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Abstract
In recent years Systems Biology has become a rich field of study, trying to encompass all

the information that has become available thanks to the new high-throughput techniques of
biologists.

Fifteen years ago, a fundamental breakthrough was the publication of Kurt Kohn’s map
of the cell cycle control in mammals. Its similarity with electronic circuits was crucial in both
making it impossible for humans to comprehend fully, and in prompting the use of formal
methods.

Since then however, the networks built by biologists and modellers have continued grow-
ing bigger, filled with more and more mechanistic details, especially recently acquired post-
transcriptional information, but lacking most of precise kinetic data. Because analysis tech-
niques providing dynamical insights mostly rely on complete kinetic information, what was
challenging for the human ten years ago is now a challenge even for computers,

In this manuscript we will try to give an account of our work of the last twelve years,
centered around the question of model. We will define more precisely what this object is,
formally, and try to handle the challenges raised by the ever growing amount of data, and
corresponding size of models developed in Systems Biology. Our main focus will be the links
between the structure and dynamics of those models, seen as means to use several formal
methods, like Constraint Programming, to reason on their dynamics. Because of the size issue
we will also discuss the question of model reduction, and the related relationships between
models, formalisms and interpretations.

The discrete nature of the structure underlying a model might seem opposed to the con-
tinuous dynamics often associated via differential equations to that model. Nevertheless, we
hope to demonstrate that the gap between those two views is quite artificial, and that recent
results offer very promising perspectives to bridge it.
Keywords : Systems biology, Petri nets, Constraint Programming, Abstract Interpretation,
Model-Checking.

Une perspective structurelle
sur la dynamique des systèmes biochimiques

Résumé
La Biologie des Systèmes est depuis peu devenue un domaine de recherche florissant qui

tente de tirer parti de toutes les informations que les techniques à haut débit des biologistes
ont rendues disponibles.

Il y a une quinzaine d’années, la publication de la carte du contrôle du cycle cellulaire
des mammifères par Kurt Kohn a été une avancée fondamentale. Sa similarité avec un circuit
électronique est cruciale dans l’impossibilité pour des humains de l’appréhender complètement
mais aussi dans l’idée d’utiliser pour cela des méthodes formelles.

Cependant, depuis cette carte, les réseaux construits par les biologistes et modélisateurs
ont continué à croître, enrichis de détails mécanistes de plus en plus précis, en particulier
des informations post-transcriptionnelles acquises récemment, mais sans données cinétiques
précises. Or les méthodes d’analyse qui fournissent des informations dynamiques s’appuient
principalement sur une information cinétique complète, par conséquent, ce qui était un défi
pour l’humain il y a dix ans l’est devenu pour l’ordinateur aussi.

Dans ce manuscrit nous allons tenter de donner une idée de notre travail des douze der-
nières années, centré autour de la notion de modèle. Nous allons définir plus précisément, et
formellement, cet objet, et essayer de répondre aux défis liés au foisonnement des données et
à la croissance des modèles de Biologie des Systèmes. Notre approche est fondée sur les liens
entre structure et dynamique d’un tel modèle, ces liens permettant d’utiliser de nombreuses



méthodes formelles, comme par exemple la programmation par contraintes, pour raisonner
sur la dynamique de ces objets. Le problème de la taille nous amènera par ailleurs à envisa-
ger les questions de réduction de modèle, mais aussi de liens entre modèles, formalismes et
interprétations.

La nature discrète de la structure qui sous-tend un modèle peut sembler opposée à la
continuité de la dynamique qui lui est souvent associée via des équations différentielles. Ce-
pendant nous espérons démontrer que cette séparation est essentiellement artificielle, et que
les résultats récents offrent des perspectives prometteuses de la réduire.
Mots-clefs : Biologie des systèmes, réseaux de Petri, Programmation par Contraintes, Inter-
prétation Abstraite, Model-Checking.
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Research is the process of going up
alleys to see if they are blind.

Marston Bates
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I would first like to point out that most of the work presented in this thesis has
already been published. Furthermore, it is usually common work with several of my
colleagues, François Fages my former Ph.D. advisor and leader of the team, but also
Ph.D. students and interns that spent some time in the LIFEWARE team and also
researchers from other institutions.

I thus decided to compile these results, not as a compendium of novel research, or
as a proof of the amount of work I did by myself, but rather with the aim to share a
perspective upon this emerging body of work. I intend to shed a new light on some
of these articles and to show how all the issues they tackle happened to be on a single
path, mine.

Indeed, I will journey through different research areas, all related to the quite fuzzily
defined field of Systems Biology, but that might seem very different at first sight. No-
tably:

• Model-Checking;

• Constraint Programming;

• Petri-Nets structural analysis;

1



2 Context – Systems Biology and Modelling

• dynamical systems’ steady-state analysis, S-Systems and Chemical Reaction Net-
work Theory;

• Abstract Interpretation and typing;

• graph morphisms;

• Ordinary Differential Equations.

The message that I would like to convey is that the field of Systems Biology, through
its constant feed of knowledge and data, is always at the edge of the qualitative and
quantitative worlds. The models, usually based in the qualitative world, if only by their
original nature: a drawing, never cease to grow bigger and bigger, encompassing more
and more knowledge. On the other hand, the hope of biologists is to match what has
recently become a huge amount of quantitative timed data to those models.

These purposes seem quite different: the more qualitative information you include,
the more quantitative measurements are necessary to fit your model, the race never ends.
However to reconcile them, one can take insight in the advice of the computer scientist
that a model, whether qualitative or quantitative, should always be the smallest that
can answer the question at hand.

This idea, though it might seem contradictory with both the knowledge-storing mod-
eler and the data-greedy biologist, leads to an interesting remark: when a full quantita-
tive model is out of reach, e.g., through lack of precise kinetic data for some reactions or
compounds, its structure might be detailed enough to provide the required information
about its dynamical behavior, validating (or not) the experimental data.

All the work I present here, all the use I make of the techniques mentioned above, is
guided by this idea: extracting from the rich structure of the big models key informations
allowing the modeller to reason on their dynamical behavior. In other words relating
the structure of biochemical models and their dynamics.

1.1 Context – Systems Biology and Modelling

Wikipedia defines Systems Biology as follows:

Systems biology (also known as Systeomics) is the computational and math-
ematical modeling of complex biological systems. An emerging engineering
approach applied to biomedical and biological scientific research. Systems
biology is a biology-based inter-disciplinary field of study that focuses on com-
plex interactions within biological systems, using a holistic approach (holism
instead of the more traditional reductionism) to biological and biomedical
research.

The focus is therefore on an integrative approach, and the tool chosen to realize this
integration is the model that represents the system under study, as opposed to the single
species (protein, molecule, etc.) that was the classical object of interest.

http://en.wikipedia.org/wiki/Systems_biology
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1.1.1 What is a model?

The precise definition of what a model really is has eluded me since my focus shifted from
the well-defined world of logics to that of Systems Biology about ten years ago. Does
changing the value of a given parameter or initial value in a system of ODEs representing
some biochemical network make it a new model? Does changing the kinetic law of some
enzymatic reaction from Michaelian to Hill create a new model? Does the quasi-steady-
state approximation and the corresponding simplification change the model? What if
only the names given to compounds change?

Working with biologists and modellers involves learning that there is no clear defini-
tion of what a model is, where it starts, nor where it ends. Since the (Wikipedia) def-
inition of Systems Biology involves some computational and mathematical approaches
however, there is, each time, the need to formalize a model, to decide what is part of it
and what is not.

We were lucky to be able to rely on the development of the Systems Biology Markup
Language (SBML) [42] as a Nature Publishing Group endorsed standard for models.
Nevertheless, especially in its recent Level 3 incarnation, it has become clear that it
tries to encompass many kinds of models and to avoid making choices that would ex-
clude anything. SBML can now encode both logical models à la Thomas, and flux-based
models for balance analysis, on top of state-transition systems, reaction-based continu-
ous and stochastic models, etc.

1.1.2 Simple Biocham Modelling Language

In this manuscript, we will focus on the subset of SBML that was at its origin, i.e.,
reaction systems. A model will therefore be, at its core, a set of reactions between
biochemical species.

From the SBML Frequently Asked Questions:

“A common abstraction used when describing cellular phenomena is to describe the
system as a set of chemical entities linked by processes (reactions) that can transform
one entity into another or transport entities between compartments.”

This focus on reactions is shared by the BIOCHemical Abstract Machine
(BIOCHAM), our modelling software [2, 26]. Though another crucial component of
a BIOCHAM model is the specification of its behavior, this thesis will assume that by
model we intend to describe the reaction system, and therefore that core-SBML and
core-BIOCHAM are mostly interchangeable as formats to describe a model. Section 1.2
will give more details about the formalisms used, including SBML, BIOCHAM but also
bipartite graphs and Petri nets.

Note that we will also avoid adding powerful constructs like events, though they
exist both in SBML and BIOCHAM. Indeed, they add a huge expressive power and
allow a direct representation of hybrid systems [3] like those resulting from some of the
methods we will expose (e.g., see Section 3.3), but this is usually at the expense of a
gap between the structure and the intended semantics of the model.

http://sbml.org/Documents/FAQ


4 Context – Systems Biology and Modelling

1.1.3 A picture is worth one thousand words

Through our collaborations with biologists from INSERM, CNRS or INRA, as well as
from our reading of the modelling articles in biology, we have observed that modellers
rely often on a drawing to represent, informally, their knowledge about the system they
are about to model. From big maps like that of Kohn [46] (see Figure 1.2) to simple
graphs like the six variable cell-division model of John Tyson [62] displayed in Figure 1.1,
everything starts with a drawing.

Proc. Nati. Acad. Sci. USA
Vol. 88, pp. 7328-7332, August 1991
Cell Biology

Modeling the cell division cycle: cdc2 and cyclin interactions
(maturation promoting factor/metaphase arrest/weel/cdc25)

JOHN J. TYSON
Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

Communicated by David M. Prescott, May 20, 1991 (receivedfor review January 23, 1991)

ABSTRACT The proteins cdc2 and cyclin form a het-
erodimer (maturation promoting factor) that controls the major
events of the cell cycle. A mathematical model for the interac-
tions of cdc2 and cyclin is constructed. Simulation and analysis
of the model show that the control system can operate in three
modes: as a steady state with high maturation promoting factor
activity, as a spontaneous oscillator, or as an excitable switch.
We associate the steady state with metaphase arrest in unfer-
tilized eggs, the spontaneous oscillations with rapid division
cycles in early embryos, and the excitable switch with growth-
controlled division cycles typical of nonembryonic cells.

Passage through the cell cycle is marked by a temporally
organized sequence of events including DNA replication,
mitosis, and the appearance of certain cell-cycle specific
proteins and enzymatic activities (1). In most populations of
proliferating cells, the processes ofgrowth and division occur
simultaneously and are coordinated by some mechanism that
monitors the nucleocytoplasmic ratio of a cell and triggers
cell division at a characteristic value of this ratio (2-4). In
contrast, during oogenesis the developing egg accumulates
great quantities of maternal cytoplasm while undergoing a
reductive nuclear division, so the nucleocytoplasmic ratio
becomes abnormally small. After fertilization the developing
embryo undergoes many cycles of DNA synthesis and nu-
clear division in the absence of cell growth, to bring the
nucleocytoplasmic ratio back to values typical of somatic
cells. The division cycles of an early embryo are extremely
rapid (30 min in frog embryos) until the midblastula transition
(MBT) (5, 6). Furthermore, if the nucleus is removed from a
fertilized frog egg, the enucleated cell continues to undergo
periodic cortical contractions at 30-min intervals, as if it were
trying to divide (7). Enucleated sea urchin eggs even undergo
cleavage and develop into abnormal blastulas (8). As Mazia
(9) puts it, the cell cycle is really a cell "bicycle;" the two
wheels are the growth cycle and the division cycle, which
normally turn in a 1:1 ratio but may turn independently.
The mitotic cycles in both embryonic and somatic cells

appear to be controlled by the activity of an enzyme, matu-
ration promoting factor (MPF), that peaks abruptly at meta-
phase (10-14). MPF is a heterodimer composed of cyclin (Mr
= 45,000) and a protein kinase (Mr = 34,000) (15, 16). The
protein kinase is sometimes called p34, in reference to its
apparent molecular weight, and sometimes called cdc2, in
reference to the gene (cdc2) that codes for the protein in fission
yeast.
The interplay between cyclin and cdc2 in generating MPF

activity is understood in some detail (see Fig. 1) (10-14).
Newly synthesized cyclin subunits combine with preexisting
cdc2 subunits to form an inactive MPF complex. The com-
plex is then activated, in an autocatalytic fashion (17), by
dephosphorylation at a specific tyrosine residue of the cdc2
subunit (18). Active MPF is known to stimulate a number of
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FIG. 1. The relationship between cyclin and cdc2 in the cell
cycle. In step 1, cyclin is synthesized de novo. Newly synthesized
cyclin may be unstable (step 2). Cyclin combines with cdc2-P (step
3) to form "preMPF." At some point after heterodimer formation,
the cyclin subunit is phosphorylated. (Assuming phosphorylation is
faster than dimerization, I write the two-step process as a single step,
rate-limited by dimerization.) The cdc2 subunit is then dephospho-
rylated (step 4) to form "active MPF." In principle, the activation of
MPF may be opposed by a protein kinase (step 5). Assuming that
active MPF enhances the catalytic activity of the phosphatase (as
indicated by the dashed arrow), I arrange that MPF activation is
switched on in an autocatalytic fashion. Nuclear division is triggered
when a sufficient quantity of MPF has been activated, but concur-
rently active MPF is destroyed by step 6. Breakdown of the MPF
complex releases phosphorylated cyclin, which is subject to rapid
proteolysis (step 7). Finally, the cdc2 subunit is phosphorylated (step
8, possibly reversed by step 9), and the cycle repeats itself. aa, amino
acids; -P, ATP; Pi, inorganic phosphate.

processes essential for nuclear and cell division (13, 14). At
the transition from metaphase to anaphase, the MPF complex
dissociates, and the cyclin subunit is rapidly degraded (15,
19-21). Then the cycle repeats itself.
MPF dissociation and cyclin proteolysis are necessary to

complete the mitotic cycle: metaphase arrest of unfertilized
eggs corresponds to steady high levels of active MPF, and
fertilization releases the egg from metaphase by stimulating
the breakdown of the active MPF complex (10). In early
embryos, the cycle ofMPF activation and deactivation seems
to be controlled by the synthesis of cyclin (21, 22), although
some evidence suggests that posttranslational events may be
rate-limiting (12, 23). In any event, the cycle continues even
in the absence of DNA synthesis (24). In somatic cells, by
contrast, cyclin synthesis is not sufficient to activate MPF,
and the MPF cycle is dependent on cell growth and periodic
DNA synthesis (12). In fission yeast, activation of the MPF
complex is controlled by at least two other gene products:
weel, an inhibitor of MPF, and cdc25, an activator (25, 26).
These two proteins apparently monitor the nucleocytoplas-
mic ratio in the yeast cell and activate MPF at a critical value

Abbreviations: MPF, maturation promoting factor (also called
M-phase-promoting factor); MBT, midblastula transition.
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Figure 1.1: Figure 1 of [62], typical of the way many modellers describe the system they
are studying.

Quite naturally, when the question of computational tools arise, the tendency is to go
towards nice-looking tools offering little if any analytical feature at all, like CellDesigner
(www.celldesigner.org), or tools that can interoperate with it but mostly rely on basic
graph-theoretic concepts like Cytoscape [58] and its BiNoM plugin [64].

Indeed, the formalization of such a drawing can be captured as a model with the
meaning given above, but as a structural model, i.e., a model without any kinetic informa-
tion. Unfortunately, one might conclude that then, the available formal/computational
analyses are restricted to notions like simple paths and first or second order neighbor to
have an idea of what is happening in the model. When biologists do not have the full
kinetic data, they give up completely on any dynamical analysis of their network.

This is definitely not satisfactory and the works presented in this thesis, notably in
Chapter 2, show that it is not a necessity either since the structure of the model already
contains a lot of information about its possible dynamics.

www.celldesigner.org
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1.1.4 Size is a growing issue

Fifteen years ago, a fundamental breakthrough was the publication of Kurt Kohn’s map
of the cell cycle control in mammals [46]. Its similarity with electronic circuits (see for
instance Figure 1.2) was crucial in both making it impossible for humans to comprehend
fully, since it represented about 500 different compounds involved in about 800 reactions,
and in prompting the use of formal methods [8].

Figure 1.2: A part of Kurt Kohn’s map of the mammalian cell cycle control [46]

Since then however, the models built by biologists and modellers have continued
growing bigger and bigger, filled with more and more mechanistic details, especially
recently acquired post-transcriptional information, but lacking most of precise kinetic
data. For instance, the average BioModels’ entry now1 contains more than 450 com-
pounds and about the same number of reactions, more than tenfold what it was in
2005 when BioModels was started. The biggest models have thousands of species and
reactions, see Section 3.2 for some examples. The extreme has become the norm, and
therefore, what was challenging for the human ten years ago is now a challenge even for
computers: analysis tools either fail to scale to big models with hundreds of reactions
and compounds, or fail to provide any dynamical insight when full kinetic information
is not available. This defines our main challenge: to take into account the size and

1As of September 16th 2014, the 28th release of the BioModels database (see http://www.ebi.ac.
uk/biomodels-main/static-pages.do?page=release_20140916)

http://www.ebi.ac.uk/biomodels-main/static-pages.do?page=release_20140916
http://www.ebi.ac.uk/biomodels-main/static-pages.do?page=release_20140916


6 Preliminaries - Reaction models as bipartite graphs

lack of information of current biochemical models and nevertheless bring forward some
analyses of their dynamical behavior. This will also prompt our use of the structure of
the models, not only for Model-Checking, as was originally done in BIOCHAM [25, 26],
but also for reducing models to a more manageable size using Constraint Programming
in Chapter 3.

1.1.5 From qualitative to quantitative

Another common trend in Systems Biology is the multiplication of tools and formalisms
to analyse models. This is both very positive on the methodological side and a little bit
puzzling for the unexperienced modeller.

In Chapter 2 we present recent results on necessary conditions for the multistationar-
ity of a system, i.e., its ability to present homeostasis. The different steady states might
for instance correspond to the possible outcomes of cell differentiation. These results
already rely on some link between the structure of a model and its continuous dynamics
via the influence graph corresponding to the Jacobian matrix. Chapter 4 goes further
in that direction by rendering explicit the formal relationships between the different
semantics given to a model, from boolean to continuous or stochastic, and even the
influence graph seen as a type. This goes to demonstrate the role of backbone that the
structural model plays, with respect to the different views of the system, and partially
explains how it is possible to deduce so much information (conservation laws, existence
of multiple steady states, etc.) purely from a naked structural model.

The next section will provide some reminders on the different formalisms used
throughout this manuscript.

1.2 Preliminaries - Reaction models as bipartite
graphs

Starting from the inspiring use of the π-calculus in [54] to model signaling pathways in
a cell, there has been a large amount of work around process calculi and of their stochas-
tic extensions [29, 52] to formalize biochemical interactions. These stochastic versions
allowed to link with the usual mathematical biology view of a system of ordinary differ-
ential equations (ODEs). However most of these formalisms only bring simulation tools
to the modeler. On the other hand, the modeling of gene-regulatory networks through
influence graphs along the work of Thomas [61] provides more global analyses, like the
existence of cyclic attractors, but often impossible to use for large post-transcriptional
regulation networks.

The Biochemical Abstract Machine [26] (http//lifeware.inria.fr/BIOCHAM/)
was built as a simplification of the process algebras, using instead a rule-based language
focused on reactions to describe biological systems. This point of view is shared with
all the Systems Biology Markup Language (SBML) [42] community (see for instance
databases like reactome.org, KEGG [44] or biomodels.net) and enables the exchange
of models but also, as we shall see, the possibility to reason at different levels on a
same model. BIOCHAM also adds the use of Temporal Logics as a second formalism

http//lifeware.inria.fr/BIOCHAM/
reactome.org
biomodels.net
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to encode the expected or observed properties of the system, from a purely qualita-
tive view to a completely quantitative one. This allows us to automatically check that
the model behaves as specified through model-checking tools adapted to the considered
level. As stated above, in this manuscript we will however focus on the reaction/species
part of the models and not on the specification, which leads to another commonly used
formalism.

The use of Petri-nets to represent those reaction models, taking into account the
difference between compounds and reactions in the graph, and making available various
kinds of analyses is quite old [53], however it has remained somehow focused towards
mostly qualitative properties. While the structural focus will be shared in our work, we
shall demonstrate that it does not restrict the analyses to purely qualitative ones.

1.2.1 Boolean and bounded views

The simplest view one can have of a system of reactions is purely qualitative and relies on
a boolean (presence/absence) semantics. For systems like Kohn’s map of the mammalian
cell cycle regulation [46], with about 500 compounds and 800 reactions but very little
quantitative information, this is the natural level, hence the formalism of Molecular
Interaction Maps, developed by Kohn himself twelve years later [47]. It is also the
choice made in the Pathway Logic of [31].

The parallel with electronic circuits becoming obvious when looking at the drawing
of the map, the same tools can be applied with certain success: the reactions define a
concurrent transition system on which model-checking is able to verify very efficiently
some quite complex properties. For instance, that the original map, as published, does
not provide any synthesis reaction for cyclin B.

We also turned this method into a machine learning system where a model not
verifying a specification can be automatically revised into one that does [1].

Moreover under simple hypotheses on the possible kinetics of each reaction (and ver-
ified by all usual kinetic laws, like Mass Action, Michaelis Menten or Hill kinetics for in-
stance) [7] it is possible to automatically derive the influence graph between compounds
from the reaction model. This result linking formally reaction graph and influence graph
permits us to benefit from (and improve on, as will be shown in Section 2.4) the known
necessary conditions for multi-stability or oscillations proven in that context, from a re-
action network with very little knowledge on the kinetics, and especially no hypothesis
of linearity. This approach is quite complementary with Feinberg’s Chemical Reaction
Network Theory (CRNT) [33], which also relies on the reaction graph, especially in its
recent developments (e.g., [22, 23, 34, 59]) to deduce information about the continuous
dynamics of a Mass Action system.

The same kind of view, but with an integer number of compounds, can be applied
to smaller models, leading to the classical Petri-net representation of the system, places
corresponding to compounds, with amounts as tokens, and transitions to reactions in an
immediate way [53]. Once again model-checking can be used to ensure the reachability
of some states. This level will be detailed further in Section 1.2.3 and invariant compu-
tation, described in Chapter 2 will use it as a means to extract quantitative as well as
qualitative information from the structure of the model. There is also information lying
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between quantitative and qualitative, like the definition of modules from T-invariants
as explored recently in [36, 38].

1.2.2 Continuous and Stochastic views

Associating rates or kinetics to each reaction, one can view the system at a stochastic
level, with simulation of the corresponding continuous time Markov chain thanks to
Gillespie’s algorithm(s) [37] and stochastic model-checking.

For efficiency reasons, when the number of compounds considered is big enough but
not infinite (unbounded polymerization), the continuous view of that same system, with
ODEs derived automatically from the reactions, is preferred. If the dimension is small
enough, mathematical tools like bifurcation theory will bring results about ranges of
parameters for which a specific dynamical behavior can be obtained.

In any case, we can use simulations as a basis for continuous model-checking [1, 21] to
once again provide automatic verification that the model behaves as specified for either
high dimensional systems or for properties outside of the usual scope (e.g., properties
about the maximal concentration reached by a transitory peak of the system and its
time frame).

Recent works generalizing this model-checking step to constraint-solving allowed us
to define a continuous degree of satisfaction of a specification by a model. Using it
as a fitness function one can apply state of the art optimization techniques to obtain
parameter learning with respect to both qualitative and quantitative information coded
as a specification [14]. The same technique also allows to define some new notion of
robustness, with respect to a given temporal logic specification.

1.2.3 Petri nets

Since as we have shown many of these views can be represented naturally using Petri
nets, many of the articles included in this manuscript do use such formalism. We will
here recall the most basic notations we used.

A B

E

A-E

t1

t−1

t2

Figure 1.3: Biochemical model of Example 1, represented as a PN with a marking
enabling t1

A Petri net is a bipartite oriented multigraph of transitions, usually represented as
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square boxes, and places, usually represented as circles, that defines a transition relation
on markings of the net, i.e., multisets of tokens associated to places. The relation is
defined by firings of transitions, i.e., when there are tokens (as many as the weights of
the incoming arcs) in all pre-places of a transition, they can be consumed and as many
tokens as the weights on the outgoing arcs are added to each post-place.

Example 1 The classical enzymatic reaction written2 A + E <=>A−E =>B +E cor-
responds to the Petri net depicted in Figure 1.3.

In this Petri-net, starting from a marking with at least one token in A and in E,
one can remove one of each to produce one token in A-E (firing of t1) and then either
remove it to add again one token to A and one to E (firing of t−1), or to add one B and
one E (firing of t2).

Reaction models can usually be easily represented as PNs by mapping compound-
s/species to places and reactions to transitions (stoichiometry corresponding to the
weights of the arc between the places and the transition), see Figure 1.

2in BIOCHAM-like syntax [2]
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Prediction is very difficult, especially
about the future.

Niels BohrChapter 2

Dynamical Analysis Based on
Structural Properties

Summary
2.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Place and Transition Invariants . . . . . . . . . . . . . . . . . . 12

2.2.1 Computing invariants with Constraint Programming . . . . . 13

2.2.2 Finding steady states corresponding to steady fluxes . . . . . 23

2.3 Siphons and Traps . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Circuit-based Conditions for Multistationarity . . . . . . . . 62

2.1 Context

One of the most natural ways to try and tackle the lack of precise quantitative infor-
mation for Systems Biology models, is to use the discrete structure that embodies the
knowledge of the biologists to infer properties of the underspecified dynamical system.
Indeed, even from the informal drawing that is still the most common means of expla-
nation found in experimental papers, one can derive a formal object, a reaction model,
for instance as a Petri net. These objects can then provide enough information in their
multigraph structure to allow answering some questions about the possible dynamical
behavior that would be obtained if kinetic parameters and rate laws were known. This
information is also very general, whatever the intended dynamical semantics of the
model since, as already noticed by Érdi and Tóth:

The skeleton-like character of stoichiometry should be emphasised: it does
not depend on the type of model (discrete or continuous, deterministic or
stochastic […]) that is used afterwards when describing the time evolution.
[32, Chapter 3, Stoichiometry: the algebraic structure of complex chemical
reactions]

11



12 Place and Transition Invariants

The two main schools that have emerged in this field, especially when applied to bio-
chemical system, are probably the Stoichiometric Network Analysis (SNA) popularized
by Schuster [40] and the Chemical Reaction Network Theory (CRNT) of Feinberg [33].

In this chapter, the first two articles can be related to SNA:

[16] Sylvain Soliman. “Invariants and Other Structural Properties of Biochemical Mod-
els as a Constraint Satisfaction Problem”. In: Algorithms for Molecular Biology
7.15 (May 2012). doi: 10.1186/1748-7188-7-15

[13] Faten Nabli and Sylvain Soliman. “Steady-state solution of biochemical systems,
beyond S-Systems via T-invariants”. In: CMSB’10: Proceedings of the 8th Inter-
national Conference on Computational Methods in Systems Biology. Ed. by Paola
Quaglia. CoSBi. Trento, Italy: ACM, Oct. 2010, pp. 14–22. isbn: 978-1-4503-
0068-1. doi: 10.1145/1839764.1839768

The third one is focused on another structural property, more common in the Petri
net community, but already applied to biochemical systems by Schuster himself [63] and
more recently in [39], namely siphons and traps. It focuses on their computation by
constraint programming and SAT solvers, and has been accepted in Constraints (it is
actually an extended version of [11] published in Principles and Practice of Constraint
Programming 2012, Springer-Verlag).

[12] Faten Nabli, Thierry Martinez, François Fages, and Sylvain Soliman. “On Enumer-
ating Minimal Siphons in Petri nets using CLP and SAT solvers: Theoretical and
Practical Complexity”. In: Constraints 21.2 (2016), pp. 251–276. issn: 1383-7133.
doi: 10.1007/s10601-015-9190-1

Finally, we describe a paper closer to the CRNT approach. It improves the ten years
old result by Christophe Soulé proving Thomas’ hypotheses for multistationarity in the
continuous setting [60].

[17] Sylvain Soliman. “A stronger necessary condition for the multistationarity of
chemical reaction networks”. In: Bulletin of Mathematical Biology 75.11 (Nov.
2013), pp. 2289–2303. doi: 10.1007/s11538-013-9893-7

2.2 Place and Transition Invariants

The biggest successes obtained from SNA are probably the analysis of huge metabolic
networks in terms of Elementary Modes, i.e. a basis for the cone of steady fluxes.
There are however many other applications for these modes and the closely related
Petri-net notion of transition invariants (T-invariants) or their dual, place invariants
(P-invariants).

For instance, P-invariants provide a way to compute conserved moieties of a system,
whatever the dynamical semantics and the precise kinetic coefficients and rate laws.
Such property can be used of course to reduce the system, but also in other ways as will
be shown in Section 3.3.

http://dx.doi.org/10.1186/1748-7188-7-15
http://dx.doi.org/10.1145/1839764.1839768
http://dx.doi.org/10.1007/s10601-015-9190-1
http://dx.doi.org/10.1007/s11538-013-9893-7
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2.2.1 Computing invariants with Constraint Programming

In [15] and later [16] —included hereafter— we explored a way to compute such basis
using Constraint Programming. These works are contemporary and complementary
to the recent approaches using Mixed Integer Programming (MIP) to solve the same
problem, especially when one wants to add side constraints like enumerating only small
Elementary Modes [35]. We are still further investigating this line of research, especially
in the context of finding modes that include some given transitions, which makes the
usual conditions of minimality break. Note that this method is quite orthogonal to the
use of constraints to compute the Generating Flux Modes, optionally containing some
reactions of interest, adding thermodynamical restrictions or enforcing optimal yield,
as done in [48, 49, 55]. Globally theses techniques show the current interest in using
symbolic and high-level approaches to tackle the computational complexity of this hot
topic.

[16] Sylvain Soliman. “Invariants and Other Structural Properties of Biochemical Mod-
els as a Constraint Satisfaction Problem”. In: Algorithms for Molecular Biology
7.15 (May 2012). doi: 10.1186/1748-7188-7-15

http://dx.doi.org/10.1186/1748-7188-7-15
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Invariants and Other Structural Properties of
Biochemical Models as a Constraint Satisfaction
Problem
Sylvain Soliman

Abstract

Background: We present a way to compute the minimal semi-positive invariants of a Petri net representing a
biological reaction system, as resolution of a Constraint Satisfaction Problem. The use of Petri nets to manipulate
Systems Biology models and make available a variety of tools is quite old, and recently analyses based on invariant
computation for biological models have become more and more frequent, for instance in the context of module
decomposition.

Results: In our case, this analysis brings both qualitative and quantitative information on the models, in the form
of conservation laws, consistency checking, etc. thanks to finite domain constraint programming. It is noticeable
that some of the most recent optimizations of standard invariant computation techniques in Petri nets correspond
to well-known techniques in constraint solving, like symmetry-breaking. Moreover, we show that the simple and
natural encoding proposed is not only efficient but also flexible enough to encompass sub/sur-invariants, siphons/
traps, etc., i.e., other Petri net structural properties that lead to supplementary insight on the dynamics of the
biochemical system under study.

Conclusions: A simple implementation based on GNU-Prolog’s finite domain solver, and including symmetry
detection and breaking, was incorporated into the BIOCHAM modelling environment and in the independent tool
Nicotine. Some illustrative examples and benchmarks are provided.

1 Background
1.1 Introduction
Reaction models like those of reactome.org, KEGG
pathway database [1] or biomodels.net represent a
growing part of Systems Biology especially for metabolic
or signalling pathways, cell-cycle and more generally
post-genomic regulation systems. They build on estab-
lished standards like BioPAX or SBML [2] to facilitate
the exchange and comparison of models and benefit
from a large number of available tools, especially ODE
integration based simulators.
The use of Petri nets to represent those models, taking

into account the difference between compounds and reac-
tions in the graph, and make available various kinds of ana-
lyses is quite old [3], however it remains somehow focused
towards mostly qualitative and structural properties. Some

have been used for module decomposition, like (I/O)
T-invariants [4,5], related to dynamical notions of elemen-
tary flux modes [6]. However, there is, to our knowledge,
very little use of P-invariant computation, which provides
both qualitative information about some notion of module
related to the “life cycle” of compounds, and quantitative
information related to conservation laws - each P-invariant
defines a conserved moiety of the obtained ODE system,
whatever the rate laws - and Jacobian matrix singularity -
induced by any P-invariant since it defines a linear depen-
dency between variables. Conservation law extraction is
actually already provided by a few tools, but then using
numerical methods, based on the quantitative view of the
model, and not integer arithmetic (as in direct P-invariant
analysis).
We present here a very simple way to incorporate invar-

iant computation in an existing biological modelling tool,
using constraint programming with symmetry detection
and breaking. We compare it to other approaches and
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evaluate it, for the case of P-invariants, on some examples
of various sizes, like the MAPK cascade models of [7] and
[8]. This experimentation is done through an implementa-
tion of the described method in the BIOCHAM modelling
environment [9,10], and in the independent tool Nicotine.
We benchmark the efficiency against state of the art Petri
net tools on various models. Finally we show that the pre-
sented approach allows to compute, within the same fra-
mework, other interesting structural properties like sub/
sur-invariants or siphons/traps, bringing even more insight
into the dynamics of the biochemical system under study.

1.2 Petri net view of a reaction model
A Petri net is a bipartite oriented (weighted) graph of
transitions, usually represented as square boxes, and
places, usually represented as circles, that defines a
(actually not unique) transition relation on markings of
the net, i.e., multisets of tokens associated to places.
The relation is defined by firings of transitions, i.e.,
when there are tokens (as many as the weight of the
incoming arc) in all pre-places of a transition, they can
be consumed and as many tokens as the weight on the
outgoing arc are added to each post-place. The classical
Petri net view of a reaction model is simply to associate
biochemical species to places and biochemical reactions
to transitions.
Example 1 For instance the enzymatic reaction written

(in BIOCHAM-like syntax), A + E ⇔ A-E ⇒ B + E corre-
sponds to the following Petri net (Figure1)
In this Petri net, starting from a marking with at least

one token in A and in E, one can remove one of each to
produce one token in A-E (firing of t1) and then either
remove it to add again one token to A and one to E (fir-
ing of t-1), or to add one B and one E (firing of t2).
P (resp. T) invariants are defined, as usual, as vectors

V representing a multiset of places (resp. of transitions)
such that V · I = 0 (resp. I · V = 0) where I is the inci-
dence matrix of the Petri net, i.e. Iij is the number of
arcs from transition i to place j, minus the number of
arcs from place j to transition i. Intuitively, a P-

invariant is a multiset representing a weighting of the
places and such that any such weighted marking
remains invariant by any firing; a T-invariant represents
a multiset of firings that will leave invariant any mark-
ing (see also section 2.1). As explained in the introduc-
tion, for reaction models these invariants are used for
flux analysis, variable simplification through conserva-
tion law extraction, module decomposition, etc. Note
that we are concerned with the classical invariant pro-
blem and thus restrict our study to integer weights.
This is an important difference with respect to the
aforementioned flux analyses but it arises from the fact
that the biochemical models we studied did not come
from metabolism but from the modelling of signal
transduction pathways, cell cycle, circadian rhythm, etc.
In all these cases the stoichiometry was integer and, for
instance, the extracted conservation laws will include
only integer number of molecules.

1.3 Related work
To compute the invariants of a Petri net, especially if
this computation is combined with other Petri net ana-
lyses, like sinks and sources, traps, deadlocks, etc. the
most natural solution is to use a Petri net dedicated tool
like INA, PiNA, or Charlie for instance through the
interface of Snoopy [11], which allows the import of
SBML models as Petri nets. Standard integer methods
like Fourier-Motzkin elimination will then provide an
efficient means to compute P or T-invariants (see for
instance [12] for a review). These methods however gen-
erate lots of candidates which are afterwards eliminated
and also need to incorporate some means (like equality
class definition) to avoid combinatorial explosion at
least in some simple cases, as explained in Section 2.2.
Another way to extract the minimal semi-positive

invariants of a model is to use one of the software tools
that provide this computation for biological systems, gen-
erally as “conservation law” computation, and based on
linear algebra methods like QR factorization [13]. This is
the case for instance of the METATOOL [14] and
COPASI [15] tools. The idea is to use a linear relaxation
of the problem, which suits well very big graphs, but
needs again a posteriori filtering of the candidate solu-
tions. Moreover, these methods do not incorporate any
means of symmetry elimination (see Section 2.2). A
recent technique for elementary mode computation relies
on Mixed Integer Programming (MIP) [16] and is thus
quite similar in theory to the ideas of thus article, how-
ever it is tailor-made for elementary modes whereas for
invariants pure Integer Programming would be enough,
it is focused around the computation of a partial basis of
these modes, which is an important problem but not the
focus in this article, and - once again - it does not incor-
porate any symmetry breaking.

A
B

E

A-E

t1

t−1

t2

Figure 1
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Finally, the most recent developments in invariant
computation rely on a symbolic encoding through Bin-
ary decision Diagrams [17]. The tools based on this
technique can prove quite efficient and are not unre-
lated to the symbolic encoding we present here through
constraints. However they do not seem to integrate sym-
metry detection, also rely on filtering for minimality and
thus, though they provide a symbolic solution very fast
in some cases, might also benefit from some of the
ideas we present. See section 2.5 for a more precise
evaluation.

2 Results and Discussion
2.1 Finding invariants as a Constraint Satisfaction
Problem
We will illustrate our new method for computing the
invariants with the case of P-invariants (but T-invar-
iants, being dual, would work in the same fashion). Con-
sider a Petri net with p places and t transitions, these
transitions represent reactions Li ® Ri, where Li
encodes the stoichiometry of the reactants as a vector
over places, and Ri the same for the products of the
reaction. A P-invariant is a vector V ∈ N

p s.t. VT · I = 0,
i.e. ∀1 ≤ i ≤ t V · Li = V · Ri. Since those vectors all live
in N

p, it is quite natural to see this as a Constraint Satis-
faction Problem (CSP) [18-20] with t (linear) equality
constraints on p finite domain (FD) variables.
Example 2 Using the Petri net of Example 1 we have:

A + E ⇒ A− E

A− E ⇒ A + E

A− E ⇒ B + E

This results in the following equations:

A + E = AE (1)

AE = A + E (2)

AE = B + E (3)

where obviously equation (2) is redundant.
The task is actually to find invariants with minimal

support, with respect to set inclusion (a linear combina-
tion of invariants belonging to N

p also being an invar-
iant), i.e., having as few non-zero components as
possible, these components being as small as possible,
but of course non trivial, we thus add the constraint
that V · 1 > 0.
Example 3 In our running example we thus add A + E

+ AE + B > 0.
Now, to ensure minimality the labelling is invoked

from small to big values. This means that for each vari-
able, if an enumeration remains necessary after

constraint propagation, values are tried in an increasing
order starting at 0. This is closely related to the enu-
meration strategy used in the mixed integer program-
ming method of [16] that allows them to look for
shortest elementary modes. Such a restriction in the
construction of the basis might thus also be possible in
our approach. Then, a branch and bound procedure is
wrapped around this search for solutions, maintaining a
partial base B of P-invariant vectors and adding the con-
straint that a new vector V is solution if

∀B ∈ B
∏

Bi �=0
Vi = 0, which means that its support is not

bigger than that of any vector of the base.
Unfortunately, even with the last constraint, no search

heuristic was found that makes removing subsumed P-
invariants unnecessary. Thus, if a new vector is added to
B, previously found vectors with a bigger support must
be removed. Section 2.6 will demonstrate other struc-
tural properties for which this step is not necessary.
The algorithm can be summarized as follows:
Algorithm 1 Minimal invariants computation
1: post the CSP for invariant V: ∀1 ≤ i ≤ t V · Li = V ·

Ri and V · 1 > 0
2: repeat
3: find a solution, enumerating from low to high
4: add the solution to the basis
5: remove non-minimal invariants from the basis if

there are any

6: post the new constraint ∀B ∈ B
∏

Bi �=0
Vi = 0

7: until no solution found
8: expand symmetrical solutions of B
This algorithm was implemented directly into Nico-

tine1 and then added to BIOCHAM [9], which are both
programmed in GNU-Prolog, and allowed for immediate
testing.
Example 4 In our running example we find two mini-

mal semi-positive P-invariants:

• E = AE = 1 and A = B = 0
• A = B = AE = 1 and E = 0

2.2 Equality classes
The problem of finding minimal semi-positive invariants
is clearly EXPSPACE-hard since there can be an expo-
nential number of such invariants. For instance the
model given in Example 5 (described in [12] among
others, and called “classic X-Y” in [17], where × is the
number of places between each pair of transitions and Y
the number of transitions) has 2n minimal semi-positive
P-invariants (each one with either Ai or Bi equal to 1
and the other equal to 0).
Example 5 (Classic 2-n) (Figure2)

Soliman Algorithms for Molecular Biology 2012, 7:15
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A first remark is that in this example, there is a vari-
able symmetry between all the pairs (Ai, Bi) of variables
corresponding to places. This symmetry is easy to detect
(purely syntactical) and can be eliminated through the
usual ordering of variables, by adding the constraints
Ai ≤ Bi.
This classical CSP optimization is enough to avoid

most of the trivial exponential blow-ups and corre-
sponds to the initial phase of parallel places detection
and merging of the equality classes optimization [21] for
the standard Fourier-Motzkin algorithm. Note however
that in that method, classes of equivalent variables are
detected and eliminated before and during the invariant
computation, which would correspond to local symme-
try detection and was not implemented in our
prototype.
Moreover, in [21], equality class elimination is done

through replacement of the symmetric places by a
representative place. The full method reportedly
improves by a factor two the computation speed. Even if
in the context of the original article this is done only for
ordinary Petri nets (Petri nets where the weights are
only 0 or 1), we can see that it can be even more effi-
cient to use this replacement technique in our case:
Example 6
...
A + B ⇒ 4*C
...
Instead of simply adding A ≤ B to our constraints,

which will lead to 3 solutions when C = 1 before symme-
try expansion: (A, B) Î {(0, 4), (1, 3), (2, 2)}, replacing A
and B by D will reduce to a single solution D = 4 before
expansion of the subproblem A + B = D.
This partial detection of independent subproblems,

which can be seen as a complex form of symmetry identifi-
cation, can once again be done syntactically at the initial
phase, and can be stated as follows: replace ∑i ki * Ai by a
single variable A if all the Ai occur only in the context of
this sum i.e., in our Petri net all pre-transitions of Ai are
connected to Ai with ki edges and to all other Aj with kj
edges and same for post-transitions. For a better constraint

propagation, another intermediate variable can be intro-
duced such that A = gcd(ki) · A’. In our experiments the
simple case of parallel places (i.e., all ki equal to 1 in the
sum) was however the one encountered most often.

2.3 Example, the MAPK Cascade
The MAPK signal transduction cascade is a well studied
system that appears in lots of organisms and is very
important for regulating cell division [22]. It is composed
of layers, each one activating the next, and in detailed
models shows two intertwined pathways conveying EGF
and NGF signals to the nucleus.
A simple MAPK cascade model, that of [23] without

scaffold, is used here as an example to show the results
of P-invariant computation.
Seven minimal semi-positive P-invariants are found

almost instantly. Intuitively, they represent the different
levels of the cascade (i.e., RAFK, RAF, MEK and MAPK)
and the corresponding phosphatases (RAFPH, MEKPH
and MAPKPH). The use of those P-invariants as visual
modules, as depicted in Figure 3 is quite similar to one
part of the approach of [24] to make biochemical systems
more easy to grasp. The full list is given in Table 1.
In the next section other examples are used as bench-

marks of this method, they are all much bigger than this
one, which had only about 30 compounds, however note
that one of those is still a model of the MAPK signalling
cascade.
Note that these 7 P-invariants define 7 algebraic con-

servation rules (i.e., mass conservation) and thus
decrease the size of the corresponding ODE model from
22 variables and equations to only 15.

2.4 Evaluation on other biochemical examples
Schoeberl’s model is a more detailed version of the
MAPK cascade, which is quite comprehensive [8], but
too big to be studied by hand. It can however be easily
broken down into fourteen more easily understandable
units formed by P-invariants, as shown in Table 2, along
other examples representing amongst the biggest reac-
tion networks publicly available.

A1 + B1 => A2 + B2

A2 + B2 => A3 + B3

...

An + Bn => A1 + B1

A1 A2 A3 An

...

B1 B2 B3 Bn

Figure 2
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All the curated models in the September 2010 release of
biomodels.net were also tested and none of them
required more than 1s to compute all its minimal P-
invariants.

We could not compare our results with those pro-
vided in [13] since the models they use, coming from
metabolic pathways flux analyses, do not have an integer
stoichiometry matrix, however the examples of Table 2

Figure 3 Some conservation laws of the MAPK model of [23]. 3 of the 7 P-invariants found in the MAPK cascade model of [23]. The blue
one (RAF), the pink one (MEK) and the green one (MAPK) with intersections in purple (blue+pink) and khaki (pink+green).
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show the feasibility of P-invariant computation by con-
straint programming for quite big networks. Note that
for networks of this size, the upper bound of the
domain of variables had to be set manually. It was actu-
ally set to the value 8, which is about the double of the
maximum value in all the biological models we have
encountered up to now. The only over-approximation of
the upper bound found was the product of the l.c.m. of
stoichiometric coefficients of each reaction, which
explodes really fast and leads to unnecessarily long com-
putation. The manual bound results in a loss of comple-
teness, but it is not enforced either by QR-factorization
methods, and does not seem to miss anything on real
life examples.
Though they are not specifically suited for this task (i.

e., finding integer invariants), we tried some of the most
well known Elementary Flux Modes computing packages
on these examples. METATOOL [14] and efmtool [25]
were chosen, since both can be run as Matlab packages.
The results are not included in Table 2 but are summar-
ized with the non-biochemical examples of next section.

2.5 Non-biochemical benchmarks
Even if our main purpose is to use the insight on the
dynamics gained from the structural properties com-
puted by our CSP, an evaluation of the proposed
method on non-biochemical models remains of interest.
The literature on invariant computation is quite large,

however there does not seem to exist any standardized
benchmark. Each author selects some examples with dif-
ferent properties (see for instance [12] from which only
a few examples are used in [17], even though it is cited
as reference) and few reuse the previously published sets
of examples.

Moreover, even when the software used in these arti-
cles is available, usually only binary implementations are
available, and only for some specific architectures and
through a specific request process. In some cases none
is provided at all.
Therefore, using a machine comparable in specifica-

tions, we chose to reuse the data published in the most
recent work, that of Ciardo et al. [17]. Since we had to
re-encode ourselves the selected examples, only a subset
of their benchmarks is covered, namely the classical din-
ing philosophers problem [26], the standard exponential
invariant case [12] and the circular trains [27]. These
seem to cover the whole range of different schemes
appearing in [17].
Note that there are usually many symmetries in these

parametric examples and thus that a more powerful (or
manual) symmetry detection would be called for in
these specific cases. Nevertheless, since (intracellular)
biochemical systems usually do not generate such struc-
ture, we did not push further the integration of more
advanced symmetry detection/breaking in our tools.
All the models used for the biochemical and non-bio-

chemical benchmarks can be found at: http://contra-
intes.inria.fr/~soliman/nicotine_data/
METATOOL’s “CONSERVATION RELATIONS”

were used when possible, but that only allows to find -
as expected - 91 out of the 10 billion invariants for the
classic example, in 0.33s. Models were thus transposed
such that METATOOL and efmtool’s EFM search cor-
respond to P-invariant computation. Transposed models
appear with a ‘b’ ending in the data repository. efmtool
was given the SBML files as input whereas some .dat
files were generated for METATOOL. For all the exam-
ples of this section as well as Kohn’s map, METATOOL

Table 1 P-invariants of the MAPK cascade model of [23]

RAFK, RAF-RAFK

RAFPH, RAFPH-RAF~{p1}

RAF, MEK-RAF~{p1}, RAF-RAFK, RAFPH-RAF~{p1}, MEK~{p1}-RAF~{p1}, RAF~{p1}

MEKPH, MEKPH-MEK~{p1}, MEKPH-MEK~{p1, p2}

MEK, MAPK-MEK~{p1, p2}, MEK-RAF~{p1}, MEKPH-MEK~{p1}, MEKPH-MEK~{p1, p2}, MAPK~{p1}-MEK~{p1, p2}, MEK~{p1}-RAF~{p1}, MEK~{p1}, MEK~{p1,
p2}

MAPKPH, MAPKPH-MAPK~{p1}, MAPKPH-MAPK~{p1, p2}

MAPK, MAPK-MEK~{p1, p2}, MAPKPH-MAPK~{p1}, MAPK~{p1, p2} MAPK~{p1}-MEK~{p1, p2}, MAPK~{p1}, MAPKPH-MAPK ~{p1, p2},

Full list of the P-invariants of the MAPK cascade model of [23]

Table 2 Minimal semi-positive P-invariant computation on bigger models of biochemical reaction networks

Model transit. places P-invar. time (s) Invariant size

Schoeberl’s MAPK [8] 125 105 13 0.53 from 2 to 44

Calzone et al. E2F/Rb [31] ~500 ~400 79 18 from size 1 (EP300) to about 230 (E2F1 box)

Kohn’s map [32] ~800 ~500 70 171 from size 1 (Myt1) to about 200 (pRb or cdk2)

Minimal semi-positive P-invariant computation on bigger models of biochemical reaction networks
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gave the error message “Cannot sort modes with more
than 52 rows” that was interpreted as some kind of “out
of memory” error. For efmtool, in the same cases (all
examples of this section plus Kohn’s map) the computa-
tion was stopped after 10 minutes or more, with mes-
sages like “iteration 43/116: 224850 modes, dt =
2040206ms.” that were interpreted as overtime. Note
however that as already stated, these packages do not
focus on integer stoichiometric matrices and thus have a
much broader scope that might explain their poor per-
formance on our benchmarks.
The results are presented in Table 3, where as in

[17] “om” represents an out-of-memory error, and “ot”
an overtime. “na” was used when conservation rela-
tions are strictly fewer than P-invariants. The results
seem to indicate that a constraint-based approach fares
reasonably well, usually in the same order of magni-
tude as some purely symbolic encoding via decision
diagrams [17], whereas the solutions of the CSP are
explicit. Even in the case where finding explicit solu-
tions revealed too costly (classic 10-10, which has 1010

minimal P-invariants), one can stop the computation
before symmetry expansion and get an answer in a
reasonable time.
The CSP approach can therefore be seen as a kind of

intermediate between purely implicit (i.e., solutions
encoded, for instance as a decision diagram, and need-
ing to be decoded to be displayed) and purely explicit
methods. It also remains very flexible as next section
will prove and could incorporate many more optimiza-
tions (variable ordering heuristics, more symmetry elimi-
nation, etc.) at a quite low cost.
All the 80 Petri nets of http://www.petriweb.org/ were

also tested. Only one took more than 1s: model 1516,
which took about 3s to compute 1133 minimal P-invar-
iants. Since we do not have data for the other
approaches on these models they were not added to the
table of results but they confirm the feasibility and gen-
erality of our approach.
We think that the structure of this kind of net is

however very different (average degree, arc weights,
etc.) from that of usual biochemical reaction models
and intend to explore this distinction further in the
future.

2.6 Generalizing the approach to other structural
properties
An interesting feature of the presented method is that it
is actually flexible enough to encompass other structural
properties than place or transition invariants. This is, to
our knowledge, not the case of other alternative methods.
If for the Petri net of Example 1 one obtained the

constraints shown in Example 2 to compute P-invar-
iants, one can notice that they can easily be adapted to
compute sur- or sub-invariants, i.e., weighted sums that
can only grow (resp. decrease) during the evolution of
the system (see [28], for instance, for a formal defini-
tion). Indeed the following CSP describes exactly all the
sub-invariants of the system and is obtained in the same
manner but with ≤ instead of =.
Example 7 Using the Petri net of Example 1:

A + E ⇒ A− E

A− E ⇒ A + E

A− E ⇒ B + E

results in the following FD constraints:

A + E ≤ AE (4)

AE ≤ A + E (5)

AE ≤ B + E (6)

Sur-invariants would be obtained with ≥ instead of ≤.
Now, getting a basis of minimal sub/sur-invariants can

be done with the same branch and bound technique
used for invariants, allowing to obtain information on
pools of species of the biochemical system that, for
instance, never increase during any ODE simulation.
One can go slightly farther and once again reuse the

same machinery, including symmetry breaking, to com-
pute siphons and traps of the Petri net (see [29] for defi-
nition and example of use in biology). This time a
boolean CSP is obtained with the following constraints
for the example of traps:
Example 8 Using the Petri net of Example 1 we obtain

the following boolean constraints:

A ∨ E ⇒ AE (7)

Table 3 Minimal semi-positive P-invariant computation on general (non-biochemical) benchmarks of the literature

model BDD V2 BDD V4 GreatSPN Nicotine Metatool CR Metatool EFM efmtool

trains 10-10 4.81 om 0.03 3.26 na (20) om ot

classic 10-10 0.01 0.01 ot 0.15 na (91) om ot

philo 30 1.04 0.01 0.01 2.68 3.04 om ot

Minimal semi-positive P-invariant computation on general (non-biochemical) benchmarks of the literature. Times are given in seconds. BDD V2 and V4 (implicit)
and GreatSPN (explicit) performances as per [17]. Note that for the classic example, time was measured for Nicotine before symmetry expansion (semi-implicit)
since there are 1010 explicit solutions.

Soliman Algorithms for Molecular Biology 2012, 7:15
http://www.almob.org/content/7/1/15

Page 7 of 9

20 Place and Transition Invariants



AE ⇒ A ∨ E (8)

AE ≤ B ∨ E (9)

To compute siphons one simply need to reverse ⇒
into ⇐.
Note that in the boolean domain, the support minim-

ality can be imposed by enumerating in increasing (lexi-
cographic) order, there is no need for any a posteriori
check of minimality (step 5 of Algorithm 1). The algo-
rithm thus becomes:
Algorithm 2 Minimal traps computation
1: post the CSP for trap V
2: repeat
3: find a solution, enumerating from low to high
4: add the solution to the basis

5: post the new constraint ∀B ∈ B
∏

Bi �=0
Vi = 0

6: until no solution found
7: expand symmetrical solutions of B
This computation of traps and siphons can actually

bring information about the dynamics of the model,
including temporal logic formulae that it satisfies2,
together with other structural properties [4,30] they pro-
vide an interesting toolkit to analyze structurally the
dynamics of a Systems Biology model.

3 Conclusion
P-invariants of a biological reaction model are not so
difficult to compute in most cases. They carry informa-
tion about conservation laws that are useful for efficient
and precise dynamical simulation of the system, and
provide some notion of module, which is related to the
life cycle of molecules. T-invariants are already used
more commonly, and get more and more focus recently.
We introduced a new method to efficiently compute P

and T-invariants of a reaction network, based on FD
constraint programming. It includes symmetry detection
and breaking and scales up well to the biggest reaction
networks found. Completeness is lost on the biggest
examples but we still look for a better upper bound on
domains to restore it.
The idea of applying constraint based methods to clas-

sical problems of the Petri net community is not new,
but seems currently mostly applied to the model-check-
ing. We argue that structural problems (invariants,
sinks, attractors, etc.) can also benefit from the know-
how developed for finite domain CP solving, like sym-
metry breaking, search heuristics, flexibility, etc. and
thus intend to generalize our approach to other pro-
blems of this category.

Endnotes
1http://contraintes.inria.fr/~soliman/nicotine.html

2This is the topic of a paper currently submitted to
the CMSB 2011 conference. Depending on the outcome,
a reference or a short explanation will be added.
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2.2.2 Finding steady states corresponding to steady fluxes

It is remarkable that because of the metabolic origin of SNA, many people do not really
make any difference between steady fluxes and proper steady states. However, in the
context of general intracellular biochemical models, the proper steady states, with a
reasonable rate law, realize only a tiny fraction of the steady state flux cone.

Making such hypotheses on reasonable kinetics, [13] attempts to generalize the line
of work developed for S-Systems by Savageau [56] and Voit [57], without resorting to
the same power-law approximation.

[13] Faten Nabli and Sylvain Soliman. “Steady-state solution of biochemical systems,
beyond S-Systems via T-invariants”. In: CMSB’10: Proceedings of the 8th Inter-
national Conference on Computational Methods in Systems Biology. Ed. by Paola
Quaglia. CoSBi. Trento, Italy: ACM, Oct. 2010, pp. 14–22. isbn: 978-1-4503-
0068-1. doi: 10.1145/1839764.1839768
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ABSTRACT
In recent years Systems Biology has become a rich field
of study, trying to encompass all the information that has
become available thanks to the new high-throughput tech-
niques of biologists, in order to build detailed models of com-
plex systems.

Some models have been growing bigger and bigger, but
lacking most of precise kinetic data. Other models remain of
reasonable size, but have an even larger uncertainty about
parameter values. Unfortunately, very few analyses allow
to extract information about the dynamics of these models
when pure symbolic computations fails.

This article presents a way to generalize well-known re-
sults about the steady-state analysis of some symbolic Or-
dinary Differential Equations systems by taking into ac-
count the structure of the reaction network. The structural
study of the underlying Petri net, usually used mostly for
metabolic flux analysis, will provide classes where the com-
putation of some steady states of the system is possible,
even though the original symbolic model did not form an
S-system and was not solvable by state-of-the-art symbolic
computation software.

This new method is then illustrated on some models of the
Biomodels repository and is followed by a brief discussion.
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D.2.2 [Software engineering]: Design Tools and Tech-
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1. INTRODUCTION
In recent years Systems Biology has become a rich field

of study, trying to encompass the huge amount of heteroge-
neous information that has become available thanks to the
new high-throughput techniques of biologists, in order to
make it usable through detailed models of complex systems.

Some models have been growing bigger and bigger, filled
with more and more mechanistic details, especially recently
acquired post-transcriptional information, but lacking most
of precise kinetic data. Unfortunately, very few analyses
allow to extract information about the dynamics of these
models, either because of their size or of the imprecise ki-
netics.

Other models remain of reasonable size, but have an even
larger uncertainty about parameter values. For this other
kind of model it is also important to be able to provide
some dynamical analysis of the system’s behavior.

This article presents a way to generalize well-known re-
sults about the steady-state analysis of some symbolic Or-
dinary Differential Equations (ODE) systems by taking into
account the structure of the reaction network. The struc-
tural study of the underlying Petri net (PN), usually used
mostly for metabolic flux analysis, will provide classes where
a symbolic reasoning close to that underpinning S-systems
allows the computation of some steady states of the sys-
tem. This property holds even though the original (sym-
bolic) ODEs did not form an S-system and were not solvable
by symbolic computation software like Maple1.

After some preliminaries about Biochemical Systems The-
ory (BST) and Petri nets, Section 3 will describe how to
combine invariant analysis, log-transform and Gaussian elim-
ination to obtain some steady states. Section 4 will then
show the application of that technique on some models of
the Biomodels repository [17] and will be followed by a brief
discussion.

The idea of applying BST to big biological networks is
definitely not new [21, 29], however it is restricted to systems
where the precise kinetics of the system, though unknown,
can be approximated by an S-system. This approximation
makes sense in several cases, notably gene-regulation maps,

1For experiments of Section 4, the most recent released ver-
sion, i.e., Maple 13, was used.
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however it does not cope with the cases where modellers
have a precise kinetic expression in mind and only search for
parameter values, which is quite frequent in mathematical
models of small or medium size.

T-invariant analysis is also already frequently used, but
it only provides steady fluxes and not steady states. The
difference is discussed in details in Section 2.2. Note however
that it can bring other informative content about the model
(see for instance [11]).

Many other methods can be used to reason about the
steady states of a partially unknown model, like bifurcation
analysis (but it usually is restricted to very few parameters)
or gene-regulation-network feedback-loop analysis [26], how-
ever they have a rather different range of application than
the technique described in this paper.

2. PRELIMINARIES
In general, we will consider biochemical systems described

by reactions (à la SBML[15]). More precisely the model is
supposed to be formed by m reactions and dealing with n
species; the jth reaction has the following form:

n∑
i=1

SijXi
ej⇒

n∑
i=1

S′ijXi

where Sij and S′ij are the stoichiometric coefficients (usually
positive integers), and ej is the rate function of the reaction.

2.1 Biochemical Systems Theory
In the late 1960s, Savageau introduced the Biochemical

System Theory (BST) [21, 22] as a framework for modeling
biochemical systems with ODEs.

The major advantage of this formalism is that it enables
the modeller to describe the dynamics of a biochemical sys-
tem knowing only the identity of reactants and their inter-
connections [28].

These ODEs have a canonical form using a power-law rep-
resentation based on the General Mass Action (GMA) hy-
pothesis. In the GMA form, rate functions are formulated
as:

ej = kj ×
∏
i

X
Sij

i

where Xi is the concentration of the ith species and kj is
the kinetic rate constant of the jth reaction. This corre-
sponds to the well-known and quite standard Mass Action
kinetics derived from the concept of chemical equilibrium
and representing intuitively the fact that reactions have a
rate proportional to the amount of their reactants.

The change in the quantity of Xi is thus:

dXi
dt

=

n∑
j=1

(S′ij − Sij)ej

=

n∑
j=1

S′ijkj
∏
i

X
Sij

i −
n∑
j=1

Sijkj
∏
i

X
Sij

i

i.e., variation of a species per time is a difference between
two sums of power-law functions, one associated to its pro-
duction and the other to its consumption.

One special case of GMA is when every species is pro-
duced by at most one reaction and consumed through at
most one reaction or when reactions producing each species

are dependent and reactions consuming each species are de-
pendent so that it becomes possible to combine the sum of
power laws referring to the production term into a unique
power law and combine the sum referring to the consump-
tion term into one single power law.

Even when direct combination is not possible, aggregation
through an approximation can be done, for instance close to
some steady states. In that case the exponents in the power
law become real numbers. Note that the applicability of
such an approximation for highly non-linear systems when
the steady states are yet to be determined is not always
clear, which is one of the motivations for this very article.

Systems under this form are called S-systems where S
refers to synergistic nature of this nonlinear form. In S-
systems, the time rate of change of a species is written as:

dXi
dt

= k+i

n∏
i=1

Xαi
i − k

−
i

n∏
i=1

Xβi
i

where k+i and k−i are positive rate constants.
One of the main properties of S-systems is that they can

be analytically solved for steady states. Indeed being at
steady state amounts to the fact that:

∀i dXi
dt

= 0 (1)

which is equivalent to

∀i k+i

n∏
i=1

Xαi
i = k−i

n∏
i=1

Xβi
i (2)

The system constituted of all equations (2) can be lin-
earized by applying the logarithm function [22] and we ob-
tain:

∀i
n∑
i=1

(αi − βi)log(Xi) = log(
k−i
k+i

) (3)

The system (3) can then be solved via standard Gaussian
elimination.

This symbolic solution for steady states distinguishes S-
systems from other non-linear ODE systems for which there
is, in general, no simple solution. Actually, as will be de-
tailed in Section 4, using the latest version of the Biomodels
repository2, almost half of the curated SBML models pro-
viding ODEs do not get any solution when imported into
Maple for steady-state search in a reasonable time.

In Section 3 we will explain how to generalize this search
for steady-state solution using T-invariants and apply it to
Biomodels in Section 4.

2.2 Petri Nets
The use of Petri nets (PN) to represent biochemical re-

action models, taking into account the difference between
compounds and reactions in the graph, and make available
various kinds of analyses is quite old [19], however it remains
somehow focused towards mostly qualitative and structural
properties, or metabolic flux analysis. PNs have recently
been used for module decomposition, like (I/O) T-invariants
[9, 11], which are related to the dynamical notion of ele-
mentary flux modes [23]. We will propose a novel use of
T-invariants but first need to settle some basic notations.

2dated January 2010
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A Petri net is a bipartite oriented multigraph of transi-
tions, usually represented as square boxes, and places, usu-
ally represented as circles, that defines a transition relation
on markings of the net, i.e., multisets of tokens associated
to places. The relation is defined by firings of transitions,
i.e., when there are tokens (as many as the weights of the
incoming arcs) in all pre-places of a transition, they can be
consumed and as many tokens as the weights on the outgo-
ing arcs are added to each post-place.

A
B

E

A-E

t1

t−1

t2

Figure 1: Biochemical model of Example 1, repre-
sented as a PN with a marking enabling t1

Example 1. For instance the classical enzymatic reac-
tion written3 A + E <=>A−E =>B +E corresponds to the
Petri net depicted in Figure 1.

Reaction models can usually be easily represented as PNs
by mapping compounds/species to places and reactions to
transitions (stoichiometry corresponding to the weights of
the arc between the places and the transition), see Figure 1.

P (resp. T) invariants are defined, as usual, as integer vec-
tors V representing a multiset of places (resp. of transitions)
such that V · I = 0 (resp. I · V = 0) where I = I+ − I− is
the incidence matrix of the Petri net, i.e. Iij is the number
of arcs from transition j to place i (I+ij), minus the number

of arcs from place i to transition j (I−ij ). Intuitively, a P-
invariant is a multiset representing a weighting of the places
and such that any such weighted marking remains invariant
by any firing; a T-invariant represents a multiset of firings
that will leave unchanged any marking.

Let us denote by T the (infinite) set of T-invariants. Since
any positive linear combination of T-invariants is also a T-
invariant, it is useful to consider the (finite) set of semi-
positive minimal T-invariants Tmin corresponding to T-inva-
riants with minimal support and minimal value. Tmin forms
a basis of T .

To compute the invariants of a Petri net, especially if
this computation is combined with other Petri-net analy-
ses, like sinks and sources, traps, deadlocks, etc. the most
natural solution is to use a Petri-net dedicated tool like
INA, PiNA, or Charlie for instance through the interface
of Snoopy [12], which allows the import of SBML models as
Petri nets. Standard integer methods like Fourier-Motzkin
elimination will then provide an efficient means to compute
P or T-invariants. These methods however generate lots of
candidates which are afterwards eliminated and also need

3in BIOCHAM-like syntax [2]

to incorporate some means (like equality class definition) to
avoid combinatorial explosion at least in some simple cases.

Another way to extract the minimal semi-positive invari-
ants of a model is to use one of the software tools that pro-
vide this computation for biological systems, generally as
“conservation law” computation, and based on linear alge-
bra methods like QR factorization [27]. This is the case for
instance of the METATOOL [30] and COPASI [13] tools.
The idea is to use a linear relaxation of the problem, which
suits well very big graphs, but needs again a posteriori fil-
tering of the candidate solutions.

We use Nicotine [24], a Constraint-Programming-based
T and P-invariant Extractor. This tool4 allows us import
and export of several formats (APNN (a subset), PNML,
SBML, BIOCHAM, etc.). Note however that the method
presented is independent of any precise tool, as long as some
T-invariants can be computed.

It is important to note that T-invariants are of course
already related to steadyness. However, the cone of T de-
fines the steady fluxes of the system, but does not relate to
states, as defined by concentrations of compounds. Depend-
ing on the kinetic laws, some fluxes might be generated by
some state while some others might not. For instance, if a
T-invariant requires reaction 1 to fire twice as much as re-
action 2 and both have the same kinetic expression, the flux
does not correspond to any state. In this article we focus
on steady states, as is classical in dynamical systems theory,
and hence need to go one step further than T-invariants.

3. METHOD
Let us now consider a biochemical system described by re-

actions, as in Section 2, but without making any hypothesis
on the form of the rate laws ej except that it is multiplicative,
i.e. ej(X) = 0 ⇔ ∃i, Sij > 0, Xi = 0. This condition is not
very strong (GMA systems verify it but also Michaelian or
Hill kinetics for instance) but is required in order to reason
structurally on the fluxes of the system. It is quite common
for structural or symbolic analyses (see for instance [8, 7,
16]) and is quite widely accepted by modellers and mathe-
matical biologists. Note that it is strictly more general than
GMA, which is often already a requirement for any stochas-
tic simulation/analysis.

Finding a steady state amounts to solving:

∀i dXi
dt

=

n∑
j=1

(S′ij − Sij)ej = 0

Considering the incidence matrix I of the Petri net cor-
responding to the biochemical model, the above system is
equivalent to:

I · E(X) = 0

where E is the vector (e1, . . . , em).
This system is — in general — non-linear and cannot

be analytically solved. Nevertheless, it is possible to try
and solve systems corresponding to restricted cases using
T-invariants, which will result in a correct but not com-
plete method to obtain steady states. We will illustrate this
method in the following, starting with a restricted version
and then developing the technique in its full generality. The
completeness of the method is discussed in Section 5.

4http://contraintes.inria.fr/~soliman/nicotine
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As mentioned above, T-invariants are mathematically de-
fined as positive vectors which are solutions of the equation
I · V = 0. Therefore, each steady state X defines an E(X)
which is a T-invariant. Conversely we have:

E(X) ∈ T ⇒ dX

dt
= 0

Finding the X solutions of the above equation is still in-
tractable if one looks for any T-invariant, however one can
state this sufficient condition in a different way:

Let V be a given T-invariant. Then solving the system
E(X) = V will lead to steady states of the original system.

3.1 Minimal T-invariants
Let us first consider a restricted case where:

1. V = αV ′, V ′ ∈ Tmin, i.e., V is proportional to a mini-
mal T-invariant;

2. V (equivalently V ′) has a GMA support, i.e.

∀j ∈ support(V ) ej = kj

n∏
i=1

X
Sij

i

Note that we only consider reaction networks with multi-
plicative kinetics, and that here we add the restriction that
the kinetic laws of reactions in the support of the chosen T-
invariant are in GMA form, thereby excluding Michaelian or
other multiplicative kinetics from appearing in the support
of V .

Solving E(X) = V now amounts to solving (for X and
α): {

(a) kj
∏n
i=1X

Sij

i = αV ′j j ∈ support(V ′)
(b) ∃i, Sij > 0, Xi = 0 j 6∈ support(V ′)

(4)

Part (a) of system (4) is a direct consequence of our re-
stricted setting, part (b) is a consequence of the multiplica-
tive nature of the kinetics.

We will explain in the next section how to solve the second
part, but let us first concentrate on the first part.

Even if we did not restrict ourselves to S-systems, it is
now possible to log-linearize this subsystem:

n∑
i=1

Sij log(Xi)− log(α) = log(
Vj
kj

) j ∈ support(V ′) (5)

We obtain |support(V ′)| linear equations over at most n+
1 unknowns and can then apply Gaussian elimination or
any other equivalent method to obtain a (log-)vector space
of steady states. Remark that it is almost immediate to
deduce the matrix corresponding to system (5) from I− the
reactant part of the incidence matrix.

3.2 Solving for zeroes
Solving part (b) of system (4) is actually a simple mat-

ter of enumeration: one tries to nullify some reactions’ rate
by nullifying some concentrations. However one must also
verify that all Xi involved in part (a) are strictly positive
(otherwise there is no solution).

We implemented this as a simple enumerative search in
Prolog, which is the language underlying the Nicotine tool
and even for the biggest systems we tried the search for all
solutions is under ten milliseconds. The only computation-
ally expensive part being the search for T-invariants.

Remark that one could relax the restriction to multiplica-
tive kinetics if one provides a generic way to solve (b) while
ensuring the feasibility of (a). For instance one could con-
sider that if a reaction has kinetic expression e = k ∗ (A +
B) ∗ C then e = 0 ⇔ C = 0 ∨ A = B = 0. This kind of
condition would be easy to incorporate into our scheme but
needs to be formulated in a general way.

Example 2. Consider for instance the small model of the
bacteriophage T7 of [1].

It can be represented (in BIOCHAM syntax [2]) as 6 sim-
ple reactions (all Mass Action):

1 MA( c1 ) f o r gen => tem .
2 MA( c2 ) f o r tem => .
3 MA( c3 ) f o r tem => tem + gen .
4 MA( c4 ) f o r gen + s t r u c => v i r u s .
5 MA( c5 ) f o r tem => tem + s t r u c .
6 MA( c6 ) f o r s t r u c => .

The system has 2 semi-positive minimal T-invariants: [t1,
t2, t3], [t5, t6], but solving for zeroes immediately leads to
the fact that the only steady state is gen =tem =struc =0.

3.3 Other T-invariants
The first version described above already works reason-

ably well at finding some steady states, however one of its
shortcomings is that it only examines minimal T-invariants
one by one, i.e., it restricts its search to the edges of the
cone of steady fluxes.

The idea is to generalize the method while ensuring, when
possible, that (4) remains solvable quite easily.

3.3.1 Disjoint support
Let us suppose that different minimal T-invariants V ′1 , . . . , V

′
k

have disjoint GMA supports. One can now obtain a more
general version of the method introduced in Section 3.1:

1. V =
∑
αiV

′
i , V

′
i ∈ Tmin;

2. ∀i 6= j support(V ′i ) ∩ support(V ′j ) = ∅;

3. ∀j ∈ support(V ) ej = kj
∏n
i=1X

Sij

i

Solving E(X) = V now amounts to solving (for X and
α): {

(a) kj
∏n
i=1X

Sij

i = αj0V
′
j0 j ∈ support(Vj0)

(b) ∃i, Sij > 0, Xi = 0 j 6∈ support(V )
(6)

Since the supports are disjoint, there exists one and only one
j0 in part (a) of the system (4).

Now, simply notice that the new system is also log-linear
and can thus be solved as before.

3.3.2 Closed support
It is possible to obtain an even more generalized version

where more combinations of T-invariants are tested simply
by trying to solve systems like (6) for some arbitrary minimal
T-invariant combinations.

In the general case, the (a) part will become intractable
(there is a sum at the right of the “=” sign); however it
can sometimes be simplified, for instance when the obtained
equation is actually linear (the Sij on the left are equal to 0
or 1).

Since the computational cost of trying to solve the sys-
tem (and stop if the symbolic computation fails) is very low
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compared to T-invariant computation, many combinations
can easily be tried. Trying all combinations remains how-
ever definitely impossible and to guide the search an idea is
to notice that, in order to solve part (b) of the system while
maintaining the solvability of (a), one needs to look for a
T-invariant combination that is closed, in the sense of the
Chemical Organization Theory (COT) [6].

Note, nevertheless, that it is not enough to look for T-
invariant combinations whose support is a minimal organi-
zation, as in [3]: we should try all organizations, and might
even prefer the biggest ones. Indeed, as is the case for T-
invariants, restricting the search to minimal organizations
will only lead to small subproblems when the complete sys-
tem might be solvable. The objective should thus be to look
for T-invariant combinations such that the combined sup-
port is an organization, is as big as possible, but such that
the (a) part remains solvable.

The search procedure thus becomes: find all minimal T-
invariants5, look for minimal T-invariant combinations (start-
ing with 0 or 1 invariant), try to solve the system, if (b) is
not possible, add another minimal T-invariant such that it
might close the support, à la [3], otherwise try to add any
other minimal invariant.

Example 3. Consider again the bacteriophage T7 model
of Example 2, but now let us forget about the virus, which
will otherwise always increase; one obtains:

1MA( c1 ) f o r gen => tem .
2MA( c2 ) f o r tem => .
3MA( c3 ) f o r tem => tem + gen .
4MA( c4 ) f o r gen + s t r u c => .
5MA( c5 ) f o r tem => tem + s t r u c .
6MA( c6 ) f o r s t r u c => .

rule 4 no longer includes the virus

Now the system gets a third minimal T-invariant: [t1,
t2, t3], [t3, t4, t5], [t5, t6], but most importantly another
steady state is found (it is the only non-trivial one actually),
using a combination of all the minimal invariants (even if
the supports are not disjoint):

tem =
c1 ∗ c6 ∗ (c2− c3)

c2 ∗ c4 ∗ (c3− c2− c5)

struc =
c1 ∗ (c3− c2)

c2 ∗ c4

gen =
c6 ∗ (c2− c3)

c4 ∗ (c3− c2− c5)

Note that other combinations of T-invariants, like MCT-
sets [20], might be used, however they will still need to allow
to solve (a) and (b), and thus to have as support an organi-
zation, hence the choice to remain at that level for now.

4. RESULTS
In this section, we apply the proposed method to the mod-

els of the Biomodels repository6. Of the 241 curated models,
14 do not include any continuous part (ODEs) and are thus

5As discussed in Section 5 the method can actually be ap-
plied even if only some invariants have been found.
6dated January 2010

not targetted by our method, for the other ones the struc-
ture and kinetic laws were extracted from the SBML by our
tool, ignoring any other information (like events).

Using the Nicotine tool implementing the techniques de-
scribed above, some steady states were found for 94 mod-
els out of the remaining 227, with a timeout of two min-
utes. Among the remaining 133 models, for which Nicotine
could not find any solution, only 31 hit the time-out of two
minutes. In most of the cases, the tested combinations of
T-invariants do not lead to any steady state computation
because of the strict conditions on the applicability of this
method (namely multiplicative kinetics and GMA support,
as explained in the previous section). As we will show below
it is often possible to restructure an SBML model such that
these conditions are met, however applying systematically
such a procedure would be out of the scope of this article

This problem reflects the fact that modellers often tend
to combine several separate reactions into one, leading to a
wrong structure (and non-multiplicative kinetics). For in-
stance, in model 149 (actually BIOMD0000000149.xml, but
for the sake of simplicity we will from now on skip the pre-
fix) of ERK crosstalk, the “Axin synthesis” reaction R14 is
given as a single reaction X11 +X14 =>X11 +X14 +X12, i.e.,
a synthesis of X12 with two modifiers, X11 and X14 and a
single rate law: v14 = k14 + k21 ∗ (X11 + X14).

Splitting that reaction into:

MA( k14 ) f o r => X12 .
MA( k21 ) f o r =[X11 ]=> X12 .
MA( k21 ) f o r =[X14 ]=> X12 .

would have allowed a multiplicative kinetics with the same
ODEs but a differently structured model. The question of
properly structured SBML models is discussed in more de-
tails in the conclusion.

Note that trying to solve analytically all the models, even
with state-of-the-art symbolic computation software like
Maple 13, does not solve all problems either. Indeed, of
the 227 curated SBML models with an ODE part (auto-
matically generated in Maple format from our tool and shell
scripts), 105 models do not provide any solution when im-
ported into Maple for steady-state search, with a timeout of
two minutes.

Interestingly, Nicotine finds some steady states for 31 mod-
els of the 105 Maple failures to give any steady-state solution
even though there are ODEs.

Consider for instance model 46, describing the mechanism
of protection of peroxidase activity by oscillatory dynamics
It contains 16 places (chemical species) and 15 transitions
(chemical reactions). All kinetics laws are multiplicative,
the method of Section 3 thus applies and we obtain some
steady states in 28ms7, even if Maple did not provide any
result.

The minimal T-invariant [v131, v132] gives four families
of steady states represented in the following table, and cor-
responding to the different ways to solve for zeroes:

7computation time on a PC with an intel Core2 Quad pro-
cessor 2.8GHz and 8Go of memory. We used the same PC
for the whole procedure, including T-invariant computation
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species family1 family2 family3 family4
NADH 0 0 0 0
O2 ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
H2O2 * * 0 0
per3 0 0 * *
coI * 0 * 0
ArH 0 * 0 *
coII * 0 * 0
Ar * * * *
NADrad 0 0 0 0
super 0 0 0 0
coIII * * * *
per2 0 0 0 0
NAD2 * * * *
NAD * * * *
O2g ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
NADHres 0 0 0 0

In this table the symbol (*) denotes that any concentra-
tion value (positive or null) is acceptable. It shows that, to
the considered minimal T-invariant corresponds an infinity
of steady states where some elements may have non zero
concentration values.

For the non-null values, Gaussian elimination solves the
system of linear equations. In this example, an equilibrium
is established between O2 and O2g:

O2

O2g
=
k13f

k13b

where k13f and k13b are respectively the rate constants of
reactions v131 and v132.

Note also that some steady states can be extracted even
from the trivial T-invariant: 8 families of concentrations are
computed, in all of them the concentrations of O2, NADrad,
super, O2g and NADres is null and the concentration of
coIII, NAD2 and NAD have positive or null values.

Some more complex steady states can also be found as is
the case for model number 9 of the Biomodels database, de-
scribing the classical Huang and Ferrell model of the MAPK
cascade [14] (see Figure 2). Note that since the structure of
this model was used as a basis for [18], it has already been
studied in detail in [9].

This model contains 25 places and 30 transitions; steady
states computation is fulfilled in 220 ms and reveals 15 min-
imal T-invariants.

The family of T-invariants [[r1a, r1arev], [r2a, r2arev],
[r2a, r2b, r1a, r1b]], which denotes a linear combination of
the three minimal T-invariants [r1a, r1arev], [r2a, r2arev]
and [r2a,r2b,r1a,r1b], gives four families of steady states rep-
resented in the following table:

Figure 2: Figure 1 of [14] describing, in a dia-
gram, model 9 of the Biomodels repository. In the
SBML model and thus in our results, the names
are changed from “MAPK-P” to “P K” (i.e., drop
“MAP” and put phosphorylations first).

species family1 family2 family3 family4
E1 ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
E2 ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
KKK ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
P KKK ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
KK 0 0 0 0
P KK 0 0 0 0
PP KK 0 0 * *
K * * 0 0
P K 0 * 0 0
PP K 0 * 0 *
KPase * 0 * 0
KKPase * * 0 0
E1 KKK ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
E2 P KKK ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
P KKK KK 0 0 0 0
P KKK P KK 0 0 0 0
PP KK K 0 0 0 0
PP KK P K 0 0 0 0
KKPase PP KK 0 0 0 0
KKPase P KK 0 0 0 0
KPase PP K 0 0 0 0
KPase P K 0 0 0 0
K PP norm * * * *
KK PP norm * * * *
KKK P norm * * * *

For each of these families, we obtain a steady state when
the non null values in the table, E1, E2, KKK, P KKK,
E1 KKK and E2 P KKK satisfy the following equations:

E1 ∗KKK

E1 KKK
=

k2 + d1

a1
E1 KKK = E2 P KKK

E2 ∗ P KKK

E2 P KKK
=

d2 + k2

a2

where k2, d1, a1 and a2 are the rate constants of r1b (and
r2b), r1arev, r1a and r2a respectively.

This can be summed up by stating that if most of the
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complexes involved in the cascade are absent, most notably
those involving phosphatases and the second-level kinase,
there exists a steady state where the first and third level
maintain some equilibrium.

A second set of steady states results from the T-invariant
combination [[r3a, r3arev], [r4a, r4arev], [r4a, r4b, r3a, r3b],
[r5a, r5arev], [r6a, r6arev], [r6a, r6b, r5a, r5b]] and defines
again four families of steady states as follows:

species family1 family2 family3 family4
E1 * * 0 0
E2 0 0 0 0
KKK 0 0 * *
P KKK ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
KK ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
P KK ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
PP KK ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
K 0 0 0 0
P K 0 0 0 0
PP K 0 * 0 *
KPase * 0 * 0
KKPase ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
E1 KKK 0 0 0 0
E2 P KKK 0 0 0 0
P KKK KK ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
P KKK P KK ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
PP KK K 0 0 0 0
PP KK P K 0 0 0 0
KKPase PP KK ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
KKPase P KK ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
KPase PP K 0 0 0 0
KPase P K 0 0 0 0
K PP norm * * * *
KK PP norm * * * *
KKK P norm * * * *

The additional equations are:

KK ∗ P KKK

P KKK KK
=

k3 + d3

a3
KKPase ∗ P KK

KKPase P KK
=

d4 + k4

a4
KKPase PP KK

P KK ∗ P KKK
=

a5 ∗ k5

k6 ∗ (d5 + k5)

KKPase P KK

P KKK KK
=

k3

k4
P KK ∗ P KKK

P KKK P KK
=

k5 + d5

a5

PP KK ∗ P KKK KK

P KK2 ∗ P KKK
=

a5 ∗ k5 ∗ (d6 + k6) ∗ a4 ∗ k4

k3 ∗ k6 ∗ (d4 + k4) ∗ a6 ∗ (k5 + d5)

This complex equilibrium (dimension 9, ignoring the vari-
ables completely free in the above table) describes a steady
state where the last level is off (K = 0) but the first two are
actually active, especially the intermediary level.

In the same way, steady states are found for the T-invariant
combination [[r10a, r10arev], [r10a, r10b, r9a, r9b], [r7a,
r7arev], [r8a, r8arev], [r8a, r8b, r7a, r7b], [r9a, r9arev]]:

species family1 family2 family3 family4
E1 * * 0 0
E2 * 0 * 0
KKK 0 0 * *
P KKK 0 * 0 *
KK * 0 * 0
P KK * 0 * 0
PP KK ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
K ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
P K ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
PP K ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
KPase ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
KKPase 0 0 0 0
E1 KKK 0 0 0 0
E2 P KKK 0 0 0 0
P KKK KK 0 0 0 0
P KKK P KK 0 0 0 0
PP KK K ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
PP KK P K ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
KKPase PP KK 0 0 0 0
KKPase P KK 0 0 0 0
KPase PP K ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
KPase P K ∗ > 0 ∗ > 0 ∗ > 0 ∗ > 0
K PP norm * * * *
KK PP norm * * * *
KKK P norm * * * *

and some complex equilibrium between PP KK, K, P K,
PP K, KPase, PP KK K , PP KK P K, KPase PP K, and
KPase P K is defined by the following equations:

K ∗ PP KK

PP KK K
=

k7 + d7

a7
KPase ∗ P K

KPase P K
=

d8 + k8

a8
KPase PP K

PP KK P K
=

k9

k10
KPase P K

PP KK K
=

k7

k8
PP K ∗ PP KK K

PP KK P K ∗ P K
=

k8 ∗ k9 ∗ a8 ∗ (k10 + d10)

k7 ∗ k10 ∗ (d8 + k8) ∗ a10

PP KK ∗ P K

PP KK P K
=

d9 + k9

a9

This shows that the two last levels can also remain in a
complex equilibrium.

Finally, note that for this model too the trivial T-invariant
leads to some steady states.

5. CONCLUSION
We have presented a new method to compute, in a fully

analytical way, steady states of biochemical systems defined
by a system of ODEs. This technique generalizes the S-
systems’ log transformation to linearize equations obtained
from T-invariants and thus leverages the information from
the structure of the models, i.e., the underlying Petri net.
This result, which becomes crucial when precise kinetic pa-
rameter values are not available, allows us to obtain ana-
lytical solutions for some steady states in about 30% of the
cases where state-of-the-art symbolic computation led to a
dead end, as demonstrated on the Biomodels database.

The first step of our method relies on the computation
of the T-invariants of the model’s Petri net. This, however
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introduces two limitations:

1. actually, most of the computation time is spent on
this first stage. Indeed, T-invariant computation is a
hard problem (actually quite harder in practice than P-
invariant computation on biochemical systems, though
they have the same theoretical complexity. This seems
related to the fact that in biochemical reaction net-
works the degree of the transitions is usually quite
smaller than that of the places).

2. the T-invariants, and even the following step of solv-
ing system (6) suppose that the structure of the PN is
coherent with the kinetics. Namely we require multi-
plicative kinetics for the whole model (and GMA for
the support of some T-invariants).

Even if T-invariant computation gets more and more ef-
ficient (see for instance [4] for some recent work using de-
cision diagrams), it is quite crucial to note that when T-
invariant computation reveals time consuming, the proposed
technique can work as soon as some (minimal, or even just
candidates-minimal) T-invariants are found. Two examples
that come to mind are thus the use of Nicotine [24] to com-
pute T-invariants with an increasing bound on the integer
domain, or to use [5] to compute the K-shortest minimal
T-invariants, before (or while) proceeding to invariant com-
position and solving.

Addressing the other limitation is actually a much more
general question. Indeed more and more formal techniques
extract qualitative information from the structure of bio-
chemical models, however the current status of hand-written
models in web-based repositories is that the structure might
be quite different from what the original modellers had in
mind (or on diagram), even if the models are“curated”. This
issue applies to model-checking, abstract interpretation from
the structure [7], stochastic simulation à la Gillespie [10],
Chemical Reaction Network Theory [8, 25], etc. Some au-
thors have already proposed solutions to check if the kinetics
and the structure were at least coherent in some sense, no-
tably [16] in order to use COT. Proposals allowing to obtain
a properly structured model, as was done in the beginning
of Section 4 are also under way (an article has recently been
submitted about this topic by the second author). If ev-
erything else fails, it remains possible, as outlined in Sec-
tion 3.2, to provide constraints corresponding to the non-
multiplicative kinetics of the model and allowing to reason
on the nullity of the kinetic expression.

Another noteworthy remark about the proposed method is
that it is in general incomplete, since combinations involving
many T-invariants usually result in a non-log-linearizable
system. However, the method can be complete under certain
conditions. For instance, for both versions of Example 2,
the steady states that are found are the only ones, and the
method can certify this fact. In this specific case the proof
is quite simple: all combinations of minimal T-invariants
are tried and either lead to no solution (when solving for
zeroes) or are solvable. Finding more general conditions
under which the described technique ensures that all possible
steady states were found is one of our current perspectives.
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2.3 Siphons and Traps

Siphons and traps are the boolean counterparts of P/T-invariants. As explained above,
they have been studied in the modeling of biochemical systems to detect pools of species
that disappear or never do. They are also interesting in a more general way through
notably the Siphon-Trap Property (STP) that holds when every siphon of a net contains
a marked trap, and guarantees deadlock-freeness (no steady state).

In their study it was interesting both to use similar techniques as in Section 2.2.1, but
also to compare our approach to the state of the art in boolean constraint satisfaction,
namely SAT-solvers.

The result obtained is both more efficient than the known techniques for siphons/-
traps computation, but also interesting in that SAT and CP appear to be comparable
for this specific enumeration problem. This relies on an ad-hoc replay strategy for CP
that can be generalized to many other enumeration problems.

An interesting outcome of this article is also the clarification of complexity classes
for STP and other siphon/trap-related properties in the general and bounded-tree-width
cases. This might give some clues for the practical performance observed on biochemical
models.
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We investigate why these programs perform so well in practice, and provide
some elements of explanation related to our theoretical complexity results.

Keywords Petri nets · Siphons · Traps · Systems Biology · SAT · Constraint
Logic Programming

1 Introduction

Petri nets were introduced in the 60’s as a simple formalism for describing and
analyzing information processing systems that are characterized as being con-
current, asynchronous, non-deterministic and possibly distributed [40]. The
use of Petri nets for representing biochemical reaction systems, by mapping
molecular species to places and reactions to transitions, was introduced quite
late in [41], together with some Petri net concepts and tools for the analy-
sis of metabolic networks. In particular, the traditional Petri net concepts of
place-invariants (P-invariants) and transition-invariants (T-invariants) have
important interpretations in biochemical networks: P-invariants express struc-
tural conservation laws between molecular species, which correspond to linear
invariants and possible variable eliminations in systems of ordinary differen-
tial equations, while T-invariants revealed to be equivalent to the notion of
extremal fluxes in metabolic networks [49], one of the main tools for analyz-
ing and optimizing metabolic networks [30,15,47]. Constraint logic programs
have been proposed to compute P-invariants and T-invariants in [44] and [38]
respectively. Constraint programming methods have also been applied success-
fully to many other biology related problems. For instance by Devloo et al.
to discover efficiently the steady-state of large gene regulation networks [16].
Fanchon and al. use constraints to infer ranges of parameter values from obser-
vations [20] and for analysing discrete genetic regulatory networks [8]. Bock-
mayr and Courtois [3] use Hybrid Concurrent Constraint to model a variety of
biological phenomena, such as reaching thresholds, kinetics, gene interaction
or biological pathways. In [30], Larhlimi and Bockmayr take advantage of the
implicit representation that constraints bring, to describe the elementary flux
cone of some metabolic pathways. Backofen et al. pioneered in [1] the use of
constraints and symmetry breaking for predicting the structure of proteins,
etc.

In this paper, we consider the Petri net concepts of siphons and traps. A
siphon is a set of places that, once unmarked, remains unmarked. A trap is a
set of places that, once marked, can never loose all its tokens. Thus, siphons
and traps have opposed effects on the token distribution in a Petri net. These
structural properties provide sufficient conditions for reachability (whether the
system can produce a given protein or reach a given state from a given initial
state) and liveness (deadlock freedom from a given initial state) properties in
ordinary Petri nets. It is proved that in order for a net to have all its transitions
live, it is necessary that each siphon remains marked. Otherwise (i.e., once a
siphon is empty), transitions having their input places in a siphon cannot be
live. One way to keep each siphon marked is to have a marked trap inside it.

2
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In fact, this condition is necessary and sufficient for a free-choice net to be
live [40],

We first study the theoretical time complexity of siphon extraction prob-
lems in general Petri nets. It has been shown in [46] and [48] that the problems
of existence of a minimal siphon of a given cardinality (k-MinimalSiphon),
or containing a given place (Q-MinimalSiphon), are NP-complete, and re-
cently in [39] that the siphon-trap property (stp) is in co-NP. Here we provide
new theoretical complexity results. First we show the NP-completeness of the
existence problem of a siphon of a given cardinality (k-Siphon) and thus the
NP-hardness of MinimalCardinalitySiphon. Second, we prove that decid-
ing the siphon-trap property is in fact co-NP-complete. Third, we prove that
deciding the existence of a minimal siphon containing a given set of places,
deciding the existence of a siphon of a given cardinality and deciding the
Siphon-Trap property are of linear time complexity in Petri nets with bounded
tree-width. These latter results follow from Courcelle’s theorem.

Then we consider a simple Boolean model for defining siphons and traps,
and two methods for enumerating the set of all minimal siphons and traps
of a Petri net. The first method iterates the resolution of the Boolean model
executed with a SAT solver, while the second proceeds by backtracking with
a Constraint Logic Program over Booleans (CLP(B)).

We compare this Boolean constraint solving approach to the state-of-the-
art algorithms from the Petri net community described in [11] for computing
minimal sets of siphons and traps, which have already been shown to out-
perform Mixed Integer Linear Programs previously proposed in [35,9]. On a
benchmark composed of 345 curated biological models of hundreds of species
and reactions each, from the BioModels 1 repository [32], and of 80 Petri nets
from the Petriweb 2 [22] database of industrial processes, we show that the
SAT solver MiniSAT and CLP(B) solver GNU-Prolog are both faster by one
or two orders of magnitude than the dedicated algorithms, and can in fact
enumerate all solutions for all the intances of those benchmarks in a seconds.
Finally, we question ourselves why these programs perform so well in practice,
and provide some elements of explanation related to our theoretical complexity
results.

2 Preliminaries on Petri Nets

2.1 Petri Nets

Definition 1 A Petri net graph N is a weighted bipartite directed graph
N = (P, T,W ), where P is a non-empty finite set of vertices called places,
T is a non-empty finite set of vertices called transitions, P ∩ T = ∅, and
W : (P × T ) ∪ (T × P )→ N is a weight function attached to the arcs.

1 http://www.biomodels.net/
2 http://www.petriweb.org/
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Intuitively, the weight of a P×T arc represents the minimum number of tokens
(molecules) necessary to enable a transition and the weight on a T × P arc
represents the quantity produced. By abuse of notation, the weight is equal
to one if it is omitted. The weight of a P × T (resp. T × P ) arc equals zero if
there exist no arcs from place to transition (resp. from transition to place).

Definition 2 A marking for a Petri net graph is a mapping m : P → N which
assigns a number of tokens to each place. We say that a place p is marked if
m(p) > 0, otherwise it is said to be unmarked.

Definition 3 A Petri net is a 4-tuple (P, T,W,m0) where (P, T,W ) is a Petri
net graph and m0 is an initial marking.

Let N = (P, T,W ) be a Petri net graph.

Definition 4 The set of predecessors (resp. successors) of a transition t ∈ T is
the set of places •t = {p ∈ P |W (p, t) > 0} (resp. t• = {p ∈ P |W (t, p) > 0}).
Similarly, the set of predecessors (resp. successors) of a place p ∈ P is the set
of transitions •p = {t ∈ T |W (t, p) > 0} (resp. p• = {t ∈ T |W (p, t) > 0}).

The set of predecessors (resp. successors) •S (resp. S•) of a set of places
S is the union of sets of predecessors (resp. successors) of each place p ∈ S:
•S =

⋃
p∈S

•p (resp. S• =
⋃
p∈S p

•).
The set of predecessors (resp. successors) •Q (resp. Q•) of a set of transi-

tions Q is the union of sets of predecessors (resp. successors) of each transition
t ∈ Q: •Q =

⋃
t∈Q

•t (resp. Q• =
⋃
t∈Q t

•).

Definition 5 N is ordinary if for all p ∈ P and for all t ∈ T , W (p, t) ≤ 1 and
W (t, p) ≤ 1.

Definition 6 A transition t is enabled at marking m when ∀p ∈ •t : m(p) ≥
W (p, t).

For every two markings m,m′ : P → N and every transition t ∈ T , there

is a transition step m
t→ m′ if for all p ∈ P , m(p) ≥ W (p, t) and m′(p) =

m(p)−W (p, t) +W (t, p).

m
t→ m′ means that the transition t is enabled in m and its firing leads to

m′. An enabled transition may or may not fire if there are other transitions
enabled.

Example 1 The classical Petri net view of a reaction model is to associate bio-
chemical species to places and biochemical reactions to transitions. The well-
known system of Michaelis-Menten enzymatic reactions can be represented by
the Petri net depicted in Figure 1. It consists of three reactions that take place
in two discrete steps: the first involves the reversible formation of a complex
(AE) between the enzyme (E) and its substrate (A), and the second step in-
volves an irreversible transformation of the product (B) with release of the
enzyme.

A+ E � AE → B + E

4
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A B

E

AE

t1

t−1

t2

Fig. 1: Petri net associated to the example of Michaelis-Menten of Example 1,
displayed here with a marking enabling transition t1.

Definition 7 Given m and m′ two markings of N . A finite sequence of tran-
sitions σ = (t0 . . . tn) is a finite firing sequence of the Petri net if there exists

a sequence of markings m1, . . . ,mn for which m
t0→ m1

t1→ . . .
tn−1→ mn

tn→ m′.
This is denoted by m

σ→ m′.

Definition 8 A marking m′ is reachable from m if there exists a finite se-
quence σ such that m

σ→ m′.

Definition 9 Let N = (P, T,W,m0) be a Petri net.

– A transition t ∈ T is dead at marking m if it is not enabled in any marking
m′ reachable from m.

– A marking m is dead if there is no transition enabled in m.
– A Petri net is deadlock free (weakly live) if there is no reachable dead

markings.

2.2 Siphons and Traps

Let N = (P, T,W ) be a Petri net graph.

Definition 10 A trap is a non-empty set of places P ′ ⊆ P whose successors
are also predecessors: P ′• ⊆ •P ′.

A siphon is a non-empty set of places P ′ ⊆ P whose predecessors are also
successors: •P ′ ⊆ P ′•.

A siphon (resp. a trap) is proper if its predecessor set is strictly included
in its successor set: •P ′ ( P ′• (resp. P ′• ( •P ′).

A siphon (resp. a trap) is minimal if it does not contain any other siphon
(resp. trap).

It is worth remarking that a siphon in N is a trap in the dual Petri net
graph, obtained by reversing the direction of all arcs in N . Note also that since

5
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predecessors and successors of an union are the union of predecessors (resp.
successors), the union of two siphons (resp. traps) is a siphon (resp. a trap).

The Petri net of Example 1 has two minimal siphons, {A,AE} and {E,AE}.
{E,AE} is both a minimal siphon and a minimal trap since •{E,AE} =
{E,AE}• = {t1, t−1, t2}

Although siphons and traps are stable under union, it is worth noting that
minimal siphons do not form a generating set of all siphons. A siphon is called
a basis siphon if it cannot be represented as a union of other siphons [35]. Obvi-
ously, a minimal siphon is also a basis siphon, however, not all basis siphons are
minimal. For instance, in Example 1, the generating set of siphons is formed
by {A,AE}, {E,AE}, {A,AE,B} and {E,AE,B}, but only {A,AE} and
{E,AE} are minimal, the two others cannot be obtained by union of minimal
siphons.

The following propositions show that traps and siphons provide a structural
characterization of some particular dynamical properties on markings.

Proposition 1 [40] For every subset P ′ ⊆ P of places, P ′ is a trap if and
only if for any marking m ∈ NP with mp ≥ 1 for some place p ∈ P ′, and any

marking m′ ∈ NP such that m
σ→ m′ for some sequence σ of transitions, there

exists a place p′ ∈ P ′ such that m′p′ ≥ 1.

Proposition 2 [40] For every subset P ′ ⊆ P of places, P ′ is a siphon if and
only if for any marking m ∈ NP with mp = 0 for all p ∈ P ′, and any marking

m′ ∈ NP such that m
σ→ m′ for some sequence σ of transitions, we have

m′p′ = 0 for all p′ ∈ P ′.

2.3 Application to Deadlock Detection

One reason to consider minimal siphons is that they provide a sufficient con-
dition for the non-existence of deadlocks. A deadlock occurs in a marked Petri
net if no transition is enabled. It has been shown indeed that in a deadlocked
(and marked) Petri net, all unmarked places form a siphon [6]. The siphon-
based approach for deadlocks detection checks if the net contains a proper
siphon that can become unmarked by some firing sequence. In parrticular the
following stp property provides a sufficient condition for ordinary Petri nets
to be deadlock free.

Definition 11 Given a Petri net (P, T,W,m0), the siphon-trap property (STP)
holds when every siphon contains a marked trap.

Theorem 1 ([7]) An ordinary Petri net in which the STP holds is deadlock
free.
Proof. We just have to show that STP is preserved by transition firing and
that a dead marking does not satisfy STP. The preservation follows from the
fact that a marked trap remains marked after the firing of a transition. If a
marking m is dead, then the set S = {p ∈ P | m(p) = 0} is such that S• = T

6
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since every transition should have an empty predecessor. Then •S ⊆ S•, and
moreover S is non-empty since T is non-empty. Therefore S is a siphon and
does not contain a marked trap. ut

The relevance of siphons and traps for other liveness properties in systems
biology are reported in [23].

2.4 Application to Systems Biology

One example of the relevance of traps and siphons in biology was given in [49]
for the analysis of the production and accumulation of starch in potato tubers
during growth, while starch is consumed after the tubers are deposited after the
harvest. This can be seen by a purely structural analysis of the Petri net graph
of the metabolic network, since starch and several of its precursors form traps
in the reaction net during growth, while starch and possible intermediates
of degradation form siphons after the harvest. A simplified version of this
Petri net is depicted in Figure 2, where G1 stands for glucose-1-phosphate,
Gu is UDP-glucose, S is the starch, I stands for intermediary species and
P1 and P2 represent external metabolites [45]. In this network, either the
branch producing starch (t3 and t4) or the branch consuming it (t5 and t6) is
operative, as it is shown in Figure 3 and Figure 4 respectively. This is realized
by a switching mechanism in the gene regulatory network with synthesis of
the corresponding enzymes. Two Petri nets are thus derived from this model:
one Petri net where t5 and t6 are removed (in this Petri net, t3 and t4 are said
to be operative) and one Petri net where t3 and t4 are removed.

It can be easily observed that the set {Gu, S} is a trap when t3 and t4 are
operative: once a token arrives in S, no transition can be fired and the token
remains there independently of the evolution of the system. Dually, {S, I} is a
siphon when t5 and t6 are operative: once the last token is consumed from S
and I, no transition can generate a new token in these places, so they remain
empty.

Another interesting example of use of the concept of siphons and traps, also
from [49], deals with the analysis of the role of the triosephosphate isomerase
(TPI) in Trypanosoma brucei metabolism. Earlier, Helfert et al. [24] supposed
that glycolysis could proceed without TPI, but unexpected evidence that all
system fluxes (Pyruvate, Glycerol) decrease was found which lead the authors
to build a kinetic model for explaining that phenomenon. However, a purely
structural explanation for the necessary presence of TPI in glycolysis and
glycerol production was provided in [49] simply by showing the existence of
siphons and traps in the model.
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Fig. 2: Petri net graph modeling the growth metabolism of the potato
plant [49].

G1P1 P2

Gu

S

t1 t2

t3

t4

Fig. 3: Petri net graph modeling the growth metabolism of the potato plant [49]
with the branch producing starch operative.

3 Theoretical Complexity of Siphon and Trap Properties

3.1 Preliminaries on SAT, FO and MSO

We shall prove some NP-completeness results using the following characteri-
zation of Boolean satisfiability. For a finite set of variables V = {x1, . . . xm},
let ¬V = {¬x1, . . . ,¬xm} denotes the set of negative literals constructed upon
V . For a Boolean formula in conjunctive normal form φ = c1 ∧ · · · ∧ cn over
V , we have for all 1 ≤ i ≤ n, ci = `i,1 ∨ · · · ∨ `i,ni , and for all 1 ≤ j ≤ ni,
`i,j ∈ V ∪ ¬V . Let us write Cφ = {i ∈ N | 1 ≤ i ≤ n} and Lφ = {(i, j) ∈ N2 |
1 ≤ i ≤ n, 1 ≤ j ≤ ni}.

Lemma 1 A Boolean formula φ in conjunctive normal form is satisfiable if
and only if there exists a subset X ⊆ Lφ such that

– for all 1 ≤ i ≤ n, there exists 1 ≤ j ≤ ni such that (i, j) ∈ X,
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Fig. 4: Petri net graph modeling the growth metabolism of the potato plant [49]
with the branch consuming starch operative.

– for all (i, j), (i′, j′) ∈ X, `i′,j′ 6= ¬`i,j.

Proof. If µ : V → {0, 1} satisfies φ, we pose for all x ∈ V , µ(¬x) = 1 − µ(x)
and then it suffices to observe that X = {(i, j) ∈ L | µ(`i,j) = 1} satisfies the
conditions of the lemma. Conversely, given a subset X ⊆ Lφ satisfying these
conditions, we pose µ : V → {0, 1} such that for all x ∈ V , µ(x) = 1 if there
exists (i, j) ∈ X such that `i,j = x and 0 otherwise. Then, we observe that µ
satisfies φ. ut

We say that φ is satisfied by X if X is a subset of Lφ satisfying the conditions
of Lemma 1.

We shall also use the language of first-order logic (FO) to express proper-
ties over finite set and graph structures assumed to be fixed. For each finite
set S, we assume a unary predicate S(x), also written x ∈ S by abuse of nota-
tion, which tests membership. Non-emptyness, S 6= ∅, is expressed by the FO
formula ∃x(x ∈ S), and set inclusion, S ⊆ S′, by ∀x(x ∈ S → x ∈ S′). Simi-
larly for each Petri net graph, we assume two unary (set) predicates, place(x)
and transition(x), which distinguish between places and transitions, and a bi-
nary predicate, edge(x, y), which tests incidence. This leads to the following
characterization of siphons and traps:

Definition 12 The siphon and trap properties can be defined in FO by the
following schemas of formulae:

Siphon(S) : S 6= ∅ ∧ ∀p ∈ S place(p)
∧ ∀t(∃p ∈ S edge(t, p)→ ∃p ∈ S edge(p, t))

Trap(S) : S 6= ∅ ∧ ∀p ∈ S place(p)
∧ ∀t(∃p ∈ S edge(p, t)→ ∃p ∈ S edge(t, p))

We shall also provide a series of linear time complexity results by showing that
some problems can be expressed in monadic second-order logic (MSO) over
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finite graph structures, in order to use Courcelle’s theorem. MSO extends FO
by the addition of second-order quantifiers over predicates, also noted ∃ and
∀, with the restriction to apply to unary predicates only, i.e. sets. An example
of MSO formula is given in the proof of Theorem 4 in the next section.

Definition 13 ([42]) A tree decomposition of a non-oriented graph G =
(V,E) is a pair (X,T ) where T = (I, A) is a tree and X = (Xi)i∈I is a
family of subsets of V such that

–
⋃
i∈I Xi = V ,

– for all {v, v′} ∈ E, there exists i ∈ I such that {v, v′} ⊆ Xi,
– for all i, j, k ∈ I, if j lies on the path from i to k in T , then Xi ∩Xk ⊆ Xj .

The tree-width of a tree decomposition is maxi∈I |Xi|−1. The tree-width tw(G)
of G is the minimum tree-width taken over all possible tree decompositions of
G.

The tree-width of an ordinary Petri net graph N = (P, T,W ) follows that
definition given for graphs, by reading the Petri net as the non-oriented graph
G = (P ∪ T,E) where E = {{p, t} ⊆ P ∪ T |W (p, t) > 0 or W (t, p) > 0}.

Example 2 Let us consider the Petri net graph depicted in Figure 5. The non-
oriented graph associate to this Petri net is depicted in Figure 6. Two possible
tree decompositions of this non-oriented graph are shown in Figure 7. In both
decompositions, each graph edge connects two vertices which belong to the
same tree node. Graph vertices are adjacent only when the corresponding sub-
trees intersect. In the first tree decomposition (Figure 7 on the left), each tree
node contains at most four vertices, hence the width of this decomposition is
three. In the second tree (Figure 7 on the right), each tree node contains at
most three vertices, hence the width of this decomposition is two, which is the
optimal tree-width over all possible tree decompositions. Hence, the tree-width
of the Petri net graph depicted in Figure 5 equals two.

A B

C

D

E

F

G

t1 t2 t3

t4 t5

Fig. 5: Example of a Petri net with its associated non-oriented graph depicted
in Figure 6 and two tree decompositions given in Figure 7.

Courcelle’s theorem states that every graph property definable in MSO can
be decided in linear time on graphs of bounded tree-width.

10
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A B C

D EF

G

Fig. 6: Non-oriented graph associated to the Petri net of Figure5

B C D F

A B C E F D F G

A B B C D

C D F

D F G C E F

Fig. 7: Two possible tree decompositions of the graph shown in Figure 6

Theorem 2 (Courcelle [12]) For a given formula P in monadic second-
order logic on the structure of graphs and for a given positive integer k, there
exists a linear time algorithm that given a finite graph G of tree-width at most
k decides whether G satisfies P .

Given a tree-automaton constructed from the formula, and a tree con-
structed from the graph decomposition that minimizes the tree-width, decid-
ing if the automaton accepts the tree can be done in linear time. Courcelle’s
theorem shows the existence of such automata for MSO properties. However,
the automata can be of hyper-exponential sizes. This makes the linear algo-
rithm usually unusable in practice. There is some recent work in [13,28] on fly-
automata and game-theoretic methods, aiming at making this result practical
for certain properties of graphs with bounded clique-width. The applicability
of these new approaches to our problem is however beyond the scope of this
paper.

3.2 The Q-MinimalSiphon Problem

Definition 14 The problem FindMinimal is the following problem: “given
a Petri net graph N = (P, T,W ) and a subset of places Q ⊆ P , find a minimal
siphon S in N such that Q ⊆ S if there is any, or fail.”

Theorem 3 ([46]) The problem FindMinimal is polynomial.
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Definition 15 Q-MinimalSiphon is the following decision problem: “given
a Petri net graph N = (P, T,W ) and a subset of places Q ⊆ P , does there
exist a minimal siphon S in N such that Q ⊆ S?”.

Theorem 4 Q-MinimalSiphon is decidable in linear time for any class of
Petri net graphs with bounded tree-width.

Proof. By Definition 12, siphons and traps are expressible in FO, and thus
in MSO. We just have to verify that Q-MinimalSiphon can be expressed in
MSO as follows:

Q-MinimalSiphon : ∃S(Siphon(S) ∧Q ⊆ S
∧ ∀S′(Siphon(S′) ∧ S′ ⊆ S → S ⊆ S′))

The linear time complexity then follows from Courcelle’s theorem. ut

In the general case,Q-MinimalSiphon has been shown NP-complete in [48].
We find it useful here to provide a simpler proof of this result, by showing the
NP-hardness of the following equivalent problem.

Definition 16 For a given Petri net graph N = (P, T,W ) and Q ⊆ P , a
Q-hitting siphon is a siphon S ⊆ P of N such that for every siphon S′ ⊆ S of
N , Q ⊆ S′.

Definition 17 Q-HittingSiphon is the following decision problem: “given a
Petri net graph N = (P, T,W ) and a subset of places Q ⊆ P , does there exist
a Q-hitting siphon in N?”.

Proposition 3 Given a Petri net graph N = (P, T,W ) and a subset of places
Q ⊆ P , there exists a minimal siphon containing Q in N if and only if there
exists a Q-hitting siphon in N .
Proof. If S is a minimal siphon containing Q, then S is a Q-hitting siphon.
Conversely, if S is a Q-hitting siphon, then there exists a minimal siphon
S′ ⊆ S and since S is Q-hitting, then Q ⊆ S′. ut

Theorem 5 Q-MinimalSiphon is NP-complete.
Proof. Q-MinimalSiphon is in NP since FindMinimal is polynomial. We
just have to show that Q-HittingSiphon is NP-hard.

Let us assume a sat instance described by a set V of variables and a
Boolean formula φ over V in conjunctive normal form. Let N = (P, T,W ) be
the ordinary Petri net graph, depicted in Figure 8, where

– P = Lφ ∪ {q} and T = V ∪ ¬V ∪ Cφ where q /∈ Lφ ∪ T ,
– W satisfies

•(i, j) = {¬`i,j} (i, j)•= {i, `i,j} for all (i, j) ∈ Lφ
•q= Cφ q•= V ∪ ¬V
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q

x ¬x y ¬y z ¬z

x

(1, 1)

¬y

(1, 2)

z

(1, n1)

1

(2, 1)

¬x

(2, 2) (2, n2)

2

. . .

. . .

.

..
.
..

(n, 1) (n, 2)

¬x

(n, nn)

n

Fig. 8: Petri net used in the reduction of sat to Q-HittingSiphon in Theo-
rem 5. In this Petri net, a siphon S contains the place q on top of the figure if
and only if S contains at least one literal occurrence per clause. Moreover, S
is {q}-hitting if and only if S does not contain a pair of contradictory literals.

Lemma 2 φ is satisfiable if and only if there exists a {q}-hitting siphon in
N , i.e., a subset S ⊆ P such that S 6= ∅ and •S ⊆ S• and for all S′ ⊆ S, if
S′ 6= ∅ and •S′ ⊆ S′•, then q ∈ S′.
Proof. Suppose that φ is satisfied by X ⊆ Lφ. We verify that X ∪ {q} is a
{q}-hitting siphon. Indeed, •X ⊆ V ∪ ¬V = q• and, by hypotheses on X,
•q = Cφ ⊆ X•, therefore •(X ∪ {q}) ⊆ (X ∪ {q})•. For any S′ ⊆ S such that
S′ 6= ∅ and •S′ ⊆ S′•, suppose that q /∈ S′, then since S′ 6= ∅, there exists
(i, j) ∈ S′ and •(i, j) = {¬`i,j} ⊆ S′•, therefore there exists (i′, j′) ∈ S′ such
that ¬`i,j ∈ (i′, j′)•, therefore `i′,j′ = ¬`i,j , which contradicts that S′ ⊆ X;
thus, q ∈ S′. That proves that X ∪ {q} is a {q}-hitting siphon.

Conversely, suppose that S is a {q}-hitting siphon. We verify that φ is
satisfied by X = S ∩ Lφ. Indeed, for all 1 ≤ i ≤ n, i ∈ •q, then i ∈ X•,
therefore there exists 1 ≤ j ≤ ni such that (i, j) ∈ X. Suppose that there exist
(i, j), (i′, j′) ∈ X such that `i′,j′ = ¬`i,j , then S′ = {(i, j), (i′, j′)} would be
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such that S′ 6= ∅ and •S′ ⊆ S′•, despite q /∈ S′. Therefore, for all (i, j), (i′, j′) ∈
X, `i′,j′ 6= ¬`i,j . Thus, φ is satisfiable. ut

The theorem is then an immediate consequence of the lemma. ut

3.3 The k-Siphon Problem

Definition 18 The problem k-Siphon is the following decision problem: “given
a Petri net graph N = (P, T,W ) and a positive integer k, does there exist a
siphon S in N of cardinality k?”.

The linear time complexity immediately follows from Courcelle’s theorem.

Theorem 6 k-Siphon is decidable in linear time with respect to the size of
the Petri net for any class of Petri net graphs with a bounded tree-width.

Proof. Given a Petri net graph N = (P, T,W ) and a positive integer k, there
exists a siphon S in N of cardinality k if and only if ∃S(Siphon(S)∧cardk(S))
is satisfied, where the formula cardk(S)

cardk(S) : ∃x1 . . . xk

 ∧
1≤i<j≤k

xi 6= xj ∧ ∀x

x ∈ S → ∨
1≤i≤k

x = xi


checks that the cardinality of S is k. ut

We prove the NP-completeness of k-Siphon by polynomial reduction from
the set covering problem, one of Karp’s original NP-complete problems [26].
Let us recall that the problem k-SetCovering is the following decision prob-
lem: “given a finite set U (the universe), a subset S of P(U) and an integer
k, does there exist a subset S ⊆ S of cardinality k such that U =

⋃
S?”.

Theorem 7 k-Siphon is NP-complete.

Proof. k-Siphon is in NP since checking that a given set of places is a siphon
of cardinality k is polynomial. NP-hardness comes by polynomial reduction
from k-SetCovering: given a finite set U (the universe), a subset S of P(U)
and an integer k, let N = (P, T,W ) be the ordinary Petri net graph such that
P = S, T = U and for all t ∈ T , t• = P and •t = {S ∈ S | t ∈ S}. Then for
every subset S ⊆ P , S is a siphon if and only if U =

⋃
S. ut

This shows that the optimization problem MinimalCardinalitySiphon
is NP-hard.
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3.4 The stp Problem

Definition 19 The Siphon-Trap Property stp is the following decision prob-
lem: “given a marked Petri net N = (P, T,W,m0), does every siphon in N
include a trap that contains a marked place?”.

Theorem 8 stp is decidable in linear time for any class of Petri nets with
bounded tree-width.

Proof. Here again, it suffices to remark that stp is expressible in MSO, with a
unary predicate marked(p) for distinguishing marked places, and the following
MSO formula:

stp : ∀S(Siphon(S)→ ∃T (Trap(T ) ∧ T ⊆ S ∧ ∃p(marked(p) ∧ p ∈ T )))

The linear time complexity immediately follows from Courcelle’s theorem. ut

In the general case, stp has been shown to be in co-NP in [39], by reducing
¬stp to sat. Indeed, ¬stp expresses the existence of a siphon S such that
every trap included in S does not intersect M . The encoding in sat focuses
on the maximal trap included in S (the union of all the traps included in S),
which is computed by removing iteratively places in S that cannot belong to
a trap.

In fact, we can prove

Theorem 9 stp is co-NP-complete.
Proof. Since stp is in co-NP [39], it suffices to show that ¬stp is NP-hard.

Let us assume a sat instance described with a set V of variables and a
Boolean formula φ over V in conjunctive normal form. Let N = (P, T,W,m0)
be the ordinary Petri net, depicted in Figure 9, where

– P = Lφ ∪{0}×V and T = V ∪¬V ∪Cφ ∪{t} where t /∈ P ∪V ∪¬V ∪Cφ,
– W satisfies

•(i, j) = Cφ ∪ {`i,j} (i, j)•= {i, t} for all (i, j) ∈ Lφ
•(0, x) = {t} (0, x)•= {x,¬x} for all x ∈ V

– m0 = 1{0}×V .

Note that the set {0} × V is introduced in places to ensure that P ∩ T = ∅.

Lemma 3 φ is satisfiable if and only if (N, {0}×V ) satisfies ¬stp, i.e., there
exists a subset S ⊆ P such that S 6= ∅ and •S ⊆ S• and for all T ⊆ S, if
T 6= ∅ and T • ⊆ •T , then T ∩ {0} × V = ∅.
Proof. Suppose that φ is satisfied by a set X ⊆ Lφ. We verify that X∪{0}×V
is a siphon and that it does not contain any trap intersecting {0}×V . Indeed,
by hypotheses on X, Cφ ⊆ X•, and •(X ∪ {0} × V ) ⊆ Cφ ∪ V ∪ ¬V ∪ {t} ⊆
(X ∪ {0} × V )•. For any T ⊆ X ∪ {0} × V such that T 6= ∅ and T • ⊆ •T ,
suppose that there exists x ∈ T ∩ {0} × V , then {x,¬x} ⊆ T •, therefore
{x,¬x} ⊆ •T and there exist (i, j), (i′, j′) ∈ T ∩ X such that `i′,j′ = ¬`i,j ,
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(0, x) (0, y) (0, z)

t

x ¬x y ¬y z ¬z

1 x(1, 1) ¬y(1, 2) . . .

. . .

z(1, n1)

2 (2, 1) ¬x(2, 2) (2, n2)

(n, 1) (n, 2) ¬x(n, nn)n

...
...

Fig. 9: Petri net used in Theorem 9 for the reduction of sat to stp. In this
Petri net set of places S is a siphon if and only if (1) S contains at least one
literal occurrence per clause and (2) S contains all the places (0, x) such that
the variable x occurs in these literal occurrences; moreover, a marked place
(0, x) belongs to a trap included in S if and only if S contains the pair of
contradictory literal occurrences x and ¬x.

that would contradict the hypotheses on X. Therefore (N, {0} × V ) satisfies
¬stp.

Conversely, suppose that there exists a subset S ⊆ P such that S 6= ∅ and
•S ⊆ S• and for all T ⊆ S, if T 6= ∅ and T • ⊆ •T , then T ∩ {0} × V = ∅. We
verify that φ is satisfied byX = S∩Lφ. We haveX 6= ∅ because otherwise there
would exist (0, x) ∈ S∩{0}×V , then t ∈ •S, therefore t ∈ S• and there would
exist (i, j) ∈ S∩Lφ, which contradicts X = ∅. Thus, Cφ ⊆ •S ⊆ S• and for all
1 ≤ i ≤ n, i ∈ S• so there exists 1 ≤ j ≤ ni such that (i, j) ∈ X. Suppose that
there exist (i, j), (i′, j′) ∈ X such that `i′,j′ = ¬`i,j . Then, there exists (0, x) ∈
S ∩ {0} × V such that (0, x)• = {`i,j , `i′,j′}. Then T = {(0, x), (i, j), (i′, j′)}
will be such that T • = {`i,j , `i′,j′ , i, i′, t} ⊆ Cφ ∪ {`i,j , `i′,j′ , t} = •T , but
T ∩ {0} × V 6= ∅. Therefore, for all (i, j), (i′, j′) ∈ X, `i′,j′ 6= ¬`i,j . ut
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The theorem is now an immediate consequence of the lemma. ut

4 Boolean Model for Minimal Siphons

The definition of siphons in FO given in Definition 12 directly leads to the
following Boolean Constraint Satisfaction Problem (CSP):

Definition 20 Given a Petri net graph N = (P, T,W ) , the CSP Siphon(N)
is the triple (V,D,C) where

– V = P , i.e. a variable is introduced for each place,
– D(p) = {0, 1} for all p ∈ V , i.e. the variables are Boolean,
–

∨
p∈S p = 1, i.e. a siphon is not empty,

– C = {(p = 1→
∨
p′∈•t p

′ = 1) | p ∈ P, t ∈ •p}.

Proposition 4 For every Petri net graph N = (P, T,W ), the CSP Siphon(N)
is satisfied by a valuation ν if and only if {p ∈ P | ν(p) = 1} is a siphon.
Proof. It suffices to check that for every non-empty set of places S, we have
∀p,∀t ∈ •p, p ∈ S →

∨
p′∈•t p

′ ∈ S if and only if •S ⊆ S•. ut

The encoding in a SAT solver is short and direct. For each transition t in
the set of predecessors of a place p, a clause C is added to the satisfiability
problem. C is formed by a negated boolean variable associated to p or-ed with
boolean variables in the set of predecessors of t. To avoid the trivial case of
the empty siphon, one clause is added.

The set of all minimal siphons (w.r.t. set inclusion) can be enumerated
in the set inclusion order, by restarting search each time a siphon S is found,
with the additional constraint

∨
p∈S p = 0, for disallowing any superset of that

siphon.
For enumerating siphons in set inclusion order, we compared two tech-

niques: one by labeling an auxiliary cardinality variable in increasing order
([36]), one by labeling directly the Boolean variables with increasing value
selection (to test first the absence, then the presence of a place in the candi-
date solution). The second technique has revealed to be much more efficient.
The correctness of this technique comes from the fact that if a solution S′

is found after a solution S, then the two paths in the search tree leading to
these solutions have a least common ancestor node: this node corresponds to
the labeling of a place p. By construction, p belongs to S′ and not to S, thus
S′ 6⊆ S.

We shall also consider a variant of the above CSP where the constraints p =
1 →

∨
p′∈•t p

′ = 1 are decomposed by introducing an intermediary Boolean
variable for each transition. For every Petri net graph N = (P, T,W ), the CSP
Siphon’(N) = (V,D,C) is defined as follows.

– V = P∪T , i.e. one variable is introduced for each place and each transition,
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– D(x) = {0, 1} for all x ∈ V ,
–

∨
p∈S p = 1, i.e. a siphon is not empty,

– C = {(p = 1→ t = 1) | p ∈ P, t ∈ •p} ∪ {(t = 0→ p = 0) | t ∈ T, p ∈ •t}.

It is immediate that if Siphon’(N) is satisfied by a valuation ν, then Siphon(N)
is satisfied by ν|P , and conversely that if Siphon(N) is satisfied by ν, then ν
can be extended to a valuation satisfying Siphon’(N).

This variant Siphon’(N) enjoys the following property.

Proposition 5 For every Petri net graph N = (P, T,W ), the CSP Siphon’(N)
has the same tree-width as N .
Proof. It suffices to notice that the primal graph of Siphon’(N) is isomorphic
to the bipartite graph induced by N . ut

5 Implementations with SAT and CLP Solvers

This section describes two implementations of the above model and search
strategy, one using an iterated SAT procedure and the other based on Con-
straint Logic Programming with Boolean constraints.

5.1 Iterative SAT Algorithm

The Boolean model can be directly interpreted using a SAT solver to check
the existence of a siphon or trap. We use sat4j 3, an efficient library of SAT
solvers in Java for Boolean satisfaction and optimization. It includes an im-
plementation of the MiniSAT algorithm, that implements the value selection
mentioned above: for each variable, the value 0 is tried before the value 1.

Example 3 We consider the Petri net depicting the enzymatic reaction of Ex-
ample 1. In the first iteration, the problem amounts to solve the following
encoding of Horn-dual clauses: (¬A ∨ AE) ∧ (¬AE ∨ E ∨ A) ∧ (¬E ∨ AE) ∧
(¬E ∨AE)∧ (¬B ∨AE) The problem is satisfied with the values: E = B = 0
and A = AE = 1, which means that {A,AE} is a minimal siphon. In the
second iteration, the clause ¬A∨¬AE is added to ensure minimality, and the
problem is satisfied with A = B = 0 and E = AE = 1 meaning that {E,AE}
is also a minimal siphon. A new clause is added stating that either E or AE
does not belong to the siphon and no more variable assignment can satisfy the
problem.

Therefore, this model contains two minimal siphons: {A,AE} and {E,AE}.
The enzyme E is a catalyst protein for the transformation of the substrate E in
a product B. Such a catalyst increases the rate of the reaction but is conserved
in the reaction.

3 http://www.sat4j.org/
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5.2 Backtrack Replay CLP(B) Algorithm

The search for siphons can also be implemented with a Constraint Logic Pro-
gram with Boolean constraints (CLP(B)). We use GNU-Prolog 4 [17] for its
efficient low-level implementation of Boolean constraint propagators.

The enumeration strategy is a variation of branch-and-bound, where the
search is restarted to find a non-superset siphon each time a new siphon
is found. We tried two variants of the branch-and-bound: with restart from
scratch and by backtracking.

In the branch-and-bound with restart method, it is essential to choose a
variable selection strategy which ensures diversity. Indeed, an enumeration
method with a fixed variable order accumulates failures by always trying to
enumerate the same sets first and these failures are only lately pruned by the
non-superset constraints. As a consequence, the developed search tree gets
more and more dense after each iteration since the previous forbidden sets are
repeatedly tried again. This phenomenon does not exist in SAT solvers thanks
to no-good recording. In CLP, random variable order selection strategy can be
a good choice: this provides a good diversity and performs much better than
any uniform heuristics.

However, branch-and-bound by backtracking gives better performance when
care is taken for posting the non-superset constraint only once, since repost-
ing it at each backtrack step proved to be inefficient. We have implemented
a backtrack replay strategy, i.e. a customized branch and bound procedure
where the search is performed as follows:

1. each time a siphon is found, the path leading to this solution is memorized,
2. then the search is fully backtracked to the root in order to add to the model

the new non-superset constraint,
3. and then the memorized path is rolled back and replayed to continue the

search at the point it was stopped.

Figure 10 (generated with CLPGUI 5 [19]) depicts the search tree that is
developed for enumerating the 64 minimal siphons of a biological model of
51 species and 72 reactions. Each sub-tree immediately connected to the root
corresponds to the replay of the path with a minimality constraint added. The
small number of backtrack points shows the remarkable efficiency of the back-
track replay strategy combined with a simple Boolean constraint propagator.

6 Evaluation

In the literature, many algorithms have been proposed to compute minimal
siphons and traps of Petri nets. Since a siphon in a Petri net N is a trap of
the dual net N ′, it is enough to focus on siphons, the traps are obtained by
duality. Some algorithms are based on linear programming [35,9], Horn clause

4 http://www.gprolog.org/
5 http://contraintes.inria.fr/∼fages/CLPGUI
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Fig. 10: Search tree developed with the backtrack replay strategy for enumer-
ating the 64 minimal siphons of the model 239 of BioModels which contains 51
species and 72 reactions. The branches ending with a cross are solutions. It is
remarkable that very few backtracks are necessary to enumerate all solutions
using the backtrack replay strategy.

satisfaction [27,33] or algebraic approaches [31]. More recent state-of-the-art
methods are presented in [10,11] and show the better performance of the ded-
icated algorithm of [11]. This algorithm uses a recursive problem partitioning
procedure to reduce the original search problem to multiple simpler search
sub-problems. Each sub-problem has specific additional place constraints with
respect to the original problem. This algorithm can be applied to enumer-
ate minimal siphons, place-minimal siphons, or even siphons that are minimal
with respect to a given subset of places. In this section we compare our results
to that dedicated algorithm.

6.1 BioModels Benchmark

The BioModels [32] database is a repository of peer-reviewed, published, com-
putational models of biological processes. These models are written in the
Systems Biology Markup Language (SBML) exchange format and are mainly
composed of reaction rules, with or without kinetics, and events. This resource
allows biologists to store, search and retrieve models referenced in publications.

We consider the curated part of the repository BioModels version February
2013. Among these 404 curated models, 59 models do not hold any reaction
(but events only), we thus consider the 345 reaction models from which a Petri
net graph can be extracted from the structure of the reactions.

In addition, we consider the following complex biochemical models:

– a model of E2F/Rb signaling from [4] which contains 408 molecular species
and 534 reactions, and will be shown to contain 74 minimal siphons,

– Kohn’s map of the mammalian cell cycle control [29,5], which contains 509
species and 775 reactions, and will be shown to contain 80 minimal siphons.
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6.2 Petriweb Benchmark

The database Petriweb 6 [22] is an attempt to make available a significant body
of Petri nets examples in a public repository. They are written in the Petri Net
Markup Language (PNML), an emerging standard format supported by many
tools PetriWeb supports a restricted form of PNML, including flat, uncoloured
nets, plus limited support for hierarchy The repository can be browsed with a
web browser, and individual nets can be retrieved and uploaded in PNML.

The repository contains 80 Petri nets given with some interesting proper-
ties. The properties are defined by the repository administrator. The properties
are intended to be checked automatically by external analysis tools.

6.3 Computational Results and Comparisons

In this section we compare the SAT method, using the MiniSAT solver im-
plementation included in the SAT4J library, the CLP method, using GNU-
Prolog, both described in Section 5, and the state-of-the-art dedicated algo-
rithm of [11].

Table 1 presents the CPU times in milliseconds for enumerating the sets
of all minimal siphons of the Petri nets in our benchmark in Petriweb and
BioModels (except Model 175 as explained below). The CPU times have been
obtained on a PC with an intel Core processor 2.20 GHz and 8 GB of memory.
For each benchmark, we provide the total number of models, the minimal,
maximal and average numbers of siphons, and the total computation time in
milliseconds for enumerating all of them.

Benchmark # # siphons siphons size total time (ms)
model min-max (avg.) min-max (avg.) dedicated MiniSAT GNU

algorithm Prolog
BioModels 345 0-64 (4.21) 1-413 (3.10) 19734 611 195
Petriweb 80 0-11 (2.85) 0-7 (2.03) 2325 156 6

Table 1: Computation time in milliseconds on the BioModels and Petriweb
benchmarks.

Quite surprisingly, on all these practical instances, both MiniSAT and
GNU-Prolog solve the minimal siphon enumeration problem, in less than
one millisecond in average, with a slightly better average performance for
the CLP(B) program over the SAT solver. Furthermore, MiniSAT and GNU-
Prolog outperform the dedicated algorithm by one or two orders of magnitude.

However, one particular model, number 175 in BioModels, has very high
computation time and was excluded from Table 1. Table 2 presents the perfor-
mance figures obtained on this model and on three other hardest instances for

6 http://www.petriweb.org/
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which we also provide the number of places and transitions. Even if the model
is quite large, e.g. for Kohn’s map of the cell cycle control with 509 species and
775 reactions, the computation time for enumerating its 81 minimal siphons
is astonishingly short: one millisecond only. On these hard instances, the SAT
solver is faster than the CLP(B) program by one or two orders of magnitude,
and is the only algorithm to solve the problem for model 175, in 137 seconds.

model # # # dedicated MiniSAT GNU
siphons places transitions algorithm Prolog

Kohn’s map 81 509 775 28 1 221
BIOMD000000175 3042 118 194 ∞ 137000 ∞
BIOMD000000205 32 194 313 21 1 34
BIOMD000000239 64 51 72 2980 1 22

Table 2: Computation time in milliseconds on the hardest instances of bio-
chemical networks.

Model 175 represents a quantitative model that relates the EGF and HRG
stimulations of the ErbB receptors to the activation of ERK and AKt in MCF-7
breast cancer cells [2]. This is the first model to take into account both the ERK
and AKt pathways, four ErbB receptors, and their simultaneous activation
by two ligands. Previous models of ErbB (e.g. the model developed in [43])
were limited to a single ErbB receptor because of combinatorial complexity.
As a result, the ErbB signaling network is highly connected and indeed the
underlying Petri net contains the highest number of arcs, and of organizations
as remarked in [18,25], of the BioModels repository.

6.4 Clause Density Analysis

The enumeration of the set of all minimal siphons is a problem of enumeration
of all the solutions of an NP-complete problem, so the question is: why are
the CSP-based algorithms for enumerating siphons so efficient on the existing
benchmarks, even on large graphs from systems biology?

One possible explanation could be obtained by considering the well-known
phase transition phenomenon in 3-SAT. The probability that a random 3-SAT
problem is satisfiable has been shown to undergo a sharp phase transition as
the ratio of the number of clauses over the number of variables crosses the
critical value of about 4.26 [34,14], going from satisfiability to unsatisfiability
with probability one, when the number of variables grows to infinity. It is in
this region of the density that the SAT instances are difficult to decide, while
before and after that density the instances are usually easy.

This density of SAT instances associated to the enumeration of all minimal
siphons, grows during enumeration since clauses are added for each solution
found. We can thus check whether the initial density of the 3-SAT instances
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associated to BioModels instances are greater than the critical value of 4.26.
If the initial density is above the critical value, it will remain above, and the
instances are thus easy because there will be a small number of solutions. On
the other hand, if the initial density is below the threshold value of 4.26, the
computation time may be long because the threshold value were the 3-SAT
hardest instances are may be traversed, and the clauses may be satisfiable with
an exponential number of solutions.

The density of a SAT instance is:

density =
#clauses

#variables

Considering our problem of enumerating minimal siphons of a general Petri

net PN = (P, T,W ) on our | P | Boolean variable, initially we have
∑
t∈T
| t• |

clauses plus one clause of non-empty siphon:

density =

∑
t∈T
| t• | +1

| P |

To transform a general SAT instance to a 3-SAT instance, we add µ clauses
and µ variables:

density3-SAT =

∑
t∈T
| t• | +1 + µ

| P | +µ
where

µ =
∑
t∈T

max(0, | •t | −2)

The initial density distribution of all BioModels instances are illustrated
in the histogram of Figure 11.

This histogram shows that the initial density is in fact below the critical
value for the majority of models. The initial 3-SAT density of our hardest
model number 175 equals 2.39. Since the density grows during enumeration
by adding the clauses for minimality, the possibility to traverse the critical
region of density exists. Density considerations thus do not suffice to explain
why we are so efficient in enumerating all the solutions of an NP-complete
problem in large classes of practical Petri nets.

6.5 Tree-Width Analysis

There is also a rich literature about the polynomial-time complexity of CSPs
when the constraint hypergraph is bounded relatively to a variety of graph
measures, including cutwidth and tree-width [21]. Since we have shown that
both Q-MinimalSiphon and k-Siphon are expressible as CSPs, the existence
of a polynomial algorithm for deciding these properties for Petri net graphs of

23

CHAPTER 2. DYNAMICAL ANALYSIS BASED ON STRUCTURAL PROPERTIES 56



Fig. 11: Distribution of the initial density of the initial 3-SAT problems con-
sidered to enumerate all minimal siphons of the Petri net from the BioModels
benchmark.

bounded tree-width follows by Prop. 5. However, since these problems are also
expressible in Monadic Second Order (MSO) logic, they are in fact of linear
time complexity in this case, as shown by Theorems 4 and 6.

It is thus interesting to measure the tree-widths of the Petri nets of our
benchmark. QuickBB 7 is a program for computing the tree-width of a graph.
When given enough time, this algorithm yields the exact tree-width of the
graph. When stopped before termination, it yields an upper bound of the
tree-width.

We have applied QuickBB on the 432 curated models of our BioModels
benchmark. For 31 models, the exact tree-width could not be computed in a
time-out of one hour, but the tree-width was bounded by 23. For the remaining
342 models, the exact tree-width was computed and was always less than 10
as shown in Figure 12. The tree-width of our three hardest instances are given
in Table 3, and have been determined to be less than 10 and 15. These tree-
width values are relatively small values for graphs of hundreds of species and
reactions.

model # # tree-width
places transitions

BIOMD000000175 118 194 ≤ 15
BIOMD000000205 194 313 ≤ 10
BIOMD000000239 51 72 ≤ 10

Table 3: Tree-width of the hardest instances of BioModels database.

7 http://graphmod.ics.uci.edu/group/quickbb/
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Fig. 12: Variation of the computed tree-widths as a function of size (places and
transitions) of the Petri nets associated to BioModels. The computed exact
tree-widths are depicted by red circles. When not known, the computed upper
bounds are depicted by blue bars.

The BioModels benchmark thus seems to indicate that biochemical reac-
tion networks have a bounded tree-width less than ten. This is in agreement
with the idea that even very large biochemical processes are not fully intercon-
nected as in a grid, but composed through interface molecular species. These
considerations suggest that biochemical networks are of bounded tree-width,
in which case Theorems 4, 6 and 8 show that the minimal siphon decision
problems are indeed tractable, and in fact of linear time theoretical complex-
ity.

7 Conclusion

Siphons and traps in Petri nets are meaningful pools of places that display a
specific behaviour in the Petri net dynamics, and that guarantee some per-
sistence properties in the simulation of a system of biochemical reactions,
independently of the kinetics.

We have described a Boolean model for the problem of enumerating all min-
imal siphons in a Petri net and have compared two Boolean methods to the
state-of-the-art algorithm from the Petri net community [11]. On the bench-
mark of 345 biological models from the curated part of the BioModels reposi-
tory, the Boolean method for enumerating all minimal siphons using MiniSAT
is very efficient. It also scales very well in the size of the net. The CLP(B)
program also solves all but one instances of the benchmark, with a better
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performance than MiniSAT in average, but does not scale-up as well on the
largest size Petri nets, such as for instance on Kohn’s map with 509 species and
775 reactions. The MiniSAT solver and the CLP(B) program both outperform
the dedicated algorithms of the Petri net wommunity by one or two orders of
magnitude and solve instances out of reach of these other algorithms.

The efficiency of the MiniSAT and CLP(B) methods for enumerating all
solutions of an NP-complete problem for all, including large, instances of our
practical benchmarks was quite surprising and lead us to study the theoretical
complexity of these problems. Besides the proofs of NP-completeness of the
existence of a siphon of a given cardinality, and of co-NP-completeness of the
siphon-trap property, we have shown that these decision problems are tractable
in Petri nets of bounded tree-width. Then we have shown that the BioModels
benchmark of large biochemical networks have indeed a relatively small tree-
widths.

These various results militate for the analysis of biochemical networks with
Petri net concepts and Constraint Programming tools.

Acknowledgements This work was supported by the French OSEO project Biointelli-
gence.
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62 Circuit-based Conditions for Multistationarity

2.4 Circuit-based Conditions for Multistationarity

The use of the stoichiometry of models goes beyond SNA. The rank of the stoichiometric
matrix is, for instance, used to compute the deficiency that is the core of the CRNT and
its capacity to decide about the possibility of multistationarity. Other techniques related
to circuit analysis and based on Thomas’ hypotheses for multistationarity however did
not rely on stoichiometry directly, but only through the Jacobian matrix.

As a result, as successful as it is in the field of logical models, the theory of Thomas
and the corresponding necessary conditions, though they have been proven for ODE
systems corresponding to biochemical reactions, have remained unusable in practice for
many years. Indeed any network containing a reversible reaction or a multi-molecular re-
action, will have a positive loop —respectively mutual activation or mutual inhibition—
and therefore may (or may not) exhibit multistationarity. Thomas’ condition does not
bring any information.

In [17] we improve the results of [60] by revisiting their proof, armed with the stoichio-
metric information. This permits to rule out many positive circuits in the symbolic Ja-
cobian since they cannot produce multistationarity, thanks to stoichiometric constraints.
With this more strict condition, Thomas’ theory finally becomes usable for biochemical
systems and comes as a complementary tool to the recent CRNT advances [22, 34].
Furthermore, taking into account the structure permits much more simple and concise
proofs, avoiding complicated rewirings of the system as in [43].

This goes to show that even when mainly concerned about the continuous semantics
of a reaction system, the discrete structure remains a very powerful tool for its analysis,
which is one of the main motivations behind what is described in Section 4.2.

[17] Sylvain Soliman. “A stronger necessary condition for the multistationarity of
chemical reaction networks”. In: Bulletin of Mathematical Biology 75.11 (Nov.
2013), pp. 2289–2303. doi: 10.1007/s11538-013-9893-7
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Abstract Biochemical reaction networks grow bigger and bigger, fed by the high-
throughput data provided by biologists and bred in open repositories of models allow-
ing merging and evolution. Nevertheless, since the available data is still very far from
permitting the identification of the increasing number of kinetic parameters of such
models, the necessity of structural analyses for describing the dynamics of chemical
networks appears stronger every day.

Using the structural information, notably from the stoichiometric matrix, of a bio-
chemical reaction system, we state a more strict version of the famous Thomas’ nec-
essary condition for multistationarity. In particular, the obvious cases where Thomas’
condition was trivially satisfied, mutual inhibition due to a multimolecular reaction
and mutual activation due to a reversible reaction, can now easily be ruled out.

This more strict condition shall not be seen as some version of Thomas’ circuit
functionality for the continuous case but rather as related and complementary to the
whole domain of the structural analysis of (bio)chemical reaction systems, as pio-
neered by the chemical reaction network theory.

Keywords Jacobian matrix · Influence graph · Feedback circuit · Multistationarity ·
Chemical reaction network

1 Introduction

In the last 30 years, the conjecture of Thomas (1981) on the necessary presence of
a positive circuit for the occurrence of multistationarity has opened a whole field of
research:
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Fig. 1 (a): mutual inhibition resulting from A + B => C. (b): mutual activation resulting from
D <=> E. For clarity, negative self-loops have not been represented

first, on the mathematical side, since it has been proven under various forms,
depending on the restrictions on the system, discrete (Remy et al. 2008; Richard
and Comet 2007) or continuous (Cinquin and Demongeot 2002; Gouzé 1998;
Plahte et al. 1995; Snoussi 1998; Soulé 2003);

but also based on the insight gained from it allowing better modeling and under-
standing of biochemical networks, especially in the emerging field of systems biol-
ogy.

However, if that second aspect is striking in the field of discrete modeling of
gene regulatory networks, even the stronger versions of Thomas’ necessary condi-
tions published recently (Kaufman et al. 2007) did not have the same impact in the
Ordinary Differential Equations (ODE) based modeling community.

This is mostly due to the fact that this necessary condition, the existence of a pos-
itive loop in the Jacobian of the ODE system, is almost always satisfied. Indeed, any
binary reaction equipped with mass-action kinetics will lead to the mutual inhibition
of the two substrates, and thus create such a loop (see Fig. 1a).

Even a reversible unary reaction can lead to satisfying the condition, since it in-
duces a mutual activation of the two biochemical species (see Fig. 1b).

Since many models are still being constructed based on ODEs, the commu-
nity turned to other types of conditions, especially for purely mass-action or non-
autocatalytic (NAC) systems (Craciun and Feinberg 2005; Craciun et al. 2006).

Nevertheless, even using these conditions, Craciun and Feinberg (2006) states that
enzyme kinetics of the form: S + E <=> C => P + E promote cycles, and thus
might explain why such systems might be far more prone than others to exhibit mul-
tiple equilibria.

In this article, after some preliminaries, we give necessary conditions for multista-
tionarity, not restricted to mass-action or NAC chemical reaction systems, stronger
than Thomas’, and local as in Soulé (2003). They show that enzyme kinetics of the
above form—Fig. 1 or enzyme kinetics à la (Craciun and Feinberg 2006)—do not
by themselves create multistationarity-inducing cycles. This is shown through a main
theorem and three practical corollaries, and is extended in Sect. 5 via graph transfor-
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mation operations. We then position these new results with respect to existing works
and conclude on possible perspectives.

Our approach is based on the Directed Species Reaction (DSR) graph as defined
by Kaltenbach (2012) (and not the homonym from Banaji and Craciun 2009) and the
related analysis of terms appearing in the Jacobian’s determinant. It is local, i.e., the
existence of a positive loop can be verified for a given point of the phase space. Note
that since the local version of Thomas’ conjecture for oscillations has been proven
false in Richard and Comet (2011), there is no direct generalization of our work to the
existence of limit cycles, even using Hurwitz determinants as analogous to principal
minors for Hopf bifurcations.

2 Jacobian Characterization of Multistationarity

Following Soulé (2003), we will use the Gale–Nikaido univalence theorem (Gale and
Nikaido 1965) and its refinements.

We consider a differentiable map F from Ω , a product of n intervals of R, to R
n

and study the corresponding system ẋ = F(x). Its Jacobian matrix, denoted J , is
defined as usual as follows:

Jij (x) = ∂fi/∂xj (x)

The influence graph associated to J at each point x is the labeled directed graph
with vertices {xi | 1 ≤ i ≤ n}; an arc (xi, xj ) if Jij is not null, and the sign of Jij as
label.

The graphs depicted in Fig. 1 are influence graphs where the labels are represented
as colors and arrow tips: green and pointy tip for a positive sign, red and T-tip for a
negative sign.

From now on, we shall use the following terms: a hooping of J is a disjoint collec-
tion of cycles of its influence graph; it is Hamiltonian if it is covering all n vertices.

Theorem 1 (Soulé 2003) Let F be any differentiable map from Ω to R
n, with Jaco-

bian matrix J . If Ω is open and F has two nondegenerate zeroes in Ω , then there
exists a in Ω such that some principal minor of −J (a) is negative.

Using the Leibniz formula for determinants that defines them in terms of per-
mutations of the indices of the matrix, and the link between those and Hamiltonian
hoopings, one then obtains the classical necessary condition on the existence of some
a such that there is a positive circuit in J (a).

Note that this result can be extended to the case where Ω is the (closed) posi-
tive orthant, when some additional, but commonly accepted in the systems biology
community, conditions are met. This is the case for instance if F is the function
associated with the dynamics of a chemical reaction system with only mass-action
kinetics (Craciun and Feinberg 2005), or if one is only interested in multistationarity
associated to saddle-node bifurcations.
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Fig. 2 Bipartite graph representation of the enzymatic reaction: S + E <=> ES => E + P. Arcs
being all labeled with 1; this label is not shown

3 Directed Species-Reaction Graph

Let us now consider a (bio)chemical reaction system with n species S1, . . . , Sn and
m reactions R1, . . . ,Rm. Using notations from Kaltenbach (2012), we write

Rj =
n∑

i=1

yijSi −→
n∑

i=1

y′
ij Si

The y and y′ represent the stoichiometric coefficients of the reactants and products
of the reaction.

The rate law associated with reaction Rj will be written vj . This defines a dynam-
ical system in the sense of previous section: ẋ = F(x) where xi is the concentration
of species Si and

fi(x) =
∑

j

vj (x) · (y′
ij − yij

)

This kind of systems encompasses most of the systems biology models developed
nowadays. One can notice for instance that the Systems Biology Markup Language
(SBML) (Hucka et al. 2008) can be translated to such reactions by splitting reversible
reactions into forward and backward reactions and by including modifiers on both
sides of the reaction (they are not affected by it, but do affect it).

Such a system can be represented naturally in a graphical form as a bipartite graph
for species and reactions (Ivanova 1979; Ivanova and Tarnopolskii 1979), as depicted
in Fig. 2. Arcs can also be labeled with the y and y′ in a Petri-net-like manner.

Using the same bipartite vertices but different arcs and labels, it is possible to
represent the Directed Species-Reaction (DSR) graph of Kaltenbach (2012). The arcs
are now defined and labeled as follows:

λ(Si,Rj ) = ∂vj

∂xi

λ(Rj , Si) = y′
ij − yij

66 Circuit-based Conditions for Multistationarity



A Stronger Necessary Condition for the Multistationarity of Chemical 2293

Fig. 3 DSR graph of the same enzymatic reaction: S + E <=> ES => E + P

Note that this is not the DSR graph defined by Banaji and Craciun (2009) since
the arcs are always directed and the labels different.

If the label λ is zero, then there is no arc. λ is extended to paths (resp. subgraphs)
as the product of the labels of all arcs in the path (resp. subgraph). For a path P , we
shall write λSR(P ) (resp. λRS(P )) for the product of labels considering only species
to reaction (resp. reaction to species) arcs.

Intuitively, the λSR represent the contribution of species to each reaction rate,
whereas the λRS describe the stoichiometric effect of reactions on each species.

Figure 3 shows the DSR graph for the same chemical reaction network as Fig. 2.

Definition 1 A species Hamiltonian hooping of the DSR graph is a collection of
cycles covering each of the species nodes exactly once.

The set of all species Hamiltonian hoopings will be denoted by H.

Lemma 6.2 of Kaltenbach (2012) gives a decomposition of the Jacobian in terms
of the set H:

det(J ) =
∑

H∈H
σ(H)λ(H) (1)

where σ is the sign of the species Hamiltonian hooping, defined as usual: σ(H) =
(−1)ε(H), where ε(H) denotes the number of cycles in H with an even number of
species vertices. Note that, as explained in Kaltenbach (2012), this is a finer decom-
position than that on the Hamiltonian hoopings of the classical influence graph, since
several species-to-species paths of length two in the DSR graph might correspond to
a single arc in the influence graph.

Since the DSR graph can of course be restricted to only certain species, the same
lemma can be used for any principal minor of the original determinant.

Now thanks to the fact that λ(H) = λSR(H)λRS(H), Kaltenbach (2012) groups
all species Hamiltonian hoopings having the same species-to-reaction arcs using an
equivalence relation noted ∼. We write [H ] for the equivalence class of a hooping H ,
i.e., [H ] = {H ′ ∈ H | H ′ ∼ H } and since ∼ partitions H, we write H/ ∼ for the
quotient set. One obtains the following theorem.
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Theorem 2 (Kaltenbach 2012)

det(J ) =
∑

[H ]∈H/∼
Λ

([H ])λSR(H)

where Λ is defined as

Λ
([H ]) =

∑

H ′∈[H ]
σ
(
H ′)λRS

(
H ′)

It is important to notice that, in its original formulation, this theorem has a second
part and is only stated for systems such that ∀i, j, ∂vi/∂xj ≥ 0, i.e., the λSR are al-
ways nonnegative. These systems are called NAC (non-autocatalytic) by Kaltenbach,
but the hypothesis does not match the stronger and more usual definition of NAC sys-
tems (see, for instance, Banaji et al. 2007) that forbids the production of some species
to depend on its concentration. It rather matches the definition of monotonicity (Fages
and Soliman 2008a, 2008b) and allows the restriction of the sign of an element in the
above sum to the different components of Λ.

Nevertheless, since we will only use the decomposition given above and whose
proof does not rely on this hypothesis, we will use the theorem in its full generality.

4 Strengthening Thomas’ Conjecture

Considering Theorem 1 and applying Theorem 2 to each sub-DSR-graph correspond-
ing to a principal minor of −J , one can see that a necessary condition for multista-
tionarity is that some term of the sum is negative. This again states the usual condition
about the existence of a positive cycle in the influence graph of J .

We will now examine the consequences of the decomposition of this sum more
precisely. In particular, we will show that many negative terms can actually be proven
to cancel out with other positive terms, leaving us with more specific negative terms
(and thus positive circuits) to look for.

Definition 2 The restriction of the system to a species hooping H (noted |H ) is the
system where reactions {Ri | i ∈ I } not appearing in H are omitted.

Since each species appears at most once in any hooping, there is one reaction as-
sociated to each species by following the outgoing arc of that species. Note, however,
that the same reaction can appear several times, as associated with several different
species.

This definition is naturally extended to any function or graph defined by the bio-
chemical system.

As noticed by Kaltenbach in the proof of one of the lemmas preceding Theorem 2,
Λ can be computed directly from the stoichiometric matrix Y ′ −Y of the biochemical
system. This observation is useful in proving our first lemma.

Lemma 1 Let H be a species Hamiltonian hooping, if (Y ′ −Y)|H is not of full rank,
then Λ([H ]) = 0.
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Fig. 4 Influence graph of S + E <=> ES => E + P. Arcs are labeled by their sign, as usual, but also
by the unique reaction involved in order to obtain precisely the same species–species paths as in Fig. 3.
Note for instance that there are two positive arcs from ES to E. Negative self-loops are omitted for clarity
as in Fig. 1

Proof As per Lemma 6.6 of Kaltenbach (2012), we have Λ([H ]) proportional to
det((Y ′ − Y)|H ). Now, if that matrix is not of full rank, its determinant is 0. �

Remark that one can augment the usual labeling of the influence graph to contain
not only the sign, but also the reaction used for each arc. There is thus an arc in
this reaction-labeled influence graph for each species-to-species path of length two
in the DSR graph. This leads to a one-to-one correspondence between Hamiltonian
hoopings of the reaction-labeled influence graph and species Hamiltonian hoopings
of the DSR graph. Figure 4 demonstrates this on the same example as Fig. 2.

In order to compute the signs of the arcs in this reaction-labeled influence graph,
one now needs the sign of ∂vi/∂xj instead of that of ∂fi/∂xj . However, even without
precise kinetic values, this can be easily computed for most commonly used kinetics;
see, for instance, Fages and Soliman (2008a) for the cases of mass action, Michaelis–
Menten and Hill kinetics.

This allows us to state our main results.

Theorem 3 Let F be any differentiable map from Ω to R
n corresponding to a bio-

chemical reaction system. If Ω is open and F has two nondegenerate zeroes in Ω

then there exists some a in Ω such that:

1. The reaction-labeled influence graph G of F at point a contains a positive cir-
cuit C;

2. There exists a hooping H in G, such that C is subcycle of H with (Y ′ − Y)|H of
full rank.

Proof Because we share the same hypotheses, we can use Theorem 1 to obtain a and
the corresponding negative principal minor. It is then possible to apply Theorem 2 to
decompose that minor according to the DSR graph as a sum of terms for each species
Hamiltonian hooping equivalence class, and this sum must contain a negative term.
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Since only positive circuits will lead to negative terms in the usual determinant
decomposition, we can now prove the proposition ab absurdum. If all negative terms
appear only in some Λ([H ]) such that the restriction of the stoichiometric matrix to
H is not of full rank, they will be canceled out by other terms, following Lemma 1.
This would lead to a contradiction. �

Note that these properties can be checked directly on the reaction-labeled influence
graph and the stoichiometry matrix.

Remark that H might not be Hamiltonian since it is Hamiltonian in a subgraph
corresponding to the principal minor that is negative. See the end of Sect. 6 for cases
when the number of species in H can be known beforehand.

Let us now apply this theorem to some common cases.

Corollary 1 A necessary condition for the multistationarity of a biochemical reac-
tion system is that there exists a positive cycle in its influence graph, using at most
once each reaction.

Proof This is a direct consequence of Theorem 3 since a matrix with two identical
rows is clearly singular. �

It is immediate to check that the mutual inhibition resulting from bimolecular
reactions—like that between E and S in our running example or between A and B
in Fig. 1—cannot fulfill these necessary conditions, since the same reaction—R1 in
Fig. 4—will be repeated twice.

Corollary 2 A necessary condition for the multistationarity of a biochemical reac-
tion system is that there exists a positive cycle in its influence graph, not using both
forward and backward directions of any reversible reaction.

Proof This is once again an immediate consequence of Theorem 3 since a matrix
with two opposite rows is clearly singular. �

One can thus remark that the mutual activation resulting from reversible reac-
tions—like that between ES and S through R1 and R−1 in our running example or
between D and E in Fig. 1—cannot fulfill these necessary conditions.

Note that this corollary corresponds to Lemma 6.9 from Kaltenbach (2012), but
with a much simpler proof involving no rewiring of the influence graph.

Other information that can be extracted from the stoichiometry is the (structural)
conservation laws, i.e., P-invariants of the underlying Petri net, or more simply the left
kernel of the stoichiometry matrix. Finding all the conservation laws of a biochemical
model might be computationally expensive, though in practice that does not seem to
be the case (Soliman 2012), but checking if a given set of species are such that their
sum is constant is trivial. Based on this observation, one can state the following other
corollary.
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Fig. 5 Bipartite graph representation of the reactions M + K <=> MK => K + Mp <=> MpK =>
K + Mpp. Arcs being all labeled with 1; this label is not shown

Corollary 3 A necessary condition for the multistationarity of a biochemical reac-
tion system is that there exists a positive cycle in its influence graph, not using all
species involved in a conservation law.

Proof This is once again an immediate consequence of Theorem 3 since a weighted
sum of the columns corresponding to the conservation law is zero. Therefore, a matrix
containing those columns, even if some rows are forgotten via the selection of some
principal minor, will be singular. �

One can thus remark that the mutual activation between E and ES through R1
and R2 in our running example cannot fulfill the necessary conditions for multista-
tionarity, since E and ES form a conservation law.

The three Corollaries 1, 2, and 3 do rule out most of the obvious cases for which
Thomas’ condition is trivially satisfied. In particular, they show that none of the pos-
itive circuits of Fig. 4 fulfill our stricter condition.

5 Going Further

Let us now consider a two-step version of our running example, as is often considered
in MAPK cascades and similar signaling pathways.

In this example, as before, most positive circuits can be proven not to be enough
to make multistationarity possible. Some come from reversible reactions like R1 and
R−1; some are mutual inhibitions from a single reaction like R3; some do contain a
conservation law, like the big circuit of all forms of the kinase K using R1, R2, R3,
and R4.

However, some circuits cannot be ruled out that easily. For instance, the mutual
activation of K and MK through R1 and R2 is now acceptable. Indeed, in the principal
minor where only these two species and Mp are considered, the Hamiltonian hooping
built from the said circuit and the self negative loop on Mp satisfies the hypotheses of
Theorem 3.

We present here two ways to rule out this case also by transforming the system
without changing the number of steady states, as noted by Soulé (2003).
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Fig. 6 Influence graph of Fig. 4 but with arcs ending in {E} inversed. Note that the self-loop on E has
become positive. All other positive cycles contain either twice R1 or both R1 and R−1

5.1 Changing the Sign of Some fi

First, one can multiply by −1 some of the fi without affecting the number of steady
states of the system. Let us denote by I the subset of 1, . . . , n containing such indices,
i.e., I is the set of indices for which the sign is changed.

This corresponds to a transformation of our reaction system where for each species
of I , we exchange its stoichiometry as reactant and as product in each reaction, with-
out modifying the rate of the reactions. In mathematical terms, for all i in I we
exchange all yij and y′

ij , but all vj remain untouched. This is possible since in Theo-
rem 2 we took care not to use any hypothesis on the vj .

The resulting labeled reaction graph is the same as before, but with the color (i.e.,
sign) of the arcs ending in species of I reversed. Any such graph should actually fulfill
our conditions in order for the original system to be able to produce multistationarity.

Corollary 4 A necessary condition for the multistationarity of a biochemical reac-
tion system is that there exist positive cycles fulfilling condition 2 of Theorem 3 in
the influence graph corresponding to its Jacobian, and in any graph obtained from
it choosing a set of species and by reversing the sign of all arcs that have as target
some species belonging to that set.

Figure 6 shows the result of choosing I = {E} in our initial example. It should be
noted that there is now a positive loop on E since it had a negative loop beforehand.
When trying to prove that a system cannot exhibit multistationarity, it might thus be
worth restricting the search for an I to sets that contain at least some of the vertices
belonging to the positive circuit that satisfies our hypotheses in the initial graph, and
to sets that do not contain any vertex that had a negative self-loop in the initial graph.

In the new example, since both K and MK have negative self-loops, Corollary 4
cannot rule out the circuit.
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Fig. 7 Influence graph of Fig. 4 but with arcs ending in P and ES substituted. Resulting negative self-loops
are, as usual, not shown, but note that the negative arcs from ES to P corresponds to negative self-loops on
ES in the original graph

5.2 Permuting the Indices of Some fi

Another transformation of the system that does not change its number of steady states
is to multiply the Jacobian by a permutation, i.e., to permute the indices of some fi .

In biochemical system terms, this can be done by applying the permutation to the
species appearing in the reactions (as products or reactants), and thus to the yij and
y′
ij but not to the rates vj .

This transforms only the species-to-reaction arcs of the DSR graph, rewiring them
according to the permutation. In the labeled influence graph, the signs and reaction
labels do not change, but the arcs are rewired such that their target corresponds to the
image by the permutation. All such graphs should once again fulfill our conditions in
order for the original system to be able to exhibit multistationarity.

Corollary 5 A necessary condition for the multistationarity of a biochemical reac-
tion system is that there exist positive cycles fulfilling condition 2 of Theorem 3 in the
influence graph corresponding to its Jacobian, and in any graph obtained from it by
choosing a permutation of the species and by rewiring the arcs’ target according to
the permutation.

Figure 7 shows the result of choosing a permutation of ES and P in our initial
example. It should be noted that there is now a positive loop on ES since there was a
positive arc from it to P beforehand. When trying to prove that a system cannot exhibit
multistationarity, it might thus be worth restricting the search for a permutation to
those that do not map a vertex to any other vertex such that the first one has a positive
arc to it.

Actually, as noted in Soulé (2003), the two above corollaries can be combined.
Figure 8 shows that by choosing the permutation of K and Mpp in our new ex-

ample, and by changing the sign on K there is no more positive cycle belonging to a
hooping of full rank. This proves that the system cannot exhibit multistationarity.
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Fig. 8 Influence graph of Fig. 5, but with arcs ending in K and Mpp substituted, and then the only arc
ending in K changed of sign. Resulting negative self-loops are, as usual, not shown, but note that the
negative arcs from K to Mpp corresponds to the negative self-loops on K in the original graph. All positive
circuits remaining can be ruled out by one of our corollaries as being a possible source of multistationarity

6 Related Work

The results we present in this paper bear some similarity with many existing works
from the chemical reaction network theory community, in particular, the works of
Banaji (2012) and Craciun and Feinberg (2005) that tackle multistationarity. Note,
however, that the methods are different (even if another homonymous DSR graph
is used) and particularly the hypotheses on the biochemical networks handled. Even
with the recent works (Feliu and Wiuf 2012) lifting the requirement for having out-
flows for each species, the results usually require mass-action kinetics, or at least
monotone rates and no auto-catalysis (i.e., NAC kinetics, see also the discussion after
Theorem 2). Note that this kind of restriction forbids all the graph transformations
in Sect. 5. Moreover, the conclusions are different: While the methods we present
here do not handle all the examples of Craciun et al. (2006), conversely their method
does not provide any conclusion for our latest MAPK example, since the c-pair K Mp
from R2 is split between the two even-cycles R1,R2 and R2,R3. The approaches are
thus complementary, even when restricting the results of the current paper to specific
types of kinetic rates.

There has been an important amount of work from Angeli and Sontag about
graphical requirements in chemical reaction networks. However, as they state them-
selves in Angeli et al. (2010) about the work of Craciun and Feinberg, “While we
present global stability results, that work is concerned with the problem of identifying
which chemical reaction networks may have multiple equilibria in their stoichiometry
classes.” Indeed, they characterize monotonicity, persistence, and convergence prop-
erties of systems. These different properties in turn rely on different hypotheses than
ours: they require once again NAC kinetics, whereas the present article does not.

Finally, a result that might appear similar to Theorem 3, but restricted to mass-
action systems is the second theorem of Mincheva and Roussel (2007). Note, how-
ever, that their result is about the order, i.e., number of species, of the Hamiltonian
hooping, implying that when their hypotheses are satisfied, the H we look for in
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Theorem 3 covers r species, where r is the rank of the Jacobian. Their result also
requires the explicit computation of KSr , the coefficient (similar to our Λ) of their
critical fragment (similar to our equivalence classes over hoopings). In contrast, we
provide graphical conditions for which we know from the stoichiometry—and with-
out any hypothesis on the kinetics—that this coefficient will actually be 0, and thus
that some other positive cycle should be found. Finally, once again, because of the re-
strictions put on the kinetic rates, their approach cannot benefit from the graph trans-
formations presented in Sect. 5. The later article by Mincheva and Craciun (2008)
does go beyond mass-action kinetics, and considers a multigraph of influences that
bears some similarities with our labeled influence graph. However, by keeping only
signs as labels, that approach cannot use directly results like Corollary 2 on reversible
reactions.

7 Conclusion

Using the structural information, notably from the stoichiometric matrix, of a bio-
chemical system, we have been able to state a more strict version of the famous
Thomas’ necessary condition for multistationarity.

Of course, since we have made no hypothesis on the kinetic rate functions, one can
easily represent any dynamical system as such biochemical reactions. Typically, one
would then have one reaction for each variable with rate corresponding to its deriva-
tive. In this case, the supplementary hypothesis of our theorems collapse, leaving us
with the usual conditions. However, for more usual biochemical systems, it brings
a concrete difference, as illustrated by Corollaries 1, 2, or 3, and if necessary their
application to many transforms of the influence graph as seen in Corollaries 4 and 5.

In particular, the obvious cases where Thomas’ condition was trivially satisfied,
as illustrated by Figs. 1 and 4, can now easily be ruled out.

The results are local (i.e., the cycle does exist for some a in the phase space)
since they rely on local theorems as was the case in Soulé (2003). Since the other
Thomas’ condition, on oscillations, is not (Richard and Comet 2011), one cannot
directly apply the same reasoning we used to Hurwitz determinants. It might still
be worth investigating, for instance when the signs of the influences in the labeled
influence graph are known to be constant.

The same locality argument makes it difficult to interpret our stronger condi-
tion as some version of Thomas’ circuit functionality for the continuous case. It is
rather related and complementary to the whole domain of the structural analysis of
(bio)chemical reaction systems, as pioneered by chemical reaction network theory.
As such, we believe that our stronger necessary condition is enough to make circuit
analysis a more worthwhile tool in the arsenal of the structural analyst of biochemical
systems.
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I know that you believe that you
understood what you think I said,
but I am not sure you realize that
what you heard is not what I meant.

Robert McCloskey, State
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3.1 Context

In recent years, the models built by biologists and modellers have grown bigger and
bigger. In order to be able to use those models, not only as static knowledge reposito-
ries, but through analysis methods, for instance to identify potential drug targets, the
question of model reduction has become increasingly crucial.

Furthermore, as stated about our BioIntelligence OSEO project, lead by Dassault
Systèmes, the objective of pharmaceutical companies is now to see biochemical models
in a product lifecycle management (PLM) perspective:

[The BioIntelligence project] will remove several technological obstacles in
order to devise a way of representing biological knowledge that is compatible
with the BioPLM approach and to develop tools for systemic modelling and
simulation of biological data. Other bioinformatic software developers will
benefit from access to the open, integrated BioPLM software platform which
will be created as a result of the programme so that they can use it to
integrate their proprietary applications.

This results in the necessity to follow the evolution of a model over time, to relate
it to its “ancestors”, to combine it with other models without redundancy, to identify
common parts, etc.

79



80 Subgraph Epimorphisms

In this chapter, the first two articles focus on the notion of subgraph epimorphism
(SEPI), as a systematic tool to reduce and relate models and as a more generic graph
problem:

[10] Steven Gay, Sylvain Soliman, and François Fages. “A Graphical Method for Re-
ducing and Relating Models in Systems Biology”. In: Bioinformatics 26.18 (2010).
special issue ECCB’10, pp. i575–i581. doi: 10.1093/bioinformatics/btq388

[9] Steven Gay, François Fages, Thierry Martinez, Sylvain Soliman, and Christine Sol-
non. “On the subgraph Epimorphism Problem”. In: Discrete Applied Mathematics
162 (Jan. 2014), pp. 214–228. doi: 10.1016/j.dam.2013.08.008

The third one explores a more dynamical perspective, taking into account the ki-
netic expressions. It is based on the computation of tropical equilibrations for reducing
quantitative models (this is an extended version of [18]). Since this technique relies on
computing conservation laws, it also requires/benefits from our structural knowledge. In
the long run, we hope to obtain through this kind of study conditions for the soundness
and completeness of SEPI-based reductions.

[19] Sylvain Soliman, François Fages, and Ovidiu Radulescu. “A constraint solving ap-
proach to model reduction by tropical equilibration”. In: Algorithms for Molecular
Biology 9.24 (Dec. 2014). issn: 1748-7188. doi: 10.1186/s13015-014-0024-2

3.2 Subgraph Epimorphisms

As striking examples, big models with almost only structural information have recently
become much more common, e.g., the comprehensive map of the RB/E2F pathway
compiled by Curie Institute [24], containing 530 reactions and 390 species, later on
merged with the EGFR map of the Systems Biology Institute [51] and its 219 reactions
and 322 species. The Reactome database (www.reactome.org) also contains several
models with hundreds of molecules and reactions. Moreover, one can cite a few years
old conversation on the Systems Biology Markup Language (SBML) [42] mailing list1

giving, as biggest systems formalized so far in SBML, a large structural yeast model
with 2153 species (1,168 metabolites, 832 genes, 888 proteins and 96 catalytic protein
complexes) and 1857 reactions (1,761 metabolic reactions and 96 complex formation
reactions) [41], obtained from merging smaller models, but with no repeated parts, or
the biggest Computableplant model with 4139 reactions and 1265 species2 or even the
biggest MOOSE (multi-scale) model [30] with about 7500 species and 10000 reactions.

Once again, as in Chapter 2, we build on the structure of the models to relate them
one to the other, but also to extract common parts or combine without repetition.

1http://sbml.org/Forums/index.php?t=tree&th=1354&mid=5041&rid=0
2http://computableplant.caltech.edu/models/Activator/index.html

http://dx.doi.org/10.1093/bioinformatics/btq388
http://dx.doi.org/10.1016/j.dam.2013.08.008
http://dx.doi.org/10.1186/s13015-014-0024-2
www.reactome.org
 http://sbml.org/Forums/index.php?t=tree&th=1354&mid=5041&rid=0
 http://computableplant.caltech.edu/models/Activator/index.html
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3.2.1 A Graphical Method for Reducing and Relating Models

Completely abstracting away the kinetics might sound like an extreme way to han-
dle model relation and reduction, however, as shown in this experiment on the whole
BioModels repository, the structure of SBML models is enough to cluster them into
meaningful hierarchies.

[10] Steven Gay, Sylvain Soliman, and François Fages. “A Graphical Method for Re-
ducing and Relating Models in Systems Biology”. In: Bioinformatics 26.18 (2010).
special issue ECCB’10, pp. i575–i581. doi: 10.1093/bioinformatics/btq388

http://dx.doi.org/10.1093/bioinformatics/btq388
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A graphical method for reducing and relating models
in systems biology
Steven Gay, Sylvain Soliman and François Fages∗
EPI Contraintes, Institut National de Recherche en Informatique et Automatique, INRIA Paris-Rocquencourt, France

ABSTRACT

Motivation: In Systems Biology, an increasing collection of models
of various biological processes is currently developed and made
available in publicly accessible repositories, such as biomodels.net
for instance, through common exchange formats such as SBML.
To date, however, there is no general method to relate different
models to each other by abstraction or reduction relationships, and
this task is left to the modeler for re-using and coupling models.
In mathematical biology, model reduction techniques have been
studied for a long time, mainly in the case where a model exhibits
different time scales, or different spatial phases, which can be
analyzed separately. These techniques are however far too restrictive
to be applied on a large scale in systems biology, and do not take
into account abstractions other than time or phase decompositions.
Our purpose here is to propose a general computational method for
relating models together, by considering primarily the structure of the
interactions and abstracting from their dynamics in a first step.
Results: We present a graph-theoretic formalism with node merge
and delete operations, in which model reductions can be studied as
graph matching problems. From this setting, we derive an algorithm
for deciding whether there exists a reduction from one model
to another, and evaluate it on the computation of the reduction
relations between all SBML models of the biomodels.net repository.
In particular, in the case of the numerous models of MAPK signalling,
and of the circadian clock, biologically meaningful mappings
between models of each class are automatically inferred from the
structure of the interactions. We conclude on the generality of our
graphical method, on its limits with respect to the representation of
the structure of the interactions in SBML, and on some perspectives
for dealing with the dynamics.
Availability: The algorithms described in this article are implemented
in the open-source software modeling platform BIOCHAM available
at http://contraintes.inria.fr/biocham The models used in the
experiments are available from http://www.biomodels.net/
Contact: francois.fages@inria.fr

1 INTRODUCTION

1.1 Systems biology models
Biologists use diagrams to represent interactions between molecular
species. On the computer, diagrammatic notations like the Systems
Biology Graphical Notation (SBGN; le Novere et al., 2009) or
the one introduced in Kohn’s map (Kohn, 1999) of the cell
cycle are also employed in interactive maps like MIM (http://
discover.nci.nih.gov/mim/) (Kohn et al., 2006) for instance. This
kind of graphical notation encompasses two types of information:
interactions (binding, complexation, protein modification, etc.) and

∗To whom correspondence should be addressed.

E rule_1 SE rule_3 P

S rule_2

E

S rule P S rule P

Fig. 1. Reaction graphs of the Michaelis–Menten enzymatic reaction, either
complete with intermediary complex SE, or reduced with or without enzyme
E. The first reduction can be achieved with the graphical operations explained
in Section 2.2, for example by merging the reaction nodes rule_1 and rule_3
in pink into a reaction node rule and by deleting the green nodes SE and
rule_2. The second reduction simply deletes the blue node E.

regulations (of an interaction or of a transcription). Based on these
structures, mathematical models are developed by equipping such
molecular interaction networks with kinetic expressions leading
to quantitative models of mainly two kinds: ordinary differential
equations and continuous-time Markov chains for a stochastic
interpretation of the kinetics.

The Systems Biology Markup Language (SBML; Hucka et al.,
2003) uses a syntax of reaction rules with kinetic expressions
to define such reaction models in a precise way. For instance,
the Michaelis–Menten enzymatic reaction, in which an enzyme E
transforms a substrate S to a product P, can be described either
with a system of three reaction rules (equipped with mass action
law kinetics) showing the formation of the intermediary complex
SE as follows: S + E <=> SE => P + E, or with a single
reaction rule (equipped with a Michaelis–Menten kinetics) in which
the catalyst enzyme is supposed to be constant: S + E => P +
E, and can also be omitted as in: S => P. These three models
are represented by the bipartite graphs depicted in Figure 1, and
correspond to different levels of detail for the same reaction. This
is one trivial example, among others, of reduction that can be
performed in large models and that we would like to identify
automatically.

Nowadays, an increasing collection of models of various
biological processes is indeed developed and made available
to anyone in the SBML format. For instance, the publicly-
accessible repository biomodels.net (le Novère et al., 2006)
is currently composed of 241 curated models. These different
models may represent either different biological systems, or
the same biological process at different levels of details or
under different biological assumptions. Some represent transient
directional biological processes (like signal transduction cascades),
while some others represent recurrent oscillating behaviors (like
circadian clock core genes or cell cycle control). Some models are

© The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
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pretty big (about 400 nodes, which is quite a lot for a hand-written
biological model), while some others are very small (less than 10
nodes). Some models are only structural and contain only qualitative
information (e.g. known protein interactions, or phenomenological
events) while some others add precise quantitative data (with
experiment-based kinetic rates). In some cases, the structure of
the reactions is reverse-engineered from an ordinary differential
equation (ODE) model and may not reflect all information, such as
for instance the effect of inhibitors which cannot be distinguished
from the catalysts in the syntax of a reaction rule.

1.2 Model comparison as a graph matching problem
If modelling is the process that enables our understanding and
predicting of the behaviour of a system, then model reduction makes
our task easier. By removing what we consider as details, model
reduction allows the understanding of the core of systems, and
simulation of bigger-sized systems. In mathematical biology, model
reduction techniques have been studied for a long time, mainly in
the case where a model exhibits different time scales, or different
spatial phases, which can be analyzed separately. For instance, in the
previous example of the Michaelis–Menten enzymatic reaction, the
hypotheses that the substrate is in excess and the complex formation
is much faster than the other reactions justify the elimination of
the intermediary reactions. The mathematical conditions for quasi-
steady state approximations (Segel, 1984) or total quasi-steady state
approximations (Ciliberto et al., 2007) are however far too restrictive
to be applied to Systems Biology models on a large scale, and
do not take into account other abstractions than time or phase
decompositions.

Our applicative purpose here is to propose a general
computational method for relating models together, by considering
primarily the structure of the interactions and abstracting from
their dynamics and even the stoichiometry in a first step. Given
two reaction graphs, the model reduction problem is to determine
whether one is a reduction of the other. This model comparison
focusses on the notion of model refinement that often occurs in the
life-cycle of published biological models. Indeed, every biological
model is ‘false’ at some point and can be refined to encompass more
details. The modellers usually describe these refinements through
two basic operations: adding new species or reactions that were
unknown or considered secondary, or splitting existing species or
reactions into several ones, in order to give more details (about the
levels of phosphorylation of a given molecule, or about the specific
mechanistic process that underlies some reaction for instance).

Graph-matching techniques have already been used for biological
networks, but it is worth noticing that they have mostly been applied
to either protein-interaction graphs, see for instance (Chin et al.,
2008), or regulation graphs, see for instance (Naldi et al., 2009)
for a dynamics-preserving graph reduction. On reaction graphs,
graph-based techniques have been considered in Calzone et al.
(2008), Radulescu et al. (2006) and Zinovyev et al. (2008) for
modularization issues in large models. In this article, we study a
restricted notion of subgraph epimorphism, corresponding to the
application of node delete and merge operations in a reaction graph,
in order to relate a source graph to a target graph through a model
reduction relation.

In the next section, we present the graph-theoretic framework
of model reduction by graph matching, and its formal relationship

to delete and merge operations on reaction graphs. In Section 3,
we describe our algorithm for solving this particular kind of graph
matching problems and its implementation with a constraint program
written in GNU-Prolog. Then, in Section 4, we present the graphs
extracted from the biomodels repository for the evaluation, and in
Section 5, we report on the performance of our algorithm and on
the biological significance of the matchings found automatically
in this repository. We conclude on the generality of our graphical
method for model comparison, on its limits with respect to the
representation of the structure of the interactions in SBML, and
on some perspectives for dealing with the dynamics.

2 GRAPH MATCHING METHOD

2.1 Reaction graphs
Formally, a reaction graph G is a bipartite directed graph, that is a triple
G= (S,R,A), where S is the set of species nodes, R is the set of reaction
nodes, and A⊆S×R∪R×S the set of arcs that describes how species interact
through reactions.

There is an arc (s,r) (resp. (r,s)) if s is a reactant (resp. product) of r.
Both arcs are present if s is a catalyst of r or more generally if it affects the
reaction rate of r. It is worth noting that reaction graphs do not precisely
model stoichiometry (hypergraphs would be needed for that) nor kinetics,
but describe the structure of the interactions.

2.2 Merge and delete operations
One way to relate two models is to define graph-editing operations which
make it possible to transform one reaction graph into another. A simple thing
to do when trying to reduce models is to consider that two species are variants
and treat them as equivalents, and to merge every interaction any of the two
species had into a new species. The reaction graph formalism has a symmetry
between species and reactions, so the merging process can be generalized to
reactions as well, and this will prove useful.

Another natural operation is node deletion. It may be useful for instance
to remove intermediate species, or species whose concentration is constant,
or reactions that have become trivial after a molecular merging, or reverse
reactions that occur in a much slower rate than their forward counterpart.
Model refinement proceeds with the dual operations of node addition and
splitting and is thus also covered by this approach.

Let us assume that G= (S,R,A) is a reaction graph.

Definition 2.1 (Pre/Post arcs). Let v∈S∪R, the set of pre-arcs (resp. post-
arcs) of v is the set •v={a∈A |∃w∈S∪R,a= (w,v)} (resp. v• ={a∈A |∃w∈
S∪R,a= (v,w)}).

This notion extends to subsets of nodes pointwise: for V ⊆S or V ⊆R we
note •V =⋃

v∈V
•v and V• =⋃

v∈V v•.

The delete operation removes a node from a reaction graph with all its
pre- and post-arcs:

Definition 2.2 (Delete). Let v∈S (resp. R), the result of the deletion of v in
G is the reaction graph dv(G)=(S′,R,A′) (resp. (S,R′,A′)) where

S′ =S\{v} (resp. R′ =R\{v})
A′ =A\({v}• ∪•{v})

We can now define the merge operation that intuitively removes two
vertices (either two species or two reactions) from a reaction graph and
replaces them with a new one inheriting all the dangling arcs. See Figure 1
for the example of the Michaelis–Menten reduction.
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Graphical model reduction

Definition 2.3 (Merge). For all v,w∈S (resp. R), we define mv,w(G) as the
reaction graph (S′,R,A′) (resp. (S,R′,A′)) where

S′ =S\{v,w}�{vw} (resp. R′ =R\{v,w}�{vw})
A′ =A\({v,w}• ∪•{v,w})

∪{(vw,y) | (v,y)∈A or (w,y)∈A}
∪{(x,vw) | (x,v)∈A or (x,w)∈A}

It is worth noting that these operations delete and merge for molecules and
reactions can be implemented in a graphical editor for reaction rules as a mean
to define model reductions, and automatically derive reduced models from
simple graph editing functions. This is the case in the BIOCHAM modeling
platform (Calzone et al., 2006; Fages and Soliman, 2008) which now
integrates novel features for editing, as well as detecting, model reductions.

2.3 Subgraph epimorphisms
Definition 2.4. Let G= (S,R,A) and G′ = (S′,R′,A′) be two reaction graphs.
A morphism from G to G′ is a function µ from the nodes of G,S∪R,

to the nodes of G′,S′ ∪R′, with µ(S)⊆S′and µ(R)⊆R′, such that ∀(x,y)∈
A,(µ(x),µ(y))∈A′.

An epimorphism from G to G′ is a morphism that is surjective on (both
the nodes and the arcs of) G′. An isomorphism from G to G′ is a morphism
that is bijective on (both the nodes and the arcs of) G′.

Notice that if there are epimorphisms from G to G′ and from G′ to G, then
there is an isomorphism from G to G′.

As shown below, graph epimorphisms relate graphs that can be obtained
by merge operations. To account for node deletions, we consider:

Definition 2.5. Let G= (S,R,A) and G′ = (S′,R′,A′) be two reaction graphs.
A subgraph morphism µ from G to G′ is a morphism from a subgraph
induced by a subset of nodes of G, to G′: S0 ∪R0 −→S′ ∪R′,µ(S0)⊆
S′,µ(R0)⊆R′, with S0 ⊆S and R0 ⊆R, such that ∀(x,y)∈A∩(S0 ×R0 ∪R0 ×
S0),(µ(x),µ(y))∈A′.

A subgraph epimorphism from G to G′ is a subgraph morphism that is
surjective.

In order to show the link with the merge and delete operations, we need
the following properties:

Lemma 2.6 (Commutativity). Let G= (S,R,A) be a reaction graph and
(u,v)∈S2 ∪R2. G1 =mu,v(G) and G2 =mv,u(G) are isomorphic, i.e. there
exists a bijective morphism from G1 to G2 (or from G2 to G1).

Proof. From Definition 2.3, it is clear that the only difference between
G1 and G2 lies in the name of the new vertex uv or vu. The function mapping
all the other vertices to themselves and uv to vu is thus a morphism from G1

to G2, and it is bijective.

Lemma 2.7 (Associativity). Let G= (S,R,A) be a reaction graph and
(u,v,w)∈S3 ∪R3. Then G1 =muv,w ◦mu,v(G) and G2 =mu,vw ◦mv,w(G) are
isomorphic.

Proof. Once again it is obvious from Definition 2.3 that both graphs
have the same vertices, up to renaming of (uv)w to u(vw) and that these two
vertices have isomorphic pre- and post-arcs corresponding to the union of
all pre- and post-arcs of u, v and w. Figure 2 illustrates this.

We will denote by mV the merge operation for all vertices of the set
V . Notice that if V and V ′ are two disjoint subsets of vertices mV ◦mV ′ =
mV ′ ◦mV . Furthermore, since dv ◦dw =dw ◦dv it also makes sense to write
dV =©v∈V dv.

Theorem 2.8. Let G= (S,R,A) and G′ = (S′,R′,A′) be two reaction graphs.
There exists an epimorphism µ from G to G′ if and only if there exists a
finite sequence of merge operations, i.e. a finite sequence of pairs of vertices
(vi,wi)i≤n, such that the graph mvn,wn ◦···◦mv0,w0 (G) is isomorphic to G′.

Fig. 2. Associativity of the merge operation.

Proof. Let us prove by induction on n that if mvn,wn ◦···◦mv0,w0 (G) is
isomorphic to G′ then there exists an epimorphism from G to G′.

The base case is obvious since the identity is an epimorphism.
Now, suppose that mvn,wn ◦···◦mv0,w0 (G) is isomorphic to G′, by induction

hypothesis, there exists an epimorphism ν from G to G′′ =mvn−1,wn−1 ◦···◦
mv0,w0 (G). Now consider ζ :x �→x if x �=vn and x �=wn and ζ(vn)=ζ(wn)=
vw, ζ is an epimorphism from G′′ to mvn,wn (G′′), and thus µ=ζ◦ν is an
epimorphism from G to mvn,wn ◦···◦mv0,w0 (G) which is isomorphic to G′.

Conversely, suppose that µ is an epimorphism from G to G′. The set
of preimages of µ partitions S and R in equivalence classes, let us write
them Vi =µ−1(v′

i) for v′
i ∈S′ ∪R′. Now consider G′′ =mV1 ◦···◦mVk (G): it is

isomorphic to G′. Indeed, for every i, the nodes x of Vi are merged into a
single node v′′

i of G′′, and no Vi is empty (µ is surjective). So the function
κ :v′

i −→v′′
i is well-defined. κ is surjective on the nodes, since every node

in G′′ comes from the merging of a Vi, thus it is bijective on the nodes. Let
(x′,y′)∈A′ Since µ is also arc-surjective, (x′,y′) has a preimage (x,y)∈A,
which in turn has an image (v′′

i ,v′′
j ) in G′′. So κ is a morphism. A morphism

which is node-bijective is an isomorphism, hence the conclusion.
Note that this proof can actually be rephrased as a proof that sequences

of merges can be associated to equivalence classes on G and then as a
corrolary of the first isomorphism theorem (or of the fundamental theorem
on homomorphisms).

Theorem 2.9. Let G= (S,R,A) and G′ = (S′,R′,A′) be two reaction graphs.
There exists a subgraph epimorphism µ from G to G′ if and only if there
exists a finite sequence of delete and merge operations that, when applied
to G, yield a graph isomorphic to G′.

Proof. Let us prove again the backward implication by induction on n.
The base case is still obvious since the identity is a subgraph epimorphism.
For the induction case, if the last operation is a merge, we obtain an

epimorphism, which, composed with a subgraph epimorphism (induction
hypothesis), leads to a subgraph epimorphism.

The only remaining case is when we have a subgraph epimorphism from
G to G′′ and G′ isomorphic to dv(G′′). Consider S0 =S\{v} and R0 =R\{v},
the identity restricted to S0 and R0 defines a subgraph epimorphism from G′′
to dv(G′′), by composition we obtain a subgraph epimorphism from G to G′.

Conversely, suppose that µ is a subgraph epimorphism from G to G′.
We define S0 =µ−1(S′),R0 =µ−1(R′), and writing S′ ∪R′ ={v1,...,vn},Vi =
µ−1(vi). Now we consider G′′ =mV1 ◦···◦mVk ◦dS\S0 ◦dR\R0 : G′′ is
isomorphic to G′ up to the renaming of the µ(Vi) by vi. Indeed, all the µ(Vi)
are different since all the Vi are disjoint, for all (x,y)∈A∩(S0 ×R0 ∪R0 ×S0)
we get both an arc (µ(x),µ(y)) in A′ and an arc (vx,vy) in G′′. By definition,
these are exactly the arcs of G′′, and by surjectivity of µ, it also covers every
arc of G′. Hence the conclusion.

Notice that if G is mapped to G′ by a sequence of merge and
delete operations, any sequence of merges and deletes yielding the same
equivalence classes as the proof above leads to a G′′ isomorphic to G′

We have seen examples of permutations between merge operations
and between delete operations, another example of transformation is
that of permuting a delete with a merge, one actually removes the
merge: duv ◦mu,v =d{u,v}
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Here are commuting diagrams summing this up:

3 ALGORITHM AND IMPLEMENTATION
The subgraph isomorphism problem is a well-known NP-complete
problem, which means that there does not exist an efficient algorithm
for solving all problem instances in polynomial time, if we admit
the conjecture P �=NP. Nevertheless, the practical instances of such
problems may well be solved by efficient algorithms and it is the
purpose of this section to describe an algorithm for our particular
class of bipartite graph-matching problems. It is easy to see that
our subgraph epimorphism problem is at least as hard as the graph
isomorphism problem which is not known to be in P. However we
do not know whether it is NP-complete.

The mathematical definition of subgraph epimorphisms given in
the previous section can be encoded quite directly in an executable
constraint program. Constraint programming is a declarative
programming style which relies on two components: one modeling
of the problem using elementary constraints over finite domain
variables and one search procedure. Constraint programming has
been applied with success to graph-matching problems in le Clément
et al. (2009). For this work, we developed a GNU-prolog (Diaz,
2003) program dedicated to our particular subgraph epimorphism
problems, using finite domain constraints and a simple search
strategy for enumerating all solutions by backtracking.

Graph morphisms can be modeled quite naturally by introducing
one variable per node of the source graph, with, as domain, one
(integer) value per node of the target graph. A variable assignment
thus represents a mapping from the source nodes to the target nodes.
The morphism condition itself is written with fd_relation
tabular constraints, which forces a tuple of variables to take its value
in a list of tuples of integers.

The surjectivity property could be represented by the cardinality
constraint fd_at_least_one of GNU-Prolog but a more
efficient modeling was found by creating variables for target arcs
with the set of source arcs as domain, and using the global constraint
fd_all_different.

Then, the enumeration on the target arc variables enforces
surjectivity. This enumeration is done before the enumeration of
node variables that enforces the computation of a morphism.

4 DATA
The aim of our concept of subgraph epimorphism in bipartite graphs
is to automatically relate and compare Systems Biology models in
repositories like biomodels.net. We consider the latest version (26
January 2010) of biomodels.net which contains 241 curated models
of various origins but all encoded in SBML. From the SBML format,
it is possible to extract the reaction graph as follows:

(1) create a vertex for each species;

(2) create a vertex for each reaction;

(3) add an arc from a species to a reaction if it is listed in its
reactants or modifiers;

(4) add an arc from a reaction to a species if it is listed in its
products or modifiers.

A thematic clustering was done, using information available from
the notes of the SBML model. We focus here on the most populated
classes:

• mitogen-activated protein kinase;

• circadian clock;

• calcium oscillations;

• cell cycle.

For each class, all morphisms between pairs of models are tried.

5 RESULTS
In our algorithm, the set of all morphisms, or a proof of non-
existence, are obtained by backtracking. In the experiments reported
below, the computation time was limited with a timeout of 20 min but
most of the problems were solved in <5 s on standard PC quadcore
at 2.8 GHz.

5.1 Mapk models
The matchings found between the models of the MAPK cascade are
depicted in Figure 3. This class contains the family of models of
Markevich et al. (2005) numbered 26–31. The reductions found
automatically among these models are interesting for checking
whether the formalism is faithful to biological reasoning, since
the authors describe refinements between them. The models are of
different sizes but always consider only one level of the traditional
three levels of the MAPK cascade.

In this family, models 27, 29 and 31 are the simpler ones: they
have few molecules because the catalyses are represented with
only one reaction. The epimorphism exhibited from model 31 to
27 corresponds to the splitting of two variants of MAPKK in 31.
Model 29 distinguishes between the sites of phosphorylation of Mp,
yielding a model with two molecules MpY and MpT. The subgraph
epimorphism found from 29 to 27 corresponds to the deletion of one
variant of Mp. Conversely, this distinction prevents the existence of
an epimorphism from 31 or 27 to 29.

Models 26, 28 and 30 have more detailed catalyze mechanisms
and differ as previously by the phosphorylation sites of Mp.

However, some epimorphisms from big models to small ones
may have no biological meaning. This comes from the absence of
constraint on the nodes that can be merged, and the relatively high
number of arcs in Markevich’s small models where most molecules
are catalysts. Still, model 26 (with non-differentiated Mp) does not
reduce to model 29 since that model indeed distinguishes MpY and
MpT variants.

Now, concerning three-step MAPK cascade models, the models
9 and 11 of (Huang and Ferrell, 1996) and (Levchenko et al.,
2000) respectively are detected as isomorphic. Indeed, they only
differ by molecule names and parameter values. They do not reduce
to 28 and 30, which are models that do not differentiate sites of
phosphorylation. They do not reduce to 26 either, which uses a more
detailed mechanism for dephosphorilations.
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009_Huan

010_Khol

011_Levc

027_Mark

029_Mark 031_Mark

026_Mark

028_Mark 030_Mark 049_Sasa

146_Hata

Fig. 3. Matchings found between all models of the MAPK cascade
(Schoeberl’s model 14 and Levchenko’s model with scaffold 19 are not
represented here, they do not map each other but can be mapped to small
models).

Model 10 is another three-step MAPK with no catalysts for
dephosphorilations. It has the particularity to be cyclic, that
is, the last level’s most phosphorylated molecule catalyzes the
phosphorylations of the first level. This is shown here as a reduction
of the previous models obtained by merging the output of the third
level with the catalyst of the first level.

Finally, models 49 and 146 are bigger than the others and can
easily be matched by them, and there were some comparisons for
which no result was found before the timeout.

5.2 Circadian clock models
The matchings found in the class of circadian clock models are
depicted in Figure 4. Models 16, 24, 25 and 36 being very small
oscillators were matched by most of other models, and for that reason
were left out from the picture.

Let us first have a look at the isomorphisms found.
Models 73 and 78 are isomorphic. This is in accordance with

the fact that these quite detailed models come from Leloup and
Goldbeter (2003) and differ indeed by parameter values.

Models 74 and 83 are isomorphic too. They also correspond to two
versions of a second model from the same article, but this time with
the addition of the Rev-Erbα loop, greyed out in Figure 1 of Leloup
and Goldbeter (2003). The authors explain ‘Taking into account
explicitly the role of REV-ERBα in the indirect negative feedback
exerted by BMAL1 on the expression of the Bmal1 gene requires
an extension of the model, which is now governed by 19 instead
of 16 kinetic equations’. The mapping to the previous models is
automatically detected in accordance with these explanations, by
merging the three new species (Rev-Erbα mRNA, protein in the
cytoplasm and protein in the nucleus named Mr, Rc and Rn in model
74) to Bmal1 in the nucleus (named Bn in model 73).

Model 34 (Smolen et al., 2004) is a quite small model of the
Drosophila’s circadian clock. The fact that its structure is included
in that of the mammalian clock of the above models is in accordance
with the fact those models were built on top of knowledge from the
Drosophila (Goldbeter, 1995) with a similar clock mechanism.

Models 171 (Leloup and Goldbeter, 1998) presents a model for the
Drosophila, including Per/Tim (with two levels of phosphorylation)
and the complex. Model 21 (Leloup and Goldbeter, 1999) actually
studies the same model, unfortunately a different encoding in
SBML (variable parameters instead of species for instance) makes
it impossible to find a matching.

Many models map to model 170 (Becker-Weimann et al., 2004)
which focusses on the positive feedback loop of the circadian cycle
oscillator. It is quite small but has two compartments, which explains

021_Lelo

170_Weim

022_Ueda

034_Smol

055_Lock

073_Lelo

078_Lelo

074_Lelo

083_Lelo

089_Lock 171_Lelo

Fig. 4. Matchings between the models of the circadian clock.

why only 34 cannot be reduced to it. Model 22 (Ueda et al., 2001)
is a quite detailed model that focusses on the interlocked feedback
loops, which can be mapped to 170 but not 34. Models 55 (Locke
et al., 2005) and 89 (Locke et al., 2006) are both from Locke and
others and about the circadian clock of Arabidopsis but include, in
one case light induction, and in the other a new feedback loop. This
explains why they do not give any matching either, except to the
small oscillator model 170.

5.3 Calcium oscillation models
Figure 5 shows that many models of calcium oscillation are
connected.

Models 98, 115 and 117 are in fact isomorphic due to their very
small size (only two species) and differ only by their kinetics. There
is a morphism from model 166 to them in accordance to the addition
of a third species in this model where Ca2+ oscillations are seen as
a mediator of genetic expression.

Models 43, 44 and 45 all relate to three different models from
the same article (Borghans et al., 1997). Model 43 is the ‘basic one
pool’model and there is a match from 44, the ‘1-pool model with IP3
degradation’ since the latter is indeed a refinement of the former. The
morphisms from 43 and 44 to 166 correctly exhibit the inclusion of
the basic three-element oscillator in those models. A false positive
morphism is found however from 44 to 45, the ‘2-pool model’.
This morphism is purely formal and has no biological meaning. It
could be eliminated by using annotations as further constraints, for
instance by taking into account the references to UniProt/KEGG or
ChEBI databases that are already present in some SBML models.

Model 122 (Fisher et al., 2006) is actually a big model of NFAT
and NFκB with a side calcium oscillator. However, it includes many
reversible reactions and thus structurally maps to all of the other
models of this class.

Model 58 is a coupled oscillator version which interestingly maps
to the ‘2-pool’ oscillator of Borghans et al. (1997) by merging some
components of the two oscillators into one.

Finally, models 39, related to mitochondria, and 145, related to
ATP-induced oscillations, only map the small oscillators already
described.

5.4 Cell-cycle models
The reaction graphs of the cell cycle models are plagued by a
common problem: these models originate from ODE models and
the reaction graphs extracted from their encoding in SBML format
does not correctly represent the structure of these models. It is thus
hard to make sense of mappings between such graphs. For instance,
the graphs of models 7, 8 and 56 are disconnected. Models 111, 144
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039_Marh

098_Gold

115_Somo

117_Dupo

166_Zhu

043_Borg

044_Borg

045_Borg

058_Bind

122_Fish

145_Wang

Fig. 5. Subgraph epimorphisms for models of calcium oscillations from
biomodels.net.

007_Nova

008_Gard 168_Obey

056_Chen

169_Agud 196_Sriv109_Habe 111_Nova144_Calz

Fig. 6. SEPI for some models of the cell cycle.

and 196 have ghost molecules, that is, molecules which appear in
the kinetics but not in the stoichiometry.

Nevertheless, models 144, 56 and 109 are relatively big with more
than 50 reactions, and map easily on smaller models. Actually, there
are 16 comparisons missing from this graph, and 13 are comparisons
from these bigger graphs to the smaller ones.

Models 8, 168 and 196 are small (less than 15 reactions), which
make them easy to match to, excepted for 196, which has a big
diameter (Fig. 6). There is no matching from 111 to 8 however. This
is explained by the erroneous structure of 8 which is disconnected.

5.5 Negative control
For the sake of completeness of the evaluation of our method, the
reduction relations between all pairs of models of the biomodels.net
repository have been computed (with a time out of 20 min per
problem).

Some matchings between unrelated model classes were found.
These false positive matchings typically arise with small models that
formally appear as reductions of large models without any biological
meaning, for the same reasons as in the cases discussed above within
a same class. These false positives arise in less than 9% of the total
inter-class pairs, and in 1.2% of the tests after the removal of the
small models.

6 CONCLUSION
Constraint-based graph-matching algorithms have shown their
effectiveness and efficiency to analyze and automatically relate
biochemical reaction models on a large scale, namely among the 241
curated models of the systems biology repository biomodels.net. Of
course, such an automatic correspondence between models inferred
solely from the structure of the reaction graph may be biologically

erroneous in some cases. In particular, small reaction graphs can be
recognized as motifs of biologically unrelated large reaction graphs.

Nevertheless, the search for subgraph epimorphisms between
all models of the biomodels.net repository revealed connected
components roughly corresponding to the different models of
similar biological systems for the MAPK signaling cascade, the
circadian clock and the calcium oscillation models, automatically
exhibiting morphisms, corresponding to model reductions, as well
as isomorphisms, corresponding to variants of the same model with
different parameter values.

On the other hand, the cell-cycle models of this repository often
originate from ODE models that have been transcribed in SBML
rules without correctly reflecting the structure of the interactions.
As a result, many model reductions could not be detected as graph
morphisms. More work is thus needed to curate the expression of
these models in SBML, and also to restrict mappings by considering
the information on molecular species present in the annotations, for
instance.

Although necessarily imperfect, this approach opens a new way
to query Systems Biology model repositories and study model
reductions as subgraph epimorphism problems, before taking into
account constraints on the stoichiometry and the dynamics of the
reactions.

As a perspective for future work, the formal ground presented here
in terms of graph operations and graph morphisms is currently used
to investigate mathematical conditions under which the kinetics are
compatible with graph reduction operations, such as for instance:

• reaction deletions for slow reverse reactions,

• reaction mergings for reaction chains with a limiting reaction,

• molecular species deletions for species in excess,

• molecular mergings for quasi-steady state approximations.
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3.2.2 On the Subgraph Epimorphism Problem

Building on the preceding experiment, the problem of subgraph epimorphism is studied
in more details, especially regarding its complexity and implementation. One important
topic is the resulting definition of a graph-distance and of an “intersection” and an
“union” for two input biochemical models.

These new notions fit quite well the aim of a PLM view for models by not only
determining models used to build others but even common submodels or meaningful
compositions of models. Unfortunately, despite our use of state of the art SAT solvers
with ad-hoc encodings, solving the union and intersection problem on models of mod-
erate size (several tens of compounds) remains very computationally expensive. A step
that we plan to take, making the problem much more tractable, is definitely the use
of annotations like the MIRIAM ones now added systematically to all BioModels’ en-
tries [50].

[9] Steven Gay, François Fages, Thierry Martinez, Sylvain Soliman, and Christine Sol-
non. “On the subgraph Epimorphism Problem”. In: Discrete Applied Mathematics
162 (Jan. 2014), pp. 214–228. doi: 10.1016/j.dam.2013.08.008
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a b s t r a c t

In this paper we study the problem of deciding the existence of a subgraph epimorphism
between two graphs. Our interest in this variant of graphmatching problem stems from the
study ofmodel reductions in systemsbiology,where large systemsof biochemical reactions
can be naturally represented by bipartite digraphs of species and reactions. In this setting,
model reduction can be formalized as the existence of a sequence of vertex deletion and
merge operations that transforms a first reaction graph into a second graph. This problem
is in turn equivalent to the existence of a subgraph (corresponding to delete operations)
epimorphism (i.e. surjective homomorphism, corresponding to merge operations) from
the first graph to the second. In this paper, we study theoretical properties of subgraph
epimorphisms in general directed graphs. We first characterize subgraph epimorphisms
(SEPI ), subgraph isomorphisms (SISO ) and graph epimorphisms (EPI ) in terms of graph
transformation operations. Then we study the graph distance measures induced by these
transformations. We show that they define metrics on graphs and compare them. On the
algorithmic side, we show that the SEPI existence problem is NP-complete by reduction of
SAT and present a constraint satisfaction algorithm that has been successfully used to solve
practical SEPI problems on a large benchmark of reaction graphs from systems biology.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Our interest in subgraph epimorphisms stems from the study of model reductions in systems biology, where large
systems of biochemical reactions can be naturally represented by bipartite digraphs of species and reactions [14,10]. In
this setting, one can define a very general notion of model reduction as a particular form of graph transformation and use it
to compare models in systems biology model repositories [8].

Let us consider, for example, the reduction of Michaelis–Menten in Fig. 1. The left-hand side graph is a detailed model
composed of three reactions where an enzyme E binds in a reversible manner to a substrate S to form a complex ES and
release a product P . The right-hand side graph reduces this system to a single reaction catalyzed by the enzyme.

The reduced graph can be obtained from the source graph by a sequence of delete and merge operations on species
and reaction vertices. These transformations can typically be justified in chemistry by considering: (i) reaction deletions for
slow reverse reactions, (ii) reaction mergings for reaction chains with a limiting reaction, (iii) molecular species deletions
for species in excess and (iv) molecular mergings for quasi-steady state approximations.
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(S. Soliman), Christine.Solnon@liris.cnrs.fr (C. Solnon).
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Fig. 1. A catalytic mechanism and the Michaelis–Menten reduced mechanism.

This operational view of graph reduction by graph transformation operations is equivalent to the existence of a subgraph
(corresponding to delete operations) epimorphism (i.e. surjective homomorphism, corresponding tomerge operations) from
a source graph to a reduced graph. Subgraph epimorphisms (SEPI ) differ from subgraph isomorphisms (SISO ) by allowing
merge operations in addition to delete operations. On undirected graphs, SEPIs differ from minors [13] with respect to the
three following points: (i) non-adjacent vertices may be merged, (ii) merging adjacent vertices creates loops, and (iii) arcs
cannot be deleted without deleting or merging vertices.

In this paper, we study the theoretical properties of SEPIs in general directed graphs and relate these properties with
other standard notions of graph homomorphisms [9], namely subgraph isomorphisms, minors and graph epimorphisms
(EPI ).
Main results and overview of the paper. In Section 2, we introduce three partial orders on digraphs respectively based on
SEPI , SISO and EPI , and show that, unlike the minor relation, they are not well quasi-orders. In Section 3, we introduce
three graph distance measures, respectively based on SEPI , SISO and EPI , and we compare them. We show that they are
metrics and that these distances are equivalent to graph edit distances defined as the minimum number of edit operations
that transform a first graph into another one. In Section 5, we show the NP-completeness of the SEPI existence problem.
In Section 6, we present a constraint satisfaction algorithm that has been successfully used to solve practical SEPI problems
on a large benchmark of reaction graphs from systems biology. In Section 7, we discuss extensions to non -directed and
bipartite graphs.

2. Partial order relations SISO , EPI and SEPI

2.1. Notations and definitions

A directed graph, or graph for short in this paper, is a pair (V , A) where V is a finite set of vertices and A ✓ V ⇥ V a set
of arcs. The cardinality of a set S is denoted as |S|. The size |G| of a graph G = (V , A) is its number of vertices, |G| = |V |.

For the remainder of this section, G and G0 denote graphs, with G = (V , A) and G0 = (V 0, A0).

Definition 2.1 (Graph Isomorphism). An isomorphism from G to G0 is a bijective function f : V ! V 0 such that (u, v) 2 A iff
(f (u), f (v)) 2 A0.

Two graphs G and G0 are isomorphic when there exists a graph isomorphism from G to G0. Graph isomorphism is an
equivalence relation on directed graphs: we note G the set of all graphs quotiented by this equivalence relation.

Definition 2.2 (Graph Epimorphism). An epimorphism (EPI ) from G to G0 is a surjective function f : V ! V 0 such that

• for all u, v 2 V , if (u, v) 2 A, then (f (u), f (v)) 2 A0 (graph homomorphism), and,
• for all (u0, v0) 2 A0, there exists (u, v) 2 A such that f (u) = u0 and f (v) = v0 (surjectivity on arcs).

If f is bijective, then f is a graph isomorphism. Graph epimorphisms relax the bijection constraint of graph isomorphisms
to a surjection constraint on both vertices and arcs (hence the terminology of epimorphism) so that several vertices of Gmay
be mapped on a same vertex of G0. Graph epimorphisms are closely related to graph compactions: on the class of irreflexive
graphs (graphswithout loops), graph epimorphisms are actually equivalent to graph compactions [19]. Graph epimorphisms
are also closely related to quotient graphs (see Section 4.3).

Definition 2.3 (Induced Subgraph). Let U ✓ V be a subset of vertices of G. The subgraph of G induced by U is G#U =
(U, A \ (U ⇥ U)).

Definition 2.4 (Subgraph Isomorphism). A subgraph isomorphism (SISO ) from G to G0 is an isomorphism f from an induced
subgraph G0 of G to G0.

G0 is the domain of f , denoted by dom f .

Definition 2.5 (Subgraph Epimorphism). A subgraph epimorphism (SEPI ) from G to G0 is an epimorphism f from an induced
subgraph G0 of G to G0.

G0 is also denoted as dom f .
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Example 1. The two graphs given in the introduction for the reduction of Michaelis–Menten are related by a SEPI where
the induced subgraph of the first graph is obtained by deleting the vertices ES and d, and where both vertices c and p are
mapped to the vertex c of the second graph.

These notions thus define three relations over directed graphs, we write

• G EPI
; G0 if there exists a graph epimorphism from G to G0;

• G SEPI
; G0 if there exists a subgraph epimorphism from G to G0;

• G SISO
; G0 if there exists a subgraph isomorphism from G to G0.

One can easily check that the three relations SEPI
; ,

EPI
; and SISO

; are partial orders over G.

2.2. Morphisms and graph operations

These relations are also closely related to graph transformations by delete and/or merge operations. The delete operation
removes a vertex v from a graphG, togetherwith every arc incident to v. In otherwords, it reducesG to the subgraph induced
by all vertices but v.

Definition 2.6 (Delete). Let u 2 V . The result of the deletion of u in G is the induced subgraph du(G) = G#V\{u}.
We write G!d G0 whenever 9u,G0 = du(G).
Themerge operation removes two vertices from a graph and replaces them with a new one inheriting all incident arcs.

Definition 2.7 (Merge). Let u, v 2 V such that u 6= v, and let uv be a new symbol such that uv 62 V . The result of the merge
of u and v in G is the graphmu,v(G) = (V 0, A0) such that V 0 = V \ {u, v}[ {uv} and A0 = A\ (V 0 ⇥ V 0)[ {(uv, w) | (u, w) 2
A or (v, w) 2 A} [ {(w, uv) | (w, u) 2 A or (w, v) 2 A}.

We write G!m G0 whenever 9u, v,G0 = mu,v(G).
We have shown in [8] that these graph operations enjoy the following commutation and association properties:

These permutation properties establish the equivalence between the existence of a (sub)epimorphism from one graph
to another one and the existence of a finite sequence of delete and/or merge operations leading from the first graph to the
second. This is also true for subgraph isomorphisms:

Definition 2.8. We write G!md G0 if G!d G0 or G!m G0.
Let o 2 {m, d,md}. We write G0  o G if G!o G0, whenever it is convenient.
We write G1 R G2 R G3 if G1 R G2 ^ G2 R G3.
Wewrite GR⇤ G0 whenever there is a string ofR relations from G to G0, i.e whenever G = G0 or 9G1 2 G s.t. GR G1 R⇤ G0.

Theorem 1 ([8]). G EPI
; G0 if and only if G!⇤m G0.

G SEPI
; G0 if and only if G!⇤md G

0.
G SISO

; G0 if and only if G!⇤d G0.

2.3. Properties

SEPI is related to both EPI and SISO since graph epimorphisms and subgraph isomorphisms are subgraph epimorphisms,
i.e., (EPI; [ SISO

; ) ✓SEPI
; .

Hereditary properties have been widely studied for SISO and there exist many properties that are preserved by vertex
deletions [2,3]. However, most of these properties are not preserved when considering both delete and merge operations.
This comes from the fact that not only vertex mergings preserve less properties than vertex deletions, but the properties
preserved by the two operations are often incompatible.

Nevertheless, one can easily check that SEPIs preserve a few graph properties.

Proposition 2. Graph completeness is preserved by SEPIs.

Proposition 3. Arc symmetry is preserved by SEPIs.

This proposition shows that SEPIs are well defined on undirected graphs.

92 Subgraph Epimorphisms



S. Gay et al. / Discrete Applied Mathematics 162 (2014) 214–228 217

Definition 2.9 (Non-Neighbors). The set of outgoing (respectively incoming) non-neighbors of a vertex u in a graph G is the
set of vertices ONN(u,G) = {v 2 V | (u, v) 62 A} (respectively INN(u,G) = {v 2 V | (v, u) 62 A}).

These non-neighbor sets are monotonic with respect to SEPI :

Proposition 4. Let f be a SEPI fromG toG0. Then, for any vertex x 2 dom f , f (ONN(x,G)) ◆ ONN(f (x),G0), and f (INN(x,G)) ◆
INN(f (x),G0).

Proof. If ONN(x0,G0) = ;, the case is immediately proved.
Suppose ONN(x0,G0) 6= ;, and let y0 2 ONN(x0,G0). By surjectivity of f , let y such that f (y) = y0. We have (x0, y0) 62 A0, so,

since f is a morphism, (x, y) 62 A. Thus y 2 ONN(x,G), which proves y0 2 f (ONN(x,G)).
The proof for INN is similar. ⇤

It is worth noting that SEPIs differ from minors in several ways: (i) minors allow the deletion of any arcs, whereas SEPIs
only allow the deletion of vertices with their adjacent arcs; (ii) SEPIs allow the merging of non-adjacent vertices, whereas
minors only allow the merging of adjacent vertices; and (iii) SEPIs create loops when merging adjacent vertices, whereas
minors do not. Being a graph minor is a partial order over the set of undirected graphs and this partial order is a well-quasi-
ordering [16]. This is not the case for SEPI :

Proposition 5. SEPI is not a Well-Quasi-Order.

Proof. One can exhibit an infinite antichain of graphs for SEPI . Let Gn = (Vn, An) for n � 5, with Vn = {1 . . . n} and
An = {(i, j) such that |i� j| > 1[n]}.

This family is an infinite antichain for SEPI . First, one can easily check that 8n,8u 2 Vn, |ONN(x,Gn)| = 3 (in the absence
of loop a vertex is in its own ONN set). Let f be a SEPI from Gn to Gm, with n � m.

Second, f does not delete any vertex. Suppose D = {i | i 62 dom f } is not empty. D cannot be Vn either, or Gm would
not have any vertex. So there exists i such that one vertex in {i, (i + 1)[n]} is deleted and the other is not. Without loss of
generality, say i is not deleted and (i+1)[n] is. Then, by Proposition 4, f (i) has atmost 2 outgoing non-neighbors inGm: itself
and, if defined, the image of (i� 1)[n]. This is impossible, since every vertex of Gm has exactly 3 outgoing non-neighbors.

Next, f does not merge any vertices. Suppose f merges iwith at least another vertex j. i and j have at most two outgoing
non-neighbors in common. Indeed, let us remind that Gn is defined for n � 5: they have either two outgoing neighbors in
common (when |i� j| = 1[n]), one (when |i� j| = 2[n]), or none (when |i� j| > 2[n]). Merging i and jmakes them lose their
outgoing non-neighbors not in common; thus they lose at least one outgoing non-neighbor, which is once again impossible.

Finally, f must be the identity so that n = m. ⇤

Corollary 6. EPI and SISO are not Well-Quasi-Orders.

Proof. Just notice that an antichain for SEPI is also an antichain for EPI and SISO . ⇤

3. Graph edit distance

Each of the three relations introduced in Section 2 may be used to compare some graphs. However, some other graphs
cannot be compared as these relations are not total orders.

The distance between two graphs G1 and G2 can be defined in two main ways:
(i) in a denotational way, by means of the size of a largest subgraph common to G1 and G2;
(ii) in an operational way, by means of the minimum cost sequence of graph edit operations that should be performed to

transform G1 into G2.

In [4], Bunke has connected these two definitions by introducing a special cost function for the graph edit distance and by
showing that under this cost function the graph edit distance problem is equivalent to the maximum common subgraph
computation.

While it is always possible to transform one graph into another by performing a sequence of vertex insertion and deletion
operations, the size of such a sequence may not be representative of the similarity of the two graphs. Indeed, in some
applicative contexts, it is more relevant to measure the distance between two graphs not only by means of vertex insertion
and deletion operations but also by means of vertex merge and split operations, thus leading to the extended graph edit
distance [1,5].
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In this section, we introduce a graph edit distance corresponding to delete and merge operations. This distance is a
simplified case of the extended graph edit distance introduced in [1], which has been defined for labeled graphs and is
parameterized by edit costs. In the next section, we shall relate our graph edit distance to SEPI , EPI , and SISO .

Let us first define the edition graphs, which associate a vertex with every graph of G, and an arc with every pair of graphs
that can be transformed by applying one operation. Three different edition graphs can be defined according to the different
kinds of operation that may be applied, i.e., m (merge), d (delete) or md (merge or delete).

Definition 3.1 (Edition Graph). Let o 2 {m, d,md}. We define the edition graph Eo = (G, Ao) such that Ao = {(G1,G2) 2
G⇥ G | G1!o G2}.

These edition graphs are not strongly connected. For example, there is no path from any graph G to any graph G0 that
has more vertices than G, as for every arc G1!o G2, we have |G2| = |G1|� 1. This prevents us from defining a metric using
paths. However, there is a natural definition using thewalks of Eo. A path from s to t only crosses arcs forwards, walks extend
paths by allowing to cross arcs forwards and backwards:

Definition 3.2 (Walk of a Graph). Let G = (V , A) be a graph, and s, t be vertices of G. Awalk w from s to t is a finite sequence
w = (a1 . . . an) of arcs of A such that 9x0 . . . xn 2 V , x0 = s, xn = t, and 8i, 1  i  n, ai = (xi�1, xi) _ ai = (xi, xi�1).

The length of w is |w| = n.

Let us now define a graph edit distance as the length of a shortest walk.

Definition 3.3 (Distance). Let o 2 {m, d,md}, and G1,G2 2 G. The distance do : G! N [ {+1} is
do(G1,G2) = min{|w| s.t. w is a walk of Eo from G1 to G2} if a walk exists
do(G1,G2) = +1 otherwise.

Example 2. On the graphs G and G0 of the Michaelis–Menten reduction given in the introduction, we have

dmd(G,G0) = 3
dm(G,G0) = 3
dd(G,G0) = 5.

For o 2 {d,md}, the distance do(G,G0) is never +1, as there always exists a walk from G to G0 that goes through the
empty graph. However, when o = m, it may happen that do(G,G0) = +1. This is the case, for example, when G has no arcs
whereas G0 has at least one arc.

One can easily check that do is a metric on G as it satisfies the non-negativity, symmetry, separability and triangular
inequality properties.

Proposition 7. Let G,G0 2 G. Then:

dmd(G,G0)  dm(G,G0)
dmd(G,G0)  dd(G,G0)
dm(G,G0)  3dd(G,G0).

Proof. The two first inequalities can be proved using Emd ◆ Em and Emd ◆ Ed. The third can be proved by simulating every
merge operation by the deletion of both vertices to be merged, and addition (undeletion) of the merged vertex. ⇤

4. Relationship between d

o

and EPI , SEPI and SISO

In [4], Bunke has shown that the graph edit distance that only considers vertex deletions (i.e., do when o = d) is related
to the size of the maximum common subgraph. In this section, we extend this result to graph edit distances that consider
vertex merges (i.e., do when o 2 {m,md}) by relating them to EPI and SEPI .

To show this relationship, we show that for any walk w of Eo from G to G0, there always exists a walk w0 from G to G0
such that |w| � |w0| andw0 changes directions at most once, i.e., it first only crosses arcs forward and then only crosses arcs
backward. The vertex of Eo that separates forwards and backwards arc crossings corresponds to an upper bound of G and G0
with respect to the partial ordering relations EPI , SEPI , or SISO .

Now, how can one compute the distance do between two graphs G,G0?
If o 2 {d,md}, the simplest walk through the empty graph is of size |G| + |G0|, do(G,G0)  |G| + |G0|, so it is sufficient to

explore the graphs from size 0 to |G| + |G0|. When o = d, one can actually bound the search to graphs of the same size as
|G| + |G0|.

It is however possible to restrict the exploration of walks to those walks that change directions at most once, by first only
going down arcs and then only going up. In order to show this, we introduce quotients of graphs by equivalence relations.
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4.1. Preliminaries on equivalence relations

In this section, S is a finite set. A binary relation ↵ over S is called an equivalence relation over S iff it has the following
properties:
• reflexivity: 8x 2 S, (x, x) 2 ↵
• symmetry: 8x 2 S,8y 2 S, (x, y) 2 ↵ ) (y, x) 2 ↵
• transitivity: 8x 2 S,8y 2 S,8z 2 S, (x, y) 2 ↵ ^ (y, z) 2 ↵ ) (x, z) 2 ↵.

Definition 4.1. Let ↵ be an equivalence relation over a set S and x 2 S. The class of x modulo ↵, denoted by [x]↵ , is
[x]↵ = {y 2 A | (x, y) 2 ↵}.

The set of classes modulo ↵, denoted by S/↵, is S/↵ = {[x]↵ | x 2 S}.
Definition 4.2 (Transitive Closure). Let ↵ ✓ X ⇥ Y , � ✓ Y ⇥ Z . The composition of ↵ and � is ↵ · � = {(x, z) | 9y, (x, y) 2
↵ ^ (y, z) 2 �}.

The transitive closure of ↵ is the relation ↵+ = [1i=1 ↵i with ↵1 = ↵ and 8i � 2, ↵i+1 = ↵ · ↵i.
The reflexive transitive symmetric closure of ↵ is the relation

↵⌘ = {(x, y) | (x, y) 2 ↵ _ (y, x) 2 ↵ _ x = y}+.

For any ↵, ↵⌘ is an equivalence relation, the smallest containing ↵.

Definition 4.3. Let ↵, � be equivalence relations over S. The product of equivalence relations is ↵ ⇤ � = (↵ [ �)+. It is an
equivalence relation, the smallest (inclusion-wise) containing both ↵ and � .

4.2. Dimension of an equivalence class

For the remainder of this section, let ↵ and � be equivalence classes over S.

Definition 4.4. Let s be a binary relation over S.
s is called a spanning of ↵ iff s⌘ = ↵.
s is called a free family (or just free for short) iff it has no loops and no cycles.

As subsets of S ⇥ S, spannings are ordered by inclusion. The minimal spannings are free, analogously to minimal
generating families in vector spaces. Minimal spannings share a common size, which enables the definition of dimension.

Proposition 8. Let s be a spanning of ↵. Then s is minimal iff s is free.
In this case, |s| = |E|� |E/↵|.

Proof. Suppose s is minimal and has a cycle e1 . . . en. Since en 2 (s� {en})⌘, s� {en} is a spanning of ↵, so s is not minimal,
which is absurd. Likewise, s has no loops.

Now suppose s is free. Let us prove |s| = |E| � |E/↵|. Let n = |E/↵|. Notice that n � 1. When n = 1, the undirected
version of s (s [ s�1) is a tree, so if it covers k � 1 vertices, it has k� 1 arcs.

We have s ✓S
[x]↵2E/↵[x]↵ ⇥ [x]↵ , so s = S

[x]↵2E/↵ s \ ([x]↵ ⇥ [x]↵).
Since s \ ([x]↵ ⇥ [x]↵) is a free spanning of [x]↵ ⇥ [x]↵ , the argument for n = 1 gives |s \ ([x]↵ ⇥ [x]↵)| = |[x]↵|� 1.
So |s| = P

[x]↵2E/↵(|[x]↵|� 1) = |E|� |E/↵|.
To conclude, every free spanning has cardinality |E|� |E/↵|. If s0 ✓ s with s0 minimal, since s0 is also free, |s0| = |s|, so

s = s0 and sminimal. ⇤
From Proposition 8, one can define the dimension of an equivalence relation as follows.

Definition 4.5. The dimension dim(↵) of ↵ is the size of its minimal spanning |E|� |E/↵|.
One can then show a theorem analogous to the incomplete basis theorem.

Theorem 9. Let s ✓ ↵ be a free family. Then there is a minimal spanning t of ↵ that contains s.

Proof. Let us build an increasing sequence of free families of ↵ that contains s. Let s0 = s. If sn does not span ↵, then for any
(xn, yn) 2 ↵ � s⌘n , sn [ {(xn, yn)} is free. In this case we define sn+1 = sn [ {(xn, yn)}. This sequence grows strictly within a
finite set, so it has to stop at somem. Then sm has to span ↵. Since sm is free, it is minimal. ⇤

Next, we show that maximal free families are generating families.

Proposition 10. Let s ✓ ↵ be free.
If s is a maximal free family, then s is a spanning of ↵.
If s has size dim(↵), then s is a spanning of ↵.

Proof. For the first assertion, suppose s does not span ↵, that is, 9(x, y) 2 ↵ � s⌘. Then x 6= y, since s⌘ is reflexive. Since
s[ {(x, y)} is not free, it must have a cycle that must contain (x, y), with every other arc of the cycle in s. This last statement
means that (x, y) 2 s⌘, which is absurd.
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For the last assertion, suppose free family s ✓ ↵ has size dim(↵). Using Theorem 9, let t be a minimal spanning of ↵ that
contains s. Since dim(↵) = |t| � |s| = dim(↵), we have s = t . ⇤

Proposition 11.

dim(↵ ⇤ �)  dim(↵) + dim(�).

Proof. Let s, t be minimal spannings of ↵, � . s[ t is a spanning of ↵ ⇤ � , with |s[ t|  |s| + |t|; a minimal spanning will be
even smaller. ⇤

The equality case gives an interesting result: in this case, for every s, t minimal spannings of ↵, �, s [ t has no cycle.

4.3. Quotients of graphs by equivalence relations

In this section, G = (V , A) is a directed graph (i.e. A ✓ V ⇥ V ), and ↵, � are equivalence classes over V .

Definition 4.6 (Quotient Graph). The quotient of G by ↵ is
G/↵ = ({[x]↵ | x 2 V }, {([x]↵, [y]↵) | (x, y) 2 A}).
Notice that G/↵ has |V/↵| vertices.
Graph epimorphisms and graph quotients are strongly linked, in the sense conveyed by the following theorem.

Theorem 12. There exists an epimorphism f from G to G0 iff there exists an equivalence relation ↵ over V such that G/↵ is
isomorphic to G0.

Proof. ) Let ↵ = {(x, y) 2 V 2 | f (x) = f (y)}. Then G/↵ is isomorphic to G0.
( Let f : V ! P (V ) such that 8u 2 V , f (u) = [u]↵ . Then f is an epimorphism from G to G/↵. ⇤

We shall use a classical theorem about equivalence classes.

Theorem 13. Let � be an equivalence relation with ↵ ✓ � . Then � /↵ is an equivalence relation over V/↵, and dim(� /↵) =
dim(� )� dim(↵).

Proof. Showing that � /↵ is an equivalence class over V/↵ is easy. The result on dimensions is less well-known.
Let s be aminimal spanning of ↵. From Proposition 8 s is a free family of � , so by Theorem 9, there is a t ◆ s that is amini-

mal spanning of � . t being a graph, we can consider quotienting it by ↵. One can show that t/↵ is actually a spanning of � /↵.
Now t/↵ generally contains loops and may not be a minimal spanning. Let t0 = t � s. The arcs s/↵ are exactly the loops

of t/↵, which means (t0/↵)⌘ = (t/↵)⌘ = � /↵.
One can prove that t0/↵ is free, and its size is |t|� |s|, which allows us to conclude on the dimension of � /↵. ⇤

Proposition 14. Let � be an equivalence relation such that ↵ ✓ � . Then (G/↵)/(� /↵) is isomorphic to G/� .

Proof. Notice how the vertices of G/� are subsets of V , and the vertices of (G/↵)/(� /↵) are subsets of subsets of V . It is
easy to check thatm : X 2 V/↵ �!S

x2X x is an isomorphism from the latter graph to the former. ⇤

4.4. Graph distances and homomorphisms

We now show a practical way to compute distances do by restricting the search space.
Let us begin by a simple property of our operations.

Proposition 15. If there is a sequence of merge and delete operations that transforms G into G0, then this sequence has |G|� |G0|
operations.

Proof. Eachmerge or delete operation decrements the number of vertices of G by 1. ⇤

Let us show that in Ed, there is always a short walk with a down–up pattern.

Proposition 16. Let G,G1 = (V1, A1),G2 = (V2, A2) 2 G. If there is a walk w = G1 ⇤d G!⇤d G2, then there exist a graph G0
and a walk w0 = G1!⇤d G0  ⇤d G2, with |w0|  |w|.
Proof. Let V 0 = V1 \ V2, and G0 = G#V 0 . There is a deletion string from G1 (respectively G2) to G0, by deleting vertices V1 \ V2
(respectively V2 \ V1).

G contains vertices V1 [ V2, but it also has the vertices that have been deleted from both paths to G1 and to G2 so that
|G| � |V1 [ V2|.

Using Proposition 15, w has length |G|� |G1| + |G|� |G2| � |V1 [ V2|� |V1| + |V1 [ V2|� |V2| = |V1 [ V2|� |V1 \ V2|,
and w0 has length |V1|� |V1 \ V2| + |V2|� |V1 \ V2| = |V1 [ V2|� |V1 \ V2|.

Thus |w0|  |w|. ⇤
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Theorem 17. If there is a walk w of Ed from G1 to G2, then there are a graph Gc and a walk w0 = G1!⇤d Gc ⇤d G2 not longer
than w.

Proof. By recursion on the number of maximal ‘peaks’ of w, i.e. the number of maximal subwords of w 2 !d · d: using
Proposition 16 decreases the number of maximal peaks, and at each step the resulting walk from G1 to G2 is shorter or has
the same length. ⇤

To show the same kind of properties for merge operations, graph quotients come into play.

Proposition 18. Let G,G1,G2 2 G. If there is a walk w = G1 ⇤m G!⇤m G2, then there exist a graph G0 and a walk w0 =
G1!⇤m G0  ⇤m G2, with |w0|  |w|.
Proof. This illustrates the construction:

Using Theorem 12, we see a string of merge operations as one graph quotient. Let ↵1 and ↵2 such that G1 = G/↵1 and
G2 = G/↵2. Let ⇡ = ↵1 ⇤ ↵2.

With � = ⇡/↵1 and � = ⇡/↵2, we have, using Proposition 14, G/⇡ = G1/� = G2/� (in other words, G
↵1⇤↵2

=
G
↵1

/ (↵1⇤↵2)
↵1

= G
↵2

/ (↵1⇤↵2)
↵2

).
So, by transitivity, G0 has epimorphisms from G1 and G3. And since � and � have respectively smaller dimensions than

↵1 and ↵2 (by Proposition 11 and Theorem 13), the dotted lines in the figure above are shorter than the dashed lines, hence
the property. ⇤

Theorem 19. If there is a walk w of Em from G1 to G2, then there are a graph Gc and a walk w0 = G1!⇤m Gc ⇤m G2 not longer
than w.

Proof. Same proof as Theorem 17, using Proposition 18. ⇤

This result works for the merge operation. However, it can be extended to the merge and delete operations at the same
time. In short, vertex deletion can be simulated by merging with a dummy vertex.

Definition 4.7 (Dummy Vertices, Pointed Graphs). Let? be a fresh symbol that is not a vertex of any graph in G.
Let ·? : G 2 G �! G? = (V?, A?), where V? = V ] ? and A? = A ] (V ⇥ {?}) ] ({?}⇥ V ) ] {(?,?)}.
We call the dummy vertex of a graph G, one that has all possible arcs to/from the other vertices of G and to itself. In G?,?

is always a dummy vertex.
Wewrite the set of pointed graphs G? = {G? | G 2 G}. We extend the merge operation on G? with no special treatment

for?: a priori, the image of? can be any vertex, and the antecedents of? can be any vertex.

Proposition 20. ·? is an isomorphism from Em to (E?)m:
G!md G0 if and only if G?!m G0?.

Proof. The left to right implication is straightforward. Let µ : G �! G0 be the function corresponding to the operation,
merging or deletion. If the operation is amerging, then sending? to? is valid. If it is a deletion, sending? to? and sending

the deleted vertex to?makes the operation a merging. So µ? :
✓

v 2 dom (µ) �! µ(v)
v 2 V � dom (µ) �! ?

? �! ?

◆
is a merging from G? to G0?.

The converse implication should be done carefully. Let us call µ? : G? �! G0? the function corresponding to
the merging. Notice that µ?(?) is not necessarily ?. However µ?(?) is necessarily a dummy vertex so that ! :✓

v 62 {µ?(?),?} �! v
µ?(?) �! ?
? �! µ?(?)

◆
is a graph isomorphism of G?.

Let ⇢ = ! � µ?: it is a merging from G? to G0? with ⇢(?) = ?. One can check that µ :
�
v �! ⇢(v) if ⇢(v) 6= ?�

is
either a merging (when ⇢�1(?) = {?}), or a deletion of u (when ⇢�1(?) = {?, u}). ⇤

Theorem 21. If there is a walk w of Emd from G1 to G2, then there are a graph Gc and a walk w0 = G1!⇤md Gc ⇤md G2 not
longer than w.
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Proof. Combining Theorem 19 and Proposition 20 yields the result. ⇤

These results on down–up walks lead to an interesting corollary when considering morphisms.

Corollary 22. Let G,G0 2 G.

• dd(G,G0) = |G| + |G0|� 2max{|Gc | s.t. G SISO
; Gc ^ G0 SISO; Gc}

• dm(G,G0) = |G| + |G0|� 2max{|Gc | s.t. G EPI
; Gc ^ G0 EPI; Gc}

• dmd(G,G0) = |G| + |G0|� 2max{|Gc | s.t. G SEPI
; Gc ^ G0 SEPI; Gc}.

Proof. First use Theorem 1 to transpose Theorems 17, 19 and 21 to morphisms, and then use Proposition 15 for
cardinalities. ⇤

The first equality is already known: the deletion distance between G and G0 is the number of deletions to the maximum
common induced subgraph Gc [4], which is the greatest lower bound of G and G0 for the SISO partial order.

The other two equalities are new: Gc is a greatest lower bound of maximal cardinality for the EPI (respectively SEPI )
partial orders. Note that there may be several common graphs of maximum cardinality.

Corollary 23. do(G,G0) has the same parity as |G| + |G0|.

5. Computational complexity

The SISO and EPI decision problems are NP-complete [19], and computing dSISO or dEPI is NP-hard since do(G,G0) =
|G|� |G0| if and only if G r

; G0, by Proposition 15 and Corollary 22.

Definition 5.1. The subgraph epimorphism problem is the following decision problem: ‘‘given two graphs G and G0, is G SEPI
; G0

or not?’’.

We prove the NP-completeness of the SEPI decision problemby the direct reduction of SAT [6]. For a finite set of variables
X , let ¬X = {¬x1, . . . ,¬xm} denotes the set of negative literals constructed upon X . For a Boolean formula in conjunctive
normal form � = c1 ^ · · · ^ cn over X , we have for all 1  i  n, ci = `i,1 _ · · · _ `i,ni , and for all 1  j  ni, `i,j 2 X [¬X .
Let us write C� = {i 2 N | 1  i  n} and L� = {(i, j) 2 N2 | 1  i  n, 1  j  ni}.

Lemma 24. A Boolean formula � in conjunctive normal form is satisfiable, if and only if there exists a subset X ✓ L� such that
• for all 1  i  n, there exists 1  j  ni such that (i, j) 2 X,
• for all (i, j), (i0, j0) 2 X, `i0,j0 6= ¬`i,j.

Proof. If µ : V ! {0, 1} satisfies �, we pose for all x 2 V , µ(¬x) = 1 � µ(x) and then it suffices to observe that
X = {(i, j) 2 L | µ(`i,j) = 1} satisfies the conditions of the lemma. Conversely, given a subset X ✓ L� satisfying these
conditions, we pose µ : V ! {0, 1} such that for all x 2 V , µ(x) = 1 if there exists (i, j) 2 X such that `i,j = x and 0
otherwise. Then, we observe that µ satisfies �. ⇤

We say that � is satisfied by X if X is a subset of L� satisfying these conditions.

Theorem 25. The subgraph epimorphism problem is NP-complete.

Proof. The subgraph epimorphism problem is NP since, given two graphs G = (V , A) and G0 = (V 0, A0) and function
f : V ! V 0, checking whether f is a subgraph epimorphism or not can be done in polynomial time. Therefore, it suffices to
show that the subgraph epimorphism problem is NP-hard.

Let us assume a SAT instance given by a Boolean formula in conjunctive normal form � over a finite set of variables X .
Let G and G0 be the following two graphs:

G = (L�, {{(i, j), (i0, j0)} ✓ L� | i = i0 ^ j 6= j0 _ `i0,j0 = ¬`i,j})
G0 = (C�,;).

This construction is depicted in Fig. 2.

The theorem is then an immediate consequence of the following lemma.

Lemma 26. � is satisfiable if and only if there exists a SEPI from G to G0.

Suppose that� is satisfied by a setK ✓ L� . Let K 0 = {(i,min{j | (i, j) 2 K}) | 1  i  n}. K 0 is amatching, i.e. for all i 2 C� ,
there exists a unique ji, with (i, ji) 2 L� such that (i, ji) 2 K 0. Notice that K 0 still satisfies �. Let µ : (i, j) 2 K 0 7! i 2 C� .
We show that µ is a SEPI from G to G0. Indeed, µ is surjective, since K 0 satisfies �. Furthermore, the subgraph of G induced
by K 0 has no edges: if (i, j) and (i0, j0) are in K , then either i = i0, and then j = j0 because K 0 is a matching, or i 6= i0, and then
`i0,j0 6= ¬`i,j because K 0 ✓ K . Since there are no edges to preserve, µ is trivially a morphism. So µ is a SEPI from G to G0.
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Fig. 2. Reduction from the SAT instance � = (a _ b _ ¬c) ^ (a _ ¬b _ d) ^ (¬a _ ¬c _ ¬d) ^ (¬a _ c _ ¬d) to SEPI.

Conversely, suppose that µ is a SEPI from G to G0. Let K = µ�1(C�). We show that K satisfies �. First, µ is onto, so
|K | � n. Then, if for some i there are distinct (i, j), (i, j0) 2 K , the edge between (i, j) and (i, j0) could not be preserved by
µ, so there is at most one (i, j) 2 K for each i 2 {1, . . . , n}. We deduce |K | = n, so there is exactly one (i, j) 2 K for each i.
Furthermore, if `i0,j0 = ¬`i,j for some (i, j) and (i0, j0) 2 K , then the arc between the two vertices could not be preserved by
µ. So K satisfies �. ⇤

It is worth noticing that in this proof, the existence of a SEPI from G to G0 is equivalent to the existence of a SISO from G
to G0. Therefore, this reduction shows the NP-hardness of both SEPI and SISO .

6. Constraint logic program

Despite its theoretical computational complexity, SEPI problems can be efficiently solved for some applications. In this
section, we present a constraint logic program that has been successfully used to solve practical SEPI problems on a large
benchmark of reaction graphs from systems biology [8]. This program implemented in GNU-Prolog [7] uses the built-in
constraints relation and element_var described in the next section.

6.1. Preliminaries on constraint satisfaction problems

Definition 6.1 (CSP). A constraint satisfaction problem (CSP for short) is a triple P = (V ,D, C), where

• V is a set of variables.
• D is a family of domains indexed by variables from V : 8X 2 V ,DX is a finite set.
• C is a set of constraints, each c 2 C is defined by its arity ar (c) 2 N, a tuple of variables EX(c) 2 V ar (c) and a relation

R(c) ✓Qar(c)
i=1 DEXi(c).

Definition 6.2 (Solution of a CSP). An assignment ⌘ : X 2 V �! ⌘(X) 2 DX is a solution of P when 8c 2
C, (⌘(X1), . . . , ⌘(Xn)) 2 R(c), with EX(c) = (X1, . . . , Xn).

Graph matching problems can easily be modeled as constraint satisfaction problems [12]. One variable per vertex in the
source graph is introduced; its domain is the set of vertices of the target graph. Symbolic constraints on these variables are
then used to express the matching problem and to actively prune the search space by filtering the domain of these variables
during search.

We shall use the following symbolic constraints and their associated domain filtering algorithms (available in GNU-
Prolog [7]):

• relation constrains variables using a relation given in extension. The constraint c = relation(EY , R), where EY is a
tuple of variables and R is a relation, is defined by
– ar (c) = arity of EY = arity of R = n
– EX(c) = EY
– R(c) = R \Qn

i=1 DYi ,
• element_var constrains a list of variables f describing a function to have Y as the image of its X-th element. The

constraint c = element_var(X, f , Y ), where X, Y 2 V and f = (f1, . . . , fn) 2 Vn, is defined by
– ar (c) = n + 2
– EX(c) = (X, f1, . . . , fn, Y )
– R(c) = {(index, ⌘1, . . . , ⌘n, image) 2 DX ⇥ (

Qn
i=1 Dfi)⇥ DY | ⌘index = image}
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6.2. SEPI as a constraint satisfaction problem

The graph epimorphism problem between two graphs G and G0 can be modeled as a constraint satisfaction problem
P = (V ,D, C) as follows. Variables are associated with the vertices of G and G0 and to the edges of G0

V = {Xv | v 2 V (G)} ] {Yv0 | v0 2 V (G0)} ] {Ye0 | e0 2 E(G0)},
with domains respectively

D(Xv) = V (G0?),
D(Yv0) = {1, . . . , |V (G)|},
D(Ye0) = {1, . . . , |E(G)|}.

The constraints are

C = {relation((Xu, Xv), E(G0?)) | (u, v) 2 E(G)}
[ {element_var(Yv0 , X(V (G)), v0) | v0 2 V (G0)}
[ {element_var(Y(u0,v0), ⇡1(X(E(G))), u0) | (u0, v0) 2 E(G0)}
[ {element_var(Y(u0,v0), ⇡2(X(E(G))), v0) | (u0, v0) 2 E(G0)}

where X(V (G)) is an arbitrarily ordered list containing the elements of {Xv | v 2 V (G)}, X(E(G)) is a list representation of
the set {(Xu, Xv) | (u, v) 2 E(G)}, and ⇡1, ⇡2 map the first and second projection functions on lists.

Proposition 27. The CSP problemP associatedwith graphs G,G0 has a solution if and only if there exists a subgraph epimorphism
from G to G0.

Proof. We prove that a variable assignment ⌘ is a solution to P if and only if the restriction of ⌘ to {u 2 V (G) | ⌘(u) 2
V (G0)} = ⌘ |V (G0)

V (G) is a subgraph epimorphism from G to G0.

If ⌘ is a solution to P , then ⌘ |V (G0)
V (G) preserves the arcs of G since for each (u, v) 2 E(G), relation((Xu, Xv), E(G0))

enforces (⌘(Xu), ⌘(Xv)) 2 E(G0). Moreover, ⌘ |V (G0)
V (G) is surjective on vertices of G0, since for each v0 2

V (G0), element_var(Yv0 , X(V (G)), v0) forces the Yv0-th element of V (G) to have v0 as its image, and similarly surjectivity
on arcs of G0 is enforced by the remaining constraints.

Conversely, suppose that there is a subgraph epimorphism f from G to G0. Let g : V (G0) 7! V (G) be any inverse of f on
the vertices (i.e. 8v0 2 V (G0)f (g(v0)) = v0), and h : E(G0) 7! E(G) any inverse of f on the arcs. Let ⌘ such that

• 8v 2 V (G), ⌘(Xv) = f (v),
• 8v0 2 V (G0), ⌘(Yv0) = i s.t. V (G)i = g(v0),
• 8(u0, v0) 2 E(G0), ⌘(Y(u0,v0)) = j s.t. E(G)j = h((u0, v0)).

Then ⌘ is a solution to the CSP P . ⇤

Interestingly, the ? vertices used to reduce SEPI to EPI in the proof of Proposition 20 are also used in this coding of
subgraph epimorphism as a CSP: without the dummy vertices, we obtain a CSP encoding of the EPI problem.

6.3. The CSP framework: propagation and enumeration

In order to solve a real-world CSP problem, the enumeration of tuples ⌘ is not a viable possibility. Constraint solvers use
the fact that from the reduction of the domain of some variables, one can deduce information about the other variables: in
particular, one can deduce forbidden values for other variables.

As an example, consider the CSP with variables {X, Y , Z} and constraints (X, Y ) 2 {(1, 1), (2, 3)}, (Y , Z) 2
{(1, 2), (1, 3)}. Instantiating X to 1 allows the deduction of Y = 1, so we never need to test Y = 2: this deduction has
been propagated from X = 1. To continue the solving process, we have no choice but to let Y = 2, and we can choose the
next value to try for Z : Z = 2 is a valid choice.

If at first we had tried X = 2, the first constraint would have forbidden Y = 1, and the second constraint would have
forbidden every value of Z . This is a failure: on failure, constraint solvers backtrack to the last instantiation Var = valwhere
there was a choice, remove val from the domain of Var , and try another value for Var . If no value remains, the backtracking
process has to return to an even earlier choice point, and if there is no such choice point, then there is no solution to the CSP.

Searching for a solution by constraint solving alternates between propagation and enumeration steps. The general
searching scheme is described in the following function SearchC (D): this function returns a solution ⌘ in the domain family
D if such a solution exists, and fails otherwise.
function SearchC (D)

D0  PropagateC (D)
if 9X | D0X = ; then
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fail
else if 8X, |D0X | = 1 then

return ⌘ such that 8X,D0X = {⌘(X)}
else

(X, d) VariableValueSelection(D0)
try

D00  (X 7! d; Y 6= X 7! D0Y )
SearchC (D00)

on failure
D00  (X 7! D0X \ d; Y 6= X 7! D0Y )
SearchC (D00)

end try
end if

end function
Propagation is assumed to be monotonic (PropagateC (DX ) = D0X ✓ DX for all X 2 V ) and correct (if the condition

8X, |D0X | = 1 holds, then the resulting ⌘ is a solution). Enumeration is assumed to be strictly monotonic (d ( D0X ) and
inhabited (d 6= ;). The function VariableValueSelection should never select a singleton variable: VariableValueSelection
(D) = (X, d)) |DX | > 1. Therefore, SearchC (D) terminates.

In the worst case, with no propagation (D0 = D), the search procedure is equivalent to a non-deterministic labeling in
O(dn) where d is the size of the largest domain (the maximum between the number of vertices in G0 and the number of arcs
in G) and n is the number of variables (the sum of the number of vertices in G and arcs in G0).

We consider propagation algorithms that ensure the domain–arc-consistency of the domain family D0 = PropagateC (D)
with respect to the set of constraints C . A domain family D0 is domain-consistent with respect to a set of constraints C when
for every variable X 2 V and every value v 2 D0X , there exists an assignment ⌘ such that ⌘(X) = v and ⌘ respects every
constraint in C .

The built-in constraint propagators of GNU Prolog indeed maintain arc-consistency for the constraints relation and
element_var.

6.4. Search strategy for SEPI

Here we discuss the choice of VariableValueSelection for SEPI CSPs.
The default choice could be to use a generic strategy for enumerating both source vertices and antecedent vertices and

arcs as follows:
function VariableValueSelection(D)

if 9X | DX = {d1, d2, . . .} then
return (X, d1)

end if
end function
Actually, the enumeration of only one of the sets is sufficient. Let us consider the following enumeration function:
function VariableValueSelectionX(V (G))(D)

if 9v 2 V (G) | DXv = {d1, d2, . . .} then
return (Xv, d1)

else if 9v0 2 V (G0) | Yv0 = {d1, d2, . . .} then
return (Yv0 , d1)

else if 9(u0, v0) 2 E(G0) | Y(u0,v0) = {d1, d2, . . .} then
return (Y(u0,v0), d1)

end if
end function

Proposition 28. For a SEPI CSP, the search strategy with VariableValueSelectionX(V (G)) yields a solution once the source
vertex variables are instantiated, for any instantiation of the antecedent variables in their domains.
Proof. First, suppose that we have tried to enumerate the source vertex variables, and failed. Then, the correctness of
constraint propagation ensures that there is no SEPI from the source graph to the target graph.

Conversely, if on the contrary the enumeration on source vertex variables succeeded, then there is obviously amorphism.
Is it surjective? The domain–arc-consistency of element_var removes values v 2 V (G) (respectively (u, v) 2 E(G)) from
antecedent variables of v0 (respectively (u0, v0)) as soon as it is known that the image of v (respectively (u, v)) is not v0

(respectively (u0, v0)).
Since every source vertex variable is completely instantiated, the domains of antecedent variables are more than a set of

possible antecedents: they are the exact sets of antecedents.
From the SearchC algorithm, every antecedent variable has a non-empty domain, which means the morphism is

surjective, and any value for the antecedent variables will satisfy the constraints. ⇤
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Let us now consider the enumeration of antecedent variables as follows:
function VariableValueSelectionantecedents(D)

if 9v0 2 V (G0) | Yv0 = {d1, d2, . . .} then
return (Yv0 , d1)

else if 9(u0, v0) 2 E(G0) | Y(u0,v0) = {d1, d2, . . .} then
return (Y(u0,v0), d1)

else if 9v 2 V (G) | |DXv | > 1 ^ DXv 6= {?} then
return (Xv,?)

end if
end function

Proposition 29. For a SEPI CSP, the search strategy with VariableValueSelectionantecedents yields a solution once every
antecedent variable has been instantiated, by instantiating the remaining non-singleton source vertex variables to?.
Proof. First, suppose we have enumerated only the antecedent variables, and failed. Once again, it is obvious that there is
no SEPI from the source graph to the target graph.

Conversely, if the enumeration on antecedent variables succeeded, then some source vertex variables already have
singleton domains. The induced subgraph formed by the source vertices that correspond to these variables is sufficient
to cover G0, and the correctness of the relation propagator ensures that the variables code a morphism. If we put the ?
value for every remaining source vertex variable, we get a SEPI from the source graph to the target graph. ⇤

An enumeration of the source vertex variables is enough to enforce arc surjectivity. However, compared to enumerating
the antecedents variables beforehand, the former strategy checks the surjectivity quite late. Enumerating antecedent
variables is sufficient provided that we fill the remaining source vertex variables with ?. This ‘‘antecedents first’’ strategy
works best in practice.

6.5. Implementation and evaluation

The preceding constraint satisfaction algorithm can be directly coded in GNU-Prolog [7] using the built-in constraint
propagators for the relation and element_var constraints. Some redundant constraints, such as the all_different
constraint of [15], the neighborhood constraint of [11] or other global constraints [18,20,17] have been proposed to
improve the domain filtering process on graph matching problems, and in some cases to outperform dedicated algorithms
such as Vflib [20,17]. However, the results reported here concern the constraint logic program described in the previous
section without global constraints.

Our benchmark for evaluation comes from the repository ofmodels biomodels.net that is widely used in systems biology.
Most of thesemodels are biochemical reaction networks fromwhich one can extract a bipartite reaction graphwith ‘species’
and ‘reaction’ vertices. The domain constraints ensure that the morphism map species vertices to species vertices, and
reaction vertices to reaction vertices.

We have shown in [8] that SEPIs faithfully represent reduction relationships between models of biochemical reaction
systems and that they can be used to relate the models in this repository, and organize them in a hierarchy of more or less
detailed models.

On the 241 curated models of this repository, 131 are reaction models from which non-trivial reaction graphs can be
extracted. The average size of the graphs is 56 vertices, with a minimum of 9, a median of 37, and a maximum of 315
vertices.

Our GNU-Prolog programwas used to decide the existence of SEPIs in all 131*130 pairs of reaction graphs. Of these 17030
comparisons, 329 were not computed within a time out of 20 mn, and 16659 were computed in less than 5 s [8].

7. Generalization to undirected graphs and bipartite graphs

7.1. Undirected graphs

In undirected graphs, with loops allowed, the definition of SEPI is almost the same, with epimorphisms now preserving
adjacency instead of successors.

Proposition 3 shows that the classical encoding of undirected graphs as symmetric directed graphs helps the conversion
to undirected graphs.

The notion of outgoing and incoming non-neighbors can be traded for a notion of non-neighbors. Proposition 4 can be
translated for non-neighbors. The infinite antichain given as proof of Proposition 5 is symmetric, so it also translates as an
infinite antichain of undirected graphs.

The operations we consider in the proofs for distances dr preserve arc symmetry, which makes the lub characterization
of distance work for undirected graphs.

The SEPI existence problem between two undirected graphs is also NP-complete since the proof of Theorem 25 uses
symmetric graphs.
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7.2. Bipartite graphs

Our interest in subgraph epimorphisms came from an application in bioinformatics that uses bipartite directed graphs. In
this setting, epimorphisms have to preserve bipartition of the vertices. Here, every vertex has one of two labels (say ‘circle’
and ‘square’), vertices with the same label cannot be adjacent, and epimorphisms have to preserve these labels.

The infinite antichain in Proposition 5 can be adapted: instead of taking complete graphs minus maximal cycles, we can
consider complete (n, n)-bipartite graphs minus maximal cycles, that is: Gn = (Vn, An), with Vn = {1 . . . n}] {10 . . . n0} and
An = {(i, j0), (j0, i) | i 6= j0}.

The distances are defined the sameway. The lub characterizations are the same for dd and dm. However, the construction
to go from EPI to SEPI needs a slight modification: we add two? vertices instead of one, a circle-labeled one and a square-
labeled one. The? vertex of each type is to be linked with every vertex of the other type. This makes the encoding of SEPI
in EPI valid.

Finally, the SEPI decision problem can be proved NP-complete by modifying the proof a little. First, we can suppose that
there are no clauses that contains both x and ¬x in the SAT instance. We take the same C and L as in the main proof; there
are n clauses in the instance.

Then, we modify the source graph G1 = (V1, A1) by changing cliques to bicliques:

circle(V1) = L
square(V1) = C [ B with B = {(i1, j1), (i2, j2) 2 L2 | `i1,j1 = ¬`i2,j2}
A1 = {(c, l) 2 C ⇥ L | l = (c, ·)} [ {(l, p) 2 L⇥ B | p = (l, ·) _ p = (·, l)}

the target graph pattern is then G2 = (V2, A2)

circle(V2) = X 0 = {x01, . . . , x0n}
square(V2) = C 0 [ D0, with C 0 = {c 01, . . . , c 0n} and D0 = {d01, . . . , d0n}
A2 = {(c 0i , x0i) | 1  i  n} [ {(x0i, d0i) | 1  i  n}.

If the SAT instance is satisfiable, deducing a SEPI from G1 to G2 is trivial. If there is a SEPIµ from G1 to G2, then µ�1(X 0)
satisfies Lemma 24, concluding the proof.

8. Conclusion

The operations of deleting and merging vertices are natural operations for reducing a graph. While graph reductions
through a sequence of vertex deletions (respectively mergings) characterize subgraph isomorphisms (respectively graph
epimorphisms), sequences of both vertex deletion and merging operations characterize subgraph epimorphisms. Our
proposal is thus to use subgraph epimorphism for comparing graphs in applications where a more flexible notion than
the classical notion of subgraph isomorphism is required.

We have shown that SEPIs preserve graph completeness and arc symmetry and that, just like SISO and EPI , SEPI is not
a well quasi-order. We have defined the SEPI , EPI and SISO distances between two graphs as the size of the largest SEPI
(respectively EPI , SISO ) lower bound graphs. These distances are equal to the minimum number of respectively vertex
deletion and/or merging operations that are necessary to obtain isomorphic graphs. They are also metrics on graphs, and
we have dd � dmd and dm � dmd.

From a computational point of view, we have shown that the existence of a SEPI between two graphs is an NP-
complete problem and have presented a constraint logic program for solving it with good performance in practice on a
large benchmark of SEPI model reduction problems from systems biology.

It is worth noticing that, given two graphs G and G0, the greatest lower SEPI bounds and the least upper SEPI bounds are
also interesting to compute since they represent ‘‘intersection’’ and ‘‘union’’ graphs for the SEPI relation. For instance, in
our motivating application in systems biology, these objects correspond to the intersection (respectively union) of models
at different levels of details for a given biochemical process. These graphs are not unique but we are confident that the
constraint satisfaction algorithm we have presented can be interestingly generalized to compute them.
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3.3 A Constraint Solving Approach to Tropical
Equilibration

For smaller models where the kinetics have to be taken into account, methods based
on the underlying ODE system exist. Note that even for moderately small models, the
question of reduction remains crucial in that it allows the modeller to identify with
much more confidence the crucial kinetic parameters, prompting biological experiments.
This is especially true if one wants to apply some mathematical biology methods like
bifurcation analysis, which mostly brings information for models with dimension smaller
than three.

In this article we describe the constraint-based implementation of an algorithm com-
puting tropical equilibrations for a polynomial ODE system. The result is a piecewise
reduced model, using different fast/slow decompositions of variables in different regions
of the space. Though it is already clear that the different reduced models do corre-
spond to SEPI reductions, a more complete link delineating conditions on the kinetics
for SEPIs would be of interest. In any case, the hybrid models resulting from a tropical
reduction remain in the realm of some of our analyses, since we have proven recently
that they can be encoded in SBML or BIOCHAM [3].

[19] Sylvain Soliman, François Fages, and Ovidiu Radulescu. “A constraint solving ap-
proach to model reduction by tropical equilibration”. In: Algorithms for Molecular
Biology 9.24 (Dec. 2014). issn: 1748-7188. doi: 10.1186/s13015-014-0024-2
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Abstract

Model reduction is a central topic in systems biology and dynamical systems theory, for reducing the complexity of
detailed models, finding important parameters, and developing multi-scale models for instance. While singular
perturbation theory is a standard mathematical tool to analyze the different time scales of a dynamical system and
decompose the system accordingly, tropical methods provide a simple algebraic framework to perform these
analyses systematically in polynomial systems. The crux of these methods is in the computation of tropical
equilibrations. In this paper we show that constraint-based methods, using reified constraints for expressing the
equilibration conditions, make it possible to numerically solve non-linear tropical equilibration problems, out of reach
of standard computation methods. We illustrate this approach first with the detailed reduction of a simple
biochemical mechanism, the Michaelis-Menten enzymatic reaction model, and second, with large-scale performance
figures obtained on the http://biomodels.net repository.
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Background
Model reduction is a central topic in systems biology and
dynamical systems theory, for reducing the complexity
of detailed models, finding important parameters, and
developing multi-scale models for instance.

Indeed, for many of the problems in computation and
analysis of complex systems, the upper limit on the size
of the system that can be studied has been reached.
This limit can be very low, namely tens of variables for
system identification, symbolic calculation or bifurcation
of attractors of large dynamical systems. For instance,
the complexity of extant symbolic solvers of polynomial
equations is exponential in the number of indeterminates
and parameters, that sets a drastic limitation to the size of
the models that can be analyzed [1,2]. Some examples of
computational difficulties that arise when trying to apply
standard tools of algebraic geometry to systems biology
models can be found in [3]. Model reduction is a way
to bypass these limitations by replacing large scale mod-
els with models containing less parameters and variables,
easier to analyse.

*Correspondence: Sylvain.Soliman@inria.fr
1Inria, Domaine de Voluceau 78150, Rocquencourt, France
Full list of author information is available at the end of the article

There are mathematical methods, based on singular
perturbations or on the theory of invariant manifolds,
allowing reduction of fully parametrized systems with
separation of time scales. More precisely, in dissipative
systems, fast variables relax rapidly to some low dimen-
sional attractive manifold called invariant manifold [4]
that carries the slow mode dynamics. A projection of
dynamical equations onto this manifold provides the
reduced dynamics. Numerical reduction methods, such as
computational singular perturbation (CSP, [5]), intrinsic
low dimensional manifold (ILDM, [6]) exploit the sep-
aration of timescales of various processes and compute
approximations of the invariant manifold. Purely struc-
tural reduction methods can handle big models possibly
with lack of kinetic information [7]. However, the case
of biochemical models of intermediate size, with partially
known parameters and that ask for symbolic analysis, is
more open [8].

While singular perturbation theory is a standard math-
ematical tool to analyze the different time scales of a
dynamical system and decompose the system accordingly,
tropical methods provide a simple algebraic framework
to perform these analyses systematically in polynomial
systems, and in situations when model parameters are
known only by their orders of magnitude. Differential

© 2014 Soliman et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.
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equations describing kinetics of biochemical reactions are
polynomial or become polynomial after decomposition
of reaction mechanisms into elementary steps. For these
models, quasi-equilibrium or quasi-steady state invari-
ant manifolds allowing reductions are given by systems
of algebraic equations [3]. A potentially crucial applica-
tion of tropical mathematics is to enumerate and describe
asymptotic solutions of algebraic systems of equations [9].
In particular, tropical solutions of polynomial equations
provide the leading terms of their solutions via curves
or in other terms via Newton-Puiseux series [10,11]. At
the basis of our method lies the idea that equilibration
of fast variables on invariant manifolds implies, at low-
est order, equilibration of at least two dominant mono-
mials, one positive and the other negative in the right
hand side of the differential equations. We have called
such a condition, similar to Kapranov’s condition [11] for
existence of Newton-Puiseux series with specified low-
est order terms, tropical equilibration. The crux of our
method lies in the computation of tropical equilibrations
that define some reduced truncated systems with fewer
parameters to identify, thus pointing to fewer experiments
to (in)validate the model [12,13]. Our method copes with
uncertain parameters by replacing exact values by orders
of magnitude and the reduction is performed symboli-
cally in both variables and parameters. With respect to
methods based on singular perturbations, this could be
less precise at lowest order, but it is more general in
implementation.

Solving the tropical equilibration problem boils down
to solving a system of equations in the min-plus algebra
(also known as the tropical semiring). For solving linear
tropical systems there are pseudo-polynomial algorithms,
i.e. whose complexity is polynomial in the size of the sys-
tem and in the absolute values of its coefficients [14]. In
the nonlinear case, the existence of tropical equilibrations,
which is equivalent to the problem of the intersection of
tropical varieties, was shown to be NP-complete [15]. In
this paper we show that constraint-based methods, using
reified constraints for expressing the equilibration con-
ditions, make it possible to numerically solve non-linear
tropical equilibration problems, out of reach of standard
computation methods.

We first illustrate this approach with the detailed reduc-
tion of a simple biochemical mechanism, the Michaelis-
Menten enzymatic reaction model. We detail the general
procedure to obtain truncated systems by identifica-
tion, through equilibration, of fast and slow species, and
relate the obtained reduced systems to the usual notions
of quasi-steady-state and quasi-equilibrium. Then, we
demonstrate that the approach is computationally feasi-
ble, and scales up properly, by treating in an automatic way
all the curated dynamical models of http://biomodels.net
repository [16].

Model reduction by tropicalization
We consider networks of biochemical reactions with mass
action kinetic laws. The structure of a reaction is defined
by a multiset rewriting rule as

n∑

i=1
αjiAi →

n∑

k=1
βjkAk

where Ai, i = 1, . . . , n denote the chemical species and
αji, βjk are positive integers named stoichiometric coeffi-
cients defining which species are consumed and produced
by the reaction j, 1 ≤ j ≤ r, and in which quantities.

The mass action law means that reaction rates are
monomial functions of the species concentrations xi, 1 ≤
i ≤ n and read

Rj(x) = kjxαj ,

where kj > 0 are kinetic parameters and we use the
shorthand notation xαj = xαj1

1 . . . xαjn
n .

The network dynamics is then described by the follow-
ing differential equations

dxi
dt

=
r∑

j=1
kjSijxαj . (1)

where Sij = βji − αji are entries of the stoichiometric
matrix.

In what follows, the kinetic parameters do not have
to be known precisely, they are given by their orders of
magnitude. A convenient way to represent orders is by
considering that

kj = k̄jε
γj ,

where ε is a positive parameter much smaller than 1, γj is
an integer or, more generally, a rational number, and k̄j has
order unity. An approximate integer order can be obtained
from any real positive parameter by

γj = round(log(kj)/ log(ε)),

where round stands for the closest integer. Notice that
in this representation, small quantities have large orders.
Furthermore, the smaller ε, the better the separation
between quantities of different orders, indeed limε→0

ki
kj

=
∞, if γi < γj.

We also define orders for species concentrations, using
a vector of orders a = (a1, . . . , an), such that x = x̄εa. We
suppose that various (a1, . . . , an) are integers or rational
numbers with a common denominator. In our method we
will calculate the concentration orders as solutions of the
tropical equilibration problem (see below).

First, let us replace Eqs. (1) by their equivalent rescaled
versions

dx̄i
dt

=
r∑

j=1
εμj−ai kjSijx̄αj , (2)
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where

μj = γj+ < a, αj >, (3)

and <, > stands for the vector dot product.
The r.h.s. of each equation in (2) is a sum of multi-

variate monomials in the concentrations. The orders μj
indicate how large are these monomials, in absolute value.
For sufficiently small ε, monomials of different orders are
well separated. For instance a monomial of smallest order
μj < μj′ dominates the other monomials kj|Sij|xαj �
kj′ |Sij′ |xαj′ . One could see all these monomials as “forces”
acting on the chemical species. At steady state, the resul-
tant of all these forces should be naught. A consequence
of this is that the orders of dominant positive and neg-
ative forces should be equal. This is exactly our notion
of tropical equilibration that we introduced in [13]. More
precisely, we say the system (2) is tropically equilibrated iff

min(μj, Sij < 0) = min(μj′ , Sij′ > 0), for all i = 1, . . . , n
(4)

The tropical equilibration problem consists in solving
the system (4) for orders ai, 1 ≤ i ≤ n.

Another way to understand the condition (4) is via
Newton-Puiseux series. Suppose we want to solve the
polynomial equation

P(x, ε) =
∑

j
bjε

γj xαj = 0, (5)

where αj are positive integers, γj are rational powers, and
bj are real coefficients. It is well known [10] that solutions
of this equation can be expressed as Newton-Puiseux
series, i.e. have the form

x(ε) = c1ε
a1
q + c2ε

a2
q + . . . ,

where ci are complex coefficients, a1 < a2 < . . . are
integers, q is a positive integer. By substituting x(ε) =
c1ε

a1
q (1 + x1(ε)) (where x1(ε) collects terms with positive

orders in ε) in (5) we get

P(x, ε) =
∑

j
bjc

αj
1 εγj+a1αj/q + r1(ε) = 0,

where r1(ε) collects higher order terms. Necessary condi-
tions for P(x, ε) = 0 read at lowest order

∑

j,γj+a1αj/q=m
bjc

αj
1 = 0 (6)

m = min
j

(γj + a1αj/q) (7)

In order to satisfy (6), the minimum in (7) should be
attained at least twice. Furthermore, if one looks for real
solutions ci ∈ R, then from (6) it follows that at least two
bj corresponding to the minimum (7) should have oppo-
site signs. This means that the lowest order a1/q in the

Newton-Puiseux series solution has to satisfy a tropical
equilibration problem.

We must emphasize that the tropical equilibration con-
dition is weaker than the steady state condition, and
makes sense also away from a steady state. In systems
with slow/fast variables, the fast variables are equilibrated
by compensation of dominant forces whose orders result
from the tropical condition (4). As a consequence, the fast
variables can be expressed as functions of the slow vari-
ables. However, both fast and slow variables can slowly
evolve under the influence of weaker, higher order forces.
This picture is valid as long as the relative dominance
relations between various monomial terms in Eqs.(2) are
preserved. This is true if the rescaled concentrations x̄i
stay between bounds, whereas ε is allowed to tend to zero.

To summarize, the tropical equilibration is a neces-
sary condition for the elimination of fast variables and
model reduction. As we showed in [13], in order to
become sufficient this condition should be combined with
a boundedness condition, called permanency:

Definition 0.1. The system (1) is permanent, if there
are two constants C− > 0 and C+ > 0, a set of renor-
malization exponents ai, and a function T0 of the initial
conditions, such that after renormalization we have

C− < x̄i(t) < C+, for all t > T0(x(0)) and for every i.

A simple example, the Michaelis-Menten reduction
The Michaelis-Menten enzymatic reaction network con-
sists of three reactions:

S + E
k1�

k−1
ES k2→ P + E,

where S, ES, E, P represent the substrate, the enzyme-
substrate complex, the enzyme and the product, respec-
tively.

The corresponding system of polynomial differential
equations reads:

x′
1 = −k1x1x3 + k−1x2

x′
2 = k1x1x3 − (k−1 + k2)x2

x′
3 = −k1x1x3 + (k−1 + k2)x2

x′
4 = k2x2

(8)

where x1 = [S], x2 = [ES], x3 = [E], x4 = [P].
It can be easily checked that the system has two alge-

braic invariants: (x2 + x3)′ = 0, which implies

x2 + x3 = e0, (9)

where e0 is a positive constant (the total amount of
enzyme), and

x1 + x3 + x4 = s0 (10)
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where s0 is a positive constant (the total amount of sub-
strate and product). These conservation laws can be used
to reduce the model by elimination of x4 (by (10)) and x3
(by (9)). It follows:

x′
1 = −k1x1(e0 − x2) + k−1x2

x′
2 = k1x1(e0 − x2) − (k−1 + k2)x2

(11)

The constraint x2 ≤ e0 resulting from the elimination is
also to consider, but we will see that all equilibrations of
the above equations already imply it.

Tropical equilibration equations
By rescaling variables and parameters, we get xi = x̄iεai ,
1 ≤ i ≤ 2, k1 = k̄1εγ1 , k−1 = k̄−1εγ−1 , e0 = ē0εγe .

The tropical equilibration equations for the reduced
system read:

γ1 + γe + a1 = min(γ1 + a1, γ−1) + a2 (12)

γ1 + γe + a1 = min(γ1 + a1, min(γ−1, γ2)) + a2 (13)
The set of integer (or rational) orders endowed with the

⊕ = min and ⊗ = + operations is a semi-field, called
min-plus algebra or tropical semi-field [17]. In this semi-
field, −∞ plays the role of 0 and 0 plays the role of 1.
The multiplicative inverse of a is denoted −a. Our tropical
equilibration problem means solving a set of polynomial
equations in this semi-field. Using these notations and
properties of semi-field operation, the tropical equations
become:

γ1 ⊗ γe ⊗ a1 ⊗ (−a2) = (γ1 ⊗ a1) ⊕ γ−1 (14)

γ1 ⊗ γe ⊗ a1 ⊗ (−a2) = (γ1 ⊗ a1) ⊕ γ−1 ⊕ γ2 (15)

Classical Michaelis-Menten reduction
The classical derivation of the Michaelis-Menten reduc-
tion is based on the behaviour of the variable x2 for the
complex concentration. Using (8) it follows that:

x′
4 = Vmx2/e0

where Vm = k2e0 is the maximum value of the production
rate x′

4, since x2 ≤ e0.
The variable x2 satisfies equilibration relations and can

be expressed as a function of a slow variable (either the
substrate x1 when x2 is small, or the sum x1 + x2 in
general) in two situations: quasi-stationarity and quasi-
equilibrium.

The quasi-stationarity corresponds to setting x′
2 to zero

and is justified by the smallness of x2 that can be con-
sidered a fast species (radical). More precisely one has
k1x1(e0 − x2) − (k−1 + k2)x2 = 0, leading to x2 =
x1e0/(Km + x1), where Km = (k−1 + k2)/k1, i.e.

x′
4 = Vmx1/(Km + x1) (16)

The quasi-equilibrium corresponds to setting k1x1
(e0 − x2) − k−1x2 = 0, meaning zero net flux of the
first reaction in the mechanism. This leads to x2 =
x1e0/((k−1/k1) + x1), i.e.

x′
4 = Vmx1/((k−1/k1) + x1) (17)

This is justified by having a very fast transformations in
the direct and reverse sense by the first reaction, much
faster than the transformations by the second reaction. In
this case both x1 and x2 are fast, but their sum x1 + x2 is
slow.

We show next, in Section “Tropical equilibrations and
model reductions”, that analysis of tropical equations pro-
vide the conditions for the asymptotic validity of quasi-
stationarity and quasi-equilibrium approximations and
also the exhaustive list of asymptotic regimes.

Geometrical interpretation
It was discussed in [13] that there is a bijection between
the set of solutions of each tropical equation and parts of
the tropical curves of the polynomials defining the ordi-
nary differential equations. A tropical curve is defined
as the locus of species concentration values (x, y) where
at least two monomials of the considered polynomial
are equal and larger than all the others. In logarithmic
scale, this locus is made of lines, half-lines, or line seg-
ments [13,18]. There is one tropical curve for each differ-
ential equation. For instance, the tropical curve defined by
the polynomial −k1e0x1 +k1x1x2 +k−1x2 is made of three
half-lines with a common origin depicted in Figure 1,
namely

log(x2) = log(e0), log(x1) > log(k−1/k1) (18)

log(x1) = log(k−1/k1), log(x2) > log(e0) (19)

log(x2) = log(x1)+log(e0k1/k−1), log(x1) < log(k−1/k1)

(20)

The solutions of the tropical equation (14) form two
branches, corresponding to the two situations (γ1 ⊗ a1) ⊕
γ−1 = (γ1 ⊗ a1) and (γ1 ⊗ a1) ⊕ γ−1 = γ−1, respectively.
These are two half-lines in the plane of concentration
orders:

a2 = γe, γ1 + a1 < γ−1

(21)

a2 = a1 + γ1 + γe − γ−1, γ1 + a1 > γ−1

(22)

CHAPTER 3. STRUCTURAL AND DYNAMICAL MODEL REDUCTION 109



Soliman et al. Algorithms for Molecular Biology 2014, 9:24 Page 5 of 11
http://www.almob.org/content/9/1/24

Figure 1 Tropical curves in the planes of concentrations and orders for the two variables Michaelis-Menten model. Tropical curves are
defined as the locus of points where two monomials of a polynomial describing a differential equation are equal. The tropical curves for each
differential equations are indicated by colors, blue for the first equation and red for the second equation. The vertical half-line of each of the tripods
does not carry tropical equilibrations because it corresponds to equality of two monomials of the same sign. The horizontal and the oblique
half-lines of the tripods carry tropical equilibrations. We have represented the two situations when k−1 > k2 and when k−1 < k2. All the tropical
equilibrations are double (both variables are equilibrated) in the first case, and can be simple (only one variable is equilibrated) in the latter.

The two branches of solutions can be also related to
parts of the tropical curves corresponding to the equili-
bration of monomials of different signs. More precisely
(21) corresponds to (18), and (22) corresponds to (20). The
branch (19) of the tropical curve corresponds to the equal-
ity of two positive monomials and has no correspondence
in the set of tropical equilibrations.

Similarly to computing steady states as intersections of
null-clines, we are considering multiple tropical equilibra-
tions as intersections of tropical curves.

We therefore consider the second tropical equation (15),
in two situations γ−1 ⊕ γ2 = γ−1 and γ−1 ⊕ γ2 = γ2. In
the first case the tropical equation (15) is equivalent to the
tropical equation (14) (also, the tropical curves coincide).
Therefore, the two solutions (21) and (22) equilibrate both
equations. In the second case, the solutions of the trop-
ical equation (15) form two branches, corresponding to
(γ1 ⊗ a1) ⊕ γ2 = γ1 ⊗ a1 and (γ1 ⊗ a1) ⊕ γ2 = γ2, respec-
tively. They correspond to two half-lines in the plane of
orders (a1, a2), namely a2 = γe, a1 < γ2 − γ1 and
a2 = a1 + γ1 + γe − γ2, a1 > γ2 − γ1. A simple graph-
ical inspection of the relative positions of these half-lines
with respect to the half-lines carrying solutions of the first
tropical equation shows that there are four branches of
tropical equilibrations:

a2 = γe, a1 < γ2 − γ1 (23)

a2 = γe, γ2 − γ1 < a1 < γ2 − γ1 (24)

a2 = a1 + γ1 + γe − γ2, a1 > γ2 − γ1 (25)

a2 = a1 + γ1 + γe − γ−1, a1 > γ−1 − γ1 (26)

The branch (23) equilibrates the two variables. The
branch (25) equilibrates only the second variable, whereas
the branches (24), (26) equilibrate only the first variable.

Tropical equilibrations and conservation laws
The reduced Michaelis-Menten mechanism with two
dynamical variables has been obtained by elimination of
a variable using an exact conservation law. It is interest-
ing to compute the tropical equilibrations directly, in the
unreduced model. In this three variables model, two of the
equilibrium equations are identical. Like for computation
of steady states, we need the conservation law as an extra
constraint. If we treat this constraint exactly, we obtain the
reduced model. An approximate treatment of Eqs. (8), (9),
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considering equilibration of dominant terms, leads to the
tropical problem:

γ1 ⊗ a1 ⊗ a3 = γ−1 ⊗ a2 (27)

γ1 ⊗ a1 ⊗ a3 = (γ−1 ⊗ a2) ⊕ (γ2 ⊗ a2) (28)

a2 ⊕ a3 = γe (29)
This tropical problem is different from (14), (15) and

leads to different solutions in general. Firstly, let us
notice that elimination is not possible in semi-fields,
because there is no additive inverse in general. Hence,
(27), (28) (29) can not be reduced to an equivalent system
of two tropical equations. Secondly, dominant monomial
equilibration in the reduced model does not always cor-
respond to monomial equilibrations in the unreduced
model. A typical example is the monomial x1x3 that
becomes the difference x1e0 − x1x2 in the reduced model.
The two monomials can equilibrate each other in the
reduced model, but the same quantity is an unique, un-
equilibrated monomial in the full model.

There are six branches of tropical solutions of the sys-
tem (27), (28), (29). Two branches are obtained when
γ−1 ⊗ a2 = γ−1. In this case the two tropical
equations (27), (28) are identical. Depending on a2 ⊕a3 =
a2, or a2 ⊕ a3 = a3 we get:

a2 = γe, a1 < γ−1 − γ1 (30)

a2 = a1 + γ1 + γe − γ−1, a1 > γ−1 − γ1

(31)

These branches correspond to equilibrations of all the
variables.

When γ−1 ⊗ a2 = γ2 the two tropical Eqs. 27, (28)
are incompatible. Depending on a2 ⊕ a3 = a2, or a2 ⊕
a3 = a3 and further choosing only one of the two tropical
Eqs. 27, (28) we get the following branches:

a2 = γe, a1 < γ−1 − γ1 (32)

a2 = γe, a1 < γ2 − γ1 (33)

a2 = a1 +γ1 +γe −γ−1, a1 > γ−1 −γ1, (34)

a2 = a1 + γ1 + γe − γ2, a1 > γ2 − γ1 (35)

In the branches (32), (34), the variables x2, x3 are not
equilibrated, whereas in the branches (33), (35), the vari-
able x1 is not equilibrated.

Comparison of Eqs. (30)-(35) and Eqs. (21)-(26) proves
that the tropical equations of the unreduced model have

the same set of solutions as the reduced model. However,
the branch of solutions (33) equilibrates all the variables
in the reduced model and does not equilibrate the vari-
able x1 in the reduced model. The reason is exactly the
one given above: the monomial x1x3 is dominant and un-
equilibrated in the unreduced model, becomes x1e0 −x1x2
with equilibrated monomials in the reduced model.

Tropical equilibrations and model reductions
Tropical equilibrations can be used for model reduction.
The reduction starts by tropical truncation. We call trop-
ically truncated model the model obtained by elimination
of all dominated monomials from the r.h.s. of the ordinary
differential equations. The next step is ordering the vari-
ables according to the values of the exponents μi−ai. This
allows to determine which variables are slow and fast.

An additional construction is needed in the case when
the tropically truncated system of fast variables has con-
servation laws that are not conserved by the un-truncated
system. The conservation laws define species pools that
are supplementary slow variables. The pools follow differ-
ential equations involving previously dominated monomi-
als.

For instance, in the two variables Michaelis-Menten
model, we found essentially two types of reduced
models, corresponding to quasi-equilibrium and quasi-
stationarity approximations [19].

The branch (21) of tropical solutions leads to the follow-
ing truncated system:

x′
1 = −k1x1e0 + k−1x2

x′
2 = k1x1e0 − k−1x2

(36)

This truncated system has conserved quantity z = x1 +
x2. The variable z is not conserved by the full model
described by (11). Indeed, addition of Eqs. (11) leads
to z′ = −k−1x2. As the variable x2 can be eliminated
from −k1x1e0 + k−1x2 = 0 and x1 + x2 = z we have
the reduced dynamics z′ = −kzz, where kz = k−1/(1 +
k−1/(k1e0)). For small ε, we can consider that kz ∼ εγz ,
with γz = γ−1 − min(0, γ−1 − γ1 − γe). Because μ1 −
a1 = γ1 + γe, μ2 − a2 = γ1 + γe + a1 − a2 = γ−1
the relation kz > μ1 − a1, kz > μ2 − a2 are always
satisfied guaranteeing that z is slower than x1, x2. The
form (36) of the truncated equations and the conservation
of x1 + x2 by the fast dynamics shows that this case cor-
responds to quasi-equilibrium of the first reaction in the
Michaelis-Menten model, as described in Section “Classi-
cal Michaelis-Menten reduction”, equation 17.

The branches (23) and (24) lead to quasi-equilibrium
with the following truncated system:

x′
1 = −k1x1(e0 − x2)

x′
2 = k1x1(e0 − x2)

(37)
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These cases correspond to saturation of the enzyme (x2
has the same order as e0). A slow variable z = x1 + x2 has
to be introduced as before, but the reduced dynamics is
z′ = −k−1x2 = −k−1e0.

The branch (25) leads to quasi-stationarity of the
enzyme/substrate complex. In this case we have the trop-
ical truncated system:

x′
1 = −k1x1e0

x′
2 = k1x1e0 − k2x2

(38)

The variable x1 is not equilibrated, which still allows
for model reduction because this variable is slow. The
fast variable x2 is equilibrated, and the equilibration
equation corresponds to the classical notion of quasi-
stationary approximation, as described in Section “Clas-
sical Michaelis-Menten reduction”, equation 16. In this
case, μ1 − a1 = γ1 +γe, μ2 − a2 = γ1 +γe + a1 − a2 = γ2.
The condition that x1 is slower than x2 reads μ1 − a1 >

μ2 − a2 and we get the additional condition γ1 + γe > γ2,
which is a low enzyme concentration condition.

The branch (26) leads to quasi-stationarity of the sub-
strate with the following truncated system:

x′
1 = −k1x1e0 + k−1x2,

x′
2 = −k2x2

(39)

The variable x2 is not equilibrated, which is allowed only
if this variable is slower than x1. In this case, μ1 − a1 =
γ1 +γe, μ2 −a2 = γ2. The condition that x2 is slower than
x1 reads μ1−a1 < μ2−a2 and leads to the additional con-
dition γ1 + γe < γ2, which is a high enzyme concentration
condition.

Finally, the branch (24) leads to the truncated system:

x′
1 = −k1x1(e0 − x2)

x′
2 = −k2x2

(40)

The variable x1 is equilibrated, but it can not satisfy per-
manency. Indeed, at fixed x2 this variable will converge to
zero. Therefore, this tropical equilibration does not lead
to a reduced model.

Tropical equilibration as a constraint satisfaction
problem
As explained in Section “Model reduction by tropical-
ization”, given a biochemical reaction system with its
Mass-Action kinetics, and a small ε, the problem of trop-
ical equilibration is to look for a rescaling of the variables
such that the dominating positive and negative term in
each ODE equilibrate as per Eqs. (4), i.e., are of the same
degree in ε.

Section “A simple example, the Michaelis-Menten
reduction” showed that it is possible to iteratively reduce
the equilibration problem to a linear system of equations
for each possible pair of positive and negative dominating

monomial. It is actually possible to consider fewer pairs by
restricting that search to the pairs denoting edges of the
Newton polygon [13]. Nevertheless, the number of linear
systems to consider remains exponential in the number
of species, and may lead to redhibitory computational
costs, especially when handling biochemical systems with
hub molecules, i.e., molecules involved in a high num-
ber of reactions (e.g., E2F, p53, cMyc in cell-cycle control
or NFκB in signalling), which corresponds to a Newton
polygon with many vertices.

In order to tackle that complexity, we propose a numer-
ical approach based on Constraint Programming, that
encodes the equilibration problem as a Constraint Satis-
faction Problem (CSP) [20-22] and uses reified constraints
to prune the search space. Constraint Programming is a
paradigm that has showed great success at solving combi-
natorial decision or optimization problems, in particular
for real-world instances of NP-hard problems, e.g., in the
field of production planning and scheduling. It is there-
fore an interesting way to approach the combinatorial
explosion described above.

In presence of invariants (conservation laws) in the orig-
inal system, Section “Conservation law constraints” has
shown that some constraints related to rescaling need be
added. We have shown in [23] that finding these conserva-
tion laws can be efficiently solved by constraint methods.
Here we will thus assume that the conservation laws are
given in input. In our prototype implementation, both
the computation of conservation laws and the following
equilibration are performed for a given system.

Reified constraints
Key to the modeling of tropical equilibration problems as
CSP are reified constraints. Reified constraints are special
constraints that link in a bidirectional way the value of a
boolean variable to the satisfaction of another constraint.
They allow for powerful cuts in the search space by prop-
agating the truth value of some constraints of the problem
to the truth value of the Boolean variable, and vice versa.

For instance, the reified constraint

B# <==> X# = Y

states that the Boolean variable B is true (i.e. equal to 1) if
and only if the constraints X = Y is satisfied. That con-
straint posts the constraint X = Y (resp. X �= Y ) as soon
as B gets value 1 (resp. 0), and vice versa, sets B = 1
(resp. B = 0) as soon as X = Y (resp. X �= Y i.e. when the
domains of X and Y become disjoint).

For the tropical equilibration problem, these constraints
are at the core of our representation of the minimum
constraints as they enforce the propagation of existing
knowledge before branching on the two possible values.
Indeed, if A is the minimum of B and C, you can derive

112 A Constraint Solving Approach to Tropical Equilibration



Soliman et al. Algorithms for Molecular Biology 2014, 9:24 Page 8 of 11
http://www.almob.org/content/9/1/24

many things on the domains of A, B and C before even-
tually trying A = B or A = C. For instance it is safe to
add that A ≤ B and A ≤ C, but also if you have, from
other equations, that B ≥ minB and C ≥ minC then you
can add the fact that A ≥ min(minB, minC). If later you
obtain that actually A = B then you can enforce C ≥ B,
etc. Section “Minimum constraints” shows in more detail
how reified constraint do precisely this kind of conditional
addition of cuts and can therefore be used to handle mini-
mum constraints while postponing enumerative search as
much as possible.

Variables and domains
For practical reasons, mainly the lack of an efficient
solver over rationals with reified constraints, we use a
finite domain solver and therefore only look for inte-
ger solutions (whereas solutions are rational). In practice
this did not seem to change much the nature of results,
see Figure 2. Extensions of the approach to cope with
half-integer solutions or with rational solutions with a
common, small denominator are straightforward.

For each original equation dxi/dt, 1 ≤ i ≤ n is intro-
duced a variable ai ∈ Z that is used to rescale the system
by posing xi = εai x̄i. These are the variables of our CSP.
Note that they require a solver handling Z like for instance
SWI-Prolog [24,25] with the clpfd library by Markus
Triska, which we used for our implementation.

Tropical equilibration constraints
For each differential equation that should be equilibrated
is a list of positive monomials M+

i , and a list of negative
monomials M−

i . The degrees in ε of all these monomials
are integer linear expressions in the ai. Now, to obtain an
equilibration one should enforce for each i that the min-
imum degree in M+

i is equal to the minimum degree in
M−

i . This corresponds to the Eqs. 4. We will see how they
can be implemented with reified constraints, but for now,

let us assume a constraint min(L, M)| that enforces that
the variable M of Z is the minimum value of a list L of lin-
ear expressions over variables of Z. We have in our CSP,
for each 1 ≤ i ≤ n, min(PositiveMonomialDegrees, M)
and min(NegativeMonomialDegrees, M).

Conservation law constraints
The second kind of constraint comes from conservation
laws. Each conservation law is an equality between a
linear combination of the xi and a constant ci. By rescal-
ing, we obtain a sum of rescaled monomials equal to
εlog(ci)/ log(ε)c̄i. We want this equality to hold when ε goes
to zero, which implies that the minimal degree in ε in the
left hand side is equal to (the round of) the degree of the
right hand side. Since once again the degrees on the left
are linear combinations of our variables ai, this is again
a constraint of the form: min(ConservationLawDegrees,
K) where K is equal to round(log(ci)/ log(ε)). This corre-
sponds to the tropical equation (29).

Minimum constraints
Furthermore, if the system under study is not at steady
state, the minimum degree should not be reached only
once, which would lead to a constant value for the corre-
sponding variable when ε goes to zero, but at least twice.
This is the case for the example treated in [12]. The con-
straint we need is therefore slightly more general than
min/2: we need the constraint min(L, M, N) which is true
if M is smaller than each element of L and equal to N
elements of that list. Note that using CLP notation, we
have:

min(M, L) : − C# >= 1, min(M, L, C).

In order to enforce that the minimum is reached at
least a required number of times, one obvious solution
is to try all pairs of positive and negative monomials and

Figure 2 Comparison of the theoretical and computed equilibrations in the cases k−1 > k2 and k−1 < k2. The circles are equilibrations
computed for the simplified two variables Michaelis-Menten model, the crosses are for the full three variables model. The lines indicate the
theoretical equilibrations.
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count the successful pairs [26]. However, this is not nec-
essary, the min(L, M, N) constraint directly expresses the
cardinality constraint on the minimums and can be imple-
mented using reified constraints to propagate information
between L, M and N in all directions, without enumera-
tion. Using SWI-Prolog notations, the implementation of
min/3 by reified constraints is as follows:

min([ ] ,, 0).
min([ HT] , M, C) : −M# =< H, B# <==>

M# = H, C# = B + CC, min(T, M, CC).

The translation of this predicate into words is roughly as
follows, first ignoring the counts: M is smaller than a list
with head H and tail T, if it is smaller than the tail T and it
is smaller than the head, i.e., M≤H. Now, we also impose
that the value M is reached C times as follows: it is reached
CC times in the tail and C = B + CC where B is a variable
equal to 1 iff M is equal to the head and 0 otherwise. Note
that this latest statement is enforced through a reified con-
straint, it will therefore not lead to immediate branching
but to the propagation of as much information as possi-
ble (e.g., if some values in the list are already known to
be strictly greater than others, the corresponding boolean
for each of them will be set to 0, and thus the sum will
by necessity enforce some other values to be equal to the
required minimum).

This concise and portable implementation will probably
improve when the minimum and minn global constraints
are available (see [27] for a reference). However it already
proves very efficient as demonstrated in the next section.

When C is equal to one, we can fall back to using the
built-in min construct in a constraint (e.g., M #= min(L1,
min(L2, L3))). Some preliminary benchmarking showed
that the reified version is more efficient if the length of the
list is greater than 3 or 4.

Enumeration strategy
Constraints over finite domains come with domain fil-
tering algorithms which dynamically prune the domain
of variables when the domain of other variables change
in a constraint. However this strategy is not complete
and must be combined with a search procedure for vir-
tually enumerating all possible values of the variables.
For this application we obtained good performances with
dichotomic search by bissecting the domain of the vari-
ables (bisect option in SWI-Prolog) without any particular
heuristics for choosing the variables.

Note that since this approach is numerical, contrary to
solving symbolically an exponential but finite number of
linear systems as done in Section “A simple example, the
Michaelis-Menten reduction” and in [13], there can be
an infinite number of solutions. This situation denotes an

under-constrained linear system and remains to be inter-
preted biologically. In practice bounds are put on variables
in order to force finiteness. This is not a restriction in
practice since biochemical species’ concentrations usually
do not vary by more than a hundred of magnitude orders.

Furthermore, in order to speed-up the computation of
all solutions in such large domains, we used an iterative
domain expansion strategy: the problem is first tried with
a domain of [ −2, 2] for all variables , i.e., equilibrations are
searched by rescaling in the 10−2, 102 interval. If that fails,
the domain is doubled and the problem tried again until a
limit of 10−128, 10128.

Computation results on Biomodels.net
To benchmark our approach, we applied it systematically
to all the dynamical models of the curated part of the
http://biomodels.net repository [16] of biological systems,
with ε set arbitrarily to 0.1.

We used release r24 from 2012-12-12 which includes
436 curated models. Among them, only 55 models have
non-trivial purely polynomial kinetics (ignoring events if
any). Our computational results on those are summarized
in Table 1, where the first column indicates whether a
complete equilibration was found, and the times are in
seconds.

The domain expansion strategy coupled with dicho-
tomic search by domain bisections allowed us to gain two
orders of magnitude of computation time on the biggest
models.

Only one of the models (number 002) used values far
from 0 in the equilibration (up to ε40) and has no complete
equilibration if the domain is restricted to [ −32, 32]. This
is because the model is written with units such that the ini-
tial concentrations are of the order 10−21, translating the
search accordingly. We thus do not believe that enlarging
the domains even more would lead to more equilibra-
tions. Nevertheless, choosing a smaller ε might increase
the number of equilibrations.

18 of the 23 models for which there is a complete equi-
libration are actually under-constrained and appear to
have an infinity of such solutions (typically linear rela-
tions between variables). For the 5 remaining ones, we
computed all complete equilibrations as shown in Table 2.

Table 1 Number of models of the BioModels repository,
with a polynomial kinetics, for which tropical
equilibrations were found or not, with corresponding size
of the model and computation time

Found # models Variables (avg/min/max) Time in seconds
(avg/min/max)

yes 23 17.348/3/ 86 0.486/0.004/2.803

no 32 17.812/1/194 0.099/0.000/1.934
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Table 2 Number of equilibrations and computation time
for the models of the BioModels database with finitely
many numerical solutions

Model # variables # equilibrations Total time (s)

BIOMD0000000002 13 18 53

BIOMD0000000122 14 9 4.1

BIOMD0000000156 3 1 <1ms

BIOMD0000000229 7 1 0.07

BIOMD0000000413 5 5 0.4

Conclusions
In this paper we have shown that constraint-based meth-
ods can be efficiently used to numerically solve tropical
equilibration problems in biological models of real-size
in the BioModels.net repository. These calulations are
important for model reduction and for determining the
unknown orders of the variables. Once the orders of the
variables are known, the rapid variables can be identified
and the system reduced to a simpler one. This trunca-
tion, described in Section “Tropical equilibrations and
model reductions” coupled with the proposed constraint-
based method for finding equilibrations therefore pro-
vides an automatic way to reduce models and to identify
fast/slow variables. We have started the application of
such technique on non-trivial models provided by biolo-
gists and modellers and hope to be able to improve both
the understanding, through that identification of fast/slow
variables, and the analysis, through the size reduction, of
those models.

Even with the progress of high-throughput technolo-
gies, having more focused models, with fewer species and
parameters to measure, will definitely permit an improve-
ment in the quality and speed of development of the
models. Furthermore, the structural methods for com-
paring models in model repositories, such as [7], can be
refined by filtering the structural reduction relationships
according to the kinetics of the reactions and the tropical
reasoning on the magnitude orders.

In many cases, it makes sense biologically to only look
for partial equilibrations. Strategies to decide when such
decision has to be made remain unclear. Nevertheless
the framework of partial constraint satisfaction and more
specifically Max-CSP [28] would allow us to easily handle
the maximization of the number of equilibrated variables.

One of the limits of this approach, is that it is not
particularly well suited to equilibration problems with
an infinite number of solutions. As discussed at the end
of previous section, in such situations symbolic solu-
tions would be more appropriate. Nevertheless, even the
approximate detection of such a case by the very high
number of (bounded) numerical solutions was shown to
be not very costly in practice.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
FF and OR designed the study. SS devised the algorithm and conducted the
experiments. All authors equally contributed to the writing of the manuscript.
All authors read and approved the final manuscript.

Acknowledgements
This work has been supported by the French ANR BioTempo, CNRS Peps
ModRedBio, EPIGENMED Excellence Laboratory and OSEO Biointelligence
projects.

Author details
1Inria, Domaine de Voluceau 78150, Rocquencourt, France. 2University of
Montpellier 2, Place Eugene Bataillon, 34095 Montpellier, France.

Received: 4 April 2014 Accepted: 4 November 2014

References
1. Grigoriev D, Vorobjov N: Solving systems of polynomial inequalities in

subexponential time. J Symbolic Computat 1988, 5:37–64.
2. Grigoriev D: Complexity of quantifier elimination in the theory of

ordinary differential equations. Lect Notes Comput Sci 1989, 18:11–25.
3. Pantea C, Gupta A, Rawlings JB, Craciun G: The QSSA in chemical

kinetics: as taught and as practiced. In Discrete and Topological Models
in Molecular Biology. Berlin: Springer; 2014:419–442.

4. Gorban A, Karlin I: Invariant manifolds for physical and chemical
kinetics. Lect Notes Phys 2005, 660:1–491.

5. Lam S, Goussis D: The CSP method for simplifying kinetics. Int J Chem
Kinet 1994, 26(4):461–486.

6. Maas U, Pope SB: Simplifying chemical kinetics: intrinsic
low-dimensional manifolds in composition space. Combustion Flame
1992, 88(3):239–264.

7. Gay S, Soliman S, Fages F: A graphical method for reducing and
relating models in systems biology. Bioinformatics 2010,
26(18):i575–i581. [Special issue ECCB’10].

8. Radulescu O, Gorban AN, Zinovyev A, Noel V: Reduction of dynamical
biochemical reactions networks in computational biology.
Front Genet 2012, 3:131. [http://www.frontiersin.org/bioinformatics_
and_computational_biology/10.3389/fgene.2012.00131/abstract]

9. Sturmfels B: Solving systems of polynomial equations, Volume 97. American
Mathematical Soc: Providence; 2002.

10. Walker RJ: Algebraic curves. New York: Springer; 1978.
11. Einsiedler M, Kapranov M, Lind D: Non-archimedean amoebas and

tropical varieties. J für die reine und angewandte Mathematik (Crelles J)
2006, 2006(601):139–157.

12. Noel V, Grigoriev D, Vakulenko S, Radulescu O: Tropical geometries and
dynamics of biochemical networks application to hybrid cell cycle
models. Electron Notes Theor Comput Sci 2012, 284:75–91.

13. Noel V, Grigoriev D, Vakulenko S, Radulescu O: Tropicalization and
tropical equilibration of chemical reactions. In Tropical and
Idempotent Mathematics and Applications, Volume 616 of Contemporary
Mathematics. Edited by Litvinov G, Sergeev S: American Mathematical
Society; 2014:261–277.

14. Grigoriev D: Complexity of solving tropical linear systems.
Comput Complexity 2013, 22:71–88.

15. Theobald T: On the frontiers of polynomial computations in tropical
geometry. J Symbolic Comput 2006, 41(12):1360–1375.

16. le Novère N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H, Li
L, Sauro H, Schilstra M, Shapiro B, Snoep JL, Hucka M: BioModels
Database: a free, centralized database of curated, published,
quantitative kinetic models of biochemical and cellular systems.
Nucleic Acid Res 2006, 1(34):D689–D691.

17. Cohen G, Gaubert S, Quadrat J: Max-plus algebra and system theory:
where we are and where to go now. Ann Rev Control 1999, 23:207–219.

18. Viro O: From the sixteenth Hilbert problem to tropical geometry.
Jpn J Math 2008, 3(2):185–214.

CHAPTER 3. STRUCTURAL AND DYNAMICAL MODEL REDUCTION 115



Soliman et al. Algorithms for Molecular Biology 2014, 9:24 Page 11 of 11
http://www.almob.org/content/9/1/24

19. Gorban AN, Radulescu O, Zinovyev AY: Asymptotology of chemical
reaction networks. Chem Eng Sci 2010, 65(7):2310–2324. [International
Symposium on Mathematics in Chemical Kinetics and Engineering].

20. Mackworth AK: Consistency in networks of relations. Artif Intell 1977,
8:99–118.

21. Meseguer P: Constraint satisfaction problems: an overview. A.I.
Commun 1989, 2:3–17.

22. Kumar V: Algorithms for constraint- satisfaction problems: a survey.
A.I. Mag 1992, 13:32–44.

23. Soliman S: Invariants and other structural properties of biochemical
models as a constraint satisfaction problem. Algorithms Mol Biol 2012,
7(15):15.

24. Wielemaker J, Schrijvers T, Triska M, Lager T: SWI-Prolog. Theory Prac
Logic Program 2012, 12(1-2):67–96.

25. Wielemaker J: SWI-Prolog 6.3.15 Reference Manual; 1990. [http://www.swi-
prolog.org/pldoc/refman/]

26. Radulescu O, Gorban A, Zinovyev A, Noel V: Reduction of dynamical
biochemical reaction networks in computational biology.
Front Bioinformatics Comput Biol 2012, 3:131.

27. Beldiceanu N, Carlsson M, Demassey S, Petit T: Global constraints
catalog. Tech. Rep. T2005-6, Swedish Institute of Computer Science 2005.

28. Freuder EC, Wallace RJ: Partial constraint satisfaction. Artif Intell 1992,
58:21–70.

doi:10.1186/s13015-014-0024-2
Cite this article as: Soliman et al.: A constraint solving approach to model
reduction by tropical equilibration. Algorithms for Molecular Biology
2014 9:24.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

116 A Constraint Solving Approach to Tropical Equilibration



L’homme de génie est celui qui m’en
donne.

Paul Valéry

Chapter 4

One Structure, a Hierarchy of
Semantics

Summary
4.1 Abstraction and Type Inference . . . . . . . . . . . . . . . . . 118

4.1.1 Abstract Interpretation and Types for Systems Biology . . . 118
4.1.2 From Reaction Models to Influence Graphs and Back: A The-

orem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.2 Relating ODE Systems and Reaction Models . . . . . . . . . 152

4.2.1 Inferring Reaction Systems from ODEs . . . . . . . . . . . . 152
4.2.2 A Unique Transformation from ODEs to Reaction Networks . 168

The two previous chapters have been going back and forth between different seman-
tics of biochemical models, from purely graphical to quantitative and dynamical. The
fact that the very same model can be interpreted in different ways is at the core of
software like BIOCHAM. It is also a fact spread all along the SBML specification. For
instance, about kinetic laws it reads:

In this section, we provide an interpretation of SBML kinetic laws in the
framework of a system of ordinary differential equations (ODEs). However
[…] it is equally possible to translate a model into other frameworks, and some
formulations, such as discrete stochastic systems, are indeed quite common.
(SBML Level 3 Core specification, Section 4.11.7 – Mathematical interpre-
tation of SBML reactions and kinetic laws)

In this chapter we present formal attempts that link the different semantics of bio-
chemical systems. This takes the form of a hierarchy of semantics for reaction models,
but also of inference of influences/regulations from those same reactions, as used in
our multistationarity analysis in Section 2.4. Using the framework of Abstract Inter-
pretation [28] we define abstractions, but the case of concretizations is also interesting,
especially when trying to find a reasonable model for a given system of ODE.

This chapter is composed of four papers:

117



118 Abstraction and Type Inference

[6] François Fages and Sylvain Soliman. “Abstract Interpretation and Types for Sys-
tems Biology”. In: Theoretical Computer Science 403.1 (2008), pp. 52–70. doi:
10.1016/j.tcs.2008.04.024 : a paper on abstract interpretation in systems bi-
ology for defining a hierarchy of semantics for reaction systems, and relating them
to influence models, published in Theoretical Computer Science, 403(1), 2008.

[7] François Fages and Sylvain Soliman. “From reaction models to influence graphs
and back: a theorem”. In: Proceedings of Formal Methods in Systems Biology
FMSB’08. Lecture Notes in Computer Science 5054. Springer-Verlag, Feb. 2008.
doi: 10.1007/978-3-540-68413-8_7 : a more readable version of the rela-
tionship between reaction and influence models, published in FMSB’08, Springer
Verlag.

[5] François Fages, Steven Gay, and Sylvain Soliman. “Inferring Reaction Systems
from Ordinary Differential Equations”. In: Theoretical Computer Science 599
(Sept. 2015), pp. 64–78. issn: 0304-3975. doi: 10.1016/j.tcs.2014.07.032
: a paper on the inference of reaction systems from ordinary differential equa-
tions accepted in Theoretical Computer Science, 2014, special issue of CMSB 2012
(extended version of [4])

[20] Sylvain Soliman and Monika Heiner. “A Unique Transformation from Ordinary
Differential Equations to Reaction Networks”. In: PLoS One 5.12 (Dec. 2010),
e14284. doi: 10 . 1371 / journal . pone . 0014284 : unicity conditions for the
inference of reaction systems from ODEs, published in PLoS One, 2010.

The first two ones focus on the hierarchy of semantics, on the abstractions and type
inference properties, whereas the last two ones focus on the inference of biochemical
reaction models for a system of ODEs.

4.1 Abstraction and Type Inference

4.1.1 Abstract Interpretation and Types for Systems Biology

Abstract Interpretation provides a formal mathematical framework to relate the different
possible semantics of a biochemical model represented, e.g., in SBML or BIOCHAM.
This article shows how the boolean, discrete, stochastic and continuous semantics of a
single model are related and then builds on that formal foundation to propose some
abstractions seen as types on such models. The neighborhood type is to be checked
against the outside annotation of SBML compartments, whereas the more usual protein
functions (kinase/phosphatase) or influences are also described as types.

Note that BIOCHAM implements even more type checking, since dimensional anal-
ysis1 is also a type checking/inference task [45] that can actually be stated as a CSP.

[6] François Fages and Sylvain Soliman. “Abstract Interpretation and Types for Sys-
tems Biology”. In: Theoretical Computer Science 403.1 (2008), pp. 52–70. doi:
10.1016/j.tcs.2008.04.024

1http://lifeware.inria.fr/biocham/DOC/manual.html#tth_sEc3.8.2
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a b s t r a c t

Abstract interpretation is a theory of abstraction that has been introduced for the analysis
of programs. In particular, it has proved useful for organizing the multiple semantics of a
given programming language in a hierarchy corresponding to different detail levels, and
for defining type systems for programming languages and program analyzers in software
engineering. In this paper, we investigate the application of these concepts to systems
biology formalisms. More specifically, we consider the Systems Biology Markup Language
SBML, and the Biochemical Abstract Machine BIOCHAM with its differential, stochastic,
discrete and boolean semantics. We first show how all of these different semantics, except
the differential one, can be formally related by simple Galois connections. Then we define
three type systems: one for checking or inferring the functions of proteins in a reaction
model, one for checking or inferring the activation and inhibition effects of proteins in a
reaction model, and another one for checking or inferring the topology of compartments
or locations. We show that the framework of abstract interpretation elegantly applies to
the formalization of these further abstractions, and to the implementation of linear or
quadratic time type checking aswell as type inference algorithms. Furthermore, we show a
theorem of independence of the graph of activation and inhibition effects from the kinetic
expressions in the reaction model, under general conditions. Through some examples, we
show that the analysis of biochemical models by type inference provides accurate and
useful information. Interestingly, such a mathematical formalization of the abstractions
commonly used in systems biology already provides some guidelines for the extensions of
biochemical reaction rule languages.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Systems biology aims at elucidating the high-level functions of the cell from their biochemical basis at themolecular level
[27]. A lot of work has been done for collecting genomic and post-genomic data and making them available in databases
[1,28], and for organizing the knowledge on pathways and interaction networks into models of cell metabolism, signaling,
cycle, apoptosis, etc. now published in model repositories (e.g. http://biomodels.net/). Furthermore the Systems Biology
Markup Language (SBML) [26] provides a common exchange format for reaction models, which is nowadays supported by
the majority of modeling tools [25,39].

Models of biological processes are built with two somewhat contradictory perspectives that areworth clarifying. The first
perspective is one of knowledge representation. In this perspective, themore concrete the better:models aim at gathering, in
a consistent way, the current knowledge on particular systems and at representing the interactions participating in a system

I This article is an extended version of [François Fages, Sylvain Soliman, Type inference in systems biology, in: Corrado Priami (Ed.), CMSB’06: Proceedings
of the Fourth International Conference on Computational Methods in Systems Biology, in: Lecture Notes in Computer Science, vol. 4210, Springer-Verlag,
2006].⇤ Corresponding author. Tel.: +33 1 39635761; fax: +33 1 39635469.

E-mail addresses: Francois.Fages@inria.fr (F. Fages), Sylvain.Soliman@inria.fr (S. Soliman).
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with the maximum of details. The second perspective for building models is to make predictions and answer particular
questions about a system. Yet in this perspective, the more abstract the better: models for making predictions should get
rid of useless details and should represent the minimum information that is sufficient for answering the questions; the less
the information the more powerful and efficient the tools available.

One way to reconcile these two perspectives is to put more focus on the issue of abstraction in systems biology, and to
develop not onlymodels but also their relationships to othermodels at different abstraction levels. In this paperwepropose a
formal ground for this issue by transposing the concepts of abstract interpretation and types borrowed from programming
theory to systems biology. Abstract interpretation is a theory of abstraction, introduced by Cousot and Cousot in [15] as
a framework for reasoning about programs, their semantics [14], and for designing static analyzers, among which type
inference systems [13]. Type checking and type inference are important concepts and methods in programming languages
and software engineering [5]. Type checking is a way to ensure some level of consistency, depending on the type system,
in large programs and in complex assemblies of software components. Type inference provides powerful static analysis
of pre-existing programs without types; it also facilitates the use of type systems by freeing the user from entering type
information.

In this paper, we investigate the application of these concepts to systems biology formalisms. More specifically, we
consider the Systems Biology Markup Language SBML [26] and the Biochemical Abstract Machine BIOCHAM [4,19] with its
differential, stochastic, discrete and boolean semantics [3,17]. We first show how these different semantics can be formally
related by simple Galois connections, as required in the theory of abstract interpretation, with the noticeable exception of
the differential semantics that is discussed with some details.

Then we study three type systems:

(1) one for checking or inferring the protein functions in a reaction model,
(2) one for checking or inferring the activation and inhibition effects in a reaction model,
(3) and another one for checking or inferring the topology of compartments or locations in reaction models with space

considerations.

We show that the framework of abstract interpretation elegantly applies to the formalization of these type abstractions,
and to the implementation of linear or quadratic time complexity type checking as well as type inference algorithms.
Furthermore, when comparing the inference of the activation and inhibition effects from the syntax of the reaction rules
with their inference from the differential semantics, we show a theorem of independence of the graph of activation and
inhibition effects from the kinetic expressions, under general conditions.

Through some examples of reaction models coming from the BioModels and BIOCHAM repositories [39], we show that
the analysis of biochemical models by type inference provides accurate and useful information. Interestingly, we show that
such a mathematical formalization of abstractions commonly used in systems biology already provides some guidelines for
the extensions of biochemical reaction rule languages.

2. Preliminaries on abstract interpretation, type checking and type inference

2.1. Domains, abstractions and galois connections

In the algebraic setting of abstract interpretation, a domain is a lattice L(v,?,>,t,u) defined by a partial order (L,v),
where? and>, elements of L and t, u, binary operators on L, respectively denote the least element, the greatest element,
the least upper bound and the greatest lower bound. Intuitively, the partial ordering represents the information loss: the
lesser the more informative, the greater the bigger loss of information.

As it is often the case in program analysis, the concrete domain and the abstract domains considered for analyzing
biochemical models, will be power-sets, i.e. set lattices P (S)(✓,;, S,[,\) ordered by inclusion, with the empty set as?
element, and the base set S as> element. For instance, in the syntactical domain of reaction rule sets ordered by inclusion,
the base set of all possible reactions makes all behaviors possible and thus contains no information, while the empty set is
the most precise in this information ordering.

An abstraction is formalized by a Galois connection between a concrete domain C and an abstract domain A, as
follows [15]:

Definition 1. A Galois connection C
�!↵

 �� A between two lattices (C,vC ) and (A,vA) is defined by an abstraction
function ↵ : C ! A, and a concretization function � : A! C, that are monotonic:

• 8 c, c 0 2 C : c vC c 0 ) ↵(c) vA ↵(c 0),
• 8 a, a0 2 A : a vA a0 ) � (a) vC � (a0),

and are adjoint:

• 8c 2 C,8a 2 A : c vC � (a), ↵(c) vA a.
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For any Galois connection, we have the following properties:

(1) � � ↵ is extensive (i.e. c vC � � ↵(c)) and represents the information lost by the abstraction
(2) ↵ � � is contracting (i.e. ↵ � � (a) vA a)
(3) � � ↵ is the identity iff � is onto iff ↵ is one-to-one
(4) ↵ preserves t, and � preserves u
(5) � (a) = max ↵�1(# a) = t↵�1(# a)
(6) ↵(c) = min ��1(" c) = u��1(" c)
(7) the composition of two Galois connections is a Galois connection.

where # a = {b | b v a} and " a = {b | a v b}.
If� �↵ is the identity, the abstraction↵ loses no information, andC andA are isomorphic from the information standpoint

(although ↵ may be not onto and � not one-to-one). It is equivalent in the definition of Galois connections to replace the
condition of adjointness by conditions 1 and 2, or by condition 5 which also entails the monotonicity of � .

Furthermore, we shall use the fact that in powerset domains, the pointwise extension of any function from the base set
of the concrete domain to the abstract domain forms a Galois connection:

Lemma 2. Let C and A be two sets, and ↵ : P (C) �! P (A) be a function such that ↵(c) =
[

e2c
↵({e}). Then the function

� (a) = [↵�1(# a) forms a Galois connection P (C)
�!↵

 �� P (A) between (P (C),✓) and (P (A),✓).

Proof. We show that ↵ is monotonic and � (a) = max ↵�1(# a).
The monotonicity of ↵ is immediate since if c ✓ c 0 we have

S
ci2c ↵({ci}) ✓

S
ci2c0 ↵({ci}).

Now, let us consider c = � (a) = [↵�1(# a), we need to prove that c 2 ↵�1(# a), i.e. ↵(c) 2# a. We know that
↵(c) = S

e2c ↵({e}) = S
e2[↵�1(#a) ↵({e}). For each e in [↵�1(# a) there exists d 2 P (C) such that e 2 d and ↵(d) ✓ a,

therefore ↵({e}) ✓ a. Hence
S

e2[↵�1(#a) ↵({e}) ✓ a and thus ↵(c) ✓ a. ⇤

In this paper, we will consider the syntactical domain of reaction models ordered by the inclusion of rule sets as concrete
domain, and four semantical domains for respectively:

• the stochastic semantics, in which the reaction rules are interpreted by a continuous time Markov chain;
• the discrete semantics, in which the rules are interpreted by a Petri net;
• the boolean semantics, in which the rules are interpreted by a boolean asynchronous transition system;
• and the differential semantics, in which the rules are interpreted by a system of ordinary differential equations.

We will show in Section 3 that, with the noticeable exception of the differential semantics, all these domains are formally
related by simple Galois connections.

2.2. Type checking and type inference by abstract interpretation

Types provide further abstractions for reasoning about programs. In the setting of abstract interpretation, a type system
A for a concrete domain C is nothing but a Galois connection C

�!↵

 �� A. The type inference problem is, given a concrete
element x 2 C (e.g. a reaction model), to compute ↵(x) (e.g. the protein functions that can be inferred from the reactions).
The type checking problem is, given a concrete element x 2 C and a typing y 2 A (e.g. a set of protein functions), to determine
whether x vC � (y) (i.e. whether the reactions are compatible with the information given on the protein functions) which
is equivalent to ↵(x) vA y (i.e. whether the given typing contains the inferred types).

Most of the type systems considered in this paper will be implemented with type checking and type inference
algorithms that basically browse the set of reactions, and check or collect the type information for each rule or pair of
rules independently, thus in linear time or quadratic time respectively.

In this paper, we will consider three abstract domains for types:

• one for protein functions, where molecules are abstracted into categories such as kinases and phosphatases (Section 4),
• one for the influence graph, where the biochemical reaction rules are abstracted by binary relations of activation and

inhibition between molecular species (Section 5),
• and one for location topologies, where reaction and transport rules are abstracted by retaining only the neighborhood

information between locations (Section 6).

These domains will be defined by abstractions from the syntactical domain of reaction models. The syntactical domain
indeed suffices to define the abstractions necessary for these analyses. It is worth noting that a similar situation also occurs
in program analysis when the syntax of programs captures enough of the semantics for the needs of the analysis. For the
analysis of influences between species, wewill compare in Section 5 the results obtained by abstraction from the syntactical
domain, with the information obtained by abstraction from the differential semantics.
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3. Domains for reaction models and hierarchy of semantics

3.1. Syntactical domain of reaction models

Following SBML and BIOCHAM conventions, a model of a biochemical system is a set of reaction rules of the form
e for l => r where l is a multiset of molecule names given with stoichiometric coefficients, called a solution, r is the
transformed solution, and e is a kinetic expression, i.e. a positive arithmetic expression on the concentrations of themolecules
in i (plus possibly of some other molecules that have for instance an inhibitory effect on the reaction).

We will use the BIOCHAM operators + and * to denote solutions as 2*A + B, as well as the syntax of catalyzed reactions e
for 2*A+B =[C]=> D as an abbreviation for e for 2*A+B+C => C+D. By abuse of notation, assuming a finite set ofmoleculesM,
we shall also see a solution l as an |M|-dimensional vector of integers, and will denote by l(A) the stoichiometric coefficient
of A in solution l.

Formally, the concrete domain of reaction models is the powerset of all possible reaction rules ordered by set inclusion:

Definition 3. Given a finite set M of molecule names, the universe of reactions is the set of rules

R = {e for l => r |e is a kinetic expression, and l and r are solutions of molecules in M}.
The concrete domain DR = (P (R),✓) of reaction models is the power-set of reaction rules ordered by inclusion.

Note that in this domain, the composition of two reaction models is naturally the union of the sets of reactions. A reaction
appearing in two reaction sets is thus not duplicated when composing two models by set union.

In the SBML exchange format, no particular semantics is defined, and this syntactical domain is the natural one to
consider. In BIOCHAM, reaction models are interpreted under four semantics that correspond to four different abstraction
levels: the boolean semantics, the discrete semantics, the differential semantics and the stochastic semantics [3,17]. In the
following subsections, we formalize these semantical domains and study their formal relationship by Galois connections
within a hierarchy of semantics.

It is worth noting that in the context of programming languages, it is not usual (and generally not possible) to include the
syntactical domain ordered y set inclusion within the hierarchy of semantics. It is possible here however for the rule-based
language of reactions, and should be possible as well for other rule-based languages in which programs can be ordered by
set inclusion, like Prolog for instance [12].

3.2. Stochastic semantics

Themost realistic interpretation of biochemical reactionmodels is provided by the stochastic semantics. In that semantics,
a reaction model is interpreted as a (continuous time) Markov chain, and the kinetic expressions as transition rates. This
interpretation is correct w.r.t. the Master Chemical Equation if we suppose that the reactions happen in a well stirred
environment (i.e. ‘‘instantaneous’’ diffusion) with constant pressure, temperature and volume [24].

For a given volumeVk of the locationwhere the compound xk resides, a concentrationCk for xk is translated into amolecule
number Nk = bCk⇥Vk⇥NAc, where NA is Avogadro’s number. A state in the stochastic semantics will be a vector of integers
indicating the numbers of molecules for each species.

Formally, given a fixed finite set M of molecule names, the stochastic transition semantics is defined by the following
domain:

Definition 4. Let a discrete state be a vector of positive integers of dimension |M|. The universe S of stochastic transitions
is the set of triplets (S, S 0, ⌧ ) where S and S 0 are discrete states and ⌧ 2 R+ is a weight. The domain DS = (P (S),✓) of
stochastic transition models is the power-set of stochastic transitions ordered by inclusion.

Note first that discrete states have the same mathematical structure as solutions in reaction rules, and can both be
represented by |M|-dimensional vectors of positive integers. In the following, we will identify states and solutions and
will sum them (see definition of S !i S 0 below and Theorem 13).

Note also that in a stochastic transition model s, there can be more than one transition from one state to another one,
labelled with different real numbers. We define the weight in s of a transition from state Si to Sj as the sum of the weights
⌧ij = P

(Si,Sj,⌧ )2s ⌧ .
Now, an element s of the domain precisely defines a Markov chain where the probability pij of having a transition from

state Si to state Sj is obtained by normalizing the transition weights into pij = ⌧ijP
k ⌧ik

. Then the transition time can be
computed as usual. Stochastic simulation techniques like Gillespie’s algorithm [23] compute realizations of the processes
described bymodels in the stochastic domain, where random variables range over the probability and the time of transition.
The results of those simulations are generally noisy versions of the simulation obtained by the interpretation of the reaction
rules by a system of ordinary differential equations (see Section 3.5). However, in models with for instance, very few
molecules of some kind, qualitatively different behaviors may appear in the stochastic simulation, and thus justify the
recourse to that semantics in such cases. A classical example is the model of the lambda phage virus [21] in which a small
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number of molecules, promotion factors of two genes, can generate an explosive multiplication (lysis) after a more or less
long period of passive wait (lysogeny).

Now, in order to relate the stochastic semantics domain to the syntactical domain of reaction rules, let us consider a
reaction rule model {ei for li => ri}i2I , and denote by S !i S 0 the fact that rule i fires in state S resulting in state S 0, i.e. if
S � li (pointwise) and S 0 = S � li + ri.

In a given state S, the numbers of molecules are fixed integer values and the kinetic expression ei evaluates into a
(positive) real valued reaction rate, noted ei(S). This allows us to relate the stochastic transition domain to the syntactical
domain of reaction rules by the following Galois connection:

Proposition 5. Let ↵RS : DR ! DS be the function associating to a reaction model {ei for li=>ri}i2I the stochastic transition
model {(S, S 0, ei(S)) 2 S | i 2 I, S !i S 0}. Let �RS(s) = [↵RS

�1(# s). DR
�!↵RS ��RS DS is a Galois connection.

Proof. Simply note that ↵RS is defined by its union on each rule of the concrete model and apply Lemma 2. ⇤

Proposition 6. ↵RS is not one-to-one.

Proof. For instance, the reaction modelsm1 = { e for A => B} andm2 = m1 [ { e for 2*A => A+B} have the same set of
stochastic transitions. � � ↵ is thus not the identity, the information lost by the stochastic abstraction is the elimination of
redundant rules in the reaction model. ⇤

↵RS is neither onto as the stochastic transitions obtained from a reaction model enjoy some particular properties, such as
for instance the following stability property w.r.t. the number of molecules in the states:

Proposition 7. If two states S1, S2 are such that S1  S2 pointwise, then for any reaction model m and any stochastic transition
(S1, S, ⌧ ) 2 ↵RS(m), we have (S2, (S + S2 � S1), ⌧ ) 2 ↵RS(m), i.e. all the rules that apply in S1 apply in S2 with the same effect.

Proof. By definition of ↵RS . ⇤

Corollary 8. ↵RS is not onto.

3.3. Discrete semantics

The discrete semantics of reactionmodels can be defined as the trivial abstraction of the stochastic semantics that simply
forgets the transition rates.

Definition 9. The universeD of discrete transitions is the set of pairs of discrete states. The domainDD of discrete transitions
is the power-set of discrete transitions ordered by inclusion DD = (P (D),✓).

Proposition 10. Let ↵SD : DS ! DD be the function associating to a set of stochastic transitions the discrete transitions
obtained by projection on the two first components, and �SD(d) = [↵SD

�1(# d). DS
�!↵SD ��SD DD is a Galois connection.

Proof. Here again it suffices to note that ↵SD is defined by its union on each single stochastic transition of the concrete
model and to apply Lemma 2. ⇤

Remark that ↵SD is this time onto, but obviously not one-to-one as the transition rates are simply forgotten.
It is worth noticing that the discrete semantics corresponds to the classical Petri net semantics of reactionmodels [35,36,

9,22]. As a consequence, classical Petri net analysis tools can be used for the analysis of reaction models at this abstraction
level. For instance, the elementary mode analysis of metabolic networks [37] has been shown in [44] to be equivalent to
the classical analysis of Petri nets by T-invariants. These analyses apply to the discrete semantics of reaction models in all
generality.

3.4. Boolean semantics

The boolean semantics is purely qualitative, and provides somehow the most abstract semantics of reaction models. The
boolean semantics forgets the kinetic expressions and interprets the rules as a (non-deterministic) asynchronous transition
systembut this time over boolean states representing the absence or presence ofmolecules. It can be applied to largemodels
for which the kinetic data may be not available.

Definition 11. Let a boolean state be a vector of booleans of dimension |M| indicating the presence of each molecule in the
state. The universe B of boolean transitions is the set of pairs of boolean states. The domain DB of boolean transitions is the
power-set of boolean transitions ordered by inclusion DB = (P (B),✓).

This semantical domain is related to the discrete transitions semantics domain by the zero/non-zero abstraction from the
integers to the booleans, and its pointwise extension from discrete states to boolean states ↵N B : N|M| ! B|M|.

Proposition 12. Let ↵DB : DD ! DB be the function associating to a set of discrete transitions the set of boolean transitions
obtained by applying ↵N B to the discrete states. Let �DB(b) = [↵DB

�1(# b). DD
�!↵DB ��DB DB is a Galois connection.
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Proof. As before, note that ↵DB is defined by its union on each transition of the concrete model and apply Lemma 2. ⇤

In BIOCHAM, the boolean semantics of reaction models is computed by associating to each reaction rule a set of boolean
transition rules that take into account the possible complete consumption or not of the reactants by the reaction [7]. For
instance, a reaction rule like A+B=>C+D is interpreted by four boolean transition rules:

• A ^ B �! A ^ B ^ C ^ D
• A ^ B �! ¬A ^ B ^ C ^ D
• A ^ B �! A ^ ¬B ^ C ^ D
• A ^ B �! ¬A ^ ¬B ^ C ^ D

Given a reaction model R, let us denote by SBB the set of boolean transitions obtained by applying these boolean transition
rules to each state. The following theorem shows that the BIOCHAMboolean semantics of reactionmodels over-approximates
the boolean semantics obtained from the quantitative semantics. The non-existence of a behaviour in the BIOCHAMboolean
semantics thus entails its non-existence in the quantitative semantics of the rules whatever the kinetic expressions are.

Theorem 13. For any reaction model R, ↵DB(↵SD(↵RS(R))) ✓ SBB.

Proof. Since all our abstractions are defined pointwise, it is enough to prove it for only one rule in R. Let us consider
e for l => r . By abuse of notation we will denote by l and r the discrete states corresponding to solutions of same name.
We have ↵RS(R) = {(Si, Sj, e)|Si � l, Sj = Si � l + r} and thus ↵SD(↵RS(R)) = {(Si, Sj)|Si � l, Sj = Si � l + r},
which leads to ↵DB(↵SD(↵RS(R))) = {(S 0i , S 0j )|Si � l, Sj = Si � l + r, S 0i = ↵N B(Si), S 0j = ↵N B(Sj)}. Since
SBB = {(T , T 0)|T � ↵N B(l), ↵N B(r) _ (T ^ ¬↵N B(l))  T 0  ↵N B(T ) _ ↵N B(r)} we can see that the property holds
as Si � l implies S 0i � ↵N B(l), and since Si � l we have Sj = Si � l + r ) Si � l + r  Sj  Si + r ) ↵N B(Si � l + r) =
↵N B(r) _ (↵N B(Si) ^ ¬↵N B(l))  S 0j  ↵N B(Si + r) = ↵N B(Si) _ ↵N B(r). ⇤

It is worth noticing that this property does not hold for the boolean semantics of reaction models that always assume
either incomplete consumption, or complete consumption, like in Pathway Logic [16] or in boolean Petri nets [22]. In these
formalisms, the correctness of the boolean interpretation w.r.t. a quantitative interpretation is thus left to the modeler who
is in charge of explicitly adding reaction rules for the different cases of consumption of the reactants.

3.5. Differential semantics

The differential semantics of reaction models interprets a set of reaction rules {ei for li => ri}i=1,...,n over molecular
concentration variables {x1, ..., xm}, by the following system of Ordinary Differential Equations (ODE):

dxk/dt =
nX

i=1

ri(xk) ⇤ ei �
nX

j=1

lj(xk) ⇤ ej

where ri(xk) (resp. li) is the stoichiometric coefficient of xk in the right (resp. left) member of rule i. Thanks to its wide range
of mathematical tools, this semantics is the most commonly used in mathematical biology [38].

The study of the relationship between the differential and the stochastic semantics dates back to the seminal work of
Boltzmann in the XIXth century who created the domain of statistical physics. In this setting, the differential semantics is
obtained from the stochastic semantics by limit operations where the number of molecules tends to the infinity and the
time steps tend to zero. under several assumptions such as perfect diffusion.

In the setting of abstract interpretation, the differential semantics is however difficult to formally relate to the previous
semantics for several reasons. The differential semantics is a synchronous semantics in the sense that it specifies the
evolution of variables in parallel, whereas all the other semantics are asynchronous in the sense that the interleaving
semantics is considered where one reaction is fired at a time. Hence the notion of time is not the same in both categories of
semantics, having infinitesimal time steps in the differential semantics, and time for one transition in the other semantics.
Furthermore the differential semantics is deterministic and produces an average trace, whereas the other semantics produce
sets of possible traces representing the competition between reactions.

For these reasons, the differential semantics does not belong to our hierarchy of syntactical, stochastic, discrete and
boolean semantics. In Section 5, we will come back to it however for comparing the analysis of the influence graph between
molecules obtained from the differential semantics, with the one obtained from the syntax of the reaction rules, and for
establishing equivalence results under some general conditions on the kinetics.

4. A type system for protein functions

In this section, we investigate the use of types for formally relating information on the biological function of some
proteins to reaction models. For the sake of simplicity, we restrict ourselves to two simple enzymatic functions: kinase
and phosphatase. These functions correspond to the action of adding (resp. removing) a phosphate group to (resp. from) a
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compoundwith a covalent binding.We do not consider other categories such as protease in degradation rules, nor acetylase
and deacetylase inmodification rules, etc. This choice is in accordance with the BIOCHAM syntax which permits tomark the
sites of a protein where a group is added, with the operator ~, as in P~{p,q}where protein P is modified on its sites p and q,
without distinguishing however between phosphorylation, acetylation, methylation, ubiquitination, etc. We thus consider
BIOCHAMmodels containing compoundswith different levels of phosphorylation or acetylation, etc. without distinguishing
the different forms of modification, and call them phosphorylation by abuse of terminology.

The inference of protein functions in a reactionmodel is interesting for several reasons. First, the kind of information (ki-
nase activity) collected on proteins can be checked using online databases like for instance GO, the Gene Ontology [1]. Sec-
ond, in the context of themachine learning techniques implemented in BIOCHAM for completing or revising amodel w.r.t. a
temporal logic specification [3], the information that an enzyme acts as a kinase or as a phosphatase drastically reduces the
search space for adding reactions, and helps to directly find rules and model revisions that are biologically plausible.

4.1. Abstract domain of protein functions

Definition 14. Let kinase(A, B) and phosphatase(A, B) be relations in M ⇥ M denoting the kinase (resp. phosphatase)
function of A on B. The abstract domain of protein functions DF = P ({kinase(A, B) | A, B 2 M} [ {phosphatase(A,B)
| A, B 2M}) is the powerset of these expressions, ordered by inclusion.

The abstraction function from the syntactical domain, ↵F : DR ! DF , associates to a reaction model R the union of the
abstractions defined for each single rule and each pair of rules as follows:

↵F (A =[B]=> C) = {kinase(B,A)} if C is more phosphorylated than A (i.e. its set of active phosphorylation sites strictly
includes that of A), in which case B has kinase function w.r.t. A;

↵F (A + B => D, D => C + B) = {kinase(B,A)} if similarly C is more phosphorylated than A;
↵F (A =[B]=> C) = {phosphatase(B,A)} if, on the contrary, A is more phosphorylated than C;
↵F (A + B => D, D => C + B) = {phosphatase(B,A)} if A is more phosphorylated than C.

Note that as the abstraction function is not defined pointwise but also on pairs of reaction rules, the time complexity for
computing the set of protein functions from the reactions is quadratic in the number of rules. One can easily check that:

Proposition 15. Let �F (f ) = [↵F
�1(# f ), DR

�!↵F ��F DF is a Galois connection.

This typing for protein functions is very precise as it refers to particular molecules. On the other hand, keeping only the
kinase or phosphatase function in an unary predicate without the information on the transformed molecules might be too
loose. Between these two extreme choices, one could also consider a hierarchical type structure such as the one defined by
the following grammar:

⌧ ::= kinase|phosphatase|kinase(⌧ )|phosphatase(⌧ )|T
where T denotes some basic types of proteins, with the subtyping relations kinase(⌧ ) � kinase and phosphatase(⌧ ) �
phosphotase. This kind of typing relation stems frommodels like theMAPK cascade shown in next sectionwhere the common
denomination for the function of MEK is ‘‘MAPK kinase’’ (i.e. kinase(MAPK)) and that of RAF is ‘‘MAPK kinase kinase’’ (i.e.
kinase (kinase(MAPK))). It is worth noting that such typings are supported by type systems already defined for rule based
languages as in [18], using solvers for subtyping constraints in general ordering structures such as quasi-lattices [11] for
instance. These considerations are however beyond the scope of this paper and will not be further developed here.

4.2. Evaluation results

4.2.1. MAPK model
On a simple example of the MAPK cascade originally based on [31] and imported into BIOCHAM, the type inference

algorithm determines that RAFK, RAF~{p1} and MEK~{p1,p2} have a kinase function; RAFPH, MEKPH and MAPKPH have a
phosphatase function; and the other compounds have no function inferred.

If the family of MAPKmolecules is given as a basic type, one wouldmoreover infer that the active form of MEK is a MAPKK
(a kinase for the MAPK family), and that the active form of RAF is a MAPKKK (a MAPKK kinase).

If we wanted to type-check such a model, we would correctly check all phosphatases but would miss an example of the
kinase function of MAPK~{p1,p2}, since its action is not visible in the above model.

4.2.2. Kohn’s map
Kohn’s map of the mammalian cell cycle control [30] has been transcribed in BIOCHAM to serve as a large benchmarking

example of 500 species and 800 rules [8]. This example shows that this abstraction scales up efficiently as the computation
of influences requires less than one second CPU time (on a PC 1,7 GHz) in this model. Here is an excerpt of the output of the
type inference, where it was restricted to the unary functions kinase and phosphatase as explained at the end of Section 4.1:
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cdk7-cycH is a kinase
Wee1 is a kinase
Myt1 is a kinase
cdc25C~{p1} is a phosphatase
cdc25C~{p1,p2} is a phosphatase
Chk1 is a kinase
C-TAK1 is a kinase
Raf1 is a kinase
cdc25A~{p1} is a phosphatase
cycA-cdk1~{p3} is a kinase
cycA-cdk2~{p2} is a kinase
cycE-cdk2~{p2} is a kinase
cdk2~{p2}-cycE~{p1} is a kinase
cycD-cdk46~{p3} is a kinase
cdk46~{p3}-cycD~{p1} is a kinase
cycA-cdk1~{p3} is a kinase
cycB-cdk1~{p3} is a kinase
cycA-cdk2~{p2} is a kinase
cycD-cdk46~{p3} is a kinase
cdk46~{p3}-cycD~{p1} is a kinase
Plk1 is a kinase
pCAF is a kinase
p300 is a kinase
HDAC1 is a phosphatase

On the other hand, in these results no compound is both a kinase and a phosphatase. The protein cdc25A, cdc25C and
HDAC1 are the only phosphatases found in the whole map. The type inference also tells us that the cyclin-dependant kinases
have a kinase function when in complex with a cyclin, which is correct. Finally the acetylases pCAF, p300 and the deacetylase
HDAC1 are detected but as expected identified to kinases and phosphatases respectively, since the BIOCHAM syntax does not
distinguish between phosphorylation and acetylation.

5. A type system for activation and inhibitory influences

5.1. Abstract domain of influences

Influence networks for activation and inhibition have been introduced for the analysis of gene expression in the setting of
gene regulatory networks [41], they basically define graphs where vertices are genes and oriented edges are labelled either
with activates or inhibits, representing the supposed regulation of one gene by another one. Such influence networks are in
fact an abstraction of complex reaction networks, and can be applied as such to protein interaction networks. However the
distinction between the influence network and the reaction network is crucial for the application of Thomas’s conditions
of multistationarity and oscillations [41,40] to protein interaction networks, and there has been some confusion between
the two kinds of networks [33]. Here we precisely define influence networks as an abstraction (a type system) of reaction
networks.

Definition 16. The abstract domain of influences is the powerset of the binary relations of activation and inhibition between
compounds DI = P ({A activates B | A, B 2M} [ {A inhibits B | A, B 2M}), ordered by inclusion.

5.2. Abstraction from the syntax of the reaction rules

Definition 17. The influence abstraction ↵RI : DR ! DI is the function

↵RI(x) = {A activates B| 9(ei for li ) ri) 2 x, li(A) > 0 and ri(B)� li(B) > 0}
[ {A inhibits B| 9(ei for li ) ri) 2 x, li(A) > 0 and ri(B)� li(B) < 0}.

In particular, we have the following influences for elementary reactions of complexation, modification, synthesis and
degradation:

↵RI({A + B => C}) = {A inhibits B, A inhibits A, B inhibits A, B inhibits B, A activates C, B activates C}
↵RI({A = [C] => B}) = {C inhibits A, A inhibits A, A activates B, C activates B}
↵RI({A = [B] => _}) = {B inhibits A, A inhibits A}
↵RI({_ = [B] => A}) = {B activates A}.
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The inhibition loops on the reactants are justified by the negative sign in the differential semantics of the reactions (see
Theorem 21 of the next section). These loops are however often omitted in the influence graphs considered in the literature,
together with some other influences, according to functionality, kinetics and non-linearity considerations [29].

The abstraction function ↵RI allows us either to type check a reaction model w.r.t. a given influence typing of molecules,
or to infer the influence types from the reaction rules. As ↵RI is defined pointwise, it can be computed very efficiently in
linear time, and we have by Lemma 2:

Proposition 18. Let �RI(f ) = [↵RI
�1(# f ), DR

�!↵RI ��RI DI is a Galois connection.

5.3. Abstraction from the differential semantics of reaction rules

In the differential semantics of a reaction rulemodel {ei for li=>ri | i 2 I}wehave ẋk = dxk/dt = Pn
i=1(ri(xk)�li(xk))⇤ei.

The Jacobianmatrix J is formed of the partial derivatives Jij = @ ẋi/@xj, and one can define the domainDJ of Jacobians ordered
by the pointwise inclusion of codomains. Let us denote by � the mapping from DR to DJ that extracts ẋk (by the equation
given at the beginning of this paragraph) and hence the Jacobian from the kinetic expressions in the reaction rules.

Definition 19. The differential influence abstraction ↵JI : DJ ! DI is the function

↵JI(x) = {A activates B| @ ẋB/@xA > 0 in some point of the space}
[ {A inhibits B| @ ẋB/@xA < 0 in some point of the space}.

The comparison between the differential influences, represented by the function ↵JI � � , and the syntactical influences,
represented by the abstraction function ↵RI, requires that the information in the kinetic expressions and in the reaction
rules are compatible. This motivates the following definition where, intuitively, the first property forbids the absence of
purely kinetic inhibitors not represented in the rules, and the second property enforces that reactants and enzymes do
appear in rules where they are used.

Definition 20. In a reaction model x ={ei for li=>ri | i 2 I}, we say that a kinetic expression ei is monotonic iff for all
molecules xk we have

(1) @ei/@xk � 0 in all points of the space,
(2) li(xk) > 0 whenever @ei/@xk > 0 in some point of the space.

A reaction model x has amonotonic kinetics iff all its reaction rules have monotonic kinetics.

Note that the mass action law kinetics, ei = k ⇤ ⇧xili , are monotonic and that Hill’s kinetics (of which Michaelis–Menten
kinetics are a special case with n = 1) ei = Vm ⇤ xsn/(Km + xsn) where Vm = k ⇤ (xe + xe ⇤ xs/Km) for an enzymatic
reaction xs = [xe] => xp, are also monotonic.1 On the other hand, inhibitions with negative Hill kinetics of the form
ei = Vm/(Km + xsn) are not monotonic, and are not reflected in the syntax of the reactants of the rules.

Theorem 21. For any reaction model x with monotonic kinetics, ↵JI � �(x) ✓ ↵RI(x).

Proof. If (A activates B) 2 ↵JI � �(x) then @ Ḃ/@A > 0. Hence there exists a term in the differential semantics, of the form
(ri(B)� li(B)) ⇤ ei with @ei/@A of the same sign as ri(B)� li(B).

Let us suppose that ri(B) � li(B) > 0 then @ei/@A > 0 and since ei is monotonic we get that li(A) > 0 and thus that
(A activates B) 2 ↵RI(x). If on the contrary ri(B)� li(B) < 0 then @ei/@A < 0, which is not possible for a monotonic kinetics.

If (A inhibits B) 2 ↵JI � �(x) then @ Ḃ/@A < 0. Hence there exists a term in the differential semantics, of the form
(ri(B)� li(B)) ⇤ ei with @ei/@A of sign opposite to that of ri(B)� li(B).

Let us suppose that ri(B)� li(B) > 0 then @ei/@A < 0, which is not possible for a monotonic kinetics. If on the contrary
ri(B)� li(B) < 0 then @ei/@A > 0 and since ei is monotonic we get that li(A) > 0 and thus that (A activates B) 2 ↵RI(x). ⇤

It is worth noticing that even in the simple case of mass action law kinetics, there is no equality between ↵JI � � and ↵RI.
For instance let x be the following model:

k1 ⇤ A for A => B
k2 ⇤ A for _ = [A] => A.

We have ↵RI(x) = {A activates B, A activates A, A inhibits A}, however Ȧ = (k2 � k1) ⇤ A, hence @ Ȧ/@A can be made always
positive or always negative or always null, resulting in the absence from ↵JI � �(x) of, respectively, A inhibits A, A activates
A or both.

1 xe ⇤ xs/Km is the concentration of the enzyme-substrate complex, supposed constant in the Michaelian approximation and xe + xe ⇤ xs/Km is thus the
total amount of enzyme.
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Actually in the general case, � is not monotonic since adding rules can compensate an existing rule in the differential
expression and eliminate terms in the differential equations. The differential semantics is thus not an abstraction of the
reaction models ordered by set inclusion in the formal sense of abstract interpretation. The above case shows that ↵JI � �
applied to the first rule contains A inhibits A, whereas its application to the set of two rules (greater in DR) may not. A
sufficient condition for � to be monotonic is that in the model no kinetic expression can compensate another one in the
Jacobian. That is: 8xi, xj9?k s.t. rk(xi) 6= lk(xi) and @ek/@xj 6= 0. This condition is used in the forthcoming Corollary 25.
Furthermore, under some hypotheses about the adequateness between the kinetic expressions and the rules, shown to be
quite general in the following section, the equality holds between both abstractions.

Definition 22. In a reactionmodel x ={ei for li=>ri | i 2 I}, a kinetic expression ei is strongly monotonic iff for all molecules
xk we have

(1) @ei/@xk � 0 in all points of the space,
(2) li(xk) > 0 iff there exists a point in the space s.t. @ei/@xk > 0

A reaction model x has a strongly monotonic kinetics iff all its reaction rules have a strongly monotonic kinetics.

Note that strongly monotonic impliesmonotonic.

Proposition 23. Mass action law, Michaelis Menten, and Hill kinetics are strongly monotonic.

Proof. For the case of Mass action law, the kinetics are of the form:

ei = ki
mY

l=1

xli(xl)l

with ki > 0 and li(xl) � 0. We thus have @ei/@xk = 0 if li(xk) = 0 and @ei/@xk = ki ⇤ li(xk) ⇤ xli(xk)�1k
Q

l6=k x
li(xl)
l otherwise,

which clearly satisfies (1) and (2).
In the case of Hill kinetics (of which Michaelis Menten is a subcase), we have:

ei = Vm ⇤ xns
Kn
m + xns

for the reaction xs + xe => xp + xe and where Vm = k2 ⇤ xtote = k2 ⇤ (xe + k1 ⇤ xe ⇤ xs/(k�1 + k2)) from the steady state
approximation. It is obvious that @ei/@xk = 0 for all xk other than xs and xe since they do not appear in ei and one can easily
check that with all the constants n, k1, k�1, k2 strictly positive, both @ei/@xe and @ei/@xs are greater than 0 at some point in
the space. ⇤

Lemma 24. Let x be a reaction model with strongly monotonic kinetics, and A and B be two molecules.
If (A activates B) is in ↵RI(x) but (A inhibits B) is not in ↵RI(x) then (A activates B) is in ↵JI � �(x).
If (A inhibits B) is in ↵RI(x) but (A activates B) is not in ↵RI(x) then (A inhibits B) is in ↵JI � �(x).

Proof. Since @ Ḃ/@A = Pn
i=1(ri(B) � li(B)) ⇤ @ei/@A and all ei are monotonic we get that @ Ḃ/@A = P

{in|li(A)>0}(ri(B) �
li(B)) ⇤ @ei/@A.

Now if (A activates B) is in ↵RI(x) but (A inhibits B) is not in ↵RI(x) then all rule such that li(A) > 0 verify ri(B)� li(B) � 0
and there is at least one rule for which the inequality is strict. We thus get that @ Ḃ/@A is a sum of positive numbers, amongst
which one is such that ri(B)� li(B) > 0 and li(A) > 0 which, since x is strongly monotonic, implies that there exists a point
in the space for which @ei/@A > 0 thus @ Ḃ/@A > 0 at that point and (A activates B) is in ↵JI � �(x).

For inhibition the same reasoning applies with the opposite sign for the ri(B) � li(B) and thus for the finale partial
derivative. ⇤

This lemma establishes the following equivalence result:

Theorem 25. Let x be a reaction model with strongly monotonic kinetics and where no molecule is at the same time an activator
and an inhibitor of the same target molecule, then ↵RI(x) = ↵JI � �(x).

This theorem shows that for standard kinetic expressions, the syntactical influences coincidewith the differential influences
based on the signs of the coefficients in the Jacobian matrix, when no molecule is at the same time an activator and an
inhibitor of the samemolecule. The theorem thus provides a linear time algorithm for computing the differential influences
in these cases, simply by computing the syntactical influences. It shows also that the graph of differential influences is
independent of the kinetic expressions:

Corollary 26. The graph of differential influences of a reaction model of n rules with strongly monotonic kinetics is computable
in time O(n) if no molecule is at the same time an activator and an inhibitor.

Corollary 27. The graph of differential influences of a reaction model is independent of the kinetic expressions as long as they are
strongly monotonic, if no molecule is at the same time an activator and an inhibitor.
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Fig. 1. Inferred influence graph of the p53-Mdm2 model.

5.4. Evaluation results

5.4.1. MAPK model
Let us first consider the MAPK signalling model of [31]. Fig. 6 depicts the reaction graph as a bipartite graph with

round boxes for molecules and rectangular boxes for rules. Fig. 7 depicts the inferred influence graph, where activation
(resp. inhibition) is materialized by plain (resp. dashed) arrows. The graph layouts of the figures have been computed in
BIOCHAM by the Graphviz suite.2

Since this model verifies the hypotheses of Corollary 25 we know that abstracting from the kinetics would give the same
result.

Interestingly, this influence graph of the MAPK cascade exhibits inhibition feedback loops although in this model, the
reaction graph is a pure cascade containing no feedback reaction. The interpretation of these inhibition feedback loops by
sequestration in complexes at the different levels of the cascade is analyzed in [43]. The possibility to obtain (damped)
oscillations in such ‘‘cascades’’ has been observed in [34] showing the relevance of our automatic analysis in this example.

5.4.2. p53-Mdm2 model
In the p53-Mdm2 model of [10], the protein Mdm2 is localized explicitly in two possible locations: the nucleus and in

the cytoplasm, and transport rules are considered. Fig. 2 depicts the reaction graph of the model.
Fig. 1 depicts the inferred influence graph. Note thatMdm2 in the nucleus has both an activation and an inhibitory effect

on p53 ⇠ {u}. This corresponds to different influences in different regions of the space and one can check that the two
influences also appear in ↵JI.

Fig. 3 depicts the core influence graph considered for the logical analysis of this model [29]. In the core influence graph,
some influence are neglected, as expected, however some inhibitions, such the inhibitory effect of p53 on Mdm2 in the
nucleus, are considered while they do not appear in the inferred influence graph. The reason for these omissions is the way
the reaction model is written. Some inhibitory effects are indeed expressed in the kinetic expression by subtraction of, or
division by, the molecular concentration of some compounds that do not appear in the rule itself. Those non-monotonic
inhibitions are thus missed by the type inference algorithm. An example of such a rule is the following one for the inhibition
ofMdm2 by p53:

macro(p53tot,[p53]+[p53~{u}]+[p53~{uu}]).

(kph*[Mdm2::c]/(Jph+p53tot),MA(kdeph))
for Mdm2::c <=> Mdm2~{p}::c.

Obviously, one cannot expect to infer such inhibitory effects from the reaction rules. Such a situation suggests to extend
the syntax of reaction rules in order to indicate the inhibitors of the reaction, in a somewhat symmetric fashion to what is
done for catalysts.

2 http://www.graphviz.org/.
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Fig. 2. Original reaction graph considered in [10] for the p53-Mdm2 model.

Fig. 3. Core influence graph [29].

5.4.3. Kohn’s map
On the quite bigmodel of Kohn’s map, the type inference of activation and inhibition influences from reaction rules takes

less than one second CPU time (on a PC 1,7 GHz) for the complete model, showing again the efficiency of the type inference
algorithm.

As kinetic data is typically missing for such a large model, the influence analysis from the syntactical domain is the only
one available.

6. A type system for location topologies

To date, models of biochemical systems generally abstract from space considerations. Models taking into account cell
compartments and transport phenomena are thus much less common. Nevertheless, with the advent of systems biology
computational tools, more and more models are refined with space considerations and transport delays, e.g. [10]. In SBML
[26] level 1 version 1, locations have been introduced as purely symbolic compartments without precise topology.We show
in this section how the topology can be inferred from the reaction rules, and checked in different models.

6.1. Abstract domain of location topologies

We will now focus on the notion of neighbor that is supposed to represent the fact that two compounds live in two
compartments that are next to each other. In SBML level 2, an outside relation can optionally be given for two compartments,
stating that one is the outside of the other one. We should have, from our definition, that if A is the outside of B, then any
compound living in A and any compound living in B are neighbors.

Definition 28. The domain of neighborhood relations DN = P (M ⇥M) is about pairs of molecules. ↵N : DR ! DN is
defined by the union of its definition on single rules:

↵N (E for A1 + · · ·+An => B1 + · · ·+Bm) = All Ai and all Bj are pairwise neighbors, and for all Ck such that [Ck] appears
in E, Ck is a neighbor of all Ai and all Bj.

Proposition 29. Let �N (n) = [↵N
�1(# n). DR

�!↵N ��N is a Galois connection.
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The concretization of a positive neighborhood between two locations is the set of all possible rules linking those
compartments, i.e. transport rules or rules influencing one compartment from another one. It describes in some sense the
interface between the two locations.

6.2. Evaluation results

6.2.1. Models from biomodels.net
We have taken models from the literature through the http://www.biomodels.net database. Of the 112 curated models

in the current version (dated June 2007) only 35 have more than one compartment, and only 7 of those use the outside
attribute of SBML to provide more topological insight.

The neighborhood relation is inferred in these models imported in BIOCHAM, and then checked consistent with the
provided outside relation.

For instance for calcium oscillations, we tried both the Marhl et al. model of [32] and the Borghans et al. model of [2].
In the first case (model BIOMD0000000039.xml), three locations are defined: the cytosol, the endoplasmic reticulum and

a mitochondria, from the reactions the inferred topology is that the cytosol is neighbor of the two other locations. This
correspond exactly to the information obtained from the outside annotations (the cytosol beingmarked as the outside of the
two other locations).

In the second case (models BIOMD0000000043.xml to BIOMD0000000045.xml) we focused on the lastmodel (two-pool) since
it is the only one with 4 different locations: the extracellular space, the cytosol and two internal vesiculae. The location
inference produces a topology where the cytosol is neighbor of all other locations. Once again this is correct w.r.t. the
outside information provided in the SBML file: both vesiculae have the cytosol as outside location and the cytosol itself
has the extracellular space as outside location.

These considerations show that there is somemismatch between the SBML reactionmodels and the choice of expressing
outside vs neighborhood properties of locations. In the perspective of type checking and type inference, neighborhood
relations should be preferred as they can be checked, or inferred from the reaction model, whereas the outside relation
contain more information that, while helpful for the modeler as meta-data, cannot be handled automatically without
abstracting it first in neighbors properties. Note however that the SBML v. 3 effort rather goes in the opposite direction
w.r.t. spatial information (see http://sbml.org/wiki/Spatial_Features) since it will allow a complete geometrical description
of the compartments, which is of course very informative but is not amenable to automatic checking or inference.

Note also that in calculi where the topology of the network evolves, like the Brane calculus [6] and its derivatives, the
outside and inside relationships changemuchmore radically than the neighborhood relationship. For instance an exocytosis
followed by an endocytosis might reverse the outside relationship whereas it would not change the neighborhood relation.
Moreover, as shown in the second example below the neighborhood relation can easily be applied to cell (or compartment)
populations to represent the topology, while defining only one ‘‘outside’’ for each cell makes the topology disappear.

6.2.2. P53/Mdm2
The first example comes from [10]: a model of the p53/Mdm2 interaction with two locations (see Fig. 2) where the

transport between cytoplasm and nucleus is necessary to explain some time delays observed in the mutual repression of
these proteins.

biocham: load_biocham(’EXAMPLES/locations/p53Mdm2.bc’).
...
(MA(ko),MA(ki)) for Mdm2::n <=> Mdm2~{p}::c.
...
biocham: show_neighborhood.
c and n are neighbors

We restricted the output to the neighborhood between compartments rather than compounds for clarity.
In this precise case, themodel as published does not systematically use the volume ratio in the kinetics. The transcription

and type-checking of themodel showed that if onewanted to keep the background degradation rate ofMdm2 (without DNA
damage) independent of the location, one obtains different kinetics than those of the published model. In this case a formal
transcription in BIOCHAM (or SBML) provided a supplementary model-validation step.

6.2.3. Delta and notch model
The Delta and Notch proteins are crucial to the cell fate in different organisms. A population of neighboring cells is

represented through locations, chosen here to be on a square grid. The model of Gosh and Tomlin [20] for the activation
and inhibition of Delta and Notch proteins reproduce the salt-and-pepper coloring of the cells corresponding to high Delta-
lowNotch and lowDelta-highNotch differentiation. This is typical of theDelta-Notch lateral inhibition based differentiation.
The signaling pathways are simplified to the extreme to take into account only the direct effect of Delta andNotch expression
in the cell and on the neighboring cells, with rules like:
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Fig. 4. Delta-Notch square cell grid inferred by ↵N in a 6x6 model.

biocham: load_biocham(’EXAMPLES/locations/notch4n36c.bc’).

(if [D::c21]+[D::c23]+[D::c12]+[D::c32] < 0.2
then 0
else ka,MA(kd)) for

_ <=> N::c22.

(if [N::c22] > 0.5
then 0
else ka,MA(kd)) for

_ <=> D::c22.

...

Note that in this example, as most of the information is in the kinetics of the rules, the analysis of influences should
be done with the Jacobian of the differential semantics, instead of the syntactic domain of reaction rules, as described in
Section 5. However, for the analysis of location topology, the abstraction defined in this section provides the expected result,
as depicted in Fig. 4.

This example also illustrates a subtlety in the definition of the abstraction function ↵N . Indeed, it could be tempting to
define the abstraction in the following simpler manner:

Definition 30. ↵0N : DR ! DN is defined by the union of its definition on single rules:
↵0N (E for A1 + · · ·+An => B1 + · · ·+Bm) = All Ai, all Bj, and all Ck such that [Ck] appears in E, are pairwise neighbors.

Fig. 5 depicts the topology inferred for Delta-Notchmodel with this second definition. It shows too coarse on such examples
since co-modifiers are put in the kinetic expression of a single rule for simplification purposes. This illustrates the fact that
lots of published reactionmodels rely extensively on the ODEs derived from the rules, the rules themselves being not always
carefully written, but rather as compact as possible.

7. Conclusion

We have shown that the framework of abstract interpretation applies, on the one hand, to the organization of major
semantics of biochemical reaction rules into a hierarchy of semantics related by abstraction functions, and on the other
hand, to the formalization of some further abstractions commonly used in systems biology as type systems.

In the three type systems studied in this paper for, respectively, protein functions, activation and inhibitory influences,
and location topologies, the analyses are based on static information gained directly from the syntax of reaction rules,
without considering their formal semantics, nor their precise dynamics. It is worth noting that this situation also occurs
in program analysis where the syntax of programsmay capture a sufficient part of the semantics for many analyses. Here, it
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Fig. 5. Delta-Notch square cell grid inferred by ↵0N in a 6x6 model.

is remarkable that such simple analyses already provide useful information on biological models, independently from their
dynamics for which different definitions are considered (discrete, continuous, stochastic, etc.).

The formal definition of the influence graph as an abstraction of the reactionmodel eliminates some confusion that exists
in the use of Thomas’s conditions [41,40] for the analysis of reaction models [33]. Such a formalization shows also that the
influence graphs usually considered in the literature are further abstractions obtained by forgetting some influences, based
on non-linearity considerations [42]. Some inhibitions may also be missing in the inferred influences when they are hidden
in the kinetic expressions of the reactions and do not appear explicitly in the reactants. This suggests either to refine the
abstraction function to take into account the kinetic expression when possible, or to extend the syntax of reactions in order
tomake explicit such inhibitory effects, in a symmetric fashion to catalysts for activations. In SBML there is actually an unique
symmetrical notion of Modifiers which is not sufficient to infer the influence graph since it does not make any difference
between activators and inhibitors.

Furthermore, we have shown that under general monotonicity conditions satisfied by standard kinetics, such as the
mass action law, Michaelis–Menten or Hill kinetics, the influences inferred from the syntax of reactants and products in the
rules, include the influences inferred from the signs of the coefficient of the Jacobian matrix, and the equality holds when
no molecule is both an activator and an inhibitor of a same molecule. This shows, perhaps surprisingly, that the Jacobian
influences can be easily computed in linear time from the rule syntax, and that they are independent of the precise kinetic
expressions under general conditions.

Similarly, the inference of protein functions and of location neighborhood have shown that the static analysis of
reaction models by type inference provides both accurate and useful information. They also provide some guidelines for
the extensions of biochemical reaction languages, like for instance in BIOCHAM, differentiating phosphorylation from other
forms ofmodifications like acetylation, methylation, ubiquitination, etc. and in SBML, considering neighborhood rather than
outside properties, and introducing a syntax for compound modifications.

Although the analyses done from the differential semantics of reaction rules have been compared to the analyses done
from the syntax of reaction rules, the differential semantics itself is the only one that has not been related by Galois
connections to the other semantics for several reasons explained in the corresponding section of this paper. These difficulties
obviously provide an interesting subject for future work, from both the systems biology and the abstract interpretation
theory standpoints.
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Fig. 6. Reaction graph of the MAPK cascade model.
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Fig. 7. Inferred influence graph of the MAPK cascade model showing negative feedback.
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4.1.2 From Reaction Models to Influence Graphs and Back: A
Theorem

The case of influence graphs/regulatory networks, i.e., the structural part of a logical
model à la Thomas, as abstractions of reaction models can be further studied. Indeed,
classical reaction models will never represent any direct kinetic inhibition. The only
cases where negative influences appear are catalyzed degradation or sequestration, but
do not correspond to inhibitory kinetics like 1

k+xn . In this article we describe more
precisely the inference of influence graphs, extending its soundness and completeness to
reaction models with explicit inhibitors (antagonists). Note that these results are not
only the basis of the following articles in this chapter but are also a prerequisite for our
analysis of multistationarity described in Section 2.4.
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Abstract. Biologists use diagrams to represent interactions between
molecular species, and on the computer, diagrammatic notations are also
more and more employed in interactive maps. These diagrams are funda-
mentally of two types: reaction graphs and activation/inhibition graphs.
In this paper, we study the formal relationship between these graphs. We
consider systems of biochemical reactions with kinetic expressions, as writ-
ten in the Systems Biology Markup Language SBML, and interpreted by a
system of Ordinary Differential Equations over molecular concentrations.
We show that under a general condition of increasing monotonicity of the
kinetic expressions, and in absence of both activation and inhibition effects
between a pair of molecules, the influence graph inferred from the stoichio-
metric coefficients of the reactions is equal to the one defined by the signs
of the coefficients of the Jacobian matrix. Under these conditions, satis-
fied by mass action law, Michaelis-Menten and Hill kinetics, the influence
graph is thus independent of the precise kinetic expressions, and is com-
putable in linear time in the number of reactions. We apply these results to
Kohn’s map of the mammalian cell cycle and to the MAPK signalling cas-
cade. Then we propose a syntax for denoting antagonists in reaction rules
and generalize our results to this setting.

1 Introduction

Biologists use diagrams to represent interactions between molecular species, and
diagrammatic notations like the ones introduced by Kohn in his map of the mam-
malian cell cycle [2] are also employed on the computer in interactive maps, like
for instance MIM1. This type of notation encompasses two types of information
: interactions (binding, complexation, protein modification, etc.) and regulations
(of an interaction or of a transcription).

The Systems Biology Markup Language (SBML) [3] uses a syntax of reaction
rules with kinetic expressions to define reaction models in a precise way, and more
and more models are described in such a formalism, like in the biomodels.net

� This paper provides a direct presentation and a generalization of one theorem shown
in [1] among other results in the framework of abstract interpretation which is not
used here.

1 http://discover.nci.nih.gov/mim/

J. Fisher (Ed.): FMSB 2008, LNBI 5054, pp. 90–102, 2008.
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repository. This type of language is well suited to describe interactions (and
in a limited manner their regulations through the notion of modifiers) but not
directly molecule to molecule activations and inhibitions.

On the other hand, formal influence graphs for activation and inhibition have
been introduced in the setting of gene regulatory networks [4] as an abstrac-
tion of complex reaction networks. These graphs completely abstract from the
precise interactions, especially at post-transcriptional level, and retain only the
activation and inhibition effects between genes. In these influence graphs, the
existence of a positive circuit (resp. a negative circuit) has been shown to be a
necessary condition for multistationarity (resp. oscillations) in different settings
[5,6,7,8,9], as conjectured by Thomas [10].

There are nowadays several tools providing different kinds of analyses for
either reaction models or influence graphs. However the only formal relationship
relating the two seems to be the extraction of the influence graph from the
Jacobian matrix derived from the reaction model, when equipped with precise
kinetic expressions and parameter values.

In this paper, we study more systematically the formal relationship between
reaction models and activation/inhibition influence graphs. We consider systems
of biochemical reactions with kinetic expressions, as written in the Systems Bi-
ology Markup Language SBML, and interpreted by systems of Ordinary Differ-
ential Equations over molecular concentrations. We show that under the general
condition of strongly increasing monotonicity of the kinetic expressions, and in
absence of both activation and inhibition effects from one molecule to the same
target, the influence graph inferred from the stoichiometric coefficients of the re-
actions, called the syntactical influence graph, is identical to the influence graph
defined by the signs of the coefficients of the Jacobian matrix, called the dif-
ferential influence graph. Under these conditions, satisfied by mass action law,
Michaelis-Menten and Hill kinetics, the influence graph is thus independent of
the kinetic expressions for the reactions, and is computable in linear time in the
number of reactions.

We show that this remarkable property applies to the transcription of Kohn’s
map of the mammalian cell cycle control [2] into an SBML model of approx. 800
reactions [11]. On this example, the syntactical influence graph is computed in
less than one second, and our equivalence theorem shows that this influence
graph would be the same as the differential influence graph for any standard
kinetics and any (non zero) parameter values. The same property of indepen-
dence from the kinetic expressions holds for the influence graph inferred from the
MAPK signalling model of Levchenko et al. [12]. This influence graph exhibits
positive as well as negative feedbacks that are hidden in the purely directional
cascade of the reaction graph [13], and that have been the reason for an er-
roneous interpretation of Thomas’ rules when applied to the MAPK cascade
in [14].

Finally, we consider generalized reaction rules, where inhibitors can be indi-
cated in the syntax of the rules, and generalize our results to this setting for a
large set of kinetic expressions.
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2 Reaction Models

Following SBML and BIOCHAM [15,16] conventions, a model of a biochemical
system is formally a set of reaction rules of the form e for S => S′ where S
is a set of molecules given with their stoichiometric coefficient, called a solu-
tion, S′ is the transformed solution, and e is a kinetic expression involving the
concentrations of molecules (which are not strictly required to appear in S).

We will use the BIOCHAM operators + and * to denote solutions as 2*A
+ B, as well as the syntax of catalyzed reactions e for S =[C]=> S’ as an
abbreviation for e for S+C => S’+C.

Classical kinetic expressions are the mass action law kinetics

k ∗
n∏

i=1

xi
li

for a reaction with n reactants xi, where li is the stoichiometric coefficient of xi

as a reactant, Michaelis-Menten kinetics

Vm ∗ xs/(Km + xs)

for an enzymatic reaction of the form xs = [xe] => xp, where2 Vm = k ∗ (xe +
xe ∗ xs/Km), and Hill’s kinetics

Vm ∗ xs
n/(Kn

m + xs
n)

of which Michaelis-Menten kinetics is a special case with n = 1.
A set of reaction rules {ei for Si => S′

i}i=1,...,n over molecular concentra-
tion variables {x1, ..., xm}, can be interpreted under different semantics. The
traditional differential semantics interpret the rules by the following system of
Ordinary Differential Equations (ODE):

dxk/dt =
n∑

i=1

ri(xk) ∗ ei −
n∑

j=1

lj(xk) ∗ ej

where ri(xk) (resp. li) is the stoichiometric coefficient of xk in the right (resp.
left) member of rule i.

The differential semantics will be the only interpretation of reaction models
considered here. In this paper, we shall not consider the other interpretations of
reaction rules used in BIOCHAM [1], namely the stochastic semantics, where the
kinetic expressions are interpreted as transition probabilities, the rule set as a
continuous-time Markov chain that can be simulated with Gillespie’s algorithm
[17], or the boolean semantics which simply forgets the kinetic expressions and
interpret the rules as a non-deterministic (asynchronous) transition system over
boolean states representing the absence or presence of molecules.
2 xe∗xs/Km is the concentration of the enzyme-substrate complex, supposed constant

in the Michaelian approximation and xe + xe ∗ xs/Km is thus the total amount of
enzyme.
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3 Influence Graphs of Activation and Inhibition

Influence graphs for activation and inhibition have been introduced for the analy-
sis of gene expression in the setting of gene regulatory networks [4]. Such influ-
ence graphs are in fact an abstraction of complex reaction networks, and can be
applied as such to protein interaction networks. However the distinction between
the influence graph and the reaction (hyper)graph is crucial to the application
of Thomas’s conditions of multistationarity and oscillations [4,7] to protein in-
teraction network, and there has been some confusion between the two kinds of
graphs [14].

Here we consider two definitions of the influence graph associated to a reaction
model, and show their equivalence under general assumptions.

3.1 Definition from the Jacobian Matrix

In the differential semantics of a reaction rule model M = {ei for li => ri | i ∈
I} we have ẋk = dxk/dt =

∑n
i=1(ri(xk) − li(xk)) ∗ ei. The Jacobian matrix J is

formed of the partial derivatives Jij = ∂ẋi/∂xj .

Definition 1. The differential influence graph associated to a reaction model is
the graph having for vertices the molecular species, and for edge-set the following
two kinds of edges:

{A activates B | ∂ ˙xB/∂xA > 0 in some point of the space}
∪{A inhibits B | ∂ ˙xB/∂xA < 0 in some point of the space}

Both activation and inhibition edges may exist between two molecular species
in reaction models such as for instance:

k1 ∗ A for A => B
k2 ∗ A ∗ B for A + B => C

We have indeed dB/dt = k1 ∗ A − k2 ∗ A ∗ B and ∂Ḃ/∂A = k1 − k2 ∗ B, hence A
inhibits B and A activates B both belong to the differential influence graph in
such an example.

3.2 Definition from the Stoichiometric Coefficients

Definition 2. The syntactical influence graph associated to a reaction model M
is the graph having for vertices the molecular species, and for edges the following
set:

{A inhibits B | ∃(ei for li => ri) ∈ M ,
li(A) > 0 and ri(B) − li(B) < 0}

∪{A activates B | ∃(ei for li => ri) ∈ M ,
li(A) > 0 and ri(B) − li(B) > 0}

In particular, we have the following influences for elementary reactions of com-
plexation, modification, synthesis and degradation:
α({A + B => C}) = { A inhibits B, A inhibits A, B inhibits A,

B inhibits B, A activates C, B activates C}
α({A= [C]=>B})={ C inhibits A, A inhibits A, A activates B, C activates B}
α({A = [B] => }) = { B inhibits A, A inhibits A}
α({ = [B] => A}) = { B activates A}
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The inhibition loops on the reactants are justified by the negative sign in
the Jacobian matrix of the differential semantics of such reactions. Unlike the
differential influence graph, this graph is clearly trivial to compute by browsing
the syntax of the rules:

Proposition 1. The syntactical influence graph of a reaction model of n rules
is computable in O(n) time.

3.3 Over-Approximation Theorem

Comparing the differential influence graph and the syntactical influence graph
requires that the information in the kinetic expressions and in the reactions
be compatible. This motivates the following definition where the first property
forbids the presence of purely kinetic inhibitors not represented in the reaction,
and the second property enforces that the variables appearing in the kinetic
expressions do appear as reactants or enzymes in the reaction.

Definition 3. In a reaction rule e for l=>r, we say that a kinetic expression
e is increasing iff for all molecules xk we have

1. ∂e/∂xk ≥ 0 in all points of the space,
2. l(xk) > 0 if ∂e/∂xk > 0 in some point of the space.

A reaction model has an increasing kinetics iff all its reaction rules have an
increasing kinetics.

One can easily check that:

Proposition 2. Mass action law kinetics for any reaction, as well as Michaelis
Menten and Hill kinetics for enzymatic reactions, are increasing.

On the other hand, negative Hill kinetics of the form k1/(kn
2 + yn) are not

increasing. They represent an inhibition by a molecule y not belonging to the
reactants, and thus not reflected in the syntax of the reaction.

Theorem 1. For any reaction model with an increasing kinetics, the differential
influence graph is a subgraph of the syntactical influence graph.

Proof. If (A activates B) belongs to the differential influence graph then ∂Ḃ/∂A >
0. Hence there exists a term in the differential equation for B, of the form
(ri(B) − li(B)) ∗ ei with ∂ei/∂A of the same sign as ri(B) − li(B).

Let us suppose that ri(B) − li(B) > 0 then ∂ei/∂A > 0 and since ei is
increasing we get that li(A) > 0 and thus that (A activates B) in the syntactical
graph. If on the contrary ri(B) − li(B) < 0 then ∂ei/∂A < 0, which is not
possible for an increasing kinetics.

If (A inhibits B) is in the differential graph then ∂Ḃ/∂A < 0. Hence there
exists a term in the differential semantics, of the form (ri(B) − li(B)) ∗ ei with
∂ei/∂A of sign opposite to that of ri(B) − li(B).

Let us suppose that ri(B)− li(B) > 0 then ∂ei/∂A < 0, which is not possible
for an increasing kinetics. If on the contrary ri(B) − li(B) < 0 then ∂ei/∂A > 0
and since ei is increasing we get that li(A) > 0 and thus that (A activates B) is
in the syntactical influence graph. ��
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Corollary 1. For any reaction model with an increasing kinetics, the differential
influence graph restricted to the phase space w.r.t. some initial conditions, is a
subgraph of the syntactical influence graph.

Proof. Restricting the points of the phase space to those points that are acces-
sible from some initial states, restricts the number of edges in the differential
influence graphs which thus remains a subgraph of the syntactical influence
graph. ��

It is worth noticing that even in the simple case of mass action law kinetics, the
differential influence graph may be a strict subset of the syntactical influence
graph. For instance let x be the following model :

k1 ∗ A for A => B
k2 ∗ A for = [A] => A

In the syntactical influence graph, A activates B, A activates A and A inhibits
A, however Ȧ = (k2 − k1) ∗ A, hence ∂Ȧ/∂A can be made always positive or
always negative or always null, resulting in the absence of respectively, A inhibits
A, A activates A or both, in the differential influence graph.

3.4 Equivalence Theorem

Definition 4. In a reaction rule e for l=>r, a kinetic expression e is strongly
increasing iff for all molecules xk we have

1. ∂e/∂xk ≥ 0 in all points of the space,
2. l(xk) > 0 if and only if there exists a point in the space s.t. ∂e/∂xk > 0

A reaction model has a strongly increasing kinetics iff all its reaction rules have
a strongly increasing kinetics.

Note that strongly increasing implies increasing.

Proposition 3. Mass action law kinetics for any reaction, as well as Michaelis
Menten and Hill kinetics for enzymatic reactions, are strongly increasing.

Proof. For the case of Mass action law, the kinetics are of the form:

ei = ki ∗
m∏

l=1

x
li(xl)
l

with ki > 0 and li(xl) ≥ 0. We thus have ∂ei/∂xk = 0 if li(xk) = 0 and
∂ei/∂xk = ki ∗ li(xk) ∗ x

li(xk)−1
k

∏
l �=k x

li(xl)
l otherwise, which clearly satisfies (1)

and (2).
In the case of Hill kinetics (of which Michaelis Menten is a subcase), we have:

ei =
Vm ∗ xn

s

Kn
m + xn

s

for the reaction xs + xe => xp + xe and where Vm = k2 ∗ xtot
e = k2 ∗ (xe +

k1 ∗ xe ∗ xs/(k−1 + k2)) from the steady state approximation. It is obvious that
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∂ei/∂xk = 0 for all xk other than xs and xe since they do not appear in ei and
one can easily check that with all the constants n, k1, k−1, k2 strictly positive,
both ∂ei/∂xe and ∂ei/∂xs are greater than 0 at some point in the space. ��
Lemma 1. Let M be a reaction model with a strongly increasing kinetics,

If (A activates B) is an edge in the syntactical influence graph, and not (A
inhibits B), then (A activates B) belongs to the differential influence graph.

If (A inhibits B) is an edge in the syntactical influence graph, and not (A
activates B), then (A inhibits B) belongs to the differential influence graph.

Proof. Since ∂Ḃ/∂A =
∑n

i=1(ri(B) − li(B)) ∗ ∂ei/∂A and all ei are increasing
we get that ∂Ḃ/∂A =

∑
{i≤n|li(A)>0}(ri(B) − li(B)) ∗ ∂ei/∂A.

Now if (A activates B) is in the syntactical influence graph, but not (A inhibits
B), then all rules such that li(A) > 0 verify ri(B) − li(B) ≥ 0 and there is at
least one rule for which the inequality is strict. We thus get that ∂Ḃ/∂A is a
sum of positive numbers, amongst which one is such that ri(B) − li(B) > 0 and
li(A) > 0 which, since M is strongly increasing, implies that there exists a point
in the space for which ∂ei/∂A > 0. Hence ∂Ḃ/∂A > 0 at that point, and (A
activates B) is thus in the differential influence graph.

For inhibition the same reasoning applies with the opposite sign for the ri(B)−
li(B) and thus for the partial derivative ∂Ḃ/∂A. ��
This lemma establishes the following equivalence result:

Theorem 2. In a reaction model with a strongly increasing kinetics and where
no molecule is at the same time an activator and an inhibitor of the same target
molecule, the differential and syntactical influence graphs coincide.

This theorem shows that for standard kinetic expressions, the syntactical influ-
ences coincide with the differential influences based on the signs of the coeffi-
cients in the Jacobian matrix, when no molecule is at the same time an activator
and an inhibitor of the same molecule. The theorem thus provides a linear time
algorithm for computing the differential influences in these cases, simply by
computing the syntactical influences. It shows also that the differential influence
graph is independent of the kinetic expressions.

Corollary 2. The differential influence graph of a reaction model of n rules
with a strongly increasing kinetics is computable in time O(n) if no molecule is
at the same time an activator and an inhibitor.

Corollary 3. The differential influence graph of a reaction model is independent
of the kinetic expressions as long as they are strongly increasing, if no molecule
is at the same time an activator and an inhibitor.

4 Application to Kohn’s Map of the Mammalian Cell
Cycle Control

Kohn’s map of the mammalian cell cycle control [2] has been transcribed in
BIOCHAM to serve as a large benchmarking example of approx. 500 species
and 800 rules [11].
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On Kohn’s map, the computation of activation and inhibition influences takes
less than one second CPU time (on a PC 1,7GHz) for the complete model,
showing the efficiency of the syntactical inference algorithm. The influence graph
is composed of 1231 activation edges and 1089 inhibition edges.

Furthermore in this large example no molecule is both an activator and an
inhibitor of the same target molecule. Theorem 2 thus entails that the computed
influence graph is equal to the differential graph that would be obtained in any
kinetic model of Kohn’s map for any standard kinetic expressions and for any
(non zero) parameter values.

Since there is a lot of kinetic data missing for such a big model, the possibility
to nevertheless obtain the exact influence graph without having to estimate
parameters or even to choose precise kinetic expressions is quite remarkable,
and justifies the use of purely qualitative models for the analysis of feedback
circuits.

5 Application to the Signal Transduction MAPK
“cascade”

Let us consider the MAPK signalling model of [12]. Figure 1 depicts the reac-
tion graph as a bipartite graph with round boxes for molecules and rectangular
boxes for rules. Figure 2 depicts the syntactical influence graph, where activation
(resp. inhibition) is materialized by plain (resp. dashed) arrows.

This computed graph reveals the negative feedbacks that are somewhat hid-
den in a purely directional signalling cascade of reactions. Furthermore, as no
molecule is at the same time an activator and an inhibitor of a same molecule,
this graph is largely independent of the kinetics of the reactions, and would be
identical to the differential influence graph for any standard kinetic expressions
with any (non zero) kinetic parameter values.

These negative feedbacks, a necessary condition for oscillations [4,8,9], have
been formally analyzed in [13] and interpreted as enzyme sequestration in com-
plexes. Furthermore, oscillations in the MAPK cascade model have been shown
in [18].

The influence graph also exhibits positive circuits. These are a necessary con-
dition for multistationarity [4,7] that has been observed in the MAPK model,
and experimentally in Xenopus oocytes [14]. Note that the absence of circuit in
the (directional) reaction graph of MAPK was misinterpreted as a counterex-
ample to Thomas’ rule in [14] because of a confusion between both kinds of
graphs.

6 Adding a Syntax for Antagonists in Reaction Rules

The over-approximation theorem 1 may suggest to provide a syntax for antag-
onists (i.e. inhibitors) in reaction rules, and generalize the result to this set-
ting. Note that the mixing of mechanistic reaction models with non-mechanistic
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Fig. 1. Reaction graph of the MAPK model of[12]

information on the inhibitors of some reactions, is a common practice in dia-
grammatic notations which often combine reaction edges with activation and
inhibition edges.

Let us denote by (e for l =[/a]=> r) a generalized reaction rule with an-
tagonists a. Reaction rules with catalysts, of the form (e for l =[c/a]=> r),
will remain an abbreviation for (e for l + c =[/a]=> r + c). This notation for
antagonists thus provides a counterpart for denoting the inhibitory effect of some
agent on a reaction, symmetrically to the activation effect of the catalysts of the
reaction.

Definition 5. The syntactical influence graph associated to a generalized re-
action model M is the graph having for vertices the molecular species, and for
edges the following set:
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Fig. 2. Influence graph inferred from the MAPK reaction model

{A inhibits B | ∃(eifor li =[/ai]=> ri) ∈ M ,
li(A) > 0 and ri(B) − li(B) < 0}

∪{A activates B | ∃(eifor li =[/ai]=> ri) ∈ M ,
li(A) > 0 and ri(B) − li(B) > 0}

∪{A activates B | ∃(eifor li =[/ai]=> ri) ∈ M ,
ai(A) > 0 and ri(B) − li(B) < 0}

∪{A inhibits B | ∃(eifor li =[/ai]=> ri) ∈ M ,
ai(A) > 0 and ri(B) − li(B) > 0}

For instance, the set of syntactical influences of the generalized reaction rule A
=[/I]=> B} is {A inhibits A, I activates A, A activates B, I inhibits B}. On the
other hand, note that the definition of the differential influence graph applies to
generalized reaction models as it is based on the kinetic expressions only.
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Definition 6. In a generalized reaction rule e for l =[/a]=> r, a kinetic ex-
pression e is compatible iff for all molecules xk we have

1. l(xk) > 0 if there exists a point in the space s.t. ∂e/∂xk > 0,
2. a(xk) > 0 if there exists a point in the space s.t. ∂e/∂xk < 0.

A generalized reaction model has a compatible kinetics iff all its reaction rules
have a compatible kinetics.

For instance, a kinetics of the form k1*Mdm2/(k2+P53) for the generalized reac-
tion rule Mdm2 =[/P53]=> Mdm2p expressing the phosphorylation of Mdm2 that
is inhibited by P53 (see [19]) is compatible.

Note that for a reaction model, strongly increasing implies compatible. Fur-
thermore, we have:

Theorem 3. For any generalized reaction model with a compatible kinetics, the
differential influence graph is a subgraph of the syntactical influence graph.

Proof. If (A activates B) belongs to the differential influence graph then ∂Ḃ/∂A >
0. Hence there exists a term in the differential equation for B, of the form
(ri(B) − li(B)) ∗ ei with ∂ei/∂A of the same sign as ri(B) − li(B).

Let us suppose that ri(B) − li(B) > 0 then ∂ei/∂A > 0, and since ei is
compatible we get that li(A) > 0 and thus that (A activates B) in the syntactical
graph. If on the contrary ri(B) − li(B) < 0 then ∂ei/∂A < 0, and since ei is
compatible we get that ai(A) > 0 and thus that (A activates B) is in the
syntactical influence graph.

If (A inhibits B) is in the differential graph then ∂Ḃ/∂A < 0. Hence there
exists a term in the differential semantics, of the form (ri(B) − li(B)) ∗ ei with
∂ei/∂A of sign opposite to that of ri(B) − li(B).

Let us suppose that ri(B) − li(B) > 0 then ∂ei/∂A < 0, and since ei is com-
patible we get that ai(A) > 0 and thus that (A inhibits B) is in the syntactical
influence graph. If on the contrary ri(B)− li(B) < 0 then ∂ei/∂A > 0, and since
ei is compatible we get that li(A) > 0 and thus that (A activates B) is in the
syntactical influence graph. ��

This theorem shows that in this setting which mixes reaction rules with infor-
mation on antagonists, the syntactical influence graph still over-approximates
the differential influence graph for any standard kinetics.

7 Conclusion

This work shows that to a large extent, the influence graph of a reaction model is
independent of the kinetic parameters and kinetic expressions, and that it can be
computed in linear time simply from the syntax of the reactions. This happens for
strongly increasing kinetics such as classical mass action law, Michaelis-Menten
and Hill kinetics, when no molecule is at the same time an activator and an
inhibitor of a same target molecule.
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The inference of the syntactical influence graph from a reaction model has been
implemented in BIOCHAM, and applied to various models. On a transcription of
Kohn’s map into approx. 800 reaction rules, this implementation shows that no
molecule is at the same time an activator and an inhibitor of a same molecule,
and therefore, our equivalence theorem states that the differential influence graph
would be the same for any standard kinetics with any parameter values.

On the MAPK signalling cascade that does not contain any feedback reaction,
the implementation does reveal both positive and negative feedback circuits
in the influence graph, which has been a source of confusion for the correct
application of Thomas’ rules. Furthermore, in this example again, no molecule
is at the same time an activator and an inhibitor of another molecule, showing
the independence of the influence graph from the kinetics.

Acknowledgement. This work benefited from partial support of the European
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4.2 Relating ODE Systems and Reaction Models

The preceding hierarchy of semantics shows how to extract an ODE system from a
reaction model, and there is little surprise in that. The reverse operation, necessary
to apply all the structural methods described in this manuscript, and others, proves
however to be much more subtle.

This time we do not fully agree with the answer given in the SBML FAQ about using
MATLAB® as a model format:

MATLAB is a fantastic system, but neither “MATLAB” or its scripting
language is a model representation format.
A MATLAB file is simply a script written in a proprietary application lan-
guage. This is similarly true of Mathematica format, custom C++ programs,
etc. So in some deep sense, these formats are not like SBML, which aims to
describe the semantic components of the model.
Equally important, the reality is that MATLAB and Mathematica scripts
are really only fully runnable in only those applications. Some other systems
such as Octave will run some MATLAB programs, but for many purposes,
a person really has to go to MATLAB. That limits scientists’ ability to
reproduce each others’ results, because using MATLAB or Mathematica ties
them to commercial, closed-source systems. (SMBL FAQ – Isn’t MATLAB
a perfectly fine format for representing models?)

Actually, the most crucial point, missed by this answer though hinted at near the end
of the second paragraph, is that contrary to SBML, an ODE system does not provide
a clear structure for the underlying biochemical system. In other words, it simply does
not define reactions.

4.2.1 Inferring Reaction Systems from ODEs

The first approach described here is a practical one, coming from our experience with
BIOCHAM users coming from mathematical biology and looking for some way to get
back the implicit structure in their ODEs. The demand for this is so great that the
engineer in charge of BIOCHAM’s web interface recently had to develop a specific web
service for ODE to SBML conversion2.

Actually, on top of very pragmatic and heuristic considerations, this article also
presents precise mathematical conditions on what a system of ODEs coming from a
biochemical reaction system should look like. This is in turn used to automatically
curate some SBML models.

[5] François Fages, Steven Gay, and Sylvain Soliman. “Inferring Reaction Systems
from Ordinary Differential Equations”. In: Theoretical Computer Science 599
(Sept. 2015), pp. 64–78. issn: 0304-3975. doi: 10.1016/j.tcs.2014.07.032

2The now much more complete API for this kind of service can be found at http://lifeware.
inria.fr/biocham/DOC/rest-api.html#model-conversion-model-export-post

http://sbml.org/Documents/FAQ#Isn.27t_MATLAB_a_perfectly_fine_format_for_representing_models.3F
http://sbml.org/Documents/FAQ#Isn.27t_MATLAB_a_perfectly_fine_format_for_representing_models.3F
http://dx.doi.org/10.1016/j.tcs.2014.07.032
http://lifeware.inria.fr/biocham/DOC/rest-api.html#model-conversion-model-export-post
http://lifeware.inria.fr/biocham/DOC/rest-api.html#model-conversion-model-export-post
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In Mathematical Biology, many dynamical models of biochemical reaction systems are 
presented with Ordinary Differential Equations (ODE). Once kinetic parameter values are 
fixed, this simple mathematical formalism completely defines the dynamical behavior of a 
system of biochemical reactions and provides powerful tools for deterministic simulations, 
parameter sensitivity analysis, bifurcation analysis, etc. However, without requiring any 
information on the reaction kinetics and parameter values, various qualitative analyses 
can be performed using the structure of the reactions, provided the reactants, products 
and modifiers of each reaction are precisely defined. In order to apply these structural 
methods to parametric ODE models, we study a mathematical condition for expressing the 
consistency between the structure and the kinetics of a reaction, without restricting to 
Mass Action law kinetics. This condition, satisfied in particular by standard kinetic laws, 
entails a remarkable property of independence of the influence graph from the kinetics 
of the reactions. We derive from this study a heuristic algorithm which, given a system 
of ODEs as input, computes a system of reactions with the same ODE semantics, by 
inferring well-formed reactions whenever possible. We show how this strategy is capable 
of automatically curating the writing of ODE models in SBML, and present some statistics 
obtained on the model repository biomodels.net.

 2014 Published by Elsevier B.V.

1. Introduction

In Mathematical Biology, many models are presented as a system of Ordinary Differential Equations (ODEs). Once the ki-
netic parameter values are fixed, this simple mathematical formalism completely defines the dynamical behavior of a system 
of biochemical reactions. It provides powerful tools for both transient and steady-state analysis via numerical integration, 
parameter sensitivity analysis, or bifurcation analysis, but only when kinetic information is available.

In absence of knowledge on the kinetics of each reaction, various qualitative analyses can nevertheless be performed us-
ing the structure of the reactions. This approach has rapidly developed in Systems Biology for reasoning on large interaction 
networks, with for instance, the analysis of qualitative attractors in a logical dynamics of gene networks à la Thomas [3–5], 
reachability and temporal logic properties in reaction networks [6–10], structural invariants in the Petri net representation 
of the reactions [11–16], or model reductions using graph theory concepts [17,18]. These qualitative analysis tools do not 
rely on kinetic information, but on the structure of the reaction network which has thus to be correctly written as a set of 

✩ This paper is an extended version of a communication presented at CMSB’12. The algorithms described in this paper are implemented in the open-
source software modeling platform Biocham [1,2] available at http :/ /lifeware .inria .fr /biocham/ release 3.5. The models used in the experiments are available 
from http :/ /www.biomodels .net/ release 24.
* Corresponding authors.
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CHAPTER 4. ONE STRUCTURE, A HIERARCHY OF SEMANTICS 153



JID:TCS AID:9840 /FLA Doctopic: Theory of natural computing [m3G; v 1.134; Prn:29/08/2014; 10:54] P.2 (1-15)

2 F. Fages et al. / Theoretical Computer Science ••• (••••) •••–•••

formal reactions, with well-identified reactants, products and modifiers (and in certain cases their stoichiometry) for each 
reaction.

For instance, in [19], it is elaborated that structural information hidden in kinetic laws may affect the results obtained 
from structural analyses, such as elementary mode analysis [20], flux balance analysis [21], chemical organization the-
ory [22], deficiency analysis or chemical reaction network theory [23,24].

It is worth noticing that these structural analyses may also directly support dynamic analyses. For instance, [25] applies 
network decomposition for a modular parameter estimation approach, [13] introduces a structural persistence criterion, 
Petri net place invariants reveal conservation laws in [26], while transition invariants can be used to identify fragile nodes 
and the core of a network [27], or to determine steady state solutions [28].

Furthermore, knowing the correct structure of each reaction is mandatory when a reaction network must be interpreted 
as a stochastic process (Continuous-Time Markov Chain, CTMC) à la Gillespie [29].

The question of the correct identification of a structured reaction model from a system of ODEs is thus important and 
is not new. Actually for the restricted case of models with only Mass Action kinetics a general solution is provided in [30]. 
This approach was evolved over the years, see for instance [31] for sparse/dense/core solutions when numerical values are 
provided for the parameters, or [32] for unicity conditions in the symbolic case, still in the restricted framework of mass 
action law kinetics. In [19], the authors present an algorithm that uncovers hidden structural information for some Systems 
Biology Markup Language (SBML) [33,34] models of the biomodels.net repository [35], with restricting to reaction models 
without inhibitors.

In this paper, we describe an algorithm for finding a reaction models for a given system of ODEs, considering reaction 
with inhibitors and general kinetic expressions. The first contribution of this paper is to propose a mathematical condition 
for expressing the consistency between the kinetic expression and the reactant-product-inhibitor structure of a reaction. 
We introduce well-formedness (Definition 2.5) and strictness (Definition 2.6) conditions for reactions, and show that they 
are satisfied by standard kinetics such as Mass Action law, Michaelis–Menten, Hill and negative Hill kinetics. The well-
formedness condition is also shown to entail a property of independence of the influence graph (or symbolic Jacobian 
matrix) from the kinetics of the reactions (Theorem 2.16). This result generalizes a previous result in [36,37] to reactions 
with inhibitors. It shows that the influence graph of a well-formed reaction system with inhibitors is essentially indepen-
dent of the kinetics, can be computed in linear time in the number of reactions when the number of species per reaction 
is bounded, and can thus advantageously be used to perform multi-stationarity analyses by circuit analysis à la Thomas 
[38–43,5,4,3].

The second contribution of this paper is to use these well-formedness and strictness conditions to prove the complete-

ness of a new general algorithm for inferring a reaction system equivalent to an ODE system. This algorithm, of time 
complexity in O (n × t) where n is the number of variables and t the number of terms in the ODE, is shown to preserve the 
ODE semantics of the reactions (soundness 3.10), as well as their well-formedness when applied to the ODE semantics of a 
non-decomposable well-formed reaction system (weak completeness 3.12).

Our third contribution is to show that our algorithm can be used to automatically curate the writing of ODE models 
with reactions, as required in SBML. The fact that SBML has become a standard for sharing and publishing models has 
helped in making modelers formalize the reaction structure of their models. Unfortunately, SBML does not enforce any 
strong coherence between the structure and the kinetics of a reaction. Therefore the structural interpretation of models 
transcribed in reaction-based formalisms such as SBML may vary according to different choices of representation of the 
original ODE model as a reaction system, and may invalidate some structural analyses. We compare our results to the one 
presented in [19], and provide some statistics obtained on the rewriting in SBML of the curated part of the biomodels.net

repository, showing that our method is able to automatically decrease the number of non-well-formed reaction systems 
from 65% to 29%.

2. A theory of well-formed reactions and kinetics

In this section, we consider a finite set S = {x1, . . . , xs} of s molecular species, and a finite set of n reactions over S
which are formally represented as multiset rewriting rules with kinetic expressions.

Multisets are used for representing reactants, products and inhibitors in reactions. A multiset s of molecular species is 
a function S −→ N which gives the number (stoichiometric coefficient) s(x) of each molecular species x ∈ S in s. We have 
s(x) = 0 if x does not belong to s, and s(x) ≥ 1 if x belongs to s, which is also written x ∈ s by abuse of notation. The 
empty multiset is written ∅. Equivalently, a multiset s will also be denoted by the linear expression 

∑m
i=1 s(xi) × xi , which 

gives the stoichiometric coefficients of each molecular species xi in s. This corresponds to the classical chemical notation 
2H+O−→H2O.

We shall now introduce the well-formedness and strictness conditions and describe some of their properties.

2.1. Well-formedness and strictness conditions

In the following definition, a reaction is composed of multisets for reactants, products and inhibitors that are not as-
sumed to be disjoint.
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Definition 2.1. A reaction is a quadruple (r, m, p, f ), where r is the multiset of reactants, m the multiset of inhibitors, 
p the multiset of products, and f , called kinetic expression, a mathematical function over molecular species concentrations, 
f : Rs −→R. A reaction system is a finite set of reactions.

The species that are both reactants and products in a reaction are called catalysts. For the sake of readability, a reaction 

(r, m, p, f ) will also be written r/ 
f

−→ p or just r
f

−→ p if it has no inhibitor, i.e. when m = ∅. The kinetic expression will 
also be omitted if it is not relevant.

Example 2.2. For instance, the following reaction, transcribed from Kohn’s map of the cell cycle [44],

pMPF + Cdc25
k1×pMPF×Cdc25

−→ MPF + Cdc25

expresses the activation of the Mitosis Promoting Factor MPF by the kinase Cdc25. It has as rate law f = k1 × pMPF ×Cdc25, 
i.e. a Mass Action kinetics with parameter k1 . In this reaction, pMPF is a reactant, MPF a product, Cdc25 a reactant and a 
product at the same time, i.e. a catalyst in our terminology, and there is no inhibitor.

A simplified version of that reaction can be written by omitting the kinase Cdc25, as follows:

pMPF
V×pMPF/(K+pMPF)

−→ MPF

That form typically derives from three reactions describing the reversible association of pMPF and Cdc25 and the dissoci-
ation to MPF , by making a quasi steady state approximation on Cdc25, which results in a Michaelis–Menten kinetics with 
parameters K and V .

It is worth noting that in a reaction, a reactant or a product can also be an inhibitor if it appears in m.

Example 2.3. For instance, the Botts–Morales general modifier mechanism accounts for a modifier M that can enhance and 
slow down a reaction A −→ B , depending on its concentration [45]. This can be represented in our setting by a reaction of 
the form

A + M/M −→ B + M.

SBML does not distinguish between catalysts and inhibitors which are just considered as “modifiers” in SBML annotations. 
However we find it useful for the theory developed here to distinguish between the activation or inhibitory effects of a 
modifier, and mark it syntactically as such in the structure of the reaction. If a modifier has both activation and inhibitory 
effects, it will just appear in r, m and p in our setting, without loss of generality.

It is also worth noting that we consider only irreversible reactions, as in Feinberg’s Chemical Reaction Network the-
ory [23]. A reversible reaction is thus represented by two reactions, one for each direction. This is one important difference 
with the Systems Biology Markup Language (SBML) that permits the declaration of a reversible reaction with only one single 
kinetic expression which can be negative.

These distinctions do not affect the system of ODEs that is classically associated to a reaction system by the Reaction 
Rate Equation as follows:

Definition 2.4. The ODE semantics of a reaction system

R = {ri/mi
f i

−→ pi}i=1,...,n

over molecules {x1, . . . , xs}, is the system of ordinary differential equations

ẋ j =

n
∑

i=1

(

pi(x j) − ri(x j)
)

× f i

for 1 ≤ j ≤ s.

Our aim is to go in the reverse direction, that is to infer from any ODE system a reaction system with the same ODE 
semantics. Let us first remark that any ODE system ẋ j = g j can be trivially transcribed in a reaction system using artificial 
synthesis reactions for each molecular species, with the terms of the differential equation as kinetic expressions, as follows:

∅
g j

−→ x j

Since the ODE semantics is identical to the original ODE system, this is correct as far as numerical simulations are concerned, 
but prevents the use of structural analysis methods or stochastic simulations as the structures of the reactions are totally 
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meaningless. It is worth remarking that some ODE models have nevertheless been transcribed in SBML using that scheme, 
since it does not affect simulations. This is the case for instance of model BIOMD0000000008.xml in biomodels.net

for the ODE model of [46]. We will use that example in Section 3.1 to illustrate our reaction inference algorithm and its 
capability of automatically curating the writing in SBML of ODE models as reaction systems.

In order to try to infer meaningful reactions from ODEs, we are interested in mathematical conditions for expressing the 
consistency of the kinetic expression f with the structure (r, m, p) of a reaction. Furthermore, since it is common practice 
to aggregate a system of elementary reactions in one abstract reaction with more complex kinetics (the simplest example 
of which are Michaelis–Menten and Hill kinetics for enzymatic reactions), we do not content ourselves with elementary 
kinetic expressions such as mass action law kinetics, but seek abstract consistency properties that can be applied to any 
mathematical expression given as kinetics. This is in contrast to most work on chemical reaction network theory [23,24,32], 
but in accordance with the use in SBML of MathML for writing the kinetic expressions without any limitation on the use of 
mathematical symbols.

Definition 2.5. A reaction (r, m, p, f ) over molecular species {x1, . . . , xs} is well-formed if the following conditions hold:

1. f (x1, . . . , xs) is a partially differentiable function, non-negative on Rs
+;

2. xi ∈ r if and only if ∂ f /∂xi(�x) > 0 for some value �x ∈R
s
+;

3. xi ∈m if and only if ∂ f /∂xi(�x) < 0 for some value �x ∈R
s
+ .

The first condition expresses that the kinetic expression must be a differentiable and non-negative function for all non-
negative values of the variables. The second (resp. third) condition states that the partial derivative of f w.r.t. a reactant 
(resp. an inhibitor) must be positive (resp. negative) for some (not necessarily all) non-negative values of the variables.

It is worth noting that we do not impose the monotonicity condition that for any variable xi ∈ V , ∂ f /∂xi should be either 
non-negative on the positive orthant, or non-positive on the positive orthant. In our setting, a molecular species can thus 
be both a reactant and an inhibitor in a well-formed reaction, depending on the values of the concentrations. On the other 
hand we shall make use of the following:

Definition 2.6. A reaction (r, m, p, f ) is strict if its kinetics f (x1, . . . , xs) = 0 whenever x j = 0 for any x j such that r(x j) > 0.

This condition expresses that the kinetics must be zero if the concentration of one of the reactants is zero. If the kinetics 
is a rational expression, that strictness condition implies that the kinetic expression is a product of the reactants with a 
fractional expression defined for all non-negative values of the variables. More generally it enforces the positivity of the 
system:

Definition 2.7 (Positive System). A dynamical system over Rk is called positive if Rk
+ is an invariant set for the system, i.e., 

∀x0 ≥ 0, t ≥ 0, x(t, x0) ≥ 0.

Proposition 2.8 (Positivity). The ODE semantics of a well-formed and strict reaction system defines a positive system.

Proof. In Definition 2.4 we have ẋ j =
∑n

i=1(pi(x j) − ri(x j)) × f i and since the system is well-formed, the f i are all non-
negative. The only negative terms thus have ri(x j) > 0 and from the strictness condition this entails that f i = 0 when x j = 0. 
Hence ẋ j ≥ 0 whenever x j = 0 since it is a sum of non-negative terms. Therefore x j cannot become negative when its initial 
value is non-negative, and since this holds for all j, the system is positive. ✷

The strictness condition excludes the writing of a reversible reaction with one single reaction by summing the kinetic 
expressions of each direction, as allowed in SBML, when the reactants differ from the products.

It also excludes the existence of a strict well-formed reaction system for any ODE system, as shown by

Example 2.9. The equation ẋ = −k is not the ODE semantics of any strict well-formed reaction system, since that ODE 
defines a non-positive system (Proposition 2.8). That ODE can be associated to the non-strict well-formed reaction system

x
l×x
−→ 2 × x

x
k+l×x
−→ ∅

(where the kinetic expression is not null when x = 0). This is the result computed in that case by Algorithm 3.6 described 
later.
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Example 2.10. As for an example with inhibitors, let us consider the following three reactions representing the core of the 
action of the Circadian clock on the Cell Cycle, as described by Matsuo et al. [47]:

pMPF + Cdc25
k1×pMPF×Cdc25

−→ MPF + Cdc25

MPF +Wee1
k2×MPF×Wee1

−→ pMPF +Wee1

∅/Clock
k3/(k4+Clock)

−→ Wee1

where k1, k2, k3 are parameters. The first reaction is the one of Example 2.2. Those reactions are well-formed and strict. In 
particular, we have ∂ ˙Wee1/∂Clock = ∂(k3/(k4 + Clock))/∂Clock = −k3/(k4 + Clock)2 < 0 for showing the inhibitory effect of 
Clock in the synthesis reaction of Wee1. Their ODE semantics is

˙pMPF = k2 ×MPF ×Wee1− k1 × pMPF × Cdc25

˙MPF = k1 × pMPF × Cdc25− k2 ×MPF ×Wee1

˙Wee1 = k3/(k4 + Clock)

˙Cdc25 = 0

˙Clock = 0

The well-formedness and strictness conditions are satisfied by standard kinetic laws. One can easily check

Proposition 2.11. Reactions with mass action law kinetics:

∑

j

n j × x j

k×
∏

j x
n j
j

−→ p

Michaelis–Menten kinetics:

x
V×x/(K+x)

−→ y

Hill kinetics:

x
V×xn/(Kn+xn)

−→ y

or negative Hill kinetics:

∅/x
V /Kn+xn

−→ y

with rate constants k, V , K > 0 and exponent n ≥ 1, are well-formed and strict.

We shall see in Section 4.2 that these conditions are currently violated in a majority of reaction systems of the 
biomodels.net repository, but that most of them can be automatically corrected by modifying their structure and writing in 
SBML, without changing their ODE semantics.

2.2. Influence graph associated to a well-formed reaction system

The influence graph between molecular species induced by the ODE semantics of a well-formed reaction system enjoys 
a remarkable property of independence from the kinetics, which we present in this section. Influence graphs have been 
initially introduced in the setting of gene regulatory networks [3] as a simple abstraction enabling reasoning about complex 
regulation mechanisms. These graphs completely abstract from the precise interactions, especially at post-transcriptional 
level, and retain only the activation and inhibitory effects on gene transcription. As conjectured in [4], the existence of 
a positive circuit (resp. a negative circuit) in an influence graph has been proved to be a necessary condition for multi-
stationarity, e.g. for cell differentiation, (resp. for oscillations, e.g. for homeostasis) in different formalisms, and in particular 
for ODE systems in [43,39–42] and recently in [38] for the ODE semantics of non-linear reaction systems.

Here, we show that in a well-formed reaction system, and under a very general assumption, the influence graph of the 
reactions is identical to the influence graph of the ODE semantics of the reactions.

On the one hand, in an ODE system, the influence graph is mathematically defined by the signs of the coefficients in the 
Jacobian matrix of the system, (∂ ẋi/∂x j), as follows:
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Definition 2.12. The differential influence graph (DIG) associated to (the ODE semantics of) a reaction system is the graph that 
has for vertices the molecular species, and for labeled edges the following set of signed edges:

{

xi −→+ x j

∣

∣ ∂ ẋ j/∂xi(�x) > 0 for some value �x ∈R
s
+

}

∪
{

xi −→− x j

∣

∣ ∂ ẋ j/∂xi(�x) < 0 for some value �x ∈R
s
+

}

Example 2.13. The DIG of Example 2.10 can be depicted by the following graph:

where the positive influences are represented by gray (green in web version) arrows with triangular tips, and negative 
influences are represented by black (red in web version) arrows with blunt tips. For instance, the negative influence of 
Clock on Wee1 comes from the negative sign of ∂ ˙Wee1/∂Clock as detailed in Example 2.10. There are negative loops on MPF

and MPF since ∂ ˙MPF/∂MPF = −k2Wee1 < 0 and ∂ ˙pMPF/∂pMPF = −k2Cdc25 < 0, and not on Cdc25 since ˙Cdc25 = 0. Note 
that a useful circuit analysis in this example would necessitate considering the reactions of formation of MPF and is beyond 
the scope of this paper.

On the other hand, in a reaction system, one can define an influence graph directly from the stoichiometry of the 
reactions, ignoring the kinetics, as follows:

Definition 2.14. The stoichiometric influence graph (SIG) associated to a finite set R of reactions is the graph that has for 
vertices the molecular species, and for labeled edges the following set of signed edges:

{

x −→+ y
∣

∣ either pi(y) − ri(y) > 0 and ri(x) > 0, or pi(y) − ri(y) < 0 andmi(x) > 0, for some reaction i
}

∪
{

x −→− y
∣

∣ either pi(y) − ri(y) < 0 and ri(x) > 0, or pi(y) − ri(y) > 0 andmi(x) > 0, for some reaction i
}

Intuitively, there is a positive (resp. negative) arc from x to y if x is a reactant in a reaction that produces more (resp. 
less) y than it consumes, or an inhibitor in a reaction that consumes more (resp. less) y than it produces.

Unlike the DIG, which needs to compute the sign of partial derivatives, the SIG can be easily computed in linear time 
in the number of reactions, assuming that the number of species per reaction is bounded, since it is sufficient to parse the 
stoichiometric coefficients of the reactions. As already shown in [36], the SIG is an over-approximation of the DIG:

Theorem 2.15. (See [36].) For any finite set R of well-formed reactions, the DIG of R is a subgraph of the SIG of R.

We show here that, even in the presence of inhibitors, the SIG is in fact identical to the DIG with an extra assumption. 
Let us say that a tuple of molecular species (x, y) is in conflict in an influence graph if we have both x −→+ y and x −→− y.

Theorem 2.16. For any finite set R of well-formed reactions such that the SIG of R contains no conflict, the DIG and the SIG are identical.

Proof. We just have to prove that the SIG is a subgraph of the DIG. Let us consider an arc x −→+ y in the SIG. By 
Definition 2.14 there exists a reaction i with either pi(y) − ri(y) > 0 and ri(x) > 0, or pi(y) − ri(y) < 0 and mi(x) > 0. Since 
the reaction is well-formed, we have either pi(y) − ri(y) > 0 and ∂ f i/∂x(�z) > 0, or pi(y) − ri(y) < 0 and ∂ f i/∂x(�z) < 0, 
for some �z ∈ R

s
+ . Now, if pi(y) − ri(y) > 0 then f i occurs in ẏ with a positive sign. Since ∂ f i/∂x(�z) > 0 and there is no 

conflict in the SIG, we thus get ∂ ẏ/∂x(�z) > 0, i.e. x −→+ y is in the DIG. Similarly, if pi(y) − ri(y) < 0, f i occurs in ẏ with 
a negative sign and ∂ f i/∂x(�z) < 0, hence ∂ ẏ/∂x(�z) > 0, i.e. x −→+ y is in the DIG. The proof for an arc x −→− y in the SIG 
is symmetrical. ✷

Corollary 2.17. The DIG of a finite set of well-formed reactions without conflict in its SIG, is independent of the kinetic expressions.
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Corollary 2.18. The DIG of a finite set of well-formed reactions without conflict in its SIG, is computable in linear time in the number 
of reactions, when the number of species appearing in a reaction is bounded.

The SIG of Example 2.10 is trivial to compute and since it contains no conflict, we can predict by Theorem 2.16 that it is 
identical to its DIG depicted in Example 2.13.

Example 2.19. As for an example of conflict, in the simplified model of the yeast cell cycle of [48], the double activation re-
actions of MPF through Cdc25 and Wee1 [44], are simplified in a single autocatalytic reaction in parallel with a deactivation 
reaction:

pMPF +MPF −→ 2×MPF

MPF −→ pMPF

Such reactions create a conflict in the SIG, namely MPF −→− pMPF and MPF −→+ pMPF . In general, there is a possibility 
that such conflicting direct influences in the SIG may be balanced in the ODEs and do not appear in the DIG. This situation 
is however quite pathological and rare in practice, and occurs when over-simplifications are made. For instance, Kohn’s map 
of the cell cycle control [44] contains 800 reactions [8] and does not contain any conflict in its SIG [36]. The conflict of 
influences between MPF and pMPF in Tyson’s model comes from the compression in one loop of the two positive circuits 
through Wee1 and Cdc25 respectively. The decompression of this loop makes disappear the influence conflict.

Thomas’s necessary condition for a system to exhibit multi-stationarity is the existence of a positive circuit, i.e., a simple 
oriented cycle such that the product of the signs of its edges is positive, in the DIG [40]. That condition has proven useful to 
reason about gene interaction networks and predict the possibilities of multi-stationarity, i.e. cell differentiation. However, 
Thomas’s original condition provides no information in presence of reactions with two reactants, since a reaction like for 
instance A + B −→ C immediately creates a positive circuit of negative influences between A and B in the associated 
SIG and DIG for any reasonable kinetics. This counter-example has been recently rule out in [38], where it is shown that 
Thomas’s conditions can be made stronger for reactions models, by labeling the influence edges by the reactions they come 
from, and by restricting the analysis of circuits to circuits labeled by different reactions. With this stronger condition for 
multi-stationarity, the analysis of labeled circuits in the DIG of a reaction system does provide information on its capabilities 
of exhibiting multi-stationarity. Theorem 2.16 shows, perhaps surprisingly, that for well-formed reaction systems without 
conflicts, the DIG is essentially independent from the kinetics, and in fact identical to the SIG, which is easy to compute 
and can be used to perform multi-stationarity analysis by circuit analysis.

3. Reaction system inference algorithm

In this section we present an algorithm to infer a reaction system from an arbitrary ODE system, and study its properties. 
The algorithm proceeds in two steps: one first step for inferring hidden molecules corresponding to linear invariants of the 
ODE system, and one second step for inferring the reactions.

3.1. Motivating example

As remarked in Section 2.1, any ODE model can be transcribed in a reaction system using artificial synthesis and degra-
dation reactions for each molecular species, with the positive, respectively negative, terms of the differential equation for 
the variables as kinetic expressions. While preserving the ODE semantics and thus ODE simulations, such a transcription 
prevents the use of structural methods and stochastic simulations to analyze the system.

Such a transcription has nevertheless been used in biomodels.net to write the ODE model of [46] in SBML and create
BIOMD0000000008.xml. This model adds a control mechanism to the cell-cycle model of Goldbeter et al. in [49] but 
with this transcription in SBML, the reaction graph is not even connected.

Here are some of the reactions of this model (after expansion of the macros used in the original writing) which illustrate 
the problem:

∅
(1−M)×C×V ′

1×(C+K−1
6 )/(K1+1−M)

−→ M

M
M×V2/(K2+M)

−→ ∅

∅
M×V ′

3×(1−X)/(K3+1−X)
−→ X

X
V4×X/(K4+X)

−→ ∅

One can notice that ∂ f1/∂C �= 0, where f1 is the kinetic expression of the first reaction, but C is not a reactant nor an 
inhibitor. The model is therefore not well-formed.
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One can also note that, though encoded in complicated MathML expressions, 1 −M (resp. 1 − X) appears in the synthesis 
of M (resp. X) as a way to represent the inactive form of M (resp. X). Indeed, [49] states that “(1 − M) thus represents the 
fraction of inactive (i.e., phosphorylated) cdc2 kinase, while (1 − X) represents the fraction of inactive (i.e., dephosphorylated) cyclin 
protease”.

When applied to the ODE system associated to this model, the reaction system inference algorithm presented in the next 
two sections, infers two hidden molecules and the following well-formed and strict reactions:

Mi + C
C×V ′

1×(C+1/K6)×Mi/(K1+Mi)
−→ M + C

M
V2×M/(K2+M)

−→ Mi

Xi + M
M×V ′

3×Xi/(K3+Xi)
−→ X + M

X
V4×X/(K4+X)

−→ Xi

The two inactive forms are now explicitly represented by two inferred molecules, written Mi and Xi , and the actions of 
C on M and of M on X are properly transcribed. The reaction system inferred automatically from the ODE semantics is 
well-formed and strict, and in fact consistent with the graphical representation of the paper [49] where dashed arrows 
represent catalytic effects:

In that form, the inferred model is thus suitable for further structural analysis.
The following sections present the reaction system inference algorithm in two steps: first the algorithm for inferring 

hidden molecules corresponding, as above, to invariants, second the algorithm for inferring well-formed reactions whenever 
possible.

3.2. Inference algorithm for hidden molecules

ODE models often contain algebraic invariants, i.e., algebraic equations relating variables of the model and that hold true 
in any solution of the ODE system. Among those, linear invariants 

∑

λixi = Λ, e.g. mass conservation invariants, or Petri-net 
place invariants, are an important particular case. A linear invariant can be used to simplify a model by eliminating one 
variable and replacing it with a linear expression. This may have several advantages, but when writing the model with 
reactions, such simplifications performed on the ODE system need be reversed in order to restore the correct structure of 
the reactions on eliminated molecular species, as shown for instance in the previous section with the inactive forms Mi

of M , and Xi of X .
A preprocessor is first applied before the reaction inference algorithm, in order to reverse the elimination of linear 

invariants and infer hidden molecules. The expressions f for which new molecules are introduced need be chosen with 
care in order to avoid the introduction of useless variables. Restricting the search to expressions of the form k − x or 
k − x − y where k is a constant or parameter, and x and y are molecule concentrations, has proven useful in practice. This 
leads to

Algorithm 3.1 (Hidden molecule inference).

input: ODE system O over variables {x1, . . . , xs},
1. iteratively replace in O any expression of the form −x + y by y − x,
2. for each expression of the form k − x − y in O where k is a numerical constant or a parameter, and x and y are 

variables,
(a) introduce a new variable z with time derivative ż = −ẋ− ẏ, and functional dependency equation z = k − x − y,
(b) substitute any occurrence of k − x − y in O by z,
(c) substitute any occurrence of k + v − x − y in O for any expression v , by v + z,
(d) substitute any occurrence of k − x + w − y in O for any w , by v + z,
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3. for each expression k − x appearing in O where k is a constant or a parameter and x a variable,
(a) introduce a new variable z with time derivative ż = −ẋ and functional dependency equation z = k − x,
(b) substitute any occurrence of k − x in O by z,
(c) substitute any occurrence of k + v − x in O for any expression v , by z + v ,

output: ODE system O over variables {x1, . . . , xs} and hidden molecule variables {z1, . . . , zk}, together with functional de-
pendency equations z j = f j(x1, . . . , xs) for 1 ≤ j ≤ k.

Proposition 3.2 (Soundness). Let O be an ODE system over variables {x1, . . . , xs}. The ODEs computed by Algorithm 3.1 for the 
time derivatives of x1, . . . , xs , are mathematically equivalent to the equations in O given the functional dependency equations 
z j = f j(x1, . . . , xs) for the hidden molecules.

Proof. We prove that each step of the algorithm replaces equal by equal, and thus that the whole execution preserves 
the mathematical equivalence of the equations. First, step 1 is a purely syntactical transformation that does not change 
the ODE system O . Now note that all the other changes are of two forms. Either the introduction of a new variable z
such that ż =

∑

λi ẋi , together with the functional dependency equation z = k +
∑

λixi , steps 2(a) and 3(a). Since the 
differential equation on z is indeed the time derivative of the definition of z, this does not change the equations on ẋi . Or 
the replacement of k +

∑

λixi by z, steps 2(b–d) and 3(b–c), which are equal from the previous definition of z. ✷

3.3. Inference algorithm for reactions

The inference algorithm for reactions is based on a syntactical normal form for ODE systems which facilitates the recog-
nition of common subterms in the equations.

We consider ODEs and kinetic laws written in MathML as terms with mathematical operations and functions (e.g. +, −, 
/, ×, etc.), constants of R and variables representing species concentrations and parameters. It is beyond the scope of this 
paper to precisely describe the mathematical expressions allowed and the symbolic computation performed. However, let 
us call non-decomposable a term that:

• its functor (top function symbol) is neither + nor −;
• cannot be reduced at top-level by the algebraic laws of distributivity of the product and division on addition and 

subtraction, e.g. if its functor is × (resp. /) then the arguments (resp. the numerator) are not sums.

Definition 3.3. A reaction r/m 
f

−→ p over molecular species {x1, . . . , xs} is non-decomposable if f is syntactically a non-
decomposable term.

Definition 3.4. A mathematical expression is in additive normal form if it is of the form 
∑k

i=1 ci × ti where ci are integers 
and ti are distinct non-decomposable terms without integer coefficients.

An ODE system is in additive normal form if each equation is in additive normal form, i.e. if it is of the form

ẋi =

l
∑

j=1

ci, j × t j, 1 ≤ i ≤ s

where l is the number of non-decomposable terms t j in the system.

Additive normal forms are not unique, but any ODE system can be written in additive normal form through standard 
algebraic transformations (such as the distributivity of × over +). The non-decomposability condition excludes the compo-
sition of several reactions in a single one with a sum as kinetic expression. In particular, we have:

Proposition 3.5. Any non-decomposable well-founded reaction system, such that its ODE semantics is a polynomial ODE system, is 
strict.

Proof. First notice that a polynomial kinetics once in additive normal form results in a sum of monomials as non-
decomposable terms. Now, from the second condition of well-formedness in Definition 2.5, for each reaction (r, m, p, f )
we have r(x j) > 0 implies ∃�x, ∂ f /∂x j(�x) > 0, but since f is a monomial, this implies that f has degree at least 1 in x j , and 
therefore that f (x1, . . . , xs) = 0 when x j = 0, i.e., (r, m, p, f ) is strict. ✷

Now, given an ODE system in additive normal form, the following algorithm can infer an equivalent reaction system 
by sorting the terms of the ODEs, and creating one reaction for each term (formalized in Proposition 3.9 below). This 
algorithms requires checking the sign of a partial derivative, and as described in Section 4.1, such checks can be arbitrarily 
difficult for arbitrary mathematical expressions, but can be over-approximated. We thus assume given a test program (exact 
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or not) for testing the sign of partial derivatives: partial_has_pos_val( f , x) that answers if yes or no the partial 
derivative of the function f with respect to variable x takes a non-negative value for some input in Rs , and such that 
∃�y∂ f /∂x(�y) > 0 ⇒ partial_has_pos_val( f , x). For computability reasons, the reverse implication is not required. These 
tests are used in steps 4(c) and 4(d).

Algorithm 3.6 (Reaction inference).

input: ODE system O over variables for molecular concentrations,
partial_has_pos_val test

1. rewrite O into additive normal form,
2. compute the set T of all terms appearing in O ,
3. let R := ∅,
4. for each non-decomposable term t in T ,

(a) let r := ∅, p := ∅, m := ∅,
(b) for each variable x where t occurs with integer coefficient c in ẋ in O ,

i. if c < 0 then r(x) := −c,
ii. if c > 0 then p(x) := c,

(c) for each variable x such that r(x) = 0 and partial_has_pos_val(t, x),
i. r(x) := 1,
ii. p(x) := p(x) + 1,

(d) for each variable x such that partial_has_pos_val(−t, x),
i. m(x) := 1,

(e) R := R ∪ {r/m 
t

−→ p},
output: reaction system R .

Example 3.7. The model of three reactions of Example 2.10 has one invariant: pMPF + MPF is indeed a constant c (the sum 
of initial values of pMPF and MPF) since ˙pMPF + ˙MPF = 0. One variable, e.g. pMPF , can thus be eliminated and replaced by 
c −MPF . This yields the following ODE system, where all ki are positive:

˙MPF = k1 × (c −MPF) × Cdc25− k2 ×MPF ×Wee1

˙Wee1 = k3/(k4 + Clock)

˙Cdc25 = 0

˙Clock = 0

When applied to this system, using the test for partial derivatives described in Section 4.1, Algorithm 3.6 infers the 
following reactions:

Cdc25
c×k1×Cdc25

−→ Cdc25+MPF

MPF + Cdc25
k1×Cdc25×MPF

−→ Cdc25

MPF +Wee1
k2×MPF×Wee1

−→ Wee1

∅/Clock
k3/(k4+Clock)

−→ Wee1

However, by applying first the hidden molecule inference Algorithm 3.1, a hidden molecular species MPFi is introduced 
for the expression c −MPF . This hidden molecule corresponds to the linear invariant MPFi +MPF = c. We have

˙MPF i = −k1 ×MPF i × Cdc25+ k2 ×MPF ×Wee1

and when applied to this ODE system after the preprocessing step, Algorithm 3.6 now computes the correct reactions:

MPFi+ Cdc25
k1×MPFi×Cdc25

−→ MPF + Cdc25

MPF +Wee1
k2×MPF×Wee1

−→ MPFi+Wee1

∅/Clock
k3/(k4+Clock)

−→ Wee1

By counting the loops, one can easily check

Proposition 3.8 (Time complexity). On an ODE system O in additive normal form, Algorithm 3.6 computes a reaction system in time 
O (n × t), where n is the number of variables and t is the number of non-decomposable terms in O .
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By executing symbolically the algorithm, one can similarly check that the result is characterized in mathematical terms 
by

Proposition 3.9 (Inferred reactions). Given an ODE system in additive normal form with appearing terms T = { f1, . . . , ft}: ẋi =
∑t

u=1 ci,u × fu for 1 ≤ i ≤ s. The reaction system inferred by Algorithm 3.6 is the set of non-decomposable reactions

{ru/mu
fu

−→ pu}1≤u≤t

where

ru =
∑

{i|ci,u<0}

(−ci,u) × xi +
∑

{i|ci,u≥0, partial_has_pos_val( fu ,xi)}

xi,

pu =
∑

{i|ci,u>0}

ci,u × xi +
∑

{i|ci,u≥0, partial_has_pos_val( fu ,xi)}

xi

and mu is the set of variables x such that partial_has_pos_val(− fu, x).

Theorem 3.10 (Soundness). The ODE semantics of the reaction system inferred by Algorithm 3.6 from an ODE system O is equal to O .

Proof. Let us suppose without loss of generality that O  = {ẋi =
∑t

u=1 ci,u × fu | 1 ≤ i ≤ s} is in additive normal form. The 
inferred reaction system is the set

{ru/mu
fu

−→ pu}1≤u≤t

where

ru =
∑

{i|ci,u<0}

(−ci,u) × xi +
∑

{i|ci,u≥0, partial_has_pos_val( fu ,xi)}

xi,

pu =
∑

{i|ci,u>0}

ci,u × xi +
∑

{i|ci,u≥0, partial_has_pos_val( fu ,xi)}

xi,

and mu is the set of variables y such that partial_has_pos_val(− fu, xi).
The ODE system associated to these reactions is thus

{

ẋi =

t
∑

u=1

(

pu(xi) − ru(xi)
)

× fu

}

1≤i≤s

=

{

ẋi =

t
∑

u=1

ci,u × fu

}

1≤i≤s

= O .

Note that it does not depend on the test partial_has_pos_val. ✷

Algorithm 3.6 always computes a non-decomposable reaction system with an equivalent associated ODE system but this 
reaction system may not be well-formed. In particular, step 3(b) adds a variable x to the reactants of the reactions even if x
does not appear in the kinetic expression f of the reaction. Therefore the algorithm may infer reactions with reactants that 
do not occur in the kinetic expression, as required for instance by Example 2.9.

We can measure the completeness of the method by showing that, at least, if we start from a well-formed reaction 
model, generate the ODE semantics, and from the ODE system solely, infer back a reaction model, the algorithm does infer 
a well-formed reaction model.

First, it is clear that the algorithm infers non-decomposable kinetics (Proposition 3.9) in which any variable appearing in 
the kinetics appears in the reaction as either reactant (step 4(b), or step 4(c) for catalysts), inhibitor (step 4(d)) or both:

Proposition 3.11. The reactions inferred by Algorithm 3.6 contain no reaction with a molecular species x appearing in the kinetic 
expression f with ∂ f /∂x �= 0, and not appearing as a reactant or inhibitor.

This proposition remains true even if the sets of variables for which the partial derivatives are positive (4c) or negative 
(4d) are over-approximated. However, for completeness an exact test is necessary.

Theorem 3.12 (Weak completeness). When applied to the ODE semantics of a non-decomposable well-formed reaction system such 
that ∀1 ≤ i ≤ n, 1 ≤ j ≤ s, ∂ f i/∂x j > 0 ⇔ partial_has_pos_val( f i, x j), Algorithm 3.6 does infer a non-decomposable well-

formed reaction system. Furthermore, if the ODE system is polynomial, the inferred model is strict.
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Proof. Let us consider the ODEs associated to a well-formed non-decomposable reaction system R = {ri/mi
f i

−→ pi}i=1,...,n . 
The ODE system is of the form O  = {ẋ j =

∑n
i=1(pi(x j) − ri(x j)) × f i | 1 ≤ i ≤ m} which is an additive normal form after 

evaluation of the integers pi(x j) − ri(x j). By Proposition 3.9, the inferred reaction system is {r′i/m
′
i

f i
−→ p′

i}1≤i≤n where f i is 
non-decomposable by hypothesis,

r′i =
∑

{ j|pi(x j)<ri(x j)}

(

ri(x j) − pi(x j)
)

× x j +
∑

{ j|pi(x j)≥ri(x j),∂ f i/∂x j>0}

x j

p′
i =

∑

{ j|pi(x j)>ri(x j)}

(

pi(x j) − ri(x j)
)

× x j +
∑

{ j|pi(x j)≥ri(x j),∂ f i/∂x j>0}

x j,

and m′
i =mi .

Now for any variable x j , we have x j ∈ r′i if and only if x j ∈ ri since either pi(x j) < ri(x j) or ∂ f i/∂x j > 0. Similarly x j ∈ p′
i

if and only if x j ∈ pi since either pi(x j) > ri(x j) or pi(x j) = ri(x j) and ∂ f i/∂x j > 0, These equalities between the sets (not 
multisets) of reactants, products and inhibitors suffice to show the well-formedness of the inferred reactions.

Strictness in the polynomial case follows from Proposition 3.5. ✷

Since we do not restrict ourselves to Mass Action kinetics, our algorithm may well infer reactions with other kinetic 
expressions in cases where purely Mass Action reactions were possible. This is an important difference between our algo-
rithm and the previous algorithms, which are restricted to Mass Action kinetics [30–32]. Furthermore, even if we restrict 
to polynomial ODEs and Mass Action kinetics for reaction, further conditions are necessary to grant the unicity of the 
solution [32].

Example 3.13. For instance, given the ODE system

ẋ = −2kx = − ẏ,

our algorithm infers the reaction

2× x
k×x
−→ 2× y,

whereas a Mass Action kinetic reaction model for this system is

x
2×k×x
−→ y.

Furthermore, another Mass Action reaction system exists for this ODE system:

x
k×x
−→ x+ 2× y

x
k×x
−→ ∅

4. Evaluation results on biomodels.net

The ability to infer a reaction system from ODEs can be turned into some automatic curation algorithm, as was done in 
Theorem 3.12, by inferring the reactions from the ODE semantics of a starting reaction system. In this section, we evaluate 
this form of curation on repository of structured models.

4.1. Computability issues

Since, like in SBML, we allow arbitrary mathematical expression for kinetic expressions, checking the well-formed condi-
tions may raise arbitrary difficult symbolic computation problems. These conditions can be checked however by doing some 
approximations.

In our implementation in Biocham [1,2],1 the partial_has_pos_val proceeds as follows: the kinetic expressions are 
first normalized as if they were polynomials, stopping when a non-polynomial operator (anything else than +, − and ×) 
is found. For the polynomials, the exact computation of the sign of any partial derivative is easy. For the other terms, 
either they are recognized as a standard kinetics (like Hill functions) and once again the exact sign is extracted, or they 
are considered unknown and for any variable appearing we will assume that it is possible that ∂ f /∂x becomes positive for 
some values, and negative for some values. This is a conservative over-approximation.

With these provisions, different syntactical conditions may indicate that a reaction is not well-formed. The conditions for 
a reaction to be ill-formed can be classified into three categories:

1 http :/ /lifeware .inria .fr /biocham/.
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Table 1

Number of models having a “K not R”, “R not K ”, or “negative kinetics” warning among the original 361 models of the curated part 
of biomodels.net, and among the reaction systems automatically inferred from their ODE semantics. “Any warning” reflects model 
for which there was at least one of the three warning.

“K not R” “R not K ” “Negative” Any warning

Original 173 123 157 234 (64.81%)

Inferred 0 67 70 103 (28.53%)

1. “K not R” indicates that the concentration of a compound appears in the kinetic law of a reaction, but this compound 
is neither a reactant nor an inhibitor of the reaction;

2. “R not K ” indicates that some compound is marked as reactant or inhibitor in a reaction, but does not appear in the 
kinetic expression;

3. “Negative” indicates that a kinetic expression may be negative with non-negative concentration values.

Indeed, in a well-formed reaction with kinetic expression f , if a species x is neither a reactant nor an inhibitor, then 
∂ f /∂x = 0, hence x should not appear in the kinetic expression f . Similarly, if a species is a reactant or an inhibitor, then 
∂ f /∂x �= 0, so x should appear in f . Moreover, f should be non-negative.

These ill-formedness conditions are checked in Biocham using the previous approximations. They correspond to the 
warning messages that Biocham can raise when loading a reaction system.

4.2. Global analysis

The 424 models from the curated branch of the latest version (release 24) of the biomodels.net repository [35] were 
used as benchmark to test our reaction system inference algorithm, and compare the results with the original writing of the 
models in SBML. Out of those 424 models only 361 define reactions with proper kineticLaws. The other ones only describe 
systems through events and rules, or with no kinetic information, and thus have no ODE semantics.

Our curation algorithm reads the SBML model, extracts the corresponding ODE system and infers from it a new reaction 
system.

Table 1 summarizes the result of the procedure, as detected by Biocham warnings. Over the 361 reaction systems of the 
original curated part of biomodels.net with ODE semantics, our algorithm reveals hidden molecules in 58 models, 173 models 
with “K not R” warning, 123 models with “R not K ” warning and 157 models with “negative kinetics” warning. Our algo-
rithm is able to automatically curate the writing of these models with reactions by reducing the number of non-well-formed
models with a warning by more than the half, from 65% to 29%.

As predicted by Proposition 3.11, the Algorithm 3.6 completely removes the “K not R” warnings. For the two other warn-
ings, since the algorithm focuses on non-decomposable kinetics, it results in curated models quite close to the original ones, 
but does not tackle thoroughly the case of reactions with rates independent of some reactant, for the reasons illustrated in 
Example 2.9 of for any other reason. Therefore, 103 over 361 models remain with a non-well-formedness warning.

4.3. Model inconsistencies studied in [19]

In [19], the authors also scan the biomodels.net repository and report finding 5 inconsistencies: models 44, 93, 94, 143 
and 151. Their diagnostics is as follows, some reaction fluxes become negative during the simulations of those models 
because of missing reversibility indications in models 93, 94 and 143. In the two first cases they report that adding the 
reverse reactions makes the models consistent, whereas for 143 it is also necessary to change some kinetic law. For model 
151 they report a “missing step”, but since the opposite reaction is part of the model, once again this amounts to adding a 
reverse reaction to an existing one. Finally, for model 44 they describe that the issue is that some kinetic expression does 
not depend on one of the reactants of the reaction, making it possible for that reactant’s concentration to become negative.

For models 93, 94 and 151, which indeed are flagged by the “Negative” warning, our algorithm correctly adds the missing 
reverse reactions, directly from the kinetic expressions. The models automatically curated this way do not raise any warning 
at the end.

For model 44, the automatic curation allows us to get rid of a “K not R” warning by transforming the reaction v3

A + Y
cytosol×Vm3×A4×Y 2×Z4/((Ka4+A4)×((K y2+Y 2)×(K z4+Z4)))

−→ A + Z

into

Z + A + Y −→ 2× Z + A

with the same kinetics.
However, as expected, the “R not K ” warning identified by Kaleta et al. remains, the obtained model is still not well-

formed. The same happens with model 143 where indeed an “R not K ” warning remains after automatic curation, in 
accordance with the earlier results.
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5. Conclusion

We have described an algorithm for trying to infer a meaningful reaction system from a system of ordinary differential 
equations. This algorithm is based on a general consistency condition between the kinetic expression and the structure of a 
reaction in terms of its reactants, products and inhibitors.

We have shown some general properties enjoyed by the influence graph of the Jacobian sign matrix associated to such 
well-formed reaction systems. These theoretical results militate for distinguishing between catalysts and inhibitors in the 
modifiers of a reaction, and for using structural analysis methods before fixing parameter values and going to simulations.

We have also evaluated the capability of our reaction inference algorithm to automatically curate the writing of 
ODE models with reactions by applying it to the ODE models generated from the SBML models of the curated part of 
biomodels.net. In particular, we have shown that the inference of well-formed reactions from the ODEs, combined with the 
inference of hidden molecules corresponding to linear invariants, is sufficient to automatically curate the writing of some 
ODE models of the cell cycle with consistent reactions. On the whole curated part of the biomodels.net repository, we have 
shown that our automatic curation method significantly improves the writing of the models with reactions by reducing the 
number of non-well-formed reaction systems from 65% to 29%.

Although the primary concern of SBML is to provide a common format for exchanging models and doing simulations, we 
believe that stronger consistency conditions should be enforced in SBML to perform structural analyses, and that the strict 
well-formedness conditions presented in this paper should be verified by non-reversible reactions.
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4.2.2 A Unique Transformation from ODEs to Reaction Net-
works

A more theoretical account on the same question is to look for mathematical criteria
that ensure the unicity of the reaction model corresponding to an ODE system. This
involves restricting the models looked for with even more stringent conditions (basically
Mass-Action kinetics, with unique parameters) but allows the modeller to avoid any
ambiguity in his translation.

[20] Sylvain Soliman and Monika Heiner. “A Unique Transformation from Ordinary
Differential Equations to Reaction Networks”. In: PLoS One 5.12 (Dec. 2010),
e14284. doi: 10.1371/journal.pone.0014284
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Introduction

Many models in Systems Biology are described as a system of

Ordinary Differential Equations (ODEs), which allows for

transient and steady-state analysis (for instance using MATLABH),

or bifurcation analysis with tools like XPPAUT [1], but only when

kinetic information is available.

Complementary structure-related qualitative analysis tech-

niques have become increasingly popular in recent years, such

as qualitative model checking or pathway analysis. Qualitative

analysis techniques do not rely on kinetic information, but require

a precisely structured model with well-identified products,

reactants and catalysts (and their stoichiometry, if any) for each

reaction.

The fact that the Systems Biology Markup Language (SBML)

[2] has become a standard for sharing and publishing of models

has helped in making modelers clarify the structure of their

models. Unfortunately, SBML does not enforce that the structure

and underlying ODEs are coherent. Even if the system is specified

by a list of reactions, as supported, e.g., by COPASI [3], modelers

tend to specify their reaction kinetics differently when aiming at

ODEs analysis. The troublemakers are reactions with complex

kinetics. COPASI provides a list of predefined functions; some of

them actually stand for whole building blocks. Thus, the structural

interpretation of models specified in formalisms such as SBML

may vary according to the source of the original model.

Particularly, if the models were originally meant to be ODE-

oriented, a later discrete interpretation as a qualitative or

stochastic model by a naive automatic translation may produce

wrong results; see Figure 1 for an introductory example

demonstrating the problem.

In [4], it is elaborated that structural information hidden in

kinetic laws may affect the results obtained from structural

analysis, such as elementary mode analysis [5], extreme pathway

analysis [6], flux balance analysis [7], chemical organization

theory [8], deficiency analysis or chemical reaction network theory

(CRNT) [9,10]. This perfectly coincides with our own experience,

and applies equally for place and transition invariant analysis to

validate a model, see e.g. [11–13], or to derive automatically an

hierarchically structured network representation [14].

Structural analysis may directly support ODEs-oriented dynamic

analyses; e.g. [15] applies network decomposition for a modular

parameter estimation approach, [16] introduces a structural persisten-

cy criterion, and transition invariants are used in [17] to identify fragile

nodes and the core network responsible for the steady state behaviour,

and in [18] to determine steady state solutions.
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Likewise, the correct structure is mandatory when a reaction

network is meant to be put into a stochastic setting, as it has been

introduced in the Petri net context in the seminal paper [19], and

exercised by applying various stochastic analysis techniques

(standard Markovian transient and steady state analysis, analytical

and simulative model checking) to a running case study in, e.g.,

[12,20].

In [4], the authors present an algorithm that uncovers hidden

structural information for some models already given in SBML.

On the contrary, in our article we discuss conditions for unique

structure inference directly from a given system of ODEs. We

derive from those conditions an algorithm, that has been

implemented and made public. We illustrate the necessity of our

conditions and the result of the inference on some simple

examples. This allows for a correct and automatic translation

from ODE models to structured models suitable for qualitative or

stochastic analysis, which we demonstrate on the very examples of

the BioModels database [21] that were incorrectly transcribed in

SBML as shown by [4].

We model a reaction network by a continuous Petri net (CPN),

see [22]. We define P, the set of places, with n~jPj, and T , the

set of transitions, with m~jT j. F{ and Fz are n|m incidence

matrices describing the weights of the transitions’ input and output

arcs, respectively. The matrix entries are denoted by f z
ij and f {

ij ,

respectively.

Each transition t[T has a rate function vt specifying the

generally state-dependent continuous flow over its input and

output arcs. vt can be an arbitrary function, but its variables are

restricted to the pre-places of t to enforce a close relation between

structure and dynamic behavior. A CPN uniquely defines a system

of ODEs over the variables corresponding to the places pi[P:

dpi

dt
~
Xm

j~1

(f z
ij {f {

ij ):vj ð1Þ

We are interested in mapping a system of ODEs onto a CPN,

such that the reverse operation according to (1) gives an equivalent

system (up to simple algebraic operations obviously ensuring

behavioral equivalence, such as a|v{b|v~(a{b)|v). Thus,

we will assume that the variables of the system of ODEs are:

xi,1ƒiƒn, i.e., each variable is mapped in a unique way to a

place pi of the net, which is required by the reverse mapping.

Such mappings have already been used in the Systems Biology

community, e.g. in the need for a stochastic view of models

originally described by ODEs. For instance in STODE [23],

which was supposed to be included in COPASI, in BlenX [24],

and the Beta Workbench [25]. However, no precise algorithm is

described, and program sources of implementations are not

available. Most importantly, these computational platforms do not

care about our main concern – the uniqueness of the revealed

structure.

Please note that any ODEs can be represented by a CPN simply

by considering the full expression of each dx=dt, i.e. the right-hand

side of the equation, as the vx of a single transition tx with all

variables used in vx (i.e., the domain of vx) as pre-places, and

exactly the same post-places (with the same arc weights), except for

x itself, which should have as weight on tx?x one more than the

weight on x?tx; compare Figure 2. This naive translation always

works and produces a net having an equal number of places and

transitions, with structural information typically hidden in the

generally complex kinetics vx. However, it is not obvious under

which conditions there is exactly one CPN corresponding to a

system of ODEs (even if we assume minimal arc weights), and

especially whether certain biologically reasonable conditions on

the CPN enforce its uniqueness. In the following we discuss ODEs

conditions ensuring that there exists only one CPN; but it will

almost never be the one we get by the naive translation.

Methods

We will first present a restricted form of our results and then

discuss its generalization to other types of kinetics. We will give

examples where even quite simple kinetics leads to ambiguity, i.e.,

several nets can generate the same system of ODEs.

Figure 1. Arbitrary complex kinetics may hide essential
structure. The example is an excerpt from the network model
discussed in [33]. (A) Structure as suggested by the schematic
representation in [33] and the list of reactions in the model’s SBML
format (Created by COPASI version 4.0 (Build 18) on 2006-10-24); (B)
Correct structure, which is hidden in the kinetics of reactions 23 and 25.
The two structures obviously differ in their discrete behaviour.
doi:10.1371/journal.pone.0014284.g001

Figure 2. General principle to construct a CPN for an arbitrary
ODEs. DOM(vx) denotes the domain of the function vx.
doi:10.1371/journal.pone.0014284.g002

From ODEs to Reaction Networks

PLoS ONE | www.plosone.org 2 December 2010 | Volume 5 | Issue 12 | e14284

170 Relating ODE Systems and Reaction Models



Mass Action Law
In order to obtain uniqueness of the net, we will first restrict

ourselves to the case where our first condition holds.

Condition 1. The CPN has pure mass action law kinetics, i.e.

Vj,1ƒjƒm,vj~kj
: P

n

i~1
x

f {
ij

i

where the parameters kj belong to a finite alphabet K of symbols.

Mass action is the basis of more elaborate rates used in

biological models, like Michaelis-Menten or Hill kinetics, and the

use of symbolic parameters is quite standard in ODEs models since

it allows the modeler to ‘‘play’’ with a system of ODEs in a simple

and coherent way. Mass action kinetics are also necessary for some

stochastic simulation methods or analysis techniques like CRNT

[9].

It is obvious that for arbitrary kinetics there is little hope to find

a unique CPN. Moreover the following examples show that even

quite simple kinetics can lead to ambiguity, i.e., several net

structures can give the same system of ODEs (see Example 1), and

that there is a need for symbolic parameters to ensure uniqueness

(see Example 2).

Example 1. Consider the following ODEs:

dA

dt
~{k:A~{

dB

dt
ð2Þ

If one allows general kinetic expressions, even restricted such that they have

the same variables as they have pre-places, one could obtain the two nets given

in Figure 3.

Note that the second net does not respect Condition 1, since the kinetics

should have been k:A2.

Example 2. Consider the following ODEs:

dA

dt
~{2k:A2~{

dB

dt
ð3Þ

Symbolic parameters are required to avoid that (3) leads to the two nets given

in Figure 4.

We obtain the following system of ODEs by combining

Condition 1 with equation (1):

dxi

dt
~
Xm

j~1

(f z
ij {f {

ij ):vj~
Xm

j~1

(f z
ij {f {

ij ):kj
: P

n

h~1
x

f {
hj

h , Vi,1ƒiƒn

If a system of ODEs can be put in such a form, thanks to basic

algebraic transformations, we will try to extract from it a CPN.

Otherwise, it does obviously not correspond to any model fulfilling

Condition 1.

We thus restrict our study to ODE systems of the form:

dxi

dt
~
X
j[J

sj
:lj : P

n

h~1
x

rih
h ð4Þ

where J is a set of indices and for all j[J it holds sj[Z,lj[K, and all

rih[N; in other words, ODE systems where the right side is a

polynomial over xi, with coefficients being integer linear

combinations of parameters in K.

A reaction which has exactly the same multisets of pre- and

post-places, i.e., reactants and products, will only lead to null

members in any ODE. Thus, we also assume:

Condition 2. The CPN does not contain any void reaction, i.e.,

Vj,1ƒjƒm,Ai,1ƒiƒn,f {
ij 6¼ f z

ij

Finally, we introduce a third purely syntactic condition to

ensure uniqueness of the CPN.

Condition 3. In the CPN, the same parameter is never used for two

different reactions with the same reactants, i.e.,

Vj1j2,1ƒj1,j2ƒm,
either kj1

6¼ kj2

or Ai,1ƒiƒn,f {
ij1
6¼ f {

ij2

(

We illustrate Condition 3 by Example 3.

Example 3. We consider again system (2). Complying with Condition

1, but allowing a single parameter to be used twice for the same reactants, i.e.,

violating Condition 3, one could obtain the net given in Figure 5.

Indeed, for the given system (2) and with the three introduced

conditions, there are necessarily two places (A and B), one single

transition (it has kinetics k:A), a single pre-place (A with weight 1),

and a single post-place (B with weight 1); see the first CPN of

Example 1 in Figure 3.

Before turning to our main result, we introduce two lemmata.

Lemma 1. Under our three conditions, all kinetics vj appear at least

once in the ODEs.

Proof. Let us suppose that vj0 does not appear in the system.

We thus have AJ, Vi, 1ƒiƒn,
X

j[J
(f z

ij {f {
ij ):kj

:Pn
h~1 x

f {
hj

h ~0
with j0[J.

Let us first consider the case where J~fj0g, i.e., the term

(f z
ij0

{f {
ij0

):vj0 amounts to 0 for all i. This would either violate

Condition 1 if vj0~0, or violate Condition 2 if Vi, f z
ij0

{f {
ij0

~0:

Figure 3. Two possible structures for Example 1. This illustrates
the fact that arbitrary kinetic expressions introduce an ambiguity in the
structure inference, even for very simple ODEs. The upper CPN
represents the unique solution if reading equation (2) with the three
established conditions.
doi:10.1371/journal.pone.0014284.g003

Figure 4. Two possible structures for Example 2. This illustrates
the need for symbolic parameters in order to avoid confusion when
inferring the structure.
doi:10.1371/journal.pone.0014284.g004
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Thus there are necessarily some terms compensating for vj0 in

some equations. These ODEs are precisely all the dxi=dt such that

f z
ij0

{f {
ij0
6¼ 0.

However, since parameters are symbolic, only monomials with

the same value of kj and the same degree for all xh can

compensate each other. But under Condition 3 there are no other

j that share these features with j0.

Lemma 2. Conversely, for each term s:l:P xrh

h of the ODEs, there

exists a transition with parameter l, and pre-places xh with the corresponding

arc weights rh.

Proof. The existence is obtained directly from the mapping of

CPNs to ODEs according to (1). Since parameters and variables are

symbolic objects, no term of that form can be created otherwise.

There is only a single such transition in any net agreeing with

Condition 3. Thus, if there are several terms with the same l and

rh: s1
:l:Pxrh

h , . . . ,sq
:l:Pxrh

h , they correspond to the same tran-

sition and can be merged into one single term s:l:Pxrh

h with

s~
Pq

1 si.

We can now proceed to our main result.

Theorem 1. For any system S of ODEs defining dxi=dt,1ƒiƒn

according to Conditions 1–3, there exists at most one CPN, such

that the system S0 obtained from it according to (1) is equivalent to S,

up to basic arithmetic.

Proof. We have seen that the xi uniquely defineP. From Lemma

1 and 2 we obtain the uniqueness of the definition of T and F{.

Now, the post-places and corresponding weights are defined

unambiguously by looking at dxi=dt and imposing the constraint

s~f z
ij {f {

ij , i.e., f z
ij ~szf {

ij with f {
ij already determined to be

equal to some rh in the previous step. If the obtained f z
ij is strictly

negative, there is no CPN that would produce such system under

the assumed conditions.

The theorem states that there is at most one CPN. Indeed lots of

ODEs are not amenable to (4) and thus do not comply with our

first condition. However even for some systems that do comply

with it there exists no model fulfilling our three conditions, as

illustrated by Example 4.

Example 4. An ODE system that can be put in the form of equation

(4), but does not correspond to any CPN fulfilling our three conditions is

dx=dt~{2kx.

In this case, from the ODEs one would obtain a single place for x, a single

transition with parameter k, an input weight of 1, but no possible output

weight: f z~szf {~{2z1~{1.

Beyond Mass Action Law
About 10% of the models of the BioModels database fulfill our

three conditions. However it is quite common to use classical

enzymatic kinetics like Michaelis-Menten or Hill type kinetics.

Actually, one can weaken Condition 1 in order to cope with

Michaelian kinetics of the form: vj~
Vj
:xj

Kjzxj

in addition to the

mass action law case.

Instead of polynomials, the right members of the ODEs will

then be rational fractions. But thanks to the partial fraction

decomposition theorem (see for instance [26]) they can be

decomposed in a unique way into a sum of a polynomial and of

rational fractions, with irreducible polynomials as denominator

and a numerator of strictly smaller degree.

In our case, the simple rational fractions will have degree one

denominator (Kjzxj ) and degree zero numerator, otherwise there

is no CPN corresponding to these ODEs without violating our new

condition. These fractions can be easily and unequivocally

transformed into the above form, the remaining polynomial will

be handled as in the previous section.

Results

We built a prototype implementation of the method outlined

above – the tool ode2pn, which converts XPPAUT files into

SBML (Level 2, Version 1) or APNN (one of the standard Petri net

formats [27]), respectively, by applying directly the constructive

proof of Theorem 1. We built upon an already existing tool,

Nicotine [28], for the output of the structured model and added to

it an XPPAUT parser that uses Lemma 2 to introduce a new

reaction for each corresponding term in the ODEs and Theorem 1

to complete the stoichiometry matrix.

The tool rejects the conversion when no structured model

fulfilling our conditions can be obtained. It is available at http://

contraintes.inria.fr/,soliman/ode2pn.html.

Note that the partial fraction decomposition necessary for the

Michaelian kinetics always exists, but is ‘‘practical’’ only with prior

knowledge of the poles of the denominator’s polynomials. These

are the Kj in the Michaelian case. Actually, our implementation

supposes that the corresponding rational fractions are already in

decomposed form.

In [4], five models from the BioModels database were identified

as having been transcribed in SBML with some structural

information missing: models 44, 93, 94, 143 and 151 (we adopt

the convention to reduce the official model names to at most three

digits). Model 44 involves Hill Kinetics and model 143 even more

complex kinetic laws; so our approach cannot guarantee the

uniqueness of the structure for these two cases. In the following we

discuss our results for the remaining three models.

Contrary to [4], where SBML files are evaluated directly, we

take the auto-generated XPP files (i.e. ODEs, generated from

those SBML models), which we downloaded from the BioModels

database in September 2009, and hand-curated in order to obtain

exactly the ODEs as given in the original articles.

Models 93 and 94 are two models of the JAK/STAT pathway

by [29]. In the original article they are described by a drawing (see

Fig. 6) and a mixture of what the authors call ‘‘chemical reactions’’

and of ODEs (mostly for mRNAs). They are used as ODEs for

simulation and were hand-transcribed to SBML for inclusion in

BioModels database, but missing the ‘‘reversibility’’ of some

reactions. We input the 34 differential equations (in each case) to

our tool, with sometimes more than ten different terms in a single

equation, and obtained the unique structure complying with our

conditions (with the Michaelian extension) and correctly including

reverse reactions when needed.

Model 151 is a model of the regulation of that same JAK/

STAT pathway by IL-6 in hepatocytes [30]. It includes 68

differential equations (see Fig. 7 for an extract) and once again

leads to a unique structure (with mass action and Michaelian

Figure 5. Another possible structure for the same equations as
for Figure 3, as explained in Example 3. Even with symbolic
parameters and pure mass action kinetics, if it is allowed to use the
same parameter for two distinct reactions with the same reactants, one
can obtain several structures for the same ODEs.
doi:10.1371/journal.pone.0014284.g005
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kinetics). The XPPAUT.ode file (BIOMD151.ode) and the

resulting structured SBML file (BIOMD151_new.xml) can be

found at http://contraintes.inria.fr/,soliman/ode2pn_data/

together with the biomodels version (BIOMD0000000151.xml),

which actually contains more errors than found by [4], mostly

concerning parameter names that are quite error-prone when

hand-translated from ODEs to SBML. Note that the XPPAUT

file which we provide corrects two typos from the original article,

namely kr39 instead of kr30 in dx8=dt and x15 instead of x14 in

dx16=dt. These typos still allow extraction of a unique structured

model, but with obvious differences compared to that described in

the article.

The converted models can be further processed by any tool

complying with SBML or APNN, e.g. using Snoopy [31], which

supports both formats and allows for graphical visualization of the

translation results.

Discussion

We have discussed conditions for a unique structure inference

out of a given system of ODEs. For reaction networks fulfilling the

given three conditions, ODEs and a structured formalization by,

e.g., a CPN, are equivalent representations, which can be

transformed into each other without loss of information. Note

that these networks are restricted to mass action or Michaelian

kinetics, which are the most widely used kinetics for biochemical

systems, and prohibit empty reactions which would not have any

biochemical meaning. These conditions forbid models, which were

mathematically correct, but contradict reasonable biochemical

expectations.

We have shown that otherwise the structure is not uniquely

defined by a system of ODEs. We have given examples where

violating our conditions leads to several nets having possibly

different discrete, and thus stochastic behavior, but generating the

same system of ODEs. These counterexamples demonstrate the

Figure 6. Figure 1 of [29] representing a schematic view of the
JAK/STAT pathway. The incorrect structure of the corresponding
SBML models (93 and 94) of the BioModels database can be
automatically fixed by going back to the differential equations and
extracting the unique structure fulfilling our three conditions. It then
correctly includes the reversibility of reactions (1), (2), (3), (6), etc.
highlighted in red, and absent from the BioModels database version.
doi:10.1371/journal.pone.0014284.g006

Figure 7. Beginning of the Appendix II of [30] describing the full ODE model of that article. The 68 ODEs actually allow the extraction of a
unique model fulfilling the three established conditions. It not only correctly reflects the structure described in the article, but also avoids the typos
introduced in the hand-written model 151 of the BioModels database; hand-typing an SBML model for that many ODEs with numerous parameters is
definitely error-prone.
doi:10.1371/journal.pone.0014284.g007
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necessity of each individual condition. We have given a

constructive proof for the translation algorithm, which has been

directly implemented, providing XPP to SBML conversion.

Our conditions are quite restrictive (only Mass-Action and

Michaelian kinetics), but do cover a large part of mathematical

biology models. This should allow, in the future, more and more

modelers to benefit from structural analysis techniques for their

systems, even if done as an afterthought. It also leads to more

precise links between the different formalisms and launches a

bridge betweens different communities of the Systems Biology

field. In those cases where both the ODEs and a reaction diagram

are given, our method allows the check if they are consistent.

Ideally, models are specified with our conditions in mind, be it

as a list of reactions (as, e.g., in COPASI) or some graphical

notation (e.g., continuous Petri nets). In both cases, kinetic

functions should obey the three established conditions. User-

friendly tools might check these conditions while doing export to

SBML files to prevent misleading results by later use. Sophisticated

ODE tools will have no problems in applying adequate algebraic

transformations to optimize the simulation algorithms’ run-time

behavior. Any import of SBML files should check these conditions

if aiming at structure-related qualitative or stochastic analysis

techniques.

We intend to continue in trying to find uniqueness conditions

for more general kinetics, and to devise heuristics for structure

inference when uniqueness cannot be obtained (unwinding

algebraic conservation laws coming from rapid equilibria, for

instance). We also plan to make our algorithm more widely usable,

for instance through a CellDesigner [32] XPP-import plugin.
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I have opinions of my own —strong
opinions— but I don’t always agree
with them.

George BushConclusion

The main objective of this compilation of articles was to try to answer some of the
questions raised in the introduction, most notably about the nature of a model, as the
main object of study in Systems Biology. The message we tried to convey is that what
really is at the core of such a model is its drawing, its structure, as a bipartite multi-
graph, i.e. a reaction system. From there, through various analyses, we have shown
that it is possible to reason on the dynamics of the system, if necessary in a qualitative
way, and therefore to rule out in-silico procedures like parameter search or even wet-
lab experiments, when they are vowed to fail, or unnecessary. Since the main job of a
computational biologist is, or at least should be, to invalidate models, the gain is clear.

The structure is also what allows modellers to reason on huge models —as we see
more and more— where precise kinetic data is missing, to compare different models
and build some kind of phylogeny of them, to compose and reuse models, to relate
different semantics of a same system. These are big steps in the direction of the Prod-
uct Life Management view that might allow big pharmaceutical companies to adopt
Systems Biology tools and methods. One of the crucial points for us was the use of
Constraint Programming as a generic tool to tackle the discrete problems raised by all
these applications, both for fast prototyping and for quite efficient procedures.

The previous point about semantics actually demonstrates that the structure is not
opposed to the traditional view of mathematical biology that a model is a system of
ODEs, on the contrary, it allows to reasonably build a system of reactions compatible
with ODEs, or in the other direction to reduce a model enough to make it usable as
a system of ODEs. As noted by the SBML effort, the meaning of a model is more
conveyed by a reaction system than by a MATLAB® file.

The need for formal methods as analysis tools for more and more detailed models
will probably increase in the coming years, but this will only translate into practical
tools for biologists and modellers if we stop opposing those to the old-school analytical
tools. Instead we should focus on making both work together in the best possible
way. We believe that this is where computational Systems Biology has a big margin for
improvement: reconcile the practical small-scale ODE-based users and the developers
of formal methods tackling big structural models.

Some direction that we have not studied yet is that of influence models, which are
also structural in some sense. Though we have encountered them, they were mostly
seen as intermediary tools as in our condition for multistationarity. They are part of the
hierarchy of semantics, but are “on the side”. Recent works on influence systems [27]
might make them more central and we hope to reconcile that way our big family of
Systems Biology models.
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Other topics that we plan to investigate further are the connexion between influence
graph related circuit reasoning (i.e., our condition for multistationarity) and the loops
encountered in CRNT and leading to similar type of results, but for a restricted class
of models (usually Mass Action kinetics are required).

We have also started to work in collaboration with researchers from the computer
algebra field in order to try and integrate into biochemical modelling environments like
BIOCHAM their state of the arts results, which are much stronger than what most
people in Systems Biology expect (e.g. formal computation of precise steady states or
Hopf bifurcations for models of several tens of variables).

There are many fields to explore, both on the formal side and more in connexion with
applications and modellers. We feel that Systems Biology is currently too fragmented
to be as efficient as it could be and believe that working at the edge between different
techniques and methods, and notably between structure and dynamics, while keeping
an eye on practical issues, as we have started to demonstrate here, is the key to the
successful evolution of the field.
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