
HAL Id: tel-01402167
https://theses.hal.science/tel-01402167

Submitted on 24 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Advanced methods and algorithm for high precision
astronomical imaging
Fred Maurice Ngolè Mboula

To cite this version:
Fred Maurice Ngolè Mboula. Advanced methods and algorithm for high precision astronomical
imaging. Image Processing [eess.IV]. Université Paris Saclay (COmUE), 2016. English. �NNT :
2016SACLS343�. �tel-01402167�

https://theses.hal.science/tel-01402167
https://hal.archives-ouvertes.fr


NNT : 2016SACLS343

Thèse de doctorat
de l’Université Paris-Saclay

préparée à l’Université Paris-Sud

Ecole doctorale n◦127
Astronomie et Astrophysique d’Île-de-France

Spécialité de doctorat : astronomie et astrophysique

par

M. NGOLÈ MBOULA Fred Maurice
Méthodes et algorithmes avancés pour l’imagerie astronomique de

haute précision

Thèse présentée et soutenue à Saclay, le 18 Octobre 2016.

Composition du Jury :

M. Hervé DOLE Professeur des Universités (Président du jury)
Université Paris-Sud

Mme Laure BLANC-FÉRAUD Directeur de recherche (Rapporteur)
Université de Nice Sophia-Antipolis

M. Gabriel PEYRÉ Directeur de recherche (Rapporteur)
École normale supérieure

Mme Maïtine BERGOUNIOUX Professeur des Universitéés (Examinatrice)
Université d’Orléans

Mme Julie DELON Chargée de recherche (Examinatrice)
Université Paris Descartes

M. Jean-Luc STARCK Directeur de recherche (Directeur de thèse)
CEA Saclay

M. Jalal FADILI Professeur des Universités (Invité)
ENSICAEN





Acknowledgments

Thank you Jean-Luc for your enlightened and motivating guidance !

Thank you dear reader, if you are one of those who made my PhD
journey enjoyable and fruitful !

Your name is engraved in letters of gold in my mind...

Thanks to the CEA for providing nearly optimal conditions of work
and research !





iii

Extended abstract

L’un des challenges majeurs de la cosmologie moderne réside en la nature
même de la matière et de l’énergie noire. La matière noire peut être direc-
tement tracée à travers son effet gravitationnel sur les formes des galaxies.
La mission Euclid de l’Agence Spatiale Européenne fournira précisément des
données à cette fin. L’exploitation de telles données requiert une modélisation
précise de la Fonction d’Étalement du Point (FEP) de l’instrument d’obser-
vation. En première approximation, les images par l’instrument des étoiles
isolées donnent une mesure de sa FEP. Toutefois, ces images sont toujours
bruitées, potentiellement sous-échantillonnées et la FEP sous-jacente varie
dans le champ de l’instrument, mais également dans le temps et en longueur
d’onde. L’objectif de cette thèse est précisément de proposer des méthodes
d’estimation de FEP, à partir d’images d’étoiles, prenant en compte les diffé-
rents facteurs mentionnés ci-avant, ce en s’appuyant sur des avancées métho-
dologiques récentes en traitement du signal.

Dans un premier temps nous avons développé une méthode permettant
d’estimer à une résolution suffisante, une FEP donnée, à partir de plusieurs
mesures bruitées sous-échantillonnées de la même FEP. Nous avons montré
qu’en utilisant des contraintes de parcimonie et de positivité, l’on obtenait une
bien meilleure restauration de la forme de la FEP, comparativement avec des
méthodes largement utilisées en astronomie et en particulier à faibles rapports
signal à bruit.

Toutefois, du fait de la variabilité spatiale et temporelle de la FEP, l’on ne
dispose en général pas de plusieurs mesures de la même FEP. Ainsi, dans une
deuxième étape, nous avons considéré le problème d’estimer conjointement
un ensemble de FEPs différentes à partir d’une seule mesure potentiellement
sous-échantillonnée de chacune de ces FEPs. Cela a abouti à une méthode de
réduction de dimension et de super-résolution, qui en plus des contraintes de
parcimonie et de positivité, exploite la compressibilité globale du champ de
FEPs. Une fois de plus, nous avons obtenu un gain significatif en terme de
précision sur les formes de PSFs, par rapport à des méthodes existantes.

Comme mentionné plus haut la FEP varie à travers le champ du télescope.
L’objectif final étant de réaliser des mesures des formes de galaxies corrigées
de l’effet de la FEP, il est nécessaire d’interpoler spatialement le champ de
FEPs. En d’autres termes, l’on souhaite pouvoir estimer la FEP à une position
arbitraire dans le champ de l’instrument connaissant les FEPs aux positions
des étoiles isolées. Cela revient à estimer une fonction qui à tout vecteur (x, y)

du plan focal de l’instrument associe un vecteur sur la variété sous-jacente
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aux FEPs. Pour cela, nous proposons une méthode d’interpolation qui réalise
dans un premier temps une réduction de dimension locale des FEPs connues,
dans la métrique de Wasserstein 2. A supposer que cela "déplie" localement
la variété sous-jacente, les coordonnées des FEPs inconnues dans la représen-
tation en dimension réduite peuvent être estimées en utilisant des méthodes
d’interpolation classiques. Cela permet ensuite de calculer les coordonnées ba-
rycentriques des FEPs inconnues dans la métrique de Wasserstein 2. Les FEPs
à interpoler sont finalement calculées comme barycentres des FEPs connues
dans la métrique de Wasserstein 2. Nous avons obtenu par cette approche des
résultats notables en termes de précision sur la forme et les valeurs de pixels
des PSFs interpolées. Elle est toutefois coûteuse en termes de calculs.

Cette thèse ouvre plusieurs perspectives dont nous donnons quelques
exemples ci-dessous :

— extensions des méthodes proposées pour prendre en compte la dépen-
dance en longueur d’onde de la FEP ;

— couplage de la restauration du champ de FEP au problème de déconvo-
lution des galaxies dans le même champ ;

— intégration davantage d’a priori physiques sur la FEP.
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Notations and conventions

Conventions

All the vectors are treated as columns vectors, unless it is explicitly men-
tioned otherwise.

• x : a scalar.

• x : a column vector or a scalar when explicitly indicated or a manifold’s
point when explicitly indicated.

• x[i] : ith coefficient of x.

• X : a matrix or a random variable.

• X[i, j] : the value of the entry (i, j) of X.

• X[i, :] : the ith line of X treated as a line vector.

• X[:, j] : the jth column of X treated as a column vector.

Operators

• supp(x) : support of the vector x (set of non-zero coefficients of x).

• card(E) : cardinality of the set E (the number of elements in E).

• ‖x‖p : with p > 0, `p norm of x, defined as ‖x‖p = p
√∑

i |x[i]|p. The
pseudo-norm `0 is defined as ‖x‖0 = card(supp(x)) and the infinity
norm is defined as ‖x‖∞ = max({|x[i]|, i}).

• ‖X‖p : with p > 0, matrix norm defined as ‖X‖p = p

√∑
i,j |Xi,j|p (Frobe-

nius norm for p = 2). The matrix `0 pseudo-norm and infinity norm are
similarly defined.

• |||X||| : subordinate matrix norm to a vector norm ‖ · ‖, defined as |||X||| =
max
v 6=0

‖Xv‖
‖v‖ .

• � : element-wise matrix multiplication (Hadamard’s product).

• XT : transpose of X.

• XH : hermitian transpose of X.

• 〈·, ·〉 : scalar product.

• bxc : the highest integer smaller than x.



x Conventions

• rank(M) : dim(span((M[:, i])1≤i≤p)), where p is the number of columns of
the matrix M.

• Trace(M) =
∑n

i=1 M[i, i], for M ∈ Mn(R).

Notations

• N : the set of non-negative integer numbers.

• R : the set of real numbers.

• R+ : the set of non-negative real numbers.

• C : the set of complex numbers.

• Mnp(K) : the set of n× p real or complex matrices if K = R or C respecti-
vely.

• Mn(K) : the set of n×n real or complex matrices ifK = R or C respectively.

• In ∈ Rn×n : identity matrix.

• L1(R) : the set of integrable functions on R.

• L2(R) : the set of square integrable functions on R.

• dim(E) : dimension of the vector space E.

• E⊥ : the orthogonal of a vector space E.

• Span((ui)1≤i≤n) : the set {
∑n

i=1 aiui, (ai)1≤i≤n ∈ Rn}.
• Y ∼ N (m,V) : Y is a random vector that follows a gaussian multivariate

distribution of mean m and covariance matrix V.

• Jn,mK, (n,m) ∈ N2, n < m : the set (n+ i)0≤i≤m−n
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C Manuscript structure . . . . . . . . . . . . . . . . . . . . . . 17

This thesis aims at proposing new methods and algorithms for astronomi-
cal images restoration, taking advantage of recent advances in applied mathe-
matics and more specifically in calculus of variations ; a focus is made on Point
Spread Function (PSF) estimation. In the following, we precise the scientific
framework of our studies, underlining the challenges from a data processing
perspective. Then, we give an overview of our mathematical environment.
We end this introductory chapter with a description of the whole manuscript
structure.

A Context

A.1 Weak gravitational lensing

The General Relativity theory can be considered as the cornerstone of Cos-
mology [Einstein 1915]. Over a century, it has allowed, conjointly with spec-
tacular progress in instrumentation, an increasingly accurate understanding
of the Universe general dynamic and geometry. Various cosmological models
have been derived in this framework. The most widely studied and accepted
is the Big Bang Cosmological model which lies on strong observational pillars
such as the Cosmic Microwave Background (CMB) [Penzias & Wilson 1965]
and the Universe expansion [Riess et al. 1998].
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However, in order to be in perfect agreement with observations, this model
has to postulate the existence of unknown and hardly observable entities, and
most importantly, make them the dominant part of the Universe in terms
of mass and energy. Specifically, the Universe would roughly consist of 25%
percent of "Dark Matter" and 70% of "Dark Energy", the ordinary matter
being confined into a few percents (see Fig. I.1).

Figure I.1 – The Universe content.

The notion of "Dark Matter" was introduced by the astrophysicist Fritz
Zwicky in 1937 [Zwicky 1937]. Measuring galaxies speeds in the Coma cluster,
he noticed that peripheral galaxies were excessively fast : given the observable
mass of the cluster, those galaxies should have escaped its gravitational poten-
tial. He suggested as an explanation that the cluster must have an important
"hidden" mass - consisting of dark matter - so that it can coherently maintain
fast rotating galaxies within its gravitational potential. The Dark Energy on
the other hand is directly related to the Universe global dynamic. Whereas the
idea of an expanding Universe is admitted since Edwin Hubble observations
in 1929, since 1998, several measurements have enlightened the acceleration
of this expansion. The Dark energy presumably drives this acceleration by
acting as a negative pressure.

Because of their larger proportions with respect to ordinary matter, these
dark components shape the Universe at large spatio-temporal scales. There-
fore, getting a better knowledge of their nature and distribution has become
a major challenge for modern cosmology.

The descriptive "dark" comes from the fact that these entities can not be
directly observed. However, in theory it is possible to observe and quantify the
gravitational effect of the dark matter. Indeed, although it weakly or does not
interact with baryonic matter, it is massive and it should bend the space-time
according to Einstein equations and affect the way light travels.

Thus, a hypothetical perfectly circular galaxy would appear slightly ellip-
tical and brighter to a hypothetical distant observer because of the integrated
deflections due to dark matter, along the line of sight. This effect is known as
the Weak Gravitational Lensing and is illustrated in Fig. .
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Figure I.2 – Weak gravitational lensing.

In order to quantify this effect, one needs to be able to measure a galaxy
shape from an image, which gives in practice the "lensed" galaxies shape.
Since the "unlensed" galaxies are inaccessible, one needs some prior knowledge
on their shapes distribution. According to the Cosmological Principle, the
Universe is isotropic and homogeneous at large scales. From this principle,
one infers that given a set of vectors γi in R2 describing the elongations and
orientations of some unlensed galaxies Xi, for a sufficiently large number of
galaxies, one should have 1

N

∑N
i=1 γi ≈ 0. However, the weak lensing (WL)

causes an intrinsic bias in the galaxy shapes distribution which is directly
related to the dark matter mass distribution and which can be estimated from
the observed galaxies. The dark matter distribution in turn, can be related to
the dark energy density in the Big Bang cosmological model [Dodelson 2003].
The Euclid mission, a spatial survey of the European Spatial Agency (ESA),
has been designed to provide data for such a purpose, as we will see in the
next section.

A.2 ESA Euclid project

Euclid is a Medium-class ESA survey mission [Laureijs et al. 2011]. It is
part of the ESA’s program "Cosmic Vision". Euclid primary goal is to learn
about dark matter and dark energy nature. The Euclid telescope, which is
space-based, will be launched on a Soyuz rocket from Europe’s spaceport in
Kourou, in Guiana ; the launch is currently planed for December 2020. Quan-
tifying WL requires measuring accurately shapes over a large set of galaxies.
To that end, the Euclid telescope

— provides a large field-of-view (fov) ; the embedded visible and near-
infrared instrument have a fov of roughly 0.54deg2 which is two orders
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of magnitude higher than Hubble Space Telescope (HST) camera’s ;

— is extremely sensitive with a lower magnitude bound of AB mag 24.5
(this corresponds to a spectral luminosity 17 order of magnitude lower
than the sun’s) ; this enables the observation of distant galaxies which is
essential, since the further is a galaxy, the more it is potentially lensed ;

— is planned to orbit around the Sun-Earth Lagrange point 2 (see Fig.
I.3) ; consequently it will be free of atmospheric turbulence (which is
true for any space-based telescope), as well as Earth and Moon magnetic
fields disturbances ; moreover, the payload will neither be occulted nor
illuminated by the Sun, the Earth or the Moon during the survey ; finally,
there is no significant variation of gravity along the selected orbit ; all
these features will yield an exceptionally homogeneous final data-set ;

— is extremely stable in terms of structural vibrations, with a specified
pointing jitter in average smaller than the pixels size.

Figure I.3 – Sun-Earth system Lagrange points. Credit : nasa.gov

The survey active phase will last 6 years, providing at the end a legacy
of more than 1 billion of well resolved galaxies images, positions and speeds,
distributed over 15000deg2 of sky without the milky way and roughly 10 bil-
lions light years in depth, thanks to its extreme sensitivity. Henceforth, Euclid
will show the Universe at a spatio-temporal scale that has never been reached
before, which makes this mission exciting and promising for Cosmology.

Regardless of how clean will Euclid data presumably be, it is crucial howe-
ver to have an accurate knowledge of the instrumental effects on the galaxies
shapes, in order to exploit them properly. Indeed, the image forming process
itself induces shape distortions that might be mistaken for the Weak Lensing
(WL) effect. This is one of the biggest challenge in WL measurement, as we
detail in the next section.
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A.3 Data and instrumental effects

In this section, we review the image forming process for an Euclid-like
telescope, precising the distortions introduced with respect to the "real world
objects". Despite galaxies are 3D objects, our conceptual real world objects are
2D light distributions contained in a plane which is perpendicular to the line
of sight as illustrated in Fig.I.4 ; we do not consider the geometrical distortion
associated with this planar projection.

Figure I.4 – Planar projection of the sky : the distortion associated to this
projection with respect to the real world 3D objects is not considered.

A.3.1 Optics related effects

The optical instrument warping effect is largely related to the phenomenon
of diffraction, which characterizes a propagating wave behavior whenever it
encounters an obstacle. Therefore, we make a brief recall of diffraction theory
applied to optics thereafter. The formulae are extracted from [Goodman 2005].

According to the Huygens-Fresnel principle, when a wave propagates, each
point of the space reached by the wave becomes in its turn the source of a
spherical wave. This is illustrated in Fig. I.5.

These secondary waves can interfere : according to their phases, they can
add up in amplitudes or attenuate one another. In particular, when the wave
encounters an obstacle, as one may expect intuitively, the secondary sources
physical properties change in the vicinity of the boundaries so that the overall
transmitted wave might significantly depart from the incident one ; this is
especially true when the size of the aperture (see Fig. I.5) is close to the
wavelength.

The first rigorous description of the diffraction by a planar aperture in
terms of superposition of secondary spherical waves is due to the physicist
Gustav Kirchhoff (1882). He proposed a mathematical framework built upon
the Greens theorem and derived the diffracted wave making some simplifying
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Figure I.5 – Diffraction : Huygens-Fresnel principle.

assumptions known as the Kirchhoff boundary conditions. These assumptions
were later proved to be inconsistent by Poincaré (1892) and eliminated by
Sommerfeld (1894) who proposed the so-called Rayleigh-Sommerfeld diffrac-
tion theory. The latter characterizes the diffracted wave in a parallel observa-
tion plane located at normal distance z from the aperture (see Fig. I.6) as
follows :

U(p1) =
z

jλ

∫ ∫
R2

iΣ(p0)U(p0)
exp(jkr01)

r2
01

dηdξ, (I.1)

where p1 = (x, y, z), p0 = (η, ξ, 0), r01 = ‖p1 − p0‖2, U(p0) is the incident
wave amplitude and phase at the point p0 of the aperture, λ is its wavelength,
k = 2π

λ
and Σ is the aperture.

Two interesting approximations of the Rayleigh-Sommerfeld diffraction are
later proposed. The first one is the Fresnel approximation. It relies on the
following approximation :

r01 ≈ z(1 +
1

2
(
x− η
z

)2 +
1

2
(
y − ξ
z

)2). (I.2)

Taking r2
01 ≈ z2 in I.1 and replacing the r01 appearing in the exponent with

I.2, one can express the diffracted field as

U(p1) =
ejkz

jλz
ej

k
2z

(x2+y2)

∫ ∫
R2

(iΣ(p0)U(p0)ej
k
2z

(η2+ξ2))e−j
2π
λz

(xη+yξ)dηdξ, (I.3)

where we can identify the Fourier transform of the incident wave delimited by
the aperture and multiplied by a quadratic phase term. The regime in which
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Figure I.6 – Diffraction : Huygens-Fresnel principle.

this approximation holds is known as the region of Fresnel diffraction, or the
near field of the aperture, since it accounts for the curvature of the diffracted
wavefront through the quadratic phase term. It yields accurate results when
the major contributors in the integral I.1 are the terms for which x ≈ η and
y ≈ ξ.

Besides, the Fraunhoffer approximation additionally assumes that

z �
kmax

Σ
(η2 + ξ2)

2
, (I.4)

which implies that the quadratic phase term in the integral in I.3 is approxi-
mately equal to 1 everywhere in Σ. Therefore, the diffracted field expression
simplifies to

U(p1) =
ejkz

jλz
ej

k
2z

(x2+y2)

∫ ∫
R2

iΣ(p0)U(p0)e−j
2π
λz

(xη+yξ)dηdξ. (I.5)

The diffracted wave is given by the Fourier transform of the aperture limited
incident wave up to a multiplicative term.

Now we consider a general linear optical system that we treat as a black
box as represented on Fig.I.7.

The optical system maps an incident scalar wave Ui into an output wave
given by the so-called superposition integral :

Uo(x, y) =

∫ ∫
R2

Ui(u, v)ho(x, y, u, v)dudv, (I.6)
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Figure I.7 – "Black box" linear optical system ; Ui : input wave ; Uo :
output wave

where ho(x, y, u, v) is the field’s value at the location (x, y) of the exit pupil
that one would get from the optical system as a response to an unitary im-
pulse located at (u, v) in the entrance pupil. ho is the impulse response of the
system. The system is stationary if for a couple of locations {(u, v), (x, y)},
ho(x, y, u, v) = ho(u−x, v−y) ; in words, shifting an impulse in the object space
translates into a shifting of the output wave, with no changing in its form. For
stationary systems, the right hand side in Eq. I.6 becomes a convolution. Real
imaging systems are never perfectly stationary and this non-stationarity mo-
tivates an important fraction of this thesis work. The concepts of entrance and
exit pupils generalized the notion of aperture used in deriving the Rayleigh-
Sommerfeld and Fraunhoffer diffraction approximations. Firstly introduced
by Ernst Abbe, the entrance pupil is the image of the most severely limiting
aperture when viewed from the object space ; conversely, the exit pupil is the
image of the same limiting aperture viewed from the image space. Regardless
of the optical system’s complexity, the wave that reaches the image’s plane
can be described based on the diffraction effects that would result from the
exit pupil. We assume that the light propagation between the entrance and
exit pupil plans can be well described by geometrical-optics. The system is
said to be diffraction-limited. The ideal geometrical-optics predicted image of
the incident wave can be defined as

Ug(u
′, v′) =

1

|M |
Ui(

u′

M
,
v′

M
), (I.7)

where M is a magnification factor.
Under these hypothesis, the image wave is given by

Uo(x, y) =

∫ ∫
R2

Ug(u
′, v′)ho(x− u′, y − v′)du′dv′, (I.8)
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where the impulse response is calculated within the Fraunhoffer approximation
as

ho(u, v) =
A

λzi

∫ ∫
R2

P (x, y)e
−j 2π

λzi
(xu+yv)

dxdy. (I.9)

A is a constant amplitude. zi is the distance from the exit pupil plan to the
image plan. P is a binary mask defining the exit pupil. It is often referred to
as the pupil function.

In most imaging system, the photo-current generated by the sensors is
proportional to the incident power density. Therefore, one can measure to the
diffracted field’s intensity which is defined as

I(x, y) = |Uo(x, y)|2 (I.10)

for a monochromatic light source or more generally

I(x, y) = lim
1

T

∫ T/2

−T/2
|Uo(x, y, t)|2dt = 〈|Uo(x, y, t)|2〉t (I.11)

for polychromatic sources. This last definition is particularly relevant from
a practical of view since the photo-detectors integration time are in general
substantially longer than the incident wave temporal period.

Assuming that the field Ui has a sufficiently narrow spectrum, the impulse
response ho can be considered to be wavelength independent so that Eq.I.8 is
generalized as follows :

Uo(x, y, t) =

∫ ∫
R2

Ug(u
′, v′, t− τ)ho(x− u′, y − v′)du′dv′. (I.12)

The delay τ is related to the propagation from (u′, v′) to (x, y). One can justify
that under the narrowband assumption, the intensity can be written as

I(x, y) =

∫ ∫
R2

du′1dv
′
1

∫ ∫
R2

du′2dv
′
2ho(x−u′1, y−v′1)h∗o(x−u′2, y−v′2)Jg(u

′
1, v
′
1, u
′
2, v
′
2)

(I.13)
where Jg(u′1, v′1, u′2, v′2) = 〈Ug(u′1, v′1, t)U∗g (u′2, v

′
2, t)〉t. Jg is the so-called mutual

intensity and measures the spatial coherence of the field Ug.
If the illumination is spatially coherent, the phases of the different im-

pulses in the object’s plane are perfectly correlated. This is nearly the case
if the light is emitted by a laser. Reversely, the illumination is said to be
spatially incoherent if the phases vary in an uncorrelated way in the object’s
plane. Most of the common light sources, including natural ones can be in first
approximation considered as incoherent. In this case, the mutual coherence is
simplified to

Jg(u
′
1, v
′
1, u
′
2, v
′
2) = Ig(u

′
1, v
′
1)δ(u′1, u

′
2)δ(v′1, v

′
2), (I.14)
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where Ig is the intensity associated with the field Ug. From Eq.I.14 and Eq.I.13
one obtains the following important equation relating the incident and diffrac-
ted field intensities for a perfectly incoherent lighting :

I(x, y) =

∫ ∫
R2

|ho(x− u′1, y − v′1)|2Ig(u′1, v′1)du′1dv
′
1. (I.15)

In words, for a diffraction-limited imaging system, when the illumination is
incoherent, the image intensity is obtained by convolving the ideal geometrical
image intensity with the intensity impulse response |ho|2, which is mostly
referred to as the Point Spread Function (PSF).

The Optical Transfert Function (OTF) is defined as the normalized Fourier
transform of the PSF. For a diffraction-limited imaging system, it can be
shown that the OTF is the normalized autocorrelation function of the pupil
function P (see Eq.I.9). As such, the OTF has some interesting properties
among which it is an even function. The pupil function being by definition
spatially bounded, this also implies that a PSF is bandlimited.

The results stated so far were derived assuming that the optics do not
introduce any phase-shifting as the incident wave goes though the system.
However these phase-shiftings also termed as wavefront errors always occurs
due to optical aberrations. In order to account for the wavefront errors, one
shall generalize the notion of pupil function. We note the phase-shifting at
a point (x, y) φ(x, y) = 2π

λ
W (x, y), where λ is the central wavelength of the

spectrum of the incident wave. W (x, y) represents the optical path difference.
Then, the generalized pupil function is defined as

P(x, y) = P (x, y)ej
2π
λ
W (x,y). (I.16)

Then the amplitude impulse response is given by the diffraction pattern
of an aperture having a complex amplitude transmittance P . The PSF’s de-
finition remains unchanged.

It is worth noting that the pupil function P actually depends on the po-
sition of the light source position w.r.t. the instrument fov. This makes the
PSF spatially variable. In general, computing the pupil function requires per-
forming a ray tracing using a dedicated software as Zemax. Moreover, the
different optical aberrations effects are more or less pronounced depending on
the light source’s position in the fov. Let consider the well-known coma aber-
ration for instance. The coma is due to a variation of magnification across the
fov. Indeed, when a bundle of rays coming from a single off-axis source hits
a lens or a mirror, each ray is reflected toward a different point in the focal
plane. The more a ray is close to the optical element edge, the further from the
optical axis the reflected ray crosses the focal plane. This gives isolated star
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images a cometary shape, hence the name of this aberration. As illustrated
in Fig. I.8, the coma varies across the fov, which is translated by a spatial
dependency of the function W is Eq.I.16. Thus optical aberrations contribute

Figure I.8 – Simulated coma aberration : the coma varies across the fov ; in
particular, the further is the source from the fov center, the more dramatic is

the distortion. Credit : nikon.com

to the PSFs variations across the fov. The optical path difference function
should be noted Wxi,yi to explicit its dependency to the impulse’s position in
the object’s plane. However we omit these indexes for simplicity. We shall add
that aberrations such as defocusing or tilt can vary in time due to thermo-
mechanical constraints on the imaging system. This is especially relevant for
space based telescopes. This makes the PSF ultimately time dependent. Mo-
reover, as shown by Eq.I.9, the PSF also depends on the wavelength ; for a
single channel imaging system, the image of a broadband source of light is the
result of a continuous summation of ideal monochromatic images convolved
with a PSF that might considerably change across the spectrum.

A detailed presentation of optical aberrations can be found in [Maha-
jan 1998].

A.3.2 Electronics related effects

So far, the images have been modeled as continuous intensity distributions.
However for numerical images, the diffracted intensity distribution is recorded
via a matrix of photo-detectors. We assume that the detectors cover 100% of
the focal plane. Each detector integrates the light intensity over its surface
during a certain amount of time. We note ∆ the detector matrix step and D
the focal plane area covered by a reference detector. The intensity recorded
by the detector (k, l) is in first approximation given by

Ikl =

∫ ∫
D
I(k∆ + x, l∆ + y)dxdy, (I.17)
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up to a multiplicative constant. Therefore, the numerical image forming pro-
cess can be described as a convolution of the intensity distribution I with the
kernel defined as

hD(x, y) =

{
1 if x ∈ D,
0 otherwise,

(I.18)

followed with a sampling.
However, this detector model is idealistic and we give below a non-

exhaustive list of limitations :

— thermal noise : even in the absence of illumination, the detectors unavoi-
dably generate a signal due to random thermal motions of electrons ; the
resulting "background image" is generally modeled as a white gaussian
process [Nyquist 1928] ;

— dark-current shot noise : this noise is due to random generation of elec-
trons in the detectors and is also related to the temperature ; however
unlike the thermal noise it is non-gaussian [Baer 2006] ;

— readout noise : this noise is inherent to CCD detectors ; it is related to the
uncertainty on the photo-electrons total charge measurement in the CCD
matrices ships due to the imperfections of the electronic components ; it
is well modeled as white gaussian process [Basden et al. 2004] ;

— charge transfer inefficiency (CTI) : this effect is particularly present for
space telescope ; the high energy radiations might gradually damage the
CCD detectors ; this might cause delays in the electrons transfers to the
CCD matrices ships which produces a trail and blurring in the final
images [Massey et al. 2014] ;

— quantization : in other to be stored numerically, the measured intensities
have to be represented using a finite numerical "alphabet", which implies
a quantization of the measurements and produces what is known as the
"quantization noise" [Widrow & Kollár 2008].

Ignoring some of the above effects, we can summarize a digital image for-
ming process as follows :

Id = S(hD ∗ ho ∗ Ig) + N, (I.19)

where S is a sampling operator and N is the noise. In the following, we
refer to the function hD ∗ ho as the PSF. A natural question arising then is
whether or not the sampling operation preserves the continuous light intensity
information content. In other words, can the continuous function hD ∗ ho ∗ Ig
be calculated from the discrete array S(hD ∗ ho ∗ Ig) ?
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The Nyquist-Shannon sampling theorem gives a sufficient condition. We
recall its classical formulation : if f ∈ L1(R) and if its Fourier transform f̂’s
support is included in the interval [−B,B], then

f(x) = lim
n→+∞

k=n∑
k=−n

f

(
k

2B

)
sinc

(
2πB

(
x− k

2B

))
. (I.20)

In words, if an integrable function is bandlimited with a maximum frequency
B, then it can be "reconstructed" from an uniform sampling with a step 1

2B
.

This theorem naturally extends to higher dimensions. In practice, the light
intensity distribution that reaches the detectors matrices is by construction
spatially bounded so that the integrability condition always applies. The se-
cond condition is guaranteed by the fact that the PSF is bandlimited.

Therefore, it is possible to preserve the focal plane intensity information,
up to the electronics defects, if the sampling step, which is determined by the
detectors size, is sufficiently fine. As we detail in Chapter IV, an insufficient
sampling rate might cause frequency aliasing, which is a frequency content
distortion independent of the instrumental effects mentioned so far.

A.3.3 Other sources of images distortions

We consider external sources of distortions. In astronomy, forming images
requires long exposure times because of the weak luminosity of most galaxies
seen from the solar system. For instance, the nominal exposure time for the
Euclid telescope is 540s [Laureijs et al. 2011].

Due to the intrinsically random nature of the light emission process, the
number of photons that hits a detector during a given amount of time can be
modeled as a Poisson process. The uncertainty related to the photons count
is what is referred as shot noise.

During the exposure time, a space telescope is not perfectly steady which
yields a convolutive motion blur which is time varying. For ground based te-
lescopes, the atmospheric turbulence causes a blurring which is both space
and time varying. The Euclid telescope will be put into orbit above the at-
mosphere so that the latter blur need not to be considered. The telescope
pointing jitter is specified not to exceed a pixel size, which makes the mo-
tion blur moderated ; besides, it can be readily accounted for since pointing
direction times series will be available.

In this work, we consider monochromatic images. The Chapters IV to VI
are dedicated to estimating discretized but well sampled PSFs in the telesco-
pe’s field from undersampled and noisy stars images and assuming that the
detectors response is uniform and linear. The PSFs spatial variability is taken
into account. The quantization noise is considered to be negligible. The shot
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noise which will be more or less considerable depending on the brightness
of each particular observation is not treated. The CTI effect as well is not
considered.

B Methods and tools

A physical model free framework for modeling a telescope’s PSFs field is
proposed. This framework aims at extracting the information available in a set
of instrumental data at best, while making fairly general regularity assump-
tions on the PSFs. We give a brief overview of the key concepts and tools in
the following.

B.1 Low complexity

In the Fraunhoffer approximation, the amplitude impulse response of a
linear imaging system is a scaled Fourier transform of the pupil function,
up to a multiplicative factor (see Eq.I.9). This makes the optical PSF a uni-
formly continuous function. Therefore a discrete well sampled PSF is at least a
piece-wise smooth signal, especially if it includes the detectors response. This
structure or regularity implies that a discrete well sampled PSF actually has
less degrees of freedom than the number of pixels needed for a direct repre-
sentation. It is in principle possible to represent the PSFs in a more concise
manner. This notion of conciseness classically referred as sparsity has been
extensively studied and used for solving inverse problems. It will be shown
very useful, especially regarding noise robustness. Besides, we mentioned that
the PSF varies spatially, due to the changes of the generalized pupil func-
tion across the fov (see Eq.I.16). More specifically, the modulus function P

varies according to the whole optical instrument complexity and the optical
path difference function W variations are related to the optical aberrations
and therefore, the optics quality. In Euclid, the spatial variations of the op-
tical PSF are mostly due to the aberrations. We can roughly distinguish two
fundamentally different types of aberrations :

— the global aberrations related to the global structure and defects of the
optics as well as their relative positioning ; they include effects such
as defocusing, tilt, coma etc. ; they induce a smoothly varying phase-
shifting across the fov and constitute the low frequencies of the function
W ; these aberrations are well-modeled using Zernike polynomials [Wang
& Silva 1980] ;

— the local aberrations due to polishing defects ; indeed, the small residual
structures distributed over the optics surfaces diffuses light inducing
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random phase-shiftings ; thus these aberrations constitute the high fre-
quencies of W and their effect is susceptible to change rapidly w.r.t. the
impulse’s position in the object’s plane.

If we assume that the wavefront errors are mainly determined by the global
aberrations, then the PSFs evolves smoothly across the fov and are strongly
correlated. The latter point implies that a set of discrete well-sampled PSFs
is scattered along a limited number of directions relative to their ambient
space dimension. This low dimensionality assumption is crucial, especially
in the perspective of a joint PSFs field super-resolution. The smooth spatial
variation of the PSFs links the aforementioned low dimensional scattering of
the PSFs to their distribution in the fov. Considering a finite set of PSFs, this
link can be elegantly built through an undirected graph inversely weighted by
the PSFs locations pairwise distances in the fov. Then, the graph’s function
associating each node to each PSF can be enforced to be smooth by seeking
sparsity.

B.2 Manifold learning

Loosely speaking, a d dimensional manifold is a topological space that can
be injectively mapped to Rd locally. d represents the intrinsic dimension. This
definition encompasses linear subspaces, also called linear manifolds, but also
non-linear sets as we will see in the following. If a manifold is a collection
of real world data, the intrinsic dimension can be interpreted as the number
of degrees of freedom of the physical system that generated those data. For
example, Fig.I.9 shows samples from the manifold consisting of images of a
given subject face with a constant pose, for all the lighting angles and posi-
tioning possible. Although the ambient space dimension, which is the number
of pixels, can be substantially large, the intrinsic dimension is limited to five :
three spatial coordinates and two angular coordinates.

For a fixed wavelength, the manifold model naturally arises in our study
since the optical PSF is completely and uniquely determined by two parame-
ters which are the impulse coordinates in the object plane. As shown in Section
A.3.1, there is a highly non-linear relationship between these coordinates and
the PSFs, which makes the manifold perspective particularly interesting.

The Manifold Learning (ML) is a discipline at the confluence of geometry
and data science which aims at uncovering information on a manifold from
a set of data sampled from this manifold. For example one can estimate the
manifold’s intrinsic dimension, learn a low dimensional parametrization or
characterize the manifold’s curvature. Let recall that ultimately, we want to
estimate the PSFs at galaxies locations in the telescope fov, where no PSFs
measurements are available. This requires being able to perform displacement
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Figure I.9 – "Appeareance manifold" : all the images are generated with a
single facial pose, moving a single light source.

within the PSFs manifold, following the fov coordinates parametrization. This
falls into the ML framework.

Fig.I.10 shows a plot of an "S-curve" data set, which is regularly used
for ML algorithms benchmarking. It is clear from this plot that the euclidean
distance between two points far apart (in the euclidean sense) might stron-
gly depart from the minimal length of the paths joining these points on the
manifold.

By contrast, the euclidean distances between neighbor points is approxi-
mately equal to the geodesic distances between these points, if the manifold
sampling is sufficiently dense. Thus, most manifold learning techniques build
over the hypothesis that the geometry of the manifold is approximately eu-
clidean locally and thereby are sensitive to the curvature/sampling density
trade-off.

In the PSFs interpolation framework introduced, we propose to replace
euclidean distance with an alternative distance based on Optimal Transport
(OT) theory for characterizing the local PSFs manifold geometry. Indeed,
Optimal Transport offers an elegant approach for comparing positive unitary
mass distributions, robustly to non-linear warping. Moreover, from a practical
point of view, the Optimal Transport is particularly appealing in a context
of ML for interpolation since recipes and algorithms for computing geodesics
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Figure I.10 – S-curve data set.

and barycenters are readily available.

C Manuscript structure

This manuscript is organized as follows :

— in Chapter II, we make a formal presentation of low complexity data
models, focusing on sparsity and low rankness ; we describe how these
priors on the data structure may be used in solving inverse problems ;

— Chapter III is dedicated to geometrical concepts and tools useful in
handling data lying on a non-linear manifold ; we give a general over-
view of ML, followed by an introduction to the OT and its geometrical
features.

— in Chapter IV, we propose a sparsity-driven multiple frame PSF super-
resolution (SR) method ;

— a further step is made in Chapter V where we introduce a single frame
PSFs field super-resolution ; the requirement of having several low reso-
lution (LR) observations of the same PSF is dropped and compensated
by the PSFs field regularity previously mentioned ;

— the PSFs field interpolation is treated in Chapter VI ; we build a me-
thodology for estimating a monochromatic PSF at an arbitrary location
in a telescope from a set of PSFs at known locations, using Manifold
Learning ideas and Optimal Transport tools ;
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In numerous problems in signal processing, the goal is to estimate an unk-
nown signal from an altered observation. It is in general assumed that the
signal of interest follows some sort of model or has a specific structure which
knowledge can be used in the estimation process. The signal’s structure can
often be described using a notion of simplicity or compressibility which trans-
lates either the stability in space or time of the physical system that generated
the signal at a given scale of observation, or the generating system limited
number of degrees of freedom. This is illustrated in Fig.II.1.

This intrinsic simplicity of the data, more often referred to as low com-
plexity prior in the signal processing literature is at the core of this chapter.
After a general introduction to linear inverse problems, we formally present
some important low complexity data models and give a preview of how they
can be practically used for signal restoration in a variational framework.

A Linear inverse problems

A.1 Formulation and examples

Let consider a p pixels digital image Imd. As stated in the introductory
chapter, Imd can be modeled through the following equation :

Imd = S(K ∗ Ig) + N, (II.1)



20 Chapitre II. Low complexity data models in inverse problems

Figure II.1 – For instance natural images are in general piece-wise
smooth ; the bottom panel shows an highly structured speech signal which
can be represented using a few parameters which in fact characterize the

vocal organ’s state during the phonation.

where N is the electronic related noise, Ig is a physical continuous light distri-
bution characterizing the real world scene, K is the optical device’s PSF and
S is a function from I to Rp realizing the sampling, I being any functional
space that contains Ig (for instance I = L1(R2)). While the continuous func-
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tions K and Ig are practically inaccessible, one shall assume that they can be
well approximated with piece-wise constant functions over a given regular grid
in R2. Because of the finite extension of the focal plane, we can assume that
the support of Ig is comprised in [0, l]× [0, l] for some positive real l chosen in
such a way to also encircle most of the PSF’s energy. We define the function

h0,0(x, y) =

{
1

(l/n)2
if (x, y) ∈ [0, l/n]× [0, l/n],

0 otherwise,
(II.2)

for some positive integer n. We define the orthonormal family in L2(R2)

(hi,j)0≤i,j≤n−1 by

hi,j(x, y) = h0,0(x− il/n, y − jl/n). (II.3)

Then Ig and K can be approximated with their projections on
Span((hi,j)0≤i,j≤n−1), which is a n2 dimensional subspace :

Îg =
∑

0≤i,j≤n−1

aijhi,j, (II.4)

K̂ ≈
∑

0≤i,j≤n−1

bijhi,j. (II.5)

(aij)0≤i,j≤n−1 and (bij)0≤i,j≤n−1 are digitally tractable representations of Ig and
K respectively. Moreover, for (r, s) ∈ J1, 2n− 1K2,

(Îg ∗ K̂)(rl/n, sl/n) =
∑

(i1,i2)∈[0,n−1]2/
i1+i2=r−1

∑
(j1,j2)∈[0,n−1]2/

j1+j2=s−1

ai1j1bi2j2 , (II.6)

where one recognize a discrete convolution of A = (aij)0≤i,j≤n−1 and B =

(bij)0≤i,j≤n−1 on the right hand side. n is a parameter set by the practitioner
according to the resolution needed and typically, n2 ≥ p. For a well chosen
n, we can write S(K̂ ∗ Îg) = D(A ∗B), where D is a discrete downsampling
operator.

Finally, the forward observation model becomes

Imd = D(A ∗B) + N̂, (II.7)

where N̂ accounts for the electronic related noise and the modeling error. The
task of estimating A given Imd and knowing B is a linear inverse problem
because of the linearity of the degradation operator D(. ∗B) and because one
is going backward from the observation to its cause. Linear inverse problems
occur in a wide range of applications :
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— in geophysics where knowledge of Earth deep structure is inferred from
Earth surface seismograms [Tarantola 2004] ;

— in acoustics where one can characterize the propagation medium he-
terogeneity, namely the obstacles, from measured waves [Colton &
Kress 1992] ;

— in quantum mechanics where nuclear forces can be characterized ba-
sed on observable scattered radiations in particles colliders [Chadan &
Sabatier 2011] ;

— in medical imaging where one is to construct an image of some-
thing which is in the human body from ideally non-invasive and non-
destructive and hence indirect measurements ; there exists several me-
dical imaging modalities among which one of the most important is the
Computed Tomography [Herman & Sabatier 1987] ;

— in astrophysics, as presented in [Starck 2016] and the references therein.

A linear inverse problem can always be written into the following generic
form :

y = Mx ◦ b, (II.8)

where

— y ∈ Rp is the observed signal,

— x ∈ Rm is the unaltered signal,

— M ∈ Mpm(R) is the degradation operator,

— b represents the noise and/or the modeling error,

— ◦ is some composition operator in Rp.

In all this manuscript, ◦ ≡ +, and the noise is said to be additive. However,
coherent imaging systems such as Synthetic Aperture Radars or medical ultra-
sounds are predominantly affected by a multiplicative granular noise known
as speckle [Gagnon & Jouan 1997].

A.2 Ill-posedness and ill-conditioning

As previously stated, solving the inverse problem II.8 is the task of esti-
mating x from the observation y. Without any knowledge on x, the accuracy
of this estimation is tightly related to how much information is lost along the
cause-effect sequence modeled by the matrix M (see the interesting discussion
in [Bertero & Boccacci 1998]).

If M is invertible, then the equation y = Mx (i) admits a solution which
(ii) is uniquely determined by x̂b = M−1y. Moreover, (iii) x̂b continuously
depends on y. These conditions of existence, uniqueness and continuity makes
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the problem II.8 well-posed in the sense of Hadamard [Hadamard 1902,Ha-
damard 1923]. The condition (iii) is meant to guarantee that one can get
a physically meaningful solution from imperfect observations ; indeed, a suffi-
ciently moderated noise implies a small departure of x̂b from the ideal solution
corresponding to b = 0. However, M is in general non-invertible, and different
situations can occur. If m > rank(M) then this equation admits multiple so-
lutions, whenever a solution exists. This is the case when m > p, for instance
if M realizes a masking of the underlying signal. If p > rank(M), then the
equation y = Mx doesn’t necessarily admit a solution. The problem is said
to be ill-posed. In general one is more concerned with the solutions multi-
plicity than with the strict invertibility of M ; indeed, it is not suitable to
actually solve the equation y = Mx because of the noise. Besides, even if M

is perfectly invertible, estimating x might be tricky from a numerical point
of view, depending on M’s conditioning number, which is defined thereafter.
The condition number of M is defined as

κ(M) = |||M|||
∣∣∣∣∣∣M−1

∣∣∣∣∣∣, (II.9)

where |||·||| is a subordinate matrix norm to some vector norm ‖ · ‖ in Rm.
Assuming that y1 = Mx1 and y2 = Mx2, the following important relation
holds :

‖x2 − x1‖
‖x2‖

= κ(M)
‖y2 − y1‖
‖y2‖

. (II.10)

If κ(M) takes a large value, then a small change in the observation space
can translate into a large change in the undistorted signal space, and the
matrix M is then said to be ill-conditionned. This is typically the case in
deconvolution problems where M represents a convolution with a low-pass
filter. As illustrated in Fig. II.2, even with a very small amount of noise, the
signal estimated by direct inversion of M can dramatically depart from the
truth, even if strictly speaking, the solution of y = Mx continuously depends
on the observation.

Ill-conditioning besides implies an amplified sensitivity to round-off errors
due to the finite machine numerical precision.

Most inverse problems are ill-posed and/or ill-conditioned. Both cases are
illustrated in Fig. II.3.

This requires the practioner to regularize the problem which is making
use of prior knowledge of the signal of interest in order to narrow down the
domain of possible solutions and stabilize the inversion process. We present
some classical regularizers in the next section.

A.3 Regularization
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Figure II.2 – Deconvolution by direct convolution kernel inversion ; from
the left to the right : reference undistorted image and blurring kernel,

blurred image, restored images by direct inversion in Fourier domain, for
snr = 1012, 109 and 106 respectively.

Figure II.3 – Ill-posedness and ill-conditioning in inverse problems :
different signals in the undistorted signals space can be mapped to the same

observation, which implies ill-posedness ; more generally, significantly
different signals in the undistorted signals space can be mapped to very close

observations as a consequence of ill-conditioning.

A.3.1 Approximated problem

As precised in the previous section, given an observed signal y, it is not
suitable to exactly solve the equation y = Mx because of noise and modeling
imperfection. However one wants y and Mx to be close in some convenient
sense that depends in general on the noise statistics. Precisely, the departure
is measured as C(y,Mx), where C is a positive cost function which verifies

∀(u,v) ∈ Rp × Rp C(u,v) = 0⇒ u = v. (II.11)
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Thus a perfect solution can be recovered by minimizing J(x) = C(Mx,y)

when the problem is well-posed.

Example A.1. — In numerous applications, the noise is assumed to be a
realization of a gaussian random vector B ∼ N (0, σnIp). Thus, the obser-
vation y is a realization of a gaussian random vector Y ∼ N (Mx, σnIp).
Under this probabilistic model, the likelihood of x immediately gives
one the popular quadratic cost C(y,Mx) = 1

2
‖y − Mx‖2

2. More ge-
nerally, if B ∼ N (0,V) for an arbitrary positive definite correlation
matrix V, then the log-likelihood derived cost function is C(y,Mx) =
1
2
(y −Mx)TV−1(y −Mx).

— If additionally the observation contains spurious artefacts (for example
cosmic rays impact print in astronomical images), it is suitable to require
a weaker data fidelity on the largest observation entry. This leads one
to outliers-robust cost functions such Huber loss [Chen et al. 2014] :

C(y,Mx) =

{
1
2
‖y −Mx‖2

2 if ‖y −Mx‖2
2 ≤ β,

β‖y −Mx‖1 − β2

2
otherwise.

(II.12)

— Often, digital images can be corrupted by an additive impulsive noise due
to malfunctioning optical sensors, transmission errors, etc. Such noise
can be model as a realization of a laplacian random vector, yielding an
`1 cost : C(y,Mx) = ‖y −Mx‖1 [Yang et al. 2009].

— Similarly, if the signal is dominated with the so-called Poissonian noise,
the natural cost function in a bayesian sense is the Kullback-Leibler
divergence : C(y,Mx) =

∑p
i=1 y[i] log( [Mx][i]

y[i]
) (see for example [Dupé

et al. 2011]) ; this cost is in general suitable when handling positive
data.

We use a quadratic cost in the chapters IV and V. However astronomical
images are actually corrupted with a mixed Poisson-Gaussian noise. Still,
the corresponding likelihood-derived cost can be readily integrated into the
proposed restoration schemes [Jezierska et al. 2013]. Note that even if the
function C is a strictly convex function, the cost C(y,Mx) might have multiple
global minimum in x if the problem is ill-posed. Since then, the inversion task
consists in selecting a solution in the vicinity of one of a minimizer of the cost,
based on prior information on the signal to be estimated. This is detailed in
the following section.

A.3.2 Examples of regularizers

Tikhonov regularization One of the simplest information that can be
used in an inverse problem is that the restored signal’s energy, measured by
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its squared `2 norm, can not be too large. This can be done by solving the
following optimization problem :

min
x

1

2
‖y −Mx‖2

2 + λ‖x‖2
2, (II.13)

where the regularization parameter λ balances the strength of the constraint
on the solution’s energy against the accuracy of the data fit ; intuitively, one
can anticipate that the practical choice of λ will be tight to the noise level.
This is a particular instance of the widely used Tikhonov regularization me-
thod. Besides, if M represents a circular convolution, it can be shown that
the solution of II.13 is the optimal estimate of x in the sense of Wiener [Le-
vinson 1946] for the particular choice λ = SNR−1.

Problem II.13 can be turned into the more generic following form,

min
x

1

2
‖y −Mx‖2

2 + λ‖Γx‖2
2, (II.14)

where the matrix Γ allows for making use of diverse a priori. This regulari-
zation method became particularly popular due to its application to integral
equations by the mathematician and geophysicist Andrey Nikolayevich Ti-
khonov [Tikhonov & Arsenin 1977]. Typical choices for Γ are finite difference
approximations of gradient and laplacian operators which in both cases al-
lows for limiting high frequencies energy in the restoration process. Problem
II.14 can be interpreted in a Bayesian framework. Indeed, assuming that the
unobserved signal x is a realization of a random vector X verifying

ΓX ≡ N (0, σsIp), (II.15)

then problem II.14 is equivalent to a Maximum a Posteriori (MAP) esti-
mation of x, for λ = σ2

n

σ2
s
. We recall the probabilistic model of the noise :

B ∼ N (0, σnIp). If Γ is a discrete approximation of a gradient operator, then
II.15 reads as a brownian motion-like model on the latent signal [Karl 2005],
which clearly misses local correlations inherent to natural images for instance.
As anticipated in the case Γ = Ip, Tikhonov regularization yields a signal es-
timate which depends linearly upon the observation. This is convenient since
the uncertainty on the estimate is straightforwardly characterized, which is
particularly suitable in cosmology for large scale statistical studies [Bobin
et al. 2015]. However, high frequency informative content and noise are iden-
tically attenuated (or preserved), yielding overly smoothed (or noisy) solu-
tions. This limitation motivated the study of non quadratic regularizers. We
consider the general formulation of the estimation problem

min
x

1

2
‖y −Mx‖2

2 + λR(x), (II.16)

Tikhonov regularization being a particular instance.
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Some non quadratic regularizers One of the most widely used non qua-
dratic regularizer is certainly the entropy defined as

H(x) = −
p∑
i=1

x[i] log(x[i]), (II.17)

where x is assumed to be a discrete probability distribution. The choice
R(x) = −H(x) is particularly sound when the only prior available is the posi-
tivity (see [Dominikus 1997] and the references therein). Indeed, maximizing
the entropy yields a solution with less structural information or equivalently it
enforces pixels values similarity. According to Shannon’s interpretation of the
entropy from the information theory perspective, this yields the most "natu-
ral" solution, whenever the positivity prior applies. Although this constraint
implies a smoothness of some sort, it doesn’t limit the frequency band of the
signal to be restored, making sharp details restoration in principle possible,
while smoothing the noise out [Frieden 1972]. A thorough presentation of en-
tropy based regularization for image processing can be found in [Starck &
Murtagh 2006]. However, by construction, this approach doesn’t specifically
account for natural signal or images properties, among which the presence of
discontinuities.

This leads us to the important total variation regularization. Firstly used
for image denoising in the foundationnal work by Rudin, Osher and Fa-
temi [Rudin et al. 1992], total variation based restoration has recently known
a renewed interest in the signal processing community due to theoretical and
algorithmic advances ; see [Chan et al. 2006] and [Chambolle et al. 2010] for
comprehensive reviews. Total variation has been defined and theoretically ana-
lyzed mostly in a continuous setting ; however the following discrete approxi-
mation is commonly used :

R(x) = ‖x‖TV =

p∑
i=1

‖[∇x]i‖2, (II.18)

where [∇x]i is the finite difference approximation of the gradient of the conti-
nuous signal underlying x at x[i]. If x represents a 1D signal, [∇x]i is a scalar
and the total variation closely resembles a Tikhonov regularizer with a Ti-
khonov matrix chosen a discrete gradient operator. However, one can get a
good intuition of the key difference between the two by taking a bayesian
standpoint. Indeed, one can interpret the total variation constraint as follo-
wing from a probabilistic Laplace model on the gradient distribution of the
underlying signal in the 1D case. Thereby, all else being equal, strong gradient
values are more likely for this model than for the gaussian model associated
with a Tikhonov regularization. Thus, sharp discontinuities can be allowed
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in the MAP solution while spurious variations associated with noise remain
penalized.

As we will see in the next section, the discrete total variation can be
seen as a particular instance of a larger class of non-smooth regularizers re-
lying on deterministic low complexity priors on the signals. We complete these
examples with `∞ norm based regularization. Indeed, in certain applications
mostly related to digital communications, one might want to recover a flat
signal or correlatively, compute and transmit a "democratic" or "anti-sparse"
representation of a given signal for noise resilience and efficient amplifiers si-
zing (see the references and examples in [Elvira et al. 2015]). This is done
by imposing a sufficiently low maximal amplitude bound on the signal to be
computed, which can be achieved by choosing R(x) = ‖x‖∞. The penalized
regressions presented so far can be interpreted as MAP estimations yielding
the so called bayesian methods ; in a statistical framework, the problem of
choosing the regularization parameter is exchanged with that of modeling the
uncertainties on the observed and underlying signals (see [Wong et al. 2015]
and the references therein). However, let underline the MAP interpretation
might be misleading because

— the MAP estimators do not follow in general the probability distribution
used as a prior [Nikolova 2007] and

— their might be other valid bayesian interpretations of the MAP estima-
tors [Gribonval 2011].

Implicit regularizers We now give examples of regularization schemes that
unlike the methods presented so far do not calculate the minimum of an ex-
plicitly defined functional. We first consider the Truncated Singular Value
Decomposition (TSVD) method [Hansen 1987]. We recall that the observa-
tion matrix M ∈ Mpm(R) (Eq. II.8). The SVD of M is given by following
factorization :

M = UΣVH (II.19)

where the matrices U ∈ Mp(C) and V ∈ Mm(C) are unitary and Σ is a
(rectangular) diagonal matrices which diagonal elements are noted σ1 ≥ · · · ≥
σmin(p,m) ≥ 0. The scalars σi are called the singular values of M and somehow
generalizes the notion of eigenvalues to non-square matrices. Thus,

M =
t∑
i=1

σiU[:, i]V[:, i]H , (II.20)
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where t = min(p,m). We note t+ the index of the smallest non-zero singular
value of M. The vector

x̂ =
t+∑
i=1

U[:, i]Hy

σi
V[:, i] (II.21)

is the solution of the optimization problem

min
x

1

2
‖x‖2

2 s.t. x = argmin
t

1

2
‖y −Mt‖2

2 (II.22)

In words, x̂ is the minimal energy minimizer of the functional J(x) =
1
2
‖y−Mx‖2

2 ; x̂ is therefore the unique solution when the problem is well-posed.
If M represents a circular convolution, then VH is nothing but the matrix re-
presentation of the Discrete Fourier Transform (DFT) and U = V [Gray 2005].
Thereby, U’s columns are discretized complex exponentials at different fre-
quencies. Yet, in deconvolution problems as previously illustrated by Fig.II.2,
the matrix M is typically ill-conditioned and the lowest singular values are
those associated with the highest frequencies. Therefore the high frequencies
content of y, which is in general dominated by noise, is amplified in x̂. The
TSVD then simply consists in dumping the terms in Eq.II.21 associated with
the lowest singular values :

x̂TSVD =

tSVD∑
i=1

U[:, i]Hy

σi
V[:, i], (II.23)

for some user defined integer tSVD < t+. The conditions under which the TSVD
yields similar results as the Tikhonov regularization in the case Γ = Ip are
studied in [Hansen 1987]. One can note that this method makes no attempt
to reconstructing the unobserved components of the image i.e. the projection
of x on the null space of M.

Our second example is referred to as the early stopping in computational
statistics and the machine learning literature (see [Raskutti et al. 2014] and
the references therein). It relies on signals restoration using iterative schemes.
Indeed, as shown in the previous examples, solving inverse problems is in
general formulated as finding a stationary point of a certain cost function.
While in several interesting cases there is no closed-form expression to compute
the stationary points, in most cases, it can be done iteratively. We review some
families of optimization methods in a forthcoming section. Iterative schemes
generate a sequence (xk) that converges in some sense toward a stationary
point x? of the (regularized) cost function, up to the computer’s numerical
precision. The restored signal is given by x̂ = xkmax , where kmax is set in situ,
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in general based on a numerical criterion of convergence. If the problem is not
regularized, early iterates capture the low frequency content of the observed
signal whereas as k increases, the iterates get corrupted by noise. Hence, the
number of iterations itself behaves as a regularization parameter, which is
the whole point of early stopping. This regularizing effect can be precisely
characterized for the simple Landweber iterations scheme [Landweber 1951]
which uses in the update formula :

xk+1 = xk − µMT (Mxk − y), (II.24)

where k ∈ N, µ ∈]0, 2/σ2
1[, σ1 being the highest singular value of M. If x0 = 0,

then one can verify that the kth iterate is given by [Karl 2005]

xk =
t+∑
i=1

(1− (1− µ ∗ σ2
i )
k)

U[:, i]Hy

σi
V[:, i], (II.25)

where t+ has been previously defined as the index of the smallest non-zero
singular value of M. Thus, the Landweber scheme effectively "re-weights" the
un-regularized problem minimal energy solution given in Eq. II.21 with a set
of varying weights identified as

wi,k = 1− (1− µ ∗ σ2
i )
k, (II.26)

for i ∈ J1, t+K. The weights variations as a function of the singular values is
illustrated in Fig. II.4, for different numbers of iterations. For k > 1, these
functions have a step-like shape with an inflection point localized at

σ? =
1√

µ(2 ∗ k − 1)
. (II.27)

Loosely speaking, the features associated with the singular values smaller
than σ? are penalized while the features associated with the singular values
larger than σ? are kept. Thus, the number of iterations plays the role of the
inverse of the regularization parameter in the previously described methods.

When the matrix MTM is invertible, the unregularized problem has a
unique optimum, solution of the positive definite system

MTMx = MTy. (II.28)

Thus it can be calculated using the conjugate gradient (CG) algorithm [Hes-
tenes & Stiefel 1952] which typically requires less iterations than the Land-
weber scheme. It has been shown that the kth iterate generated by the CG is
the solution of the problem

min
x

1

2
‖y −Mx‖2

2 s.t. x ∈ Kk(MTM,MTy) (II.29)
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Figure II.4 – Curve of the weight in Eq.II.26 as a function of the singular
values, for different number of iterations.

where Kk(MTM,MTy) = span({MTy, (MTM)MTy, · · · , (MTM)k−1MTy})
is the Krylov subspace generated by the matrix MTM and the vector MTy

[Freund 1992]. Again, an early stopping in the CG method regularizes the
inverse problem and the regularization weakens when the number of iterations
(and consequently the dimension of the Krylov subspace) increases.

We finally note with no formal description that the early stopping is of-
ten used in the celebrated Richardson-Lucy to mimic regularization [Prato
et al. 2012].

B Low complexity priors

In this section, we focus on the low complexity priors based regularizers.
The general idea is that the estimated signal only needs a few number of pa-
rameters w.r.t. the ambient dimension to be fully specified, which can be used
to recover well-posedness. In particular, we consider linear low complexity mo-
dels [Baraniuk & Wakin 2009] which assume that the signal of interest can be
explicitly written as a linear combination of few elements from a predefined
or adaptive collection of atoms that will be referred to as a dictionary, follo-
wing the terminology introduced in [Mallat & Zhang 1993]. This is described
explicitly in the forthcoming sections.
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B.1 Sparse models

B.1.1 Definition

A vector x ∈ Rm is strictly sparse if most of its entries are equal to zero :

‖x‖0
def
= card(supp(x))� m. (II.30)

x is said to be k-sparse if ‖x‖0 = k.
Sparse signals appear in various applications. For instance in geophysics,

the underground reflectivity can be modeled as a sparse signal (see [Claerbout
& Muir 1973]). One can also think of acoustics and especially Room Impulse
Response modeling [Sturm & Defrance 2010], and biological signal processing
(for instance electromyography signals [Liu et al. 2012]).

However, natural and especially physical signals are not strictly sparse in
general. Yet, they might be compressible in the sense that most of their energy
is captured by a few entries. This can be formalized in terms of the entries
magnitudes decay’s rate : assuming that σm is a permutation in J1,mK so that
|x[σ(1)]| ≥ · · · ≥ x[σ(m)]|, x is compressible or weakly sparse if ∀k ∈ J1,mK,

|x[σ(k)]| ≤ Rk−s, (II.31)

for some strictly positive reals R and s.
We note x(k) the best k-sparse approximation of x, for some k < m. x(k)

is obtained by setting the m−k lowest amplitude entries of x to 0 so that the
approximation error verifies

Ex,k
def
= ‖x− x(k)‖2

2 =
m∑

i=k+1

x[σ(i)]2 ≤ R2k
−2s+1

2s− 1
, (II.32)

if s > 1/2. Thus, for a given level of accuracy, the higher is s, the lower k can
be chosen and therefore the more compressible is the signal.

The definition above describes signals which are approximately sparse in
their direct domain of representation, or more formally, in the canonical basis
of Rm. Yet, structured signals such as piece-wise smooth or oscillatory ones
can be represented in alternative basis which better takes into account their
specificity, yielding a faster decay of the sorted representation coefficients am-
plitudes. This is illustrated in the figures II.5 and II.6 for a gravitational
waves signal (see [Abbott et al. 2016] for more details).

Therefore, more generally a signal is compressible if it can be written as

x =
K∑
i=1

aidi, (II.33)
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Figure II.5 – On the left, the first detected gravitational waves signal,
measured by the LIGO Hanford (credit : www.ligo.org) ; the x axis is the
time and the y axis is the gravitational waves strain, which quantifies the

space-time distortion. On the right, the DCT of this signal (truncated to the
first 500 hundred samples for clarity, the discarded values being negligible).

Figure II.6 – The sorted magnitude of Fig. II.5’s signals. The
gravitational is clearly sparser in the sense of Eq.II.31 in the DCT domain,
although more targeted transforms might have been used (see for example

the chirplet transform in [Mann & Haykin 1995]).

or compactly,
x = Da, (II.34)

for some dictionary D
def
= [d1, · · · ,dK ] defined independently of x, where the
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vector a
def
= (ai)1≤i≤K meets the condition of Eq.II.31. The direct domain

sparsity corresponds to D chosen as the canonical basis of Rm.

B.1.2 Promoting sparsity

Now we turn to the linear inverse problem of Eq.II.8 and we assume that
the signal x is at least weakly sparse, w.r.t. some dictionary D. This prior can
be naturally taken into account through the following constrained optimiza-
tion problem :

min
a

1

2
‖y −MDa‖2

2 s.t. ‖a‖0 ≤ β, (II.35)

where β sets the minimal level of sparsity required. Let consider the set of
admissible solutions, often referred to as the feasible set in numerical optimi-
zation literature :

B0
RK (0, β)

def
= {a ∈ RK/‖a‖0 ≤ β}. (II.36)

Assuming that β ≥ 1, it can be decomposed as follows :

B0
RK (0, β) =

bβc⋃
k=1

⋃
J∈P(J1,KK)/card(J)=k

span({di}i∈J), (II.37)

where for a set E, P(E) is the set of subsets of E. The structure of this set
shows how difficult the resolution of the problem II.35 might be :

— B0
RK (0, β) is non-convex because of the denumerable unions, while

convexity is crucial in solving efficiently optimization problems ; the in-
terested reader might have a look at [Boyd & Vandenberghe 2004] ;

— as K increases, the number of subsets in B0
RK (0, β) rapidly becomes

too large for a brute force global resolution of the problem II.35 to be
tractable.

Thus, the `1 norm is generally used as a convex relaxation of the `0 pseudo-
norm, which have been justified in different ways. The most natural argument
is based on the simple remark that the unitary `1 ball B1

RK (0, 1) is the convex
hull of the intersection of the unitary `0 ball B0

RK (0, 1) with the unitary `∞
ball B∞RK (0, 1). In [Chen et al. 2001], Linear Programming (LP) arguments are
used to support the fact that `1 minimization promotes sparsity. Thereafter,
outstanding results are established showing that if the underlying signal is
sufficiently sparse (or compressible), `1 norm minimization can yield an exact
or stable recovery [Elad & Bruckstein 2002,Donoho 2006,Candès et al. 2006].
More recently, a generic and formal framework has been introduced in [Chan-
drasekaran et al. 2010] for translating simplicity priors into convex penalties ;
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in particular, the `1 norm emerges in this framework as the atomic norm
associated with the set of 1-sparse unitary vectors in the sparse signal’s space.

Hence, we consider the optimization problem

min
a

1

2
‖y −MDa‖2

2 s.t. ‖a‖1 ≤ β, (II.38)

or equivalently in its augmented lagrangian form

min
a

1

2
‖y −MDa‖2

2 + λ‖a‖1 (II.39)

for some well-chosen λ [Ciak et al. 2013]. These problems can be solved effi-
ciently.

In certain applications such as DNA microarray analysis [Schena
et al. 1995], the signal of interest is known to have groups of entries which are
correlatively significant or negligible. The paradigms of group or block spar-
sity have been introduced for taking into account this particular prior [Huang
et al. 2010,Peyré & Fadili 2011]. Specifically, one needs to define a partition
{G1, · · · , Gq} of J1, KK which we recall requires that

⋃q
i=1 Gi = J1, KK and

Gi

⋃
Gj for i 6= j. The ell1 norm is then replaced by the `1,2 norm defined as

‖a‖1,2
def
=

q∑
i=1

‖a(Gi)‖2, (II.40)

where a(Gi) is the vector obtained by extracting a’s entries indexed by Gi.

Remark : note that the earliest sparse recovery attempts consisted in sol-
ving approximately the `0 constrained problem II.35 via greedy methods, na-
mely the celebrated Matching Pursuit [Mallat & Zhang 1993] and the Ortho-
gonal Matching Pursuit [Pati et al. 1993]. Several methods have been proposed
since then for `0 minimization, like for instance the Iterative Hard Threshol-
ding (IHT) (see for example [Starck et al. 2004,Starck et al. 2005]) ; the IHT
is thoroughly analyzed in [Blumensath & Davies 2008] and [Blumensath &
Davies 2009]. Let finally note a more recent trend which consists in approxi-
mating the `0 pseudo-norm with the so called `p norms, with 0 < p < 1 [Zheng
et al. 2015].

B.1.3 Analysis formulation of the sparsity prior

According to the model II.33, the coefficients computed by solving II.39
enable one to (approximately) synthesize the underlying signal x using the
dictionary D atoms. Hence the terminology of synthesis formulation used
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when D 6= Ip. Alternatively, one can adopt the analysis formulation which
has the following form :

min
x

1

2
‖y −Mx‖2

2 + λ‖DT
Ax‖1, (II.41)

for some dictionary DT
A. In this case, one looks for a signal compatible with the

data and strongly correlated with only a few atoms in DA. Although very simi-
lar, the analysis and synthesis formulation are only equivalent if the dictionary
involved is square and invertible [Elad et al. 2007]. Precisely, if DT

A = D−1,
then a vector x? is the solution of Problem II.41 if and only if DT

Ax? is the
solution of Problem II.39. This is crucial from applications standpoint because
of the importance of overcomplete dictionaries in sparse recovery as we will
shortly detail. Let first mention that the total variation based regularization
falls into this framework in the 1D case with DA chosen as the transpose of
the matrix representing of the finite difference approximation of the gradient.
Therefore, this penalty is particularly suitable for (approximately) piece-wise
constant signals or equivalently signals that have a sparse gradient. The total
variation in 2D can also be expressed in the analysis framework, but involving
an `1,2 norm (see Equation II.40).

In this example, the analysis formulation is weaker that the synthesis one
in a certain sense. Indeed, when the dictionary DA has fewer atoms than the
underlying signal’s space dimension, the analysis enables one to promote some
regularity on the signal without completely specifying its structure. Precisely,
the signal is only imposed to be orthogonal to certain columns of DA whereas
in synthesis, the signal is explicitly described as a linear combination of some
of the dictionary’s atoms.

B.1.4 The dictionary

The dictionary choice is in first instance driven by the signal’s structural
specificity. Indeed, the signal can only be sparsely encoded in the dictionary
if some of its atoms closely resemble the signal main features. Let give a few
classical examples :

— the DCT dictionary is suitable for oscillatory signals as already illustra-
ted ;

— standard wavelet bases are optimal for encoding signals with isolated
singularities [Mallat 1999] ;

— in presence of "extended" singularities with geometrical regularity such
as edges, the curvelet dictionary are more adapted [Candès & Do-
noho 2004].
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Because of the tremendous morphological diversity of natural signals and the
success of sparse recovery in various applications (see [Zhang et al. 2015] and
the references therein), the task of designing increasingly adapted transforms
and dictionaries has considerably polarized the recent signal processing lite-
rature. This is well illustrated by [Jacques et al. 2011] and [Duval 016]. One
can note that a particular focus has been put on the so-called multiscale re-
presentations. Indeed, characteristic features can appear at multiple scales,
which in general are not known beforehand. Similarly, translation invariance
is an important dictionary feature [Coifman & Donoho 1995]. Besides images
generally contain structurally different features, so that each "structural" com-
ponent of the image can be sparsely represented in a different dictionary. In
this case, a better dictionary, from the sparse recovery standpoint, is obtai-
ned by concatenation. This is the basic rational behind the Morphological
Component Analysis [Starck et al. 2004] and its different extensions.

More generally, geometrical invariances requirement and transforms combi-
nation yield overcomplete dictionaries, which have been proven very powerful
in sparse signal recovery [Starck et al. 2015]. We now recall two theoretical
results which are important to bear in mind when building or choosing a dictio-
nary. The first one concerns the uniqueness of sparse representations in over-
complete dictionaries. We consider two orthonormal bases D1 = [d11, · · · ,d1p]

and D2 = [d21, · · · ,d2p], and we consider a vector x in Rm we note α the spar-
sest vector verifying

x = [D1,D2]α. (II.42)

It is shown in [Elad & Bruckstein 2002] that if

‖α‖0 ≤
1

2
(1 +

1

µ(D1,D2)
), (II.43)

then α is unique and can be calculated via an `1 minimization, µ(D1,D2) =

max
1≤i,j≤p

{dT2id1j} being the so-called mutual coherence of the basis D1 and D2.

This suggests that in general, having strongly correlated atoms withing the
dictionary is susceptible to undermine the (`1 norm based) sparse recovery.
The second result gives an indication on the dictionary choice, with respect
to the observation operator in Problem II.39. Precisely, we assume, among
other omitted hypothesis, that there exists an m ×m − p matrix U so that
M̂ = [MT ,U]T is an orthogonal matrix. Then, the smaller is µ(M̂T ,D), the
less observation are needed for achieving a given level of accuracy in the sparse
recovery, in probability [Candès & Romberg 2007].

In words, the more D atoms have spread representations w.r.t. M̂T , the
more the recovery is robust to under-determination.
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Dictionary learning So far, we have mentioned dictionaries derived analy-
tically and which are in general optimal for representing certain formal classes
of signals. However, in certain applications, one disposes of data samples that
are structurally similar to the signal. Hence the natural idea of learning the
dictionary directly from the data. Precisely, given a training set x1, · · · ,xq,
the core idea is to simultaneously calculate a dictionary DL and a set of sparse
vectors a1, · · · , aq so that

xi ≈ DLai, (II.44)

∀i ∈ J1, qK. Dictionary learning has been successfully applied in various ap-
plications like for instance in astronomy [Beckouche et al. 2013b], for Blind
Source Separation [Bobin et al. 2007], neuroscience [Varoquaux et al. 2011]
and more generally natural images restoration [Elad & Aharon 2006], [Mairal
et al. 2008]. It seems worth noting that while most dictionary learning methods
focus on the synthesis formulation of sparsity, a few work exists that are based
on the analysis model (see [Rubinstein et al. 2013] and the references therein).
In both cases, the dictionaries learned are in general unstructured so that they
have to be fully stored and explicitly used in matrix-vector products. This is
an important consideration from a practical point of view since non-adaptive
dictionaries such Wavelets, DCT or Curvelets dictionaries are associated with
fast implicit implementations, which makes them computationally efficient.

B.2 Low rankness

In this section, the signal of interest is represented by an m × q matrix
X = [x1, · · · ,xq] which is convenient in various applications such as video or
multichannel signal processing. The observation model is adapted as follows :

Y =M(X) + B, (II.45)

whereM is a linear operator and Y ∈ Mpq(R).

B.2.1 Definition

The (algebraic) rank is defined as follows :

rank(X)
def
= dim(span((xi)1≤i≤q)) = rank(XT ). (II.46)

X will be said to have a low rank if

rank(X)� min(m, q). (II.47)

To get an intuition of the practical interest of this quantity, let assume that
X is an hyperspectral image, with the convention that the ith column xi
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corresponds to the ith band image. Each line of X can be modeled as a linear
combination of deterministic spectra related to the materials present in the
scene [Chang 2003]. Thus, if the scene contains exactly s different materials,
then the rank of X is at most equal to s ; this is particularly interesting
when only a few materials are preponderant in the scene. As illustrated by
this example, in general, constraining the rank allows one to account for the
redundancies present in the data to be restored.

We note a(X) = (ai)1≤i≤t the singular values of X, with t = min(m, q).
Then we have

rank(X) = ‖a(X)‖0. (II.48)

Recalling that X can be written in the form

X =
t∑
i=1

aiUi, (II.49)

where the Uis are rank one matrices, the low rankness clearly appears as
an extension of the notion of compressibility to matrices. Precisely, the rank
quantifies the complexity of a linear model that would perfectly fit the data
stored in the considered matrix.

B.2.2 Constraining the rank

As seen in the previous section for the `0 norm, the direct problem

min
X
‖Y −M(X)‖2

F s.t. rank(X) ≤ β (II.50)

is combinatorial and NP-hard [Fazel 2002]. Thus, various heuristics have been
proposed for promoting low rankness.

Trace heuristic The trace function has been successfully used as a surro-
gate for the rank [Pare 2000] when the estimated matrix is positive semidefinite
matrix (PSD). This yields a convex tractable problem. Observing that in this
case Trace(X) = ‖a(X)‖1 (see Eq.), this heuristic can be understood as an `1

based sparsity promoting approach.

Log-det heuristic In a similar vein, a particularly fruitful idea has been to
use the function Y 7→ log(det(Y + δIm)) as a smooth surrogate of the rank
function on the cone of m×m PSD matrices [Fazel et al. 2003]. While being
concave, it yields a reweighted-`1 like minimization on the singular values
[Candès et al. 2008]. Thus it can be considered as a refinement of the trace
heuristic. In the same work, the authors derive an extension to arbitrary non
square matrices.



40 Chapitre II. Low complexity data models in inverse problems

Nuclear norm heuristic The most popular popular rank surrogate func-
tion is certainly the nuclear norm defined as the sum of the singular values of
a given matrix [Fazel et al. 2001] :

‖X‖? = ‖a(X)‖1. (II.51)

This extends the trace heuristic to arbitrary non square matrices. The nu-
clear norm can be considered the most suitable convex function for promoting
low rankness in more than one respect. Similarly to the `1 norm, the nuclear
norm has been shown to be the convex envelop of the rank function on the
set matrices {Y/‖S(Y)‖∞ ≤ 1} [Fazel et al. 2001], where S(Y) is the vector
of singular values of Y and therefore, ‖S(Y)‖∞ is Y’s spectral norm. A more
recent point of view, previously invoked for the `1 norm, derives the nuclear
norm as the atomic norm associated with the set of rank one matrices with
unitary spectral norm [Chandrasekaran et al. 2010]. Most importantly, various
low rank matrices recovery guarantees using nuclear norm have been establi-
shed, with a striking analogy to `1 based sparse recovery results (see [Recht
et al. 2010,Candès & Plan 2010,Candès et al. 2011,Candès & Recht 2009]).
Low rank minimization has been successfully applied in various task such as
matrix completion, for recommendation systems or missing data problems,
background detection in videos and hyperspectral images restoration.

Matrix factorization In certain applications, the rank of the matrix under
estimation that we denote r is known. While it is not straightforward to
translate this information into a suitable value of the regularization parameter
in a nuclear norm minimization, one can directly impose the rank through a
matrix factorization. Indeed, the following equivalence holds :

rank(X) ≤ r ⇔ ∃(S,A) ∈ Mmr(R)×Mrq(R)/X = SA (II.52)

which suggests the alternative formulation of the inverse problem

min
(S,A)∈Mmr(R)×Mrq(R)

‖Y −M(SA)‖2
F . (II.53)

This problem is globally non convex. However it is bilinear in S and A and
hence partially convex for each of these matrices. Moreover this approach
enables one to incorporate more priors by adding constraints on S and A.
This yields important frameworks such as Non-negative Matrix Factorization
(NMF) [Wang & Zhang 2013], or Sparse NMF [Kim & Park 2007].

Matrix factorization and nuclear norm minimization have complementary
aspects and depending on the prior knowledge available, one might be more
suitable than the other. However, an attempt of using the two in an unified
framework can be found in [Cabral et al. 2013].
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Remark : in certain applications such as system reduction or identification,
the low rank matrices of interest are known to have a specific structures which
can be usefully integrated in the estimation process. This yields alternative
rank minimization methods and algorithms [Markovsky 2008].
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In Chapter II, we presented how signals structural properties can be used
for regularizing inverse problems, with a focus on linear low complexity data
models. This chapter goes beyond the framework of dictionaries based repre-
sentations and transforms and considers more general non linear data parame-
trizations ; the main idea being to uncover and exploit the non linear geometry
underlying a data set, especially when this geometry is simple, in a sense to
be defined.

In Section A.2, we recall important geometric notions with this respect.
We refer the interested reader to [Flaherty & do Carmo 2013] for a more
detailed presentation. Then we present an overview of Manifold Learning (ML)
main techniques. Section B is an introduction to Optimal Transport (OT).
The emphasis will be put on certain geometrical properties of OT that are
particularly interesting from a data analysis standpoint.

A Manifold data model

A.1 Reminder on differential geometry

A.1.1 General definitions

A d-dimensional manifold can be though of as a collection of points M
which resembles Rd in each points neighborhood. For instance an `2 sphere in
R3 is a 2-dimensional manifold. We precise the definition using the notions of
charts and atlases. A bijective map φ between a subset X ofM and an open
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subset of Rd is called a d-dimensional chart of M denoted (X , φ). For each
point x, the vector φ(x) constitutes its coordinates in Rd ; φ−1 is referred as
a parametrization of M around x. Thus, M can be viewed as an union of
suitably chosen coordinates patches or charts.

It follows naturally that each point ofM shall belong to at least one chart’s
domain and that two overlapping charts shall give consistent information,
which yields the notion of atlas. A smooth atlas ofM in Rd is a collection of
d-dimensional charts (Xi, φi)i∈Ω for some indexation domain Ω verifying

1.
⋃
i∈ΩXi =M

2. for (i, j) ∈ Ω2, i 6= j/ Xi
⋂
Xj 6= ∅, then the sets φi(Xi

⋂
Xj) and

φj(Xi
⋂
Xj) are open and the map φi ◦ φ−1

j : Rd → Rd is smooth on
φj(Xi

⋂
Xj).

IfM is a set of geographical locations on the Earth surface, then the notion
of atlas recovers its common assertion.

The maximal atlas A+ generated by an atlas A is the atlas defined as the
set of the all the charts (X , φ) such that A

⋃
(X , φ) is also an atlas of M.

This can be viewed as the minimal structure required for extending differen-
tial calculus from linear subspaces to arbitrary sets. Indeed, the study of a
functional f : M → R can be replaced on the domain of a particular chart
(X , φ) in A+ with the study of the vector space functional

f̂ : Rd → R, x 7→ f(φ−1(x)), (III.1)

on the set φ(X ). Thus, a maximum atlas is also referred as a
differentiable structure on theM. From this, a manifold can be formally de-
fined as couple (M,A+) of a set of points and its differentiable structure
(when it exists). By a slight abuse of notation, in general we will only useM
for referring to the manifold.

There are numerous interesting examples of manifolds. At this point we
only mention the particular case of vector spaces which, thereby, are often
referred as linear manifolds, the subject of this section being the non linear
manifolds. In the following, we focus on connected manifolds i.e. manifolds
which points can not be represented as the union of two or more disjoint
nonempty open subsets.

A.1.2 Manifold’s first order geometry

A curve on a manifoldM is defined as a function γ : R→M. Assuming
thatM is a submanifold of a vector space E , a tangent vector at a point p of
M is any vector v in E such that

v = lim
t→0

γ(t)− γ(0)

t
def
= γ′(0), (III.2)
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for some smooth curve γ on M which verifies γ(0) = p. The tangent space
to M at p denoted TpM is the collection of all the tangent vectors at p. If
M is a d-dimensional manifold, one can verify that TpM is a vector space of
dimension d. We note that d is often referred in applications as the intrinsic
dimension ofM by contrast to the dimension of the ambient space E. As we
will see in Section A.2, this notion is important from a practical point of view,
especially when d � dim(E). TpM can be endowed with an inner product
〈., .〉M,p which induces the norm

‖x‖M,p =
√
〈x,x〉M,p. (III.3)

The manifold M is Riemannian if 〈., .〉M,p varies smoothly with p ; in this
case, the inner product 〈., .〉p is referred as the Riemannian metric.

Riemannian manifolds and more generally, the Riemannian geometry
constitute the mathematical framework of the General Relativity ; precisely
the theory relates the Riemannian metric 〈., .〉M,p also referred as the me-
tric tensor at every space-time point to the mass/energy distribution through
the celebrated Einstein’s equations [Besse 2007]. In this physical context, the
smoothness requirement is particularly adapted.

In the Riemannian framework, the length of a smooth curve γ : [t1, t2]→
M is given by

L(γ) =

∫ t2

t1

‖γ′(t)‖M,γ(t)dt. (III.4)

This gives a mean of measuring distances on the manifold. Indeed, one can
introduce the set of smooth curves joining two points p1 and p2 inM :

Γ(M,p1,p2) = {γ : [0, 1]→M/ γ(0) = p1, γ(1) = p2 and γ smooth on [0, 1]}.
(III.5)

Then the length of the shortest path between p1 and p2 can be calculated as

LM(p1,p2) = argmin
γ∈Γ(M,p1,p2)

L(γ). (III.6)

The functional LM : M2 → R known as the Riemannian distance actually
defines a metric on M, which makes a connected Riemannian manifold a
metric space. If we consider a d-dimensional chart (X , φ) of M, φ is a local
isometry of (X , LM) in Rd, `2 if

∀ (p1,p2) ∈ X 2 LM(p1,p2) = ‖φ(p1)− φ(p2)‖2. (III.7)

Such property is particularly suitable in dimension reduction tasks when the
data are sampled from a Riemannian manifold. Furthermore, if LM is a eu-
clidean norm, then the manifold is qualified as intrinsically euclidean.
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A.1.3 Geodesics on Riemannian manifolds

Certain curves on M have the property that they induce shortest paths
locally. It is the case of the great circles ifM is a sphere in R3. These curves are
called geodesics and we recall thereafter some related properties [Lee 2006].
Formally, a curve γ on a Riemannian submanifold M of a vector space is
a geodesic if the acceleration vector is permanently normal to the tangent
plane :

γ′′(t) ∈ Tγ(t)M⊥ (III.8)

for any t in the domain of γ. This implies in particular a constant velocity
along the curve :

‖γ′(t)‖M,γ(t) = c. (III.9)

Recalling Eq.III.4, this yields an interesting property of geodesics, which is,
they are parametrized with an affine function of the arclength. As a simple
example, the geodesics in a vector space are the constant speed straight curves.
A geodesic is minimal if its length is smaller than the lengths of all the smooth
curves on the manifold joining its endpoints. The length of the minimal geo-
desic is nothing but the Riemannian distance between its endpoints, hence
the terminology of geodesic distance sometimes found in the literature. Any
sufficiently small segment of a geodesic is minimal. An interesting property
from a practical point of view is that if a geodesic is minimal on an interval
I, then its restriction to any subinterval of I is also minimal.

However, the shortest path between two points of a connected Riemannian
manifold need not to be a geodesic, even up to a change of parametrization.
Geodesically complete Riemannian manifolds are precisely those in which any
two points can be connected through a geodesic. In particular, in this case
minimal geodesics exist for any two points.

A nice connection between the metric space (M, LM)’s topology andM’s
geodesics is given the Hopf-Rinow theorem [Hopf & Rinow 1931] : among
other equivalences, it states that (M, LM) is (topologically) complete if and
only ifM is geodesically complete.

A.2 Manifold learning techniques

The computational applications of manifold data models are two-fold. On
the one hand, there are situations where one needs to estimate a signal that
belongs to a known manifold. One can find some examples related to matrices
manifolds in [Absil et al. 2009]. An application to natural signals and images
restoration can be found in [Peyré 2009]. This first framework boils down
to solving optimization problems on non linear manifolds, which constitutes
a research area on its own. Among other recent contributions, we can cite
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[Bacák et al. 2016] and some references therein. Conversely, one might have
a data set (approximately) sampled from an unknown manifold and instead
try to uncover the underlying manifold geometry. This can serve purposes
of visualization, classification or data synthesis. We term Manifold Learning
(ML) the corpus of techniques aiming at characterizing a manifold from a
set of samples lying on or close to the manifold. This has been a particularly
active field in the Machine Learning community over the past decade. We
review thereafter some of the most influential contributions.

Unless mentioned otherwise, the following notations holds in this section :

— (xi)1≤i≤N is the learning data set ;

— the learning set is sampled from a submanifoldM of Rm ;

— (yi)1≤i≤N is the low dimensional representation of the training set ;

— d might refer to the intrinsic dimension of M or the dimensionality of
(yi)1≤i≤N .

A.2.1 Multidimensional scaling

The multidimensional scaling (MDS) refers to a set of techniques that aims
at determining the underlying attributes and the spatial organization of a set
of objects based on measurements of pairwise similarities (or dissimilarities)
between the objects. We limit our presentation to the so-called classical MDS.
This method was originally introduced in Psychometrics for uncovering stimuli
perceptual dimensions and their scales [Torgerson 1952]. Given a set of N
stimuli, one is given a matrix D = (dij)1≤i,j≤N , where the scalar dij is a
comparative distance between the ith and the jth stimuli, which we assume
here to be positive. However, this matrix does not need to derive from a metric
function. The classical MDS computes a set of vectors (yi)1≤i≤N in Rd so that
‖yi − yj‖2 ≈ dij, ∀ (i, j) ∈ J1, NK2 by solving the optimization problem

min
y1,··· ,yN

∑
(i,j)∈J1,NK2

(dij − ‖yi − yj‖2)2. (III.10)

We note that this Problem has a known closed-form solution based on an
eigen-system decomposition of D ; this is presented in more details in Chap-
ter VI. The dimension r is a parameter and the coordinates have hierarchical
importance, which follows directly from the solution’s structure. This allows
one to visualize the object space at different scale (when d > 3). The MDS
has come to be a popular tool for exploratory data analysis. A straightfor-
ward application is the problem of recovering city coordinates from pairwise
distances. Although it is not directly meant for manifold-valued data analysis,
MDS constitutes an important step in the foundational ML technique Isomap,
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which is presented in the following section. We refer to [Borg & Groenen 2005]
for a thorough presentation of MDS.

A.2.2 Isomap

The Isomap is a non-linear dimension reduction method introduced in [Te-
nenbaum et al. 2000]. Given a data set (xi)1≤i≤N , sampled from a Riemannian
submanifold M of Rm, Isomap aims at computing a global low dimensional
chart that is isometric to M endowed with the Riemannian distance. Thus
Isomap first computes a matrix D of the pairwise approximated Riemmanian
distances on the data set, as illustrated in Fig.III.1. Then it applies the clas-

Figure III.1 – S-curve data set : Isomap estimates the riemanian distances
based on a nearest neighbor graph ; when the samples are sufficiently dense,

this prevents one from bypassing the manifold’s geometry.

sical MDS to D for computing the low dimension coordinates of the samples.
The dimension parameter r introduced in the previous section shall be ideally
chosen as the intrinsic dimension ofM. It corresponds to the number of de-
grees of freedom of the system that generated the data. Isomap is guaranteed
to recover the true underlying geometrical structure as the sampling density
tends to the infinity if the manifold is intrinsically euclidean. Besides, it can
be successfully applied for several images manifolds of interest in computer vi-
sion [Donoho & Grimes 2005]. However, the Riemannian distances estimation
step might be computationally demanding, since it involves finding shortest
paths on a potentially large weighted graph. This shortcoming is avoided in
the next approach.
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A.2.3 Local Linear Embedding

We consider the same setting as in the previous section. The Local Linear
Embedding (LLE) [Roweis & Saul 2000] lies on natural geometrical intuitions.
Firstly, if the samples are sufficiently dense then each sample’s nearest neigh-
bors approximately lie in its tangent space (in fact an affine space parallel to
this tangent space). Hence, each sample can be expressed as a linear combi-
nation of its nearest neighbors. Hence, the first step of LLE is to compute
weights matrix W = (wij)1≤i,j≤N by solving the following problem :

min
W

N∑
i=1

‖xi −
∑

j∈nnk(i)

wi,jxj‖2
2, s.t.

∑
j∈nnk(i)

wi,j = 1 ∀i ∈ J1, NK, (III.11)

where nnk(i) is the set of indexes of the k nearest neighbors of the sample
xi. Besides wij = 0 if j /∈ nnk(i). These weights are invariant under isometric
affine transformations and rescaling of the manifold. Thereby, they locally
capture its intrinsic geometry, and should remain optimal in a low dimensional
representation of the manifold that "preserves" this geometry. It follows that
the low dimension coordinates can be estimated by solving

min
y1,··· ,yN

N∑
i=1

‖yi −
∑

j∈nnk(i)

wi,jyj‖2
2, s.t.

∑
j∈nnk(i)

wi,j = 1 ∀i ∈ J1, NK. (III.12)

Interestingly, this method derives a global characterization of the manifold
from local information, which is made possible by the neighborhoods overlaps.
The same principle will appear in the next methods.

A.2.4 Laplacian Eigenmaps

As for the LLE, the Laplacian Eigenmaps methods builds over the idea of
preserving local neighborhood information. We note nn(i) the set of indexes
of the "relevant" neighbors of the ith sample. The low dimensional coordinates
are calculated by solving the problem∑

y1,··· ,yN

N

i=1

∑
j∈nn(i)

wij‖xi − xj‖2
2, (III.13)

where
wij = exp(−‖xi − xj‖2

2

t
), (III.14)

with some t > 0. Thus, neighbor samples are strongly constrained to remain
close in the new coordinate system. As previously, let introduce the weights
matrix W = (wij)1≤i,j≤N , with the convention wij = 0 if j /∈ nn(i). It is
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shown in [Belkin & Niyogi 2003] that the coordinates slices of the solution of
Problem III.13, i.e. the vectors (yi[l])1≤i,j≤N , for l ∈ J1, dK are solutions of the
generalized eigenvalues problem

Ly = λDy, (III.15)

where D is a diagonal matrix defined as D[i, i] =
∑

j∈nn(i) wij, for i ∈ J1, NK
and L = D−W. L is the laplacian matrix of a weighted graph G with N nodes
representing the data sample, the weight of the vertex between the ith and the
jth node being equal to wij [Chung 1997]. Interestingly, it is shown that for t
sufficiently small, L can be considered a discrete approximation of the Laplace-
Beltrami operator onM over the graph G. Besides, the eigenfunctions of the
Laplace-Beltrami operator onM are solution of the problem

min
f

∫
M
‖∇f(x)‖2

2dµ(x), s.t.
∫
M
f(x)2dµ(x) = 1 (III.16)

for some probability measure dµ onM. This shows that the Laplace-Beltrami
operator’s eigenfunctions tend to realize mappings of the manifold that mo-
derately affect the local samples organization. This supports the geometrical
intuition which underpins the Laplacian Eigenmaps method.

A.2.5 Hessian Eigenmaps

The Hessian-based Local Linear Embedding (HLLE) methods represents
an improvement over each of the pre-cited ML techniques in terms of preserva-
tion of the manifold’s (local) geometry [Donoho & Grimes 2003]. At the heart
of this method, a quadratic form termed the H-Functional which is defined
as

H(f) =

∫
M
‖Hf (x)‖2

Fdµ(x), (III.17)

where f is a smooth functional on the manifold, Hf (x) is the hessian matrix
of f at x and dµ is a probability measure onM. The hessian matrix is defined
in an orthogonal coordinates system in the tangent space TxM relatively to
the dot product inherited from the ambient space. This quadratic form is
well defined in the sense that it is independent of the orthogonal coordinates
system chosen in a given tangent plane. It quantifies how curvy is a functional
on the manifold, in average. To gain a better grasp of the intuition behind
this choice, let consider the family of functionals (fi)0≤i≤m defined as

fi : Rm → R, x 7→ x[i], (III.18)

∀i ∈ J1,mK and
f0 : Rm → R, x 7→ 1. (III.19)
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These functions span the set of affine and hence, flat functions on Rm. Simi-
larly, for a non-linear manifoldM, one can expect the set of flat functions on
the manifold to be related to a canonical coordinate system on the manifold.
Precisely, ifM is a Riemannian d− dimensional submanifold of Rm which is
locally isometric to an open connected subset of Rd, then the null space of H
is a d + 1-dimensional vector space consisting of the constant functionals on
the manifold and a d-dimensional space spanned by the isometric coordinates.
Thus, the HLLE derives the low dimensional representation by estimating the
null space of H based on the learning set as follows :

— for each i ∈ J1, NK, one computes a d(d+1)/2×k matrix H(i) from local
tangent coordinates so that for a functional f defined over the learning
set which is the discretization of a smooth functional f defined overM,
if we note f (i) its restriction to a vicinity of size k of the ith sample, the
vector H(i)f (i) constitutes an estimate of the entries of Hf (xi) ;

— from the matrices H(i), one builds a N ×N symmetric positive matrix
H so that H(f) ≈ fTHf ;

— ones computes d+ 1 orthonormalized eigenvectors corresponding to the
d+1 smallest eigenvalues of H ; we note these vectors u0, · · · ,ud, where
there are sorted in increasing order of the associated eigenvalues ; u0 is
associated with the eigenvalue 0 and corresponds to constant functio-
nals ; the low dimension coordinates of the ith sample are given by the
vector (uj[i])1≤j≤d.

The requirement for local isometry brings this method closer to the LLE
in which it is implicit. Besides, the H−Functional somehow resembles the
quadratic form minimized in Problem III.16, which can be rewritten in terms
of the Laplace Beltrami operator. However, the hessian is somehow more sui-
table than a laplacian for linear functions recovery [Donoho & Grimes 2003].
Furthermore, the HLLE can be applied to a wider range of manifolds than
Isomap which requires the manifold to be globally isometric to a convex subset
of Rr.

Remarks : in this thesis, we are interested in the problem of synthesizing
new samples from a manifold (namely a PSFs manifold) given a learning
sample set and according to a prescribed parametrization of the manifold.
However most of the ML techniques previously presented do not provide a
natural way of doing so, except for the LLE. For instance, in [Tenenbaum
et al. 1998], generalized radial basis functions are used for computing a map-
ping between the low dimensional coordinates and the manifold. However, the
recently introduced Geometric Multi-Resolution Analysis [Allard et al. 2012]
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seems particularly suitable in this regard. On the other hand, the reverse pro-
blem of determining the low dimension coordinates of an out-of-sample point
has been treated in several works (see for instance [Bengio et al. 2003]).

For most manifold learning techniques, including those presented here,
the manifold intrinsic dimension is a free parameter. Although in general, it
can be empirically (and efficiently) tuned from the learning procedure itself,
several methods have been proposed for estimating the intrinsic dimension
of an embedded manifold, given a learning sample (see [Little 2011] and the
references therein).

B Optimal transport

The photograph of the figure III.2 was taken by the author at the french
"Japan Expo" and shows the display table of a mangas seller. Speculatively,
we suppose that at the end of the exposition, the unsold books could fit in a
single box. The optimal transport problem arises from two trivially observable
facts in this situation :

— the seller can store the books in the box following different strategies ;
for instance he can distribute each book pile in the box as evenly as
possible, or he can try to preserve the book piles as much as possible ;

— some strategies involve more efforts in terms of mass displacement than
others. This naturally yields the question of finding the minimal effort
strategy of transportation.

Figure III.2 – Minimal effort packaging.

The first known formal study of this question traces back to the late 18th

century ( [Monge 1781]). Since then, the Optimal Transport has come to be a
remarkably fruitful topic in applied mathematics. In this section, we review the
Optimal Transport’s theory basic formalism and some important properties
of the optimal solutions.
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B.1 Problem formulations

B.1.1 Framework and basic definitions

Let consider two probability measures µ and ν defined respectively on
some measure spaces X and Y . We shall define a measurable cost function
c : X × Y → R+ which quantifies the effort of transporting one unit of mass
from a point in X to a point in Y . For a measurable map T : X → Y and a
subset B of Y ,

T−1(B)
def
= {x ∈ X/ T (x) ∈ B}. (III.20)

We say that µ is the push-forward of ν by T if

for any measurable set B ⊂ Y, ν(B) = µ(T−1(B)), (III.21)

and we note
ν = T#µ (III.22)

T is then referred as a transport map between µ and ν. This notion is illus-
trated in Fig.III.3.

Figure III.3 – Measure pushforward : the shaded surfaces should have the
same area.

B.1.2 Monge problem

The Monge Optimal Transport problem is the following :

min
T

∫
X

c(x, T (x))dµ(x), s.t. ν = T#µ (III.23)

where c(x, T (x))dµ(x) is by construction the cost of moving the elementary
mass dµx from x to T (x). In several applications, X = Y and c is chosen as
a metric on X. c is then termed the ground metric, in reference to the logistic
interpretation of the Optimal Transport.



54 Chapitre III. Beyond linear data models

The Monge’s problem imposes a transport with no mass split. In other
words, the elementary mass dµx has to be mapped to a single location in
Y . It appears intuitively that depending on µ and vu such a mapping might
not be possible (for instance if X = Y = R and if one of the two probability
measures has a dense support while the other has a discrete support in R).
We will shortly introduce a relaxation in this regard due to Kantorovitch
[Kantorovitch 1942].

B.1.3 Kantorovich problem

A transference or transportation plan between µ and ν is a probability
measure Π on X × Y that verifies∫

Y

dΠ(x,y) = dµ(x) and
∫
X

dΠ(x,y) = dν(x). (III.24)

dΠ(x,y) represents the elementary mass transferred from x to y. From this
definition, the Kantorovich Optimal Transport problem can be stated as fol-
lows :

min
T∈P(µ,ν)

∫
X×Y

c(x,y)dΠ(x,y), (III.25)

where P(µ, ν) is the set of transportation plans between µ and ν.
Note that the probability distribution of X × Y

µ⊗ ν : (x,y) 7→ µ(x)ν(y) (III.26)

is a transportation plan between µ and ν so that P(µ, ν) is always non-empty.
We refer the reader to [Villani 2003] for detailed discussions on the exis-

tence of solutions to the Monge and Kantorovich problems. However, we note
that if X = Y = Rm, for some m and if the cost is in the form

c(x,y) = ‖x− y‖pp, (III.27)

for some p > 1, the Kantorovich problem in general admits a unique solution.

B.1.4 Brenier-Benamou problem

We assume that X = Y = Rm. Let note T ∗ a solution to the Monge
problem whenever it exists. Provided that T ∗ is smooth, µ and ν obey the
relation

µ(x) = ν(T (x))| det(JT ∗(x))|, (III.28)

where JT ∗(x) is the jacobian matrix of T ∗ at x [Ambrosio & Savaré 2007]. Let
(Tt)0≤t≤1 be a family of maps defined as

Tt(x) = tx + (1− t)T ∗(x), ∀(t,x) ∈ J0, 1K×X. (III.29)
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If c(x,y) = ‖x− y‖2
2, then the function χ∗ defined on J0, 1K×X as

χ∗(t,x) = ν(Tt(x))| det(JTt(x))| (III.30)

is solution of the problem

min
χ,v

∫
J0,1K×X

χ(t,x)‖v(t,x)‖2
2 dtdx s.t. (III.31)

∂tχ+ divx(χv) = 0 (III.32)
χ(0, .) = µ, χ(1, .) = ν, (III.33)

for a vector field v : J0, 1K×X → X. This is the celebrated Benamou-Brenier
formulation of the Optimal Transport problem [Benamou & Brenier 2000]. The
map t 7→ χ∗(t, .) can be viewed as a curve in the space of probability measures
on X which joins µ to ν. This particular curve will be characterized more pre-
cisely in the next section. Let just say for now that it realizes the displacement
of elementary mass particles of the distribution µ toward the distribution ν.
Thus, v shall be interpreted as a velocity field and Eq.III.32 ensures mass
preservation through the displacement. In the same spirit, χ(t,x)‖v(t,x)‖2

2

has to be identified as a kinetic energy density in this formulation.

B.2 Geometry of optimal transport

B.2.1 The transport map structure

We consider a taxi firm which has three cars available located at xi, i ∈
{1, 2, 3} and needs to pick three potential customers up as fast as possible. The
customers are waiting at yi, i ∈ {1, 2, 3} as depicted in Fig.III.4. Assuming
homogeneous traffic conditions, this situation can be modeled as a particular
instance of the Monge problem, opportunely using the Manhattan distance as
the cost function.

The optimal assignment is easily picked up by eye. It also appears that
∀(i, j) ∈ {1, 2, 3}2,

(xi − xj)
T (yσ?(i) − yσ?(j)) ≤ 0 (III.34)

where σ?(i) is the index that corresponds to the customer assigned to the
ith cab. This seemingly coincidental fact illustrates a general property of the
optimal transport solution, which turns out to be a monotonic rearrangement
of one distribution onto the other under certain conditions [Villani 2003].
Precisely, using the same notations as in the previous section, with X = Y =

Rm and c(x,y) = ‖x − y‖2
2, if we further assume that µ and ν do not give

zero probability to small sets (in terms of Hausdorff dimension), then there
exists a convex function φ so that the optimal transport map is given by

T = ∇φ. (III.35)
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Figure III.4 – Optimal (cab) assignment.

This result is often referred as the Optimal Transportation theorem and has
been generalized to non quadratic costs. The previously mentioned monoto-
nicity follows from the convexity of φ.

The existence of φ suggests potential applications of this framework to
astronomical imaging. For instance, in strong gravitational lensing analysis,
φ could be interpreted as the gravitational potential induced by a massive
unknown structure.

We now turn to the geometry related to the minimal transportation cost.

B.2.2 Monge-Kantorovich distances

The Transport minimal cost in Monge and kantorovich problems measures
the similarity between two distributions. Indeed, the more two distributions
look alike, the less effort is needed for transforming one into the other, and
conversely. This section precises this intuition.

Somehow the structure required for this purpose is weaker than what was
previously needed in for characterizing the optimal transport map. In parti-
cular, X is only assumed to be a separable complete metric space, endowed
with a metric D ; also Y = X. The cost function takes the following form :

c(x,y) = D(x,y)q, (III.36)

for some q ≥ 1.
Following the notations in [Villani 2003],
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— Tq(µ, ν) is the minimum cost associated with the Kantorovich problem ;

— Pq(X) is the set of probability measures with finite moments of order q.

Then the functional

Wq : Pq(X)× Pq(X), (µ, ν) 7→ Tq(µ, ν)
1
q (III.37)

defines a metric on Pq(X). This metric is known under different names among
which the Monge-Kantorovich distance of order q or the qth Wasserstein dis-
tance. In the particular case q = 2, it is termed the quadratic Wasserstein
distance.

We assume that X = Rm. P2(Rm) is a submanifold of the vector space
of finite signed measures on Rm. For a given µ ∈ P2(Rm), let ρ1 and ρ2 be
smooth curves in P2(Rm) so that

ρ1(0) = ρ2(0) = µ. (III.38)

P2(Rm) can be endowed with a Riemannian metric defined as follows
[Otto 2001] :

〈∂ρ1

∂t
(0),

∂ρ2

∂t
(0)〉M,γ(t) =

∫
Rm

µ(x)〈v1(x),v2(x)〉 dx, (III.39)

where v1 and v2 are two velocity fields in Rm which satisfy the mass conser-
vation equation III.32 w.r.t. ρ1 and ρ2 respectively, while guaranteeing that
the associated instantaneous kinetic energies remain as small as possible [Vil-
lani 2003]. Then, the quadratic Wasserstein distance is precisely the associated
Riemannian distance and most importantly, the unique geodesic between two
distributions µ and ν is the previously defined curve χ∗(t, .) (see Eq.III.30).
The process of interpolating two probability measures following this geodesic
is known as the displacement interpolation because informally, the geodesic is
obtained by advecting elementary mass particles from one distribution toward
a target location defined by the optimal transport map in the other distribu-
tion, following straight lines [McCann 1997]. The simplicity of this mechanism
makes it particularly appealing for numerical applications.

Since W2 is a geodesic distance, the curve χ∗(t, .) solves the following
optimization problem :

χ∗(t, .) = argmin
ω

(1− t)W2(µ, ω)2 + tW2(ν, ω)2, (III.40)

∀t ∈ J0, 1K. Hence, χ∗(t, .) can be formally interpreted as the barycenter of
the probability measures µ and ν associated to the weights 1− t and t in the
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Wasserstein metric. This notion has been extended to an arbitrary number of
probability measures in [Agueh & Carlier 2011] :

µbar = argmin
ω

N∑
i=1

wiW2(µi, ω)2, (III.41)

with
∑N

i=1wi = 1 and wi ≤ 0 ∀i ∈ J1, NK. µbar is referred as the (quadratic)
Wasserstein barycenter of the probability measures (µi)1≤i≤N and is precisely
characterized in [Agueh & Carlier 2011]. However, the choice of Wasserstein
barycenters for averaging data samples can be motivated through the trivial
example of Fig.VI.9. Indeed, the Wasserstein barycenter is somehow more
meaningful than the multimodal euclidean barycenter.

Figure III.5 – Three gaussian probability measures and their euclidian and
quadratic Wasserstein barycenters.

We postpone further discussions in this regard to Chapter VI.
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The weak gravitational lensing is one of the most promising tools to probe
the dark matter distribution in the universe. The idea is to infer, from a billion
images of galaxies, the shape distortions due to dark matter gravitational
lensing and then estimate the dark matter mass density along different lines
of sight. As mentioned in the introduction, the Euclid mission will provide
the data for such a purpose. Nevertheless, galaxy images are distorted due
to the PSF. Therefore, it is critical to know this distortion accurately. It
can be modeled in first approximation as a convolution of the desired image
by the PSF of the telescope, which is typically space and time-varying. In
practice, isolated stars provide PSF measurements at different locations in
the field of view. Nevertheless, these stars images can be aliased as it is the
case in Euclid, given the CCD sensor sizes. On the other hand, the surveys
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are generally designed so that different images of the same stars are available
and likely to be with different subpixel offsets on the sensor grid. Moreover,
one may consider that nearby star images give to some extend the same local
PSF. We, thus, can consider that different low-resolution versions of the same
PSF are available in practice, so that one may apply an super-resolution (SR)
method to recover aliased frequencies.

This chapter precisely tackles this problem. The SR is a widely studied
topic in general image processing literature. Yet, some methods have been
specifically proposed for astronomical data. For instance, there is the software
IMCOM [Rowe et al. 2011] and PSFEx, which proposes an SR option. The
IMCOM provides an oversampled output image from multiple undersampled
input images, assuming that the PSF is fully specified. Since it does not deal
with the PSF restoration itself, we use PSFEx as our main reference. The
PSFEx performs SR by minimizing the sum of two terms. The first term is
a weighted quadratic distance, relating the underlying PSF to each of the
low resolution measurements. The second term consists of the square l2 norm
of the difference between the underlying PSF and a smooth first guess. This
term is meant for regularization. In the proposed algorithm, we introduce a
new regularization scheme based on the optimization variable sparsity in a
suitable dictionary.

Section A presents the general principle of SR along with some state-of-the-
art methods in astronomical domain. In Section B, we present the proposed
algorithm in details, which is followed with some numerical experiments in
Section C. We conclude by summarizing the main results and giving some
perspectives.

A Super-resolution overview

A.1 Notations

The underlying high resolution (HR) image of size d1p1×d2p2 is written in
lexicographic order (for instance, lines after lines) as a vector of pixels values
x = (x1, ..., xq)

T , where q = d1p1d2p2, and d1 and d2 are respectively the line
and column downsampling factors. We consider n LR observations. The vector
of pixels values yk = (yk1, ..., ykp)

T denotes the kth LR observation written in
lexicographical order with p = p1p2 and k = 1...n.

A.2 Observation model

We assume that x does not change during the acquisition of the n LR
images so that we have
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yk = DBkMkx + nk, k = 1...n. (IV.1)

The variable Mk is a warp matrix of size q × q. It represents the motions
of the observations relative to each other and those in general need to be
estimated. The variable Bk is a blur matrix of size q×q. It accounts for different
blurs (the atmosphere blur, which is particularly considerable for ground based
telescopes, the system optics blur, the imaging system shaking etc.). The
variable D is a matrix of size p × q, which simply realizes a downsampling
operation. Finally, nk is a noise vector of q elements. This model is illustrated
in Fig. IV.1.

Figure IV.1 – General observation model. See Section A.2 for a detailed
description

In our case, we are interested in estimating the PSF, or in other terms,
the telescope’s contribution to the blur. We consider that the PSF varies
slowly in the field so that the blocks "Warping" and "Blur" in Fig. IV.1
may be swapped, for slow motions between observations. Therefore, the block
diagram can be adapted as in Fig. IV.2. This model still holds in presence of
atmospheric blur (for ground-based telescopes) and jitter movements, if the
LR images are extracted from the same exposure.

In the general case, the model (IV.1) may simply be written as

yk = Wkx + nk, k = 1...n, (IV.2)

where Wk is a p× q matrix accounting for warping, blur, and downsampling.

A.3 SR techniques in astronomy

Generally, SR techniques involve three steps, which may be combined or
performed separately. The registration step consists in evaluating the relative
motions between different observations, so that their samples can be arranged
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Figure IV.2 – Adapted observation model. This time we consider an
isolated star as an input, and unlike in the general model, the output of the

block "Blur" is the PSF.

Figure IV.3 – SR general scheme. The deblurring does not apply to our
case, since we want to precisely estimate the blur.

on a common grid. It is critical that the precision of this registration should be
smaller than the pixels dimensions over the target upsampling factors. Since
these relative motions are arbitrary, this grid is non-uniform. The next step
would be to interpolate this grid in such a way to get a regularly sampled HR
image. This image is blurry and noisy. Therefore, the final step is a restoration
procedure. This scheme is summarized in Fig. IV.3. In the next sections, we
describe some SR techniques dedicated to astronomical images, but one may
refer to [Park et al. 2003] for more details on various SR frameworks in general
image processing literature.

A.3.1 Shift-and-add method

The most simple super-resolution method is certainly the shift-and-add
method. It is performed in three steps. First, the images are upsampled to
the target resolution. Then, they are shifted on a common grid and averaged.
It has been used in astronomy for a long time, particularly for ground based
telescopes. This method is simple, fast and is used for comparisons in the
numerical experiments part. It has been shown that this method provides an
optimal solution in the sense of the maximum likelihood (ML) with additive
white Gaussian noise (WGN) and when only pure integer translation motions
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are considered with respect to the finer grid [Elad & hel Or 2001]. The in-
terpolation operator should be DT (from Eq. IV.1), which comes down to a
simple zero-padding interpolation. It has been shown in the same work that
the matrix R =

∑n
k=1 MT

kDTDMk is diagonal in this simple case. Thus, after
registration and stacking of the interpolated images, each pixel value should
be divided by the corresponding R diagonal coefficient.

A.3.2 PSFEx method

The software PSFEx is an open source program, which has been used in
many projects such as the Dark Energy Survey [Mohr et al. 2012] or CFHTLS 1

for PSF modeling. It takes a catalog of objects extracted from an astronomical
image using SEXTRACTOR as input, which is also an open source tool for
point sources (or stars) extraction. This catalog contains information about
extracted point sources, such as SNR, luminosity, full width at half maximum
(FWHM) , centroid coordinates, multiple flags related to saturation or blen-
ding, etc. Based on these measurements (performed in SEXTRACTOR) and
some user provided parameters, PSFEx selects which sources are proper for
PSF modeling. Afterwards, it constructs a PSF model, provides a fitting with
an analytic function, and computes some of the PSF geometrical features. The
PSF model construction may simply consist in optimally combining the input
sources images for denoising, but it may also involve SR if these images are
also undersampled. This SR functionality is our second reference for compa-
risons. These codes and the associated documentation may be found on the
website http://www.astromatic.net/.

The desired HR image is now a matrix X of size dp × dp, where d is the
downsampling factor and the kth observation Yk is a matrix of size p × p

with k = 1...n. The coordinates of the centroid of the kth observation are
denoted (ik, jk). Assuming that the images are bandlimited, the samples of
the LR images can be interpolated from the desired HR image, thanks to
the Shannon sampling theorem [Shannon 1948]. In theory, this interpolation
should involve a 2D sinus cardinal (sinc) kernel with an infinite support, which
is not convenient for practical implementation. One can instead use a support
compact function, which approximates the sinus cardinal. Let h(., .) denote
such a function. The estimate of the sample (i, j) of the kth observation is
given by

ŷk,ij =
∑
l

∑
m

h [l − d(i− ik),m− d(j − jk)]xij. (IV.3)

1. http://terapix.iap.fr/cplt/T0007/doc/T0007-doc.html

http://www.astromatic.net/
http://terapix.iap.fr/cplt/T0007/doc/T0007-doc.html
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Then, we can define the cost function

J1(X) =
n∑
k=1

p∑
i=1

p∑
j=1

(yk,ij − fkŷk,ij)2

σ2
k

(IV.4)

where fk accounts for possible luminosity differences. The parameter σ2
k is

related to the local background variance and any other uncertainty on the
pixel value. These parameters need to be estimated.

The PSFEx uses a Lanczos4 interpolant, which is defined in 1D as

h1D(x) =


1 if x = 0

sinc(x) sinc(x/4) if 0 < |x| < 4

0 else,
(IV.5)

so that h(x, y) = h1D(x)h1D(y).
Finally, PSFEx minimizes the cost function defined as

J2(∆) = J1(∆ + X(0)) + λ‖∆‖2
2, (IV.6)

where ∆ = X−X(0) and X(0) is a median image computed from the LR obser-
vations. This second term is meant for regularization purposes if the problem
is ill-conditioned or undetermined (n < d2). One particularity of point-source
images (see Fig. IV.4) is that one knows that the light comes from a single
point, which is generally inferred to be the light blob’s centroid. Thus, one
only needs the images centroid coordinates to perform the registration, which
is implicitly done in Eq. IV.3.

Figure IV.4 – Simulated optical point-spread function.

B Sparse regularized method
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B.1 Method

Let consider Eq. IV.3. It can be rewritten as

ŷk = DHkx, (IV.7)

where x and ŷk are, respectively, the desired matrix and the kth observation
estimate written this time as column vectors in lexicographic order (we used
the lines order) ; besides, Hk is a Toeplitz matrix [Gray 2005] of size d2p2×d2p2,
which contains the values of the kernel h(., .) appearing in Eq. IV.3 and D is a
decimation matrix of size p2×d2p2 with d being the downsampling factor. We
are assumming that the images are squared for convenience but they might be
non-squared as well. In the same way, we can redefine the objective function
of Equation IV.4 as

J1(x) =
1

2

n∑
k=1

‖yk − fkDHkx‖2
2/σ

2
k, (IV.8)

where yk is the kth observation rewritten consistently with x and ŷk. The
function J1(x) is nothing but the negative log-likelihood associated with the
observation model in the case of an uncorrelated Gaussian noise that is sta-
tionary for each observation up to a positive scalar factor. It can be written
in an even more compact way as

J1(x) =
1

2
‖Σ−1y −Σ−1FWx‖2

2, (IV.9)

where W is obtained by concatening vertically the matrices DHk, F is a
diagonal matrix constructed by repeating the coefficients fk p2 times for k =

1...n, and Σ is constructed the same way using the coefficients σk. Therefore,
we can simply write

J1(x) =
1

2
‖z−Mx‖2

2, (IV.10)

where M is a matrix of size np2 × d2p2. The SPRITE method constrains
the minimization of this objective function using an analysis prior. Instead of
using a single lagrangian multiplier as in Eq. II.41, the analysis coefficients
has individual weights κλi, where i is the coefficient index in the transform
domain. This leads to the following formulation of the problem :

min
∆
J1(∆ + x(0)) + κ‖λ�Φ∆‖1, (IV.11)

where ∆ = x− x(0) is defined as in IV.6, x(0) is a first guess, and λ is now a
vector of the same size as Φ∆, � denoting the pointwise product.
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Additionally, the PSF or equivalently the telescope optical impulse res-
ponse is by definition a positive valued function. Therefore, we want the re-
construction x to have positive entries. This additional constraint is integrated
as follows :

min
∆
J1(∆ + x(0)) + κ‖λ�Φ∆‖1 s.t.∆ ≥ −x(0), (IV.12)

where ≥ is a pointwise inequality, or equivalently,

min
∆
J1(∆ + x(0)) + κ‖λ�Φ∆‖1 + ιS

x(0)
(∆), (IV.13)

where Sx(0) is the set of vectors t ∈ Rd2p2 satisfying the pointwise inequality
t ≥ −x(0) and ιS

x(0)
is its indicator function (see Appendix B). The impact of

this constraint is emphasized in Appendix C.
As we show in the Section B.3.3, the choice of the parameters λ and κ relies

on the noise expected on the analysis coefficients of the solution estimate.
The choice of a vector regularization parameter rather than a single scalar is
precisely motivated by the fact that this noise might be non-stationary.

As stated before, the problem IV.11 is not equivalent to its synthesis ver-
sion, if the dictionary Φ is redundant. The synthesis prior is expected to be
efficient if the desired solution can be accurately written as a sparse linear
combination of the chosen dictionary atoms, which we cannot assume to be
true for every PSF profiles. In contrast, the analysis prior appears to be more
flexible. Moreover, in the cases where the problem would be ill-conditioned or
underdetermined, the analysis prior would definitely be more suitable since it
involves far less variables.

A similar `1 penalty has already been applied for SR. An example may
be found in [Yamagishi et al. 2012], where the cost function is minimized
using variants of the alternating direction method of multipliers (ADMM).
Moreover, advantages of such approaches over quadratic regularizers have been
shown in many related problems in image and signal processing.

The use of the `1 norm as a relaxation for an l0 penalty has a well-known
drawback, which is that it tends to bias the solution. Indeed with a `1 norm
penalty, the problem resolution involves soft thresholding operations, which
affect both weak and strong entries unlike a hard thresholding, which would
only affect the weak and therefore unwanted entries. Formal definitions of soft
and hard thresholding are given in Appendix B.

This is particularly unsuitable for scientific data analysis. The reweighting
`1 minimization proposed in [Candès et al. 2008] is one way to tackle this issue,
while staying in the proof of convergence sets. Indeed, it consists of solving a
succession of `1 minimization problems of the form

min
∆
J1(∆ + x(0)) + κ‖w(k) � λ�Φ∆‖1 + ιS

x(0)
(∆), (IV.14)
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where w(k) is a weighting vector for the transform coefficients at the kth mi-
nimization. Each entry of w(k) is calculated as a decreasing function of the
corresponding transform coefficient magnitude in the (k − 1)th minimization.
This way, the strong transform coefficients are less penalized than the weaker
ones in the new minimization. One may refer to Appendix C for quantitative
study of the reweighting effect.

B.2 Algorithm

In the proposed method, the reweighting scheme is performed according
to [Candès et al. 2008] :

1. Set k = 0, for each entry in the weighting vector w(k), set w(k)
j = 1.

2. Solve the problem IV.14 yielding a solution ∆(k).

3. Compute α(k) = Φ∆(k).

4. Update the weight vector according to w(k+1)
j = 1

1+|α(k)
j |/3σj

, where σj is

the noise standard deviation expected at the jth transform coefficient,
see section B.3.3.

5. Terminated on convergence or when reaching the maximum number of
iterations ; otherwise, go to step 2.

The step 2 resolution is detailed in Algorithm IV.1. We use the generalized
forward-backward splitting introduced in [Raguet et al. 2011]. It requires the
computation of proximity operators associated with the regularization func-
tions in IV.14. One may refer to Appendix B for an introduction to proximal
calculus.

Since the dictionary Φ is redundant, we do not have a closed-form expres-
sion for the proximity operator. Yet, it can be calculated as{

prox µ
ω1
κ‖Diag (w(k)�λ)Φ‖1(x) = x−ΦT û

û = argmin |uj |< µ
ω1
κw

(k)
j λj

1
2
‖x−ΦTu‖2

2
(IV.15)

where û can be estimated using a forward-backward algorithm [Bauschke
et al. 2011] as follows :

1. Set p = 0, initialize u0 = 0.

2. ũp+1 = up + µproxΦ
(
x−ΦTup

)
.

3. up+1 = ũp+1 − SoftThresh µ
ω1
κw(k)�λ ũp+1.

4. Terminate on convergence or when reaching the maximum number of
iterations, otherwise go to step 2.
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Algorithme IV.1 Weighted analysis-based ∆(k) recovery
Paramètre(s) d’entrée :

A first guess estimate of the super-resolved image x(0).
A weight vector w(k).
Sparsity constraint parameter κ.
A dictionary Φ.
Auxiliary variables z10, z20 ∈ Rd2p2 .
ω1, ω2 ∈]0, 1[ s.t. ω1 + ω2 = 1, λ > 0 (see Section B.3.4).

1: Initialize d0 = ω1z10 + ω2z20.
2: Pour n = 0 to Nmax − 1 faire
3: z1n+1 = z1n + λ(prox µ

ω1
κ‖Diag (wk�λ)Φ‖1(2dn − z1n − µ∇J1(dn + x(0)) −

dn)

4: z2n+1 = z2n + λ(prox µ
ω2
ιS

x(0)
(∆)(2dn − z2n − µ∇J1(dn + x(0))− dn)

5: dn+1 = ω1z1n+1 + ω2z2n+1

6: Return : ∆(k) = dNmax .

The thresholding operator SoftThresh is defined in Appendix B. The operator
prox µ

ω2
ιS

x(0)
is simply the orthogonal projector onto the set Sx(0) defined in the

previous section ; it is given explicitly Appendix B.
A full description of SPRITE is provided in Algorithm IV.2.

Algorithme IV.2 SPRITE : weigthed analysis-based super-resolution
Paramètre(s) d’entrée :

Sparsity constraint parameter κ.
A dictionary Φ.
An upsampling factor.

1: Estimate the data fidelity parameters (see Section B.3.1).
2: Calculate a first guess x(0).
3: Initialize w(k) = 1.
4: Calculate a step size µ.
5: Pour k = 0 to Kmax − 1 faire
6: ∆(k) = argmin

∆
J1(∆ + x(0)) + κ‖w(k) � λ � Φ∆‖1 + ιS

x(0)
(∆) (see

Algorithm IV.1)
7: α(k) = Φ∆(k)

8: w
(k+1)
j = 1

1+|α(k)
j |/3σj

9: Return : x̂ = ∆(Kmax−1) + x(0).
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B.3 Parameter estimation

The data fidelity term in the problem IV.14 is defined as{
J1(x) = 1

2

∑n
k=1

∑p
i=1

∑p
j=1

(yk,ij−fkŷk,ij)2
σ2
k

ŷk,ij =
∑

l

∑
m h [l − d(i− ik),m− d(j − jk)]xij

, (IV.16)

where x = (xij)1≤i,j≤dp is the desired image and h(., .) is a 2D Lanczos kernel.
As stated in Section B.1, it can be written as

J1(x) =
1

2
‖z−Mx‖2

2, (IV.17)

if we write x in lexicographic order as a vector. The following parameters are
required :

— for the data fidelity term parameters the noise standard deviation in the
LR images σk, the photometric flux fk, and the shift parameters (ik, jk) ;

— a first guess x(0) (see problem IV.14) ;

— the sparsity constraint parameters κ, λ = (λi)i and the dictionary Φ ;

— algorithmic parameter such as the gradient step size µ, the relaxation
parameter λ in Algorithm IV.1, and the gradient step size µprox in Equa-
tion IV.15 resolution.

B.3.1 Data fidelity parameters

Noise standard deviations At the first step of the algorithm, the noise
standard deviations in the low resolution images can be robustly estimated
using the median absolute deviation (MAD) estimator [Starck et al. 2015].

Subpixel shifts The subpixel shifts between the images are estimated based
on the low resolution images centroids positions. Those are calculated on the
low resolution images after a hard thresholding operation. For the image xi,
the threshold is chosen as

k = min(4σi,

(
max(|xi|)

σi
− 1

)
σi). (IV.18)

In this way, we only keep pixels with a high SNR for the centroid estima-
tion. We then estimate the centroid positions using the iteratively weighted
algorithm introduced in [Baker & Moallem 2007]. The thresholding operation
undoubtedly biases the estimated centroid position, but the resulting estima-
ted shifts are expected to be unbiased, up to the finite sampling and noise
effects.
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Photometric flux The flux parameters are calculated by integrating the
low resolution images on a fixed circular aperture centered on their centroids
estimates. At Euclid resolution (see Section C), we obtained quite accurate
flux estimates in simulations using a radius of 3 pixels for the aperture. These
parameters define the matrix M in Eq. IV.17.

All these parameters are automatically calculated without requiring any
user input.

B.3.2 First guess computation

As one can see in the Algorithm IV.2, the final image is computed as

x̂ = ∆(Kmax−1) + x(0). (IV.19)

This implies that the noise and any artifact in x(0) which does not have a
sparse decomposition in Φ will be present in the final solution. Therefore, one
has to be careful at this step. To do so, we compute a noisy first guess x

(0)
n

using a shift-and-add, as presented in Section A.3.1. Then we apply a wavelet
denoising to x

(0)
n . In other terms, we transform x

(0)
n in a "sparsifying" wavelet

dictionary W. We threshold each wavelet scale in such a way to keep only
the coefficients above the noise level expected in the scale. Finally, we apply
a reconstruction operator, which is a dictionary Ŵ verifying ŴW = Iq to
the thresholded coefficients (see [Starck et al. 2015]). We note β = (βi)i, a
vector made of the denoising thresholds for each wavelet scale. We set βi at
5σi, where σi is the noise standard deviation in the ith wavelet scale. The first
guess is finally computed as

x(0) = Ŵ HardThreshβ Wx(0)
n , (IV.20)

which robustly removes the noise without breaking important features. One
can refer to Appendix C for (σi)i estimation.

B.3.3 The choice of dictionary and regularization parameter

Regularization parameter The regularization parameter κ can be set,
according to a desired level of significance. Indeed, it can be seen that the
transform domain vector û is constrained into weighted l∞-ball of radius µκ
in Equation IV.15 and can be interpreted as the non-significant part of the
wanted signal current estimate. To set this radius according to the expected
level of noise for each transform coefficient, we propagate the noise on the data
vector z from Equation IV.17 through µΦMTM and estimate its standard de-
viation at each transform coefficient, which sets the parameters λj. In practice,



B. Sparse regularized method 71

this can be done in two ways. We can either run a Monte-Carlo simulation
of the noise in z and take the empirical variance of the sets of realizations
of each transform coefficient. On the other hand, if Φ is a wavelet dictionary
and if the noise is expected to be stationary in each wavelet scale, then we
only need to compute a single standard deviation per scale. This can be done
by estimating the noise in each scale of the wavelet transform of the gradient
at each iteration (up to the factor µ) using a MAD, for instance. Indeed, the
residual z−M(dn + x(0)) tend to be consistent with the noise in z, so that it
can be used as a noise realization. With a stationary noise in each input image,
the two approaches give very close estimates of the noise standard deviation
and the second one is far less demanding in terms of complexity. As a result,
coefficients below κλj are considered as part of the noise and one only needs
to set the global parameter κ to tune the sparsity constraint according to the
noise level.

Dictionary The choice of the dictionary impacts the performance of the
algorithm. We considered two transforms : a biorthogonal undecimated wave-
let transform with a 7/9 filter bank and the second generation starlet trans-
form [Starck et al. 2011]. These two transforms are generic and not specifically
tuned to a given PSF profile.

B.3.4 Algorithmic parameters

Gradient steps sizes The gradient step size µ in Algorithm IV.1 needs to
be chosen just in

]
0, 2/ρ(MTM)

[
, where ρ(.) denotes the spectral radius of a

square matrix. In the same way, µprox needs to be chosen in
]
0, 2/ρ(ΦΦT )

[
.

Relaxation parameter The parameter λ in Algorithm IV.1 needs to be
chosen in

]
0,min

(
3
2
, 1+2/ρ(MTM)µ

2

)[
[Raguet et al. 2011]. This parameter tunes

the updating speed of the auxiliary variables in Algorithm IV.1. In practice,
we use µ = 1/ρ(MTM) and λ = 1.4.

B.3.5 User parameters

It is important to mention that the user only has to set the parameter κ
and the dictionary with the other parameters being automatically estimated.
In all our experiments, we took κ = 4, which is quite convenient, if we assume
Gaussian noise in the data. The dictionary choice will be emphasized in the
next section.
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C Numerical experiments

This section presents the data used, the numerical experiments realized as
a mean to compare three SR techniques (shift-and-add, PSFEx method, and
our method) and the results.

C.1 Data set

The PSFs provided are optical PSFs computed using a fast Fourier trans-
form of the exit pupil. They are not a system PSF, so they do not include a
jitter or detector response. A set of PSFs covering the whole field of view is
provided. They are monochromatic PSFs at 800nm and are derived from to-
lerance analysis. They account for manufacturing and alignments errors and
thermal stability of the telescope. Manufacturing and alignment errors are
partially compensated by a best focus optimization, while thermal stability
effects are simulated by a small displacement of the optics that are not com-
pensated on a short-time scale. The optical model used is dated from 2011 and
is prior to the current reference model (provided by Astrium, which has been
awarded the payload module contract in 2013). In particular, the 2011 model
does not contain the latest definition of the pupil mask. The pupil, however,
includes central obscuration and a three-vane spider. This is the model that
has been used for the science feasibility studies that led to the acceptance of
the Euclid mission.

C.2 Simulation

In the Euclid mission, the actual sampling frequency is about 0.688 times
the Nyquist frequency that we define as twice the telescope spatial cut-off
frequency [Cropper 2013]. Therefore we target an upsampling factor of 2,
which gives a sufficient bandpass to recover the high frequencies. The PSF
is typically space-varying, and this is particularly true for wide field of view
instruments as Euclid telescope [ESA/SRE 2011]. Thus, the data set contains
simulated PSF measurements on a regular 18 × 18 grid on the field of view.
The original PSF models are downsampled to twice Euclid resolution. For
each PSF, four randomly shifted "copies" are generated and downsampled to
Euclid resolution (see Fig. IV.5 and Fig. IV.6 below). These LR images are
of size 84×84. Different levels of WGN are added. We define the signal level as
its empirical variance that is calculated in a 50×50 patch centered on the HR
PSF main lobe. For each algorithm, we used these four images to reconstruct
a PSF which has twice their resolutions in lines and columns.



C. Numerical experiments 73

C.3 Quality criterion

For an image X = (xij)i,j, the weighted central moments are defined as

µp,q(X) =
∑
i

∑
j

(i− ic)p(j − jc)pfijxij (IV.21)

with (p, q) ∈ N2, (ic, jc) are the weighted image centroid coordinates, and F =

(fij)i,j is an appropriate weighting function (typically a Gaussian function).
The ellipticity parameters are then defined as follows :

e1(X) =
µ2,0(X)− µ0,2(X)

µ2,0(X) + µ0,2(X)
(IV.22)

e2(X) =
2µ1,1(X)

µ2,0(X) + µ0,2(X)
. (IV.23)

The vector ε = [e1, e2] is an important tool, since if measured on a large
set of galaxies, it can be statistically related to the dark matter induced geo-
metrical distortions and finally its mass density. Furthermore, this ellipticity
parameters are magnitude invariant and approximately shift invariant. The
error on ellipticity is therefore an interesting criteria for quality assessment.
Thus, we used the mean absolute error for each ellipticity parameter,

Ej =
1

n

n∑
i=1

|ej(Xi)− ej(X̂i)|, j = 1, 2 (IV.24)

and the associated empirical standard deviations.
Moreover, the PSF size is also an important characteristic of the PSF

kernel. For example, it has been shown in [Paulin-Henriksson et al. 2008] that
the PSF size largely contributes to the systematic error in weak gravitational
lensing surveys. Therefore, we use it in quality assessment by computing the
mean absolute error on the full width at half maximum (FWHM). The FWHM
is estimated by fitting a modified Lorentzian function on the PSF images. We
used routines from a publicly available library 2.

C.4 Results and discussion

The Figures IV.5 and IV.6 show a simulated PSF that is sampled at
almost the Nyquist rate and the two LR shifted and noisy PSF derive, with
SNR of around 30dB.

2. http://www.astro.washington.edu/docs/idl/htmlhelp/slibrary21.html

http://www.astro.washington.edu/docs/idl/htmlhelp/slibrary21.html
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Figure IV.5 – Critically sampled PSF.

Figure IV.6 – PSF sampled at Euclid resolution with different offsets and
noise.

The Figure IV.7 shows an example of super-resolved PSF at 30dB of SNR,
from four LR images and the corresponding error maps that are defined as the
absolute value of the difference between the original high resolution noise free
PSF and the PSF reconstructions for each algorithm. This error map standard
deviation is at least 30% lower with SPRITE.

Figure IV.8 shows smaller errors and errors dispersions are achieved with
SPRITE algorithm, especially at low SNR. One can note that the dispersion
is slightly smaller with biorthogonal undecimated wavelet. The error on the
FWHM given in percent on Fig. IV.9 is smaller with SPRITE. In practice,
there is more variability in the PSF (wavelength and spatial dependency, time
variations...) so that the real problem will be more underdetermined. Thanks
to the multiple exposures on the one hand, and that the spatial variations of
the PSF are expected to be slow on the other hand, the real problem could
actually be very well constrained. Moreover, these results suggest that even
better results could be achieved by using more adapted dictionaries, built
either from PSF model or through a dictionary learning algorithm [Beckouche
et al. 2013a].
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(a) Super-resolved PSFs.

(b) Absolute Error Maps.

Figure IV.7 – PSF reconstruction and error map at 30dB for three
methods : from the left to the right, shift-and-add, PSFEx, and SPRITE.
The error image standard deviation is at least 30% smaller with SPRITE.

D Complexity and performances

The simulations were run on a typical desktop computer. Let us suppose
that we have n LR images of sizes p1 × p2 and that we choose an upsam-
pling factor d in lines and columns. As stated before, we took p1 = p2 = 84,
n = 4, and d = 2 in our numerical experiments. Under this setting, it
takes roughly 60s and 1GB of physical memory to compute a super-resolved
PSF. More generally, the computational complexity of the algorithm is in
O(np1p2d

2 log(p1p2d
2)), which is related to the implementation of the matrices

M from Eq. IV.10 and MT using FFT.

E Software

Following the philosophy of reproducible research [Buckheit & Do-
noho 1995], the algorithm introduced in this paper and the data used are
available at http://www.cosmostat.org/sprite.html. We used the follo-
wing calls for the SPRITE executable :

— run_sprite -t 2 -s 4 -r 2 -F -N data_file output_file out-
put_directory for the second genration Starlet transform ;

— run_sprite -t 24 -s 4 -r 2 -F -N data_file output_file out-
put_directory for the undecimated biorthogonal wavelet transform.

http://www.cosmostat.org/sprite.html
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(a) Mean absolute error on the first
ellipticity parameter.

(b) Standard deviation of the absolute
error on the first ellipticity parameter.

(c) Mean absolute error on the second
ellipticity parameter.

(d) Standard deviation of the absolute
error on the second ellipticity parameter.

Figure IV.8 – Errors in log on ellipticity parameters versus the SNR. For
SNR=10dB, SPRITE achieves around 6dB less than others methods, which

corresponds to a factor of e6 on a linear scale.

The options "-s" and "-r" set the parameter κ (see Section B.3.3) and the
upsampling factor for both lines and columns respectively. The options "-F"
and "-N" indicate that the photometric flux and the noise might have different
levels in the LR images and need to be estimated.

F Conclusion

We introduced SPRITE, which is a super-resolution algorithm based on
sparse regularization. We show that adding a sparse penalty in the recovery
leads to far better accuracy in terms of ellipticity error, especially at low SNR.
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Figure IV.9 – Mean absolute error on the full width at half maximum
(FWHM) in percent. SPRITE achieves on average an error of 6% on the

FWHM which is 2% less than PSFEX in average.

Quantitatively, we achieved

— a 30% lower error on the reconstruction itself at 30dB of SNR ;

— around 6dB less than other methods on the shape parameters, which
corresponds to a factor of e6 on a linear scale, at 10dB of SNR ;

— 6% of error on the FWHM in average, which 2% less than PSFEX.

However this algorithm does not handle the PSF spatial variations. Thus
one natural extension of this work would be to simultaneously perform super-
resolution and dimensionality reduction assuming only one LR version of each
PSF, as it is the case in practice strictly speaking, but by using a large PSF
set. This is precisely the subject of the next chapter.
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In the previous chapter, the PSFs super-resolution (SR) where performed,
assuming that multiple measurements of the same PSF were available. Howe-
ver in practice, one does not have such multiple measurements strictly spea-
king, because the PSF is space and time variant, as emphasized in Chapter I.

In this chapter, we consider precisely a setting where the PSF is space va-
riant and we want to get an accurate modeling at high resolution of the PSF
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field, assuming we have under-sampled measurements of different PSFs in the
observed field. We assume that the PSFs vary slowly across the field. Intui-
tively, this implies a compressibility of the PSFs field, which leads us to the
question of what would be a concise and easily understandable representation
of a spatially indexed set of PSFs.

A The PSF field model

A.1 The observation model

We assume that we have an image I, which contains p unresolved objects
such as stars, which can be used to estimate the PSFs field. Noting yk one of
these p objects at spatial position uk, yk is therefore a small patch of I with
ny pixels, around the spatial position uk. We will write yk as a 1D vector. The
relation between the "true" PSF xk and the noisy yk observation is

yk = Mkxk + nk (V.1)

where Mk is a linear operator and nk is a noise that we assume to be Gaussian
and white. We will consider two kinds of operators in this paper : the first
one is the simple case where Mk = Inx and we have the number of pixels nx
in xk is equal to ny, and the second one is a shift+downsampling degradation
operator and nx = m2

dny, where md is the downsampling factor in lines and
columns, with md ≥ 1.

Noting Y = [y1 . . .yp] the matrix of ny lines and p columns of all observed
patches, X = [x1 . . .xp] the matrix nx×p of all unknown PSFs, we can rewrite
Eq. V.1 as

Y = F(X) + N (V.2)

where F(X) = [M1x1, . . . ,Mpxp].
This rewriting is useful because, as we discuss in the following, the different

PSFs xk are not independent, which means that the problems of Eq. V.1
should not be solved independently for each k. In other terms, the vectors
(xk)1≤k≤p belong to a specific unknown manifold that needs to be learned by
using the data globally.

A.2 The data model

Let Ω be a r dimensional subspace of Rnx embedding the PSFs field. We
assume that there exists a continuous function f : E 7→ Ω, so that f(uk) =

xk, ∀k ∈ J1, pK. The regularity of f translates the correlation of the data in
space (and time).
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Let (si)1≤i≤r be a basis of Ω. By definition, we can write each xk as a linear
combination of the si, xk =

∑r
i=1 aiksi, k = 1 . . . p, or equivalently

X = SA (V.3)

where S = [s1, . . . , sr] and A is a r×p matrix containing the coefficients A[:, k]

of the vectors xk (k = 1 . . . p) in the dictionary S. Each column of the matrix
S, that we also refer to as an atom, can be seen as an eigen PSF, i.e. a given
PSF’s feature distributed across the field.

A.3 The inverse problem

We need therefore to minimize ‖Y−F(X)‖2
F , which is an ill posed problem

due to both the noise and the operator F , ‖.‖F denoting the Frobenius norm
of a matrix. There are several constraints that may be interesting to use in
order to properly regularize this inverse problem :

— positivity constraint : the PSF xk should be positive ;

— low rank constraint : as described above, we can assume that xk =∑r
i=1 aiksi, which means that we can instead minimize

min
A,S
‖Y −F(SA)‖2

F ; (V.4)

we assume that r � min(n, p) ; this dimension reduction has the ad-
vantage that there are much less unknown to find, leading to more ro-
bustness, but the problem is now that the cost function is not convex
anymore ;

— smoothness constraint : we can assume that the vectors xk are structu-
red ; the low rank constraint does not necessarily impose xk to be smooth
or piece-wise smooth ; adding an additional constraint on S atoms, such
as a sparsity constraint, allows to capture spatial correlations within
the PSFs themselves ; an additional dictionary Φs can therefore be in-
troduced which is assumed to give a sparse representation of the vectors
sk ;

— proximity constraint : we can assume that a given xk at a position uk
is very close to another PSF xk′ at position uk′ if the distance between
uk and uk′ is small ; this means that the field f must be regular ; this
regularity can be forced by adding constraints on the lines of the matrix
A ; indeed, the p values relative to a line A[i, :] correspond to the contri-
bution of the ith eigen PSF to locations relative to the spatial positions
U .
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We show in section C how these four constraints can be jointly used to de-
rive the solution. Let first review existing methods susceptible to solve this
problem.

B Related work

In all this section, Y refers to the observed data set (yk)1≤k≤p. In the
first part, the aforementioned degradation operator F is simply the identity.
Therefore we review some dimension reduction methods. In the second part F
is a shifting and downsampling operator ; we present a PSF modeling software
dealing with this more constraining setting.

B.1 Dimension reduction

The principal components analysis is certainly one of the most popular
mathematical procedure in multivariate data analysis and especially, dimen-
sion reduction. In our case, we want to represent Y ’s elements using r vectors,
with r ≤ max(p, ny). A PCA gives an orthonormal family of r vectors in Rny

so that the total variance of Y along these vectors directions is maximized. By
definition, the PCA looks for redundant features over the whole data set. The-
refore, in general, the principal components neither capture localized features
(in sense of E) nor have a simple physical interpretation.

In [Wang & Huang 2015], a "regularized" PCA is proposed to address
this shortcoming for spatial data analysis in atmospheric and earth science.
Indeed, as a PCA, the method solves the following problem,

min
A
‖Y −YATA‖2

F , s. t. AAT = Ir, (V.5)

for some chosen small r. Moreover, it jointly imposes a sparsity constraint and
a smoothing penalties with respect to the space E , on the matrix A lines. This
way, with the right balance between those two penalties, one favors the ex-
traction of localized spatial features, making the interpretation of the optimal
A easy. Yet, there is no obvious way of setting the sparsity and smoothness
parameters, which are crucial ; moreover, unless the data actually contain spa-
tially localized and non-overlapping features, the coupled orthogonality and
sparsity constraint is likely to yield a biased approximation of the data.

In the context of remote sensing and multi-channel imaging, two ways of
integrating spatial information into PCA are proposed in [Cheng 2006] ; the
set Y is made of multi-channel pixels. In the first way, the author introduces a
weighting matrix indicating the relative importance of each pixel. For instance,
the weight of a given pixel can be related to its distance to some location
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of interest in E . Then, the computation of the covariance matrix of image
bands is slightly modified to integrate this weighting. This idea is close to the
methodology proposed in [Harris et al. 2011]. As a consequence, one expects
to recover spectral features spatially related to some location of interest within
the most important "eigen-pixels". Yet, we do not have any specific location
of interest in E and we rather want to recover relevant features across the
whole data set.

The second approach aims at taking into account the spatial associations
and structural properties of the image. To do so, modified versions of the image
bands covariance matrices are calculated, with increasing shifts between the
bands, up to a predetermined maximum shifting amplitude. These covariance
matrices, including the "regular" one, are averaged and the principal compo-
nents are finally derived. Intuitively, one expects the spectral features present
in structured images regions to be strengthened and therefore captured into
the principal components. However, we consider a general setting where the
data are randomly distributed with respect to E , which makes the shifted
covariances matrices ill-defined.

A review of PCA applications and modifications for spatial data analysis
can be found in [Demšar et al. 2013].

In case the data lie on or are close to a manifoldM of dimension r embed-
ded in Rn, one can consider using one of the numerous non-linear dimension
reduction algorithms published in the manifold learning literature, such as
GMRA [Allard et al. 2012], [Maggioni et al. 2014]. The idea is to partition
the data in smaller subsets of sample close to each other in the sense of the
manifold geometry. From this partionning, the manifold tangent spaces are
estimated at subsets locations ; estimates are then simply given by the best
regressions of these subsets with r−dimensional affine subspaces. The me-
thod includes some multiresolution considerations that are not relevant to our
problem. This procedure provides a dictionary in which each of the original
samples need at most r elements to be represented. Moreover, the local pro-
cessing of the data, which is necessary in this setting because of the manifold
curvature, makes this approach somehow compatible with the considered pro-
blem. Indeed, by hypothesis, the closer two samples will be in sense of E , the
closer they will be in Rn, and the more likely they will fall into the same local
cluster.

Another interesting alternative to the PCA can be found in [Lee
et al. 2008]. This construction called "Treelets" extracts features by uncove-
ring correlated subsets of variables across the data samples. It is particularly
useful when the sample size is by far smaller than the data dimensionality
(p� ny), which does not hold in the application we consider in the following.
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B.2 Super-resolution

In this subsection, F takes the following form :

F(X) = [M1x
(c)
1 , . . . ,Mpx

(c)
p ], (V.6)

where Mi is a warping and downsampling matrix. Since we consider a set of
compact objects images, the only geometric transformation one has to deal
with for registration is the images shifts with respect to the finest pixel grid,
which can be estimated using the images centroids as shown in Chapter IV.

To the best of our knowledge, the only method dealing with this specific
setting is the one used in the PSF modeling software PSFEx [Bertin 2011].
This method solves a problem of the form :

min
∆S

1

2
‖Y −F((∆S + S0)A)‖2

F + λ‖∆S‖2
F . (V.7)

S0 is a rough first guess of the model components. Each line of the weight
matrix A is assumed to follow a monomial law of some given field’s parame-
ters. The number of components is determined by the maximal degree of the
monomials. For instance, let say that we want to model the PSFs variations
as a function of their position in the field with monomials with degrees up to
3, then :

— one needs 6 components corresponding to the monomials
1, X,X2, Y,XY and Y 2 ;

— assuming that the ith PSF in Y’s columns order is located at
ui = (uix, uiy) then the ith column of A is given by a

(c)
i =

[1, uix, u
2
ix, uiy, uixuiy, u

2
iy]

T up to a scaling factor.

This method is used for comparisons in the Numerical experiments part.

C Resolved Components Analysis

C.1 Matrix factorization

We have seen that we can describe the PSFs field f as

[f(u1), . . . , f(up)] = X = SA. (V.8)

The matrix S is independent of the spatial location, and the ith line of A

gives the contribution of the vector si to each of the samples. As discussed in
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section A.3, the field’s regularity can be taken into account by introducing a
structuring of the matrix A. We can write :

A[i, :]T =
N∑
l=1

αilυl, i = 1 . . . r, (V.9)

where (υl)1≤l≤N is a set of vectors spanning Rp. Equivalently, we can write
A = αVT , where V = [υ1, . . . ,υN ] and α is a r ×N matrix (see Fig. V.1).

Figure V.1 – Data matrix factorization : the jth sample, which is stored in
the jth column of X is linear combination of S columns using A’s jth column
coefficients as the weights ; similarly, the jth line of A is a linear combination

VT ’s lines, using α’s jth line coefficients as the weights.

Physical interpretation

An interesting way to well interpret A is to consider the ideal case where
the measurements are distributed following a regular grid of locations U . In
this case, we can expand the vector A[i, :]T using the Discrete Cosine Trans-
form (DCT), and vectors υi in Eq. V.9 are regular cosine atoms, and the
column index of the matrix is related the frequency. Hence, lines relative to
high frequencies will be related to quicky varying PSF components in the field,
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while lines related to low frequencies will be related to PSFs stable compo-
nents. In practice, the sampling is not regular and the DCT cannot be used,
and V has to be learned in a way to keep the harmonic interpretation valid.
We want some lines A[i, :] to describe stable PSFs components on the FOV,
and other to be more related to local behavior.

C.2 The proximity constraint on A

As previously mentioned, we want to account for the PSFs field’s regularity
by constraining A’s lines. Specifically, we want some lines to determine the
distribution of stable features across the PSFs field while we want other lines
to be related to more localized features. In order to build this constraint, let
first consider the simple case of a one dimensional field of regularly spaced
PSFs.

C.2.1 Regularly distributed observations

We first assume that E = R.
We suppose that p = 2k + 1, for some integer k and we consider the 1D

vector ψe,a = (ψi)1≤i≤p defined as follows :

ψi = ψp−i+1 = −1/|ui − uk+1|e if i 6= k + 1, (V.10)

ψi =

p∑
j=1
j 6=k+1

a/|uj − uk+1|e, otherwise (V.11)

for some positive reals e and a. We suppose that ψe,a is normalized in l2
norm. We refer to this family of signals, parametrized by e and a as "notch
filters", in reason of their frequency responses shapes. Some examples can
be found in Fig. V.2b. One can observe that ψ1,1 is essentially a high pass
filter. As e increases, the notch structure clearly appears, with an increasing
notch frequency. It is clear that, for a vector v, minimizing the functional
Ψe,a(v) = ‖v ?ψe,a‖2

2 promotes vectors with spectra concentrated around the
notch frequency corresponding to the chosen values of e and a. We can directly
use this family of filters to constraint A as follows : we define the functional

Ψ : Mrp(R) 7→ R+ ,A→
r∑
i=1

Ψei,a(A[i, :]), (V.12)

where (ei)i is a set of reals verifying 0 ≤ e1 < e2 < · · · < er and a ∈ [0, 2[. Be-
cause the notch frequency increases with ei, minimizing Ψ promotes varying
level of smoothness of A’s lines, which is what we wanted to achieve. The
filter ψe,a and the functional definitions can be extended to higher dimensions
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(a) Direct domain samples.

(b) Discrete Fourier Transform (DFT) entry-wise moduli.

Figure V.2 – Notch filters examples for different values of the parameter e
in Eq. V.10 and V.11. The parameter a is set to 1.

of the space E by involving a multidimensional convolution [Rakhuba & Ose-
ledets 2014]. Therefore, if the PSFs are distributed over a regular grid with
respect to E , one can implement the proximity constraint by solving

min
A,S

1

2
‖Y −F(SA)‖2

F + λΨ(A), (V.13)

for some positive λ. Yet, in practical applications, the observations are in gene-
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ral irregularly distributed. In the next section, we propose a slightly different
penalty which is usable for arbitrary observations distributions.

C.2.2 General setting

Let define the functional

Ψ̂e,a : Rp 7→ R+ ,v→
p∑

k=1

(

p∑
i=1
i 6=k

avk − vi
‖uk − ui‖e2

)2, (V.14)

where e and a are positive reals. Minimizing Ψ̂e,a(v) tends to enforce the simi-
larity of close features, with respect to E ; in other terms, the more ‖uk−ui‖2

is large, the less important is (avk − vi) in Ψ̂e,a(v) and e somehow determines
the radius of similarity. For e > 1, Ψ̂e,a ≈ Ψe,a because of the uniform spacing
of the values ui and the decay of 1

‖uk−ui‖e2
, for sufficiently high p ; we give

more details on this approximation in E in the 1D case. However unlike Ψe,a,
the functional Ψ̂e,a is still relevant without the uniform sampling hypothesis
and we expect qualitatively the same behavior as Ψe,a with respect to the
frequency domain if the data sampling is sufficiently dense. Therefore we use
Ψ̂e,a instead of Ψe,a in the functional Ψ of Eq.V.13. Besides, we use the term
frequency even for randomly distributed samples.

C.2.3 Flexible penalization : the redundant frequencies dictionary
V

The efficiency of the regularization of the problem V.13 relies on a good
choice of the parameters e1, . . . , er and a. Indeed, if the associated notch fre-
quencies does not match with the data set frequency content, the regulari-
zation will more or less bias the PSF estimation depending on the Lagrange
multiplier λ. Besides, setting this parameter might be tricky. We propose an
alternate strategy for constraining A, which leads to the factorization model
introduced in Section C.1 and still builds over the idea of notch filters.

For v ∈ Rp we can write

Ψ̂e,a(v) = ‖Pe,av‖2
2, (V.15)

where Pe,a is a p× p matrix defined by

Pe,a[i, j] = − 1

‖ui − uj‖e2
if i 6= j, (V.16)

Pe,a[i, i] =

p∑
j=1
j 6=i

a

‖ui − uj‖e2
, (V.17)
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(i, j) ∈ J1, pK2. Therefore,

Ψ̂e,a(v) = vTQe,av, (V.18)

where Qe,a = PT
e,aPe,a and is symmetric and positive. We consider the sin-

gular values decomposition (SVD) of Qe,a : Qe,a = Ve,aDe,aV
T
e,a. The dia-

gonal values of De,a are sorted in decreasing order. We note de,a the vector
made of these diagonal values, so that de,a[1] ≥ · · · ≥ de,a[p] ≥ 0. Consi-
dering the reduced form Ψ̂e,a(v) =

∑p
i=1 de,a[i]〈v,Ve,a[:, i]〉2, it is clear that

minimizing Ψ̂e,a(v) promotes vectors correlated with Qe,a last eigenvectors.
In the case of regular sampling with respect to E , these eigenvectors are the
harmonics close to the notch frequency of ψe,a. We can rewrite the functional
Ψ accordingly :

Ψ(A) =
r∑
i=1

p∑
j=1

dei,a[j]〈v,Vei,a[:, j]〉2. (V.19)

It is clear from this expression that minimizing Ψ(A) enforces the selection of
the eigenvectors associated with the lowest eigenvalues in the set (dei,a[j])i,j
for describing A’s lines. This can be seen as a sparsity constraint over A’s
lines with respect to the atoms (Vei,a[:, j])i,j ; yet, the small subset of atoms
which will carry most of the information is somehow predefined through the
eigenvalues (dei,a[j])i,j. This is unsuitable if the notch filters parameters are
poorly selected ; on the contrary, one would like to select in a flexible way the
atoms which fit the best the data.

Let suppose that we have determined a set of parameters (ei, ai)1≤i≤r so
that the filters ψei,ai

notch frequencies would cover the range of significant
frequencies (with respect to E) present in the data. As previously, we note
(Vei,ai)1≤i≤r the eigenvector’s matrices associated with the operators Ψ̂ei,ai .
We note V = [Ve1,a1 , . . . ,Ver,ar ]. Considering the preceding remark, we intro-
duce the following problem :

min
α,S

1

2
‖Y −F(SαVT )‖2

F s.t. ‖α[l, :]‖0 ≤ ηl, l = 1 . . . r (V.20)

Now A = αVT . Each line of A is a sparse linear combination of VT ’s lines, and
the "active" atoms are optimally selected according to the data. The choice of
the parameters (ei, ai)1≤i≤r and (ηl)1≤i≤r is discussed in a forthcoming section.

C.2.4 A connection with graphs theory

In case a = 1, the matrix Pe,a is the laplacian of an undirected fully
connected and weighted graph with p nodes 1 . . . p, such that the weight of
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the vertex connecting a node i to a node j is 1
‖ui−uj‖e2

[Anderson & Mor-
ley 1985]. As proposed in spectral graph theory [Chung 1997], this gives a
natural interpretation of Pe,a (and Qe,a) eigenvectors as harmonic atoms in
the graph’s geometry. Each line of the matrix A can be seen as a function de-
fined on a family of graphs determined by the observations locations, so that
we enforce the regularity of A’s lines according to the graphs geometry. Our
approach is thereby close to the spectral graphs wavelets framework [Ham-
mond et al. 2009]. However, the graphs wavelets are built on a single graph
and a scaling parameter allows one to derive wavelets atoms corresponding to
spectral bands of different sizes. In our case, the scales diversity is accounted
for by building a dictionary of harmonics corresponding to different graphs.
Indeed, as e increases, the weight associated to the most distant nodes (in the
sense of ‖ui−uj‖2) becomes negligible, which implies that the corresponding
graph laplacian is determined by nearby nodes, yielding "higher" frequencies
harmonics.

C.3 The smoothness constraint on S

As previously mentioned, each PSF is a structured image. We can account
for this through a sparsity constraint which this has proven effective in mul-
tiple frame PSFs super-resolution in the previous chapter.

Since we do not estimate individual PSFs directly, we instead constraint
the eigen PSFs which are S’s columns. Specifically, we promote S’s columns
sparsity with respect to a chosen dictionary Φs. By definition, a typical ima-
ging system’s PSF concentrates most of its power in few pixels. Therefore a
straightforward choice for Φs is In. In other words, we will enforce the sparsity
of S’s columns in the pixels domain.

On the other hand, we take Φs as the second generation Starlet forward
transform [Starck et al. 2011], without the coarse scale. The power of sparse
prior in wavelet domain for inverse problems being well established, we shall
online emphasize the fact that this particular choice of wavelet is particularly
suitable for images with nearly isotropic features.

C.4 Algorithm

We define the sets Ω1 = {α ∈ Mr,N(R)/‖α[l, :]‖0 ≤ ηl, l = 1 . . . r} and
Ω2 = {(S,α) ∈ Mnr(R) ×Mr,N(R)/SαVT ≥Mnp(R) 0}. The aforementioned
constraints leads us to the following optimization problem :

min
α,S

1

2
‖Y −F(SαVT )‖2

F +
r∑
i=1

‖wi �Φssi‖1 + ιΩ1(α) + ιΩ2(S,α). (V.21)
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where � denotes the Hadamard product and ιC denotes the indicator function
of a set C (see B). The `1 term promotes the sparsity of S columns with respect
to Φs. The vectors (wi)i weight the sparsity against the other constraints
and allow some adaptivity of the penalty, with respect to the uncertainties
propagated to each entry of S (see Chapter IV).

The parametric aspects of this method are made clear in the subsequent
sections.

The Problem V.21 is globally non-convex because of the coupling bet-
ween S and α and the l0 constraint. In particular, the feasible set {(S,α) ∈
Mnr(R)×Mr,N(R)/SαVT ≥ 0}, with N = rp is non-convex.

Therefore, one can at most expect to find a local minimum. To do so, we
consider the following alternating minimization scheme :

1. Initialization : α0 ∈ Ω1, with N = rp, S0 = argmin
S

1
2
‖Y −

F(Sα0V
T )‖2

F +
∑r

i=1 ‖wi �ΦsS[:, i]‖1 s.t. Sα0V
T ≥ 0

2. For k = 0 . . .kmax :
(a) αk+1 = argmin

α

1
2
‖Y −F(SkαVT )‖2

F s.t. ‖α[l, :]‖0 ≤ ηl, l = 1 . . . r,

(b) Sk+1 = argmin
S

1
2
‖Y − F(Sαk+1V

T )‖2
F +

∑r
i=1 ‖wi � ΦsS[:

, i]‖1 s.t. Sαk+1V
T ≥ 0 .

The problem (a) remains non-convex ; yet there exists heuristic methods al-
lowing one to approach a local minimum [Soussen et al. 2015,Blumensath &
Davies 2008, Cartis & Thompson 2015]. The problem (b) is convex and can
be solved efficiently.

One can note that there is no positivity constraint in the sub-problem (a).
This choice is motivated by two facts :

— the feasible set of (b) is non-empty for any choice of αk+1 ;

— allowing α to be outside of the global problem feasible set (for S fixed)
brings some robustness regarding local degenerated solutions.

There is an important body of work in the literature on alternate minimiza-
tion schemes convergence, and in particular in the non-convex and non-smooth
setting (see [Bolte et al. 2014] and the references therein). In the proposed
scheme, the analysis is complicated by the asymmetry of the problems (a)
and (b).

We define the function

H(α,S) =
1

2
‖Y −F(SαVT )‖2

F +
r∑
i=1

‖wi �Φssi‖1 (V.22)

and the matrix Ŝk = argmin
S

1
2
‖S − Sk‖2

2 s.t. Sαk+1V
T ≥ 0. One immediate
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sufficient condition for the sequence (H(αk,Sk))k to be decreasing (and the-
reby convergent) is

H(αk+1, Ŝk) ≤ H(αk,Sk) (V.23)

which occurs if (Sk,αk+1) stays sufficiently close to Ω2. Although we do
not prove this always holds true, we observe on examples that the matrix
Skαk+1V

T in general only has a few and small negative entries for k ≥ 1.
This follows from the adequacy of the dictionary V for sparsely describing
A’s lines.

The complete method is given in Algorithm V.1. The resolution of the
minimization sub-problems is detailed in Appendix D.

Algorithme V.1 Resolved components analysis (RCA)

1: Parameters estimation and initialization :
Harmonic constraint parameters (ei, ai)1≤i≤r → V,A0

Noise level, A0 →W0,0

2: Alternate minimization
3: Pour k = 0 to kmax faire
4: Pour j = 0 to jmax faire
5: Sk = argmin

S

1
2
‖Y − F(SAk)‖2

F +
∑r

i=1 ‖Wk,j[:, i] � ΦsS[:

, i]‖1 s.t. SAk ≥ 0

6: update : Wk,0,Sk → update(Wk,j+1)

7: αk+1 = argmin
α

1
2
‖Y −F(SkαVT )‖2

F s.t. ‖α[l, :]‖0 ≤ ηl

8: update : Noise level, αk+1 →Wk+1,0

9: Ak+1 = αk+1V
T

10: Ak+1[i, :] = Ak+1[i, :]/‖Ak+1[i, :]‖2, for i = 1 . . . r

11: Return : Skmax , Akmax .

C.5 Parameters setting

C.5.1 Components sparsity parameters

We consider the terms of the form ‖wk,j �Φss‖1, where k is the alternate
minimization index and j is the re-weighted `1 minimization index. We first
suppose that Φs = In. We decompose wk,j as :

wk,j = κβk,j � λk (V.24)

Let consider the minimization problems in S in Algorithm V.1. Assuming that
we simply minimize the quadratic term using the following steepest descent
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update rule,
Sm+1 = Sm + µF∗(Y −F(SmAk))A

T
k , (V.25)

for a well chosen step size µ, F∗ being the adjoint operator one can estimate
the entry-wise standard deviations of the noise which propagates from the
observations to the current solution Sm+1. For a given matrix X inMnp(R), we
assume that F takes the following general form F(X) = [M1X[:, 1], . . . ,MpX[:

, p]]. We define F2 as :

F2(X) = [(M1 �M1)X[:, 1], . . . , (Mp �Mp)X[:, p]] (V.26)

We note B the observational noise (or model uncertainty) that we assume
to gaussian, white and centered. The propagated noise entry-wise standard
deviations are given by

Σk = µ
√
F2∗(Var(B))(AT

k �AT
k ), (V.27)

where Var() returns entry-wise variances and F2∗ is the adjoint operator of
F2. Now one can proceed to a hypothesis testing on the signal presence in each
entry of Sm+1 based on Σk [Starck et al. 2015], and denoise Sm+1 accordingly.
For instance, we define the noise-free version of Sm+1 as follows :

Ŝm+1[i1, i2] =

{
0, if |Sm+1[i1, i2]| ≤ κΣk[i1, i2]

Sm+1[i1,i2]
|Sm+1[i1,i2]|(|Sm+1[i1, i2]| − κΣk[i1, i2]). otherwise; (V.28)

where κ controls the false detection probability ; the noise being gaussian, we
typically choose 3 or 4 for κ.

The sequence (Ŝm) converges to a solution of the problem

argmin
S

1

2
‖Y −F(SαkU

T )‖2
F +

r∑
i=1

κ‖λk[:, i]� S[:, i]‖1, (V.29)

for λk = κ/µΣk. One can find some material on minimization schemes in
Appendix D. This choice yields a noise-free but biased solution because of the
thresholding ; this is a well-known drawback of `1 norm based regularizations.
The purpose of the vector βk,j is to mitigate this bias [Candès et al. 2008].
βk,0 is a vector with ones at all entries. At the step 6 in Algo V.1, βk,j is
calculated as follows :

βk,j =
1

1 + |Sk|
κλk

, (V.30)

where all the operations are entry-wise and |Sk| is the vector made of element-
wise absolute values of Sk entries. Qualitatively, this removes the strongest
features from the `1 norm terms by giving them small weights, which makes
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the debiasing possible ; conversely, the entries dominated by noise get weights
close to 1, so that the penalty remains unchanged.

For Φs 6= In we follow the same rational. To set the sparsity in the trans-
form domain according to the noise induced uncertainty, we need to further
propagate it (the noise) through the operator Φs. Formally, we need to esti-
mate the element-wise standard deviations of µΦsF∗(B)AT

k . Let consider the
intermediate random matrix YF = F∗(B). Assuming that

F(F∗(.)) = λId(.), (V.31)

YF ’s lines are statistically independent. Therefore, within a given column of
YFAT

k , the entries are statistically independent from one another. We deduce
that the element-wise standard deviations of µΦsF∗(B)AT

k are given by

Σk = µ
√

(Φs �Φs)F2∗(Var(B))(AT
k �AT

k ). (V.32)

Then λk is obtained as previously and βk,j is calculated as

βk,j =
1

1 + |ΦsSk|
κλk

. (V.33)

The property V.31 is approximately true in the case of super-resolution.

C.5.2 Number of components

We do not propose a method to choose the number of components r.
Yet, we observe that because of the sparsity constraint, some lines of the
matrix αk+1 at the step 8 in Algorithm V.1 are equal to the null vector,
when the number of components is overestimated. The corresponding lines in
Ak+1 and subsequently the corresponding columns in Sk are simply discarded.
This provides an intrinsic mean to select the number of components. Thus in
practice, one can choose the initial r as the data set dimensionality from the
embedding space point of view, which can be estimated based on a principal
component analysis.

C.5.3 Proximity constraint parameters

In this section, we consider the functionals Ψ̂ei,ai and especially the choice
of the parameters ei and ai. Let assume that we have determine a suitable
range for the parameters : (ei, ai) ∈ S = [emin, emax]×[amin, amax] for i = 1 . . . r.

For a particular (e, a) we consider the matrix Qe,a and its eigenvectors
matrix Ve,a introduced in section C.2.3. As previously stated, we want the
weights matrix A lines to be sparse with respect to Qe,a’s eigenvectors. In
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order to choose the parameters and initialize the weights matrix, we use the
following greedy procedure. We consider a sequence of matrices (Ri)1≤i≤r,
with R1 = Y. For i ∈ J1, rK we define

Je,a(Ri) = max
k∈J1,pK

‖RiVe,a[:, k]‖2, (V.34)

and we note v∗e,a the optimal eigenvector. We choose the ith couple of para-
meters as :

(ei, ai) = argmax
(e,a)∈S

Je,a(Ri). (V.35)

A0[i, :] = v∗ei,ai and Ri+1 = Ri −RiVe,aV
T
e,a.

Regarding the set S, we choose the interval amin = 0 and amax = 2. This
range allows the notch structure, assuming that emin ≥ 0 ; for a < 0, he,a be-
haves as a low pass filter. For a ≥ 0, we observe that he,a becomes a notch filter,
with a notch frequency close to the null frequency for a ≥ 2. As previously sta-
ted, e determines the influence of two samples on one another corresponding
coefficients in the matrix A in the algorithmic process. According to Section
C.2.2, we set emin = 1. Let consider the graph Ge introduced in section C.2.4.
The higher is e, the lower is Ge connexity. Considering that we are looking
for global features (yet localized in the field frequency domain), the highest
possible value of e should guarantee that the graph Ge is connected. This
gives us a practical upper bound for e. Once S is determined, we discretize
this set, with a logarithmic step, in such a way to have more samples close to
(emin, amin) which correspond to low notch frequencies. We solve approxima-
tely Problem V.35 by taking the best couple of parameters in the discretized
version of S. This step is the most computationally demanding, especially for
large data samples.

C.5.4 Weights matrix sparsity parameters

The parameters ηl are implicitly set by the minimization scheme used at
step 8 in V.1. This is detailed in Appendix D.

D Numerical experiments

In this section, we present the data used to test the proposed method,
the simulation realized and comparisons to other existing methods for both
dimensionality reduction and super-resolution aspects.
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Figure V.3 – Simulated PSFs distribution across the FOV.

D.1 Data

The data set consists of simulated optical Euclid PSFs as in Chapter IV, for
a wavelength of 600µm. The PSFs distribution across the field is shown on Fig.
V.3. These PSFs account for mirrors polishing imperfections, manufacturing
and alignment errors and thermal stability of the telescope.

D.2 Simulation

We applied different dimension reduction algorithms to a set of 500 PSFs
located in the blue box on Fig. V.3. We applied the algorithms to different
observations of the fields, with varying level of white gaussian noise. For a
discrete signal s of length N corrupted with a white gaussian noise b, we
define the signal to noise ratio (SNR) as :

SNR =
‖s‖2

2

Nσ2
b

. (V.36)

D.3 Quality assessment

In astronomical surveys, the estimated PSF’s shape is particularly impor-
tant ; precisely, one has to be able to capture the PSF anisotropy. We recall
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that for an image X = (xij)i,j, the central moments are defined as

µp,q(X) =
∑
i

∑
j

(i− ic)p(j − jc)qxij (V.37)

with (p, q) ∈ N2, (ic, jc) are the image centroid coordinates. The moments
µ2,0 and µ0,2 quantifies the light intensity spreading relatively to the lines
{(ic, y), y ∈ R} and {(x, jc), x ∈ R} respectively. Now we consider the mo-
ment µ1,1. We introduce the centered and rotated pixels coordinates (xi,θ, yj,θ)

defined by the system of equations

xi,θ cos(θ) + yj,θ sin(θ) = i− ic (V.38)
−xi,θ sin(θ) + yj,θ cos(θ) = j − jc, (V.39)

for some θ ∈ [0, 2π]. Then we have

µ1,1 =
∑
i

∑
j

[
sin(2θ)

2
(−x2

i,θ + y2
j,θ) + (2 cos2(θ)− 1)xi,θyj,θ]xij, (V.40)

and in particular, µ1,1 =
∑

i

∑
j[

1
2
(−x2

i,π
4

+ y2
j,π

4
)]xij. It becomes clear that

µ1,1 quantifies the light intensity spreading with respect to the pixels grid
diagonals.

The ellipticity parameters are defined as,

e1(X) =
µ2,0(X)− µ0,2(X)

µ2,0(X) + µ0,2(X)
(V.41)

e2(X) =
2µ1,1(X)

µ2,0(X) + µ0,2(X)
. (V.42)

We define the vector γ(X) = [e1(X), e2(X)]T . This vector characterizes how
much X departs from an isotropic shape and indicates its main direction of
orientation. It plays a central theoretical and practical role in weak lensing
based dark matter characterization [Dodelson 2003].

Another important geometric feature is the so-called PSF size. It has been
shown that the size error is a major contributor to the systematics in weak
gravitational lensing surveys [Paulin-Henriksson et al. 2008]. We characterize
the size of a PSF X as follows :

S(X) = (

∑
i

∑
j((i− ic)2 + (j − jc)2)xij∑

i

∑
j xij

)1/2. (V.43)

Assuming that a given PSF is a 2D discrete probability distribution, this quan-
tity measures how much this distribution is spread around its mean [ic, jc]

T .
Let note (Xi)1≤i≤p the set of "original" PSFs and (X̂i)1≤i≤p the set of corres-
ponding estimated PSFs with one of the compared methods, at a given SNR.
The reconstruction quality is accessed through the following quantities :
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— the average error on the ellipticity vector : Eγ =
∑p

i=1 ‖γ(Xi) −
γ(X̂i)‖2/p ;

— noting Γ = [γ(X1) − γ(X̂1), . . . ,γ(Xp) − γ(X̂p)], the dispersion of the
errors on the ellipticity vector is measured through the nuclear norm
Bγ = ‖Γ‖∗ ;

— the average absolute error on the size : ES =
∑p

i=1 |S(Xi)− S(X̂i)|/p in
pixels ;

— the dispersion of the errors on the size : σS = std((S(Xi)− S(X̂i))i), in
pixels.

E Numerical experiments

E.1 Results

E.1.1 Dimension reduction

In this section, we compare RCA to PCA, GMRA and the software PS-
FEx. We ran a PCA with different number of principal components between
0 and 15. 10 was the value which provided the best results. GMRA input was
the data set intrinsic dimension [Little 2011], two, since the PSFs only vary
as a function of their position in the field ; we provided the absolute squa-
red quadratic error allowed with respect to the observed data based on the
observation noise level. For PSFEx, we used 15 components. Finally, RCA
used up to 15 components, and effectively, 2 and 4 components respectively
for the lowest SNR fields realization. As previously mentioned, we assess the
components sparsity’s constraint :

— on the one hand we consider Φs = In which enforces the components
sparsity in pixels domain ; this is referred to as "RCA" in the plots ;

— on the other hand, we take Φs as the second generation Starlet forward
transform [Starck et al. 2011], without the coarse scale ; this is referred
to as "RCA analysis" in the plots.

One can see on the left plot in Fig. V.4 that the proposed method is at
least 10 times more accurate on the ellipticity vector than the other considered
methods. Moreover the right plot shows that the accuracy is way more stable.
This is true for both choice of the dictionary Φs.

Fig. V.9 shows that the estimated size S(X̂i) is very sensitive to the choice
of the dictionary Φs. The results are by far more accurate with a sparsity
constraint on the components in wavelet domain than in direct domain.

For a given estimate of the PSF at a given location, the error on the size
parameter is more sensitive to errors on the core of the PSF (main lobe and
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(a) Average error on the ellipticity
vector. (b) Dispersion of the ellipticity vector.

Figure V.4 – x axis : SNR (see section D.2) ; y axis : log10(Eγ) for the left
plot, log10(Bγ) for the right plot.

(a) Average absolute error on the size. (b) Dispersion of the errors on the size.

Figure V.5 – x axis : SNR ; y axis : ES for the left plot, σS for the right
plot.

first rings) and less sensitive to errors on the outer part of the PSF than one
would expect regarding the error on the ellipticity vector. The error on the
outer part of the PSF is essentially related to the observational noise, whereas
the error on core of the PSF - which has a high SNR - is more related to the
method induced bias. This explains why the PCA performs quite well for this
parameter. On the other hand, the bias induced by the sparsity is not only
related to the dictionary choice, but also to the underlying data model with
respect to the chosen dictionary.

As previously explained, the components sparsity term is set in such a way
to penalize any feature which does not emerge from the propagated noise,
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which is a source of bias. By using wavelets, we might recover features which
are dominated by noise in pixel domain as long as the wavelet filters profile
at given scale and direction, matches those features spatial structure. Thus,
we expect less error on the reconstructed PSF’s core by using wavelets.

We might also consider two distinct ways of using sparsity for the compo-
nents :

— we can model each component as s = ΦT
sα, with α sparse, which is

known in the sparse recovery literature as synthesis prior ;

— we can alternately constraint Φss to be sparse.

This priors are equivalent if the dictionary is unitary [Elad et al. 2007]. There-
fore the pixel domain sparsity constraint can be considered as falling into both
framework. However, the two priors are no longer equivalent and potentially
yields quite different solutions for overcomplete dictionaries.

We observe in practice that unless the simulated PSFs are strictly sparse
with respect to the chosen dictionary - this includes redundant wavelet dictio-
naries, the synthesis prior yields a bias on the reconstructed PSF size, since
the estimated PSFs are sparse linear combinations of atoms which are in gene-
ral sharper than a typical PSF profile. The analysis prior is somehow weaker
and appears to be more suitable for approximately sparse data.

We do not observe a significant difference between these methods with
respect to the mean squared error, except for GMRA which gave noisier re-
constructions.

We applied the aforementioned methods to the PSFs field previously used,
with additional 30 corners PSFs and 30 localized PSFs as shown on Fig. V.3
at an SNR of 40. This assess the behavior of the algorithms with respect
to spatial clustering and sparse data distribution. One can see in Fig. V.6
examples of simulated observed PSFs from different areas in the FOV.

For each of these observed PSFs, the reconstructed PSFs for each method
are shown in Fig. V.7.

One can observe that the proposed method gives noiseless and rather ac-
curate PSFs reconstruction for both the center, the corners and the localized
area of the field (see Fig. V.3). One can also see that we fail to capture accu-
rately the rings pattern in the corners and the localized area. The dictionary
Φs considered are not specifically adapted to curve-like structures. The ring
patterns varies across the FOV but are locally correlated. Therefore, they can
only be recovered where the PSFs are sufficiently dense and numerous, which
is the case at the FOV’s center.

PCA and PSFEx yield a significant increase of the SNR in their estimated
PSFs at the center and in the localized area. Yet, they fail to do so in the
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(a) Observation 1 : center
PSF.

(b) Observation 2 : center
PSF.

(c) Observation 3 : corner
PSF.

(d) Observation 4 : corner
PSF.

(e) Observation 5 : "local"
PSF.

(f) Observation 6 : "local"
PSF.

Figure V.6 – Input PSFs at different locations in the FOV for a SNR = 40.
The corresponding reconstructed PSFs can be seen in Fig. V.7

corners because of the lack of correlation for the PCA and local smoothness
for PSFEx.

Finally, the poor results obtained with GMRA can be explained by the
fact that the underlying manifold sampling is not sufficiently dense for the
tangent spaces to be estimated reliably.

E.1.2 Super-resolution

In this section, the data are additionally downsampled to Euclid telescope
resolution. PCA and GMRA does not handle the downsampling. Therefore we
only consider PSFEx and RCA in this section. For each method, we estimate
an upsampled version of each PSF, with a factor 2 in lines and columns ; in
case of Euclid, this is enough to have a Nyquist frequency greater than half
the signal spatial bandwidth [Cropper 2013].

As previously, RCA Analysis refers to the proposed method, with the dic-
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Figure V.7 – PSFs reconstructions : from the left to the right : original,
GMRA, PCA, PSFEx, RCA ; from the bottom to the top : 2 "local" PSFs

reconstructions, 2 corner PSFs reconstructions, 2 center PSFs
reconstructions. The observed corresponding PSFs can be seen in Fig. V.6
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tionary Φs chosen as the second generation Starlet forward transform [Starck
et al. 2011], without the coarse scale ; RCA LSQ refers to the proposed method
with the dictionary Φs chosen as the identity matrix, and the weight matrix
A simply calculated as

Â = argmin
A

1

2
‖Y −F(ŜA)‖2

F , (V.44)

Ŝ being the current estimate of the components matrix. Among all the me-
thods previously considered for comparison, PSFEx is the only one handling
the undersampling.

(a) Average error on the ellipticity
vector. (b) Dispersion of the ellipticity vector.

Figure V.8 – x axis : SNR (see section D.2) ; y axis : log10(Eγ) for the left
plot, log10(Bγ) for the right plot.

As for the dimension reduction experiment, the proposed method with
Φs chosen as a wavelet dictionary is at least one order of magnitude more
accurate over the shape parameters and the mean square error. Besides, Fig.
V.10 shows that the proximity constraint over the matrix A allows one to
select a significantly better optimum than a simple least square update of A.
Indeed, regularizing the weight matrix estimation reinforces the rejection of
F ’s null space.

As previously, we restored the complete field of Fig. V.3 for a linear SNR
of 40, using "RCA Analysis", with undersampled input PSFs as shown in Fig.
V.11.

The figure V.12 shows consistent results with the dimension reduction
experiment. In particular, the corners PSFs restoration is obviously more ac-
curate.
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(a) Average absolute error on the size. (b) Dispersion of the errors on the size.

Figure V.9 – x axis : SNR ; y axis : ES for the left plot, σS for the right
plot.

Figure V.10 – Average normalized least square error

F Reproducible research

In the spirit of participating in reproducible research, the data and the
codes used to generate the plots presented in this paper will be made available
at http://www.cosmostat.org/software/rca/.

G Conclusion

We introduced RCA which is a dimension reduction method for continuous
and positive data field which is noise robust and handles undersampled data.

http://www.cosmostat.org/software/rca/
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(a) Observation 1 : center
PSF.

(b) Observation 2 : center
PSF.

(c) Observation 3 : corner
PSF.

(d) Observation 4 : corner
PSF.

(e) Observation 5 : "local"
PSF.

(f) Observation 6 : "local"
PSF.

Figure V.11 – Input PSFs at different locations in the field for a SNR = 40.

As a linear dimension reduction method, RCA computes the input data as
linear combinations of few components which are estimated, as well as the
linear combination coefficients, through a matrix factorization.

The method was tested over a field of simulated Euclid telescope PSFs.
We show that constraining both the components matrix and the coefficients
matrix using sparsity yield at least one order of magnitude more accurate
PSFs restoration than existing methods, with respect to the PSFs shapes pa-
rameters. In particular, we show that the analysis formulation of the sparsity
constraint over the components is particularly suitable for capturing accura-
tely the PSFs sizes. We also show that constraining the coefficients matrix
yields a significantly better identification of the PSFs embedding subspace
when the data are undersampled.
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Figure V.12 – PSFs reconstructions : from the left to the right : original,
PSFEx, RCA ; from the bottom to the top : 2 "local" PSFs reconstructions,
2 corner PSFs reconstructions, 2 center PSFs reconstructions. The observed

corresponding PSFs can be seen in Fig. V.11
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This chapter focuses on interpolating a PSF field at arbitrary locations
from a set of perfectly known PSFs spread out across the fov. Assuming that
the PSF can be modeled locally as a convolution kernel, we use "PSF field" to
refer to a continuous function mapping each point in the instrument focal plane
surface to the corresponding convolution kernel. This problem has driven a lot
of attention within the astronomers community over the last decade [Gentile
et al. 2013], especially due to the strengthening of accuracy requirements in
the recent and future spatial surveys. We review some of the state-of-the-art
method in the next section.
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A PSF field interpolation state-of-the-art

Most of the PSF interpolation methods fall into one of the two following
categories :

• optical model based methods which derives the PSF from a physical
model of the instrument itself ;

• data driven methods which estimate the PSFs at given locations in the
fov based on local measurements extracted from real images.

In the first category, we can mention the work in [Jarvis et al. 2008]. The
authors built a parametric model of the PSF shape and size by modeling in-
dividually the main physical causes which make the PSF variable ; they found
that this model is able to reproduce a substantial part of the PSF aniso-
tropy and size for the ground based telescope Blanco telescope. In [Stabenau
et al. 2007], the authors simulate the PSF time variations due to thermal drift,
jitter and structural vibrations, using the method of ray tracing, for the SNAP
telescope. However, these methods require making assumptions on the instru-
ment physic, and not all the phenomena at play in the image forming process
can be satisfactorily modeled. Thus, we only consider model-free methods for
comparisons in the numerical experiments.

The data driven approaches rely on the fact that in practice, unresolved
stars images in the observed field give a measurement of the PSFs at those
stars locations. One recurrent scheme consists in first expanding the obser-
ved unresolved stars over some given analytic function basis. This gives a
more compact representation of the data (and potentially allows denoising).
The PSF field is then obtained through a 2D polynomial fitting typically, of
the representation coefficients for each element of the chosen basis. In [Ro-
mano et al. 2010], this scheme is applied to model the PSF of the Large
Binocular Cameras, using the Shapelets basis ( [Refregier 2003, Massey &
Refregier 2005]). However, it might not be possible to capture all the PSF
structures through a finite expansion over an analytic function basis. One can
instead learn the representation basis from the data themselves. For example
in [Jee et al. 2007], a principal component analysis (PCA) is performed over
hundreds archival images of stars from the Hubble Space Telescope (HST)
Advanced Camera for Surveys (ACS), from different exposures. The optimal
representation basis is then chosen as the first principal components and the
representation coefficients are fitted in each exposure separately with a bi-
variate polynomial. In [Jarvis & Jain 2004], the PSF modeling also relies
on a PCA, not of the images themselves, but instead of a set of features (for
example a shape parameter). In the two aforementioned methods, fitting a glo-
bal polynomial model can yield an oversmoothing of the PSF field, or instead



B. Notations 109

a Runge phenomenon, if the polynomial’s degree is too high [Epperson 1987].
In [Gentile et al. 2013], the PSF modeling is recast as a spatial interpolation
problem. In general statistics, the spatial interpolation methods aim at inter-
polating a field exploiting the spatial correlation of the data. Some of these
methods, for example the Kriging, are presented and applied to PSF interpo-
lation in the previously mentioned work. We consider the two best performing
approaches tested in [Gentile et al. 2013] for comparisons in the numerical
experiments. More recently a PSF interpolation scheme has been proposed
in [Suksmono 2013] based on, compressive sampling (CS) ideas. The method
aims at computing the PSF ellipticity paramters at every points over an uni-
form grid using the available randomly distributed measurements. This yields
an ill-posed inverse problem which is regularized by assuming that the shape
parameters constitute a compressible field in frequency domain. However, this
approach has a narrow scope of applications since the "full" PSF itself is not
estimated.

Let finally mention a somehow hybrid approach. Indeed in [Piotrowski
et al. 2013], the authors propose to build an accurate polynomial model of the
PSF of the "Pi of the Sky" telescope from detailed laboratory measurements
of optical PSF, pixels sensitivity and pixels response. This model is then tuned
to real sky data.

In this paper, we propose a non-parametric interpolation method that
relies on geometric tools. We propose an intuitive framework for learning a
PSFs set underlying geometry using Optimal Transport distances. In Section
C, we introduce and motivate the mathematical framework ; we describe the
proposed method and algorithm in Section D ; we present some numerical
experiments and discuss the results in Section E ; the interpolation algorithm
parameters and some numerical considerations as discussed in Section F.

B Notations

Each PSF is treated either as a matrix X = (xij) 1≤i≤n
1≤j≤n

or as a vector in

Rn2 , x = (xk)1≤k≤n2 . For N ∈ N, we denote ΣN the set of permutations of
J1, NK. We denote P(Rd) the set of discrete probability measures over Rd. We
denote 1n the column vector of n ones. We denote Ip the identity matrix of
size p× p.

C Numerical Optimal Transport
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C.1 Motivation

We consider a field of monochromatic PSFs. The only factor of variability
is the unresolved object’s position in the fov. One can see from Fig. VI.1 that
PSFs shapes vary non-linearly across the field. This is related to differences
in the paths an electromagnetic wave would follow from the telescope pupil
entrance to the focal plane, depending on the source position ; this results in
different diffraction’s figures, which are the observed PSFs.

Figure VI.1 – Simulated Euclid telescope PSFs at different locations in the
fov

This can be interpreted as the curvature in Rn2 of the PSFs manifold,
occurring between distant PSFs in the fov. As Fig. VI.2 shows, we want to
combine available PSFs measurements given by unresolved objects images to
estimate the PSFs at galaxies locations in the fov.

Optimal Transport (OT) appears to be suitable to tackle this problem.
Indeed, it gives a way of measuring distances between PSFs which accounts
for the aforementioned curvature.

Besides, as already highlighted in Chapter III, Section B, it comes with a
recipe for computing geodesics which is interesting for interpolation. This is
detailed in the next section. Moreover, it is classical to assume that a PSF
has an unitary l1 norm. This implies a constraint of mass conservation in the
interpolation which is naturally integrated in the OT framework. In the next
section, we precise the OT tools and concepts we use.

C.2 General notions
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Figure VI.2 – PSF interpolation problem

C.2.1 Sliced Wasserstein Distance

We consider two points matrices X = [x1, . . . ,xN ] and Y = [y1, . . . ,yN ] in
Rd×N , for some integers d and N . By abuse of language, we do not distinguish
these matrices and the point clouds in Rd they represent, where there is no
risk of confusion. We define the distributions µX =

∑N
i=1

1
N
δxi and µY =∑N

i=1
1
N
δyi , where for x and y in Rd, δx(y) = 1 if x = y and δx(y) = 0

otherwise. The optimal assignment problem between µX and µY consists in
finding a permutation σ ∈ ΣN which minimizes

N∑
i=1

‖xi − yσ(i)‖p, (VI.1)

where ‖.‖ is a norm in Rd and p ≥ 1. Problem VI.1 can be rewritten as a parti-
cular instance of the Monge-Kantorovich mass transportation problem [Kan-
torovitch 1942]. We note σ∗ a minimizer of Problem VI.1. It has been shown
that Wp(µX, µY) = (

∑N
i=1 ‖xi − yσ∗(i)‖pp)

1
p defines a distance on P(Rd) which

is the so-called Wasserstein Distance p of the two distributions. The norm ‖.‖p
is often referred to as the ground metric and is an important parameter of the
Transport Distances in practical applications. Examples of theoretical and
computational applications of optimal transport can be found in [Papadakis
et al. 2013].

Let explicit the notion of displacement interpolation in this discrete setting.
Let consider a point xi in the first point cloud and the assigned point yσ∗(i)

in the second point cloud. Let γi : [0, 1] 7→ Rd a curve verifying γi(0) = xi
and γi(1) = yσ∗(i). The action on a material particle moving from xi to yσ∗(i)
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along γi between time s and time t might be defined as

As,tp (γi) =

∫ t

s

‖γ̇i(τ)‖pdτ, (VI.2)

where γ̇i(τ) is the particle velocity at time τ . We define the set Γi = {γ :

[0, 1] 7→ Rd, γ(0) = xi, γ(1) = yσ∗(i)}. An action minimizing path between xi
and yσ∗(i) is a solution of

min
γ∈Γi
As,tp (γi). (VI.3)

Interestingly, it has been shown that a geodesic path between the distri-
butions µX and µY in P(Rd) equipped with the Wassertein distance can be
computed by advecting particles along action minimizing paths between pairs
of assigned points in the two point clouds [Villani 2009]. Concretely, let γi∗
denotes an action minimizing path between xi and yσ∗(i). For t ∈ [0, 1], we
define the discrete distribution

µt =
N∑
i=1

1

N
δγi∗(t). (VI.4)

Then the parametric curve

ΓXY : [0, 1] 7→ P(Rd), t→ µt (VI.5)

is a geodesic path in P(Rd) between the distributions µX and µY. This realizes
a displacement interpolation of the two considered distributions ; this powerful
notion had first been introduced in [McCann 1997]. For a given t, the distri-
bution µt can be seen as the barycenter of the two end distributions with the
barycentric weights 1− t and t respectively in the Wasserstein metric.

For d = 1, i.e. in the 1D case, σ∗ is known in closed form : if we consider
two permutations σX and σY in ΣN verifying

xσX(1) ≤ · · · ≤ xσX(N) (VI.6)
xσY (1) ≤ · · · ≤ xσY (N), (VI.7)

then σ∗ = σY ◦ σ−1
X , where σ−1

X is a permutation verifying σ−1
X ◦ σX = Id.

For d > 1, there is no known closed-form expression for σ∗. Various methods
have been proposed for solving Problem VI.1 ; in particular, it can be recasted
as a linear program. Yet, the fastest known algorithms have a running time
of O(N2.5log(N)) [Burkard et al. 2009], which is prohibitive for large scale
image processing applications. This has motivated the introduction of the
sliced Wasserstein Distance [Rabin et al. 2011, Bonneel et al. 2015], which
consists in the sum of 1D Wassertein distances of the projected point clouds :

SWp(µX, µY)p =

∫
Sd−1

Wp(µXu , µYu)pdu, (VI.8)
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where p ≥ 1, Sd−1 = {x ∈ Rd/‖x‖ = 1}, Xu = {uTxi, i = 1...N} ⊂ RN and
Yu is similarly defined.

C.2.2 Sliced Wassertein Barycenter

We consider a family {X1, . . . ,XK} of point clouds in Rd : for k ∈ J1, KK,
Xk = [xk1, . . . ,xkN ] ∈ Rd×N . The associated distributions µXk

are defined as
previously. A barycenter of these distributions in the Wasserstein metric is
defined as

µBar = argmin
µ

K∑
k=1

wkWp(µ, µXk
)p, (VI.9)

for some positive weights wk verifying
∑K

k=1wk = 1. Somehow, this generalizes
the concept of displacement interpolation for an arbitrary finite number of
distributions. In various applications Wasserstein barycenters appear to be
more suitable than Euclidean or more sophisticated barycenters ( [Cuturi &
Doucet 2013], [Gramfort et al. 2015]) ; in particular they are robust to shifts
and "elastic" deformations. As previously, in 1D (i.e. d = 1) and for p = 2,
this barycenter is known in closed-form. It is the uniform discrete probability
measure defined over the set

{xBari =
K∑
k=1

wkxk[σk(i)], i = 1 . . . N}, (VI.10)

where σk is a permutation in ΣN which sorts xk entries (i.e. xk[σk(1)] ≤ · · · ≤
xk[σk(N)]).

For d > 1, computing this barycenter is in general intractable [Gangbo &
Swiech 1998]. Therefore in this paper we consider the Sliced Wasserstein Bary-
center defined by replacing the Wasserstein distance by its sliced counterpart
in the Wasserstein barycenter definition :

µSBar = argmin
µ

K∑
k=1

wkSWp(µ, µXk
)p. (VI.11)

C.3 Data representation in the Transport Framework

We consider a Nl × Nc gray levels image. We denote x = (xi)1≤i≤N the
vector of pixels intensities rearranged in lines lexicographic order, with N =

NlNc. The image is treated as a point cloud defined as

X = [v1, · · · ,vN ],with vi = [xi, b
i− 1

Nc

c, (i− 1(modNc))]
T . (VI.12)
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This point cloud can be viewed as a representation of the considered image
as a discrete surface in R3. Given a set of unresolved objects images, the idea
in the following section would be to match and or compute barycenters of the
associated surfaces based on sliced transport.

We use a ground metric C taking the following form : for two vectors
p = [p1, p2, p3]T and q = [q1, q2, q3]T in R3,

C2(x,y) = (p1 − q1)2 + β2 ∗ ((p2 − q2)2 + (p3 − q3)2), (VI.13)

where β is a strictly positive real. As a reminder, in the applications, the first
components p1 and q1 will be pixels intensities and the two other components
will be pixels positions. For two images x = (xi)1≤i≤N and y = (yi)1≤i≤N , let
X and Y be the associated point clouds and σ∗ an optimal assignment of Y’s
points to X’s points : then

W2(µX, µY) =
N∑
i=1

(xi − yσ∗(i))2

+β2 ∗ ((bi− 1

Nc

c − bσ
∗(i)− 1

Nc

c)2 + ((i− 1(modNc))− (σ∗(i)− 1(modNc)))
2).

(VI.14)

Thus, if σ∗ is the identity, W2(µX, µY) = ‖x − y‖2. Therefore, we can
consider W2 (and SW2) as a generalization of the euclidian distance in the
pixels domain.

Conversely, from a given point cloud Z ∈ R3×N , we can go backward to an
image by discretizing the 2D function Φ[Z] defined as

Φ[Z](x, y) =
N∑
i=1

Z[1, i]δZ[2,i],Z[3,i](x, y). (VI.15)

D Transport based PSF field interpolation

We consider a set of K PSFs S = (xk)1≤k≤K , located at the positions
(uk)1≤k≤K in the fov. We note (Xk)1≤k≤K the associated point clouds as de-
fined in Section C.3. We want to estimate the PSF at a new location u. We
note this PSF xu and we note Xu the associated point cloud :

xu ≡ Φ[Xu], (VI.16)

where the operator Φ is defined in Eq.VI.15. We want to estimate Xu as a
Wassertein barycenter of a subset of PSFs indexed by I(u) in the neighbo-
rhood of u in the fov :

Xu = argmin
X

∑
k∈I(u)

wk(u)SW2(µX, µXk
)2, (VI.17)
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with wk(u) ≥ 0 and
∑

k∈I(u) wk(u) = 1. I(u) simply indexes the nearest
neighbors of u in the set of locations (uk)1≤k≤K . The question of the size of
this neighborhood is postponed to Section F.1.

The weights (wk(u))k∈I(u) can be seen as generalized barycentric coordi-
nates of Xu relatively to the clouds (Xk)k∈I(u), in the Wassertein metric.

These weights are calculated in three steps that we detail in the following
sections :

— Embedding : we calculate the pairwise approximated Wasserstein 2 dis-
tances over the set (Xk)k∈I(u) and determine an euclidean embedding of
(Xk)k∈I(u) that preserves the Wasserstein distances ; we get a set of co-
ordinates (rk)1≤k≤|I(u)|, where |I(u)| is the number of elements in I(u) ;

— Interpolation : we estimate the representation ru of Xu in the previously
calculated embedding by interpolating the set (rk)1≤k≤|I(u)| coordinates-
wise ;

— Weights setting : the weights (wk(u))k∈I(u) are calculated as the eucli-
dean barycentric coordinates of ru relatively to (rk)1≤k≤|I(u)|.

D.1 Local non-linear dimension reduction

We recall that we want to estimate the PSF at a position u in the fov,
given the PSFs located at the positions (uk)1≤k≤K . We consider the p nearest
neighbors of u in (uk)1≤k≤K . This defines the set I(u) aforementioned.

As we will see in the Numerical experiments Section, the parameter β in
Eq.VI.14 is set so that for the closest PSFs in the fov, theWassertein distance is
equal to the euclidian distance. Indeed, the euclidean distance is usually assu-
med to be a good approximation of the geodesic distance between close points
on a given smooth Manifold (see for example [Tenenbaum et al. 2000,Donoho
& Grimes 2003]). However, the more two PSFs are distant in the fov, the more
the PSFs manifold curvature manifests through the relative warping of their
structures. By minimizing the amount of work needed to push one of the PSFs
toward the other, the Wasserstein metric can keep track of the warping to a
certain extent, thus unfolding locally the Manifold. For this reason, the Was-
serstein distance can potentially give a faithful approximation of the geodesic
distances, on broader neighborhoods than the euclidean distance. We define
the p× p local pairwise distance matrix MW (u) as :

MW (u)[i, j] ≈ W2(µXI(u)[i]
, µXI(u)[j]

), (i, j) ∈ J1, pK2. (VI.18)

Then we apply the Multidimensional Scaling (MDS) procedure to calculate
the embedding [Abdi 2007]. The first step consists in converting the distances
matrix MW (u) into a Gram matrix Xi i.e. whose entries are given by Xi[i, j] =
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〈ri, rj〉, so that MW (u)[i, j] = ‖ri− rj‖2. The vector ri is the low dimensional
embedding of XI(u)[i].

For this purpose we introduce the "centering matrix" [Marden 1995] defi-
ned as

C = Ip −
1

p
1p1

T
p , (VI.19)

where 1p is a row vector made of p ones. Multiplying a matrix by C on
the left has the effect of subtracting each row its mean ; C being symmetric,
multiplying a matrix by C on the right subtracts each lines its mean.

The cross-product matrix is calculated as

Xi = −1

2
CMW (u)2C, (VI.20)

where MW (u) is squared entry-wise. We define the embedding coordinates
matrix R = [r1, . . . , rn]. Assuming that such an embedding exists and R has
null lines and columns means, one can show that Xi = RTR (see appendix
F). Under this hypothesis, Xi is a symmetric matrix and therefore can be
orthogonally diagonalized :

Xi = VTSV, (VI.21)

where VTV = VVT = Ip and S is a non-negative diagonal matrix. It follows
that R can be calculated as

R = QS
1
2 V, (VI.22)

where Q is an orthogonal matrix that we set to the identity in practice [Dok-
manic et al. 2015]. Depending on neighborhood’s size p, the last diagonal
values of S can be neglected so that the last lines of V can be discarded ;
besides this represents a way of analyzing locally the Manifold dimensiona-
lity [Tenenbaum et al. 2000].

D.2 Field-of-view mapping

In this section, we estimate the local low dimensional embedding of the
unknown PSF located at u in the fov. We note this embedding ru. We note
d the dimension of the vectors (ri)1≤i≤p determined in the previous section,
and ru. To compute the ith component of ru we determine an interpolating
function

fi : R2 → R /fi(uj) = rj[i], ∀j ∈ J1, pK. (VI.23)

This is a standard surface interpolation problem that we solve using the so-
called thin-plate spline [Eberly 2002] which is appealing because of its physical
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interpretation : it is the exact interpolating function that minimizes the "ben-
ding energy" defined as :

E(f) =

∫
R2

(
∂2f(x, y)

∂2x
)2 + 2 ∗ (

∂2f(x, y)

∂x∂y
)2 + (

∂2f(x, y)

∂2y
)2. (VI.24)

Thus, the function fi takes the following form :

fi(x) =

p∑
j=1

aij‖x− uj‖2
2ln(‖x− uj‖2), (VI.25)

and the coefficients aij are calculated so that fi takes the prescribed values at
the control points (uj)1≤j≤p. This way, each component of ru can be estimated.

D.3 Barycentric coordinates

The embedding of the PSF at the position u in the fov has been deter-
mined. Now, we want to estimate the point cloud Xu from this embedding
and the neighbor PSFs. In other terms, we need to determine the weights
wk(u) in Eq. VI.17. In Section D.1, we calculated an isometric embedding of
the matrices (Xk)k∈I(u). Because of this isometry, for a set of positive weights
(wi)1≤i≤p verifying

∑p
i=1wi = 1, the problem

min
x

p∑
i=1

wi‖x− ri‖2
2 (VI.26)

is equivalent to the following

min
X

p∑
i=1

wiSW2(µX, µXI(u)[i]
)2. (VI.27)

This somehow goes along the same line as the Locally Linear Embed-
ding [Roweis & Saul 2000] and it provides a mean for computing Xu from ru.
Indeed, we first can consider the following barycentric coordinates problem :

min
w1,...,wp

1

2
‖ru −

p∑
i=1

wiri‖2
2 s.t.wi ≥ 0 and

p∑
i=1

wi = 1. (VI.28)

We note (w∗i )1≤i≤p the optimal tuple and we define r∗u =
∑p

i=1 w
∗
i ri. ru ≈ r∗u

and r∗u is solution of the Problem VI.26, with the weights (w∗i )1≤i≤p. Therefore,
we compute Xu as

Xu = argmin
X

p∑
i=1

w∗i SW2(µX, µXI(u)[i]
)2. (VI.29)
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This approach is in a way similar to the procedure described in [Gower 1968].
Besides, the task of estimating barycentric coordinates in the Wasserstein
metric has been recently addressed in [Bonneel et al. 2016], in a different
numerical Optimal Transport framework. The final image is obtained by dis-
cretizing the function Φ[Xu] defined by Eq.VI.15. This step is discussed in
Section F.

D.4 Algorithm

We want to estimate D PSFs at random locations (vi)1≤i≤D from a set of
K PSFs at known locations in the fov (see the Section D introduction). The
whole procedure is summarized in Algorithm V I.1.

Algorithme VI.1 Transport Interpolation (TraIn)

1: Inputs :K PSFs (xk)1≤k≤K ,K observations locations (uk)1≤k≤K ,D inter-
polation locations (vk)1≤k≤D, number of neighbors p, local dimensionality
d ≤ p

2: Compute the weighting parameter β (see Eq.VI.14)
3: Compute the p neighbors of each location vi in the set (uk)1≤k≤K ; this

results in a collection of sets of indices (I(vi))1≤i≤D
4: Transform the PSFs into point clouds (see Eq. VI.12) : (xk)1≤k≤K �

(Xk)1≤k≤K
5: Compute the approximated Wassertein 2 distances between pairs of point

clouds (Xl,Xm) /(l,m) ∈ I(vi)
2 for some i ∈ J1, DK

6: Pour i = 1 to D faire
7: Form the pairwise Wasserstein distances matrix over the set (Xj)j∈I(vi)

and compute a local euclidian embedding ; the results is a set of vectors
(rj)1≤j≤p in Rd

8: Estimate the embedded coordinates at the location vi using a thin-plate
spline interpolation coordinate-wise ; this results in a vector rvi

9: Compute the barycentric coordinates of rvi relatively to the vectors
(rj)1≤j≤p

10: Compute the approximate Wassertein barycenter of (Xj)j∈I(vi) using
the previously calculated barycentric coordinates as weights

11: Compute the interpolated PSF xvi from this barycenter (see Eq. VI.15)
12: Return : (xvi)1≤i≤D.

This procedure is generic in the sense that the Wassertein metric can be
replace by an arbitrary metric provided that one is able to compute geodesic
distances and geodesics as we will see in Section F.
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Figure VI.3 – Simulated PSFs distribution across the fov ; the blue squares
represents the 300 observed PSFs and the red circles the 250 PSFs to be

interpolated ; the coordinates are in degrees.

E Numerical results

We tested the proposed method on a set of 550 simulated Euclid telescope
optical PSFs. The PSFs are distributed in the fov according to Fig. VI.3. We
split the data into a "learning set" made of 300 observed PSFs and a "test
set" corresponding to 250 unknown PSFs.

E.1 Quality assessment

As in the previous chapters, the quality assessment are the PSF’s shape
parameters. We recall their definitions thereafter. The central moments of an
image X = (xij)i,j are defined as :

µp,q(X) =
∑
i

∑
j

(i− ic)p(j − jc)pxij (VI.30)

with (p, q) ∈ N2, (ic, jc) being the image centroid coordinates.
The ellipticity parameters are defined as follows :

e1(X) =
µ2,0(X)− µ0,2(X)

µ2,0(X) + µ0,2(X)
(VI.31)

e2(X) =
2µ1,1(X)

µ2,0(X) + µ0,2(X)
. (VI.32)
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The vector γ(X) = [e1(X), e2(X)]T tells how much X departs from an
isotropic distribution of luminosity and gives one the main direction of elon-
gation.

The PSF’s "size" is defined as

S(X) = (

∑
i

∑
j((i− ic)2 + (j − jc)2)xij∑

i

∑
j xij

)1/2. (VI.33)

We note (Imi)1≤i≤D the set of tests PSFs and (Îmi)1≤i≤D the set of corres-
ponding PSFs interpolated with a given method. The reconstruction quality
is accessed through the following quantities :

— the average error on the ellipticity vector : Eγ =
∑D

i=1 ‖γ(Imi) −
γ(Îmi)‖2/D ;

— the average absolute error on the size : ES =
∑D

i=1 |S(Imi)− S(Îmi)|/D
in pixels ;

— the average normalized mean square error : NMSE =
∑D

i=1 ‖Îmi −
Imi‖2

2/(D‖Imi‖2
2)

E.2 Experiments

We compare the proposed method to the Inverse Distance Weighting
(IDW) and Radial Basis Function (RBF) based interpolation. These methods
are described in [Gentile et al. 2013] as the one which performs the best
on the considered PSFs interpolation. For the first method, the weights are
calculated based on squared distances in the fov ; this is often referred as
"Inverse distance-squared interpolator". We used the radial basis function
f(r) = rln(r) ; thus the second method is nothing but a thin plate spline
interpolation as described in Section D.2. The 300 observed PSFs are first
decomposed using a principal components analysis and retaining 40 principal
components. This yields a representation with 40 coefficients for each PSF.
These coefficients are interpolated components-wise with the two comparison
methods and the interpolated PSFs are derived. As the method proposed, the
IDW and RBF based interpolation methods are local in the sense that a PSF
is interpolated at given location in the fov based on a given number of PSFs
observed in the vicinity of the considered location. Thus, the three methods
will be applied using different numbers of "neighbors PSFs".

The results are shown in Fig. VI.4,VI.5,VI.6. Interestingly, we observed
quite different behaviors with respect to the different criteria. This will be
discussed in the next section. However, the less accurate method appears to
be the IDW based method. Indeed, it gives the less accurate results in terms
of shape ; in particular, it is almost an order of magnitude less accurate than
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Figure VI.4 – Normalized mean squared error : Y-axis log10(NMSE),
X-axis number of neighbors.

Figure VI.5 – Average error on the ellipticity : Y-axis Eγ , X-axis number
of neighbors.
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Figure VI.6 – Average absolute error on the size : Y-axis ES, X-axis
number of neighbors.

the two other methods for the ellipticity. Furthermore, it is almost constantly
less accurate than TraIn with respect to the pixels mean square error. The
RBF based method and the proposed one gives comparable errors with res-
pect to the shape parameters ; it is slightly more accurate on the ellipticity
and slightly less accurate on the shape. The lowest errors with the RBF based
method are obtained for a number neighbors around 15 for the shape para-
meters. The proposed method has a quite stable accuracy with respect to the
number of neighbors for all the criteria. Moreover, it is typically several or-
ders of magnitude more accurate than the RBF based one on the pixels mean
square errors for a number of neighbors smaller than 15. Therefore, the TraIn
method is globally the most accurate. We give some examples of absolute error
images i.e. |Imi − Îmi| for some i ∈ J1, NK in Fig. VI.7, which correspond to
interpolations with 15 neighbors. It shows indeed that TraIn typically yields
a substantially lower residual.

E.3 Discussion

In this Section, we discuss the performances of the tested methods. We
consider the q first principal component derived from the learning PSFs set.
In the numerical experiments, we set q = 40 for the RBF based methods. The
Figure VI.8 illustrates how coefficients magnitudes vary across the field for
the whole data set (including the test PSFs) for some of the principal compo-
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Figure VI.7 – Absolute error images for 15 neighbors ; from the left to the
right, TraIn, RBF, IDW, original image ; from the top to the bottom, best,

average and worst case in terms of the relative accuracy of TraIn with
respect to the pixels mean square error.

nents. The two first components exhibit a smooth spatial evolution so that it is
possible to interpolate accurately the corresponding surfaces with RBFs using
few observations or control points in the vicinity of the interpolation point.
This smoothness can be seen in the scatter plot associated with this two first
components. Indeed, one needs a smooth warping to transform the scatter plot
distribution into the PSFs spatial distribution. On the contrary, the magni-
tudes have sharper variations for the two other components. This can also be
seen from the scatter plot, since a highly non-linear transform would be needed
for mapping the scatter plot distribution into the PSFs spatial distribution.
In this case, more control points are required for the RBF interpolation to
be robust to fast local variations. The scatter plots of Fig. VI.8 are nothing
but orthogonal projections of the PSFs manifold over the vector plans span-
ned by the respective pairs of principal components. As the indexes of the
principal components increase, the manifold complexity becomes more appa-
rent and manifests in fast spatial variations of the representation coefficients.
Thus, when a few control points are used, the RBF interpolation accumu-
lates errors on the "high indexes" components resulting in a poor accuracy
in terms of pixels values. TraIn and IDW instead interpolates globally the
PSFs in the sense that the interpolation is not component-wise ; this implies
less dependency of pixel-wise accuracy on the number of control points and in
particular a better accuracy compared to the RBF interpolation where a few
control points are used.

However, this does not hold for the ellipticity. To understand these changes
of performances, one needs to consider the shape parameters sensitivity rela-
tively to the principal components. Specifically, for each PSF Xi treated as an
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Figure VI.8 – Spatial distributions of the coefficients of the PSFs used for
the experiments relative to 4 principal components calculated over the
"learning" PSFs set ; the top panel corresponds to the first and second
principal components and the coefficients scatter plot ; the bottom panel
corresponds to the 6th and 7th principal components and the coefficients

scatter plot as well.
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Nl×Nc matrix, we calculate the derivative of each ellipticity parameter along
the lines passing though Xi and parallel to each of the principal components
Pj also treated as matrices : dek(Xi+tPj)

dt
, k = 1, 2. The analytic expressions

can be found in Appendix H. For each principal component Pj, we denote
dispj the dispersion of the PSFs set projected on the line passing through 0

and directed by Pj. We define the sensitivity of the ellipticity component ek,
k = 1, 2 with respect to the principal component Pj as follows :

V(ek,Pj) =
dispj

(D +K)

∑
i

|dek(Xi + tPj)(0)

dt
|. (VI.34)

It measures how much small perturbations along each of the principal com-
ponent is susceptible to make the ellipticity vary. In other words, it measures
the sensitivity of the ellipticity to errors on the principal components coeffi-
cients. The sensitivities for the 40 first principal components are plotted in Fig.
VI.9 for the two ellipticity components. It is interesting to see that the plots
are not monotonically decreasing. We can draw an important remark from this
observation : the most important features in terms of pixel-wise error are not
necessarily the most influential in terms of shape. The ellipticity parameters
have average magnitudes of order 10−2. Therefore, one can tell from Fig. VI.9
that the ellipticity is significantly sensitive to only a few principal components
within the 10 first one. Therefore, as long as the coefficient-wise interpolation
is accurate for these low indexes principal components while staying in a rea-
sonable range in general, the final result is accurate in terms of ellipticity.
This explains why the RBF interpolation maintains a good accuracy on the
ellipticity.

As to the size, it is clearly determined by the brightest structures on the
PSF, namely the main lobe and the first brightest ring. The Figure VI.10
shows that the brightest ring information is distributed onto several com-
ponents, in particular the first and the second one. One expects a bias in
the RBF interpolation from processing this information components-wise. On
the contrary, the brightest features are globally and more accurately modeled
through the barycentric coordinates calculation step, since they influence it
the most. Therefore, TraIn gives the most accurate results in terms of size.

F Practical considerations

F.1 Parameters

Local dimensionality We refer to the parameter d involved in the step 7
in Algorithm VI.1. For an ideally dense data set in the sense of the underlying
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Figure VI.9 – Ellipticity components sensitivity to the PCA atoms. Y
axis : log10(V(ek,Pj))(see Eq.VI.34) ; X axis : PCA atoms indexes j ;
moderate errors on the PCA coefficients have a weak impact on the

ellipticity, especially for the "high indexes" PCA components.

Figure VI.10 – First and second principal components ; the brightest ring
is broken apart between the two components.
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Figure VI.11 – Spatial distributions of the first (left) and second ellipticity
(right) parameters of the observed PSFs.

manifold, this parameter can be set to the manifold intrinsic dimension which
is 2 in this example ; however this is tricky since the ideal density depends on
the manifold geometric complexity which is a priori not known. We define the
"extrinsic dimensionality" dext of the data set as the dimension of the smaller
subspace containing the data set. This can be approximately estimated using
a PCA. Then we set d to min(p, dext).

Number of neighbors The proposed method gives quite stable results with
respect to the number of neighbors. However, Fig.VI.11 suggests a potential
improvement of the neighbors selection. For a given position of interpolation,
the selection of neighbors can be pictured as follows :

— one initializes a null radius sphere centered on the interpolation position
in the fov ;

— one increases the sphere radius until it includes a given number of ob-
servations locations.

Yet, Fig. VI.11 shows that the ellipticity parameters changes faster in
certain directions than in others. This suggests to grow the neighborhoods ac-
cording to the ellipticity parameters spatial gradients in such a way to include
more neighbors from directions where the ellipticity parameters vary slowly.

Ground metric weight parameter We consider the parameter β in
Eq. VI.13. β is the cost of matching two neighbors pixels (assuming a 4-
connected neighborhood) with identical intensities. Let consider two images
x = (xi)1≤i≤N and y = (yi)1≤i≤N and the associated point clouds X and Y

in the sense of Section C.3. If ∀i ∈ J1, NK|xi − yi| ≤ β then W2(µX, µY) =

‖x− y‖2. Thus, β somehow determines how much the Wasserstein geometry
is susceptible to depart from the pixels domain euclidean geometry. For suf-
ficiently small neighborhoods around a given location in the fov, the pixels
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domain l2 norm describes accurately the local geometry of the PSFs manifold.
Therefore, β has to be chosen so that the Wassertein metric is equivalent to
the pixels domain l2 norm in any small vicinity in the fov. Hence the following
procedure for setting γ :

— determine the two closest PSFs in the fov xi and xj ;

— set γ to ‖xi − xj‖∞.

F.2 Transportation issues

We recall the definition of the sliced Wasserstein distance between two
clouds X and Y :

SW2(µX, µY)2 =

∫
Sd−1

W2(µXu , µYu)2du, (VI.35)

where Sd−1 = {x ∈ Rd/‖x‖ = 1}, Xu = {uTxi, i = 1...N} ⊂ RN and Yu is
similarly defined.

Pairwise distances computation : assignments discrepancies The
continuous integration being intractable, in practice, the sliced Wasserstein
distance is calculated as a discrete sum :

SW2(µX, µY)2 =
∑

ui∈Ω⊂Sd−1

W2(µXui
, µYui

)2. (VI.36)

For each vector ui we recall that the quadratic Wasserstein distance takes the
form

W2(µXui
, µYui

)2 =
N∑
j=1

((uTi X)[j]− (uTi Y)[σ∗ui(j)])
2, (VI.37)

where σui is a permutation of J1, NK. We use the stochastic gradient descent
algorithm proposed in [Rabin et al. 2011] for calculating SW2. The algorithm
estimates a local minimum Y∗ of the functional JY(Z) = SW2(Z,Y)2 in the
vicinity of X and the approximated Wasserstein distance is computed as

W2(X,Y) ≈ ‖X−Y∗‖2. (VI.38)

At each gradient step, the "sliced assignment" (σ∗ui)i are updated. To gua-
rantee the convergence, one can use a decreasing step size ≡ 1

na
for a ∈K1/2, 1K,

n being the iteration index [Bottou 1998].
The algorithm succeeds in computing an assignment between the clouds

X and Y if the slices assignments are identical at convergence and if the sta-
tionary point Y∗ represents the same point cloud as Y ; these two conditions
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are summarized below :

SW2(µY∗ , µY)2 =
∑

ui∈Ω⊂Sd−1

N∑
j=1

((uTi Y∗)[j]− (uTi Y)[σ∗ui(j)])
2 = 0 and

(VI.39)

for ui 6= uj, σ
∗
ui

= σ∗uj . (VI.40)

The displacement interpolation between the clouds represented by X and Y

is realized by performing a linear interpolation between the matrices X and
Y∗. We define the discrepancy support as the following set

D = {k ∈ J1, NK/∃(ui,uj) ∈ Ω2/σ∗ui [k] 6= σ∗uj [k]} (VI.41)

and define the assignment discrepancy as as the support size |D|.
As observed in [Rabin et al. 2011] and [Bonneel et al. 2015], we do not

found it necessary in practice to use a decreasing step size. We observe as well
that the stationary points seem to always satisfy |D| = 0. However, it is not
rare that the sequence of iterates oscillates around a point which has a non-
zero discrepancy support size in which case, the algorithm takes a potentially
long time to reach a stationary point satisfying |D| = 0.

In case |D| > 0 for the final iterate Y∗, it mixes information from different
pixels in the image associated to Y. This translates into visual artifacts when
Y∗ is transformed into an image (see VI.15). One can see such an example in
Fig. VI.12. This is a troublesome point since in the considered astronomical
application, the systematic errors due to the PSFs estimation constitutes one
of the bottlenecks.

Besides, the algorithm is stochastic and energy minimized is non-convex ;
therefore for the same input point clouds, the algorithm converges to a dif-
ferent point at each run. We propose to reduce the final assignment discre-
pancy with a fixed number of iterations and the stationary point variability
by improving the gradient descent initialization. Taking the two point clouds
X and Y, we extract from each cloud the points corresponding to the pixels
comprised in a small rectangular window (typically of size 20 × 20) around
the corresponding images centroids (see Fig. VI.13). Let denote indX and
indY the sets of corresponding indexes and indX the complement of indX in
J1, NK. Then we find the optimal assignment between X[indX ] and Y[indY ]

using the Hungarian algorithm [Kuhn 1955], which is that fastest known pro-
cedure for solving exactly the assignment problem. However, it has a roughly
cubic complexity in its improved version, which restricts its practical use to
small scale problems. We denote σ the optimal mapping :

X[indX [i]] 7→ Y[indY [σ(i)]],∀i ∈ J1, |indX |K. (VI.42)
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Figure VI.12 – Assignment failure : on the top plot, the sequence of
images associated with each iterate are represented by the red dots and the
image associated with the ideal solution is represented by the blue dot ; these
images are shown in the plan spanned by the two first principal components
calculated from the whole images set ; the iterates end up oscillating around
a point in the middle circle ; the bottom left plot shows the ideal image and
the bottom right plot shows the absolute difference between the final image
and the ideal one ; one can see that there is some non-negligible artifacts.
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Figure VI.13 – Two PSFs examples in a logarithmic scale ; we first use the
hungarian algorithm to map the two point clouds derived from the pixels
located in the small red rectangles in each PSF respectively ; the result is
used for initializing the sliced transport algorithm on the point clouds

associated with the full images (see VI.12).

Then we initialize the stochastic gradient descent method aforementioned with
the matrix X0 defined as follows :{

X0[:, i] = X[:, i] if i ∈ indX and
X0[:, indX [i]] = Y[indY [σ(i)]] for i ∈ J1, |indX |K.

(VI.43)

To quantify the impact of this pre-assignment, we compare the average
time of execution of the algorithm, for 3 different pair of images, for 100
runs in each case, with and without optimizing the initialization. These times
account for the hungarian algorithm when used. We set a maximum number of
iterations of 20000. The discrepancies support size |D|might be non-zero when
this number of iterations is reached. Therefore, we also compute the average
of the final discrepancies support sizes. The number of projection directions
was set to 30 and the initialization window size to 20 × 20. As for all the
experiments presented, we used 42 × 42 PSFs images, which gives clouds of
1724 points each one to compare. The result is displayed in Fig. VI.14.

This results follows from the simple observation that the higher is |D| for
a given iterate, the more the stochastic gradient descent is oscillatory. The
Figure VI.14 shows that it is possible to set the exact matching window size
so that the Hungarian algorithm brings more benefits in terms of discrepancies
reduction than computational complexity.

It is worth noting that the assignment obtained from the sliced Wasser-
stein transport depends on the number of directions and slices. As outlined
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Figure VI.14 – Sliced Wasserstein transport algorithm average
performances ; x axis : average execution times in seconds ; y axis : average
final discrepancies support size ; the red, green and yellow corresponds to the
pairs of images from the top to the bottom respectively ; the triangle-shaped
points corresponds the gradient descents with an optimized initialization ;
the points are obtained by averaging these performances criteria over 100

runs for the 3 pairs of 42× 42 images ; the proposed initialization
dramatically reduces the time needed to compute an assignment between our
images related point clouds with an average execution time ranging from 10

to 40s rather than 100 to 400s.
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in [Bonneel et al. 2015], the more directions, the smoother is the assignment.
Unsurprisingly, this dependency is reduced when involving the Hungarian al-
gorithm. Actually in that case, we obtain exactly the same assignment in-
dependently of the number of directions, for two given PSFs images and an
initialization window of size 20× 20.

Velocity constrained displacement interpolation The Wasserstein ba-
rycenter of two point clouds is simply calculated by realizing a displacement
interpolation (see Section C.2). Considering 2 PSFs, a simplified interpolation
process in this framework would go as follows :

— the PSFs are first converted into two matrices X and Y representing
two different point clouds ;

— the point clouds are matched according to the previous paragraph ; this
yields a matrix Y∗ representing the same point cloud as Y ;

— the point clouds interpolation is realized by moving each point in the
first point cloud toward the matched point in the second point cloud
along a straight line and at a uniform speed on the cloud ; this is done
by performing a linear interpolation of the matrices X and Y∗ ;

— the interpolated PSFs are obtained by converting interpolated clouds at
different "times" into images.

An example is shown in Fig.VI.15. In these example, the brightest PSF’s ring
is more elongated horizontally for the initial PSF and vertically for the final
PSF. But as the displacement interpolation constraints particles to move along
straight lines, the interpolated point clouds are shrunken compared to the
extreme ones and consequently, the interpolated images have a more concen-
trated energy. Quantitatively, the interpolated PSFs tend to have l2/l1 norms
ratio that significantly exceed the range observed over the data set - note that
the PSFs l1 norms are constant and equal to 1. This problem can be approa-
ched from the ground metric angle ; precisely, one can think of choosing a
ground metric that admits curved geodesics, making a more "compact" par-
ticles advection possible. However, the complex variation of the PSFs across
the fov makes the choice of a better fitted ground metric non trivial. The
displacement interpolation generates a sequence of matrices (Xi)1≤i≤T so that
X1 = X, XT = Y∗ and for i ∈ J1, T − 1K, Xi+1 −Xi = µi(Y

∗ −X) for a step
µi. In order to better preserve the point clouds densities in the displacement
interpolation, we impose the points to have parallel velocity vectors at each
time. To do so, we modify the displacement interpolation as follows :

1. INPUT : a maximum step size µmax

2. Initialization : X0 = X, i = 0.



134 Chapitre VI. PSF field interpolation

Figure VI.15 – Displacement interpolation : "shrinkage effect" ; the
interpolated PSFs have a narrower energy distribution than the initial and

final ones.

3. WHILE i ≤ imax :
Vi = Y∗ −Xi

Compute an eigenvector ui corresponding to the highest eigenvalue of
ViV

T
i

V̂i = uiu
T
i Vi/‖ui‖2

2

Line search : µopt = argmin
µ
‖Xi + µV̂i −Y∗‖2

2 = − 〈V̂i,Xi−Y∗〉
‖V̂i‖22

Xi+1 = Xi + min(µopt, µmax)V̂i

i = i+ 1.
In the above procedure, all the particles are moved in parallel with ui at each
iteration. Moreover, ‖Xi+1 − Y∗‖2

2 ≤ ‖Xi − Y∗‖2
2. Therefore the procedure

moves in fact the initial point cloud toward the final one. We do not discuss
how close the sequence generated can come to Y∗. However, in the tests we
performed, the distance ‖Xi−Y∗‖ always gets down to the machine numerical
precision. In Fig.VI.15, the time parameter is defined as

t(i) = 1− ‖Xi −Y∗‖2

‖X−Y∗‖2

, (VI.44)

which makes sense in a dynamic model of constant speed advection along
straight lines. However, in the modified displacement interpolation, the ma-
trices (Xi)1≤i≤imax does not necessarily follow a linear path in the matrix space.
To make a direct comparison possible between the two displacement interpo-
lations, the time parameter definition has to be generalized in order to account
for a possible curvature of the path. We do so by involving the length of the
curve obtained by joining each matrix of the sequence to the following one
with a straight line :

t(i) = 1−
∑imax

j=i ‖Xi −Xi+1‖2∑imax
j=0 ‖Xi −Xi+1‖2

, (VI.45)
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with the convention Ximax+1 = Y∗. This definition generalizes VI.44. We com-
pare the two displacement interpolations in Fig. VI.16. The parallel velocity
constraint quantitatively reduces the shrinkage effect since the interpolated
images l2/l1 norms ratios does not exceed those of the reference images as
much as with the regular displacement interpolation. Not surprisingly, this
constraint yields smoother barycenters.

This constraint can be integrated directly into the sliced OT algorithm.
However, we observe that this considerably increases the number of iterations
needed to converge and most importantly, the generated sequence mostly
converges to a solution which is not a global minimum of the functional
JY(Z) = SW2(Z,Y)2. We note that this constraint can be naturally inte-
grated into the framework adopted in [Papadakis et al. 2013] since velocities
are directly manipulated. However, the eulerian discretization would require
manipulating 4 dimensional arrays, making the approach intractable.

This constraint has not been used for generating the plots shown in Section
E. Indeed, for that experiment, we considered a density of known PSFs that
makes the PSFs variations in a given neighborhood in the fov very smooth in
which case the shrinkage effect disappears.

Wasserstein barycenters computation As explained in Section D, the
interpolated PSF’s computation involves calculating a sliced Wasserstein ba-
rycenter. Let consider a set of point clouds (Yi)1≤i≤p. As for the pairwise
Wasserstein distances, an approximation of their Wasserstein barycenter is
approximately calculated by finding a local stationary point of the functional
JY1,...,Yp(Z) =

∑p
i=1 wiSW2(Z,Yi)

2 [Rabin et al. 2011], for some barycentric
weights (wi)1≤i≤p. The higher is p, the more degenerated is this functional
because of its combinatorial nature, which increases the assignments discre-
pancies. But as mentioned in Section C.2.2, there is no efficient method for
calculating exactly a Wasserstein barycenter of more than two point clouds,
even for small scale problems. Therefore, the previously described strategy for
speeding the convergence up can not be directly extended to this case. We
propose to approximate the Wasserstein barycenter of a set of more than two
point clouds by computing a sequence of "2 points" Wasserstein barycenters.
This relies on the local isometry assumption made in Section D.1. Indeed, the
barycenter of a set of vectors (ri)1≤i≤p associated with the barycentric weights
(wi)1≤i≤p can be calculated through the following procedure :

1. Initialization : rbar = r1; i = 2, w = w1

2. WHILE i ≤ p :
rbar = argmin

r
wi‖r− ri‖2

2 + w‖r− rbar‖2
2
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Figure VI.16 – Constrained displacement interpolation : the two PSFs
panels show original PSFs on the top and the interpolated PSFs for t=0.5
are shown on the bottom left for the regular displacement interpolation and
the bottom right for the velocity constrained displacement interpolation ; the
right plots show the evolution of the l2/l1 norms ratio of interpolated PSFs
as functions of the time parameter in the two examples respectively ; the

velocity constraint reduces the shrinkage effect since the corresponding l2/l1
norms ratios are flattened compared to those obtained with the regular

displacement interpolation ; moreover, the interpolated images are smoother.
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w = w + wi
i = i+ 1.

Indeed, one can check that at the ith iteration rbar is updated to∑i
k=1

wk∑i
j=1 wj

rk. If the Wasserstein space is isometric to a euclidean space in
the neighborhood of the point clouds involved in the barycenter’s calculation,
then one can apply a similar procedure in the Wasserstein space to calculate
the barycenter, hence the following scheme :

1. Initialization : Zbar = Z1; i = 2, w = w1

2. WHILE i ≤ p :
Zbar = argmin

Z
wiSW2(Z,Yi)

2 + wSW2(Z,Zbar)
2

w = w + wi
i = i+ 1.

This way we can take advantage of the previously accurate initializing propo-
sed in the Wasserstein barycenter approximation and make use of the 1D

displacement interpolation. The computed barycenter slightly changes de-
pending on the ordering of the clouds Yi. We choose the ordering so that
w1 ≥ · · · ≥ wp.

G Reproducible research

In the spirit of participating in reproducible research, the data and the
codes used to generate the plots presented in this paper will be made available
at http://www.cosmostat.org/software/.

H Conclusion

We introduce TraIn (Transport Interpolation) which is a data field inter-
polation method based on Optimal Transport and making use of some Mani-
fold Learning ideas. We consider the interpolation of a PSF field. The local
geometry of the PSF field is characterized using approximated Wasserstein
distances. From these, we derive low dimensional local euclidean embeddings
of the PSF field which is then mapped to the instrument field-of-view using
a thin-plate interpolation. This mapping gives one the embedded coordinates
of the unknown PSFs, from which a representation of these PSFs in the qua-
dratic Wasserstein metric is determined. Finally, the interpolated PSFs are
calculated through nested displacement interpolations.

We compared TraIn to the Inverse Distance Weighting method and to a
component-wise thin-plate interpolation of PCA coefficients. The tests were

http://www.cosmostat.org/software/
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made on a set of realistic Euclid-like PSFs. We show that the proposed me-
thod is globally the most accurate in terms of pixel domain error and shape.
In particular, TraIn is in average several order of magnitudes more accurate
than the two other methods in terms of pixels errors when a few number of
"neighbors PSFs" are used for the interpolation ; it is therefore more robust
to the PSF field sampling. We also introduce a velocity constraint displace-
ment interpolation for mitigating the unnatural shape shrinkage that might
occur when interpolating objects with different major axis using an euclidean
ground metric.

A natural extension of this study would be to compare these interpolation
methods in a setting where the reference PSFs are not perfectly known.
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Conclusion

A Methods and results

This thesis addressed the problem of estimating the Point Spread Function
across an optical instrument field-of-view (fov) solely from unresolved images
of compact objects such as stars.

In Chapter IV, we proposed a method for estimating a well sampled PSF
from aliased, randomly shifted and noisy measurements of the same PSF.
We show that using sparsity and positivity constraints yield a significantly
better preservation of the PSF shape over popular methods in the astronomy
community, especially at low SNRs.

In Chapter V, we move toward a more realistic setting. Indeed, we consi-
der the problem of jointly estimating a set of different PSFs from only one
measurement for each PSF. Thus, we introduce a dimension reduction and
super-resolution method which, additionally to the priors used in the multiple
frame setting, takes advantage of the PSFs field compressibility. This, again,
yields significant improvements in terms of the PSFs shapes at low SNR, with
respect to existing methods.

In Chapter VI, we consider the problem of estimating the PSF at an arbi-
trary location in the instrument fov, given the PSFs on a finite set of locations.
This amounts to estimating the mapping between the fov coordinates space
and the PSFs underlying manifold. To that end, we propose an interpola-
tion framework which firstly derives local low dimensional representations of
the training data based on approximated pairwise quadratic Wasserstein dis-
tances. Assuming that this unfolds the PSFs manifold locally, the low dimen-
sional representations of the unknown PSFs can be estimated using standard
interpolation methods. From these, the barycentric coordinates of the unk-
nown PSFs in the Wasserstein metric are derived and the interpolated PSFs
are calculated as (approximated) Wasserstein barycenters. This approach yiel-
ded a remarkable accuracy in terms of the PSFs shapes and pixels errors.
However, it is computationally demanding.

We emphasize that the methods developed are non parametric and can
be used for other optical instruments, although the numerical experiments
were focused on the Euclid telescope PSFs. The associated codes will be made
available at http://www.cosmostat.org/software/.

http://www.cosmostat.org/software/


140 Chapitre VII. Conclusion

B Perspectives

Several perspectives follow naturally from this work and applications in
astronomy and beyond.

In astronomy : The interpolation problem can be alternately addressed
as an extension of RCA (see Chapter V) by solving a larger inverse problem
involving a "semi-blind" deconvolution of the galaxies present in the same
fov. We recall that RCA computes a matrix S which columns span a subspace
embedding the PSFs manifold and a matrix A of representation coefficients
of the PSFs at the positions of the unresolved stars images present in the fov.
The ultimate aim is to estimate the PSFs at the galaxies locations. Assuming
that these PSFs also belong the S’s columns space, one only need to determine
their representations coefficients, which we denote by a matrix Ag. Given an
estimate of A, Ag is strongly constrained, due to the PSFs field’s regularity
and the PSFs positivity prior. Given an estimate of Ag and S, one can restore
the galaxies. Finally, given an estimate of the galaxies, one can refine Ag.
Thus, it is easy to derive a global scheme which both restores and interpolates
the PSFs and deconvolves the galaxies.

More generally : The methods proposed have to be extended to account
for the wavelength dependency of the PSFs. Specifically, an unresolved image
of a compact light source can be modeled as

y =
n∑
i=1

F(aixi) + n, (VII.1)

where each xi is the PSF at the position of object in a narrow wavelength
band centered on a wavelength λi. The vector a = (ai)1≤i≤n is the discretized
emission spectrum of the light source. n has to be sufficiently large for the
PSF to be approximately constant on each band. n is the noise and F is a
linear degradation operator. Let assume that F is the identity. Calculating
the monochromatic PSFs xi from y is an ill-posed inverse problem, even kno-
wing a. However, this problem is highly structured. Indeed, assuming that
λ1 < · · · < λn, then for i > 1, the PSF xi is approximately obtained by resca-
ling the PSF xi−1 as illustrated in Fig. VII.1. This follows from the dilatation
property of the Fourier transform ; we refer to the introductory chapter for
the analytical form of a monochromatic PSF. It is not exactly a rescaling be-
cause of the wavelength dependency of the wavefront error ; again, we refer
the reader to Chapter I. However, we can reasonably assume that in a conti-
nuous setting, the PSF xi−1 can be transformed into the PSF xi through a
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Figure VII.1 – Simulated Euclid optical PSFs at increasing wavelengths
from the left to the right between 500 and 900 nm

monotonic rearrangement. Thus, rather than computing directly the xis, one
can approach the problem by computing a sparse and positive transportation
plan between x1 and xn, which generates the intermediary PSFs by displace-
ment interpolation and approximately performs a monotonic rearrangement
of x1 into xn. One can think of different tools to enforce the monotonicity,
among which the helmoltz-hodge decomposition, in the same spirit as [Zhu
et al. 2007]. Conveniently, this approach would implicitly integrates the mass
conservation constraint between the PSFs.
Furthermore, as seen in the introductory chapter, more physical priors could
be involved in the PSF’s restoration. A simple example is the fact that a
PSF’s Fourier transform is an even function, which can be translated into a
linear constraint. A bolder approach would be to turn the PSF restoration
into a phase recovery problem, and use prior knowledge on the phase-shifting
function, like for instance its relationship with Zernike polynomials. This is
particularly sound if out-of-focus images are available, which can be easily
obtained in microscopy applications [Bostan et al. 2016].
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In this appendix, we give the general convex analysis material relevant to
our work. We consider a finite-dimensional Hilbert space H equipped with
the inner product 〈., .〉 and associated with the norm ‖.‖. Let H be a finite-
dimensional Hilbert space (typically a real vector space) equipped with the
inner product 〈., .〉 and associated with the norm ‖.‖. A real-valued function
F defined on H is

— proper if its domain, as defined by domF = {x ∈ H/F(x) < +∞}, is
non-empty ;

— lower semicontinuous (LSC) if lim infx→x0 F(x) ≥ F(x0).

We define Γ0(H) as the class of all proper LSC convex real-valued function
defined on H.

A Proximal calculus

Moreau (1962) introduced the notion of proximity operator as a genera-
lization of a convex projection operator. Let F ∈ Γ0(H). Then the function
y → 1

2
‖α − y‖2 + F(y) achieves its minimum at a unique point denoted by

proxF(α), (∀α ∈ H). The operator proxF is the proximity operator of F .

Examples :

— The indicator function of a closed convex subset C of H is the function
defined on H by

ιC(x) =

{
0, if x ∈ C

+∞, otherwise. (B.1)

It is clear from the definitions that the proximity operator of ιC is the
orthogonal projector onto C. Thus, for C = Sx(0) , which is defined in
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Chapter IV Section B.1, and for x ∈ Rd2p2 , we have,

proxιS
x(0)

(x) = (max(xi,−x(0)
i ))1≤i≤d2p2 . (B.2)

— Another popular example of proximity operator is the one associated
with F = λ‖.‖1 with λ ∈ R :

proxλ‖.‖1(α) = SoftThreshλ(α) =((
1− λ

|αi|

)
+

αi

)
1≤i≤p

,
(B.3)

where p is the dimension of H, αi the components of alpha in the basis
associated with ‖.‖1 and (.)+ = max(., 0).

— For λ = (λi)1≤i≤p, the proximity operator associated with the weighted
l1 norm ‖Diag(λ)(.)‖1 is given by

prox‖Diag(λ)(.)‖1(α) = SoftThreshλ(α) =((
1− λi
|αi|

)
+

αi

)
1≤i≤p

.
(B.4)

The hard thresholding operator defined as

HardThreshλ(α) = (α̃i)1≤i≤p,

with α̃i =

{
αi if |αi| ≥ λi
0 else.

(B.5)

is often used instead in practice.

Properties :

— separability : if H = H1 × · · · × Hn, for F ∈ Γ0(H) and if F(x) =

F1(x[1]) + · · · + Fn(x[n]) where Fi ∈ Γ0(Hi), for i = 1 . . . n, then
proxF(y) = (proxF1

(y[1]), . . . , proxFn(y[n])) ;

— translation : for F ∈ Γ0(H) and a ∈ H, we define Fa(x) = F(x − a) ;
then proxFa

(y) = a + proxF(y − a)

—

Now we suppose that H = Rp, and we want to solve

min
α∈Rp
F1(α) + F2(α) (B.6)

where F1,F2 ∈ Γ0(Rp). Many problems in signal and image processing may
be formulated this way, where F1 would be the data attachment function



B. Convex conjugate 147

and F2 would constrain this solution based on prior knowledges. It has been
shown [Combettes & Wadjs 2005] that if F1 is differentiable with a β-Lipschitz
continuous gradient, then the problem (B.6) admits at least one solution and
that its solutions, for γ > 0, verify the fixed point equation,

x = proxγF2
(x− γ∇F1(x)). (B.7)

This suggests the following iterative scheme,

xn+1 = proxγnF2
(xn − γn∇F1(xn)), (B.8)

for appropriate values of the parameter γn. This type of scheme is known as
forward-backward (FB) algorithm : a forward gradient step using F1 and a
backward step involving F2 through its proximity operator. Some variants of
FB algorithms that have been shown to converge to a solution of (B.6) can
be found in [Bauschke et al. 2011].

One may refer to [Bauschke et al. 2011] for other proximity operator pro-
perties and examples.

B Convex conjugate

Definition : let F be a real-valued function defined on H. The function
F∗ : y→ max

x
〈x,y〉 − F(x) is the convex conjugate of F ; it is also known as

the Legendre-Fenchel transformation of F .

Properties :

— Moreau identity : for F ∈ Γ0(H) and λ ∈ R∗+, proxλF(x) +

λprox 1
λ
F∗(

x
λ
) = x ;

— Fenchel - Moreau theorem : if F ∈ Γ0(H), F = F∗∗.
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A First guess noise

We keep the same notations as in Section B.3.2 in Chapter IV. We note xwi
as the ith scale of x

(0)
n wavelet transform in W. As the noise in x

(0)
n is correlated,

the estimation of σi is not straightforward, so we proceed as follows :
1. σ0

i = 1.4826 MAD(xwi)

2. x̂wi = argmin
x

1
2
‖x− xwi‖2

2 + kσ0
i ‖x‖1

3. σi = 1.4826 MAD(x̂wi − xwi).
The factor 1.4826 comes from the assumption that the noise is approximately
Gaussian. Finally, the factor k must be sufficiently high so that all the noise
will remain in the residual x̂wi − xwi. We took k = 5. The problem in step
2 has a closed-form solution. For the finer scales, σ0

i is quite close to σi. But
for coarser scales, σ0

i is significantly overestimated (it might be more than 10
times greater than σi). We implicitly assumed that the noise in the wavelet
scales is stationary, which is reasonable apart from the edges effects due to
the wavelet transform.

B Positivity

We can drop the positivity constraint by simply solving

min
∆
J1(∆ + x(0)) + κ‖w(k) � λ�Φ∆‖1 (C.1)

at step 6 in Algorithm IV.2 in Chapter IV. We did a similar numerical expe-
riment as the one presented in Section C in the same chapter to quantify the
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impact of this constraint. The comparison is given in Fig. C.1. One can see
that the positivity constraint is actually important from the point view of the
ellipticity parameters at low SNR. This result is illustrated in Fig. C.2. With
the positivity constraint, the reconstruction is less influenced by the negative
oscillations in the data, due to noise ; thus it yields a better robustness. Even
if the negative residual values in the final PSF are 1000 order of magnitude
smaller than the peak value, it is sufficient to considerably bias the ellipticity
measurements.

(a) Mean absolute error on the first
ellipticity parameter.

(b) Standard deviation of the absolute
error on the first ellipticity parameter.

(c) Mean absolute error on the second
ellipticity parameter.

(d) Standard deviation of the absolute
error on the second ellipticity parameter.

Figure C.1 – Errors in log scale on ellipticity parameters versus the SNR.
The positivity constraint significantly improves the accuracy.
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Figure C.2 – Map of negative values in the PSF reconstruction map (in
absolute value) at 15dB. On the left, SPRITE has a positivity constraint ; on

the right, SPRITE without positivity constraint.

C Reweighting

As stated in Chapter IV, Section B.1, the reweighting scheme used in
SPRITE is meant to mitigate the bias due to the l1 norm penalty. To verify
this, we basically did the same as for the positivity in the previous section.
Thus, we ran Algorithm IV.2 with Kmax = 1 and Kmax = 2 and we compute
in each case the mean correlation coefficient in Pearson sense [Rodgers &
Nicewander 1988] between the reference images and the reconstructions for
different SNR. The result is given in Fig. C.3. As expected, the reweighting
improves the correlation and consequently, reduces the global bias on the
reconstruction.
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Figure C.3 – Mean correlation coefficients (×100) between the SPRITE
PSF reconstructions and the reference images versus the SNR ; the

reweighting reduces the global bias
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This appendix details the practical resolution of optimization problems
involved in the RCA algorithm.

A Components estimation problem

We consider the step 5 in the Algorithm V.1 in Chapter V. If Φs = In, the
problem of estimating components takes the following generic form :

min
S
F(S) + G1(L1(S)) +H(S), (D.1)

with F(S) =
∑r

i=1 ‖wi � s
(c)
i ‖1, G1 = ιRn×p+

, L1(S) = SA and H(S) = 1
2
‖Y −

M(S)‖2
F for some bounded linear operatorM.

F ∈ Γ0(Rn×r), G1 ∈ Γ0(Rn×p) and L1 is a bounded linear operator. Moreo-
ver, H is convex, differentiable and has a continuous and Lipschitz gradient.
This problem can be solved efficiently using the primal dual algorithms in-
troduced in [Combettes et al. 2014] for instance. One only need to be able to
compute λF and αG∗1 proximity operators, for some given positive reals λ and
α and H’s gradient :

— proxλF(S) = (ŝij) 1≤i≤n
1≤j≤p

, with ŝij = SoftThreshλwj[i](sj[i]) ;

— proxαG∗1 (Z) = Z− (Z)+

— ∇H(S) = −M∗(Y −M(S)), whereM∗ is the adjoint operator ofM.

For an arbitrary dictionary Φs, we instead consider the following generic for-
mulation of the problem :

min
S
G1(L1(S)) + G2(L2(S)) +H(S), (D.2)
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where G2(Z) =
∑r

i=1 ‖wi � Z
(c)
i ‖1 and L2(S) = [Φss

(c)
1 , . . . ,Φss

(c)
r ]. One can

use the algorithms suggested before and minimization will require the com-
putation of αG∗2 proximity operator, for some given positive real α which is
simply given by

proxαG∗1 (Z) = Z− Ẑ ,with Ẑ[i, j] = SoftThreshλwj[i](Z[i, j]).

B Coefficients estimation

We consider the step 8 in the Alg. V.1 in Chapter V. The problem takes
the generic form :

min
α
J (α) s. t. ‖α[l, :]‖0 ≤ ηl, l = 1 . . . r, (D.3)

where J is convex, differentiable and has a continuous and Lipschitz gradient
and α ∈ Rr×q. This problem is combinatorial and its feasible set is non-
convex. For typical data sizes in image processing applications and tractable
processing time, one can at best reach a "good" local optimum. There is an
extensive literature on optimization problems involving the l0 pseudo-norm.
We propose an heuristic based on quite common ideas now and which appears
to be convenient from a practical point of view. Let α∗ be a global minimum
of Problem D.3. For a vector M ∈ Rr×q, we define its support as

Supp(M) = {(i, j) ∈ J1, rK× J1, qK/|M[i, j]| ≥ 0}. (D.4)

We note Eα∗ the set of r × q real matrices sharing the support of α∗ :

Eα∗ = {M ∈ Rr×q/Supp(M) = Supp(α∗)}. (D.5)

Eα∗ is a vector space. In particular, Eα∗ is a convex set. Therefore, α∗ is a
solution of the following problem :

min
α
J (α) s. t. α ∈ Eα∗ . (D.6)

The proposed scheme is motivated by the idea of identifying approximately
Eα∗ along with the iterative process. One can think of numerous algorithms
to solve Problem D.6, all involving the orthogonal projection onto Eα∗ . We
build upon the fast proximal splitting algorithm introduced in [Beck & Te-
boulle 2009]. For a vector u ∈ Rq we note σ a permutation of J1, qK verifying
|u[σ(1)]| ≥ · · · ≥ |u[σ(q)]|. For an integer k ≤ q, we define

Suppk(u) = {i ∈ J1, qK/|u[i]| ≥ |u[σ(k)]|}, (D.7)

Finally for a vector α ∈ Rr×q, we define the subspace

Ek,α = {M ∈ Rr×q/Suppk(M[i, :]) = Suppk(α[i, :]), i = 1 . . . r}. (D.8)
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The proposed scheme is given in Algorithm D.1. f is a positive valued concave
increasing function and projEbf(k)c,Uk (.) denotes the orthogonal projection onto
Ebf(k)c,Uk

.

Algorithme D.1 Beck-Teboulle proximal gradient algorithm with variable
proximity operator

1: Initialization : α0 = 0Rr×q , β0 = α0, t0 = 1 res−1 = 0, res0 = 0, tol, k =

0

2: Minimization
3: tant que k < kmax and |(resk − resk−1)/resk| faire
4: Uk = βk − ρ−1∇J (βk)

5: αk+1 = projEbf(k)c,Uk (Uk)

6: tk+1 =
1+
√

4t2k+1

2

7: λk = 1 + tk−1
tk+1

8: βk+1 = αk + λk(αk+1 −αk)
9: resk+1 = J (βk)

10: k = k + 1

11: Return : αkstop .

The solution support size is constraint at step 5 and the size is gradually
increased as shown in Fig.D.1.

The convergence analysis this scheme is out of the scope of this paper. Ho-
wever, Fig. D.2 suggests that once an index is included in an iterate support,
this index is included in all the forthcoming iterates supports. This implies
that at each support size’s step in Fig. D.1, the algorithm approximately
solves a problem of the following form :

min
α
J (α) s. t. α ∈ E, (D.9)

for a given subspace E, which is a convex problem.
This scheme can be viewed as an iterative hard thresholding [Blumensath

& Davies 2008], with a decreasing threshold [Mancera & Portilla 2008]. Yet,
it is quite easy to get an upper bound of the support size - related to the
parameters ηl in Problem D.3 - from the data. Depending on the time one is
willing to spend on the coefficients computation, this yields convenient choices
for the function f .
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Figure D.1 – Support size function ; X axis : iteration index k in
Algorithm D.1 ; Y axis : bf(k)c for f(x) =

√
x+ 1

Figure D.2 – Algorithm D.1 main iterate evolution ; X axis : |αk+1[0, :]| for
the top image and |αk+1[1, :]| for the bottom image ; Y axis : iterate index k



Annexe E

Notch filter approximation

In this appendix, we explain why the functional Ψe,a introduced in Chap-
ter V, subsection C.2 can be approximated with the functional Ψ̂e,a. We reuse
the same notations. We consider the 1D case. The samples (ui)1≤i≤p are uni-
formly spaced scalar. We assume that u1 < · · · < up. We note ∆ = u2 − u1.
Thus,

ψi = ψp−i+1 =
−1

|k + 1− i|e∆e
if i 6= k + 1, and (E.1)

ψk+1 = 2
k∑

n=1

a

ne∆e
. (E.2)

Using the centered definition of the convolution with a zero boundary condi-
tion, for a vector v = (vi)1≤i≤p, the vector h = v ?ψe,a is given by

h[j] =

p∑
i=1

viψj+k+1−i, (E.3)

for j ∈ J1, pK and with the convention that ψj+k+1−i = 0 if j + k + 1 − i < 1

or j + k + 1− i > p. Combining Eq.E.1, E.2 and E.3, we can write

h[j] = (2
k∑

n=1

a

ne∆e
)vj −

∑
i∈[max(1,j−k),
min(p,j+k)],i 6=j

1

|j − i|e∆e
vi. (E.4)

We recall that Ψe,a(v) = ‖h‖2
2. On the other hand, Ψ̂e,a(v) = ‖tv‖2

2, with tv

defined as

tv[j] = (2

min(j−1,p−j)∑
n=1

1

ne
+

max(j−1,p−j)∑
n=

min(j−1,p−j)+1

1

ne
)
a

∆e
vj −

p∑
i=1
i6=j

1

|j − i|e∆e
vi if j 6= k + 1

and tv[k + 1] = (2
k∑

n=1

a

ne∆e
)vj −

p∑
i=1
i6=k+1

1

|k + 1− i|e∆e
vi.

(E.5)
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Thus, tv[k + 1]− h[k + 1] = 0 and for j 6= k + 1

tv[j]− h[j] = (

max(j−1,p−j)∑
n=k+1

1

ne
−

k∑
n=

min(j−1,p−j)+1

1

ne
)
a

∆e
vj

−
max(1,j−k)∑

i=1
i6=j

1

|j − i|e∆e
vi −

p∑
i=min(p,j+k)

i6=j

1

|j − i|e∆e
vi.

(E.6)

Given the symmetry of ψe,a with respect to k + 1, we focus on the above
difference for j ≤ k. We further assume that j 6= 1. Then, Eq.E.6 simplifies to

tv[j]− h[j] = (

p−j∑
n=k+1

1

ne
−

k∑
n=j

1

ne
)
a

∆e
vj −

1

(j − 1)e∆e
v1 −

p−j∑
n=k

1

ne∆e
vn. (E.7)

Now, using the inequalities for n > 1,∫ n

n−1

1

(t+ 1)e
dt ≤ 1

ne
≤
∫ n

n−1

1

te
dt, (E.8)

and assuming that e > 1, we get the following upper bounding :

|tv[j]− h[j]| ≤ 1

e− 1
[max(|(p− j + 1)1−e + (j − 1)1−e − (k + 1)1−e − k1−e|,

|(p− j)1−e + j1−e − (k + 1)1−e − k1−e|)a+
e− 1

(j − 1)e
+ k1−e − (p− j)1−e]

‖v‖∞
∆e

.

(E.9)

We see that the higher is k (we recall that p = 2 ∗ k + 1) and the closer j is
to k, the smaller is the error. Therefore, we use tv as an approximation for h,
up to boundaries errors.
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Multidimensional scaling

We consider a family of vectors (ri)1≤i≤p in Rq ; we set R = [r1, . . . , rp].
We assume that

∑p
i=1 ri = 0Rq . We define the distances matrix D =

(‖ri − rj‖22)1≤i,j≤p and the norms vector v = (‖r1‖2
2, . . . , ‖rp‖2

2)T . We want
to retrieve (ri)1≤i≤p from D. D can be rewritten as :

D = v1Tp + 1pv
T − 2RTR. (F.1)

We consider the centering matrix C introduced in Chapter VI, Section
D.1. We have C1vT = 0Rp = v1Tp C. Thus −1

2
CDC = (RC)TRC. But RC =

(
∑p

i=1 ri)1
T
p = 0, which finally gives −1

2
CDC = RTR.
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Points clouds to image transform

The step 11 in the Algorithm VI.1 in Chapter VI.1 consists in converting
estimated Wasserstein barycenters which are points clouds into images which
are the actual PSFs estimates. Let consider an estimated Wasserstein Xbar ∈
R3×N . By construction, the first dimension is related to pixels intensities and
the second and third are related to pixels positions (see Eq. VI.12). We assume
that the PSFs images have Nl lines and Nc columns so that N = NlNc. Then
the most simple way of calculating an image from Xbar is the following :

1. Initialize an Nl ×Nc image PSFbar with all pixels values set to zeros.

2. FOR ALL i ∈ J1, NK :
find the nearest neighbor (li, ci) of Xbar[2 : 3, i] in J1, NlK× J1, NcK.
Set PSFbar[li, ci] = PSFbar[li, ci] + Xbar[1, i].

However, this generally results in sharp pixels intensities variations and the-
refore visual artifacts. We circumvent this by involving the four nearest pixels
in step 2 in the procedure above, rather than the nearest one solely :

1. Initialize an Nl ×Nc image PSFbar with all pixels values set to zeros.

2. FOR ALL i ∈ J1, NK :
find the 4 nearest neighbors ((lij, cij))1≤j≤4 of Xbar[2 : 3, i] in J1, NlK ×
J1, NcK.
FOR ALL j ∈ J1, 4K :
set PSFbar[lij, cij] = PSFbar[lij, cij] + 1∑4

k=1

‖Xbar[2:3,i]−(lij ,cij)
T ‖22

‖Xbar[2:3,i]−(lik,cik)
T ‖22

Xbar[1, i].

This is illustrated in Fig. G.1.
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Figure G.1 – Point cloud to image mapping.



Annexe H

Ellipticity parameters directional
derivatives

The ellipticity parameters used in the Chapters IV to VI can be rewritten
in the following way :

e1(Xi) =
< Xi,U5 >< Xi,U3 > − < Xi,U1 >

2 + < Xi,U2 >
2

< Xi,U4 >< Xi,U3 > − < Xi,U1 >2 − < Xi,U2 >2
(H.1)

e2(Xi) =
2(< Xi,U6 >< Xi,U3 > − < Xi,U1 >< Xi,U2 >)

< Xi,U4 >< Xi,U3 > − < Xi,U1 >2 − < Xi,U2 >2
, (H.2)

where U1 = (k) 1≤k≤Nl
1≤l≤Nc

, U2 = (l) 1≤k≤Nl
1≤l≤Nc

, U3 = (1) 1≤k≤Nl
1≤l≤Nc

, U4 = (k2 +

l2) 1≤k≤Nl
1≤k≤Nc

, U5 = (k2 − l2) 1≤k≤Nl
1≤l≤Nc

, U6 = (kl) 1≤k≤Nl
1≤l≤Nc

. We derive the following
expressions :

de1(Xi + tPj)

dt
=
a1 + a2t

ct
− e1(Xi + tPj)

d1 + d2t

ct
(H.3)

de2(Xi + tPj)

dt
=
b1 + b2t

ct
− e2(Xi + tPj)

d1 + d2t

ct
, (H.4)

where

— ct =< U4,Xi + tPj >< U3,Xi + tPj > − < U1,Xi + tPj >
2 − <

U2,Xi + tPj >
2

— a1 =< U5,Xi >< U3,Pj > + < U3,Xi >< U5,Pj > −2(<

U1,Xi >< U1,Pj > − < U2,Xi >< U2,Pj >)

— a2 = 2(< U5,Pj >< U3,Pj > − < U1,Pj >
2 + < U2,Pj >

2)

— b1 = 2(< U6,Xi >< U3,Pj > + < U3,Xi >< U6,Pj > − <

U1,Xi >< U2,Pj > − < U2,Xi >< U1,Pj >)

— b2 = 4(< U6,Pj >< U3,Pj > − < U2,Pj >< U1,Pj >)

— d1 =< U4,Xi >< U3,Pj > + < U3,Xi >< U4,Pj > −2(<

U1,Xi >< U1,Pj > + < U2,Xi >< U2,Pj >)

— d2 = 2(< U4,Pj >< U3,Pj > − < U1,Pj >
2 − < U2,Pj >

2).
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