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Abstract

The central theme of this thesis is to use the mode coupling effects to enhance sound
attenuation in acoustic ducts for potential applications, e.g. silencers for ventilation
systems and wall treatments for aircraft engines. Two different strategies are presented.

The idea of the first strategy is to couple the incoming propagative mode in the
waveguide with the mode localized in the scattering region. This strategy is presented
and validated in an acoustic duct-cavity system and a waveguide partially lined with a
locally reacting material. The R-matrix method is introduced to solve the propagation
problems in the waveguides. It is shown that a zero in the transmission is present when
a real resonance frequency of the open system, i.e. the cavity/lined portion(scattering
region) which is coupled to the two semi-infinite rigid ducts, is equal to the incident
frequency. This transmission zero occurs as a Fano resonance - due to the excitation of
a trapped mode in the open system. This trapped mode is formed by the interferences
of two neighboured modes with complex resonance frequencies. It is also linked to the
avoided crossing of the eigenvalues and exceptional point (a point in a 2D parameter
space, where not only the eigenvalues but also the eigenfunctions of a non-Hermitian
operator coalesce). The scattering matrix is expressed in terms of a matrix Heff which
describes the complex resonances in the scattering region. With the aid of the eigenvalues
and eigenfunctions of matrix Heff , the traditional acoustic resonance scattering formula
can be extended to describe the coupling effects between the scattering region and the
rigid parts of the waveguide.

In the second strategy, a set of periodic rigid inclusions are embedded in a porous
lining to enhance sound attenuation at low frequencies. The mode coupling is due to the
presence of the embedded inclusions. Floquet-Bloch theorem is proposed to investigate
the attenuation in a 2D periodic waveguide. Crossing is observed between the mode
attenuations of two Bloch waves. The most important and interesting figure is that
near the frequency where the crossing appears, an attenuation peak is observed. This
phenomenon can be used to explain the transmission loss peak observed numerically and
experimentally in a 3D waveguide with a portion of its wall lined by a porous material
embedded with periodic inclusions.

Finally, the acoustical behaviours of a purely reacting liner in a rectangular duct
in both absence and presence of flow are investigated. The results exhibit an unusual
acoustical behaviour: for a certain range of frequencies, no wave can propagate against
the flow. A negative group velocity is found in a certain range of frequencies, and it is
demonstrated that the sound can be slowed down and even stopped.

Keywords

R-matrix method, Trapped mode, Fano resonance, Avoided crossing, Exceptional
point, Sound attenuation, Bloch waves, Slow sound



vi



Résumé

Le thème central de cette thèse est l’utilisation des effets de couplage de modes pour
l’amplification de l’atténuation du son dans les conduits acoustiques. Les applications
potentielles concernent les silencieux pour les systèmes de ventilation et les traitements
de réacteurs pour l’aviation. Deux stratégies différentes sont présentées.

La première stratégie proposée est de coupler le mode incident propagatif dans le
guide d’onde avec un mode localisé dans la région diffusive. Cette stratégie est présentée
et validée dans un système conduit-cavité et un guide d’onde partiellement traité en
paroi avec un matériau à réaction locale. La méthode ! R-matrix " est introduite pour
résoudre le problème de propagation d’onde dans le guide d’onde. Une annulation de
la transmission se produit quand un mode piégé est excité dans le système ouvert. Le
zero de transmission suivi immédiatement d’un pic de résonance forment une résonance
de Fano. Ce mode piégé est formé par les interférences de deux modes voisins avec des
fréquences de résonance complexes. Ce phénomène est aussi lié au croisement évité des
valeurs propres et à un point exceptionnel (point dans un espace 2D où les valeurs propres
et vecteurs propres d’un opérateur non-hermitien se confondent). La matrice de diffusion
est exprimée en termes d’une matrice Heff qui décrit les résonances complexes dans la
région diffusive. Avec l’aide des valeurs et fonctions propres de la matrice Heff , la formule
de diffusion résonante acoustique traditionnelle peut être étendue pour décrire les effets
de couplage entre la région diffusive et les parties rigides du guide d’onde.

Dans la seconde stratégie, un réseau d’inclusions rigides périodiques est intégré dans
une couche poreuse pour améliorer la’tténuation du son à basse fréquence. Le couplage de
modes est du à la présence de ces inclusions. Le théorème de Floquet-Bloch est proposé
pour analyser l’atténuation du son dans un guide d’onde périodique en 2D. Un croisement
de l’atténuation de deux ondes de Bloch est observé. Au voisinage de la fréquence de
croisement, un pic d’atténuation est observé. Ce phénomène est utilisé pour expliquer
le pic de pertes en transmission observé expérimentalement et numériquement dans un
guide 3D avec une portion de paroi traitée par un matériau poreux avec des inclusions
périodiques.

Enfin, le comportement acoustique d’un liner purement réactif dans un conduit rec-
tangulaire avec et sans écoulement est étudié. Les résultats montrent un comportement
acoustique inhabituel : dans une certaine gamme de fréquence, aucune onde ne peut se
propager à contre sens de l’écoulement. Par analyse des différent modes à l’aide de la
relation de dispersion, il est démontré que le son peut être ralenti et même arrêté.

Mots-clés

Méthode R-matrix, Mode piégé, Résonance de Fano, Croisement évité, Point excep-
tional, Atténuation du son, Ondes de Bloch, Son lent
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Chapter 1

General introduction

1.1 Background

Acoustic liners [1] are widely used in ducts to reduce aircraft engine noise emission.
Two main different acoustic liners are commonly used: the locally-reacting liner and the
bulk-reacting liner. The locally reacting liners are generally made with a perforated sheet
backed by honeycomb and permit propagation only in the direction normal to the duct
wall. This kind of materials have good absorption properties only in a narrow frequency
band but their main advantages are their mechanical robustness and their capability to
resist to harsh conditions. Bulk-reacting liners may consist of isotropic or anisotropic
porous material. They generally offer a wider absorption/attenuation band. However,
they suffer from a lack of absorption efficiency at low frequencies, comparing to their
efficiency at higher frequencies.

The use of uniform acoustic duct liners to suppress the noise is well established,
research efforts have been focused on the prediction of the acoustic liner performances
and the design of optimum liners. The minimum transmission (maximum attenuation)
coefficient for each mode in an infinite uniform waveguide or in a duct lined with lo-
cally reactive impedance, is Cremer’s optimum attenuation [2]. The corresponding lined
impedance is called Cremer’s optimum impedance. Each mode has one and only one
corresponding optimum impedance [3, 4], in the absence of mean flow or with uniform
flow [3]. Soon after, axially and circumferentially segmented liners have also been consid-
ered in the design of more effective noise-attenuation systems, for review, see for example
Refs. [5, 6, 7] and references therein. The basic idea of these non-uniform liners is: one
less attenuated mode may be scattered into higher attenuated modes at the non-uniform
parts (interfaces) by mode couplings.

To date, due to the growth of fan diameter, the reduction of the rotation speed and of
the number of blades, sound attenuation at low frequencies still represents a challenge. To
solve that problem, other approaches must be investigated and new concepts of acoustic
absorbers dedicated to the reduction of turbomachinery noise must be developed.

1



2 Chapter 1. General introduction

Motivated by this situation, the objective of this thesis is to use some new mechanisms
to reduce sound transmission or improve the sound attenuation in acoustic ducts. Two
different strategies will be presented.

For the first strategy, we will focus on the coherent mode couplings in a duct-cavity
system and in a rigid duct partially treated with uniform locally reacting liner, and
their effects on the sound propagation behaviours. The idea is to use the interference
effect between the incoming propagative mode in the rigid regions and the trapped mode
in the cavity/lined region, to produce a transmission zero or a narrow band of dip.
This trapped mode localises in the lined/cavity region, which is regarded as an open
cavity opened to the infinities through the rigid regions, in both transverse and axial
directions, and it is also called (real or complex) resonance. We will use trapped mode(s)
or resonance(s) alternatively in this thesis. In the point of view of resonance, the above
mentioned interference effect is a resonance scattering process. In contrast to the usual
resonance scattering (see, e.g., Uberall [8]), the interferences between the incoming wave
and local resonance produce a Fano resonance. As trapped mode, Fano resonances are
some relatively new concepts in acoustics, and we will show, in this thesis, that they
are closely connected with “exceptional points” and “avoided crossings”. We will explain
these concepts by some simple examples in the following sections.

In the second strategy, to improve the liner efficiency at low frequencies, material
including periodic subwavelength resonators are studied in analogy to optical metama-
terials [9, 10, 11]. In this view, metaporous materials, made of periodic rigid inclusions
embedded in the porous medium, have been proposed to enhance the absorption prop-
erties at frequencies lower than the quarter wavelength frequency [12, 13]. The principle
is that the energy is trapped between periodic rigid inclusions embedded in the porous
medium and the rigid backing or in the inclusions themselves. In the second strategy,
we deals with the bulk-reacting liner. The coupling of the modes due to the presence of
the rigid inclusions embedded in the porous material is investigated and introduced to
enhance the sound attenuation in the waveguide at low frequencies.

The use of periodic inclusion in the waveguide has also been studied by Nennig et

al. [14]. The Floquet-Bloch theorem is used to reduce the computation on one periodic
cell. It has been shown that open shape inclusions (e.g. U-shape) are able to enhance
the attenuation when compared with a homogeneous liner. Thanks to Floquet-Bloch
formalism assuming periodic heterogeneities [12, 13, 14, 15], very interesting results have
been obtained in acoustics. The Floquet theorem is applicable to ordinary differential
equations with periodic coefficients and shows that the solutions are such that

ψpx` L0q “ ejkBL0ψpxq,

where L0 is the period of the coefficients, kB is the Bloch wave number, and x is the
propagation axis. Such functions are known as Bloch wave functions.
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1.2 Trapped modes

x

y

0

1

Rigid wall

Rigid wall

Figure 1.1: A 2D uniform rigid duct.

Transverse modes in a 2D uniform (coordinate px, yq) normalized rigid duct (see
Fig. 1.1) can be defined by

Bφpyq
By “ ´α2φpyq, (1.1)

with boundary conditions
Bφpyq

By

ˇ

ˇ

ˇ

ˇ

y“0,1

“ 0. (1.2)

The solutions are

φnpyq “ Λcospαnyq and αn “ nπ with Λ “ 1 if n “ 0, else
?
2, (1.3)

where n “ 0, 1, 2, ¨ ¨ ¨ , . labels the mode. In the infinite uniform waveguide (x Ñ ˘8),
waves ppx, yq with transverse modes φnpyq and wavenumber in x´direction kxn propagate
as

ppx, yq “ φnpyqe´jωt˘jkxnx, (1.4)

where kxn “
a

k2 ´ α2
n.

x

y

0

1

Rigid wall

Soft wall

Figure 1.2: A 2D open system, where the bottom wall is soft and the others are rigid.

However, some open systems (see e.g. Fig. 1.2) may sustain such kind of mode,
which mathematically corresponds to real eigenvalues of the relevant operator in an
unbounded domain. In the literature, they are often called “trapped modes” to stress



4 Chapter 1. General introduction

their localization properties in open system. They are also called bound states in quantum
mechanics [16]. If a part of energy is radiated to the infinity, the eigenvalues are complex,
they are also called complex resonances in open cavities or leaky modes in waveguides [17].
Therefore, discrete trapped modes with eigenfunctions ϕpx, yq and real eigenvalues k,
which satisfy eigenvalue problem

B2ϕ{Bx2 ` B2ϕ{By2 “ ´k2ϕ (1.5)

and boundary conditions along y and radiation conditions along x, and have finite energy,

ĳ

s

dy

ż 8

´8
dx|ϕ|2 is finite, (1.6)

where s is waveguide cross section, in general do not exist. However, discrete trapped
modes may exist below the first cut-off frequency of the transverse modes (e.g. in waveg-
uides with pressure release boundary conditions (Dirichlet waveguides, see e.g. Fig. 1.3),
or antisymmetric transverse modes in rigid waveguides (Neumann waveguides)), provided
some kinds of defect or variations of geometry exist [17, 18]. Discrete trapped modes may
also exist above the first cut-off frequency for specific parameter combinations, called em-
bedded trapped modes or bound states in continuum (BIC) in quantum mechanics [19].
Here “continuum” means the eigenvalues (or spectrum in maths and quantum mechanics)
k are distributed continuously and the corresponding eigenfunctions are in general not
square integrable due to the radiation of energy to infinity. Although BIC are embedded
in continuum spectrum, their eigenfunctions are still square integrable, i.e., their energy
is finite. The basic mechanism of trapping is illustrated by using a simple model of the
potential well by Pagneux [18].

Figure 1.3: An example of trapped in a semi-infinite system (see Fig. 1.2), with Dirichlet
condition on the bottom wall and rigid boundary conditions on the other walls.

The existence of trapped mode problem in the waveguides has been investigated by
many authors in various physical contexts theoretically and experimentally. In locally-
perturbed acoustic waveguides, it was first observed experimentally by Parker in 1966 [20],
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who also made the first theoretical calculations of resonance frequencies (eigenvalues of
trapped modes, in this thesis, we will use resonance or trapped mode alternatively) in
the following year [21]. Since then, more investigations have been done, for example,
embedded trapped mode frequencies for a variety of configurations have been calculated
by Duan et al. [17]. Recently, S. Hein et al. [22] used the finite-element method to nu-
merically compute the acoustic resonances in 2D acoustical duct-cavity systems. Three
types of trapped modes are introduced: antisymmetric (about duct axis) trapped modes
below the first cut-off frequency, embedded trapped modes linking with avoided cross-
ings of resonances, and trapped modes associated with Fabry-Pérot interference between
cavities. The second type of trapped mode is of our first interest, see chapters 2 and 3.

Trapped modes (resonaces, or BIC) may be linked closely with avoided crossings of
eigenvalues and Exceptional Points (EPs)[23, 24]. By Feshbach’s theory of resonance,
Friedrich and Wintgen [25] demonstrated that BICs in atomic physics can occur, due to
the interference of resonance belonging to different channels. By varying a continuous
parameter, avoided crossings of resonances are observed. At a particular value of the
parameter, one resonance has exactly vanishing width and becomes a BIC, the same
phenomenons are also observed in acoustical duct-cavity system and acoustic lined duct,
see Chap. 2 and Chap. 3, respectively. In quantum systems, Almas F. Sadreev et al. [26]
showed that the BIC also appears in open quantum billiards by varying their shape
continuously. They also found that the BICs are close to the points of degeneracy [27]
of the closed quantum system, which are the points in a two-dimensional parameter
space where only the eigenvalues coalesce, while the corresponding eigenfunctions are still
orthogonal. When the system is opened by attaching to two infinite leads, the coupling
of the two resonances is turned on, an avoided crossing occurs with the variation of the
parameters [24]. This avoided crossing is associated with the Exceptional Points(EPs)
in the parameter plane. At the EPs, the two resonances will coalesce, not only the
eigenvalues but also the eigenfunctions [23, 24]. An example about the existence of EP
in acoustics is the Cremer’s optimum impedance, see Chap.1.4 in the following.

1.3 Exceptional points and avoided crossings: a simple il-

lustration example

We consider the simple example (see Fig. 1.4), two pendulums with the same mass m
are coupled through a spring k. The length l of the unperturbed pendulum is changed
for the second pendulum to the value lp1`σq. The force on pendulum 1 in the direction
of motion due to the coupling is ´kl pθ1 ´ p1 ` σqθ2q and the force on pendulum 2 due to
the coupling is ´kl pp1 ` σqθ2 ´ θ1q. The differential equations for the angular motions
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m

m
k

θ
1

θ
2

l

l(1+σ)

1

2

Figure 1.4: Schematic view of two coupled pendulums

θ1 and θ2 become
d2

dt2
θ1 ` ω2

1θ1 ` k

m
θ1 ´ k

m
p1 ` σqθ2 “ 0,

d2

dt2
θ2 ` ω2

2θ2 ` k

m
θ2 ´ k

m

1

p1 ` σqθ1 “ 0,

(1.7)

where ω1 “
b

g
l

and ω2 “
b

g
lp1`σq are the natural frequencies of the two uncoupled

pendulums. The differential equations can be written in a matrix form

d2

dt2
~θ ` H~θ “ 0, (1.8)

where

H “ H0 ` k

m
H1 “

„

ω2
1

0

0 ω2
2



` k

m

„

1 ´p1 ` σq
´ 1

1`σ 1



(1.9)

with H1 the coupling matrix due to the presence of the spring. The eigenvalues λ are the
solutions of

H~θn “ λn~θn, i.e., ∆pλ, σq “ detpH ´ λIq,

where n “ 1, 2, λ “ ω2, and I is the identity matrix.

When there is no coupling between the two pendulums, i.e. k “ 0, the two eigenvalues
coalesce if

∆pλ, σq “ pω2

1 ´ λqpω2

2 ´ λq “ 0 and B∆pλ, σq{Bλ “ 0.

We find that at σ “ 0, λ1,2 “ ω2
1

“ g{l. This is called a degeneracy [27]. The two eigen-
values coalesce, while the two eigenfunctions, such as cosω1t and sinω1t, are orthogonal.

When k ‰ 0, there is coupling between the two pendulums, the eigenvalues are

λ1,2 “ 1

2

„

ω2

1 ` ω2

2 ` 2
k

m
˘Rc



, with Rc “
c

ω4
1

` ω4
2

´ 2ω2
1
ω2
2

` 4p k
m

q2. (1.10)

We can see that when Rc ‰ 0, there exists avoided crossing between the two eigenval-
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ues(see Figs. 1.5 and 1.6). However, the two eigenvalues will coalesce if Rc “ 0, this
occurs at the two complex conjugate σ (Here the σ “ σr ` iσi has been assumed to be
analytically continued in the complex plane). We can find that at

σep “ ´4C4 ˘ j2C2

1 ` 4C4
, (1.11)

we have

λep “ 1

2

„

ω2

1 ` ω2

2 ` 2
k

m



, (1.12)

where C2 “ k{m
g{l is the coupling strength. σep is an exceptional point (EP) in the complex

parameter plane σ, where we have λ1 “ λ2 “ λep.

0.98 1 1.02 1.04 1.06 1.08 1.1

0.02

0.04

0.06

0.08

ℜe(λ)

ℑ
m
(λ

)
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Figure 1.5: Trajectories of the eigenvalues in the complex plane with three different
σi, i.e., ´0.2pII and IVq, ´0.19pI and IIIq, and ℑmpσepq(crossing), respectively. Arrows
indicate the increase with σr. The other parameters are ω1 “ 1 and k{m “ 0.1.

As an example, we choose ω1 “ 1 and k{m “ 0.1, leading to σep “ ´0.0385˘ j0.1923.
We present a topological argument why either the real parts or the imaginary parts must
cross when eigenvalue trajectories pass the vicinity of an EP [24]. When σip“ ´0.2q ă
ℑmpσepq, crossing for the real parts and avoided crossing for the imaginary are observed,
(II and IV in Fig. 1.5). While when σip“ ´0.19q ą ℑmpσepq, avoided crossing for the real
parts and crossing for the imaginary are observed, ( I and III in Fig. 1.5). Only in the
special case (σi “ ℑmpσepq) where the parameter σ moves straight through an EP will
both, the real and imaginary part, cross. Using this crossing, we can divide the complex
plane into four quadrants, labelled by I, II, III, and IV in Fig. 1.5, respectively.

The details of the crossings and avoided crossings in Fig. 1.5 are also considered
again in Fig. 1.6, in which we plot the real and imaginary parts of the eigenvalues λ1,2
as a function of the real parameter σr for two different values of σi (´0.2(upper figure)
and ´0.19(bottom figure), respectively). Crossing is observed for the real part with
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σi “ ´0.2, while for the imaginary part with σi “ ´0.19. Other choices lead qualitatively
to the same result. From Eq. (1.11), the σep is a complex conjugate pair. The other σep
can also have the same effects on λ by taking σi “ 0.19 and 0.2.
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Figure 1.6: Eigenvalues λ1,2 as a function of σrpP r´0.1, 0.1sq with (a)(b)(c)σi “ ´0.2

and (d)(e)(f)σi “ ´0.19. The other parameters are ω1 “ 1 and k{m “ 0.1. Figures (c)
and (f) give the trajectories of the eigenvalues in the complex plane.

Exceptional points were first introduced by Kato [28], and were extensively developed
by Heiss [23, 24, 29], Rotter [30, 31, 32], and Berry [33]. Extensions of this concepts in
acoustics is shown in [34]. The mathematically topological structures of Riemann sheets
of an EP, which are a square root branch point of the coalescing eigenvalues and a fourth-
order branch point of the coalescing eigenfunctions depending on a complex or two real
parameters, have been proved physical reality [35]. EPs have attracted much attention in
non-Hermitian Hamiltonian quantum and optical systems (see, e.g. Refs. 30, 36 and the
references therein). They have been found in different domains: laser-induced ionization
states of atoms [37], atom waves in crystals of light [38], electronic circuits [39], atoms in
cross magnetic and electric fields [40], and in microwave billiards [41]. Experiments in
laboratories have been carried out with resonances in microwave cavities [35, 41, 42].

EPs are closely related to avoided crossings of eigenvalue curves. If the parameter σ
is real, the system H in Eq. (1.9) is Hermitian. The typical behaviour of the eigenvalues
of matrix H as a function of real σ when they approach each other, is repulsion, or an
avoided crossing. This is the famous rule of von Neumann and Wigner [43] in quantum
mechanics who proved that in systems without any symmetry we have to vary two pa-
rameters in order to create a (conventional) degeneracy. The analytic continuation into
the complex σ-plane yields a complex conjugate pair of EPs where the two coalescing
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modes are analytically connected by a square root branch point [29]. Avoided crossings
of eigenvalues play an important role in quantum mechanics [44]. They have been also
found in the area of structural dynamics [45, 46, 47] and related to mode localization
in disordered structures [48, 49]. In Chap. 4, we will see that they also play an impor-
tant role in the sound attenuation in a waveguide lined by a porous material embedded
with periodic inclusions. A maximum sound attenuation is observed near a crossing (or
avoided crossing) of the mode attenuations between two Bloch waves.

1.4 Exceptional points and avoided crossings: applications

in lined waveguides

In the following, we will see that for the applications in the lined intakes of an aero-
engine, EP [34] exists in complex admittance (impedance) plane and plays an important
role in the sound attenuation [34]. An example of the EPs in acoustics is the Cremer’s
optimum impedance. The Helmholtz equation

B2ψ

By2 ` k2yψ “ 0 (1.13)

of transverse eigenfunction ψpyq in an infinite lined duct of normalized height h “ 1 with
boundary conditions

Bψpyq
By

ˇ

ˇ

ˇ

ˇ

y“0

“ ´jKY ψp0q and
Bψpyq

By

ˇ

ˇ

ˇ

ˇ

y“1

“ 0 (1.14)

is solved by Multimodal Method [50, 51], where ky is the corresponding eigenvalue.
Function ψpyq is projected in the basis of the rigid modes (Eq. (1.3))

ψypyq “
ÿ

Anφnpyq.

Multiplying the Helmholtz equation of ψpyq by φnpyq on both sides, and then integrating
with respect to y over r0, 1s, we can write the upper eigenvalue problem in a matrix form

k2y
~A “ Γ ~A´ jKY ¨ M ~A,

where Mmn “ φmp0qφnp0q, and Γ is a diagonal matrix with elements α2
n. The eigenvalue

problem of the lined waveguide can be regard as solving the eigenvalue problem of the
matrix

H “ Γ ´ jKYM. (1.15)

By Eq. (1.15), we can study the influence of the admittance on the wavenumber ky.
For the simplification, we treat the product K ¨ Y as one parameter KY . Referring to
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Figure 1.7: (a) Real and (b) imaginary part of wavenumbers ky of the first 2 modes
(labeled by “Mode1" and “Mode2", respectively ) as a function of ℜepKY q under two
different values of ℑmpKY q “ ´1.5 (‘*’) and ´2 (‘+’) respectively. (c)Trajectories of
the wavenumber in complex plan, arrow shows the direction of the movements with
increasing the real part of KY .

the work of F. P. Mechel [4], the first two exceptional points for the first three modes
are KYEP1 “ 2.05998 ´ j1.65061 and KYEP2 “ 5.33471 ´ j2.05785, with expp´jωtq
considered. Here, the first point is investigated, i.e. the behaviours of the first two
eigenvalues are considered. In Fig. 1.7, we show the motions of the first two eigenvalues
ky (labeled by “Mode1” and “Mode2”, respectively) as a function of ℜepKY q under two
different values of ℑmpKY q. The amplitude of its eigenfunction from the decreases
exponentially away from the lined wall, which is 9 expp´|ky|yq. With increasing the
absolute value of ℑmpKY q, the |ky| will increase, resulting in that the eigenfunction of
transverse mode decreases faster from the lined wall, these properties are also discussed
in Chap. 5 of this thesis.

Two corresponding different kind of avoided crossings are found in Fig. 1.7 for ℑmpKY q “
´1.5 and ´2, respectively. The transition of the two types of avoided crossings indicates
that there exist an exceptional value of pℜepKY q,ℑmpKY qq, at which the two eigenval-
ues curves will coalesce, this value is called the Exceptional Point(EP) in the complex
KY parameter plane. To see the EP location in the parameter plane clearly, the real
and imaginary parts of ky as a function of both ℜepKY q and ℑmpKY q are also given,
see Fig. 1.8. We can see that the two eigenvalues are the values of one single analytical
function on two Riemann sheets. The point (ky1 “ ky2) is called branch point singularity
[23].
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(a) Repkyq (b) Impkyq

Figure 1.8: Eigenvalue surfaces of the first 2 in that complex KY plane: (a) real and (b)
imaginary parts of ky. The EP is located in the complex KY plane, at where the two
eigenvalues coalesce.

1.5 Fano resonance

Fano resonance was firstly suggested by Ugo Fano [52] for the description of autoion-
izing atomic states. In contrast to the conventional isolated resonances, e.g., resonance
in a harmonic oscillator with periodic forcing, for which the spectral dependence can be
described by the Lorentzian or Breit-Wigner formula – a symmetric spectral line; Fano
resonance was explained as a phenomenon of constructive and destructive interferences
between a bound state and the continuum [52, 53]. The corresponding spectral lines
are asymmetric. Since its discovery, Fano resonance has been attracting much attention
in different research fields, for review articles see, for example, [54, 55] and the refer-
ences therein. Fano resonances have been observed experimentally in different domains
of physics [54, 55]. Extensive studies were carried out in Fano resonance induced by
the interferences between bound states (or quasi-bound states, complex resonances) and
the continuum, or between quasi-bound states through the continuum, for example, see
Refs. 56, 57, 58, 59, 60, 61. Fano resonance in acoustic scattering and their relations
with trapped modes in waveguides including obstacles or in duct-cavity systems have
been studied by Hein et al. [22, 62].

Y. Joe et al. [53] gave a classical analogy of appearance of the Fano resonances based
on a simple harmonic oscillator system model. In this section, the same system as used in
Sec. 1.3 is applied here to give the explanation of the physical nature of Fano resonance.
The equations of angular motion for the two coupled pendulums with an external driving
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Figure 1.9: Schematic view of two coupled pendulums with a driving force applied to
one of them.

force on pendulum 1 may be written as

d2

dt2
θ1 ` ω2

1θ1 ` k

m
θ1 ´ k

m
p1 ` σqθ2 “ a1e

jωt, and

d2

dt2
θ2 ` ω2

2θ2 ` k

m
θ2 ´ k

m

1

p1 ` σqθ1 “ 0,

(1.16)

where a1e´jωt written in a complex form is the term due to the external force. After
some manipulation, one can obtain that the steady-state solutions for the angular of the
pendulums are also harmonic such that

θ1 “ c1e
´jωt, θ2 “ c2e

´jωt.

The amplitudes are

c1 “
`

ω2
2

´ ω2 ` k
m

˘

`

ω2
1

´ ω2 ` k
m

˘ `

ω2
2

´ ω2 ` k
m

˘

´ p k
m

q2
a1, (1.17)

c2 “
k
m

1

1`σ
`

ω2
1

´ ω2 ` k
m

˘ `

ω2
2

´ ω2 ` k
m

˘

´ p k
m

q2
a1. (1.18)

The amplitudes of the two pendulums as a function of the frequency of an external
force are shown in Fig.1.10(a) and (b), respectively, where we have used σ “ ´0.1,
k{m “ 0.1, and a1 “ 0.1. In the figure, the frequency ω is normalised by ω1. Two
resonant peaks appear, the location of the resonant peaks corresponds to the real parts
of the complex eigen-frequencies ω̃1,2 “

a

λ1,2 (Eq.(1.10)). In Fig.1.10(a), the reason
why the second resonant peak is asymmetric is due to the existence of the zero-frequency

at ωzero “
b

ω2
2

` k
m

“ 1.0954, which is right near the peak position(see the inset), and

depends on the coupling strength k{m. The tendency of the resonance of the second
pendulum as a function of the frequency is rather straightforward, see Fig. 1.10(b).
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Figure 1.10: The amplitudes of the (a) pendulum 1 and (b) pendulum 2 as a function
of frequency, where the frequency is in units of the natural frequency ω1. The other
parameters are ω1 “ 1, σ “ ´0.1, a1 “ 0.1, and k{m “ 0.1.

Fano resonance in an acoustic waveguide with a single defect

Analogous to the single defect in a quasi-one-dimensional wire [53, 63, 64], we also
consider a single defect with Y pxq P r0, x1s in a acoustic duct with normalized height
h “ 1. The defect is introduced by an normalized admittance Y pxq with very small
length x1, see Fig. 1.11. When the length x1 is very small and tends to be zero, the
admittance can be expressed by a δ function, i.e., Y pxq “ Y0δpxq, with δpxq “ 1 if and
only if x “ 0, else δpxq “ 0.

x

y

0

Y(x)

x
1

Figure 1.11: A single defect introduced by a normalized admittance Y pxq in an acoustic
waveguide. The length of the admittance is x1.

Here and in the following, all quantities are nondimensionalized. The sound ppx, yq
can propagate along x direction, the full wave equation is

ˆ B2

Bx2 ` B2

By2 `K2

˙

ppx, yq “ 0, (1.19)

where K “ ωh{c0 is the dimensionless frequency, ω is the circular frequency, and c0 is
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the ambient sound speed. The admittance boundary condition can be written as

Bppx, yq
By

ˇ

ˇ

ˇ

ˇ

y“0

“ ´jKY pxqppx, 0q, (1.20)

with time dependence e´jωt used.

We will expand the solutions of the full scattering problem (Eq.(1.19)) in terms of
the rigid transverse eigenfunctions φnpyq (see Eq. (1.3))

ppx, yq “
8
ÿ

n“0

cnpxqφnpyq. (1.21)

Multiplying Eq.(1.19) by φmpyq, integrating over y, and substituting Eq.(1.21) into the
resulting equation, we can have

B2cmpxq
Bx2 ` Bp

Byφmpyq
ˇ

ˇ

ˇ

ˇ

1

0

´ p
Bφm
By

ˇ

ˇ

ˇ

ˇ

1

0

`
ż h

0

p
B2φmpyq

By2 dy `K2cmpxq “ 0. (1.22)

Applying the boundary conditions Eq.(1.20) and the Eq.(1.3) into the above equation
Eq.(1.22), we obtain

B2cmpxq
Bx2 ` pK2 ´ α2

mqcmpxq “ ´jKY pxq
ÿ

n

cnpxqφnp0qφmp0q. (1.23)

The upper equation can be written in a matrix form

B2cmpxq
Bx2 ` pK2 ´ α2

mqcmpxq “
ÿ

n

M0

mncnpxq, (1.24)

where
M0

mn “ ´jKY pxqφmp0qφnp0q.

In the regions where the admittance is zero, the solutions to Eq.(1.24) are

cnpxq “
#

Ane
jβnx `Bne

´jβnx, x ă 0

Cne
jβnpx´x1q `Dne

´jβnpx´x1q, x ą x1
(1.25)

for the propagating modes, where βn “
a

K2 ´ α2
n, and

cnpxq “
#

Ane
´|βn|x `Bne

|βn|x, x ă 0

Cne
´|βn|px´x1q `Dne

|βn|px´x1q, x ą x1
(1.26)

for the evanescent modes.
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Let the δ-function admittance be

Y pxq “ Y0δpxq. (1.27)

Integrating Eq.(1.24) across the δ function gives

Bcmpxq
Bx

ˇ

ˇ

ˇ

ˇ

x“0`

´ Bcmpxq
Bx

ˇ

ˇ

ˇ

ˇ

x“0´

“
ÿ

n

M0
mncnp0q, (1.28)

we have usedcmp0`q “ cmp0´q.

We suppose that plane mode is incident, and |KY0| ă |α0 ´ α1| and K ă α1. In
this case, only the plane mode is propagating, and it is surfficient to consider only one
evanescent mode n “ 1. We assume that the waves are incident from the left, resulting
in Dn “ 0 for all the modes, and An “ 0 for all the evanescent modes. We can write

A1 `B1 “ C1, B2 “ C2,

jβ1C1 ´ jβ1pA1 ´B1q “ M0
11C1 ` M0

12C2,

and
´|β2|C2 ´ |β2|B2 “ M21C1 ` M22C2.

We otain
p2jβ1 ´ M0

11qC1 ´ M0
12C2 “ 2jβ1A1, and

M0
21C1 ` pM0

22 ` 2|β2|qC2 “ 0.
(1.29)

From the above two equations, we can have the amplitudes for the transmitted modes

C1 “ 2jβ1pM0
22

` 2|β2|q
p2jβ1 ´ M0

11
qpM0

22
` 2|β2|q ` pM0

12
q2A1, (1.30)

C2 “ ´2jβ1M0
21

p2jβ1 ´ M0
11

qpM0
22

` 2|β2|q ` pM0
12

q2A1. (1.31)

From Eq.(1.30), the transmission and reflection coefficients for the plane mode are ob-
tained as

t11 “ C1

A1

“ 2jβ1pM0
22

` 2|β2|q
p2jβ1 ´ M0

11
qpM22 ` 2|β2|q ` pM0

12
q2 , (1.32)

r11 “ B1

A1

“ M0
11

pM0
22

` 2|β2|q ´ pM0
12

q2
p2iβ1 ´ M11qpM0

22
` 2|β2|q ` pM0

12
q2 . (1.33)

We can see that if M0
22

` 2|β2| “ 0, we have t11 “ 0. Since

M0
22 “ ´jKY0φ2p0qφ2p0q “ ´2jKY0,
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we can have
´2jKY0 ` 2

b

α2
2

´K2 “ 0,

this results in

K2

zero “ α2
2

1 ´ Y 2
0

. (1.34)

If Y0 is purely imaginary negative value, we can have Kzero ă α2. Let us take a look at
the reflection coefficient, if

M0
11pM0

22 ` 2|β2|q ´ pM0
12q2 “ 0,

we will have reflection zero, namely, transmission is one, and because

M0
11M

0
22 ´ pM0

12q2 “ 0,

so that if |β2| “ 0, namely, the incident frequency equals to cut-on frequency of the second
mode, then the maximum transmission is reached. The transmission zero followed by
a transmission one constructs the Fano resonance line-shape [53], see Fig.1.12(a). For
the sake of simplification, we assume that the admittance Y “ ´0.5i is independent of
frequency. The wave functions c1pxq and c2pxq are plotted in Fig.1.12(b). We can see
that wave c2pxq is localized at the defect position, and decreases to infinite.
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Figure 1.12: (a) Transmission and reflection coefficients of the first mode as a function
of frequency. (b)The wav functions c1pxq and c2pxq when |t11| “ 0.

Comparing the two cases: an impedance in the acoustic waveguide and an attractive
potential in the quantum waveguide [53], they both have the same form for the trans-
mission and reflection coefficients when the impurity can be represented by a δ function.



1.6. R-matrix method 17

1.6 R-matrix method

In this thesis, an efficient method, the Reaction matrix (R-matrix) method [65], is
used to study the wave propagation in perturbed acoustic waveguide, the use of this
method in this thesis can be found in chapters 2 and 3. The R-matrix method can treat
easily the non-separable problem along transverse and axial directions. It was developed
by Wigner and Eisenbud [65] in scattering processes in nuclear physics in the late 1940s.
Recently, it was extended by Racec et al [66] to investigate the scattering phenomena
in cylindrical nanowire heterostructures. The basic idea of this method is similar to the
Multimodal method [50, 51]. For Multimodal method, the wave function is expanded in
terms of a convenient transverse complete basis. The R-matrix method decomposes the
whole system into a scattering region (cavity or acoustic liner in this thesis), and two
semi-infinite rigid ducts. The wave function in the scattering region is expanded in terms
of any convenient complete set of modes of a closed cavity with convenient boundary
conditions. It is noted that the basis includes the transverse and axial components.
Using the continuity conditions of the pressure and the normal particle velocity at the
interfaces between the regions, we can write the scattering matrix S in terms of the
R-matrix. Similar studies using R-matrix to calculate S matrix can be found in Refs.
67, 68, 69.

By the scattering matrix, the matrix Heff of the open system is derived [70]. Matrix
Heff describes totally the properties of the open cavity/lined section. Its eigenvalues are
complex and give the poles of the S matrix. Its eigenfunctions are used for the calculation
of the coupling matrix between the open cavity/lined section and uniform waveguide.
There are some important advantages of this method. Heff is frequency dependent,
therefore its eigenvalues or the complex poles of the S matrix and its eigenfunctions or
the coupling matrix are frequency dependent. The frequency dependence of poles may
be not important in the case of isolated resonances, but it is very important when the
resonances are overlapping [59, 70]. Another advantage of this method is that the S

matrix is related clearly to the coupling matrix between the open cavity/lined section
and uniform waveguide as shown in Eq. (3.20) in Chap. 3. The calculation method is
inspired by Stöckmann et al. [70], who developed a relation of S matrix with an effective
Hamiltonian for a microwave billiard with attached waveguide.

1.7 Thesis organization

The central theme of this thesis is to use the mode coupling effects to reduce the
sound transmission in an acoustic duct for potential applications, for example silencers
for ventilation systems, wall treatments for aircraft engines, and silencers for industrial
gas turbines. This dissertation is organized into six chapters. Besides the current chapter
(which intends to give a brief introduction of some basic and important concepts) and
the last chapter with the conclusions, the other four chapters are organized as follows:
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In chapter 2, the first strategy is first introduced and presented by using a simple
duct-cavity system. The trajectories of the modes in a closed cavity with varying the
cavity length are first reviewed. After the closed cavity is opened and attached to rigid
duct, the R-matrix method is introduced to solve the wave propagation problem in the
system. Trapped modes can be found at some particular parameter combinations and
near the avoided crossing of eigenvalues between two neighboured modes.

In chapter 3, the same strategy introduced and presented in chapter 2 is applied
here to an acoustic waveguide lined with locally reacting liner, in order to produce an
additional transmission zero, besides the one due to the resonance frequency of the liner.
The scattering matrix is also derived by using the R-matrix method. For that, we
project the Helmholtz equation over the eigenfunctions of the rigid closed counterpart of
the scattering region which form an orthogonal and complete function basis. We express
the scattering matrix S in terms of an effective matrix Heff . By using matrix Heff , the
traditional acoustic resonance scattering formula is extended to describe the coupling
effects between the open lined section and the rigid parts of the waveguide.

In chapter 4, the second strategy is presented to deal with the porous material. A set
of periodic rigid inclusions are embedded in a porous lining to enhance sound attenuation
in an acoustic duct at low frequencies. Floquet-Bloch theorem is introduced to investigate
the mode attenuation in an infinite waveguide lined with periodic inclusions embedded in
porous material. An analysis is first given for a 2D infinite periodic waveguide, crossing is
observed for the mode attenuations between two Bloch waves, resulting in the maximum
attenuation. Experimental measurements and numerical simulations are performed to
obtain the transmission loss for 3D configurations. The transmission loss can be enhanced
by the embedment of the rigid inclusions.

In chapter 5, we investigate the the acoustical behaviours of a purely reacting liner
in a rectangular duct in both absence and presence of flow. Multi-Model Method is
proposed to solve the problem in the absence and presence of uniform flow. The classical
Ingard-Myers boundary condition is used in the presence of flow. The results exhibit an
unusual acoustical behaviour: for a certain range of frequencies, no wave can propagate
against the flow. The effect of shear flow is investigated by the Chebyshev Spectral
Method, which provides detailed information near the walls. The effects of the Mach
number and the frequency on the eigenvalues of the modes are also studied.
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Chapter 2

Fano resonance scattering in a

duct-cavity system

In this chapter, the trapped mode due to the interaction of two neighboured modes in
an open system is first investigated in a simple duct-cavity system. The eigenvalues of the
modes depend on the geometry of the cavity. By varying one parameter continuously,
two types of avoided crossings between the eigenvalues of two modes in the complex
plane are observed under two different values of the other parameter. The transition
between these two different avoided crossings indicates the existence of the exceptional
point in the parameter plane. In the vicinity of the avoided crossing, a trapped mode
with almost vanishing imaginary part is always found. This trapped mode couples with
the incoming propagating mode, resulting in the Fano resonance which give raises to an
asymmetric transmission line-shape. A transmission zero is observed in the vicinity of
this asymmetric line-shape.

2.1 Introduction

A duct-cavity system is often used to study the scattering of sound due to the ex-
pansion chamber in an acoustic waveguide, especially with the presence of flow [1]. Typ-
ical applications are internal combustion engine exhaust silencers and silencers in indus-
trial duct systems. Similar resonant-cavity configurations have also been used in other
various wave propagation systems and led to important applications, see for example
Refs. [2, 3, 4, 5, 6] .

The purpose of this chapter is to investigate the mechanism associated with trapped
modes that cause transmission dips in acoustic waveguide when avoided crossings are
formed between two modes, by using the simple duct-cavity system. S. Hein et al. [7]
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26 Chapter 2. Fano resonance scattering in a duct-cavity system

used FEM to numerically compute the complex modes of the similar system. However,
to our knowledge, there is no theory to describe the coupling of the modes of the closed
system via the transverse modes of the attached ducts in acoustics. Motivated by this
situation, in our work, a matrix Heff [8, 9] is derived to explicitly describe the coupling
effects.

The existence of trapped mode problem in waveguides has been investigated by many
authors in various physical contexts theoretically and experimentally. Trapped modes
were introduced more than fifty years ago (see for example, Ursell [10] and Jones [11]),
and since then have induced an important amount of works in acoustics, electromag-
netism, elasticity, quantum mechanics and water waves, for review articles see, for exam-
ple, Refs. 12, 13, and the references therein. In this work, we will focus on the discrete
trapped modes existing above the first cut-off frequency for specific parameter combi-
nations, which are called embedded trapped modes [13] or bound states in continuum
(BICs) in quantum mechanics [14, 15]. By Feshbach’s theory of resonance, Friedrich and
Wintgen [16] demonstrated that BICs in atomic physics can occur, due to the interfer-
ence of resonances (or modes in acoustic vocabulary) belonging to different channels. By
varying the separation of the two resonances as a function of a continuous parameter,
avoided crossings of resonances are observed. At a particular value of the parameter, one
resonance has exactly vanished width (the imaginary part of the eigenvalue is zero), and
becomes a BIC. In quantum systems, Almas F. Sadreev et al. [2] showed that the BIC also
appears in open quantum billiards by varying their shape continuously. They also found
that the BICs are close to the points of degeneracy [17] of the closed quantum system.
When the system is opened, the coupling of the two resonances is turned on, an avoided
crossing occurs with the variation of the parameters [18, 19]. The avoided crossing is
associated with the Exceptional Points(EPs) [18, 19] in the complex plane. At the EPs,
the two resonances will coalesce, not only the eigenvalues but also the eigenfunctions.

Trapped (quasi-trapped) modes or bound (quasi-bound) states are crucial ingredient
of Fano resonance scatterings in waveguides with impurities [20] or quantum dots with
an attractive potential [21, 22]. Fano resonance was firstly suggested by Ugo Fano [23]
for the description of autoionizing atomic states. In contrast to the conventional iso-
lated resonances, e.g., resonance in a harmonic oscillator with periodic forcing, whose
spectral dependence can be described by the Lorentzian or Breit-Wigner formula – a
symmetric spectral line; Fano resonance was explained as a phenomenon of constructive
and destructive interferences between a bound state and the continuum [23]. The cor-
responding spectral lines are asymmetric. Since its discovery, Fano resonance has been
attracting much attention in different research fields, for review articles see, for example,
[24, 25] and the references therein.

Fano resonances scatterings in acoustics and their relations with trapped modes in
waveguides including obstacles or in duct-cavity systems have been shown by Hein, Koch
and Nannen [7, 26]. They use finite-element method to numerically compute the acoustic
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modes as well as transmission and reflection for an incoming fundamental duct mode. For
the resonance problem, they obtained complex resonance frequencies and corresponding
eigenfunctions, i.e., the homogeneous solutions of the Helmholtz equation with a perfectly
matched layer as absorbing boundary conditions. The complex resonance frequencies are
the positions of the poles of scattering matrix of the corresponding scattering problem.

The Reaction matrix (R-matrix) method [27] is used to study the wave propagation
in the duct-cavity system. The R-matrix formulation was developed by Wigner and
Eisenbud [27] in scattering processes in nuclear physics in the late 1940s. Recently, it
was extended by Racec et al. [28] to investigate the scattering phenomena in cylindrical
nanowire heterostructures. The basic idea of this method is similar to the Multimodal
method [29, 30]. For Multimodal method, the wave function is expanded in terms of
a convenient transverse complete basis. The R-matrix method decomposes the whole
system into a scattering region, and an asymptotic scattering region (here, two semi-
infinite rigid ducts). The wave function in the scattering region is expanded in terms
of any convenient complete set of modes of a closed cavity with convenient boundary
conditions. It is noted that the basis includes the transverse and axial components.
Using the continuity conditions of the pressure and the normal particle velocity at the
interfaces between the regions, we can have the scattering matrix. Once the scattering
matrix is obtained, the transmission and reflection coefficients can be obtained easily.
By the scattering matrix, the matrix Heff of the open system is derived. Its eigenvalues
are complex and give the poles of the S matrix.

This chapter is organized as follows. In Chap.2.2, the formulation of the R-matrix
method is described, the scattering matrix S in terms of and matrix Heff are also derived.
The relation between the eigenvalues of the matrix Heff and the poles of the matrix
S is also discussed. The conception of exceptional point is introduced by studying the
motions of the eigenvalues of Heff with varying the cavity length. In Chap.2.3, we present
that trapped modes are observed due to the coupling of two neighboured modes. The
interaction of the trapped mode with the incoming propagating mode, results in the Fano
resonance. We give the conclusion in the last section.

2.2 Formulation and method of the problem

We consider the acoustic scattering problem in a two-dimensional infinite duct-cavity
system, see Fig. 2.1. The sound pressure ppx, yq in the waveguide satisfies the non-
dimensional governing equation

ˆ B2

Bx2 ` B2

By2 `K2

˙

ppx, yq “ 0, (2.1)

with K “ pω˚{c˚
0
qh˚ the dimensionless incident frequency, where ω˚ is the circular fre-

quency, time dependence expp´jω˚t˚q is applied. Here the asterisk denotes dimensional
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Figure 2.1: A 2D acoustical duct-cavity system, the lengths are normalized by the duct
height h˚, i.e. a “ a˚{h˚ and b “ b˚{h˚.

quantities. All quantities are made dimensionless in the following: lengths with the uni-
form duct height h˚ (h “ 1 in the following), velocities with sound speed c˚

0
, densities

with the ambient density ρ˚
0
, and pressures with ρ˚

0
c˚
0

2.

To solve the sound scattering problem, the whole waveguide is split into three regions:
the two semi-infinite uniform ducts x ă 0 and x ą a (Region I and III, respectively), and
the corresponding scattering region 0 ă x ă a (Region II). The sound pressure in the
whole waveguide system is then piecewise solved. Out of the scattering region, the sound
pressure can be expressed as a sum over the transverse modes of uniform ducts with rigid
boundary conditions. In the numerical example, only the plane mode will be incident,
but the analysis presented here is more general by assuming that one single duct mode m
is incident from the left side of the waveguide. For x ă 0, the sound pressure is written
as a sum of the incident and reflected modes, and only transmitted modes for x ą a:

pmpx, yq “

$

’

’

’

’

’

&

’

’

’

’

’

%

ejKmxφmpyq `
M´1
ÿ

m1“0

Rm1,me
´jKm1xφm1pyq, x ď 0,

M´1
ÿ

m1“0

Tm1,me
jKm1 px´aqφm1pyq, x ě a,

(2.2)

where
K2

m “ K2 ´ α2

m, (2.3)

with ℜetKmu ą 0,ℑmtKmu ą 0, mpm1q “ 0, 1, 2, ¨ ¨ ¨ ,M ´ 1. M is the truncation
number of the transverse modes in the uniform ducts, pαm, φmq are the eigenvalues and
the eigenfunctions of the transverse modes in the uniform duct with rigid boundary
conditions, with αm “ mπ, and φmpyq satisfying the orthogonality relation

ż

1

0

φmpyqφnpyqdy “ δmn. (2.4)
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In the expression of the acoustic pressure, Eq. (2.2), R and T are matrices linking incom-
ing and outgoing wave components. They are also used to define the scattering matrix
S, as given in Eq. (2.5),

S “
˜

R T1

T R1

¸

. (2.5)

Matrices R and T (respectively, R1 and T1) correspond to wave incident from the left
(respectively, from the right). In this work, due to the symmetry of the geometry R “ R1,
and due to the reciprocity T “ T1.

2.2.1 R-matrix method

According to the R-matrix method [28], the sound pressure ppx, yq in the scattering
region (Region II) is projected on the complete basis of functions ψµνpx, yq

pmpx, yq “
Nx´1
ÿ

µ“0

Ny´1
ÿ

ν“0

am,µνψµνpx, yq, 0 ă x ă a, (2.6)

where the sums have been truncated by Nx and Ny. We choose the ψµ,ν to be the
eigenfunctions of closed cavity with length a and width d (d “ h` b) defined by

∇2ψµν “ ´γ2µνψµν , (2.7)

Bψµν

Bx

ˇ

ˇ

ˇ

x“0,a
“ 0,

Bψµν

By

ˇ

ˇ

ˇ

y“´b,h
“ 0. (2.8)

The eigenvalues γµν and eigenfunctions ψµνpx, yq are classified by two integers pµ, νq,
where µ p0, 1, 2, ¨ ¨ ¨ , Nx ´ 1q labels the longitudinal mode, and ν p0, 1, 2, ¨ ¨ ¨ , Ny ´ 1q the
transverse mode.

It is shown in Appendix 2.A.1 that a relation between the coefficients, am,µν , and
the first derivative of the pressure with respect to x (Bpm{Bx) at the interfaces can be
written in the form of

~amKN “
ż h

0

Bpm
Bx

~ψ

ˇ

ˇ

ˇ

ˇ

x“0

x“a

dy, (2.9)

where ~am “ pam,1 , am,2 , am,3 , ¨ ¨ ¨ am,n , ¨ ¨ ¨ q, ~ψ “ pψ1, ψ2, ψ3, ¨ ¨ ¨ , ψn, ¨ ¨ ¨ q, and KN is
a N ˆ N diagonal matrix with elements Kn “ K2 ´ γ2n. Here and in the following,
n “ 1, 2, 3, ¨ ¨ ¨ correspond to pµ, νq “ p0, 0q, p0, 1q, p0, 2q, ¨ ¨ ¨ , p1, 0q, p1, 1q, p1, 2q, ¨ ¨ ¨ , and
N “ Nx ¨Ny is the number of the eigenfunctions ψµν taken into consideration.

To construct the scattering matrix S, the continuity conditions of the pressure and
the normal velocity at the discontinuity interfaces (x “ 0 and a) are used. By Eqs. (2.9)
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and (2.2), the scattering matrix S is given (see Appendix 2.A.2)

ST “
!

I ´ 2 rI ` jKMQs´1

)

, (2.10)

where
Q “ Q1K

´1

N
Q1

T
, (2.11)

Q1 is the coupling matrix between the modes of the closed cavity and the transverse
modes of the duct induced at the interfaces. Elements of Q1 are shown in Appendix
2.A.2 Eq. (2.23). “T ” indicates the transposition. KM is a 2M ˆ 2M diagonal matrix
with elements Km, in which the upper M rows correspond to the situation when the
mode is incident from the left side, the lower ones correspond to the opposite situation.
Matrix KM characterizes the uniform ducts.

2.2.2 Matrix Heff

After attaching to the uniform ducts (Regions I and II), the modes of the closed
cavity turn over in complex resonant modes. A matrix Heff [8] is derived here to indirectly
compute the eigenvalues KR of the open system. From Eq. (2.27) in Appendix 2.A.3,
the scattering matrix S is rewritten as

S “ ´I ` 2jQ1

1

K2I ´ Heff

QT
1KM, (2.12)

where
Heff “ Hcc ´ jQ1

TKMQ1 (2.13)

describes the closed cavity which is partially opened at x “ 0 and a by attaching to the
uniform ducts. Using the continuity conditions at interfaces x “ 0 and a. Hcc denotes
the closed cavity, it is a diagonal matrix with elements γ2n. The second term of Heff is
due to the mode coupling introduced at the interfaces, and KM is K dependent.

From Eq. (2.13), the matrix Heff is complex, so do its eigenvalues (denoted by K2

λ)
and eigenvectors Ψ, which can be obtained by solving the eigenvalue problem

HeffΨ “ K2

λΨ. (2.14)

Due to the dependence of KM on K in Eq. (2.13), matrix Heff is also frequency dependent
through the parameter, it also dependents on the geometry size of the configuration. The
coupling of the modes can be analyzed by using matrix Heff .

For the duct-cavity system, the motions of the 3rd and the 4th Kλ as a function
of cavity length a with b “ 1 are investigated, as shown in Fig. 2.2. Two parameters,
K and a, are used to control the movements of the two Kλ. Under different values of
K, two different types of avoided crossings are observed (Figs. 2.2(c) and (f)), where
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Figure 2.2: Real (a)(d) and imaginary (b)(e) parts of the 3rd (solid line) and the 4th
(dashed line) eigenvalues Kλ as a function of length a for different values of K: (a)(b)(c)
K “ 1.5 and (d)(e)(f) K “ 1.6, with b “ 1,M “ 20, N “ 30 ˆ 30. The trajectories of
the eigenvalues in the complex plane are shown in (c)(f). The “ � ” in (c)(f) indicates
the starting point.

quadrants change from (II, IV) to (I, III)(referring to Fig. 1.5 in Chap. 1). If we vary
the two parameters a and K more precisely, at some critical values, acri and Kcri, the
two eigenvalues and eigenvectors of Heff will coalesce. These critical values are called
exceptional pointpsq (EP(s)) [18, 19] in the parameter plane. In our example, acri “
4.74 and Kcri “ 1.51 are found. If K ă Kcri, crossing for the real (Fig. 2.2(a)) and
avoided crossing for the imaginary (Fig. 2.2(b)) parts are observed; Inversely, avoided
crossing (Fig.2.2(d)) for the real and crossing (Fig. 2.2(e)) for the imaginary parts if
K ą Kcri. We can conclude that there always exists avoided crossing in the vicinity
of the EP (see Figs. 2.2(c) and (f)). Re-examine the expression of Heff , Eq. (2.13), it is
three parameters dependent, i.e. K, a, and b. If only two of them are used to control Heff ,
by fixing the third one, the EPs are isolated points in the plane of the two parameters,
such as the example shown in Fig. 2.2. However, in the three-parameter space, the EPs
will form a curve.

Based on the Q matrix representation of the S matrix, Eq. (2.10), the poles of the S

matrix are found as the solutions of the equation

detrI ` jKMQs “ 0. (2.15)
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If the above equation is satisfied, the singularities of the scattering matrix S appear,
which are also associated with the eigenvalues KR of the open system. Instead of solving
the eigenvalue problem of the open system directly, we return to locate the positions of
the poles of matrix S in the complex plane.

However, the representation of the S matrix in terms of the matrix Heff , Eq. (2.12),
has the advantage that it yields the positions of the poles, as well as KR, by solving the
eigenvalue problem of matrix Heff , with satisfying the fixed-point equation [8]

KR “ KλpK “ RepKRqq, (2.16)

which can be solved numerically by using an iterative procedure. Due to the relation
between KR and Kλ, the EPs of modes KR in the two-parameter plane is one isolate
point from the EPs curve of Kλ in the three-parameter space.

In the following, the matrix Heff will be used to study the interference between the
modes and to predict the parameter combinations of the trapped mode by making K

approach to the trapped mode frequency.

2.3 Results and discussions

2.3.1 Degeneracy and avoided crossing

First, we would like to briefly review the eigenvalue problem of the corresponding
closed cavity with vanishing normal velocity conditions toward the interfaces. The eigen-
values of the closed cavity with rigid boundary conditions can be obtained analytically,

γµν “
c

´µπ

a

¯

2

`
´νπ

d

¯

2

. (2.17)

For a closed and conservative cavity, the eigenvalues γµν show degeneracy [17] when the
length a is varied, i.e. two modes have the same eigenvalues, meanwhile the eigenfunctions
are still orthogonal. We assume that modes pp, qq and pm,nq have the same eigenvalues,
which means that

´pπ

a

¯

2

`
´qπ

d

¯

2

“
´mπ

a

¯

2

`
´nπ

d

¯

2

.

We can have the condition on a{d,

a

d
“
d

p2 ´m2

n2 ´ q2
, (2.18)

at which the two modes degenerate. We take mode pm,nq “ p0, 1q as an example, which
results in

a

d
“ p

a

1 ´ q2
.
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a{d being real results in that the condition for modes pp, qq exist is q “ 0, which demon-
strates that there exists degeneracy between modes p0, 1q and pp, 0q when a{d “ p. We
will have degeneracies between the following modes (see Fig. 2.3):

p0, 1q and p1, 0q if
a

d
“ 1, p0, 1q and p2, 0q if

a

d
“ 2,

p0, 1q and p3, 0q if
a

d
“ 3, p0, 1q and pp, 0q if

a

d
“ p.
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Figure 2.3: Motions of the eigenvalues of the closed rigid cavity as a function of cavity
length ap“ a˚{h˚q, the width of the cavity is d “ b ` h “ 2. Degeneracies are found for
two modes having the same eigenvalues, for example in the vicinity of crossing “A” , “B”,
and “C” labeled in the figure.

However, once the closed system is opened by attaching to the ducts, the eigenvalues
of the open system are generally complex. The trajectories of the eigenvalues of the two
modes that have crossing in Fig. 2.3 will have avoided crossing in the complex plane. For
the open system, we first calculated the Kλ of Heff as a function of cavity length a with
b “ 1 and K “ 1.6, see Fig. 2.4(a). For the sake of comparison, Fig. 2.4(b) shows the
motions of the real part of eigenvalues KR of the open system by solving the fixed-point
equation Eq. (2.16). Here and in the following, the indices pµ, νq for the closed cavity
are also used to identify the eigenvalues Kλ and KR. In Figs. 2.4(a) and (b), solid lines
label the modes which are symmetric in x, and symbols “ ◭ ” for the modes which are
antisymmetric. Avoided crossings between the two modes who have the same symmetry
in x are observed in both figures, for example between modes (0,1) and (2,0) (labelled
by “A”), modes (1,1) and (3,0) (labelled by “B”), etc.. We have reviewed before that for
the corresponding closed cavity, those modes will just cross without any coupling (“A”,
“B” , and “C” in Fig.2.3). Only the same parity in x-direction has to be satisfied, it is
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Figure 2.4: (a)Real part of eigenvalues of Heff , Re(Kλ), as a function of a with b “
1,K “ 1.6. (b) Motions of Re(KR) of the open system with varying a by solving the
fixed-point equation Eq. (2.16). Solid lines mark x-symmetric modes; symbols “ ◭ ”
mark x-antisymmetric modes.

because the system we considered is symmetric for x “ a{2. By the comparison between
Fig. 2.4(a) and (b), we can see that, with suitable value of K, the eigenvalues Kλ of Heff

can be used to analyze the coupling effects between two neighboured modes of the open
system, for example between mode (0,1) and mode (2,0) by taking K “ 1.6. One of the
advantages to use matrix Heff , instead of solving the fixed-point equation, is that the
eigenvalues Kλ can be obtained easily by solving the eigenvalue problem of the matrix.

To study the interference between two modes, we take avoided crossing “A” in Fig.2.4(a)
as an example, the motions of modes (0,1) and (2,0) as a function of the geometry size are
investigated. The results are summarized in Fig. 2.5. By varying cavity length a, crossing
and avoided crossing of the real and imaginary parts of KR for the two modes can be
traced under different conditions, i.e. for different values of b. When b “ 0.95, there ex-
ists crossing for the real and avoided crossing for the imaginary parts, see Figs. 2.5(a)(b).
Inversely, avoided crossing for the real and crossing for the imaginary parts are observed
in Figs. 2.5(d)(e) when b “ 1.05. The figures also demonstrate that the degeneracy dis-
cussed before for the closed cavity now shows avoided crossing for the open system, see
Figs. 2.5(c)(f). The similar duct-cavity system has also been investigated by Hein and
Koch et al. [7], but only the second type of avoided crossing is found (see Fig. 4 [7]).
The occurrences of the two types of avoided crossings indicate the existence of EP in the
parameter plane pa, bq, i.e. acri and bcri, at which the two modes will coalesce, not only
the eigenvalues but also the eigenfunctions. It is exactly due to the shift of the value
b from bcri, there always exists avoided crossing in the vicinity of EP with varying the
other parameter a, as shown in Figs. 2.5(c)(f).
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Figure 2.5: Real (a)(d) and imaginary (b)(e) parts of the modes p0, 1q (solid line) and
p2, 0q (dashed line) as a function of length a for different values of b: (a)(b)(c) b “ 0.95

and (d)(e)(f) b “ 1.05. The trajectories of the modes in the complex plane are shown in
(c)(f). The “�” in (c)(f) indicates the starting point. The two modes are in the vicinity
of avoided crossing “A” in Fig.2.4.

2.3.2 Trapped mode and Fano resonance

By looking at the trajectories of the eigenvalues of the two modes in the complex
plane, we can see that before reaching the EP, the two modes move in a opposite direction
and approach to each other; in the vicinity of the EP, a strong repulsion between the two
modes is observed, which makes them avoid crossing and move away from each other.
However, the important and interesting point is that before the repulsion, the imaginary
part of one mode is almost zero (see Figs. 2.5(b)(e)), it means that this mode will not
have radiation loss, which is the so-called embedded trapped mode [15] (we will just call
it “trapped mode”).

In Fig. 2.6(a), we show the trajectories of KR of mode (0,1) as a function of a P
r3.73, 4.22s with b “ 1 (circle with solid line). A trapped mode is observed at a “ 3.93

with b “ 1, marked by the “b” in Fig. 2.6(a). For comparison, the motions of Kλ as a
function of a with b “ 1,K “ 1.597 are also shown in Fig. 2.6(a) (square with dashed
line). From the two curves, we can see that the matrix Heff can be well used to predict
the appearances of the trapped modes. To qualitatively characterize the effects of the
trapped mode on the sound propagation, the transmission coefficient for the plane wave
as a function of K is computed, with a “ 3.93 and b “ 1. The results are plotted in
Fig. 2.6(b). A transmission peak and dip is observed around K “ 1.597, it first reaches to
“1” and then decreases to “0” sharply (shown clearly in the inset of Fig. 2.6(b)). Smaller
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Figure 2.6: (a) Trajectories of resonance (0,1) (blue circle) as a function of a with b “ 1.
The resonance width vanishes at a “ 3.93 (marked by “

À

”). The motions of Kλ of
Heff with K “ 1.597 is shown by red square. (b) Transmission coefficients as a function
of incident frequency K with a “ 3.93, b “ 1. (c) The absolute value of the pressure
field in the waveguide when the transmission coefficient is zero. (d) The superposition
coefficients of the eigenfunctions ψµνpx, yq for the trapped mode.

the absolute value of the imaginary part of the trapped mode is, sharper and faster the
coefficient changes from “1” to “0”. This asymmetric line profile is one of the main features
of the so-called Fano resonance [23], known from atomic physics. This phenomenon is
due to the interaction of the trapped mode with the incoming propagating mode.

From the field distribution in the waveguide, Fig. 2.6(c), we see that the pressure
field in the cavity is much higher than in the ducts, the trapped mode is confined in
the scattering region, a similar pressure profile for the trapped mode is also given in
Fig.7(a) by Hein and Koch et al. [7]. The eigenfunction of the trapped mode is a strong
mixing of the eigenfunctions of mode (0,1) and mode (2,0) of the closed cavity with the
superposition coefficients 0.865 and 0.498, respectively. The superposition coefficients of
several eigenfunctions ψµ,ν , 0 ď µ ď 9, 0 ď ν ď 3, for the trapped mode are shown in
Fig. 2.6(d). The contributions of the other modes are much smaller than of the modes
(0,1) and (2,0).



2.3. Results and discussions 37

2.3.3 Multimodes interference

Figure 2.7: Real and imaginary parts of Kλ as a function of a with b “ 2 for different K:
(a)(b) K “ 0.4 and (c)(d) K “ 2.4. The resonance frequencies and widths of the system
by solving the fixed-point equation are also shown in (c) and (d) by symbols “˝”.

In order to have more modes in the frequency range of our interest, the motions of
eigenvalues as a function of cavity length a with larger cavity depth, for example b “ 2,
are investigated. In Fig. 2.7, we show the motions of the modes (2,2), (4,0), and (4,1) by
considering the eigenvalues of Heff with different values of K. From Figs. 2.7(a) and (b),
crossing for the real and avoided crossing for the imaginary parts are found between modes
(2,2) and (4,0), and the opposite phenomenon for modes (2,2) and (4,1). After K passes
the critical value Kcri, the modes who have crossing (or avoided crossing) for the real
part in Figs. 2.7(a)(b) will now have avoided crossing (or crossing), see Figs. 2.7(c)(d).
In Figs.2.7(c)(d), the symbols “˝” show the resonance frequencies of the open system as
a function of the length a by solving Eq. (2.16). We can see from Fig. 2.7(c) that the
eigenvalues of Heff well predict the resonance frequencies of modes (2,2) and (4,0) by
taking K “ 2.4. However for mode (4,1), it works well when the resonance frequency KR

is near 2.4, which exactly satisfies the fixed-point equation. From Figs. 2.7(c)(d), if we
only know the resonances KR of the open system, it is not easy to tell the interference
of which modes the second trapped mode is due to. However, with the help of different
avoided crossings of Kλ, we can have a more clear sight for the interference of modes
(2,2) and (4,1), as shown in Fig. 2.7(a)(b). Looking at the motions of the imaginary
parts, two trapped modes are formed, which is due to the interference of modes (2,2) and
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(4,0), and of modes (2,2) and (4,1), respectively.
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Figure 2.8: Transmission coefficients as a function of both frequency K and cavity length
a, with b “ 2. The dark areas correspond to low transmission coefficient. “˝” indicates
the eigenvalues of the open system.
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Figure 2.9: Transmission coefficients as a function of frequency K for different cavity
lengths (a) a “ 5.2, (b) a “ 5.4, (c) a “ 5.6, with b “ 2.

In Fig. 2.8, we plot the transmission coefficient as a function of both frequency K

and cavity length a, with b “ 2. The eigenvalues of the resonance KR of the open system
are also given in the same figure, labelled by “˝”. It is remarkable that near the avoided
crossing, one can observe the abrupt changes of the transmission coefficients. They
appear at the points where the imaginary parts of the modes are zero, see Fig. 2.7(d).
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Figure 2.9 shows the transmission coefficients of the plane mode as a function of
frequency K with different values of cavity length a, in order to investigate its effects on
the transmission spectrum. In Figs. 2.9(a) and (c), two kinds of Fano antisymmetric line-
shape in the transmission spectrum are observed. In Fig. 2.9(a), transmission coefficient
|T | decreases to “0” first and then increases to “1” sharply. However, it changes in the
opposite way in Fig. 2.9(c). We can see from Fig. 2.7(d) that trapped modes are formed
around a “ 5.2, and 5.6, respectively. Once the incoming propagating mode interfers with
the trapped modes, the Fano resonances results. In Fig. 2.9(b), we show the transmission
coefficients with the cavity length a “ 5.4, where the interference between the modes is
weak. We can see the sharp transmission dips disappear, while a symmetrical Breit-
Wigner (BW) (or Lorentzian) line shape shows up near the frequency of mode (2,2).

2.4 Conclusions

In summary, the couplings of the modes in the open duct-cavity systems are investi-
gated by means of varying a parameter continuously. Instead of computing the complex
resonance frequencies of the systems directly, an effective matrix Heff is introduced to de-
scribe the coupling of the modes of the closed system via the attached ducts successfully
and efficiently. Consequently, we have obtained various interesting avoided crossings for
both the eigenvalues of Heff and the resonance frequencies of the open system which have
the same parity in x´direction. We have shown that the avoided crossings are in the
vicinity of the exceptional points.

By matrix Heff , we can predicts the parameter combinations of the trapped modes
very well. Our computation on the transmission coefficients shows very interesting Fano
asymmetric line-shape, due to the interference of the trapped modes and the incoming
propagating mode. Strong localization of the pressure field in the scattering region is
observed, it is a mixing of the eigenfunctions of the two resonances. We have also observed
that the sharp dips disappear if the coupling of the modes becomes weak.

In the next chapter, the same mechanism is introduced in a waveguide lined with
locally reactive liner, to produce another transmission zero at the frequency of the trapped
mode, in addition to the transmission zero observed at the quarter-wavelength frequency
of the liner.
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Appendix

2.A Derivation of Eqs.(2.9)(2.10)(2.12)

2.A.1 Derivation of Eq. (2.9)

Multiplying Eq. (3.1) by ψµνpx, yq, integrating over the closed cavity, we obtain

ż a

0

ż h

0

ψµν

ˆB2p

Bx2 ` B2p

By2
˙

dxdy “ ´K2

ż a

0

ż h

0

ψµνpdxdy, (2.19)

Applying an integration by parts for the left side of Eq. (3.24), substituting Eq. (3.5) into
the resulting equation, we obtain

ż h

0

ˆ

ψµν
Bp
Bx ´ Bψµν

Bx p

˙ˇ

ˇ

ˇ

ˇ

x“a

x“0

dy `
ż a

0

ˆ

ψµν
Bp
By ´ Bψµν

By p

˙ˇ

ˇ

ˇ

ˇ

y“h

y“0

dx

“ ´pK2 ´ γ2µνq
ż ż

ψµνpdxdy.

(2.20)

The eigenfunctions ψµν of the closed cavity satisfy the rigid boundary conditions on
all the walls, Eq. (3.6). Substituting the rigid boundary conditions for both ppx, yq and
ψµν into Eq. (3.25), results in the following equation

ż h

0

ˆ

ψµν
Bp
Bx

˙ˇ

ˇ

ˇ

ˇ

x“0

x“a

dy “ pK2 ´ γ2µνq
ż ż

ψµνpdxdy, (2.21)

Using the orthogonality property of eigenfunctions ψµν and Eq. (3.4), the upper equation
can be written in a matrix form, i.e. Eq. (2.9).

2.A.2 Derivation of Eq. (2.10)

By Eq. (2.2), the first derivative of the pressure with respect to x at the interfaces,
Bpm{Bx is taken, and then substituted into the right side of the Eq. (2.9). The resulting
equations are written in a matrix form,

AKN “ jpI ´ STqKM Q1, (2.22)

where A is a 2M ˆN matrix consisting of the vectors ~am, the upper M rows correspond
to wave incident from the left side, and the remaining from the right side. The elements
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of matrix Q1 are

Q1 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ş

1

0
φ1py1qψ1 p0, y1q dy1

...
ş

1

0
φM py1qψN p0, y1q dy1

ş

1

0
φ1py1qψ1 pa, y1q dy1

...
ş

1

0
φM py1qψN pa, y1q dy1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.23)

By matrix A, the pressure in the scattering region is then written in a vector form,

~ppx, yq “ jpI ´ STqKMQ1K
´1

N
~ψpx, yq. (2.24)

where ~p “ pp1, p2, ¨ ¨ ¨ , pm, ¨ ¨ ¨ qT.
By the continuity condition of the pressure at the interfaces x “ 0, a, results in two

equations. Multiplying the two equations by φm, writing them in a matrix form, we have

jrI ´ STsKMQ1K
´1

N
QT

1 “ rI ` STs. (2.25)

By Eq. (2.25), we end up with the scattering matrix of Eq. (2.10).

2.A.3 Derivation of Eq. (2.12)

Due to the symmetry property of the matrix S, Eq. (2.10) can be rewritten as

S “ ´ I ´ jQKM

I ` jQKM

“ ´I ` 2jQKM

I ` jQKM

. (2.26)

Now we expand the denominator in Eq. (2.26) into a geometric series [8],

S “ ´I ` 2jQ1

1

KN

QT
1KM

8
ÿ

q“0

ˆ

´jQ1

1

KN

QT
1KM

˙q

“ ´I ` 2jQ1

1

KN

8
ÿ

q“0

ˆ

´jQT
1KMQ1

1

KN

˙q

QT
1KM

“ ´I ` 2jQ1

1

KN

1

1 ` jRT
1
KMR1

1

KN

QT
1KM

“ ´I ` 2jQ1

1

KN ` jRT
1
KMR1

QT
1KM

(2.27)

By the expression of KN, the upper equation results in the Eq. (2.12).
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Chapter 3

Fano resonance scatterings in

waveguides with impedance

boundary conditions

The firs strategy we introduced in the previous chapter is now applied here to a
waveguide lined with a locally reacting material.

In this chapter 1, the resonance scattering theory is used to study the sound propa-
gation in a waveguide with a portion of its wall lined by a locally reacting material. The
objective is to understand the effects of the mode coupling in the lined portion on the
transmission. It is shown that a zero in the transmission is present when a real resonance
frequency of the open system, i.e. the lined portion of the waveguide which is coupled
to the two semi-infinite rigid ducts, is equal to the incident frequency. This transmission
zero occurs as a Fano resonance - due to the excitation of a trapped mode in the open
system. The trapped mode is formed by the interferences of two neighbored modes with
complex resonance frequencies. It is also linked to the avoided crossing of eigenvalues of
these two modes, which occurs near an exceptional point (a subject which has attracted
much attention in recent years in different physical domains). The real and complex
resonance frequencies of the open system are determined by an equivalent eigenvalue
problem of matrix Heff , which describes the eigenvalue problem defined in the finite lined
portion (scattering region). With the aid of the eigenvalues and eigenfunctions of matrix
Heff , the usual acoustic resonance scattering formula can be extended to describe the
coupling effects between the scattering region and the rigid parts of the waveguide.

1. This chapter in its current form has been recently accepted by J. Acous. Soc. Am..
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3.1 Introduction

Acoustic liners are commonly used in noise control devices for duct systems. Typical
applications include silencers for ventilation systems, wall treatments for aircraft engines,
and silencers for industrial gas turbines, for review articles see, e.g., Refs. 1 and 2.
To increase the liner efficiency, various strategies can be used. One is to find a new
material design for which the impedance is close to its optimal value in the targeted range
of frequencies [3, 4]. Another strategy is to take advantage of the acoustic impedance
changes (like discontinuities) in axial [5, 6, 7] or circumferential [8, 9] segments, or both
of them [10, 11, 12, 13]. The strategy used in this paper is different: The idea is to couple
the incoming propagative mode in the waveguide with the modes localized in the lined
region. As an example, a very simple 2D model with a portion of the waveguide lined by
a uniform liner is analyzed in this paper.

Such interferences between resonances and scattering appear in Fano resonances (for
review articles see, for example, Refs. 14 and 15, and the references therein). In contrast
to the conventional isolated resonances scattering, Fano resonance is explained by con-
structive and destructive interferences between a resonance (trapped mode) or a complex
resonance (quasi-trapped mode) and the background or nonresonant scattering [16, 17].
A transmission zero is produced when a real resonance frequency is equal to the incident
frequency [18].

One of the crucial ingredients to form a Fano resonance is to have trapped mode
with a real resonance frequency. Trapped modes are localized oscillations in unbounded
media and do not radiate energy to infinity. They were first observed experimentally in
acoustics by Parker in 1966 [19]. Discrete trapped modes may exist below the first cut-
off frequency of the transverse modes, provided that some kinds of defect or variations
of geometry exist [20, 21]. Discrete trapped modes may also exist above the first cut-
off frequency for specific parameter combinations, they are called embedded trapped
modes [20] or bound states in continuum (BIC) in quantum mechanics [22]. Friedrich and
Wintgen [23] demonstrated that BIC is a natural feature of common physical situations,
and can occur due to the interference of resonances. They have linked BICs directly
to the phenomenon of an avoided crossing of neighbored resonance states (modes with
complex eigenvalues). Recently, BICs in the vicinity of exceptional points were also found
in open billiards [24]. Exceptional points are the points in a two-dimensional parameter
space, where not only the eigenvalues but also the eigenfunctions of a non-Hermitian
operator coalesce [25, 26, 27]. Sadreev et al. [24] found that the BICs are close to the
points of degeneracy [28] of the closed system, which are the points in a two-dimensional
parameter space where only the eigenvalues of the Hermitian operator coalesce, while
the corresponding eigenfunctions are still orthogonal. When the system is opened, the
degeneracies are lifted and avoided crossings occur.

Fano resonance scatterings in acoustics and their relations with trapped modes in
waveguides including obstacles or in duct-cavity systems have been studied by Hein
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et al. [18, 29]. They used a finite-element method to compute numerically the acoustic
resonances as well as the transmission and reflection for an incoming duct mode. They
obtained complex resonance frequencies and the corresponding eigenfunctions. The com-
plex resonance frequencies are the positions of the poles of scattering matrix of the cor-
responding scattering problem. Fano resonance scatterings were related to three types
of trapped modes: antisymmetric (about duct axis) trapped modes below the first cut-
off frequency, embedded trapped modes linked to avoided crossings of resonances, and
trapped modes associated with Fabry-Pérot interferences between cavities.

In this paper, we study the sound propagation in a waveguide lined on a portion
with a locally reacting material by the resonance scattering theory [30]. The objective is
to understand the effects of the mode coupling on the transmission of the lined portion.
We show that by varying a control parameter (the section length or the product of the
lined admittance and the frequency), two neighbored modes with complex resonance
frequencies interfere in the scattering region: the lined portion opened to the two semi-
infinite rigid waveguides. In the vicinity of an exceptional point, where the eigenvalues
and eigenfunctions coalesce, one mode turns to be trapped, the corresponding resonance
frequency (eigenvalue) is real. A transmission zero is present when the real resonance
frequency is equal to the incident frequency. This transmission zero occurs as a Fano
resonance, due to the excitation of a trapped mode in the open system (section 3.3).

In section 3.2, we derive the Scattering matrix (S matrix). For that, we project
the Helmholtz equation over the eigenfunctions of the rigid closed counterpart of the
scattering region which form an orthogonal and complete function basis. The used
eigenfunctions include the transverse and axial components, thus this method gener-
alizes the Multimodal method [11] in which the wave function is expanded only in terms
of transverse eigenfunctions. We express the scattering matrix S in terms of an effective
matrix Heff . The matrix Heff describes the complex resonances of the scattering region.
Its eigenvalues are complex and give the poles of the S matrix. With the help of its
eigenfunctions, we can extend the traditional acoustic resonance scattering formula [30]
to describe the coupling effects between the scattering region and the rigid waveguide.

3.2 Model

We consider the acoustic scattering problem in a two-dimensional infinite waveguide
lined over a finite length a˚ with a locally reacting material, as shown in Fig. 3.1. The
waveguide is decomposed into three parts: two semi-infinite rigid waveguides x˚ ď 0 and
x˚ ě a˚ (regions I and III, respectively), and one scattering region (region II). Here,
asterisk denotes dimensional quantities. In the following, all the quantities are non-
dimensionalized. Sound pressure p and coordinates (x and y) are normalized by taking
p “ p˚{pρ˚

0
c˚
0

2q and px, yq “ px˚{h˚, y˚{h˚q, respectively, where ρ˚
0

is the air density, c˚
0

is
the sound velocity, and h˚ is the height of the waveguide. Time dependence is assumed as
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d
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Scattering region
I

II

III

Y

Liner material

Figure 3.1: A two-dimensional infinite waveguide lined with a locally reacting material
of normalized length a. Y refers to the normalized admittance. The closed counterpart
of the scattering region is called lined closed cavity , with rigid conditions at x “ 0 and
x “ a.

expp´jω˚t˚q and will be omitted in the following, where ω˚ is the circular frequency. The
sound pressure ppx, yq in the waveguide satisfies the non-dimensional Helmholtz equation

ˆ B2

Bx2 ` B2

By2 `K2

˙

ppx, yq “ 0, (3.1)

where K “ pω˚{c˚
0
qh˚ refers to dimensionless frequency. The transverse boundary con-

ditions in regions I, III, and II are

Bp
By

ˇ

ˇ

ˇ

y“0 and 1

“ 0 (for regions I and III) (3.2)

and
Bp
By

ˇ

ˇ

ˇ

y“0

“ ´jKY p and
Bp
By

ˇ

ˇ

ˇ

y“1

“ 0 (for region II), (3.3)

respectively, where Y is the normalized admittance of the liner material.

Inspired by the R-matrix method [32, 33], the sound pressure ppx, yq in region II is
expanded in terms of an orthogonal and complete set of functions ψµνpx, yq

ppx, yq “
Nx´1
ÿ

µ“0

Ny´1
ÿ

ν“0

aµνψµνpx, yq “ ψTa, (3.4)

where the sums have been truncated by Nx and Ny, “T " refers to transpose, and aµ,ν are
the expansion coefficients. ψ is a column vector, its elements are arranged as pµ, νq “
p0, 0q, p0, 1q, ..., p0, Ny ´1q, p1, 0q, p1, 1q, ..., p1, Ny ´1q, ..., pNx´1, 0q, pNx´1, 1q, ..., pNx´
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1, Ny ´ 1q. We choose ψµ,ν to be the eigenfunctions of rigid closed cavity defined by

∇2ψµν “ ´γ2µνψµν , (3.5)

Bψµν

Bx

ˇ

ˇ

ˇ

x“0 and a
“ 0,

Bψµν

By

ˇ

ˇ

ˇ

y“0 and 1

“ 0. (3.6)

By solving the eigenproblem of Eqs. (3.5) and (3.6), the eigenfunctions ψµν and eigenval-
ues γµν are given as ψµν “ p1{

a

ΛxΛyq cospµπx{aq cospνπyq and γµν “
a

pµπq2{a2 ` pνπq2,
respectively, where Λx “

a

2 ´ δ0,ν{?
a and Λy “

a

2 ´ δ0,ν are normalization coeffi-
cients, with δi,j “ 1 if i “ j, else δi,j “ 0.

It needs to be noted that the eigenfunctions ψµν in Eq. (3.4) include the transverse
and axial components, instead of only transverse component as used in Multimodal
method [11], and that any complete set of functions can be used but the present choice
defined in Eqs. (5) and (6) is one of the most convenient. In this paper, we use “modes"
to refer to the 2D cavity modes, and “transverse modes" to refer to the 1D duct modes.

Multiplying Eq. (3.1) by ψ, integrating over x and y, applying Green’s theorem,
and using Eq. (3.5) and the boundary conditions Eq. (3.6), we obtain

ppx, yq “
ż

1

0

„

Qpx, y, 0, y1qBppx1, y1q
Bx1

ˇ

ˇ

ˇ

x1“0

´Qpx, y, a, y1qBppx1, y1q
Bx1

ˇ

ˇ

ˇ

x1“a



dy1, (3.7)

(see Appendix I.1), where

Qpx, y, x1, y1q “ ψT px, yq
“

K2I ´ Hlcc

‰´1
ψpx1, y1q. (3.8)

In Eq. (3.8), I refers to identity matrix, Hlcc “ Γ´ jKY Clcc , where Γ is a diagonal matrix
with elements γ2µν , “lcc" refers to lined closed cavity, and Clcc is a block diagonal matrix,
its elements can be calculated analytically by

C lccµν,µ1ν1 “
ż a

0

ψµνpx1, 0qψµ1ν1px1, 0qdx1. (3.9)

With the help of Eq. (3.26) in Appendix I.1, it is clear that the eigenvalue problem of
matrix Hlcc is equivalent to the eigenvalue problem of the lined closed cavity with the
admittance on the bottom wall (defined in Appendix II for clarity).

Equation (3.7) links the sound pressure in the scattering region (II) with its first
x-derivative at the interfaces between the scattering region and the other two regions (I
and III).

The sound pressure is written as a sum of the incident (amplitudes cm) and reflected
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transverse modes for region I, and only transmitted transverse modes for region III

ppx, yq “

$

’

’

’

’

’

&

’

’

’

’

’

%

M´1
ÿ

m“0

cme
jKx

mxφmpyq `
M´1
ÿ

m“0

M´1
ÿ

m1“0

Rm,m1cme
´jKx

m1xφm1pyq, x ď 0,

M´1
ÿ

m“0

M´1
ÿ

m1“0

Tm,m1cme
jKx

m1 px´aqφm1pyq, x ě a,

(3.10)

where Rm,m1 and Tm,m1 refer to the reflection and transmission coefficients, and M is the
truncation number. Kx

m “
a

K2 ´ α2
m are axial wavenumbers of transverse mode m in

the rigid ducts. αm and φm are the eigenvalues and eigenfunctions of transverse modes in
regions I and III, they are given as αm “ mπ and φm “ Λcospαmyq, with Λ “

a

2 ´ δ0,m
the normalization coefficients. Equation (4.22) is written in matrical form as

ppx, yq “
#

φTE`
0
c` φTE´

0
Rc, x ď 0,

φTE`
a Tc, x ě a,

(3.11)

where E`
0
, E´

0
, and E`

a are (M ˆM) diagonal matrices with the elements ejK
x
mx, e´jKx

mx,
and ejK

x
mpx´aq, respectively. φ is a (M ˆ 1) column vector, its elements are the eigen-

functions φm.

Substituting Eq. (3.11) into Eq. (3.7) at x “ 0 and x “ a, we obtain

IM ` R “ jC0
T pK2I ´ Hlccq´1pC0K

xpIM ´ Rq ´ CaK
xTq, (3.12)

T “ jCa
T pK2I ´ Hlccq´1pC0K

xpIM ´ Rq ´ CaK
xTq, (3.13)

where Kx is a (M ˆM) diagonal matrix with elements Kx
m, and IM is a (M ˆM) identity

matrix. The elements of matrices C0 and Ca are

C0paq,µν,m “
ż

1

0

ψµνpx1 “ 0paq, y1qφmpy1qdy1, (3.14)

where C0 and Ca have dimensions N ˆ M with N “ Nx ¨ Ny. Due to the orthogonality
between the term cospνπyq in ψµν and the function φm, elements C0paq,µν,m will be zero
if ν ‰ m. From Eqs. (3.12) and (3.13), we obtain

„

R

T



“ rI2M ` jGKx
2Ms´1

 

´rIM, 0MsT ` jC0a
T rK2I ´ Hlccs´1C0K

x
(

, (3.15)

where G “ C0a
T pK2I´Hlccq´1C0a, C0a “ rC0,Cas is a (Nˆ2M) matrix, I2M is a (2Mˆ2M)

identity matrix, Kx
2M

is a (2M ˆ 2M) block diagonal matrix with two (M ˆM) diagonal
matrices Kx on its main diagonal, and 0M is a (M ˆM) zero matrix.

If we assume that the problem is symmetric, the scattering matrix can be written
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as

S “
„

R T

T R



“ rI2M ` jGKx
2Ms´1 r´I2M ` jGKx

2Ms . (3.16)

The scattering matrix S can be expressed as [34]

S “ ´I2M ` 2jC0a
T
“

K2I ´ Heff

‰´1
C0aK

x
2M, (3.17)

(see Appendix I.2), under the condition that K2I ´ Heff can be inverted, where

Heff “ Hlcc ´ jC0aK
x
2MC0a

T . (3.18)

The eigenvalues Kλ and eigenfunctions ϕ̃λ “ ψTVλ are defined by the eigenproblem of
matrix Heff ,

HeffVλ “ K2

λVλ. (3.19)

They describe the complex resonances of scattering region II, which is opened to infinities
through regions I and III, and truncated at the interfaces, x “ 0 and x “ a. The elements
of vector ψ are the eigenfunctions of the rigid closed cavity defined by Eqs. (3.5) and
(3.6). Because the eigenfunctions ϕ̃λ in scattering region II are non-separable in x and
y, we use only one index λ to describe the eigenvalues Kλ and the eigenfunctions ϕ̃λ.

With the help of eigenvalues Kλ and eigenvectors Vλ, Eq. (3.17) can be written as
a resonance form

S “ ´I2M ` 2jC0a
TVrK2VV´1 ´ VHeffV

´1s´1VTC0aK
x
2M (3.20)

“ ´I2M ` 2jC̃T0arK2I ´ Kλs´1C̃0aK
x
2M,

where Kλ is a (NˆN) diagonal matrix with K2

λ its main elements. V is a (NˆN) matrix
with its columns the eigenvectors Vλ of matrix Heff . Heff is a symmetric non-Hermitian
matrix, its eigenvectors are bi-orthogonal. V´1 “ VT has been used to obtain Eq. (3.20).
Matrix C̃0a is defined as

C̃0a “ VTC0a “
ż h

0

VT rψpx1 “ 0, y1qφT py1q,ψpx1 “ a, y1qφT py1qsdy1 (3.21)

“
ż h

0

rϕ̃px1 “ 0, y1qφT py1q, ϕ̃px1 “ a, y1qφT py1qsdy1,

where ϕ̃px1 “ 0, y1q and ϕ̃px1 “ a, y1q are pNˆ1q vectors with elements the eigenfunctions
ϕ̃λ of scattering region II at x1 “ 0 and x1 “ a, respectively. Matrix C̃0a describes the
couplings of the scattering region II with regions I and III. Equation (3.20) is not valid
at exceptional points at which the eigenvalues and eigenfunctions coalesce, and therefore
V´1 is singular.

Equation (20) shows that the poles Kpole of the scattering matrix S are the eigen-
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values of Heff

Kpole “ Kλ (3.22)

when ℜepKλq “ K. It is well known [30, 31] that the poles of scattering matrix are
precisely the complex resonance frequencies of the scatter. Therefore, using Eq. (20),
we show that the original complex resonance problem of the open system defined in Fig.
3.1 and by Eqs. (3.1), (3.2), and (3.3) with the radiation conditions ppx, yq9e˘jKx

mx at
x Ñ ˘8 is reduced to an eigenvalue problem of matrix Heff , which describes the eigen-
value problem defined in the scattering region (region II). It is noted that the complex
resonances are calculated in Refs. 18 and 29 by finite element method with absorbing
boundary conditions.

Equation (3.20) extends the traditional acoustic resonance scattering formula [30,
31], in which the complex eigenfrequencies of scattering region give the resonance poles,
to include the coupling effects between scattering region and rigid waveguides.

3.3 Results and discussions

First, we show how the trapped modes with real resonance frequencies occur in
the vicinity of exceptional points and how they are linked to avoided crossings of the
eigenvalues of matrix Heff . Then, we show that a transmission zero is present when the
real resonance frequency is equal to the incident frequency. Finally, we consider the
effects of the dissipation in acoustic absorbing material. The liner can be described by
an impedance model (Y “ 1{Z):

Z “ Re` j cotpKdlq, (3.23)

where dl is the normalized depth of the liner, and Re is the resistance. Z is assumed
to be uniform. All the numerical results are computed with the truncation numbers
M “ 30, Nx “ 30, and Ny “ 30. Although Eqs. (3.17) and (3.20) are valid for multi-
mode propagation in the waveguide, for the sake of simplicity, we assume that only the
plane wave is propagative in regions I and III in the following. It is noted that there is
multimode propagating in region II.

We first consider the mode behaviours in the lined closed cavity as defined in Ap-
pendix II. It can be described by the eigenvalues (denoted β2µ,ν) of matrix Hlcc. Matrix
Hlcc depends on parameters a and KY when Re “ 0, so do βµ,ν . The trajectories of
ℜepβµ,νq as a function of |KY | are shown in Fig. 3.2 with a “ 4 and Re “ 0. Due to
the fact that there is no dissipation in the liner (Re “ 0), βµ,ν are either purely real
(plot in Fig. 3.2) or purely imaginary. When the eigenvalue curves cross, the modes are
degenerate [28]. At the degeneracies, the eigenvalues coalesce, while the eigenfunctions
are still bi-orthogonal [28] and there is no interaction between the modes.

We then consider the mode behaviours when the region II is opened. It can be
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Figure 3.2: Trajectories of the real parts of eigenvalues βµ,ν of the lined closed cavity as
a function of |KY | with Re “ 0 and a “ 4. Solid lines label even modes in x-direction,
dashed lines label odd modes in x-direction. The mode indices (µ, ν) are marked near
each curve.

modelled by the matrix Heff which depends on parameters: a, KY , and K when Re “ 0.
In Fig. 3.3, we plot the eigenvalue trajectories as a function of |KY | with a “ 4, K “ 2.5,
and Re “ 0. The curves with the same symmetry about x, which have crossings in
Fig. 3.2, now have either crossings for the real and avoided crossings for the imaginary
parts, e.g., A, 3, and 4 in Fig.3.3, or avoided crossings for the real and crossings for the
imaginary parts, e.g., 1 and 2 in Fig.3.3. Due to the energy leakage in the rigid duct,
the Kλ are now complex. The crossings and avoided crossings of the eigenvalues Kλ

in Fig. 3.3, e.g., A, 1, 2, 3, and 4, occur in the vicinity of the degeneracies of the lined
closed cavity, as labelled by A, 1, 2, 3, and 4, respectively in Fig. 3.2. Avoided crossings,
already known in structural dynamics [35, 36, 37], are less used in cavities lined with
impedance.

The above crossing and avoided crossing behaviours may be changed when we change
the liner length a. Taking the two modes in the vicinity of “A" in Figs. 3.2 and 3.3 as an
example, we decrease the liner length a, the results are shown in Fig. 3.4. When a “ 3.8,
there is a crossing for ℜe(Kλ) and an avoided crossing for ℑm(Kλ) (see Fig. 3.4 (a)
and (b)), while for a “ 3.6, there is an avoided crossing for ℜe(Kλ) and a crossing for
ℑm(Kλ) (see Fig. 3.4 (d) and (e)). The trajectories of Kλ in the complex plane are also
shown in Fig. 4 (c) and (f) with a “ 3.8 and 3.6, respectively, where avoided crossings
are always observed.

These findings and the type change of the avoided crossings from Fig. 3.4(c) to Fig.
3.4(f) show that there exists a critical value acri{h, for which the two curves of Kλ in
the complex plane as a function of |KY | will cross at a critical value |KY |cri. These
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Figure 3.3: Trajectories of ℜepKλq and ℑmpKλq of matrix Heff as a function of |KY |
with K “ 2.5, a “ 4, and Re “ 0: (a) real parts and (b) imaginary parts. Solid lines and
dashed lines correspond to different symmetries as shown in Fig. 3.2. For comparison,
we plot also the trajectories of ℜepβµ,νq of the closed cavity by dash-dot lines.

critical values for the two eigenvalues in Fig. 3.4 are |KY |cri “ 4.18 and acri “ 3.7

when K “ 2.5. (|KY |cri, acri) is called an Exceptional Point (EP) in the parameter
plane (|KY |, a) when K is fixed. In this case not only the eigenvalues but also the
eigenfunctions of the two modes coalesce. A strong mixing of the eigenfunctions of the
two modes occurs near the EP. The two modes which participate in the avoided crossing
exchange their identities [35, 36].

Avoided crossing occurs in the vicinity of an EP. EPs were first introduced by
Kato [38], and were extensively developed by Heiss [25, 26, 27], Rotter [39, 40, 41], and
Berry [42]. The mathematically topological structures of Riemann sheets at an EP,
depend on a complex parameter or on two real parameters. A typical EP distribution
of Heff in the plane of |KY | and a, with K fixed, is shown in Fig. 3.5. They occur
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goes to zero, Kλ turns to be a real resonance frequency.
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near the crossings between two modes in the lined closed cavity that have the same
symmetry about x. The branches A and C (B and D) correspond to the crossings
between two modes in the lined closed cavity with even (odd) symmetry about x. The
EP at p|KY |cri “ 4.18, acri “ 3.7q with K “ 2.5 corresponds to the C1 in Fig. 3.5.

It is remarkable that at |KY | “ 4.5 in Fig. 3.4 (b) and |KY | “ 4.8 in Fig. 3.4 (e),
ℑm(Kλ) goes to zero. They are real eigenvalues of Heff in the scattering region II. It is
the same kind of mode that Friedrich et al [23] found in nuclear reaction, and Sadreev
et al. [24] found in quantum billiards. The corresponding trapped modes play a crucial
role in the transmission zeros in the lined waveguide.

To realize a practical design of transmission zero, we need to understand the mode
behaviours in the parameters space (a, dl, K). We re-produce Fig. 3.4 in Fig. 3.6 using
dl as a varying parameter. It is quite surprising that the eigenvalue trajectories in the
two different parameter spaces of Figs. 3.4 and 3.6 are very similar to each other. We
find that at (a “ 3.8, dl “ 0.425) and (a “ 3.6, dl “ 0.436), real eigenvalues (trapped
modes) occur, with K “ 2.5.
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Figure 3.6: Re-plot Fig. 3.4 using dl, the liner depth, as x-coordinate.

Having the above information, we can obtain the real resonance frequencies of the
open system defined in Fig. 3.1 and by Eqs. (3.1)–(3.3) with the radiation conditions
ppx, yq9e˘jKx

mx at x Ñ ˘8 by computing the real poles of the scattering matrix given
in Eq.(3.17). The real resonance frequency we seek for corresponds to the point where
the curves y “ KλpK, dl, a “ 3.8q cross the line y “ K. We take the EP “C1" in
Fig. 5 as an example. We find that at dl “ 0.35 and a “ 3.8 with K “ 2.85, a real
resonance (trapped mode) occurs. This can be verified by Fig. 3.7, in which we plot
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the motions of the eigenvalues Kλ as a function of dl with K “ 2.85, a “ 3.8, and
Re “ 0. It is clear to show that at dl “ 0.35 the mode labelled by solid line in Fig. 3.7(b)
has ℑmpKλq “ 0. Using this group of parameters (a “ 3.8, dl “ 0.35, Re “ 0), we
compute the transmission and reflection coefficients of the plane mode by Eq. (3.16),
and we plot it in Fig. 3.8(a). A transmission zero occurs near K “ 2.853, where the
reflection coefficient has a corresponding resonance peak. It needs to stress that in the
vicinity of this resonance peak, a reflection zero is also present. They clearly show the
Fano resonance structure. The corresponding sound pressure field at the frequency of
the transmission zero is shown in Fig. 3.8(b).
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Figure 3.7: Trajectories of eigenvalues Kλ of matrix Heff as a function of dl with K “
2.85, a “ 3.8, and Re “ 0: (a) real parts and (b) imaginary parts.
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when real resonance frequency is crossed, i.e., |T | “ 0 .

Now we consider the effects of dissipation. A small resistance Re is added in the
impedance model Eq. (3.23). In Fig. 3.9, we plot the reflection and transmission coeffi-
cients as a function of K with dl “ 0.35 and a “ 3.8 under different values of Re. The
peaks of the reflection and transmission coefficients decrease rapidly with increasing Re.
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The high sensitivity on the dissipation is due to the fact that the crucial ingredient to
form Fano resonance in the transmission and reflection coefficients – the trapped mode
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Figure 3.9: (a) Transmission and (b) reflection coefficients of the plane mode as a function
of frequency under different values of resistance Re with dl “ 0.35.

with real resonance frequency, turns to be quasi-trapped mode with complex resonance
frequency. The sharp asymmetric profile becomes smoother, as shown in Fig. 3.9.

3.4 Conclusions

We have shown that the acoustic scattering matrix in a waveguide with a portion
of its wall lined by a locally reacting material can be efficiently described with the help
of an effective matrix Heff , whose eigenvalues give the poles of the scattering matrix.
The real poles are in the vicinity of the exceptional points of matrix Heff . Using this
effective matrix, the original acoustic resonances problem of the lined portion in the
infinite waveguide is reduced to an equivalent eigenvalue problem of matrix Heff , which
describes the eigenvalue problem defined in the finite lined portion (scattering region).

There are an infinite number of exceptional points of Heff in the parameter plane
(|KY |, a) with K fixed, at which the eigenvalues and eigenfunctions of two modes coa-
lesce. In the vicinity of each exceptional point, crossing or avoided crossing of the real
and imaginary parts of the complex resonances (eigenvalues) occur. By varying one of
the parameters, say |KY |, one mode turns to be a trapped mode, its resonance frequency
becomes real. When a plane mode is incident, a transmission zero is present when the
real resonance frequency is equal to the incident frequency. This transmission zero occurs
as a Fano resonance, due to the excitation of a trapped mode in the open system.

EPs, real resonance frequencies, and transmission zeros can also be obtained for
parameters (a, dl,K), which can suit the practical need of noise mitigation. We have
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also shown that the transmission zeros and reflection peaks are highly sensitive to the
dissipation.

With the aid of the eigenvalues and eigenfunctions of matrix Heff , the traditional
acoustic resonance scattering formula is extended to include the coupling effects between
the open lined portion and the rigid parts of the waveguide.

In this paper, the numerical calculations only show the situation where plane mode
is propagating in the rigid ducts, and thus “zero transmission" means that the total sound
field is stopped. However, the model is valid for multimode propagation in the waveg-
uides. The possibility of stopping the total sound field when several modes propagate is
still an open question.

Appendix I: Derivation of Eq. (3.7) and (3.17)

1. Derivation of Eq. (3.7)

Multiplying Eq. (3.1) by ψ, integrating over the closed cavity, we obtain

ż

1

0

ż a

0

ψ

ˆB2p

Bx2 ` B2p

By2
˙

dxdy “ ´K2

ż

1

0

ż a

0

ψp dxdy. (3.24)

Applying Green’s theorem for Eq. (3.24), substituting Eq. (3.5) into the resulting equa-
tion, we have

ż

1

0

„

ψ
Bp
Bx ´ Bψ

Bx p
x“a

x“0

dy `
ż a

0

„

ψ
Bp
By ´ Bψ

By p
y“1

y“0

dx

“ ´pK2I ´ Γq
ż

1

0

ż a

0

ψp dxdy,

(3.25)

where rF sx“a
x“0

“ F paq ´ F p0q works for any function F , I is an identity matrix, and Γ is
a diagonal matrix with elements γ2µν . Substituting the boundary conditions, Eqs. (3.3)
and (3.6), into Eq. (3.25), results in

ż

1

0

„

ψ
Bp
Bx

x“0

x“a

dy ´ jKY
ż a

0

ψpx, 0qppx, 0qdx “ pK2I ´ Γq
ż

1

0

ż a

0

ψp dxdy. (3.26)

Replacing the pressure function p inside the scattering region by Eq. (3.4), and using the
orthogonality property of eigenfunctions ψµν , the expansion coefficients a can be written
as

a “
ˆ

K2I ´ Γ ` jKY
ż a

0

ψpx, 0qψT px, 0qdx
˙´1 ż 1

0

„

ψ
Bp
Bx

x“0

x“a

dy. (3.27)

Substitute the upper expression of a into Eq. (3.4), we end up with Eq. (3.7).
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2. Derivation of Eq. (3.17)

Due to the symmetry property of the matrix S, Eq. (3.16) can be rewritten as

S “ ´I2M ` 2jC0a
T pK2I ´ Hlccq´1C0aK

x
2M

I2M ` jC0a
T pK2I ´ Hlccq´1C0aK

x
2M

. (3.28)

Now we expand the denominator in Eq. (3.28) into a geometric series [34],

S “ ´I2M ` 2jCT
0a

1

K2I ´ Hlcc

C0aK
x
2M

8
ÿ

q“0

ˆ

´jCT
0a

1

K2I ´ Hlcc

C0aK
x
2M

˙q

“ ´I2M ` 2jCT
0a

1

K2I ´ Hlcc

8
ÿ

q“0

ˆ

´jC0aK
x
2MCT

0a

1

K2I ´ Hlcc

˙q

C0aK
x
2M

“ ´I2M ` 2jCT
0a

1

K2I ´ Hlcc

1

1 ` jC0aK
x
2M

CT
0a

1

K2I´Hlcc

C0aK
x
2M

“ ´I2M ` 2jCT
0a

1

K2I ´ Hlcc ` jC0aK
x
2M

CT
0a

C0aK
x
2M.

(3.29)

By the expression of KN, the upper equation results in the Eq. (3.17).

Appendix II

The eigen-problem of the closed cavity with the admittance on the bottom wall,
called lined closed cavity can be expressed by

∇
2ϕµν “ ´β2µνϕµν , (3.30)

Bϕµν
Bx

ˇ

ˇ

ˇ

x“0,a
“ 0,

Bϕµν
By

ˇ

ˇ

ˇ

y“0

“ jKY ϕµν , and
Bϕµν

By
ˇ

ˇ

ˇ

y“1

“ 0. (3.31)
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Chapter 4

Use of metaporous materials in

acoustic ducts

The second strategy is presented and validated in this chapter. A set of periodic
rigid inclusions are embedded in a porous lining to enhance the sound attenuation in an
acoustic duct at low frequencies. Floquet-Bloch theorem is introduced to investigate the
sound attenuation in a 2D infinite waveguide lined with periodic inclusions embedded
in porous material. Crossing is observed between the mode attenuations of two Bloch
waves. Here the mode coupling is due to the presence of the inclusions embedded in the
porous material. The most important and interesting figure is that near the frequency
where the crossing of the mode attenuations appears, an attenuation peak is observed.
This phenomenon can be used to explain the transmission loss peak observed numerically
and experimentally in a 3D waveguide with a finite portion of its wall lined by a porous
material embedded with periodic inclusions.

4.1 Introduction

The acoustic treatment we discussed in the previous chapter is generally made with
a perforated sheet backed by honeycomb [1]. This kind of material has good absorption
properties only in a narrow frequency band but their main advantages are their mechan-
ical robustness and their capability to resist to harsh conditions i.e. they constitute the
reference solution in a turbofan engine. For some other applications porous material are
often used to reduce the noise emission, e.g., in the ventilation systems and the Auxiliary
Power Units (APU) of aircrafts. They generally offer a wider absorption/attenuation
band. However, they suffer from a lack of absorption efficiency at low frequencies, com-
paring to their efficiency at higher frequencies. To solve that problem, other approaches
must be investigated and new concepts of acoustic absorbers dedicated to the reduction
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of turbo-machinery noise at low frequencies must be developed.

To improve the liner capability at the low frequency range, in the applications
of acoustic gratings and panels, the usual way is by multi-layering [2, 3, 4]. Another
alternative solution, material including periodic subwavelength resonators, is studied in
analogy to optical metamaterials [5, 6, 7]. In this view, metaporous materials, made of
periodic rigid inclusions embedded in the porous medium, have been proposed to enhance
the absorption properties at frequencies lower than the quarter wavelength frequency [8,
9, 10]. The principle is that the energy is trapped and dissipated between periodic rigid
inclusions embedded in the porous medium and the rigid backing or in the inclusions
themselves. A nearly total absorption can be obtained for a frequency lower than the
quarter-wavelength resonance frequency due to the excitation of trapped modes. Local
resonance and trapped modes are another possibility to localize the field. Using the
trapped mode to produce additional transmission zero is also discussed in the previous
two chapters.

In this chapter, the influence of the mode coupling due to the periodic embedment
of rigid inclusions in porous material is studied for the waveguide applications instead of
acoustic gratings [8, 9] numerically and experimentally. The use of periodic inclusion in
the waveguide has also been studied by Nennig et al. [11], in which a finite element (FE)
method, inspired from Ref. [12], was chosen to tackle a quadratic eigenvalue problem.
The Floquet-Bloch theorem is used to reduce the computation on one periodic cell. It
has been shown that open shape inclusions (e.g. U-shape) are able to enhance the atten-
uation when compared with a homogeneous liner. Thanks to Floquet-Bloch formalism
assuming periodic heterogeneities [8, 9, 11, 13], very interesting results have been ob-
tained in acoustics. The Floquet theorem is applicable to ordinary differential equations
with periodic coefficients and shows that the solutions are such that

ψpx` L0q “ ejkBL0ψpxq,

where L0 is the period of the coefficients, kB is the Bloch wave number, and x is the
propagation axis. Such functions are known as Bloch wave functions.

In this work, the Floquet-Bloch theorem is applied to analyse the sound attenuation
in a 2D infinite periodic waveguide lined by a porous material embedded with rigid
inclusions. The mode attenuation can be explicitly described by the imaginary part of
the wave number kB. The wave numbers and the wave functions of the Bloch waves in the
given waveguide can be defined by the solutions of a generalized eigenvalue problem [14,
15]. The propagating mode of a periodic waveguide are given by the Bloch waves with
unitary eigenvalues.

The present work is organised as follows. In Chap.4.2, the problem of a 3D waveg-
uide partially lined with a porous material embedded with periodic inclusions is first
described. The experimental and numerical methods to consider the transmission be-
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haviours are also introduced. Floquet-Bloch theorem is proposed to investigate the sound
attenuation in a similar 2D infinite waveguide lined with periodic inclusions embedded
in porous material(Chap.4.3). In Chap.4.4, the experimental and numerical results for
the 3D waveguide with different inclusion shapes and configurations are presented and
discussed.

4.2 Description of the problem

4.2.1 Experimental setup

H

0

-B

L

2a 1 2b

3a 3b

Figure 4.1: Schematic view of the experimental setup. 1: material, 2a: four upstream
microphones, 2b: four downstream microphones, 2c: array of 11 microphones, 3a: up-
stream source, 3b: downstream source. It need to be noted that the test material is put
in a big rigid cavity.

The test facility used in this study is schematically depicted in Fig. 4.1 [16]. A
two sources method is used: the acoustic waves are produced by two loudspeakers 3a
and 3b and propagate in a rectangular duct (width W=100mmˆheight H=15mm). Two
anechoic terminations are used to avoid resonant conditions in the duct.

The acquisition of signals is performed by Agilent VXI 1432 hardware platform
which drives the source excitation synchronously with the acoustic pressure signals record-
ing. A swept-sine over the frequency range 30–3500 Hz is used with a frequency increment
of 10 Hz. The test materials are put in position 1.

Two series of four microphones mounted in the upstream (2a) and downstream
(2b) of the test material section are used to measure the acoustical pressure. Those
microphones are located at the positions: xu1 ´ xu2 “ xd1 ´ xd2 “ 63.5mm, xu1 ´ xu3 “
xd1 ´xd3 “ 211.5mm and xu1 ´xu4 “ xd1 ´xd4 “ 700mm. The use of 2ˆ4 microphones
allows an over-determination of the transmitted and reflected waves on both sides of the
test material and avoids the problems in the precision of measurement when the acoustic
wavelength is close to half the distance between two microphones.
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In the frequency range 30–3400Hz, only 2 acoustic modes can propagate in the rigid
ducts: the plane wave and the first-order mode along dimension W. The microphones
being located just at the centre of dimension W, this second mode is not measured and
the microphones only capture the plane waves.

4.2.2 Measuring technique

The aim of the experimental apparatus is to measure the transfer matrix or the
scattering matrix of a test material [17]. The scattering matrix for the plane wave re-
lates the scattered pressure amplitudes p`

2
and p´

1
(see Fig. 4.1) to the incident pressure

amplitudes p`
1

and p´
2

by

˜

p´
1

p`
2

¸

“
«

R` T´

T` R´

ff˜

p`
1

p´
2

¸

“ S

˜

p`
1

p´
2

¸

, (4.1)

where T` and T´ are the anechoic transmission coefficients, R` and R´ are the anechoic
reflection coefficients, and superscripts ˘ indicate the direction of wave propagation along
the x axis, and the subscripts ‘1, 2’ indicate the upstream and downstream of the duct.
The method of measurement used in the present study is called “the 2 sources method”.
Two measurements are made in two different states of the system. These different states
are obtained by switching on the upstream source, the downstream source being switched
off (measurement I), and vice versa (measurement II).

The scattering matrix is calculated from the two measurements using the following
relation:

«

pp´
1

{p`
1

qI pp´
1

{p´
2

qII

pp`
2

{p`
1

qI pp`
2

{p´
2

qII

ff

“ S

«

1 pp`
1

{p´
2

qII

pp´
2

{p`
1

qI
1

ff

, (4.2)

This calculation is meaningful only if the two measurements are independent, i.e., if the
determinant of the second right side matrix does not vanish:pp´

2
{p`

1
qI ‰ pp`

1
{p´

2
qII.

For the measurement I, the sound pressure in the waveguide is written (time depen-
dence e´jωt is omitted):

ppx1q “ p`
1
ejk

`x1 ` p´
1
e´jk´x1 “ p`

1

´

ejk
`x1 `R`

1
e´jk´x1

¯

, (4.3)

where R`
1

is the reflection coefficient from measurement I, and k` and k´ are the
wavenumbers in the duct in the direction of `x and in the reverse direction. Then
the expressions of the pressure at microphones ui and uj are obtained by

ppuiq “ p`
1
ejk

`xui ` p´
1
ejk

`xui “ p`
1

´

ejk
`xui `R`

1
e´jk´xui

¯

,

and
ppujq “ p`

1
e
jk`xuj ` p´

1
e
jk´xuj “ p`

1

´

e
jk`xuj `R`

1
e

´jk´xuj

¯

,
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respectively, where xui is the position of the microphone ui relatively to the inlet of the
measured element, the same for microphone uj .

The upper two equations result in

ppujqI

ppuiqI
“ e

jk`xuj `R`
1
e

´jk´xuj

ejk
`xui `R`

1
e´jk´xui

. (4.4)

A transfer function is defined to label the ratio of the pressure between microphones uj
and ui,

HI
ujui

“ ppujqI

ppuiqI
. (4.5)

By Eq. (4.4), the reflection coefficient from measurement I can be found from the transfer
function between two different microphones by a relation of the type

pp´
1

{p`
1

qI “
HI
ujui

ejk
`xui ´ e

jk`xuj

e
´jk´xuj ´HI

ujui
e´jk´xui

. (4.6)

All the other matrix elements can be found by the same way (see [18] for details). Thus,
the wavenumbers k` and k´ have to be known to calculate the scattering matrix.

For measurement II, we have

ppdiq “ p`
2
ejk

`xdi ` p´
2
e´jk´xdi “ p´

2

´

R´
1
ejk

`xdi ` e´jk´xdi

¯

,

and
ppdjq “ p`

2
e
jk`xdj ` p´

2
e

´jk´xdj “ p´
2

´

R´
1
e
jk`xdj ` e

´jk´xdj

¯

.

The same as we did before, the upper two equations result in

pp`
2

{p´
2

qII “
HII
djdi

e´jk´xdi ` e
´jk´xdj

e
jk`xdj ´HII

djdi
ejk

`xdi

.

For the transmission coefficients T`
1

“ p`

2

p`

1

and T´
1

“ p´

1

p´

2

, the pressures at micro-

phone ui and di are applied,

ppdiq
ppuiq

“
p`
2

´

ejk
`xdi ` 1

R´

1

e´jk´xdi

¯

p`
1

´

ejk
`xui `R`

1
e´jk´xui

¯ ,

we define

H21

diui
“ ppdiq
ppuiq

, H12

uidi
“ ppuiq
ppdiq

,
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the upper equations can lead to

pp`
2

{p`
1

qI “ H21

diui

ejk
`xui `R`

1
e´jk´xui

ejk
`xdi ` 1

R´

1

e´jk´xdi
,

pp´
1

{p´
2

qII “ H12

uidi

R´
1
ejk

`xdi ` e´jk´xdi

1

R`

1

ejk
`xui ` e´jk´xui

.

4.2.3 Description of the configurations

The porous material is a metallic foam that has been chosen to avoid any skeleton
vibrations. It is supplied as plates (200mmˆ100mm) of thickness 5mm. Five layers of
this porous material are assembled together to form the uniform porous material, it is
labeled by “5P”. The parameters of the metallic foam used in the fluid equivalent model
have been measured on another setup. The values are porosity Φ “ 0.99, tortuosity
α8 “ 1.17, viscous length Λ “ 1 ˆ 10´4 m, thermal length Λ1 “ 2.4 ˆ 10´4m, and
resistivity σ “ 6.9 ˆ 103kg m´3 s´1.

In order to embed the inclusions in the porous material, holes are drilled in three
of the porous material layers. Two types of inclusion shape are investigated: the first
type is a metallic hollow cylinder with one closed end and one open end (labeled by
“R1” in the following), the second (labeled “R2” ) is a closed hollow cylinder with a slit
on the side (Helmholtz resonator), see Fig. 4.2(a). The inclusions are filled with air.
The external diameter of R1 is D=22mm, and the inner diameter is d=21mm. Three

1.5

R2R1

(a) (b)

Figure 4.2: (a) Two different inclusion shapes: open cylinder(R1) and Helmholtz res-
onator(R2). (b) Picture of the measured sample.

different orientations of R1 in the three layers are considered. If the closed ends of all
the cylinders are on the bottom and direct towards the rigid backing, it’s called “R1_-
B”; inversely, “R1_T” for all the closed ends are on the top direct towards the duct (see
Fig.4.3). Otherwise, if the cylinders are put in an alternated way, it’s labeled by “R1_A”,
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as shown in Fig. 4.2(b). With the addition of the other two layers of porous materials,
different labels are used depending on the positions of the porous materials, the details
can be found in Fig. 4.3. In Fig. 4.4, we give the distributions of the inclusions in the
porous material.

R1_B

R1_B+2P

P+R1_B+P

2P+R1_B

R1_T

R1_T+2P

P+R1_T+P

2P+R1_T

R1_A

R1_A+2P

P+R1_A+P

2P+R1_A

B: Closed end on the Bottom and near the rigid backing; 

A: Alternated arrangement;    

T: Closed end on the Top and near the duct;     

P: Porous materials layer;     R1: open cylinder  

5P25

R115
2

Length unit: mm

Figure 4.3: Vertical plane views and the definitions of the different configurations we
considered. The inclusions R1 are embedded in 3 layers of porous material with three
different arrangements (labeled by “R1_B”, “R1_A”, and “R1_T”, respectively). One or
two layers of porous materials are also assembled in different ways to consider the effects.
A picture of P+R1_A+P is shown in Fig. 4.2(b).

D=22d=21

14

24

24

24

14

1624

Length unit: mm

Figure 4.4: Distributions of the inclusions in the porous material. A horizontal plane of
the porous material with inclusions.

For the second type of inclusion R2, as shown in Fig. 4.2(a), three orientations of
the open slit are considered, see Fig. 4.5(a). When the open slits all orient towards the
upstream of the duct, the configuration is labelled by R2_0˝. By rotating the open
slits of R2_0˝counterclockwise 90˝, the orientations of open slits are perpendicular to
the propagation direction in the duct, which is now R2_90˝. R2_A is used to consider
the interaction of the slits between two neighboured inclusions, by putting the open
slits 0˝and 180˝alternately. Those inclusions are embedded into three layers of porous
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R2_A R2_0° R2_90°

(a) Horizontal plane

P+R2_0°+P 2P+R2_0°R2_0°+2P

(b) Vertical plane

Figure 4.5: (a)Three different orientations of R2 in the porous materials(horizontal view).
(b) The other two layers of porous material are assembled in three different ways.

material. As we did before for the R1, the other two lays of porous material can also be
assembled in three different ways, e.g., as shown in Fig. 4.5(b).

4.2.4 Numerical method

Computations have been performed at Airbus using ACTIPOLE software developed
by Airbus Group Innovations [19]. ACTIPOLE is designed to solve harmonic acoustic
wave propagation problems by the Boundary Element Method. The parallel and out-of-
core direct solver has been used in order to predict the transmission loss (TL) and the
pressure field in the whole computational domain for each computed frequency, taking
into account porous liners by assuming a fluid equivalent behavior. The higher the value
of the TL, the better the attenuation of the porous medium.

To study the influence of the two different inclusions and the porous material on
the transmission loss, five different configurations are considered, as defined in Table 4.1.
For “Air+R1_A+Air” and “Air+R2_A+Air”, the inclusions are embedded in big rigid
cavity filled with air.

Table 4.1: Definition of the configurations studied with Actipole

CONF Inclusion Porous material Objective

P+R1_A+P R1 ˆ Effect of R1
P+R2_A+P R2 ˆ Effect of R2

Air+R1_A+Air R1 The sole effect of R1 (without porous)
Air+R2_A+Air R2 The sole effect of R2 (without porous)

5P No inclusions ˆ Reference with only porous material

4.3 2D simple model analysis

4.3.1 Problem statement

We consider here the acoustic wave propagation in a 2D infinite periodic waveguide
lined with a porous material with embedded rigid inclusions, as described in Fig. 4.6.
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L0
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Γl Γr
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Figure 4.6: Periodic [ - shape inclusions embedded in a porous material, with ha “ 15mm
and hp “ 25mm in the following. L0 “ 24mm is the length of the unit cell. D “ 22mm
and h0=15 are the width and height of the rigid inclusion.

For the simplication, the shape of the inclusion is [-shape. In the air domain, i.e. y P
r0, has, the sound pressure papx, yq satisfies the governing equation in the 2D Cartesian
coordinates px, yq

˜

B2

Bx2 ` B2

By2 `
ˆ

ω

ca

˙

2
¸

papx, yq “ 0, (4.7)

where ω is the circular frequency, and ca denotes the sound speed in the air. Time
dependence is assumed as exp(-jωt) and will be omitted in the following. The acoustic
velocity is obtained by

ρa
Bua
Bt “ ´∇pa,

where ρa is the air density.

In the porous material, i.e. y P r´hp, 0s, the skeleton of the porous material is con-
sidered as infinitely rigid, thus the Champoux-Allard-Johnson equivalent fluid model [20]
is used to get the effective compressibility κeq and effective density ρeq (see Appendix 4.A
for details). The phase velocity is given by ceq “

a

κeqpωq{ρeqpωq. The sound pressure
pppx, yq in the porous material satisfies the wave equation

˜

B2

Bx2 ` B2

By2 `
ˆ

ω

ceqpωq

˙

2
¸

pppx, yq “ 0. (4.8)

The acoustic velocity in the porous can also be obtained by

ρeq
Bup
Bt “ ´∇pp.

On the rigid walls, the pressure satisfies the rigid boundary condition. At the surface
y “ 0 between the air and the porous material, the continuity of pressure and normal
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velocity leads to

pppx, 0´q “ papx, 0`q, 1

ρeq

Bpp
By

ˇ

ˇ

ˇ

ˇ

y“0´

“ 1

ρa

Bpa
By

ˇ

ˇ

ˇ

ˇ

y“0`

. (4.9)

For an infinite duct lined with porous material, the eigenvalues can be solved by
Finite Difference Method (FDM) (see Appendix 4.B for details). The eigenvalue problem
is rewritten as

`

D2 ` k2I
˘

P “ k2xP , (4.10)

where D2 is the 2nd order differential matrix, k contains the elements ω{ca and ω{ceq
(see Appendix 4.B for details), I is an identity matrix, and kx is the wavenumber in
x´direction.

By computing the eigenvalues of Eq.(4.10), the wavenumber kx can be obtained,
with ℑmpkxq ą 0 for `x-direction and ℑmpkxq ă 0 for ´x-direction. With the help of
the resulting wavenumbers kx and eigenvectors P , the pressure in ˘x - direction can be
expressed by

p˘pxq “
n“N
ÿ

n“1

C˘
n Pnexpp˘jkx,nxq “ XEp˘xqC˘, (4.11)

where n is the mode index, X is a matrix in which the columns are the the eigenvectors
Pn, Ep˘xq are diagonal matrices with expp˘jkx,nxq on the main diagonal, and C is a
vector with mode amplitudes Cn.

4.3.2 Bloch waves and eigenvalue problems

When the governing equations, the boundary conditions and the geometry are L0-
periodic along x (see Fig. 4.6), it follows from the Floquet-Bloch theorem that the solution
are Bloch waves [21]

ppx, yq “ p̂px, yqejkBx, (4.12)

i.e. the pressure function ppx, yq can be split into a L0-periodic function p̂px, yq modulated
by a plane wave with the Floquet-Bloch wavenumber kB. It needs to be noted that the
Bloch wavenumber is common for both media as the axial wavenumber for classical
guided wave problems. The concept of mode can be extended to periodic system thanks
to the Floquet-Bloch theorem.

On the right and left boundaries of the elementary cell, respectively on Γr and Γl,
the pressure function satisfies the condition

ppx` L0, yq “ p̂px, yqejkBL0 . (4.13)

It follows from Eq. (4.13) that the real part of kBL0 measures the change in phase across
the cell and its imaginary part the attenuation. In addition, it can be directly shown
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from Eq. (4.12) that kB is defined modulo 2π{L0. The smallest values belongs to the
irreducible Brillouin zone.

Taking an arbitrary cell (see Fig. 4.6), the scattering matrix (denoted as S) concept

ˆ

C´
0

C`
L0

˙

“
„

R t

T r



loooomoooon

S

ˆ

C`
0

C´
L0

˙

(4.14)

remains valid, where Rprq and Tptq are the matrices containing reflection and transmission
coefficients, C˘

0
and C˘

L0
are the amplitudes of ˘x-direction waves for the pressures at

x “ 0 and L0, respectively. Due to the symmetry of the geometry, we have R “ r, and due
to the reciprocity T “ t. The scattering matrix S for an elementary cell can be obtained
by using mode matching of the pressure and velocity at the discontinuity interfaces, the
details are given in Appendix 4.C.

Moreover, the pressure functions obey the Bloch condition [22]

ˆ

C`
L0

C´
L0

˙

“ ejkBL0

ˆ

C`
0

C´
0

˙

. (4.15)

The upper two equations, Eqs. (4.14) and (4.15), lead to the following eigenvalue problem

„

T r

0 I



loooomoooon

M1

ˆ

C`
0

C´
L0

˙

“ ejkBL0
loomoon

λ

„

I 0

R t



loooomoooon

M2

ˆ

C`
0

C´
L0

˙

, (4.16)

where I and 0 are the identity and zero matrices. As the reflection and transmission
matrices Rprq and Tptq are already known (see Appendix 4.C), the dispersion relation
giving the solution for the Bloch wavenumbers kB can be solved numerically [14, 15].
With the help of the eigenvalues λ from the generalized matrix eigenvalue problem, the
Bloch wavenumber is obtained by

kB “ ´j lnpλq{L0. (4.17)

The propagating Bloch waves are such that |λ| “ 1; the other waves are evanescent
and decay exponentially in the direction of propagation. With the help of the resulting
eigenvectors pC`

0
,C´

L0
qT from the eigenvalue problem of Eq. (4.16) and the scattering

matrix S, the amplitudes of the incoming and outgoing modes at the entrance and exit
can be given. Using the Eq.(4.26) in Appendix 4.C, the amplitudes of the modes at
different segments can be obtained. The wave functions of the Bloch waves then can be
expressed by using Eq.(4.11) for each segment.
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4.3.3 Effects of inclusions and porous material

The aim of this section is to illustrate the effects of the inclusions and the porous
material on the sound attenuation. The properties of a uniform waveguide lined with
pure porous material is first investigated. The effects of the porous material on the
transmission loss of a plane wave in a rigid duct is also considered. Then the inclusions
are embedded in the porous material to enhance the sound attenuation at low frequencies.

When there is no inclusion embedded in the porous material, the eigenvalue problem
in an infinite waveguide lined with a pure porous material (called porous lined duct in
the following) can be solved by Finite Difference Method, as detailed in Appendix 4.B.
The wavefunction is separable and can be expressed by ppx, yq “ P ejkxx.

For the sake of convenience, Bloch waves introduced in Sec. 4.3.2 are also applied
here to find the Bloch wavenumbers in the porous lined duct, with the same period L0

as in Fig. 4.6 considered. In this particular case, the Bloch wavenumbers kB and the
axial wavenumbers kx are identical, and p̂px, yq in Eq. (4.13) is independent of x, which
becomes the transverse eigen-modes.
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Figure 4.7: (a)Real and (b) imaginary parts of kB as a function of frequency when there
is no inclusions in Fig. 4.6.

In Fig.4.7, for this particular case, we plot the real and imaginary parts of Bloch
wavenumbers kB as a function of frequency. From the imaginary parts of kB, we can
have the sound attenuation of each mode along x as a function of frequency. Here we
are only interested in the lower two modes. At low frequencies the distinction between
the mode with the least attenuation and all other modes is fairly clear because the
latter are, in general, highly attenuated cut-off modes. The fact that there is a mode
with minimum attenuation is extremely useful because provided the source distribution
does excite all the modes, then at some distance from the source the sound field will
consist of just this one mode, and hence the sound attenuation at larger distances will be
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entirely determined by this minimum value [23]. From Fig.4.7(b), we can see that around
4700Hz, the imaginary parts of the lower two waves cross. This is where the maximum
attenuation of the least attenuated mode happens. For a waveguide lined with locally
reacting liner, of special interest is the question of optimizing the sound attenuation by
judiciously selecting the impedance characteristics of the liner. In this view, the concept
of optimal liner was first defined and investigated by Cremer [24]. It has been shown that
Cremer’s optimum impedance is a branch point [23] and an Exceptional Point (EP) in
complex admittance (impedance) plane (as we discussed in Chap. 1.4. ) and EPs play
an important role in the sound attenuation [25].

However, if a finite length (L “ 0.2 m) of such porous material is attached to
two semi-infinite rigid ducts, in which the porous liner is truncated by rigid walls at
the two ends (see e.g. Fig. 4.1), the transmission loss (TL) peak is observed around
3800Hz. The results are given in Fig. 4.8, with only plane wave incident in the rigid
duct. Similar as described in Appendix 4.C, the scattering matrix can be derived by
using mode matching at the interfaces x “ 0 and L. Good agreements can be seen from
the comparisons between the computation and experimental results [16]. The oscillations
in the reflection coefficient are linked to the wave reflection at the end of the material
px “ Lq. The reflection coefficient oscillates around about a value of |R| “ 0.41 which is
close to the value p1´αq{p1`αq “ 0.45, where α “ H{pH `Bq, valid at low frequencies
for an area expansion without porous material [16]. To have a comparison and to see the
effects from the discontinuity interfaces, the TL (i.e. ejkBL) of the least attenuated mode
with length L “ 0.2 m is also plotted in Fig.4.8(b) by the dashed line. We can see that
the frequency of the TL peak is smaller with the two semi-infinite rigid ducts, comparing
with the one for the least attenuated mode.
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Figure 4.8: (a) Transmission and reflection coefficients and (b) transmission loss (TL) for
the plane wave in a rigid duct partially treated with porous material (length L=0.2m) as a
function of frequency. The experimental measurements are also performed and compared
with the computation results. The TL of the least attenuated mode with length 0.2m is
also given by the dashed line.
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Figure 4.9: (a)Band diagram for the waveguide with inclusions embedded in the air,
i.e. when there is no porous material in Fig. 4.6. (b) and (c) Absolute value of periodic
function p̂px, yq for the lower two Bloch waves (corresponding to “1” and “2” in Fig.4.9(a))
at 2000Hz, the unit of the axis is in millimetre. (d)Real and (e)imaginary parts of the
lower two kB (`x-direction) as a function of frequency.

To understand the mode coupling effects, we first analyse results without porous
material. In Fig. 4.9(a), the band diagram is given for the waveguide with the [-shape
inclusions embedded in air (no dissipation is included). These scatterers are located at
the centre of the periodic cell with the dimensions: width D “ 22mm, height h0 “
15mm and periodic length L0 “ 24mm. For the sake of simplification, the inclusion
thickness is neglected. At some point, the wavenumber kB becomes complex due to the
interference with the reflection at each discontinuity, and the wave function is attenuated
along the propagation direction, for example the mode labelled by “1” in Fig. 4.9(a)
becomes complex when f ą 3400Hz. This can also be illustrated by Fig. 4.9(d)(e),
where the real and imaginary parts of the two kB as a function of frequency are given.
There exist a frequency band rf1, f2s, in which modes 1 and 2 both can propagate.
When f ă f1, only mode 1 can propagate, mode 2 is evanescent. Then when f ą f2, the
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wavenumber of mode 1 becomes complex. The absolute value of the periodic functions
p̂px, yq for the lower 2 Bloch waves (labelled by 1 and 2 in Fig. 4.9(a)) at 2000Hz are
plotted in Fig. 4.9(b)(c). From the function distribution in the unit cell, we can see that
the pressure of mode 2 is mainly localized inside the inclusion with the help of the rigid
backing, we will call it “Localized mode” in the following. While for mode 1, the pressure
is mainly in the region ´5mm ă y ă 15mm, which will be called “Acoustic mode”.

To have sound attenuation, the porous material has to be applied. The air filled
inclusions are embedded in the porous material (see Fig. 4.6) to improve the sound at-
tenuation at low frequencies. The mode attenuation in dB/m, given by

ApkBq “ 8.68 ¨ ℑmkB, (4.18)

can be shown in Fig. 4.12(a) for such configuration. The frequency (880Hz) of the first at-
tenuation peak in a waveguide lined with periodic inclusions embedded in porous material
(symbol “‚”) is much lower than the one (4700Hz) in a porous lined duct (symbol “N”).
It indicates that due to the embedment of the rigid inclusions in the porous materials,
the sound attenuation at 880Hz is enhanced.

−1 −0.5 0 0.5 1
0

1000

2000

3000

4000

5000

F
re

q
u

e
n

c
y

 (
H

z
)

ℜe(kB)L0/π

1

2

1

(a)

0 1000 2000 3000 4000 5000
0

20

40

60

Frequancy(Hz)

ℑ
m
(
k
B
)

0 1000 2000 3000 4000 5000
0

50

100

150

Frequancy(Hz)

ℜ
e
(
k
B
)

1

1

2

2

(b)

Figure 4.10: (a)Band diagram for the waveguide with inclusions embedded in the porous
material. (b)Real (upper) and imaginary (bottom) parts of kB as a function of frequency
for the waveguide shown in Fig. 4.6. The periodic wave functions of the lower two modes
at the frequencies 700Hz, 880Hz, 1000Hz, and 2000Hz (“˝” in Fig. 4.10(b)(upper)) are
plotted in Fig. 4.11.

To explain this behaviour, the band diagram for the waveguide lined with periodic
inclusions embedded in porous material (see Fig. 4.6), obtained by plotting the Bloch
wavenumbers kB as function of the frequency, is presented in Fig. 4.10(a). We can see
that due to the presence of the porous material, the wavenumbers become complex, and
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they are very different with those without porous material(Fig.4.9). The imaginary parts
of the lower two kB as a function of frequency, which give the essential information about
the sound attenuation, are also plotted (see the bottom figure in Fig. 4.10(b)). Crossing is
observed between mode 1 and mode 2. The maximum attenuation of the least attenuated
mode then can be found near 880Hz, where the crossing of the imaginary parts between
the lower two modes is observed.

Figure 4.11: Absolute value of periodic function p̂px, yq for the mode 1 (upper) and mode
2 (bottom) ( modes 1 and 2 from Fig.4.10) at frequencies 700Hz, 880Hz, 1000Hz, and
2000Hz, respectively.

To study the behaviours of the Bloch waves near the maximum attenuation, the
periodic function p̂px, yq for the lower two modes (labelled by 1 and 2 in Fig. 4.10) at
different frequencies (see the “˝” in the upper figure of Fig. 4.10(b)) are computed in
Fig. 4.11. First of all, we can see that the results verify p̂px, yq “ p̂px ` L0, yq. Mode
1 is the so-called localized mode which is also observed in Fig. 4.9(b), the pressure field
is mainly localized inside the inclusions. However, for the periodic function of mode
2, it is a mixing of the acoustic mode and localized mode at 880Hz, which indicates
the existence of the coupling between the two different kinds of mode. The periodic
waveguide can interfere in the homogeneous waveguide framework. It is worth noting
that the first attenuation peak is strongly connected to this coupling effect and to the
crossing observed for the imaginary parts. Indeed, modes avoid each other thanks to a
modification of the kB imaginary part leading to an enhancement of the attenuation.

To see the effect of the porous material embedded with inclusions on the transmission
behaviours in a rigid waveguide, the transmission loss in a waveguide partially lined with
such material, in which 8 cells are embedded in the centre of a porous material of length
L “ 0.2m, is computed, shown by the solid line in Fig. 4.12(b). The TL of the least
attenuated Bloch waves is also plotted (symbol “‚”) for length L “ 0.2m. The TL peak
observed at 880Hz can be explained by the crossing of the mode attenuation between
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Figure 4.12: (a) Mode attenuations (dB/m) of the lower two Bloch waves in the uniform
waveguides lined with periodic inclusions embedded in porous material (symbol “‚”) and
in the porous lined duct (without inclusions)(symbol “N”). (b) Symbol “‚”: TL of the
lease attenuated Bloch mode with length L “ 0.2 m (i.e. ejKBL). Solid line: TL of
the plane mode in an acoustic waveguide with a portion of its wall lined by a porous
material embedded with 8 inclusions, the total length of the lined portion is L. Dashed
line: Measured TL for a waveguide partially lined with a pure porous material of length
L.

the lower two Bloch waves (see “‚” in Fig. 4.12(a)), due to the coupling of the two lower
Bloch waves. The TL in the waveguide embedded with inclusions (solid line) is enhanced
between 500Hz and 1300Hz, comparing to the one without inclusions (dashed line).

As already shown by Groby et al. [8] that the inclusion position in the periodic
cell can be a sensitive parameter. The effects of the positions of the inclusions in the
porous material on the TL with length L “ 0.2m of the least attenuated mode are also
investigated, by moving the inclusions above (+ mm) or below ( - mm) the current centre
position. The results are shown in Fig. 4.13. The frequency of the first peak decreases
when the inclusions are moved both above and below the centre position. The opposite
effect is observed for the second TL peak. These effects are not so evident when the
inclusions are moved above the centre poison.

It need to be noted that under different inclusion positions, the Bloch wave numbers
kB can move in a different way with varying the frequency. To illustrate this point, we
plot the ℜepkBq and ℑmpkBq as a function of frequency, see Fig. 4.14, with three different
inclusions positions: the inclusions are in the centre 0 mm (Fig. 4.14(a)(b)), below the
centre 4 mm (Fig. 4.14(c)(d)) and 4.9 mm (Fig. 4.14(e)(f)). We can see that for the
ℑmpkBq, the crossing becomes avoided crossing with moving the inclusions below the
centre. This might be related to the exceptional point(see Chaps. 2 and 3).
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Figure 4.13: (a)The effect of the inclusion position in the porous material on the TL
of the least attenuated Bloch wave with length L “ 0.2m. “0 mm” indicates that the
inclusions are embedded in the centre, as in Fig.4.6. “1mm” or “´1mm” means that
the inclusions are moved of 1mm above or below the centre position. (b)A zoom of
Fig.4.13(a) for the low frequencies.
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Figure 4.14: Real and imaginary parts of kB as a function of frequency with different in-
clusion positions in the porous: the inclusions are (a)(b)in the centre( 0 mm), (c)(d)below
the centre (´4 mm), and (e)(f)below the centre (´4.9 mm).

4.4 3D numerical and experimental results

Numerical simulations and experimental measurements are carried out for the con-
figurations described in Chap. 4.2.4 and Chap. 4.2.3, respectively. It need to be noted
that the material is put in a big rigid cavity.
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4.4.1 Numerical results

Numerical calculations have been performed for various configurations which are
reported in Table 4.1 and within the frequency range of the audible sound, particularly,
at low frequencies. For all calculations, the top of the big cavity (which is used to put
the porous material) as well as any non-rigid/empty surface (e.g. the surface between
the open end of the inclusion and the porous material) are made of a resistive layer with
very small resistivity: Re“ 1e´4.
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Figure 4.15: Transmission loss (dB) for the 5 configurations when the plane mode is
incident.

The transmission loss (TL) for the 5 configurations given in Table 4.1 are shown in
Fig. 4.15, when only the plane mode is incident. The numerical frequency range is 500Hz
to 4000Hz. At very low frequencies (below 800 Hz), the results of the configurations with
porous material are quite similar meaning that the inclusions do not have any effect in this
frequency range. However, when the frequency increases, a mid-frequency peak (MFP)
is observed in transmission losses for both P+R1_A+P and P+R2_A+P at 2400Hz and
1400Hz, respectively. The MFP of P+R2_A+P happens at a lower frequency than the
MFP of P+R1_A+P. A second TL peak appears for P+R2_A+P at 3400Hz. It can can
be noted that due to the presence of the inclusions, the attenuation is increased around
the MFP but there is a small negative effect on TL at frequencies below MFP, and a
large negative effect on TL at frequencies above MFP.

Air+R1_A+Air and Air+R2_A+Air are used to consider the effects of the two
different inclusions when no porous material is added. At low frequencies, f ă1.2kHz,
the two TL curves are quite similar. They are also close to the results of an empty
cavity (not shown here). Thus, in this frequency range, the inclusions have no significant
effects on the TL. Two TL peaks are found at 1.7 kHz and 3.6 kHz for Air+R2_A+Air.
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However, no obvious effects are found by correlating P+R1_A+P with Air+R1_A+Air,
and the MFP of P+R1_A+P seems to be due to a more complex interaction of the
inclusion R1 with the porous material. The porous material plays a very important
role for the TL peak of P+R1_A+P. Comparing P+R2_A+P and Air+R2_A+Air, the
TL of P+R2_A+P (porous material + inclusions R2) cumulates the resonant effects of
inclusions (Air+R2_A+Air), with a shift of peaks to lower frequencies, and the effects of
porous material (5P). Due to the presence of porous material, the TL increases, and the
frequencies of the two TL peaks shift to lower frequencies. The objective for inclusions
to improve the attenuation of the sole porous material in low frequency range (peak of
attenuation can be tuned) seems to be reachable, at the price of a moderate degradation
of the attenuation at other frequencies.

Figure 4.16: Pressure field distribution in the duct for P+R1_A+P at 2400Hz (scale in
dB SPL), a plane mode is incident with an intensity of 100 dB.

(a)

(b)

Figure 4.17: Pressure field distribution in the duct for P+R2_A+P at (a)1700Hz and
(b)3400Hz (scale in dB SPL), a plane mode is incident with an intensity of 100 dB.

The computed pressure fields for P+R1_A+P and P+R2_A+P at the frequencies
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of the TL peaks are given in Fig. 4.16 and Fig. 4.17, respectively. A plane wave is incident
from the left side, the pressure decreases in the duct along the material. Large pressure
is observed inside some inclusions for P+R1_A+P. Between the rigid bottom of R2 and
the rigid backing, the pressure localization is observed at 3400Hz (Fig. 4.17(b)).

4.4.2 Experimental results for the configurations with R1
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Figure 4.18: (a)Transmission loss, absolute value of (b) T`, (c) R` and (d) absorption
coefficients when the closed send of all the R1 are on the bottom(R1_B) near the rigid
backing, and also with the consideration of porous materials layers.

Fig. 4.18 shows the experimental results when the closed ends of all the inclusions
R1 are on the bottom (R1_B) near the rigid backing, as illustrated in the inset of
Fig. 4.18(a). When there are only three layers of porous material embedded with inclu-
sions (R1_B), due to the reduction of the porous materials, its TL is the smallest at all
the frequency range of interest comparing to the other configurations. For f ą 2400Hz,
more porous material layers are near the waveguide, higher transmission loss (TL) is ob-
served, we have the following relation TL(R1_B+2P)ăTL(P+R1_B+P)ăTL(2P+R1_-
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B). It means that for the configurations with R1_B, the porous material plays the main
role on the transmission loss. For f ă 2400Hz, the three configurations have similar
transmission loss (transmission coefficient). For the reflection coefficient, big difference
is observed when f ą 1200Hz, see Fig. 4.18(c).

The TL of configuration P+R1_B+P is quite similar to the one of 5P, which means
that such configuration has even no enhancement on the sound attenuation. This can
also be verified and explained by the presence of the Bloch waves in the periodic waveg-
uide, as we introduced in Sec. 4.3. A maximum attenuation can be observed near the
frequency where the mode attenuations of the lower two modes have crossing (or avoided
crossing). For this 3D configuration, the Bloch wave computation is carried out by using
a finite element discretisation [11]. The 3D periodic waveguide is an infinite duct lined
with configuration P+R1_B+P (see the right one in Fig. 4.20(c)), it need to be noted
that the bottom of the liner is a rigid wall. The TLs of the lower two modes for this
periodic waveguide with length L “ 0.2m as a function of frequency are shown by “�”
in Fig. 4.20(a) [26] 1. At the frequency range we considered, there is no crossing between
the two TLs. The TL of the least attenuated Bloch wave increases with the frequency
slowly, leading to the slow increase of TL with frequency in a rigid duct partially lined
with P+R1_B+P.

However, for configuration 2P+R1_B, the transmission loss is improved for f ą
2400Hz comparing with 5P and P+R1_B+P. It might be because the frequency of the
crossing between the lower two mode attenuations are lower than the one for configuration
P+R1_B+P, due to the different inclusion positions in the porous material. The effect
of the inclusion position in the porous material on the sound attenuation has also be
investigated in the 2D waveguide, see Fig. 4.13 .

By the following expression,

Ab “ 1 ´
´

|T`|2 ` |R`|2
¯

,

the absorption coefficients for the different configurations are also considered, as shown in
Fig. 4.18(d). Biggest absorption is observed for R1_B+2P for frequencies 1500Hză f ă
3000Hz, it is due to the smallest reflection coefficient, see Fig. 4.18(c), we have the oppo-
site relation for absorption coefficient Ab(R1_B+2P)ąAb(P+R1_B+P)ąAb(2P+R1_-
B), comparing to the TL.

Figure 4.19 gives the results for the configurations in which the closed ends of all
the inclusions are on the top (R1_T) near the air filled duct. It is remarkable that there
is transmission loss peaks around f “ 2000Hz for configurations R1_T, R1_T+2P and
P+R1_T+P. It means that the periodic waveguide with inclusions (R1_T) interferes in
the porous lined duct at low frequencies, and results in the TL peak. From the TLs of
the Bloch waves in a periodic waveguide with configuration P+R1_T+P (see the left on

1. Thanks to Benoit Nenning for the 3D Bloch waves computation [26].
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Figure 4.19: (a)Transmission loss, absolute value of (b) T`, (c) R` and (d) absorption
coefficients when the inclusions are all closed on the top and open on the bottom(R1_T),
and also with the consideration of different porous materials layers.

in Fig. 4.20(c)), labelled by “�” in Fig. 4.20(b), a crossing of the TLs between the two
Bloch waves are observed. The most important is that the TL peak (solid line) of the
lined duct appears just near this crossing. This is exactly what we discussed before in
Sec.4.3 for a 2D configuration. The TL in a rigid duct partly lined with finite periodic
liner is dominated by the mode attenuation of the least attenuated mode in the periodic
waveguide. An attenuation peak is reached if there is a crossing for the mode attenuations
between this least attenuated and the 2nd mode.

Taking a look at the results for R1_T in Fig. 4.19, the open ends were closed by
the big rigid cavity when the measurements were performed. At the frequency range we
considered, no resonance effect from the inside of the inclusions appears, which should
be at higher frequency. Highest TL peak is observed for R1_T around 2000Hz, com-
paring with R1_T+2P and P+R1_T+P. It is due to the reduction of porous materials,
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Figure 4.20: Measured transmission loss (solid line) for configurations configurations (a)
P+R1_B+P and (b) P+R1_T+P. “�” labels the TLs [26] of the lower two Bloch waves
in a periodic waveguide(length L “ 0.2m) lined with the two 3D configurations. The
ACTIPOLE results are also given by “˛” in figure (b). (c) The 3D meshes for the two
3D periodic cell [26].

the amplitude of the TL peak is higher while the frequency band is narrower. Biggest
absorption coefficient is observed for R1_T around 2200Hz, see Fig. 4.19(d).

A different TL peak is observed around 1700Hz for configuration 2P+R1_T, which
is lower than 2000Hz for configurations R1_T+2P and P+R1_T+P. It is because the
inclusions are moved below the centre position, leading to a lower frequency at which
the crossing between two mode attenuations appears. The effects of the inclusion posi-
tion embedded in the porous material on the TL peak are also investigated, by moving
the inclusion above or below the centre position, the ACTIPOLE results are given in
Fig. 4.21(a). We can see that, comparing with the centre position, by moving the inclu-
sions away from the centre, the frequency of the TL peak becomes lower. The shift of
the frequency is obvious when the inclusions are moved below the centre position. The
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Figure 4.21: (a)The effects of the positions of the inclusions embedded in the porous
material (ACTIPOLE results) on the TL. “0 mm” indicates that the inclusions are em-
bedded in the centre, corresponding to P+R1_T+P. “1mm” or “-1mm” means that the
inclusions are moved of 1mm above or below the centre position. (b) The pressure field
distribution for three different positions of the inclusions at the frequencies of TL peaks.

same phenomenon is observed in Fig.4.13 for the 2D configuration. The amplitude of the
TL increases, due to the fact that the pressure localization in the inclusions get stronger
with the help of the rigid backing of the big cavity, which can be seen from Fig.4.21(b),
where the pressure fields in the waveguides with three different inclusions positions at
the frequencies of TL peaks are shown. The smaller the distance between the open ends
of the inclusions and the rigid backing, the stronger the pressure localization is. How-
ever, for the extreme situation where the open ends of the inclusions reach and attach to
the rigid backing, resulting in a closed cavity, no more sound can propagate inside the
inclusions, the pressure localization does not exists anymore. That is why the amplitude
of TL for 2P+R1_T is smaller.

Fig. 4.19(c) shows the reflection coefficient, due to the presence of the inclusions in
the porous materials, the reflection coefficients are smaller than for the porous materials
(5P). The absorption coefficient is given in Fig.4.19(d).

From the results in the Figs. 4.18 and 4.19, we can see that configuration 2P+R1_-
B can improve the TL at high frequency (2500Hz, 3500Hz), while 2P+R1_T at low
frequency (1000Hz, 2400Hz), comparing with 5P. These combined effects lead to the
global enhancement of the TL at (1000Hz, 3500Hz) for the configuration 2P+R1_A, the
results are shown in Fig.4.22(a). It takes the advantages of the closed bottom (2P+R1_-
B) and the closed top (2P+R1_T), the first peak of 2P+R1_A is due to the maximum
TL of 2P+R1_T near 2000Hz, and the TL enhancement for f ą 2500Hz is due to
the high TL of 2P+R1_B. On one hand, the TL of 2P+R1_A takes the benefits of
better TL of the two different arrangements at some frequencies, on the other hand,
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Figure 4.22: (a)Transmission loss, absolute value of (b) T`, (c) R`, and (d) absorption
coefficients when the inclusions are alternated, arrangement (R1_A), and also with the
consideration of porous materials layers.

the amplitude of TL decreases. Fig. 4.22 shows the results for the configurations where
the inclusions are arranged in an alternated way(R1_A). Different resonant frequencies
of TL are observed for different configurations. R1_A+2P and P+R1_A+P have the
resonant frequency around 2350Hz, while 2000Hz for R1_A and 2P+R1_A. This can
also be explained by the sensitivity of the inclusion position in the porous material on
the TL peak frequency. Between R1_A and 2P+R1_A, the addition of two layers of
porous material makes obvious improvement for the TL of 2P+R1_A.

4.4.3 Experimental results for the configurations with R2

The effect of the second type of inclusion R2 on the transmission loss is also con-
sidered. The experimental results for different configurations with R2 are shown in
Figs. 4.23, 4.24, and 4.25. For all the three figures, two transmission loss peaks are ob-
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Figure 4.23: (a)Transmission loss, absolute value of (b) T` and T´, (c) R` and R´, and
(d) absorption coefficients when the resonators 2 are embedded as R2_A in Fig.4.5(a),
and also with different porous material layer arrangements.

served for the configurations R2_A+2P, R2_0˝+2P, and R2_90˝+2P. To see the effect
of the orientation of the resonators on the frequency of the TL peaks, we compare the
results in the same figure, see Fig. 4.26. By modulating the orientation of the resonators,
the frequency of the first TL peak decreases slightly, while the amplitude of the TL be-
comes smaller. The frequency of the second TL peak does not change with varying the
orientation of R2.

Taking Fig. 4.23(a) as an example, the effect of the other two layers of porous
material on the sound propagation can also be seen, by arranging the porous material
in different positions (see Fig. 4.5(b)). Fig. 4.23(a) shows the TL of the three different
configurations R2_A+2P, P+R2_A+P and 2P+R2_A. The first TL peak is observed
for all the three configurations. With increasing the number of porous material layer on
the top near the waveguide, the frequency of the first TL peak decreases slightly, which
is the same phenomenon we discussed before for R1.
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Figure 4.24: The results for the configurations when the resonators 2 are embedded as
R2_0˝in Fig.4.5(a), and also with different porous material layer arrangements.

The second TL peak around 2800Hz is observed only for R2_A+2P. From the
Actipole results (see Fig. 4.15), the second TL peak for P+R2_A+P (P+R2_A+P here)
is at 3400Hz. It means that the porous material has the opposite effects on the second
TL peak, comparing with the first TL peak. Bigger the distance between the bottom of
the R2 and the rigid backing, lower the frequency of the second TL peak is. The second
TL peaks is closely related to the mode localization existing between the rigid bottoms
of R2 and the rigid backing, this can be observed in Fig. 4.17(b). The same effects have
also been discussed in Refs. [8, 9], which is explained by the presence of the “underlying”
periodic array formed by the inclusions images with respect to the rigid backing. The
appearances of the two TL peaks for R2_A+2P lead to a globally enhancement of TL
at the frequency range we considered.

Figs.4.23(b)(c) give the absolute values of the transmission and reflection coefficients
from both upstream and downstream. The inclusion distribution in the porous material
is symmetrical about y´axis, the results for upstream and downstream are supposed
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to be the same. Good agreement is observed for the results between the upstream and
downstream. Fig.4.23(d) shows the absorption coefficient as a function of the frequency
for the three different configurations. The highest absorption is observed for R2_A+2P.

The orientation of the R2 in the porous material is changed to see the effect. In
order to avoid the coupling effect near the slits between two inclusions, the inclusions all
orient on the same angle. As shown in Figs. 4.5(a), two other different inclusion distribu-
tions R2_0˝and R2_90˝are considered, the results are given in Fig. 4.24 and Fig. 4.25,
respectively. The same as we did before, the effect of the porous material is considered.
The same phenomenons as in Fig. 4.23(a) and (b) are observed in Fig. 4.24(a)(b) and
Fig. 4.25(a)(b). However, for R2_0˝, due to the different distribution of the inclusions
at the two interfaces x “ 0 and x “ L, the reflection coefficients from upstream and
downstream are not the same, which also makes the absorption coefficients different, see
Figs. 4.24(c)(d).
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Figure 4.25: The results for the configurations when the resonators 2 are embedded as
R2_90˝in Fig.4.5(a), and also with different porous material layer arrangements.
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Figure 4.26: TL for different configurations embedded with R2 with the two layers of
porous material are under the inclusions.

4.4.4 Comparison between numerical and experimental results

The test sample of P+R1_A+P is shown in Fig.4.4(b). The comparison of the
numerical and experimental results for P+R1_A+P and P+R2_A+P are performed,
see Figs. 4.27 and 4.28. There is a very good agreement between the numerical and the
experimental results, despite a general trend for ACTIPOLE to over-predict the peak of
attenuation.
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Figure 4.27: Comparisons between Actipole computation and the measurement results
for P+R1_A+P (a) transmission loss, and (b) absorption coefficients.



4.5. Conclusions 97

0 1000 2000 3000 4000
0

5

10

15

20

25

30

35

Frequency (Hz)

T
r
a

n
s

m
is

s
io

n
 l

o
s

s
e

s
 i

n
 d

B

 

 

Actipole

T
−

T
+

(a)

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

A
b
s
o
rp

ti
o
n
 c

o
e
ff
ic

ie
n
t

 

 

Downstream

Upstream

Actipole

(b)

Figure 4.28: Comparisons between Actipole computation and the measurement results
for P+R2_A+P (a) transmission loss, and (b) absorption coefficients.

4.5 Conclusions

An analysis of a 2D infinite periodic waveguide with inclusions embedded in porous
material is performed by using Floquet-Bloch theorem. A maximum sound attenuation
for this infinite periodic waveguide can be reached near the crossing (or avoided cross-
ing) of the mode attenuations between two lower Bloch waves. The avoided crossing is
related to the exceptional point. A coupling between acoustic mode and localized mode
is happened near this crossing. This is the second strategy we presented in this chapter.

The influence of the periodical array of 3D inclusions embedded in the porous ma-
terial on the transmission loss of an acoustic duct is studied numerically and experimen-
tally. Two different inclusion shapes are considered, an open cylinder and a Helmholtz
resonator. When the rigid inclusions are embedded in the porous material, the low
frequency behaviours of the transmission loss can be significantly changed, peaks are ob-
served in the mid-frequency range. The effects of the inclusion position on the TL peak
frequency are different for different inclusion shapes. For the configurations with open
cylinder, the frequency of the TL peak becomes lower when the open cylinders are moved
away from the centre. The peaks can also be explained by the crossing phenomenon, due
to the mode coupling of the Bloch waves. For the configurations with Helmholtz res-
onator, the frequency of the first TL peak increases with increasing the distance between
the inclusions and the rigid backing, while the frequency of second peak decreases. The
second TL peak is due to the localized mode observed between the rigid bottoms of the
resonator and the rigid backing.

Good agreements are observed between the experimental and numerical results,
which opens the way to the optimisation of metaporous material for better sound atten-
uation at low frequencies.
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Appendix

4.A Equivalent fluid model

The porous material we used here is a metallic foam. Rigid frame porous material is
modelled using the Johnson-Champoux-Allard model. The dynamic compressibilty κeq
and dynamic density ρeq are [27, 28]

ρeq “ ρaα8

Φ

ˆ

1 ` 1

jx

„

1 ` M

2
jx

˙

,

κeq “ γP0

Φ

¨

˝γ ´ pγ ´ 1q
˜

1 ` 1

jx1

„

1 ` M 1

2
jx1



1{2
¸´1

˛

‚

´1

,

with

x “ ´ωα8k0

νφ
,M “ 8k0α8

ΦΛ2
, x1 “ ´ωPr k1

0

νφ
, andM 1 “ 8k0

ΦΛ12
.

Here, Φ is the porosity, α8 is the Johnson Koplik & Dashen tortsity factor [29], k0 is
Darcy’s viscous permeability, Λ is the Johnson Koplik & Schwartz pore size parameter
[29], k1

0
(which can be approximated by k1

0
“ ΦΛ12{8 ) is the Lafarge et. al. thermal

permeability [27] and Λ1 is the Champoux & Allard pore size parameter [30]. Ther-
modynamic properties of the saturating air are given by: ρa the ambient density, γ is
the air specific heat ratio, P0 is the atmospheric pressure, Pr is the Prandtl number.
The relation between the resistivity σ and the kinematic viscosity ν can be written as
σ “ ρaν{k0.

4.B Eigenvalue problem in a porous lined duct

For a uniform infinite waveguide filled by air (with height ha) and porous materials
(with height hp), the eigenvalue problem can be solved by Finite Difference Method
(FDM). The principle of the FDM is that: Derivatives in the partial differential equation
are approximated by linear combinations of function values at the grid points. There
are Na “ ha{∆h and Np “ hp{∆h discrete points in the air and porous mediums,
respectively, we denote N2 “ Na `Np, where ∆h is the spacing between interior points,
and the first and last points are taken ∆h{2 from the the duct walls. The pressure values
at different discrete points are

Pi “ P pyiq, i “ 1, 2, . . . , N2,
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then the eigenfunction in y-direction is

P “ rPN2
, PN2´1, . . . , PNp`2, PNp`1

loooooooooooooooooomoooooooooooooooooon

Na

, PNp , PNp´1, . . . , P2, P1
looooooooooooomooooooooooooon

Np

sT .

The 2nd-order derivatives are approximated by

ˆB2P

By2
˙

i

” Pi`1 ´ 2Pi ` Pi´1

∆h2
. (4.19)

For the rigid walls, we can have P0 “ P1 and PN2`1 “ PN2
, then

ˆB2P

By2
˙

1

” P2 ´ P1

∆h2
and

ˆB2P

By2
˙

N2

” ´PN2
` PN2´1

∆h2
. (4.20)

Employing a second-order expansion for pressure function at y “ 0, and considering the
boundary conditions in Eq.(4.9), the eigenvalue problem in the waveguide with porous
materials can be expressed by
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Without resistance sheet, we have

Ga “ 2ρa

ρa ` ρeq
p ρeq
2ρ0

`2

3
q, Gb “ 2ρa

ρa ` ρeq
p´ ρeq

2ρ0
´2q, Gc “ 2ρa

ρa ` ρeq

3

2
, Gd “ 2ρa

ρa ` ρeq
p1
2

´2

3
q

and

Ma “ 2ρeq

ρa ` ρeq
p1
2

´2

3
q,Mb “ 2ρeq

ρa ` ρeq

3

2
,Mc “ 2ρeq

ρa ` ρeq
p´ ρa

2ρeq
´2q,Md “ 2ρeq

ρa ` ρeq
p ρa

2ρeq
`2

3
q.

4.C Scattering matrix of a unit cell
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Figure 4.29: Geometry of one elementary cell.

To obtain the scattering matrix S of one elementary cell, the cell is divided into 4
segments (see Fig. 4.29), according to Eq. (4.11), the pressures at different segments can
be written as

p1pxq “ X1E1pxqC`
1

` X1E1p´xqC´
1
, (4.22)

p2pxq “ X2E2pxqC`
2

` X2E2pD ´ xqC´
2
, (4.23)

p3pxq “ X3E3pxqC`
3

` X3E3pD ´ xqC´
3
, (4.24)

p4pxq “ X1E1px´DqC`
4

` X1E1pD ´ xqC´
4
, (4.25)

where 1, 2, 3, and 4 are used to label the 4 segments, and D is the width of the inclusion.
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The continuity conditions of the p and Bp{Bx at the interfaces x “ 0 and x “ D lead to

X1
1
pC`

1
`C´

1
q “ X2pC`

2
` E2DC

´
2

q,
X3
1
pC`

1
`C´

1
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3
pC`

3
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´
3

q,
X1
1
K1xpC`

1
´C´

1
q “ X2K2xpC`

2
´ E2DC

´
2

q,
X3
1
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1
´C´

1
q “ X2

3
K3xpC`

3
´ E3DC

´
3

q,
X2
1
K1xpC`

1
´C´

1
q “ 0,

0 “ X1
3
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3
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´
3

q,

and

X1
1
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4
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2
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2

q,
X3
1
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3
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q,
X3
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These continuity equations can be rewritten in a matrix form

M1

¨

˚

˚

˚

˚

˚

˚

˚

˝

C´
1

C`
4

C`
2

C´
2

C`
3
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3

˛

‹

‹

‹

‹

‹

‹

‹

‚

“ M2

ˆ

C`
1

C´
4

˙

, (4.26)

where M1 and M2 are the matrices used to relate the amplitudes at different segments.
The scattering matrix (denoted as SD) between x “ 0 and D, which relates incoming
(C`

1
and C´

4
) and outgoing (C´

1
and C`

4
) modes, can be truncated from matrix M´1

1
M2

by
SD “ M´1

1
M2p1 : 2N2, 1 : 2N2q.

For an porous lined duct with length l2, the scattering matrix is

Sl2 “
„

0 E1pl2q
E1pl2q 0



. (4.27)

With the addition of two uniform duct of finite length l2 on both sides, the scattering
matrix S of a elementary cell in Figs. 4.6 and 4.29 is obtained by

S “ Sl2 b SD b Sl2 . (4.28)
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Following Furnell and Bies [31] the operation b can be defined by

Sp1`2q “ S1 b S2 “
„

Rp1`2q tp1`2q

Tp1`2q rp1`2q



with
Tp1`2q “ T2ET1, t

p1`2q “ t1Ft2,

Rp1`2q “ R1 ` t1FR2T1, r
p1`2q “ r2 ` T2Er1t2,

E “ pI ´ r1R2q´1,F “ pI ´ R2r1q´1,

where I is the identity matrix, and pT1, t1,R1, r1q and pT2, t2,R2, r2q are the elements of
matrices S1 and S2, respectively.
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Chapter 5

Acoustical behavior of purely

reacting liners

This chapter 1 investigates the acoustical behaviors of a rectangular duct lined with
a purely locally-reacting liner in both absence and presence of flow. Multi-Model Method
is proposed to solve the problem in the absence and presence of uniform flow. The results
exhibit an unusual acoustical behavior: for a certain range of frequencies, no wave can
propagate against the flow. The effect of shear flow is investigated by using Chebyshev
Spectral Method, which provides detailed information near the walls. A negative group
velocity is found in a certain range of frequencies and a zero group velocity is found at
two critical frequencies. It is demonstrated that the sound can be slowed down and even
stopped.

5.1 Introduction

Nowadays, acoustical liner are widely used to reduce aircraft engine noise emission
by damping the acoustic modes propagating within the inlet or the exhaust ducts. Typi-
cally, the lining is usually assumed to be locally-reacting liner. Commonly, the interaction
of acoustics with the lining is characterized by the impedance of the liner, which then
is used as the boundary condition to construct the eigenvalue problem. In the absence
of flow, the problem is straightforward. The acoustic transmission coefficient in a rigid
duct partially lined with the locally-reacting liner has a minimum value at the resonant
frequency of the liner impedance (when the depth of the liner is p2n ` 1qλ{4 with n a
integer). In presence of the flow, an instability can appear.

1. Part of this work is presented and published in 19th AIAA/CEAS Aeroacoustics Conference (AIAA
2013-2077): Y. Aurégan, L. Xiong, and W. Bi, “Acoustical behaviour of purely reacting liner”.
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The instability was demonstrated experimentally by Aurégan et al. [1] [2]: There
is an increase in the transmission coefficient at the resonant frequency, and the authors
explained that this behavior was caused by the hydrodynamic instability over the liner.
Rienstra [3] analyzed the behavior of the acoustic modes of a lined duct with and without
uniform mean flow, it is shown that there exists three types of modes: genuine acoustic
modes, acoustic surface waves and hydrodynamic surface waves. Subsequently, Bramb-
ley and Peake [4] further investigated the behavior of the surface modes. It’s well known
that when the flow exists, the viscosity effects cannot be omitted especially near the
walls, and so the boundary layer has to be considered. The Ingard-Myers [5] [6] bound-
ary condition, which is derivated under the assumption that the partial displacement is
continuous across the vorticity sheet [6], is commonly used for the analytical prediction
of sound propagation in ducts with flow. But then, Aurégan et al. [7] pointed out that
depending on the ratio of the acoustic and stationary boundary layer thicknesses, the
kinematic wall condition changes gradually from continuity of normal acoustic displace-
ment to continuity of normal acoustic mass velocity. Renou [8] performed an experimental
investigation, the results show that the Ingard-Myers boundary condition fails to predict
with accuracy the acoustic behavior in a lined duct with flow.

For the past few years, the investigators have done lots of work about the modes
existing in the lined duct in the presence of flow, especially the surface modes, and the
instability problem caused by the coupling of the flow and the lining. In the present
work, we focus our attention on the propagation problem in a two-dimensional acoustic
partially lined duct with presence of flow, the liner is purely reactive. For a certain range
of frequencies and Mach numbers, no wave can propagate against the flow. In Sec. 5.2,
the case without flow is first reviewed, in the vicinity of the resonant frequency, a zero in
the transmission coefficient is observed. In Sec. 5.3, in the presence of uniform flow, the
modes in the liner and the transmission coefficient in two directions are investigated. In
Sec. 5.4, the modes in the rigid duct with shear flow are first investigated. Attention is
focused on the modes in the lined duct with shear flow and the transmission behaviour.

5.2 Propagation in the reacting lined ducts without flow

5.2.1 Modes in the lined ducts without flow

Statement of the problem

First, we consider the modes in an infinite lined duct without flow. For the infinite
duct, the upper wall is rigid and the lower wall is lined with a locally-reacting liner, see
Fig. 5.1. The acoustic pressure expression in the 2D coordinate can be written as

ppx, yq “ ψpyqep´jωt`jkxq, (5.1)
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Figure 5.1: Scheme of the infinite reacting lined duct. Z is the impedance of the liner
with B the thickness.

and ψpyq satisfies the Helmholtz equation

d2ψpyq
dy2

` β2ψpyq “ 0, (5.2)

where β2 “ ω2 ´ k2 is the eigenvalues of the transverse modes in the lined duct. It
is noted that the equations are written in a dimensionless form with the pressure p

normalized by ρc2
0
, x and y by width H, t by H{c0, where ρ is the air density and c0 is

the sound velocity. Then ω “ 2πf
c0
H is the dimensionless frequency or Helmholtz number.

Time dependence is expp´jωtq, and will be omitted in the following.

The solution of Eq. (5.2) is given by

ψpyq “ A1 cospβyq `B1 sinpβyq, (5.3)

where A1 and B1 can be computed from boundary conditions. The boundary conditions
have to be applied to solve the eigenvalue problem. For the rigid wall, y “ 1, the acoustic
particle velocity normal to the wall vanishes, i.e.

dψ

dy

ˇ

ˇ

ˇ

ˇ

y“1

“ 0. (5.4)

For the lined wall, y “ 0, the admittance boundary condition

dψ

dy

ˇ

ˇ

ˇ

ˇ

y“0

“ ´jω Y pωqp|y“0
(5.5)

has to be used, where Y is the normalized admittance of the lined wall. It can be
obtained by Y pωq “ 1{Zpωq. Since purely reacting liner is considered here, we can derive
the expression of the impedance analytically (see Appendix 5.A). With the consideration
of the dissipation, the impedance of the liner in Fig. 5.1 can be approximately by

Zpωq “ R ` j cotpωbq, (5.6)
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where b “ B{H is the normalized thickness of the liner, and R is the normalized resis-
tance. In the following, we assume R “ 0, which leads to

Y pωq “ ´j tanpωbq. (5.7)

Substituting the pressure expression, Eq. (5.3), into the boundary conditions, Eqs. (5.4)
and (5.5), results in B1 “ 0 and the eigenvalue equation

β tanβ “ ´ω ¨ tanpωbq. (5.8)

In the limit of low frequency (ω ! 1 and β ! 1), from Eq.(5.8), we can have β2 “
´bω2 and ψpyq “ A coshpβyq, and then the wavenumber in x-direction is approximated
by k{ω “ ˘p1 ` bq1{2. The reduced phase velocity cφ “ ω{k is then smaller than 1,
which demonstrates that the phase velocity cφ is smaller than the sound velocity c0.
The propagative waves are kind of waves which propagate in x-direction along with a
exponentially decrease away from the lined wall.

Multimodal Method

In order to calculate the eigenvalues and eigenfunctions of the transverse modes
in the lined duct more quickly and efficiently, in the present paper, the Multi-Model
Method [9] is proposed to solve the dispersion relation and to obtain the transmission
coefficient. For a rigid rectangular duct, the eigenvalues and the eigenfunctions are well
known, namely,

φnpyq “ Λncospαnyq, Λn “
"

1 n “ 0?
2 n ‰ 0

, (5.9)

where αn “ nπ, n “ 0, 1, 2, 3 ¨ ¨ ¨ .

The eigenfunction ψpyq in the lined duct is projected on the complete basis of
functions φnpyq by

ψpyq “
N
ÿ

n“0

Anφnpyq “ ~ΦT ~A, (5.10)

where ~A and ~Φ are column vectors, their elements are the coefficients An of the basis
functions and the basis function φnpyq, respectively. N is the truncation number. The
superscript “T” indicates the transpose.

Multiplying by ~Φpyq on both sides of Eq.(5.2), and integrating over y coordinate,
wa can have

ż

1

0

~Φpyqpω2 ´ k2qψpyqdy `
ż

1

0

~ΦpyqB2ψpyq
By2 dy “ 0. (5.11)
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The rigid eigenfunction φmpyq is orthogonal

ż

1

0

φmpyqφnpyqdy “
"

1 m “ n

0 m ‰ n
.

With the help of the boundary conditions Eqs.(5.4)(5.5) and Eq.(5.10), the second inte-
gral term in Eq.(5.11) can be solved by

ş

1

0
~Φ

B2ψpyq
By2

dy “ ~Φ
Bψpyq

By

ˇ

ˇ

ˇ

1

0

´
ş

B~Φ
By

Bψpyq
By dy

“ 0 ´ ~Φp0q Bpp0q
By ´

ˆ

B~Φpyq
By ψpyq

ˇ

ˇ

ˇ

1

0

´
ş B2~Φpyq

By2
ψpyqdy

˙

“ jωY ~Φp0qpp0q ´ ~α2
ş

~Φpyqψpyqdy
“ jωY N1

~A´ N2
~A

, (5.12)

where I is the identity matrix, ~α is a column vector with elements αn, and the elements
of matrix N1 can be obtained by

N1m,n “ φmp0qφnp0q.

The matrices N1 and N2 are written as

N1 “

¨

˚

˚

˚

˝

1
?
2

?
2 ¨ ¨ ¨?

2 2 2 ¨ ¨ ¨?
2 2 2 ¨ ¨ ¨
... ¨ ¨ ¨

˛

‹

‹

‹

‚

, N2 “

¨

˚

˝

α2
0

0 ¨ ¨ ¨
0 α2

1

...
. . .

˛

‹

‚
.

Equation (5.11) can be reformulated as a matrix eigenvalue problem

k2I ~A “
“

ω2I ` ω tanpωbqN1 ´ N2

‰

~A. (5.13)

By computing the matrix generalized eigenvalue problem of Eq.(5.13), for a given ω, we
can obtain the eigenvalues λ and the corresponding eigenvectors X. The axial wavenum-
bers are calculated by k2 “ λ. A purely reacting liner is considered here, so the wavenum-
ber k is either purely real or purely imaginary values.

The eigenvalues β and eigenfunctions ψpyq, Eq. (5.10), in the transverse direction
can be obtained by solving the following eigenproblem

β2I ~A “ rN2 ´ jωY N1s ~A. (5.14)

In Fig. 5.2, we plot the motions of the eigenvalues β as a function of frequency ω with
b “ B{H “ 50{15 m. The dashed lines in Fig. 5.2(a) label the eigenvalues of transverse
modes in rigid duct, i.e. αn “ nπ. Due to the purely imaginary value of the admittance
Y , the eigenvalues β are purely real or imaginary values. The eigenvalue of the plane
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Figure 5.2: Trajectories of the (a) real parts and (b) imaginary parts of β as a function
of frequency ω with b “ B{H “ 50{15 m.

mode in the rigid duct, α0 “ 0, turns to be purely imaginary value for 0 ă ω ă ωR, where
ωR is the quarter-wavelength resonant frequency of the liner, i.e. ωRb “ π{2. From the
eigenfunction profile (solid line in Fig. 5.3(a)) of the mode 0, the amplitude decreases
away from the lined wall, y “ 0. If the frequency ω is closer to ωR, the amplitude of the
mode 0 decreases faster, the wave becomes more and more concentrated near the lined
wall, so-called surface mode [3]. This is also illustrated in Fig. 5.6 where the pressure
field is computed. The profiles of the other three modes are also shown in the same
Fig. 5.3(a). They can be classified by the number of the pressure node in transverse
direction.

By Eq. (5.13), we also plot the dispersion curves of the first mode in x-direction,
see Fig. 5.3(b), the real and imaginary parts of the wavenumber k as a function of ω
are shown. Purely real values of k indicate the propagative modes. ℜepkq ą 0 indicates
that the mode propagates in `x-direction. It shows that there exists a frequency band
gap, in which no mode can propagate. In fact, at this frequency range, the values
of k become purely imaginary (see the bottom figure in Fig. 5.3(b)), they become the
evanescent modes in x direction. The band gap starts with the resonant frequency ωR,
quarter-wavelength frequency of the locally reacting liner, at which the wavenumber
becomes infinite. Since k “ 2π{λx, then the wavelength in x direction, λx, tends to be
zero. These can also be explained by the expression of the admittance, Eq. (5.7), when
0 ă ωb ă π{2, ℑmpY q ă 0; when ωb “ π{2, ℑmpY q Ñ 8; and when π{2 ă ωb ă π,
ℑmpY q ą 0.
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Figure 5.3: (a) The eigenfunction profiles of the first 4 transverse modes in the lined duct
with ω “ 0.3 and b “ B{H “ 50{15 m, theirs eigenvalues are labelled by ‘ˆ’ in Fig. 5.2.
(b) The real(upper) and imaginary(bottom) parts of the eigenvalue for the lowest mode
in x-direction as a function of frequency ω.

5.2.2 Scattering matrix

For the sound propagation problem in the waveguide partially lined with a locally
reacting liner, the scattering matrix S needs to be constructed to calculate the transmis-
sion coefficient. By using the previously obtained wavenumbers k and the eigenvectors
X, the similar method as in Ref. [9] was used here to calculate the transmission coef-
ficients and the pressure field. The configuration is shown in Fig. 5.4, the amplitudes of

0

I II III

L

A1

B1

A2

B2 B3

A3

-B

Figure 5.4: The configuration for constructing the scattering matrix, L is the length of
the liner, normalized by duct width H, ~Ai, ~Bipi “ 1, 2, 3q are all vectors, indicating the
pressure amplitude of each mode in `x-direction and ´x-direction, respectively. The
total pressure consists of the `x and ´x-direction sound pressures.

the incoming waves, A1 and B3, are linked to the amplitudes of outgoing waves, A3 and
B1, by a scattering matrix

˜

~A3

~B1

¸

“ S

˜

~A1

~B3

¸

, where S “
„

T r

R t



. (5.15)
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Being aware of the eigenvalues and the eigenvectors in Eq. (5.13), the pressure in the
lined part can be written as a sum of the transverse modes in the lined duct,

p2px, yq “ ~ΦT

”

XD`pxq ~A2 ` XD´pxq ~B2

ı

, (5.16)

where D`pxq and D´pxq are diagonal matrices with elements ejknx and e´jknpx´Lq, re-
spectively, and X is a matrix with the column vectors are eigenvectors X. For simplicity,
we assume that there are multimodes incident from the left side of the waveguide, i.e.
B3 “ 0. The sound pressures in regions I and III can be written as

p1px, yq “ ~ΦT

”

DRpxq ~A1 ` DRp´xq ~B1

ı

(5.17)

and
p3px, yq “ ~ΦT

”

DRpx´ Lq ~A3

ı

, (5.18)

respectively, where DRpxq is diagonal matrix with elements ejk
R
n x, and kRn “

a

pω2 ´ α2
nq

are the axial wavenumbers in the rigid wall.
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Figure 5.5: (a)Transmission coefficient of the plane mode as a function of (a) ω and (b)
the ratio of the liner length L to the wavelength with B “ 50mm, H “ 15mm, L “ 200mm
and R “ 0. Figure (b) is corresponding to the range 0 ă ω ă 0.4 in figure (a).

As given in Appendix 5.B , we can have the transmission coefficient by

T “ t “ pFDL ´ GF´1GDLqpF ´ GDLF
´1GDLq´1, (5.19)

where DL “ D`pLq “ D´p0q. Only plane wave is considered here, so the transmission
coefficient is Tp1, 1q. The transmission coefficient as a function of frequency with B “
50mm, H “ 15mm, L “ 200mm is shown in Fig. 5.5(a). It shows that there exists a
specific frequency range, at which no wave can transmit through the lined part, the
transmission coefficient is zero, it can also be revealed in the bottom figure of Fig. 5.3(b).
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At the frequency around ω “ 0.7, the transmission coefficient starts to increase, and
from Fig. 5.3(b) we can find that the mode appears again at that frequency. To see the
effect of the liner length on the transmission behavior at low frequencies, we also plot the
transmission coefficient as a function of the ratio of the length L to the wavelength in x
direction, the results are shown in Fig. 5.5(b). We demonstrate that when the length L

equals to the integer multiple of the half wavelength, the transmission coefficient achieves
to maximum; When the length equals to the integer multiple of the quarter wavelength,
the coefficient achieves to minimum. From Fig. 5.3(b), around the resonant frequency
ωR “ 0.471, the wavenumber k in x direction tends to be infinite, resulting in the
wavelength λx “ 2π

k
tends to be zero, since λx “ c

fx
, the oscillate frequency fx tends

infinite, as shown in Fig. 5.5(a).

Figure 5.6: Pressure field distribution in the waveguide at ω “ 0.412 with B “
50mm, H “ 15mm, and L “ 200mm

From the pressure filed distribution in the waveguide (see Fig. 5.6), we can find that
the pressure field is concentrated on the liner, only surface wave is found, provided that
the frequency is low enough that only plane wave exists in the rigid parts. Because of
the rigid-lined interface, not all the sound can propagate through the lined part, some
sound waves is reflected.

Thus in a lined duct with a purely reacting impedance, the sound propagates slower
than in a rigid duct. It can be imagined that, if the sound is slow enough, a counter
flow can stop the sound even if the Mach number is smaller than 1. That is what we are
going to investigate in the next sections.

5.3 Propagation in the lined ducts with uniform flow

5.3.1 Basic equations

The problem considered in the present section is the sound propagation in an acous-
tic lined rectangular duct with the presence of fluid flow. To reduce the complexity of
the problem, the geometry will be confined to two dimensions, and the mean shear flow
will be in the x-direction and assumed to be only a function of y, as shown in Fig. 5.7.
The upper wall py “ Hq is rigid. The lower wall is treated with a purely locally liner for
0 ă x ă L and rigid elsewhere. Neglecting the viscosity, considering the isotropic fluid,
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Figure 5.7: Geometry of the problem

the governing equations are written as follows:

ρ ˚ D~v˚
Dt

“ ´∇~p˚, 1

ρ˚
Dρ˚
Dt

“ ´~∇ ¨ ~v˚, c2
Dρ˚
Dt

“ Dp˚
Dt

, (5.20)

where D
Dt

“ B
Bt `~v ¨ ~∇, ρ˚ is the mass density, p˚ is the pressure, ~v˚ is the velocity vector

and c is the speed of sound. The acoustic equations are obtained by considering small
perturbations on a mean state ρ0, p0, and so that

ρ˚ “ ρ0 ` ρ, p˚ “ p0 ` p,

and ~v˚ “ Upyq~ex ` u~ex ` v~ey, with ~ex, ~ey unit vectors in x- and y-direction, and Upyq
the shear flow profile.

At first order in the perturbation, the acoustics equations are

Bu
Bt ` U

Bu
Bx ` v

BU
By “ ´ 1

ρ0

Bp
Bx, (5.21)

Bv
Bt ` U

Bv
Bx “ ´ 1

ρ0

Bp
By , (5.22)

1

ρ0c
2
0

ˆ B
Bt ` U

B
Bx

˙

p “ ´
ˆBu

Bx ` Bv
By

˙

. (5.23)

The quantities are normalised by p Ñ p{c2
0
, u, v Ñ u{c0, v{c0, Mach number Mpyq “

Upyq{c0, t Ñ t
H{c0

, and ω “ 2πf
c0
H. We can obtain the dimensionless acoustic equations

D2p

Dt2
´ p B2p

Bx2 ` B2p

By2 q “ 2
dM

dy

Bv
Bx, (5.24)

Dv

Dt
“ ´Bp

By , (5.25)
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with
D

Dt
“
ˆ B

Bt `M
B

Bx

˙

. (5.26)

If the pressure is written in the form of ppx, yq “ Fe´jωt`jkx, then we can obtain the
ordinary differential equation

d2F

dy2
` 2kM 1

ω ´Mk

dF

dy
`
“

pω ´Mkq2 ´ k2
‰

F “ 0, (5.27)

where prime “ 1 ” refers to the first derivative with respect to y. It is the well known
Pridmore-Brown equation [10].

Concerning the boundary condition, for the lined wall in the presence of flow, we
have to be careful, the effect of the boundary layer has to be considered. In the present
work, the classical Ingard-Myers [5] [6] [8] boundary condition

Bp
By

ˇ

ˇ

ˇ

ˇ

y“0

“ D2

Dt2

ˆ

Y

´jωp
˙ˇ

ˇ

ˇ

ˇ

y“0

(5.28)

is used (see Appendix 5.C)

5.3.2 Uniform flow

With uniform flow, M is independent of y, then the governing equation Eq.(5.24)
becomes more simple, the right term of the equal vanishes. The pressure can be projected
on the complete basis of functions φnpyq which are transverse modes in the rigid duct.
Thus, ppx, yq can be written:

ppx, yq “
8
ÿ

n“0

pnpxqφnpyq “ ~ΦT ~P ,

where ~P and ~Φ are column vectors, with P the mode coefficients, and Φ the basis
functions φnpyq, which are given by Eq. (5.9).

Applying the same procedures as we did before (see Eqs. (5.11)(5.12)): substitut-
ing the pressure expression into the governing equation, Eq. (5.24), multiplying the re-
sulting equation by ~Φ, integrating over the y axis, and using the boundary conditions,
Eqs. (5.4)(5.28), we have

D2

Dt2

ˆ

~P ` Y pxq
´jω N1

~P

˙

´ B2 ~P

Bx2 ` N2
~P “ 0, (5.29)
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where N1,N2 are shown as before in Sec. 5.2.1. Equation (5.29) can be written as

M1

d2 ~P

dx2
“ M2

d~P

dx
` M3

~P ,

the above equation results in

d2 ~P

dx2
“ M´1

1
M2

d~P

dx
` M´1

1
M3

~P , (5.30)

where M1 “ I´M2
0

´

I ` Y
´jωN1

¯

, M2 “ ´2jωM0

´

I ` Y
´jωN1

¯

, M3 “
”

N2 ´ ω2pI ` Y
´jωN1q

ı

.

We define ~Q “ d~P
dx

, then Eq. (5.30) can be written in a matrix form of

d

dx

˜

~P
~Q

¸

“
ˆ

0 I

M´1

1
M3 M´1

1
M2

˙

˜

~P
~Q

¸

, (5.31)

where 0 and I are the zero and identity matrices.
By computing the eigenvalues λn and eigenvectors Xn of the matrix in Eq. (5.31),

the wave numbers k of x-direction in the liner can be obtained by k “ ´jλm. Those wave
numbers k and the eigenvectors are split into two sets: k` and X` when ℑmpkq ą 0; k´

and X´ when ℑmpkq ă 0.
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Results without flow
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Figure 5.8: Variation of the propagative wave numbers k as a function of the Helmholtz
number ω for b “ 10{3 and M0 “ 0.2.

The propagative waves are of interest. The wave numbers with real values are only
considered. They are divided into two sets: k` and k´, the signs “`” and “´” indicate
the propagation direction. The wavenumbers of the propagative modes as a function of
ω are given in Fig. 5.8. It can be seen that the two positive real parts of Mode 1 and
Mode 3 merge at the resonant frequency of the liner pω “ ωRq. When they merge, the
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wave number is equal to ω{M . The two negative solutions, merge at a frequency ωM
which is lower than ωR.

The Mode 1 and the Mode 2 are close to the 2 propagative waves without flow(solid
lines). At low frequencies, their wavenumbers can be found by k{ω “ ˘

?
1 ` b{p1 ¯?

1 ` bMq which converges to the no-flow solution when M Ñ 0. Thus they can be seen
as “acoustical modes”. The other two modes (3 and 4) exist only with flow. The Mode 4
is a mode with a negative phase velocity but with a positive group velocity (cg “ dω{dk
is linked to the slope of the curves in Fig. 5.8). Thus this mode propagates in the positive
direction (direction of the flow). At low frequencies, the phase and the group velocities of
the mode 3 are positive and this mode also propagates in the positive direction. Aurégan
and Pagneux [11] demonstrate that in this frequency range, this mode is a Negative
Energy Wave.

It can be noticed that when M ą 1{
?
1 ` b, the Mode 2 and 4 do not exist and

in this case, only two waves going in the positive direction exist at low frequencies. It
means that no wave can propagate against the flow even at very low frequencies.

The singular change between the case of a rigid duct (2 propagative waves) and the
lined part of a duct (4 propagative waves) for low Mach number and low frequencies, can
lead to mathematical problem when we try to compute the scattering of a finite length
liner connected to two rigid ducts in the uniform flow case. To avoid these potential
problems, we will study in the next section a shear flow with a vanishing velocity at
the lined wall to avoid the use of the Ingard-Myers condition which is suspected to be
responsible of this singular behavior.

5.4 Propagation in the lined ducts with shear flow

With the presence of shear flow, the governing equations are Eqs. (5.24)(5.25). For
the sake of simplification, the flow profile we considered here is symmetrical about the
central line of the duct, it can be expressed as

Mpyq “ M0

2n` 1

2n

`

1 ´ y2n
˘

, (5.32)

where the parameter n is used to regulate the gradient of the flow, the bigger n is, the
closer the shear flow is to the uniform flow. The original point of the coordinate is located
at the central line of the duct. All the length quantities in the geometry, see Fig. 5.7,
are all normalized by half of the channel width, i.e. H{2, such that the dimentionlessly
analytical width interval of the duct is r´1, 1s. An example of the flow profiles is given
in Fig. 5.9 under different values of n with M0 “ 0.2.

The flow velocities on the walls are zero, resulting in the boundary condition on the
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Figure 5.9: The profiles of the shear flow under different values of n in Eq. (5.32), with
M0 “ 0.2.

lined wall
Bp
By

ˇ

ˇ

ˇ

ˇ

y“´1

“ ´jωY p|y“´1
. (5.33)

Furthermore, harmonic waves in the x-direction are assumed, giving the following com-
plex forms,

p “ P pyqejp´ωt`kxq,

v “ V pyqejp´ωt`kxq,

q “ Qpyqejp´ωt`kxq, (5.34)

with

q “ ´j
Bp
Bx, (5.35)

where k is the dimensionless axial wavenumber.

The spectral method [12, 13] is proposed to solve the problem. Therefore, dis-
cretization in the y-coordinate is employed by the Chebyshev collocation points, the
MATLAB program chebdif.m [13] generates these points for the interval r´1, 1s. The
interpolation points on this interval are

yi “ cos

ˆpi´ 1qπ
N ´ 1

˙

, i “ 1, 2, ....N, (5.36)

where N is the number of the discrete points in y-direction. We can note that these
points in this interval are not evenly spaced but are clustered at the ends of the interval,
which provides more detailed information near the wall.

Chebyshev points used to discretize an unknown function fpyq interpolated at N
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nodes fpykq can be approximated by using interpolant polynomials φkpyq:

fpxq «
N`1
ÿ

k“1

fpxkqφkpyq. (5.37)

Thus, taking lth derivative of fpyq and evaluating the result at the nodes yi, results in

fpyiqplq «
N
ÿ

k“1

dl

dyl
pφkpyiqqfpykq. (5.38)

The derivative operator may be represented by a matrix Dplq, the differentiation matrix,
with entries

D
plq
i,k “ dl

dyl
pφkpyiqq. (5.39)

Finally, the numerical differentiation can be written as the matrix-vector product

fplq “ Dplqf. (5.40)

Whereas differentiation matrices provided by Weideman and Reddy [13] are used
to approximate the differential operator. Then Eqs. (5.24)(5.25)(5.35) can be written in
the form of matrix

k

¨

˝

I ´ M2pyq ´2jM
1pyq 0

0 jMpyq 0

0 0 I

˛

‚

¨

˚

˝

~Q
~V
~P

˛

‹

‚
“

¨

˝

´2ωMpyq 0 ω2I ` D2

0 jωI ´D1

I 0 0

˛

‚

¨

˚

˝

~Q
~V
~P

˛

‹

‚
,

(5.41)
where I is the identity matrix. D1 and D2 are differential matrices giving the first re-
spectively, second-order differential operator with respect to y, which can be obtained
by Chebyshev polynomials interpolation [13]. ~Q, ~V , ~P are the column vectors whose
elements are Qpyiq, V pyiq, and P pyiq, respectively.

In order to construct the eigenvalue problem, the boundary conditions are intro-
duced in the matrix (5.41). The 1th, pN ` 1qth, p2N ` 1qth rows of Eq. (5.41) indicate
the rigid wall, while Nth, p2Nqth, p3Nqth rows indicate the lined wall. The 1th and Nth
rows are used to introduce rigid wall condition and lined wall condition, respectively.

5.4.1 Modes in the rigid duct with shear flow

For the rigid wall with Y “ 0, the boundary conditions is

D1P|y“1,´1
“ 0. (5.42)
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By the combinations of the boundary condition and the matrix Eq. (5.41), we can obtain
eigenvalues k and eigenvectors ~Q, ~V , ~P in which each column corresponds to each k. In
total, 3 types of modes are found, which can generally be divided in acoustic modes
propagating (or decaying) in the `x-direction, acoustic modes propagating (or decaying)
in the ´x-direction, and hydrodynamic modes in the direction of the mean flow. The
effects of Mach number on the modes are shown in Figs. 5.10. It can be seen that the
hydrodynamic modes depend significantly on the Mach number.
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Figure 5.10: Axial wave numbers distributions in the complex k plane for different mach
number M0 with ω “ 0.24 and n “ 30. The duct is rigid.

From Eq. (5.27), the hydrodynamic modes verifies ω´ kM “ 0. As M P r0,Mmaxs,
it means that k P rω{Mmax,8s and that the hydrodynamic modes form a continuum of
mode that is discretized by taking a finite number of point N in the section.

5.4.2 Modes in the lined duct with shear flow

To study the modes in the lined duct with shear flow, the boundary conditions are
applied to calculate the wave numbers in the lined duct. In vectorial form, the boundary
conditions can be expressed as

D1
~P
ˇ

ˇ

ˇ

y“1

“ 0, and pD1 ` iωY Iq~P
ˇ

ˇ

ˇ

y“´1

“ 0, (5.43)

where the admittance of the liner here is Y “ ´j tanpωbq.
Performing a similar procedures as done for rigid duct with shear flow, the eigen-

values in the lined duct are shown below (Fig. 5.11). From the comparisons of Fig. 5.11
with Fig. 5.10, the first propagative modes in `x and ´x-direction dependent signifi-
cantly on the Mach number, this is because there exists the coupling between the flow
and the liner.
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Figure 5.11: Axial wave numbers distributions in the complex k{ω plane for different
mach number M0 with ω “ 0.24, n “ 30. The duct is lined.

5.4.3 The effect of the boundary layer thickness

The Mode 1 for which 0 ă k ă ω{M0 is practically unchanged by the presence and
the shape of the boundary layer. A big difference between the uniform and shear flow
cases is the presence of a continuum of hydrodynamic modes. k “ ω{M is a singular
solution of Eq. (5.27) for all M between 0 and M0. Thus all k ą ω{M0 are solutions of
the hydrodynamic modes, and Mode 3 is now embedded in the continuum.
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Figure 5.12: Wave number as a function of ω for 3 different values of n with b “ 10{3 and
M0 “ 2. The black “˛” indicates n “ 10, the blue “˝” n “ 30, and the red “˚” n “ 100.
For comparison, the results with uniform flow are given by “ ¨” The flow profiles for the
three corresponding n are shown in Fig. 5.9.
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The behavior of the propagative waves against the shear flow is further investigated.
To have a comparison with Fig. 5.8, the wave number as a function of ω for 3 different
values of n is plotted in Fig. 5.12. The waves propagating against the flow are very
sensitive to the shape of the boundary layer. The number of propagative modes is
changed by the effect of the boundary layer. This effect has been already noted by
Brambley [14]. For the shear flow with n “ 30, there is only one propagative mode for
0 ă ω ă ω1. This wave is close to the Mode 2 in Fig. 5.8 with uniform flow(also shown
by “¨” in Fig. 5.12). There are three propagative waves exist for ω1 ă ω ă ω2. Two of
them are close to the mode 2 and 4 in the uniform case and another wave appears with
large value of k. For ω2 ă ω ă ωR, there is only one wave with large ω.

By the definition of the group velocity cg “ Bω
Bk , we can find the group velocities

at the two critical frequencies, ω1 and ω2, are zero. The negative group velocity is also
found for n “ 30 and 100. As n increases, the shear flow profile tends to uniform flow,
and the dispersion curve (the “˚” in Fig. 5.12) becomes similar with the uniform flow
case (the “¨” in Fig. 5.12). When the boundary layer thickness increases (n decreases),
the wave for which the group and the phase velocities are opposite in sign (Mode 4) will
disappear (see the case n “ 10 in Fig. 5.12). In this case, the points with a zero group
velocity also disappear.

−15 −10 −5 0
−4

−2

0

2

4

ℜe(k)

ℑ
m
(k

)

(a)

2a

1a

1b

2b 3a

3b

1

−15 −10 −5 0
−4

−2

0

2

4

ℜe(k)

ℑ
m
(k

)

(b)

Figure 5.13: Trajectories of the waves propagate in ´x direction as a function of fre-
quency, 0.02 ă ω ă 0.3. The Ñ indicates the moving direction of the waves, with “�”
the starting point. The numbers “1”, “2”, and “3” indicate their emerging order. With
the flow parameter n “ 30 and M0 “ 0.2. Chebyshev points N “ 100. (a) Without
dissipation, (b)with dissipation, Re “ 0.01.

Varying the frequency ω, trajectories of wave number for the wave in ´x-direction
are plotted in complex k-plane, as shown in Fig. 5.13. By observing the movements,
at low frequencies, one propagative mode exists (indicated by 1). With increasing the
frequency, two evanescent modes (1a and 1b) move in opposite direction, and approach
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to the ℜepkq axial. At the critical frequency ω1, they have the same value. But then
they repel each other, and split into two propagative modes (2a and 2b). Continuing
increasing the frequency, two modes move along x-axis in opposite direction, shown as
arrows 2a and 2b. When the frequency reach to another critical frequency ω2, the same
phenomenon happens again, waves 1 and 2b meet and become evanescent modes 3a and
3b. Finally only one mode maintains (2a). The results are corresponding to Fig. 5.12,
n “ 30. Comparing Fig. 5.13(a) and (b), due to the consideration of the dissipation on
the impedance, there exists obvious avoided crossing between the two modes.

5.4.4 Transmission and reflection in the lined liner with shear flow

We already calculated the transmission coefficient for the lined duct in the absence
of flow, here we will study the effects of the shear flow on the transmission behavior. At
the interfaces, i.e. x “ 0 and x “ L, the continuity of the pressure and normal velocity
disturbance as well as continuity of the parameter q “ Bp

Bx are used to construct the
scattering matrix.

The whole waveguide can be divided into 3 parts, the pressure expression in each
part is consist of the incident and reflected waves, which can be written as

p1 “
ÿ

~A1P
`
Re

jk`

R
x ` ~B1P

´
Re

jk´

R
x, (5.44)

p2 “
ÿ

~A2P
`
Y e

jk`

Y
x ` ~B2P

´
Re

jk´

Y
px´Lq, (5.45)

and
p3 “

ÿ

~A3P
`
Re

jk`

R
px´Lq ` ~B3P

´
Re

jk´

R
px´Lq, (5.46)

respectively, where superscript “`” indicates the modes propagating in `x-direction
(acoustic and hydrodynamic), “´” the opposite.

The continuity conditions at the two interfaces are applied, for x “ 0, we have

Q`
R
~A1 ` Q´

R
~B1 “ Q`

Y
~A2 ` Q´

Y D
´ ~B2, (5.47)

V`
R
~A1 ` V´

R
~B1 “ V`

Y
~A2 ` V´

Y D
´ ~B2, (5.48)

P`
R
~A1 ` P´

R
~B1 “ P`

Y
~A2 ` P´

Y D
´ ~B2, (5.49)

and
Q`
Y D

` ~A2 ` Q´
R
~B2 “ Q`

R
~A3 ` Q´

R
~B3, (5.50)

V`
Y D

` ~A2 ` V´
R
~B2 “ V`

R
~A3 ` V´

R
~B3, (5.51)

P`
Y D

` ~A2 ` P´
R
~B2 “ P`

R
~A3 ` P´

R
~B3, (5.52)

for x “ L. D´ and D` are diagonal matrices with elements exp(-jk´
Y Lq and exp(jk`

Y Lq,
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respectively. A relation between ingoing and outgoing waves can be constructed by
¨

˚

˚

˚

˚

˚

˚

˚

˝

0 ´Q´
R Q`

Y Q´
Y D

´

0 ´V´
R V`

Y V´
Y D

´

0 ´P´
R P`

Y P´
Y D

´

´Q`
R 0 Q`

Y D
` Q´

Y

´V`
R 0 V`

Y D
` V´

Y

´P`
R 0 P`

Y D
` P´

Y

˛

‹

‹

‹

‹

‹

‹

‹

‚

loooooooooooooooooooooomoooooooooooooooooooooon

S1

¨

˚

˚

˝

A3

B1

A2

B2

˛

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˝

Q`
R 0

V`
R 0

P`
R 0

0 Q´
R

0 V´
R

0 P´
R

˛

‹

‹

‹

‹

‹

‹

‹

‚

looooooomooooooon

S2

ˆ

A1

B3

˙

. (5.53)

The transmission and reflection coefficients of the plane wave can be obtained by the
matrix S “ S´1

1
S2. They are defined by

T` “ A3

A1

, R` “ B1

A1

, T´ “ B1

B3

, and R´ “ A3

B3

. (5.54)

From the upper definitions and the matrix S, the propagation behavior is discussed.
Figure 5.14 shows an example of the transmission and reflection coefficients of the plane
wave as a function of frequency f , with M0 “ 0.3, n “ 30, L “ 200mm, and B “ 50mm.
The height of the duct is H “ 15mm. The dissipation of the impedance is considered by
taking Re “ 0.1. In Fig. 5.15, the mach number M0 and the resistance Re are changed,
the experimental results are also shown in the same figure.
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Figure 5.14: Absolute values of the transmission and reflection coefficients of the plane
wave with M0 “ 0.3 , n “ 70 and Re “ 0.1.
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Figure 5.15: Absolute values of the transmission and reflection coefficients of the plane
wave with M0 “ 0.2, n “ 70 and Re “ 0.3. Solid line: computation results; dashed line:
experimental results.

5.5 Conclusion

The modes in a duct lined with locally reacting liner are computed and discussed,
in both absence and presence of flow. The purely reacting liners produce surface waves
which are concentrated along the liner. When a uniform flow is added the waves that
propagate against the flow can be cut off. This will produce a large frequency band with
transmission zero. Hydrodynamic modes are also observed. In the presence of shear flow,
at a specific frequency band rω1, ω2s, there are three propagative modes against the flow
direction. Negative group velocity can be induced. What the most important is, at the
two critical frequencies, the group velocity is zero. This phenomenon is very sensitive to
the thickness of the boundary layer. For the wave propagates through a lossless medium,
the group velocity can be thought as the the velocity at which energy is conveyed along
the wave. So it indicates that the energy cannot propagate, which might be used to slow
down and even stop the sound.

Appendix

5.A The admittance of the liner

The liner we considered here is a honeycomb layer which is locally reactive and
backed by a rigid wall. In the single tube, the pressure satisfies the Helmholtz equation

B2ppyq
By2 ` ω2ppyq “ 0, (5.55)
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Figure 5.16: The geometry of the problem.

where ω “ 2πfH{c0 is the normalised frequency. In the following, all quantities are
non-dimensionalized: lengths with the waveguide height H, velocities with sound speed
c0, densities with the ambient density ρ0, and pressures with ρ0c

2
0
. Time dependence is

exp(-jωtq.

The solution of the above equation can be written as

ppyq “ C1 cospωyq ` C2 sinpωyq. (5.56)

Since
Bv
Bt “ ´Bp

By ,

we have the expression of the acoustic velocity

v “ 1

jω
p´C1ω sinpωyq ` C2ω cospωyqq. (5.57)

Here vpyq is in `y-direction. At the bottom of the tube, i.e. y “ ´b “ ´B{H, where
B “ 50mm is the thickness of the liner, the velocity vanishes, namely vp´bq “ 0. This
results in

C1

C2

“ ´ 1

tanpωbq . (5.58)

For a locally reacting liner, its impedance Z is expressed as

Z “ ppyq
v ¨ n , at y “ 0, (5.59)

where n is the outward normal vector pointing into the liner. By Eqs. (5.56)(5.57)(5.58),
the impedance without dissipation can written as

Zpωq “ jcotpωbq. (5.60)
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5.B Scattering matrix S

The amplitudes of incoming waves ~A1, ~B3 are linked to the amplitudes of the out-
going waves ~A3, ~B1 by a scattering matrix,

˜

~A3

~B1

¸

“ S

˜

~A1

~B3

¸

, where S “
„

T r

R t



. (5.61)

In order to solve the matrix, Mode-Matching method is proposed. Multypling Eqs. (5.16)
(5.17) (5.18) by ~Φ, we can obtain the corresponding equations as below

x ď 0 ~P1 “ DRpxq ~A1 ` DRp´xq ~B1, (5.62)

0 ă x ď L ~P “ XD`pxq ~A2 ` XD´pxq ~B2, (5.63)

x ą L ~P3 “ DRpx´ Lq ~A3 ` DRpL´ xq ~B3. (5.64)

where D`pxq, D´pxq and DRpxq are diagonal matrices with elements ejknx, e´jknpx´Lq

and ejk
R
n x, respectively, and X is matrix with columns the eigenvectors in Eq. (5.13)

Using the continuity conditions of the pressure and velocity at x “ 0 and x “ L, we
can have

~A1 ` ~B1 “ Xp ~A2 ` DL
~B2q, (5.65)

KRp ~A1 ´ ~B1q “ XKYp ~A2 ´ DL
~B2q, (5.66)

~A3 ` ~B3 “ XpDL
~A2 ` ~B2q, (5.67)

KRp ~A3 ´ ~B3q “ XKYpDL
~A2 ´ ~B2q. (5.68)

where DL “ D`pLq “ D´p0q, and KR, KY are diagonal matrices with elements the axial
wave numbers kRn and kn, respectively.

Since the duct is infinite and symmetric about x, we can have T “ t and R “ r.
For simplicity, we assume that there are only multimodes incident from the left side, i.e.
~B3 “ 0. We denote

F “ X ` K´1

R
XKY,

G “ X ´ K´1

R
XKY.

From Eqs. (5.67)(5.68), we have

~B2 “ ´F´1GDL
~A2. (5.69)

By the summations of Eqs. (5.75) and (5.76) and of Eqs. (5.67) and (5.68), with the help
of Eq.(5.69), we obtain

2 ~A1 “ pF ´ GDLF
´1GDLq ~A2, (5.70)

2 ~A3 “ pFDL ´ GF´1GDLq ~A2. (5.71)
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Finally, we can have the transmission matrix Tptq by

T “ t “ pFDL ´ GF´1GDLqpF ´ GDLF
´1GDLq´1. (5.72)

By the difference of Eq.(5.75) and Eq.(5.76), with the help of Eq.(5.69), we can have

2B1 “ pG ´ FDLF
´1GDqA2, (5.73)

it results in
R “ r “ pG ´ FDLF

´1GDqpF ´ GDLF
´1GDLq´1. (5.74)

5.C Ingard-Myers boundary condition

The expression of the impedance is given in Eq. (5.59). As there is no flow at the
lined wall, v is linked to the acoustic displacements δw at the wall by

v ¨ n “ Bδw
Bt ¨ n, at y “ 0. (5.75)

Assuming a thin shear layer close to the lined wall, the continuity conditions of the normal
displacement and the acoustic pressure across the boundary layer need to be considered.
Then, the transverse kinematic condition is written as

vε ¨ n “
ˆ B

Bt `M
B

Bx

˙

δε ¨ n

“
ˆ B

Bt `M
B

Bx

˙

δw ¨ n,
(5.76)

where vε and δε denote the velocity and the displacement just above the thin boundary
layer. From Eqs. (5.59)(5.75), we can have

δw ¨ n “ 1

´jω
p

Z
.

When the thickness of the layer tends to zero, then vpx, y “ 0q ¨ n Ñ vε ¨ n and pp0q Ñ
pε “ pw leading to the lined wall boundary condition

vpx, y “ 0q ¨ n “
ˆ B

Bt `M
B

Bx

˙ˆ

Y

´jωppx, 0q
˙

, (5.77)

where ´jω refers to the time derivative for an harmonic time dependence e´jωt. Using
the Euler equation in the y-direction, results in the boundary condition Eq. (5.28).
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Chapter 6

Conclusions

In this thesis, two different strategies are presented to enhance the sound attenuation
in acoustic ducts by using the mode coupling effects. Trapped mode and transmission
loss peak are observed near the avoided crossing of eigenvalues between two neighboured
(Bloch) modes. We have shown that this avoided crossing is closely related to the Ex-
ceptional Point in the parameter plane.

First, the wave propagation problems in an acoustic duct-cavity system and a waveg-
uide with a portion of its wall lined by a locally reacting material is studied by the R-
matrix method. We have shown that the acoustic scattering matrix can be efficiently
described with the help of an effective matrix Heff , whose eigenvalues give the poles of the
scattering matrix. The real poles are in the vicinity of the exceptional points of matrix
Heff . Using this effective matrix, the original acoustic resonances problem in the infinite
waveguide is reduced to an equivalent eigenvalue problem of matrix Heff , which describes
the eigenvalue problem defined in the scattering region. When a plane mode is incident,
a transmission zero is present when the real resonance frequency is equal to the incident
frequency. This transmission zero occurs - due to the interference of the incoming prop-
agative mode with the trapped mode, which is also called the Fano resonance. This is
the idea of the first strategy. The trapped mode is formed by the interferences of two
neighbored modes with complex resonance frequencies. With the aid of the eigenvalues
and eigenfunctions of matrix Heff , the traditional acoustic resonance scattering formula
is extended to include the coupling effects between the scattering region and the rigid
parts of the waveguide.

Second, the mode coupling due to the embedment of the rigid inclusions in the
porous material is used to enhance the sound attenuation in an acoustic lined duct
at low frequencies. This strategy is validated numerically and experimentally in a 3D
waveguide lined with periodic inclusions embedded in porous material. Two different
inclusion shapes are considered, an open cylinder and a Helmholtz resonator. When
rigid inclusions are embedded in the porous material, the low frequency behaviours of the
transmission loss can be significantly changed, peaks are observed in the mid-frequency
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range. The effects of the inclusion position on the frequency of the TL peak are different
for different inclusion shapes. Good agreements are observed between the experimental
and numerical results, which opens the way to the optimisation of metaporous material
for better sound attenuation at low frequencies.

An analysis of a 2D infinite periodic waveguide with inclusions embedded in porous
material is performed by using Floquet-Bloch theorem. A maximum sound attenuation
for this infinite periodic waveguide can be reached near the crossing (or avoided crossing)
of the mode attenuations between two lower Bloch waves, and it is related the exceptional
point. A coupling between acoustic mode and localized mode is happened near this
crossing.

Finally, the acoustical behaviors of a purely reacting liner in a rectangular duct in
both absence and presence of flow are investigated. Multi-Model Method is proposed to
solve the problem in the absence and presence of uniform flow. The results exhibit an
unusual acoustical behavior: for a certain range of frequencies, no wave can propagate
against the flow. The effect of shear flow is investigated by the Chebyshev Spectral
Method, which provides detailed information near the walls. A negative group velocity
is found in a certain range of frequencies, and it is demonstrated that the sound can be
slowed down and even stopped.
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Use of mode coupling to enhance sound attenuation
in acoustic ducts

Résumé

Deux stratégies sont présentées à utiliser des effets de

couplage de modes pour l’amplification de l’atténuation

du son dans les conduits acoustiques. La première est

de coupler le mode incident propagatif avec un mode

localisé, aussi appelé résonance de Fano. Cette stratégie

est présentée et validée dans un système conduit-cavité

et un guide d’onde partiellement traité en paroi avec un

matériau à réaction locale. La méthode “R-matrix” est

introduite pour résoudre le problème de propagation

d’onde. Une annulation de la transmission se produit

quand un mode piégé (qui est formé par les interférences

de deux modes voisins) est excité dans le système ouvert.

Ce phénomène est aussi lié au croisement évité des

valeurs propres et à un point exceptionnel. Dans la

seconde stratégie, un réseau d’inclusions rigides

périodiques est intégré dans une couche poreuse pour

améliorer la’tténuation du son à basse fréquence. Le

couplage de modes est du à la présence de ces

inclusions. Le théorème de Floquet-Bloch est proposé

pour analyser l’atténuation du son dans un guide d’onde

périodique en 2D. Un croisement de l’atténuation de

deux ondes de Bloch est observé. Ce phénomène est

utilisé pour expliquer le pic de pertes en transmission

observé expérimentalement et numériquement dans un

guide 3D partiellement traitée par un matériau poreux

avec des inclusions périodiques. Enfin, le comportement

acoustique d’un liner purement réactif dans un conduit

rectangulaire avec et sans écoulement est étudié. Dans

une certaine gamme de fréquence, aucune onde ne peut

se propager à contre sens de l’écoulement. Par analyse

des différent modes à l’aide de la relation de dispersion, il

est démontré que le son peut être ralenti et même arrêté.

Abstract

Two strategies are presented to use the mode coupling

effects to enhance sound attenuation in acoustic ducts.

The strategy is to couple the incoming propagative mode

with the localized mode, which is also called Fano

resonance. This strategy is presented and validated in a

duct-cavity system and a waveguide partially lined with

a locally reacting material. The R-matrix method is

introduced to solve the propagation problems. A zero in

the transmission is present, due to the excitation of a

trapped mode which is formed by the interferences of

two neighboured modes. It is also linked to the avoided

crossing of the eigenvalues and exceptional point. In the

second strategy, a set of periodic rigid inclusions are

embedded in a porous lining to enhance sound

attenuation at low frequencies. The mode coupling is due

to the presence of the embedded inclusions. Floquet -

Bloch theorem is proposed to investigate the attenuation

in a 2D periodic waveguide. Crossing is observed

between the mode attenuations of two Bloch waves. The

most important and interesting figure is that near the

frequency where the crossing appears, an attenuation

peak is observed. This phenomenon can be used to

explain the transmission loss peak observed numerically

and experimentally in a 3D waveguide partially lined by

a porous material embedded with periodic inclusions.

Finally, the acoustical behaviours of a purely reacting

liner in a duct in absence and presence of flow are

investigated. The results exhibit an unusual acoustical

behaviour : for a certain range of frequencies, no wave

can propagate against the flow. a negative group velocity

is found, and it is demonstrated that the sound can be

slowed down and even stopped.
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