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“The world is marching towards fragmented islands of communication
connected via fragile pathways.”

Vidya Narayanan
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Abstract

In most systems available today interoperability is provided as a static capability that is
the result of manually designed and hand coded integration. In consequence, a substantial
number of functionally-compatible systems are not conceived to be interoperable.

The focus of this thesis is to enable automated protocol interoperability for systems,
services and applications through the means of dynamically synthesised protocol mediators.
Protocol mediators represent concrete software components which can coordinate interac-
tions between two or more functionally-compatible systems, relying on various means of
communication (IP networks, personal area networks, inter-process communication, shared
memory, etc.). Dynamically synthesised mediators should allow applications to seamlessly
adapt to a priori unknown protocols, support the evolution of such protocols while cir-
cumventing real-world system constraints, such as those introduced by device mobility and
operating system di↵erences.

In this thesis we focus on the research problems related to automating the process of
data adaptation in the context of protocol mediation. Data adaptation is a key phase in
protocol mediation that cannot be solved independently. This strong dependence becomes
visible when systems relying on multilayer protocol stacks have to be made interoperable,
despite cross-layer dependencies inside the exchanged data. There is the need of a frame-
work that synthesises mediators while taking into account cross-layer data adaptation.

Key Words

Interoperability, Protocol Mediation, Data Adaptation, Protocol Stacks, Message Formats,
Message Translation, Type Inference
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Chapter 1
Introduction

Contents
1.1 Protocol interoperability . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Data adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 An overview of this work . . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 Contributions of the dissertation . . . . . . . . . . . . . . . . . . 19

1.3.2 Structure of the document . . . . . . . . . . . . . . . . . . . . . . 20

Interoperability, or the lack of, is probably best understood in the domain of telecom-

munications. Take for instance the implications of interoperability on public safety. In

the federal 9/11 Commission Report [1] regarding the attacks on the Pentagon and World

Trade Center, the commissioners noted that “the capabilities of communications systems

lacked the ability to communicate across department lines”, meaning that police units

could not communicate with fire units, or with ambulance units on site over radio. This

led to unprecedented amount of money being spent (estimated to range up to five billion

dollars) on radio equipment and infrastructures.

Just like communications equipment, there are many other systems that sustain the

backbone of modern society, and although they serve for common goals they are still unable

to interoperate. Another example can be medical devices that allow, life support, automatic

decision/diagnostic support and medication checking in real-time. These systems have

considerable communication capabilities that allow them to interact with each others and

entities around them. However, just like the above, such systems do not cross “department

lines”. By this we mean that, either equipment from di↵erent vendors cannot communicate

and work together directly, or that integration with with larger systems, such as electronic

health records (EHRs) is not facilitated.
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14 1.1. PROTOCOL INTEROPERABILITY

We posit that interoperability should be enabled between all compatible systems, start-

ing from the most insignificant to the ones of critical importance for society. Yet, some

people might regard this “proclamation” of universal interoperability with skepticism. In-

deed, some electronic devices are known to be “self-su�cient”, meaning that they do not

require sharing data and functionalities with other systems, or the ability to be integrated

as a component of a larger system. However, this view is rapidly changing with the emer-

gence of the Internet of Everything (IoE), one of the hottest topics of today. For instance,

it is no longer a thing of science fiction for a toothbrush to record your brushing activ-

ity as data charts that you can display on your mobile phone and share it with dental

professionals (http://connectedtoothbrush.com/). And this revolution is not limited to

household goods. It is fast becoming an accepted fact that modern systems are productive

and cost-e↵ective only if they can interoperate with other systems, sharing with them data

and functionalities [2].

This leads us to give the definition of system interoperability. In what follows, we

adhere to Tanenbaum’s definition:

Definition 1 (Interoperability) “Interoperability characterises the extent by which two
implementations of systems or components from di↵erent manufacturers can co-exist
and work together by merely relying on each other’s services as specified by a common
standard.” [3]

Interoperability is provided, in most cases, as a static capability which is the result of

manually designed and implemented integration. Because of this, a substantial number

of functionally-compatible systems are not conceived to be interoperable, where we define

functional compatibility as:

Definition 2 (Functionally-compatible systems) Two or more systems are said to be
functionally-compatible if they require / provide at least one coarse-grained functionality
(e.g., voice communication, vehicle control, video streaming, etc.) which is conceptually
equivalent, but not necessarily having a technically compatible implementation. The two
systems must have compatible roles, in the sense that one provides a functionality that
the other requires (e.g., one system is a Web server while the other is a Web browser.).

1.1 Protocol interoperability

While hardware interoperability is critical today, it is becoming less and less relevant

as systems are becoming more complex, opening the door to a rather newer issue, that

is software interoperability. Any interaction between interconnected software systems is

assured today by either (i) the exchange of files via a common set of data formats or (ii)
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through the use of compatible communications protocols. In this thesis we focus on the

latter. By extension of the Definition 2 above, the interoperability of communications

protocols is necessary whenever two or more systems that serve for a common purpose

(e.g., file sharing, journey planning, conference management, etc.) were implemented to

communicate using di↵erent communication protocols.

While the definition of a protocol is common knowledge, for the sake of rigour, we

include the following definition to which we adhere:

Definition 3 (Protocol) “A set of rules or procedures for transmitting data between
electronic devices, such as computers. In order for computers to exchange information,
there must be a preexisting agreement as to how the information will be structured and
how each side will send and receive it.” (Encyclopaedia Britannica)

Simply put, a communications protocol defines the rules for sending data from one

system in a network to another system. These data are encapsulated in messages. Typi-

cally, a protocol defines the following aspects of messages: (i) format (i.e., how messages

are formed) (ii) synchronisation and direction (i.e., in which order they can be either sent

or received). However, more complex protocols, such as the class of streaming protocols,

define other mechanisms like: congestion control, loss control, error detection and routing.

Protocol interoperability is a vast research domain and proposed solutions to enable co-

operation between functionally-compatible systems focus on precise aspects of the problem.

Enabling interoperability of functionally-compatible software components regardless of the

technology they use and the protocols according to which they interact is a fundamental

challenge in Software Engineering [4]. It has been the focus of extensive research, from

approaches that identify the causes of interoperability issues and give guidelines on how to

address them [5], to approaches that try to automate the application of such guidelines [6].

We group interoperability solutions as shown in Table 1.1.

From protocol layers to protocol stacks: In order to account for the complexity

of modern systems (and systems of systems), protocols are rarely used independently but

rather as a composition of layers, where each layer addresses (or abstracts) a specific aspect

of the interaction. As we illustrate in Figure 1.1, systems commonly use protocol stacks

composed of the following layers:

1. TCP/IP network layers

(a) Physical network: Defines the characteristics of the network hardware. Common

protocols include: Ethernet (IEEE 802.3), Token Ring, RS-232, FDDI.
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Interoperability by

conformance

We refer to methods of explicitly designing systems to be interop-
erable by conforming to a specific standard or methodology. Such
methods closely follow the Definition 1 on interoperability.

Protocol conversion Solutions that allow incompatible components to be made interop-
erable by specially designed software adapters. The adaptation is
done at a low abstraction level, and thus, it is highly coupled with
the components’ implementation.

Interoperability platforms Solutions which attempt to solve interoperability by integrating
legacy components by alignment to a common framework, middle-
ware or service-bus.

Dynamic protocol

mediation

Approaches enabling incompatible systems to interact through the
means of intermediary software components, called mediators, which
may be generated automatically, to a certain degree. Mediation is
done at a higher abstraction level than protocol conversion and it
should generally be independent to the component implementation.

Table 1.1 – Common solutions towards protocol interoperability.

(b) Data link: Handles the transfer of data across the network media. Common

protocols include: PPP, IEEE 802.2

(c) Internet: Manages data addressing and delivery between networks. Common

protocols include: IPv4, IPv6, ARP, ICMP

(d) Transport: Manages the transfer of data and validates received data integrity.

Common protocols include: TCP, UDP, SCTP

2. Middleware layers: Middleware is a software that allows other software to interact by

providing a set of homogeneous communication primitives and procedures. Here we

refer to Middleware that are used as a protocol layer between the TCP/IP transport

layer and the application layer or yet another middleware layer. Specifically we refer

to Message Oriented Middleware (MOM) and RPC Middleware. Common protocols

include: SOAP, CORBA/GIOP, Java RMI, HTTP.

3. Application layer. It is the top-most layer of a protocol stack. All the preceding

layers should be seen as components that cooperate to support the application layer.

The application protocol allows an application or a service to perform a set of tasks

for a user. The order and parameters of such tasks are controlled directly by the user

using an interface (graphical or text based), or indirectly in the case of services. Here

we refer to both standard protocols and proprietary application protocols.
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Figure 1.1 – Common protocol layers used by applications.

1.2 Data adaptation

While this decomposition of protocols into layers is beneficial for abstracting the design of

complex systems it also represents a major challenge in protocol interoperability. This is

because layers can rarely be fully decoupled due to performance optimisations and other

design rationale. For instance, logical message layers, as they were illustrated in Figure 1.1,

di↵er substantially from concrete message layers in the sense that data specific to one logical

layer might be encapsulated inside the message part corresponding to a di↵erent layer.

In this thesis we focus on a specific problem in the context of protocol interoperability,

that is data adaptation. Data adaptation refers to the following problems:

1. Mapping between concrete message formats. When two functionally-compatible pro-

tocols must be made interoperable, messages from one protocol must be translated

into a format supported by a second protocol and the vice versa. This process involves

mapping data values from one format towards another message format.

2. Translation between concrete message formats and common intermediary message

formats. Direct mapping between heterogeneous message formats is an ine�cient

approach because a di↵erent mapping is required for each pair of message formats.



18 1.3. AN OVERVIEW OF THIS WORK

For this reason, most existing approaches towards data adaptation choose to trans-

form messages into a common intermediary message format prior to realising the

mapping of data.

3. Mapping between common intermediary message formats. Even when the message

formats are homogeneous, the mapping of data is rarely trivial because data semantics

and data structures (i.e., data models) di↵er from application to application and from

middleware to middleware. For this reason, it is often required to analyse and devise

more advanced methods for data mapping.

Our thesis statement is the following:

“Functionally-compatible systems should be able to interoperate. Dynami-

cally synthesised mediators allow applications to adapt to a priori unknown pro-

tocols, support the evolution of such protocols while circumventing real-world

system constraints, such as those introduced by device mobility and operating

system di↵erences. Data adaptation is a key phase in protocol mediation that

cannot be solved independently. This strong dependence becomes visible when

systems relying on multilayer protocol stacks have to be made interoperable,

despite cross-layer dependencies inside the exchanged data. There is the need

of a framework that synthesises mediators while taking into account dynamic

data adaptation. ”

As we mention in our thesis statement, even though we focus on data adaptation, the

research we present in this work spans beyond this aspect. This is because data adaptation

cannot be solved independently from other phases of designing protocol interoperability

solutions. Furthermore, in order to assess the e↵ectiveness and relevance of our contribu-

tions with concrete systems and applications, we were required to design and implement

complete interoperability solutions.

1.3 An overview of this work

In the previous section, we introduced the context of protocol interoperability and we

underlined the problems concerning data adaptation. A more detailed description including

state of the art approaches for protocol interoperability, in general, and data adaptation, in

particular, are presented in Chapter 2. Here, we continue by summarising the contributions

of this thesis, followed by a summary of the reminder of this document.



CHAPTER 1. INTRODUCTION 19

1.3.1 Contributions of the dissertation

A unified mediation framework. The main contribution of this thesis is the propo-

sition of a unified mediation framework to achieve interoperability from application down

to middleware layers. We rely on existing work in the domain of protocol mediation and

complement existing approaches with a novel solution for the cross-cutting issue of data

adaptation. More specifically, we devise a mechanism to reuse existing message translators,

by composing them using a declarative solution, taking into account the data dependencies

between the application and middleware layers. Our approach is more e�cient than state

of the art approaches in terms of development e↵ort because we do not require hand-coded

specification of message formats.

However, composed translators cannot be automatically integrated as part of a me-

diation framework (or any other system) without knowing the precise data models they

use. By precise data models, we refer to the intermediary data types in which translators

output parsed message data, and in which they expect data (that need to be composed

into network messages). As far as we know, state of the art approaches in the domain of

type inference [7–10] are unable to solve this problem.

To this end, we provide a formal mechanism, using tree automata, that generates an

associated data-schema for an arbitrary translator composition. This contribution enables

the inference of correct data-schemas, relieving developers from the time-consuming task

of defining them. The inference type problem we solved addresses a specific class of data

transformations which we call the substitution class. The provided inference algorithm

is generic and can be directly applied in many other applications that require message

translators and the ability to quickly adapt to new ones. Such applications include: Packet

Analysers, Firewalls, Enterprise Service Buses, etc.,

AmbiStream middleware. A secondary contribution of this thesis is represented by

AmbiStream, a lightweight middleware layer that complements the existing software stack

for multimedia streaming on smartphones with components that enable interoperability.

AmbiStream is a component of the Connect [11–15] protocol mediation approach extend-

ing it with the capability to handle “real-time” and “on-demand” multimedia streaming

protocols.

Experimenting interoperability on real-world systems. As part of our research,

we concerned ourselves with the applicability or our results. In this work we have included

the results on two of our experiments.

• In Chapter 5, we present our proposition of a unified mediation framework using a real
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world interoperability use case in the domain of conference management applications.

We study the requirements and analyse the performance of our implementation using

the web-services of Amiando (http://developers.amiando.com/) and Regonline

(http://developer.regonline.com/) 1.

• In Chapter 3, we evaluate performance of on-the-fly data-adaptation for multimedia

streaming protocols on current generation smartphones. Specifically, we evaluate the

translation of the Real Time Streaming Protocol (RTSP) to HTTP Live Streaming

(HLS) on Android and Apple devices.

Much of this work has already been published2 in peer reviewed conferences, journals

or as research reports. Here, we enumerate the most important:

• In [16] “Composing Message Translators and Inferring their Data Types using Tree

Automata”, we present the mechanism that enables reuse legacy message translators

along with the algorithm for inferring data-schemas for composite translators.

• In [17] “A Unifying Perspective on Protocol Mediation: Interoperability in the Future

Internet”, we provide a unifying framework for protocol mediation that is agnostic

to the interface-mapping applied, while integrating the up-noted contributions on

message translator composition and data-schema inference.

• In [18] “AmbiStream: A Middleware for Multimedia Streaming on Heterogeneous

Mobile Devices”, we present the AmbiStream mobile middleware mentioned above.

• In [14,19] “Revised CONNECT Architecture” and “Final CONNECT Architecture”,

we extend AmbiStream to fully integrate with the Connect solution on protocol

mediation. We also provide improvements towards dealing with mismatching bu↵er-

ing requirements when mediating between “real-time” and “on-demand” streaming

protocols.

1.3.2 Structure of the document

The reminder of this dissertation is structured as follows.

• Chapter 2 serves as an overview and positions our contribution with respect to state

of the art approaches in protocol interoperability. We describe with more detail the

1We have no a�liation or any other kind of agreement with either Amiando or Regonline. All trademarks
and registered trademarks are the property of their respective owners.

2We acknowledge that some passages, definitions and figures have been quoted verbatim from articles
that we published.



CHAPTER 1. INTRODUCTION 21

Connect approach towards making networked systems eternally connected which

serves as both theoretical and technical basis for our contributions in the domain of

protocol mediation.

• Chapter 3 takes into discussion a domain specific case of protocol interoperability,

that is, the multimedia streaming class of protocols. Towards the objective of mo-

bile deployed protocol mediators, we propose a design-time approach for enabling

interoperability for the multimedia streaming protocols.

• Chapter 4 presents a method allowing the composition of legacy message translators

followed by an approach towards the automated generation of abstract data-schemas

for the process of protocol mediation. Specifically, this contribution enables the

inference of correct data-schemas for composite message translators relieving inter-

operability engineers from the time-consuming task of defining them.

• Chapter 5 presents an unified mediation framework, complementary to the Connect

enabler architecture, which supports mediator synthesis towards the goal of enabling

cross-layer protocol interoperability.

• Chapter 6 concludes this work and discusses research questions that, in the authors’

opinion, require further exploration.



22 1.3. AN OVERVIEW OF THIS WORK



Chapter 2
Background

Contents
2.1 Protocol interoperability . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Interoperable design by conformance . . . . . . . . . . . . . . . . 24

2.1.2 Protocol conversion . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.3 Interoperability platforms . . . . . . . . . . . . . . . . . . . . . . 25

2.1.4 Dynamic synthesis of protocol mediators . . . . . . . . . . . . . . 27

2.2 Protocol mediation: the CONNECT approach . . . . . . . . . 28

2.2.1 Phases of protocol mediation . . . . . . . . . . . . . . . . . . . . 28

2.2.2 The process of generating a CONNECTor . . . . . . . . . . . . 31

2.2.3 The Starlink framework . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Data adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.1 The process of data adaptation . . . . . . . . . . . . . . . . . . . 39

2.3.2 Message translation . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.3 Data mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.1 Protocol interoperability

As we mentioned in the introduction, the di�culty of protocol interoperability is exacer-

bated when heterogeneity spans the application, middleware, and network layers. At the

application layer, components may exhibit disparate data types and operations, and may

23
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have distinct business logics. At the middleware layer, they may rely on di↵erent com-

munication standards (e.g., CORBA or SOAP) which define disparate data representation

formats and induce di↵erent architectural constraints. Finally, at the network layer, data

may be encapsulated di↵erently according to the network technology in place. Heterogene-

ity at the network layer has partially been solved by convergence to a common standard

(i.e., IP - Internet Protocol). For this reason, many approaches focus solely on achieving

interoperability across the application and middleware layers assuming the use of IP at the

network layer.

In what follows, we present a brief overview of the domain by underlying common state

of the art solutions and highlight what they intend to solve.

2.1.1 Interoperable design by conformance

The most basic way to assure interoperability between components is to implement a com-

patible protocol on all sides. For more complex systems and systems-of-systems this task

rapidly becomes di�cult to manage. A common approach to overcome this challenge is

conformance to protocol standards for implementing the means of interaction and informa-

tion exchange between components. This compliance must be assured for entire systems

from network to middleware and application layers. Standards Organizations like IETF,

W3C, and ISO/IEC collaborate1 to consistently define open standards for the Internet.

The existence of open standards led to the wide acceptance of certain protocols, and

even allowed the emergence of convergence protocols. This is the case of the IETF Internet

protocol suite (TCP/IP) which has become ubiquitous, in favor of other stacks/protocols

like Novell IPX/SPX, ANSI-ITU Asynchronous Transfer Mode (ATM), AppleTalk, IBM

SNA Data Link Control (DLC), etc. This tendency can be observed, for instance, from the

continuously decreasing number of network protocol stacks supported by recent versions

of Microsoft Windows OS2.

On the one hand, protocol convergence confirmed that open standards are a well

adapted solution for network protocols, like the ones part of the TCP/IP stack, and for

special classes of applications like, for instance, file transfer (e.g., FTP, HTTP), electronic

communication (e.g., SMTP, POP, IMAP, XMPP) and infrastructure support (e.g., DNS,

BOOTP, DHCP).

On the other hand, when applications implement a more elaborate or business-specific

application logic, which is likely to change frequently, defining standards is not helpful.

Yet, applications can be built by reusing common components and their respective proto-

1http://www.w3.org/2010/11/TPAC/W3C-IETF-Collaboration.pdf
2http://msdn.microsoft.com/en-us/library/windows/desktop/ms739935.aspx
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col layers. For instance, message-oriented middleware (e.g., AMQP [20], JMS [21]) allow

applications to be implemented on top of an abstraction that facilitates the communica-

tion and coordination of distributed components despite the heterogeneity of the underlying

platforms, operating systems, and programming languages, thus facilitating, to some ex-

tent, system interoperability. However, middleware protocols also define specific message

formats and coordination models, which makes it di�cult for applications using di↵erent

middleware solutions to interoperate.

2.1.2 Protocol conversion

On many occasions, legacy systems and applications have to be made interoperable after

they were designed, implemented and deployed. The creation of protocol adapters is di�-

cult as it often requires reverse-engineering and analyzing the systems in question. Protocol

converters, as formalized in [22], are used to translate a standard or proprietary protocol of

one component to the protocol suitable for the other component to achieve interoperability.

This conversion includes conversion of data messages by rearranging data from an input

message to an output message, and also adapting di↵erences in the state-machines of the

two protocols. Because implementing protocol converters is di�cult and error-prone, tools

like z2z [23] and others [24,25] o↵er more suitable Domain Specific Languages (DSLs) for:

(i) specifying protocol behavior (network interactions, synchronous or asynchronous mes-

sages, etc), (ii) describing the structure of the source and destination protocol messages

(i.e., parser specification) and (iii) how the messages are translated between the source

and the destination protocol. Z2z [23], in particular, combines a language for specifica-

tion of protocols and messages, a compiler that automatically generates protocol gateways

using C code, and a runtime that executes and manages protocol gateways. Z2z evolved

into Starlink [26] which enables protocol translation dynamically at runtime, a particularly

important feature in systems where existing protocols are unknown at compile time.

Protocol analysis methods, commonly used in the domain of Network Security, which

require the specification of protocols, like [27], remarkably resemble protocol conversion

techniques, with the mention that they focus only on silently processing the exchange rather

than generating messages and triggering interaction with the systems under analysis.

2.1.3 Interoperability platforms

A recurring problem of protocol conversion methods is that a special convertor has to be

implemented for each incompatible protocol pair. This is usually a concern when complex

systems have to assemble an important number of legacy components and to access external

services, each implementing functionally-compatible protocols. To address this constraint,
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Nakazawa et. al. [28] propose a taxonomy of bridging solutions among communications

middleware platforms and present uMiddle, a system for universal interoperability, which

supports mediation (entities and protocols are translated to an intermediary common rep-

resentation) and is deployed as an infrastructure-provided service. This design choice

is appropriate for bridging communications middleware, since it requires communication

through di↵erent transport technologies that may not be available on all nodes.

Common middleware approach Middleware provides an abstraction that facilitates

the communication and coordination of distributed components despite the heterogeneity

of the underlying platforms, operating systems, and programming languages. However,

middleware also defines specific message formats and coordination models, which makes

it di�cult (or even impossible) for applications using di↵erent middleware solutions to

interoperate. For example, SOAP-based clients deployed on Mac, Windows, and Linux

machines can seamlessly access a SOAP-based Web Service deployed on a Windows server.

However, a CORBA client cannot access a SOAP-based Web Service. Furthermore, the

evolving application requirements lead to a continuous update of existing middleware tools

and the emergence of new approaches. For example, SOAP has long been the protocol

of choice to interface Web services but RESTful Web services [29] are somehow prevailing

nowadays. As a result, application developers have to juggle with a myriad of technologies

and tools, and include ad hoc glue code whenever it is necessary to integrate applications

implemented using di↵erent middleware. Middleware interoperability solutions [6] facili-

tate this task, either by providing an infrastructure to translate messages into a common

intermediary protocol or by proposing a Domain Specific Language (DSL) to describe the

translation logic and to generate corresponding bridges [30].

Enterprise service bus (ESB). An evolution of the concept of protocol bridging is

applied by Enterprise Service Buses [31]. An ESB represents an integration broker for

heterogeneous systems such as web-services, applications, data-stores and devices. Inter-

operability is achieved through the means of an intermediary protocol (e.g., SOAP) and

a common data representation format (e.g., XML). The message broker allows taking in-

coming messages from applications and dynamically applying transformations like routing,

aggregation, decomposition and re-composition (e.g., IBM WebSphere Message Broker 3).

Depending on the ESB product, some integration tasks can be done on-the-fly (e.g., com-

position of service endpoints and management of service interactions), while others are

done o↵-line since they require external implementation and deployment of new integration

components (e.g., creation of a hardcoded adapter). All ESB-related solutions make the

3http://www.ibm.com/websphere/wbimessagebroker
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assumption, however, that any service can be adapted to an intermediary communication

abstraction represented by the message bus, which is not always possible or su�ciently

e�cient. We stress that the solutions above provide only an execution framework and

still require developers to fully implement or specify the translations needed to enable the

applications to interoperate.

Model driven architecture (MDA). MDA4 proposes to specify applications using an

abstract model, i.e., the Process Independent Model (PIM). The PIM is deployed atop

middleware platforms described by the Platform Specific Model (PSM). This decoupling

enables the modeling of application-middleware data dependencies, which may facilitate in-

teroperability when used in relation with an interoperability architecture. However, MDA

does not specify how to deal with heterogeneous PSM or PIM models, thus not solving

interoperability. Yet, the existence of abstract system models (PIM) in relation to more

concrete models (PSM), sets this solution at the boundary between interoperability plat-

forms and protocol mediation techniques.

2.1.4 Dynamic synthesis of protocol mediators

All methods previously mentioned present a consistent flaw, that is, they require extensive

human intervention, which is either for analysing the systems, designing the interoperability

solution or for implementing or specifying the component which might take the form of an

ad hoc wrapper, protocol converter, ESB adapter or protocol bridge. As described in [5],

this is a problem of integration. Systems, application, and more generally, components

should make explicit any assumption about interaction in order to make integration feasible

and, possibly, automate it.

Solutions oriented toward dynamic synthesis of protocol mediators rely on interme-

diary entities, mediators [32], to enforce interoperability by mapping the interfaces of

functionally-compatible components and coordinating their behaviours. Solutions for the

synthesis of mediators [24, 33–38] focus on compensating for the di↵erences between the

components at the application layer, based on some domain knowledge, but without spec-

ifying how to deploy them on top of heterogeneous middleware solutions. As far as we

know, only Starlink [39] allows binding application-layer mediators to di↵erent middleware

solutions. However, Starlink requires the binding to be explicitly described in terms of the

structure of messages that need to be sent or received by the components. Furthermore,

this description is monolithic and binding cannot be reused across many applications. Fur-

thermore, as we will later discuss in Chapter 5, when systems are multilayered it is also

4http://www.omg.org/mda/
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Discovery Discovering mediation candidate systems.

Compatibility checking Assessing if the discovered systems are functionally compatible.

Building abstract system

models

Identifying, learning and reasoning about system requirements in-
cluding their interface and behaviour.

Mediator synthesis Finding a valid coordination to mediate network interactions based
on the systems’ behavioural semantics. Autonomously validating
the correctness of generated mediators.

Data adaptation Finding the mechanism upon which messages are to be translated
between the source and the destination protocol.

Deployment Deploying a mediator while relying only on the local/accessible in-
frastructure.

Monitoring Monitoring the mediator to assure it is functioning as expected.

Table 2.1 – Challenges of synthesising protocol mediators.

important to make explicit any cross-layer requirements, like for example, the way an ap-

plication needs to configure a communication middleware layer to validate functional or

non-functional (e.g., quality of service) requirements.

2.2 Protocol mediation: the CONNECT approach

Dynamic protocol mediators, as they were characterised by the Connect [11–15,19,40,41]

vision for making systems eternally connected are oriented towards universal interoperabil-

ity. This means mediators have to cope with multiple levels of system heterogeneity from

middleware to application layers. In order to synthesise concrete protocol mediators,

one must discover, analyse, learn and reason about heterogeneous networked systems.

A synthesised protocol mediator must be dependable, unobtrusive, and evolvable while

not compromising the quality of software applications.

2.2.1 Phases of protocol mediation

Indeed, the biggest challenge is synthesising such mediators. This vision implies the exis-

tence of the following components: (i) a software component capable of analysing individual

systems and create protocol mediators, (ii) a supporting infrastructure for deploying and

running mediators. Mediators accompanied by a supporting infrastructure should be able

to overcome the challenges presented in Table 2.1.

Discovery. The mismatch of discovery protocols and mechanisms is a separate interop-

erability problem on its own. In the Connect project [14], the discovery of heterogeneous
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networked systems is assured by an independent component (called Discovery Enabler)

which implements a bridge for commonly used discovery protocols.

Compatibility checking. When they are discovered, one must assess if any of the en-

countered networked systems are functionally compatible. Of course, to automate this task,

there is the need to define generic models for networked systems. Such models should be

su�ciently detailed and include their role, interface syntax, behavior and non-functional

properties. However, there is little consensus between state of the art solutions to this

problem.

Building abstract system models. System models can be obtained during the dis-

covery stage or, to some extent, inferred automatically. For instance, behavioral semantics

may be extracted using automata learning techniques described in [42], provided that the

interface syntax is known. However, most solutions, including Connect, require impor-

tant specification e↵ort for the creation of certain fragments (i.e., message parser specifi-

cation, protocol state-machine, behavioral mapping and data mapping) of system models

using proprietary DSLs. From this perspective, we may argue that there is little di↵er-

ence between protocol mediation solutions requiring significant low-level specification

(i.e., complete specification of message parsers for all protocol layers) like Starlink [26, 30]

and protocol conversion solutions discussed above. Authors usually claim a good bal-

ance between expressivity and ease-of-use when proposing new specification languages,

but such properties are subjective and hard to measure in a consistent way. Relying on

detailed models of functionally-compatible networked systems, mediators must reconcile

the communication between networked systems at runtime, that is, to translate messages

and data between the source and the destination protocol, as well as to implement a valid

coordination to mediate network interactions based on the systems’ behavioral semantics.

System behaviour. When dealing with the behavioural semantics of systems, some so-

lutions [22,27] require modelling system behaviour at each protocol layer (i.e., of each pro-

cess/protocol composing an application’s protocol stack). Other system models [15,26,30]

maintain a global Black-Box state (also the case of Connect) of the system as it is ob-

served from exchanged messages. But messages are not the only events which may trigger

the system to change state. We have to acknowledge the existence of cases where user

or system generated events change the state of a networked system. For example, mobile

platforms support centralised out-of-band notification mechanisms (e.g., Apple Push No-

tification Service) using the server push communication paradigm. We can expect that a

push notification may “wake-up” a mobile application to perform some processing. But
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push communication is opaquely managed by the operating system together with a remote

service operated by the platform provider. This kind of communication is, in general, inac-

cessible to a protocol mediator by common means, thus, requiring specialised integration

with the mobile platform.

Mediator synthesis. The synthesis of protocol mediators has been the subject of a lot of

work, as surveyed in [43]. Mediator synthesis is also known as interface mapping [15,24,44],

and its result is referred to as a mediator or an adaptation contract [45,46]. Mediator syn-

thesis establishes the semantic correspondence between the messages sent by one compo-

nent and those expected by the other component. The work in [47] proposes a framework

to formalise the process of synthesising Connectors that mediate two incompatible pro-

tocols, and suggests that data adaptation can be solved through ontology integration. To

provide full automation, several approaches extract the interface mapping either by mea-

suring the syntactic similarity of messages [44] or by verifying the semantic compatibility

between their operations and data using ontologies [48]. In their seminal paper, Yellin

and Strom [24] propose an algorithm for the automated synthesis of mediators based on

predefined correspondences between messages. By considering the semantics of actions,

Vacuĺın et al. [49] are able to infer the correspondences between messages automatically.

To generate the application-layer mediator, they generate all requested paths and find the

appropriate mapping for each path by simulating the provider process. Cavallaro et al.

[50] also consider the semantics of data and relies on model checking to identify mapping

scripts between interaction protocols automatically. Nevertheless, they propose to perform

the interface mapping beforehand so as to align the actions of both systems. However

many mappings may exist and should be considered during the mediator generation. In-

deed, the interface and behavioural descriptions are inter-related and should be considered

in conjunction. Moreover, they focus on the mediation at the application layer assuming

the use of Web services for the underlying middleware. Finally, Inverardi and Tivoli [36]

propose an approach to compute a mediator that composes a set of pre-defined patterns

in order to guarantee that the interaction of components is deadlock-free.

Mediator synthesis at runtime The aforementioned research initiatives have made

excellent contributions. However, in environments where there is little or no knowledge

about the components that are going to meet and interact, the generation of suitable

mediators must happen at runtime whereas in all these approaches, the mediator models or

some mediation strategies and patterns are known a priori and applied at runtime. In [38],

Bennaceur et al. have specifically developed a solution combining ontology reasoning and

constraint programming to synthesise application-layer mediators at runtime.
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Discovery Singleton component. Discovers networked systems in face of discovery protocol het-
erogeneity. In collaboration with the learning enabler builds Networked System Models
for each system, learns a↵ordances, and matches networked systems based upon goals
and intent.

Learning Singleton component. The Learning Enabler uses active learning algorithms [42,51] to
dynamically determine the interaction behaviour of a networked system and produces
a model of this behaviour in the form of a labeled transition system (LTS).

Interaction Singleton component. Uses the Starlink [26] tool to dynamically invoke networked
system actions irrespective of the middleware protocols employed.

Synthesis Singleton component. Takes the enhanced LTS models of a pair of networked systems
and constructs [15, 38] a Connector model in the form of a k-Coloured automaton.

Deployment Singleton component. Receives k-coloured automata from the synthesis enabler, and
deploys this on a running instance of the Starlink tool; this can be on the same host
as the Deployment enabler, or on a separate identified host within the network.

Monitoring Singleton component. Receives monitoring data from probes instrumented in the Con-
nector. Forwards notifications to channels that other enabler’s subscribe to.

Table 2.2 – Definition of the main Connect Enablers

Data adaptation. Data adaptation refers to the array of mechanisms and tools that

enable mediation frameworks to translate messages between a source and a destination

protocol. While some approaches have studied ways of adapting data directly between two

protocols, it has become clear that a better approach consists of solving this problem in two

phases as follows. First, messages are transformed into a common intermediary message

format (or abstract format, as referred to by some authors). Secondly, a mapping between

these data has to be found either manually, or automatically.

Data adaptation is a central topic of this thesis. However, to better underline the

context and requirements of data adaptation, we further present the general process of

generating mediators (aka. Connectors) in the Connect project.

2.2.2 The process of generating a CONNECTor

The Connect project is a concretisation of the concepts presented in the previous section,

aiming at achieving protocol interoperability by relying on Connectors. Connectors

are concrete emergent system entities, a specific kind of dynamically generated protocol

mediators.

Further in this section, we provide a brief introduction, describing the process of syn-

thesising Connectors. This process is based on a set of formal foundations which allow

learning, reasoning about and adapting interaction between networked systems at runtime.

As we show in Figure 2.1 and detail in Table 2.2, Connect is constructed in the form

of multiple Enablers collaborating to produce on the fly Mediators between heterogeneous
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networked systems. The architecture does not specify the place where the Enablers (such as

Discovery and Synthesis) are deployed, but requires that communication between enablers

is possible by the means of Message Channels and Queues.

Connectors are generated by the Connect process and then deployed between two

networked systems to enable interoperation between them. Therefore, Connectors are a

fundamental part of the Connect architecture. They are both produced and managed

by the Enabler architecture (see Figure 2.1) and therefore their properties inform the key

architectural principles of the Enabler architecture. They are also directly instrumented

in order to validate QoS and security properties (i.e. communicating with the enablers

that perform monitoring). Deployed Connectors are executed via interpretation by the

Deployment Enabler which is based on the Starlink tool.

In Figure 2.1 we provide the configuration of the Connect Enablers at the connection

phase. While the entire process is meaningful for achieving interoperability, given the

context of this thesis we focus specifically on the Synthesis and Deployment phases which

are the most relevant to our contributions. For this reason, we also include references for

various models that are used during the Synthesis and Deployment phases, grouped as

Networked System Models that are used during Synthesis and, respectively Mediator

Models that are interpreted by the Deployment Enabler.

The dynamic synthesis and deployment of a Connector is outlined by the following

phases:

1. Discovery phase: Initially, the Discovery Enabler discovers networked systems (NS)

available on the network. Systems must announce their presence using one of the sev-

eral legacy discovery protocols supported by the discovery protocol bridge including

DPWS and UPnP. For each NS, it stores the Interface description and performs

an initial phase of matchmaking to determine which pairs of systems are likely to be

able to interoperate. The matchmaking is based on System Capabilities which are

manually specified and its associated Domain Ontology. The Interface Descrip-

tions may need to be defined manually, since not all discovery protocols include them.

Furthermore, these interfaces (independently on how they were obtained) need to be

manually annotated with ontology concepts.

2. Learning phase: Whenever the system behaviour is unknown (usually because it is not

advertised by the discovery protocol used by the system), such pairs of NS interface

descriptions are passed to the Learning Enabler that uses active learning algorithms to

dynamically determine the interaction behaviour and produce a System Behaviour

model. The Learning Enabler will rely on the Interaction Enabler to communicate

with the NS.
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Figure 2.1 – The configuration of the Connect enabler architecture for the connection
phase [14] including system models that are used either during the synthesis or the deploy-
ment of mediators.

3. Synthesis phase: When the Learning phase is completed, the pair of NS descriptions

is then passed to the Synthesis Enabler that has the role of creating a mediator for

solving i) application-level interaction model interoperability and ii) middleware-level

interaction model interoperability. The LTS received from the previous phase is mid-

dleware specific, meaning that transitions are strongly correlated to the behaviour

of the middleware protocol used by each system. The first step done by the Synthe-

sis process is to extract a middleware-agnostic model of application behaviour (the

detailed process of achieving this is presented in [52]). Then, a pair or application-

level behaviour models are used to synthesise a correct-by-construction mediator us-

ing interface-mapping [15]. The LTSA (Labeled Transition System Analyser) model

checker is used to generate the parallel composition of the mapping processes and to

verify that the overall system successfully terminates.

4. Deployment phase: If the Synthesis Enabler is capable of producing a mediator. The

mediator, which takes the form of a Merged Automaton is transformed into a k-

coloured automaton, i.e., the format supported by the Starlink [26] tool. Along with

the Merged Automaton, in order to deploy a Connector, Starlink also requires

a pair of Message Description Language (MDL) Specifications which specify
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the network level message format used by each system. The MDL descriptions are

provided externally, and are currently defined manually.

2.2.3 The Starlink framework

To deploy and execute a Connector, the previously described models are interpreted

and executed using the Starlink tool. That is, Starlink executes on a networked host

in the environment; the model is loaded into Starlink, and when the networked systems

begin communicating with another Starlink interprets the appropriate transitions in the

concrete k-coloured automaton. A high level vision of a Connector implementation is

first presented in Figure 2.2; this illustrates the principle software elements that compose

each Connector and their overall behaviour.

MDL Specification
(Protocol A)

Merged Automaton
(A to B)

Network Engine

MDL Specification
(Protocol B)

Parser

Composer

Parser

Composer
Automata

Engine

Abstract 
Messages

Abstract 
Messages

System A
(Protocol A)

System B
(Protocol B)

Network
Messages

Network
Messages

Figure 2.2 – Architecture of the Deployment Enabler [19] (based on Starlink frame-
work [26]).

TheNetwork Engine provides a library of transport protocols with a common uniform

interface to send and receive messages. Hence, it is possible for a Connector to receive

messages and send messages using multicast (e.g. IP multicast), broadcast and unicast

transport protocols (e.g. UDP and TCP) in order to directly communicate at the network

level with the networked systems.

A Parser interprets the content of a distinct protocol message (or frame in a streaming

protocol). That is, based upon the protocol’s message format specification it reads the

network data and produces a single Abstract Message instance; this is a uniform represen-

tation of network messages that is used by the Connector to understand and manipulate

the data. Parsers are generated from the description of a single protocol provided as a

Message Description Language (MDL) document. For example, the MDL of SOAP

messages is used to construct a parser that will parse SOAP messages. A full descrip-

tion of the MDLs developed in the Connect project, how listeners are generated, and

how parsers execute is provided in [53] ( “Realising Listeners and Actuators”) and is not

detailed further here.
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An Composer performs the reverse role of a parser, i.e., it composes network messages

according to a given middleware protocol, e.g., the SOAP Composer creates SOAP mes-

sages. Composers receive the Abstract Message as input and translate this into the data

packet to be sent on the network via the Network Engines. Like parsers, each composer is

generated from a protocol’s MDL specification.

The Automata Engine forms the central co-ordination element of a generated Con-

nector. Its role is to execute a mediator described as a merged k-coloured automaton,

which documents how content received from one networked system (in the form of an

Abstract Messages) is translated into the content and middleware messages required by

the other networked system. Hence, the k-coloured automata mediator handles both ap-

plication and middleware heterogeneity; it is able to address the challenges of: di↵erent

message content and formats; di↵erent middleware protocol behaviour, e.g., sequence of

messages; di↵erent application data formats; and di↵erent application operation behaviour.

Each Mediator is specified in terms of merged k-coloured automata. The automata engine

interprets and executes these automata directly.

Definition 4 (k-coloured Automaton) A k-coloured automaton, as defined in [26],
is a deterministic finite automaton represented formally by Ak = (Q,M, q0, F, Act,!
,)), where:

— Q is a finite set of states of a protocol.

— M is a finite set of either incoming or outgoing message types of a protocol.

— q0 is the start state, that is, the state of the protocol before any message has been
sent or received, where q0 2 Q.

— Act = {?, !} where ? is the receive action and ! is the send action.

— !✓ Q ⇥ Act ⇥ M ⇥ Q is the transition relation that can be either a receive-

transition or a send-transition. A transition relation has the form s1
?m�! s2 for

(s1, ?,m, s2) 2! and changes the state of the automaton from s1 to s2 once the

message m is received. The latter is noted s1
!m�! s2 for (s1, !,m, s2) 2! and

changes state from s1 to s2 once the message m is sent.

— ) is a message history operator defined as )✓ Q ⇥ Act ⇥ ~m ⇥ Q. Where ~m

denotes a sequence of stored messages.

As we illustrate in Figure 2.3, two protocols A and B can be made interoperable if

and only if their k-coloured automata Aa and Ab can be merged in such a way that there

exists a state in Aa where the sequence of received messages is semantically equivalent to
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a0 a1

?ma
0

!ma
1

(a) k-coloured automaton Aa of
protocol A

b0 b1

!mb
0

?mb
1

(b) k-coloured automaton Ab of
protocol B

a0 a1
b0

b1a1 b0

?ma
0

!mb
0

?mb
1

!ma
1

(c) Merged k-coloured automaton of pro-
tocols A and B

Figure 2.3 – Example of k-coloured automata and their merged k-coloured automaton

the required output message in the initial state of Ab. Furthermore, it is required that the

sequence of received messages in the accepting state of the automaton Ab is semantically

equivalent to the required output messages of a state of Ab, that should lead to an accepting

state of Ab. In the simplest interoperability case, there will be only two bi-colour states,

as it is the case in Figure 2.3c. However, for more complex protocols, it may be required

to “switch colours” (i.e., to interact with both systems A and B in a sequence) multiple

times before reaching a final state in A. Note that protocols A and B have compatible

roles. For instance, in order to transition from state a0 to the state a1, the protocol A

expects the reception of a message m

a
0, while the corresponding transition in protocol B

entails the emission of a message m

b
0.

The precise mathematical relation of semantic message sequence equivalence denoted

|= is given in [26]. We only remind the basic definition. Informally, writing n |= ~m

means message n can be constructed with information found in the sequence of messages

~m. In other words, the semantic equivalence is true if and only if, for every field in the

message n that is a mandatory field (as defined by the protocol), there exists at least

one semantically equivalent field in the sequence ~m. In the example above, the following

relations must validate in order for the merged k-coloured automaton to exist:

1. m

b
0 |= (ma

0) in state a1|b0, meaning that mb
0 can be constructed using data from m

a
0.
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2. m

a
1 |= (ma

0,m
b
1) in state b0|a1, meaning that ma

1 can be constructed using data from

m

a
0 and m

b
1.

Definition 5 (Semantic Equivalence) A message n is semantically equivalent to
the sequence of messages ~m, denoted n |= ~m, if and only if 8n . field 2Mfields(n),
9m 2 ~m = hm1...mni |n . field |= m . field, where:

— Mfields(n) is the set of mandatory fields of message n.

— n . field is the operation to select a field from the message n. A field consists of
a label and a type. The type can be either primitive (e.g., integer, string, char,
etc.,) or a structured field when it is a composition of primitive fields.

While the definition above sets the basic requirements for protocol data interoperability,

it does not show how to solve it. Specifically, constructing messages using data contained

in other messages is not trivial for the following reasons:

Message heterogeneity. Protocols use heterogeneous message formats.

Incompatible data models. Even when messages associated to a protocol use a homo-

geneous format (e.g., XML), they implement disparate data models and adhere to

di↵erent data semantics.

Composite message formats. When applications use layered protocol stacks, message

formats are also layered.

In order to address the up noted challenges, a number of questions must be answered.

First, we must find the appropriate mechanisms through which messages are translated (i.e.,

parsed and composed). Second, we must give a more precise definition for the concept of

message and how data/fields can be addressed inside a message (e.g., n . field). Third,

we must find a solution to deal with composite message formats that contain data relative

to multiple protocol layers. Last, we must investigate the means to specify or infer the

mapping of message fields whenever semantic equivalence is validated. To clarify these

questions with respect to state of the art approaches in protocol mediation, in the next

section, we detail the process of data adaptation.

2.3 Data adaptation

We remind that data adaptation is a rather ambiguous term and can refer to the following

problems: (i) mapping between concrete message formats, (ii) translation between concrete
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message formats and common intermediary message formats, and (iii) mapping between

common intermediary message formats. While the first is feasible in hand coded interop-

erability solutions, it is ine�cient because a di↵erent implementation is required for each

pair of message formats. For this reason, it is often desirable to abstract concrete message

instances towards an intermediary message format for all systems. We refer to messages

that were translated to an intermediary message format as abstract messages, or Abstract

Syntax Trees (AST), knowing that structured data types are commonly represented as a

hierarchy. Further in this section, we present the process of data-adaptation in a generic

way rather than discussing aspects that are specific to the Connect project. However, for

clarity, we make use of concepts such as semantic equivalence that were discussed above.

Network message. While it might seem trivial, it is important to clarify what we mean

be a network message in the context of this work. A network message is a sequence of

bits or characters which are sent over a network connection. We only consider messages

starting from the Application Layer, meaning TCP/IP layer 5, or the OSI model layer 7.

This is a weak assumption considering that most systems today use the TCP/IP stack

as a convergence layer, or even higher middleware layers such as SOAP, HTTP, etc. The

methods by which the streams of bits or characters are delimited into messages is a protocol

specific or an application specific characteristic.

Network message layers. We mentioned in the introduction that whenever an appli-

cation uses a multi layer protocol stack, the messages that are exchanged also consist of

layers. While in the simplest cases these layers involve adding a header (supplemental

data placed at the beginning of a block of data being transmitted) and possibly a trailer

(supplemental data placed at the end of a block of data being transmitted), these layers

are more often logical, meaning that at each layer data might be fragmented, multiplexed,

transformed, etc. For this reason and in order to increase clarity, some works [54,55] refer

to a logical message layer as a Protocol Data Unit (PDU).

Message translation. Whenever a mediation approach intends to be technology-agnostic,

messages must first be translated into an abstract representation. This is the task of mes-

sage translators. They assure two functions: (message parsing) parsing a stream of bits or

characters, representing a network message in order to produce a structured data repre-

sentation which we refer to as an abstract message, and (message composition) processing

an abstract message to produce a network message in the format expected by a given

component. The two software components are often designed and implemented separately.

However, we believe it is important to consider the two components in conjunction knowing
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that they both have to agree on the use of the same abstract message format, as well as

the same network message format. Message translators are either hand coded, hand coded

using parser generators (e.g., Yacc, Bison, ANTLR), hand-coded using a Domain Specific

Language [14,15,23,26,27,54–57], specified using an IDL (e.g., ASN.1 [58], Protocol Bu↵ers,

CORBA OMG IDL [59], etc.), or generated using a reverse engineering technique [60–62].

Abstract messages. There is little consensus about what an abstract message format

should be. Nevertheless, significant di↵erences can be found depending on the type of

approach used to create message translators. Solutions oriented towards reverse engineering

use the most rudimentary type of abstract messages. Specifically, solutions like [60–62]

represent parsed messages as Untyped Fields, that is a sequence of untyped, and unlabelled

blocks of data that can be either mandatory or optional. More advanced solutions in the

field of network security (packet analysis and packet injection) [54, 55, 57] use Composite

Types (such as the ones used in ASN.1 specifications). However, this expressive power

comes at a cost. Such approaches require that message translators are hand-coded using

a proprietary DSL, as opposed to being extracted automatically. Finally, solutions in the

domain of protocol mediation [14, 15, 23, 26, 56] either support Composite Types using a

proprietary encoding or use XML as the underlying language for abstract messages [14,

15, 26]. The use of the same format for all abstract messages is required in order to allow

fields/data to be mapped from one message instance to another.

2.3.1 The process of data adaptation

To better underline the relation between the concepts introduced above, in Figure 2.4 we

illustrate the process of data adaptation which involves a phase of abstraction and another

phase of concretisation. Suppose that m

b |= (ma), meaning that the XML message m

b

is semantically equivalent to the binary message m

a, and that m

b has to be constructed

from the information contained in m

a. To support this, approaches like the ones presented

in [14, 15,23,26,56] commonly follow the following steps:

1. The message m

a is parsed and an abstract message a

a is created. While we show

abstract messages formatted using XML, other formats can also be used. Message

translation (steps 1 and 4) refers to the ability to parse messages from the network

layer into an abstract message format that may be handled by synthesised mediators

and then concretise back (a.k.a. compose / un-parse) the messages produced by the

mediators into network messages.

2. A template of the destination abstract message a

b is generated using the abstract

message schema s

b. An abstract message schema or message grammar is a document
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Message translationMessage parsing
(ma) to (aa)

Message composition
(ab) to (mb)

<login>

  <credentials>

    <username>amadmin</use

    <password>admin123</pa

Abstract message (aa)

<authenticate>

  <secret>admin123</sec

  <user>amadmin</user>

</authenticate>

Abstract message (ab)

Data mapping
(aa) to (ab)

  <user>amadmin</user>  <user>amadmin</user>  <user>amadmin</user>
  <secret>admin123</sec  <secret>admin123</sec  <secret>admin123</sec  <secret>admin123</sec  <secret>admin123</sec

element login {
    element credentials {
        element username {text}
        element password {text}
    }
}

Abstract message schema (sa)

element authenticate {
    element secret {text}
    element user {text}
}

Abstract message schema (sb)

<AuthContext version="1.0">
 <Request authIdentifier="AQIC5wM2LY4">
  <SubmitRequirements>
   <Callbacks length="2">
    <NameCallback>
     <Prompt>User Name:</Prompt>
     <Value>amadmin</Value>
    </NameCallback>
    <PasswordCallback echoPassword="false">
     <Prompt>Password:</Prompt>
     <Value>admin123</Value>

...

Network message (ma)

XML

authenticate/user ::= login/credentials/username
authenticate/secret ::= login/credentials/password

Mapping rules, (sa) to (sb)

Binary

Network message (mb)

Generation of a 
message template (ab)

Ab
st

ra
ct

io
n

C
oncretisation

1

2 3

4

Figure 2.4 – Common phases of data adaptation in the field of protocol mediation. This
figure intends to synthesise and generalise the data adaptation process present in the fol-
lowing publications [14, 15, 23,26,56].
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specifying constraints on the structure and content of abstract messages, beyond the

basic syntactical constraints imposed by the common intermediary format (i.e., XML

in this case).

3. Using the abstract message a

a and the message template a

b, data can be mapped

(i.e., assigned, merged, transformed, etc.,) from one message to the other. This is

achieved by applying a set ofmapping rules. Mapping rules define a transformation by

which messages conforming to the abstract message schema s

a are to be transformed

into messages conforming to the abstract message schema s

b. In order to specify or

infer correct mapping rules between abstract messages, the abstract message schemas

relative to both protocols part of the mediation must be available.

4. Finally, in order to produce a concrete network message, the last phase involves

composing a

b into a message m

b whose format is specific to the destination protocol

(in our example, a binary format).

2.3.2 Message translation

Message translation is one of the phases of data adaptation that cannot be easily auto-

mated. While automated reverse engineering techniques exist [60–62], the components

they generate cannot be used along with automated protocol mediation solutions because

they cannot fully characterise the abstract syntax of data contained within messages. In

other words the abstract message formats they are able to extract are too basic to realise

data mapping. Further in this section, we discuss common approaches to obtain message

translators. Most existing approaches focus on the parsing problem, which is, in the gen-

eral case, the hardest. In the following paragraphs we will use the word “translator” when

we refer to approaches that solve both message parsing and un-parsing, and “parser” when

we refer to approaches that address the parsing problem only.

There exist a plethora of approaches to build message translators: some are optimised

for low bandwidth overhead (e.g., Google’s mechanism for serialising structured data known

as Protocol Bu↵ers), and others are specifically designed to facilitate interoperability (e.g.,

by using standard data serialisation formats). The forms in which translators are available

also di↵er: translators can be precompiled components, or high-level descriptions using a

domain-specific language. In Figure 2.5, we distinguish five classes of approaches to build

message parsers.

Custom-made parsers and translators. These are components implemented in an ad

hoc manner using a general purpose programming language.
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Expressive
powerFixed

encoding
Common
encoding
patterns

Context-free
languages

Custom-made

CFG-based
generation of parsers

DSL-based
generation

of translators

Reverse
engineering
of parsers

IDL-based
serialisers

Degree of
automation

Figure 2.5 – Parser and translator design methods

CFG-based generation of parsers. An e�cient alternative to the implementation

of custom-made parsers is represented by parser generators (e.g., Yacc, Bison, ANTLR).

Parser generators transform a user-provided Context-Free Grammar (CFG) into an exe-

cutable component, which parses an input according to the specification given.

DSL-based generation of translators. DSLs can be used by experts to specify trans-

lators for complex message formats at a higher abstraction level, and in a more compact

way, than CFGs (for parsers). Solutions for the generation of parsers and translators based

on a DSL specification [23,27,39,55,56] focus on enabling interoperability of already exist-

ing systems. However, they are usually associated with a specific kind of message encoding

pattern (e.g., text-based, XML, type-length-value encoding –TLV–, etc.), and thus have a

limited expressive power. Further, such approaches are not future proof as more message

formats are expected to emerge, which will not be accounted for by DSLs that are defined

according to known message encoding patterns.

The Starlink [26] approach mentioned throughout this chapter proposes three indepen-
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dent DSLs for text, TLV and XML message formats. Abstract message representations

must be specified separately in the form of a sequence of fields of the form (name, data

type, default value). The DSL for defining Abstract Message Schemas is rather redundant

with XML Schema languages such as XSD and RelaxNG.

Z2Z [23] is a tool for generating protocol gateways based on a DSL for describing pro-

tocol behaviours, message structures, and the data mapping. Z2Z relies on the ZEBU [56]

compiler for creating message parsers. ZEBU DSL syntax is very similar to that of ABNF.

This approach also has the notion of abstract messages although they are called message

views. Message views and are also defined manually using a secondary DSL. Abstract

messages, as well as network messages are composed based on user-provided templates.

Message translation is also required in the domain of network security when imple-

menting packet inspection software. GAPA [63], binpac [54], NetPDL [57] are tools that

include a protocol specification language based on ABNF. The protocol specifications in-

clude message syntax as well as protocol states, transition logic, abstract message formats

and encapsulation rules. While they are arguably more time e�cient than using lower

abstraction tools such as Flex (Fast Lexical Analyser) [64], Bison (GNU Parser Gener-

ator) [65], Yacc (parser generator) [66], etc., they only solve the parsing problem. All

information including abstract message templates and message schemas must be manually

specified by the user.

SCL [55] is a language based on ASN.1 for describing protocols and allows generating

parsers and modifying input data at run time. Messages can be mutated and injected in

a communication session in order to test protocol implementations. Abstract messages

use a text based format called “Text Protocol Data Unit” (Text PDU). While SCL allows

specifying abstract message formats using a syntax similar to ASN.1, it does not allow

the specification of message parsers or message composers which have to be implemented

separately.

IDL-based serialisers. A di↵erent class of approaches for parser generation, use an

Interface Description Language (IDL) that allows users to describe abstract structures of

data using the IDL’s type system. The description is passed to a compiler that generates

source code, or compiled components capable of serialising & deserialising messages to &

from the described data format. A major deficiency of IDL-based approaches (e.g., ASN.1,

Protocol Bu↵ers, CORBA OMG IDL, etc.) is that, while they can define an arbitrary

abstract data format, they usually support a fixed (or, in the case of ASN.1, a small

set of) message encoding mechanism. For this reason, we view serialisers as a specific

case of message parsers, with limited expressive power relative to the serialised message

format (lower expressive power than DSL-based parsers). To facilitate the integration of
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serialisers with other systems, development environments, such as CORBA-based [59] ones,

provide an IDL mapping (http://www.omg.org/spec/) to data types (e.g., objects, lists,

associative arrays, etc.) of various programming languages (e.g., Java, C++, Python, etc.).

The mapping is supported by a separate IDL compiler for each programming language.

Automated reverse engineering. Automated reverse engineering tools like Polyglot [60],

AutoFormat [61] and Tupni [62] are capable of extracting message format specifications by

analysing network tra�c and by monitoring program execution. While they have a good

record for identifying message fields for some message formats (exceeding 90%), they lack

the ability to infer complex data types (abstract message schemas). It is worth mention-

ing that the tools mentioned above are only able to reverse engineer a small fraction of

protocols existing today.

2.3.3 Data mapping

<xs:complexType  name="event">
  <xs:sequence>
    <lastModified…>
    <selectedDate…>
    <visibility…>
    <location…>
    <street…>
    <publishSearchEngines…>
    <hostId…>
    <eventType…>
    <country…>
    <city…>
    <id…>
    <title…>
    <timezone…>
    <longitude…>
    <latitude…>
    <language…>
    <identifier…>
    <selectedEndDate…>
  </xs:sequence>
</xs:complexType>

<xs:complexType name="APIEvent">
 <xs:complexContent mixed="false">
  <xs:sequence>
    <ID...>
    <CustomerID...>
    <ParentID...>
    <Status...>
    <Title...>
    <StartDate...>
    <EndDate...>
    <ActiveDate...>
    <ClientEventID...>
    <TypeID...>
    <Type...>
    <City...>
    <State...>
    <Country...>
    <PostalCode...>
    <TimeZone...>
    <IsWaitlisted...>
    <Culture...>
    <MediaType...>
    <IsActive...>
    <IsOnSite...>
    <Latitude...>
    <Longitude...>  </xs:sequence>
 </xs:complexContent>
</xs:complexType>

0.6
0.6

0.4
0.5

0.6

0.7

0.2

0.1

0.1

Figure 2.6 – Example of an XML schema matching result. The two abstract messages that
are shown belong to applications in the domain of conference management. Each message
encapsulated data relative to an event.

Message heterogeneity is not the only issue to be taken into account as part of data

adaptation. Even when an abstract message format is agreed upon, data may not match
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in terms of labels, scope, granularity of abstractions, temporal units, domain definitions

and data-types [32]. To enable incompatible components to interoperate, the data need to

be converted in order to meet the expectations of each component. Approaches in protocol

mediation that focus on a specific technology [67] realise data mapping directly on the net-

work messages whenever the formats in use allow this (e.g., the case of web services where

data is encapsulated using XML). Whether if data mapping rules are specified manually

like in [23, 26] or synthesised automatically like in [14, 15] they require that abstract mes-

sages are attached to an abstract message schema that defines constraints on the structure

and content of abstract messages. Abstract message schemas also allow generating valid

abstract message templates (or candidates).

Schema-Based Matching approaches [44, 68–71] allow finding mapping rules automat-

ically when given a pair of abstract message schemas. The mapping is based only on

syntactic similarity between formats and, in some cases, it is augmented by the semantic

similarity of field labels. However, such solutions cannot be applied directly on systems

because there is no guarantee that the data mapping rules with the highest similarity

score is correct. We give an illustrative example of schema matching using the Harmony

tool 5 in Figure 2.6. Notice that some fields with a high match score are indeed correct

(e.g., 0.6 for title vs. Title), while others are obviously incorrect (e.g., visibility vs.

IsWaitlisted; intuitively event visibility has no relation to the presence on a waiting list).

Besides estimating the similarity of attribute names or types, more knowledge of the do-

main is necessary to calculate complex correspondences. More advanced approaches [14,15]

rely on ontologies [48] to formalise the knowledge about the domain. Ontologies build upon

a sound logic theory to enable reasoning about the domain based on an explicit description

of domain knowledge as a set of axioms [72]. Ontology reasoning allows generating a set of

data mapping rules that are based both on the syntactic structure of messages as well as

the semantics of data. However, such approaches require developers to annotate abstract

message schemas with references to concepts in an ontology. In the Connect approach

this is achieved by using Semantic Annotations for WSDL and XML Schema [73] to anno-

tate abstract system interfaces with references to concepts in an OWL Ontology [74]. The

provided ontology must be specific to the domain of the application (e.g., video streaming,

conference management, medical, etc.,).

5Harmony is a open source schema matching tool part of the OpenII information integration tool suite
http://openii.sourceforge.net/
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Approach
Name

Message
Translators

M.T.
Expressive

Power

Abstract
Message
Templates

Abstract
Message
Schemas

Schema
Expressive

Power

Data Mapping
Rules

In
te
ro
p
.:

P
ro
to
co
l
M
ed
ia
ti
on

Zebu [56] with
z2z [23]

H/C using
DSL (Zebu)

Text, TLV+ H/C using
DSL (z2z)

H/C using
DSL (z2z)

Composite
Types

H/C using
DSL (z2z)

Starlink [26] H/C using
DSL

Text, XML,
TLV+

H/C using
DSL

H/C using
DSL

Composite
Types

H/C using
DSL

Schema-Based
Matching
[44,68–71]

N/A N/A Generated H/C XML
Schema

XML Schema Generated
(syntactic
mapping)

Connect [11–
15] with
Starlink [26]

H/C using
DSL

Text, XML,
TLV+

Generated H/C
SAWSDL [73]
+ H/C OWL
Ontology [74]

XML Schema Generated
(syntactic and

semantic
mapping)

S
ec
u
ri
ty
:
P
ac
ke
t
In
sp
ec
ti
on

GAPA [63] H/C using
DSL

Text, TLV+ N/A H/C Primitive
Types

N/A

binpac [54]* H/C using
DSL

Text, TLV+ N/A H/C using
ASN.1+

ASN.1 [58] N/A

NetPDL [57]* H/C using
DSL

Text, TLV+ N/A H/C using
DSL

Composite
Types

N/A

SCL [55] H/C using
DSL

TLV+ N/A H/C using
ASN.1+

ASN.1 [58] N/A

Polyglot [60]* Generated Text, TLV+ N/A Generated Untyped
Fields

N/A

AutoFormat
[61]*

Generated Text, TLV+ N/A Generated Untyped
Fields

N/A

tupni [62]* Generated Text, TLV+ N/A Generated Untyped
Fields

N/A

Table 2.3 – Summary of approaches that solve various phases of data adaptation.

Legend:
N/A not applicable

H/C hand coded

TLV+ the class of type-length-value binary message encodings and extensions

Text the class of “line based” text message encodings (e.g., HTTP, FTP etc.)

XML the class of XML message encodings

ASN.1+ extension of the Abstract Syntax Notation One (ASN.1) language [58]

* the approach only solves the parsing problem
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2.4 Summary

In this chapter, we introduced the general context of Protocol Interoperability. Further, we

presented the Connect approach that allows synthesising protocol mediators. Mediators

are a means of dynamic protocol interoperability at run time. Last, we discussed in more

detail the challenges and solutions for an important phase of Protocol Mediation, that is

Data Adaptation.

Data formats, and in particular message formats, have long represented a barrier to

interoperability [12]. This is because software parts often make di↵erent assumptions about

how data is represented [75]. Table 2.3 summarises the solutions that solve various aspects

of data adaptation. We notice that all of the proposed solutions require extensive amounts

of hand coded (H/C) elements (models, schemas, specifications, etc.,), which in our opinion

is contrary to the goal of automated protocol interoperability. We also notice that many of

the solutions solve only parts of the data adaptation problem. For instance, all approaches

in the domain of Security:Packet Inspection do not address the problem of data mapping.

In this thesis we address these limitations as follows.

Streaming protocol interoperability. In Chapter 3 we present an extension to the

Connect mediation approach that can solve interoperability for multimedia streaming

protocols on current generation smartphones. Interoperability of streaming protocols is

particularly challenging as opposed to other types of applications because of the following

reasons. Real-time streaming protocols impose strict temporal constraints on the process-

ing of packets, and, in order for multimedia content to pass over packet networks bu↵er-

ing mechanisms must be implemented. Furthermore, multimedia protocols have specific

requirements for data adaptation which were not yet addressed by interoperability ap-

proaches. Specifically, each streaming protocol uses a multimedia container format along

with message formats that are specific to the control part of the protocol. The smallest

common abstraction for application data is a primitive type field (as we discussed earlier

in this chapter). However, multimedia data must be transformed into a di↵erent com-

mon abstraction, referred to as elementary stream samples. To allow this, special message

translators that are specific to multimedia container formats must be used.

Software reuse approach for translating composite message formats. A cross-

cutting challenge that we address in this thesis is protocol binding, i.e., the way protocols

are combined to form a protocol stack. Binding causes systems to exchange messages com-

bining multiple syntaxes (i.e., composite message formats). The resulting message formats

can include a mix of text encodings, binary encodings and data serialisation formats. Ex-
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isting solutions to protocol interoperability have not fully succeeded in dealing with the

increasing heterogeneity of components because of one of the following reasons: (i) they

deal with middleware heterogeneity while assuming matching application components atop

and rely on developers to provide all the translations that need to be made, (ii) they deal

with mismatches at the application layer and generate corresponding mediators but fail

to deploy them on top of heterogeneous middleware, or (iii) they deal with both middle-

ware and application interoperability in conjunction but require extensive and low-level

hand-coded models and specifications.

To address the problem of translating composite message formats, in Chapter 4 we

present a novel approach for composing pre-compiled message translators. This solution

enabling software reuse, is complementary to approaches that allow generating message

translators for single layer message formats. A major challenge in composing translators

(and in turn, parsers) is represented by the way parsers are designed. Specifically, “parsers

are so monolithic and tightly constructed that, in the general case, it is impossible to extend

them without regenerating them from a source grammar” [76] Even if the source grammars

are made available, composition is still an issue, taking into account that combining two

unambiguous grammars may result in an ambiguous grammar, and that the ambiguity

detection problem for context-free grammars is undecidable in the general case [77].

Mediation solutions usually rely on analysing abstract message syntax either to asses

if systems are functionally-compatible or use abstract message syntax as constraints when

building a mediator [24,44,48,49]. Also, when systems rely on multi layer protocol stacks,

application data may be scattered over di↵erent message encapsulation layers. To assure

that the composite message translators we generate can be used in protocol mediation

approaches, also in Chapter 4 we propose a mechanism capable of automatically generating

data-schemas for composite abstract messages. On a more general note, the provided

inference algorithm can be adapted to a number of applications beyond the scope of this

work, such as XML Schema inference for a constrained set of XSLT transformations.

A unified mediation framework. In Chapter 5 we integrate our contributions as part

of a unified mediation framework to achieve interoperability from application down to

middleware layers.
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The following chapter presents work that has been done between 2011 and 2012. It

proposes a mediation solution for multimedia streaming and it evaluates its e↵ectiveness

on mobile platforms (Android and iOS). Because the two mobile platforms are in fast and
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continuous evolution, some technical aspects have changed since we initially published this

work. While they are important, they do not eliminate the usefulness of our approach.

There are two important technical advancements that have been made:

• API access to hardware and software video codecs. Access to system provided video

encoders and decoders is of critical importance for multimedia streaming interoper-

ability. This is because third party applications (including protocol mediators) can

encode and decode video using highly optimised system components. On iOS, the

API for the H264 video codec was added with the release of iOS 8 in September

2014. On Android, the API for accessing the VP8, MPEG4 and H264 system codecs

was added with version 4.1 (Jelly Bean) in 2012. However, we found that the im-

plementation of this API by device manufacturers only reached a satisfying level of

robustness and compatibility starting with version 4.4 of Android (released in 2014).

• Widespread adoption of the WebRTC standard. Recently, WebRTC has became

the de-facto standard for peer-to-peer multimedia streaming between web browsers.

With the exception of Safari, WebRTC is now part of most notable desktop web

browsers including: Firefox, Chrome and Opera. Concerning mobile systems, We-

bRTC can only be found on Android. However, many Android and iOS applications

use an application-embedded version of WebRTC to handle peer-to-peer multimedia

streaming. We further present WebRTC, as part of background, in Section 3.1.

The present generation of smartphones enables a number of applications that were

not supported by previous generation cellular phones. Particularly, the greater processing

power, better network connectivity and superior display quality of these devices allow users

to consume rich content such as audio and video streams while moving. Not surprisingly,

radios1 and television channels2 today provide mobile applications that allow access to their

live media streams. Even video rental services3 provide mobile applications that support

movie streaming to smartphones.

All those applications, however, assume a centralised architecture where a powerful

server (or a farm of servers) provide streams to lightweight mobile devices. Node het-

erogeneity also remains an issue: most of those applications are available for a single

smartphone platform. Indeed, to support multiple phone platforms, developers must (i)

modify the mobile application to support di↵erent sets of decoders, streaming protocols

and data formats and (ii) generate multiple data streams on the server side to be consumed

1www.npr.org/services/mobile
2www.nasa.gov/connect/apps.html
3itunes.apple.com/us/app/netflix/id363590051
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by each mobile platform. Hence, when a resourceful server is not available, as in the case

of a peer-to-peer (P2P) streaming scenario, this approach is impractical.

Interoperability of multimedia streaming protocols among heterogeneous mobile plat-

forms can benefit to a large number of applications, such as:

• (Broadcast) Streaming a live event directly to other devices reachable on the network;

• (Screencast) Sharing media on the fly between di↵erent devices (phone to tablet/TV);

• (VoIP) Voice call applications;

• (Mobile games) e.g., mixing augmented reality with live remote user interaction;

• Distributed processing of a video stream;

• Audio/video sharing in crisis situations when infrastructure is unavailable;

Today, to create such applications, developers must overcome a number of constraints.

First, smartphones run di↵erent mobile operating systems, each supporting a di↵erent

set of audio/video encoders, decoders and streaming protocols. Second, communication

is performed over wireless networks that are unstable and that do not support resource

reservation, and thus streaming quality is managed by the protocol without cooperation

from the network layer. Finally, the multimedia streaming software stack of each platform

is highly optimised to deliver high quality audio and video while reducing resource usage.

Existing system support for multimedia streaming is unsuitable to face the challenges

described above. Indeed, architectures for multimedia streaming on the Internet such

as [78, 79] suppose the existence of powerful servers that can adapt content on-the-fly on

behalf of clients, which is infeasible when the streaming server is a resource-constrained

smartphone. Solutions for multimedia streaming on ad hoc networks such as those sur-

veyed in [80] require direct cooperation between application layers and networking layers,

e.g., integration between the video codec and the routing protocol to optimise streaming

quality. This approach is not appropriate on smartphone platforms since replacing the

native software is sometimes impossible but often undesirable for performance reasons.

Live streaming protocols, either real-time or non real-time, commonly use two com-

munication flows: one for assuring Stream Control, and another for Media Transport. To

enable multimedia streaming among heterogeneous devices, the following challenges must

be solved:

Interoperability stream control protocols. Multiple incompatible protocols for mul-

timedia streaming exist today, and each platform supports one or a small subset of
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them. As a result, smartphones must overcome the streaming protocol heterogeneity

problem to be able to exchange multimedia streams with heterogeneous devices.

Assuring the validation of timing constraints. Another requirement in order to en-

able interoperability between streaming protocols is to manage timing from two per-

spectives: first, real-time streaming protocols impose temporal constraints on the

arrival and inter-arrival of packets, and secondly, streaming protocols manage flows

of data, and in order for the content to pass over packet networks bu↵ering is re-

quired. Bu↵ering techniques di↵er from one protocol to another, and it is thus the

role of the interoperability solution to solve this type of heterogeneity.

Adaptation media transport data formats. Each smartphone platform generates and

stores multimedia data using some specific container format. These data cannot be

directly transmitted through a di↵erent streaming protocol because the media con-

tainer format is specific to the protocol. Smartphones, then, must also adapt the

media container format to enable translation from the native streaming protocol to

non-native protocols supported by other peers.

Implementing protocol translators for each existing streaming protocol implies a high

development e↵ort given the important number of protocols and mobile platforms. To

address this limitation, we propose AmbiStream, a lightweight middleware layer, as an

extension to Connect [14], that complements the existing software stack for multime-

dia streaming on smartphones with components that enable interoperability. Connect

enables automated mediation between di↵erent protocols, but does not take into account

the challenges introduced by mobility and particularly multimedia streaming on mobile

platforms.

AmbiStream provides multimedia streaming interoperability amongst heterogeneous

mobile devices with the following assumptions: (i) both the source and the destination

support a common pair of audio/video codecs and (ii) the codec pair used is compatible

with the destination’s (client-side supported) streaming protocol. Multimedia transcoding

is not necessary in most cases since a small set of encoders/decoders are available on most

mobile platforms and are compatible with many of the existing streaming protocols. For

example, the video codec H.264/MPEG-4 AVC (ISO/IEC 14496-10 / MPEG-4 Part 10,

Baseline profile) is supported on Android (RTSP), iOS (HLS), Windows Phone 7 (IIS MSS)

and Blackberry (RTSP).

The remainder of this chapter is organized as follows. In the next section we review

existing work on multimedia streaming in mobile environments. In Section 3.2 we detail the

challenges involved in creating a layer to adapt multimedia streams in mobile heterogeneous
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environments. Section 3.3 presents the architecture of the AmbiStream layer and explains

how the main components operate: the format adapter, the protocol mediator and the

local media server. Section 3.4 discusses our experimental results on Android and iOS

devices, which show that it is possible to adapt data and protocols at run time and also

obtain streams with satisfactory quality.

3.1 Background on multimedia streaming

3.1.1 Interoperable streaming standards

Today’s options for designing interoperable multimedia applications by conformance (to a

well established standard) reduce to a single option, known as Web Real-Time Communica-

tion (WebRTC). WebRTC was released in 2011 by Google as an open source cross-platform

library for browser-based real-time communication. The project was later picked up by the

World Wide Web Consortium (W3C), who released an API draft [81]. The idea behind

the project is to evolve into a universal media streaming standard that would eventually

be included as a base component of mobile as well as desktop Web browsers. Based on

WebRTC API, application developers would be able to create browser-to-browser appli-

cations for voice calling, video chat, and P2P file sharing without the need of external

plugins. This support can be naturally extended to native mobile applications, knowing

that most, if not all, mobile platforms allow developers the integration of Web view com-

ponents inside applications4. However, this standardisation e↵ort is still ongoing (as of

November 2015), and legacy applications not conforming to this universal standard would

still be unable to interoperate. Along with the API for managing multimedia sessions,

WebRTC is also integrated with a set of network management tools, known as the Inter-

active Connectivity Establishment (ICE) framework, that allow applications to open and

maintain data streams in a peer-to-peer fashion while circumventing network restrictions

such as firewalls and NATs. Indeed, with today’s mobile devices that constantly switch

networks to allow peer mobility and also support di↵erent types of underlying communica-

tion infrastructures (e.g., Cellular, Wi-Fi, Bluetooth), it is rather problematic to open and

maintain uninterrupted streams of data. However, as standardisation e↵orts cannot keep

pace with the rapid development of new technologies, better interoperability approaches

have to be found.

4A Web view is a user interface (UI) application component that displays web pages. On most platforms
Web views include methods to navigate through a history, zoom in and out, perform text searches, etc.
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3.1.2 Streaming middleware and protocol mediators

Many multimedia-oriented middleware have been proposed in the literature. One of the

earliest e↵orts in this direction was proposed in [82], which provided applications with

mechanisms for late binding based on QoS constraints. The proposed platform was later

extended in [83] to leverage CORBA’s mechanisms for inspection and adaptation and en-

able applications to adapt the stream quality based on information obtained by inspecting

middleware components. However, as predicted in [84], the lack of mature multimedia

support at the middleware level led the industry to develop platform-specific solutions to

handle multimedia streaming quality. As a result, today, most existing streaming proto-

cols integrate mechanisms to adapt video quality to network conditions. Other middleware

solutions have been proposed to provide multimedia streaming services. Chameleon [85]

is a middleware for multimedia streaming in mobile heterogeneous environments. It is

implemented using pure Java Core APIs in order to be portable to all Java and JavaME

handsets. In Chameleon, servers send streams with di↵erent levels of quality to di↵erent

multicast groups, so that clients can select the best quality according to their available

resources and also adapt to changes on resource availability by selecting a multicast group

providing a stream with lower quality. This approach imposes a heavy burden on the server

side, which has to keep multiple streams in parallel regardless of the number of clients. Fur-

thermore, Chameleon implements the whole software stack required for streaming, which

has a negative impact on performance.

Fewer works take into account the capabilities of current smartphones and their im-

pact on mobile multimedia streaming. The evaluation of streaming mechanisms in [86] for

Android 1.6 and iOS 3.0 tries to identify which design is better suited for mobile devices.

Traditional metrics such as bandwidth overhead, start-up delay and packet-loss are used

to evaluate the quality of multimedia streaming in various test situations. They observe

that high network delays can result in non-continuous playback when using the HTTP Live

protocol from iOS, while RTP streaming remains una↵ected on Android. Even though this

work does not provide a solution for solving heterogeneity issues between these two plat-

forms, provided results must be considered when designing a mobile streaming framework.

3.2 Challenges of mobile interoperable streaming

Towards the goal of enabling peer-to-peer streaming of multimedia data between heteroge-

neous smartphones, we further discuss the following challenges: (i) how to enable interop-

erability among incompatible streaming protocols, and (ii) how to adapt media containers

to consume multimedia data transmitted through an incompatible streaming protocol.
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Here, we detail the challenges introduced above. Specifically, Section 3.2.1 reviews the

process of streaming multimedia data from a server to heterogeneous clients. Then, based

on this general schema, Section 3.2.2 details the challenges involved when translating mul-

timedia streaming protocols, while Section 3.2.3 explains the issues caused by the di↵erent

media container formats available on current smartphones.

3.2.1 The streaming process

Streaming to heterogeneous devices is classically done by servers supporting a set of au-

dio/video codecs, media container formats and streaming protocols, and comprises three

phases: media capture, media transmission and media presentation.

Media capture. Media content can originate either from a camera, stored data or from

a remote source via a streaming protocol. Possibly the most important characteristic of a

multimedia content is its audio/video encoding. Indeed, being a highly resource demanding

operation, multimedia encoding is subject to software and hardware optimisations on both

personal computers and embedded devices. The availability of encoders and decoders

therefore varies depending on the mobile operating system, platform and device. If a

client does not support a decoder compatible with the server’s encoder, the client cannot

consume the media. When a server supports multiple encoders, multimedia data can be

transcoded into a format compatible with the client supported decoders, but this process

is resource consuming and can a↵ect performance, especially when streaming live content.

Transcoding also impacts image and sound quality and introduces additional latency for

live streams.

Media transmission. Since video and audio frames cannot be directly transferred over

an IP network, they are encapsulated within media containers that provide the necessary

meta-information to facilitate the decoding and correct presentation on the receiver (i.e.,

client) side. The process of wrapping and unwrapping audio/video frames from a media

container is also referred to as multiplexing and demultiplexing, respectively. This is related

to the fact that in some container formats, frames (or frame fragments) from multiple

audio and/or video tracks are interleaved. The media transmission also requires control

and signalling. This task is assured by means of a communication protocol specifically

designed to transport multimedia content.

Streaming protocols can be divided into two subgroups:

Real-time protocols are best suited for conversational content such as video conferences

where user interaction with the streamed content is important.
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On-demand protocols are designed to o↵er better scalability and connectivity; it is usu-

ally based on the higher level Hypertext Transport Protocol (HTTP) and introduces

acceptable delays.

Media presentation. In order to correctly reproduce an audio/video stream on a mobile

phone, it is required that the platform supports the given streaming protocol, media con-

tainer format, the audio/video codecs (and, for some codecs, the codec profile used by the

encoder). Being a resource consuming activity, multimedia decoding is usually managed

by the mobile platform through hardware decoders or by e�cient native code implementa-

tions. To o↵er a satisfactory multimedia user experience on resource-constrained devices,

mobile platforms provide a shared application component for multimedia playback (i.e.,

a media player component) that applications can access through a standard API. This

approach has the advantage of providing a uniform multimedia experience regardless of

applications. However, it limits the possibilities to improve audio/video handling in mo-

bile devices since the exposed API is generally limited. For instance, existing decoders

used by the player to display multimedia content might be inaccessible for use or extension

by applications.

3.2.2 Heterogeneity of protocols and signalling mechanisms

Most smartphone platforms support at least one streaming protocol client. The most

well known protocols used in mobile phones today are: Real Time Streaming Protocol

(RTSP) [87], Apple HTTP Live Streaming (HLS) [88], Microsoft Smooth Streaming5 and

Adobe HTTP Dynamic Streaming (HDS)6 (provided that the mobile platform supports

Adobe Flash). The most commonly found on mobile platforms is RTSP, but because it uses

UDP as transport protocol on unprivileged ports it is inappropriate for use in restricted

networks such as 3G and public WiFi hotspots, or connected to a Gateway performing

Network Address Translation (a case where incoming connections are not possible due to

lack of IP reachability). A standard extension defined in [89] enables interleaving messages

over the TCP control connection, but is not supported by many implementations. Protocols

designed for video-on-demand scenarios, such as HLS and HDS, are almost equivalent in

terms of functionality and concept, but di↵er in message formats and media containers.

Real-time streaming protocols are generally designed over the UDP transport protocol

because timeliness is much more important than the reliability o↵ered by TCP. Conse-

quently, simple reliability features, such as sequence numbers, sequence identification, syn-

5http://www.microsoft.com/silverlight/smoothstreaming/
6http://www.macromediastudio.biz/products/httpdynamicstreaming/
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Protocol / Codec H.263 H.264 MPEG-4 AAC-LC/AAC+ AMR-NB MP3

RTSP A,B A,B A,B A,B A,B –

RTSP interleaved – – – – – –

RTSP - SRTP (secured) – – – – – –

HTTP Live Streaming A A, I A, I A, I A I
HLS over SSL (secured) – I I I – I
MS Smooth Streaming – W W W W W

MSS over SSL (secured) – W W W W W

Table 3.1 – Streaming protocols versus audio/video decoders supported on mobile platforms
(as of December 2011), where A,B, I,W symbolise Android, Blackberry, Apple iOS and
Windows Phone 7 mobile operating systems.

chronisation codes, continuity counters, flags and timestamps are integrated in the media

container layer to cope with the unreliable nature of the transport. Such features are not

necessarily found in the same configuration in all formats. As a result, transforming a

real-time stream to a video-on-demand fragment requires complex bu↵ering and e�cient

transformation of real-time data. Such requirements impose strict temporal constraints for

the transformation.

Still, even if the streaming protocols are incompatible by default, the encoded video and

audio elementary streams may be compatible with multiple devices. For example, HLS on

Apple’s iOS uses H.264 codec for video, but the same codec is also largely used to stream

video over RTSP to Android devices. As it can be seen in Table 3.1, there exists a common

set of video and audio decoders available on multiple mobile phone platforms. In contrast,

streaming protocol support is increasingly heterogeneous, with the arrival of new propri-

etary protocols such as HTTP Live Streaming and Microsoft Smooth Streaming. Thus,

we conclude that multimedia data can be exchanged between heterogeneous smartphones

without the need to perform costly transcoding operations. However, it is still necessary

to adapt streaming protocols to enable streaming between heterogeneous devices.

3.2.3 Multimedia container adaptation

The conversion between di↵erent media container formats is a critical requirement for assur-

ing interoperability between heterogeneous streaming protocols. Supporting both real-time

and video-on-demand protocols makes this task more complex due to the mismatching of

properties of the protocol groups.

Encoded elementary multimedia data is stored on disk using a media container format

(e.g., 3GPP, MP4, AVI). Such containers are designed to be used only in random access sce-

narios. Therefore they are not suitable for streaming over a network connection. Another

type of containers are streamable media containers (e.g., MPEG-TS, ASF, PIFF). They are
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Figure 3.1 – The AmbiStream middleware architecture

designed to be transported over IP packet networks, provide methods for fragmenting au-

dio and video streams and may also o↵er synchronisation and recovery mechanisms to cope

with network delays or packet losses. The encapsulated media packets can contain multi-

plexed audio/video tracks (e.g., MPEG-TS, PIFF) or single tracks (e.g., RTP). Depending

on the streaming protocol type (real-time/on-demand), multimedia fragments di↵er in size

and structure. In general, real-time protocols use lightweight headers and small packet

sizes, usually less than the MTU7 in order to reduce the transfer delay by avoiding packet

fragmentation. Video-on-demand protocols regularly use large video fragments composing

10-30 seconds of audio/video each. Such formats commonly rely on the ISO base media

file format8 structure which supports storing of multiple interleaved frames inside a single

fragment, [90, 91]. Larger fragments reduce the need of receiver bu↵ers but also introduce

a start-up delay which is at least equal to the duration of the first fragment.

3.3 AmbiStream architecture

The overall architecture of AmbiStream is presented in Figure 3.1. It includes a compile-

time Mediator which can be deployed on the streaming client device. AmbiStream en-

ables multimedia streaming protocol interoperability (extending the approach proposed

by Starlink [26]) in two directions: first, it enables the translation between real-time and

on-demand streaming protocols, which requires bu↵ering, dropping and combination of

7Maximum transmission unit (less than 1500 bytes for Ethernet)
8ISO/IEC 14496-12:2008
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messages to deliver time-sensitive data at the right intervals, second, we support adapta-

tion of container formats, which in the case of multimedia are dependent on the streaming

protocol. Both operations are done by the Mediator, which is specified by the means of

high level models using a set of Domain Specific Languages.

Streaming server. On the server side, a platform specific API interface is used to access

the Camera data stream, or a File from memory. The stream data is then demultiplexed

into elementary stream tracks (e.g., the audio track). Then, the data-stream is passed to

a mobile RTSP server that we implemented.

Streaming client. The client receives the Media description, and instantiates the ap-

propriate protocol mediator (e.g., P1 to P2 ) and media container adapter. Streaming

protocol mediators and media container adapters (e.g., C1 to C2 ) are used as pluggable

components created at compile time. To simplify support for a large array of protocols,

these components are generated from descriptions of messages and protocol behaviour given

in the form of DSL (domain specific language), as detailed in Section 3.3.1. The Media

container adapter is further detailed in Section 3.3.2. Depending on the adapted protocol,

the samples might be bu↵ered at this point.

Legacy client. TheMediator can also solve interoperability for legacy streaming-enabled

devices, which do not allow software (or firmware) extensions (e.g., televisions). In this

case, the Mediator is not deployed on the server or on the client, but on another smartphone

which we call an “AmbiStream mediator support node”. We have successfully tested this

technique using Android smartphones as server and mediator support node, and an array

of phones, running on di↵erent platforms, as legacy devices (including iPhone 3G, Nokia

N8, Sony-Ericsson W715, etc).

The AmbiStream architecture enables smartphones to stream multimedia between each

other without involving a third party server, since all the adaptation is performed on the

client side. In terms of privacy, this solution is superior to other architectures that require

the stream to pass through an untrusted server for adaptation and/or distribution. Even

legacy clients, that receive the streaming from an intermediary node instead of directly

from the server can select a trusted peer based on any trust establishment protocol.

3.3.1 Streaming protocol mediation

Our approach is inspired by Starlink [26], a run-time solution for protocol interoperabil-

ity. Although on the fly mediation, as supported by Connect, is more flexible and en-
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ables adapting protocols that are unknown at compile-time, in our case we decided to use

compile-time mediators, given the resource-restrictions of mobile devices. In addition, the

availability of a specific protocol is only subject to the support of mobile platforms, thus

making it possible to know in advance the adaptation requirements of each mobile device.

We thus propose a compile-time interoperability solution based on Starlink.

The mediator is specified by a developer in the form of three DSL-based models, as

illustrated in Figure 3.2:

• Protocol message format DSL (MDL Protocol A/B) which is based on the Star-

link MDL, describes the format and structure of message fields of the streaming client

protocol. This model is used to synthesize message parsers for incoming messages

and composers for outgoing messages.

• Multimedia container format DSL (MDL Container A/B) is used to specify

the multimedia container format used by “Protocol B”. It is di↵erent to the first

language, as it is specifically designed to capture aspects of live multimedia streaming,

by adding support for common operations such as message timing, fragmenting and

multiplexing.

• Merged automaton DSL (Merged Automaton A-to-B), is used to specify the

behaviour of the Mediator in the form of a k-coloured automaton. Although currently

used in relation to an intermediary protocol (RTSP), the DSL is not restricted to this

usage.

The models are passed on to a compiler that produces multi-language (Java, C and

C#) Mediators.
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Further in this section we motivate the rationale behind our design solution based on

a concrete example of live streaming protocols: RTSP and HLS. Then, we approach the

challenges introduced by the chosen example. We choose Real Time Streaming Protocol [87]

as the source (or server) protocol and HTTP Live Streaming [88] as the client. The

simplified behaviour of the RTSP server is presented in the top part of Figure 3.3 and the

behaviour of the HLS client in the top part of Figure 3.4 in the form of labelled transition

systems. As it can be easily observed, although the two protocols are quite di↵erent in

design, the first being real-time and the second high-latency, the application states are

quite similar. Both protocols mainly follow a request-response messaging pattern, thus

each transition must be duplicated in request and response actions. This is shown in the

bottom part of the two figures, and further detailed below. The two automata share the

same definition of k-Coloured Automata we presented in Section 2.2.3.
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RTSP Server: The RTSP server receives a setup message from the client meant to de-

scribe the client’s connection request. The server responds with a setup response containing

information such as a session ID and transport ports. While in Ready state, the server

can receive a play request. For simplicity we chose the TCP interleaved transport mode,

where multimedia packets are sent in-band over the same TCP connection as the control

messages. In Playing state, the server will constantly send one-way RTP messages. The

stream is interrupted when the server receives a teardown message. RTP is a lightweight

wrapper for audio or video samples. RTP messages are sent at a frequency relative to

the content sampling rate. The RTP packet frequency is not equal to the sampling fre-

quency because large samples are fragmented in multiple RTP messages sharing the same

Timestamp.

HLS Client: The HTTP Live Streaming Protocol uses HTTP as a transport protocol for

both session control and stream data transport. The basic message flow of this protocol

is as follows: the client application sends an HTTP request to download an extended

M3U playlist (! Index()). The playlist received contains (i) a sequence number, (ii) a

list of stream chunks (i.e., a1, a2, .., an) and (ii) a chunk duration, representing the play-

time in seconds of one chunk. The client starts downloading stream chunks in order (?

Get(ai)). Intuitively, HLS is actually breaking the overall stream into a sequence of small

HTTP-based file downloads. When all downloads are complete, the client requests a new,

updated Index, from the server. This process can be repeated, supporting, in this manner,

unbounded streams.

Analysing protocol heterogeneity. A number of important di↵erences with respect

to multimedia streaming can be observed between the two protocols:

1. HLS file chunks are much larger than RTP messages, and thus contain a greater

stream duration. Common values are 5 to 30 seconds for a HLS audio/video chunk,

and around 30 milliseconds for an RTP video packet9.

2. HLS is not a real-time streaming protocol. Live streams are delayed by at least three

times the duration of a chunk (e.g., 3 x 5 seconds) and in case of network congestion,

this delay can further increase (this delay can be bounded by server configuration by

reducing the number of bu↵ered chunks).

3. The description of the transported stream in terms of: audio/video codec, decoder

profile, sampling frequency and channel identification are provided as a text descrip-

9Configurations commonly observed in existing applications
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tion for RTP (using Session Description Protocol (SDP), IETF Proposed Standard

as RFC 4566/2006). For HLS such information is not available at protocol level, but

can be extracted from the MPEG-TS multimedia container used to wrap the stream

chunks.

4. The HLS client uses a request-response pattern to obtain stream data while RTSP

uses one-way RTP messages.

5. An HLS client requires a large media bu↵er (which should be available for download

from the server in the form of chunks, e.g., 15 seconds) before starting presentation,

while RTSP only requires a small bu↵er (usually <1s) on the client side in order to

eliminate packet inter-arrival jitter.

MDL Specification. The message description language we propose is very similar to

the one proposed by Starlink to generate parsers and composers of protocol messages. Data

values contained within message fields are transformed into primitive types or sequences of

primitive types. On the one hand, such DSLs are useful when messages are of low syntactic

complexity (e.g., text, XML). On the other hand, multimedia container formats are more

complex, and such languages lack the expressive power to define them. Furthermore, as

observed with concrete protocols there isn’t a clear separation between application data

formats and protocol message formats. In the worst scenario, the two layers are highly

interleaved.

An example of a message description is shown in Listing 3.1. The description is divided

in Input and Output to di↵erentiate between incoming messages that should be parsed

into structured data types and outgoing messages that are composed. This distinction

is more important with text protocols, where messages have loose requirements in terms

of line order, optional parameters, delimiters, spacing characters and so on. The DSL

proposed here supports protocols that use either binary, text or XML message formats.

To assure a su�ciently expressive message description, we extract the required fields using

value capture patterns defined using Posix regular expressions for text protocols, XPath for

XML and based on field size and location for binary protocols. The choice of Posix regular

expression for text protocols was driven by its availability on most of the platforms, most

notably that it is part of the GNU C library and is compatible with the regular expressions

integrated in Java standard library (java.util.regex).

In the particular case above for RTSP to HLS (see Figure 3.6), the stream description

is provided at protocol messaging level (using SDP) for RTSP and at the application data

level (inside the MPEG-TS multimedia container) for HLS. To better illustrate this case, we

consider the data field identifying the audio (or video) codec used in a streaming session
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1 <Protocol type="text">
2 <Input>
3 <Header name="http_head">
4 <Var name="Url" type="String"/>
5 <Rule test="capture_order(Url)">1</Rule>
6 <Capture var="Method"> [RegEx] </Capture>
7 <Finish test="empty_line"/>
8 </Header>
9
10 <Message name="GET_IDX">
11 <Insert>http_head</Insert>
12 ...
13 </Message>
14 ...
15 </Input>
16 <Output>
17 <Message name="IDX">
18 <Var name="$TargetDuration" type="Integer"/>
19 <Line>#EXTM3U</Line>
20 ...
21 </Message>
22 ...
23 </Output>
24 </Protocol>

Listing 3.1 – DSL describing message formats for the HLS protocol

for RTSP and HLS. For RTSP this information is in the form of a string-encoded field

(“H264”) of the Describe message. In the case of HLS, the same codec is identified by the

one byte code “0x1B” of a Packetized Elementary Stream Message, encapsulated inside a

sequence of MPEG-TS Packets and further contained in an HTTP response message.

To address this cross-layer dependency, in Figure 3.2 we suggest an improved framework

structure for Starlink, by adding two more abstract models for multimedia container for-

mats, and an extension to the Automata Engine to allow the transfer of messages between

the application data and the protocol layer.

In order to support the definition of such models, further in this section, we present

the AmbiStream Multimedia Container Format DSL. This language can be used to specify

the application data formats of multimedia streaming applications. As seen in Figure 3.2,

one multimedia container description will be used to generate a Media Parser for incoming

stream data packets (in the case presented above, RTP), and another for the Media Com-

poser of the second protocol’s data format (MPEG-TS). While multimedia flows are only

transmitted in one direction, applications such as Videoconferencing need to manage two

flows in opposite directions. This requires to mirror the newly introduced components as a
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Figure 3.6 – Example of cross-layer message field mapping

means to add a second flow. In the case of multimedia container formats there is no need

to synthesise a mapping between the input messages of the multimedia container format

and the messages of the output multimedia container format. This is mainly because any

multimedia stream can be transformed to a common elementary format called Elementary

Stream. An Elementary Stream (ES) as defined by Moving Picture Experts Group10 is

usually the raw output of an audio or video encoder. In Figure 3.2 the multimedia flow

is shown in the form of an arrow labelled Elementary Stream. Going back to the concrete

example above, while both the server and client are in Playing state, the Media Parser

should produce audio/video samples at the content sampling frequency (e.g., PCM audio

encoding at 8,000 Hz). The Media Parser should also pass all stream description data

to the Automata Engine to be used at protocol message level, and the Automata Engine

should as well return multimedia specific information to the Media Composer.

3.3.2 Media container format adaptation

Translating the control part of streaming protocols is not su�cient to distribute multimedia

between incompatible protocols. The format in which audio/video content is encapsulated

also di↵ers depending on the protocol. To achieve a complete solution, the translation

10http://mpeg.chiariglione.org/
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Figure 3.7 – Adapting the media container format

between media container formats must also be taken into account. The most important

factors that led to the decision to separate this part from the protocol translation model

are: the much higher complexity of multimedia packets, the dependence relation between

messages (order, timing, fragmenting), the bu↵ering requirements, and the multiplexer

logic required to interleave multiple media tracks inside one packet/message.

We further divide the media container adaptation in four distinct steps: sample frag-

menting, fragment packaging, multiplexing and message packaging. The process of adapt-

ing a stream composed of two tracks (one audio and one video) is sketched in Figure 3.7.

Each of the four phases is defined by the developer using a DSL to describe multimedia

containers, di↵erent than the ones used for protocol description. Similarly to the generation

of protocol translation plug-ins, the description of the multimedia container adaptation is

compiled to be deployed to designated platforms. To simplify the description, a number

of media packet-related parameters are exposed through the DSL. Parameters include:

the length of the media payload, media encoding, fragmenting flag, sampling frequency,

sequence number, inner frame sequence number and first/last fragment flag. The compo-

nents for protocol description and container adaptation are considered to be independent,

thus allowing, for example, a protocol to choose between multiple supported data formats.

The Media Container Adaptation middleware component (see Figure 3.1) parses real-time

input and produces elementary stream samples for audio and frames for video. These

samples are then composed into the destination multimedia container format.

Because we may use a real-time protocol for transporting multimedia data, the problem

of timing should also be taken into account. To do so, we add a time-stamp reference to

each packet resulting from any of the four phases of media format adaptation. Fragments

of one frame share the same time-stamp information, while messages composing multiple

frames contain the time-stamp of the first frame and their duration. The time required for

a frame to pass through all of the phases required by the format, should not exceed the

sampling interval of the content. Failing to assure this property can cause the client to
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run out of bu↵ered data, resulting in playback stalls. In order to prevent such behaviour,

frames are intentionally dropped such that the output of the conversion is completed at

the right time to assure a fluent playback.

The fragmenting step defines the way large audio or video samples are divided into

smaller segments according to the limits imposed by the streaming protocol, by the media

container or by the network configuration. For instance, in the case of MPEG-TS, the

samples are split into fragments which are inferior in size to 184 bytes, such that they can

be correctly contained inside the standard 188 byte packets. For RTP, fragmenting follows

the standard RTP Payload Format depending on the codec used (for instance, the one

described in [92] for the H264 video codec). The fact that protocols like RTP encapsulate

elementary samples di↵erently depending of the codec used, leads us to believe that using

a modular Domain Specific Language, like the one we are proposing, simplifies the task of

enabling interoperability between multimedia container formats.

In the case where media content is composed of multiple tracks (i.e., one video and one

audio track), two separate fragmenting units are used. The number of fragments created

from single frames is variable. Each fragment contains a reference to the time-stamp of its

originating frame. The time required for fragmenting one frame should never exceed the

sampling interval of the content. In case this requirement can not be respected, the quality

of the stream is degraded by dropping frames.

In Listing 3.2 we give a fragmenting description for the RTP Container Format and in

Listing 3.3 we give another fragmenting description for the MPEG-TS Container Format.

In both cases, the description begins with the assignment of two attributes: (i) the trackid

which is a unique identifier for a multimedia track, knowing that a stream can include

multiple audio, video and data tracks, and (ii) the type of the track which is currently

limited to the values audio, video and data. Further, the description includes a sequence

of fragmenting methods. We support two methods: data format and data length. The

first allows fragmenting one video frame or one audio sample depending on a data pattern.

This is the case in Listing 3.2, where a H264 frame may contain multiple Network Access

Layers (NAL) units. Each NAL unit is prefixed by the sequence 00 00 00 01 (given here

in hexadecimal). A second method of fragmenting frames, which we call data length,

sets a maximum size for each fragment. This kind of fragmenting is useful when the

multimedia container format uses a fixed package size, as it is the case for MPEG-TS or

when limiting the packet size can increase throughput. The latter is commonly used for

the RTP format and allows RTP messages which are sent over UDP to avoid datagram

fragmentation (i.e., one fragment can be sent in one transmission unit of the underlying

network protocol stack). The value attribute of a data length Method element specifies

the value to be used for determining the fragment size. The most frequent case in practice
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is fragment packaged length which signifies the length of a fragment after the packet

headers were added at the fragment packaging step. Because these headers can be variable

in size, a developer is unable to specify this value statically. Notice that in Listing 3.2 we

combine the two methods and apply them in sequence based on the order attribute.

1 <Fragmenting trackid="1" type="video">
2 <Method type="data_format" order="1">
3 <Block name="nal_unit">
4 <!-- A H264 frame may contain multiple NAL units -->
5 <Field name="nal_unit_start" value="0x00000001">
6 <InputRange startbyte="0" bytelength="4"/>
7 </Field>
8 <Field name="nal_unit_type">
9 <InputRange startbyte="4" bytelength="1"/>
10 </Field>
11 <Field name="nal_unit_data">
12 <InputRange startbyte="5" bytelength="+"/>
13 </Field>
14 </Block>
15 <ContentRule type="repeat($nal_unit)" value="+"/>
16 </Method>
17 <Method type="data_length" value="fragment_packaged_length" order="2">
18 <!-- Conforming to a Maximum transmission unit (MTU) of
19 1400 bytes to avoid datagram fragmentation. -->
20 <ContentRule type="less_than()" value="1400B"/>
21 </Method>
22 </Fragmenting>

Listing 3.2 – RTP Container Format. Fragmenting phase for the H264 codec.

1 <Fragmenting trackid="1" type="video">
2 <Method type="data_length" value="fragment_packaged_length">
3 <ContentRule type="less_than()" value="188B"/>
4 </Method>
5 </Fragmenting>

Listing 3.3 – MPEG-TS Container Format. Fragmenting phase.

The frame layer packaging stage adds/parses individual packet headers. This trans-

formation conforms to [87] for RTP packets and [93] for MPEG-TS. Depending on the

protocol, the resulting packets are passed to the multiplexer or sent directly to the proto-

col translator. In Listing 3.4 we give a fragment of the DSL description for the packaging

phase of the RTP container format and a H264 video track. Each field of a fragment layer

packet is described using the Field element. A field includes a name, a template value,
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an InputRange and optionally a Rule. The template value allows setting the data of a

field when messages need to be composed, but it is also used when parsing messages in

combination with a selection Rule. The Rule element is a rather generic component of

the DSL. At the packaging phase we are particularly interested in selection rules, which

allow defining di↵erent parsing/composition strategies depending on various parameters.

For instance, in Listing 3.4 line 24 the template value for the field nal ref idc is set to the

binary value 11 whenever the $nal unit type has the value 5, 7 or 8. When in packaging

mode (i.e., packaging a fragment, as opposed to unpacking a fragment) the $nal unit type

is assigned during the fragmenting phase (see Listing 3.2), while when in unpacking mode

the same variable is assigned when the rtp nal unit type field is parsed (see line 28 of

Listing 3.4).

The multiplexing phase assures time-division multiplexing for a set of given frag-

ments or frames of multiple audio, video or data tracks. Depending on the format, the

multiplexing is done at a frame level or at a frame-fragment level. In order to achieve

multiplexing at frame level, phase one of the adaptation is skipped. This phase outputs

only at a given time or data limit. Such a limit is necessary to be able to produce media

fragments of specified duration or size. The split is always done such that no reference

between frames is lost.

The message layer packaging transformation adds extra headers or packets, such

that the resulting fragment is recognised as valid by standard client protocol implementa-

tions. The syntax and semantics of this part of the DSL is rather similar to the fragment

layer packaging part.

Many existing media container formats also contain a number of specific fields which

are particularly hard to model. One example is the MPEG2 Transport Stream [93], which

requires a 32-bit cyclic redundancy check value to be added to the Program Association

Table package. In such a case we o↵er the possibility to add function “hooks” inside the

DSL media container description. The compiler uses these to generate function templates,

that developers can later implement.

3.3.3 Assuring the validation of timing constraints

Timing is an important dimension for assuring interoperability between streaming proto-

cols. Message timing is not currently addressed in the Connect Mediator model. This

is because most protocols have loose requirements with respect to message timing, with

the sole role of assuring that opened network connections (which consume resources such

as processing time and memory) do not persist indefinitely. Such enforced time-out events

(e.g., the default connection timeout for persistent connections of Apache 2.0 httpd server
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1 <Packaging trackid="1" type="video">
2 <Packet name="rtp_video">
3 <Rule type="select_fragment()">any</Rule>
4 ...
5 <Field name="SequenceNumber" value="$sequence_number">
6 <InputRange startbit="16" bitlength="16"/>
7 </Field>
8 <Field name="Timestamp" value="$timestamp_90KHz">
9 <!-- Sampling timestamp of the content. A 90 kHz clock rate MUST be used. -->
10 <InputRange startbit="32" bitlength="32"/>
11 </Field>
12 ...
13 <Field name="Payload" value="$track_id">
14 <!-- RTP Payload Format for H.264 Video. See RFC6184 -->
15 <InputRange startbit="96" bitlength="+"/>
16 <Field name="forbidden_zero_bit" value="0b">
17 <InputRange startbit="0" bitlength="1"/>
18 </Field>
19 <Field name="nal_ref_idc" value="10b">
20 <InputRange startbit="1" bitlength="2"/>
21 </Field>
22 <Field name="nal_ref_idc" value="11b">
23 <!-- a keyframe, a sequence parameter set or a picture parameter set -->
24 <Rule type="select_fragment()">$nal_unit_type == 5 ||
25 $nal_unit_type == 7 || $nal_unit_type == 8</Rule>
26 <InputRange startbit="1" bitlength="2"/>
27 </Field>
28 <Field name="rtp_nal_unit_type" value="$nal_unit_type">
29 <!-- Single NAL unit packet -->
30 <InputRange startbit="3" bitlength="5"/>
31 </Field>
32 <Field name="rtp_nal_unit_type" value="28">
33 <!-- Fragmented NAL unit packet -->
34 <Rule type="select_fragment()">fragmented(2)</Rule>
35 <InputRange startbit="3" bitlength="5"/>
36 </Field>
37 <Field name="FuHeader" value="28" optional="true">
38 <Rule type="select_fragment()">fragmented(2)</Rule>
39 <InputRange startbit="8" bitlength="8"/>
40 <Field name="FragmentStart" value="$fragment_first(2)">
41 </Field>
42 <Field name="FragmentEnd" value="$fragment_last(2)">
43 </Field>
44 <Field name="ReservedBit" value="0b">
45 </Field>
46 </Field>
47 <Field name="FragmentPayload" value="$fragment_data"/>
48 </Field>
49 </Packet>
50 </Packaging>

Listing 3.4 – RTP Container Format. Packaging phase for the H264 codec. Parts of the
description are omitted. The full description can be found in the Appendix B.4
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Figure 3.8 – Sequence diagram illustrating the merge of two RTSP-to-HLS Mediators

is 15 seconds 11) do not necessarily pose an obstacle to interoperability.

On the contrary, real-time streaming protocols impose strict requirements on packet

arrival and also on the inter-arrival variation (or jitter) as a means to assure the quality

of service. This is why any processing done in-the-middle by a mediator should treat such

requirements explicitly. To assure real-time streaming, multimedia packets (Figure 3.2,

Elementary Stream) must be processed with respect to timing. First, packets which arrive

late or are delayed during processing should be dropped at any phase by the mediator.

This QoS policy takes place inside the Media Parser and Media Composer.

In the RTSP-to-HLS example, mediation is done between a real-time protocol and a

non real-time protocol. This application driven heterogeneity leads us to the second timing

related challenge of streaming protocols, which we call application bu↵ering requirements.

Bu↵ering techniques di↵er depending on the streaming protocol either being done on the

11http://httpd.apache.org/docs/2.0/mod/core.html#keepalivetimeout
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client side, on the server side or both. This is why bu↵ering requirements of each protocol

should be managed by the mediator. In the RTSP-to-HLS example, we see that the first

request of the HLS client !Index() (Figure 3.5) triggers an ?Index(s, d, a1, a2, .., an) response

from the server. The fields of this message are: the sequence number s, the duration d

in seconds of each chunk, and a list of stream chunk URLs a1, a2, .., an. The mediator is

free to choose any chunk duration, but according to the HLS specification [88] “the client

SHOULD NOT choose a segment which starts less than three target durations from the end

of the Playlist file”. In other words, at least three chunks should have already been cached

by the server (in our case by the mediator) by the time of the Index request. Since the

RTSP server does not bu↵er data, the mediator must assure it, but in this case, delaying

the HLS Index(s, d, a1, a2, .., an) response by three chuck durations will exceed the HTTP

response time-out of the client application.

Based on the Connect Mediator definition the two presented networked systems are

semantically equivalent, that is, there exists a mapping to merge their respective colored

LTS (in Figures 3.3 and 3.4) into a k-colored automaton (represented in Figure 3.5).

However, the Mediator will fail at run-time because the ?Index() request (in Figure 3.5)

will trigger a time-out. This problem was anticipated in Section 4.4.3 of [53] where, in

the case of the Bonjour-to-SLP experiment, mediation presents a 600 percent increase in

response-time while still being low enough not to trigger time-out.

We propose a solution, for solving streaming application heterogeneity with respect

to bu↵ering requirements, based on the principle of locality. The principle of locality is

widely used in many areas of computer science for a number of optimizations of systems,

like: caching, pipelining, instruction prefetch, etc. If bu↵ering (or in the more general

case, a long operation) done by a Mediator triggers a time-out event on one side, the

Mediator should be kept active with the other NS and not take any transition involving

the (disconnected) NS. We first employ the principle of temporal locality. If, shortly after a

first session triggering a response time-out, a second mediation session is initiated between

two NSs, and the systems reach the same protocol state (that previously triggered the

time-out), the two Mediator instances can be merged. By doing so, the time-out will not

occur in the second session, because the first Mediator instance was able to complete the

long operation (multimedia bu↵ering in our case) during the elapsed time. Of course, this

solution also assumes branch locality, that is, the second session between the two NSs

will follow the same transition sequence as the first one. We conclude that reaching an

equivalent state is necessary to merge two Mediator instances.

We illustrate the presented solution for the case of the RTSP-HLS example in the form

of a sequence diagram (in Figure 3.8). The flow of messages used in the sequence diagram

is given by the merged k-coloured automaton in Figure 3.5. At phase 1 the HLS client
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Device Samsung GT-I9000 Google Nexus One iPhone 3G

Role Server Client Client

Platform Android 2.2.1 Android 2.3.4 iOS 4.2.1

CPU 1 GHz (S5PC110) 1 GHz (QSD8250) 412 MHz

Memory 512 MB 512 MB 128 MB

Media framework PV OpenCORE Stagefright AV Foundation

Stream support RTSP RTSP/HLS HLS

Table 3.2 – Mobile devices used in the experiment to assess AmbiStream’s performance.

sends an ( Index()) request to the Mediator. Next, in 2, the Mediator opens a connection

to the RTSP server and initiates a streaming session by the sequence of request-response

messages: Describe, Setup, Play. At this point, the RTSP server will start sending RTP

messages, that will be bu↵ered by the mediator in order to meet the requirements of the

HLS client in terms of duration of the initial stream “chunk”. Because the bu↵ering period

is greater than the response time-out enforced by the client, the HLS client will disconnect

at step 3. We assume that the HLS client will retry to establish the connection by making

an identical request Index() (marked as point 4). This request is treated by a second

Mediator instance, which follows the same transition path, and eventually arriving in the

same system state that triggered the time-out of the client. At this point 6, the Mediator

should verify that merging is possible (i.e., the states are indeed equivalent). Because the

stream “chunks” a1, a2, .., an were pre-bu↵ered by the first Mediator instance, at point 7

the Index(s, d, a1, a2, .., an) response is delivered immediately and not triggering time-out.

AmbiStream was modelled taking into consideration the architecture of modern smart-

phone platforms, such that resource critical operations (e.g., multimedia decoding) are

managed by each platform internally. We prove that automated streaming protocol adap-

tation can be done locally on mobile phone platforms without sacrificing performance or

extensibility. Furthermore, we enable legacy devices to employ unsupported streaming

protocols by using an AmbiStream-enabled device as mediator intermediary. In order to

evaluate the presented solution, we have implemented AmbiStream in Java and Objective-

C and used it on AndroidOS and iOS.

3.4 Implementation and experimental results

The goal of the experiments presented here is to evaluate the overall performance of the

AmbiStream middleware and the achievable stream quality while performing data adap-

tation on mobile devices. The experiments were performed on both Android and iPhone

smartphones.

In both of the experiments presented below, the same set of source media files was used.
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The test files have a duration of 210 seconds, are encoded with a single (H.264-avc video)

track, have a CIF frame-size (352 by 288), and a frame-rate of 30 fps. The test is conducted

for 16 di↵erent bit-rates between 50kbps and 1500kbps using the mentioned file format and

content. Each set of tests is repeated at least three times, so each of the metrics presented

is characterized by 168 minutes of video streaming to each client device. In total, more

than 16 hours of streaming between smartphones were necessary. The mobile phones used

are mentioned in Table 3.2.

3.4.1 Collecting mobile device performance data

We have chosen to favour system-wide metrics to more specific ones (i.e., metrics of the

application process) because we also make use of native system services and because mobile

platforms do not frequently provide equivalent metrics. We use as metrics for device

performance: the total CPU utilization and the system-wide used RAM memory. Quality

of service metrics considered are the packet delay variation (also referred to as inter-arrival

jitter, described in [87]) and packet loss ratio. The quality metrics are only provided for the

case where the protocol is adapted. The values are obtained at the middleware level and

should indicate the maximum bit-rate achievable while still providing satisfactory quality.

The reference test cases, used to compare the overall performance, make use of system

media services directly.

On Android mobile phones, the CPU and memory information is obtained by accessing

the proc filesystem, used as an interface to the operating system kernel on most Linux

based distributions. The logs are stored in the internal memory of both Android phones. To

avoid that the access to the filesystem and data parsing are influencing the final results, the

access to the /proc/stat and /proc/meminfo is done every five seconds, and the same file-

descriptors are reused multiple times until the end of the test. On the iOS platform, system

performance information was collected using the tools integrated with the development kit.

3.4.2 RTSP to HLS between Android and iOS smartphones

The second experiment consists of translating the RTSP protocol to HTTP Live Streaming,

using two di↵erent client platforms: AndroidOS 2.3.4 and iOS 4.2.1. The choice of the

smartphones is motivated by their native support of HLS. This way we can reason about

the overhead introduced by our middleware layer with two di↵erent devices. Contrary

to the first experiment, this one requires data conversion between RTP and MPEG-TS.

MPEG-TS is one of the most used multimedia formats, most notably for digital television.

The conversion from RTP to MPEG-TS requires a large number of transformations, thus
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Figure 3.9 – AmbiStream performance on Nexus One (RTSP)
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Figure 3.11 – Packet loss (HLS)

providing a good impression of achievable on-the-fly conversion limits of media formats on

current generation smartphones.

Because HLS protocol requires the existence of a cached amount of content on the

server-side before a client can connect (and begin playback), while the RTSP protocol does

not, a 30s start-up delay is introduced by the middleware layer to allow protocol translation.

During this period, less memory and CPU are used. To better evaluate the performance of

the devices, we divide the experiment run in four periods (e.g., as shown in Figure 3.10 for

CPU utilisation): (I) the bu↵ering period (only multimedia data adaptation is performed),

(II) the media-player start-up (causes a short increase in CPU usage), (III) the streaming

period (both data adaptation and playback are performed) and (IV) the stream-end (the

source has finished streaming, but the playback is continued until bu↵er depletion). Thus,

only the part (III) of the observation was used to produce the results presented in Figures
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Figure 3.12 – AmbiStream performance on Nexus One (HLS)

3.12 and 3.13.

As expected, the di↵erence in container formats (RTP and MPEG-TS), increases the

overhead of AmbiStream. For Android platform, the tests for bit-rates inferior to 400kbps

(in Figures 3.12a and 3.12b) were discarded due to the existence of a minimal caching

size, requiring a longer start-up delay. While on the Nexus One, the overhead introduced

does not reach a quality limit for bit-rates below 1500kbps, the iPhone 3G is only able to

adapt streams of up to 400kbps. Above this limit, the packet loss (see Figure 3.11) becomes

noticeable and the media-player su↵ers playback stalls. The results on the iPhone are worse

due to the significantly lower processing power and memory (see Figure 3.2). Nevertheless,

according to the mobile platform providers, a 400kbps video bit-rate is considered to be

medium/high quality for smartphones12 13. Considering the results in Figure 3.13b, we see

that the memory usage is decreasing (in the case of AmbiStream) for higher video bit-rates.

This behaviour is normal considering the packet loss (see Figure 3.11).

3.5 Discussion

In this chapter we have identified the challenges raised by the heterogeneity of the streaming

protocols of existing mobile phone platforms. Further, we have introduced the AmbiStream

multimedia-oriented middleware architecture, designed to enable the multi-platform and

multi-protocol interoperability of streaming services. We motivated our design choices with

respect to the Connector architecture using a concrete live streaming interoperability

12https://developer.apple.com/library/ios/technotes/tn2224/_index.html
13http://developer.android.com/guide/appendix/media-formats.html
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Figure 3.13 – AmbiStream performance on iPhone 3G (HLS)

example. Finally, we validated the applicability of the AmbiStream Connector solution

by a series of experiments on two mobile platforms.

The AmbiStream live streaming interoperability solution was designed to function in

fully-distributed environments. This characteristic is vital for the deployment of networked

systems in remote places and a priori unknown environments. A good example of such a

circumstance is presented in [94] as The Joint Forest-Fire Operation, where an number of

systems of key importance (such as IP cameras and UAVs) are enabled with multimedia

streaming capabilities.

Unlike other data adaptation approaches, AnbiStream uses a two layer description of

message formats. We recall that one layer corresponds to messages exchanged by the “con-

trol” part of the protocol, while the other corresponds to the multimedia data formats.

While this approach is e�cient for multimedia streaming protocols it is not applicable

to other classes of multilayered data formats. For this reason, in what follows, we in-

vestigate the mechanisms by which pre-compiled (third-party) message translators can be

reused and combined. As opposed to DSL-based approaches in general, the composition

of pre-compiled message translators presents two important benefits. First, the reuse of

pre-existing translators for standard message formats relieves developers of the task of

hand-coding them directly or using a DSL. Secondly, this approach does not impose any

restrictions on the number of message encapsulation layers, and it is agnostic to the domain

of the protocol. The later argument does not invalidate in any way the AmbiStream ap-

proach, because message translators still have to be hand-coded whenever the format is not

standardised or when an implementation is unavailable. In such a case the AmbiStream

approach represents an e�cient means of enabling data adaptation for technically incom-
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patible streaming protocols.
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Message translation is challenged by the encapsulation of data according to di↵erent

middleware protocols, e.g., SOAP message encapsulated within HTTP for Web Services.

As a result, implementing message translators requires dealing with multiple message for-

mats and identifying the parts of the message corresponding to each protocol. What is

needed is a declarative solution that facilitates the composition of multiple, and potentially

heterogeneous, translators while taking into account the data dependencies between the

application and middleware layers.

As an example, consider the message depicted in Figure 4.1a. The message combines

two distinct data representations: 1 a text-based message part that corresponds to the

HTTP protocol, and parts 2 & 3 that use XML serialization. In the case where individ-

ual translators for each independent message format are available (e.g., for parts 1 , 2 and

79
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POST /api/default.asmx HTTP/1.1
Host: www.regonline.com
Content-Type: text/xml
Content-Length: 340
SOAPAction: "http://www.regonline.com/api/GetEvents”
APIToken: CC0TRrU5mhws9IRZIECHiMuahA+OZuaxuV

<?xml version="1.0" encoding="utf-8"?>
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/”>
   <s:Body>
      <GetEvents xmlns="http://www.regonline.com/api”>
         <filter>Title.Contains(”ConnectTest")</filter>
         <orderBy>Title ASC</orderBy>
      </GetEvents>
   </s:Body>
</s:Envelope>

1

2

3

(a) Message sample

http-request

body

[bin]

head

headers...host

soap-envelope

body

[xml]

getevents

orderbyfilter

1 2 3

(b) AST

Figure 4.1 – A composed message sample and its associated AST

3 ), “glue code” has to be provided in order to compose them. However, to the best of our

knowledge, existing methods for the composition of parsers are highly specific to a given

parsing method or algorithm (e.g., grammar composition [95], parser-combinators [96],

parse-table composition [76]) and cannot be easily generalized. As a result, existing meth-

ods do not allow for the systematic composition of message translators out of third-party

translators, thereby requiring developers to implement hardcoded adapters in order to

process messages.

The problem of composing message translators is related to the composition of the

associated data structures (or inference of composite data types). The composition of

data structures relative to the composition of message translators ensures that composite

translators can be seamlessly (or even automatically) integrated with existing systems.
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AST composition can be arbitrary, but it should not result in the loss of information.

In other words, the AST transformation applied for the composition must be injective,

thus invertible. For instance, when parsing the message in Figure 4.1a using a composite

translator we would normally obtain three separate data structures, as shown in Figure 4.1b

in the form of Abstract Syntax Trees (AST).

In the context of this work, we are particularly interested in the substitution class of

AST transformations, that is, the substitution of a leaf node by a sub-tree. This allows us

to represent encapsulated message formats in a hierarchical manner. In Figure 4.1b, we

exemplify such a case of substitution using dotted arrows, as follows: (i) the node labeled

[bin] in AST 1 is substituted by AST 2 , and (ii) the node labeled [xml] in AST 2

is substituted by AST 3 . While other compositions are possible (e.g., AST 2 could

alternatively be appended to the root of AST 1 ), this particular one closely resembles

the way most protocols arrange encapsulated data, therefore being the most intuitive.

The tree transformation mentioned above can be easily expressed by adapting already

existing mechanisms for XML, such as the XSLT transformation language in combination

with the XPath query language. In general, defining the composition of ASTs is rather

straightforward. However, inferring the data structure resulting from an AST composition

is more complex Indeed, it is already known that for an arbitrary tree transformation, the

problem of type inference may not have a solution [7]. While the problem of type inference

is quite common in the domains of functional programming languages [9, 10] and XML

technologies [7, 8, 97], we are not aware of any solution capable of type inference for the

substitution class of tree compositions although this kind of transformation is very common

in practice (most notably in the XML transformation language XSLT).

The contribution of this Chapter is twofold:

1. Starting from the premise that “o↵-the-shelf” message translators for individual pro-

tocols are readily available in at least an executable form, we propose a solution for

the automated composition of message translators. The solution simply requires the

specification of a composition rule that is expressed using a subset of the navigational

core of the W3C XML query language XPath [98].

2. Then, we provide a formal mechanism, using tree automata, that generates an asso-

ciated AST data-schema for an arbitrary translator composition. This contribution

enables the inference of correct data-schemas, relieving developers from the time-

consuming task of defining them. On a more general note, the provided method

solves the type inference problem for the substitution class of tree compositions in

linear time on the size of the output. The provided inference algorithm can thus be

adapted to a number of applications beyond the scope of this work, such as XML
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Schema inference for XSLT transformations.

There is already a number of systems that can benefit from translator composition

such as: Packet Analysers, Internet Tra�c Monitoring, Vulnerability Discovery, Appli-

cation Integration and Enterprise Service Bus, etc. As a result, our approach can have

an immediate impact knowing that current implementations rely on tightly coupled and

usually hardcoded message translators, to the detriment of software reuse.

The next section provides the background of our research focusing on challenges related

to message parsing and translator composition Then, Section 4.1.2 details our approach to

the systematic composition of message translators, while Section 4.2.2 introduces a method

to automatically generate AST data-schemas (formalized as Hedge Automata) associated

to a given composition of translators. Section 4.3 assesses our prototype implementation

and its benefits. Finally, Section 4.4 summarises the contributions of this chapter.

4.1 Message parsing and composition

We remind that a message translator assures two functions: (i) parsing a stream of bits or

characters, representing a network message in order to produce an AST, and (ii) processing

an AST to produce a network message in the format expected by a given component.

Most existing approaches focus on the parsing problem, which is, in the general case, the

hardest. In Chapter 2 we discussed approaches that are used to implement or generate

message translators. In what follows, we analyse existing approaches and discuss additional

challenges regarding the composition of message translators. We focus on the problem of

parsing, that is generally the most complex.

Parser composition is a di�cult task for two reasons: (i) parsers are monolithic com-

ponents that cannot be easily composed without regenerating them from the source gram-

mar [76] (implying that they are generated from a context-free grammar or equivalent

formalism, and not fully hand coded) and (ii) it is known that combining two arbitrary

unambiguous grammars may result in an ambiguous output grammar, while the problem

of ambiguity detection for context-free grammars is undecidable [77].

While parser generators allow the extensible or even incremental [99] generation of

parsers, they lack the ability of integrating and composing already existing parser imple-

mentations. The problem of parser composition in the context of CFG-based generators

has already been addressed by Schwerdfeger et al. [76,95] with a precise focus on extensible

programming languages. A related approach, known as combinatory parsing [100], allows

modular parser composition through a set of primitive operations. These operations can

define parser composition with respect to the parser’s input e.g., sequential composition,
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alternative parsing, optional parsing and repetition, or by applying a transformation to a

parser’s output (i.e., result-conversion).

However, CFGs are a non-compositional formalism in the sense that compositions re-

quire in-depth modification of the base CFG derivation rules. The same can also be said

about combinatory parsing approaches [100], since the building blocks (e.g., sequence,

choice, repetition) of parser combinators map one-to-one to the constructions (i.e., deriva-

tion rules) of a CFG.

DSL and IDL-based parsers do not support composition and require messages to be

defined in a monolithic way, which can easily become unmanageable for complex protocols.

All the aforementioned approaches are specific to a parsing method. These are insu�-

cient for the case of composite message parsing as, in real life situations, protocol stacks

may use a mix of message formats that originate from custom-made, CFG, DSL and IDL

generators. Hence, message parser composition must deal with the composition of hetero-

geneous message syntaxes and hence parsers.

4.1.1 Composing heterogeneous message syntaxes

In a composite message format, ambiguity can occur between the outer (encapsulating)

message format, called host, and (encapsulated) message format, called extension. Parsing

ambiguity is known to be a theoretically hard problem [77] but in communication protocols,

several solutions are commonly implemented to deal with it:

• Context-aware parsing [95,101] refers to methods and algorithms in which the scanner

uses contextual information to disambiguate lexical syntax. This functionality allows

a parser to carry out an alternative interpretation for the extension message. When

they are ignored, the extension message can later be parsed by a second parser for that

part of the message (e.g., CDATA escape sections in XML documents). The context

change may be triggered by di↵erent mechanisms like escape strings (or characters),

or implicitly at predefined locations (e.g., SOAP envelope messages can only contain

XML extensions, which may only be placed inside the <head> or <body> elements).

• Lexical disambiguation. Escape characters or character replacement can be used to

resolve conflicts between the grammars of the host and extension. This method allows

input lexemes (i.e., character sequences) from the base language to also appear in

the extension language without causing ambiguities, which would otherwise result

in parsing errors. For example, the string Hello <World> can be transformed into

Hello &lt;World&gt; to disambiguate it from XML markup syntax.
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Figure 4.2 – Illustrative example of the four classes
of syntax composition

• Re-encoding. Extension messages may also be entirely transformed into a di↵erent

representation that does not conflict with the host syntax. This transformation

can be done (i) by the host parser, in which case the behaviour is similar to escape

sequences, (ii) by the extension parser, or (iii) by a separate component. For example

Simple Mail Transfer Protocol (SMTP), which uses only text encoded messages, uses

Base64 binary-to-text re-encoding to include binary data within SMTP messages.

In the following, we present the classes of syntax composition based on the principles

of context-aware parsing. Figure 4.2 shows a schematic example for each class.

• Sequential inclusion. It is common in many protocols (e.g., protocols part of the

TCP-IP stack, HTTP, etc.,) to compose messages by simply arranging the content

in a sequential manner (e.g., one parser analyses a part of the input, and returns

the remaining part in its result). In Figure 4.2a, we observe that the parsing con-

text a a (corresponding to the host syntax) ends before the parsing context b b

(corresponding to the extension syntax) begins.
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• Bounded stratified inclusion. Commonly, a middleware protocol parser is syntacti-

cally “unaware” of encapsulated messages, which are treated as a collection of binary

data or arbitrary character strings. Because of this containment property, we can

state that whenever two message parsers are composed to handle an encapsulated

message format, they specialize (or restrict) the set of messages initially accepted.

Thus, bounded stratified inclusion is a special case of syntax composition, which may

only restrict the expressiveness of the base language, in the same sense explained by

Cardelli et al. in [102]. Figure 4.2b illustrates such an example, where data associ-

ated with an extension syntax (shown in blue) is included at a specific point in the

data of a message associated with a host syntax (shown in white). Although context

b b is included in a a , they are properly delimited such that this message may be

parsed even in the presence of lexical ambiguity between tokens of the host message

and tokens of the encapsulated message.

• Bounded composition represents a generalisation of the case above where the parsing

context is not strictly delimitated. This means that lexemes from the host syntax can

appear alongside lexemes of the extension syntax. Sections of the data block where

this composed syntax is used (exemplified using hatched blue in Figure 4.2c) can be

parsed neither by the host parser, nor by the extension parser. Another di↵erence

from the case above is that this class may include both syntax extensions, which allow

expanding the initial language with new message types, as well as syntax restrictions,

which introduce intentional limitations on the expressiveness of a language.

• Mutually-recursive syntax composition refers to the case where the syntax of two

distinct message formats can mutually be included inside one another. A technique

commonly used to support this case of composition is recursive descent parsing (in

particular implemented by parser combinators [96,100]), where a composed parser is

defined from a set of mutually recursive procedures. This class of syntax composition

has been extensively studied in the domain of extensible programming languages [76,

95], where parser composition allows extending the syntax of a host programming

language, for instance Java (e.g., context a a in Figure 4.2d), with an extension, such

as SQL (e.g., context b b ). Intuitively, the syntax is mutually-recursive because SQL

queries can appear within Java expressions, and, at the same time, Java expressions

can appear within SQL queries, allowing an unbounded chain of compositions. The

same cannot be said about messages exchanged by protocol stacks where mutually-

recursive compositions are unlikely given the fixed number of layers.

As far as we know, in existing protocol stacks, messages are encapsulated either using

(a) sequential inclusion, or (b) bounded stratified inclusion. We further show that for



86 4.1. MESSAGE PARSING AND COMPOSITION

these cases, heterogeneous parsers can be composed as black box functions (i.e., without

requiring in-depth modification of the already existing parsers).

4.1.2 Message translator composition

Translators interpret network messages to produce a data structure that corresponds to

the content found in the message. In the following sections, we model data structures as

Abstract Syntax Trees (AST). The formal foundation of such trees is represented by finite

ordered trees.

Definition 6 (Finite ordered tree) A finite ordered tree t over a set of labels ⌃ is
a mapping from a finite prefix-closed set of positions Pos(t) ✓ N

⇤ into ⌃. We denote
by N the set of positive integers. We denote the set of finite strings over N by N

⇤.
A finite (ordered) tree t over a set of labels ⌃ can also be defined as a partial function

t : N⇤ ! ⌃ with domain written Pos(t) satisfying the following properties:

— Pos(t) is finite, nonempty, and prefix-closed.

— if t(p) 2 ⌃, then {j|pj 2 Pos(t)} = {1, ..., k} for some k � 0.

Further properties regarding finite ordered trees are found in [103].

Definition 7 (Message translator) A message translator comprises a parsing func-
tion P : M ! T (⌃) that takes as input a bit-string and outputs a tree, and the inverse
C = P

�1 where:

— M ✓ {0, 1}⇤

— T (⌃) is a set of finite ordered, unranked, directed, and rooted trees labelled over
the finite alphabet ⌃ = ⌃0 [ {�, 0, 1}, where ⌃0 is a set of labels, not including
the set of binary labels {0, 1}, neither the binary-subtree label �.

Since elements of T represent ASTs, arbitrary data can be included only as leaf nodes,

in the form of an ordered sequence of binary labels, by convention, under a �-labeled node.

Such a structure (e.g., � ! 1011...) is equivalent to a bit-string b 2 {0, 1}⇤. We use this

convention to avoid having an infinite label alphabet, such as ⌃0 [ {0, 1}⇤, that would be

outside the scope of regular tree automata theory.

We detail our method of composing message translators in the form of two block dia-

grams, corresponding to the composition of, respectively, parser functions (in Figure 4.3)

and the inverse composer functions (in Figure 4.4).
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Informally, the parser composition method illustrated in Figure 4.3 works as follows.

First, the stratified input message is parsed using the parser P1, which corresponds to the

first strata of the message. The user-provided query Q is then used to select positions

in the resulting AST which correspond to encapsulated messages (of a second format).

Then, the AST of the composite message is obtained by substituting in the initial tree

every position that belongs to an answer to Q by trees resulting from the parsing of the

encapsulated messages using P2.

To better exemplify the translator composition mechanism, consider the stratified mes-

sage presented in Figure 4.1 (the leaf nodes containing message data values are omitted).

The first strata (or layer) 1 of the message consists of a HTTP request message. By pass-

ing this message through a HTTP translator, we obtain an AST representation similar to

Tree 1 . Knowing that the sub-tree [bin] attached to the body node contains (encapsulates)

SOAP message syntax we may pass this data to a SOAP translator to be interpreted. To

support this kind of composition for all trees of the form of Tree 1 , which may be an

infinite set, we must generalize the composition mechanism. To do so, we can define the

node-selection requirements as a unary (or node-selecting) tree query [97].

In the context of our work, we consider a tree-query to be a subset of the nav-

igational core of the W3C XML query language XPath [98], which we represent for-

mally in Section 4.2 as tree query automata. Using the XPath syntax, we can write

THTTP [/request/body/] ! TSOAP , meaning that the translator THTTP is composed with

translator TSOAP such that, for a given composite message, all nodes selected by the query

/request/body/ are substituted with an AST corresponding to TSOAP . While this ex-

ample is trivial, more complex queries are supported. For instance, defining the com-

position between a HTTP translator and a MIME-type translator can be specified as

THTTP [/request/head/header[key =0
Content � Type

0]/value] ! TMIME, making use of

an XPath predicate that enables the selection of a node that contains a specific value.
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Figure 4.3 – Mechanism for composing parsers

Formally, we introduce the following definition for parser composition:

Definition 8 (Parser composition) Given two message parsers P1 : M1 ! T1(⌃1),
P2 : M2 ! T2(⌃2) and a user-defined tree query Q for t1 2 T1(⌃1), we define the
composed parser P12 : M12 ! T12(⌃1 [ ⌃2) as follows (see Figure 4.3):

— For a stratified message m 2M1, we apply the query Q on t1, where t1 = P1(m).

— The answer to Q for t1 is S = {s1, ..., sn}, the set of selected positions in the tree
t1, with n � 0.

— For each si 2 S, we compute ti+1 =BC (ti, P2(M (ti, si)), si) where:

— 4(t, s) denotes the selection of a bit-string from t at position s;

— BC (t, t0, s) denotes the replacement in t of a bit-string at position s by t

0.

— The composed parser function P12 : M12 ! T12(⌃1 [ ⌃2), with M12 ✓ M1, is
defined as P12(m) = tn+1 (tn+1 = t in Figure 4.3).
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Figure 4.4 – Mechanism for composing un-parsers

Similarly, we have the following definition for un-parser (or composer) composition, which
is illustrated in Figure 4.4:

Definition 9 (Composer composition) Given two message composers C1 :
T1(⌃1) ! M1, C2 : T2(⌃2) ! M2 and a user-defined tree query Q for t 2 T1(⌃1),
we define the composed composer C12 : T12(⌃1 [ ⌃2)!M12 as follows.

— C12(t) = C1(tn), where M12 ✓M1

— t0 = t, ti+1 =IJ (ti, C2(N(ti, si)), si) where:

— N(t, s) denotes the selection of a subtree from t at position s

— IJ (t,m, s) denotes the replacement in t of a subtree at position s by the
bit-string m.

In the compositions of both functions, we consider that the elements of the query result

S = {s1, ..., sn} are prefix-disjoint, meaning that for any position si of the form si = sjs
0,

then i = j. This property ensures that the selection 4(t, s) and replacement BC (t, t0, s)

operations for a query result S on a tree t can be performed in an arbitrary order.

We observe that the aforementioned composition method is part of a wider class

of result-conversion mechanisms. Most notably, the Scala (http://www.scala-lang.

org/) programming language implements a result-conversion parser combinator. A result-
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conversion combinator, denoted P^^f , is defined as a higher-order function, which takes

as input a parser function P and a user-defined function f that is applied on the result of

P . The modified parser succeeds exactly when P succeeds. This method is particularly

relevant to our case because it is purely defined on the output data type, and thus it does

not require any knowledge about the input message syntax. However, in our case, the

function f is not arbitrary, since it is represented by a user query.

By applying the composition mechanism defined above, we are able to compose message

translators as black-box functions, which, in turn, allows the translation of composite mes-

sages (for the case of stratified syntax inclusion) to and from a uniform tree representation.

However, the constraints on the structure of this tree representation (i.e., the data-schema)

are unknown. In the next section, we provide a formal mechanism by which we are able to

automatically generate a data-schema for the resulting ASTs.

4.2 Inferring the abstract data types of composite
message translators

4.2.1 Background on type inference

As far as we know, the problem of inferring the output schema (or the data type) of an

arbitrary tree transformation has not yet been solved, while it is known that, in general, a

transformation might not be recognizable by a schema [7].

In [7], Milo et al. propose an approach capable of type inference for queries over

semistructured data, and in particular XML. However, the query mechanism for node se-

lection that is proposed is only capable of vertical navigation, meaning that the language

does not allow conditions on the ordering of nodes (horizontal navigation), which is par-

ticularly required for selecting ordered nodes of an AST. In [8], Papakonstantinou et al.

propose an improved approach that can infer Data Type Definitions (DTDs) for views of

XML documents. In their work, views are in fact subtrees that are selected using a query

language capable of both vertical and horizontal selection conditions. The solution can be

easily generalized to select views from multiple trees/sources. However, it is not capable of

merging the results from di↵erent XML languages, as it is required in the case of translator

composition.

CDuce [9] is a language for expressing well-typed XML transformations. Specifically,

CDuce can automatically infer non-recursive data types corresponding to a provided XML

transformation. CDuce does not propose a high-level tree composition mechanism, but

rather provides a language where XML queries and transformations can be implemented

using a low-level form of navigational patterns that are non-compliant with the XPath
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standard. In [10], an extension was provided, which essentially allows implementing XPath-

like navigation expressions by pattern matching and to precisely type them. While this

improves the query mechanism, it does not solve the limitations of the transformation

mechanism which, in our understanding, is limited to disjoint trees concatenated in the

result. We mention that the problem of type inference is related, but di↵erent to the

problem of static type checking for XSLT transformations [97,104], which intends to verify

that a program always converts valid source documents into also valid output documents

for the case were both input and output schemas are known.

Considering the above, none of the approaches solve the AST type inference problem

for the substitution class of transformations, which applies whenever two or more message

translators are combined.

4.2.2 Data-schema composition

Data-schema languages share unranked tree automata as theoretical foundation [105]. In

what follows, we use top-down non-deterministic finite hedge automata [106] (or, equiva-

lently, hedge grammars) to model AST languages. We first recall below basic definitions

associated with tree automata.

Definitions

Definition 10 (NFHA) A top-down non-deterministic finite hedge automaton (NFHA)
is a tuple A = (Q,⌃, Q0,�) where Q is a finite set of states, ⌃ is an alphabet of sym-
bols, Q0 ✓ Q is a subset of accepting states, and � is a finite set of transition rules of
the type q ! a(R) where q 2 Q, a 2 ⌃, and R ✓ Q

⇤ is a regular language over Q.

Further, we introduce the definition of A-derivations, which we use as a helper mecha-

nism to describe the process of tree evaluation by a hedge automaton.

Definition 11 (A-derivations) Given an automaton A, A-derivations are defined
inductively as follows. A tree r 2 T (Q) with r = q(r1 . . . rn) is a derivation from a
state q 2 Q for a tree t 2 T (⌃) with t = a(t1 . . . tn) if:

— There exists a transition rule q ! a(R) 2 � such that q1 . . . qn 2 R,

— For all 1  i  n, ri is an A-derivation from qi 2 Q for ti.

A tree t 2 T (⌃) is accepted by an automaton A if there exists a derivation from a state

q0 2 Q0 for t.
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request
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versioncode

(t2)

response

bodyhead

versioncode

(t3)

Figure 4.5 – Sample ASTs (leaf and � nodes omitted with the exception of the body part
of t1)

Example 1 (NFHA) Consider the automaton Ab = (Qb
,⌃b

, Q

b
0,�

b) that recognizes the

language L(Ab) = {t0, t1, t2, t3} containing the trees shown in Figure 4.5. The automaton

is defined as follows:

— Q

b = {q0, q1, ..., q10}, Qb
0 = {q0, q1},

— ⌃b = {request, response, head, body, ...} [ {�, 0, 1},

— �b = {q0 ! request(q3 q2?), q1 ! response(q4 q2?), q2 ! body(q10),

q3 ! head(q5 q6 q7), q4 ! head(q8 q9), q5 ! method(q10), q6 ! url(q10),

q7 ! host(q10), q8 ! code(q10), q9 ! version(q10), q10 ! �(q�)},
q� is a state that accepts any sequence of {0, 1} leaves.

The Ab-derivation for the tree t0 = requesthheadhmethod url hostii (shown in Figure 4.5)

is the tree r = q0hq3hq5hq10hq�ii q6hq10hq�ii q7hq10hq�iiii, where r 2 T (Qb), thus, we can say

that t0 is accepted by Ab.

While data-schemas are formalized as NFHA, we introduce a second type of tree au-

tomata, which we use to formalize tree queries. Informally, a query automaton is a tree

automaton with the attachment of a set of “marked” states that are used to model node-

selection.

Definition 12 (Query NFHA) A query NFHA is a pair Q = (A, Qm) where A is
a top-down NFHA over a set of states Q, and Qm ✓ Q is a subset of marked states.
Given a query Q = (A, Qm) and a tree t, a set S of positions in t is an answer to Q
for t if there exists an A-derivation r for t such that S is the set of positions of all
nodes in r that are in Qm.

Example 2 (Query NFHA) Consider the tree query Qp = (Ap
, Q

p
m), which applied

on trees from L(Ab), selects the node labeled body that is a child node of the tree root.
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Intuitively, this query should return an empty set of positions S for the trees t0 and t2,

and a single position when applied on t1 and t3. This query is defined as follows:

— Q

p = {q0, q1, q2, q>}, Qp
0 = {q0, q1}, ⌃p = ⌃b, Qp

m = {q3},

— �p = {q0 ! request(q>, q2), q1 ! response(q>, q2), q2 ! body(q3),

q3 ! �(q�)}, q> is a state which accepts all trees.

Tree automata composition

We now present a method for composing two hedge automata Ab and Ae based on the

composition rules defined using a query NFHA Q. The resulting automaton A recognizes

a tree language corresponding to the substitution defined by Q.

Let Q = (Aq
, Qm) be a query NFHA, where Aq = (Qq

,⌃b
, Q

q
0,�

q).

Given two trees t

b (base tree) and t

e (extension tree), we note t

b[Q  t

e] the tree

obtained by substituting t

e in t

b at every position that belongs to an answer to Q for tb.

Given two sets of trees T

b and T

e, we note T

b[Q  T

e] the set of trees of the form

t

b[Q t

e] where t

b 2 T

b and t

e 2 T

e.

Since the composition performs the intersection between the base automaton and the

query, we can suppose without loss of generality that the base automaton and the query

share the same alphabet. Furthermore, it is worth noticing that the query can restrict

the language recognized by the base automaton. However, in practice, we consider mostly

queries that are expressed using XPath: such a query accepts all trees, even if the XPath

query does not select any node in some of these trees.

1 path ::= ’/’ relative-path
2 relative-path ::= step[pred]
3 | step[pred] ’/’ relative-path
4 | step[pred] ’//’ relative-path
5 step ::= label
6 | ’*’
7 pred ::= path | not(path)
8 | pred and pred
9 | pred or pred

10 | true

Listing 4.1 – Core XPath language used in data schema composition

We further consider the core XPath language given in Listing 4.1. We restrict pred

to predicates that can be recognized by Boolean combinations of paths (with the usual

set-to-Boolean interpretation: a path is true if and only if it matches at least one node).
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This ensures that these predicates can be recognized by hedge automata. Indeed, the

transformation from an XPath to a query automaton is straightforward, and it is done

inductively over the structure of the path. The most relevant construction is step[pred]

’/’ relative-path: given the query automata AP (with initial state QP ) for pred and

AR for relative-path, a new accepting state q0 is introduced with the transition q0 !
step(q> ⇤ qP q>⇤) and the resulting automaton is intersected with AR. Resulting automata

are completed such that they accept all trees, even in the case that no node is selected.

For an arbitrary tree transformation, type inference may not have a solution [7]. It is

thus important to prove that for the substitution class of tree transformations, which we

presented in the beginning of this Chapter, all resulting AST languages are recognisable:

Proposition 1 Given a query Q and two finite hedge automata:
Ab = (Qb

,⌃b
, Q

b
0,�

b) and Ae = (Qe
,⌃e

, Q

e
0,�

e),
the language L(Ab)[Q L(Ae)] is recognisable by a finite hedge automaton A.

Proof. It su�ces to consider A = ((Qb⇥Q

q)[Qe
,⌃b[⌃e

, Q

q
0,�

e[�), where � contains

all the transitions rules of the form (b, q)! a(R) when:

— either b! a(Rb) 2 �b and q ! a(Rq) 2 �q and R is the set (q1, q
q
1) . . . (qn, q

q
n) when

q1 . . . qn 2 R

b and q

q
1 . . . q

q
n 2 R

q.

— or q 2 Qm and b! a

0(qf ) 2 �b and there exists q0 2 Q

e
0 such that

q0 ! a(R) 2 �e.

R is regular since R is recognized by the product of the automata that recognize respectively

R

b and R

q. Based on this result, in Algorithm 1 we provide the procedure to generate A.

Next, we provide a proof that the algorithm is guaranteed to terminate with an answer for

any valid input.

Proposition 2 The Algorithm 1 terminates for all valid inputs.

Proof. Let ↵ 2 N [ {!} be the number of loop iterations within the while loop between

Lines 5 and 31 (possibly ! in case of non-termination). For every i < ↵, let Ui be the value

of S [ (Qb ⇥ Q

q) \ Q at Line 5 at the ith loop iteration. The loop satisfies Ui+1 ( Ui for

every i such that i + 1 < ↵. Therefore (Ui)i<↵ is a sequence of strictly decreasing finite

sets, thus, necessarily, ↵ 6= !.

Complexity. The size of the resulting automaton is O(|Qe|+
��
Q

b
��⇥ |Qq|) and the running

time is linear in the size of the output. The worst case is reached for a family of pairs

of automata (Ab
i ,Qi)i where, for every pair of automata (Ab

i ,Qi), every pair of states is

reachable during synchronous exploration of Ab
i and Qi.
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4.3 Assessment

We have implemented a prototype of the proposed approach to the systematic composition

of message translators, in the form of a Java library, which is available as open-source 1. The

library implements both the translator composition mechanism presented in Section 4.1.2,

as well as the type inference algorithm introduced in Section 4.2.2. The purpose of this

implementation is to be integrated in systems requiring high adaptability to new protocol

stacks. Such systems include Enterprise Service Buses, Firewalls, Network Analyzers, etc.

While the underlying source code closely follows the formal mechanisms (such as tree

automata) and algorithms presented in this chapter, we further concerned ourselves with

making this library usable for non-expert developers by adhering to well-established stan-

dards. Specifically, the following abstractions are concretized, as follows: (i) AST types

which are internally modeled as top-down NFHAs, are transformed both on the input

and output to RelaxNG (http://relaxng.org/) or XSD (www.w3.org/TR/xmlschema-1/)

schema documents, and (ii) AST query inputs, which we model as query NFHAs, are to

be provided using a subset of the XPath query language (www.w3.org/TR/xpath/).

Translator support. A prerequisite of any composition is the existence of individual

translators for each protocol. In our current implementation, we integrated translators for

common middleware protocols like HTTP and SOAP, as well as generic translators for

extensible formats such as XML and JSON. It is important to mention that while SOAP

message formats are XML-based, they are more restrictive with respect to the messages

accepted, and SOAP translators also produce more compact ASTs for the same messages.

It is thus interesting to have protocol-specific translators, even when the protocol itself

uses an extensible data format. Other translators may be easily integrated, although the

creation of associated ASTs and AST data-schemas is currently hardcoded. To overcome

this limitation, we are working on a solution that will automatically inspect third-party

translators using reflection and generate the two according to the data-model used by the

translators.

Translator composition in Wireshark. To assess the utility of our approach in

a broader context that mediation, we discuss our contributions in relation to the well-

known open-source packet analyzer software Wireshark (http://www.wireshark.org/

docs/dfref/). The role of Wireshark is to capture network packets, to parse their content

and to present the information to the user in a structured format for analysis. Figure 4.6a

1The project’s Git repository can be checked out through anonymous access using a GIT client: git
clone https://gforge.inria.fr/git/iconnect/iconnect.git (sourcecode located under the subpro-
ject mtc). Additionally, the repository can be browsed via the Git Repository Browser using the same
URL. The mtc project is located under projects/iconnect/iconnect.git/tree/mtc/
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(a) View of a message AST
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(b) AST complexity

Figure 4.6 – Use of translators (aka packet dissectors) in Wireshark

depicts the representation of a HTTP/SOAP message in the Wireshark graphical user in-

terface. Wireshark provides two mechanisms for composing translators (which they call

dissectors). The first involves writing “glue-code” as an extension of an already existing

dissector implemented in the C language. A more advanced solution (postdissectors and

chained dissectors), which is similar to our composition approach uses the scripting lan-

guage Lua (http://wiki.wireshark.org/Lua/Dissectors) to define compositions. However,

postdissectors have to be implemented in Lua, thus eliminating the possibility of using

already compiled, third-party, translators. Unlike the substitution-based composition that

we introduce for ASTs, Wireshark uses a much simpler approach where disjoint trees are

concatenated in the result. This can be observed in Figure 4.6a for the trees Hypertext

Transfer Protocol and eXtensible Markup Language. In Wireshark, message ASTs do not

have an associated data-schema, meaning that neither individual ASTs, nor ASTs resulting

from a dissector chaining can be validated or inspected before run-time. Thus, the benefit

of using our composition approach in a Packet Analysis software like Wireshark, enables:

(i) composition/integration of third-party translators with already existing translators, and

(ii) run-time validation and static-analysis/inspection of AST data types. The second is

particularly beneficial when resulting data have to be further processed (e.g., data min-

ing and machine learning) and stored (e.g., in a relational data base) rather than simply

presented to the user.

Development e↵ort. Our entire approach is based on the assumption that developers
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are able to define XPath queries on message ASTs, in order to identify positions where data

corresponding to composed protocols is located. In this case, it is important to estimate if

this operation is e↵ortless for developers in the general case. To this end, we conducted an

analysis of AST type complexity on the 1317 protocols supported by Wireshark, focusing

on two aspects that may influence the e↵ort required to specify queries: tree height and

branching factor. Intuitively, the tree height is proportional to the length of a query, when

using only child axis (denoted ’/’), and can prove complex to write in case of deep trees.

Further, high branching factors (i.e., the average number of children at each node) also

make queries more complex with respect to horizontal exploration, based on node order

and sibling axis. As we show in Figure 4.6b, both parameters are rather low in general,

with the most frequent tree height being of value 2, and the most frequent branching

factor of 4. The parameters above are estimated based on the Display Filter Reference

of Wireshark. Display Filters in Wireshark are quite similar to AST queries, although

they are used for filtering network packets based on a predicate, rather than composing

message translators. We note however, that this is only an empirical estimation knowing

that the Wireshark Display Filter Reference only includes fields which are relevant for

filtering, and that the hierarchical nature of message fields was deduced from the structure

of field names. Furthermore, in the Display Filter Reference there is no notion of optional

and mandatory fields. In the absence of this information, in the above, we considered

that all fields are required. For this reason, we had to manually filter a small number

of protocols which define an extensive number of optional fields (e.g., 1634 fields for the

Financial Information eXchange Protocol –FIX–).

As a conclusion, we argue that the approach introduced in this chapter enables devel-

opers to design composite translators seamlessly as opposed to implementing hand-coded

adapters. This statement is supported by the empirical evaluation above showing that, in

the general case, the XPath queries that must be provided by the developers have a low

complexity.

4.4 Discussion

In this chapter, we presented a method for composing message translators for complex

protocols stacks by reusing already exiting translator components. For systems like Packet

Analyzers, Firewalls, Enterprise Service Buses, etc., the reuse of third-party translators

is critical since they must constantly evolve to support an increasing number of protocol

stacks. The composition approach that we introduced in this chapter functions as a purely

“black-box” mechanism, thus allowing the use of third-party parsers and message serial-

izers independently of the parsing algorithm they use internally, or the method by which
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they were implemented/generated. Our solution goes beyond the problem of translator

composition by inferring AST data-schemas relative to translator compositions. This fea-

ture allows newly generated translators to be seamlessly (or even automatically) integrated

with existing systems. On a more general note, the provided inference method solves the

type inference problem for the substitution class of tree compositions. This contribution

has a wider domain of applications beyond the specific scope of this work, such as the

inference of XML schemas for XSLT transformations.

We implemented a prototype of the approach, which is released as open-source, to

showcase its benefit in reducing development time by enabling seamless integration of

message translators as reusable software components.
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Algorithm 1 Tree automata composition

1: procedure compose(Ab
,Ae

,Q)
2: A = (Q,⌃, Q0,�);
3: Q Q

e;⌃ ⌃b [ ⌃e;Q0  Q

q
0;� �e; S  Q

b
0 ⇥Q

q
0

4: while S 6= ; do
5: (b, q) 2 S; S  S \ {(b, q)}
6: if q /2 Q

q
m then

7: for all b! a(Rb) 2 �b do
8: for all q ! a(Rq) 2 �q do
9: R {(q1, q01), (q2, q02), ..., (qn, q0n) | 9n, q1...qn 2 R

b
, q

0
1...q

0
n 2 R

q}
10: � � [ {(b, q)! a(R)}
11: S

0  {(b0, q0)|(b0, q0) occurs in R}
12: S  S [ (S 0 \Q)
13: Q Q [ S

0

14: end for
15: if q = q> then
16: � � [ {(b, q)! a(Rb)}
17: S

0  {(b0, q>)|b0 occurs in R}
18: S  S [ (S 0 \Q)
19: Q Q [ S

0

20: end if
21: end for
22: else
23: for all b! a(qf ) 2 �b

, qf 2 Q

b do
24: for all q0 2 Q

e
0 do

25: � � [ {(b, q)! a(q0)}
26: end for
27: end for
28: end if
29: end while
30: return A
31: end procedure
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In this chapter, we define a unified approach to deal with interoperability at both the ap-

plication and middleware layers. We focus on client-service systems which are functionally-

compatible, that is at some high level of abstraction the client requires a functionality that

is provided by the service but is unable to interact successfully with it due to mismatching

interfaces and behaviours. Our key contribution stems from the systematic and rigor-

ous approach to generate complex message translators and their seamless integration with

application-layer mediation techniques, such as the ones elaborated in Connect, in or-

der to manage cross-layer data dependencies. More specifically, we make the following

contributions:

• Composite Cross-Layer (CCL) message translators. We leverage the approach of

Chapter 4 to automate the composition of message translators, called CCL message

101



102

translators, that are able to process messages sent or received by software compo-

nents implemented using di↵erent middleware solutions. We generate the message

translators based on a declarative high-level specification that: (i) reuses implemen-

tations of message translators for standard and legacy protocols (e.g., HTTP, SOAP,

CORBA), (ii) easily integrates with interface-description and serialisation languages

(e.g.,WSDL, XSD, ASN.1), and (iii) builds upon format-specific reverse-engineering

tools (e.g., inferring schemas from XML documents).

• A unified mediation framework. [38] introduced an approach based on ontology rea-

soning and constraint programming to synthesise application-layer mediators auto-

matically. We build upon this approach and extend it with CCL message translators

to provide a unified mediation framework that deals with interoperability at both the

application and middleware layers. This framework is capable of generating compos-

ite message translators as well as to synthesise application-layer mediators, which are

deployed over a dedicated mediator engine.

• Implementation and Experimentation with a real-world scenario. To validate our

approach, we implemented a prototype tool and experimented it with heterogeneous

conference management systems. Conference management systems provide various

services such as ticketing, attendee management, and payment to organise events

like conferences, seminars and concerts. Nevertheless, it is sometimes necessary to

interact with di↵erent conference management systems. This is the case of Ambientic

(http://www.ambientic.com/en/), which develops mobile software in the domain

of Event Management (expos, trade shows, exhibitions, conferences). Depending on

the event, organisers may choose to rely on di↵erent conference management systems.

Our solution helps Ambientic integrate with di↵erent conference management systems

transparently.

This chapter is organised as follows. Section 5.1 introduces the interoperable conference

management example, which we use throughout the chapter to motivate and illustrate our

mediation approach. Section 5.2 presents the proposed unified mediation framework that

enables the generation of both CCL message translators and their integration with mediator

synthesis at the application layer. The latter is the focus of Section 5.3, which details our

approach to the generation of CCL translators by reusing and composing legacy ones.

Section 5.4 describes a prototype implementation of the unified mediation framework and

reports on the experiment we conducted using the interoperable conference management

example. Finally, Section 5.5 concludes the chapter and discusses future work.
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Figure 5.1 – Interoperability scenario

5.1 The interoperable conference management exam-
ple

To motivate and illustrate our approach, we consider the Ambientic application for event

management, called U-Event (see Figure 5.1). U-Event embeds a client component imple-

mented as an Amiando client (http://developers.amiando.com/). U-Event needs to co-

ordinate with a functionally-compatible service, Regonline (http://developer.regonline.

com/). Instead of re-implementing the client component, the integration of the U-Event

app with Regonline relies on our unified mediation framework.

In the following, we examine the challenges of enabling the Amiando client and the

Regonline service to interoperate. The complete description of both systems is beyond the

scope of this work as they define more than 50 operations each. We thus concentrate on

the following interaction: the client component must obtain a list of conferences based on

keywords found in their title, and then browse the information (such as dates or registra-

tion fees) of the obtained conferences. Amiando clients have to send an EventFind request

containing the keywords to query. For security purposes, each Amiando client is assigned

a unique and fixed ApiKey which must be included in every interaction with the service.

The EventFind response includes a list of conference identifiers. To get the information

about a conference, clients issue an EventRead request with the event identifier as a pa-

rameter. To produce the equivalent result, Regonline clients must first invoke the Login

operation in order to obtain a session identifier ApiToken, which must be included in all

subsequent requests. The Regonline client then sends a GetEvents request, which includes

a Filter argument specifying the keywords to search for. The client gets in return the list

of conferences matching the search criteria including their details. Both Amiando and Re-
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gonline are based on the request/response paradigm, i.e., the client issues a request which

includes the appropriate parameters and the server returns the corresponding response.

However, Amiando is developed according to the REST architectural style, uses HTTP

as the underlying communication protocol, and relies on JSON (http://www.json.org)

for data formatting. On the other hand, Regonline is implemented using SOAP, which

implies using WSDL (http://www.w3.org/TR/wsdl) to describe the application interface,

and is further bound to the HTTP protocol. Although the client component, which is an

Amiando client, requires some functionality provided by the Regonline service, it is unable

to interact with it because of the mismatches described in the following.

Application-layer mismatches. To interoperate, components have to agree on the

syntax and semantics of the operations they require and provide together with the as-

sociated input and output data. However, the same concepts (e.g., conferences, tickets,

and attendees) may be expressed using di↵erent data types. To enable the components

to interoperate, the data need to be converted in order to meet the expectations of each

component. For example, to search for a conference with a title containing a given key-

word, the Amiando client simply specifies the keyword in the title parameter, which is of

type String. The Regonline GetEvents operation has a Filter argument used to specify

the keywords to search for and which is also of type String. However, contrary to the

WSDL description, the Regonline developer documentation specifies that this String field

is in fact a C# expression and can contain some .NET framework method calls (such as

Title.contains(‘‘keyword’’)), which is incompatible with the Amiando search string.

The granularity and sequencing of operations is also very important. For example, the

GetEvents operation of Regonline returns a list of conferences with the corresponding

information. To get the same result in Amiando, two operations need to be performed.

Middleware-layer mismatches. Amiando is based on REST while Regonline is based

on SOAP. Messages generated by both systems are incompatible and must be translated

to allow them to interoperate. Moreover, the mechanisms provided by each middleware

to describe the application interface are di↵erent: while SOAP-based Web Services rely

on a standard interface description language (WSDL) to describe operations, there is no

standard description language for RESTful services, although JSON is widely used, and in

particular by Amiando.

Cross-layer data mismatches. Even though application and middleware layers are

conceptually separate, in real world scenarios the boundaries between them are ill-defined.

This is due to multiple factors such as performance optimisation, simplified development or
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bad design decisions. For example, the Login operation of Regonline returns an ApiToken

value, which is application-specific data. However, instead of including this token in subse-

quent operations at the application-layer encapsulation, it is inserted in the HTTP message-

header (i.e., part of the middleware layer) as an optional field.

This example, although simple, demonstrates many problems that are faced by develop-

ers, and suggests why existing interoperability approaches still fall short in achieving inter-

operability. What is needed is a unified approach to interoperability that brings together

and enhances the solutions that tackle interoperability at the application and middleware

layers, and automates the generation of message translators and mediators.

5.2 Proposed mediation framework

We aim at providing a unified approach to support interoperability between functionally-

compatible client-service systems by mediating their protocols from the application down

to the middleware layers. Figure 5.2 depicts the main elements of our unified media-

tion framework where those with grey background are automatically synthesised. The

framework revolves around two key elements: CCL translator generator and synthesis of
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application-layer mediators.

CCL translator generator: enables fast design of complex message translators while

requiring minimal development e↵ort by reusing existing implementations of atomic mes-

sage translators, when available. Figure 5.2 depicts the main elements relating to CCL

translator generator :

• Atomic message translators transform one message format into an Abstract Syntax

Tree (AST). An AST is a tree representation of the abstract syntactic structure of

a protocol message. Each node of the tree denotes a data field of the message, and

may contain metadata of the field. AST are a format commonly used in message

translation and middleware technology. Atomic message translators are reused and

composed in order to generate CCL message translators.

• Message Model defines the strategy for assembling Atomic message translators in

order to deal with the data encapsulation in di↵erent middleware solutions and cross-

layer data dependencies. The message model also includes annotations that are

integrated in the generated Abstract Message Schemas. Each rule or annotation in

the Message Model is applied to an Atomic message translator at a particular node

of its AST structure to solve or to annotate a cross-layer data dependency.

• Abstract Message Schemas is an abstract description of the component’s interface

that facilitates the synthesis of application-layer mediators. This schema composes

and refines the AST schemas of a set of Atomic message translators. Abstract mes-

sages of a generated CCL message translator validate the generated Abstract Message

Schema.

Synthesis of application-layer mediators: is responsible for generating application-

layer mediators based on the description of the interfaces and behaviours of the components

involved, together with the associated domain ontology. The interfaces of the components

are described using Abstract Message Schemas. The behaviour of a component then de-

scribes the ordering of the messages sent or received by this component in order to interact

with other components in the environments. The behaviour of a component may be au-

tomatically extracted using automata learning techniques [42, 107–109]. To design this

component, we closely follow the mechanism introduced by Bennaceur et al. [38]. In the

following, we briefly describe the gist of their approach. To synthesise an application-layer

mediator, a semantic correspondence between the messages sent by one component and

those expected by the other component must be found. This task is known as interface
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Figure 5.3 – Illustrating the mediator between an Amiando client and the Regonline service

matching. Interface matching is formulated as a constraint satisfaction problem and con-

straint programming is used to solve it. The approach further incorporates the use of

ontology reasoning within constraint solvers by defining an encoding of the ontology re-

lations using arithmetic operators supported by widespread solvers. For each identified

correspondence, an associated matching process is generated that performs the necessary

data conversions between the actions of the components’ interfaces.

Figure 5.3 illustrates the data conversion and behavioural coordination performed by

the application-layer mediator that enables the Amiando client and the Regonline service

to interoperate. The application-layer mediator intercepts the EventFind request sent

by the Amiando client and transforms it into two invocations: Login and GetEvent. It

generates the EventFind response based on the GetEvents response and is able to produce

the responses of the following EventFind invocations. The reason is that the GetEvents

includes a list of events while the EventRead requires only one event.

As depicted in Figure 5.2, the Mediator Engine enables the components to interoperate

by executing the synthesised application-layer mediator while relying on the generated CCL
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message translators to deliver the messages in the expected formats. The Communication

Manager keeps track of all network connections and pending message receptions. It support

several IP transport protocols including TCP, UDP and TLS/SSL.

5.3 Cross-layer mediation

In this section, we describe our approach for generating CCL message translators by com-

posing multiple, and possibly heterogeneous, Atomic message translators.

5.3.1 Atomic message translators

The Atomic message translators that can be used as input for composition are either Legacy

(i.e., re-using an existing implementation) or Generated (i.e., generated at design-time).

Legacy Atomic message translators are appropriate for middleware protocols given that

they are based on industry-wide standards, with reference implementations widely avail-

able, and are unlikely to change frequently.

Generated Atomic message translators are useful for application-specific protocols,

where changes in message structure are frequent. Generated Atomic message translators

are further categorised depending on the availability of a message description language:

DSL and IDL-based and Inferred. As the title suggests, some message formats can indeed

be inferred automatically. This is the case when protocols represent/encode data using an

extensible serialisation (e.g., JSON, YAML) or encoding format (e.g., ASN.1 –syntactical–

- BER –lexical–, XSD –syntactical– - XML –lexical–)1. For this case to be applicable in

a protocol mediation scenario, we obviously require a set of Concrete Message Samples

that are used as input for type inference. In our experimental implementation, we rely on

the tool Trang (http://www.thaiopensource.com/relaxng/trang.html) that can infer

a schema from a set of XML documents. The same tool can be used to infer schemas

for JSON and other similar serialisation formats. Based on this schema, we automatically

generate the corresponding syntactical parsers.

In the above, we make the assumption that parsers output ASTs using a uniform format

that can be manipulated. In our implementation, we reduce the scope to object-oriented

parser implementations. This is because AST instances represented as Objects may be

examined or even manipulated at runtime using reflection and bytecode manipulation and

may be easily serialised to other formats, like XML.

1Note the di↵erence between: (i) lexical parsers that consume streams of characters or bytes and, in
case of success, output a result in the form of an AST, and (ii) syntactical parsers that consume tokens to
produce the corresponding ASTs.
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Assuming that all necessary Atomic message translators (either inferred, generated or

o↵-the-shelf) for the mediated applications are available we generate a set of CCL message

translators corresponding to the set of message types exchanged. In the Amiando client

to Regonline service scenario, the set of Atomic message translators contains: a) legacy

message translators for HTTP and SOAP, b) custom XML parsers generated from the

WSDL/XSD description provided by Regonline and c) custom JSON 2 parsers for Amiando

inferred using a set of pre-collected Concrete Message Samples.

5.3.2 Composition of message translators

We mentioned that Atomic message translators are combined based on a Message Model.

In Listing 5.1 we present a fragment of the Message Model describing the Regonline ser-

vice. The full description can be found in the Appendix C.1. This description is used

to generate the corresponding CLL Translator and Abstract Message Schema. A Mes-

sage Model comprises three sections: translator chaining, syntactic annotations,

and semantic annotations. The translator chaining section of the Message Model

defines the composition of Atomic message translators to form the set of CCL message

translators associated with an application. Each CCL message translator is generated

according to an operation (i.e., a pair of request and response messages and associated

data) of the component’s interface. Using the extension composition rule, we declare

how a specific field in the output (i.e., the output AST) of an Atomic or CCL message

translator can be derived as input of a second Atomic message translator determined by

the identifier tag. Generated Atomic message translator extensions require an extra

description element containing a URI pointing to the message description and, optionally,

a domain-specific content tag that specifies which part of the message description must be

used, in the case where the provided description covers multiple operations. Field selection

inside the AST is done using path expressions. For convenience, the syntax is borrowed

from XPath (http://www.w3.org/TR/xpath/). Extension declarations may also contain

the optional attribute oper, which defines the operation for which the rule is relevant in

the form [Operation|*]:[Request|Response|*]. Wildcards may be used on both sides

of the attribute to specify that this rule applies to multiple operations or to both requests

and responses.

We use the Message Model to create a tree structure based on the user defined path

attributes and the ASTs corresponding to the referenced Atomic translators. We then

recursively construct the composite message translators corresponding to each protocol

operation, by applying composition and syntactical rules. This phase allows the composite

2Syntactical parsers defined on XML or JSON tokens.
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Figure 5.4 – AST of Regonline GetEvents-Request

message translators to produce Internal AST instances. As an illustration, a CCL AST

instance of the Regonline GetEvents Request message is given in Figure 5.4. In this

particular case, the initial input is parsed by an HttpRequest parser, then the body element

encapsulating a SOAP message is further processed by a SoapMessage parser, and finally

the SOAP body element is parsed by a dynamically generated WsdlMessage translator.

The problem of inferring the data schema of the Internal ASTs is non-trivial. We remind

that in Chapter 4 we provided a formal mechanism, using tree automata, which based on a

path expression (using a subset of the navigational core of the W3C XML query language

XPath), generates an associated AST data-schema for the translator composition.

Secondly, we refine each Internal AST structure into a middleware-independent message-

schema which defines the syntax of the Abstract Message. This process includes pruning

all middleware-specific fields of the Internal AST schema, and also flattening the struc-

ture when possible without introducing ambiguity. The generated message schemas are

enhanced with semantical annotations defined in the Message Model. This is the structure

on which the application-layer mediator synthesis tool will reason, and infer appropriate
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mapping of data. Finally, we generate the functions necessary to transform Abstract Mes-

sages into their corresponding Internal AST representation, and the inverse.

5.3.3 Overcoming cross-layer data dependency

We now take a closer look on how syntactic and semantic annotations can help solve

cross-layer data dependencies and also support the synthesis of application-layer mediators.

A first step is assuring that all necessary data requirements are made explicit. While

most abstract message structures (i.e., AST schemas) are automatically extracted from

Atomic message translators and composed using our algorithm presented in Section 4.2, the

syntactic annotations section of the Message Model further augments this description.

This may include specifying whether some fields are required or optional, or if there are

any additional restrictions on the value of certain fields. For instance, in our scenario, the

Regonline GetEvents operation accepts an optional orderBy parameter (see Figure 5.4)

to specify the return order of conferences. If the application-layer mediator synthesis tool

is unaware that this field is optional, it may fail to map an operation between components

because a required input is not provided. Thus, we annotate this field as optional. For

specific fields, the valuerestrict annotation allows specifying detailed value patterns for

simple data types. While it may increase the complexity of the specification, this feature

leads to a more precise data-mediation and message-validation than relying only on type-

definition and/or semantical annotations.

Message formats may encapsulate sequences (e.g., lists or maps) of values of the same

type. In some cases, the application may have requirements on the presence of a value, at

a certain position. For example, the Regonline protocol requires that all requests except

Login contain a session identifier provided as an HTTP header with the key ApiToken. The

extract annotation allows making this requirement explicit with respect to the structure
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of the message by removing the specific field from the headers sequence, and reattaching

it as a field at a higher level of the tree format.

When protocols rely on multiple middleware layers, message composition may require

data to be mapped internally between layers. The map element enables to associate the

values of middleware fields internal to a single CCL translator. For example, in the

case of the message instance illustrated in Figure 5.4, the WSDL message translator field

body/body/soapAction is mapped to the HTTP request header field /head/soapAction.

The last section of the Message Model, semantic annotations, enables the annotation

of parsed data at various granularity. We support two types of semantic annotation: (i)

domain knowledge (i.e., references to concepts in an ontology) and (ii) the scope of data.

One may annotate an operation, a message, and/or any message field (either of complex

or simple type). Such annotations support the synthesis of application-layer mediators in

finding relevant matches between available data and data required to perform an operation.

The data scope is important whenever applications configure the underlying middleware,

causing application-specific data to be scattered over multiple layers. We mentioned that, in

order to achieve mediation, we must identify and forward all application data. The element

datascope set to application or middleware marks that the synthesis of application-

layer mediators must consider this data as part of the application scope or, respectively,

the middleware scope (in which case it should be ignored). However, the separation of

middleware data is not su�cient as components may exhibit more complex data scoping.

For example, Amiando uses a static key called ApiKey to control service access while

Regonline uses a session id called ApiToken. Both data are instances of the same domain

concept, but the mediator should never assign the ApiToken to ApiKey or vice-versa:

Amiando will not recognise session keys created by Regonline and Regonline will not accept

access keys generated by Amiando. Still, the application-layer mediator synthesis tool must

map the ApiToken between the subsequent Regonline requests.

In response to the above data scoping challenge, we allow the datascope annotation

to take the following values: (i) middleware when data is purely middleware specific

and it should not be exposed to the application-layer mediator synthesis; (ii) application

when data belongs to the application layer, and must be forwarded to the application-layer

mediator; (iii) replay-only when application layer data should only be shared between

the set of operations from the same component; (iv) operation-only when application

layer data may only be included in certain operations; (v) one-way when application layer

data may only flow in one direction, i.e., only Request or Response messages may include

this data.
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5.4 Implementation and validation

We have implemented a standards-based prototype of the proposed mediation framework

using Java, following the architecture described in Figure 5.5. The third-party tool and

library dependencies for each component are mentioned between parentheses. TheMediator

Engine implements the interfaces necessary to interact with the artefacts generated by

the Composite Message Translator Generator and Application-layer Mediator Synthesis

(MICS).

In the case of the CCL Message Translator Generator, Legacy and Generated Atomic

message translators are chained, transformed and refined using the bytecode manipulation

library Javassist (http://www.csg.is.titech.ac.jp/~chiba/javassist/). To express

richer constraints on the syntactic structure of ASTs beyond the basic means provided

by Java Type definitions, we use the standard Java Architecture for XML Binding. In

this way, each class structure is bound to an XSD schema. Since value-restrictions, as

described by the Message Model, cannot be injected as compile-time JAXB annotations,

they are transformed to a JAXB External Binding Customization File. Generated Atomic

message translator are obtained using external tools, which are integrated as plug-ins.

XJC (http://jaxb.java.net) is used for generating XML message translators based on

XML Schemas. Since there is no well-established data-schema for JSON we use StAXON

(https://github.com/beckchr/staxon/) tool to transform JSON messages to XML be-

fore learning their data-schema using the XML learning tool Trang. We consider the inte-

gration of additional Atomic message translator generators like, for example, Java Asn.1

Compiler (http://sourceforge.net/projects/jac-asn1/) for ASN.1 parser specifica-

tions.

In what follows, we assess our approach by comparing the time to perform a conversation

in the mediated and non-mediated case between Amiando client/service and Regonline

client/service. Figure 5.1) shows the result. On the server-side, we use the services operated

by Amiando and Regonline. On the client-side we use a Java implementation provided

by Amiando, while for Regonline, we partially generate the client source-code using the

provided WSDL service description.

We first specify a Message Model for each system using the CCL translator genera-

tor tool (see Figure 5.8). Then, we provide two message samples containing the JSON

formatted responses of the Amiando service. The CCL translator generator is then able

to generate eight di↵erent composite message translators (listed in Figure 5.7) and their

associated Semantically Annotated XSDs (http://www.w3.org/2002/ws/sawsdl/). The

SAXSDs are obtained by injecting semantical annotations obtained from the Message Mod-

els into the XSD schemas generated using JAXB. Based on the SAXSDs, the provided do-
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Figure 5.6 – Comparison between mediated and non-mediated executions

Figure 5.7 – Access & Parsing time decomposed by Atomic parsers

main ontology (fragment shown in Figure 5.9) and the LTS behavioural descriptions, MICS

generates two mediators (Amiando server to Regonline client and the complementary. See

Figure 5.10).

We compare the mediated execution-time with the non-mediated case. Each test was

repeated 30 times, in similar conditions, and connection delays were excluded (e.g., opening

sockets, SSL handshake, etc).

In Figure 5.6, we evaluate the execution-time overhead of the mediation. Since this test

is performed using the real online services, the response time varies depending on the net-

work conditions. As expected, the mediated execution-time is superior to the non-mediated

case, given that the number of messages exchanged is doubled. We show the decomposi-

tion of the execution-time for mediation, composing and access/parsing. Network access
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and parsing cannot be distinguished in this case because parsing is done in multiple steps

when data is available on the communication channel. While the overhead of mediation

and message composition is low, we see that parsing and network reception introduce the

largest overhead. This is why, in Figure 5.7, we detail the decomposition of parsing time

over each Atomic parser used internally by a specific generated translator. We see that

the EventFind response message parsing has a peak of 1662 ms. We also observe that the

entire time is associated with the HTTP parser, and given that the size of the message

is only 869 bytes, we can conclude it is almost entirely due to the response delay of the

Amiando Service. The same reasoning applies for the GetEvents response message of the

Regonline service, but in this case 197 ms are associated with the SOAP parser which is

chained to parse the HTTP response’s payload (the HTTP body). Knowing that in this

particular implementation, the SOAP parser does not wait for network access, we observe

that the SOAP Atomic parser introduces an important SOAP-Envelope parsing overhead.

This observation confirms that the Amiando/Regonline (i.e., Amiando Client mediated to

the Regonline Service) mediator execution-time (in Figure 5.6) can be reduced by using a

more e�cient SOAP Atomic parser. Comparing to the non-mediated tests, we can conclude

that our mediation approach introduces an acceptable overhead while enabling seamless

interoperability between two originally incompatible systems.

5.5 Discussion

Interoperability is a very challenging topic. Over the years, interoperability has been

the subject of a great deal of work, both theoretical and practical. However, existing

approaches focus on achieving interoperability either at the application or middleware layer.

This chapter presented a unified mediation framework to achieve interoperability from

application down to middleware layers. We have shown via our implemented prototype that

the framework successfully enables interoperability in a transparent way, while introducing

acceptable overhead.

Open issues include increasing automation by inferring, at least partially, the Message

Model by cooperating with discovery mechanisms and packet inspection software. We also

intend to experiment with various learning techniques, both active and passive, for the

inference of component behaviour. Finally, incremental re-synthesis of mediators and, run-

time refinement of composite message translators would be useful in order to respond to

changes in the individual systems or in the ontology. A further direction is to consider

improved modelling capabilities that take into account the probabilistic nature of systems

and the uncertainties in the ontology. This would facilitate the construction of mediators

where we have only partial knowledge about the system.
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Figure 5.8 – CCL message translator generator interface.
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1 <application name="Regonline">
2 <operations>
3 <operation>Login</operation>
4 <operation>GetEvents</operation>
5 </operations>
6 <translator_chaining>
7 <extension type="legacy" path="/" oper="*:Request">
8 <identifier>mediation.http.HttpRequest</identifier>
9 </extension>

10 <extension type="legacy" path="/body">
11 <identifier>mediation.soap.SoapMessage</identifier>
12 </extension>
13 <extension type="generated" path="/body/body" oper="GetEvents:Request">
14 <identifier>mediation.dynamic.wsdl.WsdlDefinedMessage</identifier>
15 <description>https://www.regonline.com/api/default.asmx?wsdl</description>
16 <content>GetEvents</content>
17 </extension>
18 </translator_chaining>
19 <syntactic_annotation>
20 <node path="/head/uri" oper="*:Request">
21 <valuerestrict>
22 <enumeration value="/api/default.asmx"/>
23 </valuerestrict>
24 </node>
25 <node path="/head/headers[name=APIToken]/value" oper="GetEvents:Request">
26 <extract fielddef="apiToken"/>
27 </node>
28 <node path="/head/soapAction" oper="GetEvents:Request">
29 <map source="/body/body/soapAction"/>
30 </node>
31 </syntactic_annotation>
32 <semantic_annotations>
33 <node path="/head/apiToken" oper="GetEvents:Request">
34 <!-- Domain knowledge -->
35 <concept>SecurityToken</concept>
36 <datascope>replay-only</datascope>
37 </node>
38 </semantic_annotations>
39 </application>

Listing 5.1 – Fragment of the Message Model for the Regonline component. The full
description can be found in the Appendix C.1.
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Figure 5.9 – Fragment of the OWL ontology used in the Amiando - Regonline scenario

Figure 5.10 – Regonline/Amiando mediator generated by the MICS tool
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After thirty years1 of research, thousands of proposed communication standards and

protocol implementations, functionally-compatible networked systems still lack the funda-

mental feature of seamless interoperability. At the same time, research on the topic of dy-

namic synthesis of protocol mediators has shown that it is possible for applications to adapt

to unknown protocols. However, current state of the art approaches can only synthesise me-

diators for very basic, and sometimes artificially simplified use-cases. In order to allow the

mediation of more complex protocols and protocol stacks, there is the need to break down

the problem of mediator synthesis, into clearly defined phases and explore them in con-

junction. This was the goal of the FP72 Connect (http://www.connect-forever.eu)

project, started in 2009 and which lasted for 46 months. The author joined Connect

at the end of 2010 and also continued research beyond the end of the project. We recall

that, as defined in Connect, the process of dynamic protocol mediation involves: (i) Dis-

covery, (ii) Compatibility checking, (iii) Building of abstract system models, (iv) Mediator

synthesis, (v) Data adaptation, (vi) Deployment and (vii) Monitoring.

In this thesis we focused on the phase of Data adaptation. However, the phases men-

tioned above are tightly coupled making it impossible to consider this phase outside of a

1The Internet Engineering Task Force (IETF) was formed on January 16, 1986 with the stated goal of
“creating voluntary standards to maintain and improve the usability and interoperability of the Internet”.

2Framework Programmes for Research and Technological Development. The FP7 is a funding program
created by the European Union, for the period between 2007 to 2013.
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complete mediation framework. To that end, we presented in this thesis a protocol medi-

ation framework that allows the automation of data adaptation. To give a clear picture of

the contributions presented in this thesis, we further give a chronological summary of our

work.

6.1 Summary of contributions

Interoperable multimedia streaming on mobile platforms: In order to fully un-

derstand the theoretical foundations of protocol mediation, in 2010, we begun investigating

a domain-specific class of protocols used for multimedia streaming. To put this research

into a realistic use-case we studied the problem of interoperable multimedia streaming pro-

tocols on current generation on mobile platforms (Android and iOS). For this reason, our

initial contribution, presented in in Chapter 3, focuses on multimedia streaming protocol

mediation and also takes into account a number of mobility-related aspects, such as com-

munication heterogeneity and stream scalability on mobile networks. The contribution of

this work is two-fold. On the one-side, we experimentally confirmed that it is feasible to

perform real-time protocol mediation on the mobile nodes, while relying on the multime-

dia stacks provided by each platform. On the other side, we showed the data adaptation

process which is highly specific to multimedia container formats can be integrated with the

overall Connect philosophy of synthesising and executing dynamic protocol mediators.

Cross-layer protocol mediation: Following this research, we identified a separate and

much broader interoperability challenge when dealing with multilayer protocols (i.e. pro-

tocol stacks), which we called cross-layer protocol interoperability. Motivated by the fact

that all encountered solutions fail to address this problem, being considered as a merely

technical aspect, we decided to better investigate it. As we detailed in Chapter 5, syn-

thesising mediators which can cope with the existence of multiple data-encapsulations and

multiple protocol layers is essential for enabling complex systems interoperability. Also

in Chapter 5, we introduced a framework architecture which, combined with state of the

art methods of interface mapping, can achieve interoperability of functionally-compatible

systems in the presence of cross-layer data dependencies. However, the vision of cross-layer

protocol mediation is only possible if we find an e�cient way to actually parse messages

that consist of multiple data-encapsulations. For this reason, we only published this work

in 2015 [17] about two years after we sketched the architecture of a protocol interoperability

framework, taking into account cross-layer data dependencies.
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Reusing and composing message translators (i.e., parsers and composers): Many

interoperability solutions rely on developers to specify or implement message translators for

each protocol they intend to support. Such components transform heterogeneous message

formats, used by the protocols, into uniform data formats (e.g., XML, JSON) that can

be e�ciently managed by an interoperability framework. However, this development cost

is unwanted in a field of research where we defend the need for dynamic (i.e., run-time)

synthesis of protocol mediators. With this conviction, we started looking for solutions of

either (i) automatically reverse-engineering message translators or (ii) e�ciently reusing

pre-compiled message translators. We were surprised to find that research in the domain of

Security, the branch of automated Packet Inspection, proposed more elaborated solutions

on the problem of message parsing than solutions in the domain of Protocol Interoper-

ability. We borrowed ideas from both fields, and devised a solution reusing pre-compiled

message translators, that we presented in Chapter 4.

Inferring the abstract data types of composite message translators: As soon

as we found a solution for translating multi-layer messages, with low development e↵ort,

we also realised that the abstract data formats on the “other side” of the translation also

need to be composed, knowing that in all protocols, data included in messages is arranged

hierarchically. For instance, most middleware message formats (e.g., HTTP, SOAP) define

a “body” message part, which has the role of containing payload data of either an ap-

plication or of another middleware protocol. Although protocols are designed to combine

in stacks, message data formats are not restricted to this concept. For this reason, we

say data included in messages is arranged hierarchically. Thus, whenever translators are

combined, we found it logical that abstract data formats should also be combined. While

this problem seemed trivial at the first glance, we soon realised it is equivalent to inferring

the output schema (or the data type) of a tree transformation. As far as we know, this

problem has not yet been solved, while it is known that, in general, a transformation might

not be recognisable by a schema [7]. In the second part of Chapter 4 we provide a formal

mechanism, using tree automata, that generates an associated AST data-schema for an

arbitrary translator composition. This contribution enables the inference of correct data-

schemas, relieving developers from the time-consuming task of defining them. On a more

general note, the provided method solves the type inference problem for the substitution

class of tree compositions in linear time on the size of the output. The provided inference

algorithm can thus be adapted to a number of applications beyond the scope of this work,

such as XML Schema inference for XSLT transformations. We consider this single algo-

rithm to be the most valuable contribution of this thesis, as it spans beyond the field of

Protocol Interoperability, with applications in many other areas or research.
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6.2 Perspectives for future work

As an ending for this thesis, we briefly introduce four possible directions of extending and

using results presented in this documents.

Universal data adaptation pipeline for multimedia streaming: Today, there exist

a limited number of software that allow multimedia stream adaptation. Distributed as

open-source, projects such as FFmpeg, Libav, GStreamer are powerful and very complex

tools. They support most of the multimedia formats used by the industry and can assure

their interoperability. We believe that the DSL-based descriptions inspired by our approach

as well as the overall AmbiStream architecture could significantly lower the complexity of

such multimedia conversion pipelines allowing platforms that process multimedia content

to better interoperate.

Cross-layer protocol mediation and beyond: In this thesis, we coined the term of

“cross-layer protocol interoperability”. The main goal was to di↵erentiate from approaches

that try to solve protocol interoperability layer by layer from the ones that try to solve the

problem from the position of an “external observer”, without in-depth knowledge of how

protocols are internally governed by abstract layers and components. We studied primarily

the implications of “cross-layer” dependencies on message formats. There are many other

aspects that must be taken into account when analysing protocols in a “black box” manner.

These directions of research include protocol behaviour, compatibility checking, data fusion,

data mapping, etc.

On reusing message translators: In our solution of reusing pre-compiled message

translators, we made the assumption that each translator has an associated (and acces-

sible) abstract data schema (or data model). While we argued that such a model can

be automatically obtained from precompiled components using methods such as bytecode

inspection and reflection, we strongly believe that this subject needs further exploration.

This is because the quality and accuracy of the obtained data model is proportional with

the quality of the data mapping between interoperating systems, and thus proportional

with the quality of the synthesised protocol mediator.

Type inference for multiple classes of tree transformations: The substitution class

of tree compositions is powerful enough to model the composition of data models for com-

munication protocols. We believe that our initial results are promising enough to motivate

the exploration of other classes of tree grammar compositions, and, why not, arbitrary tree



CHAPTER 6. CONCLUSIONS 123

transformations. Further results on this problem have the potential to innovate many fields

and applications including XML databases and dynamically-typed programming languages.
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[30] Y. D.Bromberg, P. Grace, and L. Réveillère, “Starlink: Runtime Interoperability

between Heterogeneous Middleware Protocols,” in ICDCS, 2011.

[31] D. Chappell, Enterprise service bus. O’reilly Media, 2004.

[32] G. Wiederhold, “Mediators in the architecture of future information systems,” IEEE

Computer, vol. 25, no. 3, 1992.

[33] S. A. McIlraith, T. C. Son, and H. Zeng, “Semantic web services,” IEEE Intelligent

Systems, vol. 16, no. 2, pp. 46–53, 2001.

[34] B. Spitznagel and . Garlan, “A compositional formalization of connector wrappers,”

in ICSE, 2003.

[35] R. Mateescu, P. Poizat, and G. Salaün, “Adaptation of service protocols using process

algebra and on-the-fly reduction techniques,” IEEE Transactions Software Engineer-

ing, vol. 38, no. 4, pp. 755–777, 2012.

[36] P. Inverardi and M. Tivoli, “Automatic synthesis of modular connectors via compo-

sition of protocol mediation patterns,” in Proc. of the 35th International Conference

on Software Engineering, ICSE, 2013, pp. 3–12.

[37] N. D’Ippolito, V. A. Braberman, J. Kramer, J. Magee, D. Sykes, and S. Uchitel,

“Hope for the best, prepare for the worst: multi-tier control for adaptive systems,”

in Proc. of the 36th International Conference on Software Engineering, ICSE, 2014,

pp. 688–699.

[38] A. Bennaceur and V. Issarny, “Automated synthesis of mediators to support compo-

nent interoperability,” IEEE Transactions on Software Engineering, 2015, to appear.
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Appendix B
AmbiStream domain specific

languages

This appendix relates to the contributions presented in Chapter 3 where we present a

protocol mediation approach for multimedia streaming protocols on mobile devices. The

mediator is specified in the form of three DSL-based models.

• Protocol Message Format DSL describes the format and structure of message

fields of the streaming client protocol. This model is used to synthesise message

parsers for incoming messages and composers for outgoing messages.

• Multimedia Container Format DSL is di↵erent to the first language, as it is

specifically designed to capture aspects of live multimedia streaming, by adding sup-

port for common operations such as message timing, fragmenting and multiplexing.

• Merged Automaton DSL (Merged Automaton), is used to specify the behaviour

of the Mediator in the form of a k-coloured automaton.

145



146 AmbiStream Domain Specific Languages

B.1 XSD definition of the AmbiStream DSL for Pro-
tocol Message Formats

Figure B.1 – AmbiStream DSL for Protocol Message Formats. Version for text-based
protocols.
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1 <?xml version="1.0" encoding="UTF-8"?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="http://www.ambientic.com/

AmbiStream"
3 targetNamespace="http://www.ambientic.com/AmbiStream" elementFormDefault="qualified">
4 <xs:simpleType name="VarNameForm">
5 <xs:annotation>
6 <xs:documentation>Variable names are restricted to the form: "$name"</xs:

documentation>
7 </xs:annotation>
8 <xs:restriction base="xs:string">
9 <xs:pattern value="$[0-9a-zA-Z]+"/>

10 </xs:restriction>
11 </xs:simpleType>
12 <xs:simpleType name="VarTypeForm">
13 <xs:annotation>
14 <xs:documentation>Variable type (e.g., Integer)</xs:documentation>
15 </xs:annotation>
16 <xs:restriction base="xs:string">
17 <xs:enumeration value="String"/>
18 <xs:enumeration value="Integer"/>
19 <xs:enumeration value="Bytes"/>
20 <xs:enumeration value="Base64String"/>
21 </xs:restriction>
22 </xs:simpleType>
23 <xs:simpleType name="ExpressionForm">
24 <xs:annotation>
25 <xs:documentation>e.g., $var1 + $var2</xs:documentation>
26 </xs:annotation>
27 <xs:restriction base="xs:string"/>
28 </xs:simpleType>
29 <xs:complexType name="VarForm">
30 <xs:annotation>
31 <xs:documentation>Structure of a variable definition.</xs:documentation>
32 </xs:annotation>
33 <xs:simpleContent>
34 <xs:extension base="ExpressionForm">
35 <xs:attribute name="type" default="String" use="optional" type="VarTypeForm">
36 <xs:annotation>
37 <xs:documentation>The type of variable (e.g., String, Integer)</xs:

documentation>
38 </xs:annotation>
39 </xs:attribute>
40 <xs:attribute name="name" use="required" type="VarNameForm">
41 <xs:annotation>
42 <xs:documentation/>
43 </xs:annotation>
44 </xs:attribute>
45 </xs:extension>
46 </xs:simpleContent>
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47 </xs:complexType>
48 <xs:complexType name="CaptureForm">
49 <xs:annotation>
50 <xs:documentation>Structure of a RegEx capture definition.</xs:documentation>
51 </xs:annotation>
52 <xs:simpleContent>
53 <xs:extension base="xs:string">
54 <xs:attribute name="var" type="VarNameForm" use="required">
55 <xs:annotation>
56 <xs:documentation>Variable to store the RegEx captured value.</xs:

documentation>
57 </xs:annotation>
58 </xs:attribute>
59 </xs:extension>
60 </xs:simpleContent>
61 </xs:complexType>
62 <xs:complexType name="RuleForm">
63 <xs:annotation>
64 <xs:documentation>Structure of a Rule definition.</xs:documentation>
65 </xs:annotation>
66 <xs:simpleContent>
67 <xs:extension base="ExpressionForm">
68 <xs:attribute name="test" use="required">
69 <xs:simpleType>
70 <xs:restriction base="xs:string">
71 <xs:enumeration value="msg_line_delimiter"/>
72 <xs:enumeration value="msg_max_lines"/>
73 <xs:enumeration value="msg_min_lines"/>
74 <xs:enumeration value="var_capture_order"/>
75 </xs:restriction>
76 </xs:simpleType>
77 </xs:attribute>
78 <xs:anyAttribute>
79 <xs:annotation>
80 <xs:documentation>A rule can have a variable number of arguments.</xs:

documentation>
81 </xs:annotation>
82 </xs:anyAttribute>
83 </xs:extension>
84 </xs:simpleContent>
85 </xs:complexType>
86 <xs:complexType name="LineForm">
87 <xs:sequence>
88 <xs:element name="Text" type="xs:string">
89 <xs:annotation>
90 <xs:documentation>Adds a text value to the line.</xs:documentation>
91 </xs:annotation>
92 </xs:element>
93 <xs:element name="Binary" type="xs:base64Binary">
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94 <xs:annotation>
95 <xs:documentation>Adds a binary value given in the form of a BASE64 String.</

xs:documentation>
96 </xs:annotation>
97 </xs:element>
98 <xs:element name="Valueof" type="VarNameForm">
99 <xs:annotation>
100 <xs:documentation>Adds the value of a variable</xs:documentation>
101 </xs:annotation>
102 </xs:element>
103 <xs:element name="Expression" type="ExpressionForm">
104 <xs:annotation>
105 <xs:documentation>Adds the result of an expression</xs:documentation>
106 </xs:annotation>
107 </xs:element>
108 </xs:sequence>
109 </xs:complexType>
110 <xs:element name="Protocol">
111 <xs:annotation>
112 <xs:documentation>Describes the message structure of a text protocol.</xs:

documentation>
113 </xs:annotation>
114 <xs:complexType>
115 <xs:all maxOccurs="1" minOccurs="1">
116 <xs:element name="Input">
117 <xs:annotation>
118 <xs:documentation>Structure of input messages.</xs:documentation>
119 </xs:annotation>
120 <xs:complexType>
121 <xs:sequence>
122 <xs:element name="Header">
123 <xs:complexType>
124 <xs:sequence>
125 <xs:element name="Var" type="VarForm"/>
126 <xs:element name="Rule" type="RuleForm"/>
127 <xs:element name="Capture" type="CaptureForm"/>
128 <xs:element name="Finish">
129 <xs:complexType>
130 <xs:simpleContent>
131 <xs:extension base="xs:anySimpleType">
132 <xs:attribute name="test" use="required">
133 <xs:simpleType>
134 <xs:restriction base="xs:string">
135 <xs:enumeration value="empty_line"/>
136 <xs:enumeration value="text_sequence"/>
137 <xs:enumeration value="regex_match"/>
138 <xs:enumeration value="byte_length"/>
139 </xs:restriction>
140 </xs:simpleType>



150 AmbiStream Domain Specific Languages

141 </xs:attribute>
142 </xs:extension>
143 </xs:simpleContent>
144 </xs:complexType>
145 </xs:element>
146 </xs:sequence>
147 <xs:attribute name="name" type="xs:string" use="required"/>
148 </xs:complexType>
149 </xs:element>
150 <xs:element name="Message">
151 <xs:complexType>
152 <xs:sequence>
153 <xs:element name="Insert" type="xs:string"/>
154 <xs:element name="Rule" type="RuleForm"/>
155 <xs:element name="Capture" type="CaptureForm"/>
156 </xs:sequence>
157 <xs:attribute name="name" type="xs:string" use="required"/>
158 </xs:complexType>
159 </xs:element>
160 </xs:sequence>
161 </xs:complexType>
162 </xs:element>
163 <xs:element name="Output">
164 <xs:annotation>
165 <xs:documentation>Structure of output messages.</xs:documentation>
166 </xs:annotation>
167 <xs:complexType>
168 <xs:sequence>
169 <xs:element name="Header">
170 <xs:complexType>
171 <xs:sequence>
172 <xs:element name="Insert" type="xs:string"/>
173 <xs:element name="RawBinary" type="VarNameForm"/>
174 <xs:element name="Line" type="LineForm"/>
175 </xs:sequence>
176 <xs:attribute name="name" type="xs:string" use="required"/>
177 </xs:complexType>
178 </xs:element>
179 <xs:element name="Message">
180 <xs:complexType>
181 <xs:sequence>
182 <xs:element name="Insert" type="xs:string"/>
183 <xs:element name="RawBinary" type="VarNameForm"/>
184 <xs:element name="Line" type="LineForm"/>
185 </xs:sequence>
186 <xs:attribute name="name" type="xs:string" use="required"/>
187 </xs:complexType>
188 </xs:element>
189 </xs:sequence>



AmbiStream Domain Specific Languages 151

190 </xs:complexType>
191 </xs:element>
192 </xs:all>
193 <xs:attribute fixed="text" name="type"/>
194 </xs:complexType>
195 </xs:element>
196 </xs:schema>
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B.2 XSD definition of the AmbiStream DSL for Mul-
timedia Container Formats

Figure B.2 – AmbiStream DSL for Multimedia Container Format
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1 <?xml version="1.0" encoding="UTF-8"?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="http://www.ambientic.com/

AmbiStream"
3 targetNamespace="http://www.ambientic.com/AmbiStream" elementFormDefault="qualified">
4 <xs:simpleType name="ParameterType">
5 <xs:restriction base="xs:string">
6 <xs:enumeration value="media_input_length"/>
7 <xs:enumeration value="sampling_frequency"/>
8 <xs:enumeration value="fragment_index"/>
9 <xs:enumeration value="fragment_number"/>

10 <xs:enumeration value="fragment_first"/>
11 <xs:enumeration value="fragment_last"/>
12 <xs:enumeration value="sequence_number"/>
13 </xs:restriction>
14 </xs:simpleType>
15 <xs:complexType name="BitsForm">
16 <xs:annotation>
17 <xs:documentation>Used for defining fields at bit-level</xs:documentation>
18 </xs:annotation>
19 <xs:attribute name="name" type="xs:string"/>
20 <xs:attribute name="bitlength" type="xs:integer"/>
21 <xs:attribute name="value" type="xs:hexBinary"/>
22 <xs:attribute name="parameter" type="ParameterType"/>
23 </xs:complexType>
24 <xs:complexType name="DataForm">
25 <xs:annotation>
26 <xs:documentation>Used for defining fields at byte-level</xs:documentation>
27 </xs:annotation>
28 <xs:sequence>
29 <xs:element name="Bits" type="BitsForm"> </xs:element>
30 </xs:sequence>
31 <xs:attribute name="name" type="xs:string"/>
32 <xs:attribute name="bytelength" type="xs:integer"/>
33 <xs:attribute name="value" type="xs:hexBinary"/>
34 <xs:attribute name="parameter" type="ParameterType"/>
35 </xs:complexType>
36 <xs:complexType name="BlockForm">
37 <xs:sequence>
38 <xs:element name="Block" type="BlockForm"/>
39 <xs:element name="Data" type="DataForm"/>
40 </xs:sequence>
41 <xs:attribute name="name" type="xs:string"/>
42 </xs:complexType>
43 <xs:complexType name="FieldForm">
44 <xs:sequence>
45 <xs:element name="Field" type="FieldForm"/>
46 <xs:element name="InputRange">
47 <xs:complexType>
48 <xs:attribute name="startbyte" type="xs:integer"/>
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49 <xs:attribute name="bytelength" type="xs:integer"/>
50 </xs:complexType>
51 </xs:element>
52 </xs:sequence>
53 <xs:attribute name="name" type="xs:string" use="required"/>
54 <xs:attribute name="value" type="xs:hexBinary" use="optional"/>
55 </xs:complexType>
56 <xs:complexType name="PacketForm">
57 <xs:sequence>
58 <xs:element name="Rule">
59 <xs:complexType>
60 <xs:simpleContent>
61 <xs:extension base="xs:string">
62 <xs:attribute name="type" type="xs:string"/>
63 </xs:extension>
64 </xs:simpleContent>
65 </xs:complexType>
66 </xs:element>
67 <xs:element name="Field" type="FieldForm"/>
68 </xs:sequence>
69 <xs:attribute name="name" type="xs:string"/>
70 <xs:attribute name="block" type="xs:string"/>
71 </xs:complexType>
72 <xs:element name="Container">
73 <xs:annotation>
74 <xs:documentation/>
75 </xs:annotation>
76 <xs:complexType>
77 <xs:sequence maxOccurs="1" minOccurs="0">
78 <xs:element name="Fragmenting" maxOccurs="1" minOccurs="0">
79 <xs:annotation>
80 <xs:documentation/>
81 </xs:annotation>
82 <xs:complexType>
83 <xs:sequence>
84 <xs:element name="Block" type="PacketForm"/>
85 <xs:element name="ContentRule">
86 <xs:complexType>
87 <xs:simpleContent>
88 <xs:extension base="xs:string">
89 <xs:attribute name="type" type="xs:string"/>
90 </xs:extension>
91 </xs:simpleContent>
92 </xs:complexType>
93 </xs:element>
94 </xs:sequence>
95 <xs:attribute name="method">
96 <xs:simpleType>
97 <xs:restriction base="xs:string">
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98 <xs:enumeration value="length"/>
99 <xs:enumeration value="content"/>
100 <xs:enumeration value="packaged_length"/>
101 </xs:restriction>
102 </xs:simpleType>
103 </xs:attribute>
104 </xs:complexType>
105 </xs:element>
106 <xs:element name="Packaging" maxOccurs="1" minOccurs="0">
107 <xs:annotation>
108 <xs:documentation/>
109 </xs:annotation>
110 <xs:complexType>
111 <xs:sequence>
112 <xs:element name="Block" minOccurs="1" type="BlockForm"> </xs:element>
113 <xs:element name="Packet" type="PacketForm"/>
114 </xs:sequence>
115 </xs:complexType>
116 </xs:element>
117 <xs:element name="Multiplexing">
118 <xs:annotation>
119 <xs:documentation/>
120 </xs:annotation>
121 <xs:complexType>
122 <xs:sequence>
123 <xs:element name="Block" minOccurs="1" type="BlockForm">
124 <xs:annotation>
125 <xs:documentation>Defines the structure of NULL Packets</xs:

documentation>
126 </xs:annotation>
127 </xs:element>
128 <xs:element name="Packet" type="PacketForm"/>
129 </xs:sequence>
130 <xs:attribute fixed="time_division" name="type" type="xs:string"/>
131 <xs:attribute name="constantbitrate" type="xs:boolean"/>
132 <xs:attribute name="timeslot" type="xs:integer"/>
133 <xs:attribute name="maxtimesloterror" type="xs:integer"/>
134 </xs:complexType>
135 </xs:element>
136 <xs:element name="Final">
137 <xs:complexType>
138 <xs:sequence>
139 <xs:element name="Block" minOccurs="1" type="BlockForm"> </xs:element>
140 <xs:element name="Packet" type="PacketForm"/>
141 </xs:sequence>
142 </xs:complexType>
143 </xs:element>
144 </xs:sequence>
145 <xs:attribute fixed="binary" name="type"/>
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146 <xs:attribute name="name" type="xs:string"/>
147 </xs:complexType>
148 </xs:element>
149 </xs:schema>
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B.3 XSD definition of the AmbiStream DSL for the
Merged Automaton

Figure B.3 – AmbiStream DSL for the Merged Automaton
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1 <?xml version="1.0" encoding="UTF-8"?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
3 <xs:simpleType name="MappingType">
4 <xs:restriction base="xs:string">
5 <xs:enumeration value="assignment"/>
6 <xs:enumeration value="dictionary"/>
7 <xs:enumeration value="function"/>
8 </xs:restriction>
9 </xs:simpleType>
10 <xs:simpleType name="MessageType">
11 <xs:restriction base="xs:string">
12 <xs:enumeration value="send"/>
13 <xs:enumeration value="receive"/>
14 </xs:restriction>
15 </xs:simpleType>
16 <xs:simpleType name="TransportType">
17 <xs:restriction base="xs:string">
18 <xs:enumeration value="UDP"/>
19 <xs:enumeration value="TCP"/>
20 </xs:restriction>
21 </xs:simpleType>
22 <xs:complexType name="TranslationLogicForm">
23 <xs:sequence>
24 <xs:element name="Field">
25 <xs:complexType>
26 <xs:attribute name="message" type="xs:string" use="required"/>
27 <xs:attribute name="path" type="xs:string" use="required"/>
28 </xs:complexType>
29 </xs:element>
30 <xs:element name="Transformation">
31 <xs:complexType>
32 <xs:choice>
33 <xs:element name="Dictionary">
34 <xs:complexType>
35 <xs:sequence>
36 <xs:element name="Item">
37 <xs:complexType>
38 <xs:attribute name="key" type="xs:string" use="required"/>
39 <xs:attribute name="value" type="xs:string"/>
40 </xs:complexType>
41 </xs:element>
42 </xs:sequence>
43 </xs:complexType>
44 </xs:element>
45 <xs:element name="Function">
46 <xs:complexType>
47 <xs:sequence>
48 <xs:element name="Parameter">
49 <xs:complexType>
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50 <xs:attribute name="name" use="required"/>
51 <xs:attribute name="path" use="required"/>
52 </xs:complexType>
53 </xs:element>
54 </xs:sequence>
55 </xs:complexType>
56 </xs:element>
57 </xs:choice>
58 </xs:complexType>
59 </xs:element>
60 </xs:sequence>
61 <xs:attribute name="mapping" type="MappingType" use="required"/>
62 </xs:complexType>
63 <xs:complexType name="StateForm">
64 <xs:sequence maxOccurs="1" minOccurs="0">
65 <xs:element name="TranslationLogic" type="TranslationLogicForm"/>
66 <xs:element name="Messages">
67 <xs:complexType>
68 <xs:attribute name="destination" type="xs:string"/>
69 <xs:attribute name="type" type="MessageType"/>
70 </xs:complexType>
71 </xs:element>
72 </xs:sequence>
73 <xs:attribute name="initial" type="xs:boolean"/>
74 <xs:attribute name="final" type="xs:boolean"/>
75 <xs:attribute name="id" type="xs:string" use="required"/>
76 <xs:attribute name="color" use="required">
77 <xs:simpleType>
78 <xs:list itemType="xs:string"/>
79 </xs:simpleType>
80 </xs:attribute>
81 </xs:complexType>
82 <xs:element name="Mediator">
83 <xs:complexType>
84 <xs:sequence>
85 <xs:element name="Colors">
86 <xs:complexType>
87 <xs:sequence maxOccurs="unbounded" minOccurs="2">
88 <xs:element name="Color">
89 <xs:complexType>
90 <xs:attribute name="name" type="xs:string"/>
91 <xs:attribute name="transport" type="TransportType"/>
92 <xs:attribute name="port" type="xs:positiveInteger"/>
93 </xs:complexType>
94 </xs:element>
95 </xs:sequence>
96 </xs:complexType>
97 </xs:element>
98 <xs:element name="States">
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99 <xs:complexType>
100 <xs:sequence>
101 <xs:element name="State" type="StateForm"/>
102 </xs:sequence>
103 </xs:complexType>
104 </xs:element>
105 </xs:sequence>
106 </xs:complexType>
107 </xs:element>
108 </xs:schema>
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B.4 Packaging phase description of the RTP Con-
tainer Format using the H264 video codec.

1 <Packaging trackid="1" type="video">
2 <Packet name="rtp_video">
3 <Rule type="select_fragment()">any</Rule>
4 <Field name="Version" value="10b">
5 <InputRange startbit="0" bitlength="2"/>
6 </Field>
7 <Field name="Padding" value="0b">
8 <InputRange startbit="2" bitlength="1"/>
9 </Field>

10 <Field name="Extension" value="0b">
11 <InputRange startbit="3" bitlength="1"/>
12 </Field>
13 <Field name="CsrcCount" value="0000b">
14 <InputRange startbit="4" bitlength="4"/>
15 </Field>
16 <Field name="Marker" value="0b">
17 <InputRange startbit="8" bitlength="1"/>
18 </Field>
19 <Field name="Marker" value="1b">
20 <!-- Set for the very last packet of the access unit indicated by the RTP

timestamp -->
21 <Rule type="select_fragment()">last</Rule>
22 <InputRange startbit="8" bitlength="1"/>
23 </Field>
24 <Field name="PayloadType" value="96">
25 <InputRange startbit="9" bitlength="7"/>
26 </Field>
27 <Field name="SequenceNumber" value="$sequence_number">
28 <InputRange startbit="16" bitlength="16"/>
29 </Field>
30 <Field name="Timestamp" value="$timestamp_90KHz">
31 <!-- Sampling timestamp of the content. A 90 kHz clock rate MUST be used. -->
32 <InputRange startbit="32" bitlength="32"/>
33 </Field>
34 <Field name="Ssrc" value="$track_id">
35 <!-- Synchronization Source Identifier -->
36 <InputRange startbit="64" bitlength="32"/>
37 </Field>
38 <Field name="Payload" value="$track_id">
39 <!-- RTP Payload Format for H.264 Video. See RFC6184 -->
40 <InputRange startbit="96" bitlength="+"/>
41 <Field name="forbidden_zero_bit" value="0b">
42 <InputRange startbit="0" bitlength="1"/>
43 </Field>
44 <Field name="nal_ref_idc" value="10b">
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45 <InputRange startbit="1" bitlength="2"/>
46 </Field>
47 <Field name="nal_ref_idc" value="11b">
48 <!-- a keyframe, a sequence parameter set or a picture parameter set -->
49 <Rule type="select_fragment()">$nal_unit_type == 5 ||
50 $nal_unit_type == 7 || $nal_unit_type == 8</Rule>
51 <InputRange startbit="1" bitlength="2"/>
52 </Field>
53 <Field name="rtp_nal_unit_type" value="$nal_unit_type">
54 <!-- Single NAL unit packet -->
55 <InputRange startbit="3" bitlength="5"/>
56 </Field>
57 <Field name="rtp_nal_unit_type" value="28">
58 <!-- Fragmented NAL unit packet -->
59 <Rule type="select_fragment()">fragmented(2)</Rule>
60 <InputRange startbit="3" bitlength="5"/>
61 </Field>
62 <Field name="FuHeader" value="28" optional="true">
63 <Rule type="select_fragment()">fragmented(2)</Rule>
64 <InputRange startbit="8" bitlength="8"/>
65 <Field name="FragmentStart" value="$fragment_first(2)">
66 </Field>
67 <Field name="FragmentEnd" value="$fragment_last(2)">
68 </Field>
69 <Field name="ReservedBit" value="0b">
70 </Field>
71 </Field>
72 <Field name="FragmentPayload" value="$fragment_data"/>
73 </Field>
74 </Packet>
75 </Packaging>



Appendix C
Unified mediation framework:

models and generated schemas

This appendix relates to the contributions presented in Chapter 5 where we present a

unified mediation framework for protocol interoperability. Below we include the following

documents, part of the conference management mediation example:

• Message Models for the Regonlie and Amiando components. They define the

strategy for assembling Atomic message translators in order to deal with the data

encapsulation in di↵erent middleware solutions and cross-layer data dependencies.

• Abstract Message Schemas. They are an abstract description of the component’s

interface that facilitates the synthesis of application-layer mediators. While the sce-

nario involved generating eight XSD schemas (one for each action of the individual

protocols), we only include two which are the most relevant.
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C.1 Message Models for the Regonline and Amiando
components

1 <?xml version="1.0" encoding="utf-8"?>
2 <application name="RegOnline">
3 <operation>Login</operation>
4 <operation>GetEvents</operation>
5 <extension>
6 <ext path="/" oper="*:Request">
7 <identifier>org.ambientic.cam.staticpc.http.HttpRequest</identifier>
8 </ext>
9 <ext path="/" oper="*:Response">
10 <identifier>org.ambientic.cam.staticpc.http.HttpResponse</identifier>
11 </ext>
12 <ext path="/body" oper="*:*">
13 <identifier>org.ambientic.cam.staticpc.soap.SoapEnvelope</identifier>
14 </ext>
15 <ext path="/body/body" oper="Login:Request">
16 <identifier>org.ambientic.cam.dynamicpc.wsdl.WsdlMessageFactory</identifier>
17 <description>regonline.wsdl</description>
18 <content>com.regonline.api.Login</content>
19 </ext>
20 <ext path="/body/body" oper="Login:Response">
21 <identifier>org.ambientic.cam.dynamicpc.wsdl.WsdlMessageFactory</identifier>
22 <description>regonline.wsdl</description>
23 <content>com.regonline.api.LoginResponse</content>
24 </ext>
25 <ext path="/body/body" oper="GetEvents:Request">
26 <identifier>org.ambientic.cam.dynamicpc.wsdl.WsdlMessageFactory</identifier>
27 <description>regonline.wsdl</description>
28 <content>com.regonline.api.GetEvents</content>
29 </ext>
30 <ext path="/body/body" oper="GetEvents:Response">
31 <identifier>org.ambientic.cam.dynamicpc.wsdl.WsdlMessageFactory</identifier>
32 <description>regonline.wsdl</description>
33 <content>com.regonline.api.GetEventsResponse</content>
34 </ext>
35 <ext path="/body/body/content/filter" oper="GetEvents:Request">
36 <identifier>org.ambientic.cam.dynamicpc.regex.RegexMessageFactory</identifier>
37 <description><![CDATA[ (?<function>[\w\.]+)\(\"(?<title>[\w]+)\"\)]]></description

>
38 </ext>
39 </extension>
40 <rules>
41 <valuerestrict path="/head/uri" oper="*:Request">
42 <enumeration value="/api/default.asmx"/>
43 </valuerestrict>
44 <valuerestrict path="/body/body/content/filter/function" oper="GetEvents:Request">
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45 <enumeration value="Title.Contains"/>
46 </valuerestrict>
47 <valuerestrict path="/body/body/content/username" oper="Login:Request">
48 <enumeration value="my_username"/>
49 </valuerestrict>
50 <valuerestrict path="/body/body/content/password" oper="Login:Request">
51 <enumeration value="my_password"/>
52 </valuerestrict>
53 <extract path="/head/headers[name=APIToken]/value" oper="GetEvents:Request">
54 <fielddef>apiToken</fielddef>
55 </extract>
56 <extract path="/head/headers[name=SOAPAction]/value" oper="*:Request">
57 <fielddef>soapAction</fielddef>
58 </extract>
59 <noderestrict path="/head/apiToken" oper="GetEvents:Request">
60 <replayonly>true</replayonly>
61 <appscope>true</appscope>
62 </noderestrict>
63 <noderestrict path="/body/body/content" oper="GetEvents:Request">
64 <optional>true</optional>
65 </noderestrict>
66 <map path="/head/soapAction" oper="*:Request">
67 <source>/body/body/soapAction</source>
68 </map>
69 </rules>
70 <concepts>
71 <annotation path="/head/apiToken" oper="GetEvents:Request">
72 <concept>SecurityToken</concept>
73 </annotation>
74 <annotation path="/body/body/content/loginResult/data/eventSessionId" oper="Login:

Response">
75 <concept>SecurityToken</concept>
76 </annotation>
77 <annotation path="/body/body/content/data" oper="GetEvents:Response">
78 <concept>Event</concept>
79 </annotation>
80 <annotation path="/body/body/content/filter/title" oper="GetEvents:Request">
81 <concept>EventTitle</concept>
82 </annotation>
83 </concepts>
84 </application>

1 <?xml version="1.0" encoding="utf-8"?>
2 <application name="Amiando">
3 <operation>EventFind</operation>
4 <operation>EventRead</operation>
5 <extension>
6 <ext path="/" oper="*:Request">
7 <identifier>org.ambientic.cam.staticpc.http.HttpRequest</identifier>
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8 </ext>
9 <ext path="/" oper="*:Response">
10 <identifier>org.ambientic.cam.staticpc.http.HttpResponse</identifier>
11 </ext>
12 <ext path="/body" oper="EventFind:Response">
13 <identifier>org.ambientic.cam.dynamicpc.json.JsonLearnFactory</identifier>
14 <description>amiandoeventfind_01.json</description>
15 <package>com.amiando.eventfind</package>
16 </ext>
17 <ext path="/body" oper="EventRead:Response">
18 <identifier>org.ambientic.cam.dynamicpc.json.JsonLearnFactory</identifier>
19 <description>amiandoeventread_01.json</description>
20 <package>com.amiando.eventread</package>
21 </ext>
22 <ext path="/head/uri" oper="*:Request">
23 <identifier>org.ambientic.cam.staticpc.http.UrlEncodedValues</identifier>
24 </ext>
25 </extension>
26 <rules>
27 <valuerestrict path="/head/uri/uri" oper="EventFind:Request">
28 <enumeration value="/api/event/find"/>
29 </valuerestrict>
30 <valuerestrict path="/head/uri/version" oper="*:Request">
31 <enumeration value="1"/>
32 </valuerestrict>
33 <valuerestrict path="/head/uri/format" oper="*:Request">
34 <enumeration value="json"/>
35 </valuerestrict>
36 <valuerestrict path="/head/uri/uri" oper="EventRead:Request">
37 <pattern value="/api/event/([0-9])+"/>
38 </valuerestrict>
39 <valuerestrict path="/head/uri/apikey" oper="*:Request">
40 <enumeration value="Fdiri3ncNyLtB************************GEkfkog6Tw21Wo"/>
41 </valuerestrict>
42 <extract path="/head/headers[name=apikey]/value" oper="*:Request">
43 <fielddef>apikey</fielddef>
44 </extract>
45 <extract path="/head/headers[name=version]/value" oper="*:Request">
46 <fielddef>version</fielddef>
47 </extract>
48 <extract path="/head/headers[name=format]/value" oper="*:Request">
49 <fielddef>format</fielddef>
50 </extract>
51 <extract path="/head/headers[name=title]/value" oper="EventFind:Request">
52 <fielddef>title</fielddef>
53 </extract>
54 <noderestrict path="/head/uri/uri" oper="EventRead:Request">
55 <appscope>true</appscope>
56 </noderestrict>
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57 <noderestrict path="/head/uri/apikey" oper="*:Request">
58 <optional>true</optional>
59 </noderestrict>
60 </rules>
61 <concepts>
62 <annotation path="/head/uri/uri" oper="EventRead:Request">
63 <concept>EventID</concept>
64 </annotation>
65 <annotation path="/body/content/ids" oper="EventFind:Response">
66 <concept>EventID</concept>
67 </annotation>
68 <annotation path="/head/uri/title" oper="EventFind:Request">
69 <concept>EventTitle</concept>
70 </annotation>
71 <annotation path="/body/content/event" oper="EventRead:Response">
72 <concept>Event</concept>
73 </annotation>
74 </concepts>
75 </application>

C.2 Abstract Message Schemas

C.2.1 Regonline GetEventsResponse

1 <?xml version="1.0" encoding="UTF-8"?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

targetNamespace="fr.inria.arles.mediation.com.regonline" xmlns:xsi="http://www.w3.
org/2001/XMLSchema-instance" xmlns:ns1="fr.inria.arles.mediation.com.regonline">

3 <xs:import namespace="http://www.w3.org/2001/XMLSchema-instance"/>
4
5 <xs:element name="GetEventsResponse">
6 <xs:complexType>
7 <xs:sequence minOccurs="0">
8 <xs:element name="GetEventsResponse" type="ns1:GetEventsResponse"/>
9 </xs:sequence>

10 </xs:complexType>
11 </xs:element>
12
13 <xs:complexType name="GetEventsResponse">
14 <xs:sequence minOccurs="0">
15 <xs:element name="GetEventsResult" type="ns1:GetEventsResult"/>
16 </xs:sequence>
17 </xs:complexType>
18
19 <xs:complexType name="GetEventsResult">
20 <xs:sequence>
21 <xs:element ref="ns1:Success"/>
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22 <xs:element ref="ns1:Data"/>
23 </xs:sequence>
24 </xs:complexType>
25
26 <xs:element name="Success" type="xs:boolean"/>
27 <xs:element name="Data">
28 <xs:complexType>
29 <xs:sequence>
30 <xs:element ref="ns1:APIEvent"/>
31 </xs:sequence>
32 </xs:complexType>
33 </xs:element>
34 <xs:element name="APIEvent" type="ns1:APIEvent"/>
35 <xs:complexType name="APIEvent">
36 <xs:complexContent mixed="false">
37 <xs:extension base="ns1:EventCommonFields">
38 <xs:sequence>
39 <xs:element minOccurs="1" maxOccurs="1" name="ID" type="xs:int" />
40 <xs:element minOccurs="1" maxOccurs="1" name="CustomerID" type="xs:int" />
41 <xs:element minOccurs="0" maxOccurs="1" name="ParentID" nillable="true" type="

xs:int" />
42 <xs:element minOccurs="0" maxOccurs="1" name="Status" type="xs:string" />
43 <xs:element minOccurs="0" maxOccurs="1" name="Title" type="xs:string" />
44 <xs:element minOccurs="1" maxOccurs="1" name="StartDate" nillable="true" type=

"xs:dateTime" />
45 <xs:element minOccurs="1" maxOccurs="1" name="EndDate" nillable="true" type="

xs:dateTime" />
46 <xs:element minOccurs="1" maxOccurs="1" name="ActiveDate" nillable="true" type

="xs:dateTime" />
47 <xs:element minOccurs="0" maxOccurs="1" name="ClientEventID" type="xs:string"

/>
48 <xs:element minOccurs="1" maxOccurs="1" name="TypeID" nillable="true" type="xs

:int" />
49 <xs:element minOccurs="0" maxOccurs="1" name="Type" type="xs:string" />
50 <xs:element minOccurs="0" maxOccurs="1" name="City" type="xs:string" />
51 <xs:element minOccurs="0" maxOccurs="1" name="State" type="xs:string" />
52 <xs:element minOccurs="0" maxOccurs="1" name="Country" type="xs:string" />
53 <xs:element minOccurs="0" maxOccurs="1" name="PostalCode" type="xs:string" />
54 <xs:element minOccurs="0" maxOccurs="1" name="LocationName" type="xs:string"

/>
55 <xs:element minOccurs="0" maxOccurs="1" name="LocationRoom" type="xs:string"

/>
56 <xs:element minOccurs="0" maxOccurs="1" name="LocationPhone" type="xs:string"

/>
57 <xs:element minOccurs="0" maxOccurs="1" name="LocationBuilding" type="xs:

string" />
58 <xs:element minOccurs="0" maxOccurs="1" name="LocationAddress1" type="xs:

string" />
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59 <xs:element minOccurs="0" maxOccurs="1" name="LocationAddress2" type="xs:
string" />

60 <xs:element minOccurs="0" maxOccurs="1" name="TimeZone" type="xs:string" />
61 <xs:element minOccurs="0" maxOccurs="1" name="Capacity" nillable="true" type="

xs:int" />
62 <xs:element minOccurs="0" maxOccurs="1" name="CurrencyCode" type="xs:string"

/>
63 <xs:element minOccurs="0" maxOccurs="1" name="Keywords" type="xs:string" />
64 <xs:element minOccurs="1" maxOccurs="1" name="AddDate" type="xs:dateTime" />
65 <xs:element minOccurs="0" maxOccurs="1" name="AddBy" type="xs:string" />
66 <xs:element minOccurs="1" maxOccurs="1" name="ModDate" type="xs:dateTime" />
67 <xs:element minOccurs="0" maxOccurs="1" name="ModBy" type="xs:string" />
68 <xs:element minOccurs="0" maxOccurs="1" name="Channel" type="xs:string" />
69 <xs:element minOccurs="1" maxOccurs="1" name="IsWaitlisted" type="xs:boolean"

/>
70 <xs:element minOccurs="0" maxOccurs="1" name="Culture" type="xs:string" />
71 <xs:element minOccurs="0" maxOccurs="1" name="MediaType" type="xs:string" />
72 <xs:element minOccurs="1" maxOccurs="1" name="IsActive" type="xs:boolean" />
73 <xs:element minOccurs="1" maxOccurs="1" name="IsOnSite" type="xs:boolean" />
74 <xs:element minOccurs="1" maxOccurs="1" name="Latitude" nillable="true" type="

xs:decimal" />
75 <xs:element minOccurs="1" maxOccurs="1" name="Longitude" nillable="true" type=

"xs:decimal" />
76 <xs:element minOccurs="0" maxOccurs="1" name="FloorMap" type="xs:string" />
77 <xs:element minOccurs="1" maxOccurs="1" name="TotalRevenue" nillable="true"

type="xs:decimal" />
78 <xs:element minOccurs="1" maxOccurs="1" name="TotalRegistrations" nillable="

true" type="xs:int" />
79 <xs:element minOccurs="1" maxOccurs="1" name="TotalCancels" nillable="true"

type="xs:int" />
80 <xs:element minOccurs="1" maxOccurs="1" name="TotalSubstitutions" nillable="

true" type="xs:int" />
81 <xs:element minOccurs="1" maxOccurs="1" name="TargetAttendance" nillable="true

" type="xs:int" />
82 <xs:element minOccurs="1" maxOccurs="1" name="TotalIncompletes" nillable="true

" type="xs:int" />
83 </xs:sequence>
84 </xs:extension>
85 </xs:complexContent>
86 </xs:complexType>
87
88 <xs:complexType name="EventCommonFields" />
89 </xs:schema>

C.2.2 Amiando ReadResponse

1 <?xml version="1.0" encoding="UTF-8"?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
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3 targetNamespace="fr.inria.arles.mediation.com.amiando"
4 xmlns:ns1="fr.inria.arles.mediation.com.amiando">
5 <xs:element name="EventReadResponse" type="ns1:EventReadResponse"/>
6
7 <xs:complexType name="EventReadResponse">
8 <xs:sequence>
9 <xs:element name="event" type="ns1:event"/>
10 </xs:sequence>
11 </xs:complexType>
12
13 <xs:complexType name="event">
14 <xs:sequence>
15 <xs:element name="lastModified" type="xs:dateTime"/>
16 <xs:element name="selectedDate" type="xs:dateTime"/>
17 <xs:element name="visibility" type="xs:NCName"/>
18 <xs:element name="location" type="xs:string"/>
19 <xs:element name="street" type="xs:NCName"/>
20 <xs:element name="publishSearchEngines" type="xs:boolean"/>
21 <xs:element name="hostId" type="xs:integer"/>
22 <xs:element name="eventType" type="xs:NCName"/>
23 <xs:element name="country" type="xs:NCName"/>
24 <xs:element name="city" type="xs:NCName"/>
25 <xs:element name="id" type="xs:integer"/>
26 <xs:element name="title" type="xs:NCName"/>
27 <xs:element name="timezone" type="xs:string"/>
28 <xs:element name="organisatorDisplayName" type="xs:string"/>
29 <xs:element name="creationTime" type="xs:dateTime"/>
30 <xs:element name="longitude" type="xs:decimal"/>
31 <xs:element name="latitude" type="xs:decimal"/>
32 <xs:element name="language" type="xs:NCName"/>
33 <xs:element name="identifier" type="xs:NCName"/>
34 <xs:element name="selectedEndDate" type="xs:dateTime"/>
35 </xs:sequence>
36 </xs:complexType>
37
38 </xs:schema>
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