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Abstract

This thesis investigates the equidistributions of zeros of random holomor-
phic sections of line bundles for moderate measures. It consists of two parts.

In the first part, we construct a large family of singular moderate measures
on projective spaces. These measures are generated by quasi-plurisubharmonic
functions with Holder potentials.

The second part deals with an equidistribution property in general set-
tings. We establish an equidistribution theorem in the case of several big line
bundles endowed with singular metrics. A precise convergence speed for the
equidistribution is obtained.

Key words: positive closed current, plurisubharmonic function, moderate
measure, Dinh-Sibony equidistribution theorem, meromorphic transform, in-
termediate degree, multi-projective space, random holomorphic section, Holder
potential, big line bundle, Fubini-Study current.

Classification AMS 2010: 32A60, 32L.10, 32U40.



Résumé

Cette these étudie les équidistributions de zéros de sections holomorphes
aléatoires de fibrés en droites pour les mesures modérées. Elle consiste en deux
parties.

Dans la premiere partie, nous construisons une famille étendue de mesures
singulieres modérées sur des espaces projectifs. Ces mesures sont générées par
des fonctions quasi-plurisousharmoniques avec les potentiels holdériens.

Le deuxieme partie traite une propriété d’équidistribution dans un con-
texte général. Nous établissons un théoreme d’équidistribution dans le cas de
quelques fibrés en droites gros munis de métriques singulieres. Une vitesse de
convergence précise pour I'équidistribution est obtenue.

Mots-clés: courant positif fermé, fonction plurisousharmonique, mesure moderée,
théoreme d’équidistribution de Dinh-Sibony, transformation méromorphe, degré
intermédiaire, espace multi-projectif, section holomorphe aléatoire, potentiel
holdérien, fibré en droites gros, courant de Fubini-Study.

Classification AMS 2010: 32A60, 32110, 32U40.
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Chapter O

Introduction.

Distribution of zeros of random polynomials is a classical subject. Waring
[58] used a probabilistic method to determine the number of imaginary zeros of
an algebraic polynomial. More rigorous and systematic research started with
the paper of Bloch-Pélya [4] in 1930s. They gave an order of the expected num-
ber of real roots of certain random algebraic polynomial equations. Kac [40] ob-
tained an exact distribution of real roots for random polynomials with normal
distribution coefficients. Results about polynomials with other distributions
or settings were extended notably. We refer the reader to [3, 2, 6, 7, 25, 41, 56]
and references therein for more results and further discussions.

A classical theorem due to Hammersley [33] asserts that the normalized
zeros of complex Gaussian random polynomials of large degree tend to accu-
mulate on the unit circle with uniformly distribution. An analogous result
holds for random SU(2) polynomials whose expected distribution of zeros is
uniform on P! (cf. [3, Appendix C]). The general results about the holomor-
phic sections of a positive line bundle associated to the Lebesgue measures were
obtained by Shiffman-Zelditch[57]. Note that the result covers the equidistri-
bution property of random SU(2) polynomials when X = P! and L = O(1).
Dinh-Sibony[23] extended the equidistribution property in the case of gen-
eral measures and obtained a good estimate of the convergence speed. The
potential-theoretic approach from Fornaess-Sibony[26] was used in the previous
works.

0.1 Motivation and applications

The general measures in Dinh-Sibony’s equidistribution theorems [23, The-
orem 4.1, Theorem 7.3] have quite strict conditions. One explicit non-trivial
example of a singular measure with real coefficients was given in [23, Corol-
lary 7.4]. But it seems difficult to provide a wide class of general measures
to satisfy the equidistribution theorems. Our motivation of the first part is
to construct a large family of singular moderate measures which satisfies the
equidistribution property. Roughly speaking, we prove that the normalized
currents defined by the zeros of random sections of high powers of a positive

7



8 Guokuan SHAO

line bundle on a projective manifold converge weakly to the curvature form
associated to certain family of singular moderate measures. Our method fol-
lows the techniques of exponential estimates for plurisubharmonic functions
by Dinh-Nguyén-Sibony [21], see Section 2.3.

In the second part, we are motivated to generalize the equidistribution
property in the case of several big line bundles endowed with singular metrics.
We follow the approaches of Dinh-Sibony [23], Coman-Marinescu-Nguyén [14]
and Section 2 [54]. To achieve our results, we establish sharp estimates on
the constants related to Alexander-Dinh-Sibony capacity on multi-projective
spaces [55], see Section 3.4.

The Alexander-Dinh-Sibony capacity is closely related to the global ex-
tremal function (cf. [23, A.2] and [32, Section 5]). The L?*-method plays also
an important role in the study of equidistribution properties. For example, we
apply L?-method to explore the asymptotic behavior of Bergman kernel func-
tions. Hence we can obtain equidistribution theorems with good convergence
speed (cf. [10], [14], [15] etc). The equidistribution property provides a tool
to study the Unique Ergodicity conjecture by Rudnick-Sarnak, see [51], [39],
[49]. It can be also applied to study quantum chaos in statistical physics (cf.
3], [48] etc).

0.2 Partl

We give the basic setting in order to introduce the main theorems. For ev-
ery complex vector space V of finite dimension, let wrg be the standard Kéahler
form induced by the Fubini-Study metric on its projective space P(V') normal-
ized by fP(V) w?ﬁglp(v) = 1. Let X be a projective manifold of dimension n, L be
an ample line bundle over X. Fix a Hermitian metric A on L such that the cur-
vature form w is Kéahler on X. Let LP be the pth tensor product of L. Denote
by H°(X, LP) the space of all holomorphic sections of L. Let PH°(X, L?) be
the associated projective space with wgg as its normalized Fubini-Study form.
Set n, = dimPH(X, L?). Let [s, = 0] be the current defined by the zero set
of s,, where s, € PH?(X, L?). Set P* := [ ., PH°(X, L?). See Section 1.2.3
for the notion of moderate measures.

Fix some exponent 0 < p < 1, a function u : M — R defined on a compact
metric space (M, dist) is said to be of class ¢ with modulus c if

oy 1)~ w0
r,yeM dlSt(;U, y)p
TFY

See Section 1.2 for the definition of y-p.s.h. functions.

Let 0, be the probability Lebesgue measure on PH(X, L?) and o be the
product measure of these ones on PX. Shiffman-Zelditch [57] proved that the
sequence of currents {i[sp = 0]} converges weakly to w for o-almost every-
where (s,) € PX. Dinh-Sibony [23] generalized the result and obtained a good
estimate of the convergence speed over a projective manifold endowed with
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a smooth positively-curved metric. They also constructed a singular mea-
sure with real coefficients which satisfies equidistribution property (cf. [23,
Corollary 7.4]). When the Lebesgue measures in Shiffman-Zelditch’s result
are replaced by moderate measures with Holder potentials (see Sections 2.3,
2.4), we have our main theorem as follows which gives a concrete large family
of singular moderate measures that satisfies equidistribution property. It can
be regarded as a perturbation of standard measures induced by Fubini-Study
metric.

Theorem 0.2.1. Let L be an ample line bundle over a projective manifold X
of dimension n and 0 < p < 1 be an exponent. Then there exists a constant
c=c(X,L,p) > 1 with the following property. For eachp > 1,1 < j <n,, let
up; : PHY(X, LP) = R be a function and &,, €, > 0 two numbers such that

(1) 1wy, is of class € with modulus &,, V1 < j < n,;

(11) upj is €wps-p.s.h., Y1 < j < ny,;

(i) & <1/c?" e, <1/,

Let 0, = (dd°up;+wrs) A(ddup 2 +wps) A+ A(dd“uy n, +wrs) be the probability
measure on PHO(X, LP). Endow PX with the product measure o = [1,51 0
Then for almost every s = (s,) € PX with respect to o, the sequence of currents
{%[sp = 0]} converges weakly to w.

The following result gives a convergence speed for the equidistribution in
Theorem 0.2.1.

Theorem 0.2.2. In the setting of Theorem 0.2.1, there exist subsets E, C
PH(X, LP) and a positive constant C' depending only on X, L such that for
all p sufficiently large, we have

C 1 C'logp
Up(Ep)SE and |<];[5p:0]_wy¢>|§ D

for any point s, € PHY(X, LP)\ E, and any (n —1,n— 1)-form ¢ of class €>.

[

€2,

0.3 Part II

Two natural questions arise after solving the first part:

1. Is it possible to consider the case of more general line bundles, e.g. big
line bundles?

2. Could we extend the zeros of sections of a single line bundle to the com-
mon zeros of sections of several ones?

Fortunately, the questions are solved in some directions in the context of prob-
ability Lebesgue measures. Such equidistribution problems and convergence
speeds of holomorphic sections of singular Hermitian holomorphic line bun-
dles have been intensively explored recently. Coman-Marinescu [10] extended
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the equidistribution results of [57] and [23] in the case of a singular holomor-
phic line bundle endowed with a strictly positive-curved metric. Dinh-Ma-
Marinescu [18] investigated the equidistribution for big line bundles endowed
with semipositive-curved metrics. Coman-Ma-Marinescu [13] established the
equidistribution results for singular holomorphic line bundles on a compact
normal Kahler complex space. Our second part has been studied by Coman-
Marinescu-Nguyén [14] in the context of probability Lebesgue measures. We
refer the reader to [11, 12] for a more detailed discussion.

Coman-Marinescu-Nguyén [14] studied the equidistribution of common ze-
ros of sections of several big line bundles. The measures of the equidistribution
theorem in [14] are the standard ones induced by the Fubini-Study metric. On
the other hand, our work [54] investigated the equidistribution of zeros of
sections of a single positive holomorphic line bundle associated to moderate
measures. The metric on the line bundle in the latter work is smooth. In this
part, the normalized currents are defined by the common zeros of m-tuples of
random sections of high powers of m singular Hermitian big line bundles on a
compact Kéahler manifold. When the measures in [14] are replaced by suitable
moderate ones, we show that the above currents still distribute asymptoti-
cally to the wedge product of the curvature currents of the singular metrics.
Consequently, we generalize both the main theorems in [14] and [54].

Our method follows the approach of Coman-Marinescu-Nguyén [14]. Adapt-
ing their work, we prove that the intersections of currents of integration along
subvarieties are well-defined almost everywhere with respect to a finite prod-
uct of moderate measures (see Section 3.3). Moreover, their strategy of using
Dinh-Sibony equidistribution theory leads us to obtain an estimate for the con-
vergence speed (see Section 3.4 and Section 3.5). Then we combine the above
with the technical analysis of moderate measures to achieve our results. Here
our hard core work consists of estimating efficiently some constants which are
intimately associated with multi-projective spaces (see Section 3.4 below).

We start with the basic settings of this part. Let X be a compact Kéhler
manifold of dimension n with a fixed smooth Kahler form w. Recall that a
singular Hermitian holomorphic line bundle (L, k) is a holomorphic line bundle
L with a Hermitian metric which is given in any trivialization by a weight
function e™% such that ¢ is locally integrable (cf. Definition 1.3.13). Let
c1(L, h) be its curvature current which represents the first Chern class. To be
precise, if e, is a holomorphic frame of L on an open subset U C X, then
ler|? = e, ¢i(L,h) = dd°¢ on U. The case when ¢;(L,h) > 0 as a current
is particularly interesting. We say that a holomorphic line bundle L is big if
it admits a singular metric A with that ¢;(L,h) > ew for some constant € > 0
(cf. Theorem 1.3.23).

Let (Lg,hi), 1 < k < m < n, be m singular Hermitian holomorphic line
bundles on X. Let LY be the pth tensor powers of L;. Denote by H(OQ) (X, L)

the Bergman space of L?-holomorphic sections of L relative to the metric
hip = h?p induced by hj and the volume form w™ on X, endowed with the
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inner product

<S, S/>k7p = hk7p(5, S’)w",
X

VS, S e H(02) (X, LP). Let IP’H(OQ) (X, L¥) be the associated projective space. Set
dy.p = dim Hy (X, L}) — 1. We have p"/C < dy,;, < Cp", where C' > 0 is a
constant independent of k£ and p (cf. Theorem 3.4.1). Now we consider the

multi-projective space
X, := PH{y (X, LY) x ... x PH (X, L)

endowed with a probability measure o, for every p > 1. Let m, : X, —
PH (02) (X, L?) be the natural projections. Denote by [S = 0] the current defined
by the zero set of S € HY(X, L}). Set

[Sp =0] :==[Sp1 = 0] A . A [Spm = 0], VS, = (Sp1, ..., Spm) € X,

whenever it is well-defined. Let
PX = T[X,
p=1

It is a probability space with the product measure o = [ o).

We denote by dist the distance on X induced by the fixed Kahler form w.
Let ¢ : U — [—00,00) be a function on an open subset U C X, A C X a
proper analytic subset. Following the terminology in [14], ¢ is called Hdélder
with singularities along A if there are positive constants ¢,6 and 0 < v <1
satisfying that

cdist(z, w)”

|6(2) = ¢(w)] < min{dist(z, A), dist(w, A)}?

for all z,w € U\ A. A singular metric h of L is defined to be Hdélder with
singularities along A if every local weight of h is Holder with singularities along
A. For motivations as well as examples of such metrics, we refer the readers
to [14].

The multi-projective space X,, in [14] is equipped with the probability mea-
sure og which is the product of the Lebesgue measures induced by Fubini-Study
metrics on the components. In this part, we define singular moderate measures
o, as perturbations of 02 on X,. Foreachp > 1,1 <k <m,1 < j <dy, let
uf’p : IPH&)(X, L?) — R be an upper-semi continuous function. Fix 0 < p < 1
and a sequence of positive constants {c,},>1. We call {uf’p } a family of (¢, p)-

functions if all uf’p satisfy the following two conditions:

kp .
° uj’p is of class € with modulus c,,

k7p 3
® u;" is a cpwrs-p.s.h.
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Then for each p > 1, there is a probability measure

m dk,p

= H /\ ﬂ,:’p(ddcu?’p + wps)

k=1 j=1

on X,,. By Theorem 0.2.1 and Remark 2.3.7, /\dk T(d dcu?’p+ng) is a moderate
measure on IP’H(OQ)(X LF) when ¢, < 1/¢" for a suitable constant ¢ > 1,
V1 < k < m,p > 1. The probability measure on P¥

o0 m dk,p

o= Hap = H H /\ 7r27p(ddcu§’p + wrs) (1)
p=1

p=1k=1j=1

is said to be generated by a family of (¢,, p)-functions {uf’p} on {IP’H(DZ) (X, L)}
Here is our main theorem.

Theorem 0.3.1. Let (X,w) be a compact Kdihler manifold of dimension n,
(Lg,hi), 1 < k < m < n, be m singular Hermitian holomorphic big line
bundles on X. The metric hy is continuous outside a proper analytic sub-
set A, C X, c1(Ly, hg) > ew on X for some constant € > 0, and Ay, ..., Ap,
are in general position. Let O < p < 1. Then there exists a constant ¢ > 1
which depends only on X, Ly, p with the following property: If o is the prob-
ability measure on PX generated by a family of (1/c", p)-functions {up,} on
{IP’H&)(X, ILP)} defined by (2), then for almost every {S,},>1 € PX with respect
to o, we have in the weak sense of currents as p — oo on X,

—m[Sp = 0] — Cl(Ll, hl) VANPIRAN Cl(Lm,hm).

Remark 0.3.2. When all ukp = 0, then o, are the Lebesgue measures 00 on

X, and we obtain [14, Theorem 1. 2] In addition, the constant c is mdependent
of the choices of singular metrics on the big line bundles.

When the metrics hy are all Holder with singularities, we can also extend
the result in [14] about the estimate of the speed of the above convergence
associated to the moderate measures defined by (1). This theorem is also a
generalization of Theorem 0.2.2.

Theorem 0.3.3. We keep the notations and the hypotheses of Theorem 0.5.1.
Suppose, moreover, that hy is Holder with singularities along A, 1 < k <
m. Then there exist a positive constant & which depends only on m, and
another positive constant C' which depends on X, (Ly, hy), ..., (L, hun) with the
following property: Given any sequence of positive numbers {\,}>2, with the
following conditions

)\p

lim inf > (14+£&n)C and  lim — =0,
p—00 logp p—ro0 P
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there exist subsets E, C X, such that for all p sufficiently large,
(1)

A
op(E,) < Cp* exp(—gp),

(ii) for any point S, € X, \ E, and any (n —m,n—m)-form ¢ of class €2,

CA,
p

1 m
(=[S, = 0] - Acl(Lkahk),¢>‘ < l|o||2-
p k=1

Remark 0.3.4. The primary difference between Theorem 0.5.3 and [14, Theo-
rem 1.4/ is that the measures in Theorem 0.3.3 are only moderate. The optimal
estimate of the convergence speed in Theorem 0.3.3 (ii) is of order O(logp/p).
In this case, the measures o,(E,) are polynomially small. So Theorem 0.3.3
generalizes Theorem 0.2.2 and [18, Theorem 1.2].

Note that in Theorem 0.3.1 and all other equiditribution theorems studied
in this thesis, the limit of the considered convergence sequence cannot be an
arbitrarily given positive closed current. For example, there is a condition that
¢1(Lg, hy) > ew in Theorem 0.3.1. However, it is possible when X = P" [ =
O(1), m = 1 with a probability measure o chosen properly.

Theorem 0.3.5. Given any positive closed current T of bidegree (1,1) with
mass 1 on P". Let d, = dim H*(P",O(p)) — 1. Then there exists a family
of smooth probability measures o, = (wps + dd°u,) on PH°(P",O(p)) for
some smooth real functions w, with the following property: For almost every
S = (Sp) € [1,s1 PH(P", O(p)) with respect to o =[], 0p, we have in the
weak sense of currents as p — oo on P",






Introduction. (French version)

Distribution des zéros de polynomes aléatoires est un sujet classique. War-
ing [58] a utilisé une méthode probabiliste pour déterminer le nombre de
zéros imaginaires d’un polynome algébrique. Des recherches plus rigoureuse et
systématique a commencé avec le papier de Bloch-Pélya [4]. Ils ont donné un
ordre du nombre espérance de racines réelles de certaines équations polynémes
aléatoires. Kac [41] a obtenu une distribution exacte des racines réelles pour les
polynomes aléatoires avec des coefficients de distribution normaux. Résultats
sur polynomes avec d’autres distributions ou parametres ont été étendues no-
tamment. Voir [3, 2, 6, 7, 25, 41, 56| et références qui y sont pour plus de
résultats.

Un théoréme classique de Hammersley [33] affirme que les zéros normalisés
de gaussien complexe polynomes aléatoires de degré élevé ont tendance a
accumuler sur le cercle unité avec une distribution uniforme. Un résultat
analogue est valable pour SU(2) polynomes aléatoire dont la distribution
espérance de zéros est uniforme sur P! (cf. [3, Appendix C]). Les résultats
généraux sur les sections holomorphes de fibrés en droites positive associée
aux mesures de Lebesgue ont été obtenues par Shiffman-Zelditch [57]. Grosso
modo, presque partout séquence de courants normalisés définis par sections
holomorphes converge faiblement vers la forme Kahlerienne par rapport aux
mesures de Lebesgue. Notez que le résultat couvre la propriété équidistribution
de SU(2) polynomes aléatoire lorsque X = P! et L = O(1). Dinh-Sibony [23]
étendu la propriété équidistribution dans le cas de mesures générales et obtenu
une bonne estimation de la vitesse de convergence. L’approche de potentiel
théorique de Fornaess-Sibony [26] a été utilisé dans les travaux précédent.

Motivation et applications

Les mesures générales dans les théoremes de équidistribution de Dinh-
Sibony [23, Theorem 4.1, Theorem 7.3] avoir des conditions tres strictes. Un
exemple explicite non-trivial d’'une mesure singuliére avec des coefficients réels
a été donnée dans [23, Corollary 7.4]. Mais il semble difficile de fournir une

15
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large classe de mesures générales pour satisfaire les théoremes équidistribution.

Notre motivation de la premiére partie est de construire une grande famille
des mesures modérées singulieres qui satisfait la propriété équidistribution.
Nous montrons que les courants normalisés définis par les zéros de sections
aléatoires de puissances élevées de un fibré en droites positive sur une variété
projective convergent faiblement a la forme de courbure associée a certaines
familles de mesures modérées singulieres. Notre méthode suit les techniques
d’estimations exponentielles pour les fonctions plurisousharmoniques par Dinh-
Nguyén-Sibony [21], voir la section 2.3.

Dans la deuxieme partie, nous sommes motivés a généraliser la propriété
équidistribution dans le cas de plusieurs fibrés en droites gros dotées de métriques
singulieres. Nous suivons les approches de Dinh-Sibony [23], Coman-Marinescu-
Nguyén [14] et [54, section 2]. Pour atteindre nos résultats, nous établissons
des estimations pointues sur les constantes liées a la capacité Alexander-Dinh-
Sibony sur les espaces multi-projectives [55], voir la section 3.4.

La capacité Alexander-Dinh-Sibony est étroitement liée a la fonction
globale extrémal (cf. [23, A.2] et [32, Section 5]). Le L*-méthode joue aussi
un role important dans I’étude des propriétés équidistribution. Par exemple,
nous appliquons L?-méthode pour explorer le comportement asymptotique des
fonctions du noyau de Bergman. Par conséquent, nous pouvons obtenir des
théorémes de équidistribution avec une bonne vitesse de convergence (cf. [10],
[14], [15] etc). La propriété équidistribution fournit un outil pour étudier la
conjecture Unique Ergodicité par Rudnick-Sarnak, voir [51], [39], [49]. 1l peut
aussi étre appliquée a I’étude du chaos quantique en physique statistique (cf.
(3], [48] etc).

Partie I

Nous donnons le fond de base, afin d’introduire les principaux théoremes.
Pour chaque espace vectoriel complexe V' de dimension finie, soit wgrg la forme
Kahlerienne standard induite par la métrique de Fubini-Study sur son espace
projectif P(V') normalisé par fP(V) w?;glp(v) = 1. Soit X une variété projective
de dimension n, L un fibré en droites ample sur X. Fixez d'une métrique
hermitienne h sur L telle que la forme de courbure w est Kahler sur X. Alors

w représente la premiere classe de Chern ¢;(L) avec [, w* = ¢ (L)F € Z7.
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Soit LP le p-produit tensoriel de L avec la métrique h, := h®P. Désignons
par H°(X, L?) I'espace de toutes les sections holomorphes de LP. Soit PH?(X, LP)
I’espace projectif associé a wpg comme sa forme Fubini-Study normalisée. Lais-
sez n, = dimPH°(X, LP). Définissez un produit intérieur sur H°(X, L?) de la
fagon suivante

(s,s") ::/th(s,s')w",

Vs,s' € H°(X, L?). Nous pouvons choisir une base orthonormée {s,;};”, par
rapport au produit intérieur. Pour toute s, € PHY(X, L?), écrirez

np
Sp = E (ijspj.
Jj=0

Ainsi, la section s, peut étre identifié avec les coefficients (apo, ..., Gpn, ). La no-
tion de sections holomorphes aléatoires découle des variables aléatoires [a, ...,
apn,| avec une distribution induites par la mesure de probabilité wyf sur
PH°(X,LP). Soit [s, = 0] le courant défini par I'ensemble zéro de s,, ou
sp € PHO(X, LP). Laissez PX := [1,5: PH(X, L?).

Nous avons besoin de la notion de mesures modérées localement qui a été
introduite par Dinh-Sibony [24]. La notion découle d'un résultat classique [36,
Theorem 4.4.5].

Définition. Soit X une variété complexre. Une mesure positive mu est modérée
localement si pour tout ouwvert U C X, un sous-ensemble compact K C U et
toute la famille compacte U de q.p.s.h. fonctions sur U, il y a des constantes
a>0,c>0 tel que

/ exp(—ag)du <ec, Vo €eU.
K

Dinh-Nguyén-Sibony [21] ont prouvé que la mesure de I’quilibre de endo-
morphisme de P" est modérées localement. Dans la these, nous traitons des
mesures modérées dans une variété compacte Kahlerienne X de dimension n
avec une forme Kéhlerienne w fixe tel que w™ est la forme de volume de prob-
abilité. Considérons une mesure positive p sur X, p est dit PLB si tout les
q.p-s.h. fonctions sont u-intégrable. Lorsque dim X = 1, u est PLB si et seule-
ment si elle admet un potentiel borné locale [24].

Laisser

F:={¢ qp.s.h.on X :dd¢ > —w,m)?x¢ = 0}.

L’ensemble F est compact dans LP(X) et bornée dans L'(u) quand p est une
mesure PLB par Théoreme 1.2.33 et Proposition 1.2.47. Rappelons que toute
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q.p-s.-h. fonctions sur X sont cw-p.s.h. pour une constante ¢ > 0 et bornée
uniformément d’en haut. Ensuite, I’étude de q.p.s.h. fonctions peuvent étre
réduits a I'étude de la famille F.

Définition. Soit p un PLB mesure sur X. Nous disons que p est (c,a)-
modérée pour certains constantes ¢ > 0, > 0 st

e
X

pour tous les ¢ € F. La mesure i est appelé modérée s’il existe des constantes
c¢>0,a >0 tel qu’il est (¢, )-modérée.

Par exemple, la forme de volume w” est modérée par Théoreme 1.2.42. Voir
Section 1.2 pour la notion de mesures modérées en détail.

Afin d’exprimer notre théoreme, nous devons aussi les terminologies suiv-
antes. Fixez de quelque exposant 0 < p < 1, une fonction v : M — R définie
sur un espace métrique compact (M, dist) est dit étre de la classe €7 avec

module ¢ si

o 112 )]

z,yeM diSt(I,y)p

TFY
Considérons une variété complexe M avec une forme de volume fixe, soit ~
un courant réel clos de bidegré (1,1) sur M. Une fonction semi-continue
supérieurement u : M — [—o00,00) en L} (M) est dit y-p.s.h. si dd°u+~ > 0.

loc

Soit 0, la mesure probabilité de Lebesgue sur PH?(X, L?) et o la mesure
prodiut de celles-ci sur P¥X. Shiffman-Zelditch [57] a prouvé que la séquence
des courants {%[sp = 0]} converge faiblement vers w pour o-presque partout
(s,) € PX. Clest-a-dire,

1[sp =0] »w

p
pour o-presque partout (s,) € P¥. Les ingrédients clés pour prouver le
théoreme sont le théoreme de Tian [9, 60] (autres résultats sur les comporte-
ments asymptotiques des noyaux Bergman) et les estimations des variances
des courants [s, = 0]. Quand X =P",w = wpg et L = O(1) le dual de fibré
en droites tautologique, le théoreme est d’étudier la distribution des zéros de
polynomes homogenes aléatoire ou les polynomes complexes correspondants.
La distribution du SU(2) polynomes est un cas particulier, lorsque n = 1. Si
on considere les polynomes aléatoires complexes d'une variable et le produit
scalaire défini sur le cercle unitaire de C avec la mesure de Haar, on obtient
alors le résultat classique de Hammersley [33].



Introduction 19

Dinh-Sibony [23] ont généralisé le résultat dans le cas de mesures PLB
et obtenu une bonne estimation de la vitesse de convergence sur une variété
projective doté d’'une métrique positivement courbe lisse. Voir Section 2.1 et
Section 2.3 pour les définitions et notations en détail.

Théoreme. Dans le cadre du théoréeme de Shiffman-Zelditch, les mesures de
probabilité wik, sur PHO(X, LP) sont remplacés par des mesures de probabilité

PLB o, avec les conditions suivantes:

ZAp(pt) < 00, Vt > 0,

p=1
R
2 0.
p
Alors la convergence faible
1
];[sp =0 —w

est tougours vrai pour o-presque partout (s,) € PX.

Les ingrédients clés pour prouver le théoreme sont quelques méthodes pluripo-
tentes, notion de transformations méromorphes et dd°-méthode. Ils ont aussi
construit une mesure singuliere a coefficients réels qui satisfait la propriété
équidistribution (cf. [23, Corollaire 7.4]).

Lorsque les mesures de Lebesgue dans le résultat de Shiffman-Zelditch sont
remplacées par des mesures modérées avec Holder potentiels (voir sections 2.3,
2.4), nous avons notre théoreme principal de la maniere suivante qui donne
une grande famille de mesures modérées singulieres qui satisfait la propriété
équidistribution. Il peut étre considéré comme une perturbation des mesures
standard induites par la métrique Fubini-Study.

Théoreme. Soit L un fibré en droites ample sur une variété projective X
de dimension n et 0 < p < 1 un exposant. Alors il existe une constante
c=c(X,L,p) > 1 avec la propriété suivante. Pour chaque p>1,1<j <mn,,
soit u,; : PHY(X, LP) — R une fonction et &,,€, > 0 deux nombres tels que:
(1) uy,,; est de classe €° avec module §,, V1 < j < ny,;

(ii)  u,; est ewps-p.s.h., V1 < j < ny,;

(iii) & <1/ e, < 1/c".

Soit 0, = (ddup; + wps) A (dd°upa +wps) A - - - A (dd°up,, +wrs) la mesure
de probabilité sur PH'(X, L?). Doter PX avec la mesure produit o = [ 51 0p-
Ensuite, pour presque partout s = (s,) € PX par rapport a o, la séquence des

courants {Il)[sp = 0]} converge faiblement vers w.
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Le résultat suivant donne une vitesse de convergence pour 1’équidistribution
dans le théoreme 0.2.1.

Théoreme. Dans le cadre du théoréeme 0.2.1, il existe des sous-ensembles
E, C PH(X,LP) et une constante positive C' dépendant seulement X, L tel
que pour tout p suffisamment grand, nous avons

C
Up(Ep)SF
1 Clogp
—15p = 0] —w, < %2,
|<p[ p = 0] V)| » 4]

pour tout point s, € PH(X, L?)\ E, et des (n—1,n—1)-forme v de la classe
€2,

Partie 11

Deux questions se posent naturelles apres avoir résolu la premiere partie:

1. Il est possible de considérer le cas de plusieurs fibrés en droites générales,
par exemple fibrés en droites gros?

2. On peut étendre les zéros de sections d’un seul fibré en droites aux zéros
communs des sections de plusieurs ceux?

Heureusement, les questions sont résolues dans certaines directions dans le
contexte de mesures de probabilité de Lebesgue. Ces problemes déquidistribution
et des vitesses de convergence des sections holomorphes de fibrés en droites sin-
guliers holomorphes hermitiennes ont été intensivement exploré récemment.

Coman-Marinescu [10] ont étendu les résultats déquidistribution de [57] et
[23] dans le cas d'un fibré en droites holomorphe singulier doté une métrique
strictement positive-courbe. Dinh-Ma-Marinescu [18] étudié 1'équidistribution
pour fibrés en droites gros dotés métriques semipositive-courbées. Coman-Ma-
Marinescu [13] ont établi les résultats déquidistribution pour fibrés en droites
holomorphes singuliers sur une espace complexe compacte normale Kahleri-
enne. Notre deuxieme partie a été étudiée par Coman-Marinescu-Nguyén [14]
dans le contexte de mesures de probabilité de Lebesgue. Voir [11, 12] pour une
discussion plus détaillée.

Coman-Marinescu-Nguyén [14] étudié 1’équidistribution de zéros communs
de sections de plusieurs fibrés en droites gros. La mesure du théoreme déquidistribution
dans [14] est la seule norme induite par la métrique de Fubini-Study. D’autre
part, notre travail [54] a étudié I’équidistribution des zéros de sections d’'un
seul fibré en droites holomorphe positif associé a des mesures modérées. La
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métrique sur le fibré en droites dans ce dernier ouvrage est lisse.

Dans cette partie, les courants normalisés sont définis par les zéros com-
muns de m tuples des sections aléatoires de puissances élevées de m fibrés en
droites gros hermitiens singulier sur une variété compacte Kahlerienne. Nous
montrons qu’ils distribuent asymptotiquement vers le produit des courants de
courbure des métriques singulieres associées a certaines mesures modérées. Par
conséquent, nous généralisons les deux théoremes principaux [14] et [54].

Notre méthode suit 'approche de Coman-Marinescu-Nguyén [14]. Adapter
leur travail, nous montrons que les intersections des courants d’intégration le
long de sous-variétés sont bien définis presque partout par rapport a un produit
fini de mesures modérées (voir Section 3.3). De plus, leur stratégie d’utilisation
de la théorie déquidistribution Dinh-Sibony nous conduit a obtenir une esti-
mation de la vitesse de convergence (voir Section 3.4 et Section 3.5). Ensuite,
nous combinons ce qui précede a l’analyse technique des mesures modérées
pour atteindre nos résultats, dans lequel notre travail de base est dans les es-
timations des constantes sur les espaces multi-projectives (voir section 3.4).

Nous commencons avec les fonds de base de cette partie. Soit X une variété
compacte Kahlerienne de dimension n avec une forme Kéahlerienne lisse w.
Rappelons qu’un fibré en droites singulier hermitienne holomorphe (L, h) est
un fibré en droites holomorphe L avec une métrique hermitienne qui est donnée
dans toute trivialisation par un poids fonction e™% tels que ¢ est localement
intégrable (cf. Définition 1.3.13). Soit ¢(L,h) son courant de courbure qui
représente la premiere classe de Chern. Pour étre précis, si e est un cadre
holomorphe de L sur un sous-ensemble ouvert U C X, alors |er|? = e 2%,
c1(L,h) = ddp sur U. Ici d = 0+ 0, d° = 5-(0 — ). Le cas ot ¢;(L,h) >0
comme un courant est particulierement intéressant. On dit qu’un fibré en
droites holomorphe L est gros si elle admet une métrique singuliere h avec
c1(L, h) > ew pour une constante € > 0 (cf. Théoreme 1.3.23).

Soit (L, hi), 1 < k < m < n, m fibrés en droites singuliers hermiti-
ennes holomorphes sur X. Soit L? le p-produit tensoriel de L. Dsignons par
H (02) (X, LY) Despace Bergman de L*-sections holomorphes de L par rapport

au métrique hy,p = hfp induite par h; et le volume forme w™ sur X, muni du
produit intérieur

(S, kp ::/ i (S, S")w",
X

VS, S € H?Z)(X, LY). Soit IPH(OQ)(X, L?) Despace projectif associé. Laissez

dy,p = dim H&) (X, L¥) — 1. 1l est bien connu (voir Proposition 1.3.24) que
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dy.p = O(p").

Maintenant, nous considérons 1’espace multi-projective
X, = IP’H?Q)(X, L) x ... % ]P’H(OQ)(X, L)

doté d’une mesure de probabilité o, pour chaque p > 1. Soit m;, : X, —
PH{, (X, L}) les projections naturelles. Désignons par [S = 0] le courant

défini par l'ensemble zéro de S € H°(X, L). Soit
1S, = 0] := [Sy1 = O] A e A [Spma = O, VS = (St s Sym) € X,

chaque fois qu’il est bien définie. Laisser

PY = ﬁxp.
p=1

Il est un espace de probabilité avec la mesure produit o = []°2

p=1 Jp'

On note dist la distance sur X induite par la forme Kéhlerienne w. Soit
¢ : U — [—00,00) une fonction sur un sous-ensemble ouvert U C X, A C X
un sous-ensemble analytique approprié. Conformément a la terminologie dans
[14], ¢ est appelé Holder avec singularités le long A s’il y a des constantes
positives ¢, 0 et 0 < v < 1 satisfaisant qui

cdist(z, w)?

[¢(2) = d(w)| < min{dist(z, A), dist(w, A)}?

pour tout z,w € U \ A. Une métrique singuliere h de L est définie comme
Hélder avec singularités le long A si chaque poids local h est Holder avec sin-
gularités le long de A. Pour motivations ainsi que des exemples de ces mesures,
voir [14].

Le multi-espace projectif X, dans [14] est équipé de la mesure de probabilité
ag qui est le produit des mesures de Lebesgue induites par les mesures Fubini-
Study sur les composants. Dans cette partie, nous définissons des mesures
modérées singulieres o, comme des perturbations de 02 sur X,,. Pour chaque

p>11<k<m1l<j<d,, laissez uf’p : ]P’H(OQ)(X, L?) — R une fonction

semi-continue supérieurement. Fixez 0 < p < 1 et une séquence de constantes
positives {¢,},>1. Nous appelons {uf’p} une famille de (cp, p)-fonctions si tout

u; P satisfont les deux conditions suivantes:

k
U P est de classe €7 avec module ¢,

k,p
e u;" est cwps-p.s.h..
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Ensuite, pour chaque p > 1, il est une mesure de probabilité

m dk',p

op =[] \ 7, (ddus? + wps)

k=1j=1

sur X,,. D’apres Théoreme 0.2.1 et Remarque 2.3.7, /\d’”’ (ddu;; "D 4 pg) est
une mesure modérée sur PH ?)(X L?) quand ¢, < 1 /cp pour un constant
approprié ¢ > 1, V1 < k < m,p > 1. La mesure de probabilité sur P¥X

oo m dk:p

U—Hap HH/\W;”) (ddu ’p+wFs)

p=1k=1j=1

est dit étre généré par une famille de (¢,, p)-functions {uf’p }sur {PH (02) (X, L)}

Voici notre théoreme principal.

Théoréeme. Soit (X,w) une variété compacte Kihlerienne de dimension n,
(Lg, hi), 1 < k <m <mn, soit m fibrés en droites gros singulieres hermitiennes
holomorphes sur X. La métrique hy est continue en dehors d’un sous-ensemble
analytique propre Ay C X, ¢1(Lg, hy) > ew sur X pour une constante € > 0, et
Ai, ..., Ay sont en position générale. Soit 0 < p < 1. Alors il existe une
constante ¢ > 1 qui ne dépend que X, Ly, p avec la propriété swivante: St
o est la mesure de probabilité sur PX généré par une famille de (1/c", p)-
fonctions {uy ,} sur {IP’H(O2) (X, L)} défini par (2), alors pour presque partout
{Sp}p>1 € PX par rapport a o, nous avons dans le sens faible des courants
comme p — 00 sur X,

1
—m[Sp = O] — Cl(Ll, h1> N A Cl(Lm, hm)
Remarque. Quand tout ukp = 0, alors o, sont les mesures de Lebesgue 0’0

sur X, et nous obtenons [14, Théoréme 1.2]. En outre, la constante c est
indépendante des choix de métriques singuliéres sur les fibré en droites gros.

Lorsque la métrique hy sont tous Holder avec singularités, nous pouvons
aussi étendre le résultat dans [14] sur 'estimation de la vitesse de la conver-
gence ci-dessus associée aux mesures modérées définies par (1). Ce théoreme
est aussi une généralisation du théoreme 0.2.2.

Théoreme. Nous gardons les notations et les hypotheses du Théorme 0.53.1.
Supposons, en outre, que hy est Holder avec singularités le long Ay, 1 < k <
m. Alors il existe une constante & positive qui ne dépend que de m, et une
autre constante positive C' qui dépend X, (L1, hq), ..., (L, hy) avec la propriété
suivante: Compte tenu de toute séquence des nombres positifs {\,}o2, avec les
conditions suivantes

Ap

lim inf > (14£&n)C and  lim — =0,
p—oo logp p—ro0 Pl
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il existe des sous-ensembles E,, C X, tel que pour tout p suffisamment grand,
(1) \
op(Ep) < Cp™ exp(— ),
(11) pour tout point S, € X, \ E, et des (n —m,n —m)-forme ¢ de classe
62,

W CA
|<p /\ (L, i), ¢)] < 7p|\¢\|<g2-

Remarque. La principale différence entre Théoréme 0.3.3 et [14, Théoreme
1.4] est que les mesures en Théoréme 0.3.3 ne sont que modérées. L’estimation
optimale de la vitesse de convergence dans Théoréme 0.3.3 (ii) est d’ordre
O(logp/p). Dans ce cas, les mesures o,(E,) sont polynomialement petite.
Donc Théoreme 0.2.2 est un cas particulier du Théoreme 0.3.35.

Notez que dans Théoreme 0.3.1 et toutes les autres théoremes équiditribution
étudiés dans cette these, la limite de la séquence de convergence ne peut pas
étre un courant positif fermé arbitrairement donné. Par exemple, il y a une
condition que c¢;(Lyg, hy) > ew dans Théoreme 0.3.1. Cependant, il est possible
lorsque X = P" L = O(1),m = 1 avec une mesure de probabilité o choisi
correctement.

Théoréme. Compte tenu de tout courant positif fermé T de bidegré (1,1) de
la masse 1 sur P". Soit d, = dim H°(P", O(p)) — 1. Alors il existe une famille
de mesures de probabilité lisses o, = (wrs + dd°u,)% sur PHO(P", O(p)) pour
certaines fonctions réelles lisses u, avec la propriété suivante: Pour presque
partout S = (S,) € [[,51 PH(P", O(p)) par rapport & o = [ 5, 0p, nous
avons dans le sens faible des courants comme p — oo sur P",



Chapter 1

Preliminaries.

This chapter supplies the definitions, notations and background needed in
the thesis. We mainly introduce currents, plurisubharmonic functions and
Hermitian holomorphic line bundles. This chapter follows basically Demailly’s
book [16]. See [16], [22], [28], [34], [42] and [45] for complete references.

1.1 Currents.

The notion of currents was introduced by Georges de Rham. It generalizes
the notion of distributions.

1.1.1 Currents on complex manifolds

Let X be a smooth complex manifold of dimension n. A differential form
¢ of bidegree (p, q) is a section of A"?T*X. In a local coordinate, we denote
by (dz1, ...,dz,) the corresponding basis of the cotangent space at a point. Let
(21, ...x9,) be the local real coordinate of (2, ..., z,). We can write

P(z) = Z ¢rydzr Ndzy,

[I|=p,|J|=q

where ¢ ; are complex smooth functions, dz; = dz;, A ... A dz;, when I =
(i1,...,1p) and dz; = dzj; A ... Ndz;, when J = (ji,...,Jq). Let 2P9(X) be
the set of all differential forms of bidegree (p,q) with compact support. We

introduce a topology on 2P9(X). If Q is a subset of X, we denote 274(2) the
space of all elements ¢ € ZP7(X) with compact support in 2. Let {£2;}32, be
a sequence of relatively compact open subsets of X with Q; C Q4 for every
J, and U52,Q; = X. To every compact subset K in a local coordinate and
every integer [ € N, we define a semi-norm

1]l :=sup max |D%y,(2)|,
2K |[|=p,|J|=q
|| <1

25
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where a = (o, ..., ,) Tun over N2 and D = 9l*! /925 ...025>" is a derivation
of order |a|. Since X is assumed to be separable, we can equip the space
274(Q) with the topology induced by a countable set of semi-norm || - [|; &
with K contained in €. Such topology is called the topology of the uniform
convergence of coefficients and all the derivatives. Then 2P4(()) is a Fréchet
space with the topology. Hence we equip #7%(X) with the topology of the
strict inductive limit of the spaces 2P4(;).

Definition 1.1.1. A current of bidegree (p,q) (or (p,q)-current) on X is a
linear continuous form T : 9" P4 X) — C. Let ¢ be a form in " P"9(X),
the value of T at ¢ is denoted by <T, ¢>. The form ¢ is called a test form.

A (p, q)-current can also be called a current of bidimension (n — p,n — q).

Definition 1.1.2. A sequence of (p,q)-currents {T;} converges weakly (or
converges in the sense of currents) to a current T if <ij¢> — <T, ¢> for
any test form ¢ € PP X).

Denote by 2'74(X) the set of all (p, ¢)-currents. It is the dual of 2P¢(X).
Note that a (p, g)-current T' can be regarded as a form with distribution coef-
ficients:

T = Z T[,JdZ]/\dEJ7

[I|=p,|J|=¢

where 77 ; are distributions.

Example 1.1.3. A form 1 of bidegree (p, q) is a (p, q)-current Ty, via exterior
product as follows.

(Ty,6) = /X YA Ve TIIUX).

Example 1.1.4. Let Y be a closed complex submanifold of X of dimension p,
then we can define the current of integration over'Y by

<[Y],¢>=/Y¢, Vo € 7P (X).

IfX=C"andY ={z = ... = z,—, = 0}, then we have

P
[Y] = (E)péo(zh e Zn—p) ® ].(Z[)dZ[ VAN d,?],

where I = (n —p+1,....,n), d is the Dirac measure at the origin of the space
{Z[ = 0}

The above examples explain the terminology of dimension and degree used
for a current.

Since a current is a continuous form in the topology defined above, we have
the following property.
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Proposition 1.1.5. Let T be a (p, q)-current on X and K C X be a compact
subset. Then there exist a positive integer | and a positive constant C' such
that

|<T7 ¢>| S CH¢||Z,K7
for every ¢ € PP X)) with supp(¢) C K.

Definition 1.1.6. If the integer [ in Proposition 1.1.5 can be chosen inde-
pendently of K, the current T is called of finite order. The smallest integer [
satisfying the property is called the order of T.

It is easy to see that the currents in the above two examples are both of
order 0.

Definition 1.1.7. The support of a (p, q)-current T is defined to be the small-
est closed subset supp(T) of X such that T vanishes on X \ supp(T). That is
to say, <T, gb> = 0 for every test form ¢ € 2" P"9(X \ supp(T)).

Note that the current [Y] in Example 1.1.4 has support Y.

1.1.2 Operators on currents

There are several operators on currents which are similar to those on dif-
ferential forms. Recall that d = 9 + 0. In a local coordinate, we have

k

)
0p:=> Y 52’ dz; A dzp A dOdzy,
1,J i=1 v
_ k 0¢
o= %d@ Adz; A dOdz,.
1,J i=1 v

Define d¢ := ;-(0 — 0). It is a real operator. It follows that dd® = L90.
The normalization of d° is convenient for many purposes. For example, it
simplifies the Lelong-Poincaré formula. We define the exterior derivative of
currents as follows. Let T" be a (p, g)-current, the (p+ 1, ¢)-current 07" and the
(p, q + 1)-current 9T is defined by

(0T, ¢) - = (—1)PHT(T, 09),
(0T, ¢) : = (—1)PTT(T, Dg).

The current dT' can be defined similarly. The maps T" — dT', T" — 0T and
T — OT are continuous for the topology of currents. T is called closed if
dT = 0. In particular, we have <ddCT, ¢> = <T, ddcgb>. An application of the
classical Stokes’ formula yields

dy] = (-1)" "oy,

where JY denotes the boundary of the complex manifold Y.
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Definition 1.1.8. Let T be a (p, q)-current and v be a form of bidegree (p1,q1).
We define the wedge product T N by

(TN, ¢) = (T, ¢ N),Np € PP P90 (X),

Let X’ be another smooth complex manifold of dimension n'. Let f: X —
X’ be a holomorphic map which is proper on the support of 7. We introduce
the notions of direct image and inverse image of a current.

Definition 1.1.9. The direct image of T by f is defined by

(J(T).0) =(T.[*(¢)), Yo" " IX').

The current f,(T") is of bidegree (n’ —n+p,n’ —n+ q) and of bidimension
(n —p,n — q). So the operator f, preserves the dimension of currents.

Proposition 1.1.10. The direct image operator f, is continuous. The support
of f(T) is contained in f(suppT). Moreover, it commutes with the exterior
derivative, i.e.

d(f*(T)) - f*(dT)'

Assume in addition that f is a submersion. Let ¢ be a form of bidegree
(p,q) (even with L} . coefficients) with the condition that f is proper. Then
fx¢ is a form of bidegree (n’ — n + p,n’ — n + q). Moreover, f,¢ is calculated
by integration over the fibers of f, i.e.

potwy = [ o)

So we can define the inverse image of a current.

Definition 1.1.11. Let T be a (p,q)-current on X'. The inverse image of T
by f is defined by

(f(T),0) = (T, [.(¢)). Yo € 7" P"7(X).

The operator f* preserves the degree of currents. For example, we have
FIY) = [V

Assume that the support of T" or a smooth function g on X is compact, We
can define the convolution 7' x g by

T*g:: ZTLJ*Q,

1,J

where 17 ; are the distribution coefficients of 7. A convolution of a distribution
and a smooth function with compact support is a smooth function, which is a
direct consequence of Taylor’s formula with compactness condition. So T % g
is a smooth form. Hence we can approximate currents by smooth forms in
the weak sense. Refer to [37] for more information about convolutions of
distributions or currents.
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1.1.3 De Rham theorem

By an analogous argument, we can define the following cohomology group
associated to currents

real valued closed p-currents on X

HP(X, R) := .
¢(XR) real valued exact p-currents on X

When X is paracompact, it follows from the theory of sheaf cohomology |16,
Chapter IV] that the de Rham cohomology group H?(X,R) is isomorphic to
HP?(X,R). In particular every closed p-current is cohomologous to a closed
smooth p-form.

Denote by H??(X,C) the Dolbeault cohomology group. If X is a complex
projective space P" of dimension n, by Hodge decomposition theorem [16,
Chapter VI], we deduce that

HP(P",C) = 0,for p # q,
HPP(P", C) ~ C.

We will see later that the generator of HP?(IP" C) is the p times tensor of the
Fubini-Study form.

It is easy to calculate the Dolbeault cohomology groups of product spaces
of several complex projective spaces by Kiinneth formula. The above results
will be used in cohomological arguments in the proofs of our main theorems.

1.1.4 Positive closed currents

The notion of positive closed currents was introduced by Pierre Lelong
[44] in 1957. Tt generalized analytic subsets in complex manifolds, since every
analytic subset can be associated to a current by integration over its set of
regular points and all such currents are proved to be positive closed. It has
many applications in complex analysis (especially pluripotential theory) and
dynamical systems in higher dimensions.

Definition 1.1.12. A (p,p)-form ¢ is called positive if it is equal to a finite
combination of forms (icy A &) A ... A (i, A @y,) at each point, where o are
(1,0)-forms. The form ¢ is said to be weakly positive if ¢ N\ is positive for
any positive (n — p,n — p)-form . A (p,p)-current T is said to be positive
(resp. weakly positive) if (T, ¢) > 0 for every weakly positive (resp. positive)
test form of bidegree (n — p,n — p).

Note that all positive closed currents are real by duality. The two notions
of positivity and weakly positivity coincide when p = 0,1, n — 1,n. Moreover,
the operators f, and f* preserve the positivity.

Proposition 1.1.13. Let T be a positive (p,p)-current. Then T is of order
zero. The coefficients T ; are distributions of order zero, i.e. complex mea-
sures.
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Proof. We give a sketch proof here. If T" is a distribution and it is positive,
then it can be extended to a positive linear functional on the space of complex
continuous functions. Hence T is a positive measure. Note that the real vector
space A\"”(C",R) admits a basis consisting of positive forms. We can choose
such a basis {¢;} for A"""P(C",R). Then we set {¢;} to be the basis for
APP(C™ R) which is dual to {¢;}. So T = Ty¢;. If g is a non-negative test
function, we have

Ti(g) = T(g9¢1) > 0.

By the previous argument, 77 is a positive measure. Then the coefficients of T’
are complex measures if it is expressed in terms of an arbitrary basis. Hence
T is of order 0. O

Definition 1.1.14. Let 8 = i00||z||?, define

1
T AR,

Then or is said to be the trace measure of T.

Recall that a Hermitian metric on X is a smooth positive Hermitian form
h =73 hjxdz; ® dz;. The form w = i) hjpdz; A dZ;, is the associated positive
(1,1)-form. The following is a famous theorem due to Wirtinger.

Theorem 1.1.15. Let X be equipped with a Hermitian metric h. Deonte by
w the associated form of h. Let Y be an oriented real submanifold of class C*
and real dimension 2p in X. Denote by dVy the Riemannian volume form on
Y with respect to the induced metric hyy. There exists a continuous function
a in'Y such that

1 p
OédVy = 2p—p'wly.

Then |of < 1 and the equality holds if and only if Y is a complex analytic
submanifold of X.

We have defined currents of integration over a complex submanifold. This
notion can be also defined over analytic subsets. The following Lelong’s theo-
rem claims that such currents are positive closed ones.

Theorem 1.1.16. Let Y be an analytic subset of pure dimension n —p of X.
Denote by reg(Y') be the reqular part of Y. Define the (p,p)-current [Y] by

(Y],0) = ¢,V € 7"PP(X).

reg(Y)
Then the current [Y] is well-defined and positive closed.

The theorem shows that positive closed currents extend the notion of ana-
lytic subsets in complex manifolds. Moreover, the volume of reg(Y’) near sin-
gular points is locally bounded. Now we introduce a support theorem which
is useful in latter chapters.
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Definition 1.1.17. A current T is called normal if T and dT are both of order
0.

Every positive closed current is normal.

Theorem 1.1.18. Let T' be a normal (p,p)-current. If the support of T is
contained in an analytic subset V' of dimension less than p, then T = 0.

Another useful support result is the following

Theorem 1.1.19. Let V' be an analytic subset of X with global irreducible
components V; of pure dimension p. Assume that T is a closed (p,p)-current

of order O with support contained in V. Then T can be written as the form
> A[Vj] where \j € C.

1.2 Plurisubharmonic functions

In this section, we introduce the notions of plurisubharmic functions and
their basis properties. The positive closed (1,1)-currents can be studied by
plurisubharmic functions locally. Then we define Monge-Ampere operators.
Some continuity properties of Monge-Ampere operators are needed in our the-
sis. The quasi-plurisubharmic functions can be defined in compact complex
manifolds. We conclude this section with the notion of moderate measures
with respect to a compact family of quasi-plurisubharmic functions.

1.2.1 Plurisubharmonic functions

Plurisubharmonic (p.s.h. for short) functions were introduced by Lelong
and Oka in 1942. They play a central role in the study of complex analysis.
For example, there are analogies between plurisubharmonicity and pseudocon-
vexity. The p.s.h. functions are the natural counterpart of the subharmonic
functions of one variable. Note that, to some extend, the class of subharmonic
functions of several complex variables is quite large. The p.s.h. functions are
precisely the ones among subharmonic functions which are invariant under
compositions with biholomorphic maps. That is why p.s.h. functions make
sense on complex manifolds.

Definition 1.2.1. Let Q be an open subset of C*. A function u : Q —
[—00, 00) is said to be plurisubharmonic function if it is upper semicontinuous,
not identically oo on each connected component of Q0 and satisfy

1 2w )
u(z) < —/ u(z + we™)do,
0

27
for each z € Q) and w € C" such that

{z+wA:AeC |\ <1} CQ.
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The set of p.s.h. functions (resp. subharmonic functions) on €2 is denoted
by Psh(Q) (resp. Sh(Q)). If in addition u € C*(Q), then it is easy to see
that v € Sh(2). Most of properties for subharmonic functions in R?" can
carry over to the case of plurisubharmonic functions in C". Note that the
semicontinuity implies that p.s.h. functions are locally bounded from above.
Denote by {x.} the standard smoothing kernels [16, 2.D.3]. The following
result is the approximation theorem for p.s.h. functions.

Theorem 1.2.2. Let u € Psh(Q2). Set Q. := {z € Q : dist(z,09) > €} for
€ > 0. Then u* x. € C®(Q) N Psh(Q). Moreover, the family of {u x.} is
non decreasing, and for each z € €, we have

limu x xe(2) = u(2).
In general, we can not find a decreasing sequence {u;} C C*(£2) N Psh(2)

which converges pointwise to u. One counterexample was shown by Fornaess
[42, Example 2.9.4].

Proposition 1.2.3. Let Q be an open subset of C". Then we have Psh(Q2) C
Sh(Q) C L}, ().

P.s.h. functions satisfy the maximum principal in bounded domains.

Proposition 1.2.4. Let €2 be a bounded connected open subset of C". Let
u € Psh(§). Then either u is constant or, for each z € €,

u(z) < sup {limsup u(y)}.
weIN y—w,yeN

Proposition 1.2.5. If u € Psh(C") is bounded above, then w is constant.

Theorem 1.2.6. [42, Theorem 2.9.12] Let Q0 (resp. ') be an open subset of
C" (resp. CV). Ifu € Psh(Q) and f : ¥ — Q is a holomorphic map, then the
composition wo f is a p.s.h. function in . Conversely, u € Psh(2) if and

only if u o g is subharmonic in g~1(Q) for every complex linear isomorphism
g:Q— Q.

Proposition 1.2.7. Let Q be an open subset of C".

(i) The set Psh(S)) is a conver cone. That is to say, if a > 0,b > 0 and
u,v € Psh(Q)), then au + bv € Psh(f?).

(11) If {u;} is a decreasing sequence of p.s.h. functions in a connected open
subset 2, then u = lim;_, u; s p.s.h. or u = —o0.

(117) If u : Q@ — R and the sequence of p.s.h. functions in ) converges uni-
formly to u on compact subsets of Q, then u € Psh(€2).

() Let uy,...,u, € Psh(2). Let x : R™ — R be a convezr function and
X(t1, ..., tm) is non decreasing in each variable t;. Then x(uq, ..., un) € Psh(£2).
In particular uy + ... + Uy, maxq{uy, ..., uy }, log(e"* + ... +€e“m) are p.s.h. func-
tions.
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Example 1.2.8. Sincelog |z| is a subharmonic function on C, log|f| € Psh(X),
for any holomorphic function f on X. For any holomorphic functions f; and
a; 20, 1<j<m,

log(|fi]™ + ... + | fm]®™) € Psh(X).

Let {uq}aca be a family of upper semicontinuous functions from 2 to
[—00,00). Assume that {u,} are locally uniformly bounded from above. Then
we can define the upper envelope by uw := supu,. Note that v may not be
upper semicontinuous, so we consider its upper semicontinuous regularization
as follows,

u*(z) = lim sup u > u(z).
e—0 B(z,e)
It is easy to see that u* is upper semicontinuous. The following property is
called Choquet’s lemma.

Lemma 1.2.9. Every family {u.} admils a countable subfamily {v;} = {uq,}
with its upper envelope v satisfying v < u < u* = v*.

Proposition 1.2.10. Let {u,} C Psh(Q)) be locally uniformly bounded from
above and u be the upper envelope. Then its upper semicontinuous requlariza-
tion u* 1s also p.s.h. and is equal to u almost everywhere.

Proposition 1.2.11. The set Psh(RQ) is closed in L},.(Q) and every bounded
subset is relatively compact. More precisely, if {u;} C Psh() is a sequence
which 1s locally bounded from above, then either it converges locally uniformly
to 0o, or there exists a subsequence {u;, } which converges to a p.s.h. function
in LY () for any 1 <p < oo.

loc

Definition 1.2.12. A function u is called pluriharmonic if u and —u are both
plurisubharmonic.

A pluriharmonic function u verifies the condition that dd“u = 0. It is easy
to check that the real part and image part of a holomorphic function are both
pluriharmonic. Conversely, a pluriharmonic function is locally the real part of
a holomorphic function. We have the following theorem in the global case.

Theorem 1.2.13. If the first De Rham cohomology group of X is zero, then
every plurisubharmonic function is the real part of some holomorphic function
on X.

Pluriharmonic functions are the counterpart of harmonic functions in sev-
eral complex variables. But when we define harmonic functions by using the
following way: A subharmonic function u is said to be harmonic if for every rel-
atively compact open subset V' of 2 and every upper semicontinuous function
vin V, we have

v € Psh(Q2) and v < w in 092 imply v < w in (.
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The counterpart of harmonic functions following this definition is called max-
imal plurisubharmonic functions. Note that harmonic functions are solutions
of homogeneous Laplace equations. We will see later that the corresponding
equations for maximal plurisubharmonic functions is called Monge-Ampere
equations.

Definition 1.2.14. A subset V' of X is said to be pluripolar if for every point

z € X there is a neighbourhood U of z and a p.s.h. function u on U such that
VNU C {u=—oo}.

We know that if u is a p.s.h. function on a connected subset, then either
u = —oo or u is locally integrable. Hence a pluripolar set is of zero Lebesgue
measure.

Proposition 1.2.15. Any proper analytic subset of X is pluripolar. The Haus-
dorff dimension of a pluripolar set is smaller or equal to 2n — 2.

Theorem 1.2.16. Let V' be a closed pluripolar subset of X and u be a p.s.h.
function on X \ V. If u is locally bounded from above near V.. Then there is
a unique extension t € Psh(X) such that & =u on X \ V.

There are close relationships between p.s.h. functions and positive closed
(1,1)-currents. If u € Psh(), then dd“u is a positive closed (1, 1)-current.
This can be deduced by the approximation theorem of currents and dominated
convergence theorem. Conversely, we have the following result,

Proposition 1.2.17. Any positive closed (1,1)-current T' can be locally written
as dd“u, where u is a p.s.h. function. The function u is called the local potential

of T.

Note that two local potentials differ by a pluriharmonic function, so the
study of the singularities of positive closed (1, 1)-currents can be reduced to
study the local potentials. The Lelong-Poincaré formula offers a good example
of potentials of currents by integration over hypersurfaces.

Theorem 1.2.18. Let f be a holomorphic function on X which does not vanish
identically on any connected component of X. Then the function log|f| is
p.s.h. and verify the equation

ddlog |f] = my[Zj],
where Y m;Z; is the divisor of f.

The above equation holds even when f is meromorphic, then log|f]| is
locally integrable and m; can be negative numbers. We recall here an useful
result, the so-called dd°-lemma.

Proposition 1.2.19. Let X be a compact Kdhler manifold and T be a closed
(p, q)-current on X. Then T is dd®-exact if and only if it is exact (or O-exact

or 0-exact).
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1.2.2 Intersection of currents and Monge-Ampeéere operators

Let u be a p.s.h. function and 7" be a positive closed (p, p)-current, p < n—1.
Recall that op is its trace measure. Due to the classical result by Bedford-
Taylor [8], we can define

dd°u AT = dd°(uT),

when wu is locally or-integrable, in particular when w is continuous or locally
bounded. It follows from the approximation theorem that dd‘u A T is a pos-
itive closed current. When uy, ..., u, are all locally bounded, we can define
inductively

dduy A ddus A ... N ddug AT = dd°(uyddus A ... A ddug AN'T).
It is a positive closed current.

Definition 1.2.20. If u is a locally bounded p.s.h. function, then (dd°u)™ is
called Monge-Ampeére operator.

Sometimes the map
(Upy .oy tty) = dduy A ddug A ... A\ dduy,.

is also called Monge-Ampere operator. We have the following Chern-Levine-
Nirenberg inequality.

Theorem 1.2.21. Let L and K are compact subsets of X. Let L is relatively
compact in K°. Assume that v is a locally op-integrable p.s.h. function. Then
there exists a constant Cri independent of T, u; and v such that

||ddcu1 NN ddcuq AN T”L S CLKHTHKHul”£°°(K)---”uqH£°°(K)a
||vddcu1 VANPIRIAN ddcuq A T”L < OLKHUT”KHul||£00(K)...||U/q||£oo(K).

One of the most properties of Monge-Ampere operator is its continuity on
decreasing sequences of p.s.h. functions.

Theorem 1.2.22. Let uy, ..., uqy be locally bounded p.s.h. functions. Let {ul},...,
{u{l} be decreasing sequences of p.s.h. functions which converge pointwise to
Uy,...,uq respectively. Then we have in the weak sense of currents

wWdduy A ... Addul NT — wydd®us A ... A ddug AT,
ddui A ... Addu) NT — dd°ug A ... A ddug AT
In the following chapters we will deal with the intersections of several cur-

rents by integration over analytic subvarieties. So we introduce Monge-Ampere
operators on unbounded p.s.h. functions.

Definition 1.2.23. Let u be a p.s.h. function. The unbounded locus L(u)
1s defined to be the set of points z € X such that w is unbounded in any
neighborhood of z.
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We can define Monge-Ampere operators on unbounded p.s.h. functions
when the intersections of unbounded loci are sufficiently small measured by
Hausdorff dimensions.

Theorem 1.2.24. Let T be a (p,p)-current and uy, ..., u, be p.s.h. functions
on X, q < n—p. If the (2n — 2p — 2k + 1)-Hausdorff dimension of the set
L(uj,)N...NL(u;,)NsuppT is equal to 0 for all indices j1 < ... < ji in {1,...,q},
then the currents uiddus A ... N dd°ug N'T and dduy A ... AN ddug AT are well
defined with locally finite mass.

The continuity property of Monge-Ampere operators is also valid for un-
bounded p.s.h. functions.

Definition 1.2.25. The analytic subsets Vi, ..., V, of X is said to be in general
position if codim V; N ...NV,, >k for all indices j; < ... < ji in {1,...,q}.

When T is of bidegree (0,0), we have the following useful criterion

Corollary 1.2.26. If the unbounded locus L(u;) is contained in an analytic
subset V; such that Vi, ...,V are in general position, then dd®u; N ... A\ ddu, s
well defined.

In particular, the current [Vi] A...A[V,] is well defined when Vi, ..., V, are in
general position. Fornaess and Sibony defined Monge-Ampere operators and
obtained continuity properties in other assumptions on uy,...,u, and 7. We
refer the reader to [27, Section 3] for a more detailed discussion.

Definition 1.2.27. Let €2 be an open subset in C™ and V' be a closed subset in
Q. We say that V is in the envelope of p-pseudoconvezity of Q\'V with respect
to Q if every point in V can be reached by pushing polydiscs of dimension

(n — p) by using biholomorphic images of (n — p,p) Hartogs figures with hulls
in €.

Theorem 1.2.28. Let T' be a positive closed (p,p)-current and uy, ..., u, be
p.s.h. functions on 2, ¢ < n—p. Ifu; <0Vl < j < gq, and L(uj,) N
... N L(uy,) NsuppT is in the envelope of (n — p — k + 1)-pseudoconvezity of
the complement for all indices j; < ... < jx in {1,...,q}, then the currents
urddug A ... Nddug AT and dduy A ... Ndd®ug AT are well defined with locally

‘ Ty o 71 ]
finite mass. Moreover, if uj converges to u; in Ly, (2) and uj > uj, we have

wddu A ... Addul AT — wdd®us A ... A ddug AT,
ddu] A ... Addud AT — ddus A ... Addug AT

1.2.3 Quai-plurisubharmonic functions and moderate measures

The notion of quai-plurisubharmonic (q.p.s.h. for short) functions was
introduced by Yau. It plays an important role in the following chapters. P.s.h.
functions have local properties. By the maximum principle we know that
p.s.h. functions in compact complex manifolds are always constants. But
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q.p-s.h. function is a global notion which can be defined in compact complex
manifolds.

It can describe the Hermitian metrics on complex line bundles. In this
subsection, we assume that X is a compact Kahler manifold of dimension n
with Kahler form w such that w™ is a probability measure. The case when X
is only a complex manifold will be specified.

Definition 1.2.29. A g¢.p.s.h. function on X is locally the difference of a
p.s.h. function and a smooth one.

Definition 1.2.30. Let v be a closed real (1,1)-current on X. An upper-semi
continuous function u : X — [—o00,00) in L} (X) is said to be y-p.s.h. if
dd°u+~v > 0.

Note that a function v on X is q.p.s.h. if and only if it is cw-p.s.h. for
some constant ¢ > 0. Denote by Psh(X,~) the set of all y-p.s.h. functions.
Observe that Psh(X,~) is nonempty if and only if there is a positive closed
(1, 1)-current which is cohomologous to 7. There are some special cases when
all v-p.s.h. functions are constants.

Example 1.2.31. Let E be the exceptional divisor of a smooth blow-up X.
Then Psh(X,[E]) = R. See [34, Chapter 2.5] for the definition of a blow-
up. To see this, let m : X — Xi be a blow-up. The smooth center of 7 is
Y of codimension > 2. The exceptional divisor E is the subset m=1(Y). Let
u € Psh(X,[E]). Since m: X \ E — X1 \'Y is biholomorphic, by considering
all test forms with support in X \ E, we obtain that dd°(uor™') > 01in X;\Y.
Since codimY > 2, we can extend wow* trivially through Y to a global p.s.h.
function on X1. The mazimum principle implies that won~! is constant, so is
w. By dd°-lemma, there are no other positive closed (1,1)-currents which are
cohomologous to [E|.

We can easily some properties of q.p.s.h. functions from those of p.s.h.
functions.

Proposition 1.2.32. Let u and {u;} be g.p.s.h. functions, we have

(i) u belongs to LP(X) for every 1 < p < oc.

(i1) If {u;} is a decreasing sequence satisfying dd°u; > —w, then the limit of
{u;} is also a q.p.s.h. function.

(111) If {u;} is uniformly bounded from above and dd“u; > —w, then either it
converges uniformly to oo, or there exists a subsequence w;, which converges
to a q.p.s.h. function v in LP(X) for every 1 < p < oo and ddv > —w.

(iv) The functions uy + ... + Uy, max{uy, ..., u, },log(e™ + ... + €*™) are also
q.p.s.h. functions.

The third result of the above property shows also the compactness of
q.p-s.h. functions. More generally we have
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Theorem 1.2.33. The family of the q.p.s.h. functions which satisfy dd“u >
—w and one of the following three normalization conditions

(1) maxu = 0,

(z’i)/xuwn =0,

(m)/ lulw™ < C, where C' is a constant
X

is compact in LP(X) for every 1 < p < oo. Moreover, the family of these
q.p.s.h. functions is uniformly bounded from above .

Proof. The result with condition (i) follows from (iii) of the above proposition.
Let u; verify the condition (ii). Since a ¢.p.s.h. function is bounded from above
in compact manifolds, set a; := supy u;. Then there are no subsequences of
{u; — a;} which converges uniformly to —oo. Hence the sequence {u; — a;}
is bounded in LP(X). Otherwise, if there is a subsequence {u;, — a;, } which
converges to a q.p.s.h. function v and |juj, — a;,||[r — oo, then it yields
contradiction with v € LP(X). Note that

aj:aj/Xw":—/X(uj—aj)w”.

So {a;} is bounded. The family of q.p.s.h. function w; is bounded in L?(X)
and there is a convergent subsequence. The result with condition (ii) holds.
Let u; verify the condition (iii). Let [, (u; — b;j)w™ = 0. Then b; is bounded.
Then the result is a consequence of the result with condition (ii). ]

By the dd®-lemma on compact Kahler manifolds, we can easily deduce the
following result [23, Proposition 2.2].

Proposition 1.2.34. There exists a constant r > 0 such that for any positive
closed current T of bidegree (1,1) with mass 1 on (X,w), there is a smooth
(1,1)-form a which depends only on the cohomology class of T and a q.p.s.h.
function u satisfying that

—rw < a<rw, ddu—T = .

Denote by r(X,w) the smallest number of r which satisfy the above prop-
erty.

We have an analogous regularization result for q.p.s.h. functions on com-
pact Kéahler manifolds. The following theorem is due to Demailly.

Theorem 1.2.35. Let u be a q.p.s.h. function on X. Then there is a decreas-
ing sequence of smooth functions u; satisfying dd‘u; > —ew for some positive
constant €, which converges pointwise to u.

Q.p.s.h. functions can be also defined on any complex manifolds. Blocki-
Kotodziej obtained a generalization of regularization result.
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Theorem 1.2.36. Let X be a complex manifold with a fived Hermitian form
w and K C X be a compact subset. Assume that v is a real closed form of
bidegree (1,1) and u is a locally bounded v-p.s.h. function. Then for any open
netghborhood U of K, there exists a decreasing sequence of smooth functions
uj on U such that

(1) uj converges pointwise to u,

(11) dd“u; + v > —ejw, where €; tends to 0.

Remark 1.2.37. In the above theorem, if v is positive and u is any y-p.s.h.
function, then the same conclusion holds. Since v is positive, constant func-
tions are y-p.s.h. functions. Then we consider the locally bounded ~v-p.s.h.
functions max{u,—j},j > 1 and use diagonal arguments.

In general the global regularization for q.p.s.h. functions on a complex
manifold fails.

Our core work through the thesis lies in some estimates of constants on
complex projective spaces. The complex projective space P of dimension n is
a compact Kahler manifold.

Definition 1.2.38. A projective manifold is a complex submanifold of some
complex projective space.

Projective manifolds are algebraic by Chow’s theorem.

Let 7 : C"*\ {0} — P" be the canonical projection and [z, ..., 2,] be the
homogeneous coordinate of P". Denote by U; the set of points [z, ..., z,] such
that z; # 0. It is a local chart on P". All the charts can cover P".

Definition 1.2.39. The Fubini-Study form is defined to be
wrs 1= dd° 10%(2 |2/ z*)?
j=0
i the local chart U;.
In other words, we have
™ (wrs) = dd°log(_ |2]*)"/*
j=0
In the local chart Uj, assume that zy; = 1. The corresponding Fubini-Study
metric has the following Hermitian components
(1+ [2*)d;5 — 2%
Q+1=P)?

1

where |2]? = |21> + ... + |z,]?. Note that wig is a probability measure on P".
This also enlighten the role of normalization in the definition of the operator

de.
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The cohomology class of wh.¢ is a generator of the group H»?(P", R). Any
positive closed (1,1)-current 7' of mass 1 is cohomologous to wrg. Then we
obtain a ¢.p.s.h. function v on P" such that dd‘u = T — wrg. We will write
wrs to be the Fubini-Study form of the complex projective space PV of any
dimension N. We give two examples of q.p.s.h. functions on P".

Example 1.2.40. Set |z|> = |20|> 4 ... + |za|®. Let u be a probability measure
on P".

()

g 2

v1(2) = max(log

is @ wrg-p.s.h. function.
v |2 A wl|
v2(2)=/ log ( TH ‘ )du(w)

is a wpg-p.S.h. function. This function can be used to define some capacities
on P™ [}6].

Positive closed (1, 1)-currents on P™ can be associated to p.s.h. functions on
C"*! with certain homogeneity properties. See [26, Section 4] and [53, A.5].
Let L; be the set of positive closed (1,1)-currents on P". Consider a p.s.h.
function v on C"*! satisfying the condition

v(Az) = clog || + v(z)

for some constant ¢ > 0 and all z € C"*'. Let [v] be the class of functions
which is equal to v up to a constant. Denote by Ly the set of the classes of
p.s.h. functions with the above condition.

Proposition 1.2.41. The two sets Ly and Lo are isomorphic. If T € Ly has
the associated p.s.h. function v such that v(\z) = clog|\| + v(z) for some
constant ¢ > 0, then the mass of T is c.

Positive closed (1, 1)-currents on P which are cohomologous to wgg can be
characterized by p.s.h. functions on C" [32, Example 2.2]. To be precise, there
is a one-to-one correspondence between Psh(P", wrg) and the Lelong class:

L(C") :={v e Psh(C") :v(z) < %log(l +|2*) + C,, C, is a constant}.

Now we introduce the notion of moderate measures which is essential in the
thesis. First we recall a classical result about an uniform estimate for certain
compact family of p.s.h. functions in the unit ball of C" [36, Theorem 4.4.5].

Theorem 1.2.42. There is a constant ¢ > 0 such that for any p.s.h. function
u in the unit ball of C* with u(0) > —1 and u(z) < 0, we have

/ exp(—u(z))dA < ¢,
|z|<1/2

where d\ denotes the Lebesque measure on the unit ball.
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We have a generalization for any compact family of p.s.h. functions.

Corollary 1.2.43. Let U be a compact family of p.s.h. functions in a complex
manifold X of dimension n with a Hermitian form w. For any compact subset
K of X, there exist constants ¢ > 0, > 0 such that

/ exp(—aou)w® < ¢,
K

foralluel.
Dinh-Sibony [24] introduced the notion of locally moderate measures.

Definition 1.2.44. Let X be a complex manifold. A positive measure p is
locally moderate if for any open set U C X, any compact subset K C U
and any compact family U of q.p.s.h. functions on U, there are constants
a > 0,c> 0 such that

/ exp(—ag)du <c, Vo eU.
K

Dinh-Nguyén-Sibony [21] proved that the equilibrium measure of endomor-
phism of P™ is locally moderate.

In the thesis, we deal with the moderate measures in a compact Kahler
manifold X of dimension n with a fixed Kahler form w such that w" is the
standard probability volume form. Consider a positive measure p on X, p is
said to be PLB if all the q.p.s.h. functions are p-integrable. When dim X =1,
w is PLB if and only if it admits a local bounded potential [24]. Let

F :={¢ qp.s.h.on X :dd¢ > —w,m}z{xxgb = 0}. (1.1)

The set F is compact in L (X) and bounded in L' (1) when p is a PLB measure
by Theorem 1.2.33 and Proposition 1.2.47.

Recall that any q.p.s.h. functions on X are cw-p.s.h. for some constant
¢ > 0 and uniformly bounded from above. Then the study of q.p.s.h. functions
can be reduced to the study of the family F. Observe that there is a large
family of positive singular measures which are PLB.

Example 1.2.45. Let py be a smooth probability measure and T' be a positive
(n—1,n — 1)-current on X. Set p := po + dd°T. Then u is a PLB measure.
Consider a smooth function ¢ € F, we have

0< /X (—¢)dpu = /X (—d)dpuo + /X (—6)dd°T
< C|léls + (T, —dd<6)

< Clléllu + (T,w) < oo.

Then the result follows from the reqularization of q.p.s.h. functions.
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Definition 1.2.46. Let 1 be a PLB measure on X. We say that u is (¢, «)-
moderate for some constants ¢ > 0, > 0 if

[ expl-ag)u< e
X

for all ¢ € F. The measure i is called moderate if there exist constants
¢ > 0,a >0 such that it is (¢, a)-moderate.

For example, the standard volume form w™ is moderate by Theorem 1.2.42.
Let us recall the following proposition in [23].

Proposition 1.2.47. Let i1 be a PLB measure on X. The family of the q.p.s.h.
functions which satisfy dd“u > —w and one of the following three normalization
conditions

(7) maxu = 0,

(u)/ udp =0,

X

(uz)/ |uldp < C, where C' is a constant
X

is bounded in L'(u) and bounded from above. In particular, there exists a
constant ¢ > 0 independent of u such that p(u < —t) < § for any t > 0.

When X = P", we recall the following proposition [23, Corollary A.5] which
plays a crucial role in the following chapters,

Proposition 1.2.48. There are constants ¢y > 0 and oy > 0 independent of
n such that

[ expl-audlups <am, o€ F.

The following lemma gives an alternative definition of moderate measures

20].

Lemma 1.2.49. A PLB measure i is moderate if and only if there exist two
constants ¢ > 0,a’ > 0 such that

p{z € K:¢(z) < =M} < de @M
for any M >0 and ¢ € F.

Remark 1.2.50. We can take ¢ = ¢, o = a when c,a are given and take
c=2d, a=da/2 when ¢, d are given.
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1.3 Holomorphic line bundles

We introduce some basic notions and properties about holomorphic line
bundles. There are closed relationships between holomorphic line bundles and
divisors. The Kodaira maps are needed which can be regarded as meromorphic
transforms in the following chapters. The Kodaira embedding theorem assets
that the notions of positive line bundles and ample line bundles are equiva-
lent on compact Kéhler manifolds. Then we introduce big line bundles with
several criterions and Nadel vanishing theorm. See [16] for the knowledge of
connections, analytic sets and sheaf cohomology.

1.3.1 Holomorphic line bundles and first Chern class

Recall that a complex line bundle is a complex vector bundle of rank 1.
Let X be a complex manifold of dimension n and 7 : L. — X be a complex
line bundle. Denote by L, := 7~ !(z) the fiber at a point z. There exists an
open covering (U,) of X and smooth diffeomorphisms

QaIL[Ua —)Ua X(C,

such that for every z € U, the restriction map 6, : L, — {z} x C is a linear
isomorphism. Such smooth diffeomorphisms are called local trivializations.
Let go3 be the transition functions satisfying

00005 (2,6) = (2,9as(2)6),  (2,€) € (UaNUp) x C.

The collection of the transition functions {g.3} defines a Cech 1-cocycle with
values in the multiplicative sheaf &* of invertible smooth functions on X, i.e.

{9as} € H'(X, &),

Theorem 1.3.1. There is a one-to-one correspondence between the group of
isomorphism classes of complex line bundles and the Cech cohomology group
HY(X,&%). The group structure of the former group is the tensor product of
line bundles.

Definition 1.3.2. A complez line bundle L is said to be Hermitian if there is
a positive definite Hermitian metric h on each fiber L, varying smoothly with
ze X.

Let D be a connection on L and ©(D) be the corresponding curvature.
©(D) is a closed form of degree 2. The De Rham cohomology class {©(D)}
is of complex coefficients and independent of the choice of D. When L is
Hermitian, we can choose a connection D such that i©(D) is a real form, i.e.
{i8(D)} € H*(X,R). Such connection is called Hermitian connection. The
exponential exact sequence of sheaves

0=-Z >8> =1
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gives a coboundary map in the long exact sequence of Céch cohomology
§: HY(X, &) — H*(X,Z).
Since H'(X, &) = H*(X,&) = 0, the map § is an isomorphism.

Definition 1.3.3. The first Chern class of a complex line bundle L is defined
toc1(L) := 6({gap}), where {gap} is the Céch cohomology class of the 1-cocycle
associated to L.

It follows from the definition that a complex line bundle is determined up
to smooth isomorphism by its first Chern class. As usual the first Chern class
is defined to be the image of ¢;(L) under the following natural map

H*(X,7) — H*(X,R).

Theorem 1.3.4. The first Chern class ¢;(L) € H*(X,R) is equal to the De
Rham cohomology class {3=©(D)}.

Definition 1.3.5. A holomorphic line bundle L is a complex line bundle with
a holomorphic map m: L — X and biholomorphic trivializations.

It follows that the transition functions are also holomorphic. Let H°(X, L)
be the space of holomorphic sections of L. Denote by &* the multiplicative
sheaf of invertible holomorphic functions on X. Similarly there is a one-to-one
correspondence between the group of isomorphism classes of holomorphic line
bundles and the Cech cohomology group H'(X, ¢*). The group H'(X, 0*) is
called the Picard group of X.

One notable difference between smooth line bundles and holomorphic ones
is that the operator 0 can be well-defined globally on holomorphic line bundles.
We are interested in Hermitian holomorphic line bundles. There exists a unique
Hermitian connection D such that its (0, 1)-connection is d in a Hermitian
holomorphic line bundle.

Definition 1.3.6. The above unique Hermitian connection D is called Chern
connection and the curvature ©(D) of D is called Chern curvature.

1.3.2 Divisors and Lelong-Poincaré formula

Since hypersurfaces are given by the zeros of a global holomorphic sections
of a holomorphic line bundle, there are close relationships between divisors
and holomorphic line bundles. Recall that an analytic hypersurface of X is an
analytic subvariety of codimension one.

Definition 1.3.7. A divisor D on X is a locally finite formal linear combi-
nation D =" a;Y;, where Y; are irreducible analytic hypersurfaces and a; are
integers.
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Denote by Div(X) the set of all divisors on X. The sum is finite if X
is a compact complex manifold. A divisor is said to be effective if all a; are
nonnegative. Every hypersurface defines an effective divisor > Y;. Recall that
the order ordy . (f) of a meromorphic function f along Y at z € Y is the largest
integer a such that f = g*h with h € 0% .. If Y is irreducible, then the order
is independent of z € Y. Hence we can define ordy(f) along an irreducible
hypersurface.

Definition 1.3.8. The divisor associated to a meromorphic function f is

div(f) = ordy(f)Y,

where the index of the sum runs over all irreducible hypersurfaces in X. Such
divisor s called principle.

Denote by .#™* the multiplicative sheaf of invertible meromorphic functions
on X.

Proposition 1.3.9. There exist the following group homomorphisms
HY(X,.#*)0*) = Div(X) — Pic(X).

A divisor D € Div(X) is assigned to a holomorphic line bundle O(D). In
fact D corresponds to an element f € H(X, .#*/0*), which is represented
by a family of functions f,, € .#*(U,) with respect to an open covering {U,}.
Then the transition functions gos = fafy ! defines the line bundle O(D). Note
that the line bundle O(D) can be identified to the sheaf of germs of meromor-
phic functions f satisfying div(f) + D > 0.

Definition 1.3.10. A meromorphic section of L is a section s defined by a
collection of meromorphic functions f, = 0.(s) € A (U,,).

Since {f,} corresponds to an element in H°(X,.#*/0*), then the mero-
morphic section s defines a divisor div(s) which is written locally as div(f,).
The divisor div(s) is effective if and only if s is a holomorphic section.

The current defined by div(s) is written as [div(s)] or [s = 0] when s is
holomorphic. The definition of div(s) implies that O(div(s)) is isomorphic
to L for any nonzero meromorphic section s. It follows from Lelong-Poincaré
formula that

dd®log | fo| = div(fa).

Note that L is a Hermitian holomorphic line bundle with the Hermitian
metric h. There exists a local holomorphic frame e;, of L over U, such that
ler|? = h(er,er) = e %2, where @ is a real function on U,. It is possible since
we can shrink U, properly. Then |s|? = |f,|?¢72¢. There is a characterization
of Chern curvature by the Hermitian metric.

Proposition 1.3.11. We have locally on U,
i
—O(L) = dd°p.
5-9(L) p

In particular, the current dd®p represents the first Chern class ¢i(L).
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Following the above arguments, we obtain
i
dd°1 2 =di — —0O(L).
og sf3 = div(s) - --O(L)

The following theorem is the Lelong-Poincaré formula for meromorphic sections
of line bundles.

Theorem 1.3.12. Let L be a Hermitian holomorphic bundle and s be a mero-

morphic section of L which does not vanish identically on any component of
X. Then

O(div(s)) = L, ¢ (L) = {[div(s)]}.

)
Consequently we have ¢;(O(div(s))) = {[div(s)]}.
We extend the notion of Hermitian line bundle to the singular case.

Definition 1.3.13. Let L be a holomorphic line bundle on a complex manifold
X. A singular Hermitian metric h on L is a sesquilinear Hermitian-symmetric
form on each fiber such that for any local holomorphic frame ey, of L on U C X,
we have ler|? = e%% € [0,00], where p € L}, (U) is called local weight. A
singular Hermitian holomorphic line bundle is a holomorphic line bundle with

a singular Hermitian metric.

If ¢ is smooth, the L is a Hermitian line bundle. It is easy to see that
dd‘p is independent of the choice of open coverings. We can define the
curvature current by O(L) = —2midd®p. The current ¢z ), =: 3=6(L) = dd°p
represents the first Chern class of L. The Lelong-Poincaré formula for mero-
morphic sections of singular Hermitian holomorphic line bundles also holds.

Given an arbitrary divisor D on X, we have ¢;(O(D)) = {[D]}. Indeed, let
D = a;D;, the line bundle O(D) can be endowed with a singular Hermitian
metric h such that | f|, = | f|, where f is a meromorphic function with div(f)+
D > 0. Let g; be the defining holomorphic function of D; on U,. Then there
is a trivialization 6,(f) = f[]g;" of O(D) on U,. The singular Hermitian
metric has local weight ¢ = > a;log|g;|, The Lelong-Poincaré formula yields
the equation ¢;(O(D)) = {[D]}.

Definition 1.3.14. A Hermitian holomorphic line bundle L is called positive
if there exists a smooth Hermitian metric on L with the Chern curvature ©(L)
such that i©(L) is a positive (1,1)-form.

A divisor D is positive if the line bundle O(D) is positive. The following
result shows that the positivity of a line bundle is a topological property.

Proposition 1.3.15. Let ¢ be a real closed (1,1)-form whose cohomology
class is c¢1(L). Then there exists a smooth Hermitian metric on L such that
5-O(L) = ¢. Hence L is positive if and only if c;(L) can be represented by a
positive closed (1,1)-form.
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Example 1.3.16. The hyperplane bundle O(1) on P™ is a positive line bundle.
The dual of O(1) is the tautological line bundle O(—1) whose fiber at a point
2z = [20,...,24] € P" is the complex line {\z : A € C} C C""'. There is
a natural Hermitian metric h on O(—1) such that |z|2 = Y |z|*>. Then the
curvature form © of O(1) satisfy

o= dd“log || z|)*.
2m

Note that %@ is just the associated (1,1)-form of the Fubini-Study metric,
which is positive.

1.3.3 Kodaira embedding theorem

We assume X is a compact Kahler manifold and L is a holomorphic line
bundle on X in this subsection. Recall that H°(X, L) denotes the space of
holomorphic sections of L. The kth tensor product of L is L. It follows from
Hodge theory that the dimension of H°(X, L) is finite. Let N = dim H°(X, L).

Definition 1.3.17. A point x € X is said to be a base point if s(x) = 0 for
all s € H'(X, L). The base locus Bs(L) is the set of all base points.

Let sg, ..., sy be a basis of H*(X, L), then Bs(L) = (sp = 0)N...N (sy =
0) which is an analytic subvariety. Denote by H°(X, L)* the dual space of
H°(X,L).
Definition 1.3.18. The Kodaira map associated to L is defined by
®: X\ Bs(L) = P(H(X, L)"),
O(x) ={s € H'(X,L) : s(x) = 0}.

We give a local analytic description of the Kodaira map. Let s, ..., sy be a
basis of H°(X, L) and ey, be a local holomorphic frame of L on U, where U can
be chosen as a contractible Stein open subset. Then there exist holomorphic
functions f; such that s; = f;er. By an identification via the basis, the Kodaira
map can be expressed locally as

d: X PN ®(x) = [fo(z),..., fn()].

This map does depend on the choice of the basis. But two such maps differ
only by a linear transformation of PV for two different choices of basis. The
Kodaira map is a meromorphic map on X, but it is holomorphic on X \ Bs(L).

Definition 1.3.19. A holomorphic line bundle is called ample if the Kodaira
map associated to LF is an embedding for some integer k > 0.

A compact Kéahler manifold is projective if and only if it admits an ample
line bundle. A natural question is when the Kodaira map defines an embedding
of X. If it is an embedding map, the X is a projective manifold. We have the
following important theorem called Kodaira embedding theorem.

Theorem 1.3.20. Let L be a holomorphic line bundle over a compact Kahler
manifold X. Then L is positive if and only if L is ample.
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1.3.4 Big line bundles

We will use Kodaira maps associated to high tensor powers of a holomorphic
line bundle as follows,

®,: X \ Bs(L?) — P(H"(X, L")*)

Define g, := {rank,®, : z € X \ Bs(L?)}. If H°(X, LP) is equal to {0}, we
take the convention that g, = —oo0.

Definition 1.3.21. The Kodaira-Iitaka dimension of L is k(L) := max{p, :
p>1}.

Note that (L) < dim X.

Definition 1.3.22. A big line bundle is a holomorphic line bundle L such that
k(L) =dim X.

There are several criterions for big line bundles [45, 2.2.1, 2.3.3].

Theorem 1.3.23. Let L be a holomorphic line bundle over a connected com-
pact complexr manifold X of dimension n. The following are equivalent:

(i) L is big;

(i) limsup,,_,,, p~" dim H°(X, L?) > 0;

(i1i) L admits a singular Hermitian metric such that the curvature current is
strictly positive,

(iv) L admits a singular Hermitian metric which is smooth outside a proper
analytic set of X such that the curvature current is strictly positive.

If X is compact Kahler manifold with a fixed Kahler form w, then the big
line bundle L admits a singular Hermitian metric A such that ¢;(L,h) > ew
for some constant € > 0.

The asymptotic expansion of dimensions of H°(X, LP) is crucial through
our thesis. Let d, = dim H°(X, L?). If L is positive, then the Hirzebruch-
Riemann-Roch theorem and Kodaira-Serre vanishing theorem show that d,, is
given by a Hilbert polynomial whose dominate term is p™/n! [, ¢1(L)", see [35,
Section 20] or the proof of [45, Theorem 2.2.20]. The Siegel’s lemma gives an
upper bound of d, [45, Lemma 2.2.6].

Proposition 1.3.24. Let L be a holomorphic line bundle over a connected
compact complex manifold X. There there exists a constant C' > 0 satisfying

dim H°(X, LP) < Cp% < Cp~P) vp > 1.
The Kodaira-Iitaka dimension k(L) is the optimal constant independent of p.

Theorem 1.3.25. If X s a projective manifold, then the natural group ho-
momorphism Div(X) — Pic(X) is surjective.
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Theorem 1.3.25 [34, Corollary 5.3.7] shows that any holomorphic line bun-
dle in a projective manifold is isomorphic to a line bundle associated to a
divisor. More generally, this theorem holds also for Moishezon manifolds, see
[45, Theorem 2.2.20] for more information.

We will use the notion of multiplier ideal sheaf introduced by Nadel [47].
It can be applied to the lower estimate of dimensions associated to big line
bundles.

Definition 1.3.26. Given a real function ¢ which is locally integrable on X,
the multiplier ideal sheaf Z(p) is the ideal subsheaf of germs of holomorphic
functions f € Ox, such that | f|?e™%? is integrable with respect to the Lebesque
measure in a local coordinate near x.

The zero variety of Z(¢) is the set of points x such that e 2% is not integrable
in a neighborhood of x. Let h be a singular Hermitian metric on L and ¢ be
the local weight of h in an open subset. Then the multiplier ideal sheaf of h
is defined by Z(h) := Z(¢). This definition does not depend on the choice of
local trivializations. Recall that Kx is the canonical line bundle of X. We
have the following Nadel vanishing theorem, see also [15, Theorem 4.5].

Theorem 1.3.27. Let L be a big line bundle over a compact Kahler manifold
(X,w). Assume that L is endowed with a singular Hermitian metric h such
that c1(L,h) > ew for some constant € > 0. Then we have

HYX,0(Kx +L)®ZI(h)) =0

forall g > 1.
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Chapter 2

Equidistribution of zeros of
random holomorphic sections
for moderate measures.

In this chapter, we establish an equidistribution theorem for the zeros of
random holomorphic sections of high powers of a positive holomorphic line
bundle. The equidistribution is associated to a family of singular moderate
measures. We also give a convergence speed for the equidistribution which
shows an alternative proof of the main theorem.

2.1 Dinh-Sibony equidistribution theory.

The Dinh-Sibony equidistribution theory [23] is the cornerstone in the the-
sis. Our main theorems are proved based on the techniques and theorems from
this theory. They studied the equidistribution problem associated to PLB mea-
sures, which is a generalization of the result by Shiffman-Zelditch [57]. Appro-
priate conditions are posed on PLB measures to satisfy the equidistribution

property.

2.1.1 Constants associated to PLB measures

Let (X,w) be a compact Kdhler manifold of dimension n and u be a PLB
measure on X. Recall that (X, w) is the smallest number of r in Proposition

51
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1.2.34. Following Proposition 1.2.47, we can define the notations
Q(X,w):={¢ qgp.s.h.on X,ddp > —r(X,w)w},

R(X,w,u):zsup{m}z{mxgp:chQ(X,w),/ edp =0}
X
zsup{—/XsodumpEQ(X,w),mng:O},
S(X D= du)| X "=0
(Xwoop)s = supl] [ o] 0 € QY. [ =0}
A(X,w,pu,t) s =sup{u(p < —t) 1 p € Q(X,w),/xsodu = 0}.

Here t > 0. When p = w", let R%(X,w) := R(X,w, ). These constants are
related to Alexander-Dinh-Sibony capacity, see [23, A. 2| and [32, Section 5.
The following elementary inequality comes from [23, Proposition 2.4].

Proposition 2.1.1. We have
S(X,w,p) < R(X,w, 1) + R (X, w).

The following estimate is very fundamental in Dinh-Sibony equidistribution
theory, see [23, Proposition A.3].

Proposition 2.1.2.
1
RO(Pk,wps) < 5(1 + IOg k)

Proof. Let m: Ck*1\ {0} — P* (or 7 : S?***! — P*) be the natural projection.
Let dAory1 be the probability spherical measure on S?**!. Given ¢ € F, then
dd®p+wpg is a positive closed current of mass 1. By Proposition 1.2.41, there
exists a corresponding p.s.h. function v on C¥*! such that

v(Az) =log |\ +v(z), AeC\{0}.
Note that v(z) = g om +log ||z|| and v(0) = —oo. Moreover, the Fubini-Study

volume form w}%s and d)g;41 are probability Haar measures on P*¥ and S2++!
respectively. By the uniqueness of Haar measures, the following equality holds

W];ﬂs(A) = d>\2k+1(7T_1(A))a

where A is a measurable set in P*. Hence

/ Spwlkws = / © © Td g1
Pk §2k+1

= / ’Ud/\gk_H .
§2k+1
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Since maxger+1 v = maxpr @ = 0, by a theorem due to Alexander [1, Theorem
2.2], we have

/ @ o mdAggy1 > max v + / log |z1|dAgk11
S2k+1 S2k+1 §2k+1

j=k 1
IS g,
7j=1

—_
—_

l\')
.
l\D

Then the proof is completed. O

2.1.2 Meromorphic transforms

The meromorphic transforms play a crucial role in Dinh-Sibony equidis-
tribution theory. Roughly speaking, a meromorphic transform between two
complex manifolds is a surjective multivalued map with an analytic graph.

Definition 2.1.3. Let (X, w1), (X2, ws) be two compact Kdhler manifolds of
dimension ny and ng respectively, a meromorphic transform F : X1 — X, is
the data of an analytic subset I' C X1 X Xy of pure dimension ny + 1 such that
the natural projections m : X1 X Xo — Xy and my : X1 X X9 — Xy restricted
to each irreducible component of I' are surjective. I" is called the graph of F.

Note that a meromorphic transform is determined by its graph. We write
F = myo(mi|r)~". The dimension of the fiber F~!(x5) := 71 (7, ' |r(2)) is equal
to [ for a point zo € X5 generic. This is the codimension of the meromorphic
transform F'. If T is a current of bidegree (m,m) on Xs, no+1—n1 < m < ny,
we define F*(T) := (m)«(m5(T) A [T']), where [I'] is the current of integration
over I'. The intermediate degree of order m of a meromorphic transform F :
X1 — X, is defined by

)\m(F):/ F*(wy) Awptt= m:/ wy' A F (w2,
X1 X2

Set d(F') := Ay (F) and 0(F) := A\y,—1(F). These two notations are useful in
the following arguments. We give some examples of meromorphic transforms.

Example 2.1.4. The examples are constructed based on Grassmannian man-
ifolds.

(i) Let G(k — 1+ 1,k + 1) be the Grassmannian manifold which parame-
terizes all the projective subspace of dimension k — | of P*. For a point
s € Gk =1+ 1,k + 1), there is a corresponding projective subspace P'g_l
of dimension k — 1. Set

Tyi={(2,8) € P x Gk — 1+ 1,k +1),z € P},

The meromorphic transform Fy : P* — G(k — 1+ 1,k + 1) is defined by the
graph Ty. Since F{'(8) = PE it is of codimension k — I.
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We can give another description of Fy by duality. Note that P** .= G(k, k+
1) is the dual of P*. Denote by G*(I, k + 1) the Grassmannian manifold which
parameterizes all the projective subspace of dimension | — 1 of P*. This
Grassmannian manifold is biholomorphic to G(k — 1+ 1,k 4+ 1). For a point
s € G*(I,k+ 1), there is a corresponding projective subspace qu)* of dimen-

sion I — 1. Choose | points s, ..., s; which generate Pgl_l)*. Let ]P’g’;_l) be the

Jj=l Pgljfl)

corresponding hyperplane in P of the point s;. Note that P]sf_l =M

is independent of the choices of sj. Set
[y :={(2,8) € P* x G*(l,k+ 1),z € Pt™'}.

The meromorphic transform Fy : P* — G*(I,k + 1) is defined by the graph Ts.
Since Fy '(5) = PE~! it is of codimension k — I.

(ii)Let PP .= PF* x .. x P** (I times) be a multi-projective space. Write
s=(s1,...,5) € PHI* Set

Uy :={(s,5) e PM* x G*(I, k + 1), P C P, forj =1, .13,

The meromorphic transform W, : PR — G*(1, k+1) is defined by the graph I's.
Denote by U; the adjoint of U;. The composition Fy := U, 0 Fy : PF — PRI 45 ¢
meromorphic transform. For a point s € P* generic, Fy '(s) is the subspace
Pt = ﬁj:zllIP’glfl). Then F3 is of codimension k — .

We will see later the graph induced by a Kodaira map defines a meromor-
phic transform. For more information about meromorphic transforms, refer to
[23, Section 3].

2.1.3 General equidistribution theorem

Let (X,w), (X,,w,) be compact Kahler manifolds of dimension n and n,
respectively. In addition, | X, wp” = 1. Let X := [[>2) X,. Tt follows from
Tychonoft’s theorem that X is also a compact space with respect to the product
topology. A point x € X is denoted by (1, %3, ...) = (x,). The measure 6,, is
the Dirac measure at the point x, on X,,.

Consider a probability PLB measure o, on each X,. Endow X with the
product measure o := H;OZI op. Let F, : X — X, be a family of meromorphic
transforms with the same codimension [ < n. By the definition of the pullback
of I, on currents, we see that [7(d,,) and F(0,) are positive closed currents of
bidimension (,7) on X. Moreover, F(d,,) is well defined for x, € X, generic.
To simplify the notations, set
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The following is the main theorem in Dinh-Sibony equidistribution theory [23,
Theorem 4.1].

Theorem 2.1.5. Suppose that the sequence {depdljl} tends to 0 and one of
the following two conditions is verified

> 8ybpdyt < o0,

p=1

D A6, dyt) < o0, VE>0.

p>1

Then for almost every x = (x,,) € X with respect to o, the sequence (d, " (F;} (0z,)—
Fx(0y,)),%) converges to 0 uniformly on the bounded set of (I,1)-forms on X
of class €>.

Theorem 2.1.6. Suppose that the sequence {Spépdzjl} tends to 0. Then
(d ' (Fy(0p) — Fy(wp”)), ) converges to 0 uniformly on the bounded set of
(I,1)-forms on X of class €*. To be more precise, we have

(d, ' (Fy (0p) = Fy(wp?), ) < 28,0,d,, " |6l

P
for any (1,1)-form of class €* on X.

There is a crucial estimate that we mention as follows. First we define for
every p > 0,e > 0,

Eye) = |J {2, €X,: [(F}(0s,) — Fi(0}), )| > dye}.

¢l g2 <1

Theorem 2.1.7. Let 1), == €0, 'd, — 3R, then

op(Ep(€)) < Ap(Mep)-

2.2 Estimate for moderate measures on P¥

In this section, we give an estimate for moderate measures on P*. Our
work is inspired by the techniques of exponential estimates for p.s.h. functions
from [21]. Such estimate, combined with Dinh-Sibony equidistribution theory,
implies the main theorems. Let (X,w) be a compact Kahler manifold of di-
mension k and w* be its standard volume form such that w* is a probability
measure on X.

2.2.1 Locally moderate currents

Let S be a positive closed current of bidegree (p, p) on X, the trace measure
is 0g = S A WwF P for a fixed Hermitian form w on X. Here X may not
be compact. S is said to be locally moderate if its trace measure is locally
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moderate. If u is a continuous real-valued function and u.S defines a current
on X (for example, if supp u C suppsS), then dd®(uS) is well defined (cf.
Section 1.2.2). We say that u is S-p.s.h. if dd°(wS) is a positive current. Dinh-
Nguyén-Sibony [21, Theorem 1.1] proved the following theorem. We improve
their method quantitatively in this section.

Theorem 2.2.1. Let S be a locally moderate positive closed (p,p)-current on
a compler manifold X. If u is a Holder continuous S-p.s.h. function, then
dd(uS) is locally moderate.

Corollary 2.2.2. Let u be a Hélder continuous p.s.h. function on X. Then
the Monge-Ampere currents (dd°u)? are locally moderate.

The following lemma is needed [21, Lemma 2.3].

Lemma 2.2.3. Let T be a positive closed current of bidegree (k — 1,k — 1)
and u be a T-p.s.h. function on a neighbourhood U of the unit ball By in CF.
Suppose that u is smooth on By_, \ Bi_4, for a fived number 0 < r < 1/4. If
¢ is a q.p.s.h. function on U, x is a smooth function with compact support on
By ., 0<xx<1and xx =1 on By_o.. Then

/ xodd(uT) = —/ dd’x N\ ouT

B1 Blfr\Blffir

—/ dx/\¢dcu/\T+/ dx N ¢du N'T
Bi_r\Bi-3r Bi_»\Bi-3r

+ / xudd¢ N'T.
Bl—'r

2.2.2 Covering lemma on P*

Denote by S* the unit sphere on R**' B, the unit ball in C*. Let 7 :
SZk+1 — P* be the natural projection map. More precisely, set z; = z; +
i, x5,y € R,0 < j <k, when Z?:o zj|* = 1, we have 7(zo, Yo, ..., Tk, Yr) =
(20, .-, 2&). Let Up = {[20, ..., 2] € P¥, 2z # 0}. There is a natural isomorphism

0:Us— CF [20,..., 2] = (21/20, .y 21/ 20) (2.1)

Let Ky = 071(B;). K, is a neighbourhood of [1,0,...,0] in P*. 77 }(K,) =
{(x0, Y0, -+, Tk, Yx) € 5%“72?:1 |2j1* < |20/} Let So = {(20, Yo, -+ T Y) €
SZAL 2 > \/Lﬁ} It’s obvious that Sy C 771 (Kp) and m(Sy) is a neighbourhood
of [1,0,...,0].

By the homogeneity of S?**!(resp. P*), there is a neighbourhood S}, (resp.
7(Sp)) of any point (zo, Yo, -, Tk, Yx) (resp. [2o, ..., 2x]) which is the image of
So (resp. m(Sp)) by rotations (resp. unitary transformations). We say that S
(resp. m(Sp)) is similar to Sy (resp. m(Sp)). Since P* is compact, there are
finitely many such neighbourhoods 7(Sp) that cover P*. Denote by M, the
minimum number of such neighbourhoods m(Sy) that cover P*. We have the
following lemma.
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Lemma 2.2.4. Let Ky be as above. For any point z € P¥, there exists a
neighbourhood K, of z which is similar to Ky. Denote by Ny the minimum
number of such neighbourhoods Ky that cover P*. Then Ny = O(8).

Proof. Since mw(Sy) C Ky, then M, > N;. So it remains to prove that
r = O(8F). We endow S**! with the great-circle distance. Sy can be

regarded as an open ball with central point [1,0,...,0] of radius 7. Denote
So by B([1,0,...,0], 7). Let Sy = B([1,0,...,0], %) = {(z0,%0, -, Tx,yr) €
S+ g > —”2;&} We first consider the open balls of radius Z. All
of them are similar to each other. We put the maximal number of balls
B(z1, %), ..., B(zm,, %) in S such that all of them are disjoint mutually.
Then S%+1 = UJ 1" B(z;,%). If there exists a point w € S%H\UJ o B(zj, ),
then the great- mrcle distance between w and z; is larger than or equal to 7 for
all 1 < j < my. Hence B(w, %) C S+ \U] 1" B(z;, %), contradicts With the
maximality. Then My < my < VOZ(S%“)/VOZ(SQ, the last inequality is due
to the mutual disjointedness. It means that N = O(Vol(S**1)/Vol(S))).
We now use the spherical coordinate for S?**!. Let 2y = cosbi,y, =
sin 0y cos Oy, ..., xp = sin @y sinfy - - - sin Og, cos Oop 11, Y = sin By sin by - - - sin Oy, sin Oop 4 1.
Then the volume element of S?*1 is dgar1V = sin®* @, sin®* 1 0, - - - sin 0o, df1d0; - - - dBop s+ .

T T T 2T
Vol(S*+1) = / sin?* 0, db, / sin®~1 0, dfy - - - / sin Oy, By, / dBse i1
0 0 0 0

% T T 2
Vol(S) = / sin? 6, db, / sin® =1 0, dfy - - - / sin By, dfoy, / dBoi1.-
0 0 0 0

This yields O(Vol(S?*1)/Vol(Sy)) = O( sin?* 6, df, / fo sin?* 0, d6,).

Then it suffices to show that fo Sln% 6, db,/ fo sin?* 0, 6, < 8k Wk > 7.
When k£ = 7, the inequality is right. By induction on k& and the following
integrals

. 2k—1
. ok _ sin™0costy  2k—1 [ o,
/sm 0, db; = o + o sin 0, db,

the proof is reduced to show that fo sin?* 0, d6, > 721<;1+1 [(%ﬁ)k By the

relation between fo sin?* 0, df, and fo sin?**6 9, d6,, we have

Jus

/8 SiIl2k 91 d@l
0

1 V22-V2

2—-V22%+2  2—V2,(2k+2)(2k+4
N V2 1+ V2 2k + V2. (2k +2)(2k + 4)
2k+1 4 4

T 273 U1 V@) @es)

)

Then the proof is completed. O
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2.2.3 Local estimate for moderate measures

Let F be defined in (1.1) when X = P* and 6 defined in (2.1). The following
lemma is crucial for the main proposition in this section.

Lemma 2.2.5. Let u be of class € with modulus € on a neighbourhood U
of By in C¥ with dd°u > 0 in the sense of currents, 0 < p < 1. Set w :=
sddlog(1 + ||z]|?). Let Fo={¢o0 ' onU : ¢ € F} and T a positive closed
(k—1,k —1)-current. If T ANw is (c,a)-moderate on U, then

/ exp(~ 2L )i (uT) < che(ere” + 2)
B1 «@

where ¢y, co are positive constants independent of k, p and T.

Proof. We modify the function v on U. Subtracting a constant, we assume
that u < —e/2 on By. Consider the function v(z) = max(u(z),eAlog|z|) for
a constant A > 0 large enough such that v coincides with u near the origin
and v(z) = eAlog|z| near the boundary of By. For example, A = $log .
A is independent of the choice of u. Fix 0 < r < 1/16, we are allowed to
assume that u = eAlog|z| on B; \ B;_4-. For the smooth function y defined
in Lemma 2.3.3, we can assume that ||x||¢2 < c3 for some constant cg > 1
large enough independent of £, since the terms in the definition of the norm
|| ®||¢2 are smooth on the compact subset By, \ Bi_gy. Set or =T ANw,0p =
ddC(UT)a ¢M = max(qb, _M)7¢M = ¢M71 - ¢M7 for (b € FO7M > 0.

To prove the lemma, we need to estimate the mass of dd“(uT") on {¢ <
—M?}. Since suppy C Bj_,, hence

op{p < —-M} < /X¢Mddc(uT).

Since T is (¢, a)-moderate, then
or{z € B1_,,¢0(2) < —-M+1} < ce®e M,

By Lemma 2.3.3, we have

/ xUadd(uT) = —/ ddx A puT

B B1_+\Bi-3r

—/ dx/\decuAT+/ dx Ny du N'T (2.2)
BlfT'\Blng' 3177-\31,37.

+ / xuddpy N'T
Bl—r

1 i~k dzAdE zizdziAdE .
We know that w = 3dd*log(1+||2[1*) = 5= =7, ( ﬁﬁ”zﬂzﬁ - "gflﬂf;m? ). By simple
computations, the eigenvalues of the corresponding Hermitian matrix of w are

W(H'l'zHQ)Q and W(Hl”zHQ) (k—1 times). On the other hand, the eigenvalues of the

corresponding Hermitian matrix of ¢ Zf =1 dzjAdZ are k and 0 (k—1 times). So
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there exists a constant m; > 0 small enough such that w—"14 Z§,1:1 dzjNdz >
0 on By. Hence |dd*xNuT| < |ucsi Zf,z:1 dziNdZNT| < €Al 10g(1—37“)|03mi10T.
Observing that 0 < ¢y, < 1, supptys C {¢ < —M + 1}, we obtain

k
/ ddx N YpyuT| < eAllog(l — 3r)|cs—ce¥e M.
Bi_r\Bi-3r my

Since we know u explicitly on supp(dx), we obtain

A
/ dx NpyduNT| < ‘ cskmoce®e M
B1—+\B1-3r

1—3r ’
A
/ dx NYpydu NT| < ¢ cskmoce®e ™M
B1_+\Bi1-3r 1—3r

for a constant ms > 0 large enough independent of k. The sum of the first
three terms is less than

cyckce®e™ M (2.3)
| log(1—3r)

mi
For the last integral in (2.2), we use a regularization procedure and the

condition of p-Hélder continuity of u. Let {us} be the smooth approximation
of u obtained by convolution. For some fixed 0 < § < 1 small enough, us
is defined in a neighborhood of B;_,. There exists a suitable function wu;
satisfying that |lus|l¢2 < €673 and ||u — usllc < €0, where the latter
inequality follows from that u is of class ¥” with modulus €. The above two
inequalities are independent of k. We write

L+ 121”327“) is independent of & and p.

where ¢y, = Acs(

/ xudd Py N'T
By

= /deCL/JM A Tus + /X(ddcng_l —ddop) NT(u — ug).

Since
[aron)| = | [arxnor| <kixde [ loldon
By
We obtain
'/X(ddcngl —dd¢pr) A T’ < 2]€HXH<g2/ |p|dor
1 c
< 2k3||X||(g2—/ exp(—a¢)dor < 2csk—.
alp, . a
Then

'/X(ddc(le —dd°op) NT(u—ug)| < 263]{7265[) (2.4)
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Using Lemma 2.3.3 again, we obtain

/ xddPas A T

= / ddx N Yy Tus + / dx N Yy T N dug
Bi_;\Bi_3,

B1_r\B1-3

— / dCX/\Q/}MT/\dU(s + / XwMT/\ddCU(g.
Bl—r\Bl—Br

Bi_r

By the same argument, the first three integrals have the same dominant con-
stant

cyekee®e™ M, (2.5)

The final term

< ce®e™ M ||u;

‘/XwMT A ddus @2

< cetemMes=(27n)

(2.6)

Let § = e=*M/2 small enough, since it is sufficient to consider M big. Then
e~ Mp/2 = g=aM gaM(2=p)/2 - Combining (2.3), (2.4), (2.5), (2.6), we have

aM

o {2 € Bl b < —M} < eck(2e4¢® + % 128yt
«
So by Remark 1.2.50 we have
/ exp(— L ¢)dde (uT)
B 4
e* c c
< 2eck(2c4e™ + - + 253) < eck(cre® + 52),
where ¢; = 4cy + 2, o = 4cs. O

2.2.4 Main result and its proof

The following proposition is our main result about the estimate for moder-
ate measures on P¥.

Proposition 2.2.6. Suppose that u; is of class €* with modulus € on P* for
some 0 < p < 1,0 < € < 1, and that u; is an ewpg-p.s.h. function for all
1 < j < k. Assume that € < Bok™3(5)*, where By is a positive constant
independent of k and p. Then there exists a positive constant cs independent

of k and p, such that

[ exp(-an8 N ddon; + cors +wrs) - who) < (D (27
Pk

for all ¢ € F, where ag s the constant in Proposition 1.2.48. In other words,

(/\?j(ddcuj + ewps + wrg) — whg) s (c5(8)F, ao(4)F)-moderate.
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Proof. We pull back the integral (2.7) locally to that on C*. There is a potential
v = Slog(1+ ||2]|?) on C* such that (6~')*(ewrs) = dd°v, where the map 6
is defined in (2.1). Set @; := u; 0 #~' + v. Note that u; is ewrg-p.s.h., then
ddu; > 0. Since u; is of class ¢* with modulus € on P* log(1 + ||z]|?) is of
class ¢ on CF for all 0 < a < 1, then we may assume that @; is of class €
with modulus € on By. Hence ||@;]l¢o(p,) < €. Let w = 2ddlog(1 + ||z|?), we
have

/ exp(—ag) /\?j (ddu; + ewps + wrs)

Ko

_ / exp(—ap 0 0) (071 N=F (ddou; + ewps +wps)  (2.8)
By

_ / exp(—ad 0 0 )(dddy +w) A- - - A (dd°i, + w)
By

We replace @; (resp. ¢o6~') by u; (resp. ¢) in the sequel. Since there are two
constants ¢y > 0, ap > 0 independent of £ and p, such that

[ exp(-andlus < ok (2.9)
Pk

by pulling back the integral in By with Lemma 2.3.5, we have

/ exp(—ao£¢)(ddcu]) A wk_l S COEI{?Q(CIGQO + 2)
B 4 o0

By induction we can show that

|
—_

J

/ exp(—ozo(g)jgzﬁ)ddcull A Addou, Aw* T < cok(ek)? (cre®®' 4 C2p 7)
By 4 -0 ao(%)
forall 1 <ly <+ <l <k Let fo=1/(cie™ + ), eq = ok~ (l)k(z)g’k*l >

€,€) = €1€g, €y = ( )k, Here (3, is independent of k and p. Let ¢; = 63/(%) E
then ez = By(%)" /k3 Hence

/B exp(—ao(fz))kqﬁ)((ddcul + W) A A (ddouy, + w) — W)

| exp-au§yediu ne ndiruy nut
B

- (5)
< i <’;> cok(erk) ( 60) (Gt kemy (2.10)
< i <§)cOk(elk) (510) D)< Co’fZ( ) e3k
< cO<3ﬁ2>’f<k ) <20
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This is equivalent to

/ exp(_ao(g)kgb)((ddc“1+€wFS+wFS)/\'"/\(ddcuk+ewFs+wFs)—w1kws) < 200(3%)k.
Ko

By Lemma 2.3.4, there is a positive constant N’ independent of k£ and p such
that N, < N’8%. Let c5 = 2¢oN’. Due to the homogeneity of P*, we have

/k eXp(—OZ()(g)k@)((ddcul+€wFS+WFS)/\"'/\(dchk+€wFs+wFs)—Wéﬂs) < 05(§)k.
P

The proof is completed. n

Remark 2.2.7. Since (dd°u; + wrs)® < (ddu; + ewrs + wrs)®, the above
proposition, combined with (2.9), gives the following estimate

/ exp(—ao(g)kgb)(ddcul +wps) A A(ddu, +wps) < cok+c5(§)k < cok+cs
]pk
for all ¢ € F. In other words, (dd“u; + wps) A - -+ A (ddug, + wrg) is (cok +

cs, ag(8)F)-moderate.

2.3 Equidistribution on positive line bundles for mod-
erate measures

In this section we prove Theorem 0.2.1 and 0.2.2. Consider the projective
manifold X of dimension n and the ample line bundle L on X in Theorem
0.2.1. By Proposition 1.3.11, there exists a smooth Hermitian metric h such
that

c1(L,h) = —dd°log h(er, er)?

is a strictly positive (1,1)-form, where ey, is a local holomorphic section on
L. As we know, c;(L,h) represents the Chern class ¢;(L) € H*(X,Z). Let
w = ¢1(L, h) be the Kéhler form, [, w" = ¢;(L)" € Z*.

The line bundle L? of the pth tensor power of L has a natural Hermitian
metric h, induced by h. The space H°(X, L?) of holomorphic sections of L?
has the following inner product,

(s1,82) := Cl@)n/th(Ssz)Wn

Vs, 89 € HY(X, LP).

2.3.1 Meromorphic transforms induced by Kodaira maps

First we consider a meromorphic map f : X; — X5 between two complex
manifolds X; and X5 of dimension ny and ny respectively. It follows from [50]
that there exists an analytic subset I of X such that f is holomorphic on X\ 1
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and the closure of the graph of f over X; \ [ is an irreducible analytic subset
of dimension n; of X; x X5. The smallest set I is called the indeterminacy set
of f. Note that I has codimension at least 2.

Now we consider the meromorphic transforms from X to PH?(X, L?) in-
duced by the Kodaira maps. The meromorphic transform F), : X — PH(X, L?)
has the following graph

I, ={(z,s) € X x PH*(X, LP) : s(x) = 0}.

Since L is ample, dim HY(X, L?) > 2 (cf. Theorem 3.4.1), for every point
r € X, there exists a point s € PH°(X, LP) such that s(z) = 0. Hence the
projection from I', to X is surjective. Since L? is not trivial, there are no
nowhere vanishing sections. That is to say, every point s € PH%(X, LP) must
vanish at some point € X. Hence the projection from I', to PH(X, L?) is
surjective. Then F, is indeed a meromorphic transform of codimension n — 1.

Recall that wrg denotes the Fubini-Study form of P = PHY(X, LP). The
Fubini-Study current ®}(wps) of H°(X, LP) is defined to be the pullback of
wrs by the Kodaira map ®,,. It is actually a L'-form, which is smooth outside
the indeterminacy set of ®, by the following lemma.

Lemma 2.3.1. Let f: X; — X5 be a meromorphic map between two complex
compact manifolds X, and Xo of dimension ny and ns respectively. If ¢ is a
smooth form of bidegree (p,q) on Xo, then f*(¢) is a L*-form, which is smooth
outside the indeterminacy set of f.

Proof. Let m,m be the natural projections from X; x X5 to X; and X, re-
spectively. Denote by I' the graph of f. The regular part of I' is reg(I'). By

definition, we have
JH(@) = (m)u(m3(0) AI]).
Then for any test form ¢ on X,

(f(0),0) = T3 (9) A i ().
reg(T')
Then f*(¢) can be extended to act on the space of continuous forms. Hence it
is a current of order 0. If V is a proper analytic subset of X, then 7;'(V)NT
is also a proper analytic subset of I' and 7' (z;) N T is of measure 0 for x;
generic. So f*(¢) has no mass on V', hence on the indeterminacy set I.
Note that 7, : '\ m; (1) — X \ I is a biholomorphic, therefore, we obtain

(1 ().0) = / T () A Y

X\I

= / g (9) N,
Xi\J

where ¢ is the restriction map of f on Xj \ I, which is holomorphic. Then
[*(#) = g*(¢) is a smooth form on X; \ I. In addition, f*(¢) has measure
coefficients and has no mass on I. Hence g*(¢) has L'-coefficients and is equal
to f*(¢) in the sense of currents. The proof is completed. O
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Note that d, := \,,—1(F},) (resp. d, := A, (F}p)) is the intermediate degree
of order n, — 1 (resp. n,) of F,.

Lemma 2.3.2. In the above setting, 6, is bounded and d, = pc,(L)". More-
over, F(wil) = ®X(wps).

Proof. The first assertion is proved in [23, Lemma 7.1] by using cohomological
arguments. We prove the second one with the definition of F. For any test
(n —1,n — 1)-form v, we have

(Fy(wis), ¥) = /771 ) AT (wils)

= / T (V) A wis
PHO(X,LP)
/ / wF;:S'(SP)
HO(X,LP) Jm, sp)ﬂFp
/ / Fg<5p>
HO(X,LP) J {z€X:sp(x

- / < = 0] 7>D>WFS Sp)
PHO(X,LP)
= <(I);<WFS)> ¢>
The last equality follows from [10, Proposition 4.2]. This completes the proof.
O

2.3.2 Proof of Theorem 0.2.1

From now on we recall the notations from Section 2.2.1 in the special case.
Suppose that p is a PLB probability measure on P*. F is defined in (1.1) when
X =PF. Let

Q(P* wps) = {¢ q.p.s.h. on P : dd°¢p > —wps},
R(]P)kvwFSuu) = sup {—/qf)d,u,gb € JT:} )
¢

Pk7wFS)7/¢w§S = 0} >

A(PkawFSuu?t) = Sldl)p {M(¢ < _t)a ¢ € Q(PkﬂwFS)v/(bdlfl = 0}

S(]P)kawFSmu):Sup{'/¢d,u )
Y

for any ¢ > 0. When p = whg, we write R*(P*,wrs) = R(P*, wrg, u). Let o,
be a PLB probability measure on PH?(X, LP). To simplify the notations, let

R, = R(PH(X, L7),wrs, 0,),

RY = R(PH (X, LP), wrs, i),
S, = S(PH(X, L), wrs, 0,),
Ay(t) = APH (X, LP), wps, 0, 1).
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Let PX := 11,5, PH’(X, L) endowed with its measure o = II,>;0,. Denote by
0, the Dirac measure at a point z.

Lemma 2.3.3. F(d,,) = [s, = 0].
Proof. By the definition of pullbacks of meromorphic transforms, we have
F7(6s,) = m(m3(0s,) A [Lp])-

For any test (n — 1,n — 1)-form ¢ on X,

(B0 = [ mile) AT AT

/X PHO(X,LP) [ (sp)] A [Ty AT ()

w0 = | s
ngl(sp)ﬂFp {z€X:sp(x)=0}
<[Sp - 0]7 ¢>
The proof is completed. O

We specify Theorem 2.2.5 and Theorem 2.2.6 for the above case.
Theorem 2.3.4. Suppose that the sequence {Ry0,d, '} tends to 0 and

EPZlAp((Sp_ldpt) < 00

for allt > 0. Then for almost everywhere s = (s,) € PX with respect to o, the
sequence (d ' (F}(ds,) — F}(0,)),¥) converges to 0 uniformly on the bounded
set of (n —1,n — 1)-forms on X of class €>.

Theorem 2.3.5. Suppose that the sequence {Spépdljl} tends to 0. Then
(AN (Fr(op) —F3(wils)),¥) converges to O uniformly on the bounded set of
(n —1,n — 1)-forms on X of class €.

The following theorem is due to Tian, Ruan, Catlin and Zelditch, see [60,
9, 52].
Theorem 2.3.6. For all v >0, ||p~'®}(wps) — wller = O(p~?).

In order to prove the main theorem, we write

[P [sp = 0] —w, )| < [{p~'[sp = 0] = p ' F(0,), )]
+[(p (o) — p Fy (wid), ¢>! + o7 Fy (wils) — w, ¥)l,

for any test form v of bidegree (n — 1,n — 1) on X. It is sufficient to prove
that the three terms in the right side of the inequality all tend to 0 when
p — 00. The third one is right due to Theorem 2.3.6. The first one holds un-
der the conditions that R, = o(p), >, A(pt) < oo, Vt >0 by Theorem
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2.3.4. The second one is valid when S, = o(p) by Theorem 2.3.5. By applying
Proposition 2.1.1 and Proposition 2.1.2, the proof is reduced to the estimates
of Ry/p and ) o, A(pt) for any t > 0.

End of the proof of Theorem 0.2.1. We have F}(wy) = (®,)*wrs by
Lemma 2.3.2. It follows from Theorem 2.3.6 that

p_lF;(w;’jg) —Sw (2.11)

in the weak sense of currents. We write p;, = w;,’zq, Hop = /\?il(ddcum +
€pwWrs + wrs) — p1p- Then o, < py, + pa,. Note that n, = ¢;(L)"p"/n! +
O(p"'). Let ¢ > (%)2‘31(’:)"/”! > 1 such that ¢*" > %nﬁ(l—pz)z"p, then ¢ depends
only on X, L and p. Hence ps, is a positive moderate measure satisfying
Proposition 2.2.6. To estimate A,, we consider any q.p.s.h. function ¢ on P"»
such that dd‘¢ > —wpg and [ ¢do, = 0. Set ¢ := ¢ — maxpny ¢. It is obvious
that ¢ € F by definition in (1.1). Since [ ¢do, = 0, maxpny ¢ > 0. Hence
¢ < ¢. Then we have

op(¢ < —pt) < o, < —pt)
< prp(p < —pt) + p2p( < —pt)

< [ explaal=pt = 9)dusy + [ explaal)(=pt = o))da,
< cony exp(—aopt) + 05(2)"1’ exp(—ao(g)""pt).

The last inequality follows from Proposition 1.2.48 and Proposition 2.2.6. Then
by the definition of A,, we have

Z A, (pt) < Z cony, exp(—appt) + Z c5 )" exp(— (Z)”ppt). (2.12)

p>1 p>1 p>1

It is obvious that > -, p"exp(—pt) < oo and that exp(—(4)"pt) tends to 1
when p tends to infinity, V¢ > 0. This yields > -, A,(pt) < co. By Proposition
2.1.2 and Proposition 2.2.6, -

1 +logn,

limsup R} /p < hm = 0. (2.13)

p—00 2p

limsup R,/p < hm sup {—/gbd,ulm — /(/ﬁd,ulp} /p
p—00 0 peF

(2.14)
< limsup Ro/p+ hm c (p) /(aO(B)”"p) =0
p—00 4 4
By Proposition 2.1.1, (2.13) and (2.14), limsup, ., S,/p = 0. Note that
opdyt = O(i) by Lemma 2.3.2. Hence by applying Theorem 2.3.5, the fol-

lowing sequence
pUE (0,) — pUE W]) = 0 (2.15)
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in the weak sense of currents. We know that F;(ds,) = [s, = 0] by Lemma

2.3.3. Combined with (2.12) and (2.14), Theorem 2.3.4 implies that for o-
almost everywhere s € PX, the following sequence

p s, =0l —p ' Ey(0p) = 0 (2.16)

in the weak sense of currents. Then we deduce from (2.11), (2.15) and (2.16)
that for o-almost everywhere s € PX,

[(p ' sp = 0] —w, )| < p~'[sp = 0] = p ' F (0p), ¥)|
+ [(p E(0p) — p T Er (wits), )] + [{p 7 Fp (wity) — w, )| = 0,

for any test form % of bidegree (n — 1,n — 1) on X when p tends to co. That
is to say, p~*[s, = 0] converges weakly to w. The proof is completed. O

2.3.3 Nontrivial examples of moderate measures

Now given X and L in Theorem 0.2.1, we construct a concrete example
of a sequence of functions (u, ;) satisfying the conditions of the theorem. We
require that u,; = -+ - = up,, = u,. Notice that we can perturbate u, so that
the constants ,, €, do not change and the perturbed functions still satisfy the
conditions in Theorem 0.2.1.

Example 2.3.7. Let 7 : CF™\ {0} — P* be the natural map. Consider the
map f: P* — P* with flz,...,2) = [25,...,2F]. From [53, Example 1.6.4],
its Green function is s(z) = max(log |z|, ..., log|zx|). Moreover, s is a Hélder
continuous function with any exponent 0 < p < 1. We obtain a well-defined
function
v := max(log |Z—0’, ..., log

||
on P, Since 7 (dd“v + wpg) = dd°s > 0, then v is wpg-p.s.h. and Holder
continuous with any exponent 0 < p < 1. Denote by drs the distance induced
by Fubini-Study metric. Let dj, = sup, ,cpr & vl We will show that

zFw

dFS(Z)w)p

L

B (2.17)

dy, < 7k (2.18)

at the end of the example.

For each p, we obtain a corresponding function v, by using (2.17) and iden-
tifying PHO (X, LP) with P". Consider the functions u, = c,vp with suitable
constants ¢, = O(ﬁ) < 1/c”", where ¢ = (145))"/m - Let €, 1= ¢,,. Since
k, = O(n*), it follows from (2.18) that dy, = O(n*). Consequently, u, is
of class €° with modulus 1/c?". Moreover, since v, is wrg-p.s.h., we infer
that u, is ewpg-p.s.h.. So {u,} satisfy the three conditions in Theorem 0.2.1.
From the above proof, we see that o = Hp21 o, = (ddu, +wps)"™ satisfies the
equidistribution property.
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Finally we prove (2.18). It is sufficient to consider the special case when

|20| > max{|z1], ..., |zkl}, |wo| > max{|wr], ..., |wg|}. Then
g - 1 |log(1 + |2[) — log(1 + |w|?)]
b 2z,w€K dFS(/Z?w)p
z#Ww
where z = (2,..,2),w= (2, 2y eCrand K ={z€CV": |z <1,1<
20 20 wo ? wo

i < k}. Let g = Z?lj 1gmd$ ® da? be the associated Riemannian metric

with g11 = %% When ry = |z|,re = |w]| are fized, dps(z,w) takes its

manimum only when z and w are at the same line through the origin in R?.
The distance is invariant with respect to the orthogonal group O(2k) in this
case since the Fubini-Study metric is invariant with respect to the unitary group
U(k) onP*. So we take the simple case when z = (11,0, ...,0),w = (ry,0, ..., 0).
Hence

i — VT log(1 +r2) —log(1 + r?)
2 g<ri<ro<k (arctanry — arctanr)?
VT sup log(1 + tan? s5) — log(1 + tan? s;)
2 0<si<so<arctank (32 - Sl)p
< VT max (log(1 + £?) sup log(1 + tan” s,) — log(1 + tan” Sl))
- 2 ’ so2—s51<1 So — 51
0<sji<so<arctank

The function y = log(1 + tan®x) is increasing and conver on [0,00). So the

= 2k.

second term in the last inequality is equal to (log(1 + tan®s))’
s=arctan k

This completes the proof of (2.18).

2.3.4 Proof of Theorem 0.2.2
Now we are in a position to prove Theorem 0.2.2.

Proof. Tt follows from Lemma 2.3.2 and Theorem 2.3.6 that

(2.19)

|<P71F* W) —

for some positive constant C'; depending only on X, L. We know that S, =
O(logp) by using Proposition 2.2.1, (2.13) and (2.14), then Theorem 2.3.5 and
Theorem 2.2.6 imply that

Co log P

(0" Fy (o) = p™ ' Fy (wils). )] < 191l (2.20)

for some positive constant C'; depending only on X, L. Set

E,(€o) : U {s, € PH'(X, L") ’<p = 0] _p71F5<‘7p)aw>| > €}

Il 2 <1
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for any ey > 0. We define E,, := Ep(%), where (5 is some positive constant

depending only on X, L. Note that R, = O(logp) from inequalities (2.13) and
(2.14). By applying Theorem 2.1.7, we deduce that

op(E,) < A,(Cylogp).

Here C} is a positive constant depending only on X, L. Moreover, C} is suffi-
ciently large such that agCy > k + 2 since C3 can be chosen sufficiently large.
Recall that aq is the constant defined in Proposition 1.2.48. Then by (2.12),
we obtain

op(Ep) < Ap(Cylog p)
< conyp exp(—agCylogp) + 65(2)’” exp(—aoC4(£)"’” log p)
1 C

paoC4 — p2'

(2.21)

< (o + ¢5)ny

Here C' is a positive constant sufficiently large which depends only on X, L.
Note that the third inequality of (2.21) follows from a direct calculation when
p is big enough. The fact that n, = O(p™) yields the last inequality of (2.21).
By definition of E,, we obtain for any point s, € PH?(X, L?) \ E,,

_ 1 Cslogp
[{p™ " sp = 0] —p~ " F(0), ¥)| < 3p [4]ls>- (2.22)
It follows from (2.19),(2.20) and (2.22) that
_ C'logp
[(p™"[sp = 0] —w, )| < p 14|52 (2.23)
The proof is completed. O

Remark 2.3.8. Since > 0,(E,) < oo, Theorem 0.2.2 gives an alternative
proof of Theorem 0.2.1. This is a standard proof which is analogous to that of
Borel-Cantelli lemma. Note that

Z o,(E,) < o0.
p=1

Define
E:={s={s,};2, €P¥ :5,€ E, forinfinitely many p}.
It is easy to see that E is contained in the following set
Ey:={s= {sp}o2, €P¥ :5,€ E, for atleast one p> N}

for each integer N > 1. Hence we have
o(E) < U(EN> < Z op(Ep) < C
p

1
3-
p=N Np

The proof is completed by letting N tend to oo.
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Chapter 3

Equidistribution on big line
bundles for moderate measures.

In this chapter, we establish an equidistribution theorem for the common
zeros of random sections of high powers of several singular Hermitian big line
bundles associated to moderate measures [55]. The basic setting is taken from
Part I in Chapter 0.

3.1 Intersection of Fubini-Study currents

In this section, we introduce some results about the intersection of the
Fubini-Study currents associated to m line bundles. We will see that the
current ¢y (L1, hy) A ... Aci(Lp, b)) in Theorem 0.3.1 is well-defined. Based on
the elementary techniques in [14], we also show that for almost all the zero-
divisors of sections of high powers of the bundles with respect to a moderate
measure are in general position. Then it follows from Corollary 1.2.26 (see also
[17]) that the currents [S, = 0] are well-defined for almost all S, with respect
to moderate measures ¢ in Theorem 0.3.1.

We keep the notations and hypotheses in Section 0.3. Consider the Kodaira
map

Dy X — ]P)(H(Oz) (X, LE)).
Here Hp, (X, L})* is the dual space of Hpy (X, L}). By a similar argument in
Section 1.3.3, choose {S,ip ;lig as an orthonormal basis of H&)(X7 L?). By an
identification via the basis, it boils down to a meromorphic map

Dy X — Pler,

Now we give a local analytic description of the above map. Let U C X be a
contractible Stein open subset, e, a local holomorphic frame of Lj on U. Then
there exists a holomorphic function s?’p on U such that S}, = s?’p P, Then
the map is expressed locally as

Oy p(w) = [s7(x) o sy? ()], VreU (3.1)

71
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It is called the Kodaira map defined by the basis {S,Z,p}?ig. Denote by Py,
the Bergman kernel function defined by

d,p

Pip(t) =Y IS],@)k, . 150,@)h, , = hep(S7,(2), ST, (@))-
j=0

It is easy to see that this definition is independent of the choice of basis.
Recall that wpg is the normalized Fubini-Study form on P%~». The Fubini-
Study current i, of Hiy (X, L}) is

Vep = q)z,p (WFS) .

Lemma 2.4.1 says that the Fubini-Study current is a L!-form, which is smooth
outside the the indeterminacy set of ®;,. We have in the local Stein open
subset U,

d,p

1. "
’Yk,p‘U: §dd 108?2 ’53‘7}0’2-
=0

Let uy be the local weight of the Hermitian metric hy on U. Then the following
p.s.h. function verifies

drep
1 kp)2 1
Upp = 2_p log jz:; |sj |* = u, + 2_p log Py . (3.2)

It implies that dd“us,, = %yk’p and
L (Lg, h) + ! dd®log P,

—Vkp = C1\dLg, Nk o5 08 Lk.p-
p 2p .

Since log Py, is a global function which belongs to L'(X,w™), %’yk,p has the
same cohomology class as ¢;(Ly, hy). Define the base locus of H (02) (X, L}) as

Ak,p:{xEX3Si7p:O7V0§j§dk,p}, 1<k<m.

Note that Ay, is an analytic subset, A, N U = {uy, = —oo} and {u; =
—o0} C Ay NU. By [10, Theorem 5.1] and its proof, we know that there exist
constants C' > 0,pg € N, such that

Prp() > C¥p > po, 1 <k <m,z € X\ A

Then we have

log C
2p

Hence Ay, C Ay for p > py. Moreover,

Uukp() = up(x) + ,VpZpo, 1 <k <m,zeU. (3.3)

1
];log Py p(z) =0 (3.4)

in LY X, w").
We have the following result [14, Proposition 3.1].
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Proposition 3.1.1. We keep the notations and hypotheses of Theorem 0.3.1,
then

(1) For every J C {1,...m},J = {1,....,m}\ J, the analytic subsets Ay,
and Ay, for k € J,1 € J', are in general position, when p is sufficiently large.

(ii) The currents
N\ o AN\ ea(La, )
keJ leJ’

are well defined for every J C {1,...,m}, when p is sufficiently large.

Proof. Since the analytic subsets Ay, ..., A,, are in general position, the fact
that Ay, C Ay for all p sufficiently large yields (i). Hence the currents

/\ Vi N /\ c1(Ly, )

keJ leJ’

are well defined by Corollary 1.2.26. Then (ii) is proved. O

3.2 Bertini theorem associated to moderate measures

Lemma 3.2.1. Let o be a moderate measure on PY. Then every proper ana-
Iytic subset of PN has measure zero with respect to o.

Proof. By the homogeneity of PV, it is sufficient to prove that
o([z]) =0

for some homogeneous coordinate [z, ..., zy|. Recall that for a moderate mea-
sure o, there exist constants ¢ > 0, a > 0 such that

/ exp(—ag)do < ¢,
PN

V¢ € F, where F is defined in (1.1). It follows that

/ |p|do < oo.
PN

Let ¢ = log 12, where |2]2 = Z;-V:o |z;|%. This function is well defined on PV,

IEK

Note that ¢ is wgrg-p.s.h., max,cpny ¢(z) = 0. Then ¢ € F. So we have that

/ ‘log@‘da < 00.
[z0=0] |Z|

Hence o([20]) = 0. The proof is completed. O

Adapting the proof of [14, Proposition 3.2], we obtain the following Bertini
type theorem in the context of moderate measures.
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Proposition 3.2.2. Let X be a compact complex manifold of dimension n.
Let L, 1 < k <m <n, be m holomorphic line bundles on X. If
(i) Vi is a vector subspace of H*(X, L) with basis Sk, ..., Sk.a,, the base
loci BsV, ..., BsV,, are in general position, where BsVj, := {x € X : Sy o(z) =
(ii) For each ty = [ty : ... : tra,) € P%, we set

Z(ty) ={re X: zk:tk’jSkJ(x) =0}.

J=0

(i1i) 0 = 01 X ... X 0y, 18 the product measure on the multi-projective space
P4 x ... x P%  where o, is a probability moderate measure on P% .

Then the analytic subsets Z(t1), ..., Z(t,) are in general position for almost
all (1, ..., ty) € PU x ... x P4m with respect to o.

Proof. Let oy, 4, = 01, X ... X 0y, be the product measure on Ph x ... x P%
for every 1 <y < ... <l < m. Set

U = {(ty,, -, t1,) € P x o x PU o dim Z(t,) N ... N Z(t, )NV < n—k — j},

where 1 < I} < ... <lx <m,j =0 and V, = X,Vj = BsV;, N...N BsV;, for
some 41 < ... <i; in {1,...m}\ {l1,..., [} for 1 < j < m — k. Note that the
sets U, depend on the choices of [y, ..., l;, j and \7J

It is sufficient to prove that

o1, (Ug) =1

by induction on k for every subset Up, 1 <[} < ... <l <m,0< 5 <m—k.
We only consider the case when {ly,...,lx} = {1,....,k}. Write o}, = oy for
short. We first consider the case when k = 1. If 5 = 0, then

Uy ={t; € P":dim Z(t;) <n— 1} =P,

f1<j<m-—1,let f/] = Ul]il D, U B, where the subsets D; are the irreducible
components of f/] of dimension n — j and B is of dimension less than n — j. So
{t, e P" : D, C Z(t1)} is a proper linear subspace of P, If not, D; C BsV,
implies that dimV; N BsV; = n — j, which contradicts the condition that
BsV, ..., BsV,, are in general position. We know that dim Z(¢1) N f/] >n—jif
t; € P4\ Uy. Since Z(t,) NV is an analytic subset in Vj, then D; C Z(t) NV
for some [. It follows that

N
PU\U = J{t e P! : Dy C Z(1)}.

=1

Hence we have that o;(P% \ U;) = 0 by Lemma 3.2.1.
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Now we can assume that o}, (Uy) = 1 for any Uy, defined as above. Set

Ugs1 = {(tl, ...,tk+1) e Ph x ... x Pl
dim Z(t) N...N Z(tg) NV, <n—k —1—j},
U ={(t,...t) € P" x ... x P% :
dim Z(t) N...NZ(tx) NV; <n—k — j},
U" = {(t1,....,ty) € P x ... x P% .

dim Z(t) N ...N Z(tx) "V; N BsViy <n—k —1—j},
where 0 < j < m—k—l,f/j = BsVilﬂ...ﬂBSVij fork+2<4 <...<i; <m.
Let U = U' nU”. By using the induction on k, we know that o (U’) =
0. (U") =1, thus 0, (U) = 1.

We need to prove that

01 (Urt1) = 1.

It is enough to prove that
ol (W) =0, W= (U xP%*1)\ Upy,.
Given some t = (tq,...,t) € U, set
Z(t):=Z(t1) N ... Z(ty),
W(t): = {tpyr € P+ dim Z(t) N V; N Z(tgsr) >0 — k — 5},

then it is sufficient to show that o1 (W (t)) = 0.

Let Z(t)NV; = Ul]\il DyUB, where Dy are irreducible components of Z(t)NV;
of dimension n — k — j, dmB <n—k—1—jast € U C U'. By the same
argument in the above, if t,,, € W (t), then Z(t) NV, N Z(tg41) is an analytic
subset of Z(t) N \7] of dimension n — k — 7, hence there exists some [ such that
D; C Z(t)NV; N Z(t41). We obtain that

N
W(t)=JF®), F(t):={ten € P%: D, C Z(trs)}.
=1
We claim that not all the sections of Vj; can vanish on D;. If not, that is to
say, D; C BsVjy1, this implies that
dim Z, N V; N BsViy1 =n — k — j,

which contradicts the fact that t € U”. Hence we can suppose that Syi14,,, 7
0 on D;. So

Ei(t) C {trr1,0 = 0} U Gi(2),
Gi(t) = {1 thyr1t ot ligrdys] € Pé+1 . D, C Z([1:tpgrn t e tigrde )}
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There exists at most one 7 € C such that [1:tpy11 1.0 2 tgra,,,—1 1) € Git)
for any (5411, -, tk+1,dk+1—1) € C™+1=1 Otherwise, if there exist two complex
numbers 7 # 7, which satisfy the property, then we have on Dy,

Skt1,0 + tey 1,05k 1,1 + oo F trrtdp -1k g —1 T DSk4 1,y = 0,
S + tir11S + ..+t S +1'S, =0
k+1,0 E4+1,19k+1,1 T --- k+1,dpy1—1°0k+1,dpy1—1 T 1 Ok+1,dyyy = Y-

Then we have a contradiction with that Sky1.4,,, Z 0 on D;. This implies that
ok+1(Gi(t)) = 0. Moreover, o1 (Fi(t)) = 0. It follows that op i (W (t)) = 0.
This completes the proof. O

In the setting of Theorem 0.3.1, let V, = H (02) (X, L?) with orthonormal

basis {S,ip}fg Then the base locus of Vj,, is Ay . Let Z()) be an analytic
hypersurface for any t, = [txo : ... : t;@dk’p] € P%r, defined in Proposition
3.2.2 (ii). Let 0, be the product measure of probability moderate measures on
Pdr x ... x P4mr in Theorem 0.3.1. Arguing as in the proof of [14, Proposition
3.3], we obtain the following

Proposition 3.2.3. In the above setting,

(i) The analytic subsets Z(t1), ..., Z(t,) are in general position, for almost
every (t1,...,tm) € PM» x .. x PImr with respect to o,, when p is sufficiently
large.

(i1) Z(t;,) N ...N Z(t;,) is of pure dimension n —k for each 1 <k <m,1 <
1 <..<ip<m.

Proof. The base loci Ay ,, ..., Ap,, are in general position for all p sufficiently
large, by Proposition 3.1.1. Then (i) follows by Proposition 3.2.2. We fix such
p and consider the current [Z(t) = 0]. Recall that e, is a local holomorphic
frame for Lj and SJ = = ghP er?, where sk’p is a holomorphic function on a
contractible Stein open subset in X. By Pomcare Lelong formula, we have

J
locally on U

dkyp dk,p
[Z(t) = 0] = dd°log | Y _ ;557 = per(Li, h) + ddlog | Y~ t:S7 ln,
=0 =0

Since log | Z?ﬁg tkiS% lh,, is a global p.s.h. function, d°log | Zjig tegShlhe,

is a current of order at most 1. Then dd°log | Zj’;g tk,jS}i,p|hk,p is closed. Hence
[Z(tx) = 0] has the same cohomology class as pcy(Lg, hy). By (i), the current
[Z(t;;) = O|A...A[Z(t;,) = 0] is well defiend and supported in Z(¢; )ﬂ...ﬂZ(tik),
for each 1 <k <m,1 <i; < ... <ip <m and allmost all (t1,...,t,,) € P1r x

x Pdmr with respect to o,,. Since Ly, is a big line bundle and ¢; (Lg, hy) > ew
for some constant € > 0, then we have

/Z(til)ﬂ...ﬂZ(tik)

=p / V(L hiy) A oo Ner(Liyy by ) A _k>pkek/w”>0.
b b

W = / [Z(t,) =0 A ... A[Z(t;,) = 0] Aw™F
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It follows that Z(t;,) N...N Z(t;,) # (. By Chapter III in [43],

codim (Z(t;,)N...N Z(t codim Z(t;.) = k.

IIM?v

Moreover, Z(t;,), ..., Z(t;,) are in general position. Hence it is of pure dimen-
sion n — k. (ii) is then proved. O

3.3 Estimate on multi-projective spaces

In this section we give our core work about some estimates on multi-
projective spaces. This leads to our main theorem and convergence speed
for equidistributions.

3.3.1 Meromorphic transforms for several line bundles

We recall some results in Dinh-Sibony equidistribution theory in the setting
of Theorem 0.3.1. Let ®, be a sequence of meromorphic transforms from a
projective manifold (X, w) into the compact Kéhler manifolds (X,,w,) of the
same codimension k. Let

dop=dip+ ... +dpmyp

be the dimension of X,. Consider a PLB probability measure 1, on X, for
every p > 0,¢ > 0, we define

U {o e X0 [(@5(02,) — ©5(1p). 0)| = d(®p)e},
lllg2<1

where d,, is the Dirac measure at the point x,. Let us restate Theorem 2.2.7
in the setting of Part II.

Theorem 3.3.1. Let 1., := €§(P,) " d(®,) — 3R(X,, wp, 1), then

o (Ep(€)) < A(Xp, Wy Hips Te p)-

Another one is the estimate from Theorem 2.2.6.

Theorem 3.3.2. We have
‘<d (I)* MP) (I)*( dOp a¢>‘ < 25<Xp7wpvMp)é(q)p)d(q)p)_lHﬁbH%?
for any (k,k)-form ¢ of class €* on X.

From now on, we study the special case when the meromorphic transforms
are induced by Kodaira maps. We already know that the Kodaira map in (3.1)
is a meromorphic transform with the graph

Trp ={(z,5) € X x PHy (X, L}) : S(x) = 0}



78 Guokuan SHAO

Refer to Section 2.4.1.
Note that

Ppp(x)={S € PH(OQ) (X, L) : S(x) =0},
0,1 (S) ={z € X : S(x) =0}

Let
o, X =X,

be the product map of @ ,, ..., ®,,,. We claim that &, is also a meromorphic
transform with the graph

Ly ={(x, S0, ..., %m) € X xX,: S,1(z) = ... = Spm(z) = 0}.

It is obvious that the projection II; : I'y — X is surjective. The projection
II, : I', — X, is proper, then the image II5(I',) is an analytic subvariety of X,
by Remmert’s proper mapping theorem [29]. Note that the zero set of every
Spr € H ?2) (X, L?) is represented by Z(t;) for some t; defined in Proposition
3.2.2 (ii). Then by Proposition 3.2.3 for almost every (Spi, ..., Spm) € X,
with respect to o,, the common zero set of Sy, ..., Sy, is of pure dimension
n—m > 0. Then there exists some point z € X such that (z, Sy, ..., Spm) € [,
So 0,(I15(I'y)) = 1. Hence II, is surjective. Indeed, if I, is not surjective,
then II5(I',) is a proper analytic subvariety of X,, Lemma 3.2.1 implies that
o,(II2(I'y)) = 0, a contradiction. Hence ®, is a meromorphic transform of
codimension n —m with fibers for every S, = (Sp1, ..., Spm) € X,

DS, ={r € X :Su(x)=..=Sm(z) =0}

p

Considering the product map of any ®;, ,,..., P;, p, 1 <7 < ... <@ <m, it
follows from Proposition 3.2.3 that, the analytic subsets (S, = 0), ..., (Spm =
0) are in general position for S, = (Sp1,...,Sm) € X, generic. Then by
Corollary 1.2.26, the current [S, = 0] = [S,1 = 0] A ... A [Spm = 0] of bidegree
(m,m) is well defined for allmost all S, € X, with respect to ,,.

3.3.2 Intermediate degrees

It follows from Lemma 2.3.3 that ®;(ds,) = [S, = 0] for a point 5, € X,
generic.

Remark 3.3.3. By the same argument, note that ®f (0s,,) = [Spr = 0] for
each 1 <k < m. This yields

3(ds,) = [Sp = 0] = [Sp1 = O] A ... A [Spm = 0]
= &7 (05,,) A .. A @, (65, )-

Recall that my,, : X, — PHp, (X, L}) is the natural projection. Set

o * *
wp = Cop(T] pWrS + o + T, WES)-
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We always assume that wgo”’ is a probability measure on X,,. Then ¢y, satisfies
the following condition,

do !

_dO,p _
Co, = = .
(¢o0) ) )

The sequence {co,} has a lower bound by using Stirling’s formula (cf. [18, p9]
and [14, Lemma 4.3]).

Lemma 3.3.4. There exists a positive constant cy such that ¢y, > co for all
p>1.

To simplify the notations, we write
d, =d(®,) := / @;(wgo”’) Aw"™,
X

oy = 6(®,) == /X OF (wior=ty A @M

Using the classical cohomological arguments, d, and ¢, can be calculated as
follows.

Proposition 3.3.5. In the above setting, we have

dp — pchl(Ll, hl) AN Cl(Lmu hm>H7

1 m m

" d
5, =72 Z%H N el ).

c
0P =1 “OP =112k

Proof. We replace w;")*p by a Dirac measure, since
H2bor(X,,C) = C.

Choose a Dirac measure dg, where S = (51, ..., S;,) € X, such that the analytic
subsets (57 = 0),...,(S; = 0) are in general position. By Remark 3.3.3, the
current

®*(65) = [S1 = 0] A . A [Spy = 0]

is well defined. By the same argument in the proof of Proposition 3.2.3, we see
that [S, = 0] has the same cohomology class as pc;(Ly, hi). By proposition
3.1.1, the current

Cl<L1, hl) AL A Cl(Lm, hm)

is well defined. Thus by Stokes’ theorem,

/}(@;wsmwnm:pm/ 1Lty h) A o A x(Loms o) A ™

X

Hence

d, :/ @;(wgovl’) AW :/ Dr(ds) Aw"™
X X
= pchl(Ll, h1> VANAN Cl(Lma hm)”
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A direct computation gives the following equality

m

do dOp 1 dOp_l)! dip « di p—1 dmp
. Z dypl.(dip — Do ! (WFS )/\'"/\Wkp(wFS A /\me(wFS )-
k= P P P

Repeating the cohomological argument, we replace w?}” (resp. w%lsp ) by a

generic point Sy (resp. a generic complex line Dy) in IPH(Q) (X, L?). By the

definition of ¢y

% (D)) = [k ({(w, Sk) € X X Dy, Sp(w) = 0})].

Here IIy; is the natural projection from X x IP’H(OQ) (X, L7) to X. We show
that ®; ([Dy]) = [X]. Otherwise, if there exists a point zy € X such that
Sk(xo) # 0 for all sections Sy € Dy, then by the genericity of Dy, take S =
Sor(x0)S1k — S1k(w0)Say for some Sy, Sop € Di. But S(zg) = 0, we get a
contradiction. So we have

O5([{S1} % . x D x o x {Su}) = J\ [Si=0].
1=1,l#£k
Hence
105([{S1} % .. x D x o x LS} =P A ex(Lo b))
1=1,l#k

Now we can replace w;f‘“"l by the following current

T:=)" dfzf,p [{S1} X ... X Dy x ... X {Sp}].

=1 P
So
= [ oty it = [y nurom
b's X
PES o) A et
= —= c
c dop 1 1,14
k=1 0P 1=1#k
This completes the proof. O

Remark 3.3.6. Lemma 3.5.4 implies that 6, < Cp™' for some constant
C' > 0 which depends on (Lg, hi),1 < k < m.

Recall that 7y, = @} jwrs is the Fubini-Study current.

Proposition 3.3.7. [14, Lemma 4.5] ®}(wp™") = Y1y A e A Yy for all p
sufficiently large.
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Proof. Denote by o7, the standard volume wi? on PH () (X, L}). Note that

wg’o”’ is a smooth form. By the definition of @, for a test (n —m,n —m)-form
¢ on X, we have

(@) ) = [ Mler) ATEO) = [ M) Ao
By the definition of direct image (Section 1.1.2), for a point S, € X,

i) = [ o= [ o= (%,=0.0)

Then
(@3t o) = [ (15 = 0L oion(s)).

Then Proposition 4.2 in [10] and the proof of Theorem 1.2 in [10] imply the
following

(@5 (wr),0)

/]P’HO

(2) (X,L%) /]PH&) (Xszl))
da?’p(Spl) . .da?n’p(Spm)

:/ / (yip A [Sp2 = 0] A . A [Spum = 0], 6)
PHY, (X,L5,) PHE, (X,L5)

do3 ,(Sp2)-..doy, ,(Spm)
=..= <’yl,p A oo N Vs ¢>
Then the proof is completed. n

([Sp1 = 0] A .. A [Sp = 0], 0)

3.3.3 Main result and its proof

We recall the construction of moderate measures in the settings of Theorem
0.3.1. Consider the functions u; : PY - R, 1 < j < N. Fix an exponent
0 < p < 1. Let {u;}L, be a family of (cy, p)-functions (cf. Part IT) where
{en}_, is a sequence of positive numbers. Set

ON ‘= /\§V21<ddcuj' + WFS)-

This is a probability measure on P, Remark 2.3.7 shows that o is a moderate
measure for suitable ¢y depending only on p and N (e.g. cy = O(1/cN), where
the constant ¢ > 1 depends only on p). We reformulate the above result and
some estimates from the proofs of Theorem 0.2.1 and Theorem 0.2.2.

Proposition 3.3.8. In the above setting, there exists a constant 0 < cy < 1
for the measure on which depends only on p and N such that

/IP’N exp(—ao(g)Nqb)daN < ByN (3.5)
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for all ¢ € F, where ag < 1,5y are universal positive constants. That is to
say, on is (BolV, ao(f—;)N)-modemte.

Proposition 3.3.9. Under the above hypotheses, there exist universal positive
constants 1, Ba, B3 such that Vt € R,
1
R(PY, wps,on) < Ba + 3 log N,

AN wrs, on, 1) < foN exp(—aot) + B1(5)Y exp(~ao (V).

When t < aio(logN + Nlogﬁ), we have
APY, wrs, on,t) < B3N exp(—aqt).
Proof. By Proposition 2.1.2,

1
R(IP’N,WFS,w}VS) < 5(1 +log N).

We write
N

N N
pn =wpg,  pan = [\(ddu; + cnwrs + wrs) — wig.
j=1

The measure o n is positive since u; is cywrs-p.s.h.. By Proposition 2.2.6,
there exists a universal positive constant ; such that for all ¢ € F,

[, exp(=aol) o) < m(5)", (36)

By applying (3.6) and Proposition 1.2.48, we obtain

R(PY,wps,on) < ZUJIZ{— Gdpy,N — /de,uz,N}
S

< R(PY, wps, wis) + sup{ / exp(—ao(2)N @) dpa n /(o (2))}
peEF

4 4
A 1

< -(I+logN)+— < By + s logN,
Qp 2

N | —

It follows from (2.12) that

APY, wrg, on,t) < BoN exp(—apt) + 51(2)]\7 exp(—ao(B)Nt).

4
Let P P
N exp(—apt) = (Z)N eXP(—OZO(Z)Nt),
then
log N + Nlog‘—;
a1 —(5)N)
Hence

A(]P)N7 WFS,O0N, t) < 63N eXp(_aot)v
when ¢ < 10 (log N + N log ‘;f). This completes the proof. O

[e7
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Now we study the estimates on multi-projective spaces. Let P, ..., P be
m projective spaces. Let 1 : P x ... x Pf» — P% be the natural projection
map. Let o, be a probability moderate measure with respect to a family of
(g, , p)-functions {uk,j}g’;l on P%. In the sequel of this section, ¢, is always
chosen such that the probability measure o, satisfies the property of Proposi-
tion 3.3.8 (hence Proposition 3.3.9). Let £ = ¢, + ... + £, and

* * — l!
Wirp = Cim (T (WEs) + .o + 75 (WFs)),  c5f = ———.
Ol )
It is equivalent to that w!,p is a probability measure. Recall that the notation
r(PA x...x P wyp) is defined after Proposition 1.2.34. We have the following
lemma [14, Lemma 4.6].

Lemma 3.3.10. Under the above hypotheses,
14

0 - — £
r(P* x .. x P wyp) <r(ly,..Lly) = 12}5221 o

Proof. Consider a positive closed current 7" of bidegree (1,1) with mass 1 on
P x ... x P~ It has a nontrivial cohomology class. By Kiinneth formula,

H2 (P x ... x P C) = C®™,

Then 7T is in the cohomology class of A = ay7j(wrs) + ... + a7, (wrs), for
some constatns a; > 0,1 < k < m. Then we have

0< A< ( max &)pr
1<k<m Cypm

in the sense of currents. Since

1=z = [ ANwish

Pl x...xPtm
== Zak/ T (wrs) A (T (wrs) + ... 4 75 (Wrg) )
1 Pl x...xPtm
IR (£ —1)!
=~ Gm Z“’“ell...(ek T

Then ag/c1m < /0,1 < k < m. This implies that

12
r(P x ... x P wyp) < max —.
1<k<m £},

The proof is completed. O
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We first consider the case when m = 2. The corresponding result of esti-
mates in a simpler case was proved in [23, Proposition A.8]. Set wys := wysp as
the the Kahler form on P x P*. Denote by o the product of o; and oy. Write
r = r(P% x P?2 w,). Lemma 3.3.10 guarantees the existence of sufficiently
large /1, (5 such that

rlog(ty + ls)

1.
min(ﬁl,ﬁg) <

Proposition 3.3.11. In the above setting, let P4 (resp. P2) be a projective
space endowed with a probability moderate measure oy (resp. o9) satisfying
Proposition 3.3.9. Suppose that {1, {5 are chosen sufficiently large such that

rlog(fl + 05) <1
mln(ﬁl, 62) (37)

(B (6 + ) < 1.

Then there exist universal positive constants [y, b5 such that for 0 < t <
min(¢y, (2), we have

A(PY x P2 1) < Bully + ) exp(— 04
( X Wiz, 0, 1) < Byl + £s) exp( o) ) (3.8)

R(PY x P, wyy, 0) < Bsr(1 + log(ly + ).

Proof. To simplify the notations, let X; = P4, Xy, = P2, X = X; x X,. Denote
by w; (resp. ws) the normalized Fubini-Study form wpg in P (resp. P%2).
Consider a function ¥ on X with the conditions that maxx ¢ = 0,ddy >
—rwy2. Fix a point (a,b) such that ¢ (a,b) = 0. Let E be the set of all points
with ¢ < —t for t > 0. We write F = (b < —t). Set

F .= {$2 S XQ,@/J(CL,ZEQ) < —t/2},
ExQ L= {I‘l < Xl,w(.fl,xg) < —t}

Define
E= |J (B, x{z}).

22€X2\F

Note that £ C 7w, *(F) U E'.
We first estimate the measure of 7, '(F). Let t1(z2) := ¢(a,x3), then
maxy, ¥; = 11(b) = 0. Define a new function ¢y := 1)y — fwldag. Note that

/¢2d02 =0, P> ddy > —rws.

Let R := [y + %log(& + ¢3). Since r(Xs,wq) = 1, then by Proposition 3.3.9,
we have

- /¢1d02 = n}(axgbg < rR(Xg,wa,09) <TR.
2
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Hence by hypotheses,

O'Q(F) S 02(w2 S rR — t/2)
= 0,2(7,,711”2 S R — Tﬁlt/2) S A(XQ,MQ, 02, Tﬁlt/Q — R)

< Bolzexp(agR) exp(—%t) (3:9)
+ B(5) explao(§)2 R) exp(= (D))
When
I g < i(logfz + £y 1og%),
2r o) p
ie.
t < 2 log (5 + %62 log é + 213y + rlog(ly + £3),
Qg Qo P
it yields

o9(F') < B3l exp(apR) exp(—%t). (3.10)

Since r > 1 (cf. Lemma 3.3.10), ap < 1, log% > 1, inequality (3.10) holds
obviously when 0 <t < /5. By Fubini theorem, we obtain

(%]

o(my ' (F)) < Bolyexp(agR) exp(—gt)
P P Qo Py (3.11)
+B1(7)" explao(7) R) exp(=57(7)1).
When 0 <t < /s,
o(r7 1 (F)) < Baly explagR) exp(—g—;)t). (3.12)

We secondly estimate the measure of E'. For any 25 € X5\ F, let ¢3(z1) :=
Y(x1, 12), then 13 < 0, maxx, 3 > (a, x2) > —t/2 and dd“¢3 > —rw;. Define
a new function ¢y := 13 — [ X4 3doy. Then

— /wgdal < H;{&X?/J;; +1t/2
<rR(Xj,wi,o1) +t/2<rR+t/2.
Hence by the same argument,
01(Esy) < 01(s < 7R — 1/2)
!
< Bots exp(aoR) exp(—3 1) (3.13)
Pye Pye _20Pye
When 0 <t < /4,

01(Ey,) < B3ty exp(agR) exp(—%t). (3.14)
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By Fubini theorem, we obtain

o(E') < Bols exp(aoR) exp(—%w

+ A" explan(D" B exp(—5 (D). o
When 0 <t < /4,
o(E') < Bsty exp(aoR) eXp(—g—ﬁt). (3.16)
So by estimates (3.11) and (3.15) for ¢t > 0,
ot < 1) < folty + ) exp(a ) exp(—3 1)

+ 3 A5 explao(§) R) exp(= 52 (5)).

When 0 <t <ty =: min({y, ls), (3.12) and (3.16) yield
a
o(y < —t) < Bs(ly + £2) exp(aR) exp(—2—£t).

It is obvious that the above inequality is also valid for ¢ < 0 since ¥ < 0.
By the definition of A(X,wis,0,t), we need to consider a function ¢ on X
with the conditions that dd°p > —rw and [ pdo = 0. Define a new function
Y := ¢ — maxy ¢. The fact that [ ¢do = 0 implies that maxy ¢ > 0. Then
¥ < . Moreover, maxyx ¢» = 0. Then

ol < —t) <o < —t).
Hence

o
A(X,wiz,0,t) < Bo(l1 + £s) exp(agR) exp(—2—£t)

2 o7 A (3.17)
+ ; Bl(i)éi exp(ao('jz))ij) eXp(_Q_r(B)th)-

When 0 <t <t

a

A(X,wiz,0,t) < B3(ly + £3) exp(aoR) exp(—2—£t)
o (3.18)

= Byl + ly) T2 eXp(—Zt),

where 3, =: B3 exp(apfz) is a universal positive constant.
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To estimate R(X, wis,0), we consider a func’Eion 1 on X with the conditions
that maxx 1 = 0,dd) > —rwis. For any 0 <t < g,

/wda—/ o(p < —t)dt

- / o< nai+ o<t [~ o< na

to

< / dt + /OO(BO + B3) (€1 + £3) exp(apR) exp(—g—ﬁt)dt

, o o (3.19)
L Z 8 / s exp(ao(5)" ) exp(— 52 (5) )t

=1+ i—g(ﬂo + B5) (1 + £3) exp(apR) exp(—g—ﬁf)
2
2
+Za—ﬂ exp(ao( )" R) exp(~ 5 (1) 10).

The above inequality follows from (3.17) and (3.18). By the hypotheses in
(3.7), the last term in the last equality is less than 3—251 for 41, ¢y sufficiently
large. Hence

— [ <1 2+ )0+ ) explant) exp(= 520 + 2

Take t = 2rR + i—g log((Bo + B3)(¢1 + £3)). By the hypotheses in (3.7), t < t,
for /1, {5 sufficiently large. We deduce that

— /¢do <2rR+2rR+ Z—rlog((ﬂo + B3) (01 + £s)) + — + =5
0

0 Qp
< Bsr(1 4+ log(4y + £3)),

where (5 is a universal positive constant. This completes the proof. O

The following proposition shows the main estimates in this section.

Proposition 3.3.12. In the above setting, let P be a projective space endowed
with a probability moderate measure oy, satisfying Proposition 3.3.9, V1 < k <
m. Set 0 := 01 X ... X 0. Suppose that (1, .., L, are chosen sufficiently large
such that

T(f‘l, iy ) log l <1,
min(ly, ..., £ (3.20)
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Then there exist positive constants B, 5,& depending only on m such that for
0 <t <min(ly,...,4,), we have

R(P™ x ... x P wyp,0) < Ber({y, o) (1 + log ),
S(P x ... x P wirp, o) < Ber(ly, ..0m) (1 + log f),
A(PZI X ... X ]P)Zm,pr,O', t) < ﬁ6££ exp(—ﬁt/r(&, gm))

Proof. When m = 2, the estimates on R and A are proved in Proposition
3.3.11. When m = 3, following the notations in the proof of Proposition 3.3.11,
we write X7 = P xP?, X, = P X = X; x X5. The estimates on R and A for
X (resp. Xs) are showed in Proposition 3.3.11 and (3.17) (resp. Proposition
3.3.9). Consequently, the results of estimates on R and A for X are proved by
using the analogous arguments in (3.9),(3.10),(3.13),(3.14) and (3.19) with the
hypotheses (3.20). For the general case, the results can be deduced inductively
by using the analogous arguments in the proof of Proposition 3.3.11. The
estimate on S follows from Proposition 2.2.1 and [14, Lemma 4.6]. ]

3.4 Proof of main theorems

In this section we will prove the main theorems.

3.4.1 Lower bound of dimensions

First we give an estimate of the dimension dj, ,. The lower estimate is proved
by construction of a new metric on the line bundle with only one singularity
and application of vanishing theorem relative to multiplier ideal sheaves.

Theorem 3.4.1. Let (X,w) be a compact Kdihler manifold of dimension n.
Suppose that (L,h) is a singular Hermitian holomorphic line bundle on X
such that c1(L, h) > ew for some positive constant €. Moreover, h is continuous
outside a proper analytic subset A of X. Then there exist a constant C > 1
and py € N such that for all p > pg

p"/C < dimH&)(X, LP) < Cp".

Proof. By Proposition 1.3.24, there exist a positive constant Cy and py € N
such that for all p > pg

dim H(OQ)(X, LP) < Cop".

It is sufficient to show that there exist a positive constant C; and py € N such
that for all p > pg
dim Hyy (X, LP) > Cyp™.
Now we fix a point g € X \ A and r > 0 such that B(zg,2r) N A = 0.

Consider a smooth cut-off function 0 < x <1 such that it is equal to 1 on the
closed set B(zg,r) and supported in B(xg, 2r). Define a new function

X = [-00,00),  ¥(x) = nx(x)log |z — zo.
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Here 7 is some positive constant. This function has only one singular point.
Moreover, we consider a new metric on L as follows

ho = hexp(—v).

n can be chosen sufficiently small such that on X,

W.

Cl(L7 ho) Z

N

Indeed it suffices to show the following inequality
dd®(x(z)log |xr — xo|) + 2iw > 0.
n

Since dd®(log |x — xo|) = [x = x| is positive, we only prove the inequality in
a small neighborhood of B(zg,2r) \ B(xg,r), which is a simple conclusion by
straightforward computations.

Denote by Z(h?) the multiplier ideal sheaf associated to the metric h?. We
have H&)(X, Lr) = HY(X, [P @ Z(h?)), Z(hh) = Z(h?) @ Z(p). There is an
identification of sheaves

LPRI(h)) = Kx @ Ky ® LP @ Z(hy).

Recall that the first Chern class of K% is Ric(w) = —d0log det(w) which is
smooth on X. Then

c1(K% ® LP) = Ric(w) + per(L, hg) > €w

for some € > 0 when p is sufficiently large. Hence it follows from the Nadel
vanishing theorem (cf. Theorem 1.3.27) that there exists py € N such that for

all p > po
HY(X,LP ® Z(hE)) = 0. (3.21)

The following short exact sequence
0= LPRI(WP)RZ(py) — LP R L(h*) — LP @ Z(h*) @ Ox /Z(py) — 0
with (3.21) implies that
HY(X, [P @ Z(h")) — HY(X, L’ @ T(h*) @ Ox /Z(p¥))) — 0

for all p > py. Here Ox is the sheaf of holomorphic functions on X. Note that
Z(py). = Ox, for every point x # xy. That is to say, Ox./Z(py). = 0. Since
h is continuous at xy, then Z(h?),, = Ox 4,. So we have

HY(X,LP @ Z(h") ® Ox /Z(pi)))
= L2 @ Z(h")ay ® Ox oy /Z(P) g
= L2 © Ox g /Z(p)) .

Hence
HY(X,LP @ Z(h")) = L2, @ Ox 5o/ Z(pt))sy — 0 (3.22)
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for all p > py. Let Mx,, be the maximal ideal of Ox,,. Consider a germ
f € Z(pw)s, in a local coordinate z = (z1, ..., 2,) with 2o = 0. Let f = > a 2’
be its Taylor expansion. Note that only the terms |a;|?z|>/ contribute to the

following integral
[ \rPlel v,
B(0,a)

where B(0,a) is a neighborhood of the origin and dV denotes the Lebesgue
measure. Hence for each multi-index J, we obtain

/ 12127224V < oo,
B(0,a)

It is equivalent to
/ rJ] —pn+n—1)dr <oco < [J| > [pn] —n+ 1.
0
Then

—-n . n + k
Z(p)a, C M[;;?io + dlmox,wo//\/t’;gwlo = ( N ) (3.23)

Then the estimate of lower bound of the dimensions follows from (3.22) and
(3.23). The proof is completed. O

3.4.2 Proof of Theorem 0.3.1

Recall that 7, is the Fubini-Study current defined in Section 3.1. With
techniques from [10] and [27], we can show that the sequence of wedge products
of these Fubini-Study currents converges weakly to the wedge product of the

curvature currents of the line bundles in Theorem 0.3.1, see [14, Proposition
3.1].

Proposition 3.4.2. In the setting of Theorem 0.5.1, we have
1
p—m’}/Lp A A Ym.p — Cl(Ll, hl) AN Cl(Lm, hm)

when p tends to oo.

Proof. we consider the p.s.h. functions uy, u, on the contractible Stein open
subset U defined in Section 3.1. Recall that dd®uy = ¢i(Ly, hy), dduy, = %%,p

on U. We know that %log Py, — 0in L'(X,w™) by Theorem 5.1 in [10]. So
we have that ug, — w; in L} (U), V1 < k < m. By (3.3), the inequality

loc
Uy, > up — < holds on U for some constant C' > 0 and all p sufficiently large.
’ p

By Theorem 1.2.28, we have
dd“uyp A ... N dd“Up, , — dduy A ..o A dduy,

in the weak sense of currents as p — oo. This completes the proof. O
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We also need the following convergence property.

Proposition 3.4.3. In the setting of Theorem 0.5.1, there exists a positive
constant C' depending only on X, (Ly, h1), ..., (Lm, hm) such that

i (o) — (oo Clogp
[ (@p(on) = 25(e507)), 6)] < —

1152

for any (n — m,n — m)-form of class €* on X and p sufficiently large. In
1
p’I’L

particular, —=(®5(0p) — @;(wﬁw)) converges weakly to 0 as p — 00.

Proof. By Theorem 3.4.1, there exist a positive constant C and py € N such
that for all p > py, 1 < k < m, we have

p"/Cy < di, < Cip".

Then by Lemma 3.3.10, r(X,,w,) < mC?. Moreover, di, ..., d,,, satisfy the
conditions in (3.20) for p sufficiently large. Hence it follows from Proposition
3.3.12 that there exists a positive constant Cj,

S(Xp, wp, 0p) < Cslogp.

Thanks to Proposition 3.3.5 and Remark 3.3.6, we can deduce that
Spdt L
pdp S C’3]_?

for some positive constant C'5. Note that the constants C;, Csy, C5 all depend
only on X, (L1, hy), ..., (L, hin). Then

C'logp
p

25(Xp, wp, Up)(spdzjl <

for some positive constant C' depending only on X, (L1, hy), ..., (L, h.y,) Hence
the proof is completed by applying Theorem 3.3.2. O

The basic proof of the main theorem will end with the following theorem,
which extends [18, Corollary 3.9] and [14, Theorem 4.2].

Theorem 3.4.4. In the setting of Theorem 0.3.1, there exist a positive con-
stant & which depends only on m and a positive constant C' which depends only
on X, (L1, h1), ..., (L, hy) with the following property: Given any sequence of
positive numbers {\, 52, with the following conditions

A
liminf —*~ > (1 +¢&n)C,
p—oo logp
lim A 0,
p—roo Pt

there exist subsets E, C X, such that for all p sufficiently large,
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(i) \
op(E,) < Cp™" exp(—);

(ii) for any point S, € X, \ E, and any (n —m,n—m)-form ¢ of class €2,

|—< — ®3(0,),0)| < ;pnqsnw.

Proof. To simplify the notations, let
R, : = R(X,, wp, 0y),
Ap(t) : = AKXy, wp, 0p, 1),
Ep(e) - = U {5 X, |<[Sp =0] - @;(Up),¢>| > dye},
6]l g2 <1

where ¢ > 0,¢ > 0. By Theorem 0.2.1 with its proof, there exists a con-
stant ¢ > 1 Which depends only on X, Ly, ..., L,,, p such that each component

/\d’”” (ddc P + wpg) of 0, is a probability moderate measure satisfying
Proposmon 3. 3 9. Theorem 3.4.1 implies that d; ,...,d,,, satisfy the condi-
tions in (3.20) for p sufficiently large. Hence o, satisfy Proposition 3.3.12. Let
C be a positive constant depending only on X, (Ly, hy), ..., (L, hy) such that
for all p > pg, 1 < k < m, we have

p")C < dp, < Cp",

Here po is a positive integer large enough. Then we have for p > py and
0<t<p"/C,

R, <mfBeC?(1 +log(mCp")) < Clogp,

8(0) < BulmCp)f exp(—20) < Cup® exp(— )

Here we can see that C is some constant depending only on X, (L1, hq), ..., (L, b))
Let

€p 1= —, MNpi= epdpéljl —3R,.
It follows from Proposition 3.3.5 and Remark 3.3.6 that for p > py,
np > CoAp, — 3C log p.

Here Cs is some constant depending only on X, (L1, h1), ..., (L, hy,). If there
is a condition that ) 6C
liminf —2- > —*

poo logp ~ Oy’

then for all p sufficiently large, 1, > %)\p. Since

A
lim =2 =0,
p—r00 pn
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7, can be always chosen such that %)\p <n, <p/ C' for p sufficiently large.
By applying Theorem 3.3.1 to the subset E, C X,, we obtain

-
Up<Ep) < Ap(ﬁp) < Clpgn exp( 2012 )‘p)7

where E, = E,(¢,). Now we set

6C 20,

C:max(02(1+§n), G

,C1 [ler(La, ha) Ao A e (L, b))

Then for all p sufficiently large,

Y\
op(E,) < Cp™ exp( Cp

under the conditions that

lim inf A > (1+¢n)C,
p—oo logp

A
lim =2 = 0.
p—oo p"

By the definition of E,, it is obvious that for any S, € X, \ E, and any
(n —m,n —m)-form ¢ of class €2,

G X)) < S0

" 1|42
P p p

1 *
{18, = 0] = ¥3(0,).0)] <

This completes the proof. n

Proposition 3.4.5. In the setting of Theorem 0.3.1, for almost all S =
{Sp}p, € P* with respect to o, we have

1 1
E[Sp = 0] - p—mq’;(ap) —0
i the weak sense of currents as p — oo on X.

Proof. Note that

o0 o0 1
> ou(E,) < cgzﬁ < o0
p=1 p=1

for some positive constant C3 and n > 1. The proof follows from the same
argument in Remark 2.3.8. O]

End of the proof of Theorem 0.3.1. By Theorem 0.2.1 with its proof,
there exists a constant ¢ > 1 which depends only on X, L4, ..., L,,, p such
that each component ;li{ 7T27p(ddcu§’p + wpg) of o, is a probability moder-
ate measure satisfying Proposition 3.3.9. Hence o), satisfy Proposition 3.3.12.
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Note that c¢ is independent of the choices of the metrics hq, ..., h,,. It follows
from Proposition 3.3.7 and Proposition 3.4.3 that

1

p—m(q);((fp) — Mp A A 7m7p) —0

in the weak sense of currents as p — oo. Then Proposition 3.4.5 implies that
for allmost all S = {S,}>2, € P¥ with respect to o

1
p—m<[5p = O] — Vip AN ")/mm) — 0
in the weak sense of currents as p — o0o. The proof is finally completed by
application of Proposition 3.4.2. ]

Theorem 0.3.3 follows from Proposition 3.4.3 and Theorem 3.4.4 with the
following theorem [14, Proposition 5.1].

Theorem 3.4.6. In the setting of Theorem 0.3.3, there exists a positive con-
stant C" which depends only on X, (L1, h1), ..., (Lm, hy) such that for all p suf-
ficiently large and any (n — m,n — m)-form ¢ of class €*, we have

C'logp
p

1
Kﬁ%vp N o N Ymp — Cl<L17 hl) AR Cl(Lma hm)’ ¢>‘ < “QSH%Q

3.4.3 Proof of Theorem 0.3.5
To prove Theorem 0.3.5, we need the following result [38, Theorem 15.1.6].

Theorem 3.4.7. Let Py be the set of all functions of the form p~'log|f(2)
where p is a positive integer and f an entire function £ 0 in C". Then the

closure of Py in L} (C") consists of all plurisubharmonic functions.

Let wy be the Fubini-Study form with mass 1 in P". Given any positive
closed current T of bidegree (1,1) with mass 1 in P". Then by Proposition
1.2.19, there exists a q.p.s.h. function ¢ such that

T — wy = dd°p.

Therefore T' corresponds to an entire plurisubharmonic function ¢ in C" which
belongs to the Lelong class(cf. [32, Example 2.2]). By Theorem 3.4.7, there
exists a sequence {p~'log |f,|} which converges to 9. Since holomorphic func-
tions in C" can be approximated by polynomials, by using diagonal argu-
ment, we can choose a sequence of polynomials g, of degree < p such that
{p~'log|g,|} converges to v. It is possible since all such p~!log|g,| and v
belong to the Lelong class. Since g, can be regarded as a homogeneous poly-
nomial of degree p in C"™, it induces a global section S, € H°(P", O(p)).
Hence by Lelong-Poincaré formula, %[Sp = 0] converges weakly to T. We
obtain the following result due to Oka.
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Proposition 3.4.8. Given any positive closed current T of bidegree (1,1) with
mass 1 in P, there exists a sequence of {S,}p>1, Sp € PHY(P",O(p)), such
that

in the weak sense of currents.

This section concludes with the proof of Theorem 0.3.5.

Proof. By Proposition 3.4.8, there exists a sequence of {S, },>1, S, € PH(P", O(p)),
such that

Denote by dg, the Dirac measure at the point S, € PH?(P", O(p)). Choose a
sequence of smooth probability measures {y,;} which is an approximation of
ds,. Note that the map

PHY(P",O(p)) — C
V= ([V, =0],9)

is continuous. Then there exists a neighborhood E, C PH(P",O(p)) of S,
such that

VV, € E, and (n — 1,n — 1)-form ¢ of class € with ||@|l¢2 < 1. Hence

1
|<Z_9[V;17:0]_T7¢1>|
ﬁﬂzm—g ¢N+K ~T,9)]
—H¢H<€2+\< (S, =0] =T, ¢)| =0,

YV, € E, and (n —1,n — 1)-form ¢ of class €. Since p,; — ds, as measures
when j — 0o, there exists an index j, satisfying
1
[pin (Ep) = 05, (Ep)| = lptps, (Ep) = 1] < 5.
Denote by Ef the complement of E,. Set o}, := i, So 0,(Ef) < z%' Yau'’s
theorem [59] implies that there exists a smooth real function u, with (wpg +

ddu,)% = o,. Then the theorem follows from the same argument in the proof
of Remark 2.3.8. This completes the proof. O]



96 Guokuan SHAO

3.5 Further problems

We continue studying the equidistribution property and some approxima-
tions of currents by intersection of divisors. Several questions are posed as
follows.

1) We will investigate the equidistribution of zeros of random holomor-
phic sections over more general spaces, such as non-compact manifolds [19] and
normal Kéhler complex spaces [13]. With emphasis on certain conditions of
curvature forms of line bundles, I believe the equidistribution property would
still hold, even in the context of moderate measures. We will also study some
equidistribution properties with a limit of currents related to weighted global
extremal functions (cf. [8]) and convergence results for Bergman kernels with
equilibrium measures (cf. [5] and therein).

2) Approximation of currents by divisors is an interesting subject which
was explored by many mathematicians, for example, Demailly [15], Duval-
Sibony [24], Guedj [30] and Coman-Marinescu [11] etc. We would like to show
that some positive closed current of bidegree (m,m) could be approximated
by a sequence of intersections of divisors defined by m line bundles. It could
be regarded as a generalization of results obtained in [11].

3) Following Theorem 0.3.5, we consider the following question. In
the setting of Theorem 0.3.3, given any positive closed current T' of bidegree
(m,m), could we construct a family of diffuse measures o, such that for o-
a.e. {Sp}p>1 € PX, pim[Sp = 0] — T7 The key problem is the existence of
approximation of any current by a sequence of currents (e.g. those currents
defined by integration on varieties of codimension m).

4) We will study the equidistribution property of random sections with
real coefficients, which is linked to the recent work by Gayet-Welschinger [31].
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