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Introduction

The knowledge of the behavior of the materials used in nuclear reactors is essential for the
safety and efficiency of the power plants. During irradiation in a reactor the fission of actinide
nuclei causes the creation of large amounts of defects, which affect the physical and chemical
properties of materials inside the reactor, in particular fuel and structural materials. An active
field of research is the improvement of the knowledge of the basic mechanisms that induce
the modification of materials under irradiation. This can be done by so called separate effects
experiments, which aim at uncoupling the combined phenomena happening in the reactor, as
well as by modeling at different scales. Joining these experimental and modeling approaches
is the strategy of the Fuel behavior law laboratory (LLCC) at CEA Cadarache, France, where

this thesis was carried out.

An important question for understanding the behavior of nuclear materials under irradiation is
the beginning of the formation of rare gas bubbles. Small aggregates of vacancy defects, which
can trap gaseous fission products, such as Kr or Xe, are particularly interesting from the point of
view of the investigation of bubble formation mechanisms. Additionally, the point defects them-
selves, empty or containing fission products, can affect thermochemical and thermomechanical

properties of the materials, hence need to be studied.

One of the non-destructive methods that can be used to characterize these defects is the positron
annihilation spectroscopy (PAS). This experimental technique involves detecting the radiation
generated during electron-positron annihilation in a sample and deducing the properties of the
material studied. PAS is based on the fact that when a positron diffuses in a sample, it can be
trapped in open volume defects, what changes its annihilation characteristics. There are two
positron annihilation characteristics that allow one to detect defects in materials: the first one,
the positron lifetime, is mostly sensitive to the open volume of defects. Second, the Doppler
broadening of the annihilation radiation, carries information on the chemical environment in
which positron annihilate. However, positron annihilation spectroscopy results do not provide

a direct link between the signal and the type of the defect. Therefore, the interpretation
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16 Introduction

of experimental data often requires comparisons with other experimental techniques or with

electronic structure calculations.

This work is dedicated to the modeling at the atomic scale of nuclear materials containing
defects and to calculating their annihilation characteristics in order to contribute to the inter-
pretation of experimental results obtained by PAS and to the identification of the defects. The
materials considered in this work are silicon carbide, a ceramic considered as a possible alter-
native to zirconium alloys used as fuel cladding in current reactors as well as tubes for the fuel
assembly envelopes, and uranium dioxide, the standard fuel in pressurized water reactors. The
contribution to the identification of the defects can be done directly through calculations of the
annihilation characteristics of the defects, but can also be supported by additional modeling,
for instance of the defects charge states. The positron annihilation spectroscopy is sensitive to
the charge states of the defects and their prediction can, therefore, facilitate the identification
of defects.

In this work, positron lifetime were calculated using the implementation of the two component
density functional theory (TCDFT) in the ABINIT code. Then the methods needed to calculate
the second positron annihilation characteristic, the Doppler broadening of the annihilating pairs,

were implemented in the code. This part was done in collaboration with Marc Torrent from

CEA DAM/DIF.

The second part of this work was dedicated to adapting the different methods used in calcula-
tions of positron annihilation characteristics and formation energies of charged defects to silicon
carbide and uranium dioxide. Effort has been made to perform the most up-to-date calculations
of positron lifetimes, i.e. using fully self-consistent calculations schemes and taking into account
the effect of the changes of the atomic positions in the simulated defects, due to the vacancy
creation and the positron localization inside the defect. The combined results of the forma-
tion energies, positron lifetime and Doppler broadening calculations are then used to identify
defects experimentally detected in silicon carbide and uranium dioxide in the CNRS-CEMHTI

laboratory in Orléans, France.



Chapter 1

Literature review

1.1 Nuclear materials considered

1.1.1 Silicon carbide

Silicon carbide is a ceramic with a high melting point, a good chemical stability and a low
neutron absorption. These properties make it a possible cladding material in high temperature
fission reactors [1] and in the Accident Tolerant Fuels (ATF) in generation IT and III reactors
[2, 3]. Additionally, its mechanical properties as a composite material make it an interesting
material for fuel assembly envelopes [4]. Moreover, as a wide band gap semiconductor, it is

envisaged as an alternative for silicon in microelectronic devices [5].

Silicon carbide can exist in about 250 crystalline forms, all of which have the same planar
arrangement of carbon and silicon atoms, but different sequences of these planes. 6H-SiC,
which can be formed at temperatures higher than 1700°C, is the most common polytype of
silicon carbide, with six planes in each sequence and a hexagonal crystal structure. Another
hexagonal polytype is 4H-SiC with four planes in each sequence. At temperatures lower than
1700°C, a cubic form, with three planes in a sequence, 3C-SiC, is formed. In this work, the
3C-SiC and 6 H-SiC polytypes were studied. The stacking sequences of these two polytypes are
shown in the Fig. 1.1. As for the band structure, silicon carbide is an indirect gap semiconductor.
The gap size depends on the polytype, for 3C-SiC and 6 H-SiC it is equal to 2.36 and 3.0 eV
[6], respectively.

17
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In its application as a cladding material in nuclear reactors, the role of silicon carbide is to ensure
the heat transfer from the fuel to the coolant and to act as a barrier for fission products. If used
as a hexagonal tube, its role would be to provide the structural integrity to the fuel assembly and
to guide the flow of the coolant. In the case of both these applications it is essential to understand
the effects of the irradiation on the thermomechanical and thermochemical properties of silicon
carbide, for instance through defects creation and their interaction with fission products. Defects

in silicon carbide have already been studied in numerous works, for instance in Ref. [7], [8], [9]
and [10].

1.1.2 Uranium dioxide

Uranium dioxide (UO;) is currently the most widely used fuel material in pressurized water
reactors (PWR). It has been chosen as a fuel material because of its high melting temperature
(3120 K [11]) and chemical stability, in particular low chemical reactivity with water. Since
during irradiation in the reactor the properties of UOy evolve, for example due to the creation
of defects in the lattice, it is important to be able to predict which types of defects can be

expected and wthat is their influence on the material.

At atmospheric pressure UOy have two stable crystalline structures, with a phase transition at
Néel temperature Tx=30.8 K. Below Ty an antiferromagnetic Jahn-Teller distorted phase is the
stable one. Above Ty uranium dioxide is a paramagnetic Mott insulator with a cubic fluorite

crystal structure (see Fig. 1.2) [12, 13] and a lattice parameter of 5.473 A [14]. Uranium dioxide
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is an ionic material, in which the uranium cations (U%") in UO, form a face centered cubic
(fcc) structure and oxygen anions (O?7) occupy the tetrahedral sites. Various experimental
studies determined the gap of UOy between 2.14 and 2.5 eV [15-17]. Moreover, the 5f electrons
of uranium in UO, are strongly correlated and localized close to the nuclei [18-20]. As a
consequence, the theoretical methods that need to be used to model uranium dioxide have to

be carefully chosen. These methods will be further discussed in Chapter 2. Further details on

crystalline phases and defects in UO; can be found in earlier PhD theses on the subject [21, 22].

S o

0‘ ‘0
P e

Figure 1.2: Fluorite structure CaFs. Blue and red spheres represent cations and anions,
respectively (in the case of UQg, uranium and oxygen atoms).

1.1.3 Irradiation effects in nuclear materials

During reactor operation, uranium 235 atoms can absorb a neutron that leads to its splitting
into two smaller nuclei, which masses are usually close to each other (e.g Ba and Kr or Sr and
Xe) and to emission of two or three neutrons. The two fission products carry an important
kinetic energy (around 65-95 MeV). This energy can be lost through two different processes.
First, at high energy, the energy is transferred through inelastic interactions with the atoms of
the fuel material, such as electronic excitations. These interactions can lead to displacement of
the atoms located along the fission product trajectory. Then, at lower energies, the energy loss
through ballistic collisions between atoms dominates. In this case, displacement cascades can

be formed and lead to defects creation and migration within a larger region.

Defects created due to the energy loss of the fission products or neutrons, such as vacancies
and vacancy clusters, can induce a significant evolution of the physical properties of the fuel

and cladding materials. An important question concerning defects in nuclear materials is their
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evolution as function of varying temperature and irradiation. In some cases these effects can
lead to the disappearing of defects, in others to their aggregation and growth. In the later case,
small aggregates of vacancy defects, which can trap gaseous fission products, such as Kr or Xe,
are particularly interesting for the investigation of bubble formation mechanisms. Moreover,
the point defects themselves, empty or containing fission products, can affect thermochemical
and thermomechanical properties of the materials, hence need to be studied. The importance of
the insight into the defects in both silicon carbide and uranium oxide is reflected in the number
of theoretical and experimental studies concerning this aspect. The energetics and migration of
defects in these two materials have been widely studied using the electronic structure calculations
9, 22-31]. Additionally various experimental methods have been used to investigate the defects
in SiC and UQO,, such as electron paramagnetic resonance (EPR) [32-39], Raman spectroscopy
[40], X-ray absorption spectroscopy (XAS) [41] or photoluminescence spectroscopy (PL) [42, 43].
Another experimental method that can be used to characterize these defects is the positron

annihilation spectroscopy (PAS).

1.2 Positrons to probe matter: principle of positron an-

nihilation spectroscopy

Positron annihilation spectroscopy (PAS) is a non-destructive characterization technique, which
can probe materials on the atomic scale and can be used to identify open volume defects such
as vacancies. Positron as the antiparticle of the electron annihilate quickly in solids, which
leads to the emission of gamma rays. PAS consists in recording these radiations and deducing
the properties of the positrons and the electrons with which they have annihilated. There are
two positron annihilation characteristics that allow one to characterize defects in materials: the

positron lifetime and the Doppler broadening of the annihilation radiation..

The positrons used in PAS experiments are usually generated by a Na?? source, along with a
1.27 MeV ~ ray, in a 7 decay

?2Na — #2Ne + et +v, + 7. (1.2.1)

In positron lifetime measurements the initial 1.27 MeV v ray can be detected to mark the birth

of the positron.

The positrons emitted from this source have a broad kinetic energy distribution up to 540 keV.

The majority of this energy is lost when the positrons enter the sample and thermalize. During
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this process positrons travel from 100 to a few 100 pum into the sample depending on its density
[44]. It means that positrons can probe the bulk of a solid. After diffusing in the sample, the
positron can annihilate with an electron in the perfect lattice, around a negative ion or get
trapped in a neutral or negative vacancy-type defect and annihilate inside it. The annihilation
can be observed as two ~ rays of approximately 511 keV are generated and can be detected. In

Fig. 1.3 the main interactions of the positrons with solids are shown.

g 1. Positron generation
§4a. in a Bt decay
2. Positron thermalization
3. Diffusion
4a. Annihilation in the bulk
4b. Trapping in a defect
and annihilation

Y h
v 1.27 MeV
100 pm 100 nm Y, ~0.51 MeV
few ps ~100 ps

Figure 1.3: Scheme of the main positron-solid interactions.

The time difference between the detection of the v ray emitted during the S decay and those
coming from the annihilation is used to determine the lifetime of the positron in the material.
This characteristic depends mostly on the free volume the positron occupies and is longer for
the positrons trapped in vacancies than for those which annihilate from a delocalized state in
the perfect lattice (which has its specific annihilation characteristics). The results yielded by a
lifetime experiment take the form of a positron decay spectrum, as illustrated in Fig. 1.4a. As
represented in the figure, the spectrum can be a sum of different components, each characterized
by its positron lifetime 7; and contributing to the spectrum with a given intensity I;. The spectra
can be decomposed using non-linear fitting to obtain I; and 7;. It is worth noting that if the
lifetime measurements are performed as a function of temperature, the evolution of the intensity
corresponding to a defect can sometimes yield information on its charge state. This is because
for negative vacancies the positron trapping decreases when the measurement temperature rises,

while for the neutral ones it remains constant (see Sec. 1.2.1.1).

The second annihilation characteristic that can be measured, the Doppler broadening, is related
to the energy difference AE. between the two photons emitted during the annihilation process.

Due to the conservation of the momentum of the electron-positron annihilation pair the two
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Figure 1.4: lllustrations of lifetime and momentum distributions of annihilation radiation
spectra.

photons have the energy of 511 keV—AFE, and 511 keV+ALE,, with

AE, = %ch, (1.2.2)
where py, is the longitudinal projection of the electron-positron pair momentum. Considering
that the momentum of the thermalized positron can be neglected, the Doppler broadening of the
annihilation radiation gives information about the distribution of the momenta of the electrons
with which the positron annihilates, making it possible to detect vacancy defects and to obtain
information e.g. on their chemical environment. Experimentally, the number of counts as a
function of py, is measured, resulting in a Doppler spectrum as illustrated in Fig. 1.4b. Two types
of data analysis are the most commonly used. The first consists of plotting ratios of Doppler
spectra to reference data (perfect lattice or reference material). The second way is to compare
integrated low- and high-momentum contributions to the momentum distribution. It can be
done by calculating the so-called S (low-momentum) and W (high-momentum) parameters,
being defined, respectively, as the ratio of the counts in the regions close to and far from the
511 keV value to the total number of the counts. The schematic representation of these two
parameters is shown in Fig. 1.5. As presented in the figure, positron trapping in a vacancy
usually results in an increase of S and a decrease of W. This is due to the fact that when a
positron is localized in the vacancy its annihilation probability with valence electrons increases
(corresponding mostly to low momenta) while there is less interaction between the positron and

the core electrons, which results in a decrease of the high momentum contribution.
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It is worth noting that in experiments both lifetime components and S and W parameters can
sometimes be related to en ensemble of defects, for instance when the annihilation characteristics

of the defects are very close.
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Figure 1.5: Schematic representation of the relative S and W parameters.

1.2.1 Methods used in PAS results interpretation

The interpretation of the measurements performed using PAS is not always straightforward. In
the case of the positron lifetimes measurements, first decompositions of the spectra must be
performed, which can be problematic when several types of defects are present [45]. Moreover,
the PAS measurements themselves do not provide a direct link between the signal and the
defects type. In order to facilitate the defects identification, one can for instance use the
positron trapping model to verify the detected annihilation states, to determine the lifetimes
of the defects and their concentration. The model also allows the determination of the charge
state of the defects present in the studied samples. The results can be also compared with other

experimental methods or modeled annihilation features to identify the detected defects.

1.2.1.1 Positron trapping model

The evolution of the positron annihilation characteristics as a function of the measurement
temperature can be analyzed using a positron trapping model [46-53]. In this model, the

description of the positron trapping and annihilation from different states (from the delocalized
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state in the lattice and from N different defects) is obtained through solving a set of rate

equations [54]:
dnL

—r =+ e+ ;. (1.2.3)
j j

J = HjnL — (>\Dj —+ (5j)nDj (] = 1, .. .,N), (124)

where ny, is the probability of a positron being in the free state, np; is the probability of being
trapped in a given defect. Ar, Ap;, k; and d; are the annihilation, trapping and detrapping

rates, respectively.

The trapping rate is related to the defect concentration c¢; through the relation x; = pp;cp;,

where pup; is the specific trapping coefficient.

For neutral defects pp; is temperature independent. The trapping coefficient of the negative
vacancies is higher at low temperatures, due to a long-range attractive Coulomb potential
created by these defect and then it varies as 7-/2, since when the temperature rises the positrons
gain energy allowing them to escape from this additional potential. A positron can be trapped
not only in open volume defects, but also by hydrogen-like Rydberg states around negative
non-vacancy defects, caused by the long-range Coulomb potential. The positron trapping rate
at the Rydberg states also varies as T~/2 [50].

1.2.1.2 Comparison with other experimental methods and modeling results

In order to fully exploit the results of the positron annihilation spectroscopy experiments, one
needs to be able to attribute the detected signal to a type of defect. This relation is not always
possible to deduce based on PAS measurements only. Comparison with other experimental
methods, for instance electron paramagnetic resonance (EPR) spectroscopy and photolumines-
cence spectroscopy (PL) or theoretically calculated positron annihilation characteristics can be
especially helpful in defects identification. In this study we focus on the modeling contribution
to the PAS experiments interpretation. The positron annihilation characteristics, the positron
lifetime and the momentum distribution of electron-positron pairs, can be calculated in the

two-component density functional theory, which will be presented in Sec. 2.3.
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1.3 Overview of positron annihilation results available in

the materials studied

Positron annihilation spectroscopy has been widely used to study defects in semiconductors,
including silicon carbide. On the other hand, few theoretical positron annihilation studies exist
for this material. As far as uranium dioxide is concerned, a limited number of experimental
studies exist, while no calculation of annihilation characteristics has been published to the best

of our knowledge.

1.3.1 Silicon carbide

1.3.1.1 Theoretical studies

The lattice positron lifetime of silicon carbide was calculated in several studies. In these cal-
culations various methods were used. These results and the methods used are summarized in
Tab. 1.1.

It can be noticed in Tab. 1.1 that the calculations using no correction to take into account the
imperfect screening in SiC yield lattice lifetimes much shorter than the experimental ones for
3C-SiC and 6 H-SiC, which are around 140 ps [55, 56]. When the semiconductor correction (SC)
or gradient correction (GC) are applied, the results are in better agreement with experimental
values, especially when the pseudopotential method is used. It seems that both ways of taking

into account the reduced screening can be used in the case of SiC.

Positron lifetimes for defects have been calculated by Brauer et al. [58, 59], Kawasuso et al.
[63] and Staab et al. [64]. The results obtained for various defects are presented in Tab. 1.2.
In these calculations several important approximations were made. First, the authors used the
‘conventional’ scheme (see Sec. 2.3.2), which does not take into account the effect of the localized
positron on the electronic density. Second, these studies were performed for unrelaxed defects
(Brauer et al. and Staab et al.) or using geometries that had been relaxed without the positron

(Kawasuso et al. and Staab et al.).

Doppler broadening calculations for silicon carbide have been performed by Kawasuso et al.
[63]. Like in the case of positron lifetimes, the conventional scheme was used and the full

relaxation (due to the defect creation and positron localization inside the defect) was not taken
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Table 1.1: Synthesis of the calculated lattice positron lifetimes in S3C silicon carbide available
in literature. The type of correction taking into account the imperfect screening in silicon carbide
(SC — semiconductor correction, GC — gradient correction) and of basis set representation used

in calculations are indicated.

Corr. Basis set Lifetime
representation (ps)
Puska et al. [57] SC  Atomic superposition 134
Brauer et al. [58] SC  Atomic superposition 141
Brauer et al. [59] SC TB-LMTO 138
Barbiellini et al. [60] none LMTO-ASA 124
GC LMTO-ASA 139
none Atomic superposition 121
GC  Atomic superposition 134
Panda et al. [61] none Pseudopotentials 130
GC Pseudopotentials 145
Panda et al. [62] GC Pseudopotentials 145
GC Pseudopotentials 144
GC LMTO-ASA 138
GC LMTO-ASA 138
Kawasuso et al. [63] SC Pseudopotentials 143

Table 1.2: Synthesis of the positron lifetimes calculated for vacancies in SiC' available in liter-
ature. Ranges of lifetimes are indicated in cases where various polytypes and defect geometries

were considered in the study.

Defect Brauer et al. [58, 59|

Lifetime (ps)

Kawasuso et al. [63]

Staab et al. [64]

Ve
Vsi
Vo+Cg;
Ve+Ve
Vsi+Vg;
Ve+Vsi

150-153
185-194

160-161

194-196

212-216
254
286
321

145
190-196
168-184

208-215
240
282
299
329

137-144
180-195

209-216

into account. The relative S, and W,, parameters, determined for various defects in SiC in

this study are presented in Tab. 1.3. These parameters are defined as:

Srel =

S defect

Slattice

(1.3.1)
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Table 1.3: Synthesis of the relative Sy and W, parameters (see text) calculated for vacancies
in 3C and 4H-SiC by Kawasuso et al. [63]. The S, and W, parameters were calculated in
0-3 and 15-30 mrad windows, respectively, using data convoluted with a Gaussian function with
FWHM of 3.92 mrad. The ranges of Sy and W, are given if different results were found for
various sites and polytypes.

Defect Srel Wiel

Ve 1.005-1.006 0.975-0.977

Vs 1.031-1.037 0.651-0.715

Ve+Cgi 1.018-1.034 0.658-0.747
Vo+Vg 1.057 0.590
(VC+VSi)2 1.122 0.463
(Vc—l-VSi)g 1.160 0.346
(VC+V31)4 1.198 0.312
(VC“‘VSi)G 1.227 0.297

and W
defect
Wl T (1.3.2)

1.3.1.2 Experimental studies

Positron annihilation spectroscopy has been widely used to study defects in 3C, 4H and 6H
silicon carbide. Samples exhibiting various doping levels and irradiation conditions have been

examined. We will list here some of the results and interpretations presented in these studies.

Kerbiriou et al. [32] observed a positron lifetime varying with temperature from 210 ps up to
220 ps in 800 keV electron irradiated n-type 3C-SiC. The authors concluded that the lifetimes
were coming from at least two vacancy-type defects - Vg; and Vc+Vyg;. This identification was
based on the calculation results by Brauer et al. [58, 59]. Kerbiriou et al. also examined the

sample using electron paramagnetic resonance (EPR) and identified the T1 signal, attributed
to Vg [32, 35, 65, 66].

Kawasuso et al. [56] also studied n-type 3C-SiC irradiated with 1 MeV electrons and detected
a lifetime component of 188 ps, which they attributed to the silicon vacancy. The T1 signal
observed in Kerbiriou et al. study, indicating the presence of Véi_, was detected by EPR in the

same sample. The lifetime component of 188 ps was hence attributed to the silicon monovacancy.

Concerning 6 H-SiC, no defect was observed by PAS in p-type samples in the majority of pub-

lished studies [55, 67, 68]. A long lifetime component corresponding to open volume defects
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was, however, observed in p-type samples irradiated at high fluences of 12 MeV proton (above
10x 10 ¢cm~2 by Barthe et al. As for the n-type 6H-SiC, several groups of lifetimes were ob-
served. Shorter experimental positron lifetimes, of 176 ps [69], 183 ps [67], 174 ps and 176 ps
[70] were observed and assigned to the silicon vacancy based on the calculations of Brauer et
al. The second group of experimental lifetimes observed in n-type 6 H-SiC contained lifetimes
of 210 ps [69], 202 ps [55], 210 ps and 220 ps [68]. These lifetimes are usually attributed to the
Ve+Vyg; divacancy.

Longer positron lifetimes were also detected in other studies. For instance Barthe et al. [71]
observed lifetimes of 257 ps and 281 ps lifetimes in n-type 6 H-SiC irradiated with low-energy
protons and annealed at 900°C and 1300°C, respectively. These lifetimes were attributed to the
(Vc+Vsi)2 and (Ve+Vsi)s vacancy defects. Aavikko et al. [72] studied undoped SiC samples
annealed at 1600°C. They observed long lifetime components of 261, 283 and 284 ps, which

were attributed to clusters containing four and five vacancies, respectively.

Finally, Brauer et al. [58] studied 6 H-SiC samples irradiated with 200 keV Ge™ ions, at fluences
varying from 10 to 10* m~2. For the lowest fluence, a long lifetime component of 235 ps was
observed and attributed to the divacancy, even though it was longer than what Brauer et al.
had calculated for this type of defect. The authors indicated that the discrepancy between the
measured and calculated lifetimes could come from the fact that the relaxation effects were not
taken into account. For the 10 m~2 fluence, Brauer et al. observed a lifetime component of

305 ps and attributed it to a defect containing six vacancies.

It can be noticed that there are discrepancies in the literature between the positron lifetimes
attributed for example to the silicon monovacancy. This problem has been discussed for instance
by Lam et al. [45]. The authors suppose that the decomposition of the experimental spectra can
be incorrect when several types of defects are present in the samples. Another issue might be
the fact that theoretical studies on positron annihilation characteristics were limited in number
and that too strong approximations had been made in the available ones. These inconsistencies

in the defect identification in silicon carbide are one of the motivations behind the present work.

In addition to the positron lifetime measurements, numerous Doppler broadening spectroscopy
studies were published [68-71, 73-78]. Ohshima et al. [73] studied n-type 6H-SiC samples
implanted with 200 keV phosphorous ions and then annealed up to 1500°C. In the as-implanted
samples the relative S, parameter of 1.067 was detected and attributed to a defect with a
size similar to Vc+Vg;. After annealing, the increase of S was interpreted as the formation of
clusters such as (Vc+Vsi)2 and (Ve+Vsi)s. The Ve+Vy; divacancy was also identified in the
PhD thesis of Laurent Henry [77] with S,q = 1.068 and W, = 0.866 in 6 H-SiC. Barthe et al.
[71] also studied the annealing of defects in 6 H-SiC, implanted with low-energy protons. After
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annealing at 900°C a cluster with S, = 1.088 and W, = 0.766 was detected and identified as
(Vc+Vsi)a2, also based on its lifetime of 257 ps.

Kawasuso et al. [74-76] measured the Doppler broadening of three polytypes of silicon carbide,
3C, 4H and 6H. The samples were n-doped and irradiated with 1-2 MeV electrons. The
authors identified the silicon vacancies, with the relative S, parameter of 1.028-1.033, as the

predominant defects in the samples.

Rempel et al. [69] studied n-type 6 H-SiC samples irradiated with 2.5 MeV electrons. Based on
the shape of ratios between diamond, silicon and silicon carbide lattice spectra they identified
vacancies on the two sublattices, C vacancies, Si vacancies and Si-Si divacancies. Another study
performed to identify defects on the two SiC sublattices was performed by Arpiainen et al. [68].
The n-type 6 H-SiC samples were irradiated by electrons and protons with various energies. The
authors attributed the signals detected after 0.8 MeV electron and 12 MeV proton irradiation to
carbon and silicon vacancies, respectively. Dannefaer et al. [70] also studied electron irradiated
n-type 6 H-SiC samples and determined S, = 1.00 and W, = 1.00 for V¢, Sieq = 1.05 and
Wi = 0.90 for Vg; and S = 1.03 and W, = 1.0 for V+Cg;.

It is worth keeping in mind that a direct comparison between the different published momentum
distribution measurements is not always possible. The ratio curves and relative valence and
core contributions (S and W parameters) depend on the experimental resolution. The windows
within which the S and W parameters are integrated might also differ between the studies and

it can strongly affect their values.

1.3.1.3 Experimental results of X. Kerbiriou

In this work we will analyze, among others, the experimental results obtained for silicon carbide
during X. Kerbiriou’s thesis at the CEMHTI Laboratory (Orléans, France). The interpretation
of these measurements has been the basis of our collaboration and the subject of publication
[79], therefore the experimental data is presented in detail here and will be discussed further in

Sec. 4.4 in view of the calculation results obtained during this study.

In the study by X. Kerbiriou, the 6 H-SiC samples were cut from a low nitrogen-doped single
crystal wafer (np —na = 1.9x10" cm™3, 385 pum thick). It was a commercial CREE research
(0001)-oriented 6 H-SiC wafer grown using the modified Lely method. The characterization
using positron annihilation spectroscopy was performed on of these crystals before irradiation
and reported in Ref. [55]. It showed that these samples contained negatively charged non-

vacancy defects.



30 CHAPTER 1. LITERATURE REVIEW

Proton irradiation was performed at room temperature at the CEMHTI laboratory using a
cyclotron. The crystals were irradiated under vacuum with 12 MeV protons at a fluence of
4%10' ¢cm~2 on a water-cooled sample support. The maximum flux used during irradiation

Uin order to avoid sample warming. SRIM [80]

was maintained close to 2x10' HTem™2s~
calculations reported in Ref. [55] showed that 12 MeV protons go through the whole crystal
and that the vacancy defect distribution is almost homogeneous as a function of depth. A 20
minute isochronal annealing, from 100°C (EPR study) or 300°C (PAS study) up to 1050°C by
50°C steps - was performed in a rapid thermal annealing furnace under argon atmosphere. Both
PAS and EPR spectra were recorded as a function of the sample temperature before annealing

and after the various annealing steps.

Electron paramagnetic resonance (EPR) measurements

The electron paramagnetic resonance (EPR) measurements were performed using an EMX
BRUKER spectrometer at 80 and 300 K. This technique allows one to probe defects in solids
exhibiting unpaired electrons. It is based on the fact that in the presence of an external magnetic
field the energy level of an unpaired electron is split into two. The electron magnetic moment
is then either parallel or antiparallel to the field. The information about the defect type can be
obtained by measuring the energy absorbed by the material due to transitions of the electron

between these two levels.

The EPR spectra obtained by X. Kerbiriou for the SiC samples were decomposed into different
Lorentzian type components using numerical simulation. The spin numbers in the irradiated
crystals were determined by comparison with a CuSO, standard sample measured at the same
time. The absorption intensity measured in the SiC sample and the standard sample were
determined by fitting the signal with a sum of Lorentzian functions. The number of spin in the

sample is therefore given by the relation as follows

3 Isam le P
Ns in|sample — = _Ns andard 1.3.3
[ P ] ol 45(5 + 1) Istandard m tandard ( )
where p is the volumic mass of the sample, m its weight, Ngiandara the number of spin centers
in the standard sample, Igmple and Istandara the EPR signal intensities in the sample and in
the standard sample, respectively. S is the spin of the centers detected in the sample. The

defect concentrations given in the following are average values on the whole crystal volume.
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The spectra are described by the parameters of the Hamiltonian as follows:

H=psB-g-S+S-D-S+) AS-I; (1.3.4)

J

with pug being the Bohr magneton, B the magnetic field, S the effective spin of the defect, g the
g tensor, which accounts for the coupling between the orbital and spin angular momentum of
the electrons, D the Zero Field Splitting (ZFS), A; the hyperfine (HF) interaction constant with
the nuclear spin of the neighbor atom j and I; the nuclear spin of the neighbor atom j. The

first derivative of the EPR spectra is presented in Fig. 1.6a and 1.6b for ease of interpretation.

PAS measurements

The evolution of the lifetime components as a function of the measurement temperature for var-
ious annealing temperatures is plotted in Fig. 1.7a. For each annealing temperature, the values
of the average positron lifetime 7,,, the long lifetime component 7 and its relative intensity
I, are plotted as a function of measurement temperature. The data shown correspond to the
measurements performed before and after annealing at 300°C, 750°C, 850°C and 1000°C. These
annealing temperatures were chosen because the evolution of the positron lifetime parameters

as a function of the measurement temperature is representative of the general behavior.

For all annealing temperatures, 7,,. and 7, vary with the measurement temperature. This indi-
cates that at least one negative defect is detected. Moreover, since the long lifetime component
depends on the annealing temperature, several types of vacancy defects are probably detected
and their concentrations change during annealing. The same spectra are therefore presented
also as a function of annealing temperature for three characteristic measurement temperatures
- 35 K, 215 K and 555 K (see Fig. 1.7b). The low (35 K) and high (575 K) measurement tem-
peratures allow one to obtain information on the negatively charged and the neutral vacancy
defects detected in the crystals, respectively. For a better accuracy, the values presented for
35 K are in fact an average for 15 K, 35 K and 55 K, the values for 215 K are an average for
195 K, 215 K and 235 K and the values for 555 K are an average for 535 K, 555 K and 575 K.
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Figure 1.6: (a) EPR spectrum obtained at 300 K in the proton irradiated 6H-SiC CREE
crystal before annealing. The inset shows the central spectrum and its fit using the VL model.

(b) Silicon vacancies concentration (not distorted, distorted, sum) as a function of the annealing
temperature in the 6H-SiC H* 12 MeV irradiated crystal.
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Figure 1.7: (a) Measurement and annealing temperature dependence of the positron lifetime
components obtained for the 12-MeV proton irradiated crystals. In both figures the average
lifetime T4, (a), long lifetime component 1o (b) and its intensity I, (c), are shown.
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1.3.2 Uranium dioxide

Several experimental PAS studies on uranium dioxide are available in literature. In the study
of Barthe et al. [81] a lattice lifetime of 1694+1 ps was measured in polished and annealed
samples. The samples were then irradiated with electrons and a particles at various fluences.
No defect was detected after irradiation with 1 MeV electrons. It is consistent with the fact
that this irradiation should create defects in the oxygen sublattice only and that the positive
oxygen vacancies should not be detected by the positrons. In the other samples, irradiated
with 45 MeV « particles of 2.5 MeV electrons the long lifetime components between 30147 and
307+3 ps were observed. Since the PAS measurements on irradiated UO, presented in Ref. [81]
were performed at constant temperature (300 K), the charge state of the defect could not be

deduced.

In the study of Roudil et al. [82] a self-irradiated actinide-doped UQO, samples were examined
by PAS. In samples with 0.2% plutonium weight content a long lifetime component of 313 ps
was detected. In the case of 27% Pu-doped UQO, a lifetime of 340 ps was observed.

The Doppler broadening of the annihilation radiation in UO, was also measured [83-87]. Barthe
et al. [83] studied the annealing behavior of near surface vacancy defects in sintered polished
UOs samples. In as-polished disks a vacancy with S, = 1.12 — 1.13 and W, = 0.78 — 0.79
was detected. During annealing an increase of the size of this defect was observed. Labrim et
al. [84, 85] examined helium implanted UO, and attributed S, = 1.076 and W, = 0.88 to
a complex containing uranium vacancies. Doppler broadening spectroscopy was also used to
study Xe implantation in uranium dioxide by Djourelov et al. [86, 87]. The authors observed
that in the stoichiometric samples at 10x10* and 10x 10 cm™2 fluences low concentration of
bubbles was created and it increased after annealing. In hyper-stoichiometric samples the Xe
bubbles could be already observed in as-irradiated samples and their concentration increased
during annealing. It was also shown that the bubbles were stable at 1673 K, while at 1873 K

the release of Xe from the bubbles was observed after 16 h of annealing.

In addition to the already published studies mentioned above , in this work we will also analyze
some unpublished PAS results for UO,. These measurements have been performed by M.-F.
Barthe et al. at the CEMHTT laboratory and are presented below.

The evolution of the annihilation characteristics as a function of the measurement temperature
in 45 MeV « irradiated UO; disks is presented in Fig. 5.17. For all measurement temperatures
two positron lifetimes were extracted from the experimental spectrum decomposition, indicating
presence of an open volume defect. The measurement temperature dependence of the short

lifetime component 77, the long lifetime component 75, the average positron lifetime 7,, and
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fluence of 2x10'° em™, as a function of the measurement temperature.

the intensity I5 corresponding to 7o are shown in Fig. 1.8. These experimental results will be

discussed and analyzed in Sec. 5.4.

1.4 Conclusions

The importance of comprehension of the point defects behavior led to extensive experimental
studies on both silicon carbide and uranium dioxide. Positron annihilation spectroscopy is one of
the most powerful methods that can be used to study open volume defects in solids, which is why
it has been widely used to investigate unirradiated and irradiated SiC and UQO,. The interpreta-
tion of the PAS measurements, however, is not straightforward, which is reflected for example in
discrepancies between the positron lifetimes attributed to silicon monovacancy-related defects
in the literature. Additionally, theoretical studies on positron annihilation characteristics are

limited in number for SiC and are not available in literature for UO4. In the case of silicon
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carbide, several computational studies have been published [58, 59, 63, 64], but using significant
approximations. No fully self-consistent calculations, taking into account the relaxation of the
atoms due to the defect creation and positron localization have been performed up to now. The
aim of this thesis is therefore to perform state-of-the-art positron calculations for SiC and UO,

and to contribute to the identification of defects in these materials.
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Computational methods

The goal of this thesis is to support the identification of signals observed by PAS in both
uranium dioxide and silicon carbide by means of first-principles modeling. For both positron
annihilation characteristics and formation energies determining, electronic structure calculations
are necessary. We explain here the principles of electronic calculations and in particular the
framework used, the density functional theory (DFT) and the two-component density functional
theory (TCDFT).

2.1 Density functional theory

Electronic structure calculations enable one to describe matter at the atomic scale. At this scale
systems consist of interacting nuclei and electrons. The basic equation for this type of problem

is the Schrodinger equation, which can be written as

~ ~

AV = [Tn+Te+IZln+I7rle+%e V= BV, (2.1.1)

where H is the Hamiltonian, ¥ is the total wavefunction of the system, T, T, are the kinetic
energies of nuclei and electrons and Vnn, Vne and \7ee describe nucleus-nucleus, nucleus-electron

and electron-electron interactions and E is the total energy of the system.

Eq. (2.1.1) is not possible to solve analytically for a complex system and approximations and
numerical methods are necessary. Density functional theory is a type of quantum mechanical

methods, which allows one to model the electronic structure of many body systems, such as

37
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atoms, molecules and condensed matter phase thanks to the use of several simplifications. This
method was formulated by Hohenberg and Kohn [88] based on the Thomas-Fermi model [89, 90].
In DFT the electronic density, n(r), is the basic parameter describing the system, which means
that all the properties of the system can be expressed as functionals of the density. This
approach simplifies the calculations, as the problem of N electrons with 3N spatial coordinates
is reduced to a problem of a global charge density with 3 spatial coordinates only. We present

here the main approximations, theorems and methods used in the density functional theory.

2.1.1 Born-Oppenheimer approximation

The first approximation that can be made to solve Eq. (2.1.1) was proposed by Born and Op-
penheimer [91]. As the masses of nuclei are much larger than those of electrons, the nuclei can
be considered as fixed. It means that their kinetic energy, T},, can be neglected. Additionally,
the total wavefunction can be separated into electronic and ionic parts, ¥ = Wi s X Velectrons-
Therefore, the Schrodinger equations corresponding to electrons and nuclei can be solved inde-
pendently. We will consider the electronic part only in the following expressions. The effect of
the nuclei presence on the electrons is represented by an external potential v(r), which is sensed

by moving electrons. For electrons, it reduces the Eq. (2.1.1) to

N
Te + Zv(ri) + Vvee

HU = U =FEU, (2.1.2)

where N is the number of electrons in the system.

2.1.2 Electronic density

Eq. (2.1.2), even though already simplified, is still a problem of N electrons with 3N spatial
coordinates. The idea behind DFT is to represent the system using the charge density only.

This density, for a normalized wavefunction W, is defined as:
n(r) = N/dr2 drs ... dry |U(r,ro,...,10)[°. (2.1.3)
The wavefunction normalization leads to

/drn(r) = N. (2.1.4)
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In the density functional theory all operators describing a given system can be expressed as

functionals of the density described above, thanks to the Hohenberg-Kohn theorems.

2.1.3 Hohenberg-Kohn theorems

The first Hohenberg-Kohn theorem states that the external potential v(r), as well as the total
energy of the system, are unique functionals of the electronic density. It means that the system

of electrons can be described by
Ten] + /dr v(r)n(r) + Usln] = Ey[n], (2.1.5)

where F,[n| is the energy of the system for a given potential v(r), T[n| is the kinetic energy
of the electrons and Ue[n] is a functional describing the electron-electron interactions. In the
expression above we can regroup the terms independent of the external potential in a universal
functional

Fn] = Ty[n] + Us[n). (2.1.6)

According to the second Hohenberg-Kohn theorem, the density functional E,[n] is minimized
for the ground state of the electronic density in the given potential v(r). It means that the

ground-state energy can be found through the functional minimization,

E,[n] = min { / dr v(r)n(r) + F[n]} | (2.1.7)

with a constraint put on the density variation:

drdn(r) = 0. (2.1.8)

2.1.4 Kohn-Sham approach

The Hohenberh-Kohn theorems themselves are not enough to determine the n(r) density, be-
cause a direct formulation of the F[n| functional for a system of interacting electrons does not
exist. To overcome this issue, the Kohn-Sham approach, which consists in replacing a complex
system of interacting electrons by a system of independent electrons moving in an effective po-

tential Vg that yields the same density, can be used. In this approach the F'[n] functional can
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be divided into three parts:
Fin] = Ti[n] + Vi[n] + Exc[n], (2.1.9)

where T is the kinetic energy of the non-interacting electrons, Vj is the classical electrostatic
(Hartree) energy, related to the Coulomb repulsion between the electrons. F is the exchange-
correlation energy, which contains the difference between the kinetic energies of the interacting
and non-interacting systems and the non-classical electrostatic interaction energy. The separa-
tion of the F[n| functional is done in this way, because the first two terms are simple to deal

with, while the more complex effects are contained in the third part.

Treating each electron i separately, one obtains the Kohn-Sham (KS) equations:

2+ Vi) (1) = e ) (2.1.10)

Energies ¢; are the Lagrange multipliers of the problem and are called KS energies and );
orbitals are referred to as KS orbitals. It should be noted that the KS energies are not the
energies of the real electrons and the KS orbitals are not their wavefunctions. These are only
the parameters used to find the ground state of the system. For N orbitals with the lowest

energy, the electronic density can be expressed as:

n@:Zm@R (2.1.11)

For an interacting system the effective potential V.g can be divided in three parts: the part
coming from the interactions with nuclei, v(r), the part describing the Coulomb interaction

between electrons and the exchange-correlation part, .. Equation (2.1.10) can be written as:

{—%w +v(r) + dr’ |:(_r’2/| uxc(n)} Ui (r) = €1hi(r), (2.1.12)
with -
xel(n) = 505 (2.1.13)

The Ey[n] functional is, however, known exactly only for the free electron gas, while in other
cases, approximations need to be made. The choice of this approximation will decide in large

part the accuracy of the method. In general Fy.[n] is expressed as:

mwz/mwmwﬂm®, (2.1.14)
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where exc(r, [n(r")]) represents the exchange-correlation energy in the point of space r, per
particle. In this work, two approximations of the exchange-correlation energy are used, the
LDA (Local Density Approximation) and the GGA (General Gradient Approximation).

2.1.5 Exchange-correlation functionals

2.1.5.1 Local density approximation

LDA is the simplest approximation of the exchange-correlation interaction functional, in which

we use the energy dependence on the density is calculated as in the uniform electron gas:
FLDAf] ~ / dr exo[n(0)]n(r). (2.1.15)

where ey is the exchange-correlation energy per unit volume, per particle, calculated for a

homogeneous electron gas with the n(r) density. In the local density approximation the exchange

3 /3\"?
egom _ _ = (_) n4/37 (2116)

part is given explicitly:

4 \ 7

in atomic units. The correlation part can be estimated using Monte Carlo methods, as it has
been done e.g. by Wigner [92] or Ceperley and Alder [93].

LDA is a good approximation in systems where the electronic density does not vary much,
which is usually not true for molecular and ionic systems. Nevertheless, in many systems LDA
can still provide satisfactory results. A well-known problem of this approximation, however, is

that it overestimates binding energies and underestimates bond lengths [94].

2.1.5.2 Generalized gradient approximation

The generalized gradient approximation is an improvement of the LDA. In this approach, the
exchange-correlation energy is not only based on the electronic density, but also on its gradient

|Vn(r)|. The exchange-correlation functional in the GGA is given by:
ESOA — /dr e n(r)] Fe[n(r), [Vn(r)|Jn(r), (2.1.17)

hom

2om g the exchange energy of a homogeneous electron gas, given in Eq. (2.1.16) and

where e

Fy. is a dimensionless function. Numerous formulations of Fy. exist, among which the ones
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provided by Perdew, Burke and Ernzerhof (PBE) [95] and Perdew and Wang (PW91) [96] are

the most used for solid systems. In this work we used the PBE formulation.

2.1.6 DFTHU

Even though standard DFT provides satisfactory results for a wide range of systems, it is
known to fail to describe some classes of materials, such as actinide oxides, containing strongly
correlated electrons, localized close to nuclei. In order to model properties of such materials,
methods beyond DFT are necessary. Several methods can be used to improve the description of
strongly correlated electrons, such as DETH4U [97], Self-interaction correction (SIC) [98], hybrid
functionals [99] and the combination of DFT and DFT+DMFT (dynamic mean field theory)
[100]. In this study we use the DFT+U method to model uranium oxide since it yields good

results for bulk UO, and is the only method currently tractable for systems containing defects.

DFT+U is a correction that can be applied to standard DFT functionals, LDA and GGA.
In this method, a Hubbard-like term FEy,;, is added to the energy of the correlated electrons
to describe their enhanced interactions. This term is related to two types of interactions, the
Coulomb interaction, represented by a parameter U and exchange interaction, represented by a

parameter J. The energy in DFT+U consists of three terms:
Eprr+v = Eprr + Enw — Enc, (2.1.18)

where Epc is a double counting term, related to the fact that a part of the correlation energy
is already included in the energy calculated in LDA or GGA. The Hubbard-like term Fy,;, can
be expressed in several ways. The most used methods are those proposed by Liechtenstein et
al. [101], in which the U and J parameters are considered separately, and Dudarev et al. [97],
in which only the difference U — J is considered. In this study we use the Liechtenstein scheme
of the DFT+U method.

2.1.7 Modeling of solids

2.1.7.1 Bloch’s theorem

For the simulation of crystalline structures, an infinite material can be replaced by a finite cell

repeated periodically. In the corresponding system, the potential sensed by the electrons is
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periodic as well. We have, therefore, U(r) = U(r+R), where R is a Bravais lattice vector,

being a multiplication of the unitary vectors of the system, a;, a; and ags,
R = xja; + x0ay + 2333, (x € 7Z). (2.1.19)

According to the Bloch’s theorem, the wavefunction 1, of an electron moving in such a periodic
potential can be written as a product of a wavelike part exp(ik - r) and a lattice periodic part
Unk(r),

Uk (r) = exp(ik - r)unk(r), (2.1.20)

where n is the band index and k is a vector of the reciprocal space. The k vectors are related

to the unitary vectors of the reciprocal space by, by and bs through the relation:
k = y1b1 + ygbg + y3b3, (y S R) (2121)

The unitary vectors of the real and reciprocal lattices are related by a; - b; = 2md;;. The k
vector is usually constrained to lie within the first Brillouin zone in the reciprocal space, hence

the y; factors are between -1 and 1.

Calculations of many important quantities such as the charge density or the total energy of a
system consist of integration over the infinitely extended systems in the real space. This can
be replaced by integrals over the finite first Brillouin zone in reciprocal space thanks to the
Bloch’s theorem. However, the sampling of k-points within the Brillouin zone is crucial for the

accuracy of the integration.

2.1.7.2 Plane waves

To determine the electronic wavefunctions numerically, a basis of functions must be chosen.
One possibility is to use localized functions, such as Gaussian functions or atomic orbitals. The
second choice are plane waves, which are mathematically simple and allow an easy computation
of the forces acting on the ions. Additionally, errors caused by the incompleteness of the basis

set can be easily reduced by adding more plane waves.

When the plane waves basis is chosen, u,,(r) from Eq. (2.1.20) can be expanded in a Fourier

series:

Unie(r) = Q7Y “e,q exp(iG - 1), (2.1.22)
G

where (2 is the cell volume, G is the lattice vector and c,g are the plane wave coefficients.
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The summation in Eq. (2.1.22) goes over all reciprocal space vectors. However, in practice, only
a certain number of G can be treated. For computational purposes, a limit on the maximal
kinetic energy corresponding to the free particle with the wavevector G is chosen. This maximal
energy is called the cut-off energy. Every vector G taken into account in calculations must fulfill

the condition
Rk + G|?

2m

< Bt (2.1.23)

Plane wave basis sets are widely used in electronic structure calculations of solids. Nevertheless,
when using a reasonable cut-off energy, they fail to describe the strong oscillations of the wave
functions near the nuclei. There are several ways to overcome the problem of description of
these oscillations. We present here the two main methods, the pseudopotential and projector
augmented-wave (PAW) methods.

2.1.7.3 Pseudopotentials

The idea of the pseudopotential method is to get rid of the oscillations of the wavefunction
in the region close to nuclei, while keeping a correct description of the valence electrons in all
other regions of space. This can be done by smoothing the Coulomb potential up to a certain
radius, called cut-off radius. The relation between the all-electron wavefunction and the pseudo
wavefunction obtained using the pseudopotential method is presented in Fig. 2.1. Since the
resulting pseudo wavefunction has no oscillations, it can be easily described using a reasonable

number of plane waves.

A

Figure 2.1: Representation of a wavefunction and its description in pseudopotentials (PS)

and PAW methods.

The pseudopotential method can provide a good description of various materials properties.

However, in many cases a higher accuracy is needed. To obtain a precision very close to that



2.1. DENSITY FUNCTIONAL THEORY 45

obtained when considering all the electrons of the system, while keeping the simplicity of the

pseudopotential method, the projector augmented-wave (PAW) method [102-105] can be used.

2.1.7.4 Projector augmented-wave method

The PAW method combines the pseudopotential and linear augmented-plane-wave methods
(LAPW) approaches. In the PAW method the all-electron (AE) wavefunctions U,,, with n and
k indexes corresponding to bands and k-points, respectively, are obtained from pseudo (PS)

wavefunctions, thanks to a linear transformation:

The index i stands for the atomic position R, the angular momentum (I, m) and an additional
index n to distinguish different partial waves for the same site and angular momentum. The

AE ¢; and PS ¢; partial waves are equal outside an atom centered PAW augmentation region.

Eq. (2.1.24) can be represented schematically as in Fig. 2.2. The all-electron wavefunction is
relatively smooth in the inter-atomic region (in gray) and it oscillates around the atoms (in
pink). It can be hence decomposed as a sum of a smooth pseudo wavefunction occupying the
whole space and all-electron partial waves localized in the PAW augmentation region. The third
term, the contribution of pseudo partial waves is removed so that there is no double counting

in the atomic region.

QO QQQQQQ
O O O O
O O QQQQQQ

Figure 2.2: Schematic representation of the PAW method.

Starting from Eq. (2.1.24) one can show that the total charge density of the electrons can be

rewritten as:
n(r) = a(r) + n'(r) — a'(r) + n.(r), (2.1.25)

with n. being the density of the frozen-core electrons which is kept constant and equal to the
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core density of the isolated atom and

;

n(r) = ank<¢lnk | r)(r | ank)
nk

n'(r) = Zpij<¢i|r><r|¢j> (2.1.26)

nt(r) = Zpij(@ | o) (r | &;).

\

In the above, f,; are the occupation factors of the Kohn-Sham wave functions while p;; is
defined as:

piz = Y Far( Wk | 5i) (55 | W) (2.1.27)

nk

From the decomposition of the density given in Eq. (2.1.25) it is possible to write the total
energy as a sum of pseudo E, partial all-electron E' and partial pseudo E' contributions (the
different terms are detailed in Ref. [105]):

E=E+E —E" (2.1.28)

The relation between the all-electron wavefunction and the wavefunction obtained using the
PAW method is presented in Fig.2.1. As presented in the figure, the PAW method yields a

much better description of the wavefunction that the pseudopotential method.

2.1.7.5 Supercells

To model an infinite material, unitary cells containing one or a few atoms are periodically
repeated in the three dimensions of space, as shown in Fig. 2.3a. If a defect is introduced into
the unitary cell, it will interact with its images in the repeated cells, leading to errors in the
calculations. To minimize this interaction, unitary cells with relatively large numbers of atoms,
called supercells, are used. The supercells method is presented in Fig. 2.3. The first image shows
a perfect lattice obtained by repeating a unitary cell containing one atom. The second image
shows a 2x2 supercell containing a defect (presented in red) and its images (in pink). The third
image represents a 4x4 supercell containing a defect. It can be seen that increasing the size of
the supercell increases the distance between the defect and its images and therefore minimizes

the interactions. To obtain the most accurate calculations, very large supercells should be used,
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however, the maximal number of atoms that can be taken into account is determined by the
computational resources. The supercells used in the study of defects in silicon carbide and
uranium dioxide in this work are presented in Fig. 2.4. We used a supercell containing 216
atomic sites to model defects in 3C-SiC, 192 atomic sites in the case of 6 H-SiC and 96 atomic
sites for UQOs.

e 6 6 06 06 0 0 O ® 6 6 6 06 6 0 O ® 6 6 6 06 6 0 O
® 6 6 6 06 0 0 O e 6 6 6 06 06 0 O ® 6 6 6 6 06 0 O
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(a) Unitary cell (b) 2x 2 supercell with a defect — (c) 4x4 supercell with a defect

Figure 2.3: Two-dimiensional scheme of the supercell method.

2.2 Calculations of formation energies of charged defects

The charge of a defect determines if it can be detected by PAS. Positive vacancies should not

be observed as they create a long-range repulsive Coulomb potential, which results in a small

(a) 3C-SiC supercell (b) 6H-SiC supercell (c) UOs supercell

Figure 2.4: Supercells used to model defects in this work. The 3C-SiC, 6H-SiC' and UQO,

supercells contain 216, 192 and 96 atomic sites, respectively.
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positron trapping coefficient [44]. Negative and neutral vacancies, on the contrary, can be
observed and distinguished as the trapping coefficient of the former decreases with temperature
while it is constant for the latter. It is therefore important to consider the various possible

charge states of each defect.

The basic equation describing the formation energy of a vacancy defect Ef reads [9]:

Ei(Vx.q) = Ewot(Vx,q) = > mifti + qpte, (2.2.1)

where Eio(Vx, q) is the total energy of the supercell, n; is the number of atoms of the i type
in the cell, y; is the chemical potentials of the ¢ atom, ¢ is the charge of the defect and p, is
the electron chemical potential, which can vary from the bottom to the top of the band gap.
Since the classical supercell approach fails in providing accurate formation energies for charged
supercells, approximations need to be introduced to Eq. (2.2.1). Even if a large number of
atoms is used in calculations, the defects cannot be considered as isolated because of the long
range electrostatic interactions. Various schemes of energy correction were proposed [106-108].
The first correction that should be made is a simple electrostatic correction. The Madelung
correction A FEy, which was proposed by Leslie and Gillan [106], can be added to the formation

energy. This correction is expressed as:

2

AE, = %, (2.2.2)
where « is the Madelung lattice constant, € is the static dielectric constant and L is the length
of the supercell edge. AFE, tends to overestimate the correction, as it takes into account only
the monopole term of the electrostatic interaction. An improved scheme proposed by Lany and
Zunger [107], which contains only 2/3 of the Madelung term, along with a potential alignment
AV, can be also used. The potential alignment is related to the fact that the electronic states
can be shifted in a cell containing a defect compared to a perfect system. Several methods of
calculating the potential alignment exist. In this study we use a method proposed by Taylor
and Bruneval [108], taking

AV = (vpk) — (viiddecty, (2.2.3)

(vRk) and (vdeleet) are the average Kohn-Sham potentials calculated for the cell without and

with the defect, respectively.
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2.3 Two component density functional theory
In order to calculate the characteristics of the positron annihilation in a solid, one needs to
determine the electronic and positronic densities and wavefunctions in the considered system.

These quantities can be computed in the two component density functional theory (TCDFT)
[44, 109, 110], which is a generalization of the density functional theory.

The total energy in TCDFT can be written in a similar way as in DF'T,

Eln*,n7] = E[n"]+ E[n"] + /drVext( )In~(r) = n"(r)]

/dr /d / ) + Bt ),

where E[n"] and E[n~] are the one-component functionals for positron and electrons, Vey is

(2.3.1)

an external potential, the fourth term correspond to the Hartree interaction and ES™P is an
electron-positron correlation functional. Various approximations can be made for the ES™P
term leading to several calculation schemes which will be described in Sec. 2.3.2. It is worth
noting that in the above expression both electron and positron densities are positive, while
the signs of the external potential acting on the positron and of the electron-positron Hartree

interaction are negative.

2.3.1 Momentum distribution and positron lifetime

The two positron annihilation characteristics usually measured experimentally, the positron life-
time and the momentum distribution of the annihilating electron-positron pair (see Sec. 1.2) can
be calculated using the positron and electron densities and wavefunctions yielded by TCDF'T.

The momentum distribution can be expressed as [44]:

2, (2.3.2)

p(p) =2y

i

/ dr e PTUSP(r)

where U7 is the two-particle wavefunction in the state ¢ and p is a given momentum, 7, is
the classical electron radius and c is the speed of light. If we consider that the electron and
positron are independent (independent particle model, IPM) we can rewrite U; ™ as a product

of the electronic and positronic wavefunctions:

TP = U (1)U (1), (2.3.3)
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To take into account the correlation effects between the electrons and the positron, one can
introduce the position-dependent enhancement factor \/g(n—,n*) [111], corresponding to the
increase in annihilation due to the short-range screening of the positron by the electrons. It is
worth noting that often, an enhancement factor that depends only on the electronic density is
considered and expressed as \/W . However, in this study, we will also use the enhancement
factors depending on both the electron and positron densities. Including the enhancement factor

leads to the expression

2

p(p) = W’SCZ ‘/dr e PTUL (r)¥ (r)y/g(n—,nt) (2.3.4)

Since in the above expression the enhancement factor depends only on the position r (through
densities) and not on the electronic state i, the corresponding method is called the state-

independent scheme, or less often the position-dependent scheme.

The positron lifetime is calculated as the inverse of the total annihilation rate, which can be

obtained by integrating p(p) over the momenta:

1 1
A= — W/dpp(p). (2.3.5)

The annihilation rate can be also calculated using the electron and positron densities n~(r) and
n*(r),

A= Wrzc/dr n (r)n*(r)g(n",n"). (2.3.6)

The momentum distribution can be also calculated in the state-dependent scheme [112]. Ac-
cording to Makkonen et al. [113] the correlation effects in the state-independent scheme are
overestimated, however, since the enhancement factor \/W describes the distortion of
the electron-positron wavefunction due to the short-range screening, while the wavefunction is
distorted in the whole space. The state-dependent scheme, uses a constant enhancement factor
~; for each electronic state described by the index j. In this method the momentum distribution

is expressed as
2

/dre_ip'r\llj(r)\lij_(r) : (2.3.7)

p(p) =mricy 7
ij

where v; = A;/A"M. ) is the total annihilation rate calculated for the electronic state j,

A= Wrzc/drnj_(r)nJr(r)v(n_(r)), (2.3.8)
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and )\?)M is the annihilation rate calculated for the same state within the IPM, hence using
v = 1. When the formulation of the enhancement factor depending on both electron and

positron densities (g(n~,n")) is used, the above expression will be replaced by:

A= ﬂr'fc/drnj_(r)nJr(r)g(n_,nJr), (2.3.9)

Makkonen et al. [113] showed that the Doppler spectra calculated using the state-independent
scheme are in slightly better agreement with the experimental measurements, while the state-
dependent scheme overestimates the distribution for high momenta. However, they point out
that when ratios of Doppler spectra to a reference spectrum are considered the state-dependent
scheme yields better results. As the comparison with experiments is usually made using Doppler
spectra ratios and parameters extracted from them, we decided to implement and use the state-

dependent scheme only.

2.3.2 Calculation schemes

When determining the electrons and positron wavefunctions and densities, one can choose var-
ious formulations of the electron-positron correlation energy (ES™P in Eq. (2.3.1)) and make
several assumptions. This leads to several calculations schemes. In all of them, the ground
state electron density is first calculated using DFT. Taking into account this density, the poten-
tial v (r) sensed by a positron is computed. The positron density can then be found by solving
the Kohn-Sham equations, which in this case take form:
hQ
— 5~V () + 0 ()0 (r) = €70 (x). (2.3.10)
m
Taking the positron ground state wavefunction ¢ (r), for which the lowest energy e* is obtained,

the positron density is found, according to

nt(r) = [T (r). (2.3.11)

At this point, an approximation considering that the positron density is too small to affect the
electronic density is sometimes made, leading to the simplest positron calculation scheme, called
conventional (CONV). This assumption is well justified in the case of a delocalized positron in a
perfect lattice. When this approximation is made, the calculation is stopped after one electronic

and one positronic calculation step (see Fig. 2.5). In this method a LDA zero-positron density
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limit of the electron-positron correlation functional parametrized for the positron density tending
to zero (zero-positron-density limit) is used. This functional was parametrized by Boroniski and
Nieminen [110] using the data provided by Arponen and Pajanne [114]. Despite its simplicity,
the conventional scheme works well in the cases of perfect crystals and has been widely used in
studies of positrons localized in vacancies [58, 59, 63, 113, 115-118].

A second calculation scheme, using the same parametrization as in CONV, but in which the

electron and positron densities are calculated self-consistently, was proposed by Gilgien, Galli,
Gygi and Car [119] and is called GGGC.

A third scheme, called PSN, uses a full LDA electron-positron correlation functional provided by
Puska, Seitsonen, and Nieminen [120] and an enhancement factor depending on both the electron
and the positron densities. This scheme was based on the Boronski and Nieminen method [110].

The three positron calculation schemes, mentioned above are illustrated in Figure 2.5.

0 060 iomns o0 00

positron

T, p(p) electrons o @ N
CONYV scheme ¢

positron

GGGC and PSN

schemes

Figure 2.5: Two-component calculation schemes. To the left, the CONV scheme, in which the
electronic structure is first calculated, then the positronic one. After those two steps, the positron
lifetime and Doppler broadening can be calculated. To the right PSN and GGGC schemes, in
which several repetitions of the electronic and positronic steps are made until convergence on
the densities is reached.
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2.3.2.1 Enhancement factors in the GGGC scheme

Various expressions for the enhancement factor v are used in the GGGC and the PSN schemes,
which can strongly affect the calculated positron lifetime. In GGGC, the formula proposed
by Boronski and Nieminen [110], for a zero-positron-density limit, is used. It is based on the

interpolation of many-body calculations by Arponen and Pajanne [114] and takes the form:
y(n”) = werdn |1+ 1.23r + 0.8295r2/% — 1.2672 4 0.3286r>/% 4 érf : (2.3.12)
where 74 is a density parameter equal to the radius of a sphere containing one electron:
—mron” =1, (2.3.13)

for a electronic density n™.

2.3.2.2 Enhancement factors in the PSN scheme

In the PSN scheme the expression for the enhancement factor proposed by Puska, Seitsonen
and Nieminen [120] is used. The form of the positron lifetime is the one proposed by Bororiski

and Nieminen [110],

» =t [ et @ng(0intn), (23.14)

T

where ¢(0; n™, n) replaces the enhancement factor v and is the electron-positron pair correlation
function at the origin. The form of this factor was obtained by fitting Lantto’s results of
hypernetted-chain calculations of the pair-correlation functions [121], quoted by Bororiski and

Nieminen [110], while using the interpolating functional:
g(0;n% n) = a(ns)n + b(ns)n? + c(ns)ne + go(ns), (2.3.15)

where n~. (n.) stands for the positron or electron density, depending on which is larger (smaller).

The parametrizing functions a(n), b(n) and c(n) are expressed as:

a(n) = 5 [2k(n) ~ 6ga(n) + 82(n) — 200(n)] (2.3.16)

b(n) % =3k(n) + 11g1(n) — 16gs(n) + 50 (n)] (2.3.17)
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and X

c(n) = —[k(n) — 4g1(n) + 8gs(n) — 4go(n)] (2.3.18)
The go(7s), g1(rs) and go(rs) are the functions interpolating and extrapolating the data obtained
by Lantto in the hypernetted-chain approximation of many-body theory,

1
go(rs) = 1+ 1.2300r, + 0.9889r3/2 — 1.4820r% 4 0.39561>/% + 67‘?, (2.3.19)

1
g1(rs) = 1+ 2.0286r, — 3.3892rr3/% — 3.0547r2 — 1.0540r>/% + 67’;9’ (2.3.20)

and )
g2(rs) = 14 0.2499r, + 0.2949r%/2 + 0.6944r2 — 0.5339r>/2 + 67“?, (2.3.21)

with )

gm“g’n =1 (2.3.22)

2.3.2.3 Ways of correcting the imperfect screening of the positron in semiconduc-

tor and insulators

The enhancement factor v or g is used to take into account the increase in the electron density
at a positron site due to the screening of the positron by electrons. However, the positron
calculation schemes were first developed to model metallic materials and they assume a perfect
screening of the positron by the electrons. In semiconductors and insulators corrections have
to be used to take into account the existence of the gap in the electronic states. Two types of
corrections are available: A semiconductor correction (SC) can be implemented in the enhance-
ment factor as proposed by Puska [122]. Alternatively, a gradient correction (GC) proposed by
Barbiellini et al. [60] can be implemented in both the enhancement factor and the electron-
positron correlation energy. It is worth noting that the gradient correction can be applied not
only for semiconductors, but also other materials in which the description of the positron is

difficult, for instance in alkali metals.

Semiconductor correction
In order to take into account the increase in the enhancement factor due to the screening of the

positron by electrons, a semiempirical model was proposed by Puska et al. [57]:

1
y(n_) = wr2en |1+ 1.23r, 4 0.8295r%/% — 1.26r2 4 0.32861>/2 + 6(1 —1/e)r|,  (2.3.23)
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where e, is the dielectric constant of the considered material.

The semiconductor correction in the PSN scheme was not available. For the purpose of the

study on silicon carbide we implemented it in the PSN method, as presented in Sec. 3.1.2.

Gradient correction
Another way of correcting the enhancement factor was proposed by Barbiellini et al. [60, 123].

This method is called the gradient correction (GC) and introduces

Yoca = 1+ (’YLDA — 1)670{6, (2.3.24)

where Yqoa and yp, are the GGA and LDA formulations of the enhancement factor, respec-
tively, € is a parameter chosen to best reproduce lattice lifetimes of various materials and

e = |VInn|*/¢4r, with 1/¢%g is the local Thomas-Fermi screening length.

2.3.2.4 Other formulations of the enhancement factor

Several other formulations of the enhancement factor, aiming at improving the prediction of the
positron lifetimes, have been also proposed. Stachowiak and Lach [124] suggested a LDA form
of v within perturbed the hypernetted-chain approximation (called PHCLDA):

1
YprcLpA = 1+ 1.23rg — 0.137r2 + 67"5’. (2.3.25)

Boronski [125] proposed a GGA version of the PHC enhancement factor:

Yeuccca = 1+ (YprcLpA — 1)e™*, (2.3.26)

with @ = 0.10. Kuriplach and Barbiellini [126] suggested LDA and GGA forms of the en-
hancement factor, based on a fit to quantum Monte Carlo data obtained by Drummond et al.
[127]:

1
Yomcrpa = 1+ 1.23r, — 0.22r2 + grf (2.3.27)
and
Yomcaaa = 1+ (Yomerpa — 1)e™*, (2.3.28)

with @ = 0.05. The assessment of the positron lifetimes obtained using various forms of the

enhancement factor has been presented by Kuriplach and Barbiellini in Ref. [126] and Zhang
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et al. in Ref. [128]. According to Kuriplach and Barbiellini, even though the use of PHCGGA
and QMCGGA methods improves the description of the positron annihilation, it is difficult to
decide which one should be used and additional precise experiments should be performed to

help solving the matter.

2.4 TCDFT implementation in ABINIT

In the present study we use the two-component density functional theory implementation avail-
able in the ABINIT package [129]. In this section we briefly present the ABINIT project and
the practical implementation of the TCDFT in the code, in particular within the projector

augmented-wave method.

2.4.1 ABINIT

ABINIT [129-131] is an open-source package allowing one to find the total energy, charge density
and electronic structure of systems made of electrons and nuclei within the density functional
theory. It uses pseudopotentials and a planewave or wavelet basis. ABINIT also allows geometry
optimizations according to the DFT forces and stresses and to perform molecular dynamics
simulations using these forces. ABINIT is distributed under GNU General Public Licence (GPL)
and can be freely used, modified and distributed, hence the developments made in the present

study are also available for other groups studying positron annihilation in materials.

2.4.2 Self-consistency

In practice the TCDFT in ABINIT is implemented as a double loop on the electronic and
positronic densities: during each subloop, one of the two densities (and Hamiltonians) is kept
constant while the other is being converged (see Fig. 2.6). If the CONV scheme is performed
(e.g. for perfect lattice) the calculation is stopped after two subloops, one electronic and one
positronic, and the positron lifetime and momentum distribution are calculated. If a self con-
sistent scheme is used, the electronic and positronic steps are repeated until the convergence
criterion is reached. Additionally, the forces acting on atoms, including contributions from the
electrons and the positron, can be calculated and the calculation continued for the new atomic

configuration. To decrease the computational time when atomic relaxation is performed, each
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new ionic step can be started with an electronic calculation taking into account the potential due
to the positron from the last calculation, which can help to decrease significantly the number

of iterations.

> Atomic configuration

— -:'.','_'_‘_‘_‘:_'Electronic SCF

gy [0ony]
e
C eony.

new atomic configuration

;Computa’cion of forcesé
i acting on atoms !

Ao Postron™
~ distribution lifetime

Figure 2.6: lIllustration of the fully self-consistent two-component density functional theory
calculations in ABINIT. n_ .. and nl,.. refer to converged electronic and positronic densities,
respectively.

2.4.3 TCDFT in the PAW formalism

The TCDFT method has been implemented in ABINIT in a unified formalism for the positron and
the electrons: the wavefunctions of the electrons and the positron in the system are expressed on
the same mixed PAW basis set (planewaves and atomic orbitals). The choice to use the PAW
formalism to represent both the positronic and electronic wavefunctions and densities allows
one to, for example, use techniques able to treat strongly-correlated system (DFT+U) and to
calculate energies and forces of the positron-electron system self-consistently. Additionally, this
implementation results in calculations that can be performed as a single run, using the same

dataset for electrons and a positron. On the other hand, it needs to be kept in mind that the
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standard PAW datasets are not always suited for the description of the positron wavefunction.

The corresponding issues are addressed in Sec. 3.2.1.3.

In order to be able to calculate the positron lifetimes and the Doppler spectra using the PAW
method, the expression for the energy of an interacting electrons-positron system, the positron
lifetime and the momentum distribution (Eq. (2.3.1), Eq. (2.3.2) and (2.3.6), respectively) had
to be rewritten in this formalism. Some of the main equations of the PAW method have been
presented in Sec. 2.1.7.4. We will also use notations introduced in Ref. [105]. The formulations
for the energies and positron lifetime will be presented below, while the development of the

expression for the momentum distribution, will be presented in Sec. 3.2.1.

2.4.3.1 Energies

First, the expressions for the total energy of a system containing electrons and a positron will be
written within the PAW formalism. The conventions used in Ref. [105] are used in the following.
We can introduce superscripts ‘=’ and ‘™’ in order to refer to the electron- and positron-related
quantities. The energy then consists of three parts: one coming from the valence electrons and

the ions £, one related to the positron £ and one to the electron-positron interactions £+,
E=E +E"+E. (2.4.1)

E~ has the same expression as in Sec. 2.1.7.4 or in Sec. 2.3 in Ref. [105]. The contribution to

total energy coming from the positron can be similarly divided into three parts:

Et =E" + B - E'Y, (2.4.2)
where
(
Bo— <\i;+|_§|\i+>_/de[ﬁZc](ﬁ++m)
1+ + A 1+
E'Y = ) plieid = Sles) - | droafnz](n'?) (2.4.3)
ij R
o1+ +/7 A - ~ ~14+ | o+
Bt = ZPM@\—;l(ﬁj)— g drog[nz](n™ +7a7)
i R

The p;; are the occupancies of each (i,j) channel, defined as p;; = (TF | p)p; | UF) and

vy is the Hartree potential of the corresponding density. nz. and nyz. are the sums of the
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nucleus and core electron charge densities and pseudized densities, respectively. 7' is the
positron compensation charge density, which is added to soft charge densities 7™ and 7'* to
reproduce the correct multipole moment of the charge density, similarly to what is done for the
electronic density [103]. In the above, the self-interaction correction as described by Bororiski
and Nieminen in Ref. [110] (Appendix B) is used. There is therefore no positron-positron

Hartree and exchange-correlation interaction.

The last contribution to total energy, E*~, which is due to interactions between the positron

and the electrons, can also be divided into three parts:
EtT=FEt~ 4+ B — EF, (2.4.4)

where

P o= / dr vg[n!™ + n,)(n*) .
Or 2.4.5

EY = —/ drog[p'™ + = + 7 )@ +at)
Qr

+ E (' + 0" +n), (AT 4+ A1)

2.4.3.2 Positron lifetime

The positron lifetime is calculated using positron and electron densities. One can hence represent
it in the PAW formalism by introducing Eq. (2.1.25) into Eq. (2.3.6). In the following it is
considered that the density of core electrons n, is included in n' and the pseudo-density of
core electrons 71, in 7 and 7', Introducing the PAW formulations of the electron and positron

densities, we obtain the expression:

A= Wrgc/dr <[ﬁ_(r) +n!7(r) — ' (r)]
«  [af(r) +n't(r) — ()] (2.4.6)

x gn~+n'" —nl at +alt - ﬁH))-



60 CHAPTER 2. COMPUTATIONAL METHODS

The integral in the above can be divided in two parts: the first over the augmentation region

and the second outside it, leading to:

Arcqn = Wrgc/rEQR dr ([n:(r) +n'(r) — At (r)]

« [t (r) + 0"t (r) =2t (r)] (2.4.7)

and
Mg = mrc /rm ar ([~ () + n* (1) — 2 (x)]

« [Af(r) +n'T(r) — a2 (r)] (2.4.8)
gl T =R R = A,

Inside the augmentation region, if the partial wave and plane-waves basis sets are complete,

n=n' and 7t = A'*, which leads to:

Areap = Wrgc/ drn'~(r)n'*(r)g(n'~,n'"). (2.4.9)
reQr

Outside the augmentation region n' — n! = 0 and n'* — a!* = 0, which leads to:

Argay = TTeC /rgm dr [~ (r)(r)]at(r)g(n—,a"). (2.4.10)

Inside the augmentation region we can also write the subtraction of two equal integrals, which

will allow us to simplify the expression for the annihilation rate:

(2.4.11)

By adding the two integrals from Eq. (2.4.11) to the decomposed A from Eq. (2.4.9) and (2.4.10)
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we obtain:

A o= e (/rmR drii~(r)at (r)g(i~, i*)
+ / dr v~ ()" (r)g (7™, ")
+ / . drn'~(r)n'*(r)g(n'~, n'")

— dra'~ (r)a't(r)g(R', ") | .
e )

(2.4.12)

We can put the first two integrals together and extend the intervals of the last two to the whole
space, since they are equal to zero outside the augmentation region. This leads to the final

expression for the annihilation rate decomposed in three terms:
A=A+ =L (2.4.13)

where

A= Wrgc/drﬁ(r)ﬁr(r)g(ﬁ,ﬁ*)

A= Wrgc/ drn'~(r)n't(r)g(n',n't) (2.4.14)
Or

A= Wrgc/ dra'~(r)a't(r)g(r'~, 7).
Qr

\

It is worth noting that it is only possible to obtain the equation above if the partial waves and

plane-waves basis are complete, which is an assumption usually made in the PAW formalism.

2.5 Conclusions

In this chapter we presented the methods that can be used to calculate the formation energies
and positron annihilation characteristics of defects in solids. We briefly presented the density
functional theory (DFT). We further described the calculation of the formation energies of
defects and the two-component density functional theory (TCDFT), in the framework of which
the positron annihilation features can be computed. Finally, the implementation of TCDFT
in the ABINIT code was presented. As described in this chapter, in both density functional
theory and two-component density functional theory, various approximations can be made and
different functionals used. This implies that tests need to be performed to determine which

methods are the most appropriate for the studied materials.
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Chapter 3

Code tests and development

In this chapter we first present the methods that have been used in the positron lifetime calcula-
tions, the tests of the ABINIT implementation and the derivation of parameters that we will use
in the further study. We then show the derivation of the equations allowing us to implement
the momentum distribution calculations within the PAW formalism and present the way in
which the equations have been implemented in the code. Finally, results of the tests of Doppler

broadening calculation implementation are presented.

3.1 Calculations of positron lifetime

3.1.1 Test of the implementation of positron lifetime calculation in

the PAW formalism in the ABINIT code

Positron lifetime calculation in the PAW method had been only recently implemented in the
ABINIT code [129]. Therefore, we firstly needed to test this development. We chose to do it by
comparing results on silicon with the ones obtained by Takenaka et al. [132], who used the all-
electron full-potential linearized augmented plane wave method (FLAPW), the most accurate
implementation of DF'T available up to now. We decided to perform tests in similar conditions
to those used by Takenaka et al. Therefore, we did not use the semiconductor correction and
took the the experimental volume of Si. We used the same parametrization as in Reference

[132], which is equivalent to our CONV scheme. The calculation was performed using a PAW

63
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dataset for silicon with 2s, 2p, 3s and 3p valence states, hence with 12 valence electrons and we

obtained a lifetime of 209 ps, which is close to the results of Takenaka et al. of 211 ps.

To test the case of a trapped state for the positron, we performed calculations for Vg; in bulk
Si. Using the CONV scheme we obtained 217 ps for the silicon vacancy relaxed without the
positron (8.3% inward relaxation in Dsy geometry) and 241 ps for the unrelaxed vacancy. Then
we fully relaxed the defect in the GGGC scheme and found a lifetime of 271 ps. These results
are consistent with those of Makkonen et al. [113, 115], who also used the PAW method to
describe the electronic wavefunctions and densities (215 ps and 272 ps for the vacancy relaxed
without and with the positron, respectively). The small differences between our results and
those from the reference studies indicate that the positron lifetime calculation implementation

in ABINIT is reliable.

In our calculations the same basis set is used for the description of both electron and positron
wavefunctions. However, since the natures of the electron-ion and positron-ion interactions are
different, the shapes of the corresponding wavefunctions are not the same. As a result, in some
cases, the basis set used for the electron wavefunctions representation can be inappropriate for
the positron distribution description. For example, the silicon PAW dataset with 3s and 3p
valence states only can be successfully used for electronic structure calculations. Yet, using
this PAW dataset, we calculated the lattice lifetime of bulk Si of 223 ps, which is much longer
than the lifetime obtained with 2s, 2p, 3s and 3p valence states (209 ps). It indicates that
the basis set with 3s and 3p valence states may not be complete enough to properly describe
the positron wavefunction. We therefore performed another calculation using a PAW dataset
treating 4 valence electrons, but containing additional 2s and 2p projectors. This yielded the
same lattice lifetime as in the 12 valence electrons calculation. It means that the large lifetime
discrepancy between cases with 4 and 12 valence electrons is due to the basis set incompleteness.
This problem will be further discussed in Sec. 3.2.1.3.

3.1.2 Implementation of the semiconductor correction in the PSIN

scheme

For the purpose of the study on silicon carbide we implemented the semiconductor correction
in the PSN scheme, in a similar way to what was done for the GGGC method (see Sec. 2.3.2.3).
The expression for the enhancement factor in the PSN scheme was presented in Sec. 2.3.2.2.
To take into account the semiconductor correction in the PSN scheme, we modified functions

go(n), g1(n) and go(n) in Equations (2.3.19) to (2.3.21), in analogy to what was done in the g(n)
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factor of CONV and GGGC. As a result, the interpolating functions occurring in the model of

Puska et al., now expressed as a function of 7y, take the form

1
go(rs) = 1+ 1.2300r + 0.9889r3/2 — 1.4820r2 + 0.3956r>/2 + s1-1 J€0e)T2, (3.1.1)
1
g1(rs) = 1+ 2.02867 — 3.3892r3/% — 3.0547r2 — 1.0540r°/% + 6<1 —1/ese)r? (3.1.2)
and
1
g2(r5) = 1+ 0.2499r¢ + 0.294973/% + 0.6944r2 — 0.5339r/2 + s0- 1/ex)r?, (3.1.3)
with .
gwrg’n =1 (3.1.4)

It has to be noted, that this modification is done only when the electron density is higher than
the density of the positron, i.e. when it enters Eq. 2.3.15 as n~. When the positron density is
the larger one, the functions go(n), g1(n) and ga2(n) keep their original form with 1/e,, = 0.

3.1.3 Implementation of the gradient correction in the PSN

scheme

The gradient correction in the PSN scheme did not exist either in literature. For the purposes
of this study, we decided to implement the gradient correction in the PSN method. Firstly,
we implemented the correction, taking an adjustable parameter o = 0.22, as proposed by
Barbiellini et al. [60], in both the enhancement factor g and the correlation energy. However,
the implementation of the gradient correction in the correlation energy led to some inconsistent
results. Both Barbiellini et al. in Ref. [60] and Kuriplach et al. in their recent work [126]
showed that the gradient correction has a significant influence on the enhancement factor while
the positron density remains almost unaffected. We decided, therefore, to apply the gradient

correction only on the g function in the PSN scheme, by taking
Joen = 1+ (gipy — e ™, (3.1.5)

where € is a parameter, € = |V Inn|?/¢3g, with 1/¢3x being the local Thomas-Fermi screening

length.
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3.1.4 Parameters of positron lifetime calculations

3.1.4.1 Silicon carbide

The effect of the number of considered valence electrons and the basis set completeness on the
positron lifetimes calculated in Si, which was mentioned in Sec. 3.1.1, had to be verified as
well in the case of SiC. For that purpose we compared results obtained using 4 and 12 valence
electrons in the Si dataset (while considering all electrons in the valence state for carbon). We
also studied the effect of the approximation taken for the electron-electron interaction. In the
GGA and LDA calculations we used the theoretical lattice parameters of 3C-SiC of 4.39 and
4.33 A respectively, and 6.52 for the experimental high frequency dielectric constant e in the
semiconductor correction. The calculations were performed using cells containing 8 atomic sites.

The results of this preliminary study are presented in Table 3.1.
Table 3.1: Comparison of positron lifetimes obtained in 3C-SiC for lattice and carbon vacancy

using different PAW datasets. Relative lifetimes for the carbon vacancy were calculated according
to Eq. (3.1.6).

e-¢ x-¢  Si valence Schema Lifetime Relative

approx. electrons (ps) lifetime
Lattice ~ LDA 4 CONV 149
Lattice ~ LDA 12 CONV 144
Ve LDA 4 GGGC 211 42%
Ve LDA 12 GGGC 204 42%

In the case of SiC the differences caused by the number of electrons included in the frozen core
are smaller than for Si (see Sec. 3.1.1). The lattice positron lifetimes is only 5 ps smaller for 12
than for 4 valence electrons. The difference is slightly larger for the carbon vacancy than in the
case of lattice (7 ps), but the ratio between vacancy lifetime and lattice lifetime is the same for
the two PAW datasets. It means that for calculations in SiC the use of 4 valence electrons for
silicon is satisfactory. However, in the PSN calculations the use of 4 valence electrons in the Si
PAW dataset did not permit to obtain calculation convergence. A more complete basis set had

to be used in that case.

We studied the effect of the approximation used for the electron-electron exchange-correlation
interaction on the obtained lifetimes. We performed calculations using LDA and GGA for
monovacancies. Results can be seen in Table 3.2. Each time the equilibrium volume yielded
by the corresponding method is used. The lifetimes obtained in LDA are only slightly shorter
than in GGA as the corresponding lattice parameter is smaller. The type of the electron-

electron interaction functional and the size of the PAW dataset used in calculations affect all
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Table 3.2: Comparison of positron lifetimes obtained in 3C-SiC' for carbon and silicon vacan-
cies. Different schemes, electron-electron exchange-correlation functionals and PAW datasets
are used. Relative lifetimes were calculated according to Eq. (3.1.6).

e-¢ x-¢  Sivalence Scheme Lifetime Relative

approx. electrons (ps) lifetime

Lattice  LDA 4 CONV 149

Lattice GGA 4 CONV 153

Lattice  LDA 12 CONV 144

Lattice GGA 12 CONV 148
Ve LDA 4 GGGC 211 42%
Ve GGA 4 GGGC 217 42%
Ve LDA 12 PSN 195 35%
Ve GGA 12 PSN 200 35%
Vg LDA 4 GGGC 224 51%
Vi GGA 4 GGGC 231 51%
Vg LDA 12 PSN 227 58%
Vg GGA 12 PSN 236 59%

the obtained lifetimes. As we showed before in the case of different numbers of valence electrons,
these differences have only a slight effect on the ratio between the lifetimes of defects and that
of the lattice. Therefore, to be able to correctly compare the results obtained using the various
methods, we present not only the absolute lifetimes, but also relative lifetimes f,, calculated

according to

Tdefect — Tlattice
frel = s (3 1 6)
Tattice

where Tiatice 1S the lattice lifetime obtained using the same method and parametrization as for

the considered defect.

Since the GGA approximation of the exchange-correlation interaction between electrons yields
better energies than LDA [133], the best scenario would be to use GGA in both the GGGC and
PSN calculations. However, since in the PSN scheme 12 valence electrons must be considered
in the Si PAW dataset, using GGA approximation leads to a very high computational cost.
As seen in Table 3.2, the differences in relative positron lifetimes obtained in PSN4+GGA and
PSN+LDA are smaller than 1%. The absolute lifetimes calculated in PSN+LDA are shorter
mainly due to a smaller lattice parameter used. Based on that, we decided to perform PSN
calculations in LDA. For the GGGC scheme GGA is used as the computational cost remains

reasonable in this case.

Additionally, in the case of the carbon vacancy we have studied the effect of the initial geometry

on the positron localization. In some theoretical studies it was found that this defect is not a
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positron trap [57, 63, which is still controversial. To be sure that our result is not a consequence
of the starting point, we performed two calculations. In the first one we started with the perfect
atomic positions, while in the second one we began with a vacancy that was already relaxed
without a positron. The carbon vacancy itself relaxes inwards in a Dyg symmetry [10] due to
the formation of dimer-like bonds between the silicon atoms surrounding the defect. A smaller
volume of V¢ could prevent the positron localization. However, both calculations eventually
yield an outward relaxation, in very similar Ty geometries. It probably means that the positron

can break the bonds between silicon atoms. A similar effect was found for a silicon vacancy in
Si [134].

3.1.4.2 Uranium dioxide

We studied the effect of the parameters used in the calculations on the positron lifetime of
perfect UO,. We compared the results obtained in GGA and GGA+U methods, when:

e using various cell volumes,

taking two types of positron lifetime calculation schemes,

applying different corrections to the enhancement factor g,

considering or neglecting the spin polarization.

The results of these tests are presented in Tab. 3.3. We used two different calculations schemes,
PSN and GGGC. GGGC+SC and PSN+SC in Tab. 3.3 refer to schemes in which the semi-
conductor correction, based on the one proposed by Puska [122] and described in Sec. 3.1.2,
was used. We took the experimental high-frequency dielectric constant of UOs equal to 5.1
[135] in the semiconductor correction. GGGC+GC and PSN+GC refer to schemes in which
the gradient correction, proposed by Barbiellini et al. [60], was used. It is worth noting that
in the GGGC+GC scheme this correction is applied on both the enhancement factor and the
electron-positron correlation functional, while in the PSN+GC method it is only implemented in
the enhancement factor g, as described in Sec. 3.1.3. In Tab. 3.3 we present the lattice positron
lifetimes calculated using various volumes. V®: refers to the experimental volume, correspond-
ing to a lattice parameter of 5.47 A [14]. Ve refers to the equilibrium volume yielded by
calculations using given parameters. We can notice that the lifetimes obtained using the semi-
conductor correction, both using the PSN and GGGC schemes, are systematically shorter than

the ones calculated with the gradient correction. Moreover, the GGGC and PSN schemes yield
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Table 3.3: Lattice positron lifetime of UOy calculated using various computational parameters.

GGA GGA+U
no spin spin no spin spin
Vea 1/ exp- Vea 1/ exp- 1 ea 1/ exp- 1ea 1/ exp-
PSN+SC 151 ps 157 ps 155 ps 157 ps 152 ps 157 ps 160 ps 156 ps
GGGC+SC 149 ps 155 ps 150 ps 154 ps 154 ps 155 ps 158 ps 154 ps
PSN+GC 156 ps 162 ps 161 ps 162 ps 158 ps 162 ps 167 ps 162 ps
GGGC+GC 157 ps 164 ps 159 ps 164 ps 163 ps 164 ps 168 ps 163 ps

similar lattice positron lifetimes, both when the semiconductor and the gradient correction is
used. Additionally, the results obtained using the gradient correction are in better agreement
with the experimental lattice lifetime obtained for UOy of 169+1 ps [81]. It suggests that the
schemes using the gradient correction are more suitable for the description of positron lifetimes
in uranium dioxide, hence we choose to use them in the present study. We decided to use both
GGGC+GC and PSN+GC schemes in our further study of defects positron lifetimes. First, we
do it in order to avoid the misinterpretation of experimental results, which could result from
possible errors of one of the calculation methods. Second, since the studies in which different
self-consistent schemes are used are scarce, we wish to compare those two methods and verify

the influence of the scheme choice on the defect identification.

In Tab. 3.3 we also observe that when the experimental volume is considered, we obtain similar
results for all schemes using different descriptions of the electrons in the system. No effect
of the functional used for the electron-electron exchange-correlation functional description or
of the spin polarization is observed. In particular, it is worth noting that the U parameter
does not affect directly the calculated positron lifetimes. The difference between the lifetimes
calculated in GGA and GGA+U methods is of 1 ps at most, when the experimental volumes
are taken. The lifetimes calculated at the equilibrium volumes found using a given method,
however, differ more strongly. This is because the positron lifetime is highly sensitive to the
free volume. The best agreement between the calculated and experimental lifetime is reached
for the calculation using the GGA+4U method and spin polarization at the equilibrium volume
(168 and 167 ps in the GGGC+GC and PSN+GC schemes, respectively, compared to 169+1 ps
measured experimentally). This is, therefore, the set of parameters that we use for the study of
defects in UO,.
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3.2 Calculation of Doppler broadening of the annihila-

tion radiation

3.2.1 Implementation of Doppler broadening calculations in the

PAW formalism in the ABINIT code

In the calculations of the Doppler broadening of the annihilation radiation we wish to use the
fully self-consistent two component calculation schemes implemented in ABINIT. The full self-
consistency in this code is possible thanks to the use of the same PAW formalism for both
electron and positron wavefunctions. As a consequence, it is necessary to express the equations

needed to calculate the electron-positron momentum distribution in the PAW method.

Since the momentum distribution of the annihilating electron-positron pairs is a sum over the
electronic states, we can consider the core and valence contributions separately and apply the
most convenient approximations and methods for each of them. We will now present the meth-

ods used for the valence and core electrons, respectively.

3.2.1.1 Valence electrons

The first step towards expressing the valence contribution to the momentum distribution of the
annihilating electron-positron pairs in the PAW formalism is to implement the PAW form of
the electron and positron wavefunctions into Eq. (2.3.4). The product of electron and positron

wavefunctions needed in this equation takes the form:

U0 = (T + Y (6i0) - 6i(r)) il EH)
’ (3.2.1)

o (T + X (60 - 4,0 1),
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Multiplication of the terms in the brackets leads to:

V)W, (r) = UH(r)T,(r)

71

(3.2.2)

By definition, outside the augmentation region the wavefunction is equal to the pseudo part

only, hence ¢,;(r) — qgj (r) is equal to zero. Inside the augmentation region, on the other hand, if

the partial wave and plane-wave basis sets are complete, UF(r) = 32, ¢, (r)(5;| U F) and ¥~ (r) =

> ¢;(r)(p;|T~). We can rewrite the products of the quantities existing in the whole space and

those which have non-zero values only inside the PAW augmentation region as:

T (r) Z <¢j(r) — éy(ﬂ) (B,

J

= Zél(r) <¢j(r) — qb}(ﬂ) (Bi ) (0 )

ij

and

) Y (i) = dilr)) (5:19)

This leads to:

(3.2.3)

(3.2.4)

(3.2.5)
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therefore

—7TT’C

+/dr e P Z (@-(r)qﬁj(r) — gz;,(r)(/z;](r)) (3.2.6)

ij

(Bl ) (B0 ,)

2

We can see that inside the squared modulus above, we obtain a sum of two separate integrals:
one containing the pseudo wavefunctions and one containing partial waves. We can consider

each of them separately.

We can further transform the second integral in Eq. (3.2.6). By separating the partial waves

into angular and radial parts we obtain

$i(r) = =2 Spm, (7) (3.2.7)

and

Stym; (7), (3.2.8)

where Sj.,,,,(7) are the real spherical harmonics. We can also express the exponential e~PT as:

Separation of the angular and radial parts of the second integral from Eq. (3.2.6), using dr =
r2drdS, leads to:

[are™ 3 (6:005(6) = 5005,0)) G YT 0e) = 7 30T (3 00)

ij ij

5 S5 DD ( [ 900 515, 5 )) (f 0 (010,0) = 51096,9) st ).

(3.2.10)
By introducing the real Gaunt coefficients G (see Ref. [105]),

G2y = [ A2 ()i, (7) St (), (3.2.11)
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we finally obtain the expression

[are ™3 (am0s(x) = 50)5,0)) GV 0e) = 7 35T ()
> Sl G, [ A (016400) = B0180)) o)
(3.2.12)

Introducing the above into Eq. (3.2.6) we can write the final expression of the valence contri-

bution to the momentum distribution calculated at a given k-point:

pur(P) = WTSCZ drefip'r‘iﬁ(r)‘ﬁ_nk(r) + 4m Z<ﬁi|‘i’+><ﬁj|‘ﬁ_nk>
" i 9 (3.2.13)

¢3S G, [ (0)6,0) = 31103500 o)

3.2.1.2 Core electrons

The core contribution to the momentum distribution is expressed as:

2

p) = ﬂrgcz ’/dr e PTUT ()W (r)| | (3.2.14)

where the summation goes over all the core electronic states je.

To adapt this equation, we express the positron wavefunction in the PAW formalism, and for
the core electrons, we assume that the core electrons are unaffected by the crystal formation
which means that their wavefunctions are equal to those of the isolated atom (frozen core

approximation),

\IJJ_ (r) = ¢j.(r). (3.2.15)
This leads to the form as follows for the core contribution to the momentum distribution:

2

pe(p) = mried . (3.2.16)

dre PT ( )+ Z Gi(r ) < pz|‘I’ >> bj.(r)

We consider then that the core electron wavefunctions are contained inside the augmentation

region. This approximation seems reasonable in the majority of considered cases and can be
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easily verified. If the pseudo partial waves qgk(r) form a complete basis sets for the pseudo-

wavefunction ¥ (r) we have:

/dr e T (‘iﬂr(r) = <Pl > ék(ﬂ) ¢;.(r) =0, (3.2.17)

which leads to:

2

pe(p) = mrie) (3.2.18)

/dr e P Z < ﬁk\\iﬁ > ¢r(r) ;. (r)
k

Further, we separate the partial waves into angular and radial parts and transform the equations
in the same way as was done for the valence contribution. This leads to the final expression for

the core contribution to the momentum distribution:

2

pep) = w2y

Je

Ay < il > S () (=) G, / dr ¢:(r)$;.(r)jr(pr)
Z o (3.2.19)

3.2.1.3 PAW basis set completeness for positron wavefunction

To obtain both Eq. (3.2.13) and (3.2.19) we considered that the PAW basis set is complete
enough to describe the positron wavefunction inside the augmentation region. The PAW
datasets, however, are generated in order to describe electronic wavefunctions and not the
positronic ones. The nature of the electron-ion and positron-ion interactions and, hence, the
shapes of the corresponding wavefunctions differ strongly. Therefore, in some cases, a standard
PAW dataset can be inappropriate for the positron description. This can affect the calculated
positron lifetimes, but the effect is less significant than in the Doppler spectra calculations, since
in the former case the annihilation rate is integrated over the whole space and the errors in the
core region can be covered by the valence contribution. In Doppler broadening calculations this

issue needs to be monitored more carefully.

In Fig. 3.1 we illustrate the effect of the choice of the PAW dataset on the positron wavefunction
in a Si lattice. In this figure we present the decomposition to the total positronic wavefunction
(all-electron, ‘AE’) into three components—pseudo (‘PS’), partial all-electron (‘partial AE’) and
partial pseudo (‘partial PS’)-according to Eq. (2.1.7.4).

First, we used a standard Si PAW dataset with 4 valence electrons (3s and 3p basis set or-
bitals). With a complete basis set we should have Ut (r) = 3. ¢;(r)(5;|U*) inside the PAW
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augmentation region (here up to r = 1.5 bohr). However, it can be seen in Fig. 3.1a that the
corresponding pseudo (‘PS’) and partial pseudo (‘partial PS’) contributions are not equal in
this range. Additionally, we can observe a peak at the (0,0,0) point, which corresponds to the
center of a silicon atom, where the positron wavefunction should be equal to zero. This dataset

is clearly not appropriate for the positron wavefunction representation.

In Fig. 3.1b we present the positron wavefunction obtained using a PAW dataset with 12 valence
electrons (2s, 2p, 3s and 3p basis set orbitals). In this case the ‘PS’ and ‘partial PS’ are equal
inside the augmentation region, which means that the basis set is complete. There is still a
non-zero value of the all-electron wavefunction at the (0,0,0) point, but it is much smaller than
the one yielded by the 4 valence electrons dataset. It is worth pointing out that we could also
enlarge the PAW dataset by including projectors corresponding to excited states. However,
our test showed that a better description of the positron was always achieved when adding the

semicore electron orbitals.

Fig. 3.1 shows clearly that by adding additional states in the PAW dataset we obtain a better
description of the positron wavefunction. However, increasing the number of the valence elec-
trons taken into account for a given element leads to more time consuming calculations. In the
cases when large supercells are required (when modeling defects) the computational cost can
become too high. We decided to test if it is possible to add the partial waves corresponding
to the semicore electrons in the basis set used only for the positron wavefunction description,
while keeping the initial number of valence electrons. For instance, in the case of Si, we would
like to still consider only 4 valence electrons, but add the 2s and 2p states in the positron wave-
function basis set. In practice, we generate a PAW datasets (using a modified version of the
Atompaw generator [104]) in which we add the partial waves and projectors corresponding to
these additional states after the initial functions. During the self-consistent calculation, when
the electronic step is performed, we put to zero all quantities corresponding to these additional
states, so that the wavefunction basis set for the electrons is equal to the one calculated with
4 valence electrons. This allows us to obtain a better description of the positron wavefunction
without a significant increase of the computational cost. The positron wavefunction obtained
for the Si lattice using the PAW dataset with 4 valence electrons and added 2s and 2p states
is presented in Fig. 3.2 and compared with those calculated using standard datasets with 4
and 12 valence electrons. The positron wavefunctions obtained using a dataset containing on
one hand 12 valence electrons and on the other hand 4 valence electrons and added 2s and 2p
states are equal, which suggests that both including the semicore electrons in the valence and
adding the corresponding states only to the positron wavefunction basis set equally improves
the positron description. The effect of the choice of the PAW dataset on the Doppler spectrum
will be discussed in Sec. 3.2.3.
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Figure 3.1: Positron wavefunctions in Si lattice obtained using PAW datasets containing /
(a) and 12 (b) valence electrons. The wavefunctions are plotted between two Si atoms at (0,0,0)

and (0,0,1) reduced coordinates. All electron (AE), pseudo (PS), partial all electron (partial
AFE) and partial pseudo (partial PS) contributions are presented.

1.6

Si 4del
Si 4el+2s+2p
Si 12 el m—

Positron wavefuntion (a.u.)

~
o
©o |
—

0 1 2 3 4 5 6
r (bohr)

Figure 3.2: Positron wavefunctions in a St lattice obtained using PAW datasets containing
4, 12 valence electrons and a dataset with 4 valence electrons and added 2s and 2p states. The
wavefunctions are plotted between two Si atoms at (0,0,0) and (0,0,1) reduced coordinates.
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3.2.2 Numerical solutions used in momentum distribution calcula-

tions

The momentum distribution of annihilating electron-positron pairs can be considered as a
Fourier transform of the product of the electrons and the positron wavefunctions. To calcu-
late the ‘pseudo’ part of the equation for the momentum distribution we decided to use the
Fast Fourier transform (FFT) routines as implemented in ABINIT. The FFT in these routines
is performed between real and reciprocal space grids of equal sizes. The grid on which the
momentum distribution will be given must, therefore, be the same as the one used to express

the wavefunctions in the reciprocal space (called the ‘FFT grid’).

3.2.2.1 Momentum grid

The relation between the real and reciprocal grids used in the code is presented in Fig. 3.3.
In this two-dimensional scheme a; and ay are the lengths of the cell used in the calculation
and nfft; and nffty are numbers of points of the real grid in each direction. The spacing of the

reciprocal grid is proportional to the inverse of a; and as and its size to nfft; and nffts.

al/nfftl
.

—
—
[\
a
~
R+

—
al nfft1*27r/a1
Real space Reciprocal space

Figure 3.3: Two-dimensional scheme of real and reciprocal space grids.

In order to obtain the correct Doppler spectrum, spaces between the points of the momentum
grid must be small enough. Since the reciprocal grid spacing is inversely proportional to the cell

size, increasing the number of atoms used in the calculation will lead to a finer momentum grid.
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Figure 3.4: Schematic two-dimensional representation of the shifted momentum grids used in
momentum distribution calculations.

This cannot, however, always be done, since calculations performed using very large supercells
are too time consuming. Another way to increase the sampling of the reciprocal space is to
perform the FFT several times, each time on a grid shifted by a vector k, with coordinates
varying between —1 and 1. This is equivalent to the use of several k-points in the first Brillouin
zone mentioned in Sec. 2.1.20. For example, as shown in the two-dimenstional scheme in Fig. 3.4,
one can double the accuracy by performing the FFT on four different grids (eight for a three-
dimensional grid), shifted by k = (0,0), k = (0,0.5), k = (0.5,0) and k = (0.5, 0.5).

The core and PAW valence contributions to the momentum distribution, Eq. (3.2.13) and
Eq. (3.2.19), are expressed on a radial grid in the real space. The FFT routines could not
be used in this case, since we need to perform a Fourier transform between this radial grid and
a rectangular grid in the momentum space. The Fourier transform of the wavefunctions product
between radial and rectangular grids was written from scratch in our implementation, hence the
choice of the momentum grid was arbitrary. We chose, however, to use the same grid as used
to perform the FF'T to facilitate the summation of the pseudo, PAW and core contributions to

the momentum distribution.

3.2.2.2 Parallelization

The momentum distribution calculations can be time and memory consuming. In order to
be able to perform calculations using large supercells, necessary for defect studying, the code
needed to be parallelized. We implemented the parallelization on three levels, allowing one
to use the Locally Optimal Block-preconditioned Conjugate Gradient (LOBPCG) [136] or the
Chebyshev filtering algorithm [137]. That means that the processors can be distributed between
the k-points (in our case also between the shifted momentum grids), bands and FFT grid points
during the density, lifetime and momentum distribution calculations. If the parallelization over

bands is used, the wavefunction of the positron, which occupies one band, is known to some of the
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processors only. Therefore, before the momentum distribution calculation the processors need
to exchange the positron wavefunction. Then, each processor performs a calculation only for
given k-points (grids), electronic bands and FFT points. After that, summation over the band
processors is performed and the results for different k-points are gathered. Finally, processors

holding in memory different FF'T points write out the results in parallel.

3.2.2.3 Post-processing

The output of the Doppler broadening calculation is a momentum density on a three dimen-
sional grid. The experimental results are usually presented as one dimensional projections of
the momentum density or as integrals over the low- and high-momentum regions (S and W
parameters, respectively) of the Doppler spectrum (see Fig. 1.5). Therefore, the three dimen-
sional results need to be processed before they can be exploited. First, the projections are
calculated. That can be done in the [001], [011] or [111] directions. The next step is related
to the fact that the resolution of the experimental momentum distribution measurements is
finite. In order to mimic the corresponding effects and, hence, to be able to make a meaningful
comparison between the experiments and calculations, one needs to convolve the theoretical
results with a Gaussian function with the FWHM (full width at half maximum) corresponding
to the experimental resolution. Therefore, after the projections, the convolution is performed
in the post-processing. Presenting ratios of Doppler spectra to reference data (perfect lattice
or reference material) is a convenient way of presenting the results. To calculate the ratios, the
considered spectra must be given on the same grid and normalized in the same way. The last
step of the post-processing is, therefore, the interpolation of the data and its normalization. We

decided to use a grid with 0.1 mrad spacing and to normalize the spectra to unity.

3.2.3 Testing of the implementation

To validate our implementation of the Doppler broadening calculations we compared results
obtained using ABINIT with theoretical and experimental spectra published in literature. Fol-
lowing Makkonen et al. [115] we first compare ratios between spectra of perfect materials. To
be able to compare our results with those of Makkonen et al. we perform calculations for Si,
Al, Fe and Cu. Additionally, we perform tests for SiC and C in order to be able to make
a comparison with the ratios of the experimental Doppler spectra of diamond, Si and SiC of
Rempel et al. [69]. We also test our implementation for the case of the monovacancy in silicon.

In the following tests the calculation results for the [001], [011] and [111] directions are averaged
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(unless stated otherwise), in order to achieve the best agreement with experiments, in which the
directions cannot usually be distinguished. In the tests we use the state-dependent scheme with
the LDA electron-positron correlation functional, since according to Makkonen et al. [113] these
methods give better results than the state-independent scheme or the GGA approximation. We
do not use the semiconductor correction, since we observed that it had no significant influence

on the normalized Doppler spectra.

The first tests have been performed on the perfect silicon lattice. In this case various PAW
datasets containing different numbers of valence electrons can be used. These datasets have
been discussed in Sec. 3.2.1.3. The first dataset tested included the 3s and 3p states in the
valence and the 1s, 2s and 2p states in core. The corresponding Doppler spectrum is presented
in Fig. 3.5 (blue line). We can see that the results obtained using this dataset are incorrect.
We observe an unphysically high probability at high momenta in the spectrum. This is related
to the errors in the positron wavefunction obtained using this dataset (see Fig. 3.1a). There
was a peak in the core region, where the positron wavefunction should disappear. As a result,
for instance in Eq. 3.2.19 we multiply the core contribution by a high value, instead of a one
tending to zero, which explains the high probability at high momenta. It is worth noting that
there was also a non-zero value in the positron wavefunction calculated using the two more
complete datasets, however, the error and the affected region was smaller. We suppose, hence,
that the corresponding errors in the Doppler spectrum will appear at momenta above the range

that is usually compared with experiments of around 40 mrad.

The Doppler spectra obtained using the PAW datasets with 12 valence electrons and with 4
valence electrons and additional 2s and 2p states in the basis set are presented in black and
red, respectively, in Fig. 3.5. We can see that in both cases the behavior at high momenta is
greatly improved. The spectra are compared with the theoretical results of Makkonen et al.
and experimental data by Ranki et al. [138]. Our results are in very good agreement with
those of Makkonen and slightly above the experimental data at high momenta. The latter is

characteristic for the calculations using the state-dependent scheme [113].

The next test consisted of calculating Si lattice to SiC lattice ratio curves (Fig. 3.6). For Si
we used the PAW datasets with 12 valence electrons as well as with 4 valence electrons and
additional 2s and 2p states in the basis set. For carbon, we use a dataset including all 6 electrons
in the valence state. The ratio curves are compared with the experimental results of Rempel
et al. [69] for 6 H-SiC. The theoretical results obtained using both PAW datasets are in very
good agreement with the experimental data. In the figure we present the results obtained for
both 3C-SiC and 6 H-SiC. It can be seen that the momentum distributions of the silicon carbide

lattice are very similar for the two polytypes.
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Figure 3.5: Doppler spectra of Si perfect lattice calculated using different partial waves basis
sets. Spectra are convoluted with a Gaussian function with a FWHM of 3.7 mrad. The results are
compared with a theoretical spectrum given by Makkonen [139] and experimental data obtained

by Ranki et al. [138].
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Figure 3.6: Si lattice/SiC lattice ratio curves of momentum distribution of annihilation radi-
ation. The theoretical results obtained using different silicon PAW datasets are compared with
experimental data obtained by Rempel et al. [69]. The theoretical curves are convoluted with a
Gaussian function with a FWHM of 3.6 mrad.
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Figure 3.7: Cu lattice/Fe lattice ratio curves of momentum distributions of annihilation radi-
ation. The result obtained in this study is compared with experimental data obtained by Nagai
et al. [140] and with theoretical results of Makkonen et al. [115]. The theoretical curves are
convoluted with a Gaussian function with a FWHM of 4.7 mrad.

We further test our implementation of Doppler broadening calculations in the ABINIT code by
repeating some of the tests performed by Makkonen et al. in Ref. [115]. In Fig. 3.7 we plot the
Cu lattice to Fe lattice momentum distribution ratio curves. In this calculation for Cu we used
a PAW dataset containing 19 valence electrons (3s, 3p, 3d, 4s and 4p) and 2s and 2p states
added in the positron wavefunction basis set. In the case of Fe we used 16 valence electrons (3s,
3p, 3d and 4s) and 2s and 2p states added in the positron wavefunction basis set. We compare
our ratio curve with the theoretical results of Makkonen et al. and with the experimental data
obtained by Nagai et al. [140]. The reference results were extracted from Ref. [115]. We can see
that our results are in very good agreement with both theoretical and experimental reference
data.

In Fig. 3.8 we plot the Cu lattice to Al lattice momentum distribution ratio curves. In this
calculation we used a PAW dataset with 11 valence electrons (2s, 2p, 3s and 3p). In Fig. 3.9 we
plot the Si lattice to Fe lattice and Al lattice to Fe lattice ratio curves. For Si we use the PAW
dataset with 4 valence electrons and additional 2s and 2p states in the basis set, as described
previously. We observe that the ratio curves obtained using our implementation are in very good
agreement with the calculations of Makkonen et al. Also, both calculations agree qualitatively
to the experimental data of Nagai et al. It can be observed, however, that the experimental
ratios at low momenta are smaller than the calculated values for both Si and Al. Since the
discrepancies are similar for Si and Al, the problem might be due to the Fe spectrum. It is

possible that the experimental conditions did not completely correspond to those considered in
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Figure 3.9: Si attice/Fe lattice and Al lattice/Fe lattice ratio curves of momentum distributions
of annihilation radiation. The result obtained in this study is compared with experimental data

obtained by Nagai et al. [140] and with theoretical results of Makkonen et al. [115]. The
theoretical curves are convoluted with a Gaussian function with a FWHM of 4.7 mrad.

the calculations or that the sample contained some defects.

Finally, we tested our implementation on the case of a neutral monovacancy in Si. We performed
calculations using a 216 atom supercell, taking the PAW dataset with 4 valence electrons and

2s and 2p states added in the positron wavefunction basis set. The results presented in Fig. 3.10
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Figure 3.10: Vg;/Si lattice ratio curves of momentum distributions of annihilation radiation
in [001] direction. The results obtained in this study are compared with the results of Makkonen
et al. [115]. The theoretical curves are convoluted with a Gaussian function with a FWHM of
3.7 mrad.

were obtained using three different calculation schemes, CONV, GGGC and PSN. The vacancy
was relaxed using the PSN and GGGC schemes. In the case of the CONV method we performed
a calculation first taking unrelaxed positions and then taking the relaxed positions from the
GGGC calculation. The results are compared with the results of Makkonen et al. [115]. First, we
can observe that the low momentum regions are similar in all calculations and that a maximum
near 10 mrad is always found. However, the high-momenta ratios differ strongly. The GGGC
scheme yields the lowest high momentum ratio, which corresponds to the fact that this scheme
overestimates the localization of the positron in the defect and thus predicts a lower positron
density in the core region. As the positron localization is weaker in the PSN scheme, the ratio
curve obtained using this method is closer to one. The calculation performed for the relaxed
monovacancy using the CONV scheme can be compared with the result of Makkonen et al.,
since they used a similar method in their study. The spectra are in rather good agreement
up to 20 mrad, with a slightly higher high-momentum ratio yielded by our calculation. Above
20 mrad the agreement is not as good. This can be due to the fact that the methods used in

these two calculations are slightly different.

In experimental studies, relative S,q and W, parameters are often considered. In Tab. 3.4 we
present these quantities calculated for the silicon monovacancy using the four methods described
above. The S, and W, parameters were calculated as ratios of the vacancy and lattice Doppler
spectra in [001] direction integrated from 0 to 3 mrad and from 10.7 to 27.4 mrad. It is worth

noting there is no experimental Doppler broadening data available in literature, so that the
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comparison with measurements is not possible for this defect.

Table 3.4: Relative S, and W, parameters of silicon monovacancy obtained using different
calculations schemes (CONV, GGGC and PSN). The relaxzation, calculated as a percentage of
the nearest neighbor distance compared with the ideal vacancy.

Scheme St Wia  rel. (%)
CONYV unrel. 1.027 0.830 0.0
CONYV rel. 1.050 0.723 +7.4
GGGC 1.046 0.526 +7.4
PSN 1.030 0.802 +5.0

To be able to make a comparison with experimental measurements in Si, we also performed a
test for a negatively charged silicon divacancy, since this defect has been observed for instance
by Kauppinen et al. [142]. We convoluted the spectra with a Gaussian function with a FWHM
of 4.7 mrad to mimic the experimental resolution in the reference study and calculated the S and
W parameters in ranges from 0 to 3 mrad and from 11 to 20 mrad. The S, and W, parameters
calculated using our implementation and the PSN scheme, 1.050 and 0.72, respectively, are in
good agreement with 1.0524-0.003 and 0.7840.02 obtained experimentally.

3.3 Conclusions

In this chapter we first presented the tests performed to validate the implementation of the
positron lifetime calculations in the ABINIT code. Then, we determined the optimal parameters
for the calculations of positron annihilation characteristics of defects in SiC and UO,. Third, we
described the implementation of the methods needed to calculate the momentum distribution
of the annihilation electron-positron pairs in the ABINIT code. The derivation of equations used
to calculate the momentum distribution of annihilation radiation in the PAW formalism and
their implementation in the ABINIT code was presented. Fourth, the problem of the positron
wavefunction basis set completeness was identified and addressed. We presented the numerical
solutions used in calculations of Doppler spectra, such as the choice of the grid in the reciprocal
space, code parallelization and post-processing of the results. Finally, we described the tests
performed to validate this new implementation and compared the computation results obtained
for several materials with the data available in literature. These tests showed that our imple-
mentation yields results in good agreement with the reference data when complete enough PAW

datasets are used. We thus consider that our various implementations are validated.
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Chapter 4

Results on silicon carbide

To support the identification of defects in silicon carbide using positron annihilation spec-
troscopy, we performed three types of calculations: we calculated the formation energy to
determine the most stable charges of various defects, the positron lifetimes and the momentum
distributions. In this chapter we will present the results of these calculations and the analysis
of the experimental data that can be made using the obtained results. The results described in
this chapter have been partly published in Ref. [79], [143] and [144].

4.1 Formation energies and charge states of defects

Defect formation energy calculations were performed in two polytypes of SiC, 3C-SiC and 6H -
SiC, for monovacancies and vacancy clusters, with charge states varying from —2 to +2. This
was done to predict if a given vacancy can be detected by PAS and to know which charge
state can be expected in the examined samples. We will first describe the methods used in the

formation energy calculations and then present the results.

4.1.1 Methods used in formation energy calculations

The methods commonly used in formation energy calculations were already described in Sec. 2.2.
To calculate the formation energy of charged defects in SiC we used a formula based on a

standard formalism for semiconductors proposed by Zhang and Northrup [145] and adapted
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by Zywietz, Furthmiiller and Beckstedt [10] for SiC. The basic equation describing the defect

formation energy Er reads [9]:

Ei(Vx,q) = Eiot(Vx, q) — ncpic — nsifisi + qfte, (4.1.1)

where Eio(Vx, q) is the total energy of the supercell, n¢ and ng; are the numbers of carbon and
silicon atoms in the cell, uc and us; are the chemical potentials of the carbon and the silicon
atoms in SiC, ¢ is the charge of the defect and pu,. is the electron chemical potential, which
varies from the bottom to the top of the band gap. We cannot, however, directly use Eq. (4.1.1)
and approximations have to be used to determine the formation energy. Firstly, because the

chemical potentials of carbon and silicon atoms in SiC are not known. Their values can be

expressed in respect to the chemical potentials of C and Si in bulk diamond and silicon, p2*
and p2k; respectively:
pie = pe™ + Apc, (4.1.2)
st = ™ 4 Aps; (4.1.3)

The ranges of Auc and Apug; are determined by the formation enthalpy A Hy calculated as

AH(SiC) = pgic* — pgi™ — pe™, (4.1.4)
where p8if is the energy per SiC pair in a perfect material. Considering the accessible ranges
of Auc and Apugs; (AH=0.58 eV) and the fact that the variations of stoichiometry in SiC are

usually small, we choose to set Auc = Apgi = %AHf in our calculations.

The classical supercell approach fails in providing accurate formation energies for charged su-
percells, hence a second correction needs to be made in Eq (4.1.1). Even if a large number of
atoms is used in calculations, the defects cannot be considered as isolated because of the long
range electrostatic interactions. Various schemes of energy correction were proposed [106-108|.
To minimize the numerical errors and to approximate the values of uc and pg; we chose to use

the formula as follows to calculate the formation energy:

E(Vx,q) = Biot(Vx, q) — noulik
1
—(ngi — ne) (g™ + §AHf(SiC))

2
+a(Bvem + pe + AV) + 2 AEa(q), (4.1.5)

where Fi; is the energy of the supercell with a defect. Eygy is the energy of the valence band

maximum in the perfect cell. AFE, is known as the Madelung correction, which was proposed



4.1. FORMATION ENERGIES AND CHARGE STATES OF DEFECTS 89

by Leslie and Gillan [106]. It is a simple electrostatic correction, introducing a monopole term

AE1e17

2
aq
ABEy = ——, 4.1.6
! 2€0L ( )

where « is the Madelung lattice constant, €, is the static dielectric constant and L is the length
of the supercell edge. AFE, tends to overestimate the correction, as it takes into account only
the monopole term of the electrostatic interaction. Therefore, we used an improved scheme
proposed by Lany and Zunger [107], which contains only 2/3 of the Madelung term, along with
a potential alignment AV. To calculate the AV, the method proposed by Taylor and Bruneval
[108] taking

AV = (igg") — (Ui ), (4.1.7)

was used. (vRdk) and (viseet) are the average Kohn-Sham potentials calculated for the cell

without and with the defect, respectively.

The formation energies of charged defects change with the electron chemical potential p,, but
standard DFT is known to fail in predicting its range. Some authors vary u. up to the experi-
mental conduction band minimum. We chose to plot our results only up to the theoretical band
gap edge to be consistent with the method used. Our p, cannot hence be directly compared
with the experimental one. It is rather an indication of the position of the chemical potential
in the band gap and cannot be used as a quantitative estimation of i.e. the ionisation levels of

the vacancies.

4.1.2 Computational details

The calculations of formation energies were performed using the ABINIT code. The PAW
datasets were generated by the atompaw code [104]. In the carbon PAW dataset we treated 2s
and 2p levels as valence states (level 1s included in the frozen core region), while for silicon we
considered the 3s and 3p levels as valence states (levels 1s, 2s and 2p included in the frozen core
region), which corresponds to 4 valence electrons for both elements. For the electron-electron
exchange-correlation, the GGA functional as parametrised by Perdew, Burke and Ernzerhof
(PBE) [95] was used. We considered the spin polarization and allowed a full relaxation of the
defects, at constant volume (the theoretical equilibrium volume), without symmetry conserva-
tion. The parameters used in calculations are presented in Table 4.1. This set of parameters
ensured the cell parameters and total energy convergence of less than 1072 A and 2 meV /atom,
respectively. Table 4.1 also lists the parameters needed for the electrostatic correction in Equa-
tion (4.1.7). For the relaxation of the defects we used the Broyden-Fletcher-Goldfarb-Shanno
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minimisation (BFGS) [146-149]. Relaxation was stopped when all the forces acting on atoms
were smaller than 0.005 eV/A.

Table 4.1: Parameters used in the calculations of the formation energies of charged defects in
the two considered polytypes of silicon carbide. Madelung constants for zinc-blende and wurzite
were taken. For the static dielectric constant of 6H-SiC' we use an average of experimental
values in ordinary and extraordinary directions [150].

Polytype 3C-SiC 6H-SiC
Atomic sites 216 192

Plane wave E 700 eV 700 eV

k-point mesh 2X2x2 4x4x2

Lattice parameters a=0b=c=439A a=b=3.10A,
c=15.21 A

Band gap energy 1.35 eV 2.01 eV
Madelung constant 1.638 1.641
Dielectric constant ¢ 9.72 9.84

4.1.3 Monovacancies

4.1.3.1 3C-SiC

Firstly we studied the formation energies of the V¢, Vg and Vg + Cg; defects with various
charge states from —2 to +2 in 3C-SiC. The results for the considered defects are presented in
Figure 4.1. We see that the carbon vacancy is positive for almost all the values of the electron
chemical potential. It means that in the 3C' polytype the V¢ defect should be visible in PAS
only in strongly n-doped samples, in which the Fermi level lays close to the conduction band
minimum. The V¢ + Cg; complex should not be observed at all in 3C-SiC using PAS. According
to our calculations the silicon vacancy should be detected for almost all types of doping if it is
present. However, its formation energy is higher than the one of the V¢ + Cg; complex for all
the electron chemical potentials laying in the gap. Vg; is thus metastable in 3C-SiC and should
not be observed in thermodynamical equilibrium, as was already predicted in previous studies
[9, 24]. Nevertheless, this defect can be created by irradiation and remain in the samples, if the

temperature is not high enough for the transition between Vg; and V¢ + Cg; to happen.

4.1.3.2 6H-SiC

We also calculated the formation energies in 6 H-SiC. In this polytype three nonequivalent

atomic sites exist, one hexagonal h and two quasicubic, k; and ks, as shown in Fig. 1.1. For V¢
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Figure 4.1: Formation energies of various charge states of the three monovacancies in 3C-SiC.
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and Vg; we considered all three possible configurations. For the V¢ + Cg; complex we studied
only the defects where the vacancy and the antisite atom are both on the same type of sites
(k’l—kl, kQ—kQ and h-h)

We first performed calculations for the three possible carbon monovacancies. Results are pre-
sented in Fig. 4.2. The formation energies for the three sites differ only very slightly. For
example for the neutral defects we found the formation energy of 4.23 eV at the h site, 4.15 eV
at the ky site and 4.10 eV at the ky site. Moreover, the general forms of the charge state pre-
dominance as a function of u, are very similar. In Fig. 4.2 we compare the results obtained in
6H-SiC with the results obtained for 3C-SiC. The energies calculated in the 3C' polytype are
extrapolated to the edge of the theoretical conduction band minimum of the 6 H structure (Fig.
4.2d). We see that the results obtained for 6 H-SiC are very close to the extrapolated results ob-
tained in 3C-SiC, especially in the case of the two quasicubic sites. It would be very convenient
to be able to predict charge states of the defects in the hexagonal polytype based on the ones

obtained in the cubic structure, as the calculations in the latter case are less time-consuming.

We compare the charge states of the Vg; and V¢ + Cg; defects in the 6 H structure with the
extrapolated results obtained in 3C-SiC. This time we consider only the defects at the hexagonal
sites, since it was observed for the carbon vacancy that this case was the most different from
the extrapolated results obtained in 3C-SiC. Results are presented in Fig. 4.3 and 4.4. In the
case of the silicon vacancy we can observe the largest differences. However, as we are mostly
interested in the charge state prediction for PAS experiments interpretation, we can consider

that the extrapolation of the results obtained in 3C-SiC is good enough for our purpose.

As for the defect detectability, the case of 6 H-SiC is different from the one of 3C-SiC. Due to a
larger energy gap higher electron chemical potentials can be reached and defects can get more
negative. In this polytype, the carbon vacancy should be visible in the n-type samples. For the
Ve + Cg; complex, there is a small region where it should be neutral, hence visible. However,
unlike in the case of 3C-SiC, the complex is not always stable in 6 H-SiC compared to Vg;. We
show in Figure 4.5 the areas of stability of Vg; and Vo + Cg;. When the Ve + Cg; complex is
stable, it is positive and cannot therefore be detected by PAS. In n-doped materials, the silicon
vacancy is stable, with at least a double negative charge state. The —3 and —4 charge states
of this defect were not considered in our calculations but their existence is highly probable in

strongly doped n-type 6 H-SiC samples.
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Figure 4.2: Formation energies of various charge states of the carbon vacancy in 6H-SiC,
compared with results obtained in 3C' polytype, extrapolated to the 6H-SiC gap end.
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Figure 4.3: Formation energies of various charge states of the silicon vacancy in 6H-SiC,
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Figure 4.5: Comparison of the formation energies of three hexagonal defects in 6H-SiC. For
Veo+Cs; and Vs; only the regions where they are stable are coloured.

4.1.4 Defect clusters

We calculated the formation energies of the vacancy-complexes in 3C-SiC, varying the charge
from —2 to +2. Calculations were performed for 6 different defects: Ve+Ve, Vo4V,
Ve+Vsi+Csi, Ve+Vsi+Ve, Vsi+Ve+Vs and (Ve+Vsi)e. Initially we had considered a sil-
icon divacancy Vgsi+Vs;, but during relaxation with a positron, this defect transformed to a

Vc+Vsi+Cs; complex, so we studied it instead.

The evolutions of the formation energies as a function of the electron chemical potential are
presented in Figures 4.6a to 4.6f. All results are extrapolated to the theoretical gap edge of 6 H-
SiC (2.01 eV), as it has been shown that the results in the hexagonal polytype can be obtained
from those in the 3C-SiC using this kind of extrapolation. We can observe that the carbon
divacancy, V¢4V, has a positive charge for a wide range of Fermi levels. It should thus be
difficult to observe this defect in 3C-SiC and in the hexagonal polytype it should be only detected
in n-type samples. The Vc+Vg; divacancy is found to be neutral for a wide range of p,., as
expected, since this is a stoichiometric defect. This defect should be mostly neutral if detected in
3C-SiC, while in 6 H-SiC it should be neutral for undoped or slightly doped sample and negative
in more n-doped samples. The Vg+Vc+Cg; complex has a positive charge state only for Fermi
levels laying close to the maximum of the valence band and should therefore be possible to
detect in undoped and n-type samples in both polytypes. The Vc+Vgsi+ V¢ trivacancy should
be detected in n-type 3C-SiC and in undoped and n-doped 6H-SiC. The second trivacancy,
Vgi+Vo+Vyg;, is negative for majority of the possible Fermi levels and should, hence, strongly

attract the positrons if present in the material. Finally, the (Vc+Vg;)o tetravacancy, which is
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Table 4.2: Calculated spin states of defect clusters in 3C-SiC.

Defect Charge state
-2 -1 0 41 +2

Ve+Ve 0 1/2 0 1/2 0
Ve+Vsi 0o 1/2 1 1/2 0
Vg+Ve+Cg 1 1/2 1 1/2 0
Ve+Vsi+Ve 1 1/2 2 1/2 1
Vgi+Ve+Vg 2 5/2 3 5/2 0
(Vc+Vsi)2 1 3/2 2 3/2 1

also a stoichiometric defect, has a narrower range for neutral charge stability than the divacancy.
This defect, however, should be neutral in undoped 3C-SiC. In 6 H-SiC it can start to have a
—1 charge states for Fermi levels close to the middle of the band gap.

To enable the comparison between the studied defects, we present in Figure 4.4 the formation
energies of the most stable charge states of all defects. Additionally, we recall in this figure the
results obtained for the monovacancies. These results were obtained in the 3C polytype and
are extrapolated to the theoretical gap edge of 6 H-SiC (2.01 eV).

Several theoretical studies [10, 151, 152] showed that the silicon vacancy in silicon carbide is a
high spin defect. Similarly, high spin states are also expected for the vacancy clusters containing
Vgi. In Tab. 4.2 we present the calculated spin states of the vacancy clusters in 3C-SiC, which
can be useful in the EPR measurements interpretations. The results presented in Tab. 4.2 show
that the majority of the defects should have a non-zero spins. It suggests that it should be
possible to detect the majority of them in EPR. It is consistent with the fact that several types
of defects were detected in SiC using this method [33-38, 153, 154].
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4.2 Positron lifetimes

In this section, the positron lifetimes calculated for neutral and charged vacancies in 3C' and
6H-SiC are presented. The tests performed in order to determine the methods used in these

calculations are shown in Sec. 3.1.4.

4.2.1 Computational details

The parameters used in positron lifetime calculations in silicon carbide are given in Table 4.3.
This set of parameters was sufficient to obtain a structural convergence of less than 1073 A
and an energy precision of less than 2 meV per atom. We permitted a full defect relaxation
without conservation of the initial point symmetry at constant volume (the theoretical equi-
librium volume). In the formation energy calculations we considered the spin polarization.
For the atomic relaxation we used the Broyden-Fletcher-Goldfarb-Shanno minimization scheme
(BFGS) [146-149]. Relaxation was stopped when the forces acting on atoms were smaller than
0.005 eV/A.
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In the study on positron lifetimes in 3C-SiC we used supercells with 216 atoms. To verify if
this cell is large enough we compared the results obtained for the largest defect considered, the
chain hexavacancy (see Sec. 4.2.2.3), in 64, 216 and 512 atoms cells. We obtained 288, 270
and 270 ps, respectively. With a difference between the results obtained in 216 and 512 atom
supercells smaller than 1 ps, we assume that the 216 atom cell is large enough for the positron

lifetime calculations.

Table 4.3: Parameters used in the calculations of the positron lifetimes in the two considered
polytypes of silicon carbide. For the high-frequency dielectric constant of 6H-SiC we use the
average of the experimental values in the ordinary and extraordinary directions.

Polytype 3C-SiC 6H-SiC
e-e x-¢ functional LDA LDA
Atomic sites 216 192
Ecut 600 eV 600 eV
Valence states C 2s, 2p 2s, 2p
Valence states Si 2s, 2p, 3s, 3p 2s, 2p, 3s, 3p
k-point mesh 2x2x2 4x4x2
Lattice parameters a=b=c=433A a=0b=3.06 A
€00 6.52 [150] 6.61 [150]

4.2.2 3C-SiC

4.2.2.1 Neutral monovacancies

We first performed calculations for neutral monovacancies in 3C-SiC using three calculations
schemes, CONV, GGGC and PSN. Results are presented in Table 4.4 and compared with
the lifetimes obtained by Brauer et al. [58] Their calculations were done in the conventional
scheme including a semiconductor correction. They used the atomic superimposition method in
a supercell containing 64 atoms, at the experimental volume and they did not take into account

the relaxation effect.

We see that in our study all the defects relax strongly outwards. This leads to much longer
lifetimes than the ones predicted by Brauer et al. This shows clearly that the effect of the
positron on the relaxation cannot be neglected. It can also be observed that the GGGC scheme
leads to larger relaxations than PSN. Binding energies (F}) between the positron and the
defect, i.e. the differences between the positron energies in the lattice and in the defect, were

also calculated in the three schemes. They are presented in Table 4.5. A positive value of Ej
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Table 4.4: Positron lifetimes calculated in 3C-SiC compared with the results of Brauer et
al. [58]. Atomic relaxzations are calculated as a relative change in distances between the first
netghbours of the defect compared to the perfect defect. Relative lifetimes, calculated using
Eq. (3.1.6), are given in parentheses.

Lifetime Lifetime Lifetime Relaxation Lifetime  Relaxation
CONV ref. [58] GGGC GGGC PSN PSN
Lattice 153 138 153 144
Vo 154 (1%) 153 (11%) 217 (42%) +17% 195 (35%) +12%
Vi 198 (28%) 191 (38%) 231 (51%) +12% 227 (58%) +12%
Ve+Csi 170 (11%) - 217 (42%) +27% C-Si 203 (41%) +21% C-Si
+9% Si-Si +7% Si-Si

Table 4.5: Binding energies between the positron and the defect calculated in various schemes,
as a difference between the energy of the positron in lattice and in the defect. Positive values
mean positron trapping.

E, CONV E, GGGC E PSN

(eV) (eV) (eV)
Ve —0.18 +2.65 +1.07
Vg +2.41 +5.07 +2.08
Ve+Cs; +0.89 +3.82 +1.61

means that the positron is trapped in the defect. It can be seen that the conventional scheme
does not predict the positron trapping in the carbon vacancy, which is found using the GGGC
and PSN schemes. Moreover, we found that GGGC yields much larger binding energies than
the two other schemes. This is consistent with the overestimation of the positron localization in
this scheme, that was already reported by Car et al. [119]. Because of this effect, the relaxation
predicted in GGGC can be incorrect. Therefore we decided to use the PSN method, which

contains more accurate approximations, in further studies.

4.2.2.2 Charged monovacancies

Our study of the charge states of the defects in silicon carbide showed that the neutral defects
should not be the only ones to be observed in the PAS experiments. We thus performed
calculations for the negatively charged defects as well. We did not consider positive defects as
they should not be observed by this experimental technique. Results are presented in Table 4.6.
The positron lifetimes of the negative vacancies are slightly shorter than for the neutral ones.
It is first due to the fact that the additional negative charges increase the annihilation rate.

Secondly, the additional electrons take part in the bonding and reduce the outwards relaxation.
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Table 4.6: Calculated positron lifetimes of negative and neutral monovacancies in 3C-SiC.
Results obtained in the PSN scheme are presented. Relative lifetimes are calculated using

Eq. (5.1.6).

Lifetime Relative Relaxation
PSN (ps) lifetime PSN
Lattice 144

VY, 195 35% +12%
Vo 193 34% +10%
V& 188 31% +10%
Ve 227 58% +12%
Vi 225 56% +11%
Vi 222 54% +11%

However, the differences between the lifetimes of neutral and negative defects are relatively

small (around 5 ps).

4.2.2.3 Vacancy clusters

We calculated the positron lifetimes of all neutral vacancy complexes in 3C-SiC containing from
two to six vacancies. As the lattice lifetime obtained in our calculations is slightly longer than
the experimental one (144 ps compared to 140 ps [55]), we also present the lifetimes scaled to
this experimental value. The results are presented in Table 4.7 and compared with the results
obtained previously by Brauer et al. [58, 59]. The superimposed atom model was used and the
atomic relaxation and the influence of the positron on the electronic density were not taken into

account, as stated in the previous section.

As was shown above the relaxation effect is important in calculations for SiC. We find longer
lifetimes than in the study of Brauer et al. because all defects relaxed outwards in our study.
We can observe that the differences between the two sets of calculations decrease when the
cluster size increases. The fact that the relaxation decreases for larger defects is consistent with

what was shown for example for vacancy clusters in Si [134, 155, 156].

It can be noticed that in some cases, the positron lifetimes can be very similar for different
defects. For Vg, Vo+Cg and Ve+Ve we find lifetimes of 195, 203 and 201 ps, respectively.
This can be explained by the fact that, in all of these defects, the positron density is localized
at one empty carbon atomic site, as shown in Fig. 4.8. Additionally, it is worth noting that in

the Vo+V¢ divacancy the positron is localized in one of the two defects. It means that this
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Table 4.7: Positron lifetimes of the relaxed neutral defect clusters in 3C-SiC. The results are
presented along with the lattice and monovacancies lifetimes from Ref. [143] and compared with
results of Brauer et al. [58, 59] Additionally to the calculated values we present the lifetimes
scaled to the experimental lattice lifetime of 140 ps. [55]

Defect Lifetime Scaled Lifetime
PSN (ps) lifetime (ps)  ref. [58, 59|

Lattice 144 140 141

Ve 195 190 150

Vs 227 221 185
Vo+Ce; 203 197
Ve+Ve 201 195

VotV 242 235 216
Vgi+Va+Ceg; 245 238
Ve+Vsi+Ve 250 243
Vsi+Ve+Vsi 269 262

(Vc—i—VSi)g 269 262 254

(Ve+Vg)§an 270 263 2861

(Ve+Vg)yme 304 296 286!

n the reference, the configuration of the cluster is not specified.

cluster, in which the two vacancies are second neighbors, is seen as two separated defects by the

positron.

Similarly, lifetimes of 242, 245 and 250 ps were found for the V¢+Vgi, Vgi+Ve+Cs and
Ve+Vsi+ Ve clusters, respectively. All these defects contain one silicon vacancy and the positron
density is localized at its site (see Fig. 4.9). Additionally, the density has a similar spherical
form in all of these defects and it is almost not affected by the presence of carbon vacancies nor

by a carbon atom in the antisite position, in the case of Vg+Vc+Cs;.

For the two defects containing two silicon vacancies - Vgi+Vc+Vg and (Vg+Vg;)o - the same
lifetime of 269 ps was found. As in the case of defects with one Vg; only, the positron density is
not sensitive to the additional carbon vacancy (Fig. 4.10) and is mainly situated between the
two silicon vacancies. It is worth noting that for the (Vc+Vgi)e defect various configurations
are possible, with different distances between the furthest Si and C vacancies. However, for all
these configurations the Vg;-Vg; distance is the same and since the positron is not sensitive to
the position of the additional carbon vacancy, the lifetimes of these configurations were found

to differ by less than 1 ps.

For the (Vc+Vsi)s defect even more different configurations are possible than for (Vg+Vsg;)s.

Additionally, in these configurations, the silicon vacancies are not distributed in the same way.
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(a) Vo (b) VotCs, (¢c) VotV

Figure 4.8: Positron isodensities (solid traced for 70% of the mazimum density, transparent
for 30%), in red, in Ve, Vo+Cs; and Ve+ Ve, in 3C-SiC.

We studied the two extreme cases, a chain configuration and a ring one (see Fig. 4.11). We
found the lifetimes of 270 ps for the chain and 304 ps for ring. In the chain (Vc+Vg;)s the three
silicon vacancies form a line and the positron is localized in the central silicon vacancy (see
Fig. 4.11a). In the ring hexavacancy, the three silicon vacancies form a triangle inside which the
positron is localized (see Fig. 4.11b). We can observe that the positron lifetimes calculated for
these two configurations of the hexavacancy differ strongly. Moreover, the lifetime calculated

for the chain hexavacancy is close to the one calculated for the tetravacancy (269 ps).

To determine which configuration of the hexavacancy is more stable we calculated their forma-
tion energies. We found 15.16 eV and 17.79 eV for the neutral charge states of the ring and
chain configurations, respectively. It suggests that the ring structure is more stable and will
more likely be formed in the material. It has to be kept in mind, however, that the calcula-
tions were performed for the neutral charge state only and that the relative stability of these

configurations may depend on the charge state and the position of the Fermi level.
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(C) Vei+Vo+Cys; (d) Ve+Vsi+ Ve

Figure 4.9: Positron isodensities (solid traced for 70% of the mazimum density, transparent
for 30%), in red, in the defects containing one silicon vacancy, in 3C-SiC. Carbon atoms are
presented in yellow, silicon atoms in blue. White spheres represent the carbon vacancies.

(a) Vsi+Ve+Vs;

Figure 4.10: Positron isodensities (solid traced for 70% of the maximum density, transparent
for 30%), in red, in the defects containing two silicon vacancies, in 3C-SiC. Carbon atoms are
presented in yellow, silicon atoms in blue. Carbon and silicon vacancies are represented by white

and black spheres, respectively.
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(a) (Vo+ Vs )5hom (b) (VotVsi )y

Figure 4.11: Positron isodensities (solid traced for 70% of the mazimum density, transparent
for 80%), in red, in two configurations of a hexavacancy, in 3C-SiC. Carbon atoms are presented
i yellow, silicon atoms in blue. Carbon and silicon vacancies are represented by white and black
spheres, respectively.

4.2.3 6H-SiC

4.2.3.1 Neutral monovacancies

It has been shown in the literature [58, 59] that the positron lifetimes of various defects are
similar in different polytypes. However the defect relaxation was not taken into account in the
earlier calculations. We performed PSN calculations for selected configurations of the three
defects in the hexagonal polytype to verify if the defect free volumes evolve in the same way in
3C-SiC and 6 H-SiC. Results are presented in Table 4.8.

The lattice lifetime obtained for the hexagonal polytype is very close to the one of the cubic
structure and in a good agreement with the experimental lifetime of 140 ps [55] obtained for
this polytype. We can see from the comparison between Tables 4.4 and 4.8 that the lifetimes
of defects at hexagonal sites in 6 H-SiC are also very similar to those in 3C-SiC. Additionally,
for the silicon vacancy there are only small differences between the three possible sites and
relaxations are also similar. For Vo and V+Cg;, however, we find significantly shorter lifetimes
when the defect is located at one of the quasicubic sites, which is related to the large differences
in the relaxations of ki-k; and ko-ko configurations of Ve+Cs;. The relaxation induced by
the positron makes the first neighbors of the vacancy move relatively far from their perfect
positions. However, this outward displacement is limited by the second neighbors or even the
third neighbors, whose configuration is not the same for each site. The reorganization is different

for the two sublattices and this effect is smaller for Vg;. This probably explains the differences in
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Table 4.8: Positron lifetimes and atomic relaxations calculated in the PSN scheme. Selected
defects of the 6H polytype are considered. Relative lifetimes are calculated using Eq. (3.1.6).
The relaxation indicated is calculated as the average relative change in distance between the first
neighbors of the defect.

Site  Lifetime Relative Relaxation
PSN (ps) lifetime PSN

Lattice 143
Vo h 193 35% +12%
Ve k1 175 22% +5%
Ve ko 173 21% +6%
Vg h 226 58% +11%
Vg kq 226 58% +10%
Vs ko 226 58% +10%
Ve+Csi  h-h 204 43% +18% C-Si
+6% Si-Si
Vc+Cs  k1-kq 202 41% +18% C-Si
+4% Si-Si
Ve+Csi  ko-ko 188 31% +11% C-Si
+6% Si-Si

lifetimes and relaxations for defects at different sites and the differences with the 3C-SiC case. In
the case of the carbon vacancy, the three possible configurations can be present in the material.
Since the corresponding lifetimes are not the same, we can expect that the experimental value
corresponds to the mixing weighted by the fraction of the detected defects and their trapping

coeflicients.

4.2.3.2 Charged monovacancies

We also performed positron lifetime calculations for negative monovacancies in 6 H-SiC. We
considered carbon and silicon vacancies with a —2 charge state as these were the only negative
defects that should be detected by PAS in this polytype according to our calculations of the for-
mation energies. Results are presented in Table 4.9. Positron lifetimes of all Vg; configurations
and for the two quasicubic types of V¢ are only slightly shorter than for the neutral defects.
It is similar to the case of 3C-SiC. The lifetime of the negative hexagonal carbon vacancy is
13 ps shorter than for the neutral one (shown in Table 4.8), which is caused by a much smaller

outward relaxation of this particular defect.
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Table 4.9: Calculated positron lifetimes of monovacancies with a -2 charge state in 6H-
SiC. Results obtained in the PSN scheme are presented. Relative lifetimes are calculated using

Eq. (5.1.6).

Site Lifetime Relative Relaxation
PSN (ps) lifetime PSN

Lattice 143
Ve h 180 26% +6%
Ve© k 170 19% +2%
Ve ky 171 20% +3%
Vi, h 222 55% +10%
Vi Kk 223 56% +11%
Var ko 222 55% +10%

Table 4.10: Comparison of positron lifetimes of divacancies in 3C-SiC and 6H-SiC. Lifetimes
scaled to the experimental lattice lifetime of 140 ps [55] are presented in the last column.

Site Lifetime Scaled
PSN (ps) lifetime (ps)

Lattice 3C 144

Ve+ Vg 3C 242 235
Lattice 6H 143

Ve+Vs  6Hp_p 241 236
Ve+Vsi 6Hyy—ky 240 235
Ve+Vs 6Hpy— g, 239 234
Ve+Vsi  6Hg, g, 240 235
Ve+Vs  6Hp g, 241 236
Ve+Ve  6Hy,—p 241 236

4.2.3.3 Vacancy clusters

In the study on smaller defects we observed that in the case of the carbon vacancy, the positron
lifetime differs between the polytypes and between the three possible sites in 6 H-SiC. For the
silicon vacancy, these differences were around 1 ps. To verify whether the positron lifetimes of
the vacancy complexes depend on the polytype or on the atomic sites in the case of 6 H-SiC, we
performed calculations for all possible configurations of the V+Vg; divacancy in the hexagonal
polytype. Results are presented in Tab. 4.10. We observe that the lifetimes of divacancies
in 6 H-SiC are very similar, with differences between 1 and 2 ps, and close to the lifetime of
this defect in 3C-SiC. These results suggest that the positron lifetimes calculated for vacancy
complexes in 3C-SiC can be used for the interpretation of the PAS experiments performed on
the 6 H-SiC samples.
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4.3 Doppler broadening of annihilation radiation

In this section we present the calculations of the momentum distributions of the annihilation

radiation calculated for various defects in two silicon carbide polytypes, 3C and 6H.

4.3.1 Computational details

The momentum distribution calculations have been performed using 216 and 192 atom su-
percells for 3C-SiC and 6 H-SiC, respectively, using the state-dependent scheme, with the PSN
parametrization and in geometries relaxed according to both the electronic and positronic forces.
In these calculations the positron wavefuntion has been calculated at two k-points, the I" point
and another one chosen to lie on the edge of the Brilloun zone, to avoid the delocalization of
the positron due to the small supercell, as proposed by Korhonen et al. [157]. The momentum
distributions have been calculated using the wavefunctions corresponding to the I' point only.
We used the cut-off energy of 680 eV, since we found it was enough to obtain Doppler spectra

converged up to 40 mrad.

4.3.2 Neutral vacancies in 3C-SiC

In Fig. 4.12 we present the results obtained for fully relaxed neutral vacancies in 3C-SiC as ra-
tios to perfect lattice. All the presented spectra have been convolved with a Gaussian function
with FWHM=4.7 mrad, which corresponds to the resolution of experiments performed at the
CEMHTT laboratory and discussed in the following sections. The results are presented for mo-
menta between 0 and 40 mrad, which are the ranges usually used when presenting experimental
data.

We can observe a clear difference between the shapes of the ratio curves obtained for monova-
cancies on the two different SiC sublattices. The ratio calculated for the carbon vacancy has
a maximum of around 1.07 at p = 0, decreases below 1 for momenta higher that 4 mrad and
exhibits two slight shoulders, one at 11.5 mrad and one around 30 mrad. The form of the ratio
calculated for the Vo+V¢ divacancy is very similar to that of V¢, with the latter being slightly

closer to the perfect lattice.

For Vg; we also observe a maximum of around 1.06 at p = 0 and the ratio curve drops below

1 at around 4 mrad. Contrary to V¢, at around 11.5 mrad a peak can be observed, with a
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Figure 4.12: Ratio curves of the calculated momentum distributions of annihilating electron-
positron pairs in various vacancies in SiC. All spectra are convoluted with a Gaussian of 4.7 mrad
and divided by the lattice spectrum.
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value above 1. This peak can be probably attributed to the annihilation with 2p electrons of
the carbon atoms, which are expected to be the ones most likely to annihilate with the positron
localized at the silicon site. Another peak is observed above 30 mrad with a value around 0.67.
The overall shape of the ratio calculated for Vyg; is in agreement with the previous calculations
for this defect performed by Kawasuso et al. [63], even if the high-momentum ratio is slightly
lower in our calculations (with differences around 0.1). This can be due to the atomic relaxation,

which was not fully taken into account in the study of Kawasuso et al.

As for the Vo+Cg; cluster, the calculated ratio curve has a shape similar to that of the silicon
vacancy at low momenta. This can be explained by the fact that even though in this defect the
positron is surrounded by one carbon and three silicon atoms, it localizes closer to the antisite
C atom (see Fig. 4.8) and the annihilation rate should be the highest with its electrons. The
ratio calculated for V+Cg; is significantly higher at p > 15 mrad than the one for Vyg;, since
the volume of the former defect is smaller. This leads to a larger annihilation rate with core

electrons.

The ratio curve calculated for the Vo+Vg; divacancy has a similar shape to that found for
the silicon vacancy. However, since the divacancy has a larger open volume, we observe a
higher contribution at the low momenta and a decreased annihilation rate with more energetic

electrons.

As far as larger clusters are concerned, similar ratio curves are found for the Ve+Vg+Ve,
Vsi+Ve+Vs, (Ve+Vs)s and (Ve+Vg)§@® defects. The result found for the (Ve4-Ve)y e
hexavacancy can be, however, easily distinguished from the other ones. In this case the value
at p = 0 is much higher, due to a larger open volume of this defect, and the peak around
p = 11.5 mrad transforms into a shoulder. It is interesting to notice that the ratio curve of
(Ve+Vsgi)5™ has a form which is more similar to that of V¢ than to that of Vg;, especially at
low momenta. It is probably be due to the fact that this defect has a large three-dimensional
volume and the localized positron interacts mostly with the Si valence electrons and not with

the more localized C electrons.

4.3.3 S and W parameters — effect of the experimental resolution

and integration windows

For the interpretation of the experimental studies the S and W parameters are usually analyzed

instead of the ratio curves. We therefore calculated these parameters for the considered defects.
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In the following sections we will discuss the relative parameters, calculated as:

Sdefect Wdefect
Srel = and Wrel =

Slattice VVlattice

(4.3.1)

In the case of S and W it is important to stress the importance of the resolution and the choice of
the windows in which these parameters are calculated on the results. In Fig. 4.13 we present the
Siel parameter as a function of the W, parameter plotted for various neutral defects in 3C-SiC
using spectra convoluted with Gaussian functions with different FWHM. We chose two cases
corresponding to the experimental measurements using either two Ge detectors in coincidence
mode (FWHM=3.6 mrad) or a single Ge detector (FWHM=4.7 mrad). These parameters are
calculated using windows of (0-2.86) and (10.58-27.36) mrad for S and W, respectively. We
can observe that the results obtained using the higher FWHM are shifted towards the point
corresponding to the lattice, (0,0), but the relative positions of the points corresponding to each

defect on the plot are conserved for the two resolutions.

The effect of the choice of the windows in which the S and W parameters are integrated is
presented in Fig. 4.14. In this case we plotted the results using two windows, S € (0,2.5)
mrad, W € (15.0,27.36) mrad on the one hand and S € (0,2.86) mrad, W € (10.58,27.36)
mrad on the second hand. We observe that the results are much more sensitive to the the
high-momentum window than to the low-momentum one. It is interesting to see that when
the first set of windows is used, the points are easier to distinguish. In particular, the points
corresponding to defects on the carbon sublattice (V¢ and Vo+V() are well separated from the
other ones. When the second set of windows is used, all points are almost exactly aligned on the
line passing through the (1,1) point. It means that the choice of the ranges within which the W
is calculated can help to distinguish defects in experiments. Another consequence of the high
sensitivity of the W parameter to the integration range choice is that the comparison between

published data can be difficult, since different windows are usually used for each study.

The S and W, parameters calculated using various resolutions and integration windows,
which were used to generate Fig. 4.13 and 4.14 are also presented in Tab. 4.11 for all the

considered defects.
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Figure 4.13: S, parameter as a function of the W, parameter plotted for various neutral
defects in 3C'-SiC using spectra convoluted with Gaussian functions with different FWHM. The
parameters are calculated using windows (0,2.86) and (10.58,27.36) mrad for S and W, respec-

tively.
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Figure 4.14: S, parameter as a function of the W, parameter plotted for various neutral
defects in 3C-SiC using different windows for S and W parameters. The results were obtained
using spectra convoluted with a Gaussian function with FWHM=4.7 mrad.
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Table 4.11: Relative S, and W, parameters calculated for various defects in 3C-SiC, using
different resolutions and integration.

FWHM=3.6 mrad FWHM=4.7 mrad FWHM=4.7 mrad
S € (0,2.86) mrad S € (0,2.86) mrad S € (0,2.5) mrad
W € (10.58,27.36) mrad W € (10.58,27.36) mrad W € (15,27.36) mrad
Defect Srel Wrel Srel Wrel Srel Wrel
V¢ 1.064 0.832 1.058 0.840 1.060  0.780
Vi 1.051 0.871 1.045 0.886 1.048 0.648

Ve+Cs 1037 0900  1.033 0912  1.035 0.744
Ve+Ve 1073 0801  1.066 0810  1.069  0.745
Ve+Vsg 1067 0818  1.060  0.835  1.063  0.601
Vg+Ve+Cs 1066  0.835  1.058  0.849  1.061  0.622
Ve+Vg+Ve 1.083 0785  1.074  0.801  1.078  0.575
Va+Ve+Vs 1097 0.760  1.087 0774  1.091  0.585
(Ve+Vs)z  1.090 0766 1.081  0.782  1.085  0.580
(Ve+Vg)$ain 1,087 0792 1.078  0.804  1.081  0.651
(Ve+Va)i™ 1135 0669  1.122  0.684 1127  0.541
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4.3.4 Effect of the charge state

We verified the effect of the charge state on the momentum distribution by performing calcu-
lations on Vg;. We calculated the ratio curves for this defect for 0, —1 and —2 charge states.
The results are presented in Fig. 4.15. We can observe that the ratio at p = 0 decreases when
the negative charge increases. It is due to the fact that the relaxation of the negative vacancies
is smaller than for the neutral one (see Tab. 4.6). This is reflected in the corresponding Sy
(S € (0,2.86) mrad) as shown in Tab. 4.12. The peak close to p = 10 mrad rises when the
electrons are added to the system, while at the same time the ratio at momenta higher than
approximately 17 mrad decreases. Both regions are included in the window used to calculate
the W parameter, 10.58-27.36 mrad, however their effects do not cancel each other out and we

can observe an increase in W due to an additional negative charge.

1.2

Vi
1.1 - Vsi™

Ratio to SiC lattice

| p (mrad)

Figure 4.15: Ratio curves of the calculated momentum distributions of annihilating electron-
positron pairs in neutral and charged silicon vacancy in SiC. All spectra are convoluted with a
Gaussian function with FWHM=/.7 mrad and divided by the lattice spectrum.

Table 4.12: Relative Sy and W, parameters calculated for various charge states of Vs;.
The parameters were obtained using windows of 0-2.86 and 10.58-27.36 mrad for S and W,
respectively. The spectra were convoluted with a Gaussian function with FWHM=/.7 mrad.

Srel Wrel
V3 1.045 0.886
V§ 1.040 0.899
Vi 1.035 0.913
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4.3.5 3C and 6H polytypes comparison

In Sec. 3.2.3, while validating our implementation of the calculation methods, we tested the
effect of the polytype on the Doppler spectra of the silicon carbide lattice and showed that
there was no significant difference between 3C' and 6H lattices. The comparison must also be
performed for vacancies. In Fig. 4.16 to 4.19 we present the comparisons of the ratio curves
obtained for Vg, Vo+Csgi, Vs and Ve+Vg; defects in silicon carbide. Tab. 4.13 shows the
relative S and W parameters calculated for these defects. The definition of the various sites in

6H-SiC, h (hexagonal site), k1 and ko (cubic sites) are given in Fig. 1.1.

In the case of the carbon vacancy (Fig. 4.16) in 6 H-SiC we observe a strong dependence of the
ratio curve on the site. The result obtained for the h site is quite similar to that calculated
in the 3C' polytype. For k; and k, the ratio curves are flatter. It is consistent with what was
observed in the calculations of positron lifetimes, where a smaller relaxation and hence a weaker
localization of the positron was observed for the cubic sites. It is also reflected in the S, and

Whyel parameters which are closer to 1 for k; and ks (see Tab. 4.13).

The dependence of the calculated ratio on the local geometry is lower for the Vo+Cg; complex
(Fig. 4.17), but it can still be observed. The positron localization is the strongest in the 3C'
polytype and in the h — h configuration in 6 H-SiC. The weakest relaxation, already observed
in the results of the positron lifetimes calculations, is found for the ks — k9 configuration, which

is reflected in smaller low- and larger high-momentum contributions.

As for the defects in which the positron is localized mostly inside the silicon vacancy, Vg; and
Vo+Vy;, the ratio curves are very similar (see Fig. 4.18 and 4.19). The differences are easier to
observe in S,q and Wy, parameters (see Tab. 4.13). However, we consider that these differences
are probably much lower than the experimental precision, hence not significant when it comes

to defect identification.

Based on the small differences between the two polytypes obtained for Vg; and Vg+Vyg;, simi-
larly to what was observed in the positron lifetime calculations, we conclude that the Doppler
broadening calculations performed for clusters in 3C-SiC can be used to analyze experimental

data obtained for other polytypes as well.



116 CHAPTER 4. RESULTS ON SILICON CARBIDE

1.2
3OV eereeeeneene
1.1 6H h V¢
6H k; Vc
1+ 6H ko VC
)
S
£ 09
o
O 08 e,
I s
S 07 T
.2
+~
3 0.6
[aer
0.5
0.4 L I L I ! ! |
0 15} 10 15 20 25 30 35 40

p (mrad)

Figure 4.16: Ratio curves of the calculated momentum distributions of annihilating electron-
positron pairs in Ve in 3C' and 6H polytypes of silicon carbide. All spectra are convoluted with
a Gaussian function with FWHM=/.7 mrad and divided by the lattice spectrum.
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Figure 4.17: Ratio curves of the calculated momentum distributions of annihilating electron-
positron pairs in Vo+Cs; complexes in 3C and 6H polytypes of silicon carbide. All spectra are
convoluted with a Gaussian function with FWHM=/.7 mrad and divided by the lattice spectrum.
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Figure 4.18: Ratio curves of the calculated momentum distributions of annihilating electron-
positron pairs in Vg in 3C' and 6H polytypes of silicon carbide. All spectra are convoluted with
a Gaussian function with FWHM=/.7 mrad and divided by the lattice spectrum.
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Figure 4.19: Ratio curves of the calculated momentum distributions of annihilating electron-
positron pairs in Vo+ Vs complexes in SC' and 6H polytypes of silicon carbide. All spectra are
convoluted with a Gaussian function with FWHM=/.7 mrad and divided by the lattice spectrum.
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Table 4.13: Relative S, and W, parameters calculated for various defects in SC and 6H sil-
icon carbide. The parameters were obtained using windows of 0-2.86 and 10.58-27.36 mrad
for S and W, respectively. The spectra were convoluted with a Gaussian function with

FWHM=4.7 mrad.

Defect Site Stel Wial
Vo 3C 1.058 0.840
Vo 6H, h 1.056  0.836
Vo 6H, kq 1.029 0.938
Vo 6H, ko 1.024 0.954
Vg 3C 1.045 0.886
Vg 6H, h 1.040 0.901
Vg 6H, k; 1.040 0.901
Vg 6H, ko 1.041 0.900

Veo+Ca; 3C 1.032 0.912

Ve+Csi  6H, h—h 1.033 0.903
Vc+Csi 6H, k1 —ky 1.026 0.927
Ve+Csi 6H, ks —ky 1.017 0.955
Ve+ Vs 3C 1.060 0.835
Ve+Vs 6H, h—h 1.063 0.839
Ve+Vs 6H, k —k  1.059 0.842
Ve+Vs 6H, ky —ky 1.061 0.840
Ve+Ve 6H, ki —ky 1.062 0.837
Ve+Vs 6H, h—k 1.058 0.840
Ve+Vs 6H, ks —h  1.057 0.841

4.3.6 Effect of the nitrogen decoration of vacancies

In the majority of experimental studies on SiC discussed in this work, n-type samples were
studies. In this case, the material is doped with nitrogen (with concentrations above 107 cm™3),
which usually substitutes the carbon sites and can form complexes with vacancies. We studied
the effect of the nitrogen decoration of silicon vacancies on the Doppler spectra and the S and
W parameters. The calculated ratio curves are shown in Fig. 4.20. In Fig. 4.21 we present the
Srel and Wi parameters, calculated using two sets of integration windows, S € (0,2.5) mrad,
W € (15.0,27.36) mrad on the one hand and S € (0,2.86) mrad, W € (10.58,27.36) mrad on
the second hand. In Fig. 4.20 we can observe that adding nitrogen atoms next to the silicon
monovacancy leads to the decrease of the peak at p = 0 and to the increase of the ratio curve
above around p = 5 mrad. The changes in the plot seem to be proportional to the number of

nitrogen atoms surrounding the silicon vacancy.

As for the S(W) plot (Fig. 4.21) we can observe that the decoration of the silicon monovacancy
with nitrogen atoms leads to a clear shift of the corresponding points from the line connecting the

lattice and Vg;. Moreover, the direction of that shift depends on the chosen integration windows.
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Figure 4.20: Ratio curves of the calculated momentum distributions of annihilating electron-
positron pairs in nitrogen-decorated silicon monovacancies. All spectra are convoluted with a
Gaussian function with FWHM=/.7 mrad and divided by the lattice spectrum.

For S € (0,2.5) mrad, W € (15.0,27.36) mrad the points corresponding to the complexes with
nitrogen are on the left side of the line, while for S € (0,2.86) mrad, W € (10.58,27.36) mrad

on its right side.
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Figure 4.21: S, parameter as a function of the W, parameter plotted for nitrogen-decorated
silicon monovacancies calculated using two sets of integration windows. The results were ob-
tained using spectra convoluted with a Gaussian function with FWHM=4.7 mrad.
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4.4 Discussion and contribution to interpretation of ex-

perimental results

4.4.1 Positron lifetimes

Our calculation results will be first used to discuss the positron lifetimes detected in silicon
carbide presented in literature and to revisit the identifications of the signals proposed in the
past. Most experimental results were already mentioned in the section on literature review
(Sec. 1.3.1). For this comparison we use lifetimes scaled to the experimental lattice lifetime of
140 ps.

Kerbiriou et al. [32] observed a positron lifetime varying with temperature from 210 ps up to
220 ps in n-doped, irradiated 3C-SiC. The authors attributed the lifetimes to two vacancy-type
defects - Vg; and Vo+Vs; based on the calculation results by Brauer et al. [58, 59]. The variation
of the lifetime with temperature implies the presence of a defect that changes charge state, or at
least two defects, among which one is negative or changes charge state. The EPR measurement
on the same sample suggested that Vg, [32, 35, 65, 66] was present. Considering the calculations
results presented here, we firstly verified whether the defect corresponding to the experimental
lifetime could be the silicon vacancy changing charge state. The shortest lifetime obtained for
this defect in 3C-SiC is 222 ps (V3 ). However, as the experimental lifetime for the lattice is
shorter than the one we calculated (140 ps and 144 ps, respectively) we have to consider the
lifetime relative to the experimental one. It yields 216 ps (%ﬁom) for V&, . This lifetime is
longer than the one of 210 ps observed by Kerbiriou et al. at low temperatures. Additionally,
the change of the charge state of the silicon vacancy would result in a change in the EPR signal,
while it was found to be the same for all the measurement temperatures. We propose, hence, a
second interpretation: the positron lifetime observed by Kerbiriou et al. may come from both
the neutral carbon monovacancy and the negative silicon vacancy. V¢ could not be detected
by EPR, as it is nonparamagnetic. As temperature increases, the electron chemical potential of
the n-type material decreases, the carbon vacancies become positive and cannot be detected by
PAS any longer. This induces an increase in the lifetime, which becomes closer to the 225 ps

(218 ps when scaled to i) that was calculated for V§; .

Kawasuso et al. [56] detected a lifetime component of 188 ps in irradiated n-type 3C-SiC and
attributed it to the silicon vacancy. The T1 signal, indicating the presence of Vg;, was detected
using EPR in the same sample. The lifetime itself is close to the one we calculated for the carbon

vacancy, but we cannot explain the simultaneous existence of these PAS and EPR signals. The
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study of Kawasuso et al. was performed only at room temperature, hence the charge state of
the observed defect is not known and it is not certain whether the signal comes from one or
several defect types. Additionally, the experiment of Kawasuso et al. was carried out on a
30 pm 3C-SiC sample supported on unirradiated 6 H-SiC. It is hence possible that even though
the silicon vacancies were created in the 3C-SiC layer, the positron lifetime observed was also
affected by the supporting material. In any case, since not many experimental data have been
published for 3C-SiC it is rather difficult to draw definitive conclusions on the defects present
based on the positron lifetimes alone. Moreover, we found that there is only a small region
close to the conduction band where the carbon vacancy should be neutral and detected by PAS.
The electron chemical potential changes with temperature and irradiation and is difficult to
determine precisely. Thus, it is complicated to predict whether the carbon vacancies should be

detected in a given 3C-SiC sample, therefore to interpret the PAS results in this polytype.

As for n-type 6 H-SiC samples, several groups of lifetimes are observed, two of which are in
the range of lifetimes that we calculated. Shorter experimental positron lifetimes, 176 ps [69],
183 ps [67], 174 ps and 176 ps [70], were observed and assigned to the silicon vacancy using the
calculations of Brauer et al. These lifetimes are, however, much smaller than the lifetimes we
calculated for both V& (226 ps or 221 ps when scaled to 7 ) and Vg? (222 ps and 223 ps or

217 ps and 218 ps scaled to T, ). These experimental lifetimes are on the contrary in a very
good agreement with the lifetimes we calculated for the neutral carbon vacancy (175 ps, 173 ps

and 193 ps or 171 ps, 169 ps and 189 ps when scaled to Ty e )-

attice

The second group of signals observed in n-type 6 H-SiC includes lifetimes of 210 ps [69], 202 ps
[55], 210 ps and 220 ps [68]. These signals are between the values we calculated for V¢ and
Vg;. Since for vacancy complexes longer lifetimes are expected, we assume that these are mixed

lifetimes of the carbon and silicon monovacancies.

As far as longer positron lifetimes are concerned, Barthe et al. [71] observed lifetimes of 257 ps
and 281 ps lifetimes in n-type 6 H-SiC implanted with low-energy protons (after 900°C and
1300°C annealing, respectively). These defects were identified as (Vc+Vgi)2 and (Ve+Vsi)s.
Our calculations confirm this interpretation since we obtained lifetimes of 262 ps for the tetrava-

cancy and 263 and 296 ps for the two configurations of the hexavacancy.

Aavikko et al. [72] studied undoped SiC samples annealed at 1600°C. They observed long
lifetime components of 261, 283 and 284 ps, which were attributed to clusters containing four
and five vacancies, respectively. This is consistent with our calculations, as these lifetimes are
close to what we obtained for (Vg+Vsg;)o and (Ve+Vs;)s. It should be noted, however, that in
the case of SiC, the number of silicon vacancies in the cluster has more influence on the positron

lifetime than the total number of vacancies.



122 CHAPTER 4. RESULTS ON SILICON CARBIDE

Finally, Brauer et al. [58] studied 6 H-SiC samples irradiated with 200 keV Ge™ ions, at fluences
varying from 10'% to 10 m~2. For the lowest fluence, a long lifetime component of 235 ps was
observed and attributed to the divacancy, even though it was longer than what Brauer et al.
had calculated for this type of defect. The authors indicated that the discrepancy between the
measured and calculated lifetimes could come from the fact that the relaxation effects were not
taken into account. Our results confirm this, as our calculations yielded 235 ps for the relaxed
V4V cluster. For the 10 m~2 fluence, Brauer et al. observed a lifetime component of 305 ps
and attributed it to a defect containing six vacancies. We calculated a lifetime of 296 ps for the

ring hexavacancy so this defect could be the one observed in this study.

4.4.1.1 Discussion of X. Kerbiriou measurements

We will now discuss the experimental results obtained during X. Kerbiriou’s thesis at the
CEMHTT Laboratory (Orléans, France). These results have been presented in Sec. 1.3.1.3. We

recall the figures presenting the experimental measurements below to facilitate the discussion.
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Figure 4.22: (a) EPR spectrum obtained at 300 K in the proton irradiated 6H-SiC CREE
crystal before annealing. The inset shows the central spectrum and its fit using the VL, model.
(b) Silicon vacancies concentration (not distorted, distorted, sum) as a function of the annealing
temperature in the 6H-SiC H" 12 MeV irradiated crystal.
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Figure 4.23: (a) Measurement and annealing temperature dependence of the positron lifetime
components obtained for the 12-MeV proton irradiated crystals. In both figures the average
lifetime T4, (a), long lifetime component 1o (b) and its intensity I, (c), are shown.
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EPR experiments results Before annealing, measurements at 300 K show the presence
of three main paramagnetic centers (see Fig. 4.22a). The first one resembles a center already
detected after irradiation with various particles [34, 158, 159] and attributed to the isolated Vg,
with a spin S = 3/2. This signal is in fact a superposition of signals coming from hexagonal
and quasicubic sites that cannot be distinguished. This signal is called Vg in the following.

The Vg concentration in the as-irradiated crystals is 2.2(£0.3)x 10" em™2.

The two other detected signals are similar to the ones detected after irradiation in various
conditions in literature [34, 158, 159]. This signal is currently attributed to a distorted state of
the negatively charged silicon vacancy [158]. This distortion may be due to the presence of an
impurity or of another defect located at some distance along the ¢ axis ([0001]) [158]. The signal
is called V§; dis (as ‘distorted’) in the following. The Vg dis concentration in the as-irradiated
crystals is 2.6(40.3) x10'7 cm™3.

From Fig. 4.22b we can observe that the concentration of Vg dis decreases from around
2.4x10'7 ¢cm™ down to 1.6(£0.3)x10'® ecm™3 during annealing. The Vg concentration
is first stable at 2.2(£0.3)x10'7 ¢cm™3, then decreases first to 1.4x10'7 ¢cm™ and later to
6.7(+1.0)x10* cm™2. The total silicon vacancy concentration [V§ tot] is first nearly con-
stant around 4.5(4 0.6)x10'" cm ™3 and then decreases down to 1.2(40.1)x10' cm™3. We can
observe that all three concentrations become relatively low above approximately 600°C, which

means that the silicon vacancies recombine or cluster in the sample.

Evidence for the detection of negatively charged non-vacancy defects For all anneal-
ing and measurement temperatures two components were obtained from the positron lifetime
spectra decomposition (see Fig. 4.23 in Sec. 1.3.1.3). The long lifetime component 75 is much
longer than the lattice lifetime for all measurement and annealing temperatures. This indi-
cates trapping in vacancy defects. In that case, if some of the positrons had annihilated in
a non-localized state (i.e. in the lattice), the short lifetime component 73 values would have
been shorter than the lattice lifetime (the mean time spent in the lattice is shorter due to the
trapping inside the defects). However, in the studied samples, the short lifetime component 7
was close to the 6 H-SiC lattice lifetime (71, =140 ps [55]). This lifetime indicates the detection
of negatively charged non-vacancy defects (also called ‘negative ions’), as the electronic density
around negative ions is close to the density observed around the atoms in the lattice [160]. As
described in the paper related to the as-irradiated samples [55], two types of negative ions are
in fact detected in the crystals. One of them was already detected in the as-grown crystals, and
the other one was generated by irradiation. Moreover, the evolution of 7, as a function of the
annealing temperature indicate a total trapping of the positrons in defects, both into vacancy

defects and ‘negative ions’, even after 1050°C annealing.
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Lifetime components as a function of the measurement temperature In the as-
irradiated crystals only slight variations are observed in the positron characteristics when the
measurement temperature changes. The average lifetime increases slightly from 20241 ps to
205+1 ps between 15 K and 295 K. The long lifetime component 7, rises from 21442 ps to

218+2 ps in the measurement temperature range and its intensity is stable at 8342%.

After annealing at 300°C, 7,,. first increases slightly from 19441 ps up to 19841 ps and then
reaches 20841 ps at 415 K and remains stable. 75 increases from 21242 ps up to 22242 ps,
while its intensity changes from 75£3% to 83£2%.

The average lifetime 7,,. measured in the crystals annealed at 300°C varies more strongly (from
194 ps to 208 ps) than in the as-irradiated crystals as a function of the measurement temperature.
It indicates a modification of the distribution of the vacancy defects and/or of the ‘negative
ions” detected in the crystals. The long lifetime component 75 values are characteristic of the
distribution of the vacancy defects detected in the crystals. For a given annealing temperature,
EPR measurements show that the isolated silicon vacancy concentration remains constant for
all measurement temperatures, which indicates that the Fermi level does not vary. We propose,
therefore, that the modification of the trapping rate of the various defects is induced by a
variation in their concentration, or by a change in the nature of the detected defects, but not by
a modification of their charge states. The lifetime 75 measured in the 300°C annealed crystals
varies from 212 ps to 222 ps when the measurement temperature changes from 15 K to 475 K.
These values are close to the lifetimes measured in the as-irradiated crystals and the population
of defects should be very similar to that in as-irradiated samples. However, the I, intensity is
lower after annealing at 300°C. It suggests that the concentration of vacancy type defects has

decreased during annealing.

After annealing at 750°C, the average positron lifetime first increases from 188+1 ps to 196+1 ps
and is then stable between 175 K and 275 K. It then rises again and reaches 21741 ps value at
575 K. 7y increases from 21842 ps to 23543 ps when the temperature increases. We can also
observe an increase of the intensity Iy around 350 K. A rather similar evolution of the three

characteristics 7,,., 72 and I5 is also observed after annealing at 850°C.

The average lifetime 7., measured in the 750°C annealed crystals increases very strongly, from
188 ps to 217 ps, in the 15-575 K measurement temperature range. It indicates a modification
of the distribution of the vacancy defects detected in the samples. In addition, 75 increases from
218 ps to 235 ps when the measurement temperature increases from 15 K to 475 K. These values
are very different from the lifetimes measured before and after annealing at 300°C. At higher
temperatures, 7 values form a plateau at 235 ps. This lifetime is also observed at different

annealing temperatures. These two points suggest that the 235 ps lifetime is characteristic of
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a vacancy defect, which we will call V. The change of 7, with temperature indicates that at
least one of the vacancy defects detected at low temperature is negatively charged, while the V5
defect detected at high temperatures is neutral. The negatively charged vacancy will be called

V3 in the following.

After annealing at 750°C, I, is close to 60% in the 15-335 K measurement temperature range,
while it is equal to 75% after annealing at 300°C. For higher measurement temperatures, I,
values remain close to 80%. It indicates that the trapping rate at vacancy defects decreased at
low measurement temperature, while it remained constant at high temperature. Two phenom-
ena could explain the decrease of the trapping rate at vacancy defects in the low temperature
range: an increase of the ‘negative ions’ concentration or a decrease of the Vg concentration.
EPR measurements indicate that the isolated negative silicon monovacancy concentration has
strongly decreased after annealings performed between 300°C and 600°C and is very small after
annealing at 750°C. The I, decrease therefore probably results from the [Véi_] decrease. We

propose, hence, that the negatively charged vacancy defect Vg is the silicon monovacancy.

After annealing at 850°C, 7,,. first increases from 188+1 ps up to 20241 ps between 15 K
and 175 K. It is then stable until 275 K and increases again until 575 K reaching 219+1 ps. 7
increases from 21642 ps to 23343 ps between 15 K and 375 K and it remains stable until 575 K.
Its relative intensity I5 is first stable at 64+2% between 15 K and 135 K, then it increases until
215 K and 72+2%. It is stable until 355 K, then increases again until 824+2% at 475 K and it
finally remains stable until 575 K.

The values of the average lifetime 7,,., of the long lifetime component 75, and of its relative
intensity I, measured in the samples annealed at 850°C are very close to the ones measured after
annealing at 750°C, except in the 175-335 K measurement temperature range. In this range, 7.
is 6 ps higher than the ones measured after annealing at 750°C. While the 7, lifetimes are almost
identical, I, values are higher than the ones measured after annealing at 750°C. This indicates
that the trapping rate in vacancy defects increases relatively to the trapping rate around the
‘negative ions’. The [y increase can result from a change in the trapping rates coefficients or
in the concentration of the negative ions or of the vacancy defects. The values of 75 are almost
identical, even at low measurement temperature, where the trapping in the neutral defect called
V is in competition with the trapping in Véi_. It suggests that the nature (and therefore the
trapping coefficient) and the concentration of the vacancy defects changed only slightly between
annealing at 750°C and 850°C. Meanwhile, the silicon vacancies concentrations measured using
EPR after annealing at 750°C and 850°C are close (respectively 8 x10%cm™ and 6x10%cm™3).
I, variations therefore result from a decrease in the negative ion concentration between 750°C

and 850°C, while the vacancy defects distribution remains almost identical.
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Finally, after annealing at 1000°C, 7,,. is first stable at 188+2 ps and then starts rising at around
300 K to finally reach 21141 ps. The long lifetime component 7, varies between 216+2 ps and
2314£3 ps. The intensity corresponding to this lifetime is firstly stable and then starts rising at
around 350 K to reach 76+2% at 575 K.

The average lifetime 7,,. in the 1000°C annealed crystals is 6 ps to 15 ps shorter than after 850°C
annealing. This suggests a change in the distribution of the vacancy defects detected in the
samples. The 7, lifetime measured in these crystals is first stable around 215 ps for measurement
temperatures lower than 235 K and then increases until 575 K reaching 231 ps. These values
differ from the ones measured after annealing at 850°C. The 215 ps lifetime, measured at low
temperature, probably corresponds to the positron trapping in negative silicon vacancies. At
higher measurement temperatures, the values of 7 are around 231 ps, which is slightly shorter

than the V, characteristic lifetime is detected for lower annealing temperatures.

Lifetime components as a function of the annealing temperature For low measure-
ment temperatures the average lifetime decreases from 202+1 ps to 18841 ps as a function of
annealing temperature. 7, is first stable at around 21342 ps up to 450°C, then increases up to
700°C where it reaches 21942 ps and then starts decreasing. The intensity corresponding to

this lifetime component decreases up to 700°C and then remains stable at 604+2%.

For measurements performed at 215 K, the evolution of the average lifetime is more complex.
The lifetime first decreases from 20341 ps to 195+1 ps, then rises up to 19941 ps and decreases
again down to 195+1 ps. When the annealing temperature increases, it rises again to reach
202+1 ps and then it decreases abruptly to 18641 ps. The long lifetime component is first
stable at around 21642 ps, then rises between 400°C and 700°C and becomes stable again at
around 22643 ps up to 950°C.

At high measurement temperatures 7,,. first increases from 21141 ps up to 218+1 ps, then
is stable between 700°C and 850°C and finally decreases to 21041 ps. 7 first increases from
22542 ps up to 235+3 ps between 400°C and 700°C and then remains stable at around 23142
ps. Its relative intensity I, is high and remains stable at 824+2% between 400°C and 850°C and
then decreases slightly to 764+2%.

Identification of defects The EPR measurements indicate the presence of Vg in the studied
samples. This defect was especially observed in the as-irradiated samples and for low annealing
temperatures. Meanwhile, the PAS measurements for the as-irradiated samples showed a life-

time of 21442 to 21842 ps. This lifetime is very close to the 219 ps lifetime we calculated for
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the V& in 6H-SiC, when scaled to the experimental lattice lifetime). The results of both the
EPR and PAS measurements thus indicate that the silicon vacancy is probably the main defect

observed by these methods before annealing and at low temperatures after annealing.

The PAS measurements at 215 K (see Fig. 4.23) show that the positron lifetime is stable for
annealing temperatures lower than 400°C, then starts increasing and stabilizes around 650°C.
For similar temperatures, the EPR signal (see Fig. 4.22b) attributed to the silicon vacancy
decreases. This indicates that at these temperatures, the silicon vacancy is annealed and that
a larger defect exhibiting a longer lifetime is created. This defect is probably neutral, because
it is observed at high measurement temperatures, when the trapping coefficient depends more
on the size of the defect than on its charge. Additionally, it has to contain at least part of the

disappearing silicon vacancies.

At high measurement temperatures, the negative defect should not be predominant in the PAS
signal any longer and the neutral cluster (called V) should be predominantly detected due to its
larger volume. In Fig. 4.23 we can notice that 7, increases between the annealing temperatures
of 400°C and 700°C for 555 K measurements. We propose that during this stage the silicon
vacancy are annealed through clustering. The long lifetime component stabilizes at 235 ps. This
lifetime is very close to the one we calculated for the neutral Vo+Vyg; divacancy (235 ps in 3C-
SiC and between 234 and 236 ps in 6 H-SiC, when scaled to the experimental lattice lifetime).
Additionally, our charge state calculations showed that the divacancy should be neutral in a

wide range of electron chemical potentials (see Fig. 4.6b).

Therefore, we propose that the V, defect is the neutral Vo+Vyg; divacancy. This suggests
that in the studied 6 H-SiC samples silicon vacancies were created by irradiation and were
then annealed between 400°C and 700°C. The annealing was probably due to formation of
V+Vsgi. This process requires migration of carbon or silicon vacancies. According to Zolnai et
al. [39] the carbon monovacancies migration is only possible for annealing temperatures higher
than 1100°C. Additionally, ab initio calculations of Bockstedte et al. [9] yielded a significantly
higher migration barrier for the V3" vacancy (5.2 eV) than for Vi (3.2 eV). Therefore, we
propose that the process is related to silicon vacancies migration. This should, however, be
confirmed by additional experimental and theoretical studies. We also assume that the carbon
vacancies that are indispensable in the clusters formation were also created by irradiation, but
that they could not be detected by the characterization methods used. Their most probable
charge states, 0 and 2+ [143], are nonparamagnetic and cannot be observed in EPR. As for the
PAS, the positive carbon vacancies do not trap positrons and the neutral ones would trap much

less positrons than the negative silicon vacancies, inducing a very weak signal.

Our results can be compared with the EPR study of Carlsson et al. [154]. They observed a strong

annealing of silicon vacancies in irradiated 4 H-SiC up to 700°C and simultaneous increase in the
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Vo+Vyg; divacancy concentration. This behavior is in good agreement with what we observe in
irradiated 6 H-SiC samples. It is worth noting that in our study the divacancies were detected
by PAS and not EPR. We suppose that the intensity of the P6/P7 center (Vc+Vg; divacancy)
was too weak to identify it in the as-received samples and has not been tracked in the annealed

crystals.

As for the behavior of the non-vacancy defects, we observe that the long lifetime component
7o measured at 215 K remains constant during annealing at temperatures between 700°C and
850°C. Meanwhile, its relative intensity I, increases. It indicates that in this annealing temper-
ature range, the trapping rate of the vacancy defects increases. The increase in the I values
measured at 555 K is much smaller, because at this measurement temperature the positron
trapping around negative ions is not dominant. We propose that the increase of the trapping
in vacancies between 700°C and 850°C corresponds to the annealing of a part of the ‘negative
ions’ detected by the positrons in the crystals. We suggest that the annealed defects might be
the irradiation induced ‘negative ions’ rather than the native ones, because the annealing tem-
peratures are much lower than the crystal growth temperature using the modified Lely method
(>1800°C). This annealing phenomenon of the ‘negative ions’ has already been observed by
Polity et al. [161] in 2 MeV electrons irradiated 6 H-SiC crystals then annealed between 450°C
and 900°C.

4.4.2 Doppler broadening

In this section we compare the Doppler spectra calculated for defects in silicon carbide with
the experimental data obtained by F. Linez during her PhD thesis at the CEMHTT laboratory
[162]. In this work n-type 6 H-SiC samples were irradiated with 4 MeV Au ions with fluences
from 102 to 10*® cm~2. These irradiations led to the creation of vacancies and vacancy clusters
with various sizes. The samples were studied with a pulsed low energy positron beam with a

varying energy, allowing measurement of both positron lifetime and momentum distributions.

In Tab. 4.14 we recall the positron lifetimes that were detected in the study of F. Linez in
the cascade region of the irradiated SiC samples. In Fig. 4.24 we compare the measured and
calculated S;, and W, parameters. The calculated spectra were convoluted using a Gaussian
function with FWHM=4.7 mrad, which should be close to the experimental resolution in the
reference study. We observe that the calculated points are slightly below the experimental
points. However, an overall good agreement is obtained in the evolution trends of the relative S¢
and W, values. The differences can be due to various approximations made in the calculations

and to experimental uncertainties.
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The experimental S, and W,y parameters measured after irradiation at 10?2 and 10* cm—2

fluences do not align with any of the calculated values. However, they lay near the points
calculated for Vg and Vg+Vc+Cs. A long positron lifetime of 223-225 ps was measured
after these irradiations, which is close to what was calculated for the silicon monovacancy. We
suppose, hence, that a defect of a similar size was detected in these samples. It is worth noting
that the experimental points measured after irradiation at 10'? and 10** cm~2 fluences are
above the line going through the (1,1) point and the data corresponding to samples irradiated
at higher fluences (see dashed lines in Fig. 4.24). Meanwhile, for all the considered ‘pure’ defects
in silicon carbide we calculated points that are aligned on the line going through the (1,1) point.
We can suppose, hence, that the shift of the experimental points can be due to the presence of
impurities. In Fig. 4.21 we show that the nitrogen decoration of the silicon monovacancy leads
to a similar shift of the points on the S(W) plot. We suppose hence that after irradiation at

102 and 10 cm ™2 fluences vacancy complexes with impurities, such as nitrogen, are detected.

After irradiation at 10'* cm~2 fluence the S, increase and W,y decrease. The experimen-
tal points corresponding to this irradiation are distributed along a line starting above the
point calculated for Vo+Vsg; and going in the direction of the (VC+V51)§ing complex. Several
other complexes can correspond to the experimental points,Vc+Ve, Ve+Vsi+Ve, Vai+Ve+ Vs,
(Vc+Vsi)o and (Ve+Vg)§#in. The positron lifetimes measured in this sample vary from 239
to 289 ps as a function of the incident positron energy, corresponding to different depths which
the positrons probe. It means that defects of different sizes, probably between divacancies and
hexavacancies were created in this sample. However, in the region of the S, (W) plot cor-
responding to the irradiation at 10** cm~=2 fluence, various theoretical points are close to each
other and difficult to distinguish. It could be useful to have access to whole experimental ratio
curves or to recalculate the experimental parameters using a different high-momentum integra-

tion region, since this can help in separating some of the points on the Si(Wie) plot, as was
showed in Fig. 4.14.

After irradiation at 10'® cm~2 fluence the experimental points move further towards the point
calculated for the (vc+vSi)§;ng cluster. The measured S,¢ and W, parameters are close to the
value calculated for the ‘ring’ hexavacancy, but slightly shifted towards the points calculated
for smaller defects. We suppose that several defects are detected at the same time, while
(Vﬁ\/’a)?”g is predominant. This is consistent with the positron lifetime measured in this
sample. The value of around 284 ps, is lower than what we calculated for (VC+Vs1)§f“g (296 ps
when scaled to the experimental lattice lifetime), suggesting that some defects with smaller free

volumes are also present in the sample.

Combining the information on the positron lifetimes and Doppler spectra can facilitate the

defects identification. We can see, however, that in some cases it is still difficult to distin-
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guish the defects. It would hence be useful to confirm our conclusions by coupling positron
lifetime and Doppler broadening measurements with another type of experiment, for instance

photoluminescence spectroscopy (PL), performed on the same samples.

Table 4.14: FExperimental positron lifetimes detected in 4 MeV Au irradiated 6H-SiC. Data
were extracted from Ref. [162]. In the case of the irradiation at 10 cm™® the positron lifetime
varied as a function of the incident positron energy (between 5 and 11 keV).

Fluence (cm™2) 7 (ps) L (%) 7 (ps) L (%)

1012 1770 6+0.7 22540 9440.7
1013 223+1 100 - —
101 23940 96\ 56 289+0 4,44
101° 284+1 100 - -
1.14
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Figure 4.24: Comparison between the calculated and experimental S,e; and W, parameters
detected by F. Linez [162] in 4 MeV Au irradiated n-type 6H-SiC. The theoretical data were
convoluted with a Gaussian function with FWHM=4.7 mrad.

4.5 Conclusions

We calculated the positron lifetimes, Doppler spectra and formation energies for vacancy clusters
containing from two to six vacancies. The calculated formation energies enabled us to predict
the most stable charge states of these defects. We showed that the atomic relaxation effect
affects strongly the calculated positron annihilation characteristics and should be taken into
account in the calculations. We also showed that in silicon carbide the positron lifetime is

mainly affected by the number of the silicon vacancies in the cluster. Additionally, in the case
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of the large vacancy clusters, such as the hexavacancy, we observed that not only the number

of vacancies but also their configuration strongly affects the positron lifetime.

In the Doppler broadening calculations we studied the effect of the experimental parameters on
the S and W parameters that are commonly used to analyze the results. We showed the effect
of the experimental resolution and the integration windows on the calculated S and W. We
observed that an appropriate choice of the high-momentum integration region can facilitate the

separation of the defects, especially on different sublattices.

We also studied the effect of the silicon carbide polytype on the calculated positron lifetimes and
Doppler spectra. We observed that while the results obtained for the carbon vacancy depended
strongly on the atomic site, the effect was much smaller for the silicon vacancy and Vc+Vyg;
complex. We concluded, hence, that the results obtained for clusters in 3C-SiC can also be used

to analyze the experiments performed on other silicon carbide polytypes.

We compared our calculated results with the experimental lifetimes and Doppler broadening
data reported in literature. The calculated positron lifetimes enabled us to confirm the identifica-

tion of vacancy clusters done in previous studies by means of positron annihilation spectroscopy.

We also used the calculated positron lifetimes to analyze unpublished PAS and EPR results
obtained on irradiated and annealed 6 H-SiC crystals in the light of our positron and formation
energies calculations. The combined characterization methods showed the presence of silicon va-
cancies in irradiated 6 H-SiC, which was confirmed by the positron lifetime calculations. During
annealing at temperatures starting at around 400-500°C the migration of the silicon vacancies
and the formation of a larger defect were observed. This defect, exhibiting a positron life-
time of 235 ps, was identified as V+Vg; based both on the charge state and positron lifetime

calculations.

The results of the Doppler spectra calculations were compared with experimental data obtained
by F. Linez in n-type 6 H-SiC samples irradiated with 4 MeV Au ions with fluences from 10'2
to 10'® cm™2. We observed a good general agreement between the measured and calculated
points. However, it was shown that due to the choice of the integration windows in S and W
parameters calculations, the points corresponding to different defects are aligned and difficult
to distinguish, even when coupling the results with the information on positron lifetimes. We
concluded that it could be useful to recalculate the experimental parameters using a different
high-momentum integration region and to couple the positron lifetime and Doppler broadening
measurements with another type of experiment, for instance photoluminescence spectroscopy
(PL), performed on the same samples. The above mentioned activities are planned in the near
future at the CEMHTTI laboratory.



Chapter 5

Results on uranium dioxide

To support the identification of defects in uranium dioxide using positron annihilation spec-
troscopy, we calculated two types of properties: the formation energies to determine the most
stable charges of defects and the positron annihilation characteristics. We present here the re-
sults of these calculations and the analysis of the experimental data based on them. The results
described in this chapter have been partly published in Ref. [163], [164] and [165].

5.1 Formation energies of charged defects

We performed first principles calculations of the formation energies of various charged defects
in UOy using the GGA+U method. We considered defects of different sizes, going up to the
2Vy+4V hexavacancy. This study was performed jointly with another PhD student, Emerson
Vathonne, and partly presented in his thesis [22] and in Ref. [163] and [164]. The calculations
of formation energies had two goals. First, it was done to study the clustering of defects and to
provide a basis for a study of fission gas incorporation and migration. Second, the determination
of the most stable charge states was necessary to predict if the given vacancy can be detected
by PAS and to know which charge state can be expected in the examined samples. We will first
describe the methods used in the calculations of the formation energies and then present the

results.

133
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5.1.1 Methods used in formation energy calculations

The formation energies of the charged defects can be calculated according to

Er(Vx, q) = Eror(Vx, q) — nopo? — nupy"? + qie, (5.1.1)

where Fi(Vx,q) is the total energy of the supercell, ny and no are the numbers of uranium
and oxygen atoms in the cell, uy and puo are the chemical potentials of the uranium and the
oxygen atom in UQO,, ¢ is the charge of the defect and p. is the electron chemical potential,

which varies from the bottom to the top of the band gap.

The chemical potentials of uranium and oxygen atoms in UO5 cannot be directly retrieved from
calculations. They can be, however, estimated considering the standard formation enthalpy and
the energies of these atoms in their reference states (metallic uranium and oxygen molecule).

Choice of the references will be described in Sec. 5.1.1.1.

As already mentioned in the study of charged defects in SiC (see Sec. 4.1), the classical super-
cell approach fails in providing accurate formation energies for charged supercells, thus approx-
imations have to be made while calculating formation energies. We use a correction scheme
proposed by Taylor and Bruneval [108]. We take, thus, the Madelung term AFEg(q) [106, 107],

that corrects the electrostatic interaction between the defect and its images and is given as

2
aq
AE = — 5.1.2
: 2€0L ( )

where « is the Madelung lattice constant, € is the static dielectric constant and L is the length

of the supercell edge.

Additionally, we use a potential alignment AV, taking
AV = () ~ (i), 519

where (vRdk) and (viseet) are the average Kohn-Sham potentials calculated for the cell without

and with the defect, respectively.

Taking into account the previous equations, the final expression takes the form:

E(Vx,q) =  Euu(Vx,q) — nopg”? — nupg
+Q(EVBM + He + AV) + AEel(q), (514)
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where Fi,; is the energy of the supercell with a defect.

5.1.1.1 Choice of the reference energies

To obtain formation energies using Equation (5.1.4) one needs to know the reference energies
of U and O atoms in UQ,, i.e. their chemical potentials ,ugoz and Mgog‘ These values, however,
cannot be directly obtained from the calculations and they depend on the stoichiometry of the

material. We can write two relations:

pbilk — 002 9, U0s (5.1.5)

and
G0y — o " = 2pQ* = AHP?, (5.1.6)
where 3 ™% is the energy of one uranium atom in metallic U and p3? in the energy of one

oxygen atom in the Oy molecule. We will now consider differences between chemical potentials

of the atoms in the UO; and in their standard states (metallic uranium and O molecule),

Apy = pg®* — py ™ (5.1.7)
Ao = 1> = po?. (5.1.8)

Introducing Apy and Apg to Eq. (5.1.4) we obtain

Ef(VX7 Q> = Etot(VX7 q) - nO(,U82 + A,UO)
—ny(py ™ + Apy)
+q(Evem + e + AV) + AE4(q). (5.1.9)

The chemical potentials of both elements in UO, have to be smaller than in the standard states,
otherwise the material would decompose. Both Auy and Apo have to be, thus, smaller than

0. The lower limit of these values is defined by the sum:
Apy + 208p10 = AHP2. (5.1.10)

AHP? < Apy <0 (5.1.11)

1
§AHfUOQ < Apo <0 (5.1.12)
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Figure 5.1: Apy as a function of Auo for different phases of U-O systems.

Taking the experimental value of the standard formation enthalpy (-11.23 eV [166]), these ranges

are however very wide:
—11.23 eV < Apy <0 (5.1.13)

and
—5.62 eV < Apup < 0. (5.1.14)

These ranges can be slightly narrowed by considering other phases of U-O systems. Following
the reasoning of Na-Phattalung et al. [167], we trace Auy as a function of Auo (Fig. 5.1) for
different phases, while keeping:

AHfUmOy = xAuy + yApo (5.1.15)

As the first principles calculations for U3Og and U4Og are quite complicated to perform, we
took the experimental values of AH; from Reference [166]. As our calculated value for UOy of
11.17 eV was very close to the experimental value of 11.23 eV, we suppose that this comparison
is valid. In Fig. 5.1 it can be seen that UQ, is stable (Auy and Apo are minimized for this
phase) when Apg is lower than —1.78 eV and Apuy is larger than —7.67 eV. For higher Apuo,
what is equivalent to more O-rich conditions, U;O9 and U3zOg would precipitate. We have,

hence, new ranges for the differences in chemical potentials:

—7.67eV <Auy <0 (5.1.16)
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Figure 5.2: Formation energies of V4U_ and V& as a function of Auy. Energies are taken for
the Fermi level in the middle of the band gap.

and
—5.62 eV < App < —1.78 eV. (5.1.17)

This range is still wide. We further narrow it by putting a constraint on the formation energies
of the vacancies, in a similar way to what was done for ZrN by Pukari et al. [168]. In their study,
they imposed chemical potentials of Zr and N so that the formation energies of the vacancies is
positive. They studied, however, neutral defects only. In our case, formation energies depend
not only on the chemical potentials of the atoms, but also on p.. We will impose reference
energies for which all the vacancies have positive formation energies for the Fermi level in the
middle of the gap, i.e. for pu. = 1.2 eV, since we have calculated a gap of 2.4 eV. The O-rich
conditions are defined by Ef of V{; and the U-rich conditions by E of Vg (for more details
on the formation energies of these defects see Sec. 5.1.5). The positive formation energy of the
uranium vacancy is assured by Apy larger than -6.12 eV (see Fig. 5.2). The constraint on

oxygen vacancy formation energy implies Apy smaller than -1.56 eV. Finally, we have
—6.12 eV < Apy < —1.56 eV (5.1.18)

and
—4.80 eV < App < —2.52 eV. (5.1.19)

We will consider three cases in our further study: O-rich with Auo = —2.52 eV and Apuy =
—6.12 eV, U-rich with Apuo = —4.80 eV and Auy = —1.56 eV and a near-stoichiometric case,
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where we take the mean values, Aup = —3.66 eV and Auy = —3.84 eV. It is worth keeping
in mind that the values for the various regimes can differ slightly from the ones in the real

stoichiometric material, and an approximation is made here.

5.1.2 Previous studies on defects in UO,

Defects in UO, have already been widely studied within the density functional theory (see
for instance Ref. [21] and [22]). However, there are some inconsistencies in the formation
energies of the defects in UOs obtained in previous theoretical study. This is mainly due to the
different methods used in these studies. First, various methods can be chosen for description
of interactions between the electron, for example: LDA, GGA, LDA+U, GGA+U and hybrid
functionals. Second, if the DFT4+U method is chosen, one can deal with the convergence to
the metastable states (through occupation matrix control or U-ramping) or not. Third, charge
states of the defects have been taken into account in some of the studies and not in the others.
Finally, the choice of the reference energies of O and U atoms, used in formation energies
calculations, differs between the studies. Some authors choose O-rich conditions, where oxygen
atom energy is set to its energy in a Oy molecule, other authors change references from one

defect to another. We will briefly recall conditions of previous studies on defects in UQOs.

Freyss et al. [27] performed calculations for neutral point defects and Frenkel pairs in GGA.
They used 24 atom supercells. Iwasawa et al. [169], studied neutral point defects in the GGA+U
framework in 96 atom supercells. In this study the influence of the metastable states was not
taken into account. Dorado et al. [28, 30] also used the GGA+U method to study neutral
defects up to the Vy+2V trivacancy in 96 atom supercells. However, in the studies of Dorado
et al. occupation matrices were controlled to avoid the convergence to the metastable states.
In all the calculations above, the O-rich conditions were used for O-related defects and U-rich

conditions for U-related defects.

There are also several studies that were performed for charged defects in 96 atom super-
cells, in which O-rich conditions were used for all the defects. Crocombette et al. used the
GGA+LHFCE (pseudo-hybrid) [29] and GGA+U [170] methods, with U-ramping, to study
various charged defects up to the Vy+2Vq trivacancy. Nerikar et al. [171] also used GGA+U

to study similar defects. However, in this study, no metastable state control was used.

In our study, we use the GGA+U method and we control the occupation matrices. We performed
calculations for charged point defects and defects clusters up to the 2Vy+4V hexavacancy.

We used supercells containing 96, 144 and 324 atoms. We also narrowed the range of possible
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reference energies for O and U atoms, as presented in Sec. 5.1.1.1, and considered three cases:

the O-rich, stoichiometric and U-rich regimes.

5.1.3 Computational details

The formation energy calculations were performed using the projector augmented wave method
(PAW) [102, 103] as implemented in the Vienna Ab initio Simulation Package (VASP) [172-174].
The generalized gradient approximation (GGA) as parametrized by Perdew, Burke, Ernzerhof
(PBE) [175] is used to describe the exchange-correlation interactions. Moreover, a Hubbard-like
term (U) is added in order to take into account the strong correlations between the 5f electrons
of the uranium atoms. The Liechtenstein scheme [101] of the DFT+U method is used. The
values of the U and J parameters were set to 4.5 eV and 0.51 eV respectively, in agreement with
earlier DFT+U calculations [97] and the values extracted from experiments [176]. In order to
avoid the convergence to one of the numerous metastable states yielded by the DFT+U method
and ensure that the ground state is reached, we used the occupation matrix control scheme
(31, 177, 178].

Uranium dioxide is paramagnetic above 30.8 K and below this temperature it has a noncollinear
3k antiferromagnetic order [179]. These systems can be, however, only modeled using large
numbers of atoms. We consider, therefore, a 1k antiferromagnetic ordering, which is an ap-
proximation of the noncollinear 3k order, since the two exhibit only small differences in energy

[180].

Two types of supercells were used in our study. Calculations for monovacancies, mono-
interstitials, oxygen di-interstitials, U-O divacancy and bound Schottky defects were performed
in supercells containing 96 atomic sites (2x2x2 repetitions of the fluorite unit cell). In this case
we used a 2x2x2 Monkhorst-Pack k-point mesh [181]. For larger defects, we use supercells
containing 144 atomic sites (2x2x3 repetitions of the unit cell) with a 2x2x1 Monkhorst-Pack
k-point mesh [181]. A Gaussian smearing of 0.1 ¢V is used in all the calculations. The lat-
tice parameters and atomic positions are relaxed and all initial point symmetries are removed
during calculations. A plane wave cutoff energy of 500 eV is used, in agreement with cutoff
convergence tests and previous studies. We relax the structures until the Hellmann-Feynman
forces are converged to less than 0.01 eV/ A. In addition, we make sure that the total energy
of the system is converged to less than 107° meV /atom. With these conditions we find lattice
parameters ¢ = b = 5.57 A and ¢ = 5.49 A for perfect UO,, compared to 5.47 A measured

experimentally [14]. The distortion in the z axis is due to the 1k antiferromagnetic order.
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5.1.4 Considered defects

We study the various point defects and defects clusters that can be formed in UO;. These
defects are divided in three groups. First, we consider ‘small defects’ i.e. oxygen and uranium
monovacancies (Vo and Vy), oxygen and uranium interstitials (Ip and Iy), an oxygen di-
interstitial (2Ip) and a divacancy containing one oxygen vacancy and one uranium vacancy
(Vu+Vo). The second type of defects are the bound Schottky defect (BDS) containing one
uranium vacancy and two oxygen vacancies (Vy+2V). Three configurations of this defect are
possible, with the two oxygen vacancies aligned along [100], [110] and [111] directions called
BSD1, BSD2 and BSD3, respectively. Finally, we study various large clusters, containing two
uranium vacancies: a 2Vy divacancy, a 2Vy+Vg trivacancy, a 2Vy+2V tetravacancy and a
2Vy+4Vo hexavacancy (di-Schottky).

We considered various charge states of the defects listed above. To do that we add or remove
electrons from the supercell taking into account the charges of uranium and oxygen ions in
UQO,: 0%~ and U*t. For all the defects we consider at least all the charges between +2 and
—2. In some cases we investigate additionally the charge states up to the ones based on the
formal charges of oxygen and uranium ions in uranium dioxide, 2— and 4+, respectively. For
instance, in the case of the uranium vacancy, one U*t is removed from the system, along with
four electrons taking part in the ionic bonds. To compensate the loss of these four electrons, we
add up to four electrons to the system. The formation energies of the charged defects depend on
the electron chemical potential (p.), which is equivalent to the Fermi level. p,. changes between
the top of the valence band and the bottom of the conduction band. Thus, we present our

results across the band gap of the material which was found to be 2.4 eV.

It is worth noting that for some defects the charge states corresponding to the formal charges of
oxygen and uranium ions are very high, e.g. —8 for Vy+Vy. In these cases, even after applying
corrections, the errors related to the finite size of the cells used in calculations can be significant.
Nevertheless, we decided to perform and present the calculations also for high charge states as

a first attempt of modeling such defects.

5.1.5 Small defects

The formation energies of the small defects are presented in Fig. 5.3. Three different cases are
considered: O-rich (Fig. 5.3a), stoichiometric (Fig. 5.3b) and U-rich conditions (Fig. 5.3c).

It is worth noting that stoichiometry does not affect the charge state stability regions. For

all the growth conditions, in the undoped material (Fermi level in the middle of the gap) the
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stable charges for all these defects are in agreement with the formal charges of ions except
for the uranium interstitial. In the middle of the gap, we find defects with charge states as
follows: V&, 157, 215, Vi, IiF and Vo+V§ . The disagreement on Iy can be due to the errors
connected to using finite supercells sizes in charged defects calculations. Our results show that
all of the ‘small defects’ in UO4 are charged, which is in agreement with results of Crocombette
[170] and confirms the very ionic nature of UO,. Charge states cannot be, thus, neglected in

studies on defects in this material.

In the case of the hyperstoichiometric UO, (Fig. 5.3a) we found that the Vé‘ vacancy has the
lowest formation energy when the Fermi level lays in the middle of the gap. There are also two
defects with slightly higher Ey, 13~ and Vo+V3 (difference of 0.37 V). These three defects

should be, therefore, the most stable ones in UO, .

When the oxygen chemical potential decreases and moves towards stoichiometric conditions,
the formation energies of these three defects rise and become higher than the one of the oxygen
vacancy. V%* is the most stable defect in both stoichiometric and hypostoichiometric UOq
(Fig. 5.3b and 5.3c). It is worth noting that for the Fermi levels above the middle of the gap we
find that the oxygen vacancy is negative, with a —2 charge. In previous studies this charge state
was not predicted for the oxygen vacancy at all, probably mainly because it was not taken into
account [170]. What is also interesting in the stoichiometric and hypostoichiometric conditions
is that the Vo+Vy divacancy has a lower formation energy than the uranium monovacancy.

Therefore, this complex should be highly stable.
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Figure 5.3: Formation energies of the small defects in UOy for O-rich, stoichiometric and
U-rich conditions.
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5.1.6 Bound Schottky defects

In Fig. 5.4 we present the formation energies of the bound Schottky defects. Since this is
a stoichiometric defect, its formation energy does not depend on the choice of the reference
energies. The formal charges of ions are also respected in this case, since the neutral charge
state is stable for a wide range of the Fermi levels for the three Schottky defects. However, for

Fermi levels above the middle of the gap, the three trivacancies become negative.
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Figure 5.4: Formation energies of the three configurations of the Vy+2Vo

The BSD2 is the most stable one for the Fermi level laying in the middle of the band gap, in
agreement with the study of Crocombette [170]. However, for higher Fermi levels we find that the
BSD3 has the lowest formation energy. This is in disagreement with the study of Crocombette
[170], who found that the BSD2 is the most stable in the whole gap. This difference can be
due to the choice of the method used to avoid metastable states. In our study we used the

occupation matrix control scheme, while Crocombette used the U-ramping method.

5.1.7 Large defects

The formation energies calculated for the vacancy clusters containing two uranium vacancies are
presented in Fig. 5.5. Three regimes are taken into account: the hyperstoichiometric (Fig. 5.5a),
stoichiometric (Fig. 5.5b) and hypostoichiometric (Fig. 5.5¢) regimes. First of all, we can observe

that the charge states of almost all the vacancy clusters are again in agreement with the formal
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charges of point defects. In the middle of the band gap we find the charge states of —8 for
2Vy, —6 for 2Vy+Vo and —4 for 2Vy+2Vo. In the case of the 2Vy+4V (di-Schottky) it is
the neutral charge that is expected. However, we observe that this defects ins neutral only for

Fermi levels laying below the band gap middle and then becomes negative.

Additionally, we can observe that the formation energies of the clusters are quite small, especially
in the case of the O-rich UO,. It means that their presence should be expected in the material.
However, it is worth noting that for some of these large clusters high charge states are expected.
The errors due to the finite cells sizes increase with the defects charge state, hence the formation
energies of defects with charge states of e.g. —4, —6 or —8 can be encumbered with rather large

eIrors.
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Figure 5.5: Formation energies of the large defects in UQy for O-rich, stoichiometric and
U-rich conditions.
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5.1.7.1 Comparison with previous studies

In the literature, the results are spread within a few eV for the formation energies of point
defects due to the use of various calculation methods (LDA, GGA, LDA+U, GGA+U), the
method to avoid the apparition of metastable states in DFT4U (occupation matrix control
scheme or U-ramping) but also due to different references in energies for chemical potential of
oxygen and uranium. Moreover, the majority of the studies dealt with neutral defects only even

if currently authors take into account the various possible charges for the defects.

In the studies of Freyss et al. [27] (standard DFT) and Dorado et al. [28] (DFT4+U with
occupation matrices), a chemical potential of Aug = 0 for the oxygen defects and a chemical
potential of Auy = 0 for the uranium defects have been used. These studies of neutral defects
show the oxygen interstital to be the most stable defect in UO, whereas the uranium vacancy
is unstable, which is not consistent with our results. This difference is due to the fact that
they compared a result for the oxygen interstitial in the O-rich conditions with a result for the

uranium vacancy for U-rich conditions.

Crocombette et al. [29, 170] used the O-rich conditions (Auo = 0 and Auy = AHZ??) in
their calculations. They found that the uranium vacancy is the most stable defect, which is
consistent with our results for hyperstoichiometric UO,. However, they found very low, negative
formation energies for this defect. It would mean that this vacancies is formed spontaneously
in the material. It is due to the fact that for Auo = 0, the condition used in the studies of
Crocombette et al., UO, is not stable and it is rather U3Og that is formed for this oxygen

chemical potential.

Finally, in the study of Nerikar et al. [171] two cases were considered, the U-rich case with
a-uranium chosen as the reference state, and the O-rich case with the oxygen molecule chosen
as a reference. In both cases, I?)_ is found to be the most stable defect and V4U_ is approximately
2 eV higher in energy in undoped UQOs. This result is very different from the one obtained by
Crocombette [29, 170] and by us. This difference is certainly due to the fact that no control of
the occupation matrices was applied in the work of Nerikar et al. A different treatment of the
Dudarev scheme, as well as a different definition of the O-rich and U-rich conditions, can also

explain the discrepancies.



5.2. POSITRON LIFETIMES 147

5.2 Positron lifetimes

5.2.1 Computational details

The positron lifetimes of defects in UO, were calculated using the ABINIT code. The atomic
datasets used in this study were generated by the ATOMPAW code [104]. The methods and
parameters used in the positron lifetime calculations were the same as in the study on the

formation energies of defects (see Sec. 5.1.3).

5.2.2 Calculation results

We performed positron lifetime calculations for fully relaxed defects in UO5 containing between
one and six vacancies in both the GGGC+GC and PSN+GC schemes (see Sec. 3.1.4.2 for
explanations of the schemes). The results are presented in Tab. 5.1. For almost all types of
defects we considered two charge states. First, we performed positron lifetime calculations for
neutral defects. Second, we calculated the lifetimes for vacancies in the charge states that were
determined as the most stable ones in the stoichiometric material [163, 164]. Considering the
oxygen vacancy, its formal charge (24) cannot be detected by PAS. The 2— charge, however,
was found to be stable for Fermi levels lying close to the middle of the band gap [163, 164], so
we studied it as well. In Fig. 5.6 to 5.9 we present the positron isodensities calculated for the
stable charge states of defect using the GGGC+GC and PSN+GC schemes.

As can be seen in Tab. 5.1, the differences between the positron lifetimes obtained in the two
calculation schemes are lower than 10 ps for almost all considered defects. The biggest differences
are found for two large defects, the neutral 2Vy+2V tetravacancy (difference of 15 ps) and the
2— charged 2Vy+4Vo hexavacancy (difference of 24 ps). It is also worth noting that similar
results are yielded by the PSN+GC and GGGC+GC schemes for the stable charge states of
the defects up to the 2Vy divacancy, i.e. defects which can most likely be observed in the PAS

measurements.

For both schemes, we can observe that the lifetimes of the negative defects are almost always
shorter than for the neutral ones. It is due to both a smaller relaxation and a higher electronic
density in negative defects. However, in the case of the 2Vy+4Vo hexavacancy, the lifetime
of the negative charge state is longer than the one of the neutral defect in both calculation
schemes. This is due to the fact that the positron is localized differently in these two defects.
In the GGGC scheme (Fig 5.8 (¢) and (d)), in neutral 2Vy+4V the positron is localized inside
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Table 5.1: Positron lifetimes calculated in GGGC+GC and PSN+GC schemes for fully relaxed
neutral and charged defects in UOy. The lifetimes obtained for the most stable charge state of
each defects are marked in bold.

Charge Lifetime  Lifetime

GGGC+GC  PSN+GC

(ps) (ps)

Lattice 168 167
Vo 0 206 199
Vo 2— 203 195
Vy 0 295 304
Vu 4— 289 293
Vu+Vo 0 303 306
Vu+Vo 92— 299 301
Vuy+2V[100] 0 301 304
Vu+2Vp[110] 0 310 313
Vu+2Vo[111] 0 314 316
2Vy 0 313 318
2Vy 8— 290 289
2Vy+2Vo 0 324 339
2Vy+2Vo 4— 309 319
2Vy+4Vo 0 323 329
2Vy+4Vo 92— 341 365

one of the uranium vacancies, while in 2— charged 2Vy+4V the majority of its density can be
found between two Vy. In the PSN scheme (Fig 5.9 (c) and (d)) we find a similar localization
between two uranium vacancies in 2— charged 2Vy+4Vo. In the case of the neutral hexavacancy,

however, the positron density has two maxima, one in each uranium vacancy.

In both schemes, it can be observed that different defects have similar positron lifetimes. For
example, in GGGC+GC, the uranium monovacancy Vi, and divacancy 2V{; have lifetimes of
289 and 290 ps, respectively. The PSN+GC scheme yields lifetimes of 293 and 289 ps, respec-
tively. The lifetimes obtained for the (Vy+Vo)?~ divacancy, 299 ps in GGGC+GC and 301 ps
in PSN+GC, are also close to these values. Moreover, using the two methods we calculated
positron lifetimes between 301 and 316 ps for the three configurations of the Vy+2Vq triva-
cancy and lifetimes of 309 ps (GGGC+GC) and 319 ps (PSN+SC) for (2Vy+2Vo)*~. This
can lead to difficulties in the defect identification in the positron lifetime spectroscopy studies
on UO,. The positron lifetimes can be, however, coupled with additional information on the
defect properties, in particular their charge (through studying the temperature dependence of

the PAS signals) or its chemical environment (through the Doppler spectra measurements).

To understand why different defects have similar positron lifetimes, we plotted the isodensities
of the positron localized in these systems. We plot the results obtained in the GGGC+GC



5.2. POSITRON LIFETIMES 149

(a) (Vu)*~ (b) (Vu+Vo)*~ (c) (Vu+2Vo)°(110)

Figure 5.6: Positron isodensities found in the GGGC+GC scheme (70% of the mazimum
density — solid and 30% — transparent), in red, in defects containing one uranium vacancy.
Uranium atoms are presented in gray, orygen atoms in blue. White spheres represent the oxygen
vacancies. Figures were generated using the XCRYSDEN [182, 183] program.
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Figure 5.7: Positron isodensities found in the PSN+GC scheme (70% of the mazximum density
— solid and 30% - transparent), in red, in defects containing one uranium vacancy. Uranium

atoms are presented in gray, oxygen atoms in blue. White spheres represent the orygen vacan-
cies. Figures were generated using the XCRYSDEN [182, 183] program.

scheme in Fig. 5.6 and 5.8 and in the PSN4+GC scheme in Fig. 5.7 and 5.9. It is worth noting
that in the PSN4+GC scheme we applied the gradient correction on the enhancement factor

only, hence there is no effect of this correction on the calculated densities.
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(c) (2Vy+4Vo)° (d) (2Vy+4Vo)*~

Figure 5.8: Positron isodensities found in the GGGC+GC scheme (70% of the mazimum
density — solid and 30% - transparent), in red, in defects containing two uranium vacancies.
Uranium atoms are presented in gray, orygen atoms in blue. White and yellow spheres represent

ozxygen and uranium vacancies, respectively. Figures were generated using the XCRYSDEN [182,
183] program.
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(c) (2Vy+4Vo)° (d) (2Vy+4Vo)*~

Figure 5.9: Positron isodensities found in the PSN+GC scheme (70% of the maximum density
- solid and 30% - transparent), in red, in defects containing two uranium vacancies. Uranium
atoms are presented in gray, oxygen atoms in blue. White and yellow spheres represent oxygen

and uranium vacancies, respectively. Figures were generated using the XCRYSDEN [182, 183]
program.
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First, we can observe that for all defects the GGGC+GC scheme yields more localized positron
densities than the PSN scheme, which was expected [119, 120]. In all defects presented in Fig.
5.6 and 5.8 except the negative hexavacancy, the GGGC scheme finds the positron localized
inside one uranium vacancy. In these defects, the positron density is only slightly affected by
the presence of the other vacancies. The fact that the positron ‘senses’ similar volumes and
geometries in these defects explains why similar lifetimes are obtained in these cases. The
(2Vy+4V)?~ hexavacancy is the only defect in which the positron localizes between the two
uranium vacancies. It is reflected in the longer lifetime of 341 ps calculated for this cluster in
the GGGC+GC scheme.

In the PSN scheme, however, we obtain a different positron localization for the clusters con-
taining two uranium vacancies (see Fig. 5.9). In (2Vy)®~ and (2Vy+4Vo)?~ the positron is
localized between the two uranium vacancies. However, in the 2— charged hexavacancy the free
volume that the positron occupies is much larger than in (2V)8~ and we observe a significantly
longer lifetime for this defect. In both (2Vy+2V)*™ and (2Vy+4V)? defects, we observe two

maxima of the positron density, one in each uranium vacancy.

5.3 Doppler broadening of annihilation radiation

Beside the positron lifetime, the momentum distribution of electron-positron pairs can be mea-
sured through the Doppler broadening of the annihilation line using a Dopper broadening spec-
trometer [112]. This distribution is also a valuable source of information on the nature and
chemical environment of vacancy defects and is complementary to the lifetime. In this sec-
tion we present the calculations of the momentum distributions of the annihilation radiation

calculated for various defects in uranium dioxide.

5.3.1 Computational details

The momentum distribution calculations have been performed using 96 atom supercells using the
state-dependent scheme and geometries relaxed according to both the electronic and positronic
forces. In these calculations the positron wavefuntion has been calculated at two k-points,
the I' point and another one chosen to lie on the edge of the Brillouin zone, as proposed by
Korhonen et al. [157], to avoid the delocalization of the positron due to the small supercell. The
momentum distributions have been calculated using the wavefunctions corresponding to the I’

point only. We used a cut-off energy of 680 eV, since we found it was enough to obtain Doppler
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spectra converged up to 40 mrad. The atomic datasets used in this study were generated by a
modified version of the ATOMPAW code [104]. They contained 14 valence electrons with 5s and
bp states added in the positron wavefunction basis set for uranium and 8 valence electron for
oxygen. The other methods and parameters used in the momentum distribution calculations

are the same as for the calculations of the formation energies of defects (see Sec. 5.1.3).

5.3.2 Comparison of calculation schemes

In Fig. 5.10 we compare the ratio curves calculated for the uranium monovacancy using the
CONV, GGGC and PSN schemes. The vacancy was relaxed using the PSN and GGGC schemes.
In the case of the CONV method we compare results calculated first for unrelaxed atomic
positions and then taking the relaxed positions from the GGGC calculation. We can observe
that the general shapes of the ratio curves calculated using different schemes are similar. For
all methods a peak at p=0 is observed, with GGGC yielding the largest amplitude and the
CONYV method with unrelaxed positions the lowest. A second peak can be observed around
p = 15 mrad, while around p = 27 mrad a shoulder or a peak, depending on the method used,

appears.

The effect of the atomic relaxation on the calculated ratio curve can be analyzed by com-
paring the results obtained using the CONV method for two different geometries (blue lines in
Fig. 5.10). We can observe that when the uranium vacancy relaxes outwards, the low-momentum
contribution increases, since the electronic density moves further from the positron. At the same

time, the ratio curve at higher momenta decreases.

The localized shape of the ratio curve calculated using the GGGC scheme is consistent with the
overestimation of the positron localization yielded by this method, which was already discussed
in the sections dedicated to positron lifetimes. As for the PSN scheme, the ratio curve obtained
using this method is the flattest. Additionally, we can see that at low momenta the results
yielded by this method are in good agreement with the ones calculated using the CONV scheme
in the relaxed geometry. The agreement is, however, not as good above p = 10 mrad. In
the calculations presented below, we use the PSN scheme since this method yields the best

description of the positron localization in the defect.
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Figure 5.10: Ratio curves of the calculated momentum distributions of annihilating electron-
positron pairs in Vi using different schemes. All spectra are convoluted with a Gaussian function
with FWHM=/.7 mrad and divided by the lattice spectrum.

5.3.3 Vacancies in UQO,

We performed calculations of the momentum distributions for several vacancy defects in UO,.
The ratio curves found for neutral Vy, Vy+Vo, the three configurations of Vy+2Vg and one
configuration of 2Vy+4V vacancies are presented in Fig. 5.11. We can see that all the cal-
culated ratio curves are rather similar, with a maximum at p = 0 and two peaks, one around
p = 15 mrad and one around around p = 27 mrad. The result calculated for the neutral
2Vy+4V complex is the most distinct from the others, it is more flat and has much lower val-
ues at high moments. The similarity between for instance the monovacancy and the trivacancies
can be explained by the fact, that while oxygen 2— ions are removed from the neighborhood of
Vvy, the remaining ones can attract the positron and shift its density toward them. This shift
can be observed for example in Fig. 5.7c. As a result, even though there are less oxygen atoms
surrounding the positron, the annihilation rate with the remaining ones increases and the two
effects cancel each other out, leading to rather small changes in the ratio curves. As a result,
even though these changes will be probably possible to observe in the S and W parameters, it
could be difficult to distinguish defects based on them.

In the study of the positron lifetimes we observed that the positron localization in the hex-
avacancy depends on the charge state of this defect. In the 2VU+4V%_ complex the positron
density was centered between the uranium sites and not inside it, as in the other defects (see

Fig. 5.9). We performed, therefore, a momentum distribution calculation for this defect and
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Figure 5.11: Ratio curves of the calculated momentum distributions of annihilating electron-
positron pairs in various defects in UQ,. All spectra are convoluted with a Gaussian function
with FWHM=/.7 mrad and divided by the lattice spectrum.

present it in Fig. 5.12d, along with the ratio curves of the Vo and Vy monovacancies. In the
negative hexavacancy, the positron occupies a large open volume, which is reflected in the high
value of the maximum at p = 0, around 1.2. This is consistent with the long positron lifetime
(365 ps) calculated for this defect. The curve at higher momenta has a shape similar to that of
Vy—peaks are observed around p = 15 and p = 27 mrad. However, the absolute values at high

momenta between 10 and 30 mrad are closer to those calculated for Vg.

5.3.4 Effect of the charge state

We verified the effect of the charge state on the momentum distribution for the uranium mono-
vacancy. In Fig. 5.13 we present the ratio curves calculated for Vy and V%’. There are only
slight differences between the two charge states. For the negative monovacancy we can observe
a slight increase in the maximum at p = 0 and a decrease for momenta above p = 5 mrad.
These results suggest that the change in charge state has an almost negligible effect on the
ratio curves, unless it changes the site at which the positron is localized, like in the case of the

hexavacancy discussed before.
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Figure 5.12: Ratio curves of the calculated momentum distributions of annihilating electron-
positron pairs in various defects in UQo. All spectra are convoluted with a Gaussian function
with FWHM=/.7 mrad and divided by the lattice spectrum.
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Figure 5.13: Ratio curves of the calculated momentum distributions of annihilating electron-
positron pairs in Vy and V4U’. All spectra are convoluted with a Gaussian function with

FWHM=4.7 mrad and divided by the lattice spectrum.

5.3.5 Krypton incorporation

The incorporation of the gaseous fission products in the vacancies in UOg is an important

issue in the studies of the fuel behavior under irradiation. The momentum distribution of the
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annihilation radiation is especially sensitive to the chemical environment of the defect. We
have studied, therefore, the effect of a Kr atom on the Doppler spectrum of Vy+2V(110).
The calculated ratio curve is presented in Fig. 5.14 and the positron isodensity in this defect
in Fig. 5.15. We can see that the Kr incorporation has a significant effect on the ratio curve.
The maximum at p = 0 is decreased, since krypton increases the electron density and decreases
the free volume available to the positron, as seen in Fig. 5.14. Additionally, the peak around
p = 15 mrad decreases and the one around p = 27 mrad increases. This is only a preliminary
calculation, but the high sensitivity of the momentum distribution of the annihilation radiation
to the presence of krypton atoms suggests that its measurement can be very useful in studies
of fission products incorporation in UO,. Therefore, it would be interesting to continue the
calculations for other defects and for other fission gases, such as xenon, but also for helium or

non-gaseous volatile fission products, such as iodine or cesium.
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Figure 5.14: Ratio curves of the calculated momentum distributions of annihilating electron-
positron pairs in the Vy+2Vo(110) trivacancy (Bound Schottky Defect), empty and containing
one Kr atom. All spectra are convoluted with a Gaussian function with FWHM=4.7 mrad and
divided by the lattice spectrum.
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Figure 5.15: Positron isodensities (70% of the mazximum density — solid and 30% - trans-
parent), in red, found in the Vy+2Vo(110) defect, empty (a) and containing a Kr atom (b).
Uranium atoms are presented in gray, oxygen atoms in blue and krypton in green. White and
yellow spheres represent oxygen and uranium vacancies, respectively. Figures were generated
using the XCRYSDEN [182, 183] program.

5.3.6 S and W parameters

We calculated the relative S, and W, parameters, determined as:

S defect
Srel = 5.3.1
1 S lattice ( )
and -
Wre = dofect y 5.3.2
l I/Vlattice ( )

for the vacancies considered in UQO,. These parameters were calculated using the integration
windows of S € (0,2.8) mrad and W € (10.61,26.35) mrad, as in Ref. [81], and are shown in
Fig. 5.16. We can see that the points corresponding to Vy, Vy+Vo, the three configurations
of Vy+2Vp and neutral 2Vy+4Vo are close to each other. However, they could probably
be distinguished in high precision experimental measurements. The points corresponding to
Vo and to negative 2Vy+4Vo lay far from the other points, hence could be easily identified
if detected in Doppler broadening measurements. By comparing the S, and W, parameters
calculated for the empty Vy+2V(110) defect and when containing a Kr atom, we can conclude
that for the set of integration windows used, the krypton incorporation leads to a clear shift in

the measured signal, which could be observed.
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Figure 5.16: S,. parameter as a function of the W, parameter plotted for various defects in
UO,, using windows S € (0,2.8) mrad and W € (10.61,26.35) mrad. The results were obtained
using spectra convoluted with a Gaussian function with FWHM=/.7 mrad.

5.4 Discussion and contribution to interpretation of ex-

perimental results

The theoretical calculations of the positron lifetimes in UOy presented above were used to
interpret experimental results obtained at the CEMHTI Laboratory (Orléans, France). The
evolution of the annihilation characteristics as a function of the measurement temperature in
45 MeV « irradiated UOq disks was presented in Fig. 1.8, Sec. 1.3.2.

It can be seen that 7., increases slightly from approximately 220+5 ps to 23545 ps when the
temperature rises, while 71 and 75 remain stable at about 17045 ps and 31045 ps, respectively.
The I, intensity increases when the measurement temperature rises, similarly to the average

positron lifetime 7,

For all measurement temperatures, the values of 75 are much larger than the lattice lifetime,
already determined in unirradiated UOq disks [81] (16941 ps). This indicates positron trapping
in vacancy defects. In addition, the short lifetime component 7; remains close to the experi-
mental lattice lifetime of UO,. In the case of materials containing only vacancy defects, if some
of the positrons had annihilated in a delocalized state (in the lattice), the short lifetime com-
ponent would have been shorter than the perfect lattice lifetime since the average time spent
by the positron in the lattice would be shorter due to the trapping in defects. Thus, the values

of 71 indicate that the positrons were also trapped in negative non-vacancy defects. The short
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lifetime component is still equal to the experimental lattice lifetime at 300 K which means that
the non-vacancy traps are still effective at this temperature. The nature of these non-vacancy
defects will be discussed further in Sec. 5.4.1.

The long lifetime component 7 changes only slightly as a function of measurement temperature
and remains stable at 31045 ps. This positron lifetime is close to the long positron lifetime
components ranging from 300+£10 to 310+5 ps observed in the previous study on the same
samples [81] and 313£19 ps detected in UO, with 0.2% plutonium weight content [82]. The
intensity I corresponding to the long lifetime component increases slightly when temperature

rises, which means that its trapping rate changes only slightly.

To determine the nature of the vacancy-type defects detected in the samples, we used a positron
trapping model (see Sec. 1.2.1.1). First, we considered models with only two types of positron
traps (negative non-vacancy defects and neutral or negative vacancies). Both of them, however,
failed to reproduce the experimental data. We concluded, therefore, that at least three types of
traps were present in the studied samples — negative non-vacancy defects, neutral and negative
vacancies — and that a corresponding model should be used. The solutions of the rate equations
used in the model containing three different defect types were obtained by Krause-Rehberg and
Leipner [50].

The fits to the experimental data obtained using the positron trapping model are presented
in Fig. 5.17 (solid lines). Several parameters are needed in the model, some of which must be
deduced or estimated. For the lattice and the non-vacancy defects we used the same annihilation
rate, A\, = Axv = 1/71,, with 7, = 170 ps. We considered the positron binding energy of the non-
vacancy defects to be at least 0.3 eV, as these traps were still efficient at 300 K. Since the lifetime
spectra decomposition returned only two lifetime components (even when three components
decomposition was tested) and we do not observe strong variations of the 7 lifetime, we suppose
that the lifetimes of the neutral and negative vacancies are indistinguishable. We considered
7 = 310 ps for both of them. As for the trapping coefficients, we used py = 1 x 10 s71 for the
neutral vacancies, - = 4 x 101% s7! at 20 K for the negative vacancies and iy = 4 x 1016 571
at 20 K for the non-vacancy defects. The choice of the trapping coefficients was based on the

values gathered in Ref. [54] and the predicted charge states of the negative defects.

The fits presented in Fig. 5.17 were obtained using concentrations cy = 6.5 x 10! cm™3, ¢y~ =

2 x 108 em ™2 and ey = 1 x 101 em™3. It is worth noting that some of the parameters used in
the trapping model were only estimated, hence the absolute values of the concentrations cannot
be considered as certain. However, conclusions can be drawn on the proportions between the
defects concentrations. The best fits of the present experimental data were obtained for the

neutral vacancies concentration cy at least 30 times larger than cy- and over 6 times larger
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than cny, which suggests that the neutral vacancies are the predominant positron traps in the
examined UQOy samples. Smaller, but not negligible, concentrations of negative non-vacancy

defects and vacancies are also present in the material.

5.4.1 Identification of defects in irradiated UO,

In this section we combine the calculation and experimental results to interpret the signals

observed by PAS in the UO5 samples in the present and previous studies.

The short lifetime component 71 detected in the studied UO, disks remains close to the experi-
mental lattice lifetime of UO5 of 170+5 ps for all measurement temperatures (see Fig. 5.17). This
suggests that part of the positrons annihilate around negative non-vacancy defects in the sam-
ples, as mentioned before. The samples analyzed in this study were slightly hyper-stoichiometric
with O/U = 2.0051 £ 0.0001, which means that excess oxygen atoms were already present in
the lattice before irradiation. The nature of the point defects in slightly hyperstoichiometric
UO; and their local configurations have been the object of extensive studies, both experimental
[184-187] and theoretical [27-29, 164, 170, 188, 189]. Depending on the study, various types
of defects containing additional oxygen atoms, such as monointerstitials, di-interstitials, split-
interstitials or Willis clusters, are proposed as the most stable ones. All these possible defects
structures were found to be stable in negative charge states due to the oxygen ions formal charge
state of —2. Recently, Wang et al. [189] suggested that the average structure of UOy, can be
represented as a combination of all of these defects structures. Therefore, we suppose that the
short lifetime component detected in the studied samples corresponds to mixed signals com-
ing from the positron annihilation around negatively charged monointerstitials and interstitial
clusters. These could be defects already present in the unirradiated UO, discs or created by

irradiation.

The long lifetime component of 310+5 ps detected in the samples is close to what we cal-
culated for the neutral Vy+2Vq trivacancy (301-314 ps in GGGC+GC and 304-316 ps in
PSN+GC, depending on the configuration) and the 2Vy+2V g with the —4 charge state (309 ps
in GGGC+GC and 319 ps in PSN+GC). The analysis of the evolution of the positron anni-
hilation characteristics as a function of the measurement temperature based on the trapping
model indicates that two types of vacancy defects are present in the sample, the neutral one
being predominant. The theoretical studies on the charge states of the defects clusters in UOq
[163, 164, 170] suggest that the only neutral defect in the material close to the stoichiometry for
the Fermi level near the middle of the band gap is the Vy+2V trivacancy. We propose, hence,

that the bound Schottky defects are the neutral vacancies observed in the samples. The analysis
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of the experimental data based on the positron trapping model implies that negative vacancies
are also detected in the UO, samples. They should have a positron lifetime close to 310 ps,
since only one long component was obtained from the lifetime spectra decompositions. The
formation energy calculations of defects in UO, [164] suggest that several types of negatively
charged vacancies can be present in the material. The positron lifetime calculations presented
in this work yield values slightly shorter or longer than 310 ps for various negative defects (from
293 ps for V%f to 319 ps for 2Vy+2Vo with the —4 charge state in the PSN+GC scheme). We
suppose, hence, that negative uranium monovacancies, U-O divacancies and 2Vy+2V tetrava-
cancies are present in the examined samples. However, the concentrations of all these defects

are much smaller than the concentration of Schottky defects.

Our results can be compared with the classical molecular dynamics (CMD) simulation of 10 keV
displacement cascades in UOy by Martin et al. [190]. The authors found that even though
initially mostly monovacancies and monointerstitials were created, they quickly started to form
stoichiometric clusters, such as bound Schottky defects, because of the high oxygen mobility. It
is worth noting that the empirical potentials used in this study favored the neutral defects over
the charged ones and that the simulations corresponded to a physical time of approximately

25 ps. Nevertheless, the present results confirm the general conclusion of the CMD study.

In addition to the studies of positron lifetimes in UO,, measurements of the Doppler broadening
of annihilation radiation have also been performed [81, 83-87]. We did not, however, observe any
clear agreement between the experimental S and W parameters and the values calculated in this
work. In our calculations the values of the W, parameters of for instance neutral Vy, Vy+Vo,
three configuration of Vy+2Vo and 2Vy+4Vo defects are close to 1. Meanwhile, in Ref. [81],
where a long positron lifetime component of around 31045 ps was detected, much lower values
of Wy are observed. This inconsistency may be related to the fact that the measurements
reported in literature were very probably performed on hyper-stoichiometric samples. As a
consequence, the reference samples may contain significant concentrations of negative oxygen
interstitials, which can affect the reference spectra and, therefore, also the relative S;q and Wiq
parameters. The inconsistencies between the calculations and the experiments need to be further
investigated and measurements on UO, samples with controlled stoichiometry (stoichiometric

and hypo-stoichiometric) should be performed.

5.5 Conclusions

First, we performed electronic structure calculations of the formation energies of various neutral

and charged defects in UO, using the GGA+4U method. The occupation matrix control scheme
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was used to overcome the problem of the convergence to multiple metastable states. We pre-
sented a physically justified formalism for the calculation of defect formation energies in UO,.
This is especially important since the chemical potentials of the two components oxygen and
uranium vary strongly in UQO,. Additionally, we showed the importance of the choice of the
reference energies. The accessible ranges of U and O chemical potentials are calculated using
the U-O experimental phase diagram and a constraint on the formation energies of vacancies.
This enables a more consistent comparison between the various defects in UO,, as well as a

function of its stoichiometry.

We then calculated the positron lifetimes of neutral and charged fully relaxed vacancies and
vacancy clusters in UOy using two different fully self-consistent calculation schemes, GGGC
and PSN, in the DFT+U formalism. We observed that the parameters used in the electronic
calculations do not affect directly the positron lifetime. However, since the positron lifetime
is highly sensitive to the free volume, there is an effect of the equilibrium volume correspond-
ing to the method and the parameters used on the lifetimes obtained. We showed that the
gradient correction describes better the absolute values of the positron lifetimes in this mate-
rial. We showed that the PSN and GGGC schemes yielded similar positron lifetimes for the
majority of studied defects, especially for the stable charge states of defects up to trivacancies.
Therefore, similar general conclusions could be drawn by comparing results obtained using both
schemes with the experimental values. However, the choice of calculation scheme can affect the

experiment interpretation if larger defects are present in the material.

For several defects, in particular 2— charged Vy+Vo, neutral Vy+2Vy and 4— charged
2Vy+2Vy, similar positron lifetimes were obtained. It is due to the fact that for almost all the
studied vacancy clusters the positron is localized in one uranium vacancy and is only slightly
affected by the presence of the oxygen vacancies or of the second uranium vacancy. The only
cluster having a significantly longer positron lifetime (341 ps) is the 2— charged 2Vy+4Vg

hexavacancy, where the positron is localized between the two uranium vacancies.

The calculations of the momentum distribution of the annihilation radiation yielded rather
similar results for the majority of defects containing uranium vacancies. We found, however,
very distinct ratio curves for the oxygen monovacancy and the negative hexavacancy. Addi-
tionally, the results of preliminary calculations showed that it should be possible to observe the

incorporation of Kr in vacancy defects using PAS.

We analyzed PAS measurements performed on UO, sintered disks irradiated with 45 MeV «
particles at a fluence of 2x10'® cm~2. The positron lifetime was measured as function of tem-
perature in the 15-300 K range. Two lifetime components, 71 (170£5 ps) and 75 (310£5 ps)

were observed in the experiments. The short lifetime component is close to the lattice lifetime
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for all measurement temperatures. It means that all positrons annihilated in vacancy defects or
around negative non-vacancy defects. These non-vacancy defects are assumed to be negatively
charged oxygen monointerstitials and interstitials clusters. We used a positron trapping model
with three types of positron traps to analyze the evolution of the positron annihilation char-
acteristics as a function of measurement temperature. We concluded that a neutral vacancy
was the most predominant positron trap, while smaller, but not negligible, concentrations of

negative vacancies were also present in the material.

The comparison of the results obtained experimentally with the calculated positron lifetimes
and the most stable charge states of the defects in UO, allowed us to identify the predominant
neutral vacancy as the Vy+2Vg trivacancy (bound Schottky defect). This result shows that the
coupling of precise experimental studies and calculations using carefully chosen assumptions is

an effective method to bring further insight into the defects created by irradiation in UOs.

As far as the momentum distribution measurements are concerned, we suggest that further
analyses based on the calculation results should be performed, as well as experiments on UO,

samples with controlled stoichiometry.
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Conclusions and perspectives

The goal of the present thesis was to support the identification of the experimental signals
observed in positron annihilation spectroscopy in nuclear ceramics using first-principles cal-
culations. To achieve this, we first implemented the methods allowing one to calculate the
momentum distribution of annihilating electron-positron pairs in the ABINIT code. Then, we
performed electronic structure calculations of the energetic properties and positron annihilation
characteristics of various vacancy defects in uranium dioxide and silicon carbide. The calcula-
tion results were used to contribute to the interpretation of various PAS experiments performed
at the CEMHTT laboratory.

The first part of the study was dedicated to code tests and development. We performed tests to
validate the implementation of the positron lifetime calculations in the ABINIT code. Then, we
determined the optimal parameters for the calculations of positron annihilation characteristics
of defects in SiC and UQOy. We then implemented the methods necessary for the calculation
of the second positron annihilation characteristic, the momentum distribution of annihilating
electron-positron pairs, since they were not available in the electronic structure codes. The
development was done fully within the projector augmented-wave (PAW) formalism and was
tested on several materials. The comparison of results yielded by our implementation with refer-
ence data confirmed the validity of the methods used and the implementation itself. It is worth
noting that the PAW method does not improve the description of the positron wavefunctions,
as compared, for instance, to the pseudopotential method, and can even lead to some difficulties
in this task. We showed, however, that when the PAW dataset is carefully chosen and tested, a
good description of the positron can be obtained along with positron lifetimes and momentum

distributions in good agreement with experimental data.

The second part of this work was dedicated to silicon carbide. First, to determine the most stable
charge states of defects, we investigated their formation energies. This gave us an indication of
whether a defect can be detected using positrons in a material with a given doping level. Then,

we performed calculations of positron lifetimes in various vacancies in silicon carbide. We
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showed the importance of using fully self-consistent TCDFT schemes and taking into account
the relaxation effects due to both the electronic and positronic forces in the positron lifetime
calculations. The calculation results were used to revisit the identification of the experimental
PAS signals presented in literature. We suggested that the omission of the atomic relaxation
effect in the previous calculations, which were used to interpret the PAS measurements on
SiC, might have led to misidentification of defects. We also analyzed the experimental data
obtained at the CEMHTT laboratory on 12 MeV proton irradiated n-type 6 H-SiC samples. In
the as-irradiated samples we identified negative silicon monovacancies with the positron lifetime
of 218 ps. We observed that during annealing at temperatures starting at around 400-500°C
the silicon vacancies migrated and formed a larger defect. This defect, exhibiting a positron
lifetime of 235 ps, was identified as Vo+Vyg; based both on the charge state and positron lifetime
calculations. Finally, we performed calculations of the Doppler spectra of various defects in SiC.
We studied the effect of the polytype on the spectra and found that for the silicon vacancy and
clusters involving this defect similar results were found in 3C' and 6 H-SiC. We also calculated the
S and W parameters, which are usually considered in the experimental studies. We investigated
the effect of the experimental resolution and the choice of the integration windows on these
parameters, suggesting that for some windows the defects can be easier to distinguish than for

others.

The last part of this study was dedicated to defects in uranium oxide. In this case, we first
developed a physically justified formalism for the calculation of defect formation energies in this
material. We emphasized the influence of the choice of the reference energies on the results.
This choice is especially important in UOy since the chemical potentials of the oxygen and
uranium atoms vary strongly in this material. We calculated the accessible ranges of U and O
chemical potentials using the U-O experimental phase diagram and applying a constraint on the
formation energies of vacancies, to define the hypo- and hyperstoichiometric regimes. Second,
the formation energies of various neutral and charged defects in UO, were calculated using the
GGA+U method. We used the occupation matrix control scheme to overcome the problem of
the convergence to the multiple metastable states. The formation energy calculations allowed
us to determine the most stable charge states of the defects that can be expected in a material
with a given stoichiometry. Third, we performed first principles calculations of the positron
lifetimes of neutral and charged fully relaxed vacancies and vacancy clusters using two different
calculation schemes, GGGC and PSN, in the DFT+U formalism. Using the calculated results,
we analyzed the experimental PAS measurements on « irradiated UOy samples. The observed
positron lifetime of 310+£5 ps was similar to lifetimes calculated for several defects. However,
using the information on the most stable charge states of the defects and the positron trapping
model, we showed that the neutral Vy+2Vg trivacancy (bound Schottky defect) predominated

in the studied samples. Finally, we performed Doppler spectra calculations for various defects
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in UO,. We obtained similar spectra for different defects. This suggests that their identification
in the momentum distribution of the annihilation radiation measurements can be difficult.
On the other hand, we showed that krypton incorporation leads to significant changes in the
Doppler spectra of the defects, hence can be successfully studied using momentum distribution

measurements.

There are various perspectives stemming from this work. First, further analyses of experimen-
tal measurements must be performed, especially using the most recently calculated Doppler
spectra. In the case of silicon carbide, defect investigations combining theoretical predictions
and experimental measurements of positron lifetime and Doppler broadening with additional
photoluminescence experiments are planned. Additionally, analyses of the existing experimen-
tal data using different integration windows for S and W parameters determination have been
started. In the case of uranium dioxide we did not observe a clear agreement between the
calculated and measured S, and W, parameters. We suppose that this can be related to the
fact that the reference samples may contain nonnegligible concentrations of negative oxygen
interstitials. Additional experiments on samples with controlled stoichiometry (stoichiometric
and hypo-stoichiometric UOs) are proposed to verify the influence of the reference data on the
S(W) plots. Also, our first calculations of momentum distribution of annihilation radiation in
the trivacancy in UOy containing krypton showed that the Doppler broadening measurements
can be especially useful in studying fission products incorporation. The calculations should be
continued for other defects and for other fission gases, such as xenon, but also for helium and
non-gaseous volatile fission products, such as iodine or cesium. The momentum distribution
calculations should also be interesting for the study of doped UO, and of mixed actinide oxides,
in particular to determine the influence of the presence of several types of cations on the defect
and fission product behavior. Additionally, this study is part of the joint experimental and
modeling approach taken by the Fuel behavior law laboratory (LLCC) at CEA Cadarache. The
present and future interpretations of the PAS measurements will therefore contribute to a com-
prehensive understanding of the defect behavior in nuclear ceramics and will yield fundamental
data and mechanisms for larger scale models, for instance cluster dynamics. Finally, since our
implementation of the momentum distribution of annihilation radiation is freely available in the

ABINIT code, we hope that it will be used in studies of other materials by other groups.
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Résumé en francais

Introduction

La connaissance du comportement des matériaux utilisés dans les réacteurs nucléaires est essen-
tielle pour la sécurité et 'efficacité des centrales nucléaires. Lors de l'irradiation en réacteur la
fission des atomes d’actinides entraine la création de grandes quantités de défauts et de produits
de fission, qui affectent les propriétés physiques et chimiques des matériaux. Un champ actif
de recherche est I’amélioration de la connaissance des mécanismes élémentaires gouvernant la
modification des matériaux sous irradiation. Cela peut étre fait par simulation expérimentale
permettant de découpler les différents effets de I'irradiation ainsi que par modélisation numérique
a différentes échelles. Les approches de simulation expérimentales et de modélisation, ainsi que
leur couplage, sont mises en ouvre au Laboratoire de Loi de Comportement des Combustibles

(LLCC) au CEA Cadarache, en France, ou cette these a été réalisée.

Une question importante pour comprendre le comportement des matériaux nucléaires sous irra-
diation est le début de la formation des bulles de gaz rares formées par la fission de 'uranium. Les
petits agrégats de défauts lacunaires, qui peuvent piéger les atomes de gaz rares, comme le kryp-
ton ou le xenon, sont donc particulierement intéressants pour l'investigation des mécanismes de
formation des bulles. De plus, les défauts ponctuels eux-mémes, vides ou contenant des produits

de fission, peuvent affecter les propriétés thermochimiques et thermomécaniques des matériaux.

Une des méthodes non destructives pouvant étre utilisées pour caractériser les défauts induits
par irradiation, vides ou contenant des produits de fission, est la spectroscopie d’annihilation de
positons (SAP). Cette technique expérimentale consiste a détecter le rayonnement généré lors
de I'annihilation des paires électron-positon dans un échantillon et a en déduire les propriétés

de la matiere étudiée. La SAP est basée sur le fait que quand un positon diffuse dans un
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échantillon il peut étre piégé dans les défauts de type lacunaire, ce qui modifie ses caractéristiques
d’annihilation. La SAP permet de détecter les défauts neutres et négatifs. Les défauts positifs
ne peuvent pas étre observés, parce qu’ils repoussent les positons ayant la méme charge. Il y a
deux caractéristiques d’annihilation de positons qui permettent de détecter les défauts dans les
matériaux : le premier, le temps de vie de positon, est principalement sensible au volume ouvert
des défauts. Le deuxieme, ’élargissement Doppler du rayonnement d’annihilation, apporte des

informations sur ’environnement chimique dans lequel le positon s’annihile.

Cependant, les résultats de la spectroscopie d’annihilation de positons ne fournissent pas un
lien direct entre le signal et le type du défaut. L’interprétation des données expérimentales
nécessite souvent des comparaisons avec d’autres techniques expérimentales ou avec des calculs
de structure électronique. Les caractéristiques d’annihilation de positons peuvent étre calculées
en utilisant la théorie de la fonctionnelle de la densité a deux composants (two-component
density functional theory, TCDFT). Cette technique est une généralisation de la théorie de la
fonctionnelle de la densité (density functional theory, DFT).

Ce travail est consacré a la modélisation a 1’échelle atomique des matériaux nucléaires contenant
des défauts et au calcul de leurs caractéristiques d’annihilation pour contribuer a l'interprétation
des résultats expérimentaux obtenus par la SAP et a 'identification des défauts. Les matériaux
considérés dans cette these sont le carbure de silicium (SiC) et le dioxyde d’uranium (UO,).
Deux sortes de propriétés peuvent étre calculées pour contribuer a l'identification des défauts
dans les deux matériaux étudiés : les caractéristiques d’annihilation des défauts elles-mémes,
mais également les énergies de formation de défauts (chargés ou neutres). La spectroscopie
d’annihilation de positons est en effet sensible aux états de charge des défauts et leur prédiction
peut, par conséquent, faciliter l'identification de défauts. De plus la prédiction des défauts
les plus stables peut permettre de discriminer entre différents défauts avec des caractéristiques

similaires.

Dans ce travail, les calculs de temps de vie de positon ont été effectués en utilisant la théorie de
la fonctionnelle de la densité a deux composants déja implémentée dans le code ABINIT. Les
méthodes nécessaires pour le calcul de la deuxieme caractéristique de I’annihilation de positons,
I’élargissement Doppler des paires électron-positon, ont ensuite été implémentées dans le code.

Cette partie a été réalisée en collaboration avec Marc Torrent du CEA DAM /DIF.
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La deuxieme partie de cette these a été consacrée aux calculs des caractéristiques d’annihilation
de positons et des énergies de formation de défauts pour le carbure de silicium et dioxyde
d’uranium. Des efforts ont été faits pour effectuer les meilleures calculs possibles pour les
caractéristiques d’annihilation, c¢’est-a-dire en utilisant des calculs completement auto-cohérents
et en prenant en compte 'effet des changements des positions atomiques dans les défauts. Les
résultats combinés des calculs des énergies de formation, du temps de vie et de 1’élargissement
Doppler ont été ensuite utilisés pour identifier les défauts détectés expérimentalement dans le

carbure de silicium et le dioxyde d’uranium au laboratoire CNRS-CEMHTT a Orléans, France.
Matériaux considérés

Dans cette thése nous avons considéré deux céramiques nucléaires, le carbure de silicium (SiC)

et le dioxyde d'uranium (UOsy).

Le carbure de silicium est une céramique ayant un point de fusion élevé, une bonne stabilité
chimique et absorbant faiblement les neutrons. Ces propriétés en font un matériau de gaine
potentiel dans les réacteurs nucléaires de génération IV et pour les combustibles nucléaires
ATF (accident tolerant fuel) dans les réacteurs de génération II et III. De plus, ses propriétés
mécaniques en tant que un systeme composite en font un matériau intéressant pour les en-
veloppes d’assemblages de combustible. Le carbure de silicium peut exister sous environ 250
formes cristallines, qui different par le mode d’empilement des couches atomiques. Dans ce
travail, les polytypes 3C-SiC et 6 H-SiC ont été étudiés. 6 H-SiC, qui a une structure hexago-
nale et est formé a des températures supérieures a 1700°C, est le polytype le plus fréquent du
carbure de silicium. A des températures inférieures a 1700°C, une structure cubique, 3C-SiC,

est formée.

Le deuxieme matériau étudié, le dioxyde d’uranium (UQO,), est actuellement le combustible le
plus largement utilisé dans les réacteurs a eau pressurisée (REP). Il a été choisi comme matériau
combustible a cause de sa température de fusion élevée (3120 K) et de sa stabilité chimique, en
particulier grace a sa faible réactivité chimique avec ’eau. Lors de I'irradiation dans le réacteur
les propriétés de 'UO, évoluent de fagon importante, en particulier en raison de la création de
défauts et de produits de fission dans le réseau, il est important d’étre capable de prédire quels

types de défauts sont produits et quelle est leur influence sur le matériau.
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A pression atmosphérique et température ambiante I’'UO est un isolant de Mott paramagnétique
avec une structure cristalline fluorine cubique et un parameétre de maille de 5.473 A. Le dioxyde
d’uranium est un matériau ionique, dans lequel les cations de 'uranium (U*") forment une struc-
ture cubique face centrée (FCC) dont les ions oxygene (O?7) occupent les sites tétraédriques.
Les électrons 5 f de I'uranium en UO, sont fortement corrélés et localisés a proximité des noyaux.
En conséquence, les méthodes théoriques qui doivent étre utilisées pour modéliser le dioxyde

d’uranium doivent étre choisies avec précaution.
Méthodes

L’objectif de cette these est de contribuer a I'identification des signaux observés par SAP dans
le dioxyde d’uranium et le carbure de silicium en utilisant les calculs de structure électronique
qui permettent de décrire la matiere a 1’échelle atomique. A cette échelle, les systemes sont
constitués d’électrons et noyaux qui interagissent entre eux. L’équation de base pour décrire ce
type de probleme est I’équation de Schrodinger, qui est impossible a résoudre analytiquement
pour un systeme contenant plus d’un électron et des approximations complexes et des méthodes

numeériques sont nécessaires.

La théorie de la fonctionnelle de la densité (DFT) est une des méthodes de la mécanique quan-
tique permettant de modéliser la structure électronique de systemes contenant un grand nombre
d’électrons, tels que atomes, molécules et la matiere condensée en utilisant plusieurs simplifi-
cations. Cette méthode a été formulée par Hohenberg et Kohn et est basée sur le modele de
Thomas-Fermi. En DFT, la densité électronique est le parametre fondamental décrivant le
systeme, ce qui veut dire que toutes les propriétés du systeme peuvent étre exprimées comme
fonctionnelles de la densité. Cette approche simplifie les calculs en remplagant le probleme de N
électrons avec 3N coordonnées par un probleme de densité de charge globale avec 3 coordonnées

spatiales seulement.

La théorie de la fonctionnelle de la densité peut étre généralisée afin d’étudier les systemes
d’électrons interagissant avec un positon. Cette généralisation conduit a la théorie de la fonc-
tionnelle densité & deux composantes (TCDFT) développée notamment par Chakraborty, Siegel,
Boronski et Nieminen. La TCDFT permet de calculer les fonctions d’onde et les densités de
positons et d’électrons interagissant entre eux. Ces quantités permettent de déterminer les

temps de vie des positons et des distributions des moments dans un systeme donné.
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Tests et développement du code ABINIT

La premiere partie de ’étude a été consacrée a des tests et développements de code. Nous avons
effectué des tests pour valider I'implémentation des calculs de temps de vie de positons dans le
code ABINIT. Ensuite, nous avons déterminé les parametres optimaux pour les calculs des car-
actéristiques d’annihilation de positons dans les défauts dans le SiC et 'UQO,. Puis, nous avons
implémenté les méthodes nécessaires pour le calcul de la deuxieme caractéristique d’annihilation
de positons, la distribution de moments de paires électron-positon, qui n’étaient pas disponibles
dans le code. Le développement a été réalisé dans le formalisme des ondes augmentées par
projecteurs (projector augmented-wave, PAW) et a été testé sur plusieurs matériaux. La com-
paraison entre les résultats obtenus en utilisant notre implémentation et les données de référence
a confirmé la validité des méthodes utilisées et I'implémentation elle-méme. Il est important
de noter que la méthode PAW n’améliore pas la description des fonctions d’onde du positon,
par rapport, par exemple, a la méthode des pseudopotentiels. FElle peut méme rendre cette
description plus difficile. Nous avons montré, cependant, que lorsque les données PAW sont
choisies et testées avec précaution, une bonne description du positon peut étre obtenue avec des

temps de vie et des distributions de moment en bon accord avec les données expérimentales.
Résultats sur le SiC

La deuxieme partie de cette these a été consacrée a 1'étude de défauts dans le carbure de
silicium. Tout d’abord, pour déterminer des états de charge les plus stables de défauts, nous
avons étudié leurs énergies de formation. A ce stade, nous sommes déja capable de prédire
les défauts qui seront visibles ou non dans les expériences de SAP en fonction du niveau de
dopage de I’échantillon (les défauts positifs ne peuvent pas piéger les positons). Ensuite, nous
avons effectué des calculs de temps de vie des positons pour les différents défauts lacunaires
dans le carbure de silicium. Nous avons montré 'importance de 'utilisation de méthodes de
TCDEFT entierement auto-cohérentes et de tenir compte des effets de relaxation dus aux forces
électroniques et positroniques dans les calculs de temps de vie de positons. Les résultats de
calcul ont été utilisés pour vérifier les identifications des signaux expérimentaux SAP publiés
dans la littérature. Nous avons suggéré que la non prise en compte de l'effet de la relaxation
atomique dans les calculs précédents, qui ont été utilisés pour interpréter les mesures de la

SAP dans SiC, pouvait conduire a une mauvaise identification des défauts. Les monolacunes
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de carbone, en particulier, avaient tres probablement été confondues avec les monolacunes de

silicium.

Nous avons également analysé les nouvelles données expérimentales obtenues au laboratoire
CEMHTT dans les échantillons de 6 H-SiC de type n irradiés avec des protons ayant une énergie
de 12 MeV. Dans ces échantillons irradiés nous avons identifié des monolacunes de silicium
négatives avec un temps de vie de positons de 218 ps. Nous avons observé que pendant le recuit
a des températures a partir de 400-500°C les lacunes de silicium migrent et forment un défaut
plus grand. Ce défaut, présentant un temps de vie de positons de 235 ps, a été identifié comme

la bilacune V+Vsg;, en se basent a la fois sur les calculs de ’état de charge et des temps de vie.

Enfin, nous avons effectué des calculs des spectres Doppler de différents défauts dans SiC.
Le carbure de silicium peut exister sous plusieurs géométries différentes, appelées ‘polytypes’.
Nous avons donc étudié l'effet du polytype sur les spectres. Nous avons obtenu des résultats
tres similaires pour la lacune de silicium et les complexes contenant ce défaut dans les deux
polytypes étudiés, le polytype cubique 3C et hexagonal 6 H. Cela veut dire que les résultats
obtenus dans 3C-SiC, qui est plus simple a modéliser, peuvent étre utilisés pour l'identification
de défauts dans les autres structures. Nous avons également calculé les parametres S et W,
représentant les contributions de faibles moments et de moments élevés du spectre Doppler, qui
sont généralement considérés dans les études expérimentales. Nous avons étudié l'effet de la
résolution expérimentale et le choix des fenétres d’intégration de ces parametres, et montré que

pour certaines fenétres les défauts peuvent étre plus faciles a distinguer que pour les autres.

Résultats sur 1’UQO,

La derniere partie de cette étude a été consacrée a des défauts dans le dioxyde d’uranium. Nous
avons d’abord développé un formalisme physiquement justifié pour le calcul des énergies de
formation de défauts dans ce matériau. Dans les études précédentes sur les défauts dans UQOs,
une formule simplifiée a été utilisée pour les calculs des énergies de formation, en approximant
les potentiels chimiques de 'uranium et de 'oxygene dans 'UQO, par leurs valeurs soit dans la
molécule Oy soit dans I'uranium métallique U-a. Nous avons insisté sur 'influence du choix
des ces énergies de référence sur les énergies de formation de défauts ponctuels. Ce choix est
particulierement important dans UO, parce que les potentiels chimiques des atomes d’oxygene et

d’uranium peuvent fortement varier. Nous avons calculé les intervalles de potentiels chimiques de
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I'uranium et de I'oxygene accessibles en utilisant le diagramme de phase de 'UO, expérimental.
Puis, nous avons appliqué une contrainte sur les énergies de formation de lacunes, afin de définir

les régimes hypo- et hyperstoechiométriques.

Les énergies de formation de différents défauts neutres et chargés dans UO, ont été calculées
en utilisant la méthode GGA+U. Cette méthode a été choisie pour bien décrire les fortes
corrélations entre les électrons 5f dans 'UO,. Nous avons utilisé la méthode de controle des
matrices d’occupation pour résoudre le probleme de la convergence vers les multiples états
métastables. Les calculs de I’énergie de formation nous ont permis de déterminer les défauts
le plus stables et les états de charge les plus stables dans un matériau de stoechiométrie et de

niveau de dopage donnés.

Troisiemement, nous avons effectué des calculs de temps de vie de positons de lacunes neu-
tres et chargées completement relaxées dans le formalisme DFT+U. Nous avons utilisé en
deux méthodes de calcul de temps de vie différentes, GGGC et PSN. La premiere, proposée
par Gilgien, Galli, Gygi et Car, exprime l'interaction électron-positon considerent la densité
de positon négligeable, qui est pas le cas par exemple pour le positon localisé dans un défaut.
La deuxieme, PSN, proposée par Puska, Seitsonen, and Nieminen, utilise une description plus
complete de ’énergie d’interaction entre les particules en prenant en compte la densité de posi-
ton. En utilisant les résultats de calculs, nous avons analysé les mesures de la SAP obtenues sur
des échantillons d’UQ, irradiés. Le temps de vie de positons de 310+5 ps observé était similaire
aux temps de vie calculées pour plusieurs défauts. Cependant, en utilisant les informations sur
les états de charge les plus stables des défauts et le modele de piégeage de positons, nous avons
montré que les trilacunes Vy+2Vo neutre (défauts de Schottky liés) prédominaient dans les

échantillons étudiés.

Enfin, nous avons effectué des calculs de spectres Doppler pour différents défauts dans UQO,.
Nous avons obtenu des spectres similaires pour certains défauts. Cela suggere que leur identi-
fication dans les mesures de distribution de moments du rayonnement d’annihilation peut étre
difficile. D’autre part, nous avons montré que 'incorporation du krypton conduit a des change-
ments significatifs dans les spectres Doppler des défauts. Celle-ci peut donc étre étudiée avec

succes en utilisant des mesures de distributions de moments.

Perspectives
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Il y a de nombreuses perspectives issues de ce travail. Premierement, d’autres mesures
expérimentales doivent étre analysées, en particulier en utilisant les spectres Doppler calculés
le plus récemment. Dans le cas du carbure de silicium, des études supplémentaires des défauts
combinant les résultats de calcul et les mesures expérimentales de temps de vie de positons
et d’élargissement Doppler avec les expériences de photoluminescence supplémentaires sont
prévues. En outre, des nouvelles analyses des données expérimentales existantes en utilisant des
fenétres d’intégration différentes pour la détermination de parametres S et W ont été lancées.
Dans le cas du dioxyde d’uranium, nous n’avons pas observé un accord clair entre les parametres
S et W calculés et mesurés. Cela pouvait étre lié au fait que les échantillons de référence con-
tenant des concentrations non négligeables d’interstitiels négatifs d’oxygene. Des expériences
complémentaires sur des échantillons avec stoechiométrie controlée (UO, stoechiométrique et
hypo-stoechiométrique) sont proposées afin de vérifier 'influence des données de référence sur
les parametres S et W. De plus, nos premiers calculs de la distribution des moments du rayon-
nement d’annihilation de la trilacune contenant un atome de krypton ont montré que les mesures
de I'élargissement Doppler peuvent étre particulierement utiles pour étudier I'incorporation des
produits de fission. Les calculs doivent étre étendus aux autres défauts et a d’autres gaz de
fission, tels que le xénon, mais aussi pour I'hélium et a d’autres produits de fission volatils
non ga zeux, tels que l'iode ou le césium. Les calculs de distribution des moments devraient
également étre intéressants pour I’étude de ’'UQO5 dopé et d’oxydes mixtes d’actinides, en par-
ticulier pour déterminer I'influence de la présence de plusieurs types de cations sur le défaut et

le comportement des produits de fission.

De plus, cette étude fait partie de l'approche couplant simulation expérimentale et de
modélisation développée au Laboratoire de Loi de Comportement des Combustibles (LLCC) au
CEA Cadarache. Les interprétations actuelles et futures des mesures de la SAP contribueront
a une compréhension approfondie du comportement des défauts dans les céramiques nucléaires
et permettront d’obtenir les données fondamentales et les mécanismes nécessaires pour les
modeles de plus grande échelle, par exemple pour la dynamique des amas. Enfin, comme
notre implémentation de méthodes de calcul de la distribution des moments du rayonnement
d’annihilation est disponible librement dans le code ABINIT, nous espérons qu’elle sera utilisée

par d’autres groupes pour des études sur d’autres matériaux.






Calcul de structure électronique des propriétés des défauts et caractéristiques
d’annihilation de positons dans les céramiques nucléaires : identification des défauts
d’équilibre et créés par l’irradiation
Durant l'irradiation en réacteur la fission des atomes d’actinides entraine la création de grandes quan-
tités de défauts, qui affectent les propriétés physiques et chimiques des matériaux dans le réacteur,
en particulier les matériaux combustibles ou de structure. Une des méthodes non destructives pou-
vant étre utilisées pour caractériser les défauts induits par irradiation, vides ou contenant les pro-
duits de fission, est la spectroscopie d’annihilation de positons (SAP). Cette technique expérimentale
consiste a détecter le rayonnement généré lors de 'annihilation de la paire électron-positon dans un
échantillon et a en déduire les propriétés de la matiere étudiée. Les positons peuvent étre piégés dans
les défauts de type lacunaire dans les solides, et en mesurant leur temps de vie et les distribution
de moment de rayonnement d’annihilation, on peut obtenir des informations sur les volumes libres et
les environnements chimiques des défauts. Dans ce travail, des calculs de structure électronique des
caractéristiques d’annihilation de positons ont été effectués en utilisant la théorie de la fonctionnelle
de la densité a deux composants (TCDFT). Pour calculer les distributions de moment rayonnement
d’annihilation, nous avons implementé les méthodes nécessaires dans le code de calcul libre ABINIT.
Les résultats théoriques ont été utilisés pour contribuer a l’identification des défauts d’irradiation

dans deux céramiques nucléaires, le carbure de silicium (SiC) et le dioxyde d’uranium (UOaj).

Mots-clés : calcul de structure électronique, spectroscopie d’annihilation de positons, UOy, SiC,
défauts lacunaires

Identification of equilibrium and irradiation-induced defects in nuclear ceramics:
electronic structure calculations of defect properties and positron annihilation
characteristics
During in-pile irradiation the fission of actinide nuclei causes the creation of large amounts of defects,
which affect the physical and chemical properties of materials inside the reactor, in particular the
fuel and structural materials. Positron annihilation spectroscopy (PAS) can be used to characterize
irradiation induced defects, empty or containing fission products. This non-destructive experimental
technique involves detecting the radiation generated during electron-positron annihilation in a sample
and deducing the properties of the material studied. As positrons get trapped in open volume defects in
solids, by measuring their lifetime and momentum distributions of the annihilation radiation, one can
obtain information on the open and the chemical environments of the defects. In this work electronic
structure calculations of positron annihilation characteristics were performed using two-component
density functional theory (TCDFT). To calculate the momentum distributions of the annihilation
radiation, we implemented the necessary methods in the open-source ABINIT program. The theoretical
results have been used to contribute to the identification of the vacancy defects in two nuclear ceramics,

silicon carbide (SiC) and uranium dioxide (UOa3).

Keywords: electronic structure calculations, positron annihilation spectroscopy, UO9, SiC, vacancy
defects
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