
HAL Id: tel-01403849
https://theses.hal.science/tel-01403849v2

Submitted on 20 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Explicit computation of the Abel-Jacobi map and its
inverse

Hugo Labrande

To cite this version:
Hugo Labrande. Explicit computation of the Abel-Jacobi map and its inverse. Computational Geom-
etry [cs.CG]. Université de Lorraine, 2016. English. �NNT : 2016LORR0142�. �tel-01403849v2�

https://theses.hal.science/tel-01403849v2
https://hal.archives-ouvertes.fr

AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le jury de
soutenance et mis à disposition de l'ensemble de la
communauté universitaire élargie.

Il est soumis à la propriété intellectuelle de l'auteur. Ceci
implique une obligation de citation et de référencement lors de
l’utilisation de ce document.

D'autre part, toute contrefaçon, plagiat, reproduction illicite
encourt une poursuite pénale.

Contact : ddoc-theses-contact@univ-lorraine.fr

LIENS

Code de la Propriété Intellectuelle. articles L 122. 4
Code de la Propriété Intellectuelle. articles L 335.2- L 335.10
http://www.cfcopies.com/V2/leg/leg_droi.php
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm

École doctorale IAEM Lorraine

Explicit computation of the
Abel-Jacobi map and its inverse

THÈSE

présentée et soutenue publiquement le 14 novembre 2016

pour l’obtention du

Doctorat de l’Université de Lorraine

(mention Informatique Fondamentale)

par

Hugo Labrande

Composition du jury

Rapporteurs : John Boxall Professeur, Université de Caen

Guillaume Hanrot Professeur, ÉNS Lyon

Examinateurs : Pierrick Gaudry Directeur de recherche, CNRS, Nancy
Renate Scheidler Professeur, University of Calgary

Encadrants : Emmanuel Thomé Directeur de recherche, INRIA Nancy
Michael J. Jacobson, Jr. Professeur, University of Calgary

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503

University of Calgary

Mis en page avec la classe thesul.

i

To Becky, with love

ii

iii

Remerciements
À la fin of a three year cotutelle, there are beaucoup de people to thank, en français and in
English. J’hope ne pas forget anybody, mais tellement m’ont entouré and supported during these
3 ans de thèse that I’m bound to have oublié certains. Sorry!

Je tiens à remercier en premier lieu John Boxall et Guillaume Hanrot pour avoir accepté
de relire ce manuscrit, et pour leurs commentaires, qui m’ont grandement aidé à finaliser ce
manuscrit. I would also like to thank Matthew Greenberg and Wayne Eberly for accepting to
be a part of the examination committee for my candidacy exam in Calgary, as well as Faramarz
Famil Samavati for sitting as the neutral chair. Je souhaite également remercier Sylvain Lazard
pour m’avoir suivi en tant que référent interne au cours de ces trois dernières années. Je souhaite
enfin remercier Pierrick Gaudry d’avoir accepté d’être examinateur à la soutenance de thèse, ainsi
qu’à l’examen de candidature ; mais aussi pour son aide et son expertise sur certaines parties
ardues, comme la lecture du deuxième livre de Mumford. I also wish to thank Renate Scheidler,
who kindly accepted to be part of the defense jury, as well as the jury for my candidacy exam
in Calgary.

I also wish to thank my advisors for their guidance. Many thanks to Mike, for his advice, his
help and mentorship, during this project and the previous ones, and helping to make me almost
a fully-grown researcher over the last six years. Un grand merci à Emmanuel, pour m’avoir
proposé ce sujet de thèse, pour s’être toujours montré disponible et patient, pour ses réponses
pointues à mes questions fréquentes, pour son aide sur tous les aspects, aussi bien théoriques que
d’implémentation que pratico-pratiques, ainsi que de m’avoir dit quand j’écrivais trop, ou trop
de bêtises.

Je voudrais également remercier tous ceux qui se sont montrés intéressés par mes travaux de
thèse et m’ont permis de les présenter tout au long de ces trois dernières années. I would like to
thank the Number Theory Group in Calgary, and more particularly those of the Number Nosh,
who have been very welcoming and allowed me to give practice talks there a few times. Enfin, un
grand merci à Christophe Ritzenthaler, et à Andreas Enge et Damien Robert, de m’avoir invité
dans leurs départements respectifs pour y présenter mes travaux, ainsi que pour les discussions
qui s’en suivirent, toujours très stimulantes et dont les fruits se retrouvent dans ce manuscrit.

A cotutelle is a lot of administrative work, and I cannot forget to thank everyone who was
involved in making this cotutelle possible. Merci à Vanessa Binet, ainsi que le reste du bureau des
Études Doctorales de l’UL, pour leur aide. Thank you to the Graduate Studies at the Computer
Science department of the University of Calgary, and many thanks to Britta Travis for answering
so many of my questions. Un grand merci à Sophie Drouot pour son aide, notamment pour la
planification de mes (nombreux !) voyages. Je souhaite également remercier Suzanne Collin pour
m’avoir permis de faire mes heures d’enseignement à Télécom Nancy, tout en composant avec le
fait que j’étais absent la moitié de l’année ; finally, I would like to thank the Computer Science
department at the UofC for providing me with the opportunity to be a teaching assistant there.

Un grand merci également à tous mes collègues, des deux côtés de l’Atlantique. Thanks to
Sebastian for brightening up the office and studying the theory with me. Mille mercis à Marie-
Andrée, l’autre moitié du Bureau des Isogénies, pour sa bonne camaraderie. Merci à Aurélien
pour ses conseils et ses meubles ; merci également à Hubert et Éric pour ces formations doctorales
mémorables. Merci à Jérémie, ainsi qu’à Rémi, pour les discussions occasionnelles entre lyonnais.
Merci à Aurore, et nos longs échanges de mails pendant l’hiver canadien. Et bien entendu, un
grand merci à toute l’équipe Caramel/Caramba, source inépuisable de rires et de trolls, pour
l’ambiance de travail exceptionnelle, que j’étais toujours très heureux de retrouver. Merci à Paul,
Jérémie, Marion, Pierre-Jean, et Pierrick, pour leur encadrement bienveillant, et leur aide et leur
disponibilité pour les “jeunes” ; merci à Alexander, Enea et Maike, et merci à Svyat et Simon

iv

pour les trolls et la bonne humeur. Merci à mes co-bureaux successifs – et il y en eut – Laurent,
Hamza, Cyril, Nick, Stéphane et Luc, pour avoir entrecoupé les silences productifs de discussions
animées sur tout et n’importe quoi. Un merci tout particulier à Laurent, qui a sait décrypter
les règlements de l’Université de Lorraine comme personne, et sans qui les formations doctorales
auraient paru beaucoup plus longues.

And of course, thanks to all that is not work and that allowed me to blow off steam through-
out this time. Merci à Azathoth, Natrium, Yoruk, Stormi et Otto, pour leur passion et leur
ténacité. Merci aux improvisateurs nancéens, et tout particulièrement à ceux de l’association
Improdisiaque ; merci à Steff pour son énergie, à Jess pour son amitié et son rire, et à Fanny
pour son soutien constant et les soirées saucisson épiques. Merci à Armand pour son amitié, nos
discussions profondes comme légères, et pour sa pêche. Thank you to the UofC Improv Club
for always making me feel so welcome every time I came back, and for opening me to so many
new perspectives; thanks to the Kinkonauts Level B class for the fun times. Merci à Anh Thy et
Laure pour toutes ces heures passées au téléphone ; merci à Clément, Olivier et Guillermo pour
leur amitié profonde depuis si longtemps.

Many thanks to my in-laws, for making sure I had a big, loud family whenever I was in
Calgary; for their support in so many ways for the last 5 years; and for always teaching me
something new about Canada or the English language.

Un grand merci à mes parents, pour leur présence constante, leur soutien dans les moments
difficiles, leur joie dans tous les bons moments, leurs encouragements et leur amour, depuis le
début du début. Merci à Manon, toujours aussi proche, toujours aussi complice, toujours aussi
présente, même avec la distance, que ce soit pour raconter des bêtises ou parler longuement.

And of course, thank you to my wife, for her unconditional love and support throughout the
last three years; who stood by me always; who told me to go for it even if she still wonders what
the heck is a theta-constant; who was always patient and understanding; who knows exactly
when I need to stop working and go for a hot chocolate or a Blizzard; who gives me so much
every day and whom I dedicate this manuscript to. Et merci à la petite Anaïs de m’avoir laissé
dormir un peu pour que je finisse d’écrire ce manuscrit. Love you both.

Contents

Introduction 1
1 Contributions of this thesis . 2
2 Outline of the manuscript . 3
3 Computational model . 5

3.1 Precision . 5
3.2 Loss of precision . 6
3.3 Cost of computations . 8

1 Background on elliptic and hyperelliptic curves 11
1.1 Elliptic curves and isogenies . 11

1.1.1 Elliptic curves over a field . 11
1.1.2 Isogenies . 13
1.1.3 Finding a `-isogenous curve: Vélu’s formulas 14
1.1.4 Computing an `-isogeny . 16
1.1.5 Computing an isogeny . 17

1.2 Applications of isogenies . 20
1.2.1 Isogenies and the ECDLP . 20
1.2.2 The SEA point counting algorithm . 20
1.2.3 Isogeny-based cryptography . 22

1.3 The Abel-Jacobi map . 22
1.3.1 Definition of the map . 22
1.3.2 Maps between complex tori . 23
1.3.3 Elliptic functions and the ℘ function . 25
1.3.4 Inverse of the Abel-Jacobi map . 25

1.4 Hyperelliptic curves and the Abel-Jacobi map . 27
1.4.1 Hyperelliptic curves over C . 27
1.4.2 The Abel-Jacobi map . 29

v

vi Contents

2 Background on theta functions 31
2.1 Definition . 31
2.2 Addition and duplication formulas . 33

2.2.1 τ -duplication formula . 33
2.2.2 Riemann formulas . 33

2.3 Reduction of the first argument . 34
2.3.1 Quasi-periodicity . 34
2.3.2 z-duplication formulas . 35

2.4 Reduction of τ via the symplectic group . 36
2.4.1 Symplectic group . 36
2.4.2 Action of the symplectic group on θ . 36
2.4.3 Fundamental domain for τ . 37
2.4.4 Loosened requirements for τ for g ≥ 2 . 38

2.5 Genus 1 instantiations . 40
2.5.1 Duplication formulas . 41
2.5.2 Other equations . 41
2.5.3 Argument reduction . 42

2.6 Genus 2 instantiations . 43
2.6.1 Definition . 44
2.6.2 Reduction . 44
2.6.3 Duplication . 45
2.6.4 The Kummer surface . 45

3 AGM and Borchardt mean 47
3.1 The real AGM . 47

3.1.1 Rate of convergence . 47
3.1.2 Brent-Salamin algorithm . 48

3.2 The complex AGM . 49
3.2.1 Choice of signs and optimal AGM sequences 49
3.2.2 Convergence of optimal AGM sequences 50
3.2.3 Theta-constants and arithmetico-geometric mean 51

3.3 Applications of the complex AGM . 53
3.3.1 Elliptic integrals . 53
3.3.2 Computing the complex logarithm . 53
3.3.3 Computing the exponential . 56

3.4 Generalization of the AGM to higher genera . 57
3.4.1 Definition . 57
3.4.2 Choice of roots and convergence . 57

vii

3.4.3 Link with the theta-constants . 59

4 The Landen isogeny 61
4.1 The real case (Bost-Mestre) . 61

4.1.1 Elliptic integrals and period computation 61
4.1.2 2-isogenies . 63
4.1.3 Elliptic logarithm . 64

4.2 The complex case (Cremona-Thongjunthug) . 65
4.2.1 Lattice chains . 66
4.2.2 2-isogenies . 67
4.2.3 Period computation . 67
4.2.4 Elliptic logarithm . 69

4.3 An algorithm for the Weierstrass ℘ function . 70
4.3.1 Fast computation of the sequence θi(0, 2nτ) 71
4.3.2 A backward recurrence for ℘ . 71
4.3.3 A quasi-optimal time algorithm . 72

4.4 Using the Landen transform to compute θ . 74

5 Naive algorithms for theta functions in any genus 77
5.1 Genus 1 . 77

5.1.1 Partial summation of the series defining θ 78
5.1.2 Naive algorithm . 79
5.1.3 Error analysis and complexity . 80
5.1.4 Computing θ2 . 81

5.2 Genus 2 . 82
5.2.1 Truncated sums . 83
5.2.2 Genus 2 naive algorithm . 84

5.3 Genus g . 86
5.3.1 Deckoninck et. al’s analysis . 86
5.3.2 Truncated sums . 88
5.3.3 Recurrence relations . 88

6 Fast computation of the theta function in genus 1 91
6.1 Preamble: fast theta-constants . 91

6.1.1 A quasi-optimal time algorithm to compute theta-constants 92
6.1.2 A faster algorithm with uniform complexity 94

6.2 A function related to θ(z, τ) . 96
6.2.1 The F sequence . 96
6.2.2 Link with theta functions . 97

viii Contents

6.2.3 A function with quasi-optimal time evaluation 100
6.2.4 Convergence . 102
6.2.5 Number of bits lost . 106

6.3 Fast computation of θ . 107
6.3.1 Building F . 107
6.3.2 Computing θ(z, τ) in uniform quasi-optimal time 110
6.3.3 Proving the correctness of the algorithm 112

6.4 Implementation results . 116
6.5 Batching computations of theta for different z . 117

6.5.1 Batch naive algorithm . 117
6.5.2 Batch quasi-linear algorithm . 119

7 Computing the Riemann theta function in genus 2 and above 121
7.1 Preamble: genus 2 theta-constants . 121
7.2 The algorithm . 125

7.2.1 The function F . 125
7.2.2 Constructing and inverting the F function 127
7.2.3 Proof of quasi-optimal time . 130

7.3 Implementation results . 131
7.4 Computing theta functions of higher genera . 131

7.4.1 The function F . 132
7.4.2 Extending the quasi-linear time algorithm 132

8 Fast computation of Abel-Jacobi 137
8.1 In genus 1 . 137

8.1.1 Computing the equation of the curve . 137
8.1.2 Computing Weierstrass’s ℘ function using the θ function 139
8.1.3 Comparing methods for the computation of ℘ 142
8.1.4 Computing the Abel-Jacobi map . 144

8.2 In genus 2 . 147
8.2.1 Computing the Abel-Jacobi map . 147
8.2.2 Computing the inverse of the Abel-Jacobi map 148

8.3 Extending the strategy to higher genus . 148
8.3.1 Computing the Abel-Jacobi map . 148
8.3.2 Computing the inverse of the Abel-Jacobi map 151

8.4 Interlude: a faster algorithm to compute E2k(τ) 152
8.4.1 Naive algorithm for the Eisenstein series 152
8.4.2 An algorithm based on the coefficients of the series expansion of ℘ 155

ix

8.4.3 Comparison . 156

9 Computing isogenous curves in genus 1 159
9.1 Computing isogenous curves over C . 159

9.1.1 Determining the isogenous curve . 160
9.1.2 Evaluating the isogeny . 160
9.1.3 Description of the algorithm and complexity 162

9.2 Computing isogenous curves over a number field 163
9.2.1 Computing embeddings . 163
9.2.2 Using complex conjugation . 164
9.2.3 Multi-evaluation and fast interpolation . 164
9.2.4 Recovering coefficients as rationals . 166
9.2.5 Description of the algorithm . 167

9.3 Computing isogenous curves over Fp . 169
9.3.1 Global torsion lifting . 169
9.3.2 Generic division polynomials . 170
9.3.3 A univariate polynomial . 174
9.3.4 Precision required . 179
9.3.5 Description of the algorithm . 179

9.4 Extending this idea to other settings . 181

Bibliography 183

A Absolute loss of precision in elementary fixed-point operations 191

Résumé de la thèse en français 197
1 Courbes elliptiques et application d’Abel-Jacobi 197
2 Fonction theta et calcul rapide de theta-constantes 199
3 Calcul de la fonction thêta de Jacobi . 201
4 Généralisation de l’algorithme au genre supérieur 203
5 Calcul de l’application d’Abel-Jacobi . 206
6 Calcul d’isogénies de noyau donné . 207
7 Conclusion . 209

x Contents

List of Algorithms

1 Reduction to Fg. 38
2 Reduction to F ′g. 39
3 Fast computation of the complex logarithm. 55
4 Compute the elliptic logarithm (real case). 65
5 Compute the elliptic logarithm (complex case). 70
6 Compute ℘ using the Landen transform. 73
7 Naive algorithm for genus 1 fundamental theta functions. 79
8 Naive algorithm for θ2 in genus 1. 82
9 Naive algorithm for θ in genus 2. 85
10 Fast algorithm to compute genus 1 theta-constants. 93
11 Fast uniform algorithm to compute genus 1 theta-constants. 95
12 Compute G in genus 1. 105
13 Compute F in genus 1. 107
14 Fast algorithm to compute genus 1 theta functions. 109
15 Fast, uniform algorithm to compute genus 1 theta functions. 111
16 Batch naive algorithm for genus 1 theta functions. 118
17 Compute τ from quotients of theta-constants in genus 2. 124
18 Compute F in genus 2 (description with quotients of thetas). 128
19 Compute F in genus 2 (generic description). 129
20 Compute F in genus g. 134
21 Compute the elliptic logarithm using F. 146
22 Genus g period matrix computation. 150
23 Genus g hyperelliptic logarithm computation. 151
24 Fast computation of E2k(τ). 156
25 Compute an `-isogenous curve and an isogeny with a given kernel, over C. 162
26 Compute an `-isogenous curve and an isogeny with a given kernel, over K. 167
27 Compute an `-isogenous curve and an isogeny with a given kernel, over Fp. . . . 180

xi

xii LIST OF ALGORITHMS

Introduction

Elliptic and hyperelliptic curves are classical objects in algebraic geometry, and their properties
have been studied for centuries. They have also been proposed for use in cryptography more than
thirty years ago, which along with the advent of computers rekindled the interest in effective
algorithms to compute objects and perform calculations related to these curves. In particular, the
computation of isogenies, which are morphisms between curves, has cryptographic applications:
isogenies transport the discrete logarithm problem on a curve (on which the security of the
cryptosystem depends) into an instance of the problem on another, potentially weaker, curve.
Hence isogeny computation has been used to outline a decrease of the security of a cryptosystem
based on curves; however, these applications only concern very specific cases so far, and elliptic
curves are still considered to be secure, and are widely deployed.

Elliptic and hyperelliptic curves over the complex numbers have an “analytic representation”
as complex tori, in addition to the usual algebraic representation. Analytic representations are
particularly interesting, in the sense that computing isogenies (and other maps) between two
such representations is as simple as multiplying two complex numbers. The translation between
both representations is done via the Abel-Jacobi map, an explicit isomorphism from the algebraic
to the analytic representation. In genus 1, this map is fairly well-known, and the links with
the arithmetico-geometric mean are explicit; its inverse is linked to the Weierstrass ℘ function,
which is also well-known. However, algorithms to compute the inverse of the Abel-Jacobi map
are currently more costly than the ones which compute the Abel-Jacobi map, which is not
satisfactory. Furthermore, the situation with respect to the Abel-Jacobi map in higher genus is
not as explicit, and there are no fast algorithms to compute the map and its inverse.

In this thesis, we look at the θ function, a function of complex numbers which can be defined
in any genus. The θ function can be linked to complex Riemann varieties, including elliptic and
hyperelliptic curves over the complex numbers, and can be used to compute the Abel-Jacobi
map. Furthermore, it has links with other complex functions of number theory, including the
Weierstrass ℘ function.

We took a closer look at the computation of this function with arbitrary precision: the main
contribution of this manuscript is to outline, in genus 1 and genus 2, fast algorithms which
compute the value of this function with complexity roughly linear in the precision needed. A
similar approach could be applied to the general genus g case, but this requires solving a few
problems first, which we solved in genus 1 and 2 but leave as future work for higher genus. As a
result, our work also gives fast algorithms for the computation of the Abel-Jacobi map and its
inverse, which is also of general interest. The algorithms for θ, ℘ and the Abel-Jacobi map that
we present in this manuscript have the best known asymptotic complexity. Finally we also study
one application of this: a new algorithm to compute isogenies of a given kernel over C, Fp or a
number field.

1

2 Introduction

1 Contributions of this thesis
Main contributions

The main contributions of this thesis lie in the design and study of algorithms to compute theta
functions in quasi-linear time.

Generalizing algorithms studied in [Dup06], we first give an algorithm to compute the value
of θ(z, τ) (Jacobi’s theta function) with precision P in O(M(P) logP), an improvement over
the O(M(P)

√
P) running time of previous algorithms. Our implementation of the algorithm

is publicly available, and shows this algorithm is faster than previous algorithms for precisions
greater than 260 000 decimal digits. We present this in Chapter 6.

We then generalized this approach to higher genera, as presented in Chapter 7. We managed
to obtain an algorithm to compute genus 2 theta functions in the same O(M(P) logP) time,
although the invertibility of the Jacobian (which arises when using Newton’s method) remains
to be proven; this is an improvement over previous algorithms, of complexity O(M(P)P). Once
again, our implementation of the algorithm is publicly available and shows a speedup with
respect to the naive algorithm for precisions greater than 3 000 digits. Furthermore, we studied
the generalization of the algorithm in genus g; a similar complexity seems achievable, but this
requires solving some problems which arise when attempting to use Newton’s method, and which
were more or less solved in genus 2.

We then applied the algorithms and ideas of these chapters to the computation of the Abel-
Jacobi map and its inverse in Chapter 8. The fast algorithms for the computation of θ allowed us
to show that both the complex Abel-Jacobi map and its inverse can be computed with precision
P in O(M(P) logP) in genus 1 and 2, provided the Jacobian of the system is invertible. In
genus g, the same result for the Abel-Jacobi map is achievable, but our algorithm for the fast
computation of its inverse hinges on the fast computation of θ in genus g, which is not fully
solved yet.

Finally, as an application of the fast computation of the genus 1 Abel-Jacobi map and its
inverse, we studied an isogeny computation algorithm in Chapter 9. The algorithm allows one
to compute an isogeny with given kernel over C, a number field, or a finite field. Its complexity
is worse than that of Vélu’s formulas, but it seems easier to generalize to genus g; however, we
left the study of this generalization to future work.

Other contributions

We wish to highlight a few results we obtained in this manuscript; some of them may be of
secondary importance, but we think they may be of independent interest. As these results are
scattered throughout this manuscript, we summarize them here. The list includes:

• We give a new algorithm to compute ℘(z, τ) with precision P in time O(M(P) logP) .
The algorithm uses the link between values of ℘ and the Landen transform, which gives
a recurrence relation; it is described in Section 4.3. We also compare this algorithm to
the one deriving from the well-known link between ℘ and θ, which is also of quasi-linear
complexity using our algorithms for θ; the comparison in Section 8.1.3 shows that the new
algorithm has a smaller constant and is faster in practice.

• We give a fast algorithm to compute E2k(τ) with precision P inO(P 1+εk1+ε) bit operations;
this is a better asymptotic complexity than the naive algorithm, which has complexity
O((P + k)2+ε log k). Furthermore, our algorithm actually computes E2k′(τ) for all k′ ≤ k
in the same asymptotic running time. We refer to Section 8.4 for a more detailed analysis.

2. Outline of the manuscript 3

• Our algorithm for the Abel-Jacobi map in genus g can be applied to the genus 1 setting (see
Section 8.1.4), which gives a new quasi-linear algorithm to compute the elliptic logarithm
using the link between ℘ and θ. The resulting algorithm is only twice slower than the more
direct algorithms based on the Landen transform.

• We show in Chapter 5 that using recurrence relations in the naive algorithm to compute θ
can be used in any genus, and optimize the genus 1 and genus 2 naive algorithms to lower
the asymptotic constant.

• We improve the uniform algorithm for genus 1 theta-constants given in [Dup06] and include
the computation of θ2 in the same uniform complexity (see Section 6.1.2).

• Finally, we study a global torsion lifting procedure in Section 9.3. In particular, we study
a univariate polynomial derived from the generic `-torsion polynomials; we manage to give
a bound on the module of its roots, but its irreducibility is left as an open problem.

2 Outline of the manuscript
This manuscript is structured in nine chapters.

Background

Chapter 1 deals with background concerning elliptic curves and isogenies, the primary motivation
for our study of the computation of the Abel-Jacobi map; we also discuss this map and its
potential applications, and show how these notions generalize to genus 2.

Chapter 2 establishes background on general (i.e. genus g) theta functions, outlining the ideas
and the formulas that we use throughout the manuscript. We also mention two explicit reduction
algorithms which seem relevant in the context of genus g θ functions, although they are weaker
than the reduction to the genus g fundamental domain, for which there are no explicit reduction
algorithms. Section 2.5 and Section 2.6 show all the formulas we use in the context of genus 1
and genus 2 theta functions, which is handy when reading the more involved chapters.

Computation of the Abel-Jacobi map

Chapter 3 deals with the arithmetico-geometric mean (AGM), an important object in this
manuscript since it can be computed in quasi-linear time. We outline the well-known connection
with the theta-constants; the connection with elliptic integrals is discussed in the next chapter.
We also discuss a nice generalization of the AGM, the Borchardt mean.

Chapter 4 discusses the Landen isogeny, which shows the connection between the AGM and
the elliptic integrals, and allows one to compute the periods of an elliptic curve and the Abel-
Jacobi map in quasi-linear time. The full proof for general complex elliptic curves has been
obtained rather recently, and we recall the notions involved in this proof. We also discuss in that
chapter an original algorithm to compute the Weierstrass ℘ function in quasi-linear time using
the Landen isogeny; finally we discuss similar ideas for the θ function.

Theta functions

Chapters 5, 6 and 7 deal with algorithms to compute the θ function; they form the core of this
manuscript. Chapter 5 looks at the algorithm consisting in evaluating the sum defining θ, with
enough terms so that the result is accurate to the desired precision; we show how one can use

4 Introduction

recurrence relations to evaluate the terms efficiently, and fully evaluate the complexity of the
algorithm in any genus, although we were not able to determine the dependency in τ in the
general genus g case.

Chapter 6 outlines an original algorithm which computes the genus 1 theta function in quasi-
linear time; we use a similar strategy to the theta-constants: find a function F which can be
evaluated in quasi-linear time and takes a special value at the theta functions (using a sequence
inspired by the AGM), then invert this function using Newton’s method. We provide a full
analysis of the running time of this algorithm and of the precision loss that is incurred during
the computation, and give an algorithm with complexity uniform in z and τ . We implemented
this algorithm in low-level GNU MPC and show that this algorithm is faster than the naive
algorithm described in Chapter 5 for precisions greater than 100 000 decimal digits. The results
in this chapter have been accepted for publication in the journal Mathematics of Computation
in November 2015 [Lab15].

Chapter 7 shows how the quasi-linear time algorithm can be generalized to theta functions
of higher genera. The results in Chapter 7 were obtained with Emmanuel Thomé and written
up in a paper [LT16] which was accepted to the 2016 Algorithmic Number Theory Symposium
(ANTS-XII). We outline explicitly the algorithm in genus 2: we define F, the function to invert,
explictly and we prove that it can be evaluated in quasi-optimal time; we also solve a tricky
issue, which is that Newton’s method cannot be applied directly to this function. The resulting
algorithm was implemented in genus 2 in Magma, and it runs faster than the naive algorithm
for precisions larger than 3000 decimal digits, which is much less than in genus 1; note that this
algorithm relies on a conjecture, which is that the Jacobian of F is invertible. In the general,
genus g case, we show the construction of F, whose evaluation has conjectured quasi-optimal
running time. However, a similar problem with Newton’s method arises, and we were not able
to show that one can solve it in the general case.

Abel-Jacobi map

Chapter 8 deals with the computation of the Abel-Jacobi map, and the links between this map
and theta functions. We obtained results of different strength depending on the genus.

In genus 1, known AGM-based methods allow the computation of the Abel-Jacobi map in
quasi-linear time; we propose an algorithm using the function F of Chapter 6, but it is twice
slower than these methods. The inverse of the Abel-Jacobi map is given by Weierstrass’s ℘
function, which can be expressed as a function of θ to yield a first quasi-linear time algorithm.
We compare this algorithm to another original algorithm for ℘ based on the Landen isogeny,
which we outlined in Chapter 4; implementations show that the latter is two to three times
faster than the former.

In genus 2, no methods which compute the Abel-Jacobi map in quasi-linear time in the
general complex case seem to exist. Our algorithm using the function F can be generalized here,
and yields a quasi-linear time algorithm. The computation of the inverse of the Abel-Jacobi map
relies once again on the computation of θ, which gives a quasi-linear time algorithm modulo the
conjecture on the Jacobian of F.

In genus g, we can once again use the function F of Chapter 7, which can be evaluated in
quasi-linear running time; this yields a quasi-linear time algorithm for the Abel-Jacobi map,
which is the best known complexity. As for the computation of the inverse of the Abel-Jacobi
map, it reduces to the computation of θ in genus g; hence, it depends on being able to find a
way to apply Newton’s method to F, which we were not able to achieve.

3. Computational model 5

Isogeny computation

The purpose of the last chapter, Chapter 9, is to outline and study an algorithm which, given a
complex elliptic curve and a subgroup of order `, computes an `-isogenous curve such that the
subgroup is the kernel of the isogeny. This algorithm uses the Abel-Jacobi map to transpose
this problem to the complex tori, where it is easy to solve. The asymptotic complexity of this
algorithm is worse than the complexity of existing algorithms (e.g. Vélu formulas); however, it
seems like it can be generalized quite nicely to the computation of isogenies between genus 2
curves.

We then show how one can build an algorithm which, given a curve defined over a number
field K, finds an isogenous curve with given kernel. This requires embedding the number field
into the complex numbers, then recognizing the coefficients of the complex isogeny as elements
of the number field; however, we were unable to find an explicit formula giving the precision
required to do this. Finally, this strategy can be extended to curves defined over finite fields,
which requires lifting the curve to a curve defined over a number field; we propose a conjecture
on the precision needed in this case.

3 Computational model
Throughout this manuscript, we will perform computations on complex numbers, and we will
always use the same computational model in those cases. We will outline algorithms to compute
mathematical quantities with arbitrary precision, i.e. using multiprecision arithmetic. Hence, the
cost of our arithmetic operations depends on the number of digits, which we always denote P ,
of the quantities we are working with.

3.1 Precision
We introduce the notion of precision as follows:

Definition 0.3.1. Let α ∈ R; we say that α̂ is an approximation of α with absolute precision P
if

|α− α̂| ≤ 1
2P .

We say that α̂ is an approximation of α ∈ R∗ with relative precision P if

|α− α̂
α
| ≤ 1

2P .

Throughout this manuscript, we will consider the problem of computing quantities with abso-
lute precision P – that is to say, computing P exact bits after the radix point, or computing the
quantity up to 2−P . This choice is largely without practical consequences: most of the quantities
we will compute in this thesis have integral part of bounded size, and hence we could have just
as easily required a relative precision P + c with c a small constant. The notion of absolute
precision for complex numbers can either be transposed as “the norm of the difference is smaller
than 2−P ” or “the real part and the imaginary part of the approximation are correct up to 2−P ”;
these notions only differ by a

√
2 factor, which is not very important in most cases.

Because of this choice, we will work using fixed-point arithmetic instead of the commonly used
floating-point arithmetic. This simply means that the quantities we will work with will be of the
form a × 2−P for precision P , where a is an integer. This choice is consistent with our choice
of working with absolute precision, since every number which can be represented in fixed-point
arithmetic of absolute precision P is distant from its neighbours by exactly 2−P , whereas the

6 Introduction

distance between two consecutive floating-point numbers can be greater than 2−P , which fails
to provide an approximation with absolute precision P .

As we mentioned, the quantities we will work on in this manuscript very often have a bounded
size. We will frequently make the (sometimes implicit) assumption that we have taken into
account the size of their integral part in the complexity; that is to say, that the integer a in the
representation of the quantity has P + c bits, or even simply O(P) bits. Should a quantity have
integral part of size larger than O(P), we will mention it and adjust the complexity accordingly;
we ask the reader to assume that, if nothing is mentioned, the integral part can be coded on
o(P) or O(P) bits, which means that the integer a of the fixed-point representation has O(P)
bits.

3.2 Loss of precision

We now define the notion of loss of precision, which will be discussed extensively throughout
this manuscript.

Definition 0.3.2. Three different notions of loss of precision can be defined:

• mathematical loss of precision: let x̂ be an approximation of x ∈ C with absolute precision
P , and f a complex function. The mathematical loss of precision is c ≥ 0 such that
|f(x)− f(x̂)| ≤ 2−P+c. This is also called the forward error [Hig02].

• loss of precision induced by the algorithm: let f be a complex function and A an algorithm
to compute f which works using exact arithmetic, i.e. we assume the arithmetic operations
in A always give exact results. The loss of precision induced by the algorithm is c ≥ 0
such that |f(x)−A(x)| ≤ 2−P+c for all x ∈ C. This can be rephrased as the quality of the
approximation of f provided by A.

• loss of precision induced by rounding: let x̂ be a P -bit number, A an algorithm which
works using exact arithmetic (i.e. using as many digits as needed to represent the result
of arithmetic operations), and AP the same algorithm but in which arithmetic operations
give a result rounded with precision P . The loss of precision induced by rounding is c ≥ 0
such that |A(x̂)−AP (x̂)| ≤ 2−P+c.

The approach which has been taken throughout this manuscript is as follows: we do not take
into account the mathematical loss of precision; all our algorithms induce no loss of precision
(i.e. assuming exact arithmetic, they would return a result which is always within 2−P of the
value which is sought); the loss of precision induced by rounding is analyzed and compensated
for. Hence, our goal is to provide algorithms to compute an approximation of f(x̂) which is
within 2−P of that value, i.e. the exact value of f evaluated at the argument. Should one
require an approximation of f(x) within 2−P of that value – i.e. the correct value with absolute
precision P –, they should analyze the mathematical loss of precision (say, c bits) and provide
an approximation of x with precision P + c.

In the rest of this manuscript, “loss of precision” will be understood as meaning “loss of
precision induced by rounding”. We will state all our algorithms as taking P -bit numbers as
inputs; we analyze the loss of precision induced by rounding throughout the algorithm and
bound it in the worst case, to ensure our algorithms always return approximations accurate to
2−P of the results.

3. Computational model 7

Loss of precision induced by rounding

By loss of absolute precision induced by rounding, we mean the error in the final result which is
due to the fact that we worked on approximations of the input coded on P bits, and that all the
results of intermediate computations in the algorithm were rounded to give P -bit numbers. For
instance, dividing a number by 2 then multiplying it by 2 loses one bit of precision, because the
intermediate result was rounded; this is inherent to working with P -bit numbers.

We analyze here the loss of precision induced by elementary functions, which we use as a
building block of all our algorithms; the following theorem shows how an error on a rounded
number is transformed by the computation of a rounded result. The analysis of precision loss in
our algorithms is then a matter of combining these results to compute how large the errors can
get.

Theorem 0.3.3. For j = 1, 2, let zj = xj+iyj ∈ C and z̃j = x̃j+iỹj its approximation. Suppose
that |zj − z̃j | ≤ kj2−P and that kj ≤ 2P/2. Suppose furthermore that kj2−P ≤ |zj | ≤ 2P/2−3.
Then

1. |Re(z1 + z2)− Re(z̃1 + z̃2)| ≤ (k1 + k2)2−P

2. |Re(z1z2)− Re(z̃1z̃2)| ≤ (2 + 2k1|z2|+ 2k2|z1|)2−P

3. |Re(z2
1)− Re(z̃1

2)| ≤ (2 + 4k1|z1|)2−P

with the same bounds applying to imaginary parts, and

4. |ez1 − ez̃1 | ≤ |ez1 | 7k1+8.5
2 2−P .

Furthermore if |zj | ≥ 2kj2−P ,

5. |Re
(
z1
z2

)
− Re

(
z̃1
z̃2

)
| ≤

(
6(2+2k1|z2|+2k2|z1|)

|z2|2 + 2(4+8k2|z2|)(2|z1||z2|+1)+2
|z2|4

)
2−P

and the same bound applies to the imaginary part, and

6. |√z1 −
√
z̃1| ≤ k1√

|z1|
2−P .

Proof. See Appendix A for a proof, inspired from the techniques in [ETZ].

We will make use of this theorem to compute the amount of precision we lost during the
calculations.
Remark 0.3.4. Note that not every operation creates a loss of absolute precision. For instance,
the multiplication by a number much smaller than 1 can create a result which is accurate to the
full precision from numbers that were not; the same goes for the computation of the square root
of a large number.

Guard bits

In order to compensate for precision loss, we use the notion of guard bits:

Definition 0.3.5 (guard bits). Let A be an algorithm on complex numbers with exact arith-
metic, and denote by AP the same algorithm which operates on numbers with P bits of absolute
precision (i.e. in which inputs are of precision P and all the intermediate quantities are rounded
off to precision P). Let x̂ be a complex number with P bits after the radix point. We say that
a computation is performed with C guard bits to denote the following process:

8 Introduction

• Put ˆ̂x the number x̂ (with P bits after the radix point) followed by C + 1 zeros, so that
ˆ̂x is a number with P + C + 1 bits after the radix point and an approximation of x̂ with
precision P + C + 1;

• Compute αP+C = AP+C(ˆ̂x) with precision P + C + 1;

• Round off the result with precision P to get a number αP .

If the computation of f loses C bits, then |A(x̂)− αP | ≤ 2−P .

This means that losses of precision throughout the computation can be compensated, and
the final result is then an approximation of the result with absolute precision P . However, this
means the precision at which one works increases, which can have an impact on the asymptotic
cost of the algorithm; analyzing this and finding ways to reduce the precision losses becomes
important in some algorithms.

3.3 Cost of computations
Working with fixed-point arithmetic representations of the form a×2−P , with a an integer, means
that the operations on these representations are essentially reduced to operations on integers.
For instance, adding two fixed-point numbers of (absolute) precision P can be done in O(P) bit
operations.

As we mentioned in the previous subsection, we will assume that we are working with fixed-
point numbers of absolute precision P whose integral part can be represented in O(P) bits at the
most. The complexity of multiplying such numbers is then O(M(P)), whereM(P) is defined as
follows:

Definition 0.3.6. Denote byM(P) the number of bit operations needed to compute the product
of two P -bit integers. We have

• M(P) = O(P 2) if the naive (schoolbook) algorithm is used;

• M(P) = O(P log2 3) = O(P 1.58) if Karatsuba’s algorithm is used;

• M(P) = O(P logP log logP) = O(P 1+ε) if the algorithm of Schönage-Strassen is used;

• M(P) = O
(
P logP2O(log∗ n)) if Fürer’s algorithm is used.

For more details on these algorithms and their implementations, we refer to [BZ10] and [Für09].

Newton’s method

Finally, we mention that Newton’s algorithm can be used to compute some quantities with
precision P , for a cost which is similar to the cost of computing the function one inverts.

The following theorem is at the basis of the analysis of Newton’s method; we present the one-
dimensional case here, but the proof (presented in [BCSS97, Section 8.1]) can be immediately
generalized to higher-dimensional spaces.

Theorem 0.3.7 ([BCSS97, Chapter 8]). Let f : C→ C be an analytic function, and define

γ(f, z) = sup
k≥2
|f

(k)(z)
f ′(z)k! |

1
k−1 .

3. Computational model 9

Define
Nf (z) = z − f(z)

f ′(z)
and consider the sequence defined by an initial value z0 and the relation zn+1 = Nf (zn). Let ζ
be such that f(ζ) = 0; then

|z0 − ζ| ≤
3−
√

7
γ(f, ζ) ⇒ |zn − ζ| ≤

1
22n−1 |z0 − ζ|.

Hence, provided that z0 is close enough to the zero of f , Newton’s method gives an approxi-
mation of the zero with an accuracy which roughly doubles at each step.

We note the following corollary, which we will use often:

Corollary 0.3.8. Let f : C → C be an analytic function and x such that f(x) = 0. Let x̂
be an approximation of x with precision P . Then computing Nf (x̂) at precision 2P gives an
approximation of x with precision 2P − δ, where δ > 0 depends only on f (and precision losses)
and x.

Hence, one step of Newton’s method “lifts” an approximation with precision P into an ap-
proximation with absolute precision roughly 2P . In practice, computing δ can be done using the
following procedure (described in e.g. [ET14a]): if x̂ and Nf (x̂) agree to k bits, and Nf (x̂) and
Nf (Nf (x̂)) agree to k′ bits, we have δ = 2k − k′.

This allows to prove the following result, giving the complexity of applying Newton’s method:

Theorem 0.3.9. Let f : C → C be an analytic function and x such that f(x) = 0. Denote
C(f, P) the cost of evaluating f

f ′ with arguments of precision P , and suppose that 2C(f, P) ≤
C(f, 2P). Then one can compute an approximation of x with precision P in O (C(f, P)) opera-
tions.

Proof. We give a sketch of the proof; a very similar result is proved in detail in [Dup06, Thm. 1.2].
Denote δ the number as in Corollary 0.3.8; note that δ is a constant in P . Let P0 be sufficiently
large so that Theorem 0.3.7 applies; we furthermore impose P0 > δ. Note again that P0 is a
constant in P . We start by computing an approximation xP0 of x with precision P0; the cost of
computing this approximation (by any method) only depends on P0, and is hence a constant in
P . Computing Nf (xP0) with precision 2P0 gives an approximation of x with absolute precision
2P0−δ > P0; one can then repeat the process k times in a row. The cost of applying this process
is

C (f, P0) + C (f, 2P0 − δ) + . . .+ C
(
f, 2kP0 − (2k − 1)δ

)
≤ 2C

(
f, 2kP0

)
.

Taking k = O(logP) is enough to get a result which is an approximation of x with P bits of
precision; the total cost is then O (C(f, P)).

This result means that applying Newton’s method while doubling the working precision at
each step is only as costly as the last full-precision step. Note that applying directly Theo-
rem 0.3.7, i.e. computing each iteration at full precision, gives a O(C(f, P) logP) cost, which is
not as good.

A direct application is that the division of two fixed-point numbers of precision P can be
carried out in O(M(P)) bit operations, by inverting the function fz(t) = 1 − zt via Newton’s
method. Furthermore, the square root can also be computed in O(M(P)) bit operations, either
by applying Newton’s method directly (which gives in this case Heron’s method), or by computing
the inverse square root using Newton’s method and multiplying it by the number; as explained

10 Introduction

in [BZ10, Section 4.2.3], the latter is more efficient in practice (because there are then no divisions
in Newton’s method), but both methods have the same asymptotic cost of O(M(P)).

Another application of Newton’s method, as we explain in Chapter 3, is the computation of
exp(z) with precision P in the same amount of time as log(z), which is O(M(P) logP) (which
we call quasi-linear time or quasi-optimal time).

Finally, an interesting application of Newton’s method is to prove that any algebraic function
(i.e. any function which can be defined as the root of a polynomial equation) over Q[X] can
be computed with absolute precision P in O(M(P)) bit operations [BB87, Theorem 6.4]. We
will see in this manuscript that a large number of transcendental functions – π, log, exp, θ –
can be computed in O(M(P) logP) bit operations; proving that they cannot be computed in
O(M(P)) bit operations would be another proof of their transcendance, but we are nowhere
close to obtaining such facts.

Chapter 1

Background on elliptic and
hyperelliptic curves

In this introductory chapter, we take a look at elliptic and hyperelliptic curves, which are abelian
varieties that have been studied extensively over the years, in particular because of their use in
cryptography. One of the ultimate goals of this manuscript is to describe a new algorithm to
compute isogenies, which are morphisms between elliptic curves with interesting applications; it
led us to investigate related problems, among which the computation of the theta function and
of the Abel-Jacobi map.

We start this chapter by giving a brief overview of elliptic curves defined over any field; then,
we discuss isogenies and their applications, and survey the state of the art in computing them
in several settings. In another section, we discuss complex elliptic curves, for which another rep-
resentation is available, with interesting computational consequences. We then end the chapter
by a discussion of hyperelliptic curves.

1.1 Elliptic curves and isogenies
We define elliptic curves over any field, then discuss isogenies; we also survey the state of the
art for their computation in several settings. We refer the reader to [CFA+10, Sil86] for more
details.

1.1.1 Elliptic curves over a field
Definition 1.1.1 ([CFA+10, Section 13.1.1]). Let K be a field. An elliptic curve E over K, is
the set of points [X : Y : Z] ∈ P2(K) satisfying the equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

with ai ∈ K. We call O = [0 : 1 : 0] the point at infinity. We denote E(K) the set of K-rational
points, the points of the elliptic curves which are defined over K, i.e. for which there is λ ∈ K
such that λX, λY, λZ ∈ K.

For ease of notation, we will often write the equation using non-homogeneous coordinates
(x = X/Z, y = Y/Z):

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

which works for all the points except the point at infinity.

11

12 Chapter 1. Background on elliptic and hyperelliptic curves

Remark 1.1.2. In the remainder of this manuscript, we will assume that char(K) 6= 2, 3. Hence,
after a change of variables, every elliptic curve can be written in a short Weierstrass form:

y2 = x3 + ax+ b.

There exists a group law making the elliptic curve an abelian group; this fundamental property
is the basis of the cryptographic applications of elliptic curves.

Proposition 1.1.3. Let E be an elliptic curve over K. There exists a map E × E → E, the
chord-and-tangent process, which defines a commutative group law on E. Furthermore the group
law preserves K-rationality, i.e. it gives a group law E(K)× E(K)→ E(K).

The chord-and-tangent process is described in many references, such as [Sil86, Section III.2],
[Gal12, Section 7.9] or [CFA+10, Section 13.1.1]. We do not describe it explicitly in this
manuscript, as we do not use it; its existence is sufficient for our purposes.

The elliptic curve discrete logarithm problem (ECDLP)

Elliptic curves over finite fields have found an application in the last decades in the field of
cryptography; indeed, cryptosystems based on elliptic curves are among the most widely spread,
and are supported in many different standards and applications. As all public-key cryptography
schemes, its security relies on a hardness assumption, i.e. a problem that is believed to be hard,
and such that breaking the cryptographic scheme seems to be as hard as solving this problem.
In the case of elliptic curve cryptography, the problem is

Definition 1.1.4. Let E(Fp) : y2 = x3 + ax + b with a, b ∈ Fp. The elliptic curve discrete
logarithm problem is the following problem:

Given P ∈ E(Fp) and Q = [n]P , compute n.

We sometimes put n = logP Q, the discrete logarithm of Q with respect to the base point
P . We outline a few facts on the state of the art on solving the ECDLP; for a recent and more
in-depth review, we refer to [GG16].

In some clearly-identified cases, the elliptic curve discrete logarithm problem (ECDLP) is
easy to solve; this is the case for instance for curves such that]E(Fq) ∈ {q, q+1}, and such cases
should be avoided for cryptography. Furthermore, the Silver-Pollig-Hellman algorithm [CFA+10,
Section 19.3] allows one to solve the discrete logarithm problem in O(

√
n), where n is the largest

prime factor of the order of the group; hence, one important guideline to follow is to work in a
subgroup of points of the elliptic curve that has a large prime order. A frequent case is to pick a
curve whose number of points is “almost a prime”, that is to say]E(Fq) = cp where c is a small
number (for instance c = 16) and p is a prime.

Pollard’s rho algorithm is currently one of the best general-purpose algorithms to solve the
ECDLP in a subgroup of prime order r; it has an average-case complexity of (

√
2 + o(1))

√
r

operations [GG16]. An interesting improvement over this approach is the “two grumpy giants
and a baby” algorithm of [BL13], an improvement over the “baby-steps giant-steps” approach.
The analysis of [GWZ15] shows one can expect an average running time of (1.26 + o(1))

√
r

steps, an improvement over Pollard’s rho. The article [GWZ15] exhibits further improvements,
bringing the average complexity down to (0.38 + o(1))

√
r for Pollard’s rho and (0.36 + o(1))

√
r

for the “two grumpy giants and a baby” approach.
Hence, for a curve which has a prime order subgroup of order ' 2n, breaking the ECDLP

costs around 2n/2 operations. By contrast, algorithms to factor n-bit numbers (and thus who

1.1. Elliptic curves and isogenies 13

break the RSA cryptosystem) require roughly e1.92(logn)1/3(log logn)2/3 operations, which is a much
faster, subexponential complexity. Comparing those complexities give the result that the key
size for a cryptosystem whose security relies on the ECDLP grows as slowly as the cube root
of the key size for the RSA cryptosystem; this allows cryptosystems based on elliptic curves to
have much smaller key sizes than other cryptosystems, which compensates for a costlier group
law. In practice, a few curves have been standardized by NIST, defined over Fp for p a prime
number of size 192, 224, 256, 384, or 521 bits. For reference, the largest instance of ECDLP for
a curve over Fp was for a subgroup with a 112 bit prime order [BK10], while the largest RSA
instance ever broken was for a key of size 768 bits [KAF+10].

1.1.2 Isogenies
This section deals with isogenies, which are essentially morphisms transporting the group law of
a curve onto another one. Those maps are very useful in many domains related to elliptic curve
cryptography; we detail in Section 1.2 some applications of isogenies. We introduce isogenies and
state the most important mathematical theorems related to them. We do not present proofs, as
those are presented in a number of textbooks; our presentation follows the one of [Sil86].

Definition 1.1.5 ([Sil86, III.4]). Let E1, E2 be two elliptic curves. An isogeny from E1 to E2
is a morphism φ : E1 → E2 such that φ(OE1) = OE2 and φ(E1) 6= {OE2}. We then say that E1
and E2 are isogenous if there is an isogeny from E1 to E2.

This property implies that isogenies transport the group law from one elliptic curve to another
one, as follows:

Theorem 1.1.6 ([Sil86, Theorem 4.8]). Let φ : E1 → E2 be an isogeny. Then for any P,Q ∈ E1,
φ(P +Q) = φ(P) + φ(Q).

We then define the notion of degree of isogenies:

Definition 1.1.7 ([Sil86, III.4]). An isogeny induces an injection of function fields
φ∗ : K(E2)→ K(E1). We then define the degree of φ as

deg φ = [K(E1) : φ∗K(E2)].

In all that follows, we may write “φ an n-isogeny” for “φ an isogeny of degree n”.
Remark 1.1.8. An important example of an isogeny is the multiplication-by-m map

[m]P = P + ...+ P︸ ︷︷ ︸
m times

which is an isogeny from a curve to itself. Note that deg([m]) = m2.
Remark 1.1.9. We call isogenies φ : E → E endomorphisms, and consider the endomorphism ring
of the curve End(E). Usually, the only endomorphisms are the multiplication-by-m maps, and
End(E) ' Z; however, for some curves, the endomorphism ring is larger, and we then say that
the curve has complex multiplication. This is for instance the case of curves over finite fields, who
have at least the Frobenius endomorphism φ : (x, y) 7→ (xp, yp). We refer to [Sil86, Section III.9
and Section V.3] for more on endomorphism rings in finite fields, and to [Koh96, Sut13] for
explicit algorithms.

Theorem 1.1.10 ([Sil86, Theorem III.4.12]). Let E be an elliptic curve and let Φ be a finite
subgroup of E. There there exists a unique elliptic curve E′ and a (separable) isogeny φ : E → E′

such that Kerφ = Φ.

14 Chapter 1. Background on elliptic and hyperelliptic curves

An explicit construction of the curve and the isogeny is given in Section 1.1.3.

Theorem 1.1.11 ([Sil86, Theorem III.6.1]). Let φ : E1 → E2 be an isogeny of degree m. Then
there is a unique isogeny φ̂ : E2 → E1 such that φ̂ ◦ φ = [m]. We call φ̂ the dual isogeny of φ.

This result has many applications; for instance, we note that it has been used in [DIK06] to
propose curves where doubling and tripling are sped up by computing [2] and [3] using specific
isogenies and their dual instead of adding points using the classical chord-and-tangent process.
Remark 1.1.12 ([Sut13, p. 6]). Note that for any prime ` that does not divide the characteristic
of the field, there are `2 − 1 non-zero `-torsion points, and hence `+ 1 cyclic subgroups of order
`. Each of those subgroups is the kernel of an isogeny over K. Furthermore, every `-isogeny φ
from E arises this way, since P ∈ Kerφ ⇒ [n]P = φ̂ ◦ φ(P) = 0. The isogeny is defined over K
if the subgroup is Galois-invariant; [Sut13, Lemma 2] shows there are 0, 1, 2 or ` + 1 isogenies
defined over K. This property is useful in the context of SEA algorithm (see Section 1.2.2).

The following theorem gives a criterion to recognize whether two curves over a finite field are
isogenous:

Theorem 1.1.13 (Tate). Let E,E′ be two elliptic curves over Fq. Then E and E′ are isogenous
if and only if]E(Fq) =]E′(Fq).

Hence, counting points of both elliptic curves is enough to determine whether they are isoge-
nous or not. This can be accomplished in polynomial time using the Schoof-Elkies-Atkin (SEA)
algorithm, which has complexity O(log4+ε p) [BSS99], an improvement over the O(log5+ε) com-
plexity of the original Schoof algorithm [Sch95]. We discuss this algorithm in Section 1.2.2, as
the algorithm itself has a connection with the computation of isogenies.

Finally:

Theorem 1.1.14 ([CFA+10, Corollary 4.76]). Any isogeny can be decomposed into a sequence
of isogenies of prime degree.

This allows us to assume in some applications that the isogeny has degree a prime number.
Also, the decomposition of an isogeny in isogenies of prime degrees can be translated in terms
of paths in isogeny graphs; see Section 1.1.5 for more details.
Remark 1.1.15. An isogeny between elliptic curves in their short Weierstrass form can be written
as

φ(x, y) =
(
g(x)
h(x)2 , y

k(x)
h(x)3

)
,

with h(x) a polynomial defined in the next section; furthermore, we have deg h = `−1
2 , and

deg g = `, deg k = 3 `−1
2 . Another way to write this formula is given in the next section.

The problem of isogeny computation can be split up in three different settings, depending on
what is known and what is sought. We summarize these settings in three different problems, from
easiest to hardest: “finding an `-isogenous curve and the isogeny” (Problem 1.1.16), “computing
an `-isogeny between two given curves” (Problem 1.1.19) and “computing an isogeny between
two given curves” (Problem 1.1.20). We take a look at these problems in the following sections.

1.1.3 Finding a `-isogenous curve: Vélu’s formulas
We first consider the following problem:

Problem 1.1.16. Let ` be an odd prime. Given:

1.1. Elliptic curves and isogenies 15

• an elliptic curve E defined over an algebraically closed field K,

• a subgroup S ⊂ E(K) of cardinality ` (or, alternatively, an `-torsion point P , in which
case S = {[i]P}),

compute:

• A curve E′ that is `-isogenous to E;

• An `-isogeny φ : E → E′ such that Kerφ = S.

This problem can be solved explicitly using Vélu’s formulas, first published in [Vél71]. Recall
we suppose here that ` is an odd prime and that the curve is in short Weierstrass form. A more
general presentation of those formulas can be found in [Vél71, Ler97], and proofs are presented
in e.g. [Was08].

The isogeny φ is:

φ : E(K) → E′(K)
O 7→ O

P = (XP , YP) 7→

XP +
∑

Q∈S\{O}

XP+Q −XQ, YP +
∑

Q∈S\{O}

YP+Q − YQ,

The coefficients defining E′ and those defining φ can be recovered using the following theorem:

Theorem 1.1.17 ([Ler97, Theorem 39]). Let S be a subgroup of E(K) of cardinality `. Define
R as the set satisfying S \{O} = R∪(−R) with R∩(−R) = ∅. For any Q = (XQ, YQ) ∈ S \{O},
define:

tQ = 6X2
Q + 2a uQ = 4(X3

Q + aXQ + b)
and t =

∑
Q∈R tQ and w =

∑
Q∈R uQ +XQtQ. Define

E′ : y2 = x3 + (a− 5t)x+ (b− 7w),

then the isogeny is given by

φ(P)X = XP +
∑
Q∈R

tQ
XP −XQ

+ uQ
(XP −XQ)2

φ(P)Y = YP

1 +
∑
Q∈R

tQ
(XP −XQ)2 + 2uQ

(XP −XQ)3

Since]S = ` is odd prime, any point in it generates the group and is an `-torsion point;

hence, knowing just one point of S is enough to compute the whole subgroup. This allows one
to compute the polynomial

h(x) =
∏
Q∈R

(x−XQ)

whose square is the denominator of the x-coordinate of the isogeny. One can then recover t, w and
the coefficients of the rational function defining φ from the coefficients of h; we refer to [Ler97,
Chapter 4] for details.

Applying Vélu’s formulas requires O(`) multiplications in C. We then estimate the cost
of writing it in the form given in Note 1.1.15; one could think of interpolating the rational

16 Chapter 1. Background on elliptic and hyperelliptic curves

function, or simply computing it from the shape given by the formulas (which requires computing∏
Q6=Qi(X−XQ)). In both cases, one uses methods related to remaindering trees (see [VZGG13,

Chapter 10] or Section 9.2.3) to get the best complexity, which is O(M(`) log `) field operations.
Remark 1.1.18. A careful inspection of Vélu’s formulas reveals that the isogeny is actually of the
shape

φ(x, y) =
(
g(x)
h(x)2 , y

(
g(x)
h(x)2

)′)
.

with deg g = ` and deg h = `−1
2 . This simplifies the computations, as this means one can only

compute the x-coordinate of an isogeny. We make use of this in Chapter 9.

1.1.4 Computing an `-isogeny
We now consider a slightly harder problem:

Problem 1.1.19. Given:

• two elliptic curves E and E′, defined over K,

• a prime integer ` such that E and E′ are `-isogenous,

compute:

• an `-isogeny φ : E → E′.

This problem first appeared in the context of speeding up Schoof’s algorithm to compute
the number of points of an elliptic curve; the polynomial h(x) is used to reduce the cost of
polynomial arithmetic in the SEA algorithm (see Section 1.2.2 for details). Several algorithms
exist to solve this problem; however, their complexity is more or less advantageous depending on
the characteristic of K.

The first case is the large characteristic case, in which char(K) is either much larger than `
or 0. The complexities here are given in terms of number of field operations. Several methods to
solve this problem have been proposed over the years; we refer to [BMSS08] for a more in-depth
review of each algorithm, including pseudocode. We note that the first algorithm of Elkies, which
consists in differentiating the differential equation satisfied by ℘ (see Section 1.3.4), and Atkin’s
algorithm, which consists in computing the exponential of a power series, are two methods which
were proposed in the context of the SEA algorithm; we mention why these algorithms were
needed in this context in Section 1.2.2. Both of these algorithms require O(`2) field operations;
this complexity is improved by the algorithm of [BMSS08], which uses fast algorithms for the
computation of power series to achieve a O(M(`) log `) running time – that is to say, a quasi-
linear number of field operations with respect to the degree of the isogeny.

The other case is the small characteristic case, for instance K = Fq with q = pn and p ≤
`. Two approaches by Couveignes have been seminal in this case; these algorithms, originally
published in [Cou94] and [Cou96], are also discussed in [Ler97]. The second algorithm relies on
the computation of the isogeny from its image on the pk-torsion points, which are defined on an
extension of Fq; these groups are cyclic groups, and the algorithm roughly attempts to map a
generator of the pk-torsion group of E to a similar generator in E′, then interpolate the isogeny
and check if it is the right one. The computations on points of pk-torsion is computationally
costly, and one should use computations in Artin-Schreier extensions to attempt to mitigate
memory requirements, as described (along with several other improvements) in [DF11]; the
complexity of this algorithm is O(`2 log q) operations in Fp. These algorithms assume p is fixed,

1.1. Elliptic curves and isogenies 17

as the dependency in log p is exponential; however, we note that a recent paper [DFHPS16]
outlines a new algorithm with similar running time but without an exponential complexity in
log p.

1.1.5 Computing an isogeny
The final problem we consider here is the hardest one:

Problem 1.1.20. Given:

• two isogenous curves E and E′, defined over K,

compute

• an isogeny φ : E → E′.

We consider here the case where K = Fq. This problem is then much harder than Prob-
lems 1.1.16 and 1.1.19. In fact, the best known algorithm to solve it has exponential complexity,
and [Gal99, Section 8] gives arguments showing that this problem may not have polynomial-
time solutions in the general case. Probably due to this, a few cryptosystems who take this
problem as a basis for their hardness assumption have been proposed [Sto12, DFJP14]; thus any
improvement on this problem has security implications for those cryptosystems.

Since an isogeny can be decomposed as a sequence of isogenies of prime degree by Theo-
rem 1.1.14, the strategy that is generally employed is one of considering `-isogeny graphs for `
prime, and attempt to navigate them.

Definition 1.1.21 ([Sut13, Def.1]). An `-isogeny graph is a graph (V,E) with

V = { elliptic curves over K up to K-isomorphism } ' K (via the j-invariant)
E = { pairs (j1, j2) of j-invariants of `-isogenous curves }.

The isogeny graph is then the union of all `-isogeny graphs for all primes `.

The problem of constructing an isogeny between two curves is then rephrased as the problem
of finding a path connecting the two curves in the isogeny graph.

Note that curves that are isogenous to a supersingular curve are themselves supersingular;
hence, connected components are either ordinary or supersingular. The supersingular compo-
nents have different properties from the ordinary components, which is why we distinguish both
cases. We mention algorithms on both classical and quantum computers, since the hardness of
the problem has led some to investigate its complexity on quantum computers, in an attempt to
determine whether cryptosystems based on this hard problem would be quantum-resistant.

Ordinary case

In the ordinary case, `-isogeny graphs have a “volcano” structure. We refer to [Sut13] for more
precise statements of the properties in this section.

Definition 1.1.22 (`-volcano; [Sut13, Def.1]). An `-volcano is a connected undirected graph
partitioned in d levels V0, ..., Vd such that

• V0, the surface, is a cycle (or more generally a regular graph of degree at most 2);

• each vertex in Vi+1 has exactly one neighbour in Vi, and this accounts for every edge not
on the surface;

18 Chapter 1. Background on elliptic and hyperelliptic curves

• each vertex except those in Vd have degree `+1.

As outlined in [Koh96, Chapter 4], any1 ordinary component of the `-isogeny graph is an
`-volcano; furthermore, all vertices at a level share the same endomorphism ring. An `-isogeny
φ : E → E′ is said to be “ascending” if End(E′) is larger than End(E), descending if it is smaller,
and horizontal if it is the same, which only happens at the surface; moreover, one cannot ascend
further than the surface of the volcano.

Given this structure, the general strategy for solving Problem 1.1.20, i.e. find φ between a
given E1 and E2, is as follows:

1. Compute an ascending chain of `-isogenies from E1 (resp. E2) to E′1 (resp. E′2) such that
End(E′1) = OK (resp. End(E′2) = OK). This is Kohel’s algorithm [Koh96].

2. We wish to reach vertices E′i such that the endomorphism ring is maximal, i.e. End(E′i) =
OK . The previous steps ensures only that ` - [OK : End(E′i)]; hence, one need to repeat the
previous steps and ascend different `-volcanoes. This part is the costliest asymptotically,
but is actually very fast in practice.

3. Find a horizontal isogeny between E′1 and E′2.

The last step is the part which has been improved in different algorithms, which we mention
here. The first algorithm has been the one of [Gal99], which uses a meet-in-the-middle strategy;
it constructs isogeny trees starting at E′1 and E′2, using the following procedure: pick a prime
number ` at random (in a carefully chosen set of primes) and construct all `-isogenies starting
from a node of each tree. This procedure needs to be iterated O(log p) times on average, but
the size of the trees can be as big as O(p1/4+ε). Once a match is found, each `-isogeny in the
path linking E′1 and E′2 is reconstructed using algorithms to solve Problem 1.1.19; this step is
analyzed as costing O(p3/2 log p) operations in general, but this complexity can actually be made
negligible if one assumes smoothness properties, which allows to bound the maximal size of the
primes. The algorithm is polynomial time if the class number of the endomorphism ring is small,
which is the case for instance for elliptic curves generated using the CM method.

One improvement over this algorithm is given in [GHS02a]: instead of using isogeny trees,
one can use random walks over the isogeny graph starting at E′1 and E′2. This makes storage
polynomial (instead of exponential), but the number of expected steps before finding a collision
in the walks is O(p1/4+ε). This idea is combined with a representation of the isogeny as an ideal,
which undergoes a smoothing step before the step which reconstructs the final isogeny; this step
costs as much as the random walk, i.e. O(p1/4+ε), but allows a faster reconstruction (using ideas
resembling the ones from the SEA algorithm of Section 1.2.2). A variant over this algorithm,
which saves a constant factor, is described in [GS13].

Finally, we note that there is also a quantum algorithm to solve this problem, i.e. an algo-
rithm running on a theoretical quantum computer instead of a classical one. The application of
quantum computers to the resolution of these problems is certainly motivated by the need to
find cryptosystems which rely on a hardness assumption that resists attacks using a quantum
computer. For example, factoring integers and the ECDLP are both solvable in polynomial time
on a quantum computer, while the Shortest Vector Problem in a lattice still requires exponen-
tial time. One algorithm to solve the problem we are considering here on a quantum computer
has been proposed in [CJS14]; its running time is subexponential, i.e. O

(
e
√

3/2(ln p log log p)1/2
)
.

This is accomplished by reducing the problem to the hidden shift problem, which is a problem
that can be solved by a quantum computer in subexponential time. We note that they also

1except those who contain curves of j-invariant 0 or 1728.

1.1. Elliptic curves and isogenies 19

propose a classical (non-quantum) algorithm to speed up the ideal reduction step in [GHS02a],
using more up-to-date techniques to reduce the ideal and compute the isogeny; this step requires
subexponential complexity, instead of the O(q1/4+ε) complexity in [GHS02a].

Supersingular case

We now look at the supersingular components of isogeny graphs; these components exhibit a
different structure from the volcanoes of the ordinary case, and hence the techniques above do
not directly apply. This problem has been used as a hardness assumption for some cryptosys-
tems, most notably the one of [DFJP14]; we discuss the implication of the algorithms below in
Section 1.2.3. We refer once again to [Sut13] for details.

Supersingular isogeny graphs have a very regular structure:

Proposition 1.1.23 ([Koh96]). Every vertex in a supersingular component of the `-isogeny
graph when considered over Fp2 has out-degree `+ 1. If the vertex is not 0 or 1728, nor adjacent
to those two vertices, it also has in-degree ` + 1. Finally, the supersingular `-isogeny graph is
connected for every prime `.

The connectedness of the isogeny graph means one can simply work with, say, 2-isogenies to
construct a path between any two points. Furthermore, those graphs are expander graphs, with
a small diameter (O(log p) [DG16]) and hence a short path between two vertices.

A rather straightforward algorithm consists in, as in [Gal99], performing a “meet-in-the-
middle” search in the full supersingular graph over Fp2 to find a path between both elliptic
curves. This method will find the shortest path; however, the sheer size of the tree computations
makes it a O(p1/2+ε) algorithm (both time and storage).

A more complex algorithm is the one in [DG16], which considers a variant of the isogeny
graph above with only curves defined over Fp. The graph then looks like a volcano of depth 2;
hence, solving Problem 1.1.20 in the case where both E1 and E2 are defined over Fp can be done
adapting techniques from the previous section, in average running time O(p1/4+ε). The running
time of the general algorithm is still O(p1/2+ε), since one has to find isogenies from the original
curves to curves defined over Fp (which is done in the article using self-avoiding random walks,
and can also be done using Pollard-style stateless random walks) – unless of course the original
curves are defined over Fp, which makes the complexity only O(p1/4+ε).

Finally, we also mention a quantum algorithm to compute isogenies between supersingular
curves [BJS14]. The algorithm improves the first step of [DG16] – that is to say, finding an
isogeny to a curve defined over Fp – using Grover’s algorithm, which in this case means that
the cost of this step on a quantum computer is O(p1/4+ε). It also extends [DG16] in a similar
way that [CJS14] extends [GHS02a] – that is to say, in the easier case where the curves are
defined over Fp, the structure can be exploited to yield a reduction to the hidden shift problem,
thus making the quantum cost for this step O

(
e
√

3/2(log p log log p)1/2
)
. This algorithm has direct

implications for the security of a scheme; see Section 1.2.3 for details.

20 Chapter 1. Background on elliptic and hyperelliptic curves

1.2 Applications of isogenies

1.2.1 Isogenies and the ECDLP
The morphism property of isogenies means that they “transport” the problem of the discrete
logarithm from one curve to another. More precisely:

E
φ−→ E′

Q = [n]P ⇔ φ(Q) = [n]φ(P)
logP Q ⇔ logφ(P) φ(Q)

Hence, solving the ECDLP on E is only as hard as solving the ECDLP on E′ once the isogeny φ
has been computed. In theory, this could lead to a faster attack on the ECDLP of E, provided
one can find a weaker curve E′ that is isogenous to E and compute the corresponding isogeny.

Such an attack has been made explicit e.g. in the case of genus 3 hyperelliptic curves [Smi09].
In general, solving the discrete logarithm problem on these curves is hard, requiring O(q4/3+ε)
operations. However, for a large proportion (around 28%) of hyperelliptic curves of genus 3,
there is an isogeny between the curve and a non-hyperelliptic curve; this yields a O(q1+ε) attack
using the algorithm of [DT08].

Generically, for elliptic curves, this amounts to solving Problem 1.1.20, which current algo-
rithms cannot do in less than exponential time. Note also that identifying a weaker isogenous
curve is not a problem one knows how to solve either; in fact, [JMV05] shows that isogenous
curves all have similar security with respect to the ECDLP. Hence, this does not seem to consti-
tute a generic threat to the security of the ECDLP.

However, the strategy of using isogenies to fall back on weaker curves can be used in the
context of the Gaudry-Hess-Smart attack, presented in [GHS02b]. This attack uses Weil descent
to reduce the ECDLP to a discrete logarithm problem on a hyperelliptic curve of high genus,
where an index calculus attack (such as the one in [EG02, EGT11]) applies; such attacks are
asymptotically faster than attacks such as Pollard’s rho. As it happens, the fact that an elliptic
curve is vulnerable to the GHS attack can be easily checked, but there is no way to check that a
curve on which the GHS attack is unsuccessful is not isogenous to one which is vulnerable. This
fact was noted in [GHS02a], where a faster algorithm to compute isogenies is used to extend the
probability to find an isogenous curve that is vulnerable to the GHS attack. We refer to [MTW04]
for practical implications of this attack.

Finally, the fact that finding an isogenous curve and computing the isogeny is a hard problem
can be seen as worrying, as we do not have any guarantee that a curve is not isogenous to a
weaker curve. Vulnerability to the GHS attack has once again been used in [Tes06], in which one
finds a method to construct a curve E that is vulnerable to the GHS attack, and an isogenous
curve E′ for which the best attack is Pollard’s rho, along with the corresponding isogeny. The
curve E′ appears to be secure, and finding E is a hard problem; however, if someone knows E
and the isogeny, the ECDLP on E′ can be easily solved. This opens the possibility of trapdoors
in elliptic curves, which is a worrying possibility; [Tes06] recommends choosing the coefficients
provably at random to avoid mistrust.

1.2.2 The SEA point counting algorithm
The topic of isogeny computation, and more precisely Problem 1.1.19, is one that was first
considered in the context of finding asymptotic improvements to Schoof’s algorithm to compute
the number of points of an elliptic curve over a finite field. We provide a brief overview of Schoof’s

1.2. Applications of isogenies 21

original algorithm, then show the improvements to the algorithm and their link with isogenous
curves; we follow the presentation of [BSS99].

In 1986 Schoof proposed in [Sch95] an algorithm to compute the number of points on an
elliptic curve E defined over Fq in polynomial time; this was the first polynomial-time algorithm,
down from the O(q1/4+ε) complexity of a baby-step / giant-step algorithm. The idea is as follows:
since Hasse’s theorem indicates that]E(Fq) = q+ 1− t with |t| ≤ 2√q, one computes t (mod pi)
for enough primes pi such that we can reconstruct t using the Chinese Remainder Theorem
(i.e. so that the final modulus in the CRT is larger than 4√q). To compute t (mod pi), the
characteristic polynomial of the Frobenius endomorphism shows that for any P = (x, y) ∈ E:(

xq
2
, yq

2
)

+ [q](x, y) = [t] (xq, yq)

In particular for P ∈ E[pi], i.e. pi-torsion points, we have
(
xq

2
, yq

2
)

+ [q (mod pi)](x, y) = [t
(mod pi)] (xq, yq). The computation of the left-hand side is then performed symbolically, i.e.
using polynomial arithmetic. The trick is that this computation can be performed modulo φpi ,
the pi-torsion polynomial, i.e. the polynomial such that (x, y) ∈ E[pi] if and only if φpi(x) = 0;
this polynomial is of degree O(p2

i), which limits the degree of the polynomials and hence the
cost of the computations. Then, one computes iteratively the [k](xq, yq) until a solution to the
equation is found, which gives the correct value for t (mod pi). We refer to [BSS99] for the
complexity of this algorithm.

The Schoof-Elkies-Atkin (SEA) algorithm lowers the complexity to O(log4+ε q). The prime
numbers are split in two different sets: Atkin primes, i.e. primes pi for which t2−4q is not a square
modulo pi, and Elkies primes, for which it is. Dealing with Atkin primes requires exponential
time; hence, the improved running time is achieved using only Elkies primes, although in practice
dealing with a small number of Atkin primes provides numerous advantages.

Improvements to this algorithm are given by the SEA algorithm, and a closer study of Elkies
primes, i.e. primes pi for which t2 − 4q is a square modulo pi, and hence primes for which the
polynomial x2 − tx + q has two roots in Fq. We are looking to compute one of these roots, λ,
by finding a solution to (xq, yq) = [λ](x, q). The asymptotically significant savings come from
the fact that one can work modulo a factor Fpi of degree O(pi) of φpi . As we mentioned in
Note 1.1.12, subgroups of the `-torsion define the kernel of an `-isogeny; hence, the factor is
simply the polynomial corresponding to the kernel to a pi-isogeny I from the curve E to another
curve E1, i.e.

Fpi(X) =
∏

±Pi∈Ker I\O

(X − x(Pi))

Computing the isogenous curve is done by first computing its j-invariant, which is a root of
the modular polynomial Φpi(j(E), X); we assume we get this polynomial from precomputed
tables. Since any isogeny will do, we can afford to only look at isogenies to curves defined
over Fq, whose number is given by Note 1.1.12. Hence, we only need to compute a root of
gcd(Xq −X,Φpi(j(E), X)), which is typically of degree 2. We then compute the coefficients of
the new curve E1 from the two j-invariant and the coefficients of E (see [BSS99] for details).
Once we have this, we essentially need to compute the pi-isogeny between E and E1, which
corresponds to Problem 1.1.19. We refer to Section 1.1.4 for solutions to this problem, which
were originally devised for this very setting.

The cost of the algorithms to solve Problem 1.1.19 does not matter greatly asymptoti-
cally here: the cost of computing the eigenvalue (using polynomial arithmetic modulo Fpi)
is O(log3+ε q), which dominates the cost of these algorithms in any case. This is an improvement
over the O(log5+ε q) complexity of the original Schoof algorithm.

22 Chapter 1. Background on elliptic and hyperelliptic curves

1.2.3 Isogeny-based cryptography
A relatively novel idea that has been investigated in recent years is to use isogenies, and more
precisely the hardness of Problem 1.1.20, as a basis for strong cryptosystems. Even more enticing
is the fact that this problem seems to resist fairly well to quantum computers, unlike other
problems like factoring integers or the ECDLP, which can both be solved in polynomial time
using a quantum computer.

Cryptosystems based on isogenies between elliptic curves were proposed most notably in Stol-
bunov’s Ph.D. thesis [Sto12], although the idea appears in a previous article by Couveignes [Cou06].
The hardness assumption in these cryptosystems reduces to Problem 1.1.20 on ordinary elliptic
curves, for which there are no known algorithms on a classical computer requiring less than an
exponential number of operations. However, it does not achieve resistance to quantum com-
puters, as the problem can be solved using only a subexponential number of operations on a
quantum computer.

Another, more efficient cryptosystem was proposed in [DFJP14], based on Problem 1.1.20 for
supersingular elliptic curves; the hardness assumption is often called the Supersingular Isogeny
Diffie-Hellman (SIDH) problem. Solving this problem requires O(p1/2+ε) operations on a classical
computer and O(p1/4+ε) on a quantum one. However, if the elliptic curves are defined over
Fp, there is a small risk that the problem could be solved faster using the work in [DG16,
BJS14] (respectively O(p1/4+ε) on a classical computer and subexponential time on a quantum
computer); see [BJS14] for the full discussion, and their recommendation that the cryptosystem
should avoid curves defined over Fp. Efficient implementations are discussed in [CLN16].

1.3 The Abel-Jacobi map
In this section, we take a closer look at elliptic curves defined over C, which will be an important
part of this manuscript. Complex elliptic curves have another representation, as complex tori,
which gives nice computational properties. The map which allows the translation between the
Weierstrass form and the corresponding complex torus is the Abel-Jacobi map; this is one of
the main objects of this manuscript, and we describe fast algorithms to compute this map in
Chapter 8.

1.3.1 Definition of the map
Definition 1.3.1. Let ω1, ω2 ∈ C such that Rω1 + Rω2 = C, and define the lattice Λ =
Zω1 + Zω2 ⊂ C. The associated complex torus is C/Λ. We call ω1, ω2 the periods of the lattice,
and Λ is the period lattice. The group law on C/Λ is just addition modulo the periods. The
fundamental parallelogram is the set {xω1 + yω2, x, y ∈ [0, 1]}.

The “torus” part comes from the fact that one obtains a torus when gluing the left and the
right sides of the fundamental parallelogram and the top and bottom sides.

Establishing the link between elliptic curves defined over C and complex tori can be done
using techniques which are classical within the context of complex Riemann surfaces. More
precisely, one can take a look at integrals of the invariant differential ω = dx

y associated to the
elliptic curve E:

Proposition 1.3.2 ([Sil86, Section VI.I],[CFA+10, Section 5.1.2]). Let E(C) : y2 = x3 + ax+ b
be an elliptic curve, and ω = dx

y = dx√
x3+ax+b its invariant differential. Then, in general, the

integral
∫ P
O w for P ∈ E(C) is not path-independent. More precisely, if one takes α, β two paths

that generate the first homology group of the corresponding torus (for instance, paths around the

1.3. The Abel-Jacobi map 23

branch cuts of
√
x3 + ax+ b, as in [Sil86, Section VI.I]), then the value of

∫ P
O w is only defined

up to mω1 + nω2, where ω1 =
∫
α
ω, ω2 =

∫
β
are the periods of the elliptic curve.

Integrals of the form
∫

dx√
P (x)

where degP = 3 are called elliptic integrals, as they appear in
the expression of the length of an ellipse; this is where the name of elliptic curves comes from.

We note the following important property:

Proposition 1.3.3 ([CFA+10, Corollary 5.18]). Let Λ = Zω1 + Zω2 be the lattice generated by
the periods ω1, ω2 of a complex elliptic curve. Then Λ ' Z + τZ with Im(τ) > 0.

The Abel-Jacobi map is then the map studied in Proposition 1.3.2:

Theorem 1.3.4 ([CFA+10, Definition 5.12]). Let E be an elliptic curve defined over C. Take
α, β two paths e.g. along the branch cuts; define ω1 =

∫
α
ω, ω2 =

∫
β
ω. Define Λ = Zω1 + Zω2,

the complex torus associated to the elliptic curve. Then the Abel-Jacobi map

E(C) → C/Λ

P 7→
∫ P

O
ω (mod Λ)

is a well-defined isomorphism from the elliptic curve to the complex torus.

In the context of elliptic curves, this map is sometimes called the elliptic logarithm map, as
its inverse can be considered to be an exponential morphism [Coh93, p. 398]
Remark 1.3.5. In the remainder of this manuscript, we will sometimes use the following short-
hands:

• the algebraic representation of a complex elliptic curve refers to an elliptic curve E described
by its short Weierstrass equation, i.e. its coefficients a and b;

• the analytic representation of a complex elliptic curve refers to an elliptic curve described
as a torus C/Λ, i.e. its periods.

The Abel-Jacobi map then performs the “translation” between these two representations, by
converting a point P whose coordinates satisfy the short Weierstrass equation into a point z who
lies on the complex torus, and vice-versa with its inverse.

1.3.2 Maps between complex tori
As outlined in [Sil86, Section VI.4], complex analytic maps between complex tori all have the
same, very simple form:

Theorem 1.3.6 ([Sil86, Theorem VI.4.1]). Let Λ1,Λ2 two lattices in C. The association

{α ∈ C | αΛ1 ⊂ Λ2} → {φ : C/Λ1 → C/Λ2 holomorphic and with φ(0) = 0}
α → φα : z 7→ αz

is a bijection.

Note that φ(0) = 0 ⇒ φ(P + Q) = φ(P) + φ(Q). This is an interesting result from the
computational perspective, as it means one can compute the image of points very easily. We
outline a few applications of this theorem.

24 Chapter 1. Background on elliptic and hyperelliptic curves

Isomorphisms

A corollary of Theorem 1.3.6 is the following:
Theorem 1.3.7 ([Sil86, Corollary VI.4.1.1]). Let E1, E2 two complex elliptic curves whose an-
alytic representations are C/Λ1 and C/Λ2. Then E1 and E2 are isomorphic over C iff ∃α ∈ C∗
such that αΛ1 = Λ2.
Remark 1.3.8. The following result is well-known, and can be obtained with simple calculations
(see e.g. [Sil86, Table 3.1]):
Theorem 1.3.9. Let E1 : y2 = x3 + a1x + b1 and E2 : y2 = x3 + a2x + b2 two isomorphic
elliptic curves over K. Then there exists u ∈ K∗ such that a2 = u4a1 and b2 = u6a2, and the
isomorphism is given by the map (x, y)→ (u2x, u3y).

Note that for K = C, this result is a direct consequence of Theorem 1.3.7 and the inverse of
the Abel-Jacobi map (Section 1.3.4).

Isogenies

The link with isogenies of elliptic curves is as follows:
Theorem 1.3.10 ([Sil86, Theorem VI.4.1]). Let E1, E2 be two elliptic curves, with corresponding
analytic representations C/Λ1,C/Λ2. Then the association

{ isogenies between E1 and E2 } → {φ : C/Λ1 → C/Λ2 holomorphic and with φ(0) = 0}

is a bijection.
Remark 1.3.11. As we noted in Note 1.1.12, the existence of a dual isogeny means that every
point P in the kernel of an `-isogeny φ is an `-torsion point, and Kerφ is a subgroup of the
`-torsion group. Hence, the complex number α describing the isogeny between complex tori
necessarily sends some points of the shape mω1+nω2

` (for m,n integers) to 0 (mod Λ2), which
gives a relation between periods of isogenous curves. We use this remark in Section 9.1.1.
Remark 1.3.12. This result can be used to compute isogenies between analytic representations of
complex elliptic curves, i.e. solving Problem 1.1.20. Let E1, E2 be two isogenous elliptic curves
with analytic representations C/Λ1,C/Λ2. Write P1 = (ω1, ω2) and P2 = (ω′1, ω′2), the periods of
the lattices. Then there is α ∈ C such that αΛ1 ⊂ Λ2. The images of periods have to be points
of Λ2 because φ(0) = 0, so we have

αP1 = P2M

with M ∈ M2(Z). We can then compute α and M , for instance using LLL, as in [VW00], who
described this method in genus 2 and used it to compute explicit isogenies between a set of
curves, thus proving that the curves were indeed isogenous.

CM maps

Another application is determining whether a curve over C has complex multiplication, in the
sense outlined in Note 1.1.9, using analytic representations; the method is described in [VW99].
We have that any endomorphism of E corresponds to a map z 7→ αz for some α such that
αΛ ⊂ Λ. Hence, we have the following relation:

αP = PM

with M a 2 × 2 integer matrix; one can then compute α and M using the LLL algorithm. The
method was originally described in the case of genus 2 hyperelliptic curves in [VW99].

1.3. The Abel-Jacobi map 25

1.3.3 Elliptic functions and the ℘ function
In order to make explicit the inverse of the Abel-Jacobi map, we need a bit of background on
elliptic functions. We refer to [Cha85] or [Sil86, Chapter VI] for proofs and a more thorough
background.

Note that, as a complex map, the inverse of the Abel-Jacobi map is invariant by translation
by ω1 or ω2. It is thus rather natural to study elliptic functions:

Definition 1.3.13 ([Cha85, Chapter I]). An elliptic function is a meromorphic function with
two periods, ω1, ω2, such that Im

(
ω2
ω1

)
> 0.

Using integration on paths slightly off the fundamental parallelogram, one can prove

Theorem 1.3.14 ([Cha85, Chapter II]). No non-constant elliptic function is entire. A non-
constant elliptic function has at least one pole in any parallelogram. The sum of residues of an
elliptic function in a parallelogram is 0; the number of zeros is equal to the number of poles,
counted with multiplicity, and we say that this number is the order of the elliptic function.

The first construction of an elliptic function with any periods was given by Weierstrass:

Definition 1.3.15. Given ω1, ω2, define the function ℘ : z 7→ ℘(z, [ω1, ω2]) by

℘(z, [ω1, ω2]) = 1
z2 +

∑
m,n∈Z2

1
(z −mω1 − nω2)2 −

1
(mω1 + nω2)2

Then ℘ is elliptic of periods ω1, ω2, and it is of order 2. It is an even function.

Remark 1.3.16. On top of the ω1-periodicity and the ω2-periodicity of ℘, we also have the
following property:

℘(z, [ω1, ω2 + ω1]) = ℘(z, [ω2,−ω1]) = ℘(z, [ω1, ω2])

This is easily proved when looking at the definition of ℘. Hence, when trying to compute
℘(z, [ω1, ω2]) in Section 4.3 and Section 8.1.2, we will be able to assume that

Im
(
ω2

ω1

)
≥
√

3
2 , |Re

(
ω2

ω1

)
| ≤ 1

2 (cf Chapter 2),

0 ≤ Im(z) < Im
(
ω2

2ω1

)
, |Re(z)| ≤ Re(ω1)

2 .

Finally, we mention another proposition:

Proposition 1.3.17 ([Sil86, Theorem VI.3.2]). Every elliptic function of periods ω1, ω2 is a
rational function of z 7→ ℘(z, [ω1, ω1]) and z 7→ ℘′(z, [ω1, ω1]).

This proposition shows that, once one has an algorithm to compute ℘ and ℘′ (as in Chapter 8,
for instance), it is not very much harder to compute any elliptic function.

1.3.4 Inverse of the Abel-Jacobi map
The connection between the Weierstrass ℘ function and Weierstrass equations of elliptic curves
is shown in the following proposition:

26 Chapter 1. Background on elliptic and hyperelliptic curves

Proposition 1.3.18. The function ℘ satisfies the following differential equation:

℘(z, [ω1, ω2])2 = 4℘(z, [ω1, ω2])3 − g2℘(z, [ω1, ω2])− g3

where
g2 = 60

∑
m,n∈Z2

1
(mω1 + nω2)4 g3 = 140

∑
m,n∈Z2

1
(mω1 + nω2)6

are related to Eisenstein series of weight 4 and 6.

This proposition is proven using the Laurent expansion, for instance.
Hence, the map

C/Λ → E(C)
0 (mod Λ) 7→ O
z (mod Λ) 7→ [℘(z,Λ) : ℘′(z,Λ)) : 1]

is an isomorphism; in fact, it is the inverse of the Abel-Jacobi map.
A most important problem we consider in this manuscript is the problem of computing quickly

the Abel-Jacobi map and its inverse. Quasi-optimal time algorithms – i.e. algorithms allowing the
computation of this map with precision P in O(M(P) logP) – for the computation of the periods
and of the elliptic logarithm have been outlined, thus giving a quasi-optimal time algorithm for
the Abel-Jacobi map; we discuss these algorithms in Chapter 4. We show in Chapter 8 that the
coefficients of the Weierstrass equation can be computed from the periods using the θ function
(defined in Chapter 2), and that ℘ is also related to the θ function. We show in Chapter 6
that the θ function can be computed with quasi-optimal time, which gives a quasi-optimal time
algorithm to compute the inverse of the Abel-Jacobi map. We also give in Chapter 4 another
algorithm for ℘, with conjectural quasi-optimal running time.

Thomae formulas

We mention a last result, which links the coefficients of the curve equation (in short Weier-
strass form) and the period lattice, via theta-constants, which are values of the θ function (see
Section 2.1). These are the Thomae formulas:

Theorem 1.3.19 (Thomae formulas). Let E be a complex elliptic curve defined by y2 = P (x)
with P = 4X3 − g2X − g3 = 4(X − e1)(X − e2)(X − e3). Let ω1, ω2 be the periods of E and
τ = ω2

ω1
. Then

e1 − e2 =
(
π

ω1

)2
θ4

0(0, τ), e1 − e3 =
(
π

ω1

)2
θ4

1(0, τ), e3 − e2 =
(
π

ω1

)2
θ4

2(0, τ)

Proof. See [BM88] or [Cha85, Cor. 1 of Theorem 5, Chap V].

We use this result a few times in this manuscript, for instance to compute the curve coefficients
from τ in quasi-optimal time (Section 8.1.1), but also to give a fast algorithm for the computation
of the ℘ using the Landen transform (Section 4.3). Hence, these formulas are useful in making
the inverse of the Abel-Jacobi map computable in quasi-optimal time, as they offer a link with
the θ function.

1.4. Hyperelliptic curves and the Abel-Jacobi map 27

1.4 Hyperelliptic curves and the Abel-Jacobi map
This manuscript deals mostly with the genus 1 case, i.e. elliptic curves, Jacobi’s theta function
and isogeny computation in genus 1. However, some of the methods we present here generalize to
higher genera; in particular, we present in Chapter 8 algorithms to compute the generalization
of the Abel-Jacobi map to higher genera. In this context, we give some background here on
hyperelliptic curves and the corresponding Abel-Jacobi map. Most of the material presented
here is taken from [Gal12, CFA+10].

1.4.1 Hyperelliptic curves over C
We start by defining hyperelliptic curves over any field, then specialize over C.
Definition 1.4.1 ([CFA+10, Section 14.1]). Let K be a (perfect) field. A curve given by an
equation of the form

C : y2 + h(x)y = f(x)
with f, h ∈ K[X],deg f = 2g+ 1, deg h ≤ g and f monic is called a hyperelliptic curve of genus g
over K if no point (x, y) on the curve over K, the algebraic closure of K, satisfies both partial
derivatives 2y(x) + h(x) = 0 and f ′(x)− h′(x)y = 0. Furthermore, we add to this curve a single
point at infinity, which we denote P∞.

The curve and the point at infinity can be defined using a projective equation; we refer to
e.g. [Gal12, Def. 10.1.10] for details.

Group law on hyperelliptic curves

Much as in genus 1, one can define a group law from hyperelliptic curves of genus g. However,
unlike in genus 1, the elements of the group are not simply points of the curve, but rather, some
specific sums of points.
Definition 1.4.2 ([Gal12, Section 7.6]). Let C be a hyperelliptic curve of genus g over K. A
divisor over K is defined as formal sum of points with finite support, i.e.

D =
∑

P∈C(K)

nPP, nP ∈ Z,

with nP = 0 for all but finitely many P , and furthermore such that σ(D) = D for all σ in the
Galois group of K. The set of divisors of a curve is denoted DivK(C).
Definition 1.4.3 ([Gal12, Section 7.6]). For a divisor D ∈ DivK(C), we define its degree as

deg(D) =
∑

P∈C(k)

nP ∈ Z.

We define Div0
K(C) as the set of divisors of C of degree 0.

Both DivK(C) and Div0
K(C) are groups, the group law being simply the addition of finite

sums; Div0
K(C) is a subgroup of DivK(C).

Definition 1.4.4 ([Gal12, Section 7.7]). Let f ∈ K(C)∗ a non-zero function defined over the
curve (an element of the function field associated to the curve). Then f has finitely many zeroes
and poles (see e.g. [Gal12, Thm. 7.7.1]). Define the divisor associated to f as

div(f) =
∑

P∈C(K)

vP (f)P

28 Chapter 1. Background on elliptic and hyperelliptic curves

where vP (f) is 0 if P is not a pole or a zero of f , n if P is a zero of order n of f , and −n if it is
a pole of order n of f .

The divisor of a function is also called a principal divisor. We then define

PrinK(C) = {div(f), f ∈ K(C)∗},

the group of principal divisors. We have:

Proposition 1.4.5 ([Gal12, Thm. 7.7.11]). PrinK(C) ⊂ Div0
K(C), i.e. for all f ∈ K(C),

deg div(f) = 0.

Finally, we define the group associated to a hyperelliptic curve:

Definition 1.4.6. We define the Picard group or the divisor class group of an hyperelliptic curve
as

Pic0
K(C) = Div0

K(C)/PrinK(C).

This group is identified with the Jacobian of C, denoted Jac(C), an algebraic variety which is
isomorphic to Pic0

K(C) on every extension field of K.

Remark 1.4.7. The situation is simpler in the case of genus 1 elliptic curves, as we have Jac(C) '
C; we refer to [Gal12, Section 7.9] for a proof.

Representation and addition of divisors

Proposition 1.4.8 ([CFA+10, Thm. 14.5]). Each divisor class in the Jacobian of the curve can
be represented using Mumford coordinates, i.e. a unique pair of polynomials u, v ∈ K[X] such
that

• u is monic;

• deg v < deg u ≤ g;

• u | v2 + vh− f .

For instance, if D =
∑r
i=1 Pi − rP∞, with Pi 6= Pj, one can take u =

∏r
i=1(X − xi).

Mumford coordinates are the usual representation of divisors on hyperelliptic curves.
Remark 1.4.9. Addition of divisors in Mumford representation can be computed using Cantor’s
algorithm, which actually generalizes the chord-and-tangent process to any genus g. We refer
to [CFA+10, Algorithm 14.7] or [Gal12, Section 10.3] for an exposition of this algorithm; we
actually will not need to use it in this manuscript.

Hyperelliptic curve cryptography

As with elliptic curves, the Jacobian of a hyperelliptic curve and its associated group law can be
used in cryptography, via the hyperelliptic curve discrete logarithm problem (HECDLP):

Given P ∈ Jac(C(Fq)) and Q = [n]P , compute n.

Hasse-Weil’s theorem for hyperelliptic curves shows that] Jac(C(Fq)) = O(qg). Since the com-
plexity of methods such as Pollard’s rho have a complexity depending on the cardinal of the group,
this means one can afford to take a smaller q (and hence a smaller finite field) to reach the same
level of security as with an elliptic curve. This comes at the cost of a more involved arithmetic,

1.4. Hyperelliptic curves and the Abel-Jacobi map 29

although some settings (such as the arithmetic on the genus 2 Kummer surface which we define
at Section 2.6.4) allow a fast arithmetic, which can even be faster than optimized arithmetic on
elliptic curves [BCHL16].

However, hyperelliptic curves of high genus are vulnerable to index calculus attacks, as de-
scribed in Gaudry’s seminal paper [Gau00]. If g is fixed, the attack of [GTTD07] shows for
example that one can solve the HECDLP in O(q2−2/g) operations, which is faster than generic
methods (i.e. Pollard’s rho) for g ≥ 3. If, on the contrary, q is fixed (or at least does not grow
too fast in size compared to the genus), [EGT11] shows there is actually an algorithm in time
subexponential in qg which solves the DLP. Finally, we also mention that another algorithm
shows that the DLP on non-hyperelliptic genus 3 curves can be solved with only O(q) opera-
tions [DT08]; since some genus 3 hyperelliptic curves are isogenous to non-hyperelliptic curves
(and the isogeny is explicitly computable using [Smi09]), the HECDLP in genus 3 can sometimes
be solved more quickly. In practice, genus 2 hyperelliptic curves are the most relevant case to
cryptography, as they are not vulnerable to any of these attacks.

Complex hyperelliptic curves

Hyperelliptic curves over C, and most generally complex abelian varieties, can be connected to
the following:

Definition 1.4.10 ([CFA+10, Section 5.1.3]). Let g ≥ 1, and let Λ be a lattice in Cg, i.e. a
discrete Z-submodule of Cg of rank 2g. Then Cg/Λ is a complex torus of genus g; it has a
(complex Lie) group structure using addition modulo Λ.

We have the following general theorem:

Proposition 1.4.11 ([CFA+10, Corollary 5.17]). Every abelian variety A of dimension g is
isomorphic to a complex torus Cg/Λ with Λ = Zg+ΩZg, where Ω is symmetric and has a postive
definite imaginary part. We call Ω the period matrix of A.

In particular, for a hyperelliptic curve of genus g C, we can write

Jac(C) ' Cg/(Zg + ΩZg).

Remark 1.4.12. Much as in genus 1, it is very easy to evaluate maps (and in particular isogenies)
using the representation of a hyperelliptic curve as a torus. Indeed, for Λ1,Λ2 two lattices of Cg,
and for any α a g × g complex matrix such that αΛ1 ⊂ Λ2, we can define the map{

φα : Cg/Λ1 → Cg/Λ2

z 7→ αz (mod Λ2)

Furthermore one can prove (see e.g. [Cos11, Prop. 2.3.1]) that these maps are the only holomor-
phic maps preserving 0. This property is used in e.g. [VW99, VW00] to compute maps between
genus 2 curves; one can use it to evaluate complex isogenies as with the method we present in
Chapter 9.

1.4.2 The Abel-Jacobi map
The propositions from this section are taken from [CFA+10, Section 5.1.2].

Proposition 1.4.13. Let C be a hyperelliptic curve of genus g; then the space of holomorphic
differentials on C is of dimension g.

30 Chapter 1. Background on elliptic and hyperelliptic curves

Proposition 1.4.14. Let C be a hyperelliptic curve of genus g and choose a basis (ω1, . . . , ωg)
of the space of holomorphic differentials on C. Consider the set of paths starting and ending at a
fixed point P0, and identify homologous paths, i.e. paths that can be deformed continuously into
one another. The resulting set gives a free abelian group H1(C,Z) with 2g generators, and the
map

φ : H1(C,Z)→ Cg

α 7→
(∫

α

ω1, . . . ,

∫
α

ωg

)
satisfies Imφ = Λ, a full-rank lattice in Cg.

Remark 1.4.15. An explicit construction of the 2g generators Ai, Bi of the group H1(C,Z) is
given in [Mum84, Section III.5], complete with pictures; it is the construction which is generally
used for hyperelliptic curves. The Ai are constructed as paths circling around the branch cuts
chosen for the points ai, the roots of the polynomial f which defines the hyperelliptic curve;
the Bi can be taken as paths going across the branch cuts, so that Ai meets Bj if and only if
i = j. (We refer to [Mum84, p. 76] or [Cos11, p. 28] for pictures.) The period matrix can then
be computed as Ω−1

A ΩB where the columns of ΩA (resp. ΩB) are the images of the Ai (resp. Bi)
by the map φ outlined in the previous proposition; alternatively, one can choose a normalized
basis of holomorphic differentials such that φ(Ai) = 1, and define Ω with Ωi,j =

∫
Bi
ωj .

We now define the Abel-Jacobi map:

Theorem 1.4.16. Let C be a hyperelliptic curve of genus g; let (ω1, . . . , ωg) be a basis of the
space of holomorphic differentials, and let Λ be as in the previous proposition. Define the Abel-
Jacobi map

J : C(C)→ Cg/Λ

P 7→

(∫ P

P∞

ω1, . . . ,

∫ P

P∞

ωg

)
(mod Λ).

This map is well-defined, and can be extended to divisors by linear extension. Then for any
D ∈ PrinC(C), J(D) = 0; hence, J induces a map from JacC(C) to Cg/Λ, and this map is a
group homomorphism.

We outline in Chapter 8 algorithms to compute this map in quasi-linear time, using techniques
which do not require to evaluate the hyperelliptic integrals which define the map. One can also
compute the inverse of the Abel-Jacobi map using genus g theta functions; we outline these
algorithms in the same chapter.

Chapter 2

Background on theta functions

In this chapter, we introduce the θ function in all generality; this function will be featured in
every subsequent chapter of this manuscript. This complex function of two variables, z and
τ , has numerous applications in mathematics; what we are most interested in are its links to
algebraic geometry and complex Riemann surfaces. We show here all the properties that we will
use in this manuscript; the last sections of this chapter outline those properties in the genus 1
and 2 settings, on which our manuscript is focused for the most part.

2.1 Definition
We start by defining the theta function. Most of the background we need is described in [Mum83,
Chapter 2].

Definition 2.1.1 ([Mum83, Section II.1]). The Siegel upper-half space in dimension g, Hg, is
the set of symmetric g × g matrices whose imaginary part is positive definite.

Definition 2.1.2 (θ function). Let z ∈ Cg and τ ∈ Hg. The θ function is defined as

θ(z, τ) =
∑
n∈Zg

exp(iπ tnτn) exp(2iπ tnz).

Definition 2.1.3 (θ functions with characteristics). Let z ∈ Cg, τ ∈ Hg and a, b ∈ 1
2Z

g/Zg.
The theta function with characteristic [a; b] is defined as

θ[a;b](z, τ) =
∑
n∈Zg

exp(iπ t(n+ a)τ(n+ a)) exp(2iπ t(n+ a)(z + b)).

Definition 2.1.4 (theta-constants). Let τ ∈ Hg; the theta-constants are the values at z = 0 of
the functions θ[a;b].

Remark 2.1.5. We will often use a certain numbering of the theta functions with characteristics, to
lighten notations. The numbering we choose to use is the one used e.g. in [Dup06, Cos11, ET14a]:

θ[a;b] = θi, i = 2(b0 + 2b1 + ...+ 2g−1bg−1) + 2g+1(a0 + 2a1 + ...2g−1ab−1

In other words, the integer we associate with the theta function has the same binary expansion
as (2a||2b). Other numbering schemes are possible (see for instance the discussion in [Cos11,
p. 37]), with other pros and cons attached to them.

31

32 Chapter 2. Background on theta functions

We often deal with the functions θ0, ..., θ2g−1 (i.e. the ones with a = 0), sometimes called
fundamental theta functions.
Remark 2.1.6. Throughout the manuscript, we may use the following shorthands, for notational
convenience: θi,j(z, τ) instead of θi(z, τ), θj(z, τ); θi,j,k(z, τ) instead of θi(z, τ), θj(z, τ), θk(z, τ);
etc.

The θ function is quasi-periodic with respect to the lattice Z + τZ, in the following sense:
Proposition 2.1.7 (([Mum83, p. 120-123])). For all m ∈ Zg, we have

θ[a;b](z +m, τ) = exp(2iπ tam)θ[a;b](z, τ)
(in particular, θ[0;b] is invariant by z → z +m)

θ[a;b](z + τm, τ) = exp(−2iπ tbm) exp(−iπ tmτm) exp(−2iπ tmz)θ[a;b](z, τ)

One can also study the parity of θ with respect to the first argument:
Proposition 2.1.8. We have θ[a;b](−z, τ) = (−1)4 tabθ[a;b](z, τ). This means in particular that
the function z 7→ θ[a;b](z, τ) is even if and only if 4 tab ≡ 0 (mod 2), and odd otherwise.

This means there are 2g−1(2g + 1) even theta functions, and 2g−1(2g− 1) odd ones; the theta
constant associated with an odd theta function is 0. In genus 1, the only odd theta function is
θ3; in genus 2, the odd ones are θ5, θ7, θ10, θ11, θ13, θ14.

The sequence θ(z, 2nτ) has a rather central place in the algorithms we present in this
manuscript (see Chapters 3, 4, 6, 7). We establish its limit in the following proposition:
Proposition 2.1.9. For any b ∈ 1

2Z
g/Zg we have

lim
n→∞

θ[0;b](z, 2nτ) = 1, and even lim
n→∞

θ[0;b](z, 2nτ)2n = 1.

Proof. Let R an orthogonal matrix such that tR Im(τ)R = Diag(λ1, . . . , λg), where the λi denote
the eigenvalues of Im(τ). Write

|θ[0;b](z, τ)− 1| ≤
∑

n∈Zg\{0}

|eiπ
tnτn+2iπtnz|

≤
∑

n∈Zg\{0}

e−π
t(Rn)Diag(λ1,...,λg)Rne−2πtn Im(z)

≤ 2g
∑

n∈Ng\{0}

qn
2
1+...+n2

gw−2
∑
|ni|

with q = e−πλ, where λ is the smallest eigenvalue of Im(τ), and w = e−πmaxi|Im(zi)|. Hence
|θ(z, 2kτ)−1| ≤ 2g

∑
n∈Ng\{0} q

2k(n2
1+...+n2

g)w−2
∑

ni . Let k0 be such that 2k0λ ≥ 2 maxi|Im(zi)|;
then for k ≥ k0,

|θ[0;b](z, 2kτ)− 1| ≤ 2g
∑

n∈Ng\{0}

q(2k−2k0)(n2
1+...+n2

g)

≤ 4g q2k−2k0

1− q2k−2k0

(
1 + q2k−2k0

1− q2k−2k0

)2g−1

which proves the first statement. As for the second one, write θ[0;b](z, 2kτ) = 1 + c, with
c ∼k→∞ c′q2k , which goes to 0 as k grows; then θ[0;b](z, 2kτ)2k − 1 ∼ 2kc′q2k , which also goes to
0 as k grows.

2.2. Addition and duplication formulas 33

The second statement refines the first one in a way that ensures quasi-optimal time in our
algorithms (see Sections 6.2.3 and 7.2.2).

2.2 Addition and duplication formulas
2.2.1 τ-duplication formula
The following formula is of great importance to this manuscript.

Proposition 2.2.1. For all a, b ∈ 1
2Z

g/Zg,

θ[a;b] (z, τ)2 = 1
2g

∑
β∈ 1

2Zg/Zg
e−4iπ taβθ[0;b+β]

(
z,
τ

2

)
θ[0;β]

(
0, τ2

)
. (2.2.1)

This formula can be found in [Cos11, formula 3.13], where it is called the change of basis
formula from the F2 basis to the F(2,2)2 basis; it is derived from [Igu72, Section IV.1, Theorem 2]
by taking m1 = m2 and z1 = z2.

The consequences of this formula are numerous:

1. Taking z = 0 in Equation (2.2.1) shows a relationship between theta-constants at τ and
theta-constants at 2τ . A closer look at the equation one gets shows a similarity with
the classic arithmetico-geometric mean (in genus 1) and the Borchardt mean (in genus g).
The link between those quadratically convergent means and theta-constants is outlined in
Chapter 3; it is the basis of the fast algorithms for theta-constants discussed in Chapter 6
and 7.

2. Equation (2.2.1) is at the basis of our fast algorithms for θ in Chapter 6 and 7.

3. The value at τ of the fundamental theta functions, i.e. the ones with a = 0, along with
the value of the fundamental theta-constants, can be used to recover the value of all the
theta functions and theta-constants at 2τ . In particular, should one want to compute the
value of all the theta functions at τ , a valid strategy is to compute the value of all the
fundamental ones at τ/2; we use this strategy for instance in Chapter 6. We also use this
equation repeatedly in the same chapter to get an algorithm whose complexity is uniform
in z, τ .

4. Equation (2.2.1) can be combined with Proposition 2.1.9, and the fact that
∑
β(−1)taβ = 0,

to prove that, for any a ∈ 1
2Z

g/Zg \ {0},

lim
n→∞

θ[a;b](z, 2nτ) = 0.

2.2.2 Riemann formulas
The following set of formulas, often called Riemann formulas, give relationships between values
of θ in any genus:

Theorem 2.2.2 ([Igu72, Theorem IV.1.1]). Let (m1,m2,m3,m4) ∈ R8g and (z1, z2, z3, z4) ∈
C4g. Let

Tg = 1
2

Ig Ig Ig Ig
Ig Ig −Ig −Ig
Ig −Ig Ig −Ig
Ig −Ig −Ig Ig

 ,

34 Chapter 2. Background on theta functions

and put

(n1, n2, n3, n4) = (m1,m2,m3,m4)T2g,

(w1, w2, w3, w4) = (z1, z2, z3, z4)Tg

Then we have (with m′1 the first g coordinates of m1)

θm1(z1, τ) . . . θm4(z4, τ) = 1
2g
∑
(α,β)

e−2tm′1βθn1+(α,β)(w1, τ) . . . θn4+(α,β)(w4, τ)

in which (α, β) runs over a complete set of representatives of 1
2Z

2g/Z2g.

Riemann formulas are complementary to the τ -duplication formulas, since they encode a re-
lationship between theta functions with the same τ (but at different z). They can be instantiated
in many different ways; we mention in the next section the existence of z-duplication formulas,
which are obtained from the Riemann formulas. For other applications, we refer to [Cos11,
Chapter 3].

2.3 Reduction of the first argument
This manuscript describes algorithms for the computation of θ (e.g. Chapter 5, Chapter 6 and
Chapter 7). We show how one can perform argument reduction in order to restrict ourselves
to more favorable cases. We start by describing argument reduction of the first argument of θ,
before describing argument reduction for the second argument in Section 2.4.

2.3.1 Quasi-periodicity
The most obvious way to perform argument reduction is to use the quasi-periodicity of z 7→ θ(z, τ)
(i.e. Proposition 2.1.7). In all generality, one can expect to achieve the conditions

|Re(zi)| ≤
1
2 ; |Im(zi)| ≤

∑
j∈[1..g]|Im(τi,j)|

2 . (2.3.1)

using the quasi-periodicity of θ. We say that z is reduced if the above conditions are met; this
corresponds to z = x + τy with x, y ∈ Rg and |xi|, |yi| ≤ 1

2 . The value of θ(z, τ) can then be
obtained from θ(z′, τ) (with z′ reduced) simply by computing an exponential.

However, note that this exponential factor can become quite big. This would not cause
problems if one wanted to compute θ to some relative precision P ; however, in this manuscript,
we wish to compute θ to absolute precision P , i.e. up to 2−P , since θ(z, τ) can be close to 0. This
means that the exponential factor should be taken into account: if one wants to compute θ(z, τ)
up to 2−P and use argument reduction, the value θ(z′, τ) must be computed up to 2−P−C , with
C the size of the exponential factor.

Hence, the final complexity of any method relying on this argument reduction will depend on
τ and z; however, since the size of the final result depends on it too, we consider this as inevitable.
Supposing that z is reduced allows us to essentially (i.e. along with other hypotheses on τ) work
on values of θ of bounded size, which is more comfortable, and allows us to get complexities which
depend only on P – with the understanding that recovering the original value using argument
reduction has a complexity depending on the original values of z and τ .

2.3. Reduction of the first argument 35

Remark 2.3.1. In genus 1, writing z = x+ τy with |x|, |y| ≤ 1
2 is rather easy; we simply subtract

kτ from z with k the integer closest to Re
(
z
τ

)
), then we subtract the integer which is closest

from the real part. In the general case, we can write explicitly z = x + τy with x, y ∈ R2g as
follows. Put Λ =

(
Ig τ

)
∈ Mg×2g(C), so that the lattice associated to τ is ΛZ2g. We then

have
(

Λ
Λ

)(
x
y

)
=
(
z
z

)
, and we can compute x, y easily. It is then easy to subtract k+ τk′ with

k, k′ ∈ Zg to z in order to get the reduced z.

Remark 2.3.2. In the case of genus 1, the function z 7→ θi(z, τ) is odd for i = 3 and even for the
other ones. Hence, without loss of generality, one can suppose that Im(z) ≥ 0.

2.3.2 z-duplication formulas

One last way to perform argument reduction is to use the so-called z-duplication formulas. These
formulas can be derived from the Riemann formulas mentioned in the previous section; they fall
in the more general class of addition formulas:

Proposition 2.3.3 ([Igu72, Section IV.1]). Let m1,m2,m3,m4 denote elements of R2g and
u, v ∈ C. Put

(n1, n2, n3, n4) = (m1,m2,m3,m4)T

where T is the matrix defined in Theorem 2.2.2. Then, omitting τ from the equation, Riemann’s
formulas give (with m′1 the first g coordinates of m1)

θm1 (u+ v)θm2 (u− v)θm3 (0)θm4 (0) = 1
2g
∑
(α,β)

e−2tm′1βθn1+(α,β)(u)θn2+(α,β)(u)θn3+(α,β)(v)θn4+(α,β)(v)

in which (α, β) runs over a complete set of representatives of 1
2Z

2g/Z2g. Taking u = v gives the
z-duplication formulas

θm1(2z)θm2(0)θm3(0)θm4(0) = 1
2g
∑
(α,β)

e−2tm′1βθn1+(α,β)(z)θn2+(α,β)(z)θn3+(α,β)(z)θn4+(α,β)(z)

We derive one more formula, who is particularly interesting for our purposes: if θa(0, τ) 6= 0,
then

θa(2z, τ) =
∑
α,β e

−2tm′1βθ4
a+(α,β)(z, τ)

2gθ3
a(0, τ) . (2.3.2)

This gives θ(2z, τ) from the knowledge of θ(z, τ)2.

Proposition 2.3.4. The value of θ(z, τ) with absolute precision P can be computed from the
computation of the θi

(
z
2k , τ

)
with absolute precision P+pk and the application of the z-duplication

formulas.

We use z-duplication formulas, interwoven with τ -duplication formulas, in Chapter 6, in
which we also analyse the precision loss incurred. In genus g, we conjecture that pk = O(k).

36 Chapter 2. Background on theta functions

2.4 Reduction of τ via the symplectic group

2.4.1 Symplectic group
Definition 2.4.1 ([Kli90, Def. I.1.1]). The symplectic group of dimension g, denoted Sp2g(Z) is

the set of matrices
(
A B
C D

)
with A,B,C,D ∈Mg(Z) such that:

tAC = tCA, tBD = tDB, tAD − tCB = Ig.

Proposition 2.4.2 ([Kli90, Prop. I.1.1]). Sp2g(Z) acts on Hg as follows:

Sp2g(Z)×Hg → Hg(
M =

(
A B
C D

)
, τ

)
7→ M · τ = (Aτ +B)(Cτ +D)−1

Furthermore, M defines an isomorphism of complex tori between Λτ = Cg
τZg+Zg and ΛM ·τ as

follows:
Λτ → ΛM ·τ
z 7→ M ·τ z = t(Cτ +D)−1z

where the shorthand M · z may be used when the context allows.

Remark 2.4.3. In genus 1, the symplectic group is simply the group SL2(Z) of matrices
(
a b
c d

)
with a, b, c, d ∈ Z and ad− bc = 1. The action is τ 7→ aτ+b

cτ+d .

2.4.2 Action of the symplectic group on θ

The following theorem shows how θ functions behave under the action of Sp2g(Z) on Hg.

Theorem 2.4.4. Let M =
(
A B
C D

)
∈ Sp2g(Z), and (z, τ) ∈ Cg ×Hg. We have the functional

equation:
θi (M · z,M · τ) = ζM

√
det(Cτ +D)eiπ

t(M ·z)(Cz)θσM (i)(z, τ)

where σM is a permutation and ζM is an eighth root of unity.

This theorem is proven in [Mum83, Section II.5] in a special case, and in [Igu72, Chapter 5,
Theorem 2]; an outline of the proof can also be found in [Cos11, Prop. 3.1.24]. This allows to
perform argument reduction:

Proposition 2.4.5. For any z ∈ Cg and τ ∈ Hg, the value of θ(z, τ) with absolute precision P
can be computed from the value with absolute precision P + c of a θi(z′, τ ′), for some i and some
τ ′ ∈ Fg. Computing the final result requires the computation of a square root and an exponential,
for a cost of O(M(P + c) log(P + c)), on top of the cost of computing θi(z′, τ ′). The constant c
depends on z, τ, z′, τ ′.

The domain Fg is defined in the next section. The constant c is necessary to account for the
size of the exponential factor; it can be computed using e.g. a low-precision approximation of
θ(z,τ)
θi(z′,τ ′) .

2.4. Reduction of τ via the symplectic group 37

2.4.3 Fundamental domain for τ
Definition 2.4.6 ([Kli90, Def. I.3.1]). The set Fg ⊂ Hg is defined as the matrices satisfying the
conditions:

• Im(τ) is Minkowski-reduced, i.e. tg Im(τ)g ≥ Im(τk,k) for all integral g with (gk, . . . , gn) = 1
and Im(τk,k+1) ≥ 0 for all k;

• |Re(τk,l)| ≤ 1
2 for all k, l ∈ {1, ..., n}, k ≤ l;

• |det(Cτ +D)| ≥ 1 for all
(
A B
C D

)
∈ Sp2g(Z).

Remark 2.4.7. Computing the Minkowski reduction of a g× g matrix is, in general, a hard prob-
lem. Note that a Minkowski-reduced matrix gives the shortest vector of a lattice, i.e. Minkowski
reduction solves the SVP. This problem is a hard problem for which there are currently no subex-
ponential algorithms, only exponential ones; it is a standard hardness assumption in lattice-based
cryptography. The best known complexity for computing the Minkowski reduction of a g × g
matrix is O

(
21.3g3

)
arithmetic operations [Hel85]. However, note that there is an algorithm for

Minkowski reduction in dimensions up to 4 whose running time is polynomial in the size of the
longest vector of the given basis [NS04].

This is the fundamental domain for the action of Sp2g(Z) on Hg:

Theorem 2.4.8 ([Kli90, Section I.3]). Fg is the fundamental domain of the action of Sp2g(Z)
on Hg – that is to say, for any τ ∈ Hg there is γ ∈ Sp2g(Z), τ ′ ∈ Fg such that τ = γτ ′, and such
a τ ′ is unique if it is not on the boundary of Fg.

Note that the definition of Fg includes a condition that one must check on an infinite number
of matrices; hence, this definition does not allow us to write an algorithm that would find the
representative of a τ ∈ Hg in the fundamental domain. However we have

Proposition 2.4.9 ([Kli90, Section I.3, Prop. 3]). For any g, there exists a finite set Vg ⊂
Sp2g(Z) such that the third condition defining Fg can be replaced by

• |det(Cτ +D)| ≥ 1 for all
(
A B
C D

)
∈ Vg.

This proposition gives a procedure for reducing a τ into the fundamental domain Fg; we
outline it in Algorithm 1.

We use two subroutines here, which we do not make explicit:

• ReduceRealPart(τ ′) is a function that returns τ ′−M , withM = (mij) andmij = bRe(zij)e.
This is equivalent to applying matrices of the form Tij = Ig+δi,j , where δi,j is the Kronecker
matrix, to τ . This subroutine does not require many operations to compute, and we ignore
its cost.

• MinkowskiReduce is a function which takes a real matrix τ ′ as an input and outputs a real
matrix γ that is Minkowski-reduced and a matrix M with integer coefficients such that
γ = M · τ ′. Computing the Minkowski reduction of a g× g matrix has an exponential cost,
of O

(
21.3g3

)
arithmetic operations [Hel85].

38 Chapter 2. Background on theta functions

Algorithm 1 Reducing τ to Fg.
Input: τ ∈ Hg
Output: τ ′ ∈ Fg
1: τ ′ ← τ
2: τ ′ ← ReduceRealPart(τ ′).
3: v,M ← MinkowskiReduce(Im(τ ′)); τ ′ ←M · τ ′.
4: for M ∈ Vg do
5: if |det(CMτ ′ +DM)| < 1 then
6: τ ′ ←M · τ ′
7: goto 2
8: end if
9: end for
10: return τ ′

This outline can be turned into an algorithm provided that Vg is known, or at least com-
putable. However, the description in general of this finite set is not known, which does not help
in making reduction to the fundamental domain effective: there is no known algorithm which
allows one to compute Vg, and hence to reduce to the fundamental domain in genus g ≥ 3.
However, we note that, if we assume Vg is known, the resulting algorithms terminates, as proven
in [Sie89, Chapter 6,Section 5].
Remark 2.4.10. In genus 1, the action of SL2(Z) on the upper-half plane is well-known and has
been extensively studied; see for example [Mum83]. The fundamental domain F1 (sometimes
denoted F when the context is clear) is defined as

F1 =
{
τ ∈ H | |τ | ≥ 1, |Re(τ)| ≤ 1

2

}

Using the notations of Algorithm 1, V1 = {S} where S =
(

0 −1
1 0

)
. The resulting algorithm

which reduces τ into F is Gauss’s algorithm [VV09] to find a reduced basis of a 2-dimensional
lattice (in this case, Z + Zτ); its cost is asymptotically negligible. The fundamental domain is
represented on Figure 2.1.
Remark 2.4.11. In genus 2, 19 inequalities |det(Cτ +D)| ≥ 1 defining the fundamental domain
have been determined [Got59]. Each is required: for each inequality, there is a matrix outside
the fundamental domain that satisfies the 18 other inequalities but not the chosen one. In the
notations of Algorithm 1, this gives a set V2 of cardinality 19; hence there is an algorithm to
reduce in the fundamental domain in genus 2. The resulting algorithm is analyzed in [Str14,
Section 6], who proves that it terminates in a number of steps only depending on τ .

2.4.4 Loosened requirements for τ for g ≥ 2
As we saw above, there is currently no known algorithm to compute the reduction of an element
τ ∈ Hg into the fundamental domain Fg. One could introduce a larger domain, F ′g, for which a
reduction algorithm is known.

Definition 2.4.12. The set F ′g ⊂ Hg is defined as the matrices satisfying the conditions:

• Im(τ) is Minkowski-reduced, i.e. tg Im(τ)g ≥ Im(τk,k) for all integral g with (gk, ..., gn) = 1
and Im(τk,k+1) ≥ 0 for all k;

2.4. Reduction of τ via the symplectic group 39

• |Re(τk,l)| ≤ 1
2 for all k, l ∈ {1, ..., n}, k ≤ l;

• |τ1,1| ≥ 1.

This domain was introduced in genus 2 by Streng [Str14], who calls B what is called here F ′2.

Put N0 =
(
Ig − δ1,1 −δ1,1
δ1,1 Ig − δ1,1

)
, where δ1,1 is the g × g Kronecker matrix (i.e. with top left

coefficient equal to 1 and 0 everywhere else). This matrix is symplectic, and we have |det(Cτ +
D)| = |τ1,1|. This remark allows us to prove that

Proposition 2.4.13. We have Fg ⊂ F ′g.

Note that F1 = F ′1.
The algorithm for reducing τ into F ′g is similar to Algorithm 1, but with the condition

“M ∈ Vg” replaced by “M = N0” (see [Str14, §6.3]). This is Algorithm 2.

Algorithm 2 Reducing τ to F ′g.
Input: τ ∈ Hg
Output: τ ′ ∈ F ′g
1: τ ′ ← τ
2: τ ′ ← ReduceRealPart(τ ′).
3: v,M ← MinkowskiReduce(Im(τ ′)); τ ′ ←M · τ ′.
4: if |τ1,1| < 1 then
5: τ ′ ← N0 · τ ′
6: goto Step 2
7: end if
8: return τ ′

Termination of Algorithm 2 in genus 2 (i.e. reduction to F ′2) is proven in [Str14]. The
termination of Algorithm 2 in the general, genus g case is an open problem. Note that a few
lemmas used in the proof generalize to genus g, namely Lemma 6.9, Lemma 6.11 (for the set
of matrices such that y1 ≤ 1

t′ with t′ > 2) and Lemma 6.12 (for the set of matrices such that
y1 ≥ 1

t′); unfortunately the generalization of Lemma 6.14 is unclear, as it relies on Equation 6.5,
which is only valid in genus 2.

Another approach to argument reduction is to use so-called Siegel reduction, as in [DHB+04].
The conditions are even weaker than the ones we impose here; in particular, LLL reduction is
used instead of Minkowski reduction. The article claims that this reduction is enough to limit
the number of terms needed for the naive algorithm for θ, although no analysis is provided.

We believe that both reductions – reduction to F ′g and the explicit Siegel reduction of [DHB+04] –
are relevant to our purposes, i.e. argument reduction in the context of the genus g θ function.
The first reduction may be costlier, as Minkowski reduction has running time exponential in the
genus while the LLL reduction runs in polynomial time; furthermore, termination has not been
proven, although we believe it to hold. In either case, both reduction algorithms seem to give
conditions similar to the ones we use when analyzing the naive algorithm for θ in Sections 5.1
and 5.2, which indicates that both reduction algorithms are relevant.

In the remainder of this manuscript, the reduction of τ to F ′g is the one we will mention the
most often, and in particular in the analyses of Chapter 5; however, it should be understood that
similar results could probably be found for the effective Siegel reduction described in [DHB+04].

40 Chapter 2. Background on theta functions

2.5 Genus 1 instantiations

This short section is aimed at making the equations described so far more explicit in genus 1.
We use quite a lot of them throughout this manuscript, but most importantly in Chapter 6,
when describing our quasi-linear time algorithm for θ; such formulas are used both in the actual
computation of θ and in the argument reduction strategy we set up in order to get a complexity
that is independent of z and τ .

The genus 1 theta function, sometimes called Jacobi theta function, is defined as

Definition 2.5.1. Jacobi’s theta function is defined as

C×H → C
(z, τ) 7→

∑
n∈Z

eiπτn
2
e2iπzn = 1 +

∑
n∈N

qn
2
(w2n + w−2n)

= 1 + q

(
w2 + 1

w2

)
+ q4

(
w4 + 1

w4

)
+ . . .

with q = eiπτ (the “nome”) and w = eiπz.

There are four theta functions with characteristics, which we denote θ0, θ1, θ2, θ3 using the
notation of Note 2.1.5:

θ0(z, τ) = θ (z, τ) = 1 + q

(
w2 + 1

w2

)
+ q4

(
w4 + 1

w4

)
+ . . .

θ1(z, τ) = θ

(
z + 1

2 , τ
)

= 1− q
(
w2 + 1

w2

)
+ q4

(
w4 + 1

w4

)
− . . .

θ2(z, τ) = exp(πiτ/4 + πiz)θ
(
z + τ

2 , τ
)

= q1/4w

(
1 + 1

w2 + q2
(
w2 + 1

w4

)
+ q6

(
w4 + 1

w6

)
+ . . .

)
θ3(z, τ) = exp(πiτ/4 + πi(z + 1/2))θ

(
z + τ + 1

2 , τ

)
= iq1/4w

(
1− 1

w2 + q2
(
w2 − 1

w4

)
+ q6

(
w4 − 1

w6

)
− . . .

)
Furthermore, the expressions of the theta-constants are as follows:

θ0(0, τ) =
∑
n∈Z

qn
2

= 1 + 2q2 + 2q4 + 2q9 + . . . (2.5.1)

θ1(0, τ) =
∑
n∈Z

(−1)nqn
2

= 1− 2q2 + 2q4 − 2q9 + . . . (2.5.2)

θ2(0, τ) = 2
∑
n≥0

q(n+1/2)2
= 2q1/4 + 2q9/4 + 2q25/4 + . . . (2.5.3)

Recall that θ3(0, τ) = 0 since this is an odd theta function.

2.5. Genus 1 instantiations 41

2.5.1 Duplication formulas
The τ -duplication formulas are as follows:

θ0(z, 2τ)2 = θ0(z, τ)θ0(0, τ) + θ1(z, τ)θ1(0, τ)
2 θ0(0, 2τ)2 = θ0(0, τ)2 + θ1(0, τ)2

2 (2.5.4)

θ1(z, 2τ)2 = θ0(z, τ)θ1(0, τ) + θ1(z, τ)θ0(0, τ)
2 θ1(0, 2τ)2 = θ0(0, τ)θ1(0, τ)

θ2(z, 2τ)2 = θ0(z, τ)θ0(0, τ)− θ1(z, τ)θ1(0, τ)
2 θ2(0, 2τ)2 = θ0(0, τ)2 − θ1(0, τ)2

2

θ3(z, 2τ)2 = θ0(z, τ)θ1(0, τ)− θ1(z, τ)θ0(0, τ)
2

We will use the right column in Chapter 3, and the left column is a crucial component in
Chapter 6. Note that a direct proof of these formulas using the definition of θ is also sometimes
presented (e.g. [BB87]), which involves some manipulations and term reorganization akin to∑

n+m≡0 (mod 2)

qn
2+m2

=
∑
i,j∈Z

q(i+j)2+(i−j)2
.

As for the z-duplication formulas, we will use:

θ0(z, τ)θ3
0(0, τ) = θ4

1(z/2, τ) + θ4
2(z/2, τ) (2.5.5)

θ1(z, τ)θ3
1(0, τ) = θ4

0(z/2, τ)− θ4
2(z/2, τ)

θ2(z, τ)θ3
2(0, τ) = θ4

0(z/2, τ)− θ4
1(z/2, τ)

θ3(z, τ)(θ0θ1θ2)(0, τ) = 2(θ0θ1θ2θ3)(z/2, τ)

These will be used in Chapter 6.

2.5.2 Other equations
We highlight two more equations:

θ0(0, τ)4 = θ1(0, τ)4 + θ2(0, τ)4 (2.5.6)
θ2

0(z, τ)θ2
0(0, τ) = θ2

1(z, τ)θ2
1(0, τ) + θ2

2(z, τ)θ2
2(0, τ) (2.5.7)

In [Mum83], the first one is named Jacobi’s quartic formula, and the second one the equation
of the variety. Those equations show another way than the τ -duplication formulas to recover θ2
from the knowledge of the values of the fundamental theta functions.

Furthermore, one can recover θ3(z, τ) from the other values of θ, using:

θ2
3(z, τ)θ2

0(0, τ) = θ2
1(z, τ)θ2

2(0, τ)− θ2
2(z, τ)θ2

1(0, τ). (2.5.8)

Finally, we mention a special formula, whose generalization to higher genera is not very
obvious: Jacobi’s derivative formula, which is

θ′3(0, τ) = −πθ0(0, τ)θ1(0, τ)θ2(0, τ)

We use this to prove a formula in Chapter 8. Generalizations to higher genera have been con-
sidered in [Igu80, Gra88]; we do not use any here.

42 Chapter 2. Background on theta functions

2.5.3 Argument reduction
One can make Theorem 2.4.4 more explicit in the case of genus 1 and determine the correspon-
dence γ 7→ σγ , using [Mum83, p. 36] or by noticing it is independent of z and using the tables
found by Gauss for theta-constants [Cox84, Eq. 2.15].

Theorem 2.5.2 (extension of [Mum83, Theorem 7.1]). Let τ ∈ H and z ∈ C, and let

γ =
(
a b
c d

)
∈ SL2(Z). Suppose c > 0, or c = 0 and d > 0; if not, take −γ. Then we have:

θi

(
z

cτ + d
,
aτ + b

cτ + d

)
= ζi,γ,τ

√
cτ + deiπcz

2/(cτ+d)θσ(i)(z, τ)

where the square root is taken with positive real part, ζi,γ,τ is an eighth root of unity and σ is a
permutation of the elements (00, 01, 10), defined by the following table:

a b c d σ(00, 01, 10)
odd even even odd (00, 01, 10)
odd odd even odd (01, 00, 10)
odd even odd odd (10, 01, 00)
even odd odd even (00, 10, 01)
odd odd odd even (10, 00, 01)
even odd odd odd (01, 10, 00)

Thus, in order to recover θi(z, τ) from θi

(
z

cτ+d ,
aτ+b
cτ+d

)
, one needs to compute

√
cτ + d (which

is done in O(M(P)) bit operations) and eπicz
2/(cτ+d) (O(M(P) logP) bit operations), and

perform a division; determining ζ is asymptotically negligible. The cost of this step is then
O(M(P) logP) bit operations. We note that in general, because of the permutation σγ , we need
to have computed all three values θ0,1,2

(
z

cτ+d ,
aτ+b
cτ+d

)
in order to be able to use the formula to

compute, say, θ0(z, τ). We will occasionally talk about computing θ3, but this will not be the
focus of our algorithms, as it can easily be recovered using Equation (2.5.8).

The proof of Theorem 2.5.2 is usally done using some particularly simple relations, which
describe the action of S =

(
0 −1
1 0

)
on the values of θ [Mum83, Table V, p. 36]:

θ2
0

(
0, −1

τ

)
= −iτeiπz

2/τθ2
0(0, τ), θ2

2

(
0, −1

τ

)
= −iτeiπz

2/τθ2
1(0, τ), (2.5.9)

and their equivalent for theta constants

θ2
0

(
0, −1

τ

)
= −iτθ2

0(0, τ), θ2
2

(
0, −1

τ

)
= −iτθ2

1(0, τ). (2.5.10)

These can be proven e.g. using Poisson’s summation formula. Theorem 2.5.2 is then proven by
determining the action of T =

(
1 1
0 1

)
on the values of θ, then using the fact that SL2(Z) =

〈S, T 〉.
Theorem 2.5.2 allows us to suppose that τ ∈ F , the fundamental domain for the action of

SL2(Z) on H. This translates into the conditions

|τ | ≥ 1, |Re(τ)| ≤ 1
2 , and hence Im(τ) ≥

√
3

2 .

2.6. Genus 2 instantiations 43

0

H

F

Figure 2.1: Fundamental domain F .

The fundamental domain is depicted on Figure 2.1.
Argument reduction in z is carried out using quasi-periodicity:

θ(z + b+ aτ, τ) = e−πia
2τ−2πiazθ(z, τ)

Finally, as mentioned in Note 2.3.2, we will suppose that Im(z) ≥ 0. Combining all the
argument reduction strategies allows us to suppose (e.g. in Chapter 5 and Chapter 6) that:

|τ | ≥ 1, |Re(τ)| ≤ 1
2 , Im(τ) > 0,

|Re(z)| ≤ 1
2 , 0 ≤ Im(z) ≤ Im(τ)

2 . (2.5.11)

2.6 Genus 2 instantiations

We discuss in Chapter 5 and Chapter 7 the computation of the θ function in genus g. We often
take a closer look at the case g = 2 in order to show how one can generalize existing algorithms
which apply to the (genus 1) Jacobi θ function; hence, we outline explicitly in this section a few
of the formulas we will use later, when discussing the case g = 2.

44 Chapter 2. Background on theta functions

n

m

θ0

⊕
⊕
⊕
⊕
⊕
⊕
⊕

⊕
⊕
⊕
⊕
⊕
⊕
⊕

⊕
⊕
⊕
⊕
⊕
⊕
⊕

⊕
⊕
⊕
⊕
⊕
⊕
⊕

⊕
⊕
⊕
⊕
⊕
⊕
⊕

⊕
⊕
⊕
⊕
⊕
⊕
⊕

⊕
⊕
⊕
⊕
⊕
⊕
⊕

n

m

θ1

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

n

m

θ2

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

⊕
⊕
⊕
⊕
⊕
⊕
⊕

⊕
⊕
⊕
⊕
⊕
⊕
⊕

⊕
⊕
⊕
⊕
⊕
⊕
⊕

n

m

θ3

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

⊕
⊕
⊕
⊕
⊕
⊕
⊕

⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

Figure 2.2: Signs of the terms in the sums defining respectively θ0, θ1, θ2, θ3.

2.6.1 Definition

We usually write z =
(
z1
z2

)
and τ =

(
τ1 τ3
τ3 τ2

)
. The definition of the theta function can thus be

rewritten as

θ(z, τ) =
∑
m,n∈N

qm
2

1 qn
2

2
(
q2mn
3

(
w2m

1 w2n
2 + w−2m

1 w−2n
2

)
+ q−2mn

3
(
w2m

1 w−2n
2 + w−2m

1 w2n
2
))

= 1 + 2q1

(
w

2
1 +

1
w2

1

)
+ 2q2

(
w

2
2 +

1
w2

2

)
+ q1q2

(
q

2
3

(
w

2
1w

2
2 +

1
w2

1w
2
2

)
+ q
−2
3

(
w2

1
w2

2
+
w2

2
w2

1

))
+ . . .

where qj = eiπτj and wj = eiπzj .
Note that, in genus 2, there are 16 different theta functions, that we number θ0 to θ15. Using

the notation we outlined in Note 2.1.5, the fundamental genus 2 theta functions are thus denoted
θ0, θ1, θ2, θ3. Note that the series defining the fundamental theta functions are made of the same
terms but with different signs, which allows their simultaneous computation by a naive algorithm
at no extra cost; we summarize the patterns of the signs in Figure 2.2. The even theta functions
are θi for i ∈ {0, 1, 2, 3, 4, 6, 8, 9, 12, 15}, while the odd ones are θi for i ∈ {5, 7, 10, 11, 13, 14}; this
is the notation used in [Cos11, CR15, Str14], but differs from the notation used in e.g. [Gau07].

2.6.2 Reduction

The condition that Im(τ) must be Minkowski-reduced can be rewritten as

0 ≤ 2 Im(τ3) ≤ Im(τ1) ≤ Im(τ2).

As for the condition given in Equation (2.3.1), it translates into

|Re(zi)| ≤
1
2 , |Im(z1)| ≤ Im(τ1) + Im(τ3)

2 ≤ 3
4 Im(τ1), |Im(z2)| ≤ Im(τ2) + Im(τ3)

2 ≤ 3
4 Im(τ2)

2.6. Genus 2 instantiations 45

2.6.3 Duplication
An important equation we will be using is the one of the τ -duplication formula. This formula
can be written as follows for the fundamental theta functions:

θ0(z, 2τ)2 = θ0(z, τ)θ0(0, τ) + θ1(z, τ)θ1(0, τ) + θ2(z, τ)θ2(0, τ) + θ3(z, τ)θ3(0, τ)
4

θ1(z, 2τ)2 = θ0(z, τ)θ1(0, τ) + θ1(z, τ)θ0(0, τ) + θ2(z, τ)θ3(0, τ) + θ3(z, τ)θ2(0, τ)
4

θ2(z, 2τ)2 = θ0(z, τ)θ2(0, τ) + θ1(z, τ)θ3(0, τ) + θ2(z, τ)θ0(0, τ) + θ3(z, τ)θ1(0, τ)
4

θ3(z, 2τ)2 = θ0(z, τ)θ3(0, τ) + θ1(z, τ)θ2(0, τ) + θ2(z, τ)θ1(0, τ) + θ3(z, τ)θ0(0, τ)
4

We can also write these relations for z = 0, i.e. for theta-constants; this will emphasize the link
with Borchardt mean that we use in Chapter 3 and Chapter 7.

θ0(0, 2τ)2 = θ0(0, τ)2 + θ1(0, τ)2 + θ2(0, τ)2 + θ3(0, τ)2

4

θ1(0, 2τ)2 = θ0(0, τ)θ1(0, τ) + θ2(0, τ)θ3(0, τ)
2

θ2(0, 2τ)2 = θ0(0, τ)θ2(0, τ) + θ1(0, τ)θ3(0, τ)
2

θ3(0, 2τ)2 = θ0(0, τ)θ3(0, τ) + θ1(0, τ)θ2(0, τ)
2

2.6.4 The Kummer surface
Finally, we mention a last relation, which in a sense generalizes Equation (2.5.7), in that it gives
the equation of the Kummer variety defined by the values of theta in genus 2. This equation is
useful in Chapter 7, where it appears as a fix which allows the use of Newton’s method.

Proposition 2.6.1 ([Gau07]). Let

x = θ0(z, τ), y = θ1(z, τ) , z = θ2(z, τ), t = θ3(z, τ)
a = θ0(0, τ), b = θ1(0, τ), c = θ2(0, τ), d = θ3(z, τ)
A = θ0(0, 2τ), B = θ1(0, 2τ), C = θ2(0, 2τ), D = θ3(z, 2τ)

and define

E = 256abcdA2B2C2D2

(a2b2 − c2d2)(a2c2 − b2d2)(a2d2 − b2c2)

F = a4 + b4 − c4 − d4

a2b2 − c2d2

G = a4 − b4 + c4 − d4

a2c2 − b2d2

H = a4 − b4 − c4 + d4

a2d2 − b2c2
.

Note that the τ -duplication formulas of the previous subsection show that A,B,C,D can be written
very simply in terms of a, b, c, d; hence, E can also be written as a function of a, b, c, d. Then

(x4 + y4 + z4 + t4) + 2Exyzt = F (x2y2 − z2t2) +G(x2z2 − y2t2) +H(x2t2 − y2z2),

46 Chapter 2. Background on theta functions

which is the equation of the Kummer surface.

The Kummer surface is isomorphic to the Jacobian modulo the 2-torsion points, as the
fundamental theta functions are even.
Remark 2.6.2. The Kummer surface has the advantage of having simple (and hence fast) arith-
metic, and very regular formulas, which provides natural protection against side-channel at-
tacks. We refer to [Gau07, Cos11] for the description of this surface and the corresponding
arithmetic; [Cos11] furthermore shows how to use Kummer surfaces in the context of factoriza-
tion of integers, in a manner similar to the Elliptic Curve Method (ECM), and with even better
implementation results. Finally, we refer to two recent papers, [BCHL16] and [CCS15], which
show how Kummer surfaces can be used in cryptographic schemes and offer arithmetic that is
even faster than with elliptic curves.

Chapter 3

AGM and Borchardt mean

This chapter is dedicated to outlining the classical theory behind the arithmetico-geometric
mean and its generalization to higher genus the Borchardt mean. Their study has computational
applications, namely the computation of theta-constants, in genus 1 for the AGM, and in genus g
for the Borchardt mean; we outline the corresponding algorithms in Section 6.1 and Section 7.1.

The main problem in the study of these means is the study of the choice of signs: either of
those means requires the extraction of a square root, and hence two possible complex values.
Choosing one square root over another changes the value to which the sequence converges, and
sometimes even its rate of convergence; we will make this explicit. The results presented in this
section are taken from [Cox84] and [Dup06, Dup11].

3.1 The real AGM
3.1.1 Rate of convergence
Recall the arithmetic mean of two positive numbers (a, b) 7→ a+b

2 , and the geometric mean
(a, b) 7→

√
ab. The following proposition gives the definition of the arithmetico-geometric mean:

Proposition 3.1.1. Let a, b ∈ R+ such that a ≥ b. Define the sequences (an)n∈N, (bn)n∈N as
follows:

a0 = a, b0 = b

an+1 = an + bn
2 , bn+1 =

√
anbn

where bn+1 > 0. Then the sequences (an)n∈N, (bn)n∈N are adjacent, i.e. (an)n∈N is decreasing,
(bn)n∈N is increasing, and (an − bn)n∈N goes to zero; thus (an)n∈N and (bn)n∈N converge to the
same limit. Define the arithmetico-geometric mean (AGM) of a and b, denoted AGM(a, b), as
the limit of either (an)n∈N or (bn)n∈N.

Proof. The concavity of x 7→ log x can be used to prove that, ∀x, y ∈ R+, x+y
2 ≥ √xy. In fact,

we have
an ≥

an + bn
2 = an+1 ≥ bn+1 ≥

√
bnbn = bn

which proves that a ≥ a1 ≥ ... ≥ an ≥ bn ≥ ... ≥ bn ≥ b. We even have

an+1 − bn+1 ≤ an+1 − bn = an − bn
2

47

48 Chapter 3. AGM and Borchardt mean

which proves (an − bn)n∈N converges to 0: hence (an)n∈N, (bn)n∈N are adjacent and converge,
and an − bn ≤ a−b

2n .

The notion of quadratic convergence is central in this manuscript:

Definition 3.1.2. Let (xn) ∈ CN be a sequence; we say that (xn) is quadratically convergent to
`, or that (xn) converges quadratically to ` if there exists a C > 0 and a N ∈ N such that for all
n > N

|xn+1 − `| ≤ C|xn − `|2.

Note that this implies that for n large enough, the number of exact digits one gets by taking
xn+1 as an approximation of ` is roughly twice as much as the number of exact digits one gets
from xn. This means that the first n for which |xn − `| ≤ 2−P satisfies n = O(logP): only
O(logP) steps are needed to compute P bits of the limit of the sequence.

AGM sequences can be shown to converge quadratically (see e.g. [BB87, BM88]):

Proposition 3.1.3.
an+1 − bn+1 ≤

1
8b (an − bn)2.

Proof. Write:

an+1 − bn+1 = 1
2(√an −

√
bn)2 ≤ 1

2
(an − bn)2

(√an +
√
bn)2 ≤

1
8b (an − bn)2.

In practice, the AGM sequences converge quite quickly; for instance, one can compute
AGM(1,

√
2) with 14 decimal digits of precision in only 4 steps. This calculation was done

by Gauss in 1809, who then noticed that the result corresponded to π
ω , where ω is the length

of the lemniscate, thus outlining a link between the AGM and elliptic integrals. We refer the
reader to [Cox84] for more historical details on the AGM.

Given that square roots can be computed with precision P in O(M(P)) (Section 0.3.3), we
have

Proposition 3.1.4. AGM(a, b) can be computed with absolute precision P in O(M(P) logP)
bit operations.

This is an example of a quasi-optimal complexity, or quasi-linear complexity, which we define
in this manuscript as a complexity which is essentially linear in the output size, up to logarithmic
factors. Finally note that contrary to, say, Newton’s method, the AGM is not self-correcting;
hence, each iteration has to be carried out at maximal precision.

3.1.2 Brent-Salamin algorithm
An interesting application of the AGM over the positive reals is the Brent-Salamin algorithm for
the asymptotically fast computation of digits of π. This algorithm was found independently by
Brent and Salamin in 1975; we refer to [BB87] for more details than what is presented here. We
use this algorithm in several settings, e.g. Chapter 5.

Proposition 3.1.5 ([BB87, Algorithm 2.2]). Let a0 = 1, b0 = 1√
2 . Define

πn =
2a2
n+1

1−
∑n
k=0 2kc2k

, cn =
√
a2
n − b2n =

c2n−1
4an

3.2. The complex AGM 49

where an, bn are the sequences computed by the AGM iteration. Then (πn) converges quadratically
to π, and

π − πn ≤
π22n+4e−π2n+1

AGM(1, 1/
√

2)2
.

This proposition can be proved by using the properties of elliptic integrals, and more precisely
the change of variables given by the Landen transform. The connection between the AGM and
elliptic integrals via the Landen transform is outlined in Chapter 4. The proposition gives a
quasi-optimal time algorithm to compute P bits of π: compute 1√

2 with P bits of precision in
time O(M(P)), then compute (πn) until it is within 2−P of π, which only requires O(logP)
terms, for a total cost of O(M(P) logP) bit operations.

This is currently the best known asymptotic running time for the computation of P digits
of π; however, the Brent-Salamin algorithm is not necessarily the fastest algorithm in practice.
We refer to [BB87] for many similar algorithms designed to compute approximations of π. Some
of these algorithms have been used in the past to compute a record number of digits of π; the
main problem is that they require a lot of memory, since one has to work with (and hence, store)
numbers of size roughly P (and even P + logP accounting for guard bits). Other algorithms,
such as the one using Chudnovsky’s formula [CC89], are used nowadays for records of decimals
of π [Bel10, YK11]; their convergence is slower (about 14 decimal digits per term, i.e. per step),
but combined with a binary splitting strategy, they are faster in practice than the AGM-based
algorithms, most notably because they support parallelization and checkpointing.

3.2 The complex AGM
It is possible to generalize the results above to the complex case, i.e. a, b ∈ C. However, in
this case, there are two possibilities at every step for computing the square root; this gives an
uncountable number of AGM sequences, and defining unambiguously the AGM requires a bit
more work.

3.2.1 Choice of signs and optimal AGM sequences
Definition 3.2.1. Let a, b ∈ C, and let (an)n∈N, (bn)n∈N ∈ CN such that a0 = a, b0 = b. The
sequence (an, bn) is an AGM sequence if, for all n:

an+1 = an + bn
2 , b2n+1 = anbn

As [Cox84], our discussion here assumes a0 6= 0, b0 6= 0, an 6= ±bn, as the limit of AGM
sequences in these cases is trivial. It is easy to see by induction that these conditions are
satisfied for an, bn if and only if they are satisfied for an−1, bn−1.

Hence, there are uncountably many AGM sequences, since there are two distinct possible
choices of sign at each step. The following notion distinguishes choices of signs:

Definition 3.2.2. Let α ∈ C∗ such that α2 = b2n. We say that α is a good choice of square roots
or a good choice of signs if setting bn = α gives the relations

|an − bn| < |an + bn|, or |an − bn| = |an + bn| and Im
(
bn
an

)
> 0

If that is not the case, α is a bad choice of square roots.

50 Chapter 3. AGM and Borchardt mean

Note that this is equivalent to “Re
(
bn
an

)
> 0, or Re

(
bn
an

)
= 0 and Im

(
bn
an

)
> 0”.

Definition 3.2.3. Define the optimal AGM sequence [CT13] (also called the standard AGM
sequence, in e.g. [ET14a]), as the AGM sequence for a, b where all the choices of sign are good.
This sequence converges quadratically to a non-zero value; this value is defined to be AGM(a, b)
(also sometimes called the simplest value [Cox84, Jar08]).

The question of the choice of sign is important in practical applications of the AGM, most
notably for theta constants; we give related results in Chapter 6.

3.2.2 Convergence of optimal AGM sequences

Lemma 3.2.4 ([Dup11, Theorem 1]). Let (an, bn) be an AGM sequence in which all the choices
of signs are good. Then for all n ≥ 0 we have

|an+1 − bn+1| ≤
π

8 min(|a0|, |b0|)
|an − bn|2.

This can be used to prove quadratic convergence:

Proposition 3.2.5. Let a, b ∈ C such that ab 6= 0 and a 6= −b. Any AGM sequence for a, b
with only a finite number of bad choices converges quadratically to a non-zero limit. Any AGM
sequence for a, b with infinitely many bad choices converges (at least linearly) to 0.

Proof. The properties of the limit come from [Cox84, Prop. 2.1]; the proof of the quadratic
convergence uses a lot of the same arguments, and can be found in [Dup06, Section 3.4] or [Dup11,
Theorem 1 and Prop. 12].

In particular, optimal AGM sequences converge quadratically, which means our definition of
the complex AGM enjoys similar properties as the real AGM.

The convergence of the AGM can actually be studied more precisely, with a precise bound
on the number of iterations required to compute AGM(1, z), as well as a bound on the number
of guard bits:

Theorem 3.2.6 ([Dup11, Prop. 12 & Cor. 1]). Let z be a complex number in the upper-right
quadrant of the complex plane, and denote (an, bn) the optimal AGM sequence for (1, z). Put

nP = max (dlog2|log2|z||e, 1) + dlog2(P + 3)− 1e.

Then anP is an approximation of AGM(1, z) with relative precision P bits. Furthermore, each
iteration loses a constant number of bits of relative precision, which means it is enough to work
at precision P + 2 + 2nP = O(P + log2|log2|z||).

Note that this means that more iterations are needed the larger |z| is, but also the smaller
|z| is.

In the end, this gives the result that the complex AGM can be computed with precision P in
O(M(P) logP) bit operations. Note that the constant in the O depends on z; however, in our
applications, we find a way to get rid of the dependency in z.

3.2. The complex AGM 51

3.2.3 Theta-constants and arithmetico-geometric mean
Recall the τ -duplication formulas, which were mentioned in Chapter 2:

θ0(0, 2τ)2 = θ0(0, τ)2 + θ1(0, τ)2

2 , θ1(0, τ)2 = θ0(0, τ)θ1(0, τ) (3.2.1)

A proof for these formulas can also be obtained easily by manipulating the definition of the series;
see [BB87]. This means that the sequence

(
θ0(0, 2nτ)2, θ1(0, 2nτ)2)

n∈N is an AGM sequence for
θ0(0, τ)2, θ1(0, τ)2. Studying the choice of signs in this AGM sequence was done first in [Gep28],
while [Cox84] gave a more modern treatment.

Optimal sequences

Definition 3.2.7. Define

D1 =
{
τ ∈ F | |Re(τ)| ≤ 1, |Re

(
1
τ

)
| ≤ 1

}
and define D̃1 as the domain obtained by translating D1 by ±2,±4, etc.

Proposition 3.2.8 ([Cox84, Lemma 2.8 and Lemma 2.9]). For all τ ∈ D1, or in D̃1, we have
Re
(
θ2

1(0,τ)
θ2

0(0,τ)

)
> 0, or Re

(
θ2

1(0,τ)
θ2

0(0,τ)

)
= 0 and Im

(
θ2

1(0,τ)
θ2

0(0,τ)

)
> 0.

Now, pick a τ ∈ F , and consider the AGM sequence starting with (θ2
0(0, τ), θ2

1(0, τ)). Picking
the right choice of sign for the first step is then equivalent to the condition

|θ2
0(0, 2τ)− θ2

1(0, 2τ)| < |θ2
0(0, 2τ) + θ2

1(0, 2τ)|

or |θ2
0(0, 2τ)− θ2

1(0, 2τ)| = |θ2
0(0, 2τ) + θ2

1(0, 2τ)| and Im
(
θ2

1(0, 2τ)
θ2

0(0, 2τ) > 0
)

⇔ Re
(
θ2

1(0, 2τ)
θ2

0(0, 2τ)

)
> 0 or Re

(
θ2

1(0, 2τ)
θ2

0(0, 2τ)

)
= 0 and Im

(
θ2

1(0, 2τ)
θ2

0(0, 2τ)

)
> 0

Hence:

Proposition 3.2.9 ([Cox84, Lemma 2.9]). Define D2 = 1
2 (D1 \B), where B is the border of

the half circle on the right. Define also D̃2 as D2 translated by ±1,±2, etc. Then for τ ∈ D̃2,
the sequence

(
θ2

0(0, 2nτ), θ2
1(0, 2nτ)

)
n∈N is an optimal AGM sequence, and hence

AGM(θ0(0, τ)2, θ1(0, τ)2) = 1.

Hence, AGM sequences starting with the fundamental theta-constants at τ are optimal se-
quences for τ in the striped domain on Figure 3.1.
Remark 3.2.10. Note that the AGM is homogeneous, i.e.

AGM(λx, λy) = λAGM(x, y)

Hence, a direct consequence of Proposition 3.2.9 is that

AGM
(

1, θ
2
1(0, τ)
θ2

2(0, τ)

)
= 1
θ2

0(0, τ)

for any τ ∈ D2.

52 Chapter 3. AGM and Borchardt mean

0

D1

D̃2

F

Figure 3.1: The domains D1 (in red) and D̃2 (blue lines), with the fundamental domain F .

Limits of AGM sequences

Proposition 3.2.11 ([Cox84, Lemma 2.5 and Lemma 2.7]). Define the principal congruence
subgroup of level 2

Γ(2) =
{
γ ∈ SL2(Z) | γ ≡

(
1 0
0 1

)
(mod 2)

}
.

Then given τ ∈ F , there is γ ∈ Γ(2) such that γ · τ ∈ D1; in fact, the fundamental domain of
Γ(2) is D1 minus the left half-circle.

Similarly, the following proposition determines the set for which D2 is a fundamental domain:
Proposition 3.2.12 ([Cox84, Lemma 2.7]). Define Γ2(4), a subgroup of Γ2, as

Γ2(4) =
{
γ =

(
a b
c d

)
∈ SL2(Z) | b ≡ 0 (mod 2), c ≡ 0 (mod 4)

}
.

Then given τ ∈ F , there is γ ∈ Γ2(4) such that γ · τ ∈ D2. In fact, the fundamental domain of
Γ2(4) is D2 minus the two left half-circles.

Furthermore:
Proposition 3.2.13 ([Dup06, Prop. 2.14]). The function τ → θ2

1(0,τ)
θ2

0(0,τ) is modular for Γ2(4), and
in particular invariant under its action.

Now, for any τ ∈ F take γ ∈ Γ2(4) such that γ · τ ∈ D2, and write

AGM(θ2
0(0, τ), θ2

1(0, τ)) = θ2
0(0, τ)

θ2
0(0, γ · τ) AGM

(
θ2

0(0, γ · τ), θ2
1(0, γ · τ)

)
= θ2

0(0, τ)
θ2

0(0, γ · τ)
using the homogeneity of the AGM and Proposition 3.2.13. This proves that:
Theorem 3.2.14 ([Cox84], [Dup06, Theorem 3.1]). The set of limits of AGM sequences starting
at (θ2

0(0, τ), θ2
1(0, τ)) is {

θ2
0(0, τ)

θ2
0(0, γ · τ) , γ ∈ Γ2(4)

}
∪ {0}.

3.3. Applications of the complex AGM 53

This can be rephrased into a result describing the set of limits of AGM sequences starting at
(a, b) ∈ C2; this result was known to Gauss [Cox84]. In particular, this gives the rather striking
result that the inverse of the limits of the AGM sequences starting at (a, b) form a lattice.

3.3 Applications of the complex AGM
We highlight a few of the computational applications of the complex AGM. The first application
is the study of elliptic integrals, which actually led to the discovery of the complex AGM in the
first place. A second application is the discovery, in the 1970s, of fast algorithms based on the
AGM to compute important mathematical quantities, such as π (see Section 3.1.2) and log(z),
and thus exp(z).

A most interesting application of the AGM is the computation of theta-constants; we give
extensive details on this algorithm in Chapter 6, in which we also generalize the blueprint of the
algorithm to theta functions.

3.3.1 Elliptic integrals

As explained in [Cox84, Section 3], the history of the arithmetico-geometric mean is very tightly
connected to the study of some integrals, starting with the integral

∫ 1
0

dz√
1−z4 , which is a quarter of

the arc length of the lemniscate. The lemniscate, and its sibling the elastic curve, was discovered
in the 17th century by Bernoulli, then studied by Stirling and Euler; Lagrange, in 1785, came
very close to linking the integral to the arithmetico-geometric mean, but seem to have missed
this discovery.

Gauss studied related notions around 1795, where he attempted to study lemniscatic (elastic)
functions much in the same way as one does circular geometry. He came back to it in 1798, this
time studying quantities that in hindsight are closely related to theta functions; his explorations
culminated to a calculation to the 11th decimal place made on May 30th 1799, which led him to
conjecture that ∫ 1

0

dz√
1− z4

= π

2 AGM(
√

2, 1)
.

In his famous words, “the demonstration of this fact will surely open an entirely new field of
analysis”.

A classical proof of this identity will be given in Chapter 4; in fact, there are many more
identities of this type, including one of particular interest for us:∫ 2π

0

dt√
a2 cos2 t+ b2 sin2 t

= 2π
AGM(a, b) .

3.3.2 Computing the complex logarithm

Note that θ can be looked at as a function of q = eiπτ . In this context, Equation (2.5.10) is
an equation linking θ to the logarithm of q; hence, one could think of computing the logarithm
of a complex number using this equation and the properties of the AGM. We first outline the
algorithm of Sasaki and Kanada to compute log x for real x, then show a different approach by
Dupont to compute the complex logarithm in quasi-optimal time.

54 Chapter 3. AGM and Borchardt mean

The algorithm of Sasaki and Kanada

Sasaki and Kanada [SK82] proposed in 1982 an algorithm based on the AGM and theta-constants
to compute log x in time O(M(P)

√
P); we also refer to [BZ10, p.158] for more comments and

implementation remarks. They start from the relation:

Proposition 3.3.1. For τ ∈ H such that −1
τ ∈ D2, we have

AGM(θ0(0, τ)2, θ2(0, τ)2) = i

τ

This proposition can be proven from Equation (2.5.10) and Proposition 3.2.9, and the homo-
geneity of the AGM. Putting q = eiπτ , this can be rephrased as

log q
iπ

= τ = i

AGM
((∑

n∈Z q
n2)2 , (∑n∈Z q

(n+1/2)2)2)
This relation is valid for all complex numbers τ such that −1

τ ∈ D2; in particular, it is valid for
τ ∈ F .

Sasaki and Kanada take a look in particular at the case where q is real and smaller than 1,
which corresponds to τ ∈ iR. The result above then shows how to compute the logarithm of q:

log q = −π

AGM
((∑

n∈Z q
n2)2 , (∑n∈Z q

(n+1/2)2)2)
Alternatively, one can apply this result to q4 in order to avoid the q1/4 which appears in the
definition of θ2.

Given q, the evaluation of the sums costs O(M(P)
√
P) bit operations (see for example

our analysis in Chapter 5). The evaluation of the AGM then costs O(M(P) logP), which is
dominated by the cost of the evaluation of the sums; in the end, this gives a O(M(P)

√
P)

algorithm for log x.
Lastly, as noticed in [BB87, Section 7.2], if one works with arithmetic in base b, then for

q = 1
b the computation of the arguments of the AGM is easy, since they are just sequences of 0s

and 1s that can be computed very quickly (in linear time). Hence, the algorithm can compute
π

log b in base b in O(M(P) logP) time.
We will not use this algorithm in the rest of this manuscript; indeed, it uses theta-constants

to compute logarithms, when the quasi-optimal time algorithms we consider (most notably in
Chapter 6) require the computation of logarithms to compute theta-constants (and theta func-
tions).

A quasi-optimal time algorithm for log z

This section describes a quasi-optimal time algorithm to compute the logarithm of a complex
number with precision P ; this algorithm is presented e.g. in [Dup06, Theorem 3.3,p. 90]. Com-
pared to the algorithm in the previous section, this algorithm does not require the computation
of theta-constants, and has better running time; this is the algorithm we use in the rest of this
manuscript to compute log z.

The following approximation is key to the algorithm:

Theorem 3.3.2. For any z such that |z| ≤ 2−10 and |Arg(z)| ≤ π
4 :

|log z4 + π

2 AGM(1, z) | ≤ 0.26|z|2
(

1 + |log z4 |
)

3.3. Applications of the complex AGM 55

The proof of this theorem uses the fact that the function τ 7→ θ2
1(0,τ)
θ2

0(0,τ) is surjective, and hence
proves in particular for z satisfying the hypotheses of the theorem, there exists τz ∈ F such that
z = θ2

2(0,τz)
θ2

0(0,τz) . All the properties in terms of AGM(1, z) are then rephrased in terms of theta-
constants, and Equation (2.5.10) is used to provide the link between theta-constants and τz; a
careful bounding of the series defining the theta-constants in that case provides the result.

Computing log(2) Theorem 3.3.2 directly gives an algorithm that computes log 2 with preci-
sion P in O(M(P) logP) operations. Put z = 1

2n , then the theorem above proves that (at least
for n ≥ 12)

|
log z + π

2 AGM(1,4z)

log z | ≤ 1
22n−3

hence
−π

2 AGM(1,4z) is an approximation of −n log 2 with relative precision 2n− 3 bits.

Finally, put n = dP+4
2 e and compute −π

2nAGM(1, 1
2n−2) ; this gives an approximation of log 2 with

relative precision P . Note that since log 2 ' 0.69, this also gives an approximation of log 2
up to 2−P . This algorithm requires the computation of O(P) digits of π, which is done using
Section 3.1.2; as for the computation of the AGM, one can show (using Theorem 3.2.6) that the
number of iterations is O(logP), and hence the total running time is O(M(P) logP).

Computing log(z) This in turn yields an algorithm to compute the complex logarithm with
relative precision P . Put M = dP+4

2 e; one can assume that 2−M−1 ≤ |z| ≤ 2−M , since one can
just use the previous algorithm to add the right multiple of log 2 to the final result. One can
also suppose that |Arg(z)| ≤ π/4, even if it means to add a multiple of iπ/2 to the final result.
Then, one applies Theorem 3.3.2 to compute an approximation of log z with relative precision P
bits. This gives Algorithm 3.

Algorithm 3 Compute log z with absolute precision P .
Input: z ∈ C with absolute precision P .
Output: log z with absolute precision P .
1: Work with precision P = P + 6 logP + 3|log(2 + |z|)|+ 20.
2: f ← 0
3: while |Arg(z)| ≤ π/4 do
4: z ← iz, f ← f + 1
5: end while
6: M ← dP+4

2 e
7: n← 0
8: while |z| ≥ 2−M do
9: z ← z/2, n← n+ 1
10: end while
11: πP ← π with precision P.
12: s← AGM

(
1, 1

2M−2

)
with precision P.

13: r ← AGM
(
1, 1

4z
)
with precision P.

14: return πP(− 1
2r + f i2 −

n
2Ms)

56 Chapter 3. AGM and Borchardt mean

Theorem 3.3.3. For z ∈ C with absolute precision P , Algorithm 3 returns an approximation of
log z with absolute precision P in O(M(P + |log|z||)(logP + log|log|z||)).
Proof. If |z| ≤ 2−M , Theorem 3.3.2 proves that −π

2 AGM(1,4z) is an approximation of log z with
relative precision P + 1 bits. According to Theorem 3.2.6, computing AGM(1, 4z) with relative
precision P requires at most logP + log|log|z|| iterations, and requires 2 + 2 logP + 2 log|log|z||
guard bits. Given our choice of P, Algorithm 3 returns an approximation of log z with relative
precision at least P + |log|z||, which gives an approximation of log z with absolute precision P .

Now, if |z| ≥ 2−M , the computation of log z
2n requires the computation of AGM (1, u) with

log|log|u|| ≤ logM ≤ logP . Hence, the correct computation of this AGM with relative precision
P requires at most 2 logP iterations, and the number of guard bits needed to compensate errors
is 2 + 4 logP . Given our choice of P, −π2r is an approximation of log z

2n+1 with relative precision
at least P + logP , which guarantees absolute precision P + 2.

The computation of log 2 with absolute or relative precision P also requires roughly 2 logP
iterations and 2 + 4 logP guard bits. Hence, π

2Ms is an approximation of log 2 with absolute
precision at least P + logP + 2|log(2 + |z|)|+ 20. Numerical experiments show that

log2 n ≤ log2 log2|z|+ log2(P + 5)− 1
≤ 2 log2 log2(2 + |z|) + 1.5 log2 P + 5

for P ≥ 2. This proves (using Theorem 0.3.3) that nπ
2Ms is an approximation of n log 2 with

absolute precision P + 2, which proves the theorem.

Note that this gives a O(M(P) logP) running time if z is assumed to be in a compact set.

3.3.3 Computing the exponential
Classical methods to compute the exponential of a complex number involve computing a partial
summation with enough terms. The series converges rather quickly, since O

(
P

logP

)
terms are

sufficient to get a result with absolute precision P [Bre76]. One can also use argument reduction
and compute exp

(
z
2i
)
for some i, so that the series converges even faster: around O(

√
P) terms

are then needed, as well as O(
√
P) squarings. Moreover, the technique of binary splitting, which

evaluate parts of the series recursively, can also take advantage of the fact that the denominators
of several consecutive terms have a common factor, and so do the numerators. The compu-
tation of the exponential at rational points can then be done quickly, in fact in quasi-optimal
time. We refer to [Bre76, BZ10] for an overview of these techniques, which achieve overall an
O(M(P) log2 P) running time.

An asymptotically faster method is to use Newton’s method to compute exp z from log z.
The Newton iteration to compute exp a is

zn+1 = zn − zn(a− log zn).

and requires the computation of log zn at each step; however, as we explained in the introduction
(Section 0.3.3), the fact that Newton’s method is self-correcting means that one can afford
to simply compute the k-th iteration with precision 2k+1P0. Hence, the total complexity of
computing exp z via Newton’s method is the same as applying the complex logarithm to numbers
close to ez, i.e.

O(M(P + |z|)(logP + log|z|))
or O(M(P) logP) if z is in a compact set. However, note that in practice, the algorithms based
on binary splitting perform better than this algorithm, even for large (e.g. millions of digits)
precisions, as the constant in the O is smaller than the one of the AGM-based algorithms.

3.4. Generalization of the AGM to higher genera 57

3.4 Generalization of the AGM to higher genera
This section is based on [Dup06], who generalized some of the results of the previous sections to
genus g > 1.

3.4.1 Definition
An AGM-like sequence of four positive numbers was considered by Borchardt in [Bor76, Bor78],
with the relations

an+1 = an + bn + cn + dn
4 bn+1 =

√
an
√
bn +√cn

√
dn

2

cn+1 =
√
an
√
cn +

√
bn
√
dn

2 dn+1 =
√
an
√
dn +

√
bn
√
cn

2
This provided an interesting generalization of the AGM: the convergence is quadratic (see,
e.g. [SvS12], for a direct proof of this), and the limit does not depend on the order of the
arguments, just as with the AGM. Borchardt also notes in his original article that one can con-
sider a generalization to 2g numbers, but the limit of the sequence depends on the order of the
arguments. Note that Borchardt only considered sequences of positive real numbers, and hence
the square roots in the definition are unambiguously defined. The Borchardt mean of four num-
bers is linked to genus 2 hyperelliptic integrals, via the Richelot isogeny; we discuss this link in
Section 8.2.2, and refer to [BM88, SvS12] for more details on the real case.

We outline here the generalization of this sequence to the case where we have 2g complex
numbers.
Definition 3.4.1 (e.g., [Dup06]). A Borchardt sequence of genus g is a sequence of 2g-uples(
a

(n)
0 , . . . , a

(n)
2g−1

)
n∈N

such that, for all n, there exists α0, . . . , α2g−1, square roots of a(n)
0 , . . . , α

(n)
2g−1

(i.e. α2
i = a

(n)
i), such that

∀i ∈ {0, . . . , 2g − 1}, a
(n+1)
i =

∑
v1⊕v2=i

αv1αv2

where ⊕ denotes the bitwise XOR operation. The choice of complex square roots is good at the
rank n if for any v1, v2 we have

|αv1 − αv2 | < |αv1 + αv2 |.

Note however that, given 2g complex numbers, the existence of a good choice of signs is not
guaranteed, as highlighted in Figure 3.2.

3.4.2 Choice of roots and convergence
As with the AGM, the notion of choice of square roots is crucial, and determines for instance
the limit:
Theorem 3.4.2 ([Dup06, Theorem 7.1]). Let

(
a

(n)
0 , . . . , a

(n)
2g−1

)
n∈N

be a Borchardt sequence.
Then there is an A ∈ C such that for any i ∈ {0, . . . , 2g − 1},

lim
n→∞

a
(n)
i = A.

Furthermore, we have A = 0 if and only if the choice of square roots is not good infinitely many
times.

58 Chapter 3. AGM and Borchardt mean

a0

α0
−α0

a1

α1

−α1

a2

α2

−α2

Figure 3.2: Given a0 = 1, a1 = −1 − 0.1i, a2 = −1 + 0.1i, any choice of square roots lead to a
wrong choice of signs.

Remark 3.4.3. Given the definition of good choices of square roots (in which the inequality must
be strict), a choice of square roots is bad as soon as one of the a(n)

i is equal to 0. However, unlike
the AGM, this does not necessarily mean the sequence converges to 0, as a(n+1)

i is in general
different from 0. On the other hand, if at least half of the a(n)

i are 0, it is easy to check that at
least half of the a(n+k)

i will be equal to 0; the limit of the sequence is then 0, and the choice of
square roots are necessarily always bad.

Definition 3.4.4. Let
(
a

(0)
0 , . . . , a

(0)
2g−1

)
∈ C2g , and assume that one can define the sequence(

a
(n)
0 , . . . , a

(n)
2g−1

)
n∈N

with good choices of signs at each step. Then the Borchardt mean is the

limit of this sequence; we denote it Bg
(
a

(0)
0 , . . . , a

(0)
2g−1

)
6= 0.

We also have:

Theorem 3.4.5 ([Dup06, Prop. 7.1, p. 163]). Let
(
a

(n)
0 , . . . , a

(n)
2g−1

)
n∈N

be a Borchardt sequence

such that Re(a(0)
i) > 0, and such that all the square roots are chosen with positive real part. Let

N be such that for all i we have

|a(N)
i − a(N)

0 | ≤ 0.2247|a(N)
0 |. (3.4.1)

Then |A− a(N+k)
0 | ≤ 1.43MN × 0.78672k , with MN = maxi|a(N)

i |.

The condition of Equation (3.4.1) is always satisfied for N large enough (see [Dup06, p. 164]).
Hence, this theorem establishes the quadratic convergence of any Borchardt sequence for which
the elements have positive real parts, and for which the square roots are always chosen with
positive real part.

Note that, provided wrong choices of square roots do not happen infinitely often, one can
always fall back to this case: the sequence

(
a

(n)
0
A , . . . ,

a
(n)
2g−1
A

)
n∈N

(which is a Borchardt sequence)

converges to (1, . . . , 1), which means that after a certain number of terms the real part of the
sequence is always strictly positive. Furthermore, when the a(n)

i are close to 1 (and to each
other), choosing the square root with positive real part corresponds to the good choice of signs;
hence, when always choosing the square roots with positive real parts, the choice of signs is good
after a while. Hence:

3.4. Generalization of the AGM to higher genera 59

Theorem 3.4.6 ([Dup06, Section 7.4.2]). Any Borchardt sequence with a finite number of wrong
choices of sign converges quadratically; in particular, computing the limit of a Borchardt sequence
with precision P can be done in O(M(P) logP).

This means in particular that one can compute Bg
(
a

(0)
0 , . . . , a

(0)
2g−1

)
with precision P in

quasi-linear time.

3.4.3 Link with the theta-constants
Recall the genus g τ -duplication formulas (Equation (2.2.1)):

θ[a;b] (z, τ)2 = 1
2g

∑
β∈ 1

2Zg/Zg
e−4iπ taβθ[0;b+β]

(
z,
τ

2

)
θ[0;β]

(
0, τ2

)
.

The addition in the characteristics is addition modulo 1
2Z

g/Zg. We have the following group
isomorphism:

φ : 1
2Z

g/Zg → {0, . . . , 2g − 1}

(. . . , 0, δi, 0, . . .) 7→

{
2i if δi = 1

2 (mod 1)
0 if δi = 0 (mod 1)

a+ b 7→ φ(a)⊕ φ(b)

where⊕ is the bitwise XOR operation. Hence, using the numbering described in Note 2.1.5, define
ai(τ) = θ2

i (0, τ); then the τ -duplication formulas for the fundamental thetas can be rewritten as

ai(2τ) =
∑

v1⊗v2=i

√
av1(τ)

√
av2(τ)

for some choice of square roots: this is exactly the definition of the Borchardt mean. Hence

Proposition 3.4.7. The sequence
(
θ2

0(0, 2nτ), . . . , θ2
2g−1(0, 2nτ)

)
n∈N is a Borchardt sequence.

Furthermore, Proposition 2.1.9 shows that the sequence converges to (1, 1, 1, 1). In fact,
this sequence even converges quadratically; this means that the choice of square roots which
corresponds to computing θi(0, 2kτ) from θ2

i (0, 2kτ) (which, when τ is large enough, actually
corresponds to picking the square roots with positive real part) is a good choice of square roots
(in the sense of Definition 3.4.1) for all but a finite number of steps.

The most interesting case is the one for which good choices of signs always coincide with
theta constants at 2kτ :

Definition 3.4.8. Define Ug as the set of τ ∈ Hg such that Bg
(
θ2

0(0, τ), . . . , θ2
2g−1(0, τ)

)
is

defined and equal to 1; that is to say, good choices of square roots always exist, and always
choosing them gives rise to the sequence

(
θ2

0(0, 2nτ), . . . , θ2
2g−1(0, 2nτ)

)
n∈N.

Proposition 3.2.9 proves that D2 ⊂ U1, and in particular F1 ⊂ U1. In genus 2, we have that
F2 ⊂ U2 [Dup06, Prop. 9.6, p. 196]. We were also able to prove a slightly better result in genus 2,
which we mention in Chapter 7 (Proposition 7.1.2).

Studying this domain is interesting in the context of quasi-linear algorithms to compute theta-
constants (see Chapter 7); however, even in genus 2, it is not an easy task. In particular, a result
establishing the stability of this domain under the action of some matrices is still a conjecture

60 Chapter 3. AGM and Borchardt mean

(see, e.g. [Dup06, Conjecture 9.1] and [ET14a, Conjecture 9]). We describe how we sidestep this
difficulty in practice, in the context of our fast algorithm for theta functions and theta-constants,
in Chapter 7.

To finish, recall that, in genus 1, a description of the limits of AGM sequences starting at
the squares of theta-constants can be found explicitly (Theorem 3.2.14), which also shows that
the inverse of these limits form a lattice. This result generalizes to genus 2, i.e. the set of limits
can be written as the set of θ2

j (0,τ)
θ2
j
(0,γ·τ) for γ in a subgroup of Sp4(Z); this is [Dup06, Chapter 8].

However, this result does not appear to generalize to genus 3 and above2.

2The main obstacle is in the generalization of [Dup06, Lemme 8.1], where τ -duplication formulas are used to
show that any choice of sign transforms the set of θ2

i (τ) into a set of θ2
i (2γτ) for some γ. Changing the sign of

only one of the theta-constants gives formulas with one “minus” sign and 2g−1−1 “plus” signs, but τ -duplication
formulas have an equal number of “plus” and “minus” signs; for g > 2, we cannot reconcile the two formulas.

Chapter 4

The Landen isogeny

This section is devoted to the Landen isogeny, which is an important 2-isogeny between elliptic
curves over the complex numbers (and in fact over the real numbers as well). This isogeny shows
up as a change of variables in elliptic integrals. Interestingly, this gives a method to compute
periods of an elliptic curve, by repeatedly applying the Landen isogeny; this strategy has been
described in [BM88] in a specific case, then generalized (via lattice chains) in [CT13]. A similar
strategy allows us to solve the elliptic logarithm; hence, this chapter proves:

Theorem 4.0.1. The genus 1 Abel-Jacobi map can be computed using quadratically convergent
sequences.

This gives algorithms with complexity of O(M(P) logP) to compute the Abel-Jacobi map
with absolute precision P , provided one takes into account the loss of precision. In the real
case, it seems that a few papers (e.g. [LO94] or [LO98]) have shown that the precision lost is of
no asymptotic importance. As for the complex elliptic logarithm, we prove that only O(logP)
guard bits are needed. Hence throughout this chapter, we will assume that precision loss has no
impact over the running time of the algorithm, i.e. that they are at most O(P); this allows us
to claim a O(M(P) logP) algorithm for the complex genus 1 Abel-Jacobi map.

We also show an algorithm to compute the Weierstrass ℘ function with estimated complexity
O(M(P) logP), once again using the Landen isogeny. However, this algorithm suffers from
numerical instability: as the periods get close to the edges of the fundamental parallelogram,
the accuracy of the result is greatly reduced, even for τ in the fundamental domain. Another
approach, not based on the Landen transform, achieves this complexity without this numerical
instability; we outline it in Chapter 8.

4.1 The real case (Bost-Mestre)
In this section, E is an elliptic curve defined over R by the Weierstrass equation E : y2 =
4(x− e1)(x− e2)(x− e3), with e1, e2, e3 real and distinct, and

∑
ei = 0. This section establishes

the connections between periods of this elliptic curve, the AGM, and a certain chain of 2-isogenies.
We follow the presentation of [BM88], and refer to it for the proof of most statements.

4.1.1 Elliptic integrals and period computation
The following proposition was known to Gauss and Lagrange:

61

62 Chapter 4. The Landen isogeny

Proposition 4.1.1. For any positive real numbers a, b:∫ 2π

0

dt√
a2 cos2 t+ b2 sin2 t

= 2π
AGM(a, b)

Proof. If one makes the change of variables

sin t = 2a sin t′
(a+ b) + (a− b) sin2 t′

a careful calculation shows that∫ 2π

0

dt√
a2 cos t+ b2 sin t

=
∫ 2π

0

dt′√(
a+b

2
)2 cos2 t′ + (ab) sin2 t′

Hence, for all n ≥ 0 ∫ 2π

0

dt√
a2 cos t+ b2 sin t

=
∫ 2π

0

dt√
a2
n cos2 t+ b2n sin2 t

and, taking the limit when n→∞,∫ 2π

0

dt√
a2 cos t+ b2 sin t

=
∫ 2π

0

dt√
AGM(a, b)2 cos2 t+ AGM(a, b)2 sin2 t

= 2π
AGM(a, b)2 .

Furthermore:

Proposition 4.1.2. Let P = 4(X − e1)(X − e2)(X − e3) with e3 < e2 < e1. Then∫ +∞

e1

dx√
P (x)

=
∫ e2

e3

dx√
P (x)

= π

2 AGM(
√
e1 − e3,

√
e1 − e2)∫ e3

−∞

dx√
−P (x)

=
∫ e1

e2

dx√
−P (x)

= π

2 AGM(
√
e1 − e3,

√
e2 − e3)

Proof. The first half of the first identity can be proven using the change of variables

x′ = e2x− e1e2 + e1e2 − e2e3

x− e2

while the second half can be proven using the change of variables

x = e3 + (e2 − e3) sin2 t.

Recall (Proposition 1.3.2) that periods can be defined as integrals of the invariant differential
following paths around the branch cuts, as in [Sil86, Section VI.1]. Hence:

Proposition 4.1.3. Let P = 4(X − e1)(X − e2)(X − e3) with e3 < e2 < e1, and let E be the
elliptic curve defined over C by E : y2 = P (x). Define

ω1 = 2
∫ e2

e3

dx√
P (x)

, ω2 = 2i
∫ e1

e2

dx√
−P (x)

Then ω1, ω2 are periods of E. Hence, Proposition 4.1.2 shows that

ω1 = π

AGM(
√
e1 − e3,

√
e1 − e2) , ω2 = π

AGM(
√
e1 − e3,

√
e2 − e3)

4.1. The real case (Bost-Mestre) 63

We evaluate precision loss in this algorithm; we suppose that the periods are of bounded size,
in order to turn results on relative precision into results on absolute precision. The worst case
happens when the roots are very close to each other at precision P , for instance e1 − e3 = 2−P .
In that case, the computation of the arguments of the AGM loses up to P/2 bits; furthermore,
since log2|log2|z|| = O(logP), Theorem 3.2.6 shows that O(logP) guard bits are needed, and the
number of iterations is still O(logP). This proves that, for P large enough, it is enough to work
at precision 4P to get a result accurate to P bits. Hence, this gives indeed a O(M(P) logP)
algorithm.

4.1.2 2-isogenies
The changes of variable of the previous subsection can be interpreted in terms of isogenies. Define
E : y2 = (x− e1)(x− e2)(x− e3) with e3 < e2 < e1,

∑
ei = 0. Put

a =
√
e1 − e3, b =

√
e1 − e2, a1 = a+ b

2 , b1 =
√
ab

and put

e′1 = a2
1 + b21

3 , e′2 = a2
1 − 2b21

3 , e′3 = b21 − 2a2
1

3 .

Then, e′3 < e′2 < e′1, e′1 − e′3 = a2
1, e′1 − e′2 = b21 and

∑
e′i = 0. Equation (4.1.1), along with the

changes of variables of Proposition 4.1.2, gives:∫ ∞
e1

dx√
4(x− e1)(x− e2)(x− e3)

=
∫ ∞
e′1

dx√
4(x− e′1)(x− e′2)(x− e′3)

In fact, the combination of these changes of variables allows us to write this equation as a
consequence of the change of variables

x = x′ + (e′3 − e′1)(e′3 − e′2)
x′ − e′3

(4.1.1)

This change of variables actually defines an isogeny called the Landen isogeny or the Landen
transform:

Theorem 4.1.4 (Landen transform, e.g. [BM88]). Let E : y2 = 4(x− e1)(x− e2)(x− e3) be an
elliptic curve over R, with e1 > e2 > e3, and E′ : y2 = 4(x − e′1)(x − e′2)(x − e′3) with e′1, e′2, e′3
defined from e1, e2, e3 as previously. Define the map

φ : E′ → E

[0 : 1 : 0] 7→ [0 : 1 : 0]
[e′3 : 0 : 1] 7→ [0 : 1 : 0]

[x′ : y′ : 1] 7→
[
x′ + (e′3 − e′1)(e′3 − e′2)

x′ − e′3
: y′
(

1− (e′3 − e′1)(e′3 − e′2)
(x− e′3)2

)
: 1
]

Then φ is a 2-isogeny, i.e. an isogeny of degree 2.

Note that this amounts to considering the 2-isogeny whose kernel is the 2-torsion point (e′3, 0),
instead of other ones whose kernels are (e1, 0) or (e2, 0). Note that (e′1, 0), (e′2, 0), (e′3, 0) are
respectively the images by ℘ of the points ω′1

2 ,
ω′1+ω′2

2 ,
ω′2
2 ; hence, ω

′
2

2 = 0 (mod Λ). The action of
the Landen isogeny on the periods is thus

ω′1 = ω1, ω′2 = 2ω2 (4.1.2)

64 Chapter 4. The Landen isogeny

Furthermore, the isogeny between the two tori can be written as φ(z) = z (mod Λ).
The successive changes of variables can be written as a “chain of 2-isogenies”. Define (an, bn)

to be the sequence one obtains when computing AGM(a, b), and

e
(n)
1 = a2

n + b2n
3 , e

(n)
2 = a2

n − 2b2n
3 , e

(n)
3 = b2n − 2a2

n

3 (4.1.3)

Isogenies can once again be defined, using formulas that are analogous to Theorem 4.1.4:

fn : En+1 : y2 = 4(x− e(n+1)
1)(x− e(n+1)

2)(x− e(n+1)
3)→ En : y2 = 4(x− e(n)

1)(x− e(n)
2)(x− e(n)

3)

This constructs a chain of 2-isogenies:

. . .→ En+1
fn−→ En → . . .→ E′

f−→ E

Since lim an = lim bn = AGM(a, b), we have

lim e
(n)
1 = 2

3 AGM(a, b)2, lim e
(n)
2 = lim e

(n)
3 = −1

3 AGM(a, b)2.

This means the equation of the curve “at the limit” is

y2 = P∞(x) = 4
(
x+ 1

3 AGM(a, b)2
)2(

x− 2
3 AGM(a, b)2

)
We have∫

dt√
P∞(t)

=
∫

du

AGM(a, b)2 + u2

(
putting u =

√
x− 2

3 AGM(a, b)2

)

= 1
AGM(a, b)Arctan

√
x− 2

3 AGM(a, b)2

AGM(a, b)

and hence we have for instance

2
∫ ∞
e1

dx√
P (x)

= ω1 = 2
∫ +∞

2
3 AGM(a,b)2

dx√
P∞(x)

= π

AGM(a, b) .

4.1.3 Elliptic logarithm
Recall the definition of the elliptic logarithm map (Theorem 1.3.4):

P = [x : y : 1] 7→
∫ ∞
x

dx√
P (x)

In the real case, this incomplete integral can be computed in a similar way as the periods,
that is to say by repeatedly applying Landen’s transform. This requires keeping track of the
bound of the integral, i.e. being able to compute x′ such that∫ ∞

x

dt√
4(t− e(0)

1)(t− e(0)
2)(t− e(0)

3)
=
∫ ∞
x′

dt√
4(t− e(1)

1)(t− e(1)
2)(t− e(1)

3)

4.2. The complex case (Cremona-Thongjunthug) 65

Algorithm 4 Compute the elliptic logarithm over the reals.
Input: u ∈ R with absolute precision P .
Output:

∫∞
u

with absolute precision P .

1: a←
√
e1 − e3, b←

√
e1 − e2

2: x← u
3: while a 6= b at the given precision do
4: A = a+b

2 , B =
√
ab

5: X = 1
2

(
x− a2+b2

6 +
√(

x+ a2+b2

6
)2 − (a2−b2

2
)2)

6: a = A, b = B, x = X
7: end while
8: return 2

a

(
π
2 − arctan

√
x− 2

3a
2

a

)

The computation of x′ can be done by writing Equation (4.1.1) as a degree 2 polynomial in x′
(with coefficients depending on x) and solving for x′. The resulting algorithm, given in [BM88],
is Algorithm 4.

As with the computation of periods, the loss of precision can be significant, most of all
because of the extraction of square roots for numbers potentially close to 0. We did not manage
to evaluate the precision loss in the computation of X; however, [LO94] comments that if u is
close e1 it is possible that up to P/2 bits are inaccurate in the final result3, which does not
change the asymptotics. Hence, working with precision O(P) should be enough to compensate
for the losses in precision. Note that, in any case, a variation on this algorithm which reduces
the loss of relative precision to O(logP) is studied in [LO98].

As for the running time, we analyze it as follows. Each step in the loop costs O(M(P)) bit
operations; since the AGM is quadratically convergent, there are O(logP) such steps. The last
step requires us to compute arctan(x), which can be done in O(M(P) logP) bit operations, as
in [BZ10, Section 4.8.5]; we use

arctan(x) = Im (log(1 + ix))

and use the AGM to compute log(x) in O(M(P) logP) operations. In the end, this algorithm
computes the elliptic logarithm in O(M(P) logP).

4.2 The complex case (Cremona-Thongjunthug)
We now turn to the general case, i.e. an elliptic curve E defined over C by a Weierstrass equation
of the form E(C) : y2 = (x− e1)(x− e2)(x− e3). The previous section dealt with the case where
the ei are real, and computed the periods and the elliptic logarithm using a link with the real
AGM.

Generalizing this approach to the complex case involves working with the complex AGM,
which means one must consider the problem of choosing the correct signs; furthermore, unlike
the real case, there is no neat way to pick an ordering of the roots. The general method and
theorems in this section are taken from [CT13]; we skip over some details, for instance the case
of rectangular lattices, so as to streamline the presentation.

3The comment seems to be about relative precision; however, if a− b creates a large loss of relative precision,
there is also a large loss of absolute precision since we compute

√
a− b, and the remark is thus still valid.

66 Chapter 4. The Landen isogeny

4.2.1 Lattice chains
The notion of lattice chains is introduced in order to study the behavior and the properties of the
period lattices of the curves appearing in the chain of 2-isogenies given by the Landen transform.

Definition 4.2.1 ([CT13, Section 3]). Let (Λn)n∈N be a sequence made of lattices of C; it is a
chain of lattices of index 2 if the following conditions are satisfied:

1. Λn+1 ⊂ Λn for all n ≥ 0;

2. [Λn : Λn+1] = 2 for all n ≥ 0;

3. Λn+1 6= 2Λn−1 for any n ≥ 1.

Thus for each n ≥ 1 we have
Λn+1 = 〈w〉+ 2Λn

for some w ∈ Λn \ 2Λn−1.

Given a lattice Λ0, there are three possible choices for Λ1; then, for any k ≥ 2, there are only
two possible choices, the third one being excluded by the last condition. A notion of right choice
of sublattice can actually be defined:

Definition 4.2.2. For n ≥ 1 we say that Λn+1 ⊂ Λn is the right choice of sublattice if Λn+1 =
〈w〉+ 2Λn where w ∈ Λn \ 2Λn−1 and |w| is minimal in this quotient.

Definition 4.2.3. • A chain is good if and only if Λn+1 ⊂ Λn is the right choice for all but
finitely many n ≥ 1.

• A chain is optimal if and only if Λn+1 ⊂ Λn is the right choice for all n ≥ 1. There is
usually one optimal chain for each choice of Λ1 ⊂ Λ0.

Proposition 4.2.4. A chain is good if and only if Λ∞ is of rank 1, in which case we note w∞
a generator of Λ∞, the limiting period of the good chain. For all but finitely many n, w∞ is the
smallest element of Λn. If the chain is not good, Λ∞ is of rank 0.

The analogy with the complex AGM is very noticeable: at each step of the sequence there
are two possible choices, only one of which is defined as the right choice; and a sequence can
has all but finitely many right choices, in which case its limit shows a non-zero element, or an
infinite number of right choices, in which case we get 0.

The first step in establishing the link between lattice chains and AGM sequences is to link
lattices to the initial values (a0, b0) of the AGM sequence.

Definition 4.2.5. A short lattice chain of order 4 is a chain Λ2 ⊂ Λ1 ⊂ Λ0 such that Λ0/Λ2 is
cyclic of order 4.

Proposition 4.2.6. There a bijection between

• Short lattice chains of order 4 Λ2 ⊂ Λ1 ⊂ Λ0, up to homothety;

• Unordered pairs of nonzero complex numbers a, b ∈ C such that a2 6= b2, identifying (a, b)
and (−a,−b);

• Triples (E,ω,H) with E an elliptic curve defined over C, ω a holomorphic differential on
E, H a cyclic subgroup of E(C) of order 4, up to isomorphisms preserving H.

Theorem 4.2.7. Let Λ2 ⊂ Λ1 ⊂ Λ0 be a short lattice chain corresponding to a, b. Then Λ2 is
the right choice of sublattice for Λ1 if and only if the pair (a, b) is good in the sense of the AGM.

4.2. The complex case (Cremona-Thongjunthug) 67

4.2.2 2-isogenies
The connection with the real case is made explicit here; however, we do not write down all the
formulas, as they are exactly the same as the ones in Section 4.1. We refer to [CT13] for full
details.

Let E = E0 : y2 = P (x) with P of degree 3, and take Λ0 such that E0(C) ' C/Λ0. The change
of variables given by the Landen transform (Equation (4.1.1)) gives a 2-isogeny φ1 : E1 → E0,
with E1 ' C/Λ1. However, note that the definition of the isogeny depends on the e′i, which
are defined (Equation (4.1.3)) from the quantities a0 = ±

√
e1 − e3, b0 = ±

√
e1 − e2, themselves

defined from a labelling of the roots of P . Looking more closely, if e2 and e3 are switched, a and
b are switched, but this does not affect the e′i or the rest of the sequence; hence, there are only
three possibilities for Λ1, depending on which root is labeled e1.

Iterating the change of variables gives a chain of 2-isogenies φn : En → En−1 and the roots
e

(n)
i of the polynomial Pn such that En : y2 = Pn(x) are defined using Equation (4.1.3):

e
(n)
1 = a2

n + b2n
3 , e

(n)
2 = a2

n − 2b2n
3 , e

(n)
3 = b2n − 2a2

n

3

Note that a2
n = e

(n)
1 − e(n)

3 , b2n = e
(n)
1 − e(n)

2 . Each change of variables requires the computation
of one term of an AGM sequence starting at (a0, b0); hence there are two choices for (an, bn).

Note that Equation (4.1.3) can be rewritten as

e
(n+1)
1 = e

(n)
1 + 2anbn

4 , e
(n+1)
2 = e

(n)
1 − 2anbn

4 , e
(n+1)
3 = −e

(n)
1

2

Hence, taking (an,−bn) instead of (an, bn) switches e(n+1)
1 and e(n+1)

2 ; this does not change the
equation of En+1, however it changes the equation of En+2. Hence, each choice of root for the
n-th term of the AGM sequence corresponds to a curve En+2. Furthermore, the same reasoning
can be applied to the choice of signs in a0, b0, identifying (a0, b0) and (−a0,−b0); this gives two
possibilities for Λ2.

In the end, this gives:

Theorem 4.2.8. There is a bijection between

• The AGM sequences starting with (a0, b0);

• The isogeny chains starting with the short chain E2 → E1 → E0;

• The lattice chains starting with the short chain Λ2 ⊂ Λ1 ⊂ Λ0.

Furthermore, we also have

Λn+2 is the right choice of sublattice for Λn+1 ⇔ (an, bn) is good
The lattice chain is good ⇔ the AGM sequence is good

The lattice chain is optimal ⇔ the AGM sequence is optimal

4.2.3 Period computation
Note that the results above show that each good lattice chain starting at Λ0 determines a period
(from the definition of a good lattice chain) and a good AGM sequence. The connection between
both is given by the proposition:

68 Chapter 4. The Landen isogeny

ω1

ω2

2Λ

ω1

ω2

C1

ω1

ω2

C2

ω1

ω2

C3

Figure 4.1: Three cosets of 2Λ in Λ = Zω1 + Zω2, for ω1 = 1, ω2 = 2
√

2 (1 + i).

Proposition 4.2.9. Let (Λn) be a good lattice chain with limiting period ω, and let the corre-
sponding good AGM sequence be (an, bn) with limit M 6= 0. Then M = ±π

ω .

This means that when ω runs over all the points of Λ0, π
ω describes all the limits of good

AGM sequences starting at (a0, b0); this yields another proof of Theorem 3.2.14.
Optimal AGM sequences can actually be used to yield a Z-basis of the lattice. If Λ =

Zω1 + Zω2, define the cosets of 2Λ in Λ Cj = 〈ωi〉 + 2Λ, with ω3 = ω1 + ω2. Define a set of
minimal coset representatives as a triple (c1, c2, c3) such that |ci| is minimal in Ci. The following
proposition confirms an intuition one might have when looking at Figure 4.1:

Proposition 4.2.10. Let Λ be a non-rectangular lattice, and let w1, w2, w3 be minimal coset
representatives of 2Λ in Λ. Then any 2 of them are a Z-basis of the lattice, and w3 = ±(w1±w2).

The link with optimal chains is as follows:

Theorem 4.2.11. A good chain is optimal if and only if w∞ is one of the minimal coset repre-
sentatives for Λ0. This means that in general, any non-rectangular lattice has 3 optimal chains,
one per coset Ci.

Now, setting Λ1 = Ci and picking Λ2 as the right choice for Λ1 gives a good pair (a0, b0);
the optimal AGM sequence can then be computed starting with this good pair, and this gives
AGM(a0, b0) = π

ci
where ci is a minimal coset representative. Repeating this with other cosets

gives a Z-basis of Λ. Keeping in mind the link with elliptic curves, this gives the following
generalization of Proposition 4.1.3:

Theorem 4.2.12. Let E be an elliptic curve over C given by Y 2 = (X − e1)(X − e2)(X − e3).
Let Λ be the period lattice. Define a0 =

√
e1 − e3, b0 =

√
e1 − e2 and choose the signs such that

(a0, b0) is good. Define ω1 = π
AGM(a0,b0) ; then ω1 is a period of E. Labelling the other two roots

as e1 and repeating this process gives two other such periods. Then any two of the three periods
form a basis of Λ.

The process can actually be simplified, as follows. Define a2 = e1 − e3, b2 = e1 − e2,
c2 = e2 − e3, so a2 = b2 + c2, and pick the signs of a, b, c so that

|a− b| ≤ |a+ b|, |c− ib| ≤ |c+ ib|, |a− c| ≤ |a+ c|

This is always possible, but we may need to pick another labelling of the roots. Then the pairs
(a, b), (c, ib), (ia, ic) are good, and computing π

AGM(a,b) ,
π

AGM(c,ib) ,
π

AGM(ia,ic) gives three periods.
Note that applying this process to a rectangular lattice gives a procedure very similar (after
multiplying the roots by a suitable complex number so they are all real) to [BM88].

4.2. The complex case (Cremona-Thongjunthug) 69

4.2.4 Elliptic logarithm
The algorithm for elliptic logarithm in the real case (Algorithm 4) requires the extraction of a
square root at each step for the computation of the value of x; hence, in the complex case, the
question of which square root to choose needs to be settled. An equivalent way of saying this on
elliptic curves is to say that, since φn is two-to-one as a 2-isogeny, there are uncountably many
point sequences (Pn) starting from a point P0.

The problem is recast in [CT13] in terms of coherent point sequences.

Definition 4.2.13. Let (Λn) be an optimal lattice chain. A sequence (Pn) of points is called
coherent if there is z ∈ C such that Pn = (℘(z,Λn), ℘′(z,Λn)) for all n. If that z exists, it is
uniquely determined modulo ∩Λn = 〈ω1〉.

The problem of finding a coherent point sequence is solved by writing the change of variables
given by the Landen transform as the composition of two maps. Define the curves

E′n : R2 = T 2 + a2
n

T 2 + b2n

These are projective curves in P1 × P1, with points at infinity (∞,±1) and (±bi,∞). Then,
define the map

αn : E′n+1 → En, αn(r, t) = (t2 + e
(n)
1 ,−2rt(t2 + b2n))

where En, an, bn, e(n)
i are defined as in Section 4.2.2.

The curves E′n and En are also isomorphic, via the isomorphism

θn : E′n → En

θn(tn, rn) = (xn, yn) =
(
t2n + rn(t2n + a2

n) + a2
n+b2

n

6
2 , tn

(
t2n + rn(t2n + a2

n) + a2
n + b2n

2

))

θ−1
n (xn, yn) = (rn, tn) =

(
3yn

6x1 + a2
n + b2n

,
12xn + 5a2

n − b2n
12xn + 5b2n − a2

n

)
.

This is summarized by a commutative diagram:

. . . → E′n
φ′n−−→ E′n−1 → . . . → E′1

↓ θn ↓ θn−1 ↓ θ1
α0 ↘

. . . → En
φn−−→ En−1 → . . . → E1

φ1−→ E0

Following a coherent point sequence (rn, tn) on the sequence of curves E′n is easier than on
the En: this gives the relations

r2
n = an−1(rn−1 + 1)

bn−2rn−1 + an−2
, tn = rntn−1

with Re(rn) ≥ 0 [CT13, Prop. 26], which removes any sign ambiguity. The value of the elliptic
logarithm is then given by:

Theorem 4.2.14. Let (Pn) be a coherent point sequence generated by z ∈ C. Assume that
2z 6∈ Λ∞. Then for n large enough Pn 6= OEn . Set M = π

ω1
; we have

t∞ = −1
2

y∞
x∞ +M2/3

70 Chapter 4. The Landen isogeny

and t∞ 6= 0,∞. Furthermore

z∞ = 1
M

arctan
(
M

t∞

)
Note the similarities with the last step of the algorithm in the real case. We also have

limn→∞ rn = 1.
The final algorithm, as described by [CT13], is Algorithm 5.

Algorithm 5 Compute the complex elliptic logarithm.
Input: P0 = (x0, y0) ∈ E with y0 6= 0, with absolute precision P .
Output: the elliptic logarithm z of P0 with absolute precision P .
1: a ←

√
e1 − e3, b ←

√
e1 − e2, choosing the numbering of roots and the signs so that

|a0 − b0| < |a0 + b0|.
2: r =

√
x0−e3
x0−e2

with Re(r) ≥ 0.
3: t = −y0

2r(x0−e2)
4: while a 6= b and r 6= 1 at the given precision do
5: A = a+b

2 , B =
√
ab choosing the good sign

6: r ←
√

A(r+1)
br+a with Re(r) ≥ 0

7: t← rt
8: a = A, b = B
9: end while
10: return 1

a arctan
(
a
t

)
The loss of precision incurred in Algorithm 5 is not analyzed in [CT13]; we give a few argu-

ments proving that the number of guard bits is negligible asymptotically in P . Theorem 3.2.6
proves that the number of bits of relative precision lost at each step of the AGM is a constant
in P . As for the computation of the rn, which converge to 1, the inversion and the square
root extraction also lose a number of bits which is a constant in P at each step; the same goes
for the computation of the tn. Theorem 3.2.6 thus proves that only O(logP) bits are needed
in the loop. Finally, the arctan computation is done via the complex logarithm (for instance
arctan(z) = i

2 (log(1− iz)− log(1 + iz))), which only requires O(logP) guard bits; overall, Al-
gorithm 5 requires O(logP) guard bits.

4.3 An algorithm for the Weierstrass ℘ function
In this section, we outline a new algorithm that computes ℘(z, τ) with absolute precision P in
O(M(P) logP) operations. We describe in Chapter 8 (Section 8.1.2) another way, based on
Chapter 6, to compute ℘(z, τ) with a similar complexity; we compare the two algorithms in
Section 8.1.3.

This algorithm relies on using a backwards recurrence, which we get from the explicit change
of variables given by the Landen transform. The analysis of this algorithm and the analysis of
its precision loss relies on conjectures, verified experimentally. The algorithm is similar in its
principle to Miller’s algorithm for the Bessel function of the first kind [BZ10, p.153]; existing
results and analyses on Miller’s algorithm could open a way to prove some of the statements we
make in this section. However, we did not explore this direction.

4.3. An algorithm for the Weierstrass ℘ function 71

As explained in Note 1.3.16, we can assume that the following properties on z, τ are satisfied:

τ ∈ F , 0 ≤ Im(z) < Im
(
ω2

2ω1

)
, |Re(z)| ≤ Re(ω1)

2

4.3.1 Fast computation of the sequence θi(0, 2nτ)
Our algorithm relies on an induction formula involving the θ2

0,1,2(0, 2kτ). We first outline an
algorithm to compute these quantities in quasi-optimal time.

In order to compute this sequence, we compute its first term, then use the τ -duplication
formulas (Equations (2.5.4)) to compute the other terms. Since we suppose that τ ∈ F , the
choice of signs is always good (cf. Proposition 3.2.9), and we thus know how to extract the
square root. We compute the first term using a fast, quasi-optimal algorithm to compute theta-
constants, presented in e.g. [Dup11]; we outline this algorithm in Section 6.1 (Algorithm 11).
The algorithm computes θi(0, τ) with precision P in O(M(P) logP) operations.

Hence, we can compute the θ2
0,1,2(0, 2kτ) for k ≤ n in O(M(P)(logP + n)). However, note

that the sequence we are trying to compute is quadratically convergent to (1, 1, 0); hence, for
n > O(logP), the representation with precision P of the terms of the sequence is stationary.
This means the maximal cost of this algorithm is O(M(P) logP).
Remark 4.3.1. Obviously, this precomputation can (and should) be cached, as it can be reused
when one wants to compute the value of ℘ at several different z (keeping the same Λ). This is
the case in our main application (cf. Chapter 9).

4.3.2 A backward recurrence for ℘
In this section we rewrite the change of variables given by the Landen transform as a recurrence
relation between values of ℘.

Let E : y2 = P (x) be a complex elliptic curve of periods [ω1, ω2]. The Landen change of
variables describes a 2-isogeny E1 → E, with E1 : y2 = P1(x) of periods [ω1, 2ω2]. This means
that for any u, there is a u′ such that∫ ∞

u

1√
P (x)

=
∫ ∞
u′

1√
P1(x)

.

The relationship between u and u′ is given by the explicit change of variables (Equation (4.1.1)):

u = u′ + (e′2 − e′1)(e′2 − e′3)
u′ − e′2

Recall that (for a given polynomial P of degree 3) the function x 7→
∫ +∞
x

dt√
P (t)

is the elliptic
logarithm function, giving a z ∈ C/Λ. Since ℘(z,Λ) = x, the function ℘ is the inverse of this
function; hence, we have

u = ℘(z, [ω1, ω2]), u′ = ℘(z, [ω1, 2ω2]).

We then rewrite Equation (4.1.1) as a function of ℘ and of theta constants at τ = ω2
ω1

, using
Thomae’s formulas (Theorem 1.3.19):

℘(z, [ω1, ω2]) = ℘(z, [ω1, 2ω2]) +

(
π
ω1

)4
θ0(2τ)4θ2(2τ)4

℘(z, [ω1, 2ω2]) +
(
π
ω1

)2
θ0(2τ)4+θ2(2τ)4

3

(4.3.1)

72 Chapter 4. The Landen isogeny

This relation allows us to compute ℘(z, [ω1, ω2]) from ℘(z, [ω1, 2ω2]); we call this relation a
backwards induction formula (as in [BZ10, p. 153]), since we are interested in computing the
first term of the sequence (℘(z, [ω1, 2nω2]))n∈N.

The following proposition deals with the behavior of ℘(z, [ω1, 2nω2])n∈N:

Theorem 4.3.2 ([CT13], [Kob84, Section 1.6, exercise 7], [Cha85, p. 46]).

lim℘(z, [ω1, 2nω2]) =
(
π

ω1

)2(1
sin2(zπ/ω1)

− 1
3

)
Proof. We have

℘(z, [ω1, 2nω2]) = 1
z2 +

∑
w∈Zω1+2nZω2

1
(z − w)2 −

1
w2

Write w = m1ω1 +m22nω2 and let n go to infinity: the terms with m2 6= 0 go to 0, and all that
remains is

lim℘(z, [ω1, 2nω2]) =
∑
m∈Z

1
(z −mω1)2 −

1
ω2

1
× 2π

2

6

But we have
π2

sin2(πz)
=
∑
m∈Z

1
(z −m)2

which proves the result.

Recall that sin can be computed with precision P in O(M(P) logP), using the AGM-based
algorithm for the complex logarithm (Section 3.3.2) and Newton’s method (Section 0.3.3) to
compute eit. However, computing 1

sin2 with absolute precision P when sin is small (e.g. z ' ω1)
causes a large number of bits to be lost.

4.3.3 A quasi-optimal time algorithm
We outline an algorithm for ℘ with conjectured quasi-optimal running time. The algorithm
directly uses the backwards induction of Equation (4.3.1), combined with Theorem 4.3.2; we
compute ` = limn→∞ ℘(z, [ω1, 2nω2]), then determine N such that |`− ℘(z, [ω1, 2Nω2])| ≤ 2−P ,
and use the backwards induction to compute ℘(z, [ω1, ω2]). This strategy is similar to the one used
for the real theta function in e.g. [LO98]; it also resembles other algorithms for special functions,
such as Miller’s algorithm for the evaluation of the Bessel function [BZ10, section 4.7.1.].

Write

℘(z, [ω1, 2kω2])− ℘(z, [ω1, 2k+1ω2]) =

(
π
ω1

)4
θ0(2k+1τ)4θ2(2k+1τ)4

℘(z, [ω1, 2k+1ω2]) +
(
π
ω1

)2
θ0(2k+1τ)4+θ2(2k+1τ)4

3

(4.3.2)

which gives, using cancellation

℘(z, [ω1, ω2])− ℘(z, [ω1, 2nω2]) =
n+1∑
k=0

(
π
ω1

)4
θ0(2k+1τ)4θ2(2k+1τ)4

℘(z, [ω1, 2k+1ω2]) +
(
π
ω1

)2
θ0(2k+1τ)4+θ2(2k+1τ)4

3

We have

lim
n→∞

℘(z, [ω1, 2nω2]) +
(
π

ω1

)2
θ0(2nτ)4 + θ2(2nτ)4

3 =
(
π

ω1

)2 1
sin2(zπ/ω1)

6= 0

4.3. An algorithm for the Weierstrass ℘ function 73

hence (
π
ω1

)4
θ0(2k+1τ)4θ2(2k+1τ)4

℘(z, [ω1, 2k+1ω2]) +
(
π
ω1

)2
θ0(2k+1τ)4+θ2(2k+1τ)4

3

∼
(
π

ω1

)2
sin2(zπ/ω1)θ2(2k+1τ)4

and the series converges because θ2(2k+1τ)4 converges quadratically to 0. We can thus take the
limit

℘(z, [ω1, ω2])−
(
π

ω1

)2(1
sin2(zπ/ω1)

− 1
3

)
=
∞∑
k=0

(
π
ω1

)4
θ0(2k+1τ)4θ2(2k+1τ)4

℘(z, [ω1, 2k+1ω2]) +
(
π
ω1

)2
θ0(2k+1τ)4+θ2(2k+1τ)4

3

In order to turn this into an explicit algorithm, we wish to transform the infinite sum into a
finite one. We use the following heuristic: the numerator contains the term θ4

2(0, 2k+1τ), which
converges quadratically to 0, and thus could make the remainder very small. This also depends on
the size of the denominator: when the denominator is close to 04, this could create large precision
losses. In practice, we take N the first integer such that θ2(0, 2Nτ) ≤ 2−P , then assume that the
sum for k greater than N is smaller than 2−P . This heuristic amounts to writing:

℘(z, [ω1, ω2])−
(
π

ω1

)2(1
sin2(zπ/ω1)

− 1
3

)
=
N−1∑
k=0

(
π
ω1

)4
θ0(2k+1τ)4θ2(2k+1τ)4

℘(z, [ω1, 2k+1ω2]) +
(
π
ω1

)2
θ0(2k+1τ)4+θ2(2k+1τ)4

3

+ε

with |ε| ≤ 2−P ; we can then evaluate this sum, starting with the approximation of ℘(z, [ω1, 2Nω2])
and using the backwards recurrence, as well as the value of the θ2

0,1,2(0, 2kτ). This is Algorithm 6.

Algorithm 6 Compute ℘ using the Landen transform.
Input: z, τ with absolute precision P , satisfying conditions (2.5.11).
Output: ℘(z, [ω1, ω2]) with absolute precision P .
1: N ← 0
2: Compute θ0,1,2(0, τ) using Algorithm 11.
3: while |θ2(0, 2Nτ)| ≥ 2−P do
4: Use the τ -duplication formulas (Equation (2.5.4)) to compute θ0,1,2(0, 2N+1τ).
5: N ← N + 1.
6: end while
7: res←

(
π
ω1

)2 (
1

sin2(zπ/ω1) −
1
3

)
.

8: for i = N downto 1 do
9: res← res +

(
π
ω1

)4
θ0(0,2iτ)4θ2(0,2iτ)4

res+
(
π
ω1

)2 θ0(0,2iτ)4+θ2(0,2iτ)4
3

.

10: end for
11: return res

The definition of θ2 (Equation (2.5.3)) proves that, when N goes to infinity, θ2(0, 2Nτ) ∼
2eiπ2Nτ/4; hence we have N = O(logP). As for precision losses, they could stem from two
potential problems: if the computation of the limit loses a large amount of absolute precision

4For instance when ℘(z, [ω1, 2kω2]) is close to e(k)
3 = ℘(2kω2, [ω1, 2kω2]) – note however that this only happens

once for every z.

74 Chapter 4. The Landen isogeny

(for instance if z is close to ω1), or if the heuristic is not correct. Note that the case of small
denominators, e.g. z ' ω2, could be easily avoided by checking this condition at the beginning
of the algorithm. Provided the heuristic is correct and the precision losses are manageable, we
get a quasi-optimal time algorithm to compute ℘ with absolute precision P .

We do not provide an analysis of the precision loss incurred, or timings, at this point. Instead,
we differ such considerations to Chapter 8, in which we discuss another quasi-linear time algo-
rithm to compute ℘; we will compare Algorithm 6 to this other algorithm in terms of timings and
precision loss in Section 8.1.3, and show that the precision loss should not affect the asymptotic
running time of either algorithm.

4.4 Using the Landen transform to compute θ

The change of variables given by the Landen isogeny shows how one may go from a curve
with fundamental parallelogram isomorphic to [1, 2τ] to a curve with fundamental parallelogram
isomorphic to [1, τ]; as such, this change of variables has sometimes been referred to as the
descending Landen transform. A few algorithms are based on this transformation, although they
sometimes only use the vocabulary related to the AGM. Most notably, a couple of algorithms
have been proposed to compute the real theta function.

We find in [AS64, Section 16.32] an algorithm (similar to [AS64, Section 16.4] for the elliptic
functions) to compute θ(u|m) from the arithmetico-geometric mean. The algorithm relies on
a backwards induction, much like Algorithm 6: one has to compute the terms of an AGM
sequence until the first index N such that aN−bN

2 is negligible at the required precision; then
compute a quantity φN from this, and use recurrence relations to compute φN−1, . . . , φ0. Since
the AGM sequence is quadratically convergent, N = logP ; however, each step also requires the
computation of log ◦ cos(φ), which takes O(M(P) logP) if one uses the fast algorithms for log
and exp of Chapter 3. Hence, the complexity of this algorithm seems to be O(M(P) log2 P)
bit operations in this case, i.e. the real theta function. Note that we were unable to locate a
reference which proves this algorithm to be correct and, more importantly, which gives an order
of magnitude for the precision loss.

More recently, a better algorithm for the real theta function was proposed and analyzed
in [LO98]. The algorithm uses a similar pattern of computing a quadratically convergent sequence
until the terms are small enough, then computing a quantity φN and use a backwards induction
to compute the value of θ. In this case, the computations derive directly from the descending
Landen transform, i.e. the final result is obtained directly, without having to compute other
quantities like log ◦ cos. This gives a O(M(P) logP) algorithm; furthermore, the article provides
a careful analysis of the precision loss, which shows that the result is not too inaccurate (about
O(logP) guard bits seem to be needed). We were unable to generalize this algorithm (and the
corresponding analysis) to the complex case, using instead another method based on Newton’s
method (reasoning it would be more stable numerically, as the Newton iteration is self-correcting);
we refer to Chapter 6 for more details.

Finally, we mention an attempt of ours to get a quasi-optimal time algorithm for θ. We start
from the Landen transform formulated in terms of theta functions:

Proposition 4.4.1 ([Bel61, p.54], [WW27, Section 21.52, p.469]).

θ0(z, τ)θ1(z, τ)
θ1(2z, 2τ) = θ0(0, τ)θ1(0, τ)

θ1(0, 2τ)

4.4. Using the Landen transform to compute θ 75

We rewrite this formula as

θ1(2z, 2τ) = θ1(0, 2τ)
θ0(0, τ)θ1(0, τ)

θ0(z, τ)
θ1(z, τ)θ

2
1(z, τ).

Putting an = log θ1(2nz,2nτ)
2n , we get the recurrence relation:

ak+1 = ak + 1
2k+1

(
log θ0(2kz, 2kτ)

θ1(2kz, 2kτ) + log θ1(0, 2k+1τ)− log θ0(0, 2kτ)− log θ1(0, 2kτ)
)
.

The advantage of this relation is that we only need the theta-constants and the quotient θ0/θ1,
which can be computed from other quotients, and for instance from the value of ℘. However,
the resulting algorithm requires evaluating ℘(2kz, 2kτ) for 1 ≤ k ≤ N ; the best algorithm to do
so uses Equation (4.3.2) and the z-duplication formula for ℘:

℘(2z) =
(℘(z)2 + g2

4)2 + 2g3℘(z)
4℘(z)3 − g2℘(z)− g3

We then use a recursive algorithm to compute the leaves of the tree which vertices are the values
℘(2iz, 2jτ) and the edges are either the use of Equation (4.3.2) (going from 2τ to τ) or the z-
duplication; this is an optimal strategy, as analysed in [DFJP14], and requires O(logP log logP)
multiplications. We thus potentially get a O(M(P) logP log logP) algorithm to compute θ this
way, which is not the best potential running time; we did not analyze this algorithm further.

76 Chapter 4. The Landen isogeny

Chapter 5

Naive algorithms for theta
functions in any genus

This chapter is dedicated to presenting some algorithms to compute θ(z, τ) by partial summation.
We show in this chapter that θ(z, τ) can be computed with absolute precision P in O(M(P)P g/2)
bit operations; in genus 1 and 2, and for τ in the fundamental domain, the complexity is even
O

(
M(P)

(
P

Im(τ1,1)

)g/2)
bit operations. We conjecture that this result holds in genus g.

In order to determine how many terms are needed, an analysis of the size of the tail of the
sum is required. We produce such an analysis in genus 1 and 2, in the case where z, τ are
reduced; the results we obtain show that the number of terms needed to get a result accurate
to 2−P decreases as Im(τ1,1) increases. This is of importance in the context of fast algorithms
with uniform running time, such as in Chapter 6 and Chapter 7. In genus g, we make the result
of [DHB+04] more explicit, which generalizes the results in genus 1 and 2 nicely; however, the
running time of this method does not seem to be as good as the results we got in genus 1 and 2.

Another aspect is to determine an efficient way to compute the terms of the series. The
simplest method is to compute each term independently, using an exponentiation for each term;
this does not yield the best asymptotic running time, but the resulting algorithm is rather simple
to implement. We discuss another way, based on recurrence relations of degree 2 linking the terms
together; this method requires more storage (presumably around O(22g)), but the amortized cost
for each term is only a few multiplications. This gives the best running time; we give explicit
algorithms in genus 1 and 2, which we implemented5, and just sketch the corresponding relations
and the algorithm in genus g.

5.1 Genus 1
Argument reduction for z and τ has been studied in Section 2.5.3 (which instiatiated Section 2.3
and Section 2.4). As a result, the computational problem we study here is the computation of
θ(z, τ) to absolute precision P with z, τ such that

|τ | ≥ 1, |Re(τ)| ≤ 1
2 , Im(τ) > 0, |Re(z)| ≤ 1

2 , 0 ≤ Im(z) ≤ Im(τ)
2 .

5Timings are provided respectively in Section 6.4 and Section 7.3.

77

78 Chapter 5. Naive algorithms for theta functions in any genus

5.1.1 Partial summation of the series defining θ

The analysis we present here is inspired by [Dup11].
Define the following partial summation of the series defining θ(z, τ):

SB(z, τ) = 1 +
∑

0<n<B
qn

2
(e2iπnz + e−2iπnz)

where we use the notation q = eiπτ . We have

Proposition 5.1.1. Suppose that Im(τ) ≥ 0.35 and that Im(z) ≤ Im(τ)
2 (which is looser than

the conditions we specified at the beginning of the section). Then |θ(z, τ)− SB(z, τ)| ≤ 3|q|B−1.

We use the following lemma, which bounds the remainder of a series by a geometric series
whose sum is easy to compute:

Lemma 5.1.2. Let q ∈ C such that |q| < 1. Let f : N→ N be an increasing function such that
(f(k + 1)− f(k))k∈N is increasing. Then:

∑
n≥n0

qf(n) ≤
∑
n≥n0

qf(n0)+(n−n0)(f(n0+1)−f(n0)) = qf(n0)

1− qf(n0+1)−f(n0) .

We use this lemma a few times throughout this manuscript, among which in the proof of
Proposition 5.1.1:

Proof of Proposition 5.1.1. We look at the remainder of the series:

|θ(z, τ)− SB(z, τ)| ≤
∑
n≥B

|q|n
2
(|e2iπnz|+ |e−2iπnz|)

≤
∑
n≥B

|q|n
2
(1 + |q|−n) ≤ 2

∑
n≥B

|q|n
2−n

≤ 2
∑
n≥B

|q|(n−1)2
≤ 2

∑
n≥0
|q|(B−1+n)2

≤ 2|q|(B−1)2 ∑
n≥0
|q|2n(B−1)+n2

≤ 2 |q|
(B−1)2

1− |q|2B−1 (5.1.1)

the last line being a consequence of Lemma 5.1.2. A numerical calculation then proves that for
Im(τ) ≥ 0.35, we have 2

1−|q| ≤ 3, which proves the proposition.

Note that we can prove the same inequality for θ1, since the series that define it has the same
terms, up to sign, as the series for θ.

Unlike the analysis of [Dup11] for naive theta-constant evaluation, we cannot get a bound for
the relative precision: since θ(1+τ

2 , τ) = 0, there is no lower bound for |θ(z, τ)|. If we set

B(P, τ) =
⌈√

P + 2
π Im(τ) log2(e)

⌉
+ 1.

we have 4|q|(B−1)2 ≤ 2−P , which means the approximation is accurate with absolute precision
P . We just showed that:

5.1. Genus 1 79

Theorem 5.1.3. To compute θ(z, τ) with absolute precision P bits, it is enough to sum over all
k ∈ Z such that

|k| ≤

⌈√
P + 2

π Im(τ) log2(e)

⌉
+ 1

Note that this bound is of the same order than the one of [Dup11, p. 5], since it is greater
than it by only 2 (i.e. only 4 more terms are needed).

5.1.2 Naive algorithm
We now present a naive algorithm to compute not only the value of θ(z, τ), but also the value of
θ1(z, τ), θ0(0, τ), θ1(0, τ) for only a marginal amount of extra computation; this is the algorithm
we will use for comparison to the fast algorithm we propose in Chapter 6. The algorithm
computes with internal precision P, which we determine later so that the result is accurate to
the desired precision P .

Define the sequence (vn)n∈N as

vn = qn
2
(e2iπnz + e−2iπnz)

so that θ(z, τ) = 1 +
∑
n≥1 vn. This sequence satisfies a recurrence relation for n > 1:

vn+1 = q2nv1vn − q4nvn−1.

We use this recursion formula to compute vn efficiently, which is similar to the trick used
by [ET14a, Prop. 3]. This removes the need for divisions and the need to compute and store
e−2iπnz, which can get quite big; indeed, computing it only to multiply it by the very small qn2

is wasteful. The resulting algorithm is Algorithm 7.

Algorithm 7 Naive algorithm to compute θ0(z, τ), θ0(0, τ), θ1(z, τ), θ1(0, τ).
Input: z ∈ C, τ ∈ H with absolute precision P , satisfying conditions (2.5.11).
Output: θ0(z, τ), θ0(0, τ), θ1(z, τ), θ1(0, τ) with absolute precision P .
1: Work with precision P.
2: a← (1, 1), b← (1, 1) . These arrays will hold respectively θi(z, τ) and θi(0, τ)
3: B ←

⌈√
P+2

π Im(τ) log2(e)

⌉
+ 1

4: q ← UniformExp(iπτ)
5: v1 ← UniformExp(2iπ(z + τ/2)) + UniformExp(−2iπ(z − τ/2))
6: q1 ← q, q2 ← q, v ← v1, v′ ← 2
7: for n = 1..B do
8: /* q1 = qn, q2 = qn

2
, v = vn, v

′ = vn−1 */
9: a0 ← a0 + v, a1 ← a1 + (−1)n × v
10: b0 ← b0 + 2q2, b1 ← b1 + (−1)n × 2q2
11: q2 ← q2 × (q1)2 × q
12: q1 ← q1 × q
13: temp← v, v ←

(
q2
1 × v1

)
× v − q4

1 × v′ v′ ← temp
14: end for
15: return a0, b0, a1, b1

We use a subroutine in this algorithm, which we call UniformExp(z), and which computes
ez with absolute precision P using the following algorithm: if Re(z) ≤ − P

log2 e
, return 0, if not

compute exp(z) using Section 3.3.3. It is then easily seen that:

80 Chapter 5. Naive algorithms for theta functions in any genus

Proposition 5.1.4. UniformExp computes ez with absolute precision P in cM(P) logP bit
operations for any z such that Re(z) ≤ 0, where c is a constant independent of z.

Hence, the complexity of UniformExp is uniform over all z with Re(z) ≤ 0.

5.1.3 Error analysis and complexity
This section is dedicated to proving:

Theorem 5.1.5. For z, τ with absolute precision P and satisfying conditions (2.5.11), Algo-
rithm 7 with P = P + logB + 7 computes θ0(z, τ), θ1(z, τ), θ0(0, τ), θ1(0, τ) with absolute
precision P bits. This gives an algorithm which has bit complexity O

(
M(P)

√
P

Im(τ)

)
.

Remark 5.1.6. Note that the running time of this algorithm gets better as Im(τ) increases (the
remainder is smaller than 2−P much quicker in that case). At the limit, if P = c Im(τ) where
c is a fixed constant, one only needs a constant number of terms to get the final result. The
running time of this algorithm is then dominated by the computation of q = eiπτ and v1 at the
beginning of the algorithm, which costs cM(P) logP operations with c independent of z, τ by
Proposition 5.1.4. Note that, in that case, the running time of the algorithm is independent of
z and τ ; this remark will be of use in Section 6.1.2.

Analyzing this algorithm requires bounding the error that is incurred during the computa-
tion. We then compensate the number of inaccurate bits by increasing the precision. We use
Theorem 0.3.3 to estimate the number of bits lost.

Proof of Theorem 5.1.5. We first determine the size of the quantities we are manipulating; this is
needed to evaluate the error incurred during the computation, as well as the number of bits needed
to store fixed-precision approximations of absolute precision P of the intermediate quantities.
Taking B = 1 in Proposition 5.1.1 gives |θ(z, τ)−1| ≤ 3, so |θ(z, τ)| ≤ 4; actually, this also proves
|SB(z, τ)| ≤ 4, which means that |a0|, |a1|, |b0|, |b1| are bounded by 4. We also have |q| ≤ 0.07,
and |q2| ≤ |q|n

2 ≤ |q|n = |q1| ≤ |q| ≤ 0.07. As for the vi, we have v0 = 2, and for n ≥ 1

|vn| ≤ |q|n
2+n + |q|n

2−n ≤ (1 + |q|2n)|q|n
2−n ≤ 1.0049|q|n

2−n ≤ 1.0049

Hence, storing all the complex numbers above, including our result, with absolute precision P
only requires P + 2 bits, since their integral part is coded on only 2 bits. Note that, had we
computed e−2iπnz before multiplying it by qn2 , we would have needed O(Im(τ)) more bits, which
changes the asymptotic complexity.

Computing the absolute precision lost during this computation is done using Theorem 0.3.3.
We start with the bounds |τ − τ̃ | ≤ 1

22−P and |z − z̃| ≤ 1
22−P , coming from the hypothesis that

the approximations of z and τ are correctly rounded with precision P. We then need to estimate
kv1 and kq, which can be done using the formula giving the absolute error when computing an
exponential from Theorem 0.3.3. Given that τ ∈ F , we have

|q − q̃| ≤ 0.077× 1/2 + 8.5
2 2−P ≤ 0.42× 2−P

|v1 − ṽ1| ≤ 6(|e−π(Im(τ)+2 Im(z))|+ |eπ(2 Im(z)−Im(τ))|)× 2−P

≤ 6(|q|+ 1)2−P ≤ 6.42× 2−P

which means that kq ≤ 0.42 and kv1 ≤ 6.42. We then need to evaluate the loss of precision
for each variable and at each step of the algorithm, which gives recurrence relations with non-
constant coefficients. Solving those is rather tedious, and we use loose upper bounds to simplify

5.1. Genus 1 81

the computation; we do not detail this proof here. The results obtained by this method show
that the error on the computation of the theta-constants is bounded by (0.3B + 105.958)2−P ,
and the one on the computation of the theta function is smaller than (5.894B + 28.062)2−P .
This proves that the number of bits lost is bounded by log2B + c, where c is a constant smaller
than 7; hence we set P = P + logB + 7.

Finally, evaluating π and exp(z) with precision P can be done in O(M(P) logP), using re-
spectively the Brent-Salamin algorithm (Section 3.1.2) and our subroutine UniformExp (Propo-
sition 5.1.4); this is negligible asymptotically. In the end, computing an approximation up to
2−P of θ(z, τ) can be done in O

(
M (P + log(P/ Im(τ)) + c)

√
P

Im(τ)

)
= O

(
M(P)

√
P

Im(τ)

)
bit

operations.

5.1.4 Computing θ2

We mentioned in Section 2.5.3 the need to compute θ2(z, τ) and θ2(0, τ) as well. One could think
of recovering those values using Jacobi’s quartic formula and the equation of the variety, which
we mentioned in Section 2.5:

θ0(0, τ)4 = θ1(0, τ)4 + θ2(0, τ)4

θ2
0(z, τ)θ2

0(0, τ) = θ2
1(z, τ)θ2

1(0, τ) + θ2
2(z, τ)θ2

2(z, τ)

that is to say, compute

θ2(0, τ) =
(
θ0(0, τ)4 − θ1(0, τ)4)1/4

θ2(z, τ) =
√
θ2

0(z, τ)θ2
0(0, τ)− θ2

1(z, τ)θ2
1(0, τ)

θ2(0, τ) .

However, this approach induces an asymptotically large loss of absolute precision for both θ2(0, τ)
and θ2(z, τ). According to Theorem 0.3.3, both square root extraction and inversion induce a
loss of precision proportional to |z|−1; since θ2(0, τ) ∼ 4q1/2, the number of bits lost by applying
those formulas is O(Im(τ)). Also note that those formulas would induce a big loss in relative
precision as well, since θ0(0, τ) and θ1(0, τ) are very close when Im(τ) goes to infinity, and
the subtraction induces a relative precision loss of O(Im(τ)) bits; for more details, see [Dup11,
Section 6.3]. Either of those analyses show that, in order to compensate precision loss, the naive
algorithm should actually be run with a precision of O(P +logB+Im(τ)), which gives a running
time that worsens, insteads of getting better, when Im(τ) gets big. We do not recommend this
approach.

Instead, one should compute partial summations of the series defining θ2, much in the same
way as we did for θ(z, τ). We write θ2(z, τ) = q1/4w(1+

∑
n≥1 vn) with vn = qn

2+n(w2n+w−2n);
since Im(z) ≥ 0 we can just look at the problem of evaluating 1 +

∑
vn. We have

vn+1 = q2nv1vn − q4n+2vn−1

The analysis in this case is very similar to the one for θ. We have |vn| ≤ |q|n
2 , hence |θ2(z, τ)−

SB | ≤ 3|q|B2 , so that the bound on B is one less than the one for θ. We have that q2n|v1| is
bounded by 2 instead of 1, which in the worst case means logB more guard bits are needed.
This gives Algorithm 8; its asymptotic complexity is, just like Algorithm 7, O

(
M(P)

√
P

Im(τ

)
bit operations, which gets better as Im(τ) increases.

82 Chapter 5. Naive algorithms for theta functions in any genus

Algorithm 8 Naive algorithm to compute θ2(z, τ), θ2(0, τ).
Input: z, τ with absolute precision P , satisfying conditions (2.5.11).
Output: θ2(z, τ), θ2(0, τ) with absolute precision P .
1: a← 1, b← 1
2: B ←

⌈√
P+2

π Im(τ) log2(e)

⌉
3: Work with precision P + 2 logB + 7.
4: q ← eiπτ , q1 ← q, q2 ← q
5: v1 ← q2(w2 + w−2), v ← v1, v′ ← 2
6: for n = 1..B do
7: /* q1 = qn, q2 = qn

2+n, v = vn, v
′ = vn−1 */

8: a← a+ v, b← b+ 2q2
9: q2 ← q2 × (q1)2 × q2

10: q1 ← q1 × q
11: temp← v, v ←

(
q2
1 × v1

)
× v − (q4

1 × q2)× v′ v′ ← temp
12: end for
13: a← a× q1/4w, b← b× q1/4

14: return a, b

We note that similar considerations apply to the problem of computing θ3. One can compute
θ3(z, τ) using the formula [Mum83, p.22]

θ3(z, τ)2 = θ1(z, τ)2θ2(0, τ)2 − θ2(z, τ)2θ1(0, τ)2

θ0(0, τ)2 . (5.1.2)

Using this formula loses only a few bits of precision since θ0(0, τ) is bounded; however, one then
needs to compute a square root, which potentially loses O(Im(τ)) bits. Hence, a summation of
the series, which directly gives θ3, is preferable.

5.2 Genus 2

We now study the naive algorithm in the genus 2 case, i.e. z =
(
z1
z2

)
and τ =

(
τ1 τ3
τ3 τ2

)
. The

number of variables is small enough that we can write the sum explicitly, as in Section 2.6, and
perform an analysis of its remainder using the triangle inequality; this allows us to make the
dependency in τ explicit. We can also write explicit recurrence relations between the terms to
compute the sum faster.

Recall that the series defining the fundamental theta functions θ0, θ1, θ2, θ3 only differ by the
signs in front of the terms; the patterns are summarized in Figure 2.2. This means one can
compute all the values θ[0;b](z, τ) at the same time for the same computational cost, i.e. with
no extra multiplications. This also justifies that the analysis that we perform in Section 5.2.1 is
valid for all the fundamental theta functions, since the differences of signs vanish when using the
triangle inequality.

As in genus 1, we assume that z, τ are reduced as explained in Section 2.3 and Section 2.4.4
(e.g. τ ∈ F ′g). This translates into the conditions:

|Re(τi)| ≤ 1
2 , 0 ≤ 2 Im(τ3) ≤ Im(τ1) ≤ Im(τ2),

|τ1| ≥ 1 (i.e. Im(τ1) ≥
√

3
2) ; |Re(zi)| ≤ 1

2

5.2. Genus 2 83

|Im(z1)| ≤ Im(τ1)+Im(τ3)
2 ≤ 3

4 Im(τ1), |Im(z2)| ≤ Im(τ2)+Im(τ3)
2 ≤ 3

4 Im(τ2).

5.2.1 Truncated sums

Proposition 5.2.1. Let z, τ be reduced as previously. Let SB denote the sum of the series
defining θ with (m,n) ∈ [−B,B]2. Then taking

B =

√
2(P + 5)

π log2 e Im(τ1) + 2

i.e. summing no more than O
(

P
Im(τ1)

)
terms, is enough to get an approximation of θ(z, τ) that

is accurate to 2−P .

Proof. Let qj = eiπτj and wj = eiπzj . Using the triangle inequality, we can write

|θ(z, τ)− SB | ≤ S1

+
∑

n≥B+1
|q2|n

2
(|w2|2n + |w2|−2n) +

∑
m≥B+1

|q1|m
2
(|w1|2m + |w1|−2m)

+
∑
|m|>0

∑
|n|≥B+1

|q1|m
2
|q2|n

2
|q3|2mn|w1|2m|w2|2n

where S1 =
∑
|m|≥B+1

∑
0<|n|≤B |q1|m

2 |q2|n
2 |q3|2mn|w1|2m|w2|2n. The second line can be bounded

using a calculation very similar to the one in Section 5.1.1. The third line can be bounded as
follows: we have

|qm
2

1 qn
2

2 q2mn
3 | ≤ |qm

2

1 qn
2

2 q−m
2−n2

3 | ≤ |qm
2/2

1 q
n2/2
2 |

and furthermore, given the assumptions on z, we have:

|w1|+ |w−1
1 | ≤ 1 + e−π(−|Im(z1)|) ≤ 2eπ 3

4 Im(τ1), |w2|+ |w−1
2 | ≤ 2eπ 3

4 Im(τ2).

Hence (|w2m
1 |+ |w−2m

1 |)(|w2n
2 |+ |w−2n

2 |) ≤ 4eπ(3
2m Im(τ1)+ 3

2n Im(τ2)). Overall, we get the bound

|θ(z, τ)− SB | ≤ S1 + 4|q1|(B−1)2−4

1− |q1|
+ 4|q1|

(B−1)2
2 −3

1− |q1|

Assuming that Im(zi) ≥ 0, which does not change the proof, we bound S1 as follows:

S1 ≤ |q2|
∑

m≥B+1
|q1|m

2 (
|q3|2m(|w1|2m|w2|2 + |w1|−2m|w2|−2) + |q3|−2m(|w1|2m|w2|−2 + |w1|−2m|w2|2)

)
+ |q2|4

∑
m≥B+1

|q1|m
2 (
|q3|4m(|w1|2m|w2|4 + |w1|−2m|w2|−4) + |q3|−4m(|w1|2m|w2|−4 + |w1|−2m|w2|4)

)
+ 4

∑
m≥B+1

∑
2<n≤B

|q1|
m2

2 −
3
2m|q2|

n2
2 −

3
2n.

84 Chapter 5. Naive algorithms for theta functions in any genus

The last line can be bounded by 4q
(B−1)2−4

2

(1−|q1|)(1−|q2|) . We can refine the bound on |w2|−1, writing
|q2||w2|−2 ≤ q−1

3 , which gives

S1 ≤
q

(B+1)2+1
1
1− |q1|

+ q
(B−1)2−4
1
1− |q1|

+ q
(B−1)2− 3

2
1
1− |q1|

+ |q1|(B−1)2−3

1− |q1|

+ q
(B+1)2+1
1
1− |q1|

+ q
(B−1)2−2
1
1− |q1|

+ qB
2+1

1
1− |q1|

+ q
(B−1)2−2
1
1− |q1|

+ 4q
(B−1)2−4

2

(1− |q1|)(1− |q2|)
.

Collecting terms yields the stated result.

5.2.2 Genus 2 naive algorithm
Following and extending the strategy in Section 5.1.2 or [ET14a, §5.1], we use recurrence relations
to compute terms more efficiently. Let

Q(m,n) = qm
2

1 qn
2

2 q2mn
3

T (m,n) = Q(m,n)(w2m
1 w2n

2 + w−2m
1 w−2n

2).

With minor rewriting, we have that

θi(z, τ) =
∑
m,n∈N

s(i,m, n)(T (m,n) + T (m,−n))

θi(0, τ) =
∑
m,n∈N

s(i,m, n)(Q(m,n) +Q(m,−n))

where s(i,m, n) is 1
4 for m = n = 0, ±1

2 along the axes (m, 0) and (0, n), and ±1 elsewhere.
We have the following recurrence relations.

(w2
1 + w−2

1)T (m,n) = q−2m−1
1 q−2n

3 T (m+ 1, n) + q2m−1
1 q2n

3 T (m− 1, n) (5.2.1)
(w2

2 + w−2
2)T (m,n) = q−2n−1

2 q−2m
3 T (m,n+ 1) + q2n−1

2 q2m
3 T (m,n− 1). (5.2.2)

We propose an algorithm, Algorithm 9, that uses those recurrence relations in a way such
that the memory needed is only O(1). The algorithm consists in iteratively computing the terms
for m = 0 and m = 1 (using Equations (5.2.2)), and use them as soon as they are computed
to initialize the other induction (Equations (5.2.1)); this corresponds to horizontal sweeps (from
bottom to top) in the square [0, B]2, with the first two terms of each line iteratively computed
from the terms below them, as illustrated in Figure 5.1.

In Algorithm 9, terms of the form qki as well as products thereof must also be computed
recursively. We did so in our implementation, but this is deliberately omitted here for brevity.
Also, despite the use of notations T (m,n), it shall be understood that only constant storage
is used by this algorithm, as can be seen by inspecting where values are actually used. Note
that further speed-ups are possible if one tolerates using O(

√
P) extra memory, for instance by

caching the qm1 and the qn2 .
Taking B as in Section 5.2.1 yields the right number of terms; we did not analyze the number

of guard bits required by this algorithm, but as the arguments would be similar to the genus 1

5.2. Genus 2 85

n

m
(0, 0)

T (·, 0)
T (·, 1)
T (·, 2)

...

Figure 5.1: Order of summation of the terms in Algorithm 9. Arrows going right correspond to
applying Equation (5.2.1), arrows going up correspond to applying Equation (5.2.2). 4 terms
need to be stored to initialize the horizontal sweeps, starting with the corners of the bottom
left square, then moving that square up when increasing n. Each horizontal sweep requires the
storage of 2 terms.

Algorithm 9 Naive algorithm for θ(z, τ) in genus 2.
Input: z, τ with absolute precision P , and B a summation bound.
Output: θi(z, τ), θi(0, τ) for i ∈ {0..3}, with absolute precision P .
1: a← (1, 1, 1, 1); b← (1, 1, 1, 1) . These arrays will store θi(z, τ) and θi(0, τ).
2: Compute q1, q2, q3, w1, w2 using our UniformExp routine (cf. Proposition 5.1.4).
3: Compute R(m,n) = Q(m,n) +Q(−m,n) for m,n ∈ {0, 1}.
4: Compute T (m,n) for m ∈ {0, 1} and n ∈ {−1, 0, 1}.
5: Add contributions for (0, 1) to a and b, with the correct sign.
6: u← w2

1 + w−2
1 , v ← w2

2 + w−2
2

7: for n = 1 to B − 1 do
8: R(0, n+ 1)← q2n+1

2 R(0, n)
9: Add contribution for (0, n+ 1) to b, with the correct sign.
10: T (0, n+ 1)← q2n+1

2 vT (0, n)− q4n
2 T (0, n− 1)

11: Add contributions for (0, n+ 1) to a, with the correct sign.
12: end for
13: for m = 1 to B do
14: ρm ← q2m

3 + q−2m
3 . can be computed inductively

15: Add contributions for (m, 0) and (m, 1) to a and b, with the correct sign.
16: for n = 1 to B − 1 do . One may refine the bound depending on m
17: R(m,n+ 1)← q2n+1

2 ρmR(m,n)− q4n
2 R(m,n− 1)

18: Add contribution for (m,n+ 1) to b, with the correct sign.
19: T (m,n+ 1)← q2n+1

2 q2m
3 vT (m,n)− q4n

2 q4m
3 T (m,n− 1)

20: T (m,−(n+ 1))← q2n+1
2 q−2m

3 vT (m,−n)− q4n
2 q−4m

3 T (m,−(n− 1))
21: Add contributions for (m,n+ 1) to a, with the correct sign.
22: end for
23: R(m+ 1, 0)← q2m+1

1 R(m, 0)
24: R(m+ 1, 1)← q2m+1

1 (q2
3 + q−2

3)R(m, 1)− q4m
1 R(m− 1, 1)

25: T (m+ 1, 0)← q2m+1
1 uT (m, 0)− q4m

1 T (m− 1, 0)
26: T (m+ 1, 1)← q2m+1

1 q2
3uT (m, 1)− q4m

1 q4
3T (m− 1, 1)

27: T (m+ 1,−1)← q2m+1
1 q−2

3 uT (m,−1)− q4m
1 q−4

3 T (m− 1,−1)
28: end for
29: return a, b.

86 Chapter 5. Naive algorithms for theta functions in any genus

case, it does not seem like it will change the asymptotic running time. Finally, the remarks made
in Note 5.1.6 can be generalized to apply to this algorithm; in particular, for P ≥ c Im(τ1,1),
the number of terms is bounded by a constant, and the asymptotic complexity is the one of
UniformExp, which is quasi-linear and uniform in z, τ . We implemented Algorithm 9 in Magma,
and will discuss timings in Section 7.3.

5.3 Genus g
We outline the analysis of two strategies to evaluate the series defining θ with absolute precision
P , i.e. up to 2−P . The first strategy is the one outlined in [DHB+04], while the second one
attempts to generalize the naive algorithms we outlined in genus 1 and genus 2; the number of
terms that are summed in each strategy is asymptotically the same in P . However, note that
the first strategy considers an ellipsoid while the second one considers a cube; thus, it is likely
that the second strategy is coarser (and hence perhaps slower in practice), although we did not
manage to link the ellipsoid to the cube. We also discuss a way to use recurrence relations
to compute the terms, which lowers the overall asymptotic complexity by a logP factor; this
method can be applied to either of these two strategies.

Recall that the argument reduction strategies we discussed in Section 2.3 and Section 2.4.4
(e.g. τ ∈ F ′g) allow us to assume that

|Re(τi,j)| ≤ 1
2 , Im(τ) is Minkowski-reduced, |τ1,1| ≥ 1

|Re(zi)| ≤ 1
2 , Im(zi) ≤ 1

2
∑
j∈{1,...,n} Im(τi,j).

Note that these conditions are not very well adapted to the analyses we present below. The first
analysis singles out an exponential factor which cannot be controlled or dealt with using only
these conditions, while the second analysis requires a conjecture (Conjecture 5.3.3) in order to
exploit these conditions.

5.3.1 Deckoninck et. al’s analysis
We find in [DHB+04] a first method to compute the series defining θ up to 2−P . The authors
determine an ellipsoid which contains the indices over which one should sum to get a final result
precise up to 2−P . This method does not seem to depend on any conditions on z, τ ; however,
the authors mention that using argument reduction is beneficial to the process, as it reduces the
eccentricity of the ellipsoid.

Their argument reduction strategy is visibly inspired by [Sie89], who determined the funda-
mental domain Fg much in the same way as [Kli90] (see Section 2.4); however, the reduction
they actually appear to be using is a bit different, as the conditions that are imposed are

|Re(τi,j)| ≤
1
2 , the matrix T such that Im(τ) = tTT is LLL-reduced, |τ1,1| ≥ 1.

This reduction seems even weaker than the reduction in F ′g of Section 2.4.4, as the LLL reduction
(which runs in polynomial time but does not necessarily find the smallest vector) is used instead
of the Minkowski reduction (which runs in exponential time and finds the smallest vector). The
termination of the algorithm is claimed to derive from the termination of the algorithm reducing
in the fundamental domain, which is proven in [Sie89, Chapter 6, Section 5]; no indications are
given on the number of steps that are needed before termination. The effect of this strategy on
the number of terms is not quantified, but the article claims that it reduces it.

5.3. Genus g 87

Note that the analysis presented in [DHB+04] gives results which are valid for a series which is
equal to θ(z, τ)e−πt Im(z) Im(τ) Im(z), hence disregarding an “exponential growth” factor [DHB+04,
p. 3], and only computing what they call the “oscillatory part” of the theta function. The size of
this exponential factor grows to infinity as Im(z) grows. Note that the conditions given by our
argument reduction strategies (Section 2.3 and Section 2.4.4) do not allow us to control the size
of this factor: for instance, if (z, τ) are reduced with these strategies, (2kz, 2kτ) is also reduced,
yet the exponential factor goes to infinity as k grows. However, this does not mean that the
size of θ grows, merely that the oscillatory part has to be computed at an increasingly larger
precision in order to compensate for this factor.

The following theorem takes a closer look at the oscillatory part of the theta function.
Theorem 5.3.1 ([DHB+04, Theorem 2]). Denote [[V]] = V − [V], where [V] is the vector with
integer coordinates closest to V. Define Λ = {

√
πT (n+ c), n ∈ Zg} with τ = tTT (Cholesky

decomposition) and c = [[Im(τ)−1 Im(z)]]. For B > 0 define the ellipsoid of size B
SB = {n ∈ Zg | ||

√
πT (n+ c)|| < B},

where ||·|| is the L2 norm. Then the oscillatory part of the theta function can be approximated
to 2−P by summing over the terms whose indices are inside the ellipsoid of size R, where R is
the solution to the equation

2−P = g

2
2g
ρg

Γ(g/2, (R− ρ/2)2)

where Γ is the incomplete gamma function and ρ is the length of the shortest vector of Λ.

Note that, if τ is reduced as above, ρ =
√

Im(τ1,1) ≥
√√

3/2, and hence the number of terms
needed can be upper bounded with a bound which is independent from τ .

Neglecting the dependency in τ and z, we get the rather coarse bound of O(Rg) terms needed.
We complete the analysis in [DHB+04] by computing an explicit estimate on R:
Proposition 5.3.2. Treating z, τ (and hence ρ) as constants, we have R = O(

√
P), i.e. summing

O(P g/2) terms is sufficient to get a result accurate to P bits.
Proof. Assuming that g is even (which we can do since Γ is growing in the first parameter for R
large enough), we use integration by parts g/2 times to prove that

Γ(g/2, d) = (g/2− 1)!e−d +
g/2∑
i=1

(g/2− 1) · · · (g/2− i)dg/2−ie−d

≤ g

2(g/2− 1)!dg/2−1e−d ≤ e−d+g/2(log d+log(g/2))

Hence:
g

2
2g
ρg

Γ(g/2, d) ≤ 2−d log2 e+g/2(log d+log(g/2))+log(g/2)+g log(2/ρ)

Asymptotically, i.e. for R large enough, taking d = P log2 e+ g logP + g log(2/ρ) + g = O(P) is
enough for the right hand side to be smaller than 2−P . Hence R = O(

√
P).

Note that this is not as good as the asymptotics in genus 1 and 2, which showed the number
of terms to be O

((
P

Im(τ1,1)

)g/2)
. In fact, we have R = O

(
Im(τ1,1) +

√
P − log Im(τ1,1)

)
(since

ρ =
√

Im(τ1,1)), which gets worse as Im(τ1,1) increases. This, combined with the fact that the
size of the exponential factor cannot be bounded even for z, τ reduced, means that one cannot
use this analysis to build a fast algorithm with uniform complexity, as we do in genus 1 and 2
(see e.g. Algorithm 11 or Algorithm 15 for genus 1, and Note 7.2.7 for genus 2).

88 Chapter 5. Naive algorithms for theta functions in any genus

5.3.2 Truncated sums
Another method is to attempt to bound the remainder of the series defining θ by a series which
can be computed more easily, e.g. a geometric series; this is the method we used in genus 1 and
genus 2.

Recall the proof of Proposition 2.1.9: we took R an orthogonal matrix such that tRτR is
diagonal, and denote λ the smallest eigenvalue of Im(τ). Then

|θ[0;b](z, τ)− 1| ≤ 2g
∑

n∈Ng\{0}

qn
2
1+...+n2

gw−2
∑

ni

with q = e−πλ and w = e−2πmax Im(zi). We can apply similar arguments to |θ[0;b](z, τ)−SR(z, τ)|,
where SR(z, τ) =

∑
ni∈[−R,R] e

iπtnτne2iπtnz. We can then write for R large enough

|θ[0;b](z, τ)− SR(z, τ)| ≤ 2g
∑

n1,...,ng≥R

e−
π
λ ((n1−c)2+...+(ng−c)2)

with c = max Im(zi)
λ . Taking R = O(

√
P/λ) is enough to get a sum which is accurate to P bits,

which means one needs to sum at most O
((

P
λ

)g/2) terms.
This result is not entirely satisfactory with regard to the argument reduction strategies that

are deployed in genus g – either the reduction to Fg (Section 2.4) or the weaker reductions of
Section 2.4.4. Indeed, these reductions give conditions on the coefficients of τ (or Im(τ)) but
none on the eigenvalues of Im(τ). To the best of our knowledge, there is no result linking the
eigenvalues of Im(τ) to the coefficients of τ ; we note, however, that [Dup06, p. 127] puts forward
the following conjecture:

Conjecture 5.3.3 ([Dup06, p. 127]). For any g, there exists a constant cg such that for any
matrix M ∈ Mg(R) such that M is symmetric, positive definite and Minkowski-reduced, its
smallest eigenvalue λ is such that λ ≥ cgM1,1.

The conjecture holds in genus 1 and 2 [Dup06, p. 137]. Should that conjecture be proven for

any genera, this would prove that the number of terms needed is in fact O
((

P
Im(τ1,1)

)g/2)
, which

corresponds exactly to the complexities we found in genus 1 and 2. However, if this conjecture
is not true, the number of terms needed in this algorithm for a τ ∈ Fg could be arbitrarily big.

5.3.3 Recurrence relations
One method of computing the sum above is to compute each term explicitly, i.e. with the com-
putation of an exponential for each term. This algorithm is fairly straightforward to implement,
as one iterates over all the indices and computes the corresponding exponential term; its cost
is O(M(P) logPP g/2), and it requires only a small amount of memory. Note that this is more
expensive than the algorithms we showed in genus 1 (Algorithm 7) and genus 2 (Algorithm 9).

We show a faster method, which uses the recurrence relations of degree two that exist for any
choice of index; this allows to compute all the terms using only multiplications once the initial
O(g2) exponentiations eiπτj,k , eiπzj are computed. This is a generalization of Algorithm 7 and
Algorithm 9. However, note that this method has a larger memory requirement; we conjecture
that one needs to store at least O(22g) P -bit numbers. Furthermore, the implementation of
this method seems tricky in the general case, as one can certainly notice when looking at the

5.3. Genus g 89

algorithm in genus 2 (Algorithm 9); it may be possible to implement this as a recursive function
with some global variables, but we did not undertake this.

We outline the recurrence relations in the g-th (i.e. last) index. For (ε1, . . . , εg) ∈ {−1, 1}g
define

α(ε1,...,εg)
ng = eiπ

tnτn(e2iπ
∑

εjnjzj + e−2iπ
∑

εjnjzj)

treating ni, i < g as constants. Note that since α(ε1,...,εg)
ng = α

(−ε1,...,−εg)
ng , we only need to consider

the case εg = 1; hence this defines 2g−1 quantities. We have

approxP (θ(z, τ)) =
∑

n1,...ng−1∈[0,R]g−1

 ∑
(ε1,...,εg−1)∈{−1,1}

∑
ng∈[0,R]

α(ε1,...,εg−1,1)
ng

 (5.3.1)

Taking a closer look to α(1,ε2,...,εg)
ng yields a recurrence relation:

(e2iπzg+e−2iπzg)α(ε1,...,εg−1,1)
ng =

(
g−1∏
i=1

q
−2εi|ni|
i,g

)
q
−2ng−1
g,g α

(ε1,...,εg−1,1)
ng+1 +

(
g−1∏
i=1

q
2εi|ni|
i,g

)
q

2ng−1
g,g α

(ε1,...,εg−1,1)
ng−1

i.e.

α
(ε1,...,εg−1,1)
ng+1 =

(
g−1∏
i=1

q
2εi|ni|
i,g

)
q

2ng+1
g,g (e2iπzg + e−2iπzg)α(ε1,...,εg−1,1)

ng −

(
g−1∏
i=1

q
2εi|ni|
i,g

)2

q
4ng
g,g α

(ε1,...,εg−1,1)
ng−1

Recall that we assume that the ni are constants; hence, we can suppose that
(∏g−1

i=1 q
−2εi|ni|
i,g

)
is

precomputed. The q−2ng−1
g,g , q

2ng−1
g,g can be computed iteratively; hence, this recurrence relation

allows one to compute all the α(ε1,...,εg−1,1)
ng+1 from the α(ε1,...,εg−1,1)

ng , α
(ε1,...,εg−1,1)
ng−1 in 3 × 2g−1 + 3

multiplications. Hence evaluating the inner sum in Equation (5.3.1) for all b ∈ 1
2Z

g/Zg can be
done in O(R2g−1) multiplications.

Hence, we just showed how, given n1, . . . , ng−1, ε1, . . . , εg−1 and α(ε1,...,εg−1,1)
0 , α

(ε1,...,εg−1,1)
1 ,

we can compute the following terms of the sum using a recurrence relation. Computing these first
two terms can be done using similar recurrence relations on the other variables, with a reasoning
which is very similar to the one we just used: similar recurrence relations of degree 2 exist for
these, and it only costs a constant number of multiplications to increase one of the indices.

This means that the total cost of this method is O(2gRg) multiplications and O(g2) expo-
nentiations, which gives a cost of O(M(P)P g/2) bit operations. This agrees with the running
time of Algorithm 7 and Algorithm 9. Finally, note that once again, one can compute all the
fundamental theta functions at once for the same cost, since one simply needs to change the sign
of the terms accordingly.

90 Chapter 5. Naive algorithms for theta functions in any genus

Chapter 6

Fast computation of the theta
function in genus 1

Recall that Jacobi’s theta function is defined as

C×H → C
(z, τ) 7→

∑
n∈Z

eiπτn
2
e2iπzn = 1 +

∑
n∈N

qn
2
(w2n + w−2n)

with q = eiπτ (the “nome”) and w = eiπz. This chapter provides an asymptotically fast algorithm
to compute θ(z, τ) with absolute precision P in O(M(P) logP) bit operations. We start with
the easier case of the fast, quasi-optimal time algorithm to compute theta-constants featured
in [Dup11], which we refine; we then use a similar approach for the general case. The results from
this chapter are taken from a paper that has been accepted for publication in the Mathematics
of Computation journal [Lab15].

6.1 Preamble: fast theta-constants
We discuss an algorithm which computes those three values with absolute precision P in time
O(M(P) logP) bit operations. A fuller description of the algorithm can be found in [Dup11].
This algorithm has been applied to the computation of modular functions such as j(τ) and
Dedekind’s η function, using formulas linking these quantities to theta-constants. This is of use
for instance in the CM method, where the computation of class polynomials (which zeroes are
values of j(τ)) has to be performed; see [Eng09] for more details.

Recall the definition of theta-constants:

θ0(0, τ) =
∑
n∈Z

qn
2
, θ1(0, τ) =

∑
n∈Z

(−1)nqn
2
, θ2(0, τ) =

∑
n∈Z

q(n+ 1
2)2

with q = eiπτ .
As shown in Section 2.5.3, one only needs to consider the case τ ∈ F . Theorem 3.2.8 then

shows that the AGM of θ2
0(0, τ) and θ2

1(0, τ) is 1. Finally, recall Note 3.2.10, which uses the
homogeneity of the AGM function (i.e. AGM(a, b) = aAGM

(
1, ba

)
) to get

AGM
(

1, θ1(0, τ)2

θ0(0, τ)2

)
= 1
θ0(0, τ)2 (6.1.1)

91

92 Chapter 6. Fast computation of the theta function in genus 1

This gives a way to recover θ0(0, τ)2, θ1(0, τ)2 from the knowledge of their quotient.

6.1.1 A quasi-optimal time algorithm to compute theta-constants
We outline the algorithm in [Dup06] to compute theta-constants. Recall Equation (2.5.10):

θ2(0, τ)2 = i

τ
θ1

(
0, −1

τ

)2
, θ0(0, τ)2 = i

τ
θ0

(
0, −1

τ

)2
.

This means that θ2(0,τ)2

θ0(0,τ)2 = θ1(0,τ ′)2

θ0(0,τ ′)2 with τ ′ = −1
τ . Note that for τ ∈ F , −1

τ ∈ D1 ⊂ D2 (see
e.g. [Dup06, Figure 2.2, p.60]), and hence the choices of signs for −1

τ are all good (Prop. 3.2.9).
Hence, for all τ ∈ F ,

AGM(θ2
0(0, τ), θ2

2(0, τ)) = i

τ
. (6.1.2)

Furthermore, the Jacobi formula (Equation (2.5.6)) is θ4
2(0, τ) = θ4

0(0, τ) − θ4
1(0, τ), which

can be rewritten as
θ2

2(0, τ)
θ2

0(0, τ) =

√
1− θ2

1(0, τ)
θ2

0(0, τ) ,

the square root being the one with positive real part since, for τ ∈ F , τ ′ = −1
τ ∈ D1 and

Re
(
θ2

2(0,τ)
θ2

0(0,τ)

)
= Re

(
θ2

1(0,τ ′)
θ2

0(0,τ ′)

)
≥ 0.

Putting it all together, and using the homogeneity of the AGM (Note 3.2.10), we have for all
τ ∈ F

AGM
(

1,
√

1− θ4
1(0,τ)
θ4

0(0,τ)

)
AGM

(
1, θ

2
1(0,τ)
θ2

0(0,τ)

) = i

τ

which means that the function

fτ : z 7→ τ AGM(1,
√

1− z2)− iAGM(1, z)

is 0 at θ1(0,τ)2

θ0(0,τ)2 .
The algorithm then consists in using Newton’s method on fτ to compute θ1(0,τ)2

θ0(0,τ)2 . The starting
point of the method must be close enough to θ1(0,τ)2

θ0(0,τ)2 ; [Dup06] finds that computing (using the
naive algorithm) an approximation of the quotient with precision 4.16 Im(τ) bits is enough to
make Newton’s method converge. Finally, recall Theorem 0.3.9, which shows that one should
apply Newton’s method while doubling the working precision at each step. The full algorithm is
Algorithm 10.

We refer to [Dup11] for notes on the fast computation of fτ (t)
f ′τ (t) ; note however that one can

simply use finite differences fτ (t+ε)−fτ (t)
ε as an approximation of this derivative.

Proposition 6.1.1. For τ ∈ F with absolute precision P , taking P = O(P + Im(τ)) in Algo-
rithm 10 allows the computation of θ2

0(0, τ), θ2
1(0, τ) with absolute precision P in time

O (M(P + Im(τ))× (logP + log Im(τ)))

which is quasi-optimal time if τ is assumed to be in a compact set.

6.1. Preamble: fast theta-constants 93

Algorithm 10 Compute θ2
0(0, τ), θ2

1(0, τ) with absolute precision P .
Input: τ with absolute precision P .
1: Compute θ2

0(0, τ), θ2
1(0, τ) with absolute precision P0 using Algorithm 7.

2: t← θ1(0,τ)2

θ0(0,τ)2

3: p← P0
4: while p ≤ P do
5: t← t− fτ (t)

f ′τ (t) , computed with precision 2p
6: p← 2p− δ . with δ defined in Corollary 0.3.8
7: Remove the last δ digits of t.
8: end while
9: t0 ← AGM(1, t)
10: return (t0, t0t).

Proof. We refer to [Dup06, Dup11] for a full analysis of this algorithm. Correctness follows from
the fact that the choice of square roots are good for τ and −1

τ since τ ∈ F .
First of all, recall that the number of iterations necessary to compute the AGM increases as√

1− z2 gets small (Theorem 3.2.6). Hence the number of iterations needed in the computation
of AGM

(
1, θ

2
2(0,τ)
θ2

0(0,τ)

)
with precision P is O(log2 P + log2 Im(τ)).

Secondly, recall that

• Computing a − b can induce a potentially large loss of relative precision, of the order of
− log2|a− b| bits, whereas multiplication and square roots only induce a loss of at most 2
bits of relative precision [Dup06, Section 1.1.2];

• Computing
√
a with a very close to 0 induces a loss of absolute precision of the order of

− 1
2 log2|a|, whereas adding two complex numbers only induces a loss of at most 1 bit of

precision (Theorem 0.3.3).

In either case, i.e. whether we are looking to compute the quantities above with absolute or
relative precision, the computation of

√
1− z2 for z ' θ2

1(0,τ)
θ2

0(0,τ) will cause a potentially large loss
of precision. In fact, since θ4

2(0, τ) ∼ 16q, the loss of precision is O(Im(τ)). This means that one
should take P = O(P + Im(τ)) in the algorithm in order to compensate for the loss of precision.

Putting it all together, the cost of the evaluation of fτ in the algorithm is

O (M(P + Im(τ))× (logP + log Im(τ))) .

This is also the final complexity, since applying Newton’s method is as costly as the last, full-
precision iteration.

An application of this algorithm can be found in [Eng09], where the computation of theta-
constants is used to compute certain modular forms such as Dedekind’s η function. These
computations are useful to compute class polynomials, which are of interest in the CM method,
used to generate cryptographically safe elliptic curves. The use of this algorithm provides the
best theoretical complexity for the computation of η. In practice, this approach gives a better
running time than a naive algorithm (exploiting the sparseness of the series defining η) for
precisions above 250 000 bits, which corresponds to the largest example (a field of class number
100 000) that is computed in [Eng09].

94 Chapter 6. Fast computation of the theta function in genus 1

6.1.2 A faster algorithm with uniform complexity
This section gives an algorithm with overall better complexity, which furthermore does not
depend on τ at all.

Making the complexity uniform

The τ -duplication formulas (Equation (2.5.4)) allow us to compute easily θ0(0, τ)2 and θ1(0, τ)2

from θ0
(
0, τ2n

)
, θ1
(
0, τ2n

)
. Hence, they can be used for argument reduction purposes:

Proposition 6.1.2. Let τ ∈ F , with absolute precision P . Let s ≥ 0 be such that 1 ≤ |τ |2s < 2.
Then running Algorithm 10 on τ

2s costs cM(P) logP operations with c independent of τ . One
can then recover the final result using s τ -duplication formulas, for a cost of O(M(P)s) =
O(M(P) log Im(τ)).

Note that in the case P ≥ c Im(τ), we have s = O(logP) in Proposition 6.1.2, and hence
quasi-optimal running time uniformly in τ . If this is not the case, we can use the remark made
in Section 5.1.3: if P ≤ c Im(τ) for c a constant, the complexity of the algorithm is dominated
by the complexity of evaluating π and exp(iπτ), which is O(M(P) logP).

However, note that the complexity of evaluating eiπτ at a precision P depends in τ unless one
uses the UniformExp subroutine (see Proposition 5.1.4); this difficulty does not seem to appear
in the analysis of [Dup06, Algorithm 8], although it is relevant when computing eiπτ with relative
precision P and large Im(τ). In the case of theta-constants, it is actually even simpler, since

|θ0(0, τ)− 1| ≤ 2 |q|
1− |q| ≤ 4|q|

Hence, if P ≤ π log2 e Im(τ)− 2, we have 4|q| ≤ 2−π log2 e Im(τ)+2 ≤ 2−P ; hence, 1 is an approxi-
mation of θ0(0, τ) (and of θ1(0, τ)) with absolute precision P . Furthermore, since θ is close to 1,
a similar argument can be used for relative precision.

Computation of θ2

We now show how to compute θ2(0, τ) in the same uniform quasi-linear time.
Recall from Section 5.1.4 (or from [Dup06, Section 4.2.4]) that θ2(0, τ)2 can be recovered

using Jacobi’s formula (2.5.6), at the cost of O(Im(τ)) bits. This requires computing θ0,1(0, τ)2

with relative precision O(P +Im(τ)), which changes the asymptotics of the algorithm in the case
where one needs to use the naive method: the complexity becomes worse as Im(τ) grows. Hence,
we cannot use Jacobi’s formula to compute θ2(0, τ)2 if P ≤ c Im(τ).

Instead, one could use Algorithm 8 (Section 5.1.4); however, the same considerations on the
computation of eiπτ apply. Note once again that the triangle inequality gives, for τ ∈ F :

|θ2(0, τ)
q1/4 | ≤ 1 + 2|q|2

1− |q|4 ≤ 1.009

Hence, if P ≤ π log2 e
4 Im(τ)− 1, an approximation of θ2(0, τ) with P bits of absolute precision is

0.
In the case where P ≥ π log2 e

4 Im(τ)− 1, we use a trick to compute θ2 from the other theta-
constants. Recall (cf Equation (2.5.4)) the τ -duplication formula for the third theta-constant:

θ2(0, 2τ)2 = θ0(0, τ)2 − θ1(0, τ)2

2 ,

6.1. Preamble: fast theta-constants 95

Hence, if we use τ -duplication formulas for θ0(0, τ), θ1(0, τ), we can also at the same time recover
θ2; this loses much fewer bits than Jacobi’s formula.

We then need to make sure that for every τ ∈ F , at least one τ -duplication formula is used.
Note that this is not necessarily the case in [Dup06, Algorithm 8], e.g. for |τ | < 2. We have:
Proposition 6.1.3. Consider the domain

D = {τ ∈ H | |Re(τ)| ≤ 1
4 ,

1
2 ≤ |τ | < 1}

Then Algorithm 10 outputs the correct result, i.e. the choices of signs are always good.
Proof. We have D ⊂ D1 (see Figure 3.1). Now, for τ ∈ D, we have

1
|τ |

> 1, |Re
(
−1
τ

)
| = |Re(τ)|

|τ |2
≤ 1

hence −1
τ ∈ F . This means that fτ

(
θ2

1(0,τ)
θ2

0(0,τ)

)
= 0 for τ ∈ D, which proves correctness.

Hence, we simply take the argument reduction strategy of [Dup06, Algorithm 8] one step
further: for τ ∈ F , we take s ≥ 0 such that τ

2s+1 ∈ D, then use at least one τ -duplication formula
to recover θ(0, τ)2.

We combine the remarks here in Algorithm 11, which is a variant on [Dup06, Algorithm 8].

Algorithm 11 Compute θ0,1,2(0, τ) with absolute precision P .
Input: τ ∈ F with absolute precision P .
1: if P ≤ 1.13 Im(τ)− 2 then
2: return (1,1,0).
3: else
4: Let s ∈ N such that 1 ≤ |τ |2s < 2.
5: Compute θ0

(
0, τ

2s+1

)2
, θ1
(
0, τ

2s+1

)2 using Algorithm 10.
6: for i = 1 to s+ 1 do
7: Compute θ0

(
0, τ

2s−i
)2
, θ1
(
0, τ

2s−i
)2 using the τ -duplication formulas.

8: if i = s+ 1 then
9: Compute θ2(0, τ)2 = θ0(0,τ/2)2−θ1(0,τ/2)2

2 .
10: end if
11: end for
12: return θ0,1,2(0, τ).
13: end if

Proposition 6.1.4. Algorithm 11, working with internal precision O(P), has complexity O(M(P) logP),
uniformly in τ .
Proof. For P ≤ 1.13 Im(τ)− 2, we have P ≤ π log2 e

4 Im(τ)− 1 and P ≤ π log2 e Im(τ)− 2; hence
(1, 1, 0) is an approximation of the theta-constants. We then look at the other case.

Algorithm 10 is called in Step 5 with the argument τ
2s+1 , which is of norm smaller than 1.

One can thus bound its imaginary part by 1 in Proposition 6.1.1, which shows that the cost
of Step 5 is O(M(P) logP), independently of τ . Furthermore, note that s ≤ log2|Im(τ)|, and
hence s ≤ log2 P + c given our bound on Im(τ) in this case. The τ -duplication formulas are
thus applied O(logP) times; the analysis in [Dup06, Section 4.2.3] shows that this loses O(logP)
bits of precision. In the end, we get a O(M(P) logP) algorithm with asymptotic complexity
independent of τ .

96 Chapter 6. Fast computation of the theta function in genus 1

6.2 A function related to θ(z, τ)
We generalize the algorithm presented in Section 6.1, which gives an algorithm that computes
θ0,1,2(z, τ) in O(M(P) logP), for z, τ verifying the usual argument reduction conditions (see
Chapter 5). We use the same strategy as [Dup11], that is to say, find a quadratically convergent
sequence and attempt to invert the function computing its limit using Newton’s method. To be
more precise, we exhibit a function F such that

F

(
1, θ1(z, τ)2

θ0(z, τ)2 , 1,
θ1(0, τ)2

θ0(0, τ)2

)
= (z, τ)

Furthermore, our algorithm has uniform complexity O(M(P) logP), i.e. the complexity is inde-
pendent of z, τ .

6.2.1 The F sequence
Definition of the F sequence

Recall the τ -duplication formulas in genus 1:

θ0(z, 2τ)2 = θ0(z, τ)θ0(0, τ) + θ1(z, τ)θ1(0, τ)
2

θ1(z, 2τ)2 = θ0(z, τ)θ1(0, τ) + θ1(z, τ)θ0(0, τ)
2

We then define a function F as:

F : C4 → C4

(x, y, z, t) 7→

(√
x
√
z +√y

√
t

2 ,

√
x
√
t+√y

√
z

2 ,
z + t

2 ,
√
z
√
t

)

The τ -duplication formulas (Equation (2.5.4)) show that for some appropriate choice of roots we
have

F
(
θ2

0(z, τ), θ2
1(z, τ), θ2

0(0, τ), θ2
1(0, τ)

)
=
(
θ2

0(z, 2τ), θ2
1(z, 2τ), θ2

0(0, 2τ), θ2
1(0, 2τ)

)
.

Remark. One can also write rewrite F using Karatsuba-like techniques

F (x, y, z, t) =
(

(
√
x+√y)(

√
z +
√
t) + (

√
x−√y)(

√
z −
√
t)

4 , (6.2.1)

(
√
x+√y)(

√
z +
√
t)− (

√
x−√y)(

√
z −
√
t)

4 ,

(
√
z +
√
t)2 + (

√
z −
√
t)2

4 ,
(
√
z +
√
t)2 − (

√
z −
√
t)2

4

)
to speed up computations.

Good choices of sign

Similarly to the complex AGM (Section 3.2), we define a good choice for square roots at the rank
n as the following conditions being satisfied:

6.2. A function related to θ(z, τ) 97

1. Re(√xn) ≥ 0, Re(√zn) ≥ 0;

2. |√xn −
√
yn| < |

√
xn +√yn|, or |√xn −

√
yn| = |

√
xn +√yn| and Im

(√
yn√
xn

)
> 0;

3. |√zn −
√
tn| < |

√
zn +

√
tn|, or |√zn −

√
tn| = |

√
zn +

√
tn| and Im

(√
tn√
zn

)
> 0.

Note that the condition |x− y| < |x+ y| is equivalent to Re
(
y
x

)
> 0.

Again, similarly to the AGM, we define an optimal F sequence:

Definition 6.2.1. Let x, y, z, t ∈ C, and define the optimal F sequence associated to x, y, z, t as
the sequence ((xn, yn, zn, tn))n∈N such that:

(x0, y0, z0, t0) = (x, y, z, t)
(xn+1, yn+1, zn+1, tn+1) = F (xn, yn, zn, tn)

where all the choices of sign for the square roots are good. We sometimes denote F∞(x, y, z, t)
the limit of this optimal F sequence.

The study of this sequence and its convergence is done in Section 6.2.4.
Note that

zn+1 − tn+1 = zn + tn
2 −

√
zntn = (√zn −

√
tn)2

2

zn+1 + tn+1 = (√zn +
√
tn)2

2
hence |zn+1 − tn+1| < |zn+1 + tn+1| ⇔ |

√
zn −

√
tn| < |

√
zn +

√
tn|

Hence, our third condition and the condition “bn+1 is the good choice of square roots” in the
AGM are very similar. There are, however, subtle differences, which is why we wrote

√
z
√
t

instead of
√
zt in the definition of F . The computation of the AGM involves only one square

root computation, and the study of the choice of signs for theta-constants (Section 3.2.3) involves
determining the sign of θ

2
1(0,2τ)
θ2

0(0,2τ) . However, the definition of F requires the computation of both
√
z

and
√
t, which we then multiply (the final result being the same as in the AGM); hence, our third

condition leads us to study the sign of θ1(0,τ)
θ0(0,τ) instead. This is accomplished in Proposition 6.2.4,

which uses different methods than the ones in [Cox84].
Finally, note that the condition |√zn −

√
tn| < |

√
zn +

√
tn| can be satisfied in two ways,

depending on which sign we pick for √zn; this is of no consequence for the value of zn+1, tn+1,
but the sign matters for the computation of xn+1, yn+1. This is why we choose to impose
Re(√zn) ≥ 0; this choice is justified in the proof of Theorem 6.2.6.

6.2.2 Link with theta functions
More argument reduction

Recall (from Section 2.5.3) that argument reduction in genus 1 allows us to work under the
conditions (2.5.11):

τ ∈ F , |Re(z)| ≤ 1
2 , 0 ≤ Im(z) ≤ Im(τ)

2 .

We go slightly further than these conditions in order to justify the forthcoming results.

98 Chapter 6. Fast computation of the theta function in genus 1

We define the following domain:

A =
{
τ ∈ H, z ∈ C | 0 ≤ Im(z) ≤ Im(τ)

4

}

This condition allows us to avoid z = τ+1
2 , which is a zero of θ(z, τ), and hence a pole of quotients

of the form θi
θ0
, which we consider in our algorithm much in the same way as [Dup11]. We prove

Proposition 6.2.4 and Theorem 6.2.6 under the assumption (z, τ) ∈ A.

Proposition 6.2.2. Let (z, τ) ∈ A such that |Re(τ)| ≤ 1
2 and |Re(z)| ≤ 1

8 . Then
(
z
τ ,
−1
τ

)
∈ A.

Proof. Write

|Im
(z
τ

)
| = 1
|τ |2
|Im(z) Re(τ)− Re(z) Im(τ)| ≤ Im(τ)

|τ |2

(
1
4

1
2 + 1

8

)
= 1

4 Im
(
−1
τ

)
.

Proposition 6.2.3. Let z, τ such that conditions (2.5.11) are satisfied. Put τ ′ = τ
2 and z′ = z

4 .
Then (z′, τ ′) ∈ A and

(
z′

τ ′ ,
−1
τ ′

)
∈ A. Furthermore, one can compute θ0(z, τ), θ1(z, τ), θ0(0, τ),

θ1(0, τ) from their equivalents at (z′, τ ′) in O(M(P)) operations.

Proof. The first part of the proposition is simply Proposition 6.2.2. The second part is simply
the application of the τ -duplication formulas (which we recalled in Section 6.2.1), as well as the
z-duplication formulas, which we already mentioned in Chapter 2:

θ0(2z, τ)θ3
0(0, τ) = θ4

1(z, τ) + θ4
2(z, τ)

θ1(2z, τ)θ3
1(0, τ) = θ4

0(z, τ)− θ4
2(z, τ)

θ2(2z, τ)θ3
2(0, τ) = θ4

0(z, τ)− θ4
1(z, τ)

Using these formulas requires the knowledge of θ2
2(z, τ) and of θ2

2(0, τ); this could be computed
using Jacobi’s formula (Equation (2.5.6)) and the equation of the variety (Equation (2.5.7)), but
we end up using a different trick in our final algorithm.

Good choices of sign and thetas

We now prove that, for the arguments we consider, the good choices of sign correspond exactly
to values of θ:

Proposition 6.2.4. For (z, τ) ∈ A such that Im(τ) ≥ 0. 335 (in particular, for τ ∈ F) we have

|θ0(z, τ)− θ1(z, τ)| < |θ0(z, τ) + θ1(z, τ)|,

which also proves that Re
(
θ1(z,τ)
θ0(z,τ)

)
> 0,Re

(
θ1(0,τ)
θ0(0,τ)

)
> 0.

6.2. A function related to θ(z, τ) 99

Proof. We compute the following upper bounds using the triangle inequality and Lemma 5.1.2:

|θ0(z, τ) + θ1(z, τ)− 2| ≤ 2
∑

n≥2,n even
|qn

2
(w2n + w−2n)|

≤ 2
∑

n≥2,n even
|q|n

2
(1 + |q|−n/2)

≤ 2
∑
n≥1
|q|4n

2
(1 + |q|−n)

≤ 2|q|3 + 2|q|4 + 2|q|16

1− |q|20 + 2|q|14

1− |q|19

|θ0(z, τ)− θ1(z, τ)| ≤ 2
∑

n≥1,n odd
|q|n

2
(1 + |q|−n/2)

≤ 2|q|1/2 + 2|q|+ 2|q|9
1− |q|16 + 2|q|7.5

1− |q|19

Numerical evaluation shows that

2|q|1/2 + 2|q|+ 2|q|9
1− |q|16 + 2|q|7.5

1− |q|19 < 2−
(

2|q|3 + 2|q|4 + 2|q|16

1− |q|20 + 2|q|14

1− |q|19

)
for Im(τ) ≥ 0. 335, which proves the lemma.

The result, and our proof, seems coarser and less subtle than in [Cox84]; however, note that
Cox’s methods cannot be applied here6.

Note that the same method can be used to prove that
Proposition 6.2.5. For any τ such that Im(τ) > 0.251 (in particular for τ ∈ F) we have
Re
(
θ1(0,τ)
θ0(0,τ)

)
> 0.

Since {τ ∈ H | Im(τ) > 0.251} ⊂ D1, the domain for which we have a good choice of sign
for F is strictly smaller than the one for which we have a good choice of sign for the AGM
(Proposition 3.2.9). Figure 6.1 displays the different domains.

0

Im(τ) = 0. 335
Im(τ) = 0.251

Figure 6.1: The green stripes represent a domain for which the choice of sign in F is good
(assuming z is reduced). The blue dots represent Cox’s domain for which the choice of sign is
good in the AGM (i.e. for quotients of squares of theta-constants at 2τ). Above the orange line
is a domain for which the choice of sign is good for quotients of theta-constants at τ ; this domain
is strictly contained in the one with blue dots.

6For instance, Cox uses the invariance of θ2
1
θ2

0
(0, τ) under the action of the subgroup Γ2(4) (i.e. Proposi-

tion 3.2.13), which does not hold for θ1
θ0

(z, τ).

100 Chapter 6. Fast computation of the theta function in genus 1

We are now ready to prove:

Theorem 6.2.6. Let (xn, yn, zn, tn) be the optimal F sequence starting with θ2
0(z, τ), θ2

1(z, τ),
θ2

0(0, τ), θ2
1(0, τ). If (z, τ) ∈ A and Im(τ) ≥ 0. 335, we have

(xn, yn, zn, tn) =
(
θ2

0(z, 2nτ), θ2
1(z, 2nτ), θ2

0(0, 2nτ), θ2
1(0, 2nτ)

)
Proof. This is true for n = 0; we prove the statement inductively. Suppose it is true for n = k ≥ 0.
For any τ , we have (using Lemma 5.1.2):

θ0(0, τ) = 1 + 2q + c, |c| ≤ 2|q|4
1− |q|5

For any τ such that Im(τ) ≥ 0. 335, we have 2|q| ≤ 0.676 and |c| ≤ 0.027; hence Re(θ0(0, 2kτ)) > 0
for any k, which proves that √zk = θ0(0, 2kτ). Proposition 6.2.4 shows that Re

(
θ1(0,2kτ)
θ0(0,2kτ)

)
> 0,

and we also have Re
(√

tk√
zk

)
≥ 0 since the choice of roots is good, hence

√
tk = θ1(0, 2kτ).

Equation (2.5.4) then shows that tk+1 = θ2
1(0, 2k+1τ) and zk+1 = θ2

0(0, 2k+1τ).
Similarly, given that (z, τ) ∈ A and using Lemma 5.1.2, we find:

|θ0(z, τ)− 1| ≤ |q|1/2 + |q|+ |q|3 + |q|4 + |q|7/2 + |q|9 + 2|q|14

1− |q|2 (6.2.2)

For Im(τ) ≥ 0. 335, this is strictly smaller than 1; hence Re(θ0(z, τ)) > 0, which proves that
√
xk = θ0(z, 2kτ). Again, Proposition 6.2.4 proves that Re

(
θ1(z,2kτ)
θ0(z,2kτ)

)
> 0, and since the choice

of signs is good, Re
(√

yk√
xk

)
≥ 0, necessarily √yk = θ1(z, 2kτ). This along with the τ -duplication

formulas (Equations (2.5.4)) finishes the induction.

Note that a consequence of this proposition is:

Proposition 6.2.7. For (z, τ) ∈ A and Im(τ) ≥ 0. 335, the optimal F sequence for θ2
0(z, τ),

θ2
1(z, τ), θ2

0(0, τ), θ2
1(0, τ) converges quadratically, and

F∞(θ2
0(z, τ), θ2

1(z, τ), θ2
0(0, τ), θ2

1(0, τ)) = (1, 1, 1, 1).

6.2.3 A function with quasi-optimal time evaluation
The strategy of [Dup11] is to use an homogenization of the AGM to get a function fτ : C → C,
on which Newton’s method can be applied. To generalize this, we homogenize the function F∞,
which gives a function from C2 to C2. We call this function G; this function is a major building
block for the function we use to compute our two parameters z, τ using Newton’s method.

Proposition 6.2.8. Let λ, µ ∈ C∗. Let ((xn, yn, zn, tn))n∈N be the optimal F sequence for
(x, y, z, t), and ((x′n, y′n, z′n, t′n))n∈N the optimal F sequence for (λx, λy, µz, µt). Put limn→∞ zn =
z∞ and limn→∞ z′n = z′∞. Then we have

µ = z′∞
z∞

, λ =

(
limn→∞

(
x′n
z′∞

)2n
)
× z′∞(

limn→∞

(
xn
z∞

)2n
)
× z∞

6.2. A function related to θ(z, τ) 101

Proof. We prove by induction that

x′n = εnλ
1/2nµ1−1/2nxn, y′n = εnλ

1/2nµ1−1/2nyn, z′n = µzn, t′n = µtn,

where Re(λ1/2n) ≥ 0, Re(µ1−1/2n) ≥ 0, and εn is a 2n-th root of unity. This is enough to prove
the proposition above, since then

lim
n→∞

(
x′n
z′∞

)2n

= lim
n→∞

λµ2n−1
(
xn
z′∞

)2n

= λ

µ
lim
n→∞

(
xn
z∞

)2n

.

Since this is true for n = 0, suppose this is true for n = k. We have

z′k+1 = z′k + t′k
2 = µzk+1.

As for tk+1, we can write √
z′k = εz

√
µ
√
zk,

√
t′k = εt

√
µ
√
tk

where εz = ±1 and εt = ±1, and the square roots are taken with positive real part. This gives√
t′
k√
z′
k

= εt
εz

√
tk√
zk
. Since the sequences we are considering are optimal, we have either Re

(√
t′
k√
z′
k

)
> 0

and Re
(√

t′
k√
z′
k

)
> 0, or Im

(√
t′
k√
z′
k

)
≥ 0 and Im

(√
t′
k√
z′
k

)
≥ 0 if the real parts are zero. In both

cases, this proves that εz = εt. Hence

t′k+1 = (εz
√
µ
√
zk)
(
εz
√
µ
√
tk
)

= µtk+1.

As for the other coordinates, we have√
x′k = εx

√
εkλ

1/2k+1
µ1/2−1/2k+1√

xk,
√
y′k = εy

√
εkλ

1/2k+1
µ1/2−1/2k+1√

yk

where the roots are taken with positive real part, and εx, εy ∈ {−1, 1}. Once again, since√
y′
k√
x′
k

= εy
εx

√
yk√
xk

and since the sequences are optimal, we have εx = εy; hence

x′k+1 =
√
x′k
√
z′k +

√
y′k
√
t′k

2 = εk+1λ
1/2k+1

µ1−1/2k+1
√
xk
√
zk +√yk

√
tk

2
= εk+1λ

1/2k+1
µ1−1/2k+1

xk+1

where εk+1 = εxεz
√
εk is indeed such that ε2k+1

k+1 = 1. This proves the proposition.

The formulas can be simplified in our case since limn→∞ θ(z, 2nτ)2n = 1 (Proposition 2.1.9).
We thus define the function G as follows:

Definition 6.2.9. The function G : C4 → C2 is defined as

G(x, y, z, t) =
((

lim
n→∞

(
xn
z∞

)2n
)
× z∞, z∞

)

where z∞ = limn→∞ zn.

102 Chapter 6. Fast computation of the theta function in genus 1

Proposition 6.2.10. Let z, τ be as in the hypotheses of Theorem 6.2.6. Then for any λ, µ ∈ C∗
we have

G
(
λθ2

0(z, τ), λθ2
1(z, τ), µθ2

0(0, τ), µθ2
1(0, τ)

)
= (λ, µ).

This is a consequence of Proposition 6.2.8 and Theorem 6.2.6. For instance, we get

G

(
1, θ

2
1(z, τ)
θ2

0(z, τ) , 1,
θ2

1(0, τ)
θ2

0(0, τ)

)
=
(

1
θ2

0(z, τ) ,
1

θ2
0(0, τ)

)
. (6.2.3)

This is similar to Equation (6.1.1), and will play a similar role in the computation of θ(z, τ).

6.2.4 Convergence
Let us start by showing that, contrary to the AGM and despite Proposition 6.2.7, an opti-
mal F sequence does not always converge quadratically; for instance, the optimal F sequence
for (2, 2, 1, 1) is ((21/2n , 21/2n , 1, 1))n∈N, which does not converge quadratically. This is a big
difference from the AGM, and this is why we are reluctant to call optimal F sequences a “gen-
eralization of the AGM”. However, we now show that the sequence (λn) =

((
xn
z∞

)2n
× z∞

)
n∈N

does converge quadratically, whence G can be computed in O(M(P) logP) bit operations.

Lemma 6.2.11. Let (x0, y0, z0, t0) ∈ C4. Put (xn+1, yn+1, zn+1, tn+1) = F (xn, yn, zn, tn) for
any integer n ∈ N, and suppose this is an optimal F sequence. Then there exists positive real
constants c, C such ∀n ≥ 1,

c ≤ |xn|, |yn|, |zn|, |tn| < C.

Proof. The upper bound result follows from a trivial induction using the equations defining F .
We now prove the existence of c. Recall that the choice of signs for the square roots are

good at all steps, since we assume (xn, yn, zn, tn) is an optimal F sequence. Thus there exists
α, β ∈ C∗ such that

Re(x1/α) > 0, Re(y1/α) > 0, Re(z1/β) > 0, Re(t1/β) > 0.

For instance, in most cases one can take α = x1 and β = z1. Let us assume without loss of
generality that |α| = |β| = 1, and let c = min(Re(x1/α),Re(y1/α),Re(z1/β),Re(t1/β)). For
good choices of square roots, we have (see e.g. [Dup06, Lemme 7.3])

Re
(√

x1

α

√
z1

β

)
≥ min

(
Re
(x1

α

)
,Re

(
z1

β

))
≥ c

and the same goes if one replaces x1 by y1 or z1 by t1. This implies from the definition that
|x2| ≥ Re(x2/

√
αβ) ≥ c, and the same goes for |y2|, |z2|, |t2|. The result follows by induction,

with
√
αβ, of modulus 1, playing the role of α at the next iteration.

Lemma 6.2.12. If the choice of square roots is good, we have

|
√
xn +√yn| ≥

√
2c |

√
zn +

√
tn| ≥

√
2c

and hence
|
√
xn −

√
yn| ≤

|xn − yn|√
2c

, |
√
zn −

√
tn| ≤

|zn − tn|√
2c

6.2. A function related to θ(z, τ) 103

Proof. The parallelogram identity gives

|
√
xn +√yn|2 = 2|√xn|2 + 2|√yn|2 − |

√
xn −

√
yn|2

≥ 2|√xn|2 + 2|√yn|2 − |
√
xn +√yn|2 since choice of signs are good

and hence |√xn +√yn|2 ≥ 2c. The proof is the same for |√zn +
√
tn|.

We now prove that (λn) =
((

xn
z∞

)2n
× z∞

)
n∈N

converges quadratically, by proving that:

Theorem 6.2.13. The sequence (λn) converges, to a limit λ. Furthermore, for P large enough,
there exists a constant c1 > 0, depending on |z0|, |t0|, C, c and |λ|, such that, if k is the first integer
such that |zk − tk| ≤ 2−P−k−c1 , then λk+1 is an approximation of λ with absolute precision P
bits.

Proof. The point here is that once zn and tn are close enough, xn+1 and yn+1 are also close and
the value of λn does not change much after that.

Recall Lemma 3.2.4 (i.e. [Dup11, Theorem 1]), which establishes that

|zn+k+1 − tn+k+1| ≤ A|zn+k − tn+k|2

with A = π
8 min(|z0|,|t0|) . This proves that (zn − tn) converges quadratically.

Take a c1 ≥ 0; for now, the value of c1 is unimportant, but throughout the proof we will find
sufficient conditions on c1 for the result to hold. We then consider the first integer n for which
|zn − tn| ≤ η with η = 2−P−c1−n; the existence of n is guaranteed by the quadratic convergence
of (zn − tn). Note that Aη ≤ π

8 ≤
1
2 , since min(|z0|, |t0|) ≥ 2−P ; we will make use of this fact

repeatedly throughout the proof.
We then have for all k ≥ 0:

|zn+k − tn+k| ≤ A2k−1η2k .

Furthermore, |zn+1 − zn| = 1
2 |zn − tn|, so that

|z∞ − zn+k| ≤
1
2

∞∑
i=k

A2i−1η2i

and we have |z∞−zn+k| ≤ 1
A (Aη)2k , using the fact that Aη ≤ 1

2 . Finally, using Equation (6.2.1),
one can write

|xn+k+1 − yn+k+1| ≤
|√xn −

√
yn||
√
zn −

√
tn|

2

≤
√

2C
√
|zn+k+1 − tn+k+1| since zn+k+1 − tn+k+1 =

(√zn+k −
√
tn+k)2

2
≤
√

2AC|zn+k − tn+k|.

Now, define qn = (xn/z∞)2

xn−1/z∞
, so that λn+1

λn
= q2n

n . Note that if one makes the approximation
xn+k+1 ≈ yn+k+1 and zn+k+1 ≈ tn+k+1 ≈ z∞, we have xn+k+2 ≈

√
xn+k+1z∞ which gives

104 Chapter 6. Fast computation of the theta function in genus 1

qn+k+2 ≈ 1. We take a closer look at those approximations:

|xn+k+2 −
√
xn+k+1

√
zn+k+1| ≤

|√yn+k+1 −
√
xn+k+1||

√
zn+k+1 +√tn+k+1|

4

+
|√yn+k+1 +√xn+k+1||

√
zn+k+1 −

√
tn+k+1|

4

≤
√
C

2 (|√yn+k+1 −
√
xn+k+1|+ |

√
zn+k+1 −

√
tn+k+1|)

≤
√
C

2

(√
2AC|zn+k − tn+k|

|√xn+k+1 +√yn+k+1|
+
√

2A|zn+k+1 − tn+k+1|

)
≤ B(Aη)2k

for some constant B, where we used Lemma 6.2.12 to get a lower bound on the denominators.
Put ξ = xn+k+2 −

√
xn+k+1

√
zn+k+1 for notational convenience. Then

|qn+k+2 − 1| = |(xn+k+2/z∞)2 − xn+k+1/z∞|
|xn+k+1/z∞|

≤
|x2
n+k+2 − xn+k+1z∞|
|xn+k+1z∞|

≤
|
(
ξ +√xn+k+1

√
zn+k+1

)2 − xn+k+1z∞|
|xn+k+1z∞|

≤
|ξ2 + 2ξ√xn+k+1

√
zn+k+1 + xn+k+1(zn+k+1 − z∞)|
|xn+k+1z∞|

≤
|ξ|2 + 2|ξ√xn+k+1

√
zn+k+1|+ |xn+k+1(zn+k+1 − z∞)|
|xn+k+1z∞|

≤
B2(Aη)2k+1 + 2BC(Aη)2k + C

A (Aη)2k

c2

≤ B′ × (Aη)2k

for some constant B′. This proves that (qn) converges quadratically to 1.
Now, put Xk = 2n+2 log2 qn+2 + . . .+ 2n+k log2 qn+k. Assume that B′Aη ≤ 1, which is true

for instance for c1 ≥ log2(π8B′). We have

|Xk| ≤
k−2∑
i=0

2n+i+2|log 1 + (qn+i+2 − 1)|

≤ B′
k−2∑
i=0

2n+i+2 (Aη)2i

1− (Aη)2i

≤ 8B′2n
k−2∑
i=0

2i(Aη)2i

using |log(1 + x)| ≤ |x|
1−|x| , which is valid for any |x| ≤ 1, and Aη ≤ 1

2 . The series converge
(using e.g. d’Alembert’s ratio test), which means that Xk is absolutely convergent; hence, (λn)
converges.

6.2. A function related to θ(z, τ) 105

Furthermore we can write

|Xk| ≤ 8B′2n
k−2∑
i=0

2i(Aη)2i ≤ 8B′ 2nAη
1− 2Aη ≤ 16AB′2nη

assuming Aη ≤ 1
4 , which is true for instance for c1 ≥ 1. Assume that 16AB′2nη ≤ 1 (which is

true if c1 ≥ log2(2πB′)); we then have |Xk| ≤ 1 and

|q2n+2

n+2 . . . q2n+k

n+k − 1| = |expXk − 1| ≤ |Xk|
1− |Xk|/2

≤ 32AB′2nη.

This proves that

|λ− λn+1| ≤ |λn+1|32AB′2nη
≤ 32AB′|λn+1|2−c1 × 2−P .

For c1 ≥ log2(8πB′) we have |λ − λn+1| ≤ |λn+1|
2 , which proves that |λn+1| ≤ 2|λ|. Hence

if we suppose c1 ≥ log2(64AB′|λ|), we have that λn+1 is an approximation of λ with P bits of
absolute precision.

Collecting the conditions on c1 throughout the proof, we see that the theorem holds for any
c1 such that

c1 ≥ log2 max(64AB′|λ|, 8πB′, 2)

which does not depend on P or n.

Algorithm 12 Compute G.
Input: x, y, z, t with absolute precision P .
Output: G(x, y, z, t) with absolute precision P .
1: Work at precision P.
2: n← 0
3: while |z − t| ≤ 2−P−n−c1 do
4: n← n+ 1
5: (x, y, z, t)← F (x, y, z, t)
6: end while
7: (x, y, z, t)← F (x, y, z, t)
8: return

((
x
z

)2n+1

× z, z
)

This gives an algorithm, Algorithm 12, to compute G(x, y, z, t).

Proposition 6.2.14. For any arguments x, y, z, t ∈ C with absolute precision P , the time com-
plexity for computing G(x, y, z, t) to absolute precision P is O(M(P) logP).

Proof. Theorem 3.2.6 (i.e. [Dup11, Theorem 12]) proves that, if n = max(log|log|z0/t0||, 1) +
log(P + c1), an is an approximation of AGM

(
1, | z0

t0
|
)
with relative precision P bits. This proves

that at the end of the algorithm, n = O(logP); in fact, we have more precisely n ≤ log2 P +C ′′

with C ′′ a constant independent of P . Finally, the next subsection proves that taking P =
P +O(logP), which proves the result.

106 Chapter 6. Fast computation of the theta function in genus 1

6.2.5 Number of bits lost
We use Theorem 0.3.3 in order to evaluate the precision lost when computing G(x, y, z, t). First
note that the upper and lower bounds on the terms of the sequence allow us to write

(1√
|zn|

+ 1√
|tn|

)(
√
|zn|+

√
|tn|) ≤ b/2

(1√
|zn|

+ 1√
|tn|

)(
√
|xn|+

√
|yn|) ≤ b

(1√
|xn|

+ 1√
|yn|

)(
√
|zn|+

√
|tn|) ≤ b

for some b > 1; for instance, one can take b = max
(

1, 4
√

C
c

)
. We prove in Section 6.3.3 that,

for any values of theta we consider in our final algorithm, the same value for c and C can be
taken.

We first evaluate a bound on the error incurred when computing F using Equation (6.2.1).
Using those formulas allows us to get error bounds that are identical for Fx and Fy on the one
hand, and Fz and Ft on the other hand. For simplicity, we assume that the error on z and t is
the same (which we denote kz), as well as the error on x and y (which we denote kx). This gives:

|Re(Fx)− Re(F̃x)| ≤ (1 + (kz√
|z|

+ kz√
|t|

)(
√
|x|+

√
|y|) + (kx√

|x|
+ kx√

|y|
)(
√
|z|+

√
|t|))2−P

|Re(Fz)− Re(F̃z)| ≤ (1 + 2(kz√
|z|

+ kz√
|t|

)(
√
|z|+

√
|t|))2−P

We thus get the following recurrence relations when looking at what happens when applying F
n times in a row:

k(n)
x ≤ 1 + bk(n−1)

z + bk(n−1)
x , k(n)

z ≤ 1 + bk(n−1)
z

The last equation can be rewritten as k(n)
z + 1

b−1 ≤ b
(
k

(n−1)
z + 1

b−1

)
, which gives k(n)

z ≤

bn
(
kz + 1

b−1

)
. The induction for x becomes k(n)

x ≤ 1 + (kz + 1
b−1)bn + bk

(n−1)
x , which we

solve:
k(n)
x ≤ (1 + b+ ...+ bn)kx + nbn

(
kz + 1

b− 1

)
≤ bn

(
nkz + b+ n

b− 1

)
For b > 1, we have for n large enough that k(n) ≤ b2n, which ultimately means the number of
bits lost when applying F n times in a row is bounded by 2n log b+ 1.

Finally we need to find the number of bits lost in the computation of
(
xn
z∞

)2n
. Call Ek the

error made after computing k squarings in a row; we have a recurrence relation:

Ek+1 ≤ 2 + 4Ek|xn/z∞|2
k

However, since (λn) converges, |λn| ≤ ρ for some constant ρ; furthermore, for any k ≤ n, one
has |xn/z∞|2

k ≤ 1 + ρ
z∞

. Hence the recurrence becomes Ek+1 ≤ 2 + 4
(

1 + ρ
z∞

)
Ek, which we

solve to get

En ≤ 2C
′n+1 − 1
C ′ − 1 ≤ 2

C ′ − 1C
′n+1

6.3. Fast computation of θ 107

with C ′ = 4
(

1 + ρ
z∞

)
. This means the number of bits lost after n successive squarings is at the

most (n+ 1) logC ′ + 1− log(C ′ − 1).
Overall, if we write that the final value of n in Algorithm 12 is bounded by log2 P + C ′′, we

have:

Proposition 6.2.15. The number of bits lost in the computation of G is bounded by

(2 log2 b+ logC ′)(log2 P + C ′′) + logC ′ + 2− logC ′ − 1,

where C ′, C ′′ and b are constants in P .

As a result, one should take P = P + O(logP) in Algorithm 12: this gives a quasi-linear
complexity for the evaluation of G with absolute precision P .

6.3 Fast computation of θ
We use a similar method as [Dup11], that is to say finding a function F such that

F

(
θ2

1(z, τ)
θ2

0(z, τ) ,
θ2

1(0, τ)
θ2

0(0, τ)

)
= (z, τ),

which can then be inverted using Newton’s method. One can then compute θ(z, τ) by, for
instance, using Equation (6.2.3) and extracting a square root, determining the correct choice
of sign by computing a low-precision (say, 10 bits) approximation of the value using the naive
method; we use a different trick in our final algorithm (Algorithm 15). We build this function F
using G as a building block.

6.3.1 Building F

Just as with the algorithm for theta-constants, we use formulas derived from the action of SL2(Z)
on the values of θ in order to get multiplicative factors depending on our parameters; this will
allow us to build a function which computes z, τ from the values θi(z, τ).

Definition 6.3.1. We define the function F : C2 → C2 as the result of Algorithm 13.

The forthcoming Proposition 6.3.2 is dedicated to explaining the calculations done by Algo-
rithm 13.

Algorithm 13 Compute F.
Input: s, t with absolute precision P .
Output: F (s, t) with absolute precision P .

1: b←
√

1− t2 . Choose the root with positive real part [Cox84, Prop. 2.9]
2: a← 1−st

b
3: (x, y)← G (1, a, 1, b)
4: (q1, q2)← G (1, s, 1, t)

5: Return
(√

log
(
q2x
q1y

)
× q2/y
−2π , i

q2
y

)
, choosing the sign of the square root so that it has positive

imaginary part.

108 Chapter 6. Fast computation of the theta function in genus 1

Proposition 6.3.2. Let (z, τ) satisfying the conditions

(z, τ) ∈ A, |Re(τ)| ≤ 1
2 , |Re(z)| ≤ 1

8 , Im(τ) ≥ 0. 335, Im
(
−1
τ

)
≥ 0. 335 .

Then
F

(
θ2

1(z, τ)
θ2

0(z, τ) ,
θ2

1(0, τ)
θ2

0(0, τ)

)
= (z, τ)

Remark 6.3.3. Let (z, τ) satisfying conditions 2.5.11 and such that 1 ≤ |τ | < 2. Then
(
z
4 ,

τ
2
)

satisfy the hypotheses of this theorem. We use this, along with Proposition 6.2.3, in our final
algorithm.

Proof of Proposition 6.3.2. Equation (6.2.3) proves that (q1, q2) =
(

1
θ0(z,τ)2 ,

1
θ0(0,τ)2

)
. Further-

more, using Jacobi’s formula (2.5.6) and the equation defining the variety (2.5.7), it is easy to
see that b = θ2(0,τ)2

θ0(0,τ)2 and a = θ2(z,τ)2

θ0(z,τ)2 .
The formulas in [Mum83, Table V, p.36] give(
θ2

0(z, τ), θ2
2(z, τ), θ2

0(0, τ), θ2
2(0, τ)

)
=
(
λθ2

0

(
z

τ
,
−1
τ

)
, λθ2

1

(
z

τ
,
−1
τ

)
, µθ2

0

(
0, −1

τ

)
, µθ2

1

(
0, −1

τ

))
with λ = e−2iπz2/τ

−iτ , µ = 1
−iτ . Proposition 6.2.2 shows we can apply Theorem 6.2.6 to z

τ ,
−1
τ ,

which proves that

G
(
θ2

0(z, τ), θ2
2(z, τ), θ2

0(0, τ), θ2
2(0, τ)

)
=
(
e−2iπz2/τ

−iτ
,

1
−iτ

)
.

By homogeneity, we get in Step 3 (x, y) =
(

e−2iπz2/τ

−iτθ0(z,τ)2 ,
1

−iτθ0(0,τ)2

)
. We thus have

(
x

q1
,
y

q2

)
=
(
e−2iπz2/τ

−iτ
,

1
−iτ

)
,

and Step 5 consists precisely in extracting (z, τ) from these.

Remark 6.3.4. In genus 1, we can output either z, τ or λ, µ without affecting the rest of the
algorithm, although returning z, τ requires one more logarithm computation. We choose to
output z, τ for the clarity of the presentation.

This means that, starting from the knowledge of z and τ with precision P and a low-precision
approximation of the quotients θ1(z,τ)

θ0(z,τ) and
θ1(0,τ)
θ0(0,τ) , one can compute those quotients with precision

P using Newton’s method. This is Algorithm 14. Note that we put P ′ a precision that is large
enough to ensure that the final result is accurate up to 2−P ; we discuss the matter of precision
loss later in this subsection.

We make a few remarks:

• Much in the same way as [ET14a], we find it preferable to use finite differences to compute
the coefficients a11, a21, a22 of the Jacobian, as it does not require the computation of the
derivative of F, which could be tedious. This requires the computation of F(s+ε, t),F(s, t+ε)
and F(s, t).

6.3. Fast computation of θ 109

Algorithm 14 Compute θ2
0(z, τ), θ2

1(z, τ), θ2
0(0, τ), θ2

1(0, τ) with absolute precision P .
Input: (z, τ) with absolute precision P , satisfying the conditions of Proposition 6.3.2.
1: Compute θ2

0,1(z, τ), θ2
0,1(0, τ) with absolute precision P0 using Algorithm 7.

2: s← θ1(z,τ)2

θ0(z,τ)2 , t← θ1(0,τ)2

θ0(0,τ)2

3: p← P0
4: while p ≤ P ′ do
5: p← 2p
6: Compute a11 = ∂Fx

∂x (s, t), a22 = ∂Fy
∂y (s, t), a12 = ∂Fx

∂y (s, t) with precision p.

7: (s, t)← (s, t)− (F(s, t)− (z, τ))
(
a11 a12
0 a22

)−1

8: end while
9: (a, b)← G(1, s, 1, t)
10: (a, b)← (1/a, 1/b)
11: (s, t)← (sa, tb)
12: Return (a, s, b, t).

• The value of P0 has to be large enough that Newton’s method converges. We note that,
in general, a lower bound on P0 may depend on the arguments; for instance, [Dup11]
experimentally finds 4.53 Im(τ) to be a suitable lower bound for P0 when computing theta-
constants. However, we outline in the next section a better algorithm which only uses the
present algorithm for z, τ within a compact set; hence, P0 can be chosen to be a constant,
and we use in practice P0 = 30000.

We do not provide a full analysis for Algorithm 14; we outline in the next section a better
algorithm, which uses this algorithm as a subroutine, and we will provide a full analysis at that
time. We can however sketch the proof of the following result:

Proposition 6.3.5. For (z, τ) with absolute precision P and satisfying the hypotheses of Propo-
sition 6.3.2, Algorithm 14 computes θ2

0(z, τ), θ2
1(z, τ), θ2

0(0, τ), θ2
1(0, τ) with absolute precision P

in time bounded by kM(P) logP , where k is a constant in P but a function of z, τ .

Proof (sketch). The computation of G at precision p is done in time O(M(p) log p) using Al-
gorithm 12; this running time depends on z, τ , since it depends on the bounds C, c that one
can write for |xn|, |yn|, |zn|, |tn|. Hence, the cost of evaluating F at precision p is O(M(p) log p)
bit operations, and the fact that we double the working precision at every step means that the
algorithm is as costly as the last iteration (see e.g. the proof of Theorem 0.3.9).

Furthermore, one should choose P ′ so that the final result is accurate with absolute precision
P . This means compensating the loss of absolute precision incurred during the computation of F;
in general, this only depends on Im(τ) and linearly in log p. In addition, recall (Corollary 0.3.8)
that each step of Newton’s iteration roughly doubles the accuracy of the result, i.e. gives ap-
proximations with absolute precision 2P − δ from approximations with absolute precision P . In
practice, we found δ = 4 to be enough; but determining the number of bits lost at each step
can be done in the same way as [ET14a, p. 19]: if s(n−1) and s(n−2) agree to k bits, and s(n)

and s(n−1) agree to k′ bits, the number of bits lost can be computed as 2k − k′. In the end,
working at precision P ′ = P + c logP + d, with c, d independent of P but functions of z, τ , is
enough to compensate all the precision loss; this proves that the running time of this algorithm
is asymptotically O(M(P) logP).

110 Chapter 6. Fast computation of the theta function in genus 1

0
Im(τ) = 0. 335

P = 25 Im(τ)

Figure 6.2: In Algorithm 15, τ can either be in the green zone (in which case the naive algorithm
is used) or in the blue zone, in which case we divide τ by 2 until it is in the red zone, apply
Algorithm 14, then use τ -duplication formulas to recover the result. Note that z, which is not
represented here, also needs to be divided by a power of 2 to get (z, τ) ∈ A.

6.3.2 Computing θ(z, τ) in uniform quasi-optimal time
We now show an algorithm with complexity bounded by kM(P) logP bit operations, with k
a constant independent in z and τ , which computes θ(z, τ) for any (z, τ) satisfying condi-
tions (2.5.11). We use the same strategy as [Dup11]; namely, we use the naive algorithm for
large Im(τ); and for smaller values, we divide τ by a power of 2 to get arguments within a
compact set, and we also divide z by a power of 2 in order to have (z, τ) ∈ A. In fact, we divide
τ, z by 2 until 1 ≤ |τ | < 2, then use Note 6.3.3 and Proposition 6.2.3 to get

(
z
2t ,

τ
2s
)
in a compact

set and belonging to A. We then apply Algorithm 14 to these arguments; its running time is
then uniform in the arguments since they are in a compact set. We then alternate between
using Equation (2.5.4) to double the second argument and Equation (2.5.5) to double the first
argument, until finally recovering θ(z, τ). Figure 6.2 summarizes different domains τ can belong
to in the algorithm.

A few notes on this algorithm:

• As we mentioned in Section 5.1, the computation of the complex exponentials in the naive
algorithm must use the UniformExp subroutine (Prop 5.1.4) in order to get a uniform
complexity for the naive algorithm.

• We note that, at several steps of the algorithm (e.g. Steps 9, 14, 16) we need to compute
theta-constants from their square. The correct choice of signs is given by the proof of
Theorem 6.2.6, which shows that Re(θ0(0, τ)) ≥ 0 and Re(θ1(0, τ)) ≥ 0; and furthermore,
since Re(q1/4) ≥ |q|1/4 cos(π/8), we also have Re(θ2(0, τ)) ≥ 0.

• Taking τ2 = τ1/2 allows us to use the τ -duplication formulas for θ2 (Equation (2.5.4)) in
step 8, instead of using Equation (2.5.6) and Equation (2.5.7) to recover θ2; this is more
efficient and loses fewer bits.

• The knowledge of θ2
2(2i−2z1, 2iτ) is enough for the z-duplication formulas of step 17, and

it can be computed directly from θ0 and θ1 using the τ -duplication formulas for θ2.

6.3. Fast computation of θ 111

Algorithm 15 Compute θ0(z, τ), θ1(z, τ), θ2(z, τ), θ0(0, τ), θ1(0, τ), θ2(0, τ) with absolute preci-
sion P .
Input: τ ∈ F and z reduced, with absolute precision P .
1: if P ≤ 25 Im(τ) then
2: Compute θ0,1,2(z, τ), θ0,1,2(0, τ) with precision P using the naive method (Algorithm 7

and Algorithm 8).
3: else
4: Take s ∈ N such that 1 ≤ |τ |/2s < 2
5: Put τ1 = τ

2s and z1 = z
2s , so that Im(z1) ≤ Im(τ1)/2.

6: Put z2 = z1/4 and τ2 = τ1/2.
7: Compute approximations of absolute precision P of θ2

0(z2, τ2), θ2
1(z2, τ2), θ2

0(0, τ2), and
θ2

1(0, τ2) using Algorithm 14.
8: Compute θ2

0(z2, τ1), θ2
1(z2, τ1), θ2

0(0, τ1), θ2
1(0, τ1), θ2

2(z2, τ1), θ2
2(0, τ1) using the τ -

duplication formulas (Equation (2.5.4)).
9: Compute θ0,1,2(0, τ1).
10: Compute θ0,1(z1/2, τ1) using the z-duplication formulas (Equation (2.5.5)).
11: for i = 1 .. s do
12: Compute θ2

0(0, 2iτ1), θ2
1(0, 2iτ1) using the AGM.

13: Compute θ2
0(2i−2z1, 2iτ1), θ2

1(2i−2z1, 2iτ1) using the τ -duplication formulas (Equa-
tion (2.5.4)).

14: If i = s, compute also θ2
2(0, 2iτ1) using the τ -duplication formulas, then θ2(0, 2iτ1) by

taking the square root.
15: Compute θ2

2(2i−2z1, 2iτ1) using the τ -duplication formulas.
16: Compute θ0,1(0, 2iτ1).
17: Compute θ0(2i−1z1, 2iτ1), θ1(2i−1z1, 2iτ1) using the z-duplication formulas.
18: end for
19: Compute θ2

2(2s−1z1, 2sτ1) using Equation (2.5.7).
20: Compute θ0,1,2(z, τ) using the z-duplication formulas.
21: end if

112 Chapter 6. Fast computation of the theta function in genus 1

• Computing θ3(z, τ) is also possible; one should use a partial summation if P ≤ 25 Im(τ).
In the other case, since all the z-duplication formulas for θ3(z, τ) involve a division by
θ2(0, τ) [Mum83, p.22], it is just as efficient to simply use Equation (5.1.2) after Step 20,
then extract the square root. The square root extraction loses O(Im(τ)) = O(P) bits, and
this also gives a quasi-optimal time algorithm.

6.3.3 Proving the correctness of the algorithm
This section is devoted to proving the following theorem:

Theorem 6.3.6. For any τ, z with absolute precision P satisfying conditions (2.5.11), Algo-
rithm 15 with P = 2P computes θ0,1,2(z, τ), θ0,1,2(0, τ) with absolute precision P in cM(P) logP
bit operations, where c is independent of z, τ .

As we discussed in Section 2, this also gives an algorithm that computes θ(z, τ) for any
(z, τ) ∈ C×H; one simply needs to reduce τ to τ ′ ∈ F , then reduce z to z′, and deduce θ(z, τ)
from θ(z′, τ ′) using Proposition 2.1.7 and Theorem2.4.4. This causes a loss of absolute precision
which depends on z and τ , and this algorithm is no longer uniform.

We need to perform an analysis of the number of bits lost by the algorithm; once again, we
use Theorem 0.3.3. For each step, we proceed as follows: we assume that the error on all the
quantities is bounded by k (i.e. if â is our approximation of a ∈ C, we have |a − â| < k), and
we determine a factor x such that the error on the quantities we get after the computation is
bounded by xk. We then declare the number of bits lost in this step to be log2 x; this gives a
very loose upper bound, but simplifies the process.

Finally, we also need to prove that the hypotheses made in Sections 6.2.4 and 6.2.5 are
satisfied in Step 7 of the algorithm. This is necessary to prove that the sequence (λn) we
consider is quadratically convergent, and that the number of bits lost is only O(logP). We prove
this in Section 6.3.3, which then completes the proof that the running time is indeed uniform
and quasi-optimal.

Invertibility of the Jacobian

Newton’s method can only be applied if the Jacobian of the function we invert (here, F) is
invertible. The following proposition establishes this:

Proposition 6.3.7. The Jacobian of F at
(
θ2

1(z,τ)
θ2

0(z,τ) ,
θ2

1(0,τ)
θ2

0(0,τ)

)
is of the form

(
a b
0 c

)
with a, c 6= 0.

This proves that the Jacobian is invertible on a neighbourhood of
(
θ2

1(z,τ)
θ2

0(z,τ) ,
θ2

1(0,τ)
θ2

0(0,τ)

)
. In prac-

tice, numerical experiments indicate that for any z, τ in the compact we consider, the Jacobian
of the system seems invertible on a ball of radius 10−P0 with P0 = 30000, and that this base
precision is enough to make Newton’s method converge.

Proof. We have

a = ∂F1

∂z1

(
θ2

1(z, τ)
θ2

0(z, τ) ,
θ2

1(0, τ)
θ2

0(0, τ)

)
c = ∂F2

∂z2

(
θ2

1(z, τ)
θ2

0(z, τ) ,
θ2

1(0, τ)
θ2

0(0, τ)

)
.

6.3. Fast computation of θ 113

Given the expression of the function F , where only the third and fourth argument influence the
third and fourth coordinate, we have that c = ∂fτ

∂z

(
θ2

1(0,τ)
θ2

0(0,τ)

)
where fτ is the function defined in

Section 6.1.1 such that fτ
(
θ2

1(0,τ)
θ2

0(0,τ)

)
= 0. We then have c 6= 0 by [Dup06, Prop. 4.3, p. 102].

We prove a 6= 0 using the chain rule: define u : (z, τ) 7→
(
θ2

1(z,τ)
θ2

0(z,τ) ,
θ2

1(0,τ)
θ2

0(0,τ)

)
. Then (F◦u)(z, τ) =

(z, τ) and we thus have

1 = ∂(F ◦ u)1

∂z
(z, τ) = a× ∂u1

∂z
(z, τ) + ∂F1

∂u2

(
θ2

1(z, τ)
θ2

0(z, τ) ,
θ2

1(0, τ)
θ2

0(0, τ)

)
× ∂u2

∂z
(z, τ)

= a× ∂u1

∂z
(z, τ) since ∂u2

∂z
(z, τ) = 0.

Hence a = ∂u1

∂z
(z, τ)−1

= 2θ1(z, τ)
θ0(z, τ)

(
θ1(z, τ)
θ0(z, τ)

)′
= 2θ1(z, τ)

θ3
0(z, τ) (θ′1(z, τ)θ0(z, τ)− θ′0(z, τ)θ1(z, τ))

= 2θ1(z, τ)
θ3

0(z, τ)πθ
2
2(0, τ)θ2(z, τ)θ3(z, τ) 6= 0

the last equality deriving from Formula 10 in [Web21, Section 23]. This finishes the proof.

Naive algorithm

Since P ≤ 25 Im(τ), we have
√

P+2
π log2 e Im(τ) + 1 ≤ 4, and hence at most 4 terms are needed to

compute an approximation with absolute precision P . Theorem 5.1.5 shows that at most 9 bits
are lost during these computations.

The cost of the algorithm is then asymptotically dominated by the cost of computing π, q
and v1 with precision P = P + 10. As we highlighted in Proposition 5.1.4 and Note 5.1.6, the
cost of these steps is O(M(P) logP) independently of z and τ ; hence, the complexity of this step
is quasi-linear and uniform in z, τ .

Square root extraction

Steps 9, 16 and 14 of Algorithm 15 require extracting square roots, which multiply the error
by

√
2√
|z|

(cf. Theorem 0.3.3). We prove in the next subsection that |θ0,1(0, 2iτ1)| ≥ 0.859 for
i = [1 . . . s]. Hence, each extraction of square root loses at most 4 bits: step 9 loses 4 bits, and
step 16 loses 4s ≤ 4 logP bits.

Step 14 loses more bits since θ2(0, τ) is smaller; indeed, |θ2(0, τ)| ∼ |q|1/4. This means the
number of bits lost during this step is bounded by log|q|

8 = π
8 Im(τ) log2 e.

Duplication formulas

Algorithm 15 uses both τ -duplication formulas and z-duplication formulas, and we need to
analyse how many bits are lost for each application of those formulas.

The τ -duplication formulas are nothing more than applying F to θ2
0,1(z, τ) and θ2

0,1(0, τ).
However, the analysis here is simpler than in section 6.2.5, because we do not need to compute
the square roots of θ0,1(z, τ), since they are directly given by step 17. Hence we just need

114 Chapter 6. Fast computation of the theta function in genus 1

to account for the error of the additions, subtractions and multiplications in Equation (6.2.1);
since all the quantities are bounded, this means each step loses a constant number g of bits
(our analysis, which is tedious and unilluminating, shows that g ≤ 10.48). In the end, the
τ -duplication formulas account for the loss of g × s ≤ g logP bits of precision.

As for the z-duplication formulas, we need to perform several analyses. Looking at the
z-duplication formulas (Equation (2.5.5)), one needs to evaluate the fourth power of theta func-
tions, then add them; then evaluate the third power of theta-constants, then perform a division.
Computing the error using the formulas from Theorem 0.3.3 is rather straightforward when one
has bounds on those quantities, which are given by the following theorem:

Lemma 6.3.8. Assume Im(τ) >
√

3/2. Then

0.859 ≤ |θ0,1(0, τ)| ≤ 1.141, |θ2(0, τ)| ≤ 1.018

We also have:

• Suppose that 0 ≤ Im(z) ≤ Im(τ)
8 . Then |w|−2 ≤ eπ Im(τ)/4 and

0.8038 ≤ |θ0,1(z, τ)| ≤ 1.1962 |θ2(z, τ)| ≤ 1.228

• Suppose that 0 ≤ Im(z) ≤ Im(τ)
4 . Then |w|−2 ≤ eπ Im(τ)/2 and

0.6772 ≤ |θ0,1(z, τ)| ≤ 1.3228 |θ2(z, τ)| ≤ 1.543

Proof. The bounds on the theta-constants come from [Dup11, p. 5], who proves |θ0,1(0, τ)| ≤
2|q|

1−|q| . The techniques are the same as the proof of Proposition 6.2.4 or Theorem 5.1.1, that is
to say we combine the triangle inequality with Lemma 5.1.2. This gives in the first case

|θ0,1(z, τ)− 1| ≤ |q|3/4 + |q|+ |q|7/2 + |q|4 + |q|8.25 + |q|9 + |q|15

1− |q|
≤ 0.1962 since Im(τ) ≥

√
3/2

|θ2(z, τ)− q1/4(w + w−1)| ≤ |q|15/8

1− |q|3/8 ≤ 0.009

so |θ2(z, τ)| ≤ |q|1/4(|w|+ |w|−1) + 0.009 ≤ 1.228. In the second case:

|θ0,1(z, τ)− 1| ≤ |q|1/2 + |q|+ |q|3

1− |q| ≤ 0.3228

|θ2(z, τ)− q1/4(w + w−1)| ≤ |q|5/4 + |q|9/4 + . . . ≤ |q|
5/4

1− |q| ≤ 0.0357.

Combining these bounds with formulas from Theorem 0.3.3 gives the bounds

|θ0(z1/2, τ1)− ˜θ0(z1/2, τ1)| ≤ (20051 + 1819kθ1(z2,τ1) + 1967kθ2(z2,τ1) + 33516kθ0(0,τ1))2−P

|θ1(z1/2, τ1)− ˜θ1(z1/2, τ1)| ≤ (20051 + 1819kθ0(z2,τ1) + 1967kθ2(z2,τ1) + 33516kθ1(0,τ1))2−P

which means losing at most 16 more bits of precision.
Step 19 causes a larger number of lost bits. We use Equation (2.5.7) instead of the third

z-duplication formula, because dividing by θ2(0, τ)2 loses fewer bits than dividing by θ2(0, τ)3,

6.3. Fast computation of θ 115

and we only need the knowledge of θ2
2(2s−1z, 2sτ) for the next step anyway. This amounts to

computing:

θ2
2(z, τ) = θ2

0(z, τ)θ2
0(0, τ)− θ2

1(z, τ)θ2
1(0, τ)

θ2
2(0, τ)

Computing the numerator multiplies the error by a factor at most 60, and the norm of this
numerator is bounded by 4.557; we then get from Theorem 0.3.3 that the error is bounded by

m
|θ2(0,τ)|8 ∼ m|q|

−2, with m ≤ 1600. In the end, we lose at most 2π(log2 e) Im(τ) + 11 bits.
Finally, we also lose many bits during the last application of the z-duplication formulas in

step 20, since the formula for θ2(z, τ) requires dividing by θ2(0, τ)3. The error is thus multiplied
by |q|−3 up to a constant factor; this means a loss of 3π Im(τ) log2 e bits, up to a constant.

In the end, we see that the number of lost bits is bounded by (2π+ π/4 + 3π) Im(τ) log2 e+
c logP +d; given that P ≥ 25 Im(τ), and that 5.25π log2 e ≤ 23.8, the number of bits lost is thus
less than P .

Proof of correctness

Proposition 6.3.9. For all τ ∈ F and z reduced, with absolute precision P , Algorithm 15
computes θ0(z, τ), θ1(z, τ), θ2(z, τ), θ0(0, τ), θ1(0, τ), θ2(0, τ).

Proof. The trickiest part is checking that F returns the right result, as in Proposition 6.3.2. We
have that 1 ≤ |τ1| < 2 and Im(z1) ≤ Im(τ1)

2 ; conditions (2.5.11) and the condition (z2, τ2) ∈ A
hold, since we have:

|Re(τ2)| ≤ 1/2s+2 ≤ 1/4, 0. 335 ≤
√

3
4 ≤ Im(τ2) ≤ 1,

|Re(z2)| ≤ 1/2s+3 ≤ 1/8, 0 ≤ Im(z2) ≤ Im(τ2)
4 .

This means the choices of signs are always good, and hence our result is indeed theta functions
and theta-constants.

Finally, collecting the number of lost bits in the previous subsections show that

P = 1.952P + c logP + d ≤ 2P

is enough to get a result which is accurate to absolute precision P ; this also means that we indeed
never have an error k bigger than 2(2P)/2, which is necessary to apply Theorem 0.3.3.

Proof of quasi-optimal running time

It remains to prove that the complexity is the right one. If P ≥ 25 Im(τ), log2 P > log2 Im(τ) +
4.7, which means s ≤ logP and the cost of Steps 11 to 18 is O(M(P) logP); this running time
is uniform in z, τ , as highlighted in Note 5.1.6.

We then need prove that there is a C > 1 such that, for all z2, τ2 that we consider,

θ2
1(0, τ)
θ2

0(0, τ) ≤ C,
θ2

2(0, τ)
θ2

0(0, τ) ≤ C,
θ2

1(z, τ)
θ2

0(z, τ) ≤ C,
θ2

2(z, τ)
θ2

0(z, τ) ≤ C.

This is a direct consequence of the fact that z2, τ2 are within a compact set that does not
contain any zero of θ(z, τ); hence one can write (non-zero) lower and upper bounds for any of

116 Chapter 6. Fast computation of the theta function in genus 1

the values of theta. One can be more precise using the same reasoning as in Lemma 6.3.8: since√
3/4 ≤ Im(τ2) ≤ 1:

|θ0,1(z2, τ2)− 1| ≤ |q|1/2 + |q|+ |q|3

1− |q| ≤ 0.7859, |θ2(z2, τ2)| ≤ 1 + |q|1/4 + |q|5/4

1− |q| ≤ 1.958.

This gives C ≤ 83.64 and c ≥ 0.0422

1.78592 ' 1
1808 . Furthermore, with a careful analysis, one can prove

that c1 = 55 is enough in Theorem 6.2.13.
The existence of c and C proves that (λn) is quadratically convergent. The last thing left to

analyze is the number of bits lost in the computation, which is given by Section 6.2.5. We note
that the fact that z2, τ2 are within a compact shows that the constants b, C ′, C ′′ exist and are
independent of z, τ . (For implementation purposes, we were able to determine experimentally
that C ′′ = 2.05; furthermore a rough analysis, which we do not detail here, showed that logC ′ ≤
11.65 and log2 b ≤ 15.52.) This makes the running time of Step 7 only dependent on P , which was
the point of the uniform algorithm. In particular, the number of bits lost during the computation
of G or in F can be written as c1 logP + c2, with c1, c2 constants independent in z, τ . Hence, the
number of bits that are lost in the whole of Step 7 is

n∑
i=1

δ + c1 log(p/2i) + c2 ≤ G logP +H

for some constants G,H, since the number n of steps in Newton’s method is O(logP).
This means the computations in step 7 should be carried out at precision P ′ = 2P +G logP +

H, so that the result is accurate to 2P bits. This gives a running time of O(M(P) logP),
independently of z and τ . All the other steps cost no more than O(M(P)) bit operations, which
indeed gives us a running time of O(M(P) logP).

6.4 Implementation results
An implementation using the GNU MPC library [EGTZ12] for arithmetic on multiprecision
complex numbers was developed; we compared our algorithm to our own implementation of
Algorithm 7 using MPC7. The code is distributed under the GNU General public license, version
3 or any later version (GPLv3+); it is available at the address

http://www.hlabrande.fr/pubs/fastthetas.tar.gz

We compared those implementations to MAGMA’s implementation of the computation of θ(z, τ)
(function Theta). Each of those implementations computed θ(z, τ) at different precisions for
z = 0.123456789 + 0.123456789i and τ = 0.23456789 + 1.23456789i; the computations took
place on a computer with an Intel Core i5-4570 processor. The results are presented in Figure 6.3
and Table 6.1.

Our figures show that our algorithm outperforms Magma even for computations at relatively
low precision8 (i.e. 1000 decimal digits). Furthermore, it is faster than our implementation of
Algorithm 7 for precisions greater than 260 000 decimal digits. Hence, a combined algorithm
which uses the naive method for precisions smaller than 260 000 decimal digits, and our method
for larger precision, will yield the best algorithm, and outperform Magma in all cases, as shown
in Table 6.1.

7The naive algorithm which only computes θ(z, τ) is only 5% faster; furthermore since Algorithm 15 computes
these 4 values, it is fair to compare it to Algorithm 7.

8This is even though Magma only returns θ0(z, τ), when our algorithm returns more values.

http://www.hlabrande.fr/pubs/fastthetas.tar.gz

6.5. Batching computations of theta for different z 117

103 104 105 106 107

10−2

100

102

104

106

Base 10 precision

T
im

e
(s
)

Algorithm 15 (P0 = 30000 digits)
Naive algorithm (Algorithm 7)

Magma’s Theta

Figure 6.3: Timing results

Note that Algorithm 7 returns 4 values (the fundamental theta functions and theta-constants),
while our quasi-linear time algorithm (Algorithm 15) returns in fact 6 values. Our implementation
of a naive algorithm which computes all 6 values (i.e. combining Algorithm 7 and Algorithm 8)
is slower than our quasi-linear time algorithm for P = 30 000 decimal digits; this is the reason
why we chose to take P0 = 30 000 in Algorithm 14, i.e. start the Newton iterations on an
approximation of the quotients with precision 30 000 digits.

6.5 Batching computations of theta for different z
To finish this chapter, we consider the problem of batching the computation of θ at different z
– that is to say, computing θ(zk, τ) for z1, ..., zn ∈ C faster than with simply n evaluations. We
find speedups by a constant factor for both the naive algorithm and the quasi-linear algorithm;
note that there does not seem to be a speedup if the value of τ is also different. These results are
useful in a variety of settings, including in our case Chapter 9. However, we did not implement
those speedups, since our main application for them (Algorithm 25) has asymptotic complexity
which is worse than the state of the art anyway, which means that constant-factor speedups are
not that interesting.
Remark 6.5.1. The naive algorithm in genus 2 (Section 5.2.2), as well as the generalization of
the fast algorithm in genus 2, can also be sped up when batching computations of θ at different
z, using techniques that are very similar to the ones presented here. We leave their precise
description and implementation to future work.

Throughout this section, we assume that the zk are reduced, i.e. |Re(zk)| ≤ 1
2 , 0 ≤ Im(zk) <

Im(τ).

6.5.1 Batch naive algorithm
We propose Algorithm 16, a variant on Algorithm 7 for batch computations of θ.

118 Chapter 6. Fast computation of the theta function in genus 1

Prec (digits) This work Naive Magma
(Algorithm 15) (Algorithm 7)

1000 0.008 0 0.01120
2000 0.032 0.008 0.05520
4000 0.092 0.032 0.2790
8000 0.292 0.112 1.316
16000 0.812 0.380 7.692
32000 2.184 1.32 38.99
64000 6.152 4.55 158.2
128000 16.6 15.1 922.2
256000 41.8 41.3
512000 102 130
1024000 248 405

Table 6.1: Timings (in s) of different methods

Algorithm 16 Compute (θ0,1(zk, τ))k=1,...,n and θ0,1(0, τ), with absolute precision P .
Input: zk, τ with absolute precision P , satisfying conditions (2.5.11).
1: Work with precision P.
2: B ←

⌈√
P+2

π Im(τ) log2(e)

⌉
+ 1

3: θ0,z ← 1, θ1,z ← 1, θ0,0 ← 1, θ1,0 ← 1
4: q ← UniformExp(iπτ), q1 ← q, q2 ← q
5: for k = 1, .., n do
6: v

(k)
1 ← UniformExp(2iπ(zk + τ/2)) +UniformExp(−2iπ(zk− τ/2)), v(k) ← v

(k)
1 , v′

(k) ← 2
7: end for
8: for n = 1..B do
9: For k = 1, .., n : θ(k)

0,z ← θ
(k)
0,z + v(k), θ

(k)
1,z ← θ

(k)
1,z + (−1)n × v(k)

10: θ0,0 ← θ0,0 + 2q2, θ1,0 ← θ1,0 + (−1)n × 2q2
11: q2 ← q2 × (q1)2 × q; q1 ← q1 × q
12: For k = 1, .., n : temp← v(k), v(k) ←

(
q2
1 × v

(k)
1

)
× v(k)− q4

1 × v′
(k)

v′
(k) ← temp

13: end for

6.5. Batching computations of theta for different z 119

This algorithm computes n values of θ using n+1 exponentiations, n divisions, and (3n+5)B
multiplications. Algorithm 7 requires 2 exponentiations, 1 division and 8B multiplications.
Hence, asymptotically, Algorithm 16 is about 8

3 = 2.3 times faster than running n times Algo-
rithm 7.

6.5.2 Batch quasi-linear algorithm
We can also modify the quasi-optimal algorithm presented in this chapter to achieve a constant-
factor speedup in the evaluation of n values of θ(zk, τ). Again, the strategy is to avoid re-
computing theta-constants several times; instead, we compute the theta-constants once, using
Algorithm 11 for instance, and store them for future use. Incidentally, this makes the problem
only depend on z.

We can modify Algorithm 12 so that it computes a two-variable function G2 such that
G2(λθ0(z, τ)2, λθ1(z, τ)2) = λ. Assuming the θi(0, 2kτ) are also computed once and stored,
and putting N the number of steps (recall that N = O(logP)), the computation of this function
requires 2N multiplications and 2N square root computations, compared to 4N square roots and
3N multiplications. This represents an asymptotic factor of 1.75 if we assume that square roots
and multiplications have the same cost; however, in practice, since square root extractions cost
a few multiplications (experiments using GNU MPC showed a constant greater than 100), this
asymptotic factor is probably closer to 2.

We can then modify Algorithm 13 so that it computes a function F2 so that F2

(
θ1(z,τ)2

θ0(z,τ)2

)
= z;

such a modification does not yield important savings. We then use Newton’s method on this
function to compute θ1(z,τ)2

θ0(z,τ)2 , and ultimately the values of θ. We compute the derivative of F2

using finite differences, which requires 2 evaluations of F2; this saves 33% over the algorithm we
presented in this chapter, which requires 3 evaluations of F to compute the 3 coefficients of the
Jacobian.

Finally, since we assume we precomputed the θi(0, 2kτ), a few steps in Algorithm 15 are
simplified. Taking a closer look at Steps 8 to 20, we find that this variant costs 6s + 11 multi-
plications and 2 square root extractions, while Algorithm 15 costs 7s + 12 multiplications and
2s+8 square root extractions. If we assume multiplications and square roots have the same cost,
this is a factor 1.5; however, in practice, the asymptotic factor is likely to be much bigger: if a
square root costs 100 multiplications, this is a factor 34.

Putting it all together, we get a factor 2.3 in the execution of the naive algorithm (either
for P ≤ 25 Im(τ) or in the initial approximation in Algorithm 14), a factor 3 in Algorithm 14,
and a large factor in Steps 8 to 20 of Algorithm 15. The resulting speedup factor is difficult to
estimate; however since Algorithm 14 represents the bulk of the computation, one can expect a
factor 3 to be saved.

120 Chapter 6. Fast computation of the theta function in genus 1

Chapter 7

Computing the Riemann theta
function in genus 2 and above

This chapter is dedicated to attempting to generalize the algorithm outlined in the previous
chapter to higher genera. We succeed in making the algorithm fully explicit in the case of genus 2
theta functions, i.e. θ(z, τ) with z ∈ C2, τ ∈ H2: the running time is also of O(M(P) logP) bit
operations. We suppose that z and τ are reduced as explained in Section 2.3 and Section 2.4.

The generalization of the algorithm in genus g is not complete yet. We managed to generalize
the function G, the function giving something depending only on z, τ from the quotients of theta
functions and theta-constants; this function can be conjecturally computed with precision P in
O(2gM(P) logP), although we managed to prove the result in genus 2. However, constructing
F from G so that we get a function with an invertible Jacobian is harder: we managed to
construct such a function in genus 2, although the invertibility of the Jacobian is conjectural; in
genus g, we did not manage to provide an explicit definition which would have a good chance
of being invertible. Hence, the algorithm is completely described in genus 2, and has even been
implemented, and we also managed to generalize the definition of G to genus g, but we did not
manage to define F in genus g.

As in the previous chapter, we start by studying the case of genus 2 theta-constants, which
was first outlined in [Dup06] and used in [ET14a] for the computation of modular polynomials
of record size. We then present our algorithm in genus 2, along with timing results, and discuss
genus g; the presentation of these results is taken from an article with Emmanuel Thomé [LT16]
which was published at the Twelfth Algorithmic Number Theory Symposium (ANTS-XII).

7.1 Preamble: genus 2 theta-constants
We discuss here the computation of theta-constants in genus 2 in O(M(P) logP), using the
algorithm outlined in [Dup06] and the refinements shown in [ET14a].

Recall first the naive algorithm for genus 2 theta functions, which we outlined in Algorithm 9.
As we showed in Section 5.2.1, the cost of this algorithm is O

(
M(P) P

Im(τ)

)
. A variant of this

algorithm which evaluates only the theta-constants can be written easily; this gives an algorithm
with a smaller constant in the O, but does not change its asymptotic running time. Note that
the algorithms of [ET14a, Prop. 3] and [Dup06, Algorithme 15.] use an analysis which does
not highlight the dependency in the size of Im(τ1,1), and hence get an asymptotic complexity of

121

122 Chapter 7. Computing the Riemann theta function in genus 2 and above

O(M(P)P); however, [ET14a, Prop. 3] shows how to use recurrence relations to compute the
terms of the sum efficiently, an idea we borrowed for our naive algorithms.

Recall from Section 3.4 the definition of the Borchardt mean in genus 2:

Definition 7.1.1. The Borchardt mean of four complex numbers, denoted B2(a0, a1, a2, a3), is
defined as the common limit of the sequences (a(n)

0 , a
(n)
1 , a

(n)
2 , a

(n)
3)n∈N defined by

a
(n+1)
0 = a

(n)
0 + a

(n)
1 + a

(n)
2 + a

(n)
3

4 a
(n+1)
1 = α0α1 + α2α3

2
a

(n+1)
2 = α0α2 + α1α3

2 a
(n+1)
3 = α0α3 + α1α2

2

where α2
0 = a

(n)
0 , α2

1 = a
(n)
1 , α2

2 = a
(n)
2 , α2

3 = a
(n)
3 , and where the choice of signs are good, i.e.

|αi − αj | < |αi + αj |

We previously noted that the Borchardt mean of 4 numbers cannot always be defined, as it
is impossible to define a good choice of signs for some quadruplets (see Figure 3.2).

Recall also the τ -duplication formulas for the fundamental thetas:

θ[0;b](0, 2τ)2 = 1
4

∑
β∈ 1

2Z2/Z2

θ[0;β](0, τ)θ[0;b+β](0, τ)

As we discussed in Section 3.4.3, this formula shows that
(
θ2

0(0, 2kτ), . . . , θ2
3(0, 2kτ)

)
k∈N is a

Borchardt sequence.
The link between theta-constants and the Borchardt mean is the equivalent in genus 2 of

the link between theta-constants and the AGM in genus 1. The genus 2 algorithm to compute
theta-constants in quasi-linear time is then very similar to the one described in Section 6.1: the
goal here is then to construct a function F which returns τ from the knowledge of quotients of
squares of theta-constants, and we do so once again by applying the Borchardt mean to different
quotients. However, this requires first to study the domain for which good choices of square
roots always coincide with the values θi(0, 2kτ), which is (Definition 3.4.8):

U2 = {τ ∈ H2 | B2(θ2
0(0, τ), . . . , θ2

3(0, τ)) = 1}.

We can determine sufficient conditions on τ so that τ ∈ U2. We were able to prove a result
which is stronger than [Dup06, Prop. 6.1]:

Proposition 7.1.2. Let τ ∈ H2 such that Im(τ) is Minkowski-reduced and Im(τ1) ≥ 0.594.
Then Re(θi(0, τ)) ≥ 0 for i = 0, 1, 2, 3, and furthermore |θ0(0, τ)− θj(0, τ)| < |θ0(0, τ) + θj(0, τ)|
for j = 1, 2, 3.

Hence {τ ∈ H2 | Im(τ) is Minkowski-reduced, Im(τ1,1) ≥ 0.594} ⊂ U2. In particular, we
have F ′2 ⊂ U2 and F2 ⊂ U2.

Proof. The first statement can be proven with the same proof as [Dup06, Prop. 6.1]. The proof of
the other statement is tedious and unillumating; we do not reproduce it fully here. The method
is similar to that of Proposition 6.2.4. We first take advantage of cancellations from the series
defining the theta-constants; for instance:

θ0(0, τ) + θ1(0, τ) = 2
∑

n=(n1,n2)
n1∈Z,n2 even

eiπ
tnτn, θ0(0, τ)− θ1(0, τ) = 2

∑
n=(n1,n2)

n1∈Z,n2 odd

eiπ
tnτn

7.1. Preamble: genus 2 theta-constants 123

We then attempt to compute a bound on the quotient |θ0(0,τ)−θ1(0,τ)|
2−|θ0(0,τ)+θ1(0,τ)−2| , using the triangle

inequality to bound each of the absolute value; when the quotient has an absolute value smaller
than 1, the choice of signs is good. To get a rather fine bound, we compute explicitly terms with
small (e.g. smaller than 4) value for n1 or n2 and bound them individually, then use Lemma 5.1.2
to bound the remainders.

This result thus proves that, for τ verifying the hypotheses of Proposition 7.1.2, and using
homogeneity of B2,

B2

(
1, θ1(0, τ)2

θ0(0, τ)2 ,
θ2(0, τ)2

θ0(0, τ)2 ,
θ3(0, τ)2

θ0(0, τ)2

)
= 1
θ0(0, τ)2

which is a property very similar to the situation in genus 1 (Note 3.2.10).
We then take a look at the Borchardt mean of other quotients and determine some which

allow the computation of coefficients of τ :

Proposition 7.1.3. Define J =
(

0 −I2
I2 0

)
and Mi =

(
I2 mi

0 I2

)
, with m1 =

(
1 0
0 0

)
, m2 =(

0 0
0 1

)
, m3 =

(
0 1
1 0

)
(as in [Dup06, Chapter 6]). Then

θ0
(
0, (JM1)2 · τ

)2 = −τ1θ8(z, τ)2,

θ0
(
0, (JM2)2 · τ

)2 = −τ2θ4(z, τ)2,

θ0
(
0, (JM3)2 · τ

)2 = (τ2
3 − τ1τ2)θ0(z, τ)2.

This result is a direct consequence of Theorem 2.4.49. Using Theorem 2.4.4 again for the
numerators, and provided once again that good choices of sign correspond to values of theta, we
have [Dup06, p.197]

B2

(
1, θ

2
9(0, τ)
θ2

8(0, τ) ,
θ2

0(0, τ)
θ2

8(0, τ) ,
θ2

1(0, τ)
θ2

8(0, τ)

)
= B2

(
1, θ

2
1(0, (JM1)2 · τ)
θ2

0(0, (JM1)2 · τ) ,
θ2

2(0, (JM1)2 · τ)
θ2

0(0, (JM1)2 · τ) ,
θ2

3(0, (JM1)2 · τ)
θ2

0(0, (JM1)2 · τ)

)
= 1
−τ1θ2

8(0, τ) (7.1.1)

B2

(
1, θ

2
0(0, τ)
θ2

4(0, τ) ,
θ2

6(0, τ)
θ2

4(0, τ) ,
θ2

2(0, τ)
θ2

4(0, τ)

)
= B2

(
1, θ

2
1(0, (JM2)2 · τ)
θ2

0(0, (JM2)2 · τ) ,
θ2

2(0, (JM2)2 · τ)
θ2

0(0, (JM2)2 · τ) ,
θ2

3(0, (JM2)2 · τ)
θ2

0(0, (JM2)2 · τ)

)
= 1
−τ2θ2

4(0, τ) (7.1.2)

B2

(
1, θ

2
8(0, τ)
θ2

0(0, τ) ,
θ2

4(0, τ)
θ2

0(0, τ) ,
θ2

12(0, τ)
θ2

0(0, τ)

)
= B2

(
1, θ

2
1(0, (JM3)2 · τ)
θ2

0(0, (JM3)2 · τ) ,
θ2

2(0, (JM3)2 · τ)
θ2

0(0, (JM3)2 · τ) ,
θ2

3(0, (JM3)2 · τ)
θ2

0(0, (JM3)2 · τ)

)
= 1

(τ2
3 − τ1τ2)θ2

0(0, τ) (7.1.3)

However, note that the hypotheses of Proposition 7.1.2 are not necessarily satisfied by (JM1)2 ·τ ,
(JM2)2 ·τ or (JM3)2 ·τ ; in fact, these period matrices do not even necessarily have a Minkowski-
reduced imaginary part. We were unable to find conditions on τ so that either of the propositions
could be applied to these matrices, and were also unable to determine the shape of the set
described by the (JMi)2 · τ for, say, τ ∈ F ′2 (which would have allowed us to attempt to prove

9Note that the result appears different from [Dup06] only because the tables for M1 and M2 (page 146) have
been switched by mistake; and it differs from [ET14a] because their M2 is our M3, and vice-versa.

124 Chapter 7. Computing the Riemann theta function in genus 2 and above

a more general version of Proposition 7.1.2). One could also think of looking at the sums one
gets when considering θi(0, τ) ± θj(0, τ), but no obvious cancellations seem to occur, and then
the triangle inequality does not seem like the right tool; we did not pursue this line of thought.

Note that in practice, all the quotients in Equations (7.1.1) to (7.1.3) appear to have a positive
real part, and probably also satisfy the condition of the good choice of signs. Hence, the following
conjecture is proposed in [Dup06, Conjecture 9.1] and [ET14a, Conjecture 9]:
Conjecture 7.1.4. For k = 1, 2, 3 and τ ∈ F2, we have (JM1)2 · τ ∈ U2.

We show in Section 7.2 how we can circumvent the “good choice vs correct value of θ” problem
using low-precision approximations.

Proposition 7.1.3 and Equations (7.1.1) to (7.1.3) allow the computation of the τi from the
knowledge of the θ2

i for 0 ≤ i ≤ 15; this is similar to what Equation (6.1.2) gave us in genus 1.
Hence, we can use these equations to construct the function F, which returs τ from quotients
of fundamental theta-constants; we will then invert F using Newton’s method. The algorithm
is as follows: starting with θ2

1,2,3(0,τ)
θ2

0(0,τ) , we recover the individual fundamental theta-constants,
by computing θ2

0(0, τ) as the inverse of the Borchardt mean of the quotients. We then need
to compute the theta-constants θ4, θ6, θ8, θ9, θ12; once this is done, we apply Equations (7.1.1)
to (7.1.3) to recover τ . Computing these theta-constants can be done in two ways: using some
explicit formulas, as in [Dup06, Section 6.4], or by directly using the τ -duplication formulas to
compute all the theta-constants at 2τ , then account for the factor 2 in the final result. We
prefer to use the latter approach, as it is generalizable to any genus. We summarize this in
Algorithm 17.

Algorithm 17 Compute τ from θ2
1,2,3(0,τ)
θ2

0(0,τ) , assuming Conjecture 7.1.4.

Input: θ2
1,2,3(0,τ)
θ2

0(0,τ) with absolute precision P .
Output: τ with absolute precision P .

1: t0 ← B2

(
1, θ

2
1(0,τ)
θ2

0(0,τ) ,
θ2

2(0,τ)
θ2

0(0,τ) ,
θ2

3(0,τ)
θ2

0(0,τ)

)
.

2: t0 ← 1
t0
.

3: t1 ← t0 × θ2
1(0,τ)
θ2

0(0,τ) ; t2 ← t0 × θ2
2(0,τ)
θ2

0(0,τ) ; t3 ← t0 × θ2
3(0,τ)
θ2

0(0,τ) .
4: ti ←

√
ti, choosing the square root corresponding to θi(0, τ).

5: Apply the τ -duplication formula (Equation (2.2.1)) to get ti ← θ2
i (0, 2τ) for i = 0 . . . 16.

6: τ1 = B2

(
1, t9t8 ,

t0
t8
, t1t8

)
, τ2 = B2

(
1, t0t4 ,

t6
t4
, t2t4

)
, τ3 = B2

(
1, t8t0 ,

t4
t0
, t12
t0

)
.

7: τ1 ← −t8
2τ1

, τ2 ← −t4
2τ2

, τ3 =
√

t0
4τ3

+ τ1τ2.

8: return
(
τ1 τ3
τ3 τ1

)
.

Computing theta-constants is then done by applying Newton’s method to the function defined
by Algorithm 17, which is a function C3 → C3. The Jacobian appears to be invertible in
practice, but no proof of this fact has been found; both [Dup06] and [ET14a] assume it is
the case. One can compute the Jacobian either with a quadratically convergent algorithm which
works conjecturally [Dup06], or with finite differences [ET14a]; both have the same quasi-optimal
asymptotic running time, but [ET14a] finds that the first approach is 45% more expensive in
practice. We refer to [Dup06] or [ET14a] for more details, and to [ET14b] for an implementation
of this algorithm (i.e. Algorithm 17 and the three-dimensional Newton scheme which allows to
compute theta-constants in quasi-optimal time).

7.2. The algorithm 125

The implementation of this algorithm [ET14b] was used in [ET14a] to compute the Igusa
class polynomials corresponding to Jacobians of genus 2 curves, where the theta-constants are
linked to the roots of such a polynomial, which is then reconstructed from the roots. The authors
implemented the algorithm using the multiprecision arithmetic library GNU MPC [EGTZ12];
their implementation results show that this approach beats the naive algorithm for precisions as
low as a few thousand bits. Using this algorithm, they were able to compute a class polynomial
of record size, corresponding to a class number of 20016.

7.2 The algorithm
7.2.1 The function F

Recall the τ -duplication formulas (Prop. 2.2.1): for all a, b ∈ 1
2Z

g/Zg,

θ[a;b] (z, τ)2 = 1
2g

∑
β∈ 1

2Zg/Zg
e−4iπ taβθ[0;b+β]

(
z,
τ

2

)
θ[0;β]

(
0, τ2

)
. (7.2.1)

This prompts us to define the following function, crafted so that Proposition 7.2.1 holds, as a
direct consequence of the τ -duplication formula. The definition below is ambiguous (because of
square roots), an issue we deal with in what follows.

F : C8 → C8

a0...3, b0...3 7→
(√

a0
√
b0 +

√
a1
√
b1 +

√
a2
√
b2 +

√
a3
√
b3

4
,

√
a0
√
b1 +

√
a1
√
b0 +

√
a2
√
b3 +

√
a3
√
b2

4
,

√
a0
√
b2 +

√
a1
√
b3 +

√
a2
√
b0 +

√
a3
√
b1

4
,

√
a0
√
b3 +

√
a1
√
b2 +

√
a2
√
b1 +

√
a3
√
b0

4
,

b0 + b1 + b2 + b3

4
,

2
√
b0
√
b1 + 2

√
b2
√
b3

4
,

2
√
b0
√
b2 + 2

√
b1
√
b3

4
,

2
√
b0
√
b3 + 2

√
b1
√
b2

4

)
.

Proposition 7.2.1. For a suitable choice of square roots, we have

F
(
θ0,1,2,3(z, τ)2, θ0,1,2,3(0, τ)2) =

(
θ0,1,2,3(z, 2τ)2, θ0,1,2,3(0, 2τ)2)

Bad, good, and correct choices of square roots We discuss what we mean above by
suitable choice of square roots. Two different notions must be considered:

• “Good choices” in the sense of [Dup06, Cox84], i.e. such that Re
(√

ai√
aj

)
, Re

(√
bi√
bj

)
≥ 0.

Note that not all tuples of complex numbers admit a set of “good” square roots. In genus 1,
having infinitely many bad choices means the sequence converges (at least linearly) to zero;
to avoid this case, we need them to all be good after a while, which in addition ensures we
have quadratic convergence. This is key to our strategy to get a quasi-linear running time.

• The choice of signs that corresponds to θ, i.e. given two quadruples which are (proportional
to) approximations of θ0,1,2,3(z, τ)2 and θ0,1,2,3(0, τ)2, the ones which approximate well the
values θ0,1,2,3(z, τ) and θ0,1,2,3(0, τ). We call these the “correct” choice, which need not be
a “good” choice. We need this in order to compute the right value of θ in the end.

Fortunately, the notions of “good” and “correct” choices overlap very often. In genus 1, results
from [Cox84] (i.e. Proposition 3.2.9) shows that the correct choice for theta-constants is the good
choice for τ within a large domain which includes the fundamental domain (see Figure 3.1); we

126 Chapter 7. Computing the Riemann theta function in genus 2 and above

proved a similar result for theta functions in Theorem 6.2.6 (see Figure 6.1). In genus 2, we do
not determine an explicit domain for which correct choices are good. Although one can try to
improve on the approach of Section 5.2 to establish such a result, the mere requirement that τ
be in F ′g is already too strict for our further use (in particular in Section 7.2.2), so that proofs
are difficult to obtain.

Iterates of F Proposition 2.1.9 shows that limk→∞
θ[0;b](z,2kτ)
θ[0;b′](z,2kτ) = 1, which easily implies that

correct choices are good for large enough τ . Therefore, given an 8-uple X which approximates
(θ0,1,2,3(z, τ)2, θ0,1,2,3(z, τ)2), computing iterates Fn(X) and making correct choices consistently
is bound to coincide with good choices after a finite number of iterations. To ensure that the
first few choices are indeed the correct ones, it suffices to rely on low-precision approximations
of θ, so that we know the sign of either Re(θ) or Im(θ). The number of terms and the precision
needed to achieve this do not asymptotically depend on P , but only in z and τ ; since we neglect
the dependency in z, τ in the complexity of our algorithm10, determining the correct square root
requires only a constant number of operations. We used this strategy in our implementation;
furthermore, it generalizes easily to genus g.

Lemma 7.2.2. Let (a(0)
0,1,2,3, b

(0)
0,1,2,3) ∈ C8, and let

(
a

(n+1)
0,1,2,3, b

(n+1)
0,1,2,3

)
= F

(
a

(n)
0,1,2,3, b

(n)
0,1,2,3

)
for any

integer n ∈ N. Assume that there exists α, β ∈ C∗ and n0 ∈ N such that Re(a(n0)
i /α) > 0 and

Re(b(n0)
i /β) > 0 for all i ∈ {0, 1, 2, 3}. Then there exists positive real constants c, C such that

assuming all choices of square roots from iteration n0 onwards are good, we have ∀n ≥ n0, ∀i ∈
{0, 1, 2, 3}, c ≤ |a(n)

i |, |b
(n)
i | < C.

Proof. The upper bound result follows trivially from the definition. For the lower bound, let us as-
sume without loss of generality that |α| = |β| = 1, and let c = min(Re(a(n0)

0,1,2,3/α),Re(b(n0)
0,1,2,3/β)).

For good choices of square roots and any i, j, we have

Re(
√
a

(n0)
i /α

√
b
(n0)
j /β) ≥ min(Re(a(n0)

i /α),Re(b(n0)
j /β)) ≥ c

(for a proof, see e.g. [Dup06, Lemme 7.3]). This implies from the definition that
∣∣∣a(n0+1)
i

∣∣∣ ≥
Re(a(n0+1)

i /
√
αβ) ≥ c, and similarly for b(n0+1)

i . The result follows by induction (with
√
αβ, of

modulus 1, playing the role of α at the next iteration).

An important remark is that the “low-precision” strategy described above is sufficient to
ensure that conditions of Lemma 7.2.2 hold after a few steps.

A Karatsuba-like trick to compute F Proposition 7.2.3 computes F in 4 products and 4
squares instead of the 22 products in its definition. Section 7.4 extends this to genus g.

Proposition 7.2.3. Put H =
(

1 1
1 −1

)
and H2 = H ⊗ H. Let t(m0,1,2,3) = H2

t

(√
a

(n)
0,1,2,3

)
and t(s0,1,2,3) = H2

t

(√
b
(n)
0,1,2,3

)
. We have t(a(n+1)

0,1,2,3) = 1
16H2

t(m0,1,2,3 ∗ s0,1,2,3) (∗ being the

termwise product), and t(b(n+1)
0,1,2,3) = 1

16H2
t(s0,1,2,3 ∗ s0,1,2,3).

10To extend this work into an algorithm whose complexity is uniform in z, τ , one could follow the same approach
as in genus 1 (see [Dup06], or Algorithms 11 and 15), since we have once again a naive algorithm whose complexity
decreases as Im(τ1) increases.

7.2. The algorithm 127

7.2.2 Constructing and inverting the F function
Proposition 7.2.4 (extension of Prop 7.1.3). Define the matrices J,M1,M2,M3 as in [Dup06,
Chapter 6]. Then

θ0
(
(JM1)2 · z, (JM1)2 · τ

)2 = −τ1e2iπz2
1/τ1θ8(z, τ)2,

θ0
(
(JM2)2 · z, (JM2)2 · τ

)2 = −τ2e2iπz2
2/τ2θ4(z, τ)2,

θ0
(
(JM3)2 · z, (JM3)2 · τ

)2 = (τ2
3 − τ1τ2)e2iπ

z2
1τ2+z2

2τ1−2z1z2τ3
det(τ) θ0(z, τ)2.

This result is a direct consequence of Theorem 2.4.4. The next proposition looks at how the
sequence of Fn behaves with respect to homogeneity; its proof is similar to Proposition 6.2.8,
i.e. an induction.

Proposition 7.2.5. Let(
(a(n)
i)0≤i≤3, (b(n)

i)0≤i≤3

)
= Fn

((
θ[0;b](z, τ)2)

b∈ 1
2Z2/Z2 ,

(
θ[0;b](0, τ)2)

b∈ 1
2Z2/Z2

)
,(

(a′i
(n))0≤i≤3, (b′i

(n))0≤i≤3

)
= Fn

(
λ
(
θ[0;b](z, τ)2)

b∈ 1
2Z2/Z2 , µ

(
θ[0;b](0, τ)2)

b∈ 1
2Z2/Z2

)
.

Then we have a′0
(n) = εnλ

1/2nµ1−1/2na
(n)
0 (where ε2

n

n = 1), and b′0
(n) = µb

(n)
0 , and we can

compute λ, µ as µ = limn→∞ b′0
(n) and λ = limn→∞

(
a′0

(n)

b′0
(n)

)2n

× µ.

We define G as the function which computes these two quantities, that is to say such that
G
(
λ
(
θ[0;b](z, τ)2)

b∈ 1
2Z2/Z2 , µ

(
θ[0;b](0, τ)2)

b∈ 1
2Z2/Z2

)
= (λ, µ). We prove in Section 7.2.3 that G

can be computed in O(M(P) logP) operations.
We now build F from G. The idea is to evaluate G at quotients of theta functions after the

action of (JMi)2; the λ and µ we recover are the inverse of the quantities in Proposition 7.2.4.
Note that (JMi)2 · τ 6∈ F ′2, which prevents us from generalizing proofs which worked for genus 1
to make “good choices” and “correct choices” coincide. However it is still possible to determine
the sign using low-precision approximations.

Evaluating the quotients after the action of (JMi)2 is actually simply evaluating different
quotients of theta functions; for instance:

θ1
(
(JM1)2 · z, (JM1)2 · τ

)2
θ0 ((JM1)2 · z, (JM1)2 · τ)2 = θ9(z, τ)2

θ0(z, τ)2 .

Hence, we need to compute θ[a;b](z, τ) for a 6= 0. The approach used in [Dup06] for theta-
constants is to use explicit formulas linking the

(
θ[a;b](0, τ)

)
to the

(
θ[0;b](0, τ)

)
. Instead, we use

the approach of [ET14a], which is simpler and more generalizable. The τ -duplication formulas
(Equation (2.2.1)) allow us to compute θ[a;b](z, 2τ) from the fundamental thetas, and we then
compute λ and τ corresponding to the quotients at 2τ , instead of the ones corresponding to the
same quotients at τ . This still gives two numbers that are a simple function of z and τ , which
is all we need to use Newton’s method.

Defining F so that it is locally invertible, in order to use Newton’s method, requires some
care. In genus 1 (Chapter 6), we simply compute z and τ , which gives a C2 → C2 function;
however in higher genus this approach leads to a function from C2g+1−2 to Cg(g+3)/2, and we
cannot apply Newton’s method to recover the quotients of thetas. In genus 2, the function is
from C6 to C5; there are two ways to work around the issue:

128 Chapter 7. Computing the Riemann theta function in genus 2 and above

1. A natural idea would be to add an extra equation, which would be the equation of a variety
which the thetas lie on. For instance, we can take the equation of the Kummer surface,
as described in [Gau07] (see Section 2.6.4), which links the fundamental theta functions
and theta-constants. Evaluating this equation with x = a = 1 and (y, z, t, b, c, d) equal
to the inputs of F gives one more complex number, which makes F from C6 to C6; this
sixth complex number would be 0 if the inputs were exact quotients of squares of θ, hence
Newton’s method should strive to make it 0. This approach, however, does not appear to
be easily generalizable to higher genus.

2. An approach which actually works just as well is to define F so that it outputs a few values
of λ and µ computed by different means, instead of z, τ . In our case, we modify the λ, µ
slightly, so that

F

(
θ1(z, τ)2

θ0(z, τ)2 ,
θ2(z, τ)2

θ0(z, τ)2 ,
θ3(z, τ)2

θ0(z, τ)2 ,
θ1(0, τ)2

θ0(0, τ)2 ,
θ2(0, τ)2

θ0(0, τ)2 ,
θ3(0, τ)2

θ0(0, τ)2

)
=
(
eiπ

z2
1

τ11 , eiπ
z2

2
τ22 , eiπ

z2
1τ2+z2

2τ1−2z1z2τ3
det(τ) , τ1, τ2, τ

2
3 − τ1τ2

)
.

We use here the second approach, since it can be generalized to higher genera.
Our function F is defined in Algorithm 18, using a formulation in terms of quotients of theta

functions to make things clearer. The calculations involved are valid for any 6-uple of complex
numbers, and a complete description is easy to obtain; we show it in Algorithm 19.

Algorithm 18 Compute F
(
θ2

1
θ2

0
(z, τ), θ

2
2
θ2

0
(z, τ), θ

2
3
θ2

0
(z, τ), θ

2
1
θ2

0
(0, τ), θ

2
2
θ2

0
(0, τ), θ

2
3
θ2

0
(0, τ)

)
with absolute

precision P .
Input:

(
θ2

1
θ2

0
(z, τ), θ

2
2
θ2

0
(z, τ), θ

2
3
θ2

0
(z, τ), θ

2
1
θ2

0
(0, τ), θ

2
2
θ2

0
(0, τ), θ

2
3
θ2

0
(0, τ)

)
with absolute precision P .

Evaluate G at
(

1, θ
2
1
θ2

0
(z, τ), θ

2
2
θ2

0
(z, τ), θ

2
3
θ2

0
(z, τ), 1, θ

2
1
θ2

0
(0, τ), θ

2
2
θ2

0
(0, τ), θ

2
3
θ2

0
(0, τ)

)
to recover

λ = 1
θ0(z,τ)2 and µ = 1

θ0(0,τ)2 .
Compute θ0,1,2,3(z, τ), θ0,1,2,3(0, τ), using a low-precision approximation of θ(z, τ) for the sign.
Compute the θi(z, 2τ)2, θi(0, 2τ)2 using Equation (2.2.1).
Compute λ1, µ1 = G

(
1, θ

2
9
θ2

8
(z, 2τ), θ

2
0
θ2

8
(z, 2τ), θ

2
1
θ2

8
(z, 2τ), 1, θ

2
9
θ2

8
(0, 2τ), θ

2
0
θ2

8
(0, 2τ), θ

2
1
θ2

8
(0, 2τ)

)
.

Compute λ2, µ2 = G
(

1, θ
2
0
θ2

4
(z, 2τ), θ

2
6
θ2

4
(z, 2τ), θ

2
2
θ2

4
(z, 2τ), 1, θ

2
0
θ2

4
(0, 2τ), θ

2
6
θ2

4
(0, 2τ), θ

2
2
θ2

4
(0, 2τ)

)
.

Compute λ3, µ3 = G
(

1, θ
2
8
θ2

0
(z, 2τ), θ

2
4
θ2

0
(z, 2τ), θ

2
12
θ2

0
(z, 2τ), 1, θ

2
8
θ2

0
(0, 2τ), θ

2
4
θ2

0
(0, 2τ), θ

2
12
θ2

0
(0, 2τ)

)
.

µ1 ← θ2
8(0, 2τ)/µ1, µ2 ← θ2

4/µ2, µ3 ← θ2
0/µ3.

return
(
µ1θ

2
8(z, 2τ)/λ1, µ2θ

2
4/λ2, µ3θ

2
0/λ3, µ1, µ2, µ3

)
We conjecture the following, which holds in practice:

Conjecture 7.2.6. The Jacobian of F system is invertible.

As described in Corollary 0.3.8, applying Newton’s method allows us to compute an approx-
imation of θ with precision p − δ, where δ is a small constant, from an approximation with
precision p/2. Instead of computing the Jacobian exactly, we compute an approximation of ∂Fi∂xj

with precision p using finite differences, i.e. Fi(x+εj)−Fi(x)
||εj || , for εj a perturbation of 2−p on the

j-th coordinate; this does not modify the result of Corollary 0.3.8, but may require to increase

7.2. The algorithm 129

Algorithm 19 Computation of F(a1,2,3, b1,2,3) with absolute precision P .
Input: a1,2,3, b1,2,3 ∈ C6, and a pair z, τ ∈ C2 ×H2, with absolute precision P .
We assume that a1,2,3, b1,2,3 are approximations to

(
θ2

1,2,3
θ2

0
(z, τ), θ

2
1,2,3
θ2

0
(0, τ)

)
to some constant

base precision. These coarse estimates serve as a guide to choose the correct signs of square
roots.
1: (λ0, µ0)← G(1, a1,2,3, 1, b1,2,3), using (z, τ) to inform the choices of sign.
2: x0 ← 1

λ0
, y0 ← 1

µ0
.

3: x1,2,3 ← a1,2,3 × x0, y1,2,3 ← b1,2,3 × y0.
4: for i = 0 to 3 do
5: x0,1,2,3 ← ±

√
x0,1,2,3, using a low-precision approximation of θi(z, τ) for the sign.

6: y0,1,2,3 ← ±
√
y0,1,2,3, using a low-precision approximation of θi(0, τ) for the sign.

7: end for
8: for i = 4 to 15 do
9: b← i (mod 4), a = i−b

4 .
10: xi ← 1

4
∑3
j=0(−1)a·jxb⊕jyj .

11: yi ← 1
4
∑3
j=0(−1)a·jyb⊕jyj .

12: end for
13: (λ1, µ1)← G

(
1, x9,0,1

x8
, 1, y9,0,1

y8

)
, using ((JM1)2 · z, (JM1)2 ·2τ) to inform the choices of sign.

14: (λ2, µ2)← G
(

1, x0,6,2
x4

, 1, y0,6,2
y4

)
, using ((JM2)2 · z, (JM2)2 ·2τ) to inform the choices of sign.

15: (λ3, µ3) ← G
(

1, x8,4,12
x0

, 1, y8,4,12
y0

)
, using ((JM3)2 · z, (JM3)2 · 2τ) to inform the choices of

sign.
16: µ1 ← y8

µ1
, µ2 ← y4

µ2
, µ3 ← y0

µ3
.

17: return
(
µ1x8
λ1

, µ2x4
λ2

, µ3x0
λ3

, µ1/2, µ2/2, µ3/4
)

130 Chapter 7. Computing the Riemann theta function in genus 2 and above

δ. We prove in the next section that computing F with precision p costs O(M(p) log p) for any
arguments; this implies that applying one step of Newton’s method costs O(M(p) log p). Thus,
as in [Dup06, ET14a] or Chapter 6, we can compute an approximation of θ with precision P0
using the naive algorithm, then use Newton’s method to refine it into a value of θ with preci-
sion P provided P0 is large enough (as in Theorem 0.3.7). The total cost of this algorithm is
O(M(P) logP).
Remark 7.2.7. Note that the complexity of this algorithm depends on z, τ . However, one could
build an algorithm with complexity uniform in z, τ using the same techniques as the ones we
showed in genus 1 (Algorithm 11 or Algorithm 15). Namely, one uses the naive algorithm
(Algorithm 9) for P ≤ c Im(τ1,1); recall that we noted at the end of Section 5.2.2 that the
complexity was then uniform, as in genus 1. If P ≥ c Im(τ1,1), one uses τ -duplication formulas
and z-duplication formulas so that the previous algorithm is called for z, τ in a compact. We
leave the precise analysis of such an algorithm to future work.

7.2.3 Proof of quasi-optimal time
Theorem 7.2.8. One can compute G(a(0)

0,1,2,3, b
(0)
0,1,2,3) = (λ, µ) with precision P with complexity

O(M(P) logP) operations, assuming the choice of signs is always good.

The result if the arguments are
(
λθ2

0,1,2,3(z, τ), µθ2
0,1,2,3(0, τ)

)
is merely a consequence of the

quadratic convergence of (θ(z, 2kτ))k∈N; however we need to prove the result for any arguments
to apply it to the computation of the Jacobian. The proof is very similar to the proofs in
Section 6.2.4.

Proof. By Lemma 7.2.2, we have 0 < c ≤ |a(n)
i |, |b

(n)
i | ≤ C for any i, for n large enough (inde-

pendent of P). The sequence dn = maxi,j |b(n)
i − b(n)

j | converges quadratically to zero [Dup06,
Prop. 7.1]. So µ can be computed in time O(M(P) logP).

Now let A > 0 and n1 be large enough so that dn+1 ≤ Ad2
n for all n ≥ n1, and additionally

that dn1 <
1

2A . This implies dn ≤ 1
A2−2n−n1 for any n ≥ n1. The |a(n)

i − a(n)
j | can be linked to

dn. For instance, for any n ≥ n1 we have

|a(n+1)
0 − a(n+1)

1 | = |m1s1 +m3s3|
2 ≤ 2C(|s1|+ |s3|) (using notations of Prop. 7.2.3)

≤ 4C(|
√
b0 −

√
b1|+ |

√
b2 −

√
b3|)

≤ 4C(
√
|
√
b0 −

√
b1|2 +

√
|
√
b2 −

√
b3|2)

≤ 4C(
√
|
√
b0 −

√
b1||
√
b0 +

√
b1|+

√
|
√
b2 −

√
b3||
√
b2 +

√
b3|)

≤ 4C(
√
|b0 − b1|+

√
|b2 − b3|)

≤ 8C
√
dn.

Calculus also shows that

|a(n+1)
0 −

√
a

(n)
0 b

(n)
0 | =

1
8

∣∣∣∣∣
3∑
i=1

(√ai −
√
a0)
(√

bi +
√
b0

)
+ (√ai +√a0)

(√
bi −

√
b0

)∣∣∣∣∣
≤ K

√
dn for some explicit constant K.

Superscripts (n) have been omitted from the right-hand sides above for brevity. For both in-
equalities, we used the fact that choices of roots are good.

7.3. Implementation results 131

We now show that λn = (a(n)
0 /b

(n)
0)2n converges quadratically. Let qn = (a(n+1)

0 /b
(n+1)
0)2

a
(n)
0 /b

(n)
0

, so
that λn+1 = λnq

2n
n .

It is relatively easy to check that |qn+1−1| is also bounded by K ′
√
dn for an explicit constant

K ′, given the bounds established above, as well as the inequality |µ− b(n+m)
0 | ≤ 2

A (Aη)2m , which
is proven as follows:

|b(n+m+1)
0 − b(n+m)

0 | ≤ dn+m since b(n+m+1)
0 is the arithmetic mean of the b(n+m)

j

|b(n+m+l)
0 − b(n+m)

0 | ≤
l−1∑
i=0

dn+m+i ≤
1
A

l−1∑
i=0

(Aη)2i+m ≤ 2
A

(Aη)2m .

It follows, from an unsurprising calculation similar to that of Theorem 6.2.13, that the sequence
λn also converges quadratically. This concludes the proof that only a logarithmic number of
steps are needed to compute the values taken by G, and hence by F, to precision P .

7.3 Implementation results
Our Magma implementation of Algorithm 9 and our quasi-linear time algorithm is at

http://www.hlabrande.fr/pubs/fastthetasgenus2.m
We compared with Magma’s general-purpose Theta function. Assuming the latter computes

each term by exponentiation, its complexity would be O(M(P)P logP). However, practice
reveals it behaves much worse. Table 7.1 show that for precision above 1 000 decimal digits our
algorithm, which outputs 8 values, is faster than one call to Magma’s Theta function, which
only computes θ(z, τ). Furthermore, it is also faster than Algorithm 9 for precisions greater than
3 000 decimal digits. This cut-off is much lower than in genus 1, which is expected since the
complexity of the naive algorithm is O(M(P)

√
P) in genus 1 and O(M(P)P) in genus 2. Our

results are consistent with the situation for theta constants, studied in [ET14a]11

Prec (decimal digits) Magma Algorithm 9 This work
1000 0.42 0.38 0.38
2000 2.58 1.86 1.86
4000 18.4 9.51 6.65
8000 128 53.9 13.2
16000 889 303 25
32000 6368 1535 50
64000 46566 8798 120

Table 7.1: Timings (in s) of different methods

7.4 Computing theta functions of higher genera
This section outlines ideas for extending the previous strategy to the case g > 2. The complexity
of such an algorithm will certainly be exponential (or worse) in g; we do not make any attempt
at lowering this complexity, and in fact we do not even evaluate it fully. However, the complexity
in P would still be O(M(P) logP), which is desirable.

11Compared to [ET14a], we compute more, and we do it in Magma, not in C. Hence the slower timings.

http://www.hlabrande.fr/pubs/fastthetasgenus2.m

132 Chapter 7. Computing the Riemann theta function in genus 2 and above

7.4.1 The function F

We use once again the τ -duplication formula (Equation (2.2.1)) where a = 0:

θi(z, 2τ)2 = 1
2g

∑
k∈{0,...,2g−1}

θi⊕k(z, τ)θk(0, τ), (7.4.1)

where ⊕ is the bitwise XOR. This gives us a function

F : C2g+1
→ C2g+1((

θ[0;b](z, τ)
)
,
(
θ[0;b](0, τ)

))
7→

((
θ[0;b](z, 2τ)

)
,
(
θ[0;b](0, 2τ)

))
.

Just like in genus 2, we solve the problem of determining the correct square root by using low-
precision approximations of θ, which only require a number of terms and a precision that are
independent of P . Furthermore, Proposition 2.1.9 proves that limn→∞ θ[0;b](z, 2nτ) = 1, which
shows that, after a finite number of steps, correct choices of sign correspond to good choices of
sign, i.e. the ones corresponding to Re

(√
ai√
aj

)
> 0.

The Karatsuba-like trick we used in Proposition 7.2.3 can be generalized here for the eval-
uation of F . Sums involving bitwise XORs as the one in Equation (2.2.1) are called dyadic
convolutions in [Mak75], which also gives an algorithm to compute them with an optimal num-
ber of multiplications. The method is exactly the one we used in Proposition 7.2.3, using this
time Hg = H⊗ · · · ⊗H (g times). This means we only need 2g+1 multiplications, instead of the
22g+1 multiplications that appear in the definition of F .

7.4.2 Extending the quasi-linear time algorithm

Iterates of F

We then define the sequence of iterates of F as:(
a

(n+1)
0 , . . . , a

(n+1)
2g−1] , b

(n+1)
0 , . . . , b

(n+1)
2g−1

)
= F

(
a

(n)
0 , . . . , a

(n)
2g−1], b

(n)
0 , . . . , b

(n)
2g−1

)
and we denote F∞(a(0)

0 , . . . , a
(0)
2g−1, b

(0)
0 , . . . , b

(0)
2g−1) as the limit of this sequence.

Note that the choice of signs in this sequence are taken to correspond to the correct choices of
signs with respect to values θi(z, 2nτ). Hence, by definition, we have F

(
θ2

0,...,2g−1(z, τ), θ2
0,...,2g−1

)
=

1, since the choices are always chosen to be correct. Furthemore, Proposition 2.1.9 proves that
there is only a finite number of bad choices of signs. Finally, note that the operations on the b(n)

i

are exactly those of the Borchardt mean; Theorem 3.4.6 then proves that the convergence of the
b
(n)
i is quadratic.

The following generalizes Lemma 7.2.2; its proof is essentially the same.

Lemma 7.4.1. Let
(
a

(0)
0,...,2g−1, b

(0)
0,...,2g−1

)
∈ C2g+1 , and define a(n)

i , b
(n)
i for all n > 0 as pre-

viously. Assume that there exists α, β ∈ C∗ and n0 ∈ N such that Re(a(n0)
i /α) > 0 and

Re(b(n0)
i /β) > 0 for all i ∈ {0, . . . , 2g − 1}. Then there exists positive real constants c, C

such that assuming all choices of square roots from iteration n0 onwards are good, we have
∀n ≥ n0, ∀i ∈ {0, . . . , 2g − 1}, c ≤ |a(n)

i |, |b
(n)
i | < C.

7.4. Computing theta functions of higher genera 133

Homogeneity

We take a look at how the sequence of iterates of F behaves with respect to homogeneity. The
following proposition is a straightforward generalization of Propositions 6.2.8 and 7.2.5

Proposition 7.4.2. Let(
(a(n)
i)0≤i≤2g−1, (b(n)

i)0≤i≤2g−1

)
= Fn

((
θ[0;b](z, τ)2)

b∈ 1
2Zg/Zg

,
(
θ[0;b](0, τ)2)

b∈ 1
2Zg/Zg

)
,(

(a′i
(n))0≤i≤2g−1, (b′i

(n))0≤i≤2g−1

)
= Fn

(
λ
(
θ[0;b](z, τ)2)

b∈ 1
2Zg/Zg

, µ
(
θ[0;b](0, τ)2)

b∈ 1
2Zg/Zg

)
.

Then we have a′0
(n) = εnλ

1/2nµ1−1/2na
(n)
0 (where ε2

n

n = 1), and b′0
(n) = µb

(n)
0 , and we can

compute λ, µ as µ = limn→∞ b′0
(n) and λ = limn→∞

(
a′0

(n)

b′0
(n)

)2n

× µ.

Call G the function which computes λ, µ with precision P by applying the formulas above;
by definition, we then have

G

(
1, θ

2
1(z, τ)
θ2

0(z, τ) , . . . ,
θ2

2g−1(z, τ)
θ2

0(z, τ) , 1, θ
2
1(0, τ)
θ2

0(0, τ) , . . . ,
θ2

2g−1(0, τ)
θ2

0(0, τ)

)
=
(

1
θ2

0(z, τ) ,
1

θ2
0(0, τ)

)
. (7.4.2)

Once again, the a(n)
i do not necessarily converge quadratically (for instance, take a(n)

i = 2).
However, note that µ can be computed in O(logP) steps, since the Borchardt mean converges
quadratically. We then propose the following conjecture:

Conjecture 7.4.3. If all the choices of sign are good, λ and µ can be computed with absolute
precision P using only O(logP) iterations of F .

We proved this conjecture in genus 1 (Theorem 6.2.13) and in genus 2 (Theorem 7.2.8). We
believe that the proof carries to genus g, using Lemma 7.4.1; however, due to the technical
nature of the proof, we were unable to generalize it in a rigourous and satisfying manner. This
conjecture means that G can be evaluated in O(2gM(P) logP) operations.

Defining F

We now wish to define F, a function which can be evaluated in complexity quasi-linear in the
precision, which takes simple values at arguments which are quotients of fundamental theta
functions and of theta constants, and which can be inverted.

As we mentioned in genus 2 (Section 7.2.2), Newton’s method cannot be applied as straight-
forwardly as in genus 1. We are considering 2g−1 quotients θ

2
i (z,τ)
θ2

0(z,τ) of fundamental theta-functions
and as many quotients of fundamental theta-constants, while there are only g coordinates in z
and g(g+1)

2 in τ . Hence, using G to compute the zi and τi,j is not a process which can be inverted
using Newton’s method, as it leads to a function from C2g+1−2 to Cg(g+3)/2.

We considered two possible workarounds in the genus 2 case. The first one was to take a
look at the equations defining the variety defined by the theta functions and the theta-constants,
such as the Kummer variety in genus 2; however, we are not aware of an explicit description of
these equations in genus g. The other possibility is simpler, and we believe that it still yields to
a correct algorithm, which we express in a conjecture:

Conjecture 7.4.4. There is a set of 2g − 1 matrices M0, . . . ,M2g−1 of Sp2g(Z), containing I2g,
such that, if we write

θ0(0,Mi · τ)2 = µiθni(0, τ)2, θ0(Mi · z,Mi · τ)2 = µiλiθni(z, τ)2

134 Chapter 7. Computing the Riemann theta function in genus 2 and above

and we define the function F : C22g−2 → C22g−2 as in Algorithm 20, then the Jacobian of F at(
θ2

1,...,2g−1(z,τ)
θ2

0(z,τ) ,
θ2

1,...,2g−1(0,τ)
θ2

0(0,τ)

)
is invertible.

Algorithm 20 Compute F
(
θ1,...,2g−1(z,τ)2

θ0(z,τ)2 ,
θ1,...,2g−1(0,τ)2

θ0(0,τ)2

)
with precision P .

Input:
(
θ1,...,2g−1(z,τ)2

θ0(z,τ)2 ,
θ1,...,2g−1(0,τ)2

θ0(0,τ)2

)
with absolute precision P .

1: Compute λ0 = 1
θ0(z,τ)2 ,

1
θ0(0,τ)2 = G

(
1, θ1,...,2g−1(z,τ)2

θ0(z,τ)2 , 1, θ1,...,2g−1(0,τ)2

θ0(0,τ)2

)
.

2: Compute the individual θi(z, τ), θi(z, τ) for i ∈ {0, ..., 2g − 1}.
3: Use Equation (2.2.1) to compute θi(z, 2τ)2, θi(0, 2τ)2 for i ∈ {0, ..., 22g − 1}.
4: for i = 1 to 2g − 1 do
5: Compute λi, µi = G

(
1, θ1,...,2g−1(Mi·z,Mi·2τ)2

θ0(Mi·z,Mi·2τ)2 , 1, θ1,...,2g−1(0,Mi·2τ)2

θ0(0,Mi·2τ)2

)
6: end for
7: return (λ0, . . . , λ2g−1, µ0, . . . , µ2g−1).

In genus 2, Conjecture 7.2.6 is simply that the set {(JM1)2, (JM2)2, (JM2)2} is the one
needed in Conjecture 7.4.4.

The final algorithm

Conjecture 7.4.4 simply expresses that there is a set of symplectic matrices such that considering
their action on quotients of theta-constants yields a function on which Newton’s method can be
applied. Furthermore, note that the shape of λi, µi is given by Theorem 2.4.4, and that they are
simple functions of z and τ .

Hence, provided that the conjecture is true, one can simply compute the λi, µi at full precision,
compute a low-precision approximation of the fundamental theta functions and theta constants,
then refine this approximation using Newton’s method on F. The total complexity of this method
is the same as the complexity of evaluating F at full precision, since Newton’s method (when
doubling the working precision at each step) does not add any asymptotic complexity. The
complexity of the evaluation of F is O(4gM(P) logP) bit operations. Although this is exponential
in the genus g, this is quasi-linear in the precision P ; hence, as it was the case between genus 1
and 2, we expect the precision for which our algorithm is better than a naive approach to be
smaller as the genus grows.
Remark 7.4.5. A similar algorithm can be constructed to compute the theta-constants. In this
case, the function G is simply the Borchardt mean, which converges quadratically and is homo-
geneous. However, there is still the problem of determining symplectic matrices so that one can
apply Newton’s method to the function which outputs the corresponding set of µi, which is also
unresolved.

We were able to write a prototype implementation for the computation of genus 3 theta-
constants using this method. In that particular case, there are 7 quotients θ2

i

θ2
0
(0, τ), while there

are 6 coefficients for τ : this requires adding one equation to the output, just as in the case
of θ(z, τ) in genus 2 (Section 7.2.2). To solve this problem, we considered the action of the 6
symplectic matrices (JM1)2, (JM2)2, (JM3)2, (JM1,2)2, (JM1,3)2, (JM2,3)2 as defined by Dupont
(see e.g. Section 8.3.1), along with the action of the matrix J; the 7 µi one gets are not easily
linked together, which may justify why the Jacobian of the system appears to be invertible,
although we still do not have any proof of this invertibility.

7.4. Computing theta functions of higher genera 135

Preliminary results confirm that the method appears to work, and that the Jacobian appears
to be invertible. The algorithm appears to be much faster than the naive algorithm for precisions
greater than 450 decimal digits, and is also much faster than Magma’s Theta. The implemen-
tation has been made available publicly; however, a more thorough analysis of the algorithm is
still needed at this point.

136 Chapter 7. Computing the Riemann theta function in genus 2 and above

Chapter 8

Fast computation of the
Abel-Jacobi map and its inverse

in genus 1, 2 and above

This chapter uses the algorithms of Chapter 6 and Chapter 7 to compute the Abel-Jacobi map.
We show that the Abel-Jacobi map can be computed in quasi-optimal time in genus g; as for
its inverse, its computation of quasi-linear time requires the existence of a quasi-linear time
algorithm for θ, which means solving the problems outlined in Section 7.4.

8.1 In genus 1
We first show in this section how to compute the inverse of the Abel-Jacobi map, as doing so
establishes a result one can use for the computation of the Abel-Jacobi map. Computing the
inverse of the Abel-Jacobi map requires solving two problems: computing the equation of the
curve given the periods, and computing the image of points by the inverse map. The latter
problem can be solved using a formula linking between ℘ and θ; we compare the resulting
algorithm to our algorithm using Landen transform to compute ℘ (Algorithm 6). The last
subsection shows how to compute the Abel-Jacobi map, and in particular shows an algorithm
which uses the link between ℘ and θ.

8.1.1 Computing the equation of the curve

Suppose that we have an elliptic curve E = C/Λ in its analytic representation, with Λ =
Zω1 + Zω2. We put τ = ω2/ω1 and suppose that Im(τ) > 0. We would like to compute two
complex numbers a, b such that E is isomorphic to the curve defined by y2 = 4x3 − ax− b.

The equation of the curve is given by the differential equation satisfied by ℘ (Proposi-
tion 1.3.18):

Theorem 8.1.1. For all ω1, ω2 ∈ C, the Weierstrass-℘ function satisfies the differential equation

℘′(z, [ω1, ω2])2 = 4℘(z, [ω1, ω2])3 − g2℘(z, [ω1, ω2])− g3

137

138 Chapter 8. Fast computation of Abel-Jacobi

where

g2 = 60G4(τ) = 60× 2ζ(4)
ω4

1
E4(τ) = 1

12

(
2π
ω1

)4
E4(τ)

g3 = 140G6(τ) = 140× 2ζ(6)
ω6

1
E6(τ) = 1

216

(
2π
ω1

)6
E6(τ),

and where
E4(τ) =

∑
ω∈Z+τZ,ω 6=0

1
ω4 , E6(τ) =

∑
ω∈Z+τZ,ω 6=0

1
ω6

are the normalized Eisenstein series of weight 2 and 3.
The computation of such Eisenstein series can be done using their expansion as Lambert

series; we study such expansions in Section 8.4. For now, we just mention the expansions for E4
and E6 (see, e.g., [Coh93, Prop. 7.4.1]):

E4(τ) = 1 + 240
∑
n≥1

n3qn

1− qn , E6(τ) = 1− 504
∑
n≥1

n5qn

1− qn

The terms of those series are eventually decreasing to zero in a geometric fashion, which means
computing E4 and E6 with precision P using those expansions requires O(P) terms and a final
complexity of O(M(P)P) bit operations. We refer to Section 8.4 for a more thorough analysis.

We now show how to evaluate g2, g3 (and hence E4, E6) with precision P in quasi-optimal
time O(M(P) logP), using connections with theta-constants. Recall the Thomae formulas (The-
orem 1.3.19), which link theta-constants and the polynomial defining the elliptic curve:
Theorem 8.1.2. Let P = 4X3 − g2X − g3 = 4(X − e1)(X − e2)(X − e3). Then

e1 − e2 =
(
π

ω1

)2
θ4

0(0, τ), e1 − e3 =
(
π

ω1

)2
θ4

1(0, τ), e3 − e2 =
(
π

ω1

)2
θ4

2(0, τ)

We showed in Chapter 6 (Algorithm 11) a way to compute theta-constants in O(M(P) logP)
bit operations. We then use the following proposition to compute g2 and g3:
Proposition 8.1.3. We have:

g2 = 2
3

(
π

ω1

)4
(θ0(0, τ)8 + θ1(0, τ)8 + θ2(0, τ)8)

g3 = 4
27

(
π

ω1

)6
(θ0(0, τ)4 + θ1(0, τ)4)(θ0(0, τ)4 + θ2(0, τ)4)(θ1(0, τ)4 − θ2(0, τ)4)

We digress briefly to discuss other formulas for g2 and g3 found in the literature. Note that
the first formula is rather well-known and appears in many references; for instance it corresponds
to the theta function linked to the lattice E8, and a proof using this fact can be found in [CS93,
Prop. 8.1, Chapter 4]. The second formula is not mentioned in that form as often; we derived it
from similar-looking formulas in [Cle80], and it is implicit in [AS64] (one just needs to combine
Equations 18.10.9 to 18.10.11 with Equation 18.10.16). Other formulas for g3 are sometimes
given, such as:

g3 = 4
27

(
π

ω1

)6√ (θ0(0, τ)8 + θ1(0, τ)8 + θ2(0, τ)8)3 − 54(θ0(0, τ)θ1(0, τ)θ2(0, τ))8

2

= 1
63

(
π

ω1

)6(
θ2(0, τ)12 − 3

2θ2(0, τ)8θ0(0, τ)4 − 3
2θ2(0, τ)4θ0(0, τ)8 + θ0(0, τ)12

)

8.1. In genus 1 139

These formulas can be proven, for instance, by looking at the first few coefficients of the Laurent
series and showing that they agree, and thus that the difference between the functions is an elliptic
holomorphic function which is 0 at 012. The first one is usually derived from the expression of
the discriminant of the curve ∆, as a function of theta-constants using Thomae’s formulas (see
e.g [Cha85, p.34 and proof of Cor. 1 of Theorem 5, Chap V]) and the equation ∆ = g3

2 − 27g2
3 .

The formula of Proposition 8.1.3 is simpler, as one does not need to extract a square root (and
hence worrying about picking the right sign) and requires fewer multiplications.

Proof of Prop. 8.1.3. We prove the proposition using relations between the coefficients of a poly-
nomial and its roots:

e1 + e2 + e3 = 0, e1e2e3 = g3

4 , e1e2 + e1e3 + e2e3 = −g2

4
Now,

e2
1 + e2

2 + e2
3 = (e1 + e2 + e3)2 − 2(e1e2 + e1e3 + e2e3) = g2

2
Hence : (e1 − e2)2 + (e1 − e3)2 + (e2 − e3)2 = 2(e2

1 + e2
2 + e2

3)− 2(e1e2 + e1e3 + e2e3) = 3g2

2
This proves the first formula. The second one is a consequence of e1 = −e2−e3 and so on, which
means

27e1e2e3 = (e1 − e2 + e1 − e3)(e1 − e2 + e3 − e2)(e1 − e3 + e2 − e3).

These formulas, combined with Algorithm 11, proves that one can compute the coefficients
g2, g3 of the equation of the algebraic representation of the elliptic curve with precision P with
only O(M(P) logP) bit operations. This also provides a O(M(P) logP) algorithm to compute
E4, E6. We show in Section 8.4 how this can be used to compute any E2k faster than with the
naive method.

8.1.2 Computing Weierstrass’s ℘ function using the θ function
Suppose that we have an elliptic curve E = C/(Zω1+Zω2). Given a z ∈ E, we would like to com-
pute its image Pz ∈ E(C) by the inverse of the Abel-Jacobi map. Recall that Proposition 1.3.18
proves that Pz = (℘(z, [ω1, ω2]), ℘′(z, [ω1, ω2])); hence, we are interested in this section in the
computation of ℘ and its derivative.

Some references (e.g. [Coh93, Section 7.4]) compute those quantities by using their series
expansion; an algorithm of Coquereaux et al. [CGL90] seems to claim a O(M(P)P) complexity,
by computing ℘ at z

2N (with N = O(P) for reasons of accuracy) using the series expansion,
then using N duplication formulas for ℘. We outlined in Section 4.3 an algorithm with com-
plexity O(M(P) logP) to compute ℘(z, τ). We provide another one here, based on the results
of Chapter 6.

The connection between ℘(z, τ) and θ(z, τ) is well-known: the formula allowing one to com-
pute ℘ from θ appears in numerous references, e.g. [Mum83, BM88]13. We show a proof of this
result, which is Theorem 8.1.4.

Adding to this, we prove Theorem 8.1.6, which gives a formula allowing the computation of
℘′ from the knowledge of θ. Combining both these theorems and the algorithm from Chapter 6
then show that the inverse of the Abel-Jacobi map can be computed in O(M(P) logP).

12Michael Somos, in a personal communication, indicated that many identities related to theta-constants and
Eisenstein series that he added to the OEIS were found this way.

13We find in [Coh93, p. 397] the recommendation to “use the formulas that link elliptic functions with the
[Weierstrass] σ function, since the latter are theta series and so can be computed efficiently”, which amounts to
the same proof.

140 Chapter 8. Fast computation of Abel-Jacobi

Theorem 8.1.4 ([Mum83, p. 26 & p. 73], [BM88]). Suppose E = C/Λ, with Λ = Zω1 + Zω2.
Define:

℘̃(z, τ) = 1
ω2

1
℘(z,Λ) = 1

z2 +
∑

ω∈Z+τZ

1
(z − ω)2 −

1
ω2

We then have:

℘̃(z, τ) = π2

3 (θ4
2(0, τ)− θ4

1(0, τ))− π2θ2
1(0, τ)θ2

2(0, τ)θ
2
0(z, τ)
θ2

3(z, τ) (8.1.1)

The explicit determination of the constant term (i.e. the one independent in z) is often left
to the reader; hence we present the full proof here.

Proof. We start from the equation [Mum83, p. 25]

℘̃(z, τ) = − d2

dz2 log θ3(z, τ) + c

This classical equation can be proven using the theory of elliptic functions, for instance by
outlining the connections between ℘, θ and the Weierstrass functions ζ and σ; we refer to
e.g. [Cha85, Sections IV.1, IV.2, V.1]. We then look at the addition formula (A10) of [Mum83,
p.26]:

θ3(x+ u, τ)θ3(x− u, τ)θ2
0(0, τ) = θ2

3(x, τ)θ2
0(u, τ)− θ2

0(x, τ)θ2
3(u, τ)

Some terms simplify using θ3(0, τ) = 0 and θ′0(0, τ) = 0, which are consequences of the parity of
these functions. This gives:

℘̃(z, τ) = c− θ′3(0, τ)2

θ0(0, τ)2 ×
θ0(z, τ)2

θ3(z, τ)2

where θ′3(0, τ) is the derivative in z of θ3(z, τ) in z = 0. We then use Jacobi’s derivative for-
mula [Mum83, p.64]:

θ′3(0, τ) = −πθ0(0, τ)θ1(0, τ)θ2(0, τ)
which means:

℘̃(z) = c− (−πθ0(0, τ)θ1(0, τ)θ2(0, τ))2

θ0(0)2 × θ0(z, τ)2

θ3(z, τ)2

= c− π2θ1(0, τ)2θ2(0, τ)2 × θ0(z, τ)2

θ3(z, τ)2 .

Note that the equation can also be rewritten as

℘(z, τ) = c− π2 exp(−2πiz)θ(1/2, τ)2θ(τ/2, τ)2 θ(z, τ)2

θ(z + (τ + 1)/2, τ)2 .

All that remains is determining c. We have θ
(1+τ

2 , τ
)

= θ3(0, τ) = 0 since θ3 is odd. This
means that c = ℘̃(τ+1

2) = ω2
1℘(ω1+ω2

2). Thomae’s formula gives(
π

ω1

)2
(θ4

2(0, τ)− θ4
1(0, τ)) = 2e3 − e1 − e2 = 3e3

since the sum of the roots is 0. Hence

c = ω2
1℘

(
ω1 + ω2

2

)
= π2

3 (θ4
2(0, τ)− θ4

1(0, τ)).

8.1. In genus 1 141

Note 1.3.16 showed that the value of ℘ is not changed after reduction of τ (so that τ ∈ F) and
z (so that 0 ≤ Im(z) < Im(τ)/2). Those are exactly the conditions we required in Algorithm 15
to compute θ. Hence, one can directly use the value of θ at reduced arguments to compute ℘,
without even needing to compute the exponential factor which appears in Proposition 2.1.7.
Remark 8.1.5. The algorithm we presented in Section 6 did not compute θ3(z, τ); however Equa-
tion (2.5.7) and the equation (cf. [Mum83, p. 22])

θ2
3(z, τ)θ2

0(0, τ) = θ2
1(z, τ)θ2

2(0, τ)− θ2
2(z, τ)θ2

1(0, τ)

can be combined to prove that

℘̃(z, τ) = π2

3 (θ4
2(0, τ) + θ4

1(0, τ))− π2θ2
1(0, τ)θ2

2(0, τ)θ
2
1(z, τ)θ2

1(0, τ) + θ2
2(z, τ)θ2

2(0, τ)
θ2

1(z, τ)θ2
2(0, τ)− θ2

2(z, τ)θ2
1(0, τ)

which only uses quantities that Algorithm 15 computes.
We now prove a second formula, linking this time ℘′ to θ. A similar formula providing this

link, which we were not aware of, seems to be already known [AS64, Equation 18.10.6]. The
formula is a bit different from ours, suggesting a different method or proof has been used; we do
not know of a proof for that formula.
Theorem 8.1.6.

℘̃′(z, τ) = −π3θ3
0(0, τ)θ3

1(0, τ)θ3
2(0, τ)θ3(2z, τ)

θ4
3(z, τ) (8.1.2)

Proof. We start from the relation ℘̃(z, τ) = c− θ′3(0,τ)2

θ0(0,τ)2 × θ0(z,τ)2

θ3(z,τ)2 , which we proved while proving
the previous theorem. Taking the derivative in z:

℘̃′(z, τ) = −θ
′
3(0, τ)2

θ0(0, τ)2 ×
2θ2

3(z, τ)θ′0(z, τ)θ0(z, τ)− 2θ2
0(z, τ)θ′3(z, τ)θ3(z)

θ4
3(z, τ)

Furthermore Equation (A10) in [Mum83, p.26] is:

θ3(x+ u, τ)θ3(x− u, τ)θ2
0(0, τ) = θ2

3(x, τ)θ2
0(u, τ)− θ2

0(x, τ)θ2
3(u, τ)

Take the derivative in u of the latter:
θ′3(x+u, τ)θ3(x−u, τ)θ2

0(0, τ)−θ3(x+u, τ)θ′3(x−u, τ)θ2
0(0, τ) = 2θ2

3(x, τ)θ′0(u, τ)θ0(u, τ)−2θ2
0(x, τ)θ′3(u, τ)θ3(u, τ)

Taking x = u = z, we notice that this right-hand side is the numerator which appears in the
derivative of ℘̃; hence we have:

℘̃′(z, τ) = −θ
′
3(0, τ)2

θ0(0, τ)2 ×
θ′3(2z, τ)θ3(0, τ)θ2

0(0, τ)− θ3(2z, τ)θ′3(0, τ)θ2
0(0, τ)

θ4
3(z)

Using the parity of θ3 and Jacobi’s formula finally gives:

℘̃′(z, τ) = −π3θ3
0(0, τ)θ3

1(0, τ)θ3
2(0, τ)θ3(2z, τ)

θ4
3(z, τ) .

This formula shows that one can compute ℘′ in the same running time as ℘, that is to say
O(M(P) logP). However, if one has already computed ℘(z,Λ) and g2, g3, it is more efficient to
use the differential equation satisfied by ℘:

℘′(z,Λ)2 = 4℘(z,Λ)3 − g2℘(z,Λ)− g3.

This gives ℘′(z,Λ)2 directly from the knowledge of ℘(z, τ). The correct sign for ℘′ can then
be determined by computing low-precision (e.g. 10 significant digits) approximations of θ, then
using the formula in Theorem 8.1.6 to compute a low-precision approximation of ℘′, which gives
the correct sign.

142 Chapter 8. Fast computation of Abel-Jacobi

8.1.3 Comparing methods for the computation of ℘
We compare here Algorithm 6, which computes ℘ using the Landen transform, and the algorithm
consisting in using Theorem 8.1.4 with Algorithm 15, which computes ℘ via θ. We discuss the
precision loss and compare timings.

Precision loss

Recall that we analyzed the precision loss in Algorithm 15, and showed how working with internal
precision 2P gave the value of θ up to 2−P . However, applying Equation (8.1.1) can cause a
potentially large loss of precision. For instance, the fact that θ3(z, τ) = 0 means that θ3 gets
arbitrarily close to 0 as z nears the corners of the fundamental parallelogram; and Theorem 0.3.3
shows that division causes a loss of absolute precision proportional to minus the logarithm of
the denominator (provided the number of bits lost is less than half of the total number of bits).
We make this more precise by determining an equivalent of θ3 near z = 0, using the product
expansion of θ (see e.g. [Mum83, Section 14, p. 69]) to show that:

θ3(z, τ) ∼ −2eiπτ/4 sin(πz) ∼ −2πeiπτ/4z.

Hence, we expect a loss of precision proportional to − log z. Similarly, if ω1 is small, computing
℘ from ℘̃ (cf. Theorem 8.1.4) causes a loss of precision proportional to the logarithm of |ω1|.
Hence, for the extreme case z = 2−P and ω1 = 2−P , we expect a loss of precision proportional
to P , which means one would need O(P) guard bits.

As for Algorithm 6, note that, because of Theorem 4.3.2, the algorithm could require com-
puting 1

sin2(z) for z ' 0, and 1
ω2

1
for ω1 ' 0. Hence, we expect the algorithm to also lose precision

for z close to 0 as well as for small ω1, which is very similar to the situation for Equation (8.1.1).
Again, at worst, we could have z = 2−P and ω1 = 2−P ; this tends to show that only O(P) guard
bits are needed. There may also be a loss of precision in the computation of a denominator in
the series, which could be in theory close to 0; however, the denominator is small only when
z ' ω2, and this condition is easily checked at the beginning of the algorithm: we assume we can
avoid this case easily. Overall, a more refined analysis would be needed to confirm the heuristics
on precision loss we outline here; one could think for example of looking at the precision loss
analysis of Miller’s algorithm for Bessel’s function [BZ10, p. 153], as they both rely on backwards
induction.

We performed experiments to attempt to compare the precision loss in both algorithms by
determining the precision lost in the cases mentioned above, i.e. z or ω1 small. Using Magma,
we attempted to compute ℘ (π2−t, [1, i]) with decimal precision P , then ℘ (π, [2−t, 2ti]), and
℘ (π2−t, [2−t, 2ti]). We determined the loss of precision by comparing the output of an algorithm
when run at precision P to the output of the same algorithm ran at a much larger precision. The
results are presented in Table 8.1; the computations were performed at precision 10000, and we
stopped at t = 4096 to avoid the computation of results with a minority of correct digits.

Given the results shown in Table 8.1, we formulate the following conjecture:

Conjecture 8.1.7. For z, ω1, ω2 known with absolute precision P , working with internal pre-
cision 2P (resp. 3P) in Algorithm 6 (resp. using Equation (8.1.1)) is enough to guarantee that
℘(z, [ω1, ω2]) is correct up to 2−P .

Hence, both Algorithm 6 and the algorithm which uses Equation (8.1.1) and Algorithm 15
have complexity O(M(P) logP), even when taking the precision loss into account.

8.1. In genus 1 143

t
℘ (π2−t, [1, i]) ℘ (π, [2−t, 2ti]) ℘ (π2−t, [2−t, 2ti])

Algorithm 6 Equation (8.1.1) Algorithm 6 Equation (8.1.1) Algorithm 6 Equation (8.1.1)
16 6 16 15 15 12 12
32 17 35 29 29 22 21
64 37 73 61 60 41 41
128 75 150 117 116 80 79
256 152 304 233 232 157 156
512 307 613 463 463 311 310
1024 615 1227 926 925 619 619
2048 1231 2462 1851 1850 1236 1235
4096 2464 4928 3702 3701 2469 2468

Table 8.1: Precision loss (in decimal digits) when computing ℘ (2−t, [1, i]).

Timings

We implemented Algorithm 6 in MAGMA, and we also write a MAGMA script which calls our
MPC implementation of Algorithm 15 and applies Equation (8.1.1). We then measured the
time taken by the computation of ℘(0.123456789 + 0.123465789i, [1, 0.23456789 + 1.23456789i])
at various precisions P , using internal precision of P (i.e. without attempting to compensate for
the potential precision loss by working at precision 2P or 3P). The time needed by Magma to
parse the results given by the MPC program implementing Algorithm 15 is not counted in the
running times.

This comparison is somewhat biased against Algorithm 6, as it is implemented in Magma
(which has more overhead than MPC) and we do not take into account the fact that the working
precision one needs to ensure a correct result up to 2−P is smaller for this algorithm than for the
other one. Regardless, the timings presented in Table 8.2 show that Algorithm 6 is faster than
the other method.

To introduce a point of comparison with currently used methods, we also measured timings of
the PARI/GP [The14] function ellwp, by calling ellwp([1, 0.23456789+1.23456789i], 0.123456789+
0.123465789i); we used PARI/GP because we did not find a function which would perform this
computation in MAGMA. The function performing the computation in the library is called
ellwpnum_all, and performs summation of the series described in [Coh93, Prop. 7.4.4]; this
seems to give a O(M(P)P) algorithm. As Pari is implemented in C, the comparison is once
again biased against our Magma implementation of Algorithm 6; however, this algorithm is still
faster than the Pari one, even if we were to use internal precision 2P to compensate the potential
loss of precision. It is likely that an implementation of Coqueraux et al.’s algorithm [CGL90]
would yield similar results, since its asymptotic complexity is also greater than the one of our
algorithms.

Remark 8.1.8. Both algorithms can be modified to compute n different values ℘(zk, [ω1, ω2]) faster
than by just applying the algorithm n times. Indeed, both algorithms require the computation
of theta-constants, which can then be cached and reused. However, the amount of computation
saved is hard to estimate, and we do not know which algorithm would end up being faster, as
we did not investigate this further.

144 Chapter 8. Fast computation of Abel-Jacobi

Prec (decimal digits) Algorithm 6 Equation (8.1.1) Pari’s ellwp
+ Algorithm 15

2000 0.01 0.03 0.15
4000 0.04 0.10 0.86
8000 0.11 0.29 4.82
16000 0.36 0.82 25.49
32000 1.1 2.20 135
64000 3.35 6.19 677
128000 10 16.7
256000 25.3 41.8
512000 61.5 103.5
1024000 155 243

Table 8.2: Timings (in s) of different methods to compute ℘.

8.1.4 Computing the Abel-Jacobi map
We now consider the problem of computing the Abel-Jacobi map, i.e. given a curve E(C) defined
with the equation y2 = x3 + ax+ b, compute:

• a lattice Λ ⊂ C such that E(C) ' C/Λ;

• for any Q = (x, y) ∈ E(C), its elliptic logarithm zQ.

Using the Landen isogeny

Both of these problems can be solved directly using the Landen isogeny, as we mentioned in
Chapter 4. The paper [BM88] gives relevant formulas, theorems, and algorithms in the case
where the roots of the polynomial 4x3 + ax+ b are real; the general case is explained in [CT13].
We briefly recall the methods outlined in Chapter 4 for the sake of completeness.

Recall that the Landen isogeny can be used to provide a change of variables in the elliptic
integrals that appear in the Abel-Jacobi maps – both to compute the periods (complete elliptic
integrals) and the elliptic logarithm (incomplete elliptic integrals). However, recall that the
Landen isogeny is defined using a certain numbering of the roots of the polynomial defining the
elliptic curve; one needs to pick the correct numbering (ultimately, the right square root) to see
the connection with quadratically convergent AGM sequences (e.g. optimal ones, in the sense
defined in Section 3.2) and get a sequence of elliptic integrals that is quadratically convergent.

This reduces the computation of the periods to the computation of optimal AGM sequences, as
per Theorem 4.2.12, while the computation of the elliptic logarithm is basically the computation
of an optimal AGM sequence while keeping track of the integration bounds (see Algorithm 5).
The cost of both methods is quasi-optimal, i.e. O(M(P) logP).

Dupont’s algorithm

Another algorithm, outlined in [Dup06, p. 195], computes τ associated to a given elliptic curve;
we discuss it here, also using [Sil86, p.50] to make the link with Thomae’s formulas explicit. This
algorithm generalizes well to higher genera (cf. Section 8.2 and Section 8.3).

Rewriting the equation defining E as y2 = (x − e1)(x − e2)(x − e3), we have that E is
isomorphic to a curve of the form

E′ : y2 = x(x− 1)(x− λ)

8.1. In genus 1 145

with λ 6= 0, 1: this is called the Legendre form. In fact, following the proof of [Sil86, p.50] shows
that

λ = e3 − e1

e2 − e1
.

However, note that this value of λ depends on a choice in the numbering of the roots of the
polynomial x3 + ax+ b. The values corresponding to the other numberings of the roots are{

λ,
1
λ
, 1− λ, 1

1− λ,
λ

λ− 1 ,
λ− 1
λ

}
.

In Section 4.2, the choice of a numbering of the roots determined the beginning of the short
chain of lattices (i.e. the lattices Λ2 ⊂ Λ1 ⊂ Λ0) or the first two isogenies of the isogeny chain.
Each of those led to different periods being computed, and in general led to a different value
of τ ; there are in general 6 different values of τ one can compute from the elliptic curve E.
The link between the 6 values of τ and the 6 values of λ is given by Thomae’s formulas (see
Theorem 1.3.19), which give λ = θ1(0,τ)4

θ0(0,τ)4 .
The algorithm then consists in the following steps:

1. Compute a low-precision approximation of τ corresponding to the curve using an algo-
rithm that evaluates complex integrals, such as Gaussian quadrature (such algorithms are
discussed e.g. in [Dup06, Section 9.2.1]);

2. Reduce τ so that it is in the fundamental domain;

3. Evaluate θ1(0,τ)4

θ0(0,τ)4 with low precision, then compare this value to λ in order to determine the
correct numbering of the roots: this gives a high-precision approximation of λ = θ1(0,τ)4

θ0(0,τ)4

with τ ∈ F ;

4. Use the fact that Re
(
θ1(0,τ)2

θ0(0,τ)2

)
≥ 0 (Theorem 6.2.6) to obtain θ1(0,τ)2

θ0(0,τ)2 with high precision;

5. Use the formula τ =
iAGM

(
1, θ1(0,τ)2

θ0(0,τ)2

)
AGM

(
1,
√

1− θ1(0,τ)4

θ0(0,τ)4

) , valid for τ in the fundamental domain, to recover

τ with high precision.

This algorithm runs in quasi-linear time. It requires two evaluations of the AGM and two square
root extractions; this is comparable to the algorithm for computing periods using the Landen
transform (Theorem 4.2.12), which requires 3 square roots but outputs ω1, ω2.

Computation of the elliptic logarithm

The previous algorithm exploited the explicit link between the curve equation and the theta-
constants, then used the AGM (in fact, the function fτ , on which Newton’s method is applied
in order to get the theta-constants) to compute τ . We show how a similar idea can be applied
to the computation of z, i.e. of the elliptic logarithm. This algorithm can also be generalized to
higher genera; see Section 8.2 and Section 8.3.

Let P = (x, y) ∈ E(C), and denote by z its elliptic logarithm. Theorem 8.1.4 shows that

x

ω2
1

= ℘(z, [ω1, ω2])
ω2

1
= π2

3 (θ4
2(0, τ)− θ4

1(0, τ))− π2θ2
1(0, τ)θ2

2(0, τ)θ
2
0(z, τ)
θ2

3(z, τ)

146 Chapter 8. Fast computation of Abel-Jacobi

Hence
θ2

3(z, τ)
θ2

0(z, τ) = π2θ2
1(0, τ)θ2

2(0, τ)
π2

3 (θ4
2(0, τ)− θ4

1(0, τ))− x/ω2
1

Furthermore, Equations (2.5.7) and (2.5.8) can be rewritten as

θ2
3(z, τ)
θ2

0(z, τ) = θ2
1(z, τ)
θ2

0(z, τ)
θ2

2(0, τ)
θ2

0(0, τ) −
θ2

2(z, τ)
θ2

0(z, τ)
θ2

1(0, τ)
θ2

0(0, τ)

1 = θ2
1(z, τ)
θ2

0(z, τ)
θ2

1(0, τ)
θ2

0(0, τ) + θ2
2(z, τ)
θ2

0(z, τ)
θ2

2(0, τ)
θ2

0(0, τ)

Solving this gives

θ2
1(z, τ)
θ2

0(z, τ) =
θ2

2(0,τ)
θ2

0(0,τ)
θ2

3(z,τ)
θ2

0(z,τ) + θ2
1(0,τ)
θ2

0(0,τ)
θ4

2(0,τ)
θ4

0(0,τ) + θ4
1(0,τ)
θ4

0(0,τ)

= θ2
2(0, τ)
θ2

0(0, τ)
θ2

3(z, τ)
θ2

0(z, τ) + θ2
1(0, τ)
θ2

0(0, τ)

θ2
2(z, τ)
θ2

0(z, τ) =
θ2

2(0,τ)
θ2

0(0,τ) −
θ2

1(0,τ)
θ2

0(0,τ)
θ2

3(z,τ)
θ2

0(z,τ)
θ4

2(0,τ)
θ4

0(0,τ) + θ4
1(0,τ)
θ4

0(0,τ)

= θ2
2(0, τ)
θ2

0(0, τ) −
θ2

1(0, τ)
θ2

0(0, τ)
θ2

3(z, τ)
θ2

0(z, τ)

We thus get the quotients θ2
1(z,τ)
θ2

0(z,τ) ; since the problem is to compute z, a natural idea is then to
apply the F function that we defined in Section 6.3.1 (Algorithm 13), which gives precisely this.
We summarize the algorithm in Algorithm 21.

Algorithm 21 Quasi-linear algorithm to compute the elliptic logarithm of P ∈ E(C) with
absolute precision P , using F.
Input: P ∈ E(C), τ = ω2

ω1
, with absolute precision P .

1: Compute ω1 using the AGM (Theorem 4.2.12).
2: Compute θ2

1(0,τ)
θ2

0(0,τ) , using e.g. the previous section for a cost of O(M(P)) operations.

3: Compute 1
θ2

0(0,τ) = AGM
(

1, θ
2
1(0,τ)
θ2

0(0,τ)

)
, and deduce θ2

0(0, τ), θ2
1(0, τ).

4: Compute θ2
2(0, τ) using Jacobi’s formula (Equation 2.5.6).

5: q3 ← π2θ2
1(0,τ)θ2

2(0,τ)
π2
3 (θ4

2(0,τ)−θ4
1(0,τ))−x/ω2

1

6: q1 ← θ2
2(0,τ)
θ2

0(0,τ)q3 + θ2
1(0,τ)
θ2

0(0,τ)

7: (z, τ)← F
(

1, q1, 1, θ
2
1(0,τ)
θ2

0(0,τ)

)
8: Compute a low-precision approximation of ℘′(z, [ω1, ω2]), using e.g. Theorem 8.1.6; if
℘′(z, [ω1, ω2]) = −y, set z ← −z.

9: return z.

The cost of this algorithm is roughly the cost of applying two AGMs, then applying F.
On the other hand, [CT13, Algorithm 28] (i.e. Algorithm 5 of Section 4.2.4) requires an Arctan
computation (performed using the AGM), as well as an extra inversion and square root extraction
(and a few multiplications) for every AGM iteration. We implemented Algorithm 21 and [CT13,
Algorithm 28] in MAGMA; some timings are presented in Table 8.3, and show that the method
presented in this section is slower than the method of [CT13] by a factor of roughly 2.5.

8.2. In genus 2 147

Prec (decimal digits) [CT13, Algorithm 28] Algorithm 21
(Algorithm 5 of Section 4.2.4)

2000 0.02 0.03
4000 0.03 0.06
8000 0.07 0.19
16000 0.24 0.56
32000 0.74 1.74
64000 2.7 5.3
128000 6 16
256000 15 39
512000 37 101
1024000 98 256

Table 8.3: Timings (in s) of different methods to compute the elliptic logarithm

8.2 In genus 2
Fast computation of the Abel-Jacobi map in genus 2 is attainable given the state of the art
and the algorithms presented in this manuscript. As for the computation of its inverse, we
proved in Chapter 7 that there was a O(M(P) logP) algorithm for the computation of θ(z, τ)
with precision P , provided Conjecture 7.2.6 holds; we show how one can use this, and obtain a
O(M(P) logP) algorithm under Conjecture 7.2.6.

8.2.1 Computing the Abel-Jacobi map
Going from the algebraic representation to the analytic representation involves computing periods
and computing the genus 2 hyperelliptic logarithm. This corresponds to the problem of evaluating
hyperelliptic integrals of the form ∫ y

x

dx√
P (x)

, degP = 6

This problem is discussed in the case where P has real roots in [BM88]: much as in the genus 1
case (see Chapter 4), there is a change of variables which corresponds to an isogeny between
hyperelliptic curves, and which is associated to quadratically convergent sequences. Hence, after
O(logP) steps, the integral can be evaluated easily, which gives a O(M(P) logP) algorithm
to compute complete integrals (and hence periods), and a similar one to compute incomplete
integrals (and hence the hyperelliptic logarithm). However, to the best of our knowledge, this
algorithm has not been generalized to the general case, unlike in genus 1 where [CT13] extended
the algorithms of [BM88] to the complex case.

An easier way could be to proceed as in Section 8.1.4. This method has the advantage of being
generalizable to higher genus; we outline the method here, and refer to the genus g algorithms
(Algorithm 22 and Algorithm 23) for the full method.

First of all, as described in [Dup06, Chapitre 9], one can compute the genus 2 periods by
computing theta-constants using Thomae’s formulas and the Borchardt mean, then applying
the Borchardt mean to appropriately chosen quotients; in fact, we can use the same ones as in
Section 7.2.2. As in genus 1, the ordering of the roots has its importance in Thomae’s formula,
but this does not affect the running time. This allows one to recover τ from the equation of the
curve in O(M(P) logP) provided theta-constants can be computed in this amount of time (i.e.

148 Chapter 8. Fast computation of Abel-Jacobi

provided the Jacobian of the system is invertible, which is covered by Conjecture 7.2.6). We
refer to [Dup06, Chapitre 9] for a more precise exposition of the algorithm in this case.

As for the computation of the hyperelliptic logarithm, we can use the work of Cosset [Cos11,
Chapter 5], which allows one to go from theta coordinates to Mumford coordinates, using explicit
formulas which are valid in any genus but require the computation of theta-constants. We can
thus retrieve the value of quotients of theta function corresponding to the Mumford coordinates
of the divisor, then apply the function F we defined in Section 7.2.2 to appropriately chosen
quotients, which allows us to compute λ1 and λ2, and in the end z. All in all, this gives
a O(M(P) logP) algorithm to compute the periods and the hyperelliptic logarithm, provided
Conjecture 7.2.6 holds.

8.2.2 Computing the inverse of the Abel-Jacobi map

Given the periods of the lattice representing the Jacobian, computing the coefficients of a hyper-
elliptic equation corresponding to the Jacobian seems feasible using Thomae’s formula, or, more
precisely, formulas derived from them sometimes called the “Umemura forumas” or the “reverse
Thomae formulas”; these formulas express quotients ak−ai

ak−aj as a function of the (squares of) theta
constants of characteristic 2 associated to the curve. We refer to [Mum84, IIIc] or [Cos11, The-
orem 3.1.20 and p.151] for a discussion of these formulas. In genus 2, it is possible to compute a
model of the curve in several different ways; see [CDSLY14] for a summary of these models. For
instance, the model outlined in [Gau07] or [Cos11] gives:

C : y2 = x(x− 1)(x− λ1)(x− λ2)(x− λ3)

with λ1 = θ2
0(0, τ)θ2

2(0, τ)
θ2

3(0, τ)θ2
1(0, τ) , λ2 = θ2

2(0, τ)θ2
12(0, τ)

θ2
1(0, τ)θ2

15(0, τ) , λ3 = θ2
0(0, τ)θ2

12(0, τ)
θ2

3(0, τ)θ2
15(0, τ)

Note that the denominators are never zero since, in genus 2, we have θi(0, τ) 6= 0 ⇔ θi is even,
which is true of θ1, θ3, θ15.

One can also, given a point z in the lattice corresponding to the Jacobian, compute the
Mumford coordinates of the divisor which corresponds to it by the Abel-Jacobi map. The method
is simply to evaluate the theta functions at z and τ , then use [Cos11, Chapter 5] to recover the
Mumford coordinates of the divisor. The evaluation of θ can be done in O(M(P) logP) , provided
Conjecture 7.2.6 holds; hence the inverse of the Abel-Jacobi map can be computed in quasi-linear
time under this conjecture.

8.3 Extending the strategy to higher genus

Finally, we give a brief outline of how one could extend the strategy to the computation of the
Abel-Jacobi map in genus g.

8.3.1 Computing the Abel-Jacobi map

We look at the problem of computing the period matrix τ and hyperelliptic logarithms of points
of a hyperelliptic curve given by an equation y2 = f(x). We follow and generalize the approach
of [Dup06, Section 9.2.3], using for instance the same matrices.

8.3. Extending the strategy to higher genus 149

Define J =
(

0 −Ig
Ig 0

)
∈ Sp2g(Z) and

Mj =
(
Ig δj,j
0 Ig

)
∈ Sp2g(Z), Mj,k =

(
Ig δj,k + δk,j
0 Ig

)
∈ Sp2g(Z)

then (JMj)2 =
(
−Ig −δj,j
δj,j δj,j − Ig

)
, (JMj,k)2 =

(
−Ig −δj,k − δk,j

δj,k + δk,j δj,j + δk,k − Ig

)
We then have by Theorem 2.4.4:

θ2
0
(
(JMj)2 · z, (JMj)2 · τ

)
= ζjτj,je

iπ(−1)g2z2
j /τj,jθ2

σj(0)(z, τ) (8.3.1)
θ2

0
(
(JMj,k)2 · z, (JMj)2 · τ

)
= ζj,k

(
τ2
j,k − τj,jτk,k

)
f(z, τ)θ2

σj,k(0)(z, τ)

with ζj and ζk are fourth roots of unity.
For z = 0 we find the equations of [Dup06, p. 202]:

θ2
0
(
0, (JMj)2 · τ

)
= ζjτj,jθ

2
σ(0)(0, τ)

θ2
0
(
0, (JMj,k)2 · τ

)
= ζj,k

(
τ2
j,k − τj,jτk,k

)
θ2
σ′(0)(0, τ).

These formulas allows one to recover the coefficients of τ following the algorithm presented
in [Dup06]. This is Algorithm 22, which computes the g(g+1)

2 coefficients of τ from the 2g − 1
quotients of squares of theta-constants.

Since the Borchardt mean converges quadratically, Algorithm 22 requires O(M(P) logP)
operations per coefficient.

Computing the hyperelliptic logarithm can be done using only Equation (8.3.1), i.e. the action
of (JMj)2 on the values of the theta functions. The algorithm is similar to the previous one; we
present it in Algorithm 23.

150 Chapter 8. Fast computation of Abel-Jacobi

Algorithm 22 Compute the period matrix τ associated to a hyperelliptic curve C of genus g.
Input: the equation of a curve C : y2 =

∏2g+2
i=1 (x − xi), and more precisely the roots xi with

absolute precision P .
Output: τ ∈ Hg with absolute precision P .
1: Compute τ with low precision (e.g. a few dozen bits) by evaluating the complete hyperelliptic

integral with low precision.
2: Use Thomae’s formulas (see [Cos11, Théorème 3.1.19] or [Mum84, Section 8]) to compute

the fourth powers of quotients of the squares of theta-constants associated to the curve.
3: Use the low-precision approximation of τ to extract the correct square root and compute(

θ1(0,τ)2

θ0(0,τ)2 , . . . ,
θ2g−1(0,τ)2

θ0(0,τ)2

)
.

4: Compute low-precision approximations of θi(0, 2kτ); use these to pick the correct sign
(the one corresponding to the values of theta-constants) in the Borchardt mean of(
θ1(0,τ)2

θ0(0,τ)2 , . . . ,
θ2g−1(0,τ)2

θ0(0,τ)2

)
. This gives 1

θ0(0,τ)2 .

5: For i = 1, . . . , 2g − 1, compute θ2
i (0, τ) = θ2

i (0,τ)
θ2

0(0,τ) × θ0(0, τ)2.
6: Use τ -duplication formulas to compute θ2

i (0, 2τ) for i > 2g − 1.
7: for j = 1...g do
8: Compute Bg

(
1,

θ2
σj(1)(0,2τ)
θ2
σj(0)(0,2τ) , . . . ,

θ2
σj(2g−1)(0,2τ)
θ2
σj(0)(0,2τ)

)
= 1

θ0(0,(JMj)2·2τ) ; retrieve τj,j .
9: end for
10: for j, k = 1...g do
11: Compute Bg

(
1,

θ2
σj,k(1)(0,2τ)
θ2
σj,k(0)(0,2τ) , . . . ,

θ2
σj,k(2g−1)(0,2τ)
θ2
σj,k(0)(0,2τ)

)
= 1

θ0(0,(JMj)2·2τ) ; retrieve τj,k.
12: end for
13: return τ .

8.3. Extending the strategy to higher genus 151

Algorithm 23 Compute the hyperelliptic logarithm of a divisor on a genus g hyperelliptic curve.
Input: the equation of a curve C : y2 =

∏2g+2
i=1 (x− xi), the Mumford coordinates of the divisor

D, the period matrix τ associated to C. All these quantities are with absolute precision P .
Output: z ∈ Cg with absolute precision P .
1: Compute the quotients of squares of theta-constants using Thomae’s formulas, as in Algo-

rithm 22.
2: Use these quotients and the formulas in [Cos11, Section 5.3] to compute the quotients of the

theta functions corresponding to D, and in particular
(
θ1(z,τ)2

θ0(z,τ)2 , . . . ,
θ2g−1(z,τ)2

θ0(z,τ)2

)
.

3: Compute z with low precision (e.g. a few dozen bits) by evaluating the incomplete hyperel-
liptic integral with low precision.

4: Compute low-precision approximations of θi(z, 2kτ); use these to pick the correct
sign (the one corresponding to the values of theta functions) in the computation of
G
(

1, θ1(z,τ)2

θ0(z,τ)2 , . . . ,
θ2g−1(z,τ)2

θ0(z,τ)2 , 1, θ1(0,τ)2

θ0(0,τ)2 , . . . ,
θ2g−1(0,τ)2

θ0(0,τ)2

)
. This gives 1

θ0(z,τ)2 .

5: For i = 1, . . . , 2g − 1, compute θ2
i (z, τ) = θ2

i (z,τ)
θ2

0(z,τ) × θ0(z, τ)2.
6: Use τ -duplication formulas to compute θ2

i (z, 2τ) for i > 2g − 1.
7: for j = 1...g do
8: Compute zj by computing G

(
1,
θ2
σj(1),...,σj(2g−1)

θ2
σj(0)

(z, 2τ), 1,
θ2
σj(1),...,σj(2g−1)

θ2
σj(0)

(0, 2τ)
)
, which gives

1
θ2

0((JMj)2·z,(JMj)2·2τ) .
9: end for

10: return z.

Theorem 8.3.1. The Abel-Jacobi map can be computed in O(M(P) logP) bit operations.

Proof. The complexity of the computation is dominated by the cost of evaluating G. Note that
G is always evaluated at quotients of theta functions, which means that the sequences a(n)

i

necessarily converge quadratically, and hence that the evaluation requires only O(M(P) logP)
bit operations. This means that each coefficient can be computed in O(M(P) logP).

8.3.2 Computing the inverse of the Abel-Jacobi map

Going from the analytical representation (points on the torus) to the algebraic representation
(Mumford coordinates of the corresponding divisor) can, once again, be done via the theta
functions; the formulas in [Cos11] allow one to compute Mumford coordinates from the theta
coordinates (i.e. values of quotients of theta functions). The problem thus reduces to that of
computing genus g theta functions. As we outlined in Section 7.4, the strategy which gives quasi-
linear time evaluation of theta functions in genus 1 and 2 may be generalizable to arbitrary genera,
but there are a few obstacles which prevent this generalization to be completely straightforward.

The first obstacle is that we need a proof that the G function can be evaluated in quasi-
linear time for any arguments. Note that, by the arguments of Proposition 2.1.9, the sequences
θ(z, 2kτ)2k converge quadratically, which means that G

(
1, θ

2
1,...,2g−1(z,τ)
θ2

0(z,τ) , 1, θ
2
1,...,2g−1(0,τ)
θ2

0(0,τ)

)
can be

evaluated in quasi-linear time. We simply need to prove that this running time holds for any
arguments, or at least for arguments which are at a distance ε from quotients of thetas; this is
needed to prove that the evaluation of the Jacobian matrix using finite differences can be done
in quasi-linear time. We think is a reasonable assumption to make, the biggest obstacle to a

152 Chapter 8. Fast computation of Abel-Jacobi

Genus Number of Number of
arguments of F pairs (λ, µ)

1 2 1 3
2 6 3 3
3 14 6 7

g 2g+1 − 2 g(g+1)
2 7

Table 8.4: Table highlighting the number of arguments F (and G) takes (i.e. the number of
quotients θ2

i

θ2
0
(z, τ), θ

2
i

θ2
0
(0, τ) of fundamental thetas), versus the number of λ, µ one can compute

with G by using the action of (JMj)2 and (JMj,k)2 on the quotients. If both numbers do not
match, one needs to consider the action of more matrices on the quotients.

proof being that our proof in genus 1 (Section 6.2.4) or 2 (Section 7.2.3) is very technical and
thus tricky to generalize to arbitrary genus.

The biggest obstacle is to manage to define a function F : C2g+1−2 → C2g+1−2 with an
invertible Jacobian from the function G such that Equation (7.4.2) holds. In genus 1 and 2, this
was achieved by computing the value of G at several different quotients, corresponding to the
value of fundamental theta functions under the action of different matrices: we considered the
action of S in genus 1, and the action of (JM1)2, (JM2)2 and (JM1,2)2 in genus 2. Note that we
did not manage to prove that this approach yielded invertible Jacobians in genus 2. In higher
genus, the approach of using the action of (JMj)2 and (JMj,k)2 to define F is not sufficient, as
highlighted by Table 8.4; we need to consider a larger set of matrices, so that the dimensions
match.

Another approach was to include the equations defining the theta variety to the parameters
on which Newton’s method should be applied – i.e. make the results output by F contain fi(X)
for each equation fi(X) = 0 defining the theta variety. For this method to be effective, one has
to find these equations explicitly; and once again, this does not appear to yield straighforwardly
a proof that the Jacobian is invertible.

Assuming these problems can be solved, we would get a O(M(P) logP) algorithm for the
computation of the inverse of the genus g Abel-Jacobi map.

8.4 Interlude: a faster algorithm to compute E2k(τ)
This section is unrelated to the rest of this thesis; however, it describes a result that does not
appear to be known yet. Recall the definition of the normalized Eisenstein series of weight 2k:

E2k(τ) = 1
2ζ(2k)

∑
ω∈Z+τZ
ω 6=0

1
ω2k

We look here at the problem of computing E2k(τ) for τ ∈ F with absolute precision P .

8.4.1 Naive algorithm for the Eisenstein series
Putting q = eiπτ , we can start from the expression of Eisenstein series as a function of the
divisor function (see e.g. [Mum83, Section 15] or [Cha85, Section VI.2]) and rewrite the sum as

8.4. Interlude: a faster algorithm to compute E2k(τ) 153

a Lambert series (e.g. [AS64, Section 24.3.3]). This yields:

E2k(τ) = 1 + 2
ζ(1− 2k)

∑
n≥0

n2k−1q2n

1− q2n

A naive algorithm to compute E2k(τ) with absolute precision P is to evaluate ζ(1− 2k) and the
series with sufficient precision.

Note that ζ(1− 2k) = −B2k
2k , and

2k
B2k

∼ (πe)2k

2
√
πk2k−1/2 .

This estimate will be useful later.
As for the series, we write

|
∑
n≥B

n2k−1q2n

1− q2n | ≤
∑
n≥B

n2k−1|q|2n

|1− q2n|

≤
∑
n≥B

n2k−1|q|2n

1− |q|2n ≤
1

1− |q|2B
∑
n≥B

n2k−1|q|2n

≤ 2
∑
n≥B

e(2k−1) logn−2nπ Im(τ)

For τ, k fixed, the function f : n 7→ 2
ζ(1−2k)n

2k−1|q|2n is at first increasing, then decreases to 0.
We look at its derivative:

(2k − 1)n2k−2|q|2n − n2k−12 Im(τ)π|q|2n = 0⇔ (2k − 1) = n2 Im(τ)π

Put N0 = 2k−1
2π Im(τ) ; then f is increasing when n < N0, and decreasing for n > N0. Its maximal

value is then

f(N0) = 8k
B2k

e
(2k−1)(log

(
2k−1

2π Im(τ)

)
−1)

≤ e2k log(π)+2k+2 log 2− 1
2 logπ−(2k−1/2) log k+(2k−1) log(k/π Im(τ))

≤ e2k−(2k−1) log(Im(τ)) ≤ e(2−
√

3)k

if we suppose that τ ∈ F . This also means that, in order for the result to be accurate up to
2−P , we need to work with O(P + k)-bit numbers, to take into account the maximal size of the
integral part and the precision loss.

The convergence of the sequence (f(n))n∈N is somewhat geometric; the ratio rule gives

|q|2
(

1 + 1
n

)2k−1
→n→∞ |q|2 < 1

Suppose that (f(n))n>N0 decreases in a geometric fashion, of a factor |q|2 for each term (which
is better than what happens in practice). We can then estimate the number of terms needed
before f(n) ≤ 2−P : the function rises for n < N0, then decreases to 1, then decreases to 2−P .
This means that f(n) ≤ 2−P for

n = O(N0 + log(f(N0))/ Im(τ) + P/ Im(τ)) = O

(
k
(1
π + 2−

√
3
)

Im(τ) + P

Im(τ)

)
= O

(
P + k

Im(τ)

)

154 Chapter 8. Fast computation of Abel-Jacobi

We can actually bound the size of the remainder of the series by bounding the ratio between
two terms. We use

(1 + 1/n)k = ek log(1+1/n) ≤ ek/n ≤ ek/B

and put x = |q|2e(2k−1)/B , so that

|
∑
n≥B

n2k−1q2n

1− q2n | ≤
1

1− |q|2B
∑
n≥B

n2k−1|q|2n

≤ B2k−1|q|2B

1− |q|2B (1 + x+ x2 + ...)

≤ B2k−1|q|2B

1− |q|2B
1

1− x

We can suppose that B > 2N0 = 2k−1
π Im(τ) , which means that x ≤ |q|. Since e−t−1 = −t+ t2

2!−... ≥
−t, we have 1

1−x ≤
1

1−|q| ≤ 1.08, since we suppose that τ ∈ F . Hence

2
ζ(1− 2k) |

∑
n≥B

n2k−1q2n

1− q2n | ≤ 2f(B)

We can then put everything together:

Approximate E2k(τ) up to 2−P ⇐ 2
|ζ(1− 2k)| |

∑
n≥B

n2k−1q2n

1− q2n | ≤ 2−P

⇐ f(B) ≤ 2−P−1

⇐ B = O

(
P + k

Im(τ)

)
.

The total cost of the method breaks down as follows: compute B2k, then compute the first
B terms of the series. Recall that we need to work with numbers of size O(P + k) bits in order
to get a result that is accurate to 2−P ; hence, each multiplication has a cost of O(M(P + k)).
We estimate the cost of each of those steps.

Computing the Bernoulli numbers

Note that the Bernoulli numbers B2k are fractions with numerator and denominators of size
O(k log k). Hence, we do not need to work with O(P + k)-bit approximations of those numbers:
it is more efficient (provided P � k log k) to compute the numerator and denominators, using
operations on numbers of size O(k log k) (e.g. with integral part of maximal size 2k log k and
fractional part of maximal size 2k log k), then compute a P -bit approximation of the fraction (if
needed) with simply a division, of cost O(M(P + k)).

The first way to compute B2k is to use the techniques described in [BZ10, Section 4.7.2].
The scaled Bernoulli numbers C2k = B2k

(2k)! can be evaluated with absolute precision P using a
recurrence relation [BZ10, Eq. 4.60], for a cost of O(M(P + log k)k2) bit operations; here, this
gives a cost of O(M(k log k)k2) bit operations. Recovering the B2k then requires the evaluation
of a factorial, which only takes O(k) multiplications of numbers of maximal size O(k log k) (using
the well-known equivalent log k! ' k log k); this step has negligible cost. The number of guard
bits one must take to compensate this multiplication by a factorial is O(k log k); this still gives
a final cost of O(M(k log k)k2) = O(k3+ε).

8.4. Interlude: a faster algorithm to compute E2k(τ) 155

An improvement over this algorithm is outlined in [BH13] (or alternatively in [BZ10, Exer-
cise 4.41]); it uses an equality between the generating function for Bernoulli numbers and the
power series corresponding to x

ex−1 , then uses fast algorithms on power series to compute the
first k terms of the generating function. The cost of this method is O(k2 log2+ε k) = O(k2+ε) bit
operations.

Finally, we note that Harvey gave in [Har14] an algorithm which has the currently best
running time to recover B2k; the algorithm requires O(k4/3+ε) bit operations to compute a
single B2k.

Note that the first (resp. the second) method actually computes the B2k
(2k)! (resp.

B2k
k!) for all

k′ ≤ k. Hence, given that we likely compute factorials using an iterative algorithm, we can easily
transform these methods in an algorithm that computes B2k′ for k′ ≤ k in the same amount
of time. This gives, for the second method, an amortized cost of O(k1+ε), which is better than
using the algorithm [Har14].

Computing the terms of the series

We can compute qn inductively, and hence the computation of each q2n

1−q2n costs only O(M(P+k))
bit operations. However, the computation of n2k−1 is more costly: it requires O(k) multiplica-
tions with a naive method, or O(log k) multiplications with fast exponentiation. Furthermore,
the multiplication n2k−1 × q2n

1−q2n induces a loss of precision, since n2k−1 is large; for the result
to still be accurate to 2−P , we need O(k logB) = O

(
k log

(
P

Im(τ)

))
guard bits. Hence, the

computation of each term of the series requires O(M
(
P + k log

(
P

Im(τ)

))
log k) bit operations.

Total cost

Hence, the total cost of the naive algorithm to compute E2k(τ) with absolute precision P is

O

(
M
(
P + k log

(
P

Im(τ)

))(
P + k

Im(τ)

)
log k + k4/3+ε

)
= O

(
(P + k)2+ε log k

)
.

8.4.2 An algorithm based on the coefficients of the series expansion of
℘

We now show a faster algorithm to compute E2k(τ) with high precision, based on the link between
the Laurent series expansion of ℘ and the values E2k. We have:

Theorem 8.4.1 ([Sil86, Theorem VI.3.5, p. 169]). Write

℘(z) = 1
z2 +

∞∑
n=0

bnz
2n

Then we have
bn = (2n+ 1)

∑
ω∈L

1
ω2n+2 = 2n+ 1

2ζ(2n)E2n+2(τ)

Furthermore, there is an algorithm to compute bn knowing g2 and g3, the coefficients in the
differential equation of ℘:

156 Chapter 8. Fast computation of Abel-Jacobi

Theorem 8.4.2 ([BMSS08, Theorem 1]). There is an algorithm that computes the first n coeffi-
cients of the Laurent series of ℘ from the knowledge of g2, g3; this algorithm performs O(M(n))
operations.

Section 8.1.1 shows how to compute g2, g3 from the theta-constants; Chapter 6 gives an algo-
rithm for theta-constants which complexity is O(M(P) logP). Hence, it is possible to compute
the first k coefficients of the Laurent series of ℘ with precision P in O(M(P) logP +M(k)).

As for the computation of ζ(2k), one can use for instance the FEE method of Karatsuba; as
described in [Kar95], one value of ζ(2k) can be computed with precision P in O(M(P) log2 P) =
O(P 1+ε). However, we were not able to determine the dependency in k. A possibly better way
would be to use the connection with Bernoulli numbers

ζ(2k) = (−1)k+1(2π)2k

2(2k)! B2k

then use the results mentioned in Section 8.4.1: this gives a O(kM(P) + k4/3+ε) algorithm to
compute one value of ζ(2k), and a O(kM(P) + k2+ε) algorithm to compute all values ζ(2k′) for
k′ ≤ k (which is useful in order to recover all E2k′ from the first k coefficients of the Laurent series
of ℘). If we assume that P is larger than k, or even than k log k, this gives a O(M(P)(logP +k))
algorithm for either task.

In the end, we propose Algorithm 24, which condenses two algorithms: one to compute only
E2k(τ), another one to compute E2k′(τ) for all k′ ≤ k.

Algorithm 24 Compute Eisenstein series with absolute precision P .
Input: k ∈ N, τ ∈ F with absolute precision P .
Output: E2k(τ) up to 2−P [respectively E2k′(τ) up to 2−P for all k′ ≤ k].
1: Compute θ0(0, τ), θ1(0, τ), θ2(0, τ) using Algorithm 11.
2: Compute g2, g3 using Proposition 8.1.3.
3: Compute the first k coefficients of the Laurent series of ℘ using the algorithm of [BMSS08].
4: Compute ζ(2k), using [Har14] [respectively, compute all ζ(2k′) for k′ ≤ k using [BH13]].
5: Return E2k(τ) [respectively, return E2k′(τ) for k′ ≤ k].

If one uses this algorithm to compute one value of E2k(τ), the running time one can achieve
is O(M(P)(logP +M(k)) + k4/3+ε); if it is used to compute all values E2k′(τ) for k′ ≤ k, its
running time is O(M(P)(logP +M(k)) + k2+ε).

8.4.3 Comparison
We assume that τ ∈ F , and distinguish whether we want to compute one value E2k(τ) of the
Eisenstein series, or all the values E2k′(τ), k′ ≤ k. Since both algorithms require the computation
of Bernoulli numbers B2k with precision P , we do not include the complexity of computing
them in those running times, so that only the core running times are compared; recall (see
Section 8.4.1) that computing one Bernoulli number costs O(M(P) + k4/3+ε), while computing
the first k Bernoulli numbers costs O(M(P)k + k2+ε).

Computing one value

The naive algorithm is able to compute one value E2k(τ) with precision P using

O

(
M
(
P + k log

(
P

Im(τ)

))(
P + k

Im(τ)

)
log k

)
= O

(
(P + k)2+ε log k

)

8.4. Interlude: a faster algorithm to compute E2k(τ) 157

bit operations. Our algorithm can output this value using

O(M(P)(logP +M(k))) = O(P 1+εk1+ε)

bit operations, which is a better asymptotic complexity in most cases.

Computing all the values

Our algorithm computes all E2k′(τ), k′ ≤ k in time

O(M(P)(logP +M(k)) = O(P 1+εk1+ε)

As for the naive algorithm, computing each of the k series requires to compute all of the
n2k′−1, which means one should use the naive, iterative powering algorithm. Hence, the naive
algorithm can compute all E2k′(τ), k′ ≤ k in time

O

(
M
(
P + k log

(
P

Im(τ)

))(
P + k

Im(τ)

)
k

)
= O

(
(P + k)2+εk

)
.

In both cases, our algorithm outperforms asymptotically the naive algorithm. We leave the
implementation of both algorithms and their comparison for future work.

158 Chapter 8. Fast computation of Abel-Jacobi

Chapter 9

Computing isogenous curves in
genus 1

Let E be an elliptic curve defined over a field K and given in short Weierstrass form, i.e.

E/K : y2 = x3 + ax+ b.

Suppose we are also given a point Q of `-torsion. We then look at Problem 1.1.16 – that is to
say, we want to find an `-isogenous curve E′ and an `-isogeny φ : E → E′ such that φ(Q) = 0.
As we explained in Chapter 1, any isogeny can be written as the composition of isogenies of
prime degree; hence, we only consider here `-isogenies with ` prime. Recall that we proved in
Section 1.1.3 that, in the case of Weierstrass curves, the shape of our isogeny is

φ(x, y) =
(
N(x)
D(x) , y

(
N(x)
D(x)

)′)

with degN = `,degD = `− 1.
Note that this problem is already solved by the use of Vélu’s formulas [Vél71]. In this chapter,

we outline a different algorithm to solve this problem. The algorithm works on curves defined
over C, or over a number field, or over Fp; it uses the evaluation of the Abel-Jacobi map for
complex elliptic curves, which the previous chapter showed has quasi-linear complexity.

The asymptotic complexity of the algorithm is worse than that of Vélu’s formulas, and is
also slower in practice. However, this algorithm is still interesting because it is generalizable to
curves of higher genera. More precisely, the fact that the Abel-Jacobi map could potentially
be computed in quasi-linear running time in higher genus (cf. Chapter 8) could be used to
generalize this algorithm into one which solves this problem in genus g, at least for jacobians of
curves defined over C or K.

9.1 Computing isogenous curves over C
We start by giving an algorithm which solves the problem for elliptic curves defined over C
which is different from the one stemming from Vélu’s formulas [Vél71], and has worse overall
complexity. We assume we are given a point Q ∈ E[`], which generates the kernel of the isogeny.
We want to compute the equation of the isogenous curve, as well as the expression of the isogeny
as a rational function.

159

160 Chapter 9. Computing isogenous curves in genus 1

Recall that, in the case of short Weierstrass forms, we have [BMSS08]:

φ(x, y) =
(
N(x)
D(x) , y

(
N(x)
D(x)

)′)

with degN = `,degD = ` − 1. This means one only needs to compute the rational function
giving the x-coordinate of the isogeny; doing so entails significant savings (by a constant factor)
in the algorithm.

The strategy we follow is that of an evaluation-interpolation; more precisely, we wish to take
advantage of the fact that the isogeny between tori is easy to compute, using the quasi-optimal
algorithms to go from the curve to the torus and back. This can be summarized with the diagram:

C/Λ → C/Λ′

↑ ↓
E/C E′/C

9.1.1 Determining the isogenous curve
The first step of the algorithm is to determine the equation of the isogenous curve we are looking
for. For this, we adopt the following strategy: we compute the periods using the AGM (as in
Chapter 4), then use the elliptic logarithm of P to compute the isogenous periods, and finally
we compute the coefficients of the isogenous curve as in Section 8.1.1.

Computing the isogenous periods is done as follows. There are ` + 1 possibilities for the
period lattice; they are given by the lattices:

{Zω1 + Zω′2, ω′2 = ω2

`
+ k

ω1

`
(0 ≤ k ≤ l − 1)} ∪ {Zω1

`
+ Zω2}

The isogenous period lattice corresponds to one for which the elliptic logarithm of Q is mapped
to 0, since Q generates Kerφ. Hence, we first compute the elliptic logarithm of Q using the
algorithm of [CT13]; this gives us a point aω1+bω2

` . We then have to determine which of the `+ 1
lattices contains the elliptic logarithm of Q. The procedure is as follows:

• if b = 0, the lattice Zω1
` + Zω2 is the one we want;

• if not, the point aω1+bω2
` × (b−1 (mod `)) is the elliptic logarithm of a point in Kerφ, and

hence also generates Kerφ, so the lattice Zω1 + Z
(
ω2
` + (ab−1 (mod `))ω1

`

)
is the one we

want.

9.1.2 Evaluating the isogeny
Once again, the strategy is to travel through the analytic representation of the elliptic curve
in order to evaluate the isogeny at 2` points, so that we can retrieve the rational function via
interpolation. For this, we compute the elliptic logarithm (see Chapter 4) of 2` points, determine
the image of those logarithms in the isogenous torus, then find the image point on the isogenous
curve that we are looking for. Finally, we use rational function interpolation to compute the
isogeny; note that we do not need to compute ℘′ nor the y-coordinate of the isogenous curve,
which saves a constant factor.

Recall that we outlined two algorithms to compute ℘(z,Λ) in quasi-optimal time: the first
one, based on the fast computation of θ, was presented in this chapter (Section 8.1.2, and
more precisely Note 8.1.5); the second one, based on the Landen transform, was presented in

9.1. Computing isogenous curves over C 161

Section 4.3. As outlined in Section 8.1.3, the second algorithm is around twice faster than the
first one; both require working at precision O(P) to compensate rounding errors, which are
especially large when z is close to the corners of the parallelogram. However, note that we are
free to pick the 2` points aribitrarily, discarding problematic points if need be. This would limit
precision losses, and we could then potentially reduce the working precision in the algorithm for
℘, thus gaining a constant factor; on the other hand, throwing away each “bad” z means wasting
an elliptic logarithm computation, which introduces a potential slowdown.

We implemented a version of the Landen-based algorithm in Magma which reuses computa-
tions of the θ0,1,2(0, 2kτ)2, which amounts to a batched version of the algorithm (as described in
Note 4.3.1); the theta-constants are computed by our MPC implementation of Algorithm 11. A
further speedup could be obtained by writing the full algorithm in MPC. We did not implement
the batched versions of the algorithms for θ(z, τ) which are described in Section 6.5; however,
we believe that the first algorithm with batched computations of θ would still be slower that the
batched Landen-based algorithm, at least for the precisions we are considering here.

Determining the image in the other parallelogram

The method to reduce z modulo Λ′ is simple. Even though ℘(z,Λ′) = ℘(z mod Λ′,Λ′), we
still need to reduce z since our algorithm for ℘ depends on computing θ(z, τ), and the bounds
and the running time we showed in Chapter 6 require that z is reduced. The reduction we
have in mind is not the one in the fundamental parallelogram, but rather the reduction in
[−ω1/2, ω1/2]× [−ω2/2, ω2/2].

The reduction is performed by determining the coordinates of z ∈ C with respect to the
periods (ω′1, ω′2) of the isogenous lattice. The technique is the same as the one described in
Note 2.3.1; write

(z, z) = (x, y)
(
ω′1 ω′1
ω′2 ω′2

)
with x, y ∈ R, which we can compute easily by inverting the 2 × 2 matrix. We then subtract
bxeω′1 + byeω′2 to z to get the result.

Interpolation

We use Cauchy interpolation [VZGG13, p.119] to recover the rational fraction; that is to say,
given n equations f(ui) = vi and a parameter k, solve the problem

t(ui) 6= 0 and r(ui)
t(ui)

= vi ∀i ∈ {0, ..., n}, with deg r < k, deg t ≤ n− k

Here, given the shape of the isogeny (given in Note 1.1.15), we have k = `+ 1 and n = `+ 1 +
2 `−1

2 = 2`; hence, the image of 2` points are needed to interpolate the correct rational fraction.
Note here that using the general equation giving the shape of an isogeny (Note 1.1.15) instead
would require to interpolate the y-coordinate of the isogeny, which requires 3` points instead,
and a second Cauchy interpolation.

The outline of this algorithm is as follows. We first find a polynomial g of the right degree
that interpolates those values, then we compute an extended GCD to solve the problem r ≡ tg
(mod m) where m = (x − u0)...(x − un−1); to be more precise, we run an extended GCD
algorithm on m and g, and we interrupt the algorithm when the GCD we get is of degree < k.
The coefficient multiplying g is t, and the GCD is r; we have a solution if gcd(r, t) = 1. We refer
to [VZGG13, p.119] for details.

162 Chapter 9. Computing isogenous curves in genus 1

The complexity of this algorithm depends on the complexity of the computation of the GCD
of polynomials. We find in [VZGG13, p.313] that, if polynomials are of degree n, the complexity
is O(M(n) logn) field operations. In our case, those operations are multiplications of precision
P , and n = O(`); we find a running time of

O(M(P)M(`) log `)

bit operations.

9.1.3 Description of the algorithm and complexity

We summarize the final algorithm in Algorithm 25.

Algorithm 25 Compute an `-isogenous curve and an isogeny with a given kernel, over C.
Input: E(C) : y2 = x3 + ax+ b (with a, b ∈ C), Q ∈ E[`].
Output: E′(C) : y2 = x3 + a′x + b′ (with a′, b′ ∈ C), `-isogenous to E; the rational function
defining the `-isogeny φ : E → E′ such that φ(Q) = 0.
1: Compute the periods ω1, ω2 ∈ C corresponding to E.
2: Compute the elliptic logarithm of Q, i.e. z ∈ C/(Zω1 + Zω2).
3: Determine the periods ω′1, ω′2 ∈ C of the isogenous curve (Section 9.1.1).
4: Compute the coefficients a′, b′ of E′ using theta-constants (Section 8.1.1)
5: for k = 1 to 2` do
6: Take a point Pk ∈ E – for instance, Pk = (k,

√
k3 + ak + b).

7: Compute the elliptic logarithm zk of Pk.
8: Compute z′k, the image of zk by the isogeny (Section 9.1.2).
9: Compute ℘(z′k, [ω′1, ω′2]), the x-coordinate of the corresponding point (Section 8.1.3).
10: end for
11: Use rational function interpolation (Section 9.1.2) to recover g(x)

h(x)2 .

12: Return E′ and φ : (x, y) 7→
(

g(x)
h(x)2 , y

(
g(x)
h(x)2

)′)
.

Proposition 9.1.1. Assuming ` � P , Algorithm 25 has a complexity of O(M(P)(` logP +
M(`) log `)) = O(M(P) logPM(`) log `).

Proof. Steps 7 and 9, i.e. the computation of the Abel-Jacobi map and its inverse, each cost
O(M(P) logP); hence Steps 5 to 10 cost O(`M(P) logP). Step 11 costs O(M(P)M(`) log `).
All the other steps have negligible cost.

We described in Chapter 1 a few algorithms used to compute isogenies, noting that their
asymptotic cost was roughly O(M(P)M(`) log `) – which is just the running time of the rational
function interpolation in our method. Hence, our algorithm does not provide a better running
time; in fact, since `� P , it is much slower, because of the logP factor.

We provide a few timings for our algorithm. Since Magma does not suppose Vélu’s formulas
over C, we were not able to get such timings for comparison with our algorithm; however, it is
clear that such a comparison would show that Vélu’s formulas are much faster than our algorithm.

9.2. Computing isogenous curves over a number field 163

` P Time (s)
11 357 1.5
11 380 1.7
11 720 3.1
11 907 3.8
17 1113 4
23 2037 152

9.2 Computing isogenous curves over a number field
We now outline a method to compute an isogeny between two curves defined over a number field
K of degree n, using the method described in the previous section. Once again, we summarize
the algorithm with the diagram

C/Λ → C/Λ′

↑ ↓
E/C E′/C
↑↑↑ ↓↓↓

E/K E′/K

The algorithm consists in computing the curves that are images of E by all the embeddings of
K in C, then use the previous algorithm to compute an isogenous curve over C; we then use
interpolation to compute the isogeny over K, using continued fractions to recognize the rational
numbers. This will be outlined in Algorithm 26.

One important issue in the algorithm is the precision at which we wish to work in C; this
has a big impact on the overall complexity of the algorithm. Unfortunately, we do not have a
definite answer to this question, which we mention in Section 9.2.5.

9.2.1 Computing embeddings
The first step of the algorithm is to compute every embedding of the number field in C, with
sufficient precision, in order to apply the previous section; we will then combine all the complex
isogenies we obtain to find the isogeny over K. We discuss the complexity of this step.

Root-finding methods

There are a wealth of methods dedicated to computing complex approximations of roots of
polynomials; this problem is a fundamental problem in analysis. We refer the reader to [MP13]
for an overview of a great number of methods, from methods using companion matrices to those
based on Newton’s iterations. We assume that (at the cost of computing gcd(f, f ′) with high
enough precision) we are trying to compute the roots with precision P of a polynomial f of
degree n.

An interesting family of algorithms is the splitting methods. The concept is to first perform
a crude splitting of the complex plane, determining regions of C that contain some, but not
all, of the roots of f ; this can be used to determine factors of the polynomial, and we can
apply the procedure recursively. Note that, at some point in the algorithm, it is faster to refine
the approximation of the roots using Newton’s method than to continue with this strategy. A
notable algorithm following this pattern is the splitting circle method, designed by Schönhage in
1982 [Sch82]. It claims a complexity of O(n3 logn + n2P) up to logarithmic factors. The same

164 Chapter 9. Computing isogenous curves in genus 1

concept was used and refined by Pan [Pan01], which claims a quasi-optimal bit complexity of
O(n log2 n(log2 n+ logP)M(P)) to find all the roots.

We do not know if this algorithm has been implemented anywhere; [Pan01] notes that it
would be quite challenging. However, note that Schönhage’s algorithm has been implemented
in Magma by Xavier Gourdon; an in-depth discussion of the implementation of Schönhage’s
algorithm can be found in his thesis [Gou96]. Regardless, we assume that one can use Pan’s
complexity of O(n log2 n(log2 n+ logP)M(P)).

Total complexity

The complexity estimates in Pan’s algorithm assume that the roots of the polynomial have norm
bounded by 1, since several classical scaling techniques allow one to reduce the general problem
to this particular case. Hence, in order to get a final result accurate up to 2−P , we need to
compute such roots with absolute precision P + s, where s is the maximum size of the roots
of our polynomial. In all generality, Rouché’s theorem shows that the norm of any root of the
polynomial is bounded by 1 + max|ai| (where ai are the coefficients of the polynomial).

Hence, the complexity of computing all embeddings of K in C is

O(n log2 n(log2 n+ log(P + log(1 + max|ai|)))M(P + log(1 + max|ai|)))

If we assume that max|ai| = O(2P), i.e. that the coefficients of the polynomial defining K can
be stored with absolute precision P in O(P) bits, the complexity becomes

O(n log2 n(log2 n+ logP)M(P))

9.2.2 Using complex conjugation
The following result is not very hard to prove, but is nonetheless important for an efficient
implementation.

Proposition 9.2.1. Let K = Q[X]/(f) with f ∈ Z[X], and let α ∈ C \ R be a root of f . Let
QK be an `-torsion point of E(K). Denote Eα (resp. Qα) the image of EK (resp QK) by the
embedding X 7→ α; let E′α be the `-isogenous curve over C such that the isogeny φα : Eα → E′α
is such that Kerφα =< Pα >.
Then Eα is `-isogenous to E′α and the isogeny φα is such that Kerφα =< Pα >.
That is to say, the coefficients of the curves we obtain when using the embedding X → α are the
complex conjugates of the coefficients of the curves we obtain when using the embedding X → α,
and the same goes for the coefficients of the isogenies.

As for the proof, one can for instance take a look at Vélu’s formulas (Section 1.1.3 and
propagate the complex conjugation. This result means that one only needs to compute one
isogeny per pair of complex conjugate roots of f , since the other (complex conjugate) isogeny
is simply deduced using complex conjugation of the coefficients. This induces at best a factor
2 speedup in the algorithm, which is not negligible; however, we did not implement this in our
script by lack of time.

9.2.3 Multi-evaluation and fast interpolation
We now take a look at the problem of computing the coefficients of the isogenous curve over K
and the isogeny. What we computed so far are n complex values for each of those coefficients,

9.2. Computing isogenous curves over a number field 165

which correspond to the image of each coefficient by each of the n embeddings from K to C;
that is to say, for each coefficient v we have n complex values v1, . . . , vn such that

v1 =
n−1∑
i=0

ciα
i
1, . . . , vn =

n−1∑
i=0

ciα
i
n with v =

n−1∑
i=0

ciX
i ∈ K = Q[X]/(f) and f(αi) = 0

Hence, for each coefficient, we have what amounts to n values of a polynomial with rational
coefficients of degree n − 1: we can thus use interpolation to recover complex approximations
of the coefficients, then recognize the rational coefficients using techniques described in the next
section (Section 9.2.4).

Note that we need to recover the O(`) coefficients of the isogeny by interpolating at the, the
αi (roots of the polynomial defining the number field). We can use a fast algorithm to perform
these interpolations; we refer to [VZGG13, chap. 10] for all the details, but we sketch the
algorithm here to show how the O(`) interpolations can be sped up.

We start with the problem of multi-evaluation at n = 2k values, which is the inverse of the
problem at hand, but is needed in the fast interpolation algorithm. Let f be a polynomial of
degree < 2k, and (u0, ..., u2k) complex numbers. We can compute (f(u0), . . . , f(u2k)) faster than
applying Horner’s scheme 2k times, using the remark that

f(ui) = f (mod (X − ui))

The Euclidean remainders are computed using remainder trees. Define

Mi,j =
(i+1)2j−1∏
l=i2j

(X − ul)

which corresponds to the subproducts one gets when splitting the interval [1, n] in slices of length
2j . The idea is then to compute f (mod Mi,j) for all i, j, starting with j = k and going down
(towards the leaves). Computing the remaindering tree is not hard. Start with the leaves, i.e.
Mi,0 = (X − ui), then build the nodes by multiplying together the values found in the two
children of the node:

Mi,j = M2i,j−1 ×M2i+1,j−1

Each step of the formula is the multiplication of 2k−j polynomials of degree less than 2j ,
so it costs less than O(M(n)); there are logn levels/steps in the tree, so the total cost is
O(M(n) logn). Once we have this remaindering tree, we want to compute f (mod leaf), start-
ing with f (mod M0,k). The computation of f (mod g) with deg f = 2n,deg g = n can be done
in 5M(n) operations [VZGG13, Theorem 9.6]. Hence, going down one level in the tree is 2i
euclidean divisions of polynomials of degree 2k−i by polynomials of degree 2k−i−1, hence the
complexity at each step is bounded by O(M(n)); the total cost is then O(M(n) logn).

The algorithm for fast interpolation also uses the remainder tree. The idea is as follows: the
Lagrange interpolation of the relations P (ui) = vi, i ∈ [1..n] corresponds to

P =
n∑
i=1

vi
∏
j 6=i

X − uj
ui − uj

=
n∑
i=1

visi
m

X − ui

with si =
∏
j 6= i 1

ui−uj , and m =
∏n
k=1(X − uk). But we also have:

si = 1/m′(ui)

166 Chapter 9. Computing isogenous curves in genus 1

Hence evaluating all the si is just a multi-evaluation of a polynomial, and we use the algorithm
we just described. The next step is to evaluate

∑
i visi

m
x−ui quickly; we use a similar method of

splitting the sum in half:∑
i∈[1..2k]

visi
m

x− ui
=

∑
i∈[1..2k]

visi
M0,k ×M1,k

x− ui

= M1,k
∑

i∈[1..2k−1]

visi
M0,k

x− ui
+M0,k

∑
i∈[2k−1+1,2k]

visi
M1,k

x− ui
= . . .

At the leaves, we just need to evaluate visi. Hence the cost of the algorithm T (n) satisfies

T (n) ≤ 2T (n/2) + 2M(n/2) + n ≤ 2T (n/2) +M(n) + n

which is O(M(n) logn).
In our case here, we are looking to interpolate O(`) coefficients knowing their values at

α1, . . . , αn – hence, anything that depends only on the ui, which is to say the computation of the
remainder trees, of m and of the si, can be computed once for all the computations. However, in
the computation of the interpolation (the recursive algorithm that splits the sums in half), we do
not seem to obtain any savings, since the values in the leaves are different. Hence, the caching
of remainder trees and of the si gives a speedup in practice compared to the strategy which
simply applies the interpolation algorithm for each coefficient, although this does not improve
the asymptotic complexity. We did not implement this in our script for lack of time.

Hence, the total running time of interpolating O(`) elements at the αi is O(`M(n) logn)
operations.

9.2.4 Recovering coefficients as rationals
We now discuss how to convert the interpolated coefficients, which are written as complex num-
bers of precision P , into rational numbers. Of course, there are infinitely many approximations
of a real number by rational numbers, including the representation a

2P that the interpolation
algorithms outputted; we are looking for a fraction p

q with q < 2P . In addition, we could also
enforce a bound on the denominator if we happen to know one. We will simply assume that P
has been chosen such that 2P is a bound on the denominators we are looking for; we discuss this
condition in the next section.

To solve this problem, we use the continued fraction expansion of our rational number, which
in this case simply amounts to a Euclidean algorithm. Denote by an the successive quotients
when running Euclid’s algorithm on a and 2P ; we can then build a sequence hn

kn
of fractions

approximating a
2P using the relations:

hn = anhn−1 + hn−2

kn = ankn−1 + kn−2

h−1 = 1 h−2 = 0
k−1 = 0 k−2 = 1

The approximation we are looking for is simply the last one with kn < 2P . In the worst case, this
algorithm is asymptotically as costly as the whole Euclidean algorithm, which is O(M(n) logn),
where n is the size of the numerator/denominator; here, this gives O(M(P) logP).

9.2. Computing isogenous curves over a number field 167

9.2.5 Description of the algorithm
We outline here the algorithm to compute an isogeny over K.

Algorithm 26 Compute an `-isogenous curve and an isogeny with a given kernel, over K.
Input: K = Q(X)/(f) a number field of degree n; E(K) : y2 = x3+ax+b (a, b ∈ K), QK ∈ E[`].
Output: E′(K) : y2 = x3 + a′x+ b (a′, b′ ∈ K), `-isogenous to E; the rational function defining
the `-isogeny φ : E → E′.
1: Compute the n embeddings of K in C – that is to say, compute approximations of the roots

of f in C with absolute precision P .
2: for i = 1 to n do
3: if αi = αj for j < i then
4: Put E′i = E′j , φi,x = φj,x.
5: else
6: Compute ai, bi ∈ C, the image of a, b by the ith complex embedding of K in C. Put
Ei(C) : y2 = x3 + aix+ bi.

7: Compute also Qi ∈ Ei(C), the image of QK by the ith embedding of K in C.
8: Use Algorithm 25 to compute E′i and φi,x (the rational function giving the x-

coordinate of the isogeny).
9: end if
10: end for
11: Perform interpolation (Section 9.1.2) on the coefficients of E′i and φi,x to recover a curve E′

and a rational function φx, both of which will have coefficients in C[X] (but the coefficients
are actually rational)

12: Recognize the coefficients, i.e. write them as fractions (Section 9.2.4). This makes E′ and φ
have coefficients in K.

13: Return E′ and φ = (φx, yφ′x).

Proposition 9.2.2. Algorithm 26 requires

O((n log4 n+ n log2 n logP + nM(`) log ` logP + `M(n) logn)M(P)) = O(n1+ε`1+εP 1+ε)

bit operations.

Proof. Assume that max|ai| = O(2P), i.e. that the coefficients of the polynomial defining the
number field can be stored with absolute precision P in O(P) bits. The overall complexity is
then:

• O(n log2 n(log2 n+ logP)M(P)) for Step 1;

• O(nM(`) log `M(P) logP) for the For loop;

• O(`M(n) lognM(P)) for the interpolation;

• O(`M(P) logP) for the conversion to rational numbers.

This gives the claimed total complexity.

We can compare this algorithm to Vélu’s formula applied over K:

Proposition 9.2.3. Assuming that the integers (e.g. the denominators) which are computed
when applying Vélu’s formulas are bounded by O(2P), Vélu’s formulas applied over K have a
cost of O(M(`) log `M(n) lognM(P)).

168 Chapter 9. Computing isogenous curves in genus 1

Proof. We evaluated in Section 1.1.3 the cost of Vélu’s formulas, which is here of O(M(`) log `)
operations in the number field. If the number field is represented as K = Q[X]/(f) with f a
polynomial of degree n, the cost of arithmetic operations in K is O(M(n) logn) integer opera-
tions, using the fast GCD algorithms [VZGG13, Chapter 11]. If we assume that the maximal
denominator is smaller than 2P and the maximal numerator is also O(2P), we get a total cost
bounded by O(M(`) log `M(n) lognM(P)) bit operations.

This is a lower complexity than the one of Algorithm 26, at least by logarithmic factors. Fur-
thermore, there is a fundamental difference between the two algorithms: our algorithm requires
a choice of P , then performs essentially only operations on P -bit integers, which means it is very
sensitive to our choice of P ; on the contrary, Vélu’s formulas will in general handle integers which
can be much smaller than 2P , which yields a better complexity. Obtaining the best running time
for our algorithm requires to know the smallest value of P for which Algorithm 26 returns the
right value, i.e. recognizes the correct elements of K (and hence the correct rational numbers).

Discussion on P

The total complexity depends on P , which is the precision we choose to work with when com-
puting the isogenies over the complex numbers. This precision must be big enough to allow the
recognition of the coefficients of the isogeny and of the isogenous curve as elements of K; in
particular, we must have that the maximal denominator in the rational numbers that appear in
each coefficient must be smaller than 2P .

We did not manage to obtain any result tying the height of the rational numbers appearing
in the coefficients of the isogeny or of the isogenous curve to anything, such as the height of the
coefficients of the original curve, or the coefficients of the polynomial f defining the number field.
The determination of P would allow us to make the complexities above more precise. However, in
a specific case, which we outline in the next section, we managed to formulate some heuristics on
P , finding that it was roughly the same size as the largest coefficient of the polynomial defining
the number field.

We carried out an experiment and attempted to determine the smallest P such that the
recognition of the coefficients of the isogeny and the isogenous curve succeded, in order to compare
our algorithm to Vélu’s formulas. This value of P was determined by running the algorithm at
several different precisions and seeing if the interpolation succeded and gave the correct result.
Generalizing this amounts to assuming we have an oracle giving us the correct value of P .
The following table hence shows the fastest running time possible of our algorithm on several
examples, and compare it to Vélu’s formulas as implemented in Magma; we stress that the
comparison is unfair and biased towards our algorithm.

` n P required Our algorithm (s) Vélu in Magma (s)
23 132 650 460 174
29 210 1390 3665 2111

Recall that, as mentioned previously, our implementation of Algorithm 26 lacks several in-
teresting optimizations that we have mentioned previously, among which a batched algorithm
to compute θ(z, τ), the use of complex conjugation to reduce the number of embeddings for
which the full computations have to be carried out, and the caching of the remaindering tree
in the fast interpolation algorithm. We can hope to achieve a factor 4 speedup by combining
these optimizations, which would make our algorithm within the same realm as Vélu’s formulas
over a number field, at least for these examples; hence, further investigation is needed before
discounting our algorithm.

9.3. Computing isogenous curves over Fp 169

9.3 Computing isogenous curves over Fp
The idea of this algorithm is, once again, to use the previous algorithms to compute the isogeny.
More specifically, we lift the curve and the torsion point on a number field K, then use Algo-
rithm 26 to compute an isogenous curve over K, and deduce from this the isogenous curve over
Fp. We summarize the algorithm with the diagram

C/Λ → C/Λ′

↑ ↓
E/C E′/C
↑↑↑ ↓↓↓

E/K E′/K

↑ ↓
E/Fp E′/Fp

Going from the curve E′/K to E′/Fp requires taking the quotient of K by a maximal ideal which
we determine in the next subsection. The elements of K – that is to say, the coefficients of the
curve and those of the isogeny – are then sent to the right elements of Fp (i.e. those we were
looking for) provided we picked the maximal ideal which sends the coefficients of E/K to E/Fp.

In all that follows, we suppose that ` is an odd prime greater than 3. Our algorithm does not
seem to be directly generalizable to the case ` = 2; however, note that in this particular case,
Vélu’s formulas are particularly easy to compute.

9.3.1 Global torsion lifting
Transforming the problem over Fp in a problem over K requires solving the lifting problem:

Definition 9.3.1 ([Sil09]). Let e/k be an elliptic curve and q ∈ e(k). The lifting problem for
(k, e, p) is the problem of finding the following quantities:

• a field K with subring R;

• a maximal ideal p of R satisfying R/p ' k;

• an elliptic curve E/K satisfying E (mod p) ' e;

• a point Q ∈ E(K) satisfying Q (mod p) = q.

As described in [Sil09], who looked at this lifting problem in the context of the ECDLP, there
are essentially four ways to solve the lifting problem. The lift is called a global lift (resp. local
lift) if K is a global field such as Q or a number field (resp. K is a local field such as Qp); it
is called a torsion lift if q is a torsion point, and a non-torsion lift if it is not. However, in the
context of [Sil09], none of those approaches seem to yield any speedup for the ECDLP.

We show here how to perform a global torsion lifting from Fp to a number field K. There are
two reasons for this: first, as noted in [Sil09, Table 1], this is the only way to move the problem to
C, where we can use our algorithm based on the evaluation of the Abel-Jacobi map; furthermore,
the idea seems natural as we are given an `-torsion point Q ∈ E/Fp as input for the problem
of finding an isogenous curve. Hence, assuming we are given E/Fp : y2 = x3 + aFpx + bFp and
Q = (x, y) an `-torsion point, we are looking to determine a number field K = Q[α], a maximal
ideal p such that K/p = Fp, an elliptic curve EK/K : y2 = x3 + aKx + bK such that (aK , bK)
reduce to (aFp , bFp), and a point QK = (xK , yK) of `-torsion on EK such that QK reduces to Q.

170 Chapter 9. Computing isogenous curves in genus 1

We start by choosing to lift Q using the map

Fp → Z, x 7→ xK ∈
{
−p+ 1

2 , ...,
p− 1

2

}
such that x ≡ xK (mod p).

We then consider the resulting integers xK , yK as elements of K. This lift can be done regardless
of the number field K, since any number field contains Z.

Secondly, we choose the equation of the elliptic curve EK , imposing that aK = α. The
condition QK ∈ EK then imposes that

bk = y2
K − x3

K − xKα.

This imposes the conditions xK , yK , α (mod p) = x, y, aFp .
We now determine the number field K using the condition that QK should be an `-torsion

point. This condition can be translated in terms of generic `-division polynomials ψ`; we intro-
duce those polynomials in the next section (Section 9.3.2). The condition “QK is of `-torsion on
EK” translates as

ψ`(xK , α, y2
K − x3

K − αxK) = Φ`(α) = 0.

where Φ` is a polynomial with integer coefficients14. We study Φ` in Section 9.3.3; experiments
show this polynomial to be irreducible, but we did not manage to prove it in the general case.
Assuming this polynomial is irreducible, it is the minimal polynomial of α, and we can define
the corresponding number field K as Q[X]/(Φ`).

Furthermore, we have

Φ`(aFp) = ψ`(xK , aFp , y2
K − x3

K − aFp) (mod p)
= ψ`(x, aFp , y2 − x3 − aFp) (mod p) since xK ≡ x (mod p)
= 0 since (x, y) ∈ E[`]

This means that X − aFp |Φ` (in Fp[X]). We thus put

p = (p, α− aFp)

Note that K/p = Fp; this indeed defines a maximal ideal such that EK (mod p) = E and PK
(mod p) = P . Reducing an element u = r(α) ∈ K into an element of Fp simply requires reducing
the coefficients of r modulo p, then evaluating the resulting polynomial in aFp .

This procedure solves the lifting problem, and lifts the curve and the `-torsion point to a
number field, where Algorithm 26 can be applied. We then recover the Fp-isogeny by reducing
the coefficients of the curve and of the isogeny modulo p. In the next two sections, we study the
polynomials ψ` (Section 9.3.2) and Φ` (Section 9.3.3) and determine some of their properties;
this is crucial in order to determine the complexity of the computation of the lift and of the
reduction, as well as the precision needed when embedding K in C.

9.3.2 Generic division polynomials
We define and study the generic `-division polynomials and establish a few of their properties.
The results from this part are taken in part from [BSS99] and [McK94].

14Despite the notation Φ`, one should not confuse this with modular polynomials.

9.3. Computing isogenous curves over Fp 171

Definition 9.3.2. Consider the generic complex curve given by the short Weierstrass equation

EA,B : y2 = x3 +Ax+B

We define the generic `-division polynomial as the polynomial ψ` ∈ Z[x,A,B] such that for any
P = (x, y) ∈ EA,B ,

[`]P =
(
Q`(x,A,B)
ψ`(x,A,B)2 , y

R`(x,A,B)
ψ`(x,A,B)3

)
,

or, equivalently, as the polynomial f` such that P ∈ EA,B [`]⇔ f`(x,A,B) = 0.

A key point here is that this polynomial has integer coefficients and only depends on x,A,B.
Hence, we can lift the condition “Q is an `-torsion point on E/Fp”, i.e. ψ`(x, a, b) = 0, into the
condition “QK = (xK , yK), the lift of Q in the number field, is an `-torsion point of the lift over
K of the curve E”, which is exactly ψ`(xK , aK , bK) = 0.

The generic `-division polynomials have not been discussed in many papers besides [McK94].
Hence, this section provides a few results on those polynomials, which will be of help later.

Computing ψ`

One can compute the polynomial ψ`(x,A,B) using recurrence relations [BSS99]15:

Theorem 9.3.3. We have

ψ0 = 0, ψ1 = 1, ψ2 = 1
ψ3 = 3x4 + 6Ax2 + 12Bx−A2

ψ4 = 2x6 + 10Ax4 + 40Bx3 − 10A2x2 − 8ABx− 16B2 − 2A3

ψ2m+1 =
{
ψm+2ψ

3
m − 16(x3 +Ax+B)2ψm−1ψ

3
m+1 if m odd

16(x3 +Ax+B)2ψm+2ψ
3
m − ψm−1ψ

3
m+1 if m even.

ψ2m = (ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1)ψm

We find in [McK94] a partial analysis of the complexity of using those relations to compute
ψ`(1, A,B): the costliest step is the last one, where two polynomials of degree O(`2) in A
and B (hence with O(`4) terms) are multiplied together. This gives a cost for that last step
of O(`8) integer multiplications using a naive method, and O(`4 log2 `) integer multiplications
using an FFT method. Hence, we obtain a bound on the total complexity of O(`5+ε) integer
multiplications.

The second method is the purpose of [McK94], which fixes ` and considers recurrence relations
between the coefficients in front of the different monomials. This method requires O(`6) multi-
plications of integers (with O(`2) digits), which is worse asymptotically; however, we presumably
compute ψ` for ` small enough that the FFT methods are slower than the naive ones, and hence
the worse asymptotic complexity is not much of a problem. Experimental data in [McK94] shows
that this algorithm can be faster than the last step of the induction alone, for ` ≥ 23; presumably,
it is also faster than the whole algorithm for some smaller values of `.

15The recurrence relations in [McK94] are essentially the same, except for a constant factor (a power of two) in
the ψ2k.

172 Chapter 9. Computing isogenous curves in genus 1

Degrees of ψ`
Proposition 9.3.4. Assign a weight 1 to x, weight 2 to A and weight 3 to B. Then all the
monomials appearing in the generic division polynomial ψ`(x,A,B) have the same weight, equal
to

χ` =
{
`2−1

2 if ` is odd
`2−4

2 if ` is even

Proof. This proposition is stated by [McK94], but is not proven. The property can be readily
verified on ψi for i < 4. We use the recurrence relations for the general case:

1. Case 2m+ 1 with m odd:

ψ2m+1 = ψm+2ψ
3
m − 16(x3 +Ax+B)2ψm−1ψ

3
m+1

Using the induction hypothesis, the monomials of ψm+2 have weight m2+4m+4−1
2 and those

from ψm have weight m2−1
2 : hence the monomials of ψm+2ψ

3
m have weight

m2 + 4m+ 4− 1
2 + 3m

2 − 1
2 = (2m+ 1)2 − 1

2 = χ(2m+ 1)

Then, note that the weight of each monomial of (x3 +Ax+B)2 is 6. The second product
is then made of the product of 3 monomials of weight m2+2m+1−4

2 by one monomial of
weight m2−2m+1−4

2 and one of weight 6, which gives monomials of weight 4m2+4m−12+12
2 =

χ(2m+ 1).

2. Case 2m+ 1 with m even:

ψ2m+1 = 16(x3 +Ax+B)2ψm+2ψ
3
m − ψm−1ψ

3
m+1

The calculations are then:

6 + (m+ 2)2 − 4
2 + 3m

2 − 4
2 = 4m2 + 4m− 3× 4 + 12

2
(m− 1)2 − 1

2 + 3(m+ 1)2 − 1
2 = 4m2 + 2m+ 2m+ 1− 1 + 3× (1− 1)

2

which give in both cases χ(2m+ 1).

3. Case 2m:
ψ2m = (ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1)ψm

Put (c, c′) = (1, 4) if m is odd, (4, 1) if m is even. Then:

(m+ 2)2 − c
2 + 2(m− 1)2 − c′

2 + m2 − c
2 = 4m2 + 4m+ 4− 4m+ 2− 2(c+ c′)

2
(m− 2)2 − c

2 + 2(m+ 1)2 − c′

2 + m2 − c
2 = 4m2 − 4m+ 4 + 4m+ 2− 2(c+ c′)

2

In both cases we get χ(2m).

9.3. Computing isogenous curves over Fp 173

This means we can write:

ψ`(x,A,B) =
∑

αi,jA
iBjxχ(`)−2i−3j (9.3.1)

Theorem 9.3.5. • degx ψ`(x,A,B) = χ(`) – i.e. the monomial xχ(`) appears in ψ`.

• degA ψ`(x,A,B) = χ(`)/2 – i.e. the monomial Aχ(`)/2 appears in ψ`.

Proof. Both of those statements can be proven using induction, in the same way as the previous
theorem. We outline a very similar proof in Section 9.3.3, and hence refer to it for full details.

Size of coefficients of ψ`

The following proposition gives some information on the size of the αi,j :

Proposition 9.3.6 ([McK94]). We have

|αi,j(`)| ≤
``

2(`2 − 1/2)!
[((`2 − 1)/2)!]2(`2/2 + 1)!

We simplify the shape of this bound using the following variants on Stirling’s formula [Rob55]:
√

2πnn+1/2e−n ≤
√

2πnn+1/2e−ne
1

12n+1 ≤ n! ≤
√

2πnn+1/2e−ne
1

12n

which gives

|αi,j(`)| ≤
``

2(`2 − 1/2)!
[((`2 − 1)/2)!]2(`2/2 + 1)!

≤ ``
2 × (`2 − 1/2)`2

e−`
2+1/2+ 1

12n

2π
(
`2−1

2
)`2

e−`2+1 ×
(
`2

2 + 1
)`2/2+3/2

e−`2/2−1

≤ `3`
2 × e`2/2+1/2+ 1

12n

2π
(
`2−1

2
)`2

×
(
`2

2 + 1
)`2/2+3/2

≤ e`
2/2+1/2+ 1

12n 2(3`2+1)/2 `3`
2

π (`2 − 1)`2
× (`2 + 2)`2/2+3/2

≤ e1/2+ 1
12

π`3
e`

2/22(3`2+1)/2 `3`
2

(`2 − 1)`2
× (`2 + 2)`2/2

≤ e`
2/22(3`2+1)/2

`3

since the fraction on the right is bounded by 1.41 for ` ≥ 2. This upper bound is slightly worse
(by a factor π) than the equivalent given in [McK94], but this is not a problem for our purposes.

Hence, we have

log|αr,s| ≤
`2

2 + 3`2 + 1
2 log 2− 3 log ` ≤ 2 ≤ 2`2

which makes the estimate [McK94, Corollary 1] more precise.

174 Chapter 9. Computing isogenous curves in genus 1

9.3.3 A univariate polynomial
The condition “the lift QK of Q is an `-torsion point on EK” can be rephrased as “the generic
`-division polynomial is 0 when evaluated at (xK , α, bK)”. We use this condition to find the
minimal polynomial of α, which we then use to define explicitly the number field K. This means
we only need to look at the univariate polynomials

Φ`(A) = ψ`(xK , A, y2
K − x3

K −AxK).

The recurrence relations defining ψ` can be instantiated for Φ`:

Φ0 = 0,Φ1 = 1,Φ2 = 1
Φ3 = −A2 − 6x2

KA+ (12xKy2
K − 9x4

K)
Φ4 = −2A3 − 18x2

KA
2 + (24xKy2

K − 54x4
K)A+ (72y2

Kx
3
K − 54x6

K − 16y4
K)

Φ2m+1 =
{

Φm+2Φ3
m − 16y4

KΦm−1Φ3
m+1 if m odd

16y4
KΦm+2Φ3

m − Φm−1Φ3
m+1 if m even.

Φ2m = (Φm+2Φ2
m−1 − Φm−2Φ2

m+1)Φm

Finally, using Equation (9.3.1), we can also write our polynomial as:

Φ`(A) =
∑

n+2i+3j=χ(`)

αi,j(`)xnKAi(d− xKA)j

with d = y2
K − x3

K .
The remainder of this section will be dedicated to proving some properties of this polynomial.

Degree and coefficient of highest degree

Theorem 9.3.7. We have deg Φ` = χ(`)
2 , and the coefficient c` of the monomial Adeg Φ` is:

c` =
{

(−1)m if ` = 2m+ 1
(−1)m+1m if ` = 2m

Proof. The intuition is that replacing x by the value of xK and B by y2
K − x3

K −AxK decreases
the weight of the monomials in which x and B appear, which means that αχ(`)/2,0A

χ(`)/2 is
the only monomial with weight χ(`)/2 after the substitution. We give a more formal proof by
induction, which is needed anyway to compute the coefficient of highest degree of Φ`. The cases
are as follows:

1. For Φ2m+1, with m odd :

χ(m+ 2)
2 + 3χ(m)

2 = (m+ 2)2 − 1 + 3(m2 − 1)
4 = 4m2 + 4m+ 4− 4

4

= (2m+ 1)2 − 1
4 = χ(2m+ 1)

2
χ(m− 1)

2 + 3χ(m+ 1)
2 = (m− 1)2 − 4 + 3((m+ 1)2 − 4)

4 = 4m2 + 4m− 12
4

<
4m2 + 4m

4 = χ(2m+ 1)
2

9.3. Computing isogenous curves over Fp 175

Hence, deg(Φm+2Φ3
m) > deg(Φm−1Φ3

m+1). This proves that deg Φ2m+1 = χ(2m+1)
2 . Fur-

thermore, the monomial with highest degree of Φ2m+1 is simply the monomial of highest
degree of Φm−1Φ3

m+1, which means

c2m+1 = cm+2c
3
m = (−1)(m+1)/2+3(m−1)/2 = (−1)−1 = (−1)m

2. For Φ2m+1 with m even:

χ(m+ 2)
2 + 3χ(m)

2 = (m+ 2)2 − 4 + 3(m2 − 4)
4

<
4m2 + 4m

4 = χ(2m+ 1)
2

χ(m− 1)
2 + 3χ(m+ 1)

2 = (m− 1)2 − 1 + 3((m+ 1)2 − 1)
4

= m2 − 2m+ 3m2 + 6m
4 = χ(2m+ 1)

2

This time, deg(Φm+2Φ3
m) < deg(Φm−1Φ3

m+1); this also proves that deg Φ2m+1 = χ(2m+1)
2 ,

and furthermore:

c2m+1 = −cm−1c
3
m+1 = (−1)(m−2)/2+3(m/2)+1 = 1 = (−1)m

3. For Φ2m :

χ(m)
2 + χ(m+ 2)

2 + 2χ(m− 1)
2 = m2 − 4 + (m+ 2)2 − 4 + 2((m− 1)2 − 1)

4

= 4m2 − 4 + 4m− 4m
4 = χ(2m)

2
χ(m)

2 + χ(m− 2)
2 + 2χ(m+ 1)

2 = m2 − 4 + (m− 2)2 − 4 + 2((m+ 1)2 − 1)
4

= 4m2 − 4
4 = χ(2m)

2

Those polynomials have the same degree; hence we have to show that we do not have
cancellation of the highest-degree coefficients. We look at the two subcases:

(a) If m is even:

leading coeff.(Φm+2Φ2
m−1Φm) = (−1)

m+2
2 +1m+ 2

2 × (−1)m2 +1m

2 = −m
2 + 2m

4

leading coeff.(Φm−2Φ2
m+1Φm) = (−1)

m−2
2 +1m− 2

2 × (−1)m2 +1m

2 = −m
2 − 2m

4

Hence the coefficient of degree χ(2m)
2 is −m2+2m−m2+2m

4 = −m 6= 0.
(b) If m is odd:

leading coefficient(Φm+2ΦmΦm− 12) = − (m− 1)2

4

leading coefficient(Φm−2ΦmΦ2
m+1) = − (m+ 1)2

4

176 Chapter 9. Computing isogenous curves in genus 1

Hence the coefficient of degree χ(2m)
2 is −m2−2m+1−m2−2m−1

4 = m 6= 0, which com-
pletes the induction.

Remark 9.3.8. Our algorithm for isogeny computation over Fp we are discussing only considers
isogenies of degree ` an odd prime number. Hence, in that case, the number field we define is of
degree χ(`)

2 , and is defined by a monic polynomial.

Irreducibility of the polynomial defining the number field

We wish to use the polynomial Φ` to define a number field K = Q[X]/(Φ`); however, for K to
be a number field, we need to have Φ` irreducible.

We conducted a small empirical study on several dozens of cases, each time choosing an odd
prime ` such that 3 ≤ ` ≤ 29, an odd prime p such that 11 ≤ p ≤ 1789, and a curve E/Fp at
random until we found a curve with `-torsion points. For each of these examples, we computed
Φ`, and verified that it was an irreducible polynomial. However, a proof of this fact has so far
eluded us.

We can bypass this difficulty by patching the procedure should Φ` happen to be reducible.
Recall from the discussion in Section 9.3.1 that Φ`(aFp) = 0 (mod p). Let A` be an irreducible
factor of Φ` in Z such that A`(aFp) = 0 (mod p), and define K = Q[X]/(A`). We then follow the
same procedure as in Section 9.3.1, and we then still have that ψ`(xK , α, y2

K − x3
K − αxK) = 0;

furthermore, going from K to Fp can still be done, by replacing α by aFp . Hence, the global
torsion lifting procedure can still be carried out with an irreducible factor of Φ`, which means
that K is indeed a number field.

The estimates for the size of the coefficients and of the complex roots of Φ` that we prove
in the rest of this section are still valid for an irreducible factor of Φ`. In fact, these sizes are
actually even lower, as well as the degree, which speeds up the rest of the procedure. However,
we also have to add the cost of determining the right irreducible factor of Φ` to the total cost
of the procedure; this amounts to factoring Φ` over Z[X]. According to [VZGG13, Thm. 16.23],
this costs O(`20 + `16 log2A) where A is a bound on the absolute value of the coefficients of Φ`.
We prove in a subsequent section that logA = O(`2 log p), which gives a total complexity of
O(`20 log2 p). Although polynomial-time, this complexity is not good at all, and dominates the
cost (determined in Section 9.3.5) of all the other steps.

In all that follows, we will assume that Φ` is irreducible over Z[X]; this is true generically, as
the probability of a random polynomial to be irreducible is 1, but should this not be the case,
one should replace Φ` with an irreducible factor of Φ` for which aFp is a root modulo p.

Coefficient size

We discuss the size of the coefficients of the polynomial Φ`. We can make explicit the terms that
appear after replacing B by (d− xKA):

Φ`(A) =
∑

n+2i+3j=χ(`)

j∑
k=0

(−1)jαi,j(`)xnKAi
(
j

k

)
xkKA

k(−d)j−k

=
∑

n+2i+3j=χ(`)

j∑
k=0

(−1)jαi,j(`)
(
j

k

)
xn+k
K (−d)j−kAi+k

9.3. Computing isogenous curves over Fp 177

We then use the triangle inequality, and the fact that |d| = |y2
K − x3

K | ≤
p3

2 :

∑
n+2i+3j=χ(`)

j∑
k=0

(−1)j |αi,j(`)
(
j

k

)
xn+k
K (−d)j−kAi+k| ≤

∑
n+2i+3j=χ(`)

j∑
k=0

αi,j(`)2jxn+k
K |d|j−kAi+k

≤
∑

n+2i+3j=χ(`)

j∑
k=0

αi,j(`)2jpn+k
(
p3

2

)j−k
Ai+k

We now take a closer look at the coefficient αi,j(`)2jpn+k
(
p3

2

)j−k
. This coefficient is maximized

when k = 0, which means the coefficients are bounded by

αi,j(`)pn+3j = αi,j(`)pχ(`)−2i

The biggest of those coefficients is when i = 0, which in the end gives the bound

|αi,j(`)2jpn+k
(
p3

2

)j−k
| ≤ e2`2

pχ(`)

Since there are at most χ(`)2 monomials, this gives a bound on the coefficients of the polynomial
Φ`:

χ(`)2e2`2
pχ(`)

Hence the coefficients have a size bounded by

2`2 + χ(`) log p+ 2 logχ(`) ≤ χ(`)(log p+ 4) + 2 logχ(`) + 1.

Root size

We compute an upper bound on the size of the complex roots of this polynomial; this will
be useful to bound the running time of the root-finding algorithm we will use to compute the
embeddings from K to C explicitly.

Theorem 9.3.9. Let z ∈ C such that Φ`(z) = 0. Then

|z| ≤ 2χ(`)2e2`2
p2

Proof. Our proof is heavily inspired by the one for Cauchy’s theorem on bounds of roots of
polynomials. Define Q = Xd −

∑d−1
i=0 |ai|Xi, where the ai denote coefficients of Φ`. Then write

Q(x)
xd

= 1− f(x)

with f : R∗+ → R a continuous, strictly decreasing function, which is +∞ at 0 and 0 at +∞.
Hence this function is equal to 1 only once, which proves that Q has only one positive root. Call
r this positive root; since Q(0) < 0, we have that Q is negative on [0, r] and positive on [r,+∞[.

Using the same arguments as in the previous section, but in a different order, one can prove
that a bound on the coefficient of Ai in Φ` is

χ(`)2e2`2
pχ(`)−2i

178 Chapter 9. Computing isogenous curves in genus 1

Put g = χ(`)2 exp(2`2) and h = p2; then the coefficient of Aχ(`)/2−i in Φ` is bounded by ghi.
Putting d = χ(`)/2, we have

d−1∑
i=0
|ai|(2gh)i ≤

d−1∑
i=0

hd−ihi2igi+1

= ghd
(2g)d − 1

2g − 1 ≤ (2gh)d g

2g − 1 < (2gh)d

This proves that Q(2gh) > 0, and hence that r ≤ 2gh.
Finally, the triangle inequality gives

|P (z)− zn| ≤
n−1∑
i=0
|ai||z|i

Hence for any root ζ ∈ C∗ we have |ζn| ≤
∑n−1
i=0 |ai||ζ|i, hence Q(|ζ|) ≤ 0. Thus f(|ζ|) ≥ 1 = f(r);

since f is strictly decreasing, this proves that |ζ| ≤ r. This proves the result.

Hence we can write |z| ≤ p2χ(`)222.89`2+1, and hence log2|z| ≤ 2.89`2 +2 log2 p+4 log2 `+1 =
O(`2 + log p). Note that this is a tighter bound than a bound given by Rouché’s theorem, which
would be of the form r = 1 + maxi=0,...,n−1{|ai|}, and give an upper bound of size O(`2 log p).

Computation of the polynomial

One strategy to compute Φ`(A) is simply to use its definition; this means computing the generic
`-division polynomial ψ`, then evaluating it at x = xK and B = d−xKA. The evaluation requires
computing each monomial individually; assuming the powers of x and B are precomputed and
cached, each monomial only requires a constant number of multiplications, which gives a total
cost of O(`4) multiplications of integers. This is dominated by the cost of computing ψ`; in the
end we get a complexity of O(`5+ε) integer multiplications.

A much faster way is to use the recurrence relations for Φ`, which are the recurrence relations
defining ψ` instantiated for x = xK and B = d− xKA. Those are recurrence relations between
univariate polynomials; using them limits the number of terms and of operations compared with
the case of the tri-variate polynomials ψ`. The complexity analysis of this method is exactly
the same as the one for the computation of the division polynomial of an explicit elliptic curve
in short Weierstrass. This is not surprising, since the former amounts to computing ψ`(x,A,B)
knowing x,B, and the latter, knowing A,B. Hence
Proposition 9.3.10. Computing Φ` requires O(`M(`2)) arithmetic operations. Since the size
of the coefficients of Φ` is O(`2 log p), this gives a bit complexity of O(`M(`2)M(`2 log p)).

Our implementation of the latter method (i.e. univariate recurrence relations) in Magma
shows that the computation of Φ` takes 0.02s for ` = 23 and 0.07s for ` = 37, while the first
strategy (compute the generic `-division polynomial then substitute x and B by some values)
took respectively 2s and 47s.

Empirical observations on the coefficients

We finish this section by outlining some empirical observations on Φ`. These assertions seem to
hold for any polynomial we obtained when running the algorithm described in this section on
several dozen examples; the parameters were ` ≤ 29 and p ≤ 1789. Proving these propositions
is likely to be hard, most of all because we do not know much about the coefficients αr,s of the
generic division polynomial.

9.3. Computing isogenous curves over Fp 179

Conjecture 9.3.11. The following assertions, from weakest to strongest, hold:

1. The coefficient with the largest absolute value is the constant coefficient |a0|.

2. The coefficients have decreasing absolute value, ie |a0| ≥ |a1| ≥ |a2| ≥ . . . ≥ |aχ(`)/2|.

3. We have |a0| ≥
∑χ(`)/2
i=1 |ai|.

Any of these assertions would yield the bound χ(`)e2`22χ(`)/3pχ(`) on the coefficients of Φ`,
which saves a factor χ(`)2χ(`)/3 compared to our bound; that saving would carry over to the
bound on its roots. However, this does not seem to change the asymptotic running time of our
algorithm.

9.3.4 Precision required
Recall that Section 9.2.4 established that we need to choose P such that the largest denominator
in the coefficients of the elements in K is smaller than 2P , so that the conversion of complex
coefficients into rational numbers can be done. Hence, we need to determine a value for P , or
at least its asymptotic behavior as a function of ` and p. This task seems difficult, and we did
not manage to prove anything rigourously; it may involve taking a closer look at Vélu’s formulas
and keep track of the height of the coefficients. However, we propose a conjecture, which seems
to hold in practice.

Recall that a root-finding algorithm will find all d roots with precision P in time

O(n log2 n(log2 n+ log(P + logS))M(P + logS))

with S a bound on the size of the roots. Judging by the previous section, we have

S ≤ 2χ(`)2 exp(2`2)p2 ≤ p2χ(`)222.89`2+1

which means logS = 2.89`2 + 2 log p+ 4 log `+ 1. Hence, we can take P = O(`2 + log p) without
it changing the asymptotic complexity of our algorithm. If we had just used Rouché’s theorem,
and our assumption that the constant coefficient is the biggest one (which we did not manage to
prove), we would have gotten the bound χ(`)(log p + 4.47) + 2 logχ(`) + 1 = O(`2 log p), which
is a bit worse.

In practice, our experiments showed that taking P = `2 log p always gave us more than
enough precision for the rational reconstruction to succeed; indeed, the size of the denominators
was often much smaller than this bound. Hence, we put forward the following conjecture:

Conjecture 9.3.12. Taking P = O(`2 log p) is enough to recognize the rational coefficients; in
fact, P = `2 log p is enough.

We verified this conjectures on curves up to ` = 29 and on fields up to p = 1789.

9.3.5 Description of the algorithm
We now state the final algorithm to compute an isogenous curve over Fp with given kernel. Recall
from the discussion in Section 9.3.3 that we assume that Φ` is an irreducible polynomial over
Z[X], which seems true in practice and is true generically with probability 1.

Proposition 9.3.13. Algorithm 27 has an asymptotic complexity of

O
(
(`3 + `3 logP + `M(`2) log `)M(P) + `M(`2)M(`2 log p) +M(log p) log log p

)
bit operations.

180 Chapter 9. Computing isogenous curves in genus 1

Algorithm 27 Compute an `-isogenous curve and an isogeny with a given kernel, over Fp.
Input: E(Fp) : y2 = x3 + ax+ b (a, b ∈ Fp), P ∈ E[`].
Output: E′(Fp) : y2 = x3 + a′x+ b (a′, b′ ∈ K), `-isogenous to E; the rational function defining
the `-isogeny φ : E → E′.
1: Put Pk = (xK , yK), where −p/2 ≤ xK , yK ≤ p/2.
2: Compute the polynomial Φ`; define K = Q[X]/(Φ`).
3: Put aK = X and bK = (y2

K − x3
K − aKxK) and define EK : y2 = x3 + aKx+ bK .

4: Use Algorithm 26 to compute E′K : y2 = x3 + a′Kx+ b′K , and the `-isogeny over K, φK .
5: Compute the elements in Fp corresponding to each coefficient of the curve and of the rational

function, using Section 9.3.1; return the result.

Note that this complexity is much lower than the cost of factoring Φ` over Z[X] (which is
O(`20 log2 p) as analyzed in Section 9.3.3); hence, patching the algorithm in the event that Φ`
has a cost far superior to the rest of the algorithm.

Proof. Recall that the total cost of Algorithm 26 is

O((n log4 n+ n log2 n logP + n` logP + `M(n) logn)M(P))

In our case, we have n = degK = O(`2), which gives a running time of

O((`3 logP + `M(`2) log `)M(P)).

Step 2 requires, according to Proposition 9.3.10, O(`M(`2)M(`2 log p)) bit operations.
We determine the complexity of Step 5 by first determining the complexity of reducing one

element, u = r(α) ∈ K, into an element of Fp. Reducing the O(`2) coefficients of r, which
are rational numbers, requires reducing O(`2) numerators and denominators modulo p, and
computing the inverse of the denominators. If we suppose that the size of each numerator
and denominator is O(P), one can then determine the quotient of the division of one of those
integers by p by computing 1

p with precision P , then multiply the integer by 1
p and take the

integral part; this requires O(M(P)) operations per coefficient. Computing the inverse of the
denominators is done by computing the inverse of the product and recover each inverse, which
requires O(M(log p)(`2 + log log p)) bit operations. Hence the cost of this step is O(`2M(P) +
M(log p) log log p). Finally, evaluating r in aFp can be done using Horner’s rule, and requires
O(`2) operations in Fp, which is negligible. We thus get a total cost of

O(`2M(P) +M(log p) log log p)

bit operations for the reduction of a coefficient in Fp, and hence a cost of

O(`3M(P) +M(log p) log log p)

for reducing all the coefficients of an `-isogeny. This gives the claimed complexity.

If we suppose that the estimate P = O(`2 log p) is correct, we get an overall complexity of

O
(
(`3 + `3 log log p+ `M(`2) log `)M(`2 log p)

)
= O(`5+ε log1+ε p).

Vélu’s formulas require O(M(`) log `) field operations, each costing O
(
log1+ε p

)
; this complexity

is much better than our algorithm’s.

9.4. Extending this idea to other settings 181

9.4 Extending this idea to other settings
The algorithms we presented in this chapter relied on the idea of using the algorithms for com-
puting Abel-Jacobi map quickly in order to reduce the problem to the easy case of isogeny
computation on complex tori. We show here how this idea could be adapted to other settings.

Extending the algorithm to higher genera

We start by noting that there is no straightforward generalization of Vélu’s formulas to genus g;
hence, other methods may need to be used to solve the hyperelliptic equivalent of Problem 1.1.16.

It should be possible to generalize Algorithm 25 (i.e. the one working over C) to curves of
higher gernus in a rather straightforward manner. Indeed, in higher genera, evaluating isogenies
on complex tori is also computationally easy (see Note 1.4.12), and much simpler than evaluating
isogenies on algebraic representations. Our algorithms in Chapter 8 can then provide the link
between analytic and algebraic representations in quasi-linear time, at least for genus 2. Hence,
the strategy of going to the complex torus to evaluate the isogeny, then come back to the
algebraic representation and interpolate the isogeny can be generalized to higher genus. We
leave the details of this generalization to future work.

Generalizing the algorithm to K would then be very straightforward: the same method
of computing embeddings to C to a high enough precision, solving the problem on C then
interpolating the coefficients of the rational function over K would work in exactly the same
way.

However, note that the generalization of the algorithm to Fp is not as straightforward. In
particular, the generalization of the global torsion lifting procedure is unclear, as it requires the
computation of (generic) `-division polynomials in genus 1; the generalization of such polynomials
to genus 2 and their properties have to be studied further in order to show that a similar global
torsion lifting procedure could be used.

Solving other problems

Finally, we note that it may be possible to use a very similar idea to solve other problems related
to isogenies. This section is inspired by an idea of [VW00], who uses a similar idea to find an
isogeny between two genus 2 curves.

In particular, it seems like the problem of finding `-isogenies between two given curves (Prob-
lem 1.1.19) may be solvable using this idea. This would first require the computation of the two
periods associated to each of the two given curves; once this is done, one can attempt to compute
the `-isogeny between the tori, by computing an α ∈ C which sends Λ1 onto Λ2. This is poten-
tially not very hard, as we can reduce the periods so that their quotient is in the fundamental
domain, then look for relations of the form τ2 = mτ1+n

` . Once α has been found, the isogeny can
easily be computed.

This algorithm would extend to K very straightforwardly. Extending it to Fp would require
finding a lifting procedure which would preserve the isogeny and lift both curves to curves defined
over the same number field; we do not know how to solve this problem.

Finally, we note that [VW00] uses very similar ideas to find isogenies between genus 2 curves,
without knowing the degree of the isogeny beforehand. The idea is to use the LLL algorithm
to attempt to find integer relations between the periods defining each lattice; this idea seems
rather natural, and may lead to an algorithm to solve Problem 1.1.20 over C and K. As before,
the generalization of the lifting procedure in a way that preserves the isogeny is unclear, and the
algorithm does not seem to generalize straightforwardly to Fp.

182 Chapter 9. Computing isogenous curves in genus 1

Bibliography

[AS64] Milton Abramowitz and Irene A. Stegun. Handbook of mathematical functions: with
formulas, graphs, and mathematical tables, volume 55 of Applied Mathematics Series.
National Bureau of Standards, 1964.

[BB87] Jonathan M. Borwein and Peter B. Borwein. Pi and the AGM: a study in the analytic
number theory and computational complexity. Canadian Mathematical Society series
of monographs and advanced texts. Wiley-Interscience, 1987.

[BCHL16] Joppe W. Bos, Craig Costello, Huseyin Hisil, and Kristin Lauter. Fast cryptography
in genus 2. Journal of Cryptology, 29(1):28–60, 2016. Springer.

[BCSS97] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and real
computation. Springer Science & Business Media, 1997.

[Bel61] Richard Bellman. A brief introduction to theta functions. Athena Series Selected
Topics in Mathematics. Holt, Rinehart and Winston, 1961.

[Bel10] Fabrice Bellard. Computation of 2700 billion decimal digits of pi using a desktop
computer. http://bellard.org/pi/pi2700e9/pipcrecord.pdf, February 2010.
4th revision.

[BH13] Richard P. Brent and David Harvey. Fast computation of bernoulli, tangent and
secant numbers. In Computational and Analytical Mathematics, pages 127–142.
Springer, 2013.

[BJS14] Jean-François Biasse, David Jao, and Anirudh Sankar. A quantum algorithm for
computing isogenies between supersingular elliptic curves. In Progress in Cryptology–
INDOCRYPT 2014, pages 428–442. Springer, 2014.

[BK10] Joppe W. Bos and Marcelo E. Kaihara. PlayStation 3 computing breaks 260 barrier
– 112-bit prime ECDLP solved, 2010. http://lacal.epfl.ch/112bit_prime.

[BL13] Daniel Bernstein and Tanja Lange. Two grumpy giants and a baby. The Open Book
Series, 1(1):87–111, 2013. Mathematical Sciences Publishers.

[BM88] Jean-Benoît Bost and Jean-François Mestre. Moyenne arithmético-géométrique et
périodes des courbes de genre 1 et 2. Gaz. Math, 38:36–64, 1988.

[BMSS08] Alin Bostan, François Morain, Bruno Salvy, and Éric Schost. Fast algorithms
for computing isogenies between elliptic curves. Mathematics of Computation,
77(263):1755–1778, 2008. American Mathematical Society.

183

http://bellard.org/pi/pi2700e9/pipcrecord.pdf
http://lacal.epfl.ch/112bit_prime

184 Bibliography

[Bor78] Carl-Wilhelm Borchardt. Theorie des arithmetisch-geometrisches Mittels aux vier
Elementen. Mathematische Abhandlungen der Akademie der Wissenschaften zu
Berlin, page 33–96, 1878.

[Bor76] Carl-Wilhelm Borchardt. Ueber das arithmetisch-geometrische Mittel aus vier Ele-
menten. Monatsbericht der Akademie der Wissenschaften zu Berlin, page 611–621,
November 1976.

[Bre76] Richard P. Brent. The complexity of multiple-precision arithmetic. The Complexity
of Computational Problem Solving, pages 126–165, 1976.

[BSS99] Ian F. Blake, Gadiel Seroussi, and Nigel Smart. Elliptic Curves in Cryptography, vol-
ume 265 of London Mathematical Society Lecture Note Series. Cambridge University
Press, 1999.

[BZ10] Richard P. Brent and Paul Zimmerman. Modern Computer Arithmetic. Cambridge
Monographs on Applied and Computational Mathematics. Cambridge University
Press, 2010.

[CC89] David V. Chudnovsky and Gregory V. Chudnovsky. The computation of classical
constants. Proceedings of the National Academy of Sciences of the United States of
America, 86(21):8178–8182, 1989. National Acad Sciences.

[CCS15] Ping Ngai Chung, Craig Costello, and Benjamin Smith. Fast, uniform, and compact
scalar multiplication for elliptic curves and genus 2 Jacobians with applications to
signature schemes. preprint, October 2015.

[CDSLY14] Craig Costello, Alyson Deines-Schartz, Kristin Lauter, and Tonghai Yang. Con-
structing abelian surfaces for cryptography via Rosenhain invariants. LMS Jour-
nal of Computation and Mathematics, 17(A):157–180, 2014. Cambridge University
Press.

[CFA+10] Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange, Kim
Nguyen, and Frederik Vercauteren. Handbook of Elliptic and Hyperelliptic Curve
Cryptography. Discrete mathematics and its applications. CRC press, 2010.

[CGL90] Robert Coquereaux, Alex Grossmann, and Benny E. Lautrup. Iterative method for
calculation of the Weierstrass elliptic function. IMA journal of numerical analysis,
10(1):119–128, 1990. Oxford University Press.

[Cha85] Komaravolu Chandrasekharan. Elliptic functions, volume 281 of Grundlelaren tier
mathematischen Wissenschaften. Springer, 1985.

[CJS14] Andrew Childs, David Jao, and Vladimir Soukharev. Constructing elliptic curve
isogenies in quantum subexponential time. Journal of Mathematical Cryptology,
8(1):1–29, 2014. De Gruyter.

[Cle80] Charles H. Clemens. A scrapbook of complex curve theory, volume 55 of The Uni-
versity Series in Mathematics. American Mathematical Soc., 1980.

[CLN16] Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algorithms for su-
persingular isogeny Diffie-Hellman. In Advances in Cryptology – CRYPTO 2016.
Springer, 2016.

185

[Coh93] Henri Cohen. A Course in Computational Algebraic Number Theory, volume 138 of
Graduate Texts in Mathematics. Springer, 1993.

[Cos11] Romain Cosset. Applications des fonctions thêta à la cryptographie sur courbes
hyperelliptiques. PhD thesis, Université Henri Poincaré-Nancy I, 2011.

[Cou94] Jean-Marc Couveignes. Quelques calculs en théorie des nombres. PhD thesis, Uni-
versité de Bordeaux I, 1994.

[Cou96] Jean-Marc Couveignes. Computing `-isogenies using the p-torsion. In Algorithmic
Number Theory Symposium – ANTS-II, Lecture Notes in Computer Science 1122,
pages 59–65. Springer, 1996.

[Cou06] Jean-Marc Couveignes. Hard Homogeneous Spaces. Cryptology ePrint Archive, 2006.
IACR ePrint/2006/291.

[Cox84] David A. Cox. The arithmetic-geometric mean of Gauss. L’Enseignement Mathé-
matique, 30(2):275–330, 1984.

[CR15] Romain Cosset and Damien Robert. Computing (`, `)-isogenies in polynomial time
on jacobians of genus 2 curves. Mathematics of Computation, 84(294):1953–1975,
2015. American Mathematical Society.

[CS93] John H. Conway and Neil J. A. Sloane. Sphere packings, lattices and groups, 1993.

[CT13] John E. Cremona and Thotsaphon Thongjunthug. The complex AGM, periods of
elliptic curves over C and complex elliptic logarithms. Journal of Number Theory,
133(8):2813–2841, August 2013. Elsevier.

[DF11] Luca De Feo. Fast algorithms for computing isogenies between ordinary elliptic
curves in small characteristic. Journal of Number Theory, 131(5):873–893, 2011.
Elsevier.

[DFHPS16] Luca De Feo, Cyril Hugounenq, Jérôme Plût, and Éric Schost. Explicit isogenies in
quadratic time in any characteristic. arXiv preprint arXiv:1603.00711, 2016.

[DFJP14] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryptosys-
tems from supersingular elliptic curve isogenies. Journal of Mathematical Cryptology,
8(3):209–247, 2014. De Gruyter.

[DG16] Christina Delfs and Steven D. Galbraith. Computing isogenies between supersingu-
lar elliptic curves over Fp. Designs, Codes and Cryptography, 78(2):425–440, 2016.
Springer.

[DHB+04] Bernard Deconinck, Matthias Heil, Alexander Bobenko, Mark Van Hoeij, and Mar-
cus Schmies. Computing Riemann theta functions. Mathematics of Computation,
73(247):1417–1442, 2004. American Mathematical Society.

[DIK06] Christophe Doche, Thomas Icart, and David R. Kohel. Efficient scalar multiplication
by isogeny decompositions. In Public Key Cryptography – PKC 2006, Lecture Notes
in Computer Science 3958, pages 191–206. Springer, 2006.

[DT08] Claus Diem and Emmanuel Thomé. Index calculus in class groups of non-
hyperelliptic curves of genus three. Journal of Cryptology, 21(4):593–611, 2008.
Springer.

186 Bibliography

[Dup06] Régis Dupont. Moyenne arithmético-géométrique, suites de Borchardt et applica-
tions. PhD thesis, École polytechnique, Palaiseau, 2006.

[Dup11] Régis Dupont. Fast evaluation of modular functions using Newton iterations and
the AGM. Mathematics of Computation, 80(275):1823–1847, 2011. American Math-
ematical Society.

[EG02] Andreas Enge and Pierrick Gaudry. A general framework for subexponential discrete
logarithm algorithms. Acta Arithmetica, 102:83–103, 2002. Instytut Matematyczny
PAN.

[EGT11] Andreas Enge, Pierrick Gaudry, and Emmanuel Thomé. An L(1/3) discrete loga-
rithm algorithm for low degree curves. Journal of Cryptology, 24(1):24–41, 2011.
Springer.

[EGTZ12] Andreas Enge, Mickaël Gastineau, Philippe Théveny, and Paul Zimmerman. GNU
MPC – A library for multiprecision complex arithmetic with exact rounding. INRIA,
September 2012. Release 1.0.1, http://mpc.multiprecision.org/.

[Eng09] Andreas Enge. The complexity of class polynomial computation via floating point
approximations. Mathematics of Computation, 78(266):1089–1107, 2009. American
Mathematical Society.

[ET14a] Andreas Enge and Emmanuel Thomé. Computing class polynomials for abelian
surfaces. Experimental Mathematics, 23(2):129–145, 2014. Taylor & Francis.

[ET14b] Andreas Enge and Emmanuel Thomé. Cmh — Computation of Igusa Class Poly-
nomials, December 2014. Version 1.0, http://cmh.gforge.inria.fr/.

[ETZ] Andreas Enge, Philippe Théveny, and Paul Zimmerman. MPC: Algorithms and
Error Analysis. draft available in the MPC repository (https://gforge.inria.
fr/projects/mpc).

[Für09] Martin Fürer. Faster integer multiplication. SIAM Journal on Computing,
39(3):979–1005, 2009. SIAM.

[Gal99] Steven D. Galbraith. Constructing isogenies between elliptic curves over finite fields.
LMS Journal of Computation and Mathematics, 2(1):118–138, 1999. Cambridge
University Press.

[Gal12] Steven D. Galbraith. Mathematics of public key cryptography. Cambridge University
Press, 2012.

[Gau00] Pierrick Gaudry. An algorithm for solving the discrete log problem on hyperelliptic
curves. In International Conference on the Theory and Applications of Cryptographic
Techniques, pages 19–34. Springer, 2000.

[Gau07] Pierrick Gaudry. Fast genus 2 arithmetic based on Theta functions. Journal of
Mathematical Cryptology, 1(3):243–265, 2007. De Gruyter.

[Gep28] Harald Geppert. Zur Theorie des arithmetisch-geometrischen Mittels. Mathematis-
che Annalen, 99(1):162–180, 1928. Springer.

http://mpc.multiprecision.org/
http://cmh.gforge.inria.fr/
https://gforge.inria.fr/projects/mpc
https://gforge.inria.fr/projects/mpc

187

[GG16] Steven Galbraith and Pierrick Gaudry. Recent progress on the elliptic curve discrete
logarithm problem. Designs, Codes and Cryptography, 78(1):51–72, 2016. Springer
Verlag.

[GHS02a] Steven D. Galbraith, Florian Heß, and Nigel P. Smart. Extending the GHS Weil
descent attack. In Advances in Cryptology—EUROCRYPT 2002, pages 29–44.
Springer, 2002.

[GHS02b] Pierrick Gaudry, Florian Hess, and Nigel P. Smart. Constructive and destructive
facets of Weil descent on elliptic curves. Journal of Cryptology, 15(1):19–46, 2002.
Springer.

[Got59] Erhard Gottschling. Explizite Bestimmung der Randflächen des Fundamentalbere-
iches der Modulgruppe Zweiten Grades. Mathematische Annalen, 138(2):103–124,
1959. Springer.

[Gou96] Xavier Gourdon. Combinatoire, algorithmique et géométrie des polynômes. PhD
thesis, École Polytechnique, 1996.

[Gra88] David Grant. A generalization of jacobi’s derivative formula to dimension two. J.
reine angew. Math, 392:125–136, 1988.

[GS13] Steven Galbraith and Anton Stolbunov. Improved algorithm for the isogeny problem
for ordinary elliptic curves. Applicable Algebra in Engineering, Communication and
Computing, 24(2):107–131, 2013. Springer.

[GTTD07] Pierrick Gaudry, Emmanuel Thomé, Nicolas Thériault, and Claus Diem. A double
large prime variation for small genus hyperelliptic index calculus. Mathematics of
Computation, 76(257):475–492, 2007. American Mathematical Society.

[GWZ15] Steven D. Galbraith, Ping Wang, and Fangguo Zhang. Computing elliptic curve
discrete logarithms with improved baby-step giant-step algorithm. Cryptology ePrint
Archive, 2015. IACR ePrint/2015/605.

[Har14] David Harvey. A subquadratic algorithm for computing the n-th Bernoulli number.
Mathematics of Computation, 83(289):2471–2477, 2014. American Mathematical
Society.

[Hel85] Bettina Helfrich. Algorithms to construct Minkowski reduced and Hermite reduced
lattice bases. Theoretical Computer Science, 41:125–139, 1985. Elsevier.

[Hig02] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, second edition, 2002.

[Igu72] Jun-Ichi Igusa. Theta functions, volume 194 of Die Grundlehren der mathematischen
Wissenschaften. Springer, 1972.

[Igu80] Jun-ichi Igusa. On Jacobi’s derivative formula and its generalizations. American
Journal of Mathematics, pages 409–446, 1980.

[Jar08] Frazer Jarvis. Higher genus arithmetic-geometric means. The Ramanujan Journal,
17(1):1–17, 2008. Springer.

188 Bibliography

[JMV05] David Jao, Stephen D. Miller, and Ramarathnam Venkatesan. Do all elliptic curves
of the same order have the same difficulty of discrete log? In Advances in Cryptology-
ASIACRYPT 2005, pages 21–40. Springer, 2005.

[KAF+10] Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K. Lenstra, Emmanuel
Thomé, Joppe W. Bos, Pierrick Gaudry, Alexander Kruppa, Peter L. Montgomery,
Dag Arne Osvik, et al. Factorization of a 768-bit RSA modulus. In Advances in
Cryptology – CRYPTO 2010, pages 333–350. Springer, 2010.

[Kar95] Ekatherina A. Karatsuba. Fast calculation of the Riemann zeta function ζ(s) for
integer values of the argument s. Problemy Peredachi Informatsii, 31(4):69–80,
1995. Russian Academy of Sciences, Branch of Informatics, Computer Equipment
and Automatization.

[Kli90] Helmut Klingen. Introductory lectures on Siegel modular forms, volume 20 of Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press, 1990.

[Kob84] Neal Koblitz. Introduction to elliptic curves and modular forms, volume 97 of Grad-
uate Texts in Mathematics. Springer, 1984.

[Koh96] David R. Kohel. Endomorphism rings of elliptic curves over finite fields. PhD thesis,
University of California at Berkeley, 1996.

[Lab15] Hugo Labrande. Computing Jacobi’s θ in quasi-linear time. http://arxiv.org/
abs/1511.04248, 2015.

[Ler97] Reynald Lercier. Algorithmique des courbes elliptiques dans les corps finis. PhD
thesis, École polytechnique, Palaiseau, 1997.

[LO94] Wolfram Luther and Werner Otten. Computation of Standard Interval Functions
in Multiple-Precision Interval Arithmetic. Interval Compputations, 4(2(6)):78–99,
1994.

[LO98] Wolfram Luther and Werner Otten. Reliable computation of elliptic functions. Jour-
nal of Universal Computer Science, 4(1):25–33, 1998.

[LT16] Hugo Labrande and Emmanuel Thomé. Computing theta functions in quasi-linear
time in genus 2 and above. In University of Kaiserslautern, editor, Twelfth Algorith-
mic Number Theory Symposium (ANTS-XII), 2016.

[Mak75] O. M. Makarov. The connection between algorithms of the fast Fourier and
Hadamard transformations and the algorithms of Karatsuba, Strassen, and Wino-
grad. USSR Computational Mathematics and Mathematical Physics, 15(5):1–11,
1975. Elsevier.

[McK94] James McKee. Computing division polynomials. Mathematics of computation,
63(208):767–771, 1994. American Mathematical Society.

[MP13] John M. McNamee and Victor Pan. Numerical methods for roots of polynomials,
volume 16 of Series in Computational Mathematics. Newnes, 2013.

[MTW04] Alfred Menezes, Edlyn Teske, and Annegret Weng. Weak fields for ECC. In Cryp-
tographers’ Track at the RSA Conference, pages 366–386. Springer, 2004.

http://arxiv.org/abs/1511.04248
http://arxiv.org/abs/1511.04248

189

[Mum83] David Mumford. Tata lectures on Theta, Vol. I. Modern Birkhäuser Classics.
Birkhäuser, Boston, 1983.

[Mum84] David Mumford. Tata lectures on Theta, Vol. II. Modern Birkhäuser Classics.
Birkhäuser, Boston, 1984.

[NS04] Phong Q. Nguyen and Damien Stehlé. Low-dimensional lattice basis reduction re-
visited. In Algorithmic Number Theory, 6th International Symposium, ANTS-VI,
pages 338–357. Springer, 2004.

[Pan01] Victor Y. Pan. Univariate polynomials: nearly optimal algorithms for factorization
and rootfinding. In Proceedings of the 2001 international symposium on Symbolic
and algebraic computation, pages 253–267. ACM, 2001.

[Rob55] Herbert Robbins. A remark on Stirling’s formula. The American Mathematical
Monthly, 62(1):26–29, 1955. JSTOR.

[Sch82] Arnold Schönhage. The fundamental theorem of algebra in terms of computational
complexity. Technical report, Univ. of Tübingen, Germany, 1982.

[Sch95] René Schoof. Counting points on elliptic curves over finite fields. Journal de théorie
des nombres de Bordeaux, 7(1):219–254, 1995.

[Sie89] Carl Ludwig Siegel. Topics in Complex Function Theory: Abelian Functions and
Modular Functions of Several Variables. Number 25 in Interscience tracts in pure
and applied mathematics. John Wiley & Sons, 1989.

[Sil86] Joseph H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of Graduate
Texts in Mathematics. Springer, 1986.

[Sil09] Joseph H. Silverman. Lifting and Elliptic Curve Discrete Logarithms. In Selected
Areas in Cryptography, pages 82–102. Springer, 2009.

[SK82] Tateaki Sasaki and Yasumasa Kanada. Practically fast multiple-precision evaluation
of log(x). J. Inf. Process, 5:247–250, 1982.

[Smi09] Benjamin Smith. Isogenies and the Discrete Logarithm Problem in Jacobians of
Genus 3 Hyperelliptic Curves. Journal of Cryptology, 22(4):505–529, 2009. Springer.

[Sto12] Anton Stolbunov. Cryptographic schemes based on isogenies. PhD thesis, Norwegian
University of Science and Technology (NTNU), 2012.

[Str14] Marco Streng. Computing Igusa class polynomials. Math. Comp., 83(285), 2014.

[Sut13] Andrew Sutherland. Isogeny volcanoes. The Open Book Series, 1(1):507–530, 2013.
Mathematical Sciences Publishers.

[SvS12] Jeroen Spandaw and Duco van Straten. Hyperelliptic integrals and generalized
arithmetic–geometric mean. The Ramanujan Journal, 28(1):61–78, 2012. Springer.

[Tes06] Edlyn Teske. An elliptic curve trapdoor system. Journal of Cryptology, 19(1):115–
133, 2006. Springer.

[The14] The PARI Group, Bordeaux. PARI/GP version 2.7.2, 2014. available from http:
//pari.math.u-bordeaux.fr/.

http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/

190 Bibliography

[Vél71] Jacques Vélu. Isogénies entre courbes elliptiques. CR Acad. Sci. Paris Sér. AB,
273:A238–A241, 1971.

[VV09] Brigitte Vallée and Antonio Vera. Probabilistic analyses of lattice reduction algo-
rithms. In The LLL Algorithm, pages 71–143. Springer, 2009.

[VW99] Paul Van Wamelen. Proving that a genus 2 curve has complex multiplication. Math-
ematics of Computation, 68(228):1663–1677, 1999. American Mathematical Society.

[VW00] Paul Van Wamelen. Poonen’s question concerning isogenies between Smart’s genus
2 curves. Mathematics of Computation, 69(232):1685–1697, 2000. American Math-
ematical Society.

[VZGG13] Joachim Von Zur Gathen and Jürgen Gerhard. Modern computer algebra. Cambridge
University Press, 2013.

[Was08] Lawrence C. Washington. Elliptic Curves: Number Theory and Cryptography. Dis-
crete mathematics and its applications. CRC press, 2008.

[Web21] Heinrich Weber. Lehrbuch der Algebra, volume 3. Druck und verlag Fr. Vieweg &
Sohn, 1921.

[WW27] Edmund T. Whittaker and George N. Watson. A course of modern analysis. Cam-
bridge University Press, 1927.

[YK11] Alexander Yee and Shigeru Kondo. 10 trillion digits of pi: A case study of summing
hypergeometric series to high precision on multicore systems. Technical report, Uni-
versity of Illinois Urbana-Champaign, http://hdl.handle.net/2142/28348, 2011.

http://hdl.handle.net/2142/28348

Appendix A

Absolute loss of precision in
elementary fixed-point operations

This appendix outlines bounds on the absolute error that can arise when computing elementary
operations in fixed point arithmetic with numbers in precision P . It is heavily inspired by the
approach and the methods of [ETZ]; our results are adapted to the case of fixed-point arithmetic
and, in some cases, give smaller error bounds than what can be obtained from [ETZ].

We write zk = xk + iyk, and z̃k = x̃k + iỹk its approximation with fixed precision P ≥ 1. We
suppose that

|zj − z̃j | ≤ kj2−P

which implies that |xj − x̃j | ≤ kj2−P , |yj − ỹj | ≤ kj2−P .
We recall Theorem 0.3.3:

Theorem A.0.1. For j = 1, 2, let zj = xj + iyj ∈ C and z̃j = x̃j + iỹj its approximation.
Suppose that:

• |zj − z̃j | ≤ kj2−P ;

• kj ≤ 2P/2 (which means that at least the majority of the bits are correct);

• kj2−P ≤ |zj | ≤ 2P/2−3.
Then

1. |Re(z1 + z2)− Re(z̃1 + z̃2)| ≤ (k1 + k2)2−P

2. |Re(z1z2)− Re(z̃1z̃2)| ≤ (2 + 2k1|z2|+ 2k2|z1|)2−P

3. |Re(z2
1)− Re(z̃1

2)| ≤ (2 + 4k1|z1|)2−P

and the same bounds apply to imaginary parts as well; and
4. |ez1 − ez̃1 | ≤ |ez1 | 7k1+8.5

2 2−P .
Furthermore if |zj | ≥ 2kj2−P ,

5. |Re
(
z1
z2

)
− Re

(
z̃1
z̃2

)
| ≤

(
6(2+2k1|z2|+2k2|z1|)

|z2|2 + 2(4+8k2|z2|)(2|z1||z2|+1)+2
|z2|4

)
2−P

and the same bound applies to the imaginary part, and
6. |√z1 −

√
z̃1| ≤ k1√

|z1|
2−P .

We prove this theorem over the next few subsections.

191

192 Appendix A. Absolute loss of precision in elementary fixed-point operations

Addition
If z = z1 + z2 we have

|x1 + x2 − (x̃1 + x̃2)| ≤ |x1 − x̃1|+ |x2 − x̃2| ≤ (k1 + k2)2−P

|y1 + y2 − (ỹ1 + ỹ2)| ≤ |y1 − ỹ1|+ |y2 − ỹ2| ≤ (k1 + k2)2−P

Predictably, "the errors add up".

Multiplication
If z = z1z2 we have x = x1x2 − y1y2 and y = x1y2 + x2y1. We write

|x1x2 − x̃1x̃2| ≤
1
2 |(x1 − x̃1)(x2 + x̃2) + (x1 + x̃1)(x2 − x̃2)|

≤ 1
2 (|x1 − x̃1|(|x2|+ |x̃2|) + (|x1|+ |x̃1|)|x2 − x̃2|)

≤ 1
2 (k1(|x2|+ |x̃2|) + k2(|x1|+ |x̃1|)) 2−P

≤ (k1|x2|+ k2|x1|)2−P + k12−P k22−P

Since k1 ≤ 2P/2 and k2 ≤ 2P/2,

|x1x2 − x̃1x̃2| ≤ (k1|x2|+ k2|x1|+ 1)2−P

Similarly we have

|y1y2 − ỹ1ỹ2| ≤ (k1|y2|+ k2|y1|+ 1)2−P

|x1y2 − x̃1ỹ2| ≤ (k1|y2|+ k2|x1|+ 1)2−P

|y1x2 − ỹ1x̃2| ≤ (k1|x2|+ k2|y1|+ 1)2−P

Hence

|x− x̃| ≤ (2 + k1|x2|+ k2|x1|+ k1|y2|+ k2|y1|)2−P

|y − ỹ| ≤ (2 + k1|y2|+ k2|x1|+ k1|x2|+ k2|y1|)2−P

Bounding the norms of real and imaginary parts by the norm of the number itself:

|x− x̃| ≤ (2 + 2k1|z2|+ 2k2|z1|)2−P

|y − ỹ| ≤ (2 + 2k1|z2|+ 2k2|z1|)2−P

Squaring
The above formulas can be simplified in the case z = z2

1 :

|x2
1 − x̃1

2| ≤ (2k1|x1|+ 1)2−P

|y2
1 − ỹ1

2| ≤ (2k1|y1|+ 1)2−P

|x1y1 − x̃1ỹ1| ≤ (k1|y1|+ k1|x1|+ 1)2−P

193

which gives the bounds

|x− x̃| ≤ (2 + 2k1(|x1|+ |y1|))2−P

|y − ỹ| ≤ (2 + 2k1(|x1|+ |y1|))2−P

Bounding the norms of real and imaginary parts by the norm of the number itself gives:

|x− x̃| ≤ (2 + 4k1|z1|)2−P

|y − ỹ| ≤ (2 + 4k1|z1|)2−P

Norm
We wish to compute z = |z1|2. We use previous estimates to write:

||z|2 − |z̃|2| ≤ |x2
1 − x̃1

2|+ |y2
1 − ỹ1

2|
≤ (4 + 4k1|x1|+ 4k1|y1|)2−P

Again, bounding the norms of real and imaginary parts by the norm of the number itself:

||z|2 − |z̃|2| ≤ (4 + 8k1|z1|)2−P

Interlude: Division of a real by a positive real
Let us assume |a1 − ã1| ≤ k12−P and |a2 − ã2| ≤ k22−P , with a2 > 0. In addition, assume that
a2 > k22−P ; this means that the sign of a2 is known and that we are not at risk of dividing by
0. Then we have ∣∣∣∣a1

a2
− ã1

ã2

∣∣∣∣ ≤ |a1ã2 − a2ã1

a2ã2
|

≤ | (a1 − ã1)(a2 + ã2)− (a1a2 − ã1ã2)
a2ã2

|

≤ a2 + ã2

a2ã2
k12−P + k1|a2|+ k2|a1|+ 1

a2ã2
2−P

≤
(

2a2 + ã2

a2ã2
k1 + k2|a1|+ 1

a2ã2

)
2−P

≤
(

3a2 + k22−P
a2ã2

k1 + k2|a1|+ 1
a2ã2

)
2−P

≤
(

3k1

a2 − k22−P + k2(|a1|+ k12−P) + 1
a2(a2 − k22−P)

)
2−P

To further simplify, we assume that a2 ≥ 2k22−P ; otherwise, we might end up in a case where
not even the high bit of ã2 is correct (for instance if a2 = 2k22−P and ã2 = k22−P). This means
that a2 − k22−P ≥ a2/2 and helps with denominators:∣∣∣∣a1

a2
− ã1

ã2

∣∣∣∣ ≤ (
6k1

a2
+ 2k2(|a1|+ k12−P) + 2

a2
2

)
2−P

Finally, we assume that |a1| ≥ k12−P to further simplify:∣∣∣∣a1

a2
− ã1

ã2

∣∣∣∣ ≤ (
6k1

a2
+ 4k2|a1|+ 2

a2
2

)
2−P

194 Appendix A. Absolute loss of precision in elementary fixed-point operations

Complex division
We write z1

z2
= z1z2
|z2|2 and then chain the results. To simplify, we bound |xi|, |yi| by the norm of

the number itself right away. Hence:

||z2|2 − |z̃2|2| ≤ (4 + 8k2|z2|)2−P

|Re(z1z2)− Re(z̃1z̃2)| ≤ (2 + 2k1|z2|+ 2k2|z1|)2−P

| Im(z1z2)− Im(z̃1z̃2)| ≤ (2 + 2k1|z2|+ 2k2|z1|)2−P

and we use the previous part:
|Re
(
z1

z2

)
− Re

(
z̃1

z̃2

)
| ≤ (

6(2 + 2k1|z2|+ 2k2|z1|)
|z2|2

+2(4 + 8k2|z2|)×
(|Re(z̃1z̃2)|+ (2 + 2k1|z2|+ 2k2|z1|)2−P)

|z2|4
+

2
|z2|4

)2−P

≤ (
6(2 + 2k1|z2|+ 2k2|z1|)

|z2|2

+2(4 + 8k2|z2|)×
(|x̃1x̃2|+ |ỹ1ỹ2|) + (2 + 2k1|z2|+ 2k2|z1|)2−P

|z2|4
+

2
|z2|4

)2−P

≤ (
6(2 + 2k1|z2|+ 2k2|z1|)

|z2|2

+2(4 + 8k2|z2|)×
2|z1||z2|+ 2(1 + 2k1|z2|+ 2k2|z1|)2−P + 2k1k22−2P

|z2|4

+
2
|z2|4

)2−P

(using |x̃1| ≤ |x1|+ k12−P ≤ |z1|+ k12−P)

| Im
(
z1

z2

)
− Im

(
z̃1

z̃2

)
| ≤ (

6(2 + 2k1|z2|+ 2k2|z1|)
|z2|2

+2(4 + 8k2|z2|)×
| Im(z̃1z̃2)|+ (2 + 2k1|z2|+ 2k2|z1|)2−P

|z2|4
+

2
|z2|4

)2−P

≤ (
6(2 + 2k1|z2|+ 2k2|z1|)

|z2|2

+2(4 + 8k2|z2|)×
(|x̃1ỹ2|+ |x̃2ỹ1|) + (2 + 2k1|z2|+ 2k2|z1|)2−P

|z2|4
+

2
|z2|4

)2−P

≤ (
6(2 + 2k1|z2|+ 2k2|z1|)

|z2|2

+2(4 + 8k2|z2|)×
2|z1||z2|+ 2(1 + 2k1|z2|+ 2k2|z1|)2−P + 2k1k22−2P

|z2|4

+
2
|z2|4

)2−P

Now since kj ≤ 2P/2 and |zj | ≤ 2P/2−3,

2(1 + 2k1|z2|+ 2k2|z1|)2−P + 2k1k22−2P ≤ 1
2(1 + 2k1|z2|+ 2k2|z1|)2−P + 2k1k22−2P ≤ 1

We can then simplify:

|Re
(
z1

z2

)
− Re

(
z̃1

z̃2

)
| ≤ (6(2 + 2k1|z2|+ 2k2|z1|)

|z2|2
+ 2(4 + 8k2|z2|)(2|z1||z2|+ 1) + 2

|z2|4
)2−P

| Im
(
z1

z2

)
− Im

(
z̃1

z̃2

)
| ≤ (6(2 + 2k1|z2|+ 2k2|z1|)

|z2|2
+ 2(4 + 8k2|z2|)(2|z1||z2|+ 1) + 2

|z2|4
)2−P

195

Square root
We write

|
√
z1 −

√
z̃1| = |z1 − z̃1|

|√z1 +
√
z̃1|

≤ k1

|√z1 +
√
z̃1|

2−P

If we suppose that z1 and z̃1 are in the same quadrant, which is true if we suppose |x1| > k12−P
and |y1| > k12−P , then √z1 and

√
z̃1 are in the same quadrant (since the angle is just divided

by 2). This means that |√z1 +
√
z̃1| ≥ |

√
z1|. Hence

|
√
z1 −

√
z̃1| ≤

k1√
|z1|

2−P

Exponential
Starting with real numbers: we have |ex− ex̃| ≤ et|x− x̃| with t in the interval bounded by (but
not containing) x and x̃, using Taylor-Lagrange with order 1 (or Rolle’s theorem). Hence

|ex − ex̃| ≤ et|x− x̃|
≤ max(ex, ex̃)kx2−P

≤ exekx2−P kx2−P

Since kx2−P ≤ 2−P/2 ≤ 1/2, we have

ekx2−P ≤ 1 + kx2−P + (kx2−P)2

2
1

1− kx2−P ≤ 1 + kx2−P + (kx2−P)2 ≤ 1 + 2(kx2−P)

Hence

|ex − ex̃| ≤ ex(1 + 2kx2−P)kx2−P

≤ ex(kx + 2)2−P

Now for complex numbers:

|ex+iy − ex̃+iỹ| ≤ |ex − ex̃+i(ỹ−y)|

≤
√

(ex − ex̃ cos(ỹ − y))2 + e2x̃ sin2(ỹ − y)

Since for positive numbers a+ b ≤ a+ b+ 2
√
a
√
b,
√
a+ b ≤

√
a+
√
b and

|ex+iy − ex̃+iỹ| ≤ |ex − ex̃ cos(ỹ − y)|+ ex̃| sin(ỹ − y)|
≤ |ex − ex̃|+ ex̃(|1− cos(ỹ − y)|+ | sin(ỹ − y)|)
≤ ex(kx + 2)2−P + ex(1 + 2kx2−P)(|1− cos(ỹ − y)|+ | sin(ỹ − y)|)

For x > 0 we have sin(x) ≤ x and |1− cos(x)| ≤ x2

2 (since cosx = 1− 2 sin2(x/2) or the theorem
for alternate series), hence

|ex+iy − ex̃+iỹ| ≤ ex(kx + 2)2−P + ex(1 + 2kx2−P)((kx2−P)2/4 + kx2−P)
≤ (ex(kx + 2))2−P + ex(1 + 2kx2−P)(1/4 + kx)2−P

196 Appendix A. Absolute loss of precision in elementary fixed-point operations

because as always we suppose kx2−P ≤ 2−P/2; hence

|ez − ez̃| ≤ ex(7/2kx + 4.25)2−P

Résumé de la thèse en français

Cette thèse s’intéresse à l’évaluation rapide de fonctions complexes en précision arbitraire, et
plus précisément de fonctions liées aux courbes elliptiques et hyperelliptiques définies sur les
nombres complexes. Nos résultats, en particulier ceux sur l’évaluation de la fonction θ en temps
quasi-linéaire en la précision voulue, ont une portée plus générale et peuvent être réutilisés dans
d’autres contextes.

Nous décrivons dans les deux premières parties les fonctions pour lesquelles nous donnons des
algorithmes rapides dans cette thèse ; nous montrons également une méthode utilisée par [Dup06]
pour calculer certaines valeurs de la fonction theta en temps quasi-linéaire. Cette méthode est
celle que nous généralisons pour obtenir nos algorithmes rapides : nous décrivons dans un premier
temps une méthode pour calculer θ(z, τ) en genre 1 en temps quasi-linéaire, puis généralisons
cette méthode une nouvelle fois pour donner un algorithme calculant θ(z, τ) en genre 2. De
plus, il semblerait que cette méthode pourrait se généraliser à des genres plus grands, mais
quelques problèmes surviennent alors et nous n’avons pas trouvé de façon satisfaisante de les rè-
gler. L’application principale que nous faisons de nos résultats est le calcul rapide de l’application
d’Abel-Jacobi et de son inverse en temps quasi-linéaire. Ce résultat nous permet de plus de décrire
un nouvel algorithme de calcul d’isogénies de noyau donné ; l’algorithme sur C utilise directe-
ment l’évaluation rapide de l’application d’Abel-Jacobi, et nous montrons comment utiliser cet
algorithme pour le calcul d’isogénies de noyau donné sur un corps de nombre, puis sur un corps
fini, en utilisant un procédé de relèvement de la courbe.

1 Courbes elliptiques et application d’Abel-Jacobi
Les courbes elliptiques, ainsi que les courbes hyperelliptiques, leur généralisation en genre supérieur,
sont étudiées depuis des siècles par les mathématiciens ; c’est à la fin des années 1980 que l’idée
de les utiliser en cryptographie a fait surface, et avec elle la question de concevoir des algorithmes
efficaces pour calculer des objets reliés à ces courbes. Nous ne traiterons ici que le cas des courbes
elliptiques, mais beaucoup de propriétés, ainsi que certains algorithmes, se généralisent au genre
supérieur.

Une courbe elliptique sur un corps K peut être définie comme l’ensemble des points vérifiant
l’équation dite “forme courte de Weierstrass” suivante:

y2 = x3 + ax+ b

avec a, b ∈ K, auquel on adjoint un point dit “à l’infini”. On peut définir une loi de groupe
commutatif sur l’ensemble des points d’une courbe elliptique ; le procédé est bien connu, puisque
Fermat l’utilisait déjà, et a une interprétation géométrique simple sur les nombres réels. Ainsi,
on munit l’ensemble E(K) des points d’une courbe d’une loi de groupe calculable complètement
algébriquement.

197

198 Résumé de la thèse en français

La sécurité d’un système de chiffrement basé sur les courbes elliptiques repose sur le problème
difficile dit du logarithme discret sur les courbes elliptiques:

Étant donnés P ∈ E(Fp) et Q = [n]P, trouver n.

Ce problème est l’instanciation du problème du logarithme discret dans le groupe E(Fp). À
l’heure actuelle, aucun algorithme de complexité meilleure que l’algorithme rho de Pollard, un
algorithme générique en O(

√
r) opérations où r est le cardinal du groupe, n’est connu ; le

problème du logarithme discret sur les courbes elliptiques offre ainsi une sécurité relativement
forte, puisque la taille des clés nécessaire à atteindre un certain niveau de sécurité est grosso
modo égale à la racine cubique d’un clé RSA de sécurité équivalente. Cette petite taille de clés
permet de compenser le fait que l’arithmétique est plus complexe que pour le système RSA ; les
courbes elliptiques sont ainsi standardisées et utilisées dans un nombre croissant d’applications.

Une isogénie est un morphisme d’une courbe elliptique à une autre, c’est à dire une application
telle que

φ(P +Q) = φ(P) + φ(Q), pour tous P,Q.
Ainsi, le problème du logarithme discret est transporté d’une courbe à une autre par une isogénie.
Il est donc possible, en théorie, de ramener une instance de ce problème à une autre où il est plus
simple à résoudre. On ne connaît actuellement pas d’algorithmes pour exploiter ceci, car le calcul
d’isogénies est un problème complexe et les algorithmes pour le résoudre n’ont pour l’instant pas
une complexité satisfaisante (de sorte que certains cryptosystèmes basés sur le calcul d’isogénies
ont été proposés). Cependant, en genre 3, un article [Smi09] a montré que le problème du
logarithme discret sur une courbe hyperelliptique pouvait parfois se réduire en un problème sur
une courbe non-hyperelliptique, qui est un problème résoluble plus facilement ; il s’agit ainsi
d’une direction de recherche intéressante.

Une courbe elliptique complexe possède une autre représentation, différente de sa représen-
tation algébrique (par une équation courte de Weierstrass). En effet, on a le théorème suivant,
dit d’Abel-Jacobi :

Theorem A.1.1. Soit E/C une courbe elliptique complexe définie par sa forme de Weierstrass.
Alors il existe ω1, ω2 (les périodes de la courbe elliptique) tels que E/C ' C/(Zω1 + Zω2). De
plus, l’isomorphisme est donné par l’application d’Abel-Jacobi, définie par

E/C→ C/(Zω1 + Zω2)

P →
∫ P

O

dx√
x3 + ax+ b

On parle alors de représentation analytique d’une courbe elliptique, ou du tore complexe
associé à une courbe, pour parler de l’ensemble C/(Zω1 + Zω2). Le calcul de cette application
est possible par des algorithmes d’évaluation d’intégrales elliptiques ; nous renvoyons à la section
ci-dessous sur l’application d’Abel-Jacobi. L’intérêt de cette application dans le contexte des
isogénies est qu’une isogénie entre tores complexes C/Λ1 → C/Λ2 est toujours de la forme
z 7→ αz pour un certain α : l’évaluation de l’isogénie est ainsi très aisée. Nous détaillons dans
une section ci-dessous un algorithme de calcul d’isogénies qui tire parti de cette propriété.

Afin de calculer l’application d’Abel-Jacobi, ainsi que son inverse, de façon asymptotiquement
rapide, nous avons étudié une fonction liée à cette application, la fonction θ de Jacobi. Nous
détaillons le résultat le plus important de ce manuscrit, qui est un algorithme pour l’évaluation
de θ en complexité quasi-linéaire en la précision demandée ; notre méthode s’inspire d’une méth-
ode similaire pour les theta-constantes, qui sont des valeurs spéciales de cette fonction, étudiée
dans [Dup06].

2. Fonction theta et calcul rapide de theta-constantes 199

2 Fonction theta et calcul rapide de theta-constantes

Fonction theta

En genre 1, la fonction θ est définie par

θ : C×H → C

(z, τ) 7→
∑
n∈Z

eiπn
2τe2iπnτ .

avec H le demi-plan supérieur. On définit plusieurs fonctions, les fonctions theta avec caractéris-
tique:

θ0(z, τ) = θ(z, τ) θ2(z, τ) = eiπτ/4+iπzθ
(
z + τ

2 , τ
)

θ1(z, τ) = θ

(
z + 1

2 , τ
)

θ3(z, τ) = eiπτ/4+iπ(z+1/2)θ

(
z + 1 + τ

2 , τ

)
Les fonctions θ0, θ1 sont parfois appelées fonctions thêta fondamentales. Les theta-constantes
sont simplement les valeurs en z = 0 de ces fonctions ; notons que θ3(0, τ) = 0.

Le groupe SL2(Z) agit sur les valeurs de θ pour donner la formule suivante:

θ

(
z

cτ + d
,
aτ + b

cτ + d

)
= ζ
√
cτ + deiπ

z2
cτ+d θi(z, τ)

pour ζ une racine huitième de l’unité, et pour un certain i. Cette propriété permet d’opérer
une réduction d’argument : si l’on dénote F le domaine fondamental de l’action τ 7→ aτ+b

cτ+d de
SL2(Z) sur le demi-plan supérieur, cette formule permet de déduire la valeur finale de la valeur
de θ(z, τ) avec τ ∈ F . De plus, une propriété de la fonction thêta permet d’effectuer également
une réduction d’argument en z:

θ(z + aτ + b, τ) = e−iπa
2τ−2πiazθ(z, τ).

Ainsi, on peut supposer que Im(z) ≤ Im(τ)
2 et |Re(τ)| ≤ 1

2 . Cependant, notons que déduire les
valeurs finales de θ(z′, τ ′) avec z′, τ ′ réduits nécessite de calculer des facteurs exponentiels, dont
la taille peut être grande ; ainsi, la complexité de la réduction d’argument dépend fortement des
arguments, alors que nous verrons plus tard que l’algorithme calculant θ(z′, τ ′) a une complexité
indépendante des arguments.

La généralisation de cette fonction au genre supérieur n’est pas très compliquée ; pour la
fonction θ, la définition se fait au moyen d’une formule similaire, mais avec z ∈ Cg et τ une matrice
g × g de partie imaginaire définie positive. On définit alors 2g fonctions thêta fondamentales, et
22g fonctions theta avec caractéristiques au total ; toutes les propriétés que nous avons énoncé
dans cette section se généralisent également au genre supérieur. La seule exception concerne
la généralisation du domaine fondamental au genre supérieur, qui n’est pas aussi simple qu’elle
n’y paraît, car le domaine que l’on obtient est caractérisé par des inéquations qui n’ont pas
été déterminées explicitement ; cependant, il est possible de considérer deux réductions moins
strictes, pour lesquelles un algorithme explicite existe, et qui semblent quand même avoir des
propriétés désirables pour la réduction d’arguments pour θ.

200 Résumé de la thèse en français

Moyenne arithmético-géométrique

Parmi les nombreuses formules vérifiées par les valeurs de la fonction thêta, on peut citer les
formules de τ -duplication des thêta-constantes:

θ2
0(0, 2τ) = θ2

0(0, τ) + θ2
1(0, τ)

2 , θ2
1(0, 2τ) = θ0(0, τ)θ1(0, τ)

Ces formules correspondent à celles que l’on trouve dans la définition de la moyenne arithmético-
géométrique:

Definition A.2.1. Soient deux nombres complexes a et b. On pose a0 = a, b0 = b, et pour tout
n ≥ 0

an+1 = an + bn
2 , bn+1 =

√
anbn

où la racine carrée est choisie de telle sorte que

Re
(
bn+1

an+1

)
> 0 ou Re

(
bn+1

an+1

)
= 0 et Im

(
bn+1

an+1

)
> 0

ce que l’on appelle un bon choix de racines. La suite ainsi définie, où tous les choix de racines
sont bons, converge quadratiquement ; sa limite est appelée la moyenne arithmético-géométrique
de a et b, notée AGM(a, b).

Une convergence quadratique signifie que le nombre de chiffres exacts à une étape est (quasi-
ment) le double du nombre de chiffres exacts à l’étape précédente ; ainsi, une approximation de
la limite avec P chiffres exacts peut être obtenue en calculant O(logP) termes de la suite. Dans
le cas de l’AGM, cela signifie que AGM(a, b) peut être calculée à précision P en O(M(P) logP)
opérations, où M(P) représente le temps nécessaire pour multiplier deux nombres de taille P
bits.

Pour relier formellement les thêta-constantes à la moyenne arithmético-géométrique, il con-
vient de déterminer si la condition que les choix de signes soient bons est remplie pour certaines
valeurs de τ :

Proposition A.2.2 ([Cox84, Lemma 2.8]). Soit le domaine

Fk′ = {τ ∈ H | |Re(τ)| ≤ 1, |τ ± 1/4| > 1/4, |τ ± 3/4| > 1/4}.

Pour τ ∈ Fk′ , le choix de signe est bon ; en particulier, on a pour tout τ ∈ Fk′

AGM(θ2
0(0, τ), θ2

1(0, τ)) = 1.

Calcul rapide de theta-constantes

Nous décrivons maintenant l’algorithme, exposé dans [Dup06, Dup11], qui calcule les theta-
constants rapidement à partir de l’AGM. La proposition précédente se réécrit en utilisant l’homogénéité
de l’AGM:

AGM
(

1, θ
2
1(0, τ)
θ2

0(0, τ)

)
= 1
θ2

0(0, τ) .

On peut ensuite utiliser l’action de SL2(Z), qui donne le résultat suivant:

AGM
(

1, θ
2
2(0, τ)
θ2

0(0, τ)

)
= 1
−iτθ2

0(0, τ) .

3. Calcul de la fonction thêta de Jacobi 201

L’équation de Jacobi θ4
0(0, τ) = θ4

1(0, τ) + θ4
2(0, τ) permet de montrer que la fonction

fτ : x 7→ AGM(1, z)
AGM(1,

√
1− z2)

+ iτ

vérifie fτ
(
θ2

1(0,τ)
θ2

0(0,τ)

)
= 0.

L’algorithme consiste alors à appliquer la méthode de Newton à la fonction fτ , afin de calculer
une approximation du quotient des carrés des thêta-constantes fondamentales ; on peut ensuite
récupérer chacune d’entre elles en appliquant l’AGM, et la troisième en utilisant l’équation de
Jacobi. Il importe d’appliquer la méthode de Newton de façon efficace, afin de préserver une
complexité quasi-optimale : on part ainsi d’une approximation du résultat à basse précision,
puis on applique chaque étape de la méthode de Newton en doublant la précision à laquelle on
travaille. En effet, la méthode de Newton étant auto-correctrice, on peut se contenter de travailler
à précision réduite et de doubler la précision requise à chaque étape ; l’analyse asymptotique
permet de démontrer que la complexité totale est la même que la dernière étape, qui travaille à
pleine précision. Ici, l’on obtient une complexité de O(M(P) logP) opérations.

Enfin, notons que l’on peut aussi utiliser cet algorithme pour obtenir un algorithme qui calcule
θ(0, τ), pour τ ∈ F , avec une complexité bornée par cM(P) logP , avec c une constante indépen-
dante de τ – la complexité est ainsi uniforme en τ . L’idée est d’utiliser également l’algorithme
naïf, qui approxime θ en calculant une somme partielle avec assez de termes : la complexité de cet
algorithme est en O

(
M(P)

√
P

Im(τ)

)
, i.e. elle s’améliore lorsque Im(τ) grossit, alors que la com-

plexité de l’algorithme ci-dessus devient de pire en pire (il faut calculer le nombre de bits perdus
par les erreurs d’approximation pour s’en convaincre). On peut ainsi utiliser l’algorithme naïf
pour des valeurs de Im(τ) relativement grosses par rapport à la précision voulue, et l’algorithme
rapide pour les valeurs de Im(τ) plus petites ; on peut montrer que cet algorithme a la bonne
complexité. Cette stratégie d’uniformisation de la complexité sur le domaine fondamental peut
aussi être appliquée dans nos algorithmes, comme nous allons le voir.

3 Calcul de la fonction thêta de Jacobi
Nous allons maintenant décrire comment nous avons généralisé cette méthode au calcul de θ(z, τ),
pour tout z et τ réduits, en temps quasi-linéaire. Les résultats de cette section sont tirés d’un
article accepté pour publication dans le journal Mathematics of Computation.

L’ingrédient nécessaire est la généralisation des formules de τ -duplication aux fonctions thêta:

θ2
0(z, 2τ) = θ0(z, τ)θ0(0, τ) + θ1(z, τ)θ1(0, τ)

2 , θ2
1(z, 2τ) = θ0(z, τ)θ1(0, τ) + θ1(z, τ)θ0(0, τ)

2 .

On peut ainsi définir une fonction de 4 variables

F (x, y, z, t) =
(√

x
√
z +√y

√
t

2 ,

√
x
√
t+√y

√
z

2 ,
z + t

2 ,
√
z
√
t

)

avec la condition que le choix des racines carrées vérifie

Re(
√
x) ≥ 0, Re(

√
z) ≥ 0, Re

(√
y
√
x

)
> 0,Re

(√
t√
z

)
> 0.

Nous sommes parvenu à démontrer le résultat suivant:

202 Résumé de la thèse en français

Proposition A.3.1. Pour z, τ vérifiant Im(z) ≤ Im(τ)
4 et Im(τ) > 0.345, on a Re(θ0(z, τ)) > 0 et

Re
(
θ1(z,τ)
θ0(z,τ)

)
> 0 ; ainsi, la suite des itérés de (θ0(z, τ), θ1(z, τ), θ0(0, τ), θ1(0, τ)) par la fonction

F correspond aux valeurs où τ a été multiplié par 2, et la suite converge vers (1, 1, 1, 1).

Notons que la condition sur Im(z) est un peu plus stricte que celle obtenue simplement
par réduction du premier argument ; ainsi, l’application de ce théorème nécessite d’utiliser les
formules de z-duplication, qui donnent θ(2z, τ) en fonction de θi(z, τ).

Cependant, la suite définie dans la proposition précédente ne généralise pas exactement
l’AGM, car elle ne converge pas nécessairement quadratiquement ; on peut le voir en prenant
par exemple x = y, z = t. La difficulté est en réalité contournable dans notre cas : ce que
nous recherchons en réalité est la définition d’une fonction F telle que l’on ait par exemple (tout
comme pour l’AGM)

F

(
θ2

1(z, τ)
θ2

0(z, τ) ,
θ2

1(0, τ)
θ2

0(0, τ)

)
=
(

1
θ2

0(z, τ) ,
1

θ2
0(0, τ)

)
.

De plus, il faut que la fonction F soit calculable en temps quasi-linéaire. Dans le cas de
l’AGM, la proprété découlait directement de la propriété d’homogénéité de l’AGM – c’est à
dire AGM(λa, λb) = λAGM(a, b). Nous avons ainsi eu l’idée d’étudier la limite de la suite
des itérés de F démarrant avec (λx, λy, µz, µt), avec l’idée que nous pourrions ensuite prendre
λ = 1

θ2
0(z,τ) , µ = 1

θ2
0(0,τ) . Nous sommes arrivés à prouver la proposition suivante :

Proposition A.3.2. Si (xn, yn, zn, tn) est la suite des itérés de F démarrant avec (x, y, z, t), et
(x′n, y′n, z′n, t′n) celle démarrant avec (λx, λy, µz, µt), on a

µ = lim
n→∞

z′n
zn
, λ = lim

n→∞

(
x′n
z′n

)2n
z′n(

xn
zn

)2n
zn

.

De plus, les suites du membre droit de ces égalités convergent quadratiquement, i.e. on peut
calculer µ, λ avec précision P en O(M(P) logP) .

La preuve de cette proposition est technique. Notons que, si x, y sont les fonctions thêta en
z et en τ , et z, t les thêta-constantes, lim xn = lim zn = 1 et les membres droits se simplifient.
On peut ainsi définir F comme la fonction qui calcule la limite des suites qui apparaissent dans
cette proposition.

Tout comme pour les thêta-constantes, on utilise l’action de SL2(Z) pour faire ressortir les
paramètres : on a ainsi que

θ2
2

(
z

τ
,
−1
τ

)
= −iτe2iπz2/τθ2

1(z, τ), θ2
0

(
z

τ
,
−1
τ

)
= −iτe2iπz2/τθ2

0(z, τ).

Ainsi

F

(
θ2

2(z, τ)
θ2

0(z, τ) ,
θ2

2(0, τ)
θ2

0(0, τ)

)
=
(

e−2iπz2/τ

−iτθ2
0(z, τ) ,

1
−iτθ2

0(0, τ)

)
pour peu que les choix de signes soient bons pour θ

(
z
τ ,
−1
τ

)
. Afin de s’en assurer, on impose

les conditions |Re(z)| ≤ 1
8 , Im(z) ≤ Im(τ)

2 , 0.345 ≤ Im(τ) < 1, ce qui assure que les choix de
signes sont bons pour θ à la fois en (z, τ) et en

(
z
τ ,
−1
τ

)
. Ceci contraint z, τ à des valeurs

particulières, à l’intérieur d’un compact ; cependant, on peut toujours se ramener à ce compact à

4. Généralisation de l’algorithme au genre supérieur 203

partir des conditions obtenues après réduction des deux arguments, en utilisant des formules de
z-duplication et de τ -duplication. Il est ensuite aisé de construire une fonction fz,τ qui s’annule
en θ2

1(z,τ)
θ2

0(z,τ) ; puis, on utilise la méthode de Newton pour calculer ce quotient, ce qui (après une
ultime application de F) donne θ(z, τ). Le coût de cet algorithme est O(M(P) logP) , mais la
complexité dépend a priori de z et de τ (en particulier, elle dépend du nombre de formules de
τ - et de z-duplications que l’on doit appliquer) ; nous sommes parvenu à donner une version
de l’algorithme qui a une complexité uniforme en z et τ sur tout le domaine fondamental, et
pour lequel les pertes de précision ne sont jamais plus grandes que P chiffres (ainsi, travailler à
précision 2P suffit pour obtenir le résultat exact).

Nous avons implanté l’algorithme ci-dessus en utilisant la bibliothèque MPC [EGTZ12], une
bibliothèque C qui permet d’effectuer des calculs sur des nombres complexes de précision arbi-
traire. Nous avons également implanté une version optimisée de l’algorithme naïf afin d’obtenir
une comparaison adéquate ; enfin, nous avons également comparé notre algorithme à la fonc-
tion Theta de MAGMA. Les temps de calcul sont résumés dans la Table 6.1 ; ils montrent que
les deux algorithmes sont toujours plus rapides que MAGMA, et que notre algorithme est plus
rapide que l’algorithme naïf pour des précisions supérieures à 260 000 chiffres décimaux (ce qui
nécessite environ une minute de calcul).

4 Généralisation de l’algorithme au genre supérieur
Nous décrivons dans cette section les résultats du chapitre 7, qui sont tirés d’un article co-écrit
avec Emmanuel Thomé et publié à l’Algorithmic Number Theory Symposium XII ; il s’agit de
montrer comment l’algorithme décrit dans la section précédente peut se généraliser au genre
supérieur.

Notons d’abord que l’algorithme naïf (par sommation partielle de la série) est plus difficile à
analyser dans le cas général du genre g. En genre 1, l’algorithme nécessite O

(
M(P)

√
P

Im(τ)

)
opérations pour le calcul de θ à précision P ; nous avons réalisé une analyse similaire, rendue
plus technique par le nombre plus grand de variables, en genre 2, qui donne un algorithme en
O
(
M(P) P

Im(τ1,1)

)
opérations. Cependant, une telle preuve ne peut se généraliser en genre g

très facilement : nous avons obtenu une complexité en O
(
M(P)

(
P
λ

)g/2), où λ est la plus petite
valeur propre de Im(τ), mais le lien avec Im(τ1,1), bien que pressenti par une conjecture, n’a pu
être formellement établi. Notons cependant qu’une approche tout aussi naturelle est décrite en
d’autres termes par [DHB+04] ; notre analyse montre une complexité de O

(
M(P)P g/2

)
, mais

nous n’avons pas pu déterminer la dépendance en τ de l’algorithme.
Revenons maintenant au cas du genre 2. Un algorithme similaire à celui existant pour les

theta-constantes en genre 1 est décrit dans [Dup06] ; la généralisation de l’AGM qui est utilisée
est la moyenne de Borchardt, définie par les relations de récurrence suivantes :

an+1 = an + bn + cn + dn
4 , bn+1 =

√
an
√
bn +√cn

√
dn

2 ,

cn+1 =
√
an
√
cn +

√
bn
√
dn

2 , dn+1 =
√
an
√
dn +

√
bn
√
cn

2 .

Là encore, la notion de bons choix de signes est cruciale ; elle est définie par Re
(√

bn√
an

)
> 0,

ainsi que les mêmes inéquations obtenues en permutant les quatre nombres. On a le théorème
suivant :

204 Résumé de la thèse en français

Proposition A.4.1 ([Dup06, Théorème 7.1]). Une suite de Borchardt où tous16 les bons choix
de signes sont bons converge quadratiquement ; la limite B(a, b, c, d) peut donc être calculée en
O(M(P) logP).

La moyenne de Borchardt correspond exactement aux formules de τ -duplication des thêta-
constantes en genre 2 ; ainsi, on se retrouve à étudier Re

(
θ1(0,τ)
θ0(0,τ)

)
. Nous sommes parvenu

à étendre [Dup06, Prop. 6.1] et montrer que les choix de signes étaient bons dès que Im(τ) est
réduite par la réduction de Minkowksi et Im(τ1,1) > 0.594. Ainsi, par homogénéité de la moyenne
de Borchardt, on obtient pour τ vérifiant ces conditions :

B

(
1, θ

2
1(0, τ)
θ2

0(0, τ) ,
θ2

2(0, τ)
θ2

0(0, τ) ,
θ2

3(0, τ)
θ2

0(0, τ)

)
= 1
θ2

0(0, τ) .

Il s’agit ensuite, comme en genre 1, d’utiliser l’action de Sp4(Z) sur les valeurs de θ pour calculer
les coefficients de τ : en considérant trois matrices bien choisies (données dans [Dup06], ou
dans Proposition 7.1.3), on obtient un moyen de calculer les 3 coefficients de τ , et d’appliquer
la méthode de Newton, pour obtenir un algorithme en temps quasi-linéaire (cf. Section 7.1).
Cependant, il faut aussi démontrer que les choix de signes sont bons pour les thêta-constantes
que l’on considère en regardant l’action de ces matrices ; malheureusement, il semble très difficile
de prouver un tel résultat, qui reste à l’état de conjecture.

La généralisation de cet algorithme s’opère de la même façon qu’en genre 1. (Dans le reste de
cette section, nous utilisons la notation θi1,i2,...,in pour signifier θi1 , θi2 , . . . , θin .) On considère
les formules de τ -duplication des fonctions thêta en genre 2 :

θ2
i (z, 2τ) =

∑
j∈{0,...,2g−1}

θj(z, τ)θi⊕j(0, τ)

où ⊕ dénote le XOR bit à bit. On peut ensuite définir une fonction F de 8 variables telle que

F (θ2
0,1,2,3(z, τ), θ2

0,1,2,3(0, τ)) =
(
θ2

0,1,2,3(z, 2τ), θ2
0,1,2,3(0, 2τ)

)
.

Cette fonction nécessite l’extraction de racines carrées, ce qui nécessite l’étude de Re
(
θ1,2,3(z,τ)
θ0(z,τ)

)
.

Cependant, nous ne sommes pas arrivés à déterminer une condition suffisante sur τ pour garantir
que ces parties réelles soient positives. Nous nous sommes alors tournés vers une autre solution,
qui est celle de calculer une approximation à petite précision du quotient afin de déterminer
quelle racine carrée correspond au quotient de thêtas voulu – ce que nous appelons un choix
correct de racines, car c’est celui qui donne la valeur correcte pour la limite de la suite (qui est
1). Nous conjecturons que les bons choix de racines et les choix corrects de racines correspondent
au moins pour τ ∈ F2 et z réduit, ce qui se vérifie expérimentalement.

De même qu’en genre 1, la suite des itérés de F ne converge pas nécessairement quadra-
tiquement ; mais, comme en genre 1, étudier F (λa0,1,2,3, µb0,1,2,3) fait apparaître des suites très
similaires. Nous avons réussi à montrer que ces suites convergent quadratiquement, en général-
isant la même preuve qu’en genre 1 ; l’obstacle principal à la généralisation aux genres supérieurs
est essentiellement la technicité de la démonstration. Ainsi, nous arrivons à définir une fonction
F, calculable en temps O(M(P) logP) , telle que

F

(
θ2

1,2,3(z, τ)
θ2

0(z, τ) ,
θ2

1,2,3(0, τ)
θ2

0(0, τ)

)
=
(

1
θ2

0(z, τ) ,
1

θ2
0(0, τ)

)
.

16En réalité, on peut même tolérer un nombre fini de mauvais choix.

4. Généralisation de l’algorithme au genre supérieur 205

Les trois matrices de Sp4(Z) utilisées pour le calcul des coefficients de τ peuvent aussi être utilisées
ici, et permettent de calculer les coefficients de z. Cependant, l’application de la méthode de
Newton n’est pas aussi directe qu’en genre 1 ; en effet, nous avons ici une fonction de 6 variables,
et seulement 5 coefficients (2 pour z et 3 pour τ). Deux solutions sont possibles :

• Utiliser l’équation de la variété de Kummer, une équation qui lie les thêta-fonctions et les
thêta-constantes que nous considérons ici, pour en quelque sorte abaisser la dimension de
l’espace de départ ;

• Définir une fonction dont la valeur en les 6 quotients considérés ici est un sextuplet dépen-
dant uniquement de z et τ (on prend par exemple les λ et µ obtenus en considérant l’action
des trois matrices mentionnées plus haut), en espérant que la matrice jacobienne de la
fonction soit inversible.

Nous utilisons la deuxième approche, qui semble fonctionner en pratique : ceci correspond à
rajouter une sixième équation qui, bien qu’elle ne dépende que de 5 paramètres calculés par la
fonction, donne une jacobienne inversible. Nous n’avons pas réussi à trouver une explication con-
vaincante qui justifierait cette inversibilité, qui est donc conjecturelle. En tout cas, modulo cette
conjecture, la méthode de Newton s’applique, et l’on obtient un algorithme en O(M(P) logP)
pour calculer θ en genre 2.

Nous avons réalisé une implantation de cet algorithme, ainsi qu’une implantation optimisée
de l’algorithme naïf ; les deux implantations ont été réalisées en MAGMA et ont été comparées à
la fonction Theta de ce logiciel. Les résultats sont présentés dans la Table 7.1 ; notre algorithme
est plus rapide que l’algorithme naïf pour des précisions supérieures à 3 000 chiffres décimaux,
ce qui est encore mieux qu’en genre 1, et est sans doute dû à la complexité de l’algorithme naïf,
plus grande qu’en genre 1.

Enfin, nous avons détaillé des pistes pour généraliser l’algorithme ci-dessus en genre g. La clé
est une fois encore les formules de τ -duplication pour les fonctions thêta, qui sont valides en genre
g ; on peut ainsi s’en servir pour définir une fonction F de 2g+1 variables, qui double τ quand
on l’applique aux carrés des fonctions thêta et des thêta-constantes en τ . Là encore, les choix
de signes doivent être guidés par des approximations à faible précision du résultat, qui donnent
les valeurs correctes de θ. L’étude de l’homogénéité de la suite des itérés de F fait apparaître,
pour le calcul de λ et µ, les mêmes suites qu’en genre 1 ou 2 ; nous pensons qu’il est possible
de prouver qu’elles convergent quadratiquement, même si la technicité de notre preuve ne nous
permet pas de la généraliser en genre supérieur. Au final, nous parvenons à définir une fonction
F telle que

F

(
θ2

1,...,2g−1(z, τ)
θ2

0(z, τ) ,
θ2

1,...,2g−1(0, τ)
θ2

0(0, τ)

)
=
(

1
θ2

0(z, τ) ,
1

θ2
0(0, τ)

)
.

et qui, modulo une généralisation de notre preuve quant à la convergence de λ et µ, peut être
calculée en temps O(M(P) logP) .

L’application de la méthode de Newton n’est pas aisée ; en effet, nous obtenons une fonction
C2g+1 → Ct où t = g + g(g+1)

2 . Il s’agit d’adapter les stratégies que nous avons mis en place
en genre 2 ; nous pourrions tenter d’abaisser la dimension de l’espace de départ, ou calculer
plus de valeurs de F en des points dictés par l’action de matrices de Sp2g(Z). Il faut de plus
assurer que la jacobienne du système est inversible, ce qui semble compliqué ; en réalité, nous
ne sommes pas parvenus à déterminer une famille de matrices de Sp2g(Z) qui consituterait une
bonne candidate à cette étape de l’algorithme. Ainsi, le cas du genre g est plus complexe, et
nécessite de régler plusieurs problèmes ; cependant, notons qu’il semblerait que notre approche
ait de bonnes chances d’aboutir.

206 Résumé de la thèse en français

5 Calcul de l’application d’Abel-Jacobi
Nous montrons ensuite comment utiliser les algorithmes pour le calcul rapide de θ pour calculer
l’application d’Abel-Jacobi ainsi que son inverse ; ceci est expliqué dans le chapitre 8 de ce
manuscrit.

Application d’Abel-Jacobi

En genre 1, l’application d’Abel-Jacobi peut se calculer à l’aide de la transformation de Lan-
den, un changement de variables sur les intégrales elliptiques complexes qui peut également
s’interpréter comme une 2-isogénie entre courbes elliptiques. La méthode générale est exposée
dans [BM88] dans le cas réel: répéter ce changement de variables donne une chaîne de 2-isogénies
qui tend vers une courbe limite dont l’intégrale elliptique associée est particulièrement simple à
calculer. On obtient ainsi un algorithme pour le calcul des intégrales elliptiques complètes (calcul
des périodes) et incomplètes (calcul de l’application d’Abel-Jacobi); de plus, la suite ayant des
liens très forts avec la moyenne arithmético-géométrique, le temps de calcul est de O(M(P) logP)
opérations. Cet algorithme est généralisé dans le cas complexe par un article récent [CT13], qui
traite notamment du choix de signes dans les itérations.

Nous proposons un autre algorithme, basé sur notre travail sur la fonction thêta et inspiré
par un algorithme de [Dup06, Chap. 9], pour calculer le logarithme elliptique d’un point. Le lien
entre la fonction θ et la fonction ℘ donne l’équation suivante:

θ2
3(z, τ)
θ2

0(z, τ) = π2θ2
1(0, τ)θ2

2(0, τ)
π2

3 (θ4
2(0, τ)− θ4

1(0, τ))− x
ω1

.

Les thêta-constantes peuvent se calculer en temps quasi-optimal, ce qui fait que θ2
3

θ2
0(z,τ) peut être

calculé à partir du point; on peut ensuite utiliser l’équation de la variété pour calculer θ2
1(z,τ)
θ2

0(z,τ) .
On peut ensuite utiliser la fonction F, qui est à la base de notre algorithme rapide pour le calcul
de θ ; plus précisément, on utilise le fait que

F

(
θ2

1(z, τ)
θ2

0(z, τ) ,
θ2

1(0, τ)
θ2

0(0, τ)

)
= (z, τ)

pour récupérer z, le logarithme elliptique. Ceci donne un deuxième algorithme pour calculer
le logarithme elliptique en temps quasi-linéaire ; cependant, nos expériences montrent que cet
algorithme est environ 2 fois plus lent que l’algorithme basé sur la transformation de Landen.

Cependant, cet algorithme peut se généraliser au genre supérieur, alors que l’algorithme basé
sur la transformation de Landen ne semble pas se généraliser aussi facilement (le cas réel en
genre 2 est esquissé dans [BM88], mais le lien avec les suites de Borchardt n’est pas vraiment
explicite). Dans un premier temps, il s’agit de calculer les quotients de carrés de fonctions
thêta à partir des coordonnées de Mumford du diviseur voulu ; ceci s’effectue en utilisant un
algorithme pour calculer les thêta-constantes, ainsi que les formules données dans [Cos11], qui
permettent de passer des coordonnées Mumford aux coordonnées thêta et vice-versa. Ensuite,
il suffit d’appliquer une généralisation en genre g de la fonction F , qui permet d’extraire les
coefficients de z et de τ en considérant certains quotients de fonctions thêta bien précis. Nous
formulons la conjecture que les suites considérées pendant ce calcul convergent quadratiquement,
ainsi que celle que les thêta-constantes peuvent être calculées en temps quasi-optimal ; si ces
deux conjectures sont vérifiées, nous obtenons un algorithme quasi-linéaire pour le calcul de
l’application d’Abel-Jacobi.

6. Calcul d’isogénies de noyau donné 207

Inverse de l’application d’Abel-Jacobi

Aucun algorithme quasi-linéaire pour le calcul de l’inverse de l’application d’Abel-Jacobi ne
semble avoir été proposé ; nous montrons comment effectuer ce calcul en genre 1 et 2, et comment
il pourrait être effectué en genre supérieur.

En genre 1, ce calcul revient à l’évaluation rapide de la fonction ℘ de Weierstrass. Le lien
entre ℘ et θ est donné par la formule classique suivante:

℘(z, [ω1, ω2])
ω2

1
= π2

3 (θ4
2(0, τ)− θ4

1(0, τ))− π2θ2
1(0, τ)θ2

2(0, τ)θ
2
0(z, τ)
θ2

3(z, τ)
A similar formula can be proven for ℘′. Ainsi, nos algorithmes pour le calcul rapide de θ donnent
un algorithme pour le calcul de ℘ en temps quasi-linéaire.

Nous avons également trouvé un deuxième algorithme rapide pour calculer ℘, qui se base cette
fois-ci sur la transformation de Landen. Celle-ci s’exprime comme une 2-isogénie entre courbes,
et le lien entre les périodes des deux courbes est explicite ; ainsi, le changement de variables peut
se réécrire comme une relation entre des valeurs de ℘ en des périodes différentes. En utilisant
les formules de Thomae, qui permettent d’écrire les coefficients de la courbe en fonction des
theta-constantes, on obtient la relation

℘(z, [ω1, ω2]) = ℘(z, [ω1, 2ω2]) +

(
π
ω1

)4
θ0(2τ)4θ2(2τ)4

℘(z, [ω1, 2ω2]) +
(
π
ω1

)2
θ0(2τ)4+θ2(2τ)4

3

Appliquer la transformation de Landen plusieurs fois de suite revient à étudier la suite ℘(z, [ω1, 2kω2])
pour k tendant l’infini ; or on a

lim
k→∞

℘(z, [ω1, 2kω2]) =
(
π

ω1

)2(1
sin2(zπ/ω1)

− 1
3

)
.

Une stratégie est alors de calculer un rang N à partir duquel ℘(z, [ω1, 2Nω2]) est égal à cette
limite, à 2−P près ; nous prenons N comme le rang à partir duquel |θ2(0, 2Nτ)| ≤ 2−P , mais nous
n’avons pu prouver que ce choix était le bon. Une fois que N a été choisi, on peut appliquer la
relation de récurrence N fois afin de récupérer ℘(z, [ω1, ω2]). Puisque N = O(logP), ceci donne
un algorithme en O(M(P) logP) opérations.

La comparaison entre ces deux algorithmes montre que les pertes de précision sont à peu près
les mêmes ; dans les deux cas, travailler avec P (voire 2P) bits de garde permet de retrouver
le bon résultat. Quant à la vitesse de chacun de ces algorithmes en pratique, une comparaison
entre leurs implantations en MAGMA montre que le deuxième algorithme est environ 3 fois plus
rapide que celui basé sur le calcul rapide de θ.

Cependant, le premier algorithme peut se généraliser aisément en genre supérieur ; en effet, il
existe des formules, données dans [Cos11], qui permettent de relier les coordonnées de Mumford
d’un diviseur à des quotients de fonctions thêta. Ainsi, le problème de l’évaluation de l’inverse
de l’application d’Abel-Jacobi en genre supérieur se réduit au problème du calcul de θ ; comme
nous l’avons indiqué précédemment, des algorithmes en temps quasi-linéaire existent en genre 1
et en genre 2, mais la généralisation en genre g nécessite d’abord de régler quelques problèmes
qui surviennent lors de l’utilisation de la méthode de Newton.

6 Calcul d’isogénies de noyau donné
Une isogénie est un morphisme de groupe de courbes elliptiques, i.e. une fonction rationnelle telle
que φ(P + Q) = φ(P) + φ(Q). Une isogénie transporte donc le problème du logarithme discret

208 Résumé de la thèse en français

sur une courbe elliptique vers une autre courbe elliptique ; le risque est alors que ce problème
soit plus facile sur une courbe que sur une autre, ce qui aurait des conséquences sur la sécurité
d’un cryptosystème basé sur une de ces courbes. On s’intéresse ainsi au problème de calculer des
isogénies rapidement.

Nous considérons le problème suivant:

Problème. Étant donnée une courbe elliptique E et un point P de `-torsion (avec ` premier),
calculer l’unique courbe E′ et l’unique isogénie φ telles que Kerφ est le sous-groupe d’ordre `
engendré par P .

Ce problème est résolu par l’utilisation des formules de Vélu [Vél71], qui nécessitentO(M(`) log `)
opérations élémentaires sur le corps. Il s’agit du problème sur les isogénies le plus simple; d’autres
problèmes, tels que “étant données deux courbes et un entier ` premier, calculer une `-isogénie
entre les courbes” ou “étant données deux courbes isogènes, calculer une isogénie”, peuvent être
résolus par des algorithmes de complexité plus importante, qui d’ailleurs font bien souvent appel
aux formules de Vélu lors d’une de leurs étapes.

Nous proposons un algorithme différent, se basant sur le théorème suivant:

Théorème ([Sil86, Theorem VI.4.1]). Une isogénie entre deux courbes elliptiques en représen-
tation analytique, i.e. C/Λ1 et C/Λ2, est de la forme φ(z) = αz (mod Λ2) pour un certain
α ∈ C.

Calculer des isogénies entre tores complexes est ainsi très simple ; l’idée est d’utiliser l’application
d’Abel-Jacobi pour étendre l’algorithme aux représentations algébriques de courbes elliptiques.
Nous étudions cet algorithme dans la section 9.1 (Algorithme 25). Il consiste en une évaluation
de l’isogénie en O(`) points, en utilisant l’application d’Abel-Jacobi pour ramener le problème
à une évaluation d’isogénie entre tores complexes, puis l’inverse de l’application d’Abel-Jacobi
pour trouver la valeur de l’isogénie en le point ; une fois ces images calculées, il suffit d’interpoler
pour trouver la fraction rationnelle définissant l’isogénie. La complexité de l’algorithme est de
O(M(P) logPM(`) log `) opérations sur les bits, ce qui est plus grand d’un facteur logP que la
complexité des formules de Vélu.

L’algorithme peut se généraliser pour résoudre le même problème sur un corps de nombres
K = Q[X]/(f). En effet, si f est de degré n, il existe n plongements de K dans C, qui sont les
applications qui évaluent les éléments du corps de nombre (considérés comme des polynômes) en
une racine de f . On peut ainsi calculer les n plongements dans C de la courbe définie sur K, et
appliquer l’algorithme pour calculer l’isogénie correspondant à chacun de ses plongements ; il est
ensuite nécessaire d’interpoler les n plongements pour retrouver l’isogénie sur K. La complexité
de cet algorithme est O(n1+ε`1+εP 1+ε) ; l’analyse détaillée montre que la complexité est une
fois encore un peu moins bonne (i.e. avec quelques facteurs logarithmiques de plus) que celle
des formules de Vélu sur K, même si la comparaison sur quelques exemples a montré qu’il était
possible que cet algorithme soit compétitif en pratique.

Enfin, nous avons également généralisé l’algorithme pour résoudre le problème sur Fp, en
utilisant une procédure de relèvement global par torsion pour transformer le problème en un
problème sur des courbes elliptiques sur un corps de nombres. Nous avons étudié la procédure
de relèvement, et plus particulièrement le polynôme qui définit le corps de nombre que l’on
obtient ; nous avons réussi à donner une borne sur la taille de ses racines. En utilisant ce dernier
résultat, nous avons conjecturé que la précision à laquelle les plongements de K dans C devaient
être calculés pour que l’algorithme fonctionne était en O(`2 log p), ce qui nous a permis d’obtenir
la complexité finale de l’algorithme, en O(`5+ε log1+ε p). Cette complexité est bien pire (d’un
facteur O(`4)) que celle des formules de Vélu sur Fp, et cela se vérifie en pratique.

7. Conclusion 209

Il serait intéressant de pousser plus loin l’étude de cette méthode. En particulier, il sem-
blerait que l’algorithme se généralise relativement bien en genre supérieur, pour des courbes
hyperelliptiques définies sur C ou sur K, en utilisant nos méthodes pour calculer l’application
d’Abel-Jacobi ; en revanche, la procédure de relèvement se généralise mal en genre supérieur,
car elle implique de calculer des polynômes de division, qui sont mal connus en genre g. Enfin,
cette méthode pourrait peut-être permettre de résoudre un problème plus complexe, celui de
déterminer une `-isogénie entre deux courbes données, en s’aidant d’un travail similaire [VW00].

7 Conclusion
Durant cette thèse, nous avons mis au point plusieurs algorithmes de complexité quasi-linéaire
pour calculer des fonctions en précision arbitraire. L’étude d’un algorithme existant pour les
theta-constantes, utilisant les liens avec l’AGM et la méthode de Newton, nous a permis de
trouver une généralisation de cet algorithme, en étudiant des suites dérivées des formules de
τ -duplication de theta et en combinant leur évaluation à la méthode de Newton. Nous sommes
parvenu à généraliser l’algorithme en genre 2, modulo une conjecture d’inversibilité de la matrice
jacobienne du système ; une généralisation en genre g est sans doute possible, mais l’utilisation
de la méthode de Newton dans ce cas-là n’est pas aussi directe. Grâce à ces algorithmes, il est
possible de calculer l’application d’Abel-Jacobi en temps quasi-linéaire, de même que son inverse
en genre 1 et 2, grâce à des algorithmes que nous décrivons ici. Une application concerne le calcul
d’isogénies de courbes elliptiques : nous utilisons nos résultats pour construire un algorithme
calculant une isogénie de noyau donné entre courbes complexes, que nous généralisons également
pour des courbes définies sur des corps de nombres et des corps finis. Cet algorithme est de
complexité plus grande que l’état de l’art, mais contrairement à celui-ci pourrait se généraliser
plus facilement au genre supérieur.

210 Résumé de la thèse en français

Résumé
L’application d’Abel-Jacobi fait le lien entre la forme de Weierstrass d’une courbe elliptique
définie sur C et le tore complexe qui lui est associé. Il est possible de la calculer en un nombre
d’opérations quasi-linéaire en la précision voulue, c’est à dire en temps O(M(P) logP). Son
inverse est donné par la fonction ℘ de Weierstrass, qui s’exprime en fonction de θ, une fonction
importante en théorie des nombres. L’algorithme naturel d’évaluation de θ nécessite O(M(P)

√
P)

opérations, mais certaines valeurs (les thêta-constantes) peuvent être calculées en O(M(P) logP)
opérations en exploitant les liens avec la moyenne arithmético-géométrique (AGM).

Dans ce manuscrit, nous généralisons cet algorithme afin de calculer θ en O(M(P) logP).
Nous exhibons une fonction F qui a des propriétés similaires à l’AGM. D’une façon similaire à
l’algorithme pour les thêta-constantes, nous pouvons alors utiliser la méthode de Newton pour
calculer la valeur de θ. Nous avons implanté cet algorithme, qui est plus rapide que la méthode
naïve pour des précisions supérieures à 260 000 chiffres décimaux.

Nous montrons comment généraliser cet algorithme en genre supérieur, et en particulier
comment généraliser la fonction F. En genre 2, nous sommes parvenus à prouver que la même
méthode mène à un algorithme qui évalue θ en O(M(P) logP) opérations ; la même complexité
s’applique aussi à l’application d’Abel-Jacobi. Cet algorithme est plus rapide que la méthode
naïve pour des précisions plus faibles qu’en genre 1, de l’ordre de 3 000 chiffres décimaux. Nous
esquissons également des pistes pour obtenir la même complexité en genre quelconque.

Enfin, nous exhibons un nouvel algorithme permettant de calculer une isogénie de courbes
elliptiques de noyau donné. Cet algorithme utilise l’application d’Abel-Jacobi, car il est facile
d’évaluer l’isogénie sur le tore ; il est sans doute possible de le généraliser au genre supérieur.

Mots-clés: fonctions thêta, application d’Abel-Jacobi, multiprécision, temps quasi-linéaire,
courbes elliptiques, isogénies, courbes hyperelliptiques, cryptographie

Abstract

The Abel-Jacobi map links the short Weierstrass form of a complex elliptic curve to the
complex torus associated to it. One can compute it with a number of operations which is quasi-
linear in the target precision, i.e. in time O(M(P) logP). Its inverse is given by Weierstrass’s
℘ function, which can be written as a function of θ, an important function in number theory.
The natural algorithm for evaluating θ requires O(M(P)

√
P) operations, but some values (the

theta-constants) can be computed in O(M(P) logP) operations by exploiting the links with the
arithmetico-geometric mean (AGM).

In this manuscript, we generalize this algorithm in order to compute θ in O(M(P) logP).
We give a function F which has similar properties to the AGM. As with the algorithm for theta-
constants, we can then use Newton’s method to compute the value of θ. We implemented this
algorithm, which is faster than the naive method for precisions larger than 260 000 decimal digits.

We then study the generalization of this algorithm in higher genus, and in particular how
to generalize the F function. In genus 2, we managed to prove that the same method leads to
a O(M(P) logP) algorithm for θ; the same complexity applies to the Abel-Jacobi map. This
algorithm is faster than the naive method for precisions smaller than in genus 1, of about 3 000
decimal digits. We also outline a way one could reach the same complexity in any genus.

Finally, we study a new algorithm which computes an isogeny of elliptic curves with given
kernel. This algorithm uses the Abel-Jacobi map because it is easy to evaluate the isogeny on
the complex torus; this algorithm may be generalizable to higher genera.

Keywords: theta functions, Abel-Jacobi map, multiprecision, quasi-linear time, elliptic curves,
isogenies, hyperelliptic curves, cryptography

	Couverture
	Dédicace
	Remerciements
	Contents
	Introduction
	Contributions of this thesis
	Outline of the manuscript
	Computational model
	Precision
	Loss of precision
	Cost of computations

	Background on elliptic and hyperelliptic curves
	Elliptic curves and isogenies
	Elliptic curves over a field
	Isogenies
	Finding a l-isogenous curve: Vélu's formulas
	Computing an l-isogeny
	Computing an isogeny

	Applications of isogenies
	Isogenies and the ECDLP
	The SEA point counting algorithm
	Isogeny-based cryptography

	The Abel-Jacobi map
	Definition of the map
	Maps between complex tori
	Elliptic functions and the Weierstrass-p function
	Inverse of the Abel-Jacobi map

	Hyperelliptic curves and the Abel-Jacobi map
	Hyperelliptic curves over the complex numbers
	The Abel-Jacobi map

	Background on theta functions
	Definition
	Addition and duplication formulas
	tau-duplication formula
	Riemann formulas

	Reduction of the first argument
	Quasi-periodicity
	z-duplication formulas

	Reduction of tau via the symplectic group
	Symplectic group
	Action of the symplectic group on theta
	Fundamental domain for tau
	Loosened requirements for tau for g >= 2

	Genus 1 instantiations
	Duplication formulas
	Other equations
	Argument reduction

	Genus 2 instantiations
	Definition
	Reduction
	Duplication
	The Kummer surface

	AGM and Borchardt mean
	The real AGM
	Rate of convergence
	Brent-Salamin algorithm

	The complex AGM
	Choice of signs and optimal AGM sequences
	Convergence of optimal AGM sequences
	Theta-constants and arithmetico-geometric mean

	Applications of the complex AGM
	Elliptic integrals
	Computing the complex logarithm
	Computing the exponential

	Generalization of the AGM to higher genera
	Definition
	Choice of roots and convergence
	Link with the theta-constants

	The Landen isogeny
	The real case (Bost-Mestre)
	Elliptic integrals and period computation
	2-isogenies
	Elliptic logarithm

	The complex case (Cremona-Thongjunthug)
	Lattice chains
	2-isogenies
	Period computation
	Elliptic logarithm

	An algorithm for the Weierstrass-p function
	Fast computation of the sequence of duplications of theta-constants
	A backward recurrence for Weierstrass-p
	A quasi-optimal time algorithm

	Using the Landen transform to compute theta

	Naive algorithms for theta functions in any genus
	Genus 1
	Partial summation of the series defining theta
	Naive algorithm
	Error analysis and complexity
	Computing the third theta function

	Genus 2
	Truncated sums
	Genus 2 naive algorithm

	Genus g
	Deckoninck et. al's analysis
	Truncated sums
	Recurrence relations

	Fast computation of the theta function in genus 1
	Preamble: fast theta-constants
	A quasi-optimal time algorithm to compute theta-constants
	A faster algorithm with uniform complexity

	A function related to the theta function
	The F sequence
	Link with theta functions
	A function with quasi-optimal time evaluation
	Convergence
	Number of bits lost

	Fast computation of theta
	Building our function to invert
	Computing theta(z, tau) in uniform quasi-optimal time
	Proving the correctness of the algorithm

	Implementation results
	Batching computations of theta for different z
	Batch naive algorithm
	Batch quasi-linear algorithm

	Computing the Riemann theta function in genus 2 and above
	Preamble: genus 2 theta-constants
	The algorithm
	The function F
	Constructing and inverting the fraktur-F function
	Proof of quasi-optimal time

	Implementation results
	Computing theta functions of higher genera
	The function F
	Extending the quasi-linear time algorithm

	Fast computation of Abel-Jacobi
	In genus 1
	Computing the equation of the curve
	Computing the Weierstrass-p function using theta functions
	Comparing methods for the computation of the Weierstrass-p function
	Computing the Abel-Jacobi map

	In genus 2
	Computing the Abel-Jacobi map
	Computing the inverse of the Abel-Jacobi map

	Extending the strategy to higher genus
	Computing the Abel-Jacobi map
	Computing the inverse of the Abel-Jacobi map

	Interlude: a faster algorithm to compute Eisenstein series
	Naive algorithm for the Eisenstein series
	An algorithm based on the coefficients of the series expansion of the Weierstrass-p function
	Comparison

	Computing isogenous curves in genus 1
	Computing isogenous curves over the complex numbers
	Determining the isogenous curve
	Evaluating the isogeny
	Description of the algorithm and complexity

	Computing isogenous curves over a number field
	Computing embeddings
	Using complex conjugation
	Multi-evaluation and fast interpolation
	Recovering coefficients as rationals
	Description of the algorithm

	Computing isogenous curves over finite fields with p elements
	Global torsion lifting
	Generic division polynomials
	A univariate polynomial
	Precision required
	Description of the algorithm

	Extending this idea to other settings

	Bibliography
	Absolute loss of precision in elementary fixed-point operations
	Résumé de la thèse en français
	Courbes elliptiques et application d'Abel-Jacobi
	Fonction theta et calcul rapide de theta-constantes
	Calcul de la fonction thêta de Jacobi
	Généralisation de l'algorithme au genre supérieur
	Calcul de l'application d'Abel-Jacobi
	Calcul d'isogénies de noyau donné
	Conclusion

	Résumé
	Abstract

