
HAL Id: tel-01403559
https://theses.hal.science/tel-01403559v1
Submitted on 26 Nov 2016 (v1), last revised 30 Nov 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Multi-Dimensional Analysis of Software Power
Consumptions in Multi-Core Architectures

Maxime Colmant

To cite this version:
Maxime Colmant. Multi-Dimensional Analysis of Software Power Consumptions in Multi-Core Ar-
chitectures. Software Engineering [cs.SE]. Université Lille 1 - Sciences et Technologies, 2016. English.
�NNT : �. �tel-01403559v1�

https://theses.hal.science/tel-01403559v1
https://hal.archives-ouvertes.fr


Multi-Dimensional Analysis of
Software Power Consumptions in

Multi-Core Architectures

THÈSE
pour l’obtention du

DOCTORAT Informatique

École doctorale Sciences Pour l’Ingénieur (Lille)

Écrite par
Maxime Colmant

présentée et soutenue publiquement le 24 Novembre 2016

devant le jury composé de :

Mr. Olivier Barais Université Rennes 1 Rapporteur
Mr. Rüdiger Kapitza Université Braunschweig Rapporteur

Mr. Giuseppe Lipari Université Lille 1 Président
Mme. Anne-Cécile Orgerie CNRS Examinatrice

Mr. Romain Rouvoy Université Lille 1 Directeur
Mr. Lionel Seinturier Université Lille 1 Directeur

Mr. Alain Anglade ADEME Invité





Acknowledgements

First of all, I would like to really thank my supervisors, Romain and Lionel. More
particularly Romain without whom I would never have started a PhD after my master
degree. Thank you for taking me under your wing and taking my wish into consideration.
Thank you again for your constant support, your everyday precious advices, all our
interesting discussions over a coffee and, for being patient when I missed (a few) deadlines.
Even if I still have a long way to go, I am now a young researcher thanks to you.

Next, I would like to thank the members of my thesis committee. Rüdiger Kapitza
and Olivier Barais, thanks for having accepted to review my manuscript and for the
valuable comments you gave me. I really appreciated your feedbacks. Moreover, I would
like to thank Giuseppe Lipari and Anne-Cécile Orgerie to have accepted to be part of the
committee, I am very honored.

I also would like to really thank all the members of the Spirals team. It was a great
pleasure to share ideas and discussions with you. Special dedications to the other PhD
students who have started their thesis at the same time as me: Geoffrey, María, and Bo.
We started together, now we end together! Thanks all for your support, especially the last
few months where we supported each other during the tedious process of the thesis writing.
Special thanks to Geoffrey that I know for more than 5 years now, I really appreciate your
hospitality and your time when I came to Montréal. We shared a lot of “last-minute”
student projects together. Even if it is was hard sometimes, we did it and we can be proud
to be where we are today. I hope we will continue to share beers together, you are the
master and I still have a lot of “homework” to do before to surpass you. Another special
thanks to María, it was a great pleasure to meet you and to share these three years with
you. I would like to apologize for the bad advice on the activity tracker you bought, I
hope the bugs will be fixed soon! I will not forget all members of the team with whom
we share a lot of interesting discussions (Loïc, Julien, Antoine, Christophe (x2), Fawaz,
Clément, Nicolas, Matis ...). Sorry for those I forgot :-) For all, I wish you all the best for
the future.

Thanks to the French Environment & Energy Management Agency (ADEME) and
the University of Lille 1 for financially supporting this thesis, and to Alain Anglade who
followed and advised me during these three years.

Finally, I would like to thank my family. Lot of thanks to my parents, Myriam and
Jean, to my sister Laetitia, to my brother-in-law Olivier, my fresh air breathes, my nephew
Nathan and my goddaughter Romane. Thanks for believing me during these three years,
I would not be who I am without you. Many thanks to my partner’s family, René for
the swimming pool sessions and discussions, Corinne for her delicious dishes, Coralie,



Anthony, Clarisse, Sébastien, Mickaël for all the good times we shared together. Thanks
to my friends, Angélique, Dona, Nicolas, and Alexis, who encouraged me when I took the
decision to start a PhD.

Last but not least, I would like to say a special thank to my beloved girlfriend, Mélanie.
Thanks for supporting me, believing in me, and to loving me for more than 2 years now. I
really appreciate all the efforts you made, and I am very grateful for that. You are the
person who makes me smile every day, who inspiring me.



Abstract

Energy represents one of the largest cost factors when operating data centers, largely
due to the consumption of air conditioning, network infrastructure, and host machines.
Energy-efficient computing is becoming increasingly important. Among the reasons, one
can mention the massive consumption of large data centers that consume as much as
180,000 homes. This trend, combined with environmental concerns, makes energy efficiency
a prime technological and societal challenge. Currently, widely used power distribution
units (PDUs) are often shared amongst nodes to deliver aggregated power consumption
reports, in the range of hours and minutes. However, in order to improve the energy
efficiency of software systems, we need to support process-level power estimation in real-
time, which goes beyond the capacity of a PDU. In particular, the CPU is considered by
the research community as the major power consumer within a node and draws attention
while trying to model the system power consumption. Software power estimation of CPUs
is therefore a central concern for energy efficiency and resource management in data
centers. It is hence required to provide critical indicators for driving scheduling policies or
power capping heuristics.

Over the last few years, a dozen of ad hoc power models have been proposed to cope
with the wide diversity and the growing complexity of modern CPU architectures. However
most of these CPU power models rely on a thorough expertise of the targeted architectures,
thus leading to the design of hardware-specific solutions that can hardly be ported beyond
the initial settings. We therefore promulgate in this thesis, PowerAPI, a middleware
toolkit that implements learning techniques that automatically learn the power models of
a CPU, independently of the features and the complexity it exhibits. The aforementioned
learning techniques are not limited to CPUs and we therefore extend these techniques for
other hardware components, such as SSD disks.

PowerAPI is built as a modular solution to assemble software-defined power meters
“à la carte”, thus fostering the wide adoption of power models. These solutions are
customizable and can deliver power estimation reports at various frequencies upon user
requirements. Furthermore, PowerAPI is designed to monitor concurrent applications
on modern architectures, thus allowing accurate and efficient energy analysis.

With the emergence of cloud computing, the research community already proposed
several solutions to monitor the power consumption of virtualized environments. State-of-
the-art solutions fail to propose a required per-process power estimation inside VMs and
rather propose to only consider the overall power estimation of VMs (as black boxes). Yet,
VM-based systems are nowadays commonly used to host multiple applications for cost
savings and better use of energy by sharing common resources and assets. We therefore



propose a middleware toolkit, BitWatts, built on top of PowerAPI that paves the way
to a better monitoring and provides real-time and accurate power estimation of software
processes running at any level of virtualization. In addition, we propose WattsKit to
better understand how the power consumption of processes can be distributed across the
nodes of a cluster.

Even if software-defined power meters are the first step to better understand and
optimize the software power consumption, a finer level of estimation may be required to
further evaluate the effectiveness (or ineffectiveness) of the software optimizations. One
may want, for example, to compare 2 versions of a same software and thus observe the
energy leaks or improvements brought by the modifications. To address these shortcomings,
we develop an approach, codEnergy, that leverages the use of dynamic and interactive
reports to better help the developers to analyze the energy distribution of methods and to
easily detect deterioration and/or improvements.

All the aforementioned approaches and tools are deeply assessed in this thesis, thus
demonstrating the usefulness of PowerAPI to better understand the software power
consumption on modern architectures.



Résumé

L’Énergie représente l’un des principaux postes de dépense pour un centre de données, et
est principalement liée à l’air climatisé, à l’infrastructure complexe du réseau sous-jacent
et au grand nombre de machines utilisées. L’Informatique “verte” est dorénavant un
enjeu majeur. Parmi les raisons principales, nous pouvons mentionner les centres de
données qui consomment autant que 180 000 foyers en électricité. Associé aux préoc-
cupations énergétiques, cet enjeu représente un challenge technologique et sociétal de
premier ordre. Des wattmètres sont actuellement utilisés et partagés pour récupérer un
ensemble agrégé de rapports énergétiques sur plusieurs heures ou minutes. Pour améliorer
l’efficacité énergétique des logiciels, nous devons donc dépasser ces limitations et proposer
des estimations plus fines, c’est-à-dire au niveau processus. Plus particulièrement, la
communauté scientifique considère le CPU comme étant le composant le plus énergivore
et est donc principalement considéré lors de la modélisation énergétique d’un système.
L’estimation énergétique du processeur au niveau logiciel représente donc un enjeu majeur
pour améliorer l’efficience énergétique et l’allocation des ressources des centres de données.
Il est donc crucial de proposer des indicateurs critiques pour permettre l’application de
nouvelles politiques d’ordonnancement ou de limitation énergétique.

Durant les dernières années, des dizaines de modèles de consommation ont été proposées
pour prendre en compte la grande diversité et la complexité grandissante des architectures
récentes de CPU. Cependant, la plupart de ces modèles se basent sur de profondes
connaissances des architectures sous-jacentes, conduisant ainsi à la création de solutions
spécifiques non évolutives. Nous proposons donc dans cette thèse, PowerAPI, un
intergiciel qui implémente des techniques d’apprentissage permettant d’inférer les modèles
de consommation d’un processeur, indépendamment de ses technologies et de sa complexité
interne. Ces techniques ne sont cependant pas limitées au CPU et nous avons d’ores et
déjà démontré leur applicabilité sur d’autres composants, comme les disques SSDs.

PowerAPI est une solution modulaire permettant d’assembler des wattmètres logiciels
à la carte, favorisant ainsi l’adoption des modèles de puissance. Ces solutions sont
configurables et peuvent délivrer des estimations énergétiques à des fréquences variées,
répondant ainsi au mieux aux besoins des utilisateurs. De plus, PowerAPI a été
conçu pour suivre énergétiquement des applications concurrentiels s’exécutant sur des
architectures modernes, permettant ainsi des analyses énergétiques efficaces et précises.

Avec l’émergence de l’Informatique dématérialisée, la communauté scientifique pro-
pose déjà plusieurs solutions pour permettre de suivre la consommation énergétique au
sein d’environnement virtualisé. Ces solutions échouent cependant quant à estimer la
consommation à grain fin, c’est-à-dire au niveau applicatif, et se limitent à la consom-



mation globale de ces environnements. Cependant, ce type d’environnement est déjà
couramment utilisé pour héberger plusieurs applications, minimisant ainsi les coûts et les
ressources utilisées. Nous proposons pour cela, BitWatts, développé en complément de
PowerAPI, pour permettre un meilleur suivi énergétique en estimant en temps réel la
consommation des applications s’exécutant à différents niveaux de virtualisation. Nous
proposons également une autre extension, WattsKit, permettant de mieux comprendre
la consommation énergétique de services distribués au sein d’un ensemble de machines.

Les wattmètres logiciels sont la première étape pour mieux comprendre et optimiser la
consommation des logiciels. Cependant, il est parfois nécessaire d’avoir un niveau encore
plus fin pour mieux comprendre ce qu’il se passe au sein du logiciel. Par exemple, on
pourrait vouloir comparer différentes versions d’un même logiciel pour mettre en évidence
des fuites (ou optimisations) énergétiques induites par certaines modifications. Nous avons
développé codEnergy pour pallier à ce problème. codEnergy favorise l’utilisation
de rapports interactifs et dynamiques pour aider les développeurs à mieux analyser la
répartition énergétique entre les différents composants d’un logiciel et ainsi détecter plus
rapidement les améliorations et/ou détériorations énergétiques.

Toutes ces approches et outils susmentionnés ont été validés durant cette thèse, démon-
trant ainsi l’utilité de PowerAPI pour mieux analyser et comprendre les consommations
logicielles sur les architectures modernes.
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Energy-efficient computing is becoming increasingly important. Among the reasons,
one can mention the massive power consumption of large data centers, estimated to account
for about 2% of global greenhouse gas and some of which consume as much as 180,000
homes [The08; Coo12]. This trend, combined with environmental concerns, makes energy
efficiency a prime technological and societal challenge.

Researchers and operators have been proposing solutions to increase energy efficiency
at all levels, from application to runtime and to hardware. As surveyed by Surgerie et
al. [ODL14], examples include methods for energy-based task scheduling, energy-efficient
software, dynamic frequency and voltage scaling, and energy-aware workload consolidation
using virtualization.

While trying to improve the intrinsic power consumption of runtime applications, one
needs to have a powerful and lightweight energy monitoring solution. Such solution has to
fulfill all system and user requirements, and must help developers and designers to build
energy efficient software. To limit hardware investments, such solutions are often based
on the design of power models. Since decades, researchers have already been proposed
a dozen of ad hoc power models that fit a specific type of hardware components. How
ever, every time a new architecture is released, one has to propose a new power model
that fits its requirements. So far, the research community mainly paid a careful attention
to the CPU hardware component that contributes for the most part of the overall power
consumption of a system [ERK06; NRS15].

We introduce in this thesis different automatic approaches to learn automatically
the CPU power models, regardless of their underlying architectures. Beyond CPU, one
of these techniques has been reused to learn SSD power models and can therefore be
extended to learn any kind of hardware power models. Beyond the learning techniques,
we offer an open-testbed to foster the research on green computing and to offer a tool for
building software-defined power meters “à la carte”. This solution can be then used to
support the design of energy-aware scheduling heuristics in homogeneous systems [Bam+13;

1
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Bel00; Mog+13; Ras15], or in heterogeneous data centers [KOS16], to serve the energy-
proportional computing [BH07; Kri+10; Mei+11; Pre+15] or to evaluate the effectiveness
of optimizations applied on binaries [Sch+14]. It also targets system administrators and
software developers alike in monitoring and better understanding the power consumption
of their software assets [NRS14; NRS15; Ste13].

On top of these approaches, we developed a toolkit, named PowerAPI, for assembling
software-defined power meters upon needs. We define a software-defined power meter as a
software solution that can achieve runtime power measurements or estimation at different
granularities and frequencies.

Different scenarios are then described to demonstrate the effectiveness of PowerAPI
to build accurate software power meters that can next be used for energy monitoring or
optimizations.

Among the effervescence of virtualized environments, we propose an extension of
PowerAPI, called BitWatts, to virtually hide all the levels of virtualization and to
allow per process energy monitoring inside VMs. As services can now be distributed among
several nodes which are not necessarily homogeneous, we define WattsKit to monitor
and analyze the power consumption of a distributed systems spanning several nodes and
thus proposing a finer granularity than observing the overall power consumption of nodes.

To better analyze the energy consumption of software assets, one may need to go deeper
and get insights about how the energy is distributed among software assets. We describe
in this purpose codEnergy as a scalable solution to build an interactive cartography of
the software energy distribution among source-code and thus allowing developers to focus
their efforts on energy hotspots.

This chapter is organized as follows. Section 1.1 introduces the problem statements
extracted from the state-of-the-art. Section 1.2 exposes the goals of this thesis and shows
how our contributions bring new solutions to face these problems. Section 1.3 describes
all contributions detailed in this manuscript. Section 1.4 reports on all the papers and
articles (published, under evaluation or to be published) contributed as part of this thesis.
And finally, Section 1.5 summarizes the content of this thesis.

1.1 Problem Statement
Software power estimation of CPUs is a central concern for energy efficiency and resource
management in data centers. Over the last decade, a dozen of ad hoc power models have
been especially designed to cope with the wide diversity and the growing complexity of
modern CPU architectures. However, most of CPU power models rely on a thorough
expertise of the targeted architectures, thus leading to the design of hardware-specific
solutions that can hardly be ported beyond the initial settings. More specifically, the
state-of-the-art in this domain faces several key limitations, such as a simplified CPU
architecture [Bir+05], the deprecation of the CPU model [IM03], the unavailability of the
selected metrics [Zha+14], the handcrafted power models [LJ03], the unavailability of the
benchmarks [Zha+14], and the limited diversity of tested workloads [Ber+10] to name a
few. These limitations prevent from a wider adoption and deployment of power models,
thus limiting the power monitoring of software.

Power monitoring is usually achieved by hardware measurement equipments, such as
power meters or specialized integrated circuits. This solution is obviously not suitable
at a larger scale, thus requiring costly hardware investments. Furthermore, this kind of
power monitoring only provides power measurements at a coarse-grained level—i.e., at
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machine-level. However, one needs to have a finer level for better optimizing the energy
of the whole system by targeting the applications that are running on it. Consequently,
several solutions have been proposed over the years to estimate the power consumption
at software-level [FS99; DRS09; Int15b], and even at code-level [CV16; INB16; NRS15].
Nevertheless, most of existing solutions require hardware investments [Bed+10; Ge+10;
LPD13; Ras+15], are not suitable while targeting concurrent applications [Ge+10; Ras+15]
or lack of modularity [CV16; IM03; INB16; FS99; LBL07; NRS15; NIB16; Int15b].

Power estimation of software processes provide critical indicators to drive scheduling or
power capping heuristics. State-of-the-art solutions are facing several key limitations and
are often limited to specific hardware components and are not suitable while monitoring
concurrent applications.

While considering virtualized environments, we can find solutions that propose coarse-
grained power estimation in virtualized environments, typically treating virtual machines
(VMs) as black boxes. Yet, VM-based systems are nowadays commonly used to host
multiple applications for cost savings and better use of energy by sharing common resources
and assets.

The design of energy-efficient distributed systems is a challenging task, which requires
software engineers to consider all layers of a system, from hardware to software. In
particular, monitoring and analyzing the power consumption of a distributed system
spanning several—potentially heterogeneous—nodes becomes particularly tedious when
aiming at a finer granularity than observing the power consumption of hosting nodes. The
state-of-the-art fails to deliver adaptive solutions to offer this perspective and to cope with
the diversity of architectures.

New kinds of diagnosis tools are required to better analyze the energy consumed
by the software assets. Such level of monitoring requires to retrieve critical runtime
informations about the software’s call graph while running. These tools need to minimize
the instrumentation of the target application in order to be as lightweight as possible and
minimize the overhead and disruption.

1.2 Thesis Goals
The first goal of this thesis is to propose automatic learning approaches for hardware power
models that do not rely on an a priori knowledge of the underlying architecture. With
these approaches, everyone can build power models with minimal hardware investments.
Once learned, power models can be coupled together with software-defined power meters
for learning more about the software energy usages.

Next, we want to propose an efficient toolkit to build these software-defined power
meters upon needs. We therefore believe of a solution that can bring the required
modularity to end-users for fulfilling all their requirements. With such tool, one can
imagine several use cases to better analyze the power consumed by concurrent applications
or to find out which parameters can impact the software power consumption.

This thesis aims also to answer several new challenges raised by the diversity of
dimensions that can be exploited by modern software systems. In particular, we go beyond
the state-of-the-art by proposing an innovative way for better handling processes that
run inside VMs and thus do not see them as black-boxes anymore. Moreover, we also
propose an approach to allow the energy monitoring of distributed services, where no
solutions exist for this problem. We finally describe a new approach for creating a wider
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energy cartography of the software source-code and thus helping developers to build energy
efficient software.

1.3 Contributions
This thesis first proposes an open testbed to leverage the research on power models.
More specifically, 3 techniques that accurately learn the power models of CPU and SSD
hardware components are described. Our CPU learning approaches have been assessed on
the main CPU manufacturers—i.e., Intel, AMD, ARM—and exhibits an average accuracy
greater than 95% at runtime when compared to power measurements. We extend one of
the CPU learning approach to SSD component and thus demonstrating the generalization
of our techniques. This extended technique for SSDs exhibit an average accuracy of 99%.
We believe that these approaches can therefore be extended to other power consuming
components, such as GPU [JSM12], in order to incrementally learn their power model and
thus provide a wider cartography of the power consumption of a software system.

These learning approaches described in this manuscript are combined to build accurate
component power models. They can furthermore be used to produce accurate per-process
power estimation upon requirements. We therefore propose PowerAPI, a middleware
toolkit for building software-defined power meters “à la carte”. A software-defined power
meter is defined as a software solution that allows to propose several power estimation (or
measurements) granularities at different frequencies. The main purpose of PowerAPI
is to be as modular as possible in order to fit all user requirements. PowerAPI can be
thus used on top of various power models to build software-defined power meters. Several
scenarios are presented in this thesis, thus demonstrating the modularity and the usability
of PowerAPI to monitor multiple concurrent processes at runtime in various situations.

Based on these power models, we propose a fined-grained monitoring middleware
that provides real-time and accurate power estimation of software processes running at
any virtualized level. Our middleware implementation, BitWatts, is built on top of
PowerAPI, and uses high-throughput communication channels to spread the power
consumption across the VM levels and between machines. This non-invasive monitoring
solution therefore paves the way for scalable energy accounting that takes into account
the dynamic nature of virtualized environments.

To better understand how the power consumption of the system’s processes is distributed
across nodes at runtime, we define a new specific software-defined power meter, WattsKit.
Beyond the demonstrated capability of covering a wide diversity of nodes with high
accuracy, we show the benefits of adopting software-defined power meters to analyze the
power consumption of legacy complex distributed systems.

We finally propose a novel approach, codEnergy, for building fined-grained interactive
energy reports about the software energy usages. This approach paves the way for
better analyzing the software power consumption and thus allowing to observe energy
improvements or decreases during the development process.

1.4 Publications
Several works presented in this manuscript are under evaluation, not yet published or
about to be submitted while writing this manuscript. We present below all published,
submitted and upcoming papers related to the work presented through this manuscript.
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1.5 Outline
The remainder of the document is organized as follows. We first present the research
background that motivates this thesis in Part I. Chapter 2 introduces all recent research
approaches for learning power models, while Chapter 3 present different tools that can
estimate or measure the power consumption at different granularities.

Secondly, Part II describes our contributions to address the state-of-the-art limitations.
In Chapter 4, we propose 2 learning approaches for modern CPU power models, and 1 for
SSD power models. All the described approaches aim to build efficient and non-invasive
runtime power models that can be used at runtime to estimate the power consumption at
software-level in real-time. In Chapter 5, we describe our middleware toolkit, PowerAPI,
that builds on top of the state-of-the-art solutions and is as modular as possible. The
learned power models can be used together with PowerAPI to compute runtime power
estimation of concurrent processes.

Next, Part III validates the contributions of this thesis. Chapter 6 assesses the learning
approaches detailed in Part II, and demonstrates the applicability of PowerAPI in various
monitoring scenarios. We next propose to go beyond the state-of-the-art in Chapter 7
and Chapter 8. Chapter 7 proposes to extend PowerAPI for estimating the power
consumption of applications that run inside virtualized environments and thus seeing VMs
as white boxes—i.e., virtualization becomes transparent. In addition, we describe another
extension for building a finer view of the power consumed by distributed services that
run inside a cluster of heterogeneous nodes. Chapter 8 reports on our proposal for better
understanding the power consumption drawn by the software and therefore proposes an
energy diagnosis tool for building interactive energy source-code reports.

We finally conclude and present new research perspectives in Chapter 9.
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As current multi-core platforms do not provide fine-grained power measurement ca-
pabilities, McCullough et al. [McC+11] argue that power models are the first step to-
wards enabling dynamic power management for power proportionality at all levels of
a system. Power modeling often consider learning techniques—for example based on
sampling [Ber+12]—that assume the proportionality of the system events to power con-
sumption. Measurements of a hardware power meter are gathered and subsequently used,
together with a set of normalized estimated values, in various regression models.

The remainder of this chapter is organized as follows. Section 2.1 discusses the state-
of-the-art of CPU power models, while Section 2.2 describes the VM power models and
Section 2.3 the disk power models.

2.1 CPU Power Models
Along the last decade, the design of CPU power models has been regularly considered by
the research community [Bel00; Col+15b; Kan+10; McC+11; VWT13]. Currently, the
closest approach to hardware-based monitoring is RAPL, introduced with the Intel “Sandy
Bridge” architecture to report on the power consumption of the entire CPU package. As
this feature is not available on other architectures and is not always accurate [Col+15b],
CPU power models are generally designed based on a wider diversity of raw metrics.

Standard operating system metrics (CPU, memory, disk, or network), directly computed
by the kernel, tend to exhibit a large error rate due to their lack of precision [Kan+10;
VWT13]. Contrary to usage statistics, hardware performance counters (HPC) can be
obtained from the processor (e.g., number of retired instructions, cache misses, non-halted
cycles). Modern processors provide a variable number of HPC, depending on architectures
and generations. As shown by Bellosa [Bel00] and Bircher [BJ07], some HPC are highly
correlated with the processor power consumption whereas the authors in [RRK08] conclude
that several performance counters are not useful as they are not directly correlated with
dynamic power. Nevertheless, this correlation depends on the processor architecture and

9
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Table 2.1: Summary of existing CPU power models.
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the CPU power model computed using some HPCs may not be ported to different settings
and architectures. Furthermore, the number of HPC that can be monitored simultaneously
is limited and depends on the underlying architecture [Int15a], which also limits the ability
to port a CPU power model on a different architecture. Therefore, finding an approach to
select the relevant HPC represents a tedious task, regardless of the CPU architecture.

Power modeling often builds on these raw metrics to apply learning techniques—for
example based on sampling [Ber+10]—to correlate the metrics with hardware power
measurements using various regression models, which are so far mostly linear [McC+11].

A.Aroca et al. propose to model several hardware components (CPU, disk, network).
It is the closest approach of our empirical learning method describes in Section 4.1.1. They
use the lookbusy tool to generate a CPU load for each available frequency and a fixed
number of active cores. They capture active cycles per second (ACPS) and raw power
measurements while loading the CPU. A polynomial regression is used for proposing a
power model per combination of frequency and number of active cores. They validate their
power models on a single processor (Intel Xeon W3520) by using a map-reduce Hadoop
application. During the validation, the authors have not been able to correctly capture
the input parameter of their power model—i.e., the overall CPU load—and they use an
estimation instead. The resulting “tuned” power model with all components together
exhibits an error rate of 7% compared to total amount of energy consumed.

Bertran et al. [Ber+10] model the power consumption of an Intel Core2 Duo by selecting
14 HPCs based on an a priori knowledge of the underlying architecture. To compute
their model, the authors inject both selected HPCs and power measurements inside a
multivariate linear regression. A modified version of perfmon21 is used to collect the
raw HPC values. In particular, the authors developed 97 specific micro-benchmarks to
stress each component identified in isolation. These benchmarks are written in C and
assembly, and cannot be generalized to other architectures. They assess their solution
with the SPEC CPU 2006 benchmark suite, reporting an error rate of 5% on a multi-core
architecture.

Bircher et al. [Bir+05] propose a power model for an Intel Pentium 4 processor. They
provide a first model that uses the number of fetched µ-operations per cycle, reporting
on an average error rate of 2.6%. As this model was performing better for benchmarks
inducing integer operations, the authors refine their model by using the definition of a
floating point operation. As a consequence, their second power model builds on 2 HPC:
the µ-operations delivered by the trace cache and the µ-operations delivered by the µ-code
ROM. This model is assessed using the SPEC CPU 2000 benchmark suite, which is split
in 10 groups. One benchmark is selected per group to train the model and the remaining
ones are used to assess their estimation. Overall, the resulting CPU power model reports
on an average error of 2.5%.

In [CM05], Contreras et al. propose a multivariate linear CPU power model for the
Intel XScale PXA255 processor. They additionally consider different CPU frequencies on
this processor to build a more accurate power model. They carefully selected the HPCs
with the best correlation while avoiding redundancy, resulting in the selection of only 5
HPCs. In their paper, they also consider the power drawn by the main memory using
2 HPCs already used in the CPU power model. However, given that this processor can
only monitor 2 events concurrently, they cannot implement an efficient and usable runtime
power estimation. They test their solution on SPEC CPU 2000, Java CDC, and Java

1http://perfmon2.sourceforge.net

http://perfmon2.sourceforge.net
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CLDC, and they report an average error rate of 4% compared to the measured average
power consumption.

The authors in [Dol+15] propose an approach to build linear power models for hardware
components (CPU, memory, network, disk) by applying a per component analysis. Their
technique uses 4 benchmarks during the training phase and collect various metrics gathered
from hardware performance counters, OS statistics, or sensors. They build a correlation
matrix on all gathered metrics (including power measurements) and then apply a clustering
algorithm on top of it. The power models presented in this article are manually extracted
from these groups. Without considering the power models which include directly power
measurements, the best one exhibits an absolute error of 3 W on average with a maximum
absolute error of 70 W .

Economou et al. [ERK06] model the power consumption of 2 servers (Turion, Itanium)
as a multiple linear regression that uses various utilization metrics as input parameters.
The authors use the CPU utilization, the off-chip memory access count, the hard-disk
I/O rate, and the network I/O rate. The input parameters are learned by using Gamut
that emulates applications with varying levels of CPU, memory, hard disk, and network
utilization. In order to retrieve raw power measurements, the authors uses board-level
modifications and 4 “power planes” (extracted from the paper), which is heavy for end-
users and represents a major hardware investment. On average, their power models exhibit
an error rate less than 5% (varying between 0% and 15% in all cases) while using SPEC
benchmarks, matrix and stream.

Isci and Martonosi [IM03] use an alternative approach to estimate the power con-
sumption of an Intel Pentium 4 processor. They isolate 22 processor subunits with the
help of designed micro-benchmarks and live power measurements. For each subunit, they
use simple linear heuristics, which can include one or more HPC. For the others (trace
cache, allocation, rename. . . ), they use a specific piecewise linear approach. They selected
15 different HPC to model all subunits, some of them are reconfigured or rotated when
needed. At the end, they express the CPU power consumption as the sum of all subunits.
They train their model on designed micro-benchmarks, SPEC CPU 2000 and some desktop
tools (AbiWord, Mozilla, Gnumeric) and they report on an average error of 3 W .

Li and John [LJ03] rely on per OS-routines power estimation to characterize at best the
power drawn by a system. They simulate an 8-way issue, out-of-order superscalar processor
with function unit latency. The authors use 21 applications, including SPEC JVM 98 and
SPEC INT 95. During their experiments, they identify instruction per ccyle (IPC) to be
very relevant to model the power drawn by the OS routines invoked by the benchmarks.
The resulting CPU power model exhibits an average error of up to 6% in runtime testing
conditions.

Rivoire et al. [RRK08] propose an approach to generate a family of high-level power
models by using a common infrastructure. In order to choose the best input metrics
for their power models, they compare 5 types of power models that vary on their input
metrics and complexity. The first 4 power models are defined in the literature and use
basic OS metrics (CPU utilization, disk utilization) [FWB07; Hea+05; RRK08]. They
propose the fifth power model that uses HPC in addition to CPU and disk utilizations.
The last proposed power model exhibits a mean absolute error less than 4% over 4 families
of processors (Core2 Duo, Xeon, Itanium, Turion) by using SPECfp, SPECint, SPECjbb,
stream, and Nsort. The authors do not detail the underlying architectures of the testbed
CPU, making thus a fair comparison difficult.

iMeter [Yan+14] covers not only CPU, but also memory and I/O. To get a practical
model, the authors need to select the proper number of counters. After benchmarking the
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VMs under different loads, they empirically extract 91 out of 400 HPCs. In a second step,
a principal components analysis is applied to identify a statistical correlation between the
power consumption and the performance counters. With this method, highly correlated
values are clustered into a smaller set of principal components that are not correlated
anymore. The selection of the principal components depends on the cumulative contribution
to the variance of the original counters, which should reach at least 85%. The final model
is derived by the usage of support vector regression and 3 manually selected events per
principal component [VGS97] and reports an average error of 4.7%.

In [ZA12], Zamani et al. study the relationship between HPC and power consumption.
They use 4 applications from NAS parallel benchmarks (BT.C, CG.C, LU.C, SP.C) running
on 8 threads in a 2 quad-core AMD Opteron processors. Given the limitation of events
that they can open simultaneously, the authors first show that the measurement variability
other different executions is not significantly large, enabling different runs for sampling
all events. This article proposes a deep analysis for HPC selection (single or multiple).
The authors demonstrate that a collinearity can exist between events and then propose a
novel method to find the best combination of HPC with good performance. They use the
ARMAX technique to build their power models. They evaluate their solution by producing
a model per application and exhibit a mean absolute error in signal between 0.1%-0.5%
for offline analysis.

HaPPy [Zha+14] introduces a hyperthread-aware power model that uses only the
non-halted cycles event. The authors distinguish different cases where either single or both
hardware threads of a core are in use. This power model is linear and contains a ratio
computed according to their observations. They demonstrate that when both threads
of a core are activated, they share a small part of non-halted cycles. They extend the
perf2 tool to access to RAPL. Their model is tested on a Intel “Sandy Bridge” server
with private benchmarks provided by Google, that cannot be reused, and 10 benchmarks
taken from SPEC CPU 2006. To assess their power estimation, they used the RAPL
interface reachable on this server. Compared to RAPL, they manage to have an average
error rate of 7.5%, and a worst case error rate of 9.4%. Nevertheless, as demonstrated
in [Col+15b], these error rates can be exceeded in scenarios where only single cores of a
CPU are monitored.

Summary

As a summary of the current state of practice, the existing CPU power models found in
the literature cannot be reproduced because i). the details of the selected HPC events
are not provided [WCS11] or sufficiently documented [Zha+14], ii). they are tailored to a
specific processor architecture (including a limited set of power-aware features) [LPF10],
or iii). they are built on private workloads that cannot be reused to assess alternative
power models [Zha+14]. The state-of-the-art is resumed in Table 2.1.

The main contributions of this thesis for overcoming these limitations are: i). proposing
an in-depth description of our contributions, ii). defining architecture-agnostic and
automatic learning approaches, iii). assessing our approaches on a large set of CPUs that
exhibit different architectures and features and, iiii). to use real and public workloads.
All our contributions are described in Chapter 4.

2https://perf.wiki.kernel.org

https://perf.wiki.kernel.org
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2.2 VM Power Models
In data centers, the efficiency of VM consolidation, power dependent cost modeling,
and power provisioning are highly dependent on accurate power models [VAN08]. Such
models are particularly needed because it is not possible to attach a power meter to a
virtual machine [Kri+11]. In general, VMs can be monitored as black-box systems for
coarse-grained scheduling decisions. If we want to be able to do fine-grained scheduling
decisions—i.e., with heterogeneous hardware—we need to be able to consider finer-grained
estimation at sub-system level and might even need to step inside the VM.

So far, fine-grained power estimation of VMs require profiling each application sep-
arately. One example is WattApp [KVN10], which relies on application throughput
instead of performance counters as a basis for the power model. The developers of pMap-
per [VAN08] argue that application power estimation is not feasible and instead perform
resource mapping using a centralized step-wise decision algorithm.

To generalize power estimation, some systems like Joulemeter [Kan+10] assume
that each VM only hosts a single application and thus treat VMs as black boxes. In a
multi-VM system, they try to compute the resource usage of each VM in isolation and
feed the resulting values in a power model.

Bertran et al. [Ber+12] use a sampling phase to gather data related to HPCs and
compute energy models from these samples. With the gathered energy models, it is
possible to predict the power consumption of a process, and therefore apply it to estimate
the power consumption of the entire VM. Their work does neither consider modern CPU
features.

Another example is given by Bohra et al. in [BC10], where the authors propose a
tool named VMeter that estimates the consumption of all active VMs on a system. A
linear model is used to compute the VMs power consumption with the help of available
statistics (processor utilization and I/O accesses) from each physical node. The total
power consumption is subsequently computed by summing the VMs consumption with
the power consumed by the infrastructure.

Janacek et al. [Jan+12] use a linear power model to compute the server consumption
with postmortem analysis. The computed power consumption is then mapped to VMs
depending on their load. This technique is not effective when runtime information is
required.

In Stoess et al. [SLB07] the authors argue that, in virtualized environments, energy
monitoring has to be integrated within the VM as well as the hypervisor. To that end, they
use the L4 micro-kernel as hypervisor and adapt a guest OS to run on L4. They assume
that each device driver is able to expose the power consumption of the corresponding device
as well as an energy-aware guest operating system and is limited to integer applications.
For application level power monitoring, the VM connects to the hypervisor and maps
virtualized performance counters to the hardware counters.

Summary
State-of-the-art solutions provide no or limited support for fine-grained monitoring of
applications running within a VM. The few existing approaches either consider the VM
as a black-box running a single application, or require extensions to the hypervisor or

3VM as a Black-Box
4VM as a White-Box
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Table 2.2: Summary of existing VM power models.

Author(s) Processor(s) VMaaBB3 VMaaWB4 Error(s)
Bertran et al. [Ber+12] Core2 Duo T9300 333 7 < 5%
Bohra et al. [BC10] Opteron 33 7 6% – 7%
Janacek et al. [Jan+12] 2 × Intel Xeon X5560

2 × Intel Xeon X5550 33 7 7

Kansal et al. [Kan+10] Nehalem L5520 33 7 0.4 W – 2.4 W
Koller et al. [KVN10] 2 × Xeon, Core2 Duo 33 7 5%
Stoess et al. [SLB07] Pentium D830 33 3 7

Verma et al. [VAN08] Simulator 3 7 7

to the host and guest operating systems for being operational. All these approaches are
summarized in Table 2.2.

For answering these challenges, we propose in Chapter 7, a middleware solution,
BitWatts, that considers the VM as a white-box and thus allowing to estimate the power
consumption of software processes in virtualized environments. Moreover, our middleware
framework can work in a distributed setup (multi-tenant environment) and can go through
all the levels of virtualization—i.e., can estimate the power consumption of a process that
runs inside a VM of another VM, etc.).

2.3 Disk Power Models
In [Nou14], the authors propose an Hard Disk Drive (HDD) power model that uses I/O
statistics as input parameters. They particularly use the number of bytes read/written on
the disk, and multiply these raw informations by the power consumed per operation. The
end-users have thus to retrieve the power consumption for the read and write operations in
the documentation, sometimes hard to find. The authors do not propose a proper learning
approach that can be easily reused for learning new disk power model.

In [ERK06], Economou et al. propose to model different hardware components for
representing the overall power consumption of a server. For the hard drive component,
they propose to model its power consumption by using the I/O rate as input metric that
can be easily retrieved from the OS. Unfortunately, they do not evaluate the efficiency of
each power model separately. As in [Nou14], there is a not a proper evaluation of the hard
drive power estimation.

The authors in [Kan+10] also use the number of bytes read and written and they inject
these parameters inside a multivariate linear regression. Similar approaches are described
in [BC10; SLB07].

All the above power models are therefore limited to HDDs while SSDs are widely used
nowadays.

Summary
As described above, all the power models proposed by the state-of-the-art mainly uses
basic metrics that can be retrieved from the OS. The bandwidth, the number of bytes
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read and written can be easily extracted from the state-of-the-art as the most used metrics
while modeling the HDD power consumption.

However, the few existing approaches extracted from the state-of-the-art are lim-
ited because i). they only consider HDDs whereas SSDs are now widely spread among
servers [ERK06; Nou14] and, ii). they do not allow a fine-grained level of power estima-
tion [BC10; Kan+10; SLB07]. To stretch these limitations, we therefore propose to extend
our automatic learning approaches to SSD components and thus confirming the flexibility
of our approaches for new hardware components. We detailed this extension for learning
SSD power models in Chapter 4.
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For decades, a lot of efforts have been spent by the research community to propose power
measurement solutions. This chapter reviews the state-of-the-art solutions that provide
such capabilities. Different levels of power estimation are proposed by these solutions.
The hardware-level granularity is the most commonly proposed while browsing through
the existing solutions. However, such a coarse-grained granularity prevents from achieving
a detailed energy-driven analysis of software systems. To overcome these limitations, the
community brought a finer scale of power estimation, at software-level. Such a deeper
level of power estimation allows stakeholders to get better insights about how the power is
consumed by software components and can therefore be used for scheduling or capping
heuristics. An even thinner level of power estimation is proposed by tools that support to
monitor the energy distribution at source-code level. This level introduces another level
of energy analysis and proposes to easily compare the energy impact of design choices or
optimizations.

The rest of this chapter study the state-of-the-art in this area and is organized as
follows. Section 3.1 presents the solutions that can achieve runtime power estimation at
level of hardware components, while Section 3.2 describes the software-based approaches
and Section 3.3 show solutions that can go further and can provide deep analysis of the
energy consumed by source-code.

3.1 Hardware-Level Granularity
PowerMon2 [Bed+10] uses an external power monitoring board that needs to be inserted
between a system’s power supply and a motherboard. This board therefore allows to
retrieve the power consumption per connected hardware component and can physically
be integrated into a target system by fitting into a 3.5" drive bay. PowerMon2 allows
to measure up to 8 individual DC rails, thus allowing to attach several rails to the
motherboard in addition to hardware components (GPUs, disks, etc.). It can read and
report power measurements of hardware components at a rate up to 3 KHz to the user

17
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through an USB interface. All schematics and source-code are freely available online, but
this solution requires some rather expensive investments (up to $150).

PowerInsight [LPD13] follows the same principle as PowerMon2 and is built on top of
another external board (BeagleBone1) that uses an ARM Cortex processor. This external
board can be connected up to 15 components and is used to acquire power measurements
from custom power sensing boards connected to it. It was first designed to work within a
cluster and it is therefore required to install and configure one board per available node.
Each board is then connected through Ethernet and can send the acquired data to a
master node. The master node is finally responsible for aggregating data for postmortem
analysis. PowerInsight can provide user-space samples at a rate up to 1 KHz but they
only validate their approach while using 1 HZ.

RAPL [Rot+12] offers specific HPCs to retrieve the power consumption of CPU power
packages since the “Sandy Bridge” architecture. Intel divides the system into domains
(PP0, PP1, PKG, DRAM) to retrieve various power informations according to the requested
context. The first domain PP0 represents the core activity of the processor (cores + L1 +
L2 + L3), the PP1 domain the uncore activities (LLC, integrated graphic cards, etc.), and
PKG represents the sum of PP0 and PP1. The last domain DRAM only exhibits the RAM
power consumption. The RAPL tool can be thus easily used in recent Intel architectures
as it does not require any hardware modification. Moreover, this tool can also be used as
a power capping solution for limiting the CPU power consumption. However, it is limited
to specific processor generations and further limited to Intel processors.

Icsi et al. [IM03] describe an approach for learning CPU power models based on
predefined 15 HPC for 22 selected processor subunits. In addition, they propose a live
CPU power monitoring solution that implies different modules. First, a reader runs inside
the system under test for collecting values for the selected HPC. Once collected, the values
are sent via the network to a logger machine. This logger uses together the power model
and the extracted values for producing live power estimation of the 22 processor subunits.
With this approach, the authors show runtime power estimations for one concurrent
running application that can be divided per involved subunit.

Built on top of their CPU usage based power model, Lien et al. [LBL07] propose a
window-based GUI to monitor in real-time the overall power consumption of Windows
streaming-media servers through a time period.

3.2 Process-Level Granularity
The PowerPack [Ge+10] framework can monitor all hardware components separately. To
retrieve power measurements, a precision sensing resistor is attached to each DC power
line, thus allowing to measure the voltage differences with a power meter. This approach is
not limited to a single physical power meter but can use several, such as NI data acquisition
board, Watt’s Up Pro, or ACPI interface. Power measurements are simultaneously collected
on all power lines to be representative of all hardware components. The data retrieved are
then recorded and used in postmortem analysis. The authors consider their approach as
being able to provide per-process power estimation but they only consider one concurrent
application during their validation. They also mention that it can target a cluster but only
one node can be monitored at a time. The authors propose then a solution by replaying
the same workload m times, where m represents the number of nodes. It is therefore not

1http://beagleboard.org

http://beagleboard.org
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a suitable solution in practice. Furthermore, the different components used for acquiring
or analyzing data are expensive.

WattProf [Ras+15] supports the profiling of High-Performance Computing applications.
As PowerMon2, PowerInsight and PowerPack, this solution uses an author-defined external
board as a cornerstone of their solution. This board is fully configurable and can collect
raw power measurements that come from various connected hardware components (CPU,
disk, memory, etc.) through external sensors attached to power lines. The board is able to
be connected up to 128 sensors that can be sampled at up to 12 KHz. The data can be thus
be retrieved via Ethernet interface, or can be buffered inside the board for later analysis.
As in [Ge+10], the authors argue that this solution is able to perform per-process power
estimation, but they only validates their approach while running a single application.

WattWatcher [LeB+15] is the tool that can characterize workload energy power
consumption. The authors use several calibration phases for computing a power model
that fits a modern CPU architecture. This power model uses a lot of predefined set of
HPCs as input parameters. As the authors use a special power model generator that
can target any CPU architecture, they have to describe entirely the underlying CPU
architecture via a configuration file. This file contains all mappings required to match
specific HPCs from the underlying CPU with the ones used by the generator and thus
requiring a deep knowledge of the underlying architecture. To limit the overhead, the
generator is located on another machine and thus requiring at least 2 machines. An
efficient network connexion is required to send data to the generator and to monitor the
power estimation in real-time.

Jolinar [NIB16] use predefined power models built on top of hardware characteristics,
such as the CPU’s thermal design power (TDP), the maximum rate of read/write disk
operations, and the power consumed by each operation, etc. These values have to be
found inside OEM documentations. This process can therefore be tedious for end-users.
The authors explain that the CPU power model may has a lower accuracy on modern
architectures because of the simplicity of the input parameters (already demonstrated by
the state-of-the-art). Jolinar launches the monitored application in background and the
users can use the application while the monitoring solution keeps collecting data. However,
only one application can be monitored by Jolinar and only the applications which are
composed of a main process can be considered. Once the execution of the application
completes, the tool reports on the overall energy estimation and the energy distribution
between CPU, disk, and memory components.

3.3 Code-Level Granularity
The PowerPack solution [Ge+10] previously presented is able to propose per-process
power estimation for various hardware components. In addition, the authors extend their
approach to be able to correlate power consumption to source-code. The authors then
propose a power meter profile API that contains several subroutines. These routines will
be next used in the target application to link a specific region of code with the power
consumption. This solution is therefore very intrusive and force to manually edit the target
application. Moreover, this paper lacks of an impact analysis of such an instrumentation.

In addition to the per-process power monitoring proposed by WattProf [Ras+15], the
authors also define an API to instrument the source-code. Several power monitoring tasks
can be used to perform independent energy analysis. As the main goal of WattProf is to
monitor HPC applications, the authors propose first an extension of a classical profiling



20 CHAPTER 3. POWER MEASUREMENT GRANULARITIES

tool used in this domain for adding energy informations inside the generated reports.
This solution also remains very intrusive and the cost of such instrumentation is neither
discussed.

Islam et al. [INB16] describe an approach that uses an Observation-based Slicing
[Bin+14] technique, for detecting all the features—i.e., parts of the code really used at
runtime—needed by the program to behave normally and to produce the correct output.
Once a feature detected, the tool is able to isolate it and to produce an executable version
that contains only this feature. Each new created program is then injected inside Jolinar
for producing its energy report. If one wants to analyze n features of a software, it requires
to launch Jolinar with the featured program n times, thus requiring a lot of time to
perform a comprehensive analysis.

Jalen [NRS15] is able to monitor at fined-grained level—i.e., at the level of methods—
the software power consumption. The authors made the design choice to only target Java
programs because of the JVM facilities to instrument code and to get important runtime
informations. 2 versions of Jalen have been implemented, one that instruments methods,
and another one that uses statistical sampling to collect informations at a defined rate.
The authors demonstrate that the instrumented version has a non-negligible intrinsic
overhead and therefore push forward the statistical method as the lightweight solution.
Their statistical sampling approach consists of 2 phases. The first one runs the application
and collects the per component power consumption over its execution. Once the profiling
is completed, the second phase captures the JVM’s current stack trace with the CPU
time of threads each 10 milliseconds and next computes statistics about the number of
times each method was captured as the top of the stack. These statistics are then used to
proportionally distribute the energy consumption across methods.

enDebug [CV16] is a tool that uses predefined power models to compute the energy
distribution of software functions. To do so, the implemented approach instruments each
of the function calls and records the selected HPC values at the caller and callee sites.
The same technique is applied on function returns. Once the execution of the program
completes, the tool accumulates all function fragments (due to multiple calls or returns) for
producing energy report per individual function. The authors do not propose a time-series
view of the software energy distribution but nonetheless it can be useful for analyzing
energy phases. The impact of their solution on the target application is not evaluated
in this paper. However, Noureddine et al. [NRS15] demonstrate the non-negligible cost
of such instrumentation. In addition to this tool, the authors propose an automated
recommendation system for energy optimization based on genetic programming and show
energy improvements on a large set of programs.

Summary
As a summary of the state-of-the-art, mostly of the proposed solutions are not easily
customizable to meet the user requirements. Most of the existing solutions are limited to
hardware components and require hardware investments to be fully operational [Bed+10;
SLB07]. This kind of tools cannot be then used while targeting fine-grained power
estimations. To overcome these limitations, several tools propose to target software power
consumption, but a few of them implies costly investments and/or are not usable in
practice [Ge+10; LeB+15; Ras+15]. Few existing approaches go further and propose to
analyze the energy distribution of source-code. However, only a few approaches discuss
the overhead of their approach [NRS15] and a lot of research efforts remain to do. Finally,
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Table 3.1: Summary of power monitoring solutions.

Author(s) Hadware-level Process-level Code-level Pricey Modular
Doe2 [IM03] 3 3 7 3 7

Doe2 [INB16] 3 7 3 7 7

Doe2 [LBL07] 3 7 7 3 7

enDebug [CV16] 7 7 33 7 7

Jalen [NRS15] 3 7 33 7 7

Jolinar [NIB16] 3 3 7 7 7

PowerInsight [LPD13] 33 7 7 33 3

PowerMon2 [Bed+10] 33 7 7 33 3

PowerPack [Ge+10] 33 3 3 33 3

PowerScope [FS99] 7 3 3 3 7

PowerTOP [Int15b] 3 3 7 7 7

pTop [DRS09] 3 33 7 7 7

RAPL [Rot+12] 33 7 7 7 7

SPAN [WCS11] 3 3 3 7 7

WattProf [Ras+15] 33 3 7 33 3

WattWatcher [LeB+15] 3 3 7 33 7

based on this fine-grained analysis, some papers already propose techniques to improve
the code energy footprint [CV16; NR15]. All the approaches and solutions described in
this manuscript are resumed in Table 3.1.

To address these limitations, we rather propose a middleware toolkit, PowerAPI, for
building specific software-defined power meters “à la carte”. PowerAPI can work in all
aforementioned granularities, therefore promoting its use for energy monitoring in large
scale. We detailed PowerAPI in Chapter 5, and we build different power meters for
all above granularities (cf. Chapter 6, Chapter 8), plus a new granularity for distributed
services (cf. Chapter 7).

2Doe: name used when the solution does not have a name.
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Energy represents one of the largest cost factors when operating data centers, largely due
to the consumption of air conditioning, network infrastructure, and host machines [ODL14].
Currently, widely used PDUs are often shared amongst nodes to deliver aggregated power
consumption reports, in the range of hours or minutes. However, in order to improve the
energy efficiency of software systems, we need to support process-level power estimation
in real-time which goes beyond the capacity of PDUs [Tan+15]. In particular, the CPU
is considered as the major power consumer [ERK06] within a node and requires to be
closely and accurately monitored. Software power estimation of hardware components are
a central concern for energy efficiency and resource management in data centers. Over the
last decade, a dozen of ad-hoc power models have been proposed to cope with the wide
diversity and the growing complexity of modern hardware architectures [Bel00; Ber+10;
Bir+05; Col+15b; Dol+15; IM03; Kan+10; LJ03; LPF10; McC+11; VWT13; Yan+14;
ZA12; Zha+14]. However, most of the proposed power models rely on a deep expertise of
targeted architectures, thus leading to the design of hardware-specific solutions that hardly
can be ported to different settings [Ber+10; IM03; Zha+14]. Developing power models
that can accurately cover a large set of power consumer components is a complex task
and is challenging. Rather than proposing yet other power models, we therefore introduce
different approaches to automatically learn power models of several power consuming
components by exploring theirs power consumption spaces.

The remainder of this chapter is organized as follows. Section 4.1 proposes 2 approaches
for automatically learning CPU power models, the empirical approach is detailed in
Section 4.1.1, while the architecture-agnostic approach in Section 4.1.2. We finally explain
the need to model the SSD power consumption in Section 4.2 and describe our empirical
learning approach for SSD power models in Section 4.2.1.

25
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4.1 Learning CPU Power Models
In a typical server, the major power consumer is the CPU, covering at least one third
of the overall power consumption [ODL14]. Hence, like other studies [Ber+12; Jan+12;
LPF10; Zha+14], our power model focuses on processor consumption and accurately
monitors applications that are CPU—and memory—intensive. To limit the disk impacts,
we therefore select the workloads used for learning the power models in such a way
that the additional power possibly consumed by the disk is negligible. Studies in data
centers [NRS15; ODL14] show that the network I/O (in the case of Ethernet) is not
impacting the power consumption as the difference between idle and fully utilized links is
very low.

As the density of transistors has grown steadily following Moore’s law, modern process
have become extremely powerful yet complex computational units (see Figure 4.1). To
control energy consumption, CPUs rely on frequency scaling and power saving modes
to adjust their performance upon to the computation requirements. In particular, the
multi-core processors designed by Intel integrate the following features:

Hyper-Threading (HT) is used on some processor generations (e.g., Pentium IV, Xeon)
to separate each core in 2 threads. The technology is based on the simultaneous
multi-threading (SMT) principle, that allows the processor to seamlessly support
thread-level parallelism (TLP) in hardware and share more effectively the available
resources. Performance gains strongly depend on software parallelism, and for
a single-threaded application it may be more effective to actually disable this
technology;

SpeedStep (SS) is Intel’s implementation of dynamic voltage/frequency scaling (DVFS),
allowing a processor to adjust its clock speed and run at different frequencies or
voltages upon need. The OS can increase the frequency to quickly execute operations
or reduce it to minimize dissipated power when the processor is under-utilized. The
characteristic switching power dissipated by a processor is given by the well-known
complementary metal-oxide semiconductor (CMOS) formula P = C · f · V 2, where
C is the capacitance, f the frequency, and V the voltage. Thus, while decreasing
the frequency or voltage, less power is required and vice-versa;

TurboBoost (TB) can dynamically increase the processor frequency beyond the maxi-
mum bound, which can be greater than the TDP, for a limited period of time. It
therefore allows the processor cores to execute more instructions by running faster.
TB is however only activated when some specific conditions are met, notably related
to the number of active cores and the current CPU temperature. It also depends on
the OS, that may request to trigger it when some applications require additional
performance;

C-States (CS) were introduced to save energy and allow the CPU to use low-power
modes. The idea is to lower the clock speed, turn off some of the processor units, and
thus reduce the overall power consumed. More units are shut down, more the power
savings are high. Different types of CS are available: core (individual hardware
core’s view, C-state), processor (global hardware core’s view, PC-state), or logical
(logical core’s view, CC-state). They are numbered starting at 0, which corresponds
to the most operational mode (100%). Higher is the index, deeper is the sleep state
and more the time required to wake up an unit is high.
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Figure 4.1: Example of Modern CPU architecture.
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While the state-of-the-art CPU power models demonstrate that achieving accurate
power estimation is possible, they are barely generalizable to processors or applications
which were not part of the original study. Therefore, we rather propose a tooled approach
capable of learning the specifics of a processor and building the fitting CPU power model.
Hence, rather than proposing yet other hand-crafted power models, our approach intends
to cover evolving architectures and aims at delivering a solution that will be able to deal
with current and future generation of CPU architectures.

As reported by [Kan+10], the CPU load does not accurately reflect the diversity of
CPU activities. In particular, to faithfully capture the power model of a CPU, the types
of tasks executed by the CPU have to be clearly identified. We therefore decided to base
our power models on HPC to collect raw, yet accurate, metrics reflecting the types of
operations that are truly executed by the CPU. Nevertheless, the number and the nature
of HPC events provided by the CPU strongly vary according to the processor type.

More specially, a CPU can expose several performance monitoring units (PMUs)
depending on its architecture and model. For example, 2 PMUs are detected on an Intel
Xeon W3520: nehalem and nehalem uncore, each providing two types of HPCs that cover
either fixed or generic HPC events. A fixed HPC event can only be used for one predefined
event, usually cycles, bus cycles, or instructions retired, while a generic one can monitor any
event. If there are more events monitored than available counters for a PMU, the kernel
applies multiplexing to alter the frequency and to provide a fair access to each HPC event.
When multiplexing is triggered, the events cannot be monitored accurately anymore and
an approximation is returned instead. The PMUs of the testbed CPU are described in
Appendix A

4.1.1 Empirical Approach
Learning the CPU power model of multi-core processors requires the definition of a
workload that carefully stresses the various features it supports. Thereby, it is important
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to isolate the noise induced by other hardware components to properly capture the power
consumption of the CPU under study.

Figure 4.2: Empirical CPU power modeling approach.
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In the following paragraphs, each step of our empirical approach for learning CPU
power models (cf. Figure 4.2) is detailed below.

Input workload. We choose the stress1 utility, available on most UNIX systems, to
perform specific workload scenarios. This tool allows us to incrementally stress different
hardware components, such as the CPU or the memory.

Using the options provided by the stress utility, we generate different workloads.
First, we stress the processor core by core under full load in order to capture its maximum
frequency and to observe the effect of the SMT feature on the power consumption.
Then, we dynamically change the CPU load to characterize the effects of the DVFS
feature. This designed workload is applied for each frequency available on the CPU using
cpufreq-utils. Finally, by stressing an increasing number of cores, we are able to identify
the dynamic frequencies involved when the CPU is boosted.

Acquisition of raw metrics. To learn the power model, we need to collect run-time
metrics that faithfully capture the specificity of a large set of CPU workloads. As previously
mentioned, the CPU load does not correctly reflect the variety of tasks executed and we
therefore decide to base the approach on HPC to collect low-level and accurate metrics
reflecting trustfully the operation types ran by the CPU. Especially, we use the libpfm42

library for accessing counters available on modern CPU architectures, regardless of the OS.
The counters used to estimate the power consumption of processors have to be carefully
selected according to two criteria: i). their availability on a large family of architectures
and, ii). the overhead induced by their exploitation.

The purpose of this approach is to build the most efficient model in order to keep the
lowest overhead during run-time. We consequently choose as in [LPF10; WCS11; Zha+14]
the unhalted-cycles (uc)3 and reference-cycles (rc)4 counters to accurately characterize the
power model of multi-core architectures. While the first counter represents the number of
cycles truly executed and thus the activity of cores, the second one represents the number
of clock ticks at the frequency of the time-stamp counter (TSC); it is, therefore, very
useful to approximate the core frequency, even when the turbo mode is triggered.

1http://linux.die.net/man/1/stress
2http://perfmon2.sourceforge.net
3CPU_CLK_UNHALTED:THREAD_P, event=0x003c
4CPU_CLK_UNHALTED:REF_P, event=0x013c

http://linux.die.net/man/1/stress
http://perfmon2.sourceforge.net
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The average frequency (f) is computed by dividing the number of unhalted-cycles by
the number of reference-cycles and then multiplying it by the timestamp counter (TSC)
frequency (fT SC) (f = (uc/rc) ∗ fT SC). f is then used to build one power model per
detected frequency and to choose at runtime which one to use.

To monitor the power consumption during the learning phase, we consider a power
meter that reports on the consumption of the whole machine as “ground truth”. More
precisely, we use the PowerSpy5 Bluetooth power meter. Depending on the country, the
PowerSpy power meter samples the raw power consumption between 45 Hz and 65 Hz. To
improve the accuracy of the power model, we run the identified workload several times for
reducing the variance introduced by the physical measures.

Power model inference by regression. The hardware performance counters and
power information collected during the execution of the workloads are then correlated
using a polynomial regression for connecting the evolution of the power consumption with
the number of unhalted-cycles. A power model is built for each processor frequency and
represents the power consumption of a single core, SMT feature included [Zha+14], and
we assume that the power consumption grows linearly with the number of active cores on
homogeneous architectures.

In practice, the power model we obtained for a machine (host) running at a given
frequency (f) for a short period of time can be represented by the equation:

Phost(f) = Pidle(f) +
∑

pid∈P IDs

Pcpu(f, uc1
pid...uc

N
pid). (4.1)

where Pidle(f) corresponds to the static power consumption—i.e., the idle power—of the
host for the frequency f that we inferred from the regression step, and uc1

pid...uc
N
pid is a

vector of unhalted-cycles collected at runtime per active process identifier pid and per
core 1..N . The power consumption of the CPU, Pcpu, is defined as the sum of the power
consumption per frequency, Pf , for each core n:

Pcpu(f, uc1
pid...uc

N
pid) =

N∑
n=1

Pf (ucn
pid). (4.2)

We finally obtain a power model per frequency, including boost specific frequencies. One of
the resulting formula is described below for a boost frequency on a Xeon W3520 processor
(cf. Appendix A) for the 2.90 GHz frequency:

P2.90(ucpid) = 8.64 · ucpid

109 −
6.10 · uc2

pid

1018 . (4.3)

The resulting formula is a polynomial of degree 2 (depicted in Figure 4.3), which conforms
to the results published in the literature and the impacts of the SMT feature on the power
consumption [Zha+14].

Figure 4.3 plots the power estimation according to the number of unhalted-cycles for
each power model inferred per frequency on a Xeon processor (cf. Appendix A). For
the sake of clarity, only the frequencies above 2.30 GHz are reported. The idle power
consumption (Pidle(f) when x = 0) is computed during the polynomial regression and is
clearly impacted by the current processor frequency. One can observe that the 2.50 GHz
line is above the 2.40 GHz one, which is mainly due to the inaccuracy of cpufreq-utils:
it keep tracks of the average frequency and might not report exact values at any given
time, notably ignoring the boost frequencies.

5http://www.alciom.com/en/products/powerspy2.html

http://www.alciom.com/en/products/powerspy2.html
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Figure 4.3: Power models for the highest frequencies on an Intel Xeon W3520 processor.
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4.1.2 Architecture-Agnostic Approach
The learning phase we propose in Figure 4.4 analyses the power consumption and triggered
HPC events of the target CPU, in order to identify the key events that impact the power
consumption. The combination of these events is then used to learn automatically the
CPU power model.

Figure 4.4: Architecture-agnostic CPU power modeling approach.
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Our goal is to automatically classify the HPC events in order to identify those which
are best characterizing the CPU activity and are correlated with its power consumption.
Each step of our architecture-agnostic approach for learning CPU power models is depicted
in Figure 4.4 and described below.

Input workload injection. For exploring the activity of a CPU, we consider a set
of representative applications covering the features provided by a CPU. In particular,
to promote the reproducibility of our results, we favor freely available and widely used
benchmark suites, such as PARSEC [BL09]. However, this choice does not prevent us
from including additional benchmark suites or any sample workloads. All workloads are
then launched several times in isolation for reducing the noise that can be experienced
during the learning phase.

Acquisition of raw HPC counters. Unfortunately, the CPU cannot monitor hundreds
of HPC events simultaneously [Int15a]. Thus, we have to split the list of available events
into subsets of events to avoid multiplexing that might cause inaccuracies. Resulting of
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our approach, we dynamically learn the number of events that we can monitor together for
getting accurate raw measurements. Table A.1 shows the number of events that we can
read in parallel in several CPU architectures. For a given CPU, the number of workload
executions w to be considered is therefore defined as:

w =


∑

p∈PMUs

|Ep|
|Cp|

× |W | × i (4.4)

where E is the set of events made available by the processor for a given PMU, C is the
set of generic counters available for a PMU, W is the set of input workloads, and i is the
number of sampling iterations to execute.

Combining HPC events and sample applications may quickly lead to the comparison
of thousands of candidate metrics. Hence, a filtering step is required to guarantee an
acceptable duration for the learning phase. Our approach proposes an automated way to
focus on the most relevant events. In the first step, each workload is only executed for a
few seconds while collecting values from HPC events and from a power meter. We then
select relevant HPC events by applying the Pearson correlation coefficient [CM05; ZA12].
We compute the Pearson correlation coefficient re,p for each workload between the n values
reported by each monitored HPC event e and the collected power consumption p:

re,p =

n∑
i=1

(ei − e) (pi − p)√
n∑

i=1
(ei − e)2

√
n∑

i=1
(pi − p)2

(4.5)

Figure 4.5: Pearson coefficients of the Top-30 correlated events for the PARSEC benchmarks
on an Intel Xeon W3520.
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Selection of relevant HPC events. As next step, we eliminate the HPC events that
have a median correlation coefficient (r̃) below a given threshold. In particular, we consider
that any coefficient below 0.5 clearly indicates a lack of correlation between the considered
event (e) and the associated power consumption (p). With this step, we quickly filter
out hundreds of uncorrelated—and therefore irrelevant—events, resulting for instance
in 253 left out of 514 events on an Intel Xeon W3520 (cf. Appendix A). The reduced
set of HPC events is then used to relaunch all the workloads, but this time with default
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runtime. At the end of the full execution, we rank the remaining HPC events for all the
workloads based on their newly calculated median correlation with the power consumption,
as depicted in Figure 4.5.

The distribution of Pearson coefficients for the 30 best events varies for each of the
workloadsW taken from the PARSEC benchmark suite on the Intel Xeon W3520 processor.
One can clearly distinguish the benchmarks that simulate all selected HPC events (e.g.,
x264, vips) from the ones whose power consumptions match only specific events (e.g.,
freqmine, fluidanimate). Deriving a CPU power model that is capable of covering all
kinds of workloads accurately is consequently a challenging task.

Power model inference We finally apply a regression analysis to derive the CPU power
model from the previously selected HPC events. In particular, we use the robust ridge
regression [LPF10; RL87], which belongs to the family of multivariate linear regression.
Our approach being fully configurable, the aforementioned linear regression can be thus
chosen upon needs. Our choice was guided by the need to easily eliminate outliers. It
has been furthermore validated by the experiments and results presented around power
models in this manuscript.

The computation of the multiple linear regression should balance the gain in terms
of estimation error with the cost of including an additional event into the CPU power
model. To design the CPU power model as accurately as possible, we consider a subset
Rn of n benchmarks (∀n < |W | , Rn ⊆ W ), composed from those exhibiting the lowest
median Pearson coefficients, as input for our regression process. From Rn, we compute
a CPU power model for each combination of HPC events, by taking into account the
limited number of event that can be monitored in parallel. For each training set Rn, from
all the computed power models, we only keep the one with the smallest regression error.
Finally, we compare the CPU power model obtained for each Rn and we pick the one that
minimizes the absolute error between the regression and the remaining benchmarks, not
included in the training set (En = W \Rn).

Figure 4.6: Average error per combination of events for R3 on an Intel Xeon W3520
processor.
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As an illustration, Figure 4.6 shows the distribution of the average error per CPU
power model built for R3 (freqmine, fluidanimate, and facesim) depending on the
number of HPC events included in resulting power model. A larger circle means a larger
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error. One can clearly see that a CPU power model that combines a high number HPC
events may exhibit a larger than one that uses a lower number of events.

An an example, in the Intel Xeon W3520 processor, the CPU power model composed
of 2 events taken from the PMU nhm (see Appendix A) emerges from this analysis and
reports an average error of 1.35%, 1.60 W respectively.

All the above steps allow us to compute an effective CPU power model. As a matter
of comparison, this approach takes 34 hours approximatively on an Intel i3 2120 processor
(373 events available) while it takes 16 hours approximatively on an ARM Cortex A15
processor (67 events available).

4.2 Learning SSD Power Models
Meisner et al. [MGW09] have been demonstrating that the dynamic power consumption
drawn by I/O disk operations on typical servers are non-negligible, and thus have to be
considered while modeling. As reported by Krevat et al. [KTG11], 2 rotational hard drives
of the same provider and model may exhibit differences in their bandwidths, thus leading
to impact the power consumption. Moreover, the data location is very important while
reading or writing data into a rotational hard drive. Indeed, a rotational hard drive is
composed of 1 or several platters, each of them having at least 1 head to handle data.
Each action may therefore implies several mechanical movements and impacts the disk
power consumption, making thus the reproducibility of experiments and the accuracy of
the underlying power models almost bad.

Given the increasing spreading use of SSD hard drives over the last few years, we
therefore choose to focus on the study of their power consumption. This decision have
also been strengthen by the reproducibility of the experiments we target.

Figure 4.7: Comparison of power consumptions between CPU and SSD by varying the
throughput with the fio tool.

(a) SSD read operations.
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(b) SSD write operations.
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To demonstrate that the SSD component is a power consuming component, we first
made an experiment for comparing CPU and SSD power consumptions while performing
reading and writing operations on the Intel Xeon E5-2630 server (cf. Appendix A) with 1
SSD of 372GB (Intel SSDSC2BX40). The PowerSpy Bluetooth power meter was also used
to retrieve the overall power consumption of the server, and PowerAPI, to estimate the
CPU power consumption among the execution.
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Figure 4.7a depicts power consumptions while performing read operations, and Fig-
ure 4.7b, writing operations. As it can be observed, the SSD component can have an
important impact on the power consumption and may represent nearly 10 W for a write
operation and nearly 7 W for a read operation, exhibiting bandwidths of 775 MB/s and
251 MB/s, respectively (reached with a block size of 4Kb). It also assesses that the CPU
still consumes power consumption even if only disk operations are performed. This can be
explained because all the I/O requests have to go through the CPU before being redirected
to the SSD component itself. One can also mention that the power consumption stops
to increase above a certain threshold—i.e., from 8 MB/s for the reading, and from 1
MB/s for the writing. We therefore conclude that the relationship between these opera-
tions and the power consumption is not linearly proportional and cannot be expressed
as PSSD = a×Bytesread + b×Byteswritten, where a and b are constants, contrary to the
conclusions made by Noureddine et al. [Nou14].

Based on these observations, we accordingly propose an empirical and adaptive approach
for learning automatically SSD power models.

4.2.1 Empirical Approach
To learn the SSD power models, one has to carefully select a workload that can perform
and synchronize the various disk operations to correctly capture the power consumption.

Figure 4.8: Empirical SSD power modeling approach.
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We describe each step depicted in Figure 4.8 in the following paragraphs.

Input workload. We choose the fio6 tool, an open-source software, to perform specific
disk operations. This tool allows to create specific I/O operations on the disk as defined
by the user. Its main strengths come from its community, its flexibility, and its ability to
work well on classical or SSD hard drives. Given the options provided by fio, we therefore
choose to synchronize the operations made on the SSD disk and to invalidate the cache
before each operation for limiting the buffering and cache effects on the collected data.
We designed 2 workload scenarios: the first one represents the reading operation, while
the other describes the writing operation. During each scenario, we incrementally change
the bandwidth to detect and to reach automatically the maximum bandwidth.

Acquisition of raw metrics. Different metrics are collected along the learning phase.
We first collect the number of bytes read and written at runtime to compute the bandwidths
that represent the SSD activities. Then, we use PowerAPI for estimating the CPU power
consumption along the execution. Indeed, as shown in Figure 4.7, each disk operation

6https://github.com/axboe/fio

https://github.com/axboe/fio
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impacts the CPU and it is thus reflected in its power consumption. It is therefore important
to track the CPU power consumption while collecting raw power measurements to trustfully
represent the real SSD power consumption. In addition, we use the PowerSpy power meter
for reporting the power consumption of the whole machine as “ground truth”. To improve
the accuracy of the power model, the scenarios described above are running several times
for limiting the variance in the metrics collected.

Power model by regression. As SSD disk operations lead to CPU activities, we
therefore subtract the CPU power consumption from the data retrieving by the PowerSpy
power meter. The bandwidths and raw power measurements collected along the workload
execution are then injected into a regression for connecting the evolution of the power
consumption while reading or writing on the SSD disk. A power model is built per disk
activity as the reading and writing activities do not have the same power consumptions.

In practice, we extend the formula described in Section 4.1.1 to represent the power
consumption of an host, Phost, as:

Phost = Pidle +PCP U +
 ∑

pid∈P IDs

PSSDr × (brpid/brSSD) + PSSDw × (bwpid/bwSSD)
 (4.6)

where Pidle represents the intrinsic power consumption of the host machine—the idle
power, PCP U is the CPU power consumption estimated by PowerAPI while doing I/O
operations, PSSDr and PSSDw define the overall SSD power consumptions while reading
and writing on disk respectively, bwpid and brpid are 2 vectors that contain the effective
bandwidths at runtime per running process pid, brSSD and bwSSD also are 2 vectors that
contain the overall bandwidths at runtime of the SSD read and write operations.

As can be seen in Figure 4.7, the smaller bandwidth to read or write on a SSD disk
implies the greater CPU power consumption and can lead to an higher variance in data
collected. We consequently choose to represent each SSD disk operation as piece-wise linear
functions to model the relationship between the power consumption and the bandwidths
that have not been reached during the learning phase.

As an example, the SSD power models of the Intel Xeon E5-2630 server are defined as
follows:

PSSDr =
0.03 · brSSD if 0 ≤ brSSD ≤ 250 MB/s

4.25e−04 · brSSD + 6.91 if brSSD > 250 MB/s
(4.7)

PSSDw =
0.01 · bwSSD if 0 ≤ bwSSD ≤ 818 MB/s

4.32e−04 · bwSSD + 9.75 if bwSSD > 818 MB/s
(4.8)

Equation 4.7 is depicted in Figure 4.9a, while Equation 4.8 in Figure 4.9b. The SSD
read and write power models exhibit relative errors of 3.61% (0.18 W ) and 0.77% (0.09 W ),
respectively. The piece-wise linear regression is thus well-suited for learning SSD power
models. To further validate the regression technique used, we compute the Normalized
Root Mean Square Deviation (NRMSD). The NRMSD is defined as

√
MSD
y

, where the
Mean Square Deviation (MSD) allows to quantify the difference between the estimated
and observed values and y represents the median of the expected values. The MSD is
then expressed as 1

n

∑n
i=1(Ŷi − Yi)2 where Ŷ is a vector of the estimated values, while Y

represents the vector of the observed values. It is therefore very useful while comparing
different power models with different datasets or scales, and is usually represented as
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Figure 4.9: SSD power models.

(a) Power model for the SSD read operation.
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(b) Power model for the SSD write operation.
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a percentage, where a low value indicates low residual errors and thus means a good
accuracy. The learned read and write SSD power models exhibit NRMSD percentages of
11.9% and 2.3%, thus assessing our approach.

Summary
Since the publication of the first analytical power model [KZ08], the research community has
been intensively investigating the design of power models by considering different hardware
architectures, power-aware features, workloads, and modeling techniques. Nevertheless,
the state-of-the-art in this area demonstrates that the designed power models are mostly
hand-crafted and are based on assumptions that prevent their reuse in other execution
contexts and their deployment at scale. Beyond the few power models presented as example
in this chapter, our contributions therefore offers different approaches for learning CPU
and SSD power models. Our approaches exploit freely available tools and benchmark
suites to thoroughly train the dataset used for building the power models. The training
dataset are then exploited by a combination of regression analysis techniques to identify
the most accurate ones. We also aim to foster the research on power models by proposing
adaptive approaches for learning power models. In particular, one has to consider other
power consuming components, such as GPU [JSM12], to incrementally learn their power
consumption model and to thus provide a wider cartography of the power consumption of
a software system.
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Researchers and operators have been proposing solutions to increase energy efficiency
at all levels, from application to runtime and to hardware. As surveyed by Orgerie et
al. [ODL14], examples include methods for energy-based task scheduling, energy-efficient
software, dynamic frequency and voltage scaling and energy-aware workload consolida-
tion. Power monitoring is usually achieved with the support of hardware measurement
equipments, such as power meters or specialized integrated circuits. Such solution is not
suitable in large-scale environments because requires costly investments. Furthermore, it
provides coarse-grained power consumptions—i.e., hardware-level—and cannot be a rele-
vant solution when targeting fine-grained power estimation. Consequently, software-centric
and scalable approaches have to be considered. Contrarily to the hardware approach,
it requires power models for trying to estimate at best the power consumptions drawn
by software. Power estimation of running software processes requires to tackle several
challenges and provides indicators to drive scheduling or power capping heuristics. Firstly,
the software-centric solution needs to be compatible with the majority of modern archi-
tectures, adaptive and easily deployable to foster their usage. Secondly, it needs also to
take into account the most recent energy saving features for producing the most accurate
power estimation. Finally, the solution has to deliver power estimation at high frequency
to make critical runtime decisions.

The rest of this chapter is organized as follows. We first explain why it is so important
to have efficient software-defined power meters in Section 5.1. We secondly describe in
Section 5.2 our open-source and non-invasive middleware toolkit, PowerAPI, as an
efficient solution for assembling software-defined power meters upon requirements. We
finally provide an overview of the module components available in PowerAPI and several
examples of software-defined power meters built with PowerAPI in Section 5.3 and
Section 5.4 respectively.
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5.1 The Need For Software-Defined Power Meters
Software-defined power meters are customizable and adaptable solutions that can deliver
raw power consumptions or power estimation at various frequencies and granularity,
depending on the requirements. Power estimation of running processes is not a trivial
task and must tackle several challenges. Several solutions are already proposed by the
state-of-the-art:

pTop [DRS09] is a process-level power profiling tool for Linux or Windows platforms.
pTop uses a daemon in background for continuously profiling statistics of running processes.
pTop keeps traces about component states and stores temporarily the amount of energy
consumed over each time interval. This tool displays, similarly to the top output, the
total amount of energy consumed—i.e., in Joules—per running process. They propose
static built-in energy models for CPU, disks, and network components. An API is also
provided to get energy informations of a given application per selected component.

PowerScope [FS99] is a tool capable of tracking the energy usage by application
for later analysis and optimizations. Moreover, they map the energy consumption to
procedures within applications for better understanding the energy distribution. Their
approach uses 2 computers for offline analysis: one for sampling system activities (Profiling
computer) and another for collecting power measurements from external digital multimeter
(Data Collection computer). Once the profiling completed, the Profiling computer is next
used to compute all energy profiles for later usage.

PowerTOP [Int15b] is a Linux tool for finding energy-consuming software on multiple
component sources (e.g., CPU, GPU, USB devices, screen). Several modes are available,
such as the calibrate mode to test different brightness levels as well as USB devices, or the
interactive mode for enabling different energy saving mechanisms not enabled by default.
This software-defined power meter can only report power estimation while running on
battery within an Intel laptop, or only usage statistics otherwise.

SPAN [WCS11] is designed for providing real-time power phases information of
running applications. They also propose external API calls to manually allow developers to
synchronize the source-code applications with power dissipation. They first design micro
benchmarks for sampling the only HPC used—i.e., IPC—and they gather the HPC data
and raw power measurements for computing the parameters of their hand-crafted power
models. They can next use SPAN for real-time power monitoring and offline source-code
analysis.

Different limitations can be thus extracted from these solutions and the state-of-
the-art. Most solutions are monolithic, created for specific needs and cannot be easily
tuned or configured for assembling new kind of power meters [DRS09; FS99; Int15b;
WCS11]. Power models used by such power meters cannot be used or adapted to modern
architectures because they have been especially designed [WCS11] or they are using specific
metrics [DRS09] that cannot trustfully represent recent features. They can as well lack of
modularity [WCS11] and require additional investments [FS99].

In order to detect energy-consuming applications and to apply critical energy deci-
sions at runtime, one rather needs a middleware toolkit fully modular, configurable and
adaptive that can report power estimation (or power measurements) at high frequency on
heterogeneous systems. For promoting the usage of such solution as a good alternative of
physical power meters, the proposed solution has to be freely available for the community.

We consequently propose and design PowerAPI, an open-source middleware1 for
1Freely available from: http://powerapi.org

http://powerapi.org
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assembling software-defined power meters upon needs.

5.2 PowerAPI, a Middleware Toolkit
The PowerAPI middleware toolkit has been first created during the thesis of Adel
Noureddine [Nou14]. PowerAPI is built on top of Scala and the actor programming
model using the Akka library. Scala is a relatively new language (2003) that combines
object-oriented and functional programming paradigms and has a strong static type
system [Ode+04]. Scala code runs on top of the java virtual machine (JVM) and is fully
interoperable with Java code. Akka is an open-source toolkit for building scalable, and
distributed applications on the JVM and pushes forward the actor programming model as
the best programming model for concurrency. This open-source contribution was the first
step to a better understanding of the software power consumption. However, this first
iteration of PowerAPI has not been designed to support the complexity of nowadays
multi-core architectures. This is the reason why we therefore propose the second major
iteration of this middleware toolkit to fully support this kind of widely spread architectures.
This new iteration was also the opportunity to better support all the features of the Akka
library.

The software components of PowerAPI are implemented as actors, which can process
millions of messages per second [Nor12], a key property for supporting real-time power
estimation. PowerAPI is therefore fully asynchronous and scales both on several
dimensions—i.e., the number of input sources, the requested monitoring frequencies, the
number of monitoring and the number of targets.

More especially, the PowerAPI toolkit identifies 5 type of actor components:

Clock actors is the entry point of our architecture and allows to meet throughput re-
quirements by emitting ticks at given frequencies for waking up the other components;

Monitor actors reflect the power monitoring request for one or several processes. They
react to the messages published by a clock actor, configured to emit tick mes-
sages with a given frequency. The monitor is also responsible for aggregating the
power estimation by applying a function (e.g., SUM, MEAN, MAX) defined for the
monitoring when needed;

Sensor actors connect the software-defined power meters to the underlying system in
order to collect raw measurements of system activity. Raw measurements can
be coarse-grained power consumption reported by third-party power meters and
embedded probes (e.g., RAPL), or CPU activity statistics as delivered by the process
file system (ProcFS). Sensors are triggered according to the requested monitoring
frequency and forward raw measurements to the appropriate formula;

Formula actors use the raw measurements received from the sensor to compute a power
estimation. A formula implements a specific power model [Kan+10; VWT13] to
convert raw measurements into power estimation. The granularity of the power
consumptions reported by the formula (machine, core, process) depends on the
granularity of the measurements forwarded by the sensors;

Reporter actors finally gives the power estimation computed by the aggregating function
to a Display object. The Display object is responsible to convert the raw power
estimation and the related informations (e.g., the timestamp, the monitoring id or
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the devices) into a suitable format. The built report is then provided, by example, via
a web interface, via a virtual file system (e.g., based on FUSE), or can be uploaded
into a database (e.g., InfluxDB).

Figure 5.1: PowerAPI’s architecture & deployment.
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As actors have lightweight CPU and/or memory footprints, a Monitor, a Sensor, a
Formula, and a Reporter actors are created per monitoring request and target. Each
Sensor and Formula actors being tightly coupled, we grouped them as a PowerModule that
represents the link between the input data and the power model. All actors are centralized
on a common event bus where they can publish messages or subscribe to topics for actively
waiting events. Particularly, we use a Lookup Classification2 event bus for extracting a
classifier per published event, maintaining a set of subscribers attached to each classifier,
and thus creating channels between actors.

The overall architecture of PowerAPI is described in Figure 5.1. Several PowerModule
components can be assembled together for grouping power estimation from multiple sources.
For the sake of clarity, we do not detail the event bus described earlier. One can see that
PowerAPI is fully modular, can be used to assemble power meters upon needs and to
fulfill all monitoring requirements. We can also note that PowerAPI is a non-invasive
solution and does not require costly investments or specific kernel updates. An overview
of the exchanged messages between actors is depicted in Figure 5.2.

2 instances of software-defined power meters are also depicted in this figure. In the left
side, one can find an instance of PowerAPI especially configured to learn the CPU power
models. This instance is composed of 2 PowerModule components, one for retrieving raw
accurate CPU metrics via libpfm, and another, for retrieving the power measurements
from the bluetooth power meter. The data are then forwarded to several files to be later
processed by our learning approaches. The resulting power model is then written inside a
configuration file that can be used later by a new instance of PowerAPI to estimate the
power consumption. In the other side, another instance of PowerAPI is configured to
use the aforementioned power model for producing fine-grained power estimation.

Akka actors form a kind of natural hierarchy—i.e., each actor acts like a supervisor
and implements a fault handling strategy for its children. 2 different strategies can be

2http://doc.akka.io/docs/akka/2.4/scala/event-bus.html#Lookup_Classification

http://doc.akka.io/docs/akka/2.4/scala/event-bus.html#Lookup_Classification
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Figure 5.2: Overview of internal messages exchanged between the PowerAPI’s actors.
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Snippet 5.1: Supervisor definition.

trait Supervisor extends Actor {
def handleFailure: PartialFunction[Throwable, Directive]

override def supervisorStrategy: SupervisorStrategy =
OneForOneStrategy(10, 1.seconds)

(handleFailure orElse SupervisorStrategy.defaultStrategy.decider)
}

Snippet 5.2: Clock supervisor implementation.

class Clocks(eventBus: MessageBus) extends Supervisor {
{...}

def handleFailure: PartialFunction[Throwable, Directive] = {
case _: UnsupportedOperationException => Resume

}

def receive: Actor.Receive = {
case msg: ClockStart => start(msg)
case msg: ClockStop => stop(msg)
case msg: ClockStopAll => stopAll(msg)

}

{...}
}
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used by a supervisor. The OneForOneStrategy only applies the chosen fault handling
directives to the failing actor while the AllForOneStrategy concerns all its children. 4 fault
handling directives—i.e., Resume, Restart, Stop, and Escalate—can be chosen to define
the actor behavior while failing. The Resume directive allows to stop the processing of
the current message, to skip it, and to move to the next message available in the mailbox.
The Restart one drops the failing actor and replace it with a new one, thus cleans out
all its internal states. To avoid infinite restarting, different limits can be applied. When
the Stop directive is applied, the crashed actor is stopped and destroyed. The Escalate
directive forwards the failure to the upper supervisor.

The supervisor strategy is described in Snippet 5.1 and allows to define a fault handling
strategy per supervisor. Our supervisors have been written to handle—i.e., to create
child actors upon request, to forward messages, or to stop a child actor when needed—
a hierarchy of children actors. We describe our Clock supervisor in Snippet 5.2. A
Clock child actor only fails when a message cannot be processed, represented by the
UnsupportedOperationException in the code. Different supervisors have been implemented
in PowerAPI, such as the Clock, Monitor, Sensor, and Formula supervisors, for limiting
the spreading of exception and allowing PowerAPI to be fault-tolerant.

To produce ticks at given frequencies, we use the scheduler(...) method from the
ActorSystem actor that allows to call a method at a given rate. This method returns
a Cancellable object that we can use to stop the publishing when needed. For limiting
the overhead, only one instance of Clock actor is created per requested frequency. This
is why we keep an accumulator to know whether a Clock actor has been already created
or whether the frequency is not used anymore. To limit its internal complexity and
to avoid mutable data-structures that can lead to unpredictable behaviors, we use the
context.become(...). This method allows to replace the current actor state with a new
one by using immutable structures or values, as described in Snippet 5.3.

A Clock actor has 3 different states (cf. Figure 5.3):

start state is the entry point of a Clock actor. It allows to check that the ClockStart
message is received first and consequently switch with its running state;

running state is invoked when a scheduler has been created and tick messages are
published at a fixed rate. The accumulator is then incremented by 1 each time the
same clock frequency is requested;

stop state is called when a monitoring has been stopped. The underlying scheduler is
then stopped and the underlying actor is killed if the accumulator reaches 0, the
accumulator is decremented otherwise.

Figure 5.3: Clock actor state diagram.

receive start running
startup ClockStart(F)

1

ClockStart(F)
acc + 1

stop
ClockStop(F)

acc - 1

acc == 0

PowerAPI can also be used as a connector to external probes for retrieving power
measurements (e.g., PowerSpy, RAPL, G5K OmegaWatt). To allow such connectivity,
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Snippet 5.3: Clock actor implementation.

class Clock(eventBus: MessageBus, frequency: FiniteDuration) extends Actor {

def receive: Actor.Receive = starting orElse default

def starting: Actor.Receive = {
case msg: ClockStart => start()

}

def start(): Unit = {
val timer = context.system.scheduler.schedule(Duration.Zero, frequency) {

publishClockTick(frequency)(eventBus)
}(context.system.dispatcher)

context.become(running(1, timer) orElse default)
}

def running(acc: Int, timer: Cancellable): Actor.Receive = {
case msg: ClockStart if msg.frequency == frequency =>

context.become(running(acc + 1, timer) orElse default)
case msg: ClockStop if msg.frequency == frequency => stop(acc, timer)
case _: ClockStopAll => stop(1, timer)

}

def stop(acc: Int, timer: Cancellable): Unit = {
if (acc > 1) {

context.become(running(acc - 1, timer) orElse default)
}
else {

timer.cancel()
self ! PoisonPill

}
}

}

Figure 5.4: ExternalSensor actor state diagram.
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developers have to create the business code that retrieves and forwards data to PowerAPI.
Thanks to the event bus, the external probe pushes data at a given frequency (it can
be independent of the frequency chosen in PowerAPI and limited by the hardware)
and PowerAPI can pull them when made available. The given base implementation is
provided in Snippet 5.4. Each given Sensor component is then responsible to represent the
link between the probe and PowerAPI—i.e., represented by the extPMeter parameter.
Power measurements begin pushed to PowerAPI, we also use the context.become(...)
method to store the forwarded raw measurement for using it at posteriori.

An ExternalSensor actor has 3 states (cf. Figure 5.4):

handler state allows to initialize the actor and to directly switch with its active mode;

sense state actively listens the messages published by the external probe—i.e., the
ExtRawPowerReport messages—and the monitoring. When the All target is asked, we
only forward the raw power measurement to the Formula. Otherwise, when another
target is asked—i.e., a Process or an Application, the overall power consumption is
downscaled by using an activity ratio, represented by a CPU activity;

stop state is invoked when a monitoring has been stopped and it triggers the cleaning of
involved resources.

A schematic example of the PowerSpy’s ExternalSensor is given in Figure 5.5. The
same principle is also applied for RAPL, or G5K OmegaWatt and could be applied to any
other external probes.

Figure 5.5: Link description between PowerAPI and the PowerSpy bluetooth power
meter.
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To support the utilization of PowerAPI as a middleware toolkit for defining software
power meter, or for learning power models, we use the Docker3 technology. It allows to
package our applications inside lightweight images that contains everything needed to run
them. These images can be directly downloaded4 and used without any dependency to
install (except Docker itself).

Figure 5.6 describes relevant statistics about the PowerAPI’s code repository.

3https://www.docker.com
4Images are freely available from: https://hub.docker.com/u/spirals/dashboard

https://www.docker.com
https://hub.docker.com/u/spirals/dashboard
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Snippet 5.4: Base implementation to establish a connexion between PowerAPI and an
external probe.

abstract class ExternalSensor(eventBus: MessageBus, muid: UUID, target: Target,
extPMeter: ExternalPMeter, idleP: Power) extends Actor {

{...}

def handler: Receive = target match {
case All => sense(None, 0l, 0l)
case _ =>

val times = currentTimes
sense(None, times._1, times._2)

}

def sense(report: Option[ExtRawPowerReport], oldTargetTime: Long,
oldGlobalTime: Long): Receive = {

case msg: RawPowerReport =>
context.become(sense(Some(msg), oldTargetTime, oldGlobalTime))

case msg: MonitorTick if target != All =>
...

case msg: MonitorTick if target == All =>
...

}
}

Figure 5.6: PowerAPI’s repository statistics.
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5.3 PowerAPI’s Modules
As previously mentioned, a software-defined power meter created with PowerAPI can
represent an assembly of PowerModule components. In particular, 8 types of PowerModule
components have been designed:

procfs-cpu-simple | sigar-cpu-simple modules use the ProcFS and the Sigar
API,5 respectively. The Sigar API provides a common and portable interface
for retrieving system statistics, such as, system cpu load, per-process cpu or network
metrics, in most operating systems. The core API is written in C, but several
bindings are available in most programming languages;

cpu-dvfs module benefits from cpufreq-utils to load 2 kernel modules (acpi-cpufreq
and cpufreq_stats) for retrieving the CPU time spent per each available frequency
when the DVFS feature is enabled. The CMOS formula (P = C · f · V 2) is then
used for estimating with better accuracy the CPU power consumption;

5https://support.hyperic.com/display/SIGAR/Home

https://support.hyperic.com/display/SIGAR/Home
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libpfm module takes advantage of the libpfm library to retrieve accurate metrics about
the various CPU activities and uses them as inputs for CPU power models;

disk module profits from block IO controller (BLKIO) cgroup subsystem for retrieving
global and per-process SSD metrics and thus provides per-process SSD disk power
estimation;

powerspy module allows to integrate the PowerSpy bluetooth power meter for retriev-
ing the overall power consumption of a node. Different commands and data are
exchanging with the Bluetooth protocol.

g5k-omegawatt module employs the Kwapi API6 to collect raw metrics from PDUs at
infrastructure level on Grid’5000 nodes when available. PowerAPI can be then used
in a wide diversity of machines, thanks to Grid’5000, for performing and assessing
experiments;

rapl module uses the RAPL counters available on most recent Intel processors for getting
different power consumption information. RAPL is divided in different domains,
varying across CPUs, to collect power consumptions at different levels. The package
domain allows to get the whole power consumption of the CPU (core and uncore
devices together), while core and uncore devices are represented by the pp0 and
pp1 packages respectively. In the most recent CPU architectures, it is also possible
to retrieve the DRAM power consumption, thanks to the new dram package. In
PowerAPI, we only use currently the package domain in order to represent the
overall CPU power consumption.

All the above PowerModule components are fully configurable, thanks to the Typesafe
Configuration library.7

5.4 PowerAPI’s Assemblies
Different ways are proposed for creating software-defined power meters upon needs. Firstly,
end users can assemble and build their own power meters by using our customizable and
documented API. Secondly, a CLI has been made available online and can be used for
testing or doing basic power monitoring that use default components.

An example of software-defined power meter is described in Snippet 5.5 and shows
the monitoring created for the per-process power estimation in Section 6.3.3. Such power
meter can also be created by using the CLI instead, as demonstrated in Snippet 5.6.

When possible, one can mix several PowerModule components together and get metrics
from multiple sources as demonstrated in Snippet 5.7. That allows to retrieve input data
as synchronized as possible and thus reduce the errors involved.

In order to implement the empirical approach for learning CPU power models described
in Section 4.1.1, we create a special project, called Sampling, that contains different steps.

First, this project uses the software-defined power meter for collecting data during the
workload execution for all available frequencies and different CPU load variations. Once
the collecting done, it processes all generated files to group and to split data according
to these parameters and, to be processed more easily in the next step. Lastly, the files

6https://launchpad.net/kwapi
7https://github.com/typesafehub/config

https://launchpad.net/kwapi
https://github.com/typesafehub/config
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Snippet 5.5: Code used in Section 6.3.3 to demonstrate that PowerAPI is able to achieve
accurate per-process power estimation.

object SDPowerMeter extends App {
val pspy = PowerMeter.loadModule(PowerSpyModule())
val cpu = PowerMeter.loadModule(LibpfmCoreProcessModule())

val pspyDisplay = new FileDisplay("powerspy.dat")
val cpuDisplay = new FileDisplay().perTarget()

val pspyMonitoring = pspy.monitor(All).every(250.milliseconds).to(pspyDisplay)
val cpuMonitoring = pspy.monitor("bt.C", "cg.C (1)", "cg.C (2)", "freqmine")

.every(250.milliseconds)

.to(cpuDisplay)

pspyMonitoring.waitFor(1.minute)

pspyMonitoring.cancel()
cpuMonitoring.cancel()
pspy.shutdown()
cpu.shutdown()

}

Snippet 5.6: CLI command to create the software-defined power meter described in
Snippet 5.5.

./powerapi modules powerspy \
monitor --frequency 250 --all --file powerspy.dat \

modules libpfm-core-process \
monitor --frequency 250 --apps bt.C,cg.C (1),cg.C (2),freqmine --file-per-target \

duration 60

Snippet 5.7: Code used in Section 6.1.1 to prove the performance of PowerAPI compared
to RAPL.

object SDPowerMeter extends App {
val sdPMeter =

PowerMeter.loadModule(PowerSpyModule(), RAPLModule(), LibpfmCoreModule())

val sdDisplay = new FileDisplay().perDevice

val sdMonitoring = sdPMeter.monitor(All).every(1.second).to(sdDisplay)

sdMonitoring.waitFor(250.seconds)

sdMonitoring.cancel()
sdPMeter.shutdown()

}
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from the Processing step are used together with a Regression technique for producing one
power model per frequency (represented by its coefficient).

All the above steps are detailed in Figure 5.7.

Figure 5.7: Phases used by PowerAPI to generate the power models and generate the
configuration file.
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#
powerapi.libpfm.formulae.cycles = [
  { coefficient = 18.0, formula = [91.33,3.29-8,-1.41E-17] }
  { coefficient = 19.0, formula = [91.24,3.52E-8,-1.46E-17] }
  { coefficient = 20.0, formula = [91.62,3.81-8,-1.48E-17] }
]

An example of such configuration file is described in Snippet 5.8. The JSON format
was chosen to represent the generated power models in order to be human-readable and
to be efficiently parsed at runtime.

Snippet 5.8: Example of configuration file generated by PowerAPI that can directly be
used at runtime.

{
"powerapi.libpfm.formulae.cycles": [

{ "coefficient": 18.0, "formula": [91.33,3.29E-8,-1.41E-17] }
{ "coefficient": 19.0, "formula": [91.24,3.52E-8,-1.46E-17] }
{ "coefficient": 20.0, "formula": [91.62,3.81E-8,-1.48E-17] }

]
}

This project is packaged and can be easily launched to learn a new CPU power model
in few minutes (cf. Snippet 5.9).

Snippet 5.9: Command to launch the CPU power models learning.

./bin/sampling --all collecting processing computing

Summary
PowerAPI therefore provides a flexible way to assemble software-defined power meters
upon needs. Our middleware toolkit is published as open-source software8 under AGPLv3
license to foster the wide adoption of software-defined power meters. As demonstrated
in Snippets 5.5, Snippet 5.6 and, Snippet 5.7, PowerAPI can be used in various ways

8Available from: http://powerapi.org

http://powerapi.org
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to estimate the power consumption at process, application or machine-level. Several
PowerModule components have already been implemented for the CPU, SSDs, or to
integrate external probes and thus allowing PowerAPI to be as modular as possible.
Our middleware toolkit is non-invasive and acts like a normal application on the system.
PowerAPI can scale both on the number of selected modules, the number of monitored
targets, the number of monitoring requests, and the defined monitoring frequencies. We
consider PowerAPI as a cornerstone to new energy aware scheduling [Bam+13; Bel00;
KOS16; Mog+13; Ras15], to energy-proportional computing [BH07; Kri+10; Mei+11;
Pre+15], to new kind of optimizations [Sch+14], and to a better understanding of the
power consumption drawn by a software [NRS14; NRS15; Ste13]. By establishing a clear
knowledge of usual energy leaks, we intend to identify green patterns as a methodological
guideline that can assist the developers in building energy-efficient software. Additionally,
the emergence of renewable energies is introducing the need for the development of adaptive
strategies that can cope with the sporadic nature of these energy feeds.





Part III
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In Part II, we present different approaches for learning CPU and SSD power models,
and our toolkit, PowerAPI, for building software-defined power meters. Each of the
contribution is then validated in this chapter.

The rest of this chapter is organized as follows.
We first validate our learning approaches for CPU power models in Section 6.1 and for

SSD power models in Section 6.2. We only use open-source and well-known benchmark
suites as input assets to differ with the ones used while learning, and we use the Bluetooth
power meter, PowerSpy, as a ground truth to retrieve raw power measurements. We finally
describe several applicative scenarios to demonstrate the adaptiveness and effectiveness of
our approaches for learning power models, and to be tightly coupled with PowerAPI for
providing real-time power estimation of concurrent processes in Section 6.3.
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6.1 Assessing CPU Power Models

6.1.1 Empirical Learning

First, to demonstrate that our empirical approach (cf. Section 4.1.1) is able to handle
applications with diverse loads, we start with a baseline experiment on the Intel i3 2120
processor (cf. Appendix A). We run the stress tool in combination with cpulimit1 on
a single core. Every 30 seconds, the load applied by the stress command is decreased
by 10%. In this experiment, we compare the results not only to PowerSpy, but also to
RAPL counters, which are available on recent Intel processors (since the Sandy Bridge
processor generation). Furthermore, the CPU frequency has been fixed to 1.6 GHz to
avoid measurement peaks induced by frequency switches.

Figure 6.1: Decreasing load of stress on the Intel i3 2120 processor, compared to RAPL.
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Figure 6.1 shows the results of this experiment. We see that the RAPL counters follow
the same trend than the workload, but tend to overestimate the power consumption of a
single CPU. Compared to RAPL, the learned power model provides power estimation that
is much closer to PowerSpy that we consider as the ground truth. This indicates that our
learning approach performs accurate sub-system estimation in various load scenarios, key
challenge for tracking the power consumption of everyday software on modern architectures.

We use the well-known PARSEC [BL09] v2.1 benchmark suite to evaluate our approach
in the next scenario.

PARSEC includes emerging recognition, mining, and synthesis (RMS) as well as system
applications that mimic large-scale multi-threaded commercial programs. This benchmark
suite is diverse in terms of working set, locality, data sharing, synchronization and off-chip
traffic, thus making it well-designed to stress multi-core architectures. In particular, we
report the power consumption of all benchmarks available on 2 different configurations
(cf. Appendix A).

Figures 6.2a and 6.2b report the relative error between the measured and estimated
power consumption (by aggregating the power consumption per process using Phost) on 2
Intel processors: a Xeon W3520 and a i3 2120.

1https://github.com/opsengine/cpulimit

https://github.com/opsengine/cpulimit
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Figure 6.2: Relative error distribution of the PARSEC benchmark suite on 2 Intel
processors.

(a) On the Intel Xeon W3520 processor.
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(b) On the Intel i3 2120 processor.
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Synthesis

Even though PARSEC was not included as a workload during the learning phase, one
can observe that the power estimation produced by the power models is very close to the
power measurements collected for the testbed processors. The closest method, described
in [VWT13], adopts an iterative approach to minimize the error rate to at most 5%.
However, the key limitations of their approach are i). they only consider full usage
of cores, and ii). they rely on application-specific models. Our solution is application-
agnostic, supporting both CPU- and memory-intensive workloads, and are processor-aware,
considering different models of CPUs including multi-cores, simultaneous multi-threading,
dynamic voltage/frequency scaling, and dynamic overclocking features.

While the multi-core CPU power model proposed in this section is only assessed on
Intel processors (cf. Appendix A), the approach described does not rely on any Intel-
specific extensions. Indeed, the learned power models consider processor features (HT,
SS, TB) which are also available under different names from other vendors. In particular,
AMD processors also represent a target CPU architecture for our learning approach, but
a limitation of the libpfm4 library currently prevents the access of the reference-cycles
counter to compute the frequency. Once this barrier lifted, we expect to be able to
demonstrate the validity of the approach on AMD processors with results similar to those
reported in this section.

6.1.2 Architecture-Agnostic Learning
CPU power models that are automatically learned by our architecture-agnostic approach
(cf. Section 4.1.1) for each of the 4 CPU architectures described in Appendix A. For
assessing the CPU power models, we compare the power estimation from the learned
power model with raw power measurements from a physical power meter, PowerSpy. The
readings of the power meter are collected simultaneously to the HPC events to ensure that
the data is well synchronized. As in Section 6.1.1, we use the PARSEC benchmark suite.
The set of 8 benchmarks (W ) is then split into two subsets: i). those used to learn the
CPU power model (R), and ii). the remaining ones used for the purpose of validation (E).

Given that we focus on CPU—and memory-intensive—systems, we report the power
drawn by a whole host, which is defined as follows: P = Pidle + PCP U , where Pidle
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corresponds to the static power consumption and PCP U to the dynamic power consumption
drawn by the CPU.

Intel Xeon W3520

Figure 6.3: Relative error distribution of the PARSEC benchmarks on the Intel Xeon
W3520 processor (Pidle = 92 W ).
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System configuration
This server is configured with Linux Ubuntu 14.04 (kernel 3.13).

CPU power model
The resulting CPU power model computed with the training subset of benchmarks, R4,
comprises 2 HPC events from the PMU nhm (e1 = l1i:reads, e2 = lsd:inactive):

Pidle = 92 W ; PCP U = 1.40 · e1
108 + 7.29 · e2

109 (6.1)

To assess the effectiveness of the robust ridge regression, we inspect the eigenvalues of
corresponding correlation matrix. Very low values (closed to zero, 10−3) in the resulting
matrix denote a collinearity between variables. The selected events have eigenvalues of 1.5
and 0.5, confirming the non-collinearity of the HPC events included in this CPU power
model.

Model accuracy
Our approach isolates the idle power consumption of the processor whose relationship to
TDP is defined in [Riv+07] as P ' Pidle + 0.7× TDP . Figure 6.3 reports on an average
relative error of 1.35% (1.60 W ), which improves the existing CPU power models on such
configuration [Col+15b].

Intel i3 2120

System configuration
This server is configured with Linux Ubuntu 14.04 (kernel 3.13).
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Figure 6.4: Relative error distribution of the PARSEC benchmarks on the Intel i3 2120
processor (Pidle = 30 W ).
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CPU power model
The resulting CPU power model computed with a training subset, R3, is composed of 2
HPC events from PMU snb (e1 = idq:empty, e2 = uops_dispatched:stall_cycles) and 1 HPC
event from PMU snb_unc_cbo0 (e3 = unc_clockticks):

Pidle = 30 W ; PCP U = 1.12 · e1
108 + 4.55 · e2

109 + 6.89 · e3
1010 (6.2)

Model accuracy
Although it has a similar configuration to the Intel W3520 processor described earlier, the
resulting CPU power model strongly differs. Yet, Figure 6.4 reports a relative error of
1.57% (0.71 W ), on average, which confirms the accuracy of our CPU power models for
Intel architectures.

AMD Opteron 8354

Figure 6.5: Relative error distribution of the PARSEC benchmarks on the AMD Opteron
8354 processor (Pidle = 390 W ).
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System configuration
This server is configured with Linux Ubuntu 14.04 (kernel 3.13).

CPU power model
The resulting CPU power model computed from the training subset, R3, is composed
of 3 HPC events from the PMU fam10h_barcelona (e1 = probe:upstream_non_isoc_writes,
e2 = instruction_cache_fetches, e3 = retired_mmx_and_fp_instructions:all):

Pidle = 390 W ; PCP U = −2.63 · e1
104 + 8.20 · e2 + 3.16 · e3

109 (6.3)

Model accuracy
Figure 6.5 reports on a relative error of 0.20% (0.81 W ), on average. While most of the
works in the state of the art focus on Intel architectures 2.1, the accuracy of the CPU
power model we generate for the AMD Opteron configuration assesses our capability to
cover alternative CPU architectures.

ARM Cortex A15

Figure 6.6: Relative error distribution of the PARSEC benchmarks on the ARM Cortex
A15 processor (Pidle = 3.5 W ).
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System configuration
Our last configuration is a Jetson Tegra K12 with Linux Ubuntu 14.04 (kernel 3.10).
The processor has 4 plus 1 cores on its chip, designed and optimized by NVIDIA. The 4
cores have a standard behavior, while the additional core is designed to be energy efficient.
These configurations are exclusive—i.e., we cannot use both together. By default, the 4
cores are enabled.We first use this default behavior for the purpose of validation.

CPU power model
The resulting CPU power model computed from R4 is composed of 3 HPC events from
the PMU arm_ac15 (e1 = cpu_cycles, e2 = inst_spec_exec_integer_inst, e3 = bus_cycles):

Pidle = 3.5 W ; PCP U = 1.18 · e1
109 + 1.26 · e2

1010 + 1.84 · e3
1011 (6.4)

2https://developer.nvidia.com/jetson-tk1

https://developer.nvidia.com/jetson-tk1
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Model accuracy
Figure 6.6 reports on a relative error of 2.70% (0.17 W ), on average. This error rate
has to be balanced with the low idle consumption of this CPU, compared to previous
configurations. Nonetheless, this CPU power model demonstrates that our learning
approach can also generate accurate CPU power models for embedded systems, thus going
beyond standard server settings.

Synthesis

From all the above observations, we can assess that the generated models perform well on
a variety of representative architectures, including Intel, ARM, and AMD. Our solution
does not rely on a specific processor extension (e.g.„ RAPL) and can use specific workloads
during the learning phase to build domain-specific CPU power models. On average, our
solution exhibits a relative error of 1.5% (0.8 W ), thus clearly outperforming the state of
the art.

The closest method to ours, described in [ERK06], adopts a similar approach. Indeed,
the authors build a CPU power model for the whole testbed system and use it then inside
their software, Mantis, for power estimations. Their power model is composed of 4 metrics,
the CPU utilization, the memory accesses count, hard disk data read and written, and
network I/O rates, and exhibits an error range between 0% and 15%. However, the key
limitations of their solution are that i). they use a predefined set of metrics, which can
clearly differ between architectures, ii). they use an heavy subsystem of power planes to
get the power consumption of components for their offline power modeling, and, iii). their
solution produces only power estimation for components, not at process level.

Feng and Ge [FGC05; Ge+10] describe a solution for computing the power profiles of
each component of a subsystem. A component’s power profile corresponds to its power
footprint over a period of time. Moreover, their solution allows them to get additional
insights about the code power consumption. However, this solution tends to be very
intrusive by connecting to the hardware pins to collect the power consumption of each
component, and they do not propose a proper way to estimate the power consumption of
these components.

We strongly believe that our approach is well suited to explore the space of HPC events
made available by the CPU and for profiling with accuracy the power consumption drawn
by this component.

6.2 Assessing SSD Power Models

6.2.1 Empirical Learning
As demonstrated in Section 4.2.1, our approach for learning SSD power models is able to
accurately model the sequential read and write operations. To further demonstrate the
validity of our approach in the wild, we firstly check that the learned power models is also
able to fit randomized operations. We consequently choose the filebench3 benchmark
to perform such operations. The filebench benchmark is a flexible file system and
storage workload generator that allows to use pre-defined I/O scenarios, such as web, file,
or database server, or to write specific ones upon needs. We therefore choose to write
specific scenarios in order for randomizing the classical read and write scenarios. While

3https://github.com/filebench/filebench

https://github.com/filebench/filebench
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running each scenario in isolation during 30 seconds, the CPU and SSD power estimation
provided by our power models are collected together with the raw power measurements
from PowerSpy.

Figure 6.7: Power consumption of the Intel Xeon E5-2630 host when executing the
filebench benchmark configured to perform random write and read operations (Pidle =
83 W ).
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Figure 6.7 shows the result of the workloads executed on the Intel Xeon E5-2630 host
(cf. Appendix A) with 1 SSD of 372 GB (Intel SSDSC2BX40). We observe that the
power models proposed for the sequential read and write operations are also well-suited
to accurately model the same randomized operations with relative errors of 0.58% and
0.70% respectively. While our approach uses the fio tool for performing I/O loads, we
also demonstrate that it can be used for providing accurate power estimation for another
workload. We can also mention the non negligible part of the CPU power consumption
while performing I/O operations.

We next assess the previously described power models on 5 benchmarks in comparison to
PowerSpy. We consequently choose to use iozone,4 aio-stress,5 filebench, fs_mark,6
and tiobench7 for performing various kind of operations, such as sequential read/write,
randomized read/write, file allocation/creation/deletion, etc., across a variety of I/O sizes,
threads and queue depths.

Figure 6.8 reports the median power consumption compared to the PowerSpy Bluetooth
power meter on each benchmark. As can be seen, our approach exhibits less than 1% of
relative errors and furthermore validates our empirical learning approach for SSD power
models. As previously mentioned, the CPU can have a significant impact on the power
consumption while doing I/O activities and nearly represents here 49% for the filebench
benchmark.

Synthesis

While our learning approach for SSD power models used the fio tool for performing
sequential I/O operations, we demonstrate in this section that the learned power models

4http://www.iozone.org
5http://fsbench.filesystems.org/bench/aio-stress.c
6https://sourceforge.net/projects/fsmark
7https://sourceforge.net/projects/tiobench

http://www.iozone.org
http://fsbench.filesystems.org/bench/aio-stress.c
https://sourceforge.net/projects/fsmark
https://sourceforge.net/projects/tiobench
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Figure 6.8: Power consumption of the Intel Xeon E5-2630 when executing 5 different
workloads: iozone, aio-stress, filebench, fs_mark, and tiobench (Pidle = 83 W ).

���

���

���

���

���

����

����

�
�
�
��
�

�
�
�
�
�
��
��

�

�
��
�
�

��
��
�
�

�
��
�
�

��
��
�
�

����������
���

���
��������

�
��
�
�

��������

����
���

��������

����������

������

are also able to accurately represent other kinds of operation. We further validate our
approach on 5 benchmarks that perform various kinds of I/O activity on the SSD disk
and we show that our approach exhibits less than 1% of relative error. Further validations
need to be done in order to evaluate the noise introduced by the garbage collector once
the SSD is full.

While monitoring SSD power consumption, we prove the necessity of monitoring the
CPU component, as I/O operations tend to stress the CPU. Our power models do not rely
on specific metrics and are based on 2 generic metrics, the SSD read and write bandwidths,
that can be easily computed. This approach can be used to learn any SSD disk power
model. Furthermore, if several SSDs are plugged into the system, we can easily extract
different power models that can be used at runtime for providing a single or global view of
their power consumption.

6.3 Assessing Software-Defined Power Meters
The learning and model generation approaches introduced in Section 4.1 allow to build
accurate CPU power models. All the described CPU power models are built to represent
the overall power consumption of a node. They can nonetheless be used to produce
accurate per-process power estimation when needed, thanks to the different modes exposed
by the HPC (cf. Section 6.3.2 and Section 6.3.3). From our CPU power models, we can
easily extract the idle power consumption of a node and then show its impact.

In the following sections, we define and study various applicative scenarios and, in this
process, attempt to answer specific questions regarding the effectiveness of our approach.
We use PowerAPI to build different software-defined power meters based on the CPU
power models presented in Section 6.1.2 or especially designed.

For this purpose, we address the following applicative scenarios:

AS1: Can we build CPU power models that better fit specific domains of applications?

AS2: Can we use the derived CPU power models with PowerAPI to estimate the power
consumption of any workload in real-time?
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AS3: Can we use the derived CPU power models with PowerAPI to estimate the power
consumptions of concurrent processes?

AS4: Can we adjust the CPU power model depending on an execution profile?

AS5: Does the CPU power model depend on the underlying operating system or perfor-
mance profiles?

6.3.1 Domain-Specific CPU Power Models
AS1: Can we build CPU power models that better fit specific domains of applications?

Figure 6.9: Absolute error distribution of the NPB benchmarks on the ARM Cortex A15
processor by using the PARSEC and NPB power models (Pidle = 3.5 W ).

��

����

��

����

��

����

��

����

����
����

����
����

����
����

�
���

�
���

����
����

�
�
�
�
��
��

�
�
��
�
��
��

�

����������
������������

����������

In Section 6.1, we identified applications from the PARSEC benchmark suite as
representative workloads for characterizing the power consumption of the testbed CPUs.
In particular, we focused on delivering generic CPU power models that can estimate the
power consumptions of a wide diversity of applications. However, if one knows beforehand
that a specific type of workload will be run on a node, our approach can be used to
derive domain-specific power models. As an example, we use a set of benchmarks from
the well-known NPB suite on the ARM Cortex A15 processor [Bai+91], and derive a
new power model specially for this set of applications using the approach described in
Section 4.1.2. NPB is designed to take advantage of highly parallel supercomputers and
thus the implemented benchmarks represent CPU-intense workloads.

The resulting CPU power model with the lowest average error is composed of 3 HPC
events from the PMU arm_ac15: (e1 = bus_read_access, e2 = cpu_cycles, e3 = bus_access):

Pidle = 3.5 W ; PCP U = −1.72 · e1
108 + 1.52 · e2− 5.08 · e3

109 (6.5)

In Figure 6.9, we depict the results and compare them with the original model derived
in Section 6.1.2. We can see that a domain-specific model may improve the original one
(PARSEC power model) with an average relative error of 4% (0.41 W ). In comparison, the
PARSEC power model has an average relative error of 20% (2.34 W ), which demonstrates
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the benefits of building domain-specific CPU power models. We are thus able to derive
accurate CPU power models with our approach despite the wide diversity of benchmarks.
To the best of our knowledge, our solution is the first to be open-source, configurable and
directly usable to build efficiently CPU power models without any deep-knowledge of the
underlying architecture.

6.3.2 Real-Time Power monitoring
AS2: Can we use the derived CPU power models with PowerAPI to estimate the power
consumption of any workload in real-time?

Figure 6.10: Power estimation delivered by PowerAPI in real-time (4 Hz) for SPECjbb
2013 on the Intel i3 2120 processor (Pidle = 30 W ).
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To further evaluate the applicability of PowerAPI in a real-world and multi-threaded
environment, we run the SPECjbb 2013 benchmark [SPE13]. This benchmark implements
a supermarket company which handles distributed warehouses, online purchases, as well
as high level management operations (data mining). The benchmark is written in Java
and consists of controller components for managing the applications and backends for
performing the work. A run takes approximatively 45 minutes; it has varying CPU
utilization levels and requires at least 2GB memory per backend to finish properly.

We use the Intel i3 2120 processor for this experiment with the CPU power introduced
in Section 6.1.2. Figure 6.10 illustrates the per-process power consumption, focused on the
SPECjbb process, compared to physical power measurements. We can see that our system
is capable of monitoring varying workloads with an average error of 1.6% (1.70 W ).

Regarding the monitoring frequency, PowerAPI is mostly limited by the frequency of
hardware and software sensors used to collect runtime metrics. In particular, PowerAPI
can report the power consumption of software processes up to 10 Hz when using the
libpfm4 library—i.e., limitation to accurately retrieve raw HPC values. However, by
increasing the monitoring frequency, one can observe that the stability of power estimation
is affected, that does not help to properly identify the power consumption of processes.

6.3.3 Process-Level Power Monitoring
AS3: Can we use the derived CPU power models with PowerAPI to estimate the power
consumptions of concurrent processes?
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Figure 6.11: Process-level power estimation delivered by PowerAPI in real-time (4 Hz)
on the Intel Xeon W3520 processor (Pidle = 92 W ).
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PowerAPI is an efficient toolkit that allows to build software-defined power meters
in order to perform fine-grained power estimation. We now show that our solution can be
used to estimate the power consumption on concurrent processes running on the same
CPU. For this experiment, we use the Intel Xeon W3520 processor with the power model
detailed in Section 6.1.2.

Figure 6.11 illustrates the ability to estimate with accuracy the power consumption
of several processes running concurrently. In particular, it shows the power distribution
between the idle power consumption, one benchmark from the PARSEC benchmark suite
(freqmine), and 2 others from the NPB suite (bt.C and cg.C configured to run with 2
message passing interface (MPI) processes in this experiment).

Compared to physical power measurements from PowerSpy, when running at a frequency
of 4 Hz—i.e., one report every 250 milliseconds, our solution exhibits a relative error of 2%
(2.92 W ), thus competing with the state-of-the-art solutions [Bir+05; Col+15b; CM05;
IM03]. One can also notice the effectiveness of our solution even on the NPB benchmark
suite, not used here during the learning phase.

Additionally, Figure 6.11 reports on the power consumption of PowerAPI along its
execution. The power consumption of 2 W on average confirms that our implementation
of the CPU power model has a reasonable energy footprint and is weakly impacted
by the number of processes being monitored. This footprint acknowledges the design
and the implementation of PowerAPI as a scalable system toolkit to build efficient
software-defined power meters.

6.3.4 Adaptive CPU Power Models
AS4: Can we adjust the CPU power model depending on an execution profile?

We use the 4-plus-1-core processor available on the Tegra K1 card developed by NVIDIA.
Based on the approach described above, we build different CPU power models in order
to model the different modes—i.e., when the 4 cores are enabled, or when the low power
core is used. The first CPU power model is described in Section 6.1.2 and represents the
processor power consumption when the 4 cores are in action. We are now interested in



6.3. ASSESSING SOFTWARE-DEFINED POWER METERS 65

Figure 6.12: Energy consumption of the host by using the 4-plus-1 power profiles on the
ARM Cortex A15 processor and cg.b (Pidle = 3.5 W ).
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modeling the low power core. To trustfully represent the underlying optimizations, we
therefore build a separate CPU power model for being able to distinguish the different
profiles.

For the low power core, the power model with the lowest absolute error is composed
of 3 HPC events from the PMU arm_ac15 (e1 = cid_write_retired, e2 = ttbr_write_retired,
e3 = inst_spec_exec_load):

Pidle = 3.5 W ; PCP U = 7.82 · e1 + 4.38 · e2
104 + 3.67 · e3

1010 (6.6)

This model is very different from the one presented in Section 6.1.2 as the number and
type of events differ.

To better understand the difference between both profiles, we plot the energy con-
sumption of each profile for the benchmark cg.B from NPB spawned on 4 processes in
Figure 6.12. The energy consumption is either shared between 4 cores (4c profiles) to
optimize the performance, or 1 core (1c profile) when the low power mode is enabled. One
can observe that the 4-cores profile completes 6 times faster by exploiting the parallelism
of the underlying architecture, resulting in much lower energy consumption (' 1 KJ).
The 1-core profile exhibits a low power consumption, but is penalized by the idle power
accumulating over time.

In comparison to existing solutions, these power profiles were derived automatically
without a deep expertise of the underlying architectures. Our solution is then able to
detect which mode is enabled and to adapt the CPU power model accordingly at runtime
for estimating the power consumption of software assets. Our approach therefore captures
all the features enabled on the processor to build adjusted CPU power models.

6.3.5 System Impact on CPU Power Models
AS5: Does the CPU power model depend on the underlying operating system or perfor-
mance profiles?

We already showed that the optimizations made at CPU level can have a non-negligible
impact on the power consumption. Additionally, several hardware features are controlled
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Figure 6.13: Avg. power consumption of the Intel Xeon W3520 in Ubuntu, CentOS
with default settings (Pidle = 92 W ) and CentOS with latency-performance profile
enabled (Pidle = 125 W ).
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by the operating system, such as dynamic voltage/frequency scaling or simultaneous
multi-threading.

We now show the power consumption of two popular open-source operating systems:
Ubuntu and CentOS. Ubuntu is known as user-friendly, with a huge community of
users and the philosophy of supporting a large variety of devices, from server to mobile.
CentOS is derived from the open-source version of red hat enterprise linux (RHEL)
and hence targets productivity systems that require a stable and dependable operating
system. Some very useful tools are available on this system for optimizing the hardware
and software components.

A version with Ubuntu 14.04 with a Linux kernel 3.13 and a version of CentOS 7
with a Linux kernel 3.10 were installed on the Intel Xeon W3520 server.

We use the bt benchmark from NPB suite for this experiment and we compare 3 CPU
power models. One is already described in Section 6.1.2 and represents the default settings
without any customization (U.def).

The second power model represents the default CPU settings of CentOS (C.def).
The CPU power model is composed of 4 HPC events from the PMU nhm (e1 =

uops_retired:active_cycles, e2 = uops_issued:any, e3 = ssex_uops_retired:scalar_single, e4 =
uops_retired:retire_slots):

Pidle = 92 W ; PCP U = 2.02 · e1
108 + 7.76 · e2 + 4.43 · e3 + 2.70 · e4

109 (6.7)

The third power model covers the performance optimizations provided by CentOS
(C.perf). We use the tuned-adm tool for improving performance in specific use cases and
for interacting with the power saving mechanisms. This command comes with different
tuning server profiles depending to the use of the underlying system and hardware. We
use here the latency-performance profile, which allows the operating system to reduce
drastically the latency of the system and thus to increase the performance. The CPU
power model designed for CentOS with the latency-performance profile is composed
of 4 HPC events from the PMU nhm (e1 = l1d_prefetch:triggers, e2 = uops_decoded_dec0,
e3 = fp_comp_ops_exe:sse_fp_scalar, e4 = l1i:reads):

Pidle = 125 W ; PCP U = 8.86 · e1
108 + 7.93 · e2 + 6.33 · e3 + 5.38 · e4

109 (6.8)
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The average power consumption values reported by the 3 CPU power models are shown
in Figure 6.13.

In particular, we compare the duration and the power consumption of each profile
while changing the utilization ratio of a core and increasing the number of allocated cores.
With default settings (U.def and C.def), the choice between Ubuntu and CentOS
does not impact the power consumption and none of them pulls out of the game in
terms of execution duration. However, more interesting reports are delivered when the
latency-performance profile is chosen. Indeed, when one process stresses a full core,
the power difference between the default settings (C.def) and this profile can be greater
than 20 W . The difference is partially due to the idle power consumption that represents
a non-negligible part of the power drawn by the system with this profile. Actually, the
latency-performance profile turns all cores of the processor in the C0 state, which means
that the cores are always turned on for minimizing the latency while waking up.

Moreover, one can see that the activation of the performance profile does not decrease
the execution duration of the benchmark. Hence, we can clearly target Ubuntu or
CentOS with default settings (U.def, C.def resp.) to obtain the best compromise
between performance and power efficiency.

These experiments show that the optimizations made automatically by the operating
system have to be carefully selected since it may cause power losses.

Synthesis

Several applicative scenarios have been reported in this chapter. We first show that univer-
sal CPU power models do not exist to accurately represent any domain-specific workloads
that have not been included during the learning phase. Thanks to our adaptive learning
approach, new power models can be learned to better fit the needs and requirements.
We next demonstrate the ability of PowerAPI to use the learned power models for
providing accurate per-process power estimation in real-time of a CPU-intense workload
that has not been used during the learning phase but with similar characteristics than
the input workloads. We go further by showing that our approach is not limited to only
one application, but can also be used to monitor several concurrent processes in real-time
with a low energy footprint. We illustrate afterwards that different power models can
be learned for representing different execution profiles and be automatically switched at
runtime to better represent hardware features enabled. We finally show that optimizations
made by the OS have an important impact on the power consumption and the resulting
power models, but can be easily modeled with our approach for better analyzing what
optimizations represent the best compromise between performance and energy efficiency.

Summary
In this chapter, we demonstrate the validity of our approach for learning CPU and SSD
power models. Our empirical approach for learning CPU power models exhibits an average
accuracy of 97% while our architecture-agnostic approach, 98.5%. As for our empirical
learning approach for SSD power models, it exhibits an accuracy greater than 99%. We
therefore demonstrate that our approaches are very efficient to accurately model modern
and future CPU architectures (Intel, AMD, ARM included), but also recent SSD disks.
We finally present PowerAPI as a “swiss army knife” for building software-defined power
meters with a low energy footprint (' 2 W ).
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7.1 Process-Level Power Estimation in VMs
Virtualization offers environment and performance isolation and, hence, is the basis for
many data centers and cloud management frameworks. In order to improve their energy
efficiency, such cloud management frameworks need to know the resource requirements of
the running entities.

For data center providers and users, it is particularly useful to identify which applica-
tions are the largest power consumers. However, physical power meters and components
with embedded energy sensors are often missing, and they require significant investments
and efforts to be deployed a posteriori in data centers. Moreover, these hardware facilities
usually only provide system-level or device-level granularities. Hence, software-based power
estimation is becoming an economical alternative [ODL14]. Power estimation is relatively
accurate when one has full control over the underlying hardware and detailed knowledge
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of its properties. It typically works by sampling the activity of applications and measuring
the power consumption of the whole system using hardware-specific probes.

In virtualized environments, one does not have direct access to the physical CPUs
and one can only observe the processor emulated by the virtual machine’s hypervisor.
Furthermore, the physical resources available to the emulated CPU may change dynamically
as a result of VM scheduling—a VM may run alone on some physical core(s) for some
time and later compete with other VMs—or even migrate to another host.

Current approaches providing power estimation remain poorly adapted to virtualized
environments and do not provide acceptable measures. The few existing approaches either
consider the VM as a black-box running a single application [Kan+10; KVN10], or they
require specific extensions to the hypervisor or to the host and guest operating systems
for being operational [She+13; SLB07].

The introduction of fined-grained power monitoring within virtualized environments
opens up for new scenarios.

Platform-as-a-Service (PaaS) infrastructures such as Google App Engine allow develop-
ers to create programs that run in sandbox mode [San09]. Request and database handling
is performed outside of an application in separate tasks. To isolate which application
draws the most power, it is necessary to cover each individual process. This does not
only allow for new power-aware pricing models [KOS16], but also helps to improve energy
proportional mechanisms.

In cases of dedicated cloud offers1 or nested virtualization, such as proposed by
Ben-Yehuda et al. [Ben+10], an Infrastructure-as-a-Service (IaaS) provider could offer
user-controlled hypervisors within a VM. This allows cloud users to run their favorite
types of hypervisors and VMs. However, the management of VMs in such environments
can become deeply complex and, with current solutions, makes impossible to monitor the
power consumption of a single VM at the highest level of nesting and thus prevents typical
tasks, such as resource and power provisioning. Such use cases therefore require a flexible
solution that can operate on local, nested, and distributed levels without extra efforts.

More specifically, consider a distributed setup with nested virtualization in which
we would like to track the power consumption per VM and per user in order to apply
power-aware pricing. Such setup is illustrated in Figure 7.1.

Figure 7.1: Example for BitWatts acting in a multi-tenant virtual environment.
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One VM per user can be initially started on each node, and the user can subsequently
launch additional VMs running multiple processes within the provided environment. In
such settings, it is desirable to be able to monitor the power consumption of each of the
user’s processes and VMs separately. Furthermore, as a user might operate on multiple

1https://www.ovh.com/ca/en/dedicated-cloud

https://www.ovh.com/ca/en/dedicated-cloud
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nodes, distributed monitoring of the energy consumption of all his processes is rather a
new challenge and begins to be addressed.

In this section, we describe our middleware toolkit, BitWatts, for providing such
facilities in Section 7.1.1. In Section 7.1.2, we present our communication protocol for
exchanging data between a host and its VMs. Given the new level of abstraction, we
propose a new virtual CPU power model for VMs in Section 7.1.3. We then characterize
our experimental setup in Section 7.1.4 and show the effectiveness of BitWatts, and the
virtual CPU power model, in Section 7.1.5 and Section 7.1.6.

7.1.1 BitWatts, Middleware Toolkit for VMs
Power estimation of processes running in virtualized environment is not a trivial task,
since several factors have to be considered. In particular assumption, such as the presence
of a single application running in a single VM on a single core, do not hold anymore. One
has to deal with complex scenarios with a number of VMs that may exceed the number
of physical cores and several applications that run within each VM. To cope with these
different dimensions of scaling, we designed and implemented the BitWatts middleware
framework on top of PowerAPI. BitWatts relies on a multi-tier architecture, depicted
in Figure 7.2, that shares the power consumption of the VMs running on the host to
application processes running within the VM. Since the VM does not have direct access to
the hardware, we use a fast communication interface to connect instances of BitWatts
running on the host and in the VMs. Similarly, BitWatts also supports communication
across machines using publish/subscribe communication channels to report consolidated
power estimation of distributed applications spanning multiple nodes (e.g., in a cluster).

Figure 7.2: BitWatts middleware overview.
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Our solution builds on PowerAPI, which adopts the actor programming model
as a solution that can scale with the frequency and the number of applications to be
monitored. As the BitWatts middleware framework supports process estimation in
VM-based systems, implementations of the Sensor, Formula, and Reporter actors are
assembled in different configurations on the hosts as well in the VMs (see Figure 7.3).

Additionally, to improve the accuracy of the state-of-the-art power estimation, we use
also a power model that uses libpfm4 on the host to collect raw HPC values associated
to the monitored VM process. The formula consumes the measurements collected on
the host by this libpfm sensor to estimate the power consumption of the VM process.
The resulting power estimation are next automatically published by 2 reporter actors
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through 2 different communication channels: VirtioSerial2 and in a distributed setup also
with ZeroMQ.3 The data forwarded through these channels is consumed by Sensor actors
within the VM.

Figure 7.3: BitWatts middleware implementation.
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7.1.2 Power Consumption Communication Channels
Exchanging data between instances of BitWatts requires 2 levels of communication.
Firstly, we need to exchange data between the host and the VM for estimating the power
consumption of a process within the VM. Secondly, in a distributed setup, we want
BitWatts to report the power estimation to another server, e.g., to aggregate the data
monitored on multiple physical or virtual nodes.

For the hierarchical communication between instances of BitWatts running on the
host and a VM, a lightweight transport mechanism is required to exchange messages at
high rate while crossing the VM boundaries. As we also want to choose the communication
medium with the higher bandwidth, we therefore decide de compare the traditional Socket
implementation with VirtioSerial. To assess the performance, we transfer a large file from
a host to a VM on the Intel i3 2120 server.

The results are described in Figure 7.4. Socket communication has a maximum
bandwidth of 18 KB/s approximatively whereas VirtioSerial reaches more than 100 KB/s
(5 times higher). These results are expected because VirtioSerial is directly based on the
file system and has been developed for the very purpose of inter-VM communication, while
Socket has to traverse the whole network stack. We choose consequently VirtioSerial as a
transport mechanism between a host and VMs and provides thus the performance required
to reduce the likelihood of synchronization errors of power measurements between host
and VM.

The VirtioSerial communication channel is implemented in BitWatts as a reporter
component on the host and is included inside a Sensor component inside the VM (see
Figure 7.3).

2http://www.fedoraproject.org/wiki/Features/VirtioSerial
3http://www.zeromq.org

http://www.fedoraproject.org/wiki/Features/VirtioSerial
http://www.zeromq.org
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Figure 7.4: Average bandwidth (KB/s) for communication using Socket and VirtioSerial.
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Multiple instances of BitWatts are running concurrently: one in the host, and one per
VM. For the host, the VirtioSerial reporter communicates the power consumption of the
VM process to the virtio-pci device. In the VM, the VirtioSerial sensor connects to the
VirtioSerial port and reads power consumption reported by the host through a file (detailed
in Figure 7.5). It also monitors the utilization of the application under observation and of
all processes running in the VM. The BitWatts formula (cf. Section 7.1.3) uses these
values to compute the per process-level power consumption within the VM and forwards
the result to a reporter.

In a distributed setup, we need to communicate across machines, typically to aggregate
the power measurements from distributed application components running on different
VMs and hosts. Our distributed communication channel therefore consists of a pub-
lish/subscribe system using ZeroMQ. ZeroMQ is a networking API that supports complex
messaging patterns and provides bindings for various programming languages while being
lightweight. The key component of the publish/subscribe system is the broker. It forwards
messages received from the distributed BitWatts instances to interested subscribers, for
example loggers or the monitoring console (see Figure 7.2). Messages exchanged between
BitWatts, the broker, and the subscribers are serialized using Apache Thrift,4 an efficient
interface definition language and binary serialization protocol.

Figure 7.5: virtio-pci interface in action.
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7.1.3 Virtual CPU Power Model
Unlike the architectures observed at the host level, virtual CPUs tend to be simpler:
they map physical cores to logical processors (sockets) and typically do not support any

4http://thrift.apache.org

http://thrift.apache.org
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dynamic voltage/frequency scaling, simultaneous multi-threading, or dynamic overclocking
features, as illustrated in Figure 7.6. Hence, when pinning a single-core VM on a physical
core of the host, the power consumption of a process running in the VM is proportional to
the CPU utilization of the VM on the host.

To estimate the power consumption of an application running in the VM Pvm(app),
we need therefore to know the consumption of the VM process PCP U(vm) on the host
machine, as well as the CPU utilization of the application Uvm(app) relatively to the other
applications running in the VM Uvm(total):

Pvm(app) = Pcpu(f, uc1
vm...uc

N
vm) · Uvm(app)

Uvm(total) . (7.1)

Figure 7.6: Intel i3 2120 and Intel Xeon W3520 VM topologies.
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7.1.4 Experimental Setup
The experimental setup consists of 2 types of servers (i3 and Xeon) with different hardware
characteristics, as shown in Appendix A. For the distributed setups, we use 3 identical
servers of type i3.

We rely on kvm [Kiv+07] for virtualization. kvm turns the Linux kernel into a hypervisor
without need of additional software. In addition to the typical process operating modes
(kernel space, user space) of Linux, kvm adds a guest mode for programs running in a
virtualized environment. This feature helps for measuring the CPU time used by a virtual
process.

As kvm does not perform any emulation to operating systems on various architectures,
we combine it with QEMU5 to emulate different CPU and device types. With kvm/QEMU,
the VM runs as a normal user process and is hence controlled by the Linux scheduler. By
default, the scheduler tries to keep a process on the same CPUs, notably to maximize
cache efficiency. We run kvm/QEMU with an off-the-shelf Ubuntu 13.11 on both server
types (i3 and Xeon).

We want to investigate in our experiments the accuracy and applicability of BitWatts
at different scales. Therefore, we first consider the execution of benchmarks on a single
host, with an increasing number of concurrently running VMs, for observing the impact of
VM scheduling on the host. As a first benchmark, we use PARSEC for our experiments,
as it is multi-threaded and CPU-intensive. PARSEC contains a variety of applications

5http://www.qemu.org

http://www.qemu.org
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implemented in C. We experiment with all except 2 (raytrace, ferret) that were not
readily supported by our hosts. We use the PARSEC native workload as it yields sufficiently
long execution times. We allocate 2 threads per VM, thus allowing the execution of 4
concurrent VMs on the Intel Xeon W3520 server.

Figure 7.7: Possible setup of SPECjbb (only backends are part of the evaluation).
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Then, to further evaluate BitWatts in a real-world, multi-threaded and distributed
environment, we use the SPECjbb 2013 benchmark. In our experiments, we focus on
evaluating the power consumption of the backends, since they can be scaled arbitrarily in
virtualized environments. A run takes approximatively 45 minutes.

In order to have more than one backend run on our instances of i3, we apply the
following parameter changes to the specjbb2013.conf file: we reduce the number of
customers and products to 50,000, increase the step-size, and reduce the maximum and
minimum duration for the phase 2 of the benchmark.6

Since we only have several identical servers of type i3, the SPECjbb experiments are
only executed on these machines. We compare different setups, running on 1 or 2 backends
on the host or in a VM (cf. Figure 7.7). The distributed setup consists of a controller
host and 2 virtualized or non-virtualized backend hosts (cf. Figure 7.8). Note that in
virtualized scenarios one BitWatts instance runs on the host and another one in the
VM.

Figure 7.8: Distributed SPECjbb setup.
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7.1.5 Scaling the Number of VMs
We already assessed our power models on a host machine in Section 6.1, by comparing
the power estimation of PARSEC to the values reported by PowerSpy. We first evaluate

6Note that these changes make our runs non-compliant, therefore we do not use the SPEC-specific
metrics.
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the power model, described in Section 7.1.3, by comparing the BitWatts estimation of
PARSEC running in the VM to the values reported by PowerSpy on the host. In this
experiment, PARSEC will run inside a single VM, which takes 2 cores on the host. As the
activity of the other active processes is comparably negligible, we compute the BitWatts
estimation as the sum of the power estimation in the VM with the idle power (Pidle(f)) of
the corresponding host machine.

Figure 7.9: Power consumption of the host when scaling PARSEC on multiple VMs.
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Figure 7.9 reports on the median power error observed between BitWatts and
PowerSpy. The overall PARSEC experiment resulted in roughly 10,000 power values with
a runtime of 1 hour per VM. Note that we did not pin the VM to any specific cores on the
host, hence we rely on the native kvm scheduling. When running a single VM on the host,
power estimation within the VM by BitWatts has a similar precision to that on the host
(see Section 6.1.1 and Section 6.1.2). This measure assesses that the CPU power models
we propose properly captures the guest mode used by kvm to execute the VMs on the host.

Then, given that nowadays VM-based systems tend to be consolidated to minimize the
number of active hosts [KF14], we evaluate the precision of our software-defined power
meter when scaling the number of VMs to be executed on the host. For each of the
available PARSEC benchmarks, we evaluate the median power error when scaling the
number of VMs from 1 to 4 on the Xeon server. As we do not try measure the side
effects of host over-provisioning on power, we do not exceed the number of physical cores
available on the host. The relative error reported in Figure 7.9 spans from less than 1%
(fluidanimate) up to around 10% (swaptions) with increasing errors if the cores used
by the VMs reach the number of physical cores on the host. In comparison to existing
solutions like VMeter [BC10], we are not only able to report the whole power consumptions
of VMs when multiple VMs are running, but the per-process power consumption inside
them. This experiment demonstrates that the virtual CPU power model introduced in
Section 7.1.3 holds in virtual environments, given the simplified architecture of the virtual
processor exposed by the hypervisor (see Figure 7.6).

7.1.6 Scaling the Number of Hosts
In this section, we evaluate the power consumption of a real-world application (SPECjbb)
using BitWatts. In particular, we further show the possibility of estimating workloads
on several nodes such as commonly used in cloud environments.

Table 7.1 summarizes the experiments we performed using 1 or 2 instances of the
SPECjbb backend. The controller runs on a separate host and is not part of our evaluations
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(see Figure 7.7). We use taskset tool to control the CPU affinity of the multi-threaded
backend, which we pin to 2 physical threads in the execution.

Table 7.1: Experiments performed using SPECjbb (BE: backend, VM: virtual machine, t:
threads).

Name Description
Host

1BE.2t 1 backend pinned to 2 threads
2BE.2t 2 backends, each pinned to 2 threads
1BE.4t 1 backend with 4 threads

VM
1BE.1VM.2t 1 backend, 2 threads, 1 VM
1BE.2VM.2t 1 backend, 2 threads, 2 VMs
2BE.1VM.2t 2 backends, each 2 threads, 1 VM

Distributed
1BE.4t 2 hosts, 1 backend, 4 threads

1BE.1VM.2t 2 hosts, 1 backend, 2 threads, 1 VM

As a comparison, we also run a non-pinned version of the backend on the host (using
all available threads) to the difference in resource utilization. 2 dedicated threads are
assigned to each VM.

Single node setup. Applications are usually evaluated in isolated runs. However, due
to resource sharing, process-level power estimation becomes more difficult. We further
investigate the impact of virtualization as well as interference of concurrently running
applications, first on the host and then in virtual machines.

Figure 7.10: Median power consumption for SPECjbb on an Intel i3 2120 server with
different resources assigned to a single or multiple VMs on one host.
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In Figure 7.10, we report on the median power consumption of the overall SPECjbb
run and the median relative error compared to PowerSpy.
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On the host, we run once a backend with all available threads and once pinned to 2
threads to ensure that only some of the CPU cores are used. We can see that the accuracy
is not influenced if only a part of the CPU is dedicated to a process. In this experiment,
we additionally show that we can monitor 2 processes at the same time, when running on
the host as well as within the VM. Note that we are monitoring both processes separately
and only sum up the process power consumptions for comparing to PowerSpy power
measurements. As HPC interfere when more than one process is running, the isolation
of the power consumption for each of the process is harder. This is also reflected by the
increasing median error if we monitor more than one process at the same time (e.g., when
we run 2 backends on the host or within 1 or 2 VMs).

In the case of the host running only a single backend, we are underestimating the
high-load phases (as it can be seen in Figure 7.11). In general, however, the estimation
error is below 10% and one can mention that the 2 curves follow exactly the same trend.

Figure 7.11: Power consumption during the execution of SPECjbb on the Intel i3 2120
processor with 2 threads.
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BitWatts can therefore also estimate real-world applications with load variations and
sub-system scenarios when only parts of the CPU are used. We can further observe that
virtualization does not cause power consumption overhead, as can be seen in the single
VM run with 2 backends and the 2 VMs run with one backend each. kvm is hence very
power efficient. We can finally see that the backend can use the available resources more
efficiently when it has all threads available (see 1BE.4t vs. 1.BE.2t) because the highest
possible throughput in the workloads is reached faster than when the backend has limited
resources.

Distributed setup. Placing application components in different VMs allows us to
execute across multiple hosts. We consequently extend our experiments to a distributed
setup, showing that BitWatts can be applied in realistic data center settings. Experiments
have been executed on 3 i3 identical servers as shown in Figure 7.8.

We first run 1 backend on each host, once with 4 available threads, using BitWatts.
We also execute 1 backend on 2 hosts, each with a VM and 2 threads. The reporting
interval to the broker is 1 second. Based on our observations, the contribution of the
network interface to the power consumption is very low and is mainly bound to the CPU
activity for sending data. Furthermore, the impact of disk accesses is not covered by the
SPECjbb benchmark. At the broker, the values are aggregated and forwarded to the
logger that sums the results and writes them to a file.

The results are shown in Figure 7.12.
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Figure 7.12: Median power consumption for SPECjbb on Intel i3 2120 servers for a
distributed setup, virtualized and non-virtualized.
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As expected, the absolute power consumption increases with running on 2 hosts because
we have to account for both idle values. The median error, however, does not increase
as there are instances of BitWatts on each server and they report the local values
to a broker. Furthermore, the single VM experiment shows high accuracy, although
underestimating the power consumption. Overall, results are comparable to a single host
experiment.

Summary
We showed that BitWatts performs well in various situations, notably when scaling VMs
and in distributed environments. Power consumption tend to be application dependent.
This is the reason why developers start to consider the potential energy footprint of
their software. Since the trend is to run software not only locally, but also in data
centers and clouds, additional levels of abstraction have to be considered. Based on our
architecture—and application—agnostic power models that supports the power-aware
features of modern processors, we deliver a middleware toolkit, BitWatts, to estimate
the power consumption of distributed and virtualized setups, which are commonly used in
cloud environments. We also demonstrated that our solution is accurate in most cases,
even when compared with native power measurements from PowerSpy or RAPL.

7.2 Software-Defined Power Monitoring of
Distributed Systems

The design of energy-efficient distributed systems is a challenging task, which requires
software engineers to consider all the layers of a system, from hardware to software. While
the state-of-the-art in green computing proposes solutions to increase energy efficiency at
all levels, from applications over run-time to hardware [ODL14], it remains difficult to
evaluate the power consumption of a distributed system i) spanning several—potentially
heterogeneous—nodes and ii) composing several distributed algorithms and/or protocols.
In this domain, PDUs are often shared amongst nodes to deliver aggregated power
consumption reports, in the range of hours or minutes. However, in order to improve the
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energy efficiency of distributed systems, one needs to offer novel power monitoring solutions
that go beyond the node’s granularity and at a higher frequency, therefore surpassing the
actual capabilities of PDUs [Tan+15].

To build such distributed power monitoring solutions, or software-defined power meters,
the CPU—considered as the major power consumer [ERK06; NRS15] within a node—
requires to be accurately modeled for capturing the activity of a distributed service.
Designing power models that can accurately cover the power-aware features of a CPU
(e.g., multi-threading, frequency scaling) is a complex task. We therefore build on the
expertise we developed in Chapter 4 to automatically learn the power model of the nodes
supporting the execution of a distributed system. The resulting power models are then
used to build a software-defined power meter, named WattsKit, which can report on
the power consumption of complex distributed systems by aggregating and processing in
real-time the power measurements collected from multiple hosting nodes.

As a matter of validation, we illustrate the benefits of WattsKit on the monitoring
and the analysis of the power consumption of a distributed system stack composed of
Docker Swarm, Weave, Elasticsearch, and Apache ZooKeeper, which we deploy in
a cluster of 6 nodes grouping 3 generations of CPUs (cf. Appendix A).

The remainder of this section is organized as follows. Section 7.2.1 introduces the
experimental case study of this section. Section 7.2.2 details our approach for enabling a
service-level power monitoring, while Section 7.2.3 describes the service-level power model
we proposed. Section 7.2.4 depicts the general architecture overview of our software-
defined power meter for services, WattsKit. We finally revisits the initial case study
with WattsKit in Section 7.2.5 and Section 7.2.6 by offering new perspectives on the
power consumption of distributed systems.

7.2.1 Case Study
Distributed systems are generally composed of several protocols and algorithms to im-
plement the various services that are required across the system. In this chapter, we
study a distributed system stack composed of legacy distributed services, which are widely
deployed nowadays. In particular, we consider an instance of distributed search engine
based on Elasticsearch7, which is—at the time of writing this manuscript—the most
popular enterprise full-text search engine with an HTTP web interface and schema-free
JSON documents.8

More specifically, Elasticsearch builds on Apache ZooKeeper9 to implement
the discovery and coordination services, which are required to operate in a distributed
configuration. The deployment of instances of Elasticsearch onto nodes is achieved by
Docker Swarm, which can be considered as the de facto standard for building a cluster of
Docker hosts.10 Both Elasticsearch and ZooKeeper are therefore packaged as Docker
containers and we use Weave to network and manage their network configuration.11

Figure 7.13 summarizes the deployment of this distributed system on 6 hosts composed of
1 master node (Intel Xeon W3520) and 5 slaves nodes (2 Intel Xeon W3520, 1 Intel Core2
Q6600, and 2 Intel Core2 E8400) described in Appendix A.

7https://www.elastic.co
8http://db-engines.com/en/system/Elasticsearch
9https://zookeeper.apache.org

10https://docs.docker.com/swarm/overview
11https://www.weave.works

https://www.elastic.co
http://db-engines.com/en/system/Elasticsearch
https://zookeeper.apache.org
https://docs.docker.com/swarm/overview
https://www.weave.works


7.2. SD POWER MONITORING OF DISTRIBUTED SYSTEMS 81

Figure 7.13: Overview of the distributed search engine based on Elasticsearch.
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Given the distributed nature of each of these services (Elasticsearch, ZooKeeper,
Swarm, Weave) and their entanglement due to respective dependencies, monitoring
and analyzing the power consumption of individual services is a particularly tedious task.
For example, Figure 7.14 illustrates the measurements reported by a PDU physically
connected to each node of the cluster (cf. Figure 7.13). In this experiment, we deploy
and sequentially stress each of these services by running the ZooKeeper benchmark12

and Yahoo! Cloud Serving Benchmark (YCSB)13 [Coo+10] while logging the power
consumption per node reported by the associated PDU. In particular, we run the update
heavy workload (Workload A) of YCSB, which has a mix of 50/50 reads and writes. An
application example is a session store recording recent actions. We complete the scenario
by killing sequentially each node of the cluster to observe the impact of nodes’ leaves on
the distributed system’s behavior.

If one can observe some variations in the power consumption of individual nodes, it
remains difficult to analyze how this power consumption is distributed across services
(and not hosts). Furthermore, the heterogeneity of nodes (Intel Xeon W3520, Intel Core2
Q6600 and E8400), which is the rule in modern production systems, complicates the power
analysis due to the diversity in idle powers and CPU power features (HT, TB, etc.). One
therefore needs to manually tag the nodes to services and to ideally find the relevant
scenarios that isolate the execution of services in order to obtain a better insight on their
individual power consumption, in order to identify potential energy leaks or optimize the
whole system’s configuration.

We therefore introduce WattsKit as a solution to this key limitation and we propose
in particular to introduce a modular approach to monitor—in real-time—the power
consumption of all the services involved in a distributed system. In the following sections,
we first define and assess a service-level power model before revisiting the above case study
with our solution.

7.2.2 Enabling Service-Level Power Monitoring
To deliver service-level power measurements, our approach consists in tracking the power
consumption—per node—of the system processes associated to the services of a given
distributed system before aggregating these power measurements at the scale of the cluster.

12https://github.com/brownsys/zookeeper-benchmark
13https://research.yahoo.com/news/yahoo-cloud-serving-benchmark

https://github.com/brownsys/zookeeper-benchmark
https://research.yahoo.com/news/yahoo-cloud-serving-benchmark


82 CHAPTER 7. SAAS-LEVEL POWER ESTIMATION

Figure 7.14: Power consumption of the distributed search engine based on Elasticsearch.
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Achieving such process-level power measurements therefore requires a software-defined
power meter as physical power meters are limited to the boundaries of nodes and hardware
components. For example, Intel’s RAPL fails to support this process-level granularity.14

Given the diversity of nodes and services, we further decide to extend the empirical
learning approach described in Section 4.1.1 for handling the service-level granularity.
Unlike the state-of-the-art in this domain [ZA12], our power model is service-agnostic,
which means that it can be used to track a wide diversity of distributed systems. Once
defined, this power model can therefore be used in production by WattsKit to monitor
the power consumption of the individual services composing the distributed system in
real-time.

To build this service-level power model, we adopt a bottom-up approach, therefore esti-
mating the power consumption of the instances of the services running on the hosting nodes,
before aggregating them into a service-level power model. Regarding network-intensive
workloads, we have previously demonstrated in [NRS15] that the power consumption
of network-intensive systems were dominated by the activity of the CPU spent on I/O
operations. By carefully modeling such I/O operations, we are able to deliver accurate
estimations of both memory-intensive and network-intensive workloads (cf. Section 6.1.1).

7.2.3 To a Service-Level Power Model
As described in Section 4.1.1, we are able to first model the power consumption of a
node as the sum of its idle power consumption and the consumptions of its individual
processes that are running on it. Given the power aware features already available in
modern processors, we demonstrate in Section 6.1.1 that our approach is able to accurately
estimate the dynamic power consumption of a node by using HPCs as input metrics for

14https://01.org/rapl-power-meter

https://01.org/rapl-power-meter
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the power models. The empirical learning approach is therefore used to generate the power
models per type of node, resulting in 3 different configurations (cf. Appendix A) for our
case study.

Once the node-level power models are inferred and deployed, we can define the service-
level power model as:

Pservice(s) =
∑

n∈N(s)

∑
p∈Pn(s)

P dyn
n (p) (7.2)

where Pservice(s) aggregates all the power measurements for each instance p of the service
s running on the set of hosting nodes n.

The learning phase is an offline process that is realized when a new node is deployed
into the cluster. This phase is therefore the only one where a PDU is required to be
connected to the node since the resulting power models are intended to be integrated
into the instances of software-defined power meters in order to offer a finer monitoring
granularity than physical PDUs.

The following sections describe the integration and the assessment of this service-level
power model within WattsKit.

7.2.4 WattsKit, a Software-Defined Power Meter for
Distributed Services

We build WattsKit on top of PowerAPI and we pair the libpfm module (cf. Section 5.3)
with a remote instance of an InfluxDB database, as described in Figure 7.15.

Figure 7.15: Software-defined power meter built with WattsKit.
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In this section, we revisit the case study introduced in Section 7.2.1 to offer a new
perspective on the power consumption of the distributed services deployer as part of this
system, thus overcoming the limitations previously described.

As part of this validation, we deploy WattsKit as a Docker container, which runs along
the other services we previously deployed as containers (cf. Figure 7.16). This configuration
only differs from Figure 7.13 by unplugging the physical PDUs, which are replaced by the
WattsKit containers running on each node and an instance of the InfluxDB time-series
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database15 running on a third-party node.16 WattsKit is configured to automatically
monitor all the containers deployed within a node with a sampling frequency of 1 Hz.
While WattsKit can use Swarm and ZooKeeper to coordinate the deployment and
the execution of software-defined power meters on the nodes, we decided to disable these
features to avoid any side-effect on the power consumption analysis of these distributed
services.

Figure 7.16: Overview of the experimental deployment of WattsKit.
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All the power measurements aggregated by the instance of InfluxDB can be easily
queried from any client application, like InfluxDB CLI or Grafana,17 to monitor,
explore and analyze the power consumption of the distributed services in real-time. In the
following sections, we execute the same benchmarks as in Section 7.2.1 and we introduce
new perspectives on the distribution of power consumption per service and across nodes.

7.2.5 Monitoring the Service-Level Power Consumption
We start by delivering, in Figure 7.17, a new view focusing on the service-level power
consumptions, independently of the nodes hosting instances of these services. This view
reports on the overall power consumption of the distributed system, masking the idle
power consumption of nodes as well as other systems running within the cluster. Within
this distributed system, one can observe the limited impact of Swarm and Weave on
the power consumption of the cluster along the execution, while Elasticsearch and
ZooKeeper can be considered as particularly power-consuming services. Beyond the
peaks of activity due to the execution of the ZooKeeper and YCSB benchmarks, one can
also observe that each of these services exhibits some residual power consumption along
the scenario to maintain their distributed state. More generally, ZooKeeper imposes
a larger energy footprint than any other distributed services, consuming 49.27% of the
distributed system, due to the consensus algorithm it implements [JRS11]. Additionally,
when sequentially killing the nodes, one can observe the energy impact of running the
leader election process (at t = 630 sec. and t = 670 sec.).

Additionally, we also report in Figure 7.17 on the power consumption of WattsKit.
One can observe that the overhead of WattsKit is reasonable (4 W on average for the

15https://influxdata.com
16The backend services of WattsKit can be deployed within the cluster or on any remote node.
17http://grafana.org

https://influxdata.com
http://grafana.org
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Figure 7.17: Monitoring the distribution of the power consumption of a distributed system
in a cluster.
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whole cluster) and constant along the execution. WattsKit can therefore be considered
as a relevant and cheap alternative to physical PDUs by providing an accurate and
fine-grained power meter for distributed services.

7.2.6 Analyzing the Power Consumption Per Service

By taking a closer look to individual services composing the distributed system, we can
also use WattsKit to zoom in the power consumption analysis of one of these services.
In particular, we report in Figure 7.18 on the distribution of the power consumption
of ZooKeeper across the nodes that we use for its deployment. This perspective on
ZooKeeper illustrates that the power consumption of such a service is distributed but
not equally balanced across the nodes. It also illustrates that the nodes 5 (zk1) and 4
(zk3) are running the two leader elections we identified towards the end of the scenario.

This granularity of power consumption understanding was particularly difficult to
achieve using the coarse-grained power measurements (cf. Figure 7.14) and WattsKit
clearly advances the state-of-the-art with respect to that. In particular, we believe that
WattsKit can help software engineers to better understand the energy footprint of
their services once deployed in production, thus investigating potential optimizations in
order to minimize this impact. WattsKit can also benefit to system administrators by
investigating the impact of the configuration parameters exposed by the individual services
on the power consumption of the distributed system.
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Figure 7.18: Analyzing the distribution of the power consumption of ZooKeeper across
nodes.
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Summary
We presented a software-defined power meter, WattsKit, for monitoring the power
consumption of distributed systems. Such software power meters provide an accurate
alternative to dedicated hardware systems or embedded probes by estimating power
consumption in the large—i.e., at the granularity of services running across several nodes.
With WattsKit, we cross the boundaries of physical hosts and we provide an estimation
of the power consumption of applications spanning several (or virtual) machines.

Thanks to the learning approach we describe in Section 4.1.1, we extend the learned
power model for services that conciliates the heterogeneity and the complexity of modern
processors. This power model runs in WattsKit without hardware support or system al-
terations to accurately deliver power estimation. To the best of our knowledge, WattsKit
is the first approach to provide such an accurate service-level power model.

This power model is exploited within an instance of software-defined power meter,
which can be deployed across the nodes of a cluster to monitor the power consumption of
distributed systems in real-time. It is noteworthy that the proposed solution can be scaled to
multiple services and nodes, depending on the complexity of the environment. We evaluated
the applicability of WattsKit on 3 processor architectures, and we demonstrated that it
performs well for different kinds of distributed protocols and algorithms we considered.

The code of WattsKit is freely available as open-source.18

18http://wattskit.powerapi.org

http://wattskit.powerapi.org
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In the previous chapters, we built several software-defined power meters and described
few approaches for better understanding by which software systems and/or services the
energy is consumed. However, these tools and approaches are thus limited to debug or
monitor the software’s energy consumption, thus lacking of precision trying to optimize
software. We therefore claim that a finer level of energy monitoring is required to
understand how the power is really consumed by a software. This fine-grained level of
power monitoring will allow to find out the root cause of energy leaks and thus helping
developers to improve their software energy-efficient. As the software-level is not enough
acute, we therefore need to go one step further and thus leveraging source-code level power
optimization. Such level of power estimation requires in-depth analysis and remains a
challenging task. It is particularly tedious to scale down the upper level (node or software)
to the lowest level (source-code) of power monitoring. Such level requires a complete
analysis to understand how the source-code of a software is crossed and to therefore find
out its contribution to the overall energy consumption.

We therefore propose an approach, codEnergy, for leveraging source-code level power
monitoring and paving the way for future software energy optimizations.

The remainder of this chapter is organized as follows. Section 8.1 describes our
approach, codEnergy, for analyzing the energy consumption at the source-code level.
Section 8.2 demonstrates the lightness of our approach while monitoring source-code at
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high rate. Section 8.3 finally reports on a case study that analyzes the energy distribution
of methods in a well-known in-memory storage solution, redis.

8.1 codEnergy, In-Depth Energy Analysis of
Source-Code

Figure 8.1: General overview of the proposal for analyzing the energy distribution of
software methods.
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Figure 8.1 depicts the overall architecture of our approach for proposing an in-depth
energy analysis. The remaining of this section describes the underlying components of our
approach, named codEnergy, and follows a common theme—i.e., the energy analysis of
redis. redis is a well-known open-source in-memory key-value data structure storage
solution. To be efficient and reliable, redis only works with data in memory, that can
be persisted on disk. Different strategies are available for persisting data and one has
to choose between dumping the data every once a while, or to log each command to a
file. Upon starting, redis automatically loads the dump inside the memory, or replays all
commands read from log. Different modes of execution are proposed and redis can be
configured to automatically shard data between nodes.

8.1.1 codAgent, the Runtime Observer
The codAgent is a non-intrusive program that is attached to a target application for
collecting runtime code-level metrics. As OProfile1 and gprof2 do, our agent uses
statistical sampling to retrieve which method is currently being called. Both of these tools,
when configured at high sampling rate, allows to get the distribution of the code executed
while running.

While OProfile uses HPC for triggering the samples and recording all the symbols
involved when calling a method, gprof uses special system calls that are only limited to
the current monitored process. In other words, the first tool provides a general overview
and helps to know whether the bottlenecks occur in the kernel or inside external shared

1http://oprofile.sourceforge.net
2https://sourceware.org/binutils/docs/gprof

http://oprofile.sourceforge.net
https://sourceware.org/binutils/docs/gprof
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libraries whereas the second one can not. That is why our approach mimics the behavior
of OProfile and we therefore made the choice to use HPC as best input metrics to trigger
samples.

Firstly, our agent is attached to an external program, thanks to the ptrace3 system
call that allows to observe the execution of another process. This approach does not
require any instrumentation of the target program and therefore does not affect its runtime
performances (cf. Section 8.2). Thanks to the libpfm library, an interruption is triggered
when a given HPC reaches a configured threshold. This threshold is then directly linked to
the sampling rate that will allow to get a representative distribution of the code executed.
Our agent then catches the triggered interruption to retrieve current HPC values and to
build the current local call graph. As demonstrated in Section 6.1.1, we therefore select
the unhalted cycles HPC for accurately represent the activity of a given application.

Whereas the OProfile tool builds statistical call graph, which means inferring which
method are calling which, our approach is able to compute the real call graph in real-time.
Thanks to the libunwind4 library, we unwind the stack from the current frame and retrieve
the raw address informations. We use next the libdwarf5 library for converting these
addresses into human-readable names. The call stack is then dynamically built and linked
to the raw HPC values collected when the interruption was triggered.

Given we need an efficient mechanism to serialize structured data for forwarding
them to the codEctor component, we therefore choose the protobuf library to serialize
messages.6. We then define an universal Payload message that can be read by both codAgent
and codEctor components. This message will be later used by the second component
for code-level power estimation (cf. Snippet 8.1). The Payload message contains all the
informations we can monitor when an interruption is caught.

Snippet 8.1: Payload message definition.

syntax = "proto2";

option java_package = "org.powerapi.module.libpfm";
option java_outer_classname = "PayloadProtocol";

message MapEntry {
required string key=1;
required uint64 value=2;

}

message Payload {
required uint32 core=1;
required uint32 pid=2;
required uint32 tid=3;
required uint64 timestamp=4;
repeated MapEntry counters=5;
repeated string traces=6;

}

3http://man7.org/linux/man-pages/man2/ptrace.2.html
4http://www.nongnu.org/libunwind
5https://www.prevanders.net/dwarf.html
6https://developers.google.com/protocol-buffers

http://man7.org/linux/man-pages/man2/ptrace.2.html
http://www.nongnu.org/libunwind
https://www.prevanders.net/dwarf.html
https://developers.google.com/protocol-buffers
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We choose Unix domain sockets as an efficient communication mechanism for sharing
data between our components (cf. Section 7.1.2).

8.1.2 codEctor, the Code-Level Software-Defined Power Meter
As described in Figure 8.2, the codEctor component is a software-defined power meter built
on top of PowerAPI that collects raw informations about the applications that have
been attached by a codAgent. It first creates an Unix domain socket server and will be
consequently used by each codAgent to establish a connexion—i.e., via the ControlSocket.
Once the connexion established, new server sockets will be created for parallelizing the data
sending via DataSockets. When a Payload message is available, the codEctor component
uses the internal mechanisms of PowerAPI to convert raw informations into power
estimation. We then use the raw values that come from the unhalted cycles HPC to
estimate the software’s CPU power consumption, and we instantaneously capture the SSD
power consumption we attach to the method that triggered the interruption. Consequently,
our codEctor is not limited to some hardware components and can be easily extended
upon requirements. As our approach uses samples—i.e., we capture informations when
an interruption is caught—to limit the overhead, the codEctor component builds upon
each local view sent by codAgent to aggregate the power consumptions over the time—
i.e., several methods can simultaneously be executed in different threads. Consequently,
each estimation only represents the net power consumption of a method without its
dependencies—i.e., we assign the power consumption to methods that have been on top
of a call stack. Estimation are next forwarded in real-time to the codData component.

Figure 8.2: Overview of the codEctor architecture.
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8.1.3 codData, the Storage Solution
codData is responsible for storing all data sent by the codEctor component into a remote
InfluxDB7 instance. A time-series database is then used to store all power estimation
per method and application. As an application can be run more than once, a software
execution is automatically tagged and can be easily found while querying. The codData
component can be queried on demand to learn the energy usage of a software.

7https://influxdata.com

https://influxdata.com
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Figure 8.3 represents the results while querying the power consumption over the time
of the flushAppendOnlyFile method from a redis execution. Each row associates the tick
origin of the interruption in nanoseconds, the core id where the method was running, the
CPU and SSD power estimation, the method name, and the tag described above. As
several methods can be run simultaneously via threads or forks, the results can be stacked
to represent the power consumption over the time. Thanks to the InfluxDB technology,
we can automatically aggregate data by time interval and thus directly get the required
stacked view.

Figure 8.3: Data registered for the flushAppendOnlyFile method of a redis execution while
querying the InfluxDB service.

InfluxDB Admin UI: v0.13.0 Server: v0.13.0

Query:

Generate Query URL  Query Templates 

redis-3.2
time core cpu disk method run

2016-09-

09T08:15:17.448239312Z

"17" 10.445936463533945 0 "main.aeMain.aeProcessEvents.serverCron.flushAppendOnlyFile" "1"

2016-09-

09T08:15:19.299096414Z

"5" 10.730727465557258 0.00009328159434418604 "main.aeMain.aeProcessEvents.serverCron.flushAppendOnlyFile" "1"

2016-09-

09T08:15:20.053375624Z

"0" 8.94972313517977 1.35094136193024 "main.aeMain.aeProcessEvents.serverCron.flushAppendOnlyFile" "1"

2016-09-

09T08:15:27.4528765Z

"3" 10.669291749261038 0 "main.aeMain.aeProcessEvents.serverCron.flushAppendOnlyFile" "1"

2016-09-

09T08:15:29.242090599Z

"3" 8.984367807515524 2.992311367011443 "main.aeMain.aeProcessEvents.serverCron.flushAppendOnlyFile" "1"

2016-09-

09T08:15:31.150812862Z

"7" 11.666517489199805 2.134118121493278 "main.aeMain.aeProcessEvents.serverCron.flushAppendOnlyFile" "1"

2016-09-

09T13:09:32.212459388Z

"26" 7.468072014064183 0 "main.aeMain.aeProcessEvents.serverCron.flushAppendOnlyFile" "2"

select time, core, cpu, disk, method, run from "redis-3.2" where method ='main.aeMain.aeProcessEvents.serverCron.flushAppendOnlyFile' order by time

8.1.4 codVizu, the Visualizer for Code Energy Distribution

Figure 8.4: Sunburst chart available via codVizu for a redis execution.

CPU
DISK

codVizu is our built-in web application that queries the codData component and builds
dynamic charts of software energy distribution. We first propose an interactive chart
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to representing the software energy distribution by method over each of its runs. We
choose to use a Sunburst chart as the best representation to graphically describe the energy
distribution through methods and the relationships between them. The central inner circle
represents the root method of a program, while the others moving outwards represent the
hierarchy from parent to children methods. Each method has its own unique color and we
apply a different pattern filling for each hardware component. Rings are sliced and each
angle is proportional to the energy consumed by the underlying method. The Sunburst
chart allows the user to get a general overview of the software energy distribution and can
be considered while trying to target optimizations at code-level (cf. Figure 8.4).

Figure 8.5: Streamgraph chart available via codVizu for a redis execution.
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It is sometimes useful to get deeper insights by observing the energy distribution over
the time. We decide then to create a dynamic Streamgraph chart that belongs to the
family of stacked area charts. This kind of chart replaces the traditional way to plot
values against fixed axis by using a varying baseline and displays changes over the time
by using organic shapes for each displayed category. The size of the shape represents the
importance of the associated value at each given time t. The benefits of such interactive
diagrams are described in [BW08; HHN02]. This Streamgraph is tightly coupled with the
Sunburst and uses the same colors and patterns (cf. Figure 8.5).

Thanks to the D3.js8 library, all these charts are dynamics and interactives. Users
can go deeper in the call graph by zooming into the charts while clicking on a method
from the Sunburst chart.

codVizu is available online and is freely available via Github Pages.9 Github Pages
uses jekyll as internal engine to statically build the website. A local website can be thus
easily deployed for testing purpose or privacy issues.

Summary
All the components especially designed for codEnergy have been packaged as Docker
containers and can be thus easily configured and deployed upon requirements. The code
of the described components is available online.10

As depicted in Figure 8.1, all these components are tightly linked together. To
summarize, codEctor creates an Unix socket server and actively waits connexions ( 1 , 2 ).
Once a codAgent is attached to an application, it sends basic informations—i.e., PID,

8https://d3js.org
9Freely available at: http://spirals-team.github.io/codEnergy/charts

10Available from: http://codenergy.powerapi.org

https://d3js.org
http://spirals-team.github.io/codEnergy/charts
http://codenergy.powerapi.org
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name, label etc.—via sockets for starting the monitoring, and waits interruptions ( 3 ).
New Unix socket servers are created for being exclusive to the target application ( 4 ),
and codEctor listens to trigger the computation of new power estimation ( 5 ). When an
interruption is caught, the codAgent component dynamically retrieves the call stack of the
attached program and runtime informations—i.e., core id, TID, PID, HPC values, and
serializes data to forward them via sockets ( 6 ). codEctor uses the serialized data read from
sockets to trigger new power estimation that will be sent to the codData component ( 7 ).
codData will be queried upon needs via a CLI, or will be used by codVizu for displaying
software’s energy usage distribution ( 8 ).

8.2 codEnergy’s Overhead

Figure 8.6: Impacts of codEnergy on the power consumption and time completion of a
fio workload while decreasing the codAgent’s threshold.
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As previously described, codEnergy uses statistical sampling for retrieving data—i.e.,
informations are retrieved once a threshold is reached and an interruption based on it is
caught. Our approach being fully configurable, the codAgent’s threshold can be changed
upon requirements. Indeed, as we used the unhalted cycles HPC as input metric for
the threshold, an interruption is only triggered once the software has reached a certain
CPU activity. This threshold has to be carefully configured according to the type of the
target software.

As a lower threshold means potentially a higher number of interruptions, we first check
the effectiveness of our approach while decreasing it. We use the fio tool to define an
heavy I/O workload. We already demonstrate in Section 4.2 that any I/O activity leads
to a certain CPU activity.
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The results of the experiment are shown in Figure 8.6. As a matter of a comparison,
the normal execution of the workload is graphically represented at the leftmost part of the
chart (respectively named -). Different thresholds are tested (200M, 100M, 50M, 25M)
to show the evolution of the overhead that can be induced by codEnergy. As one
can mention, the overhead of our approach is very low and only represents 1% of power
consumption increase when using 25M as threshold (respectively 165 interruptions over 70
seconds). One can also see that the median power consumption while using the thresholds
200M and 100M is lower than the default one. We can explain these results because it is
impossible in the facts to get exactly the same power consumption for several runs of an
application. We therefore consider that the overheads of codEnergy, configured with
200M and 100M as thresholds, are almost non-existent. While the number of interruptions,
ranging from 14 to 165, increases as the same time as the thresholds, ranging from 200M to
25M, the impact of codEnergy in the target program remains very negligible, although
the number of interruption is 12× higher.

These results confirm the efficiency of our approach for retrieving critical runtime
informations for later code-level power estimation.

The remainder of this section covers a case study analyzing the energy distribution of
a well-known in-memory storage solution, redis.

8.3 Study the Methods Energy Distribution of
redis

codEnergy allows to analyze the software energy distribution over methods and therefore
allows to find out which methods are the most energy consuming. However, it is still
tedious to compare different executions together (cf. Figure 8.4 and Figure 8.5) and
thus finding out the code changes that may positively or negatively impact the energy
consumption. We therefore propose an extension to the codEnergy approach for allowing
direct energy comparison between programs and executions. As an example, one may
want to use this extension for checking if a patch correctly fixes an energy leak.

This extension is available online and allows to choose which software systems and
versions to compare.11 For perception reasons, we therefore choose to generate dynamic
horizon charts that have already been considered as an efficient solution by the research
community [PVF13]. Horizon charts allow to drastically reduce the vertical space used for
displaying time series by combining position and color gradients. This kind of charts can
be thus used to better display a large number of time series in parallel and to improve the
readability.

As codEnergy builds dynamic charts upon needs, we consequently use the cubism12

javascript library which is fluently used by the community.
In the remaining of this section, we use this extension to compare the energy evolution

of 2 releases of redis and different configurations.

8.3.1 Comparing the Energy Evolution of redis Over Versions
We choose in this section to compare 2 different versions of redis, the first and last
releases—i.e., versions 2.2 and 3.2, respectively. The version 2.2 has been released in 2011,

11http://spirals-team.github.io/codEnergy/compare
12https://square.github.io/cubism

http://spirals-team.github.io/codEnergy/compare
https://square.github.io/cubism
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Figure 8.7: Energy comparison of methods between redis (2.2) and redis (3.2).
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while the most recent one in 2016. A lot of patches have been proposed and merged by the
community for adding features and improving performances (more than 4,000 commits).
We therefore decide in this section to compare them for finding out energy improvements
or deteriorations.

To benchmark redis, the developers already include redis-benchmark as the official
benchmarking tool. The redis-benchmark tool simulates N clients configured to send
M requests. Each client simulates chosen existing commands (PING, SET, INCR, LPUSH,
LRANGE, etc.) and therefore loads the server with realistic scenarios.

For this experiment, we use redis-benchmark to create 50 clients that will send 10, 000
commands each. Each redis instance are configured with the default parameters and we
force each instance to flush data on disk every second (described as the best compromise
between speed and data safety in the documentation).

The energy comparison of the version 2.2 and 3.2 is detailed in Figure 8.7. While a
green gradient depicts a positive energy impact—i.e., the old version (1) consumes much
power than the new one (2), the red one show an energy leakage. The darker the color,
the higher the impact. Thanks to Javascript, the horizon charts are interactive and power
consumptions are dynamically displayed while crossing the time series over the time. For
clarity reasons, some methods have been removed in the charts.

As expected, one can observe a lot of energy variations, making the comparison
difficult, but several insights can nevertheless be extracted. First of all, it confirms that
the redis server has been clearly evolved since the first release. Indeed, several methods
were not implemented in the version 2.2 (je_arena_ralloc, je_huge_ralloc, je_pages_purge,
aofChildWriteDiffData, writeToClient, etc.), while the others have not been sampled by
our approach (sendReplyToClient) because of different execution models. Secondly, we
can see major energy improvements over versions in readQueryFromClient, sdscatlen, and
flushAppendOnlyFile methods. We can make the assumption of a better management of
requests and replies, and I/O operations. However, while the energy efficiency of sdscatlen
were improved (≈ 12 W on average), the energy efficiency is worse for the sdsnewlen
(≈ 24 W on average), thus mitigating these improvements.
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Figure 8.8: Energy comparison of methods between 2 configurations of redis (3.2) while
sending acks after each command or after 50 commands respectively.
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8.3.2 Comparing the Energy Impacts of redis Configurations
redis acts like a TCP server that uses a client-server mode and adopts a Request/Response
protocol. By default, each command sent by a client is then acknowledged by the server.
As an example, if a client sends the command INCR, the server will answer with the
incremented value of the selected variable. In most cases, the server and clients are
connected over the network. Whatever the network latency is, the request packets have to
be transferred from client to server, and the reply packets from server to client. The time
required to transfer these packets is called round trip time (RTT). Higher is the RTT,
less the number of requests processed per second by the server is important. To increase
performance, one needs to have the lowest possible RTT.

For this purpose, the Request/Response protocol of redis can be configured by the
client to send multiple commands and to read replies in a single step once executed. This
principle is called pipelining and is widely used in many POP3 protocol implementations.

We therefore use the redis-benchmark, described in the previous experiment, to send
a bunch of commands and to pipeline 50 commands before replying. We use the same
parameters and the same commands as the previous section.

The energy impacts between the classic and the pipelining modes are described in
Figure 8.8. As the previous experiment, several methods were not sampled during the
runtime acquisition (e.g., readQueryFromClient, sdscatlen, je_arena_realloc, ...). We can
explain this behavior because the runtime executions are not exactly the same because of
configuration changes. However, we can clearly observe energy savings in the writeToClient
method (≈ 25 J). These energy improvements are therefore expected and are due to a
fewer number of replies sent to the client.

Summary
In this chapter, we propose an approach, codEnergy for analyzing the energy consump-
tion at source-code level. Our approach is composed of several components. The first
component, codAgent, uses statistical sampling to retrieve critical runtime informations
(metrics, call stack, etc.) and sends the acquired data via sockets to our code-level
software-defined power meter, codEctor. Once data collected, codEctor is able to estimate
the power consumption of the call stack for the CPU and SSD hardware components. The
power estimation are then stored inside the codData component for later use. codVizu
will be requested on-demand to display interactive charts on a website. We demonstrate
the effectiveness and the lightness of our approach by exhibiting an overhead of 1% in
the worst case. Thanks to the case study describes on redis, we therefore believe that
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our approach will be used for finding out the most power consuming methods and thus
guiding the developers. By allowing direct energy comparison of the energy distribution of
software methods in codVizu, developers can test different energy bug fixes or different
configurations and thus improve their software energy footprint.
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In this manuscript, we describe 3 techniques for learning power models of CPU and
SSD hardware components. In addition, we present PowerAPI, our middleware toolkit
for building software-defined power meters “à la carte”, thus allowing energy monitoring of
concurrent running applications in multi-core architectures. Several approaches/tools have
been proposed on top of PowerAPI for, i). leveraging SaaS-level power estimation for
virtualized environments and distributed services, ii). analyzing the source-code energy
distribution of a software system. This thesis leverages several new exciting research
opportunities.

The remaining of this chapter is organized as follows. We summarize this thesis in
Section 9.1 by discussing the challenges and the goals addressed. Section 9.2 describes our
contribution. We finally present short-term ideas in Section 9.3, while Section 9.4 presents
long-term research directions.

9.1 Summary of the Dissertation
The research community has been intensively investigating the design of power models by
considering different components, characteristics, workloads and regression techniques.
Nevertheless, the state-of-the-art in this area demonstrates that the proposed power models
are mostly based on assumptions that prevent their reuse in other execution contexts and
their deployment at scale. We therefore propose different automatic learning techniques
that can be used by the community for accurately learning the power models of the CPU
and SSD components.

To foster the adoption of power models, we describe our middleware toolkit solution,
PowerAPI, for assembling software-defined power meters “à la carte”. PowerAPI
allows to propose fine-grained power estimation at system-level, component-level and
software-level, thus allowing developers to better analyze the energy efficiency of their
solution.

99
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Among the deployment of virtualized environments and the need to find critical
indicators to drive power capping heuristics, state-of-the-art solutions only provide coarse-
grained power estimation, typically treating the VMs as a black-box. However, these
solutions are not suitable in common scenarios while considering that VMs host multiple
applications for cost and energy savings. To outcome these limitations, we propose
BitWatts that leverages process-level power estimation in VMs.

Monitoring and analyzing of a distributed system spanning several nodes becomes par-
ticularly tedious when aiming at a finer granularity than observing the power consumption
of hosting nodes. While state-of-the-art fails to deliver such level of power estimation, we
propose WattsKit, a dedicated software-defined power meter to be at the forefront of
per-service energy monitoring solutions.

Finally, to further guide developers to develop energy-efficient software, one need to
have a deeper level of power estimation. However, the few existing solutions remain
invasive and are not suitable for common usage scenarios. For this purpose, we propose
codEnergy, an approach for leveraging source-code level energy analysis.

9.2 Contributions
The contributions of this thesis are summarized as follows:

Learning Power Models Automatically. We introduce 3 approaches that can auto-
matically learn the power models for CPU and SSD hardware components. 2 learning
techniques are proposed for the CPU. Inspired by the state-of-the-art, we select
the HPC as input parameters for our power models. The first technique—i.e., the
empirical method—uses predefined HPCs extracted from the state-of-the-art: the
unhalted-cycles and reference-cyles. Contrarily to the first approach, the second
one—i.e., the architecture-agnostic method—does not use an a priori knowledge and
rather automatically find the most correlated HPCs with the power consumption.
The empirical method for CPU power models is adapted for the SSD component
and we rather use OS statistics as input metrics for the power models. All of these
learning techniques follow the same principles. The targeted hardware component is
stressed with publicly available workloads. During the stress, we gather the selected
metrics with the power measurements that come from an external power meter. Once
collected, the values are injected inside various regression techniques to compute the
power models.

[Col+15b] M. Colmant, M. Kurpicz, P. Felber, L. Huertas, R. Rouvoy, and A. Sobe.
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[Col+16] M. Colmant, R. Rouvoy, M. Kurpicz, P. Felber, A. Sobe, and L. Sein-
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Perform. Eval. Comput. Syst. (ACM TOMPECS) (2016).
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[CRS15a] M. Colmant, R. Rouvoy, and L. Seinturier. “Estimation de la consom-
mation des systèmes logiciels sur des architectures multi-coeurs”. In:
Conférence d’informatique en Parallélisme, Architecture et Système
(Compas). 2015.

[CRS17] M. Colmant, R. Rouvoy, and L. Seinturier. “codEnergy: an Approach
For Leveraging Source-Code Level Energy Analysis”. In: To be chosen.
2017.

Building Software-Defined Power Meters “à la carte”. We propose, PowerAPI,
our middleware toolkit for assembling software-defined power meters. We define a
software-defined power meter as a software solution that can be used for estimating
the power consumption of processes, software systems or system with minimal
hardware investments. PowerAPI therefore implements the described learning
techniques and can be thus used for automatically learning the CPU and SSD power
models. Once learned, these power models can be used in PowerAPI for defining
accurate and various software-defined power meters, thus allowing to foster their
wider adoption. We built several software-defined power meters in this thesis for
learning power models or monitoring purposes (Section 4.1, Section 4.2, Section 6.1,
Section 6.2, etc.). PowerAPI is published as open-source software1 under AGPLv3
license thus promoting its adoption by the research and development communities.

[Col+15b] M. Colmant, M. Kurpicz, P. Felber, L. Huertas, R. Rouvoy, and A. Sobe.
“Process-level Power Estimation in VM-based Systems”. In: Proceedings
of the 10th European Conference on Computer Systems (EuroSys). 2015.

[Col+16] M. Colmant, R. Rouvoy, M. Kurpicz, P. Felber, A. Sobe, and L. Sein-
turier. “The Next 700 CPU Power Models”. In: ACM Trans. Model.
Perform. Eval. Comput. Syst. (ACM TOMPECS) (2016).

[CRS14] M. Colmant, R. Rouvoy, and L. Seinturier. “Improving the Energy
Efficiency of Software Systems for Multi-Core Architectures”. In: Mid-
dleware 2014 Doctoral Symposium. 2014.

[CRS15a] M. Colmant, R. Rouvoy, and L. Seinturier. “Estimation de la consom-
mation des systèmes logiciels sur des architectures multi-coeurs”. In:
Conférence d’informatique en Parallélisme, Architecture et Système
(Compas). 2015.

Leveraging SaaS-Level Power Estimation. The learned power models, together with
PowerAPI, can further be used to estimate the power consumption at different
levels. In this contribution, we demonstrate the ability of PowerAPI to estimate
the power consumption of concurrent running applications. With the emergence
of data centers, it is particularly useful for providers and users to identify which
applications are the largest power consumers within such environments. With this
aim in mind, we propose BitWatts, a fine-grained software-defined power meter for
virtualized environments. BitWatts can be directly deployed upon existing data
centers and be used to estimate the software power consumption through all levels
of virtualization. To further promote PowerAPI as the middleware to use for all
energy studies, we propose WattsKit, a built-in software-defined power meter to

1Available from: http://powerapi.org

http://powerapi.org
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allow the power monitoring of distributed systems. WattsKit therefore helps to
consider all energy layers while designing an energy-efficient distributed systems.

[Col+15b] M. Colmant, M. Kurpicz, P. Felber, L. Huertas, R. Rouvoy, and A. Sobe.
“Process-level Power Estimation in VM-based Systems”. In: Proceedings
of the 10th European Conference on Computer Systems (EuroSys). 2015.

[Col+17] M. Colmant, R. Rouvoy, M. Kurpicz, P. Felber, A. Sobe, and L. Sein-
turier. “WattsKit: Software-Defined Power Monitoring of Distributed
Systems”. In: To be chosen. 2017.

Leveraging Source-Code Energy Monitoring. To better understand how the power
consumption can be distributed among software assets, we propose a novel approach,
codEnergy. codEnergy is an efficient and non-invasive approach that helps the
developers to analyze the software energy distribution through its methods. For
this purpose, it creates dynamic and interactive charts that can clearly assist the
developers to find out the most power consuming method in the large. Once found,
developers can optimize their application and then directly compare the differences
between 2 versions by using codEnergy. codEnergy contributes a cornerstone to
better energy analysis and optimizations, thus making software more energy efficient
in the future.

[CRS17] M. Colmant, R. Rouvoy, and L. Seinturier. “codEnergy: an Approach
For Leveraging Source-Code Level Energy Analysis”. In: To be chosen.
2017.

9.3 Short-Term Perspectives

Defining a New Scheduler for Saving Energy in Cloud Data
Centers
This topic is introduced as the most advanced perspective related to this thesis as it is
currently under conference proceedings [Hav+ar]. In this paper, we propose to extend
the classic scheduling problem that can occur while provisioning resource-intensive jobs in
data centers. However, such scheduling fails for services, and more particularly system
containers, when the required resources are not known in advance. To address this
limitation, we propose a framework, GenPack, for better scheduling containers in cloud
data centers. GenPack leverages its strengths from generational garbage collection
and monitors the runtime containers to dynamically learn their requirements for later
scheduling decisions. The underlying scheduler manages several generations of servers
to better place containers upon needs. All the machines can be turned-off (turned-on
resp.) according to the load and thus saving (increasing resp.) energy. Coupled with
PowerAPI for energy monitoring issues, we demonstrate that GenPack is able to be
up to 23% more energy-efficient than the classic scheduling policies.

[Hav+ar] A. Havet, V. Schiavoni, P. Felber, M. Colmant, R. Rouvoy, and C. Fetzer.
“GENPACK: A Generational Scheduler for Cloud Data Centers”. In: IEEE
International Conference on Cloud Engineering (IC2E). 2017. (To appear).
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Leveraging Distributed Source-Code Energy Monitoring
We describe in Chapter 8 an approach for estimating the power consumption at source-
code level and thus providing a complete view of the energy consumed by an application.
This approach has been assessed on local applications—i.e., not spread among several
machines—but can be used with few modifications on distributed applications. Indeed, we
first design the components of this approach as Docker containers that ease its deployment
across nodes. We already demonstrate in Section 7.2 the ability of PowerAPI to monitor
such distributed services. We therefore claim that codEnergy can be extended to
distributed applications, thus leveraging distributed source-code level power monitoring
and analysis. Such finer level of power monitoring implies new challenges. As an example,
one can mention that a method call can trigger remote calls across nodes. To address this
problem, we would like to explore different learning techniques for trying to infer such
implicit calls. To the best of our knowledge, codEnergy will be the first solution to
leverage this level of power monitoring granularity.

Extend codEnergy to Other Programming Languages
As codEnergy is currently limited to C-family programs. Indeed, we do not have
already a solution to retrieve the call stack of a program that uses the just-in-time (JIT)
compilation. Once this barrier lifted, we therefore believe that this approach can easily be
extended to other languages with few modifications. Indeed, only the codAgent component
will evolve according to the proposed solution.

Self-Optimization of the Power Models in a Cluster
Another short-term research directions could be to optimize the previously described
learning phase once applied to a cluster of nodes. As demonstrated in 7.2, we already
propose a software-defined power meter to monitor distributed services among nodes of a
cluster. The software-defined power meter uses the learning techniques described in this
thesis to learn the power model of each heterogeneous node. These power models are next
used to propose an accurate view of the power consumption of each distributed services.
Among other things, the learning approaches require a power meter to retrieve power
measurements that can be correlated with the input metrics. That means that a power
meter can potentially be required on each node and thus requiring important hardware
investments. Furthermore, it will be time consuming to use few power meters and to
share manually the power models between homogeneous nodes. We therefore believe in an
approach that can continuously learn the power models of a node and dynamically spread
them to the nodes that share the same architecture. This solution will then only imply
few power meters—i.e., one per type of node, and therefore limiting the cost of hardware
investments.

Turning-off Nodes of a Cluster during Inactivity Periods
As shown in this thesis, the idle power consumption represents a large part of the overall
power consumption of a machine. If we consider that the nodes among a cluster are always
turned on and not used 24 hours a day, the total amount of the energy consumed while
idling is therefore non-negligible. We believe in an approach that can cleverly learn the
activity periods when the nodes are used or not, and thus inferring usage models that can
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be later used to anticipate the overall load and turn-on/turn-off the number of required
nodes. This approach could used the Wake-On-Lan network protocol to remotely act on a
given node. It will therefore save a lot of energy during periods of inactivity.

9.4 Long-Term Perspectives

Proposing a Wider Energy Cartography of a System
We already demonstrate the scalability of our learning approaches by generating accurate
power models for the CPU and SSD hardware components. In the future, these approaches
could be extended to automatically learn per-component power models of a system (e.g.,
RAM, Network). To this end, PowerAPI will be able to pick up and to use synthetic
workloads from a common dictionary that can trustfully represent the activity of each
available component. To have the best fitted power models, we therefore think to propose
incremental learning approaches that can set things right if the errors are too hight and
therefore create new power models. These approaches could be fully integrated by default
in modern operating systems and thus directly exposing different views of power estimation
from the ProcFS virtual filesystem. With such solutions, we thus pave the way for
the spreading of PowerAPI as a transparent software power estimation tool directly
integrated inside the OS.

The Power Rising of GPU cards
GPU components are more and more specialized, powerful, and are now able to replace
the processor for several complex tasks. GPU cards already integrate hardware power
saving mechanisms as modern CPU architectures do (e.g., the DVFS feature [Abe+12;
Mei+13]). For this purpose, a deep understanding of the similarities shared with modern
CPU architectures have to be done before adapting the learning approaches proposed in
Chapter 4. Among other things, one can mention the presence of specific NVIDIA GPU
HPC2 that can already be used. The above learning approaches, coupled with specific
GPU-intensive workloads, may possibly be used to learn GPU power models. The future
approach will have to be compared to the few existing power models proposed by the
state-of-the-art [HK10; Len+13].

Using Genetic Programming to Improve the Energy-Efficiency
at Source-Code Level
As shown in Chapter 8, we already provide a wider cartography of the energy distribution
of software methods, thus helping developers to identify the most power consuming
methods. Once identified, one needs to optimize them, thus leading to energy decrease or
improvements. We already identified a technique used by Chen et al. [CV16] that needs
to be further explored. The authors use the genetic programming principles for mutating
code with predefined mutation operators (e.g., sign conversion, commutativity, merge).
Among the conclusions drawn by the authors, they already demonstrate the benefits of
this technique. Coupled with developer tools, such as Eclipse or IntelliJ, we therefore
believe that is a valuable solution for helping developers to better optimize their software.

2https://developer.nvidia.com/nvidia-perfkit

https://developer.nvidia.com/nvidia-perfkit
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Defining Solutions to Automatically Optimize the Software
Energy-Efficiency
Amongst the energy monitoring solutions and specific optimizations that can already be
applied on software, one may want to propose automatic and integrated solutions. Several
solutions have already been published and need further analysis. As an example, we
can mention the post-compiler method, proposed in [Sch+14], to optimize non-functional
properties of assembly programs—i.e., by considering energy instead of time or binary size.
Other methods are interesting to consider energy issues during compilation [Chi+11]. Some
other directions are also taken and propose to generate identical (in term of functionalities)
applications [All+15; Bau+14], or to use approximate computations [SR16].
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Appendix A
Hardware Architectures

This chapter is an in-depth description of the hardware used inside this manuscript.

Table A.1: Examples of PMUs detected for 5 processors from 3 manufacturers, including
numbers of generic counters and available events.

Manuf. CPU PMU # Generics # Events

Intel

Xeon hsw_ep 4 418
E5-2630 v3 hswep_unc_cbo0 4 190

Xeon nhm 4 338
W3520 nhm_unc 8 176

i3 2120
snb 4 336
snb_unc_cbo0 2 19
snb_unc_cbo1 2 18

AMD Opteron fam10h_barcelona 3 4218354

ARM Cortex arm_ac15 6 67A15

Table A.1 describes the PMU available on the testbed CPUs together with the associated
number of generic events and the number of available events. It can varies considerably
across architectures and even among CPUs of the same manufacturer.

Table A.2 reports on the configuration of 5 Intel processors, 1 AMD processor and 1
ARM processor that exhibit different type of architectures and different features.
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xii APPENDIX A. HARDWARE ARCHITECTURES

Table A.2: Processor architecture specifications.
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