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Résumé

Cette thèse porte sur l’étude statistique des systèmes en grande dimension grâce à la théorie des
grandes matrices aléatoires. De nos jours, il est de plus en plus fréquent de travailler sur des
bases de données de très grandes tailles dans plein de domaines différents. Cela ouvre la voie à
de nouvelles possibilités d’exploitation ou d’exploration de l’information, et de nombreuses tech-
nologies numériques ont été crées récemment dans cette optique. D’un point de vue théorique, ce
problème nous contraint à revoir notre manière d’analyser et de comprendre les données enreg-
istrées. En effet, dans cet univers communément appelé Big Data, un bon nombre de méthodes
traditionnelles d’inférence statistique multivariée deviennent inadaptées. Le but de cette thèse
est donc de mieux comprendre ce phénomène appelé fléau (ou malédiction) de la dimension,
et ensuite de proposer différents outils statistiques exploitant explicitement la dimension du
problème et permettant d’extraire des informations fiables des données.

La première partie de thèse porte sur l’estimation de grande matrices de covariance (ou
corrélation). Cet objet intervient dans de très nombreux problèmes pratiques (physique, finance,
biologie, machine learning etc...) et il s’agit du sujet central de cette thèse. Ce problème est
un exemple classique de l’impact considérable du bruit de mesure dans les systèmes en grande
dimension. Le point de départ de ce travail est l’estimateur empirique de Pearson, qui est
certainement le plus utilisé en pratique. Nous proposons une analyse détaillée de l’impact
du fléau de la dimension sur cet estimateur grâce à la théorie des matrices aléatoires. Nous
présenterons également comment étendre ces résultats à des modèles plus généraux de matrices
de covariance.

Dans la seconde partie, nous nous intéressons aux modèles dans lesquels le vrai signal à
extraire est corrompu par un bruit additif indépendant du signal. Nous considérons d’abord
le cas où le bruit provient de l’addition d’une matrice Gaussienne, symétrique. Ensuite, nous
abordons un modèle plus général inspiré de la théorie des probabilités libres permettant d’étudier
des processus plus complexes.

Pour tous ces modèles, nous étudions les statistiques des valeurs propres mais surtout des
vecteurs propres. Nous verrons par exemple que les vecteurs propres “mesurés”, donc bruités,
conservent très peu d’information concernant les vecteurs propres d’origine, c’est-à-dire ceux
du vrai “signal”. Même si ce résultat parait décevant aux premiers abords, nous montrerons
qu’il est possible d’extraire de l’information significative en utilisant le caractère universel de
nos résultats. En particulier, cela nous permettra de construire des estimateurs optimaux,
observables, universels et cohérents avec le régime de grande dimension.

Mots clés: Statistiques en grande dimension, Covariance, Matrices aléatoires, Estimation,
Décomposition Spectrale, Résolvante, Transformée de Stieltjes, Probabilités libres, Méthode
des répliques, Mouvement Brownien de Dyson, Théorie de Markowitz, Bootstrap
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Abstract

This thesis focuses on the statistical analysis of high-dimensional systems using Random Matrix
Theory (RMT). Nowadays, it is easy to get a lot of quantitative or qualitative data in a lot
of different fields. This access to new data brought new challenges about data processing and
there are now many different numerical tools to exploit database that may be of the order of
teraoctet. In a theoretical standpoint, this framework appeals for new or refined results to deal
with this amount of data. Indeed, it appears that most results of classical multivariate statistics
become inaccurate in this era of Big Data. The aim of this thesis is twofold: the first one is to
understand theoretically this so-called curse of dimensionality that describe phenomena which
arise in high-dimensional space. Then, we shall see how we can use these tools to build reliable
estimators that are consistent with the dimension of the problem.

Even if we will tackle different statistical problems in the following, the main problem that we
will focus on is the estimation of high dimensional covariance matrices. This subject is the main
thread of the first part of this thesis and finds very important applications in many practical
problems, be it in physics, finance, machine learning or biology. This problem turns out to be
a standard example of the increasing impact of the measurement noise as the dimension grows.
We shall start from Pearson sample estimator which is the simplest way to estimate covariances.
We then analyze how the curse of dimensionality affects this estimator using RMT. We will also
discuss about possible extensions to more general model of covariance matrices.

The second part of the thesis is dedicated to models where the true signal is corrupted by
an independent additive noise. More precisely, we first consider the case of a real symmetric
Gaussian noise. Then, we will tackle a more general additive model inspired from free probability
theory. For each model, we shall study the statistics of the eigenvalues and especially the
eigenvectors. In particular, we will highlight that the empirical and noisy eigenvectors turn out
to be unreliable estimators of the true ones in the high dimensional regime. Nevertheless, we
may infer meaningful information about the true signal. This will help us to construct estimators
that are optimal, universal, observable and consistent with the high dimensional framework.

Keywords: High-dimensional statistics, Covariance, Random matrices, Estimation, Spectral
Decomposition, Resolvent, Stieltjes transform, Free probabiity, Replica methods, Dyson’s
Brownian Motion, Markowitz portfolio theory, Bootstrap

4



Remerciements

Je souhaiterais tout d’abord remercier Jean-Philippe Bouchaud, Satya Majumdar et Marc Pot-
ters qui m’ont fait l’honneur de m’encadrer au cours de cette thèse.
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Chapter 1

Introduction générale et principales
contributions

Cette thèse porte sur l’analyse statistique des systèmes complexes en grandes dimensions. La
première partie est dédiée à l’estimation de grandes matrices de covariance et il s’agit du principal
problème étudié dans ce manuscrit. La seconde partie concerne l’extension de ces résultats à
des modèles de perturbations additifs.

Malgré cette distinction entre ces deux classes de modèles, il s’avère que le problème étudié
est très similaire. Supposons que nous souhaitons estimer une matrice C de taille N × N ,
déterministe et qui caractérise les dépendances entre les N variables du système. En inférence
statistique, la méthode traditionnelle pour estimer cette matrice C est de collecter un très grand
nombre T d’observations, idéalement indépendantes, afin de construire un estimateur empirique
noté E. Dans le cas où T est très grand devant N , alors les estimateurs empiriques sont fiables
dans le sens où l’erreur d’estimation devient très faible: on parle d’estimateur consistant [179].
De plus, nous voyons notamment que cette théorie ne suppose aucune structure particulière sur
la matrice observée E.

La question à laquelle nous allons tenter de répondre dans cette thèse est la suivante: est-ce
que les estimateurs restent consistants lorsque le nombre de variables N est du même ordre
de grandeur que le nombre d’observations T? En d’autres termes, que pouvons-nous dire sur
l’impact du bruit de mesure q ..= N/T concernant la convergence des estimateurs empiriques? Ce
cadre mathématique, connu sous le nom de Big Data de nos jours, est aujourd’hui fondamental
d’un point de vue pratique pour de nombreuses disciplines scientifiques. Nous reviendrons sur
les potentielles applications par la suite.

Cette question peut être étudiée en s’intéressant aux valeurs propres. En effet, considérons
l’exemple des matrices de covariance: lorsque N � T , alors nous savons depuis les travaux
d’Anderson que les valeurs propres observées, c’est-à-dire celles de E, sont des estimateurs
consistants des valeurs propres de C [10]. Par contre, lorsque N est comparable à T , alors l’article
fondateur de Marčenko et Pastur démontre que cette propriété n’est plus vérifiée [123]. Il s’agit
d’un des résultats majeurs de la théorie des grandes matrices aléatoires dans la compréhension
statistique de système de très grande dimension et le but de cette thèse est de comprendre un
peu mieux ce fléau de la dimension grâce à cette théorie.

Dans ce mémoire, nous allons aborder ce problème à travers deux quantités distinctes. La
première est l’analyse des vecteurs propres associés aux grandes matrices empiriques. Con-
trairement aux statistiques des valeurs propres qui disposent d’une littérature conséquente, le
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1.1. Estimation de grandes matrices de covariance

comportement des vecteurs propres par rapport au bruit de mesure reste un problème relative-
ment mal compris. Dans ce manuscrit, nous apportons des résultats permettant cette analyse
en nous intéressant à l’espérance du produit scalaire entre les “vrais” vecteurs propres (ceux de
C) et les vecteurs propres bruités (ceux de E).

Ensuite, la deuxième question que nous allons investiguer est la suivante: comment construire
un estimateur qui soit consistant dans ce nouveau paradigme “big data”? Nous verrons en
particulier que cet estimateur repose à la fois sur les statistiques des valeurs propres et des
vecteurs propres de la matrice E.

Comme indiqué dans le nom de ce mémoire, notre analyse repose sur la théorie des grandes
matrices aléatoires qui s’avère extrêmement puissante pour caractériser les phénomènes se pro-
duisant sur des ensembles de très grande dimension (voir par exemple [1]). Plus précisément,
depuis les travaux de Wigner sur les matrices symétriques Gaussiennes [189] et ensuite de
Marčenko et Pastur en 1967 sur les matrices de covariance [123], cette théorie est à l’origine
de nombreuses découvertes importantes en mécanique quantique, en physique statistique des
systèmes désordonnés mais aussi dans les statistiques en grande dimension. Une des propriétés
majeures de cette théorie est la possibilité d’exhiber des comportements universels à propos du
spectre de grandes matrices. De plus, il existe une multitude de techniques analytiques permet-
tant d’extraire ces informations et nous allons en présenter brièvement quelques une au cours de
cette thèse dans cette introduction. Une description plus détaillée de chaque méthode se trouve
dans les chapitres suivants.

Le but de cette introduction générale est de proposer aux lecteurs un résumé détaillé des
différents travaux considérés durant ma thèse. Tout d’abord, nous allons motiver le problème
statistique mentionné précédemment à travers quelques problèmes concrets. Comme indiqué
ci-dessus, la motivation principale provient des statistiques en grande dimension et cela nous
donnera l’occasion de récapituler les résultats existants dans la littérature. Ensuite, nous
présenterons de manière succincte quelques méthodes de calculs utilisées: la théorie des proba-
bilités libres, le mouvement Brownien de Dyson et la méthode des répliques. Cette présentation
sera surtout l’occasion de fixer les notations et nous terminerons cette introduction par un bref
énoncé des résultats obtenus et de quelques problèmes ouverts qui en découlent.

1.1 Estimation de grandes matrices de covariance

1.1.1. Motivations. La nouvelle ère liée au “Big Data” nous impose de reconsidérer les outils
statistiques pour analyser les données de très grande dimension. Il s’agit de nos jours d’un
problème récurrent dans quasiment toutes les disciplines scientifiques: physique, traitement
d’image, génomique, épidémiologie, ingénierie, économie ou finance par exemple.

Une approche naturelle pour considérer des problèmes en grande dimension est d’identifier
des facteurs communs qui expliquent la dynamique jointe des N variables. Ces variables peuvent
être le rendement journalier de différents stocks (le S&P 500 par exemple), la variation de
températures dans différents endroits de la planète, la vitesse de particules dans un support
granuleux ou différents indicateurs biologiques dans une population donnée (pression sanguine,
cholestérol, etc.). L’objet mathématique le plus couramment utilisé pour quantifier les similarités
entre différents observables est la matrice de corrélation, notée C, qui est donc de tailleN×N . En
effet, ses valeurs propres et ses vecteurs propres peuvent être utilisés pour caractériser les modes
propres les plus importants, définis comme les combinaisons linéaires des variables originales
ayant la plus grande variance (ou le plus grand pouvoir prédictif). Cette méthode est connue

12
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sous le nom d’Analyse en Composante Principale (ACP, ou PCA en anglais).
Formellement, notons par y ∈ RN l’ensemble des variables que nous supposerons centrées,

réduites1 et présentant une interdépendance possiblement non triviale. Alors, pour mesurer
l’intéraction entre ces variables, l’approche classique consiste à calculer les corrélations définies
par:

Cij = E
[
yiyj

]
, i, j ∈ [[1, N ]] , (1.1.1)

où l’espérance est prise sur la probabilité jointe caractérisant ces N variables. Dans la suite, la
matrice C sera appelée la vraie matrice de corrélation2.

Le principal problème dans l’équation (2.1.1) est que l’espérance ne peut quasiment ja-
mais être calculée explicitement du fait que la probabilité jointe des N variables est sou-
vent inconnue. Une façon pour remédier à ce problème est de collecter un grand nombre
de réalisations indépendantes de ces variables pour former une matrice des données notée
Y ..= (y1,y2, . . . ,yT ) ∈ RN×T . Dans le cas où le nombre de réalisations T est suffisamment
grand par rapport à N , une solution simple (mais näıve) est de construire l’estimateur empirique
E de C, définit par:

Eij =
1

T

T∑
t=1

Yit Yjt :=
1

T
(YY∗)ij , (1.1.2)

où Yit est la t−ème réalisation (t = 1, . . . , T ) de la i−ème variable (i = 1, . . . , N ) et nous
supposons que les entrées de cette matrice sont centrées et réduites. Cet estimateur est connu
sous le nom de l’estimateur de Pearson dans la littérature. Afin d’illustrer nos propos, nous
pouvons voir la matrice Y comme la matrice des rendements de N actifs financiers observés sur
T jours de trading. En biologie, T peut être vu comme la taille de l’échantillon de population
considérée pour la mesure de différents indicateurs de santé.

Lorsque N � T , alors nous pouvons utiliser les résultats classiques de statistiques multi-
variées pour établir que E converge (presque sûrement) vers C [179]. Par contre, lorsque N
devient grand, nous devons estimer simultanément N(N − 1)/2 éléments de C en utilisant NT
observations, et nous voyons que cela devient problématique lorsque T n’est pas très grand
devant N . Bien que ce raisonnement est plus une heuristique qu’une véritable preuve, nous
pouvons conclure qu’il est primordial de distinguer la vraie matrice C de son estimateur em-
pirique E lorsque l’on travaille avec des objets de très grande dimension. Un des objectifs de
cette thèse est justement de caractériser cette différence entre E et C dans ce régime où N et T
deviennent très grands mais avec un ratio de dimension q ..= N/T qui n’est pas arbitrairement
petit. Nous discuterons également d’une méthode permettant de reconstruire du mieux possible
la matrice C à partir de E tout en encodant le fait qu’il s’agit d’un estimateur bruité de C.

L’estimation de matrice de covariance/corrélation est un point crucial dans de nombreux
problèmes en statistiques. Voici une liste non-exhaustive de problèmes classiques liés à cet
objet:

(i) Moindres carrés généralisés (MCG): Dans ce problème, nous essayons de décrire y en
utilisant un modèle linéaire de la forme:

y = Xβ + ε, (1.1.3)

où X est la matrice des régresseurs (ou facteurs) de taille N × k (k > 1), β symbolise les
coefficients de régression à ces k facteurs, et ε est le vecteur des résidus. Typiquement,

1Cette hypothèse à priori inoffensive est discutée dans le chapitre 4.
2Nous utiliserons plutôt la terminologie des corrélations plutôt que des covariances durant cette thèse.
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nous cherchons le vecteur β qui explique au mieux les données et c’est exactement ce
que nous permet les MCG. En effet, supposons que E[ε|X] = 0 et V[ε|X] = C qui est
la matrice de covariance des résidus. Alors, estimer β par MCG nous donne la solution
suivante: (voir [7] pour plus de précision):

β̂ = (X∗CX)−1X∗C−1y. (1.1.4)

(ii) Méthode des moments généralisée (MMG): Supposons que l’on souhaite estimer un en-
semble de paramètres Θ d’un modèle fixé sur les données observées. Le principe de la
méthode est de comparer les k moments théoriques (qui dépendent de Θ) avec leurs con-
treparties empiriques. Pour une estimation parfaite, ces k différences sont donc toutes
égales à zéro. La distance par rapport à zéro dépend des covariances entre ces k fonctions
et donc une bonne estimation de cette matrice de covariance augmente l’efficacité de la
méthode (voir [88] pour plus de détails). Il s’avère que MCG est un cas spécial de MMG.

(iii) Analyse discriminante linéaire (ADL) [79]: Supposons que nous cherchons à classifier les
variables y entre deux populations Gaussiennes de moyennes différentes µ1 et µ2, à priori
π1 et π2, mais de même matrice de covariance C. Alors, l’ADL classifie y dans la classe 2
si:

x∗C−1(µ1 − µ2) >
1

2
(µ2 + µ1)∗C−1(µ2 − µ1)− log(π2/π1) . (1.1.5)

(iv) Optimisation de portefeuille en présence d’un grand nombre d’actifs [125]: Nous souhaitons
investir dans un ensemble d’actifs financiers y de façon à minimiser le risque moyen du
portefeuille pour une performance future espérée ν > 0. Si nous suivons la théorie de
Markowitz, le portefeuille optimal est caractérisé par le vecteur de pondérations w ..=
(w1, . . . , wN )∗ qui est solution d’un problème d’optimisation quadratique où l’on minimise
la variance de la stratégie 〈w ,Cw〉 sous contrainte d’un rendement futur moyen 〈w ,g〉 > µ,
avec g un vecteur de prédicteurs3. La stratégie optimale est donnée par:

w = ν
C−1g

g∗C−1g
. (1.1.6)

Nous insistons sur le fait qu’il s’agit ici d’une liste non-exhaustive de problèmes où la matrice
de covariance joue un rôle prépondérant, d’autres problèmes pratiques sont mentionnés dans la
revue de Paul & Aue [145], la thèse de Bartz [16] ou le livre de Couillet et Debbah [57].

Nous verrons dans les chapitres qui suivent que l’utilisation de l’estimateur empirique E peut
mener à des performances futures (ou réalisées) désastreuses. Plus précisément, il est possible
de montrer, sous certaines hypothèses techniques, que le risque réalisé dans des problèmes sem-
blables à (i) et (iv) est donné par Tr E−1CE−1. Or cette quantité est un bon estimateur de
l’optimum Tr C−1 uniquement dans la limite q → 0. Dans le cadre mathématique qui nous
intéresse, c’est-à-dire N et T sont comparables, la théorie des matrices aléatoires nous dit que:

Tr E−1CE−1 =
Tr C−1

1− q , q < 1 , (1.1.7)

pour une grande variété de processus. En d’autres termes, le risque réalisé, qui est celui qui
nous intéresse en pratique, s’éloigne considérablement du risque optimal pour tout q > 0 et peut

3D’autres contraintes peuvent être intégrés à ce problème
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même diverger pour q → 1. Il est également important de préciser que ces résultats sont vrais
pour d’autres mesures de risque [49,53]. En finance, une configuration typique dans les marchés
actions est donnée par N = 500 et T = 2500, correspondant à dix ans de données journalières,
ce qui est déjà suffisamment grand comparé à la durée de vie d’un stock en particulier. Dans
ce cas, nous avons q = 0.2 et nous pouvons alors conclure d’après (1.1.7) que le risque réalisé
sera 1.25 fois plus grand que le risque optimal bien que la taille des échantillons soit très grande.
Si l’on s’intéresse aux indicateurs macroéconomiques tels que l’inflation par exemple, 20 ans
de données mensuelles produisent uniquement T = 240 observations, tandis que le nombre de
secteurs d’activités pour lesquels nous sauvegardons l’inflation est autour de N = 30, ce qui
donne q = 0.125. Nous voyons ainsi que la compréhension de l’effet induit par un ratio q
supérieur à zéro est fondamental dans de nombreuses applications concrètes.

1.1.2. État de l’art. L’estimation de matrices de covariance est un problème classique en statis-
tique multivariée. Un des résultats les plus influents à ce sujet remonte à l’année 1928 lorsque
John Wishart étudia la distribution de la matrice de covariance empirique E dans le cas où la
matrice des données Y = [y1, . . . ,yT ] est caractérisée par une loi Gaussienne multivariée avec
observations indépendantes et identiquement distribuées (i.i.d) [192]. Plus précisément, Wishart
obtint une expression explicite pour la distribution de E sachant C:

PW (E|C) =
TNT/2

2NT/2ΓN (T/2)

det(E)
T−N−1

2

det(C)T/2
e−

T
2

TrC−1E, (1.1.8)

où ΓN (·) est la fonction Gamma multivariée de paramètre N4. Une propriété important est
E[E] = C, c’est-à-dire que l’estimateur est non biaisé [192]. En statistique, on dit que E suit
une distribution Wishart(N,T,C/T ). Au delà de la distribution de E, il existe également une
formule explicite pour la densité de probabilité marginale des valeurs propres pour tout N and
T bornés [9]:

ρN (λ) =
1

N

N−1∑
k=0

k!

T −N + k

[
LT−Nk (λ)

]2
λT−Ne−λ, (1.1.9)

sous l’hypothèse T > N et avec les Llk qui dénotent les polynômes de Laguerre 5.
Cette découverte de Wishart est souvent mentionnée comme un des premiers résultats de la

théorie des matrices aléatoires [65]. Néanmoins, cela ne répond pas entièrement au problème qui
nous intéresse, à savoir le comportement de la matrice empirique E en fonction du nombre de
variables N qui peut être arbitrairement grand. Cela a été compris bien plus tard avec le travail
précurseur de Charles Stein en 1956 [96,165]. La contribution principale de Stein (et James) peut
être résumée ainsi: quand le nombre de variables N > 3, alors il existe un meilleur estimateur
que E en terme d’erreur quadratique moyen (voir l’article d’Efron [72] pour une présentation
complète). Cet estimateur a la propriété de dépendre d’une information extérieure6 et cela a
donné naissance au paradoxe de Stein: l’estimateur empirique devient de moins en moins précis
lorsque la dimension du système N augmente. Ce résultat va en fait bien au-delà des matrices
de covariance: supposons que nous voulons estimer la moyenne d’un vecteur Gaussien, alors
l’estimateur empirique classique (équivalent ici à l’estimateur de maximum de vraisemblance) est
moins précis que l’estimateur biaisé (“shrinkage”) de James-Stein en terme d’erreur quadratique

4ΓN (u) = πN(N−1)/4∏N
j=1 Γ(u+ (1− j)/2).

5Llk(λ) = eλ

k!λl
dk

dλk
(e−λλk+l).

6Nous reviendrons sur cette caractérisation dans le chapitre 6.
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dès lors que N > 3 [96]. En ce qui concerne les matrices de covariance, le paradoxe de Stein peut
être observé de manière précise pour tout N > 3 en utilisant les propriétés de la distribution
de Wishart (3.1.38) ainsi que la notion de famille conjuguée de la théorie Bayésienne (voir le
Chapitre 6). Plus précisément, ce paradoxe a été démontré en premier lieu pour l’estimation de
la matrice de “précision” C−1 dans les articles [71, 85] et ensuite pour la matrice de covariance
C dans [87]. C’est d’ailleurs dans l’article de Haff qu’apparâıt pour la première fois le célèbre
estimateur de shrinkage linéaire:

Ξ = (1− αs)E + αsIN , (1.1.10)

où Ξ représentera pour toute la suite un estimateur quelconque de C et αs ∈ (0, 1) est appelé
l’intensité de shrinkage. Nous voyons dans l’équation (2.1.9) que le shrinkage linéaire interpole
entre la matrice empirique “bruitée” E (pas de shrinkage, αs = 0) et l’hypothèse nulle IN
(shrinkage extrême, αs = 1). Il est facile de voir que cet exemple illustre parfaitement l’idée
qu’un estimateur qui utilise de l’information supplémentaire offre de meilleures performances
lorsque la dimension du système grandit. Dans [87], Haff propose d’estimer l’intensité αs en
utilisant la distribution de probabilité marginale des observations Y. L’amélioration offerte par
cet estimateur par rapport à E lorsque N → ∞ a été quantifiée précisément bien plus tard en
2004 avec l’article de Ledoit et Wolf [115].

Il est intéressant de noter que le premier résultat sur le comportement de E dans la limite
des grandes dimensions ne provient pas de la communauté des statistiques, mais plutôt des
mathématiques avec l’article de Marčenko and Pastur en 1967 [123]. Dans cet article, les deux
auteurs obtiennent une équation auto-cohérente (appelée équation de Marčenko-Pastur) pour la
densité des valeurs propres de E sachant C pour N,T →∞ avec un ratio q = N/T possiblement
d’ordre 1. D’ailleurs, c’est précisément grâce à ce résultat que nous pouvons étudier en détail
l’influence du paramètre q dans la qualité d’estimation de E par rapport à C. Par exemple, il
est possible de montrer que pour q → 0, nous retrouvons alors la convergence “classique” des
valeurs propres de E vers celles de C démontrée par Anderson [10]. Par contre, pour tout q > 0,
le résultat de Marčenko et Pastur illustre parfaitement le fait que les valeurs propres empiriques
(celles de E) sont des estimateurs bruités des vraies valeurs propres (celles de C) peu importe
la valeur T : ce phénomène caractérise le fléau de la dimension. Afin d’illustrer nos propos sur
l’influence du ratio q par rapport à la qualité d’estimation de E, prenons l’exemple simple où
C est la matrice identité. Dans ce cas, il est clair que la densité des vraies valeurs propres est
donnée par une masse de Dirac en 1. Or, si nous calculons la densité des valeurs propres de E
pour un q > 0, nous observons dans la Figure 2.1.1 que le spectre de E pour q = 0.25 s’écarte
significativement de la masse de Dirac en 1 (q = 0). Cet effet est encore plus exacerbé lorsque
nous prenons une plus grande valeur de q = 0.5.

Le résultat de Marčenko et Pastur (MP par la suite) a eu un impact considérable ces deux
dernières décennies dans notre compréhension du fléau de la dimension mais également dans le
développement de la théorie des matrices aléatoires. En effet, cela a ouvert la voie à la conception
de nouveaux objets mathématiques remettant en cause une bonne partie des résultats classiques
des statistiques multivariées. Tout d’abord, il a été compris en 1986 puis en 1995 que le résultat
de MP est universel dans la limite des grandes dimensions, c’est-à-dire qu’il est valide pour une
large classe de processus stochastiques et pour une vraie matrice C quelconque [157, 161, 195].
La notion d’universalité est un des attraits majeurs de la théorie des matrices aléatoires d’un
point de vu théorique. Dans le même temps, des études empiriques ont illustré la pertinence
de ces résultats sur les données financières [110, 151] qui sont réputées pour être fortement non
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Figure 1.1.1. Illustration de la densité des valeurs propres de E issues de l’équation de Marčenko et
Pastur avec C = IN et N = 500. La ligne bleue (q = 0) correspond à une estimation parfaite des valeurs
propres de C. Plus le ratio d’observation q est élevé, plus le spectre des valeurs propres de E est large.
Par exemple, pour T = 4N (courbe en rouge), l’écart par rapport aux vraies valeurs propres est déjà
considérable.

Gaussiens [30]. Ces travaux suggèrent que le “bulk” des valeurs propres de E pour des données
financières cöıncident avec les prédictions théoriques de MP pour C = IN , tandis qu’un nombre
fini de valeurs propres isolées (“outliers” ou “spikes” en anglais) se situent à une distance signi-
ficative du bulk. Cette observation est à l’origine du modèle “spiked covarance matrix” de Iain
Johnstone [100] et possède de nombreuses applications pour l’ACP. En particulier, Johnstone
démontra un autre caractère universel de cette théorie: la plus grande valeur propre du bulk
est régit par la distribution de Tracy & Widom [99, 175]. En outre, cela illustre que le bord de
spectre des valeurs propres est rigide dans le sens où leurs positions fluctuent très peu, de l’ordre
de T−3/2. Cette observation permet alors de construire une méthode simple pour “nettoyer” les
valeurs propres de E: toute valeur propre se situant à une distance significative (par rapport
T−3/2) du bulk peut être interprétée comme contenant un signal non trivial. Autrement dit,
toutes celles qui se situent dans la prédiction théorique de MP proviennent uniquement du bruit
de mesure et ne peuvent donc pas être considérées comme fiables [111, 151]. Cette méthode
est appelée “clipping” des valeurs propres et offre des performances bien supérieures en terme
de prédiction des risques financiers comparée à la matrice empirique [29]. En conclusion, cela
démontre que la notion de nettoyage (ou de régularisation) est primordiale lorsque l’on manipule
des données de très grande dimension.

Bien que ce modèle permet d’améliorer significativement l’estimation de la matrice C par
rapport à l’estimateur empirique E, nous pouvons nous demander si une telle hypothèse de
modélisation des vraies corrélations (ou covariances) serait réaliste en pratique. Étant donné
que le résultat de Marčenko et Pastur nous permet de travailler avec n’importe quelle vraie
matrice C, il est donc tentant de vouloir reconstruire la distribution des valeurs propres de C à
partir de la distribution observée des valeurs propres de E. Malheureusement, ce problème est
particulièrement complexe, car l’équation de Marčenko-Pastur est numériquement stable dans
l’autre sens: connaissant le spectre de C, on peut calculer le spectre de E. Par conséquent, de
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nombreuses propositions pour “inverser” cette équation sont apparues dans la littérature à partir
de l’année 2008 [29, 104, 133, 194]. La méthode de [29] propose de paramétriser la densité des
vraies valeurs propres et d’estimer les paramètres sur les valeurs propres observées. L’avantage
d’une telle méthode est qu’elle est très efficace d’un point de vue numérique mais elle suppose que
nous avons un à priori cohérent sur la densité des vraies valeurs propres. Il est donc clair qu’une
telle méthode souffre de son manque de généralité et la méthode d’El Karoui est, en ce sens,
plus robuste [104]. En effet, l’hypothèse de base est de dire que la densité des valeurs propres
peut être vue comme une somme discrète de masses de Dirac et le but est de trouver les poids
associés à ces masses. Cette méthode offre donc un plus grand degré de liberté que la méthode
paramétrique mais elle est extrêmement dépendante de la position des masses de Dirac, ce qui
pose problème en pratique. La méthode de Mestre est complètement différente et présuppose
que le spectre de C est composé d’un nombre fini n � N de valeurs propres distinctes [133].
Sous cette hypothèse, Xavier Mestre propose une formule analytique pour estimer ces n valeurs
propres en utilisant celles de E. Cependant nous voyons que l’entrée cruciale de cette méthode
est le nombre n qui n’est pas connu à priori. Ce travail a ensuite été amélioré dans l’article de
Yao et collaborateurs [194] mais souffre encore du même problème que le travail de Mestre.

Il existe donc en principe des méthodes nous permettant de reconstruire (partiellement) le
spectre de C mais cela est toujours insuffisant en ce qui concerne l’estimation de la matrice
C entière. En effet, en appliquant cette procédure, appelée substitution, nous supposons im-
plicitement que les vecteurs propres de E sont des bons estimateurs des vrais vecteurs propres
de C. Mais est-ce vraiment le cas? Cette question soulève une des limites de l’équation de
Marčenko et Pastur car elle ne donne pas d’information sur l’influence du paramètre q sur les
vecteurs propres de E. Il y a relativement peu de résultats sur les vecteurs propres comparés
aux valeurs propres. Ceci peut s’expliquer par le fait que ce problème est bien plus difficile que
l’estimation des valeurs propres car la dimension du problème est de taille N×N . Nous pouvons
néanmoins citer par exemple les travaux de Jack Silverstein dans les années 1980 [159, 160] et
il faudra ensuite attendre l’année 2007 pour voir deux études à ce sujet [12, 144]. En ce qui
concerne les applications en statistiques, l’article de Debashis Paul est extrêmement important
car il permet d’avoir des résultats explicites sur les vecteurs propres associés aux valeurs propres
isolées, c’est-à-dire celles qui expliquent le plus de variance dans les données. La conclusion de
son travail est la suivante: les vecteurs propres associés aux valeurs propres isolées ne sont pas
de bons estimateurs dans la limite des grandes dimensions. Ce résultat est très important pour
l’ACP et nous indique qu’il est important de mieux comprendre le comportement des vecteurs
propres de E dans la limite N → ∞. Depuis, les études sur les vecteurs ont été étendues à
des modèles plus généraux [21,40,43,113,136] avec toujours la même conclusion. Nous pouvons
donc en conclure qu’il est aussi important d’inclure ces informations sur les vecteurs propres lors
de la construction d’un estimateur de C, ce qui n’est pas le cas dans la méthode de substitution
mentionnée dans le paragraphe précédent.

1.1.3. Problème statistique. Au vu de la section précédente, nous comprenons que l’estimateur
empirique E n’est pas un estimateur consistant de C dans la limite des grandes dimensions.
Ce résultat peut être exhibé aussi bien à travers les valeurs propres que les vecteurs propres
grâce à la théorie des matrices aléatoires. Cependant, nous pouvons nous demander comment
reconstruire – au mieux – la matrice C en utilisant ces observations. Pour les valeurs propres,
nous avons vu qu’il existe différentes méthodes pour résoudre le problème inverse de Marčenko
et Pastur et ainsi inférer le spectre de C. Ceci est malheureusement beaucoup moins évident en
ce qui concerne les vecteurs propres.
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En conséquence, la classe des estimateurs invariant par rotation que nous allons maintenant
introduire semble être un bon compromis. En effet, comme son nom l’indique, un estimateur
invariant par rotation (RIE en anglais) présume qu’il n’y a aucune direction privilégiée vers
laquelle les vecteurs propres de C doivent être dirigés. Cette hypothèse a deux conséquences
importantes. Soit Ξ(E) un estimateur de C qui est une fonctionnelle de E, alors il est possible
de montrer que cet estimateur possède les mêmes vecteurs propres que E [166]. Ensuite, et il
s’agit de la différence principale, les valeurs propres de l’estimateur optimal (au sens de la norme
L2) au sein de cette classe d’estimateurs intègre le fait que les vecteurs propres de E ne sont pas
forcément des bons estimateurs de ceux C. Cette classe d’estimateurs a été étudiée en détail
tout d’abord dans [113] puis généralisée dans les articles [40, 43] que j’ai co-écrits avec Romain
Allez, Jean-Philippe Bouchaud, Antti Knowles, et Marc Potters. L’objet de ce mémoire de thèse
est donc d’expliquer la construction d’un estimateur optimal qui soit invariant par rotation.

Dans cette section, nous allons poser le problème statistique qui nous intéressera durant toute
la suite. On définit par MN ≡ M l’ensemble des matrices réelles, symétriques, non-négatives
et de dimension N × N . Ensuite, on définit par M(E) l’ensemble des matrices appartenant à
M et possédant les mêmes vecteurs propres que E. L’estimateur optimal que nous cherchons
est alors définit par

Ξ̃ ..= argmin
Ξ∈M(E)

∥∥Ξ− C
∥∥2
, (1.1.11)

où ‖·‖2 dénote la norme L2. Si nous définissons par [ui]i∈[[1,N ]] les vecteurs propres de E , alors
il est facile de montrer que la solution optimale est donnée par

Ξ̃ =
N∑
i=1

ξ̃iuiu
∗
i , ξ̃i = 〈ui ,Cui〉. (1.1.12)

D’un point de vue pratique, il est évident qu’un tel estimateur semble inutile car la solution
dépend de la matrice C qui est précisément la matrice que nous souhaitons estimer. Dans la
littérature, un tel estimateur est appelé estimateur oracle car il nécessite la connaissance de
la quantité que nous cherchons à reconstruire et par conséquent, nous utiliserons l’exposant
“ora.” par la suite pour faire référence à cet estimateur. Néanmoins, son interprétation (1.1.12)
est assez naturelle. En effet, si nous définissons par [µi]i∈[[1,N ]] les valeurs propres de C et par
[vi]i∈[[1,N ]] les vecteurs propres correspondants, nous pouvons alors ré-écrire l’équation (1.1.12)
comme suit:

ξ̃i ≡ ξora.
i =

N∑
j=1

µj〈ui ,vj〉2. (1.1.13)

Nous pouvons interpréter chaque valeur propre oracle ξora. comme étant la moyenne pondérée
des valeurs propres de C où les poids sont définis par le produit scalaire (au carré) entre le
i−ème vrai vecteur propre et le j−ème vecteur propre observé pour tout j ∈ [[1, N ]]. Ce produit
scalaire peut être vu comme une probabilité de transition entre un état perturbé (les ui) vers
un état non-perturbé (les vi) [150]. Ainsi, dans le cas d’une estimation parfaite des vecteurs
propres, il est facile de voir que ξora. = µi pour tout i ∈ [[1, N ]]. Mais dans le régime des grandes
dimensions, nous nous attendons à obtenir une solution non triviale à condition d’être en mesure
de calculer cette “probabilité de transition”. Cela démontre pourquoi les statistiques des vecteurs
propres sont cruciales dans ce problème et c’est pour cela qu’une grande partie de cette thèse y

sera consacrée. Nous verrons en particulier que le produit scalaire
[
〈ui ,vj〉2

]N
i,j=1

s’exprime en
moyenne uniquement en fonction des valeurs propres de E et C. Cela nous permettra ensuite
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de montrer que l’estimateur (1.1.13) converge vers une fonction qui ne dépend que des valeurs
propres observées, et c’est ce “miracle” qui intervient dans la limite des grandes dimensions qui
rend cette théorie très utile pour en pratique.

1.2 Extension à d’autres modèles de matrices aléatoires

Jusqu’à présent, le modèle de matrice qui nous a intéressé est la matrice de covariance empirique
(1.1.2) mais nous pouvons constater que le problème d’optimisation (1.1.11) est valable pour
toute matrice C et surtout pour tout processus de mesure E. Ainsi, il est possible de considérer
le même problème mais avec des hypothèses de modélisation différentes concernant la matrice
E.

Une des hypothèses fondamentales de la matrice de covariance empirique (1.1.2) est que les
T observations soient i.i.d, c’est-à-dire il n’y a aucune dépendance temporelle dans les données.
Cette hypothèse est rarement vérifiée en pratique et il est donc naturel de se demander s’il est
possible d’étendre nos travaux à des modèles intégrant cette dépendance temporelle par exemple.
Faisons l’hypothèse que Y est une matrice Gaussienne avec une autocorrélation exponentielle.
Alors, on peut écrire la variance sous la forme7 [18, 47,48]:

E[YitYjt′ ] = Cij exp
[
−|t− t′|/τ

]
, (1.2.1)

où τ contrôle la portée de la dépendance en temps. Un autre exemple classique est de mesurer
les corrélations en utilisant une moyenne mobile exponentielle [47, 142]:8

Mij(τ, T ) = (1− α)

T∑
t=0

αtYi,τ−tYj,τ−t, (1.2.2)

où τ est la dernière date d’estimation, α ∈ (0, 1) est une constante et T , la taille de série
temporelle. L’idée de cet estimateur est de dire que les anciennes données deviennent de pro-
gressivement obsolètes et doivent donc moins contribuer que les données récentes. Nous pouvons
remarquer à partir de l’équation (10.1.2) que cet estimateur peut être ré-écrit de la façon suiv-
ante:

Mij(τ) = (1− α)
T∑
t=0

HitHjt, with E
[
HitHit′

]
= δtt′(1− α)αt, (1.2.3)

où la variance des variables aléatoires a donc une dépendance temporelle explicite. Il existe
bien évidemment d’autres exemples dont certains seront discutés dans le chapitre (10), mais
nous pouvons constater que les modèles (10.1.1) ou (10.1.3) peuvent être regroupés au sein d’un
même modèle de perturbation multiplicatif:

M ..= C1/2XBX∗C1/2, (1.2.4)

où X ..= (Xit) ∈ RN×T est une matrice aléatoire dont les colonnes sont i.i.d de moyenne nulle
et de variance T−1 et B = (Btt′) ∈ RT×T est une matrice fixe et indépendante de C. En effet,
pour l’équation (10.1.1), nous avons Btt′ = exp[−|t− t′|/τ ] tandis que Btt′ = δtt′(1− α)αt pour
le modèle (10.1.3). Nous étudierons les modèles de la forme (1.2.4) dans les chapitres (3) et (7).

7Nous rappelons que nous supposons que les T réalisations de Y sont de moyennes nulles.
8Nous utilisons une lettre différente pour les estimateurs de cette section pour éviter toute confusion avec

l’estimateur empirique E = XX∗/T .
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Au delà du modèle multiplicatif (1.2.4), on peut également considérer le cas où les observa-
tions sont corrompues par un bruit additif. Plus précisément, supposons que l’on mesure une
matrice M de la forme

M ..= C + B, (1.2.5)

où B = (Bij) ∈ RN×N est une matrice réelle, symétrique, invariante par rotation et indépendante
de C. L’exemple le plus connu d’un modèle de cette forme (1.2.5) est le cas où le bruit extérieur
B est une matrice Gaussienne à entrées indépendantes (symétrie à part), qui est appelé le
Gaussian Orthogonal Ensemble (GOE) dans la littérature. Nous pouvons encore nous demander
s’il est toujours possible d’estimer l’estimateur oracle (1.1.12) par une fonction observable dans
la limite des grandes dimensions. Comme pour les matrices de covariances, nous verrons que
c’est toujours le cas, c’est-à-dire que les valeurs propres ξora., définies dans l’équation (1.1.13),
convergent vers une valeur qui ne nécessite pas explicitement la connaissance de C. Nous nous
intéresserons ensuite au cas où la matrice B est une matrice invariante par rotation mais avec
une distribution arbitraire. Les modèles additifs seront étudiés dans la partie II de ce mémoire
et proviennent des articles [5,40] co-rédigés avec Romain Allez, Jean-Philippe Bouchaud et Marc
Potters.

1.3 Méthodes utilisées

Dans cette section, nous allons passer en revue les différentes techniques de calculs employées
durant cette thèse. Le but n’est pas de faire une présentation complète des méthodes mais plutôt
de donner les intuitions et d’introduire des objets importants pour la suite de ce chapitre. Une
description plus détaillée est donnée dans le chapitre 3 pour la majeure partie des méthodes
excepté pour le mouvement Brownien de Dyson qui sera introduit dans le chapitre 12.

1.3.1. Quelques définitions. L’outil mathématique principal dans ce mémoire est la résolvante.
Soit M une matrice de dimension N ×N et on définit la résolvante par

GM(z) ..=
(
zIN −M

)−1
, (1.3.1)

et si on dénote par λ1 > λ2 > . . . λN les valeurs propres de M et par u1, . . . ,uN les vecteurs
propres correspondants, nous pouvons déduire de l’équation (1.3.1) que

GM(z) =
N∑
i=1

uiu
∗
i

z − λi
, (1.3.2)

où l’exposant ∗ symbolise la transposée. Ainsi, nous pouvons remarquer que la résolvante possède
N pôles situés à chaque valeur propre λi et dont le résidu est la projection sur l’espace propre
associé à λi. En d’autres termes, chaque pôle de la résolvante nous permet donc d’avoir les
informations sur les valeurs propres ainsi que les vecteurs propres. Lorsque l’on s’intéresse
uniquement aux statistiques des valeurs propres, il est souvent plus simple de considérer la trace
(normalisée) de la résolvante, communément appelée la transformée de Stieltjes empirique:

gNM(z) ..=
1

N
Tr GM(z) =

1

N

N∑
i=1

. (1.3.3)
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Dans la limite des grandes dimensions, nous utiliserons souvent la convergence suivante:

gNM(z) ∼ gM(z) ..=

∫
ρ(λ)

z − λdλ , (1.3.4)

où ρ(λ) est la densité des valeurs propres. La résolvante (1.3.1) et la transformée de Stielt-
jes (1.3.4) sont les deux quantités mathématiques fondamentales dans la théorie des matrices
aléatoires. Nous allons présenter brièvement les différentes techniques nous permettant d’évaluer
ces objets.

1.3.2. Probabilités libres. La théorie des probabilités libres, créée par Dan Voiculescu, permet
d’étudier des variables aléatoires non-commutatives [181]. Une des applications les plus impor-
tantes de cette théorie concerne les matrices aléatoires, suite aux travaux du même Voiculescu
[182]. En particulier, les probabilités libres offrent un cadre relativement simple pour com-
prendre la densité des valeurs propres résultant de l’addition ou la multiplication de grandes
matrices aléatoires indépendantes. En nous remémorant les équations (1.2.4) et (1.2.5) qui nous
intéressent, il est facile de comprendre pourquoi cette théorie nous est utile.

Dans le cas du modèle additif (1.2.5), nous pouvons utiliser la formule d’addition libre pour
calculer la transformée de Stieltjes de M [182]:

RM(ω) = RA(ω) +RB(ω) , gM

(
RM(ω) +

1

ω

)
= ω , (1.3.5)

pour ω ∈ C. De la même façon, nous pouvons traiter le modèle multiplicatif (1.2.4) via la
formule de multiplication libre [182]:

SM(z) = SA(z)SB(z) , SM(z) ..= =
z + 1

zT −1
M (z)

, (1.3.6)

où T −1
M est l’inverse fonctionnelle de TM(z) ..= zgM(z) − 1. Plus de détails sur cette méthode

sont fournies dans la Section 3.1.3.

1.3.3. Méthode des répliques. La méthode des répliques est une technique issue de la physique
statistique permettant d’étudier la valeur moyenne de systèmes complexes désordonnés en in-
troduisant un nombre fini de répliques du système initial. Cela permet ainsi de pouvoir calculer
la moyenne sur les différentes copies, ce qui simplifie souvent les calculs. Cette technique a ren-
contré beaucoup de succès dans différents contextes tels que la théorie des matrices aléatoires
ou les systèmes désordonnés (voir [134] ou [137] pour une revue plus récente). Il est toutefois
important de noter que cette technique est très puissante, mais ne repose pas sur des argu-
ments mathématiques rigoureux. C’est pour cela qu’il est toujours conseillé de vérifier au moins
numériquement les solutions obtenues par cette méthode.

Dans cette thèse, nous avons utilisé les répliques pour calculer le comportement asymptotique
de la résolvante (1.3.1). Pour cela, partons de la représentation de l’inverse d’une matrice par
les intégrales Gaussiennes:

(zIN −M)−1
ij =

∫ (∏N
k=1 dηk

)
ηiηj exp

{
−1

2

∑N
k,l=1 ηk(zδkl −Mkl)ηl

}
∫ (∏N

k=1 dηk

)
exp

{
−1

2

∑N
k,l=1 ηk(zδkl −Mkl)ηl

} . (1.3.7)
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Dans la limite des grandes dimensions, nous pouvons supposer que l’équation (1.3.7) est auto-
moyennante9, et donc, nous avons:

Gij(z) =

〈
1

Z

∫ ( N∏
k=1

dηk

)
ηiηj exp

−1

2

N∑
k,l=1

ηk(zδkl −Mkl)ηl


〉
PM

, (1.3.8)

où Z est le dénominateur de l’équation (1.3.7). La méthode des répliques revient alors à faire
la manipulation suivante:

Gij(z) = lim
n→0

〈
Zn−1

∫ ( N∏
k=1

dηk

)
ηiηj exp

−1

2

N∑
k,l=1

ηk(zδkl −Mkl)ηl


〉
PM

= lim
n→0

∫ ( N∏
k=1

n∏
α=1

dηαk

)
η1
i η

1
j

〈
n∏

α=1

exp

−1

2

N∑
k,l=1

ηαk (zδkl −Mkl)η
α
l


〉
PM

.(1.3.9)

Ainsi, nous voyons que nous avons ré-écrit le problème initial (1.3.8) en une évaluation de n
répliques. Le calcul de la dernière ligne (1.3.9) est souvent plus simple, à condition d’être en
mesure de calculer la valeur moyenne de chaque réplique. Nous verrons que ce calcul est en fait
relié à l’étude du comportement asymptotique de l’intégrale d’Harish-Chandra–Itzykson-Zuber
où l’une des matrices est de rang faible (voir Appendice A pour une étude détaillée de cette
intégrale). Nous verrons que l’identité (1.3.9) sera très utile pour étudier chaque entrée de la
résolvante de M pour les deux modèles de perturbations qui nous intéressent, à savoir le modèle
additif (1.2.5) et multiplicatif (1.2.4). Le caractère non rigoureux de cette méthode est discuté
en détail dans la Section 3.1.4.

1.3.4. Mouvement Brownien de Dyson. La dernière méthode que nous allons présenter ne
s’applique – pour l’instant – que dans le cadre du modèle additif avec un bruit Gaussien. Sup-
posons que la matrice B dans l’équation (1.2.5) soit une matrice du GOE de variance σ2, alors
il est possible de voir la matrice M comme un processus de diffusion depuis l’article fondateur
de Freeman Dyson [70]. Plus précisément, il est possible de réécrire le modèle (1.2.5) comme un
processus de diffusion (M(t))t≥0 défini dans l’espace des matrices réelles symétriques et de taille
N ×N10 qui démarre de la matrice déterministe C, que nous souhaitons estimer, et qui évolue
dans le temps selon la dynamique suivante:

M(t) ..= C + B(t) (1.3.10)

où (B(t))t≥0 est un mouvement Brownien symétrique, c’est-à-dire un processus de diffusion
matriciel tel que B0 = 0 et ayant pour entrée {Bij(t), i ≤ j} définie par

Bij(t) :=
1√
N
Wij(t) si i 6= j, Bii(t) :=

√
2√
N
Wii(t) (1.3.11)

avec les Wij(t), i 6 j qui sont des mouvement Browniens réels indépendants et identiquement
distribués.

9Ceci peut être vu comme une conséquence du théorème centrale limite, voir l’appendice B.4.
10Il est également possible de considérer l’ensemble des matrices Hermitiennes.
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Cette description dynamique est très utile car elle nous permet d’étudier l’impact du bruit
aussi bien sur les valeurs propres que sur les vecteurs propres de C. En effet, depuis les travaux
de Dyson, nous savons que les valeurs propres λ1(t) ≥ λ2(t) ≥ · · · ≥ λN (t) de la matrice M(t)
évoluent selon le mouvement Brownien de Dyson [70]:

dλi(t) =

√
2

βN
dbi(t) +

1

N

∑
k 6=i

dt

λi(t)− λk(t)
, i = 1, . . . , N , (1.3.12)

où les bi(t) sont des mouvements Brownien indépendants et satisfont la condition initiale

λi(0) = µi , i = 1, . . . , N ,

avec {µi}i l’ensemble des valeurs propres de C. Nous pouvons voir dans la dynamique (1.3.12)
que les valeurs propres se repoussent mutuellement avec un potentiel logarithmique.

Conditionnellement aux trajectoires des valeurs propres, nous pouvons étudier les trajectoires
des vecteurs propres u1(t), u2(t)〉, . . . ,uN (t) de M(t). La dynamique sur les vecteurs propres de
matrices aléatoires provient de l’article de Bru sur les processus de Wishart [37]. Dans le cas du
modèle (1.3.11), nous avons pour tout i = 1, . . . , N :

dui(t) = − 1

2N

∑
k 6=i

dt

(λi(t)− λk(t))2
ui(t) +

1√
N

∑
k 6=i

dwik(t)

λi(t)− λk(t)
uk(t) , (1.3.13)

avec ui(0) = vi , (1.3.14)

où la famille des mouvements Browniens indépendants (symétrie mise à part) {wij : i 6= j}
est indépendante de la trajectoire des valeurs propres, c’est-à-dire indépendant des mouvements
Brownien bi(t) dans l’équation (12.1.1). Par conséquent, nous voyons que dans le cas du modèle
additif Gaussien, il est possible d’étudier les valeurs propres et les vecteurs propres de M avec
une approche dynamique.

1.4 Contributions principales

Après avoir présenté les différents outils que nous avons utilisés dans ce manuscrit, nous pro-
posons dans cette section un bref résumé des résultats obtenus durant cette thèse.

1.4.1. Matrices de covariance. Étant donné que le sujet principal porte sur l’estimation de
matrices covariance à partir de l’estimateur empirique E, nous dédions cette première partie à
ce problème. Nous discuterons des autres modèles dans les sections suivantes. La plupart des
résultats qui vont suivre sont issus des articles [40–43].

Avant de présenter les résultats, nous revenons brièvement sur les hypothèses du modèle
considéré. Tout d’abord, nous nous intéressons au spectre de la matrice C: nous autorisons
la présence d’un nombre fini r > 0 (indépendant de N) de valeurs propres isolées à droite du
bulk. Cette hypothèse sur les valeurs propres est motivée par les faits stylisés observés dans
les vraies données (par exemple en finance [110] ou en biologie [136]). Cette modélisation est
d’ailleurs parfaitement en phase avec l’ACP qui exploite justement la présence de grande valeur
propres isolées pour trouver les composantes principales (les vecteurs propres) permettant de
maximiser la variance expliquée (les valeurs propres). Le fait que les valeurs propres isolées se
situent à droite du bulk permet de simplifier le problème mais les résultats restent vrais pour
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Figure 1.4.1. Histogramme de la densité des valeurs propres de E pour N = 1000 et q = 0.3. La vraie
matrice est donnée par C = IN + B où B est une matrice du GOE avec une variance σ2 = 0.0625 et
contenant 4 valeurs propres isolées situées à la position {3, 4, 5, 6}.

des valeurs propres isolées à gauche du bulk (suffisamment éloignées de l’origine). Par contre,
nous n’effectuons aucune hypothèse sur les vecteurs propres de C.

Ensuite, nous rappelons que l’estimateur empirique est obtenu grâce à la formule (1.1.2) où
les colonnes de la matrice des données Y sont i.i.d. De plus, nous présumons que les 4 premiers
moments de la distribution des entrées de la matrice Y sont bornés. Cette hypothèse technique
est importante pour utiliser le résultat de Marčenko et Pastur. Nous illustrons dans la Figure
1.4.1 un exemple typique de la densité des valeurs propres observée, c’est-à-dire celles de E, en
présence de 4 valeurs propres isolées.

Nous rappelons que le problème initial est de comprendre le comportement asymptotique de
l’estimateur oracle (1.1.12), qui est, comme son nom l’indique, non observable. Le résultat le
plus important de cette thèse est que dans la limite des grandes dimensions, les valeurs propres
de l’estimateur oracle (1.1.13) convergent vers une fonction qui ne dépend pas explicitement
de la matrice C. Ce résultat, étonnant aux premiers abords, est une conséquence directe du
caractère ergodique de l’équation (1.1.13). En effet, pour N →∞, nous avons

ξora.
i ∼

N∑
j=1

E
[
〈ui ,vj〉2

]
µj . (1.4.1)

Au vu de ce dernier résultat, il semble qu’il y ait deux objets différents à comprendre: (i)
l’espérance du produit scalaire au carré entre les vecteurs propres de C et de E (overlap par la
suite) et (ii) les valeurs propres de C. Néanmoins, nous allons voir que dans la limite des grandes
dimensions, seule la connaissance du premier objet suffit pour obtenir le résultat annoncé. Cela
montre en partie que la connaissance des valeurs propres de C ne semble pas être un pré-requis
quand N →∞.

Depuis les travaux de Marčenko et Pastur, nous savons que la transformée de Stieltjes gE(z)
satisfait une équation au point-fixe mettant en jeu la transformée de Stieltjes de C [123]. De façon
assez remarquable, cette relation est également valide pour la résolvante GE(z). Ce résultat, qui
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est d’abord apparu dans [44] puis prouvé rigoureusement dans [109], donne:

GE(z) = Z(z)GC(Z(z)) , Z(z) =
z

1 + q + qzstjE(z)
, (1.4.2)

et il suffit de considérer la trace normalisée de cette équation pour obtenir l’équation de Marčenko
et Pastur. Durant ma thèse, j’ai pu étendre ce résultat à une classe plus large de processus
stochastiques [40]. Nous reviendrons sur ce point par la suite.

Il était important de préciser ce résultat sur les résolvantes car il s’agit du point central dans
le calcul des overlaps. Nous devons distinguer au moins trois cas différents dans le calcul de
l’espérance des overlaps. Le premier cas concerne l’overlap entre des vecteurs propres de E et C
associés à des valeurs propres du bulk. Ce cas était déjà connu suite à l’article d’Olivier Ledoit
& Sandrine Péché que nous rappelons ici [113]:

E
[
〈ui ,vj〉2

]
=

1

N

qλiµj∣∣λi − µj(1− q + qλi limη→0 gE(z − iη)
∣∣2 , i ∈ [[r + 1, N ]] , j ∈ [[1, N ]] ,

(1.4.3)
pour N,T → ∞ avec q > 0. Une dérivation de ce résultat à partir de la relation régissant la
résolvante de E est donnée dans la Section 5.1.1. La remarque importante est que le vecteur
propre ui pour i ∈ [[1, r]] est délocalisé dans toutes les directions vj pour tout j. Cela veut
donc dire que l’information retenue par les vecteurs propres associés aux valeurs propres du
bulk est arbitrairement faible. Nous pouvons ensuite nous demander s’il est possible d’étendre
ce résultat pour une valeur propre isolée de E (i ∈ [[1, r]]). Cette interrogation fut au coeur de
ma collaboration avec Antti Knowles, dont l’article est en cours de rédaction. En particulier,
nous avons obtenu que

〈ui ,vj〉2 = δij
µiθ(µi)

θ′(µi)
i, j ∈ [[1, r]] (1.4.4)

où θ(µi) est une fonction d’ordre 1 définit dans l’équation (4.3.12). Cette formule généralise le
résultat de Debashis Paul mentionné précédemment [144] et nous pouvons également en déduire
la concentration du vecteur propre ui pour i ∈ [[1, r]] autour d’un cône dans la direction du
vecteur vi. Néanmoins, nous constatons que l’estimation n’est pas “parfaite” pour tout q > 0,
c’est-à-dire 〈ui ,vi〉2 6 1 pour i ∈ [[1, r]], démontrant ainsi une perte d’information dûe au bruit
de mesure. Maintenant, si nous considérons le cas où j > r + 1, nous retrouvons le phénomène
de délocalisation:

E〈ui ,vj〉2 =
1

T

µj
(1− µj/µi)2

, i, j ∈ [[1, r]] . (1.4.5)

Ces deux résultats sont présentés plus en détails dans la section 5.1.2. Nous précisons également
qu’il est possible de calculer les overlaps entre deux matrices de covariance empiriques indépendantes
mais issues de la même vrai matrice C (voir Section 5.2 pour une présentation complète de ce
problème).

Une fois que nous avons déterminé ces résultats concernant les vecteurs propres, nous sommes
en mesure de conclure sur le problème principal qui est le comportement asymptotique de
l’estimateur oracle (1.4.1). En effet, dans la limite N →∞, nous obtenons

ξora.
i ∼ λi∣∣1− q + qλi limη→0 gE(λi − iη)

∣∣2 , (1.4.6)

et nous constatons que la solution ne dépend plus explicitement de la matrice C. Nous insistons
sur le fait qu’il est donc possible de ré-écrire un estimateur non-observable en un estimateur
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qui est dorénavant une fonction des valeurs propres de E dans la limite des grandes dimensions.
Un cas intéressant est lorsque nous supposons que C est une Inverse-Wishart [9]. Alors, nous
sommes en mesure de montrer en utilisant la dernière équation que l’estimateur oracle converge
vers le shrinkage linéaire, ce qui est en parfaite adéquation avec les travaux de Haff [87]. Il
semble qu’il y ait un lien entre ce résultat et les statistiques Bayésiennes.

Néanmoins, pour utiliser cette formule dans un cadre général, il nous faut un estimateur
consistant de la transformée de Stieltjes gE(z). Cela peut être fait en utilisant les résultats de
concentration de l’article [109] pour obtenir le résultat suivant [43]:∣∣ξ̂i − ξora.

i

∣∣ 6 N−1/2+ε , avec ξ̂i ..=
λi∣∣1− q + qzgNE (λi − iN−1/2)

∣∣2 , (1.4.7)

pour tout λi > c > 0 et où nous rappelons que gNE (z) est la transformée de Stieltjes empirique.
Un point remarquable dans le résultat (1.4.7) est que le résultat est identique pour toutes les
valeurs propres de E, même celles qui sont isolées. Nous reviendrons en détail sur ces observations
dans le Chapitre 7.

Nous remarquons que le résultat (1.4.7) nécessite que la valeur propre que l’on cherche à
nettoyer ne soit pas trop proche de l’origine. Or, dans de nombreux problèmes, comme celui du
portefeuille de Markowitz, ce sont les petites valeurs propres qui nous intéressent. Pour remédier
à ce problème, nous avons proposé dans [42] la procédure de régularisation suivante:

ξ̂regi = ξ̂i ×max(1,Γi), (1.4.8)

où Γi est une fonction analytique, définit dans l’équation (9.1.4), qui permet de corriger l’erreur
d’estimation pour les petites valeurs propres. Nous soulignons que cette fonction Γi est indépendante
de la matrice C, ce qui signifie que nous pouvons l’utiliser en toute circonstance. De plus, sa sim-
plicité fait que cette méthode est très simple à implémenter en pratique et redonne des résultats
semblables à la méthode d’inversion de Ledoit & Wolf qui s’avère très complexe à mettre en
place [117,118].

Finalement, nous avons testé cet estimateur sur des données financières afin de le comparer
avec les estimateurs classiques de la littérature. Le test considéré est la minimisation du risque
réalisé d’un portefeuille de Markowitz construit avec N = 450 actifs, T = 900 jours de trading et
pour trois zones géographiques distinctes: les États-Unis, l’Europe et le Japon. Les simulations
de la Section 8.1.3 montrent clairement que l’estimateur (1.4.8) offre le meilleur contrôle des
risques réalisés pour toutes les zones géographiques considérées, pour différentes stratégies et
également pour différentes valeurs de N . Nous pouvons donc conclure que l’estimateur mis en
place durant cette thèse atteint bien l’objectif espéré, c’est-à-dire une estimation précise des
corrélations en présence d’un grand nombre de variables.

Nous pouvons résumer ce long travail sur l’estimation des grandes matrices de covariance par
la Figure 2.1.2, où l’on voit la différence entre l’estimateur (1.4.8) et les estimateurs mentionnés
précédemment dans l’introduction. Nous insistons sur le fait que cet estimateur est optimal
dans la classe des matrices M(E) et dans la limite des grandes dimensions, mais nous pouvons
nous demander s’il est possible d’améliorer les performances de l’estimateur en supposant une
structure à priori sur les vecteurs propres de C. Cette question est fondamentale en pratique et
constitue une piste possible de recherche pour le futur.

1.4.2. Le modèle additif Gaussien. Pour montrer la grande généralité du problème, nous avons
reconsidéré la même problématique pour le modèle (1.3.11). Le modèle est suffisamment simple
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Figure 1.4.2. Résumé des méthodes de nettoyage des valeurs propres (axe des ordonnées) en fonction
des valeurs propres observées (voir Chapitre 9 pour plus de détails). Cette image montre l’évolution
des méthodes de shrinkage analytique démarrant de la méthode linéaire (vert), l’heuristique du clipping
(rouge) et finalement l’estimateur optimal (1.4.8) (bleu).

pour que toutes les formules soient explicites comme pour les matrices de covariance empirique.
Encore une fois, nous supposons la présence d’un nombre fini r > 0 de valeurs propres isolées
dans le spectre de la matrice C. En utilisant la dynamique des valeurs propres et des vecteurs
propres, nous pouvons étudier les overlaps dans deux cas différents: (i) lorsque les vecteurs
propres de M et C sont associés à des valeurs propres du bulk et (ii) lorsque les vecteurs propres
de M et C sont associés à des valeurs propres isolées. La troisième configuration des overlaps
mentionnée dans la section précédente reste un problème ouvert. Ainsi, nous ne sommes pas
encore capables de déterminer l’équivalent asymptotique de l’estimateur oracle pour les valeurs
propres isolées. Les résultats de cette section sont issus des articles [5, 40].

Plaçons nous dans le premier cas. En utilisant la dynamique des vecteurs propres (1.3.13),
nous obtenons [5]:

E
[
〈ui(t) ,vj〉2

]
=

1

N

t∣∣λi(t)− tgM(z, t)− µj
∣∣2 , i ∈ [[r + 1, N ]] , j ∈ [[1, N ]] , (1.4.9)

où nous rappelons que t est la variance de la matrice du GOE B(t). Ce résultat n’est pas nouveau
[3,150] mais l’approche par le mouvement Brownien lui donne une interprétation physique claire.
Le cas des vecteurs propres associés aux valeurs propres isolées est par contre un résultat nouveau
[5]:

E
[
〈ui ,vj〉2

]
∼ δij exp

(
−1

2

∫ t

0
ds

∫
R

ρM(λ, s)

(λi(s)− λ)2
dλ

)
, i, j ∈ [[1, r]] , (1.4.10)

pour N →∞. Ces résultats sont démontrés dans le Chapitre 12.
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Dans ce modèle, l’overlap entre deux réalisations bruitées de C est particulièrement intéressant.
En effet, contrairement aux matrices de covariance, l’indépendance du bruit n’est pas nécessaire.
Ainsi, supposons que nous observons deux matrices M et M̃ définies par

M = C + B, M̃ = C + B̃ , (1.4.11)

où B, B̃ sont des matrices du GOE corrélées (avec coefficient ρ ∈ [−1, 1]). Alors, le résultat final
dans la limite des grandes dimensions est doublement surprenant. Tout d’abord, la connaissance
de C n’est pas explicitement requise et de plus, le résultat est identique dans le cas où les bruits
B et B̃ sont corrélés. La seule différence intervient dans la variance du bruit. L’énoncé précis de
ce résultat est donné dans le Chapitre 12 et est issu de l’article [41]. Un problème ouvert très
important serait de pouvoir répéter un argument similaire dans le cas des matrices de covariance
empiriques.

Pour terminer, revenons au problème de l’estimateur oracle. Posons dorénavant B comme
une matrice du GOE avec une variance σ2 (au lieu du paramètre t). En suivant la même
approche que dans le Chapitre 7 mais en utilisant cette fois le résultat (1.4.9), nous pouvons
montrer à nouveau que l’équation (1.1.13) converge vers une fonction limite qui ne dépend plus
explicitement de C. En effet, le résultat final est donné par:

ξora.
i ∼ λi − 2σ2hM(λi) , i ∈ [[r + 1, N ]] , (1.4.12)

où hM est la partie réelle de limη→0 gM(λi− iη) dans la limite N →∞. Lorsque nous considérons
C comme étant également une matrice du GOE de variance σ2

C, l’application de ce résultat nous
permet réécrire (1.4.12) comme suit:

ξora.
i = λi

(
σ2

C

σ2
C + σ2

)
, , i ∈ [[r + 1, N ]] , (1.4.13)

où nous voyons que la solution optimale au problème d’estimation de C revient à nettoyer les
valeurs propres de M par le ratio signal sur bruit. Ce résultat est un résultat connu en statistiques
Bayésienne et il est intéressant de noter à nouveau un lien entre cette théorie et l’estimateur
RIE. Une analyse plus poussée de ces résultats est donnée dans la Section 13 et sont issus de
l’article [40].

1.4.3. Extension aux modèles de probabilités libres. La dernière section de cette introduction
générale concerne l’extension d’une partie des résultats mentionnés précédemment dans le cadre
des modèles généraux d’addition et de multiplication libres. Nous avons motivé – surtout pour
le modèle multiplicatif – l’intérêt pratique d’étudier ce type de modèles. La grande majorité des
résultats suivants proviennent de l’article [40]. Durant toute cette section, nous supposons que
dans la limite N →∞:

lim
η→0

gM(λ− iη) = hM(λ) + iπρM(λ) , (1.4.14)

soit bien définie pour toute matrice M caractérisée par les modèles (1.2.4) ou (1.2.5). De plus,
nous supposons dans toute cette partie qu’il n’y a pas de valeur propre isolée (r = 0). Nous
reviendrons sur cette hypothèse à la fin de cette section.

Intéressons nous d’abord au modèle d’addition libre (1.2.5). Nous rappelons que dans ce
cas précis, le bruit extérieur B est invariant par rotation, indépendant de C mais possède une
distribution des valeurs propres arbitraires. Le premier résultat que nous avons été en mesure
de généraliser est le comportement asymptotique de la résolvante de M:

GM(z) = GC(Z(z)), Z(z) ..= z −RB(gM(z)) . (1.4.15)
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Il est important de préciser que si B est une matrice du GOE, alors nous retrouvons le résultat
attendu (voir le Chapitre 13 pour plus de détails). Encore une fois, nous voyons que la résolvante
de M tend vers une limite déterministe, ce qui simplifie les calculs.

A partir de ce résultat, nous pouvons calculer l’espérance des overlaps entre un état perturbé
et non perturbé:

NE
[
〈ui ,vj〉2

]
=

β1(λ)

(λ− µ− αa(λ))2 + π2βa(λ)2ρM(λ)2
, i, j ∈ [[1, N ]] (1.4.16)

où nous avons définis les fonctions:
αa(λ) ..= Re[RB (hM(λ) + iπρM(λ))],

βa(λ) ..=
Im[RB (hM(λ) + iπρM(λ))]

πρM(λ)
.

(1.4.17)

Cela nous permet d’en déduire une formule (formelle) pour la valeur asymptotique de l’estimateur
oracle (1.4.1):

ξora.
i ∼ Fa(λi) , Fa(λ) = λ− αa(λ)− βa(λ)hM(λ) . (1.4.18)

Nous pouvons constater que le résultat reste toujours “observable” dans le sens où la connais-
sance de C ne semble pas être un pré-requis pour utiliser cette formule. Par contre, cela suppose
que nous connaissons au moins le spectre de la matrice B dans la limite des grandes matri-
ces. Il n’est pas étonnant de retrouver la transformée R dans ces résultats étant donné qu’elle
caractérise justement l’addition d’opérateurs non-commutatifs.

La même analyse peut être menée pour le modèle de multiplication libre (1.2.4). Posons
M ..= C1/2ΩBΩ∗C1/2 où B est une matrice aléatoire symétrique, invariante par rotation et de
taille N ×N , et Ω est une matrice de rotation de taille N ×N qui est distribuée selon la mesure
de Haar. Pour ce modèle, la relation des résolvantes est donnée par

GM(z) = Z(z)GC(Z(z)), Z(z) ..= zSB(zgM(z)− 1) , (1.4.19)

qui est bien une généralisation de la relation (1.4.2) [40]. De façon analogue au cas additif, il n’est
pas étonnant de rencontrer la transformée S dans ce cadre ci, étant donne qu’elle caractérise
le produit d’opérateurs non-commutatifs. En utilisant ce résultat, nous pouvons en déduire
l’overlap moyen:

NE
[
〈ui ,vj〉2

]
=

µβm(λ)

(λ− µαm(λ))2 + π2µ2βm(λ)2ρM(λ)2
, i, j ∈ [[1, N ]] , (1.4.20)

où les fonctions αm and βm sont définies comme suit:
αm(λ) := lim

z→λ−i0+
Re

[
1

SB(zgM(z)− 1)

]
βm(λ) := lim

z→λ−i0+
Im

[
1

SB(zgM(z)− 1)

]
1

πρM(λ)
.

(1.4.21)

Comme pour le modèle additif, l’estimateur oracle (1.4.1) converge vers une fonction qui ne
nécessite pas explicitement la connaissance de la matrice C que l’on cherche à estimer. En effet,
supposons que la transformée S de la matrice B est analytique, alors nous avons

ξora.
i ∼ F2(λi); F2(λ) = λγB(λ) + (λhM(λ)− 1)ωB(λ) , (1.4.22)
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avec
lim

z→λ−i0+
SB(zgM(z)− 1) := γB(λ) + iπρM(λ)ωB(λ) . (1.4.23)

Les résultats du modèle multiplicatif sont expliqués dans les Chapitres 3 et 7.
En conclusion, nous sommes capables d’étudier le comportement asymptotique de l’estimateur

oracle dans un cadre assez général de matrices aléatoires. Cependant, les résultats font ap-
parâıtre les transformées R et S, dont les structures ne sont pas simples à analyser. Il serait
donc intéressant de voir s’il est possible de trouver des exemples concrets, comme ceux men-
tionnés dans la Section 1.2, pour lesquels nous pouvons obtenir des résultats explicites comme
dans les deux sections précédentes. De plus, l’extension de ces résultats en présence de valeurs
propres isolées est un problème ouvert très important aussi bien en théorie qu’en pratique.
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Chapter 2

Introduction

2.1 Motivations

This part, which is the bulk of the thesis, is dedicated to the estimation of large sample covariance
matrices. Indeed, in the present era of “Big Data”, new statistical methods are needed to
decipher large dimensional data sets that are now routinely generated in almost all fields –
physics, image analysis, genomics, epidemiology, engineering, economics and finance, to quote
only a few. It is very natural to try to identify common causes (or factors) that explain the
joint dynamics of N quantities. These quantities might be daily returns of the different stocks
of the S&P 500, temperature variations in different locations around the planet, velocities of
individual grains in a packed granular medium, or different biological indicators (blood pressure,
cholesterol, etc.) within a population, etc., etc. The simplest mathematical object that quantifies
the similarities between these observables is an N ×N correlation matrix C. Its eigenvalues and
eigenvectors can then be used to characterize the most important common dynamical “modes”,
i.e. linear combinations of the original variables with the largest variance. This is the well known
“Principal Component Analysis” (or PCA) method. More formally, let us denote by y ∈ RN
the set of demeaned and standardized1 variables which are thought to display some degree of
interdependence. Then, one possible way to quantify the underlying interaction network between
these variables is through the standard, Pearson correlations:

Cij = E
[
yiyj

]
, i, j ∈ [[1, N ]], (2.1.1)

We will refer to the matrix C as the population correlation matrix throughout the following.

The major concern in practice is that the expectation value in (2.1.1) is rarely computable
precisely because the underlying distribution of the vector y is unknown and is what one is
struggling to determine. Empirically, one tries to infer the matrix C by collecting a large
number T of realizations of these N variables that defines the input sample data matrix Y =
(y1,y2, . . . ,yT ) ∈ RN×T . Then, in the case of a sufficiently large number of realizations T ,
one tempting solution to estimate C is to compute that sample correlation matrix estimator E,
defined as:

Eij ..=
1

T

T∑
t=1

Yit Yjt ≡
1

T
(YY∗)ij , (2.1.2)

1This apparently innocuous assumption will be discussed in Chapter 4.
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where Yit is the realization of the ith observable (i = 1, . . . , N) at “time” t (t = 1, . . . , T ) that
will be assumed in the following to be demeaned and standardized (see previous footnote).

Indeed, in the case where N � T , it is well known using result of classical multivariate
statistics that E converges (almost surely) to C [179]. However, whenN is large, the simultaneous
estimation of all N(N − 1)/2 the elements of C – or in fact only of its N eigenvalues – becomes
problematic when the total number T of observations is not very large compared to N itself. In
the example of stock returns, T is the total number of trading days in the sampled data; but in
the biological example, T would be the size of the population sample, etc. Hence, in the modern
framework of high-dimensional statistics, the empirical correlation matrix E (i.e. computed on
a given realization) must be carefully distinguished from the “true” correlation matrix C of the
underlying statistical process (that might not even be well defined). In fact, the whole point of
the present part is to characterize the difference between E and C, and discuss how well (or how
badly) one may reconstruct C from the knowledge of E in the case where N and T become very
large but with their ratio q = N/T not vanishingly small; this is often called the large dimension
limit (LDL), or else the “Kolmogorov regime”.

There are numerous situations where the estimation of the high-dimensional covariance ma-
trix is crucial. Let us give some well-known examples:

(i) Generalized least squares (GLS): Suppose we try to explain the vector y using a linear
model

y = Xβ + ε, (2.1.3)

where X is a N × k design matrix (k > 1), β denotes the regression coefficients to these k
factors, and ε denotes the residual. Typically, one seeks to find β that best explains the
data and this exactly the purpose of GLS. Assume that E[ε|X] = 0 and V[ε|X] = C the
covariance matrix of the residuals. Then GLS estimates β as (see [7] for a more detailed
discussion):

β̂ = (X∗CX)−1X∗C−1y. (2.1.4)

We shall investigate this estimator in Section 8.

(ii) Generalized methods of moments (GMM): Suppose one wants to calibrate the parameters
Θ of a model on some data set. The idea is to compute the empirical average of a set of
k functions (generalized moments) of the data, which should all be zero for the correct
values of the parameters, Θ = Θ0. The distance to zero is measured using the covariance
of these functions. A precise measurement of this k × k covariance matrix increases the
efficiency of the GMM – see [88]. Note that GLS is a special form of GMM.

(iii) Classification (LDA) [79]: Suppose that we want to classify the variables y between two
Gaussian populations with different mean µ1 and µ2, priors π1 and π2, but same covariance
matrix C. The LDA rule classifies y to class 2 if

x∗C−1(µ1 − µ2) >
1

2
(µ2 + µ1)∗C−1(µ2 − µ1)− log(π2/π1) (2.1.5)

(iv) Large portfolio optimization [125]: Suppose we want to invest on a set of financial assets
y in such a way that the overall risk of the portfolio is minimized, for a given performance
target ν. According to Markowitz’s theory, the optimal investment strategy is a vector
of weights w ..= (w1, . . . , wp)

∗ that can be obtained through a quadratic optimization
program where we minimize the variance of the strategy 〈w ,Cw〉 subject to a constraint
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on the expectation value 〈w ,g〉 > µ, with g a vector of predictors and µ fixed. (Other
constraints can also be implemented). The optimal strategy reads

w = ν
C−1g

g∗C−1g
. (2.1.6)

As we shall see in Chapter 8, a common measure of the “risk” of estimation in high-dimensional
problems like (i) and (iv) above is given by TrE−1/TrC−1, which turns out to be very close to
unity T is large enough for a fixed N , i.e. when q = N/T → 0. However, when the number
of observables N is also large, such that the ratio q is not very small, we will find below that
TrE−1 = TrC−1/(1 − q) for a wide class of processes. In other words, the out-of-sample risk
TrE−1 can excess by far the true optimal risk TrC−1 when q > 0, and even diverge when q → 1.
Note that for a similar scenario when Value-at-Risk is minimized in-sample was elicited in [49]
and in [53] for the Expected Shortfall. Typical number in the case of stocks is N = 500 and
T = 2500, corresponding to 10 years of daily data, already quite a long strand compared to the
lifetime of stocks or the expected structural evolution time of markets, but that corresponds
to q = 0.2. For macroeconomic indicators – say inflation, 20 years of monthly data produce
a meager T = 240, whereas the number of sectors of activity for which inflation is recorded
is around N = 30, such that q = 0.125. Clearly, effects induced by a non zero value of q are
expected to be highly relevant in many applications.

2.1.1. Historical survey. The rapid growth of RMT (Random Matrix Theory) in the last two
decades is due both to the increasing complexity of the data in many fields of science (the “Big
Data” phenomenon) and to many new, groundbreaking mathematical results that challenge
classical results of statistics. In particular, RMT has allowed a very precise study of large
sample covariance matrices and also the design of estimators that are consistent in the large
dimensional limit (LDL) presented above. The aim of this thesis is to provide the reader an
introduction to the different RMT inspired techniques that allow one to investigate problems of
high-dimensional statistics, with the estimation of large covariance matrices as the main thread.

The estimation of covariance matrices is a very old problem in multivariate statistics and
one of the most influential work goes back to 1928 with John Wishart [192] who investigated
the distribution of the sample covariance matrix E in the case of i.i.d Gaussian realizations
y1,y2, . . . ,yT . In particular, Wishart obtained the following explicit expression for the distri-
bution of E given C [192]:

PW (E|C) =
TNT/2

2NT/2ΓN (T/2)

det(E)
T−N−1

2

det(C)T/2
e−

T
2

TrC−1E, (2.1.7)

where ΓN (·) is the multivariate Gamma function with parameter N .2 In Statistics, one says
that E follows a Wishart(N,T,C/T ) distribution and it is often referred to as one of the first
result in RMT. Note that for a finite N and T , the marginal probability density distribution of
the eigenvalues is known [9]:

ρN (λ) =
1

N

N−1∑
k=0

k!

T −N + k

[
LT−Nk (λ)

]2
λT−Ne−λ, (2.1.8)

2ΓN (u) = πN(N−1)/4∏N
j=1 Γ(u+ (1− j)/2).
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where we assumed that T > N and Llk are the Laguerre polynomials3.

Even though the Wishart distribution gives us many important properties concerning E,
the behavior of the sample estimator as a function of N was understood much later with the
pioneering work of Charles Stein in 1956 [165]. The most important contribution of Stein can be
summarized as follows: when the number of variables N > 3, there exist combined estimators
more accurate in terms of mean squared error than any method that handles the variables
separately (see [72] for an elementary introduction). This phenomenon is called Stein’s paradox
and establishes in particular that the sample matrix E becomes more and more inaccurate as the
dimension of the system N grows. The idea of “combined” estimators has been made precise with
the James-Stein estimator [96] for the mean of a Gaussian vector that outperforms traditional
methods such as maximum likelihood or least squares whenever N > 3. To achieve this, the
authors used a Bayesian point of view, i.e. by assuming some prior probability distribution on
the parameters that we aim to estimate. For sample covariance matrices, Stein’s paradox also
occurs for N > 3 as shown by using properties of the Wishart distribution and the so-called
conjugate prior technique (see Chapter 6). This was first shown for the precision matrix C−1

in [71, 85] and then for the covariance matrix C in [87] and lead to the famous linear shrinkage
estimator

Ξ = αsE + (1− αs)IN , (2.1.9)

where Ξ denotes, here and henceforth, an estimator of C and αs ∈ (0, 1) is the shrinkage intensity
parameter. In [87], Haff proposed to estimate αs using the marginal probability distribution of
the observed matrix Y as advocated in the so-called empirical Bayes framework. We see that this
shrinkage estimator interpolates between the empirical “raw” matrix E (no shrinkage, αs = 1)
and the null hypothesis IN (extreme shrinkage, αs = 0). This example illustrates the idea of a
combined estimator, not based only on the data itself, that offers better performance when the
dimension of the system grows. The improvement made by using the simple estimator (2.1.9)
rather than the sample covariance matrix E has been precisely quantified much later in 2004 [115]
in the asymptotic regime N → ∞, with an explicit and observable estimator for the shrinkage
intensity αs. To summarize, the Bayesian approach turns out to be a cornerstone in estimating
high dimensional covariance matrices and will be discussed in more details in the Section 6.

Interestingly, the first result on the behavior of sample covariance matrices in the LDL
did not come from the statistics community. It is due to the seminal work of Marčenko and
Pastur in 1967 [123] where they obtained a self-consistent equation for the spectrum of E given
C as N goes to infinity. In particular, the influence of the quality ratio q appears precisely.
Indeed, it was shown in the classical limit T → ∞ and N fixed in 1963 by Anderson that the
sample eigenvalues converge to the population eigenvalues [10], a result indeed recovered by the
Marčenko-Pastur formula for q = 0. However, when q = O(1), the same formula shows that all
the sample eigenvalues become noisy estimators of the “true” (population) ones no matter how
large T is. This is also called the curse of dimensionality. More precisely, the distortion of the
spectrum of E compared to the “true” one becomes more and more substantial as q becomes
large (see Figure 2.1.1). The heuristic behind this phenomenon is as follows. When the sample
size T is very large, each individual coefficient of the covariance matrix C can be estimated
with negligible error (provided one can assume that C itself does vary with time, i.e. that the
observed process is stationary). But if N is also large and of the order of T , as is often the case
in many situations, the sample estimator E becomes “inadmissible”. More specifically, the large

3Llk(λ) = eλ

k!λl
dk

dλk
(e−λλk+l).
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number of simultaneous noisy variables creates important systematic errors in the computation
of the eigenvalues of the matrix.
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Figure 2.1.1. Plot of the sample eigenvalues and the corresponding sample eigenvalues density under
the null hypothesis with N = 500. The blue line (q = 0) corresponds to a perfect estimation of the
population eigenvalues. The larger is the observation ratio q, the wider is the sample density. We see
that even for T = 4N , the deviation from the population eigenvalues is significant.

The Marčenko-Pastur result had a tremendous impact on the understanding the “curse of
dimensionality”. Firstly, it was understood in 1995 that this result is to a large degree universal
when N → ∞ and q = O(1), much as the Wigner semi-circle law is universal: the Marčenko-
Pastur equation is valid for a very broad range of random measurement processes and for general
population covariance matrix C [157, 161, 195]. This property is in fact at the core of RMT
which makes this theory particularly appealing. At the same time, some empirical evidence
of the relevance of these results for sample covariance matrices weres provided in [110, 151]
using financial data sets, which are known to be non-Gaussian [30]. More precisely, these works
suggested that most of the eigenvalues (the bulk) of financial correlation matrices agrees, to a
first approximation, with the null hypothesis C = I, while a finite number of “spikes” (outliers)
reside outside of the bulk. This observation is the very essence of the spiked covariance matrix
model named after the celebrated paper of Johnstone in 2001 with many applications in principal
components analysis (PCA) [100]. Indeed, the author showed another manifestation of universal
properties of RMT, namely the Tracy-Widom distribution for the top bulk eigenvalues in the
spiked covariance matrix [100,175]. This result suggest that the edge of the bulk of eigenvalues
is very rigid in the sense that the position of the edge has very small fluctuations of order T−2/3.
This provides a very simple recipe to distinguish meaningful eigenvalues (beyond the edge)
from noisy ones (inside the bulk) [111, 151]. This method is known as “eigenvalue clipping”:
all eigenvalues in the bulk of the Marčenko-Pastur spectrum are deemed as noise and thus
replaced by a constant value whereas the principal components outside of the bulk (the spikes)
are left unaltered. This very simple method provides robust out-of-sample performance [29] and
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emphasizes that the notion of regularization – or cleaning – is very important in high-dimension.

Even if the spiked covariance matrix model provides quite satisfactory results in many differ-
ent contexts [29], one may want to work without such an assumption on the structure of C using
the Marčenko-Pastur equation to reconstruct numerically the spectrum of C [163]. However,
this is particularly difficult in practice since the Marčenko-Pastur equation is easy to solve in
the other direction, i.e. knowing the spectrum of C, we easily get the spectrum of E. In that
respect, many studies attempting to “invert” the Marčenko-Pastur equation appeared since
2008 [29, 104, 133, 194]. The first one consists in finding a parametric “true” spectral density
that fits the data [29]. The method of [133], further improved in [194], is completely different.
Under the assumption that the spectrum of C consists of a finite number of eigenvalues, an exact
analytical estimator of each population eigenvalue is provided. However, this method requires
some very strong assumptions on the structure of the spectrum of C. The last approach can
be considered as a nonparametric method and seems to be very appealing. Indeed, El Karoui
proposed a “consistent” numerical scheme to invert the Marčenko-Pastur equation using the
observed sample eigenvalues [104]. Nevertheless, while the method is very informative, it turns
out that the algorithm also needs prior knowledge on the location of the true eigenvalues which
makes the implementation difficult in practice.

These inversion schemes thus allow in principle to retrieve the spectrum of C but as far as
estimating high-dimensional covariance matrices is concerned, merely substituting the sample
eigenvalues by the estimated “true” ones does not give a satisfactory answer to our problem.
Indeed, the Marčenko-Pastur equation only describes the spectrum of eigenvalues of large sam-
ple covariance matrices but does not yield any information about the eigenvectors of E. In
fact, except for some work by Jack Silverstein around 1990 [159,160], most RMT results about
sample covariance matrices were focused on the eigenvalues, as discussed above. The first fun-
damental result on the eigenvectors of E was obtained in [144] in the special case of the spiked
covariance matrix model, but is somehow disappointing for inference purposes. Indeed, Paul
noticed that outliers’ eigenvectors obey a cone concentration phenomenon with respect to the
true eigenvectors whereas all other ones retain very little information [144]. Differently said, the
eigenvectors of E are not consistent estimators of the eigenvectors of C in the high-dimensional
framework. A few years later, these observations were generalized to general population co-
variance matrices C [23, 40, 43, 113, 136]. When dealing with the estimation of C, information
about eigenvectors has to be taken into account somehow in the inference problem. Clearly,
the above “eigenvalue substitution” method cannot be correct as it proposes to take the best
estimates of the eigenvalues of C but in an unknown eigenvalue basis. Consequently, a dif-
ferent class of estimators flourished very recently that we shall refer to as rotational invariant
estimators4 (RIE) [40, 43, 113]. In this particular class of estimators, the main assumption is
that any estimator Ξ of C must share the same eigenvectors as E itself. This hypothesis has a
very intuitive interpretation in practice as it amounts to posit that one has no prior insights on
the structure of C, i.e. on the particular directions in which the eigenvectors of C must point.
It is easy to see that the linear shrinkage estimator (2.1.9) falls into this class of estimators.
Compared to the aforementioned RMT-based methods, RIE explicitly uses the information on
the eigenvectors of E, in particular their average overlap with the true eigenvectors. It turns out
that one can actually obtain an optimal estimator of C in the LDL for any general population
covariance matrix C [43]. Note that the optimal estimator is in perfect agreement with Stein’s
paradox, that is to say, the optimal cleaning recipe takes into account about the information

4This is sometimes called rotation-equivariant estimators
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of all eigenvectors and all eigenvalues of E. The conclusion is therefore that combining all the
information’s about E always provide more accurate prediction than any method that handles
the parameters separately within the modern era of “Big Data”. We summarize the above long
journey concerning the estimation of large sample covariance matrices in Figure 2.1.2, which
can be seen as a thumbnail picture of the present thesis. Note that a very recent work [136]
attempts to incorporate prior information on the true components. While it remains unclear
how to use this framework for the estimation of correlation, this may allows one to construct
“optimal” non-rotational invariant estimators. We shall address this issue at the end of this
part.
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Figure 2.1.2. (Color online). Three shrinkage transformations: “cleaned” eigenvalues on the y-axis as
a function of the sample eigenvalues (see Chapter 9 for more details). This figure is a quick summary the
evolution of shrinkage estimators starting with the linear method (green), then the heuristic eigenvalues
clipping method (red) to the optimal RIE (blue).

2.2 Outline and main contributions

Our aim is to review several Random Matrix Theory (RMT) results that take advantage of
the high-dimensionality of the problem to estimate covariance matrices consistently, spanning
nearly fifty years of research from the result of Marčenko and Pastur [123] to the very recent
“local” optimal RIE for general population covariance matrices [43]. We emphasize that this
thesis is not intended to provide detailed proofs (in the mathematical sense) but we will include
references to this mathematical literature as often as possible for those who might be interested.

In Chapter 3, we begin with a detailed but still incomplete introduction to RMT and some of
the analytical methods available to study the behavior of large random matrices in the asymp-
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totic regime. In fact, most of the computations in Chapter 3 will be performed under very
general model of random matrices and will be used throughout the following. The first method
is arguably the most frequently used in the Physics literature known as the Coulomb gas anal-
ogy [36]. This is particularly useful to deal with invariant ensembles, leading to Boltzmann-like
weights that allows one to recover very easily well-known results such as Wigner’s semicircle
law [189] or Marčenko-Pastur density [123]. This is the main purpose of Section 3.1.2. The
second method is Voiculescu’s free probability theory which was originally proposed in 1985
to understand a special class of von Neumann algebras through the concept of freeness [181].
Loosely speaking, two matrices A and B are mutually free if their eigenbasis are related to one
another by a random rotation, or said differently if the eigenvectors of A and B are almost
surely orthogonal. Voiculescu discovered in 1991 [182] that some random matrices do satisfy
asymptotically the freeness relation, which considerably influenced RMT. We present in Section
3.1.3 a precise definition of the concept of freeness and then provide some applications for the
computations of the spectral density of a large class of random matrices. In Section 3.1.4, we
present a more formal tool known as the Replica method in statistical physics of disordered
systems [134]. While being less rigorous, this method turns out to be very powerful to compute
the average behavior of large complex systems (see [137] for a recent review). In our case, we
shall see how this method allows us to compute the resolvent of a large class of random matrices
which will be especially useful to deal with the statistics of eigenvectors. This section on the
replica analysis lead to the article [40] with Romain Allez, Jean-Philippe Bouchaud and Marc
Potters.

In Chapters 4 and 5, we study in details the different properties of large sample covariance
matrices. Chapter 4 is dedicated to the statistics of the eigenvalues of E, and in particular
we propose a very simple derivation of the Marčenko-Pastur equation using tools from free
probability theory. Then, we review different properties that we can learn about C using E
such as the moment generating functions, or the edges of the support of the spectral density of
E. We discuss the properties of the edges of the distribution for finite N and also the outliers.
While most of the results are now well known in the RMT community, we provide in Sections
4.2.1, 4.2.2 and 4.2.4 some interesting properties of the spectrum of E that we have not seen in
classical textbooks that dealt with Marčenko and Pastur equation.

In Chapter 5, we focus the recent results concerning the eigenvectors of E for a general C.
We distinguish two different cases. Most of these results come from different articles [40], [43]
and [41] and can be distinguished in two different cases. The first one is the angle between
the true and estimated eigenvectors and we shall see that the initial results of [144] hold for a
general C. The second case is the angle between two independent sample eigenvectors, a result
that allow one to infer interesting properties about the structure of C.

After these three relatively technical sections, we then turn on the main theme of this thesis
which is the estimation of large sample covariance matrices. In Chapter 6, we formalize the
Bayesian method for covariance matrices. We then present the class of conjugate prior from
which we re-obtain the linear shrinkage (2.1.9) initially derived by Haff [87]. Next, we consider
the class of Boltzmann-type, rotational invariant prior distributions. This Bayesian framework
is actually the very origin of this thesis [39,152] and we show here that we can relate the Bayes
optimal estimator with the least squares optimal oracle estimator of C.

The so-called oracle estimator is the main quantity of interest in the following Chapter 7.
In particular, we show that this estimator converges to a limiting and – remarkably – fully
observable function in the limit of large dimension using the results on eigenvectors obtained in
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Chapter 5. Even if the final formula is not new [113], we extended this result to case where the
spectrum of E contains a finite number of outliers. Moreover, we also highlight that there exists
an optimal estimator of large population covariance C inside the class of RIEs that depends only
on observable variables even at finite N . These two non trivial extensions are based on a work
in preparation with Antti Knowles [43]. Hence, we shall only sketch the main arguments in this
thesis. The rest of the Chapter 7 is dedicated to some theoretical and numerical applications
of the optimal RIE. We also discuss about the optimal RIE of the general model of free multi-
plication of Chapter 3.1.3. This comes from a collaboration with Romain Allez, Jean-Philippe
Bouchaud and Marc Potters [40].

Chapter 8 concerns the applications of the optimal RIE for Markowitz optimal portfolio.
In particular, we characterize explicitly, under some technical assumptions, the danger of using
the sample covariance matrix E in a large scale and out-of-sample framework. As alluded to
above, we shall see that if E has no exact zero mode (i.e. when q = N/T < 1), the realized
risk associated to this “naive” estimator overestimates the true risk by a factor (1− q)−1. Also,
we shall see that the best we can do in order to minimize the out-of-sample risk is actually
given by the optimal RIE of the Chapter 7. We will also determine the estimated and realized
risk associated to the optimal RIE in a very special case. We believe that it sheds light on
the advantage of using this estimator compared to the sample estimator E. Several alternative
cleaning “recipes”, proposed in previous work, are also reviewed in this Chapter.

Finally, Chapter 9 contains empirical results using real financial data sets. We give further
evidence that using a correctly regularized estimator of C is highly recommended in real life
situations. Moreover, we discuss about the implementation of the optimal RIE in the presence
of finite size effects, to wit, when N is large but finite. This chapter thus extends the simple
cleaning recipe we proposed in [42]. Furthermore, we give some concrete applications of the two-
sample test introduced in a recent paper [41] with Jean-Philippe Bouchaud and Marc Potters.

The appendices contain auxiliary results which are mentioned in this work. The first ap-
pendix copes with the so-called Harish-Chandra–Itzykson-Zuber (HCIZ) integral which routinely
appears in calculations involving sums or products of free random matrices. The HCIZ is an
integral over the group of orthogonal matrices for which explicit and analytical results are scarce.
We give a complete derivation of the limiting behavior of this integral when one matrix has low
rank and then the general case which was presented in the paper [38] written with Jean-Philippe
Bouchaud, Satya Majumdar and Marc Potters. The second appendix is a reminder on some
results of linear algebra which are particularly useful for the study of eigenvectors. The third
appendix is another analytical tool in RMT to establish self-consistent equations for the resol-
vent (or the Stieltjes transform) of large random matrices. This technique is very convenient
when working with independent entries and it provides a nice illustration of the Central Limit
Theorem for random matrices. However, the formalism is not as synthetic as the method pro-
vided in Chapter 3 but is now standard in the RMT literature, which is why we relegate its
presentation to an appendix.
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Chapter 3

Random Matrix Theory: overview and
analytical tools

3.1 RMT in a nutshell

3.1.1. Large dimensional random matrices. As announced in the introduction, the main ana-
lytical tool that we shall review in this article is Random Matrix Theory (RMT). In order to be
as self-contained as possible, we recall in this section some of the basic results and techniques of
RMT. The study of random matrices began with the work of Wishart in 1928, who was interested
in the distribution of the so-called empirical (or sample) covariance matrices, which ultimately
lead to the Marčenko-Pastur distribution in 1967. RMT was also introduced by Wigner in the
1950’s as a statistical model for the energy levels of heavy nuclei, and lead to the well-known
Wigner semi-circle distribution, as well as Dyson’s Brownian motion (see e.g. [186], [1] for com-
prehensive reviews). Branching off from these early physical and statistical applications, RMT
has become a vibrant research field of its own, with scores of beautiful results in the last decades
– one of the most striking being the discovery of the Tracy-Widom distribution of extreme
eigenvalues, which turns out to be related to a large number of topics in statistical mechanics
and probability theory [62, 122]. Here, we will only consider the results of RMT that pertain
to statistical inference, and leave aside many topics – see e.g. [1], [8], [171], [176], [14] or [57]
for more detailed and rigorous introductions to RMT. We will also restrict to square, sym-
metric correlation matrices, even though the more general problem of rectangular correlation
matrices (measuring the correlations between M input variables and N output variables) is also
extremely interesting. This problem leads to the so-called Canonical Component Analysis [91]
and can be dealt with the Singular Value Decomposition, for which partial results are available,
see e.g. [28, 184].

We begin with a formal definition of “large” random matrices. A common assumption
in RMT is that the matrix under scrutiny is of infinite size. However, this is obviously not
a realistic assumption for practical problems where one rather deals with large but finite N
dimensional matrices. Nonetheless, we shall see that working in the N → ∞ limit leads to
very precise approximations of the properties of large but finite matrices. More precisely, it is
well known that probability distributions describing the fluctuations of macroscopic observables
often converge to limiting laws in the limit of large sizes. Hence, we expect that the statistical
properties (say the distribution of eigenvalues) of a random matrix M of dimension N shows,
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to a certain extent, a deterministic or self-averaging behavior1 when the dimension N goes to
infinity. These deterministic features can be used to characterize the matrix under scrutiny,
provided it is large enough. This is why we consider the limit N →∞ from now on.

The limiting behavior of “large” random matrices is in fact at the heart of RMT, which
predicts that infinite dimensional matrices do display universal features, both at the macroscopic
and at the microscopic levels. To be more precise, we define a N ×N random matrix2 M with a
certain probability measure Pβ(M), where β is the Dyson’s threefold way index and specifies the
symmetry properties of the ensemble (β = 1 for Orthogonal, β = 2 for Unitary and β = 4 for
Symplectic ensembles). A property is said to be universal if it does not depend on the specific
probability measure Pβ(M). One well known example of universality pertains to the distribution
of the distance s between two successive eigenvalues (see [172] for an extended discussion).

The ensemble most relevant for our purpose is the Orthogonal one, which deals with real
symmetrical matrices. In this case, the matrix M is said to be rotationally invariant if the
probability is invariant under the transformation M → ΩMΩ† for any matrix Ω belonging
to the Orthogonal group O(N), i.e. Pβ(M) = Pβ(ΩMΩ†), ∀Ω ∈ O(N). A typical example
of invariant measure in the physics literature is that Pβ(M) is of the form of a Boltzmann
distribution:

Pβ(M)DM ∝ e−βN2 TrV (M)DM (3.1.1)

with V the so called potential function and DM =
∏N
i=1 dMii

∏N
i<j dMij denotes the (Lebesgue)

flat measure. The rotational invariant property is evident since the above parametrization only
involves the trace of powers of M. Already at this stage, it is interesting to notice that the
distribution (3.1.1) can alternatively be rewritten in terms of the eigenvalues and eigenvectors
of M as:

Pβ(M)DM ∝ e−βN2
∑N
i=1 V (νi)

N∏
i<j

|νi − νj |β
( N∏
i=1

dνi

)(
dΩ
)
, (3.1.2)

where the Vandermonde determinant (
∏|νi− νj |β)comes from the change of variables (from the

Mij to the νi and Ωij). This representation is extremely useful, as will be illustrated below.

What kind of universal properties can be of interest in practice? Let us consider a standard
problem in multivariate statistics. Suppose that we have a very large dataset with correlated
variables. A common technique to deal with this large dataset is to reduce the dimension of
the problem using for instance a principal component analysis (PCA), obtained by diagonal-
izing the covariance matrix of the different variables. But one can wonder whether the ob-
tained eigenvalues νi and their associated eigenvectors are reliable or not (in a statistical sense).
Hence, the characterization of eigenvalues (and eigenvectors) is an example of features that one
would like to know a priori. In that respect, RMT provided (and continues to provide) many
groundbreaking results on the eigenvalues and the eigenvectors of matrices belonging to specific
invariant ensembles (Unitary, Orthogonal and Symplectic). The distribution of the eigenvalues
{νi} : i = {1, . . . , N}} can be characterized through the Empirical Spectral Distribution (ESD)
(also known as the “Eigenvalue Distribution”):

ρNM(x) =
1

N

N∑
i=1

δ(x− νi) (3.1.3)

1i.e. independent of the specific realization of the matrix itself
2Boldface letters will refer throughout this paper to matrices.
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with δ the Dirac delta function. Note that the symmetry of the considered matrices ensures that
the eigenvalues of M are defined on the real line (complex eigenvalues are beyond the scope of this
thesis, but see [?,14,57] for more on this). One of the most important property of large random
matrices is that one expects the ESD to converge (almost surely in many cases) to a unique and
deterministic limit ρNM → ρM as N → ∞. Note that it is common to refer to this deterministic
density function ρM as the Limiting Spectral Density (LSD), or else the “Eigenvalue Spectrum”
of the matrix. An appealing feature of RMT is the predicted self-averaging (sometimes call
ergodicity or concentration) property of the LSD: when the dimension N becomes very large,
a single sample of M spans the whole eigenvalue density function, independently of the specific
realization of M. The consequence of this self-averaging property is that we can replace the
computation of the ESD (3.1.3) for a specific M by the average according to the probability
measure of M (e.g. over the measure (3.1.1)):

ρM(x) = lim
N→∞

ρNM(x), with ρNM(x) =

〈
1

N

N∑
i=1

δ(x− νi)
〉

M

. (3.1.4)

For real life data-sets, it is often useful to distinguish the eigenvalues that lie within the
spectrum of ρM from those that are well separated from it. We will refer to the first category
as the bulk of the eigenvalues with a slight abuse of notation. We will call the second type of
eigenvalues outliers or spikes. Throughout this work, we assume the LSD that describes the
bulk of ρM to be a non-negative continuous function, defined on an unique compact support –
denoted supp[ρM] – meaning that supp[ρM] consists of a single “bulk” component (often called
the one-cut assumption). Moreover, we allow the presence of a finite number r � N of outliers,
which are of crucial importance in many fields. Throughout this chapter, we shall denote by
ν1 ≥ ν2 ≥ · · · ≥ νN the eigenvalues of M. We furthermore define the associated eigenvectors
by w1,w2, . . . ,wN . For N that goes to infinity, it is often convenient to index the eigenvectors
by their corresponding eigenvalues, i.e. wi ≡ wνi for any integer 1 ≤ i ≤ N , and this is the
convention that we adopt henceforth.

Various RMT transforms. We end this section with an overview of different transforms that
appear in the RMT literature. These transforms are especially useful to study the spectral
properties of random matrices in the limit of large dimension, and to deal with sums and
products of random matrices.

Resolvent and Stieltjes transform. We start with the resolvent of M which is defined as3

GM(z) := (zIN −M)−1, (3.1.5)

with z ..= x − iη ∈ C−, where C− = {z ∈ C : Im(z) < 0}. We define accordingly C+ =
{z ∈ C : Im(z) > 0}. This quantity displays several interesting properties, making it the
relevant object to manipulate. First, it is a continuous function of z and is easy to differentiate
(compared to working directly on the ESD), providing a well-defined tool for mathematical
analysis. Furthermore, it contains the complete information about the eigenvalues {νi} and the
eigenvectors {wi} since it can be rewritten as:

GM(z) =

N∑
i=1

wiw
∗
i

z − νi
. (3.1.6)

3Note that in the mathematical and statistical literature, the resolvent differs from ours by a minus sign.
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It is easy to see that the number of singularities of the resolvent is equal to the number of
eigenvalues of M. Suppose that z → νi for any i ∈ [[N ]], then the residue of the pole defines a
projection operator onto the eigenspace associated to the eigenvalues νi. We will show in chapter
5 how this property can be used to study the statistics of the eigenvectors.

While the statistics of the eigenvectors is an interesting and non-trivial subject in itself, we
focus for now on the statistics of the eigenvalues through the ESD (3.1.4). For this aim, we
define the normalized trace of Eq. (3.1.5) as

gNM(z) :=
1

N
Tr [GM(z)] , (3.1.7)

We shall skip the index M as soon as there is no confusion about the matrix we are dealing with.
In the limit of large dimension, one has

gN (z) ∼
N→∞

g(z), g(z) ..=

∫
ρ(u)

z − udu. (3.1.8)

which is known as the Stieltjes (or Cauchy) transform of ρ. The Stieltjes transform has a lot
of appealing properties. For instance, if the density function ρ does not contain Dirac masses,
then this is the unique solution of the so-called Riemann-Hilbert problem, i.e :

(i) g(z) is analytic in C+ except on its branch cut on the real axis inside supp[ρM];

(ii) lim|z|→∞ zg(z) = 1;

(iii) g(z) is real for z ∈ R\ supp[ρM];

(iv) When near the branch cut, two different values for g(z) are possible, depending on whether
the cut is approached from above or from below, i.e.:

lim
η→0+

g(x± iη) = h(x)∓ iπρ(x), x ∈ supp[ρ] and ρ(x) ∈ R+, (3.1.9)

where the function h denotes the Hilbert transform of ρ defined by

h(x) ..= −
∫

supp[ρ]

ρ(u)

x− udu (3.1.10)

with −
∫

denoting Cauchy’s principal value.

It is now immediate to see that if one knows g(z) in the complex plane, the density ρ can be
retrieved by inverting the last property of the Riemann-Hilbert problem:

ρ(x) ≡ 1

π
lim
η→0+

Im(g(x− iη)), x ∈ supp[ρ]. (3.1.11)

The continuous limit of g(z) in the large N limit thus allows to investigate the distribution of
the eigenvalues that lie in the bulk component.

Another interesting property is to study the asymptotic expansion of g(z) when z is large
(and outside of Supp[ρ]). Expanding g(z) in powers of z−1 yields:

g(z) =
z→∞

1

z

∫
ρ(u)

∞∑
k=0

(u
z

)k
du.
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To leading order, we get, in agreement with property (ii) above:

g(z) ∼ 1

z

∫
ρ(u)du ≡ 1

z
,

where the last equality comes from the fact that the ESD is normalized to unity. The other
terms of the expansion are also of particular interest. Indeed, we see that

g(z) =
z→∞

1

z
+

1

N

∞∑
k=1

TrMk

zk+1
≡ 1

z
+

∞∑
k=1

ϕ(Mk)

zk+1
, (3.1.12)

where we defined the k-th moment of the ESD by ϕ(Mk) := N−1TrMk. We see that the Stieltjes
transform is related to the moment generating function of the random matrix M. This is another
illustration of the fact that the Stieltjes transform contains the complete information about the
eigenvalues density. Inversely, if one can measure the moments of the eigenvalues distribution,
it is possible reconstruct a parametric eigenvalues density function that matches the empirical
data. This nice property is an important feature of the Stieltjes transform for statistical inference
purposes. Note that we will sometimes abbreviate ϕ(Mk) ≡ ϕk when there is no confusion about
the matrix we are studying.

Last but not least, it is easy to check the following scaling property

gaM(z) =
1

a
gM

(z
a

)
, (3.1.13)

for any a ∈ R\{0}. Moreover, suppose that M is invertible, then using (3.1.7) we also have

zgM(z) +
1

z
gM−1

(
1

z

)
= 1, (3.1.14)

so that we are able to compute the Stieltjes transform of M−1 given the Stieltjes transform of
M.

Blue function and R-transform. There are many other useful RMT transforms, some that will
turn out to be important in the next chapter. We begin with the free cumulant generating
function which is known as the R-transform in the literature [164, 176, 183]. To define this
quantity, it is convenient to introduce the functional inverse of the Stieltjes transform, also
known as the Blue transform [196]

B(g(z)) = z, (3.1.15)

and the R-transform is simply defined by

R(ω) = B(ω)− 1

ω
. (3.1.16)

Note that one may deduce from (3.1.13) the following property

RaM(ω) = aRM(aω), (3.1.17)

for any a ∈ R. One very nice property is that the R-transform admits a Taylor expansion in
the limit ω → 0. Indeed, by plugging ω = g(z) into Eq. (3.1.16), we obtain the formula

R(g(z)) +
1

g(z)
= z. (3.1.18)
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Then, one can find after expanding the Stieltjes transform in powers of z−1 that R(ω) can be
expanded as

R(ω) =
∞∑
`=1

κ`(M)ω`−1 (3.1.19)

where the sequence {κ`}`≥0 denotes the free cumulant of order ` which are expressed as a
function of the moments of the matrix. For completeness, we give the first four free cumulants:

κ1 = ϕ1

κ2 = ϕ2 − ϕ2
1

κ3 = ϕ3 − 3ϕ2ϕ1 + 2ϕ3
1

κ4 = ϕ4 − 4ϕ3ϕ1 − 2ϕ2
2 + 10ϕ2ϕ

2
1 − 5ϕ4

1. (3.1.20)

Note that the first three cumulants are equivalent to the ‘standard’ cumulants of ordinary
random variables and only differ from ` > 4. Note for example that when ϕ1 = 0, one finds
κ4 = ϕ4−2ϕ2

2, whereas the standard kurtosis would read ϕ4−3ϕ2
2. It will turn out that the free

cumulants of the sum of independent – in a sense specified below – random matrices are given
by the sum of the cumulants of these random matrices, i.e. κ`(M) = κ`(A) + κ`(B), see section
3.1.3 below.

Moment generating function and S-transform. The moment generating function of the LSD ρ
is obtained by considering

T (z) ..= zg(z)− 1 =

∫
duρ(u)u

z − u , (3.1.21)

frequently known as the T (or sometimes η [176]) transform [23]. Indeed, by taking z →∞, one
readily finds

TM(z) =
∞∑
k=1

ϕ(Mk)

zk
. (3.1.22)

We can then introduce the so-called S-transform as [183]:

S(ω) ..=
ω + 1

ωT −1(ω)
(3.1.23)

where T −1(ω) is the functional inverse of the T -transform. Using the series expansion of TM(z)
in powers of z−1 and Eq. (3.1.20), one finds that the S-transform also admits a Taylor series
which reads:

SM(ω) =
1

ϕ1
+

ω

ϕ3
1

(ϕ2
1 − ϕ2) +

ω2

ϕ5
1

(2ϕ2
2 − ϕ2ϕ

2
1 − ϕ3ϕ1) +O(ω3)

=
1

κ1
− κ2

κ3
1

ω +
2κ2

2 − κ1κ3

κ5
1

ω2 +O(ω3). (3.1.24)

From this last equation, it is not hard to see that the S-transform of a matrix M which has a
zero trace is ill-defined. Hence, the S-transform of a Wigner matrix does not make sense, but it
will be very useful when manipulating positive definite covariance matrices (see Section 3.1.3)

Note finally that there exists a relation between the R-transform and the S-transform

R(ω) =
1

S(ωR(ω))
, S(ω) =

1

R(ωS(ω))
(3.1.25)
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which allows one to deduce R(z) from S(z) and vice versa. Other properties on the R and S
transforms can be found e.g. in [46].

Let us show the second equality of (3.1.25) for the sake of completeness. The derivation of the first
identity is similar and we omit details. Using (3.1.16) and (3.1.23), one obtains

R(ωS(ω)) = B

(
ω + 1

T −1(ω)

)
− T

−1(ω)

ω + 1
. (3.1.26)

Next, by setting z = T −1(ω), we can rewrite (3.1.21) as

ω + 1

T −1(ω)
= g
(
T −1(ω)

)
. (3.1.27)

Hence, we conclude that

R(ωS(ω)) = T −1(ω)− 1

g
(
T −1(ω)

) =
ω

g
(
T −1(ω)

) . (3.1.28)

The conclusion then follows from (3.1.27).

3.1.2. Coulomb gas analogy. There exists several techniques to compute the limiting value
of the Stieltjes transform: (i) Coulomb gas methods, (ii) method of moments, (iii) Feynman
diagrammatic expansion, (iv) Dyson’s Brownian motion, (v) Replicas, (vi) Free probability,
(vii) recursion formulas, (viii) supersymmetry... We devote the rest of this section to provide
the reader with a brief introduction to (i), (v) and (vi). Dyson’s Brownian motion (iv) and
the recursion method (vii) are mentioned in appendices B.4 and 12.2.2. We refer to [8] for the
moment methods (ii), to [36, 44] for Feynman diagrams (iii) or to [?] and references therein for
summetry applied to RMT. Again, we emphasize that this presentation is not intended to be
rigorous in a mathematical sense, and we refer to standard RMT textbooks such as [1,8,57,171]
for more details.

We begin with the Coulomb gas analogy that, loosely speaking, consists in considering the
eigenvalues of M as the positions of fictitious charged particles, repelling each other via a 2-d
Coulomb (logarithmic) potential (see [131] for a self-contained introduction or to e.g. [36,62,63]
for concrete applications). We shall highlight in this section the strong link between the potential
function and the Stieltjes transform g(z) whenever the probability measure over the matrix
ensemble is rotationally invariant, i.e. of the form Eq. (3.1.1).

Stieltjes transform and potential function. First, we write from (3.1.1) the partition function of
the model as

Z ∝
∫
e−

βN
2

TrV (M)DM,

and this can be used as a starting point to obtain the LSD – or rather its Stieltjes transform
– using a saddle point method. This relation has first been obtained in the seminal paper
of Brézin-Itzykson-Parisi-Zuber [36] and we repeat here the main idea of the derivation (see
also [200, Section 2.1]). Let us first express the partition function in terms of the eigenvalues
and eigenvectors of M, using (3.1.2):

Z ∝
∫ ( N∏

i=1

dνi

)
exp

−N
N∑
i=1

V (νi)−
β

2N

∑
i 6=j

log|νi − νj |

 ,
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up to a constant factor that comes from integrating over the Haar measure dΩ. It is then
customary to introduce the action S({νi}) ≡ S(ν1, ν2, . . . , νN ) such that we can rewrite the
partition function as:

Z ∝
∫ N∏

i=1

dνie
−N2S({νi}) with S({νi}) =

1

N

N∑
i=1

V (νi)−
β

2N2

∑
i 6=j

log|νi − νj |, (3.1.29)

Note that the action is normalized so that its large N limit is of order 1. The eigenvalues can be
seen as a thermal gas of one-dimensional particles in an external potential V (z) and subject to a
(logarithmic) “electrostatic” repulsive interaction: this is the Coulomb gas analogy. At thermal
equilibrium, the eigenvalues typically gather in potential well(s), but cannot accumulate near
the minimum due to the repulsive force, which keeps them at distance of order O(N−1). For
instance, if we take a quadratic potential function V (x) = x2/2, then all the particles tend to
gather around zero as it is shown in the Fig. 3.1.1. We recall that we consider only densities
which are defined on an unique compact support (one-cut assumption) and we thus require that
the fictitious particles evolve in a confining convex potential V (z). The class of potential function
that we consider is such that its derivative gives a Laurent polynomial, i.e., V ′(z) =

∑
k ckz

k with
k integers that can be negative. Since we can always rewrite V ′(z) = z−`P (z), with the “order”
` the lowest (negative) power of V ′(z) and P (z) a polynomial, we define by d the “degree” of
V ′(z) which corresponds to the degree of P (z). In particular, if V ′(z) is a polynomial, then
` = 0.

-2 0 2
x

0

1

2
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4

5

V
(x

)

Figure 3.1.1. Typical configuration of a repulsive Coulomb gas with N = 20 particles (red dots) in the
potential V (x) = x2/2 as a function of x.

In the large N limit, the integral over eigenvalues can be computed by the saddle-point
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method which yields the following “force equilibrium” condition:4

V ′(νi) =
β

N

N∑
j=1;j 6=i

1

νi − νj
, ∀ i = 1, . . . , N. (3.1.30)

It seems hopeless to find the eigenvalues {λi} that solve these N equations. However, we
may expect to find the LSD ρM in the limit N → ∞, corresponding to configuration of the
eigenvalues that satisfies these saddle-point equations. In the case of the one-cut assumption,
the result reads [36]:

g(z) = V ′(z)−Q(z)
√

(z − ν+)
√

(z − ν−), (3.1.31)

where ν− < ν+ denote the edges of supp[ρ] and Q(z) is also a Laurent polynomial with degree
d − 1 and order `. Therefore, we see that we have d + 1 unknowns to determine, namely the
coefficients of Q(z), ν− and ν+ which are determined using the series expansion (3.1.12). We
shall give a detailed illustration of this procedure in Section 3.1.2 below5.

We observe that as soon as we can characterize the potential function of V (z) that governs
the entries of M, we are then able to find the corresponding LSD ρM. We will show in the rest
of this section that this Coulomb gas analogy allows one to retrieve some important laws in RMT.

Let us show how to obtain (3.1.31). In the following we set β = 1. First, we introduce the normailzed
trace of the resolvent g(z) in (3.1.30) by multiplying on both sides by N−1(z − νi)−1 and summing over
all i, which yields

1

N

N∑
i=1

V ′(νi)

z − νi
=

1

N2

N∑
i=1

N∑
j=1;j 6=i

1

(z − νi)(νi − νj)
. (3.1.32)

Notice that this last equation is indeed an analytical function for z ∈ C\Supp[ρM]. Then, we rewrite the
LHS using some algebraic manipulations that leads to

1

N

N∑
i=1

V ′(νi)

z − νi
= V ′(z)g(z)− 1

N

N∑
i=1

V ′(z)− V ′(νi)
z − νi

,

and for the RHS, we obtain

1

N2

N∑
i=1

N∑
j=1;j 6=i

1

(z − νi)(νi − νj)
≡ 1

2

[
g2(z) +

1

N
g′(z)

]
.

Regrouping these last two equations into the saddle-point equation (3.1.32) gives

1

2

[
g2(z) +

1

N
g′(z)

]
= V ′(z)g(z)− 1

N

N∑
i=1

V ′(z)− V ′(νi)
z − νi

.

Since we are interested in the limit of large N , we thus have to solve for g(z) the following quadratic
equation

g2(z)− 2V ′(z)g(z) +
2

N

N∑
i=1

V ′(z)− V ′(νi)
z − νi

= 0. (3.1.33)

4The reader might wonder why a system in thermal equilibrium ends up being described by simple mechanical
equilibrium, as at zero temperature. It turns out that the system is effectively at very low temperatures and that
entropy effects are of order N−1 compared to interaction effects, see e.g. [63] for a detailed discussion. Entropy
effects start playing a role for extended β ensembles where β = c/N where c is finite, see [4].

5In the case of positive definite covariance matrices, we can use the series (4.2.15) that corresponds to the limit
z → 0
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The most difficult term is the last one because the sum is not explicit. For the sake of simplicity, we
consider the case where V ′(z) is a polynomial of degree d > 0 as the extension to Laurent polynomial, i.e.
polynomial with negative powers, is immediate. For V ′(z) a polynomial function in z, we have that

P (z) ..=
1

N

N∑
i=1

V ′(z)− V ′(νi)
z − νi

is also a polynomial but with a degree d−1 whose coefficients can be determined later by the normalization
constraint, or by matching some moments. Then, the solution of Eq. (3.1.33) is such that:

g(z) = V ′(z)±
√
V ′(z)2 − 2P (z).

The nice property in the one-cut framework (i.e., a unique compact support for ρ) is that the above
expression can be simplified to (when d > 1):

g(z) = V ′(z)±Q(z)
√

(z − ν+)(z − ν−)

where ν− and ν+ denote the edges of supp[ρ] and Q(z) is a polynomial with degree d − 1 and this gives
(3.1.31).

Wigner’s semicircle law. As a warm-up exercise, we begin with Wigner’s semi-circle law [189],
one of the most important result in RMT. Note that this result has first been obtained in the
case of Gaussian matrix with independent and identically distributed entries (while preserving
the symmetry of the matrix). For real entries, we refer to this class of random matrices as the
Gaussian Orthogonal Ensemble (GOE). It has been proved, see e.g. [8], that the semi-circle law
can be extended to a broader class of random matrices, known as the Wigner Ensemble that
deals with a matrix M with independent and identically distributed entries such that:6

E
[
Mij

]
= 0, and E

[
M2
ij

]
= σ2/N. (3.1.34)

Let us consider here the specific case of a GOE matrix. For Gaussian entries, it is not hard to see
that the associated probability measure Pβ(M) is indeed of the Boltzmann type with a potential
function V (M) = M2/2σ2. From Eq. (3.1.31), we remark that the unknown polynomial Q(z) is
simply a constant because the derivative of the potential has degree d = 1. To determine this
constant, we enforce the property (ii) of the Riemann-Hilbert problem which enable us to get
by identification: Q(z) = 1, ν± = ±2σ. We thus finally obtain:

gW (z) =
z −
√
z + 2σ

√
z − 2σ

2σ2
, (3.1.35)

where
√· denotes throughout the following the principal square root, that is the non-negative

square root of a non-negative real number. Equation (3.1.35) is indeed the Stieltjes transform
of Wigner’s semi-circle law. Note that it is frequent to see the above result written as

gW (z) =
z ±
√
z2 − 4σ2

2σ2
,

where the convention “±” refers to the fact that we have to chose the correct sign such that
g(z) ∼ z−1 for large |z| (property (ii) of the Riemann-Hilbert problem). The density function is

6The case where the variance of the matrix elements diverge corresponds to Lévy matrices, introduced in [54].
For a rigorous approach, we refer the readers to [20]. For recent developments, see [174] .
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then retrieved using the inversion formula (3.1.11) that yields the celebrated Wigner’s semicircle
law :

ρW (x) =
1

2πσ2

√
4σ2 − x2, |x| < 2σ. (3.1.36)

We plot in Fig 3.1.2 the density of the semi-circle and compared with the ESD obtained from
a GOE matrix of size N = 500. As stated at the beginning of this section, we see that the
limiting density agrees well with the ESD of the large but finite size matrix. In fact, one can
rigorously estimate the expected difference between the ESD at finite N and the asymptotic
LSD for N = ∞, which vanishes as N−1/4 as soon as the Mij ’s have a finite fourth moment,
and as N−2/5 if all the moments of the Mij are finite (see [13]).
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Figure 3.1.2. Wigner semi-circle density (3.1.36) compared with empirical results with N = 500
(histogram) from one sample, illustrating the convergence of the ESD at finite N to the asymptotic LSD.

Due to the relative simplicity of the expression of Eq. (3.1.35), one can easily invert this
expression to find the Blue transform to find that the R-transform of the semicircle law reads

RW (z) = σ2z. (3.1.37)

Since the average trace ϕ1 is exactly 0, the S-transform of a Wigner matrix is an ill-defined
object.

The Marčenko-Pastur law. As stated in the introduction, the study of random matrices began
with John Wishart [192]. More precisely, let us consider the N × T matrix Y consisting of
T independent realizations of random centered Gaussian vectors of size N and covariance C,
then the Wishart matrix is defined as the N ×N matrix M as M ..= T−1YY∗. In multivariate
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statistics, this matrix M is better known as the sample covariance matrix (see Chapter 4). For
any N and T > N , Wishart derived the exact PDF of the entries M which reads:

Pw(M|C) =
1

2NT/2ΓN (T/2)

det(M)
T−N−1

2

det(C)T/2
e−

T
2

TrC−1M. (3.1.38)

As alluded in the introduction, we say that M (given C) follows a Wishart(N,T,C/T ) distribu-
tion. In the “isotropic” case, i.e., when C = IN , we can deduce from (3.1.38)

Pw(M|IN ) ∝ det(M)
T−N−1

2 e−
T
2

TrM := e−
T
2

TrM+T−N−1
2

Tr log M, (3.1.39)

which clearly belongs to the class of Boltzmann ensembles (3.1.1). Throughout the following,
we shall denote by W the N × N matrix whose distribution is given by (3.1.39). Ignoring
sub-leading terms, the corresponding potential function is given by:

V (z) =
1

2q
[z − (1− q) log z] , with q := N/T. (3.1.40)

It is easy to see that the derivative indeed gives a Laurent polynomial in z as we have

V ′(z) =
1

2qz
[z − (1− q)] .

Following our convention, V ′(z) is a Laurent polynomial of degree 1 and order ` = −1 so that
we deduce Q(z) in (3.1.32) is of the form c/z with c a constant to be determined using (3.1.12).
We postpone the computation of the Stieltjes transform g(z) to the end of this section. The
final result reads:

g(z) =
(z + q − 1)−√z − ν−

√
z − ν+

2qz
, ν± ..= (1±√q)2, (3.1.41)

and this is the solution found by Marčenko and Pastur in [123] in the special case C = IN . We
can now use the inversion formula (3.1.11) to find the celebrated Marčenko-Pastur (MP) law
(for q ∈ (0, 1))

ρMP(ν) =

√
4νq − (ν + q − 1)2

2qπν
, ∀ ν ∈

[
ν−, ν+

]
. (3.1.42)

Note that for q > 1, it is plain to see that M has N−T zero eigenvalues that contribute (1−q)δ0

to the density Eq. (3.1.42). Note that the convergence of the ESD towards the asymptotic MP
law occurs, for q < 1, at the same speed as in the Wigner case, i.e. as N−2/5 in the present case
where the random elements of Y are Gaussian (for a full discussion of this issue, see [11]).

Again, the expression of g(z) is simple enough to obtain a closed formula for the Blue
transform, and deduce from Eq. (3.1.41) the R-transform of the MP law:

RMP(ω) =
1

1− qω . (3.1.43)

One can compute the S-transform of the MP law using the relation (3.1.25):

SMP(ω) =
1

1 + qω
. (3.1.44)
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We now derive the Stieltjes transform (3.1.41) through a complete application of the BIPZ formalism
introduced in Eq. (3.1.32). As alluded to above, the Stieltjes transform (3.1.32) for the isotropic
Wishart matrix has the form

g(z) =
1

2q

[
1− 1− q

z

]
− c

z

√
z − ν+

√
z − ν−, (3.1.45)

and the constants that we have to determine are c, ν+ and ν−. To that end, we use (3.1.12) that
tells us that when |z| → ∞

g(z) =
1

z
+
ϕ(M)

z2
+O(z−3). (3.1.46)

On the other hand, one finds by taking the limit z →∞ into (3.1.45) that

g(z) =
1

2q

[
1− 1− q

z

]
− c

[
1− ν+ + ν−

2z
− (ν+ − ν−)2

8z2

]
+O(z−3), (3.1.47)

Then, by comparing this last equation to (3.1.46), we may fix c by noticing that we have a leading
order

1

2q
− c = 0,

since g(z) behave as O(z−1) for very large z and therefore we have

c =
1

2q
. (3.1.48)

Next, we find at order O(z−1):

1 = − (1− q)
2q

+
ν+ + ν−

4q
, (3.1.49)

that is to say
ν+ = 2(1 + q)− ν−. (3.1.50)

Finally, the last constant is determined with the condition at order O(z−2),

ϕ(M) =
(ν+ − ν−)2

16q
, (3.1.51)

which is equivalent to

ν− = ν+ − 4
√
qϕ(M) = (1 + q)− 2

√
q = (1−√q)2, (3.1.52)

where we used (3.1.50) and ϕ(M) = 1 in the third step. Consequently, we deduce from (3.1.50) that
ν+ = (1 +

√
q)2 and the result (3.1.41) follows from the equations (3.1.48), (3.1.50) and (3.1.52).

Inverse Wishart matrix. Another very interesting case is the inverse of a Wishart matrix, simply
named the “inverse Wishart” matrix. The derivation of the corresponding eigenvalue density
is straightforward from the Marčenko-Pastur law (3.1.42). Indeed, one just needs to make the
change of variable u = ((1− q)ν)−1 into Eq. (3.1.42) to obtain:7

ρIMP(u) =
κ

πu2

√
(u+ − u)(u− u−), u± ..=

1

κ

[
κ+ 1±

√
2κ+ 1

]
, (3.1.53)

where the subscript IMP stands for “Inverse Marčenko-Pastur” and κ is related to q through

q =
1

2κ+ 1
∈ (0, 1) . (3.1.54)

In particular, one notices that u± = (1 − q)/ν∓ where ν∓ is defined in Eq. (3.1.41). We plot
in Fig. 3.1.3 the density of the Marčenko-Pastur (3.1.42) and of its inverse (3.1.53) both with
parameter q = 0.5.

7The factor (1− q)−1 is introduced to keep the mean at one as will be explained below.
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Figure 3.1.3. The red dotted curve corresponds to the Marčenko-Pastur density (3.1.42) with q = 0.5.
We repeat the experiment with the Inverse Wishart matrix still with q = 0.5 (plain blue curve).

In addition to the eigenvalue density (3.1.53), one can also derive explicit expressions for
the other transforms presented in Section 3.1.1. For the Stieltjes transform, it suffices to apply
the same change of variable u = ((1− q)z)−1 and to use the properties (3.1.13) and (3.1.14) to
obtain:

giw(u) =
u(κ+ 1)− κ− κ√u− u−

√
u− u+

u2
, (3.1.55)

where the bounds u± are given in Eq. (3.1.53). One can easily check with the inversion formula
(3.1.9) that we indeed retrieve the density of states (3.1.53) as expected.

Using the Stieltjes transform (3.1.55), one can then compute the R-transform of the Inverse
Marčenko-Pastur density to find

RIMP(ω) =
κ−

√
κ(κ− 2ω)

ω
, κ > 0, (3.1.56)

and then, from (3.1.25), the S-transform reads

SIMP(ω) = 1− ω

2κ
. (3.1.57)

In statistics, the derivation of the inverse Wishart distribution is slightly different. Let M be
a N ×N real symmetric matrix that we assume to be invertible and suppose that M−1 follows
a Wishart(N,T,C−1) and C is a N ×N real symmetric positive definite “reference” matrix and
T > N − 1. In that case, it turns out that the PDF of M is also explicit. More precisely, we say
that M is distributed according to an Inverse-Wishart(N,T,C) whose PDF is given by [9]:

Piw(M−1|C) =
1

2NT/2ΓN (T/2)

det(C)T/2

det(M)(T+N+1)/2)
e−

1
2

Tr CM−1

. (3.1.58)
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In order to get that distribution, one should note that the Jacobian of the transformation
M → M−1 is equal to (det M)−N−1, as can be derived by using the eigenvalue/eigenvector
representation of the measure, see Eq. (3.1.2). A detailed derivation of this change of variable
may be found e.g. in [69, Eq. (15.15)].

An important property of the Inverse-Wishart distribution is the following closed formula
for the expectation value: 〈

M
〉
Piw

=
C

T −N − 1
. (3.1.59)

The derivation of this result can be obtained using the different identities of [86].

We may now explain the factor (1 − q) in the above change of variable. If we consider
C = IN/T , we deduce from (3.1.59) that

〈
M
〉
Piw

=
T

T −N − 1
IN ∼

LDL

1

1− q IN . (3.1.60)

In order to have a normalized spectral density, i.e. N−1TrM = 1, we see that we need to apply
M̃ = (1 − q)M so that 〈M̃〉 = IN . This was exactly the purpose of the change of variable
u = ((1− q)ν)−1 in Eq. (3.1.53).

We conclude this section by stating that one can characterize entirely the eigenvalue density
function of a broad class of random matrices M through a potential function. This allows one
to reproduce a large variety of empirical spectral densities by adequately choosing the convex
confining potential.

3.1.3. Free probability. We saw in the previous two examples that one can derive, from the
potential function, some analytical results about the ESD which can be very interesting for
statistical purposes (e.g. the inverse Wishart density). However, the Coulomb gas method does
not allow one to investigate the spectrum of a matrix that is perturbed by some noise source.
This is a classical problem in Statistics where one is often interested in extracting the “true”
signal from noisy observations. Standard models in statistics deal with either an additive or
multiplicative noise (as will be the case for empirical correlation matrices). Unless one can write
down exactly the PDF of the entries of the corrupted matrix, which is rarely the case, the
Coulomb gas analogy is not directly useful.

This section is dedicated to a short introduction to free probability theory, which is an
alternative method to study the asymptotic behavior of some large dimensional random matrices.
More precisely, free probability provides a robust way to investigate the LSD of either sums or
products of random matrices with specific symmetry properties. We will only give here the basic
notions of free probability applied to symmetric real random matrices and we refer to e.g. [164]
or [46] for a more exhaustive presentation.

Freeness. Free probability theory was initiated in 1985 by Dan Voiculescu in order to understand
special classes of von Neumann algebras [181], by establishing calculus rules for non commutative
operators relying on the notion of freeness, defined below for the special case of matrices. A few
years later, Voiculescu [183] and Speicher [?] found that rotationally invariant random matrices
asymptotically satisfy the freeness criteria, and this has had a tremendous impact on RMT.

Roughly speaking, two matrices A and B are mutually free if their eigenbasis are related to
one another by a random rotation, i.e. when their eigenvectors are almost surely orthogonal. For
random matrices, we rather use the notion of “asymptotic” freeness. The precise statement is
as follows [183]: let A and B be two independent self-adjoint matrices of size N . If the spectral
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density of each matrix converges almost surely in the large N limit and if B is invariant under
rotation, then A and B are asymptotically free. This statement can also be found in a different
context in [?].

The notion of freeness for random matrices is the counterpart of independence for random
variables. Indeed, recall that the normalized trace operator, defined as

ϕ(M) :=
1

N
TrM, (3.1.61)

is equal to the first moment of ρM. Then, provided that ϕ(A) = ϕ(B) = 0, we say that A and
B are free if the so-called freeness property is satisfied, to wit:

ϕ (An1Bm1An2Bm2 . . .AnkBmk) = ϕ(An1)ϕ(Bm1)ϕ(An2)ϕ(Bm2) . . . ϕ(Ank)ϕ(Bmk), (3.1.62)

for any integers n1, . . . , nk and m1, . . . ,mk with k ∈ N+. Note that if ϕ(A) 6= 0 and ϕ(B) 6= 0,
then it suffices to consider the centered matrices A− ϕ(A)IN and B− ϕ(B)IN .

Let us explore (3.1.62) in the simplest case. For any free matrices A and B defined as above,
one has

ϕ ((A− ϕ(A))(B− ϕ(B))) = 0, (3.1.63)

from which we deduce ϕ (AB) = ϕ(A)ϕ(B). Hence, if one thinks of the trace operator (3.1.61)
as the analogue of the expectation value for non commutative random variables, the freeness
property is the analogue of the moment factorization property. More generally, freeness allows
the computation of mixed moments of products of matrices from the knowledge of the moments
of A and B, similar to classical independence in probability theory. For example, from

ϕ ((A− ϕ(A))(B− ϕ(B))(A− ϕ(A))) = 0, (3.1.64)

we can deduce that
ϕ (ABA) = ϕ(A2B) = ϕ(A2)ϕ(B). (3.1.65)

One typical example of free pairs of matrices is when A is a fixed matrix and when B is a
random matrix belonging to a rotationally invariant ensemble, i.e. B = ΩBdiagΩ∗, where Bdiag

is diagonal and Ω distributed according to the Haar (flat) measure over the orthogonal group,
in the limit where N is infinitely large. This concept of asymptotic freeness is also related to the
notion of vanishing non-planar diagrams [90]. As we shall see in Chapter 8, the computation
of mixed moments will be used to derive some useful relations for estimating over-fitting for
statistical estimation problems.

Sums of free matrices. In addition to the computation of mixed moments such as Eq. (3.1.64),
free probability theory allows us to compute the LSD of sums and products of invariant random
matrices, as we discuss now.

Let us look at the additive case first. Suppose that we observe a matrix M which is built
from the addition of a fixed “signal” matrix A and a noisy (or random) matrix B that we assume
to be invariant under rotation, i.e.,

M = A + ΩBΩ∗,

for any N × N matrix Ω that belongs to the orthogonal group O(N). A typical question is
to evaluate the LSD of M and estimate the effect of the noise on the signal in terms of the
modification of its eigenvalues. Assuming that the ESD of A and B converge to a well defined
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limit, the spectral density of M can be computed using the law of addition for non commutative
operators, namely Voiculescu’s free addition

RM(ω) = RA(ω) +RB(ω). (3.1.66)

Hence, we can interpret the R-transform (3.1.16) as the analogue in RMT of the logarithm of
the Fourier transform for standard additive convolution. It is possible to rewrite Eq. (3.1.66) as
a function of the Stieltjes transform of M that contains all the information about the spectral
density of M. Equation (3.1.66) is equivalent to

BM(ω) = BA(ω) +RB(ω).

Next, we introduce ω = gM(z) that yields

BA(gM(z)) = z −RB(gM(z)).

It now suffices to apply the function gA on both sides to obtain

gM(z) = gA(z −RB(gM(z))). (3.1.67)

This last relation establishes the influence of the additive noise coming from the matrix B on
the “signal” (or true) eigenvalues of A.

To gain more insight on this result, let us assume that the noise matrix B is a simple GOE
matrix with centered elements of variance σ2/N. We know from Eq. (3.1.37) that RB(z) =
σ2

Bz. Hence, the spectrum of the sample matrix M is characterized by the following fixed-point
equation:8

gM(z) = gA(z − σ2
BgM(z)). (3.1.68)

This is the Stieltjes transform of the deformed GOE matrix9 which is a well-known model in
statistical physics of disordered systems. Indeed, this model can be seen as a Hamiltonian that
consists of a fixed source subject to an external additive perturbation B [35]. Taking A to be
a GOE as well, we find that M is a GOE with variance σ2

A + σ2
B, as expected. In a inference

theory context, this model might be useful to describe general linear model where the signal we
try to infer is corrupted by an additive noise.

Another interesting application is when the matrix B has low rank, frequently named a
factor model. In the example of stocks market, this model can be translated into the fact that
there exist few common factors to all stocks such as global news about the economy for instance.
For the sake of simplicity, we consider the rank-1 case but the following argument can be easily
generalized to a finite rank r � N . Let us denote the unique nontrivial eigenvalue of B as
β > 0 and ask ourselves how adding a (randomly oriented) rank-1 matrix affects the spectrum
of M. This problem can be solved explicitly using free matrix tools in the LDL. Indeed, as
we show below, the largest eigenvalue pops out of the spectrum of A whenever there exists
z ∈ R\ supp[ρA] such that

gA(z) =
1

β
. (3.1.69)

8This equation can also be interpreted as the solution of a Burgers equation, that appears within the Dyson
Brownian motion interpretation of the same problem – see Appendix 11 for more about this.

9This result can be generalized to the class of deformed Wigner matrices, i.e. where the noise is given by
(3.1.34) but not necessarily Gaussian, see e.g. [107].
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For instance, if A is a Wigner matrix with variance σ2 > 0, one can easily check from (3.1.69)
and (3.1.37) that the largest eigenvalue ν1 of M is given by

ν1 =

{
β + σ2/β if β > σ

2σ otherwise .
(3.1.70)

When β > σ, we say that ν1 is an outlier, i.e. it lies outside the spectrum of ρA. Hence, we see
that free probability allows one to find a simple criterion for the possible presence of outliers.

Let us now derive the criterion (3.1.69). First we need to compute the R-transform of the rank one
matrix B in order to use (3.1.66). From (3.1.8), we easily find that

gB(u) =
1

N

1

u− β +

(
1− 1

N

)
1

u
=

1

u

[
1 +

1

N

β

1− u−1β

]
. (3.1.71)

Using perturbation theory, we can invert this last equation to find the Blue transform, and this
yields at leading order,

BB(ω) =
1

ω
+

β

N(1− ωβ)
+O(N−2). (3.1.72)

We may therefore conclude from (3.1.16) that

RB(ω) =
β

N(1− βω)
+O(N−2). (3.1.73)

Hence, we obtain by applying (3.1.66) and (3.1.16) that

BM(ω) = BA(ω) +
β

N(1− βω)
+O(N−2). (3.1.74)

Next, we set ω = gM(z) so that this latter equation becomes

z = BA(gM(z)) +
β

N(1− βgM(z))
+O(N−2). (3.1.75)

From this equation, we expect the Stieltjes transform of ρM to be of the form

gM(z) = g0(z) +
g1(z)

N
+O(N−2). (3.1.76)

By plugging this ansatz into (3.1.75), we see that g0(z) and g1(z) satisfies

z = BA(g0(z))

g1(z) = − β

B′A(g0(z))(1− g0(z)β)
. (3.1.77)

It is easy to find that g0(z) = gA(z) as expected. We now focus on the 1/N correction term and
using that B′A(gA(z)) = 1/gA(z), we conclude that

g1(z) = − βg′A(z)

1− gA(z)β
. (3.1.78)

Finally, we obtained that

gM(z) ≈ gA(z)− 1

N

βg′A(z)

1− gA(z)β
, (3.1.79)

and we see that the correction term only survive in the large N limit if gA(z) = β−1 has a non
trivial solution. Differently said, z is an eigenvalue of M and not of A if there exists z ∈ R\ supp[ρA]
such that gA(z) = β−1 and this leads to the criterion (3.1.69).
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Products of free matrices. Similar results are available for free multiplicative convolution. Before
showing how to obtain the LSD of the product of free matrices, we first emphasize that one has
to carefully define the product of free matrices. Indeed, the naive analogue of the free addition
would be to define M = AB. However the product AB is in general not self-adjoint when A
and B are self-adjoint but not commuting. In the case where A is positive definite, we can see
that the product A1/2BA1/2 makes sense and share the same moments than the product AB.
Therefore, we define the product of free matrices by

M :=
√

AB
√

A. (3.1.80)

Note that in this case, B need not be necessarily positive definite but must have a trace different
from zero (see the Taylor expansion below). For technical reason, we need the LSD of B to be
well-defined. Under this assumption, the free multiplicative convolution rule for random matrices
is given by

SM(ω) = SA(ω)SB(ω). (3.1.81)

This is the so-called free multiplication, which has been first obtained by Voiculescu [183] and
then by [198] in a physics formalism.

Again, if one is interested in the limiting spectral density of M, one would like to write
(3.1.81) in terms of its Stieltjes transform. Using the very definition of the S-transform, we
rewrite (3.1.81) as

1

T −1
M (ω)

=
SB(ω)

T −1
A (ω)

.

The trick is the same as above so we therefore set ω = TM(z) to find

T −1
A (TM(z)) = zSB(TM(z)). (3.1.82)

It is now immediate to get the analogue of (3.1.67) for the multiplicative case

TM(z) = TA (zSB(TM(z))) , (3.1.83)

that gives in terms of the Stieltjes transform

zgM(z) = Z(z)gA (Z(z)) , Z(z) ..= zSB(zgM(z)− 1). (3.1.84)

This is certainly one the most important results of RMT for statistical inference. It allows one
to generalize the Marčenko-Pastur law for sample covariance matrices to arbitrary population
covariance matrices C (see next section), and obtain results on the eigenvectors as well. We
emphasize that the literature on free products can be adapted to non Hermitian matrices, see [46]
or [45] for a recent review on the multiplication of random matrices.

3.1.4. Replica analysis.

Resolvent and the Replica trick. As we noticed above (Eq. 3.1.6), information about the eigen-
vectors can be studied through the resolvent. However, both the Coulomb gas analogy and free
probability tools are blind to the structure of eigenvectors since these only give information about
the normalized trace of the resolvent. In order to study the resolvent matrix, we need to intro-
duce other tools, for example one borrowed from statistical physics named the Replica method.
To make it short, the Replica method allows one to rewrite the expectation value of a logarithm
in terms of moments, expressed as expectation values of many copies, named the replicas, of the
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initial system. This method has been extremely successful in various contexts, including RMT
and disordered systems, see e.g. [?,134], or [137] for a more recent review. We stress that even if
this method turns out to be a very powerful heuristic, it is not rigorous mathematically speaking
(see below). Therefore, it is essential to verify the result obtain from the Replica method using
other methods, for example numerical simulations. Note that a rigorous but more difficult way
to deal with resolvent is the recursion technique that uses linear algebra results, as explained in
Appendix B.4. Other available techniques include Feynman diagrams [44,48].

As a warm-up exercise, we present briefly the approach for the Stieltjes transform and then
explain how to extend it to the study of full resolvent. We notice that any Stieltjes transform
can be expressed as

g(z) =
N∑
i=1

1

z − νi
=

∂

∂z
log

N∏
i=1

(z − νi) =
∂

∂z
log det(zI −M). (3.1.85)

Then, using the Gaussian representation of det(zI −M)−1/2, we have that

Z(z) ≡ (det(zI −M))−1/2 =

∫
exp

[
−1

2

N∑
i,j=1

ηi(zI −M)ijηj

]
N∏
j=1

(
dηj√

2π

)
. (3.1.86)

Plugging this last equation into (3.1.85) and assuming that the Stieltjes transform is self-
averaging, we see that we need to compute the average of the logarithm of Z(z):

g(z) = −2
∂

∂z
E logZ(z), (3.1.87)

where the average is taken over the probability distribution PM. However, it would be easier
to compute the moments EZn(z) instead of E logZ(z) and this is precisely the purpose of the
Replica trick which was initially formulated as the following identity

logZ = lim
n→0

Zn − 1

n
, (3.1.88)

so that one formally has

g(z) = lim
n→0

∂

∂z

EZn − 1

n
. (3.1.89)

We have thus transformed the problem (3.1.87) into the computation of n replicas of the system
involved in Zn(z). The non-rigorous part of this method is quite obvious at this stage. While the
integer moments of Z can indeed be expressed as an average of the replicated system, the identity
(3.1.88) requires vanishingly small, real values of n. Typically, one works with integer n’s and
then perform an analytical continuation of the result to real values of n before taking the limit
n→ 0 (after, as it turns out, sending the size of the matrix N to infinity!). Therefore, the main
concern of this method is that we assume that the analytical continuation poses no problem,
which is not necessarily the case. It is precisely this last step that could lead to uncontrolled
approximations in some cases [143], which is why numerical (or other) checks are mandatory.
Nonetheless, the Replica trick gives a simple heuristic to compute the Stieltjes transform g(z)
which, as shown below, is exact for the quantities considered in this thesis.

For our purposes, we need to extend the above Replica formalism for the entire resolvent
and not only its normalized trace. In that case, we will need a slightly different Replica identity,
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extending (3.1.88), that we shall now present. The starting point is to rewrite the entries of the
resolvent matrix G(z) using the Gaussian integral representation of an inverse matrix

(zIN −M)−1
ij =

∫ (∏N
k=1 dηk

)
ηiηj exp

{
−1

2

∑N
k,l=1 ηk(zδkl −Mkl)ηl

}
∫ (∏N

k=1 dηk

)
exp

{
−1

2

∑N
k,l=1 ηk(zδkl −Mkl)ηl

} . (3.1.90)

As explained in Appendix B.4, we expect that (3.1.90) is self-averaging in the LDL thanks to
the Central Limit Theorem, so that:

(zIN −M)−1
ij =

〈
1

Z

∫ ( N∏
k=1

dηk

)
ηiηj exp

−1

2

N∑
k,l=1

ηk(zδkl −Mkl)ηl


〉
PM

, (3.1.91)

where Z is as above the partition function, i.e. the denominator in Eq. (3.1.90). The replica
identity for resolvent is given by

Gij(z) = lim
n→0

〈
Zn−1

∫ ( N∏
k=1

dηk

)
ηiηj exp

−1

2

N∑
k,l=1

ηk(zδkl −Mkl)ηl


〉
PM

= lim
n→0

∫ ( N∏
k=1

n∏
α=1

dηαk

)
η1
i η

1
j

〈
n∏

α=1

exp

−1

2

N∑
k,l=1

ηαk (zδkl −Mkl)η
α
l


〉
PM

.(3.1.92)

Again, we managed to rewrite the initial problem (3.1.91) as the computation of n replicas. We
emphasize that (3.1.92) is valid for any random matrix M, and is useful provided that we are
able to compute the average over the probability density PM. The identity (3.1.92) is the central
tool of this section. In particular, it allows one to study the asymptotic behavior of the resolvent
entry-wise, which contains more information about the spectral decomposition of M than just
the normalized trace [40]. As will become apparent below, we consider a model of random
matrices inspired by Free Probability theory, i.e. M = A + ΩBΩ∗ and M = A1/2ΩBΩ∗A1/2

(see Section 3.1.3 above for a more details). We shall focus on the model of free multiplication
since the arguments below may be repeated almost verbatim for the free additive case (see
Appendix 11).

Matrix multiplication using replicas. We reconsider the model (3.1.80) and assume without loss
of generality that A is diagonal. In that case, we see that PM is simply the Haar measure over
the orthogonal group O(N). We specialize the replica identity (3.1.92) to M = A1/2ΩBΩ∗A1/2

so that we get

Gij(z) = lim
n→0

∫ ( N∏
k=1

n∏
α=1

dηαk

)
η1
i η

1
j e
− z

2

∑n
α=1

∑N
k=1(ηαk )2I1

(
n∑

α=1

(
ηαA1/2

)(
ηαA1/2

)∗
,B

)
,

(3.1.93)
where

Iβ(A′,B) ..=

∫
exp
[
−βN

2
Tr A′ΩBΩ∗

]
DΩ, (3.1.94)

is the so-called Harish-Chandra–Itzykson-Zuber integral [89, 95]. Explicit results for this inte-
gral are known for Hermitian matrices (β = 2) for any integer dimension N , but not for real
orthogonal matrices. Even the study of (3.1.94) in the limit N → ∞ is highly non trivial (see
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Appendix A). Nevertheless, in the case where A′ is of finite rank, the leading contribution for
N →∞ is known for any symmetry group. Fortunately, we see that A′ in our case is of rank n
and the result is obtained from Eq. (A.1.7) in Appendix A:10

I1

( n∑
α=1

(
ηαA1/2

)(
ηαA1/2

)∗
,B
)
∼

N→∞
exp

[
N

2

n∑
α=1

WB

(
1

N

N∑
i=1

(ηαi )2ai

)]
, (3.1.95)

with
W ′B(.) = RB(.) , (3.1.96)

and where we assume that the vectors [ηα]nα=1 are orthogonal to each other, which is generically
true provided n� N . We then plug this result into (3.1.93) and introduce an auxiliary variable
pα = 1

N

∑N
i=1(ηαi )2ai that we enforce using the exponential representation of a Dirac delta

function

δ
(
pα − 1

N

N∑
i=1

(ηαi )2ai

)
=

∫
1

2π
exp

[
iζα
(
pα − 1

N

N∑
i=1

(ηαi )2ai

)]
dζα, (3.1.97)

for each α = 1, . . . , n. This allows to retrieve a Gaussian integral on ηα. Renaming ζα =
−2iζα/N yields the result

Gij(z) ∝
∫ ∫ ( n∏

α=1

dpαdζα

)
δij

z − ζ1ai
exp

[
−Nn

2
F0(pα, ζα)

]
(3.1.98)

where F0 is the free energy given by

F0(pα, ζα) =
1

n

n∑
α=1

[
1

N

N∑
k=1

log(z − ζαak) + ζαpα −WB(pα)

]
. (3.1.99)

Now, one sees that the integral over dpαdζα involves the exponential of Nn/2 times the free
energy, which is of order unity. Provided that n is non-zero, one can estimate this integral via
a saddle point method (but of course n will be sent to zero eventually...). We assume a replica
symmetric ansatz for the saddle point, i.e. pα = p∗ and ζα = ζ∗, ∀α = 1, . . . , n. This is natural
since F0 is invariant under the permutation group Pn. Note however that the replica symmetric
ansatz can lead to erroneous results and this phenomenon is known as replica symmetry breaking,
see e.g. [134, 143] or [167] and references therein for a mathematical formalism. The rest of the
calculation relies on a saddle-point analysis whose details we postpone below, and we finally
obtain a so-called “global law” for the resolvent of M:11

zGM(z) ∼
N→∞

Z(z)GA(Z(z)), Z(z) ..= zSB(zgM(z)− 1), (3.1.100)

which is often referred to as a subordination relation between the resolvent of M and A. Note
that the average resolvent GM(z) is diagonal in the eigenbasis of A, as expected by symmetry.
Taking the trace of both sides of the above equation, one notices that (3.1.100) is a generalization
of the formula (3.1.84) as a matrix. We should emphasize that Eq. (3.1.100) is self-averaging

10Recall that we work with n as an integer throughout the intermediate steps of the computation.
11The term “global” assumes that the imaginary part of z is much larger than N−1, in contrast to many different

studies of the resolvent at a “local” scale (see [22] for a detail presentation of this concept for Wigner matrices).
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element by element for the matrix GM(z), i.e. Gij(z) = 〈Gij(z)〉 + O(N−1/2). The matrix
GM(z) taken as a whole cannot be considered deterministic, for example 〈GM(z)〉2 is in general
different from 〈G2

M(z)〉. Nevertheless in what follows we will write deterministic equations for
GM(z) which should be interpreted as element by element self-averaging equations.

We can redo the exact same calculations for the free addition model M = A + ΩBΩ∗, still
with A = diag(a1, a2, . . . , aN ) (see Appendix 11). Starting from the replica identity (3.1.92)
and then applying (A.1.7), we obtain the following expression [40]:

Gij(z) ∝
∫ ∫ ( n∏

α=1

dpαdζα

)
δij

z − ζ1 − ai
exp

{
−Nn

2
F a0 (pα, ζα)

}
, (3.1.101)

where the ‘free energy’ F a0 is given by

F a0 (p, ζ) ..=
1

Nn

n∑
α=1

[
N∑
k=1

log(z − ζα − ak)−WB(pα) + pαζα

]
. (3.1.102)

Invoking once again the replica symmetric ansatz, the subordination for the resolvent under the
free addition model follows from a saddle-point analysis [40]

GM(z) ∼
N→∞

GA(Za(z)), Za(z) ..= z −RB(gM(z)), (3.1.103)

which is exactly the result obtained in [103] in a mathematical formalism. Again taking the
trace of both sides of this equation allows one to recover the relation (3.1.67) between Stieltjes
transforms.

Free multiplication: replica saddle-point analysis.

We now present the derivation of (3.1.100) from (3.1.98). We shall that it actually provides an
elementary derivation of the free multiplication formula (3.1.81). Under the replica symmetric
ansatz, the free energy becomes

F0(pα, ζα) ≡ F0(p, ζ) =
1

N

N∑
k=1

log(z − ζak) + ζp−WB(p),

which needs to be extremized. We first consider the first order condition with respect to p which
leads to

ζ∗ = RB(p∗). (3.1.104)

The other derivative with respect to ζ gives:

p∗ =
1

ζ∗N

N∑
k=1

ak
z/ζ∗ − ak

=
TA
(

z
RB(p∗)

)
RB(p∗)

. (3.1.105)

Hence, plugging (3.1.104) and (3.1.105) into (3.1.98), we get in the large N limit and then the limit
n→ 0 by

Gij(z)ij =
δij

z −RB(p∗)ci
. (3.1.106)

We can find a genuine simplification of the last expression using the connection with the free
multiplication convolution. By taking the normalized trace of GM(z), we see that we have

zgM(z) = ZgA(Z), with Z ≡ Z(z) =
z

RB(p∗)
, (3.1.107)

which can rewrite as
TM(z) = TA(Z).
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Let us define
ω = TM(z) = TA(Z). (3.1.108)

Using Eq. (3.1.105), this latter equation implies p∗ = ω/RB(p∗). Let us now show how to retrieve
the free multiplicative convolution (3.1.81) from (3.1.107) in the large N limit. Indeed, let us rewrite
(3.1.108) as

zTM(z) = ZTA(Z)RB(p∗), (3.1.109)

and it is trivial to see that using (3.1.108) that this last expression can be rewritten as ωT −1
M (ω) =

ωT −1
A (ω)RB(p∗). Finally, using the definition of the S-transform (3.1.23), this yields

SM(ω) = SA(ω)
1

RB(p∗)
. (3.1.110)

Using (3.1.25), we also have
1

RB(p∗)
= SB(p∗RB(p∗)), (3.1.111)

But recalling that p∗ = ω/RB(p∗), we conclude from (3.1.104), (3.1.108) and (3.1.111) that

1

ζ∗
= RB(p∗) = SB(TM(z)). (3.1.112)

Going back to (3.1.110), we see that the spectral density of M is given by Voiculescu’s free multi-
plication formula

SM(ω) = SA(ω)SB(ω), (3.1.113)

confirming that the replica symmetry ansatz is indeed valid in this case. Finally, by plugging
(3.1.112) into (3.1.106), we get the result (3.1.100).
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Chapter 4

Spectrum of large empirical covariance
matrices

4.1 Sample covariance matrices

4.1.1. Setting the stage. After a general introduction to RMT and to some of the many different
analytical tools, we are now ready to handle the main issue of this thesis, which is the statistics
of sample covariance matrices. As a preliminary remark, note that we assume that the variance
of each variable can be estimated independently with great accuracy given that we have T � 1
observations for each of them. Consequently, all variables will be considered to have unit variance
in the following and we will not distinguish further covariances and correlations henceforth.

As stated in the introduction, the study of correlation matrices has a long history in statistics.
Suppose we consider a (random) vector y = (y1, y2, . . . , yN ). One standard way to characterize
the underlying interaction network between these variables is through their correlations. Hence,
the goal is to measure as precisely as possible the true (or population) covariance matrix, defined
as

Cij = E
[
yiyj

]
, i, j ∈ [[1, N ]] (4.1.1)

where we assumed that the {yi}i∈[[1,N ]] have zero mean without loss of generality (see below).
It is obvious from the definition of C that the covariance matrix is symmetric. Throughout the
following, we shall define the spectral decomposition of C as

C =

N∑
i=1

µiviv
∗
i , (4.1.2)

with µ1 > µ2 > . . . > µN the real eigenvalues and v1, . . . ,vN the corresponding eigenvectors.
As illustrated in the introduction, the concept of covariances is of crucial importance in a

wide range of applications. For instance, let us consider an example that stems from financial
applications. The probability of large losses of a diversified portfolio is dominated by the cor-
related moves of its different constituents (see section 8.1 for more details). In fact, the very
notion of diversification depends on the correlations between the assets in the portfolio. Hence,
the estimation of the correlations between the price movements of these assets is at the core of
risk management policies.

The major concern in practice is that the true covariance matrix C is in fact unknown. To
bypass this problem, one often relies on a large number T independent measurements, namely
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Chapter 4. Spectrum of large empirical covariance matrices

the “samples” y1, . . . ,yT , to construct empirical estimates of C. We thus define the N × T
matrix Yit ∈ RN×T , whose elements are the t-th measurement of the variable yi. Within our
example from finance, the random variable Yit would be the return of the asset i at time t. Eq.
(4.1.1) is then approximated by an average value over the whole sample data of size T , leading
to the sample (or empirical) covariance matrix estimator:

Eij =
1

T
(YY∗)ij =

1

T

T∑
τ=1

YitYjt. (4.1.3)

In the statistical literature, this estimator is known as Pearson estimator and in the RMT com-
munity, the resulting matrix sometimes referred to as defining the Wishart Ensemble. Whereas
the Wigner Ensemble has been the subject of a huge amount of studies in physics [1], results on
the Wishart Ensemble mostly come from mathematics & statistics [14,123,145], telecommunica-
tion [57] or the financial/econophysics literature [29,44,151], although some work in the physics
literature also exists [121,149,180,191] to cite a few.

In what we call the “classical” statistical limit, i.e. T → ∞ with N fixed, the law of
large numbers tells us that E converges to the true covariance C. However, as recalled in the
introduction, in the present “Big Data” era where scientists are confronted with large datasets
such that the sample size T and the number of variables N are both very large, but with an
observation ratio q = N/T of order unity, specific issues arise. This setting is known in the
literature as the high-dimensional limit or Kolmogorov regime (or more commonly named the
Big Data regime). This regime clearly differs from the traditional large T , fixed N situation (i.e.
q → 0), where classical results of multivariate statistics apply. The setting q ∼ O(1) is exactly
where tools from RMT can be helpful to make precise statements on the empirical covariance
matrix (4.1.3).

A typical question would be to study the ESD of E in order to quantify its ’deviation’
from the eigenvalue distribution of the true covariance matrix C. More precisely, does the ESD
converges to an explicit LSD? If it does, can we get a tractable expression for this LSD? In
the case where the samples {yt}Tt=1 are given by a multivariate Gaussian distribution with zero
mean and covariance C, the distribution of the matrix E is exactly known since Wishart [192],
and is given by Eq. (3.1.38) above, with M→ E. In the case where C = T−1IN , we retrieve the
isotropic Wishart matrix above that we fully characterized in the previous chapter. The aim is
now to provide the LSD of E for an arbitrary true covariance matrix C. More specifically, we
shall look at linear models where the data matrix Y can be decomposed as

Y =
√

CX, (4.1.4)

where X is a N × T random matrix with uncorrelated entries satisfying

E[Xit] = 0, E[X2
it] =

1

T
. (4.1.5)

The above decomposition is always possible for multivariate Gaussian variables. Otherwise,
the above framework assumes that our correlated random variables yi are obtained as linear
combinations of uncorrelated random variables. In addition, we also require that the random
variables

√
TXi,t have a bounded 4-th moment, in other words that the distribution cannot be

extremely fat-tailed.
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Next, we introduce the spectral decomposition of E as

E =
N∑
i=1

λiuiu
∗
i , (4.1.6)

with λ1 > λ2 > . . . > λN the eigenvalues and u1, . . . ,uN the corresponding eigenvectors. Let us
now give the main assumptions on the spectrum of E that we shall suppose to hold for the rest
of this thesis:

(i) The support of ρE consists of r + 1 (connected) components with r > 0. We call the
r largest components the outliers and the smallest component the bulk. The boundary
points of the bulk components are labelled λ− and λ+ (with λ− 6 λ+).

(ii) We suppose that the outliers are separated from each other and from the bulk (non-
degeneracy).

(iii) We suppose that the bulk is regular in the sense that the density of ρE vanishes as a square
root at the boundary points λ−, λ+.

In this chapter, we will look at the eigenvalues statistics of this model and the following section
will be devoted to the eigenvectors.

We end this short introduction of the sample covariance matrix with two different remarks.
The first one comments the zero-mean assumption made above, while the second one is concerned
with the possible fat-tailed nature of the random variables under scrutiny.

4.1.2. Zero-mean assumption. In real datasets, that sample vectors yt usually have a non-zero
mean (even if the true underlying distribution is of zero mean). One can choose therefore choose
to shift the sample vectors in such a way that the empirical mean is exactly zero. This leads to
the following definition of the empirical correlation matrix, often found in the literature:

Ĕij =
1

T − 1

T∑
t=1

(
Yit − Yi

)(
Yjt − Yj

)
, Yi =

1

T

T∑
τ=1

Yiτ . (4.1.7)

which is clearly unbiased as for T →∞ with N fixed. This can be rewritten as:

Ĕ =
1

T − 1
Y (IT − ee∗) Y∗, e ..= (1, 1, . . . , 1)∗/

√
T ∈ RT .

Still, the asymptotic properties of the eigenvalues (and eigenvectors) of E and of Ĕ are identical,
up to a possible extra outlier eigenvalue located at zero when q > 1. The simplest way to
understand that the outlier has no influence on the asymptotic behavior of the spectrum is
when Y is a Gaussian matrix. In this case, we know that a Gaussian matrix is statistically
invariant under rotation so one can always rotate the vector e in the T dimensional space such
that it becomes, say, (1, 0, . . . , 0). Then one has:

Ĕij ∼
1

T − 1

T∑
t=2

YitYjt

which means that Ĕ and E share identical statistically properties when N,T →∞ up to a rank
one perturbation of eigenvalue ∼ T−1 → 0 (see Section 3.1.3 for a related discussion). For q < 1,
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this has no influence at all on the spectrum since the corresponding eigenvalue is reabsorbed in
the bulk. The possible spike associated to the rank-one perturbation only survives when N > T ,
and it leads to an extra zero eigenvalue from the last equation. But in the case where q > 1, we
know that there are (N − T ) additional zero eigenvalues, meaning that the extra spike at the
origin is harmless. The case where Y is not rotationally invariant is harder to tackle and needs
more sophisticated arguments for which we refer the reader to [27, Section 9] for more details.
As a consequence, all the results concerning the statistics of the eigenvalues of E that we shall
review below hold for Ĕ as well. From a practical point of view, it is indifferent to consider
raw data or demeaned data. We will henceforth assume that the samples data (y1, . . . ,yT ) has
exactly zero mean and will work only with E in the next sections.

4.1.3. Distribution of the data entries. The second remark deals with the distribution of the
entries of the matrix Y given in Eq. (4.1.5). It is well-known for instance that financial returns are
strongly non-Gaussian, with power-law tails [30], and hence, the condition of a sufficient number
of bounded moments can be seen as restrictive. What can be said in the case of entries that
possess extremely fat tails? This is the main purposes of the theory robust estimators [93, 127]
where the RMT regime N � T has been subject to a lot studies in the past few years, especially
in the case of elliptical distributions [26,51,57,74]. In particular, the so-called Maronna robust
M -estimator of C is the (unique) solution of the fixed point equation

M ..=
1

T

T∑
t=1

U
( 1

N
y∗tM

−1yt

)
yty

∗
t , (4.1.8)

where U is a non-increasing function. It was shown recently [59] that the matrix M converges to
a matrix of the form encountered in Eq. (3.1.80) and thus different from E. However, tractable
formula are scarce except for the multivariate Student distribution where U(x) = x−1 [26, 74,
178, 197]. In that case, we have from [58] that M converges (almost surely) to E as N → ∞.
Therefore, all the results that we will present below holds for the robust estimator of C under
a multivariate Student framework (see also [26]). We postpone discussions about other class of
distributions to Chapter 10.

4.2 Bulk statistics

4.2.1. Marčenko-Pastur equation. As we alluded in the introduction, the fundamental tool to
analyze the spectrum of large sample covariance matrices is the Marčenko-Pastur equation [123].
We actually have already encountered a special case of this equation in Section 3.1.2 where we
consider the LSD of E under the null hypothesis, isotropic case C = IN . In this section, we
allow the population correlation matrix C to be anistropic, that is to say not proportional to
the identity matrix. As we shall see, the final result is not as simple as Eq. (3.1.41) but many
properties can be inferred from it.

The Marčenko-Pastur (MP) equation dates back to their seminal paper [123] which gives an
exact relation between the limiting Stieltjes transforms of E and C. This result is at the heart
of many advances in statistical inference in high dimension (see Chapter 8 for some examples
or [145] and references therein). There are several ways to obtain this result, using e.g. recursion
techniques [162], Feynman diagram expansion [44], replicas (see [157] or Section 3.1.4 above for
a generalization) or free probability. We will present this last approach, which is perhaps the
simplest way to derive the MP equation.
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The key observation is that, for linear models, we can always rewrite E using Eq. (4.1.4) as

E =
√

CW
√

C, W ..= XX∗,

where the matrix X satisfies Eq. (4.1.5) and is independent from C. After some contemplations,
it becomes obvious that the model falls down into the model of free multiplication encountered
in Section 3.1.3 since E is the free multiplicative convolution of C with a white Wishart kernel
for N → ∞ [135]. Therefore, the Stieltjes transform of E is exactly given by Eq. (3.1.84) that
we specialize to

zgE(z) = Z(z)gC (Z(z)) , with Z(z) ..= zSW(zgE(z)− 1). (4.2.1)

Moreover, the S-transform of W was obtained in Eq. (3.1.44), i.e. SW(z) = (1 + qz)−1 for any
q > 0. Thus, we can reexpress Z(z) as:

Z(z) =
z

1− q + qzgE(z)
, (4.2.2)

which is exactly the Marčenko-Pastur self-consistent equation which relates the Stieltjes trans-
forms of E and C. The remarkable thing is that the RHS of Eq. (4.2.1) is “deterministic” as
C is fixed in this framework. Note that this equation is often written in the mathematical and
statistical literature in an equivalent way as:

gE(z) =

∫
ρC(µ)dµ

z − µ(1− q + qzgE(z))
. (4.2.3)

There are two ways to interpret the above Marčenko-Pastur equation:

1. the ‘direct’ problem: we know C and we want to compute the expected eigenvalues density
ρE of the empirical correlation matrix;

2. the ‘inverse’ problem: we observe E and try to infer the true C that satisfies equation
(4.2.1).

Obviously, the inverse problem is the one of interest for many statistical applications, but is much
more difficult to solve than the direct one as the mapping between gC from gE is numerically
unstable. Still, the work of El-Karoui [104] and, more recently, of Ledoit & Wolf [116] allows one
to make progress in this direction with a numerical scheme that solves a discretized version of
the inverse problem Eq. (4.2.3). On the other hand, the direct problem leads to a self-consistent
equation, which can be exactly solved numerically and sometimes analytically for some special
forms of gC (see next section).

Let us finally make a remark that we have not seen in the literature before. Enhancing Z(z)
to Z(z, q) to emphasize its dependence on q, one can check that this object obeys the following
simple PDE:

∂Z(z, q)

∂q
= (Z(z, q)− z)∂Z(z, q)

∂z
, (4.2.4)

with initial condition Z(z, q → 0) = z+ q(1− zgC(z)). Whether this representation has a direct
interpretation and is useful numerically or analytically remains to be seen.
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4.2.2. Spectral statistics of the sample covariance matrix. For statistical purposes, the Marčenko-
Pastur equation provides an extremely powerful framework to understand the behavior of large
dimensional sample covariance matrices, despite the fact that the inverse problem is not nu-
merically stable. As we shall see in this section, one can infer many properties of the spectrum
of E knowing that of C, using the moment generating function. Recall the definition of the
T -transform in Eq. (3.1.21), it is easy to see that we can rewrite Eq. (4.2.1) as

TE(z) = TC(Z(z)), Z(z) =
z

1 + qTE(z)
. (4.2.5)

We know from Eq. (3.1.22) that the T -transform can be expressed as power series for z → ∞,
hence we have

TE(z) =
z→∞

∞∑
k=1

ϕ(Ek)z−k, (4.2.6)

where ϕ(.) = N−1Tr(.) is the normalized trace operator. We thus deduce that

Z(z) =
z→∞

z

1 + q
∑∞

k=1 ϕ(Ek)z−k
.

Therefore we have for z →∞

TC(Z(z)) =
z→∞

∞∑
k=1

ϕ(Ck)

zk

(
1 + q

∞∑
`=1

ϕ(E`)z−`

)k
. (4.2.7)

All in all, one can thus relate the moments of ρE with the moments of ρC by taking z → ∞ in
Eq. (4.2.5) which yields

∞∑
k=1

ϕ(Ek)

zk
=
∞∑
k=1

ϕ(Ck)

zk

(
1 + q

∞∑
`=1

ϕ(E`)z−`

)k
, (4.2.8)

which was first obtained in [44]. In particular, we infer from Eq. (4.2.8) that the first three
moments of ρE satisfy

ϕ(E) = ϕ(C) = 1

ϕ(E2) = ϕ(C2) + q

ϕ(E3) = ϕ(C3) + 3qϕ(C2) + q2. (4.2.9)

We thus see that the variance of the LSD of E is equal to that of C plus q, i.e. the spectrum
of the sample covariance matrix E is always be wider (for q > 0) than the spectrum of the
population covariance matrix C. This an alternative way to convince ourself that E is a noisy
estimator of C in the high-dimensional regime.

Note that we can also express the Marčenko-Pastur equation in terms of a cumulant expan-
sion. Indeed, we can rewrite Eq. (4.2.1) in terms of the R-transform (see below for a derivation)

ωRE(ω) = ζ(ω)RC(ζ(ω)), ζ(ω) = ω
(
1 + qωRE(ω)

)
. (4.2.10)

Using the cumulants expansion of the R-transform, given in Eq. (3.1.19), we obtain for ω → 0

ωRE(ω) =

∞∑
`=1

κ`(E)ω`, (4.2.11)
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and

ζ(ω)RC(ζ(ω)) =
∞∑
`=1

κ`(C)ω`

(
1 + q

∞∑
m=1

κm(E)ωm

)`
. (4.2.12)

By regrouping these last two equations into Eq. (4.2.10), the analogue of Eq. (4.2.8) in terms of
free cumulants reads:

∞∑
`=1

κ`(E)ω` =

∞∑
`=1

κ`(C)ω`

(
1 + q

∞∑
m=1

κm(E)ωm

)`
, (4.2.13)

which would allow one to express the cumulants of E in terms of the cumulants of C.
Another interesting expansion is the case where q < 1, meaning that E is invertible. Hence

g(z) for z → 0 is analytic and one can readily find

g(z) =
z→0

−
∞∑
k=1

ϕ(E−k)zk−1. (4.2.14)

This allows one to study the moment of the LSD of E−1 and this turns out to be an important
quantity many applications (see Chapter 8). Using Eq. (4.2.1), we can actually relate the
moments of the spectrum E−1 to those of C−1 as one has, for z → 0:

Z(z) =
z

1− q − q∑∞k=1 ϕ(E−k)zk
.

Hence, we obtain the following expansion for Eq. (4.2.1) at z → 0 and q ∈ (0, 1):

∞∑
k=1

ϕ(E−k)zk =
∞∑
k=1

ϕ(C−k)

(
z

1− q

)k(
1

1− q
1−q

∑∞
`=1 ϕ(E−`)z`

)k
, (4.2.15)

that is a little bit more cumbersome than the moment generating expansion Eq. (4.2.8) or the
cumulant expansion (4.2.13). Still, we get at leading order that

ϕ(E−1) =
ϕ(C−1)

1− q , ϕ(E−2) =
ϕ(C−2)

(1− q)2
+
qϕ(C−1)2

(1− q)3
. (4.2.16)

We will see in Section 8.1 that the first relation has direct consequences for the out-of-sample
risk of optimized portfolios.

Let us now give a formal derivation of Eq. (4.2.10). Let us define

ω = gE(z), ζ = gC(Z), (4.2.17)

which allows us to rewrite Eq. (4.2.1) as

ωBE(ω) = ζBC(ζ), Z ≡ BC(ζ) =
BE(ω)

1− q + qωBE(ω)
. (4.2.18)

Then, using the definiton (3.1.16) of the R-transform, we can rewrite this last equation as

ωRE(ω) = ζRC(ζ), RC(ζ) +
1

ζ
=
RE(ω) + 1/ω

1 + qωRE(ω)
. (4.2.19)
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We deduce that

RC(ζ) =
RE(ω) + 1/ω

1 + qωRE(ω)
− 1

ζ
, (4.2.20)

and it is not hard to see that this yields

ωRE(ω) = ζ

(
RE(ω) + 1/ω

1 + qωRE(ω)
− 1

ζ

)
. (4.2.21)

By re-arranging the terms in this last equation, we obtain

ωRE(ω) + 1 =
ζ

ω

(
ωRE(ω) + 1

1 + qωRE(ω)

)
, (4.2.22)

that is to say
ζ ≡ ζ(ω) = ω

(
1 + qωRE(ω)

)
, (4.2.23)

and Eq. (4.2.10) immediately follows by plugging this last equation into Eq. (4.2.20).

4.2.3. Dual representation and edges of the spectrum. Although a lot of informations about
the spectrum of E can be gathered from the Marčenko-Pastur equation (4.2.1), the equation
itself is not easy to solve analytically. In particular, what can be said about the edges of the
spectrum of E? We shall see that we are able to answer some of these questions by using a dual
representation of Eq. (4.2.1).

The “dual” representation that we are speaking about comes from studying the T×T matrix
S:

S :=
1

T
Y∗Y ≡ X∗CX, (4.2.24)

where we used Eq. (4.1.4) in the last equation. The dual matrix S can also be interpreted as a
correlation matrix. In a financial context, E tells us how similar is the movement of two stocks
over time, while S tells us how similar are two dates in terms of the overall movements of the
stocks on these two particular dates. Using a singular value decomposition, it is not difficult to
show that S and E share the same non-zero eigenvalues – hence the “duality”. In the case where
T > N , the matrix S has a zero eigenvalue with multiplicity T −N in addition to the eigenvalues
{λi}i∈[1,N] of E. Therefore, it is easy to deduce the Stieltjes transform of S (for q > 1):

gS(z) =
1

T

[
T −N
z

+NgE(z)

]
=

1− q
z

+ qgE(z) =
1

Z(z)
. (4.2.25)

The introduction of this dual representation of the empirical matrix allows one to get the fol-
lowing expression from Eq. (4.2.3):

gS(z) =
1

z

(
1− q + q

∫
ρC(µ)dµ

1− µgS(z)

)
.

After some manipulations, we can rewrite this last equation as

z =
1

gS(z)
+ q

∫
ρC(µ)dµ

µ−1 − gS(z)
. (4.2.26)

Writing z = BS(gS(z)) in the above equation, we obtain a characterization of the functional
inverse of gS as

BS(ω) :=
1

ω
+ q

∫
ρC(µ)dµ

µ−1 − ω , (4.2.27)

73



4.2. Bulk statistics

and this is the dual representation of the Marčenko-Pastur equation (4.2.1). The analytic behav-
ior of this last equation has been the subject of several studies, especially in [163]. In particular,
it was proved that there exists a unique ω ∈ C+ that solves the equation (4.2.27). This yields the
Stieltjes transform of S from which we re-obtain the Stieltjes transform of E using Eq. (4.2.25).
We will see in the next section that the dual representation (4.2.27) of the Marčenko-Pastur
equation is particularly useful when we will try to solve the direct problem.

In addition, the position of the edges of the LSD of E can be inferred from Eq. (4.2.27).
Within a one cut-assumption, the edges of the support of ρE are given by:

λE
± = BS(ω±) where ω± ∈ R+ is such that B′S(ω±) = 0. (4.2.28)

Indeed, knowing the spectral density of S allows us to get the spectral density of E since from
Eq. (4.2.25) one gets:

ρS(λ) = qρE(λ) + (1− q)+δ0, (4.2.29)

for any λ ∈ supp ρS. Next, and one easily obtains

g′S(z) = −
∫

ρS(x)dx

(z − x)2
< 0, (4.2.30)

for any z 6∈ supp ρS, meaning that it is strictly decreasing outside of the support. We saw in
Section 3.1.1 that the Stieltjes transform g(z) is analytical and positive for any z ∈ R outside
of the support. Moreover, for z → ∞, we have gS(z) ∼ z−1 + O(z−2) so that we deduce
gS(z) is a bijective decreasing function. Its inverse function BS therefore also decreases in those
same intervals. Consequently, the union of intervals where BS(x) is decreasing will lead to the
complement of the support and the edges of the support of ρS are thus given by the critical
points of BS, as in Eq. (4.2.28) above. If one assumes that there are a finite number r of (non-
denegerate) spikes, we can readily generalize the above arguments and find that there will be
2(r + 1) critical points (see Figure 4.2.1 for an illustration with two non-degenerate spikes).

4.2.4. Solving Marčenko-Pastur equation. In this section, we investigate the direct problem of
solving the Marčenko-Pastur equation Eq. (4.2.1) for gE given gC. We will discuss briefly the
inverse problem at the end of this section.

Exactly solvable cases. As far as we know, there are only a few cases where we can find an
explicit expression for the LSD of E. The first one is trivial: it is when one considers the
“classical” limit in statistics where T →∞ for a fixed value of N . In this case q = 0 in (4.2.3),
and obviously gE(z) = gC(z) in this case, as expected.

However, for any finite observation ratio q > 0, we anticipate from the discussion of Section
4.2.2 above that the LSD of E will be significantly different from that of C. The influence of q
can be well understood in the simple case where C = IN . We know from Section 3.1.2 that this
case is exactly solvable and the LSD of E is the well-known Marčenko-Pastur law (3.1.42), that
we recall here:

gE(z) =
z + 1− q −

√
z − λmp

−

√
z − λmp

+

2qz
, λmp

± = (1±√q)2 (4.2.31)

In words, the sample eigenvalues spans the interval [(1−√q)2, (1 +
√
q)2] while the population

eigenvalues are all equal to unity. We therefore deduce that the rms of the sample eigenvalue
distribution is order

√
q, highlighting the systematic bias in the estimation of the eigenvalues
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Figure 4.2.1. The function BE(x) with population eigenvalues density given by 0.002 δ15 + 0.002 δ8 +
0.396 δ3 + 0.3 δ1.5 + 0.3 δ1. Here T = 1000, N = 500 and we have 3 connected components. The vertical
asymptotes are located at each −x−1 for x ∈ {1, 1.5, 3, 8, 15}. The support of ρS is indicated with thick
blue lines on the vertical axis. The inverse of gS|R\supp %S

is drawn in red.

using E when q = O(1). This effect can be visualized using the quantile representation of the
spectral distribution. Indeed, it is known since [27, 109] that the bulk eigenvalues [λi]i∈[[r+1,N ]]

converge in the high-dimensional regime to their “average positions” [γi]i∈[[r+1,N ]]. More precisely,
this reads:

λi ≈ γi, where
i

N
=

∫ γi

ρE(λ)dλ, i > r + 1 . (4.2.32)

We plot the γi’s of the Marčenko-Pastur law in Fig. 4.2.2 for q = 1/4 and q = 1/2, and
observe systematic and significant deviations from the “classical” positions γq=0

i ≡ 1. This
again illustrates that E is an untrustworthy estimator when the sample size is of the same order
of magnitude than the number of variables.

Now that the qualitative impact of the observation ratio q is well understood, a natural
extension would be to examine the Marčenko-Pastur equation for a non trivial correlation matrix
C. To this aim, we now consider another interesting solvable case, especially for statistical
inference, which is the case and of an (isotropic) inverse Wishart matrix with hyperparameter
κ > 0. From Section 3.1.2, we recall that

SC(ω) = 1− ω

2κ
,

for κ > 0. Then, using the free multiplication formula (3.1.81), we have SE(ω) = SC(ω)SW(ω)
where SW(ω) is given in (3.1.44) which yields a quadratic equation in TE(z). This means that
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Figure 4.2.2. Typical position of the sample eigenvalues under the Marčenko-Pastur law (3.1.42) with
a finite observation ratio q = 0.25 (red line) and q = 0.5 (blue line). The dotted line corresponds to the
locations of the population eigenvalues and we see a significant deviation.

gE is explicit and reads:

gE(z) =
z(1 + κ)− κ(1− q)±

√
(κ(1− q)− z(1 + κ))2 − z(z + 2qκ)(2κ+ 1)

z(z + 2qκ)
, (4.2.33)

from which we can retrieve the edges of the support:

λiw
± =

1

κ

[
(1 + q)κ+ 1±

√
(2κ+ 1)(2qκ+ 1)

]
. (4.2.34)

One can check that the limit κ→∞ recovers the null hypothesis case C = IN ; the lower κ, the
wider the spectrum of C. We plot in Figure 4.2.3 the spectral density ρC and ρE for q = 0.25
and q = 0.5 as a function of the eigenvalues. Again, we see that the spectral density of E puts
significant weights on regions of the real axis which are outside the support of ρC, due to the
measurement noise. From an inference theoretic viewpoint, the interest of the Inverse-Wishart
ensemble is to provide a parametric prior distribution for C where everything can be computed
analytically (see Chapter 6 below for some applications).

There exist several other examples where the Marčenko-Pastur equation is exactly solvable even though
the Stieltjes transform is not explicit. For instance, if we consider C to be a Wishart matrix of parameter
q0 independent from W, then we have from (3.1.81) that

SE(ω) =
1

(1 + q0ω)(1 + qω)
.

It is then easy to see from the definition (3.1.23) that TE(z) ≡ ω(z) is solution of the cubic equation,

z(1 + ω(z))(1 + q0ω(z))(1 + qω(z))− ω(z) = 0, (4.2.35)

from which we obtain gE(z) thanks to (3.1.21) and by choosing the unique solution of the latter equation
in C+ (see the following section for details on this point). Another toy example that uses the Marčenko-
Pastur with the R-transform formalism is when C is a GOE centered around the identity matrix. In this
case we have

RC(ω) = 1 + σ2ω, (4.2.36)
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Figure 4.2.3. Solution of the Marčenko-Pastur equation for the eigenvalue distribution of E when C is
an inverse Wishart matrix with parameter κ = 1.0 for q = 0.25 (red line) and q = 0.5 (blue line). The
black dotted line corresponds to the LSD ρC.

where we add the constraint σ 6 0.5 such that C remains a positive semi-definite matrix. Then, by plugging
this formula into (4.2.10), we find that gE(z) = ω is the solution of quartic equation:

σ2ω2(1 + qωRE(ω))2 + ω(1 + qωRE(ω))− ωRE(ω) = 0, (4.2.37)

and as above, we take the unique solution in C+ in order to get the right Stieltjes transform.

The general case: numerical method Apart from the very specific cases discussed above,
finding an explicit expression for gE(z) is very difficult. This means that we have to resort to
numerical schemes in order to solve the Marčenko-Pastur equation. In that respect, the dual
representation (4.2.27) of Eq. (4.2.1) comes to be particularly useful. To solve the MP equation
for a given z, we seek a g ≡ gS such that1

z = BS(g), g ∈ C+, (4.2.38)

where the expression of BS in terms of ρC is explicit and given in Eq. (4.2.27). Numerically, the
above equation is easily solved using a simple gradient descent algorithm, i.e. find g ∈ C+ such
that {

Re(z) = Re
[
BS(g)

]
Im(z) = Im

[
BS(g)

]
,

(4.2.39)

It then suffices to use Eq. (4.2.25) in order to get gE(z) for any z ∈ C−. Hence, if one wants to
retrieve the eigenvalues density ρE at any point on the real line, we simply have to set z = λ− iε
with λ ∈ Supp(E) and ε an arbitrary small real positive number into Eq. (4.2.39). Note that in
the case where gC is known, one can rewrite equation (4.2.27) as

BS(x) =
1

x

[
1− q +

q

x
gC

(
1

x

)]
, (4.2.40)

1Recall that S is the T × T equivalent of E defined in Eq. (4.2.24).
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4.3. Edges and outliers statistics

which is obviously more efficient since we avoid to compute the integral over eigenvalues.
In order to illustrate this numerical scheme, let us consider a covariance matrix whose LSD

has a heavy right tail. One possible parameterization is to assume a power-law distribution of
the form [29]:

ρC(λ) =
sA

(λ+ λ0)1+s
Θ(λ− λmin), (4.2.41)

where Θ(x) = x+ is the Heaviside step function, s is an exponent that we choose to be s = 2 [29],
and λmin the lower edge of the spectrum below which there are no eigenvalues of C. A, λmin

are then determined by the two normalization constraints
∫
ρC(x)dx = 1 and

∫
xρC(x)dx = 1.

This leads to: λmin = (1− λ0)/2 and A = (1− λmin)2. We see that λmin may become negative
for λ0 > 1 and that ρC becomes singular for λ0 = 1. From the density Eq. (4.2.41), one can
perform the Stieltjes transform straightaway to find

gC(z) =
1

z + 1− 2λ0
+

2(1− λ0)

(z + 1− 2λ0)2
+

2(1− λ0)2

(z + 1− 2λ0)3

[
log

(
λ0 − z
1− λ0

)]
, (4.2.42)

which allows one to solve Eq. (4.2.40) for gE(z) with only a few iterations. As we observe in Fig.
4.2.4, the theoretical value obtained from the numerical scheme (4.2.39) agrees perfectly with
the empirical results, obtained by diagonalizing matrices of size N = 500 matrices obtained as√

CW
√

C, where W is a Wishart matrix. This illustrates the robustness of the above numerical
scheme, even when the spectrum of C is fat-tailed. In addition, we can notice that the more
we add structure in the true covariance C, the wider is the empirical distribution as in this
“degenerate” case, the spectrum of E embraces nearly all the positive real number line.

4.3 Edges and outliers statistics

As we alluded to several times, the practical usefulness of the above predictions for the eigenvalue
spectra of random matrices is (i) their universality with respect to the distribution of the under-
lying random variables and (ii) the appearance of sharp edges in the spectrum, meaning that the
existence of eigenvalues lying outside the allowed region is a possible indication against simple
“null hypothesis” benchmarks. Illustrating the last point, Fig. 4.3.1 shows the empirical spectral
density of the correlation matrix corresponding to N = 406 and T = 1300 so that q ≈ 0.31,
compared to the simplest Marčenko-Pastur spectrum in the null hypothesis case C = IN . While
the bulk of the distribution is roughly accounted for (but see Section 8.2 for a much better
attempt), there seems to exist a finite number of eigenvalues lying outside the Marčenko-Pastur
sea, which may be called outliers or spikes. However, if there are no such spikes in the spectrum
of C, one expects to see, for finite N some eigenvalues beyond the Marčenko-Pastur upper edge.
The next two sections are devoted first to a discussion of these finite size effects, and then to a
model with “true” outliers that survive in the large N limit.

4.3.1. The Tracy-Widom region. This existence of sharp edges delimiting a region where one
expects to see a non zero density of eigenvalues from a region where there should be none is
only true in the asymptotic N,T → ∞, and in the absence of “fat-tails” in the distribution of
matrix elements (see [20, 25]). For large but finite N , on the other hand, one expects that the
probability to find an eigenvalue beyond the Marčenko-Pastur “sea” is very small but finite.
The width of the transition region, and the tail of the density of states was investigated already
a while ago [33], culminating in the beautiful results by Tracy & Widom on the distribution
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Figure 4.2.4. Effect of the Marčenko-Pastur equation when ρC is given a power law density with
parameter λ0 = 0.3 and a finite observation ratio q = 0.5 and N = 500. The dotted line corresponds
to the LSD of C while the plain line corresponds to the LSD of E. The histogram is the ESD when we
compute E from the definition (4.1.3). The main figure covers the bulk of the eigenvalues while the inset
zoom in the region of very large eigenvalues.
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Figure 4.3.1. Test of the null hypothesis on the empirical correlation matrix E using US stocks’ data
with N = 406 and T = 1300.
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of the largest eigenvalue of a random matrix [175]. The Tracy-Widom result is actually a very
nice manifestation of the universality phenomenon that describes the fluctuations of macroscopic
observables in many large dimensional systems (see the recent paper [120] on this topic). The
derivation of the Tracy-Widom distribution mainly relies on Orthogonal polynomials that we will
not discuss in this thesis (see e.g. [138,175]) but there exist also alternative approach [153]. The
link between this limiting law and the largest eigenvalues of large sample covariance matrices
has been subject to a large amount of studies that we will not attempt to cover here (see
e.g. [15, 62,98,100,122,148] for details and references).

The Tracy-Widom result characterizes precisely the distance between the largest eigenvalue
λ1 of E and the upper edge of the spectrum that we denoted by λ+. This result can be (formally)
stated as follows: the rescaled distribution of λ1 − λ+ converges towards the Tracy-Widom
distribution, usually noted F1,

P
(
λmax 6 λ+ + γN−2/3u

)
= F1(u), (4.3.1)

where γ is a constant that depends on the problem. For the isotropic Marčenko-Pastur problem,

λ+ = (1 +
√
q)2 and γ =

√
qλ

2/3
+ , whereas for the Wigner problem, λ+ = 2 and γ = 1. We stress

that this result holds for a large class of N ×N matrices (e.g. symmetric random matrices with
IID elements with a finite fourth moment, see [20,25]).

Everything is known about the Tracy-Widom density f1(u) = F ′1(u), in particular its left
and right far tails:

ln f1(u) ∝ −u3/2, (u→ +∞); ln f1(u) ∝ −|u|3, (u→ −∞); (4.3.2)

One notices that the left tail is much thinner: pushing the largest eigenvalue inside the allowed
band implies compressing the whole Coulomb gas of repulsive charges, which is difficult. Using
this analogy, the large deviation regime of the Tracy-Widom problem (i.e. for λmax−λ+ = O(1))
can also be obtained [62].

Note that the distribution of the smallest eigenvalue λmin around the lower edge λ− is also
Tracy-Widom, except in the particular case of Marčenko-Pastur matrices with q = 1. In this
case, λ− = 0 which is a ‘hard’ edge since all eigenvalues of the empirical matrix must be non-
negative. This special case is treated in, e.g. [147].

4.3.2. Outlier statistics. Now, there are cases where a finite number of eigenvalues genuinely
reside outside the Marčenko-Pastur sea (or more generally outside of the “bulk” region) even
when N → ∞. For example, the empirical data shown in Fig. Fig. 4.3.1 indeed suggests the
presence of true outliers, that have a real financial interpretation in terms of economic sectors
of activity. Therefore, we need a framework to describe correlation matrices that contain both a
bulk region and a finite number of “spikes”. The purpose of this section is to study the statistics
of these eigenvalues from an RMT point of view.

The standard way to treat outliers is to “dilate” a finite number of eigenvalues of a given
(spikeless) correlation matrix C, that we construct as:

C =
N∑
i=1

µiviv
∗
i , where µi =

{
µ0 if i 6 r

µi if i > r + 1 .
(4.3.3)

We choose the eigenvalue µ0 within the spectrum of C such that there is no outliers initially.
Here we fix µ0 = µr+1 for simplicity, but any other choice in the set [µi]i>r+1 would do equally
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well. Then with this prescription, we may rewrite C as a small rank perturbation of C. Indeed,
since each outlier [µi]i6r are well separated from the bulk by assumption, we may parametrize
each spike µi by a positive real number di for any i 6 r as follows:

µi = µ0(1 + di) ≡ µr+1(1 + di), di > 0 , i 6 r. (4.3.4)

Hence, the population covariance matrix C is given by:

C =

N∑
i=1

µiviv
∗
i , where µi =

{
µ0(1 + di) if i 6 r

µi if i > r + 1 .
(4.3.5)

More synthetically, one can write C as:

C = C
(
IN + V(r)DV(r)∗), (4.3.6)

where V(r) ..= [v1, . . . ,vr] ∈ RN×r and D ..= diag(d1, . . . , dr) is a diagonal matrix that character-
izes the spikes. We also define a fictitious spikeless sample covariance matrix as E = C1/2XX∗C1/2

and denote by S = X∗CX the T × T its “dual” matrix. As noticed in [43], the statistics of the
outliers of E can be investigated through that of E. Let us consider the rank-one r = 1 case for
the sake of simplicity (see [43] for the general case). Then, we have

det(zIN − E) = det(zIN −X∗C(IN + d1v1v
∗
1)X) = det(zIN −XX∗C(IN + d1v1v

∗
1)).

which can be transformed into:

det(zIN − E) = det(zIN − E) det(IN − d1(zIN − E)−1v1v
∗
1E) (4.3.7)

We can conclude that λ1 in an eigenvalue of E and not of E if and only if the second determinant
vanishes, i.e. if d1(λ1IN − E)−1v1v

∗
1E has an eigenvalue equals to unity. To find λ1, we remark

that this second determinant is simply a rank-one update, meaning that it has only one non-
trivial eigenvalue given by the equation:

d1

[
λ1〈v1,GE(λ1)v1〉 − 1

]
= 1, (4.3.8)

where GE is the resolvent of E. The difficult part of (4.3.8) is to find an (asymptotic) expression
for the scalar product 〈v1,GEv1〉. Let us assume without loss of generality2 that C is Gaussian,
which allows us to set v1 = (1, 0, . . . , 0). Then the equation we try to solve is:

λ1GE(λ1)11 = d−1
1 + 1. (4.3.9)

As we shall see in the next section, the entries of GE actually converges to a deterministic
quantity forN →∞ and one obtains using Eq. (5.1.2) (see (B.4.19) for an alternative derivation).
The result reads

GE(z)11 ≈
1

z − µ1(1− q + qzgE(z))
=

1

z(1− µr+1gS(z))
,

2The extension to non-Gaussian entries can be done using standard comparison techniques, see e.g. [109] for
details.
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where we used the identity (4.2.25) and that µ1 ≡ µr+1 by construction of (4.3.6) in the last
step. If λ1 is not an eigenvalue of E, we find that Eq. (4.3.9) becomes in the LDL

1

1− µr+1gS(λ1)
= d−1

1 + 1, (4.3.10)

which is equivalent to:

gS(λ1) =
1

µr+1(1 + d1)
≡ 1

µ1
, (4.3.11)

where we used (4.3.4) in the last step. Hence, we see that λ1 is an outlier if it satisfies for large
N :

λ1 = θ(µ1) ..= BS

(
1

µ1

)
, (4.3.12)

This result is very general and can be extended for any outlier λi with i ∈ [[1, r]]. Moreover, we
see that for N →∞, the (random) outlier λ1 converges to a deterministic function of µ1. Hence,
the function (4.3.12) depicts the “classical location” at which an outlier sticks and can therefore
be interpreted as the analog of (4.2.32) for outliers. Note however that (4.3.12) requires the
knowledge of the spikeless matrix S (or E), which requires in practice to make some assumptions
on which empirical eigenvalue should be considered as a spike.

The result (4.3.12) generalizes the result of Baik-Ben Arous-Péché for the spiked covariance
matrix model [15]. Indeed, let us assume that the eigenvalues of the true covariance matrix C is
composed of one outlier and N − 1 eigenvalues at unity. Then, one trivially deduces that µi = 1
for all i = 1, . . . , N which implies that the spectrum of E is governed by the Marčenko-Pastur
law (3.1.42). In fact, in the limit N → ∞, the spectrum of E and E are equivalent since the
perturbation is of finite rank. Therefore, we can readily compute the Blue transform of the dual
matrix S from (4.2.27) to find

BS(x) =
1

x
+

q

1− x, (4.3.13)

and applying this formula into Equation (4.3.12) leads to the so-called BBP phase transition{
λ1 = µ1 + q µ1

µ1−1 if µ1 > 1 +
√
q;

λ1 = λ+ = (1 +
√
q)2 if µ1 6 1 +

√
q,

(4.3.14)

where µ1 = µ0(1 + d1) is the largest eigenvalue of C, which is assumed to be a spike. Note that
in the limit µ1 → ∞, we get λ1 ≈ µ1 + q + O(µ−1

1 ). For rank r perturbation, all eigenvalues
such that µk > 1 +

√
q, 1 6 k 6 r will end up isolated above the Marčenko-Pastur sea, all

others disappear below λ+. All these isolated eigenvalues have Gaussian fluctuations of order
T−1/2 [15]. The typical fluctuation of order T−1/2 is also true for an arbitrary C [43], and is
much smaller than the uncertainty in the bulk of the distribution, of order

√
q. Note that a

naive application of Eq. (4.2.1) to outliers would lead to a “mini-Wishart” distribution around
the top eigenvalue, which incorrect (the distribution is Gaussian) except if the top eigenvalue
has a degeneracy proportional to N .
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Chapter 5

Statistics of the eigenvectors

We saw in the previous chapter that tools from RMT allows one to infer many properties of its
(asymptotic) spectrum, be it for the bulk or more localized regions of the spectrum (edges and
outliers). These results allow us to characterize with great detail the statistics of the eigenvalues
of large sample covariance matrices. In particular, it is clear that in the high-dimensional limit,
the use of sample covariance matrices is certainly not recommended as each sample eigenvalue
[λi]i converges to a non-deterministic value, but this value is different from the corresponding
“true” population eigenvalue [µi]i. Note that the results presented above only cover a small part
of the extremely vast literature on this topic, including the study microscopic/local statistics
(down to the N−1 scale) [84,109,149,191].

On the other hand, results concerning the eigenvectors are comparatively quite scarce. One
reason is that most studies in RMT focus on rotationally invariant ensembles, such that the
statistics of eigenvectors is featureless by definition. Notwithstanding, this question turns out
to be very important for sample covariance matrices since in this case the direction of the
eigenvectors of the “population” matrix must somehow leave a trace. There are, at least, two
natural questions about the eigenvectors of the sample matrix E:

(i) How similar are sample eigenvectors [ui]i∈[[N ]] and the true ones [vi]i∈[[N ]]?

(ii) What information can we learn about the population covariance matrix by observing two
independent realizations – say E =

√
CW
√

C and E′ =
√

CW ′√C – that remain correlated
through C?

The aim of this chapter is to present some of the most recent results about the eigenvectors
of large sample covariance matrices that will allow us to answer these two questions. More
precisely, we will show how the tools developed in Section 3 can help us extract the statistical
features of the eigenvectors [ui]i∈[[1,N ]]. Note that we will discuss these issues for a multiplicative
noise model (see (3.1.80) above), but the same questions can be investigated for additive noise
as well, see [3, 5, 23,41,109] and Appendix 11.

A natural quantity to characterize the similarity between two arbitrary vectors – say ξ and
ζ – is to consider the scalar product of ξ and ζ. More formally, we define the “overlap” 〈ξ , ζ〉.
Since the eigenvectors of real symmetric matrices are only defined up to a sign, we shall in
fact consider the squared overlaps 〈ξ , ζ〉2. In the first problem alluded to above, we want to
understand the relation between the eigenvectors of the population matrix [vi]i and those of the
sample matrix [ui]i. The matrix of squared overlaps is defined as 〈ui ,vj〉2, which actually forms
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a so-called bistochastic matrix (positive elements with the sums over both rows and columns all
equal to unity).

In order to study these overlaps, the central tool of this chapter is again the resolvent (and
not its normalized trace as in the previous section). Indeed, that if we choose the v’s to be our
reference basis, we find from (3.1.6):

〈v ,GE(z)v〉 =
N∑
i=1

〈v ,ui〉2
z − λi

, (5.0.1)

for v a deterministic vector in RN of unit norm. Note that we can extend the formalism to more
general entries of GE(z) of the form:

〈v ,GE(z)v′〉 =
N∑
i=1

〈v ,ui〉〈ui ,v′〉
z − λi

, (5.0.2)

for v and v′ two unit norm deterministic vectors in RN .

We see from Eqs. (5.0.1) and (5.0.2) that each pole of the resolvent defines a projection
onto the corresponding sample eigenvectors. This suggests that the techniques we need to apply
are very similar to the ones used above to study of the density of states. However, one should
immediately stress that contrarily to eigenvalues, each eigenvector ui for any given i continues
to fluctuate when N → ∞,1 and never reaches a deterministic limit. As a consequence, we
will need to introduce some averaging procedure to obtain a well defined result. We will thus
consider the following quantity2

Φ(λi, µj) := NE[〈ui,vj〉2], (5.0.3)

where the expectation E can be interpreted either as an average over different realizations of the
randomness or, perhaps more meaningfully for applications, as an average for a fixed sample over
small intervals of eigenvalues of width dλ = η that we choose in the range 1 � η � N−1 (say
η = N−1/2) such that there are many eigenvalues in the interval dλ, while keeping dλ sufficiently
small for the spectral density to be constant. Interestingly, the two procedures lead to the same
result for large matrices, i.e. the locally “smoothed” quantity Φ(λ, µ) is self averaging. Note
also the factor N in the definition above, indicating that we expect typical square overlaps to
be of order 1/N , see below.

For the second question, the main quantity of interest is, similarly, the (mean squared)
overlap between two independent noisy eigenvectors

Φ(λi, λ̃j) ..= NE[〈ui, ũj〉2], (5.0.4)

where [λ̃i]i and [ũi]i are the eigenvalues and eigenvectors of Ẽ, i.e. another sample matrix that
is independent from E (but with the same underlying population matrix C).

1Recall that we have indexed the eigenvectors by their associated eigenvalue.
2We emphasize that we consider the population eigenvectors to be deterministic throughout this section. Only

the sample eigenvectors are random.
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Chapter 5. Statistics of the eigenvectors

5.1 Asymptotic eigenvectors deformation in the presence of noise

We consider in this section the first question, that is: can we characterize the effect of the
noise on the eigenvectors? Differently said, how do the sample eigenvectors deviate from the
population ones? In order to answer to this question, Eq. (5.0.3) seems to be a good starting
point since it allows one to extract exactly the projection of the sample eigenvectors onto the
population ones. We shall show now that Eq. (5.0.3) converges to a deterministic quantity in
the large N limit; more precisely, we can summarize the main results of this section as follows:

(i) Any bulk sample eigenvectors is delocalized in the population basis, i.e. Φ(λi, µj) ∼ O(1)
for any i ∈ [[r + 1, N ]] and j ∈ [[N ]] (and not O(N));

(ii) For any outlier (i.e. i 6 r), ui is concentrated within a cone with its axis parallel to vi
but is completely delocalized in any direction orthogonal to the spike direction vi.

Therefore, these results look quite disappointing for a inference standpoint. Indeed, for the bulk
eigenvectors, we discover that projection the estimated eigenvectors and their corresponding
“true” directions converges almost surely to zero for large N ; i.e. sample eigenvectors appear to
contain very little information about the the true eigenvectors (on this point, see however [136]).
Still, as we will see below, the square-overlaps are not all equal to 1/N but some interesting
modulations appear, that we compute below by extending the Marčenko-Pastur equation to
the full resolvent. For the outliers, on the other hand, the global picture is quite different.
In particular, the phase transition phenomenon alluded in section 4 above also holds for the
projection of the sample spike eigenvector onto its parent population spike: as soon as an
eigenvalue pops out from the bulk, the square overlap becomes of order 1, as noticed in e.g.
[23,92,144]. In fact, the angle between the sample spike eigenvectors with the parent spike can
be computed exactly, see below.

5.1.1. The bulk. Let us focus on the bulk eigenvectors first, i.e. eigenvectors associated to
eigenvalues lying in the bulk of spectral density when the dimension of the empirical correlation
matrix grows to infinity. This question has been investigated very recently in [40, 113] and we
repeat the different arguments here. The first step is to characterize the asymptotic behaviour
of the resolvent of sample covariance matrices. This can be done by specializing Eq. (3.1.92)
for the resolvent of the product of free matrices to the case where A = C and B = XX∗. In
words, A is the population matrix while B is a white Wishart matrix that plays the role of the
noisy multiplicative perturbations. Using (3.1.44), we know the S-transform of white Wishart
matrices explicitly so that one finds from Eq. (3.1.44), for N →∞:

zGE(z) = Z(z)GC(Z(z)), with Z =
z

1− q + qzgE(z)
. (5.1.1)

In the literature, such a limiting result is referred to as a “deterministic equivalent”, as the RHS
depends only to deterministic quantities3, and this is another evidence of the self-averaging
property for large random matrices.

One should notices that (5.1.1) is a relation between resolvent matrices that generalizes the
scalar Marčenko-Pastur equation (4.2.1) (which can be recovered by taking the trace on both
sides of the equation). This relation first appeared in [44], obtained using a planar diagram
expansion valid for Gaussian entries. A few years later, that result was proven rigorously in

3Recall that gE(z) is the limiting Stieltjes transform.
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5.1. Asymptotic eigenvectors deformation in the presence of noise

Ref. [109] in a much more general framework, highlighting again the universal nature of the
resolvent of random matrices, down to the local scale.4 Choosing to work in the eigenbasis of C
is diagonal, Eq. (5.1.1) reduces to:

GE(z)ij =
δij

z − µi(1− q + qzgE(z))
, (5.1.2)

and it was shown by Knowles and Yin that this deterministic equivalent holds with fluctuations
or order (ηN)−1/2 [109] when Re[z] lies in the spectrum of E. More interestingly, an explicit
upper bound for the error term is actually provided in [109]. In particular, the authors showed
that Eq. (5.1.1) holds at a local scale η = η̂N−1 with η̂ � 1, with an error term bounded from
above by:

Ψ(z) ..=

√
q

Im gS(z)

η̂
+
q

η̂
, (5.1.3)

provided that N is large enough. We give an illustration of this ergodic behavior in Figure
5.1.1, and we see the agreement is excellent. Note that when Re[z] 6∈ supp[ρE], the error term is
bounded from above by T−1/2+ε with high probability and for ε > 0 a small constant [109].

How can we compute the mean squared overlap using (5.1.1)? The idea is to derive an
inversion formula similar to (3.1.11) for the full resolvent. More specifically, we start from
(3.1.6) for a given v = vj and notice that the true eigenvectors are deterministic. Therefore, the
sum on the RHS of the latter equation is expected to converge in the large N limit provided z
is outside of the support of the spectrum of E. Moreover, the eigenvalues in the bulk converge
to their classical position (4.2.32) so that we obtain for N →∞ that

〈vj ,GE(z)vj〉 ∼
N→∞

∫
Φ(λ, µj)ρE(λ)

λi − λ− iη
dλ. (5.1.4)

where we have set z = λi− iη, η � N−1 and Φ(λ, µj) is the smoothed squared overlap, averaged
over a small interval of width η around λ. Therefore, the final inversion formula is obtained
using the Sokhotski-Plemelj identity as:

Φ(λi, µj) =
1

πρE(λi)
lim
η→0

Im〈vj ,GE(λi − iη)vj〉, (5.1.5)

(note the assumption that λi lies in the bulk of the spectrum is crucial here). This last identity
thus allows us to compute the squared overlap Φ(λi, µj) from the full resolvent GE, for any in
the bulk (i > r + 1) and a fixed j ∈ [[1, N ]]. Specializing to the explicit form of GE(z) given
in Eq. (5.1.2), we finally obtain a beautiful explicit result for the (rescaled) average squared
overlap:

Φ(λi, µj) =
qµjλi

(µj(1− q)− λi + qµjλihE(λi))2 + q2µ2
jλ

2
iπ

2ρ2
E(λi)

, (5.1.6)

with i ∈ [[r + 1, N ]], j ∈ [[1, N ]] and hE(λi) denotes the real part of the Stieltjes transform gE

(see Eq. (3.1.9)). This relation is exact in the limit N → ∞ and was first derived by Ledoit
and Péché in [113]. We emphasize again that this expression remains correct even if µj is an
outlier. Since Φ(λi, µj) is of order unity whenever q > 0, we conclude that the dot product
between any bulk eigenvector ui of E and the eigenvectors vj of C is of order N−1/2, i.e vanishes

4Note that the Gaussian assumption is not needed either within the Replica method presented in Section 3.
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(a) Diagonal entry of Im[GE(z)] with i = j = 1000.
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(b) Off diagonal entry of Im[GE(z)] with i = 999
and j = 1001.
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(c) Diagonal entry of Re[GE(z)] with i = j = 1000.
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(d) Off diagonal entry of Re[GE(z)] with i = 999
and j = 1001.

Figure 5.1.1. Illustration of Eq. (5.1.2). The population matrix is an Inverse Wishart matrix with
parameter κ = 5 and the sample covariance matrix is generated using a Wishart distribution with
T = 2N and N = 2000. The empirical estimate of GE(z) (blue line) is computed for any z = λi− iN−1/2

with i ∈ [[1, N ]] comes from one sample and the theoretical one (red line) is given by the RHS of Eq.
(5.1.1). The green dotted corresponds to the confidence interval whose formula is given by Eq. (5.1.3).
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5.1. Asymptotic eigenvectors deformation in the presence of noise

Figure 5.1.2. Rescaled mean squared overlaps Φ(λi, µj) as a function of λi. We choose C as an inverse-
Wishart matrix with parameter κ = 1.0 and set N = 500, q = 0.5. The empirical average (blue points)
comes from 500 independent realizations of E. The theoretical prediction (red line) is given by Eq.
(5.1.6). The peak of the mean squared overlap is in the vicinity of λi ≈ µj for any i.

at large N , and therefore non-outlier sample eigenvectors retain very little information about
their corresponding true eigenvectors. This implies that any bulk eigenvector is a extremely
poor estimator of the true one in the high-dimensional regime. We provide in Figure 5.1.2
an illustration of Eq. (5.1.6) for N = 500 and C an Inverse Wishart matrix with κ = 1. The
empirical average comes from 500 independent realization of E and we see that it agrees perfectly
with the asymptotic theoretical prediction, Eq. (5.1.6). Note that in the limit q → 0, Φ(λi, µj)
becomes more and more peaked around λi ≈ µj , with an amplitude that diverges for q = 0.
Indeed, in this limiting case, one should find that ui → ±vjδij , i.e. the sample eigenvectors
become equal to the population ones.

5.1.2. Outliers. This section is based on a work in progress with Antti Knowles [109].

By construction, the spiked correlation model of Section 4.1.3 is such that the top r eigen-
values [λi]i∈[[1,r]] lie outside the spectrum of ρE. What can be said about the statistics of the
associated spike eigenvectors [ui]i∈[[1,r]]? If we think of these outliers as a finite-rank deformation
of a (fictitious) spikeless matrix E, then by Weyl’s eigenvalue interlacing inequalities [187], the
asymptotic density ρE is not influenced by the presence of non-macroscopic spikes, by which
we mean that ρE(λi) = 0 for any outlier eigenvalues. We saw in the previous section that for
non-outlier eigenvectors, the main ingredients to compute the overlap are (i) the self-averaging
property and (ii) the inversion formula (5.1.5). Both implicitly rely on the continuous limit
being valid, which is however not the case for outliers. Hence, we expect the statistics of outlier
eigenvectors to be quite different from the bulk eigenvectors as confirmed for the null hypothesis
case C = IN [92, 145]. In this section, we present the analytical tools to analyze these overlaps
for outliers in the case of an arbitrary population covariance, following the lines of [43].

From Eq. (4.3.12) we saw that each outlier eigenvalues [λi]i∈[[1,r]] of E converges to a deter-
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Chapter 5. Statistics of the eigenvectors

ministic limit θ(µi), where µi is the corresponding population spike and θ is a certain function
related to the Marčenko-Pastur equation. Consequently, for isolated spikes i ∈ [[1, r]] we can
define the closed disc Di in the complex plane, centered at θ(µi) with radius chosen such that
each it encloses no other point in the set [θ(µj)]j∈[[1,r]] (see [43] for details). Then, defining Γi to
be the boundary of the closed disc Di, we can obtain the squared overlap for outlier eigenvectors
using Cauchy’s integral formula

〈ui,vj〉2 =
1

2π i

∮
Γi

〈vj ,GE(z)vj〉dz, (5.1.7)

for i, j ∈ [[1, r]]. We emphasize there is no expectation value in Eq. (5.1.7) (compare to our
definition of the overlap in Eq. (5.0.3)). The evaluation of the integral is highly non-trivial since
GE is singular in the vicinity of θ(µj) for any j ∈ [[1, r]] and finite N . To bypass this problem, we
reconsider the spikeless population covariance matrix C defined in (4.3.6) and the corresponding
spikeless sample covariance matrix by E. Clearly, the resolvent GE is no longer singular in
the vicinity of θ(µj), by construction. Moreover, as we said above, the global statistics of the
eigenvalues of E and E are identical in the limit N → ∞. Lastly, we can relate any projection
of GE onto the outlier population covariance eigenbasis using Schur complement formula (see B
for a reminder):

V(r)∗GE(z)V(r) = −1

z

[
D−1 −

√
IN + D

D

(
D−1 + IN − zV(r)∗GEV(r)

)−1
√

IN + D

D

]
. (5.1.8)

This identity has been used in several studies that deal with related problems [27, 43] and
references therein. Its derivation only needs linear algebra arguments and can be found at the
end of this section. With this identity, the statistics of the outliers of E is seen to only rely
on the spikeless matrix E. In particular, the integrand of (5.1.7) can be rewritten using the
spikeless resolvent which is analytic everywhere outside the spectrum of E. Since the global law
of resolvent of E is the same than E in the large N limit, we can again use the estimate (5.1.1).
By plugging (5.1.1) into (5.1.8), one obtains

〈ui,vj〉2 = − 1

2π i

∮
θ(Γi)

1

z

[
1

dj
− 1 + dj

d2
j

1

d−1
j + 1− z〈vj ,GE0(z)vj〉

]
dz. (5.1.9)

Then, using Eq. (4.3.8) and Cauchy’s theorem, one eventually finds [43]

〈ui,vj〉2 = δijµi
θ′(µi)

θ(µi)
+O(N−1/2) = δijµi

θ′(µi)

λi
+O(N−1/2), (5.1.10)

for any i, j ∈ [[1, r]] and where we used (4.3.12) in the denominator in the last step. Therefore,
we conclude that the sample outlier eigenvector ui is concentrated on a cone around vi with
aperture 2 arccos(µiθ

′(µi)/θ(µi)). We also deduce from Eq. (5.1.10) that ui is delocalized in all
directions vj associated to different spikes µj 6= µi.

An interesting application of (5.1.10) is to reconsider the spiked covariance matrix model
introduce in the previous chapter. Let us assume for simplicity a single spike (r = 1) and from
equation (4.3.13), one gets, for µ1 > 1 +

√
q

θ(µ1) = µ1 + q +
q

µ1 − 1
,
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5.1. Asymptotic eigenvectors deformation in the presence of noise

and plugging this result into equation (5.1.10) yields

〈u1,v1〉2 =
µ1

θ(µ1)

(
1− q

(µ1 − 1)2

)
+O(T−1/2) , (5.1.11)

which is the expected result [23, 25, 27, 136, 144]. This result shows that the coherence between
the population spike and its sample counterpart becomes progressively lost when µ1 → 1 +

√
q

as it should be from the result (4.3.14).
The same analysis can be applied for the overlap between the sample spikes and the popu-

lation bulk eigenvalues j > r. More precisely, using the explicit error bound of T−1/2+ε when
Re[z] 6∈ supp[ρE] (see [109, Theorem 3.7] for details), we may compute the overlaps from the
identity (5.1.9) and a resolvent expansion of GE around its deterministic equivalent, given in
(5.1.2). Then, one can show that the first term that contributes scales at O(T−1) and the final
reads5:

Φ(λi, µj) = q
µj

λi(1− µj/µi)2
+O(T−1/2), i ∈ [[1, r]], j ∈ [[r + 1, N ]] . (5.1.12)

The rigorous derivation of this result is given in the working paper [43]. As expected, any outlier
eigenvector ui has only ∼ N−1/2 overlap with any eigenvector of C except its “parent” from vi.
We illustrate Eq. (5.1.12) in Figure 5.1.3 as a function of the population eigenvalues [µi]i with
i > 2 as i = 1 corresponds to the spike, whose overlap is given by Eq. (5.1.10). In our example
C is an Inverse Wishart matrix with parameter κ = 1 and we add a rank one perturbation
such that λ1 ≈ 10. The empirical average comes from 200 realizations of E and we see that the
agreement with the theoretical prediction in excellent.

5.1.3. Derivation of the identity (5.1.8).

The derivation of the identity (5.1.8) is the central tool in order to deal with the outliers of the
sample covariance matrix E. It relies purely on linear algebra arguments (see Appendix (B) for a
reminder). In order to lighten the notations, let us rename V ≡ V(r) in this section. The first step
is to write the following identity from Eq. (4.3.6):√

C C−1
√

C− IN = (IN + VDV∗)−1 − IN

= −(IN + VDV∗)−1VDV∗

= −VD(Ir + D)−1V∗ (5.1.13)

where we used the resolvent identity (5.2.9) in the second line. This allows us to get (omitting the
argument z)

C−1/2C1/2GEC1/2C−1/2 = C−1/2(zC−1 − XX∗
)−1

C−1/2

=
(
z(C1/2C−1C1/2 − IN ) + zIN − E

)−1

=
(
−zVD(I + D)−1V∗ + G−1

E

)−1
, (5.1.14)

where we invoked the previous identity Eq. (5.1.13) in the last step. From (B.2.1), we have with
A ≡ zIN − E, B ≡ −zV, D ≡ D(Ir + D)−1 and C ≡ V∗:

C−1/2C1/2GEC1/2C−1/2 = GE + zGEV
(
D−1 + Ir − zV∗GEV

)−1

V∗GE. (5.1.15)

From there, one has

(IN + D)1/2V∗GEV(IN + D)1/2 = V∗GEV + zV∗GEV
(
D−1 + Ir −V∗GEV

)−1

V∗GEV.

(5.1.16)

5Recall that Φ is the rescaled overlaps.
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Figure 5.1.3. Rescaled mean squared overlap Φ2(λ1, µj) as a function of µj for j > 1. We chose the
spikeless population matrix C to be an Inverse-Wishart matrix with parameter κ = 1.0 and N = 500.
We add a rank one perturbation such that λ1 ≈ 10 is isolated from the others. The sample matrix E is
given by a Wishart matrix with q = 0.5. We compare the empirical average (blue points) comes from
200 independent realizations of E. The theoretical prediction (red line) is given by Eq. (5.1.12).

We then use the identity

A−A(A + B)−1A = B−B(A + B)−1B, (5.1.17)

with A = V ∗GEV and B = −(D−1 + Ir)/z to obtain

(Ir + D)1/2V∗GEV(Ir + D)1/2 = −1

z

[
Ir + D

D
+

Ir + D

D

(
−(D−1 + Ir) + zV∗GEV

)−1 Ir + D

D

]
.

(5.1.18)
By rearranging the terms, we finally get

V∗GEV = −1

z

[
D−1 −

√
Ir + D

D

(
D−1 + Ir − zV∗GEV

)−1

√
Ir + D

D

]
, (5.1.19)

which is precisely Eq. (5.1.8).

5.2 Overlaps between the eigenvectors of correlated sample covariance
matrices

We now consider the second problem of this chapter, that is to say how much information
can we learn about the structure of C from the sample eigenvectors? Differently said, imagine
one measures the sample covariance matrix of the same process but on two independent time
intervals, how close are the corresponding eigenvectors expected to be? To answer this question,
let us denote by E and Ẽ the independent sample estimates of the same population matrix C
defined as

E ..=
√

CW
√

C, Ẽ ..=
√

CW̃
√

C, (5.2.1)
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5.2. Overlaps between the eigenvectors of correlated sample covariance matrices

where W and W̃ are two independent white Wishart matrix with parameter q and q′ respec-
tively. As in Section 5.1, we can investigate this problem through the mean squared overlaps.

In this section, we provide exact, explicit formulas for these overlaps in the high dimensional
regime, and perhaps surprisingly, we will see that they may be evaluated without any prior
knowledge on the spectrum of C. More specifically, we will show that Eq. (5.0.4) exhibits yet
again a self-averaging behavior in the large N limit, i.e. independent from the realization of E
and Ẽ. We will moreover see that the overlaps (5.0.4) significantly depart from the trivial null
hypothesis as soon as the population C has a non-trival structure. Hence, this suggests that we
might be able to infer the correlation structure of very large databases using empirical quantities
only.

All these results have been obtained in the recent work [41] and we shall only give here the
main steps. For the sake of clearness, we use the notations λ̃1 > λ̃2 > . . . > λ̃N to denote
the eigenvalues of Ẽ and by ũ1, ũ2, . . . , ũN the associated eigenvectors. Note that we will again
index the eigenvectors by their corresponding eigenvalues for convenience.

The central tool in this section is an inversion formula for (5.0.4) as it is usually done in
RMT. To that end, we define the bivariate complex function

ψ(z, z̃) ..=

〈
1

N
Tr
[
(z −E)−1(z̃ − Ẽ)−1

]〉
P

, (5.2.2)

where z, z̃ ∈ C and 〈·〉P denotes the average with respect to probability measure associated to
E and Ẽ. Then, by a spectral decomposition of E and Ẽ, one has

ψ(z, z̃) =

〈
1

N

N∑
i,j=1

1

z − λi
1

z̃ − λ̃j
〈ui , ũj〉2

〉
P

, (5.2.3)

where P denotes the probability density function of the noise part of E and Ẽ. For large random
matrices, we expect the eigenvalues of [λi]i∈[[1,N ]]] and [λ̃i]i∈[[1,N ]]] stick to their classical locations,
i.e. smoothly allocated with respect to the quantile of the spectral density (see Section 4.2.1) so
that the sample eigenvalues become deterministic in the large N limit. Hence, we obtain after
taking the continuous limit

ψ(z, z̃) ∼
∫ ∫

ρ(λ)

z − λ
ρ̃(λ̃)

z̃ − λ̃
Φ(λ, λ̃)dλdλ̃, (5.2.4)

where ρ and ρ̃ are respectively the spectral density of E and Ẽ, and Φ denotes the mean squared
overlap defined in (5.0.4) above. Then, it suffices to compute

ψ(x− iη, y ± iη) ∼
∫ ∫

(x− λ+ iη)

(x− λ)2 + η2

(y − λ̃∓ iη)

(y − λ̃)2 + η2
ρ(λ)ρ̃(λ̃)Φ(λ, λ̃)dλdλ̃

(5.2.5)

from which, one deduces that

Re
[
ψ(x− iη, y + iη)− ψ(x− iη, y − iη)

]
∼ 2

∫ ∫
ηρ(λ)

(x− λ)2 + η2

ηρ̃(λ̃)

(y − λ̃)2 + η2
Φ(λ, λ̃)dλdλ̃.

(5.2.6)
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Finally, the inversion formula follows from Sokhotski-Plemelj identity

lim
η→0

Re
[
ψ(x− iη, y + iη)− ψ(x− iη, y − iη)

]
∼ 2π2ρ(x)ρ̃(y)Φ(x, y). (5.2.7)

Note that the derivation holds for any models of E and Ẽ as long as its spectral density converges
to a well-defined deterministic limit.

The inversion formula (5.2.7) allows us to study the mean squared overlap (5.0.4) through
the asymptotic behavior of the bivariate function ψ(z, z̃). Moreover, since we are able control
each entry of the resolvent of E and Ẽ (see Eq. (5.1.1)), the evaluation of Eq. (5.2.2) is immediate
and leads to

ψ(z, z̃) ∼ 1

zz̃

1

N
Tr
[
Z(z)(Z(z)−C)−1Z̃(z̃)(Z̃(z̃)−C)−1

]
, (5.2.8)

where Z(z) is defined in (5.1.1) and Z̃(z) is obtained from Z by replacing q and gE by q̃ and gẼ.
Then, we use the identity(

Z(z)−C
)−1(

Z̃(z̃)−C
)−1

=
1

Z̃(z̃)− Z(z)

[(
Z(z)−C

)−1
−
(
Z̃(z̃)−C

)−1]
(5.2.9)

to obtain

ψ(z, z̃) ∼ Z(z) Z̃(z̃)

zz̃

1

Z̃(z̃)− Z(z)

1

N
Tr
[(
Z(z)−C

)−1
−
(
Z̃(z̃)−C

)−1]
. (5.2.10)

From this last equation and using Marčenko-Pastur equation (4.2.1), we finally conclude that

ψ(z, z̃) ∼ 1

Z̃(z̃)− Z(z)

[
Z̃(z̃)

z̃
gE(z)− Z(z)

z
gẼ(z̃)

]
. (5.2.11)

One notices that Eq. (5.2.11) only depends on a priori observable quantities, i.e. they do not
involve explicitly the unknown matrix C. Once we characterized the asymptotic behavior of the
bivariate function ψ(z, z̃), we can then apply the inversion formula Eq. (5.2.7) in order to retrieve
the mean squared overlap (5.0.4). Before stating the main result of this section, we first rewrite
(5.2.11) as a function of the Stieltjes transform gS of the T × T dual matrix S = T−1X∗CX
that satisfies XX∗ = W and Eq. (4.2.25). Similarily, we define S̃ = T−1X̃

∗
CX̃ with X̃X̃

∗
= W̃ .

Using (4.2.25) and omitting the argument z and z̃, we can rewrite (5.2.11) as

ψ(z, z̃) ∼ 1

qq̃zz̃

[
(q̃z − qz̃)g2

S̃

gS − gS̃

+
(q − q̃)gS̃

gS − gS̃

]
+

gS + gS̃

qz̃
− 1− q

qzz̃
. (5.2.12)

We see from (5.2.7) that it now suffices to consider the limit η → 0 in order to get the desired
result. To lighten the notations, let us define

m0(λ) ≡ lim
η→0

gS(λ− iη) = mR(λ) + imI(λ) (5.2.13)

with

mR(λ) = qhE(λ) +
1− q
λ

, mI(λ) = qρE(λ) + (1− q)δ0, (5.2.14)

where hE is the Hilbert transform of ρE. Note that this relation follows from Eq. (4.2.1). We
also define m̃0(λ) = limη→0 gS̃(λ − iη) and denote by m̃R, m̃I the real and imaginary part,
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respectively. Then, the asymptotic behavior of Eq. (5.0.4) for any λ ∈ supp % and λ̃ ∈ %̃ is given
by (see [41] for a detailed derivation)

Φq,q̃(λ, λ̃) =
2(q̃λ− qλ̃)

[
mR|m̃0|2 − m̃R|m0|2

]
+ (q̃ − q)

[
|m̃0|2 − |m0|2

]
λλ̃
[
(mR − m̃R)2 + (mI + m̃I)2

][
(mR − m̃R)2 + (mI − m̃I)2

] . (5.2.15)

An interesting consistency check is when q̃ = 0 in which case the sample eigenvalues coincide
with the true ones for the tilde matrices, i.e. λ̃→ µ. In this case we fall back on the framework
of the previous section, i.e. obtaining the overlaps between the eigenvectors of E and C. In that
case, one can easily check that m̃R = 1/µ and m̃I = 0. Hence, we deduce from (5.2.15) that

Φq,q̃=0(λ, µ) =
q

λµ
[
(mR − 1/µ)2 +m2

I

] =
qµ

λ|1− µm0(λ)|2 , (5.2.16)

which is another way to write (5.1.6) after applying the formula (4.2.25) in the limit η → 0. It
therefore shows that the result (5.2.15) generalizes Eq. (5.1.6) in the sense that we are able to
study the mean squared overlaps between two possibly noisy sample estimates. Note that in the
case q̃ = q, Eq. (5.2.15) can be somewhat simplified to:

Φ(λ, λ̃) =
(λ− λ′)

(
mR(λ)|m0(λ′)|2 −mR(λ′)|m0(λ)|2

)
λλ̃
[
(mR − m̃R)2 + (mI + m̃I)2

][
(mR − m̃R)2 + (mI − m̃I)2

] , (5.2.17)

that becomes when λ̃ = λ [41],

Φ(λ, λ) =
q

2λ2

|m0(λ)|4∂λ
[
mR(λ)/|m0(λ)|2

]
m2
I(λ)|∂λm0(λ)|2 . (5.2.18)

This last “self-overlap” result quantifies the stability of the eigenvectors ui and ũj associated to
the very same eigenvalue λ when they both come from the same population matrix C.

Now that we have all the theoretical formulas, let us now give some applications of the
formula (5.2.17) as they will highlight that we can indeed find genuine information about the
spectrum of C from the mean squared overlap (5.0.4). We emphasize that all the following
applications are performed in the case q = q̃ in order to give more insights about the results. As
usual, we begin with the null hypothesis C = IN as it will serve as the benchmark when we shall
deal with more structured spectrum. As we shown in Section (3.1.2), the Stieltjes transform
gE, and thus gS is explicit and obtained from the Marčenko-Pastur density. More precisely, we
deduce from Eq. (3.1.41) and (4.2.25) that gS is given by

GS(z) =
z + q − 1− i

√
4zq − (z + q − 1)2

2z
(5.2.19)

for any z ∈ C−. It is easy to see using the definition (5.2.13) that we have

mR(λ) =
λ+ q − 1

2z
, mI(λ) =

√
4zq − (z + q − 1)2

2z
. (5.2.20)

Hence, one obtains |m0(λ)|2 = λ−1 and |m′0(λ)|2 = q/(2λ2), and by plugging this expressions
into Eq. (5.2.18), we eventually get

Φq,q(λ, λ) = 1, (5.2.21)
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Figure 5.2.1. Evaluation of NE〈ui , ũi〉2 with N = 500 and q = q̃ = 0.5. The population matrix
C is given by an Inverse-Wishart with parameter κ and the sample covariance matrices S and S̃ are
generated from a multivariate Gaussian distribution. The empirical average (blue points) is taken over
200 realizations and the theoretical prediction Eq. (5.2.18) (red line) is evaluated at any [λi]e.

for any λ ∈ [(1 − √q)2, (1 +
√
q)2]. This simple result was expected as it corresponds to the

case where the spectrum of C has no genuine structure, so all the anisotropy in the problem is
induced by the noise, which is independent in the two samples.

Next, we consider a more structured example of a population correlation matrix C. A
convenient case that can be treated analytically is when C to be an inverse Wishart matrix, i.e.
distributed according to (3.1.58) with κ > 0 defined in Eq. (3.1.54). As we saw in the previous
chapter, the Stieltjes transform gE(z) is explicit in this case (see Eq. (4.2.33)). Going back to
Eq. (5.2.18), one can readily obtain from Eq. (4.2.33),

mR(λ) =
λ(1 + qκ) + qκ(1− q)

λ(λ+ 2qκ)
, mI(λ) = q

√
λ− λiw

−

√
λiw

+ − λ
λ(λ+ 2qκ)

, (5.2.22)

with λ ∈ [λiw
− , λ

iw
+ ] where λiw

± is defined in (4.2.34). Plugging these expressions into Eq. (5.2.18)
and after elementary computations, one finds

Φq,q(λ, λ) =
(1 + qκ)(λ+ 2qκ)2

2qκ
[
2λ(1 + κ(1 + q))− λ2κ+ κ(−1 + 2q(1 + qκ))

] . (5.2.23)

The immediate consequence of this last formula is that in the presence of anisotropic correlations,
the mean squared overlap (5.0.4) clearly deviates from the null hypothesis Φ(λ, λ) = 1. In the
nearly isotropic limit κ→∞, that corresponds to the limit C→ IN , one gets [41]

Φ(λ, λ̃) ∼
κ→∞

[
1 +

(λ− 1)(λ̃− 1)

2q2κ
+O(κ−2)

]
, (5.2.24)
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which is in fact universal in this limit (i.e. independent of the precise statistical properties of the
matrix C), provided the eigenvalue spectrum of C has a variance given by (2κ)−1 → 0 [41]. In
the general case, we provide a numerical illustration of this last statement in Figure 5.2.1 with
κ = 5, N = 500 and q = 0.5. As we expect λi ≈ λ̃i for any i ∈ [[1, N ]], we compare our theoretical
result (5.2.23) with the empirical average [〈ui , ũi〉2]e taken over 200 realizations of S and we
see that the agreement is again excellent. We therefore conclude that a possible application of
(5.2.15) is to estimate directly the statistical texture of C using only sample eigenvectors: see
Section 8 for an interesting example.

We now present an alternative derivation of Φq,q̃ that uses the result of the Section 5.1. The
following argument is very general and might be useful when considering the overlaps between
the eigenvectors of more general random matrices. The starting point is the orthonormality of
the true eigenbasis, i.e. VV∗ = IN for V ..= [v1, . . . ,vN ]. Hence, we may always write

〈ui , ũj〉 =

〈
ui ,

(
N∑
k=1

vkv
∗
k

)
ũj

〉
=

N∑
k=1

〈ui ,vk〉〈vk , ũj〉 (5.2.25)

Using the results of Section 5.1, we rename the overlaps 〈ui ,vk〉 =
√

Φ(λi, µk)/N × ε(λi, µk)
where Φ(λ, µ) is defined in (5.0.3) and ε(λ, µ) are random variables of unit variance. Hence, we
have

〈ui , ũj〉 =
1

N

N∑
k=1

√
Φ(λi, µk)Φ(λ̃j , µk) ε(λi, µk)ε(λ̃j , µk). (5.2.26)

As noticed in [41], by averaging over the noise and making an “ergodic hypothesis” [64] –
according to which all signs ε(µ, λ) are in fact independent from one another in the large N
limit – one ends up with the following rather intuitive convolution result for the square overlaps:

Φq,q̃(λi, λ̃j) =
1

N

N∑
k=1

Φ(λi, µk)Φ(λ̃j , µk) (5.2.27)

It turns out that this expression is completely general and exactly equivalent to Eq. (5.2.17) if
we replace the overlaps function Φ by (5.1.6). However, whereas this expression still contains
some explicit dependence on the structure of the pure matrix C, it has completely disappeared
in Eq. (5.2.17). An interesting application of the formula (5.2.27) is when the spectrum of E
(and Ẽ) contains a finite number of outliers. Using the results (5.1.10) and (5.1.12) yields in the
LDL and for i 6 r:

Φq,q̃(λi, λ̃i) ≈ µ2
1

θ′(µ1)θ̃′(µ1)

θ(µ1)θ̃(µ1)
, (5.2.28)

where we recall that the function θ is defined in (4.3.12) and we define θ̃ accordingly by replacing
q with q̃. Note that we can express (5.2.28) in terms of observable variables by noticing that

µ1 =
1

gS(λ1)
, θ′(µ1) =

−1

g′S(θ(µ1))µ2
i

, (5.2.29)

that we plug into (5.2.28) to conclude that

Φq,q̃(λ1, λ̃1) ≈ gS(λ1)

λ1g′S(λ1)

gS̃(λ1)

λ̃1g′S̃(λ1)
. (5.2.30)
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This expression becomes even simpler when q = q̃ as it becomes

Φq,q(λ1, λ̃1) ≈
(

gS(λ1)

λ1g′S(λ1)

)2

. (5.2.31)

One further deduces from (5.1.10) and (5.1.12) that for i 6 r, Φq,q̃(λi, λ̃j) ∼ O(N−1) for any
j 6= i.
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Chapter 6

Bayesian Random Matrix Theory

We saw in the previous chapter that RMT allows one to make precise statements about large
empirical covariance matrices. In particular, we emphasized that the classical sample estimator
E is not consistent in the high-dimensional limit as the sample spectral density %E deviates
significantly from the true spectrum whenever q = O(1). There have been many attempts in the
literature to correct this “curse of dimensionality” using either heuristics or decision theoretic
arguments (see Section 8.2 for a summary of these attempts). Despite the strong differences in
these approaches, all of them fall into the class of so-called shrinkage estimators, to wit, one
seeks the best way to “clean” the sample eigenvalues in such a way that the estimator is as
robust as possible to the measurement noise.

In the previous chapter, we insisted that the bulk sample eigenvectors are delocalized, with
a projection of order N−1/2 in all directions, which means that they are extremely noisy esti-
mators of the population eigenvectors. As a consequence, the naive idea of replacing the sample
eigenvalues by the estimated true ones, obtained by inverting the Marčenko-Pastur equation,
will not necessarily lead to satisfactory results – it would only be the optimal strategy if we
had a perfect knowledge of the eigenvectors of C. Hence, we are left with a very complicated
problem: how can estimate “accurately” the matrix C is the high-dimensional regime knowing
that the eigenvalues are systematically biased and the eigenvectors nearly completely unknown?

The aim of the present chapter and the following one is to answer this question by devel-
oping an optimal strategy to estimate C, consistent with the quality ratio q. By optimal, we
mean that the estimator we aim to construct has to minimize a given loss function. A natural
optimality criteria is the squared distance between the estimator – called Ξ(E) henceforth – and
the true matrix C. As for the James-Stein estimator, we expect that “mixed” estimators provide
better performance than “classical” ones (like the Pearson estimator) in high-dimension. In that
respect, we introduce a Bayesian framework which, loosely speaking, allows one to introduce
probabilistic models that encode the available data through the notion of prior belief.

The fact that probabilities represent degrees of belief is at the heart of Bayesian inference
and as explained in the introduction to this chapter, this theory has enjoyed many success,
especially in a high-dimensional framework. The central tool of this theory is the well known
Bayes formula that allows one to introduce the concept of conditional probability. There are
many different ways to make use of this formula and the corresponding schools of thought
are referred to as empirical, subjective or objective Bayesians (see e.g. [81] for an exhaustive
presentation). Here we shall not discuss these different points of view but rather focus on the
inference part of the problem. More precisely, our aim in this chapter is to construct a Bayesian
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estimator for Ξ(E). We therefore organize this chapter as follows. In the first part, we recall
some basic results on Bayesian inference and introduce the estimator that will be of interest to
us. We then re-consider the famous “linear shrinkage” estimator, mentioned in Eq. (2.1.9), that
interpolates linearly between the sample estimator and the identity matrix through the notion
of conjugate priors. Finally, we consider the class of rotational invariant prior where the RMT
formalism introduced in the previous chapters is applied to derive an optimal estimator for C,
which will turn out to be more efficient that all past attempts – see Chapter 9.

6.1 Bayes optimal inference: some basic results

6.1.1. Posterior and joint probability distributions. Bayesian theory allows one to answer, at
leasr in principle, the following question: given the observation matrix Y, how can we best
estimate C if some prior knowledge of the statistics of C is available? This notion of prior
information has been the subject of many controversies but is a cornerstone to Bayes inference
theory. More precisely, the main concept of Bayesian inference is the well-known Bayes formula

P(C|Y) =
P(Y|C)P(C)

P(Y)
(6.1.1)

where

I P(C|Y) is the posterior probability for C given the measurements Y.

I P(Y|C) is the likelihood function, modelling the measurement process.

I P(C) is called the prior probability of C, that is to say the prior belief (or knowledge)
about what C should look like before being corrupted by the measurement noise.

I P(Y) is the marginal distribution, sometimes called the evidence.

Note that the marginal distribution is often considered as a mere normalization constant (or
partition function) since it is given by

P(Y) =

∫
DCP(C)P(Y|C). (6.1.2)

Furthermore, we shall often use the concept of joint probability distribution defined by

P(C,Y) = P(Y|C)P(C). (6.1.3)

Thus, the two crucial inputs in a Bayesian model is the likelihood process and the prior distri-
bution. Learning using a Bayesian framework can actually be split in two different steps, which
in our context are:

1. Set a joint probability distribution P(C,Y) defined as the product of the prior distribution
and the likelihood function, i.e.

P(C,Y) = P(Y|C)P(C). (6.1.4)

2. Test the consistency of the posterior distribution P(C|Y) on the available data.
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We emphasize that the presence of a prior distribution does not imply that C is stochastic, it
simply encodes the degree of belief about the structure of C. The main advantage of adopting
this point of view is that it facilitates the interpretation of the statistical results. For instance,
a Bayesian (probability) interval tells us how probable is the value of a parameter we attempt
to estimate. This is in contrast to the frequentist interval, which is only defined with respect to
a sequence of similar realizations (confidence interval). We will discuss the difference between
these points of view in the next paragraph.

6.1.2. Bayesian inference. The notion of Bayesian inference is related to the concept of the
so-called Bayes risk. In our problem, we want to estimate the true covariance matrix C given
our sample data Y; we shall denote by Ξ(Y) this estimator. There are two ways to think about
this problem: the frequentist and the Bayesian approach. We will detail the difference between
these two in this section.

Let us introduce a loss function L(C,Ξ(Y)) that quantifies how far is the estimator from the
true quantity C. In general, this loss function is assumed to be a nonnegative convex function
with L(C,C) = 0. The traditional frequentist approach is to evaluate the performance of a given
estimator by averaging the loss function over different sets of observations, for a fixed C.

An alternative point of view is to think that the precise nature of C is unknown. This change
in the point of view has to be encoded in the inference problem and one way to do it is to look
at the average value of the loss function over all the a priori possible realizations of C, and not
on the realizations of Y itself. This is Bayes optimization strategy and the corresponding the
decision rule is the so-called Bayes risk function that is defined as:

RBayes(L(C,Ξ(Y))) ..=

〈
L(C,Ξ(Y))

〉
P(C,Y)

, (6.1.5)

where, unlike the frequentist approach, the expectation value is taken over the joint probability
of Y and C. One of the most commonly used loss function is the squared Hilbert-Schmidt (or
Euclidean) L2 norm, i.e.,

LL2(C,Ξ(Y)) = Tr [(C− Ξ(Y))(C− Ξ(Y))∗] . (6.1.6)

Using that covariance matrices are symmetric and applying Bayes rule, we see that

RBayes =

〈〈
Tr
[
(C− Ξ(Y))2

]〉
P(Y|C)

〉
P(C)

=

〈〈
Tr
[
(C− Ξ(Y))2

]〉
P(C|Y)

〉
P(Y)

, (6.1.7)

where we have used that marginal distributions are positive in order to interchange the order of
integration in the second line.

The optimal Bayes estimator is defined as follows: let us denote by MN (Y) is the set of
N × N positive definite matrices which are functions of Y. This defines the set of admissible
estimators of C. Then the Bayes estimator associated to the loss function (6.1.6) is given by the
minimum mean squared error (MMSE) condition, i.e.

ΞMMSE ≡ ΞMMSE(Y) ..= argmin
Ξ(Y)∈MN (Y)

〈
LL2(C,Ξ(Y))

〉
P(C,Y)

, (6.1.8)
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Expanding (6.1.7), it is readily seen that the MMSE estimator is given by the posterior mean:

ΞMMSE = 〈C〉P(C|Y). (6.1.9)

Note that the natural choice of the loss function may depend on the nature of the problem.
Other loss functions often lead to different Bayes estimators, but we do not investigate such
generalizations here.

6.2 Setting the Bayesian framework

Now that we have derived the optimal estimator we are looking for, we still need to parametrize
the joint probability function P(C,Y). There are thus two inputs in the Bayesian model: the
likelihood function and the prior distribution, and we focus on the former quantity in this section.

In a multivariate framework, the most common assumption (but not necessarily the most
realistic) is that the measurement process Y is Gaussian, that is to say,

P(Y|C) =
1

(2π)
NT
2 det(C)

T
2

exp

−1

2

T∑
t=1

N∑
i,j=1

YitC
−1
i,j Yjt

 . (6.2.1)

It is easy to see that this is of the Boltzmann type, as in Eq. (3.1.1). More precisely, using the
cyclic property of the trace operator one gets

T∑
t=1

N∑
i,j=1

YitC
−1
ij Yjt = Tr

[
YC−1Y∗

]
= TTr

[
EC−1

]
.

Thus, the N -variate Gaussian likelihood function can be written as

P(Y|C) =
1

(2π)
NT
2

exp

{
−T

2
Tr
[
log(C) + EC−1

]}
≡ P(E|C), (6.2.2)

where we used Jacobi’s formula det(A) = exp[Tr log A] for any square matrix A. As a result,
we can rewrite the inference problem as a function of the sample covariance matrix E, and in
particular, the MMSE estimator becomes

ΞMMSE ≡ ΞMMSE(E) ..= 〈C〉P(C|E). (6.2.3)

After a little thought, this set-up agrees perfectly with the framework developed in the
Chapters 4 and 5 above. Indeed, in those sections we studied the spectral properties of the
sample covariance matrix E given the limiting spectral distribution of C (the so-called “direct
problem” introduced in Section 4.2.1). Differently said, the Marčenko-Pastur equation (4.2.1)
has a natural Bayesian interpretation: it provides the (limiting) spectral density of E conditional
to a population covariance matrix C that we choose within a specific prior probabilistic ensemble.

6.3 Conjugate prior estimators

Once we have set the likelihood function, the next step is to focus on the prior distribution
P(C), keeping in mind that the ultimate goal is to compute the Bayes posterior mean estimator
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(6.2.3). Unfortunately, the evaluation of the posterior distribution often leads to non trivial
computations and closed-form estimators are thus scarce. Nonetheless, there exists some classes
of prior distributions where the posterior distribution can be computed exactly. The one that
interests us is known as the class of ’conjugate priors’ in Statistics. Roughly speaking, suppose
that we know the likelihood distribution P(E|C), then the prior distribution P(C) and the
posterior distribution P(C|E) are said to be conjugate if they belong to the same family of
distribution.

As an illustration, let us consider a warmup example example before going back to the
estimation of the covariance. Suppose that we want to estimate the mean vector – say µ – given
the N -dimensional vector data y we observe. Moreover, assume that the likelihood function is
a multivariate Gaussian distribution with a known covariance matrix σ2IN . Then, by taking a
Gaussian prior on µ with zero “mean” and “covariance” matrix τ2IN , one can easily check that

P(µ|y) = NN
(

τ2

τ2 + σ2
y,

τ2σ2

τ2 + σ2
IN

)
. (6.3.1)

Therefore, the Bayes MMSE (6.1.9) of µ is given by

〈µ〉P(µ|y) =

(
1− σ2

σ2 + τ2

)
y, (6.3.2)

that is – loosely speaking – the celebrated James-Stein estimator [96]. In fact, the James-Stein
estimator follows using the evidence P(y), and this approach is known as empirical Bayes (see
at the end of this section for more details).

One can now wonder whether we can generalize this conjugate prior property to the case
of covariance matrices under a measurement process characterized by the likelihood function
P(E|C) given in Eq. (6.2.2). Again, we will see that conjugate prior approach yields a very
interesting result. Using the potential theory formalism introduced in (3.1.1) and in Section
3.1.2, it is easy to see from Eq. (6.2.2) that the potential function associated to a Gaussian
likelihood function reads

Vq(E,C) =
1

2q

[
log(C) + EC−1

]
, (6.3.3)

that is clearly the Inverse-Wishart distribution encountered in (3.1.58) in the presence of an
external field E. Hence, let us introduce an inverse-Wishart ensemble with two hyperparameters
{γ, κ} as a prior for C:1

P(C) = Z exp
{
−NTr

[
γ log C + κC−1

]}
,

with Z a normalization constant that depends on γ, κ and N . For simplicity, we impose that
〈C〉P(C) = IN , we easily obtain (omitting term in O(N−1)) that γ = κ+1. This is the convention
that we adopt henceforth. Using Bayes rule and the Gaussian likelihood function (6.2.2), we
find that the posterior distribution is also an inverse-Wishart distribution of the form:

P(C|E) ∝ exp

{
−1

2
Tr
[
(T + ν +N + 1) log C + T (2qκIN + E)C−1

]}
, (6.3.4)

1More precisely, it is an inverse Wishart distribution IWN (N,N(2γ − 1)− 1, 2NκIN ) defined in Eq. (3.1.58).
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where we have defined ν := N(2κ + 1) − 1. As a consequence, we expect the Bayes estimator
to be explicit like the James-Stein estimator (6.3.2) and the final result for ΞMMSE is obtained
from (3.1.59):

ΞMMSE =
T

T + ν −N − 1
(2qκIN + E). (6.3.5)

We see that the estimator we get is in the same spirit than the so-called James-Stein estimator in
the sense that the estimator shrinks the sample covariance E toward the identity with intensity
fixed by the hyperparameters γ and κ. This estimator is known as the linear shrinkage estimator,
first obtained in [87],

Ξlin ..=
T

T + ν −N − 1
(2qκIN + E) ≈ 1

1 + 2qκ
E +

2qκ

1 + 2qκ
IN +O(T−1), (6.3.6)

where we used that T → ∞ with q = N/T finite in the RHS. All in all, we have derived the
linear shrinkage estimator:

Ξlin = αsE + (1− αs)IN where αs ..=
1

1 + 2qκ
∈ [0, 1], κ > 0 . (6.3.7)

As for the James-Stein estimator, this estimator tells us to shrink the sample covariance matrix E
toward the identity matrix (our prior) with an intensity given by αs. We give a simple illustration
of how this estimator transforms the eigenvalues in Figure 6.3.1. In particular, we see that small
eigenvalues are lifted upwards while the top ones are shrunk downwards. Furthermore, it is easy
to see this estimator shares the same eigenvectors than the sample covariance matrix E. This
property will be important in the following.

The remaining question is how can we consistently choose the parameter κ (or directly αs)
in order to use this estimator in practice? In [87], Haff promoted an empirical Bayes approach
similar to the work of James and Stein [96]. In the high-dimensional regime, the Ledoit &
Wolf [115] noticed that this approach may suffer from the fact that classical estimator becomes
unreliable and consequently proposed a consistent estimator of αs. There also exists more
straightforward methods to estimate the parameter κ directly from the data, using RMT tools.
We summarize all these approaches in Section 8.2.1.

One may finally remark that the above derivation of the linear shrinkage estimator can be
extended to the case where the prior is different from the identity matrix. Suppose that the
prior distribution of C is a generalized inverse-Wishart distribution:

P(C) = Z exp
{
−NTr

[
γ log C + κC0C−1

]}
,

where C0 is a certain matrix (referred as a fundamental or prior matrix) with a possibly non-
trivial structure encoding what we believe about the problem at hand. In this case, it is easy to
see that the above linear estimator still holds, with:

Ξlin = αsE + (1− αs)C0 αs ∈ [0, 1]. (6.3.8)

Note that when C0 6= IN , P(C) is no longer rotationally invariant. A simple example is to
choose C0 = (1 − ρ)IN + ρJ, where J has all its elements equal to unity. This corresponds to
a one-factor model in financial applications, where the correlations between any pair of stocks
is constant. This can be seen as a spike correlation model, as was shown in (4.3.6) above, with
C = IN , r = 1, v1 = (1, 1, . . . , 1) and d1 = (N − 1)ρ.
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Figure 6.3.1. Impact of the linear shrinkage (6.3.7) with αs = 0.5 on the eigenvalues (blue line),
compared to the sample eigenvalues (black line). We see that the small eigenvalues are shifted upward
and the large ones are brought downward.

We now present the empirical Bayes approach through the “non-observable” James-Stein estimator
(6.3.2). This approach can be useful in order to estimate parameters directly from the data but it
requires that the marginal distribution can be computed exactly. If we reconsider the framework of
the estimator (6.3.2), it is not hard to see that the evidence P(y), defined in (6.1.2), is given by

P(y) ∼ NN (0, (σ2 + τ2)IN ) . (6.3.9)

Recall from (6.3.2) that our aim is to estimate the ratio σ2/(σ2 + τ2) where σ2 is known. To that
end, we notice from (6.3.9) that ∥∥y∥∥2

2
∼ (σ2 + τ2)χ2

N , (6.3.10)

where
∥∥·∥∥

2
is the L2 norm and χ2

N is the chi-square distribution with N degrees of freedom. There-
fore, we can conclude by maximum likelihood estimation that

σ2 ×max(N − 2, 0)∥∥y∥∥2
2

≈ σ2

σ2 + τ2
, (6.3.11)

which yields an estimator of the unobservable term in Eq. (6.3.2). Hence, if we plug this sample
estimate into (6.3.2), it yields the celebrated James-Stein estimator:

µ̂JS =

(
1− σ2 ×max(N − 2, 0)∥∥y∥∥2

2

)
y , (6.3.12)

that provides an improvement upon the maximum likelihood estimator of the mean of a Gaussian
population whenever N > 3.

6.4 Rotational invariant prior estimators

The major drawback of the above conjugate prior class of estimator is that it does not make use
of the enormous amount of information contained, for large N , in the observed spectral density
of the sample correlation matrix E. In fact, we know that its Stieltjes transform gE(z) must
obey the Marčenko-Pastur equation relating it to gC(z), and there is no guarantee whatsoever
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that this relation can be obeyed for any C belonging to an Inverse-Wishart ensemble. More
precisely, the likelihood that gE(z) indeed corresponds to a certain gC(z) with C an Inverse-
Wishart matrix is exponentially small in N , even for the optimal choice of the parameter κ.
This is the peculiarity of the Bayesian approach in the large N limit: the ensemble to which
C belongs is in fact extremely strongly constrained by the Marčenko-Pastur relation. In this
section and in the next chapter, we discuss how these constraints can be implemented in practice,
allowing us to construct a truly consistent estimator of C.

Let us consider a class of rotationally invariant prior distributions that belong to the Boltz-
mann class, Eq. (3.1.1), i.e. ,

P(C) ∝ exp[−N TrV0(C)] (6.4.1)

where V0 denotes the potential function. Therefore, it is easy to see that C
law
= ΩCΩ∗ for any

N × N orthogonal matrix Ω ∈ O(N). In other words, the eigenbasis of C is not biased in
any specific direction. Moreover, using the Gaussian likelihood function (6.2.2), the posterior
distribution reads:

P(C|E) =
1

Z
exp
[
−N TrV(C,E)

]
, V(C,E) ..= Vq(C,E) + V0(C), (6.4.2)

where Vq is defined in Eq. (6.3.3). As a result, one can derive the following identity:

P(C|E) = P(ΩCΩ∗|ΩEΩ∗), (6.4.3)

Therefore, the Bayes MMSE estimator Eq. (6.1.9) obeys the following property:

〈C〉P(C|E) =

∫
ΩC′Ω∗P(ΩC′Ω∗|E)DC′

= Ω

[∫
C′P(C′|Ω∗EΩ)DC′

]
Ω∗ ≡ Ω〈C〉P(C|Ω∗EΩ)Ω

∗ (6.4.4)

where we changed variables C → ΩC′Ω∗ and used Eq. (6.4.3) in the last step. Now we can
always choose Ω = U such that U∗EU is diagonal. In this case, it is not difficult to convince
oneself using symmetry arguments that 〈C〉P(C|U∗EU) is then also diagonal. The above result
then simply means that in general, the MMSE estimator of C is diagonal in the same basis as
E – see Takemura [166] and references therein:

ΞMMSE = UΓ(Λ)U∗, (6.4.5)

where U ∈ RN×N is the eigenvectors of E and Γ(Λ) = diag(γ1(Λ), . . . , γN (Λ)) is a N × N
diagonal matrix whose entries are functions of the sample eigenvalues Λ = diag(λ1, λ2, . . . , λN ).
We see that assuming a rotationally invariant prior, the Bayesian estimation problem is reduced
to finding a set of optimal eigenvalues γi(Λ). This framework agrees perfectly with the linear
shrinkage estimator (6.3.7), for which γi(Λ) := αsλi + (1−αs), and can be seen as a generalized
shrinkage estimator.

Before going into details on the explicit form of the Γ(Λ), let us motivate when one may im-
pose rotational invariance for the prior distribution of C. In simple terms, it means that we have
no prior information on a possible privileged directions in the N-dimensional space that would
allow one to bias the eigenvectors of the estimator ΞMMSE in these special directions. In this
case, it makes sense that the only reasonable eigenbasis for our estimator ΞMMSE must be that
the (noisy) observation E at our disposal. Any estimator satisfying Eq. (6.4.4) will be referred to
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as a Rotational Invariant Estimator (RIE). However, we emphasize that such an assumption is
not optimal when the components of E reveal so non-trivial structures. One example is the top
eigenvector of financial correlation matrices, which is clearly biased in the (1, 1, . . . , 1) direction.
Dealing with such non-rotational invariant objects is however more difficult (see [43, 136] and
Chapter 10 for a discussion on this topic).

We are now in a position to derive the explicit form of our optimal Bayes estimator within the
class of RIEs. The eigendecomposition (6.4.5) of the estimator ΞMMSE states that the eigenvalues
of γi ≡ γi(Λ) can be written as

γi = 〈ui , 〈C〉P(C|E)ui〉,
where we have used the fact that 〈C〉P(C|E) is diagonal in the U basis. After a little thought, it
is not hard to see that the following identity holds:

1

N
Tr
[
(zIN − E)−1〈C〉P(C|E)

]
=

1

N

N∑
i=1

γi
z − λi

, (6.4.6)

which will allow us to extract the γi we are looking for, i.e. determine the optimal shrinkage
function of the Bayes estimator (6.4.5). To that end, we invoke the usual self-averaging property
that holds for very large N , so that we can take the average value over the marginal probability
of E in the LHS of the last equation, yielding:

Tr
[
(zIN − E)−1〈C〉P(C|E)

]
=

〈
Tr
[
(zIN − E)−1〈C〉P(C|E)

]〉
P(E)

,

=

〈〈
Tr
[
(zIN − E)−1C

]〉
P(C|E)

〉
P(E)

. (6.4.7)

Using Bayes formula (6.1.1), we rewrite this last equation as

Tr
[
(zIN − E)−1〈C〉P(C|E)

]
=

〈〈
Tr
[
(zIN − E)−1C

]〉
P(E|C)

〉
P(C)

,

=

〈
Tr
[〈

(zIN − E)−1
〉
P(E|C)

C
]〉
P(C)

. (6.4.8)

We recognize in the last line the definition of the Stieltjes transform of E for a given population
matrix C, which allows us to use the Marčenko-Pastur formalism introduced in Chapters 4 and
5. Therefore, since the eigenvalues [λi]i become deterministic in the limit N →∞ (see Chapter
4), we deduce that for large N

1

N
Tr
[
(zIN − E)−1〈C〉P(C|E)

]
≈
∫
ρE(dλ)

z − λ

〈 N∑
j=1

µj Φ(λ, µj)

〉
C

, (6.4.9)

where Φ(λ, µ) is the mean squared overlap defined in Eq. (5.0.3). By comparing Eqs. (6.4.6)
and (6.4.9), we can readily conclude that

γ(Λ) ≡ γ(λ) =

〈 N∑
j=1

µj Φ(λ, µj)

〉
C

∼
∫
µΦ(λ, µ)ρC(µ)dµ, (6.4.10)
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where we used again an “ergodic hypothesis” [64] as N → ∞ in the last step. Hence, we see
that in the large N limit, we are able to find a closed formula for the optimal shrinkage function
γ of the Bayes estimator (6.4.5) that depends on the mean squared overlap, studied in Chapter
5, and the prior spectral density ρC. Said differently the final result Eq. (6.4.10) is explicit but
still seems to depend on the prior we choose for C. In fact, as we shall see in the next chapter,
Eq. (6.4.10) can be estimated from the knowledge of E itself, i.e. without making an explicit
choice for the prior! This is in line with our discussion at the beginning of this section: for large
N , the observation of the spectral distribution of E is enough to determine the correct prior
ensemble to which C must belong.

We end this section with a self-consistency check in order to illustrate the result (6.4.10). As
alluded above, the nonlinear shrinkage function (6.4.10) generalizes the linear shrinkage (6.3.7)
above. To highlight this, we assume that C is an isotropic Inverse Wishart matrices, such that
the prior spectral density ρC is given by Eq. (3.1.53). We plot in Fig. 6.4.1 the eigenvalues
we obtain using our Bayes estimator (6.3.7) (red dots) coming from a single realization of E
with C an inverse Wishart matrix of size N = 500. The parameter of the prior distribution has
been chosen such that the shrinkage intensity is equal to one half. We see that the agreement
is excellent, showing the validity of the ergodic hypothesis claim and at the same time, of the
RI-Bayes estimator (6.4.10) in this particular case.
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Figure 6.4.1. Comparison of our analytical RI-Bayes estimator (6.4.10) (red dots) with the theoretical
result Eq. (6.3.7) (blue line) when the prior distribution is an inverse Wishart (3.1.58). The parameters
are N = 500, q = 0.5 and αs = 0.5.
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Chapter 7

Optimal rotational invariant estimator
for general covariance matrices

7.1 Oracle estimator

In the previous chapter, we introduced a Bayesian framework to build an estimator of the
population correlation matrix C using the data Y at our disposal. We showed that using a
conjugate prior assumption naturally leads to the class of linear shrinkage estimators, which is
arguably among the most influential contributions on this topic. It is successfully used in many
contexts as it is a simple way to provide robustness against the noise in a high dimensional setting
(see e.g. [87, 165] or [105] for a more recent review). However, the main concern regarding this
estimator is that the conjugate prior ensemble is expected to be exponentially improbable (for
large N) with the data at hand. In order to make full use of the information of the spectral
density of the sample correlation matrix, we introduced a class of rotational invariant prior
distributions. Within this framework, we have derived an explicit formula for the minimum
mean squared error (MMSE) estimator valid in the limit of large dimension, which can be
seen as a non-linear shrinkage procedure. In this chapter, we want to show that the resulting
estimator can be also understood as a so-called “oracle” estimator. This change of viewpoint
is quite interesting as it shows that the above Bayes estimator has a much wider basis than
anticipated.

Imagine that one actually knows the population matrix C – hence the name “oracle” –
but that one decides to create an estimator of C which is constrained to have a predetermined
eigenbasis U. (In practice, this eigenbasis will be that of the sample correlation matrix E).
What is the best one can do to estimate the true matrix C? The basic idea might look strange
at first sight, since we do not know C at all! But as we shall see below, the oracle estimator
will turn out to coincide with the MMSE estimator which is, for large N , entirely expressable in
terms of observable quantities. More precisely, let us introduce the setM(U) of real symmetric
definite positive N × N matrices that are diagonal in the basis U = [ui]i∈qq1,N . The optimal
estimator of C in M(U) in the L2 sense is given by:

Ξora. = argmin
Ξ∈M(U)

∥∥Ξ− C
∥∥2
. (7.1.1)
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It is trivial to find that the solution of this quadratic optimization problem, as:

Ξora. =

N∑
i=1

ξora.
i uiu

∗
i , ξora.

i = 〈ui ,Cui〉. (7.1.2)

This provides the best possible estimator of C given that we are “stuck” with the eigenbasis [ui]i.
The meaning of this estimator is better understood if we rewrite if a function of the eigenvectors
of C, to wit:

ξora.
i =

N∑
j=1

µj〈ui ,vj〉2. (7.1.3)

Indeed, we see from this last equation that the oracle estimator is given by a weighted average
of the population eigenvalues with weights given by the transition from the imposed basis ui to
the true basis vj with j ∈ [[1, N ]]. Hence, the “oracle” estimator (7.1.2) explicitly uses the fact
that the estimator lies in a wrong basis.

Coming back to our estimation problem given a sample matrix E, it is clear that if we
have no information whatsoever on the true eigenbasis of C, the only possibility is to use the
eigenbasis of E itself as U. This is in some sense equivalent to the assumption of a rotationally
invariant prior distribution for C, but we do not rely on any Bayesian argument here. Now,
one notices that in the limit N → ∞, the oracle eigenvalues of [ξora.

i ] are indeed equivalent to
the RI-Bayes MMSE formula (6.4.10), except that in Eq. (7.1.2), the population matrix C is
a (deterministic) general covariance matrix. The equivalence between Bayes estimator (6.4.10)
and unconditional estimator is not that surprising in the large N limit and has been mentioned
in different contexts [66,105].

7.2 Explicit form of the optimal RIE

For practical purposes, the oracle estimator (7.1.2) looks useless since it involves the matrix C
which is exactly the quantity we wish to estimate. But in the high-dimensional limit a kind
“miracle” happens in the sense that the oracle estimator converges to a deterministic RIE that
does not involve the matrix C anymore. Let us derive this formula (that only contains observable
quantities) first for bulk eigenvalues, then for outliers – with the further surprise that the final
expression is exactly the same in the two cases.

7.2.1. The bulk. The derivation of the optimal nonlinear shrinkage function for the bulk eigen-
values in the limit of infinite dimension was considered in different recent works. The first one
goes back to the work of Ledoit & Péché [113]. More recently, this oracle estimator was con-
sidered in a more general framework [40] (including the case of additive noise models) with the
conclusion was that the oracle estimator can be easily computed as soon as the convergence of
the mean squared overlap Φ(λi, µj) defined in Eq. (5.0.3) can be established.

More precisely, let us fix i > r+11, we expect that in the limit of large dimension, the square
overlaps 〈ui ,vj〉2 for any j = 1, . . . , N will display asymptotic independence so that the law
of large number applies, leading to a deterministic result for ξora.

i . Hence, we have for large N

1Recall that the top r eigenvalues are assumed to be outliers.
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that, for any i > r,

ξora.
i =

N∑
j=1

µj Φ(λi, µj) ≈
1

NπρE(λi)
lim
η→0+

Im

 N∑
j=1

µj (ziIN −E)−1
jj

 , (7.2.1)

where we have used the result Eq. (5.1.5) with zi = λi−iη. One finds using the Marčenko-Pastur
(4.2.3) and after simple algebraic manipulations that

ξora.
i ∼ 1

qπρE(λi)
lim
η→0+

Im

[
1− 1

1− q + qzigE(zi)

]
,

which can be further simplified to the final Ledoit-Péché formula for the oracle estimators
[ξora.
i ]i∈[[r,N ]]:

ξora.
i ∼ ξ̂(λi) with ξ̂(λ) ..=

λ∣∣1− q + qλ limη→0+ gE(λ− iη)
∣∣2 , (7.2.2)

where | · | denotes the complex modulus. We notice that the RHS of this last equation does
not involve the matrix C any more and depends only on deterministic quantities. This is the
“miracle” of the large N limit we alluded above: the a priori non-observable oracle estimator
converges to a deterministic quantity that may be estimated directly from the data.

7.2.2. Outliers. As usual, the arguments needed to derive the limiting value of the oracle esti-
mator for outlier eigenvalues, i.e., ξora.

i for i 6 r, are a little bit different from those used above
for bulk eigenvalues. Indeed, the latter explicitly needs the density of %E(λi) to be non-vanishing
(for N →∞ and as we know from Chapter 4, this it not the case for outliers. Hence, the method
of [113] and [40] are not valid anymore. Surprisingly, though, the final result happens to be iden-
tical to Eq. (7.2.2)! This has been established recently in [43] and the starting point of their
method is to rewrite the oracle solution as

ξora.
i =

r∑
j=1

µj〈vj ,ui〉2 +
N∑

j=r+1

µj〈vj ,ui〉2, (7.2.3)

from which we conclude, using also the results of section 5 , that if r is finite, both terms above
will have a non-vanishing contribution for i 6 r. Roughly speaking, the first sum will contribute
in O(1) for j = i and the second sum gives a term of order O((N − r)/N) ∼ O(1).

We begin with the easy term which is the first one in the RHS of Eq. (7.2.3). Indeed, recall
from Eq. (5.1.10) that any outlier eigenvector ui is concentrated on a cone with its axis parallel
to vi and completely delocalized in any direction orthogonal vj with j ∈ [[1, N ]], j 6= i fixed.
Hence, the only term that contributes to leading order will be 〈vi ,ui〉2 and we therefore conclude
that

r∑
j=1

µj〈vj ,ui〉2 ∼ µ2
i

θ′(µi)

θ(µi)
(7.2.4)

where we used Eq. (4.3.12) in the last step. The second term in Eq. (7.2.3) is trickier to handle.
As r is finite and thus much smaller than N , we can assume that the second sum will concentrate
around its mean value, i.e.

N∑
j=r+1

µj〈vj ,ui〉2 ∼
N∑

j=r+1

µjE〈vj ,ui〉2.
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The mean squared overlap in the RHS for j > r + 1 and i 6 r has been evaluated in section 5
and the result is given in Eq. (5.1.12) that we recall for convenience:

E[〈ui ,vj〉2] =
µ2
i

θ(µi)

µj
T (µi − µj)2

, i 6 r, j > r + 1.

Therefore we find for r � N [43]

N∑
j=r+1

µj〈vj ,ui〉2 ∼
µ2
i

θ(µi)

1

T

N∑
j=1

µ2
j

(µi − µj)2
, (7.2.5)

where one notices that the sum of the RHS goes from j = 1 to N . We can simplify the sum
in the RHS of this last equation by using the Marčenko-Pastur equation (4.2.27). Indeed, by
setting z = θ(µi) with i 6 r and θ defined in Eq. (4.3.12), Eq. (4.2.27), becomes

θ(µi) = µi +
1

T

N∑
j=1

1

µ−1
j − µ−1

i

(7.2.6)

and by taking the derivative with respect to µi, this yields

1

T

N∑
j=1

µ2
j

(µi − µj)2
= 1− θ′(µi), (7.2.7)

for any i 6 r. By plugging this identity into Eq. (7.2.5), we then obtain

N∑
j=r+1

µj〈vj ,ui〉2 ∼
µ2
i

θ(µi)

(
1− θ′(µi)

)
, (7.2.8)

for any i 6 r. All in all, we see by plugging Eqs. (7.2.4) and (7.2.8) into Eq. (7.2.3) that we
finally get

ξora.
i ∼ µ2

i

θ(µi)
, (7.2.9)

i.e. the oracle estimator for outliers also converge to a deterministic value which is very sim-
ple, but depends on the population eigenvalues which are not observable. However, using Eq.
(4.3.12), we can rewrite the RHS of Eq. (7.2.9) as a function of the sample eigenvalues. Firstly,
one notices that θ(µi) = λi for N → ∞ thanks to Eq. (4.3.12). Moreover, we can also invert
Eq. (4.3.12) to find

µi ∼
1

gS(λi)
=

λi
1− q + qλigE(λi)

,

for any i 6 r and where we use relation Eq. (4.2.25) in the last step. Therefore, we deduce that
in the high dimensional limit, we can rewrite Eq. (7.2.9) as

ξora.
i ∼ λi∣∣1− q + qλigE(λi)

∣∣2 . (7.2.10)

We see that the result is similar to the result for the bulk eigenvalues except that for outliers,
we need the Stietjes transform of the spikeless, fictitious sample covariance matrix E. But as we
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consider the limit N → ∞, we easily deduce using Weyl’s interlacing inequalities [187] that we
can replace it by the Stieltjes transform of E so that we finally conclude that for any i 6 r,

ξora.
i ∼ ξ̂(λi) , (7.2.11)

where the optimal shrinkage function ξ̂ is defined in (7.2.2) and we see that the outliers oracle
estimator converge to a deterministic function which is exactly the same than for bulk eigenvalues
(7.2.2) in the large N →∞.

To conclude, we found that the oracle estimator converges to a limiting function that does
not explicitly require the knowledge of C and is identical to the Bayes-MMSE estimator obtained
in the previous Chapter. Moreover, this function is universal in the sense that the optimal non
linear shrinkage needed to clean bulk eigenvalues and outliers is given by the very same function
in the limit N →∞, which is very appealing for practical applications. This function is defined
in Eqs. (7.2.2) or (7.2.11) and only requires the knowledge of the Stieljes transform of E, which
is observable – see below.

7.3 Some properties of the “cleaned” eigenvalues

Even though the optimal nonlinear shrinkage function (7.5.2) seems relatively simple, it is not
immediately clear what is the effect induced by the transformation λi → ξora.(λi). In this
section, we thus give some quantitative properties of the optimal estimator Ξora. to understand
the impact of the optimal nonlinear shrinkage function ξ̂(λ).

First let us the consider the moments of the spectrum of Ξora.. From Eq. (7.1.3) we imme-
diately derive that:

TrΞora. =
∑
j=1

µjv
∗
j

(∑
i=1

uiu
∗
i

)
vj = TrC, (7.3.1)

meaning that the cleaning operation preserves the trace of the population matrix C, as it should
be. For the moment of order 2 of the oracle estimator, we have:

Tr(Ξora.)2 =
N∑

j,k=1

µjµk
∑
i=1

〈ui,vj〉2〈ui,vk〉2.

Now, ff we define the matrix P as {∑i=1〈ui,vj〉2〈ui,vk〉2} for j, k = 1, N , it is not hard to
see that it is a squared matrix with nonnegative entries and whose rows all sum to unity. The
matrix P is therefore a (bi)stochastic matrix and the Perron-Frobenius theorem tells us that its
largest eigenvalues is equal to unity. Hence, we deduce the following general inequality

N∑
j,k=1

Pj,kµjµk ≤
N∑
j=1

µ2
j ,

which implies that

Tr(Ξora.)2 6 TrC2 6 TrE2, (7.3.2)

where the last inequality comes from Eq. (4.2.9). In words, this result states that the spectrum
of Ξora. is narrower than the spectrum of C, which is itself narrower than the spectrum of E. The
optimal RIE therefore tells us that we better be even more “cautious” than simply bringing back
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Figure 7.3.1. Evaluation of the eigenvalues density of state of the signal, sample and cleaned density
when the prior is an inverse Wishart of parameter κ = 1. We see that the cleaned density is the narrowest
one, while the sample is the largest as expected.

the sample eigenvalues to their estimated “true” locations. This is because we have only partial
information about the true eigenbasis of C. In particular, one should always shrink downward
(resp. upward) the small (resp. top) eigenvalues compared to their “true” locations µi for any
i ∈ [[1, N ]], except for the trivial case C = IN . As a consequence, estimating the population
eigenvalues [µi] is not what one should do to obtain an optimal estimator of C when there is
only partial information about its eigenvectors. We provide an illustration in Figure 7.3.1 where
we consider C to be an inverse-Wishart matrix with parameter κ = 1.

Next, we consider the asymptotic behavior of the oracle estimator for which we recall from
Eqs. (7.2.2) and (7.2.11) that

ξora.
i ∼ ξ̂i , with ξ̂i ..=

λi
|1− q + qλi limη↓0 gE(λi − iη)|2 .

Throughout the following, suppose that we have an outlier at the left of the lower bound of
supp ρE and let us assume q < 1 so that E has no exact zero mode2. We know since Section
7.2.2 that the estimator (7.2.2) holds for outliers. Moreover, we have that limλ→0+ gE(λ) is real
and analytic so that we have from Eq. (4.2.15) that λgE(λ) = O(λ) for λ→ 0+. This allows to
conclude from Eq. (7.2.2) that for very small outlier,

lim
λ→0+

ξ̂(λ) =
λ

(1− q)2
+O(λ2), (7.3.3)

which is in agreement with Eq. (7.3.2): small eigenvalues are enhanced for q ∈ (0, 1).

2Recall that we assume C to be positive definite for the sake of simplicity.
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The other asymptotic limit λ → ∞ is also useful since it gives us the behavior of the non-
linear shrinkage function ξ̂ for large outliers. In that case, we know from Eq. (4.2.8) that
limλ↑∞ λgE(λ) ∼ 1 + λ−1ϕ(E), where ϕ denotes the normalized trace operator (3.1.61). There-
fore, we conclude that

lim
λ→∞

ξ̂(λ) ≈ λ(
1 + qλ−1ϕ(E) +O(λ−2)

)2 ∼ λ− 2qϕ(E) +O(λ−1), (7.3.4)

and if we use that Tr E = Tr C = N , then we simply obtain

lim
λ→∞

ξ̂(λ) ≈ λ− 2q +O(λ−1). (7.3.5)

It is interesting to compare this with the well-known “Baik-Ben Arous-Péché” (BBP) result on
large outliers [15], which reads (see Eq. (4.3.14)) λ ≈ µ+ q for λ→∞. As a result, we deduce
from Eq. (7.3.5) that ξ̂(λ) ≈ µ− q and we therefore find the following ordering relation

ξ̂(λ) < µ < λ, (7.3.6)

for an isolated and large eigenvalues λ and for q > 0. Again, this result is in agreement with
Eq. (7.3.2): large eigenvalues should be reduced downward for any q > 0, even below the “true”
value of the outlier µ. More generally, the non-linear shrinkage function ξ̂ interpolates smoothly
between λ/(1−q)2 for small λ’s to λ−2q for large λ’s. Even though we did not manage to prove
it, we believe that this is another manifestation of the fact that the limiting optimal nonlinear
shrinkage function (7.2.2) is mononotic with respect to the sample eigenvalues.

7.4 Some analytical examples

The above general properties of the oracle shrinkage procedure can be given more precise flesh
in some exactly solvable cases. In this section we provide two simple toy models where the
function ξ̂(λ) can be characterized explicitly, before turning to numerical illustrations.

7.4.1. Null Hypothesis. The first one is the null hypothesis C = IN where we shall see that, as
expected ξora.(λi) = 1 for any eigenvalues [λi]i>r+1 in the bulk of the distribution. Outside of
the spectrum, we observe a “phase transition” phenomena similar to the BBP transition [15].

We begin with the outliers of E. By assumption of our model, all the outliers have a
contribution of order N−1 so that in the limit N → ∞, gE is real and analytic for any λi with
i 6 r. Hence, the estimator is easily obtained by plugging the Stieltjes transform (3.1.41) into
Eq. (7.2.2), with a result shown in Fig. 7.4.1. For bulk eigenvalues, the computation can be
done more explicitly. First, using Eq. (3.1.41), one finds

1− q + qzgE(z) =
(z + 1− q)±

√
(z + q − 1)2 − 4zq

2
.

For z = λ − iη with λ ∈
[
(1−√q)2, (1 +

√
q)2
]
, we know that the square root in the latter

equation becomes imaginary for η → 0+. Hence, if we take the square modulus, one gets

lim
η→0

∣∣1− q + qλgE(λ− iη)
∣∣2 =

(z + 1− q)2 +
(
4λq − (λ+ q − 1)2

)
4

,
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from which we readily find
lim
η→0

∣∣1− q + qλgE(λ− iη)
∣∣2 = λ,

and this gives the expected answer

ξ̂(λ) = 1, λ ∈
[
(1−√q)2, (1 +

√
q)2
]
. (7.4.1)

We provide an illustration of this phase transition in Figure 7.4.1 in the case where C = IN ,
corresponding to a matrix E is generated using an isotropic Wishart matrix with q = 0.5. It
also confirms the asymptotic prediction for large and isolated eigenvalue Eq. (7.3.5).

0 1 2 3 4 5
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ξ̂(
λ

)

RIE

no cleaning

Figure 7.4.1. Evaluation of the optimal RIE’s eigenvalues for C = IN as a function of the sample
eigenvalues [λi]i∈[[1,N ]]. The nonlinear shrinkage function is plotted with the plain blue line. We see that
for λ > (1 +

√
q)2, a phase transition occurs and the corresponding “cleaned” eigenvalues converges to

λ − 2q as λ grows (see red dotted line). We also have a phase transition for any outlier λ < (1 − √q)2

(see Figure 7.4.3).

7.4.2. Revisiting the linear shrinkage. In Chapter 6, we saw that the linear shrinkage (towards
the identity matrix) is equivalent to assuming that C itself belongs to an Inverse-Wishart en-
semble with some parameter κ. We want to revisit this result within the framework of the
present chapter, and we will see that in the presence of extra spikes, the optimal shrinkage
function (7.2.2) again shows a phase transition phenomenon and therefore differs from the linear
estimator Eq. (6.3.7) for eigenvalues lying outside the spectrum of E.

As for the null hypothesis case above, there is no particular simplifications for outliers and
the result is immediately obtained from Eq. (7.2.2) and (4.2.33). For the bulk component, the
square root term in Eq. (4.2.33) becomes imaginary. Hence, setting z = λ− iη into Eq. (4.2.33)
with λ ∈ [λiw

− , λ
iw
+ ] and λiw

± , defined in Eq. (4.2.34), one obtains∣∣∣∣1− q + qλ lim
η→0+

gE(λ− iη)

∣∣∣∣2 =

[
λi(1 + qκ) + κq(1− q)

]2
+ q2

[
2λiκ(κ(1 + q) + 1)− κ2(1− q)2 − λ2

iκ
2
]

(λi + 2qκ)2
,
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with κ > 0. This can be rewritten after expanding the square as∣∣∣∣1− q + qλ lim
η→0+

gE(λ− iη)

∣∣∣∣2 =
λ(1 + 2qκ)

(λ+ 2qκ)
. (7.4.2)

By plugging this last equation into Eq. (7.2.2) gives for any λ ∈ [λiw
− , λ

iw
+ ]

ξora.(λ) =
λi + 2qκ

1 + 2qκ
, (7.4.3)

and if we recall the definition αs = 1/(1 + 2qκ) ∈ [0, 1] of Eq. (6.3.7), we retrieve exactly the
linear shrinkage estimator (6.3.7),

ξora.(λ) ∼ αsλ+ (1− αs), λ ∈ [λiw
− , λ

iw
+ ]. (7.4.4)

This last result illustrates in a particular case the genuine link between the optimal RIE Ξora.

and Bayes optimal inference techniques. In particular, we show that for an isotropic Inverse
Wishart matrix, the estimator Ξora. gives the same result than the conjugate prior approach
in the high dimensional regime. Nevertheless, this is valid only for the bulk component as the
presence of outliers induces a phase transition for the optimal RIE, which is absent within the
conjugate prior theory that is blind to outliers. We illustrate this last remark in Figure 7.4.2
where C is an Inverse-Wishart matrix of parameter κ = 2. The link between Bayesian statistics
and RIE in the high-dimensional regime has been noticed in [40] where the case of an additive
noise is also considered – see Appendix 11, yielding a generalisation of the well-known Wiener’s
signal-to-noise ratio optimal estimator [188].

We also illustrate in Figure 7.4.3 the phase transition observed for outliers at the left of
the lower bound of the spectrum for both analytical examples. We see that for very small
eigenvalues, the theoretical prediction (7.3.3) is pretty accurate. This prediction becomes less
and less effective as λ moves closer to the left edge.

7.5 Optimal RIE at work

In order to conclude this section, we now consider different cases where gE(z) is not explicit,
and where the problem is solved numerically. In that case, the main question is to estimate
the function gE(z) without imposing any “prior” on C. Indeed, even though the function ξora.

only depends on observables quantities, we still need to estimate the fonction gE(z) using only
a finite (and random) set of sample eigenvalues.

This question has been addressed recently in [43], where apart from extending the result
of [113] to outliers (as reviewed above), the mathematical technique used provided a derivation
of Eq. (7.2.2) at a local scale and for any large but bounded N . As alluded in Chapter 5, the local
scale can be understood as an average over small intervals of eigenvalues of width η = dλ > N−1.
The main result of [43] can be summarized as follows: the limiting Stieltjes transform gE(z) can
be replaced by its discrete form

gNE (z) =
1

N

N∑
i=1

1

z − λi
, (7.5.1)

with high probability (see e.g. [109] for the exact statement). Therefore, this yields a fully
observable nonlinear shrinkage function and moreover, the choice η = N−1/2 gives a sharp upper
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Figure 7.4.2. Evaluation of the optimal RIE’s eigenvalues for an Inverse Wishart prior with κ = 2 as
a function of the sample eigenvalues [λi]i∈[[1,N ]]. The matrix E is generated using Wishart matrix with
parameter N = 500 and q = 0.5. The nonlinear shrinkage function is plotted with the plain blue line
and it coincides with the estimator Eq.(6.3.7) (red dotted line). We nonetheless see that for λ > λiw

+ , a
phase transition occurs and the two estimators split up. The same phenomenon is observed for λ < λiw

+

(see Figure 7.4.3).

error bound for any finite N and T . Precisely, for zi = λi − iN−1/2, there exists a constant K
such that for large enough T ,∣∣∣ξora.

i − ξ̂Ni
∣∣∣ 6 K√

T
, ξ̂Ni ≡ ξ̂N (λi) ..=

λi∣∣1− q + qzigNE (zi)
∣∣2 , (7.5.2)

provided that λi is not near zero [43]. We see that Eq. (7.5.2) is extremely simple to implement
numerically as it only requires to compute a sum over N terms.

We now test numerically the accuracy of the finite N , observable optimal nonlinear shrinkage
function (7.5.2) in four different settings for the population matrix C. We choose N = 500,
T = 1000 (which are quite reasonable numbers in real cases, not too small nor too large) and
consider the following four different cases:

(i) Diagonal matrix whose ESD is composed of multiple sources with “spikes” located at {8,
15},

ρC = 0.002δ15 + 0.002δ8 + 0.396δ3 + 0.3δ1.5 + 0.3δ1. (7.5.3)

(ii) Deformed GOE, i.e C = IN + GOE (of width σ = 0.2) with extra spikes located at {3, 3.5,
4.5, 6}.

(iii) Toeplitz matrix with entries Cij = 0.6|i−j| with spikes located at {7, 8, 10, 11};
(iv) Power-law distributed eigenvalues (see [29] and Chapter 4) with λ0 = −0.6 (or λmin = 0.8.

Using a large N proxy for the classical positions of the µi, one gets [29]:

µi = −λ0 +
(1 + λ0)

2

√
N

i
i ∈ [[1, N ]] . (7.5.4)
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Figure 7.4.3. Comparison of the prediction Eq. (7.3.3) (red dashed line) compared to the analytical
solution of the null hypothesis (7.4.1) (green dash-dotted line) and the Inverse Wishart prior (7.4.4) with
parameter κ = 2 (blue plain line). In both cases, wet set q = 0.5. The asymptotic prediction (7.3.3)
becomes less and less accurate as λ moves closer to the left edge and the analytic solution (blue line)
depicts a phase transition.

Note that the last power law distribution automatically generates a bounded number of outliers.
Moreover, since we work with N and T bounded, the largest eigenvalue of C is remains bounded.
We plot the results obtained with the estimator Eq. (7.5.2) and the oracle estimator Eq. (7.1.2)
in Figure 7.5.1.

Overall, the estimator (7.5.2) gives accurate predictions for both the bulk eigenvalues and
outliers. We have considered several configurations of outliers. For the case (i), we see that the
two isolated outliers are correctly estimated. For the deformed GOE or the Toeplitz case, the
outliers are chosen to be a little bit closer to one another and again, the results agree well with
the oracle estimator. For the more complex case of a power law distributed spectrum, where
there is no sharp right edge, we see that (7.5.2) matches again well with the oracle estimator. We
nevertheless notice that the small eigenvalues are systematically underestimated by the empirical
optimal RIE (7.5.2). This effect will be investigated in more details in Chapter 9.

7.6 Extension to the free multiplicative model

As highlighted in [40], the evaluation of optimal RIE for bulk eigenvalues can be extended to more
general multiplicative random matrix models (for additive noise models, see Appendix 11). In
particular, it is possible to derive (formally) the analog of optimal nonlinear shrinkage function
(7.2.2) for the bulk eigenvalues of the measurement model (3.1.80) which encompasses the sample
covariance matrix (see Section 4.2.1).

To that end, let us define M ..= C1/2ΩBΩ∗C1/2 where B is a N ×N symmetric rotational invariant
noise term and Ω is a N × N random rotation matrix that is distributed according to the Haar

118



Chapter 7. Optimal rotational invariant estimator for general covariance matrices

(a) Multiple sources (case (i)). (b) deformed GOE (case (ii)).

(c) Toeplitz (case (iii)) (d) Power law (case (iv))

Figure 7.5.1. Comparison of numerically estimated oracle estimator (7.5.2) (red line) with the exact
oracle RIE estimator (7.1.2) (blue points) for the four cases presented at the beginning of Section 7.5 with
N = 500 and T = 1000. The results come from a single realization of E using a multivariate Gaussian
measurement process.

measure. One can easily check from Eq. (3.1.100) that

Tr [GM(z)C] = N(zgM(z)− 1)SB(zgM(z)− 1) . (7.6.1)

Using the analyticity of the S-transform, we define the function γB and ωB such that:

lim
z→λ−i0+

SB(zgM(z)− 1) := γB(λ) + iπρM(λ)ωB(λ) , (7.6.2)

and as a result, the optimal RIE for bulk eigenvalues of the free multiplicative noise model (3.1.80)
may be inferred from (7.2.1):

ξora.i ∼ F2(λi); F2(λ) = λγB(λ) + (λhM(λ)− 1)ωB(λ) . (7.6.3)

Note that one retrieves the estimator (7.2.2) by plugging Eqs. (3.1.44) and (7.6.2) into Eq. (7.6.3).
We omit details, which can be found in [40], and we conclude that the formula (7.6.3) indeed
generalizes Eq. (7.2.2). Again, we see that the final solution does not depend explicitly on C but
somehow requires a prior on the spectral distribution of the matrix B. It would be quite satisfying
to find models in which we may obtain an explicit formula for Eq. (7.6.3) (see Chapter 10 for some
relevant applications of this model).
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We emphasize in passing that we may also derive the mean squared overlap (5.0.3) in the bulk of
the distribution using Eq. (3.1.100). To that end, we invoke the relation (5.1.5) and Eq. (3.1.100)
to obtain [40]:

Φ(λ, µ) =
µβm(λ)

(λ− µαm(λ))2 + π2µ2βm(λ)2ρM(λ)2
, (7.6.4)

where we defined the functions αm and βm as
αm(λ) := lim

z→λ−i0+
Re

[
1

SB(zgM(z)− 1)

]
βm(λ) := lim

z→λ−i0+
Im

[
1

SB(zgM(z)− 1)

]
1

πρM(λ)
,

(7.6.5)

and the subscript m stands for “multiplication”.

We conclude this technical section by mentioning one important open problem which is the extension
of these results in the presence of outliers. Indeed, it would be interesting to see whether the optimal
RIE formula (7.6.3) remains universal in the sense that the cleaning formula for bulk eigenvalues
and outliers is identical. The block matrix representation (B.4.8) might be useful in that respect.
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Chapter 8

Application: Markowitz portfolio theory
and previous “cleaning” schemes

8.1 Markowitz optimal portfolio theory

For the reader not familiar with Markowitz’s optimal portfolio theory [125], we recall in this
section some of the most important results. Suppose that an investor wants to invest in a
portfolio containing N different assets, with optimal “weights” to be determined. An intuitive
strategy is the so-called mean-variance optimization: the investor seeks an allocation such that
the overall quadratic risk of the portfolio is minimized given an expected return target. It is
not hard to see that this mean-variance optimization can be translated into a simple quadratic
optimization program with a linear constraint. Before going into more mathematical details,
let us introduce some notations that will be used in the following. We suppose that we observe
the return time series of N different stocks. For each stock, we observe a time series of size T ,
where T is often larger than N in practice. This yields the (normalized) N × T return matrix
Y = (Yit) ∈ RN×T whose true correlation matrix is defined by

〈YitYjt′〉 = Cijδt,t′ , (8.1.1)

where the absence of correlations in the time direction is a only a first approximation since weak,
but persistent linear correlations are known to exist in stock markets.

As natural in the present “Big Data” era, we place ourselves in the high-dimensional regime
N,T → ∞ with a finite ratio q = N/T . Markowitz’s optimal portfolio amounts to solving the
following quadratic optimization problem{

minw∈RN
1
2w∗Cw

s.t. w∗g ≥ G (8.1.2)

where g is a N -dimensional vector of prediction and G is the expected gain. This can be easily
solved by introducing a Lagrangian multiplier γ to rewrite this constrained optimization problem
as a unconstrained one1:

min
w∈RN

(
1

2

)
w∗Cw − γw∗g. (8.1.3)

1One can check that the so-called Karush-Kuhn-Tucker conditions are satisfied.
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Assuming that C is invertible, it is not hard to find the optimal solution and the value of γ such
that overall expected return is exactly G. It is given by

wC = G C−1g

g∗C−1g
, (8.1.4)

that requires the knowledge of both C and g, which are a priori unknown. However, forming
expectations of future returns is the job of the investor, based on his/her informations and
anticipations, so we assume that g is known. Even if these predictions are completely wrong,
it still makes sense to look for the minimum risk portfolio consistent with these expectations.
We are still left with the problem of estimating C, or maybe C−1 before applying Markowitz’s
formula, Eq. (8.1.4). We will see below why one should actually find the best estimator of C
itself before inverting it and determining the weights.

What is the minimum risk associated to this allocation strategy, measured as the variance of
the returns of the portfolio?2 If one knew the population correlation matrix, C, the true optimal
risk associated wC would be given by

R2
true

..= 〈wC ,CwC〉 =
G2

g∗C−1g
. (8.1.5)

However, the optimal strategy (8.1.4) is not attainable in practice as the matrix C is unknown.
What can one do then, and how badly is the realized risk of the portfolio estimated?

8.1.1. Predicted and realized risk. One obvious – but naive – way to use the Markowitz optimal
portfolio is to apply (8.1.4) using the empirical matrix E instead of C. Recalling the results
of Chapter 4 and 5, it is not hard to see that this strategy should suffer from strong biases
whenever T is not sufficiently large compared to N , which is precisely the case we consider here.
Notwithstanding, the optimal investment weights using the empirical matrix E read:

wE = G E−1g

g∗E−1g
, (8.1.6)

and the minimum risk associated to this portfolio is thus given by

R2
in = 〈wE ,E wE〉 =

G2

g∗E−1g
, (8.1.7)

which is known as the “in-sample” risk, or the predicted risk. Let us assume for a moment that
g is independent from C (and hence, from E). Then, using the convexity with respect to E of
g∗E−1g we find from Jensen inequality that

E[g∗E−1g] > g∗E
[
E
]−1

g = g∗C−1g (8.1.8)

because E is an unbiased estimator of C. Hence, we conclude that the in-sample risk is lower than
the ’true’ risk and therefore, our optimal portfolio suffers from an in-sample bias: its predicted
risk underestimates the true optimal risk, and even more so the future out-of-sample or realized
risk, that is the risk realized in the period subsequent to the estimation period. Let us denote

2An equivalent risk measure is the volatility which is simply the square root of the variance of the portfolio
strategy.
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by E′ the empirical matrix of this out-of-sample period; the out-of-sample risk is then naturally
defined by:

R2
out = 〈wE ,E

′wE〉 =
G2g†E−1E′E−1g

(g†E−1g)2
. (8.1.9)

For large matrices, we expect the result to be self-averaging and given by its expectation. Since
the noise in wE can be assumed to be independent from that in E′, we get for large N [141]:

w∗EE′wE ≈ w∗ECwE (8.1.10)

and one readily obtains, from the fact that Eq. (8.1.5) is the minimum possible risk, the following
inequality: R2

true 6 R2
out. We plot in Figure 8.1.1 an illustration of these inequalities using the

so-called efficient frontier where we assumed that g = (1, . . . , 1)∗. For a given C (here a shifted
GOE around the identity matrix, with σ = 0.2), we build wC and wE and compare Eqs. (8.1.5),
(8.1.7) and (8.1.9) for q = 0.5. We see that using wE is clearly overoptimisitc and can potentially
lead to desastrous results in practice. We emphasize that this conclusion holds for different risk
measures [49,53].
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Figure 8.1.1. Efficient frontier associated to the mean-variance optimal portfolio (8.1.4) for g =
(1, . . . , 1)∗ and C a shifted GOE around the identity matrix, with σ = 0.2 and for q = 0.5. The blue line
depicts the expected gain as a function of the true optimal risk (8.1.5) in percentage. The green line the
predicted (in-sample) risk while the red line gives the realized (out-of-sample) risk, which is well above
the true risk.

8.1.2. The case of high-dimensional random predictors. In the limit of large matrices and with
some assumptions on the structure g, we can make these inequalities more precise using tools
from RMT. In particular, we will show that we can link the true and the realized risk using the

123
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Marčenko-Pastur equation and free probability theory. Let us suppose for simplicity that

g ∼ NN (0, IN ), (8.1.11)

but the result holds for any random vector g composed of i.i.d. entries with zero mean, unit
variance and a sufficient number of bounded moments. Let M be a positive definite matrix
which is independent from the vector g, then we have in the large N limit,

g∗Mg

N
=

1

N
Tr[gg∗M] =

freeness

g∗g

N
ϕ(M) (8.1.12)

where we recall that ϕ is the normalized trace operator. Thus, from our assumption (8.1.11) we
easily deduce,

g∗Mg

N
− ϕ(M) →

N→∞
0. (8.1.13)

Now setting M = {E−1, C−1}, we apply Eq. (8.1.13) to Eqs. (8.1.7), (8.1.5) and (8.1.9) respec-
tively, to find

R2
in → G2

Nϕ(E−1)
,

R2
true → G2

Nϕ(C−1)
,

R2
out →

G2ϕ(E−1CE−1)

Nϕ2(E−1)
, (8.1.14)

where we recall that ϕ is the normalized trace operator defined in Eq. (3.1.61). Let us focus on
the first two terms above. For q < 1, we know from Eq. (4.2.14) that gE(0) = −ϕ(E−1). The
same relation holds for gC if C has no exact zero mode. Moreover, we showed above that these
two quantities are related in the high-dimensional regime through ϕ(C−1) = (1− q)ϕ(E−1) – see
Eq. (4.2.16). As a result, we have, for N →∞

R2
in = (1− q)R2

true. (8.1.15)

Hence, for any q ∈ (0, 1), we see that the in-sample risk associated to wE always provides an
over-optimistic estimator. Even better, we are able to quantify exactly the risk underestimation
thanks to (8.1.15).

Next we would like to find the same type of relation for the “out-of-sample” risk. We recall
that under the framework of Chapter 4, we may always rewrite E = C1/2WC1/2 where W is a
white Wishart matrix of parameter q independent from C. Hence, we have for the out-of-sample
risk

R2
out =

G2ϕ(C−1W−2)

Nϕ2(E−1)

when N → ∞. Then, the trick is to notice that in the limit of large matrices, W and C are
asymptotically free. This allows us to conclude from the freeness relation (3.1.64) that

ϕ(C−1W−2) = ϕ(C−1)ϕ(W−2), (8.1.16)

Hence, using the asymptotic relation (4.2.16), we find:

R2
out = G2(1− q)2 ϕ(W−2)

Nϕ(C−1)
, (8.1.17)
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Finally, one can readily compute ϕ(W−2) by performing the large z → 0 expansion of the
Stieltjes transform of the Marčenko-Pastur density given Eq. in (4.2.16) by replacing C with IN ,
that is to say ϕ(W−2) = (1− q)−3 for q < 1. We finally get:

R2
out =

R2
true

1− q . (8.1.18)

All in all, we obtained the following asymptotic relations:

R2
in

1− q = R2
true = (1− q)R2

out, (8.1.19)

which holds for a completely general C. Note that similar results have been obtained in a slightly
different context in [141] for C = IN and later in [56]. Hence, if one invests with the “naive”
weights wE, it turns out that the predicted risk underestimate the realized risk by a factor (1−q)2

and in the extreme case N = T or q = 1, the in-sample risk is equal to zero while the out-of-
sample risk diverges. We thus conclude that, as announced, the use of the sample covariance
matrix E for the Markowitz optimization problem can lead to disastrous results. This suggests
that we should have a more reliable estimator of C in order to control the ‘out-of-sample’ risk.

8.1.3. Out-of-sample risk minimization. We insisted throughout the last section that the right
quantity to control in portfolio management is the realized, out-of-sample risk. It is also clear
from Eq. (8.1.19) that using the sample estimate E is a very bad idea and hence, it is natural to
wonder which estimator of C one should use to minimize this out-of-sample risk? The Markowitz
formula (8.1.4) naively suggests that one should look for a faithful estimator of the so-called
precision matrix C−1. But in fact, since the expected out-of-sample risk involves the matrix C
linearly, it is that matrix that should be estimated. There are two different approaches to argue
that the oracle estimator indeed yields the optimal out-of-sample risk.

The first approach consists in rephrasing the Markowitz problem in terms of conditional
expectation. Indeed, the Markowitz problem can be thought as the minimization of the expected
future risk given the observations available at the investment date. More formally, it can be
written as3  minw E

[
1

Tout

(∑t+Tout
t′=t+1〈w , rt′〉

)2
∣∣∣∣∣F(t)

]
,

s.t. w∗g ≥ G ,
(8.1.20)

where F(t) is all the information available at time t (the investment data), Tout is the out-
of-sample period, and r is the vector of returns of the N stocks in our portfolio. Assuming
iid returns means that the optimal weights are independent from the future realizations of r.
Moreover, we assume that P(rt′) ∝ P(rt′ |C)P0(C) for t′ > t, where P0(C) is an (arbitrary) prior
distribution on the population covariance matrix C. One then has:

E

[
1

Tout

(t+Tout∑
t′=t+1

〈w , rt′〉
)2
∣∣∣∣∣F(t)

]
, =

〈
w ,

1

Tout

∑
t′

E
[
rtr
∗
t

∣∣∣F(t)
]

w

〉
,

=

〈
w , E

[
C
∣∣∣F(t)

]
w

〉
. (8.1.21)

3Recall that we neglect the expected return g in the calculation of the variance, since the latter is usually
small compared to the volatility.
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Recalling the results from Chapter 6, we see that E[C|F(t)] = 〈C〉P(C|E) under a multivariate
Gaussian assumption on the returns4 (see Eq. (6.2.2)). Therefore, using the result Eq. (6.2.3),
we can conclude that the oracle estimator is the one that minimizes the out-of-sample risk in
that specific framework.

There exists another, perhaps more direct derivation of the same result that we shall now
present. It is based on the relation (8.1.9) Let us show this explicitely in the context of rota-
tionally invariant estimators, that we considered in Chapter 6 and 7. Let us define our RIE
as

Ξ =
N∑
i=1

ξ(λi)uiu
∗
i ,

where we recall that [ui]i are the sample eigenvectors and ξ(·) is a function that has to be
determined. Suppose that we construct our portfolio wΞ using this RIE, that we assume to be
independent of the prediction vector g. Again, we assume for simplicity that g is a Gaussian
vector with zero mean and unit variance. Consequently, the estimate (8.1.13) is still valid, such
that the realized risk associated to the portfolio wΞ reads for N →∞:

R2
out(Ξ) = G2

Tr
(

Ξ−1CΞ−1
)

(
Tr Ξ−1

)2 . (8.1.22)

using the spectral decomposition of Ξ, we can rewrite the numerator as

Tr
(

Ξ−1CΞ−1
)

=
N∑
i=1

〈ui ,Cui〉
ξ2(λi)

. (8.1.23)

On the other hand, one can rewrite the denominator of Eq. (8.1.22) as

(
Tr Ξ−1

)2
=

(
N∑
i=1

1

ξ(λi)

)2

. (8.1.24)

Regrouping these last two equations allows us to rewrite Eq. (8.1.22) as

R2
out(Ξ) = G2

N∑
i=1

〈ui ,Cui〉
ξ2(λi)

(
N∑
i=1

1

ξ(λi)

)−2

. (8.1.25)

Our aim is to find the optimal shrinkage function ξ(λj) associated to the sample eigenvalues
[λj ]

N
j=1, such that the out-of-sample risk is minimized. This can be done by solving, for a given

j, the following first order condition:

∂R2
out(Ξ)

∂ξ(λj)
= 0. (8.1.26)

By performing the derivative with respect to ξ(λj) in (8.1.25), one obtains

− 2
〈uj ,Cuj〉ξ′(λj)

ξ3(λj)

(
N∑
i=1

1

ξ(λi)

)−2

+ 2
ξ′(λj)

ξ2(λj)

(
N∑
i=1

〈ui ,Cui〉
ξ2(λi)

)(
N∑
i=1

1

ξ(λi)

)−3

= 0, (8.1.27)

4We expect this result to hold also for the multivariate Student, see Section 4.1.3.
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and one can check that the solution is precisely given by

ξ(λj) = 〈uj ,Cuj〉 := ξora.
j , (8.1.28)

which is the oracle estimator that we have studied in the chapters 6 and 7.
As a conclusion, the optimal RIE (7.2.2) actually minimizes the out-of-sample risk under the

class of rotationally invariant estimators under some distribution assumptions. Moreover, the
corresponding “optimal” realized risk is given by

R2
out(Ξ

ora.) =
G2

Tr
[
(Ξora.)−1

] , (8.1.29)

where we used the notable property that for any n ∈ Z:

Tr[(Ξora.)nC] = Tr[(Ξora.)n+1], (8.1.30)

which directly follows from the general formula (7.1.2). Note that this result has also been
obtained in [117] where the authors also showed that this estimator maximizes the Sharpe ratio,
i.e., the expected return of the strategy divided by its volatility.

8.1.4. Optimal in and out-of-sample risk for an Inverse Wishart prior. In this section, we
specialize the result (8.1.29) to the case when C is an Inverse-Wishart matrix with parameter
κ > 0, corresponding to the simple linear shrinkage optimal estimator. Notice that we shall
assume throughout this section that there are no outliers (r = 0). Firstly, we infer from Eq.
(3.1.55) by z → 0 that

ϕ(C−1) = −gC(0) = 1 +
1

2κ
, (8.1.31)

so that we get from Eq. (8.1.14) that in the large N limit:

R2
true =

G2

N

2κ

1 + 2κ
. (8.1.32)

Next, we see from Eq. (8.1.29) that the optimal out-of-sample risk requires the computation
of ϕ((Ξora.)−1). In general, the computation of this normalized is highly non-trivial but we shall
show that some genuine simplifications appear when C is an inverse Wishart. In the LDL, the
final result, whose derivation is postponed at the end of this section, reads:

ϕ((Ξora.)−1) = −(1 + 2qκ)gE(−2qκ) = 1 +
1

2κ(1 + q(1 + 2κ))
, (8.1.33)

and therefore we have from Eq. (8.1.29)

R2
out(Ξ

ora.) =
G2

N

2κ(1 + q(1 + 2κ))

1 + 2κ(1 + q(1 + 2κ))
, (8.1.34)

from which it is clear from Eqs. (8.1.34) and (8.1.32) that for any κ > 0:

R2
out(Ξ

ora.)

R2
true

= 1 + q
2κ

1 + 2κ(1 + q(1 + 2κ))
> 1 , (8.1.35)

where the last inequality becomes an equatlity only when q = 0, as it should.
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It is also interesting to evaluate the in-sample risk associated to the oracle estimator. It is
defined by

R2
in(Ξora.) = G2 Tr

[
(Ξora.)−1E(Ξora.)−1

]
Nϕ2((Ξora.)−1)

, (8.1.36)

where the most challenging term is the numerator. As above, the computation of this term is, to
our knowledge, not trivial in the general case but using the fact that the eigenvalues of Ξora. are
given by (7.4.4), we can once again find a closed formula. As above, we relegate the derivation
at the end of this section and the result reads:

ϕ
(
(Ξora.)−1E(Ξora.)−1

)
= −(1− z)2

[
gE(z) + zg′E(z)

]∣∣∣∣
z=−2qκ

=
(1 + 2κ)(1 + 2qκ)3

2κ(1 + q(1 + 2κ))3
. (8.1.37)

Hence by plugging Eqs. (8.1.37) and (8.1.33) into Eq. (8.1.36), we obtain

R2
in(Ξora.) =

G2

N

2κ(1 + 2qκ)

(1 + 2κ)(1 + q(1 + 2κ))
, (8.1.38)

and we therefore deduce with Eq. (8.1.32) that for any κ > 0:

R2
in(Ξora.)

R2
true

= 1− q

1 + q(1 + 2κ)
6 1 , (8.1.39)

where the inequality becomes an equality for q = 0 as above.

Finally, one may easily check from Eqs. (8.1.19), (8.1.35) and (8.1.39), that

R2
in(Ξora.)−R2

in(E) > 0, R2
out(Ξ

ora.)−R2
out(E) 6 0 , (8.1.40)

showing explicitely that we indeed reduce the over-fitting by using the oracle estimator instead
of the sample covariance matrix in the high dimensional framework.

The aim of this technical section is to derive the results (8.1.33) and (8.1.37). We begin with
Eq. (8.1.33) and we use that the eigenvalues of the oracle estimator converges to Eq. (7.4.4) when
N →∞ and C is an inverse Wishart of parameter κ > 0. Hence, this yields

ϕ((Ξora.)−1) =
1

N

N∑
i=1

1

1 + αs(λi − 1)
=

1

αs

1

N

N∑
i=1

1
1−αs
αs

+ λi
, (8.1.41)

and using Eq. (6.3.7), we also have

1

αs
= 1 + 2qκ, and

1− αs
αs

= 2qκ .

We may conclude that

ϕ((Ξora.)−1) ∼ (1 + 2qκ)gE(−2qκ) , (8.1.42)

where we emphasize that the Stieltjes transform is analytic since its argument is non-positive for
any κ > 0. This is the first equality of Eq. (8.1.33) that relates the computation of the normalized
trace with the Stieltjes transform of E. When C is an Inverse Wishart, we know that gE is explicit
and given by (4.2.33). Nonetheless, it seems that Eq. (4.2.33) is diverging for z = −2qκ so that one
has to be careful in the evaluation of gE(−2qκ). To that end, we fix z = −2qκ+ ε with ε > 0 and
expand the numerator of Eq. (4.2.33) as a power of ε to find:

gE(z) =
q − z

z(1 + q − z) +O(ε),
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meaning that for ε = 0, we obtain

gE(−2qκ) = − 1 + 2κ

2κ(1 + q(1 + 2κ))
. (8.1.43)

It is then easy to deduce Eq. (8.1.33) from this last equation and Eq. (8.1.42).

The computation of Eq. (8.1.37) is a bit more tedious but very similar to the derivation of the
previous paragraph. Indeed, using that (Ξora.)−1E(Ξora.)−1 share the same eigenbasis, we have
thanks to Eq. (7.4.4):

ϕ((Ξora.)−1E(Ξora.)−1) =
1

N

N∑
i=1

λi
(1 + αs(λi − 1))2

, (8.1.44)

which gives after some simple manipulations:

ϕ((Ξora.)−1E(Ξora.)−1) =
1

αs

1

N

N∑
i=1

[
1

1 + αs(λi − 1)
− 1− αs

(1 + αs(λi − 1))2

]
. (8.1.45)

Defining z = −2qκ < 0, one can deduce the first equality of Eq. (8.1.37) using the same identification
with the Stieltjes transform (and its derivative with respect to z) as above. The derivative of Eq.
(4.2.33) reads:

g′E(z) =
1

z2(z + 2qκ)2

[
z(2κq + z)

(
1 + κ− κ(κ(q − z + 1) + 1)√

κ2(z + q − 1)2 − 2κz(1 + 2κ)

)
− 2(qκ+ z)β(z)

]
,

(8.1.46)
where β(z) is defined by

β(z) ..= z(1 + κ)− κ(1− q) +
√
κ2(z + q − 1)2 − 2κz(1 + 2κ) , (8.1.47)

which is the denominator of Eq. (4.2.33). We omit further details as the proof of the second equality
of Eq. (8.1.37) relies on a Taylor expansion around −2qκ in the same spirit than in the previous
paragraph. This regularizes the Stieltjes transform and its derivative and one eventually obtains:

− 2qκg′E(−2qκ) =
q(1 + 2κ)

[
q + 2(1 + κ+ 2qκ(1 + κ))

]
2κ(1 + q(1 + 2κ))3

(8.1.48)

and we find the desired result by plugging this last equation into Eq. (8.1.37).

8.2 A short review on previous cleaning schemes

In this section, we give a short survey of the many attempts in the literature to circumvent
the above “in-sample” curse by cleaning the covariance matrix before using it for i.e. portfolio
construction. Even if most of the recipes considered below are not optimal (in a statistical
sense), a lot of interesting ideas have been proposed to infer the statistical properties of the
unknown population matrix. As we shall see, most of the methods appeared after the seminal
work of Marčenko & Pastur [123]. We nonetheless stress that the literature on estimating large
covariance matrices is so large that it is impossible to make justice to all the available results
here. We will only consider methods for which RMT results offer interesting insights and refer
to, e.g. [16, 29,145] for complementary sources of information.

We shall present four different classes of estimators. The first one is the linear shrinkage. This
estimator has been studied in details in Chapters 6 and 7 but here, we focus on the estimation
of the shrinkage intensity. As we will see, RMT will provide very simple methods to estimate
parameters from the data.

Then we will present the eigenvalues clipping method of [111, 151] where the aim is to
separate “trustworthy” eigenvalues from “noisy” ones. The basic idea of this method is the
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spiked covariance matrix model that we presented in Section 4 where the true eigenvalues consist
in a finite number r of spikes and one degenerate eigenvalue ≈ 1 − O(r/N), with multiplicity
N − r.

The third method, that we name eigenvalues substitution, consists in solving the inverse
Marčenko-Pastur problem (see Section 4). Roughly speaking, in the presence of a very large
number of eigenvectors, one can discretize the Marčenko-Pastur equation and solve the inverse
problem using either a parametric [29] or non-parametric approach [104].

The last method concerns factors models, or structured covariance estimators, where one
tries to explain the correlation matrix through a simplified model of the underlying structure of
the data. This is a very popular approach in finance and economics, and we will see how RMT
has allowed some recent progress.

All these methods will be tested using real financial data in the next chapter.

8.2.1. Linear Shrinkage. We recall that the linear shrinkage is given by

Ξlin = αsE + (1− αs)IN , α ∈ [0, 1]. (8.2.1)

As discussed in Chapter 6, this estimator has a long history in high-dimensional statistics [87,115]
as it provides a simple proof that the sample estimator E is inconsistent whenever N and T are
both large. A very exhaustive presentation of the properties of this estimator in the high-
dimensional regime can be found in [115] or in [105] in a more RMT oriented standpoint. It
is easy to see that Ξlin shares the same eigenbasis than the sample estimator E, and is thus a
rotationally invariant estimator with

Ξlin =
N∑
i=1

ξlinuiu
∗
i , ξlin = 1 + αs(λi − 1) (8.2.2)

We already emphasized that this estimator exhibits all the expected features: the small eigen-
values are “shrunk” upwards (compare to the sample eigenvalues) while the top eigenvalues
are “shrunk ”downwards (see Figure 8.2.1). As alluded above, this estimator has been fully
investigated in [115]. Most notably, the authors were able to determine an asymptotic optimal
formula to estimate αs directly from the data. Keeping the notations of Section 4, our data set
is Y = (y1, . . . ,yT ) ∈ RN×T and we assume that E[Yit] = 0 and E[Y 2

it ] = T−1 for all i ∈ [[1, N ]].
Defining:

β ..=
1

N
Tr [(E− IN )(E− IN )∗]

γ ..= max

(
β,

1

T 2

T∑
k=1

1

N
Tr [(yky

∗
k − E)(yky

∗
k − E)∗]

)
, (8.2.3)

then

α̂s = 1− β

γ
, (8.2.4)

is a consistent estimator of αs in the high-dimensional regime [115].

Using tools from RMT, and more precisely the result of Sections 4 and 5, we can find
another consistent estimators of αs which uses the fact that linear shrinkage implicitely assumes
the underlying correlation matrix to be an Inverse-Wishart matrix with parameter κ, from which
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αs is deduced as αs = (1 + 2qκ)−1. The value of κ can be extracted from the data using the
relation (valid for q < 1):

gC(0) = (1− q)gE(0) = 1 + 2κ. (8.2.5)

where the last equality can be deduced from (3.1.55) and (4.2.16). Therefore, we obtain a simple
estimate for κ from the trace of E−1 as:

κ =
1

2

(
(1− q)Tr E−1

N
− 1

)
. (8.2.6)

However, this estimate is only reliable when κ is not too large, i.e. when C is significantly different
from the identity matrix (in the opposite case, (1−q) Tr E−1 ≈ N so that one can obtain negative
values for κ). A more robust alternative is to use the “two-samples” test introduced in Chapter
5.2, see Eqs (5.2.17) and [41].

8.2.2. Eigenvalues clipping. This method is perhaps the first RMT-based estimator for large co-
variance matrices. It has been investigated in several papers [110,111,151] where the Marčenko-
Pastur distribution is used in a very intuitive way to correct the sample eigenvalues. The idea
of the method is as follows: all the eigenvalues that are beyond the largest expected eigenvalue
of the empirical matrix λ+ = (1+

√
q)2 (within a null hypothesis) are interpreted as signal while

the others are pure noise (see Figure 4.3.1). An alternative interpretation would be that outliers
are true factors while the others are meaningless.

In a recent paper [27], this idea has been made rigorous in the sense that if we suppose
that C is a finite rank perturbation of IN as defined in (4.3.6), then the reference matrix of the
bulk eigenvalues of E simply corresponds to the (isotropic) Wishart matrix W . Differently said,
for this specific model, these bulk eigenvalues should be seen as pure noise, and the right edge
(1 +

√
q)2 can be interpreted as the filter between noise and signal.

Endowed with a simple rule to isolate the signal eigenvalues, how should one clean the noisy
ones ones? Laloux et al. [111] proposed the following rule: first diagonalize the matrix E and
keep the eigenvectors unchanged. Then apply the following scheme in order to denoise the
sample eigenvalues:

Ξclip. ..=

N∑
i=1

ξc
iuiu

∗
i , ξclip.

i =

{
λi if λi > (1 +

√
q)2

λ̄ otherwise,
(8.2.7)

where λ̄ is chosen such that TrΞclip. = TrE. Roughly speaking, this method simply states that
the noisy eigenvalues are shrunk toward a (single) constant such that the trace is preserved.
This procedure is known as clipping and Figure 8.2.1 shows how it shifts upwards the lowest
eigenvalues in order to avoid a priori abnormal low variance modes.

Nonetheless, the method suffers from several separate problems. First, one often observes
empirically, especially with financial data, that the value of q = N/T that is fixed by the
dimensionality of the matrix and the length of the time series is significantly different from the
“effective” value qeff that allows one to fit best the empirical spectral density [111]. This effect
can be induced either by small temporal autocorrelation in the time series [18, 47, 48] and/or
by the inadequacy of the null hypothesis C = IN for the bulk of the distribution. In any case,
a simple recipe would be to use a corrected upper edge λ+ = (1 +

√
qeff)2 for the threshold

separating wheat from chaff. Another possibility, proposed in [29], is to introduce a fine-tuning
parameter αc ∈ [0, 1] such that the dNαce largest eigenvalues are kept unaltered while the others
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λi
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clipping (MP)

Figure 8.2.1. Impact on sample eigenvalues of the eigenvalues clipping (8.2.7) (red plain line) with
a threshold given by (1 +

√
q)2 with q = 0.5 and the linear shrinkage (8.2.2) (blue dashed line) with

intensity αs = 0.5. We see that the lowest eigenvalues are shifted upward.

are still replaced by a common λ̄. It is easy to see that for αc = 1, we get the empirical covariance
matrix while for αc = 0, we get the identity matrix. So αc plays the role of the upper bound λ+

of the Marčenko-Pastur density, and allows one to interpolate between E and the null hypothesis
IN , much like linear shrinkage. Nevertheless, the calibration of the parameter αc is not based
on any theoretical rule.

Another concern about this method is that we know from section 7.3 that the optimal
estimator of the large outliers is not their bare empirical value λi. Rather, one should shift them
downwards, by a quantity equal to −2q (in the limit λi � 1). Hence, at the very least, such a
shift should be included in the eigenvalue clipping scheme from Eq. (8.2.7) (see [17] for a related
discussion).

8.2.3. Eigenvalue substitution. The main idea behind the eigenvalue substitution method is
also quite intuitive and amounts to replacing the sample eigenvalues by their corresponding
“true” values obtained by inverting the Marčenko-Pastur equation (4.2.1). More formally, we
seek the set of true eigenvalues {µj}j∈[[1,N ]] that solve Eq. (4.2.1) for a given set of sample
eigenvalues {λj}j∈[[1,N ]]. As for the eigenvalues clipping procedure, this technique can be seen
a nonlinear shrinkage function and has the advantage to lean upon a more robust theoretical
framework than the clipping “recipe”. However, as we emphasized in Section 4.2.1, inverting the
Marčenko-Pastur equation is quite challenging in practice. In this section, we present several
possibilities to achieve this goal in the limit of large dimensions.

Parametrization of Marčenko-Pastur equation. One way to think about the inverse Marčenko-
Pastur problem is to adopt a Bayesian viewpoint (like in Chapter 6). More specifically, we assume
that C belongs to a rotationally invariant ensemble – so that the there is no a priori knowledge
about the eigenvectors – and assume a certain structure on the LSD ρC(µ), parameterized by
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one or several numbers. The optimal values of these parameters (and the corresponding optimal
ρ̂C) are then fixed by e.g. a maximum likelihood procedure on the associated ρE, obtained from
the direct Marčenko-Pastur equation. Once the fit is done, the substitution cleaning scheme
reads

λi → µ̂i such that
i

N
=

∫ ∞
µ̂i

ρ̂C(x)dx. (8.2.8)

Note that under the transformation (8.2.8), we assume that the eigenvalues of C are allocated
smoothly according to the quantile of the limiting density ρ̂C.

As an illustration of this parametric substitution method, let us consider a power law density
(4.2.41) as the prior for ρC(µ). Such a probabilistic model for the population eigenvalues density
is thought to be plausible for financial markets, and reflect the power-law distribution of sector
sizes in the economy [29,128]. In that case, the parametric substitution turns out to be explicit
in the limit of large dimension. Moreover, the estimation of the unique parameter λ0 in this
model can be done using e.g. maximum likelihood, as we can compute exactly ρE on R+ using
(4.2.42) and (4.2.27). This then yields a parameter λ̂0 and hence ρ̂C as well. As a result, the
substitution procedure (8.2.8) becomes for N →∞ [29]:

µi = −λ̂0 +
(1 + λ̂0)

2

√
N

i
i ∈ [[1, N ]] . (8.2.9)

We present such a procedure in Fig. 8.2.2 using US stocks data. We conclude from this figure
that the fit is indeed fairly convincing, i.e. that a power-law density for the eigenvalues of C is
a reasonable assumption.

Discretization of Marčenko-Pastur equation. Interestingly, a “quasi” non-parametric procedure
is possible under some smoothness assumption on the density ρC. This algorithm is due to N.
El Karoui [104] who proposed to solve an approximate form of the Marčenko-Pastur inverse
problem. The starting point is to notice that each eigenvalue of E satisfies:

{
zj =

1

gS(zj)

[
1− q + q

∫
ρC(µ)dµ

1− µ gS(zj)

]
, with zj = λj − iη

}N
j=1

that follows from Eq. (4.2.27) and where we recall that S is the T × T dual matrix of E defined
in (4.2.24). The main assumption of this method is to decompose the density of states ρC as a
weighted sum of Dirac masses:

ρC(µ) =

N∑
k=1

ŵkδ(µ− µk), such that

N∑
k=1

ŵk = 1 and ŵk ≥ 0, ∀ k ∈ [[1, N ]]. (8.2.10)

Note that this decomposition simply use the discreteness of the eigenvalues that follows from the
very definition of an ESD where each eigenvalues are associated with a weight equals to N−1.
One notices that there are two different sources of uncertainty: the “true” eigenvalues {µj}j and
their corresponding weights ŵj so that the parametrization looks inextricably complex. In [104],
the author suggested to fix the positions {µj}j a priori such that we are left with the weights ŵj
as the only unknown variables in the problem. Within this framework, the author then proposed
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Figure 8.2.2. Fit of the power law distribution (4.2.41) on the sample eigenvalues of the 450 most
liquid assets of the S&P index from 2006 to 2010 using the Marčenko-Pastur equation (4.2.1). The fit has
been performed using a maximum likelihood procedure and yields α ≈ 0.3. The black dashed histogram
represents the empirical spectral density.

to obtain the optimal weights through the following optimization program:

{ŵj}Nj=1 =


argmin
{wi}Ki=1

L

{ 1

gS(zj)

[
1− q + q

N∑
k=1

wk
1− µk gS(zj)

]
− zj

}N
j=1


subject to

K∑
k=1

wk = 1, and wk ≥ 0 ∀ k ∈ [[1, N ]],

(8.2.11)

where L is a certain loss function. In addition to the error we make by approximating the true
density by a sum of weighted Dirac masses, there are at least two others sources of errors:

1. The approximation gE(zj) ≈ N−1Tr(zjIN − E)−1;

2. The position of the eigenvalues {µj} that have to be chosen.

In the large N limit, the first approximation is fairly accurate (see Section 8). However, the
second is much more difficult to handle especially in the case of a very diluted spectrum. Note
that if we define ej as the error we make term in (8.2.11) for each λj , then the consistency of the
algorithm has been showed in [104] under the norm L∞ = maxj=1,...,N max(|Re(ej)|, | Im(ej)|).
Once we get the optimal weight {ŵk}, the cleaning procedure is immediate

λi → µ̂i where µ̂i = min

{
x ∈ R+ :

N∑
k=1

ŵkΘ(µk − x) ≥ i

N

}
(8.2.12)
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where we have used the approximation∫ ∞
x

ρC(u)du ≈
N∑
k=1

ŵkΘ(µk − x),

with Θ(x) that denotes the Heaviside step function.
While the method is backed by a theoretical framework, it turns out that the error source

# 2. above is a strong limitation in practice. A recent proposal to invert the Marčenko-Pastur
equation by optimizing directly the eigenvalues [µj ]j has therefore been proposed in [116]. This
alternative method, called QuEST, turns out to be much more robust numerically (see [118] and
Chapter 9 for an extended discussion and some applications).

As a conclusion, we see that it is possible to solve (approximately) the inverse Marčenko-
Pastur equation in a quite general fashion, meaning that we might indeed be able to locate
approximately the true eigenvalues µi for any i = 1, . . . , N . As a result, the eigenvalue substi-
tution estimator is then obtained as

Ξsub =
N∑
k=1

µ̂kuku
∗
k. (8.2.13)

However, even when a perfect estimation of the true density ρC is feasible, we see that this
estimator does not take into account the fact that the sample eigenvectors are not consistent
estimators of the true ones, as shown in Chapter 5. Therefore, for covariance matrices estimation,
it is not advised to use the substitution (8.2.13) since this is not the optimal solution. However,
it can be used to compute the optimal RIE (7.2.2) and we refer to Section 9.1.3 for more details.

8.3 Factor models

The main idea behind linear factor models is pretty simple: the (normalized) data Yi,t is repre-
sented as a linear combination of M common factor F

Yit =
M∑
k=1

βikfkt + εit (8.3.1)

where the βik are the linear exposures of the variable i to the factors k = 1, . . . ,M at time t and
the N × T matrix εit is the idiosyncratic part of Yi,t (or the residual in Statistics), assumed to
be of zero mean. The model (8.3.1) in matrix form reads

Y = βF + E, (8.3.2)

which is known as Generalized Linear Model [130]. It is often assumed that the residuals are
i.i.d. across i with t fixed (see e.g. [50] for an application in Finance). It is not hard to see that
the covariance matrix under the model (8.3.1), the true covariance matrix is given by

C = βΣFβ
∗ + Σε (8.3.3)

where ΣF is the covariance matrix of size M×M of the factor F – which can always be chosen to
be proportional to the identity matrix – and Σε is the N ×N covariance matrix of the residuals
ε, which is simply the identity in the simplest framework. Within the linear decomposition
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(8.3.1), we see that we have generically a number of parameters to estimate of order O(NM)
out of datasets of size O(NT ). Hence, we see that the curse of dimensionality disappears as
soon as M � N,T which implies that the empirical estimate

E =
1

T
(βF + E)(βF + E)∗, (8.3.4)

becomes more accurate. This is a simple way of cleaning high-dimensional covariance matrices
within factor models.

However, this cleaning scheme leaves open at least one question of practical use. How should
the number of factor M be chosen? In the case where one has a priori information on the
factors F , we are just left with the estimation of β and E. But in the general case, this question
is still an open problem. Let us treat the general case, in which several authors considered tools
from RMT to choose the number of factor M .

In [102], the author assumes that the empirical estimator of Σε is given by an isotropic
Wishart matrix for which the upper bounds of the spectrum is exactly known. Hence, if there
were no tangible factor in the data, one should observe that largest eigenvalues of the matrix E
defined in (8.3.4) cannot exceed

λeff
+ (q) := (1 +

√
q)2 + δ(q,N) (8.3.5)

where the last term δ is a suitably defined constant as to reflect the width of the Tracy-Widom
tail, i.e. δ(q,N) ∼ T−2/3 [102]. If however one observes that the largest sample eigenvalue λ1

exceeds λeff
+ , then a true factor probably exists. In that case, the procedure suggested in [102] is

to extract the corresponding largest component from the data:

Y
(1)
it = Yit − β1,tf1t,

which is the residual from a regression of the data on the first principal component. Next, we
compare the largest eigenvalue of Y(1)Y(1) ∗/T against the new threshold λeff

+ (q′ = q− 1/T ) and

iterate the procedure until Y(M)Y(M) ∗/T has all its eigenvalues within the Marčenko-Pastur sea.
This approach has been generalized in [140] to the case where the empirical estimator of the
Σε is an anisotropic Wishart matrix for which one has several results concerning the spectrum
(see Chapter 4). The procedure is similar to the one above method: the author proposed an
algorithm to detect outliers for this anisotropic Wishart matrix using the results of Ref. [146].
We refer to [140] for more details. We can therefore see that RMT allows one to derive some
rigourously based heuristics to determine the number of true factors M , which are quite similar
in spirit to the eigenvalue clipping method described above.

It is also possible that one has some a priori insight on the structure of the relevant factors.
This for instance is a standard state of affairs in theoretical finance, where the so-called Capital
Asset Pricing Model (CAPM) [132] assumes a unique factor corresponds to the market portfolio,
or its extension to three factors model by Fama-French [77] (see [169] for further more recent
extensions). In that case, one can simplify the problem to the estimation of the β by assuming
that the the factors fk and the residuals εi are linearly uncorrelated:

〈fkfl〉 = δkl , 〈εiεj〉 = δij

(
1−

∑
l

β2
li

)
and 〈fkεl〉 = 0, (8.3.6)
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such that the true correlation becomes:

Cij =

M∑
k=1

βkiβkj + δij

(
1−

M∑
l=1

β2
li

)

that is to say

Cij =

{
1 if i = j

(ββ∗)ij otherwise.
(8.3.7)

Again, we emphasize that we are reduced to the estimation of only N ×M parameters out of
N × T points. We now give an insight on how one can estimate the coefficients of β using the
sample data, which is due to the recent paper [52]. Note that the eigenvalue clipping (8.3.7) can
recovered by setting β ≡ βPCA where

βPCA ..= U|MΛ
1/2
|M , (8.3.8)

with U the sample eigenvectors, Λ the N ×N diagonal matrix with the sample eigenvalues and
the subscript |M denotes that only the M largest components are kept, where M is such that
λi > (1 +

√
q)2 for any i ≤M . The method of [52] suggests to find the βs such that:

β̂ ..= argmin
β
L
(∥∥∥∥ 1

T
YY∗ − ββ∗

∥∥∥∥
off-diag

)
, (8.3.9)

with L a given loss function and off-diag to denote the off-diagonal elements. (The diagonal
elements are all equal to unity by construction). Numerically, the authors solve the latter
equation in the vicinity of the PCA beta’s (8.3.8) and with a quadratic norm L. We refer the
reader to [52] for more details on the procedure and its implementation, as well as an extension
of the model to non-linear (volatility) dependencies.
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Chapter 9

Numerical Implementation and Empirical
results

This chapter aims at putting all the above ideas into practice, the final goal being, in a financial
context, to achieve minimum out-of-sample, or forward looking risk. As we have seen above, the
Rotationally Invariant Estimator framework is promising in that respect. Still, as one tries to
implement this method numerically, some problems arise. For example, we saw in Section 7.5
that the discrete version (7.5.2) of the optimal RIE (7.2.2) deviates systematically from its lim-
iting value for small eigenvalues. But as we discussed in Section 8, the estimation of these small
eigenvalues is particularly important since Markowitz optimal portfolios tend to overweight small
eigenvalues and hence, inadequate estimators of these small eigenvalues may lead to disastrous
results. We will therefore first discuss two different regularization schemes that appeared in the
recent literature (see [118] and [42]) that attempt to correct this systematic underestimation
of the small eigenvalues. Then we will turn to numerical experiments on synthetic and real
financial data, to test the quality of the regularized RIE for real world applications.

9.1 Finite N regularization of the optimal RIE (7.5.2)

9.1.1. Why is there a problem for small-eigenvalues?. The small eigenvalue bias can be best
illustrated using the null hypothesis on the sample covariance matrix. Indeed, we know that for
C = IN , the optimal RIE (7.2.2) should yield ξ̂(λi) = 1 exactly as N → ∞ (see Eq. (7.4.1)).
We therefore compare the observable shrinkage function ξ̂N (7.5.2) for finite N with its limiting
value ξ̂ = 1. The results are reported in Figure 9.1.1 where the observable estimator Eq. (7.5.2)
is represented by the green points and the limiting value is given by the red dotted line. We see
that the bulk and the right edge are relatively well estimated, but this is clearly not the case
for the left edge, below which the estimated eigenvalues dive towards zero. This highlights, as
stated in [43], that the behaviour for small eigenvalues is more difficult to handle compared to
the rest of the spectrum.

This underestimation can be investigated analytically. Let us define z = λ − iη and we
actually see from the Figure 9.1.1 that the discrete RIE ξ̂N is a very good approximation of the
limiting quantity ξ̂(z), i.e., with η = N−1/2 (blue plain line). Hence, the deviation at the left
edge is systematic for any finite N and it only disappears as N →∞ (η → 0+). This finite size
effect is due to the hard left edge as eigenvalues are confined to stay on R+. Indeed, under the

138



Chapter 9. Numerical Implementation and Empirical results

0.0 0.5 1.0 1.5 2.0 2.5 3.0

λi

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

ξ i

empirical

limiting (η = N−1/2)

limiting (η → 0)

Figure 9.1.1. Evaluation of the empirical RIE (7.5.2) (green points) for C = IN with N = 500. The
matrix E is generated using Wishart matrix with parameter q = 0.5. We compare the the result with its
limiting value for η = N−1/2 (blue line) and η → 0+ (red dotted line).

one-cut assumption, we can always decompose the Stieltjes transform as (see Eq. (3.1.31))

gE(z) = h(z) +Q(z)
√
d+(z)

√
d−(z), d±(z) ..= z − λ± (9.1.1)

where h(z) is the Hilbert transform of ρE and Q(z) is a given function that we assumed be
smoothed on R+. We place ourselves in the situation where d−(λ) = ε� η, i.e. the eigenvalue
λ is very close to the left edge. Then, we have

gE(z) = h(z) +Q(z)
√
−iη

√
d+(λ)− iη +O(ε)

= h(z)− (1 + i)Q(z)

√
η|d+(λ)|

2
+O(ε) . (9.1.2)

Specializing this last equation to the null hypothesis C = IN , one infers from Eq. (3.1.41) that
1/Q(z) = 2qz and h(z) = Q(z)(z + q − 1). Then plugging (9.1.2) into (7.2.2) yields, at the left
edge:

ξ̂(λ− − iη) = 1−
√

2η
√
q

(1−√q)2
+O(η), (9.1.3)

that is to say, we have a finite size “correction” to the asymptotic result ξ̂(z) = 1 of order N−1/4

when η = N−1/2. This correction is therefore quite significant if N is not large enough. One
tempting solution would be to decrease the value of η to be arbitrarily small. However, we
know that the empirical Stieltjes transform is only a good approximation of the limiting value
up to an error of order (Tη)−1, so that η cannot be too small either. We conclude that the
underestimation effect that we observe in Figures 9.1.1 and 7.5.1 is purely due to a finite size
effect and would furthermore occur for any model of ρC (see Fig. 7.5.1). We emphasize that this
effect is different from cleaning left outliers as displayed in Fig. 7.4.3.
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9.1.2. Denoising the empirical RIE (7.5.2). There are two ways to address this problem. The
first one is to use a simple ad-hoc denoising procedure that we shall now explain; the second is
a more sophisticated scheme recently proposed by Ledoit and Wolf (see below).

Firstly, using the fact that the finite size corrections are rather harmless for large eigenvalues
(see Figure 9.1.1), we can focus on small sample eigenvalues only. The idea is to use a regular-
ization that would be exact if the true correlation matrix was of the Inverse-Wishart type, with
ρC to be given by Eq. (3.1.53), for which we know that the associated optimal RIE is the linear
shrinkage (7.4.4).1 Within this specification, the parameter κ allows to interpolate ρC between
the infintely wide measure on R+ (κ→ 0+) and the above null hypothesis (κ→∞).

Our procedure, for the only purpose of regularization, is to calibrate κ such that the lower
edge λiw

− of the corresponding empirical spectrum (and given in Eq. (4.2.33)), coincides with
the observed smallest eigenvalue λN . We then rescale the smallest eigenvalues using the exact
factor that would be needed if C was indeed an Inverse-Wishart matrix, i.e.:

ξ̂ reg
i = ξ̂Ni ×max(1,Γiw

i ), Γiw
i =

|1− q + qzig
iw
E (zi)|2

λi/(1 + αs(λi − 1))
, zi = λi − iN−1/2, (9.1.4)

where αs = 1/(1+2qκ) and giw
E is given in Eq. (4.2.33). We give a more precise implementation of

this “IW-regularization” in the Algorithm 1, and a numerical illustration for an Inverse Wishart
matrix (3.1.58) with parameter κ = 10 and q = 0.5, for which αs ≈ 0.09. The results are plotted
in Figure 9.1.2 where the empirical points come from a single simulation with N = 500.
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Figure 9.1.2. We apply the IW-regularization ξ̂/ξ̂N (z) with z = λ− iN−1/2 in the case where C is an
Inverse-Wishart matrix with κ = 10 and q = 0.5. The finite size effect of the empirical RIE (7.5.2) (green
points) is efficiently corrected. The red points correspond to the oracle estimator which is, in this case,
the linear shrinkage procedure. We also compare the result of a “rescaled” Marčenko-Pastur spectrum,
as proposed in [42].

1A yet simpler solution, proposed in [42] is to consider a rescaled Marčenko-Pastur’s spectrum in such a way
to fit the smallest eigenvalue λN . This is indistinguishable from the IW procedure when κ is large enough, and
provides very accurate predictions for US stocks return [42]. Nevertheless, in the presence of very small “true”
eigenvalues, corresponding to of e.g. very strongly correlated financial contracts, this simple recipe fails.
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Algorithm 1 IW-regularization of the empirical RIE (7.5.2)

function g iw(z, q, κ):
λ± ←

[
(1 + q)κ+ 1±

√
(2κ+ 1)(2qκ+ 1)

]
/κ;

return
[
z(1 + κ)− κ(1− q)−

√
z − λ+

√
z − λ−

]
/(z(z + 2qκ));

end function

function rie(z, q, g):
return Re[z]/|1− q + qzg|2;

end function

function denoising rie(N, q, {λi}Ni=1): //λ1 > λ2 > . . . > λN
κ← 2λN/

(
(1− q − λN )2 − 4qλN

)
;

α← 1/(1 + 2qκ);
for i = 1 to N do

z ← λi − iN−1/2;
g ←

(∑N
j 6=i 1/(z − λj)

)
/(N − 1);

ξi ← rie(z, q, g);
g ← g iw(z, q, κ)
Γi ← (1 + α(λi − 1))/rie(z, q, g);
if Γi > 1 and λi < 1 then

ξi ← Γiξi;
end if

end for
s←∑

i λi/
∑

i ξi; //preserve the trace
return {s× ξi}Ni=1

end function
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We now reconsider the numerical examples given in Section 7.5, for which we apply the
IW-regularization algorithm (1). The results are plotted in Figure 9.1.3 and we observe that
this IW-regularization works perfectly for all four population eigenvalues we consider in our
simulations. Indeed, if we look at the left edge region, the regularized eigenvalues have been
shifted upwards to coincide with the oracle estimator (blue points) while we had a significant
deviation for the fully empirical, bare estimator (green dots). Hence, the IW-regularization
(Algorithm 1) provides a very simple way to correct this systematic downside bias which is of
crucial importance whether we need to invert the covariance matrix. Note that we can further
improve the result by sorting the regularized eigenvalues. This is justified by the fact that we
expect the RIE to be monotone with respect to the sample eigenvalues in the limit N →∞. We
will investigate this point numerically in the next section (see Table 9.1).
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(c) Toeplitz (case (iii))
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Figure 9.1.3. Comparison of the IW-regularization (7.5.2) (red line) with the empirical RIE (7.5.2)
(yellow dots) and the oracle estimator (7.1.2) (blue points) for the four cases presented at the beginning
of Section 7.5 with N = 500 and T = 1000. We also plot the estimation we get using QuEST estimator
(9.1.10) (green line). The results come from a single realization of E using a multivariate Gaussian
measurement process.
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9.1.3. Quantized Eigenvalues Sampling Transform (QuEST). An alternative method, recently
proposed by Ledoit and Wolf [118] to approximate numerically the optimal RIE (7.2.2), is to
work with the Marčenko-Pastur equation (4.2.1). It is somewhat similar to the numerical scheme
proposed by N. ElKaroui (see Section 8.2.3) to solve the indirect problem of the Marčenko-Pastur
equation.

The method, named as QuEST (Quantized Eigenvalues Sampling Transform), is based on a quan-
tile representation of the eigenvalues. More formally, the key assumption is that the empirical
eigenvalues are allocated smoothly according to the quantile of the spectral distribution, i.e.

i

N
=

∫ λi

−∞
ρE(x)dx, (9.1.5)

and the aim is to find the quantile, as a function of the population eigenvalues [µi]i, such that
(9.1.5) holds. Note that the representation (9.1.5) is nothing less than the definition of the classical
location of the bulk eigenvalues, encountered in Eq. (4.2.32). Hence, for N →∞, this method does
not seem to be appropriate for outliers as we know that the spectral density ρE puts no weights
on outliers. Nevertheless, for contructing RIEs, this might not be that important since, roughly
speaking, all we need to know is the Stieltjes transform of the spikeless covariance matrix E (see
Section 7.2.2). That being said, the “quantized” eigenvalues, expected to be close to the empirical
eigenvalues, are defined as

γ̃i(µ) ..= N

∫ i/N

(i−1)/N

F−1
E (p)dp, i ∈ [[1, N ]], p ∈ [0, 1], (9.1.6)

where µ = (µ1, . . . , µN ), and

F−1
E (p) ..= sup

{
x ∈ R : FE(x) 6 p

}
,

FE(x) ..=

{
max

(
1− 1/q,N−1∑N

i=1 δ0(µi)
)

if x = 0,∫ x
0
ρE(u)du, otherwise,

(9.1.7)

with ρE(u) = limη↓0 Im gNE (u− iη) and gNE is the unique solution in C+ of the discretized Marčenko-
Pastur equation (4.2.3)

gNE (z) =
1

N

N∑
i=1

1

z − µi(1− q + qzgNE (z))
. (9.1.8)

Even if the numerical scheme seems quite intricated, all these quantities are simply a discretized
version of the Marčenko-Pastur equation. Indeed, Eq. (9.1.5) is equivalent to Eq. (4.2.3) for large
N and (9.1.6) is nothing but a discrete estimator of Eq. (4.2.32).

Finally, the optimization program reads

µ̃ ..=

argminµ∈RN+

∑N
i=1

[
γ̃i(µ)− λi

]2
,

s.t. γ̃i(µ) satisfies Eqs. (9.1.6), (9.1.7) and (9.1.8).
(9.1.9)

From there, the regularization scheme of the empirical RIE (7.5.2) reads

ξQuEST
i =

λi
|1− q + qλi limη↓0 g̃NE (λi − iη)|2

, (9.1.10)

where g̃NE (z) ∈ C+ is the unique solution of

g̃NE (z) =
1

N

N∑
i=1

1

z − µ̃i(1− q + qzg̃NE (z))
. (9.1.11)

We emphasize that details about the implementation of QuEST are given in [118]. We see
that the above regularization scheme allows – in principle – to estimate the limiting RIE (7.2.2)
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since we can now set η to be arbitrarily small. This means that, contrary to the empirical
estimate (7.5.2), the QuEST procedure should not suffer from a systematic underestimation
at the left edges. The main advantage of this method is that it also allows us to estimate
the population eigenvalues, which can be useful in some particular cases. However, from a
numerical standpoint, this algorithm is far more complicated to implement than the above IW-
regularization (Algorithm (1)). Indeed, we see that the starting point of the optimization (9.1.9)
is the vector of population eigenvalues, which can be problematic for very “diluted” spectrum.
Moreover, the algorithm might suffer from instabilities in the presence of very large and isolated
eigenvalues. Note that a detailed presentation for the implementation is given in [118], where
the authors also advise to sort the cleaned eigenvalues {ξQuEST

i }i6N since, as said above, we
expect the optimal cleaned eigenvalues to be monotonic with respect to the sample eigenvalues.

9.1.4. Empirical studies. We compare the above QuEST numerical scheme with the simple IW-
regularization of Section 9.1.2 and the results are plotted in Figure 9.1.3. The eigenvalues coming
from the QuEST regularization are depicted by the green line and we see that the results are
very satisfactory. In particular, it indeed does not suffer from the systematic bias in the left edge
and seems to handle efficiently outliers even if the formula (9.1.5) is a priori not valid for isolated
eigenvalues in the large N limit. We nonetheless notice that the algorithm suffers sometimes
from instabilities in the presence of “clustered” outliers as seen in the power law example (see
Figure 9.1.3d). On the other hand, and perhaps surprisingly, the ad-hoc IW-regularization
given in Algorithm 1 provides very similar result to the complicated – but theoretically better
founded – QuEST procedure. Nonetheless, this latter method requires to solve a nonlinear and
non-convex optimization problem (see Eq. (9.1.9)) which implies heavy numerical computations
and may not even converge to the global minimum (if it exists).

We want to further investigate the efficiency of these two regularizations. One direction is
to change the number of variables N with q = 0.5 fixed. This allows us to assess the finite
size performance of the two algorithms. The second direction is to fix N = 500 and vary the
observation ratio q. We shall consider three different regularizations in the following: (i) IW-
regularization (Algorithm 1), (ii) IW-regularization + sorting (name “IWs regularization” in
the following) and (iii) QuEST procedure. Note that we will focus our study on the power law
example of Figure 9.1.3d since this simple prior allows use to generate very complex spectrum
with possibly “clustered” outliers. We emphasize the the regularization scheme (ii) is justified
by the fact that we expect the estimator to preserve the monotonicity of the sample eigenvalues.

To measure the accuracy and the stability of each algorithm, we characterize the deviation
between a given estimator and the Oracle (7.1.2). Using the mean squared error (MSE), we may
also analyze the relative performance (RP) in percentage compared to the sample covariance.
This is given by

RP(Ξ) ..= 100×
(

1− E‖Ξ− Ξora.‖2
E‖E− Ξora.‖2

)
, (9.1.12)

where Ξ ≡ Ξ(E) is a RIE of C and Ξora. is the oracle estimator. We also report in each case the
average computational time needed to perform the estimation2.

First, let us assess the usefulness of sorting the cleaned eigenvalues. We report in Table 9.1
the performance we obtained for N = 500 and q = 0.5 fixed over 100 realizations of E (which is
a Wishart matrix with population covariance matrix C). We conclude from Table 9.1 that it is
indeed better to sort the eigenvalues when using the IW-regularization (9.1.4) as the difference is

2Simulations are based on an Intel R© CoreTM i7-4700HQ and CPU of 8 × 2.40 GHz processor.
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statistically significant, while being nearly equally efficient in terms of computational time. For
large N , the QuEST procedure yields the best accuracy score but the difference with the IWs
eigenvalues is not significant and the QuEST requires much more numerical operations than the
ad-hoc IWs algorithm. Note that the performance improvement over to the sample covariance
is very substantial.

Table 9.1. We reconsider the setting of Figure 9.1.3d and check the consistency over 100 samples. The
population density ρC is drawn from (7.5.4) with λ0 = −0.6 and N = 500 and the sample covariance
matrix is obtained from the Wishart distribution. MSE stands for the mean squared error with respect
to the oracle estimator (7.1.2), stdev stands for the standard deviation of the squared error and the RP
defined in Eq. (9.1.12). Running time shows the average time elapsed for the cleaning of one sample set
of eigenvalues of size N .

Method MSE stdev RP Running time (sec)

IW-regularization 0.64 0.13 99.69 0.02

IWs-regularization 0.45 0.12 99.78 0.03

QuEST 0.44 0.15 99.79 33.5

We now investigate how these conclusions change when N varies with q = 0.5 fixed. The
results are given in Table 9.2. First, we stress that the RP with respect to the sample covariance
matrix is already greater than 98% for N = 100 which is why we did not report these values in
the table. As above, for any value of N > 100, it appears that sorting the eigenvalues improves
significantly the mean squared error with respect to the oracle estimator. We also emphasize
that for N = 1000, it takes 0.06 seconds to get the dressed RIE while the QuEST algorithm
requires 80 seconds in average. We see that as the size N grows to infinity, the high degree
of complexity needed to solve the nonlinear and non-convex optimization (9.1.9) becomes very
restrictive, while improvement over the simple IWs method is no longer significant.

Table 9.2. Check of the consistency of the three regularizations with respect to the dimension N . The
population density ρC is drawn from (7.5.4) with λ0 = −0.6 and the sample covariance matrix is obtained
from the Wishart distribution with T = 2N . We report in the table the mean squared error with respect
to the oracle estimator (7.1.2) and the standard deviation in parenthesis as a function of N .

Method N = 100 N = 200 N = 300 N = 400 N = 500 N = 1000

IW-regularization 0.53 (0.17) 0.56 (0.15) 0.64 (0.16) 0.65 (0.14) 0.64 (0.14) 0.74 (0.14)

IWs-regularization 0.35 (0.14) 0.39 (0.14) 0.45 (0.14) 0.45 (0.13) 0.46 (0.12) 0.53 (0.12)

QuEST 0.26 (0.16) 0.33 (0.15) 0.39 (0.15) 0.4 (0.15) 0.45 (0.15) 0.5 (0.13)

We now look at the second test in which N = 500 is fixed and we vary q = 0.25, 0.5, 0.75, 0.95.
For each q, we perform the same procedure than Table 9.2 and the results are reported in Table
9.3. It is easy to see that the conclusions of the first consistency test are still valid for the three
regularization schemes as a function of q with N = 500. Note that we do not consider here
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the case q > 1 which is less immediate more complicated since E generically possess (N − T )
zero eigenvalues. Both regularization schemes, IWs-regularization and QuEST algorithm, fail
to handle this case and we shall come back to this problem in Chapter 10.

Table 9.3. Check of the consistency of the three regularizations with respect to the dimension ratio q.
The population density ρC is drawn from (7.5.4) with λ0 = −0.6 and N = 500 and the sample covariance
matrix is obtained from the Wishart distribution with parameter T = N/q. We report in the table the
mean squared error with respect to the oracle estimator (7.1.2) and the standard deviation in parenthesis
as a function of q.

Method q = 0.25 q = 0.5 q = 0.75 q = 0.95

IW-regularization 0.31 (0.06) 0.65 (0.14) 1.2 (0.18) 1.78 (0.44)

IWs-regularization 0.28 (0.05) 0.46 (0.12) 0.71 (0.17) 0.94 (0.39)

QuEST 0.25 (0.05) 0.45 (0.15) 0.72 (0.17) 0.98 (0.35)

To conclude, we observed through these examples with synthetic data that we are able to
estimate accurately the oracle estimator for bounded N both for small eigenvalues and outliers.
The QuEST procedure is found to behave efficiently for any N and any q < 1, and allows one
to estimate the both the population eigenvalues and the limiting Stieltjes transform with high
precision. However, as far as the estimation of large sample covariance matrices is concerned,
the improvement obtained by solving the nonlinear and non-convex optimization problem (9.1.9)
becomes insignificant as N increases (see Tables 9.2 and 9.3). Furthermore, the computational
time of the QuEST algorithm increases considerably as N grows. We shall henceforth use the
IWs RIE as our estimator of C for the applications below. Nonetheless, whenever N is not very
large, the QuEST procedure is clearly advised as it yields a significant improvement with an
acceptable computational time.

9.2 Optimal RIE and out-of-sample risk for optimized porfolios

As alluded to above (see Section 8.1), the concept of correlations between different assets is
a cornerstone of Markowitz’ optimal portfolio theory, especially for risk management purposes
[126]. It is therefore of crucial importance to use a correlation matrix that faithfully represents
future risks, and not past risks – otherwise the over-allocation on spurious low risk combination
of assets might prove disastrous. In that respect, we saw in Section 8.1.3 that the best estimator
inside the space of estimators restricted to possess the sample eigenvectors is precisely the
oracle estimator (7.1.2) which is not observable a priori. However, if the number of variables is
sufficiently large, we know – thanks to the numerical study of the previous section – that it is
possible to estimate very accurately the oracle estimator using only observable variables. The
main objective in the present section is to investigate the IWs RIE procedure for financial stock
market data.

Let us now explain the construction of our test. We consider a universe made of N different
financial assets – say stocks – that we observe at – say – the daily frequency, defining a vector
of returns rt = (r1t, r2t, . . . , rNt) for each day t = 1, . . . , T . It is well known that volatilities
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of financial assets are heteroskedastic [30] and we therefore focus specifically on correlations
and not on volatilities in order to study the systemic risk. To that end, we standardize these
returns as follows: (i) we remove the sample mean of each asset; (ii) we normalize each return
by an estimate σ̂it of its daily volatility: r̃it = rit/σ̂it. There are many possible choices for σ̂it,
based e.g. on GARCH or FIGARCH models historical returns, or simply implied volatilities
from option markets, and the reader can choose his/her favourite estimator which can easily be
combined with the correlation matrix cleaning schemes discussed below. For simplicity, we have
chosen here the cross-sectional daily volatility, that is

σ̂it ..=

√∑
j

r2
jt , (9.2.1)

to remove a substantial amount of non stationarity in the volatilities. The final standardized
return matrix Y = (Yit) ∈ RN×T is then given by Yit ..= r̃it/σi where σi is the sample estimator
of the r̃i which is now, to a first approximation, stationary.

We may now compute construct the sample covariance matrix E as in Eq. (4.1.3). We stress
that the Marčenko and Pastur result does not require multivariate normality of the returns,
which can have fat-tailed distributions. In fact, the above normalisation by the cross-sectional
volatility can be seen as a proxy for a robust estimator of the covariance matrix (4.1.8) with
U(x) = x−1 which can be studied using the tools of Chapters 4 and 5 (see Section 4.1.3 for
a discussion on this point). All in all, we are able to construct the optimal RIE either using
IWs-regularization (Algorithm 1 + sorting) or the QuEST regularization, the latter allowing us
to estimate the population eigenvalue spectrum as well.

For our simulations, we consider an international pools of stocks with daily data:

(i) US: 500 most liquid stocks during the training period of the S&P 500 from 1966 until 2012;

(ii) Japan: 500 most liquid stocks during the training period of the all-shares TOPIX index
from 1993 until 2016;

(iii) Europe: 500 most liquid stocks during the training period of the Bloomberg European 500
index from 1996 until 2016.

We chose T = 1000 (4 years) for the training period, i.e. q = 0.5, and Tout = 60 (three months)
for the out-of-sample test period. Let us first analyze the optimal RIE for US stocks and we
plot in Figure 9.2.1 the average nonlinear shrinkage curve for the IWs-regularization (blue line)
and for the QuEST regularization (red dashed line) – where we sort the eigenvalues in both
cases – and compare it with the estimated population eigenvalues obtained from (9.1.9). We
see that IWs-regularization and QuEST still yields very similar results. Furthermore, we notice
that the spectrum of the cleaned eigenvalues is as expected narrower than the spectrum of the
population eigenvalues.

Interestingly, the oracle estimator (7.1.2) can be estimated empirically and used to directly
test the accuracy of the IWs-regularized RIE (9.1.4). The trick is to remark that the oracle
eigenvalues (7.1.2) can be interpreted as the “true” (out-of-sample) risk associated to a portfolio
whose weights are given by the i-th eigenvector. Hence, assuming that the data generating
process is stationary, we estimate the oracle estimator through the realized risk associated to
such eigen-portfolios [141]. More precisely, we divide the total length of our time series Ttot into
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Figure 9.2.1. Comparison of the IWs-regularization (9.1.4) (blue) with the QuEST procedure (9.1.10)
(red dashed line) using 500 US stocks from 1970 to 2012. The agreement between those two regularizations
is quite remarkable. We also provide the estimation of the population eigenvalues obtained from (9.1.9)
(green dashed-dotted line).

n consecutive, non-overlapping samples of length Tout. The “training” period has length T , so
n is given by:

n ..= bTtot − T − 1

Tout
c. (9.2.2)

The oracle estimator (7.1.2) is then computed as:

ξora.
i ≈ 1

n

n−1∑
j=0

R2
out(tj ,ui) i = 1, . . . , N, (9.2.3)

for tj = T+j×Tout+1 and R(t,w) denotes the out-of-sample variance of the returns of portfolio
w built at time t, that is to say

R2
out(t,w) ..=

1

Tout

t+Tout∑
τ=t+1

(
N∑
i=1

wiYiτ

)2

, (9.2.4)

where Yiτ denotes the rescaled realized returns. Again, as we are primarily interested in esti-
mating correlations and not volatilities, both our in-sample and out-of-sample returns are made
approximately stationary and normalized. This implies that

∑N
i=1R2

out(t,ui) = N for any time
t. We plot our results for the estimated oracle estimator (9.2.3) using US data in Fig 9.2.2
that we compare with the IWs-regularized RIE. The results are, we believe, quite remarkable:
the RIE formula (9.1.4) (red dashed line) tracks very closely the average realized risk (blue
triangles), specially in the region where there is a lot of eigenvalues.

We may now repeat the analysis for the other pools of stocks as well. We begin with the
TOPIX where we plot in Figure 9.2.3a the estimation of the population (using Eq. (9.1.9)) and
the regularized RIE (using Algorithm 1 or Eq. (9.1.10)). Again, the results we get from the
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Figure 9.2.2. Comparison of the IWs-regularized RIE (9.1.4) with the proxy (9.2.3) using 500 US stocks
from 1970 to 2012. The points represent the density map of each realization of (9.2.3) and the color code
indicated the density of data points. The average IWs-regularized RIE is plotted with the red dashed line
and the average realized risk in blue. We also provide the prediction of the IWs-regularized RIE with an
effective observation ratio qeff which is slightly bigger than q (green plain line). The agreement between
the green line and the average oracle estimator (blue triangle) is quite remarkable.

simple IWs-regularization and QuEST procedure are nearly indistinguishable. This is another
manifestation of the robustness of both algorithms at a finite N . We then plot in Figure 9.2.3b
the comparison between the IWs-regularized RIE (red dashed line) and the Oracle estimator,
approximated by (9.2.3) (green triangles). We observe that the overall estimation is not as
convincing as for US stocks (Figure 9.2.2) but as above, we notice that the deviation may
be explained by the presence of autocorrelations. Indeed, there also exists an effective ratio
qeff = 1.2q such that the estimation is extremely good (see blue line in Figure 9.2.3b).

Finally we look at European stocks where the conclusion are similar than for the US stocks.
In particular, we notice in Figure 9.2.4b that the estimation we obtained for the IWs-regularized
RIE with the observed q = 0.5 (red dashed line) yields a very good approximation of the Oracle
estimator (green triangle). We can nonetheless improve the estimation with an effective ratio
qeff = 1.1q (blue plain line).

All in all, we see that both the simple IWs-regularization and the QuEST regularization
allow one to estimate accurately the (approximated) Oracle estimator using only observables
variables. This study highlights that the optimal RIE estimator is robust regarding the data
generating process, as financial stock markets are certainly not Gaussian. Note that this last
observation is not valid anymore if we use the historical estimator of the variance as a measure
of volatility as the data are still highly influenced by heteroskedastic effects. Still, the cross
sectional volatility estimator (9.2.1) does not remove entirely the temporal dependence of the
variables since it appears that one can choose an effective observation ratio qeff > q for which the
IWs-regularized RIE and the Oracle estimate nearly coincide. This effect may be understood
by the presence of autocorrelations in the stock returns that are not taken into account in the
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(a) Population and optimal RIE bulk eigenvalues.
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(b) Comparison with Oracle estimator (9.2.3).

Figure 9.2.3. Left figure: analysis of the population (green dashed line) and optimal RIE bulk eigen-
values (red dashed line for Eq. (9.1.10) and blue plain line for the IWs-regularization) using the 500 most
liquid stocks during the training period of the all-shares TOPIX index from 1993 until 2016. Right figure:
Comparison between the IWs-regularized RIE (red dashed line) with the Oracle estimator (9.2.3) (green
triangle). We also provide the plot of the IWs-regularized RIE with an effective observation ratio (blue
line).
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(a) Population and optimal RIE bulk eigenvalues.
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(b) Comparison with Oracle estimator (9.2.3).

Figure 9.2.4. Left figure: analysis of the population (green dashed line) and optimal RIE bulk eigen-
values (red dashed line for Eq. (9.1.10) and blue plain line for the IWs-regularization) using the 500 most
liquid stocks during the training period of the Bloomberg European 500 index from 1996 until 2016.
Right figure: Comparison between the IWs-regularized RIE (red dashed line) with the Oracle estimator
(9.2.3) (green triangle). We also provide the plot of the IWs-regularized RIE with an effective observation
ratio (blue line)
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model of E. The presence of autocorrelations has been shown to widen the spectrum of the
sample matrix E [48]. Since the agreement reached with the naive value q = N/T is already
very good, we shall come back to the open problem of calibrating qeff on empirical data in the
Chapter 10.

9.3 Out-of-sample risk minimization

It is interesting to compare the optimal shrinkage function that maps the empirical eigenvalue
λi onto its “cleaned” RIE counterpart ξi. We show these functions in Figure 9.3.1 for the
three schemes we retained here, i.e. linear shrinkage, clipping and RIE, using the same data set
as in Figure 9.2.2. This figure clearly reveals the difference between the three schemes. For
clipping (red dashed line), the intermediate eigenvalues are quite well estimated but the convex
shape of the optimal shrinkage function for larger λi’s is not captured. Furthermore, the larger
eigenvalues are systematically overestimated. For the linear shrinkage (green dotted line), it
is immediate from Figure 9.3.1 why this method is not optimal for any shrinkage parameters
αs ∈ [0, 1] (that fixes the slope of the line).

We now turn to optimal portfolio construction using the above three cleaning schemes, with
the aim of comparing the (average) realized risk of optimal Markowitz portfolios constructed as:

w ..=
Σ̂
−1

g

g∗Σ̂
−1

g
, (9.3.1)

where g is a vector of predictions and Σ̂ is the cleaned covariance matrix Σ̂ij
..= σiσjΞ̂ij for

any i, j ∈ [[1, N ]]. Note again that we consider here returns normalized by an estimator of their
volatility: r̃it = rit/σ̂it. This means that our tests are immune against an overall increase or
decrease of the the volatility in the out-of-period, and are only sensitive to the quality of the
estimator of the correlation matrix itself.

In order to ascertain the robustness of our results in different market situations, we consider
the following four families of predictors g:

(i) The minimum variance portfolio, corresponding to gi = 1, ∀i ∈ [[1, N ]]

(ii) The omniscient case, i.e. when we know exactly the realized returns on the next out-of-
sample period for each stock. This is given by gi = N r̃i,t(Tout) where ri,t(τ) = (Pi,t+τ −
Pi,t)/Pi,t with Pi,t the price of the ith asset at time t and r̃it = rit/σ̂it.

(iii) Mean-reversion on the return of the last day: gi = −N r̃it ∀i ∈ [[1, N ]].

(iv) Random long-short predictors where g = N v where v is a random vector uniformly
distributed on the unit sphere.

The normalisation factor N :=
√
N is chosen to ensure wi ∼ O(N−1) for all i. The out-of-

sample risk R2 is obtained from Eq. (9.2.4) by replacing the matrix X by the normalized return
matrix R̃ defined by R̃ ..= (r̃it) ∈ RN×T . We report the average out-of-sample risk for these
various portfolios in Table 9.4, for the three above cleaning schemes and the three geographical
zones, keeping the same value of T (the learning period) and Tout (the out-of-sample period)
as above. The linear shrinkage estimator uses a shrinkage intensity α estimated from the data
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Figure 9.3.1. Comparison of the debiased RIE (9.1.4) (blue line) with clipping at the edge of the
Marčenko-Pastur (red dashed line) and the linear shrinkage with α = 0.5 (green dotted line). We use
here the same data set as in Figure 9.2.2.

following [114] (LW). The eigenvalues clipping procedure uses the position of the Marčenko-
Pastur edge, (1 +

√
q)2, to discriminate between meaningful and noisy eigenvalues. The second

to last line gives the result obtained by taking the identity matrix (total shrinkage, αs = 0) and
the last one is obtained by taking the uncleaned, in-sample correlation matrix (αs = 1).

These tables reveal that: (i) it is always better to use a cleaned correlation matrix: the
out-of-sample risk without cleaning is, as expected, always higher than with any of the cleaning
schemes, even with four years of data; (ii) in all cases but one (Minimum risk portfolio in Japan,
where the LW linear shrinkage outperforms), the regularized RIE is providing the lowest out-of-
sample risk, independently of the type of predictor used. Note that these results are statistically
significant everywhere, except perhaps for the minimum variance strategy with Japanese stocks:
see the standard errors that are given between parenthesis in Table 9.4. Finally, we test the
robustness in the dimension N by repeating the same test for N = {100, 200, 300}. We focus on
relatively small values of N as the conclusions are unchanged in all cases as soon as N > 300.
We see that aside some fluctuations for N = 100, the result for out-of-sample test with the RIE
is robust in the dimension N as indicated in the Table 9.5.

9.4 Testing for stationarity assumption

In this section, we investigate in more details the stationarity assumption underlying the Marčenko-
Pastur framework, i.e. that the future (out-of-sample) is statistically identical to the past (in-
sample), in the sense that the empirical correlation matrices Ein and Eout are generated by the
same underlying statistical process characterized by a unique correlation matrix C. We will use
the two-sample eigenvector test introduced in Section 5.2.

Let us reconsider the two-sample self-overlap formula (5.2.18) for which the key object is
the limiting Stieltjes transform (5.2.13). As we saw in Section 9.1.2, using the “raw” empirical
Stieltjes transform yields a systematic bias for small eigenvalues which can be problematic when
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Table 9.4. Annualized average volatility (in %) of the different strategies. Standard deviations are
given in bracket.

Minimum variance portfolio

〈R〉e US Japan Europe
RIE (IWs) 10.4 (0.12) 30.0 (2.9) 13.2 (0.12)

Clipping MP 10.6 (0.12) 30.4 (2.9) 13.6 (0.12)
Linear LW 10.5 (0.12) 29.5 (2.9) 13.2 (0.13)

Identity αs = 0 15.0 (0.25) 31.6 (2.92) 20.1 (0.25)
In sample αs = 1 11.6 (0.13) 32.3 (2.95) 14.6 (0.2)

Omniscient predictor

〈R〉e US Japan Europe
RIE (IWs) 10.9 (0.15) 12.1 (0.18) 9.38 (0.18)

Clipping MP 11.1 (0.15) 12.5 (0.2) 11.1 (0.21)
Linear LW 11.1 (0.16) 12.2 (0.18) 11.1 (0.22)

Identity αs = 0 17.3 (0.24) 19.4 (0.31) 17.7 (0.34)
In sample αs = 1 13.4 (0.25) 14.9 (0.28) 12.1 (0.28)

Mean reversion predictor

〈R〉e US Japan Europe
RIE (IWs) 7.97 (0.14) 11.2 (0.20) 7.85 (0.06)

Clipping MP 8.11 (0.14) 11.3 (0.21) 9.35 (0.09)
Linear LW 8.13 (0.14) 11.3 (0.20) 9.26 (0.09)

Identity αs = 0 17.7 (0.23) 24.0 (0.4) 23.5 (0.2)
In sample αs = 1 9.75 (0.28) 15.4 (0.3) 9.65 (0.11)

Uniform predictor

〈R〉e US Japan Europe
RIE 1.30 (8e-4) 1.50 (1e-3) 1.23 (1e-3)

Clipping MP 1.31 (8e-4) 1.55 (1e-3) 1.32 (1e-3)
Linear LW 1.32 (8e-4) 1.61 (1e-3) 1.27 (1e-3)

Identity αs = 0 1.56 (2e-3) 1.86 (2e-3) 1.69 (2e-3)
In sample αs = 1 1.69 (1e-3) 2.00 (2e-3) 2.7 (0.01)

applying Eq. (5.2.18). Hence, we shall split the numerical computation of the overlap formula
(5.2.17) or (5.2.18) into two steps. The first step is to estimate the population eigenvalues using
the QuEST method of Ledoit and Wolf (see Section 9.1.3). Since these eigenvalues are designed
to solve the Marčenko-Pastur equation, the second step consists in extracting from Eq. (9.1.8)
an estimation of the Stieltjes transform of E for an arbitrarily small imaginary part η, that we
denote by ĝE(z) for any z ∈ C−. Using ĝE(z) in Eq. (5.2.13) allows us to obtain the overlaps.

9.4.1. Synthetic data. We test this procedure on synthetic data first. Our numerical procedure
is a follows. As in Section 5.2, we consider 100 independent realization of the Wishart noise W
with parameter T and covariance C. Then, for each pair of samples, we compute the smoothed
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9.4. Testing for stationarity assumption

Table 9.5. Annualized average volatility (in %) of the different strategies as a function of N with
q = 0.5. We report the standard deviation in parenthesis. We highlight the smallest annualized average
volatility amongst all estimators in bold.

Minimum variance portfolio

US Japan Europe

N 100 200 300 100 200 300 100 200 300

RIE (IWs) 12.1 (0.1) 11.0 (0.2) 10.4 (0.1) 28.7 (2.7) 28.2 (2.7) 27.8 (2.7) 15.3 (0.2) 13.5 (0.1) 13.4 (0.1)

Clipping 12.2 (0.2) 11.0 (0.2) 10.5 (0.1) 28.7 (2.7) 28.5 (2.7) 28.1 (2.8) 15.0 (0.2) 13.7 (0.1) 13.8 (0.1)

Linear 12.3 (0.2) 11.3 (0.2) 10.6 (0.1) 28.6 (2.7) 28.0 (2.7) 27.7 (2.8) 15.4 (0.2) 13.7 (0.1) 13.5 (0.2)

Identity 16.4 (0.3) 15.7 (0.3) 15.3 (0.3) 31.3 (2.7) 31.0 (2.7) 31.0 (2.8) 20.4 (0.3) 20.1 (0.4) 20.2 (0.4)

In sample 14.6 (0.2) 13.1 (0.2) 12.3 (0.2) 32.0 (2.8) 31.3 (2.8) 31.0 (2.8) 18.2 (0.2) 16.6 (0.2) 18.2 (0.4)

Mean reversion predictor

US Japan Europe

N 100 200 300 100 200 300 100 200 300

RIE (IWs) 21.9 (0.3) 11.8 (0.07) 10.0 (0.1) 24.5 (0.4) 13.8 (0.1) 12.5 (0.2) 26.4 (0.8) 15.4 (0.3) 10.0 (0.1)

Clipping 22.1 (0.3) 11.9 (0.08) 10.2 (0.1) 25.2 (0.4) 14.3 (0.1) 13.2 (0.4) 27.3 (0.9) 15.9 (0.2) 10.1 (0.1)

Linear 22.6 (0.4) 12.1 (0.08) 10.3 (0.1) 25.5 (0.5) 14.2 (0.1) 12.8 (0.3) 27.3 (0.9) 16.1 (0.3) 10.3 (0.2)

Identity 43.2 (2.5) 27.3 (0.6) 21.1 (0.3) 64.0 (4.6) 43.9 (3.9) 41.3 (5.2) 66.2 (2.5) 42.2(1.7) 31.2 (0.7)

In sample 30.0 (0.6) 15.7 (0.2) 13.5 (0.2) 31.7 (0.4) 18.5 (0.3) 15.8 (0.5) 34.5 (1.2) 20.0 (0.4) 11.4 (0.1)

Omniscient predictor

US Japan Europe

N 100 200 300 100 200 300 100 200 300

RIE (IWs) 13.6 (0.2) 11.1 (0.2) 11.7 (0.2) 12.1 (0.2) 11.2 (0.1) 12.2 (0.2) 10.2 (0.1) 9.9 (0.2) 9.82 (0.2)

Clipping 13.8 (0.2) 11.2 (0.2) 11.9 (0.2) 12.3 (0.2) 11.4 (0.1) 12.7 (0.2) 10.4 (0.1) 11.3 (0.2) 9.91 (0.2)

Linear 13.9 (0.2) 11.5 (0.2) 12.0 (0.2) 12.3 (0.2) 11.4 (0.1) 12.5 (0.2) 10.6 (0.1) 11.3 (0.2) 9.87 (0.2)

Identity 19.4 (0.5) 16.4 (0.4) 16.3 (0.3) 20.7 (0.5) 19.1 (0.3) 22.6 (0.9) 18.5 (0.3) 18.4 (0.4) 18.3 (0.5)

In sample 16.7 (0.4) 13.7 (0.3) 14.6 (0.3) 14.0 (0.3) 14.7 (0.3) 15.0 (0.3) 11.0 (0.1) 10.5 (0.2) 11.4 (0.2)

Uniform predictor

US Japan Europe

N 100 200 300 100 200 300 100 200 300

RIE (IWs) 2.72 (3e-3) 1.91 (2e-3) 1.57 (1e-3) 3.06 (4e-3) 2.16 (2e-3) 1.73 (1e-3) 2.85 (5e-3) 2.01 (4e-3) 1.58 (1e-3)
Clipping 2.77 (3e-3) 1.94 (2e-3) 1.59 (1e-3) 3.19 (5e-3) 2.2 (2e-3) 1.80 (1e-3) 2.96 (6e-3) 2.16 (4e-3) 1.63 (1e-3)
Linear 2.74 (3e-3) 1.93 (2e-3) 1.61 (1e-3) 3.07 (4e-3) 2.18 (2e-3) 1.75 (1e-3) 2.90 (5e-3) 2.03 (3e-3) 1.6 (1e-3)

Identity 3.25 (6e-3) 2.36 (3e-3) 1.85 (2e-3) 4.82 (3e-2) 3.23 (1e-2) 3.13 (2e-2) 3.71 (7e-3) 3.01 (8e-3) 2.3 (5e-3)
In sample 3.71 (7e-3) 2.56 (3e-3) 2.12 (2e-3) 4.11 (8e-3) 3.0 (4e-3) 2.38 (3e-2) 3.69 (9e-3) 3.13 (2e-2) 2.33 (9e-3)
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Chapter 9. Numerical Implementation and Empirical results

overlaps as:

〈ui , ũi〉2 =
1

Zi

N∑
j=1

〈ui , ũj〉2
(λi − λ̃j)2 + η2

, (9.4.1)

with Zi =
∑N

k=1((λi − λ̃k)2 + η2)−1 the normalization constant and η the width of the Cauchy
kernel, that we choose to be N−1/2 in such a way that N−1 � η � 1. We then average this
quantity over all sample pairs for a given label i to obtain [〈ui , ũi〉2]e, which should be a good
approximation of Eq. (5.0.4) provided that we have enough data.

We consider two simple synthetic cases. Let us assume that C is an inverse Wishart with
parameter κ = 10. We generate one sample of E ∼ Wishart(N,T,C−1/T ) with N = 500,
T = 2N and we can compute the self-overlap (5.2.18) using the sample eigenvalues. We compare
in Figure 9.4.1 the estimation that we get using QuEST algorithm (blue points) with the limiting
“true” analytical solution (5.2.23) (red line) and we see that the fit is indeed excellent.
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(a) Inverse Wishart (κ = 10).
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(b) IN+ GOE (σ = 0.35).

Figure 9.4.1. Evaluation of the self-overlap Φ(λ, λ) as a function of the sample eigenvalues λ when C is
an inverse Wishart of parameter κ = 10 (left) and C is a GOE centered around the identity with σ = 0.35
(right). In both cases, we compute the self-overlap (5.2.18) using analytical solution (red line) and the
estimated from the sample eigenvalues using QuEST algorithm (blue points).

Next, we proceed to the same test using the power law distribution proxy (7.5.4) for ρC

with λ0 = −0.6 (see Eq. (4.2.41) for the precise definition of λ0). Again, we emphasize that
this model is quite complex since it naturally generates a finite number of outliers. The result
is reported in Figure 9.4.2 where we plotted the self-overlap obtained by the limiting exact
spectral density using Eq. (4.2.42) (red dashed line), the QuEST algorithm (blue plain line) and
the empirical estimate (9.4.1) over 100 realizations of E (green points). Quite surprisingly, we
see that the estimation obtained from the QuEST algorithm remains accurate for the outliers
while the analytical solution becomes inaccurate for λ & 3.5. This can be understood by the
fact that the discrete approximation of the density (9.1.5) in QuEST yields a Dirac mass of
weight of order O(N−1) (with N finite numerically) while the limiting continuous density ρE(λ)
becomes arbitrarily small for large eigenvalues.
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0 1 2 3 4 5 6

λ

0

100

200

300

400

500

Φ
(λ
,λ

)
empirical

QuEST

true

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.0

1.2

1.4

1.6

1.8

2.0

Figure 9.4.2. Main figure: Evaluation of the self-overlap Φ(λ, λ) as a function of the sample eigenvalues
λ when ρC is obtained from the power law proxy (7.5.4) with λ0 = 0.8. We compare the analytical true
solution using Eq. (4.2.42) (red dashed line) with the QuEST estimation (blue plain line) and also an
empirical estimate over 100 realizations of E using Eq. (3.1.38) (green points). Inset: zoom in the bulk
region of the main figure.

9.4.2. Financial data. We now investigate an application to real data, in the case of stock
markets and using a bootstrap technique to generate different samples. Indeed, the difficulty
here is to measure the empirical mean squared overlaps between the two sample correlation
matrices E and E′, as in Eq. (9.4.1), because we do not have enough data points to evaluate
accurately an average over the noise as required in Eq. (5.0.4). To bypass this problem, we use
a Bootstrap procedure to increase the size of the data.3 Specifically, we take a total period of
2400 business days from 2004 to 2013 for the same three pools of assets that we split into two
non-overlapping subsets of same size of 1200 days, corresponding to 2004 to 2008 and 2008 to
2013. Then, for each subset and of each Boostrap sample b ∈ {1, . . . , B}, we select randomly
T = 600 distinct days for N = 300 stocks returns such that we construct two independent
sample correlation matrices Eb and E′b, with q = N/T = 0.5. Note that we restrict to N = 300
stocks such that all of them are present throughout the whole period from 2004 to 2013. We
then compute the empirical mean squared overlap (5.0.4) and also the theoretical limit (5.2.17)
– using QuEST algorithm – from these B bootstrap datasets.

For our simulations, we set B = 100 and plot in Figure 9.4.3 the resulting estimation of Eq.
(5.0.4) we get from QuEST algorithm (blue dashed line) and the empirical bootstrap estimate
(9.4.1) (green points) using US stocks. We also perform the estimation with an effective ob-
servation ratio qeff (red plain line) where use for each markets the values of qeff obtained above
(see Figures 9.2.2-9.2.3b-9.2.4b). Note that the behaviour in bulk is quite well estimated by the
asymptotic prediction Eq. (5.2.18) for both periods which is consistent with the estimation of
Figure 9.2.2.

It is however clear from Figure 9.4.3 that the eigenvectors associated to large eigenvalues are

3This technique is especially useful in machine learning and we refer the reader to e.g. [79, Section 7.11] for a
more detailed explanation.
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Chapter 9. Numerical Implementation and Empirical results

not well described by the theory: we notice a discrepancy between the (estimated) theoretical
curve and the empirical data even with an effective ratio qeff. The difference is even worse for
the market mode (data not shown). This is presumably related to the fact that the largest
eigenvectors are expected to genuinely evolve with time, as argued in [2]. Note also the strong
divergence at the left edge between the theoretical and empirical data in Figure 9.4.3, which
can be partly corrected using the effective ratio qeff, suggesting that we can still improve the
estimation upon the Marčenko-Pastur framework by adding e.g. autocorrelation or heavy tailed
entries which allows to widen the LSD of E (see e.g. [18, 48] for autocorrelation and [26, 47, 74]
for heavy tailed entries) before invoking the need of some structural evolution of C with time.
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Figure 9.4.3. Evaluation of the self-overlap Φ(λ, λ) as a function of the sample eigenvalues λ using the
N = 300 most liquid US equities from 2004 to 2013. We split the data into two non-overlapping period
with same sample size 1200 business days. For each period, we randomly select T = 600 days and we
repeat B = 100 bootstraps of the original data. The empirical self-overlap is computed using Eq. (9.4.1)
over these 100 bootstraps (green points) and the limiting formula (5.2.18) is estimated using QuEST
algorithm with q = 0.5 (blue dashed line). We also provide the estimation we get using the same effective
observation ratio qeff than in Figure 9.2.2. Inset: focus in the bulk of eigenvalues.

All the above results can be extended and qualitatively and quantitatively confirmed in the
case of Japanese and European stocks, for which the results are plotted respectively in Figures
9.4.4a.

To conclude, these observations suggest further improvements upon the time independent
framework of Marčenko and Pastur, that one allow one to account for some “true” dynamics
of the underlying correlation matrix. That such dynamics exist for eigenvectors corresponding
to the largest eigenvalues is intuitively reasonable, and empirically confirmed by the analysis
of Ref. [2]. The full correlation matrix might also evolve and jump between different “market
states”, as suggested in various recent papers of the Guhr group (see e.g. [156,185] and references
therein). Extending the present framework to these cases is quite interesting and would shed
light on the optimal value of the observation ratio qeff which was systematically found to be
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(a) TOPIX (Japan)
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Figure 9.4.4. Evaluation of the self-overlap Φ(λ, λ) as a function of the sample eigenvalues λ using the
N = 300 most liquid equities from the Japanese TOPIX (left) and the European Bloomberg 500 index
(right) from 2004 to 2013. For each case, we split the data into two non-overlapping period with same
sample size T = 1200 business days. For each period, we randomly select 600 realizations of the returns
and we repeat B = 100 bootstraps of the original data. The empirical self-overlap is computed using
Eq. (9.4.1) over these 100 bootstraps (green points) and the limiting formula (5.2.18) is estimated using
QuEST algorithm with q = 0.5 (blue dashed line). We also provide the estimation we get using the same
effective observation ratio q than in Figure 9.2.2. Inset: focus in the bulk of eigenvalues.

larger than q = N/T . This could be an indication of non-stationnay effects. This is particularly
apparent for the Japanese stocks (see e.g. Fig. 9.4.4a) where the theoretical prediction deviates
significantly from the empirical one even if we calibrate the effective quality ratio qeff. The case
of eigenvectors associated to the small eigenvalues is particularly striking and probably need
further scrutiny, in particular in the case of futures markets where the presence of very strongly
correlated contracts (i.e. two different maturities for the same underlying) leads to very small
“true” eigenvalues of the correlation matrix, for which the above IW-regularizing scheme is
probably inadequate. We leave these issues, as well as several others alluded to in the following
concluding chapter, for further investigations.
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Chapter 10

Outroduction

We have discussed at length some of the most advanced techniques in RMT and their application
to estimate large correlation matrices, in particular within a rotational invariant framework.
Moreover, we showed through an extended empirical analysis that these estimators can be of
great interest in real world situations. Instead of repeating the main messages emphasized in the
previous sections, we want to end this whole part on covariance matrices with an (incomplete)
list of potentially interesting open problems, that represent natural extensions of the results
obtained above.

10.1 Extension to more general models of covariance matrices

One important assumption of the sample covariance matrix model (4.1.3) is the absence of
temporal correlations and/or temporal structure in the data. As it is well known, this assumption
is clearly not true in most real life applications (see e.g. Section 9.4). It is thus natural to
extend this work to estimators that accounts for some temporal dependence. The simplest case
is when some autocorrelations are present. A standard assumption is that of an exponential
autocorrelation of the form [18,47,48]:

E[YitYjt′ ] = Cij exp
[
−|t− t′|/τ

]
, (10.1.1)

where τ controls the range of the time correlations.
Another frequent situation is when covariances are measured through an Exponential Weighted

Moving Average (EWMA) [47,142]:1

Mij(τ, T ) = (1− α)

T∑
t=0

αtYi,τ−tYj,τ−t, (10.1.2)

where τ is the last estimation date available, α ∈ (0, 1) is a constant and T is the total size of
the time series. Roughly, the idea of this estimator is that old data become gradually obsolete
so that they should contribute less than more recent information. We see that the estimator
(10.1.2) can be rewritten as

Mij(τ) = (1− α)

T∑
t=0

HitHjt, with E
[
HitHit′

]
= δtt′(1− α)αt, (10.1.3)

1We denote in the following the different estimators of C by M to avoid confusion with Pearson’s sample
estimator E = XX∗/T .
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10.2. Singular Value Decomposition

i.e. the variance of the random variables have an explicit time dependence.

Another interesting way to generalize the Marčenko-Pastur framework concerns the distri-
bution of the entries. An important assumption for the Marčenko-Pastur equation to be valid
is that each entry Yit possesses a finite fourth moment. Again, this assumption may not be
satisfied in real dataset, especially in Finance [51]. As alluded to in Section 4.1.3, a more robust
estimate of the covariance matrix in then needed [127]. Let us assume that we can rewrite the
observations as Yit = σtC

1/2Xit for any i ∈ [[1, N ]] and t ∈ [[1, T ]], where σt is a fluctuating global
volatility that sets the overall scale of the returns, and X are iid Gaussian variables. In that
particular context, the sample covariance matrix is obtained as the solution of the fixed-point
equation [127]:

M ..=
1

T

T∑
t=1

U
( 1

N
y∗tM

−1yt

)
yty

∗
t ,

where U is a non-increasing function. As mentioned in Section 4.1.3, it is possible to show that
for the U(x) = x−1, one has M→ E in the large N limit [26,58,74,197], where E = C1/2WC1/2

and W is a Wishart matrix. However, the asymptotic limit is more complex for general U ’s and
reads:

M→ C1/2XBX∗C1/2 , (10.1.4)

where B is a deterministic diagonal T × T matrix where each entry is a functional of the {σt}t
and the function U (see e.g. [58] for the exact expression of the matrix B).

Interestingly, all the above models, (10.1.1), (10.1.3) and (10.1.4), can be wrapped into a
general multiplicative framework that reads:

M ..= C1/2XBX∗C1/2, (10.1.5)

where X ..= (Xit) ∈ RN×T is a random matrix with zero mean and variance T−1 iid entries
and B = (Btt′) ∈ RT×T is fixed matrix, independent from C. Indeed, for (10.1.1), we have
Btt′ = exp[−|t− t′|/τ ] while we set Btt′ = δtt′(1− α)αt for (10.1.3).

The optimal RIE for this model has been briefly mentioned in Section 7.6 give precise equa-
tion number and in more exquisite details in [40]. We saw that the oracle estimator associated
to the model (10.1.5) converges – at least for bulk eigenvalues – to a limiting function that
does not depend explicitly on the spectral density of C (see Eq. (7.6.3)). It is thus interest-
ing to see whether one of the aforementioned models can be solved in full generality (see [48]
for model (10.1.1)) and whether one can explain the appearance of an effective ratio qeff > q,
as encountered in Chapter 9. Furthermore, another important result would be to see whether
the estimator (7.6.3) is also valid for outliers, as is the case for the time-independent sample
covariance matrices.

10.2 Singular Value Decomposition

A natural extension of the work presented in this manuscript is to consider rectangular correla-
tion matrices. This is particularly useful when one wishes to measure the correlation between
N inputs variables x ..= (x1, . . . , xN ) and M outputs variables y ..= (y1, . . . , yM ). The vector x
and the y may be completely different from one another (for example, x could be production
indicators and y inflation indexes) or it also could be the same set of observables but observed
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Chapter 10. Outroduction

at different times (lagged correlation matrix [29]). The cross-correlations is thus characterized
by a rectangular N ×M matrix C defined as:

Cia ..= E[xiya], (10.2.1)

where we assumed that both quantities have zero mean and variance unity.

What can be said about the structure of this rectangular and non symmetric correlation
matrix (10.2.1)? The answer is obtained from the singular value decomposition (SVD) in the
following sense: what is the (normalized) linear combination of x’s on the one hand, and of y’s on
the other hand, that have the strongest mutual correlation? In other words, what is the best pair
of predictor and predicted variables, given the data? The largest singular value – say c1 ∈ (0, 1)
and its corresponding left and right eigenvectors answer precisely this question: the eigenvectors
tell us how to construct these optimal linear combinations, and the associated singular value
gives us the strength of the cross-correlation. We may then repeat this operation on the N − 1
and M −1 dimensional sub-spaces orthogonal to the two eigenvectors for both input and output
variables. This yields a list of singular values {ci}i that represent the prediction power of the
corresponding linear combinations (in decreasing order). This is called Canonical Correlation
Analysis (CCA) in the literature and has (see [91] or [101,193] for more recent works).

In order to study the singular values and the associated left and right eigenvectors, we
consider the N ×N matrix CC∗, which is now symmetric and has N non negative eigenvalues.
Indeed, the trick behind this change of variable is that the eigenvalues of CC∗ are equal to the
square of a singular value of C itself. Then, the eigenvectors give us the weights of the linear
combination of the x’s that construct the best predictors in the above sense. In order to obtain
the right eigenvectors of C, one forms the M ×M matrix C∗C that has exactly the same non
zero eigenvalues as CC∗; the corresponding eigenvectors now give us the weights of the linear
combination of the y’s that construct the best predictees. If M > N , the matrix C∗C has M−N
additional zero eigenvalues; whereas in the other case, it is CC∗ that has an excess of N −M
zero eigenvalues.

However, as for standard correlation matrices, the knowledge of the true population matrix
Eq. (10.2.1) is unavailable. Hence, one resorts to an empirical determination of C that is strewn
with measurement noise, as above. We expect to be able to use tools from RMT to understand
the how the true singular values are dressed by the measurement noise. To that end, suppose
that we have a total of T observations of both quantities that we denote by [Xit]t and [Yat]t.
Then, the empirical estimate of C is given by

Eia ..=
1

T

T∑
t=1

XitYat , (10.2.2)

and the aim is to study the singular values of this matrix. Indeed, as in Chapter 4, we expect
the measurement noise to affect the accuracy of the estimation in the limit N,M, T →∞ with
n = N/T and m = M/T finite, which we will assume to be both smaller than unity in the
following. As explained in the previous paragraph, a convenient way to perform this analysis
is to consider the eigenvalues of EE∗ (or E∗E). Using tools from Appendix B, especially Eq.
(B.2.3), we see that

det(EE∗ − zIN ) = det

(
SXSY − zIT

)
, SX

..=
X∗X

T
, SY

..=
Y∗Y

T
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10.3. Estimating the eigenvectors

so that EE∗ shares the same non-zero eigenvalues than the product of the dual T × T samples
covariance matrix SX and SY.

It is easy to see that when X and Y are uncorrelated, i.e. C = 0, one can compute the
spectral density of SXSY using the free multiplication formula (3.1.81). However, the result
depends in general on the correlation structure of the input variables, CX , and of the output
variables CY . A way to obtain a universal result is to consider the exact normalized PCA’s of
the X and of the Y, that we call X̂ and Ŷ, such that SX̂ has N eigenvalues equal to 1 and T −N
eigenvalues equal to zero, while SŶ has M eigenvalues equal to 1 and T −M eigenvalues equal
to zero. In this case, the limiting spectrum of singular values can be found explicitly (see [28]
and [184] for an early derivation without using free probability methods), and is given by:

ρ(c) = max(m+ n− 1, 0)δ(c− 1) + Re

√
(c2 − γ−)(γ+ − c2)

πc(1− c2)
, (10.2.3)

where γ± are given by:

γ± = n+m− 2mn± 2
√
mn(1− n)(1−m), 0 6 γ± 6 1 (10.2.4)

The allowed c’s are all between 0 and 1, as they should since these singular values can be
interpreted as correlation coefficients. In the limit T → ∞ at fixed N , M , all singular values
collapse to zero, as they should since there is no true correlations between X and Y . the allowed
band in the limit n,m→ 0 becomes:

c ∈
[
|√m−√n|,√m+

√
n
]
,

showing that for fixed N,M , the order of magnitude of allowed singular values decays as T−1/2.
The above result allows one devise precise statistical tests, see [28,101,193].

The general case where when X and Y are correlated, i.e. C 6= 0, is, to our knowledge,
unknown. This is particularly relevant for practical cases since one might expect some true
correlations between the input and output variables. It would be interesting to characterize
how the noise distorts the “true” cross-correlations between X and Y, as the analogue of the
Marčenko-Pastur equation (4.2.1). Moreover, an analysis of the left and right eigenvectors like
in Chapter 5 would certainly be of interest in many real life problems (see e.g. [6,79,80,108] for
standard applications). Note that the case of outlier singular values and vectors of rectangular
random matrices subject to a low rank perturbation has been considered [24].

10.3 Estimating the eigenvectors

As indicated by its name, the optimal RIE is optimal under the assumption that we have
no prior insights on the true components, i.e. the eigenvectors of the population covariance
matrix C. However, in some problems we expect these eigenvectors to have some specific, non
isotropic structure. One possible solution to this problem is to formulate prior structures for
these eigenvectors through factor models [52,77], ultrametric tree models (eigenvector clustering)
[67,177], or constraints on the participation ratios [136].

Very recently, an attempt to “clean” empirical outlier eigenvectors was formulated in [136].
Let us focus for example on the top eigenvector; the prior is then defined as a weighted sum of
the sample eigenvectors:

v̂1 =
√

Φ(µ1, λ1) u1 +

N∑
j=2

εj

√
Φ(µ1, λj)uj , (10.3.1)
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where the bivariate mean squared overlap Φ is defined in Eq. (5.0.3) and the {εj}j>2 is a set of
i.i.d. Gaussian random variables with zero mean and unit variance, that must be determined in
such a way that v̂1 is, for example, as “localized” as possible. One notices that the first term in
the RHS of Eq. (10.3.1) can be computed using Eq. (5.1.10) and the second one can be inferred
from Eq. (5.1.12). On average, we see that 〈v̂1〉ε · u1 =

√
Φ(µ1, λ1), as it should. While this

prior requires some knowledge about the number of outliers – which is still an open question –
it is shown in [136] that this method improves the accuracy of the estimation on synthetic data.
It would be interesting to make use of some of these ideas in the context financial data.

10.4 Cleaning recipe for q > 1

As observed in Chapter 9, the optimal RIE (9.1.4) returns very satisfactory result in terms of
estimating the oracle estimator either with synthetic data or real data when the sample size is
greater than the number of variables. However, it may happen in practice that one is confronted
to the case where N > T in which the sample covariance matrix E has generically N − T zero
eigenvalues. The main difficulty is to interpret these null eigenvalues since they could either be
due to the fact we do not have enough data points, or else that C has some exact zero modes. It is
therefore not surprising that both regularizations schemes of Chapter 9 fail to estimate correctly
the small eigenvalues in this case (see Figure 10.4.1). However, they fail in different ways: the
IWs-regularization leaves zero eigenvalues unaltered while the QuEST algorithm shrinks the
small eigenvalues upwards too much.

A naive and ad-hoc approach to this problem when C has no zero mode is to rescale the
N−T zeros eigenvalues of the IWs-regularization by a constant so that the trace of the estimator
is equal to N , as it should be. This is similar to the clipping procedure of Section 8.2. We see
that the main problem with this simple recipe is that when C has some exact zero modes, then
we will always overestimate the volatility of these zero risk modes. Hence, at this stage, it seems
that there are no satisfactory systematic cleaning recipe when q > 1, in the absence of some
information about the possibility of true zero modes.

10.5 A Brownian Motion model for correlated Wishart matrices

We present in Appendix 11 that Dyson’s Brownian Motion that offers a nice physical interpre-
tation of dynamics of the sample eigenvalues and eigenvectors in the case of an additive noise.
It also provides a straightforward tool to compute the dynamics of the resolvent of the sample
matrix; Eq. (12.2.16) is quite remarkable in that eigenvectors’ overlaps may be easily inferred.

We are not aware of a similar result in the multiplicative case, with sample covariance
matrices in mind, although Eq. (4.2.4) suggest that such a process should exist. In the case
where C = IN , Bru’s Wishart process [37] allows one to obtain many interesting properties
about both the eigenvalues and eigenvectors – see [4, 32], but time in this case is not related
to the quality parameter q, as one would like it to be. This question is quite fundamental and
also has practical applications, as it would for example allow to understand the overlap of the
eigenvectors of E at different “times” (see e.g. [2,3] for a related question in the additive model).
An attempt to construct such process can be found in [2,5] but the standard Ito calculus, used
in Appendix 12.2.2, cannot be used because the noise has a strongly non-Gaussian structure in
this case. Progress seems however within reach.
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ξora.i
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oracle

IWs-regularization

QuEST

Figure 10.4.1. We apply the IWs (red dash-dotted line) and QuEST (green dashed line) regularization
of Chapter 9 as a function of the oracle estimator (7.1.2) with ρC given by Eq. (7.5.4) with λ0 = 0.8
and N = 1000. The sample covariance matrix E is a Wishart matrix with q = 2. We see that both
regularizations provide results that are far from the optimal solution (blue plain line).
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Chapter 11

Introduction

11.1 Setting the stage

The previous part, which was the bulk of the thesis, dealt with the estimation of large covariance
matrices. Precisely, we were mainly focused on the sample covariance matrix model and discussed
about some possible generalizations. Nonetheless, as mentioned in Section 7.6, the theory of
rotational invariant estimators holds in a much broader context. Even though the practical
applications within the field of high dimensional statistics are not as concrete as the sample
covariance matrix model, we believe that the analytical techniques of this part on additive
models can be of particular interest for further works either in physics or statistics.

The model we consider in this part is the case where a fixed “pure” matrix C is corrupted
by an additive independent noise. This model finds many applications in several situations
in physics, in particular in quantum chaos and quantum transport [19], with renewed interest
coming from problems of quantum ergodicity (“eigenstate thermalisation”) [64,94], entanglement
and dissipation (for recent reviews see [73,139]). We consider that the N ×N matrix C has real
eigenvalues. The model we shall study is of the form:

M = C + ΩBΩ∗, (11.1.1)

where B is a fixed matrix with a well defined spectral density ρB and Ω is a random matrix
chosen in the Orthogonal group O(N) according to the Haar measure. Clearly, the noise term
is invariant under rotation so that we expect the resolvent of M to be (for large N) in the same
basis as C. We shall therefore posit without loss of generality that C is diagonal.

The most natural application of this general model (11.1.1) is obviously when the external
noise B belongs to the Gaussian Orthogonal Ensemble, introduced in Chapter 3. We recall that
the N×N matrix B is a GOE if it is a real symmetric matrix with Gaussian entries that satisfies

E[Bij ] = 0 E[B2
ij ] =

{
2σ2/N if i = j ,

σ2/N otherwise.
(11.1.2)

In the mathematical literature, we say that M is a deformed GOE matrix. In physics, this model
is rather known as “deterministic plus noise” model [35,196]. In order to lighten the notations,
we shall rather use the “deformed GOE ” terminology to refer to this model throughout the
following.
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11.2 Outline and main contributions

In the following chapter, we focus on the deformed GOE. In particular, as for sample covariance
matrices, we will show that closed formulas for the mean squared overlaps are available. For
the bulk component, this observation is not new [3,150] but the method we propose here allows
to have a new dynamical interpretation of these mean squared overlaps. The main tool will
be Dyson’s Brownian Motion that provides a diffusion process interpretation of the deformed
GOE [70]. The main advantage of using this dynamical framework is that we are also able to
deal with outlier eigenvectors. This work lead to the article [5] with Romain Allez and Jean-
Philippe Bouchaud. In addition, we also consider the mean squared overlaps between correlated
deformed GOE – say M and M̃ – as done in Section 5.2. Using the additivity of the model, we
may show that contrary to sample covariance matrices, the case where the two realizations M
and M̃ have correlated noise can be solved in full generality. The overlaps between correlated
deformed GOE have been investigated in the work [41] written with Jean-Philippe Bouchaud
and Marc Potters.

The last chapter of this part is dedicated to the general model (11.1.1) without assuming
a Gaussian structure. We will see that we are still able to study in details the mean squared
overlaps (5.0.3) which are related to the free addition formula in the large N limit. Hence, the
first section of this chapter is actually dedicated to an elementary derivation of Voiculescu’s free
addition formula (3.1.66). We then use this result to derive the limiting value of the resolvent
of the model (11.1.1). Then, thanks to the inversion formula (5.1.5), we may compute the mean
squared overlaps and the optimal RIE for this model. Chapter 13 is based on the article [40]
written in collaboration with Romain Allez, Jean-Philippe Bouchaud and Marc Potters. Note
that contrary to the deformed GOE, the analysis of the general model (11.1.1) with the presence
of a finite number of outliers is still an open question.
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Chapter 12

Eigenvectors statistics of the deformed
GOE

This chapter is based on [5] and [41].

In this section, we consider the deformed GOE presented in the previous chapter as a diffusion
process (M(t))t≥0 in the space of N ×N real symmetric or Hermitian matrices starting from a
given deterministic matrix C and evolving with time according to a Hermitian Brownian motion.
The matrix M(t) at time t is given by

M(t) ..= C + B(t) (12.0.1)

where (B(t))t≥0 is a Hermitian Brownian motion, i.e. a diffusive matrix process such that B0 = 0
and whose entries {Bij(t), i ≤ j} are given by

Bij(t) :=
1√
N
Wij(t) if i 6= j, Bii(t) :=

√
2√
N
Wii(t) (12.0.2)

where the Wij(t), i 6 j are independent and identically distributed real or complex (real if i = j)
Brownian motions.

The matrix C is the fixed external source and can be seen as a signal that one would like to
estimate from the observation of the noisy matrix M(t).

The aim of this section is to investigate the effect of the addition of the noisy perturbation
matrix B(t) in the limit of large dimension N → +∞. More precisely, we investigate the
relationship between the eigenvectors of the perturbed matrix M(t) with those of the initial
matrix C for some given t > 0. We emphasize that although we will focus here in the case where
t is independent from N , it is also possible to consider that t scales with the dimension N of the
matrices (see [5] for details).

The evolution as t grows of the eigenvalues λ1(t) ≥ λ2(t) ≥ · · · ≥ λN (t) of the symmetric
matrix M(t) has been investigated in tremendous details in random matrix theory (see [8, sec-
tion 4.3] for a review). It was first shown by Dyson [70] in 1962 that the eigenvalues of the
matrix M(t) evolve according to the Dyson Brownian motion which describes the evolution of N
positively charged particles (Coulomb gas) subject to electrostatic repulsion and to independent
thermal noises. The dynamics of the Dyson Brownian motion were studied in many details for
different purposes. The most striking applications of the Dyson Brownian motion are perhaps
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the proofs of the universality conjectures for Wigner matrices (see e.g. [31,75,76] and references
therein). The Dyson Brownian motion was also used in theoretical physics as a model to study
disordered metals and chaotic billiards [19] (see also [78]). In this context, the authors compute
the correlations between the positions of the eigenvalues in the bulk at a given time s with
those at a later time t > s. The asymptotic correlation functions are described in terms of the
extended Hermite kernel. The correlations between the positions of the eigenvalues near the
edge of the spectrum at different times were later computed in [119] in terms of the extended
Airy kernel.

The study of the associated eigenvectors denoted respectively1 by |ut1〉, |ut2〉, . . . , |utN 〉 is com-
paratively much poorer. A few authors were interested in some aspects of eigenvector fluctuations
(see e.g. in [21, 32, 68, 173] on the statistics of Haar matrices, [23, 113, 144] for eigenvectors of
covariance matrices and [2] for applications in finance) but yet very little is known about the
cross correlation of the eigenvectors at different times s and t > s. It is a natural question to
extend the results known for the eigenvalues [19, 119] by investigating the relation between the
eigenvectors of the matrix M(s) with those at a later time t > s (with possibly s = 0). This
question was initiated in [190] and recently reconsidered in [3] where the authors investigated
the projections of a given eigenvector |u0

i 〉 at time 0 on the orthonormal basis of the perturbed
eigenvectors at time t. Specifically, we consider the case where the associated eigenvalue λi(0)
lies in the continuous part of the spectrum and use Stieltjes transform methods to compute the
asymptotic (mean squared) projections of this vector on the orthonormal basis at time s = 0.

As highlighted in Section 5 above, the information about the mean squared overlaps (5.0.3)
can be studied through the resolvent. We will present two different ways to evaluate the limiting
value of the resolvent of M(t). The first one is to use the dynamics of the eigenvalues and
eigenvectors as done in [5] while the second approach consists in applying Itô’s lemma directly
on the entries on the resolvent of M(t). The main advantage of the first approach is that it
provides a nice physical interpretation of possible outliers in the spectrum of M(t), and we shall
study these outlier eigenvectors at the end of this chapter.

12.1 Eigenvalues and eigenvectors trajectories

12.1.1. Eigenvalues and eigenvectors diffusion processes. It is well known [8] that the eigenval-
ues λ1(t) ≥ λ2(t) ≥ · · · ≥ λN (t) of the matrix M(t) evolve according to the Dyson Brownian
motion

dλi(t) =

√
2

βN
dbi(t) +

1

N

∑
k 6=i

dt

λi(t)− λk(t)
, i = 1, . . . , N , (12.1.1)

where the bi(t) are independent real Brownian motions, and satisfy the initial conditions

λi(0) = µi , i = 1, . . . , N .

The eigenvalues of M(t) may be seen as positively charged particles in a one-dimensional
Coulomb gas with electrostatic repulsion between them and subject to a thermal noise dbi(t).

Conditionally on the eigenvalues paths, the trajectories of the associated eigenvectors |ut1〉,
|ut2〉, . . . ,|utN 〉 can be realized continuously as a function of t. This eigenvector flow was first

1For the sake of clearness, especially when applying Itô’s formula, we shall use Dirac bra-ket notations in this
section.
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12.1. Eigenvalues and eigenvectors trajectories

exhibited in [37] for Wishart processes. Those continuous paths are determined using standard
perturbation theory or stochastic analysis tools (see again [8]): in our case, we have, for all
i = 1, . . . , N,

d|uti〉 = − 1

2N

∑
k 6=i

dt

(λi(t)− λk(t))2
|uti〉+

1√
N

∑
k 6=i

dwik(t)

λi(t)− λk(t)
|utk〉 , (12.1.2)

with |u0
i 〉 = |vi〉 , (12.1.3)

where the family of independent (up to symmetry) real Brownian motions {wij : i 6= j} is
independent of the eigenvalues trajectories (i.e. independent of the driving Brownian motions bi
in (12.1.1)). We can therefore freeze the eigenvalues trajectories and then, conditionally on this
eigenvalues path, study the eigenvectors evolution. The eigenvector process can thus be regarded
as a diffusion process in a random environment which depends on the realized trajectories of
the eigenvalues. This is an important fact that will be used several times throughout this
chapter. Most of the results derived in this chapter concern the large dimensional statistics of
the eigenvectors and hold almost surely with respect to the eigenvalues trajectories.

The evolution equation (12.1.2) for the i-th eigenvector contains two orthogonal terms. The
first term, collinear to |uti〉, pulls back |uti〉 towards 0 in such a way that the eigenvectors remain
normalized 〈uti|uti〉 = 1. The randomness comes in the second interaction and transverse term.
We see that the i-th eigenvector |uti〉 trades more information with the eigenvectors |utj〉, j 6= i
that are associated to the closest neighboring eigenvalues λj(t) ∼ λi(t). If the neighboring
eigenvalues λj(t) are very close to λi(t) (typically at a distance of order 1/N in the continuous
part of the spectrum for large N), we shall see that this singular interaction leads to unstable
(discontinuous) eigenstates trajectories with respect to time t, in the large N limit (see below).

12.1.2. Evolution of the mean squared overlaps at finite N . In order to quantify the relationship
between the perturbed eigenstates at time t and the eigenstates at the initial time, we consider
the scalar products or overlaps 〈uti|u0

j 〉 for i, j = 1, . . . , N . Specifically, we investigate the

mean square overlaps
[
〈uti|u0

j 〉2
]
w

where we use the notation [. . . ]w for the expectation over the
Brownian motions wij , i 6= j ∈ {1, . . . , N} which appear in the eigenvectors evolution equation
(12.1.2). Recall that those Brownian motions are independent of the eigenvalues so that this
conditioning does not modify the law of the eigenvalue process. Note also that the variables[
〈uti|u0

j 〉2
]
w
, 1 ≤ i, j ≤ N are still random, measurable with respect to the sigma field generated

by the Brownian trajectories {(Wi(s)), 0 ≤ s ≤ t, i = 1, · · · , N}.
For j fixed, we find using Itô’s formula (see e.g. [154] for a reminder):

d〈uti|u0
j 〉2 = 2〈uti|u0

j 〉d〈uti|u0
j 〉+

1

N

N∑
k=1

〈utk|u0
j 〉2

(λi(t)− λk(t))2
dt

=
1

N

∑
k 6=i

〈utk|u0
j 〉2 − 〈uti|u0

j 〉2
(λi(t)− λk(t))2

dt+
2√
N

∑
k 6=i

〈uti|u0
j 〉〈utk|u0

j 〉
λi(t)− λk(t)

dwik(t).

We introduce the following short hand notation for the rescaled mean squared overlaps between
the non-perturbed eigenstate |u0

j 〉 and the perturbed eigenvectors |uti〉

Φi|j(t) ≡ Φ(λi(t), µj) := N
[
〈uti|u0

j 〉2
]
w
, (12.1.4)
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for i = 1, . . . , N . We see that this quantity is the analogue of Eq. (5.0.3) for the additive model
and one notices that it is now a function of the time t. We can deduce from (12.1.4) that the
mean squared overlaps satisfies an autonomous evolution equation,

∂t Φi|j(t) =
1

N

∑
k 6=i

Φk|j(t)− Φi|j(t)

(λk(t)− λi(t))2
with Φi|j(0) = Nδij . (12.1.5)

This evolution equation was discovered in 1995 by Wilkinson and Walker (see [190, Equation
(4.7)]). It was also used to analyze the large dimensional statistics of Haar matrices in [32]. The
equation (12.1.5) is the main tool used in the forthcoming sections to analyze the asymptotics
of the overlaps in the large N -limit. Let us re emphasize the fact that the evolution equation
(12.1.5) for Φi|j(t) depends only on the projections of the j-th eigenvector |u0

j 〉 on the perturbed

eigenstates |uti〉 and does not involve any other non-perturbed eigenvector |u0
` 〉, ` 6= j. This is

a very convenient fact as we can fix a given non-perturbed eigenstate |u0
j 〉 and work out the

system of closed equations (12.1.5) satisfied by its N projections on the perturbed eigenvectors
|uti〉, i = 1, · · · , N .

12.1.3. Spectral density and spikes trajectories in the large N limit. In this section, we describe
the evolution of the limiting eigenvalues density when N → ∞. To simplify the notations, we
introduce for any k ∈ [[1, N ]]:

pk
..=

k

N
∈ [0, 1] . (12.1.6)

Then, in the asymptotic regimeN →∞, we will always assume that the eigenvalues are smoothly
allocated according to their “classical” position, that is to say

µk = µ(pk) with pk =

∫ ∞
µ(pk)

ρC(x)dx, (12.1.7)

for any k = 1, . . . , N . Similarly, we make the same assumption regarding the eigenvalues λi(t)
of M(t) at any time t fixed, that is to say

λi(t) = λ(pi, t) with pi =

∞∫
λ(pi,t)

ρM(x, t)dx, (12.1.8)

with λi(0) = µi for any i = 1, . . . , N . These technical assumptions is useful if i := (iN )N∈N is
a sequence such that iN/N → p ∈ (0, 1), then the i-th eigenvalue λi(t) := (λiN (t)) converges
(almost surely) towards λ(p, t) as N → ∞. This remarks also holds for the function µ defined
in (12.1.7).

Let us study the infinitesimal increments over time of the empirical Stieltjes transform ,

gN (z, t) :=

∫
R

µNt (dλ)

z − λ =
1

N

N∑
i=1

1

z − λi(t)
, µNt (dλ) :=

1

N

N∑
i=1

δλi(t)(dλ) , (12.1.9)

and using Itô’s formula (see for instance [8, Subsection 4.3 page 248], [155] or more recently [4] in
a slightly wider context), one obtains the following Burgers evolution equation for the Stieltjes
transform ,

dgN (z, t) = −gN (z, t)∂zgN (z, t)dt+

√
2

βN

N∑
i=1

1

(z − λi)2
dBi +

1

2N
(

2

β
− 1)∂2

zgN (z, t)dt .

(12.1.10)
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Following (12.1.8), this evolution equation becomes deterministic in the large N limit and the
solution is the limiting Stieltjes transform g of the limiting eigenvalues density ρ(·, t) of the
matrix M(t) such that µNt (dλ) → ρ(λ, t)dλ when N → ∞. The Stieltjes transform of the
density ρ(λ, t) is defined for z ∈ C \ supp[ρ] as

g(z, t) =

∫
R

ρM(λ, t)

z − λ dλ .

This analytic function characterizes the probability density ρ(·, t) that one can compute from
the imaginary part of g near the real axis thanks to the Stieltjes inversion formula Im g(λ −
iε, t) →ε→0 πρM(λ, t). Hence, we see by sending N → ∞ in (12.1.10) that the dynamics of the
Stieltjes transform g is governed by a Burgers evolution equation

∂tg(z, t) = −g(z, t)∂zg(z, t), with g(z, 0) =

∫
R

ρC(λ)

z − λ dλ . (12.1.11)

Interestingly, the solution of (12.1.11) is known [158] to satisfy the fixed point equation (see
also [3, Proposition 4.1])

g(z, t) =

∫ 1

0

dp

z − µ(p)− tg(z, t)
(12.1.12)

where µ : [0, 1]→ R is the continuous function introduced in (12.1.7) mapping the index x ∈ [0, 1]
to the eigenvalue a(x) of the matrix C in the continuous limit N →∞. In the special case C = 0,
all eigenvalues start from the origin, i.e. µ(p) = 0 for any p ∈ [0, 1] and the solution g is fully
explicit corresponding to the Wigner semi-circle density ρM(λ, t) = 1

2πt

√
4t− λ2 with radius

2
√
t.
One can also write the evolution equation directly in terms of the density ρ(λ, t) itself by pro-

jecting the Burgers equation (12.1.11) on the real line thanks to the Stieltjes inversion formula:
for λ ∈ R and t ≥ 0,

∂tρM(λ, t) + ∂λ (vM(λ, t)ρM(λ, t)) = 0 where vM(λ, t) = −
∫
R

ρM(λ′, t)

λ− λ′ dλ′ (12.1.13)

and with the initial condition ρM(λ, 0) = ρC(λ) .

From (12.1.8), we obtain ∂pλ(p, t) = −1/ρM(λ(p, t), t) and using (12.1.13), we find

∂tλ(p, t) = vM(λ(p, t), t) . (12.1.14)

This gives a clear physical interpretation of the function vM(λ(p, t), t) as the speed of the particles
in the scaling limit.

The spikes trajectories are also expected to become deterministic in the largeN limit. Indeed,
we can compute them by sending N → +∞ directly in the Dyson Brownian motion equation
(12.1.1) for j = 1, . . . , r to find

λ̇j(t) =

∫
R

ρM(λ, t)

λj(t)− λ
dλ with λj(0) = µj . (12.1.15)

The limiting path of the spike λj(t) for j = 1, . . . , r is thus driven by the density ρM(·, t)
satisfying (12.1.13). Notice that we use the same notation for the spike trajectories λj(t) for
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both the limiting case N → ∞ and the finite dimensional case N < ∞ 2. At the initial time
t = 0, the spike λj(t) starts from a position µj outside the bulk of the spectrum of C. As t
increases, the spike λj(t) is pushed away with an electrostatic force exerted by the other particles.
Each particle inside the bulk of the spectrum exerts a force which is proportional to the inverse
of its distance to the spike. In such a way, the spike remains at a non-negative distance to the
bulk at any time t ≥ 0. Nonetheless, as illustrated in the next subsection, we shall notice that
the spike may eventually by caught back by the continuous part of the spectrum.

12.1.4. Factor model. In this subsection, we illustrate the results of the previous subsection
by analyzing explicitly the special case where the matrix C is of low rank r compared to the
dimension, r � N . Such factor models are used in applications in biology to study population
dynamics [192] or in finance where the setting is nevertheless slightly different, as explained in
Section 4.3.2. The matrix C has r spikes λ1 ≥ λ2 ≥ · · · ≥ λr and 0 is an eigenvalue of C with
multiplicity N − r ∼ O(N). The structure of the matrix C is therefore very simple with only a
few relevant factors that one wants to estimate.

The few spikes do not bring any macroscopic contribution to the empirical density ρM(·, t)
of the particles and in the large N limit, we recover the Wigner semicircle density centered at 0
with radius 2

√
t,

ρM(λ, t) =
1

2πt

√
4t− λ2 , −2

√
t ≤ λ ≤ 2

√
t . (12.1.16)

The speed of the particles inside the spectrum can be computed explicitly as well: it is linear
given for t > 0, |λ| ≤ 2

√
t by

vM(λ, t) =
λ

2t
.

With such a simple form (12.1.16) for the limiting density of particles, it turns out that
the ordinary differential equation (12.1.15) can be solved explicitly and we obtain for any j =
1, . . . , r,

λj(t) = µj +
t

µj
.

Comparing this value of the j-th spike with the value of the edges of the spectrum at time t, we
easily check that for any µj 6= 0, the bulk eventually catches up the isolated particle λj(t) at the

critical time tjc = µ2
j at which λj(t

j
c) = 2

√
tjc. Beyond this critical time, the spike is “swallowed”

by the Wigner sea and disappears. See Fig. 12.1.1 for an illustration of a sample path of the
eigenvalues of M(t) when the initial matrix C has rank one.

12.2 Eigenvector in the bulk of the spectrum

In the bulk of the spectrum, the mean spacings δµ between the eigenvalues of the matrix C is
approximately of order 1/N and depends on the position µ in the spectrum and the local density
ρC(µ) of particles near µ as δµ ∼ 1/(NρC(µ)).

2In order to avoid heavy notations, we omit to use an additional super script N for the eigenvalues λNi (t) at
finite N .
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Figure 12.1.1. (Color online). Sample trajectories of the eigenvalues of the matrix M(t) defined in
(12.0.1) where C has only one non zero eigenvalue µ1 = 5, as a function of time t > 0. The grey lines
represent the eigenvalues trajectories in the bulk. The blue dashed lines represent the trajectories of the
edges ±2

√
t. The red plain line is the sample path of the spike λ1(t) and the red dashed line is 5 + t/5.

Beyond tc = 25, the spike eigenvalue λ1(t) is “swallowed” by the Wigner sea and disappears.

When one perturbs the initial matrix C by adding the matrix B(t), it is well known that
one should compare the magnitude of the entries of the perturbation Bij(t) ∼

√
t/
√
N with the

mean level spacing δa of the non-perturbed matrix C.
There are therefore three distinct regimes of perturbation which lead to different asymptotics

for the relation between the perturbed and non-perturbed eigenstates:

(i) The microscopic or perturbative regime corresponds to values of t := tN depending on N
such that

tN �
1

N
.

For such values of t := tN , the perturbation matrix B(t) is in fact asymptotically small
compared to C and for any fixed i, the eigenvector |utj〉 of M(t) converge to those of C

when N →∞ in the L2 norm,

||utNj − u0
j ||2 −→ 0 . (12.2.1)

One can even obtain an asymptotic expansion for |utj〉 around |u0
j 〉 using (12.1.2). This

regime is rather trivial and will not be further considered here.
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Chapter 12. Eigenvectors statistics of the deformed GOE

(ii) The second mesoscopic regime establishes a smooth crossover between the microscopic and
macroscopic regimes. It corresponds to values of t := tN which are inversely proportional
to N i.e. such that there exists τ > 0 fixed such that

tN =
τ

NρC(µj)
.

Although the operator norm of the matrix B(tN ) tends to 0 when N →∞, this regime is
non-perturbative in the sense that we do not have the convergence (12.2.1) of |uti〉 towards
|u0
i 〉. This non trivial rotation of the eigenvectors may appear surprising at first sight (it is

generated by the addition of a microscopic perturbation) but is in fact simply due to the
small spacings δa between the eigenvalues of C in the bulk of the spectrum. This regime
is studied in details in [5].

(iii) The macroscopic regime corresponds to values of t = O(1) that do not depend on N
and this is the one we shall focus on in the following. Even though the perturbation
is macroscopic, we are still able to extract information on the non-perturbed eigenstate
|u0
j 〉 = |φj〉 from the observation of the perturbed eigenstates |uti〉 for general i, j. Indeed

we compute explicitly the asymptotic mean overlaps Φi|j(t), defined in (5.0.4), which are
proportional to 1/N in the large N limit, using again the overlap equation (12.1.5). If
i := (iN )n∈N and j := (iN )n∈N are sequences such that iN/N → p ∈ (0, 1) and jN/N →
p′ ∈ (0, 1) when N →∞, our result reads (see below)

Φi|j(t) ∼
N→∞

Φ(λ(p, t), µ(p′))

where the function Φ(λ(p, t), µ(p′)) ∼ O(1) is determined explicitly for any matrix C in
terms of the trajectory of the limiting density (ρM(·, s))0≤s≤t described in (12.1.13).

Throughout the following, we consider the regime (iii), i.e. the case where t > 0 is fixed
independently of N . In this regime, we expect the distribution of the overlaps to be much more
spread out compared to the other regimes: the non-perturbed eigenstates are delocalized in
the basis of the perturbed eigenvectors. All the mean squared overlaps have the same order of
magnitude of order 1/N for large N . We start by deriving the evolution equation of the local
density of the state |u0

j 〉 for a fixed index j.

12.2.1. Local density of state. The local density of the state |u0
j 〉 describes the allocation of

the mean squared projections of the non-perturbed state |u0
j 〉 on the basis of the perturbed

eigenvectors |uti〉. It is a probability measure defined as

ν
(j,t)
N (dλ) :=

1

N

N∑
i=1

Φi|j(t) δλi(t)(dλ)

Let us denote by UN (z, t) the empirical Stieltjes transform of this probability measure

U
(j)
N (z, t) :=

1

N

N∑
i=1

Φi|j(t)

z − λi(t)
.

It we define the resolvent of M(t) by G(z, t) ..= (zIN −M(t))−1, we have that U
(j)
N (z, t) is equal,

for any j and z ∈ C \ supp[ρM], to:

U
(j)
N (z, t) = 〈u0

j |Gii(z, t)|u0
j 〉 . (12.2.2)
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12.2. Eigenvector in the bulk of the spectrum

Hence, in the basis where C is diagonal, U
(j)
N (z, t) corresponds to the diagonal entries of G(z, t).

Now, using Dyson equation for the eigenvalues (12.1.1) and the overlap evolution equation
(12.1.5), we obtain the following evolution equation for the local resolvent:

∂tU
(j)
N (z, t) = −gN (z, t)∂zU

(j)
N (z, t) +

√
2

βN

N∑
i=1

Φi|j(t)

(z − λi)2

dbi
dt

+
1

2N
(

2

β
− 1)∂2

zUN (z, t),

(12.2.3)

U
(j)
N (z, 0) =

1

z − µj
where gN (z, t) is defined in Eq. (12.1.9) and satisfies the Burgers equation (12.1.10). We remark
that summing over j = 1, . . . , N in (12.2.3) actually yields the Burgers equation (12.1.10). The
derivation of Eq. (12.2.3) is given at the end of this section.

By invoking the same arguments as above, we expect the stochastic partial differential equa-
tion (12.2.3) to become deterministic in the large N -limit. We denote by U(z, µ(p), t), with

p ∈ [0, 1], the limiting value of U
(j)
N (z, t) when N → +∞. The equation on the limiting local

resolvent U(z, µ(p), t) reads

∂tU(z, µ(p), t) = −g(z, t)∂zU(z, µ(p), t), with U(z, µ(p), 0) =
1

z − µ(p)
, (12.2.4)

where g satisfies the limiting Burgers equation (12.1.11). Recalling the fixed point equation Eq.
(12.1.12) satisfied by g(z, t), the solution U(z, µ(p), t) such that

g(z, t) =

∫ 1

0
U(z, µ(p), t)dx

is actually given, for any p ∈ (0, 1), z ∈ C \ supp[ρM], t ≥ 0 by

U(z, µ(p), t) =
1

z − µ(p)− tg(z, t)
. (12.2.5)

This explicit solution of (12.2.4) is quite remarkable. This limiting result was already obtained
by Shlyakhtenko in [158] using Free probability theory. We think the Dyson style approach
developed here is very intuitive, shedding new lights on this result.

Using the result (12.2.5), we may now easily derive the mean squared overlap. Indeed, we
recall that the function U satisfies Eq. (12.2.2) in the large N limit. Then, we invoke the
inversion formula (5.1.5) to find for N →∞:

Φ(λi(t), µj) =
t∣∣λi(t)− tgM(z, t)− µj

∣∣2 , (12.2.6)

where gM is the Stieltjes transform of M that satisfies Eq. (12.1.11). This result is in perfect
adequation with [3, 150] with t that plays the role of the variance.

Let us now derive Eq. (12.2.3). Thanks to Itô’s formula, we get

∂tUN (z, t) =
1

N

N∑
i=1

1

z − λi(t)
∑
k 6=i

Φk|j(t)− Φi|j(t)

(λk − λi)2
+

N∑
i=1

Φi|j(t)

(z − λi(t))2
dλi
dt

+
2

βN

N∑
i=1

Φi|j(t)

(z − λi(t))3

=
1

2N

∑
i6=k

Φk|j(t)− Φi|j(t)

λi − λk
1

(z − λi)(z − λk)

+

N∑
i=1

Φi|j(t)

(z − λi(t))2

√ 2

βN

dbi
dt

+
1

N

∑
k 6=i

1

λi − λk

+
1

βN
∂2
zUN (z, t)
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Chapter 12. Eigenvectors statistics of the deformed GOE

where we have used the classical symmetrization trick to obtain the second line.

Now, the trick is to rewrite the first term as

1

2N

∑
i 6=k

Φk|j(t)− Φi|j(t)

λi − λk
1

(z − λi)(z − λk)

=
1

2N

N∑
k=1

Φk|j(t)

z − λk

∑
i 6=k

1

(λi − λk)(z − λi)
− 1

2N

N∑
i=1

Φi|j(t)

z − λi

∑
k 6=i

1

(λi − λk)(z − λk)
.

We notice that ∑
i 6=k

1

(λi − λk)(z − λi)
=

1

z − λk

∑
i 6=k

1

z − λi
+

1

λi − λk

and ∑
k 6=i

1

(λi − λk)(z − λk)
= − 1

z − λi

∑
k 6=i

1

z − λk
− 1

λi − λk
.

Therefore we deduce that

1

2N

∑
i 6=k

Φk|j(t)− Φi|j(t)

λi − λk
1

(z − λi)(z − λk)
=

N∑
k=1

Φk|j(t)

(z − λk)2
1

N

∑
i6=k

1

z − λi
+

N∑
k=1

Φk|j(t)

(z − λk)2
1

N

∑
i 6=k

1

λi − λk

=

N∑
k=1

Φk|j(t)

(z − λk)2

(
gN (z, t)− 1

N

1

z − λk

)
+

N∑
k=1

Φk|j(t)

(z − λk)2
1

N

∑
i 6=k

1

λi − λk

where gN (z, t) := 1
N

∑
i=1

1
z−λi(t)

. As a conclusion, we deduce that

∂tUN (z, t) = −gN (z, t)∂zUN (z, t) +

√
2

βN

N∑
i=1

Φi|j(t)

(z − λi)2
dbi
dt

+
1

2N
(

2

β
− 1)∂2

zUN (z, t) .

12.2.2. An alternative derivation of Eq. (12.2.5). In this subsection, we present an alternative
approach that considers directly the time evolution of the full matrix (12.0.2), which we have
not seen in the literature before. To that end, we define the time dependent resolvent

G(z, t) ..= H−1(z, t), H(z, t) ..= zIN −M(t). (12.2.7)

Using Itô formula and the fact that dMkl = dBkl, one has

dGij(z, t) =

N∑
k,l=1

∂Gij
∂Mkl

dBkl +
1

2

N∑
k,l,m,n=1

N∑
m,n=1

∂2Gij
∂Mkl∂Mmn

d
[
BklBmn

]
, (12.2.8)

Next, we compute the derivatives:

∂Gij
∂Mkl

=
1

2
[GikGjl +GjkGil] , (12.2.9)

from which we deduce the second derivatives

∂2Gij
∂Mkl∂Mmn

=
1

4
[(GimGkn +GimGkn)Gjl + ...] , (12.2.10)

where we have not written the other 6 GGG products. Now, using Eqs. (12.0.2) and (11.1.2),
the quadratic covariation reads

d
[
BklBmn

]
=

dt

N

(
2δk=l=m=n + δk=mδl=n + δk=nδl=m

)
(12.2.11)
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12.3. Isolated eigenvectors

so that we get from (12.2.8) and taking into account symmetries:

dGij(z, t) =
N∑

k,l=1

GikGjldBkl +
1

N

N∑
k,l=1

(
GikGlkGlj +GikGkjGll

)
dt . (12.2.12)

If we now take the average over with respect to the Brownian motion Wkl defined in Eq. (12.0.2),
we find the following evolution for the average resolvent:

∂tE[G(z, t)] = gM(z, t)E[G2(z, t)] +
1

N
E[G3(z, t)]. (12.2.13)

Now, one can notice that:

G2(z, t) = −∂zG(z, t); G3(z, t) = ∂2
zG(z, t), (12.2.14)

which hold even before averaging. By sending N →∞, we obtain the following matrix PDE for
the resolvent:

∂tE[G(z, t)] = −gM(z, t) ∂zE[G(z, t)] , with G(z, 0) = GC(z) . (12.2.15)

The solution of Eq. (12.2.15) reads [5, 158]:

GM(z, t) = GC(Z(z, t)), (12.2.16)

and this is exactly equivalent to (12.2.5) if we place ourselves in the basis where C is diagonal.
We see by taking the normalized trace into this latter equation that we retrieve the standard
Burgers equation for the Stieltjes transform (12.1.11), as it should. Note that the result (12.2.16)
holds is universal in the sense that it also works when the entries are not Gaussian (see [109] for
details).

12.3 Isolated eigenvectors

In this section, we study the projections of a given initial eigenstate |u0
j 〉, associated to an

eigenvalue µj lying outside the bulk of the spectrum of the initial matrix C, on the perturbed
eigenvectors in the limit of large dimension N . We recall that the eigenvalues µi are indexed in
non-increasing order and we denote by r the number of outliers (which does not depend on N).
To fix ideas and simplify notations, we will suppose that r = 1 so that the eigenvalue µ1 is the
largest spike (see Fig. 12.3.1) of the matrix C.

12.3.1. Principal component. From the eigenvector evolution equation (12.1.2) and the defini-
tion (5.0.4), we easily check that

d
[
〈ut1|u0

1〉
]
w

= − 1

2N

∑
k 6=1

[
〈ut1|u0

1〉
]
w

dt

(λ1(t)− λk(t))2
,

where we recall that [· · · ]w denotes the average over the Brownian motion {wij}i,j∈[[1,N ]]. This
ordinary differential equation can be solved explicitly and, using the initial condition, we obtain
the following equality, valid for any finite N ,

[
〈ut1|u0

1〉
]
w

= exp

− 1

2N

∫ t

0

∑
k 6=1

ds

(λ1(s)− λk(s))2

 .
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Figure 12.3.1. Spectrum of a matrix C satisfying our hypothesis with a continuous triangular density
and r = 2 spikes µ1 = 4, µ2 = 3.

Sending N →∞ and using the results explained in subsection 12.1.3, we get,

[
〈ut1|u0

1〉
]
w
∼ exp

(
−1

2

∫ t

0
ds

∫
R

ρM(λ, s)

(λ1(s)− λ)2
dλ

)
(12.3.1)

where (λ1(s))0≤s≤t is the limiting trajectory of the first spike (already described in (12.1.15))
such that

λ̇1(s) =

∫
R

ρ(λ, s)

λ1(s)− λdλ , λ1(0) = µ1 . (12.3.2)

The convergence (12.3.1) can of course be extended to any finite fixed value of r, with similar
asymptotic formulas.

We see that if t is small enough so that the spike is still isolated from the bulk at time t, then
the overlap between the initial top eigenvector and its perturbed version does not vanish in the
large N limit even though t and Bt have macroscopic sizes, in contrast with the bulk overlaps
which were of order 1/N .

12.3.2. Transverse components. We now consider the overlaps between the initial top eigen-
vector |u0

1〉 and the perturbed eigenvectors |uti〉 for i 6= 1. In order to lighten the notation, we
define

Φ(p, t) ≡ Φ(λ(p, t), t) , (12.3.3)

which is the asymptotic limit of Φi|1(t).

Since the eigenvalue λ1(t) is isolated from the other eigenvalues, we expect the overlaps
between the corresponding perturbed and non-perturbed eigenvectors to be microscopic of order
1/N .
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12.3. Isolated eigenvectors

To prove this, we start again from the overlap equation (12.1.5), and we denote by f(t) the
limit of [〈u0

1|ut1〉2]w when N → +∞ which is easily deduce from the RHS of Eq. (12.3.1):

f(t) := exp

(
−
∫ t

0
ds

∫
R

ρM(λ, s)

(λ1(s)− λ)2
dλ

)
. (12.3.4)

Then, from (12.1.5), we may now derive the Cauchy problem satisfied by the limiting family of
overlaps Φi|1(t) for i > 1 and N →∞,

∂t Φi|1(t) ∼ −
∫ 1

0

Φ(p, t)− Φ(pi, t)

(λ(p, t)− λ(pi, t))2
dp+

f(t)

(λ1(t)− λ(pi, t))2
, Φ(pi, 0) = 0 . (12.3.5)

Note that the solution of (12.3.5) satisfies Φ(o, t) ≥ 0 for all t ≥ 0 and any p in the bulk of
the spectrum, as it should be for a mean squared overlap. We notice that unlike the principal
component (12.3.1), the solution Φ(pi, t) is delocalized for any i 6= 1 in the large N limit (see
(12.1.4) for the definition of Φ).

12.3.3. Gaussian fluctuations of the principal component. Using the convergence (12.3.5) of the
transverse overlaps, we can compute the higher order moments of the principal component and
deduce that the random variable 〈ut1|u0

1〉 is asymptotically a Gaussian variable with mean value√
f(t) as defined in (12.3.4) and variance of order 1/N that we are able to compute explicitly.
In this subsection , we work with a time t > 0 small enough so that the spike (λi(s))0≤s≤t

has not yet been swallowed by the limiting bulk density (ρM(λ, s))0≤s≤t of the Gaussian matrix
process (M(s))0≤s≤t. This critical time tc was explicitly computed in section 12.1.4 in the case
of a small initial rank for the matrix A.

For such a time t < tc, we shall now prove that conditionally to the eigenvalues path
(λi(s))s<t, i = 1, . . . , N , the random variable

η1(t) ..=
√
N
(
〈ut1|u0

1〉 −
[
〈ut1|u0

1〉
]
w

)
converges weakly towards a centered Gaussian distribution with variance

ς2
1 (t) :=

∫ t

0
ds exp

(
−
∫ t

s

∫
R

ρM(λ, u)

(λ1(u)− λ)2
dλ du

)∫
R

w(x, s)

(λ1(s)− x)2
ρ(x, s)dx ,

where

I (λ1(s))0≤s≤t is the limiting trajectory of the largest eigenvalue satisfying (12.1.15);

I (ρ(λ, s))0≤s≤t,λ∈R is the limiting bulk density trajectory satisfying (12.1.11);

I (w(λ, t)0≤s≤t,λ∈R) = (Φ(p, s))0≤s≤t,p∈[0,1] is the function describing the limiting transverse
overlaps satisfying the evolution equation (12.3.5).

Indeed, to prove this claim, we introduce the characteristic function

FN (ξ, t) ..= E [exp (i ξ η1(t))] ,

and we obtain thanks to Itô’s formula that FN satisfies the partial differential equation

∂

∂t
FN (ξ, t) = − ξ

2N

∂

∂ξ
FN (ξ, t)

∑
k 6=1

1

(λ1 − λk)2
− ξ2

2
hN (t)FN (ξ, t) .
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In the scaling limit N →∞, this equation becomes

∂

∂t
F (ξ, t) = −ξ

2

∂

∂ξ
F (ξ, t)

∫
R

ρ(λ, t)

(λ1(t)− λ)2
dλ− ξ2

2
h(t)F (ξ, t)

which is satisfied by the Gaussian characteristic function F (ξ, t) = exp(− ξ2

2 ς
2
1 (t)). A more

explicit proof of this result using the moment method can be found in [5].

12.3.4. Estimation of the main factors. As an illustration of the results obtained in the previous
subsection, we come back on the factor model. In section 12.1.4, we have seen that the limiting
density of eigenvalues is the Wigner semicircle with radius 2

√
t at time t and that the limiting

trajectories of the spikes are λj(t) = µj + t/µj for any j 6 r.

It turns out that the limiting mean square overlap between the first non-perturbed and
perturbed eigenvectors (respectively |u0

1〉 and |ut1〉) can also be computed analytically.

From (12.3.1), we obtain:

[
〈ut1|u0

1〉
]
w
→ exp

(
−1

2

∫ t

0

ds

2πs

∫
R

√
4s− λ2

(µ1 + s
µ1
− λ)2

dλ

)
=

√√√√max

(
1− t

µ2
1

, 0

)
.

We see that the information contained in the perturbed eigenvector is completely lost at the
time tc = µ2

1, i.e. when the spike λ1(tc) is swallowed by the Wigner sea. Moreover, from the
results of subsection 12.3.3, we conclude that the random variable

√
N〈u0

1|ut1〉 has Gaussian
fluctuations in the large N -limit around its mean asymptotic value 1− t/µ2

1 for t ≤ µ2
1.

12.4 Eigenvectors between correlated deformed GOE

As in Section 5.2, we can derive the overlaps between two independent deformed GOEs and the
result is very similar to sample covariance matrices. Hence, we shall omit most details that can
be obtained by following the arguments of Section 5.2 (see also the appendix of [41]). Note that
we shall rename the parameter t ≡ σ2 in the following as it makes more sense to see this as a
variance instead of a time parameter.

We define two N × N matrices M = C + B and M̃ = C + B̃ where the noises B and B̃
are independent with possibly different variance σ2 and σ̃2. We denote by g and g̃ the Stieltjes
transform of M and M̃ and we introduce the function,

ξ(z) = z − σ2g(z), ξ̃(z̃) = z̃ − σ̃2g̃(z̃) . (12.4.1)

Note that we shall use the convention ξ0(λ) = limη↓0 ξ(λ−iη) ≡ ξR+iξI and ξ̃0(λ) = limη↓0 ξ(λ̃−
iη) ≡ ξ̃R + iξ̃I . If we use the decomposition g(z) = gR(z) + igI(z), it is easy to see that
ξR = λ− σ2gR and ξI = −σ2gI .

Using the result (12.2.16), one has for N →∞:〈
(z −M)−1

kl

〉
P(M)

∼
(
ξ(z)−C

)−1

kl
(12.4.2)

and
〈
(z̃−M̃)−1

kl

〉
P(M)

is obtained from Eq. (12.4.2) by replacing ξ by ξ̃. Since the noises are inde-

pendent, it suffices to plug these values into (5.2.2) to obtain, after some algebraic manipulations
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Figure 12.3.2. (Color online). Numerical simulation of the process 〈ut
1|u0

1〉 as a function of time
t ∈ [0, a2

1] (blue line) together with the theoretical limiting curve
√

1− t/a2
1 for t 6 tc = 25 (red dashed

line). The matrix A has only one non zero eigenvalue a1 = 5 and the dimension is N = 200. The
horizontal green dashed line is 1/

√
N . The agreement is good away from the right end point tc = a2

1 = 25
where a phase transition must occur near the critical point. We see that the convergence holds almost
surely as predicted in subsection (12.3.2) from the convergence of the second moment.

similar to those of Section 5.2 (see also [41]), the general result:

Φa(λ, λ̃) =
(σ2 + σ̃2)(ξR − ξ̃R)2 + 2σ2σ̃2(gR − g̃R)(ξR − ξ̃R)− (σ2 − σ̃2)(ξ2

I − ξ̃2
I )[

(ξR − ξ̃R)2 + (ξI + ξ̃I)2
][

(ξR − ξ̃R)2 + (ξI − ξ̃I)2
] , (12.4.3)

where Φa is defined in Eq. (5.0.4) with the subscript a to denote “additive”. We see that this
latter equation is the analog of Eq. (5.2.15) for the deformed GOE. If we now specialize σ = σ̃,
Eq. (12.4.3) simplifies to:

Φa(λ, λ̃) =
2σ2(λ− λ̃)(ξR(λ)− ξ(λ̃))[

(ξR(λ)− ξR(λ̃))2 + (ξI(λ) + ξI(λ̃))2
][

(ξR(λ)− ξR(λ̃))2 + (ξI(λ)− ξI(λ̃))2
] ,

(12.4.4)

and as for sample covariance matrices, one can again set λ̃ = λ + ε to find the self-overlap
formula:

Φa(λ, λ) =
σ2∂λξR(λ)

2ξ2
I

(
[∂λξR(λ)]2 + [∂λξI(λ)]2

) . (12.4.5)

As a consistency check, let us consider σ̃2 = 0 (no noise). This implies that m̃I = 0 and
m̃R = µ. Then, one can easily see from Eq. (12.4.3) that this yields:

Φa(λ, µ) =
σ2

(ξR − µ)2 + ξ2
I

, (12.4.6)
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Chapter 12. Eigenvectors statistics of the deformed GOE

which is exactly the result derived in (12.2.6).
Finally, an important case is when the noises B, B̃ are correlated (with a coefficient ρ).

Contrary to sample covariance matrices, it turns out that we can still find the mean squared
overlaps (5.0.4). More importantly, the result is identical to (12.4.3) (up to the variance term)
even if the above calculations referred to independent noises. Indeed, the trick is to realize that
one can always write (in law) B =

√
ρB0 +

√
1− ρB1 and B̃ =

√
ρW0 +

√
1− ρW2, where

B1, B2 are now independent, as above. Since the formula (12.4.3) does not rely on the common
matrix C, we can replace it by C+

√
ρW0 and we therefore conclude that (12.4.3) trivially holds

with σ2 simply multiplied by 1− ρ. The corresponding shape of Φa(λ, λ) for different values of
ρ is shown in Fig. 12.4.1. We also provide in the inset a comparison with synthetic data for a
fixed ρ = 0.54, σ2 = 1. The empirical average is taken over 200 realizations of the noises and
the agreement is excellent.

Figure 12.4.1. Main Figure: Evaluation of the self overlap Φa(λ, λ′) for a fixed λ′ ≈ 0.95 as a function
of λ for N = 500, σ2 = 1, and for different values of ρ. The population matrix C is given by a (white)
Wishart matrix with parameter T = 2N . Inset: We compare the theoretical prediction Φa(λ, λ′ ≈ 0.95)
for a fixed ρ = 0.54 with synthetic data. The empirical averages (blue points) are obtained from 200
independent realizations of B.

In summary, we have provided general and exact formulas for the overlaps between the
eigenvectors of large correlated deformed GOEs. As for the multiplicative case, these results do
not require the knowledge of the underlying “pure” matrix C and we believe that this formula
could have a broad range of applications in different contexts.
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Chapter 13

Extension to an arbitrary rotational
invariant noise

This chapter is based on [40].

We now turn on the general case where the noise term B is a (asymptotically) rotational
invariant random matrix. In the previous chapter, we studied in details the statistics of the
eigenvectors of the deformed GOE ensemble with possibly a finite and fixed number of outliers.
We saw that the arguments for the outlier eigenvectors were quite different from the bulk ones,
as is also the case for sample covariance matrices. In particular, the analysis of outliers relied on
the mean squared overlaps dynamics (12.1.4) that is unfortunately unavailable when the noise
term is not Gaussian. Hence, it seems quite difficult to find a unified framework that allows
one to investigate the outlier eigenvectors for the more general model of free addition (11.1.1).
On the other hand, the bulk eigenvectors can be studied in details since it only requires the
characterization of the limiting behavior of the resolvent of the observed matrix M. This latter
quantity was actually given in Eq. (3.1.103) so that we have all the needed tools to analyze the
mean squared overlaps for bulk eigenvectors of M.

In the first part of this chapter, we first go back to the derivation of Eq. (3.1.103) and we
will show that the derivation is deeply related to the free addition formula. Thus, we shall
propose a formal but elementary derivation of Voiculescu’s free addition (3.1.66) by following
the arguments of [40]. From this result, we will be able to derive the asymptotic behavior of
the resolvent of the model (11.1.1) using the Replica formalim of Section 3.1.4. Finally, we shall
apply this resolvent relation in order to derive the mean squared overlaps (5.0.3) for the bulk
eigenvectors and also the optimal RIE in the large N limit.

13.1 An elementary derivation of the free addition formula

As in Section 3.1.3, the starting point is to notice that since the noise is rotationally invariant,
we can always work in the basis where the matrix C is diagonal. Thus, we may specialize the
Replica formalism (3.1.92) for the resolvent of (11.1.1) which yields1

GM(z)i,j =

∫ ( n∏
α=1

N∏
k=1

dηαk

)
η1
i η

1
j

n∏
α=1

e−
1
2

∑N
k=1(ηαk )2(z−ck)

〈
e−

1
2

∑N
k,l=1 η

α
k (ΩBΩ∗)k,lη

α
l

〉
Ω
. (13.1.1)

1One may also use the Replica formalism for the Stieltjes transform as well.
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Chapter 13. Extension to an arbitrary rotational invariant noise

One recognizes that the average value in the RHS of the latter equation is again the finite rank
version of HCIZ integrals studied in details in Section A.2. Hence, one deduces from (A.1.7)
that

I1

(
n∑

α=1

ηα
(
ηα
)∗
,B

)
= exp

[
N

2

n∑
α=1

WB

(
1

N
(ηα)†ηα

)]
, (13.1.2)

with W ′B(.) = RB(.) the primitive of the R-transform of B. As a result, the computation of the
resolvent (13.1.1) becomes

GM(z)i,j =

∫ ( N∏
k=1

dηk

)
η1
i η

1
j exp

{
N

2

n∑
α=1

[
WB

(
1

N
(ηα)†ηα

)
− 1

2

N∑
k=1

(ηαk )2(z − µk)
]}

,

(13.1.3)
and by introducing a Lagrange multiplier pα ..= 1

N (ηα)†ηα, we obtain using Fourier transform
(and renaming ζα = −2iζα/N)

GM(z)i,j ∝
∫ ∫ ( n∏

α=1

dpαdζα

)
exp

{
N

2

n∑
α=1

[WB(pα)− pαζα]

}

×
∫ ( n∏

α=1

N∏
k=1

dηαk

)
η1
i η

1
j exp

{
−1

2

n∑
α=1

N∑
k=1

(ηαk )2(z − ζα − µk)
}
.

One can readily find

GM(z)i,j ∝
∫ ∫ ( n∏

α=1

dpαdζα

)
δi,j

z + ζ1 − µi
exp

{
−Nn

2
F0(pα, ζα)

}
, (13.1.4)

where the ‘free energy’ F0 is given by

F0(pα, ζα) =
1

Nn

n∑
α=1

[
N∑
k=1

log(z − ζα − µk)−WB(pα) + pαζα

]
. (13.1.5)

As in Section 3.1.3, the integral (13.1.4) can be evaluated by considering the saddle-point of
the free energy F0 as the other term is obviously sub-leading. Moreover, we use the replica
symmetric ansatz that tells us if the free energy is invariant under the action of the symmetry
group O(N), then we expect a saddle-point which is also invariant. This implies that we have
at the saddle-point

pα = p and ζα = ζ, ∀α ∈ {1, . . . , n}, (13.1.6)

from which, we obtain the following set of equations:

ζ∗ = RB(p∗) and p∗ = gC(z − ζ∗). (13.1.7)

If we apply the Blue transform of C on the second equation of (13.1.7), we obtain

z = BC(p∗) +RB(p∗) ≡ RC(p∗) +RB(p∗)− 1

p∗
. (13.1.8)

On the other hand, we see that the resolvent (13.1.4) is given in the large N limit and the limit
n→ 0 by

Gij(z) ∼
δij

z −RB(p∗)− µi
. (13.1.9)
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13.2. Asymptotic resolvent of (11.1.1)

The trick is to see that we can get rid off one variable by taking the normalized trace in this
later equation as it yields

gM(z) = gC(z −RB(p∗)) = p∗ (13.1.10)

where the last equation follows from (13.1.7). Therefore, we conclude by plugging this last
equation into (13.1.8) that

z − 1

gM(z)
= RC(gM(z)) +RB(gM(z)),

from which one can check by renaming z = BM(ω) that

RM(ω) = RC(ω) +RB(ω), (13.1.11)

which is exactly the free addition formula (3.1.66).

13.2 Asymptotic resolvent of (11.1.1)

A trivial application of the result above is the evaluation of the resolvent entrywise for the
general model (11.1.1). Indeed, we see by plugging Eq. (13.1.10) into Eq. (13.1.9) that

GM(z)ij ∼
δij

z −RB(gM(z))− µi
, (13.2.1)

which is equivalent to

GM(z) = GC(Z(z)), Z(z) ..= z −RB(gM(z)). (13.2.2)

One notices that this formula is indeed the generalization of the formula (3.1.67) as a matrix.
Moreover, we see that in the largeN limit, the random resolvent of M converges to a deterministic
quantity that lies in the basis of C. We therefore see that the additive case is even simpler than
the multiplicative one as expected. It also means that all the computations we considered in
Section 5 can be performed nearly verbatim for the additive model (11.1.1) and the exact results
can be found in [40].

13.3 Overlap and Optimal RIE formulas in the additive case

13.3.1. Mean squared overlaps. We were able to show that the resolvent of M in the general
additive model (11.1.1) converges to a deterministic limit that is given in Eq. (13.2.2). We see
that this matrix relation can be simplified when written in the basis where C is diagonal, since
in this case GC(Z) is also diagonal. Therefore, the evaluation of the mean squared overlap
between a given sample and true eigenvectors, denoted as Φ(λ, µ), is straightforward using the
same techniques as in Section 5.1.1. We omit details that may be found in [40] and one finds
that the overlap for the free additive noise is given by:

Φ(λ, µ) =
β1(λ)

(λ− µ− αa(λ))2 + π2βa(λ)2ρM(λ)2
, (13.3.1)
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Chapter 13. Extension to an arbitrary rotational invariant noise

Figure 13.3.1. Computations of the rescaled overlap Φ(λ, µ) as a function of µ in the free addition
perturbation. We chose i = 250, C a Wishart matrix with parameter q = 0.5 and B a Wigner matrix
with σ2 = 1. The black dotted points are computed using numerical simulations and the plain red curve
is the theoretical predictions Eq. (13.3.1). The agreement is excellent. For i = 250, we have µi ≈ 0.83
and we see that the peak of the curve is in that region. The same observation holds for i = 400 where
µi ≈ 1.66. The numerical curves display the empirical mean values of the overlaps over 1000 samples of
M given by Eq. (11.1.1) with C fixed.

where µ is the corresponding eigenvalue of the true matrix C, and where we defined:
αa(λ) ..= Re[RB (hM(λ) + iπρM(λ))],

βa(λ) ..=
Im[RB (hM(λ) + iπρM(λ))]

πρM(λ)
.

(13.3.2)

As a simple consistency check, we specialize our result to the case where ΩBΩ∗ is a GOE
matrix such that the entries have a variance equal to σ2/N . Then, one hasRB(z) = σ2z meaning
that Z(z) of Eq. (13.2.2) simply becomes Z(z) = z − σ2gM(z). This allows us to get a simpler
expression for the overlap:

Φ(λ, µ) =
σ2

(c− λ+ σ2hM(λ))2 + σ4π2ρM(λ)2
, (13.3.3)

which is exactly the result obtained in Eq. (12.2.6). In Fig. 13.3.1, we illustrate this formula
in the case where C = W with parameter q. We set N = 500, T = 1000, and take ΩBΩ∗ as
a GOE matrix with variance 1/N . For a fixed C, we generate 200 samples of M given by Eq.
(11.1.1) for which we can measure numerically the overlap (5.0.3). We see that the theoretical
prediction (13.3.3) agrees remarkably with the numerical simulations.

13.3.2. Optimal RIE. Since the overlaps are explicit in this general model, it is easy to compute
the asymptotic limit of the oracle estimator (7.1.2) for the bulk eigenvalues in the model (11.1.1).
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Indeed, it is easy to see from Eqs. (3.1.6) and (7.1.2) that:

ξora.
i ∼ 1

πρM(λi)
lim

z→λi−i0+
Im

[∫
µρC(µ)

Z(z)− µ dµ

]
=

1

NπρM(λi)
lim

z→λi−i0+
Im Tr [GM(z)C] , (13.3.4)

where Z(z) is given by Eq. (13.2.2). From Eq. (13.2.2) one also has Tr[GM(z)C] = N(Z(z)gM(z)−
1), and using Eqs. (13.2.2) and (13.3.2), we end up with:

lim
z→λ−i0+

Im Tr [GM(z)C] = NπρM (λ) [λ− α(λ)− β(λ)hM(λ)] .

We therefore find the following optimal RIE nonlinear “shrinkage” function F1:

ξora.
i ∼ Fa(λi); Fa(λ) = λ− αa(λ)− βa(λ)hM(λ), (13.3.5)

where αa, βa are defined in Eq. (13.3.2). This result states that if we consider a model where
the signal C is perturbed with an additive noise (that is free with respect to C), the optimal
way to ’clean’ the eigenvalues of M in order to get Ξ̂(M) is to keep the eigenvectors of M and
apply the nonlinear shrinkage formula (13.3.5). We see that the non-observable oracle estimator
converges in the limit N →∞ towards a deterministic function of the observable eigenvalues.

As usual, let us consider the case where B is a GOE matrix in order to give more intuitions
about (13.3.5). Using the definition of αa and βa given in Eq. (13.3.2), the nonlinear shrinkage
function is given by

Fa(λ) = λ− 2σ2hM(λ). (13.3.6)

Moreover, suppose that C is also a GOE matrix so that M is a also a GOE matrix with variance
σ2

M = σ2
C +σ2. As a consequence, the Hilbert transform of M can be computed straightforwardly

from the Wigner semicircle law and we find

hM(λ) =
λ

2σ2
M

.

The optimal cleaning scheme to apply in this case is then given by:

Fa(λ) = λ

(
σ2

C

σ2
C + σ2

)
, (13.3.7)

where one can see that the optimal cleaning is given by rescaling the empirical eigenvalues by
the signal-to-noise ratio. This result is expected in the sense that we perturb a Gaussian signal
by adding a Gaussian noise. We know in this case that the optimal estimator of the signal is
given, element by element, by the Wiener filter [188], and this is exactly the result that we have
obtained with (13.3.7). We can also notice that the ESD of the cleaned matrix is narrower than
the true one. Indeed, let us define the signal-to-noise ratio SNR = σ2

C/σ
2
M ∈ [0, 1], and it is

obvious from (13.3.7) that Ξ̂(M) is a Wigner matrix with variance σ2
Ξ × SNR which leads to

σ2
M ≥ σ2

C ≥ σ2
C × SNR , (13.3.8)

as it should be.
As a second example, we now consider a less trivial case and suppose that C is a white

Wishart matrix with parameter q0. For any q0 > 0, it is well known that the Wishart matrix
has nonnegative eigenvalues. However, we expect that the noisy effect coming from the GOE
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Figure 13.3.2. Eigenvalues of the noisy measurement M (black dotted line) compared to the true signal
C drawn from a 500×500 Wishart matrix of parameter q0 = 0.5 (red line). We have corrupted the signal
by adding a GOE matrix with radius 1. The eigenvalues density of M allows negative values while the
true one has only positive values. The blue line is the LSD of the optimally cleaned matrix. We clearly
notice that the cleaned eigenvalues are all positive and its spectrum is narrower than the true one, while
preserving the trace.

matrix pushes some true eigenvalues towards the negative side of the real axis. In Fig. 13.3.2, we
clearly observe this effect and a good cleaning scheme should bring these negative eigenvalues
back to positive values. In order to use Eq. (13.3.6), we invoke once again the free addition
formula to find the following equation for the Stieltjes transform of M:

−q0σ
2gM(z)3 + (σ2 + q0 z)gM(z)2 + (1− q0 − z)gM(z) + 1 = 0,

for any z = λ − iη with η → 0. It then suffices to take the real part of the Stieltjes transform
gM(z) that solves this equation2 to get the Hilbert transform. In order to check formula Eq.
(13.3.5) using numerical simulations, we have generated a matrix of M given by Eq. (11.1.1) with
C a fixed white Wishart matrix with parameter q0 and ΩBΩ∗ a GOE matrix with radius 1. As
we know exactly C, we can compute numerically the oracle estimator as given in (7.1.2) for each
sample. In Fig. 13.3.3, we see that our theoretical prediction in the large N limit compares very
nicely with the mean values of the empirical oracle estimator computed from the sample. We
can also notice in Fig. 13.3.2 that the spectrum of the cleaned matrix (represented by the ESD
in green) is narrower than the standard Marčenko-Pastur density. This confirms the observation
made in Chapter 7.

2We take the solution which has a strictly nonnegative imaginary part
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Figure 13.3.3. Eigenvalues according to the optimal cleaning formula (13.3.7) (red line) as a function
of the observed noisy eigenvalues λ. The parameter are the same as in Fig. 13.3.2. We also provide a
comparison against the naive eigenvalues substitution method (black line) and we see that the optimal
cleaning scheme indeed narrows the spacing between eigenvalues.
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[35] E Brézin, S Hikami, and A Zee, Universal correlations for deterministic plus random
hamiltonians, Physical Review E 51 (1995), no. 6, 5442.
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[40] Joël Bun, Romain Allez, Jean-Philippe Bouchaud, and Marc Potters, Rotational invariant
estimator for general noisy matrices, arXiv preprint arXiv:1502.06736 (2015).
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Appendix A

Harish-Chandra–Itzykson-Zuber
integrals

A.1 Definitions and results

The (generalized) Harish-Chandra-Itzykson-Zuber (HCIZ) integral [89, 95] Iβ(A,B) is defined
as:

Iβ(A,B) =

∫
G(N)

DΩ e
βN
2

TrAΩBΩ∗ , (A.1.1)

where the integral is over the (flat) Haar measure of the compact group Ω ∈ G(N) = O(N),U(N)
or Sp(N) in N dimensions and A,B are arbitrary N × N symmetric (hermitian or symplec-
tic) matrices. The parameter β is the usual Dyson “inverse temperature”, with β = 1, 2, or 4,
respectively for the three groups.

This integral has found several applications in many different fields, including Random Ma-
trix Theory, disordered systems or quantum gravity (for a particularly insightful introduction,
see [170]). In RMT, this integral naturally appears in many problems, e.g. the derivation of the
free addition and multiplication or the evaluation of eigenvalues density of states of a partition
function whose potential is subject to a multiplicative external field. In statistics, this integral
is also of particular interest. Indeed, let us reconsider the Bayesian framework of Chapter 6. We
saw in Eq. (6.4.2) that the posterior distribution of the population covariance matrix C given
the sample covariance E under a Gaussian assumption may be written as:

P(C|E) =
1

Z
exp

[
−N

2
TrV(C,E)

]
, V(C,E) ..=

1

q

[
log C + EC−1

]
+ V0(C) , (A.1.2)

where V0(C) is the potential function of the prior distribution and Z the partition function. Using
the BIPZ formalism of Section 3.1.2, the asymptotic behavior of the eigenvalues associated to
this posterior distribution can be studied through the asymptotic of the partition function

Z ∝
∫

exp

[
−N

2
TrV(C,E)

]
dC . (A.1.3)

By integrating over the Haar measure of the Orthogonal group O(N), it is not hard to see that
we end up with I1(E,C−1). Therefore, the asymptotic behavior of the HCIZ integral is also
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Appendix A. Harish-Chandra–Itzykson-Zuber integrals

an important quantity in high dimensional statistics and this motivated the article [38] with
Jean-Philippe Bouchaud, Satya N. Majumdar and Marc Potters.

In the unitary case G(N) = U(N) and β = 2, it turns out that the HCIZ integral can be
expressed exactly, for all N , as the ratio of determinants that depend on A,B, and additional
N -dependent prefactors:

Iβ=2(A,B) =
cN

N (N2−N)/2

det
(
(eNaibj )1≤i,j≤N

)
∆(A)∆(B)

(A.1.4)

with {ai}, {bi} the eigenvalues of A and B, ∆(A) =
∏
i<j |ai−aj | the Vandermonde determinant

of A [and, similarly, for ∆(B)], and cN =
∏N
i i!. Finding the expression of β = 1 or β = 4 is

still an open problem.
Also, as is well known, determinants contain N ! terms of alternating signs, which makes their

order of magnitude very hard to estimate a priori. This difficulty appears clearly when one is
interested in the large N asymptotics of HCIZ integrals, for which one would naively expect to
have a simplified, explicit expression as a functional F2(ρA, ρB) = limN→∞N

−2 ln Iβ=2(A,B)
of the eigenvalue densities ρA,B of A,B [129]. Using Dyson’s Brownian motion, one can finds
[38,82]: Fβ=2(A,B) = limN→∞N

−2 ln I2(A,B):

F2(A,B) = −3

4
−S2(A,B)+

1

2

∫
dxx2(ρA(x)+ρB(x))−1

2

∫
dxdy [ρA(x)ρA(y)+ρB(x)ρB(y)] ln |x−y|,

where

S2(A,B) =
1

2

∫
dt

∫
dλ ρ(λ, t)

{
v2(λ, t) +

π2

3
ρ2(λ, t)

}
(A.1.5)

with ρ(λ, t) and v(λ, t) solution of the following Euler equation
∂tρ(λ, t) + ∂λ[ρ(λ, t)v(λ, t)] = 0,

∂tv(λ, t) + v(λ, t)∂λv(λ, t) =
π2

2
∂λρ

2(λ, t),

with ρ(λ, 0) = ρA(λ), and ρ(λ, 1) = ρB(λ).

(A.1.6)

In fact, this result can be extended to arbitrary value of β with the final (simple) result
Fβ(A,B) = βF2(A,B)/2. This coincides with the result obtained by Zuber in the orthogo-
nal case β = 1 [199] (see also [55,83,168] for arbitrary β).

Nonetheless, explicit results concerning the asymptotics of this integral are scarce. When A
and B are both Wigner matrices, the Euler-Matytsin system of equation can be solved explicitly
[38]. Another soluble case is when one of the two matrix has a Flat distribution [83]. Last but
not least, a beautiful explicit result is available when one of the matrices has lower rank n� N .
Precisely, let us assume that A has n eigenvalues a1, a2, . . . , an when N − n zero eigenvalues.
Then we have [82,124,168]:

Iβ(A,B) = exp

[
Nβ

2

n∑
i=1

WB(ai)

]
, (A.1.7)

whereWB is the primitive of the R-transform of B. This result is of particular importance when
we do Replica analysis since we introduce a finite number n of “replicas” (see Section 3.1.4).
We provide hereafter a complete derivation with elementary calculus in the rank-one case in the
following section and explain how to generalize it to the rank-n case.
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A.2 Derivation of (A.1.7) in the Rank-1 case

This section is devoted to the derivation of the result (A.1.7) in the sample case where A =
diag(a1, 0, . . . , 0) and B = diag(b1, . . . , bN ). Firstly, we rewrite (A.1.1) (we set β = 1 for sim-
plicity):

I1(A,B) =
1

Z

∫ ( N∏
k=1

dΩ1k

)
exp

[
N

2
a1

N∑
k=1

Ω2
1kbk

]
δ

(
N∑
k=1

Ω2
1k − 1

)
, (A.2.1)

where the Dirac delta function enforces the orthogonality and Z is normalization constant defined
as:

Z ..=

∫ ( N∏
k=1

dΩ1k

)
δ

(
N∑
k=1

Ω2
1k − 1

)
, (A.2.2)

which allows us to omit constant variables in the following. We then use the following integral
representation of the delta function:

δ

(
N∑
k=1

Ω2
1k − 1

)
=

1

2π

∫
exp

[
iζ
( N∑
k=1

Ω2
1k − 1

)]
dζ, (A.2.3)

so that we have (after renaming ζ = −2iζ/N)

I1(A,B) ∝ N

4π

∫ i∞

−i∞
dζ

∫ ( N∏
k=1

dΩ1k

)
exp

[
N

2

(
a1

N∑
k=1

Ω2
1kbk + ζ

( N∑
k=1

Ω2
1k − 1

))]

=
N

4π

∫ i∞

−i∞
dζ exp

[
Nζ

2

]∫ ( N∏
k=1

dΩ1k

)
exp

[
−N

2

N∑
k=1

Ω2
1k

(
ζ − a1bk

)]

=
N

4π

∫ i∞

−i∞
exp

[
−N

2

(
1

N

N∑
k=1

log(ζ − a1bk)− ζ
)]

dζ. (A.2.4)

Since we consider N → ∞, the integral over ζ is performed by a saddle-point method, leading
to the following equation:

1

N

N∑
k=1

1

ζ − a1bk
= 1, (A.2.5)

which is equivalent to
gB(ζ/a1) = a1. (A.2.6)

We therefore find that
ζ = a1BB(a1) = a1RB(a1) + 1. (A.2.7)

By plugging this solution into (A.2.4), we obtain

2

N
log I1(A,B) ∼ a1RB(a1)− 1

N

N∑
k=1

log
(

1 + a1(RB(a1 − bk))
)
. (A.2.8)

One can then check, by taking the derivative of both sides, that

a1RB(a1)− 1

N

N∑
k=1

log
(

1 + a1(RB(a1 − bk))
)

=WB(a1), (A.2.9)
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where WB is the primitive integral of the R-transform of B satisfying W ′B(ω) = RB(ω). We
therefore conclude that

2

N
log I1(A,B) ∼ WB(a1), (A.2.10)

which is the claim.
Let us now explain briefly how to extend this derivation to the rank-n case. Formally, the

integral reads

I1(A,B) =
1

Z

∫ ( n∏
i=1

N∏
k=1

dΩik

)
exp

[
N

2

n∑
i=1

ai

N∑
k=1

Ω2
ikbk

]
n∏

i,j=1

δ
( N∑
k=1

ΩikΩjk − δij
)
, (A.2.11)

where the normalization Z is easily deduced from (A.2.2), and A = diag(a1, a2, . . . , an, . . . , 0).
When n = O(N), i.e. when A has close to full rank, the orthogonality constraint

∑N
k=1 ΩikΩjk =

0 for i 6= j becomes dominant and makes the calculation difficult. However, when n� N , this
constraint is nearly automatically satisfied since two random unit vectors in N dimensions have
naturally a scalar product of order 1/

√
N . In this limit, only the normalisation constraint is

operative, i.e.
∑N

k=1 Ω2
ik = 1, ∀i = 1, . . . , n. But one then easily sees that the above integral

factorizes into n independent integrals of the type we considered above, hence leading to result
(A.1.7) above. For a more rigourous proof that this result holds as long as n�

√
N , see [82].

A.3 Instantion calculations for the full rank HCIZ integral

This section is based on the article [38] written with Jean-Philippe Bouchaud, Satya N. Majumdar
and Marc Potters.

A.3.1. Non-intersecting Brownian motions and HCIZ integral. The first part of the derivation
of (A.1.5) is relate the HCIZ integral (3.1.94) with the transition probability of non-intersecting
Brownian motions with constrained initial and final positions. Consider N non-intersecting
Brownian particles λi(t), i ∈ {1, . . . , N} where we assume that

λ1(t) < λ2(t) < · · · < λN (t), ∀ t ∈ [0, 1] (A.3.1)

and such that the {λi} start with a given body density ρA and force to end at a body density
ρB at time t = 1. This can be interpreted as the motion of the eigenvalues of a Gaussian matrix
M(t) for t ∈ [0, 1] whose initial and final positions are constrained. The probability of each
particles can be seen as a conditional probability that can be computed using the transition
probability of the Brownian particles

P(M(t)|A) = AN,β exp

(
−βN

4
Tr(M(t)−A)2

)
, (A.3.2)

where AN,β is a normalization constant defined by

AN,β =
1

2N/2

(
βN

2π

)N/2+βN(N−1)/4

. (A.3.3)

The aim is to relate the conditional probability (A.3.2) with the HCIZ integral so the first part
is to rewrite Eq. (A.3.2) as a function of the eigenvalues (or particles) {λi} of M(t). As the
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matrix A is fixed, we can assume without loss of generality that A is a diagonal matrix of
eigenvalues {ai}i. Then, we perform a spectral decomposition of the matrix M(t) = UΛ(t)U∗

where U denotes the eigenvectors of M(t) that belongs to the Haar measure over unitary matrices
(β = 2) or real orthogonal matrices (β = 1). One can check that this transformation implies a
a Jacobian in Eq. (A.3.2) given by ∆β(M(t))d(UΛ(t)U∗) where1

∆β(M(t)) =
∏
i<j

|λi − λj |β , (A.3.4)

is the well known vandermonde determinant. Hence, for t ∈ (0, 1], using that the RHS of Eq.
(A.3.2) is invariant under rotation, one can integrate out over the Haar measure associated to
U (see [8] for details) and one has:

P(M(t)|A) = AN,βCN,β

∫
dλ1...dλN∆β({λi})e−

βN
4

Tr[Λ2(t)+A2]

∫
DUe

βN
2

Tr UΛ(t)U∗A , (A.3.5)

where

CN,β =
πβN(N−1)/4

∏N
j=1

(
β
2

)
!∏N

j=1

(
jβ
2

)
!

, (A.3.6)

such that

KN,β = AN,βCN,β = (2π)−N/2
(
βN

2

)N/2+βN(N−1)/4 N∏
j=1

(
β

2

)
!
N∏
j=1

[(
jβ

2

)
!

]−1

, (A.3.7)

and that indeed describle the joint distribution for the GOE (and GUE) [8,99]. So, we managed
to find a relation between the HCIZ integral (for β = {1, 2}) and the conditional probability
that the particles {λi} (i.e. the eigenvalues) end with a body density ρB at t = 1 knowing that
they start from a density ρA at t = 0:

Pβ({bi}|{aj}) = KN,β∆β({λi})e−
βN
4

Tr[B2+A2]Iβ(B,A) , (A.3.8)

with Iβ(B,A) defined in Eq. (3.1.94) and where we used that λi(1) = bi by assumption. There-
fore, we find the following result:

Iβ(B,A) =
Pβ({bi}|{aj})e

βN
4

Tr[B2+A2]

KN,β∆β({bi})
. (A.3.9)

This result indicates that we can evaluate the large N limit of the Orthogonal version of HCIZ
integral by considering that the {λi(t)} obey Dyson’s Brownian motion with β = 1, which is the
purpose of the next subsection. Firstly, we emphasize as a consistency check that in the Unitary
case (β = 2), we know that the HCIZ integral has an explicit expression [89,95]:

Iβ(B,A) =

∏N
j=1 j!

NN(N−1)/2

det
(
eNbiaj

)
∆2(B)∆2(A)

(A.3.10)

and hence, by plugging this latter equation into Eq. (A.3.8), one finds

Pβ=2({λi(t)}) =

(
N

2π

)N/2 ∆(B)

∆(A)
det
(
e−

N
2

(bi−aj)2
)

(A.3.11)

like in [99, Lemma 2.1].

1We shall omit the parameter t in our notation when there is no confusion.
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A.3.2. Dyson Brownian motion argument. We start by assuming that our N particles (actually
eigenvalues) obey Dyson’s Brownian motion equation, which is a consequence of assuming that
the matrix M(t) starts at A at time t = 0 and “diffuses” (in a N(N−1)/2 space) up to B at time
t = 1. Restricted to the N dimensional space of eigenvalues {λi}, one has for any i = 1, . . . , N :

dλi(t) =

√
2

βN
dWi(t) +

1

N

∑
k 6=i

dt

λi(t)− λk(t)
, (A.3.12)

with the {Wi(t)}i is a family of independent Brownian motion. As noticed in Eq. (A.3.9), we
may set without loss of generality β = 2 (unitary matrices) as the result for β = 1 is identical
up to a factor 1/2.

Our question is: what is the (exponentially small) probability that the {λi} start from a
configuration with one body density ρA(λ) and ends at time t with a one body density ρB(λ) ?
This conditional probability is exactly the one that appears in Eq. (A.3.9). We will use instanton
calculations to address this issue, using two different (but complementary) languages: that of
particle trajectories and that of densities.

We start by the particles point of view. We introduce the total potential energy U ({λi}) =
− 1
N

∑
i<j ln |λi − λj |, and the corresponding “force” fi = −∂λiU . The probability of a given

trajectory for the N Brownian motions is given by:2

P({λi(t)}|{ai(t)}) = N exp−
[
N

2

∫ 1

0
dt
∑
i

(
λ̇i + ∂λiU

)2
]
. (A.3.13)

The action S (i.e. the term in the exponential) can be decomposed in two separate terms. More
precisely, we have S = S1 + S2 so that

P({λi(t)}|{ai(t)}) ∝ exp
[
−
(
S1 + S2

)]
, (A.3.14)

where S1 contains a total derivative, leading to:

S1
..= −N

2

∫
dλdλ′ρA(λ)ρA(λ′) ln |λ− λ′|+ N

2

∫
dλdλ′ρB(λ)ρB(λ′) ln |λ− λ′| , (A.3.15)

and the second one is given by

S2
..=

N

2

∫ 1

0
dt
∑
i

[
λ̇2
i + (∂λiU)2

]
(A.3.16)

The “instanton” trajectory that dominates the probability for large N is such that the functional
derivative with respect to all λi(t) is zero (see e.g. [34]):

− 2
d2λi
dt2

+ 2
∑
j

∂2
λi,λj

U∂λjU = 0 (A.3.17)

which is equivalent after some algebraic manipulations to:

d2λi
dt2

= − 2

N2

∑
`6=i

1

(λi − λ`)3
. (A.3.18)

2We neglect the Jacobian which is small in the large N (small temperature) limit, as usual.
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This can be interpreted as the motion of unit mass particles, accelerated by an attractive force
that derives from an effective two-body potential φ(r) = −(Nr)−2. The hydrodynamical de-
scription of such a fluid is given by the Euler equations for the density ρ(λ, t) and the velocity
field v(λ, t): 

∂tρ(λ, t) + ∂λ[ρ(λ, t)v(λ, t)] = 0,

∂tv(λ, t) + v(λ, t)∂λv(λ, t) = − 1

ρ(λ, t)
∂λP (λ, t) ,

with ρ(λ, 0) = ρA(λ), and ρ(λ, 1) = ρB(λ).

(A.3.19)

where P (x, t) is the pressure field which reads, from the virial formula in one dimension [112, p.
138]:

P = ρkT − 1

2
ρ
∑
` 6=i
|λi − λ`|φ′(λi − λ`) ≈ −

ρ

N2

∑
` 6=i

1

(λi − λ`)2
, (A.3.20)

because the fluid is at temperature N−1. Using the same argument as Matytsin [129], i.e, writing

λi − λ` ≈ (i− `)/(Nρ) (A.3.21)

and
∞∑
n=1

1

n2
=
π2

6
, (A.3.22)

one finally finds:

P (λ, t) = −π
2

3
ρ3(λ, t) . (A.3.23)

By plugging this equation into the second equation of (A.3.19), we see that we retrieve Eq.
(A.1.6), as expected. Finally, going back to the action term S2, and going to the continuous
limit, one finds from the above results that:

S2 =
∑
i

[
λ̇2
i + (∂λiU)2

]
≈ N

∫
dλρ(λ, t)

[
v2(λ, t) +

π2

3
ρ2(λ, t)

]
, (A.3.24)

which yields exactly the action (A.1.5) by plugging this into (A.3.14) with (A.3.15), apart from
the −3/4 term which comes from the prefactor in Eq. (A.3.9).

A.3.3. Dean-Kawasaki equation. We now consider the densities point of view. Suppose that
we have N particles and each of them obeys the following Langevin equation with an arbitrary
two body potential interaction φ(x− y):

dλi =
1√
N

dWi(t)−
1

N
dt
∑
j 6=i

∂λiφ(λi − λj) . (A.3.25)

Since the work of Kawasaki [106] (see the work of Dean [61] for a much more understandable
derivation) we know that there is an exact Langevin equation for the density field associated to
these particles and it reads [61]:

∂tρ(λ, t) + ∂λJ(λ, t) = 0 (A.3.26)

with:

J(λ, t) =
1

N
ξ(λ, t)

√
ρ(λ, t)− ρ(λ, t)

∫
dλ′∂λφ(λ− λ′)ρ(λ′, t)− 1

2N
∂λρ(λ, t), (A.3.27)
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where ξ(λ, t) is a normalized Gaussian white noise (in time and in space) and ρ ..= 1
N

∑
i ρi.

One can again write the weight of histories of {ρ(λ, t)} using Martin-Siggia-Rose path inte-
grals [60,97]. This reads:

P({ρ(λ, t)}) =

〈
N
∫
Dψ exp

[∫ 1

0
dt

∫
dλN2iψ(λ, t) (∂tρ+ ∂λJ)

]〉
ξ

(A.3.28)

Performing the average over ξ gives the following action (and renaming −iψ → ψ):

P({ρ(λ, t)}) = exp
[
−SDK

]
, SDK

..= N2

∫ 1

0
dt

∫
dλ

[
ψ∂tρ+ F (λ, t)ρ∂λψ −

ψ

2N
∂2
λρ+

1

2
ρ(∂λψ)2

]
,

(A.3.29)
with F (λ, t) =

∫
dλ′∂λφ(λ − λ′)ρ(λ′, t). Taking functional derivatives with respect to ρ and ψ

then leads to the following set of equations:
∂tρ = ∂λ(ρF ) + ∂λ(ρ∂λψ) +

1

2N
∂2
λρ ,

∂tψ −
1

2
(∂λψ)2 = F∂λψ − ∂λ

∫
dλ′φ(λ− λ′)ρ(λ′, t)∂λ′ψ(λ′, t)− 1

2N
∂2
λψ ,

with ρ(λ, 0) = ρA(λ), and ρ(λ, 1) = ρB(λ).

(A.3.30)

Note that there are additional “diffusion” terms that are of order 1/N . This is interesting
since this should regularize the shocks in the (Burgers) equation for ψ. We will show that
Eq. (A.3.30) yields the system of PDE (A.1.6). Compared to (A.1.6), the first equation of Eq.
(A.3.30) suggests to identify the velocity field as v(λ, t) = −F (λ, t)− ∂λψ(λ, t), leading to:

∂tρ+ ∂λ(ρv) =
1

2N
∂2
λρ = O(N−1) . (A.3.31)

Applying this transformation for the second PDE of Eq. (A.3.30) leads to:

∂tv + v∂λv = −∂tF + F∂λF + ∂2
λ

∫
dλ′φ(λ− λ′)ρ(λ′, t)(v(λ′, t) + F (λ′, t)) +O(N−1) ,

that can be rewritten as:

∂tv + v∂λv = F∂λF − ∂λ
∫

dλ′∂λφ(λ− λ′)ρ(λ′, t)

∫
dz∂λ′φ(λ′ − z)ρ(z, t) +O(N−1). (A.3.32)

If we consider the logarithmic repulsive interaction as in Eq. (A.3.12), we may write:∫
dλ′∂λφ(λ− λ′)ρ(λ′, t)

∫
dz∂λ′φ(λ′ − z)ρ(z, t) =

1

N2

∑
j 6=i;k 6=j

1

(λi − λj)(λj − λk)
(A.3.33)

which can be transformed into

1

N2

∑
j 6=i;k 6=j

1

(λi − λj)(λj − λk)
=

1

2N2

∑
j 6=k 6=i

1

λj − λk

[
1

λi − λj
− 1

λi − λk

]
− 1

N2

∑
j 6=i

1

(λi − λj)2
.

(A.3.34)
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The RHS of the latter equation can be simplified using simple algebraic manipulations:

1

N2

∑
j 6=i;k 6=j

1

(λi − λj)(λj − λk)
=

1

2N2

∑
j 6=k 6=i

1

λj − λk

[
1

λi − λj
− 1

λi − λk

]
− 1

N2

∑
j 6=i

1

(λi − λj)2
,

=
1

2N2

∑
j 6=k 6=i

1

(λi − λj)(λi − λk)
− 1

N2

∑
j 6=i

1

(λi − λj)2
,

=
1

2

∑
j 6=i

1

(λi − λj)

2

− 3

2

∑
j 6=i

1

(λi − λj)2
. (A.3.35)

Using Eq. (A.3.21), she second term of the RHS is given by

− 3

2N2

∑
j 6=i

1

(λi − λj)2
≈ −3

2
× π2

3
ρ(λ, t)2 . (A.3.36)

Using the logarithmic repulsion, one has

1

2
∂λF

2 =
1

2
∂λ

 1

N

∑
j 6=i

1

λi − λj

2

. (A.3.37)

All in all, it suffices to plug this last equation and (A.3.35) into (A.3.32) to find for the second
PDE of (A.3.30):

∂tv + v∂λv =
π2

2
∂λρ

2 +O(N−1) , (A.3.38)

as expected.
It remains to prove that we indeed retrieve (A.1.5) using the action SDK defined in (A.3.29).

By using the saddle-point equation Eq. (A.3.30), we obtain that

SDK = N2

∫ 1

0
dt

∫
dλ

[
ψ(∂λ(ρF ) + ∂λ(ρ∂λψ) +

1

2N
∂2
λρ) + Fρ∂λψ −

ψ

2N
∂2
λρ+

1

2
ρ(∂xψ)2

]
,

= N2

∫ 1

0
dt

∫
dλ

[
−ρF∂λψ − ρ(∂λψ)2 + Fρ∂λψ +

1

2
ρ(∂λψ)2

]
,

= N2

∫ 1

0
dt

∫
dλ

[
−1

2
ρ(∂λψ)2

]
. (A.3.39)

Next, observing that ∂λψ = −(F + v), we have

SDK = −N2

∫ 1

0
dt

∫
dλ

[
1

2
ρ(F 2 + 2Fv + v2)

]
, (A.3.40)

where we see the ρv2 term as in Eq. (A.1.5). It suffices to show that the remaining two terms
yields the desired result. To that end, we first consider the F 2 term and we have for N →∞:

F 2 =

∫
dλ′∂λφ(λ− λ′)ρ(λ′, t)

∫
dz∂λφ(λ− z)ρ(z, t)

≈ 1

N2

∑
j 6=i

1

λi − λj
∑
k 6=i

1

λi − λk

=
1

N2

∑
j 6=i

1

(λi − λj)2
+

1

N2

∑
j 6=k 6=i

1

(λi − λj)(λi − λk)
. (A.3.41)
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Now, using symmetry arguments, we may find that

1

N

N∑
i=1

F 2(λi) =
1

N3

N∑
i=1

∑
j 6=i

1

(λi − λj)2
+
∑
j 6=k 6=i

1

(λi − λj)(λi − λk)

 ,
=

1

N3

N∑
i=1

∑
j 6=i

1

(λi − λj)2
. (A.3.42)

Hence, by invoking once again (A.3.21), we get in the large N limit:∫
dλρ(λ)F 2(λ) =

π2

3

∫
ρ3(λ)dλ . (A.3.43)

It remains to consider the last term in (A.3.40). The last quantity to handle is

S3
..=

∫ 1

0
dt

∫
dλρ(λ, t)F (λ, t)v(λ, t) ,

≡
∫ 1

0
dt

∫
dλρ(λ, t)v(λ, t)

∫
dλ′∂λφ(λ− λ′)ρ(λ′, t) , (A.3.44)

where we used that F (λ, t) ..=
∫

dλ′∂λφ(λ− λ′)ρ(λ′, t). By integration by parts, we get

S3 = −
∫ 1

0
dt

∫
dλ∂λ(ρ(λ, t)v(λ, t))

∫
dλ′φ(λ− λ′)ρ(λ′, t) ,

=

∫ 1

0
dt

∫
dλ∂t(ρ(λ, t))

∫
dλ′φ(λ− λ′)ρ(λ′, t) ,

=
1

2

∫ 1

0
dt∂t

∫
dλ

∫
dλ′φ(λ− λ′)ρ(λ, t)ρ(λ′, t) , (A.3.45)

where we invoked the equation of motions (e.g. the first equation of (A.3.30)) in the second line
and symmetry argument in t in the last one. Using the boundary condition, given in the last line
of Eq. (A.3.30) and the logarithmic two body potential interaction for φ(λ − λ′), we conclude
that

S3 =
1

2

[∫
dλdλ′ log |λ− λ′|ρA(λ)ρA(λ′)−

∫
dλdλ′ log |λ− λ′|ρB(λ)ρB(λ′)

]
. (A.3.46)

The conclusion then easily follows by plugging Eqs. (A.3.43) and (A.3.46) into (A.3.40).
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B.1 Schur complement

The derivation of recursion relation mostly relies on linear algebra. More specifically, let us
define the (N +M)× (N +M) matrix M by

M ..=

(
A B
C D

)
, (B.1.1)

where the matrices A,B,C and D are respectively of dimension N × N,N ×M,M × N and
M ×M . Suppose that D is invertible, then the Schur complement of the block D of the matrix
M is given by the N ×N matrix

M/D = A−BD−1C. (B.1.2)

Using it, one obtains after using block Gaussian elimination (or LU decomposition) that the
determinant of M can be expressed as

det(M) = det(D) det(M/D). (B.1.3)

Moreover, one can write the inverse matrix M−1 in terms of D−1 and the inverse of the Schur
complement (B.1.2)

M−1 =

(
(M/D)−1 −(M/D)−1BD−1

−D−1C(M/D)−1 D−1 + D−1C(M/D)−1BD−1

)
. (B.1.4)

Similarly, if A is invertible, the Schur complement of the block A of the matrix M is given
by the M ×M matrix

M/A = D−CA−1B. (B.1.5)

One easily obtains det(M) in terms of A and M/A from (B.1.3) by replacing D by A

det(M) = det(A) det(M/A). (B.1.6)

The inverse matrix M−1 can also be written in terms of A−1 and the inverse of the Schur
complement (B.1.5)

M−1 =

(
A−1 + A−1B(M/A)−1CA−1 −A−1B(M/A)−1

−(M/A)−1CA−1 (M/A)−1

)
. (B.1.7)

214



Appendix B. Reminders on linear algebra

B.2 Matrix identities

There are several useful identities that can be inferred from Schur complement formula. Firstly,
using (B.1.4) and (B.1.7), we may immediately deduce the so-called Woodbury matrix identity

(A + BD−1C)−1 = A−1 −A−1B(D + CA−1B)−1CA−1. (B.2.1)

Moreover, if D = IM , we get the matrix determinant lemma from (B.1.3) and (B.1.6)

det(A−BC) = det(A) det(IM −CA−1B), (B.2.2)

and if A = IN in addition, one gets Sylvester’s determinant identity

det(IN −BC) = det(IM −CB). (B.2.3)

Now, assuming that both B and C are column vectors, one readily find from (B.2.1) the
Sherman-Morrison formula.

B.3 Resolvent identities

Another useful application of Schur complement formula concerns the resolvent. We keep the
notations of Section 3.1.1 and thus

G(z) = H−1(z), H(z) ..= zIN −M , (B.3.1)

with G a N ×N symmetric matrix. We now rewrite H(z) as a block matrix:

H(z) =

(
A B
B∗ C

)
, (B.3.2)

where the matrices A,B and C are respectively of dimension K ×K, K ×M and M ×M with
N = K + M . Next, we define from (B.1.2) the schur complement D ..= A − BC−1B∗. In the
following, we consider K = 2 for simplicity. We have for any i, j ∈ {1, 2}, we have from (B.1.4):

Gij = (D−1)ij . (B.3.3)

As a warmup exercise, let us first consider the simplest case i = j (K = 1) and we set without
loss of generality that i = 1. Then A becomes a scalar and so is D. Using Eq. (B.3.1), one
obtains A = z −M11, B = [M12, . . . ,M1N ] and C = H(1)(z) where H(i) denotes the “minor” of
H, i.e. H(i) ..=

(
Hst : s, t ∈ [[1, N ]]\{i}

)
. Hence, it is easy to see from the very definition of D

that

D ≡ D11 = z −M11 −
(1)∑
α,β

M1αG
(1)
α,βMβ1, (B.3.4)

where and we used the abbreviation

(i)∑
α,β

≡
∑

α,β∈[[1,N ]]\{i}

. (B.3.5)
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Therefore, we deduce from (B.3.3) that

G11(z) =
1

z −M11 −
∑(1)

αβM1αG
(1)
α,βMβ1

. (B.3.6)

This last result holds for any other diagonal term of the resolvent G.
Next, we consider the general case K = 2 so that D is a 2×2 matrix. Again, using the block

representation (B.3.2) and Eq. (B.3.1), one deduces that:

Dkl = zδkl −Mkl −
(kl)∑
α,β

MkαG
(kl)
α,βMβl, k, l ∈ [[i, j]]. (B.3.7)

It is not hard to see that Dkk yields Eq. (B.3.4) as it should. Using that (B.3.7) is a 2×2 matrix,
one can readily invert the matrix D to obtain the relation

Gij −G(m)
ij =

GimGmj
Gmm

, (B.3.8)

for any i, j ∈ [[1,K]] and m ∈ [[1, N ]] with i, j 6= m. This last equation allows one to write a
recursion relation on the entries of the resolvent (see the following appendix).
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B.4 Applications: Self-consistent relation for resolvent and Central Limit
Theorem

We focus in this section on another frequently used analytical tool in RMT based on recursion
relation for the resolvent of a given matrix M. This technique has many advantages compared
to the method compared to the Replica analysis: (i) the entries of the matrix need not to be
identically distributed, (ii) no ansatz is required to perform the calculations. In the limit of
N → ∞, an interesting application of the Central Limit Theorem (CLT) concerns the spectral
properties of random matrices. Precisely, we shall see that relations like that of Eq. (5.1.1) are
actually a consequence of the CLT.

B.4.1. Wigner matrices. As a warmup exercise, we consider the simplest ensemble of random
matrices where all elements of the matrix M are iid random variables, with the only constraint
that the matrix be symmetrical. This is the well-known Wigner ensemble where we assume that

E[Mij ] = 0, E[M2
ij ] =

σ2

N
, (B.4.1)

for any i, j ∈ [[1, N ]]. Note that the scaling with N−1 for the variance comes from the fact that
we want the eigenvalues of M to stay bounded when N → ∞. This allows to conclude that
Mij ∼ 1/

√
N for any i, j ∈ [[N ]].

In order to derive a self-consistent equation for the resolvent of M, we use (B.4.1) and Wick’s
theorem into (B.3.7) and one can check that

E

[
(kl)∑
α,β

MkαG
(kl)
αβ Mβl

]
= δkl

σ2

N

(k)∑
α

G(k)
αα

V

[
(kl)∑
α,β

MkαG
(kl)
αβ Mβl

]
∼ σ4

N
.

(B.4.2)

Consequently, using the Central Limit Theorem, we conclude that for Wigner matrices, (B.3.7)
converges for large N towards

Dkl = δkl

(
z − σ2

N

(k)∑
α

G(k)
αα

)
+O(N−1/2) k, l ∈ {i, j}, (B.4.3)

from which one deduces that Gij ∼ N−1/2 using (B.3.3). Moreover, we may consistently check

that G
(k)
`` ∼ G`` +O(N−1) for any ` ∈ [[1, N ]] thanks to (B.3.8) and we therefore obtain for any

i ∈ [[1, N ]]:

Gii ∼
1

z − σ2g(z)
+O(N−1/2). (B.4.4)

By taking the normalized trace in this last equation, we obtain at leading order the equation of
the semi-circle law’s Stieltjes transform

g(z) =
1

z − σ2(z)g
, (B.4.5)
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(a) Diagonal entry of Im[GE(z)] with i = 1.
(b) Off diagonal entry of Im[GE(z)] with i = 1 and
j = 2.

Figure B.4.1. Illustration of the imaginary part of Eq. (B.4.6) with N = 1000. The empirical estimate
of GE(z) (blue line) is computed for any z = λi − iN−1/2 with i ∈ [[1, N ]] and comes from one sample.
The theoretical one (red line) is given by the RHS of Eq. (B.4.6). The green dotted corresponds to the
confidence interval whose formula is given by Eq. (B.4.7).

so that we conclude
Gij(z) ∼ δijg(z) +O(N−1/2). (B.4.6)

This result has been extended in a much more general framework – see e.g. the recent reviews
[22,75]. In particular, it is possible to show that the error term we obtain in Eq. (B.4.6) is quite
similar to (5.1.3) and reads for η = η̂N with η̂ � 1:

ΨGOE(z) ..=

√
Im gS(z)

η̂
+

1

η̂
, (B.4.7)

provided that N is large enough. We illustrate this ergodic behavior for the GOE in Figure
5.1.1, and we see the agreement is excellent and each diagonal entry indeed converges to the
semicircle law.

B.4.2. Sample covariance matrices. We now want to derive (5.1.1) using the same type of
arguments than in the previous section. Suppose that E is defined as in (4.1.3) and we denote
by G(z) its resolvent. Let us assume for simplicity that C = diag(µ1, µ2, . . . , µN ). Since E is a
product of two rectangular matrices, it is convenient to introduce the (N + T )× (N + T ) block
matrix R ..= (Rij) ∈ R(N+T )×(N+T ) defined as:

R(z) ..= H−1(z), H(z) ..=

(
C−1 X
X∗ z IT

)
. (B.4.8)

To simplify the notations, we introduce the set of indexes IN ..= [[1, N ]] and IT ..= [[1, T ]]. Then
using (B.1.4) and (B.1.7), we see that

Rij(z) = z(C1/2GE(z)C1/2)ij , i, j ∈ IN , (B.4.9)
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where E is the sample covariance matrix defined in Eqs. (4.1.3) and (4.1.4), but also

Rαβ(z) = (GS(z))αβ, α, β ∈ IT , (B.4.10)

where the T × T matrix S is defined in Eq. (4.2.24).
We are interested in the computations of Rij for i, j ∈ IN and this can be done using (B.3.3)

and (B.3.7). Note that one can finds Rαβ by proceeding in the same way. We obtain from
(B.3.3) and (B.3.7) that

Rij(z) = (D−1)ij , Dkl
..=

δkl
µk
−

∑
α,β∈IT

XkαR
(kl)
αβ Xlα. (B.4.11)

for any k, l ∈ {i, j}. Using that E[Xit] = 0 and E[X2
it] = T−1 from (4.1.5), we remark thanks to

Wick’s theorem that the sum in the term Dkl obeys

E

[ ∑
α,β∈IT

XkαR
(kl)
αβ Xlα

]
=

δkl
T

(k)∑
α

R(k)
αα

V

[ ∑
α,β∈IT

XkαR
(kl)
αβ Xlα

]
∼ 1

T
,

(B.4.12)

where we used the notation (B.3.5) for the sum. Invoking once again the CLT, we find that the
entry Dkl converges for large N towards

Dkl ∼ δkl
(

1

µk
− 1

T

∑
α∈IT

R(k)
αα

)
+O(T−1/2), (B.4.13)

so that we may conclude from (B.4.11) that Rij ∼ O(T−1/2) for i 6= j. Note that one may repeat
the same arguments for Rαβ with α, β ∈ IT to obtain

Dαβ ∼ δαβ
(
z − 1

T

∑
k∈IN

R
(α)
kk

)
+O(T−1/2), . (B.4.14)

Let us now investigate R
(k)
αα which can be rewritten thanks to (B.3.8) as:

R(k)
αα = Rαα −

RkαRαk
Rkk

. (B.4.15)

We deduce from (B.4.13) that Rkk ∼ O(1). We will now show that Rkα (and Rαk) are vanishing
as T−1/2. To that end, we apply (B.1.7) to (B.4.8) to find

Rkα = −
(
CXGS

)
kα

= −µk
∑
β∈IT

Xkβ(GS)βα. (B.4.16)

Using Eqs. (B.4.10), (B.4.14) and that Xkβ ∼ T−1/2, one can self-consistently check that Rkα ∼
T−1/2. This is also true for Rαk. Hence, if we plug this into Eq. (B.4.15), we see that for
N →∞:

1

T

(k)∑
α

R(k)
αα =

1

T

(k)∑
α

Rαα +O(T−1) = gS(z) +O(T−1) , (B.4.17)
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and we therefore have from Eqs. (B.4.13) and (B.4.11):

Rij(z) = δij

(
µk

1− µkgS(z)

)
+O(T−1/2). (B.4.18)

Finally, recalling that gS(z) = qgE(z) + (1 − q)/z from Eq. (4.2.25) and Rii = zµiGii from Eq.
(B.4.9), we conclude that

(GE(z))ij = δij

(
1

z − µk(1− q + qzgE(z))

)
+O(T−1/2), i, j ∈ [[1, N ]], (B.4.19)

which is the prediction obtained in (5.1.2) with the Replica method. Similarly, we obtain for
the T × T block that:

(GS(z))αβ =
δαβ

z − 1
T

∑
k∈IN (GE(z))ij

+O(T−1/2) . (B.4.20)

Moreover, by using (B.4.18) and (4.2.26), we see that for N →∞

z − 1

T

∑
k∈IN

(GE(z))kk =
1

gS(z)
, (B.4.21)

so that we may conclude
(GS(z))αβ = δαβgS(z) +O(T−1/2) . (B.4.22)

This last result highlights that it is often easier to work with the T ×T sample covariance matrix
S rather than with the N ×N matrix E since the resolvent can be approximated simply by its
normalized trace. All these results can be found in a much more general and rigorous context
in [109].
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Conventions, notations and abbreviations

Conventions

We use bold capital letters for matrices and bold lowercase letters for vectors, which we regard
as N × 1 matrices. The superscript ∗ denotes the transpose operator. We use the abbreviations
[[a, b]] ..= [a, b] ∩ N and [[a]] ≡ [[1, a]] for a, b ∈ N.

Mathematical symbols

We list here some of the most important notations of this thesis.

Symbol Description
BM Blue transform of M (3.1.15)
C Population/True covariance matrix (4.1.1)
C Spikeless version of C (4.3.6)
C± Complex upper/lower half plane
E Sample/Empirical covariance matrix (4.1.3)
E Expectation value over the noise
GM Resolvent of M, (3.1.5)
gNM Empirical Stieltjes transform of ρM (3.1.7)
gM Stieltjes transform of ρM (3.1.8)
i

√
−1

i integer index
N Number of variables
O(N) Orthogonal group on RN×N
O Big O notation
P(·) Probability density function
P(·|·) Conditional probability measure
q Observation ratio (N/T )
r Number of outliers
RM R-transform of M (3.1.16)
R2

in In-sample/predicted risk (8.1.7)
R2

out Out-of-sample/realized risk (8.1.9)
R2

true True risk (8.1.5)
S “Dual” sample covariance matrix (4.2.24)
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SM S-transform of M (3.1.23)
T Sample size
TM T-transform of M (3.1.21)
ui Sample eigenvector associated to λi
vi Population eigenvector associated to µi
WM Primitive of the R-Transform of M (3.1.96)
Y N × T normalized data matrix
αs Linear shrinkage intensity (6.3.7)
λi ith sample eigenvalue
µi ith population (true) eigenvalue
Ξlin. Linear Shrinkage estimator (6.3.7)

Ξ̂(E) Optimal RIE of C depending on E
Ξora. Oracle estimator (7.1.2)
Ξ(E) RIE of C depending on E
ρNM Empirical spectral density of M (3.1.3)
ρM Limiting spectral density of M (3.1.4)
Φ Rescaled mean squared overlap (5.0.3) and (5.0.4)
ϕ(M) Normalized trace of M (3.1.61)
Ω Rotation matrix
〈·〉M Expectation value with respect to P(M)
〈 , 〉 inner product
〈 · | · 〉 Dirac bra-ket

Abbreviations

Symbol Description
CCA Canonical Correlation Analysis
ESD Empirical Spectral Density
GOE Gaussian Orthogonal Ensemble
IW Inverse Wishart
IWs Inverse Wishart + sorting
LDA Linear discriminant analysis
LDL Large dimension limit
LHS Left Hand Side
LSD Limiting Spectral Density
MMSE Minimum Mean Squared Error
MSE Mean Squared Error
MP Marčenko-Pastur
PCA Principal Component Analysis
PDE Partial Differential Equation
PDF Probability Density Function
RHS Right Hand Side
QuEST Quantized Eigenvalues Sampling Transform
RHS Right Hand Side
RI Rotational Invariance
RIE Rotational Invariant Estimator
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RP Relative Performance
RMT Random Matrix Theory
SCM Sample Covariance Matrix
SVD Singular Value Decomposition
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Résumé : De nos jours, il est de plus en plus 
fréquent de travailler sur des bases de données 
de très grandes tailles dans plein de domaines 
différents. Cela ouvre la voie à de nouvelles 
possibilités d'exploitation ou d'exploration de 
l'information, et de nombreuses technologies 
numériques ont été crées récemment dans cette 
optique. D'un point de vue théorique, ce 
problème nous contraint à revoir notre manière 
d'analyser et de comprendre les données 
enregistrées. En effet, dans cet univers 
communément appelé « Big Data », un bon 
nombre de méthodes traditionnelles d'inférence 
statistique multivariée deviennent inadaptées.  
 

Le but de cette thèse est donc de mieux 
comprendre ce phénomène, appelé fléau (ou 
malédiction) de la dimension, et ensuite de 
proposer différents outils statistiques exploitant 
explicitement la dimension du problème et 
permettant d'extraire des informations fiables 
des données.  Pour cela, nous nous intéresserons 
beaucoup aux vecteurs propres de matrices 
symétriques. Nous verrons qu’il est possible 
d’extraire de l'information présentant un certain 
degré d’universalité. En particulier, cela nous 
permettra de construire des estimateurs 
optimaux, observables, et cohérents avec le 
régime de grande dimension. 
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Abstract :  Nowadays, it is easy to get a lot of 
quantitative or qualitative data in a lot of 
different fields. This access to new data 
brought new challenges about data processing 
and there are now many different numerical 
tools to exploit very large database. In a 
theoretical standpoint, this framework appeals 
for new or refined results to deal with this 
amount of data. Indeed, it appears that most 
results of classical multivariate statistics 
become inaccurate in this era of “Big Data”. 
The aim of this thesis is twofold: the first one is 
to understand theoretically this so-called curse 
of dimensionality that describes phenomena 
which arise in high-dimensional space.  

Then, we shall see how we can use these tools 
to extract signals that are consistent with the 
dimension of the problem. We shall study the 
statistics of the eigenvalues and especially the 
eigenvectors of large symmetrical matrices. We 
will highlight that we can extract some 
universal properties of these eigenvectors and 
that will help us to construct estimators that are 
optimal, observable and consistent with the 
high dimensional framework. 
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