M. Wilkins, J. Sanchez, A. Gooley, R. Appel, I. Humphery-smith et al., Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it:19?50. 2. Consortium IHGS. Finishing the euchromatic sequence of the human genome Proteoform: a single term describing protein complexity, 931?45. 3. Smith LM, Kelleher NL, pp.186-193, 1996.

P. Legrain, R. Aebersold, A. Archakov, A. Bairoch, K. Bala et al., The Human Proteome Project: Current State and Future Direction, Mol Cell Proteomics, vol.10, issue.7, pp.111-009993, 2011.

Y. Paik, S. Jeong, G. Omenn, M. Uhlen, S. Hanash et al., The Chromosome-Centric Human Proteome Project for cataloging proteins encoded in the genome, Nature Biotechnology, vol.9, issue.3, pp.221-224, 2012.
DOI : 10.1083/jcb.201004052

R. Aebersold, G. Bader, A. Edwards, J. Van-eyk, M. Kussmann et al., The Biology/Disease-driven Human Proteome Project (B/D-HPP): Enabling Protein Research for the Life Sciences Community, Journal of Proteome Research, vol.12, issue.1, pp.23-30, 2013.
DOI : 10.1021/pr301151m

N. Anderson and N. Anderson, Proteome and proteomics: New technologies, new concepts, and new words, Electrophoresis, vol.275, issue.11, pp.1853-61, 1998.
DOI : 10.1002/elps.1150191103

G. Corthals, V. Wasinger, D. Hochstrasser, and J. Sanchez, The dynamic range of protein expression: A challenge for proteomic research, Electrophoresis, vol.17, issue.6, pp.1104-1119, 2000.
DOI : 10.1002/(SICI)1522-2683(20000401)21:6<1104::AID-ELPS1104>3.0.CO;2-C

H. Lachmann, D. Booth, S. Booth, A. Bybee, J. Gilbertson et al., Misdiagnosis of Hereditary Amyloidosis as AL (Primary) Amyloidosis, New England Journal of Medicine, vol.346, issue.23, pp.1786-91, 2002.
DOI : 10.1056/NEJMoa013354

A. Solomon, C. Murphy, and P. Westermark, Misclassification of amyloidosis is unwarranted, Blood, vol.108, issue.2, pp.776-783, 2006.
DOI : 10.1182/blood-2006-02-005462

R. Comenzo, P. Zhou, M. Fleisher, B. Clark, and J. Teruya-feldstein, Seeking confidence in the diagnosis of systemic AL (Ig light-chain) amyloidosis: patients can have both monoclonal gammopathies and hereditary amyloid proteins, Blood, vol.107, issue.9, pp.3489-91, 2006.
DOI : 10.1182/blood-2005-10-4148

R. Linke, On Typing Amyloidosis Using Immunohistochemistry. Detailled Illustrations, Review and a Note on Mass Spectrometry, Progress in Histochemistry and Cytochemistry, vol.47, issue.2, pp.61-132, 2012.
DOI : 10.1016/j.proghi.2012.03.001

J. Theis, S. Dasari, J. Vrana, P. Kurtin, and A. Dogan, Shotgun-proteomics-based clinical testing for diagnosis and classification of amyloidosis, Journal of Mass Spectrometry, vol.11, issue.6, pp.1067-77, 2013.
DOI : 10.1002/jms.3264

P. Picotti and R. Aebersold, Selected reaction monitoring???based proteomics: workflows, potential, pitfalls and future directions, Nature Methods, vol.56, issue.6, pp.555-66, 2012.
DOI : 10.1038/nmeth.2015

P. Picotti, B. Bodenmiller, and R. Aebersold, Proteomics meets the scientific method, Nature Methods, vol.30, issue.1, pp.24-31, 2013.
DOI : 10.1038/nmeth.2291

A. Peterson, J. Russell, D. Bailey, M. Westphall, and J. Coon, Parallel Reaction Monitoring for High Resolution and High Mass Accuracy Quantitative, Targeted Proteomics, Molecular & Cellular Proteomics, vol.11, issue.11
DOI : 10.1074/mcp.O112.020131

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494192

S. Gallien, E. Duriez, C. Crone, M. Kellmann, T. Moehring et al., Targeted Proteomic Quantification on Quadrupole-Orbitrap Mass Spectrometer, Molecular & Cellular Proteomics, vol.11, issue.12, pp.1709-1732, 2012.
DOI : 10.1074/mcp.O112.019802

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518128

R. Virchow, Ueber eine im Gehirn und Rückenmark des Menschen aufgefundene Substanz mit der chemischen Reaction der Cellulose, Arch Für Pathol Anat Physiol Für Klin Med. 1 mars, vol.6, issue.1, pp.135-143, 1854.
DOI : 10.1007/bf01930815

H. Bennhold, Eine spezifische Amyloidfärbung mit Kongorot, Münch Med Wochenschr, vol.69, pp.1537-1545, 1922.

A. Cohen and E. Calkins, Electron Microscopic Observations on a Fibrous Component in Amyloid of Diverse Origins, Nature, vol.324, issue.4669, pp.1202-1205, 1959.
DOI : 10.1038/1831202a0

M. Pepys, R. Dyck, F. De-beer, M. Skinner, and A. Cohen, Binding of serum amyloid Pcomponent (SAP) by amyloid fibrils, Clin Exp Immunol. nov, vol.38, issue.2, pp.284-93, 1979.

A. Jaccard and J. Fermand, Amyloses, EMC - H??matologie, vol.1, issue.2, pp.46-58, 2004.
DOI : 10.1016/j.emch.2004.02.001

URL : https://hal.archives-ouvertes.fr/hal-00453323

N. Iranchahr, Amylose et nécrose linguale : présentation d'un premier cas?, 2007.

E. Eanes and G. Glenner, X-RAY DIFFRACTION STUDIES ON AMYLOID FILAMENTS, Journal of Histochemistry & Cytochemistry, vol.16, issue.11, pp.673-680, 1968.
DOI : 10.1177/16.11.673

H. Lebrazi, E. Hachulla, and R. Saïle, M??canismes de l'amylose et prot??ines impliqu??es, La Revue de M??decine Interne, vol.21, issue.1, pp.35-49, 2000.
DOI : 10.1016/S0248-8663(00)87227-6

G. Grateau, J. Verine, M. Delpech, and M. Ries, Les amyloses, un mod??le de maladie du repliement des prot??ines, m??decine/sciences, vol.21, issue.6-7, pp.6-7627, 2005.
DOI : 10.1051/medsci/2005216-7627

J. Hardy and D. Selkoe, The Amyloid Hypothesis of Alzheimer's Disease: Progress and Problems on the Road to Therapeutics, Science, vol.297, issue.5580, pp.353-359, 2002.
DOI : 10.1126/science.1072994

R. Kayed, E. Head, J. Thompson, T. Mcintire, S. Milton et al., Common Structure of Soluble Amyloid Oligomers Implies Common Mechanism of Pathogenesis, Science, vol.300, issue.5618, pp.486-495, 2003.
DOI : 10.1126/science.1079469

H. Lee, G. Casadesus, X. Zhu, A. Takeda, G. Perry et al., Challenging the Amyloid Cascade Hypothesis: Senile Plaques and Amyloid-?? as Protective Adaptations to Alzheimer Disease, Annals of the New York Academy of Sciences, vol.69, issue.1, pp.1-4, 2004.
DOI : 10.1196/annals.1297.001

G. Grateau, Physiopathologie des amyloses, Rev Rhum. avr, vol.67, issue.3, pp.189-96, 2000.

J. Sipe, M. Benson, J. Buxbaum, S. Ikeda, G. Merlini et al., Amyloid fibril protein nomenclature: 2012 recommendations from the Nomenclature Committee of the International Society of Amyloidosis, Amyloid, vol.9, issue.1, pp.167-70, 2012.
DOI : 10.1126/science.1173155

R. Ren, Z. Hong, H. Gong, K. Laporte, M. Skinner et al., Role of Glycosaminoglycan Sulfation in the Formation of Immunoglobulin Light Chain Amyloid Oligomers and Fibrils, Journal of Biological Chemistry, vol.285, issue.48, pp.37672-82, 2010.
DOI : 10.1074/jbc.M110.149575

J. Emsley, H. White, O. Hara, B. Oliva, G. Srinivasan et al., Structure of pentameric human serum amyloid P component, Nature, vol.367, issue.6461, pp.338-383, 1994.
DOI : 10.1038/367338a0

F. Coria, E. Castaño, F. Prelli, M. Larrondo-lillo, S. Van-duinen et al., Isolation and characterization of amyloid P component from Alzheimer's disease and other types of cerebral amyloidosis, Lab Investig J Tech Methods Pathol. avr, vol.58, issue.4, pp.454-462, 1988.

H. Hamazaki, Ca2+-mediated association of human serum amyloid P component with heparan sulfate and dermatan sulfate, J Biol Chem. 2 mai, vol.262, issue.4, pp.1456-60, 1987.

H. Hamazaki, Calcium-dependent polymerization of human serum amyloid P component is inhibited by heparin and dextran sulfate, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.998, issue.3, pp.231-236, 1989.
DOI : 10.1016/0167-4838(89)90279-3

M. Pepys, D. Booth, W. Hutchinson, J. Gallimore, I. Collins et al., Amyloid P component. A critical review, Amyloid, vol.24, issue.4, pp.274-95, 1997.
DOI : 10.1002/aja.1001760203

M. Pepys, T. Rademacher, S. Amatayakul-chantler, P. Williams, G. Noble et al., Human serum amyloid P component is an invariant constituent of amyloid deposits and has a uniquely homogeneous glycostructure., Proceedings of the National Academy of Sciences, vol.91, issue.12, pp.5602-5608, 1994.
DOI : 10.1073/pnas.91.12.5602

G. Tennent, L. Lovat, and M. Pepys, Serum amyloid P component prevents proteolysis of the amyloid fibrils of Alzheimer disease and systemic amyloidosis., Proceedings of the National Academy of Sciences, vol.92, issue.10, pp.4299-303, 1995.
DOI : 10.1073/pnas.92.10.4299

M. Colombat and M. Stern, Maladies pulmonaires et d??p??ts de cha??nes l??g??res non amylo??des, Revue des Maladies Respiratoires, vol.30, issue.7, pp.524-530, 2013.
DOI : 10.1016/j.rmr.2013.04.019

M. Colombat, S. Holifanjaniaina, F. Guillonneau, H. Mal, S. Hirschi et al., Mass Spectrometry???based Proteomic Analysis: A Good Diagnostic Tool for Cystic Lung Light Chain Deposition Disease, American Journal of Respiratory and Critical Care Medicine, vol.188, issue.3, pp.404-409, 2013.
DOI : 10.1164/rccm.201301-0071LE

N. Magy and . Amylose, Amylose AA??: donn??es actuelles sur la physiopathologie, La Revue de M??decine Interne, vol.25, issue.2, pp.129-163, 2004.
DOI : 10.1016/S0248-8663(03)00251-0

H. Asl, L. Liepnieks, J. , H. Asl, K. Uemichi et al., Hereditary Amyloid Cardiomyopathy Caused by a Variant Apolipoprotein A1, Am J Pathol. janv, vol.154, issue.1, pp.221-228, 1999.

P. Westermark, E. Davey, K. Lindbom, and S. Enqvist, Subcutaneous fat tissue for diagnosis and studies of systemic amyloidosis, Acta Histochemica, vol.108, issue.3, pp.209-222, 2006.
DOI : 10.1016/j.acthis.2006.03.011

I. Gameren, B. Hazenberg, J. Bijzet, and M. Rijswijk, Diagnostic accuracy of subcutaneous abdominal fat tissue aspiration for detecting systemic amyloidosis and its utility in clinical practice, Arthritis & Rheumatism, vol.77, issue.6, pp.2015-2036, 2006.
DOI : 10.1002/art.21902

J. Vrana, J. Theis, S. Dasari, O. Mereuta, A. Dispenzieri et al., Clinical diagnosis and typing of systemic amyloidosis in subcutaneous fat aspirates by mass spectrometry-based proteomics, Haematologica, vol.99, issue.7, pp.1239-1286, 2014.
DOI : 10.3324/haematol.2013.102764

F. Rodriguez, J. Gamez, J. Vrana, J. Theis, C. Giannini et al., Immunoglobulin derived depositions in the nervous system: novel mass spectrometry application for protein characterization in formalin-fixed tissues, Laboratory Investigation, vol.12, issue.10, pp.1024-1061, 2008.
DOI : 10.1038/labinvest.3700559

C. Murphy, M. Eulitz, R. Hrncic, K. Sletten, P. Westermark et al., Chemical Typing of Amyloid Protein Contained in Formalin-Fixed Paraffin-Embedded Biopsy Specimens, American Journal of Clinical Pathology, vol.116, issue.1, pp.135-177, 2001.
DOI : 10.1309/TWBM-8L4E-VK22-FRH5

J. Vrana, J. Gamez, B. Madden, J. Theis, H. Bergen et al., Classification of amyloidosis by laser microdissection and mass spectrometry-based proteomic analysis in clinical biopsy specimens, Blood, vol.114, issue.24, pp.4957-4966, 2009.
DOI : 10.1182/blood-2009-07-230722

S. Sethi, J. Theis, N. Leung, A. Dispenzieri, S. Nasr et al., Mass Spectrometry-Based Proteomic Diagnosis of Renal Immunoglobulin Heavy Chain Amyloidosis, Clinical Journal of the American Society of Nephrology, vol.5, issue.12, pp.2180-2187, 2010.
DOI : 10.2215/CJN.02890310

F. Lavatelli and J. Vrana, Proteomic typing of amyloid deposits in systemic amyloidoses, Amyloid, vol.18, issue.4, pp.177-82, 2011.
DOI : 10.1016/j.ajpath.2011.06.024

S. Sethi, J. Vrana, J. Theis, N. Leung, A. Sethi et al., Laser microdissection and mass spectrometry???based proteomics aids the diagnosis and typing of renal amyloidosis, Kidney International, vol.82, issue.2, pp.226-260, 2012.
DOI : 10.1038/ki.2012.108

J. Vrana, J. Theis, S. Dasari, O. Mereuta, A. Dispenzieri et al., Clinical diagnosis and typing of systemic amyloidosis in subcutaneous fat aspirates by mass spectrometry-based proteomics, Haematologica, vol.99, issue.7, pp.1239-1286, 2014.
DOI : 10.3324/haematol.2013.102764

D. Rowczenio, A. Dogan, J. Theis, J. Vrana, H. Lachmann et al., Amyloidogenicity and Clinical Phenotype Associated with Five Novel Mutations in Apolipoprotein A-I, The American Journal of Pathology, vol.179, issue.4, pp.1978-87, 2011.
DOI : 10.1016/j.ajpath.2011.06.024

D. Loo, P. Mollee, P. Renaut, and M. Hill, Proteomics in Molecular Diagnosis: Typing of Amyloidosis, Journal of Biomedicine and Biotechnology, vol.26, issue.2, 2011.
DOI : 10.1016/S0378-4347(01)00100-1

P. Mollee, P. Renaut, D. Gottlieb, and H. Goodman, How to diagnose amyloidosis, Internal Medicine Journal, vol.114, issue.Suppl 1, pp.7-17, 2014.
DOI : 10.1111/imj.12288

J. Wi?niewski, K. Du?, and M. Mann, Proteomic workflow for analysis of archival formalinfixed and paraffin-embedded clinical samples to a depth of 10 000 proteins, PROTEOMICS ? Clin Appl. 1 avr, vol.7, pp.3-4225, 2013.

S. Shi, C. Liu, and C. Taylor, Standardization of Immunohistochemistry for Formalin-fixed, Paraffin-embedded Tissue Sections Based on the Antigen-retrieval Technique: From Experiments to Hypothesis, Journal of Histochemistry & Cytochemistry, vol.102, issue.2, pp.105-114, 2007.
DOI : 10.1097/01.0000146524.74402.a4

A. Bose, M. Manhas, B. Banik, and E. Robb, Microwave-induced organic reaction enhancement (more) chemistry: Techniques for rapid, safe and inexpensive synthesis, Research on Chemical Intermediates, vol.57, issue.1, pp.1-11, 1994.
DOI : 10.1163/156856794X00027

W. Sun, S. Gao, L. Wang, Y. Chen, S. Wu et al., Microwave-assisted Protein Preparation and Enzymatic Digestion in Proteomics, Molecular & Cellular Proteomics, vol.5, issue.4, pp.769-76, 2006.
DOI : 10.1074/mcp.T500022-MCP200

D. López-ferrer, J. Capelo, and J. Vázquez, Ultra Fast Trypsin Digestion of Proteins by High Intensity Focused Ultrasound, Journal of Proteome Research, vol.4, issue.5, pp.1569-74, 2005.
DOI : 10.1021/pr050112v

D. López-ferrer, B. Cañas, J. Vázquez, C. Lodeiro, R. Otero et al., Sample treatment for protein identification by mass spectrometry-based techniques, TrAC Trends in Analytical Chemistry, vol.25, issue.10, pp.996-1005, 2006.
DOI : 10.1016/j.trac.2006.05.015

H. Santos, R. Otero, L. Fernandes, G. Vale, M. Rivas et al., Improving Sample Treatment for In-Solution Protein Identification by Peptide Mass Fingerprint Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry, Journal of Proteome Research, vol.6, issue.9, pp.3393-3402, 2007.
DOI : 10.1021/pr0702518

R. Rial-otero, R. Carreira, F. Cordeiro, A. Moro, H. Santos et al., Ultrasonic assisted protein enzymatic digestion for fast protein identification by matrixassisted laser desorption/ionization time-of-flight mass spectrometry: Sonoreactor versus ultrasonic probe, J Chromatogr A. 28 sept, vol.1166, pp.1-2101, 2007.

M. Carrera, B. Can-as, D. Lo-pez-ferrer, C. Pin-eiro, J. Va-zquez et al., Fast Monitoring of Species-Specific Peptide Biomarkers Using High-Intensity-Focused-Ultrasound-Assisted Tryptic Digestion and Selected MS/MS Ion Monitoring, Analytical Chemistry, vol.83, issue.14, pp.5688-95, 2011.
DOI : 10.1021/ac200890w

K. Suslick, M. Fang, T. Hyeon, and M. Mdleleni, Applications of sonochemistry to materials synthesis. Sonochemistry and sonoluminescence [Internet], pp.978-94, 1007.

W. Liu, D. Huang, P. Yi, and Y. Li, Status and Prospects of Concentrated Organic Wastewater Degradation, InTech. Kuan-Yeow Show and Xinxin, 2012.
DOI : 10.5772/31990

D. López-ferrer, T. Heibeck, K. Petritis, K. Hixson, W. Qian et al., Rapid Sample Processing for LC-MS-Based Quantitative Proteomics Using High Intensity Focused Ultrasound, Journal of Proteome Research, vol.7, issue.9, pp.3860-3867, 2008.
DOI : 10.1021/pr800161x

B. Chait, Mass Spectrometry: Bottom-Up or Top-Down? Science, 10 juin, vol.314, issue.5796, pp.65-71, 2006.

R. Zubarev, N. Kelleher, and F. Mclafferty, Electron Capture Dissociation of Multiply Charged Protein Cations. A Nonergodic Process, Journal of the American Chemical Society, vol.120, issue.13, pp.3265-3271, 1998.
DOI : 10.1021/ja973478k

J. Syka, J. Coon, M. Schroeder, J. Shabanowitz, and D. Hunt, Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry, Proceedings of the National Academy of Sciences, vol.101, issue.26, pp.9528-9561, 2004.
DOI : 10.1073/pnas.0402700101

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC470779

J. Madsen, M. Gardner, S. Smith, A. Ledvina, J. Coon et al., Top-Down Protein Fragmentation by Infrared Multiphoton Dissociation in a Dual Pressure Linear Ion Trap, Analytical Chemistry, vol.81, issue.21, pp.8677-86, 2009.
DOI : 10.1021/ac901554z

J. Savaryn, A. Catherman, P. Thomas, M. Abecassis, and N. Kelleher, The emergence of top-down proteomics in clinical research, Genome Medicine, vol.5, issue.6, p.53, 2013.
DOI : 10.1373/clinchem.2010.156976

A. Hesse, S. Ndiaye, and J. Vinh, Reversed-Phase HPLC and Hyphenated Analytical Strategies for Peptidomics, pp.978-979, 2011.
DOI : 10.1007/978-1-61779-310-3_13

URL : https://hal.archives-ouvertes.fr/hal-00858154

A. Nesvizhskii, A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics, Journal of Proteomics, vol.73, issue.11, pp.2092-123, 2010.
DOI : 10.1016/j.jprot.2010.08.009

D. Perkins, D. Pappin, D. Creasy, and J. Cottrell, Probability-based protein identification by searching sequence databases using mass spectrometry data, Electrophoresis, vol.447, issue.18, pp.3551-67, 1999.
DOI : 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2

J. Eng, A. Mccormack, I. Yates, and . Jr, An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database, Journal of the American Society for Mass Spectrometry, vol.7, issue.11, pp.976-89, 1994.
DOI : 10.1016/1044-0305(94)80016-2

J. Cox, N. Neuhauser, A. Michalski, R. Scheltema, J. Olsen et al., Andromeda: A Peptide Search Engine Integrated into the MaxQuant Environment, Journal of Proteome Research, vol.10, issue.4, pp.1794-805, 2011.
DOI : 10.1021/pr101065j

C. Jimenez, L. Huang, Y. Qiu, A. Burlingame, J. Coligan et al., Searching Sequence Databases Over the Internet: Protein Identification Using MS-Tag, Disponible sur, 2001.
DOI : 10.1002/0471140864.ps1606s14

N. Zhang, R. Aebersold, and B. Schwikowski, ProbID: A probabilistic algorithm to identify peptides through sequence database searching using tandem mass spectral data, PROTEOMICS, vol.70, issue.10, pp.1406-1418, 2002.
DOI : 10.1002/1615-9861(200210)2:10<1406::AID-PROT1406>3.0.CO;2-9

R. Craig and R. Beavis, TANDEM: matching proteins with tandem mass spectra, Bioinformatics, vol.20, issue.9, pp.1466-1473, 2004.
DOI : 10.1093/bioinformatics/bth092

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.335.8256

L. Geer, S. Markey, J. Kowalak, L. Wagner, M. Xu et al., Open Mass Spectrometry Search Algorithm, Journal of Proteome Research, vol.3, issue.5, pp.958-64, 2004.
DOI : 10.1021/pr0499491

URL : http://arxiv.org/abs/q-bio/0406002

L. Zamdborg, R. Leduc, K. Glowacz, Y. Kim, V. Viswanathan et al., ProSight PTM 2.0: improved protein identification and characterization for top down mass spectrometry, Nucleic Acids Research, vol.35, issue.Web Server, pp.701-707, 2007.
DOI : 10.1093/nar/gkm371

S. Tanner, H. Shu, A. Frank, L. Wang, E. Zandi et al., InsPecT:?? Identification of Posttranslationally Modified Peptides from Tandem Mass Spectra, Analytical Chemistry, vol.77, issue.14, pp.4626-4665, 2005.
DOI : 10.1021/ac050102d

P. Poullet, S. Carpentier, and E. Barillot, myProMS, a web server for management and validation of mass spectrometry-based proteomic data, PROTEOMICS, vol.5, issue.15, pp.2553-2559, 2007.
DOI : 10.1002/pmic.200600784

B. Ma, K. Zhang, C. Hendrie, C. Liang, M. Li et al., PEAKS: powerful software for peptidede novo sequencing by tandem mass spectrometry, Rapid Communications in Mass Spectrometry, vol.11, issue.20, pp.2337-2379, 2003.
DOI : 10.1002/rcm.1196

A. Bairoch and B. Boeckmann, The SWISS-PROT protein sequence data bank, Nucleic Acids Research, vol.19, issue.suppl, pp.2247-2256, 1991.
DOI : 10.1093/nar/19.suppl.2247

J. Elias and S. Gygi, Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry, Nature Methods, vol.4, issue.3, pp.207-221, 2007.
DOI : 10.1038/nmeth1019

S. Ong, B. Blagoev, I. Kratchmarova, D. Kristensen, H. Steen et al., Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics, Molecular & Cellular Proteomics, vol.1, issue.5, pp.376-86, 2002.
DOI : 10.1074/mcp.M200025-MCP200

M. Bantscheff, S. Lemeer, M. Savitski, and B. Kuster, Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present, Analytical and Bioanalytical Chemistry, vol.8, issue.11, pp.939-65, 2012.
DOI : 10.1007/s00216-012-6203-4

S. Ong and M. Mann, A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC), Nature Protocols, vol.3, issue.6, pp.2650-60, 2007.
DOI : 10.1038/nprot.2006.427

T. Geiger, J. Cox, P. Ostasiewicz, J. Wisniewski, and M. Mann, Super-SILAC mix for quantitative proteomics of human tumor tissue, Nature Methods, vol.26, issue.5, pp.383-388, 2010.
DOI : 10.1038/nmeth.1446

K. Rose, M. Simona, R. Offord, C. Prior, B. Otto et al., -interferon and identifies a proteolytically clipped ??-interferon that retains full antiviral activity, Biochemical Journal, vol.215, issue.2, pp.273-280, 1983.
DOI : 10.1042/bj2150273

URL : https://hal.archives-ouvertes.fr/hal-00957274

X. Yao, A. Freas, J. Ramirez, P. Demirev, and C. Fenselau, O Labeling for Comparative Proteomics:?? Model Studies with Two Serotypes of Adenovirus, Analytical Chemistry, vol.73, issue.13, pp.2836-2878, 2001.
DOI : 10.1021/ac001404c

S. Gygi, B. Rist, S. Gerber, F. Turecek, M. Gelb et al., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags, Nature Biotechnology, vol.17, issue.10, pp.994-1003, 1999.
DOI : 10.1038/13690

K. Hansen, G. Schmitt-ulms, R. Chalkley, J. Hirsch, M. Baldwin et al., Mass Spectrometric Analysis of Protein Mixtures at Low Levels Using Cleavable 13C- Isotope-coded Affinity Tag and Multidimensional Chromatography, Mol Cell Proteomics. 5 janv, vol.2, issue.5, pp.299-314, 2003.

C. Murray, H. Uhrigshardt, O. Meally, R. Cole, R. Eyk et al., Identification and Quantification of S-Nitrosylation by Cysteine Reactive Tandem Mass Tag Switch Assay, Molecular & Cellular Proteomics, vol.11, issue.2, pp.111-013441, 2012.
DOI : 10.1074/mcp.M111.013441

P. Ross, Y. Huang, J. Marchese, B. Williamson, K. Parker et al., Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents, Molecular & Cellular Proteomics, vol.3, issue.12, pp.1154-69, 2004.
DOI : 10.1074/mcp.M400129-MCP200

A. Thompson, J. Schäfer, K. Kuhn, S. Kienle, J. Schwarz et al., Tandem Mass Tags:?? A Novel Quantification Strategy for Comparative Analysis of Complex Protein Mixtures by MS/MS, Analytical Chemistry, vol.75, issue.8, pp.1895-904, 2003.
DOI : 10.1021/ac0262560

V. Brun, C. Masselon, J. Garin, and A. Dupuis, Isotope dilution strategies for absolute quantitative proteomics, Journal of Proteomics, vol.72, issue.5, pp.740-749, 2009.
DOI : 10.1016/j.jprot.2009.03.007

R. Beynon, M. Doherty, J. Pratt, and S. Gaskell, Multiplexed absolute quantification in proteomics using artificial QCAT proteins of concatenated signature peptides, Nature Methods, vol.22, issue.8, pp.587-596, 2005.
DOI : 10.1038/nmeth774

S. Gerber, J. Rush, O. Stemman, M. Kirschner, and S. Gygi, Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS, Proceedings of the National Academy of Sciences, vol.100, issue.12, pp.6940-6945, 2003.
DOI : 10.1073/pnas.0832254100

K. Neilson, N. Ali, S. Muralidharan, M. Mirzaei, M. Mariani et al., Less label, more free: Approaches in label-free quantitative mass spectrometry, PROTEOMICS, vol.8, issue.4, pp.535-53, 2011.
DOI : 10.1002/pmic.201000553

H. Liu, R. Sadygov, and J. Yates, A Model for Random Sampling and Estimation of Relative Protein Abundance in Shotgun Proteomics, Analytical Chemistry, vol.76, issue.14, pp.4193-201, 2004.
DOI : 10.1021/ac0498563

J. Rappsilber, U. Ryder, A. Lamond, and M. Mann, Large-Scale Proteomic Analysis of the Human Spliceosome, Genome Research, vol.12, issue.8, pp.1231-1276, 2002.
DOI : 10.1101/gr.473902

Y. Ishihama, Y. Oda, T. Tabata, T. Sato, T. Nagasu et al., Exponentially Modified Protein Abundance Index (emPAI) for Estimation of Absolute Protein Amount in Proteomics by the Number of Sequenced Peptides per Protein, Molecular & Cellular Proteomics, vol.4, issue.9, pp.1265-72, 2005.
DOI : 10.1074/mcp.M500061-MCP200

P. Lu, C. Vogel, R. Wang, X. Yao, and E. Marcotte, Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation, Nature Biotechnology, vol.23, issue.1, pp.117-141, 2007.
DOI : 10.1038/nbt1270

N. Griffin, Y. J. Long, F. Oh, P. Shore, S. Li et al., Label-free, normalized quantification of complex mass spectrometry data for proteomic analysis, Nature Biotechnology, vol.67, issue.1, pp.83-92, 2010.
DOI : 10.1038/nbt.1592

J. Silva, M. Gorenstein, G. Li, J. Vissers, and S. Geromanos, Absolute Quantification of Proteins by LCMSE: A Virtue of Parallel ms Acquisition, Molecular & Cellular Proteomics, vol.5, issue.1, pp.144-56, 2006.
DOI : 10.1074/mcp.M500230-MCP200

J. Silva, R. Denny, C. Dorschel, M. Gorenstein, I. Kass et al., Quantitative Proteomic Analysis by Accurate Mass Retention Time Pairs, Analytical Chemistry, vol.77, issue.7, pp.2187-200, 2005.
DOI : 10.1021/ac048455k

L. Gillet, P. Navarro, S. Tate, H. Röst, N. Selevsek et al., Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis, Molecular & Cellular Proteomics, vol.11, issue.6, pp.111-016717, 2012.
DOI : 10.1074/mcp.O111.016717

A. Thompson, M. Abu, and D. Hanger, Key issues in the acquisition and analysis of qualitative and quantitative mass spectrometry data for peptide-centric proteomic experiments, Amino Acids, vol.8, issue.3, pp.1075-85, 2012.
DOI : 10.1007/s00726-012-1287-x

M. Chevallet, V. Santoni, A. Poinas, D. Rouquié, A. Fuchs et al., New zwitterionic detergents improve the analysis of membrane proteins by two-dimensional electrophoresis, Electrophoresis, vol.108, issue.11, pp.1901-1910, 1998.
DOI : 10.1002/elps.1150191108

T. Rabilloud, R. Tyther, and D. Sheehan, Solubilization of Proteins in 2DE: An Outline Two-Dimensional Electrophoresis Protocols [Internet], pp.978-979, 2009.

S. Fey and P. Larsen, 2D or not 2D, Current Opinion in Chemical Biology, vol.5, issue.1, pp.26-33, 2001.
DOI : 10.1016/S1367-5931(00)00167-8

J. Fenn, M. Mann, C. Meng, S. Wong, and C. Whitehouse, Electrospray ionization for mass spectrometry of large biomolecules, Science, vol.246, issue.4926, pp.64-71, 1989.
DOI : 10.1126/science.2675315

K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida et al., Protein and polymer analyses up tom/z 100 000 by laser ionization time-of-flight mass spectrometry, Rapid Communications in Mass Spectrometry, vol.12, issue.8, pp.151-154, 1988.
DOI : 10.1002/rcm.1290020802

M. Bantscheff, M. Schirle, G. Sweetman, R. J. Kuster, and B. , Quantitative mass spectrometry in proteomics: a critical review, Analytical and Bioanalytical Chemistry, vol.25, issue.7, pp.1017-1048, 2007.
DOI : 10.1007/s00216-007-1486-6

R. Kelly, J. Page, R. Zhao, W. Qian, H. Mottaz et al., Capillary-Based Multi Nanoelectrospray Emitters:?? Improvements in Ion Transmission Efficiency and Implementation with Capillary Reversed-Phase LC-ESI-MS, Analytical Chemistry, vol.80, issue.1, pp.143-152, 2008.
DOI : 10.1021/ac701647s

D. Gale and R. Smith, Small volume and low flow-rate electrospray lonization mass spectrometry of aqueous samples, Rapid Communications in Mass Spectrometry, vol.2, issue.11, pp.1017-1038, 1993.
DOI : 10.1002/rcm.1290071111

M. Emmett and R. Caprioli, Micro-electrospray mass spectrometry: Ultra-high-sensitivity analysis of peptides and proteins, Journal of the American Society for Mass Spectrometry, vol.1, issue.7, pp.605-618, 1994.
DOI : 10.1016/1044-0305(94)85001-1

M. Wilm and M. Mann, Analytical Properties of the Nanoelectrospray Ion Source, Analytical Chemistry, vol.68, issue.1, pp.1-8, 1996.
DOI : 10.1021/ac9509519

G. Valaskovic, N. Kelleher, D. Little, D. Aaserud, and F. Mclafferty, Attomole-Sensitivity Electrospray Source for Large-Molecule Mass Spectrometry, Analytical Chemistry, vol.67, issue.20, pp.3802-3807, 1995.
DOI : 10.1021/ac00116a030

K. Tang, Y. Lin, D. Matson, T. Kim, and R. Smith, Generation of Multiple Electrosprays Using Microfabricated Emitter Arrays for Improved Mass Spectrometric Sensitivity, Analytical Chemistry, vol.73, issue.8, pp.1658-63, 2001.
DOI : 10.1021/ac001191r

S. Zhang, V. Pelt, C. Henion, and J. , Automated chip-based nanoelectrospray-mass spectrometry for rapid identification of proteins separated by two-dimensional gel electrophoresis, ELECTROPHORESIS, vol.24, issue.21, pp.3620-3652, 2003.
DOI : 10.1002/elps.200305585

R. Zubarev and M. Mann, On the Proper Use of Mass Accuracy in Proteomics, Molecular & Cellular Proteomics, vol.6, issue.3, pp.377-81, 2007.
DOI : 10.1074/mcp.M600380-MCP200

R. Zubarev, P. Håkansson, and B. Sundqvist, Accuracy Requirements for Peptide Characterization by Monoisotopic Molecular Mass Measurements, Analytical Chemistry, vol.68, issue.22, pp.4060-4063, 1996.
DOI : 10.1021/ac9604651

J. Olsen, L. Godoy, . De, G. Li, B. Macek et al., Parts per Million Mass Accuracy on an Orbitrap Mass Spectrometer via Lock Mass Injection into a C-trap, Molecular & Cellular Proteomics, vol.4, issue.12, pp.2010-2031, 2005.
DOI : 10.1074/mcp.T500030-MCP200

N. Anderson and N. Anderson, The Human Plasma Proteome: History, Character, and Diagnostic Prospects, Molecular & Cellular Proteomics, vol.1, issue.11, pp.845-67, 2002.
DOI : 10.1074/mcp.R200007-MCP200

H. Issaq, Z. Xiao, and T. Veenstra, Serum and Plasma Proteomics, Chemical Reviews, vol.107, issue.8, pp.3601-3621, 2007.
DOI : 10.1021/cr068287r

J. Whiteaker, L. Zhao, H. Zhang, L. Feng, B. Piening et al., Antibody-based enrichment of peptides on magnetic beads for mass-spectrometry-based quantification of serum biomarkers, Analytical Biochemistry, vol.362, issue.1, pp.44-54, 2007.
DOI : 10.1016/j.ab.2006.12.023

P. Roepstorff and J. Fohlman, Letter to the editors, Biological Mass Spectrometry, vol.10, issue.11, p.601, 1984.
DOI : 10.1002/bms.1200111109

K. Biemann, Appendix 5. Nomenclature for peptide fragment ions (positive ions), p.0076687990934603, 1990.
DOI : 10.1016/0076-6879(90)93460-3

R. Johnson, S. Martin, K. Biemann, J. Stults, and J. Watson, Novel fragmentation process of peptides by collision-induced decomposition in a tandem mass spectrometer: differentiation of leucine and isoleucine, Analytical Chemistry, vol.59, issue.21, pp.2621-2626, 1987.
DOI : 10.1021/ac00148a019

R. Johnson, S. Martin, and K. Biemann, Collision-induced fragmentation of (M + H)+ ions of peptides. Side chain specific sequence ions, International Journal of Mass Spectrometry and Ion Processes, vol.86, pp.137-54, 1988.
DOI : 10.1016/0168-1176(88)80060-0

J. Olsen, B. Macek, O. Lange, A. Makarov, S. Horning et al., Higher-energy C-trap dissociation for peptide modification analysis, Nature Methods, vol.66, issue.9, pp.709-721, 2007.
DOI : 10.1038/nmeth1060

J. Giddings, Maximum number of components resolvable by gel filtration and other elution chromatographic methods, Analytical Chemistry, vol.39, issue.8, pp.1027-1035, 1967.
DOI : 10.1021/ac60252a025

M. Garc?-a, A. Hogenboom, H. Zappey, and H. Irth, Effect of the mobile phase composition on the separation and detection of intact proteins by reversed-phase liquid chromatography???electrospray mass spectrometry, Journal of Chromatography A, vol.957, issue.2, pp.187-99, 2002.
DOI : 10.1016/S0021-9673(02)00345-X

J. Chervet, M. Ursem, and J. Salzmann, Instrumental Requirements for Nanoscale Liquid Chromatography, Analytical Chemistry, vol.68, issue.9, pp.1507-1519, 1996.
DOI : 10.1021/ac9508964

V. Lange, P. Picotti, B. Domon, and R. Aebersold, Selected reaction monitoring for quantitative proteomics: a tutorial, Molecular Systems Biology, vol.5, p.222, 2008.
DOI : 10.1038/nbt827

URL : http://doi.org/10.1038/msb.2008.61

F. Desiere, E. Deutsch, N. King, A. Nesvizhskii, P. Mallick et al., The PeptideAtlas project, Nucleic Acids Research, vol.34, issue.90001, pp.655-663, 2006.
DOI : 10.1093/nar/gkj040

URL : http://doi.org/10.1093/nar/gkj040

P. Jones, R. Cote, L. Martens, A. Quinn, C. Taylor et al., PRIDE: a public repository of protein and peptide identifications for the proteomics community, Nucleic Acids Research, vol.34, issue.90001, pp.659-63, 2006.
DOI : 10.1093/nar/gkj138

J. Stahl-zeng, V. Lange, R. Ossola, K. Eckhardt, W. Krek et al., High Sensitivity Detection of Plasma Proteins by Multiple Reaction Monitoring of N-Glycosites, Molecular & Cellular Proteomics, vol.6, issue.10, pp.1809-1826, 2007.
DOI : 10.1074/mcp.M700132-MCP200

P. Picotti, B. Bodenmiller, L. Mueller, B. Domon, and R. Aebersold, Full Dynamic Range Proteome Analysis of S. cerevisiae by Targeted Proteomics, Cell, vol.138, issue.4, pp.795-806, 2009.
DOI : 10.1016/j.cell.2009.05.051

R. Kiyonami, A. Schoen, A. Prakash, S. Peterman, V. Zabrouskov et al., Increased Selectivity, Analytical Precision, and Throughput in Targeted Proteomics Disponible sur, Mol Cell Proteomics MCP, vol.10, issue.2

A. Michalski, E. Damoc, J. Hauschild, O. Lange, A. Wieghaus et al., Mass Spectrometry-based Proteomics Using Q Exactive, a High-performance Benchtop Quadrupole Orbitrap Mass Spectrometer, Molecular & Cellular Proteomics, vol.10, issue.9
DOI : 10.1074/mcp.M111.011015

S. Gallien, E. Duriez, K. Demeure, and B. Domon, Selectivity of LC-MS/MS analysis: Implication for proteomics experiments, Journal of Proteomics, vol.81, pp.148-58, 2013.
DOI : 10.1016/j.jprot.2012.11.005

S. Gallien, A. Bourmaud, S. Kim, and B. Domon, Technical considerations for large-scale parallel reaction monitoring analysis, Journal of Proteomics, vol.100
DOI : 10.1016/j.jprot.2013.10.029

J. Hauschild, E. Denisov, A. Peterson, O. Lange, A. Makarov et al., New Developments of a Bench-top Quadrupole-Orbitrap Mass Spectrometer, 2014.

P. Grove, P. Neale, M. Peck, B. Schiller, and M. Haas, Monoclonal immunoglobulin G1- kappa fibrillary glomerulonephritis, Mod Pathol Off J U S Can Acad Pathol Inc. janv, vol.11, issue.1, pp.103-112, 1998.

H. Akinbi, R. Epaud, H. Bhatt, and T. Weaver, Bacterial Killing Is Enhanced by Expression of Lysozyme in the Lungs of Transgenic Mice, The Journal of Immunology, vol.165, issue.10, pp.5760-5766, 2000.
DOI : 10.4049/jimmunol.165.10.5760

R. Dajani, Y. Zhang, P. Taft, S. Travis, T. Starner et al., Lysozyme Secretion by Submucosal Glands Protects the Airway from Bacterial Infection, American Journal of Respiratory Cell and Molecular Biology, vol.32, issue.6, pp.548-52, 2005.
DOI : 10.1165/rcmb.2005-0059OC

E. Tufte and . Evidence, Graphics Press, 2006.

S. Farnaud and R. Evans, Lactoferrin???a multifunctional protein with antimicrobial properties, Molecular Immunology, vol.40, issue.7, pp.395-405, 2003.
DOI : 10.1016/S0161-5890(03)00152-4

V. Kumar, M. Hassan, A. Tomar, T. Kashav, J. Nautiyal et al., Proteomic analysis of heparin-binding proteins from human seminal plasma: a step towards identification of molecular markers of male fertility, Journal of Biosciences, vol.267, issue.6, pp.899-908, 2009.
DOI : 10.1007/s12038-009-0104-5

C. Thaler, O. Vanderpuye, J. Mcintyre, and W. Faulk, Lactoferrin Binding Molecules in Human Seminal Plasma1, Biology of Reproduction, vol.43, issue.4, pp.712-719, 1990.
DOI : 10.1095/biolreprod43.4.712

K. Murthy, R. Goel, Y. Subbannayya, H. Jacob, P. Murthy et al., Proteomic analysis of human vitreous humor, Clinical Proteomics, vol.11, issue.1, p.29, 2014.
DOI : 10.1186/1559-0275-11-29

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nature Biotechnology, vol.7, issue.12, pp.1367-72, 2008.
DOI : 10.1038/nprot.2007.261

J. Cox, M. Hein, C. Luber, I. Paron, N. Nagaraj et al., MaxLFQ allows accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, Mol Cell Proteomics. 17 juin, 2014.
DOI : 10.1074/mcp.m113.031591

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159666

B. Domon and R. Aebersold, Options and considerations when selecting a quantitative proteomics strategy, Nature Biotechnology, vol.7, issue.7, pp.710-731, 2010.
DOI : 10.1038/nbt.1661

E. Deutsch, H. Lam, and R. Aebersold, PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows, EMBO reports, vol.18, issue.5, pp.429-463, 2008.
DOI : 10.1101/gr.5646507

J. Siepen, E. Keevil, D. Knight, and S. Hubbard, Prediction of Missed Cleavage Sites in Tryptic Peptides Aids Protein Identification in Proteomics, Journal of Proteome Research, vol.6, issue.1, pp.399-408, 2007.
DOI : 10.1021/pr060507u

P. Gershon, Cleaved and Missed Sites for Trypsin, Lys-C, and Lys-N Can Be Predicted with High Confidence on the Basis of Sequence Context, Journal of Proteome Research, vol.13, issue.2, pp.702-711, 2014.
DOI : 10.1021/pr400802z

O. Krokhin and V. Spicer, Peptide Retention Standards and Hydrophobicity Indexes in Reversed-Phase High-Performance Liquid Chromatography of Peptides, Analytical Chemistry, vol.81, issue.22, pp.9522-9552, 2009.
DOI : 10.1021/ac9016693

O. Krokhin, R. Craig, V. Spicer, W. Ens, K. Standing et al., An Improved Model for Prediction of Retention Times of Tryptic Peptides in Ion Pair Reversed-phase HPLC: Its Application to Protein Peptide Mapping by Off-Line HPLC-MALDI MS, Molecular & Cellular Proteomics, vol.3, issue.9, pp.908-927, 2004.
DOI : 10.1074/mcp.M400031-MCP200

P. Jones, R. Côté, S. Cho, S. Klie, L. Martens et al., PRIDE: new developments and new datasets, Nucleic Acids Research, vol.36, issue.Database, pp.878-83, 2008.
DOI : 10.1093/nar/gkm1021

URL : http://doi.org/10.1093/nar/gkm1021

R. Craig, J. Cortens, and R. Beavis, Open Source System for Analyzing, Validating, and Storing Protein Identification Data, Journal of Proteome Research, vol.3, issue.6, pp.1234-1276, 2004.
DOI : 10.1021/pr049882h

P. Picotti, M. Clément-ziza, H. Lam, D. Campbell, A. Schmidt et al., A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis, Nature, vol.107, issue.7436
DOI : 10.1038/nature11835

S. Gallien, E. Duriez, K. Demeure, and B. Domon, Selectivity of LC-MS/MS analysis: Implication for proteomics experiments Disponible sur, J Proteomics [Internet], issue.0, 2012.

S. Gallien, S. Peterman, R. Kiyonami, J. Souady, E. Duriez et al., Highly multiplexed targeted proteomics using precise control of peptide retention time, PROTEOMICS, vol.8, issue.Suppl 7, pp.1122-1155, 2012.
DOI : 10.1002/pmic.201100533

O. Krokhin and V. Spicer, Predicting Peptide Retention Times for Proteomics, Current Protocols in Bioinformatics, vol.3, 2002.
DOI : 10.1002/0471250953.bi1314s31

B. Maclean, D. Tomazela, N. Shulman, M. Chambers, G. Finney et al., Skyline: an open source document editor for creating and analyzing targeted proteomics experiments, Bioinformatics, vol.26, issue.7, pp.966-974, 2010.
DOI : 10.1093/bioinformatics/btq054

R. Rakotomalala, TANAGRA: une plate-forme d'expérimentation pour la fouille de données, Rev Modul, vol.32, pp.70-85, 2005.

H. Lam, E. Deutsch, J. Eddes, J. Eng, S. Stein et al., Building consensus spectral libraries for peptide identification in proteomics, Nature Methods, vol.7, issue.10, pp.873-878, 2008.
DOI : 10.1038/nmeth.1254

A. Blades, M. Ikonomou, and P. Kebarle, Mechanism of electrospray mass spectrometry. Electrospray as an electrolysis cell, Analytical Chemistry, vol.63, issue.19, pp.2109-2123, 1991.
DOI : 10.1021/ac00019a009

R. Cole, Some tenets pertaining to electrospray ionization mass spectrometry, Journal of Mass Spectrometry, vol.165, issue.7, pp.763-72, 2000.
DOI : 10.1002/1096-9888(200007)35:7<763::AID-JMS16>3.0.CO;2-#

R. Ochran and L. Konermann, Effects of ground loop currents on signal intensities in electrospray mass spectrometry, Journal of the American Society for Mass Spectrometry, vol.13, issue.12, pp.1748-54, 2004.
DOI : 10.1016/j.jasms.2004.08.005

J. Mora, V. De-la, G. Berkel, C. Enke, R. Cole et al., Electrochemical processes in electrospray ionization mass spectrometry, Journal of Mass Spectrometry, vol.63, issue.8, pp.939-52, 2000.
DOI : 10.1002/1096-9888(200008)35:8<939::AID-JMS36>3.0.CO;2-V

P. Kebarle and L. Tang, From ions in solution to ions in the gas phase - the mechanism of electrospray mass spectrometry, Analytical Chemistry, vol.65, issue.22, pp.972-986, 1993.
DOI : 10.1021/ac00070a001

S. Gaskell and . Electrospray, Electrospray: Principles and Practice, Journal of Mass Spectrometry, vol.32, issue.7, pp.677-88, 1997.
DOI : 10.1002/(SICI)1096-9888(199707)32:7<677::AID-JMS536>3.0.CO;2-G

M. Wilm and M. Mann, Electrospray and Taylor-Cone theory, Dole's beam of macromolecules at last?, International Journal of Mass Spectrometry and Ion Processes, vol.136, issue.2-3, pp.2-3167, 1994.
DOI : 10.1016/0168-1176(94)04024-9

M. Allen and M. Vestal, Design and performance of a novel electrospray interface, Journal of the American Society for Mass Spectrometry, vol.2, issue.1, pp.18-26, 1992.
DOI : 10.1016/1044-0305(92)85014-B

L. Rayleigh and . Xx, On the equilibrium of liquid conducting masses charged with electricity. Philos Mag Ser 5, pp.184-190, 1882.

A. Gomez and K. Tang, Charge and fission of droplets in electrostatic sprays. Phys Fluids 1994-Present. 1 janv, pp.404-418, 1994.

M. Dole, L. Mack, R. Hines, R. Mobley, L. Ferguson et al., Molecular Beams of Macroions, The Journal of Chemical Physics, vol.49, issue.5, pp.2240-2249, 1968.
DOI : 10.1063/1.1670391

J. Iribarne and B. Thomson, On the evaporation of small ions from charged droplets, The Journal of Chemical Physics, vol.64, issue.6, pp.2287-94, 1976.
DOI : 10.1063/1.432536

L. Konermann, A. Rodriguez, and J. Liu, On the Formation of Highly Charged Gaseous Ions from Unfolded Proteins by Electrospray Ionization, Analytical Chemistry, vol.84, issue.15, pp.6798-804, 2012.
DOI : 10.1021/ac301298g

L. Konermann, E. Ahadi, A. Rodriguez, and S. Vahidi, Unraveling the Mechanism of Electrospray Ionization, Analytical Chemistry, vol.85, issue.1, pp.2-9, 2013.
DOI : 10.1021/ac302789c

L. Fernandez-de and J. Mora, Electrospray ionization of large multiply charged species proceeds via Dole???s charged residue mechanism, Analytica Chimica Acta, vol.406, issue.1, pp.93-104, 2000.
DOI : 10.1016/S0003-2670(99)00601-7

S. Banerjee and S. Mazumdar, Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte, International Journal of Analytical Chemistry, vol.22, issue.4, p.282574, 2012.
DOI : 10.1016/j.ijms.2006.08.003

A. Iavarone, J. Jurchen, and E. Williams, Supercharged Protein and Peptide Ions Formed by Electrospray Ionization, Analytical Chemistry, vol.73, issue.7, pp.1455-60, 2001.
DOI : 10.1021/ac001251t

A. Hesse, M. P. Rossier, J. Vinh, and J. , Simple and universal tool to remove on-line impurities in mono- or two-dimensional liquid chromatography???mass spectrometry analysis, Journal of Chromatography A, vol.1189, issue.1-2, pp.175-82, 2008.
DOI : 10.1016/j.chroma.2007.12.060

URL : https://hal.archives-ouvertes.fr/hal-00348106

K. Karlsson and M. Novotny, Separation efficiency of slurry-packed liquid chromatography microcolumns with very small inner diameters, Analytical Chemistry, vol.60, issue.17, pp.1662-1667, 1988.
DOI : 10.1021/ac00168a006

R. Kennedy and J. Jorgenson, Preparation and evaluation of packed capillary liquid chromatography columns with inner diameters from 20 to 50 micrometers, Analytical Chemistry, vol.61, issue.10, pp.1128-1163, 1989.
DOI : 10.1021/ac00185a016

W. Paul, M. Raether, . Das, and . Massenfilter, Das elektrische Massenfilter, Zeitschrift f???r Physik, vol.140, issue.3, pp.262-73, 1955.
DOI : 10.1007/BF01328923

W. Paul, Electromagnetic traps for charged and neutral particles, Reviews of Modern Physics, vol.62, issue.3, pp.531-571, 1990.
DOI : 10.1103/RevModPhys.62.531

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.487.6288

G. Bouchoux and . Spectrométrie-de-masse, Techniques Ingénieur; [cité 30 juill 2014] Disponible sur: http://books.google.com/books?hl=en&lr=&id=- uxOQjFPQesC&oi=fnd&pg=PA1&dq=%22en+savoir+plus%22+%22en+revue, pp.3-3

W. Paul, Apparatus for separating charged particles of different specific charges, p.952, 1960.

J. Schwartz, M. Senko, and J. Syka, A two-dimensional quadrupole ion trap mass spectrometer, Journal of the American Society for Mass Spectrometry, vol.190, issue.191, pp.659-69, 2002.
DOI : 10.1016/S1044-0305(02)00384-7

J. Olsen, J. Schwartz, J. Griep-raming, M. Nielsen, E. Damoc et al., A Dual Pressure Linear Ion Trap Orbitrap Instrument with Very High Sequencing Speed, Molecular & Cellular Proteomics, vol.8, issue.12, pp.2759-69, 2009.
DOI : 10.1074/mcp.M900375-MCP200

S. Guan and A. Marshall, Ion traps for Fourier transform ion cyclotron resonance mass spectrometry: principles and design of geometric and electric configurations, International Journal of Mass Spectrometry and Ion Processes, vol.146, issue.147, pp.146-147, 1995.
DOI : 10.1016/0168-1176(95)04190-V

A. Marshall, C. Hendrickson, and G. Jackson, Fourier transform ion cyclotron resonance mass spectrometry: A primer, Mass Spectrometry Reviews, vol.68, issue.166, pp.1-35, 1998.
DOI : 10.1002/(SICI)1098-2787(1998)17:1<1::AID-MAS1>3.0.CO;2-K

F. Penning, Die glimmentladung bei niedrigem druck zwischen koaxialen zylindern in einem axialen magnetfeld, Physica, vol.3, issue.9, pp.873-94, 1936.
DOI : 10.1016/S0031-8914(36)80313-9

H. Dehmelt, Experiments with an isolated subatomic particle at rest, Reviews of Modern Physics, vol.62, issue.3, pp.525-555, 1990.
DOI : 10.1103/RevModPhys.62.525

M. Aarstol and M. Comisarow, Apodization of FT-ICR spectra, International Journal of Mass Spectrometry and Ion Processes, vol.76, issue.3, pp.287-97, 1987.
DOI : 10.1016/0168-1176(87)83033-1

M. Scigelova, M. Hornshaw, A. Giannakopulos, and A. Makarov, Fourier Transform Mass Spectrometry, Mol Cell Proteomics MCP, vol.10, issue.7, 2011.

M. Comisarow and J. Melka, Error estimates for finite zero-filling in Fourier transform spectrometry, Analytical Chemistry, vol.51, issue.13, pp.2198-203, 1979.
DOI : 10.1021/ac50049a032

I. Boldin and E. Nikolaev, Fourier transform ion cyclotron resonance cell with dynamic harmonization of the electric field in the whole volume by shaping of the excitation and detection electrode assembly, Rapid Communications in Mass Spectrometry, vol.4, issue.1, pp.122-128, 2011.
DOI : 10.1002/rcm.4838

A. Makarov, Electrostatic Axially Harmonic Orbital Trapping:?? A High-Performance Technique of Mass Analysis, Analytical Chemistry, vol.72, issue.6, pp.1156-62, 2000.
DOI : 10.1021/ac991131p

K. Kingdon, A Method for the Neutralization of Electron Space Charge by Positive Ionization at Very Low Gas Pressures, Physical Review, vol.21, issue.4, pp.408-426, 1923.
DOI : 10.1103/PhysRev.21.408

A. Marshall and C. Hendrickson, Fourier transform ion cyclotron resonance detection: principles and experimental configurations, International Journal of Mass Spectrometry, vol.215, issue.1-3, pp.59-75, 2002.
DOI : 10.1016/S1387-3806(01)00588-7

A. Michalski, E. Damoc, O. Lange, E. Denisov, D. Nolting et al., Ultra High Resolution Linear Ion Trap Orbitrap Mass Spectrometer (Orbitrap Elite) Facilitates Top Down LC MS/MS and Versatile Peptide Fragmentation Modes Disponible sur, Mol Cell Proteomics MCP, vol.11, issue.3, 3316736.
DOI : 10.1074/mcp.o111.013698

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316736

J. Shaw and J. Brodbelt, Extending the Isotopically Resolved Mass Range of Orbitrap Mass Spectrometers, Analytical Chemistry, vol.85, issue.17, pp.8313-8321, 2013.
DOI : 10.1021/ac401634b