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Programming Embedded Manycore : Refinement and
Optimizing Compilation of a Parallel Action Language for

Hierarchical State Machines

soutenue le 26 avril, 2016

devant le jury composé de :
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Programmation de systèmes embarqués many-core : Raffinement et compilation
optimisante d’un langage d’action parallèle pour machines à états hiérarchiques

par Ivan LLOPARD

Afin de gérer la complexité des systèmes embarqués modernes, les langages de modélisation

proposent des abstractions et des transformations adaptées au domaine. Basées sur le formal-

isme de machines à états hiérarchiques, connu sous le nom de Statecharts, ils permettent la

modélisation du contrôle parallèle hiérarchique. Cependant, ils doivent faire à deux défis ma-

jeures quant il s’agit de la modélisation des applications à calcul intensif: le besoin des méthodes

unifiées supportant des actions avec parallélisme de donnée; flots d’optimisation et génération

de code à partir des modèles trop généralistes.

Dans cette thèse, nous proposons un langage de modélisation étendu avec une sémantique

d’actions parallèles et machines à états hiérarchiques indexées, spécialement adapté pour les

applications à calcul intensif. Avec sa sémantique formelle, nous présentons un flot de compila-

tion optimisante pour le raffinement des modèles en vue d’une génération du code efficace avec

parallèlisme de donnée.
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Programming Embedded Manycore: Refinement and Optimizing Compilation of a
Parallel Action Language for Hierarchical State Machines

by Ivan LLOPARD

Modeling languages propose convenient abstractions and transformations to handle the com-

plexity of today’s embedded systems. Based on the formalism of Hierarchical State Machine,

they enable the expression of hierarchical control parallelism. However, they face two impor-

tants challenges when it comes to model data-intensive applications: no unified approach that

also accounts for data-parallel actions; and no effective code optimization and generation flows.

In this thesis, we propose a modeling language extended with parallel action semantics and hi-

erarchical indexed-state machines suitable for computationally intensive applications. Together

with its formal semantics, we present an optimizing model compiler aiming for the generation

of efficient data-parallel implementations.
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We present the context for this work, our main motivations and goals, and we conclude by giving

a brief overview of the thesis organization.

1.1 Context

Modern embedded systems integrate more sophisticated functionalities to meet hard perfor-

mance requirements of today’s applications. This integration power enabled the implementation

of complete systems into a single chip, namely System on Chip (SoC). The step forward in-

cluded many core architectures providing massively parallel computation units. The inherent

parallelism of these architectures makes them suitable for applications showing, preferable in

the most direct manner, parallel components. In particular, data-parallelism is essential to scal-

able and efficient parallel programming [2–4, 9]. Although, industrial programming practices

use low-level languages to keep a precise control over the platform [10, 11], and thus applica-

tion developers need a deep knowledge of hardware features. On the other hand, adaptations

of general purpose languages to address parallel issues cannot cope with the great number of

platform-dependent tuning parameters at once. Therefore, code generation from such languages

tends to be a challenging work. Both worlds need to be taken into account incrementally to get

best performances.

1
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FIGURE 1.1: The 〈HOE〉2 methodology for the development of embedded systems

As a result, the design and development of embedded systems is becoming increasingly com-

plex [12]. To cope with the complexity, designers rely on multiple design methodologies and

its supporting tools [13]. Recent trends push for unified model-based approaches that allow the

modeling of both software and hardware [14–18]. The role of model-based techniques is to pro-

vide strong abstractions to handle in a modular manner a wide variety of system configurations.

The abstraction are iteratively refined in order to get closer to the final implementation taking

into account different platform constraints step by step.

Figure 1.1 shows the Highly Heterogeneous, Object-Oriented, Efficient Engineering 〈HOE〉2

methodology, which is thoroughly covered in [19]. 〈HOE〉2 and other similar frameworks spec-

ify the system behavior using Statecharts, or Hierarchical State Machines (HSMs).

Statecharts were first introduced by Harel for the specification and design of complex discrete-

event systems [20]. It is a graphical language providing natural and easy-to-grasp abstractions

to express parallelism, hierarchy and compositions of state machines. Figure 1.2 shows the

Statechart model of a car audio system. Modern modeling languages such as Unified Modeling

Language (UML) incorporate Statecharts as their main formalism to model object behavior,

extending them with object-oriented traits [21].
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FIGURE 1.2: Modeling a car audio system with Statecharts (Source: [1])

1.2 Motivation

The motivation of this thesis is split on three complementary subjects: modeling of parallel

computations, semantics of Statecharts and its exisiting compilation challenges.

Data Parallelism and Statecharts. If Statecharts are well-suited for the modeling of control

decisions of cooperative components of a system, data-driven computations are hardly express-

able in the formalism. Though modern embedded systems provides more and more parallelism

at different granularity levels (data, thread, system), frequently presented in a hierarchical man-

ner. On the other hand, hierarchy is one of the main properties of model-driven approaches to

provide highly modular representations in addition to rigorous methodologies. A similar issue

has been pointed out by Gamatié et al. where model-driven techniques are combined with a

domain specific language to address the problem [8].

Semantics of Statecharts. The widely used modeling languages in the Model-Driven Engi-

neering (MDE) community is UML [21]. UML is mainly focused on modeling issues and, in

favor of generality, let many semantical points of Statecharts open to specific implementations.

As a consequence, many research works propose formalizations of its rather imprecise informal

semantics [1, 22–25]. Indeed, the complete formalization of UML Statecharts is a challeng-

ing work given the great number of proposed features and the already known non-constructive
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properties of Statecharts [26]. A Statechart-based language should provide a well-founded se-

mantics trying to avoid previous semantical complications in order to achieve a clear, scalable

and customizable semantic implementation.

Compilation of Statecharts. The purpose of models is simulation or as a path to rapid im-

plementations of software architectures. Even though Model-Driven Architecture (MDA) ap-

proaches push the idea of an iterative integration of hardware constraints into the initial parallel

application (or model because of the unified view), the model is not subject to any kind of

optimization and the code generation process is known for its faithfulness with respect to the

input model. Recent research efforts focus on an executable and performance-aware compila-

tion flow from models. The goal is to apply compilation techniques at the model level itself, by

considering intermediate representations if necessary, in order to achieve high-performance and

platform-specific implementations [6, 7, 27, 28].

1.3 Objectives and Contributions

In this thesis, I propose an adapation of the already known Statechart formalism to the modeling

of parallel computations. We propose a parallel action language and several key extensions to

the formalism, which are compliant with plain objects.

Together with a new language, we introduce its semantics in a hierarchical manner. Compared

to existing approaches, it allow us to some extent to separate semantical points in multiple layers

while following the language structure in an operational way.

In order to produce efficient code from Statecharts, we introduce a new intermediate representa-

tion, which is more expressive than existing representations for Statecharts. We include object

creation, struct-like variable accesses and indexing of associations while preserving most of the

information coming from the front-end language. It allow us to reason about communication

issues, inlining and unreachable states, among many other factors of performance.

Finally, we contribute a new compilation flow for HSMs closely following the data-parallel

extensions of the input language, which are preserved at the intermediate representation. As

mentioned earlier, the intermediate representation allow us to reason about particular semantical

implications concerning communication, inlining, data dependences, loops and parallelization

issues.
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1.4 Thesis Organization

The thesis organization is as follows.

Chapter 2, 3, 4: State-of-the-art. We separate the state-of-the-art into three related chapters.

Concerning our main motivation, we look in Chapter 2 for inspiration into existing parallel lan-

guages. Going from very high-level languages to low-level ones, we show how the parallelism

is presented to the programmer. Given that our approach is based on Statecharts, we review in

Chapter 3 semantics of Statecharts to define the foundations of the language presented in this

thesis. Naturally, we continue in Chapter 4 with the survey of related research work on efficient

compilation of Statecharts.

Chapter 5: The 〈HOE〉2 Language. Our proposed extension to Statecharts. It is a complete

language called 〈HOE〉2, as our proposition fits into a more wide context of a model-driven

methodology also named 〈HOE〉2.

Chapter 6: The 〈HOE〉2 Language Semantics. We present a hierarchical approach for the

formalization of our Statechart-based language.

Chapter 7: An Intermediate Representation. We introduce a new intermediate representa-

tion as a layer for the optimization and compilation of Statecharts.

Chapter 8: The Compiler. Upon the previous intermediate representation and many ideas of

the 〈HOE〉2 language, we build the optimizing compiler. We present static analyses and opti-

mizations that apply in the context of communicating objects and allows us to produce efficient

code.

Chapter 9: Results. Finally, we prove that a generation of efficient code from our parallel ex-

tensions of Statecharts is possible. We stress the compiler with more complex models and show

how it can greatly help the designer to achieve automatic model optimizations in the context of

the 〈HOE〉2 methodology.
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Hierarchical Data Representations for
Parallel Applications
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We review in this chapter parallel programming techniques in a more general context than

Model-Driven Engineering (MDE) and its Statecharts.

2.1 The Data-Parallel Paradigm

Different data and computational abstractions are used for parallel programming. The data-

parallel paradigm is heavily used across many approaches [29]. In this paradigm, the data set

is considered to be divided into regular blocks with different granularities on which common

operations have parallel semantics. Therefore, operations have a degree of parallelism which

depends on the data abstraction. Distributed computing systems pushed the evolution of existing

languages looking for support of data-parallel operations over possibly distributed data [30, 31].

9
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New custom directives were introduced for the specification of data distributions, as well as the

underlying computing grid in some cases, in order to specify solutions for a complex problem:

“ mapping” or adaptation of parallel applications over a parallel architecture.

2.1.1 The Functional Style

Nested Data Parallel (NDP) is a key extension to the data-parallel paradigm. Originally pro-

posed by Blelloch, it allows the programmer to hierarchically compose distinct data-parallel

operations [32]. Among the most abstract implementations of NDP, we found two approaches

based on functional languages: NESL [32] and Haskell Data-Parallel (HDP) [9].

The current implementations integrate this paradigm intuitively into the type system. In HDP,

we find a new native type called parallel array, written as [:a:]. It allows the programmer to

build hierarchical parallel expressions based on the idea that a parallel array is polymorphic and

may be composed by itself. For instance, the following types denote parallel arrays of floating

point values, Vector, and tuples of integer and floating point values, SparseVector.

type Vector = [: Float :]

type SparseVector = [: (Int, Float) :]

The construction of values with the above types is built in parallel. The listing below shows,

using list comprehensions, the multiplication of a sparse vector and a full one.

dotp :: SparseVector -> Vector -> Float

dotp sv v = sumP [: x * (v!:i) | (i, x) <- sv :]

The multiplication accesses each element of the sparse vector, (i, x), and multiply it by the

correct scalar position in the non-sparsed vector, x * (v:i)!. sumP folds the, possibly distributed,

parallel array. In HDP, multiplications are grouped and performed by different gangs of execu-

tion threads.

Following this approach we can express nested parallel operations in an architecture-independent

way which is relatively simple to understand with a concise complexity model [33]. For instance,

the listing below builds another parallel array based on the parallel definition of dotp.

type SparseMatrix = [: SparseVector :]

smvm :: SparseMatrix -> Vector -> Vector

smvm sm v = [: dotp row v | row <- sm :]

On the other hand, the approach relies on complex compiler techniques to optimize all per-

formance factors in order to produce efficient code under a fixed execution model (gang of

threads). The code generation flow strictly based on the functional approach let the application
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C = A + B

FIGURE 2.1: HTA type partitioning and operation mapping (Source [2])

developer focus on algorithmic issues while the architecture constraints are automatically taken

into account. They consider a distributed memory. Nevertheless, the variety of embedded multi-

core architectures make the automatic pass from the HDP to code generation an ambitious and

complex task. It is mainly described by rewriting rules with the introduction of new types to

represent data distribution [9].

2.1.2 HTA: Hierarchically Tiled Arrays

In the class of imperative high-level parallel programming, we have the Hierarchically Tiled

Arrays (HTA) approach proposed in [2]. Similar to HDP, parallelism is introduced by means

of the new data type called HTA. The type representation differentiates primarily from that of

parallel array by having additional information concerning the specification of data distribution

as well as the computing grid.

Figure 2.1 shows the creation of tiled arrays. In addition to the chosen array partitioning, we can

also specify the size of the available mesh of processors over which the array blocks are going

to be mapped. We can see that the mesh of processors is replicated modulo its size over the

partitioned array. The data-parallel operations are constrained to work on arrays with the same

“shape” (type). The HTA model is an interesting contribution in terms of coding productivity

and allows to control data distribution, something that is hidden in HDP. Apart from productiv-

ity reasons, the model does not propose formal optimization methods to achieve performance

improvements and directly exposes to the programmer a specific architecture model based on a

non-hierarchical distributed memory.

2.2 Hierarchical Tasks

The partitioning of data proved to be an efficient technique to provide parallel operations to

the programmer in an intuitive manner. Another idea is to concentrate into the (hierarchical)
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FIGURE 2.2: Hierarchy of tasks in Sequoia (Source [3])

partitioning of computation, which is implicit in previous approaches by the data type (excepting

HTA), to map them into dedicated memory models or data-driven architectures.

2.2.1 The Sequoia Approach

Looking for performance of parallel programs, the abstraction level lowers and recent language

trends follow specific architecture representations. Based on the fact that approaches focusing

on non-hierarchical memory model are difficult to adapt to new memory hierarchies, Fatahalian

et al. proposed a new language called Sequoia [3].

Sequoia is based on the memory model named Parallel Memory Hierarchy (PMH), where the

memory is modeled as a tree whose leaves represent computing nodes. The computation is

specified through hierarchical, isolated and parametric tasks (see Figure 2.2). A task works on

explicitly partitioned arrays and operations using data-parallel directives (map, reduce). A task

may take parameters and may contain other tasks to which it communicates via input and output

parameters. Therefore, communication between tasks is explicit. The task hierarchy is mapped

to the memory hierarchy, leading to data transfers in the case where two tasks get mapped to

different stages. The execution model allows the programmer to define task variants which are

selected in the mapping process.

Unlike NDP, mapping choices such as data and computing distribution, among others param-

eters proposed by Sequoia, are specified by the programmer. The Sequoia approach is located

at a lower abstraction level. It follows a programming approach in correspondence to a specific

architecture in order to achieve better performance than previous solutions.

2.2.2 HiDP: Hierarchical Data Parallel Language

Recents trends for programming highly parallel embedded systems shows the need to expose a

general enough architectural model. Similarly to Sequoia, Mueller and Zhang have developed
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# implementing C = alpha * A * B + beta * C 2
function GEMM
input float alpha, beta, A[M][K], B[K][N];
inout float C[M][N];
{
float C1[M][N];
map {
m:=[0:M); n:=[0:N); k:= [0:K);
c0 = a[m][k] * b[k][n];

} reduce ("+", C1[m][n], c0, k:=[*]);
C = alpha * C1 + beta * C;

}

LISTING 2.1: GEMM implementation in HiDP

FIGURE 2.3: Optimizing compiler of HiDP (Source [4])

a hierarchical data-parallel language for General-Purpose computing on Graphics Processing

Units (GPGPU) called Hierarchical Data Parallel Language (HiDP) [4]. HiDP proposes a hier-

archy of threads called map blocks, similar to the actual execution model in Sequoia.

Each map block definition introduces a set of iterators to defines its shape, where all iterations

are intended to be parallel. For instance, Listing 2.1 describes the General Matrix Multiplication

(GEMM) in HiDP. Map blocks are composable similar to NDP. The model is then analyzed

and optimized following the compilation chain of Figure 2.3. For instance, multiple map blocks

may be merged together according to their shape factor to get as much in-place computations as

possible.
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(a) Filter block with fitting and paving matrices

(b) Tiling the array

FIGURE 2.4: Array-OL visual formalism (Source [5])

2.3 Low-level Trends

Finally, we found low-level approches such as OpenCL [10], CUDA [11] and OpenMP [34]

where the programmer needs to handle almost everything: synchronization, data and computing

distributions, etc. They do not offer data abstractions for parallel programming and are mostly

implemented as libraries in low-level host languages such as C/C++.

The amount of work to be done in order to have a ready-to-run parallel implementation is con-

siderable and we must take into account device-specific operations and constraints such memory

copies from host to device and viceversa, task partitioning.

2.4 Model-Driven Representations

The model-driven community made interesting progress towards the application of MDE tech-

niques for the design and development of Embedded Systems (ESs) [35]. It allows designers

to model the system gradually by separating functionalities from its supporting platform. It

pushes models everywhere as the abstraction method and model transformations as the path to
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final system implementation. For instance, Model-Driven Architecture (MDA) combines differ-

ent models for the applicative and platform parts, called Platform-Indepedent Model (PIM) and

Platform-Dependent Model (PDM) respectively, and proposes model transformations to pro-

gressively adapt the PIM to the given architecture model (PDM) to obtain a Platform-Specific

Model (PSM) model. PSM contain platform specific information and it is ready for final code

production.

Recent works explore different adaptations or extensions of MDE techniques to address data-

parallel applications. A mature solution to modeling massively parallel ES is GASPARD [8].

Model based technologies like GASPARD have a great flexibility in terms of program specifica-

tion because it is not tied to any particular architecture. For this reason, the system is described

via two models based on abstractions proposed by MARTE and the Array Oriented Language

(Array-OL) [5, 36]. Indeed, Gamatié et al. rely on Array-OL for the modeling of parallel com-

putations [5].

We show in Figure 2.4 the visual Array-OL formalism. The designer specifies tiling strategies

for the input and output data via a fitting matrix F , a paving matrix P and an offset o such that

• Tiling repetition formula: ∀r,0 ≤ r < srepetition, refr = o + P · r mod sarray

• Iteration inside each tile: ∀i,0 ≤ i < spattern, ei = refr + F · i mod sarray

where spattern is the pattern or tile size, srepetition its repetition and sarray the array size. Both

strategies are related by the repetition iterator r, which precisely determine data-dependences

between input and output tiles. Therefore, Array-OL is used to partition the computations and

define affine dependencies without any specific computational model attached to it. It is partic-

uraly adapted to stream-like applications.

Compared to other parallel languages, MDE approaches separate application from platform re-

lated informations. Both models are combined iteratively following a specific methodology such

that platform-specific constraints are introduced in an incremental manner. The embedding of

Array-OL inside GASPARD makes it a powerful framework where domain-specific languages

leverages from well-known high-level abstractions and rigorous processes of the MDE commu-

nity.

2.5 Conclusion

In Figure 2.5, we classify reviewed approaches with respect to its abstraction level and how

much hardware information they expose to the programmer. Bigger points indicate also higher
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FIGURE 2.5: Language classification: Abstraction, Hardware-specific features and expressive-
ness

language expressiveness. The language expressiveness refers to the support of features such as

arrays, structs, pointers, dynamic object creation and communications, among other things. We

observe that each approach offers different ways to manage architectural constraints while offer-

ing nice abstractions to handle the complexity of parallel programming. Hardware adaptation is

done automatically with optimizations and no user interaction (HDP), user-controlled with (Se-

quoia, HiDP) or without (HTA) automatic optimizations, or completely left to the programmer

without any prior optimizations other than the host compiler or runtime may achieve (OpenCL,

CUDA, OpenMP).

Several reviewed approaches are based on data-parallel operations. However, recent works ori-

entate theirs efforts in task parallel implementations, integrating in some cases architecture-

specific informations. Representations are mainly hierarchical, a key characteristic of model-

driven approaches. However, existing model-driven approaches with parallel computation sup-

port have often limited expressiveness.

Inspired from the data-parallel paradigm and in the context of model-based design, we apply

the data-parallel paradigm on Statecharts proposing a very expressive modeling language, as

we will show in Chapter 5. However, Statecharts have a rather loose semantics in current mod-

eling languages. In the next chapter, we introduce the formalism and study several semantic

formalizations.
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In this chapter we will present the foundations of Hierarchical State Machines (HSMs), widely

known as the Harel’s Statecharts. Then, we will discuss its informal and formal semantics and

its evolution into the Unified Modeling Language (UML). We will point out main drawbacks

to achieve a complete formalization of HSMs and we will review some of the most influencial

research work on this matter.

3.1 Harel’s Statecharts

The formalism of HSM was originally proposed by Harel in [20]. It is an extension of the for-

malism of state machines for the specification and design of complex discrete-event and reactive

17
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A B

S

(a) OR composition: either A or B
can be active inside state S

A Bt1

F G

H

t2

t3

t4

S

(b) AND composition: two states are simultaneously active in-
side S, one for each region

FIGURE 3.1: Hierarchical state machines

systems. It is presented as a visual formalism that mainly extends conventional transition sys-

tems with AND and OR compositions of states and inter-level transitions. That is, a state may

contain another state machine or parallel ones allowing state abstractions (bottom-up view) and

refinements (top-down view). For instance, Figure 3.1 shows two instances of the Harel State-

charts. The state machine of Figure 3.1(a) is an OR composition where only one state can be

active inside S. Figure 3.1(b) is an AND composition with two regions where only one state can

be active at each region. By active, we refer to the current state of the state machine at execution

time.

Actually, the original Harel’s Statechart is highly expressive. In addition to hierarchical compo-

sitions, it also integrates many more features:

1. History states: H . It represents the last visited state in a group of states, which allows to

model resumption.

2. Inter-level transitions: Transitions may link states across the hierarchy. From a language

point of view, the property is clearly non-constructive. However, it turns out to be a useful

artifact for system modeling.
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R

A B

S

3. Synchronous transitions: Harel Statecharts extend the automata product with synchronous

transitions, i.e., two active states in an AND composition waiting for the same message

may progress at the same logical time. For instance, the Figure below shows an AND

composition where both regions progress at the same logical time at reception of message

α.

F G
α

J K
α

R

4. Constrained asynchronous compositions, also known as in-state conditions: In terms

of the automata product, it allow us to consider only a subset of the transition set given by

the product of two parallel automata.

A B
α [in(G)]

F G

H

β

γ

λ

S

In-state condition

AF AG AH

BF BG BH

α

β γ

λ

β γ

λ

Reduced automata product

5. Entry and exit state actions: Actions to be executed when entering and exiting a given

state.

S

Entry: action 1
Exit: action 2
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6. Static reactions (SR), or internal transitions in the UML dialect: They are simply reac-

tions that do not enter or exit the current state.

7. Compound transitions: A compound transition represents a group of transitions to be

executed at the same logical instant. For instance, in the left state machine t1 and t2 form

a single compound transition and are executed atomically and in parallel. The right state

machine implements a fork compound transition t = {t1, t2, t3}, which are also parallel

and atomic.

A Bt1 t2 A

P P’

Q Q’

B

t1
t2

t3

The syntax of transitions, as defined by STATEMATE [37], is the following one:

α[C]/β;

The transition is sensitive to message α under condition guard C and performs action β (which

may contain message sending). The actions can be separated by a semicolon which, contrary to

the traditional sense, denotes parallel execution.

3.2 Semantics of Statecharts

We reviewed in the precendent section some of the visual features present in Statecharts as well

as its intended semantics. The Statecharts informal semantics is detailed exhaustively in [38]

and implemented in a system modeling tool called STATEMATE. Its semantics and tool support

has evolved years later into a complete working environment for the development of complex

reactive systems, Rhapsody [39, 40].1

3.2.1 The STATEMATE Semantics

The system is a single state machine where its parallel components are supposed to describe

different, and usually communicating, pieces of it. The behavior of a system is a set of possible

runs or system responses to a given set of external stimuli coming from the environment. A

sequence of status represents a run of the system. Such sequence is computed by the evaluation
1Owned by IBM.
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A B
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t′1

t′2

t′3

R

S

t1

t2

FIGURE 3.2: Hierarchical priority between t1 and t′1

step algorithm. More precisely, the status is the global system context containing the current

state, valuation of variables, generated events and information regarding the system’s history.

Statecharts implement broadcast communications, i.e., the set of events is the same for the entire

system. There are two kinds of events: internal and external. Internal events are generated by the

state machine and are intended to be consumed by the state machine itself. For instance, entering

and exiting states triggers internal events called en(s) and ex(s), which can be captured by any

transition. External events comes from the system environment.

The system reaction depends on the HSM configuration, which is the maximal set of states the

system can be in simultaneously. That is, the set of active states along the hierarchy. It depends

on the state composition type, whether we have an OR (only one state can be active) or an AND

composition (only one active state per parallel region). In any case, the current configuration

can be determined from the active set C of basic, or leaf, states in the hierarchy. By transitive

relation of containment, parents of state s : C must also be part of the active configuration. For

instance, a possible active configuration of HSM in Figure 3.1(b) could be C = {S,A,G}.

From an active configuration, the evaluation step consists of finding an active and non-conflicting

compound transition. Two transitions are in conflict if they share the same source state and are

both enabled at the same instant. Harel defined a priority over transitions following the State-

chart hierarchy (outside-in) to resolve conflicting transitions at different hierarchical levels. For

instance, consider Figure 3.2 with current configuration C = {R,A}. We may either take t′1
or t1 if both transitions have the same trigger. Then, the transitions are said to be in conflict.

The priority policy favors t1 over t′1 such that we can safely take t1 and quit state R no matter

what the active substate of R was. This property gives to Statecharts a try-catch style semantics.

Conflicting transitions at the same hierarchical level introduce non-determinism.

The basic step algorithm performs the following actions:

The Inputs

• The status of the system, i.e., the current global context, which consists of
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– The state configuration.

– Valuations of variables.

– Relevant information on the history of states.

– List of events that were generated internally in the previous step.

– A list of external changes presented by the environment since the last step.

The Outputs: A new system status

• Stage 1: Step preparation

– Add the external events to the list of internally generated events.

– Execute all actions implied by the external changes. It implies for instance, the

update of all variables, conditions.

– Execute scheduled actions and generate timeout events.

• Stage 2: Compute the contents of the step

– Compute the set of enabled CTs.

– Remove conflicting transition by applying priorities.

– For each CT, compute the set of enabled SRs defined in states that are currently

active but not being exited by any of the CTs in the set.

– If there are not enabled transition then the step is empty. Otherwise, this set of

transitions consistutes the current step.

• Stage 3: Execute the CTs and SRs

– From the set of enabled transitions computed in stage 2, execute its associated ac-

tions.

– Let Sx and Sn be the sets of exited and entered states from the current state, then:

* update the history of all parents of states in Sx

* delete the states in Sx from the list of states in which the system resides

* execute the actions associated with exiting the states in Sx

* execute the actions of the current state

* execute the actions associated with entering the states in Sn

* add to the list of states in which the system resides all states in Sn

In conclusion, the Statechart senses its inputs, external and internal, and reacts to them by adding

more events, if any, to the set of generated events. The generated events are not taken into
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account in the current step — avoiding inifinte loops — but in the following one. The actions

to execute are taken from the set of enabled transitions (CTs and SRs). Because the actions

are supposed to run in parallel, they may introduce what the author called write-write racing

situations. That is, two actions writing to the same variable.

3.2.2 Formal Semantics of Statecharts

As shown in the precedent chapter, Statecharts as defined by Harel implies a quite involved

semantics. Soon after its invention, many researchers dived into the question of defining a formal

semantics and it turned out to be harder than excepted. As a consequence, many Statecharts

variants appearead since then [26]. However, none of them formalizes the Statecharts semantics

as implemented in the industrial tool STATEMATE, till the work of Mikk et al.. They introduce

in [41] the official semantics as supported in STATEMATE by closely following [38].

The STATEMATE semantics defines a set of finite state labels, Σ, and the kind of states,

TY PE , AND | OR | BASIC. From these sets, it defines the mathematical structure

StateTree , which consists of the following parts:

• root, a special state that it is intended to contain the actual Statechart

• init, an initial state

• ρ : Σ → P(Σ), the state hierarchy partial function that maps a state to its contained

substates

• φ : Σ→ TY PE, the map kind partial function

Above definitions provide enough information to formalize the state hierarchy and to introduce

some correctness conditions. For instance, Definition 3.1 is an example of a correct hierarchy

of states with respect to the root state as defined in [41].

Definition 3.1. The root state is of kind OR and no state may contain it

dom(ρ) \
⋃
ran(ρ) = {root} ∧ φ(root) = OR

Based on the set of possible events EV , the allowed event expressions are defined as:

EE , TRUEE | B〈EV 〉 | NOTE〈EE〉 | ANDE〈EE × EE〉 | ORE〈EE × EE〉

Equivalently, the set of valid conditions C is inductively defined as

C , TRUEC | In〈Σ〉 | NOTC〈EE〉 | ANDC〈EE × EE〉 | ORC〈EE × EE〉
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Then, the transition expression is a LABEL with three parts

1. event expr : EE, an expression to validate according to the current set of events

2. condition : C, a guard expression for the transition to be executed

3. action : P(EV ), a set of events to be emitted

The transition itself t : TR is a structure containing a label and going from a non-empty set

of states, source : P(Σ), to another non-empty set of states, target : P(Σ). Source and

target states becomes sets because the state hierarchy has been flattened. The semantics defines

evaluation functions to check if the transition is enabled.

The Statechart, SC, is formalized using the StateTree structure that provides the state hierar-

chy and the set of labeled transitions TR that links them:

σ : StateTree

τ : P(TR)

According to this semantics, the status s : STATUS of a Statechart contains

• csts : P(Σ), the set of active states or the state configuration.

• events : P(EV ), the current set of events.

• sc : SC, the actual Statechart.

Based on this status definition, the semantics instantiates a transition system

TS = (STATUS , INIT ,STEP)

where STATUS is the universe of states, INIT the initial one and STEP ⊆ STATUS ×
STATUS the transition relation. The run of the system is an infinite sequence of formal statuses

following relation STEP .
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To give an idea about the complexity of the step relation, we cite hereafter its formal definition

using Z notation [42]:

let ET == {tr : sc.τ | enabled(tr, csts, events)}
let HPT == {etr : ET | (∀tr : ET • ¬SAnc(scope(tr, sc.σ), {scope(etr, sc.σ)}, sc.σ)

let MNS == (µncs : P(P(HPT )) | (∀set : ncs • ¬conflicting(set, csts, sc.σ))

∧(∀set : ncs; tr : HPT • ¬conflicting({tr} ∪ set, csts, sc.σ)⇒ tr ∈ set))
•(#MNS == 0⇒ csts′ = csts ∧ events′ = ∅)
∧(#MNS 6= 0⇒ (∃EN : MNS•

let Exited ==
⋃{tr : EN • exit(tr, csts, sc.σ)};

Entered ==
⋃{tr : EN • enter(tr, csts, sc.σ)}•

(csts′ = (csts \ Exited) ∪ Entered)

∧events′ = ⋃{tr : EN • tr.label.action}
∪{st : Exited • exited(st)}
∪{st : Entered • entered(st)}

Clearly, the semantics is too complex to maintain and hardly extensible. Furthermore, it still

does not take into account the valuations of variables and history states.

We see two possible reasons for such complexity, whether some features of Statecharts are

actually difficult to formalize or the approach taken in the STATEMATE formalization turned

out to be too cumbersome. As we will see in next sections, the former seems to be the main

cause. Features like parallelism, event handling, asynchronous compositions, lead to a non-

determinstic semantics. Non-deterministic properties of languages are frequently formalized

using power-domains, to keep track of all possible runs of the system, or using a transition

semantics [43]. However, inter-level transitions, preemption and try-catch semantics are deeply

non-modular and tend to require global and complex structures along the entire formalization.

Not surprisingly, such complexity reappears in recent research work on formal specifications of

Statecharts in the context of UML. In the next section, we review the most important ones to us.

3.3 The Unified Modeling Language

The formalism of HSM has been successfuly adopted by the industry for system level modeling,

simulation and code generation. It continues to be improved by a standard organization the

Object Management Group (OMG), under the widely known name UML [21].2

2In this thesis, we reviewed UML version 2.4.1, 2011.
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FIGURE 3.3: UML class and associations

UML is a unified and model-driven approach for the modeling of complex hardware/software

systems. It proposes interesting features to manage and specify different system development

aspects:

• Abstractions to classify relevant features of the system and how they relate to each other:

Structured Classifiers.

• Activity graphs that allow the designer to organize the actions to perform for a given task.

• Modeling of each feature’s behavior using hierarchical state machines: State Machine.

• A set of concrete actions to perform on the model by the state machine, such as commu-

nication primitives or structural updates.

• Models for the specification of use cases.

The UML specification is entirely model-based. For instance, Figure 3.3 shows the classifier

implementation in UML v2.4.1 [21]. The class is intended to model a particular component of

the system. It contains properties that associates it to zero, one or more components, according

to the specific multiplicity of the association. More precisely, it is the model view of the type

definition of an object in Object-Oriented Programming (OOP) languages like C++ or Java. For

instance, Figure 3.4 shows in a visual manner two instances of the class meta-model: an Image

and a General-Purpose computing on Graphics Processing Units (GPGPU) class model.

In addition to structural features of a class, the UML classifier may provide a specific behavior

using HSMs. Therefore, the language enables the modeling of a structured network of commu-

nicating Statecharts.
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FIGURE 3.4: Class instances

3.3.1 A Structured Network of Statecharts

The UML class abstractions enclose Statecharts and connect them in a well-defined and struc-

tured manner. Therefore, we refer to the model as a structured network of Statecharts.

The class meta-model allows the designer to create models that can describe many possible

configurations. The class allows the programmer to create a well-defined context to the state

machine in order to communicate with the external world (including other classes) through its

associations.

The UML Statechart is an extension of the Harel’s Statechart. Its structure is presented in a

model based way in Figure 3.5. As we can observe, state kinds are abstracted into a common

concept, Vertex. A Vertex may be a basic state if it does not contain any region, an OR state if it

contains only one region and an AND state if it contains more than one region. States containing

at least one region are called composite. From Vertex, the state inherits incoming and outgoing

transitions that complete the HSM structure. Special states such as initial, final, history and

join/fork, are considered Pseudostates.

Similar to Harel’s syntax of transitions, the transition is composed by a trigger, a constraint (or

condition) and an opaque representation of an action called Behavior. Under this opaque type,

the designer is free to choose his or her preferred language and it is frequently referred to as the

Action Language of the state machine.
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FIGURE 3.5: Simplified Meta-model of UML Statecharts

3.3.2 Informal Semantics

In [21], the OMG introduces an informal semantics of Statecharts where they specify the event

processing algorithm for state machines, called the Run-To-Completion (RTC) step. The RTC

informally describes the actions to perform in order to determine the set of enabled transitions

to fire and how the compound transition is executed afterwards.

Contrary to traditional Statecharts, the state machine handles the arrival of events one at a time

and it is not based on broadcast communications. That is, it exposes a message oriented, First

In-First Out (FIFO)-like communication. Moreover, there is no difference between internal or

external events, they are all considered external.

Following almost the same policies as Harel for the computation of enabled compound transi-

tions, the actions of each fireable transition are executed sequentially — and not in-parallel as

before. In UML Statecharts, the transition with higher priority is the more nested one (inside-

out).

At a given state configuration, the RTC step specifies the following actions to perform:

1. From the transition source state, all substates are exited and their corresponding exit ac-

tions are executed. Note that there is no internal events generated here.

2. The chain of state exits continues until the first region that contains, directly or indirectly,

both the main source and main target states is reached. The region that contains both the
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main source and main target states is called their least common ancestor, or lca, and it

constitutes the scope of the transition.

3. The target configuration of states is entered and theirs corresponding actions are executed

starting with the outermost one.

3.3.3 Formal Semantics

A complete formal specification of UML is a challenging work. The OMG undertakes it on

a subset of UML called foundational UML (fUML) [44]. However, their semantics does not

cover the formalization of state machines, neither its communications. They map models to a

particular “surface” language, such as Java, in order to concretize theirs semantics.

We found multiple formalizations of UML state machines in the literature [1, 22–25]. The most

accomplished work to the best of our knowledge is due to Liu et al.. He introduces its own

abstract syntax for HSM closely following the UML state machine specification. For instance,

the state is a tuple of the following form:

s = (r̂, t̂def , αen, αex, αdo, ên, êx, êx, ĉr, sm, t̂)

where

• r̂ is the set of regions.

• t̂def , αen, αex and αdo are the set of deferred events, the entry, exit and do behaviors.

• ên and êx are the set of entry point and exit point pseudostates.

• ĉr is the set of connection point references. sm is the owner state machine.

• t̂ is the set of internal transitions.

The region is the cartesian product of vertex and transitions

r , (v̂, t̂)

where v̂ ⊂ (S ∪PS ∪Sf ), i.e., it is either a state, a pseudostate or a final state. Compared to the

previous formal representation, here we have two mutually recursive definitions, region r and

state s through v̂.

The transition is the tuple t = (sv, tv, t̂g, g, α, ι, t̂c) where

• sv and tv are the source and target vertex, or states.
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• t̂g, g, α and ι are the set of triggers, the guard, the behavior and the container of the

transition.

• t̂c represents the special situation that a join or fork pseudostate connects multiple transi-

tions to form a compound one.

The author defines an evaluation function A that takes the behavior part of the transitions and

returns a set of events to be sent.

Then, the state machine is defined as sm , (r̂, ĉp). It contains a region (and by transitivity a set

of states) and the entry and exit points of sm.

Finally, Liu et al. defines the system of n communicating state machines as

sys , |Ci∈[1,n]Smi

where Sm contains the actual state machine, its events pool and a set of shared variables: Sm ,

(sm,P,GV ). The operator |C synchronizes all state machines on events in C. This operator

is needed because of the synchronous sending of messages as defined by UML. That is, state

machine smi sends a message to smj and its RTC is not finished until the smj has finished its

own step.

Given a tuple of n configurations of state machines (k1, . . . , kn), the semantics instantiates a

Labeled Transition System (LTS). The configuration is defined as k = (ks, P,GV ) where ks is

the set of active states of the state machine smk. Then, it defines three main LTS rules:

|Ci∈[1,n]Smi, kj → k′j

(k1, . . . , kj , . . . , kn)→ (k1, . . . , k
′
j , . . . , kn)

LTS1

|Ci∈[1,n]Smi, kj → k′j , e = SendSignal(j , l),Merge(e, EPl)

(k1, . . . , kl, . . . , kj , . . . , kn)→ (k1, . . . , k
′
l, . . . , k

′
j , . . . , kn)

LTS2

|Ci∈[1,n]Smi, kj → k′j , e = Call(j , l), e ∈ C, kl e−→ k′l

(k1, . . . , kl, . . . , kj , . . . , kn)→ (k1, . . . , k
′
l, . . . , k

′
j , . . . , kn)

LTS3

We have asynchronous composition with special cases for asynchronous and synchronous send-

ing of signals, encoded in LTS2 and LTS3 respectively.

The main advantage of this formalization resides on its completeness with respect to the UML

specification. It defines mutually recursive structures to formalize the state machine and the

author uses such recursive definitions to define elegant evaluators of entry and exit behaviors
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(not shown here though). Even if the state machine is defined recursively, the state configuration

is still flattened. The action language is not specified but the author handles behaviors such

as SendSignal and Call. If state machines are willing to pass valued signals, they must use

shared variables. Similar to the formal semantics of Harel Statecharts, the lack of modularity

leads to scalability issues. Nevertheless, it is clear that such complexity can be hardly avoided

given the specifities of UML state machines such as deferred messages, synchronous messages

sending and local transitions.

Another interesting formalization was done by Seifert where he followed an equivalent path in

his work [1]. It defines an abstract syntax but instead of using recursion on states and regions, it

specifies a state hierarchy similar to the STATEMATE formalization. One of the most important

differences with respect to the work of Liu et al. is that events may carry parameters. It defines

events as an indexed family of sets (Pe)e∈E where E is a set of events. Then, a parameterized

event set Ev with v ∈ E is defined as

Ev = v〈P1 × · · · × Pn〉

Such definition enables the author to introduce the set of all event instances as

E =
∑
v∈E

Ev

For instance, a particular event set E = {a, b} with P a1 = N, P a2 = B and P b1 = B gives the set

of all event instances:

E = Ea + Eb = a〈N× B〉+ b〈B〉
= {a(0, true), a(0, false), . . . , b((true))}

Seifert distinguishes two kind of actions, event sending and updates of the binding context.

Indeed, the state machine step depends on a global binding context of variables.

If his formalization works nicely on complex data structures as a binding context, it does not

handle multiple communicating state machines as [22] does.

3.4 Synchrounous Statecharts

Defining a suitable semantics for Statecharts is challenging as we have seen in the previous sec-

tions. Many problems arise concerning inter-level transitions, history states and asynchronous

compositions, which are source of non-determinism. Harel and UML Statecharts are hence sub-

ject to racing conditions due to their asynchronous semantics. In the domain of safety-critical
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FIGURE 3.6: Visual syntax overview of SCCharts (Source: [6])

reactive systems, non-deterministic behaviors are not desirable. We found very interesting and

recent research work on synchronous and hierarchical Statecharts [6]. von Hanxleden et al. in-

troduces a new visual modeling language for reactive systems called Sequentially Constructive

Statecharts, or SCCharts. It is inspired from SyncCharts [45], a visual formalism for the ES-

TEREL language [46], but removes some of its limitations such as multiple variable assignments

while keeping determinism. Quoting Harel’s statement about Statecharts [37], the author nicely

states the evolution of all three formalisms:

Statecharts = State-diagrams + Depth + Orthogonality + Broadcast Communica-

tions

SyncCharts = Statecharts syntax + Esterel semantics

SCCharts = SyncCharts + Sequential constructiveness + Extensions

Figure 3.6 shows many of the Statecharts features supported in SCCharts. The formalism re-

lies on a concrete language implementation, the SC Language (SCL), and its corresponding

graphical elements. SCL has a very basic — yet expressive enough — kernel of language con-

structions:

〈s〉 := 〈x〉 ’=’ 〈e〉
| 〈s〉 ’;’ 〈s〉
| ’if’ ’(’ 〈e〉 ’)’ 〈s〉 ’else’ 〈s〉
| 〈l〉 ’:’ 〈s〉
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FIGURE 3.7: From Statecharts to formal languages

| ’goto’ 〈l〉
| ’fork’ 〈s〉 ’par’ 〈s〉 ’join’

| ’pause’

Based the above language, the author introduces its constructive semantics in an operational

manner [47]. Essentially, it extends the synchronous Model of Computation (MoC) [48] by

allowing variables to be read and written multiple times as long as the sequential specification

of the program provides enough information to avoid race conditions. Because of the struc-

tured semantics, i.e., guided by the language constructions, the formalization is cleaner than the

precendent ones, extensible and modular.

3.5 Conclusions

We presented the Statechart visual formalism as first introduced by Harel and discussed about

its informal semantics implemented in the industrial tool STATEMATE. Its official and formal

semantics are also presented where we can see the complexity that Harel’s visual constructions

imply throughout the formalization. Such complexity comes back into recent research work

around the UML language and its Statecharts. The reviewed formal semantics concerning UML

did not manage to handle the overwhelming amount of informal features that the language pro-

poses.

Research work on synchronous languages takes the other way around. Starting from strong

mathematical foundations, the researchers advanced towards convenients visual elements “à la

Statecharts”. The constructive synchronous semantics is well-established, allowing imperative

extensions such as those found in SCCharts.

Figure 3.7 summarizes the approaches for the semantical specification of visual and textual

languages we reviewed. We see that visual formalisms such as Harel Statecharts, including
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Approaches
Statechart Features STATEMATE [41] UML [22] UML [1] SCCharts [6]

Inter-level Transitions yes yes yes no
HSM Composition async/sync async async sync

History no no no yes
Communications Distributed no yes no no

Message Parameters no no yes no
Send/Receive yes yes yes yes

Action Single Variables yes no yes yes
Language Array Variables no no no yes

Dynamic Statecharts no no no no

TABLE 3.1: Supported Statechart features of reviewed research work

UML, has given rise to many abstract implementations and their corresponding formalizations.

In contrast to graphical approaches, the structural approaches are mainly driven by a concrete

language implementation (synchronous Statecharts) over which the semantics and, possibly,

its type system are specified. From a well-founded concrete language, we can more easily

found convenient visual elements and, more importantly, build a constructive semantics, which

is modular and amenable to further extensions.

We show some common features between the reviewed semantics in Table 3.1. We classify

them according to the structure they belong to. Transitions, history states and type of state com-

positions concern the state machine structure. Message with parameters and communications

between HSMs concern the communication layer. Finally, we highlight the action language

expressiveness in terms of support for send/receives, simple and array variables and dynamic

creations of HSM.

The distributed component is key for the specification of an entire model-based Statechart pro-

gram, where Statecharts use object definitions as their contexts in the UML style of program-

ming. Inspired from these works, we develop in Chapter 6 a constructive and hierarchical seman-

tics of Statecharts with asynchrounous communications based on a concrete action language.

A precise semantics enables a formal reasoning on the model. Additionally, it may serve as a

support for direct interpretation or code generation. In the next chapter, we review optimization

and code generation approaches in order to produce efficient code from high-level models.
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This chapter introduces the compilation of Statecharts “à la Harel”. We will overview most used

techniques for optimization and code generation in the industrial and research context.

4.1 Compilation of UML Statecharts

The Unified Modeling Language (UML) language is uniquely designed as a modeling/specifi-

cation language and it is not tied to any particular compilation method or optimizing flow. UML

favors model-based design at all levels of the development process. Furthermore, the standard

left many semantic variation points open to specific implementations [49]. Most Model-Driven

Development (MDD) frameworks based on or inspired from UML, such as Rhapsody [50] or

GASPARD [8], support model-driven code generation and use object-oriented design patterns to

produce executable models.

MDD tools propose different back-ends to produce executable code from UML models. Ex-

ecutable implementations of UML Statecharts are frequently based on one of three different

35
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methods: state design pattern [51], the State Table Transition (STT) [52] and the nested switch

case statements [53].

The most used technique for generating code from Statecharts relies on the state design pat-

tern [54] shown in Figure 4.1. Basically, each state is translated into a class of the host language

that handles a certain number of events depending on its outgoing transitions. If an event ar-

rives, the context calls the virtual method handle(), which returns the next state according to

the encoded transition triggered by such event.

The STT approach creates a table describing the relation between states and events. The boost

C++ Statechart library [55] hides behind a heavy use of C++ metaprogramming a transition table

to map efficiently states to transitions.

Finally, the Nested Switch Case method consists of, as its name implies, a set of nested switch

case statements where the top ones filter the current state of the state machine and further nesting

levels apply the final action following the received event.

The optimizations are frequently done by the backend-end compiler (C/C++, Java), which does

not necessary know the original Statechart structure, and hence may miss interesting optimiza-

tions [56]. On this direction, we reviewed different approaches for model transformations and

optimizations either before code generation or all along the optimizing and code generation

process.

4.1.1 Model-to-Model Optimizations

Certain research works handle optimization issues via Model-to-Model (M2M) transformations.

There are a good variety of dedicated tools, most of them based on the Eclipse Framework,

for M2M transformations such as ATL [57], Epsilon Transformation Language (ETL) [58],

Query/View/Transformation (QVT) [59] and many others. The concept of M2M is to spec-

ify the language transformations based on the language meta-model, within a meta-modeling
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FIGURE 4.3: Moving input incoming transitions to the initial substate (Source: [7])

framework. Figure 4.2 sketches the approach. Given a meta-model, we encode model trans-

formations using a particular Domain-Specific Language (DSL) by directly referencing meta-

model elements. The rules are then instantiated and applied at the model level.

In [7], Schattkowsky and Muller propose a set of rewriting rules in a M2M setting for a subset

of the UML Statecharts, called Executable State Machines. We pointed out in Chapter 3 that

UML Statecharts are independent of the underlying action language. Therefore, their proposed

transformations are only related to the state machine structure, such as move entry/exit activities

to input/output transitions, resolve conflicting triggers along the hierarchy, among others. For

instance, Figure 4.3 shows the formal specification of a transformation that, given any composite

state (ParentState), moves its incoming transitions (ParentT) to the state pointed by the initial

pseudostate (FirstState). If not formally shown, the set of rules allow the authors to flatten

the hierarchical state machine for direct execution. Even though the set of rewritting rules

are generic, they lack of a concrete action language and cannot reason about the actions to

be performed.

The implementation of the synchronous visual formalism SCCharts, reviewed in Chapter 3,
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seems to have a corresponding meta-model according to [6]. Using the Eclipse Metamodel-

ing Framework (EMF) [60], they write model-to-model transformations in plain Xtend lan-

guage [61].1 We discuss in detail its compilation process in Section 4.3.

4.1.2 Optimizing Beyond the Back-end Language

In [27], Charfi et al. pointed out the recurrent problem of modeling frameworks concerning the

gap between models and code production. A concrete specification of a convenient action lan-

guage enables the production of executable models while providing validation and verification

support. However, the early validation process and consequently the modeling effort are inval-

idated by hand-tuned code specializations, necessary to meet performance requirements of the

given models.

To overcome the problem, Charfi et al. pass semantical information about the input model to

the compiler, thus enabling further optimizations such as elimination of unreachables states,

condition combining, etc.. Using a new representation called GUML, information concerning

the structure of the original state machine is passed down to the C compiler via embedded

GIMPLE nodes. GIMPLE is a language-independent tree representation used in GCC for SSA-

based optimizations [62]. The approach enables high-level optimizations inside the intermediate

representation of a compiler. Figure 4.4 show the compilation flow as proposed in [27]. They
1Xtend is a flexible and expressive language that compiles into Java code.
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FIGURE 4.5: GASPARD internal transformations (Source [8])

also show encouraging results with respect to assembly code size comparing three different

industrial tools under different code generation patterns.

4.2 Domain Specific Languages Supporting Model Based Design

The GASPARD modeling framework is the closest work to 〈HOE〉2 we found in the literature [8].

They propose a combination of MARTE for the modeling of embedded systems and the Ar-

ray Oriented Language (Array-OL) [5, 36], which offers generation of efficient code for data-

intensive applications.

Figure 4.5 shows the transformation flow of GASPARD where we precisely see different models

for Embedded System (ES) co-design. We remark multiple underlying representations generated

from the final Platform-Specific Model (PSM) model. However, Array-OL is the chosen one for

the modeling of massively parallel computations.

GASPARD provides a set of modeling concepts for the specification of Array-OL applications

within the MARTE UML profile. They showed interesting results of an unified modeling of

modern platforms (GPGPU) and video processing algorithms (H-263) [17]. However, they fo-

cused on the data-driven part of the algorithm (filtering) because Array-OL does not support
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control dependent flow, as shown in Chapter 2. Therefore, they have to mix different formalisms

for control and data-driven components. Array-OL is mainly a stream-oriented language, known

to have good code generation properties [63], although not a Statechart-like formalism.

We also found similar combinations in the world of synchronous languages [28]. Alras et al.

pointed out the innefficient code generation process from models and tried to address this is-

sue by supporting Model Based Design (MBD) with an intermediate representation based on

LUSTRE [64], which has a strong background on code generation methods.

4.3 Synchronous Statecharts Compilation

In contrast to UML, synchronous Statecharts are strongly guided by a concrete language im-

plementation (and its semantics as well). The code generation of synchronous languages is a

well-known subject in the research community since the LUSTRE and ESTEREL programming

languages [65].

SCCharts [6], presented in Chapter 3, is a safe imperative extension to synchronous languages

with a Statechart-like visual representation. The compilation of SCCharts is decoupled into

different intermediate representations:

• Extended SCChart: the front-end language.

• Normalized SCChart: the extended SCChart is reduced through a series of model-to-

model transformations to primitive transitions only, which facilitates the mapping to the

following representation.

• SC Graph: It is a directed graph that captures control dependencies in the form of a graph

of basic blocks as well as data dependencies between parallel statements.

We show in Figure 4.6 the SCChart representations. For instance, note that the normalized

one split transitions with more than one sequential statement into multiple states (transition

Init → WaitAB). As explained above, the SC Graph decouples the normalized SCChart into

basic blocks or “scheduling units”. The green arrow denotes a concurrent data dependency.

In order to guarantee a deterministic behavior, writes are scheduled before reads, which split

g7 into two different scheduling units. The SC Graph relies on the SCL language introduced

in Chapter 3 and it is from this language that the authors perform the software and hardware

synthesis. SCL and its respective dataflow view make hardware synthesis almost straighforward.

However, they need extra software support to generate the “tick” function that computes each

signal following the chosen scheduling. Indeed, there is another representation slightly different

from SCL called SCLP , which consists of a subset of the sequential C core.
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FIGURE 4.6: SCChart representations during compilation (Source: [6])

Parallel regions produce concurrent threads of execution which are statically scheduled into a

single C function. The scheduling process generate a schedule table that stores the continuations

and is indexed by fixed thread priorities. It is a very clever strategy that allows to manage the

switching between thread actions in order to satisfy data and control flow constraints of the

Model of Computation (MoC) and to implement join/fork semantics by dynamically changing

threads priorities.

4.4 Conclusions

Current MDD frameworks based on UML Statecharts generally focus their code generation

strategies for simulation purposes and they are known for the faithfulness of the initial model

with respect to the generated code. Thus, it is not intended to consitute a final code production

process. On this direction, MDD frameworks use Object-Oriented Programming (OOP) code

generation techniques to improve readability of the generated code and provide a rapid software

architecture to work further on. Looking for performance, recent works try to fill the gap be-

tween modeling techniques and final efficient generated code. Existing approaches take into

account high-level semantics all along the compilation flow.
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Figure 4.7 shows the evolution of the UML compiling flow. In the context of UML Statecharts,

we highlight two main drawbacks: the lack of a concrete action language and the multiple

semantical variation points of Statecharts. To cope with the former, an initiative for the spec-

ification of a concrete syntax from UML exists [66]. However, it does not specify Statecharts

notations. Meanwhile, industrial tools mixed foreign languages such as C/C++ or Java inside

transition actions, with UML providing an object-oriented context. Reviewed research work

built upon C/C++ as the main action language and adapted compliant compilers (gcc) to host

and to optimize Statechart based applications.

Unfortunately, the compilation of UML Statecharts faces a number of open questions related to

their semantics. As shown in Chapter 3, it led to multiple and complex formalizations and it will

necessarily lead to different compiler implementations.2

The important semantical gap between high-level models and its supporting languages (C/C++)

calls for intermediate representations to further optimize the model regarding different aspects:
2We observe a similar issue between different C/C++ compilers due to undefined behaviors in the language

specification.
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communications, computations and data structuring. Different works propose theirs internal

representations (GUML, SCCharts/SCL, Lustre, Array-OL) based on which many strong opti-

mizations can be achieved. However, they are either too specific and tied to a particular low-level

language (GUML) or have limited expressiveness (SCCharts, Lustre, Array-OL).

To summarize, Figure 4.8 shows all different aspects studied so far. From languages that allow

the modeling of parallel computations (Chapter 2), the semantics of Statecharts (Chapter 3)

and its optimization and compilation methods, we conclude that a well-founded Statecharts

formalism should provide

• Modularity: The widely known object-oriented paradigm is well-suited to structure the

communication between different Statecharts and provide a explicit context to the state

machine. UML has strong foundations on this matter.

• A concrete language implementation with parallel actions: In order to be as precise as

possible and to build the foundations for a structured semantics, we need an expressive

action language to that can allow us to model parallel operations.

• A structured formal semantics: on the grounds of a concrete language, a structured se-

mantics should enable a simpler and scalable specification.

• An intermediate representation for optimization and code generation: if we look for per-

formance, an intermediate representation more expressive than previous works exposing

communications, computations and type definitions is necessary.
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In order to fill the gap between the modeling objects and the expression of data-intensive and

parallel computations, we introduce the Highly Heterogeneous, Object-Oriented, Efficient En-

gineering 〈HOE〉2 language. In 〈HOE〉2, we take advantage of hierarchical representations

with multi-valued associations to expose deep nested parallelism. Such parallelism is inher-

ently available at the model structure but often not taken into account to represent primitive

data.

We designed 〈HOE〉2 to be able to express, in an unified manner, fine-grain hierarchical paral-

lelism relying on the structural parallelism already built-in into the model. With data-intensive

applications in mind, we also looked to provide a path to the generation of efficient code by

introducing a set of behavioral abstractions amenable for analysis and optimizations.
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We present the general structure of the 〈HOE〉2 language, its Statecharts, and, most importantly,

the action language. We also recall some of the important features of the Unified Modeling

Language (UML) class meta-model and its Hierarchical State Machine (HSM) definition.

5.1 Objects

The 〈HOE〉2 language borrows some of the important concepts from the widely-known model-

ing language UML. More precisely the concept of classes, associations, multiplicities and HSM.

Figure 5.1 shows a simplified meta-model of the concept class defined in UML 2.4 [21]. A class

contains an indeterminate number of (structural) properties. Two properties are linked via an

association, which at the model level is graphically represented by a straight line connecting

two classes. In addition, properties inherit multiplicity information that allows to constrain the

number of linked instances. In simpler words, we are able to declare arrays of different sizes. It

is a particularity of UML-like modeling language that we will introduce later.
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object Image
has [128..256]Pixel as pixels

object Pixel
has Image as image

LISTING 5.1: Image model in 〈HOE〉2

For instance, Figure 5.2 shows an image model as an instance of the UML meta-model 5.2(a).

The Image instance contains a property called pixels allowing between 128 and 256 Pixel

instances. By reusing graphical notations of meta-models, we draw the particular instance as

shown in Figure 5.2(b). The meta-model of Figure 5.1 may be concretized by means of a gram-

mar definition where each object represents a grammar rule. The key observation is that the

inheritance relation denotes alternation and a group of associations denote concatenation. The

language (or textual) representation of meta-models translates classes into record type construc-

tors with properties representing named and typed fields inside the record. The intermediate

concept of association is folded in both properties, becoming just a type reference. Following

the concrete syntax of 〈HOE〉2 (detailed in appendix A), we write down the equivalent program

of Figure 5.2(b) as presented in Listing 5.1.

Note that we use the keyword object instead of class. Formally, objects are defined as follows

〈object〉 ::= ’object’ 〈ID〉 〈interface〉* 〈association〉* 〈SM〉

It specifies a set of interface entries, a set of associations and a HSM. The allowed types of

associations are either already defined objects or containers. A container is an ordered sequence

of elements that allows duplicates. In the context of UML, the meaning of order is given with

respect to the element position, i.e., independently of the implemented order policy. An element

A is less than A’ if A is located at a lower index position than A’ in the container. Whether we

have lists or arrays is implementation specific and it is automatically decided at code production

time.

In order to support multi-dimensional containers, we extend the multiplicity specification of

UML with comma-separated list of ranges described by the following grammar:

〈T〉 ::= 〈t〉 | ’[’ 〈Range〉 ’]’ 〈t〉
〈Range〉 ::= 〈Range〉 ’,’ 〈Range〉 | 〈INT〉 | 〈INT〉 ’..’ 〈INT〉 | 〈INT〉 ’..’ ’*’ | ’*’

where 〈t〉 is a user-defined object type. The four leaf cases of 〈Range〉 have the usual meaning

1. Container with fixed size, e.g. [256]T.

2. Container size has known lower and upper bound: [4..6]T.
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object Pixel
interface

ins GetU(), GetV()
outs TakeU(Float), TakeV(Float)
on GetY() -> TakeY(Float)

has Float as r, g, b
has Float as y, u, v

LISTING 5.2: Interface entries of Pixel

3. Fixed lower bound and unknown upper bound: [4..*]T.

4. Unbounded number of elements: [*]T.

5.1.1 Interface

As 〈HOE〉2 objects are communicating state machines, they interact with each other by means of

message passing. The set of valid messages that objects may exchange depends on its interface

definition. From the point of view of an object, the interface specifies the set of valid incoming

and outgoing messages with respect to the external world. That is, it exports the set of input

and output messages its users may observe. Everything else related to the message exchanges

needed to fulfill the interface definition is not seen by the external users.

Listing 5.2 shows the definition of three accepted input messages getY, getU and getV, and

three output messages takeY, TakeU and takeV. Input-output relations can also be defined. For

instance, takeY is declared to be a consequence of the reception of getY. They are implicitly

interpreted as input and output messages, respectively, and do not need to be in the set of ins

and outs.

5.1.2 Imports

In order to improve the language modularity, it is possible to organize objects by modules. A

module consists of a set of objects grouped in a single file. The module name is taken from the

file name. Other object may import the module using the keyword import followed by the list

of desired modules.

5.2 Hierarchical State Machines

The Model of Computation (MoC) is based on UML HSMs [21], inspired from the Harel’s Stat-

echarts [20]. UML provides the HSM structure shown in Figure 5.3. It is composed by one
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or more parallel regions. A region contains a set of states and transitions. The state is called

composite if it contains at least one region. From Vertex, it inherits incoming and outgoing tran-

sitions that builds up the state machine structure. Pseudostates model, among other meanings,

initial and final states.

The transition has three main components: zero or more triggers, a guard condition and its

effect. The trigger specifies a list of valid messages to wait for and if the condition guard is

true, the effect is executed. We will discuss about the semantic variations in Chapter 6. The

effect is defined as a Behavior, which may be an opaque type so that the user is free to choose

its preferred language. The behavior specification is known as the Action Language, which is

one of our main contributions: the 〈HOE〉2 action language.
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sm SM.
/ / Creator
creator c() to A
/ / Composite s t a t e
cstate A. / / F i r s t re g i on

region
initial S1
state S1. on m1() to S2
state S2. endon m2()

endregion
/ / Second re g i on
region

initial T
state T. endon m3()

endregion
/ / Outgoing t r a n s i t i o n from compos i te s t a t e A
on m4() to B

/ / Simple s t a t e with f i n a l t r a n s i t i o n
state B. endon m4()

LISTING 5.3: HSM syntax in 〈HOE〉2

Together with a new syntax to describe HSM, we introduce a new parallel action language to

exploit the inherent parallelism of multi-valued associations in a data-parallel setting.1 Before

going into the details of our proposition, we present the general structure of the 〈HOE〉2 HSM

and highlight particular differences with respect to the UML version. Figure 5.4 shows an

example of a HSM and Listing 5.3 its corresponding 〈HOE〉2 program.

In contrast to UML, we defined two different concepts for simple and composite states repre-

sented by the keywords state and cstate, respectively, with transitions folded into the source

state to improve code source readability. The simple state has an identifier and is followed by a

list of outgoing transitions. In addition to outgoing transitions, composite states contain parallel

regions (two regions in the presented example). Parallel regions contain in turn other states,

building up the state machine hierarchy.

They are classified as follows:

Creation. Creation transitions provide a method to create object instances and determine the

entry point of execution. They are similar to constructors in Object-Oriented Program-

ming (OOP). In the same sense, they may take parameters. We allow the specification of

creation transitions only at the top level of the state machine.

External. Standard transitions.

Initial. This transition indicates the initial state of regions.

Final. The final transition marks the end of its execution context, which is either a state machine

or a region.
1A multi-valued association is an association with a multiplicity specification greater than one.
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FIGURE 5.6: Structure of the 〈HOE〉2 action language

Therefore, the object contains a state machine with a default constructor or entry point using

the creation transition (see incoming transition of Figure 5.4). The object defines the execution

context of the state machine.

Figure 5.5 shows an enriched image model and its corresponding 〈HOE〉2 program on which

we will develop all our examples troughout this chapter in order to show the main features of

〈HOE〉2 language.

In the following sections, we present the particularities of the 〈HOE〉2 action language.

5.3 Modeling Arithmetics

The action language separates arithmetic operations into three basic actions: (1) start compu-

tation, (2) receive the result and (3) store it. Point (1) represents a send primitive, (2) denotes

a receive and (3) an update or assignment. Whereas the former two points are intrinsic to the

state machine semantics, the latter is the additional most basic action to be defined. Figure 5.6

shows the structure of the proposed action language. We define the action, or behavior in UML

terms, as a sequential composition of updates and sending primitives, separated by the token ‘:’.

Receive and guard specifications are defined at the beginning of the transition followed by the

keyword on and enclosed in square brackets, respectively.
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state A. on / : r.add(g) to B
state B. on added(v: Int) / b = v

LISTING 5.4: Addition

state GETY.
on /: { i: 0..pixels.len - 1 } pixels[i].getY()
to GETTING_Y

LISTING 5.5: Data parallel broadcasting

Listing 5.4 shows the arithmetic operation b = r + g on the object model of Figure 5.5(a),

decoupled as a combination of our three basic actions where the dot notation means message

sending.

Messages add(Int) and added(Int) are part of the object specification as we will see later.

They model the actual addition with r being the receiver of message add(Int) sent by a Pixel

object with parameter g.

5.4 Parallel Actions

As pointed out in Chapter 2, the data parallel approach is a promising technique to make effi-

cient use of parallel hardware. We will show that its more elaborated extension called Nested-

Data Parallelism can be represented in a model-driven manner. The implementation of such

paradigm relies on a new data structure called parallel array in the context of Haskell Data-

Parallel (HDP) [9]. Similar to 〈HOE〉2 objects, parallel arrays are composable to allow the

expression of hierarchical or nested data parallelism.

The data parallel approach is about performing the same operation on a set of grouped elements,

which in our context it is called broadcasting. We take advantage of multi-valued associations

to define data parallel operations using index domains, defined between braces. Based on the

model example of Figure 5.5, Listing 5.5 shows the luminance computation of all pixels in a

data parallel fashion.

The above example introduces three new concepts: indices, index domains and indexed mes-

sages. The definition is composed by a list of indexes and a set of constraints. The domain is

equivalent to the closed range constraint 0 ≤ i ≤ pixels.len−1. The sending expression inside

an index domain instantiates a set of indexed messages where each index value is taken from its

enclosing domain.



Chapter 5. 〈HOE〉2 Language 55

state GETTING_Y.
on takeY{i}(y: Float) /

ychannel[i] = y to GETTING_Y

LISTING 5.6: Reception of indexed messages

state GETTING_Y.
on takeY{i}(y: Float) /

ychannel[i] = y to GETTING_Y
endon [i.all]

LISTING 5.7: Broadcast completion

state A. on / : r.add(cstr), g.mult(cstg), b.mult(cstb) to B
state B. on multed(v1: Int), multed(v2: Int), multed(v3: Int)

/ r = v1, g = v2, b = v3

LISTING 5.8: Parallel multiplications

In order to complete the parallel operation, the answers triggered by a data parallel broadcast-

ing need to be captured precisely. Therefore, messages have an attached index value which is

inspected using the notation presented in Listing 5.6.

Above listing shows the reception of an indexed message where, instead of passing index values

around as message parameters, we expose indexes as a special field in the message structure.

The advantage of this approach is twofold:

• Given that the index domain concerns only the sender, the receiver does not need to know

where it is stored in the sender context.

• As we will see in Chapter 8, we can analyze index sets to optimize the state machine and

to produce efficient code.

After the reception of all indexed messages, we need to indicate the completion condition. List-

ing 5.7 shows the syntax that denotes broadcast termination. Using one the index variables,

which has a corresponding index domain, we denote the condition “all messages have been

received”.

In addition to index domains with parallel semantics, we extend the language with parallel

composition using the comma separator.

Listing 5.8 shows three parallel sending actions, denoting multiplication. Its respective answers

are captured at state B and stored in parallel.

Combining object composition, data-parallel broadcasting and parallel composition of action

expressions, we obtain a modular implementation of nested data parallelism paradigm on the
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mult()
multed(Float)

getY()

takeY(Float)

image:Image pixels[i]:Pixel r:Int g:Int b:Int

FIGURE 5.7: Nested parallel operations

context of modeling languages. The diagram of Figure 5.7 illustrates the nesting of sending

actions. The Image sends getY indexed messages to pixels[i] for all i ∈ [0..255]. For each

Pixel object, getY triggers three parallel send of mult(Float) messages. Therefore, paral-

lelism is nested in a modular fashion.

Index Domains. In the context of broadcasting, we briefly introduced in the previous section

the concept of index domains. They are composed by a list of iterators together with a constraint

formula (see complete definition in Appendix A). Therefore, we can specify more elaborated

iteration domains such as

• Modulo conditions: { i: i % 2 = 0 }

• Column/row selection: { i, j: i = 3 and 0 <= j <= 255 }

• Upper/lower triangle of a two dimensional association:

{ i, j: 0 <= i < j and 0 <= j <= 255 }

We can iterate on both 〈HOE〉2 actions, updates and sending. Iterators in sending actions have

additional semantics. The defined index variables can be used later in receive expressions so

that the same domain applies there. As shown in Listing 5.6, the index domain of i defined at

state A remains the same at the receive clause of state B.

We limit index constraints to the representation of affine expressions. That is, constraints are

defined over the set of presburger formulas [67].

Association Slicing. The action language supports slicing of associations. The programmer

can specify a closed range to select a list of values from a multi-valued associations in a single

expression. As an example, consider the Image creator of Listing 5.9.

The Image creates pixel.len pixels using creator pixel and passing it a slice of the association

rawImage containing three values.
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creator raw(rawImage: Int[768]) /
{ i: 0..255 } pixels[i] = new Pixel.RGB(rawImage[3*i..3*i+2])
to GETY

LISTING 5.9: Association slicing of three integers

1 object Pixel
2 interface
3 on getY() -> takeY(Float)
4
5 has Int as r, g, b
6 has Float as y, u, v
7 sm PixelSM.
8 creator RGB(rgb: Int[3]) / r = rgb[0]
9 , g = rgb[1]

10 , b = rgb[2]
11 to ComputeY
12 / / Wait f o r getY and launch m u l t i p l i c a t i o n s
13 state ComputeY. on getY() / : r.mult(0.299)
14 , g.mult(0.587)
15 , b.mult(0.114)
16 to Multing
17 / / C o l l e c t two m u l t i p l i c a t i o n s and launch the a d d i t i o n
18 state Multing. on multed(v1: Float), multed(v2: Float) / : v1.fadd(v2)
19 to MultAdding
20 / / C o l l e c t l a s t m u l t i p l i c a t i o n s and launch another a d d i t i o n
21 state MultAdding. on multed(v3: Float), fadded(v4: Float) / : v3.add(v4)
22 to Adding
23 / / Reply to the sender of getY ( ) by us ing keyword ” i n i t i a t o r ”
24 state Adding. on fadded(result: Float) / y = result: initiator.takeY(y)
25 to ComputeY

LISTING 5.10: Reply on initiator

5.5 Initiators

In section 5.4, we presented how to handle replies triggered by specific messages such as getY

or Add and mult(Int) but we did not show how the corresponding replies were generated.

In 〈HOE〉2, the receiver may send replies using the keyword initiator. For instance, consider

the complete implementation of Pixel where the use of initiator is highlighted at line 24 of

Listing 5.10.

The initiator allows objects to send replies without knowing the actual target. The initiator value

is directly related to the interface definition. Only the input messages exposed by the interface

will set the initiator variable with the corresponding sender. For instance, given the relation

exposed in the interface of Pixel, we see that initiator corresponds to the sender of message

getY at line 32. This setting is clearly control flow dependent. The compilation process via our

intermediate representation, presented in Chapter 7, makes definitions explicit.



Chapter 5. 〈HOE〉2 Language 58

S T

i: 1..N

CompositeState
cstate CompositeState.
region { i: 1..N }
initial S
state S. on / to T
state T. endon /

endregion

FIGURE 5.8: 〈HOE〉2 indexed regions

5.6 Object Creation

Every object exposes a creation transition. For instance, consider the example of Listing 5.10

where Pixel defines a creation transition called RGB taking an association of three integers.

Then, Image creates Pixel instances using the following syntax

pixels[i] = new Pixel.RGB(rgb[3*i..3*i+2])

LISTING 5.11: Instantiating objects

5.7 Indexed Regions

Regions inside states represents parallel regions of code, modeled using state machines, hence

the hierarchical composition. Whenever the state machine enters a composite state, it automati-

cally jumps to the entry point of each of its internal regions.

We extend the HSM model with indexed regions where its graphical and textual notation is

shown in Figure 5.8. It represents N parallel regions, each one indexed by i. The i-th region

contains two states, Si and Ti, where Si is the initial one. Indexed regions model forall block

expressions, found natively in most parallel languages or introduced as parallel extensions to

sequential languages [9, 34].

We will show in Chapter 8 that the indexed region is a key concept to enable deep optimiza-

tions for efficient code generation, e.g. inlining of HSMs. As an illustration, consider objects

O and O’ related through a multi-valued association o’ as shown in Figure 5.9(a). Under spe-

cific hypotheses for model and state machine transformations that we will introduce in detail

in Chapter 8, we are able to inline object T into S featuring indexed regions as described by

Figure 5.9(b). Note that the multiplicty range is compliant with the indexed region domain.
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FIGURE 5.9: Inlining objects

5.8 Scalars

Every language provides a set of scalars as built-in types, e.g. int or float in C/C++ or Java.

In addition, pure functional languages like Haskell allow us to represent algebraic properties

on scalars. They share an intrinsic property across all programming languages: immutability.

Furthermore, scalars usually denote the carrier set of some algebraic structure. Lots of compiler

optimizations are built upon properties of scalars, e.g. constant propagation, strength reduction

or value numbering [68].

On the other hand, the behavior of built-in types strongly influence language design. For in-

stance, let us consider the pure, non-strict functional language Haskell. Due to its lazy eval-

uation strategy, variables of any type, including primitives types, can be undefined until their

values are required [69]. The undefined value, noted ⊥, is part of all Haskell types and must

be taken into account. Technically, the language calls the integer type Int a boxed type even

though standard arithmetics is applicable on them and all known algebraic properties still hold.

A specific analysis called the strictness analysis tries to avoid boxed types as much as possible

in order to improve performance trading-off its non-strict semantics at compilation time [70].

Data-flow languages introduce another interesting example of built-in types [71, 72]. In the

Kahn denotational semantics of data-flow languages [73], everything is a stream, even primitives

values. A simple integer value in such programming language denotes a stream of values where

all arithmetic operations are applied point-wise. This feature allow the programmer to easily

write parallel programs, increasing the language expressiveness.

Inspired from these remarks and the intrinsic properties of scalars, we define an extended view

of scalars as communicating state machines. To preserve the algebraic properties of scalars,

including referential transparency, we choose a functional semantics for these state machines: a

transition results in the construction of a fresh machine in a new state. As a result, in a functional
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scalar Int
interface

on Add(Int) -> Added(Int) ~> AddOp
on Mult(Int) -> Multed(Int) ~> MultOp

model Z with (+): AddOp, (*): MultOp

LISTING 5.12: Integer scalar

scalar Float
interface

on Div(Float) -> Dived(Float) or DivedByZero() ~> DivOp

LISTING 5.13: Float scalar

setting, scalar values follow the same semantics as generic immutable objects. This has a lot of

advantages in modeling languages.

For instance, consider again the state machine of Pixel object shown in listing 5.10. It ex-

tracts the luminance information from a Pixel in RGB format interacting with scalars. Note

that interactions with scalars, at ComputeY for instance, are explicitly parallel and equivalent to

generic objects from the modeling perspective. As a side-effect, it introduces a natural nota-

tion for (data) parallelism. The representation of scalars is compliant with the message passing

semantics of 〈HOE〉2, providing a consistent and homogeneous abstraction to the language.

The scalar defines operations in the form of message exchanges. It has an underlying carrier

set that provides an intrinsic meaning to the type and its operations in the form of message

exchanges. For instance, consider the Int scalar of Listing 5.12. The denotation of scalar Int is

the set Z, which is built-in in the compiler and equivalent to Z, together with the denotation of

message exchanges (addition and multiplication). The interface has a new kind of entry that we

call operational transitions. Int has two operational transitions AddOp and MultOp. They model

the beginning of an operation and its ending in an asynchronous manner.

Besides a clean integration on the modeling framework, this representation has interesting im-

plications. We will show in Chapter 8 that operational transitions are foldable in the context of

the intermediate representation. It means that send and receive pairs can be transformed into

an in-place operation, which is exactly what the scalar interface captures. Formally, one may

simply think of AddOp as the function AddOp : Z× Z→ Z.

As another example, see the interface entry of scalar Float in Listing 5.13.

DivOp operator is a partial function (not defined when dividing by zero) but we can make it total

by takingDivOp : R×R→ (Dived+DivedByZero), whereDived ' R andDivedByZero

models the return value on error condition. Therefore, message replies become values of the

Scalar type being defined.
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scalar Float
interface

on Div(Float) -> Dived(Float)
or NaN()
or Inf()
or nInf() ~> DivOp

LISTING 5.16: Extended Float scalar

For instance, let f1 and f2 be two Float scalars and, following 〈HOE〉2 notations, the send action

f1.div(f2). Then, we should have the following transitions to collect all possible answers.

state Divided.

on dived(f: Float) to NextState

on divedByZero() to ErrorState

LISTING 5.14: Message operations

Now, suppose we are able to find that send and receive expressions are actually related and that a

language construct applyon which takes an object, an operation and a variable number of object

parameters exists. In that case, we do not need to use message passing semantics and we can

safely apply DivOp operator in-place as follows

f = applyon f1 DivOp f2

[...]

state Divided.

[f is dived] to NextState

[f is divedByZero] to ErrorState

LISTING 5.15: Inlined operation

where operator is would allow us to check whether the value of f has been properly divided

or not. This construction can be seen as a pattern matching over set Dived + DivedByZero.

The main difference is that f does not need to be projected in order to be used once it has been

matched. If it is an error, it cannot not be used at any of the reachable states starting from

ErrorState and if it is used, it is not an error. To see this claim, note that Listing 5.15 is the

translation of Listing 5.14 after sends and receives have been folded. In the latter, no variable is

defined when an error message is received and therefore, f does not exist at all states reachable

from the second transition unless there is a path in the control flow which joins NextState and

ErrorState, i.e., they share reachable states. If there is such a path and f is used, it must

correspond to dived(Float) message.

Other interesting refinements can also be intuitively constructed based on this idea. For instance,

the C implementation of floating-point numbers follow the standard IEEE754 [74] and can be

translated as shown in Listing 5.16.
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FIGURE 5.10: JPEG algorithm phases

Given that we may add new values (or reply types) to any scalar set and associate sum type as a

return type of a given operator, could we have an operator such as DivOp : R+NaN+Inf →
R? The answer is no. The programmer cannot manipulate Inf or NaN values because there is

no variable associated to them as they are the result of message matching at receive expressions

— though we can send message named NaN if the scalar supports it.

In general, the operational transitions for any scalar T are of the form

〈optransition〉 ::= ’on’ 〈input〉 ’->’ 〈output〉 ’~>’ 〈opid〉
〈input〉 ::= 〈id〉 ’(’ 〈type〉* ’)’

〈output〉 ::= 〈output〉 ’or’ 〈output〉 | 〈id〉 ’(’ [〈type〉] ’)’

5.9 Modeling Applications

The set of proposed features allow us to model data intensive applications in an intuitive man-

ner. In order to show the use of some of the proposed features, we consider the computational

intensive flow of the JPEG compression algorithm shown in Figure 5.10.

Starting from an image on RGB format, the algorithm transforms it into the Luminance and

Chrominance color metrics (YUV). The luminance values are then tiled with a tile size of 8x8.

The Discrete Cosine Transform (DCT) is applied over all image blocks. Afterwards, the quanti-

zation phase divides each frequency value by specific values taken from an external quantization

table. Finally, the Run Lenght Encoding (RLE) and Huffman encoding compress the resulting

data, which is formatted into different sections to be stored.

Figure 5.11 shows the object model for the JPEG implementation of an image with 64x64 pixels.

We briefly show here the proposed expressions of the 〈HOE〉2 language. We will cover it in

depth at Chapter 9.

For instance, we can tile the image into 8x8 blocks via array slicing and launch parallel encod-

ing using indexed messages after all Block8x8 has been constructed. The tiling and encoding

operations are implemented inside the Image state machine as follows
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FIGURE 5.11: Image object model implementing JPEG

state Encode.

on [] / {i, j: 0 <= i < 8 and 0 <= j < 8}

blocks[i, j] = new Block8x8(ychannel[8*i..8*i+7, 8*j..8*j+7])

: {i, j: 0 <= i < 8 and 0 <= j < 8}

blocks[i, j].encode() / / P a r a l l e l encoding
to Encoding

After the encoded values has been received inside Block8x8, Block8x8 launchs parallel divi-

sions (quantization) relying on the scalar abstraction of 〈HOE〉2.

state Quantize. on / : {i, j: 0 <= i < 8 and 0 <= j < 8}

dctblock[i, j].div(qtable[i, j]) / / P a r a l l e l d i v i s i o n
to Zigzagging

As we can see, the parallel sending actions and the new scalar abstraction allow us to express

parallelism in an uniform way.

5.10 Contributions

Following the structure of modeling languages, such as UML, we proposed several important

features together with a new action language for the modeling of data-itensive applications.

Our propositions can be classified into three categories: the action language, object related

extensions and new state machine abstractions.

The 〈HOE〉2 action language. We proposed a minimal set of actions: update and send. Up-

dates and sending actions are ordered sequentially where each one of them can be composed

to form parallel expressions. Parallel expressions can be defined over an iteration domain and,

more importantly, they allow the creation of indexed messages when it concerns sending ac-

tions. We also propose a well-defined reply action, the initiator semantics. Sending of messages
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to the initiator object denotes a reply, which may be indexed if the initial message of the current

transaction was also indexed.

We provide more expressive trigger specifications in order to capture indexed messages. Index

values inside messages are closely related to the initiator semantics as it result from an implicit

forwarding of index values from the initiating message. Therefore, we relate send and receive

actions through specific index values.

We introduced join semantics using all conditions over specific indexes. Indeed, the index has

an associated domain when defined for parallel sending actions. This condition allow us to wait

for the broadcast to be completed.

More expressive models. We extended the multiplicity specification to support the modeling

of n-dimensional associations. In addition to richer multiplicities, we defined an object interface

that captures incoming and outcoming messages, together with precedence relations between

them.

A key proposition is the 〈HOE〉2 scalar. 〈HOE〉2 scalars allows the programmer to consider

scalar values as plain objects. The idea is followed by the modeling of simple arithmetics in

terms of message passing. The combination of index domains to model parallel sending actions

and the 〈HOE〉2 scalar abstraction enabled the modeling of parallel operations.

State machine abstractions. We extend the Statechart formalism with the concept of indexed

regions. Indexed regions provide forall semantics to traditional regions via an indexed domain.

It allows, among other things, the inlining of objects and fork/join fusioning, as we will see in

the following chapters.
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In this chapter, we present the formalization of the Highly Heterogeneous, Object-Oriented, Ef-

ficient Engineering 〈HOE〉2 language. We propose a hierarchical semantics decoupled into three

operational parts: semantics of actions, transitions and configurations. We use a combination

of structured operational [75] and denotational semantics techniques to handle non-determinism

of parallel actions and meaning of single 〈HOE〉2 statements, respectively. 〈HOE〉2 semantics

is strongly inspired from the informal semantics of Unified Modeling Language (UML) State-

charts [21].
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FIGURE 6.1: Functional view of communicating 〈HOE〉2 objects

6.1 Introduction

Before entering into specific definitions, let us present the very general picture of communica-

tions among 〈HOE〉2 objects. 〈HOE〉2 is based on asynchronous state machines communicating

through message passing. Each 〈HOE〉2 object corresponds to a state machine implementing

external and internal First In-First Out (FIFO) buffers. As mentioned in Chapter 5, the interface

definition exposes “external” or visible messages to the object owners. The messages not shown

at the interface level are not visible to the owners and hence they flow through an internal FIFO

buffer. Figure 6.1 shows the proposed communication flow by expliciting external and internal

FIFOs. In 6.1(a) we have a simple 〈HOE〉2 object model and Figure 6.1(b) shows the commu-

nication flow of a given instance of such model. For instance, object B1 will write to external

C1 FIFO using send primitives whereas all replies, triggered by initiator, from C1 to B1 will

write to the internal B1 FIFO. Note that objects can be shared, and hence we may have multiple

producers for the external or internal FIFO buffers. However, there is always one consumer per

buffer.

The message reception procedure will look at the external FIFO if the required message belongs

to the object interface. Otherwise, it looks at the internal FIFO for any available message. In

case we have an available message, we follow a message dropping policy. That is, if the popped

message does not correspond to the current waiting one, then it is dropped.

In the following sections, we present required notations and definitions. Then we develop our

hierarchical approach where the semantics of 〈HOE〉2 actions, ΓA, form the bottom layer. On

top of it, we define the semantics of transitions, ΓT , and finally the semantics of state machine

configurations, ΓK . Figure 6.2 describes the general mathematical view. A transition relation on

ΓK depends on ΓT , which in turns depends on ΓA, hence forming a decoupled approach. This
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ΓA a→ a′ ∈ ΓA

ΓT

a→ a′ ∈ ΓA t1 → t′1 ∈ ΓT

t2 → t′2 ∈ ΓT

ΓK

t→ t′ ∈ ΓT k1 → k′1 ∈ ΓK

k2 → k′2 ∈ ΓK

sys ∈ S

FIGURE 6.2: Hierarchical semantics

separation allow us to deal with each particular problem, initiator semantics, message send/re-

ception, message dropping policy, etc., mostly in isolation.

6.2 Domains

According to the 〈HOE〉2 language presented in Chapter 5, the intuitive semantical domain is

that of objects, references, array of references and indexes. Therefore, we define the following

concepts:

• The finite set of references (or locations) R, the undefined reference Null together with

the lifted versionRNull .

• A store mapping references to object values A =
⋃
R⊆RR→ O.

• Indexes as integer values, Z.

• The set of array values Ā =
⋃
a∈N[0, a) → V , where [0, a) denotes the product of right-

open interval and V the set of values.

Given above definitions, we construct the generalized set of values V = RNull + Ā+ Z.

Definition 6.1. The set of communicating objects forms the system, or simply the program

state. We define the system as a memory mapping slots to objects. Formally, it is defined as

S = (R, A), the current object reference and the mapping A = R → O from references to

objects where R is the finite set of references (or memory slots). Note that mapping A may

grow as new objects are created and, hence introduced into the system.

Definition 6.2. An object is defined as O = (〈sm〉,K,E,Φ, I) where

• 〈sm〉 is the state machine.

• K is the current state machine configuration, which will be precisely defined later.
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• E denotes the event list.

• Φ = V ⇀ V is a partial function corresponding to the object binding context where V is

a set of variable identifiers.

• I = RNull is the initiator reference.

Definition 6.3. The message M = (R, I,M,Ψ,B) contains the sender reference, a sequence

of index values I = Z, a valid message identifier, a mapping to its ordered parameter references

Ψ = N→ V and a boolean value that is true if we have a reply message.1

Definition 6.4. We define the event pool E = M as a list of messages.

6.3 Semantics of Actions

Let us first introduce some useful notations.

• We note sys[r 7→o] the new system that maps reference r to object o and keeps everything

else unchanged.

• We use α to range over the 〈HOE〉2 syntax sets defined in Appendix A.1.

• List concatenation

• The function update is noted as f ′ = [f | r′ 7→ o], which is equivalent to build a new

function f ′(r) = if r′ = r then o else f(r).

• We also define the conditional function update f ′ = [f | r′ 7→ o]p where p ∈ B is a

condition such that f ′ = if p then [f | r′ 7→ o] else f

• We note projections with subscripts, e.g. Asys is the mapping of system sys ∈ S.

• The binding extension operator B : Φ→ Φ→ Φ is defined as

φB φ′ = λv.if v /∈ dom(φ) then φ′(v) else φ(v)

The implementation of v /∈ dom(φ′) is not shown here. For completeness, we model

partial functions with functor Partial(a) = a+ Undefined .2

• We will refer to an instance of a given syntax set S corresponding to the 〈HOE〉2 grammar

as αS . For instance, αstate is an instance of 〈HOE〉2.

1Reply messages resides in the internal object buffer, otherwise they belong to the external one. It is a particular
implementation of our double FIFO communications.

2Note that Partial ' Maybe using the well-known Haskell type.
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• We use classical notation for lists v = [vi] and note the concatenation of lists as a · b.

• We note disjoint unions as S = A + B and we use ι to describe injections into S. For

instance, ιA : A→ S and ιB : B → S represent the injections of S.

In the following, we consider sys = (r̂, A) where r̂ is the current reference and ô = Asys(r̂) is

the object under evaluation.

6.3.1 Sequential and Parallel Composition

We define a transition semantics on ΓA = 〈action〉 × Φ × S + Φ × S where Φ : V → V

represents the local context, i.e., the bindings at the transition level. The set of actions, 〈action〉,
implements comma-separated parallel update and send primitives, both sequentially ordered by

the separator ‘:’. Non-determinism in case of parallel execution and sequentiality are simple to

specify thanks to the operational semantics approach. Let αaction = αupdate:αsend , they are

introduced by the following rules

(αupdate, φ, sys)→ (α′update, φ
′, sys′)

(αupdate:αsend, φ, sys)→ (α′update: αsend, φ
′, sys′)

ASeq

(αupdate, φ, sys)→ (φ′, sys′)

(αupdate:αsend, φ, sys)→ (αsend, φ
′, sys′)

ASeqEnd

where parallel compositions of updates (with equivalent rules for sends) are given below.

(αupdate, φ, sys)→ (α′update, φ
′, sys′)

(αupdate, α′′update, φ, sys)→ (α′update, α′′update, φ
′, sys′)

AParUL

(αupdate, φ, sys)→ (α′update, φ
′, sys′)

(α′′update, αupdate, φ, sys)→ (α′′update, α′update, φ
′, sys′)

AParUR

(αsend, φ, sys)→ (α′send, φ
′, sys′)

(αsend, α′′send, φ, sys)→ (α′send, α′′send, φ
′, sys′)

AParSL

(αsend, φ, sys)→ (α′send, φ
′, sys′)

(α′′send, αsend, φ, sys)→ (α′′send, α′send, φ
′, sys′)

AParSR
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For instance, ASeqEnd gives a new relation if there exists an evaluation on ΓA of the action

αupdate under context φ and system sys terminating into final context φ′ and system sys′, then

the sequential statement below evaluates to the send action under such new system. From there,

we continue to evaluate such send using the new system.

Non-determinism is cleanly expressed with rules AParUL and AParUR. In case of parallel up-

dates, they allow both udpates to be evaluated without prior order. It can be shown that non-

deterministic inference rules have an equivalent denotational semantics on power-domains [43].

〈HOE〉2 has three mains actions: update, send and receive. The interpretation of one transition

involve all combinations of them. Given that the communication model is “single consumer-

multiple producers”, then an object may modify other objects in the system by pushing new

messages to their event pool or it may also add new objects to the system, hence new references.

6.3.2 Update

We start by defining a denotational semantics of updates. Let us consider the simple one with

the following evaluation rule

(φ′, sys′) = JαsupdateKu(φ, sys)

(αupdate, φ, sys)→ (φ′, sys′)
ASUpdate

where we take a simpler definition of its grammar

〈supdate〉 ::= 〈var〉 ’=’ (〈var〉 | 〈new〉)

The left-hand side of updates, 〈var〉, are single or array variables while the right-hand side

may also contain “new” expressions denoting object creation. We define JKu : 〈update〉 →
(Φ× S)→ (Φ× S) for the particular case of single variables as

Jv = v’Ku(φ, sys) = (φ′, sys[r̂ 7→ô
′])

where r = (φB φô)(v’)

φ′ = [φ | v 7→ r]v∈dom(φ)

φ′ô = [φô | v 7→ r]v/∈dom(φ)

ô′ = (smô, kô, eô, φ
′
ô)

We build binding contexts depending on scoping conditions. We obtain the reference value r

and we update the local context φ iff the defining variable is local. Otherwise, we update the

object binding context.3 Then, we return a new local binding and system.
3Note that the conditional function update returns the same function if the condition is false.
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As mentioned earlier, the new expression creates an object, and hence a new reference into the

current system mapping. We define its denotation as follows

Jv = αnewKu(φ, sys) = (φ′, sys′[r̂ 7→ô
′])

where (r, sys′) = JαnewKn(φB φô, sys)

φ′ = [φ | v 7→ r]v∈dom(φ)

φ′ô = [φô | v 7→ r]v/∈dom(φ)

ô′ = (smô, kô, eô, φ
′
ô)

and JKn : (Φ × S) → (R × S) creates a new object referenced by r′ on sys′, which is an

extension of sys. We build the new bindings as before and update sys′ with the updated object

o. We detail hereafter the impliciations of the creation process.

Creation. As explained in Chapter 5, the creation transition points to the entry state of the

state machine. We recall the definition of new and creator:

〈creator〉 ::= ’creator’ 〈id〉 ’(’ 〈param〉* ’)’ [’/’ 〈update〉+] 〈to〉
〈new〉 ::= ’new’ 〈id〉 ’.’ 〈id〉 ’(’ 〈var〉* ’)’

In order to create a new object following Definition 6.2, we have to define the following com-

ponents of our initial object o0 = (αsm, k0, e0, φ0, r0) where

1. The state machine implementation αsm ∈ 〈sm〉.

2. An initial configuration k0 ∈ K

3. An empty event pool e0 = ε

4. An initial binding context φ0(v), which initialize associations with the undefined refer-

ence Null .

5. The initiator is a null reference r0 = Null

Note that αnew = (αid, α
′
id, αvar) provides all these informations. The first identifier αid corre-

sponds to the object type to be created, from which we obtain the state machine implementation.

The second one α′id corresponds to the creator identifier to be evaluated. Finally, the input pa-

rameter list αvar provide the local binding context to evaluate the update action (defined at the

creator transition) according to the transition semantics defined over ΓA.

The initial configuration k0 concerns the state machine semantics, ΓK , and will be introduced

in Section 6.5. We will show precisely how to construct k0 from the initial 〈HOE〉2 state.
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6.3.3 Send

Similar to updates, we define a denotational semantics of sends

(φ′, sys′) = JαssendKs(φ, sys)

(αsend, φ, sys)→ (φ′, sys′)
ASSend

where the grammar of simple sends is defined hereafter

〈ssend〉 ::= 〈var〉 ’.’ 〈msg〉

Let push = λo,m.(smo, ko, eo · [m], φo) be the function that pushes message m into object o,

and JKm : 〈msg〉 → Z → B → (Φ → S) → M the function that takes a message definition,

index values, a boolean indicating if it is a reply, a binding context and a system to give us a new

message m ∈M . Then, the denotation of send, JKs : 〈send〉 → (Φ× S)→ (Φ× S) which for

the case of single variables is defined as

Jv.αmsgKs(φ, sys) = (φ, sys[r
′ 7→o′])

where φ′ = φB φô

r′ = φ′(v)

o′ = push(Asys(r
′), JαmsgKm(0, false, φ′, sys))

(6.1)

Unlike updates, sending actions will modify other objects in the system by pushing messages

to their event pools. The message indexes are set to 0 because we are dealing with non-indexed

sends. Notation 0 stands for a single element list of zeros.

Initiator. We also have an special case here, the initiator.

Jinitiator.αmsgKs(φ, sys) = (φ′, sys[r
′ 7→o′])

where φ′ = φB φô

o′ = push(Asys(Iô), JαmsgKm(0, true, φ′, sys))

The sending action is done on the initiator reference Iô of the current object ô and a reply

message is instantiated.
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6.3.4 Indexed Actions

Indexed actions concerns update or send expressions under a specific index set domain. For

instance, consider the 〈HOE〉2 syntax of indexed updates

〈iupdate〉 ::= ’{’ 〈indexset〉 ’}’ 〈supdate〉

Instead of specify a denotational semantics similar to [76], we developed an operational view

that takes advantage of the logical deduction on presburger formulas to derive a transition se-

mantics.

Let c ∈ 〈int〉n and JKix : 〈int〉 → Z an vector of index constants and the denotation of index

values, respectively. We also use the alpha conversion noted αindexset[a/b], which replaces all

occurrences of a by b into the 〈HOE〉2 index set αindexset. In the following definition and in

order to keep clear notations, we consider lifted versions of our index denotational function,

alpha conversion and 7→ to n-dimensional sets.

αindexset[i/c] ` >
(αupdate, [φ | i 7→ JcKix], sys)→ (φ′, sys′)

αindexset, i < c or c < i ` α′indexset
({αindexset}αupdate, φ, sys)→ ({α′indexset}αupdate, φ′, sys′)

AForall

The above rule gives an operational view of the forall expressions in the 〈HOE〉2 language.

Essentially, we choose a constant c that belongs to the index set, we bind the indexes to the con-

stant and evaluate αupdate under this new binding. After evaluation, the constant value should

not belong to the set anymore. For this reason, we take advantage of the logical relation of

presburger sets under new constraints to materialize the evaluation relation.

Indexed Messages. Indexed send expressions carry additional implications: indexed message

instantiation. The surrounding index set gives the index values to the message to be instantiated

(see Definition 6.3). Following above forall semantics, we instantiate a message with index

value c by using function JαmsgKm(JcKix, false, φ′, sys). Note that non-indexed send semantics

sets index values to 0 (see Equation 6.1).

6.4 Semantics of Transitions

Receive expressions control the evaluation of actions. Let t = (αtrigger, αguard, αaction, αto) ∈
〈trn〉, we define a relation on
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ΓT = 〈trn〉 × S + S (6.2)

Let a, a′ ∈ ΓA, we note a→∗ a′ the transitive closure of relation→ on ΓA. We define rules that

rely on the previous action semantics defined over ΓA.

1. Transitions are evaluated unconditionally if there is no trigger provided that guard is true.

αtrigger = ∅ ∧ JαguardKg(φô, sys) ∧ (αaction, φε, sys)→∗ (φ′, sys′)

(αtrn, sys)→ sys′
TNoTrigger

where φε is the empty binding.

2. If there is a trigger, we check if the first message in the event pool matchs it (match)

and guard evaluates to true under the local binding context, which is constructed from the

input message by mbind : M → 〈trigger〉 → Φ.

ô = (smô, kô,m :: e′, φô)

match(m,αtrigger)

φm = mbind(m,αtrigger)

JαguardKg(φm B φô, sys)

(αaction, φm, sys)→∗ (φ′, sys′)

ô′ = Asys′(r̂)

(αtrn, sys)→ sys′[r̂ 7→(smô′ ,kô′ ,e
′,φô′ )]

TTrigger

Note that we must pop message m from event pool of ô to construct the new system from

sys′.

The message binding function mbind takes also into account indexed triggers. Indexed

triggers are of the form “on msg{i}()” where i captures the index value of the incoming

message. Therefore, mbind binds incoming index values from m to the corresponding

index variables specified in αtrigger.

Actually, rule TTrigger is richer than the presented one. There are still two important facts

to consider, one refers to message consumption, i.e., from which FIFO we are going to pop a

message, and the other concerns the initiator setting.
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S1 S2

m1()

m2()

T

m2()

A

B

m3()

m4()

(a) 〈HOE〉2 graphical state machine

sm SM.
creator c() to A

cstate A. / / Composite s t a t e
region / / F i r s t re g i o n
initial S1
state S1. on m1() / to S2
state S2. endon m2()

endregion
region / / Second re g i o n
initial T
state T. endon m2()

endregion
on m3() / to B / / Outgoing t r a n s i t i o n

/ / from compos i te s t a t e A
state B. endon m4()

(b) 〈HOE〉2 code

FIGURE 6.3: Non-Indexed model

External and Internal FIFO. We detailed in Figure 6.1 the functional view of writes to the

external and internal FIFOs of the state machine. However, we did not specify how the state

machine decides from which one it is going to read. As for the writes, the choice is based on its

interface. Naturally, the reads follows similar conditions. More precisely, if αtrigger is exposed

at the interface then we look for non-reply messages. Otherwise, we look for reply ones.

Initiator. According to Definition 6.2, the object has an initiator reference. We use it in the

semantics of sending actions via the initiator keyword, as shown in Section 6.3.3. On the

other hand, the message sender reference (as defined in 6.3) was never used yet. Let m ∈ M

be a non-reply message, the initiator reference Iô is set to the message sender reference Rm iff

Mm belongs to the object interface. That is, the object receives an external message.
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6.5 State Machine Evaluation

We start by considering the non-indexed configuration model. A configuration indicates the

current active states down the hierarchy of the Hierarchical State Machine (HSM). Therefore, it

must model simple, composite and final conditions. The hierarchical state machine configura-

tion is a functor K defined as follows:

K(a) = a+ a× [K(a)] + End (6.3)

with injections for simple ιs : a → K(a), composite ιc : a → [K(a)] → K(a) configurations

and ιend = End. For instance, if we take configurations over state identifiers K(String) then

one possible configuration of the state machine shown in Figure 6.3 is:

k = ιc(’A’, [ιs(’S1’), ιs(’T’)]) (6.4)

Configuration (6.4) indicates that the state machine is at composite state A where its left region

is at state S1 and its right one at state T.

We define the transition semantics of configurations as a relation on the lifted set 〈state〉 〈state〉

ΓK = K(〈state〉)× S + S

which we note  . Using the transition relation on (6.2), we introduce the set of evaluation

rules shown in Figure 6.4 where αitrn is the i-th transition out of s ∈ 〈state〉 and the next state

configuration function κn : 〈sm〉 → 〈id〉 → K(〈state〉).

We defined two kind of inference rules and for each one of them we have two possibilities

corresponding to the transition type to be evaluated. Rules KsExt and KsFinal handle simple

configurations with external and final transitions, respectively. If applicable, KsExt evaluates

transition αitrn and computes next configuration. KsFinal perform the same action on final tran-

sitions and evaluates to ιend. Rules KcExt and KcFinal follows the same pattern for composite

configurations. The key observation is that they evaluate the transition iff all its composite con-

figurations have terminated (ιend). Finally, KcPar evaluates parallel regions in case KcExt and

KcFinal are not applicable.

On the expressiveness of K. The functorial definition allow us to lift any function into the

functor structure. For instance, let πtrn : 〈state〉 → [〈trn〉] be the projection that takes a

〈HOE〉2 state and returns the list of its outgoing transitions. Given that K is a functor, we have

for free the lifted version of πtrn asK(πtrn) : K(〈state〉)→ K([〈trn〉]). That is, we can apply

any function all over the hierarchal structure introduced by the functor.
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In order to give a precise relation between 〈state〉 and K(〈state〉), we define the entry config-

urator κ : 〈state〉 → K(〈state〉) that given a state s returns the entry configuration down the

hierarchy of states. Let L(a) be the list functor, then we define κ as follows

κ(s) =

{
ιs(s) s = state αid.αtrn

ιc(s, L(κr)(αregion)) s = cstate αid.αregionαtrn

and
κr(region αinitial αstate) = κ(sinitial)

where sinitial = lookInitial(αinitial, αstate)

Therefore, we build the entry configuration with two mutually recursive functions κ and κr. The

entry configurator κ builds a simple configuration for simple states and a composite one, using

κr to move across regions, in case of composite states. The function lookInitial simply returns

the initial state pointed by the initial keyword.

For instance, consider state A of Figure 6.3. Entering a composite state like A from any tran-

sition implies entering all the initial states of its corresponding regions. This action applies

recursively on the initial state of each particular region. Using κ, we can formally build the

sample configuration shown at (6.4)

κ(A) = ιc(A, [ιs(S1), ιs(T )])

The expressive power of K also comes into play when we want to take all hierarchical outgoing

transitions from κ(A):

K(πtrn)(κ(A)) = ιc([tA,B], [ιs([tS1,S2 ]), ιs([tT ])])

Running example. As a running example, consider the state machine of Figure 6.3 at config-

uration (6.4). Let eô = [m] be the message pool of the object under evaluation ô where message

m contains the identifier Mm = m1. We assume that system sys contains only one object, i.e.,

sys = (r̂, [r̂ 7→ ô]).

The state machine evaluation of ô starts at the configuration level, ΓK . We observe that the cur-

rent configuration is composite ιc, then rule KPar applies. The rule asks to evaluate a particular

region. Let us take the left region configuration of state A, i.e., ιs(′S1′). The configuration of

this region is a simple one where we see that rule KsExt applies. Such rule evaluates the con-

figuration into another one providing that there exists an evaluation (relation) on ΓT such that

we have an external transition which evaluates to sys′.
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(αitrn, sys)→ sys′ ∧ isExtT (αitrn) ∧ ks′ = κn(sm,αito)

(ιs(s), sys) (ks′, sys′)
KsExt

(αitrn, sys)→ sys′ ∧ isEndT (αitrn)

(ιs(s), sys) (ιend, sys
′)

KsFinal

(αitrn, sys)→ sys′ ∧ isExtT (αitrn) ∧ ks′ = κn(sm,αito) ∧
∧

kli∈kl
kli = ιend

(ιc(s, kl), sys) (ks′, sys′)
KcExt

(αitrn, sys)→ sys′ ∧ isEndT (αitrn) ∧
( ∧
kli∈kl

kli = ιend

)
(ιc(s, kl), sys) (ιend, sys

′)
KcFinal

(ksi, sys) (ks′i, sys
′)

(ιc(s, [· · · , ksi, · · · ]), sys) (ιc(s, [· · · , ks′i, · · · ]), sys′)
KcPar

FIGURE 6.4: Evaluation rules for configurations

Indeed, from state S1 we can go to S2 because message m1 is present into the message pool

of the object under evaluation as stated earlier, then rule ETrigger applies. In this particular

case we have no action. Nevertheless, we see that the idea applies hierarchically. That is, rule

ETrigger will try to evaluate the action on ΓA.

Finally, the new configuration will be ιs(′S2′) under system sys′. In sys′, object ô will not

contain message m1 anymore. Note that in general k and k′ may not have the same hierarchy.

6.6 Indexed Configurations

We extend the hierarchical configuration K defined in (6.3) as follows

K(a) = a× [IK (a)] + a+ End

IK (a) = K(a) + (Zn → K(a))

We model the indexed configuration IK (a) as a disjoint union of the classical configuration,

K(a), and the indexed one, Zn → K(a). The indexed configuration is a function from indexes

to configurations. The configuration value End allow us to view such function as a partial one.

Let ιk : K(a) → IK (a) and ιi : Zn → K(a) → IK (a) be the injections for classical and

indexed regions, respectively. Considering first region of Figure 6.3 to be indexed with index
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sm SM.
creator c() to A

cstate A. / / Composite s t a t e
region / / F i r s t non−indexed r eg i on

initial S1
state S1. on m1() / to S2
state S2. endon m2()

endregion
region { i: 0 <= i <= 255 } / / Indexed re g i on

initial T
state T. endon m2()

endregion
on m3() / to B / / Outgoing t r a n s t i o n from compos i te s t a t e A

state B. endon m4()

LISTING 6.1: Indexed regions

scalar Int
interface

on Add(Int) -> Added(Int) ~> AddOp
on Mult(Int) -> Multed(Int) ~> MultOp

model Z with (+): AddOp, (*): MultOp

LISTING 6.2: Integer Scalar

set [i: 0 <= i <= 255] as show in Listing 6.1, we extend sample configuration (6.4)

k = ιc(’A’, [(ιk ◦ ιs)(’S’), ιi(fr)]) (6.5)

where

fr(i) =

{
ιs(’T’) if 0 ≤ i ≤ 255

End otherwise

The indexed configuration (6.5) puts the state machine at state A, where its nested first region is

at state S and the second indexed one is at Ti, ∀i ∈ [0, 255].

6.7 Scalars

The semantics of scalars differs slightly from that of objects in the sense that they “hide” a con-

crete value belonging to a specified mathematical set, hence providing state machine semantics

to scalar values. For instance, consider again the Int object shown at Listing 6.2.

In this particular case, the Int object wraps a value ∈ Z where Z is the denotation of Z. The

operations (+) and (*) are known binary operations on Z.
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state Operating.
on add(p: Int) / Int result = applyon addOp(p): initiator.added(result)

to Operating

LISTING 6.3: Applyon usage inside state machine of Int

Definition 6.5. The scalar is a parametric structure P (v) = (〈sm〉,K,E, I, v) where v is in-

stantiated to the mathematical model indicated by model.

Given the underlying model of Int and Definition 6.5, we denote scalars relying on such a model

with P (Z). In consequence, we must extend the store mapping defined as A =
⋃
R⊆RR → O

to support scalar as well

A =
⋃
R⊆R

R→ O + P

The operational transitions as described in the Int interface combined with the scalar model play

a central role in the semantics of applyon.

6.7.1 Applyon Semantics

Although the applyon is defined inside the update action, we developed its semantics here as it

is strongly related to the semantics of 〈HOE〉2 scalars. We recall its formal definition hereafter:

〈applyon〉 ::= ’applyon’ 〈id〉’(’ 〈var〉* ’)’

A valid instance of 〈applyon〉 inside Int is shown at Listing 6.3. The expression is only valid in

the context of an scalar object, i.e., ô is an scalar, and takes 〈HOE〉2 scalars as parameters. The

operation addOp, which is formally related to addition operation on Z, applies on the current

object value vô and its parameter value vp where p = φ(p).4 We define the applyon semantics

such that it returns a new scalar value defined as

s0 = (αsm, k0, ε,Null , vô + vp)

In the example of Listing 6.3, this value is binded through a new reference in the local binding

context of ô and added to the system. It is then sent as a reply message to the corresponding

initiator.
4Note that φ corresponds to the local binding context and not the object one.
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6.8 Contributions

In this chapter, we presented the formalization of the 〈HOE〉2 language in a layered and com-

posable manner. Although not exhaustive, we showed how the approach let us formalize in a

modular way almost all the particularities of an action language like 〈HOE〉2 based on commu-

nicating HSMs. In particular, we did not specify array value accesses, error conditions and all

semantics.

We considered parallel and sequential compositions at the action and state machine level. 〈HOE〉2

supports object creation, detailed by our semantics at the action level. At this level, we also spec-

ified initiator semantics, which creates reply messages. The initiator is modified at the transition

level. Such interaction between two stages demonstrates how the hierarchical approach enable

the complete specification of an unique concept in a structured way.

The functor abstraction for the state machine configuration leads to a clear operational view

of state machine steps. Moreover, the indexed region semantics turns into a natural and clear

extension to the functor structure.
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We present an Intermediate Representation (IR) suitable for the efficient compilation and opti-

mization of network of communicating Hierarchical State Machines (HSMs).

In contrast to the Highly Heterogeneous, Object-Oriented, Efficient Engineering 〈HOE〉2 lan-

guage, which is object-oriented, the IR disassociates type definitions from state machines. The

IR structure is inspired from the low-level implementation of the object-oriented paradigm in

languages such as C++. Following a similar path and considering the semantics of 〈HOE〉2

presented in chapter 6, we detach the HSM from the object definition and create independent

83
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object Pixel {
interface {

takeY(Float y);
getY() -> takeY(Float y);

}
associations {

Int r, g, b;
Float y;

}
}

LISTING 7.1: IR type definition (Pixel Part I)

function-like state machines. The approach allow us to make a clear distinction between struc-

tural definitions and execution tasks that implement the state machine. The tasks use the struc-

ture instances to communicate with other tasks. It is high-level enough and implementation

independent, similar to the 〈HOE〉2 model itself, because it preserves the type definitions and

the state machine hierarchy.

The IR exposes implicit information in 〈HOE〉2 such as initiator definitions, message types and

variables, the “this” variable pointing to the owner object of the current state machine, etc.. For

instance, an 〈HOE〉2 object cannot send messages to itself in an explicit manner. There is no

such support as it may lead to undesirable conditions when considering actual implementations

with bounded message channels. The IR, however, poses no restriction concerning self-sending

actions as they are forbidden by the input language.

7.1 Overview

In order to present the general structure of the IR, we will introduce a simple – but still rich

enough – translation example of the model shown in Figure 7.1 for the Pixel object.

The translation of Pixel type definition is shown in Listing 7.1. It is essentially the same with a

slight change to the syntax of multi-valued association types.

While type constructors remain close to the 〈HOE〉2 ones, the state machine is divided into two

top level block expressions, fsm and creator, where both of them are composed by imperative

statements. The statements preserve the structure of the HSM and 〈HOE〉2 action language.

Creator

Consider the translation of Pixel creator RGB in Listing 7.2. The creator signature is preserved

and implicit actions such as structural allocations (alloc) and state machine running are exposed
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pixels

256

y

ychannel

256

r
g

b
Image Pixel

Float

Int

(a) Image model

sm PixelSM.
creator RGB(rgb: Int[3]) / r = rgb[0]

, g = rgb[1]
, b = rgb[2]
to ComputeY

/ / Wait f o r getY and launch m u l t i p l i c a t i o n s
state ComputeY. on getY() / : r.mult(0.299)

, g.mult(0.587)
, b.mult(0.114)

to Multing
/ / C o l l e c t two m u l t i p l i c a t i o n s and launch the a d d i t i o n
state Multing. on multed(v1: Float), multed(v2: Float) / : v1.fadd(v2)

to MultAdding
/ / C o l l e c t l a s t m u l t i p l i c a t i o n s and launch another a d d i t i o n
state MultAdding. on multed(v3: Float), fadded(v4: Float) / : v3.add(v4)

to Adding
/ / Reply to the sender of getY ( ) by us ing keyword ” i n i t i a t o r ”
state Adding. on fadded(result: Float) / y = result: initiator.takeY(y)

to ComputeY

(b) Pixel state machine

FIGURE 7.1: Pixel model

creator Pixel.RGB(Int|3| rgb) {
this = new Pixel;
this.r = rgb[0], this.g = rgb[1], this.b = rgb[2];
start PixelSM of this;

}

LISTING 7.2: IR creator (Pixel Part II)

fsm Pixel.PixelSM(Pixel this) {
INIT:
wait this for (_m1_getY, Object src) = recv getY<>
then when _m1_getY goto SBB_GET_Y;

SBB_GET_Y:

LISTING 7.3: IR state machine (Pixel Part III)

(start). Indeed, the creator job is to allocate, initialize the object and run its state machine. Note

that we keep updates in parallel at the IR level as well.
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SBB_GET_Y:
Float rcst = create Float.float 0.299,
Float gcst = create Float.float 0.587,
Float bcst = create Float.float 0.114;

sendfrom this this.r mult<Float> rcst,
sendfrom this this.g mult<Float> gcst,
sendfrom this this.b mult<Float> bcst;

wait this for _m1_multed = recv Float’multed<Float>,
_m2_multed = recv Float’multed<Float>

then when _m1_multed, _m2_multed goto UBB_MULTING;

UBB_MULTING:

LISTING 7.4: Parallel expressions (Pixel Part IV)

Receiving

Listing 7.3 shows the entry point of the state machine. First of all, the state machine is introduced

with fsm and its unique and mandatory argument plays the role of the “this” pointer found in

other object-oriented programming languages (here it might have been called differently). The

state machine contains a list of labeled statements. The first statement is a wait expression. It

needs to know on which channel we want to wait together with a list of receives clauses, which in

this case refers to the external message getY. In the IR context, we consider object as channels

and use both terms indifferently. The receive clause allows us to extract all the information

contained into the incoming message. It defines two variables _m1_getY and src which are of

type Message and Object, respectively. The message is a struct-like variable enclosing all the

formal parameters while src refers to the message sender. It follows a list of then test cases.

In above state machine, we branch to label SBB_GET_Y if message _m1_getY has been received.

We will develop more about each statement in the following sections.

Parallel update and send

To continue with the overview of this particular example, Listing 7.4 shows the start of the lumi-

nance computation. We found parallel definitions of variables (rcst, gcst, bcst) and parallel

sending actions (sendfrom). In order to have a close equivalence to the 〈HOE〉2 input language,

the IR implements parallel statements that combine send and update actions. Note that dot no-

tation no longer means message sending but structural access to object and message variables.

The statement create calls the creator of Float object with the corresponding value. Similar to

the 〈HOE〉2 implementation, it sends three multiplication messages in parallel and waits for two

of them afterwards.
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UBB_ADDING:
this.y = _m5_added.res;
reply this src takeY<Float> this.y;
done this;

LISTING 7.5: Reply (Pixel Part V)

Replying

Once the computation is done, Pixel state machine replies to the sender providing it the result

inside message takeY as shown in Listing 7.5.

It stores the final computation result coming inside message variable _m5_added (issued by a

Float object) and, using reply, build message takeY and specifies sender (this), destination

(src), message type and parameters.

In conclusion, the intermediate representation separates type definitions from state machines

based on the implementation idea of object-oriented paradigm. It keeps interface and associ-

ation definitions, exposes object and message variables where the former are seen as channels

and the latter are struct-like variables grouping message formal parameters. We found specific

instructions implementing communication primitives and, most importantly, the parallelism is

preserved. In the following sections, we introduce the IR specifics with meaningful examples.

7.2 Structure

Formally, the IR has the following top-level statements

〈stmt〉 ::= 〈import〉 | 〈object〉 | 〈scalar〉 | 〈creator〉 | 〈fsm〉

Import, object and scalar expressions follow the same constructions as their 〈HOE〉2 counter-

parts. They introduce new type definitions, objects and scalars, implementing an interface and a

set of associations and a denotational model, respectively.

〈object〉 ::= ’object’ 〈ID〉 ’{’ 〈interface〉 〈associations〉 ’}’

〈scalar〉 ::= ’scalar’ 〈ID〉 ’{’ 〈interface〉 〈model〉 ’}’

Because the IR handles explicit message variables, it also introduces message types.
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Message types

Message types have a particular syntax. They are composed by an identifier followed by a list of

parameter types. Two messages with same identifier but different parameter types are considered

to be distinct. For instance, mult<Float> and mult<Int> are two different message types. The

set of message types is defined as

〈msg type〉 ::= 〈simple msg type〉
| 〈qualified msg type〉

〈simple msg type〉 ::= 〈ID〉 ’<’ 〈obj type list〉 ’>’

〈qualified msg type〉 ::= ID ’’’ 〈simple msg type〉

Given that two objects may define same message types, qualified message types allow us to

disambiguate such naming collision when necessary. For instance, Float’mult<Float> and

Int’mult<Float> define the same message, which models multiplications, under different sets

of values.

As discussed in previous section, we separated object type definitions from the state machine.

The latter being further decoupled into two different blocks: 〈creator〉 and 〈fsm〉.

7.3 Creator

The creator, introduced by the keyword creator, must have an associated type and identifier

and it may define a variable number of parameters.

〈creator〉 ::= ’creator’ 〈ID〉 ’.’ 〈ID〉 ’(’ 〈param defs〉 ’)’ ’{’ 〈creator stmt〉 ’}’

The allowed statements inside creators are defined as follows

〈creator stmt〉 ::= 〈creator stmt〉 ’;’ 〈creator stmt〉
| 〈parstmt〉
| 〈forall block〉
| 〈start〉

〈parstmt〉 ::= 〈parstmt〉 ’,’ 〈parstmt〉
| 〈update expr〉

〈forall block〉 ::= ’forall’ ’[’ 〈indexset〉 ’]’ ’{’ 〈creator stmt〉 ’}’

〈start〉 ::= ’start’ 〈ID〉 ’of’ 〈ID〉
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We may have parallel statements, a start directive and forall block expressions. No communica-

tion primitive is allowed inside creators. Its main purpose is preserved: allocation, initialization

and object running. As described earlier, before initializing the object we need to allocate the

structure using directive alloc. Once the object is allocated and initialized, start runs the in-

dicated state machine. It takes two arguments, the state machine name to run and its associated

structure.

The forall block defines an index domain. Similar to index domains in the 〈HOE〉2 language, it

is composed by a list of index variables and a constraint formula. It is a handy statement when

initializating multi-valued associations. The Listing 7.2 shows a simple creator instance.

In the following, we explain extensively update and send statements within the context of state

machines.

7.4 Hierarchical State Machine

The state machine is introduced using the token fsm.

〈fsm〉 ::= ’fsm’ 〈ID〉 ’.’ 〈ID〉 ’(’ 〈vardecl〉 ’)’ ’{’ 〈fsmstmt〉 ’}’

where its statements are

〈fsmstmt〉 ::= 〈fsmstmt〉 ’;’ 〈fsmstmt〉
| 〈parstmt〉
| 〈forall〉
| 〈vardecl〉
| 〈wait〉
| 〈waitin〉
| 〈goto〉
| 〈done〉

We have a list of, optionally labeled, imperative statements: parallel statements, variable decla-

rations, wait and wait-in statements, unconditional branching 〈goto〉 and an object termination

instruction 〈done〉.

7.4.1 Parallel Statements

In contrast to 〈HOE〉2, the IR mixes in a single parallel expression send and updates. Therefore,

it is defined as follows
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sendfrom this this.r mult<Float> rcst,
sendfrom this this.g mult<Float> gcst,
sendfrom this this.b mult<Float> bcst;

LISTING 7.6: Parallel statement

forall[i: 0 <= i and i < 512]
sendfrom[i] this this.pixels[i] getY<>;

LISTING 7.7: Indexed send

〈parstmt〉 ::= 〈parstmt〉 ’,’ 〈parstmt〉
| 〈send expr〉
| 〈update expr〉

〈send expr〉 ::= 〈send〉
| ’forall’ ’[’ 〈indexset〉 ’]’ 〈send〉

〈update expr〉 ::= 〈update〉
| ’forall’ ’[’ 〈indexset〉 ’]’ 〈update〉

Send and updates can be enclosed inside index domains providing forall semantics. We use an

explicit keyword, forall, with its index sets between brackets.

7.4.2 Send

There are three kind of sending commands: single send, indexed send and reply. They are

defined as follows:

〈send〉 ::= ’sendfrom’ 〈varexpr〉 〈varexpr〉 〈msg type〉 〈param〉*
| ’sendfrom’ ’[’ 〈arith exprs〉 ’]’〈varexpr〉 〈varexpr〉 〈msg type〉 〈param〉*
| ’reply’ 〈varexpr〉 〈varexpr〉 〈msg type〉 〈param〉*

In order to send a message, sendfrom needs source and target objects, a message type and

its required parameters. The indexed send is similar to the first one plus a list of arithmetic

expressions between brackets. This notation allows the initialization of indexes when building

indexed messages.

At the overview, we presented three parallel sending that we recall in Listing 7.6. In order to

broadcast messages over multi-value associations, we make use of forall expressions. Listing

below shows a simple example, which is taken from the translation of Image to Pixel broadcast-

ing shown at Listing 7.7.
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We found an indexed send that builds a one-dimensional message with sender this, destination

this.pixels[i], message type get<> and index value i.

We send replies with command reply that serves to the implementation of 〈HOE〉2 initiator se-

mantics. In the IR context, reply must have as a target object a variable defined at some receive

expression. For instance, consider the following reply already introduced in Listing 7.5

reply this src takeY<Float> this.y;

Note that src was defined at the top receive expression

wait this for (_m1_getY, Object src) = recv getY<>

then when _m1_getY goto SBB_GET_Y;

7.4.3 Update

The update statements are defined as

〈update〉 ::= 〈var〉 ’=’ 〈varexpr〉
| 〈var〉 ’=’ ’{’ 〈param〉* ’}’
| 〈var〉 ’=’ ’create’ 〈ID〉 ’.’ 〈ID〉 〈param〉*
| 〈var〉 ’=’ ’applyon’ 〈varexpr〉 〈applyon type〉 〈param〉*

The first one is a classical update operation between two variables. It is followed by an associa-

tion initializer, an object creation directive and a new expression applyon that denotes “in-place”

operations. Therefore, we can create pixel objects from initialized variables in the following way

Int|3| inraw_slice = { rgb[3*i] rgb[3*i+1] rgb[3*i+2] };

this.pixels[i] = create Pixel.RGB inraw_slice;

LISTING 7.8: Variable initialization and object creation

As shown in chapter 5, the scalar object abstracts away scalar operations via operational transi-

tions. They are materialized as “in-place” operations at the IR level using command applyon.

It takes an object variable to apply a type of operation, which designed by the name of the oper-

ational transition, and its required parameters.

Int res_added = applyon i Int’add msg_add.a;

LISTING 7.9: Apply an operational transition
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For instance, Listing 7.9 apply the operational transition Int’add on integer i with parameter

coming from a certain received message called msg_add. We will discuss more about this in-

struction in chapter 8. Intuitively, given the type of operational transition, applyon is mapped

directly to the corresponding operator that matchs the target language semantics at code gener-

ation time.

7.4.4 Branching

The IR supports conditional and unconditional branching.

〈goto〉 ::= ’goto’ 〈ID〉
〈wait〉 ::= ’wait’ 〈varexpr〉 [〈waitfor〉] 〈waitthen〉+
〈waitin〉 ::= ’wait’ 〈varexpr〉 ’in’ 〈region〉+ [〈waitfor〉] 〈waitthen〉+

The expression goto unconditionally jumps to a labeled location. Instructions wait and waitin

represent conditional branches with multiple target locations, differing from traditional inter-

mediate representations for imperative languages where conditional branching schemes have

two possible destinations. The wait clause requires an object to listen from, a list of accepted

messages to wait for (〈waitfor〉) and a list of 〈waitthen〉 branches to jump to under specific con-

ditions. This statement groups all the information concerning outgoing transitions of states. For

instance, consider again the wait statements of Listing 7.3 and 7.4, which we present again be-

low.

wait this for (_m1_getY, Object src) = recv getY<>

then when _m1_getY goto SBB_GET_Y;

wait this for _m1_multed = recv Float’multed<Float>,

_m2_multed = recv Float’multed<Float>

then when _m1_multed, _m2_multed goto UBB_MULTING;

Both waits define message variables and have one then branch without guard. They wait on

this until the indicated messages specified at when expressions are present. Additionally, the

first one defines also a source variable object that represent the sender. After the object from

which the wait statement is going to listen, we defined a comma-separated list of receive expres-

sions as follows

〈waitfor〉 ::= ’for’ 〈recvexpr〉+
〈recvexpr〉 ::= 〈recvdef 〉 ’=’ ’recv’ [’[’ 〈indexset〉 ’]’] 〈msg type〉
〈recvdef 〉 ::= 〈var〉 | ’(’ 〈var〉 ’,’ 〈var〉 ’)’
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Essentially, the receive expression provides a way to access grouped parameters, sender and

indexes separately from the incoming message. Indexes are captured by indexed receives. We

defined an optional 〈indexset〉 rule between brackets at receive expressions. This notation allows

us to capture and bind indexes from the incoming message. For instance, consider the indexed

reception shown at Listing 7.10

wait this for

msg_takeY = recv[i: 0 <= i and i < 512] takeY<Float>

then when msg_takeY goto UPDATE_CH

then if msg_takeY.all goto FINAL;

LISTING 7.10: Indexed receive

It waits for the reception of a single message whos index value satisfies the specified constraint.

The index variable i is available at all reachable statements. Message variables can only be

declared and defined at receive expressions.

After introducing the list of receives, 〈waitthen〉 checks for message presence, evaluates a pos-

sible triggering condition and branches to the specified label.

〈waitthen〉 ::= ’then’ [’when’ 〈var〉+] [’if’ 〈guard〉] ’goto’ 〈ID〉

Finally, waitin has the same structure as wait with additional support for parallel regions. We

show in Section 7.5.5 an instance of this statement.

7.4.5 Regions

As mentioned earlier, the IR preseves the hiearchical structure of the original state machine. The

statement waitin is composed by a list of regions, which can be either simple or indexed. They

are defined as

〈region〉 ::= 〈sregion〉 | 〈iregion〉
〈sregion〉 ::= ’{’ 〈fsmstmt〉 ’}’

〈iregion〉 ::= ’[’ 〈indexset〉 ’]’ ’{’ 〈fsmstmt〉 ’}’

This definition closely follows the concept of indexed regions proposed by the 〈HOE〉2 lan-

guage.
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7.5 Translating 〈HOE〉2

As we have shown in previous sections, the IR preserves most of the information coming from

〈HOE〉2 while making them more explicit. We even found some equivalent constructions such

as objects with only syntactic modifications. Indeed, objects together with its structural features

are translated almost unchanged into object and/or scalar instances. In addition, container type

constructors are also preserved. The fundamental change is found at the state machine level. We

separate it into creator and fsm “functions”. Most of these translations are relatively straight-

forward to perform as we have thoroughly shown with plenty of examples. However, some key

characteristics of 〈HOE〉2 need more precision on how the translation is to be done. Therefore,

we consider several points needing further explanation

1. Compilation of states

2. Propagation of index domains

3. Defining initiators

4. “All” condition

5. Indexed regions

For the sake of clarity, we recall some notations already introduced in Chapter 6. We will refer to

an instance of a given syntax set S corresponding to the 〈HOE〉2 grammar as αS . For instance,

αstate is an instance of 〈HOE〉2 state and its projection on transitions is noted πtrn(αstate). We

use classical notation for lists v = [vi]. Given a disjoint union set S = A+B, we use subscripted

injections ιA : A→ S and ιB : B → S to represent elements of S.

7.5.1 Compilation of States and its Transitions

We presented two statements that allow to check for incoming messages: wait and waitin.

Both of them specify a group of messages to wait for and their corresponding then branches.

〈HOE〉2 state translates into a wait statement and a set of sequential statements (basic blocks)

concerning the different transition actions.

7.5.1.1 Actions

Let αstate be a state and t ∈ πtrn(αstate), we build a set of basic blocks BBstate = {bbt}
for each transition action a ∈ πaction(t). We define the label of bbt as #bbt, which given that

bbt ∈ 〈fsmstmt〉 it corresponds to the label of its first statement. BBstate will be the set of all
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possible destination of then branches. All basic blocks resulting from external transition actions

terminate with unconditional branches to target state identifiers. In case of final transitions, the

basic block terminate with statement done this, which effectively finishes the current state

machine.

7.5.1.2 Transition

We separate the translation of transitions into two steps: collection of triggers and computation

of then branches.

Collecting triggers. We create a multiset from transition triggersMSet(πtrg(t)) = (Trg,m),

also noted MSett, where Trg is the set of triggers and m : Trg → N the multiplicity of each

trigger. We will refer to this multiset tuple as Trgt and mt. Then, we define a special multiset

union where we take for each element the maximum number of elements between both sets. Its

defintion is shown hereafter

MSett ]MSett′ = (Trg,m)

Trg = Trgt ∪ Trgt′
m(trg) = max(mt(trg),mt′(trg))

Above definition allow us to create a common set of receive expressions. Indeed, we define the

final multiset WR of wait triggers as WR =
⊎

t∈πtrn(αstate)

MSett. To each wr ∈ WR, we

associate a message variable rviwr, which is the i-th trigger kind of wait wr. From this set of

variables, we build the receive expression list

recv = [rviwr = recv wr] (7.1)

In order to build the message variable list for each transition t, we take MSett and we proceed

as before, i.e., building a list of message variables wviwr for each trigger kind wv ∈ MSett,

such that wviwr = rviwr. It yields same variable names at recv and when expressions. The when

expressions for transition t is

whent = when wviwr (7.2)
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Compute “then” branches. Assuming a straightforward translation gt of guard condition for

transition t, we build the list of then expressions as

then = [thent] (7.3)

thent = then whent if gt goto #bbt (7.4)

Collecting definitions (7.1),(7.2) and (7.3), the wait statement is defined as

waitstmt = πid(αstate): wait this for recv then (7.5)

We added a label corresponding to the state identifier such that the compilation of incoming

transitions have consistent branch destinations. We did not take into account indexed receives

but the translation procedure remains the same. Receive expressions coming from initiator con-

ditions will be discussed later.

7.5.2 Propagation of Index Domains

There is a subtle difference between indexed receives at 〈HOE〉2 and IR. In the former, index

domains at send and receive are syntactically linked whereas in the latter we have decoupled

them. For instance, consider the following 〈HOE〉2 indexed send and receive pairs

1 state GETY.

2 on /: { i: 0..pixels.len - 1 } pixels[i].getY()

3 to GETTING_Y

4

5 state GETTING_Y.

6 on takeY{i}(y: Float) /

7 ychannel[i] = y to GETTING_Y

8 endon [i.all]

At the indexed receive of line 6, we know exactly the domain of i, which has been declared at

line 2. In contrast to the IR, we introduce a new index variable with its associated domain each

time we declare an indexed receive.

wait this for

msg_takeY = recv[i: 0 <= i and i < 512] takeY<Float>

LISTING 7.11: Rebinding index domain
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state ComputeY. on getY() / : r.mult(0.299)
, g.mult(0.587)
, b.mult(0.114)

to Multing
[...]
state Adding. on added(result: Float) / y = result: initiator.takeY(y)

to ComputeY

(a) 〈HOE〉2 Initiator

wait this for (_m1_getY, Object src) = recv getY<>
then when _m1_getY goto SBB_GET_Y;

[...]
UBB_ADDING:

this.y = _m5_added.res;
reply this src takeY<Float> this.y;

(b) Initiator-like IR code

FIGURE 7.2: Translation of initiators

Therefore, the compilation procedure will propagate send domains to the generated indexed

receives as shown by Listing 7.11.

7.5.3 Defining Initiators

According to the 〈HOE〉2 semantics, initiators are implicitly defined following the object in-

terface. In the IR, we translate initiator semantics with concrete variable definitions as we in-

formally presented in the overview 7.1. Figure 7.2 summarises such translation. It describes a

receive expression that captures the sender src to perform a reply on it. The reply semantics has

two important implications

a. Index-forwarding: By tracking which receive has defined the sender the IR compiler auto-

matically transfers index values from the incoming message into the new reply message.

b. Given that sender variables can be defined using the same name at different receive ex-

pressions, we may have control-flow dependent senders.

A correct translation of initiator semantics asks for a data-flow analysis. The problem can be

stated as follows

Reaching Definitions of Initiator. Given a HSM over the actions defined by the 〈HOE〉2

language, a set of transitions defining the initiator and replying transitions (initiator), we need

to “structurally” find the correct initiator def-use chain. By structurally, we mean a solution that

takes into account nested state machines.
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ComputeY Multing

MultAddingAdding

t1

t2

t3

t4

t0

(a) Pixel state machine

t0 t1 t2

t3t4

(b) Complement state machine

FIGURE 7.3: SM model of Pixel state machine

We have a special case of reaching definitions where we deal with only one variable [68]. In

order to develop the underlying translation process, we introduce a simple state machine model

SM = (S, T ), where S is the set of states with transitions T ⊆ S×S. We define its complement

SM = (T, U) where transitions become vertices of the graph and (t, t′) ∈ U iff ∀s1, s, s2 ∈
S | t = (s1, s) ∧ t′ = (s, s2). The predecessors of t is preds(t). The complement state

machine allow us to think of SM as a control-flow graph of statements. We introduce the

reaching definition set on SM at the action of transition t as rdt ⊆ T and we formulate it in the

following way.

rdt =




{t} if t reacts to an external message⋃
p∈preds(t)

rdp otherwise (7.6)

That is, if transition t contains a trigger defined as an external input message by the interface

then t will define the initiator, effectively “killing” any other incoming definition. Otherwise,

we propagate the information. Clearly, the computation of rdt converges since it is a monotone

function over the complete-lattice given by the powerset of T .

For instance, the Pixel state machine at Listing 7.1 and its complemented version are described

at Figure 7.3. Given that t1 is the only transition that triggers on an external message, namely

getY(), we obtain the following trivial solution

rdt0 = ∅ rdt1 = {t1} rdt2 = {t1} rdt3 = {t1} rdt4 = {t1}

Transition t4 is the only transition to use on initiator and, by reachability condition, we

should assign to the receive expression of getY() the same variable name as the reply statement

generated from transition t4. This constraint is satisfied with sender variable src, as shown by

Figure 7.2.

In order to take into account the state machine hierarchy, we extend SM with hierarchical states,

i.e., S = SS + CS where CS = [SM ] (a list of nested state machines). A key observation is
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that sender variables defined at nested states are not visible outside due to scoping. However,

the converse is not true. We should be able to send replies on an initiator possibly defined at

higher nesting levels. Roughly speaking, it means that our reaching definition can be applied

per nesting level taking into consideration initializing conditions coming from upper ones.

Therefore, we redefine our complement state machine with hierarchical nodes HT = ST +CT

where CT = [SM ], i.e., we preserve compositional information. We compute the complement

as follows SM = (HT,U)

• For each t = (s, s′) ∈ T , we have ht ∈ HT defined as

ht =

{
ιCT ([sm]) if s′ = ιCS([sm])

ιST if s′ = ιSS

Note that ιCT ([sm]) means that we apply the computation recursively.

• We build the relation U as before: (ht, ht′) ∈ U iff ∀s1, s, s2 ∈ S | t = (s1, s) ∧ t′ =

(s, s2)

Let smi be some complemented state machine with initial transition hti and let ht = ιCT ([smi]).

That is, we have a hierarchical node from another complement state machine sm on which

smi is nested. Then, we add to the reaching definition formulation the initializing condition

rdhti , rdht before solving into nested levels.

As a result, the proposed defuse chain solution allow the translation procedure to name sender

variables correctly over hierarchical state machines.

7.5.4 “all” Condition

The “all” keyword refers to the 〈HOE〉2 condition that is true when all messages have been re-

ceived (see section 5.4). The IR preserves such information by attaching it to message variables

instead of indexes. For instance, Figure 7.4 shows the translation of an indexed receive together

with its all condition. According to the compilation of states presented earlier, the indexed

receive at line 7 contains two possible branches, one to the basic block of the translated tran-

sition action and a second one to the final basic block. The compilation process attachs the all

condition of second branch to the message variable associated to message takeY<Float>.

7.5.5 Indexed Regions

As pointed out early in this section, the hierarchy of HSM is provided by waitin statements.

The equivalent IR expression of an indexed region is shown in Figure 7.5.
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state GETTING_Y.
on takeY{i}(y: Float) /

ychannel[i] = y to GETTING_Y
endon [i.all]

(a) 〈HOE〉2 all condition

1 wait this for
2 msg_takeY = recv[i: 0 <= i and i < 512] takeY<Float>
3 then when msg_takeY goto UPDATE_CH
4 then if msg_takeY.all goto FINAL;

(b) Message variables with all condition

FIGURE 7.4: Translating all condition

cstate GETTING_Y. region { i: 0..255 }
[...]

endregion
on takeY(y: Float) to FINAL

(a) 〈HOE〉2 Indexed Region

GETTING_Y:
wait this in

[i: 0 <= i and i < 255] {
[...]

}
for m_getY = recv takeY<Float>
then when m_getY goto FINAL;

FINAL:

(b) IR Indexed Region

FIGURE 7.5: Translation of Regions

Throughout this section we informally showed the translation of 〈HOE〉2 to our IR. In the next

chapter, we will present the optimizing compiler chain and code generation strategy.

7.6 Contributions

The IR is designed to be compiler-friendly, i.e., suitable for analysis and optimizations. Indeed,

important compiler structures such as the control-flow of basic blocks can be constructed directly

from it. It also offers a cleaner path to code generation. No matter which runtime the language is

based on, we need to make a distinction between object creation (introduction into the runtime

environment) and its main behavior (thread).

It provides specific instructions for communication primitives with an explicit chain of variable

definitions and uses to build incoming messages and extract all the needed information. Most

importantly, the IR preserves the state machine hierarchical information. It is also highly ex-

pressive as it supports arrays, dynamic creation of state machines, iterators, provides fork/join
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semantics in the same way 〈HOE〉2 does, flexible communication primitives and indexed re-

gions, among other features.

In order to give a precise idea of the 〈HOE〉2 view at the IR level, we showed some equivalen-

cies through program examples and completed it with specific translation procedures for more

evolved concepts coming from the 〈HOE〉2 language. We will show in the following chapter

how to take advantage of the IR constructions to build an state machine optimizer.
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Based on the Intermediate Representation (IR) of Chapter 7, we developed the optimizing com-

piler. The compiler takes advantage of the proposed Highly Heterogeneous, Object-Oriented,

Efficient Engineering 〈HOE〉2 features, preserved at IR, to optimize the model and produce

highly efficient code.

8.1 Challenges

In the context of optimizations for communicating automata, we face a certain number of diffi-

culties. One challenge concerns data dependencies. Efficient code generation of data-intensive

applications calls for an accurate knowledge of data dependencies. Unfortunately, they are de-

coupled as asynchronous message exchanges between concurrent objects. That is, messages

have a dual purpose, synchronisation and data carriers. The former imposes a precedence re-

lation between computations of concurrent objects and the latter add a layer of input-output

data relations on the precedence one. Ideally, we would like to find the data-flow of a dynamic

network of communicating automata.1 However, it is widely known that even in the case of

static networks the problem is undecidable [77]. In [77], Peng and Puroshothaman formulate

the problem of communicating automata as a set of recurrence equations over the domain of

infinite streams of messages. The show that given two objects A and B we will not be able to

link a certain computation outcome from A to its corresponding use in B. It is equivalent to

saying that the chain of data definitions and uses cannot be precisely determined, which is a

major issue when looking for performance in computationally intensive applications based on

state machines. On this context, we consider the hypothesis of instantaneous reaction to enable

strong optimizations.

8.1.1 Instantaneous Reaction

We introduced in Chapter 5 the definition of the object interface. In addition to input and output

messages accepted by the object from the user perspective, we can add a precedence relation

between them. The precedence relation allows us to assume that an exported input-output mes-

sage relation will hold under all program contexts. That is, it ensures that a given response will

eventually come back. However, it does not specify precisely when. The handling of such a

request may not be atomic and external objects may undertake other actions in the meantime.

For instance, let A and B be two objects where A is the user of B, and B exposes the relation

m1 → m2, i.e., message m2 will be sent as a response to the reception of m1. Since the in-

terface level exposes a transactional semantics, the compilation flow can be made modular and
1A model instance corresponds to a network of connected objects.
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rely on the instantaneous reaction hypothesis. That is, among the possible orderings, one may

safely assume that when object A sends message m1 to B, B will handle it and send back the

result according to its interface definition at the same logical instant from A’s perspective (in

the absence of deadlocks among internal transitions of B).

8.1.2 Mutability

Another issue is mutability, directly related to escaping conditions. When looking for optimiza-

tion opportunities in presence of concurrent objects, say A and B, we would like to know at

some instant the possible state(s) of B for a given state of A. Because data is wrapped inside

messages, data-flow translates into concurrency. Many questions arise when compiling concur-

rent objects

a. Is A the only producer from B’s perspective? In other words, is B a shared object?

b. Is A waiting for a response from B which is a direct consequence of a certain message

m?

c. On which state is B after consuming message m from A?

We may reformulate (a) and ask whether object B escapes from the context of A. If it escapes,

then B is a shared object otherwise it is not. Therefore, we must define when an object es-

capes from the context of another, which leads to the classical escape analysis heavily used in

languages like Java to guide stack allocations, inlining and scalar replacements [78, 79]. Let

us rather define when an object does not escape. In the context of 〈HOE〉2, we have a set of

particular conditions

1. The inlinee is an scalar object: according to properties introduced in Chapter 5, any action

on scalar objects (communication for instance) does not have internal side-effects.

2. The inliner creates the inlinee and never shares it. Note that there are two ways to share an

object in 〈HOE〉2, either send it via message passing or create another object that accepts

it as its creator parameter.

8.2 The Optimizing Compiler

The optimizing compiler chain is shown in Figure 8.1. The basic idea of the compilation flow is

to transform the IR code to reach patterns for which we know that an efficient translation to the

target language exists. Starting from the IR, the compiler builds a Hierarchical Control-Flow
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Dominators Defuse chain Transaction Selector

Scalar Constants Loop Forest Message Dependency Analyzer

Available Analysis Passes

IR

Type Checker
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Dead Waits Rewriter

Constant Propagation
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C BackendOpenCL Backend

Runtime

IR/C Op
Map (.cc)

FIGURE 8.1: Compilation Flow

Graph (HCFG) out of the state machine following the branch kinds introduced in Chapter 7.

In contrast to other traditional branch schemes of imperative code compilers, the control flow

cannot be reduced to two successors per basic block (see wait and waitin branches at Sec-

tion 7.4.4). We apply all transformations recursively on the control-flow structure, i.e., across

regions.

Once the model is fully optimized, the C/OpenCL backend generates code with specific runtime

calls for object creation, termination, state machine running, send and receive. In addition to

these runtime routines, it also needs to know how to translate native operations modeled as

operational transitions. For this reason, a mapping between IR operations and target operations

is provided separately (source.cc) as it concerns only code generation.

Before getting into the explanation of transformation passes, we introduce some terminology

and notations used through this chapter.

Notations. We define a Hierarchical Control-Flow Graph as a graph HCFG = (BB,E)

where BB ∈ 〈fsmstmt〉 and E ⊆ BB × BB. We call it hierarchical because of composite

statements such as waitin containing nested control-flow graphs. Branch instructions wait,

waitin and goto, as well as done terminate basic blocks and thus we called them terminators.
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object

creator

waitin

fsm

FIGURE 8.2: Definitions layers

8.3 Analyses

In this section, we present our specific analyses used by most of the transformations passes in

the compilation chain.

8.3.1 DefUse Chain: Structured Analysis of Reachable Definitions

The variables in the IR can be local to the object, i.e., defined as object associations, or private,

declared inside creators or state machines. By design choice, the declaration of arbritrary global

variables is not allowed. Instead, they result from escaping conditions: shared local variables

are considered to be global.

The object defines the local context of variables, or associations. Local variables allow the

object to pass definitions from creator to its related state machine, which provides an initial set

of definitions at the fsm entry. In the same way, the fsm provides an initialized set of definitions

to its lower layers, or regions (waitin). Figure 8.2 describes pictorically the visibility layers of

definitions with classical scoping constraints. Only local variables are visible at all levels of the

hierarchy.

We obtain the chain of variable definitions and uses, namely the DefUse Chain, by solving

the problem of reaching definitions in the form of data-flow equations. In order to show the

structured approach of our analysis in the IR, we define a forward data-flow problem on the

HCFG with a higher order transfer function φ:

ins(bbi) =
⋃

p∈preds(bbi)
outs(p) (8.1)

outs(bbi) = φ(bbi)(ins(bbi)) (8.2)
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and we define φ inductively on basic blocks (αfsmstmt) as follows

φ(αfsmstmt ; α′fsmstmt)(d) = φ(α′fsmstmt) ◦ φ(αfsmstmt) (8.3)

φ(αfsmstmt , α′fsmstmt)(d) = φ(αfsmstmt)(d) ∪ φ(α′fsmstmt)(d) (8.4)

φ(s)(d) = DEFs ∪ (d \KILLs) (8.5)

In (8.5), we have the basic kernel of data-flow equations. We defined φ such that it returns

our transfer function over the complete lattice of sets of defining statements for each statement

s. DEFs correspond to s if s is a definition and KILLs is composed by all other statement

defining the same variable that s defines. On the way, we consider sequential composition (8.3)

and, a missing term in classical formulations, parallel statements (8.4).

The structured approach comes into play when we want to account for the effect of structured

statements such as waitin with nested regions. First of all, we need to be able to input any

initial condition coming from upper layers. Therefore, we extend (8.1) as

ins(bbi) = ins0(bbi) ∪
⋃

p∈preds(bbi)
outs(p) (8.6)

The term ins0(bbi) accounts for initial conditions of each basic block, which can be seen as

having another basic block entering bbi.We note the data-flow solution under initial conditions

I as ins(bb)|I and outs(bb)|I .

A more subtle extension concerns Equation (8.5), which we extend as follows.

φ(s)(d) = DEFs(d) ∪ (d \KILLs(d)) (8.7)

It allow us to get a recursive data-flow solution for each statement when handling structured

ones such as waitin.

Let r = [r ] be the list of regions and HCFGr = (BBr, Er) the HCFG with entry basic block

and the set of exit basic blocks ebbr and B̂Br, respectively. Let s be a waitin statement shown

hereafter

s = wait this in [r ] recv then

then we define its set of definitions as

DEFs(d) =
⋃
r∈R

⋃
bbr∈B̂Br

outs(bbr)|Ir(d) (8.8)
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FIGURE 8.3: Granularity levels of variable definitions: object, association and element levels

where Ir(d) is the initial conditions ins0 on BBr

ins0(bb) =

{
d if bb = ebbr

∅ otherwise

and KILLs corresponds to all other statements defining the same set of variables defined on

r. Finally, DEFs and KILLs are constant functions for straight-forward definitions other than

waitin statements.

The analysis takes into account variables within the following IR grammar

〈varexpr〉 ::= 〈varexpr〉 ’.’ 〈var〉
| 〈var〉

〈var〉 ::= 〈id〉 ’[’ 〈arithexprs〉+ ’]’

| 〈id〉

In the formulation, we handle different granularities of variable definitions. Considering fine

grain definitions, i.e., inside object associations (or fields), allow us to optimize out dead defi-

nitions of associations when dealing with non-global variables. Figure 8.3 describes three gran-

ularity levels concerning variable definitions where we handle the first two ones while being

pesimistic over the last one. That is, a definition of an element inside a multi-valued association,

v.f3[range] for instance, is considered to kill any incoming definition of such association,

v.f3, regardless of the indexing access. However, a definition of v.f3 does not kill other defi-

nitions of v.

8.3.2 Message Dependency Analyzer

In Chapter 5, we presented the definition of interfaces where we indicate valid input and output

messages as well as precedence relations between them. The IR preserves such information and

the message dependency analyzer relies on it to build a set of related send and receive expres-

sions inside the state machine. For instance, consider the running example of Listing 8.1.
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1 sendfrom this this.r mult<Float> rcst,
2 sendfrom this this.g mult<Float> gcst,
3 sendfrom this this.b mult<Float> bcst;
4
5 wait this for _m1_multed = recv Float’multed<Float>,
6 _m2_multed = recv Float’multed<Float>
7 then when _m1_multed, _m2_multed goto UBB_MULTING;
8
9 UBB_MULTING:

10 sendfrom this _m1_multed.res add<Float> _m2_multed.res;
11 wait this for _m3_multed = recv Float’multed<Float>
12 , _m4_added = recv Float’added<Float>
13 then when _m3_multed, _m4_added goto UBB_MULTADDING;

LISTING 8.1: Send-Receive relations: a running example

At Line 3, we have three parallel sending actions to scalar Int and according to its interface,

it sends back three multed<Float> messages. Two of them are captured in wait expression

at Line 6 and the last one is taken at Line 11. Which mult<Int>, and hence which sending

expression, is related to which multed<Float> is not specified; it is actually not necessary to do

so in the computation being modeled.

Another related question concerns incoming FIFO states. Consider an object A communicating

only with object S, where S defines a set of single input-single output operational transitions

TS = {(mi, ni)} such that message ni is a response to mi. Let ←−mS
i = ni iff (mi, ni) ∈ TS

and HCFGA = (BBA, EA) the control flow of A’s state machine. Figure 8.4 shows the FIFO

state problem when trying to relate send and receive expressions. It describes an HCFGA of

object A communicating with S where (m1,m2) ∈ TS . In 8.4(a), the FIFO of A is an empty list

and we can safely assume that sendfrom m1 is related to the next wait expression according to

TS . On the other hand, if the FIFO already contains a copy of m2 generated by a response to

another sendfrom, the described one is not going to be related to next wait anymore (see 8.4(b)).

Therefore, whether sendfrom m1 is related to the next receive expression or not will depend on

the incoming FIFO state.

In order to relate send and receive expressions, we need to precisely track the FIFO state of two

communicating objects. Given that it is an undecidable problem in general as explained ear-

lier, we narrow the analysis to objects comunicating with other objects that specify precedence

relations for all of its valid input messages.

We propose to build a set F of terms (or equations) for each branch of the HCFGA in the state

machine such that each equation f represents a possible FIFO state. The set F describing such

state is inductively defined as follows:

• Message m ∈ F

• Variable v ∈ F
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sendfrom m1

...

...

wait ... when m2 goto bb2

fA = ∅

(a) Empty FIFO

sendfrom m1

...

...

wait ... when m2 goto bb2

fA := m2
fA := m2 ·m2
...
fA := m2 ·m2

fA = m2

X

(b) Initialized Incoming FIFO

FIGURE 8.4: Send-receive problem

• Concatenation: If f, f ′ ∈ F then f · f ′ ∈ F

• Alternation: If f, f ′ ∈ F then f + f ′ ∈ F

• Multiset union: If f, f ′ ∈ F then f ] f ′ ∈ F

• Receive: If f, f ′ ∈ F then f ← f ′ ∈ F

The meaning of above operators is the standard one with the exception of operator receive,

f ← f ′. It is intended to represent an element-wise matching operation between two FIFO

states where f represents a waiting state and f ′ the input state. Under the hypothesis of instan-

taneous communications introduced in section 8.1, we are going to consider wait and sendfrom

statements as generating expressions of waiting lists of messages and input list of messages,

respectively.

Definition 8.1. GivenF , we define a suffix partial order on FIFO states. An empty state is lower

than any other: ∅ ≤ f . By induction, we define the ordering as follows ∀f, f ′,m,m′ ∈ F ,

f ·m ≤ f ′ ·m′ iff m = m′ and f ≤ f ′.

Remark 8.2. The suffix partial order is preserved under right concatenation: f ≤ f ′ ⇒ f · g ≤
f ′ · g for any g.

We start by defining an abstraction function working on basic blocks that looks only on sending

actions ψ : BB → F

ψ(αfsmstmt ; α′fsmstmt) = ψ(αfsmstmt) · ψ(α′fsmstmt) (8.9)

ψ(αfsmstmt , α′fsmstmt) = ψ(αfsmstmt) ] ψ(α′fsmstmt) (8.10)

ψ(sendfrom sender target m param) = {←−mS} (8.11)

ψ(s) = ∅ otherwise (8.12)
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sendfrom m4

...

...

wait ... when m5 goto bb4

bb3

f31 := m5← bbf 3

sendfrom m1

...

...

wait ... when m2 goto bb3

bb1

bbf 1 :=
←−
m1

...

...

...

bbf 3 := (f13 + f23) · ←−m4
...
...
...

...

...

...

wait ... when m3 goto bb3

bb2

f13 = m2← bbf 1 f23 = m3← bbf 2

FIGURE 8.5: Message dependency analysis: FIFO equations

It translates a basic block by intepreting pushes into the FIFO (8.9) of parallel (unordered) (8.10)

simple sends (8.11) while ignoring everything else that does not involve communication (8.12).

Then, consider a statement terminator wait

w = wait this recv then

where then = [theni] and wheni(w) gives a multiset of messages corresponding to the triggers

listed in the when clause of theni.

Given ψ and a wait terminator wbbi of basic block bbi, we define a term for each fij ∈ EA such

that

fij = whenj(wbbi)←
∑

bbh∈preds(bbi)
fhi · ψ(bbi) (8.13)

Definition (8.13) establishes the expression value of all output branches of basic block bbi fol-

lowing the FIFO state changes that bbi introduces by itself plus all possible incoming branches.

Figure 8.5 sketches the analysis. At the entry of bb3, we do not know the incoming FIFO state.

Therefore, we consider alternatively both of them, f13 and f23. The first sendfrom of bb3 will

push the response to m4 to the current unknown state. The only output branch of bb3 will

forward such state after having consumed message m5. We proceed this way for all edges of

the control flow as described by (8.13).



Chapter 8. The Compiler: Analysis, Optimization and Code Generation 113

The analysis is based on the idea that receive equations can be reduced. That is, we can apply

the receive operator recursively according to the following rules

(m · f)← (m′ · f ′) = f ← f ′ if m = m′

(m · f)← (m′ · f ′) = (m · f)← f ′ if m 6= m′

∅ ← f ′ = f ′ otherwise

(8.14)

The first rule of (8.14) matches head messages of waiting and input FIFO states. The second

one implements the dropping semantics proposed in Chapter 6 and the last one says that if

there is nothing to wait for then we forward the input state as is. We recall that each message

has a generating expression, for instance sendfrom m4 generates ←−m4. A matching between

two messages will imply a relation between two generating expressions. For the sake of clarity,

generating expressions are not shown in the analysis. There is a missing rule not shown in (8.14):

f ← ∅. It stands for dead-lock as we are waiting on a empty input state.

Remark 8.3. The partial function f(x) = cst ← x is monotone and decreasing: g = cst ←
f ′ ⇒ g ≤ f ′. It follows directly from its definition (8.14).

Algebraic rules. Some basic algebraic properties hold on F

(a+ b)← c = (a← c) + (b← c)

c← (a+ b) = (c← a) + (c← b)

(a+ b) · c = (a · c) + (b · c)
c · (a+ b) = (c · a) + (c · b)

(8.15)

meaning that the alternation can be pushed upwards in order to reach a canonical form.

Lemma 8.4. We note F to the set F not containing terms of the form f + f ′. Then, from the

system of equations given by (8.13) and using rules (8.15), fij can be rewritten to the following

form

c =
∑
i

f i

called canonical such that f i ∈ F .

Proof. By applying the second rule on (8.13), we directly obtain the canonical form of fij

fij = whenj(wbbi)←
∑

bbh∈preds(bbi)
fhi · ψ(bbi)

=
∑

bbh∈preds(bbi)
whenj(wbbi)← fhi · ψ(bbi)
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Lemma 8.5. The canonical form is preserved under variable replacement.

Proof. We replace fhi by its defining equation into (8.13)

fij = whenj(wbbi)←
∑

bbh∈preds(bbi)

wheni(wbbh)←
∑

bbg∈preds(bbh)
fgh · ψ(bbh)

 · ψ(bbi)

By applying the second rule, we obtain

fij =
∑

bbh∈preds(bbi)
whenj(wbbi)←

 ∑
bbg∈preds(bbh)

wheni(wbbh)← fgh · ψ(bbh)

 · ψ(bbi)

and third rule give us

fij =
∑

bbh∈preds(bbi)
whenj(wbbi)←

∑
bbg∈preds(bbh)

(wheni(wbbh)← fgh · ψ(bbh)) · ψ(bbi)

to finally apply second rule again

fij =
∑

bbh∈preds(bbi)

∑
bbg∈preds(bbh)

whenj(wbbi)← (wheni(wbbh)← fgh · ψ(bbh)) · ψ(bbi)

By induction hypothesis we have that fgh has also a canonical form under variable replacement.

Following the same reasoning as before, we achieve again a canonical form. Therefore, fij has

a canonical form under variable replacement.

An additional rule holds under the guarantee of state machine progress

(f ← f ′) · f ′′ = f ← (f ′ · f ′′)

Assuming progress we have g = f ← f ′ such that g ≤ f ′ (suffix partial order) because receive

applies on head messages of f ′ only, by receive rules (8.14). Then f ← (f ′ · f ′′) is also going

to apply on head messages of f ′ only and both expressions will yield the same result, g · f ′′.

There are still two important questions around this analysis. The first one is related to type

correctness of equations. The last one concerns the resolution of F = {fi} equations in presence

of control-flow loops, which implies solving of recurrence equations.

Type correct receives. According to equations (8.9) and (8.10), ψ should output a list of a

multiset of messages. However, the application rule of receive operator is defined to work on

lists of messages. Therefore, we transform multisets of messages to the combinatorial alterna-

tion of lists before evaluation.
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ψ1

ψ2

ψ3

f01

f12, w12

f23, w23

f31, w31

FIGURE 8.6: Loop in the control-flow and its FIFO equations

Recurrence in FIFO states. Given the system of equations F = {fij} obtained from the

HCFG, we solve F in topological order if there is no loop in the control-flow. Otherwise we

need to deal with recurrence equations and initialization issues.

Consider a rewritten version of equation (8.13)

fij = wij ←
∑

bbh∈preds(bbi)
fhi · ψi

where wij = whenj(wbbi) and ψi = ψ(bbi). Figure 8.6 shows a simple looping instance where

we get the following set of equations

f12 = w12 ← (f31 + f01) · ψ1 = w12 ← f31 · ψ1 + w12 ← f01 · ψ1

f23 = w23 ← f12 · ψ2

f31 = w31 ← f23 · ψ3

(8.16)

Solving for f31, we have

f31 = w31 ← (w32 ← (w12 ← (f31 + f01) · ψ1) · ψ2) · ψ3

and using rules (8.15) to move up alternation

ep = w31 ← (w32 ← (w12 ← f01 · ψ1) · ψ2) · ψ3

lp = w31 ← (w32 ← (w12 ← f31 · ψ1) · ψ2) · ψ3

f31 = ep+ lp

Naturally, f31 accounts for both paths in the loop, the loop itself lp and its entry ep. To solve the

looping term lp, we have to find an initialisation value for f31. The initalising value cannot be

randomly taken. Both terms impose a set of constraints on the values of f31. In general, we will

always obtain the alternation form under variable replacement as shown by lemma (8.5).
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By using remark (8.3), we deduce from (8.16) the following constraints

f31 < f23 · ψ3 f23 < f12 · ψ2 f12 < f31 · ψ1 f12 < f01 · ψ1

Applying (8.2) to f23 < f12 · ψ2, we obtain

f23 · ψ3 < f12 · ψ2 · ψ3

and given that f31 < f23 · ψ3 we deduce that

f31 < f12 · ψ2 · ψ3

Following this reasoning, we get

f31 < f31 · ψ2 · ψ3 · ψ1

f31 < f01 · ψ2 · ψ3 · ψ1

The first inequality corresponds to the loop path and the last one to its entry. We can see that the

former holds for any n ≥ 1 such that

f31 < ψn231

where ψ231 = ψ2 · ψ3 · ψ1.

We note the initial value of f as f0. If f31 is less than both terms, i.e., f31 < f31ψ
n
231 ∧ f31 <

f01ψ231, then it is necessarily lower than its greater lower bound on the semi-lattice of suffix

partially ordered FIFO states

f031 = ψn231 u f01ψ231

Note that f01 is a constant value. Finally, we can safely take this value as its initial one to solve

F .

Generalizing this result, we define the initialization value f0ij as

f0ij = ψnp u
l

h∈preds(j)∧h6=i
fhj · ψp

where p is a specific loop path of basic blocks in the backwards direction starting at bbj .

In order to show a running instance of the analysis, we consider the control-flow of Pixel shown

in Figure 8.7 where we highlighted all communication primitives.
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s1: sendfrom ... mult<Int>,

s2: sendfrom ... mult<Int>,

s3: sendfrom ... mult<Int>;

w12: wait ... m1 = recv multed<Float>, m2 = recv multed<Float>

then when m1, m2 goto bb2;

bb1

s4: sendfrom ... add<Float>;

w23: wait ... m3 = recv multed<Float>, m4 = recv added<Float>

then when m3, m4 goto bb3;

bb2

s5: sendfrom ... add<Float>;

w34: wait ... m5 = recv added<Float>

then when m5 goto bb4;

bb3

FIGURE 8.7: Pixel control-flow with communication primitives only

We extract the following constant definitions where we denote lists with square brackets

ψ1 = [{(s1,multed), (s2,multed), (s3,multed)}] ψ3 = [{(s5, added)}]
ψ2 = [{(s4, added)}]
w12 = [{(r1,multed), (r2,multed)}] w34 = [{(r5, added)}]
w23 = [{(r3,multed), (r4, added)}]

Here we expose generating expressions, which are not shown in the analysis to facilitate its

presentation. For instance, we have three parallel sends s1, s2 and s3, in basic block bb1 and

the next two ones s4 and s5 in basic blocks bb2 and bb3, respectively. Writing down receive

expressions (see (8.13)), it follows

f12 = w12 ← ψ1 f23 = w23 ← f12 · ψ2 f34 = w34 ← f23 · ψ3

Before solving, we need to make type correct receives. Given that operands of a receive operator

must be a list of messages and we have instead a list of multisets of messages, we convert them

to corresponding combinatorial alternation of message lists as discussed earlier. For instance,

w23 is rewritten to

w23 = (r4,multed) · (r5, added) + (r5, added) · (multed, r4)

We show hereafter an alternative obtained by rewriting w12 and ψ1 in f12

f12 = [(r1,multed), (r2,multed)]← [(s2,multed), (s1,multed), (s3,multed)]

= [(s3,multed)]
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By matching messages, we deduce the following set SR of related expressions from f12

SR = {(s2, r1), (s1, r2)}

and we get the remaining input messages f12 = [(s3,multed)] as an input to solve f23. In this

example, the resolution gives us the following set

SR = {s1, s2, s3} × {r1, r2} ∪ {s1, s2, s3} × {r3} ∪ {(s4, r4), (s5, r5)} (8.17)

SR materialize all possible related send and receive expressions. It is the work of the Transac-

tion Selector to choose a certain relation over another one. For instance, from SR we know that

(s1, r1) ∈ SR will relate first sendfrom to the first recv expression in bb1. But we also have

(s1, r3) ∈ SR, which is also valid because a parallel send operation does not specify any arrival

order of responses — even under the hypothesis of instantaneous communications — and we

may receive the message triggered by s1 at receive expression of basic block bb2.

8.3.3 Transaction Selector

The transaction selector uses the result of our message dependency analyzer to make a deter-

ministic choice between non-deterministic relations of send-receives. We briefly discussed the

result of the analysis on the example of Figure 8.7. Due to non-determinstic properties of par-

allel send, we may have to choose between a certain subset of relations. Consider again the

result (8.17). We observe that there are receive expressions related to more than one sending ac-

tions, s1 for instance, but according to Pixel code flow s1 can only be related to only one receive

if we need to generate code with deterministic behavior. However, in some cases keeping all re-

lations from sends to receives may be a valid situation. In the example of Figure 8.8, we assume

SR′ = {(s′1, r′1), (s′2, r′1)} where s′1 and s′2 correpond to sendfrom at bb1 and bb2, respectively,

and r′1 represents the receive at bb3. In this particular case, even if we have a single receive

related to two sending actions, we do not need to choose between both pairs as they are control-

flow dependent. For this reason, we refer to control-based dependencies in the traditional Single

Static Assignment (SSA) sense, i.e., as a φ dependency, and to dependencies introduced by non-

determinism as a π dependency. Note that the converse situation may also exist in a control-flow

dependent manner, i.e., sending expressions with multiple related receives, which we described

in Figure 8.9.

Therefore, the Transaction Selector needs to decide whether a subset of relations are control-

dependent or not. If they are, we must preserve them, otherwise we need to choose between one

of them to produce a deterministic behavior.
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wait ... mm = recv multed<Int>

then when mm goto bb4;

bb3

sendfrom ... mult<Int>;

goto bb3;

bb1

sendfrom ... mult<Int>;

goto bb3;

bb2

FIGURE 8.8: φ dependency of sending-receive pairs

sendfrom ... mult<Int>;

wait ... then if condition goto bb2

then if not condition goto bb3;

bb1

wait ... mm = recv multed<Int>

when mm goto bb4;

bb2

wait ... mm = recv multed<Int>

when mm goto bb5;

bb3

FIGURE 8.9: Splitting of sending actions

LetM = (S]R, T ) be the output graph of our message dependency analyzer on the set of send

S and receives R where T ⊆ S ×R.

Lemma 8.6. A receive related to more than one send necessarily represents φ or π dependen-

cies.

Proof. The only way for a receive to be related to more than one send is to have a term of the

form

f = r ← (s+ s′)

where the alternation can only come from (8.13), i.e. control-flow dependent, or the combina-

torial expansion of multisets of messages introduced by parallel sends in (8.10), thus a non-

determinstic relation (see Type correctness of receives).

From the proof of Lemma (8.6), we deduce the following important corollary

Corollary 8.7. Let (s, r), (s′, r) ∈ T where s and s′ are parallel sends then r = π(s, s′).

Therefore, given any M we are able to discover π dependencies and as a consequence of

Lemma (8.6) we have φ dependencies as well. The following lemma will help us expose the

structure of M among parallel sends.

Lemma 8.8. Let r ∈ R and s, s′ ∈ S two parallel sends such that (s, r), (s′, r) ∈ T and

∃r′ | (s, r′) ∈ T then (s′, r′) ∈ T .

Proof. If s and s′ are parallel and related to r, then they produce the same reply message m

which is captured by r. Because they are parallel, we will have an alternation expression ms +
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sendfrom ... mult<Int>,

sendfrom ... mult<Int>;

wait ... then if condition goto bb2

then if not condition goto bb3;

bb1

wait ... mm = recv multed<Int>

when mm goto bb4;

bb2

wait ... mm = recv multed<Int>

when mm goto bb5;

bb3

FIGURE 8.10: Shared send action

ms′ according to (8.10). If there exists an r′ on message m related to s, by the alternation term

and our algebraic rules (8.15), it must also be related to s′.

Following this lemma, we have a complete bipartite graph between any set of parallel sends and

its respective receives.

From Corollary (8.7), we can see each particular receive as a “shared” resource among parallel

sends that form a π dependency. However, it does not say anything about the other direction, i.e.,

a single send related to more than one receive. If we come back to the example of Figure 8.7,

we see that there must be a bijective relation between senders expressions of mult<Int> and

receivers of multed<Float> because each reply message, consequence of a particular send,

becomes unavailable once it has been consumed by one receive. In other words, receivers do

not share sending actions.

On the other hand, Figure 8.10 shows the converse situation, which is a slightly different version

of Figure 8.9. We have an additional sending action s2 in parallel with the first one s1. Assuming

an empty FIFO state at bb1, we have that both receives at bb2 and bb3, r1 and r2, are π related

to s1 and s2, respectively. Here, we can let receives connected to the same sending action after

having removed π dependencies. Thus, s1 and s2 are shared between them. In conclusion, we

need to distinguish between what we called concurrent receives from the sending perspective.

We introduce this notion in the following definition.

Definition 8.9. Let r1, r2 ∈ R be two different receives. They are concurrent iff r2 ∈ dom(r1)∨
r1 ∈ dom(r2) where dom : R→ 2R is the dominance set of receives.

We say that a receive r dominates r′ if all control-flow paths from the state machine root to

the wait statement that contains receive r′, pass through the wait of r. Clearly, if one receive

dominates the other then common parallel sending actions related to both receives cannot be

shared as the first one will pick an available send and make it unavailable for the following one.

Based on Corollary (8.7) and given Lemma (8.8) combined with Definition (8.9), we imple-

mented a simple algorithm to eliminate concurrent dependencies from any send-receive graph
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M . Let us first define the equivalence class of parallel sends and concurrent receives as follows

‖s‖ = {s′ ∈ S | parallel(s, s′)}
〈r〉 = {r′ ∈ R | r′ ∈ dom(r) ∨ r ∈ dom(r′)}

We show in Algorithm 1 the implementation of the π dependency elimination. Basically, for

each receive r ∈ R, we take its incoming parallel send classes and we choose one send for each

class. Then, we remove concurrent relations according to Corollary (8.7) and Definition (8.9).

Algorithm 1: Remove π dependencies
Data: Send-Receive graph M = (S ]R, T )
Result: Graph M without π dependencies
for r ∈ R do

Parallels← {‖s‖ | (s, r) ∈ T};
for P ∈ Parallels do

if |P | ≤ 1 then
/* No π dependencies here */
continue;

end
s← choice(P );
/* From Corollary (8.7), P × {r} are π dependencies, hence we

must remove relations from r to any other concurrent
send s′ in P */

CS ← {(s′, r) | s′ ∈ P ∧ s 6= s′};
/* From Lemma (8.8) and Definition (8.9), we need to remove

concurrent receives to the chosen s */
CR← {(s, r′) ∈ T | r′ ∈ 〈r〉 ∧ r 6= r′};
T ← T \ (CS ∪ CR);

end
end

We show a running example in Table 8.1 where each step corresponds to one receive (and its as-

sociated parallel sends) of results (8.17). At the first step, we pick receive r1 with related parallel

sending s1, s2 and s3, we choose relation (s1, r1) and remove (s2, r1), (s3, r1). Afterwards, we

look at r2, choose (s3, r2) and remove (s3, r3). Finally, r3 gets related to the last send s2. Note

that the final set of relations is a one-to-one relation between send and receives because

8.3.4 Scalar Constants

As introduced in Chapter 5, 〈HOE〉2 scalars are objects that communicate through message-

passing in the same manner that user-defined objects. The scalar constant analysis tracks con-

stant associations wherever they are defined, either inside fsm or creator. It simply detects

create expressions of scalar objects as the following
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Receive / ParSend T

r1 / (s1, s2, s3) {(s1, r1)} ∪ {s2, s3} × {r2, r3} ∪ {(s4, r4), (s5, r5)}
r2 / (s2, s3) {(s1, r1), (s3, r2)} ∪ {s2} × {r3} ∪ {(s4, r4), (s5, r5)}
r3 / (s2) {(s1, r1), (s3, r2), (s2, r3)} ∪ {(s4, r4), (s5, r5)}
r4 / {(s1, r1), (s3, r2), (s2, r3)} ∪ {(s4, r4), (s5, r5)}
r5 / {(s1, r1), (s3, r2), (s2, r3)} ∪ {(s4, r4), (s5, r5)}

TABLE 8.1: Selecting between non-deterministic send-receive relations

this.cst = create Int.int 10;

We show in the next section that constants can be made local to the state machine and automat-

ically unboxed if possible. Using local variables instead of associations may produce unused

associations that can be optimized out afterwards.

8.4 Transformations

Based on the analyses presented in the previous section, we built a set of transformations to

achieve IR patterns that are known to have efficient code translations. Before introducing our

transformations, where most of them rely on the presented analyses, let us start by presenting

required mathematical tools and notations concerning the representation of 〈HOE〉2 index sets.

8.4.1 Index Sets

We define the denotation of an 〈indexset〉, J.K : 〈indexset〉 → Σ → S where S =
⋃
i
Si is the

finite union of labeled parametric polyhedral sets Si : Zn →
(

Σ× 2Z
d
)

represented as follows

Si(s) = {`i(x) | x ∈ Zd ∧ ∃z ∈ Ze : Ax +Bs +Dz ≥ c}

with A ∈ Zm×d, B ∈ Zm×n, D ∈ Zm×e, c ∈ Zm and 2Z
d

the power set of Zd and Σ a finite set

of labels. That is, we have m inequations with parameters s, existentially quantified variables z

and constants c.

We define also the polyhedral relationR =
⋃
iRi whereR : Zn →

(
Σ× 2Z

d1
)
×
(

Σ× 2Z
d2
)

,

which is the union of basic relations Ri

Ri(s) = {`1(x1)→ `2(x2) | x1 ∈ Zd1 ,x2 ∈ Zd2 ,∃z ∈ Ze : A1x1 +A2x2 +Bs +Dz ≥ c}
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Using polyhedral sets, we define the index domain of certain IR statements. The index domain

of a parallel IR statement D : 〈parstmt〉 → S is defined as

D(αparstmt,α
′
parstmt) = D(αparstmt) ∪ D(α′parstmt)

D(forall[αindexset ] αsend) = JαindexsetKαsend

D(forall[αindexset] αupdate) = JαindexsetKαupdate

D(α) = ∅ otherwise

using a shorthand notation J.K` for the denotational function. Additionally, we define the poly-

hedral union set of a waitin statement as the union of all its indexed region domains. Let w be

a waitin statement of the form

w = wait this in region recv then

and we noteDr ∈ S the polyhedral set of region r ∈ region such thatDr([αindexset] {αfsmstmt}) =

JαindexsetKr if we have an indexed region, or Dr = ∅ otherwise.

In addition, we model read and write accesses using polyhedral relations for send, receive and

update statements following theirs operands. An access refers to a certain IR variable. There-

fore, let us consider again the grammar of variables

〈varexpr〉 ::= 〈varexpr〉 ’.’ 〈var〉
| 〈var〉

〈var〉 ::= 〈id〉 ’[’ 〈arithexpr〉+ ’]’

| 〈id〉

Let s be an statement with associated index domainD(s) = S(x) andRi : Zn →∏
i

(
Σ× 2Z

d1
)

,

we define an interpretation I : 〈var expr〉 → Ri of accessed variables such that the relation

between s and the access is the labeled polyhedral n-ary relation A = S(x)→ I(v).

I(v) = {v()} (8.18)

I(v[αarith exprs]) = {v(x) | x = αarith exprs} (8.19)

I(αvar expr.αvar) = I(αvar expr)× I(αvar) (8.20)
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Definitions (8.18) and (8.19) are known access models in existing polyhedral tools [80, 81],

while (8.20) allow us to model structural accesses. We extract read and write accesses out of

fsm statements in terms of labeled polyhedral relations. For instance, let s be the following

statement

forall[i: 1 <= i and i < 32]

sendfrom this this.a[i-1] mult<Int> this.a[i];

then we have that D(s) = {s(i) : 1 ≤ i ∧ i < 32} with read associations

A1 = D(s)→ I(this) = {s(i)→ this() | 1 ≤ i ∧ i < 32}
A2 = D(s)→ I(this.a[i-1]) = {s(i)→ this()→ a(i0) | 1 ≤ i ∧ i < 32 ∧ i0 = i− 1}
A3 = D(s)→ I(this.a[i]) = {s(i)→ this()→ a(i) | 1 ≤ i ∧ i < 32}

For the manipulation of polyhedral sets and relations and its operations, we used the Integer

Set Library (ISL) [82]. Structural accesses like A2 or A3 can be modeled in ISL using nested

spaces.

8.4.2 Dead Code Elimination

This pass removes unused definitions which are either performed at the creator or the fsm

scope, regardless of their declaration scope (associations or local variables). Note that the only

way to pass definitions from creator to fsm is through associations. Therefore, we should be

able to follow definitions and its corresponding uses at different scopes. Data dependencies be-

tween different hierarchical scopes are handled by our data-flow analysis shown in Section 8.3.1.

Given that we also take into account structural accesses, we can easily detect unused associations

by consulting the DefUse chain analysis. The encapsulation property of 〈HOE〉2 objects guar-

antees the correctness of this transformation. Associations are not exported to external objects

which means that they cannot be used outside the context of the object under analysis.

8.4.3 Dead Associations Elimination

In this pass, we remove undefined associations from the object type definition. We rely on the

same fact as before, object associations cannot be defined at the outside of the current object

because of visibility constraints.
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forall[i: 0 <= i and i < 512]
sendfrom[i] this this.pixels[i] getY<>;

goto GETTING_Y;

GETTING_Y:
wait this for

msg_takeY = recv[i: 0 <= i and i < 512] takeY<Float>
then when msg_takeY goto UPDATE_CH
then if msg_takeY.all goto FINAL;

UPDATE_CH:
this.ychannel[i] = msg_takeY.y;
goto GETTING_Y;

LISTING 8.2: Wait-all Loop

forall[i: 0 <= i and i < 512]
sendfrom[i] this this.pixels[i] getY<>;

goto GETTING_Y;
GETTING_Y:

wait this in [i: 0 <= i and i < 512]
{

wait this for msg_takeY = recv[i] takeY<Float>
then when msg_takeY goto UPDATE_CH;

UPDATE_CH:
this.ychannel[i] = msg_takeY.y;

} then goto FINAL;

LISTING 8.3: Indexed Region

8.4.4 Rewriting Broadcasts

This pass transforms what we call wait-all loops into indexed regions. Wait-all loops are loops

that wait for all indexed messages under a certain domain to arrive and quit the main loop

afterwards. For instance, consider the loop of Listing 8.2 taken from the Image example. The

loop groups basic blocks GETTING_Y and UPDATE_CH and it forms a wait-all loop. The wait

branch at Line 7 waits for all takeY<> messages on the specified range of index values. Given

that the arrival order of messages is not specified, the loop can be “parallelized” into an indexed

region. Listing 8.3 illustrates the transformation where a new indexed region is introduced at

Line 5. Note that parallel regions inside composite states receive their own copy of the incoming

message. The message dropping semantics guarantees that regions not concerned by messages

with wrong index values will drop them.

The loop pattern is shown in Figure 8.11(a) where D is the integer set denoted by the index

domain at receive expression. We rapidly see that it can be extended to loops with multiple

bodies as shown in Figure 8.11(b) under the following condition

⋂
i

Di = ∅
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#Header

#Entry #Exit

#Body

i ∈ D

(a) Wait-all with single
body

#Header

#Entry #Exit

#Body1

i ∈ D1

#Body2

i ∈ D2

...

#BodyN

i ∈ Dn

(b) Wait-all with multiple body

FIGURE 8.11: General case of wait-all loops

forall [i: 0 <= i and i < 32]
sendfrom[i] this this.table[i] Float’fadd<Float> this.cst10;

goto DIVIDING;

DIVIDING:
wait this for m = recv[i: 0 <= i and i < 32] Float’fadded<Float>

then when m if i < 16 goto UPDATE_L
then when m if i >= 16 goto UPDATE_R
then if m.all goto FINISHED;

UPDATE_L:
this.new_table[0, i] = m.res;
goto DIVIDING;

UPDATE_R:
this.new_table[1, i - 16] = m.res;
goto DIVIDING;

LISTING 8.4: Guarded branching

where Di is the intersection of reception index domain and the corresponding transition guard

leading to Bodyi.

To illustrate the general case, we show a simple looping example in Listing 8.4. Here we jump

to different basic blocks, UPDATE_L and UPDATE_R, according to guards of then branches and

store the message content on an association called new_table. The receive gives us a context

domain C = {i | i ≤ 0 ∧ i < 32}, then it follows two branching domains W1 = {i | i < 16},
W2 = {i | i ≥ 16}, from which we can deduce the following indexed region domains

D1 = C ∩W1 D2 = C ∩W2

Additionally, we have that D1 ∩ D2 = ∅ as required by the transformation. Therefore, we

transform Listing 8.4 into two disjoint indexed regions with domains D1 and D2, respectively.
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⇒forall[i: 0 <= i and i < 512]
⇒ sendfrom[i] this this.pixels[i] getY<>;

goto GETTING_Y;
GETTING_Y:

wait this in [i: 0 <= i and i < 512]
{

wait this for msg_takeY = recv[i] takeY<Float>
then when msg_takeY goto UPDATE_CH;

UPDATE_CH:
this.ychannel[i] = msg_takeY.y;

} then goto FINAL;

GETTING_Y:
wait img in [i: 0 <= i and i < 512] {
⇒sendfrom[i] img img.pixels[i] getY<>;

wait img for msg_takeY = recv[i] takeY<Float>
then when msg_takeY goto UPDATE_CH;

UPDATE_CH:
img.ychannel[i] = msg_takeY.y;

} then goto FINAL;
FINAL:

Fusion

FIGURE 8.12: Loop fusion: Fusioning broadcast into indexed region

8.4.5 Basic Block Fusion

In this pass we merge two basic blocks linked through an unconditional jump. Given two basic

blocks BB1 and BB2, we merge them iff preds(BB2) = {BB1} and BB1 jump uncondition-

ally to BB2, i.e., via a goto statement.

8.4.6 Loop Fusion

The loop fusion pass moves indexed statements into indexed regions. In order to move an in-

dexed send we must be sure that, among other contraints discussed later, its domain is equivalent

to the one of the indexed region. Let s1 be an indexed send with iteration domain D(s1). As-

sume, we have a waitin w1 statement with only one indexed region

w1 = wait this in r1 recv then

with iteration domain D(r1) and a basic block bb = s1; w1. Then, we should be able to move

s1 into r1 iff D(s1) ⊆ D(r1) ∧ D(r1) ⊆ D(s1). As an example, consider the transformation

shown at Figure 8.12. Given that the marked sending is under the same index domain as the next

indexed region, then we are able to move the former into the latter.
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Applicability of the transformation

If this transformation seems straighforward a priori, in general we need to handle waitin state-

ments with multiple indexed regions and different kinds of statements to move into. In addition

to the number of statements to handle and given our computational model, an important fact

to consider is concurrency. Let s be a statement containing only one indexed expression and

a waitin statement with two indexed regions r, r′ such that Ds = Dr and Dr ∩ Dr′ = ∅. In

this case, we should be able to move s into region r. The indexed expression s is concurrent by

itself (forall semantics) and it will remain as such even inside region r. The point is that before

the transformation, s and r, r′ were sequentially ordered but after the transformation, we put s

in concurrency with all statements inside r′. Moreover, each particular instance of region r, say

ri, might also run into concurrency problems. This one is more subtle and relies on the fact

that we do not specify any particular execution order between different instances of an indexed

region, i.e., they are composed asynchronously. Thus inter-iteration data dependencies may not

be safe in general without explicit synchronization through message passing. Assuming syn-

chronized inter-iteration dependencies on s and r, we must guarantee that si does not introduce

non-synchronized inter-iteration dependencies. To illustrate the discussion with an example,

consider the invalid transformation shown in Figure 8.13. The indexed region makes a simple

parallel copy between two arrays, a and b. Note that if we naı̈vely insert the first sendfrom into

the following indexed region, as shown in the transformed code, we may run into concurrency

problems because sendfrom introduces an inter-iteration dependency, i 7→ i− 1. If region, say

2, is faster than 3, then we endup by sending message mult<Int> to the new value of a[2] in

region 3, which is b[2], because the update statement in region 2 occured before sending in

region 3. On the other hand, the region execution order i 7→ 31− i is guaranteed to preserve the

initial behavior but we do not support scheduling hints into our current framework. In conclu-

sion, we must check for inter-iteration dependencies before proceeding with the transformation

to avoid race conditions.

Given the access relations introduced in Section 8.4.1, we can decide if two statements s1,

s2 have inter-iteration dependencies by computing, R12 = A−1s1 (As2) and constructing the

new delta set ∆R12 = {x − y | ∀x → y ∈ R12}. For instance, consider the read access

this.a[i-1] of s1 and the write one this.a[i] in s2. From both accesses, we have

As1 = {s1(i)→ this()→ a(i0) | 1 ≤ i < 32 ∧ i0 = i− 1}
As2 = {s2(i)→ this()→ a(i) | 1 ≤ i < 32}

Then we applyA−1s1 (As2) = RW12 = {s2(i)→ s1(i0) | 1 ≤ i < 32∧ i0 = i+1} and compute

the delta set ∆RW12 = {1}, which provides a proof of an inter-iteration dependency.
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forall[i: 1 <= i and i < 32]
sendfrom this this.a[i-1] mult<Int> this.a[i];

wait this in [i: 1 <= i and i < 32] {
this.a[i] = this.b[i];

} then goto NextState;

wait this in [i: 1 <= i and i < 32] {
sendfrom this this.a[i-1] mult<Int> this.a[i];
this.a[i] = this.b[i];

} then goto NextState;

Fusion

FIGURE 8.13: Invalid loop fusion because of concurrent inter-iteration dependencies

Algorithm 2: Move indexed expressions into indexed regions
Data: Current basic block BB with waitin branch
Result: Modified BB
/* Split BB into BB′ and its waiting branch w′ */
BB′, w′ ← BB;
R← regionsOf(w′);
for stmt ∈ reverse(BB′) do

if stmt /∈ 〈parstmt〉 then
break;

end
if ∃α ∈ stmt such that α is not an indexed expression then

break;
end
for r ∈ R do

if Dr * Dstmt then
continue;

end
exprs← Dstmt ∩ Dr;
copy exprs into region r;

end
remove stmt from BB

end

Implementation

Our current implementation has the following limitations

1. We look for statements that fit perfectly into the list of indexed regions.

2. The statement is composed only by indexed expressions.
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Root

wait on m1<>

More nodes

reply m2<> reply m2<>

on m1() -> m2()

FIGURE 8.14: Wait-reply paths

Let us consider a parallel statement as a list of indexed sends or updates αfsmstmt = [αiiexpr].

Then, the first constraint can be formalized as follows

⋃
r∈region

Dr = D(αiiexpr)

for all αiiexpr. Then, each parallel expression can be distributed among all the indexed regions

assuming that it does not introduce any inter-iteration dependency among them. Algorithm 2

describes the copy of parallel statements into multiple indexed regions.

We show in Figure 8.12 a running example of the loop fusion transformation.

8.4.7 Inlining

This pass inlines one object state machine into another, called inlinee and inliner. In the context

of state machines, the inlining procedure depends on multiple factors: precise knowledge of the

current state of the inlinee from the inliner perspective, known send-receive relations and well

delimited sub-state machine to inline.

Well delimited sub-state machine. Let A be a IR object with an input-output message rela-

tion at its interface level: on m1() -> m2(). Necessarily, there is at least one closed sub-state

machine of A containing a wait statement with a receive expression on m1 and a reachable

reply statement on m2. We call such path a wait-reply path. Note that it is the role of the

interface to indirectly guarantee its existence. Figure 8.14 sketches the case of a single wait

reaching multiple replies. We see that the wait dominates both receives, and hence it defines a

well-delimited sub-state machine that encloses the actions needed to fulfill the exposed trans-

action. Although closely related, the general case concerning arbritrary wait-reply paths is a

problem of interface verification rather than inlining. We did not go further into it and limit our

current implementation to one wait and one reply paths.
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FIGURE 8.15: Image object model

Inlinee object never escapes. This constraint guarantees that the inliner is the only producer

and inlinee its only consumer. Therefore, if the inlinee waits on a given message, which is

exposed on its interface, it will only react to the inliner sending actions and no one else. This

provides us a precise knowledge of the inlinee state at the beginning of the transaction.

The inliner completes the transaction. The inliner candidate must contain some send-receive

relation. We rely on the Transaction Selector (see Section 8.3.3), which relies on the Message

Dependency Analyzer, to collect those relations and following the above constraints we decide

to inline the state machine.

For instance, consider again the Image object model of Figure 8.15 where the interface of Pixel

object is defined as

object Pixel

interface

on getY() -> takeY(Float)

If the Image object has a completing transaction with Pixel objects and meets the other presented

constraints as well, then we inline Pixel state machine into the Image one. The pass computes

the region of states enclosed by reception of getY<> till reply of takeY<Float> in order to inline

it into Image. The running transformation is shown in Figure 8.16.

8.4.8 Folding of Operational Transitions

In Chapter 5, we presented the 〈HOE〉2 operational transitions and mentioned that they can be

transformed into “in-place” operations. We built around this idea the 〈HOE〉2 scalar operations.

This pass concretizes such idea with the help of the Transaction Selector by folding operational

transitions. We have shown in the precedent section that send-receive relations can be inlined

and we show here that we can materialize them using the applyon operator if possible, joining

the idea of the operational view of scalar message exchanges introduced in Chapter 5. Consider

the extension to scalar Int interface of Listing 8.5. The interface says that such send-receive

relation can be folded into an abstract operation called multOp which takes an Int and a Float



Chapter 8. The Compiler: Analysis, Optimization and Code Generation 132

GETTING_Y:
wait img in [i: 0 <= i and i < 512] {
⇒sendfrom[i] img img.pixels[i] getY<>;
⇒wait img for msg_takeY = recv[i] takeY<Float>

then when msg_takeY goto UPDATE_CH;
UPDATE_CH:
img.ychannel[i] = msg_takeY.y;

} then goto FINAL;
FINAL:

wait this in [i: 0 <= i and i < 512] {
⇒ sendfrom[i] this.pixels[i]

this.pixels[i].r mult<Float> this.pixels[i].rcst;
⇒ wait this.pixels[i] for _m1_multed = recv multed<Float>
⇒ then when _m1_multed then goto UBB_MULTING;
⇒UBB_MULTING:
⇒ Float __new_var_1 = _m1_multed.val;

[...]
} then goto Final;

Inline

FIGURE 8.16: Inlining Pixel object into Image

scalar Integer
interface

on Mult(Float) -> Multed(Float) ~> multOp

LISTING 8.5: New interface entry for Int objects

wait this in [i: 0 <= i and i < 512] {
⇒Float __new_var_2 = applyon this.pixels[i].r multOp this.pixels[i].rcst;

wait this.pixels[i]
then goto UBB_MULTING;

UBB_MULTING:
Float __new_var_1 = __new_var_2;
[...]

} then goto Final;

LISTING 8.6: Transaction Folding

and gives us a Float object. In order to actually fold it, we transform it into an in-place operation

by means of the abstract operation applyon. For instance, from the output of the inlining trans-

formation shown in Figure 8.16, we see that the first sendfrom and the next wait are related.

The Message Dependecy Analyzer spots this relation and the Transaction Selector forward such

information, which is exploited by this pass in order to finally fold it and transform the code into

the one shown in Listing 8.6.
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8.4.9 Dead Wait Rewriter

The Transaction Folding pass removes send and receives statements and adds the corresponding

in-place operation. As a consequence, the transformation may produce dead waits. Dead waits

have only one then branch without receive nor guard specifications. We transform them into its

equivalent, and simpler, statement goto as shown hereafter.

wait this then goto NextBB; goto NextBB;

Afterwards, the basic block fusion pass may eliminate them if the Control-Flow Graph (CFG)

meet the necessary conditions. More optimization possibilities may be discovered after fusion-

ing basic blocks, such as Loop Fusion.

8.4.10 Unboxing Types

We say that 〈HOE〉2 scalars represents boxed primitive types because they provide state machine

semantics, equivalent to other objects, to simple scalar values. Boxed scalar types guarantees

a clean and homogeneous interaction within the language with other objects. However, it im-

plies a state machine for every single scalar value in the language runtime implementation,

which is clearly too cumbersome if we want to improve 〈HOE〉2 application performances. In

general, we aim to have as much unboxed scalars and operations as possible in the final state

machine model.2 In our IR, boxing and unboxing operations are implicit and concern exclu-

sively applyon operations. That is, the applyon operator requires unboxed types as operands

and returns unboxed types. Thus, their operands are implicitly unboxed before applying the

operation, and its output is boxed depending on the type of the target variable.

This pass is decoupled into two steps: Scalar Constant Unboxing and Unboxing of Definitions.

First of all, we try to use unboxed constants if possible. For instance, the scalar creation

Int cst = create Int.int 10;

is unboxed to

int cst = 10;

iff all uses of cst require an unboxed scalar, i.e., they correspond to operands of applyon.

Here, we rely on two key analyses: the DefUse chain (Section 8.3.1) and Scalar Constants

(Section 8.3.4).

The next step is more general. We look for definitions where the left-hand side is an unboxed

type but its right-hand side is not. The constraints remain the same, we verify that all uses of the
2In case there is no native support, either at the language or architecture level, for the message passing semantics.
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applyon output require an implicit unboxing by consulting our DefUse chain analysis. We are

able to unbox definitions such as those presented in Figure 8.6 and rewritten hereafter.

Float __new_var_2 = applyon this.pixels[i].r multOp this.pixels[i].rcst;

Float __new_var_1 = __new_var_2;

into

float __new_var_2 = applyon this.pixels[i].r multOp this.pixels[i].rcst;

float __new_var_1 = __new_var_2;

iff all uses __new_var_1 and __new_var_2 turn to be unboxed.

8.5 Contributions

We presented the IR optimizing compiler, its analyses and optimizations. The goal of our opti-

mizing compiler is to achieve specific IR patterns, which are known to have efficient implemen-

tations in the target language. For this purpose, we introduced a set of analyses and transforma-

tions with some of them as extensions to already known analysis in the compilation domain, e.g.

the structural reaching definition analysis. This analysis solves the reaching definition problem

over structural, or hierarchical, statements. It allows us to keep the hierarchical information

coming from the frontend language, 〈HOE〉2, while enabling classical optimizations along the

hierarchy of the state machine such as dead code and association elimination, automatic unbox-

ing.

Based on the interface concept introduced in the 〈HOE〉2 language, we developed a new analysis

to relate send and receive communication primitives in a modular manner. The analysis takes

into account the specification of many messages per transition, of different kind and multiplicity.

On the way, it also allows us to detect dead-lock conditions under well-defined hypotheses. We

also exposed its algebraic properties, on which we root the next analysis called the Transaction

Selector. The Transaction Selector detects non-deterministic relations between send and receives

in order to choose one valid deterministic behavior. We introduced the equivalent concept of φ

nodes at the message exchange level and a new dependency kind called π to maintain non-

determinsitic relations.

One of the main contributions of the 〈HOE〉2 language is the introduction of indexed messages

and regions. Using polyhedral analysis, we developed transformations to rewrite traditional

〈HOE〉2 broadcasts made of wait-all loops into indexed regions. Afterwards, we study the prob-

lem of loop fusioning in the context of asynchronous composition of indexed regions. Enabling

loop fusion allowed us to optimize further and fold indexed message exchanges into in-place
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operations, according to the operational view of transactions presented in Chapter 5. We also

developed an automatic unboxing pass on the context of the IR language.

In the following chapter, we validate our optimizing compiler and show experimental results.
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In order to provide a clear interpretation of our experimental results, we first describe the under-

lying message-passing runtime and its interaction with Highly Heterogeneous, Object-Oriented,

Efficient Engineering 〈HOE〉2 objects. We will then discuss the optimizations and code gener-

ated for a simple model, followed by a detailed analysis of a more complex one. In the process,

we will consider multiple optimization levels to highlight the impact of the optimizing compiler,

and to demonstrate the generated code quality. We conclude our experiences with an adaptation

of our optimizing chain to support General-Purpose computing on Graphics Processing Units

(GPGPU) code generation.
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FIGURE 9.1: Optimizing pipeline

9.1 Code Generation Strategy

We recall the optimizing pipeline presented at Chapter 9 in Figure 9.1. Two backends are cur-

rently available: C and OpenCL. Each backend translates the Intermediate Representation (IR)

of Chapter 7 into C/OpenCL code relying in a custom runtime support we developed.

9.1.1 Runtime

The compiler toolchain emits one C file per 〈HOE〉2 object and this file embodies the optimized

code of this object. The generated C code can call back the runtime for multiple purposes, like

creating or destroying objects, sending messages, waiting for incoming messages, and initial-

ization and termination of objects. Listing 9.1 shows the main callback routines. Our runtime

implementation is based on a widely available thread library called QThreads [83]. Qthreads

is a lightweight locality-aware user-level threading runtime. Each 〈HOE〉2 object has its own

userland thread and communicates through runtime callbacks. Currently, the C backend uses

this implementation to manage a large number of concurrent objects.

The runtime starts the application by calling the main constructor of a root 〈HOE〉2 object de-

fined by the programmer. This root object represents the system that creates all the initial objects

of the 〈HOE〉2 application. The basic template for the entry point of an 〈HOE〉2 application is

shown in Listing 9.2. Then, an object providing a main creator is called by the runtime entry

to start the application. We associate to each 〈HOE〉2 object a simple C structure that exposes
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/ * Runtime i n i t i a l i z a t i o n , a p p l i c a t i o n running and f i n a l i z a t i o n * /
void hoe2_rt_init(hoe2_rt_options);
void hoe2_rt_run(hoe2_object *);
void hoe2_rt_finish();

/ * Object c r e a t i o n and d e s t r u c t i o n * /
void hoe2_rt_new_object (hoe2_object *obj);
void hoe2_rt_done_object(hoe2_object *obj);

/ * Send and r e c e i v e p r i m i t i v e s * /
void hoe2_rt_send( hoe2_object *src

, hoe2_object *dest
, hoe2_message *msg
, size_t msg_size
);

hoe2_message *hoe2_rt_recv(hoe2_object *src);

hoe2_message *hoe2_rt_recv_in( hoe2_object *obj
, hoe2_region *regions[]
, size_t regions_size
);

LISTING 9.1: 〈HOE〉2 runtime

/ * Externa l o b j e c t c o n s t r u c t o r * /
struct hoe2_object *main_obj_ctr();

int main(int argc, char **argv) {
hoe2_rt_options opt;
parse_args(argc, argv, &opt);

hoe2_rt_init(opt);
/ * Ca l l the e x t e r n a l c r e a t o r o f the main o b j e c t * /
struct hoe2_object *main_obj = main_obj_ctr();
/ * Run i t * /
hoe2_rt_run(main_obj);
return 0;

}

LISTING 9.2: 〈HOE〉2 application entry point

a (circular) First In-First Out (FIFO) buffer for communications, a main thread pointer for the

state machine and its corresponding locks (see Listing 9.3).

9.1.2 Code Generation

Most IR statements have fixed translation rules, such as updates, object creation, message send

and receive, except for applyon expressions. 〈HOE〉2 models defining operational transitions

must provide a mapping between applyon operations and their corresponding translation. The

mapping is controlled by the programmer via a “cc” mapping file (see Figure 9.1). For instance,

the following 〈HOE〉2 expression
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struct hoe2_object {
char name[127];
struct hoe2_fifo *__fifo;
aligned_t (*fsm)(struct hoe2_object *);
aligned_t step;
aligned_t region_step;

};

LISTING 9.3: 〈HOE〉2 object: C implementation

Int result = applyon addOp(p)

is translated into the IR statement as

Int result = applyon this Int’addOp p

which is then mapped to a native operation, addition in this particular case, that works on the

unboxed type.1

Int result = __obj_new_Int_int(this->value + p->value);

Indexed Regions: AST Generation from Polyhedra. 〈HOE〉2 implements asynchronous in-

dexed regions using affine constraints. We consider a coarse-grain asynchronous composition

of regions, i.e., each region is viewed as an atomic indexed statement, which means that there is

no specific execution order of each ith regions. Then, we generate for-loops in a lexicographic

order, which is a valid order among all possible ones under asynchronous composition. Such

scheduling is valid under a strong hypothesis: no explicit inter-iteration synchronization. In

other words, the indexed region does not contain inter-iteration message dependences imposing

a communication-dependent order. Thereby, if we have an indexed region such as

wait this in

[i, j: 0 <= i and i < 256 and 0 <= j and j < 256] { / / Indexed re g i on
[...]

} then goto NEXT;

We choose to emit

/ / L e x i c o g r a p h i c a l l y scheduled indexed re g i on
for (int i = 0; i < 256; i+= 1) {

for (int j = 0; j < 256; j+= 1) {

[...]

}

}

goto NEXT:;

1The boxed operation is optimized out by the Unboxing pass.
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FIGURE 9.2: Image object model

Above translation is a lexicographic scheduling of the indexed region. Faulty loop carrying data-

dependencies due to concurrency does not concern the code generator and should be detected

beforehand.

While the generation of a for loop from index domain {(i, j) : 0 ≤ i < 256 ∧ 0 ≤ j < 256}
is straightforward because loop bounds and stride are given, we may expect more complex

expressions. For instance, consider the domain given by the zigzag traversal (discussed later in

this chapter)

{(i, j) : 2
⌊
i+ j

2

⌋
= i+ j ∧ i+ j ≤ 7 ∧ 0 ≤ i < 8 ∧ 0 ≤ j < 8}

where �.� returns the integer part of its argument. This domain comes from a modulo constraint

between i and j, i + j % 2 = 0.

In consequence, we implemented a simple version of the algorithm presented by Bastoul in [84].

Recent advances in code generation from polyhedra would be of great benefit to improve detec-

tion of loop bounds and strides and, hence avoiding complex control statements in our translation

of indexed regions [85].

9.2 Exercising the Optimizing Flow

We exercised the flow over our motivating model example shown at Figure 9.2 where Listing 9.4

shows its actual implementation. The Image object creates RGB pixels (Line 8) and uses paral-

lel sending actions to get all gray values (Line 12). Underneath, the Pixel implements the actual

gray conversion starting at creator RGB (Line 27). Everything is done through message pass-

ing, including basic arithmetics for which one message initiates the computation and another

returns the result once computed. From such implementation, the compiler outputs the C code

of Listing 9.5.

We can see how optimizations explained at Chapter 8 are applied:

(a) The message-passing arithmetics are replaced by in-place operations — Section 8.4.8.
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1 object Image
2 has [512] Pixel as pixels
3 has [512] Float as ychannel
4
5 sm ImageSM.
6 creator RGB(rgb: Int[1536]) /
7 { i: 0..pixels.len - 1 }
8 pixels[i] = new Pixel.RGB(rgb[3*i..3*i+2])
9 to GETY

10
11 state GETY.
12 on /: { i: 0..pixels.len - 1 } pixels[i].getY()
13 to GETTING_Y
14
15 state GETTING_Y.
16 on takeY{i}(y: Float) /
17 ychannel[i] = y to GETTING_Y
18 endon [i.all]
19
20 object Pixel
21 interface
22 on getY() -> takeY(Float)
23
24 has Int as r, g, b
25 has Float as y, u, v
26 sm PixelSM.
27 creator RGB(rgb: Int[3]) / r = rgb[0]
28 , g = rgb[1]
29 , b = rgb[2]
30 to ComputeY
31 / / Wait f o r getY and launch m u l t i p l i c a t i o n s
32 state ComputeY. on getY() / : r.mult(0.299)
33 , g.mult(0.587)
34 , b.mult(0.114)
35 to Multing
36 / / C o l l e c t two m u l t i p l i c a t i o n s and launch the a d d i t i o n
37 state Multing. on multed(v1: Float), multed(v2: Float) / : v1.fadd(v2)
38 to MultAdding
39 / / C o l l e c t l a s t m u l t i p l i c a t i o n s and launch another a d d i t i o n
40 state MultAdding. on multed(v3: Float), fadded(v4: Float) / : v3.add(v4)
41 to Adding
42 / / Reply to the sender of getY ( ) by us ing keyword ” i n i t i a t o r ”
43 state Adding. on fadded(result: Float) / y = result: initiator.takeY(y)
44 to ComputeY

LISTING 9.4: Image model
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1 aligned_t __obj_Image_ImageSM(struct Image *this) {
2 for (int i = 0; ((i >= 0) && (i < 512)); (i+=1)) {
3 float __new_var_8 = 0.114;
4 float __new_var_6 = 0.299;
5 float __new_var_7 = 0.587;
6 float __new_var_1 = this->pixels[i]->r->value * __new_var_6;
7 float __new_var_2 = this->pixels[i]->g->value * __new_var_7;
8 float __new_var_4 = this->pixels[i]->b->value * __new_var_8;
9 float __new_var_5 = __new_var_4 + __new_var_1;

10 float __new_var_3 = __new_var_2 + __new_var_5;
11 this->pixels[i]->y = __obj_new_Float_float(__new_var_3);
12 this->ychannel[i] = this->pixels[i]->y;
13 }
14 hoe2_object_done((struct hoe2_object *)this);
15 return 0;
16 }

LISTING 9.5: Image object model: Generated C code

(b) The broadcast sending of getY() to all pixels is translated into an indexed region —

Section 8.4.4.

(c) The sendfrom operation is inserted into the new indexed region — Section 8.4.6.

(d) The Pixel’s state machine are inlined into each indexed region thanks to the interface

entry Pixel, on getY() -> takeY(Float) — Section 8.4.7.

(e) Finally, the indexed region created at (b) is translated into an efficient C for-loop.

Given that Image is the main object of our running program, its associations are preserved

(considered as side-effect actions) and we found remaining boxing and unboxing operations of

scalar objects at assignement and computation points of associations, respectively. As defined

in Chapter 8, we say that 〈HOE〉2 scalars are boxed primitive types because they provide state

machine semantics similar to other objects. For instance, Line 6 shows an unboxing operation

of an 〈HOE〉2 Int scalar—implemented as pointer accesses. Line 11 shows a boxing operation

necessary to store values on Image associations. For performance reasons, using unboxed values

over boxed ones is always preferred.

9.3 Metrics and Results

Our optimizing flow aims at optimizing-out as much messages as can be: If we achieve deep

inlining of objects we should expect a reduction on sent and received messages, hence a reduc-

tion of application/runtime communications that slow down the 〈HOE〉2 application. In order to

show the impact of our optimizing chain, we define three transformation levels: (0) No optimiza-

tion, (1) Operational transition folding and indexed region generation and (2) Fully optimizing
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FIGURE 9.3: Phases of the JPEG algorithm
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FIGURE 9.4: Image object model implementing JPEG till zigzag traversal

state Encode.
on [] / {i, j: 0 <= i < 8 and 0 <= j < 8}

blocks[i, j] = new Block8x8(ychannel[8*i..8*i+7, 8*j..8*j+7])
: {i, j: 0 <= i < 8 and 0 <= j < 8}

blocks[i, j].encode() / / P a r a l l e l encoding
to Encoding

LISTING 9.6: Parallel encoding of image blocks

with inlining. Unoptimized code generation gives us good insights on the operations involved

into the application and helps us to quantify them. Further optimization levels aim for efficient

code generation.

To stress out the toolchain under these optimization levels, we modeled a chain of image trans-

formations taken from the JPEG algorithm shown in Figure 9.3. The model of an image of 64 by

64 pixels is presented in Figure 9.4. After converting RGB pixels to its luminance component,

the image needs to be tiled in blocks of 8x8 luminance values. The Discrete Cosine Transform

(DCT) is applied in parallel to all blocks following our broadcasting semantics (see Listing 9.6).

Descriptive state machines of the Image and Block8x8 object models are shown in Figure 9.5.

We show in Listing 9.6 the tiling update and the sending action of message encode() to all

blocks. The Block8x8 object does such computation as a composition of two 8-point 1D DCT,
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FIGURE 9.5: Descriptive state machines inside objects of the JPEG model

as described in [86].2 This computational composition is represented at the model by the struc-

tural composition of Block8x8 and Line objects. Line performs the 1D DCT and send its result

back to Block8x8. The computation is triggered by a broadcast from Block8x8 to all its Line

objects.

state RowDCT. on / : {i: 0 <= i < 8} dctlines[i].dct() to RowDCTing

Once the DCT is finished, Block8x8 divides all the resulted values by the quantization table

qtable as follows

state Quantize. on / : {i, j: 0 <= i < 8 and 0 <= j < 8}

dctblock[i, j].div(qtable[i, j]) / / P a r a l l e l d i v i s i o n
to Zigzagging

2The most used implementation among JPEG encoders.
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FIGURE 9.6: Number of messages at optimization levels O0 and O1
(O2 eliminates all messages)

FIGURE 9.7: Number of messages and created objects messages at optimization levels O0, O1
and O2

state Zigzagging. on dived{i, j}(v: Float) [(i + j) % 2 = 0 and i + j <= 7] /
zigzag[(i + j + 1) * (i + j) / 2 + j] = v

to Zigzagging
on dived{i, j}(v: Float) [(i + j) % 2 = 1 and i + j <= 7] /

zigzag[(i + j + 1) * (i + j) / 2 + i] = v
to Zigzagging
on dived{i, j}(v: Float) [(i + j) % 2 = 0 and i + j > 7] /

zigzag[56 - (15 - i - j) * (14 - i - j) / 2 + j] = v
to Zigzagging
on dived{i, j}(v: Float) [(i + j) % 2 = 0 and i + j > 7] /

zigzag[56 - (15 - i - j) * (14 - i - j) / 2 + i] = v
to Zigzagging

LISTING 9.7: Zigzag traversal state

At the reception of all divided values, we perform the zigzag traversal to create a stream of 64

values, which are stored in zigzag, following the index values of received messages. Listing 9.7

shows its implementation.

For this extensive implementation, the number of exchanged messages at optimization levels O0

and O1 are shown in Figure 9.6 (logarithmic scale). Level O0 generates naive code, preserving

all message exchanges. At O1, the specialization of indexed regions and folding messages into
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for (int a = 0; (a <= 7); (a += 1)) {
for (int b = 0; (b <= 7); (b += 1)) {

...
for (int i = 0; (i <= 6); (i += 1)) {

for (int j = 0; (j <= (6 - i)); (j += 1)) {
if ((((-(i) + j) % 2) == 0)) {

NEW_LABEL_19_56:;
int __new_var_8 = dctblock[i][j]->value

/ this->blocks[a][b]->quant[i][j]->value
;

zigzag[(((((i + j) + 1) * (i + j)) / 2) + j)] = __obj_new_Int_int(
__new_var_8

);
}}}}}

LISTING 9.8: Slice of the generated C code from zigzag model

in-place operations eliminates—in this particular case—all scalar messages. Composite mes-

sages such as dcted(Float[8]), encoded(Int[64]) and takeY(Float) are still present; miss-

ing O1 bars indicate that all messages have been eliminated. At level O2, the most agressive

optimization level, deep inlining of objects in the model yields a communication-free imple-

mentation. For instance, from only the modeled quantization and zigzag storage, the compiler

produces the optimized C code shown at Listing 9.8

The two top loops correspond to the iteration domain of blocks, while the two more nested ones

come from the inlining transformation together with the intersection of zigzag domain and one

of the guard conditions. We use polyhedral code generation to produce C for-loops from our

index domains [84]. To get an idea on how powerful high-level models allow the programmer

to handle the complexity of deeply nested operations, we show in Listing 9.9 the C for loop

structure of the application model automatically generated by the compiler.

Even though the number of messages has been aggressively optimized, the compiler failed to

unbox all scalar types. Figure 9.7 compare both results. The results show that there are still

too many object creations even at the highest optimization level: 129152 objects at O0, 29121

objects at O1 and 23937 objects at O2. If we take a ratio between different optimizations, we

note that O1 improves O0 in terms of object creation by 77% and O2 improves O1 by 17%.

The first improvement is due to in-place computations. After send/receive operations has been

folded, we create applyon operations that may enable type unboxing aftewards, thus fewer

creation of objects. The 17% at O2 comes from the inlining operation. Indeed, if we inline

objects then we do not need to create them anymore. Still more than 23k objects are inserted

into the runtime with no-communication at all. Taking a closer look at the problem, we found

the following generated code snippet:
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aligned_t __obj_Image_ImageSM(struct Image *this) {
for (int i = 0; (i <= 63); (i += 1)) {

for (int j = 0; (j <= 63); (j += 1)) {
/ * Compute ychannel [ i ] [ j ] from p i x e l s [ i ] [ j ] * /

}}
for (int i = 0; (i <= 7); (i += 1)) {

for (int j = 0; (j <= 7); (j += 1)) {
struct Float * block[8][8];
for (int k = 0; ((k >= 0) && (k < 8)); (k+=1)) {

for (int l = 0; ((l >= 0) && (l < 8)); (l+=1)) {
/ * T i l e ychannel in 8x8 and s t o r e to block [ k ] [ l ] * /

}}
for (int p = 0; (p <= 7); (p += 1)) {

struct Float * row[8];
for (int q = 0; ((q >= 0) && (q < 8)); (q+=1)) {

/ * Extrac t row p from block and s e t row * /
}
/ * Copy from row [ 0 . . 7 ] to b l o c ks [ i ] [ j ] . d c t l i n e s [ p ] . i n t e n s i t y * /

}
for (int r = 0; ((r >= 0) && (r < 8)); (r+=1)) {

for (int s = 0; ((s >= 0) && (s < 8)); (s+=1)) {
/ * I n i t i a l i z e b loc ks [ i ] [ j ] . q t a b l e [ r ] [ s ] * /

}}
}}
/ * S t a r t DCT * /
for (int a = 0; (a <= 7); (a += 1)) {
for (int b = 0; (b <= 7); (b += 1)) {

struct Float * dctblock[8][8];
for (int m = 0; (m <= 7); (m += 1)) {

/ * Compute 1−D DCT on b lo c k s [ a ] [ b ] . d c t l i n e s [ r ] . i n t e n s i t y * /
/ * and s e t d c t b l o c k [ 0 . . 7 ] [m] * /

}
for (int p = 0; (p <= 7); (p += 1)) {

struct Float * lines[8];
for (int q = 0; ((q >= 0) && (q < 8)); (q+=1)) {

/ * Extrac t l i n e p from d c t b l o c k and s t o r e i t i n t o l i n e s * /
}
/ * Copy to b l o c ks [ a ] [ b ] . d c t l i n e s [ p ] . i n t e n s i t y from l i n e * /

}
for (int r = 0; (r <= 7); (r += 1)) {

/ * Compute 1−D DCT on b lo c k s [ a ] [ b ] . d c t l i n e s [ r ] . i n t e n s i t y * /
for (int n = 0; ((n >= 0) && (n < 8)); (n+=1)) {

/ * Copy b lo c k s [ a ] [ b ] . d c t l i n e s [ r ] . i n t e n s i t y to d c tb l o c k [ n ] [ r ] * /
}}
/ * Quantize and z i g z a g s t o r a g e * /
struct Int * zigzag[64];
for (int u = 1; (u <= 7); (u += 1)) {
for (int v = (8 - u); (v <= 7); (v += 1)) {
if ((((-(u) + v) % 2) == 0)) {

/ * Div ide and s e t z i g z a g * /
}}}
for (int u = 2; (u <= 7); (u += 1)) {

for (int v = 7; (v <= 7); (v += 2)) {
/ * Div ide and s e t z i g z a g * /

}}
for (int u = 0; (u <= 7); (u += 1)) {

for (int v = 1; (v <= (7 - u)); (v += 2)) {
/ * Div ide and s e t z i g z a g * /

}}
for (int u = 0; (u <= 6); (u += 1)) {

for (int v = 0; (v <= (6 - u)); (v += 1)) {
if ((((-(u) + v) % 2) == 0)) {

/ * Div ide and s e t z i g z a g * /
}}}
for (int k = 0; ((k >= 0) && (k < 64)); (k+=1)) {

/ * Store z i g z a g to encoded * /
}

}}
}

LISTING 9.9: For loop structure of the generated JPEG model
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1 for (int a = 0; (a <= 7); (a += 1)) {

2 for (int b = 0; (b <= 7); (b += 1)) {

3 [...]

4 for (int m = 0; (m <= 7); (m += 1)) {

5 [...]

6 float tmp12 = __new_var_14;

7 float __new_var_33 = tmp10 + tmp11;

8 this->blocks[a][b]->dctlines[m]->d0 = __obj_new_Float_float(

9 __new_var_33

10 );

11 [...]

12

Line 6 is a definition coming from a folded send/receive combined with an automatic unboxing.

The next line is translated from an applyon operation, which is implemented as a C addition.

Then, we have a boxing operation to store the final value in the association. This is neces-

sary because we did not unbox association variables yet. That is, we do not modify the object

definition itself, excepting the pass that removes dead associations. Ideally, we should be able

to greatly reduce the number of created objects if we follow the idea of unboxed associations.

Thereby, an object with unboxed associations could be used unboxed as well by composition.

In conclusion, the automatic unboxing optimization is fundamental in our language in order to

pass from message-driven to in-place operations with efficient structure accesses.

9.4 Application Development: The 〈HOE〉2 Approach

In order to give the Model-Driven Development (MDD) aspect on which our 〈HOE〉2 language

is embedded, we introduce the 〈HOE〉2 development process and methodology. The 〈HOE〉2

development process was extensively studied in [19]. It is composed by four phases: Require-

ment Analysis, System Analysis, Design and Implementation. Figure 9.8 shows the 〈HOE〉2

methodology and describes how these phases are combined together following a full MDD flow

with an innovative, recursive usage of modern Model-Driven Architecture (MDA) techniques.

Several meta-models support each phase, thoroughly explained in [19]. From a language per-

spective, which is the preferred view in this thesis, Hili proposes different grammar concepts to

support concurrent co-design, i.e., hardware and software, of embedded systems.

The system requirement analysis consists in the specification of several use cases of the system,

or scenarios. As a descriptive example of the methodology, we defined a color converter system

with a single use case shown in Figure 9.9. The “User” is intended to model, through message

exchanges (and its respective state machine), the interactions with the system, it is an 〈HOE〉2

objet by itself. In other words, it might be seen as the root object of our 〈HOE〉2 application,

which is equivalent to the main entry in widely known languages like C/C++ or Java. Given
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FIGURE 9.9: System requirements: Color converter use case

that User and System are 〈HOE〉2 objects, they form more generally a closed system until future

system releases. We concretized the system requirement view in Listing 9.10.

The system analysis phase involves a hierarchical opening of the system. That is, after defining

a set of convenient use cases, the system designer concentrates on the required objects to meet

such requirements. We show in Figure 9.10(a) a particular hierarchical opening of the system.

In the next phase, we proceed to the system design where its main activity concerns object dis-

tribution. The application is distributed over a predefined platform model. In order to show the

main idea, we propose a simplistic model of a GPGPU platform depicted in Figure 9.10(b), and

its equivalent source code view shown at Listing 9.11. We have two new meta-model concepts
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import Converter

object User
has Converter as system

sm UserSM
/ * Main a p p l i c a t i o n entry : Create a ” d e f a u l t ” system * /
creator main() / system = new Converter.default() to BootSystem

/ * Use case ” Extrac t gray component” * /
state ExtractGrayComponent. on / : system.convert()

to ExtractingGrayComponent

state ExtractingGrayComponent. endon converted() /

LISTING 9.10: Color converter source code
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(a) Converter system analysis: Hierarchical Opening
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(c) System design: Object distribution

FIGURE 9.10: 〈HOE〉2 methodology: Distribution

called platform and world. A platform may contain multiple worlds, which are capable of host-

ing any applicative object. A particular distribution is given in Figure 9.10(c). We split object

Image into two distinct objects, ImageCPU and ImageGPU, related by a new association, onGPU,

in such a way that users and uses of Image may keep the same behavior as before. Clearly, the

split object need to be rewritten according to the new implementation after distribution. Cur-

rently, the distribution and object splitting are ad-hoc tasks, guided by a good knowledge of the
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world GP
world GPU

platform ImageProcessing
has GP as gp
has GPU as gpu

LISTING 9.11: Platform description

underlying platform and the application to be distributed.

The implementation phase concerns platform-specific model transformations to ensure efficient

code generation. From the language point of view of models, model transformations stands for

〈HOE〉2 source code transformations. The optimizing compiler proposed in this thesis tries to

accomplish such work automatically at the IR level, or at the very least provide a set of well-

founded transformations to enable efficient code generation.

9.5 Towards GPGPU Code Generation

The distribution phase introduces a new interaction between objects of differents worlds. The

state machine rewriting is guided by the 〈HOE〉2 method. In our particular case, the object

at the CPU side will send a run() request to the GPU object, which will then answer with a

completed(Float[512]) message carrying the computed result. Figure 9.11 describes both

scenarios, before and after the rewriting, and Listing 9.12 shows the state machine of ImageGPU

where we highlighted the increment with respect to Image object. As we can see, all the work has

been transfered to the GPU and its CPU counterpart is there to preserve the interface among its

users. Currently, this transformation is not performed automatically and needs user intervention

on the model.

The GPU world is more constrained than the CPU one, hence we need to follow certain platform

constraints.

(1) We cannot follow pointers inside the structure

(2) No support for a 〈HOE〉2 runtime implementation

Platform constraints

Constraint (1) implies a code generation of unboxed generic objects. Similar to scalar unboxing,

unboxed 〈HOE〉2 objects cannot communicate. This leads us to the second constraint because no

runtime implementation implies no communications and no object creations inside ImageGPU.

Hopefully, the current set of compiler transformations allows us to automatically fulfill such
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FIGURE 9.11: New interaction after distribution

object ImageGPU
interface

on run() -> completed(Float[512])

has [512] Pixel as pixels
has [512] Float as ychannel

sm ImageSM.
creator RGB(rgb: Int[1536]) /

{ i: 0..pixels.len - 1 }
pixels[i] = new Pixel.RGB(rgb[3*i..3*i+2])

to GETY

state GETY.
on run() / : { i: 0..pixels.len - 1 } pixels[i].getY()
to GETTING_Y

state GETTING_Y.
on takeY{i}(y: Float) / ychannel[i] = y to GETTING_Y
endon [i.all] / : initiator.completed(ychannel)

LISTING 9.12: ImageGPU object model after split of Image object

requirements. Using the most agressive optimization level, we compile ImageGPU such that

all arithmetic operations are folded and Pixel objects are inlined into ImageGPU, yielding no

communications at all (as shown by our previous results). However, compiling arbritrary IR

patterns into GPU kernels might be an overly complex task. Thus, we define a target set of IR

patterns to reach via compiler transformations before entering the OpenCL backend.
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FIGURE 9.12: OpenCL-specific extension of the optimization pipeline

(a) The root GPU object must contain an indexed region that perform the data-intensive

work

(b) The indexed region must be enclosed by a well-defined transaction

(c) The transaction must be exposed at the interface

OpenCL Backend: Input constraints

Given that the optimization phases favor indexed regions over broadcasts and in-place operations

over communications, (a) is achieved automatically by the compiler. Constraints (b) and (c) are

handled at the distribution activity.

Having fulfilled all the backend requirements, the OpenCL backend generates a kernel that

performs the computation modeled at ImageGPU and, according to (2), it does not communicate.

Therefore, objects hosted by the CPU world cannot communicate with the GPU ones anymore.

As a consequence, the scenario shown at Figure 9.11(b) is to be transformed.

9.5.1 Extending the Optimizing Chain

We call objects like ImageCPU OpenCL master objects. Instead of communicating, the OpenCL

master need to access directly the corresponding association(s) returned by the GPU root object.

Based on constraint (c) and the message dependency analyzer presented in Section 8.3.2, we

build a new transformation pass that replaces the send/receive relation by an in-place access.3

For instance, ImageGPU in our example (see Listing 9.12) stores the computation result in as-

sociation ychannel and sends its content to ImageCPU via message completed(Float[512]).

After the transformation, the latter will access directly association ychannel of the former. We

call this pass the Access Folding transformation. Figure 9.12 show the integration on the generic

optimizing chain.
3So far, we only replaced send/receive dependencies by in-place operations.
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9.5.2 OpenCL Code Generation

We show the generated host and OpenCL kernel code in Listing 9.13. In this implementation,

we can see how the ImageGPU creator at Line 32 sets up the OpenCL kernel, run it and read

its results from device memory. It is worth to note the interface between 〈HOE〉2 objects and

unboxed ones. Because ImageGPU is still created from an array of 〈HOE〉2 objects, we found

unboxing operations to set GPU associations (see Line 41).

The kernel corresponds to the indexed region introduced by the compiler transformations as

required by (a) and it runs on the unboxed ImageGPU object (see Line 1). The OpenCL backend

maintains the same unboxed type at both worlds, the kernel and the host one (though not shown

here), respectively. Note that the creator returns the host-side structure such that ImageCPU can

access it safely thanks to the Access Folding transformation introduced in the precedent section.

9.6 Conclusions

Under a custom runtime environment for communicating state machines, we stressed the pro-

posed optimizing chain. We started by testing it on a simple object model where we showed

encouraging results in terms of generated code quality. We managed to produce efficient C for

loops from very high-level models taking into account many different notions of the 〈HOE〉2

language: scalars, indexed regions, indexed messages, interface specification and replies.

We stressed the flow at different optimization levels against a complex model that implements

part of the JPEG algorithm. The most aggressive optimization level achieves interesting results

in term of messages: they are all optimized out. However, the number of live objects in the

application runtime remains relatively high. The compiler did not manage to remove some

boxing operations, though 77% of objects are removed from O0 to O1 and 17% from O1 to O2

resulting in a total of 88% eliminated boxing operations. Indeed, the store of an unboxed object

into an association requires a boxing operation. There is still work to be done in automatic

unboxing of associations in order to obtain yet more efficient implementations.

Despite of the number of objects, we showed that the language expressivity and modularity allow

the programmer to write very high-level and composable expressions while obtaining efficient

implementations with deep loop nesting levels computing over hierarchical structures.

We continue our experimentations on the methodology foundations of the 〈HOE〉2 language.

We presented the 〈HOE〉2 methodology, which have been thoroughly studied in [19], and based

on it we show the flexibility of our optimizing compiler. The GPGPU code generation would not

have been possible in an semi-automatic fashion without the analyses developed at Chapter 8

and, technically very important, the compiler infrastructure. On the other hand, the number of
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1 char *iregion_4594355024_src = "struct Pixel {"
2 " int r;"
3 " int g;"
4 " int b;"
5 " float y;"
6 " float rcst;"
7 " float gcst;"
8 " float bcst;"
9 "};"

10 "typedef struct Pixel Pixel;"
11 "struct ImageGPU {"
12 " struct Pixel pixels[512];"
13 " float ychannel[512];"
14 "};"
15 "typedef struct ImageGPU ImageGPU;"
16 "kernel void iregion_4594355024(global struct ImageGPU *this)"
17 "{"
18 " int i = get_global_id(0);"
19 " float __new_var_6 = 0.299;"
20 " float __new_var_7 = 0.587;"
21 " float __new_var_8 = 0.114;"
22 " float __new_var_5 = this->pixels[i].r * __new_var_6;"
23 " float __new_var_3 = this->pixels[i].g * __new_var_7;"
24 " float __new_var_4 = this->pixels[i].b * __new_var_8;"
25 " float __new_var_1 = __new_var_4 + __new_var_3;"
26 " float __new_var_2 = __new_var_5 + __new_var_1;"
27 " this->pixels[i].y = __new_var_2;"
28 " this->ychannel[i] = this->pixels[i].y;"
29 "}"
30 ""
31 ;
32 struct ImageGPU * __obj_new_ImageGPU_RGB(struct Int * rgb[1536])
33 {
34 struct ImageGPU *this = (struct ImageGPU *)
35 malloc(sizeof(struct ImageGPU));
36 for (int i = 0; ((i >= 0) && (i < 512)); (i+=1)) {
37 struct Int * inraw_slice[3] = { rgb[(3 * i)]
38 , rgb[((3 * i) + 1)]
39 , rgb[((3 * i) + 2)]
40 };
41 this->pixels[i].r = inraw_slice[0]->value;
42 this->pixels[i].g = inraw_slice[1]->value;
43 this->pixels[i].b = inraw_slice[2]->value;
44 }
45 hoe2cl_platform *plt = hoe2cl_platform_new();
46 hoe2cl_kernel *kernel = hoe2cl_kernel_new_from_source(
47 iregion_4594355024_src,
48 "iregion_4594355024",
49 plt
50 );
51 hoe2cl_kernel_write( kernel, &kernel->input
52 , this, sizeof(struct ImageGPU));
53 hoe2cl_kernel_run(kernel, 512);
54 hoe2cl_kernel_read( kernel, &kernel->input
55 , this, sizeof(struct ImageGPU));
56 return this;
57 }

LISTING 9.13: GPGPU generated code
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constraints introduced to get GPGPU code generation may wrongly seem to lack of genericity

or, in other words, driven by the specific example. It remains to develop more interesting model

examples to run on GPGPU and show that the approach applies broadly.
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In the domain of Model-Driven Engineering (MDE), we studied in this thesis a new path for the

modeling of parallel computations based on communicating Statecharts. The path led us to spe-

cific parallel extensions of the Statecharts formalism well-suited for data-intensive applications

on recent parallel architectures.

10.1 Main Results and Contributions

This thesis is embedded into model-driven approaches for the design and development of Em-

bedded System (ES). On this context, we highlighted interesting works pointing the need of new

methodologies and supporting languages to exploit the parallelism offered in recent parallel ar-

chitectures.

Object Modeling & Statecharts. Our first contribution addressed data parallel issues inside

the Statechart itself, a widely known formalism to model behavior in the MDE community. In

order to model parallel operations, we propose an original view of scalars as communicating

state machines and its arithmetics operations being modeled by means of message passing se-

mantics. Also, the parallelism is directly exposed in the model structure through multi-valued

associations, over which parallel messages sending — thus denoting arithmetic operations —

161



Chapter 10. Conclusions and Perspectives 162

is possible. We combined this idea with interesting Statechart extensions and parallel con-

structions in the action language: indexed messages and indexed regions, parallel updates and

parallel sending actions.

The message-based arithmetics exposes a different view of scalars, making them functionally

equivalent to generic objects. From the MDE point of view, the modeling activity becomes

homogeneous, i.e., there is no need for different languages in the modeling framework to express

control and data driven operations. This set of features allowed us to address data-intensive

applications (JPEG) in a Statechart-based modeling style.

Statechart Formal Semantics. The second contribution is the specification of a formal se-

mantics for Statecharts following a hierarchical and modular structure. This formalization takes

into account the action language, the Statechart structure and communications between them in

an object-oriented setting. We avoid semantical complications due to non-constructive seman-

tics of Statecharts while still supporting asynchronous communications and composition of state

machines. If not exhaustive, we showed how the formalization approach allows us to separate

different semantical points in order to handle them layer by layer. Thus reducing the complexity

of a flattened formalization as we have seen in existing approaches.

Intermediate Representation. The next contribution concerns the compilation of Statecharts.

We proposed a compilation chain based on an expressive intermediate representation. This rep-

resentation preserves most of the information coming from the front-end language, notably the

state machine hierarchy. We support dynamic Statecharts, asynchronous communications, ar-

rays, struct-like accesses and indexed domains, among other features. From this representation,

we can reason about the hierarchy and the asynchrounous communications between different

objects. Given the nature of index domains, we enabled powerful polyhedral analyses for auto-

matic parallelization and code generation.

Static Analyses and Transformations. On the context communicating Statecharts, we ex-

tended the static analysis of reaching definitions to take into account the nesting structure of

regions in the state machine. In the set of static analyses, we also proposed two complementary

passes, Message Dependency Analyzer and Transaction Selector, that find send/receive relations

enabling the folding of transitions and the inlining of objects.

In the Transaction Selector analysis, we introduced the notion of concurrent dependencies called

π dependency. A π dependency exposes concurrent data-dependencies introduced by send and

receive relations corresponding to a transaction between two objects. It allowed us to safely

propose a deterministic behavior for code generation.
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FIGURE 10.1: The 〈HOE〉2 approach

Compiler for Embedded Architectures. The generation of efficient code from high-level

models is a challenging task. We showed results concerning the quality of the generated code

from a simple example and we extended it to cover a part of the JPEG algorithm. It resulted in

complex generated code showing how powerful our model abstractions are to handle hierarchical

implementations in case of data-intensive applications. The produced code is competitive with

respect to hand-coded implementations. Moreover, we proved the flexibility of our compilation

flow by adpating it to target parallel embedded architectures (General-Purpose computing on

Graphics Processing Units (GPGPU) platforms).

10.2 A Look Back to the Thesis Motivations

This work started on the basis of multiple challenges concerning parallel programming of many-

core embedded architectures. We observed that modern parallel languages and its correspond-

ing compilers cannot follow complex constraints of embedded platforms anymore. We certainly

need abstractions to handle this complexity. The iterative integration of platform constraints

into a given application makes of MDE techniques an attractive approach to consider them in an

abstract manner.

We addressed parallelism, formal semantics and code generation issues of Statecharts as the

necessary and non-trivial steps towards a well-founded Statechart-based modeling language. As

shown by our results, the parallel action language we proposed allowed us to generate efficient

code and target parallel architectures such as GPGPU platforms.

However, the compiling challenge of taking into account complex platform constraints in an

MDE fashion is still open. Platform-specific operators and its corresponding types, cache sizes,

scheduling and mapping constraints are some of the performance factors that we should integrate

into the optimizer via new model abstractions.



Chapter 10. Conclusions and Perspectives 164

Statecharts

Code
Generation

Fine-grain
Scheduling

Optimizing
Flow

Passes

Unboxing of
Associations

Region
Tiling

Supporting
IRs

Structural
Semantics

Verification

Language
Extensions

Concrete SC
Language

Concrete
Action

Language

Object
Oriented

Complex
Transactions

Types of
Variable Size

Methodology

Platform
Specific
Types

Formal
Mapping
Decisions

FIGURE 10.2: Future directions and extensions (in red)

In conclusion, we proposed a modern view of object-oriented Statecharts adapted for parallel

programming. Figure 10.1 shows a comparison of our approach to reviewed parallel languages

of Chapter 2. We remark the lack of formal platform constraints on the modeling approach we

propose. However, it offers interesting abstractions in an unified setting and, most importantly,

shows higher expressivity than other languages (dynamic Statecharts, array-like accesses, index

domains).

As we will show in the following section, we distinguish several research directions gravitating

around Statecharts that may guide new approaches to handle platform specific optimizations

from a MDE perspective.

10.3 Future Research Directions

In this thesis, we lay the ground of a modeling language entirely based on Statecharts, even for

arithmetic operations, with parallel support for data and control driven actions. However, there
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is still a lot of work to be done in this direction.

From methodology to final code generation issues, we highlighted in Figure 10.2 several inter-

esting points to develop further concerning different Statechart aspects.

Methodology. We place at the methodology process, the formalization of multiple hardware

specific constraints. As shown in Chapter 9, the current state of the Highly Heterogeneous,

Object-Oriented, Efficient Engineering 〈HOE〉2 methodology allows us to take user-driven de-

cisions concerning the distribution of our application. However, we need specific metrics to be

able to reason about different application distribution strategies. Platform specific types can be

abstracted using models. The compiler optimizations should be able to feedback the designer

to spot relevant uses of platform-specific types. For instance, it may perform automatic indexed

region tiling to find vectorization opportunities if the platform supports vector types and its

respective operations.

Object-Oriented. The object oriented support of 〈HOE〉2 leverages modular and composable

designs. Modularity is the key for strong optimizations such as Statechart inlining. During our

work, we proposed an external interface of objects that exposes message interactions between

the object and its owners — closely related to initiator semantics. The Message Dependency

Analyzer pass currently supports simple transaction entries. In order to capture send/receive

relations with complex reply expressions, the analysis must be extended. Concerning association

kinds, the compiler handles fixed size multiplicities. An extension to variable sized multiplicities

of associations is necessary to widen the spectrum of supported input models. Moreover, we

believe that types can be refined, i.e., from variable sized or unbounded to fixed or bounded

ones, through specific static analyses.

Semantics. A natural future direction of the formal semantics concerns verification. Indeed,

existing semantics of Statecharts are followed by formal verification methods, frequently based

on model checking.

Transformation Passes. As shown in Chapter 9, the automatic type unboxing is the key to

avoid unnecessary 〈HOE〉2 object creation. Currently, the type unboxer do not unbox association

types, which is the root of many boxing operations and hence the large number of live objects.

Code Generation. The current code generation strategy of parallel and indexed regions is

based on a lexicographic scheduling through a classical polyhedral code generation algorithm.

We make sure that no inter-iteration and no inter-region dependencies exists in order to safely
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generate the scanning code. Cross regions synchronization dependencies should be taken into

account to feed the polyhedral model and produce safe schedules.

Every single branch of Figure 10.2 opens a great number of questions and lead to specific re-

search works. Several branches may be also related at some extent. For instance, certain opti-

mizations passes could discover new opportunities and feedback methodological related actions.

The set of optimizations are necessary driven by a specific semantics of the object-oriented Stat-

echarts.
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〈HOE〉2 Highly Heterogeneous, Object-Oriented, Efficient Engineering.

Array-OL Array Oriented Language.

CFG Control-Flow Graph.

DCT Discrete Cosine Transform.

DSL Domain-Specific Language.

EMF Eclipse Metamodeling Framework.

ES Embedded System.

ETL Epsilon Transformation Language.
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fUML foundational UML.

GEMM General Matrix Multiplication.

GPGPU General-Purpose computing on Graphics Processing Units.
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HiDP Hierarchical Data Parallel Language.
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LTS Labeled Transition System.

M2M Model-to-Model.

MBD Model Based Design.
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MDE Model-Driven Engineering.

MoC Model of Computation.

NDP Nested Data Parallel.

NESL A nested data-parallel programming language.

OMG Object Management Group.

OOP Object-Oriented Programming.
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PIM Platform-Indepedent Model.
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RLE Run Lenght Encoding.

RTC Run-To-Completion.
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SSA Single Static Assignment.
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Appendix A

Syntax

We present in the following sections the syntax of the 〈HOE〉2 language and its Intermediate

Representation (IR). We use traditional grammar operators to denote zero or many elements ∗,
one or many + and optional elements [].

A.1 〈HOE〉2

〈object〉 ::= ’object’ 〈id〉 〈interface〉 〈associations〉 〈sm〉
〈sm〉 ::= ’sm’ 〈id〉 ’.’ 〈creator〉+ 〈state〉+
〈creator〉 ::= ’creator’ 〈id〉 ’(’ 〈param〉* ’)’ [’/’ 〈update〉+] ’to’ 〈id〉
〈state〉 ::= 〈sstate〉 | 〈cstate〉
〈sstate〉 ::= ’state’ 〈id〉 ’.’ 〈trn〉+
〈trn〉 ::= 〈external〉 | 〈final〉
〈external〉 ::= ’on’ 〈trigger〉* [’[’ 〈guard〉 ’]’] ’/’ [〈action〉] ’to’ 〈id〉
〈final〉 ::= ’endon’ 〈trigger〉* [’[’ 〈guard〉 ’]’] [’/’ 〈action〉]
〈cstate〉 ::= ’cstate’ 〈id〉 ’.’ 〈region〉+ 〈trn〉+
〈region〉 ::= ’region’ [’{’ 〈indexset〉 ’}’] 〈initial〉 〈state〉+

’endregion’

〈initial〉 ::= ’initial’ 〈id〉
〈action〉 ::= 〈update〉* [’:’ 〈send〉+]

〈update〉 ::= 〈supdate〉 | 〈iupdate〉
〈iupdate〉 ::= ’{’ 〈indexset〉 ’}’ 〈supdate〉
〈supdate〉 ::= 〈ulhs〉 ’=’ 〈urhs〉

169
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〈ulhs〉 ::= 〈var〉
| 〈vardef 〉

〈urhs〉 ::= 〈var〉
| 〈new〉
| 〈applyon〉

〈send〉 ::= 〈ssend〉 | 〈isend〉
〈isend〉 ::= ’{’ 〈indexset〉 ’}’ 〈ssend〉
〈trigger〉 ::= 〈id〉 [ ’{’ 〈id〉+ ’}’ ] ’(’ 〈param〉 ’)’

〈new〉 ::= ’new’ 〈id〉 ’.’ 〈id〉 ’(’ 〈var〉* ’)’

〈applyon〉 ::= ’applyon’ 〈id〉’(’ 〈var〉* ’)’

〈guard〉 ::= 〈guard〉 [’and’, ’or’] 〈guard〉
| ’not’ 〈guard〉
| 〈arithexpr〉 [’<’, ’<=’, ’>’, ’>=’, ’=’] 〈arithexpr〉

〈arithexpr〉 ::= 〈arithexpr〉 [’+’, ’-’, ’*’, ’/’, ’%’] 〈arithexpr〉
| 〈var〉
| 〈int〉

〈indexset〉 ::= 〈var〉+ ’:’ 〈guard〉
〈var〉 ::= 〈id〉

| 〈id〉 ’[’ 〈arithexpr〉+ ’]’

〈type〉 ::= 〈id〉
| 〈id〉 ’[’ 〈range〉+ ’]’

〈range〉 ::= 〈int〉
| 〈int〉 ’..’ 〈int〉
| 〈int〉 ’..’ ’*’

| ’*’

A.2 Intermediate Representation

〈package stmt〉 := 〈object〉 | 〈scalar〉 | 〈import〉 | 〈creator〉 | 〈fsm〉
〈fsm〉 := ’fsm’ 〈id〉 ’.’ 〈id〉 ’(’ 〈var decl〉 ’)’ ’{’ 〈labeled fsmstmt〉+ ’}’

〈object〉 := ’object’ 〈id〉 ’{’ 〈object expr〉+ ’}’

〈scalar〉 := ’scalar’ 〈id〉 ’{’ 〈scalar expr〉+ ’}’

〈object expr〉 := 〈association blk〉 | 〈interface blk〉
〈association blk〉 := ’associations’ ’{’ 〈association decl〉+ ’}’

〈interface blk〉 := ’interface’ ’{’ 〈interface expr〉+ ’}’
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〈interface expr〉 := 〈transaction〉 | 〈op transaction〉 | 〈msg decl〉
〈transaction〉 := 〈id〉 ’=’ 〈msg decl〉 ’->’ 〈msg decl〉+

| 〈msg decl〉 ’->’ 〈msg decl〉+
〈op transaction〉 := 〈msg decl〉 ’->’ 〈msg decl〉+ ’~>’ 〈id〉
〈msg decl〉 := 〈id〉 ’(’ 〈association decl〉* ’)’

〈association decl〉 := 〈obj type〉 〈id〉+
〈obj type〉 := 〈simple type〉 | 〈array type〉
〈simple type〉 := 〈id〉
〈array type〉 := 〈simple type〉 ’|’ 〈type mult〉+ ’|’

〈type mult〉 := 〈int〉
| ’*’

| 〈int〉 ’..’ 〈int〉
| 〈int〉 ’..’ ’*’

〈labeled fsmstmt〉 := [〈label〉] 〈fsmstmt〉
〈fsmstmt〉 := 〈par stmt〉

| 〈forall〉
| 〈var decl〉
| 〈wait〉
| 〈wait in〉
| 〈goto〉
| 〈done〉

〈forall〉 := ’forall’ ’[’ 〈index set〉 ’]’ ’{’ 〈labeled fsmstmt〉+ ’}’

〈goto〉 := ’goto’ 〈id〉
〈done〉 := ’done’ 〈id〉
〈wait〉 := ’wait’ 〈var expr〉 [〈waitfor expr〉] 〈when expr〉+
〈wait in〉 := ’wait’ 〈var expr〉 ’in’ 〈region〉+ [〈waitfor expr〉] 〈when expr〉+
〈waitfor expr〉 := ’for’ 〈recv expr〉+
〈region〉 := 〈sregion〉 | 〈iregion〉
〈sregion〉 := ’{’ 〈fsmstmt〉+ ’}’

〈iregion〉 := ’[’ 〈index set〉 ’]’ 〈sregion〉
〈when expr〉 := ’then’ ’when’ 〈when cond〉+ ’if’ 〈if condition〉 〈goto〉

| ’then’ ’when’ 〈when cond〉+ 〈goto〉
| ’then’ ’if’ 〈if condition〉 〈goto〉
| ’then’ ’goto’

〈when cond〉 := 〈id〉
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〈label〉 := 〈id〉 ’:’

〈creator〉 := ’creator’ 〈id〉 ’.’ 〈id〉 ’(’ 〈param def 〉* ’)’ ’{’ 〈creator stmt〉+ ’}’

〈creator stmt〉 := 〈par stmt〉
| 〈forall creator stmt〉
| 〈var decl〉
| 〈start expr〉

〈forall creator stmt〉 := ’forall’ ’[’ 〈index set〉 ’]’ ’{’ 〈creator stmt〉+ ’}’

〈start expr〉 := ’start’ 〈id〉 ’of’ 〈var expr〉
〈if condition〉 := 〈if condition〉 ’and’ 〈if condition〉

| 〈if condition〉 ’or’ 〈if condition〉
| ’(’ 〈if condition〉 ’)’

| 〈cmp expr〉
〈index set〉 := 〈index def 〉+ [’:’ 〈index set constraints〉]
〈index def 〉 := 〈id〉
〈index set constraints〉 := 〈index set constraints〉 ’and’ 〈index set constraints〉

| 〈index set constraints〉 ’or’ 〈index set constraints〉
| ’(’ 〈index set constraints〉 ’)’

| 〈cmp expr〉
〈cmp expr〉 := 〈arith expr〉 ’=’ 〈arith expr〉

| 〈arith expr〉 ’<’ 〈arith expr〉
| 〈arith expr〉 ’<=’ 〈arith expr〉
| 〈arith expr〉 ’>’ 〈arith expr〉
| 〈arith expr〉 ’>=’ 〈arith expr〉
| 〈arith expr〉

〈arith expr〉 := 〈arith expr〉 ’+’ 〈arith expr〉
| 〈arith expr〉 ’-’ 〈arith expr〉
| 〈arith expr〉 ’/’ 〈arith expr〉
| 〈arith expr〉 ’*’ 〈arith expr〉
| 〈arith expr〉 ’%’ 〈arith expr〉
| ’(’ 〈arith expr〉 ’)’

| 〈int〉
| 〈var expr〉

〈par stmt〉 := 〈par expr〉 ’,’ 〈par expr〉 | 〈par expr〉
〈par expr〉 := 〈send expr〉 | 〈update expr〉
〈update expr〉 := 〈update〉 | 〈forall update〉
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〈update〉 := 〈var〉 ’=’ 〈var expr〉
| 〈var〉 ’=’ 〈create expr〉
| 〈var〉 ’=’ 〈new expr〉
| 〈var〉 ’=’ 〈initializer expr〉
| 〈var〉 ’=’ 〈applyon expr〉

〈forall update〉 := ’forall’ ’[’ 〈index set〉 ’]’ 〈update〉
〈var〉 := 〈var expr〉 | 〈var decl〉
〈applyon expr〉 := ’applyon’ 〈var expr〉 〈applyon type expr〉 〈param〉*
〈initializer expr〉 := ’{’ 〈param〉+ ’}’

〈create expr〉 := ’create’ 〈id〉 ’.’ 〈id〉 〈param〉*
〈var decl〉 := 〈obj type〉 〈var expr leaf 〉 | 〈msg type〉 〈var expr leaf 〉
〈var expr〉 := var expr ’.’ var expr leaf | var expr leaf

〈var expr leaf 〉 := 〈id〉 | 〈id〉 ’[’ 〈index var expr〉 ’]’

〈index var expr〉 := 〈arith expr〉+ | 〈arith expr〉+ ’:’ 〈index set constraints〉
〈new expr〉 := ’new’ 〈obj type〉
〈send expr〉 := 〈send〉 | 〈forall send〉
〈send〉 := 〈single send from expr〉 | 〈reply expr〉
〈forall send〉 := ’forall’ ’[’ 〈index set〉 ’]’ 〈send〉
〈single send from expr〉 := ’sendfrom’ 〈var expr〉 〈var expr〉 〈msg type〉 〈param〉*

| ’sendfrom’ ’[’ 〈arith exprs〉 ’]’ 〈var expr〉 〈var expr〉 〈msg type〉 〈param〉*
〈reply expr〉 := ’reply’ 〈var expr〉 〈var expr〉 〈msg type〉 〈param〉*
〈recv expr〉 := 〈single recv expr〉 | 〈recv from expr〉
〈recv from expr〉 := ’(’ 〈id〉 ’,’ 〈var decl〉 ’)’ ’=’ ’recv’ 〈msg type〉

| ’(’ 〈id〉 ’,’ 〈var decl〉 ’)’ ’=’ ’recv’ ’[’ 〈index set〉 ’]’ 〈msg type〉
〈msg type〉 := 〈simple msg type〉

| 〈qualified msg type〉
| 〈array msg type〉

〈simple msg type〉 := 〈id〉 ’<’ 〈obj type〉* ’>’

〈qualified msg type〉 := 〈id〉 ’’’ 〈id〉 ’<’ 〈obj type〉* ’>’

〈applyon type expr〉 := 〈id〉 ’’’ 〈id〉
〈param〉 := 〈int〉 | 〈float〉 | 〈var expr〉
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