IND-CCA encryption schemes over cyclic and bilinear groups

		Time Complexity a	Ciphertext Overhead
	Scheme	Assumption Encryption Decryption Public key Hybrid	SP b	Th. c

Table 6 .

 6 4: Duality of NIZK and TSPHF constructed from the disjunction of DMs the real witness w 1 . This would break the zero-knowledge property. Fortunately, if we use CS/KV disjunctions of DVSs (Construction 3.2.8), we can easily check the validity of the projection key.

		NIZK	TSPHF
	CRS for soundness/smoothness hp	x 2 ∈ X 2 \ L 2
	CRS for zero-knowledge	hp	x 2 ∈ L 2
	Trapdoor	hk	w 2
	Verification	public using CRS	private using hk
	Projection key	honestly generated potentially malicious
	Proof / hash value	in G 1	in G

Except by physically going to the place where the treasure is buried.

This way of presenting interactive proofs is inspired by Micali's talk "Proofs, Secrets, and Computation", given on Tuesday 26 May 2015, at Paris 6, France.

There is a subtle difference between the two: in Arthur-Merlin games, the random coins used by the verifier are public, while in interactive proofs, they are private. However, in[START_REF] Goldwasser | Private Coins versus Public Coins in Interactive Proof Systems[END_REF], Goldwasser and Sipser showed that they are basically equivalent, up to a loss of two rounds of interaction.

We remark that the existence of one-way function implies that P is distinct from NP.

Actually, the construction works for any constant number of players, but requires multilinear maps with properties, for which we do not know any instantiation due to recent attacks [GGH13; CHL+15; CGH+15; HJ15; MF15; CLR15; Mar16].

We recall the CRT in Section 4.2.2.3 when using it.

There exists purely information theoretic cryptography though, but even in that case, we may need to use a security parameter.

Elementary operations depend on the exact computer architecture but, in practice, there are not that many differences between the computer architectures.

In this thesis, IND-CCA stands for IND-CCA-2. We never consider IND-CCA-1.

Formally, gpar only contains a description of the group. But for the sake of simplicity, we write gpar = (p, G, g), throughout this thesis.

This notion is informal and means that the difference of running time between the two adversaries is reasonable: here it basically consists in a constant number of group operations. We could just have said that B is polynomial-time if A is, but this is slightly less precise, in particular if we are interested in the tightness of the security proof.

A universal one-way hash function is sufficient when there is no label. But we do not try to optimize this.

The input tape is therefore separated in three parts: CRS, common input, and private input. This separation is convenient to simplify notation.

In[START_REF] Cramer | Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption[END_REF], smoothness does not require ε to be negligible in K, but only strong smoothness requires that.

Not necessarily computable in polynomial time: everything we do here is statistical.

We assume that Π is just the set {0, 1} k for some large enough k and that the message m is in the same set. We can use a randomness extractor to make Π of this form. Furthermore, if Π is a group, we can also encode the message in Π and use the group operation on Π instead of xor.

In our formalization of languages, we can see an NP language as a family of languages, with gpar = lpar = K, and X K = {0, 1} K .

A certificate needs to be associated to some public key.

of some fixed message or even of some message satisfying some simple properties.

See Footnote 12 on page 52 for the use of xor.

See Footnote 12 on page 52 for the use of xor.

We assume that (ℓ -1) •

K ≤ p.

Graded rings were named after graded encodings systems[START_REF] Garg | Candidate Multilinear Maps from Ideal Lattices[END_REF] and are unrelated to the mathematical notion of graded rings.

By computable in polynomial time, we mean that there exists a polynomial-time algorithm taking as input lpar and the input of the function (a tuple (x , ρ) or a tuple (x , w , ρ)).

We look at the discrete logarithm, so everything is a scalar. Otherwise, we would need to take a graded ring element of correct index.

When Γ depends on x , this extractor has to work with any x . We remark that if the first column of Γ is never zero, the first coordinate of γ ⊺ is a uniform random group element. If more than one coordinate of γ ⊺ is used, linear relations between coordinates have to be taken into account.

We remark that this might not always be possible with some multilinear map candidates. As currently, no candidate can be used for our construction, we do not investigate this issue more precisely, and we consider ideal multilinear maps where these elements can be generated efficiently.

See Footnote 7 on page 32.

See Footnote 7 on page

In all the schemes of this section, the corresponding simulator is described in the proof.

The constructions we use are like Construction

3.3.1, the only difference is the exact form of the two DVSs V1 and V2.

Acknowledgments

Acknowledgments Goudarzi, Aurore Guillevic, Duong Hieu Phan, Sorina Ionica, Louiza Khati, Tancrède Lepoint, Baptiste Louf, Vadim Lyubashevsky, Pierrick Méaux, Thierry Mefenza, Michele Minelli, David

Proof. We do a proof by games.

Game G 0 : This game corresponds to Exp psrnd-1 , except that we compute the hash value H as pH using a witness w (which does not change anything by perfect correctness of the DVS). We have:

Game G 1 : In this game, we abort (and return 0) if Ā is not invertible. This game is statistically indistinguishable from the previous one:

Game G 2 : In this game, we generate an additional uniform random value α k+1 $ ← Z p and compute hp as follows:

As Ā is full-rank, in this game and the previous game, hp has the same distribution: it is uniform over G 1×k ṽ . Therefore, this game is perfectly indistinguishable from the previous one:

Game G 3 : In this game, we do not abort anymore when Ā is not invertible. This game is statistically indistinguishable from the previous one:

Game G 4 : In this game, we change the way H and θ are computed and defined:

Concretely, this means that:

Furthermore w = λ is no more used in this game. This game is perfectly indistinguishable from the previous game:

Game G 5 : Let L ′ ⊆ X ′ be the canonical language corresponding to the D-MDDH assumption, as in Section 3.4.1:

In this game, we now generate θ ′ as a uniform vector in X \ L . We have:

Example 5.1.5 (Pr-DVS under DDH). The global parameters are gpar := (p, G, g), with G being a cyclic group of prime order p generated by g. There are no language parameters (lpar =⊥). The trivial language is defined as follows:

The DVS is defined as follows:

n := 1 k := 1 Γ := g θ(x) := u λ(x , w) := r , where x = u w = r .

Historical note 5.1.6. While pseudorandomness was introduced by Gennaro and Lindell in [START_REF] Gennaro | A Framework for Password-Based Authenticated Key Exchange[END_REF][START_REF] Gennaro | A Framework for Password-Based Authenticated Key Exchange[END_REF], it was always a consequence of the hard-subset-membership property.

The first constructions with trivial language were proposed in [ABP15c] and were based on the κ-linear assumption [START_REF] Hofheinz | Secure Hybrid Encryption from Weakened Key Encapsulation[END_REF][START_REF] Shacham | A Cramer-Shoup Encryption Scheme from the Linear Assumption and from Progressively Weaker Linear Variants[END_REF] which is a generalization of DDH and DLin. Construction 5.1.3 is even more general and is inspired from [START_REF] Kiltz | Quasi-Adaptive NIZK for Linear Subspaces Revisited[END_REF]. When the distribution D corresponds to the κ-linear assumption, we do not exactly get the construction of [ABP15c] though, as in the latter construction, there was only one possible word in the trivial language. But this difference has no impact in our applications.

Mixed Pseudorandomness

Definition

Definition 5.2.1. Let L be a language corresponding to the disjunction of two languages L 1 and L 2 as defined in Section 3.2.2. A PHF (HashKG, ProjKG, Hash, ProjHash) is mixedpseudorandom if the hash value of a word (x 1 , x 2) is computationally indistinguishable from a random value, when x 1 is chosen by the adversary in X 1 \ L 1 , while x 2 is chosen at random in L 2 . When x 1 is chosen before the projection key, the PHF is said to be GL/CS-mixedpseudorandom (CS when ProjKG does not use its input x and GL otherwise). Otherwise, the PHF is said to be KV-mixed-pseudorandom (in which case ProjKG should not use its input x). The advantages of an adversary A against GL/CS and KV pseudorandomness are defined by the experiments Exp gl/cs-m-psrnd-b and Exp kv-m-psrnd-b respectively, both depicted in Figure 5.2. The PHF is mixed-pseudorandom if the corresponding advantage is negligible for any polynomial-time adversary A.

A GL-DVS (resp. CS-DVS and KV-DVS) for a disjunction L of two languages L 1 and L 2 is said to be GL (resp. CS and KV)-mixed-pseudorandom if its associated PHF is GL (resp. CS and KV)-mixed-pseudorandom.

We remark that in the experiments we explicitly defined ltrap = (ltrap 1 , ltrap 2), as our proof of mixed pseudorandomness for CS/KV disjunctions actually requires ltrap 1 to contain enough information so that for any ρ, it is possible to compute the discrete logarithms of the entries of Γ 1 (ρ). We use a strong security notion in which the adversary is also given access to ltrap 1 . This is convenient, as often ltrap 1 contains a decryption key. However, as in pseudorandomness, we do not give access to ltrap 2 to the adversary.

Chapter 6

Applications of Diverse Modules

This chapter shows four applications of DMs and DVSs related to zero-knowledge: honestverifier zero-knowledge arguments, non-interactive zero-knowledge arguments (NIZK), trapdoor smooth projective hash functions (TSPHFs), and implicit zero-knowledge arguments (iZK).

On the one hand, the first two applications are classical primitives in cryptography. DMs and DVSs offer a different perspective on honest-verifier zero-knowledge arguments and NIZK, together with more efficient constructions in some cases. In particular, they enable us to construct the most efficient threshold and structure-preserving IND-CCA encryption scheme, to the best of our knowledge.

On the other hand, TSPHFs and iZK are new primitives which can be seen as zero-knowledge versions of SPHFs. Not only are they lightweight alternatives to NIZK, but they also have an implicitness flavor similar to SPHFs, which makes them suitable for applications like password authenticated key exchange (PAKE) [BBC+13c] and our protocol for secret agents in Section 2.5.3.3.

All these applications, except honest-verifier zero-knowledge arguments, heavily rely on disjunctions of DMs and DVSs, and for the most efficient variants, on mixed pseudorandomness. -137 -This will prove that the protocol is ε ′ -statistically sound, where

Contents

Let us now suppose by contradiction that there exist two distinct vectors β ⊺ 1 and β ⊺ 2 in {0, . . . , q -1} 1×m , such that there exists two corresponding valid responses Λ

We can subtract these two equations and get:

As

there exists an index i * such that β 1,i * = β 2,i * . In the previous equation, we look at the i * -th column, and we get:

As the integer β 1,i * -β 2,i * is non-zero and is between -p + 1 and p -1 (as q ≤ p), it is invertible modulo any prime dividing M and so modulo M (according to Lemma 4.2.12). We get that θ is in the column space of Γ which is impossible. This concludes the proof. Remark 6.1.4. We can improve the communication complexity at the expense on relying on computational soundness by using a PRG (see Remark 6.1.2 for a definition of PRG) to generate the second flow of the verifier: in this case the verifier just needs to send a seed PRG.seed which is a bit string in {0, 1} K .

Historical note 6.1.5. The first construction of honest-verifier zero-knowledge argument via

PHFs was implicit in many work on SPHF and was explicitly introduced in [BBC+13c]. The second construction via Sigma-protocols was also implicit in many works on Sigma-protocols.

Extensions and Comparisons

Partial Extractability

Generic construction. In the CRS model, we can actually add partial extractability in a blackbox way: the prover encrypts the extractable part of the witness ẅ K under a public key for an IND-CPA encryption scheme (in the CRS) and then proves (using one of our previous protocols) that the resulting ciphertext encrypts a valid partial witness ẅ K for the word we are interested in. In the case of our second construction (Sigma-protocol), the resulting protocol is actually an Omega-protocol [START_REF] Garay | Strengthening Zero-Knowledge Protocols Using Signatures[END_REF].

More formally, let us show how to construct partially extractable honest-verifier zeroknowledge proofs for the following language:

with the help of an IND-CPA encryption scheme (Setup.gpar, KeyGen, Enc, Dec), with a setup Setup.gpar corresponding to the setup Setup.gpar for the DM M and with a message space corresponding to the space of the extractable part of the witnesses. at random. Then, for a word x = (x 1 = (u 1 , v 1), x 2 = (u 2 , v 2)) such that x 1 and x 2 are both DH tuples, the projected hash value pH computed using the witness w 1 for x 1 is equal to its hash value H (that the malicious verifier can compute using hk), but the projected value pH computed using the witness w 2 for x 2 is uniformly random (and it not equal to H with overwhelming probability). That way, the malicious adversary can know whether the prover used w 1 or w 2 to compute pH. This makes the "or" trick fails.

To get zero-knowledge, we need to ensure that the projection key hp is correctly generated. That is exactly what we are doing with TSPHFs and iZK (see Section 6.3).

Non-Interactive Zero-Knowledge Arguments (NIZK)

We have already seen in Section 3.3 how to construct a (constant-size) NIZK using a disjunction of two DVSs: one corresponding to the language L 1 = L of the NIZK and one for a hardsubset-membership language L 2 . We first extend this construction to DMs and improve it using mixed pseudorandomness at the expense of requiring L to be witness samplable. We then show how to construct stronger forms of NIZK, namely t-time simulation-sound NIZK using t-sound extensions. We conclude by comparing our constructions with existing ones and by showing a concrete application: the construction of a threshold Cramer-Shoup-like encryption scheme.

First Constructions

Construction Based on Disjunctions with a Hard-Subset-Membership Language

We can extend the construction of NIZK based on KV disjunctions of DVSs (Construction 3.3.1) to DMs.

) be two KV-DMs over two multiplicatively compatible sub-graded rings G 1 and G 2 of some graded ring G. Let m be a positive integer. Finally, let M = (M, G, X , L , R, n, k, RGen, Γ, θ, λ) be the KV disjunction of M 1 and M 2 . We recall that n = n 1 n 2 and k = k

We construct a NIZK for the language L := L 1 as follows:

• NIZK.Setup(lpar 1) generates language parameters lpar 2 $ ← Setup.lpar 2 (gpar) for L 2 , together with a hashing key hk and the associated projection key hp for V as follows:

and outputs crs := (lpar 2 , hp). In the sequel, we split γ ⊺ in two parts:

• NIZK.Sim 1 (lpar 1) works as NIZK.Setup except it also outputs the following trapdoor:

Construction Based on Mixed Pseudorandomness

Let us now show how to improve the size of the proof, by using a Pr-DVS as second DVS V 2 and mixed pseudorandomness, in the prime order case (i.e., when DMs are actually DVSs).

We need to add a slight restriction on the language of the NIZK L = L 1 : it has to be witness samplable (see Section 5.2.3). Construction 6.2.3. The construction is exactly the same as Construction 3.3.1, except that we do not require that L 2 is a hard-subset-membership language but only that V 2 is a Pr-DVS. We also suppose that L 1 is witness samplable.

We point out that we never use the trapdoor ltrap 1 of L 1 for witness samplability in the NIZK scheme. It is only used for the proof.

) be two KV-DVSs over two multiplicatively compatible subgraded rings G 1 and G 2 of some graded ring G. We suppose that V 2 is a Pr-DVS and that L 1 is witness samplable.

Then the NIZK for L = L 1 in Construction 6.2.3 is perfectly complete, perfectly zeroknowledge, and sound. More precisely, if A is a polynomial-time adversary against soundness of the NIZK, we can construct an adversary B against pseudorandomness of V 2 with similar running time such that:

where m 1 := n 1 -max lpar 1 (dim L1,lpar 1), where dim L1,lpar 1 is the dimension of the vector space L1,lpar 1 , or in other words the rank of Γ 1,lpar 1 .

Proof. Perfect completeness and perfect zero-knowledge are proven exactly as for Theorem 3.3.2, as the proof is just syntactical.

For soundness as for the proof of Theorem 6.2.2, everything is similar to the proof of Theorem 3.3.2 except for the end, when we want to prove that if x 2 / ∈ L 2 and x 1 / ∈ L 1 , then the hash value H looks uniformly random. This is no more true statistically, but this directly comes from mixed pseudorandomness. We conclude using Theorem 5.2.6.

There is a slight hidden subtlety: since the proof is no more statistical, we should be careful that the games can be simulated in polynomial time. This was not the case before. But now, the trapdoor ltrap 1 enables to compute the discrete logarithms of the entries of Γ 1 and so enable to efficiently check whether a word x 1 is in L 1 or not. We remark that this trapdoor is available to the adversary B in the experiments Exp kv-m-psrnd-b for mixed pseudorandomness.

t-Time Simulation-Soundness

Let us now extend the previous constructions to get t-time simulation-soundness.

Construction Based on Disjunctions with a Hard-Subset-Membership Language

If we try to do a proof of t-time simulation-soundness for the NIZK in Construction 3.3.1 for example, we have the following problem: we cannot rely on smoothness to prove that the Theorem 6.2.6. Let t be a positive integer. Let

) be two KV-DVSs over two multiplicatively compatible sub-graded rings G 1 and G 2 of some graded ring G. Let M ′ ≥ 2 be a factor of M such that M 1 mod M ′ is (t + 1)-sound and M 2 mod M ′ is sound. Let p be the smallest prime factor of M ′ . We suppose that L 2 is a hard-subset-membership language, and that a random word x 2 $ ← X 2 \ L 2 is strongly non-degenerated in M 2 mod M ′ with overwhelming probability 1 -ε. We finally suppose that 1/p m is negligible in K.

Then the NIZK for L = L 1 in Construction 6.2.1 is perfectly complete, perfectly zeroknowledge, and t-time simulation-sound. More precisely, if A is a polynomial-time adversary against t-time simulation-soundness of the NIZK, we can construct an adversary B against subset-membership for L 2 with similar running time such that:

We recall t-time simulation-soundness directly implies soundness. Construction 6.2.5 enables to build NIZK for the same languages as for normal NIZK in Construction 6.2.1, as we can extend any KV-DM M 1 to a (t + 1)-sound KV-DM, using Construction 4.4.15. We remark that, as we only require M 1 mod M ′ to be (t + 1)-sound, this previous construction can be slightly optimized: more precisely, we just need to use t-independent strongly non-degenerated functions modulo M ′ instead of modulo M . In any case, the dimensions n 1 and k 1 get multiplied by some integer s ≥ t + 1. The exact value of s depends on the tag set and the smallest prime factor p of M ′ . Compared to Construction 6.2.1, the size of the proof is exactly the same, and the size of the CRS is multiplied by s.

When M is a prime number, any word in X 2 \ L 2 is strongly non-degenerated, and we can choose M ′ = M = p, m = 1, and s = t + 1 for the tag set Tags = Z M .

Proof. Perfect completeness and perfect zero-knowledge are proven exactly as for Theorem 6.2.2, as the proof is just syntactical.

We need to prove the t-time simulation-soundness property. The proof is similar to the proof of soundness for Theorem 6.2.2: instead of using universality we use (t + 1)-universality which follows from the fact that M is t-sound thanks to Remark 4.4.17.

Construction Based on Mixed Pseudorandomness

Let us now try to improve the previous construction using pseudorandomness in the prime order case, as we did with normal NIZK in Construction 6.2.3. Unfortunately, this is not as easy: Construction 6.2.5 seems difficult (if at all possible) to prove t-time simulation-sound when the second DM M 2 is just a Pr-DVS. The main problem is that the security proof of mixed pseudo-randomness is not statistical, and an adversary for mixed pseudorandomness has not access to hk = α, but has only access to some representation of α, which does not allow to simulate proofs for words and tags chosen by the adversary.

We could actually do a completely manual proof, in the specific case where M 1 is constructed via Construction 4.4.15 and if the t tags for the simulated proofs are known before the generation of the CRS crs of the NIZK. This is already useful, as we can then bootstrap this into a real t-time simulation-sound NIZK by using a one-time signature: the tag tag becomes a public key for a one-time signature (and so can be chosen in advance before the generation of the CRS in the security proof) and the whole NIZK proof is signed using this public key.

• NIZK.Sim 1 (lpar 1) works as NIZK.Setup except it also outputs the following trapdoor:

• NIZK.Prove(crs, tag, x 1 , w 1) outputs:

• NIZK.Ver(crs, tag, x 1 , π ⊺) checks the following equation:

• NIZK.Sim 2 (trap, tag, x 1) outputs:

We can see the CRS and its associated trapdoor as 2ν CRSs and associated trapdoors for Construction 6.2.3. A proof π ⊺ is the sum of the ν proofs in Construction 6.2.3 for the projection keys or CRSs hp k,tag . Everything works nicely thanks to the linearity of the proofs.

We insist on the fact that in this construction, contrary to Construction 6.2.5, V 1 (or M 1) is a normal DVS (and not necessarily (t + 1)-sound). The size of the proof is the same as the one in Construction 6.2.3, while the CRS is 2ν times larger. Theorem 6.2.8.

) be two KV-DVSs over two multiplicatively compatible subgraded rings G 1 and G 2 of some graded ring G. We suppose that V 2 is a Pr-DVS and that L 1 is witness samplable.

Then the NIZK for L = L 1 in Construction 6.2.7 is perfectly complete, perfectly zeroknowledge, and one-time simulation-sound. More precisely, if A is a polynomial-time adversary against one-time simulation-soundness of the NIZK, we can construct an adversary B against pseudorandomness of V 2 with similar running time such that:

where m 1 := n 1 -max lpar 1 (dim L1,lpar 1), where dim L1,lpar 1 is the dimension of the vector space L1,lpar 1 , or in other words the rank of Γ 1,lpar 1 .

Proof. Perfect correctness and perfect zero-knowledge can be proven as in Theorem 3.3.2. Let us prove one-time simulation-soundness, with a reduction to soundness of Construction 3.3.1 (for the same DVSs V 1 and V 2). Let us consider a polynomial-time adversary A that generates a valid proof π ⊺ for a word x 1 / ∈ L 1 and a tag tag, after having asked for a proof π ′⊺ for a word x ′ 1 ∈ X 1 and a tag tag ′ = tag. We construct a polynomial-time adversary B against soundness of Construction 3.3.1.

Comparison with existing schemes. A comparison with existing efficient IND-CCA encryption schemes based on cyclic or bilinear groups is given in Table 6.3, whose entries have been partially derived from similar tables in [START_REF] Boyen | Direct Chosen Ciphertext Security from Identity-Based Techniques[END_REF][START_REF] Kiltz | Chosen-Ciphertext Security from Tag-Based Encryption[END_REF].

The two other efficient threshold and structure-preserving IND-CCA encryption schemes are those based on the Canetti-Halevi-Katz [START_REF] Canetti | Chosen-Ciphertext Security from Identity-Based Encryption[END_REF] transform, the one of Boyen, Mei and Waters [START_REF] Boyen | Direct Chosen Ciphertext Security from Identity-Based Techniques[END_REF] and the one of Kiltz [START_REF] Kiltz | Chosen-Ciphertext Security from Tag-Based Encryption[END_REF]. But for all except the one of Kiltz, the plaintext and one element of the ciphertext has to be in G T , which is not compatible with Groth-Sahai NIZK [START_REF] Groth | Efficient Non-interactive Proof Systems for Bilinear Groups[END_REF] (proving that we know the plaintext of a ciphertext cannot efficiently be done with Groth-Sahai NIZK for such encryption schemes). In addition, elements in G T have a much longer representation than elements in G, G 1 or G 2 . And, even though our second encryption scheme uses exactly the same number of group elements as Kiltz's encryption scheme [START_REF] Kiltz | Chosen-Ciphertext Security from Tag-Based Encryption[END_REF], these groups elements are about 6 times smaller in practice (for K = 128 bits of security), since we use an asymmetric pairing while Kiltz's scheme uses a symmetric one (see Section 2.1.5). So even our first construction is more efficient (regarding ciphertext size) than Kiltz's construction. To summarize, to the best of our knowledge, our two constructions are the most efficient threshold and structure-preserving IND-CCA encryption schemes.

IND-CCA security proof. We have the following security theorem. Theorem 6.2.10. The encryption scheme of Construction 6.2.9 is IND-CCA, if the underlying NIZK is one-time simulation-sound, perfectly complete, and zero-knowledge, and if DDH holds in the group G 1 .

Proof. The proof is quite straightforward and basically uses ideas in the security proof of the Cramer-Shoup encryption scheme [START_REF] Cramer | A Practical Public Key Cryptosystem Provably Secure Against Adaptive Chosen Ciphertext Attack[END_REF]. Here is a sketch of a sequence of games proving the IND-CCA property: Game G 0 : This is the game for Exp ind-cca-b for b = 0 (see Definition 2.2.4).

Game G 1 : In this game, we generate g 1,2 as g t 1,1 (with t $ ← Z p) and reject all ciphertexts c = (u 1 , u 2 , v, π) submitted to the decryption oracle for which u 2 = u t 1 . This game is indistinguishable from the previous one under the soundness of the NIZK, which ensures that if the proof π is not rejected, (g 1,1 , g 1,2 , u 1 , u 2) is a DDH tuple.

Game G 2 : In this game, we generate h as

In addition, we decrypt ciphertexts c = (u 1 , u 2 , v, π) by first rejecting if π is not a valid proof or u 2 = u t 1 (as before) and then outputting v/(u z 1 1 u z 2 2) (instead of v/u z 1). This game is perfectly indistinguishable from the previous one, because h can be written

Game G 3 : In this game, we do not check anymore that u 2 = u t 1 and we generate g 1,2 directly as a random group element in G 1 . This game is indistinguishable from the previous one under the soundness of the NIZK.

Game G 4 : In this game, for the challenge ciphertext c

This game is perfectly indistinguishable from the previous one.

Game G 5 :

In this game, we simulate the proof π * in the challenge ciphertext C * = (u * 1 , u * 2 , v * , π *). This game is indistinguishable from the previous one under the zero-knowledge property of the NIZK. In addition, in this game, knowledge of r in c * is no longer required.

Game G 6 : In this game, we replace (u * 1 , u * 2) which was a DDH tuple in basis (g 1,1 , g 1,2) by a random tuple. This game is indistinguishable from the previous one under the DDH assumption.

Game G 7 : In this game, we again generate g 1,2 as g t 1,1 (with t $ ← Z p) and reject all ciphertexts c = (u 1 , u 2 , v, π) submitted to the decryption oracle for which u 2 = u t 1 . This game is indistinguishable form the previous one under the one-time simulation-soundness of the NIZK.

Game G 8 : As in the proof of Cramer and Shoup [START_REF] Cramer | A Practical Public Key Cryptosystem Provably Secure Against Adaptive Chosen Ciphertext Attack[END_REF], it is easy to show that the only information (from an information theoretic point of view) the adversary sees of z 1 and

z 2 looks completely random to the adversary if (u 1 , u 2) is not a DDH tuple in basis (g 1,1 , g 1,2) (which happens with probability 1 -1/p). Therefore we can replace v * by a random value, and this game is statistically indistinguishable from the previous one.

Finally, we can redo all the previous games in the reverse order and see that the experiment Exp ind-cca-b with b = 0 is indistinguishable from the experiment Exp ind-cca-b with b = 1. • n = n 1 , k = k 1 , and ν is the length of the tag tag; pairings: number of pairings required to verify the proof; • sizes | • | are measured in term of group elements (G 1 and G 2 , or G if the bilinear group is symmetric). Generators g 1 ∈ G 1 and g 2 ∈ G 2 (for DDH in G 2) or g ∈ G (for DLin) are not counted in the CRS; • OTSS: one-time simulation-soundness; RSS: single-theorem relative simulationsoundness [START_REF] Jutla | Relatively-Sound NIZKs and Password-Based Key-Exchange[END_REF] (weaker than OTSS); • WS: witness samplability, i.e., requirement that Setup.lpar 1 generates a trapdoor ltrap 1 allowing us to compute the discrete logarithms of Γ 1 . This slightly restricts the set of languages which can be handled. Proof. Perfect correctness directly comes from perfect completeness of V.

Chapter 6 Applications of Diverse Modules

Reference string indistinguishability is directly implied by hard subset membership of L 2 .

Computational smoothness. When crs = (lpar 2 , x 2) is generated by T.Setup, x 2 / ∈ L 2 and therefore x = (x 1 , x 2) ∈ L if and only x 1 ∈ L 1 . Therefore computational smoothness holds statistically, thanks to the smoothness property of the SPHF derived from the DVS V.

Perfect zero-knowledge. Let x 1 be a word in L 1 with witness w 1 , and let (crs = (lpar 2 , x 2), trap = w 2) $ ← T.TSetup(lpar 1). We have:

If hp = (γ ⊺ , ρ) is accepted by VerHP, then Equation (6.3) is satisfied, and thus pH = trapH. Therefore, zero-knowledge holds perfectly.

Composite-order setting. The construction can be extended to the composite-order setting (replacing DVSs V 1 and V 2 by DMs M 1 and M 2), in the CS-TSPHF and GL-TSPHF case, as long as, with overwhelming probability, a random word x 2 is strongly non-degenerated in M 2 mod M ′ with M ′ a factor of the order M of the DMs, such that M 1 mod M ′ is sound. We just need to change

for some large enough integer m, and to extract from the hash value (H, pH, or trapH) a uniform bit string, by using a randomness extractor. The seed for the randomness extractor seed is generated by HashKG and added to hk and hp.

If we can use a deterministic randomness extractor, we could also get a KV-TSPHF using the same construction starting with a KV-DM M 1 . Unfortunately, while we know a randomness extractor for any distribution with high enough min-entropy (see Section 2.2.3), there does not necessarily exist a deterministic randomness extractor for the distributions of hash values coming from PHFs from DMs.

Construction Based on Mixed Pseudorandomness

Similarly to NIZK, we can optimize the previous construction in the prime-order setting by replacing the second DVS V 2 by a Pr-DVS. We need to suppose that L is witness samplable (see Section 5.2.3). Construction 6.3.7. The construction is the same as Construction 6.3.5, except that:

• we do not require that L 2 is a hard-subset-membership language but only that V 2 is a Pr-DVS;

• we also suppose that L 1 is witness samplable.

We point out that we never use the trapdoor ltrap 1 of L 1 (for witness samplability) in the TSPHF scheme. It is only used for the proof. Prime-order setting. Let us start by the construction in the prime-order setting, which is an improved (and extended to any hard-subset-membership language) version of the construction in [BCPW15]. Construction 6.3.12 (iZK from disjunctions of DVSs). We suppose that we have a DVS

for a hard-subset-membership language L 2 . We suppose that Γ 1 does not depend on ρ 1 , but θ 1 can depend on ρ. Therefore, Γ does not depend on ρ. Furthermore, we consider the GL disjunction V = (p, G, X , L , R, n, k, RGen, Γ, θ, λ) of V 1 and V 2 . We recall that n = n 1 + n 2 + 2 and k = k 1 + k 2 + 1.

We construct an iZK for L := L 1 as follows:

• iSetup(lpar 1) generates language parameters lpar 2 $ ← Setup.lpar 2 (gpar) for L 2 , together with a word x 2 $ ← X 2,lpar 2 \ L 2,lpar 2 . It then outputs crs := (lpar 2 , x 2).

• iTSetup(lpar 1) generates language parameters lpar 2 $ ← Setup.lpar 2 (gpar) for L 2 , together with a word and its witness: (x 2 , w 2) $ ← R 2,lpar 2 . It then output crs := (lpar 2 , x 2) and trap := w 2 .

• iKG(crs, x 1 , w 1) outputs a pair (iek, idk), where:

iek := tp idk := (x 1 , tk, w 1) , where x = (x 1 , x 2);

• iTKG(crs, trap, x 1) outputs a pair (iek, idk) where:

iek := tp itk := (x 1 , tk, trap) ;

• iEnc(crs, iek, x 1) outputs a pair (c, K) where:

• iDec(crs, idk, c) outputs K ′ where:

Witness encryption Finally, we can look at a computational relaxation of the smoothness property. Witness encryption [START_REF] Garg | Witness encryption and its applications[END_REF] basically corresponds to computationally smooth GL-SPHF. Some candidate constructions of witness encryption for any NP language were proposed based on multilinear maps [GGSW13; GLW14] or iO [START_REF] Garg | Candidate Indistinguishability Obfuscation and Functional Encryption for all Circuits[END_REF]. But, these two assumptions are currently not very well understood.

List of Illustrations Figures