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À ma famille et mes amis



ii



Remerciements
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Dudas, Bertrand Laforge, Yann Mambrini et Veronica Sanz qui ont pris le temps de
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enseignement (et des réunions pédagogiques) un plaisir et un très bon souvenir.

iii



iv Remerciements

J’aimerais exprimer ma gratitude à mes professeurs pour m’avoir donné le goût
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le sourire m’a porté pendant ces derniers mois.



Contents

Remerciements iii

Introduction ix

1 Higgs and Super-Higgs Mechanism 1

1 Higgs Mechanism in the Standard Model . . . . . . . . . . . . . . . . . 1
2 Super-Higgs Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3 Toward the MSSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Two-Higgs Doublets Model . . . . . . . . . . . . . . . . . . . . . 6
3.2 Higgs Mechanism in the MSSM . . . . . . . . . . . . . . . . . . 8

4 Hierarchy and Split SUSY . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1 The Hierarchy Problem . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Split Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . 13

2 An Introduction to Dirac Gauginos 17

1 Dirac Fermions and Gauginos . . . . . . . . . . . . . . . . . . . . . . . 17
2 A Brief Phenomenology of Dirac Gauginos Models . . . . . . . . . . . 19
3 Minimal Dirac Gauginos SUSY Model : a Step by Step Approach . . . 22

3.1 Field Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Fake Split Supersymetric Models 27

1 Constructing Fake Split SUSY Models . . . . . . . . . . . . . . . . . . 27
1.1 The Full Supersymmetric Theory . . . . . . . . . . . . . . . . . 27
1.2 The Low-Energy Theory: Fake Split SUSY . . . . . . . . . . . . 32

2 Higgs Mass Prediction in Fake Split Models . . . . . . . . . . . . . . . 33
2.1 An Effective Theory Approach . . . . . . . . . . . . . . . . . . . 33
2.2 A Complete Treatment . . . . . . . . . . . . . . . . . . . . . . . 41

3 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.1 Easing the Split SUSY Higgs Mass Constraints with FSSM . . . 48
3.2 Conclusive Words . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Fake Fermions and Cosmology 53

v



vi CONTENTS

1 Dark Matter Relic Density in FSSM . . . . . . . . . . . . . . . . . . . 54
1.1 The WIMP Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
1.2 Application to FSSM . . . . . . . . . . . . . . . . . . . . . . . . 57

2 Other Cosmological Constraints on FSSM . . . . . . . . . . . . . . . . 61
2.1 Direct Detection and Inelastic Scattering . . . . . . . . . . . . 61
2.2 The (F-)gluino Lifetime . . . . . . . . . . . . . . . . . . . . . . 63
2.3 Summary of the Cosmological Constraints . . . . . . . . . . . . 66

3 Electroweak Baryogenesis and Thermal Effects . . . . . . . . . . . . . 67

5 The Diphoton Excess and Dirac Gauginos 69

1 Theoretical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 70
1.1 Production and Decay in the DGMSSM . . . . . . . . . . . . . 70
1.2 Constraints from Higgs Mass Mixing and 8 TeV data . . . . . . 73
1.3 Unification and Landau poles . . . . . . . . . . . . . . . . . . . 76
1.4 Vacuum Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 The Slow Gravitino 87

1 Generating the Lagrangian for a Lorentz-invariant Low-energy SUSY . 88
1.1 Akulov-Volkov Lagrangian for the Phonino . . . . . . . . . . . . 88
1.2 Super-Higgs mechanism in a Fluid with Curved Background . . 89

2 Constraints and Equations of Motion for a Perfect Fluid Background . 92
2.1 The Slow Gravitino Lagrangian . . . . . . . . . . . . . . . . . . 92
2.2 Explicit Decomposition of a Spin-3/2 in Helicity-operator Eigen-

states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
2.3 The Constraints Equations . . . . . . . . . . . . . . . . . . . . . 95
2.4 Identification of the Spin-3/2 Degrees of Freedom . . . . . . . . 96
2.5 The Equations of Motion . . . . . . . . . . . . . . . . . . . . . . 99

3 The Covariant Spin–3/2 Propagator . . . . . . . . . . . . . . . . . . . 100
4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7 Swift Graviton 107

1 The Background Metric and Graviton Equations of Motion . . . . . . 108
1.1 The Beam Metric . . . . . . . . . . . . . . . . . . . . . . . . . . 108
1.2 Equations of Motion for the Probe Graviton . . . . . . . . . . . 109

2 A first look into time advance in Extended gravity theories . . . . . . 111
2.1 Time Advance and Shock-Wave . . . . . . . . . . . . . . . . . . 112
2.2 Graviton three-point function . . . . . . . . . . . . . . . . . . . 113

3 Characteristics, Swiftness and Causal Structure . . . . . . . . . . . . . 115
3.1 Defining time-shifts in General Relativity . . . . . . . . . . . . . 115
3.2 Method of Characteristics . . . . . . . . . . . . . . . . . . . . . 117
3.3 Time Shift and Swift Propagation . . . . . . . . . . . . . . . . . 118
3.4 Characteristic Equations: Structure and Examples . . . . . . . 120



CONTENTS vii

3.5 Causality and Hyperbolicity . . . . . . . . . . . . . . . . . . . . 122
4 Equations of Motion in Theories of Extended Gravity . . . . . . . . . 123

4.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . . 123
4.2 Deriving the Equations of Motion . . . . . . . . . . . . . . . . . 124

5 Swift Behaviour and degenerate causal cone . . . . . . . . . . . . . . . 127
5.1 Choosing a Basis of Polarisations . . . . . . . . . . . . . . . . . 127
5.2 Swift Behaviour of Second and Third Order Actions . . . . . . 128
5.3 Swift Behaviour of Fourth Order Actions . . . . . . . . . . . . . 130

6 Four Dimensional Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
1 Swift Graviton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

1.1 List of Metric Components, Christoffel Symbols and Riemann
Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

1.2 Characteristic Method - a Detailed Example . . . . . . . . . . . 138
1.3 Replacement Rules . . . . . . . . . . . . . . . . . . . . . . . . . 139

List of Figures 145

Bibliography 149



viii CONTENTS



Introduction

“It doesn’t make any difference how beautiful your guess is, it doesn’t make any differ-
ence how smart you are, who made the guess, or what his name is. If it disagrees with
experiment, it’s wrong.”1

An important lesson from history is that Nature rarely complies graciously with
the theories carefully crafted by scientists. Successful theories are usually built over a
graveyard of rejected ideas. The discovery of the Higgs boson in 2012 therefore marked
a milestone in modern physics. For once Nature had complied with the theoretical
predictions. This Brout–Englert–Higgs boson (or Higgs boson for short) had indeed
been expected as the keystone of the Standard Model of particle physics for decades.

The Standard Model of particle, which describes the physics of three fundamental
forces mediated by gauge bosons shaping the interactions between elementary particles
has been incredibly successful in experiments. It has predicted successfully thousands
of measurements during the past four decades. Despite these tremendous achievements,
it has however been known for an equally long time to be incomplete. Apart from
the obvious fact that it does not provide us with a quantum theory of gravity, it
has a major consistency puzzle known as the hierarchy problem. In a nutshell, this
issue arises when one computes the quantum corrections to the Higgs boson mass.
The integral involving loops of Standard Model particles depends quadratically on the
ultraviolet cut-off which measures the scale up to which the Standard Model is valid.
If the Standard Model is all which exists up to the quantum gravity scale, then the
Higgs boson mass should be very close to the Planck mass. Since we actually measured
it to be roughly thirty order of magnitude smaller, a miracle must be occurring which
protects its mass against these radiative corrections up to a precision of 10−30. As
physicists do not like miracles, numerous mechanisms have been introduced to explain
this conundrum.

Among these mechanisms, supersymmetry (SUSY) has been arguably the most
studied. It is based on the idea that fermions and bosons should be treated on a
morally equal footing by fitting them into a bigger object, called a supermultiplet.
Supersymmetry associates with each bosonic divergent loop diagram a fermionic loop
diagram precisely cancelling the divergence. Unfortunately, Nature did not follow this
beautiful picture and all Standard Model particles come without a supersymmetric
partner with the same mass. Supersymmetry therefore needs to be broken at a scale
above the current detection capability, effectively making the supersymmetric particles

1Richard Feynman, pronounced during one of the famous lectures from the serie “The Character
of Physical Law” delivered in 1964 at Cornell University
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x Introduction

too heavy to be seen. The price to pay is the re-introduction of a new fine-tuning,
usuall called the little hierarchy problem. We have in fact traded the question “Why is
the Higgs mass so much lighter than the Planck scale?” for “Why is the Higgs mass
lighter than the SUSY scale?”. As the collider experiments push to ever higher scale
the hypothetic SUSY particles, this little hierarchy problem becomes more pressing
and the most basic supersymmetric realisation are now severly fine-tuned.

There are, however, two main reasons why we would like to retain supersymme-
try close the electroweak scale. The first one is a long-standing problem arising from
cosmology: there are overwhelming evidence that most of the mass of the universe
is composed by some ellusive “dark matter”. The point is that supersymmetry gives
a upstanding candidate for such dark matter: the Lightest Supersymmetric Particle
(LSP), which is expected to be stable in most supersymmetric model due to a resid-
ual discrete symmetry called R-parity. The small miracle is that such particle has
precisely the right characteristics to provide us with the correct relic density of dark
matter through a simple process called freeze-out. The second reason is more theoret-
ical. In the Standard Model gauge couplings which measure the strength of the three
elementary forces almost reach a similar value at a scale close the Planck scale. This
is a frustrating property as equal couplings are precisely what is needed to unify the
three gauge groups into a single, Grand Unified Theory (GUT). Supersymmetry cures
this issue and allows for a near-perfect unification, opening the way for a GUT.

In a nutshell, there are now increasing evidence that we should be looking beyond
the basic SUSY models which have shaped Beyond Standard Model physics in the past
decades, and look for new, unconventional ideas to describe Nature. In this thesis, I
will present two phenomenological setups where the fields contents or couplings are
not the one we would have expected, but where supersymmetry has still an important
role to play.

In the first part of this thesis, after reviewing the basics of the Higgs mechanism
and of the hierarchy problem, I will consider two unconventional applications of super-
symmetry to Beyond Standard Model phenomenology. The first one is that idea that,
after all, supersymmetry may not be the symmetry protecting the mass of the Stan-
dard Model Higgs, but will still be realised at higher energy. This amounts to suppose
that while supersymmetry may protect the masses of scalar particles above the SUSY
scale MS , one should find another solution to the little hierarchy problem. However,
it can be shown that such scenarios, and in particular a variation called Fake Split
SUSY models introduced in [1,2,3], have nonetheless numerous advantages. In partic-
ular they can give an incredibly robust prediction of the Higgs mass and have simple
dark matter candidates as Weakly Interacting Massive Particles. In the second place,
I will describe how to use the Dirac Gauginos framework to build a well-motivated
supersymmetric scenario explaining the diphoton channel resonance possibly observed
by ATLAS and CMS in the first dataset of LHC run-2. This model will retain pertur-
bativity up to the GUT scale, vacuum stability and gauge couplings unification, while
being “minimal” in the sense that it will not be necessary to introduce new “ad-hoc”
fields to fit the data [4].

Another fundamental symmetry, which contrary to supersymmetry has been tested
to an incredible precision is the Lorentz symmetry. Among its main consequences,
Lorentz symmetry fixes the form of the dispersion relation of a momentum eigenstates,
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effectively linking spatial momentum with the energy carried by the field. Interestingly,
global Lorentz symmetry is also a blatantly broken one. Indeed, it is broken by the
curvature of spacetime and by every fluids fixing a particular direction of time.

In a second part of this work, I will study two cases where, particles do not prop-
agate the way one could naively expect from Lorentz symmetry, namely with a rel-
ativistic dispersion relation. Instead these particles propagates unconventionally be-
cause Lorentz symmetry will be broken, either by an underlying fluid [5, 3] or by the
curvature of spacetime in extended gravity theories in [6]. The first setup, known
as the “slow gravitino” ( [5]) focus on the Lagrangian resulting from the breaking of
Lorentz symmetry as well as supersymmetry by a fluid. Similarly to what happen in
the Higgs-mechanism the pseudo-particle generated by this breaking, called phonino,
will be absorbed in local supersymmetry gauge fermion, the gravitino, and become its
longitudinal degrees of freedom. The end product of this super-Higgs mechanism in
fluid is a Lorentz violating Lagrangian for a massive spin-3/2 particle, that we will
thoroughly study “per se”. The second setup, refered to as the “swift graviton”( [6]), is
obtained from extended gravity theories where the usual Hilbert-Einstein Lagrangian
is supplemented by various terms constructed from Riemann tensors. It can be shown
that, when the spacetime is curved by a particular axisymmetric background, gravitons
can be accelerated faster than the speed of light in a suitably corresponding flat space-
time, a feature we called “swift graviton”. As the effect depends on the polarisation,
the graviton experienced a form of “birefringence” with certain modes propagating
swiftly while others remain unaffected.
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Chapter 1
Higgs and Super-Higgs Mechanism

We present in the chapter a short review of the Higgs mechanism, its consequences
and extensions. We start in Section 1 by reviewing the Higgs mechanism in the Stan-
dard Model. Then we present in Section 2 its extension to the so-called super-Higgs
mechanism arising in local supersymmetry (namely supergravity). The two last Sec-
tions 3 and 4 present how this mechanism generalise to the supersymmetric case of the
Minimal Supersymmetric Standard Model and study a related development: the issue
of the hierarchy problem and Split SUSY.

1 Higgs Mechanism in the Standard Model

A keystone of the Standard Model of particle physics is the spontaneous breaking of
the SU(2)×U(1)Y gauge symmetry down to U(1)em of electromagnetism by the Higgs
boson.

The Standard Model Higgs is a complex scalar doublet Φ transforming under a
(2, 1/2) representation of SU(2)× U(1)Y as:

Φ→ eiαaτ
a
eiβ/2Φ , (1.1)

where we used the usual notation τa = σa/2 with σa are the Pauli matrices. Let
us note W a

µ the SU(2) gauge bosons, Bµ the U(1)Y one and further introduce the
covariant derivative

DµΦ = ∂µ − igW a
µτa −

i

2
g′Bµ (1.2)

so that the kinetic and potential terms of the Higgs doublet are given by

LSM ⊃ DµΦDµΦ† − V (ΦΦ†). (1.3)

with a scalar potential V

V = −µ2ΦΦ† + λ

2
(ΦΦ†)2 . (1.4)

1



2 Chapter 1. Higgs and Super-Higgs Mechanism

This scalar potential for the Higgs contains a negative mass term which will trigger the
spontaneous breaking. Minimising the scalar potential, we find that the Higgs doublet
acquires a Vacuum Expectation Value (VEV) such that

〈ΦΦ†〉 ≡ v2

2
= µ2

λ
. (1.5)

Without loosing generality we can parametrise Φ as

Φ = U
1√
2

(
0

v + h

)
, (1.6)

where h is a real valued field called Higgs boson and U is a unitary matrix. We can
subsequently use our SU(2) × U(1) gauge freedom to eliminate U (since eiαaτaeiβ/2
precisely generate the group of unitary matrices) . In this gauge choice, called the
unitary gauge, the Higgs doublet takes the simple form

Φ = 1√
2

(
0

v + h

)
, (1.7)

and we see easily that the gauge transformation (1.1) is broken down to the U(1)
subgroup of transformations such that α1 = α2 = 0 and α3 = β.

A crucial point is that in the unitary gauge, the SU(2)×U(1)Y gauge bosons will
acquire a mass and a longitudinal component. From DµΦDµΦ† of (1.1) we get

LSM ⊃
1
2

(
0 v

)(
igW a

µτa + i

2
g′Bµ

)(
−igW a

µτa −
i

2
g′Bµ

)(
0
v

)
(1.8)

= v2

4

[
g2W+

µ W
−µ + (g2 + g′2)Z0

µZ
0µ)
]
,

where we have defined the fields

W±µ = 1√
2
(W 1

µ ∓W 2
µ) (1.9)

Z0
µ = cos θWW 3

µ − sin θWBµ ,

and the Weinberg angle

cos θW = g√
g2 + g′2

sin θW = g′√
g2 + g′2

. (1.10)

We see that the fields W± and Z0 obtain masses mW = vg/2 and mZ = mW / cos θW
respectively. In contrast, the photon field Aµ given by the combination

Aµ = sin θWW 3
µ + cos θWBµ , (1.11)

remains massless as required by electromagnetism. Simultaneously to their masses,
the bosons W± and Z0 have acquired a longitudinal component. Indeed, we can write
the unitary matrix U as

U(xµ) = eiζ/(2v)ei
ξa(xµ)
v

τa ,
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When taking the unitary gauge, we have therefore (suppressing SU(2) indices)

Wµ →W ′µ = e−i
ξa(xµ)
v

τaWµe
i
ξa(xµ)
v

τa + i

g
e−i

ξa(xµ)
v

τa∂µ(ei
ξa(xµ)
v

τa)

Bµ → B′µ = Bµ −
1
vg′

∂µζ,

and consequently the gauge boson have absorbed the Goldstone bosons, giving them
the longitudinal part fitting their massive spin-1 status. Using the fact that we are
considering small gauge transformations as ζ and ξ are constructed from the Goldstone
bosons, we can simplify (1.12) for the W 3

µ and Z0 fields to

W 3
µ →W 3

µ
′ = W 3

µ −
1
vg
∂µ(ξ3 + η)− 1

v
f3
abW

a
µξ

b (1.12)

Bµ → B′µ = Bµ −
1
vg′

∂µ(ζ + η),

where fabc are the SU(2) structure constant. Notice that since (1.7) is invariant under
transformations of the form eiηeiητ

3 , eq. (1.12) are only defined up to this transfor-
mation. The combination defining the Z0 boson in (1.9) is precisely the one required
to cancel the residual η gauge freedom, whereas for A0 we can set η to cancel the
additional piece generated by the unitary transformation. In this way the photon field
which remains massless and does not acquire a longitudinal component.

2 Super-Higgs Mechanism

This mechanism can be extended to the case of spin-3/2 and spin-1/2 particles. In this
section we will use the following conventions. The metric will have the mostly plus
signature (−,+,+,+). We take the Clifford algebra to be{

γ a, γ b
}

= 2ηab . (1.13)

Our basis for this algebra is obtained by adding to γ a the two matrices γ ab and γ abc

defined by

γ ab = [γ a, γ b]
2

γ abc = {γ
a, γ bc}
2

.

We further define the γ 5 gamma matrices with γ 5 = iγ 0γ 1γ 2γ 3 and have γ abc =
iεabcdγ 5γ d .. The two chiral projector are then

PL ≡
1 + γ 5

2
PR ≡

1− γ 5

2
. (1.14)

Furthermore, the Dirac adjoint is defined as ψ̄ = iψ†γ 0.
The super-Higgs mechanism describes the absorption of a massless spin-1/2 parti-

cle, the Goldstino, by the gauge fermion of local supersymmetry: the gravitino, after
this local supersymmetry is broken. As a first step, we will start by considering the
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case of a spontaneous breaking of global supersymmetry in a toy-model where we can
easily exhibit the goldstino. We take a set of chiral supermultiplets with scalars φi,
fermions PLψi and auxiliary fields Fi. Given a superpotential W and a diagonal Kähler
metric, the fermionic mass terms in the Lagrangian are

L ⊃ −1
2
Wijψ̄

iPLψ
j − 1

2
W̄ijψ̄

iPLψ
j , (1.15)

where we used the notation Wi = ∂W
∂φi

and Wij = ∂2W
∂φi∂φj

. The scalar potential V
derived from the superpotential is given by

V = Wi(φ)W̄i(φ). (1.16)

If we suppose that the theory has a SUSY-breaking vacuum state, then V is non-zero
at its minimum. The minimisation condition leads to

Wij(φ0)W̄ j(φ0) = 0 (1.17)

where φ0 are the scalar fields VEV in the vacuum state. We therefore conclude that
vi ≡ W̄ i(φ0) is a non-zero eigenvector for the matrix Wij with null eigenvalue. Con-
sequently there is a fermionic state with zero mass given by

PLG ≡ vjPLΨj . (1.18)

This mode is called a Goldstino. We see that as for bosonic Goldstone fields which are
derived from the components of the Higgs doublet, the Goldstino is defined as a linear
combination of the fermions in the theory.

We now consider local supersymmetry (supergravity). When supersymmetry is
broken in supergravity, one obtains the following Lagrangian

L = 1
2
e

[
Lgravitino −

F 2

M2
P

+ Lphonino + Lmixing

]
, (1.19)

where e is the square root of the metric determinant, F 2 is a cosmological constant
term originating from the vacuum value of the scalar potential and MP is the reduced
Planck mass. Note that as we are a priori in curved space-time, we need to use covariant
derivatives ∇. The other three contributions are

Lgravitino = R− ψ̄µγ µνρ∇νψρ
Lphonino = − Ḡγ µ∇νG

Lmixing = +
√

2 F

MP
Ḡγ µψν .

The mixing between the gravitino and goldstino originates from the mixing terms
between the original fermions in the theory (from which the Goldstino is derived) and
the gravitino. The Lagrangian (1.19) transforms linearly as a total derivative under
the transformations: 

δeaµ = 1
2MP ε̄γ

aψµ

δψµ = MP∇µε
δG = F√

2ε .

(1.20)
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However, we see that the resulting cosmological constant is of the order of the SUSY
breaking term F 2. Since supersymmetric particles have not been observed yet, this
scale must immensely bigger than the cosmological constant required to account for
the near flatness of space-time. This is nothing but an example of the cosmological
constant problem. One therefore need to cancel F 2, this can be achieved by adding to
the above Lagrangian

eF 2

M2
P

+ e

2

[1
2
m 3

2
ψ̄µγ

µνργ νψρ + 2m 3
2
ḠG

]
.

with the price of introducing a gravitino mass

m 3
2

= F√
3MP

(1.21)

The resulting Lagrangian is given by:

L = 1
2
e
[
R− Ḡγ µ∇µG −

√
2

MP
Ḡγ µψν − ψ̄µγ µνρ∇νψρ (1.22)

+1
2
m 3

2
ψ̄µγ

µνργ νψρ + 2m 3
2
ḠG

]
.

with the supergravity transformations obtained from the previous ones by replacing
∇µ → ∇µ − 1

2m 3
2
γ ν 

δeaµ = 1
2MP ε̄γ

aψµ

δψµ = MP (∇µε− 1
2m 3

2
γ µε)

δG = F√
2ε .

(1.23)

Similarly to the spin-0/spin-1 case of the Higgs mechanism, we can now choose the
unitary gauge to remove the Goldstino from the Lagrangian by making the SUSY
transformation 

δeaµ = − 1√
2FMP Ḡγ

aψµ

δψµ = −MP (∇µ − 1
2m 3

2
γ ν)

√
2G
F

δG = −G ,

which cancels the Goldstino contribution in the Lagrangian and simultaneously add a
Longitudinal component to the gravitino.

We find finally that the gravitino follows the Rarita-Schwinger Lagrangian for a
massive spin-3/2 boson:

L = 1
2
e

[
R− ψ̄µγ µνρ(∂ν −

1
2
m 3

2
γ ν)ψρ

]
, (1.24)

where we replaced the covariant derivatives by partial ones as we are now in flat
space-time. To summarise, the super-Higgs mechanism describe how a massless spin-
3/2 particle absorbs the massless Goldstino and acquires a mass, in perfectly similar
fashion to the usual Higgs mechanism. In Chapter 6 we will present a non-relativistic
version of this result which can be applied when supersymmetry is broken by thermal
effect. The resulting Lagrangian will generalise the Rarita-Schwinger Lagrangian to
the non-relativistic case.
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3 Toward the MSSM
We will now expand the Standard Model Higgs mechanism to the more complex case
of the Minimal Supersymmetric Standard Model (MSSM). While there is no additional
theoretical mechanisms involved, the fact that the MSSM has two Higgs doublets make
calculations more subtle. We will start by considering the slightly simpler case of a
Two-Higgs Doublet Model before pushing to the MSSM.

3.1 Two-Higgs Doublets Model
As a first step toward the MSSM, let us briefly consider how the Standard Model
picture is modified in the presence of a second Higgs doublet with the same quantum
number as the Standard Model one. We will note Φ1, Φ2 the two doublets and use the
usual short notation for the sinus and cosinus cosβ = cβ and sin β = sβ.

If we make the simplifying assumption that the Lagrangian for these doublets is
CP-conserving and that a discrete symmetry forces the doublet to come by pairs, one
possible scalar potential V is now1

V =m2
11Φ1Φ†1 +m2

22Φ2Φ†2 −m
2
12(Φ1Φ†2 + Φ2Φ†1) + λ1

2
(Φ1Φ†1)

2 + λ2
2

(Φ2Φ†2)
2 (1.25)

λ3Φ1Φ†1Φ2Φ†2 + λ4Φ1Φ†2Φ2Φ†1 .

As one could expect, minimisation of this potential in general is more difficult than
in the Standard Model case. Let us suppose the existence of a CP-conserving and
charge-preserving vacuum of the form

〈Φ1〉 = 1√
2

(
0
v1

)
〈Φ2〉 = 1√

2

(
0
v2

)
(1.26)

we will define the angle β as

tan β ≡ v2
v1

, (1.27)

and the overall VEV v as v2 = v2
1 + v2

2 ∼ 2462GeV2. After electroweak symmetry
breaking , three degrees of freedom out of the eight from the two doublets become
Goldstone bosons. We will find these modes by searching for massless fields. With the
field convention

Φi =
(

φ+
i

(vi + φi + iηi)
/√

2

)
, (1.28)

the charged scalar mass matrix is given in the basis (φ±1 , φ
±
2 ) by

Mφ± =
[
m2

12 − λ4
v1v2

2

]
v2
v1

−1

−1 v1
v2

 , (1.29)

1we choose this particular form to make contact with the MSSM one easier.
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the pseudo-scalar one in the basis (η1, η2) by

Mη = (2m
2
12

s2β

(
v2
2 −v1v2

−v1v2 v2
1

)
, (1.30)

and finally the scalar one in the basis (φ1, φ2) by

Mφ =

 m2
12
v2
v1

+ λ1v
2
1 −m2

12 + λ34v1v2

−m2
12 + λ34v1v2 m2

12
v1
v2

+ λ2v
2
2

 , (1.31)

with the standard notation λ34 = λ3 + λ4. In deriving this expression, one needs to
use the minimisation condition

m2
11 + λ1v

2
1

2
λ3v

2
2

2
= m2

12
v2
v1
− (λ4)

v2
2
2

(1.32)

m2
22 + λ2v

2
2

2
λ3v

2
1

2
= m2

12
v1
v2
− (λ4)

v2
1
2
.

We can now rotate the two doublets in the so-called Higgs basis by(
H1
H2

)
≡

(
cosβ sin β
− sin β cosβ

)(
Φ1
Φ2

)
, (1.33)

so that the lower component of H2 gets a zero VEV while the lower component H1
has a VEV v/

√
2. From (1.29) and (1.30) we see that the Godstone modes G± and

G0 correspond to the components of H1 introduced in (1.33). We can therefore write

H1 =
(

G±
1√
2
(
v + h+ iG0)

)
H2 =

(
H±

1√
2
(
H + iA0)

)
, (1.34)

where H± are the physical charged Higgs bosons and A0 the pseudoscalar Higgs boson
which are also eigenstates of the mass matrices (1.29) and (1.30). We note h and H
the scalar Higgs bosons. We can straightforwardly deduce the masses for H± and A0

from the previous matrices, leading to

m2
H± = M2 − v2

2
λ4 (1.35)

m2
A = M2 .

where we used the usual notation M2 = 2m2
12

s2β
. The Higgs scalars matrix can be

diagonalised using a rotation matrix with angle α defined by

tan 2α =
(M2 − λ34v

2)s2β
(M2 − λ1v2)c2β − (M2 − λ2v2)s2β

(1.36)

leading to the two mass eigenstate m1 and m2

m1,2 = 1
2

[
Mφ,11 +Mφ,22 ∓

√
(Mφ,11 −Mφ,22)2 + 4M2

φ,12

]
(1.37)



8 Chapter 1. Higgs and Super-Higgs Mechanism

In particular the would-be Standard Model Higgs boson h is now a linear combination
of the two eigenstates, except if one takes the limit case α = β (decoupling limit). Of
particular interest is the quartic coupling λSM of the Standard Model-like Higgs h.
Given that φ1 ⊃ cβh and φ2 ⊃ sβh, we obtain from (1.25) and (1.31):

λSM =
s22β
2
λ34 + (λ1c

4
β + λ2s

4
β) (1.38)

3.2 Higgs Mechanism in the MSSM

We are now ready to consider the MSSM case. The Higgs sector is in fact precisely the
one of a Two-Higgs Doublet Model, albeit with two doublets of opposite hypercharge
+1 and −1. We now have Hu and Hd such that:

Hu =
(
H+
u

H0
u

)
Hd =

(
H0
d

H−d

)
. (1.39)

As we are considering a supersymmetric theory, these two doublets are bundled with
two doublets of fermions with the same quantum number: the Higgsinos. A first sight,
including two doublets in a “minimal” realisation may seem arbitrary, there are in fact
two reasons for that:

• In order to prevent the U(1)Y gauge symmetry to be anomalous, one needs to
ensure that

A ≡
∑
LHfi

Y 3
i +

∑
RHfi

Y 3
i = 0 , (1.40)

where the first sum runs over all left-handed fermions with hypercharge Yi and
the second over right-handed fermions. This is verified for each fermion family
in the Standard Model. As we have introduced new fermions, the higgsinos, we
must ensure that we add them in pairs of opposite hypercharge, therefore leading
to two doublets.

• The superpotential in a SUSY theory is written in term of chiral superfields.
Hence a positively hypercharged Higgs doublet can only couple to up-type quarks
and left-handed leptons. Therefore an additional negatively hypercharged dou-
blet is required to give a mass to the down-type quarks and right-handed leptons.

Using the superspace formalism and noting θ and θ̄ the Grassmanian anti-commuting
coordinates, we can write the Higgs/Higgsino part of the MSSM Lagrangian as:

LMSSM ⊃
∫
d4θ (Hue

VuHu
† + Hde

VdHd
†) +

∫
d2θWH + h.c. , (1.41)

where the bold symbols Hu denote superfieds with scalar part Hu, fermionic one H̃u

and auxiliar field Fu as:

Hu = Hu(yµ) +
√

2θH̃u(yµ) + θθFu(yµ) with yµ = xµ + iθσµθ , (1.42)
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and similarly for Hd. The Kähler potential includes gauge interactions with the Higgs
and Higgsinos through Vu and Vd given by

Vu = g′VY + gσaV
a (1.43)

Vd = − g′VY + gσaV
a ,

where VY , V a are the gauge vector multiplets which can be expressed in the Wess-
Zumino gauge as a function of the gauge bosons and gauginos B̃ and W̃ a as

VY = θσµθBµ + (θθ)θB̃ + (θθ)θB̃ + 1
2
(θθ)(θθ)DY (1.44)

V a = θσµθW a
µ + (θθ)θW̃

a
+ (θθ)θW̃ a + 1

2
(θθ)(θθ)Da .

Finally, the Higgs part of the superpotential WH is simply

W = µHu ·Hd , (1.45)

where we use the dot notation for the SU(2) invariant combination Hu·Hd ≡ εijHu
iHd

j .
The scalar potential derived from this Lagrangian after integration of the auxilliary

fields is given by

V ⊃
∑
i

∣∣∣∣ ∂W∂Hu

∣∣∣∣2 +
∑
i

∣∣∣∣ ∂W∂Hd

∣∣∣∣2 + g2

8
(H†uσaHu +H†dσaHd)2 (1.46)

+ g′2

8
(H†uHu −H†dHd)2 ,

and is supplemented by the SUSY-breaking soft-terms VSB

VSB = m2
HuH

†
uHu +m2

Hd
H†dHd + (BµHd ·Hu + h.c.) , (1.47)

leading to the 2HDM-like scalar potential VH

VH =(m2
Hu + µ2)H†uHu + (m2

Hd
+ µ2)H†dHd −Bµ(Hd ·Hu + h.c.) (1.48)

+ g2 + g′2

8
(H†uHu −H†dHd)2 + g2

2
|H†dHu|2 .

Comparing (1.48) with (1.25), we see that we have the following dictionary

Hu ↔ Φ2

Hd ↔ iσ2Φ∗1
Bµ ↔ m2

12

m2
Hd

+ µ2 ↔ m2
11 (1.49)

m2
Hu + µ2 ↔ m2

22

λ1 = λ2 ↔
g2 + g′2

4

λ3 ↔ −
g2 + g′2

4
− g2

2

λ4 ↔
g2

2
.
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We are now in position to deduce the scalar spectrum of the MSSM from the
calculations done in the 2HDM case. Apart from the three Goldstone bosons absorbed
by the gauge field, we find a pseudo-scalar A0 with mass

m2
A0 = M2 = 2 Bµ

sin 2β
(1.50)

and a charged scalar H± with mass

m2
H± = m2

A0 + v2g2

4
(1.51)

where the second contribution is the W-boson mass m2
W = v2g2

4 . Introducing the Z-
boson mass m2

Z = (g2 + g′2)v2

2 , we obtain the two eigenvalues of the neutral scalar
mass matrix:

mh1,h2 = 1
2

(
m2
A0 +m2

Z ±
√

(m2
A0 −m2

Z)2 + 4m2
Zm

2
A0s22β

)
. (1.52)

We can finally find the quartic coupling of the Standard Model-like Higgs h, which will
be important in the next section:

λSM = −
s22β
2
g2 + g′2

4
+ g2 + g′2

4
(c4β + s4β)

= g2 + g′2

4
c22β (1.53)

4 Hierarchy and Split SUSY

4.1 The Hierarchy Problem

The point of introducing the Higgs mechanism is to give a mass to the chiral fermions
(and to the massive gauge bosons). This is achieved by adding Yukawa couplings with
the Higgs doublet for the leptons and quarks of the form:

LY = −(YeLΦeR + YdQLΦdR + YuQL · Φ†uR + h.c) (1.54)

where Ye, Yd and Yu are 3× 3 matrices and we have suppressed generation indices. It
is quite clear from the decomposition (1.7) that these couplings will simultaneously
give a mass to the quarks and leptons and generate Yukawa couplings with the Higgs
boson h. For instance, calling yt the top-top component of Yu, we see that the top
quarks gets a mass mt = ytv/

√
2 as well as a coupling mt/v with the Higgs boson.

However, one may now want to take into account the quantum corrections to the
Higgs pole mass by computing the self-energy Σ(p2) of the Standard Model Higgs.
The dominant contributions are represented in Figure 1.1, they consist in a fermionic
top loop and bosonic Higgs and gauge boson loops. Let us focus on the top loop first.
Making the (very) rough approximation that the top quark is heavy compared to the
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Figure 1.1: Dominant one-loop diagrams contributing to the Standard Model Higgs self-
energy. We note t and t̄ the left-handed and right-handed top respectively.

Higgs mass, we get

Σ(p2) ⊃ −3i
∫

d4k

(2π)4
tr
[

(/k +mt)(/k + /p+mt)
(k2 −m2

t )((k + p)2 −m2
t )

]

∼ 3yt
4π2

∫ 1

0
dx

∫ Λ2

0
dy
y(m2

t − y)
(y +m2

t )2
(1.55)

⊃ −3y2
t

8π2 Λ2 ,

where we have included an UV cut-off Λ to regularise the divergent integral. The self
energy also includes subdominant – but still quadratically divergent – contributions
from the bosonic loops Σ(p2) ⊃ 1

16π2 g
2Λ2 + 1

16π2λ
2Λ2.

A priori Λ can be vastly different from the Electroweak Scale, therefore in order
for the physical Higgs mass

M2
h = m2

h + Σ(p2)

to be around 125 GeV, one must precisely organise the cancellation between m2
h and

Σ(p2). This fine-tuning, which can be as big as 10−30 when Λ is the Planck scale, is
the called the hierarchy problem.

Let us now study the same one-loop corrections in the MSSM. The Yukawa cou-
plings (1.54) are now included in the superpotential as

WY = YuUc Q ·Hu − YdDc Q ·Hd − YeEc L ·Hd , (1.56)

where we used the notation summarised in Table 1.1 for the superfields. Crucially,
these terms do not only re-generate couplings similar to (1.54), but also new quartic
couplings with the scalar superpartner, the squarks and sleptons. Furthermore, the
new couplings are precisely the one required to cancel the fermionic loops from quarks
and leptons. For instance, let us focus on the top again, its coupling to the Standard
Model-like Higgs is given by ỹt ≡ cosα

sinβ Yu(3, 3). The superpotential contribution to
the scalar potential (similar to (1.46)) for the stops is of the form

∑
i

∣∣∣∣∂W∂t̃L
∣∣∣∣2 +

∑
i

∣∣∣∣∂W∂t̃R
∣∣∣∣2 (1.57)
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Names Spin 0 Spin 1/2 Spin 1 (SU(3), SU(2), U(1)Y )

Quarks Q Q̃ = (ũL, d̃L) (uL, dL) (3, 2, 1/6)
Uc ũcL ucL (3, 1, -2/3)

(×3 families) Dc d̃cL dcL (3, 1, 1/3)
Leptons L (ν̃eL,ẽL) (νeL, eL) (1, 2, -1/2)

(×3 families) Ec ẽcL ecL (1, 1, 1)
Higgs Hu (H+

u , H
0
u) (H̃+

u , H̃
0
u) (1, 2, 1/2)

Hd (H0
d , H

−
d ) (H̃0

d , H̃
−
d ) (1, 2, -1/2)

Gluons W3α λ3α g (8, 1, 0)
[≡ g̃α]

W W2α λ2α W±,W 0 (1, 3, 0)
[≡ W̃±, W̃ 0]

B W1α λ1α B (1, 1, 0 )
[≡ B̃]

Table 1.1: Chiral and gauge multiplet fields in the Minimal Supersymmetric Standard Model.

So that the interactions between the Standard Model-like Higgs, the tops and the stops
are now given by

L ⊃ −ỹthtt̄− ỹ2
t (t̃Lht̃L

∗ + t̃Rht̃R
∗) (1.58)

The one-loop diagram involving the left and right-handed tops is now balanced by
the one showed in Figure 1.2 involving both right-handed t̃L and left-handed t̃R stops,
coupling to h with coupling y2

t . Indeed, evaluating the stops loops showed in Figure 1.2
is straightforward and lead to the quadratically divergent contribution

Σ(p2) ⊃ +3ỹ2
t

4π2 Λ2 , (1.59)

which is precisely what is needed to cancel the quadratic divergence of the tops
loop (1.55).

Fascinatingly, the mass of the stops did not enter the previous argument. This
is a crucial point as in order to lift the squark masses above detection capability of
the current experiment, we need to add scalar mass terms mt̃L

and mt̃R
which could

naively spoil the cancellation as they explicitly break supersymmetry. We just saw
however that these terms do in fact not participate in the quadratic corrections to
the Higgs. Similar Lagrangian operators which explicitly breaks SUSY but do not
introduce a quadratic divergence in the one-loop self-energy for scalars are called soft
terms. Every scalar squared mass terms and trilinear scalar couplings are soft.2

Let us define the SUSY scale MS = √mt̃R
mt̃L

as the geometric mean of the stops
masses, which is used as the generic mass scale for all supersymmetric particles. The

2One can also consider gauginos masses as well as tadpole couplings, the latest being soft only if
the scalar is a gauge singlet.
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Figure 1.2: One-loop stops diagrams contributing to the Standard Model-like Higgs self-
energy.

actual loop corrections in the top/stops sector in the MSSM give the well-known ex-
pression for the lightest Higgs boson at large Bµ (decoupling limit)

m2
h ' m2

Zc
2
2β + 3m4

t

2π2v2

[
logM

2
S

m2
t

+ X2
t

M2
S

(
1− X2

t

12M2
S

)]
(1.60)

where we have defined the stop mixing parameter: Xt = At + µ cotβ and At is the
stop trilinear coupling. We stress that in light of the Higgs mass measurement, such
correction terms are in fact desirable. Indeed, without these logarithmic corrections,
supersymmetry would be unable to generate a heavy-enough Higgs boson. Given the
experimentally measured 125 GeV Higgs mass, one needs either large trilinear or stops
of the order of the TeV. However, this comes with a price: when we increase the
SUSY scale MS we re-introduce a fine-tuning in the theory as soft terms feeds into the
Higgs bosons self-energy through the logarithmic contributions. This tension between
naturalness and the absence of SUSY signal at experiments is called the little hierarchy
problem.

4.2 Split Supersymmetry
On top of the hierarchy problem we discuss in the previous section, Beyond Standard
Model physics faces two main open problems (i) the issues of unification – the fact
that the three gauge couplings does not unify at a certain scale in the Standard Model
–, and of (ii) Dark Matter – the fact that observations seems to indicate that we are
missing a good part of the matter in the universe –.

Split SUSY scenarios [7,8,9], which consider heavy supersymmetric scalar particles
but keep the gauginos and the higgsinos at the electroweak scale, have a severe little
hierarchy problem, but still solve (i) and (ii). Particularly, as it was shown in [8],
a crucial property of the MSSM: the natural unification of gauge couplings (without
the need of fine-tuning the particle mass thresholds), is conserved in Split SUSY.
Further, it was argued to be the simplest extension of the Standard Model with such
natural unification. A Split spectrum with heavy scalar also reduces the constraints
on Flavour Changing Neutral Currents (FNCN) which can plague SUSY scenarios (a
somehow related solution is the so-called inverted hierarchy setup where only the third
generation of SUSY scalars are light, which is more resilient to FCNC [10] and have
also improved Higgs mass prediction with respect to the MSSM [11]).

In Split SUSY scenarios, the scalar particles, except for the lightest Higgs boson,
are a priori arbitrarily heavy at a scale MS but the fermionic supersymmetric particles
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Figure 1.3: Spectrum of Split SUSY theory and matching procedure.

are kept at the electroweak scale, usually protected by an approximate R-symmetry.
R-symmetries are global symmetries which do not commute with the SUSY generators.
In practice, we consider U(1) R-symmetries under which the anti-commuting variable
θ and θ† transform as:

θ → eiαθ θ† → e−iαθ† . (1.61)

As a consequence, if a superfield carries a R-charge rX , the scalar components will
have R-charge rX and the fermionic ones R-charge rX − 1. It also follows that the
superpotential must carry a R-charge +2. Notice that scalar soft SUSY-breaking
mass terms automatically preserve R-symmetry whereas the Gauginos masses do not.
Schematically, a small breaking ε of this symmetry will then generate a split spectrum
with heavy scalars at the SUSY scale MS but light fermions with masses ε2MS .

When dealing with the Higgs mass, the key point of such scenarios is that even if
the SUSY scale is not related to the electroweak scale anymore, Split SUSY models
nonetheless yield the Standard Model Higgs mass as a function of the supersymmetric
scale MS . We will explore the relationship between these two parameters in the rest
of the section.

Split SUSY models are best studied in an effective field theory approach sum-
marised in Figure 1.3. We therefore consider a simplified field content, with only
Standard Model particles along with the gauginos and higgsinos, below the super-
symmetric scale MS and the rest of the supersymmetric spectrum above MS . Using
the field notation of (1.1) and writing the Standard-Model like Higgs doublet h, the
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Lagrangian below the SUSY scale is given by [12]

L ⊃ m2h†h− λ

2

(
h†h

)2
−
[
YeLheR + YdQLhdR + YuQL · h†uR

+ 1
2
M3 g̃

Ag̃A + 1
2
M2 W̃

aW̃ a + 1
2
M1 B̃B̃ + µ H̃T

u εH̃d

+ h†√
2

(
g̃uσ

aW̃ a + g̃′uB̃
)
H̃u + hT ε√

2

(
−g̃dσaW̃ a + g̃′dB̃

)
H̃d + h.c.

]
, (1.62)

where we used the notation ε = iσ2. The second line contains the masses for the
SUSY fermions: higgsinos (superpartners of the higgs doublets) and gauginos (super-
partners of the gauge bosons). The third contains the four new couplings g̃u, g̃d, g̃′d
andg̃′u between these fermions and the Standard Model Higgs. They will modify the
Renormalisation Group Evolution of the Higgs quartic during its running between the
SUSY scale and the Electroweak scale. Matching the effective low energy theory with
the full supersymmetric one at MS gives a boundary condition for the Higgs quartic
λ, which is precisely at tree level the one we derived previously in eq. (1.53) (usu-
ally supplemented with the one-loop threshold corrections). Furthemore the four new
couplings are matched with the gauge couplings as:

g̃u(MS) = g(MS) sin β g̃d(MS) = g(MS) cosβ (1.63)
g̃′u(MS) = g′(MS) sin β g̃′d(MS) = g′(MS) cosβ .

Finally, one must add the requirement that the Standard Model-like Higgs is light,
which translate in a relation on the determinant of the tree-level MSSM scalar mass
matrices for Hu and Hd:

det
(
m2
Hu

+ |µ|2 −Bµ
−Bµ m2

Hd
+ |µ|2

)
' 0 → tan β =

√√√√m2
Hd

+ |µ|2

m2
Hu

+ |µ|2
. (1.64)

This last relation gives a boundary condition for tan β. However from a low-energy
point of view, one can simply focus on the Split SUSY phase below MS and treat
tan β as a free parameter. The Higgs boson pole mass is then obtained by solving the
Renormalisation Group Equations (RGEs) down to the electroweak scale and calculate
the loop corrections in the effective Split SUSY theory. The result is presented in
Figure 1.4. We see that the measurement of the Standard Model Higgs mass can give
conversely a bound on MS , since the 125 GeV Higgs can be obtained only for MS in
the 104-108 GeV region in most of the parameter space (see also [13, 14]). Further
limits arise when considering unified Higgs sector soft masses and considering their
evolution above the SUSY scale. Indeed unification in Split SUSY requires µ to be
< 10 TeV at 1σ or < 100 TeV at 2σ [15] and thus for much larger values of MS we

would have tan β ≈
√

m2
Hu

m2
Hd

. For high values of MS to match the known value of the

Higgs mass is is necessary to have a small tan β; in [15] it was found that the largest
value of MS thus compatible with unification and the correct Higgs mass was 108 GeV,
and that required tan β = 1 – if tan β = 2 instead it becomes 106 GeV – but a tuning
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Figure 1.4: Prediction of the Higgs mass in Split SUSY as a function of the SUSY scale MS

for various values of tan β. The shaded regions give a 2σ variation in the top pole mass.

of the Higgs soft masses to achieve such a value of tan β is not justifiable; just as in
the MSSM the RGE running from any given mediation scale tends to drive m2

Hu
< 0

via

16π2 d

d logµ
m2
Hu = 6|yt|2(mH2

u
+m2

Q +m2
U ) + ... (1.65)

and this is exacerbated since the gaugino masses are much smaller than the scalar
masses, so they cannot compensate. The conclusion is that without additional tuning
tan β should be somewhat different from 1, the SUSY scale should be low, and the
amount of running from the scale at which the soft masses is generated cannot be too
large (potentially problematic for gravity mediation). This is the “Mini-Split” scenario,
for which the SUSY scale is below 105 − 106 GeV [15,16,17].

In the coming chapter on Fake Split SUSY models, we will show that it is easy to
engineer models with the same advantages as Split SUSY and equally simple effective
theory below MS , for which the previous bounds do not apply.



Chapter 2
An Introduction to Dirac Gauginos

The fermionic masses generated by the Higgs mechanism in the Standard Model are
of Dirac type, namely they are constructed from four-components Dirac fermions,

Ψ =
(
ψ̄
χ

)
Ψ =

(
χ ψ

)
as

L ⊃ mDΨΨ = χψ + ψ̄χ

where ψ and χ are two-components Weyl spinors, and the conjugate is defined by
ψ̄α̇ = (ψα)∗.

In contrast, the new supersymmetric fermions related to the gauge boson, the gaug-
inos are Majorana fermions with only two degrees freedom. Consequently, they can
only be given Majorana masses (such masses break supersymmetry softly, as defined
in the previous chapter).

In this chapter, we will investigate the consequences of giving a Dirac mass to the
gauginos. In section 1 we introduce this mechanism, before reviewing some of its main
consequences in section 2 and presenting an explicit model in section 3.

1 Dirac Fermions and Gauginos
The idea of adding Dirac masses to SUSY gauginos by considering additional fermionic
degrees of freedom is an old one, already present in [18, 19, 20]. However, this setup
has regained more attention during the past decade after it was realised that such
Dirac masses were supersoft in the sense that while such masses are explicitly breaking
supersymmetry, they do not even introduce logarithmic divergences.

Let us start by pointing out that the maximal amount of supersymmetry consistent
with the chirality of the matter fields and gauge couplings perturbativity up to the
GUT scale is a N = 1 SUSY for matter multiplets (as indicated from the fact that
the Standard Model is a chiral theory) and N = 2 for gauge multiplets (as more
supersymmetry would lead to a Landau pole before the Grand Unification Theory –
GUT – scale). Such a SUSY setup implies adding N = 1 chiral multiplets S, Ti

and Oa to the usual gauge multiplets, namely one complex scalar and one Majorana

17
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fermion for each gauge field. The two fermionic degrees of freedom of the original
gauginos can then be combined with the two new ones from the additional multiplet
to form a Dirac fermion. Notice that this additional multiplet must transform under
adjoint representations of the gauge groups. For this reason we will sometimes called
the scalars from these multiplets “adjoint scalars”. Furthermore, one may additionally
fit the two Higgs supermultiplet in a N = 2 hypermultiplet, slightly reducing the
parameter space.

The key point of this construction is that on top of the usual soft SUSY breaking
terms (bilinears and trilinears in scalar fields and gauginos’ Majorana mass terms)
SUSY can be broken by gauginos Dirac masses. These terms takes the schematic form
(suppressing all indices)

L ⊃
∫
d2θ
√

2θαmDtrΣW , (2.1)

where mD is the Dirac mass, Σ is the additional Dirac gaugino supermultiplet (with
scalar component Σ) and W is the field multiplet of the corresponding gauge group.
Such term is called supersoft as it does not introduce logarithmic divergences like the
usual soft terms. Indeed, the superpotential contribution (2.1) not only introduce Dirac
masses for the gauginos, but also additional D-term-generated trilinear interactions for
the new “adjoint” scalar Σ of the form

L ⊃ −
√

2mD(Σ + Σ∗)D (2.2)

where D is the D-term of the gauge group corresponding to S. After integrating out
the D-terms, the trilinears take the form

L ⊃ −
√

2mD(Σ + Σ∗)
∑
i

(φ∗iTiφi) (2.3)

where φi are the matter scalar fields charged under the gauge group and Ti is the
matrix of their gauge group representations. When calculating the loop contributions
to the scalar φi masses, these trilinears are the precise couplings required so that the
purely scalar loops including one adjoint scalar S cancels the fermionic loop including
one gaugino. While this can be checked by direct calculations, let us illustrate this by
an argument from [21]. The spurion giving the Dirac mass θmD in (2.1) originate from
the D-term VEV of a gauge field strength: W ′α/Λ ≡ θmD where Λ is the new-physics
scale where W ′α acquires its VEV (and consequently the cut-off scale of the divergent
integrals). If this term generates a divergence in the self-energy of any matter scalar
field, then one need to add a supersymmetric counterterm function of the spurion.
However, the only possible gauge-invariant term giving a scalar mass is of the form∫

d4θ
(W ′αW ′α)†(W ′αW ′α)

M6 θ
2)m

4
D

Λ2 Qi
†Qi (2.4)

which we can re-write as ∫
d4θ (θ2θ

2)m
4
D

Λ2 Qi
†Qi (2.5)

with Qi the matter supermultiplet containing φi. Such term vanishes in the limit
Λ→∞, implying that the radiative correction to the scalar φi are finite.

Let us close this introductory section by some comments:
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• Supersymmetric models allowing Dirac gauginos masses can be realised relatively
easily in String Theory (see for instance [22,23,24,25])

• An interesting characteristic of SUSY breaking Dirac masses is that contrary
to Majorana masses, such terms do not break R-symmetry. This opens the
possibility to either preserve it completely (the so-called MRSSM), or limit the
R-symmetry breaking to the Higgs sector [26]. We will focus on the second case
in the following sections.

• The supersoftness property is weakened when introducing explicit R-symmetry
breaking in the Higgs sector as it is customary done: the logarithms re-appear
from higher order radiative corrections.

• The early attempt [18] at constructing Dirac Gauginos model faced the issue that
when a proper mediation mechanism, like gauge mediation, was specified, the
simplest interactions lead to tachyonic masses for the adjoint scalars, requiring
an additional stabilising Majorana mass. This obstacle was overcome in [27,28].

2 A Brief Phenomenology of Dirac Gauginos Models
Dirac Gauginos models have a very rich phenomenology, we give here a brief overview
of the various aspects which will be developed in particular cases in the following
chapters.

Electroweak Sector Observables and Naturalness Let us start with electroweak
precisions tests. The main constraints in Dirac gauginos comes from the mixing be-
tween the Higgs sector and the adjoint scalar ones.

Let us note vS and vT the Vacuum Expectation Values (VEV) of the scalar singlet
S and of the neutral component of the adjoint triplets T respectively. As vT gives a
contribution to the W boson mass ( [29] – see also [30, 31] –), one must examine the
induced correction ∆ρ to the Veltman ρ-parameter:

ρ ≡ M2
W

c2θWM
2
Z

= 1 + ∆ρ , (2.6)

with, for v the Standard Model Higgs VEV:

∆ρ ∼ 4v2
T

v2 (2.7)

in the Minimal Dirac Gaugino Supersymmetric Standard Model (MDGSSM) for in-
stance (see [29]). This implies that vT must be at a few GeV at most, which can be
typically obtained either with large triplet soft masses mT (few TeV) or large triplet
Dirac mass m2D(also few TeV), or small λT and small tan β.

This requirement can often be at odd with a natural electroweak scale which prefers
smaller triplet and singlet soft masses. Indeed, radiative corrections induced by the
adjoint scalars to m2

Hu,d
are [29]:

δm2
Hu,d
⊃ − 1

16π2 (2λ2
Sm

2
S + 2λ2

Tm
2
T )log

{ Λ
TeV

}
(2.8)
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with Λ the UV cut-off, m2
Hu,d

,m2
S ,m

2
T the squared masses for Higgses, scalar singlet

S and scalar triplet T , and λS , λT are the couplings defined below in (2.12) which
gives the superpotential interaction bewteen the new adjoint scalars and the Higgs
doublets. Let us stress that generally, Dirac Gauginos models are less fine-tuned than
the minimal SUSY models. Indeed, the supersoftness of the Dirac gauginos terms lifts
the constraint on the Gluinos masses as they only contribute to the squark masses via a
finite corrections (which can mean heavy gluinos escaping LHC detection while keeping
relatively light stops). Furthermore, the tree-level Higgs mass is also modified by two
competing effects: an enhancement from the new couplings λS and λT , but a reduction
through mixing with the scalar singlet proportional to vS

v and with the scalar triplet
proportional to vT

v ( [21, 32, 33, 29, 30]). Depending on the model set-up one does not
have necessarily to push the Higgs mass through heavy squarks, thereby increasing the
naturalness. Furthermore, as Dirac gluinos have reduced one-loop contribution to the
stops masses, one can easily have heavy Dirac masses while keeping light stops, thereby
improving naturalness and respecting LHC lower bounds on the gluinos mass [34].
Overall, Dirac gauginos models fare better than the (N-)MSSM when dealing with
naturalness, a point which also explains their popularity.

Finally, with the discovery of the Higgs boson, it becomes possible to analyse
its decay channels and compare them with the Standard Model prediction. For Higgs
tree-level decay, these constraints basically boils down to the mixing between the Higgs
and the adjoint scalar we already discussed above. For loop-induced decays, one must
further consider the contribution from loops of adjoint scalars. Staying in line with the
current absence of deviation from the predicted Standard Model rate will generically
require smaller couplings and larger adjoint scalar masses. A precise study for the
Higgs di-photon channel can be found in [29].

EDM and flavour constraints In most SUSY theories, one can have numerous
new sources of flavour and CP violations which can be for example constrained from
electron dipole moment searches, B-mesons decays and Kaons oscillations. Essentially,
for rather light squarks and gluinos as naturalness should require, the SUSY breaking
mediation mechanism should be flavor-blind. Interestingly, it was noticed by [35, 36]
that replacing the gluino Majorana mass terms by Dirac ones significantly weakens the
constraints from both electric dipole moments and Kaons oscillations. The crux of the
arguments lie in the preserved R-symmetry which forbids numerous effective operators
usually present in SUSY models. For instance, the effective operator between the
strange and down quarks and squarks which contributes to Kaons oscillations

1
Mg̃

d̃∗Rs̃
∗
LdRsL

usually arising after integrating gluinos with Majorana masses Mg̃ is no longer allowed.
Other flavour-violating observables can be similarly reduced [37,38].

This result nevertheless suffers from some limitations. First of all, when the Higgs
sector explicitly breaks R-symmetry through the higgsinos µ/Bµ term, the effective
operators mediated by higgsinos will not be suppressed. Secondly, as it was shown
in [39], when considering simultaneously Majorana and Dirac gauginos masses this
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effect is dramatically reduced and remains strong only in the so-called “mass-insertion
approximation” (near-degeneracy of the SUSY scalar masses).

Dark Matter One of the early reasons Dirac Gauginos were studied was to make
the Bino a viable Dark matter candidate. Indeed, while Majorana Binos do not decay
fast enough in the MSSM, pure Dirac Bino dark matter can co-annihilate, enhancing
the decay rate.

Such Dirac spinor will have a vector-vector coupling induced by Z-boson with
nucleons, putting strong constraints on such model from direct detection experiments.
However, pseudo-Dirac Dark matter with simultaneously a small Majorana mass and
large Dirac one can still decay through co-annihilation while possibly avoiding direct
detection if the splitting is large enough. This makes the (pseudo-Dirac Bino) a suitable
Dark matter candidate [40] (we will discuss in the coming section a related issue in the
Fake Split SUSY models).

More generally, Dirac Gauginos models have six neutralinos: Bino, wino, two Hig-
gsinos and the adjoint fermions. Extracting the LSP and its relic density is thus a
more involved process than in the ususal MSSM. In [41], it was found that on top
of the usual MSSM scenarios, one could in fact have also pure Dirac Bino (escaping
direct detection assuming above TeV right-handed squarks and higgsinos). Mixed LSP
Bino/Higgsinos are still possible with both Majorana Bino/Higgsinos states.

Gauge couplings unification It was early realised that adding the adjoint chiral
multiplets would spoil the hardly-fought natural gauge coupling unification (namely
unification without mass-threshold tunings) obtained in the MSSM. In order to recover
natural unification, one needs to add bachelor fields to form complete multiplets of the
GUT gauge group [21]. Fascinatingly, while a SU(5) unification is perfectly possible
at one-loop by adding states in a (3,2)−5/6 + (3,2)5/6, it was latter found in [42,
43] that at a Landau Pole appears at two loop before the GUT scale. The second
possibility is a (SU(3))3 GUT. In this case one must add states in (1,2)±1/2 + 2 ×
(1,1)±1, loosely speaking, they are two Higgs-like doublets, and two pairs of right-
handed electron-like fields. A priori, such fields can have masses at the same scale that
the other supersymmetric fields, allowing for diverse model-building possibilities which
will be explored in the coming chapters. In order to avoid numerous new couplings,
one can additionally charge these fields under lepton number or impose an exact R-
symmetry [43].

Detection at LHC The study of the phenomenology of Dirac gauginos models at
LHC has so far focused on the color particles.

In particular, the Dirac gluino case has been studied in [44, 34]. The general idea
is that one could not use directly the LHC searches for Majorana gluinos and that
lightest squarks are generally allowed.

The case of the scalar octet (also called sgluon) has been studied mainly in the
context of Dirac gauginos models with a totally preserved R-symmetry (MRSSM) [45,
46,47] and a NLO calculation of its production is avaible [48]. Typically, they are pair-
produced from gluons fusion and decay either into gluinos or squarks if kinematically
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opened or into quark pairs or gluons through one-loop interactions [49,50]. As the loops
contains gluinos and squarks, the decay amplitude decreases when they are heavy.

The (pseudo-)scalar octet is a crucial element of the explanation of the diphoton
excess we will present in chapter 5. Therefore, more details concerning the constraints
lying on such particle can be found in [4].

3 Minimal Dirac Gauginos SUSY Model : a Step by Step Ap-
proach

As a particular example, we will construct here step by step the Minimal Dirac Gaugino
Supersymmetric Standard Model (MDGSSM for short) presented in [29]. This model
can be seen as the minimal set of fields which allows a Dirac mass for the gauginos,
preserves one-loop natural unification of gauge couplings and allows to easily reproduce
the measured Higgs mass.

3.1 Field Content

We start with the MSSM field content, summarised in Table 1.1. As we have described
above, in order to have Dirac Gauginos masses, we must add the adjoint supermul-
tiplets, presented in Table 2.1. More precisely, we associate to U(1)Y the singlet
supermultiplet S, to SU(2) the triplet supermultiplets T and to SU(3) the octet su-
permultiplets O. These new multiplets contain new complex adjoint scalars, S, T and
O:

S = SR + iSI√
2

T = 1
2
√

2

(
TR + iTI

√
2(T+R + iT+I)√

2(T−R + iT−I) −(TR + iTI)

)

O(a) = O
(a)
R + iO

(a)
I√

2
(2.9)

where the SR, O
(a)
R , TR, T−R, T+R and the SI , O

(a)
I , TI , T−I , T+I are respectively real

scalar fields and real pseudo-scalar fields.
However, we have now broken the natural unification of the MSSM. As we discussed

previously, the simplest unification group for this model is (SU(3))3. The new adjoint
fields must therefore fit in a 24 adjoint representation1 which include several new
“unification” bachelor fields. They consist in an extra Higgs-like doublets 2 Ru,Rd as
well as two pairs of vector-like right-handed electron superfields E′1,2 in (1,1)1 and
Ẽ′1,2 in (1,1)−1. The unifications fields are summarised in Table 2.2

1This representation also contain four additional singlets which we will not include here for sim-
plicity, as they are not necessary for gauge couplings unifications.

2The hypercharge are opposite with respect to the Higgs doublet in the MSSM to make comparison
with the MRSSM easier
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Names Spin 0 Spin 1/2 Spin 1 (SU(3), SU(2), U(1)Y )

DG-octet O O χg (8, 1, 0)
[≡ g̃′]

DG-triplet T {T 0, T±} {χ0
T , χ

±
T } (1,3, 0 )

[≡ {W̃ ′±, W̃ ′0}]

DG-singlet S S χS (1, 1, 0 )
[≡ B̃′]

Table 2.1: Adjoint chiral multiplet fields.

Names Spin 0 Spin 1/2 Spin 1 (SU(3), SU(2), U(1)Y )

Higgs-like Leptons Ru Ru R̃u (1, 2, -1/2)
Rd Rd R̃d (1, 2, 1/2)

Fake electrons Ê(×2) Ê ˆ̃E (1, 1,1)
Ê′(×2) Ê′ ˆ̃E′ (1, 1,-1)

Table 2.2: Chiral and gauge multiplet fields in the model.

In order to restrain the possible couplings between the unification fields (which we
will refer to sometimes as “fake” fields in relation with the Fake Split SUSY models
which will be introduced in the following chapters) and the MSSM ones, we will give
them a lepton number. We can therefore view these fields as a vector-like pair of left-
handed leptons and two vector-like pairs of right-handed leptons, together with their
companion sleptons.

3.2 Lagrangian

We will sort the various terms in the Lagrangian according to whether or not they
preserve R-symmetry. We remind that the superpotential must carry a R-charge +2.
Therefore, in order for the gauge fields kinetic terms to be R-conserving, one needs
to give R-charge +1 to the gauge field-strength superfields and consequently R-charge
+1 for the gauginos. An important consequence of this simple algebra is that the
SUSY-breaking Majorana mass term for the gaugino also breaks R-symmetry. As we
have already pointed out above, this is not the case for Dirac masses as one can give
R-charge −1 to the additional adjoint fermions. In this case, we conclude that the
supermultiplets S,T and O must have R-charge 0. We can use these results to sort
the different terms in our Lagrangian, as we will see below.

Let us now write the superpotential for our model. It can be decomposed as

W = WY ukawa +WDG +WRV +Wunif (2.10)
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where WY ukawa contains the usual MSSM Yukawas part

WY ukawa =Y ij
u UiQjHu − Y ij

d DiQjHd − Y ij
e EiLjHd (2.11)

WDG contains the a priori R-symmetric contributions of the adjoint superfields

WDG =(µ+ λSS)HdHu +
√

2λTHdTHu (2.12)

while WRV gathers the R-symmetry violating terms

WRV =LS + M̂1
2
S2 + κ

3
S3 + M̂2tr(TT ) + M̂3tr(OO)

+ λSTStr(TT ) + λSOStr(OO) + κO
3

tr(OOO)

−→
R−symmetry

0 (2.13)

and Wunif the terms with the unification superfields:

Wunif =(µR + λSRS)RuRd + 2λTRRuTRd
+ (µÊ ij + λSÊ ijS)ÊiÊ′j + λSEijSEiÊ

′
j (2.14)

+ λSLRiSLiRd + 2λTLRiLiTRd − YÊiRuHdÊi

− YÊ′iRdHuÊ
′
i − Y

ij
LFV Li ·HdÊj − Y j

EFVRuHdEj ,

for which we did not fix a priori the R-charge. Notice in particular that the contribu-
tions of the last two last lines of (2.12) couples the new “fake” leptons with the usual
Standard Model ones.

We turn now to the soft SUSY-breaking terms. Suppressing all gauge indices while
retaining generation indices and denoting the complex conjugation of fields by upper
versus lower indices we can have:

• Dirac gaugino masses:

Wsupersoft =
∫
d2θ
√

2θα
[
mD1SWY α + 2mD2tr(TW2α) + 2mD3tr(OW3α)

]
.

(2.15)

• soft terms associated with the adjoint scalars

−∆Lscalar soft
adjoints = +m2

S |S|2 + 1
2
BS(S2 + h.c.) + 2m2

T tr(T †T ) + (BT tr(TT ) + h.c.)

+2m2
Otr(O†O) + (BOtr(OO) + h.c.) (2.16)

+[TSSHu ·Hd + 2TTHd · THu + 1
3
κAκS

3 + h.c.] + (tSS + h.c.)

• soft terms involving the new vector-like leptons:

−∆Lscalar soft
vector−like =m2

Ru |Ru|
2 +m2

Rd
|Rd|2 + [BRRdRu + h.c.]

+ Êi(m2
Ê
)ijÊj + Ê′i(m2

Ê′
)ji Ê

′
j + [Bij

Ê
ÊiÊ

′
j + h.c.]

+ [T ijSESÊiÊ
′
j + TSRSRdRu + h.c.] . (2.17)
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Overall, this model have even more parameters than the MSSM. It is therefore par-
ticularly important to constrain the parameter space from experimental and theoretical
reasons.

In the following, we will consider that the couplings between the fake and true
leptons, which are given in the two last lines of (2.12) are negligible. Notice that
there are important constraints on them from rare leptons decay and electron dipole
moment [43]. Furthermore, we will suppose that the terms in the last line of (2.16)
are small so that we will not study their phenomenology. Finally, in a R-symmetry
conserving model, one cannot have simultaneously the trilinears TSE (respectively
TSR) and the superpotential couplings λSE (respectively λSR) as each term requires a
different R-charge for the fields Ê and Ê′ (respectively Ru and Rd) to be R-invariant.
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Chapter 3
Fake Split Supersymetric Models

Split supersymmetry is generally thought to be the simplest extension of the Standard
Model with natural, MSSM-like unification of gauge couplings [8]. However, as we
have shown in chapter 1, constraints from the Higgs mass measurement severely limit
the available parameter space, and particularly the SUSY scale MS is bounded to be
below 105 − 106 GeV [15,16,17].

Fake Split SUSY models [1,2] (FSSM) were build from the observation that the pre-
vious conclusion of minimality for Split SUSY only applies to the spectrum of particles
and not to their couplings. Indeed, we will show that by considering the same low-
energy particle content but with different couplings one can alleviate the constraints
on the SUSY scale, leading potentially to a “Mega-Split” spectrum.

We will start by studying in detail the model building of Fake Split SUSY Models
in Section 1 by considering two possible realisations, called type-I and type-II. In
Section 2, we show that contrary to the Split SUSY the Higgs mass does not lead to
any upper bound on MS . Section 3 summarises our results and draws a comparison
with the usual Split SUSY case.

1 Constructing Fake Split SUSY Models
A strength of Split SUSY-related models is their exceedingly simple low energy field
content. On top of the usual Standard Model particles, one simply adds the fermionic
supersymetric particles, namely the gauginos and higgsinos while the scalar SUSY
particles are heavy. An approximate symmetry is then needed to protect the desired
split spectrum against radiative corrections which could re-instate the light SUSY
fermions at the heavy SUSY scale.

In this section, we present the full supersymmetric field contents of two types
of Fake Split SUSY Models (FSSM) and describe the approximate global symmetries
leading to the splitting. We then further describe the generic Fake Split SUSY effective
theory below the SUSY scale.

1.1 The Full Supersymmetric Theory
We introduce in this section two realisations of the above idea, called FSSM-I and
FSSM-II. They have both a different field content above the SUSY scale and a different
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approximate symmetry protecting the splitting. We will then describe their common
low-energy effective below the SUSY, the Fake Split SUSY setup.

a Type I FSSM

In the case of the FSSM-I, the complete supersymmetric theory above the SUSY scale
is related to the MDGSSM we introduced in section 3 of chapter 2 but for the treatment
of R-symmetry and with a different mass hierarchy as we will see below.

Let us start by reminding briefly its field content shown in Table 2.1 and Table 2.2.
We will group the fields in three sets. In the following bold-face symbols denote
superfields.

1. Fake gauginos (henceforth, F-gauginos) are fermions χΣ in the adjoint repre-
sentation of each gauge group, which sit in a chiral multiplet Σ having scalar
component Σ. These consist of: a singlet S = S+

√
2θχS + . . . ; an SU(2) triplet

T =
∑
aTa σa/2, where Ta = T a +

√
2θχaT + . . . and σa are the three Pauli

matrices; an SU(3) octet O =
∑
aOa λa/2, where Oa = Oa +

√
2θχaO + . . . and

λa are the eight Gell-Mann matrices.

In order to preserve natural unification we further need to add the bachelor fields
described in section 3. For MS . MGUT these fields restore the possibility of gauge
coupling unification, because they equalise the shifts in the one-loop beta functions at
MS of all of the gauge groups relative to the MSSM [51]. They consist in

2. Higgs-like SU(2)W doublets H′u and H′d (henceforth, F-Higgs doublets) with
fermions appearing as fake higgsinos (henceforth, F-higgsinos).

3. Two pairs of vector-like electron superfields (i.e. two pairs of superfields with
charges ±1 under U(1)Y ) with a supersymmetric mass MS .

We stress that in contrast to the usual Split-SUSY case – and also in contrast to the
model we introduced in chapter 2 – we do not preserve an R-symmetry. This means
that the gauginos have masses at MS , moreover the higgsino mass is not protected,
thus a µ term of order MS will be generated for the higgsinos.

However, we introduce an approximate U(1)F symmetry under which all the adjoint
superfields and the F-Higgs fields H′u and H′d have the same charge. The breaking
of this symmetry is determined by a small parameter ε which may correspond to the
expectation value of some charged field divided by the fundamental mass scale of the
theory (at which Yukawa couplings are generated); in this case we can suppose it
to have charge −1 under U(1)F , this reasoning is familiar from flavour models. The
charge assignments are the following:

Superfield U(1)F charge
H′u,H′d; S,T,O 1

E′1,2, Ẽ′1,2 0
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As consequence of this approximate symmetry, the superpotential contains a hierarchy
of couplings due to suppressions by different powers of ε:

W ⊃ Wunif + µ0 Hu ·Hd + YuUc Q ·Hu − YdDc Q ·Hd − YeEc L ·Hd

+ ε
(
µ̂′dHu ·H′d + µ̂′uH′u ·Hd + Ŷ ′uUc Q ·H′u − Ŷ ′d Dc Q ·H′d − Ŷ ′e Ec L ·H′d

)
+ ε

(
λ̂S SHu ·Hd + 2 λ̂T Hd ·THu

)
+ ε2

(
λ̂′Sd SHu ·H′d + λ̂′Su SH′u ·Hd + 2 λ̂′TuHd ·TH′u + 2 λ̂′TdH′d ·THu

)
+ ε2 µ̂′′H′u ·H′d + ε2

[1
2
M̂S S2 + M̂T Tr(TT) + M̂O Tr(OO)

]
+O(ε3) , (3.1)

where Q,Uc,Dc,L and Ec are the quarks and leptons superfields, Hu and Hd the
usual MSSM two Higgs doublets. We have explicitly written the ε factors so that all
mass parameters are expected to be generated at MS and all dimensionless couplings
are either of order one or suppressed by loop factors. The additional superpotential
Wunif contains the interactions involving the pairs E′1,2 and Ẽ′1,2; these fields are
irrelevant for the low energy theory because their masses are not protected, so are of
order MS .

We shall not explicitly write all of the soft terms in the model for reasons of
brevity, since they can simply be inferred from the flavour assignments. For example,
for the gauginos, allowing all terms permitted by the symmetries we have unsuppressed
Majorana masses for the gauginos, and then the suppressed Majorana masses for the
F-gauginos ε2M̂S,T,O – and Dirac masses mixing the two suppressed only by ε, giving
a generic mass matrix of

M1/2 ∼ O(MS)
(

1 O(ε)
O(ε) O(ε2)

)
. (3.2)

We have a heavy eigenstate of mass O(MS) and a light one, the F-gaugino at leading
order, of mass O(ε2MS). Requiring that the F-gauginos have a mass at the TeV scale
(for unification and, as we shall later see, dark matter) then fixes ε:

ε = O(
√

TeV
MS

) . (3.3)

For the adjoint scalars we shall define the explicit soft terms:

−Lscalar soft ⊃ m2
S |S|2 + 2m2

T trT †T + 2m2
OtrO†O

+ 1
2
ε2BS [S2 + h.c] + ε2BT [trTT + h.c] + ε2BO[trOO + h.c] . (3.4)

We see that theB parameters are ε2-suppressed. This resolves in a very straightforward
way the problem, typical of Dirac gaugino models, of having tachyonic adjoints [27,52,
53].

The Higgs mass matrix can be written in terms of the four-vector
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vH ≡ (Hu, Hd
∗, H ′u, H

′ ∗
d ) as

− 1
M2
S

Lsoft ⊃ v†H


O(1) O(1) O(ε) O(ε)
O(1) O(1) O(ε) O(ε)
O(ε) O(ε) O(1) O(ε2)
O(ε) O(ε) O(ε2) O(1)

 vH . (3.5)

In the spirit of Split SUSY we tune the weak scale to its correct value and define the
SM-like Higgs boson H as

Hu ≈ sin β H + . . . , Hd ≈ cosβ iσ2H∗ + . . . , (3.6)

H ′u ≈ εH + . . . , H ′d ≈ ε iσ2H∗ + . . . , (3.7)
where β is a mixing angle and the ellipses represent terms at higher order in ε. Notice
that in comparison with 2HDM, MSSM and Split SUSY case, the Standard Model-
like Higgs is now a mixed state of four doublets. However, due to the suppression
of the mixing between the eigenstates by the U(1)F symmetry, we can safely neglect
the influence of the fake Higgs doublets. Thus, the Yukawa couplings are unaffected
compared to the usual Split-SUSY scenario. Note that, if we wanted to simplify the
model, we could impose an additional unbroken symmetry under which the F-Higgs
fields transform and are vector-like – for example, lepton number – . In this way we
would remove the mixing between the Higgs and F-Higgs fields. This is unimportant
in what follows, since we are only interested in the light fields that remain.

Furthermore, the presence of a light SM-like Higgs implies at first order in ε

Bµ '
√

(m2
Hu

+ µ2
0)(m2

Hd
+ µ2

0) +O(ε) . (3.8)

From the discussion above we can then read off the mass matrices after electroweak
symmetry breaking. In the basis (B̃′, W̃ ′ 0, H̃ ′d

0
, H̃ ′u

0) the neutralino mass matrix is 1

Mχ0 =


mB̃

′ 0 ε2MZ ε2MZ

0 mW̃
′ ε2MZ ε2MZ

ε2MZ ε2MZ 0 −µ
ε2MZ ε2MZ −µ 0

 . (3.9)

We see that there is a mixing suppressed by ε2 = TeV
MS

. For example, if the F-higgsino is
the lightest eigenstate, it will be approximately Dirac with a splitting of the eigenvalues
of order ε4M2

Z/µ ∼
(

TeV
MS

)2
MZ .

We then write the chargino mass matrix involving the H̃ ′+, H̃ ′− and the charged
F-gauginos W̃ ′+ and W̃ ′−. The mass terms for the charginos can be expressed in the
form

− (v−)TMχ±v
+ + h.c. , (3.10)

where we have adopted the basis v+ = (W̃ ′+, H̃ ′+u ), v− = (W̃ ′−, H̃ ′−d ). This gives

Mχ± =
(

mW̃
′ ε2MW

ε2MW µ

)
. (3.11)

1From now on, given the smallness of ε, we shall not keep explicit track of the numerical coefficients
in front of it, thus we will use εn as a shorthand for O(εn).
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Again we have very little mixing.
Clearly, the mixing coefficients of order ε2 in the mass matrices are dependent on

quantities in the high-energy theory that we cannot determine. However, because they
are so small, they have essentially no bearing on the mass spectrum of the theory
(although they will be relevant for the lifetimes).

b Type II FSSM

Having F-gauginos in the low-energy spectrum will in fact be a drawback when dealing
with cosmology, as we will show in the next chapter. We therefore present a second
model which realises the FSSM below MS , where only the higgsinos become fake. We
shall refer to this as the type II FSSM (or FSSM-II for short).

Since we do not have fake gauginos, the ultraviolet model building is much more
conservative than the FSSM-I; in particular one does not have to appeal to Dirac
gauginos. Instead, we just add two pairs of Higgs-like doublets, H′u,H′d and Ru,Rd.
Unification of the gauge couplings at one-loop above MS is recovered by adding two
pairs of supermultiplets in the representations (3,1)1/3 ⊕ (3,1)−1/3. In total, we have
therefore added two vector-like pairs of 5 + 5 of SU(5). This should be reminiscent of
gauge mediation scenarios, except that here the doublets mix with the Higgs fields.

In order to create a split spectrum, we introduce an approximate R-symmetry with
charges:

Superfields R-charge
Hu,Hd 0
Ru,Rd 2
H′u,H′d +1,−1

Parametrising the breaking of this R-symmetry by a small parameter ε, the part of
the superpotential containing the µ terms of the three Higgs-like multiplets is

W ⊃ ε2(µHuHd + µH′H′uH′d)
+ [µuHuRd + µdRuHd]
+ εµfdrRuH′d + εµdfH′uHd + ε3µufHuH′d.

The R-charges have been chosen so that the mixing terms between Hu,d and Ru,d

fields are unsuppressed. This allows the particles described mainly by Hu,d and Ru,d

to have masses of order MS , while H′u,d provide a pair of light F-higgsinos with a mass
of O(ε2MS). The Yukawa part of the superpotential is given by

W ⊃ [YuUc Q ·Hu − YdDc Q ·Hd − YeEc L ·Hd]
+ε[−YdDc Q ·H′d − YeEc L ·H′d]

which allows a successful mass generation for the quarks and leptons, the SM-like Higgs
obtained from fine-tuning at the electroweak scale must originate from the Hu and Hd

multiplets.
Imposing the R-symmetry on the soft terms leads to the suppression of the Majo-

rana gauginos mass by ε2 factors (this mechanism is similar to the usual Split SUSY
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one). In the term of the vector vH ≡ (Hu, Hd
∗, H ′u, H

′ ∗
d , Ru, R

∗
d), the Higgs mass matrix

has the following hierarchy

− 1
M2
S

Lsoft ⊃ v†H



O(1) O(1) O(ε) O(ε) O(ε2) O(ε2)
O(1) O(1) O(ε) O(ε) O(ε2) O(ε2)
O(ε) O(ε) O(1) O(1) O(ε) O(ε3)
O(ε) O(ε) O(1) O(1) O(ε) O(ε3)
O(ε2) O(ε2) O(ε) O(ε) O(1) O(ε4)
O(ε2) O(ε2) O(ε3) O(ε3) O(ε4) O(1)


vH . (3.12)

We can tune the SM-like Higgs from the scalar components of Hu and Hd to get

Hu ≈ sin β H + . . . , Hd ≈ cosβ iσ2H∗ + . . . , (3.13)

and the other Higgs-like scalars only enters the linear combination with ε suppression.
The fine-tuning condition can therefore be applied on the Bµ term similarly, with the
exception that the µ terms are not ε-suppressed compared to the soft masses, leading
to

Bµ '
√

(m2
Hu

+ µ2
u)(m2

Hd
+ µ2

d) +O(ε) . (3.14)
The parameter ε is here also fixed by the requirement that the gauginos obtain a

mass at the TeV scale

ε = O(
√

TeV
MS

). (3.15)

1.2 The Low-Energy Theory: Fake Split SUSY
Focusing on the effective theory below the supersymmetry scale MS , we can integrate
out all of the heavy states and find that the particle content of the theory appears
exactly the same as in Split SUSY: this is why we call the scenario Fake Split SUSY.

The following discussion will be made for the FSSM type I, but could be made in a
completely similar fashion for FSSM type-II by replacing the F-gauginos by the usual
gauginos. The only difference is that the couplings g̃u,d and g̃′u,d will be suppressed by
ε instead of ε2 which does not modify our results.

Above the electroweak scale, we have F-Binos B̃′, F-Winos W̃ ′ and F-gluinos g̃′
with (Majorana) masses mB̃

′ , mW̃
′ and mg̃′ , respectively, and F-higgsinos H̃ ′u,d with a

Dirac mass µ.
We can also determine the effective renormalisable couplings. The F-gauginos and

F-higgsinos have their usual couplings to the gauge fields. The F-gluinos have only
gauge interactions, whereas there are in principle renormalisable interactions between
the Higgs, F-higgsinos and F-electroweakinos. The allowed interactions take the form

Leff ⊃ −
H†√

2
(g̃u σa W̃ ′

a + g̃′u B̃
′) H̃ ′u −

HT iσ2
√

2
(−g̃d σa W̃ ′

a + g̃′d B̃
′) H̃ ′d . (3.16)

Since the gauge couplings of all the particles are the same as in the usual Split-SUSY
case, the allowed couplings take the same form. However, the values differ greatly.
Indeed in our model the couplings are doubly suppressed:

g̃′u ∼ g̃′d ∼ g̃u ∼ g̃d ∼ ε2, (3.17)
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since the terms in (3.16) violate the approximate global symmetry. We recall that,
in the usual Split-SUSY case, we would have instead: g̃u = g sin β, g̃d = g cosβ,
g̃′u = g′ sin β and g̃′d = g′ cosβ, where β is the angle that rotates the Higgs doublets
Hu and Hd into one light, SM-like doublet and a heavy one.

The remaining renormalisable coupling in the theory is the Higgs quartic coupling
λ, which at tree level is determined by supersymmetry to be

λ = 1
4

(
g2 + g′ 2

)
cos2 2β + O(ε2) . (3.18)

The tree-level corrections at O(ε2) come from the superpotential couplings λ̂S and
λ̂T , and from the O(ε) mixing between the Higgs and F-Higgs fields. Additional O(1)
contributions to this relation could arise if the SUSY model above MS included new,
substantial superpotential (or D-term) interactions involving the SM-like Higgs, but
this is not the case in our models. Similarly, the introduction of Dirac masses can
modify this relation [21], but they are negligible compared to the Majorana ones (see
eq (3.2)). There are, however, small loop-level corrections to eq. (3.18), which we will
discuss in the next section.

The O(ε2) corrections to the g̃(u,d), g̃′(u,d) and λ couplings are not determined
from the low-energy theory and are thus unknown from the low-energy perspective.
However, in this study we focus on models where the set of F-gauginos and F-higgsinos
lies in the TeV mass range, which corresponds to values of ε of the order of

ε ∼
√

TeV
MS

, (3.19)

which gives a ε2 ranging between 10−13 to 10−2 when MS goes from the highest GUT
scale of 1016 GeV down to 100 TeV, the lowest scale considered here. With such values
of ε, we have verified that we can safely neglect the contribution of g̃(u,d) and g̃′(u,d)to
the running of the Higgs quartic coupling, and that the shift in the Higgs mass due
to the tree-level corrections to λ is less than 2 GeV for MS > 100 TeV, falling to a
negligibly small amount for MS > 1000 TeV.

2 Higgs Mass Prediction in Fake Split Models
We will study the Higgs mass prediction in Fake Split SUSY models in two steps.
First, we focus on the low energy effective theory, with most input parameters at the
electroweak scales with the exception of tan β which is considered a free parameter at
the SUSY scale. In the second place, we will include the full supersymmetric theories
above the SUSY scale with unified input parameters at the GUT scale. We will show
that contrary to the Split SUSY case, this does not lead to stronger constraints on the
SUSY scale.

2.1 An Effective Theory Approach
Our low-energy effective theory has a remarkably small number of parameters. Namely,
the gluino pole mass, the F-Higgsino µ term,tan β and the SUSY scale, with the Higgs
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mass depending mainly of tan β, MS and the gluino mass. This limited parameter
space is however perfectly sufficient since, as we will see now, it is in fact hard not to
get a 125 GeV Higgs in Fake Split SUSY models.

a Implementation

Our procedure for the determination of the Higgs-boson mass is based on the one de-
scribed in ref. [13] for the regular Split-SUSY case. We impose boundary conditions
on the MS-renormalised parameters of the FSSM, at the high scale MS for tan β (and
the electroweak gauginos masses, defined from a GUT relation as we will described
below), where we match our effective theory with the full supersymmetric theory, and
at the low scale MZ for the other parameters, where we match the effective theory
with the SM. We then use RG evolution iteratively to obtain all the effective-theory
parameters at the weak scale, where we finally compute the radiatively corrected Higgs
mass. However, in this analysis we improved several aspects of the earlier calculation,
by including the two-loop contributions to the boundary condition for the top Yukawa
coupling, the two-loop contributions to the RG equations for the Split-SUSY parame-
ters, as well as some two- and three-loop corrections to the Higgs-boson mass.

At the high scale MS , the boundary condition on the quartic coupling of the light,
SM-like Higgs doublet is determined by supersymmetry and given by eq. (3.18). In
contrast with the Split-SUSY case, a large µ0-term and A-terms are no longer forbidden
by R-symmetry (as the latter is broken at the scale MS), and the threshold corrections
proportional to powers of |At − µ0 cotβ|2/M2

S can in principle alter the boundary
condition in eq. (3.18). For very large values of MS , the top Yukawa coupling that
controls these corrections is suppressed, and their effect on the Higgs mass is negligible.
For lower values of MS , on the other hand, the effect becomes sizable, and it can shift
the Higgs mass by up to 6 GeV when MS ∼ 105 GeV [14]. This allows us to obtain the
desired Higgs mass for a lower value of tan β for fixed MS , or a lower MS for a given
value of tan β. As our main purpose in this work is to study the possibility of pushing
MS to its highest values, in the following we shall take the stop-mixing parameter to be
vanishing, and we will neglect all of the one-loop corrections described in refs [13, 14].

As mentioned in section 1.2, the effective Higgs–(F-)higgsino–(F-)gaugino couplings
g̃u, g̃d, g̃′u and g̃′d are of O(ε2) for the FSSM-I and O(ε) for the FSSM-II, we therefore
set them to zero at the matching scale MS . The RG evolution down to the weak
scale does not generate non-zero values for those couplings, therefore, in contrast with
the case of the regular Split SUSY, the F-higgsinos and (F-)gauginos have negligible
mixing upon electroweak symmetry breaking, and they do not participate in the one-
loop corrections to the Higgs-boson mass. Consequently their precise nature, fake in
FSSM-I and true in FSSM-II does not modify the low-energy effective theory.

Indeed, the electroweak (F-)gauginos and the F-higgsinos affect our calculation of
the Higgs mass only indirectly, through their effect on the RG evolution and on the
weak-scale boundary conditions for the electroweak gauge couplings, and we find that
the precise values of their masses have very little impact on the prediction for the Higgs
mass. On the other hand, the choice of the (F-)gluino mass is more important due to
its effect on the boundary conditions for the strong and top Yukawa couplings.

To fix the soft SUSY-breaking (F-)gaugino masses, we take as input the physical
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(F-)gluino mass Mg̃′ , and convert it to the MS parameter mg̃′ evaluated at the scale
Mg̃′ according to the one-loop relation

mg̃′(Mg̃′) =
Mg̃′

1 + 3 g2
3

4π2

, (3.20)

where g3 is the strong gauge coupling of the FSSM. We then evolve mg̃′ up to the
scale MS , where, for simplicity2, we impose on the other two F-gaugino masses the
GUT-inspired relations

mB̃
′(MS) =

[
g1(MS)
g3(MS)

]2
mg̃′(MS) , mW̃

′(MS) =
[
g2(MS)
g3(MS)

]2
mg̃′(MS) . (3.21)

We can then evolve all of the (F-)gaugino masses down to the weak scale. For what
concerns the F-higgsino mass µ, we take it directly as an MS input parameter evaluated
at the scale MZ .

We use the experimental Higgs mass Mh = 125.09 ± 0.24 from the combined AT-
LAS and CMS results [54]. The gauge and third-family Yukawa couplings, as well as
the vacuum expectation value v of the SM-like Higgs (normalised as v ≈ 174 GeV in
our code), are extracted from the following set of SM inputs [55,56]: the strong gauge
coupling αs(MZ) = 0.1184 (in the MS scheme with five active quarks); the electromag-
netic coupling α(MZ) = 1/127.944; the Z-boson mass MZ = 91.1876 GeV; the Fermi
constant GF = 1.16638×10−5 GeV−2; the physical top and tau massesMt = 173.2±0.9
GeV and Mτ = 1.777 GeV; and the running bottom mass mb(mb) = 4.18 GeV. We use
the one-loop formulae given in the appendix A of ref. [13] to convert all the SM inputs
into MS running parameters of the FSSM evaluated at the scale MZ .

In view of the sensitivity of λ to the precise value of the top Yukawa coupling gt,
we include the two-loop QCD contribution to the relation between the physical top
mass Mt and its MS counterpart mt. In particular, we use:

mt(MZ) = Mt

1 + g2
3

(4π)2 C1 + g4
3

(4π)4

(
CSM

2 + C g̃
′

2

) + Σt(mt)EW , (3.22)

where g3 is computed at the scale MZ using eq. (A.1) of ref. [13], Σt(mt)EW denotes
the terms in the one-loop top self energy that do not involve the strong interaction,
and

C1 = 16
3
− 4 ln M

2
t

M2
Z

, (3.23)

C SM
2 = 2821

18
+ 16

3
ζ2 (1 + ln 4)− 8

3
ζ3 −

338
3

ln M
2
t

M2
Z

+ 22 ln2 M
2
t

M2
Z

, (3.24)

C g̃
′

2 = 89
9

+ 4 ln
m2
g̃′

M2
Z

(
13
3

+ ln
m2
g̃′

M2
Z

− 2 ln M
2
t

M2
Z

)
. (3.25)

The boundary condition for the top Yukawa coupling of the FSSM is then given by
gt(MZ) = mt(MZ)/v(MZ). The two-loop SM contribution C SM

2 in eq. (3.24) is from
2Although the patterns of neutralino and chargino masses are important for collider searches, in

our model they have negligible impact on the Higgs mass and so the exact relation is not important.
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ref. [57], while to obtain the two-loop (F-)gluino contribution C g̃
′

2 in eq. (3.25) we
adapted the results of ref. [58] to the case of a heavy Majorana fermion in the adjoint
representation of SU(3). For an (F-)gluino mass of a few TeV, the inclusion of C g̃

′

2 in the
boundary condition for gt becomes crucial, as it changes the prediction for the Higgs
mass by several GeV. Alternatively, one could decouple the (F-)gluino contribution
from the RG evolution of the couplings below the scale Mg̃′ , include only the SM
contributions in the boundary conditions for gt and g3 at the scale MZ , and include
the non-logarithmic part of C g̃

′

2 as a threshold correction to gt at the scale Mg̃′ . We
have checked that the predictions for the Higgs mass obtained with the two procedures
are in very good agreement with each other.

To improve our determination of the quartic coupling λ at the weak scale, we
use two-loop renormalisation-group equations (RGEs) to evolve the couplings of the
effective theory between the scales MS and MZ . Results for the two-loop RGEs of
Split SUSY have been presented earlier in refs [59,14,60]. Since there are discrepancies
between the existing calculations, we used the public codes SARAH [61] and PyR@TE [62]
to obtain independent results for the RGEs of Split SUSY in the MS scheme. Taking
into account the different conventions, we agree with the RGE for λ presented in
ref. [59], and with all the RGEs for the dimensionless couplings presented in section
3.1 of ref. [60]. However, we disagree with ref. [60] in some of the RGEs for the mass
parameters (our results for the latter are collected in the appendix). Concerning the
RGEs for the dimensionless couplings presented in ref. [14], we find some discrepancies 3

in two-loop terms proportional to g4
2 and g6

2.
At the end of our iterative procedure, we evolve all the parameters to a common

weak scale QW , and obtain the physical squared mass for the Higgs boson as

M2
H = λ(QW )√

2GF

[
1− δ1`(QW )

]
+ g4

t v
2

128π4

[
16 g2

3 (3 `2t + `t)− 3 g2
t

(
9 `2t − 3 `t + 2 + π2

3

)]

+ g4
3 g

4
t v

2

64π6 ln3 m
2
g̃′

Q2
W

, (3.26)

where `t = ln(m2
t /Q

2
W ). The one-loop correction δ1`(QW ), which must be computed

in terms of MS parameters, is given in eqs (15a)–(15f) of ref. [63], while the two-
loop corrections proportional to g2

3g
4
t and to g6

t come from ref. [64]. We have also
included the leading-logarithmic correction arising from three-loop diagrams involving
F-gluinos, which can become relevant for large values of mg̃′/QW . This last term must
of course be omitted if the F-gluinos are decoupled from the RGE for λ below the
scale Mg̃′ . In our numerical calculations we set QW = Mt to minimise the effect of the
radiative corrections involving top quarks, but we have found that our results for the
physical Higgs mass are remarkably stable with respect to variations of QW .

3 In particular, in ref. [14] the coefficient of g4
2 in the RGEs for gt, gb, gτ , g̃′u and g̃′d should be

changed from −15/4 to −17/4, while the coefficient of g4
2 in the RGEs for g̃u and g̃d should be changed

from −121/4 to −409/12. In the RGE for λ, the terms proportional to g6
2 , λg

4
2 and g4

2g
2
1 should be

corrected in accordance with ref. [59]. We thank A. Strumia for confirming these corrections.
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b Results

Before presenting our result for the Higgs mass, we stress that at the one-loop level,
the running of gauge couplings in our model is the same as in Split SUSY because the
(suppressed) Yukawa couplings only enter at two-loop level. We have verified that the
gauge-coupling unification of Split SUSY scenario is maintained at two loops in our
model.

Figure 3.1: Higgs-mass predictions as a function of the SUSY scale MS for FSSM, High-Scale
SUSY and Split SUSY. We set Mg̃′ = µ = 2 TeV and tan β = 1 or 40. The green-shaded region
indicates a Higgs mass in the range [124, 127] GeV.

Higgs mass in FSSM: We find that, in the FSSM, the dependence of the physical
Higgs mass on the SUSY scaleMS differs markedly from the cases of regular Split SUSY
or High-Scale SUSY (where all superparticle masses are set to the scaleMS). Figure 3.1
illustrates this discrepancy, showing MH as a function of MS for Mg̃′ = µ = 2 TeV.
The solid (black) curves represent the prediction of the FSSM, the dashed (red) ones
represent the prediction of High-Scale SUSY, and the dot-dashed (blue) ones represent
the prediction of regular Split SUSY (the predictions for the latter two models were
obtained with appropriate modifications of the FSSM calculation described in section
2.1). For each model, the lower curves were obtained with tan β = 1, resulting in the
lowest possible value of MH for a given MS , while the upper curves were obtained with
tan β = 40.

As was shown earlier in ref. [14], the Higgs mass grows monotonically with the
SUSY scale MS in the Split-SUSY case, while it reaches a plateau in High-Scale SUSY.
In both cases, the prediction for the Higgs mass falls between 124 and 127 GeV only for
a relatively narrow range of MS , well below the unification scale MGUT ≈ 2×1016 GeV.
In the FSSM, on the other hand, the Higgs mass reaches a maximum and then starts
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decreasing, remaining generally lower than in the other models. It is therefore much
easier to obtain a Higgs mass close to the experimentally observed value even for large
values of the SUSY scale. For example, as will be discussed later, when tan β ≈ 1.5
we find that the FSSM prediction for the Higgs mass falls between 124 and 127 GeV
for all values of MS between 108 GeV and MGUT .

Figure 3.2: Running of the Higgs quartic coupling λ in the FSSM and in the usual Split-SUSY
case for tan β = 1 and 1.5. We set MS = 2×1016 GeV and Mg̃′ = µ = 2 TeV.

This new behaviour originates in the RG evolution of λ in the FSSM, which differs
from the case of Split SUSY. In figure 3.2 we show the dependence of λ on the renor-
malisation scale Q in the two theories, imposing the boundary condition in eq. (3.18) at
the scale MS = 2×1016 and setting tan β to either 1 or 1.5. Even though we impose the
same boundary condition in both theories, the fact that the effective Higgs–higgsino–
gaugino couplings are zero in the FSSM induces a different evolution. Indeed, in Split
SUSY the contributions proportional to four powers of the Higgs–higgsino–gaugino
couplings enter the one-loop part of βλ with negative sign, as do those proportional
to four powers of the top Yukawa coupling, whereas the contributions proportional to
four powers of the gauge couplings enter with positive sign. For MS & 1012 GeV, the
top Yukawa coupling is sufficiently suppressed at the matching scale that removing
the Higgs–higgsino–gaugino couplings makes βλ positive. This prompts λ to decrease
with decreasing Q, until the negative contribution of the top Yukawa coupling takes
over and λ begins to increase. We will analyse this result in more detail in section 3.

Vacuum stability: Figure 3.2 also shows that, for values of tan β sufficiently close to
1, the quartic coupling λ can become negative during its evolution down from the scale
MS , only to become positive again whenQ approaches the weak scale. This points to an
unstable vacuum, and a situation similar to the one described in ref. [65]. However, it
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was already clear from figure 3.1 that, for tan β = 1, the FSSM prediction for the Higgs
mass is too low anyway. For the values of tan β large enough to induce a Higgs mass in
the observed range, the theory is stable. This is illustrated in figure 3.3, where we show
the contours of equal Higgs mass on the MS – tan β plane, setting Mg̃′ = µ = 2 TeV.
The green-shaded region corresponds to a Higgs mass in the observed range between
124 and 127 GeV, while the yellow-shaded region is where λ becomes negative during
its evolution between MS and the weak scale, and the vacuum is unstable. It can
be seen that, for MS & 108 GeV, a Higgs mass around 126 GeV can be comfortably
obtained for tan β ≈ 1.5. The unstable region is confined to values of tan β very close
to 1, and only for MS & 1012 GeV. For lower values of MS , the top Yukawa coupling is
not sufficiently suppressed at the matching scale and βλ is always negative, therefore
there is no region of instability.

We investigated how our results are affected by the experimental uncertainty on
the top mass. An increase (or decrease) of 1 GeV from the central value Mt = 173.2
GeV used in figure 3.3 translates into an increase (or decrease) in our prediction for the
Higgs mass of 1–2 GeV, depending on MS . For larger values of Mt, the observed value
of MH is obtained for tan β closer to 1, and the green regions in figure 3.3 approach the
unstable region. The size of the unstable region is itself dependent onMt (i.e. the region
shrinks for larger Mt) but the effect is much less pronounced. Consequently, raising
the value of the top mass may lead to instability for large MS (e.g. for MS & 1012 GeV
when Mg̃′ = 2 TeV). Considering an extreme case, for Mt = 175 GeV we would see a
substantial overlap of the experimentally acceptable regions with the unstable region
around MS ≈ MGUT. On the other hand, for values of Mt lower than 173.2 GeV the
green regions in figure 3.3 are shifted towards values of tan β further away from 1, and
the vacuum is always stable for the correct Higgs mass.

Finally, in figure 3.4 we show the contours of equal Higgs mass on the Mg̃′ – tan β
plane, setting MS = 2×1016 GeV and µ = 2 TeV. The colour code is the same as in
figure 3.3. It can be seen that the region where the FSSM prediction for the Higgs mass
is between 124 and 127 GeV gets closer to the unstable region when the F-gluino mass
increases. However, the dependence of MH on Mg̃′ is relatively mild, and only when
Mg̃′ is in the multi-TeV region do the green and yellow regions in figure 3.4 overlap.
We conclude that if we insist on enforcing exact stability and setting MS ≈ 2×1016

GeV, then obtaining a Higgs mass compatible with the observed value constrains the
gluino mass to the few-TeV region.

Strongly-coupled fake fermions As a related development, one could wonder from
a purely bottom-up approach what could be the effect of relaxing the constraints on
g̃u, g̃d, g̃′u and g̃′d and simply choose to fix them at the SUSY scale as

g̃1u = ε̃g′ sin β g̃1d = ε̃g′ cosβ (3.27)
g̃2u = ε̃g sin β g̃2d = ε̃g cosβ

where ε̃ is a free parameter, which we can use to interpolate between the FSSM case
(ε̃ ∼ 0) and the Split SUSY one (ε̃ ∼ 1). For bigger values of ε̃ > 1, we have a new region
of the parameter space, in which the running of the Higgs quartic runs very quickly to
zero (which could hypothetically allow to fit this low-energy model in a Gauge-Higgs
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Figure 3.3: Contour plot of the prediction for the Higgs mass on the MS – tan β plane, for
Mg̃′ = µ = 2 TeV. The yellow-shaded region indicates where λ becomes negative during its
running between MZ and MS . The green-shaded region indicates a Higgs mass in the range
[124, 127] GeV.
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Figure 3.4: Same as figure 3.3 on the Mg̃′ – tan β plane, with MS = 2×1016 GeV and µ = 2
TeV.

unification approach, with the SUSY scale MS replaced by a compactification scale).
The Higgs mass can be easily determined as a function of the UV scale MC and of the
parameter ε̃, this is shown in Figure 3.5.

2.2 A Complete Treatment

Let us summarise our results so far. We have defined a model – the FSSM – which
has the same particle content at low energies as Split SUSY, but has a substantially
different ultraviolet completion and also low-energy phenomenology:

We have found that a standard-model-like Higgs boson with a mass around 125
GeV can be obtained for low values of tan β. For low values of MS , the exact value
of tan β is subject to modification that we estimated when considering the presence of
additional contributions to the quartic Higgs coupling from the unsuppressed A-terms.
For larger values of MS , the latter contributions are negligible.

One crucial element is missing in this picture though: we have left aside the theory
above the SUSY scale and focused directly on the low-energy effective theory. Indeed,
we know from the works on the Mini-Split [15, 16, 17] that the RGE of the complete
theory above MS constrains the allowed range of values for tan β, therefore increasing
the constraints on the Higgs mass. We will now show that in Fake Split SUSY Models,
including the full SUSY theory above MS does not lead to increased constraints.
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Figure 3.5: Higgs pole mass as a function of the UV scale MC and of the strength of the
Yukawas coupling for F-Higgsinos ε̃. We have chosen tan β = 1.

a Obtaining tan β

In Fake Split SUSY, the situation is different from the Split SUSY tension between
unification and Higgs mass we presented in the last chapter although the details depend
upon the high-energy theory:

• In the FSSM-I, we have

det
(
m2
Hu

+ |µ0|2 −Bµ
−Bµ m2

Hd
+ |µ0|2

)
' 0 → tan β =

√√√√m2
Hd

+ |µ0|2

m2
Hu

+ |µ0|2
(3.28)

as above but now unification only requires the fake-higgsino mass parameter µ
to be small which differs from µ0. This means that provided µ0 is sufficiently
large it is not important whether m2

Hu
becomes negative; we will always have a

stable vacuum solution, and generically tan β ∼ O(1).
In addition, there is no R-symmetry protecting the masses and thus the RGEs
take on the full dependence:

16π2 d

d logµ
m2
Hu ' 6|yt|2(mH2

u
+m2

Q +m2
U +A2

t )− 6g2
2M2 − 2g2

YM1 + 2g2
Y tr(Y m2)

(3.29)

where the trilinear mass At and gaugino masses M1,2 are not suppressed. These
can reduce the tendency for m2

Hu
to become tachyonic in Split SUSY models.
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• In the FSSM-II, we have instead an R-symmetry which protects the trilinear
scalar masses and gaugino masses, and neglecting terms of O(ε) we have

det
(
m2
Hu

+ |µu|2 −Bµ
−Bµ m2

Hd
+ |µd|2

)
' 0 → tan β =

√√√√m2
Hd

+ |µd|2

m2
Hu

+ |µd|2
. (3.30)

As in the FSSM-I, since µu,d ∼ MS there is no incompatibility with unification
and obtaining tan β ∼ O(1).

Therefore there should be no impediment from taking the soft masses to be gen-
erated at the unification scale. In the following, we will consider the predictions from
a scenario where this is the case: we will take a common scalar mass m0, common
gaugino mass M1/2 and (in the FSSM-I) a common trilinear mass A0 at that scale and
investigate the consequences for the Higgs mass and dark matter.

b Implementation

The Higgs mass along with the low-energy spectrum are computed using a two-fold
procedure. On one side, we compute the running between the electroweak scale and
MS . On the other side we compute the running between MS and the unification
scale. The consistency of the computation is insured through proper matching of the
boundary conditions at MS .

Running parameters between the electroweak and the SUSY scale are obtained
using the code described in the previous section where boundary conditions are imposed
both at MS to match the SUSY region predictions and at the electroweak scale to
match the SM inputs. RGEs are then solved iteratively (using numerical routines
from SPheno [66,67]) until we reach a solution satisfying both boundary conditions at
the required precision.

The RGEs above the SUSY scale have been obtained using the public code SARAH (see
ref. [68, 69,70,71,61] and ref. [72]).

Our input parameters are the following

• The F-Higgsino µ-term, µf

• The true Higgsino µ-term, µ ∼MS

• The unified F-gaugino Majorana mass mfg and the usual unified gaugino mass
M1/2. In the FSSM-I, only the F-gaugino mass is at the TeV scale while the
gauginos are at the SUSY scale. In the FSSM-II, the gaugino mass is suppressed
down to the TeV scale as seen in the previous section.

• The SUSY scale MS , which also serves as a unified mass scale for all SUSY-
breaking scalar mass terms (but those for the Higgs doublet in the NUHM case)

• The unified trilinear coupling A0.

The small parameter ε is defined from the (F-)gauginos mass

ε =


√

mfg
MS

in the FSSM-I√
M1/2
MS

in the FSSM-II
(3.31)
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so that the mass of the light gauginos-like particle is O(Msε
2) ' O(1) TeV.

Since the low-energy spectrum contains only F-higginos and (F-)gauginos, most of
the parameter space in the UV is redundant. As a simplifying assumption, we use µ
as a common scale for all unsuppressed superpotential µ-like and Bµ-like terms, µf/ε
for all superpotential terms ε-suppressed and µf for the ε2-suppressed terms.

One subtlety is that even if the F-higgsinos are to leading order in ε directly derived
from their UV counterparts, their masses should formally be obtained by diagonalis-
ing the mass matrix for the higgsino-like particles. In order to make sure that our
simplifying assumptions do not turn into fine-tuning (which happens when the deter-
minant of the mass matrix becomes zero), we made the following choice in the FSSM-I
(the FSSM-II being free from this issue): the F-higgsino µ-term is µf and the mixing
between fake and usual Higgs doublets are defined as µf

5ε . We take Bµf = µ2
f . This

choice does not modify the low-energy physics and allows us to make sure that µf
really controls the mass of the F-higgsinos in the low-energy theory.

A similar issue arises when diagonalising the gaugino mass matrix, so in the FSSM-
I the gauginos’ Dirac masses are defined suppressed by a loop factor at 1

16π2mfg. This
choice similarly allows us to make sure that mfg controls the mass of the F-gauginos
in the low-energy theory.

The Bµ-term for the Higgs doublets is fixed at the SUSY scale by the requirement
of having a light SM-like Higgs

Bµ '
√

(m2
Hu

+ µ2
u)(m2

Hd
+ µ2

d) (3.32)

where µu = µd = µ in the FSSM-I case and we have neglect ε-suppressed contributions.
The light eigenstates are predominantly composed of the original Higgs doublets

and contain fake doublets only at O(ε). Hence, the mixing angle β is given by

tan β =

√√√√m2
Hd

+ µ2
u

m2
Hu

+ µ2
d

, (3.33)

and it is used to parameterise the Higgs observables, mass and Yukawa couplings. The
variation of tan β allows to reproduce the cases with µu 6= µd as well as non-universal
Higgs masses (NUHM) set-up, where m2

Hd
and m2

Hu
have different values at MGUT .

Supersymmetry predicts the SM-like tree-level Higgs quartic coupling at MS via
equation:

λ(MS) = 1
4

(
g2 + g′ 2

)
cos2 2β + ∆(`)λ + ∆(MS)λ + O(ε2). (3.34)

The corrections O(ε) are always negligible in this work, however the loop contributions
can play a role. At one loop, we have the leading stop contribution given by

∆(1)λ ⊃ 3y4
t

16π2

[
log

m2
Q3
m2
U3

M4
S

+O(X̃t)
]

(3.35)

where yt is the top Yukawa coupling, X̃t ≡ |At−µ cotβ|2
mQ3mU3

and the dependence on this can
be found e.g. in [16]. Since the stop contribution is the most important, we make the
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standard convenient choice of using it to define MS ≡
√
mQ3mU3 . In the FSSM-II , At

and µ term are suppressed by the R-symmetry, so we can safely take X̃t ' 0. In the
FSSM-I, however, both are in general quite large; we have estimated the shift of the
Higgs mass to be at most 4.5 GeV when when MS ∼ 100 TeV and at most to 1 GeV
when MS ∼ 108 GeV. In most of our plots, At and µ are chosen to be equal to MS at
the GUT scale so the shift is further reduced to circa 2 GeV even for MS ∼ 100 TeV.

Other threshold corrections include terms from decoupling the heavy MSSM parti-
cles and changes of the renormalisation schemes from DR to MS. For the case of Split
SUSY, the expressions are given in [16]. We have found the effects in our models to
lead to a sub-GeV contribution to the Higgs mass so they have been neglected; how-
ever it would be interesting to be able to compute these contributions for our model
to completely assess their effect.

c Results

The Higgs mass as a function of MS is shown in Figure 3.6 (where all heavy mass
parameters have been taken to be equal to the SUSY scale). We first observe that we
obtain a slightly higher Higgs mass than in Figure 3.1 as the running from the GUT
scale produces somewhat heavier gluinos which in turn increases the Higgs mass as
shown in Figure 3.4. In the plot, it is useful to note that the curves exhibit plateaux
so that by choosing the right value of tan β between 1 and 5 we can reproduce the
desired Higgs mass for any SUSY scale up to the GUT scale.

If we suppose unification of the Higgs masses at the GUT scale (so thatm2
Hu
' m2

Hd
and µu ' µd), then tan β, all parameters in (3.33) are of the same order, and we predict
that generically the value of tan β is close to 1. This can be seen in Figure 3.7 where
we have plotted tan β in the FSSM-I as a function of the SUSY scale MS and the
A-term at the GUT scale A0. We see that in most of the parameter space tan β is
between 1 and 1.4. The increase in the right part of the plot show that for a larger
value of A0, m2

Hu
+ µ2

0 can run close to zero. In principle, by varying m0 and A0 in
the FSSM-I we can find values of tan β > 2, potentially allowing values of the SUSY
scale lower than 109 GeV without requiring a breaking of the universality of the soft
masses at the GUT scale. Figure 3.8 illustrates the effect of the running of the Higgs
soft masses: in both the FSSM-I and the FSSM-II the renormalisation group evolution
does not greatly separate these masses leading to a tan β ' O(1). Note that the longer
the running above MS , the higher the predicted tan β, which in turn raises the Higgs
mass at tree level. Hence for small values of MS it is natural to have larger values of
tan β, and for larger MS we expect tan β ∼ 1, both compatible in this model with the
observed Higgs mass.

As we discussed above, unification in both models is ensured at one-loop. At two-
loops it is also well preserved, as can be seen from Figure 3.9 where we have plotted
the unification scale as a function of the SUSY scale MS , along with |g1 − g3|/g3 at
the unification scale of g1 and g2. A percent level unification can be obtained for all
MS for FSSM-I and above 107 GeV for FSSM-II. The unification scale itself remains
of the order of 1016 GeV.
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Figure 3.6: Higgs pole mass as a function of the SUSY scale, all parameters at the GUT scale
have been set to be equal to the SUSY scale. The low energy spectrum is taken as mfg = 1
TeV and µf = 1 TeV. We consider a Non Universal Higgs Mass (NUHM) scenario in FSSM-II
so that we fix directly tan β at MS to 1 for the lower curve and 5. for the upper one. The
shaded region gives the variation from a 2σ variation in the top pole mass. The green band
corresponds to the measured Higgs mass.
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Figure 3.7: Contours of the value of tan β =
√

m2
Hd

+µ2
0

m2
Hu

+µ2
0

found to match the observed Higgs

mass in the FSSM-I varying the scalar unification mass m0 and trilinear mass A0.
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Figure 3.9: Evolution of the unification scale as well as the precision of the unification
(|g1 − g3|/g3 in percent at the point where g1 and g2 unify) as a function of the SUSY scale
MS . All UV parameters are set to be equal to the SUSY scale.

3 Summary and Conclusions

Let us close this chapter by briefly reviewing the main aspects of the Higgs mass
prediction in Fake Split SUSY models and comparing them with the usual Split SUSY
case.

3.1 Easing the Split SUSY Higgs Mass Constraints with FSSM

We have presented a way to rescue the original idea of Split SUSY: allowing an arbitrary
value of MS and an arbitrarily large splitting in the sparticles masses. This is one aim
of FSSM [1] and [2]. There are different realisations of the FSSM scenario (see also [39]
for yet another different realisation and for a motivation of fake gluinos):

• FSSM-I: both the higgsinos and gauginos are swapped for fake gauginos (hence-
forth F-gauginos) and fake higgsinos (henceforth F-higgsinos).

1. The fermions remain light because of a U(1) flavour symmetry
2. The F-gauginos are Dirac partners of the gauginos
3. Higgs-F-higgsino-F-gaugino Yukawa couplings g̃u,d, g̃′u,d are suppressed by

(TeV/MS)2

4. Two pairs of vector-like electron superfields need to be added at MS to
insure unification.
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• FSSM-II: Only the higgsinos are swapped for fake higgsinos.

1. The fermions remain light because of R-symmetry charges
2. Higgs-F-higgsino-gaugino Yukawa couplings g̃u,d, g̃′u,d are suppressed by (TeV/MS)
3. Two pairs of Higgs-like doublets needed for the F-higgsinos
4. Two pairs of (3,1)1/3⊕ (3,1)−1/3. In total we have added a vector-like pair

of 5 + 5 of SU(5) to insure unification.

The success of FSSM is illustrated in Figure 3.1. Here, we would like to pinpoint
the origin of the differences in the predictions for the Higgs mass. While in Split SUSY,
the Higgs mass regularly increases with MS , the increase is way flatter in High Scale
SUSY and the curve even exhibits a plateau for the FSSM.

In order to understand the hurdles met when trying to reproduce the correct Higgs
mass with an arbitrary high MS , let us understand the way λ evolves, shown in Fig-
ure 3.2. The various contributions to βλ at one-loop can be roughly classified as4:

βλ = 1
16π2

12λ2 + λ(12y2
t + (· · · g̃2 · · · )− (· · · g2 · · · ))︸ ︷︷ ︸

≡ βquartic

+ (· · · g4 · · · )︸ ︷︷ ︸
≡ βg

−(· · · g̃4 · · · )︸ ︷︷ ︸
≡ βg̃

−12y4
t︸ ︷︷ ︸

≡ βt

 ,

(3.36)

where (· · · gn · · · ) and (· · · g̃n · · · ) contains contributions from contains gauge cou-
plings and Higgs-higgsino-gaugino Yukawa couplings, respectively. Fixing λ at MS

and evolving it down to the electroweak scale, positive contributions tend to bring
λ towards lower values while negative contributions increases the Higgs mass. Two
different effects explain the discrepancies between Split SUSY, High-Scale SUSY and
FSSM:

1. Compared to Split SUSY, we see that both FSSM and High scale SUSY have
vanishing (· · · g̃n · · · ) terms. This decreases βλ(MS) in the Higgs scale SUSY and
FSSM case.

2. High scale SUSY has smaller gauge couplings than FSSM and Split SUSY: these
have extra fermions below MS which contribute in RGEs to push the couplings
towards higher values.

These corrections are enhanced by a “domino” effect. At one-loop the top Yukawa
coupling yt beta function βt has a positive contribution from (· · · g̃n · · · ) terms and a
negative one from g3. Since yt is fixed at the electroweak scale, a smaller βyt means
a smaller yt at MS . The split between different contributions to the β-functions is
presented in Figure 2.

To summarise, the success of FSSM rests on simultaneously switching off the hig-
gsinos Yukawa couplings while conserving stronger gauge couplings than High scale
SUSY thanks to the presence of extra states at the TeV-scale.

4Studying βλ at one-loop is enough to understand the two main mechanisms discriminating the
three cases in Figure 1.



50 Chapter 3. Fake Split Supersymetric Models

Figure 3.10: Left plot : βλ at MS for tan β = 1 in the case of Split SUSY, High scale SUSY
and FSSM-I as a function of MS . Right plot : Decomposition of βλ at MS into its various
components βt, βg (superposed for FSSM and Split SUSY) and βg̃ as a function of MS .

Finally, it is easy to see that low value of tan β are natural in FSSM, while this is
not the case the Split SUSY models. At the SUSY scale, tan β is defined fixed by the
requirement that one Higgs has a mass at the electroweak scale. In Split SUSY this
fixes

tan β =

√√√√m2
Hd

+ |µ|2

m2
Hu

+ |µ|2
'

√√√√m2
Hd

m2
Hu

since higgsinos are light. Renormalisation group evolution of m2
Hd

and m2
Hu

, particu-
larly due to the large top Yukawa coupling, then generates a tan β � O(1). On the
contrary, in FSSM, we have

tan β =

√√√√m2
Hd

+ |µd|2

m2
Hu

+ |µu|2
,

with µd = µu in the FSSM-I and µu, µd 'MS since they are unrelated to the low energy
spectrum. Note that the longer the running above MS , the higher the predicted tan β,
which in turn raises the Higgs mass at tree level. Hence for small values of MS it is
natural to have larger values of tan β, and for larger MS we expect tan β ∼ 1.

3.2 Conclusive Words
In this chapter, we have investigated Fake Split-Supersymmetry Models (FSSM). The
main motivation is their extremely robust prediction of the correct Higgs mass in an
impressive range of values of the SUSY scale MS , something that can not be obtained
in the original Split SUSY or High scale SUSY models.

We have presented two realisations of such models. The original FSSM-I which in
the UV is a Dirac gaugino model with an extra flavour symmetry, and the FSSM-II
where only the higgsinos are fake but not gauginos. While the first type is based on the
Dirac Gauginos framework, the second type involved a much simpler UV completion
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with a small number of additional matter fields and the hierarchy in the spectrum
which is ensured by an approximate R-symmetry.

Next, we implemented both models, along with their UV completions in a code to
determine the pole Higgs mass and all of the spectrum at low-energy. Once again, we
stress that the Higgs mass prediction in these models is very robust. For unified masses
at the GUT scale, tan β ∼ 1, all SUSY scales above 109 GeV give a 125 GeV Higgs. If
one allows values of tan β between 1 and 5, we have show that a 125 Gev Higgs can
be “predicted” without constraints on the SUSY scale. We have finally checked that
unification was preserved at a percent level at two-loops.

Overall, it seems very difficult to constrain the SUSY scale in Fake Split SUSY
model from the Higgs mass measurement in stark contrast to the usual Split SUSY
case.
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Chapter 4
Fake Fermions and Cosmology

Since Fake Split SUSY models are incredibly effective in predicting the accurate Higgs
mass, one should look for other ways of constraining their parameter space. In this
chapter, we will give a closer look on the cosmology of FSSMs, investigating various
Dark Matter candidates and showing how the (F-)gluinos life-time can be used to put
strong bounds on the SUSY scale.

We shall assume that the universe has a standard cosmology, i.e. any hidden sector
heavy particles decay well before dark matter freezes out – since we are considering high
SUSY scales this is typically the case. We then populate the dark matter abundance
of the universe with the lightest neutral stable fermion in our model, or at least do
not overpopulate (as in the case of underabundant dark matter, the remainder could
consist of axions or other hidden-sector particles).

We recall here that the field contents below the SUSY scale is simple and con-
sists of: the Standard Model field contents; Fake Higgsinos, with the same quantum
numbers (1,2, 1) and (1,2,−1) than usual Higgsinos doublets; gauginos-like particle
which can be either the true gauginos or new, fake gauginos (henceforth written F-
gauginos) with quantum numbers similar to the usual supersymmetric gauginos. We
stressed that while we have adopted names reminiscent of a supersymmetric setup, the
Yukawas between the (F-)gauginos, (F-)higgsinos and the Standard Model Higgs are
not constrained by supersymmetry. Our Lagrangian contains:

Leff ⊃ −
H†√

2
(g̃u σa W̃ ′a + g̃′u B̃

′) H̃ ′u −
HT iσ2
√

2
(−g̃d σa W̃ ′a + g̃′d B̃

′) H̃ ′d , (4.1)

where W̃ ′ and B̃′ are the (F-)Winos and (F-)Binos, H̃ ′ the F-Higgsinos and the cou-
plings g̃ are fixed at the SUSY scale as:

g̃′u = ε̃g′ sin β g̃′d = ε̃g′ cosβ (4.2)
g̃u = ε̃g sin β g̃d = ε̃g cosβ

where β and ε̃ are free parameters of our model.
In the rest of this chapter, except when dealing with baryogenesis and when we

explicitely mentioned it, we will consider ε̃ ∼ 0. More precisely, if the gauginos-like
particles are F-gauginos (a situation refered to as type-I), we will have ε̃ ∼ TeV

MS
and

53
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if they are the original gauginos (type-II), ε̃ ∼
√

TeV
MS

. While the two types were
behaving similarly when dealing with the Higgs mass, we will see that assuming a
standard cosmology, the life-time of the gluino-like particle will put distinct bounds
on them.

We start this chapter by presenting the relic density of various dark matter can-
didates in Fake Split SUSY models in section 1. Then we consider other cosmology-
related bounds on FSSMs in section 2. Finally we deal with the possibility of Elec-
troweak Baryogenesis in the context of FSSMs in section 3

1 Dark Matter Relic Density in FSSM

1.1 The WIMP Idea

Supersymmetry is well-known for providing plenty of Dark Matter candidates in the
form of Weakly-Interacting Massive Particles (WIMPs). Such particles can explain the
current Dark Matter relic density measurement from Planck Ωh2 = 0.1188 ± 0.0010
(see [73]) by a mechanism called freeze-out. We will review briefly this mechanism and
highlight the so-called WIMP miracle.

Let us start with a WIMP particle with mass m and an annihilation cross-section
to any final state of Standard Model particle noted σ. We use the FLRW1 metric with
the scale factor a and Hubble scale H = ȧ

a to describe the expanding universe.
The Boltzman equations on the phase space density f for the WIMP particle can

be written in the symbolic form [74]

L[f ] = C[f ] , (4.3)

where L is the Liouville operator which measures the change in time of the phase space
density and C is the collision operator which quantifies the creation of annihilation of
particles from interactions.

Since we are only interested in the dependence of the phase density as a function of
time, we can integrate this equation in the spatial components of the WIMP momen-
tum. Supposing that the phase space density is spatially homogeneous and isotropic,
we define the number density n(t) by

n(t) =
∑
s

∫
d3p

(2π)3
f(E, t) , (4.4)

where the sum runs over all the spin configurations and basically counts the number of
degrees of freedom of our WIMP. After a bit of algebra the Boltzmann equation leads
to the standard result

ṅ+ 3Hn = −〈σv〉(n2 − n2
eq) (4.5)

where neq is the equilibrium number density and 〈σv〉 is the thermally-averaged cross-
section times velocity. Supposing that decay products are in thermal equilibrium and

1Friedmann–Lemâıtre–Robertson–Walker
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that all particles obey Maxwell-Boltzmann statistics, we have

feq(E, T ) = e−
E
T (4.6)

neq = g

∫
d3p1
(2π)3

e−
E1
T (4.7)

and

〈σv〉 = g2

n2
eq

∫ ∫
d3p1
(2π)3

d3p2
(2π)3

(σv)e−
E1+E2
T (4.8)

with

v =

√
(p1 · p2)2 −m4

E1E2
, (4.9)

and we have replaced the sum over the spin states by the number of degrees of freedom
g. Traditionally, one then trade the variable n for Y = n

s where s is the total entropy
density of the universe. Indeed, expansion of the universe naturally dilutes the number
density as a3. Supposing expansion to be isentropic, the entropy per comoving element
S ∝ sa3 is constant leading to s ∝ a−3. The variable Y is therefore proportional to
the number density of WIMP per comoving volume element. Furthermore, during the
radiation-dominated era, time and temperature are related by

t = 0.301
mpl

T 2 g
−1/2
∗ (4.10)

with mpl is the Planck mass and g∗ the effective number of relativistic degrees of
freedom in the thermal bath defined as

g∗(T ) =
∑
b

gb + 7
8
∑
f

gf (4.11)

with the first (second) sum running over all bosonic (fermionic) relativistic degrees of
freedom. For example g∗ = 106.75 in the complete Standard Model. One can therefore
further replace t by x ≡ m

T so that eq. (4.5) now reads

∂Y

∂x
= −〈σv〉

xH
(Y 2 − Y 2

eq) (4.12)

This equations tells us that when the annihilation rate 〈σv〉 fall below the Hubble rate
during inflation, the number density for comoving volume element essentially “freeze-
out”.

The analytic approximate solution for the temperature at “freeze-out” is given by

xf '
Tf
m

=
[
ln(0.038 g

√
g∗
MP 〈σv〉)

]−1

∼ 20 (4.13)

where the approximate value of xf use the usual cross-section for a WIMP. After the
freeze-out, if there is a residual annihilation of relic particle, one needs to use

J(xf ) =
∫ ∞
xf

〈σv〉
x2 dx , (4.14)
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to finally obtain the present day number density

Y∞ ' 3.8
√
g∗

g

1
mplJ(xf )m

. (4.15)

We can now report the result in the relic abundance to find:

Ωh2 = ρh2

ρc
= 3.8

√
g∗

g

s0h
2

ρc

1
mplJ(xf )

. (4.16)

Using the numerical values for the entropy density s0 = 2890 cm2 and the critical
mass density ρc = 1.05 × 10−5h2 GeV cm−3 and supposing that there is no effective
annihilation after freeze-out, we can directly integrate J and find

Ωh2 ' 10−37 cm2

〈σv〉
. (4.17)

Now consider a simple scenario in which the WIMP candidate can only decay through
a coupling y to a heavy mediator of mass mΦ, the s-wave annihilation cross-section is
given by

〈σv〉 ∼ y4

π

m2

m4
Φ

(4.18)

∼ 10−36cm2y4
(

m

400GeV

)2 (2TeV
mΦ

)4
,

so that SUSY neutralino are exactly in the right ballparks to reproduce the observed
relic density of Dark Matter. This is such an impressive coincidence that it has earned
the name of WIMP miracle.

We close this review by discussing a famous exception to the previous result which
will be used in the next section: the co-annihilation setup. We consider two Dark
Matter candidates χ1 and χ2 with a small positive mass difference δm = m2 −m1 �
(m2 +m1)/2 (usually below 10%). We now have also the following available processes

χj ↔ χiXX
′

χiX ↔ χiX
′ (4.19)

χjχi ↔ X ′X

where X,X ′ is any Standard Model particles, supposed to be relativistic at freeze-out.
We note the cross-section for the first processes σij . Ultimately, all χ2 will decay in
the lightest particle χ1. It was shown in [75] that in this case, one must replace in
previous calculation the annihilation cross-section σ by

σeff =
∑
ij

σijr
irj , (4.20)

where ri is the proportion of χi in the Dark Matter density at equilibrium, namely

ri ≡
nieq∑
k n

k
eq

= gi(1 + ∆i)3/2 exp(−x∆i)∑
k gk(1 + ∆k)3/2 exp(−x∆k)

(4.21)
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with ∆i = (mi −m1)/m1. This effective cross-section can be vastly different from the
original one. For instance, suppose we have σ22 ∝ aσ22 ∝ a2σ11, for a > 1 this leads
for almost degenerate particle to as sizeable enhancement of the cross-section

σeff = σ11
a2

(1 + g1/g2)2
(4.22)

and reciprocally to a decrease of the cross-section for a < 1. This co-annihilation
region is particularly important for (F-)Bino dark matter as we will see below.

1.2 Application to FSSM
Being derived from a supersymmetric theories, Fake Split SUSY models have natural
WIMP candidate in the form of the lightest SUSY particle, called Lightest SuperPart-
ner (LSP). We present in this section the possible candidates and determine their relic
density.

a Dark Matter Candidates

At low energies, the non-SM fields in the FSSM are organised into a set of neutral
fermions – neutralinos – and charged ones – charginos. In the basis (B̃′, W̃ ′ 0, H̃ ′d

0
, H̃ ′u

0)
the neutralino mass matrix is

Mχ0 =



mB̃
′ 0 − g̃

′
dv√
2

g̃′uv√
2

0 mW̃
′

g̃dv√
2
− g̃uv√

2
− g̃
′
dv√
2

g̃dv√
2

0 −µ
g̃′uv√

2
− g̃uv√

2
−µ 0


. (4.23)

We can express the chargino mass matrix involving the F-higgsinos H̃ ′+, H̃ ′− and
the charged (F-)gauginos W̃ ′± in the form

− (v−)TMχ±v
+ + h.c. , (4.24)

where we have adopted the basis v+ = (W̃ ′+, H̃ ′+u ), v− = (W̃ ′−, H̃ ′−d ). This reads

Mχ± =
(
mW̃

′ g̃2uv
g̃2uv µ

)
. (4.25)

Here the crucial difference to Split SUSY is the suppression of the F-higgsino Yukawa
couplings g̃u,d and g̃′u,d (by ε for the FSSM-II and ε2 for the FSSM-I), which results in
rather different dark matter phenomenology. Our WIMP candidate will be the light-
est eigenstate of the neutralino mass matrix (4.23). We will consider three standard
possible scenarios for a viable Dark Matter candidates:

• Scenario H̃|DM: F-higgsino LSP.
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• Scenario W̃ |DM: (F-)Wino LSP.

• Scenario B̃/H̃|DM: a mixed F-Bino/F-higgsino LSP, with a small splitting.

Notice that a priori, one can also have a mixed Bino/Wino dark matter which
gives the correct relic density. But since we expect generically that the gaugino mass
hierarchy is fixed by the chosen mechanism of supersymmetry breaking, one does not
have the freedom to tune the (F-)Bino / (F-)Wino mass ratio as can the (F-)Bino
and the F-higgsinos masses in the scenario B̃/H̃|DM. We shall not discuss here such a
scenario.

In the setup of W̃ |DM, since the RG running would naturally induced a Bino LSP,
one has to consider non-universal gaugino masses (NUGM) mass hierarchy at the GUT
scale. For practical purposes, we will consider unification at MGUT between the Wino
and gluino masses but suppose that the SUSY breaking mechanism induces a larger
Bino mass. The latter becomes an extra parameter which has no impact on the Higgs
mass and on the Dark Matter constraint, as long as it is heavy enough not to be the
LSP. In the following, when dealing with scenario W̃ |DM, we take Majorana mass for
the (F-)Bino M1 = 10 TeV at the GUT scale, which translates into a Bino of roughly
5 TeV at the electroweak scale.

Finally the scenario B̃/H̃|DM relies on co-annihilation between the higgsinos and
Binos to avoid overproduction of the latter. This implies that the Bino mass must be
chosen precisely to reproduce the correct relic density. Evaluating fine-tuning from the
simplest definition:

∆ = ∂Ωh2

∂mB̃

mB̃

Ωh2 , (4.26)

we found ∆ ∼ 20 − 40 in the scenario B̃/H̃|DM (depending on MS and on wether or
not one consider FSSM-I or FSSM-II), while we have ∆ ∼ 1 in the scenarios H̃|DM and
∆ ∼ 2 in W̃ |DM, indicating that this scenarios is ten to forty times more fine-tuned
than the two others. It however offers other virtues, such as avoiding the constraints
from direct detection which apply for H̃|DM.

b Relic Density Results

In Split SUSY models, the LSP abundances are governed mainly by gauge interac-
tions that are the same for true and fake gauginos/higgsinos. The suppressed Yukawa
couplings are expected to play a minor role. In that case, one can use the standard
expressions [76] to obtain a rough estimate

ΩW̃h
2 = 0.13

(
M2

2.5 TeV

)2
, (4.27)

for Wino-like DM and

ΩH̃h
2 = 0.10

(
µ

1 TeV

)2
, (4.28)

for higgsino-like dark matter.
In order to compute the relic density with a better precision, we have used routines

from the public code micrOMEGAs [77] to compute the relic density in the three scenarios
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described above. We used SARAH [70] to generate the CalcHep file which was taken
as an input by micrOMEGAs. We take for the relic density the Planck 2015 value [73]
Ωh2 = 0.1188± 0.0010; clearly the theoretical uncertainty stemming from higher-order
corrections is many times larger than this – the contours could potentially move by
potentially as much as 50%. However, we do not show this uncertainty in the plots
because it is difficult to estimate, and because the important point is the relationship
between the parameters.

In scenarios H̃|DM and W̃ |DM, our results are fully consistent with the previous
approximate formulas. In order to recover the correct relic density at 3σ, we need to
have an F-higgsino pole mass between 1110 GeV and 1140 GeV or a (F-)Wino pole
mass between 2390 GeV and 2450 GeV.

Figure 4.1: Visualisation of the constraints coming from gluino life-time, from the require-
ment of a 125 GeV Higgs pole mass, and from obtaining the correct relic density. We further-
more represent the separation (Black diagonal line) between a Bino LSP and a Higgsino LSP
We use a µpole - mB̃ plane, where mB̃ is the Bino pole mass and µpole is the Fake Higgsinos
pole mass. The SUSY scale MS has been chosen at 1010 GeV. Calculations has been done in
the FSSM-II.

Since the (F-)Bino cannot annihilate except through mixing, in the B̃/H̃|DM sce-
nario we therefore require co-annihilation to obtain the correct relic density. However,
differently to other SUSY scenarios, when we have co-annihilation so that |µpole −
mB̃| . Tf , the mixing is in general still very small. Indeed in the FSSM it is controlled
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by
g̃′u,dv

|µ| − |M1|
. (4.29)

For example, if we take MS = 109 GeV then ε ∼ 10−3 so for (|µ| − mB̃) ∼ v we
have mixing in the FSSM-II of ∼ 10−3 and in the FSSM-I of ∼ 10−6. Since as usual
Tf ∼ m/20 ∼ O(10) GeV for m the LSP mass, the enhancement of the mixing is
only O(10) – which for small values of ε still leads to negligible mixing of the Bino/F-
higgsino. Only when MS is rather low and in the FSSM-II, or in the case of very
small mass differences, smaller than that required to allow co-annihilation, will we find
appreciable mixing. Overall, we conclude that in the scenario B̃/H̃|DM, the LSP is in
fact almost a pure (F-)Bino dark matter.

We now show that (F-)Bino is nonetheless interacting enough to be kinetically
thermalised in most of the interesting parameter space of the FSSM. Pure higgsinos
have an annihilation cross-section given by

〈σH̃H̃v〉 '
g4

512πµ2 (21 + 3 tan2 θW + 11 tan4 θW ) (4.30)

and their interactions freeze out at the typical temperature of Tf ∼ µ/xf where xf ≡
m/Tf ' 25. So if the Bino has a similar mass but weakly mixes, let us approximate
the ratio Γ/H ≡ n〈σv〉/H for processes involving it near the freezeout temperature
and put m ∼MW :

Γ(B̃ + H̃ → SM fermions)
H

∼
g̃′u,d

2

M2
W

(mT )3/2e−m/T

1.66√g∗T 2/MP
∼ 104 × g̃′u,d2

Γ(B̃ + SM→ H̃ + SM)
H

∼
g̃′u,d

2

M2
W

T 3

T 2/MP
∼ 1016 × g̃′u,d2 (4.31)

so the first process is always frozen out well before the higgsino interactions, but the
second will remain important for MS . 1011 GeV in the FSSM-I and for any value
of MS up to the Planck scale in the FSSM-II. This means that the Bino remains
thermalised even if its annihilations are ineffective. Notice that MS & 1011 is at any
rate generically ruled out in the FSSM-I by constraints on the F-gluino life-time, as
we will see below.

We can therefore calculate the relic density rather straightforwardly following the
procedure described at the end of section 1.1:

Ωh2 ' 8.7 × 10−11GeV−2
√
g∗
∫∞
xf
dxx−2〈σeffv〉

. (4.32)

The integral over temperatures after the freezeout (in the denominator) can be impor-
tant as there can be a significant reduction of the dark matter density.

Let us define Ωch
2(= 0.1188) as the observed dark matter density fraction, and

µc the value of µ that matches this for a pure higgsino. Then for our case we can
approximate

〈σeffv〉 = r2
H̃
〈σH̃H̃v〉 ' r

2
H̃
× 8.7 × 10−11xf/

√
g∗ ×

(
µc
µ

)2
× 1

Ωch2 (4.33)
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so that

Ωh2

Ωch2 '
(
µ

µc

)2 1
xf
∫∞
xf
dx r2

H̃
/x2 . (4.34)

Therefore if we plot the contour matching the relic density in the Bino-higgsino mass
plane, as we have done in Figure 4.1, we are plotting the contour of the right hand
side of the above equal to one. We find in the FSSM, since we shall typically require
∆i � 1, that we can well approximate

rH̃ '
(

1 + 1
4

exp
[
− x

(
mB̃ −mH̃

mH̃

) ])−1
. (4.35)

The immediate observation is that when mB̃ = mH̃ we have rH̃ = 4/5 and so we
require µ = 4

5µc; on figure 4.1 we see that the curves cross at 900 GeV which is exactly
four fifths of 1125 GeV, the critical value for a pure higgsino. This crossing point can
be of importance, since F-higgsino dark matter is a perfect example of inelastic dark
matter and therefore direct detection experiments can be sensitive to it. Numerically
evaluating equation (4.34) then gives a curve in excellent agreement with the results
of micrOMEGAs. For a Bino LSP we find a linear approximation to fit rather well in the
range of values considered mB̃ ' µpole − (4µc/5 − µpole)/xf , i.e. the mass difference
required is of order Tf .

c Enhanced F-Bino Annihilation

When relaxing the constraints that ε̃ ∼ 0, we have observed that the conclusion that
Fake Split SUSY models have several good dark matter candidates is not modified. In
fact an interesting side-effect of the case ε̃ > 1 is the (F-)Bino can further become a
good WIMP without relying on co-annihilation.

Indeed for large ε̃, the couplings between the F-gauginos, the F-higgsino and the
Higgs is sufficiently enhanced so that a F-Bino Dark Matter can now annihilate through
F-higgsinos exchange. Thus we have a more effective Bino annihilation into two SM-
like Higgses H or one Z and one H, which for high enough ε̃ allows the F-Bino to
be a valuable Dark Matter candidate. This behaviour is illustrated in Figure 4.2 and
Figure 4.3. In particular, the bottom-right corner of these Figures represent an almost
pure F-Bino dark matter, which becomes viable for ε̃ & 1.5.

2 Other Cosmological Constraints on FSSM
Returning to the case ε̃ ∼ 0, we will consider in this section the constraints on FSSM
from direct detection experiments and from the fact that (F-)gluinos tend to have a
long life-time.

2.1 Direct Detection and Inelastic Scattering

We have computed the conventional direct detection constraints for our model and
found that, when the dark matter can be treated as a Majorana particle, due to
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Figure 4.2: Relic density for mixed Bino/F-Higgsinos Dark Matter as a function of mass
parameter µ for the F-Higgsinos and mB for the Binos. From left to right, the curves gives the
region where we obtained the correct relic density for ε̃ = 1, 1.4, 1.6 and 1.7.

Figure 4.3: Right plot: Relic density for ε̃ = 1.7, the straight lines gives the fraction of Bino
in the ligtest neutralino, from top to bottom : 0.1, 0.5, 0.9, 0.99.
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the highly suppressed Higgs/(F-)gaugino/F-higgsino interactions, they barely restrict
the parameter space. However, since those same interactions determine the splitting
between the F-higgsino mass eigenstates, when it is small enough the fake higgsinos
can be treated as a Dirac fermion. In that case one can have vector-vector couplings
with nucleons through the exchange of a Z boson, leading to inelastic scattering. The
spin-independent cross-section implied by this process is so large that direct detection
experiments have already ruled these out by many orders of magnitude. This effect
has been studied in [78] where they find that the XENON100 [79] and LUX [80]
experiments constrained the splitting to be larger than 210 keV for a 1 TeV higgsino
LSP. We will consider below a conservative bound of 300 keV for the splitting.

Given the mass matrices for neutralino (3.9) the splitting δ between the two hig-
gsinos can be estimated as :

δ ' −v
2

4

[
(g̃′d + g̃′u)2

M1 − µ
+ (g̃d + g̃u)2

M2 − µ
+ (g̃′d − g̃′u)2

M1 + µ
+ (g̃d − g̃u)2

M2 + µ

]
. (4.36)

This analytic formula agrees with the numerical mass difference between the two hig-
gsinos pole masses at a few percent level accuracy when estimated using MS running
parameter at the electroweak scale. This gives

δ '


200 keV · O(1) ·

(400 TeV
MS

)2 ( mfg

4 TeV

)
for the FSSM-I

200 keV · O(1) ·
(

107 GeV
MS

)(
µ

1 TeV

)(4 TeV
mfg

)
for the FSSM-II ,

(4.37)

where mfg gives the typical scale of the F-gaugino masses. The extra O(1) terms
come from the uncertainty on the precise suppression of the g̃u, g̃d, g̃′u and g̃′d couplings.
We see that for F-gauginos of several TeV and for a µ term around 1 TeV (as required
from relic density constraints), the SUSY scale MS is bounded below roughly 5 · 108

GeV for the FSSM-II and 5 ·106 GeV for the FSSM-I if the O(1) is taken to be 10. The
constraints are far more stringent than in Split SUSY because of the extra-suppression
in ε2 for the FSSM-I and in ε for the FSSM-II.

2.2 The (F-)gluino Lifetime
The gluino lifetime is crucial for determining the cosmology of the Split SUSY model
[7,81]. In the standard Split-SUSY case, if the gluino has a lifetime above 100 seconds
then it would be excluded when assuming a standard cosmology [81] due to constraints
from Big Bang Nucleosynthesis (BBN).

In the FSSM-I, fake gluinos are even more long-lived than gluinos in usual Split
Supersymmetry ( [82], [39]). Indeed, the decay of F-gluinos to the lightest F-neutralino
must proceed via mixing with the usual gluinos in order to have couplings to sfermions.
And since the mixing is suppressed by factors of ε, the overall F-gluino lifetime in the
FSSM-I is therefore enhanced by a factor of ε−4 ' M2

S

m2
fg

.

τg̃′ ∼ 4 sec×
(

MS

107GeV

)6
×
(

1 TeV
mfg

)7

. (4.38)
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Figure 4.4: Visualisation of the constraints coming from gluino lifetime, from the requirement
of a 125 GeV Higgs pole mass, and from obtaining the correct relic density in scneario W̃ |DM.
We use a MS - MW plane, where MW is the Wino pole mass. The yellow color gradient indicate
the area excluded with gluino life-time bigger than 100 s in FSSM-I. The red color gradient
is the area for the FSSM-II. The bold purple line gives 125-GeV Higgs for Mt = 173.34, the
slimmer one is the 125-Gev Higgs for a 2σ variation in Mt
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Since the gauginos are not fake in the FSSM-II, this enhancement does not occur and
one is left instead with the Split SUSY gluino life-time

τg̃′ ∼ 4 sec×
(

MS

109GeV

)4
×
(

1 TeV
mfg

)5

. (4.39)

Constraints from Big Bang Nucleosynthesis (BBN) limit this lifetime to be below
100s if one relies on a standard cosmology [81]. A much longer lifetime gluino is con-
strained from the CMB spectrum, the gamma-ray background or even heavy-isotope
searches when the gluino is stable at the scale of the age of the universe.

More precisely, for F-gluinos stable on the lifetime of the universe, remnant F-
gluinos could form bound states with nuclei, which would be detectable as exotic
forms of hydrogen. The relic density is very roughly approximated by

Ωg̃h
2 ∼

(
mg̃′

10 TeV

)2
, (4.40)

although this assumes that the annihiliations freeze out before the QCD phase tran-
sition and are thus not enhanced by non-perturbative effects; for heavy F-gluinos this
seems reasonable, but in principle the relic density could be reduced by up to three or-
ders of magnitude. However, the constraints from heavy-isotope searches are so severe
as to render this moot: the ratio of heavy isotopes to normal hydrogen X/H should
be less than 10−29 for masses up to 1.2 TeV [83] or less than 10−20 for masses up to
10 TeV [84], whereas we find

X

H
∼ 10−4

(
mg̃′

TeV

)
. (4.41)

If we want to avoid these bounds, then we must either:
1. Dilute the relic abundance of F-gluinos with a late period of reheating.

2. Imagine that the reheating temperature after inflation is low enough, or that
there are several periods of reheating that dilute away unwanted relics before the
final one.

In both cases, we must ensure that gluinos are not produced during the reheating
process itself, which may prove difficult to arrange: even if the late-decaying particle
decays only to SM fields, if it is sufficiently massive then high-energy gluons may be
among the first decay products, which could subsequently produce F-gluinos which
would not be able to annihilate or decay away.

Overall, assuming a standard cosmology, the effect of the previous formulas with
our values for the pole masses can be visualised in Figure 4.4 where we chose a Wino
dark matter. We see that since the Wino pole masses must be quite heavy in order to
get the correct relic density, the gluino pole mass ends up in the several TeV regime,
reducing slightly the gluino lifetime. In W̃ |DM scenarios, the (F-)gluino lifetime gives
an upper bound on the possible MS of 108 GeV for the FSSM-I and of 1010 GeV for
the FSSM-II. One should not forget that the (F-)gluino pole mass is here obtained
by supposing unification of the (F-)Wino and (F-)gluino masses at the GUT scale.
These bounds should therefore be modified according to the previous formulas if one
considers a particular SUSY breaking setup with a given ratio between (F-)gaugino
masses.
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2.3 Summary of the Cosmological Constraints

The direct detection for inelastic Dark Matter, the relic density, and the constraint
on gluino life-time, have set bounds on four parameters of our model: the F-higgsino
pole masses µpole, the (F-)Bino pole mass mB̃, the (F-)Wino pole masses mW̃ and the
SUSY scale MS .

If we take tan β = 1, the Higgs mass gives a lower bound on the SUSY scale
MS & 5 · 108 GeV, which in the FSSM-I is in tension with the gluino lifetime. We
see from Table 4.1 that the H̃|DM scenario is also almost ruled out by direct detection
constraints depending on the precise suppression of g̃u, g̃d, g̃′u and g̃′d.

If one sticks with a standard cosmology the (F)-gluino lifetime is severely con-
strained, τg̃ < 100s [81]. Big-Bang Nucleosynthesis (BBN), the CMB spectrum and
the gamma-ray background ruled out relic (F)-gluinos with lifetime between 102 s until
1017 s. When the (F)-gluino is stable at the scale of the age of the universe, heavy-
isotope searches also rule out such relic (F)-gluinos. This translates into limiting the
SUSY scale to be below 5 · 108 GeV for the FSSM-I and 5 · 1010 GeV for the FSSM-II.
As it has been already underlined, these constraints depends on wether or not one con-
siders a “standard” cosmology. A late time reheating occuring before BBN could for
instance dilute gluino relic. In such case, heavy-isotope searches are so stringent that
they still constraint τg̃ . 1016s but one can avoid constraints from the CMB spectrum
and the gamma-ray background, allowing therefore SUSY scales up to 1010 GeV for
the FSSM-I and 1014 GeV for the FSSM-II.

It is however easy to find viable dark matter candidates in FSSM. We have distin-
guished three scenarios :

• Scenario H̃|DM: F-higgsino LSP.

• Scenario W̃ |DM: (F-)Wino LSP.

• Scenario B̃/H̃|DM: a mixed F-Bino/F-higgsino LSP, with a small splitting.

The constraints on F-higgsinos dark matter (scenario H̃|DM ) are in particular quite
stringent. Indeed, since their couplings to the Higgs and (F)-gauginos are suppressed,
the neutral higgsinos have a very small splitting. They are therefore a perfect example
of inelastic dark matter and direct detection experiments constrain their mass splitting
δ to be bigger than roughly 300 keV [78,79,80] (see also [85]). Estimating the splitting
by

δ '


200 keV · O(1) ·

(400 TeV
MS

)2 ( mfg

4 TeV

)
for the FSSM-I

200 keV · O(1) ·
(

107 GeV
MS

)(
µ

1 TeV

)(4 TeV
mfg

)
for the FSSM-II ,

(4.42)

we obtain the bounds MS . 5 · 106GeV for the FSSM-I and MS . 108GeV for the
FSSM-II.

We have summarised all the relevant constraints in Table 4.1, distinguishing be-
tween the two types of FSSM and the three dark matter scenarios we have considered.
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DM type Inelastic scattering Relic density Gluino lifetime

W̃|DM None mW̃ ⊂ [2390, 2450] GeV For multi-TeV gluinos

MS . 5 · 108GeV
(for FSSM-I)

MS . 2 · 1010GeV
(for FSSM-II)

B̃/H̃|DM µpole . 900 GeV mB̃ ' µpole − (900− µpole)/xf

H̃|DM



MS . 5 · 106GeV
(for FSSM-I)

MS . 108GeV
(for FSSM-II)

µpole ⊂ [1110, 1140] GeV

Table 4.1: Approximate constraints on the SUSY scale and on pole masses for the Dark
matter candidates. We impose a splitting between fake Higgsinos bigger than 300 keV to
avoid direct detection through inelastic scattering, we require a gluino life-time smaller than
100 s to avoid hampering BBN and finally constrain the relic density (calculated at tree-level
in micrOMEGAs) to be Ωh2 ⊂ [0.1158, 0.1218]. When considering constraints on MS , gaugino
masses were taken in the multi-TeV range.

3 Electroweak Baryogenesis and Thermal Effects
We close this chapter by briefly discussing the issue of baryogenesis in Fake Split SUSY
models with ε̃ & 1. In Electroweak Baryogenesis (EWBG), matter-antimatter asym-
metry in the present universe is generated dynamically during the electroweak phase
transition. Indeed the three Sakharov’s conditions may be fulfilled simultaneously
during this transition as (see e.g. [86] for a review):

• Baryon number violation can proceed through non-perturbative processes called
sphalerons [87] at the “bubble” wall between the SU(2) × U(1) phase and the
broken one.

• CP violation can for instance originate from the Bino-Higgsinos sector comple-
menting the violation in the CKM matrix, without introducing too large Electron
Dipole Moment [88].

• Out of equilibrium condition can be achieved in the vicinity of “bubble” wall if
the phase transition is “strongly” first order in the sense that that we want

φc
Tc

& 1 (4.43)

where φc is the VEV of the Higgs boson doublets at the new broken minimum and
Tc is the critical temperature. This ratio governs the rate for sphaleron transitions
in the broken phase and 4.43 ensures that this rate is suppressed enough so that
sphalerons within the broken phase will not wash out the asymmetry produced
at the bubble wall.

In the following, we will focus on the out-of-equilibrium assumption, and more pre-
cisely on (4.43) in Fake Split Models. In [89], it was argued that when the Standard
Model were supplemented by Higgsinos, Winos and Binos with strong coupling to the
Standard Model Higgs, one could meet (4.43), allowing for a successful baryogenesis.
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Such particles correspond precisely to our F-gauginos and F-higginos in the case ε̃ > 1.
In the following we show however that one cannot conciliate the Higgs mass require-
ment and ε̃ large enough to obtain ε̃ > 1 without adding new, stabilising bosonic field,
thereby modifying our model.

As it was already noticed in [89], for large values of ε̃ > 1, the Higgs quartic λ
tends to run quickly to zero. In Figure 3.5, we have shown precisely this behaviour.
We see that for a Higgs at 125 GeV, λ is zero (corresponding to the scale MC in the
Figure) at 10 TeV already for ε̃ ∼ 1.6 (which corresponds to a coupling h ∼ 0.5 in
the notation of [89]). In order to solve this issue, the authors of [89] have introduced
stabilising bosonic fields with vacuum masses smaller than

m2
b 6 exp(m

2
H8π2

gh4v2 )m2
f ∼ exp( 20

gh4 )m2
f . (4.44)

where g is the number of fermionic degrees of freedom. For the FSSMs, supposing
relatively heavy (F-)gluinos and making the additional simplifying assumption that
the (F)-Bino decouple (which can be obtained easily by setting ε̃ to zero for the g̃′u and
g̃′d couplings), we have 12 degrees of freedom couplings to the Higgs, so that for h ∼ 1,
the stabilising fields are only twice heavier that the fermions. This is at odd with the
Split Spectrum we have in Fake Split SUSY models.

Furthermore, for values of ε̃ compatible with our split spectrum (namely ε̃ . 1.6),
we generically found ratios φc

Tc
. 0.1 indicating that our fermions are not sufficiently

strongly coupled to lead to a strong first order phase transition.
We conclude that EWBG is not possible in the current state of Fake Split Models

as we cannot conciliate the Higgs mass with couplings strong enough to generate a
strong first order phase transition. In the more general context of Dirac Gauginos and
R-symmetric models, this may however be achievable [90,91] thanks to the presence of
the adjoint scalars which couple to the Higgs and can strengthen the first order phase
transition.



Chapter 5
The Diphoton Excess and Dirac Gaug-
inos

The year 2015 has left the community with only but a first taste of the upcoming
results of the second run of the Large Hadron Collider at center-of-mass energy of 13
TeV. This limited data set has nonetheless already yielded a promising hint for new
physics. Both experiments ATLAS and CMS have detected an excess in the di-photon
mass spectrum for comparable invariant masses. The CMS analysis observed it for an
invariant mass of 760 GeV with a local significance of 2.6 σ [92]. Simultaneously, the
ATLAS collaboration has reported a similar excess at an invariant mass of 750 GeV
with a local significance of 3.6 σ [93]. Furthermore, CMS subsequently increased its
data set by including the events measured with the main magnet turned off, which
pushed the signal local significance to 3.4 σ [94]. While the local significance must be
reduced to account for the look-elsewhere-effect, the simple fact that the two excesses
occurred for almost equal invariant mass makes this anomaly one of the most promising
hints seen at LHC so far.

Under the assumption that the excess is generated by the decay of spin-0 particle
with a ratio decay width over mass of Γ/MS = 0.014× 10−2 (with MS the pole scalar
singlet mass) the combined dataset of CMS with 3.3 fb−1(13 TeV) and 19.7 fb−1(8 TeV)
gives

σ13 TeV ·Bγγ ≈ 3.7 ± 2fb. (5.1)

A combined analysis of the two experiments performed by [95] gives more generally a
best-fit cross-section for the process S → γγ ranging from 2.6 fb for a narrow width
resonance to 6.9 fb for a broad resonance with an arbitrary width. In the following,
we will require for cross-section in the broad range 2− 8 fb.

The simplest interpretation of this excess is the production and subsequent decay
of a scalar resonance1 with mass 750 GeV. However, the decay rate of this resonance
is so large that fitting is in one of the previously proposed supersymmetric extensions
of the Standard Model (SM), including the MSSM, is particularly challenging.

In this chapter, we will show that the model introduced in chapter 2, the Mini-
mal Dirac Gaugino Supersymmetric Standard Model (MDGSSM) can simultaneously:

1Note this resonance could also be producde by the decay of a spin-2 particle, see [96, 97,98, 99]

69
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explain the excess, retain perturbativity up to the GUT scale, vacuum stability and
gauge couplings unification. This is furthermore achieved with the ”minimal” field
content for such scenarios, in the sense that we will not have to introduce “ad-hoc”
fields.

Indeed, all the necessary ingredients are present in the MDGSSM:

• The singlet supermultiplet S introduced to give the Bino a Dirac gauging mass
has a scalar component SR which can be identified with the 750 GeV resonance.
Notice that since we will not used here the pseudo-scalar component SI , we will
simplify our notation and simply note S the singlet real scalar component SR.

• The ”fake leptons” supermultiplets Ru,Rd and E′1,2 which have been introduced
as unification fields to ensure gauge couplings unification will strengthen the cross
section S → γγ by participating in the loop processes leading to the decay of S
in di-photons.

• The adjoint scalar octet, which appears in the octet adjoint supermultiplets O
will similarly increase the production rate of S through gluons fusion.

We will start this chapter by reviewing the standard results for the loop-induced
processes coupling the singlet S to two photons (to account for the diphoton excuess)
or two gluons (to produce the singlet by gluons fusion). We then considered the various
theoretical and experimental constraints on our model. Our results will be shown in
section 2. Note that the material we will covered in this chapter will be expanded and
completed in [4].

1 Theoretical Considerations
In order to have a plausible supersymmetric theory describing the di-photon excess, we
will have to satisfy a number of theoretical and experimental requirements. We start
by considering the basics of production and decay of the scalar singlet and studing
some of the collider constraints on our model. We further investigate three theoretical
constraints: gauge coupling unification, perturbativity up to the GUT scale and finally
vacuum stability and non-appearance of Charge or Color Breaking Vacuua.

1.1 Production and Decay in the DGMSSM
In the narrow width approximation in which the mediating S singlet is automatically
on-shell, we can approximate the cross section of the complete process pp → S → γγ
as follows:

σ(pp→ S → γγ) =2J + 1
sMSΓ

[
CggΓ(S → gg) +

∑
q

CqqΓ(S → qq)
]
Γ(S → γγ) . (5.2)

Assuming a spin-zero particle produced resonantly via gluon fusion, we arrive at

σ(pp→ S → γγ)13 TeV ≈ K13 × 4.9× 106 fbΓgg
Γ

Γγγ
Γ

Γ
MS

(5.3)

σ(pp→ S → γγ)8 TeV ≈ K8 × 1.1× 106 fbΓgg
Γ

Γγγ
Γ

Γ
MS

(5.4)
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Figure 5.1: Examples of one-loop diagrams contributing to the couplings of S into two gluons
and two photons.

taking C8TeV
gg = 174 and C13TeV

gg = 2137 as values arising from the parton distribution
functions [100], respectively. An important aspect of our calculation is that for a more
realistic estimation, we have taken into account the K-factors K8,13 for the full NnLO
production of H+jet compared to the tree-level process. We have estimated K8 ' 1.9
from the comparison of the leading-order effective vertex from MadGraph and the Higgs
Cross-section working group value for a Standard-Model-like Higgs of 750 GeV at 8
TeV. We will take conservatively for the same value for K13.

The two relevant amplitudes Γgg and Γγ γ are obtained from one-loop diagrams of
the form of Figure 5.1.

Let us first consider the coupling to two gluons. The process S → gg is a priori
generated by loops of squarks, scalar octet and gluinos. The amplitude is of the form

Γ(S → gg) = α2
3mS

8π3

∣∣∣∣∣∣tr(
∑
f

Cf
gSff√
τf
AS1/2(τf ) +

∑
φ

Cφ
gSφφ

2√τφmφ
AS0 (τφ))

∣∣∣∣∣∣
2

(5.5)

' 4.3 · 10−2
∣∣∣∣∣tr(∑ gSff√

τf
AS1/2(τf ) +

gSφφ
2√τφmφ

AS0 (τφ))
∣∣∣∣∣
2

.

where we have defined τi ≡ 4m
2
i

m2
S
, the sums runs over all scalars and fermions, and

f(τ) ≡


(sin−1(1/

√
τ))2 τ ≥ 1

−1
4

[
log 1+

√
1−τ

1−
√

1−τ − iπ
]2

τ < 1

AS0 = τ(τf(τ)− 1)
AS1/2 = 2τ

(
1 + (1− τ)f(τ))

)
.

and Qf , Qφ, gSff and gSφφ are the electric charge and coupling with the singlet of
the fermions and scalars participating in the triangular loops. The loop fonctions AS0
and AS1/2 have a maximum at the resonant mass MS/2 ∼ 375 GeV. We will therefore
generically require masses close to this scale in order to enhance the cross-section. The
phenomenology for the squarks and scalar octet is straightforward: we need them as
close from the resonance as possible and as coupled as possible. The main contributions
will come from
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• D-term-induced couplings between the squarks and the singlet, generated by the
same contributions we discussed in chapter 2 when dealing with supersoftness.
Theses couplings are proportional to the hypercharge of the squarks and the
Dirac mass m1D. They are sizeable only for large Dirac mass m1D.

• Soft terms trilinears couplings from (2.17) between the adjoint scalar octet and
the singlet. They give a strong contribution but unfortunately are strongly con-
strained from vacuum stability bounds.

The contribution from the Dirac gluinos is more peculiar. In fact, we observed that pure
Dirac gluinos do not contribute at all to the amplitude, this point will be developped
in [4]. This remark is of crucial importance for the pseudo-scalar SI which can only
couple to gluons through fermions loops as we assume CP-conserving couplings. If no
Majorana masses for the original gluinos are introduced, the pseudo-scalar is practically
not produced. However, if we allow for the presence of an additional Majorana mass
term, the pseudo-scalar SI can be produced and participates in the S → γγ cross-
section. This can potentially lead to a “double-peaks” scenario [4].

In the limit in which Γgg dominates the decay width (which is overly optimistic in
our case as we will see in the next section), we find the following bound on Γγ γ :

Γγ γ & 1.5× 10−4. (5.6)

We now turn to the amplitude to di-photon. This is given for a scalar by

Γ(S → γγ) = α2mS

64π3

∣∣∣∣∣∣tr(
∑
f

gSff√
τf
Q2
fA

S
1/2(τf ) +

∑
φ

gSφφ
2√τφmφ

Q2
φA

S
0 (τφ))

∣∣∣∣∣∣
2

(5.7)

' 2. · 10−5
∣∣∣∣∣tr(∑ gSff√

τf
AS1/2(τf ) +

gSφφ
2√τφmφ

AS0 (τφ))
∣∣∣∣∣
2

Notice that the numerical factor in (5.7) is an order of magnitude smaller that the
bound (5.6). The key issue will therefore be to populate the sums in the square terms
of (5.7) since the amplitude will very roughly scale as N2 , with N the number of
particles participating in the loop.

In our case, the main contributions will come from

• D-term-induced couplings between the sleptons and the singlet, they are again
proportional to the hypercharge of the sleptons and the Dirac mass m1D and
therefore sizeable only for large Dirac mass.

• Superpotential-induced couplings between the fake leptons and the singlet from
the terms of (2.12) in chapter 2. They are the main contributions in our model.

• Soft terms trilinears couplings from (2.17) between the fake sleptons and the
singlet. Similarly to the gluons case, they are strongly constrained from vacuum
stability bounds.

An important remark here is that the two last contributions are mutually incompatible
in presence of a preserved R-symmetry, as we have already noted in chapter 2. Indeed
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the require a different R-charge for the fake leptons fields Ê and Ê′ to be R-invariant. A
theoretical estimation for the cross-section in the ideal case where the gluon amplitude
dominate the decay width and there is no mixing between the scalar singlet and the
Higgs boson is given in Figure 5.2.

Figure 5.2: Cross-section of S → γγ as a function of the masses msl and mẼ without
trilinears. We assume that the gluon fusion process dominate the other processes. We have
taken λSR = λER = 0.7. Notice that the masses are in the axis should be understood as the
pole masses.

1.2 Constraints from Higgs Mass Mixing and 8 TeV data

A crucial property of the singlet S is that it will in general mix with the Higgs eigen-
state. This is in our case an undesirable feature since it will lead to tree-level decays
of S into tops, W , Z or Higgs which could easily overcome the one-loop decay into
photons.

Building on the notations introduced in chapter 2, we introduce

m̃2
S = m̃2

SR + λ2
S

v2

2

m̃2
T = m̃2

TR + λ2
T

v2

2
, (5.8)

where the effective masses for the real parts of S and T read:

m̃2
SR = m2

S + 4m2
1D +BS , m̃2

TR = m2
T + 4m2

2D +BT . (5.9)
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Then, at tree level the scalar mass matrix in the basis {h,H, SR, T 0
R} is [29]:

M2
Z + ∆hs

2
2β ∆hs2βc2β ∆hS ∆hT

∆hs2βc2β M2
A −∆hs

2
2β ∆HS ∆HT

∆hS ∆HS m̃2
S λSλT

v2

2
∆hT ∆HT λSλT

v2

2 m̃2
T

 (5.10)

where we have defined:

∆h = v2

2
(λ2
S + λ2

T )−M2
Z (5.11)

which vanishes when λS and λT take their N = 2 values,

∆hS = −2vS
v
m̃2
SR, ∆hT = −2vT

v
m̃2
TR (5.12)

and

∆HS = g′m1Dvs2β, ∆HT = −gm2Dvs2β

. (5.13)

This matrix is diagonalised by the mixing matrix Sij . Of particular interest will be
S11 which measures the lightest scalar eigenstate in Standard Model Higgs-like.

We can subsequently use the minimisation condition of vS on the off-diagonal
element ∆hS of the scalar mass matrix given in (5.12) to find (see [29])

∆hS =v[vSλ2
S − g′m1Dc2β +

√
2λSµ+ λSλT vT ]

=v[
√

2λSµ̃− g′m1Dc2β] , (5.14)

where we used the effective mass parameter

µ̃ = µ+ 1√
2
(λS vS + λT vT ) (5.15)

From this basic analytical calculation, we see that we can minimise the tree-level mixing
by choosing:

λS ∼
g′m1Sc2β√

2µ̃
. (5.16)

In general, this relation will be modified at one-loop, but the property that one value
of λS is favored will remain and is easily observable in our coming Figures.

Such a mixing with the Standard Model Higgs will modify the Higgs sector ob-
servables. From [101] we find the latest constraint on the 125 GeV Higgs global signal
strength µaverage to be

µaverage = 1.09+0.11
−0.10 , (5.17)

In our case this is modified by a factor of |S11|2, where S is the mixing matrices of the
scalar sector; the above constraint gives us

1− |S11|2 ≤ 0.24↔
∑
k 6=1
|S1k|2 =

∑
k 6=1
|Sk1|2 ≤ 0.24. (5.18)
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This condition is in fact satisfied quite easily, as can be seen from Figure 5.3 where
we show the contours for the Higgs mass and the mixing matrix element S31 as a
function of tan β and λS . An important comment regarding this Figure is that a 125
GeV also favors small mixing. However, the more stringent constraints arises from the

Figure 5.3: Higgs mass and mixing between h and S as a function of λS and tan β obtained
from the benchmark point (5.1). The thin black lines represent the 2% and 4% mixing contour
lines. The irregularities at tan β ∼ 2−3 arise since the two-loop effective potential method used
to determined the Higgs mass (and scalar singlet mass) suffers from the so-called “Goldstone
boson catastrophe” (see [102] for more details).

non-observation of any excess in the 8 TeV data for the ZZ, Zh and hh, dĳets and
WW channels. As the mixing between S and h induces a tree-level decay one naively
expect a percent-level suppression to be necessary. As the S as mostly produced by
gluons fusions in our scenarios, we request that (see [100]):

Γ(S → ZZ)
Γ(S → γ γ )

� 6 , (5.19)

which is the ratio we have observed to give the most stringent constraints on the mixing
between S and h in our model. Note that in practice this constraints are automatically
satisfied most of the time when we will have a cross-section to diphoton big enough to
fit the experimental data. This will be clear in Figure 5.7.
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Finally, the vev of T gives a contribution to the W boson mass and the electroweak
precision data give important bounds on it. One must examine the induced correction
∆ρ to the Veltman ρ-parameter:

ρ ≡ M2
W

c2θWM
2
Z

= 1 + ∆ρ , (5.20)

with

∆ρ ∼ 4v2
T

v2 (5.21)

and v, the Standard Model Higgs VeV. In order to be below the experimental con-
straints, we need ∆ρ . (4.2± 2.7)× 10−4, ( [29] – see also [30,31] –). At tree level, we
have

vT ' v2

2m̃2
TR

[
−gm2Dc2β −

√
2µ̃λT

]
, (5.22)

with m̃2
TR = m2

T +4m2
2D +BT , therefore, small ∆ρ require large triplet Dirac and soft

masses. This requirement can often be at odd with naturalness which prefers smaller
triplet masses. Indeed, radiative corrections induced by the adjoint triplet scalars to
m2
Hu,d

are [29]:

δm2
Hu,d
⊃ − 1

16π2 (2λ2
Tm

2
T )log

{ Λ
TeV

}
(5.23)

with Λ the UV cut-off, m2
Hu,d

,m2
T the squared masses for Higgses and scalar triplet

T , and λT the coupling defined in (2.12). For Λ at the Planck scale, a fine-tuning
∆T = δm2

H/m
2
H better than 10% translates into the constraint

mT .
1
λT

450 GeV . (5.24)

In Figure 5.4, we show the allowed region for λT and m2D around the benchmark
point (5.1). ∆ρ has been obtained at one-loop using the Spheno [66,67]) code generated
by the SARAH (see ref. [68,69,70,71,61]). We see that the Higgs mass prefer large values
of λT but that the following three requirements are perfectly compatible: (1) a 125
GeV Higgs, (2) a natural mass for the triplet and (3) a parameter ∆ρ compatible with
the current constraints.

1.3 Unification and Landau poles

In this section, we will consider two theoretical constraints on our model: gauge cou-
pling unification and perturbativity up to the Grand Unified Theory (GUT) scale.

Concerning the former, we note that the field content of the MDGSSM, and more
precisely the two pairs of vector-like electrons Ê and Ê′ as well as the doublet Ru, Rd,
have been chosen to have one-loop unification by completing the 80 + 30 + 10 set of
adjoint multiplets into a complet GUT representation of (SU(3))3 (see [43]). We have
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Figure 5.4: One-loop 104 ·∆ρ obtained from the benchmark point (5.1) by varying λT and
m2D. The black lines give the contours for mh = 122, 125, 128 GeV
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checked numerically that unification is also preserved at two-loops, albeit its precision
decreases when increasing the squarks mass.

Once the GUT scale is determined, we require perturbation theory to be valide up
to the GUT scale. As we will see now, this gives strong constraints on the Yukawa
couplings. At one-loop, the beta functions for λSE , λSR, λSO, λS and λT form a coupled
system given by:

βλS = 1
16π2λS [4λ2

S + 3λ2
T + 2λ2

SR + 2λ2
SE + 4λ2

SO −
3
5
g2
1 − 3g2

2 + 3y2
t + . . . ] (5.25)

βλT = 1
16π2λT [2λ2

S + 4λ2
T −

3
5
g2
1 − 7g2

2 + 3y2
t . . . ] (5.26)

βλSE = 1
16π2λSE [2λ2

S + 4λ2
SE + 2λ2

SR + 4λ2
SO −

12
5
g2
1 + . . . ] (5.27)

βλSR = 1
16π2λSR[2λ2

S + 2λ2
SE + 4λ2

SR + 4λ2
SO −

3
5
g2
1 − 3g2

2 + . . . ] (5.28)

βλSO = 1
16π2λSO[2λ2

S + 4λ2
SE + 2λ2

SR + 6λ2
SO − 12g2

3 + . . . ] , (5.29)

where the dots contain the contributions from the other couplings. Before studying
this system numerically, we point out some peculiarities of these expressions:

• The gauge couplings contribute negatively to the beta function, increasing the
stability. In particular, λSO is strongly stabilised.

• In the limit λS → 0, λT completely decouples from the other Yukawa couplings.

• The perturbativity of the coupling λS will be critical as: (1) the gauge and top
Yukawa already gives a positive contribution ∼ 1.1 to its beta function; (2) all
the other Yukawas feed intro its beta function and conversely λS feeds into all
the beta functions.

We have numerically constrained the initial values for λSE , λSR, λSO, λS and λT at
the low scale (SUSY scale), so that they remain perturbative up to the GUT scale. We
use the two-loop RGEs generated by the public code SARAH (see ref. [68, 69, 70, 71, 61]
and ref. [72]). We choose as perturbativity requirement that all Yukawa couplings
should remain smaller than

√
4π.2

In Figure 5.5, we study the case of λSO = 0, which will be relevant in our case.
The perturbativity bounds are shown in the planes λS/λSE and λS/λT . As expected,
we obtain the strongest constraints for λS , especially in the large λSE case, which is
the one of interest in this paper. Furthermore, we recover that for λS → 0, λT is
insensitive to the other Yukawas couplings. Adding the R-violating parameter λSO
will further constrain the Yukawa couplings [4].

Finally, being mass couplings, the trilinears TSO, TSR and TSE do not develop Lan-
dau poles. Since we focus on the low-energy theory, we will not derive any constraints
from their RGEs evolutions, however we will now see that their values are limited by
requering the non-appearance of charge/color breaking vacuua.

2Notice that the precise value for perturbativity criterion is not very important since large couplings
tend to grow exponentially in any case.
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Figure 5.5: Perturbativity bounds on our model, around the first benchmark point from
Table 5.1, obtained from the requirement that no couplings overtake

√
4π before the GUT scale.

We consider λSR = λSE . Left plot: Bounds for (from left to right) λSE = 0.7, 0.5, 0.3, 0.1 in
the λS/λT plane, all points above the curves are excluded. Right plot: Bounds for (from left
to right) λT = 0.9, 0.7, 0.4, 0.1 in the λS/λSE plane, all points above the curves are excluded.

1.4 Vacuum Stability

We now turn to the constraints from vacuum stability. The scalar potential can be
decomposed into three main contributions:

V = Vg + VW + Vsoft , (5.30)

with Vg, containing the D-terms contributions, VW the superpotential contributions
and Vsoft the soft SUSY-breaking terms.

We have

Vg = 1
2
D2

1 + 1
2
D2aD

a
2 + 1

2
D3aD

a
3 (5.31)

where

D1 = −2m1DSR +D
(0)
Y with D

(0)
Y = −g′

∑
j

Yjϕ
†
jϕj

Da
2 = −

√
2m2D(T a + T a†) +D

a(0)
2 with D

a(0)
2 = −g2

∑
j

ϕ†jM
a
j ϕj (5.32)

Da
3 = −

√
2m3D(Oa +Oa†) +D

a(0)
3 with D

a(0)
3 = −g3

∑
j

ϕ†jM
a
j ϕj .

where ϕj are the scalar components of the matter chiral superfields, possibly in the
adjoint representation and Ma

j is the matrix of the gauge representation of ϕj . Let us
leave aside the triplet contribution (we are considering a heavy triplet and therefore
expect a near-zero VEV for it) and focus on the singlet and octet terms. Similarly, we
will leave aside the squarks contribution as we are not considering large A terms and
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therefore do not expect them to acquire a color-breaking VEV. We have then

D
(0)
1 = −g

′

2
(R†uRu −R

†
dRd)− g

′(|Êi|2 − |Ê′i|2)

D
a(0)
2 = −g2(R†u

σa

2
Ru +R†d

σa

2
Rd) (5.33)

D
a(0)
3 = −g3O†b(T

a)bcOc ,

with (T a)bc = (−ifabc) and fabc the SU(3) structure constants.
We now turn to the superpotential contributions (we suppress the i indices for Ê′i

and Ê′j and the “·” denotes SU(2) indices contraction by ε tensors) and find:

VW = µ2
r(R†uRu +R†dRd) + µ2

E(|Ê|2 + |Ê′|2) (5.34)

+ λ2
SE

[
|Ê′Ê|2 + |S|2(|Ê|2 + |Ê′|2)

]
+ λ2

SR

[
|Ru ·Rd|2 + |S|2(|Ru|2 + |Rd|2)

]
Adding finally the soft SUSY-breaking terms, we obtain

V = VE + VSE + VSR + VS + VR + VO + VSO , (5.35)

with

VE = (m2
E + µ2

E)(|Ê|2 + |Ê′|2) + λ2
SE |Ê′Ê|2 + g′(|Ê|2 − |Ê′|2)2 +BE(ÊÊ′ + h.c.)

(5.36)

VS ⊃ m2
S |S|2 + 2m1DS

2
R + 1

2
BS(S2 + h.c.)

VR ⊃ (m2
R + µ2

r)(R†uRu +R†dRd) + λ2
SR|Ru ·Rd|2 +BR(Ru ·Rd + h.c.)

+ 1
8

[
g′2 (R†uRu −R

†
dRd)

2 + g2
2(R†u

σa

2
Ru +R†d

σa

2
Rd)2

]
VO ⊃ 2m2

Otr(O†O) + 2m2
3Dtr(O†ROR) + (BOtr(OO) + h.c.)

+ g2
3
2

[
(O†b(T

a)bcOc)(O†b(Ta)
bcOc)

]
+
√

2g3m3D(O +O†)aO†b(Ta)
bcOc ,

and the mixed contributions

VSE = 2g′m1DSR(|Ê|2 − |Ê′|2) + λ2
SE |S|2(|Ê|2 + |Ê′|2) + TSE(SÊÊ′ + h.c.) (5.37)

VSR = g′m1D(R†uRu −R
†
dRd) + λ2

SR|S|2(R†uRu +R†dRd)
2 + +TSR(SRu ·Rd + h.c.)

VSO = TSO(Str(OO) + h.c.) .

We will consider large trilinear couplings. As usual when looking for a charge/color
breaking vacuum, we study the regions of large fields values, so that we can neglect
the contributions from the mass terms.
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First, we investigate the S, Ê, Ê′ sector. Furthermore we will focus on real fields
for simplicity. In the large VEV limits, the minimisation equations are

∂V

∂S
' g′

√
2m1D(|Ê|2 − |Ê′|2) + λ2

SES(|Ê|2 + |Ê′|2) + TSEÊÊ
′ = 0 (5.38)

∂V

∂Ê
= Ê(m2

E + µ2
E + λ2

SE |S|2 + g′m1DSR) + Ê′(BE + TSES) + λ2
SEÊ|Ê′|2

+ g′2Ê(|Ê|2 − |Ê′|2)
= 0

∂V

∂Ê′
= Ê′(m2

E + µ2
E + λ2

SE |S|2 − g′m1DSR) + Ê(BE + TSES) + λ2
SEÊ

′|Ê|2

− g′2Ê′(|Ê|2 − |Ê′|2)
= 0 .

One should notice that the customary unstable direction Ê = Ê′ (where the potential
is not protected by the quartic terms proportional to g′2), cannot be considered here.
This is due to the presence of the Dirac mass term ±g′Êm1DSR which prevent any
solutions of the previous system in this direction. However, in the limit of interest for
us m1D � TSE , we can in fact approximate this term and take Ê ' Ê′ so that we can
also neglect the g′2 quartic.

In this limit, we find the solution to the previous system:

v2
E = T 2

SE

4λ2
SE

− (m2
E + µ2

E +B2
E) (5.39)

vS = − TSE
2λSE

.

so that we have appearance of a charge-breaking vacuum if

TSE
2λSE

>
√
m2
E + µ2

E +B2
E . (5.40)

Similarly the condition to avoid appearance of charge-breaking vacuum in the
S,Ru, Rd sector is

TSR
2λSR

>
√
m2
R + µ2

R +B2
R . (5.41)

In general, these bounds can be slightly relaxed by simply requiring that the second
vacuum has an energy bigger than the charge-preserving one. We have found that the
corresponding highest values for the trilinear compatible with fake sleptons close to
375 GeV is around 1 TeV. For such an upper bound, it is preferable to use Yukawas
λSE over the trilinear in order to maximise the cross-section.

The situation is even worse for the scalar octet, since R-symmetry forbids the
coupling λSO. In absence of any quartic, even the smallest trilinear term TSO can lead
to an Lagrangian unbounded by below. Suppose we add quartics of the schematic form

yS
2
|S|2O2

I + yO
4
O4
I (5.42)
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where we focus on the light pseudo-scalar octet we are practically using. Supposing
that such couplings will be loop-generated with values of a few 10−2. One can estimate
the upper bound on TSO compatible with a stable color-preserving vacuum. We found
the (rough) bound TSO . 350 GeV for scalar octet with masses around 500 GeV. In
the following, we will conservatively consider TSO . 300 GeV as this is sufficient to
recover the measured cross-section. This issue will be discussed in more details in [4].

2 Results
Before presenting our results, let us briefly present our parameter space. While the
MDGSSM has a large set of free parameters, the most relevant subset can be divided
into three roughly independent sets controlling different features:

1. Higgs and singlet masses and mixing: m1D,mS , BS , tan β, µ, λS and λT .

2. Singlet decay/production amplitude to gg : TSO,mO,mq̃, where mq̃ is the
soft masses for right (or left)-handed squarks.

3. Singlet decay amplitude to γγ : TSE , TSR, or λSR, λSE supplemented with
soft masses and B terms for the fields Ê, Ê′, Ru and Rd.

The first set is dedicated to reproducing the measured Higgs boson mass as well as
a 750 GeV scalar singlet. Moreover, one can adjust the value of λS to have a small
mixing between both scalars. As we have shown, this strong requirement is tempered
by the fact that this region largely overlap with the requirement mH ∈ [122, 128].
The second set can be used to enhance the production rate of singlet through gluon
fusion. The trilinears TSO are crucial in this respect as they allow the scalar octet to
participate in the loop-induced coupling Sgg, greatly increasing the singlet production
rate. Finally, the last set of parameters is used to increase the amplitude to γγ. The
superpotential Yukawa couplings λSE and λSR from (2.12) are constrained to avoid the
appearance of Landau poles before the GUT scale as we have discussed in section 1.3.
The trilinears are mainly constrained by enforcing the scalar fields Ê, Ê′, Ru and Rd do
not get a charge-breaking vacuum expectation value. In the following, we will consider
a R-conserving model and choose to conserve the terms λSR, λSE against the trilinears.

The singlet production proceeds mainly by gluons fusion through loops of squarks
(controlled by g′m1D) and (pseudo-)scalar octets (controlled by the trilinear TSO).

Following our study of unstable vacua, we limit ourselves to low trilinear mass
TSO . 300 GeV. Since we have a Dirac masses for the gluinos m3D & 1.8 TeV from
LHC searches, the scalar octet is a priori heavy, except if one chooses carefully a large
negative BO. On the contrary, the pseudo-scalar octet can be light. Unfortunately,
recent searches in the four-tops channel leads to stringent constraint on such particles
(while the scalar octet is unconstrained for sufficiently heavy gluinos). We refer to [4]
for more details on this issue, the main idea is that since we are focusing on CP-
conserving interactions, the pseudo-scalar octet cannot decay to two gluons so that
its pair production mostly lead to four-tops signals. On the contrary, the scalar octet
does couple to gluons through squarks loops which reduces its four-top signature.

In the following, we will focus on the light pseudo-scalar octet case, and require
its pole mass to be above 880 GeV to evade four-tops searches. Therefore, gluons
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fusion proceeds both through pseudo-scalar octet loops and an additional contribution
from 800 GeV right-handed stops (left-handed squarks and left-handed sbottom are
heavier at 1.75 TeV and the first two right-handed generations are at 1 TeV). As
a consequence, the mass of the stop is a critical parameter in enhancing σγγ . We
illustrate this dependence in Figure 5.6 where we plot the S → γγ cross-section as a
function of the stop one-loop mass, with fake leptons and sleptons close to the resonance
with masses around 400 GeV.

Figure 5.6: S → γγ cross section in fb as a function of the one-loop mass for right-handed
stop obtained by varying around the first benchmark point from Table 5.1. The lower part
shows that the fast decrease of the amplitude to gluons is slightly counterbalanced by an
increase in the amplitude to photons.

The decay S → γγ proceeds both through loops of light right-handed sleptons (we
consider left-handed sleptons above the TeV) controlled by g′m1D and loops of fake
leptons, Ê, Ê′, Ru and Rd which are controlled by a unified Yukawa λSR = λSE = 0.7.
Furthermore, the fake sleptons also contribute with couplings controlled by g′m1D. In
order to maximise the overall contribution, one has to take care that no cancellations
occur between the various contribution (particularly for the D-terms induced couplings,
which are proportional to the hypercharge of the scalar participating in the loop).
Refering to Table 2.2 and 1.1 we see that one can for instance require light Ê, Rd and
ẽR and heavier Ê′, Ru and left-handed sleptons.
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In order to have a sizable contributions from the (fake) sleptons, we need reasonably
large Dirac mass m1D ∼ 1250 GeV, this has the added benefit that it also enhances
the squarks contribution to the scalar singlet production rate. On the other hand, it
increases the tuning of λS necessary to have a small mixing and additionally implies
that we have either a small tan β or a somehow large µ term as can be seen from
Eq.(5.14). Overall, Figure 5.7 presents the cross-section obtained in the λS/µE plane
by varying around the benchmark point of Table 5.1. Roughly speaking, this Figure
combines on the x-axis the constraints from mixing with on the y-axis the requirement
that the particles participating in the loop have masses close to the resonant one 750/2
GeV.3

We see from Figure 5.7 that the main requirement in our model is that we must
consider values of λS tuned at the level of a few percent. This tuning is however,
somehow mitigated from the fact that reproducing the Higgs mass already imposes
that λS belongs to a limited range, as could be seen in Figure 5.3. We can also see that
the constraint from the ratio ΓZZ/Γγ γ are significantly weaker than the requirement
on the cross-section. We further give in Table 5.1 one benchmark point, satisfying all

Figure 5.7: S → γγ cross section in fb as a function of the µE and λS . The plot is based
on the benchmark point of Table 5.1. The black contours show the most constraining ratio
from (5.19) while the red contours shows the pole mass for the fake leptons.

3Notice that the fake lepton mass gets a sizeable contribution from the vev of S throught the λSE
term.
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the previously-mentioned constraints while retaining a γγ cross-section of order 4 fb.

Parameter Values
Higgs mass µ 925 GeV

tanβ 3
λT 0.7
mT 500 GeV

Singlet masses and mixing m1D 1250 GeV
mS 500 GeV
BS −2.442 TeV2

λS 0.29
Singlet decay TSO 200 GeV

/production amplitude mO 1300 GeV
to gg mt̃R

500 GeV
Singlet decay amplitude λSR = λSE 0.7

to γγ m2
E = m2

Ru,d
102 GeV2

µE = µRu,d/1.4 325 GeV
ml̃R 250 GeV

Outputs Pole mass Higgs 125.5 GeV
Pole mass SR 750.1 GeV
Pole mass OI 945.5 GeV
Pole mass t̃R 820.3 GeV
Pole mass l̃R 418 GeV
Pole mass ˜̂

E 397 GeV
σ(S → γγ) 3.20 fb

∆ρ 0.97 × 10−4

vS 151.4 GeV

Table 5.1: Benchmark point for our scenario. We further have, Bµ = 2.52 TeV2, the heavy
left-handed squarks (as well as right-handed sbottom) have masses around 2.25 TeV. The two
first generation of right-handed squarks have masses at 975 GeV, left-handed sleptons have
masses at 1.5 TeV. We have m2D = 1200 GeV, and m3D = 2.5 TeV

3 Outlook
While the R-conserving scenario is very promising, it is nonetheless quite constrained
to a small windows of values of λS , in order to have a small mixing with the Higgs and
a sizeable cross-section to photons.

It is therefore interesting to relax the R-symmetry condition and allows for model
which we can have simultaneously the couplings to the fake leptons and the trilinears
TSE and TSR. Two promising scenarios which we will be further presented in [4] are

• /Ra : Similar to the model presented above, but with additionally the couplings
TSE , TSR and λSO.
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• /Rb : Similar to the model /Ra , but we further tolerate the presence of a Majorana
gluino mass term M3.

It is interesting to note that in studying these R-conserving scenarios, we did not
consider the possibility that the pseudo-scalar singlet SI contributes to the overall
cross-section. Since this field does not mix with the Higgs, it would have the additional
benefit of reducing the constraints from mixing. As we have already discussed, this
pseudo-scalar is not produced by gluons fusions in absence of a soft SUSY-breaking
Majorana mass term for the gluinos. Since the model /Rc allows for the presence
of such a mass, one can simultaneously produce the scalar SR and pseudo-scalar SI
singlet and have a “double-peaks” resonance set-up.



Chapter 6

The Slow Gravitino

Lorentz symmetry is both a completely fundamental symmetry of nature and a bla-
tantly broken one. Indeed, the boost symmetry underlying the construction of special
relativity is broken as soon as one introduces a fluid whose four-velocity fixes the arrow
of time. In this chapter we will see that when Lorentz symmetry as well as supersym-
metry are broken by a fluid, the pseudo-particle generated by this breaking, called
phonino, becomes the gravitino’s longitudinal degrees of freedom. Crucially, these
new degrees of freedom are slowed down by their interactions with the fluid while the
original transverse ones are not, a feature we called “slow gravitino” in [5].

Such setups arise naturally when considering inflation in supergravity, since the
scalar field describing the inflaton can be considered as an isotropic fluid. In particular
it was shown in [103, 104, 105] that the equations of motion for a massive gravitino in
a FLRW spacetime differed markedly between the spin-1/2 and spin-3/2 components.
A feature similar to the slow “gravitino” case. These results have been successfully
reproduced and extended in [106, 107, 108] using the constrained multiplet formalism
of [109] (see also [110]).

On a more formal ground, constructing consistent Lagrangians for massive spin-3/2
is a difficult exercise. Indeed, apart from the supergravity gravitino, generic spin-3/2
massive particles suffer from acausal behaviour (more precisely, the Cauchy problem
is not well defined) when coupled with electrodynamics, this is the Velo-Zwanziger
problem [111](see also [112]). When attempting to construct massive spin-3/2 La-
grangian it makes therefore sense to try to build them from supergravity and to give
a mass through a super-Higgs mechanism. This is precisely what we will describe in
this chapter. We first show in section 1 how one can obtain a super-Higgs mecha-
nism from thermal SUSY-breaking in supergravity. In section 2 we study the resulting
Lorentz-violating Lagrangian per se, deriving the equations of motion for the physical
components of the gravitino. Finally, section 3 is dedicated to the derivation of the
covariant propagator.

87
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1 Generating the Lagrangian for a Lorentz-invariant Low-energy
SUSY

It has been known for a long time that supersymmetry is broken by thermal effects
and is not restored in the high-temperator limit [113]. This is in line with the fact
that fermions and bosons obey different statistics. It was proven in [114,115] by work-
ing in the real time formalism that a massless goldstone fermion (goldstino) appears
following supersymmetry breaking. This goldstino has been identified in certain cases
with composite bilinear boson-fermion operators [116]. Later, this temperature gold-
stino has been called phonino [117] and has been subject to further studies where it
became clear that this excitation was non-perturabative and has more to do with a
“supersymmetric sound” (hence the name phonino) than with a fundamental particle
(see for example [118,119,120,121]).

The only feature of the phonino that is relevant for this work is that it has a non-
relativistic kinetic term, dressed by the stress-energy tensor of the fluid [122], which
involves the derivative Tµνγ µ∂ν .

1.1 Akulov-Volkov Lagrangian for the Phonino
In section 2 chapter 1, we have presented the super-Higgs mechanism starting from
the “pure” supergravity extension (see Eq.(1.19) of the same chapter) of the Akulov-
Volkov Lagrangian for non-linearly realised supersymmetry. A procedure to obtain
this Lagrangian was described by Deser and Zumino in [123]. We will now extend it
to the case of a background fluid.

Keeping the conventions introduced in chapter 1, the usual (Lorentz invariant)
Akulov-Volkov (AV) Lagrangian is given by:

L = −1
2
f2 det(W ν

µ ) (6.1)

where f is a constant parameter and

W ν
µ = δ ν

µ + Ḡ

f
γ µ∂

ν(G
f

) .

This Lagrangian has been chosen such that under the supersymmetry transformation
of constant parameter ε

δ(G
f

) = ε+ ξµ∂µ(
G

f
) with ξµ = ε̄γ µ

G

f
, (6.2)

we have δ(W ν
µ ) = ∂νξρW

ρ
µ + ξρ∂ρW

ν
µ , and

δ(L) = − 1
2
f2∂µ[ξµ det(W σ

ρ )] .

The Lagrangian (6.1) is therefore invariant up to total derivatives under the non-linear
transformation (6.2). Expending (6.1) at first order in G2, we obtain

L = − 1
2
f2 − 1

2
Ḡγ µ∂µG+O(G4) . (6.3)
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As the main new feature of the phonino is its kinetic term of the non-Lorentz-invariant
form Tµνγ µ∂ν , we will modify (6.3) to reproduce it. Defining T a normalisation factor,
the non-linear Lagrangian yielding this kinetic term is given by:

L = − 1
2
f2 det

[
δ ν
µ −

Ḡ

f

Tµργ
ρ

T
∂ν(G

f
)
]

= −1
2
f2 + 1

2
Ḡ
Tµν

T
γ µ∂νG+O(G4) , (6.4)

with the modified non-linear supersymmetry transformations,

δ(G
f

) = ε+ ξµ∂µ(
G

f
) with ξµ = − ε̄

Tµργ ρ
T

G

f
. (6.5)

It is straightforward to verify that (6.4) transforms as a total derivative under (6.5).

1.2 Super-Higgs mechanism in a Fluid with Curved Background
The way forward is clear. First, we have to find the Lagrangian minimally coupling
the AV Lagrangian (6.4) to gravity, mimicking the procedure of [123] in our Lorentz-
violating case. In a second place, we will translate the calculation made in chapter 1
to realise the super-Higgs mechanism in a fluid.

a Perfect Fluid in Curved Background

To leading order in derivatives, the supergravity Lagrangian including the graviton,
gravitino and goldstino fields is given by

L = 1
2
e [Lgravitino + Lphonino + Lmixing] + Lf , (6.6)

where e is the square root of the metric determinant and

Lgravitino = R− ψ̄µγ µνρ∇νψρ

Lphonino = Ḡ
Tµν

T
γ µ∇νG

Lmixing = −
√

2 Tµν√
TMP

Ḡγ µψν .

Notice that the cosmological constant term of [123] have been replaced by an a priori
unknown term Lf giving the contribution of the SUSY-breaking fluid. Since we want
this Lagrangian to transform as a total derivative under the linear transformations :

δeaµ = 1
2MP ε̄γ

aψµ

δψµ = MP∇µε
δG =

√
T√
2 ε ,

(6.7)

we should require

−2δ(Lf) = −MP ε̄γ µψν [
1
M2
P

Tµν ] .
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Let us show now that this is the case if Lf describes an irrotational relativistic fluid
(see [124] for a nice review). We denote by θ the scalar potential, α, β the Gauss
potentials and jµ the fluid density current. We can construct the particle number
density n as

n =
√
−gµνjµjν ,

so that the fluid four-velocity uµ satisfying gµνuµuν = −1 is obtained from jµ ≡ n uµ.
We introduce a function F (n) such that the (perfect) fluid energy density % and

pressure p are given as functions of n by % = F (n) and p = nF ′(n)− F (n). Then, the
fluid Lagrangian can be written as:

Lf = − e

M2
P

[jµ(∂µθ + α∂µβ) + F (n)] (6.8)

in which only n is a function of the metric. The Lagrangian (6.8) is such that combined
with the Einstein term e

2R and using the equations of motion for1 jµ in the one for
gµν , we obtain the Einstein equations:

Rµν −
1
2
gµνR = Tµν

M2
P

≡ 1
M2
P

[pgµν + (%+ p)uµuν ] , (6.9)

with on the r.h.s we recognise the stress energy tensor of our perfect fluid. Notice that
after integrating out jµ, we have

Lf = − e

M2
P

[jµ(∂µθ + α∂µβ) + F (n)] = ep

M2
P

. (6.10)

The variation w.r.t α and β leads to current continuity equations describing the internal
dynamics of the fluid.

The final Lagrangian (6.6) includes a “source” which will generate for instance a
FLRW metric if the fluid is at rest. A similar Lagrangian has been obtained by [106]
using a constrained multiplet from [109] in a minimal effective field theory for super-
symmetric inflation. In that case the fluid stress energy tensor is represented by a
scalar field with p = 1

2 φ̇
2 − V (φ). In the limit where the fluid is simply a cosmological

constant, we recover the case from [125] that (6.6) can be embedded in a de Sitter
supergravity action. Notice that is should be possible to construct a constrained mul-
tiplets version of the fluid Lagrangian Lf , allowing to extend the results of [106] to a
general fluid, albeit we will not attempt such construction here.

b Super-Higgs Mechanism in a Fluid

We are now ready to proceed to the super-Higgs mechanism by effectively trading the
fluid part of the Lagrangian for a non-relativistic mass for the gravitino. We start by

1A priori, we should also include the contributions from phoninos and gravitinos. However we will
always suppose that their contributions to the pressure and energy density are negligible so we can
use

∂µθ + α∂µβ = jµ
F ′(n)
n

.

We have taken the convention that the pressure is negative to match the case of the cosmological
constant. For a normal fluid, one should simply takes absolute value to define f .
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adding to the Lagrangian above

−Lf + e

2

[1
2
ψ̄µγ

µνρnνλγ
λψρ −

Tµν

2T
nµνḠG

]
.

This is invariant under modified supergravity transformations obtained by replacing
∇µ → ∇µ − 1

2nµνγ
ν under the condition that:

γ µνρ nνλ nρσγ
λγ σ = 2

M2
P

T̃µνγ ν . (6.11)

The total Lagrangian is given by:

L = 1
2
e

[
R+ Ḡ

Tµν

T
γ µ∇νG −

√
2 Tµν√

TMP

Ḡγ µψν − ψ̄µγ µνρ∇νψρ (6.12)

+1
2
ψ̄µγ

µνρnνλγ
λψρ −

Tµν

2T
nµνḠG

]
.

with the supergravity transformations
δeaµ = 1

2MP ε̄γ
aψµ

δψµ = MP (∇µε− 1
2nµνγ

νε)
δG =

√
T√
2 ε .

(6.13)

Notice that (6.12) is invariant under (6.13) only if we neglect derivatives in the fluid
variables. A fully invariant Lagrangian can be nonetheless obtained even without
neglecting them (see [126] for details). In the unitary gauge obtained by

δeaµ = − 1√
2TMP Ḡγ

aψµ

δψµ = −MP (∇µ − 1
2nµνγ

ν)
√

2G√
T

δG = −G ,

the phonino is removed from the Lagrangian that becomes

L = 1
2
e

[
R− ψ̄µγ µνρ(∇ν −

nνλγ
λ

2
)ψρ

]
(6.14)

where nνλ satisfies (6.11). The gravitino acquires a mass similarly to the usual super-
Higgs mechanism. A distinct feature, however, is that the mass terms are now space-
time dependent and violates Lorentz invariance when nµλ is not proportional to gµν .
This Lagrangian had never been studied before and the next sections will be dedicated
to thoroughly study its properties.

A key point is that we are now in flat space-time, the effect of the fluid on the
gravitino have been completely translated in the Lorentz-violating mass term. There-
fore, even if we will be using fluid-derived notations in the following, we will be in
fact studying a particular Lagrangian for a massive spin-3/2 particle in flat spacetime.
However, the intuitions one could gain by thinking in term of the original fluid vari-
ables will be instrumental in simplifying our equations, which explain the numerous
reference to the “background” fluid in the next sections.
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In general the parameter nµν are derived from a fluid and could be functions of
space and time. However, for practical calculations, we will be interested in the case
where we can neglect them. More precisely, we will require the gravitino wavelength
to be smaller than the fluid scale of changes in the macroscopic variables, noted L,
this imposes

1
EL
� 1 . (6.15)

This is required in order to be able to consider the gravitino as a localised particle
with well-defined helicity states. Considering gravitinos with energy of the order of
their mass, this last condition becomes

√
TL

Mp
� 1 . (6.16)

In this approximation, we can neglect all derivatives of the fluid variables compared
to the momentum or the mass of the gravitino.

2 Constraints and Equations of Motion for a Perfect Fluid
Background

2.1 The Slow Gravitino Lagrangian
We will consider a perfect fluid with four-velocity uµ and an equation of state

w = p

%
. (6.17)

For w 6= −1 both supersymmetry and invariance under Lorentz boosts are sponta-
neously broken while w = −1 corresponds to a cosmological constant. From now on,
we will neglect all derivatives of the fluid variables compared to the momentum or the
mass of the gravitino and, when convenient, will trade the fluid variable w for

εLV ≡ 1 + w, (6.18)

where εLV measures the size of violation of Lorentz boost invariance. We also define at
every point in space-time two projectors r and t by

rµν ≡ ηµν + uµuν

tµν ≡ (1− r)µν = −uµuν .
(6.19)

t projects along uµ, i.e. in the time-like direction defined by the fluid, while r projects
on the vector space orthogonal to uµ, i.e. on the spatial vector space defined by the
fluid. Since our fluid is decribed by the Lagrangian (6.8), it is irrotational and its
velocity does define a foliation of space-time that we can use to defined plane waves
of the form ψµ ∝ eip

µxµ with pµ being functions of the space-time coordinates whose
derivatives are neglected. This will allow us to define helicitiy eigenstates and construct
the corresponding propagator.
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Using the fluid foliation, we define the “spatial” and “temporal” components of the
gamma matrices γ µ and of the momentum pµ, defined via using the projectors r and
t. They are constructed as

rµ = rµνγ ν kµ = rµνpν

tµ = tµνγ ν qµ = tµνpν .

rµ and tµ behave as γ i and γ 0. They satisfy the relations rµrµ = 3, tµtµ = 1 and
tµrν = −rνtµ. We say that the fluid is “at rest” when these projections correspond to
the usual spatial and temporal components, namely γ i and γ 0 for γ µ.

Using these objects, we can solve Eq. (6.11) and find

nµν =
√

%

3M2
P

(
rµν −

3εLV − 2
2

tµν

)
, (6.20)

we then defined the would-be gravitino mass m as

m =
√

3%
4MP

|4
3
− εLV| . (6.21)

Our Lagrangian (6.14) takes the simpler form:

L = 1
2
ψ̄µ

[
(γ µν)(−/∂ −m) +γ µ∂ν− γ ν∂µ− 3εLVm

4− 3εLV
(rµtν + tµrν)

]
ψν , (6.22)

where we have defined the gravitino mass m. In (6.22) one identifies the first term
with the usual Rarita-Schwinger Lagrangian and the term proportional to εLV as the
correction due to violation of Lorentz invariance.

2.2 Explicit Decomposition of a Spin-3/2 in Helicity-operator Eigenstates
The fact that we breaks Lorentz invariance makes the determination of the spin-3/2
degrees more involved. We start by deriving the explicit decomposition of a spin-3/2
particle in the case of a fluid at rest.

With our conventions S̃µν and Sµν defined by

S̃µν = γ µν

2
, (6.23)

and

(Sµν)nm = i(δµmηnν − δνmηnµ) , (6.24)

form a representation of the Lorentz group on the spinor and vector space respectively.
The rotation generators on the spinor-vector representation are the Ji = 1

2εijk(S̃
jk +

Sjk), where εijk is the fully antisymmetric tensor such that ε123 = 1.
In particular, considering a momentum pµ = (p0,~k) with p2 = k2 − (p0)2, the

helicity operator along ~k is

S ≡ ki

k
Ji = ki

k
(1
2
Σ̃i + Σi) , (6.25)
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where k =
√
k2

Σ̃i = iγ 0γ 5γ i . (6.26)

Eigenvectors of the helicity operator in the vector space are the ε′0 and ε0, ε+, ε− corre-
sponding to j = 0, h = 0 and j = 1, h = 0,+1,−1 respectively (with helicity eigenvalues
labeled by h and those of J2 by j(j+1) ). They are easily obtained when ~k = (0, 0, k)
as

ε0
µ = ( k

|p|
, 0, 0, p

0

|p|
) (6.27)

ε′0
µ = pµ

|p|
and ε+

µ = 1√
2
(0,−1, i, 0) (6.28)

ε−
µ = 1√

2
(0, 1, i, 0) , (6.29)

where we have taken |p| =
√
−p2. Also note that they are normalised by : ε′0

∗µε′0µ = −1
and ε∗0,+,−µε0,+,−µ = 1. For a general ~k obtained by rotating with θ around the y axis
and −φ around the z axis

pµ =
(
p0, k cosφ sin θ, k sinφ sin θ, k cos θ

)
, (6.30)

helicity eigenvectors are given by2:

ε′0
µ = pµ

|p|

ε+
µ = 1√

2
(0,− cos θ cosφ− i sinφ,− cos θ sinφ+ i cosφ, sin θ)

ε−
µ = 1√

2
(0, cos θ cosφ− i sinφ, cos θ sinφ+ i cosφ,− sin θ)

ε0
µ =

(
k

|p|
,
p0

|p|
~k

k

)
.

(6.31)

Finally, the spinor-vector representation of the Lorentz group (written as represen-
tation of SU(2)L × SU(2)R for a left-handed Weyl spinor) can be decomposed into
spin representations as

(1
2
,
1
2
)⊗ (1

2
, 0) = 1

2
⊕ (1⊗ 1

2
) = 1

2
⊕ 1

2
⊕ 3

2
, (6.32)

In term of states, we can therefore decompose |ψ〉 as

|ψ〉 =a1

∣∣∣∣12 , 12
〉′

+ ã1

∣∣∣∣12 ,− 1
2

〉′
+ a2

∣∣∣∣12 , 12
〉

+ ã2

∣∣∣∣12 ,− 1
2

〉
+ a3

∣∣∣∣32 , 12
〉

+ ã3

∣∣∣∣32 ,− 1
2

〉
+ a4

∣∣∣∣32 , 32
〉

+ ã4

∣∣∣∣32 ,− 3
2

〉
,

(6.33)

2Since we have chosen the opposite signature from [127] and [128], helicity +1 and -1 eigenvectors
are inverse compared to those of these authors.
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where the prime notes the first spin-1/2 representation. Using the Clebsch-Gordon
decomposition this last expression gives (6.43).

If we boost from the fluid rest frame to any frame, the eigenvector ε0 becomes:

εµ0 = k

|p|
uµ + q

|p|k
kµ , (6.34)

where we have qµ = tµνpν and kµ = rµνpν with q =
√
−q2. The form of ε+ and ε− is

complex in general, but we still have the property: uµεµ± = 0 since uµεµ± is a Lorentz
invariant.

2.3 The Constraints Equations
Since the spinor-vector representation of spin-3/2 particle contains too many degrees
of freedom, we have to extract from the equations of motion the two constraints that
reduce ψµ to the four degrees of freedom describing a massive spin-3/2 state.

The equation of motion for ψµ, obtained from the Lagrangian (6.22) is:

Kµνψν = 0 , (6.35)

with

Kµν ≡ (γ µγ ν − ηµν)(−/∂ +m)γ ν∂µ + γ µ∂ν − 3εLV

4− 3εLV
m(rµtν + tµrν) . (6.36)

In the Rarita-Schwinger case, a first constraint is obtained by noting that the
Lagrangian is linear in ψ0, which therefore behaves as a Lagrange multiplier (see for
example [112]). The Euler-Lagrange equation for ψ0 gives the time component of the
equation of motion. This is used as a constraint as it contains no time-derivative.

In the Lorentz-violating case, we identify the time direction as the one given by
the “background fluid” four-velocity uµ. We should therefore contract the equation of
motion by uµ to obtain the “zeroth-component”. For calculation purposes we contract
instead by tµ = −/uuµ and use tµν + tµtν = 0 to obtain

[rµrν − rµν ] ∂µψν = − m

1− 3
4εLV

rρψρ , (6.37)

which indeed does not contain any time derivative (in the fluid frame).
Another constraint is obtained by contracting the equations of motion with Dµ ≡

∂µ −
nµλγ

λ

2 . Using the condition (6.11) this constraint reduces to

Tµνγ µψν = 0 , (6.38)

where replacing Tµν by its expression and dividing by the energy density % we obtain

(wrν − tν)ψν = 0 . (6.39)

For a fluid at rest, (6.38) reads

γ 0ψ0 = −(1− εLV)γ iψi . (6.40)
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When taking εLV = 0, we recover the usual Rarita-Schwinger constraint:

γ µψµ = 0 . (6.41)

To summarise, we have exhibited two constraints (6.37) and (6.39) projecting out
two spin-1/2 states. Notice that as expected there are important similarities (up to
derivatives terms) of our constraints with those obtained for the case of a gravitino in
a Friedmann-Robertson-Walker (FRW) space in [105].

2.4 Identification of the Spin-3/2 Degrees of Freedom

We are now ready to identify the four degrees of freedom of our spin-3/2 state and
write them as two transverse (helicity-3/2) and two longitudinal (helicity-1/2) modes.

We first focus on the case where the fluid parameters are constant and work in the
frame defined by the fluid background. In the last part of this section, we will generalise
the result for an arbitrary fluid where both translation and rotational invariance are
lost but with the extra assumption (6.16) implying that we can neglect derivatives in
the “hydrodynamics” parameters.

In the constant fluid rest frame, the three-dimensional space is invariant under
rotational and translation symmetries therefore both spin and helicity quantum num-
bers are well defined. We start with representations of the Lorentz group but, as the
boosts transformations are no more symmetries, we will work with representations of
the rotations symmetry group i.e. spin representations. The left-handed spinor-vector
representation of the Lorentz group (written as an SU(2)L × SU(2)R representation)
can be decomposed into spin representations as

(1
2
,
1
2
)⊗ (1

2
, 0) = 1

2
⊕ (1⊗ 1

2
) = 1

2
⊕ 1

2
⊕ 3

2
. (6.42)

The l.h.s. expresses ψµ as a tensorial product of a vector times a spinor while the last
expression is a spin decomposition that can be written explicitly as a linear combination
of normalised spin eigenstates. Using the Clebsch-Gordon decomposition this leads to:

ψµ = ε′0
µ
ã1ξ
′
− + ε′0

µ
a1ξ
′
+

+ 1√
3
ε0
µ(ã2ξ− − a2ξ+) +

√
2
3

(εµ+ a2ξ− − εµ− ã2ξ+)

+
√

2
3
ε0
µ(ã3ξ− + a3ξ+) + 1√

3
(εµ+ a3ξ− + εµ− ã3ξ+)

+ εµ− ã4ξ− + εµ+ a4ξ+ . (6.43)

The two first lines correspond the extra spin-1/2 representations that need to be pro-
jected out of the spectrum. The third line is the helicity ±1/2 part, while the last line
is the helicity ±3/2 part of the spin-3/2 representation of interest. The coefficients
ai and ãi parametrise the decomposition as function of the product of polarisation
vectors εµi and spinors ξi and ξ′i. The indices of the latter vectors and spinors give
their respective helicity eigenvalues in a self-explanatory way. The physical degrees of
freedom must satisfy both constraints (6.37) and (6.39).
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Let us define the useful notation n by

n ≡ 4
1− 3w

m , (6.44)

where w had been defined in (6.17). It is convenient to introduce a spinor that describes
the longitudinal degrees of freedom of our spin-3/2 field. This is achieved by defining
ψ 1

2
from our explicit construction (6.43) as

ψ 1
2
≡ n

w|p|
(a3ξ+ + ã3ξ−) , (6.45)

where |p| =
√
−p2. The overall coefficient ensures that ψ 1

2
has the canonically nor-

malised kinetic term for a Majorana spinor.
We consider now the case of a time-varying fluid variables under the assump-

tion (6.16). It is possible to find the corresponding form of ψ 1
2

either from the require-
ment that the constraints are satisfied or through an explicit construction. We shall
use the former.

In order to identify among the various spin-1/2 representation the physical one, we
consider an operator Πµ that satisfies the constraints (6.37) and (6.39) written as:

Cµ1 Πµ = 0
Cµ2 Πµ = 0

with
Cµ1 = wrµ − tµ

Cµ2 = (kµ − /krµ) + inrµ .
(6.46)

Such Πµ is given by

Πµ = (rµ − 3
/kkµ

k2 ) + 2
in
kµ − 2w

in
/ktµ , (6.47)

and we will also define a conjugate operator as Π̄µ (note the change of sign of the last
term)

Π̄µ = (rµ − 3
/kkµ

k2 ) + 2
in
kµ − 2w

in
/ktµ , (6.48)

Solutions of the constraints can then be obtained through projection by the operator
P1

2
( note that P1

2
P1

2
= P1

2
) defined by

Pµν1
2

= Πµ(Π̄ρΠρ)−1Π̄ν . (6.49)

Using the constraint (6.39) we can calculate

ψ 1
2

µ ≡ Pµν1
2
ψν = Πµ

2
in/k

k2 rρψρ , (6.50)

which define the helicity-1/2 part ψ 1
2

µ of ψµ, which we exhibits in (6.43). We can write
a corresponding spinor with the same degrees of freedom, a canonically normalised ki-
netic term in the Lagrangian, but without vector indices. It is obtained by contracting
ψ 1

2

µ with uµ. Comparing (6.45) with the expression we just obtain leads to

ψ 1
2

= −
√

3
2
n

k
/u rρψρ , (6.51)



98 Chapter 6. The Slow Gravitino

and describes the longitudinal modes of the gravitino.
The helicity ±3/2 degrees of freedom can be identified as the remaining modes

of ψµ after removing all three independent spin-1/2 states of the vector-spinor state.
Such spinors can be constructed by applying on ψµ the three orthogonal projectors
Pii:

P̃µνii = π̃µi π̃
ν
i

π̃2
i

, (6.52)

where π̃µ1 , π̃µ2 and π̃µ3 are orthogonal operators defined such that π̃µi π̃j,µ = 0 if i 6= j
by:

π̃µ1 = tµ

π̃µ2 = rµ

π̃µ3 = rµ − 3
/kkµ

k2 .

(6.53)

Note that Πµ can be expressed as a linear combination of these. The corresponding
projector P3

2
is given by

Pµν3
2

= ηµν − P̃µν33 − P̃
µν
22 − P̃

µν
11 , (6.54)

and ψµ3
2
≡ Pµν3

2
ψν corresponds to the transverse degrees of freedom. This can be

expressed as

ψµ3
2

= ψµ + 1
3
rµrνψν + tµtνψν + 1

6
(rµ − 3

/kkµ

k2 )(rν − 3
/kkν

k2 )ψν . (6.55)

Using the fact that rµψµ3
2

= tµψ
µ
3
2

= kµψ
µ
3
2

= 0, it is easy to check that ψµ3
2

satisfies the
constraints (6.37) and (6.39) and also that Pµν1

2
ψ 3

2 ν = 0. We chose to keep the vector
indices to remind of its spin-3/2 nature.

To summarise, in the space of solutions of the constraints (6.37) and (6.39), we
have the decomposition

ψµ = ψµ3
2

+ Πµ /k/u√
6k
ψ 1

2
= Pµν3

2
ψν + Pµν1

2
ψν , (6.56)

where the two terms corresponds to the transverse and longitudinal modes of the
spin-3/2 field.

While for the fluid at rest the helicity was defined as the projection on the globally
defined direction corresponding to the space component of the particle momentum, the
definition is more involved in the case of fluid not at rest as, in general, plane waves
are no longer solutions of the equation of motion. However, helicity can be defined
under the assumption (6.16).

In the rest frame the helicity operator is defined as:

S = 1
2
εijkS

ij∂k , (6.57)
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where the Sνρ are the Lorentz generators for the spin-3/2 representation. This gener-
alises to

S ≡ 1
2
uµεµνρσS

νρrσγ ∂γ , (6.58)

as rσγ ∂γ reduces to the space derivatives in the fluid rest frame. In a space-time
varying fluid but with the assumption (6.16), locally we can treat the eigenstates
wave-functions as plane waves. As a consequence, the above decomposition can be
carried over and locally ψ 1

2

µ and ψ 3
2

µ appear as helicity eigenstates with eigenvalues
respectively ±1

2 and ±3
2 .

2.5 The Equations of Motion
Now that we have obtained the physical degrees of freedom ψ 1

2
and ψµ3/2, we can derive

their equations of motion from the general ones (6.35) using the projector we defined
in the previous sections.

The equation of motion for ψµ derived from the Lagrangian are given in (6.35). In
order to extract those for the ψ 1

2
and ψµ3/2, it is useful to use the identity

[−γ ν∂µ + γ µ∂ν ]ψν − [tµrν + rµtν ](/∂ − n)ψν = −iC̄µ2 γ
νψν , (6.59)

where C̄µ2 is given by:
C̄µ2 = kµ − rµ/k + inrµ . (6.60)

Plugging (6.59) in (6.35) leads to[
(−rµrν + rµν)(−/∂ +m) + C̄µ2 γ

ν
]
ψν = 0 , (6.61)

which will be used to derive the equations of motion for both helicities 1/2 and 3/2.
We first focus on the helicity-1/2 degrees of freedom. We can get rid of the term

proportional to C̄µ2 by contracting (6.61) with Π̄µ defined in (6.48). Two parts of the
equations are obtained through splitting the derivative in the l.h.s. to the time-like
and space-like parts. A bit of algebra allows to rewrite the space-like part, along with
the mass term, as

Π̄µ(−rµrν + rµν)(−i/k +m)ψν = −
√

6
/k/u

k
(iv/k −m)ψ 1

2
. (6.62)

On the other side, the time-like part, using the decomposition (6.56) , can be
expressed as

−iΠ̄µ(−rµrν + rµν)/qψν = + i
√

6
/k/u

k
/qψ 1

2
. (6.63)

Putting back both parts together leads to the equation of motion for the longitudinal
mode:

(tρ∂ρ − wrρ∂ρ +m)ψ 1
2

= 0 . (6.64)
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In order to derive the equation of motion for the transverse degrees of freedom, we
act on (6.61) with the operator P3

2
to obtain

(i/q + i/k +m)ψ 3
2

µ = 0 , (6.65)

which can be written:

(tρ∂ρ + rρ∂ρ +m)ψ 3
2

µ = 0 . (6.66)

The equations of motion (6.64) and (6.66) derived above can also be obtained from
the Lagrangian

L = 1
2
ψ̄ 3

2 µ(γ
ρ∂ρ +m)ψ 3

2

µ + 1
2
ψ̄ 1

2
(tρ∂ρ − wrρ∂ρ +m)ψ 1

2
, (6.67)

where we verify that the factors in the definition of ψ 1
2

were necessary for obtaining a
canonically normalised kinetic term. The two spinors have obviously different disper-
sion relations. An important comment is that if we had not neglected the derivatives
of the fluid parameters, the previous Lagrangian would not be hermitian. Furthermore
an interesting consequence of these two equations of motion is that helicity-1/2 and
3/2 cannot be on-shell simultaneously when εLV 6= 0.

3 The Covariant Spin–3/2 Propagator

If the non-relativist spin-3/2 that we have described is coupled to other particles, it will
transmit the Lorentz-violation to the rest of the spectrum through loops diagrams. It
is therefore particularly important to derive a complete expression for its propagator.

As in the previous sections, we assume the approximation (6.16) so that we can
use plane wave solutions of momentum pµ.

Our strategy will consist of writing the Lagrangian in a basis of projectors adapted
to the degrees of freedom of our problem. It is convenient to use as basis the πµi ,
(i = 1, 2, 3) defined by

πµ1 = pµ

πµ2 = /k(tµ − /qpµ

p2 )

πµ3 = rµ −
/kkµ

k2 .

(6.68)

In making calculations, it is helpful to use the commutations or anti-commutations
properties of the operators πi with /k, /p and /q which are (omitting the Lorentz index
for clarity) given by:

π1/k = /kπ1 π1/q = /qπ1 (6.69)
π2/k = −/kπ2 π2/q = −/qπ2 (6.70)
π3/k = −/kπ3 π3/q = −/qπ3 . (6.71)



3. The Covariant Spin–3/2 Propagator 101

P11 P12 P13 P21 P22 P23 P31 P32 P33
P11 P11 P12 P13 0 0 0 0 0 0

P21 P21 P22/(π2
1π

2
2) P23/(π2

1) 0 0 0 0 0 0

P31 P31 P32/(π2
1) P33/(π2

1π
2
2) 0 0 0 0 0 0

P12 0 0 0 P11/(π2
1π

2
2) P12 P13/(π2

2) 0 0 0

P22 0 0 0 P21 P22 P23 0 0 0

P32 0 0 0 P31/(π2
2) P32 P33/(π2

1π
2
2) 0 0 0

P13 0 0 0 0 0 0 P11/(π2
1π

2
3) P12/(π2

3) P13

P23 0 0 0 0 0 0 P21/(π2
3) P22/(π2

3π
2
2) P23

P33 0 0 0 0 0 0 P31 P32 P33

Table 6.1: Contraction rules for the nine projectors Pi,j , the extra-factors of π2
i comes

from the normalisation of the nilpotent operators.

We can then define three projectors Pi,i as

Pµνi,i = πµi π
ν
i

π2
i

, (6.72)

and supplement them by nilpotent operators Pi,j with i 6= j defined by

Pµνi,j =
πµi π

ν
j

π2
i π

2
j

, (6.73)

The contraction rules of this set of projectors is straightforward and can be sum-
marised in Table 1. We supplemented this set of projector by P3

2
defined such that:

Pµν3
2

+ Pµν33 + Pµν22 + Pµν11 = ηµν . (6.74)

We use the identities

pµ = πµ1 γ µ = /p

p2π
µ
1 + /p

k2π
µ
2 + πµ3 (6.75)

kµ = k2

p2 π
µ
1 +

/k/q

k2 π
µ
2 rµ =

/k

p2π
µ
1 + /q

k2π
µ
2 + πµ3 (6.76)

qµ = q2

p2π
µ
1 −

/k/q

k2 π
µ
2 tµ = /q

p2π
µ
1 +

/k

k2π
µ
2 , (6.77)

and a bit algebra to express Kµν as a function of the Pµνij . We can write

Kµν = (/p+m)(Pµν3/2 − P
µν
33 )− U(Pµν13 − P

µν
31 ) + V (Pµν23 − P

µν
32 )−W (Pµν12 − P

µν
21 ) ,
(6.78)

with

W = −nk2 (6.79)

U = 2(/km+ /qn) (6.80)

V = 2k
2

p2 (ip2 +m/q + n/k) . (6.81)
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The second calculation trick is to define a conjugation relation by

A = a1 + /ka2 + /qa3 = a1 − /ka2 − /qa3 , (6.82)

this operation satisfies all the usual properties of conjugation AB = A B, A+B =
A+B, and we have also

|A|2 = AA = a2
1 + k2a2

2 + q2a3
3 , (6.83)

which enables us to obtain the inverse as

A−1 = A

AA
=

a1 − /ka2 − /qa3

a2
1 + k2a2

2 + q2a3
3
. (6.84)

This formula uses the assumption that all parameters ai are scalars. If A is such
that a1 = a′1 + /k/qa′′1 the previous formula makes little sense. However, it is always pos-
sible in this case to factorise A = A1A2 where A1 and A2 have only scalar coefficients.3

A crucial observation is that thanks to the relations (6.69), the (anti)commutation
relations between the operators πi and A are

πµ1A = Aπµ1
πµ2A = Aπµ2
πµ3A = Aπµ3 ,

(6.85)

which allows to make all the calculations using the A form without decomposing it
in /k or /q parts. The decomposition of the propagator on the projectors basis can be
written as

Gµν =
m− i/p
m2 + p2P

µν
3
2

+A Pµν11 +B Pµν22 + C Pµν33 +D Pµν13 +D′ Pµν31

+ E Pµν23 + E′ Pµν32 + F Pµν12 + F ′ Pµν21 .

(6.86)

The propagator satisfies
KµρG

ρν = η ν
µ . (6.87)

Expanded it in the projectors basis leads to a system of nine equations

(33) − (i/p+m)C − (π2π3)−2V E + (π1π3)−2UD = 1
(32) − (i/p+m)E′ − (π1)−2UF − V B = 0
(31) − (i/p+m)D′ − (π2)−2V F ′ + UA = 0
(23) (iπ1)−2WD + V C = 0
(22) (iπ2π3)−2V E′ + (π1π2)−2WF = 1
(21) (π3)−2V D′ +WA = 0
(13) − (π2)−2WE − UC = 0

(12) − (π3)−2UE
′ −WB = 0

(11) − (π1π3)−2UD
′ − (π1π2)−2WF

′ = 1 .

(6.88)

3If we had C = c1+c′1/k/q+c2/k+c3/q, one can easily check that C = (c3+c′1/k+( c2c3
c′1
−c1) 1

q2 /q)( c2
c′1

+/q)
is such a decomposition.
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We make the assumption that U, V and W contains no terms in /k/q ( if it was not the
case, one should first factorised it, then inverse both terms using (6.84) and do the
same to inverse X). We define the quantity X by

X = −(/p+m) + 1
π3W

(VWU − UWV ) . (6.89)

This expression has no terms in /k/q. Indeed, if A and B do not have /k/q terms, then it
is easily seen that AB +BA also does not have /k/q terms and that AB +BA is a pure
scalar using the product formula

(a1 + a2/k + a3/q)(b1 + b2/k + b3/q) = (a1b1 − a2b2k
2 − a3b3q

2) + (a2b1 + a1b2)/k
+ (a3b1 + a1b3)/q + (a2b3 − b2a3)/k/q . (6.90)

Since we can write

VWU − UWV = V (WU) + (WU)V − (WU + UW )V , (6.91)

we conclude that one can apply the formula (6.84) on X and solve the system of
equations as

A = π2
1
π2

3

W

|W |2
V

X

|X|2
V

W

|W |2

B = π2
2
π2

3

W

|W |2
U

X

|X|2
U

W

|W |2

C = X

|X|2

D = −π2
1
W

|W |2
V

X

|X|2
D′ = −π2

1
X

|X|2
V

W

|W |2

E = −π2
2
W

|W |2
U

X

|X|2
E′ = −π2

2
X

|X|2
U

W

|W |2

F = π2
1π

2
2(

W

|W |2
+ 1
π2

3

W

|W |2
V

X

|X|2
U

W

|W |2
)

F ′ = π2
1π

2
2(−

W

|W |2
+ 1
π2

3

W

|W |2
U

X

|X|2
V

W

|W |2
)

(6.92)

Replacing these expression in the propagator, we can in fact factorise most of these
terms and obtain:

Gµν =
m− i/p
p2 +m2P

µν
3
2

+ 1
π2

3

[
W

|W |2
V πµ1 + W

|W |2
Uπµ2 − π

µ
3

]
X

|X|2

[
V

W

|W |2
πν1 + U

W

|W |2
πν2 − πν3

]

+ W

|W |2
(πµ1π

ν
2 − π

µ
2π

ν
1 ) .

(6.93)

If we replace U, V and W by their expression in our case we observe first that X
simplifies in

X = 3(m− wi/k + i/q) , (6.94)
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which indeed does not include /k/q terms.
Our final result can be expressed as:

Gµν =
Πµν

3
2

p2 +m2 +
Πµν

1
2

w2k2 + q2 +m2 −
3
4
εLV

/k

mk2 (tµkν − kµtν) . (6.95)

where the two polarisations take the form

Πµν
3
2

=(m− i/p)Pµν3
2

, (6.96)

and

Πµν
1
2

=2
3

Λµ (i/p− εLVi/k +m) Λν , (6.97)

where
Λµ = γ µ − ip

µ

n
− 3

2
(rµ −

/kkµ

k2 )− 3
4
εLVt

µ , (6.98)

Note that we recover again that the part corresponding to the spin-1/2 components
of the spinor-vector has a pole for m2 + w2k2 + q2 = 0 due to a different dispersion
relation. A crucial observation is that the nominator of the helicity-1/2 poles indeed
projects on the physical degrees of freedom. More precisely one can show that

Πµν
1
2
ψµ = Πµν

1
2
ψ 1

2 µ . (6.99)

Furthermore, we can relate Πµν
3
2

to the Rarita-Schwinger polarisation tensor Πµν
RS

defined as

Πµν
RS = (m− i/p)[ηµν −

1
3
γ µγ ν + 2p

µpν

3m2 i
γ µpν − γ νpµ

3m
] , (6.100)

by

Pµν3
2

= Πµν
RS −

2
3
[Λµ + 3

4
εLV(tµ − ip

µ

m
)](i/p+m)[Λν + 3

4
εLV(tν − ip

ν

m
)] . (6.101)

This expression makes explicit the fact that our propagator reduces to the usual Rarita-
Schwinger result when εLV = 0.

The modification of the Rarita-Schwinger propagator due to Lorentz symmetry
breaking appears both in the spin-3/2 and 1/2 contributions. When εLV = 0, we
recover the usual Rarita-Schwinger formula [129].

We finally consider the limit of high momentum where we have the hierarchy

m � |p| � T , (6.102)

the propagator then simplifies to

Gµν → −Pµν3
2

i/p

p2 −
2
3
pµpν

n2
i/q − wi/k
q2 + w2k2 . (6.103)
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4 Conclusion
In this chapter, based on the super-Higgs mechanim in a fluid, we have constructed a
new Lagrangian describing the propagation of a spin-3/2 with a non-Lorentz invariant
mass term. We have the studied this Lagrangian per se and shown that it exhibits a
feature common with spin-3/2 propagating in a curved space: the longitudinal modes
(±1/2 helicities) propagate at a slower speed, hence the “slow gravitino” name.

While we have studied our Lagrangian purely in flat space-time. The results we
have found match almost perfectly the results from [103,104,105,106,107] concerning
the propagation of gravitinos in a curved inflation background. It would be very
interesting to understand in more details the links between the two scenarios.

From the more academic point of view our Lagrangian can be studied per se as
an example of a consistent, non-Lorentz invariant, Lagrangian for a massive spin 3/2
particles. Indeed, since it is build from a super-Higgs mechanism, it should be free
of the Velo-Zwanziger problem, it would be interesting to check this explicitly. Fur-
thermore, it is clear that more investigations are needed on how this “slow” gravitino
will transmit Lorentz-violating effect to our visible world and more generally, how to
couple fluids to supergravity.
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Chapter 7
Swift Graviton

In General Relativity, the presence of matter always tends to slow down signal prop-
agation. A practical check of this broad statement is the Shapiro time delay, one of
the classic solar system experimental verification of General Relativity. An observer
on Earth sends a electromagnetic signal to bounce on another planet and measures
the time needed for the return trip. The effect of the curvature of space-time will be
to lengthen the trip with respect to what would have expected in Newtonian gravity
corresponding to flat space-time.

The intuitive definition for a “fast” (namely superluminal) travel, would be to com-
pare the observed propagation speed in a given setup with the one in flat Minkowski
space-time. To do so, however, one would need a way to compare “locations” between
two different spacetimes, a notoriously difficult exercise due to diffeomorphism invari-
ance. An additional difficulty is that one can construct any spacetime once sufficiently
exotic matter is considered, as the Einstein equations only related the curvature ten-
sors to the stress-energy one. Therefore, we must always consider that a definition of
fast travel should come together with a condition on what “reasonable” matter should
look like. One such energy condition is the weak (resp. null) energy condition which
requires the stress-energy tensor Tµν to satisfy:

Tµνk
µkν > 0 , (7.1)

where kµ is a time-like (resp. null) vector. Armed with these inequalities, one can then
write various theorems about “fast travel” in General Relativity based on the study of
null geodesics.

In extended gravity, when General Relativity is modified, the boundary of the
causal future of a point p are in general not determined by null geodesics but by the
characteristics hypersurfaces passing by p. Loosely speaking, characteristics are defined
as the hypersurfaces on which the Cauchy problem is not well-defined. In general
these hypersurfaces are different from null hypersurfaces, leading to the possibility of
superluminal propagation, even when the appropriate energy conditions are considered.
This has been known for a long time in the simple case of Lovelock theories [130,131].
In this chapter, we will consider extended gravity theories described by Lagrangians
in D spacetime dimensions of the form (c = ~ = 1):

L = 1
16π`D−2

P

√
−g
(
R+ `2

2

[
R2
]
+ `4

3

[
R3
]
+ `6

4

[
R4
] )
, (7.2)
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where g is the determinant of the metric gµν , `P is the Planck length, li are dimensionful
coupling constants and [Rn] is a linear combination of contractions of n Riemann
tensors.1 We will focus on theories with `i � `P , and consider the propagation of
gravitons of energy E ∼ `−1

i , in which case all the different terms in (7.2) are important.

1 The Background Metric and Graviton Equations of Motion

Since our goal is to study extended gravity theories as generic as possible, we must
consider a background as simple as possible so that it could remain a solution of the
extended Einstein equations. We will consider the background metric induced by an
axisymmetric source beam. The idea is to model a stream of massless relativistic
particle, being photons or gravitons.

1.1 The Beam Metric

Our ansatz for the line element will have a rotation symmetry around the xD−1 axis:

ds2 = −dudv + h0(r)du2 +
D−2∑
i=1

(dxi)2. (7.3)

We use light-cone coordinates defined as u = t − xD−1, v = t + xD−1 where t and
xi denote the time and space coordinates, respectively. We also define the transverse
distance: r ≡ (

∑D−2
i=1 (xi)2)

1
2 .

The only non zero Christoffel symbols are given by:

Γiuu = −1
2
∂ih0 , Γviu = −∂ih0 , (7.4)

the non-zero components of the Riemann and Ricci tensors are:

Riuju = −1
2
∂i∂jh0 , Ruu = −1

2
∂i∂

ih0 , (7.5)

and the Ricci scalar vanishes.
The source is taken to be a “Bonnor beam” [132], namely an infinitely long straight

beam of radius r0, propagating at the speed of light in the direction of the v axis. It
corresponds to the energy momentum tensor:

Tuu =
{
ρ r ≤ r0
0 r > r0

, T vv =
{

4ρ r ≤ r0
0 r > r0

, (7.6)

while all the other components vanish and ρ > 0. The Einstein equations of motion
reduce to:

∂i∂
ih0 = −16π`D−2

P Tuu . (7.7)

1The
[
R3] term includes in addition to all possible contractions of three Riemann tensors also those

of two covariant derivatives and two Riemann tensors.



1. The Background Metric and Graviton Equations of Motion 109

The solution to Eq. (7.7) for D > 4 is given by:

h0(r) =



16πρ `D−2
P r20

(D − 4)(D − 2)

[
r0
r

]D−4
r > r0

8πρ `D−2
P r20

(D − 4)

[
1−

(
D − 4
D − 2

)
r2

r20

]
r ≤ r0

. (7.8)

This solution belongs to a class of solutions called “plane fronted waves with parallel
rays” (or pp-waves) and enjoys a superposition property, meaning that the linear sum
of two parallel pp-waves propagating in the same direction is still a solution. Away
from the beam, at r > r0, h0 satisfies

∂i∂
ih0 = 0 . (7.9)

It will be convenient to define Rb as

RD−4
b (ρ, r0) ≡

16π
(D − 4)(D − 2)

ρ `D−2
P rD−2

0 , (7.10)

such that for r > r0:

h0 =
(
Rb
r

)D−4
. (7.11)

In the limit r0 → 0, the linear density of energy λρ is kept fixed by taking ρrD−2
0 →

λρ
Γ(D/2)
π(D−2)/2 . The background (7.8) then becomes:

h0(xi)→
16π`D−2

P

(D − 4)(D − 2)

(
λρΓ(D2 )
π
D−2

2

)
1

rD−4

= 4
π(D−4)/2 Γ

(
D − 4

2

)
λρ`

D−2
P

rD−4 ,

(7.12)

which corresponds to:

Tuu = λρδ
D−2(xi) . (7.13)

We choose the energy density and beam radius such that:

h0 ∼ `D−2
P ρr20 � 1 , (7.14)

so that we are considering a small perturbation to flat spacetime. We stress that our
background is nonetheless in general a full solution of the extended gravity theories we
will be considering, so we will not rely on (7.14) to make a perturbative analysis.

1.2 Equations of Motion for the Probe Graviton
Since we are interested in the propagation of probe gravitons in the background metric
(7.3), we will allow for a small perturbation of the form:

δgij = hij(u, v) . (7.15)
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Let us first derive the equations of motion for this probe graviton in General Relativity.
We work in the light-cone gauge, gvv = gvi = gui = 0 (see e.g. [133]). We will restrict
the discussion to gravitons hij(u, v) having transverse and traceless polarisation εij .2
The tracelessness restriction simplifies the equations of motion but, in contrast to the
case of flat spacetime, it is not enough to solve all the constraints given by the Einstein
equations.

For ease of use, we have listed in Appendix 1.1 the metric components, the non
vanishing Christoffel symbols, Riemann and Ricci tensor components and Ricci scalar
up to first order in the probe graviton contribution. Let us simply quote here the most
useful results for our calculations:

Riuju = −1
2
h0 ,ij −

1
2
hij,uu, Rivjv = −1

2
hij,vv, Riujv = −1

2
hij,uv,

Rij = 2(hij,uv + h0hij,vv), Riu = ∂jh0hij,v, Ruu = −1
2
(h0 ,ii − h

ijh0 ,ij),

R = 0 .

(7.16)

We are now ready to study the Einstein equation. For general relativity on this
background, the it takes the form (away from the beam):

2 (hij,uv + h0hij,vv) = 0 (ij) , (7.17)
∂jh0hij,v = 0 (iu) , (7.18)

− 1
2
(h0 ,ii − h

ijh0 ,ij) = 0 (uu) , (7.19)

and the other components vanish identically.
Eq. (7.17) is the wave equation describing the propagation of the probe graviton and

will be used to extract the causal cone of the theory using the method of characteristics.
This will be discussed extensively in the next sections.

The second equation, Eq. (7.18) should not come as a surprise. Indeed, we have
consider a perturbation independ from the transverse coordinates, even tough the
gravitational interaction of the graviton with the beam shoud deflect it. The solution is
straightforward: introduce a second identical beam so that the graviton is propagating
right in the middle between the two beams without deflection, making Eq. (7.18)
automatically satisfied.

Since any linear combination of pp-waves sharing the same Killing vector is also a
solution of Einstein equations, we do not have to impose any condition on the distance
between the beams to ensure they do not influence each other. The background line
element is then given by:

ds2 = −dudv + (h(1)
0 + h(2)

0 )du2 +
D−2∑
i=1

(dxi)2 , (7.20)

where h(1)
0 and h(2)

0 are of the form (7.8) with the appropriate distances r and r̂. We
concentrate on the behaviour of gravitons propagating between the two beams, such

2In D = 4, such a restriction implies that the polarisations space is two-dimensional. However, the
additional constraint (7.23) will further constrain the polarisation space to be one-dimensional. We
discuss this issue in detail in Section 6.
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that the impact parameter ~b1 with respect to the first beam and ~b2 with respect to the
second one are opposite, ~b1 +~b2 = 0. This restriction leads to numerous simplification
in our calculations. Indeed, at these points of spacetime:

∂i(h(1)
0 + h(2)

0 )
∣∣∣
~b1+~b2=0

= ∂i∂j∂k(h(1)
0 + h(2)

0 )
∣∣∣
~b1+~b2=0

= 0 . (7.21)

As a consequence, any instance of a zero order Christoffel symbol which is not differ-
entiated by a partial derivative vanishes. In what follow, we will always put ourselves
in this configuration, and so, h0 should be understood as h0 ≡ h(1)

0 + h(2)
0 .

Finally, the last equation Eq. (7.19) is a modification of the zeroth order one Eq.
(7.7) that determines our background. There, the additional first order term in hij

indicates that the probe graviton can back-react on the background metric unless:

hijh0 ,ij = (4−D)
RD−4
b

bD
(b2hijδij − (D − 2)hijbibj) = 0 . (7.22)

Since hij is traceless, this reduces to:

εijbibj = 0 . (7.23)

Notice that this is an additional constraint. It implies that we are missing one degree of
freedom, consisting in an excitation backreacting on the beam. This degree of freedom
will be sorely missing when we will consider the four-dimensional case, as we will see
in section 6.

To conclude, our equations describe the motion of a graviton propagating right in
the middle between two beams. For this particular trajectory, one can findD(D−3)/2−
1 traceless transverse polarisations which satisfy all the components of the Einstein
equations, identically except for the ij components which describe the propagation
along the trajectory.

In order to observe swift behaviour, we must require “close fly-by” of our test
graviton, namely b ∼ `n. The condition that we look at gravitons propagating outside
of our beam (b > r0) then implies:

r0 . `n , (7.24)

where ln are the coupling constants of equation (7.2).
While in this section we have dealt with the Einstein-Hilbert action, we will show

in section 4 that the constraints (7.21) and (7.23) will remain sufficient to solve the uu
and ui components of the equations of motion for the extended gravity theories under
consideration.

2 A first look into time advance in Extended gravity theories
As we have already underlined, in extended gravity theories, there is no reason that
the fastest trajectories follow null geodesics. A consequence is that the usual Shapiro
time delay, experienced by a particle moving in a space-time curved by some matter
distribution, can transform in a time advance. This effect is particularly marked for a
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space-time called “shock-wave” which can be used to describe the effect of a high-energy
graviton on the surrounding spacetime. In this case, the spacetime is Minkowski expect
in a localised region, making the definition of time-shift simpler. Before introducing
our results for a curved background and the numerous complications involved, we will
review in this section the work of Camanho, Edelstein, Maldacena and Zhiboedov
in [134] which show time-advance statements for this metric and link them to the form
of the graviton three-points function.

2.1 Time Advance and Shock-Wave
We use the “shock-wave” metric, whose line element is similar to the one introduced
in (7.3) with h0 given by

h0(xi) = 4
π(D−4)/2 Γ

(
D − 4

2

) −Puδ(u)`D−2
P

rD−4 , (7.25)

with Pu the momentum of a single high-energy graviton.
Consider as a first step a scalar field φ propagating in this curved space-time. Its

equation of motion can be derived straightforwardly as

∂u∂vφ+ h0∂v∂vφ−
1
4
~∂2φ = 0 . (7.26)

At the vicinity of the shock, for u ∼ 0, the variation in v is far bigger than the one in
the transverse variable, so that we can neglect the last term of (7.26) and integrate
the equation. Noting b the impact parameter of the scalar field with respect to the
shock, we obtain

φ(0+, v, ~x) = e−∆v∂vφ(0−, v, ~x) , (7.27)

where we recognise the generator of translations acting on φ(0−) and

∆v = 4
π(D−4)/2 Γ

(
D − 4

2

) |Pu|`D−2
P

bD−4 . (7.28)

We see that the scalar field undergoes a shift toward positive v, thereby it feels a time
delay.

Let us see how this picture is modified when considering a graviton propagating
in the shock-wave background for Gauss-Bonnet Gravity. The Gauss-Bonnet action
takes the form

L = 1
16π`D−2

P

√
−g
[
R+ ε±`

2
2 (R2 − 4RµνRµν +RµνρσRµνρσ)

]
, (7.29)

where ε± stands for the sign of the Gauss-Bonnet term, and the corresponding equa-
tions of motion take the form:

Gµν + ε±`
2
2Hµν = 0 , (7.30)

where:

Gµν = Rµν −
1
2
gµνR , (7.31)
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is the usual Einstein tensor and:

Hµν = 2(RRµν − 2R α
µ Rαν − 2RαβRµανβ +R αβγ

µ Rναβγ)

− 1
2
gµν(R2 − 4RαβRαβ +RαβγδRαβγδ) ,

(7.32)

is the additional Gauss-Bonnet contribution. We will consider a transverse traceless
graviton mode hij propagating on the shock-wave background. From (7.30) its equa-
tions of motion are

∂u∂vhij + h0 [∂2
vhij + 4ε±`2

2 ∂k∂(ih0 ∂
2
vh

k
j) ] = 0 , (7.33)

we will show later on that this equation is in fact diagonal in hij , so that noting εij the
polarisation tensor of hij , we can contract eq. (7.33) by εij . Integrating at the vicinity
of the shock we finally obtain

∆v = 4
π(D−4)/2 Γ

(
D − 4

2

) |Pu|`D−2
P

bD−4

[
1 + 4ε±`2

2
(D − 4)(D − 2)

b2

(
εikε

kjbibj
b2

− 1
D − 2

)]
.

(7.34)

Therefore by choosing b2 ∼ `2
2 and the polarisation tensor we can choose the sign of ∆v

at will, irrespectively of the sign of ε±. Indeed, we can take without loosing generality
~b = (1, 0, 0, . . .). Then, labelling the transverse coordinates by xi, i = 1, 2, 3, . . ., we
see that for ε of the form ε1b = εb1 = 1/

√
2, the last parenthesis is positive while for

εab = εba = 1/
√

2 with a, b 6= 1 it is negative.
For action with equation of motion with only second-order derivatives, the authors

of [134] have traced down the appearance of the time-advance behaviour to the form
of the graviton three-point vertex.

2.2 Graviton three-point function
Consider a two-by-two graviton scattering process 13→ 24 mediated by the exchange
of another graviton I and notes the amplitude for this process A4. Then [134] focused
on the following kinematics:

p1 µ =
(
pu,

q2

16pu
,
~q

2

)
p2 µ =

(
q2

16pv
, pv,−

~q

2

)
(7.35)

p3 µ =
(
−pu,−

q2

16pu
,
~q

2

)
p4 µ =

(
− q2

16pv
,−pv,

~q

2

)
(7.36)

in the eikonal limit t/s� 1 with

s ' 4pupv t = −q2 . (7.37)

The eikonal amplitude obtained by resumming the horizontal ladder diagrams is then
given by [135] as

iAeik = 2s
∫
dD−2~be−i~q·

~b
[
eiχ − 1

]
(7.38)
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where we used the phase χ given by

χ = 1
2s

∫
dD−2~q

(2π)D−2 e
i~q·~bA4 , (7.39)

It was shown in [136] that the wave packet of the gravitons undergoing the scattering
process experiences a time shift proportional to ∂χ

∂s . The road ahead is clear: we must
first give an expression for A4, then calculate the phase χ to extract the nature of the
time-shift. All four external legs are on-shell and the exchanged graviton is associated
to a propagator proportional to 1

q2 . More precisely, in the De Donder gauge we have

A4 = A13I
µν

1
2q2

[ηµαηνβ + ηναηµβ − 2
D − 2

ηµνηαβ]A24I
αβ . (7.40)

where A13I
µν and A24I

αβ are the three-point amplitude with one free leg corresponding to
the mediator graviton I. Three forms of three-points function were considered in [134].
Given the kinematics (7.35), the dominant contribution for A4 goes like p2

up
2
v and can

be obtained from A4 ⊃ A13I
uu

4
q2A24I

vv , with three possibilities for A13I
uu (we omit the uu

and vv metric indices in the following for simplicity):

A13I
R =

√
32πG[p2

uε
ij

1 ε3 ij ]2 (7.41)

A13I
R2 =

√
32πG[p2

uε
ik

1 ε3 jlqkql] (7.42)

A13I
R3 =

√
32πG[p2

uε
ij

1 ε kl3 qiqjqkql]2, (7.43)

and similarly for 24I by replacing pu by pv. Replacing in (7.39) we obtained

χ = 1
2s

∫
dD−2~q

(2π)D−2 e
i~q·~bA13I(~q) 4

q2
A24I(~q) (7.44)

= 2A13I(−i~∂)A24I(−i~∂)
s

∫
dD−2~q

(2π)D−2 e
i~q·~b 4

q2
(7.45)

= 2A13I(−i~∂)A24I(−i~∂)
s

 Γ
(
D−4

2

)
4π(D−4)/2

1
bD−4

 . (7.46)

Replacing the expressions for the three-point functions, we obtain

χ = Gs
Γ
(
D−4

2

)
π(D−4)/2

[
1− a2ε

i
1 kε

kj
3 ∂i∂j + a4ε

ij
1 ε

kl
3 ∂i∂j∂k∂l

]
(7.47)

×
[
1− a2ε

i
2 kε

kj
4 ∂i∂j + a4ε

ij
2 ε

kl
4 ∂i∂j∂k∂l

] 1
bD−4 , (7.48)

where a2 and a4 parameterise the most general three-point function one can build from
AR , AR2 and AR3 of (7.41). A straightforward calculation then leads to the expression
of the phase for the various three-point functions. It was shown in [134] that while the
first one, corresponding to General Relativity, only leads to the Shapiro time delay, the
two others exhibit the same behaviour that what we have seen in the Gauss-Bonnet
case for the shock-wave metric: a possible time-advance for certain polarisations.

In the following, we will generalise this result to a large class of extended gravity
theories.
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3 Characteristics, Swiftness and Causal Structure
Replacing the simple shock-wave background by the complete “Bonnor beam” met-
ric (7.3) leads to numerous complications. First, we must be careful about the notion
of “fast propagation” we want to use. Second, we need an effective way of deriving
the causal structure which does not rely on integrating the equations of motion at the
vicinity of the shock wave.

3.1 Defining time-shifts in General Relativity
As a first step toward dealing with the first point, we will review the classic results
concerning time-shifts in General Relativity.

Let us start with the result from Visser, Basset and Liberati in [137], where sta-
tionary perturbations of Minkowski spacetime in the harmonic gauge were considered.
It was shown that null geodesics of the total metric always lie inside the light-cone
of flat spacetime. The main calculations go as follow. In the harmonic gauge, the
equation for small perturbation of hµν of the flat spacetime metric ηµν is

∆hµν = −16πGT̄µν ≡ − 16πG[Tµν −
1
2
ηµνT

ρ
ρ ] , (7.49)

which can be formally solved with a retarded potential integral as

hµν = 4G
∫
d3~y

T̄µν(~y, t− |~x− ~y|)
|~x− ~y|

. (7.50)

From (7.50) one can see straightforwardly that

gµνk
µkν > 0 , (7.51)

for all kµ such that kµkµηµν = 0, a result which can be seen as showing that the null
cone of the perturbed metric lies within the null cone of flat space-time.

This result is however highly gauge dependent. As it was noted in Gao and
Wald [138], one can take a suitable pure gauge change of the schematic form:

hµν → h̃µν = hµν + ∂µ(
αrν

2 + g(r)
) + ∂ν(

αrµ
2 + g(r)

) , (7.52)

where rµ is the radially pointing-outward vector, α a small constant and g a function
given by

g(r) =
{

r for r > 1/2
r2 for r 6 1/2

. (7.53)

Such a gauge choice can “open” the null cone since

h̃µνk
µkν = hµνk

µkν +
[

2α
(2 + g(r))2

(
rg′(r)

~k · ~r
r2
− (2 + g)k2

)]
, (7.54)

since the second term is always negative for our choice of function g, one can always
engineer h̃µνkµkν < 0. Obviously this new gauge does not satisfies the harmonic
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gauge in agreement with the results [137]. In the passive vision of the diffeomorphism
gauge freedom, the choice of (7.52) amounts to “stretch” locally the coordinates in
the curved space-time so that comparing with the unstreched ones of flat space-time,
signals appears to be propagating faster.

The authors of [138] therefore argued that the previous constraints could not give
a good definition of “fast” travel as one would like such a notion to be gauge-invariant,
or equivalently, not relying on a comparison with flat space-time. One such statement
had been first derived in [139], albeit with a rather intricated characterisation of time-
delay. Instead, Gao and Wald chose to focus on the asymptotic structure of a given
spacetime. Loosely speaking, they showed in [138] that signals prefer travelling on the
boundary of a space-time. More precisely, they show that given a compact K, one can
find a second compact K ′ such that: for every two points M1,M2 6⊂ K ′ with M2 at
the edge of the causal future of M1, the null geodesics connecting M1 and M2 does not
cross K. The main limitation being that one has no control over the size of K ′. The
proof being quite technical, we will only give here the main underlying arguments.

• Consider a geodesically complete space-time satisfying the null energy condi-
tion3. Then every null geodesic contain a pair of conjugate points4 (see the proof
in [140]).

• Then [138] shows that the null energy condition implies that the map H which
associates a point p with its first conjugate q is continuous at the vicinity of p.

• Given a point M and a null geodesic γ from M generated by the vector VM ,
assume we can find the first pair of conjugate point p then q on γ in the causal
future of M . We can then consider the smallest ball 5 BM containing the three
points as well as the null geodesic linking them. The continuity of the exponential
map coupled with the continuity of H then implies that by taking an arbitrary
small O neighbourhood around (M,VM ), the conjugate pairs from geodesics orig-
inating from this neighbourhood will lie in a ball with radius arbitrarily close to
B. This proves the upper-semicontinuity of the function f associating (M,VM )
to the radius of BM ).

• Given a compact region K, since f is upper-semicontinuous, we can then take the
maximum of f on K. We can then use it to define a new compact K ′ containing
all the conjugate pairs associated to each geodesics crossing K. This means that
if a geodesic cross K, it must have a conjugate pair somewhere in K ′. The main
points of the previous arguments is in fact to show that K ′ is indeed a compact.

Let us now check that given K, the compact K ′ satisfies the above theorem. Consider
two points M1,M2 6⊂ K ′ with M2 at the edge of the causal future of M1, the null
geodesic linking M1 and M2 cannot contain any conjugate pairs (see [140]). Now γ
can cross K ′ but not K since if it did, it should necessarily contain a pair of conjugate
points in K ′, contradicting the previous assumption. The null geodesics must then

3plus the so-called null generic condition, supposed to hold in almost all physical spacetime [140]
4Two points p and q are conjugate if there exist a Jacobi field which vanishes at both p and q, this

roughly corresponds to geodesics starting from p crossing again at q.
5The ball is defined in geodesics distance from M
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travel outside of the compact K, asserting our previous assertion that fastest null
geodesics prefer “travelling on the boundary”.

An interesting development regarding “fast” propagation was obtained in [141] by
Palmer and Marolf. They considered a static spherically symmetric spacetimes. The
crucial idea is that by restricting the complete gauge freedom to the subset conserving
the symmetry of the problem, one can define unambiguously a comparison between
all space-time with the same symmetry. In [141] they considered spherical cavities,
therefore all gauge transformation must respecting the spherical symmetry must: (i)
conserve the angle (ii) map a sphere into another sphere, potentially with another
radius. It is then possible to compare the proper time required to cross a cavity
according to an observer sitting on the sphere with a given radius R in two space-time
and compare it. This criterium was successfully used by Papallo and Reall in [142] to
prove that time-advance occurred in Gauss-Bonnet gravity for gravitons scattering on
a Schwarzschild black hole. Such symmetry protection will be important in deriving
our notion of swift propagation, as we will see below.

Notice finally that in the context of extended gravity theories, we could a priori
simply compare the fastest propagation speed in this theory with the fastest null
geodesics in the Standard Model. If the spacetime we are studying is a solution of both
theories, there is no obstruction in comparing them. However, it is more interesting
to find extended gravity setups in which no only is propagation faster than the one
in General Relativity, but also “fast” as defined by the previous theorems, even when
considering matter satisfying energy conditions.

3.2 Method of Characteristics
The previous theorems considered exclusively General Relativity where the fastest
trajectories for massless particles always follow null geodesics, making them (relatively)
simple to study. In order to analyse the causal structure for theories of extended
gravity. We have instead to study their characteristic hypersurfaces. Those can be
deduced from the equations of motion for a probe graviton in the background (7.3),
as we will describe now.

Consider a linear equation of motion for a scalar field φ of the form

P (∂)φ = 0 , (7.55)

where P is a polynomial in ∂ of order n with constant coefficients. We denote by Pn
the truncation of this polynomial to its highest derivative terms in P (Pn is often called
the principal part of P ). Each 1-form ξ such that:

Pn(ξ) = 0 , (7.56)

is normal to a codimension-1 hypersurface called a characteristic hypersurface. On
characteristic hypersurfaces a full set of initial Cauchy data including all inner point-
ing derivatives and the first n − 1 outward pointing derivatives does not fully deter-
mine the value of the n-th order outward pointing derivative. In particular, the n-th
order outward pointing derivative can be discontinuous, allowing for the propagation
of shock waves. For illustrative purposes, we explain the idea behind the method of
characteristic for a scalar field in appendix 1.2.
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Since characteristic hypersurfaces are boundaries of the causal development of an
initial hypersurface I, they give the edges of the region where the physics is fixed
by the initial data on I. As a consequence of these properties, the characteristic
hypersurfaces also determine the trajectories of signals with the highest propagation
speed in the theory considered.

To use the method of characteristics with the equations of motion for our probe
graviton, one should take into account the following two subtleties. First, the coef-
ficients of the PDEs could in principle be (non-constant) functions of the spacetime
coordinates. However, since we are considering a setup in which the test graviton has
a constant impact parameter, it remains static in the transverse directions and there-
fore its equations of motion admit constant coefficients. Second, we are considering
a tensor field, hence (7.56) should be modified to a determinant of the set of charac-
teristic equations corresponding to the different polarisations of the probe graviton.
However, we will take the basis of polarisation such that the system of equations of
motion becomes diagonal.6 We can therefore consider each polarisation individually
and look for those exhibiting a swift behaviour. The detailed choices of polarisations
that we take are described at the beginning of section 5.

Since we are only considering the equations of motion in the (u, v) plane, we cannot
check that the full equations of motion are hyperbolic.7 This property is required to
make sure that the notion of causal structure is well-defined, as we review in the next
section 3.5. If we assume that the causal cone does exist, then our results give locally
its projection to the (u, v) plane. We therefore only investigate swift propagation of
gravitons restricted to this plane.

We find that the projected causal cone can be degenerate in theories with terms of
the form (Riemann)4 where the characteristic equation has one root with degeneracy
four. In this situation, we use a theorem stated in section 3.5 to prove that the full
equations of motion cannot be hyperbolic with respect to the time direction when
expanded around our background, and therefore the initial value problem is not well-
posed. The theorem relates the degeneracy of the roots of different truncations of
the characteristic polynomial. We leave the complete proof to the appendix. Three
comments are in order. First, in this degenerate case, the hyperbolicity depends on
the complete equations, and not only on the terms at highest order in derivatives.
Second, in our proof, we rely on the fact that our action always includes the Einstein-
Hilbert term. Third, the non-hyperbolicity is a local statement because we are only
considering probe gravitons propagating in the middle between the two beams.

3.3 Time Shift and Swift Propagation

We chose our background such that h0 goes to zero at infinity, which is obtained by
taking the beams to be generated by a small density of energy as explained in the
previous section, with a big but finite length so that our metric is locally a very good
approximation. This metric is furthermore static and invariant by translation in the

6This means that the Einstein equations do not mix different polarisations and we have the form:
Eij ∝ εij .

7The precise definition of hyperbolicity is given in 3.5. In [143], it was shown that Lovelock theories,
for instance, are hyperbolic around pp-wave solutions.
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direction of the beam. Therefore, we are considering a problem with translational
symmetry in the u and v direction.

When dealing with generic extended gravity theory, it is very difficult to solve
completely the characteristic equations. We therefore cannot to use the criterion for
superluminality of [138] since it requires the complete knowledge of the causal structure
of the theory to find the fastest path. We do not have this information in the case of
our background.

In order to define “superluminal” or “infraluminal” speeds, we will compare the
characteristic hypersurfaces with those asymptotically far away, in the limit r → ∞.
In our gauge, these are those of Minkowski spacetime, therefore we are effectively
applying the naive criterium of comparint propagation speed in the plane u, v in a
given background h0 to the propagation speed in a flat Minkowski spacetime which
is obtained in the limit h0 → 0. Gravitons propagating faster than the asymptotical
characteristic hypersurfaces are then called “swift gravitons”.

This definition is in fact non-ambiguous for all gauge choice compatible with lin-
earised gravity and with the two translational symmetries in u and v of our problem.
Indeed, writing h0µν is a small perturbation of flat space-time, the gauge ambiguity
can written as

h0µν → h0µν + ∂µξν + ∂νξµ . (7.57)

where ξµ is a small perturbation. Requiring that the gauge transformed metric do not
depend on u and v forces ξu and ξv to depend only linearly on u and v. Furthermore,
since we are considering perturbative gravity, the we must have ∂µξν + ∂νξµ � 1 at
every point in spacetime. This further fix the possible gauges to

ξu = au+ bv + f(~x) (7.58)
ξv = bv + du+ g(~x) , (7.59)

where a and b are small constants which do not depend on the transverse variables.
Consequently, the metric elements h0uu, h0uv and h0vv which are relevant to discuss the
swiftness according to our definition, can only be modified by small constant terms.
Such term is easily eliminated when comparing with the characteristic hypersurfaces
asymptotically far away, so that our definition of swiftness does not depend on the
gauge choice.

It seems plausible that one can use similar arguments to this section and to [141] to
compare non-equivocally propagation speed in certain cases between two spacetimes
sharing the same symmetries. For instance, in our case, we could have used the rota-
tional symmetry around the beam coupled with the two translational symmetries to
compare un-ambiguously cylinders around the beam with the same length and radius
with other cylinders in another spacetime sharing the axisymmetry property. We will
not push this idea further in this thesis.

In D > 4, we can proceed straightforwardly and define swiftness by comparing
the characteristic hypersurfaces with the flat spacetime light-cone corresponding to
the limit r → ∞. Suppose that we find that one of the characteristic is of the form
(ξu = −∆c, ξv = 1) with |∆c| � 1, then swift propagation occurs for ∆c < 0.
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In D = 4, the situation is more delicate and we need to use the fact that the beams
have a finite length L. In the relevant limit where this length is very large compared to
the other length scales in the problem, our background is of the form h0 ∼ log L

r where
the beam length plays the role of an IR cut off. Because of the logarithmic growth of
this metric, we remain in the limit h0 � 1 for all practical purposes. We find that in
that case, ∆c is of the form ∆c = a(log Λ

r + N`m

rm ) where N is a O(1) number which can
be either positive or negative depending on the polarisation of the probe graviton, a is
a constant depending on the source beam, `m is the coupling constant of the extended
gravity terms and m > 4 an integer which depends on the extended gravity theory.
As was already pointed out in [134], it is always possible to find a setup in which the
logarithm is overtaken by the other terms such that we can focus on the sign of their
contribution to determine if we have swift propagation.

3.4 Characteristic Equations: Structure and Examples
For concreteness, let us describe the characteristic equations we will considered in the
rest of this chapter and apply to them the “swiftness” criterion that we have just
defined.

We are interested in equations of motion of the form:

∂u∂vh+ a∂2
vh+ b∂4

vh+ c∂u∂
3
vh = 0 , (7.60)

with three different cases:

1. When c = b = 0, we have a situation similar to Einstein gravity. Our equations
of motion are second order in derivatives of the probe graviton and we have two
distinct roots for the characteristic equation. Swift propagation occurs if a < 0.

2. When b 6= 0 and c = 0, we have only one characteristic ξv = 0. The causal cone
is degenerate, we are in the situation discussed in the previous subsection.

3. When b 6= 0 and c 6= 0, we have a causal cone whose boundaries are the two
characteristics given by ξu = −ξvb/c and ξv = 0. Swift propagation occurs if
b/c < 0.

We start by studying the example of a graviton propagating in Einstein gravity
described by the equations of motion (7.17). The characteristic equations read:

2ξuξvεij + 2h0ξ
2
vε
ij = 0 . (7.61)

These equations are diagonal in the polarisations (i.e. they satisfy Eij ∝ εij). There-
fore, we can consider each polarisation separately. The equations have two solutions,
independent of the polarisation of the graviton, giving two characteristic hypersurfaces:

(ξu = 1, ξv = 0) and (ξu = − h0

1 + h0
2 , ξv = 1

1 + h0
2 ). (7.62)

Since h0 > 0, gravitons propagating in the negative xD−1 direction suffer a time
delay and their propagation is infraluminal. This is the Shapiro time delay. Graviton
propagating in the positive xD−1 directions remains unaffected.
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As a second example we consider an abelian gauge field in D > 4 non-minimally
coupled to gravity:

L =
√
−g( 1

16π`D−2
P

R+ 1
4
FµνF

µν + 1
4
`2RR

µνρσFµνFρσ) . (7.63)

We suppose that the background metric is of the form (7.3) and is induced by two
parallel beams. We are interested in a particle propagating in the middle between the
two beams. The equations of motion for Aµ simplify to:

∂ρ∂
ρAµ − ∂µ∂ρAρ − 2`2RRµνρσ∂ν∂ρAσ = 0 . (7.64)

We focus on a field Aµ with only transverse modes and suppose that it does not depend
on the transverse coordinates. The only relevant components of the equation of motion
are:

∂u∂vA
i + (δijh0 + `2R∂

i∂jh0)∂2
vAj = 0 . (7.65)

The unit vector ξµ normal to a characteristic hypersurface satisfies:

ξuξvA
i + (δijh0 + `2R∂

i∂jh0)ξ2vAj = 0 . (7.66)

We choose the impact parameter ~b = (b, 0, . . . ) and we consider two choices of polari-
sations:
• (A): A1 non zero and all the other components vanish,

• (B): A2 non zero and all the other components vanish.
We get:

ξv(ξu + Cξv) = 0 , (7.67)

where C ∈ {C(A), cβ} depends on the polarisation of Ai:

C(A) =
(
Rb
b

)D−4 [
1 + `2R

(D − 4)(D − 3)
b2

]
, (7.68)

and

cβ =
(
Rb
b

)D−4 [
1− `2R

D − 4
b2

]
. (7.69)

Taking b small enough such that `R
b
> 1, C(A) and cβ have opposite signs. Therefore

we can have C < 0 regardless of the sign of `2R.8 The two characteristic hypersurfaces
are given by:

(ξu = 1, ξv = 0) and (ξu = − C
1 + C2 , ξv = 1

1 + C2 ) . (7.70)

Hence, when C < 0, Ai propagates toward decreasing xD−1 at a superluminal speed.
Note that the relative size of Rb compared to b, affects only the strength of the time
shift effect. Its advance or delay nature is determined by the polarisation of Ai and
by the impact parameter. Therefore, swift propagation can happen even in the weak
curvature regime when

(
Rb
b

)D−4
� 1.

8Note, that the notation `2
R is made to match the conventions in the literature. We do not need to

assume it is of positive sign for our argument in this subsection.
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3.5 Causality and Hyperbolicity
Finally we will summarise in this section some useful notions regarding causality and
hyperbolicity. This includes a formal definition of hyperbolicity and its relation to
well-posed initial value problems, the definition of the causal cone and the notion
of causality [144, 145]. We also quote a theorem which will be used to demonstrate
that when the projection of the causal cone to the (u, v) plane is degenerate the full
equations of motion are not hyperbolic. This result will be particularly revelant for
[R4] extended gravity theories.

Let us start by defining hyperbolicity. Let P (∂) be a differential operator of order
m: P (∂) =

∑m
i=0 Pi(∂), where all terms of order i are regrouped in Pi. The highest

order terms, Pm(∂) are called the principal part. The operator P (∂) is said to be
hyperbolic with respect to a vector ξ if all the following conditions are satisfied:

1. ξ is not a root of the principal part: Pm(ξ) 6= 0.

2. Pm(V +τξ) = 0 has only real roots in τ where V is a real vector. We furthermore
define the cone Γ(P, ξ) by V ∈ Γ(P, ξ) if and only if all the previous roots are
strictly negative.

3. Pm is stronger than the remaining terms in P in the sense that there exists C ∈ R
positive such that ∀i ∈ [0,m] and ∀ξ ∈ RD∑

α>0,i |P
(α)
i (ξ)|2∑

α>0 |P
(α)
m (ξ)|2

< C , (7.71)

where we use the usual parenthesis notation for the derivative of order α with
respect to all possible parameters.

Notice that the last condition is automatically satisfied if P = Pm, so that the principal
part of P is hyperbolic if it satisfies the two first conditions.

We also define the causal cone Γ0(P, ξ) more formally as follows. Γ0(P, ξ) is the set
of all vectors inside Γ(P, ξ). That is, every element V in Γ0(P, ξ) is such that V · θ > 0
for all θ ∈ Γ(P, ξ). It can usually be obtained by considering the cone bounded by the
characteristics in the direction of ξ (in the future-time direction if ξ is taken to be the
time direction).

Suppose we fix the boundary conditions on a hyperspace I with normal ξ, if the
initial conditions are non-zero only on a compact convex subset K of I, then causality
is the requirement that the solution to our Cauchy problem vanishes outside K +
Γ0(Pm, ξ). This requirement holds as long as P is hyperbolic [145].

Next, we quote a theorem which applies to hyperbolic systems and which we find
useful in arguing that our system is not hyperbolic in the case of a degenerate causal
cone. The theorem states that for a hyperbolic system P = Pm + Pm−1 + . . . with
respect to a vector ξ, if V is not proportional to ξ and τ0 is a root of Pm(V + τξ) of
degeneracy µ then V + τ0ξ is a root of degeneracy µ− j of Pm−j , j = 0, . . . ,m− 1.

To show that for the cases we study in this paper a system with a degenerate causal
cone cannot be hyperbolic we use the following argument. Suppose we decompose the
characteristics polynomial P (ξ) as follows:

P (ξ) = Q(ξu, ξv) +R(ξu, ξv, ξi) , (7.72)
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where R(ξu, ξv, 0) = 0. In this paper, we have studied the term Q, since we have
restricted the motion of our probe graviton to the (u, v) plane. For the case of a
degenerate causal cone, we have shown that Q takes the generic form:

Q(ξu, ξv) = ξuξv + aξ2vh+ bξ4v , (7.73)

where a, b are real non-zero constants. Suppose the full equations of motion are hy-
perbolic with respect to ξ̃ = (ξu, ξv, 0, . . . ), with ξv 6= 0 (this includes for instance the
time direction ξtime ∝ (1, 1, 0, . . . )). Given V = (Vu, Vv, 0, . . . ) not proportional to ξ
we have:

Pm(V + τξ) = Qm(V + τξ) = b(Vv + τξv)4 . (7.74)

We find that τ0 = −Vv/ξv is a root of Pm(V + τξ) of degeneracy four. The previous
theorem then implies that τ0 must be a second order root of P2(V + τξ) = Q2(V + τξ),
if P is hyperbolic. Since Q2(ξu, ξv) = ξuξv + aξ2v and V is not proportional to ξ, τ0 is
only a first order root, contradicting the result of the previous theorem. We therefore
conclude that the full equations of motion are not hyperbolic with respect to ξ. This
proves that in the case of a degenerate causal cone (at least in the context of the cases
studied in this paper), the full equations of motion are not hyperbolic with respect to
the time direction when evaluated locally in between the two beams.

4 Equations of Motion in Theories of Extended Gravity
We can finally start studying theories of extended gravity in D > 4. For the cases in
which the background (7.3) with h0 defined in (7.8) remains a solution, we derive the
equations of motion for a propagating probe graviton of the form (7.15).

Since our background (7.3) is a very simple line element, we will see that it is
automatically a solution of almost all the possible extended gravity we will considered,
except for few cases that we will classified explicitly. However, even if we will not
be able to check for swift propagation for them it is easy to show that gravitons
propagating around flat background in these theories will have equations of motion
with terms which contain four or six derivatives acting on the probe graviton, so that
these theories are very likely to develop Ostrogradsky instabilities.

Since deriving equations of motion for extended gravity theories is a lengthy pro-
cess, most of the results of this section were derived using Mathematica and the rules
listed in appendix 1.3.

4.1 General Considerations
As we have seen in section 1.2, the components ij of the equations are the most
interesting ones, since they are the one used to find the equation of propagation.
However, the other components have been found to lead to additional constraints on
hij . We will show now that the tracelessness condition along with the constraint (7.23):

εijbibj = 0 , (7.75)

are enough to satisfy automatically all the equations of motion except for the propa-
gation one.
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Indeed, the uu, uv and vv components in extended gravity theories can only contain
factors of the form:

hl0|b|2mbibj∂nu,vhij , (7.76)

where m, k and l are natural numbers, and ∂nu,v stands for any number of u and v
derivatives. These factors vanish when (7.75) is imposed.

Furthermore, the ui and vi equations of motion must involve at least one h0 acted
on by an odd number of derivatives. This is since hij indices come in even numbers.
Therefore, the contributions of the two beams always cancel each other when the
graviton propagates in the middle between them (see Eq. (7.21)) and the equations
are identically satisfied.

4.2 Deriving the Equations of Motion
We now study systematically all possible gravity actions containing terms of the form
[R2] [R3], [R∇2R] and [R4] theories. We will first derive numerically the transverse
equations of motion for each possible term, then classify their resulting contributions
to the equations of motion of a generic extended gravity theory.

There are three possible curvature squared terms which we can consider: R2,
RµνRµν and RµνρσRµνρσ. We list their contributions to the background equations
of motion and those of the probe graviton in Table 7.1. Since we want to keep the
form (7.8) for h0 , we require that the zeroth order background equations remain the
same as those of general relativity. The actions satisfying this condition can be read
from Table 7.1 and include f(R) gravity, Einstein-Gauss-Bonnet and any linear com-
bination thereof. The equations of motion of all those theories are found to be either
vanishing or proportional to:

T ij0 ≡ h0
k(i
, h

j)
k,vv , (7.77)

at first order in the probe graviton contribution.

Action Background equations EoM at first order in hij

R2 0 0

RabR
ab −1

2
~∂4h0 −1

2∆2
dh

ij

RabcdR
abcd −2~∂4h0 −2∆2

dh
ij + 8h0

k(j
, ∂2

vh
i)
k

Table 7.1: Contributions of the possible [R2] actions to the zeroth and first order equations
of motion. Orange color indicates fourth order derivatives acting on hij . We have defined
∆d ≡ −4(∂u∂v + h0∂

2
v).

The equations of motion for Einstein-Gauss-Bonnet gravity have been presented
in (7.30) when dealing with the shock-wave background. One can read directly the
transverse equations of motion for the probe graviton from Table 7.1 and obtain:

Eij = hij,uv + h0hij,vv + 4ε±`2
2 h0 ,k(i h

k
j) ,vv = 0 . (7.78)
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We will study the characteristics hypersurfaces for this equation in the next section.
At higher order, the calculations cannot practically be done by hand. Therefore,

for the equations of motion for actions containing contributions of the forms R3, R∇2R
and R4 we used xAct [146,147,148] and xTras [149], tensor algebra packages for Math-
ematica. We followed the steps bellow:

1. Generate all possible contractions of three Riemann tensors, four Riemann ten-
sors, and two Riemann tensor and two covariant derivatives.

2. Select an independent basis of actions, taking into account integration by parts
and various geometric identities.

3. Compute the full equations of motion for each of the above actions using xTras.

4. Check if the background equations defining h0 are modified.

5. Expand around h0 given by (7.8) and use the rules detailed in Appendix 1.3 to
simplify and evaluate these equations of motion at first order in perturbation
theory.

Most of the rules derived in Appendix 1.3 are due to the peculiar form of our back-
ground and the possible number of instances and placements of the u and v indices.

We list out results for the equations of motion of R∇2R and R3 actions in Table
7.2. We obtain that all contributions of dimension six to the equations of motion of
the probe graviton are linear combinations of two possible terms:

T ij1 ≡ h0
k(j
, ∆d∂

2
vh

i)
k , (7.79)

and
Sij0 ≡ h0

ijkl
, ∂2

vhkl , (7.80)

where we have defined the derivative operator ∆d by:

∆d = −4(∂u∂v + h0∂v∂v) . (7.81)

T ij1 is simply the ∆d derivative of the T ij0 term that we already encountered in the
context of the Gauss-Bonnet action. We will study both contributions in the next
section and show that they lead to swift propagation for certain polarisations of the
graviton.9

Similarly, we can consider actions built from four Riemann tensors. The back-
ground equations are not modified in this case. All actions including at least one
Ricci tensor or Ricci scalar have equations of motion which are identically satisfied for
the probe graviton. Our results for the equations of motion of the test graviton are
summarised in Table 7.3.

There are three possible contributions to the equations of motion of [R4] terms,
each with four derivatives acting on hij given by:

U (ij)
0 ≡ h0

lk
, h0

(i
,k h

j)
l,v4 , (7.82)

9In Table 7.2, we also have a ∆3
dhij contribution, however, the action term which generates it,

Rab∇c∇cRab, also modifies the background equations of motion, rendering our analysis irrelevant.
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Action Background equations EoM at first order in hij

R c
a R

abRbc 0 0
RRabRab 0 0

R3 0 0
RabRcdRacbd 0 0
RRabcdR

abcd 0 −8h0
ijkl
, ∂2

vhkl

RabR cde
a Rbcde 0 −2h0

ijkl
, ∂2

vhkl + 4h0
k(i
, ∆d∂

2
vh

j)
k

R e f
a c R

abcdRbedf 0 3h0
ijkl
, ∂2

vhkl

R ef
ab RabcdRcdef 0 24h0

k(i
, ∆d∂

2
vh

j)
k

R∇c∇cR 0 0

Rab∇c∇cRab −1
2
~∂6h0 −1

2∆3
dh

ij

Table 7.2: Various contributions from the possible dimension-six terms constructed from
Riemann tensors and covariant derivatives. Orange color indicates the presence of fourth order
derivatives acting on hij and red the presence of sixth order derivatives.

W ij
0 ≡ h0

ik
, h0

jl
, hkl,v4 , (7.83)

and

V ij0 ≡ h0
kl
, h0 ,klh

ij
,v4 . (7.84)

Action EoM at first order in hij

R ef
ab RabcdR hg

ce Rdfhg −32h0
lk
, h0

(i
,k ∂

4
vh

j)
l

R e f
a c R

abcdR h g
b e Rdhfg −8h0

lk
, h0

(i
,k ∂

4
vh

j)
l − 4h0

kl
, h0 ,kl∂

4
vh

ij

R ef
ab RabcdR h g

c e Rdhfg 0

R ef
ab RabcdR hg

cd Refhg −64h0
ik
, h0

jl
, ∂4

vhkl

R e
abc R

abcdR fhg
d Refhg −16h0

ik
, h0

jl
, ∂4

vhkl − 16h0
lk
, h0

(i
,k ∂

4
vh

j)
l

R e f
a c R

abcdR h g
b d Rehfg −8h0

ik
, h0

jl
, ∂4

vhkl − 8h0
kl
, h0 ,kl∂

4
vh

ij

RabcdR
abcdRefhgR

efhg 0

Table 7.3: Various contributions from the possible [R4] terms. The contributions to the
background equations of motion vanish.

As an example we consider the third and fourth order Lovelock theories.

L3 =
√
−g

(
R3 + 16R c

a RabR
bc + 24RabRcdRacbd + 3RRabcdRabcd

−12RRabRab − 24RabR cde
a Rbcde + 8R e f

a c R
abcdRbfde + 2R ef

ab RabcdRcdef
)
,

(7.85)
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and

L4 =
√
−g

(
96R e f

a c R
abcdR h i

b e Rdhfi + 96R ef
ab RabcdR h i

c e Rdifh

− 6R ef
ab RabcdR hi

cd Refhi + 48R e
abc R

abcdR fhi
d Refhi

−48R e f
a c R

abcdR h i
b d Rehfi − 3

(
RabcdR

abcd
)2

)
+ F(Rab, R).

(7.86)

Using the results of Tables 7.2 and 7.3 we find that both the contributions to the
background equations of motion and those to the equations of motion for the test
graviton vanish. This is expected since the Eij components of the equations of motion
in Lovelock theories take the form:∑

n≥2
λnδ

iρ1...ρ2p
jσ1...σ2p

Rρ1ρ2
σ1σ2 . . . Rρ2p−1ρ2p

σ2p−1σ2p (7.87)

where δ is the generalised Kronecker delta. In particular, for n > 2, we must have at
least two Riemann tensors at zeroth order in perturbation theory and therefore must
absorb four upper u / lower v indices. However, the generalised Kronecker delta can
only absorb two upper u / lower v indices since it is fully antisymmetric, and so, the
contributions from Lovelock terms of order n > 2 vanish.

5 Swift Behaviour and degenerate causal cone
We now use the equations of motion derived in the previous section to find the char-
acteristics hypersurfaces for the probe graviton and check for swift propagation. We
only consider cases with D > 4 as the case D = 4 will lead to significantly weaker
results, presented in section 6. We will additionally find that for the [R4] terms, one
can obtain a situation in which the characteristics hypersurfaces are all degenerate, we
will argue that this denotes a non-hyperbolicity of the equation of motion.

We know from our previous study of the shock wave background that we are likely
to find a polarisation-dependent effect. We therefore start by choosing a consistent
basis of polarisations for the probe graviton before fully classifying the possible swift
propagation resulting from the operators found in the previous section.

5.1 Choosing a Basis of Polarisations

We can choose without loss of generality the impact parameter to be ~b = (b, 0, . . . )
where we label the transverse coordinates by xi, i = 1, 2, 3, . . .. The index structure
forces all contributions to our equations of motion to be of the form:

Fεij +Gbkb(iε
j)
k , (7.88)

where F and G may contain v and u derivatives. Given the restriction (7.23) and the
fact that the polarisation is traceless, for gravitons propagating in the middle between
the two beams, we can use the following basis of polarisations:

• ⊕ polarisations – these are polarisations of the form εaa = −εbb = 1/
√

2 with the
requirement that a, b 6= 1 (as a consequence of (7.23)) and all other components
vanish.
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• ⊗ polarisations – these are polarisations of the form εab = εba = 1/
√

2 and all
other components vanish.

It is then easy to see that the second term of (7.88) vanishes for ⊕ polarisations and
that it is non zero only for ⊗ polarisations of the form ε1b = εb1 = 1/

√
2. Hence we

identify two different classes of ⊗ polarisation: those for which the second term of
(7.88) vanishes and those for which it does not. Picking one representative for each
class, we have:

• Class (A): ⊗ polarisation with ε21 = ε12 = 1/
√

2.

• Class (B): ⊗ polarisation with ε23 = ε32 = 1/
√

2 .

Notice that the operator Fδikδjl +Gbkb(iδj)l is diagonal for this basis of polarisations
(i.e. Eij ∼ εij since εk(ibj)bk = b2εij/2 for class (A) and 0 for class (B)). This validates
the choice we made in section 2.1 of contracting the equations of motion by the polar-
isation tensor. Furthermore, we are in the case discussed in section 3 so that we can
consider the characteristic equation for each type of polarisation separately.

5.2 Swift Behaviour of Second and Third Order Actions
Since the equations of motion are linear in the probe graviton it is possible to study
the characteristic equations of each type of contribution to the equations of motion
separately. We use C(A) and cβ to denote contribution to the characteristic equations
for gravitons with polarisations (A) and (B), respectively.

First, let us consider the contribution to the characteristic equations from the
Einstein-Hilbert term Eij = −1

2∆dhij of Eq. (7.17):

C(A)/(B) [Eij ] = 2ξv

(
ξu +

(
Rb
b

)D−4
ξv

)
εij . (7.89)

As we have already seen before, the characteristics hypersurfaces are given by Eq.
(7.62) and indicates infraluminal propagation (Shapiro time delay) independent of the
choice polarisation.

We move next to terms which are quadratic in derivatives of the probe graviton.
We have seen in the previous section that these are the T ij0 = h0

k(i
, h

j)
k,vv and Sij0 =

h0
ijkl
, hkl,vv terms of Eqs. (7.77) and (7.80). Their contributions to the characteristic

equations are given by:

C(A)
[
T ij0

]
= εij

(
Rb
b

)D−4 (D − 4)2

2b2
ξ2v ,

cβ
[
T ij0

]
= − εij

(
Rb
b

)D−4 (D − 4)
b2

ξ2v ,

(7.90)

and

C(A)
[
Sij0

]
= − εij

(
Rb
b

)D−4 2(D − 4)(D − 2)(D − 1)
b4

ξ2v ,

cβ
[
Sij0

]
= εij

(
Rb
b

)D−4 2(D − 4)(D − 2)
b4

ξ2v .

(7.91)
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Note that the signs of these contributions depend on the polarisation of the probe
graviton.

We illustrate the swift behaviour of the probe graviton by studying two examples in
details. These are Gauss-Bonnet gravity and an action of the form R−λ3`43

8 RRabcdR
abcd.

For Gauss-Bonnet gravity, we obtained the following equations of motion (see Eq.
(7.78)):

hij,uv + h0hij,vv + 4ε±`22 h0 ,k(i h
k
j) ,vv = 0. (7.92)

Using the previous results, we can show that the characteristic equation for the polar-
isation (A) is:

ξv

(
ξu +

(
Rb
b

)D−4
[1 + 2ε±`

2
2 (D − 4)2

b2
]ξv

)
= 0 (7.93)

and for the polarisation (B):

ξv

(
ξu +

(
Rb
b

)D−4
[1− 4ε±`

2
2 (D − 4)
b2

]ξv

)
= 0 (7.94)

The solutions correspond to two characteristic hypersurfaces:

ξv = 0, ξu = −h0

[
1− 4γ(A)/(B)

ε±`
2
2 (D − 4)
b2

]
ξv, (7.95)

where

γ(A) = 4−D
2

and γ(B) = 1. (7.96)

The second solution is inside the flat spacetime light-cone when ξu is negative. This
is the case if `2

2 = 0 (Einstein gravity) since Rb is a positive constant. For b ∼√
|ε±| 2̀ we can always adjust ξu to be positive for either the (A) or (B) polarisations

depending on the sign of ε±. This shows that Einstein-Gauss-Bonnet gravity allows
for swift propagation regardless of sign of the Gauss-Bonnet coefficient. If we would
have considered instead the term h0

ijkl
, hkl,vv, which is produced by an action of the

form R − λ3`43
8 RRabcdR

abcd (where λ3 stands for the sign of this correction), we would
have obtained the characteristics:

ξv = 0, ξu = −h0

[
1− γ̃(A)/(B)

(D − 4)(D − 2)
b4

λ3`
4
3

]
ξv, (7.97)

where

γ̃(A) = D − 1 and γ̃(B) = −1 . (7.98)

These two examples can be matched to the two types of extended gravity amplitudes
considered in [134] (see their Eq. (3.17)).

Finally, returning to Table 7.2, the only term that we have not discussed so far
(and is not associated with a modification of the background) is T ij1 = h0

k(i
, ∆d∂

2
vh

j)
k
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of equation (7.79). This is simply the derivative of one of the terms that we have
already studied. However, since it has four derivatives acting on the probe graviton it
dominates the characteristic equations, which are determined from the principal part
of the characteristic polynomial (as already mentioned in subsection 3.2). In this case
the characteristic hypersurfaces do not depend on the polarisation and are given by:

ξv = 0, ξu = −ξvh0 = −ξv
(
Rb
b

)D−4
, (7.99)

so that we recover the usual Shapiro time delay. Such a theory with equations of mo-
tion which are fourth order derivatives theory can suffer however from Ostrogradsky
instabilities. We summarise our results in Table 7.4 for an independent basis of ac-
tions of the forms [R2], [R3] and [R∇2R] sorting them according to the four following
categories:

• Category 1 contains terms which do not modify the Hilbert-Einstein equations
for the background and for the probe graviton. In this category, we have for
instance f(R) gravity and the Lovelock terms of order higher than two.

• Category 2 contains terms that do not modify the background equations, but
do modify the equations for the probe graviton in a way that leads to swift
propagation. These are specified up to addition of terms from category 1.

• Category 3 contains terms that do not modify the background equations, but
their equations for the probe graviton are fourth-order in derivatives with char-
acteristic hypersurfaces similar to Einstein-Hilbert gravity. These are specified
up to addition of terms from categories 1 and 2.

• Category 4 contains terms which have modified background equations, implying
that we cannot apply our analysis in this case. These are specified up to addition
of terms from categories 1,2 and 3.

5.3 Swift Behaviour of Fourth Order Actions

Let us now consider the behaviour of [R4] terms. As can be read from Table 7.3,
the equations of motion of [R4] actions are linear combinations of the following three
contributions:

V0
ij ≡ h0

kl
, h0 ,klh

ij
,v4 ,

U0
ij ≡ h0

kl
, h0

(i
,k h

j)
l,v4 ,

W0
ij ≡ h0

ik
, h0

jl
, hkl,v4 ,

(7.100)

that lead to the following contributions to the characteristic equations. For V ij0 we
have:

C(A)
[
V ij0

]
= cβ[ V ij0 ] =

(
Rb
b

)2(D−4) (D − 2)(D − 3)(D − 4)2

b4
ξ4v εij , (7.101)
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Category 1 (no contribution)

R2, R3, R∇c∇cR
R c
a R

abRbc , RR
abRab

Rab∇c∇cRab
RRabcdR

abcd − 4RabR cde
a Rbcde + 2

3R
ef

ab RabcdRcdef

RRabcdR
abcd + 8

3R
e f
a c R

abcdRbedf

Category 2 (swift propagation) RRabcdR
abcd

RabcdR
abcd − 4RabRab

Category 3 (higher derivative
operators, infraluminal) R ef

ab RabcdRcdef

Category 4 (background modified) Rab∇c∇cRab
RabRab

Table 7.4: Basis of [R2], [R3] and [R∇2R] action terms, sorted by categories as detailed in
the text. Our analysis is relevant as long as the background equations are not modified, i.e.,
for the terms in categories 1,2 and 3.

which does not depend on the polarisation. For U ij0 we have:

C(A)
[
U ij0

]
=
(
Rb
b

)2(D−4) (D − 4)2

b4

[
1 + (D − 2)(D − 4)

2

]
ξ4v εij ,

cβ
[
U ij0

]
=
(
Rb
b

)2(D−4) (D − 4)2

b4
ξ4v εij ,

(7.102)

where the contributions of the two polarisations behave differently, but have the same
sign, so that in general the sign cannot be adjusted by picking the appropriate polari-
sation. Finally, for W0

ij ≡ h0
ik
, h0

jl
, hkl,v4 we get:

C(A)
[
W ij

0

]
= −

(
Rb
b

)2(D−4) (D − 4)2

b4
(D − 3)ξ4v εij ,

cβ
[
W ij

0

]
=
(
Rb
b

)2(D−4) (D − 4)2

b4
ξ4v εij .

(7.103)

For this term we can adjust the sign by choosing an appropriate polarisation.
None of these three terms V0 , U0 , W0 can appear alone in the equations of motion.

This is because they have fourth order derivatives of the form ∂4
v acting on the probe

graviton. The characteristic equations are dominated by these ξ4v contributions, and if
no other four derivative terms are present, the causal cone is locally degenerate.

We have discuss this situation in detail in section 3.5 and show that in this case
the full equations of motion cannot be hyperbolic with respect to the time direction
when expanded around our background. The initial value problem is therefore not
well-posed for gravitons propagating in the middle between the two beams.



132 Chapter 7. Swift Graviton

Consider for instance the action:

Lss4 =
√
−g

16π`D−2
P

[
R+ ζ(3)`6

4

8
Rabcd

(
R e f
a c R

h g
b e Rdhfg −

R ef
ab R hg

ce Rdfhg
4

)]
, (7.104)

present in the effective action originating from superstring theory as presented by
[150].10 Using the results of section 4, the equations of motion read:

2hij ,uv + 2h0h
ij
,v2 − `6

4
ζ(3)
2
h0

kl
, h0 ,klh

ij
,v4 = 0 , (7.105)

and have a degenerate causal cone as discussed above. However, this can be fixed
by adding extra, lower order terms to the action which have equations of motion
with four derivatives acting on the probe graviton. Table 7.2 reveals two such terms,
RabR cde

a Rbcde and R ef
ab RabcdRcdef , which do not modify the background equations.

We therefore modify our action to:

Lmod =
√
−g

16π`D−2
P

[
R+ `4

3R
abRacdeR

cde
b (7.106)

+`6
4
ζ(3)
8
Rabcd

(
R e f
a c R

h g
b e Rdhfg −

1
4
R ef
ab R hg

ce Rdfhg

)]
which reduces to the previous one in the limit 3̀ → 0. We can use our previous results
to find that the characteristic equations have the following solutions:

ξv = 0, ξu = −h0

[
1− γ(A)/(B)

ζ(3)`6
4

16b2`4
3
(D − 2)(D − 3)

]
ξv , (7.107)

where

γ(A) = −1 and γ(B) = D − 4
2

. (7.108)

Since the sign of γ can be chosen to be either positive or negative, we have swift
propagation if:

`4
3 b

2

`6
4

<
ζ(3)
8

(D − 2)(D − 3)|γ| (7.109)

therefore when varying `4
3 b

2

`6
4

from infinity (no fourth order term) to zero (only fourth
order term), the theory starts infraluminal, then admits swift propagation and finally
the causal cone collapses and becomes degenerate.

Below a critical value:

bc ∼ h0

√√√√∣∣∣∣∣`6
4

`4
3

∣∣∣∣∣ (7.110)

10It differs from the expression of [151] by factors of L4, the fourth order Lovelock Lagrangian. Such
factors are irrelevant in our analysis since they do not influence the equations of motion for the probe
graviton on our background.
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the local causal cone envelops a region including slices of constant time.
We close this section by supplementing the unitarity and analyticity constraints of

[152] with some constraints implied by requiring the absence of a degenerate causal cone
in actions composed of the Einstein-Hilbert action supplemented by quartic corrections
only. We then obtain two algebraic relations between the coefficients ci of [152] that
are complementary to their positivity requirements. These are:

2(c7 + 2c2 + 4c4) = −2(D − 3)(2c6 + c7),
2(c6 + 2c2 + 8c3) = −(D − 3)(D − 4)(2c6 + c7).

(7.111)

6 Four Dimensional Case
We close this chapter by considering in more details the case D = 4 we had left aside
in the previous sections. Since we have only 2 transverse dimensions there are a priori
only two possible polarisations state for a massless transverse graviton. However, the
additional constraint (7.23) remove one of these two degrees of freedom, so that we
only have one polarisation. This implies that we cannot choose the nature of the time
shift by going from type (A) to type (B) polarisations (the only possible polarisation is
straightforwardly seen to be ε12 = ε21). The presence or absence of a swift propagation
therefore depends on the particular sign of the coupling constants of the extended
gravity theory.

Solving the Einstein equation (7.7) in four dimensions gives:

h0(xi) =


8πρ`2P r20 log Λ

r
r > r0

4πρ`2P r20

[
1 + 2 log Λ

r0
− r2

r20

]
r ≤ r0

. (7.112)

Where Λ is a positive constant which is not fixed by the Einstein equations. Following
the discussion of Section 3.3, we view this as an IR cutoff to our theory related to the
length of the beams, indicating that we should take r < Λ.

Defining the constant a by

a ≡ 8πρ`2P r20 > 0 (7.113)

we obtain

h0(~b) = a log Λ
r

∂i∂jh0(~b) = − a

b4
(b2δij − 2bibj)

∂i∂j∂k∂lh0(~b) = 2a
b8

[
−4b2(δijbkbl + . . . ) + b4(δklδij + . . . )

+24bibjbkbl] ,

(7.114)

where the . . . stand for all index permutations of a given tensor structure.
The results of Tables 7.1, 7.2 and 7.3 are left unchanged (since we have not used

the particular form of h0 there).



134 Chapter 7. Swift Graviton

Next, we compute the characteristic equations for the various contributions to the
equations of motion (suppressing the εij):

C(A)

[
−1

2
∆dh

ij
]

= 2ξuξv + 2ξ2va log Λ
r
,

C(A)
[
h0

k(i
, h

j)
k,vv

]
= 0,

C(A)
[
h0

k(j
, ∆d∂

2
vh

i)
k

]
= 0,

C(A)
[
h0

ijkl
, ∂2

vhkl
]

= −12a
b4

ξ2v

C(A)
[
h0

lk
, h0

(i
,k h

j)
l,v4

]
= a2

b4
ξ4v

C(A)
[
h0

ik
, h0

jl
, hkl,v4

]
= −a

2

b4
ξ4v

C(A)
[
h0

kl
, h0 ,klh

ij
,v4

]
= 2a2

b4
ξ4v

(7.115)

Using the results of Table 7.1 one can easily check that the Gauss-Bonnet combination
gives a vanishing contribution in D = 4. This is expected since the Euler density is
topological in D = 4. Furthermore, we see that the only non-vanishing contribution
from [R3] terms is h0

ijkl
, ∂2

vhkl, which is present in the equations of motion derived
from RRabcdR

abcd, RabR cde
a Rbcde and R e f

a c R
abcdRbedf . The most general Lagrangian

build from [R2] and [R3] terms for which our background (7.112) is a solution is then
of the form:

L =
√
−g

16π`2P

[
R+ `4

3 (d1RRabcdR
abcdRab + d2R

cde
a Rbcde + d3R

e f
a c R

abcdRbedf ) + (. . . )
]
,

where the (. . . ) includes all the [R2] and [R3] terms with vanishing contributions to the
characteristic equations (see Eq. (7.115) and Table 7.2). We obtain the characteristic
equation:

ξuξv + ξ2va

[
log Λ

b
+ 6`4

3

b4
(8d1 + 2d2 + 3d3)

]
= 0 . (7.116)

The presence of the logarithm and how to deal with it has been discussed at the end
of Section 3.3. The presence of swift propagation for b ∼ `3 then depends on the sign
of the last term in Eq. (7.116). We observe swift propagation if:

8d1 + 2d2 + 3d3 < 0 . (7.117)

Since we are in four dimension, we have redundancy between the different operators
listed in Table 7.2. For instance, the fact that the third order Lovelock theory (7.85)
is topological implies that we can trade one of the di for the two others.

We have thus seen the in D = 4 we have somehow weaker conclusions than in the
general case D > 4. There is a noteworthy exception: turning to the [R4] terms, we see
that we get once more a degenerate causal cone. In D = 4 it is however not possible to
fix this behaviour by adding [R3] terms as we did in Section 5.3, we readily conclude
that this issue can only be solved by adding higher order terms in the actions.
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7 Conclusions
In this chapter we have been interested in a simple, albeit not exhaustive, way of
studying the local causal structure of a large variety of extended gravity theories.
By considering perturbations propagating in parallel to two beams described by the
stress-energy tensor (7.6), we found that many extended gravity theories allow for swift
propagation, namely the fact that gravitons propagate close to a beam of massless
relativistic particles faster than they would at the boundary of our spacetime. With
our gauge choice, this is in fact equivalent to comparing directly their speed to the
speed of light in a flat Minkowsky spacetime.

The background beams were chosen to mimic the successive scattering events of
gravitons that [134] used to find a sizeable time-shift. In this sense, we recover and
extend the results of [134] in an alternative fashion. We have further studied all possible
theories based on [R2], [R3], [R∇2R] and [R4] terms around our background (7.8). We
have shown that swiftness appears to be a quite general feature. Noteworthy exceptions
are f(R) theories and Lovelock theories with order higher than three, which have the
same local causal structure as general relativity around our background. The case of
Gauss-Bonnet gravity appears to be an exception. This comes as a surprise as it was
in this theories that the characteristics were first found to be different from the null
geodesics. It may well be that for Lovelock theories at order larger than two, one needs
a more complex background to exhibit swift propagation.

Most of the [R4] terms that we have studied have equations of motion with four
derivatives acting on the probe graviton. We stress that from the point of view of
causality, this should not be considered a game-ending property since these theories
can be shown to be nonetheless hyperbolic in certain cases. However, we have found
that for terms that we have classified, the projection of the characteristic hypersurfaces
on the u, v plane can be degenerate. This situation have been proven to lead the non
hyperbolicity of the equations of motion.

Many of the theories we consider have equations of motion with more than two
derivatives acting on the probe graviton and hence may be subject to Ostrogradsky
instabilities. Common solutions include looking for theories with degenerate higher
derivative terms like f(R) theories (see [153]), restricting to actions with equations of
motion with no more than two derivatives, like Lovelock theories, or adding constraints
to remove the instabilities [154]. The swift propagation issue we have discuss here is a
priori unrelated and can further constrain the well-behaved extended gravity actions
as they do for the case of Gauss-Bonnet gravity.
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1 Swift Graviton

1.1 List of Metric Components, Christoffel Symbols and Riemann Compo-
nents

We denote xµ = (u, v, ~x). The zeroth order metric components are given by:

g(0)
µν =

 h0(~x) −1
2

−1
2 0

δij

 , g(0)µν =

 0 −2
−2 −4h0(~x)

δij

 , (.118)

where h0(~x) is given by Eq. (7.8). As a rule of thumb at zeroth order in the probe
graviton contribution:

V u = −2Vv, V v = −2Vu − 4h0Vv,

Vu = h0V
u − 1

2
V v, Vv = −1

2
V u,

(.119)

and so, a vector that only has a lower u component will only have an upper v component
and the other way around.

a Zeroth Order in the Probe Graviton Contribution

The non-vanishing Christoffel symbols are given by:11

Γ(0)
iuu = −1

2
∂ih0, Γ(0)

uiu = 1
2
∂ih0,

Γi(0)
uu = −1

2
∂ih0, Γv(0)

iu = −∂ih0.
(.120)

Those vanish when summing right in the middle between two beams. The non-
vanishing Riemann components are:

R
(0)
iuku = −1

2
∂k∂ih0,

Riuku = −1
2
∂k∂

ih0, Rviku = −∂k∂ih0,

R(0)ivkv = −2∂k∂ih0.

(.121)

The non vanishing Ricci tensor components are:

R(0)
uu = −1

2
∂i∂

ih0, R(0)vv = −2∂i∂ih0, (.122)

those vanish outside the beam. And the Ricci scalar vanishes identically:

R(0) = 0. (.123)

11The others are implied by symmetry or vanish.
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b First Order in the Probe Graviton Contribution

We allow for a probe graviton of the form:

δg
(1)
ij = hij(u, v), δg(1)ij = −hij(u, v). (.124)

Which leads to the following non-vanishing Christoffel symbols:

Γ(1)
uij = −1

2
∂uhij , Γ(1)

iuj = 1
2
∂uhij ,

Γ(1)
vij = −1

2
∂vhij , Γ(1)

ivj = 1
2
∂vhij ,

(.125)

or alternatively:

Γi(1)
uu = 1

2
hij∂jh0, Γi(1)

uj = 1
2
∂uhij ,

Γv(1)
ij = ∂uhij + 2h0∂vhij , Γi(1)

vj = 1
2
∂vhij , Γu(1)

ij = ∂vhij .
(.126)

The non vanishing components of the Riemann tensor are given by:

Ru
(1)
iju = −∂u∂vhij , Ru

(1)
ijv = −∂2

vhij , Ru
(1)
uiu = −1

2
∂kh0 ∂vhik,

Rv
(1)
kij = ∂ih0∂vhkj − ∂jh0∂vhki, Rv

(1)
uuj = h0∂ih0∂vhij ,

Rv
(1)
kuj = ∂2

uhkj + 2h0∂u∂vhkj , Rv
(1)
kvj = ∂v∂uhij + 2h0∂

2
vhij ,

Rv
(1)
iuv = −1

2
∂kh0∂vhik, Rv

(1)
vuj = −1

2
∂ih0∂vhij ,

Ri
(1)
ujk = −1

2
∂vhij∂kh0 + 1

2
∂vhik∂jh0,

Ri
(1)
uuk = 1

2
∂2
uhik −

1
2
hij∂k∂jh0, Ri

(1)
vuk = 1

2
∂u∂vhik,

Ri
(1)
juk = 1

2
∂vhik∂jh0 −

1
2
∂vhjk∂ih0, Ri

(1)
uvk = 1

2
∂u∂vhik,

Ri
(1)
vvk = 1

2
∂2
vhik, Ri(1)

uuv = −1
4
∂vh

ij∂jh0,

(.127)

or alternatively:

R
(1)
ukij = 1

2
(∂jh0∂vhki − ∂ih0∂vhkj), R

(1)
uvui = 1

4
∂jh0∂vhij ,

R
(1)
ukui = −1

2
∂2
uhki, R

(1)
ukvi = −1

2
∂v∂uhki, R

(1)
vijv = 1

2
∂2
vhij .

(.128)

The non vanishing Ricci tensor components are given by:

R
(1)
ij = 2∂u∂vhij + 2h0∂

2
vhij , R

(1)
ui = ∂vhij∂jh0 −

1
2
∂ih0∂vh

k
k,

R(1)
uu = 1

2
hkj∂k∂jh0 −

1
2
∂2
uh

k
k, Ruv = −1

2
∂u∂vh

k
k, Rvv = −1

2
∂2
vh

k
k.

(.129)
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If we assume that the perturbation is traceless we are left with:

R
(1)
ij = 2∂u∂vhij + 2h0∂

2
vhij , R

(1)
ui = ∂vhij∂jh0, R(1)

uu = 1
2
hkj∂k∂jh0. (.130)

Note that there are no lower v indices and hence no upper u indices. The Ricci scalar
reads:

R(1) = 4∂u∂vhkk + 4h0∂
2
vh

k
k, (.131)

and vanishes for a traceless perturbation:

R(1) = 0. (.132)

1.2 Characteristic Method - a Detailed Example

In this appendix, we explicitly show the property quoted in section 3 that charac-
teristics surfaces can be obtained from the vanishing of the characteristic form in a
particular example of interest. We consider the equation

∂u∂vh+ a∂2
vh+ b∂4

vh = 0 , (.133)

where h is a scalar function of the two variables u and v and a and b are two constants.
Suppose that ξ = (ξu, ξv) is the unit normal vector to the curve C on which we are
given the Cauchy data. Inner derivatives on C can be obtained by −ξv∂u + ξu∂v and
normal derivative to C by ξu∂u + ξv∂v. In order to find all partial derivatives of h up
to third order, we have to solve successively the following systems :{

−ξv∂uh+ ξu∂vh = ∂Ch

ξu∂uh+ ξv∂vh = ∂⊥h


−ξv∂2

uh+ ξu∂u∂vh = ∂C∂uh

−ξv∂u∂vh+ ξu∂u∂vh = ∂C∂vh

(ξu∂u + ξv∂v)2h = ∂2
⊥h


−ξv∂3

uh+ ξu∂
2
u∂vh = ∂C∂

2
uh

−ξv∂2
u∂vh+ ξu∂u∂

2
vh = ∂C∂u∂vh

−ξv∂u∂2
vh+ ξu∂

3
vh = ∂C∂

2
vh

(ξu∂u + ξv∂v)3h = ∂3
⊥h

where all partial derivatives are evaluated on C and ∂C (∂⊥) denotes the inner (outer)
derivative to C. Since these systems have determinants respectively −(ξ2u + ξ2v) = −1,
(−ξ2u − ξ2v)2 = 1 and , (−ξ2u − ξ2v)3 = −1, they are solvable and gives all partial
derivatives up to third order.
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Fourth order partial derivatives must be obtained from

−ξv∂4
uh+ ξu∂

3
u∂vh = ∂C∂

3
uh

−ξv∂3
u∂vh+ ξu∂

2
u∂

2
vh = ∂C∂

2
u∂vh

−ξv∂2
u∂

2
vh+ ξu∂u∂

3
vh = ∂C∂u∂

2
vh

−ξv∂u∂3
vh+ ξu∂

4
vh = ∂C∂

3
vh

b∂4
vh = −∂u∂vh+ a∂2

vh

whose determinant is precisely the characteristic form bξ4v . Since all higher order
partial derivatives can be derived from the previous system by partial derivations,
the vanishing of the characteristic form indicated that Cauchy data on C do not fix
uniquely the solution of eq.133.

1.3 Replacement Rules
In this appendix we detail some of the replacement rules which we used in Mathematica
in order to obtain our results.

a Zeroth Order Equations of Motion

We consider a background of the form h0 =
(
Rb
r

)D−4
, as in equation (7.8) for r > r0,

with D > 4 and where Rb was defined in (7.10) and is a positive constant. We denote
by ~b the impact parameter, that is, the location in which we evaluate our equations of
motion. The value and first derivatives of h0 at this point are given by:

h0(~b) =
(
Rb
b

)D−4
,

∂ih0(~b) = −
(
Rb
b

)D−4 (D − 4)
b2

bi,

∂i∂jh0(~b) = −
(
Rb
b

)D−4 (D − 4)
b4

(b2δij − (D − 2)bibj),

∂i∂j∂kh0(~b) =
(
Rb
b

)D−4 (D − 4)(D − 2)
b6

[
b2(δijbk + δjkbi + δikbj)

−Dbibjbk] ,

∂i∂j∂k∂lh0(~b) =
(
Rb
b

)D−4 (D − 4)(D − 2)
b8

[
−b2D(δijbkbl + . . . )

+b4(δklδij + . . . ) +D(D + 2)bibjbkbl
]
,

(.134)

where the . . . stands for all index permutations of a given tensor structure. At the
midpoint between two identical beams we obtain:

∂ih0(~b)→ ∂i(h0 + ĥ0)(~b) = ∂i(h0(~b) + h0(−~b)) = 0,

∂i∂jh0(~b)→ ∂i∂j(h0 + ĥ0)(~b) = 2∂i∂jh0(~b),

∂i∂j∂kh0(~b)→ ∂i∂j∂k(h0 + ĥ0)(~b) = 0,

∂i∂j∂k∂lh0(~b)→ ∂i∂j∂k∂l(h0 + ĥ0)(~b) = 2∂i∂j∂k∂lh0(~b).

(.135)
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Before we start, we reiterate a number of useful facts. First, (.135) implies that
the zeroth order Christoffel symbols (.120) and any even number of derivatives acting
on them vanish when evaluated at the midpoint between the two beams. With a little
abuse of notation we write:

Γ(0)
µνρ(~b) = 0, ∂α∂βΓ(0)

µνρ(~b) = 0, etc. (.136)

Similarly any odd number of derivatives acting on a zeroth order Riemann tensor
vanishes at the midpoint:

∂µR
(0)
αβγδ(~b) = 0, etc. (.137)

Finally, notice that there are no zero order quantities with lower v or upper u indices.
In order to make sure that h0 given in (7.8) is indeed a valid background we have

to make sure that it solves the equations of motion of the full extended gravity theory.
A sufficient condition is that the zeroth order equations of motion take the form (7.7).
This is the case for many of the theories studied in this paper. Since all zeroth order
quantities have two lower u indices and no lower v indices and since h0 does not
depend on u and v we have at most one h0 (and therefore, one Riemann or Ricci
tensor) contribution to the Euu equation of motion and no contributions to the other
components of the equations of motion. This is because we are left with lower u indices
which cannot be contracted. However it is always possible to have contributions to the
equations of motion of the form ∂4h0, ∂6h0 from additional space derivatives acting
on the Riemann tensor. We can use the following replacement rules:

∇α∇αRµν = −1
2
~∂4h0 , (.138)

∇α∇α∇β∇βRµν = −1
2
~∂6h0 . (.139)

For polynomials of third and fourth order in the Riemann or Ricci tensors we get
that the zeroth order equations of motion are automatically satisfied by our back-
ground since they contain at least two instances of the Riemann or Ricci tensors. The
contributions to the zeroth order equations of motion for all independent gravity ac-
tions containing one or two Riemann tensors and at most two covariant derivatives are
listed in Table .5.12

b First Order Equations of Motion

In this subsection we detail the rules used to simplify the equations of motion at
first order in the probe graviton contribution. We address separately rules which are
relevant for the equations of motion of actions with two and three Riemann tensors
and those which are relevant for actions with four Riemann tensors.

As explained in subsection 4.1, on our background and with the assumptions we
take regarding the polarisations, the only components of the higher curvature gravity
equations which are not automatically satisfied are Eij . We will use a set of rules to
simplify possible structures of Eij .

12We did not consider as independent, gravity actions which are related by integration by parts, use
of the second Bianchi identity or the addition of R3 terms which do not contribute to the equations
of motion at zeroth order in the probe graviton.
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Action Background equations
R −1

2
~∂2h0

R2 0

RabR
ab −1

2
~∂4h0

RabcdR
abcd −2~∂4h0

R∇c∇cR 0

Rab∇c∇cRab −1
2
~∂6h0

Table .5: Contributions to the zero order equations of motion.

Actions with Two or Three Riemann Tensors Using the statements of the pre-
vious subsection and the list of metric components, Christoffel symbols and Riemann
components found in appendix 1.1 one can derive the following set of rules for the
possible structures of Eij . We implemented these rules in Mathematica to obtain the
results of section 4.

The vanishing of R(0), R(1) and R
(0)
µν implies that up to first order in hij , any

contraction of an expression with the following tensor structure should vanish:

R = 0, RαβRγδ = 0, Rαβ∇γ∇δRεζ = 0. (.140)

The fact that there are no zero order quantities with lower v or upper u indices implies
that all expressions of the form:

RαβγδRρσκµRνζλξ = 0, (.141)

with all indices except for two of them contracted, vanish when they appear in the Eij
component of the equations of motion. This is only to be used in the R3 and R∇2R
actions. The reason is the following: after extracting all the metric factors, two of
the Riemann tensor are at zero order. Each one of them carries two lower u indices.
Since the only metric term with upper u indices is guv, this leaves us with four lower
v indices. Since no zero order terms have such indices and the first order Riemann
tensor can only absorb two of them, such contributions do not arise. The polarisation
condition εijbibj = 0 implies:

RαβγδRαβγδ = 0. (.142)

Using (.136) and (.137) it is also easy to show that:

∇αRβγδρ∇σRµνζλ = 0,
∇αRβγ∇σRµνζλ = 0,
∇αRβγ∇σRµν = 0.

(.143)
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Finally for the non-zero terms we denote:

T0
ij ≡ h0

kj
, hik,vv,

T1
ij ≡ ∆dT0

ij ,

Sij0 ≡ h0
ijkl
, hkl,vv,

(.144)

where ∆d ≡ −4(∂u∂v + h0∂
2
v), and obtain the following rules for terms of dimension

four:
RαβRµα

ν
β = 0,

RµαβγRναβγ = 2T0
µν + 2T0

νµ,

RµαβγRνβαγ = T0
µν + T0

νµ,

∇α∇αRµν = −1
2
∆2
dh

µν ,

(.145)

and of dimension six
Rναβγ∇γ∇βRµα = 0,
Rµα

ν
β∇γ∇γRαβ = 0,

Rαβ∇γ∇γRµανβ = 0,
Rαβ∇α∇βRµν = 0,
Rναβγ∇γ∇µRαβ = 0,
Rαβγδ∇β∇µRναγδ = −2Sµν ,
Rαβγδ∇δ∇βRµανγ = Sµν ,
Rναβγ∇ρ∇ρRµαβγ = 2 T1

µν ,

Rνγαβ∇γ∇βRµα = T1
µν ,

Rνβαγ∇γ∇βRµα = T1
µν ,

Rαβγδ∇µ∇νRαβγδ = 4Sµν ,
Rαβγδ∇µ∇νRαγβδ = 2Sµν ,
Rαβγδ∇δ∇µRναβγ = Sµν ,
Rναβγ∇δ∇δRµβαγ = T1

µν ,

∇α∇α∇β∇βRµν = −1
2
∆3
dh

µν ,

(.146)

with µ and ν restricted to the transverse directions. We derive the rules for the terms
of dimension six as follows. Splitting the covariant derivatives to partial derivatives
and Christoffel symbols, we obtain four different kinds of contributions: R∂2R, R2∂Γ,
RΓ∂R and R2Γ2. Due to the relations (.136) and (.137) the contributions of the
form RΓ∂R and RΓ2R vanish at first order in the probe graviton contribution. The
contributions of the form R2∂Γ are also always vanishing. This however, requires
working out explicitly the relevant index structures. The first contribution, of the
form R∂2R, does not vanish and gives the results listed above. We would also like to
point out that terms of the form gijφ, where φ is a scalar are automatically vanishing
using the same reasoning as in subsection 4.1.
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c Actions with Four Riemann Tensors

For actions with four Riemann tensors, the equations of motion can contain either four
Riemann (or Ricci) tensors, or alternatively three Riemann tensors and two covariant
derivatives. Terms in the equations of motion that contain four Riemann tensors have
vanishing contribution when evaluated on our background (7.8). This follows from the
fact that such contributions would have three h0 factors, accompanied by six lower u
indices. To contract them properly one must be able to absorb six lower v indices.
However we can absorb at most two lower v indices in the only Riemann tensor which
is first order in the probe graviton and two in the free indices of the equation of motion.

For the second possible type of contributions with three Riemann tensors and two
covariant derivatives we are only left with structures of the form R2∂2R. This is
derived using (.143) which is still valid due to the two beams setup. Focusing on
contributions to the transverse equations of motion Eij , we have two of the Riemann
tensors that have to be of zero order in the probe graviton contributions and are
therefore associated with four lower u indices. We are left with four lower v indices
that need to be absorbed. Two of them can be absorbed in a first order term and the
two others in the derivatives. As such, the derivatives cannot have free indices and
have to be of the form ∂v.

Requiring two v indices to be absorbed by a first order term forces it to be a
Riemann tensor (since the Ricci tensor cannot absorb such v indices). We therefore
have:

RαβγδRρσκµ∇ζ∇λRνξ = 0,
RαβRρσκµ∇ζ∇λRνξ = 0,
RαβRρσ∇ζ∇λRνξ = 0,
RαβRρσ∇ζ∇λRγδνξ = 0,
RαβRρσκµ∇ζ∇λRνξγδ = 0.

(.147)

The requirement the derivatives must absorb two lower v indices automatically forbids
terms of the form RR∇α∇αR, RR∇∇µR and RR∇µ∇νR where µ and ν are the free
transverse indices of the equation of motion.

We also notice that the two Riemann tensors outside of the derivatives must be at
zeroth order. This is because the derivative of a zeroth order quantity with respect to
v is vanishing, which forces the Riemann inside the derivatives to be first order. Hence
we cannot contract indices which are not transverse between the two Riemann tensors
outside the derivatives. Remembering that the free indices are transverse we obtain:

Rα
δρσRναβγ∇σ∇γRµδβρ = 0,

Rα
δρσRναβγ∇γ∇βRµδρσ = 0,

Rα
δρσRναβγ∇δ∇γRµβρσ = 0,

Rα
δρσRναβγ∇σ∇δRµρβγ = 0,

RναβγRα
δρσ∇σ∇γRµρβδ = 0.

(.148)
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Direct calculation then leads to

Rβ
δρσRναβγ∇σ∇γRµραδ = 0,

Rβ
δρσRναβγ∇σ∇αRµργδ = 0,

(.149)

RµαβγRνδρσ∇γ∇βRαδρσ = 0,
RναβγRα

δρσ∇γ∇βRµδρσ = 0,
(.150)

RµανβRγδρσ∇δ∇αRβγρσ = 0,
RµανβRγδρσ∇δ∇βRαγρσ = 0,

(.151)

RµανβRγδρσ∇β∇αRγδρσ = 0,
RµανβRγδρσ∇σ∇δRαγβρ = 0,

(.152)

RαβγδRαβ
ρσ∇σ∇δRµγνρ = 0, (.153)

RαβγδRα
ρσξ∇ξ∇ρRβγδσ = 0, (.154)

Finally, defining:

U0
ij = h0

lk
, h0 ,k

jhi l,v4 ,

W0
ij = h0

ik
, h0

jl
, hkl,v4 ,

V0
ij = h0

kl
, h0 ,klh

ij
,v4 ,

(.155)

the non-vanishing contributions are given by:

RαβγδR
ρβσδ∇σ∇γRµανρ = −2 V0

µν ,

Rα
ρ
γ
σRαβγδ∇σ∇ρRµβνδ = −2 V0

µν ,

Rα
ρ
γ
σRαβγδ∇σ∇δRµβνρ = −2 V0

µν ,

Rα
ρ
γ
σRαβγδ∇ρ∇δRµβνσ = −2 V0

µν ,

(.156)

RαβγδR
νσαρ∇σ∇ρRµβγδ = −4 U0

µν , (.157)
Rβ

δρσRναβγ∇σ∇γRµδαρ = 2 U0
µν ,

Rβ
δρσRναβγ∇σ∇δRµαγρ = 2 U0

µν ,

Rβ
δρσRναβγ∇σ∇αRµδγρ = 2 U0

µν ,

Rβ
δρσRναβγ∇σ∇δRµγαρ = 2 U0

µν ,

(.158)

Rβ
δρσRναβγ∇γ∇αRµδρσ = −4 U0

µν ,

Rβ
δρσRναβγ∇δ∇γRµαρσ = −4 U0

µν ,

Rβ
δρσRναβγ∇δ∇αRµγρσ = −4 U0

µν ,

(.159)

RµαβγRνδρσ∇γ∇αRβδρσ = −4 W0
µν , (.160)

RµαβγRνδρσ∇σ∇γRαρβδ = 2 W0
µν , (.161)

RµαβγRνδρσ∇δ∇αRβγρσ = −8 W0
µν , (.162)

where some of the rules are related using the second Bianchi identity.
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Sujet : Unconventional particle behaviours in supersymmetric theories
and gravity

Résumé : Nous étudions dans un premier temps deux théories supersymétriques basées sur la
présence de Gauginos de Dirac à travers deux scénarios à la phénoménologie bien distincte. La
première, dite de ”Fake Split SUSY”, se caractérise par un spectre de particules scindé entre
une partie à l’échelle électrofaible et l’autre plus lourde. Ces modèles prédisent avec une grande
précision la masse du boson de Higgs et sont compatibles avec de nombreux résultats de cos-
mologie, au prix d’un spectre très peu naturel. La seconde présente un scénario supersymétrique
dont l’un des boson scalaire pourrait être identifié avec la résonance à 750 GeV observée au LHC.
Dans un second temps, nous analysons d’abord la propagation d’un champ massif de spin 3/2
dans un fluide sous-jacent (par exemple le gravitino lorsque la supergravité est couplée au fluide).
Nous montrons que les degrés de liberté correspondant aux différentes hélicités se propagent
avec des vitesses distinctes. Nous étudions ensuite la question de la vitesse des gravitons dans
les théories de gravité étendue dans lesquelles, en sus du Lagrangien d’Einstein-Hilbert, nous
ajoutons des opérateurs construits à partir de tenseurs de Riemann.

Subject : Unconventional particle behaviours in supersymmetric
theories and gravity

Abstract : We will first focus on supersymmetric theories with Dirac Gaugino masses. We
investigate two advantages of such models. First, the possibility to reconcile the measured Higgs
mass with an arbitrary large scale of supersymmetry breaking. Second, we show how the scalar
singlet present in such models is a sound candidate for a resonance explaining the 750 GeV
diphoton excess observed by the LHC experiments.
In a second part, we start by discussing the propagation of a massive spin 3/2 state in a fluid
(for instance the gravitino when supergravity is coupled to a background fluid). We show that
the degrees of freedom corresponding to different helicities travel with different velocities. We
then discuss the separate issue of graviton speed in extended gravity theories where the usual
Einstein-Hilbert Lagrangian is supplemented by various higher order terms constructed from
Riemann tensors.
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