C. L. Fromentin, art du diagnostic : sémiologie et clinique à l'âge de la psychiatrie classique. L'Évolution Psychiatrique, pp.460-475, 2016.
DOI : 10.1016/j.evopsy.2015.10.009

S. R. Meneses, A. P. Goode, A. E. Nelson, J. Lin, J. M. Jordan et al., Clinical algorithms to aid osteoarthritis guideline dissemination, Osteoarthritis and Cartilage, vol.24, issue.9, 2016.
DOI : 10.1016/j.joca.2016.04.004

J. C. Toha, S. Vatsquez, P. Fuentes, and M. A. Soto, Algorithm for assisting medical diagnosis, Computer Methods and Programs in Biomedicine, vol.39, issue.3-4, pp.303-309, 1993.
DOI : 10.1016/0169-2607(93)90033-H

M. H. Lopes, O. N. Baena-de-moraes, R. Siqueira, S. Paulo-sérgio-panse, and M. Eduardo, Fuzzy cognitive map in differential diagnosis of alterations in urinary elimination: A nursing approach, International Journal of Medical Informatics, vol.82, issue.3, pp.201-208, 2016.
DOI : 10.1016/j.ijmedinf.2012.05.012

C. Casado-lumbrerasa, A. Rodríguez-gonzálezb, J. María-Álvarez-rodríguezc, and R. Colomo-palaciosb, PsyDis: Towards a diagnosis support system for psychological disorders, Expert Systems with Applications, vol.39, issue.13, pp.3911391-11403, 2012.
DOI : 10.1016/j.eswa.2012.04.033

M. Enes-elvin-gul, C. Kjell, H. I. Nikusb, K. Erdoganc, and . Ozdemirc, Differential diagnostic dilemma between pulmonary embolism and acute coronary syndrome, Journal of Arrhythmia, vol.32, issue.2, pp.160-161, 2016.

M. Fakhoury, Autistic spectrum disorders: A review of clinical features, theories and diagnosis, International Journal of Developmental Neuroscience, vol.43, pp.70-77, 2015.
DOI : 10.1016/j.ijdevneu.2015.04.003

G. J. Hammoud, B. Rustin, P. L. Taouli, and . Choyke, Diffusion-weighted magnetic resonance imaging as a cancer biomarker : Consensus and recommendations, Neoplasia, vol.11, issue.2, pp.102-125, 2009.

B. Weinerm and . Group, The future of blood-based biomarkers for Alzheimer's disease. Alzheimer's and Dementia, pp.115-131, 2014.

L. Jay, M. Koyner, S. G. Coca, D. Ms, H. Thiessen-philbrook et al., Urine biomarkers and perioperative acute kidney injury : The impact of preoperative estimated GFR, American Journal of Kidney Diseases, issue.6, pp.661006-1014, 2015.

A. Bagrodiaa, E. K. Chaa, J. P. Sfakianosg, E. C. Zaborb, B. H. Bochnera et al., Genomic Biomarkers for the Prediction of Stage and Prognosis of Upper Tract Urothelial Carcinoma, The Journal of Urology, vol.195, issue.6, 2016.
DOI : 10.1016/j.juro.2016.01.006

G. Holmgrena, J. Synnergrena, C. X. Anderssonc, A. Lindahlb, and P. Sartipya, MicroRNAs as potential biomarkers for doxorubicin-induced cardiotoxicity, Toxicology in Vitro, vol.34, pp.26-34, 2016.
DOI : 10.1016/j.tiv.2016.03.009

J. Palmfeldt, K. Henningsenb, H. K. Stine-aistrup-eriksenb, O. Müllerb, and . Wiborgb, Protein biomarkers of susceptibility and resilience to stress in a rat model of depression, Molecular and Cellular Neuroscience, vol.74, 2016.
DOI : 10.1016/j.mcn.2016.04.001

J. S. Simon, K. E. Camerona, M. Lewisb, G. G. Beckmanna, R. Allisona et al., The metabolomic detection of lung cancer biomarkers in sputum, Lung Cancer, vol.94, pp.88-95, 2016.

K. Ballman and . Biomarker, Biomarker: Predictive or Prognostic?, Journal of Clinical Oncology, vol.33, issue.33, pp.3968-71, 2015.
DOI : 10.1200/JCO.2015.63.3651

E. Stern, A. Vacic, N. K. Rajan, J. M. Criscione, J. Park et al., Label-free biomarker detection from whole blood, Nature Nanotechnology, vol.377, issue.2, pp.138-142, 2009.
DOI : 10.1038/nnano.2009.353

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818341

B. Ackermann, J. Hale, and K. Duffin, The Role of Mass Spectrometry in Biomarker Discovery and Measurement, Current Drug Metabolism, vol.7, issue.5, pp.525-564, 2006.
DOI : 10.2174/138920006777697918

Y. Imafuku, G. S. Omenn, and S. Hanash, Proteomics Approaches to Identify Tumor Antigen Directed Autoantibodies as Cancer Biomarkers, Disease Markers, vol.20, issue.3, pp.149-153, 2004.
DOI : 10.1155/2004/829450

URL : http://doi.org/10.1155/2004/829450

L. H. Choe, B. G. Werner, and K. H. Lee, Two-dimensional protein electrophoresis: From molecular pathway discovery to biomarker discovery in neurological disorders, NeuroRX, vol.10, issue.3, pp.327-335, 2012.
DOI : 10.1016/j.nurx.2006.05.001

R. Zangar, D. Daly, and A. White, ELISA microarray technology as a high-throughput system for cancer biomarker validation, Expert Review of Proteomics, vol.3, issue.1, pp.37-44, 2006.
DOI : 10.1586/14789450.3.1.37

H. J. Lee, A. W. Wark, and R. M. Corn, Microarray methods for protein biomarker detection, The Analyst, vol.23, issue.8, pp.975-983, 2008.
DOI : 10.1039/b717527b

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2738748

A. Gururajan, G. Clarke, T. G. Dinan, and J. F. Cryan, Molecular biomarkers of depression, Neuroscience & Biobehavioral Reviews, vol.64, pp.101-133, 2016.
DOI : 10.1016/j.neubiorev.2016.02.011

E. V. Huntington, New sets of independent postulates for the algebra of logic, with special reference to Whitehead and Russell's Principia mathematica, Trans. Amer. Math. Soc, pp.274-304, 1933.

R. E. Funk, Understanding Buffered and Unbuffered CD4xxxB Series Device Characteristics. Texas Instruments, 2002.

R. W. Keyes, What makes a good computer device ? Science, pp.138-144, 1985.
DOI : 10.1126/science.230.4722.138

N. Kinsey, C. Devault, J. Kim, M. Ferrera, V. M. Shalaev et al., Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths, Optica, vol.2, issue.7, pp.616-622, 2015.
DOI : 10.1364/OPTICA.2.000616.s001

J. Baoa, J. Xiaoa, L. Fana, X. Lib, Y. Haia et al., Alloptical NOR and NAND gates based on photonic crystal ring resonator Optical computing and image processing with ferroelectric liquid crystals, Optics Communications Optical Engineering, vol.26, issue.5, pp.385-391, 1987.

A. B. David and . Miller, Are optical transistors the logical next step ?, Nature Photonics, vol.4, pp.3-5, 2010.

S. Leduc, La biologie de synthèse, étude de biophysique, 1912.

C. Dellomonaco, The path to next generation biofuels: successes and challenges in the era of synthetic biology, Microbial Cell Factories, vol.9, issue.1, 2010.
DOI : 10.1186/1475-2859-9-3

D. K. Ro, Production of the antimalarial drug precursor artemisinic acid in engineered yeast, Nature, vol.272, issue.7086, pp.940-943, 2006.
DOI : 10.1038/nature04640

M. Leonard and . Adleman, Molecular computation of solutions to combinatorial problems, Science, vol.266, pp.1021-1024, 1994.

Y. Benenson, B. Gil, U. Ben-dor, R. Adar, and E. Shapiro, An autonomous molecular computer for logical control of gene expression, Nature, vol.130, issue.6990, pp.423-429, 2004.
DOI : 10.1002/cphc.200390007

S. Ausländer, D. Ausländer, M. Müller, M. Wieland, and M. Fussenegger, Programmable single-cell mammalian biocomputers, Nature, vol.28, pp.123-127, 2012.
DOI : 10.1038/nature11149

A. A. Nielsen, B. S. Der, J. Shin, P. Vaidyanathan, V. Paralanov et al., Genetic circuit design automation, Science, vol.352, issue.6281, pp.35253-66, 2016.
DOI : 10.1126/science.aac7341

I. Cases and V. De-lorenzo, Genetically modified organisms for the environment : stories of success and failure and what we have learned from them, Int. Microbiol, vol.8, pp.213-222, 2005.

G. Ashkenasy and M. R. Ghadiri, Boolean Logic Functions of a Synthetic Peptide Network, Journal of the American Chemical Society, vol.126, issue.36, pp.11140-11141, 2004.
DOI : 10.1021/ja046745c

T. Niazov, E. Katz, R. Baron, O. Lioubashevski, and I. Willner, Concatenated logic gates using four coupled biocatalysts operating in series, Proc. Natl. Acad, pp.17160-17163, 2006.
DOI : 10.1073/pnas.0608319103

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1634834

P. Reshma, D. Shetty, . Endy, F. Thomas, and . Knightjr, Engineering biobrick vectors from biobrick parts, Journal of Biological Engineering, vol.2, issue.5, 2008.

S. Rialle, L. Felicori, C. Dias-lopes, S. Pérès, S. El-atia et al., BioNetCAD: design, simulation and experimental validation of synthetic biochemical networks, Bioinformatics, vol.26, issue.18, pp.262298-2304, 2010.
DOI : 10.1093/bioinformatics/btq409

D. Boneh, C. Dunwortha, R. J. Liptona, and J. Sgall, On the computational power of DNA, Discrete Applied Mathematics, vol.71, issue.1-3, pp.79-94, 1996.
DOI : 10.1016/S0166-218X(96)00058-3

T. Gupta, M. E. Van, and . Boom, Redox???Active Monolayers as a Versatile Platform for Integrating Boolean Logic Gates, Angewandte Chemie, vol.96, issue.29, pp.5402-5406, 2008.
DOI : 10.1002/ange.200800830

G. Strack, M. Pita, M. Ornatska, and E. Katz, Boolean Logic Gates that Use Enzymes as Input Signals, ChemBioChem, vol.86, issue.8, pp.1260-1266, 2008.
DOI : 10.1002/cbic.200700762

J. Keith, B. F. Laidler, and . Peterman, Temperature effects in enzyme kinetics, Methods in Enzymology, vol.63, pp.234-257, 1979.

V. Henri, Théorie générale de l'action de quelques diastases, Comptes Rendus Hebdomadaires Séances Académie des Sciences, pp.916-919, 1902.

H. J. Briggs, A Note on the Kinetics of Enzyme Action, Biochemical Journal, vol.19, issue.2, pp.338-339, 1925.
DOI : 10.1042/bj0190338

U. Deichmann, S. Schuster, J. Mazat, and A. Cornish-bowden, : three perspectives, FEBS Journal, vol.280, issue.1, pp.435-463, 2014.
DOI : 10.1111/febs.12598

A. Cornish-bowden, J. Mazat, and S. Nicolas, Victor Henri: 111 years of his equation, Biochimie, vol.107, pp.161-166, 2014.
DOI : 10.1016/j.biochi.2014.09.018

P. Amar, G. Legent, M. Thellier, C. Ripoll, G. Bernot et al., A stochastic automaton shows how enzyme assemblies may contribute to metabolic efficiency, BMC Systems Biology, vol.2, issue.1, 2008.
DOI : 10.1186/1752-0509-2-27

URL : https://hal.archives-ouvertes.fr/hal-00643746

P. Amar and L. Paulevé, HSIM: A Hybrid Stochastic Simulation System for Systems Biology, The Third International Workshop on Static Analysis and Systems Biology, 2012.
DOI : 10.1016/j.entcs.2015.04.016

M. Thellier, G. Legent, P. Amar, V. Norris, and C. Ripoll, Steady-state kinetic behaviour of functioning-dependent structures, FEBS Journal, vol.332, issue.18, pp.4287-4299, 2006.
DOI : 10.1126/science.283.5400.381

M. Bouffard, F. Molina, and P. Amar, Extracting logic gates from a metabolic network, Proceedings of the Strasbourg Spring School in advances in Systems and Synthetic Biology, pp.63-77, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01137905

V. Reddy, M. Mavrovouniotis, and M. Liebman, Petri net representations in metabolic pathways, 1993.

N. Le-novere, M. Hucka, H. Mi, S. Moodie, F. Schreiber et al., The Systems Biology Graphical Notation, Nat. Biotech, issue.8, pp.27735-741, 2009.

D. Battista, Section 2.1, pp.14-16, 1997.

F. Schreiber, High quality visualization of biochemical pathways in BioPath, In Silico Biology, vol.2, issue.2, pp.59-73, 2002.

C. Bachmaier, U. Brandes, and F. Schreiber, Biological Networks. Handbook of Graph Drawing and Visualization, pp.621-651, 2014.