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Chapter 1

Introduction

1.1 Dynamical systems

When describing a given physical system, identifying the appropriate variables describing the
dynamics of the system is a required first step. Consider the iconic example of a simple pendulum:
one can follow the temporal evolution of the angle between the rod and the vertical. However,
while this variable allows us to describe perfectly the position of the pendulum at time t, it is
not sufficient to characterize completely its dynamics. Indeed, one still needs an information
about the velocity of the mass. In classical mechanics and for a one dimensional system – that
is, a system which physically evolves only in one direction –, one necessarily needs to know
both the position and the velocity at a given time in order to predict the future evolution. This
prescription is linked to the fact that the equations of motions are deterministic and involve a
temporal derivative of order two. The relevant space where to display the evolution of a one
dimensional physical system is then a two dimensional space: the phase space. For a system of
N particles who can explore a three dimensional physical space with no constraints, the phase
space has then 6N dimensions. In general, the dimension of the phase space corresponds to the
number of degree of freedom of the physical system, which is the number of free and independent
dynamical parameters.

A dynamical system is a function which describes the time dependence of a point in a given
phase space. The physical evolution of the system is then represented by a trajectory in the
phase space. A given trajectory may either wander off to infinity, or to a limited structure in the
phase space. Those structures are called attractors and thus describe the long time behaviour
of trajectories. An attractor is then a geometrical structure that can be a point, a curve or
sometimes a more complicated set with a fractal structure – in this case one speaks of a strange
attractor (see figure 1.1).

1.2 Stochastic description

For the pendulum experiment, after a certain time the oscillations will cease due to the friction
(viscous friction caused by the air, or solid friction linked to the mechanical constraints in the
attachment point). This dissipative term can be taken into account at the level of the evolution
equation by addition of a phenomenological force which conserves the deterministic nature of
the dynamics. However, it is of interest to ask about the fate of the energy thus dissipated:
Global conservation of energy imposes that energy has to be transferred to other degrees of
freedom, in the form of heat. This is typically described by microscopic degrees of freedom. These
“microscopic” degrees of freedom – in opposition to the “macroscopic” motion of the pendulum –
or “hidden” can also present an active influence on the dynamics. If the pendulum is of a size
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Figure 1.1 – Representation of the strange attractor of the deterministic Lorenz system ẋ = σ(y − x),
ẏ = ρx− y − xz, ż = xy − βz with σ = 10, ρ = 28 and β = 8/3.

and density comparable to the air molecules, a phenomenological viscous force is not enough to
faithfully describe the dynamics. In fact, the continuous action of the molecules of the fluid on the
pendulum will cause an erratic movement. In general, the random motion of particles suspended
in a fluid is called a Brownian motion (or “pedesis”). In 1905 Einstein [Ein05] gave the first
theoretical explanation of this phenomenon, and its predictions were later verified experimentally
by Jean Perrin [Per13]. The dynamics can be understood as the result of repeated collisions
between the particles and the molecules constituting the gas or the liquid.

In order to fully determine the dynamics, we should consider the action of all the fluid molecules
interacting with the particle. As the number of involved molecules is of the order of the Avogadro
number (NA ∼ 6× 1023), it is impossible to follow each trajectory. Therefore, one adopts a
stochastic description of the interactions between the particle and the bath, with the introduction
of random forces in the equations describing the dynamics, thus obtaining a stochastic differential
equation or Langevin equation [Lan08]. The evolution of the system is then reduced to the
temporal description of a relatively small number of parameters, but such an evolution must
induce stochastic actions. Consequentially, one can no longer consider individual realisations
of the process, but rather an average over all the possible realisations of the stochastic terms
involved in the dynamics.

1.3 Turbulent flows

The question of turbulence is largely considered as the last unresolved problem in classical physics,
namely a problem that is older than the development of general relativity, quantum mechanics or
particle physics. However, in a certain way, turbulence and generally fluid mechanics is already
solved, as the motion equations, established by Navier and Stokes, are well known since the 18th
century. Decades of careful experimental and numerical investigations have given ample evidence
that turbulence is properly described by the Navier-Stokes equations. Nevertheless, Navier-Stokes
equations are effectively integro differential equations, and apart from some very simple cases,
their general solutions are difficult to understand, even at a qualitative level. Thus, turbulence
can be seen as a typical high dimensional dynamical system. Experimental observations of real
flows or direct simulations based on the Navier-Stokes equations reveal that the turbulent regime
is characterized by strong fluctuations of the velocity field, and multiple spatial scales (see
figure 1.2).

In fluid mechanics, two main points of view emerge: the Eulerian and the Lagrangian description.
The Eulerian description deals with the velocity field #”u ( #”x , t) of the flow and is not constrained
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Figure 1.2 – Observations of turbulent flows by Leonardo da Vinci [Lum92].

to the particular tracking of an individual fluid particle. The field #”u ( #”x , t) is the one that appears
in the Navier-Stokes equations. In the Lagrangian specification the observer follows the evolution
of a real fluid particle as it moves through the flow. When we speak of trajectories, we implicitly
adopt a Lagrangian description. As such particles are advected by the turbulent flow, their
motion is described by a dynamical system. In this work, we do not start from the Navier-Stokes
equation, but we rather introduce phenomenological models involving stochastic terms, in order
to portray the fluctuating nature of turbulent flows.

1.4 Motivation of this thesis and guideline of the manuscript

The early motivation was to study a stochastic model describing the evolution of a triplet of
Lagrangian fluid particles in a two-dimensional and incompressible turbulent flow. This model
is introduced in detail in the next chapter, but the main feature is that the triangle formed
by the triplet of points tends to flatten due to the action of the flow, so that an initial set of
vertices randomly distributed tends to form quasi-linear structures, as observed in real flows.
The analysis of the dynamics of flat triangles then led to evolution equations similar to an other
class of model for particles in turbulent flows, but with density higher than that of the fluid. The
two descriptions are then related to a class of simple noisy dynamical systems, in the sense that
they involve fluctuating terms.
In a nutshell, this thesis consists in describing the relevant phase space for each particular
dynamics, and studying the structures of attractors arising in those phase spaces (chapter 3
and 4), before generalizing the approach (chapter 5). To this end, we begin this text by a chapter
introducing the state of the art concerning noisy dynamical systems and dynamics of particles in
turbulent flows, and presenting in detail the outline of the manuscript.
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We present here the main topics covered in this thesis, which deals with the dynamics of particles
in turbulent flows. We focus on two different physical situations: first, we consider tracers, particles
which perfectly follow the flow; second we study the motion of inertial particles, that is particles
whom density differs from that of the fluid, so that their motion is not strictly following the fluid
velocity field but is instead lagging behind it.

We are interested in that we call clustering processes, the deformation of initially isotropic
structures into highly anisotropic structures. Such processes are of different nature for the two
types of particles. On one hand, tracers initially homogeneously distributed in the flow tend
to be flattened during the temporal evolution, resulting in an accumulation on a manifold of
lower dimension. On the other hand, inertial particles usually concentrate on regions of high

5



Chapter 2 – State of the art

concentration due to the dissipative character of the dynamics. Note that through this text we
only deal with non-interacting particles.
First, we introduce the experimental and numerical observations reported in the literature about
the dynamics of such particles, and we give the equations of motion for both types of dynamics.
These equations are temporal differential equations and thus constitute a dynamical system, with
an infinite number of degrees of freedom.
As the formation of structures is a general feature for dynamical systems, we then briefly present
the main notions associated with the description of this phenomenon. In particular, we review
notions such as Lyapunov exponents or strange attractors, structures presenting notably fractal
characteristics.
Due to the very large number of degrees of freedom involved in hydrodynamical phenomenons,
and since turbulent flows are intrinsically strongly fluctuating, we adopt a stochastic description
of the dynamics, meaning that we use stochastic terms in the equations of motion representing the
action of hidden degrees of freedom. As a consequence, we present the main mathematical tools
used, and in particular, we introduce the Brownian motion as the iconic random process.
The dynamics of a trajectory near the attractor of a stochastically driven dynamical system can
induce intermittency, a phenomenon which is largely described both in theory and in experiments.
It generally leads to power-law distributions for the density of presence near the attractors, a
signature of fractal structures.
One wishes to propose an effective description of the two physical situations, so we conclude by
the introduction of the stochastic models used in the text to describe the dynamics of tracers
and inertial particles, and present the outline of the text.

Notation

In the following, the vectors are written with an arrow, #”v , while the matrix are written in
bold:

A =
(
a b
c d

)
. (2.1)

The i-component of the vector #”v is [ #”v ]i = vi. The (i, j)-element of the matrix is [A]ij = Aij ,
while TA is the transpose of A. The identity matrix is noted Id.
We adopt the Einstein summation convention: when an index variable appears twice in a single
term (and is not otherwise defined), it implies summation of that term over all the values of the
index:

aijbi =
∑
i

aijbi. (2.2)

The time-derivative of a quantity a(t) is written indifferently with the Leibniz or the Newton
convention:

ȧ(t) = da(t)
dt . (2.3)

A constant scalar is noted cte, and a constant vector #  ”cte.

2.1 Dynamics of particles in random flows

We adopt in this text a Lagrangian point of view, as we consider particles advected by turbulent
flows. Contrary to the Eulerian one, the experimental Lagrangian tracking is more complex
to realize but has been expanding for the last fifteen years [Mor+01; TB09; PPR09; GRH07].
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We are specifically interested in two cases: passive tracers and inertial particles. The Eulerian
underlying flow will be denoted by #”u ( #”x (t), t) in the following.
We begin by the description of tracers in incompressible flows, and then the motion of inertial
particles.

2.1.1 Tracers and advected clusters in incompressible flows

Passive tracers are ideal fluid particles, as they are supposed to have no influence on the flow and
to stay on pathlines. The passive scalar problem (dispersion of a pollutant with density close to
that of the fluid, convection of temperature, etc.) is strongly related to the understanding of the
motion of the flow itself [SS00; Sre91; AV78], and consequentially to the dynamics of tracers. As
such tracers are simply advected by the flow, the equation of motion is

#̇”x (t) = #”u ( #”x , t). (2.4)

To begin, consider the advection of a single Lagrangian particle. In his pioneer work Taylor [Tay22]
predicts that a large times an advected tracer will undergo a diffusion motion, but that the
dynamics at small times is non-trivial, and in particular the acceleration evolution [MCB04].
In isotropic homogeneous turbulence, to study the growth of an initial structure of Lagrangian
particles, now consider two particles in the flow. On one hand, on time scales much larger than
the turnover time of the largest eddy their separation #”

R(t) = #”x1(t)− #”x2(t) experiences a diffusion
process. On the other hand if they are separated by a scale smaller than that of the largest eddy,
#”

R(t) is predicted to grow according to the Richardson law [TL72; MY71; Ric26]:〈
#”

R2(t)
〉
∝ ε t3 (2.5)

where ε is the rate of energy dissipation. Note however that this prediction is quite difficult to
observe in real turbulent flows, and the initial separation of the two particles can sometimes
plays a crucial role in the scaling laws of separation [XOB08].
Nevertheless, considering only the separation of two particles is not enough to fully characterize
the evolution of structures in the flow. We rather need to study the geometrical evolution of a
larger set of points [Oue12]. At least, the minimal Lagrangian structure can be defined as the
number of particles needed to span the space: four a in three-dimensional space (a tetrad), and
three a in two-dimensional space (a triangle). For a size structure larger than the integral scale,
the particles split uniformly in the flow. However, for scales smaller than the integral scale, an
advected scalar field tends to form fronts of high gradients [Mes82; HS94; CK98]. Such structures
can be understood as follows: due to the volume conservation, if a blob of fluid is stretched in a
given direction, it will necessary be flattened in the perpendicular directions, thus leading to
a high probability for multipoint clusters to become nearly coplanar. The formation of sharp
gradients increases the mixing properties of the turbulent flow, as it produces regions where
diffusion can occur rapidly.
In this text we mainly focus on the case of three particles in a bidimensional flow. The space were
the clustering process occurs is then the shape space of the triangle [Ken89], homeomorphic to
the 2-sphere, in which equilateral triangles are at the poles and flat triangles correspond to points
on the equator. During the dynamics a triangle will then be flattened and the representative
point of its shape will converge towards the equator.

2.1.2 Inertial particles

The tracers are an ideal limit case where the particles have exactly the same properties as whose
of the fluid. In many natural situations, however, the density of the fluid differs from that of
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(a) Sη = 0.05 (b) Sη = 0.1 (c) Sη = 0.2 (d) Sη = 0.5

(e) Sη = 1 (f) Sη = 2 (g) Sη = 5 (h) Sη = 10

Figure 2.1 – Numerically computed spatial distribution of particles inside a thin layer of width 5ηK for
eight different Stokes numbers. The side length of plots is approximately 1100ηK. The plots are taken
after the particle distributions become statistically stationary, for t ≈ 2.1T , T being the integral time.
On the first panel the particles are homogeneously distributed, but as inertia comes into play, strong
inhomogeneities appear. These snapshots are issued from [YG07].

the particle, whose size has also to be taken into account. As a consequence, these particles,
called inertial particles, do not exactly follow the carrying fluid. In the following we focus on
heavy particles. The understanding of this particular dynamics has many applications: growth
of raindrops in subtropical clouds [FFS02], formation of planetary objects in the beginning of
the solar system [Bra+99], dispersion of some atmospheric pollutants [Csa73], or transport and
coexistence of plankton in the oceans [Abr98; Kár+00].

The dynamics of inertial particles in turbulent flows exhibits a phenomenon known as preferential
concentration: the particle concentration field is generally strongly inhomogeneous, meaning
that particles cluster in some particular regions of the physical space. This effect was reported
both from experimental observations or direct simulations using various methods to obtain the
turbulent flow [CGT85; CC88; Tan+92; Wen+92; Kob+92; MBC10]. For a global review about
preferential concentration, see [MBC12].

Figure 2.1 shows different snapshots from numerical simulations presented in [YG07]. The
particles are in a homogeneous and isotropic turbulence and have increasing inertia, characterized
by the Stokes number:

Sη = τS
τη

(2.6)

where the Stokes time τS is defined infra (2.9) as the time response of the inertial particles, and
τη is the Kolmogorov time scale. Such a clustering is qualitatively captured by the behaviour
of the pair correlation function g(`) of particle distribution, defined as the total number of
pairs of particles whose distance is less that `, and which shows power-law dependence with `.
This is linked to the fractal structure of the agglomerated set of particles, as we will show in
section 2.2.2.

Due to the inertia and the finite size of the particle, the equation of motion is significantly more
complex than (2.4). If the particles have radius a smaller than the Kolmogorov scale of the
flow, and relative velocities with respect to fluid sufficiently small, one can approximate the flow
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around the particles by a Stokes flow, and one typically has [Gat83; MR83]

mp
#̈”x (t) = mf

D #”u ( #”x , t)
Dt − 6πηa

[
#̇”x − #”u ( #”x , t)

]
− mf

2

[
#̈”x (t)− d

dt
#”u ( #”x , t)

]
− 6πηa2

πν

∫ t

0

ds√
t− s

d
ds
[

#̇”x − #”u ( #”x , s)
] (2.7)

where D #”u
Dt is the derivative of the velocity of the fluid along a path of a fluid element, mp is

the mass of the inertial particle, mf the mass of the fluid displaced by the particle and η, ν are
respectively the dynamic and kinematic viscosities of the fluid. The terms acting on the right
hand side of (2.7) are in order of appearance the force exerted by the unperturbed flow, the
Stokes viscous drag, the inertia force of added mass and finally the Basset-Boussinesq history
force due to unsteady relative acceleration.
Note that another process can contribute to the formation of spatially inhomogeneities: structures
known as caustics may emerge in the physical space, resulting from projection of folded manifolds
onto a space of lower dimension [WM05; PW15]. As the inertial particles do not follow the flow,
two particles close in the physical space can have different velocities, leading to the apparition of
such structures, named in analogy with the caustics in optics. This phenomenon is distinct from
the preferential concentration one, because particles with large relative velocities do not tend to
form clusters but rather logically separate.
To determine the dynamics of an inertial particle of finite extent, one could try to solve exactly
the equation of motions (2.7), but in the general case such a task is nearly impossible, especially
because of the history force. However, for very small particles of density much higher than that
of the fluid, the Stokes drag is the dominant force, so that it is legitimate to only conserve the
third term on the RHS of (2.7), leading to the simplified motion:

#̈”x = − 1
τS

( #̇”x − #”u ( #”x , t)) (2.8)

where #”u ( #”x , t) is the velocity field and

τS = 2
9
a2

ν

ρparticle
ρfluid

(2.9)

is the particle relaxation time or Stokes time (ρA is the mass density of A). The dynamics can
be written as a 2d-dimensional dynamical system (where d is the dimension of the space):

#̇”x = #”v ,

#̇”v = 1
τS

[ #”u ( #”x , t)− #”v ] .
(2.10)

The phase space is the space ( #”x , #”v ), and the dynamics is dissipative. This can be shown by
computing the divergence of the dynamical system:

∂ #”x [ #̇”x ] + ∂ #”v [ #̇”v ] = − 1
τS
< 0. (2.11)

This contraction leads to the existence of complex attractors in the phase space.
One usually sees the preferential concentration of inertial particles as a process induced by the
centrifugal force, the particles being expelled from vortices. The argument was first presented by
Maxey [Max87] and can be summarized as follows. One look for the expression of the effective
advecting field #”v in (2.10), which transports the particles. The integration of the second line
of (2.10) gives

#”v (t) = 1
τS

∫ t

−∞
dt′ #”u ( #”x (t′), t′) exp

(
− t− t

′

τS

)
(2.12)

9
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so that at small Stokes time τS it reduces to(1)

#”v (t) = #”u ( #”x (t), t)− τS
D
Dt [

#”u ( #”x (t), t)] +O(τ2
S). (2.13)

Thus, the advecting velocity field #”v is in fact compressible, even if the underlying flow is not. If
we compute its divergence one has

#”∇ · #”v = 0− τS
∂ui
∂xj

∂uj
∂xi

= −τS trA2 (2.14)

where A is the velocity gradient tensor, defined as

Aij = ∂jui. (2.15)

By writing A = M + Ω where M is the strain rate symmetric tensor, and Ω is the vorticity
antisymmetric tensor, one obtains

#”∇ · #”v = −τS
[
trS2 − 1

2
#”ω · #”ω

]
(2.16)

where #”ω is the axial vorticity vector, which corresponds to the antisymmetric tensor: #”ω = #”∇× #”u .
Thus, the effective advecting flow is contracting in regions of high strain and expanding in regions
of high vorticity.
The phenomenon of preferential concentration is intrinsically linked to the Stokes drag force,
which is effectively prominent for heavy particles. In fact, the Stokes time alone is insufficient to
characterize this behaviour, as experiments showed that the dynamics of buoyant particles (that
is, particles of density comparable to that of the fluid) do not lead to preferential concentrations,
independently of the value of their Stokes time [Fia+12; Fia+13]. In this particular case, the
drag force is not the dominant term in the equations of motion.

2.2 Dynamical systems

Both equations (2.4) and (2.10) describe a dynamical system. However, we have not yet described
one term, the Eulerian velocity field, denoted here as #”u ( #”x , t). In general, but especially if the
flow is turbulent, the dynamics of the Eulerian flow, and consequentially the dynamical systems
presented supra, are extremely complicated, with a large number of degrees of freedom and no
time periodicity. Nevertheless some simple characteristics of the motion of tracers or inertial
particles can be understood in a general framework; for example, formation of patterns in the
physical space are a common feature for high-dimensional dynamical systems. We present here
some tools to describe the dynamics of both types of particles.

2.2.1 Lyapunov exponents

The behaviour of close trajectories, and thus the chaotic behaviour of a dynamical system, is
determined by the Lyapunov exponents of the dynamics.
Consider a generic dynamical system described by the differential equation

#̇”

X(t) = #”

F ( #”

X(t), t). (2.17)

As first approximation, the Lyapunov exponent characterizes the rate of separation of infinites-
imally close trajectories in the phase space. Typically, take two close trajectories #”

X1(t), #”

X2(t)
(1)The idea is to perform an integration over parts of the integral, and use the identity exp(−t/τ)/τ → δ(t)

when τ → 0.

10
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#”x1

#”x2

#”x0
−→ #”x1

#”x2

#”x0

Figure 2.2 – Deformation of a fluid particle in a bidimensional space at #”x0. The direction #”x1 (resp. #”x2)
is dilating (resp. contracting) with rate λ1 > 0 (resp. λ2 < 0). As λ1 + λ2 = 0, the volume is conserved.

in the phase space, and note δ #”

X(t) the separation between them: δ #”

X(t) = #”

X2(t)− #”

X1(t). The
(largest) Lyapunov exponent reads

λ = lim
t→∞

lim
|δ #”
X(0)|→0

1
t

ln |δ
#”

X(t)|
|δ #”

X(0)|
, (2.18)

meaning that approximatively the separation of trajectories acts like

δ
#”

X(t) = δ
#”

X(0) exp(λt). (2.19)

A positive Lyapunov exponent implies a separation of trajectories, and a negative one indicates
a clustering of paths.
There usually exists a spectrum of Lyapunov exponents rather than a single one, whose number
of elements is equal to the dimension of the phase space. More rigorously, if the trajectories are
sufficiently close, one can linearise the system (2.17) and obtain

d
dtδ

#”

X = M(t)δ #”

X(t). (2.20)

Define the Jacobian matrix J(t) as the Green function of this differential equation, one has

J(t) = T
[
exp

(∫ t

0
dt′M(t′)

)]
(2.21)

where T denotes the time-ordered product. Under certain assumptions [Ose68], the limit ma-
trix

lim
t→∞

(
J(t) TJ(t)

)1/(2t)
(2.22)

exists and its eigenspectrum is the Lyapunov exponents set.
The sum of the Lyapunov exponents is the rate of growth of an infinitesimal volume in the phase
space. In figure 2.2, we illustrate a conservative 2-dimensional dynamics with λ1 = −λ2 > 0. One
direction is dilating while the other is contracting. If all the Lyapunov exponents are negative,
we speak of a strongly aggregative dynamical system, where all the trajectories tend to a single
one.

2.2.2 Strange attractors and fractal structure

For deterministic dynamical systems of dimension higher than three, attractors with fractal
structures can occur. A fractal set is an irregular structure exhibiting a repeating pattern
that displays at every scale. This self-similar property is often caused by the application of
deterministic or stochastic homothetic rules. Due to their irregularity, fractals are usually nowhere
differentiable.
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Figure 2.3 – The Cantor set is obtained by deleting the open middle third from each of a set of line
segments repeatedly. The resulting set exhibits a fractal structure of dimension Dbox = ln3(2) < 1.

The term fractal was first used by Benoît Mandelbrot in 1975 [Man90]. If a large number of ideal
fractal sets are described in the mathematical literature, yet such structures can also emerge
from natural processes [Man83; Tan+09; LZY03].
There exists several definitions for the dimension of a fractal set, which do not always give
equivalent results. Mathematically, the most rigorous one is the Hausdorff DH, but it is also
technically one of the hardest to work with. Another more convenient definition is the Minkowski-
Bouligand our “box counting” dimension. Let N (ε) be the minimal number of hypercubes of side
length ε necessary to totally cover the set. If we consider a line of length L in a bidimensional
space, one needs N (ε) = L/ε squares to cover it, so N ∼ ε−1. For a surface one obtains N ∼ ε−2.
The box dimension is then defined as the exponent in the power-law dependence of N in ε, for
small values of ε. One has

Dbox = lim
ε→0

lnN (ε)
ln 1/ε . (2.23)

Fractal dimensions are non-integer. Consider the Cantor set defined as follows: one starts from
the segment [0, 1] which we divide in three equal segments. One deletes the middle segment and
performs the same process on the two remaining segments, and so on (see figure 2.3). The Cantor
set is then the limited result of this process. To compute its box counting dimension, one remarks
that at the step n, the set is covered by 2n segments of size 3−n, so that

Dbox = lim
n→∞

ln(2n)
ln(3n)

= ln 2
ln 3 . (2.24)

The dimension of this fractal set is then ln3(2) ≈ 0.63 < 1. Consequentially, the Cantor set is “a
little more” than a point or a finite union of points – which would have a zero dimension –, but
also “a little less” than a simple line of dimension one.
For an attractor of a dynamical system, the natural dimension to use is the correlation dimen-
sion D2 [GP83; GP84]. Consider a set { #”x i} of points on the attractor, which can be obtained for
example from a time series of a single trajectory: #”x i = #”x (ti = iτ) with τ a fixed time increment,
taken large enough to neglect the temporal correlations between the xi. A strange attractor
presents at least one positive Lyapunov exponent, so that each point will separate from the
others. The points are then dynamically decorrelated but spatially correlated, as they live on the
attractor (or very close to it). To measure this correlation, we introduce the correlation integral
C(∆x), defined as

C(∆x) = lim
N→∞

g(∆x)
N

(2.25)

where g(∆x) is the total number of pairs of points (i, j) whose distance | #”x i − #”xj | is less that ∆x.
The correlation dimension relies on the assumption that C(∆x) follows a power law for small
values of ∆x:

C(∆x) ∼ ∆xD2 (2.26)
or more rigorously

D2 = lim
∆x→0

lnC(∆x)
ln ∆x . (2.27)
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p p p̄

p̄ p p̄ p̄ p p

Figure 2.4 – Example of a realisation of a random Cantor set. Each cell gives birth to three daughter
cells, each having a probability p to “live” and p̄ = 1− p to “die”. In the next step the process is repeated
for the remaining living cells.

Contrary to the box-counting dimension, the correlation dimension is linked to the spatial
distribution of the attractor [ER85]. If the attractor is spatially inhomogeneous, one has D2 ≤
Dbox. Note that in general [Fal04]

D2 ≤ DH ≤ Dbox. (2.28)

2.2.3 Strongly contracting processes and negative fractal dimension

Fractal sets usually have positive dimension, meaning that the number of hypercubes necessary
to cover the set grows as the size of the cubes decreases, and for the correlation dimension that
the mass of trajectories in a ball of size ∆x decreases with ∆x. Nevertheless it is sometimes of
interest to consider processes which contract the dynamics up to a single point structure: inertial
particles collapsing on a single path, or triangles becoming infinitely flat. The dimension of the
attractor is then often set to zero. However, we briefly show here how to extend the notion of
fractal dimension to negative cases.

To understand the notion of negative fractal dimension, let us return to the Cantor set. Yet, we
suppose that the process is not deterministic but stochastic: a “mother” segment is divided in
three equal “sister” segments, each having a probability p to “live” and p̄ = 1− p to “die”. We
then repeat the same process to the surviving segments, and so on (see figure 2.4). The mean
number of living segments created from a single one is then

〈N〉 = 0 · p̄3 + 1 · 3 · p̄2p+ 2 · 3 · p̄p2 + 3 · p3

= 3p, (2.29)

so that at step n of the process, the average of the total number of segments of size 3−n is
〈N〉 = 〈N〉n = (3p)n. If the number of daughter cells decreases, i.e. if 3p < 1, the set tends in
average to a empty set. Generalise (2.23) by writing

Dbox = lim
n→∞

〈N〉
ln(3n)

= ln3(3p), (2.30)

one obtains a negative value for the fractal dimension in the case of a vanishing set (3p < 1).
Note that p = 2/3 gives the same dimension as the deterministic Cantor set, meaning that the
two ensembles have the same intrinsic structure, even if their generating processes differ. In fact,
the Cantor set is a typical realisation of the stochastic Cantor set with p = 2/3. As the number
of covering cells must be non-integer to obtain negative fractal dimensions, the randomness of
the process generating the fractal is essential [Man90].

The extension to dynamical attractors is straightforward. If the correlation dimension D2 is
negative, then from (2.26) it means that the number of trajectories inside a ball of radius ∆x
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centered around a single one increases then ∆x decreases. The link between the density of
probability for separation of trajectories and C(∆x) being

C(∆x) =
∫ ∆x

0
d(∆x′)P (∆x′) which gives P (∆x) = dC(∆x)

d(∆x) , (2.31)

one obtains
P (∆x) ∼ ∆xD2−1. (2.32)

The condition D2 < 0 implies a non-normalisable distribution. One then needs a regularisation
process, in order to avoid trajectories to collapse on the attractor. We will come back to this notion
thereafter, but before that we present the mathematical canvas for stochastic dynamics.

2.3 Stochastic processes

2.3.1 Random walk and Brownian particle

The emblematic example of a stochastic process is the random walk: a man(2) moves along a line
and can make steps to the left or to the right with same probability 1/2. We note τ the time
between each step, and a the size of a step. This motion is a representation of a diffusion process.
As the dynamics is random, we look for the probability P (ia, nτ) for the walker to be at position
ia at time nτ , with i ∈ Z and n ∈ N. A simple calculus leads to

P (ia, nτ) = 1
2n

(
n
n+i

2

)
. (2.33)

By symmetry, the mean of the position 〈x(t)〉 is equal to zero: the walk is unbiased. One can
also compute the variance of the position, and obtain

〈x2(t)〉 = a2

τ
t (2.34)

with t = nτ . The coefficient D = a2/(2τ), equal to half the mean square distance travelled per
unit time, is then a diffusion coefficient. In the limit of continuous time (τ → 0) and infinitesimal
small step size (a→ 0) with D fixed, one obtains formally a Wiener process [Gar+85]. Introduce
the probability density function P (x, t); the probability for the particle to be between x and
x + dx at time t is by definition P (x, t) dx. The probability density function is an evaluation
of the chance to find the particle in a given position and for a given time, and thus it is the
continuous analogous of P (ia, nτ). After taking the continuous process limit, one obtains

P (x, t) = 1√
4Dt

exp
(
x2

2D

)
. (2.35)

If we see P (x, t) as a concentration n(x, t) of particles undergoing a one dimensional diffusion
in a given medium with diffusion coefficient D, then we know that n(x, t) follows the diffusion
equation

∂n

∂t
= D

∂2n

∂x2 , (2.36)

and it is straightforward to see that P (x, t) as defined in (2.35) is solution of (2.36). Here appears
a link between stochastic processes and partial differential equations, which will be formally
presented thereafter with the introduction of the Fokker-Planck equation.

(2)Usually named Robert.
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In the continuous limit, the process x(t) formally follows the evolution equation

ẋ =
√

2D ξ(t), (2.37)

where ξ(t) is a Gaussian white noise process. Such a process is of fundamental interest in stochastic
dynamics, as it is the most used representation of a noise process. The statistics of a white noise
process are Gaussian and uncorrelated in time, that is

〈ξ(t)〉 = 0 , C(t1, t2) def.= 〈ξ(t1)ξ(t2)〉 = δ(t1 − t2) (2.38)

and all the other joint cumulants are zero:

0 = 〈ξ(t1)ξ(t2)ξ(t3)〉 ,
0 = 〈ξ(t1)ξ(t2)ξ(t3)ξ(t4)〉 − C(t1, t2)C(t3, t4)− C(t1, t3)C(t2, t4)− C(t1, t4)C(t2, t3) etc.

(2.39)
Here the mean 〈A〉 of an observable A is taken indifferently as a, average over an ensemble of
realisations of the noise, or as computed over a single trajectory after a sufficiently long time.
When the two results are the same the system is called ergodic, and we will suppose that it is
always the case.
The Gaussian white noise is formally the time derivative of a Brownian motion (see equa-
tion (2.37)). Its variance is infinite, which is a consequence of continuous time and infinitely
small jumps limit previously taken: the time derivative of the discrete process is

∆x
∆t = ±a

τ
(2.40)

which goes to infinity when a and τ goes to zero with a2/τ fixed. Although being widely used
especially in the physics community, the Gaussian white noise process is thus not rigorously
defined mathematically speaking, and one can prefer use its time integral dW (t), so that

dx(t) =
√

2D dW (t). (2.41)

Its statistics are naturally close to the ones defined in (2.39), with 〈dW 〉 = 0 and 〈dW 2〉 =
dt.
As we will see, if we use a white noise process in the description of the dynamics, then the
literature provides us convenient mathematical tools for pushing the analysis quite far.

2.3.2 The Langevin equation

The memoryless property of a Gaussian white noise process makes it a good candidate for
describing a noise process with a correlation time very short compared to the other characteristic
times involved in the dynamics. Consider a generic dynamical system with the addition of a
Gaussian white noise:

ẋ = a(x) +
√

2D ξ(t), (2.42)
in order to take into account hidden fast variables, where a(x) is a sufficiently smooth function.
The equation of motion contains a stochastic term, meaning that its solution is not a given
function, but rather an ensemble of solutions, each related to a single realisation of the stochastic
process. A differential equation involving as a random term a Gaussian white noise process is
called a Langevin equation.
If the diffusion coefficient depends of the position x, the equation (2.48) is not rigorously defined,
as the choice of the time at which the term

√
2D(x) ξ is evaluated is not specified. Two main

prescriptions are used in the literature: the Itō and the Stratonovitch convention. As we will
always deal with a linear noise, when the diffusion coefficients are constant, we will not follow
one prescription or the other.
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2.3.3 The Fokker-Planck equation

One needs to obtain a convenient description of the statistical properties of the process described
by (2.42). One can show [Van92; Gar+85] that the distribution P (x, t) follows a partial differential
equation called a Fokker-Planck equation:

∂P

∂t
= − ∂

∂x
[a(x)P (x, t)] +D

∂2

∂x2 [P (x, t)]. (2.43)

The term a(x) is the drift velocity, which is related to the infinitesimal increase δx during an
infinitesimal increase in time δt:

〈δx〉 = a(x) δt, (2.44)

and D is the diffusion coefficient. The diffusion equation (2.36) is then a particular Fokker-
Planck equation, although a very simple one, with no drift velocity and a constant diffusion
coefficient.
The generalization to larger dimensions is straightforward. Consider the n-dimensional Langevin
equation

d #”x

dt = #”a ( #”x ) + b · #”

ξ (t) (2.45)

where b is a n× n matrix independent of #”x , and #”

ξ (t) an n-dimensional Gaussian white noise
process with statistics

〈ξi(t1)ξj(t2)〉 = δijδ(t1 − t2). (2.46)

Then the joint density of probability P ( #”x , t) follows the multivariate Fokker-Planck equa-
tion:

∂P

∂t
= − ∂

∂xi
[aiP ] + σij

2
∂2P

∂xi∂xj
(2.47)

where σ = b Tb is the diffusion matrix.

2.3.4 Application: sedimentation of Brownian particles

Let a heavy particle of mass m in a thermal bath, whom the position is labelled by its altitude z.
One wants to properly describe its dynamics, but without computing the trajectories of all the
fluid molecules in the bath. To proceed, we suppose that the particle is subject to the gravitational
field, and we decompose the action of the fluid into two forces:
. a drag force opposed to the velocity particle Fdrag = −γż;
. a random force Frand with zero mean.
After writing the Newton’s second law applying on the particle, one obtains, the z axis being
directed upwards:

mz̈ = −mg − γż + Frand. (2.48)

The inertia of the particle relaxes with a characteristic time τ = m/γ. For typical Brownian
particles τ ∼ 10−8 s. For times intervals ∆t larger than τ , we can neglect the inertia term in (2.48)
and get

ż = v0 +
√

2D ξ(t) (2.49)

with v0 = −mg/γ the drift velocity, and
√

2Dξ(t) = Frand/γ the noise term. As the last one
represents the actions of fast degrees of freedom, one can suppose that it can be modelled by
a Gaussian white noise with diffusion coefficient D. Thus, the Fokker-Planck equation for the
density of probability P (z, t) reads

∂P

∂t
= −v0

∂P

∂z
+D

∂2P

∂z2 . (2.50)
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−γż #”e z + #”

F rand

∝ eαz

Figure 2.5 – Density of probability of a heavy particle in a thermal bath.

The stationary distribution reads

Pstat.(x) = A exp
(
v0
D
z

)
(2.51)

where A is a normalization constant. Note that in order to be normalized, the distribution cannot
be defined on R, and one must assume the existence of a reflective wall at some z = z0 (see
figure 2.5). This system is the simplest example of a sedimentation problem, where a particle is
advected by a drifted noise. If the statistics of the noise does not depend on the position (which
is the case here), then one expect that the stationary density of probability has the translational
invariant form

Pstat(x) = A exp(αx). (2.52)

For the Brownian particle in a bath we obtain α = v0/D. If we consider that the bath is a
thermal bath at temperature T , then the density of probability ρ(y) follows

ρ(y) ∼ exp
(
−mgy
kBT

)
. (2.53)

We have consequentially the Einstein relation [Ein05]:

D = µkBT (2.54)

where µ = −v0/mg is the mobility of the particle. In the case of a sphere of radius R for small
Reynolds number, Stokes law gives

µ−1 = γ = 6πηR, (2.55)

with η the dynamic viscosity of the fluid.

2.3.5 Generalizations of the Fokker-Planck equation

The Fokker-Planck equation deals with a first derivative in time t, and does not involve earlier
times t′ < t. It is linked to the fact that the Langevin equation describing the dynamics is
Markovian, that is, the process is memoryless: the dynamics at time t2 > t1 only depends on
the state of the system at times t1, and not on previous times t0 < t1. In the reminder of the
thermal bath case, the Markov property relies on the temporal decorrelation of the action of the
fluid molecules.
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When dealing with a Markov process, the general equation describing the temporal evolution
of the probability density function is the Master equation. The Master equation is formally
equivalent to the Chapman-Kolmogorov equation. It reads in one dimension

∂P (x, t)
∂t

=
∫ [

W (x|x′)P (x′, t)−W (x′|x)P (x, t)
]
dx′ (2.56)

where W (x2|x1) is the transition probability per unit time from x1 to x2, and might depend on
the time. The Master equation can be understood as a gain-loss equation for the probability to
be at position x.
In this form, the Master equation is not easy to deal with (for example the first moments of the
distribution are not accessible through this formulation), and tremendous efforts were made to
obtain developments in partial differential equations rather than in integro-differential equations.
The best known is the Kramers-Moyal development [Moy49]: by writing

W (x2|x1) = W (x1;x2 − x1) (2.57)
where r = x2 − x1 is the size of the jump, and after performing a Taylor expansion of W (x1; r)
in r, one formally obtains

∂P (x, t)
∂t

=
∞∑
n=1

(−1)n
n!

∂n

∂xn
[an(x)P (x, t)] (2.58)

where the an(x) are the jump moments defined as

an(x) =
∫ ∞
−∞

rnW (x; r) dr. (2.59)

If the dynamics follows a Langevin equation one can show that the development stops after
the two first terms, and one recovers the Fokker-Planck equation. However, the Kramers-Moyal
development is not an expansion in powers of some small parameters. Van Kampen [Kam61]
suggested a general development known as the system size expansion. If we note Ω the “size” of
the system (its volume, or the number of atoms), the natural small parameter to consider is Ω−1.
Two characteristic scales emerge: the first one is determined by the size of the jumps and is an
extensive scale, in the sense that it does depend of the global size of the system (for a system
with N atoms, the fluctuations are roughly speaking of order N1/2); the other one is the one on
which the macroscopic properties of the system vary, and is therefore intensive. Formally, we
write

W (x2|x1) = Φ
(
x1
Ω ; r

)
(2.60)

and perform the expansion in powers of Ω−1. In leading order, we recovers the Fokker-Planck
equation.
If the evolution of the system is not Markovian, one cannot write a Master equation, and we must
adopt a finer description. Considering for example a particle driven by an Ornstein-Uhlenbeck
process, that is a process v(t) following the Langevin equation

v̇ = −kv +
√

2Dξ(t). (2.61)
One speaks of a Rayleigh particle [Dri81]. The equation of motion being ẋ = v, in this case the
joint density of probability P (x, v, t) follows a Fokker-Planck equation:

∂P

∂t
= −v∂P

∂x
+ k

∂

∂v
[vP ] +D∂

2P

∂v2 (2.62)

but we cannot write something similar to (2.43) involving only the marginal distribution P (x, t).
Concerning the motion equation in the general form

ẋ = f(x) + g(x)y(t) (2.63)
where y(t) is a complex noise and f , g smooth functions, a large work has been made to
obtain different approximative expansions in the form of (2.43), using several techniques such as
cumulant expansions [SSS86; Van74; Fox78] or path integral formulations [Wio+89].
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2.4 Behaviour at the onset of stability: intermittency

Let us briefly return to the transition between a strange attractor and a point-like structure,
that is a stable point. For a strange attractor at least one of the Lyapunov exponent is positive,
while a stable point is characterized by a set of negative Lyapunov exponents. Nevertheless,
when the dynamical system is driven by a stochastic process, as presented in the previous
section, the Lyapunov exponents are then fluctuating quantities. Consider a one dimensional
dynamical system with a fixed point and its unique Lyapunov exponent λ(t). If the mean of λ(t)
is negative then the fixed point is stable in average, but positive fluctuations can lead to bursts
of trajectories.
We present here a class of dynamical systems driven by a stochastic process, the driving process
being either the result of a exterior sufficiently chaotic dynamical system or an ideal random
process characterized by its density of probability. We focus on the evolution of the driven system
near an attractor of the dynamics.
Generically, intermittency is a term given to the behaviour of a system which can stay in one
state for a long duration (a laminar state), and have unpredictably jumps which drive it far away
from this laminar state during short periods of times, before returning to a possibly different
laminar state. The notion of intermittency was historically derived for discrete time dynamics,
while the dynamical systems studied in this text all present continuous time. Though, it will not
change the main results.
Note that while the intermittency behaviour of velocity fields in turbulent flows remains a fruitful
topic of research – as it partly responsible in the breaking of scaling laws in the turbulent cascade
–, it will play no part in this text. Indeed, we only consider intermittent behaviour of dynamical
systems driven by turbulent flows, and not the possibly very complex structure of the flow
itself.

2.4.1 Pomeau-Manneville intermittency

One of the first examples of an intermittent scheme was proposed by I. Pomeau and P. Manneville
in [PM80]. Consider a deterministic system with one or many quasi fixed point, that is point
around which the system is able to stay a long duration (see figure 2.6). The goal was to
characterize the transition to turbulence as a cascade process, and more generally to give a
framework of the transition towards chaotic regimes.
However, other physical systems are not described by a deterministic dynamical system, but
rather present a dynamics driven by stochastic processes. Another type of intermittency was
then introduced.

2.4.2 “On-off” intermittency

The “on-off” intermittency occurs typically for a system close to a weakly unstable fixed point
and driven by a random process or a chaotic deterministic process. The main idea is that the
rate of variation on the fixed point is function of the driving system. It was first introduced
in [PST93; PHH94; HPH94], with the following generic example:

xn+1 = aξnxn(1− xn) (2.64)

so that rn = aξn is also a chaotic function of the time. The ξn are independent and uniformly
distributed on the interval [0, 1]. We assume that the process which causes the intermittency
is local, meaning that it is governed by the linear dynamics near the fixed point x = 0. The
non-linear part only occurs as a re-injection mechanism back toward small values of xn. It is
then essential to sustain the dynamics, but does not seed nor produce the intermittent dynamics.
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(a) Plot of g(x) with respect to x. One can observe
three quasi fixed points, and the zoom enhances
the dynamics near to the second one.
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(b) Plot of xn with respect to the discrete time n,
with x0 = 0.1. The system undergoes transients
between three laminar states.

Figure 2.6 – One typical example of a deterministic Pomeau-Manneville intermittency. The discrete-time
dynamics reads xn+1 = g(xn) where g is the third iterated of the logistic application f(x) = rx(1− x)
with r = 1 +

√
8.

In the vicinity of this fixed point, one obtains xn+1 = aξnxn, leading to xn = an (∏n
i=0 ξi)x0, so

that the dynamics is linked to the asymptotic behaviour of the random product

Pn = an
n∏
i=0

ξi. (2.65)

For large n one has lnPn ∼ n 〈ln ξ〉. As 〈ln x〉 =
∫ 1

0 dξ ln ξ = −1, one obtains

Pn ∼
(
a

e

)n
. (2.66)

The onset of the intermittency is then for ac = e. For a > ac, the trajectories are on average
exponentially unstable, but the dynamics still remains near the laminar state x = 0 for long
duration. The figure 2.7a shows a typical trajectory for a = 2.74 > e: the dynamics exhibits large
bursts between laminar states in the vicinity of x = 0. The numerical simulations use a different
map xn+1 = f(xn) than the one defined in (2.64) but with the same linear properties:

xn+1 =



aξnxn if |xn| ≤ 0.25,

aξn
1− xn

3 if xn > 0.25,

aξn
1 + xn

3 if xn < −0.25.

(2.67)

Such a mechanism is generic for a lot of physical systems, where a dynamical system near
a bifurcation is driven by another chaotic system. A mechanism of on-off intermittency has
been observed experimentally in various systems including electronic devices [Ham+94], gas
discharge plasmas [Fen+98], electrohydrodynamic convection in nematics [JSB99] or spin-wave
instabilities [RČB95]. Intermittency was also studied in the case of two coupled dynamical
systems [YF86; FY86; Fuj+86].
Another characterization of the on-off intermittency is the distribution of the time spent in the
laminar state. To proceed, it is easier to see the intermittency mechanism as a random walk.

2.4.3 Random walks formulation

For a typical dynamical system in the form

xn+1 = rnxn + non-linear terms (2.68)
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(a) Plot of xn with respect to the discrete time n,
with x0 = 0.1. The laminar state is at x = 0, and
the dynamics exhibits large bursts.
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P (T ) with respect to T , in logarithmic scale. The
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Figure 2.7 – Example of stochastic driven intermittency. The discrete-time dynamics reads xn+1 = f(xn)
with f defined in (2.67).

in the vicinity of the fixed point x = 0, the dynamics can be alternatively written as

yn+1 = yn + zn (2.69)

where yn = ln xn and zn = ln rn. The onset of the intermittency corresponds to the condition
〈zn〉 = 0, which gives for the system in (2.64) the same critical value ac = e. The intermittency
then can be seen as a non-biased random walk. Such a description allows us to compute the
asymptotic law for the waiting times for a > ac, that is the density of probability P (T ) to stay
during T below a given threshold. One obtains generically (see figure 2.7b)

P (T ) ∼ T−3/2. (2.70)

Note that while this law is general for on-off intermittency, it does not completely characterize
it, as the Pomeau-Manneville intermittency also exhibits a −3/2 power law. One of the main
difference, besides the fact that on-off intermittency is fundamentally a dynamic process while
Pomeau-Manneville one is static, relies on the typical trajectories: in the Pomeau-Manneville
scheme the intermittent signals exhibit bursts about either sides of the fixed point, which is not
the case in on-off intermittency.

Below the onset of intermittency (for a < ac), all the trajectories will go to x = 0 on average. In
order to produce intermittency behaviour, one then needs a re-injection process that prevents the
trajectories to collapse. Such a role can be played by an additive noise in the equations of motion.
The effect of additive noise to produce intermittency behaviour even if the system collapses on
average on the attractor was first studied in [PHH94].

2.5 Phenomenological stochastic models of particles dispersion

Both types of particles (tracers and inertial particles) can under certain conditions form complex
dynamical structures in the phase space. We do not simulate the flow by a numerical resolution
of Navier-Stokes equations. Instead, we use phenomenological models with a limited number of
parameters to recreate the main properties of the dynamics, using stochastic terms and the tools
introduced previously.
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t→ t+ δt

Figure 2.8 – Representation of the action of the matrix A defined for the model (2.71), in the case of
three particles in a bidimensional flow. Two effects occur simultaneously: the triangle is globally rotated
(red arrows) by the anti-symmetric part of A, and in a given orthogonal basis one direction is stretched
while the other perpendicular direction is contracted (green arrows) due to the symmetric part of A. This
last action tends to flatten the triangle.

2.5.1 Advected triangles

Direct numerical simulations of incompressible flows [PSC00] showed the possible existence of
a self-similar regime for scales between the integral and the Kolmogorov ones. In consequence,
we will mostly use a phenomenological model based on a scale decomposition method, first
introduced in [SS95]. The turbulent velocity field is arbitrary divided in three contributions:
velocities with small scales numbers, large waves numbers, and waves numbers comparable with
the size of the cluster of points. The effect of large waves number velocities is just a global
advection and does not affect the multipoint structure, whereas the contribution of small scales
can be supposed independent for each point of the cluster. The remaining effect of the like-scale
part of the velocity is coherent over the scale of the cluster and tends to flatten the set of points,
consistently with the volume preservation. The typical model for the dynamics of N tracers is
then

d #”x i(t)
dt = A #”x i +R

#”

ξ i (2.71)

where R is the radius of gyration of the cluster,

R2 = 1
2N

∑
i,j

( #”x i − #”xj)2 , (2.72)

which is a definition of its size, #”

ξ i are random, independent increments corresponding to the
action of small-scale eddies acting independently on each point of the cluster, and A is the
velocity gradient tensor (2.15), which is the resultant of the action of eddies of scale comparable
to that of the cluster. As the flow is incompressible, this matrix is traceless. In homogeneous
and isotropic turbulence, the global rotation of a set of points, just as its position in the space,
is immaterial, so that one usually only consider the symmetric part of A, noted M. Thus, we
suppose that M is a random, traceless and symmetric matrix.

During the dynamics each pair of points separates according to Richardson’s law (2.5), so that
the size of the cluster grows as the global structure ascends the spatial scales of the flow.

The phenomenological model for the random strain matrix M and the random increments #”

ξ i
is described in [CP01; PW13]. The first possibility is to take Gaussian white noise increments,
which reads explicitly

M =
(
a(t) b(t)
b(t) −a(t)

)
and #”

ξ i =
(
η

(1)
i (t)
η

(2)
i (t)

)
(2.73)
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where a(t), b(t) and η(j)
i are Gaussian white noises with statistics

〈a(t)〉 = 〈b(t)〉 = 〈η(j)
i 〉 = 0, (2.74)

〈a(t)a(t′)〉 = 〈b(t)b(t′)〉 = 2Dsδ(t− t′), (2.75)

〈η(i)
k (t)η(j)

` (t)〉 = 2Dbδijδk`δ(t− t′), (2.76)

〈a(t)b(t′)〉 = 〈a(t)η(j)
i (t′)〉 = 〈b(t)η(j)

i (t′)〉 = 0. (2.77)

This model implicitly assumes that the eddies are uncorrelated in time. To take into account
temporal correlations, we will introduce a modification of this model.
In the absence of the small scale eddies the triangles tend to be flattened (see figure 2.8), and the
attractor is then the equator of the 2-sphere. Introduce z = cos θ where θ is the latitude on the
sphere, this parameter measures the flattening of the set, z being equal to zero for a flat triangle.
The main goal is to obtain an evolution equation for y = ln z in the form

ẏ = F (t) (2.78)

where the random process F (t) depends only of the strain matrix M and has a negative mean,
so that in the absence of the diffusion #”

ξ i all the trajectories will collapse on the equator on
average.

2.5.2 Inertial particles

For simplicity reasons, we restrain ourselves to the one-dimensional case d = 1, so that only one
Lyapunov exponent needs to be computed:

ẋ = v ,

v̇ = − 1
τS

[v − u(x, t)].
(2.79)

As we are interested in the dynamics of the particles rather than in the evolution of the underlying
fluid, we usually model the latter by a stochastic process whose statistics have a translational
invariance both in time and space:

〈u(x, t)〉 = 0 and 〈u(x, t)u(x′, t′)〉 = c(x− x′, t− t′) , (2.80)

and we choose specifically the following form for c(x−x′, t−t′), correlated in space but uncorrelated
in time:

c(x− x′, t− t′) = A2 exp
(
−(x− x′)2

`2c

)
δ(t− t′) (2.81)

where `c is the correlation length of the fluid and A a constant. The dynamics of the inertial
particles then becomes also a stochastic process. One can observe a path coalescence transi-
tion [WM03]: either the trajectories all collapse into a single one, resulting in the formation of a
point-like dynamical structure, or either close trajectories exponentially separate on average and
the resulting pattern seems to fill the whole space. The equation of motion for the separation δx
of two close trajectories is

δẋ = Z(t)δx where Z(t) = ∂v

∂x
(x, t). (2.82)

The term Z(t) is a local Lyapunov exponent. When its mean becomes negative, all the particles
then cluster upon a single trajectory, and the attractor in physical space is a point-like structure.
By writing y = ln δx, which is a classical mapping used in dynamical systems , one obtains

ẏ = Z(t) (2.83)
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which is the motion equation of a random walk. Nevertheless, introducing an additive noise in
the dynamical equations, representing the diffusion of the particles,

ẋ = v(x, t) +
√

2D ξ(t), (2.84)

as a consequence of a diffusion process due to local inhomogeneity of the flow at the scale of
the particle, it gives the opportunity for the system to experiment large deviations from the
collapsing trajectory [Wil+15], and thus to generate intermittency bursts.

2.6 Summary and outline of the manuscript

2.6.1 Differences and similarities between the two physical situations

We are interested in two very different physical situations: evolution of tracers structures (in two
dimensions), and dynamics of inertial particles (in one dimension), both in turbulent flows. For
the first one, action of like-scale eddies tends to flatten a triangle and results to a contraction of
trajectories towards the equator of the shape sphere, only counterbalanced by a homogeneous
diffusion in the physical space induced by small scales eddies. As for the inertial particles, the
Stokes drag lead to a path coalescence of trajectories, which is that time counteracted by the
diffusion of particles.
For both situations though, the description of the dynamics for two close trajectories in the
inertial particles case – equation (2.83) –, or near the equator in the tracers case – equation (2.78),
which characterizes the properties of the attractor, can be described by the same class of equa-
tions. A random walk formulation arises, derived originally for the intermittency process (2.69).
Intermittency bursts can occur, even if the dynamics is totally contracting in the phase space,
providing the presence of an additional noise for the equations of motion in the physical space.
Large deviations generally lead to power-law distributions for the separation of trajectories, which
is a signature of the fractal structures of the attractors.
The general equation

ẏ = ζ(t), (2.85)

where ζ(t) is a fluctuating quantity independent of y and with a non-zero mean, describes
a sedimentation process. The power-law form for P (∆x), the probability density function of
the separation of trajectories, can be understood as follows. As the dynamics for y = ln ∆x is
described by a sedimentation equation, by analogy with the sedimentation process for Brownian
particles studied in section 2.3.4 one can expect a exponential distribution for the distribution of
y: p(y) ∼ eαy. As

p(y)dy = P (∆x)d(∆x) (2.86)

one obtains
P (∆x) ∼ ∆xα−1. (2.87)

This mechanism breeds the fluctuation around the attractor, which can then be amplified by the
unperturbed stochastic process, leading to power-law distributions. The coefficient α introduced
in (2.87) is then equal to the correlation dimension D2.

2.6.2 Organization of the text

The chapter 3 is devoted to the motion of three particles in a bidimensional turbulent flow. We
present the shape space of a triangle as a 2-sphere, the Kendall sphere. The resolution of a totally
uncorrelated eddies model [PW13] is briefly presented while we are mostly interested in the
influence of the correlation time of the like-scale eddies on the dynamics. A Langevin equation
for the evolution on sphere is obtained.
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Chapter 3: Advected triangles

{
ẋ = v + ξ(t)
v̇ = −τ−1[ẋ− u(x, t)]
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Chapter 4: Inertial particles
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y = ln z

y = ln δx

Figure 2.9 – Schematic view of the organization of the text.

In chapter 4 we study the phenomenological model (2.79) used to describe the motion of inertial
particles in a turbulent flow. The complete resolution of the linearises motion for close trajectories
is presented, and we show numerical evidence of a negative correlation dimension D2. We compute
numerically the evolution of D2 as a function of the model parameters, and compare it with
perturbative approaches.
Finally in chapter 5 we treat the general problem of the sedimentation process from a random
walk. In particular, we obtain an implicit expression for the sedimentation coefficient α, using a
large deviation approach. We establish a relation with the dynamics near the attractor obtained
in the two previous chapters, and we finally present some perturbation tools in the case of a
sedimentation process driven by weakly non-linear Langevin equations.
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We consider the evolution of three fluid particles advected by a bidimensional turbulent flow. We
denote the positions of the particles during the temporal evolution by #”x i(t) with i ∈ {1; 2; 3}.
The equations of the dynamics are simply

d #”x i
dt = #”u ( #”x i(t), t) (3.1)

where #”u ( #”x i(t), t) is the Eulerian velocity field of the fluid.
We are interested in the dynamics of a triangle because it is the minimal cluster of points needed
to span the space in two dimensions, and so it represents the simplest set to study in order to
see geometrical effects, such as a change of topology or the clustering of points into a line. In
homogeneous and isotropic turbulence, the absolute location of a structure is immaterial to the
properties of the flow, just as its global orientation. Moreover, while the particles tend to separate
during the dynamics, we assume the existence of a self-similar regime in which the dynamics does
not depend on the global size of the triangles. It is then natural to introduce a phenomenological
size-independent model for the dynamics of advected triangles in a turbulent flow.
In this chapter we first present the natural space to describe the shape of a triangle, which
happens to be a sphere. Then, we determine the dynamics on this sphere for the phenomenological
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model with white noise increments. Finally, we analyse the influence of time-correlated eddies on
the changes in topological configuration of a triangle, and on the stationary distribution of the
representative points in the shape space.

3.1 Shape of a triangle: the Kendall sphere

The general description of the shape of n points lying in a d-dimensional space is due to the
mathematician D. G. Kendall [Ken89]. Initially, the goal was to determine if a set of 52 standing
stones near Land’s End, Cornwall, presented alignments which were “too nearly” collinear,
thus indicating a deliberate planning. Kendall then wanted to obtain a quantitative process to
measure the randomness of shapes distributions, and consequentially built his statistical theory
of shape.
We will not present extensively the mathematical developments in this very large topic, and will
rather concentrate on the simple case of three points in two dimensions. One already can have
the intuition of the number of parameters needed to describe the shape of a triangle: because
the shape of a triangle depends only on its angles, we need two parameters, namely two of the
angles, as the sum of the three angles is equal to π rad. Nevertheless such a parametrisation is
not very useful, and this is why Kendall introduced another one, which can be easily generalized
to a larger set of points and higher dimensions. In this section we will first derive the natural
parametrisation of the shape of a triangle, and show that the shape space is in this case the
surface of a sphere. We want to describe the shape dynamics of a triangle advected by a random
flow, so that the representative point will undergo a random motion on the sphere. As a typical
example we will then recall in an elementary way the Brownian motion on a sphere of given
radius R.

3.1.1 Shape space

To begin, we consider three point-like particles labelled by three vectors #”x1, #”x2 and #”x3. We
always suppose that the three particles do not completely coincide. All the informations are
contained in a 2× 3 matrix

X =
(

#”x1
#”x2

#”x3
)
. (3.2)

which corresponds to six parameters. As the position of the centre of mass of the triplet, its
size, and its global orientation in space do not affect its shape, we are left with two parameters,
obtained after successive transformations of the matrix X.
First, we perform the orthogonal transformation(1)

#”u0 = 1√
3

( #”x1 + #”x2 + #”x3),

#”u1 = 1√
2

(− #”x1 + #”x2),

#”u2 = 1√
6

(− #”x1 − #”x2 + 2 #”x3).

(3.3)

The vector #”u0, up to a constant, parametrizes the centre of the set of points, and thus is of no
interest to the shape. We are then left with a 2× 2 matrix:

u =
(

#”u1
#”u2
)

=
(
u1,1 u2,1
u1,2 u2,2

)
. (3.4)

(1)The transformation is orthogonal because we multiply on the right the matrix X by an orthogonal matrix.
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(a) Definition of #”u0, #”u1 and #”u2 after the or-
thogonal transformation (3.3). The vectors #”u1
and #”u2 lie in the pre-shape space.
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(b) Effect of the angle χ, going from 3π/2 to
13π/6, resulting in a global rotation around the
centre of mass.
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(c) Effect of the angle φ, going from 0 to π/2
at fixed z ≈ 0.38. In gray, the ellipse in which
the triangle is inscribed.
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(d) Effect of the parameter z, going from 1
(equilateral triangle) to 0 (flat triangle) at fixed
φ = π/4.

Figure 3.1 – Definitions and effects of the parameters #”ui, χ, φ and z. Initial triangles are black, and the
ones obtained after transformation are green.

The matrix u lives in the “pre shape” space of the triangle (see figure 3.1a). Then, we perform
a singular value decomposition [WRR03] of the matrix u, in the form of a product of three
matrices:

u = R(χ) · diag(λ1, λ2) ·R(φ/2) (3.5)
where diag(λ1, λ2) a diagonal matrix, and

R(ϑ) =
(

cosϑ − sinϑ
sinϑ cosϑ

)
(3.6)

is a rotation matrix, of angle ϑ. By convention λ1 ≤ |λ2|. As the matrix R(χ) acts on the right,
the angle χ ∈ [0, 2π] describes the global rotation of the triangle (see figure 3.1b). We then need
an estimator of the size of the triangles. One can choose its area A, but such a definition is
spurious because a triangle can become flat without really reducing its size. One introduces the
radius of gyration R of the triangle, defined as

R2 = 1
6

3∑
i=1

3∑
j=1
| #”x i − #”xj |2. (3.7)

The parameters λ1 and λ2 are linked to the area and the radius of gyration via

R2 = #”u 2
1 + #”u 2

2 = tr(u · Tu) = λ2
1 + λ2

2 and A =
√

3
2 det(u) =

√
3

2 λ1λ2. (3.8)

We note ζ = λ1λ2. The last parameter we define must be independent of the size of the triangle;
it is then natural to introduce

z = 2λ1λ2
λ2

1 + λ2
2

(3.9)
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θ

Figure 3.2 – The Kendall sphere. In red, the evolution described in figure 3.1c, with fixed z and φ going
from 0 to π. In green dotted line, the evolution described in figure 3.1d, with fixed φ = π/4 and z going
from 1 to 0.

which represents the area of triangle compared to its size squared. One has z ∈ [−1, 1] and
φ ∈ [0, 2π], so that the representative point of the shape of the triangle lives on the surface of a
sphere, and is labelled by its azimuthal angle φ and its polar angle θ, related to z by z = cos θ.
The equilateral triangles are represented by the poles of the sphere, while the flat triangles of
area equal to zero are located on the equator at z = 0 (see figure 3.1d). The two hemispheres
represent the two possible topologies for a triangle: in the south (negative algebraic area) the
vertices {1, 2, 3} are labelled clockwise, while in the north (positive algebraic area) they are
labelled counter-clockwise.
The signification of the angle φ is a little more difficult to see geometrically. For a given set of
parameters λ1, λ2 and χ, the vertices of the triangle run through the same ellipse (see figure 3.1c).
The transformation φ/2 → φ/2 + 2π/3 (respectively φ/2 → φ/2 + 4π/3) amounts to a cyclic
permutation of the vertices #”x i: (1, 2, 3)→ (2, 3, 1) (resp. (1, 2, 3)→ (3, 1, 2)). Typically, when a
triangle is almost flat, the value of φ is related to the point where the angle is maximal, which is
then the one about to cross the line formed by the two others. On the equator at φ = 0 (resp.
φ = 2π/3, resp. φ = 4π/3), #”x1 and #”x2 coincide (resp. #”x2 and #”x3, resp. #”x3 and #”x1).
The shape space is represented figure 3.2, and the effects of the transformations previously
mentioned are shown in the form of paths on the Kendall sphere.

3.1.2 Diffusion on the surface of a sphere

Due to the action of the turbulent flow on the triangle, the motion of its shape representative
point can be expected to be a random motion on the Kendall sphere. As the simplest random
process for this geometry is the homogeneous Brownian motion, we will use it as a reference case.
Consider a diffusion process on a sphere of radius R. In general the diffusion process may be
inhomogeneous, and it may have anisotropic diffusion coefficients or drift terms.
The first way to characterize the spherical Brownian diffusion is to compute the drift velocities
and the diffusion coefficients linked to the temporal evolution of z and φ. During a time δt the
stochastic increments reads

〈δz〉 = vz(z, φ)δt, 〈δz2〉 = 2Dz(z, φ)δt, 〈δφ〉 = vφ(z, φ)δt and 〈δφ2〉 = 2Dφ(z, φ)δt.
(3.10)
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Figure 3.3 – Definition of the spherical coordinates. One has #”r = R #”e r = x #”e x + y #”e y + z #”e z.

Consider a system of standard Cartesian coordinates in the three dimensional space: (x, y, z) =
(R sin θ cosφ,R sin θ sinφ,R cos θ). Due to the invariance with respect to the azimuthal angle φ,
we can consider a point where y = 0 without loss of generality. Define an orthonormal basis
( #”e r,

#”e θ,
#”e φ) at the point (sin θ, 0, cos θ):

#”e r = (x, 0, z)/R,
#”e θ = (−z, 0, x)/R,
#”e φ = (0, 1, 0).

(3.11)

The diffusion of a point #”r = R #”e r on the surface reads

δ #”r = δX #”e θ + δY #”e φ + δZ #”e r. (3.12)

The angular increments δX and δY are non-biased Brownian motion with statistics

〈δX〉 = 〈δY 〉 = 0, 〈δXδY 〉 = 0 and 〈δX2〉 = 〈δY 2〉 = 2Dδt, (3.13)

and the increment δZ is determined from the constraint to stay on the sphere, implying | #”r +δ #”r | =
R, so that

δZ = − 1
2R (δX2 + δY 2). (3.14)

Using the expressions of δφ and δz in terms of δX, δY and δZ:
δφ = 1√

R2 − z2 δY,

δz = −
√

1−
(
z

R

)2
δX − 1

2
z

R2 (δX2 + δY 2),
(3.15)

one obtains 

vz = −2zD
R2 ,

Dz = D

(
1− z2

R2

)
,

vφ = 0,

Dφ = D

R2 − z2 .

(3.16)

At this point a few remarks must be made. First, the motion is unbiased in φ, and the expression
of Dφ is logically divergent at the poles. Secondly, due to the non-zero drift velocity vz, the
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geometry of the sphere acts as a restoring force directed towards the equator. In fact, near the
equator the Langevin equation for z(t) reduces to the Ornstein-Uhlenbeck process

ż = −kz +
√

2Dηz(t) (3.17)

with ηz a standard white noise process and k = 2D/R2.
Another more formal way to characterize a Brownian motion on a sphere is to consider the
Laplace-Beltrami operator associated with the spherical geometry. The Fokker-Planck equation
for the density of probability P (θ, φ, t) is

∂P

∂t
= DL̂θ,φP (θ, φ, t) (3.18)

where D is the diffusion coefficient, and L̂θ,φ is the Laplace-Beltrami operator:

L̂θ,φ = 1√
det g

∂

∂xi

(√
det g gij ∂

∂xj

)
with x1 = θ and x2 = φ. (3.19)

Here
g = R2

(
1 0
0 sin2 θ

)
(3.20)

is the metric of the sphere of radius R, and gij must be understood as the matrix element of the
inverse of g: gij = [g−1]ij . Explicitly, one obtains

L̂θ,φP = 1
R2 sin θ

∂

∂θ

(
sin θ∂P

∂θ

)
+ 1
R2 sin2 θ

∂2P

∂φ2

= ∂

∂z

[ 2z
R2P

]
+ ∂2

∂z2

[(
1− z2

R2

)
P

]
+ 1

(R2 − z2)
∂2P

∂φ2 (3.21)

as z = R cos θ, so that one recovers the expressions of the drift velocities and diffusion coefficients
obtained in (3.16).
Starting with a set of points arbitrarily positioned on the sphere, one expects that after a suitable
amount of time the repartition will be uniform. Solving the Fokker-Planck equation (3.18) in the
stationary case ∂tP = 0 for P (z, θ) = P (z) (as the diffusion is invariant in φ), one obtains the
only normalizable solution

P (z) = 1
4πR2 , (3.22)

so that dP = RdzdφP (z) = dzdφ/(4πR) = cte. and∫ R

−R
dz
∫ 2π

0
dφP (z) = 1. (3.23)

3.2 Advection by a turbulent flow

The phenomenological model presented here was first introduced in [SS95] as a simple description
of the actions of the flow. The idea is to decompose arbitrarily the velocity field in three
contributions acting on different scales. Velocities with large wave number – or conveniently
speaking the large scales eddies – produce only a global advection of the triangle without changing
its shape, and are therefore not taken into account by the model. We model the effect of the
like-scale eddies as a strain matrix acting globally on the triangle, while the small-scale eddies
are supposed to act independently on the three vertices.
We begin by introducing a simple stochastic model were all the eddies are temporally uncorrelated,
and present the explicit computation obtained in [PW13] of the Langevin equation on the Kendall
sphere.
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3.2.1 Phenomenological model with white noise increments

The equation of dynamics for one vertex #”x i of the triangle is

d #”x i
dt = M #”x i +R

#”

ξ i(t) (3.24)

where R is the radius of gyration of the triangle. The matrix M is a traceless, symmetric matrix
in the form

M(t) =
(
a(t) b(t)
b(t) −a(t)

)
. (3.25)

The matrix elements a(t) and b(t) are independent Gaussian white noise processes, with statis-
tics

〈a(t)〉 = 〈b(t)〉 = 0 , 〈a2(t)〉 = 〈b2(t)〉 = 2Ds and 〈a(t)b(t)〉 = 0, (3.26)

and the random vectors #”

ξ i(t) are also Gaussian white noise processes, independent of a(t) and
b(t), with statistics

〈ξ(k)
i 〉 = 0 and 〈ξ(k)

i ξ
(`)
j 〉 = 2Ddδijδk`δ(t) (3.27)

where ξ(k)
i is the k-component (k ∈ {1, 2}) of #”

ξ i.
The evolution equation (3.24) does not depend on the size of the triangle R, because it keeps the
same form after dividing by the factor R. Thus, we are describing a self-similar regime which is
independent of the size of the triangle.
The action of the matrix M consists in setting two orthogonal directions, one being contracting
and the other dilating. It can be understood as follows: for a short duration of time, the increment
of #”x i reads

#”x i(t+ δt) = #”x i(t) + δ #”x i(t)

=
[
Id +

(
δa(t) δb(t)
δb(t) −δa(t)

)]
#”x i

= B(t) #”x i. (3.28)

The matrix B is symmetric, so it can be diagonalised in an orthogonal basis [Lan02]. In this
basis, the matrix is symmetric and has as eigenvalues λ1 = 1 +

√
δa2 + δb2 (dilatation) and

λ2 = 1−
√
δa2 + δb2 (contraction).

The term R #”x i acts as an homogeneous diffusion of the three vertices of the triangle in the
physical space. As a consequence, we will refer to it later as the diffusion term, even if the strain
matrix M also derives from a diffusion process.

3.2.2 Explicit resolution

In the case of the white noise model, the explicit Langevin equations describing the motion on
the sphere were obtained in [PW13]. Being markovian in the physical space, the process is shown
to be also markovian in the shape space. The strain term and the diffusion process feature two
different motions. As for the spherical Brownian motion, it is sufficient to compute the drift
velocities vz and vφ, and the diffusion coefficients Dz and Dφ as functions of z and φ.
For both the strain term and the diffusion process, the drift velocity for φ, vφ, is found to be
equal to zero. Explicitly, one obtains [PW13]

vstrainz = −8Dsz
3 , Dstrain

z = 4z2(1− z2)Ds and Dstrain
φ = 4z2

(1− z2)Ds (3.29)
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Figure 3.4 – Stationary density of probability P (z), in logarithmic coordinates and for z > 0, obtained
from numerical simulation of the white noise model (3.24). In green ε = 10−2, in red ε = 10−3. The
analytic predictions for both values of ε are shown in dashed lines, and fit well with the data.

for the the action of the shear matrix, and

vdiff.z = −8Ddz , D
diff.
z = 4(1− z2)Dd and Ddiff.

φ = 4
(1− z2)Dd (3.30)

for the diffusion process. Note that the expressions of the drift velocity and the diffusion coefficient
obtained from the action only the shear matrix only differ to the corresponding coefficients
derived from the action of the shear matrix by a factor z2 , and that the drift velocities and
diffusion coefficients obtained for the diffusion term are the same as the ones computed for the
Brownian motion on a sphere (3.16), up to a factor 4. Thus, a homogeneous diffusion in the
physical space leads to a homogeneous diffusion on the Kendall sphere. This result was not
presented in the original work of Kendall [Ken77], but derived in later works using computer
algebra packages [Ken+98] or through a quite abstract machinery [Ken84]. The factor 4 between
the two set of coefficients comes from the actual radius of the Kendall sphere, which is formally
set to 1/2 instead of 1.
To describe the joint effect of the strain and the diffusion, one simply adds the drift velocities and
the diffusion coefficients, leading to the mix coefficients vz = vstrainz +vdiff.z ,Dz = Dstrain

z +Ddiff.
z and

Dφ = Dstrain
φ +Ddiff.

φ . Consequentially, the Fokker-Planck equation for the density of probability
P (z, φ, t) is

∂P

∂t
= − ∂

∂z
[vzP ] + ∂2

∂z2 [DzP ] + ∂2

∂φ2 [DφP ]. (3.31)

This equation has a steady-state solution which does not depend on φ. The stationary marginal
distribution for z, P (z) =

∫
dφP (z, φ)/(2π), satisfies

2z(ε+ z2)P + ∂

∂z
[(ε+ z2)(1− z2)P ] = cte (3.32)

where the constant must be taken equal to zero in order to find a normalizable solution. The
parameter ε is defined as the ratio of diffusion coefficients:

ε = Dd
Ds

. (3.33)

Thus, this parameter quantifies the relative importance of the two terms acting on the triangle,
and the stationary distribution only depends on its value. From (3.32), one obtains

P (z) =
√
ε

2 arctan(1/
√
ε)

1
ε+ z2 , (3.34)
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where the multiplier normalize P (z) on the interval [−1, 1]. The parameter ε defines two regions
of different dynamics. For z � √ε the diffusion term dominates and the distribution tends to
be flat, as the representative point is diffused homogeneously on the sphere. On the contrary
for z � √ε the shear term is prominent, resulting in a global drift towards the equator and
a power-law distribution for the density of probability in the form P (z) ∝ z−2. In the limit
ε→ 0 the density of probability (3.34) tends to a Dirac distribution, as all the trajectories will
converge to the equator. The diffusion process resulting from the small-scale eddies prevents this
collapsing.

The prediction (3.34) was checked numerically (see figure 3.4). We start from a set of equilateral
triangles, so at one of the poles of the Kendall sphere. As the evolution is independent of the size
R of the triangle, at each step we project the matrix u on the surface of the 3-sphere of radius
R = 1. Moreover, in order to obtain a strict conservation of the area under the action of the
strain matrix M, the approximate evolution equation #”x i(t+ δt) = (Id + δM) #”x i(t) is replaced
by

#”x i(t+ δt) = exp(δM) #”x i(t). (3.35)

As det(exp(δM)) = exp(tr(δM)) = 1, the area is conserved by the strain term.

The model studied in this section only involves uncorrelated eddies, because the increments of the
strain matrix M and the diffusion process R #”

ξ i(t) are all Gaussian white noise processes, with a
correlation time formally equal to zero. It is natural to wonder how the dynamics is affected if we
introduce finite correlation times, related to the turnover times for the corresponding eddies. In
particular, one can expect the correlation time τ(R) for an eddy of size R in the inertial regime
to be determined by the Kolmogorov scaling:

τ(R) = ε−1/3R2/3, (3.36)

where ε is the rate of energy dissipation. As the descriptions in the following sections are made
for a scale invariant model, we implicitly assume that during the typical time to reach stationary
dynamics for the model, the size of the triangle does not appreciably change due to the Richardson
diffusion.

First we examine the effect of correlated small-scale eddies on the rate of topological changes,
then we consider the influence of a finite correlation time for the strain matrix on the stationary
distribution on the surface of the sphere.

3.3 Statistics of crossing

It is of interest to consider the topological changes induced by the flow, as it is related to the
mixing properties of the fluid. The mixing in fluid flows is facilitated by the stretching and folding
of material lines, which amplifies concentration gradients and allows diffusion effects to occur. A
topological change is linked to a change of sign of the algebraic area of the triangle, resulting to a
crossing of the equator of the Kendall sphere. The strain matrix conserves the area, so its action
on the triangle cannot make the representative point on the Kendall sphere cross the equator.
Nevertheless under this term the dynamics make the representative point converge towards the
equator, where the diffusion term #”

ξ i(t) is prominent. In this section, we will then consider only
the independent diffusion of the vertices in the physical space, and not the influence of the strain
matrix. The equation of motion for the vertices #”x i is then

d #”x i(t)
dt = R

#”

ξ i(t) (3.37)

where the statistics of the stochastic vectors #”

ξ i(t) are given by (3.27).
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Figure 3.5 – Braids of topological changes of the triangle. In this typical case the word describing the
topological changes is 21332.

3.3.1 Braids

Singularities of the shape of the triangles arise when the three points are collinear. These
singularities divide into three classes, according to which one of the three vertices is in the
middle position. One then can divide the equator in three equal zones, [0, π/3], [π/3, 2π/3]
and [2π/3, 4π/3], corresponding respectively to a passage of #”x2, #”x3 and #”x1. Thus, we label a
crossing of the equator by 1, 2, or 3, depending on which vertices crosses the line formed by
the two others. A list of the labels of the crossings is sufficient to define the topology of the
particle trajectories. Such a list can take the form of a “word” from a three-number alphabet
{1, 2, 3}, such as 11232111321. If a particle, say 1, cross the line dividing 2 and 3 and then
immediately takes it back again, then the topology remains the same. This implies that our word
can be “pruned” by deleting repeated letters. The previous example 11232111321 then becomes
2321321 and still gives the same information about the topological changes. The topology of the
trajectory is consequentially described by a braid with three strands. The singularities where one
point crosses the line dividing the other are associated with the generators of the braid group
B3 [TF06].

In the absence of the shear term, the coupled Langevin equations for the variables z and φ
are

ż = −8Ddz + 2
√

2(1− z2)Dd ηz(t) and φ̇ = 2
√

2Dd
1− z2 ηφ(t) , (3.38)

where ηz(t) and ηφ(t) are two independent Gaussian white noise processes. Consider the equation
on z(t), as the motion for φ(t) is a simple diffusion. Close to the equator (|z| � 1), one can
neglect the z-dependence of Dz and one obtains

ż = −kz +
√

2Deff. ηz(t) with k = 2Dd and Deff. = 4Dd. (3.39)

Due to the presence of the non-differentiable term ηz(t), the average number of crossing per unit
of time diverges. Explicitly, let Π(∆t) the steady-state probability for the area of the triangle
to change between t and t + ∆t when t is sufficiently large, so that the process is stationary.
Let

$(∆t) = Π(∆t)
∆t . (3.40)

The average number of crossings occurring per unit of time is then defined as the limit of $(∆t)
when ∆t tends to zero. This limit does not exists in the case of the process defined in (3.39),
and one has $(∆t) ∝ ∆t−1/2 for small ∆t. Note that when performing numerical simulations, a
natural cut-off is induced by the discrete-time dynamics needed in the simulations. Nevertheless
one needs to introduce a more realistic model where at least the limit lim∆t→0$(∆t) exists,
which consists in considering a finite correlation time for the small scale eddies.
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(b) Plot of $0(σ) as a function of σ in logarith-
mic coordinates. At small σ the prediction (3.55),
$0(σ) = σ/

√
π, is plotted (black line). At large σ

one observes a regime where $0 ∝
√
σ.

Figure 3.6 – Statistics of crossing for triangles driven by time-correlated eddies, for which the average
number of crossings per unit of time is defined. (a) comparison with the white noise model, (b) dependence
of $0 with the dimensionless parameter σ.

3.3.2 Time-correlated small-scales eddies

We introduce a correlation-time for the processes of diffusion #”

ξ i(t), which can be seen as the turn-
over time of the small-scale eddies. The simplest time-correlated random process a the velocity
field is the Ornstein-Uhlenbeck process [Van92; Gar+85] defined by the Langevin equation

v̇ = −v − v0
τ

+
√
c η(t) (3.41)

where v0 is the mean drift, τ the correlation time, c a constant and as usual η(t) a Gaussian
white noise. The density of probability P (y, z) for the variable v satisfies a Fokker-Planck
equation:

∂P

∂t
= − ∂

∂v
[(v − v0)] + c

2
∂2P

∂v2 . (3.42)

As the Langevin equation is linear, the Ornstein-Uhlenbeck process is Gaussian. Its transition
probability P (v2, t2|v1, t1) reads

P (v2, t2|v1, t1) = 1√
πcτ(1− e−2t/τ )

exp
(
−(v2 − v0 − (v1 − v0) e−t/τ )2

cτ(1− e−2t/τ )

)
, (3.43)

and its steady-state density of probability P (v) reads

P (v) = 1√
πcτ

exp
(
−(v − v0)2

cτ

)
. (3.44)

In the limit τ → 0 with the coefficient cτ2 fixed, the correlation time tends to zero and the
Ornstein-Uhlenbeck process tends to a Gaussian white noise process: v(t) →

√
2Dη(t) with

2D = cτ2. Such a process is the prototype of coloured noise processes, in contrast with the
Gaussian white noise process which has a flat power density spectrum.
As a more realistic model for the homogeneous diffusion in the physical space, we suppose that
the vertices of the triangles are driven by an Ornstein-Uhlenbeck process. For simplicity we set
R = 1, so that one has

d #”x i
dt = #”

ξ i(t) (3.45)
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with
d #”

ξ

dt = −
#”

ξ i
τ

+
√
c #”η i , (3.46)

where the #”η i are uncorrelated Gaussian white noise processes. It is straightforward to show(2)

that such a process for the vertices #”x i leads to a similar process for the matrix elements of u
defined in (3.4): 

duij
dt = yij ,

dyij
dt = −yij

τ
+
√
c ηij ,

(3.47)

where the statistics of the Gaussian white noises ηij(t) are given by:

〈ηij(t)〉 = 0 and 〈ηij(t)ηk`(0)〉 = δikδj`δ(t) . (3.48)

With this regularized process, the ratio $(∆t)/∆t tends to a finite value when ∆t tends to 0
(see figure 3.6a).
To proceed, we first determine the relevant dimensionless parameters of the dynamics. Define
θ = t/τ , ωij = τyij and ξ(θ(t)) =

√
τη(t), so that

duij
dθ = ωij

dωij
dθ = −ωij + σ ξij(θ)

(3.49)

with the following statistics for ξij(θ):

〈ξij(θ)〉 = 0 and 〈ξij(θ)ξkl(0)〉 = δikδj`δ(θ) . (3.50)

and the dimensionless parameter
σ2 = cτ3 . (3.51)

All the dynamics of the evolution is linked to this parameter. In particular, the limit for a white
noise process, τ → 0 and cτ2 fixed, corresponds to the limit σ → 0. We define

$0 = lim
∆t→0

Π(∆t)
∆t/τ (3.52)

which is a dimensionless function of σ. We computed numerically the evolution of $0(σ) with
respect to σ (see figure 3.6b). One observes two different regimes: for small values of σ one has
$0(σ) ∝ σ, while for large values of σ one obtains a different power-law, $0(σ) ∝ √σ.
As seen previously, a Brownian motion in the physical space is associated with a Brownian
motion on the Kendall sphere. It is then tempting to say that an Ornstein-Uhlenbeck process
in the physical space leads to an Ornstein-Uhlenbeck process on the Kendall sphere, but it
is not that simple, mostly because a spherical Ornstein-Uhlenbeck is not well defined (see for
example [WP11]). As a consequence, it is quite challenging to describe exactly the dynamics
resulting from the time-correlated motion. Yet, one can still explain the power-law dependence
of $0 in σ for small values of σ. In this limited regime, the Ornstein-Uhlenbeck process is close
to a Gaussian white noise, so it seems reasonable to estimate the dynamics near the equator
from (3.39) by writing {

ż = −kz + 2y(t)
ẏ = −y/τ +

√
c η(t)

(3.53)

with k = 2Dd, cτ2 = 2Dd and η(t) a Gaussian white noise. The equations describe the motion of
an harmonic oscillator driven by an Ornstein-Uhlenbeck process. As the dynamics is Gaussian,

(2)This is due to the orthogonality of the transformation (3.3).
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Figure 3.7 – Stationary density of probability P (z), in logarithmic coordinates and for z > 0, obtained
from numerical simulation of the coloured noise model (3.56). From both simulations ε = 10−3. In magenta
σ2 = 0.01, in orange σ2 = 0.5 with a linear regression in black lines for large z of slope −2. The first plot
is vertically translated for clarity. The analytic prediction for the white noise model is shown in dashed
lines, and still fits well for σ2 = 0.01. The regime of z � √ε exhibits a power-law dependence in the form
P (z) ∝ z−2, for both values of σ.

one can explicitly compute the average number of crossings per unit of time. One obtains after a
long but straightforward calculation

lim
∆t→0

Π(∆t)
∆t =

√
k

πτ
(3.54)

so that for σ � 1
$0(σ) = σ√

π
. (3.55)

This prediction was compared with the numerical results, see figure 3.6b, and seems to correctly
describe the evolution of $0 with σ in the limit σ → 0.

3.4 Influence of temporal correlation of like-scale eddies

In this section we concentrate on the action of the strain matrix M. Without the diffusive term
all the trajectories on the sphere will converge towards the equator without crossing it, because
the algebraic area is conserved through the evolution. The action of the small-scale eddies will
prevent the collapsing of all the particles to the equator of the Kendall sphere (z = 0).

3.4.1 Model definition and qualitative results

We suppose that the eddies of scale comparable to that of the triangle have a finite correlation
time, and consequentially introduce a model of correlated noise for the strain matrix. We have in
the physical space 

d #”x i
dt = M · #”x i(t)

dM
dt = −M

τ
+
√
cη

(3.56)

where η is a symmetric traceless matrix of Gaussian white noises coefficients, characterized by
the following statistics

〈ηij〉 = 0 and 〈ηij(0)ηk`(t)〉 = (δikδj` + δi`δjk − δijδk`)δ(t). (3.57)
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Figure 3.8 – Notation for the triangle. For simplicity we set #”x3 to #”0 .

The parameter τ is the correlation time of the Ornstein-Uhlenbeck process. We define the
parameter ε, which compares the strain and diffusive terms, by the relation

ε
def.= 2Db

cτ2 . (3.58)

If τ → 0 with Ds
def.= cτ2 fixed, M evolves into a Gaussian white noise process, and the model

defines above tends to the previous model. In this case, the parameter ε is equal to the one
defined in (3.33), but in general it will quantify the size of the influence zone of each term. The
dimensionless parameter which quantifies the gap between the white noise and the coloured noise
model is introduced as in the previous section, but this time for the strain term,

σ2 = cτ3. (3.59)

As expected, the limit
τ → 0 , Dd = cte and cτ2 = cte (3.60)

corresponds in terms of the dimensionless variables to the limit

σ → 0 and ε = cte. (3.61)

Two densities of probability obtained from this coloured noise model are shown figure 3.7. In the
zone of influence of the shear term, for z � √ε, one still observe a power-law dependence of P (z)
in z: P (z) ∝ zα. Surprisingly, the exponent α, equal to −2 in the case of a white noise process,
seems to not depend on the value of σ. While the transition zone for z ∼ √ε is not well described
by the density of probability (3.34), the behaviour at large z remains unchanged.

3.4.2 Dynamics near the equator

We consider flat triangles, that is triangles with z small in absolute value. For such triangles it
exists at least one very acute angle. Up to a change of the labels of the vertices, one obtains
generically a situation as shown figure 3.8, where without a loss of generality #”x3 = #”0 and the #”ni
are orthogonal vectors. We note α the angle between #”x1 and #”x2, and we suppose |α| � 1. In
this configuration, we have {

#”x1 = R1
#”n1,

#”x2 = R2( #”n1 + α #”n2) +O(α2).
(3.62)

The evolutions of #”x 1 and #”x 2 are given by

d #”x i
dt = M #”x i (3.63)

which leads to {
Ṙ1

#”n1 +R1
#̇”n 1 = R1M #”x1,

Ṙ2( #”n1 + α #”n2) +R2( #̇”n 1 + α̇ #”x2 + α #̇”x 2) = R2(M #”n1 + αM #”n2).
(3.64)
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Let
Fij = #”ni ·M #”nj (3.65)

the element of matrix of M in the basis ( #”n1,
#”n2). The vectors #”ni are orthogonal, so that one

has
#”n1

#̇”n 1 = #”n2
#̇”n 2 = 0 and #”n1

#̇”n 2 + #”n2
#̇”n 1 = 0. (3.66)

After multiplying (3.64) by the vectors #”ni, one gets eventually four equations:

Ṙ1
R1

= Ṙ2
R2

= F11 +O(α) , #”n2
#̇”n 1 = F21 (3.67)

and
α̇ = α(t)y1(t) +O(α) where y1(t) = F22 − F11 (3.68)

In order to close the equations of motion, we need to compute the temporal evolution of the
function y1(t). In the orthogonal basis ( #”n1,

#”n2) the matrix M remains symmetric and traceless,
so that F22 = −F11 and F12 = F21. We have(3)

Ḟ22 = ṅ2Mn2 − ωF22 + n2Mṅ2 +
√
c n2ηn2 (3.69)

where ω = τ−1, so that

ẏ1 = −ωy1 + 2ṅ2Mn2 − 2ṅ1Mn1 + 2
√
c n2ηn2 (3.70)

At this point we use the relations F21 = n2ṅ1 = −n1ṅ2 to obtain

ṅ1 = F21n2 and ṅ2 = −F21n1 (3.71)

and finally
ẏ1 = −ωy1 − 4F21 + 2

√
c n2ηn2 (3.72)

Let y2 = F21. We have

Ḟ21 = −ωF21 + ṅ2Mn2 + n2Mṅ1 + n2ηn1 (3.73)

so that
ẏ2 = −ωy2 + F21(F22 − F11) +

√
c n2ηn1 . (3.74)

The factor niηnj is the expression of the (i, j) coefficient of the matrix η in the basis ( #”n1,
#”n2). In

this basis η remains a stochastic strain matrix, so that we finally get the two coupled Langevin
equations {

ẏ1 = −ωy1 − 4y2
2 + 2

√
c η1

ẏ2 = −ωy2 + y1y2 +
√
c η2

(3.75)

where η1 and η2 are uncorrelated Gaussian white noises :

〈ηi〉 = 0 and 〈ηi(t)ηj(0)〉 = δijδ(t). (3.76)

We have to make explicit the relation between α and z. With the notation of the section 3.1.1,
one has

R2 = R2
1 +R2

2 and ξ = 1√
3
R1R2 α+O(α2) (3.77)

so that
z = 1√

3
R1R2
R2

1 +R2
2
α. (3.78)

(3)The arrows above the vectors are omitted.
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Thus, z is the product between α and a function which only depends on the ratio R1/R2:
z = g(R1/R2)α. From the first equation in (3.67), one has, in first orders in α,

d
dt

[
g

(
R1
R2

)]
=
(
Ṙ1
R2
− Ṙ2R1

R2
2

)
g′
(
R1
R2

)
= 0 (3.79)

so that z(t) and α(t) have the same logarithmic derivative:

ż

z
= α̇

α
. (3.80)

It means that for flat triangles the action of the strain matrix consists in a fast motion along
a meridian of the Kendall sphere at φ = cte (because the ratio R1/R2 is directly linked to the
value of φ), and a slow motion along a circle of latitude near the equator.
We introduce the variable y, defined as y = ln(z). One redefines the time: t′ = ωt, and one
notes

x1 = y1
2σω and x2 = y2

σω
, (3.81)

so that finally 
ẏ = 2σx1

ẋ1 = −x1 − 2σx2
2 + ξ1(t)

ẋ2 = −x2 + 2σx1x2 + ξ2(t)
(3.82)

where X ′ is the derivative of X with respect to the dimensionless time t′, σ is introduced
previously, and ξ1(t), ξ2(t) are Gaussian white noise processes with respect to the time t′:

〈ξi(t′)〉 = 0 and 〈ξi(t′)ξj(0)〉 = δijδ(t′). (3.83)

The functions x1(t′) and x2(t′) should not be confused with some positions in the physical space;
they are linked to the dynamics of the shear matrix M. The equations (3.82) describe the motion
of a particle advected by the random process x1, which dynamics is given by a set of two coupled
Langevin equations. The parameter σ quantifies the gap between the coloured noise process and
the corresponding white noise process. As the Langevin equations involve non-linear terms, the
process in non-Gaussian. Note that we defined the variables xi(t) in order to have σ appearing
as a factor of the non-linear terms, rather than in front of the Gaussian white noises ξi(t). When
performing perturbations methods for small values of σ, the system of coupled Langevin equations
will be seen as a non-linear perturbed Ornstein-Uhlenbeck process, and not as a deterministic
dynamical system involving small additive noises.

3.4.3 Perturbation expansion for the stationary distribution of non-linear Langevin
equations

One of the first quantity that we can compute in order to characterize the dynamics of the
collapsing towards the equator is the mean value of x1(t), which gives the speed at which this
collapsing occurs. More precisely, x1(t) can be seen, up to a pre-factor, as an instantaneous
Lyapunov exponent for the dynamical variable z(t), and the equator of the Kendall sphere (z = 0)
is then an attractor of the dynamics.
As the variable y only appears in the first equation of the system (3.82), the dynamics of x1 can
be understood just by considering the reduced system{

ẋ1 = −x1 − 2σx2
2 + ξ1(t)

ẋ2 = −x2 + 2σx1x2 + ξ2(t)
(3.84)

consisting in two coupled Langevin equations.
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The joint probability density for x1 and x2, P (x1, x2, t), satisfies the Fokker-Planck equation

∂P

∂t′
= ∂

∂x1
[(x1 + 2σx2

2)P ] + ∂

∂x2
[(x2 − 2σx1x2)P ] + 1

2
∂2P

∂x2
1

+ 1
2
∂2P

∂x2
2

= (F̂0 + σF̂1)P, (3.85)

where 
F̂0 = ∂

∂x1
(x1·) + ∂

∂x2
(x2·) + 1

2
∂2

∂x2
1

+ 1
2
∂2

∂x2
2
,

F̂1 = 2x2
2
∂

∂x1
− 2x1

∂

∂x2
(x2·).

(3.86)

Perturbative expansion of the joint density of probability

We are looking for a stationary solution of the Fokker-Planck equation, in the form of a power
series

P (x1, x2) =
∞∑
j=0

σjPj(x1, x2). (3.87)

Injecting this form into the equation (3.85), one obtains the recursion relation:

F̂0Pj+1 = −F̂1Pj and F̂0P0 = 0. (3.88)

The motivation of the following is to find the spectrum of the operator F̂0. We follow the method
shown in [MW04; Meh+05] based on [Ris84]. To proceed, we find the stationary probability
density function of the unperturbed system (σ = 0):

P0(x1, x2) = 1
π

exp(−x2
1 − x2

2). (3.89)

The operator F̂0 is not hermitian. We perform the following transformation using the stationary
pdf:

Ĥ0 = exp
(
x2

1
2 + x2

2
2

)
F̂0 exp

(
−x

2
1

2 −
x2

2
2

)
(3.90)

and find the hermitian “hamiltonian”:

Ĥ0 = 1− x2
1

2 −
x2

2
2 + 1

2∂
2
x1x1 + 1

2∂
2
x2x2 . (3.91)

This is almost the hamiltonian of the two-dimensional quantum harmonic oscillator, up to some
constants and signs. Coherently, we use notation from the quantum formalism, with bras and
kets. The eigenvalues of Ĥ0 are expressed in the form

λn1n2 = −(n1 + n2) where n1, n2 ∈ N. (3.92)

The corresponding eigenvectors form a orthogonal basis of the Hilbert space:

Ĥ0 |φn1n2〉 = λn1n2 and 〈φn1n2 |φn′1n′2〉 = δn1n′1
δn2n′2

. (3.93)

The ground state of Ĥ0 is then |φ00〉, and we have

〈 #”x |φ00〉 = 1√
π

exp
(
−x

2
1

2 −
x2

2
2

)
. (3.94)

One then defines the creation and annihilation operators :

â†i = 1√
2

(xi − ∂i) and âi = 1√
2

(xi + ∂i) (3.95)
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Figure 3.9 – Stationary density of probability P1(x1) =
∫

dx2P (x1, x2), in logarithmic coordinates,
obtained from numerical simulation of the model (3.84). In grey doted lines, the zero-order analytic
prediction, in black doted lines, the first-order analytic prediction and in black lines, the third-order
analytic prediction.

which verifies the following commutation relations[
H0, â

†
i

]
= −â†i , [H0, âi] = âi and

[
âiâ
†
j

]
= δij , (3.96)

so that:
x̂i = 1√

2
(âi + â†i ). (3.97)

The actions of the creation and annihilation operators on the eigenfunctions are classic:{
â1 |φn1n2〉 = √n1 |φn1−1n2〉
â†1 |φn1n2〉 =

√
n1 + 1 |φn1+1n2〉

and
{
â2 |φn1n2〉 = √n2 |φn1 n2−1〉
â†2 |φn1n2〉 =

√
n2 + 1 |φn1 n2+1〉

(3.98)

and one defines the counting operator N̂i as N̂i = â†i âi so that N̂1 |φn1n2〉 = n1 |φn1n2〉 and
N̂2 |φn1n2〉 = n2 |φn1n2〉.
Consider the operator F1, which contains the non-linear of the dynamics. We note

Ĥ1 = exp
(
x2

1
2 + x2

2
2

)
F̂1 exp

(
−x

2
1

2 −
x2

2
2

)
(3.99)

and we can express Ĥ1 in terms of the creation and annihilation operators:

Ĥ1 = −2
√

2â†1x̂2
2 + 2

√
2â†2x̂1x̂2. (3.100)

In order to compute the stationary joint density of probability P (x1, x2), we are looking for an
null-eigenvector of the operator Ĥ = Ĥ0 + σĤ1:

(Ĥ0 + σĤ1) |Ψ00〉 , (3.101)

in the form of a power series:

|Ψ00〉 =
∞∑
j=0

σj |Qj〉 . (3.102)

We already have |Q0〉 = |φ00〉, and the recursion relation reads:

Ĥ0 |Qj+1〉+ Ĥ1 |Qj〉 = 0. (3.103)
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In order to solve this equation for |Qj+1〉 knowing |Qj〉, one has to inverse the operator Ĥ0. As
Ĥ∗1 |φ00〉 = 0 (where A∗ denotes the adjoint of the operator A), the image of Ĥ1 is orthogonal to
the kernel of Ĥ0, so that one can legitimately writes

|Qj+1〉 = −Ĥ−1
0 Ĥ1 |Qj〉 . (3.104)

Rigorously, we should add to the expression of |Qj+1〉 an element of the kernel of Ĥ0, say κ |φ0〉.
However, the normalisation condition of the density of probability P (x1, x2) reads in the space
of the kets

〈φ00|Ψ00〉 = 1, (3.105)
so that as |Q0〉 = |φ00〉, |Qj〉 for j > 0 is orthogonal to |φ00〉: 〈φ00|Qj〉 = 0. Note that we have
two different normalisation conditions: first, the eigenvectors of Ĥ0 form an orthogonal basis, so
that 〈φn1n2 |φn′1n′2〉 = δn1n′1

δn2n′2
; second, the density of probability must be normalised, which

corresponds to the equation (3.105). In particular, there is no reason to have 〈Ψ00|Ψ00〉 = 1, and
for this type of perturbation development it is in general not the case.
We decompose the |Qj〉 in term of the eigenfunctions:

|Qj〉 = c(j)
nm |φnm〉 . (3.106)

One finds immediately

|Q1〉 = −Ĥ−1
0 Ĥ1 |Q0〉

=
√

2Ĥ−1
0 |φ10〉

= −
√

2 |φ10〉 . (3.107)

Thus, the first order expression of |Ψ00〉 reads

|Ψ00〉 = |φ00〉 −
√

2σ |φ10〉+O(σ2) (3.108)

and so
P (x1, x2) = 1√

π
exp

(
−x

2
i

2

)[
〈 #”x |φ00〉 −

√
2σ 〈 #”x |φ10〉+O(σ2)

]
. (3.109)

As
〈 #”x |φ10〉 =

√
2
π
x1 exp

(
−x

2
1

2 −
x2

2
2

)
, (3.110)

the marginal density of probability for x1, P1(x1) =
∫

dx2P (x1, x2), reads explicitly at the first
order:

P1(x1) = 1√
π

[
1− 2σx1 +O(σ2)

]
exp(−x2

1). (3.111)

Figure 3.9 shows the first orders of the perturbation expansion, compared with the stationary
density of probability obtained numerically.

First moment of the distribution

In order to compute the first moments of the stationary distribution, and particularly the mean
〈x1〉, we can use the following formula:

〈x1〉 = 〈φ00|x̂1|Ψ00〉
〈φ00|Ψ00〉

= 〈φ00|x̂1|Ψ00〉 . (3.112)

By using the expression of x1 in term of â1 and â†1, one finds

〈x1〉 = 1√
2
〈φ00|â1|Ψ00〉 , (3.113)
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(a) In red, plot of 〈y(t)〉 with respect to cτ2t =
2Ds in the case of the white noise process (3.24).
The standard deviation is shown in red dotted lines.
In black dotted lines, the domain where the linear
regression is performed, giving 〈y(t)〉 ≈ 2cτ2t.
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(b) In red, plot of 〈y(t)〉 with respect to cτ2t =
2Ds in the case of the correlated noise pro-
cess (3.56) with σ = 0.1. The linear regression
gives 〈y(t)〉 ≈ −1.965 cτ2t, while the develop-
ment of 〈x1〉 up to the fifth order in σ gives
〈y(t)〉 ≈ −1.962 cτ2t.

Figure 3.10 – Numerical computations of the rate of collapsing toward the equator of the Kendall sphere.
One obtains a linear evolution of y = ln z with respect to the time, and the slope is linked to 〈x1〉.

and so immediately
〈x1〉 = −σ +O(σ2). (3.114)

More generally, the series expansion of 〈x1〉 reads

〈x1〉 = 1√
2
σjc

(j)
10 with c(j)

nm = 〈φnm|Qj〉 . (3.115)

One can compute the recursion relation for the coefficients c(j)
nm following the expression of Ĥ1:

c
(j+1)
k√̀

2
= 1
k + `

(
−
√
k(`+ 1)c(j)

k−1 ` −
√
k(`+ 1)(`+ 2)c(j)

k−1 `+2

+
√

(k + 1)`(`− 1)c(j)
k+1 `−2 +

√
k + 1`c(j)

k+1 `

)
.

(3.116)

One finds that the even powers in σ in the series expansion of 〈x1〉 are zero. One obtains up to
the 5th order

〈x1〉 = −σ + 2σ3 − 32
3 σ

5 +O(σ7). (3.117)

It is natural to wonder whether this series expansion has a finite radius of convergence, and how
accurate it is. One can simulate the dynamics of triangles only under the action of the shear
matrix. Eventually all the particles will converge towards the equator, and one can compute
the behaviour of 〈y(t)〉 = 〈ln z(t)〉 as a function of the dimensional time t. One predicts that
after a relaxation time larger than τ , and as soon as the particles are sufficiently close to the
equator,

〈y(t)〉 = 2σ 〈x1〉ωt

= −2cτ2t

[
1− 2σ2 + 32

3 σ
4 +O(σ6)

]
. (3.118)

In particular, for the white noise process (σ = 0) one has 〈y(t)〉 = −4Dst. Qualitatively, the
finite correlation time of the eddies reduces the rate of convergence towards the equator (see
figure 3.10).
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(a) In red, plot of the slope d 〈y〉 /dt with respect
to σ, computed from direct simulations of the
triangles model. In blue, 2σ 〈x1〉 /τ obtained from
the simulation of (3.84). The ten shades of gray
represent the series expansions summed to orders
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(b) Plot of an with respect to n, as defined
in (3.119). One observes what seems like a lin-
ear growth, but without being able to accurately
conclude between a exponential evolution of an
with n and the presence of a factorial component.

Figure 3.11 – Evolution of the rate of collapsing toward the equator of the Kendall sphere from the model
of the triangles and comparison with the results obtained from the reduced system and the perturbative
development.

Moreover, it is not difficult to simulate directly the system of Langevin equations (3.84), and
to compute the stationary value of 〈x1〉, without having to deal with the collapsing of particles
towards y = −∞. The comparison between the results obtained from direct simulation of (3.84),
numerical simulations of the model of the triangles and the first terms in the perturbative
development of 〈x1〉 is shown figure 3.11a.

The description of the dynamics near the equator seems accurate, and the perturbative devel-
opment gives a good description for apparently σ < 0.2. In order to determine if the series
expansion (3.115) of 〈x1〉 converges, one can evaluate the evolution of the coefficients an with n,
where the an are defined as

〈x1〉 =
∞∑
n=0

(−1)n anσ2n+1. (3.119)

It is difficult to conclude that the evolution of an is exponential (see figure 3.11b), and it is
possible that the coefficients grow as an ∝ αn(n!)β with α > 1 and β > 0, which would lead to a
radius of convergence formally equal to zero. Nevertheless, the series (3.119) is an asymptotic
series: it diverges, but as the sign of the coefficients alternate, one can expect that every partial
sum of the series approaches 〈x1〉 (ε) as ε tends to zero [DD73].

3.4.4 Stationary distribution for the global system

Consider now the global system of coupled Langevin equations (3.82). Direct numerical simulations
of the dynamical model for triangles shows a power-law dependence of P (z) in z, in regions where
the influence of the diffusion term is weak (see figure 3.7), and with apparently a value of the
exponent independent of σ: P (z) ∝ z−2. This power-law dependence can be understood from the
analysis of the dynamics for flat triangles: one obtained that y′ = 2σx1(t′) where the dynamics
of x1 does not depend on y = ln z. The problem presents then a translational invariance. The
diffusive term acts on region where z is smaller than

√
ε; in the space of y = ln z, its influence

can be modelled by a impervious wall at a given position, say y = 0. If we can define a region
“far from the wall”, where the dynamics of y is not affected by the presence of the wall, then the
stationary density of probability P (y) must also have a translational invariance. In other words,
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Figure 3.12 – Plot of the logarithm of P (y) =
∫

dx1dx2 P (y, x1, x2) obtained from numerical simulations
of the Langevin equations (3.82), for different values of σ. In red σ = 0.1, in blue σ = 0.2, in green σ = 0.5
(these three plots have been vertically translated for better comparison), and in orange σ = 1. The linear
regression (in black for σ = 1) shows that far enough from the wall (at y = 0, represented by a vertical
grey dashed line), all slopes are of value −1.

P (y) must be a eigenvector of the translation operator [LL65], so that

P (y) = N exp(αy) (3.120)

where N is a normalisation constant. As the drift velocity 2σ 〈x1〉 is negative, one expects to
obtain more particle on the left than on the right of the y-axis, so that α < 0. Thus, the presence
of wall is unavoidable in order to obtain a normalisable solution, just as the diffusion term is
needed to avoid all the particles to collapse on the equator of the Kendall sphere. The link with
the density of probability of z is straightforward: as P (z)dz = P (y)dy, one obtains

P (z) = N zα−1, (3.121)

which explains the power-law behaviour observed in numerical simulations.
The joint stationary density of probability P (y, x1, x2) verifies the steady-state Fokker-Planck
equation

0 = −2σx1
∂P

∂y
+ ∂

∂x1
[(x1 + 2x2

2)P ] + ∂2P

∂x2
1

+ ∂

∂x2
[(x1 − 2x1x2)P ] + ∂2P

∂x2
1
. (3.122)

We look for a solution in the form P (y, x1, x2) = p(x1, x2) exp(αy). While one can expect a
complex form for the density of probability of the “speeds” p(x1, x2), as the analysis of the
reduced system showed, it turns out that the equation (3.122), although involving non-linear
terms in x2

2, x1x2, has an exact a simple solution, independent of σ:

P (y, x1, x2) = exp(−y − x2
1 − x2

2), (3.123)

so that in particular α = −1 whatever the value of σ. One recovers the power-law P (z) ∝ z−2

in the case of a white noise process, and more generally this result explains the apparent non-
dependence in σ of the tails of the densities of probability computed from the coloured noise
model (see figure 3.7).

3.5 Conclusion

In this chapter we presented a simplified model for the dynamics of triplets of points advected
by a flow in homogeneous turbulence, using stochastic methods. During the temporal evolution
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the three particles spread and explore the scales of the flow. We supposed that the dynamics
does not depend on the scale, and sought for a description of the evolution of the shape of the
triangle, a quantity independent of the size, global rotation and position in space of the set of
points. We introduced the natural home for the shape of triangle: the Kendall sphere.
The action of the velocity field was divided into three contributions: eddies of large, small
and medium size compared to that of the triangle, resulting in different effects. In the case of
time-correlated processes, an explicit resolution of the dynamics on the Kendall sphere was
already obtained [PW13]. However in real flows the velocity field has a finite correlation time,
and the models must be refined. We quantified some effects of a finite correlation time in the
shape dynamics: regularisation of the topological changes and influence on the distribution of
quasi flat triangles. Under the influence of the shear matrix only, the equator of the Kendall
sphere acts as an attractor of the dynamics, and the spatial repartition around it is linked to a
sedimentation process. This is a central idea in this thesis, as we will see in the next chapter,
where a different physical problem with a different kind of attractor is studied, but formally the
same description emerges.
One natural question which often arises in physics is: “What is happening for higher dimensions?”
In our case, it will correspond to the study of three-dimensional structures, and as a triangle
is the minimal set of points needed to span the space in two dimension, one can consider
advected tetrads in three dimensional turbulent flows. Due to the volume preservation, such
structures also tend to become flat under the action of the flow, resulting in planar clusters of
points [PSC00]. The shape space is however more complicated, because its dimension is then
4×3−3 [centre of mass] −3 [rotational position in space] −1 [global size] = 5. Thus, it is difficult
to find a single parameter corresponding, in the case of the triangles, to z. Nevertheless one can
expect to obtain similar distributions of shape, with a balance between shear processes due to
the like-scale eddies and homogeneous diffusion of vertices.
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In this chapter we no longer consider the dynamics of tracers in turbulent flows, as in the previous
chapter, but rather the evolution of particles heavier than the carrying fluid. Due to the resulting
inertia, the motion of these particles does not follow exactly the pathlines of the underlying flow.
As a consequence, the description of the motion does not depend only on the flow velocity. The
study of these particles can have numerous applications, already listed in chapter 2. We are
interested in a phenomenon known as preferential concentration, where the particle concentration
field encounters strong inhomogeneities.

In the following, we first recall the equations of the motion of inertial particles in a turbulent
flow, and the particular one dimensional model describing the action of the fluid on the particles.
This model which exhibits a path coalescence transition: the system goes from a regime where
the trajectories of the particles fill the whole space, to a regime where all the trajectories merge
into a single one. In the first case the particles form cluster having fractal properties, and one
can compute an estimate of the dimension of such structures: the correlation dimension. The
main result of this chapter is the extension of the notion of fractal dimension to the negative
cases, in the regime where, in the absence of any perturbation, the attractor of the dynamics is a
point-like structure.

The results of this chapter have been partly published in [Wil+15].
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4.1 The model

4.1.1 Equations of motion

We recall here the equations of motion of an inertial particle in a turbulent flow, already derived
in chapter 2. We consider particles of size much smaller than the Kolmogorov scale η, meaning
that the fluid motion is smooth at the scale of the particle, and suppose that the associated
Reynolds number is small. Moreover, we suppose that the flow is incompressible. Assuming that
the relative velocity of the particle compared to that of flow is small, [Gat83; MR83] derived the
equations of motion, which involves many terms and is quite hard to deal with in the general
case. However, for very small particles of density much higher than that of the fluid, we can
consider the Stokes drag force as the prominent term in the different contributions acting on the
particle, leading to the simplified motion:

#̈”x = − 1
τS

( #̇”x − #”u ( #”x , t)) (4.1)

where #”u ( #”x , t) is the velocity field and

τS = 2
9
a2

ν

ρparticle
ρfluid

(4.2)

is the particle relaxation time or Stokes time (ρA is the mass density of A).

4.1.2 One dimensional dynamical system

In the following we study a one dimensional model based on the motion equations (4.1). Moreover,
we add a noise term in the equation on ẋ. This term represents the diffusion motion of the
particles in the flow and the resultant of the neglected forces in the description (4.1). Thus, one
has {

ẋ = v +
√

2D η(t) ,
v̇ = −γ[v − u(x, t)].

(4.3)

where we defined
γ = τ−1

S (4.4)

and where η(t) is a standard Gaussian white noise with statistics

〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = δ(t− t′). (4.5)

The underlying fluid u(x, t) is modelled by a stochastic process whose statistics have a translational
invariance both in time and space:

〈u(x, t)〉 = 0 and 〈u(x, t)u(x′, t′)〉 = c(x− x′, t− t′) . (4.6)

The specific form of the correlation function c(x−x′, t− t′) makes the process correlated in space
but uncorrelated in time:

c(x− x′, t− t′) = A2 exp
(
−(x− x′)2

`2c

)
δ(t− t′) (4.7)

where `c is the correlation length of the fluid and A a constant. The flow is the same for all the
particles, but the realisations of the noise

√
2D η(t) differ for each particle.

Considering clustering processes, we are interested in the motion of particles in the physical
space, so that we consider attractors embedded in the one dimensional space of the variable x.
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Later in this chapter, we will obtain an evolution equation for the separation δx of two nearby
trajectories in the form

δẋ = Z(t)δx, (4.8)
where we will explicitly show that the fluctuating variable Z(t) satisfies his own equation of
motion, which does not depend on the separation δx or on the spatial position x. Thus, it is
sufficient to consider only the motion along the x axis.
For the particular one-dimensional model, one can observe in numerical simulations a phenomenon
known as a path coalescence transition [WM03]: when varying the physical parameters of the
model, the qualitative behavior of the solutions transits from a phase where two nearby trajectories
diverge with probability one as time increases, to a regime where all the trajectories eventually
merge. The transition in the model (4.3) is reminiscent of the phenomenon of preferential
concentration, although it does show several important differences. In particular, the clustering
of particles is, in the model (4.3), not due to inertial effects. As we show below, the clustering
processes occurs for decreasing values of the Stokes time τS, so that the one dimensional model
proposed here does not faithfully describe the motion of inertial particles.
As a consequence, the following must not be seen as a physically accurate description of the
dynamics of inertial particles in one dimension, but rather as the study of a particular dynamical
system inspired by the dynamics of inertial particles. However, the tools developed here can be
used for more realistic models describing the dynamics of inertial particles [GMW15]. Moreover,
qualitative information can be gained by studying the solution of (4.3), in particular concerning
the caustics formations (see equation (4.48) below).

4.1.3 Numerical simulations

The objective of this section is to present the methods used to simulate the Eulerian flow u(x, t),
whose statistics are given in (4.7). In the following, we consider the motion to occur in a periodical
space of size `, thus identify x and x + `. A realisation of the random function u(x, t) can be
generated as a periodic function of period L, taken to be sufficiently large for the periodicity to
be irrelevant, combined with a Gaussian white noise process: u(x, t) = f(x)ξ(t) where ξ(t) is a
standard Gaussian white noise process and

f(x, t) =
N∑
n=1

an cos
(2πnx

L

)
+ bn sin

(2πnx
L

)
(4.9)

where an and bn are random variables, satisfying

〈an〉 = 〈bn〉 = 〈anbn′〉 = 0 and 〈anan′〉 = 〈bnbn′〉 = δnn′KL(n). (4.10)

It leaves us with two variable parameters, L and N , and each must be chosen sufficiently large.
The parameter kmin = 1/L is the lowest wave number generated by the flow, which must be
much larger than the typical length scale `c, so that one has L� `c. We set

KL(n) = BL exp(−n2Λ2
L/2). (4.11)

The spatial correlations of the function f are then

〈f(x)f(x′)〉 =
N∑
n=1
〈a2
n〉 cos

(2πnx
L

)
cos

(2πnx′
L

)
+ 〈b2n〉 sin

(2πnx
L

)
sin
(2πnx′

L

)

=
N∑
n=1

KL(n) cos
(2πn(x− x′)

L

)

= BL

N∑
n=1

exp
[
−(LΛL)2

2

(
n

L

)2
]

cos
(

2π(x− x′)n
L

)
. (4.12)
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(a) Set of trajectories with a positive λ.
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(b) Set of trajectories with a negative λ.

Figure 4.1 – Two sets of trajectories for the model (4.3) with D = 0. One observes two different behaviours,
depending on the sign of the average of the instantaneous Lyapunov exponent, λ = 〈Z(t)〉. a) λ > 0, the
trajectories fill all the space; b) λ > 0, all trajectories collapse on a single one, the attractor is a random
walk.

For large L, one has

〈f(x)f(x′)〉 ' LBL
∫ N/L

0
dy exp

[
−(LΛL)2

2 y2
]

cos(2π(x− x′)y)

≈
√
π

2
BL
ΛL

exp
(
−2π2(x− x′)2

λ2

)
(4.13)

where λ = LΛL. The latter equation is valid as long as the upper limit of the integral, N/L, is
much larger than λ−1. Thus, one recovers the statistics (4.7) if we choose λ, BL and ΛL such
as

λ =
√

2π`c, ΛL = λ/L and BL = A2ΛL
√

2
π
. (4.14)

and with
L

N
� `c � L. (4.15)

For a sufficiently small time interval ∆t the motion equations

{
ẋ = v +

√
2D η(t)

v̇ = γ(u(x, t)− v)
(4.16)

give x(t+ ∆t) = x(t) + v(t)∆t+ n1
√

2D∆t
v(t+ ∆t) = v(t)− γv(t)∆t+ γn2(t)

√
∆tf(x)

(4.17)

where n1(t), n2(t) are temporally uncorrelated normal random variables with mean 0 and
variance 1.
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4.2 Path coalescence transition and negative fractal dimension

4.2.1 Phenomenology

We analyse the separation between two nearby trajectories. To this end, we consider a linearisation
of the equations of motion (4.3) and obtain

δẋ = δv + 2
√
D η(t),

δv̇ = γ

(
∂u

∂x
(x(t), t)− δv

)
.

(4.18)

For the unperturbed process (D = 0), we introduce the instantaneous Lyapunov exponent Z(t),
defined as

Z(t) = ∂v

∂x
(x(t), t) (4.19)

so that for the equation on δẋ only one has

δẋ = Z(t)δx. (4.20)

The exponent Z(t) is then the logarithmic derivative of the separation δx(t) with respect to time.
Its expectation value is in fact the Lyapunov exponent λ of the unperturbed process:

λ = lim
t→∞

1
t

∫ t

0
dt′Z(t′) = 〈Z(t)〉 . (4.21)

In the case of an autonomous system with an attractor, the attractor must be a fixed point
in phase space, and Z(t) approaches a constant as t→∞. In our case however the dynamical
system is non-autonomous, and Z(t) is in fact a fluctuating quantity. Depending on the sign of λ,
two different behaviours emerge. First, if λ > 0 two nearby trajectories separate with probability
unity during the dynamics, and the system is therefore unstable (see figure 4.1a). The trajectories
cluster on a strange attractor which exhibits a fractal measure. Second, when λ < 0 the system
is stable, in the sense that two trajectories tend to stay very close, and eventually all trajectories
converge on a attractor which is not a fixed point (see figure 4.1b). Note that the coalescence of
all the trajectories on a single path might take extremely long times. However, if we assume that
the trajectories have the properties of random paths, then as in one dimension two random paths
cross with probability one as the time goes to infinity, one can expect that two trajectories will
cross with probability one, so that the local dynamics happens to stick them, resulting eventually
in the coalescence of all the trajectories.
This description was made for the unperturbed system, with D = 0. However, when we add the
random noise (D 6= 0) in the equation of motion, the system is expected to behave differently.
Note that (4.20) generalizes to:

δẋ = Z(t)δx+ 2
√
D η(t), (4.22)

so that the random noise term is dominant for small δx, when the two trajectories are very close,
and tends to prevent clustering. When the dynamics is unstable (λ > 0), the phenomenology
of the trajectories does not appreciably change, because both terms contribute to separate the
particles. However, for the stable regime (λ < 0), there is a competition between the diffusion
and the compression due to the negative Lyapunov exponent. As a consequence, the separation of
two close trajectories, ∆x, can have large excursions away from zero (see figure 4.2a). Those large
excursions are a manifestation of the phenomenon of intermittency, as illustrated figure 4.2b. In
fact, when computing the distribution of waiting times near the transition around λ = 0, one
obtains power-law in the form

P (T ) ∼ T−3/2, (4.23)
as expected for an intermittency behaviour.
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(a) Set of trajectories for λ < 0, with D 6= 0.
Different trajectories separate and recombine.
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Figure 4.2 – Set of trajectories for the model (4.3) with λ < 0 and D 6= 0. The parameters are γ = 0.05,
`c = 0.08, A = 0.02 and D = 1× 10−8. The master trajectory, from which the separations ∆x are
computed, is in red.

4.2.2 Power-law distributions

In this section we characterize the fractal structures by analysing the distribution of nearby
trajectories, and compute an estimator of the non-integer fractal dimension. There exist many
definitions of fractal dimensions; for dynamical system, we use the correlation dimension [GP83;
GP84; Ott02]. We briefly recall the definition: pick a particle at random and determine the
number N (ε) of other particles within a ball of radius centred on this particle. One considers the
mean of this quantity, 〈N (ε)〉. If the attractor as a fractal measure, then 〈N (ε)〉 is expected to
have a power-law dependence in the form:

〈N (ε)〉 ∼ εD2 , (4.24)

and the exponent D2 is the fractal dimension. It is sometimes easyer to deal with probability
density function for separation of trajectories, P (∆x). The two quantities are linked by an integral
equation:

〈N (ε)〉 =
∫ ε

0
d∆xP (∆x), (4.25)

so that one expects also a power-law for P (∆x) in the form

P (∆x) ∼ |∆x|D2−1. (4.26)

Unstable case

In the non-stable case (for λ > 0) and in the absence of noise (D = 0), it has already been
observed that the attractor presents a fractal structure, leading to a power-law behaviour for the
density of probability of two close trajectories P (∆x). If we turn on the noise (D 6= 0), we still
obtain power-law distribution, as presented figure 4.3a. The exponent of the power-law is linked
to the correlation dimension D2 of the attractor. One has

P (∆x) ∼ |∆x|α−1 (4.27)

so that D2 = α, where D2 is between 0 and 1. Note that the value of the exponent does not
depend on the intensity D of the noise. In particular, we obtain we same value in the absence of
noise D = 0. In the absence of the noise term, the distribution is still normalisable for ∆x→ 0.
In other terms, and as expected, the average number of trajectories inside a ball of radius ε,
N (ε), effectively decreases with decreasing ε, because the scaling is

N (ε) ∼ εD2 . (4.28)
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(a) Unstable regime, λ > 0.
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Figure 4.3 – Probability distribution of the separation of trajectories, P (∆x), for two values of D
(D = 3× 10−10, red lines, and D = 1× 10−9, green lines). (a): γ = 0.0375, `c = 0.08, A = 0.02 so that
λ > 0; (b): γ = 0.075, `c = 0.08, A = 0.02 so that λ < 0. The distributions are fitted by a power-law
(dotted lines).

Stable case

In the stable regime, when 〈Z(t)〉 < 0, and in the absence of diffusion, all trajectories merge into
a single path, so that P (∆x) is a Dirac distribution. In the presence of diffusion term, one may
expect the density of probability of the separation of trajectories P (∆x) to be well approximated
by a Gaussian distribution. This is because, in the case of a stable autonomous system, the
motion equation in the vicinity of the attractor with Lyapunov exponent λ < 0 can be written
as

ẋ = λx+
√

2D η(t) (4.29)
which is an Ornstein-Uhlenbeck process. In this case the deviations from the attractor do have
a Gaussian distribution with a variance D/|λ|, so that P (∆x) is also Gaussian with a variance
2D/|λ|. We show here that the distribution P (∆x) is in fact non-Gaussian, and has power-law
tails when ∆x tends to 0 (see figure 4.3b), in the form of (4.27), but with α negative. For very
small values of ∆x, the diffusion term becomes prominent and the distribution is flat in the limit
∆x→ 0. Note that a distribution in the form P (∆x) ∼ |∆x|α−1 with α < 0 is non-normalizable
for ∆x→ 0. Without the diffusion (D = 0), the resulting distribution is a Dirac function centred
around ∆x = 0.
One of the main results is that the value of the exponent α does not depend on the diffusion
coefficient D, and is therefore intrinsic to the unperturbed dynamical system. The role of
the diffusion is to sustain a non-zero separation between close trajectories, enabling positive
fluctuations of the instantaneous Lyapunov exponent Z(t) to produce intermittent bursts, which
lead to power-law distributions. Thus, the mechanism for producing large excursions – the
fluctuations of Z(t) – is independent of the mechanism which seeds them – the diffusion term√

2D η(t).

Origin of the power-law distributions

The origin of power-law distributions can be explained by characterizing the motion of nearby
trajectories. Let us consider the dynamics of the fluctuations in a logarithmic variable:

y = ln(∆x). (4.30)

In the tail of P (∆x), the fluctuations are much larger than the driving noise, so that the term
2
√
Dη(t) in (4.18) can be neglected. In this limit the equation of motion for y(t) is simply

ẏ = Z(t). (4.31)
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Figure 4.4 – Analytical predictions for the stationary density of probability ρ̄(x) and the flux j(ε), related
to the rate of formation of caustics.

The main point is that the statistics of the fluctuating quantity Z(t) are independent of y, so
that the stationary density of probability of y is expected to be invariant under a translation in
the form: y → y + δy. Thus, the only possible functional form for p(y), the density of probability
of y, is:

p(y) ∼ exp(αy). (4.32)
Therefore, by using the change of variables

dP = p(y)dy = P (∆x)d∆x (4.33)

one obtains a power-law dependence for P (∆x), in the form

P (∆x) ∼ |∆x|α−1, (4.34)

thus retrieving the form (4.27). Note that when y → −∞, or alternatively, ∆x→ 0, the noise
term dominates in (4.22), so the power-law does not hold. This prevents any difficulty with the
divergence of p(y); the noise term provides a natural cut-off at small separations (∆x → 0),
thus preventing potential normalisation problems. The equation (4.31) is the prototype of a
sedimentation process, with a negative drift velocity 〈Z(t)〉 = λ, so that the noise term acts as a
“wall” in the space of the variable y.
For the distribution P (∆x), the transition from the unstable to the stable regime acts as follows.
For λ > 0 the system as a strange attractor and P (∆x) is described by (4.27). As λ approaches
zero from below, so does α. The power-law tails exhibited for λ < 0 correspond α < 0. If we
extend the identity D2 = α to negative values of α, the equation (4.27) gives a physical meaning
to a negative fractal dimension. This intrinsic property of the unperturbed dynamical system
emerges due to the diffusion process in the physical space.
In the next section we present numerical results of the determination of the exponent α for
the specific model of inertial particles, along with two perturbation approaches for its explicit
computation.

4.3 Computation of the fractal dimension

4.3.1 Formulation in terms of a Fokker-Planck equation

In this section we determine the evolution of the instantaneous Lyapunov exponent Z(t). To
proceed, consider again the linearised equations of the dynamics (4.18). Let S(t) be the velocity
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gradient at the position of a particle:

S(t) = ∂u

∂x
(x(t), t). (4.35)

This variable is a Gaussian white noise with coefficient D, such that

S(t) =
√

2Dξ(t) with D = A2

`2c
, (4.36)

where ξ(t) is independent of η(t) but with the same statistics (4.5). When D = 0, we obtain the
following stochastic differential equation of motion for Z(t) (previously derived in [WM03]):

Ż = −γZ − Z2 +
√

2Dγ ξ(t), (4.37)

which must be consider along with ẏ = Z(t). It is convenient to replace Z by a scaled variable x,
and introduce a dimensionless parameter ε:

x(t) = 1
γ

√
γ

D
Z(t), ε =

√
D

γ
, (4.38)

so that after a natural rescaling of the time t→ τ = γt one obtains{
y′ = εx

x′ = −x− εx2 +
√

2 ξ̄(τ)
(4.39)

with ξ̄(τ) a standard Gaussian white noise, and where z′(τ) = ∂τz. The joint density of probability
for y and x, P (x, y, τ), verifies a Fokker-Planck equation:

∂P

∂τ
= −εx∂P

∂y
+ ∂

∂x
[(x+ εx2)P ] + ∂2P

∂x2 . (4.40)

One looks for a stationary solution in the form

P (x, y) = ρ(x) exp(αy) (4.41)

so that
[−αεx+ ∂xĴε]ρ(x) = 0 where Ĵε = ∂x + x+ εx2. (4.42)

Because ∂x is a left-factor of Ĵε, any normalisable solution of (4.42) with a non-zero α must
satisfy ∫ ∞

−∞
dxx ρ(x) = 0. (4.43)

The physical meaning of (4.43) is that in order to find a stationary distribution for the sed-
imentation variable y, the flux must be constant and equal to zero. Moreover, it gives us an
implicit method to find α. Note that the integral (4.43) is distinct from the Lyapunov exponent
λ = εγ 〈x〉, because ρ(x) is a distribution of x which is conditional upon the value of y, even if
this variable does not appear explicitly.
To compute the Lyapunov exponent λ as a function of the dimensionless parameter ε, one has to
consider the Fokker-Planck equation for the stationary distribution of the variable x unconditional
upon the value of y, which we note ρ̄(x). One has simply

∂xĴερ̄(x) = 0. (4.44)

One particularity of the Langevin equation (4.37) is the existence of solutions consisting in
divergent trajectories in finite time. One to see it is to write the potential from which the
Langevin equation derives,

φε(x) = x2

2 + ε
x3

3 , (4.45)
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Figure 4.5 – Potential associated to the Langevin equation (4.39): φε(x) = x2/2 + εx3/3, here plotted for
ε = 0.3.

which diverges to −∞ as x → −∞ (see figure 4.5). As a consequence, the stationary solution
must have a non-zero flux j(ε). The solution of the Fokker-Planck equation with non-zero flux
is

ρ̄(x) = j(ε) exp (−φε(x))
∫ x

−∞
dx′ exp

(
φε(x′)

)
. (4.46)

The value of the flux j(ε) is determined by the normalisation:∫ ∞
−∞

dx ρ̄(x) = 1. (4.47)

The finite value of j(ε) is linked to the rate of formation of the caustics, because those singularities
correspond to points where δx = 0 and δv is finite, which leads to a divergence of Z(t) = δv/δx.
The figure 4.4 shows ρ̄(x) for two values of ε, and the dependence of j(ε) in ε. One can show
that the dimensional rate of formation J(ε) = γj(ε) in the limit ε→ 0 reads

J = γ

2π exp
(
− 1

6ε2

)
. (4.48)

Considering the expression of ε =
√DτS, it supports the hypothesis that the rate of caus-

tic formation has a non-analytic behaviour as the Stokes time τS approaches zero [WMB06;
FP07].
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〉

Figure 4.6 – Mean 〈x〉 as a function of the dimensionless parameter ε. The Lyapunov exponent λ is
proportional to 〈x〉: λ = εγ 〈x〉. The transition between the two regimes occurs at εc ≈ 1.33. In dashed
black lines, the expansion up to the 7th power of ε.

The transition between the stable and the unstable linear dynamics occurs when the Lyapunov
exponent λ changes sign. One can compute the evolution of 〈x〉 as a function of ε, where

〈x〉 =
∫ ∞
−∞

dxx j(ε) exp (−φε(x))
∫ x

−∞
dx′ exp

(
φε(x′)

)
. (4.49)
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The result is show figure 4.6. For large values of ε the dynamics is unstable and the trajectories
converge on a strange attractor with positive fractal measure. The Lyapunov exponent changes
sign at εc ≈ 1.33, so that for ε < εc the dynamics is stable and paths coalesce. Remark that
small values of ε correspond to large values of γ, which denotes an overdamped dynamics.
The exponent α defined in (4.27) is a function of the dimensionless parameter ε only. We
determined this exponent via numerical simulations of the model (4.3). The results are shown
figure 4.7. As expected, α is negative for ε < εc, leading to non-normalisable distributions (see
also figure 4.3) in the absence of the noise

√
2Dη(t). As the transition between the two regimes

is smooth, it is appealing to extend the notion of fractal dimension to the negative cases.
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D2 > 0

ε

α

Figure 4.7 – Exponent α as a function of the dimensionless parameter ε. One observes a possible non-
analytical behaviour at ε→ 0. At the transition for ε = εc, the linear dependence of α in ε− εc computed
in (4.81) is drawn in red lines.

We now consider two different perturbative approaches of (4.42) in order to determine the
coefficient α as a function of ε. First we look for an expansion around ε = 0, which correspond
to the limit where the non-linear term vanishes; the tools that we use are similar to the ones
developed in the previous chapter. Then, we sketch the first steps of a perturbation expansion
about the critical point εc where the fractal dimension changes sign.

4.3.2 Perturbation theory in the Gaussian noise limit

We consider the dynamics in the limit ε→ 0, which we call the Gaussian noise limit, because for
ε = 0 the Langevin equation for x in (4.39) is linear, so that its solution ρ̄(x) is Gaussian.

Perturbative expansion of the Lyapunov exponent

The Langevin equation for x is and Ornstein-Uhlenbeck process perturbed by a non-linear
term:

ẋ = −x− εx2 +
√

2 ξ̄(τ). (4.50)

In order to compute a perturbative expansion in powers of ε of the Lyapunov exponent defined
as λ = εγ 〈x〉, we can use the tools developed in the previous chapter. One formally searches an
expansion of 〈x〉 in the form

〈x〉 =
∞∑
n=0

anε
n. (4.51)

For convenience, we define
x1 = x√

2
and σ =

√
2 ε (4.52)
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so that
ẋ1 = −x1 − σx2

1 + ξ(τ). (4.53)

The density of probability for x1 verifies a Fokker-Planck equation, which can be turn into an
“hamiltonian” form:

(Ĥ0 + σĤ1) |Ψ0〉 = 0 (4.54)

Here H0 is an hermitian operator corresponding to the dynamics for ε = 0 and reads

H0 = 1
2 −

x2
1

2 + 1
2∂

2
x1x1 (4.55)

where â† and â are the classical creation and annihilation operators whose actions on the
orthogonal set of eigenvectors {|φn〉}n∈N of H0 are

a |φn〉 =
√
n |φn−1〉 , a† |φn〉 =

√
n+ 1 |φn+1〉 so that Ĥ0 |φn〉 = −n |φn〉 . (4.56)

The operator Ĥ1 corresponds to the non-linear part of the Langevin equation (4.52) and reads
in terms of the creation and annihilation operators

Ĥ1 = − 1√
2

(
â†â†â† + N̂ â+ â†(2N̂ + 1)

)
with N̂ = â†â . (4.57)

One can show that 〈x1〉 reads
〈x1〉 = 1√

2
〈φ1 |Ψ0〉 . (4.58)

Finally, one finds for 〈x〉 that all the even orders in ε are zero, and that the orders in the
expansion read

〈x〉 = −ε− 5ε3 − 60ε5 − 1105ε7 +O(ε9). (4.59)

The coefficients an grow with n like β1
n(n!)β2 with β1 > 1 and β2 > 0. As they are all of the same

sign, contrarily to the expansion in chapter 3, one cannot expect the series to converge towards
the function 〈x〉 (ε), which is likely non-analytic near ε = 0. Nevertheless, the first terms give a
first approximation of the behaviour of the Lyapunov exponent near ε = 0 (see figure 4.6).

Computation of the fractal dimension

To determine the dependence of the coefficient α in ε in the Gaussian limit, we need to solve the
equation (4.42) for both α and ρ(x). We explicitly expand both ρ(x) and α in powers of ε:

α =
∞∑
j=0

αj ε
j and ρ(x) =

∞∑
j=0

ρj(x) εj . (4.60)

To proceed, we do not look for a transformation in order to use an orthonormal basis of function,
as in the previous paragraph. We follow a method discussed in [WMG10], where we consider
non-hermitian operators, thus expanding each of the functions ρj(x) in terms of a basis set:

ρj(x) =
∞∑
n=0

%(j)
n φn(x). (4.61)

Here the basis functions {φj(x)}n=0 are un-normalised harmonic oscillator states, generated by
raising and lowering operators:

b̂† = −∂x, b̂ = ∂x + x (4.62)

with explicitly

φ0(x) = N0 exp
(
−x

2

2

)
, b̂† φn(x) = φn+1(x), and b̂ φn(x) = nφn−1(x). (4.63)
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The exact expression of the normalisation constant N0 is not needed. The Fokker-Planck
equation (4.42) reads [

−αε(b̂+ b̂†)− b̂†b̂− εb̂†(b̂† + b̂)2
]
ρ = 0. (4.64)

By substituting the expressions of ρ(x) and α defined in (4.60), one finds the recursion

− αn−1 φ1(x)− b̂†b̂ ρn(x) +Qn(x) = 0 (4.65)

where Qn(x) is explicitly expressed in terms of the solutions ρm(x) obtained at lower orders
(m < n):

Qn(x) = −
n−2∑
m=1

αm(b̂† + b̂) ρn−m−1(x) +
[
b̂− b̂†b̂2 − (b̂†)3 − 2(b̂†)2b̂

]
ρn−1(x) (4.66)

=
∞∑
k=0

Qn,k φk(x). (4.67)

In addition, we use the zero flux condition for the conditional distribution (4.43). One can show
the following orthogonality condition∫ ∞

−∞
xφk(x) dx = δk1 (4.68)

which immediately implies
%

(j)
1 = 0 for all j. (4.69)

As a consequence, the recursion (4.65) is solved if we set αn−1 = Qn,1 for all n.
We start the iteration with ρ0(x) = φ0(x), which leads to

− α0 φ1 − b̂†b̂ ρ1 + φ1 + φ3 (4.70)

so that α0 = −1 and ρ1(x) = φ3(x)/3. Solving recursively the system of perturbation equations
therefore yields α0 = −1, and then, αj = 0 for all values of j > 0, so that the development of α
has only one non-zero term(1). This can be shown with the following induction. Assume that
αj = 0 up to order j = n − 2; then all of the terms in the summation in (4.66) are zero. The
coefficient Qn,1 = αn−1 results from the application of the operator b̂− b̂†b̂2 to the component
%

(n−1)
2 φ2(x) of ρn−1(x), and this is automatically zero.

The implication is that, as the Lyapunov exponent λ or the flux j(ε), α has a non-analytic
dependence upon ε, such as α ∼ −1 + c exp(−S/ε2) (where c and S are constants). Yet, our data
showed figure 4.7 are not sufficiently precise to determine the non-analytic term reliably.

4.3.3 Behaviour at the transition

We perform here a perturbative expansion about the critical point, where the Lyapunov exponent
changes sign. For the model studied here, this occurs at εc ≈ 1.33. The parameter of the
perturbation is then α, which is in first approximation (see figure 4.7) proportional to ε−εc:

α = K(ε− εc) +O((ε− εc)2). (4.71)

We want to find the coefficient K. To proceed, we consider the Fokker-Planck equation for the
conditional density of probability ρ(x):

(−αεx+ ∂xĴε) ρ with Ĵε = ∂x + x+ εx2. (4.72)

(1)This was previously noted by B. Mehlig and K. Gustafsson in an unpublished work.
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We search ρ(x) in the form of a development in powers of (ε− εc):

ρ(x) = ρ0(x) + (ε− εc)ρ1(x) +O((ε− εc)2). (4.73)

Note that the functions ρi(x) are distinct from the ones of the previous development around
ε = 0. We substitute this expression into the equation (4.72) and find at the lowest order in
(ε− εc)

∂xĴεc ρ0 = 0. (4.74)

so that one has explicitly

ρ0(x) = j(εc) exp (−φεc(x))
∫ x

−∞
dx′ exp

(
φεc(x′)

)
. (4.75)

In the first order in (ε− εc), one obtains

∂xĴεc ρ1 −Kεcx ρ0 + ∂x(x2ρ0) = 0, (4.76)

The function ρ1(x) must be determined under two constraints. First the distribution ρ(x) must
stay normalised, and second it must verify the zero flux condition (4.43). It leads us to∫ ∞

−∞
dxρ1(x) = 0 and

∫ ∞
−∞

dxxρ1(x) = 0. (4.77)

As the operator ∂xĴεc is linear, one can decompose the solution ρ1 into the sum of two functions:
ρ1(x) = ρ′1(x) + ρ′′1(x), satisfying the equations

∂xĴεc ρ1(x) + ∂x(x2ρ0) = 0, (4.78)
∂xĴεc ρ

′
1(x)−Kεcx ρ0 = 0. (4.79)

The goal is to compute the values 〈x′〉 and 〈x′′〉, defined as the first moments of the partial
distributions ρ′1(x) and ρ′′(x), so that the zero flux condition reads

〈x′〉+ 〈x′′〉 = 0. (4.80)

The solution of equation (4.78) is easy to find. Consider the normalised solution of the Fokker-
Planck equation (4.72) with α = 0, which we denote by %(x, ε). It is straightforward to notice
that the function ∂ε%(x, ε)|ε=εc is the proper solution of (4.78). As a result, 〈x′〉 is simply equal to
∂ε 〈x〉 |ε=εc , where 〈x〉 is the first moment of the unconditional distribution ρ̄(x) defined in (4.46).
In particular, one can express explicitly 〈x′〉 in terms of a combination of single integrals. One
finds 〈x′〉 ≈ 0.141.
The equation (4.79) is more difficult to solve, and one must use numerical approaches in order to
compute the multiple integrals involved. One finds 〈x′′〉 ≈ 0.205K, so that finally

K ≈ 0.688. (4.81)

This value is in good accordance with the numerical results shown figure 4.7.

4.4 Generalisations and conclusion

4.4.1 Noisy dynamical systems

We claim that power-law distributions for the departure of an attractor may occur in dynamical
systems which are non-autonomous, and stable, in the sense that in the absence of noise,
solutions converge to a point attractor. It is the interaction between the noise and the fluctuating
environment which generates intermittency, via a stochastic mechanism of amplification. The
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particular physical situation studied here is the prototype of more general processes, which in
one dimension can be written in the form

ẋ = v(x, t) +
√

2D η(t) (4.82)

where the velocity field v(x, t) satisfies its own equation of motion, and fluctuates in space
and time. The instantaneous Lyapunov exponent can be readily defined from the noise-free
dynamics:

Z(t) = ∂v

∂x
, (4.83)

and the system is stable when Z(t) is negative in average: λ = 〈Z(t)〉 < 0. The main point is
that the statistics of the fluctuating quantity Z(t) should not depend on the trajectory.

4.4.2 Power-law distribution and negative fractal dimension

It has already been pointed out (see [Wil+12]) that fluctuating instantaneous Lyapunov exponents
can lead to clustering of trajectories, even if the Lyapunov exponent λ is positive, implying an
exponential growth of small separations. For such systems, a set of trajectories forms a dynamical
fractal structure in the physical space, which can be characterised by its correlation dimension D2.
The probability density function for the separation of trajectories then follows a power-law:

P (∆x) ∼ |∆x|D2−1. (4.84)

In this chapter we showed that we can find power-law distributions even in the case of a stable
dynamical system, with λ < 0. These distributions arise if we add a noise in the equation of
motion which prevents all trajectories to merge. Typically, two random processes are involved
in the dynamics: the noise

√
2D η(t) avoids two nearby trajectories to merge, while the positive

fluctuations of Z(t) might lead to large excursions, which are a signature of intermittency, and
eventually lead to power-law distribution.
Numerical evidences and analytical results exhibited for our particular model the following
functional form for P (∆x):

P (∆x) ∼ |∆x|α−1. (4.85)

where α is negative for λ < 0, so that P (∆x) is non-normalisable for ∆x→ 0. This is expected,
because in the absence of noise all trajectories merge into a single one, and the attractor is a
point-like structure. The noise term causes a regularisation of the density of probability in the
limit of small separations ∆x→ 0.
The similarities between (4.84) and (4.85), the independence of α in the noise term and its
smooth variation at the transition between the stable and the unstable regime drive us to extend
the notion of correlation dimension to negative values, setting D2 = α < 0. When the system
is stable (λ < 0), the point-like attractor still has a fractal dimension, which is negative. We
claim that this results are generic for non-autonomous dynamical systems, so that the addition
of the noise term in the equation of motion allows the emergence of a property of the underlying
dynamical system alone.

4.4.3 Link to other definitions of the fractal dimension

It is of interest to see if the analysis presented here can be extended to other definitions of
fractal dimensions. In the chapter 2 we presented the case of a vanishing Cantor set where the
box-counting dimension appeared to be negative. However, if we try to compute the box-counting
dimension for the model presented in this chapter, we will not obtain a negative fractal dimension.
The main issue is the presence of the noise term, which is prominent for small separations ∆x.
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Thus, by decreasing the size of the box, we will characterize the diffusion induced by the noise
term, and not the properties of the unperturbed system.

We can also compare the notion of negative fractal dimension to an other estimate of the
fractal dimension, the Lyapunov dimension DKY [KY79], defined as follows. Considering an
ordered Lyapunov spectrum λ1 ≥ λ2 ≥ · · · ≥ λn, and let j be the largest integer for which
λ1 + λ2 + · · ·+ λj ≥ 0. Then, the Kaplan-Yorke formula reads

DKY = j +
∑j
i=1 λi
|λj+1|

. (4.86)

The Lyapunov dimension is generally an upper bound for fractal dimensions. For the one
dimensional system studied in this chapter, the application of this formula is straightforward.
In the unstable case (λ > 0) one obtains DKY = 1, which does not faithfully describe the
behaviour of the system, while in the stable case (λ < 0) one obtains DKY = 0. In both cases,
the Lyapunov dimension fails to give us supplementary information on the system, because it
does not consider fluctuations of the Lyapunov exponent. For λ > 0 the negative fluctuations of
the instantaneous Lyapunov exponent drive the formation of clusters and dynamical attractors
with correlation dimension smaller than 1. On the contrary for λ > 0 the positive fluctuations
of the instantaneous Lyapunov exponent coupled with the action of the diffusion term lead to
negative fractal dimensions.

It is interesting to note that the effects on fluctuating Lyapunov exponents were already analysed
by Grassberger and Procaccia [GP84], in particular in order to compare the correlation dimension
with the Kaplan-Yorke formula (4.86). They also obtained a sedimentation description for the
dynamics of the separation of trajectories. For a stable direction with a negative Lyapunov
exponent, the contribution to the correlation dimension was arbitrary set to 0, and the correlation
function along this particular direction were a Dirac function. In this chapter we extended this
prescription.

Here we should stress out that the negative fractal dimension lacks certain basic properties
expected for dimension estimators. In particular, consider a fractal attractor along the axis x1
with correlation dimension ν1 > 0, and another one along the axis x2 with correlation dimension
ν2 > 0. For a trajectory in the plane (x1, x2), the expected number of trajectories on the plane
in a ball of radius ε scales as

N (ε) ∼ εν1+ν2 (4.87)

so that the dimensions of the two decoupled attractors add up. Now, if the attractor in space x1
has a negative fractal dimension, so a point-like structure if the absence of the noise sustaining
term, the number of trajectories in a ball of radius ε is ill-defined, because of the noise term
needed to obtain power-law distributions. Turning off the noise and setting the value of the
correlation dimension to zero gives a resulting correlation dimension of value ν2 for the attractor
in the space (x1, x2), as expected, so that if we want to add the two values of fractal dimension,
one must take the dimension of the attractor in the space x1 to be 0, rather than the negative
value linked to the fluctuations of the Lyapunov exponent (see figure 4.8 and below for a typical
example obtained from the chapter 3).

4.4.4 Sedimentation description

The mapping y = ln ∆x is widely used in intermittency problems [PST93; PHH94]. In our case it
leads to a sedimentation problem, where in the absence of the noise the variable y follows an
equation of motion in the form

ẏ = Z(t). (4.88)
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φ

z

Figure 4.8 – Schematic description of the attractor at the equator of the Kendall sphere. For the dynamics
without the homogeneous diffusion, the attractor is the equator of the Kendall sphere (in red), of
dimension 1. With the diffusion, we obtains an attractor of dimension −1 in the z direction (in blue).

As the statistics of Z(t) are independent of y, we can show that the only functional form for the
density of probability p(y) is exponential:

p(y) ∼ exp(αy), (4.89)

so that the density of probability for the separation of trajectories P (∆x) has a power-law
dependence:

P (∆x) ∼ |∆x|α−1. (4.90)

The average Lyapunov exponent λ = 〈Z(t)〉 can be seen as a drift velocity in the space of the
variable y(t). In order to prevent all the particles from going toward y → −∞, a bouncing or
re-injection process is needed at some position y. Such a role is played by the noise term which
becomes prominent at small ∆x, i.e. for y → −∞.
It is interesting to note that in the unstable case λ > 0, the positive drift velocity drives the
particles towards y →∞, so that a re-injection process seems also to be needed. However, the
sedimentation description is valid only for small separation of trajectories, and the dynamics
for large y is not accurately described by (4.88). Though, if we know the dynamical equations
describing Z(t), one can still use the sedimentation equation to compute the fractal dimension,
which is positive in that case.
Note that we obtained the same description for the model introduced in the previous chapter,
about the dynamics of triangles in turbulent flows. The non-autonomous dynamical system was
linked to the action of the like-scale eddies on the tracers, while the noise term was related to
the homogeneous diffusion process caused by small-scales eddies. We showed that the equator
of the Kendall sphere was an attractor of the dynamics. In terms of the correlation dimension,
the fractal dimension of the attractor at z = 0 in the space of the variable z was of value −1,
because we obtained power-laws in the form

P (z) ∼ z−2. (4.91)

In the space space of the dynamics, which is the Kendall sphere, we need to consider the φ
direction (see figure 4.8). For the dynamics without a diffusion process in the physical space, all
the particles converge towards the equator, so that the attractor is the equator, which has a
dimension 1. The addition of the noise breeds the fluctuations, and thus a new structure emerges
in the z direction.
In the final chapter of this thesis, we focus on the particular problem (4.88). Using tools from the
large deviation theory, we derive a systematic method to find α, the exponent of the sedimentation
equilibrium (4.89).
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This chapter, more formal than the others, deals with a classic problem of statistical physics. In
the two previous chapters of this thesis, we encountered equations in the form

ẏ = κx(t) (5.1)

where x(t) is a fluctuating function, whose statistics are independent of y, and κ a constant.
In both chapter 3 and 4 the variable y describes a clustering process. For the triangle model, it
is linked to z = cos θ via

y = ln z, (5.2)

where θ is the polar angle of the shape representative point of the triangle on the Kendall sphere
(see section 3.1.1). Due to the action of the strain matrix, the triangles are driven towards the
equator of the Kendall sphere, so that z → 0 and consequentially y → −∞. The presence of
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a diffusion term in the equations of motion of the triangle vertices prevents a collapse on the
equator, and effectively acts as a re-injection process in the space of the variable z, leading to
a normalisable distribution p(z). For the inertial particles, y is linked to the separation of two
particles ∆x, via

y = ln ∆x. (5.3)

In the path coalescence regime, all the trajectories merge into a single one, so that ∆x→ 0 and
thus y →∞.
In both cases, the equation of motion for y in the limit where z or ∆x are small is in the
form (5.1), with

〈x〉 < 0, (5.4)

so that on average all the particles go towards y → −∞. This equation then describes a
sedimentation process (see section 2.6.1).
The stationary density of probability of y, P (y), is linked to the stationary distribution of z and
∆x. In particular, for inertial particles we extended the notion of fractal dimension to the negative
cases, and the value of the dimension was determined using various perturbative methods. It is
then natural to analyse the equation (5.1) in a more general case.
We begin by setting the problem of sedimentation; in particular, we explain the importance of
the boundary conditions in the y-space. Then, we present the determination of the stationary
distribution P (y) in terms of a large deviation problem. We study in detail on a process driven
by a telegraphic noise, and compute explicitly the form of the distribution P (y). Lastly, we
present some perturbative tools in the case where x(t) is generated by non-linear Langevin
equations.
The results of this chapter have been partly published in [GPW16].

5.1 Position of the problem

Throughout this chapter we consider stochastic processes in the form (5.1), where the statistics
of the “speed” x(t) do not depend on the “position” y, and where we set κ = 1 without any loss
of generality, so that

ẏ = x. (5.5)

One can consider the equation (5.5) as the equation of motion of a particle in a one dimensional
axis and whose position is y(t), and whose velocity is x(t). We also consider that the velocity
statistics become stationary quickly, in a sense that will be explained later. Thus, unless otherwise
stated, the average of a quantity A(t), 〈A(t)〉, is taken in the stationary limit.
Moreover, we suppose that the process has a non-zero mean drift velocity:

〈x〉 6= 0. (5.6)

If the mean drift velocity is positive (resp. negative), the particle will go toward y →∞ (resp.
y → −∞) in average. We may also study the case of discrete time processes in the form

yn+1 = yn + xn, (5.7)

and we show here that the two types of processes do not not fundamentally differ.

5.1.1 Boundaries and exponential decay

In order to obtain a stationary density of probability P (y) for the position y, we restrict ourselves
to problems where space is limited by an impervious barrier (or “wall”), placed at ywall. If the
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mean drift is positive, the accessible space is then the half-line ] −∞, ywall]. As a result, the
probability distribution is expected to have its maximum close to the wall, and to decay away
from it.
We are not interested in describing precisely what happens at the wall. We only suppose that a
process of re-injection occurs, allowing the particles to form a structure away from it. In other
words, we suppose that we can define a region of the space where the dynamics is not influenced
by the presence of the wall. In this region, the problem (5.5) presents a translational invariance.
Specifically, the structure of the stationary distribution of the particle position P (y) at a distance
y− ywall to the wall is expected to be independent of y, provided y− ywall is large compared to a
characteristic length scale over which particles lose memory about the wall. This length scale,
which corresponds to a mean free path for the particle, is assumed to be finite. This excludes
from the present study a class of systems where particles can travel arbitrarily far from the wall
over a characteristic time scale of the noise (see section 5.2.4 for an explicit examples of such a
process).
The translational invariance of the problem leads to a particular structure of the distribution
P (y). To proceed, we define a translation operator T̂∆y which shifts the origin by ∆y by its
action on an arbitrary function f(y):

T̂∆yf(y) = f(y −∆y). (5.8)

The distribution P (y) must be an eigenfunction of the translation operator, which satisfies

T̂∆yP (y) = ΛP (y) (5.9)

for some eigenvalue Λ. It follows that the stationary probability density has an exponential
form [LL65]:

P (y) ∼ exp(αy). (5.10)

With the function defined by (5.10), the eigenvalue Λ is equal to exp(−α∆y). The main goal
of this chapter is to show how to compute the coefficient α, which we call the coefficient of
sedimentation(1).
It is important to note that α = 0 is formally always a solution of the problem. It corresponds
to the homogeneous case, where the distribution P (y) is uniform, and thus, in a (semi-)infinite
system, non-normalisable.

5.1.2 An elementary example: sedimentation of Brownian particles

In a homogeneous system, we expect the motion at long time to resemble a biased random walk
with drift velocity 〈x〉 and diffusion coefficient Dx, given by [Tay22]:

Dx = 1
2

∫ ∞
−∞

dt 〈(x(t)− 〈x〉) (x(0)− 〈x〉)〉 . (5.11)

Equation (5.11) gives an expression for the diffusion coefficient, provided the noise x(t) has a
finite correlation time, and not only in the case of a very short correlation time.

Temporally uncorrelated process

A first example of a biased random walk is the motion of Brownian particles in a thermal bath
under the gravity field, which we treated in chapter 2. We note m the mass of the particle, g
the acceleration of the gravity, γ the drag coefficient and D the diffusion coefficient associated

(1)This term can be confusing, as α−1 has the dimension of a length, but the author did not find a better naming.
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with the random action of the molecules of the bath on the particle. In the case of overdamped
particles, the equation of motion is

ẏ = v0 +
√

2D ξ(t) (5.12)

with v0 = −mg/γ and ξ(t) a Gaussian white noise. Thus, the Fokker-Planck equation for the
density of probability P (z, t) reads

∂P

∂t
= −v0

∂P

∂y
+D

∂2P

∂y2 , (5.13)

so that the stationary distribution is

Pstat.(y) = A exp
(
v0
D
y

)
(5.14)

where A is a normalization constant. One has α = v0/D. In this case the wall is simply the bottom
of the thermal bath. From the thermal equilibrium, one can derive the Einstein relation [Ein05;
Sut05]:

D = µkBT (5.15)

where µ = −v0/mg is the mobility of the particle. This equation is the first example of a
fluctuation-dissipation theorem [Kub66]: the linear response of a given system to an external
perturbation – here the drag force counterbalancing the macroscopic motion of the particle – is
expressed in terms of fluctuation properties of the system in thermal equilibrium, characterized
by the diffusion coefficient D.
This example gives a first possible equation for α, in the form

αE = 〈x〉
Dx

. (5.16)

In the remainder of this chapter, a relation implying α and the statistical properties of x(t) is
called a generalized Einstein relation, and we refer to (5.16) as a classical Einstein relation. In
the general case we do not introduce a thermal reservoir and α is solely determined from the
equation of motion.

Time correlated Gaussian process

The dynamics of y described by (5.12) is a Markov process: the knowledge of the position y of
the particle at time t is enough to determine the future evolution y(t+ ∆t), because the noise√

2D ξ(t) is temporally uncorrelated. Physically, this means that the correlation time of the
process

√
2D ξ(t) is much smaller than the variation time of the macroscopic process y(t). In

order to properly describe the dynamics of the small degrees of freedom, one can consider an
equation of motion in the form

ẏ = x(t) and ẋ = −γ(x− v0) +
√

2D η(t), (5.17)

where η is a standard Gaussian white noise, and γ is the inverse of the correlation time of the
velocity. The speed of the Brownian particle is then an Ornstein-Uhlenbeck process; one generally
speaks of a Rayleigh particle [Hoa71]. The motion of y only is not Markovian anymore, because
we need to know the value of the velocity x at time t to compute the future evolution of y(t), but
the joint process (y(t), x(t)) is. The system of equations (5.17) is a system of coupled Langevin
equations, so that one can write a Fokker-Planck equation for the joint density of probability
P (y, x, t):

∂P

∂t
= −x∂P

∂y
+ γ

∂

∂x
[(x− v0)P ] +D∂

2P

∂x2 . (5.18)
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(a) Marginal distribution of x: P (x) =∫
dyP (y, x). In red, the homogeneous case with
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(b) Marginal distribution of y: P (y) =∫
dxP (y, x). The wall is at y = 0 (dashed grey

line). In orange, numerical computation, in black,
analytical prediction. One observes an exponential
decrease P (y) ∼ eαy with α = v0γ
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Figure 5.1 – Analysis of the model (5.17). The parameters are v0 = −2, γ = 1 and D = 2, so that α = −1.
Concerning the distribution of the velocities P (x), one obtains a Gaussian distribution of mean v0 in the
homogeneous case, and in the presence of the wall this distribution is shifted, with a zero mean value.

As the Langevin equations are linear, the dynamics is Gaussian, and the stationary density of
probability P (y, x) is a Gaussian function:

P (y, x) ∼ exp
(
− γ

2

2Dx
2
)

exp
(
v0γ2

D y

)
. (5.19)

After integrating over all the possible values of the speed x, one recovers a sedimentation
equilibrium

P (y) ∼ exp (αy) with α = v0γ2

D . (5.20)

Determining the spatial diffusion coefficient for the process x(t) described by (5.17) gives
Dx = D/γ2, so that α = αE, and the classical Einstein relation holds.

5.1.3 First approaches

If the problem (5.5) is Markovian, the density of probability P (y, t) follows in the general case a
Master equation:

∂P (y, t)
∂t

=
∫ [

W (y|y′)P (y′, t)−W (y′|y)P (y, t)
]
dy′ (5.21)

where W (y2|y1) is the transition probability per unit time from y1 to y2, which may depend on
time. If we know the transition probabilities, we can inject a solution in the form P (y) = exp(αy)
into (5.21), obtaining an implicit equation to find α. However, one generally does not know
the transition of probability for y, but rather the statistics of x. Thus, numerous efforts were
made to obtain developments in partial differential equations of the Master equation, such as the
Kramers-Moyal development [Moy49], or the van Kampen expansion [Kam61].

In general, we process (5.5) is not Markovian, so that one cannot expect to find a partial differential
equation for the distribution P (y, t). A variety of different approaches to find approximate
equations in the form of a Fokker-Planck equation exists. As a fruitful example, one can cite a
method proposed in [SSS86]. Considering the more general problem

ẏ = f(y) + g(y)x(t) (5.22)

73



Chapter 5 – Non-thermal Einstein relations

where f and g are smooth functions, and x(t) is a random process independent of y. Let ρ(y, t)
be the density of trajectories in the space phase, for a given realisation of the noise x(t). This
density verifies a Liouville equation

∂tρ(y, t) = −∂y [(f(y) + g(y)x(t))ρ(y, t)] , (5.23)

which can be written, using the terminology of van Kampen [Van92],

u̇ = Â u (5.24)

with u = ρ(y, t) and Â a stochastic operator:

Â = −∂y [(f(y) + g(y)x(t))·] . (5.25)

The density of probability for y, P (y, t), is related to the average of ρ(y, t) over all the realisations
of x(t):

P (y, t) = 〈ρ(y, t)〉 . (5.26)

One then can use tools developed by van Kampen [Van76] to compute an approximate evolution
equation for 〈u〉 = P (y, t). Usually, the noise x(t) is an Ornstein-Uhlenbeck process, and one
can obtain a series expansion for P (y, t) in powers of the correlation time, and involving spatial
derivatives of P (y, t).
Our approach however does not make explicit use of a generalisation of a Fokker-Planck equation,
but rather uses large deviation theory. In particular, we explicitly show that the classical Einstein
relation is not valid in the general case.

5.2 Large deviation formulation

In this section, we first compute an implicit equation for α, without reference to any particular
model. Then we show how the formalism of large deviation theory apply in this case. We also
give two explicit examples where the prediction of an exponential decay fails.

5.2.1 A general form of the Einstein relation

Discrete time processes

We consider the discrete-time dynamics

yn+1 = yn + xn. (5.27)

If the xn are non-correlated, then there exists a simple relation between the probability density
for y at time n + 1, Pn+1, and the probability density for y at time n, Pn. Let π(xn) be the
probability density of xn, which does not depend on n. One has

Pn+1(y) =
∫

dxPn(y − x)π(x). (5.28)

We look for a stationary distribution for y in the form Pstat.(y) = exp(αy). From (5.28) one
obtains

1 =
∫

dx e−αx π(x) = 〈e−αx〉 . (5.29)

Nevertheless, in the general case the velocities are correlated, so we cannot use such a simple
approach. Let π(xn, n) be the probability density of xn, which this time depends on n. One
has

Pn+1(y) =
∫

dxPn(y − x)π(x, n). (5.30)

74



Chapter 5 – Non-thermal Einstein relations

One cannot simply take the stationary limit because, as the speeds are correlated, Pn(x, n)
depends explicitly on the “time” n. Thus, we iterate this process to obtain for m > 1

Pn+m(y) =
∫

d
(
n+m−1∑
i=1

xi

)
Pn

(
y −

n+m−1∑
i=1

xi

)
Π
(
n+m−1∑
i=n

xi, n

)
. (5.31)

where Π
(∑n+m−1

i=n xi, n
)
is the density of probability of the sum ∑n+m−1

i=n xi. Now, if m is much
larger than the correlation time of xn, the latter distribution does not depend on n anymore, so
that one can take legitimately the stationary limit. Looking for a stationary distribution Pstat. in
the form exp(αy), one obtains

lim
m→∞

〈
exp

(
−α

m∑
i=0

xi

)〉
= 1. (5.32)

The conditions of validity of this approach will be explained later, but we already see that the
quantity defined in (5.32) must exist. In particular, we suppose that the noise x(t) has a finite
correlation time.

Continuous time processes

We now consider the discrete time process

ẏ = x (5.33)

and define the temporal integral of this equation over a time t:

y(T ) = y(0) + ∆y(T ) where ∆y(T ) =
∫ T

0
dt x(t). (5.34)

The analysis is similar to the one made for the discrete time process. Let Π(∆y, T ) be the
probability density of ∆y at time T . Provided T is much larger than the correlation time of the
original process x(t) so that we can assume that ∆y(T ) is independent of the initial time, we
express the condition that the distribution P (y) is stationary in the form:

P (y) =
∫

d∆yP (y −∆y) Π(∆y, T ). (5.35)

Using explicitly the exponential form of the PDF P (y), one obtains the expression:

lim
T→∞

∫
d∆y exp(−α∆y) Π(∆y) = 1, (5.36)

which can be interpreted as the average of exp(−α∆y), the variable ∆y(T ) being characterized
by its density of probability, Π(∆y). Finally one has an equation similar to the discrete time
case:

lim
T→∞

〈
exp

(
−α

∫ T

0
dt x(t)

)〉
= 1. (5.37)

Thus, we obtained explicit equations for α, both for discrete time processes and continuous time
processes. We now present the formalism needed to analysis such equations.
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5.2.2 The large deviation principle

Both equations (5.32) and (5.37) can be simply analysed with the formalism of the large deviation
theory, which we introduce here. The goal of the following is not to present the mathematical
foundation of the large deviation theory, nor to review all the physics fields in which this theory
is at play. Such a work will widely exceed the framework of this thesis, and an excellent review
of the applications of the large deviation theory in physics can be found in [Tou09]. We will use
the large deviation theory as a generalization of the law of large numbers. We begin by a simple
example; then we introduce the basics concepts and show how to express the equations (5.32)
and (5.37) with this formalism.

Gaussian sample mean

We consider a sequence of independent random variables {xi}, identically distributed according
to the Gaussian probability density

p(xi) = 1√
2πσ2

exp
(
−(xi − µ)2

2σ2

)
. (5.38)

Define an estimator of the mean value of the variables:

mn = 1
n

n∑
i=1

xi. (5.39)

One naturally expects that limn→∞mn = 〈xi〉 = µ, but we are interested in the asymptotic form
of the probability density P (mn). It is straightforward to show that

P (mn) =
√

n

2πσ2 exp
(
−n(mn − µ)2

2σ2

)
. (5.40)

This distribution can be directly calculated, or we can use the fact that a sum of Gaussian
variables is also Gaussian-distributed. For large values of n, one can extract a exponential
behaviour of this exact result:

P (mn) �
n→∞

e−nI(m) where I(m) = (m− µ)2

2σ2 . (5.41)

The function I(m) is generally called a rate function. It gives us the behaviour of the distribution
P (mn) for large n. The notation �

m→∞
means that we neglect the sub-dominant terms with

respect to the decaying exponential, here
√
n for the density (5.40). In our case I(m) is convex

(see figure 5.2a) and possesses a single minimum at m = µ, which is also a zero of the function.
As a result, the distribution of the estimator mn gets more and more concentrated around its
expected value µ as n grows.

The Gärtner-Ellis theorem

The random variable mn then follows a large deviation principle, characterized by the existence
of a rate function I(m) and an exponential decay of its density of probability as n grows. More
generally, a random variable An follows a large deviation principle if it verifies the Gärtner-Ellis
theorem [Gär77; Ell84]. Define the scaled cumulant generating function of An by

λ(k) = lim
n→∞

1
n

ln 〈exp (nkAn)〉 (5.42)

for k ∈ R. If λ(k) exists and is differentiable for all k ∈ R, then the variable An satisfies a large
deviation principle:

P (An) �
n→∞

e−nI(a) (5.43)
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(b) Scaled cumulant generating function for the
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the same values µ = 1 and σ = 2.

Figure 5.2 – Analytical large deviation results for the Gaussian sample mean. The rate function I(m)
and the scaled cumulant generating function λ(k) are both quadratic.

with a rate function given by
I(a) = sup

k∈R
{ka− λ(k)}. (5.44)

The transform defined above is an extension of the Legendre transform called the Legendre-Fenchel
transform [Roc70].
For the Gaussian sample mean, or in general for any sample mean of independent and identically
distributed random variables, the scaled cumulant generating function as a simple form. One
has

λ(k) = lim
n→∞

1
n

ln
〈

exp
(
k

n∑
i=1

xi

)〉
= ln 〈ekxi〉 . (5.45)

This result is known as the Cramér’s Theorem [Cra38]. For the Gaussian sample mean, λ(k) can
be explicitly computed:

λ(k) = ln 〈ekxi〉 = µk + 1
2σ

2k2. (5.46)

Just as the rate function, λ(k) is quadratic (see figure 5.2b).

Continuous time processes

The extension to continuous time processes is straightforward. For a stochastic process x(t), we
consider the random variable AT [x(t)] defined as the functional(2):

AT [x(t)] = 1
T

∫ T

0
dt x(t). (5.47)

The variable AT [x(t)] is simply the time integral of x(t). The scaled cumulant generating function
is

λ(k) = lim
T→∞

ln
〈
exp

(
TkAT [x(t)]

)〉
. (5.48)

Provided that λ(k) exists and is differentiable, the Gärtner-Ellis theorem holds and AT [x(t)]
follows a large deviation principle.

(2)More generally, one can define a functional in the form

AT [x(t)] = 1
T

∫ T

0
dt f(x(t))

where f is some smooth function. In this text only the case f = Id is studied.
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5.2.3 Implicit equation for the coefficient of sedimentation

Under the formalism of the large deviation principle, the condition (5.32) for discrete time
processes, and (5.37) for continuous time processes merely states that −α is a root of the scaled
cumulant generating function of the process x:

λ(−α) = 0, (5.49)

where explicitly λdis. for the discrete time case and λcont. for the continuous time case read

λdis.(k) = lim
n→∞

1
n

ln
〈

exp k
(

n∑
i=1

xi

)〉
and λcont.(k) = lim

T→∞

1
T

ln
〈

exp k
(∫ T

0
dt x(t)

)〉
.

(5.50)
Thus, the determination of α amounts to finding solutions of (5.49). One remarks that, as stated
previously, α = 0 is always a root of λ(k).
The condition for a sedimentation equilibrium corresponds to the existence of the function λ(k),
so that one can argue that the sedimentation holds if the sample mean of the process x follows a
large deviation principle.
As the scaled cumulant generating function is convex [Tou09], it guarantees the existence of at
most one other value of α satisfying (5.49). The scaled cumulant generating function is linked to
the moments and cumulants of the random process. In particular, one has

dλ(k)
dk

∣∣∣∣
k=0

= 〈x〉 , (5.51)

so that if 〈x〉 6= 0, this identity ensures that the non-zero value of α and 〈x〉 have identical signs.
These two results, namely the existence of at most one non-zero solution of (5.49) and the sign
identity α · 〈x〉 > 0, derive immediately from the large deviation formulation of the sedimentation
process.
Lastly, it is interesting to note that the condition (5.49) can be recovered in the case where x(t)
derives from infinitesimal stochastic generator, in the generic form(3)

ẋ = b(x) + σ(x) η(t). (5.52)

On one hand, from the equation of motion ẏ = x(t), the stationary joint density of probability
for x and y, P (x, y) = ρ(x) eαy, verifies a Fokker-Planck equation:

0 = (−αx+ F̂)ρ where F̂ = − ∂

∂x
[b(x)·] + 1

2
∂2

∂x2 [σ2(x)·]. (5.53)

Therefore, the equation (5.53) has a non-zero solution if the operator −αx+ F̂ has a non-zero
kernel, which gives an explicit expression for α. On the other hand, the scaled cumulant generating
function λ(k) is then equal to the largest eigenvalue of the operator Lk = L+ kx, where L is the
generator of the stochastic process described in (5.52) (see [DV75]):

L = b(x) ∂
∂x

+ σ2(x)
2

∂2

∂x2 . (5.54)

Thus, as L is the adjoint of F , they share the same (real) spectrum, so that the condition under
α is the same as (5.49).

(3)For simplicity we consider a one-dimensional generating process for x(t), but the result can be generalized to
higher dimensions.
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k

λ(k)

Figure 5.3 – Scaled cumulant generating function λ(k) = x0k for the non-fluctuating process (5.55) with
x0 < 0. In dashed line, we represent the effect of a small fluctuating term on the process: ẏ = x0 +

√
2Dη(t)

with D � 1 and η(t) a Gaussian white noise. As λ(k) is a convex function, the non-zero root tends to
+∞ as D tends to 0.

5.2.4 Examples where the exponential sedimentation fails

The theory presented here requires the existence of a large deviation principle for the sample
mean of the process 〈x〉, and the existence of a non-zero root of the scaled cumulant generating
function. We present here two typical examples where the sedimentation prediction fails.

Non-fluctuating process

This example is very elementary; consider the process
ẏ = x0 (5.55)

where x0 is simply a constant. The scaled cumulant generating function has then the simple form
λ(k) = x0k, so that λ has only one root, α = 0. Physically, the absence of random fluctuations in
the process prevents the sedimentation from occurring.
In the light of the previous chapter, such a process can describe the dynamics of a system with a
non-fluctuating Lyapunov exponent:

Ẋ = x0X with X = exp(y). (5.56)
To extend the correlation dimension to negative values, we saw that the Lyapunov exponent
must experience positive fluctuations in order to produce intermittency bursts and to obtain
power-law distributions. Formally, one can set the negative fractal dimension to the value −∞,
because the other root of λ(k) is at +∞ if x0 is negative (see figure 5.3).

Long tail distributions

We consider here a discrete time process in the form
yn+1 = yn + xn (5.57)

where the xn are independent and identically distributed random variables according to the
so-called Pareto density [Lan73]:

P (x) = A

(1 + |x− x0|)β
(5.58)

with x0 a constant, β > 3 and A a normalization constant. In this case the drift velocity 〈x〉 = x0
and the diffusion coefficient Dx are finite, but λ(k) is undefined, except at k = 0. The slowly
decaying tails of the distribution P (x) imply that there is no region in space where the particles
are not sensitive to the presence of the wall. In a sense, the mean free path of a particle, that is
the typical lentgh travel between two jumps, is infinite.
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Figure 5.4 – Notation and schematic description of the telegraph noise process.

5.3 A completely solvable problem: telegraphic noise

We consider in this section a continuous time process which is non-Markovian and non-Gaussian,
and derive exactly the expression of the scaled cumulant generating function. In particular, we
investigate the Gaussian limit, that is the conditions where the sedimentation coefficient α can
be approximated by αE, determined by the classical Einstein relation (5.16).

5.3.1 The model

We assume that the process x(t) can only take two values, x+ > 0 or x− < 0. In other words, the
particle at position y(t) can have two possible velocities. The velocity switches from x+ to x−
(resp. x− to x+) with transition rates R+ (resp. R−); see figure 5.4. In the steady state regime,
the probability of the velocity to be x+ is noted ρs+ (resp. ρs−), and corresponds to the fraction
of time during which the velocity is x+ (resp. x−). One has simply

ρs+ = R−
R− +R+

and ρs− = R+
R− +R+

. (5.59)

As a consequence, the mean velocity 〈x〉 is given by

〈x〉 = R+x− +R−x+
R+ +R−

. (5.60)

As defined, the stochastic process of the speeds x(t) is Markovian; nevertheless, the integrated
process y(t) generated by ẏ = x is not.

Direct analysis

We introduce the probability distribution of the position y, P+(y, t) and P−(y, t), conditioned
on the value of x being equal to x+ and x−. We expect the stationary distributions P+ and
P− to decay exponentially as a function of y. The evolution equation for P+, P− is given by an
advection-diffusion equation:

∂

∂t

(
P+
P−

)
= − ∂

∂x

(
x+P+
x−P−

)
+
(
−R+ R−
R+ −R−

)(
P+
P−

)
. (5.61)

We look for solutions in the form P±(y) = A± exp(αy). By injecting this form into the equation
(5.61), one obtains an eigenvalue equation:

0 = M(α)
(
A+
A−

)
(5.62)

where we defined
M(−α) =

(
−αx+ −R+ R−

R+ −αx− −R−

)
(5.63)
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Figure 5.5 – In red, plot of the stationary density of probability P (y) obtained from numerical simulations
of the telegraphic model, with parameters R+ = 0.6, R− = 0.4, x+ = 0.5 and x− = −1. The mean speed
is 〈x〉 = −0.4. The linear regression shows that away from the wall (at y = 0, represented by a vertical
grey dashed line), lnP (y) ∼ αy with α = −0.8, as expected from (5.65).

so that α is solution of
det M(−α) = 0. (5.64)

This condition leads to a simple algebraic equation, with only one non-zero root:

α = −x+R− + x−R+
x+x−

. (5.65)

One immediately sees that as x+x− < 0, the coefficient α and 〈x〉 have the same sign.
Figure 5.5 presents the results of a numerical simulation of the model, with an impervious wall
placed at y = 0. The elastic rebound condition is the following: if the position y(t+ ∆t) at time
t+ ∆t happens to be negative while y(t) is positive, the new position is set to −y(t+ ∆t), and
the speed of the particle at x+. In practice, the re-injection mechanism is of no importance for
the sedimentation process away from the wall, as long as it allows the existence of a region in
space where the mean flux of particles is zero.

Classical Einstein relation

We show here that the value of α differs from the one given by the classical Einstein relation. To
proceed, we consider the telegraphic noise process x(t) unconditional with the position y(t), and
note ρ±(t) the distributions of the speeds x+ and x−. Their evolution equation is

∂

∂t

(
ρ+
ρ−

)
=
(
−R+ R−
R+ −R−

)(
ρ+
ρ−

)
. (5.66)

To compute the diffusion coefficient Dx, let Pa|b(t) be the probability that the system is in the
state xa at time t, knowing that it was in the state xb at time 0 (with a, b ∈ {+,−}). It follows
that

〈x(t)x(0)〉 =
∑
a,b

xaxbρa|b(t)ρsb

=
(
x+ρ+|+(t) + x−ρ−|+(t)

)
x+ρ

s
+ +

(
x+ρ+|−(t) + x−ρ−|−(t)

)
x−ρ

s
− (5.67)

so that
C(t) = 〈x(t)x(0)〉 − 〈x〉2 = R+R−

(R+ +R−)2 (x+ − x−)2 e−t/τ (5.68)
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where τ = (R+ + R−)−1 is the correlation time of the process. Then, one can compute the
expression of the diffusion coefficient

Dx =
∫ ∞

0
dt C(t) = R+R−

(R+ +R−)3 (x+ − x−)2, (5.69)

so that the classical Einstein relation gives

αE = 〈x〉
Dx

= (R+ +R−)2

R+R−

R+x− +R−x+
(x+ − x−)2 . (5.70)

As α differs from αE, this is an example of a simple process that does not follow the classical
Einstein relation.

5.3.2 Large deviation formulation

We compute in this section the explicit expression of the scaled cumulant generating function
λ(k) for the telegraphic noise process, and show that the condition λ(−α) = 0 indeed corresponds
to the equation (5.65). To proceed, we adapt the general approach described in [Tou09].
We begin by discretizing the time and consider xn = x(n∆t) where ∆t is a very small time step.
As the process x(t) is Markovian, one can write〈

exp
(
k

∫ T

0
dt x(t)

)〉
'
〈

exp
(
k

n∑
i=1

∆t xn
)〉

=
∑

x1,x2,...,xn

ρ(x1) ek∆txi π(x2|x1) ek∆tx2 · · ·π(xn|xn−1) ek∆txn (5.71)

where ρ(x1) is probability distribution of the initial state x1, and π(xi+1|xi) is the probability
transition from state xi to state xi+1, that is the conditional probability of xi+1, given xi. The
summation in (5.71) is over all the possible values of xi, here x+ or x−. The probability transition
can be written as a 2× 2 matrix:

π(xa|xb) = [π]ab with π =
(

1−R+∆t R−∆t
R+∆t 1−R−∆t

)
and a, b ∈ {+,−}. (5.72)

Now define the “tilted transition matrix” πk as [πk]ab = πab ek∆txa . The right hand term in (5.71)
then involves the matrix π and the vector #”ρk defined as [ #”ρ k]a = ρ(xa) ek∆txa . One obtains〈

exp
(
k

n∑
i=1

∆t xn
)〉

=
∑

a∈{+,−}

[
πn−1
k · #”ρ k

]
a

(5.73)

For sufficiently small ∆t, the matrix π is ergodic, because all his coefficients are strictly positive.
The Perron–Frobenius theory of positive matrices states that the asymptotic behavior of the
product (5.73) does not depend on the initial state, and is dominated by the largest eigenvalue
of the matrix πk, ξ(k): 〈

exp
(
k

n∑
i=1

∆t xn
)〉
∼ ξ(k)n. (5.74)

As a consequence, the scaled cumulant generating function λ(k) is

λ(k) = lim
∆t→0

lim
n→∞

1
n∆t ln

〈
exp

(
k

n∑
i=1

∆t xn
)〉

(5.75)

= lim
∆t→0

1
∆t ln ξ(k). (5.76)
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For small ∆t, the matrix πk can be written as

πk = Id + ∆tM(k) +O(∆t2), (5.77)

where M(k) is defined in (5.63). Denoting by µ(k) the largest eigenvalue of M(k), one has

ξ(k) = 1 + ∆t µ(k) (5.78)

so that
λ(k) = lim

∆t→0

1
∆t ln ξ(k) = µ(k). (5.79)

Thus, the scaled cumulant generating function λ(k) is equal to the largest eigenvalue of the
matrix M(k). As a consequence, the condition λ(−α) = 0 merely states that det(M(−α)) = 0,
so that one recovers the equation (5.65).

5.3.3 Explicit computation of the scaled cumulant generating function

The expression of λ(k) is obtained from the matrix M(k). After a little algebra one has

λ(k) = 1
2(R+ +R−)

[
−1 + k

x+ + x−
R+ +R−

+
√

1 + γ2k2 + 2β − 1
β + 1γk

]
(5.80)

where we defined the parameters γ and β as follows:

γ = v+ − v−
R+ +R−

and β = R−
R+

. (5.81)

The parameter γ has a dimension of a length, and is the product of τ = (R+ + R−)−1, the
correlation time of the process, which provides an estimate of how long the particle stays with
either velocity x+ or x−, and of x+ − x− = (x+ − 〈x〉) − (x− − 〈x〉), which is the size of the
difference between the mean and the instantaneous velocity. Thus, it is of the order of the size
travelled by a particle between two collisions, so that it corresponds to the mean free path of the
particle. Note that γ and β are strictly positive.

As expected, the function λ(k) is convex (see figure 5.6a). It has two asymptotes in k → ±∞,
which allows us to recover the two possible values of the speed

lim
k→∞

λ(k)/k = x+ and lim
k→−∞

λ(k)/k = x−. (5.82)

Moreover, the value of the slope at k = 0 is the mean of v:

dλ
dk

∣∣∣∣
k=0

= R−x+ +R+x−
R+ +R−

= 〈v〉 . (5.83)

The rate function I(x) associated with λ(k) is given by the Legendre transform of λ(k):

I(x) = max
k

(xk − λ(k)), (5.84)

and a plot is proposed figure 5.6b. As the process presents a maximum and a minimum velocity,
the rate function is only defined on the interval [x−, x+]. It has a minimum in xmin = 〈x〉, for
which I(xmin) = 0.
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Figure 5.6 – Analytical large deviation results for the telegraphic process. The rate function I(x) and
the scaled cumulant generating function λ(k) are both convex. The parameters are R+ = 0.6, R− = 0.4,
x+ = 0.5 and x− = −1.

5.3.4 The Gaussian limit

In this section we show in which conditions the coefficient of sedimentation α can be estimated
by the result of the classical Einstein relation, αE. To proceed, we notice that in the general case
λ(−α), as defined in (5.50), can be simply written as a series in powers of α, in the form

λ(−α) = lim
T→∞

1
T

ln
〈 ∞∑
n=0

(−α)n
n!

(∫ T

0
dt x(t)

)n〉
=
∞∑
n=0

(−1)n
n! cnα

n (5.85)

where the coefficients cn are defined as the integrals of the nth order cumulants of the distribution
of x(t):

cn = lim
T→∞

1
T

∫ T

0
dt1 · · ·

∫ T

0
dtn κ[x(t1), . . . , x(tn)]. (5.86)

The first cumulants are simply

κ[x(t1)] = 〈x〉 ,
κ[x(t1), x(t2)] = 〈x(t1)x(t2)〉 − 〈x〉

κ[x(t1), x(t2), x(t3)] = 〈x(t1)x(t2)x(t3)〉 − 〈x〉 〈x(t2)x(t3)〉 ,
− 〈x〉 〈x(t1)x(t3)〉 − 〈x〉 〈x(t1)x(t2)〉+ 2 〈x〉3 .

(5.87)

One can easily check(4) that the two first coefficients of the series expansion c1 and c2, as defined
by (5.86), coincide with 〈x〉 and 2Dx, as defined by (5.11). This immediately shows that, whatever
the process, the classical Einstein relation predicts the correct value of the coefficient α when the

(4)Indeed, one has

c2 = lim
T→∞

1
T

∫ T

0
dt1
∫ T

0
dt2 (〈x(t1)x(t2)〉 − 〈x〉2)

= lim
T→∞

1
T

[∫ T

0
dt1
∫ t1

0
dt2 f(t1, t2) +

∫ T

0
dt1
∫ T

t1

dt2 f(t1, t2)
]

where f(t1, t2) = 〈x(t1)x(t2)〉 − 〈x〉2

= lim
T→∞

1
T

[∫ T

0
dt2
∫ T

t2

dt1 f(t1, t2) +
∫ T

0
dt1
∫ T

t1

dt2 f(t1, t2)
]

= lim
T→∞

2
T

∫ T

0
dt1
∫ T

t1

dt2 f(t1, t2) because f(t1, t2) = f(t2, t1),

so that one obtains
c2 = 2Dx.
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cumulants of order higher than 3 vanish, which is the case when x is given by a Gaussian process.
It leads us to the following result: if the noise is a Gaussian process, then the Einstein relation
holds. This statement does not depend on whether the process is Markovian or not. Thus, for the
time correlated Gaussian process studied in 5.1.2, one immediately recover the classical Einstein
relation, without having to solve the joint Fokker-Planck equation.
The telegraphic process is not a Gaussian process; if it was, the scaled cumulant generating
function λ(k) would be quadratic in k. Thus, the classical Einstein relation holds if λ(k) is well
approximated by a parabola in the domain [0, α]. From the expression (5.50) of λ(k), one deduces
that such an approximation is valid if

µ = γ|αE| � 1. (5.88)

The parameter µ compares the mean free path γ to the typical length of the sedimentation α−1
E .

This condition can be recovered by considering the ratio α/αE. After some algebra, one ob-
tains

α

αE
=
[(

1 + µ
β

1 + β

)(
1− µ 1

1 + β

)]−1
, (5.89)

Thus, when µ tends to zero, α tends to αE.
Note that this convergence can also be characterized by the evolution of the coefficients cn. In
fact, it is possible to show that for n > 2 one has

cnα
n
E

n!c1αE
= µn−2Gn(y) (5.90)

where the Gn are bounded functions. It also seems that supy∈R+ |Gn(y)| = 1 for all values of n
(this prediction has been checked up to n = 10). One can conclude that for µ tending to 0, the
coefficients of order strictly higher than 2 in the series expansion (5.85) vanish, so that in the
Gaussian limit the scaled cumulant generating function indeed becomes quadratic.

5.4 Processes driven by non-linear Langevin equations

We present in this section some perturbative tools that can be used when the velocity x is
generated by a set of non-linear Langevin equations.

5.4.1 Motivations

In both chapters 3 and 4, we obtained equations in the form

ẏ = [ #”x ]1,
#̇”x = − #”x + ε #”g ({xi}) + #”η (t),

(5.91)

where the function #”g ({xi}) is non-linear in the coordinates of the n-vector #”x , #”η (t) is a Gaussian
white noise vector with statistics

〈ηi(t)〉 = 0 and 〈ηi(t)ηj(t′)〉 = δijδ(t), (5.92)

and ε is small parameter which quantifies the non-linearity of the system. It is interesting to note
that while studying two different physical systems (advected triangles and inertial particles), the
equations describing the separation of trajectories can still be written in the generic form (5.91).
We argue that it is the case for many stochastic models (see [MW04; WM03; WG14]).
Considering (5.91), the correlation time of the noise #”x is equal to 1, which can be simply set
by rescaling the time with the dimensional correlation time of the process. Note that, as we
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(a) Deterministic vector field for the model (5.95):
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and Γ = 1.
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(b) Deterministic vector field for the model (5.96)
studied in chapter 3: (−x1 − 2εx2

2,−x2 − 2εx1x2),
with ε = 0.5.

Figure 5.7 – Two examples of vector fields. On the left, trajectories with large excursions from the centre
(0, 0) can occur.

stated in section 3.4.2, we arbitrarily decided to put the perturbative parameter ε in front of the
non-linear terms, rather than in front of the Gaussian white noises. Thus, the system of coupled
Langevin equations generating the velocity can be seen as an non-linear perturbed overdamped
harmonic oscillator in interaction with a thermostat, and perturbed by non-linear dynamics,
rather than as a deterministic dynamical system involving small additive noises.

In the following we present some perturbative methods to characterize the behaviour of the
system of equations (5.91).

5.4.2 Validity of the approach

We look for a perturbation expansion of the solution of (5.91) in the form of a power series in ε.
However, this perturbative method, in its elementary form, does not permit to derive possible
non-analytical behaviours of the solutions. In order to see if we miss potential non-analytical
terms, one can study qualitatively the solutions of the Langevin equations

#̇”x = − #”x + ε #”g ({xi}) + #”η (t). (5.93)

Typically, non-analytical terms are associated to solutions of (5.93) presenting large excur-
sions [MW04]. We already encountered such behaviour. In chapter 4, the Langevin equation
studied is

ẋ = −x− εx2 +
√

2η(t), (5.94)

which admits solutions diverging in a finite time. Though, for a one-dimensional Langevin
equation, the presence of an even non-linear term κx2n in the Langevin equation always leads to
divergences, because the resulting term in the associated potential is in the form κx2n+1/(2n+ 1),
which tends to −∞ for x→∞ or x→ −∞, depending on the sign of κ. In [MW04], the authors
derive a two-dimensional system of Langevin equation, based on a model similar to the one
studied in chapter 4:

ẋ1 = −x1 + ε(Γx2
2 − x2

1) + η1(t),
ẋ2 = −x2 − 2εx1x2 + η2(t),

(5.95)

where Γ is a dimensionless parameter close to 1, and ε, as in chapter 4, is a measure of the
importance of inertial effects. If we plot in the plane (x1, x2) the deterministic vector field
(−x1 + ε(Γx2

1 − x2
1),−x2 − 2εx1x2) associated with the model (5.95) (see figure 5.7a), one can

qualitatively observe the existence of a non-stable manifold at x2 = 0, which possible large
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excursions from the fixed point at (0, 0), sustained by the additive noise. On the contrary, the
model obtained from the dynamics of triangles in chapter 3:

ẋ1 = −x1 − 2εx2
2 + η1(t),

ẋ2 = −x2 + 2εx1x2 + η2(t),
(5.96)

does not present divergent trajectories (see figure 5.7b). Nevertheless, as stated in section 3.4.3,
the expansion of 〈x1〉 for the model (5.96) still seems to present a radius of convergence which
is equal to 0, but with alternate signs in the development, so that re-summation tools can be
applied [DD73].

5.4.3 Direct expansion for the coefficient of sedimentation

We briefly recall the perturbative methods that can be used to obtain a direct expansion of the
coefficient of sedimentation α in the form of a power series of the parameter ε. Such methods
have already been introduced in chapter 4.
To begin, we write the Fokker-Planck equation that verifies the joint density of probability
P (y, #”x , t). One has

∂P

∂t
= x1

∂P

∂y
+ F̂0P + εF̂1P (5.97)

where F̂0 is the Fokker-Planck operator associated with the linear part of the Langevin equation,
and F̂1 is the operator associated with the non-linear part:

F̂0 = − ∂

∂xi
[xi ·] + 1

2
∂

∂xi

[
∂

∂xi
·
]

and F̂1 = − ∂

∂xi
[gi({xj}) ·]. (5.98)

We look for a stationary solution in the form P (y, #”x ) = ρ( #”x ) exp(αy). One has

0 = [−αx1 + F̂0 + εF̂1]ρ. (5.99)

The idea is to expand α and ρ in the form

α = αiε
i and ρ( #”x ) = ρi( #”x )εi. (5.100)

After injecting the expressions in (5.100) into (5.99), one can systematically find the coefficients
of the expansion of α, using a set of eigenfunctions of the operator F̂0.
Note that if we integrate (5.99) over all the coordinates {xi}, one obtains

0 = α

∫ ∞
−∞

dx1 · · ·
∫ ∞
−∞

dxn x1 ρ( #”x ) = α 〈x1〉 . (5.101)

Thus, as we look for a solution with α 6= 0, we obtain an implicit equation to find the coefficient
of sedimentation:

〈x1〉 = 0. (5.102)

The perturbative development presented in section 4.3.3 is based on this equation. Physically,
it means that the stationary sedimentation is characterized by a zero-flux condition in the
y-space.

5.4.4 Perturbative expansion of the diffusion coefficient

We present here an extension of the method presented in chapter 3, in order to successively
compute the expansion of the diffusion coefficient Dx1 – defined in (5.11) – in powers of ε. In the
following and for simplicity, we treat the one dimensional problem, where the vector #”x has a
single component. The extension to higher dimensions is straightforward. The diffusion coefficient
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appears in the second term of the expansion (5.85) of the scaled cumulant generating function,
and is necessary to compute the classical Einstein relation (5.16). Moreover, from ẏ = x one
obtains

lim
T→∞

1
T

〈(
y(t)− y(0)− T 〈x〉

)2〉
= 2Dx, (5.103)

so that Dx also quantifies the relative dispersion of y(t) around its expected value 〈y(t)〉 =
〈x〉 t+ y(0).
The diffusion coefficient (and the mean) are related to the unconditional evolution of x, that is
the Langevin equation

ẋ = −x+ εg(x) + η(t), (5.104)

without considering the variable y. Contrarily to the stationary mean of the velocity, 〈x〉,
Dx is related to the correlation function of the process, and consequentially to its temporal
evolution.

Hermitian transformation

The Fokker-Planck equation for the density of probability p(x, t) reads

∂p

∂t
= (F̂0 + εF̂1)p. (5.105)

We begin by a transformation in order to obtain an hermitian operator from F̂0. One defines

Ĥi = exp
(
x2

2

)
F̂i exp

(
−x

2

2

)
with i = 1, 2, (5.106)

so that the evolution equation of the function |ψ(x, t)〉 = p(x, t) exp(x2/2) is then

∂ |ψ〉
∂t

= (Ĥ0 + εĤ1) |ψ〉 . (5.107)

One has a set of eigenvectors of the operator Ĥ0: Ĥ0 |φn〉 = −n |φn〉. The mean of a quantity
related to a ket |ϕ(t)〉 is simply 〈φ0|ϕ(t)〉.

Correlation functions

The stationary density of probability for the process x(t) is associated to the ket |Ψ0〉, which is
an eigenvector of the operator Ĥ = Ĥ0 + εĤ1:(

Ĥ0 + εĤ1
)
|Ψ0〉 = 0 with 〈φ0|Ψ0〉 = 1. (5.108)

Let Ŵ (t) be the evolution operator associated to the operator Ĥ:

Ŵ (t) = exp(t · Ĥ). (5.109)

As Ĥ does not depend on the time, the previous exponential is already ordered. Considering n
times t1 ≥ t2 ≥ · · · ≥ tn, one has

〈x(t1) · · ·x(tn)〉 =
〈
φ0
∣∣∣ x̂Ŵ (t1 − t2)x̂ · · · x̂Ŵ (tn−1 − tn)x̂

∣∣∣Ψ0
〉
. (5.110)

For example

〈x(t1)〉 = 〈φ0 | x̂ |Ψ0〉 and 〈x(t1)x(t2)〉 =
〈
φ0
∣∣∣ x̂Ŵ (t1 − t2)x̂

∣∣∣Ψ0
〉

for t1 ≥ t2. (5.111)
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|φ0〉 |Ψ0〉

|φi 6=0〉

|Ψi 6=0〉

Figure 5.8 – Schematic visualization of the kets |φi〉 and |Ψi〉. One has 〈φ0|Ψ0〉 = 1, which corresponds to
the normalization condition of the distribution p. Moreover, for n 6= 0, |φ0〉 is orthogonal to the ket |Ψn〉.

Explicit equation for the diffusion coefficient

Now that we computed the expression of the correlation function, to proceed we introduce a
time-dependant quantity:

DT
x =

∫ T

0
dt [〈x(0)x(t)〉 − 〈x〉]. (5.112)

When T tends to ∞, the coefficient DT
x tends to Dx. One has

DT
x =

∫ T

0
dt
〈
φ0
∣∣∣ x̂Ŵ (t)x̂

∣∣∣Ψ0
〉
− T 〈x〉

=
〈
φ0
∣∣∣ x̂Ŷ T x̂

∣∣∣Ψ0
〉
− T 〈x〉 with Ŷ T =

∫ T

0
dt Ŵ (t). (5.113)

We have to compute the expression of the operator Ŷ T . To this end, we suppose that if ε is not
too large, we can still diagonalise the operator Ĥ:

Ĥ = |Ψn〉µn 〈Ψn| with µ0 = 0 and µi 6=0 < 0. (5.114)

In other words, we suppose that the spectrum of Ĥ0 is not strongly changed by the addition
of non-linear terms in the equations of motion. At this point we adopt a matrix representation
of the operators, in order to better visualise the calculation. Under this formalism, there is an
invertible matrix P̂ so that

P̂−1ĤP̂ =

µ0
µ1

. . .

 = D̂ (5.115)

and one has

P̂−1Ŷ T P̂ =
∫ T

0
dt exp(D̂t) =


T
− 1
µ1

. . .

+O(e−T ), (5.116)

so that

Ŷ T = P̂

T Π̂0 +


0
− 1
µ1

. . .


 P̂−1 +O(e−T ), where Π̂0 =

1
0

. . .

 . (5.117)

One remarks that P̂ Π̂0P̂−1 is simply the projector of image vect[{|Ψ0〉}] and kernel vect[{|φ0〉}]
(see figure 5.8)(5):

p̂ = P̂ Π̂0P̂
−1 = |Ψ0〉 〈φ0| . (5.118)

(5) Let p̂ = P̂ Π̂0P̂
−1. For any vector |A〉, one gets the unique decomposition |A〉 =

∑
n∈N an |Ψn〉, and the

action of p̂ on |A〉 reads p̂ |A〉 = a0 |Ψ0〉. One knows that for n 6= 0, 〈φ0|Ψn〉 = 0, because |φ0〉 /∈ im(Ĥ), and that

89



Chapter 5 – Non-thermal Einstein relations

Moreover, one has
0

1
µ1

. . .

 =


1

1
µ1

. . .


0

1
. . .

 =

1
µ1

. . .


−10

1
. . .


= (D̂ + Π̂0)−1(1− Π̂0). (5.119)

It allows us to write

Ŷ T = T p̂− P̂
[
(D̂ + Π̂0)−1(1− Π̂0)

]
P̂−1 +O(e−T )

= T p̂− (P̂ D̂P̂−1 + P̂ Π̂0P̂
−1)−1(1− p̂) +O(e−T )

= T p̂− (Ĥ+ p̂)(1− p̂) +O(e−T ) (5.120)

which leads us to

DT
x = 〈φ0

∣∣∣x̂Ŷ T x̂
∣∣∣Ψ0〉 − T 〈φ0|x̂|Ψ0〉2 +O(e−T )

= T 〈φ0|x̂|Ψ0〉2 − 〈φ0
∣∣∣x̂(Ĥ+ p̂)−1(1− p̂)x̂

∣∣∣Ψ0〉 − T 〈φ0|x̂|Ψ0〉2 +O(e−T ). (5.121)

The secular term is cancelled, so that one finally obtains a simple equation for Dx:

Dx = −
〈
φ0
∣∣∣ x̂(Ĥ+ p̂)−1(1− p̂)x̂

∣∣∣Ψ0
〉
. (5.122)

Application

The equation (5.122) gives us a systematic way to compute the expansion of Dx in powers of ε.
The ket |Ψ0〉 is computed from (5.108). The operator (Ĥ+ p̂)−1(1− p̂) formally reads

(Ĥ+ p̂)−1(1− p̂) = Ĥ′0
[ ∞∑
n=0

(
−εĤ1Ĥ′0

)n]
(1− p̂) (5.123)

where Ĥ′0 is the invertible operator obtained from Ĥ0:

Ĥ′0 = Ĥ0 + |φ0〉 〈φ0| . (5.124)

Consider the model obtained in chapter 3, with ε the perturbative parameter (the term 2ε in the
evolution equation of y is of no importance):

ẏ = 2εx1

ẋ1 = −x1 − 2x2
2 + η1(t)

ẋ2 = −x2 + 2x1x2 + η2(t)
(5.125)

One knows that the associated stationary Fokker-Planck equation has an exact solution:

P (y, x1, x2) ∝ exp
(
−x2

1 − x2
2 − y

)
so that α = −1. (5.126)

〈φ0|Ψ0〉 = 1. Thus, |Ψ0〉 〈φ0|A〉 = a0 |Ψ0〉 which leads to the identification

p̂ = |Ψ0〉 〈φ0| .
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k

λ(k)

0

−α

〈x〉

(a) 〈x〉 < 0.

k

λ(k)

0

(b) 〈x〉 = 0.

k

λ(k)

0

−α

(c) 〈x〉 > 0.

Figure 5.9 – Schematic evolution of the scaled cumulant generating function λ(k) when the drift velocity
〈x〉 changes sign, with the corresponding value of the coefficient of sedimentation α.

The coefficient αE obtained from the classical Einstein relation reads, with the series expansion
of 〈x1〉 and Dx1 ,

αE = 2ε
(2ε)2

〈x1〉
Dx1

= −1− 2ε2 + 32
3 ε

4 − 776
9 ε6 +O(ε8)

1− 2ε2 + 32
3 ε

4 − 704
9 ε6 +O(ε8)

= −1 + 8ε6 +O(ε8). (5.127)

As we can see, the deviation of the classical Einstein relation from the exact solution occurs at
the order 6 in ε, meaning that the process x1(t) is weakly non-Gaussian.
One can derive a similar formula for the next order coefficient in the expansion of λ(k). Explicitly,
one obtains

c3 = lim
T→∞

1
T

∫ T

0
dt1

∫ T

0
dt2

∫ T

0
dt3 κ[x(t1), x(t2), x(t3)]

= 3!
(〈
φ0
∣∣∣ x̂Âx̂Â ∣∣∣Ψ0

〉
− 〈x〉

〈
φ0
∣∣∣ x̂ÂÂx̂ ∣∣∣Ψ0

〉)
with Â = (Ĥ+ p̂)−1(1− p̂). (5.128)

However, we have not managed yet to find similar expressions for the other coefficients cn with
n ≥ 4.

5.5 Summary and conclusion

In this chapter, we studied the sedimentation process:

ẏ = x (5.129)

where x(t) is a fluctuating variable whose statistics do not depend on y, and this a non-zero
mean 〈x〉. Under very general assumptions, the density of probability P (y) is expected to follow
an exponential distribution

P (y) ∼ exp(αy). (5.130)

We showed that the determination of the coefficient of sedimentation reduces to a problem of
large deviation, and that α is linked to the root of the scaled cumulant generating function λ(k)
– namely, λ(−α) = 0. The main result is that λ(k) is a convex function and has a root in k = 0,
with λ′(0) = 〈x〉 (see figure 5.9). It follows that there exists at most one non-zero value of α, and
that in this case α and 〈x〉 have the same sign.
In the previous chapter we studied a one dimensional noisy dynamical system, which describes
the transition from a regime where the instantaneous Lyapunov exponent is positive in average,
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so that the trajectories fill the space, to a regime where the instantaneous Lyapunov exponent
is negative in average, resulting in a clustering of trajectories. The transition between the two
regimes is then described schematically in figure 5.9, where α, which can be identified with the
correlation dimension, smoothly changes sign. Note that, as stated in chapter 4, the fluctuations
of x(t), here linked to the curvature of λ(k), are primordial to obtain finite values of α.
We explicitly compute the expression of λ(k) for a non-Gaussian and non-Markovian process: the
telegraphic noise. For this particular process the classical Einstein relation, linking the coefficient
α to the first two moments of the distribution, fails. We showed that such a relation is valid only
for Gaussian processes, which corresponds to quadratic expressions of λ(k) in k.
In the general case, however, the computation of the scaled cumulant generating function is a
complicated task. In particular, one expects non-analytical behaviours of α, as it was the case for
the model studied in chapter 4. Such behaviours cannot be observed with classical perturbation
methods, and we are currently working on other approaches to compute λ(k).
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Chapter 6

Summary, conclusion and perspectives

6.1 Summary and reminder of the principal results

In this thesis, we studied two apparently different physical situations: first, the dynamics of
tracers advected by turbulent flows, and in particular the case of three fluid particles in a
two-dimensional flow (chapter 3); second, the motion of inertial particles in a one-dimensional
turbulent flow (chapter 4). For both processes, we described clustering processes in the relevant
phase space.
For advected triangles in isotropic and homogeneous turbulence, we considered an evolution
dynamics which is independent of the scale of the triangle, so that the phase space is the
shape space of the structure. This shape space is homeomorphic to a 2-sphere: the Kendall
sphere [Ken77]. The action of like-scale eddies on the three-points structure results in the
flattening of the triangle, which corresponds for the representative point to go towards the
equator of the Kendall sphere, representing flat triangles.
Considering the case of inertial particles, we introduced a simple stochastic model for the one-
dimensional motion of particles mostly subjected to the Stokes drag. A path coalescence transition
is known to happen in the model [WM03]. Namely, two behaviours are possible: a regime where
two close particles separate with probability one as time goes to infinity, in opposition with a
regime where all trajectories eventually merge onto a single one.
The main contribution of this thesis is to show that, remarkably, the two phenomena discussed
above are similarly described as simple dynamical systems presenting fluctuating Lyapunov
exponents. Typically, the evolution dynamics for the departure from an attractor – the equator of
the Kendall sphere for the advected triangles, and the master trajectory for the inertial particles
–, say δ(t), reduces to a simple one-dimensional dynamical system:

δ̇(t) = ζ(t)δ(t) (6.1)

where ζ(t) is the instantaneous Lyapunov exponent describing the dynamics near the attractor,
a fluctuating quantity, which in the case of clustering processes is negative in average. As the
statistics of ζ(t) do not depend on δ(t), we obtain generically stationary power-law distributions
for the variable δ(t). The exponent of the power-law is linked to the correlation dimension of
the attractor, so that in the case of clustering processes (〈ζ〉 < 0), we extended this notion to
negative cases, and showed how the determination of this exponent is linked to a quantity used in
large deviation theory: the scaled cumulant generating function associated to the instantaneous
Lyapunov exponent ζ(t). It is interesting to note that under this formalism the path coalescence
transition appears to be actually smooth, as represented figure 5.9. In other words, the study of
fluctuating Lyapunov exponents reduces to the analysis of sedimentations processes, for which
the large deviation formalism provides a natural framework.
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We also stressed out the importance of a re-injection mechanism to prevents the variable δ(t)
to stay at 0 and to sustain fluctuations around the attractor. Such a mechanism is provided by
similar terms in the equations of motion of the triangles and of the inertial particles, namely
a homogeneous diffusion process in the physical space, which becomes prominent for two close
trajectories in the phase space. Note that an explicit description of the sustaining term is not
needed, as long as it allows positive fluctuations to occur. For the typical processes studied in
chapter 5, we simply add a wall in the space of the variable y = ln δ.

To summarize, we recall the main results presented in this thesis:
. An effective description of the dynamics of flat triangles resulting from the action of a time-

correlated strain matrix (section 3.4).
. A coherent extension of the notion of correlation dimension to negative values, when the
corresponding Lyapunov exponent is negative in average but presents positive fluctuations
(section 4.4.2).

. The general description of a sedimentation process, and the expression of the coefficient of
sedimentation as (minus) the root of a convex function, the scaled cumulant generating function
associated to the driving process (section 5.2.3).

. A perturbative expansion for the effective diffusion coefficient of a process driven by weakly
non-linear Langevin equations (section 5.4.4).

6.2 Conclusion and perspectives

The careful reader may have noticed that, although this thesis presents the word “turbulent”
in its title, we did not talk much about turbulent flows. In fact, we used very general feature
of turbulent flows to obtain simple stochastic models in the form of noisy dynamical systems.
Notably, few connections have been made with direct simulations of particles in turbulent flows
or experimental results.

Triangle model

We showed in chapter 3 that introducing finite correlation times for the like-scale eddies acting
on the triangle did not change the power-law distribution obtained for the variable z describing
the shape of the triangle. Such an observation could be compared in the future with direct
simulations or the analysis of the motion of actual tracers in turbulent flows.

Moreover, in the same chapter we sketched the beginning of a theory concerning the statistics of
crossing of the Kendall sphere equator, which correspond the topological changes of the triangle.
While we showed that time correlated eddies lead to normalisable statistics of crossing, we did
not manage yet to propose a general description of the topological evolution of the triangle in
terms of a braid group [TF06].

Note also that the model for an advected triangle is independent of the size of the triangle.
However, during its temporal evolution the size of the initial structure typically grows, and the
triangle encounter different eddies. The next step is then to consider size-dependant models, and
to analysis the resulting dynamics.

Perturbative expansions and correlation dimension

In chapter 3 and 5 we presented perturbative methods to compute the mean drift velocity and
the diffusion coefficient of a process generated by weakly non-linear Langevin equations, and tried
to qualitatively determine whether a given non-linear system is likely to produce non-analytical
behaviours in the expressions of this moments. Nevertheless, one still lacks a systematic criterion
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for general non-linear systems. Moreover, if we observe non-analytical behaviours, we need to
find a general theory to compute them reliably.
This statement, namely the possibility for the mean drift velocity and the diffusion coefficient
to present non-analytical variations, is also true for the scaled cumulant generating function
itself. While we managed to compute it exactly for a very particular process (see section 5.3),
in the general case such a task in likely to be significantly more difficult, and we are currently
working on this topic. We mainly studied what may be called strongly clustering processes, that
is one-dimensional noisy dynamical systems with a negative mean Lyapunov exponent, but the
description of the motion near the attractor as a sedimentation process is generic, so that the
tools developed here, and in particular the use of the formalism of large deviation theory, can
be applied to positive fluctuating Lyapunov exponents. Thus, a general approach of the scaled
cumulant generating function, and in particular of its non-analytic aspects, may lead to a much
deeper understanding of the evolution of the correlation dimension in a large class of dynamical
systems.
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