
HAL Id: tel-01404324
https://theses.hal.science/tel-01404324

Submitted on 28 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Equidistribution of zeros of random holomorphic
sections for moderate measures

Guokuan Shao

To cite this version:
Guokuan Shao. Equidistribution of zeros of random holomorphic sections for moderate measures.
Complex Variables [math.CV]. Université Paris-Saclay, 2016. English. �NNT : 2016SACLS141�. �tel-
01404324�

https://theses.hal.science/tel-01404324
https://hal.archives-ouvertes.fr


NNT:2016SACLS141
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Spécialité : Mathématiques fondamentales

Guokuan SHAO
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recteurs de thèse, Nessim Sibony et Viêt-Anh Nguyên. Je les remercie de
m’avoir fait confiance et m’avoir amené un domaine mathématique très intéress
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à Xiaonan Ma pour ses conseils avisés, qui ont apporté des améliorations sig-
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Marseille.
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à Valérie Blandin Lavigne et Rey Florence, qui m’ont donné beaucoup d’aide
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Abstract

This thesis investigates the equidistributions of zeros of random holomor-
phic sections of line bundles for moderate measures. It consists of two parts.

In the first part, we construct a large family of singular moderate measures
on projective spaces. These measures are generated by quasi-plurisubharmonic
functions with Hölder potentials.

The second part deals with an equidistribution property in general set-
tings. We establish an equidistribution theorem in the case of several big line
bundles endowed with singular metrics. A precise convergence speed for the
equidistribution is obtained.

Key words: positive closed current, plurisubharmonic function, moderate
measure, Dinh-Sibony equidistribution theorem, meromorphic transform, in-
termediate degree, multi-projective space, random holomorphic section, Hölder
potential, big line bundle, Fubini-Study current.

Classification AMS 2010: 32A60, 32L10, 32U40.
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Résumé

Cette thèse étudie les équidistributions de zéros de sections holomorphes
aléatoires de fibrés en droites pour les mesures modérées. Elle consiste en deux
parties.

Dans la première partie, nous construisons une famille étendue de mesures
singulières modérées sur des espaces projectifs. Ces mesures sont générées par
des fonctions quasi-plurisousharmoniques avec les potentiels höldériens.

Le deuxième partie traite une propriété d’équidistribution dans un con-
texte général. Nous établissons un théorème d’équidistribution dans le cas de
quelques fibrés en droites gros munis de métriques singulières. Une vitesse de
convergence précise pour l’équidistribution est obtenue.

Mots-clés: courant positif fermé, fonction plurisousharmonique, mesure moderée,
théorème d’équidistribution de Dinh-Sibony, transformation méromorphe, degré
intermédiaire, espace multi-projectif, section holomorphe aléatoire, potentiel
höldérien, fibré en droites gros, courant de Fubini-Study.

Classification AMS 2010: 32A60, 32L10, 32U40.
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Chapter 0

Introduction.

Distribution of zeros of random polynomials is a classical subject. Waring
[58] used a probabilistic method to determine the number of imaginary zeros of
an algebraic polynomial. More rigorous and systematic research started with
the paper of Bloch-Pólya [4] in 1930s. They gave an order of the expected num-
ber of real roots of certain random algebraic polynomial equations. Kac [40] ob-
tained an exact distribution of real roots for random polynomials with normal
distribution coefficients. Results about polynomials with other distributions
or settings were extended notably. We refer the reader to [3, 2, 6, 7, 25, 41, 56]
and references therein for more results and further discussions.

A classical theorem due to Hammersley [33] asserts that the normalized
zeros of complex Gaussian random polynomials of large degree tend to accu-
mulate on the unit circle with uniformly distribution. An analogous result
holds for random SU(2) polynomials whose expected distribution of zeros is
uniform on P1 (cf. [3, Appendix C]). The general results about the holomor-
phic sections of a positive line bundle associated to the Lebesgue measures were
obtained by Shiffman-Zelditch[57]. Note that the result covers the equidistri-
bution property of random SU(2) polynomials when X = P1 and L = O(1).
Dinh-Sibony[23] extended the equidistribution property in the case of gen-
eral measures and obtained a good estimate of the convergence speed. The
potential-theoretic approach from Fornæss-Sibony[26] was used in the previous
works.

0.1 Motivation and applications

The general measures in Dinh-Sibony’s equidistribution theorems [23, The-
orem 4.1, Theorem 7.3] have quite strict conditions. One explicit non-trivial
example of a singular measure with real coefficients was given in [23, Corol-
lary 7.4]. But it seems difficult to provide a wide class of general measures
to satisfy the equidistribution theorems. Our motivation of the first part is
to construct a large family of singular moderate measures which satisfies the
equidistribution property. Roughly speaking, we prove that the normalized
currents defined by the zeros of random sections of high powers of a positive

7
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line bundle on a projective manifold converge weakly to the curvature form
associated to certain family of singular moderate measures. Our method fol-
lows the techniques of exponential estimates for plurisubharmonic functions
by Dinh-Nguyên-Sibony [21], see Section 2.3.

In the second part, we are motivated to generalize the equidistribution
property in the case of several big line bundles endowed with singular metrics.
We follow the approaches of Dinh-Sibony [23], Coman-Marinescu-Nguyên [14]
and Section 2 [54]. To achieve our results, we establish sharp estimates on
the constants related to Alexander-Dinh-Sibony capacity on multi-projective
spaces [55], see Section 3.4.

The Alexander-Dinh-Sibony capacity is closely related to the global ex-
tremal function (cf. [23, A.2] and [32, Section 5]). The L2-method plays also
an important role in the study of equidistribution properties. For example, we
apply L2-method to explore the asymptotic behavior of Bergman kernel func-
tions. Hence we can obtain equidistribution theorems with good convergence
speed (cf. [10], [14], [15] etc). The equidistribution property provides a tool
to study the Unique Ergodicity conjecture by Rudnick-Sarnak, see [51], [39],
[49]. It can be also applied to study quantum chaos in statistical physics (cf.
[3], [48] etc).

0.2 Part I

We give the basic setting in order to introduce the main theorems. For ev-
ery complex vector space V of finite dimension, let ωFS be the standard Kähler
form induced by the Fubini-Study metric on its projective space P(V ) normal-

ized by
∫
P(V )

ω
dimP(V )
FS = 1. Let X be a projective manifold of dimension n, L be

an ample line bundle over X. Fix a Hermitian metric h on L such that the cur-
vature form ω is Kähler on X. Let Lp be the pth tensor product of L. Denote
by H0(X,Lp) the space of all holomorphic sections of Lp. Let PH0(X,Lp) be
the associated projective space with ωFS as its normalized Fubini-Study form.
Set np := dimPH0(X,Lp). Let [sp = 0] be the current defined by the zero set
of sp, where sp ∈ PH0(X,Lp). Set PX :=

∏
p≥1 PH0(X,Lp). See Section 1.2.3

for the notion of moderate measures.
Fix some exponent 0 < ρ < 1, a function u : M → R defined on a compact

metric space (M, dist) is said to be of class C ρ with modulus c if

sup
x,y∈M
x 6=y

|u(x)− u(y)|
dist(x, y)ρ

≤ c.

See Section 1.2 for the definition of γ-p.s.h. functions.
Let σp be the probability Lebesgue measure on PH0(X,Lp) and σ be the

product measure of these ones on PX . Shiffman-Zelditch [57] proved that the
sequence of currents {1

p
[sp = 0]} converges weakly to ω for σ-almost every-

where (sp) ∈ PX . Dinh-Sibony [23] generalized the result and obtained a good
estimate of the convergence speed over a projective manifold endowed with
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a smooth positively-curved metric. They also constructed a singular mea-
sure with real coefficients which satisfies equidistribution property (cf. [23,
Corollary 7.4]). When the Lebesgue measures in Shiffman-Zelditch’s result
are replaced by moderate measures with Hölder potentials (see Sections 2.3,
2.4), we have our main theorem as follows which gives a concrete large family
of singular moderate measures that satisfies equidistribution property. It can
be regarded as a perturbation of standard measures induced by Fubini-Study
metric.

Theorem 0.2.1. Let L be an ample line bundle over a projective manifold X
of dimension n and 0 < ρ < 1 be an exponent. Then there exists a constant
c = c(X,L, ρ) > 1 with the following property. For each p ≥ 1, 1 ≤ j ≤ np, let
up,j : PH0(X,Lp)→ R be a function and ξp, εp > 0 two numbers such that
(i) up,j is of class C ρ with modulus ξp, ∀1 ≤ j ≤ np;
(ii) up,j is εpωFS-p.s.h., ∀1 ≤ j ≤ np;
(iii) ξp ≤ 1/cp

n
, εp ≤ 1/cp

n
.

Let σp = (ddcup,1+ωFS)∧(ddcup,2+ωFS)∧···∧(ddcup,np+ωFS) be the probability
measure on PH0(X,Lp). Endow PX with the product measure σ =

∏
p≥1 σp.

Then for almost every s = (sp) ∈ PX with respect to σ, the sequence of currents
{1
p
[sp = 0]} converges weakly to ω.

The following result gives a convergence speed for the equidistribution in
Theorem 0.2.1.

Theorem 0.2.2. In the setting of Theorem 0.2.1, there exist subsets Ep ⊂
PH0(X,Lp) and a positive constant C depending only on X,L such that for
all p sufficiently large, we have

σp(Ep) ≤
C

p2
and |

〈1

p
[sp = 0]− ω, ψ

〉
| ≤ C log p

p
‖ψ‖C 2 ,

for any point sp ∈ PH0(X,Lp) \Ep and any (n− 1, n− 1)-form ψ of class C 2.

0.3 Part II

Two natural questions arise after solving the first part:

1. Is it possible to consider the case of more general line bundles, e.g. big
line bundles?

2. Could we extend the zeros of sections of a single line bundle to the com-
mon zeros of sections of several ones?

Fortunately, the questions are solved in some directions in the context of prob-
ability Lebesgue measures. Such equidistribution problems and convergence
speeds of holomorphic sections of singular Hermitian holomorphic line bun-
dles have been intensively explored recently. Coman-Marinescu [10] extended
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the equidistribution results of [57] and [23] in the case of a singular holomor-
phic line bundle endowed with a strictly positive-curved metric. Dinh-Ma-
Marinescu [18] investigated the equidistribution for big line bundles endowed
with semipositive-curved metrics. Coman-Ma-Marinescu [13] established the
equidistribution results for singular holomorphic line bundles on a compact
normal Kähler complex space. Our second part has been studied by Coman-
Marinescu-Nguyên [14] in the context of probability Lebesgue measures. We
refer the reader to [11, 12] for a more detailed discussion.

Coman-Marinescu-Nguyên [14] studied the equidistribution of common ze-
ros of sections of several big line bundles. The measures of the equidistribution
theorem in [14] are the standard ones induced by the Fubini-Study metric. On
the other hand, our work [54] investigated the equidistribution of zeros of
sections of a single positive holomorphic line bundle associated to moderate
measures. The metric on the line bundle in the latter work is smooth. In this
part, the normalized currents are defined by the common zeros of m-tuples of
random sections of high powers of m singular Hermitian big line bundles on a
compact Kähler manifold. When the measures in [14] are replaced by suitable
moderate ones, we show that the above currents still distribute asymptoti-
cally to the wedge product of the curvature currents of the singular metrics.
Consequently, we generalize both the main theorems in [14] and [54].

Our method follows the approach of Coman-Marinescu-Nguyên [14]. Adapt-
ing their work, we prove that the intersections of currents of integration along
subvarieties are well-defined almost everywhere with respect to a finite prod-
uct of moderate measures (see Section 3.3). Moreover, their strategy of using
Dinh-Sibony equidistribution theory leads us to obtain an estimate for the con-
vergence speed (see Section 3.4 and Section 3.5). Then we combine the above
with the technical analysis of moderate measures to achieve our results. Here
our hard core work consists of estimating efficiently some constants which are
intimately associated with multi-projective spaces (see Section 3.4 below).

We start with the basic settings of this part. Let X be a compact Kähler
manifold of dimension n with a fixed smooth Kähler form ω. Recall that a
singular Hermitian holomorphic line bundle (L, h) is a holomorphic line bundle
L with a Hermitian metric which is given in any trivialization by a weight
function e−ϕ such that ϕ is locally integrable (cf. Definition 1.3.13). Let
c1(L, h) be its curvature current which represents the first Chern class. To be
precise, if eL is a holomorphic frame of L on an open subset U ⊂ X, then
|eL|2h = e−2ϕ, c1(L, h) = ddcϕ on U . The case when c1(L, h) ≥ 0 as a current
is particularly interesting. We say that a holomorphic line bundle L is big if
it admits a singular metric h with that c1(L, h) ≥ εω for some constant ε > 0
(cf. Theorem 1.3.23).

Let (Lk, hk), 1 ≤ k ≤ m ≤ n, be m singular Hermitian holomorphic line
bundles on X. Let Lpk be the pth tensor powers of Lk. Denote by H0

(2)(X,L
p
k)

the Bergman space of L2-holomorphic sections of Lpk relative to the metric
hk,p := h⊗pk induced by hk and the volume form ωn on X, endowed with the



Introduction 11

inner product

〈S, S ′〉k,p :=

∫
X

hk,p(S, S
′)ωn,

∀S, S ′ ∈ H0
(2)(X,L

p
k). Let PH0

(2)(X,L
p
k) be the associated projective space. Set

dk,p := dimH0
(2)(X,L

p
k) − 1. We have pn/C ≤ dk,p ≤ Cpn, where C > 0 is a

constant independent of k and p (cf. Theorem 3.4.1). Now we consider the
multi-projective space

Xp := PH0
(2)(X,L

p
1)× ...× PH0

(2)(X,L
p
m)

endowed with a probability measure σp for every p ≥ 1. Let πk,p : Xp →
PH0

(2)(X,L
p
k) be the natural projections. Denote by [S = 0] the current defined

by the zero set of S ∈ H0(X,Lpk). Set

[Sp = 0] := [Sp1 = 0] ∧ ... ∧ [Spm = 0], ∀Sp = (Sp1, ..., Spm) ∈ Xp,

whenever it is well-defined. Let

PX :=
∞∏
p=1

Xp.

It is a probability space with the product measure σ =
∏∞

p=1 σp.
We denote by dist the distance on X induced by the fixed Kähler form ω.

Let φ : U → [−∞,∞) be a function on an open subset U ⊂ X, A ⊂ X a
proper analytic subset. Following the terminology in [14], φ is called Hölder
with singularities along A if there are positive constants c, δ and 0 < ν ≤ 1
satisfying that

|φ(z)− φ(w)| ≤ cdist(z, w)ν

min{dist(z, A), dist(w,A)}δ

for all z, w ∈ U \ A. A singular metric h of L is defined to be Hölder with
singularities along A if every local weight of h is Hölder with singularities along
A. For motivations as well as examples of such metrics, we refer the readers
to [14].

The multi-projective space Xp in [14] is equipped with the probability mea-
sure σ0

p which is the product of the Lebesgue measures induced by Fubini-Study
metrics on the components. In this part, we define singular moderate measures
σp as perturbations of σ0

p on Xp. For each p ≥ 1, 1 ≤ k ≤ m, 1 ≤ j ≤ dk,p, let

uk,pj : PH0
(2)(X,L

p
k)→ R be an upper-semi continuous function. Fix 0 < ρ < 1

and a sequence of positive constants {cp}p≥1. We call {uk,pj } a family of (cp, ρ)-

functions if all uk,pj satisfy the following two conditions:

• uk,pj is of class C ρ with modulus cp,

• uk,pj is a cpωFS-p.s.h.
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Then for each p ≥ 1, there is a probability measure

σp =
m∏
k=1

dk,p∧
j=1

π?k,p(dd
cuk,pj + ωFS)

on Xp. By Theorem 0.2.1 and Remark 2.3.7,
∧dk,p
j=1(ddcuk,pj +ωFS) is a moderate

measure on PH0
(2)(X,L

p
k) when cp ≤ 1/cp

n
for a suitable constant c > 1,

∀1 ≤ k ≤ m, p ≥ 1. The probability measure on PX

σ =
∞∏
p=1

σp =
∞∏
p=1

m∏
k=1

dk,p∧
j=1

π?k,p(dd
cuk,pj + ωFS) (1)

is said to be generated by a family of (cp, ρ)-functions {uk,pj } on {PH0
(2)(X,L

p
k)}.

Here is our main theorem.

Theorem 0.3.1. Let (X,ω) be a compact Kähler manifold of dimension n,
(Lk, hk), 1 ≤ k ≤ m ≤ n, be m singular Hermitian holomorphic big line
bundles on X. The metric hk is continuous outside a proper analytic sub-
set Ak ⊂ X, c1(Lk, hk) ≥ εω on X for some constant ε > 0, and A1, ..., Am
are in general position. Let 0 < ρ < 1. Then there exists a constant c > 1
which depends only on X,Lk, ρ with the following property: If σ is the prob-
ability measure on PX generated by a family of (1/cp

n
, ρ)-functions {ujk,p} on

{PH0
(2)(X,L

p
k)} defined by (2), then for almost every {Sp}p≥1 ∈ PX with respect

to σ, we have in the weak sense of currents as p→∞ on X,

1

pm
[Sp = 0]→ c1(L1, h1) ∧ ... ∧ c1(Lm, hm).

Remark 0.3.2. When all ujk,p ≡ 0, then σp are the Lebesgue measures σ0
p on

Xp and we obtain [14, Theorem 1.2]. In addition, the constant c is independent
of the choices of singular metrics on the big line bundles.

When the metrics hk are all Hölder with singularities, we can also extend
the result in [14] about the estimate of the speed of the above convergence
associated to the moderate measures defined by (1). This theorem is also a
generalization of Theorem 0.2.2.

Theorem 0.3.3. We keep the notations and the hypotheses of Theorem 0.3.1.
Suppose, moreover, that hk is Hölder with singularities along Ak, 1 ≤ k ≤
m. Then there exist a positive constant ξ which depends only on m, and
another positive constant C which depends on X, (L1, h1), ..., (Lm, hm) with the
following property: Given any sequence of positive numbers {λp}∞p=1 with the
following conditions

lim inf
p→∞

λp
log p

> (1 + ξn)C and lim
p→∞

λp
pn

= 0,
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there exist subsets Ep ⊂ Xp such that for all p sufficiently large,
(i)

σp(Ep) ≤ Cpξn exp(−λp
C

),

(ii) for any point Sp ∈ Xp \Ep and any (n−m,n−m)-form φ of class C 2,

∣∣〈 1

pm
[Sp = 0]−

m∧
k=1

c1(Lk, hk), φ
〉∣∣ ≤ Cλp

p
‖φ‖C 2 .

Remark 0.3.4. The primary difference between Theorem 0.3.3 and [14, Theo-
rem 1.4] is that the measures in Theorem 0.3.3 are only moderate. The optimal
estimate of the convergence speed in Theorem 0.3.3 (ii) is of order O(log p/p).
In this case, the measures σp(Ep) are polynomially small. So Theorem 0.3.3
generalizes Theorem 0.2.2 and [18, Theorem 1.2].

Note that in Theorem 0.3.1 and all other equiditribution theorems studied
in this thesis, the limit of the considered convergence sequence cannot be an
arbitrarily given positive closed current. For example, there is a condition that
c1(Lk, hk) ≥ εω in Theorem 0.3.1. However, it is possible when X = Pn, L =
O(1),m = 1 with a probability measure σ chosen properly.

Theorem 0.3.5. Given any positive closed current T of bidegree (1, 1) with
mass 1 on Pn. Let dp = dimH0(Pn,O(p)) − 1. Then there exists a family
of smooth probability measures σp = (ωFS + ddcup)

dp on PH0(Pn,O(p)) for
some smooth real functions up with the following property: For almost every
S = (Sp) ∈

∏
p≥1 PH0(Pn,O(p)) with respect to σ =

∏
p≥1 σp, we have in the

weak sense of currents as p→∞ on Pn,

1

p
[Sp = 0]→ T.





Introduction. (French version)

Distribution des zéros de polynômes aléatoires est un sujet classique. War-
ing [58] a utilisé une méthode probabiliste pour déterminer le nombre de
zéros imaginaires d’un polynôme algébrique. Des recherches plus rigoureuse et
systématique a commencé avec le papier de Bloch-Pólya [4]. Ils ont donné un
ordre du nombre espérance de racines réelles de certaines équations polynômes
aléatoires. Kac [41] a obtenu une distribution exacte des racines réelles pour les
polynômes aléatoires avec des coefficients de distribution normaux. Résultats
sur polynômes avec d’autres distributions ou paramètres ont été étendues no-
tamment. Voir [3, 2, 6, 7, 25, 41, 56] et références qui y sont pour plus de
résultats.

Un théoréme classique de Hammersley [33] affirme que les zéros normalisés
de gaussien complexe polynômes aléatoires de degré élevé ont tendance à
accumuler sur le cercle unité avec une distribution uniforme. Un résultat
analogue est valable pour SU(2) polynômes aléatoire dont la distribution
espérance de zéros est uniforme sur P1 (cf. [3, Appendix C]). Les résultats
généraux sur les sections holomorphes de fibrés en droites positive associée
aux mesures de Lebesgue ont été obtenues par Shiffman-Zelditch [57]. Grosso
modo, presque partout séquence de courants normalisés définis par sections
holomorphes converge faiblement vers la forme Kählerienne par rapport aux
mesures de Lebesgue. Notez que le résultat couvre la propriété équidistribution
de SU(2) polynômes aléatoire lorsque X = P1 et L = O(1). Dinh-Sibony [23]
étendu la propriété équidistribution dans le cas de mesures générales et obtenu
une bonne estimation de la vitesse de convergence. L’approche de potentiel
théorique de Fornæss-Sibony [26] a été utilisé dans les travaux précédent.

Motivation et applications

Les mesures générales dans les théorèmes de équidistribution de Dinh-
Sibony [23, Theorem 4.1, Theorem 7.3] avoir des conditions très strictes. Un
exemple explicite non-trivial d’une mesure singuliére avec des coefficients réels
a été donnée dans [23, Corollary 7.4]. Mais il semble difficile de fournir une

15
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large classe de mesures générales pour satisfaire les théorèmes équidistribution.

Notre motivation de la premiére partie est de construire une grande famille
des mesures modérées singulières qui satisfait la propriété équidistribution.
Nous montrons que les courants normalisés définis par les zéros de sections
aléatoires de puissances élevées de un fibré en droites positive sur une variété
projective convergent faiblement à la forme de courbure associée à certaines
familles de mesures modérées singulières. Notre méthode suit les techniques
d’estimations exponentielles pour les fonctions plurisousharmoniques par Dinh-
Nguyên-Sibony [21], voir la section 2.3.

Dans la deuxième partie, nous sommes motivés à généraliser la propriété
équidistribution dans le cas de plusieurs fibrés en droites gros dotées de métriques
singulières. Nous suivons les approches de Dinh-Sibony [23], Coman-Marinescu-
Nguyên [14] et [54, section 2]. Pour atteindre nos résultats, nous établissons
des estimations pointues sur les constantes liées à la capacité Alexander-Dinh-
Sibony sur les espaces multi-projectives [55], voir la section 3.4.

La capacité Alexander-Dinh-Sibony est étroitement liée à la fonction
globale extrémal (cf. [23, A.2] et [32, Section 5]). Le L2-méthode joue aussi
un rôle important dans l’étude des propriétés équidistribution. Par exemple,
nous appliquons L2-méthode pour explorer le comportement asymptotique des
fonctions du noyau de Bergman. Par conséquent, nous pouvons obtenir des
théorèmes de équidistribution avec une bonne vitesse de convergence (cf. [10],
[14], [15] etc). La propriété équidistribution fournit un outil pour étudier la
conjecture Unique Ergodicité par Rudnick-Sarnak, voir [51], [39], [49]. Il peut
aussi être appliquée à l’étude du chaos quantique en physique statistique (cf.
[3], [48] etc).

Partie I

Nous donnons le fond de base, afin d’introduire les principaux théorèmes.
Pour chaque espace vectoriel complexe V de dimension finie, soit ωFS la forme
Kählerienne standard induite par la métrique de Fubini-Study sur son espace

projectif P(V ) normalisé par
∫
P(V )

ω
dimP(V )
FS = 1. Soit X une variété projective

de dimension n, L un fibré en droites ample sur X. Fixez d’une métrique
hermitienne h sur L telle que la forme de courbure ω est Kähler sur X. Alors
ω représente la première classe de Chern c1(L) avec

∫
X
ωk = c1(L)k ∈ Z+.
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Soit Lp le p-produit tensoriel de L avec la métrique hp := h⊗p. Désignons
parH0(X,Lp) l’espace de toutes les sections holomorphes de Lp. Soit PH0(X,Lp)
l’espace projectif associé à ωFS comme sa forme Fubini-Study normalisée. Lais-
sez np := dimPH0(X,Lp). Définissez un produit intérieur sur H0(X,Lp) de la
façon suivante

〈s, s′〉 :=

∫
X

hp(s, s
′)ωn,

∀s, s′ ∈ H0(X,Lp). Nous pouvons choisir une base orthonormée {spj}npj=0 par

rapport au produit intérieur. Pour toute sp ∈ PH0(X,Lp), écrirez

sp :=

np∑
j=0

apjspj.

Ainsi, la section sp peut être identifié avec les coefficients (ap0, ..., apnp). La no-
tion de sections holomorphes aléatoires découle des variables aléatoires [ap0, ...,
apnp ] avec une distribution induites par la mesure de probabilité ω

np
FS sur

PH0(X,Lp). Soit [sp = 0] le courant défini par l’ensemble zéro de sp, où
sp ∈ PH0(X,Lp). Laissez PX :=

∏
p≥1 PH0(X,Lp).

Nous avons besoin de la notion de mesures modérées localement qui a été
introduite par Dinh-Sibony [24]. La notion découle d’un résultat classique [36,
Theorem 4.4.5].

Définition. Soit X une variété complexe. Une mesure positive mu est modérée
localement si pour tout ouvert U ⊂ X, un sous-ensemble compact K ⊂ U et
toute la famille compacte U de q.p.s.h. fonctions sur U , il y a des constantes
α > 0, c > 0 tel que ∫

K

exp(−αφ)dµ ≤ c, ∀φ ∈ U .

Dinh-Nguyên-Sibony [21] ont prouvé que la mesure de l’quilibre de endo-
morphisme de Pn est modérées localement. Dans la thèse, nous traitons des
mesures modérées dans une variété compacte Kählerienne X de dimension n
avec une forme Kählerienne ω fixe tel que ωn est la forme de volume de prob-
abilité. Considérons une mesure positive µ sur X, µ est dit PLB si tout les
q.p.s.h. fonctions sont µ-intégrable. Lorsque dimX = 1, µ est PLB si et seule-
ment si elle admet un potentiel borné locale [24].

Laisser

F := {φ q.p.s.h. on X : ddcφ ≥ −ω,max
X

φ = 0}.

L’ensemble F est compact dans Lp(X) et bornée dans L1(µ) quand µ est une
mesure PLB par Théorème 1.2.33 et Proposition 1.2.47. Rappelons que toute
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q.p.s.h. fonctions sur X sont cω-p.s.h. pour une constante c ≥ 0 et bornée
uniformément d’en haut. Ensuite, l’étude de q.p.s.h. fonctions peuvent être
réduits à l’étude de la famille F .

Définition. Soit µ un PLB mesure sur X. Nous disons que µ est (c, α)-
modérée pour certains constantes c > 0, α > 0 si∫

X

exp(−αφ)dµ ≤ c

pour tous les φ ∈ F . La mesure µ est appelé modérée s’il existe des constantes
c > 0, α > 0 tel qu’il est (c, α)-modérée.

Par exemple, la forme de volume ωn est modérée par Théorème 1.2.42. Voir
Section 1.2 pour la notion de mesures modérées en détail.

Afin d’exprimer notre théorème, nous devons aussi les terminologies suiv-
antes. Fixez de quelque exposant 0 < ρ < 1, une fonction u : M → R définie
sur un espace métrique compact (M, dist) est dit être de la classe C ρ avec
module c si

sup
x,y∈M
x 6=y

|u(x)− u(y)|
dist(x, y)ρ

≤ c.

Considérons une variété complexe M avec une forme de volume fixe, soit γ
un courant réel clos de bidegré (1, 1) sur M . Une fonction semi-continue
supérieurement u : M → [−∞,∞) en L1

loc(M) est dit γ-p.s.h. si ddcu+ γ ≥ 0.

Soit σp la mesure probabilité de Lebesgue sur PH0(X,Lp) et σ la mesure
prodiut de celles-ci sur PX . Shiffman-Zelditch [57] a prouvé que la séquence
des courants {1

p
[sp = 0]} converge faiblement vers ω pour σ-presque partout

(sp) ∈ PX . C’est-à-dire,
1

p
[sp = 0]→ ω

pour σ-presque partout (sp) ∈ PX . Les ingrédients clés pour prouver le
théorème sont le théorème de Tian [9, 60] (autres résultats sur les comporte-
ments asymptotiques des noyaux Bergman) et les estimations des variances
des courants [sp = 0]. Quand X = Pn, ω = ωFS et L = O(1) le dual de fibré
en droites tautologique, le théorème est d’étudier la distribution des zéros de
polynômes homogènes aléatoire ou les polynômes complexes correspondants.
La distribution du SU(2) polynômes est un cas particulier, lorsque n = 1. Si
on considère les polynômes aléatoires complexes d’une variable et le produit
scalaire défini sur le cercle unitaire de C avec la mesure de Haar, on obtient
alors le résultat classique de Hammersley [33].
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Dinh-Sibony [23] ont généralisé le résultat dans le cas de mesures PLB
et obtenu une bonne estimation de la vitesse de convergence sur une variété
projective doté d’une métrique positivement courbe lisse. Voir Section 2.1 et
Section 2.3 pour les définitions et notations en détail.

Théorème. Dans le cadre du théorème de Shiffman-Zelditch, les mesures de
probabilité ω

np
FS sur PH0(X,Lp) sont remplacés par des mesures de probabilité

PLB σp avec les conditions suivantes:

∞∑
p=1

∆p(pt) <∞, ∀t > 0,

Rp

p
→ 0.

Alors la convergence faible
1

p
[sp = 0]→ ω

est toujours vrai pour σ-presque partout (sp) ∈ PX .

Les ingrédients clés pour prouver le théorème sont quelques méthodes pluripo-
tentes, notion de transformations méromorphes et ddc-méthode. Ils ont aussi
construit une mesure singulière à coefficients réels qui satisfait la propriété
équidistribution (cf. [23, Corollaire 7.4]).

Lorsque les mesures de Lebesgue dans le résultat de Shiffman-Zelditch sont
remplacées par des mesures modérées avec Hölder potentiels (voir sections 2.3,
2.4), nous avons notre théorème principal de la manière suivante qui donne
une grande famille de mesures modérées singulières qui satisfait la propriété
équidistribution. Il peut être considéré comme une perturbation des mesures
standard induites par la métrique Fubini-Study.

Théorème. Soit L un fibré en droites ample sur une variété projective X
de dimension n et 0 < ρ < 1 un exposant. Alors il existe une constante
c = c(X,L, ρ) > 1 avec la propriété suivante. Pour chaque p ≥ 1, 1 ≤ j ≤ np,
soit up,j : PH0(X,Lp)→ R une fonction et ξp, εp > 0 deux nombres tels que:
(i) up,j est de classe C ρ avec module ξp, ∀1 ≤ j ≤ np;
(ii) up,j est εpωFS-p.s.h., ∀1 ≤ j ≤ np;
(iii) ξp ≤ 1/cp

n
, εp ≤ 1/cp

n
.

Soit σp = (ddcup,1 + ωFS) ∧ (ddcup,2 + ωFS) ∧ · · · ∧ (ddcup,np + ωFS) la mesure
de probabilité sur PH0(X,Lp). Doter PX avec la mesure produit σ =

∏
p≥1 σp.

Ensuite, pour presque partout s = (sp) ∈ PX par rapport à σ, la séquence des
courants {1

p
[sp = 0]} converge faiblement vers ω.
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Le résultat suivant donne une vitesse de convergence pour l’équidistribution
dans le théorème 0.2.1.

Théorème. Dans le cadre du théorème 0.2.1, il existe des sous-ensembles
Ep ⊂ PH0(X,Lp) et une constante positive C dépendant seulement X,L tel
que pour tout p suffisamment grand, nous avons

σp(Ep) ≤
C

p2

|
〈1

p
[sp = 0]− ω, ψ

〉
| ≤ C log p

p
‖ψ‖C 2 ,

pour tout point sp ∈ PH0(X,Lp) \Ep et des (n− 1, n− 1)-forme ψ de la classe
C 2.

Partie II

Deux questions se posent naturelles après avoir résolu la première partie:

1. Il est possible de considérer le cas de plusieurs fibrés en droites générales,
par exemple fibrés en droites gros?

2. On peut étendre les zéros de sections d’un seul fibré en droites aux zéros
communs des sections de plusieurs ceux?

Heureusement, les questions sont résolues dans certaines directions dans le
contexte de mesures de probabilité de Lebesgue. Ces problèmes déquidistribution
et des vitesses de convergence des sections holomorphes de fibrés en droites sin-
guliers holomorphes hermitiennes ont été intensivement exploré récemment.

Coman-Marinescu [10] ont étendu les résultats déquidistribution de [57] et
[23] dans le cas d’un fibré en droites holomorphe singulier doté une métrique
strictement positive-courbe. Dinh-Ma-Marinescu [18] étudié l’équidistribution
pour fibrés en droites gros dotés métriques semipositive-courbées. Coman-Ma-
Marinescu [13] ont établi les résultats déquidistribution pour fibrés en droites
holomorphes singuliers sur une espace complexe compacte normale Kähleri-
enne. Notre deuxième partie a été étudiée par Coman-Marinescu-Nguyên [14]
dans le contexte de mesures de probabilité de Lebesgue. Voir [11, 12] pour une
discussion plus détaillée.

Coman-Marinescu-Nguyên [14] étudié l’équidistribution de zéros communs
de sections de plusieurs fibrés en droites gros. La mesure du théorème déquidistribution
dans [14] est la seule norme induite par la métrique de Fubini-Study. D’autre
part, notre travail [54] a étudié l’équidistribution des zéros de sections d’un
seul fibré en droites holomorphe positif associé à des mesures modérées. La
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métrique sur le fibré en droites dans ce dernier ouvrage est lisse.

Dans cette partie, les courants normalisés sont définis par les zéros com-
muns de m tuples des sections aléatoires de puissances élevées de m fibrés en
droites gros hermitiens singulier sur une variété compacte Kählerienne. Nous
montrons qu’ils distribuent asymptotiquement vers le produit des courants de
courbure des métriques singulières associées à certaines mesures modérées. Par
conséquent, nous généralisons les deux théorèmes principaux [14] et [54].

Notre méthode suit l’approche de Coman-Marinescu-Nguyên [14]. Adapter
leur travail, nous montrons que les intersections des courants d’intégration le
long de sous-variétés sont bien définis presque partout par rapport à un produit
fini de mesures modérées (voir Section 3.3). De plus, leur stratégie d’utilisation
de la théorie déquidistribution Dinh-Sibony nous conduit à obtenir une esti-
mation de la vitesse de convergence (voir Section 3.4 et Section 3.5). Ensuite,
nous combinons ce qui précède à l’analyse technique des mesures modérées
pour atteindre nos résultats, dans lequel notre travail de base est dans les es-
timations des constantes sur les espaces multi-projectives (voir section 3.4).

Nous commençons avec les fonds de base de cette partie. Soit X une variété
compacte Kählerienne de dimension n avec une forme Kählerienne lisse ω.
Rappelons qu’un fibré en droites singulier hermitienne holomorphe (L, h) est
un fibré en droites holomorphe L avec une métrique hermitienne qui est donnée
dans toute trivialisation par un poids fonction e−ϕ tels que ϕ est localement
intégrable (cf. Définition 1.3.13). Soit c1(L, h) son courant de courbure qui
représente la première classe de Chern. Pour être précis, si eL est un cadre
holomorphe de L sur un sous-ensemble ouvert U ⊂ X, alors |eL|2h = e−2ϕ,
c1(L, h) = ddcϕ sur U . Ici d = ∂ + ∂̄, dc = 1

2πi
(∂ − ∂̄). Le cas où c1(L, h) ≥ 0

comme un courant est particulièrement intéressant. On dit qu’un fibré en
droites holomorphe L est gros si elle admet une métrique singulière h avec
c1(L, h) ≥ εω pour une constante ε > 0 (cf. Théorème 1.3.23).

Soit (Lk, hk), 1 ≤ k ≤ m ≤ n, m fibrés en droites singuliers hermiti-
ennes holomorphes sur X. Soit Lpk le p-produit tensoriel de Lk. Dsignons par
H0

(2)(X,L
p
k) l’espace Bergman de L2-sections holomorphes de Lpk par rapport

au métrique hk,p := h⊗pk induite par hk et le volume forme ωn sur X, muni du
produit intérieur

〈S, S ′〉k,p :=

∫
X

hk,p(S, S
′)ωn,

∀S, S ′ ∈ H0
(2)(X,L

p
k). Soit PH0

(2)(X,L
p
k) l’espace projectif associé. Laissez

dk,p := dimH0
(2)(X,L

p
k) − 1. Il est bien connu (voir Proposition 1.3.24) que
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dk,p = O(pn).

Maintenant, nous considérons l’espace multi-projective

Xp := PH0
(2)(X,L

p
1)× ...× PH0

(2)(X,L
p
m)

doté d’une mesure de probabilité σp pour chaque p ≥ 1. Soit πk,p : Xp →
PH0

(2)(X,L
p
k) les projections naturelles. Désignons par [S = 0] le courant

défini par l’ensemble zéro de S ∈ H0(X,Lpk). Soit

[Sp = 0] := [Sp1 = 0] ∧ ... ∧ [Spm = 0], ∀Sp = (Sp1, ..., Spm) ∈ Xp,

chaque fois qu’il est bien définie. Laisser

PX :=
∞∏
p=1

Xp.

Il est un espace de probabilité avec la mesure produit σ =
∏∞

p=1 σp.

On note dist la distance sur X induite par la forme Kählerienne ω. Soit
φ : U → [−∞,∞) une fonction sur un sous-ensemble ouvert U ⊂ X, A ⊂ X
un sous-ensemble analytique approprié. Conformément à la terminologie dans
[14], φ est appelé Hölder avec singularités le long A s’il y a des constantes
positives c, δ et 0 < ν ≤ 1 satisfaisant qui

|φ(z)− φ(w)| ≤ cdist(z, w)ν

min{dist(z, A), dist(w,A)}δ

pour tout z, w ∈ U \ A. Une métrique singulière h de L est définie comme
Hölder avec singularités le long A si chaque poids local h est Hölder avec sin-
gularités le long de A. Pour motivations ainsi que des exemples de ces mesures,
voir [14].

Le multi-espace projectif Xp dans [14] est équipé de la mesure de probabilité
σ0
p qui est le produit des mesures de Lebesgue induites par les mesures Fubini-

Study sur les composants. Dans cette partie, nous définissons des mesures
modérées singulières σp comme des perturbations de σ0

p sur Xp. Pour chaque

p ≥ 1, 1 ≤ k ≤ m, 1 ≤ j ≤ dk,p, laissez uk,pj : PH0
(2)(X,L

p
k) → R une fonction

semi-continue supérieurement. Fixez 0 < ρ < 1 et une séquence de constantes
positives {cp}p≥1. Nous appelons {uk,pj } une famille de (cp, ρ)-fonctions si tout

uk,pj satisfont les deux conditions suivantes:

• uk,pj est de classe C ρ avec module cp,

• uk,pj est cpωFS-p.s.h..
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Ensuite, pour chaque p ≥ 1, il est une mesure de probabilité

σp =
m∏
k=1

dk,p∧
j=1

π?k,p(dd
cuk,pj + ωFS)

sur Xp. D’après Théorème 0.2.1 et Remarque 2.3.7,
∧dk,p
j=1(ddcuk,pj + ωFS) est

une mesure modérée sur PH0
(2)(X,L

p
k) quand cp ≤ 1/cp

n
pour un constant

approprié c > 1, ∀1 ≤ k ≤ m, p ≥ 1. La mesure de probabilité sur PX

σ =
∞∏
p=1

σp =
∞∏
p=1

m∏
k=1

dk,p∧
j=1

π?k,p(dd
cuk,pj + ωFS)

est dit être généré par une famille de (cp, ρ)-functions {uk,pj } sur {PH0
(2)(X,L

p
k)}.

Voici notre théorème principal.

Théorème. Soit (X,ω) une variété compacte Kählerienne de dimension n,
(Lk, hk), 1 ≤ k ≤ m ≤ n, soit m fibrés en droites gros singulières hermitiennes
holomorphes sur X. La métrique hk est continue en dehors d’un sous-ensemble
analytique propre Ak ⊂ X, c1(Lk, hk) ≥ εω sur X pour une constante ε > 0,et
A1, ..., Am sont en position générale. Soit 0 < ρ < 1. Alors il existe une
constante c > 1 qui ne dépend que X,Lk, ρ avec la propriété suivante: Si
σ est la mesure de probabilité sur PX généré par une famille de (1/cp

n
, ρ)-

fonctions {ujk,p} sur {PH0
(2)(X,L

p
k)} défini par (2), alors pour presque partout

{Sp}p≥1 ∈ PX par rapport à σ, nous avons dans le sens faible des courants
comme p→∞ sur X,

1

pm
[Sp = 0]→ c1(L1, h1) ∧ ... ∧ c1(Lm, hm).

Remarque. Quand tout ujk,p ≡ 0, alors σp sont les mesures de Lebesgue σ0
p

sur Xp et nous obtenons [14, Théorème 1.2]. En outre, la constante c est
indépendante des choix de métriques singulières sur les fibré en droites gros.

Lorsque la métrique hk sont tous Hölder avec singularités, nous pouvons
aussi étendre le résultat dans [14] sur l’estimation de la vitesse de la conver-
gence ci-dessus associée aux mesures modérées définies par (1). Ce théorème
est aussi une généralisation du théorème 0.2.2.

Théorème. Nous gardons les notations et les hypothèses du Théorm̀e 0.3.1.
Supposons, en outre, que hk est Hölder avec singularités le long Ak, 1 ≤ k ≤
m. Alors il existe une constante ξ positive qui ne dépend que de m, et une
autre constante positive C qui dépend X, (L1, h1), ..., (Lm, hm) avec la propriété
suivante: Compte tenu de toute séquence des nombres positifs {λp}∞p=1 avec les
conditions suivantes

lim inf
p→∞

λp
log p

> (1 + ξn)C and lim
p→∞

λp
pn

= 0,
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il existe des sous-ensembles Ep ⊂ Xp tel que pour tout p suffisamment grand,
(i)

σp(Ep) ≤ Cpξn exp(−λp
C

),

(ii) pour tout point Sp ∈ Xp \ Ep et des (n −m,n −m)-forme φ de classe
C 2, ∣∣〈 1

pm
[Sp = 0]−

m∧
k=1

c1(Lk, hk), φ
〉∣∣ ≤ Cλp

p
‖φ‖C 2 .

Remarque. La principale différence entre Théorème 0.3.3 et [14, Théorème
1.4] est que les mesures en Théorème 0.3.3 ne sont que modérées. L’estimation
optimale de la vitesse de convergence dans Théorème 0.3.3 (ii) est d’ordre
O(log p/p). Dans ce cas, les mesures σp(Ep) sont polynomialement petite.
Donc Théorème 0.2.2 est un cas particulier du Théorème 0.3.3.

Notez que dans Théorème 0.3.1 et toutes les autres théorèmes équiditribution
étudiés dans cette thèse, la limite de la séquence de convergence ne peut pas
être un courant positif fermé arbitrairement donné. Par exemple, il y a une
condition que c1(Lk, hk) ≥ εω dans Théorème 0.3.1. Cependant, il est possible
lorsque X = Pn, L = O(1),m = 1 avec une mesure de probabilité σ choisi
correctement.

Théorème. Compte tenu de tout courant positif fermé T de bidegré (1, 1) de
la masse 1 sur Pn. Soit dp = dimH0(Pn,O(p))− 1. Alors il existe une famille
de mesures de probabilité lisses σp = (ωFS + ddcup)

dp sur PH0(Pn,O(p)) pour
certaines fonctions réelles lisses up avec la propriété suivante: Pour presque
partout S = (Sp) ∈

∏
p≥1 PH0(Pn,O(p)) par rapport à σ =

∏
p≥1 σp, nous

avons dans le sens faible des courants comme p→∞ sur Pn,

1

p
[Sp = 0]→ T.



Chapter 1

Preliminaries.

This chapter supplies the definitions, notations and background needed in
the thesis. We mainly introduce currents, plurisubharmonic functions and
Hermitian holomorphic line bundles. This chapter follows basically Demailly’s
book [16]. See [16], [22], [28], [34], [42] and [45] for complete references.

1.1 Currents.

The notion of currents was introduced by Georges de Rham. It generalizes
the notion of distributions.

1.1.1 Currents on complex manifolds

Let X be a smooth complex manifold of dimension n. A differential form
φ of bidegree (p, q) is a section of

∧p,q T ?X. In a local coordinate, we denote
by (dz1, ..., dzn) the corresponding basis of the cotangent space at a point. Let
(x1, ...x2n) be the local real coordinate of (z1, ..., zn). We can write

φ(z) =
∑

|I|=p,|J |=q

φI,JdzI ∧ dz̄J ,

where φI,J are complex smooth functions, dzI = dzi1 ∧ ... ∧ dzip when I =
(i1, ..., ip) and dz̄J = dzj1 ∧ ... ∧ dzjq when J = (j1, ..., jq). Let Dp,q(X) be
the set of all differential forms of bidegree (p, q) with compact support. We

introduce a topology on Dp,q(X). If Ω is a subset of X, we denote Dp,q(Ω) the
space of all elements φ ∈ Dp,q(X) with compact support in Ω. Let {Ωj}∞j=1 be

a sequence of relatively compact open subsets of X with Ω̄j ⊂ Ωj+1 for every
j, and ∪∞j=1Ωj = X. To every compact subset K in a local coordinate and
every integer l ∈ N, we define a semi-norm

‖φ‖l,K := sup
z∈K

max
|I|=p,|J |=q
|α|≤l

∣∣DαφI,J(z)
∣∣,

25
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where α = (α1, ..., α2n) run over N2n and Dα = ∂|α|/∂xα1
1 ...∂x

α2n
2n is a derivation

of order |α|. Since X is assumed to be separable, we can equip the space
Dp,q(Ω̄) with the topology induced by a countable set of semi-norm ‖ · ‖l,K
with K contained in Ω̄. Such topology is called the topology of the uniform
convergence of coefficients and all the derivatives. Then Dp,q(Ω̄) is a Fréchet
space with the topology. Hence we equip Dp,q(X) with the topology of the
strict inductive limit of the spaces Dp,q(Ω̄j).

Definition 1.1.1. A current of bidegree (p, q) (or (p, q)-current) on X is a
linear continuous form T : Dn−p,n−q(X)→ C. Let φ be a form in Dn−p,n−q(X),
the value of T at φ is denoted by

〈
T, φ

〉
. The form φ is called a test form.

A (p, q)-current can also be called a current of bidimension (n− p, n− q).

Definition 1.1.2. A sequence of (p, q)-currents {Tj} converges weakly (or
converges in the sense of currents) to a current T if

〈
Tj, φ

〉
→
〈
T, φ

〉
for

any test form φ ∈ Dn−p,n−q(X).

Denote by D
′p,q(X) the set of all (p, q)-currents. It is the dual of Dp,q(X).

Note that a (p, q)-current T can be regarded as a form with distribution coef-
ficients:

T =
∑

|I|=p,|J |=q

TI,JdzI ∧ dz̄J ,

where TI,J are distributions.

Example 1.1.3. A form ψ of bidegree (p, q) is a (p, q)-current Tψ via exterior
product as follows.〈

Tψ, φ
〉

=

∫
X

ψ ∧ φ, ∀φ ∈ Dn−p,n−q(X).

Example 1.1.4. Let Y be a closed complex submanifold of X of dimension p,
then we can define the current of integration over Y by〈

[Y ], φ
〉

=

∫
Y

φ, ∀φ ∈ Dp,p(X).

If X = Cn and Y = {z1 = ... = zn−p = 0}, then we have

[Y ] = (
ip

2
)pδ0(z1, ..., zn−p)⊗ 1(zI)dzI ∧ dz̄I ,

where I = (n− p+ 1, ..., n), δ0 is the Dirac measure at the origin of the space
{zI = 0}.

The above examples explain the terminology of dimension and degree used
for a current.

Since a current is a continuous form in the topology defined above, we have
the following property.
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Proposition 1.1.5. Let T be a (p, q)-current on X and K ⊂ X be a compact
subset. Then there exist a positive integer l and a positive constant C such
that

|
〈
T, φ

〉
| ≤ C‖φ‖l,K ,

for every φ ∈ Dn−p,n−q(X) with supp(φ) ⊂ K.

Definition 1.1.6. If the integer l in Proposition 1.1.5 can be chosen inde-
pendently of K, the current T is called of finite order. The smallest integer l
satisfying the property is called the order of T .

It is easy to see that the currents in the above two examples are both of
order 0.

Definition 1.1.7. The support of a (p, q)-current T is defined to be the small-
est closed subset supp(T ) of X such that T vanishes on X \ supp(T ). That is
to say,

〈
T, φ

〉
= 0 for every test form φ ∈ Dn−p,n−q(X \ supp(T )).

Note that the current [Y ] in Example 1.1.4 has support Y .

1.1.2 Operators on currents

There are several operators on currents which are similar to those on dif-
ferential forms. Recall that d = ∂ + ∂̄. In a local coordinate, we have

∂φ : =
∑
I,J

k∑
i=1

∂φI,J
∂zi

dzi ∧ dzI ∧ d∂dz̄J ,

∂̄φ : =
∑
I,J

k∑
i=1

∂φI,J
∂̄zi

dz̄i ∧ dzI ∧ d∂dz̄J .

Define dc := 1
2πi

(∂ − ∂̄). It is a real operator. It follows that ddc = i
π
∂∂̄.

The normalization of dc is convenient for many purposes. For example, it
simplifies the Lelong-Poincaré formula. We define the exterior derivative of
currents as follows. Let T be a (p, q)-current, the (p+ 1, q)-current ∂T and the
(p, q + 1)-current ∂̄T is defined by〈

∂T, φ
〉

: = (−1)p+q+1
〈
T, ∂φ

〉
,〈

∂̄T, φ
〉

: = (−1)p+q+1
〈
T, ∂̄φ

〉
.

The current dT can be defined similarly. The maps T → dT , T → ∂T and
T → ∂̄T are continuous for the topology of currents. T is called closed if
dT = 0. In particular, we have

〈
ddcT, φ

〉
=
〈
T, ddcφ

〉
. An application of the

classical Stokes’ formula yields

d[Y ] = (−1)n−p+1[∂Y ],

where ∂Y denotes the boundary of the complex manifold Y .
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Definition 1.1.8. Let T be a (p, q)-current and ψ be a form of bidegree (p1, q1).
We define the wedge product T ∧ ψ by〈

T ∧ ψ, φ
〉

:=
〈
T, φ ∧ ψ

〉
,∀φ ∈ Dn−p−p1,n−q−q1(X).

Let X ′ be another smooth complex manifold of dimension n′. Let f : X →
X ′ be a holomorphic map which is proper on the support of T . We introduce
the notions of direct image and inverse image of a current.

Definition 1.1.9. The direct image of T by f is defined by〈
f?(T ), φ

〉
:=
〈
T, f ?(φ)

〉
, ∀φ ∈ Dn−p,n−q(X ′).

The current f?(T ) is of bidegree (n′− n+ p, n′− n+ q) and of bidimension
(n− p, n− q). So the operator f? preserves the dimension of currents.

Proposition 1.1.10. The direct image operator f? is continuous. The support
of f?(T ) is contained in f(suppT ). Moreover, it commutes with the exterior
derivative, i.e.

d(f?(T )) = f?(dT ).

Assume in addition that f is a submersion. Let φ be a form of bidegree
(p, q) (even with L1

loc coefficients) with the condition that f is proper. Then
f?φ is a form of bidegree (n′ − n + p, n′ − n + q). Moreover, f?φ is calculated
by integration over the fibers of f , i.e.

f?φ(w) =

∫
z∈f−1(w)

φ(z).

So we can define the inverse image of a current.

Definition 1.1.11. Let T be a (p, q)-current on X ′. The inverse image of T
by f is defined by〈

f ?(T ), φ
〉

:=
〈
T, f?(φ)

〉
,∀φ ∈ Dn−p,n−q(X).

The operator f ? preserves the degree of currents. For example, we have
f ?[Y ] = [f−1(Y )].

Assume that the support of T or a smooth function g on X is compact, We
can define the convolution T ? g by

T ? g :=
∑
I,J

TI,J ? g,

where TI,J are the distribution coefficients of T . A convolution of a distribution
and a smooth function with compact support is a smooth function, which is a
direct consequence of Taylor’s formula with compactness condition. So T ? g
is a smooth form. Hence we can approximate currents by smooth forms in
the weak sense. Refer to [37] for more information about convolutions of
distributions or currents.
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1.1.3 De Rham theorem

By an analogous argument, we can define the following cohomology group
associated to currents

Hp
c (X,R) :=

real valued closed p-currents on X

real valued exact p-currents on X
.

When X is paracompact, it follows from the theory of sheaf cohomology [16,
Chapter IV] that the de Rham cohomology group Hp(X,R) is isomorphic to
Hp
c (X,R). In particular every closed p-current is cohomologous to a closed

smooth p-form.
Denote by Hp,q(X,C) the Dolbeault cohomology group. If X is a complex

projective space Pn of dimension n, by Hodge decomposition theorem [16,
Chapter VI], we deduce that

Hp,q(Pn,C) = 0, for p 6= q,

Hp,p(Pn,C) ' C.

We will see later that the generator of Hp,p(Pn,C) is the p times tensor of the
Fubini-Study form.

It is easy to calculate the Dolbeault cohomology groups of product spaces
of several complex projective spaces by Künneth formula. The above results
will be used in cohomological arguments in the proofs of our main theorems.

1.1.4 Positive closed currents

The notion of positive closed currents was introduced by Pierre Lelong
[44] in 1957. It generalized analytic subsets in complex manifolds, since every
analytic subset can be associated to a current by integration over its set of
regular points and all such currents are proved to be positive closed. It has
many applications in complex analysis (especially pluripotential theory) and
dynamical systems in higher dimensions.

Definition 1.1.12. A (p, p)-form φ is called positive if it is equal to a finite
combination of forms (iα1 ∧ ᾱ1) ∧ ... ∧ (iαp ∧ ᾱp) at each point, where αj are
(1, 0)-forms. The form φ is said to be weakly positive if φ ∧ ψ is positive for
any positive (n − p, n − p)-form ψ. A (p, p)-current T is said to be positive
(resp. weakly positive) if

〈
T, φ

〉
≥ 0 for every weakly positive (resp. positive)

test form of bidegree (n− p, n− p).

Note that all positive closed currents are real by duality. The two notions
of positivity and weakly positivity coincide when p = 0, 1, n− 1, n. Moreover,
the operators f? and f ? preserve the positivity.

Proposition 1.1.13. Let T be a positive (p, p)-current. Then T is of order
zero. The coefficients TI,J are distributions of order zero, i.e. complex mea-
sures.
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Proof. We give a sketch proof here. If T is a distribution and it is positive,
then it can be extended to a positive linear functional on the space of complex
continuous functions. Hence T is a positive measure. Note that the real vector
space

∧p,p(Cn,R) admits a basis consisting of positive forms. We can choose
such a basis {ψJ} for

∧n−p,n−p(Cn,R). Then we set {φI} to be the basis for∧p,p(Cn,R) which is dual to {ψJ}. So T = TIφI . If g is a non-negative test
function, we have

TI(g) = T (gφI) ≥ 0.

By the previous argument, TI is a positive measure. Then the coefficients of T
are complex measures if it is expressed in terms of an arbitrary basis. Hence
T is of order 0.

Definition 1.1.14. Let β = i∂∂̄‖z‖2, define

σT :=
1

2n−p(n− p)!
T ∧ βn−p.

Then σT is said to be the trace measure of T .

Recall that a Hermitian metric on X is a smooth positive Hermitian form
h =

∑
hjkdzj ⊗ dz̄k. The form ω = i

∑
hjkdzj ∧ dz̄k is the associated positive

(1, 1)-form. The following is a famous theorem due to Wirtinger.

Theorem 1.1.15. Let X be equipped with a Hermitian metric h. Deonte by
ω the associated form of h. Let Y be an oriented real submanifold of class C1

and real dimension 2p in X. Denote by dVY the Riemannian volume form on
Y with respect to the induced metric h|Y . There exists a continuous function
α in Y such that

αdVY =
1

2pp!
ωp|Y .

Then |α| ≤ 1 and the equality holds if and only if Y is a complex analytic
submanifold of X.

We have defined currents of integration over a complex submanifold. This
notion can be also defined over analytic subsets. The following Lelong’s theo-
rem claims that such currents are positive closed ones.

Theorem 1.1.16. Let Y be an analytic subset of pure dimension n− p of X.
Denote by reg(Y ) be the regular part of Y . Define the (p, p)-current [Y ] by〈

[Y ], φ
〉

=

∫
reg(Y )

φ, ∀φ ∈ Dn−p,n−p(X).

Then the current [Y ] is well-defined and positive closed.

The theorem shows that positive closed currents extend the notion of ana-
lytic subsets in complex manifolds. Moreover, the volume of reg(Y ) near sin-
gular points is locally bounded. Now we introduce a support theorem which
is useful in latter chapters.
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Definition 1.1.17. A current T is called normal if T and dT are both of order
0.

Every positive closed current is normal.

Theorem 1.1.18. Let T be a normal (p, p)-current. If the support of T is
contained in an analytic subset V of dimension less than p, then T = 0.

Another useful support result is the following

Theorem 1.1.19. Let V be an analytic subset of X with global irreducible
components Vj of pure dimension p. Assume that T is a closed (p, p)-current
of order 0 with support contained in V . Then T can be written as the form∑
λj[Vj] where λj ∈ C.

1.2 Plurisubharmonic functions

In this section, we introduce the notions of plurisubharmic functions and
their basis properties. The positive closed (1, 1)-currents can be studied by
plurisubharmic functions locally. Then we define Monge-Ampère operators.
Some continuity properties of Monge-Ampère operators are needed in our the-
sis. The quasi-plurisubharmic functions can be defined in compact complex
manifolds. We conclude this section with the notion of moderate measures
with respect to a compact family of quasi-plurisubharmic functions.

1.2.1 Plurisubharmonic functions

Plurisubharmonic (p.s.h. for short) functions were introduced by Lelong
and Oka in 1942. They play a central role in the study of complex analysis.
For example, there are analogies between plurisubharmonicity and pseudocon-
vexity. The p.s.h. functions are the natural counterpart of the subharmonic
functions of one variable. Note that, to some extend, the class of subharmonic
functions of several complex variables is quite large. The p.s.h. functions are
precisely the ones among subharmonic functions which are invariant under
compositions with biholomorphic maps. That is why p.s.h. functions make
sense on complex manifolds.

Definition 1.2.1. Let Ω be an open subset of Cn. A function u : Ω →
[−∞,∞) is said to be plurisubharmonic function if it is upper semicontinuous,
not identically ∞ on each connected component of Ω and satisfy

u(z) ≤ 1

2π

∫ 2π

0

u(z + weiθ)dθ,

for each z ∈ Ω and w ∈ Cn such that

{z + wλ : λ ∈ C, |λ| ≤ 1} ⊂ Ω.
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The set of p.s.h. functions (resp. subharmonic functions) on Ω is denoted
by Psh(Ω) (resp. Sh(Ω)). If in addition u ∈ C2(Ω), then it is easy to see
that u ∈ Sh(Ω). Most of properties for subharmonic functions in R2n can
carry over to the case of plurisubharmonic functions in Cn. Note that the
semicontinuity implies that p.s.h. functions are locally bounded from above.
Denote by {χε} the standard smoothing kernels [16, 2.D.3]. The following
result is the approximation theorem for p.s.h. functions.

Theorem 1.2.2. Let u ∈ Psh(Ω). Set Ωε := {z ∈ Ω : dist(z, ∂Ω) > ε} for
ε > 0. Then u ? χε ∈ C∞(Ωε) ∩ Psh(Ωε). Moreover, the family of {u ? χε} is
non decreasing, and for each z ∈ Ω, we have

lim
ε→0

u ? χε(z) = u(z).

In general, we can not find a decreasing sequence {uj} ⊂ C∞(Ω) ∩ Psh(Ω)
which converges pointwise to u. One counterexample was shown by Fornæss
[42, Example 2.9.4].

Proposition 1.2.3. Let Ω be an open subset of Cn. Then we have Psh(Ω) ⊂
Sh(Ω) ⊂ L1

loc(Ω).

P.s.h. functions satisfy the maximum principal in bounded domains.

Proposition 1.2.4. Let Ω be a bounded connected open subset of Cn. Let
u ∈ Psh(Ω). Then either u is constant or, for each z ∈ Ω,

u(z) < sup
w∈∂Ω
{lim sup
y→w,y∈Ω

u(y)}.

Proposition 1.2.5. If u ∈ Psh(Cn) is bounded above, then u is constant.

Theorem 1.2.6. [42, Theorem 2.9.12] Let Ω (resp. Ω′) be an open subset of
Cn (resp. Cn′). If u ∈ Psh(Ω) and f : Ω′ → Ω is a holomorphic map, then the
composition u ◦ f is a p.s.h. function in Ω′. Conversely, u ∈ Psh(Ω) if and
only if u ◦ g is subharmonic in g−1(Ω) for every complex linear isomorphism
g : Ω→ Ω.

Proposition 1.2.7. Let Ω be an open subset of Cn.
(i) The set Psh(Ω) is a convex cone. That is to say, if a > 0, b > 0 and
u, v ∈ Psh(Ω), then au+ bv ∈ Psh(Ω).
(ii) If {uj} is a decreasing sequence of p.s.h. functions in a connected open
subset Ω, then u := limj→∞ uj is p.s.h. or u ≡ −∞.
(iii) If u : Ω → R and the sequence of p.s.h. functions in Ω converges uni-
formly to u on compact subsets of Ω, then u ∈ Psh(Ω).
(iv) Let u1, ..., um ∈ Psh(Ω). Let χ : Rm → R be a convex function and
χ(t1, ..., tm) is non decreasing in each variable tj. Then χ(u1, ..., um) ∈ Psh(Ω).
In particular u1 + ...+um,max{u1, ..., um}, log(eu1 + ...+ eum) are p.s.h. func-
tions.
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Example 1.2.8. Since log |z| is a subharmonic function on C, log |f | ∈ Psh(X),
for any holomorphic function f on X. For any holomorphic functions fj and
αj ≥ 0, 1 ≤ j ≤ m,

log(|f1|α1 + ...+ |fm|αm) ∈ Psh(X).

Let {uα}α∈Λ be a family of upper semicontinuous functions from Ω to
[−∞,∞). Assume that {uα} are locally uniformly bounded from above. Then
we can define the upper envelope by u := supuα. Note that u may not be
upper semicontinuous, so we consider its upper semicontinuous regularization
as follows,

u?(z) = lim
ε→0

sup
B(z,ε)

u ≥ u(z).

It is easy to see that u? is upper semicontinuous. The following property is
called Choquet’s lemma.

Lemma 1.2.9. Every family {uα} admits a countable subfamily {vj} = {uαj}
with its upper envelope v satisfying v ≤ u ≤ u? = v?.

Proposition 1.2.10. Let {uα} ⊂ Psh(Ω) be locally uniformly bounded from
above and u be the upper envelope. Then its upper semicontinuous regulariza-
tion u? is also p.s.h. and is equal to u almost everywhere.

Proposition 1.2.11. The set Psh(Ω) is closed in L1
loc(Ω) and every bounded

subset is relatively compact. More precisely, if {uj} ⊂ Psh(Ω) is a sequence
which is locally bounded from above, then either it converges locally uniformly
to ∞, or there exists a subsequence {ujk} which converges to a p.s.h. function
in Lploc(Ω) for any 1 ≤ p <∞.

Definition 1.2.12. A function u is called pluriharmonic if u and −u are both
plurisubharmonic.

A pluriharmonic function u verifies the condition that ddcu = 0. It is easy
to check that the real part and image part of a holomorphic function are both
pluriharmonic. Conversely, a pluriharmonic function is locally the real part of
a holomorphic function. We have the following theorem in the global case.

Theorem 1.2.13. If the first De Rham cohomology group of X is zero, then
every plurisubharmonic function is the real part of some holomorphic function
on X.

Pluriharmonic functions are the counterpart of harmonic functions in sev-
eral complex variables. But when we define harmonic functions by using the
following way: A subharmonic function u is said to be harmonic if for every rel-
atively compact open subset V of Ω and every upper semicontinuous function
v in V̄ , we have

v ∈ Psh(Ω) and v ≤ u in ∂Ω imply v ≤ u in Ω.



34 Guokuan SHAO

The counterpart of harmonic functions following this definition is called max-
imal plurisubharmonic functions. Note that harmonic functions are solutions
of homogeneous Laplace equations. We will see later that the corresponding
equations for maximal plurisubharmonic functions is called Monge-Ampère
equations.

Definition 1.2.14. A subset V of X is said to be pluripolar if for every point
z ∈ X there is a neighbourhood U of z and a p.s.h. function u on U such that
V ∩ U ⊂ {u = −∞}.

We know that if u is a p.s.h. function on a connected subset, then either
u ≡ −∞ or u is locally integrable. Hence a pluripolar set is of zero Lebesgue
measure.

Proposition 1.2.15. Any proper analytic subset of X is pluripolar. The Haus-
dorff dimension of a pluripolar set is smaller or equal to 2n− 2.

Theorem 1.2.16. Let V be a closed pluripolar subset of X and u be a p.s.h.
function on X \ V . If u is locally bounded from above near V . Then there is
a unique extension ũ ∈ Psh(X) such that ũ = u on X \ V .

There are close relationships between p.s.h. functions and positive closed
(1, 1)-currents. If u ∈ Psh(Ω), then ddcu is a positive closed (1, 1)-current.
This can be deduced by the approximation theorem of currents and dominated
convergence theorem. Conversely, we have the following result,

Proposition 1.2.17. Any positive closed (1, 1)-current T can be locally written
as ddcu, where u is a p.s.h. function. The function u is called the local potential
of T .

Note that two local potentials differ by a pluriharmonic function, so the
study of the singularities of positive closed (1, 1)-currents can be reduced to
study the local potentials. The Lelong-Poincaré formula offers a good example
of potentials of currents by integration over hypersurfaces.

Theorem 1.2.18. Let f be a holomorphic function on X which does not vanish
identically on any connected component of X. Then the function log |f | is
p.s.h. and verify the equation

ddc log |f | =
∑

mj[Zj],

where
∑
mjZj is the divisor of f .

The above equation holds even when f is meromorphic, then log |f | is
locally integrable and mj can be negative numbers. We recall here an useful
result, the so-called ddc-lemma.

Proposition 1.2.19. Let X be a compact Kähler manifold and T be a closed
(p, q)-current on X. Then T is ddc-exact if and only if it is exact (or ∂-exact
or ∂̄-exact).
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1.2.2 Intersection of currents and Monge-Ampère operators

Let u be a p.s.h. function and T be a positive closed (p, p)-current, p ≤ n−1.
Recall that σT is its trace measure. Due to the classical result by Bedford-
Taylor [8], we can define

ddcu ∧ T := ddc(uT ),

when u is locally σT -integrable, in particular when u is continuous or locally
bounded. It follows from the approximation theorem that ddcu ∧ T is a pos-
itive closed current. When u1, ..., uq are all locally bounded, we can define
inductively

ddcu1 ∧ ddcu2 ∧ ... ∧ ddcuq ∧ T = ddc(u1dd
cu2 ∧ ... ∧ ddcuq ∧ T ).

It is a positive closed current.

Definition 1.2.20. If u is a locally bounded p.s.h. function, then (ddcu)n is
called Monge-Ampère operator.

Sometimes the map

(u1, ..., un)→ ddcu1 ∧ ddcu2 ∧ ... ∧ ddcun.

is also called Monge-Ampère operator. We have the following Chern-Levine-
Nirenberg inequality.

Theorem 1.2.21. Let L and K are compact subsets of X. Let L is relatively
compact in K◦. Assume that v is a locally σT -integrable p.s.h. function. Then
there exists a constant CLK independent of T, uj and v such that

‖ddcu1 ∧ ... ∧ ddcuq ∧ T‖L ≤ CLK‖T‖K‖u1‖L∞(K)...‖uq‖L∞(K),

‖vddcu1 ∧ ... ∧ ddcuq ∧ T‖L ≤ CLK‖vT‖K‖u1‖L∞(K)...‖uq‖L∞(K).

One of the most properties of Monge-Ampère operator is its continuity on
decreasing sequences of p.s.h. functions.

Theorem 1.2.22. Let u1, ..., uq be locally bounded p.s.h. functions. Let {uj1},...,
{ujq} be decreasing sequences of p.s.h. functions which converge pointwise to
u1,...,uq respectively. Then we have in the weak sense of currents

uj1dd
cuj2 ∧ ... ∧ ddcujq ∧ T → u1dd

cu2 ∧ ... ∧ ddcuq ∧ T,
ddcuj1 ∧ ... ∧ ddcujq ∧ T → ddcu1 ∧ ... ∧ ddcuq ∧ T.

In the following chapters we will deal with the intersections of several cur-
rents by integration over analytic subvarieties. So we introduce Monge-Ampère
operators on unbounded p.s.h. functions.

Definition 1.2.23. Let u be a p.s.h. function. The unbounded locus L(u)
is defined to be the set of points z ∈ X such that u is unbounded in any
neighborhood of z.
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We can define Monge-Ampère operators on unbounded p.s.h. functions
when the intersections of unbounded loci are sufficiently small measured by
Hausdorff dimensions.

Theorem 1.2.24. Let T be a (p, p)-current and u1, ..., uq be p.s.h. functions
on X, q ≤ n − p. If the (2n − 2p − 2k + 1)-Hausdorff dimension of the set
L(uj1)∩...∩L(ujk)∩suppT is equal to 0 for all indices j1 < ... < jk in {1, ..., q},
then the currents u1dd

cu2 ∧ ... ∧ ddcuq ∧ T and ddcu1 ∧ ... ∧ ddcuq ∧ T are well
defined with locally finite mass.

The continuity property of Monge-Ampère operators is also valid for un-
bounded p.s.h. functions.

Definition 1.2.25. The analytic subsets V1, ..., Vq of X is said to be in general
position if codim Vj1 ∩ ... ∩ Vjk ≥ k for all indices j1 < ... < jk in {1, ..., q}.

When T is of bidegree (0, 0), we have the following useful criterion

Corollary 1.2.26. If the unbounded locus L(uj) is contained in an analytic
subset Vj such that V1, ..., Vq are in general position, then ddcu1 ∧ ...∧ ddcuq is
well defined.

In particular, the current [V1]∧ ...∧ [Vq] is well defined when V1, ..., Vq are in
general position. Fornæss and Sibony defined Monge-Ampère operators and
obtained continuity properties in other assumptions on u1, ..., uq and T . We
refer the reader to [27, Section 3] for a more detailed discussion.

Definition 1.2.27. Let Ω be an open subset in Cn and V be a closed subset in
Ω. We say that V is in the envelope of p-pseudoconvexity of Ω\V with respect
to Ω if every point in V can be reached by pushing polydiscs of dimension
(n− p) by using biholomorphic images of (n− p, p) Hartogs figures with hulls
in Ω.

Theorem 1.2.28. Let T be a positive closed (p, p)-current and u1, ..., uq be
p.s.h. functions on Ω, q ≤ n − p. If uj ≤ 0,∀1 ≤ j ≤ q, and L(uj1) ∩
... ∩ L(ujk) ∩ suppT is in the envelope of (n − p − k + 1)-pseudoconvexity of
the complement for all indices j1 < ... < jk in {1, ..., q}, then the currents
u1dd

cu2∧ ...∧ ddcuq ∧T and ddcu1∧ ...∧ ddcuq ∧T are well defined with locally
finite mass. Moreover, if ulj converges to uj in L1

loc(Ω) and ulj ≥ uj, we have

uj1dd
cuj2 ∧ ... ∧ ddcujq ∧ T → u1dd

cu2 ∧ ... ∧ ddcuq ∧ T,
ddcuj1 ∧ ... ∧ ddcujq ∧ T → ddcu1 ∧ ... ∧ ddcuq ∧ T.

1.2.3 Quai-plurisubharmonic functions and moderate measures

The notion of quai-plurisubharmonic (q.p.s.h. for short) functions was
introduced by Yau. It plays an important role in the following chapters. P.s.h.
functions have local properties. By the maximum principle we know that
p.s.h. functions in compact complex manifolds are always constants. But
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q.p.s.h. function is a global notion which can be defined in compact complex
manifolds.

It can describe the Hermitian metrics on complex line bundles. In this
subsection, we assume that X is a compact Kähler manifold of dimension n
with Kähler form ω such that ωn is a probability measure. The case when X
is only a complex manifold will be specified.

Definition 1.2.29. A q.p.s.h. function on X is locally the difference of a
p.s.h. function and a smooth one.

Definition 1.2.30. Let γ be a closed real (1, 1)-current on X. An upper-semi
continuous function u : X → [−∞,∞) in L1

loc(X) is said to be γ-p.s.h. if
ddcu+ γ ≥ 0.

Note that a function u on X is q.p.s.h. if and only if it is cω-p.s.h. for
some constant c > 0. Denote by Psh(X, γ) the set of all γ-p.s.h. functions.
Observe that Psh(X, γ) is nonempty if and only if there is a positive closed
(1, 1)-current which is cohomologous to γ. There are some special cases when
all γ-p.s.h. functions are constants.

Example 1.2.31. Let E be the exceptional divisor of a smooth blow-up X.
Then Psh(X, [E]) ∼= R. See [34, Chapter 2.5] for the definition of a blow-
up. To see this, let π : X → X1 be a blow-up. The smooth center of π is
Y of codimension ≥ 2. The exceptional divisor E is the subset π−1(Y ). Let
u ∈ Psh(X, [E]). Since π : X \ E → X1 \ Y is biholomorphic, by considering
all test forms with support in X \E, we obtain that ddc(u◦π−1) ≥ 0 in X1 \Y .
Since codim Y ≥ 2, we can extend u ◦π−1 trivially through Y to a global p.s.h.
function on X1. The maximum principle implies that u◦π−1 is constant, so is
u. By ddc-lemma, there are no other positive closed (1, 1)-currents which are
cohomologous to [E].

We can easily some properties of q.p.s.h. functions from those of p.s.h.
functions.

Proposition 1.2.32. Let u and {uj} be q.p.s.h. functions, we have
(i) u belongs to Lp(X) for every 1 ≤ p <∞.
(ii) If {uj} is a decreasing sequence satisfying ddcuj ≥ −ω, then the limit of
{uj} is also a q.p.s.h. function.
(iii) If {uj} is uniformly bounded from above and ddcuj ≥ −ω, then either it
converges uniformly to ∞, or there exists a subsequence ujk which converges
to a q.p.s.h. function v in Lp(X) for every 1 ≤ p <∞ and ddcv ≥ −ω.
(iv) The functions u1 + ... + um,max{u1, ..., um}, log(eu1 + ... + eum) are also
q.p.s.h. functions.

The third result of the above property shows also the compactness of
q.p.s.h. functions. More generally we have
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Theorem 1.2.33. The family of the q.p.s.h. functions which satisfy ddcu ≥
−ω and one of the following three normalization conditions

(i) max
X

u = 0,

(ii)

∫
X

uωn = 0,

(iii)

∫
X

|u|ωn ≤ C,where C is a constant

is compact in Lp(X) for every 1 ≤ p < ∞. Moreover, the family of these
q.p.s.h. functions is uniformly bounded from above .

Proof. The result with condition (i) follows from (iii) of the above proposition.
Let uj verify the condition (ii). Since a q.p.s.h. function is bounded from above
in compact manifolds, set aj := supX uj. Then there are no subsequences of
{uj − aj} which converges uniformly to −∞. Hence the sequence {uj − aj}
is bounded in Lp(X). Otherwise, if there is a subsequence {ujk − ajk} which
converges to a q.p.s.h. function v and ‖ujk − ajk‖Lp → ∞, then it yields
contradiction with v ∈ Lp(X). Note that

aj = aj

∫
X

ωn = −
∫
X

(uj − aj)ωn.

So {aj} is bounded. The family of q.p.s.h. function uj is bounded in Lp(X)
and there is a convergent subsequence. The result with condition (ii) holds.
Let uj verify the condition (iii). Let

∫
X

(uj − bj)ωn = 0. Then bj is bounded.
Then the result is a consequence of the result with condition (ii).

By the ddc-lemma on compact Kähler manifolds, we can easily deduce the
following result [23, Proposition 2.2].

Proposition 1.2.34. There exists a constant r > 0 such that for any positive
closed current T of bidegree (1, 1) with mass 1 on (X,ω), there is a smooth
(1, 1)-form α which depends only on the cohomology class of T and a q.p.s.h.
function u satisfying that

−rω ≤ α ≤ rω, ddcu− T = α.

Denote by r(X,ω) the smallest number of r which satisfy the above prop-
erty.

We have an analogous regularization result for q.p.s.h. functions on com-
pact Kähler manifolds. The following theorem is due to Demailly.

Theorem 1.2.35. Let u be a q.p.s.h. function on X. Then there is a decreas-
ing sequence of smooth functions uj satisfying ddcuj ≥ −εω for some positive
constant ε, which converges pointwise to u.

Q.p.s.h. functions can be also defined on any complex manifolds. B locki-
Ko lodziej obtained a generalization of regularization result.
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Theorem 1.2.36. Let X be a complex manifold with a fixed Hermitian form
ω and K ⊂ X be a compact subset. Assume that γ is a real closed form of
bidegree (1, 1) and u is a locally bounded γ-p.s.h. function. Then for any open
neighborhood U of K, there exists a decreasing sequence of smooth functions
uj on U such that
(i) uj converges pointwise to u,
(ii) ddcuj + γ ≥ −εjω, where εj tends to 0.

Remark 1.2.37. In the above theorem, if γ is positive and u is any γ-p.s.h.
function, then the same conclusion holds. Since γ is positive, constant func-
tions are γ-p.s.h. functions. Then we consider the locally bounded γ-p.s.h.
functions max{u,−j}, j ≥ 1 and use diagonal arguments.

In general the global regularization for q.p.s.h. functions on a complex
manifold fails.

Our core work through the thesis lies in some estimates of constants on
complex projective spaces. The complex projective space Pn of dimension n is
a compact Kähler manifold.

Definition 1.2.38. A projective manifold is a complex submanifold of some
complex projective space.

Projective manifolds are algebraic by Chow’s theorem.
Let π : Cn+1 \ {0} → Pn be the canonical projection and [z0, ..., zn] be the

homogeneous coordinate of Pn. Denote by Ui the set of points [z0, ..., zn] such
that zi 6= 0. It is a local chart on Pn. All the charts can cover Pn.

Definition 1.2.39. The Fubini-Study form is defined to be

ωFS := ddc log(
n∑
j=0

|zj/zi|2)1/2

in the local chart Ui.

In other words, we have

π?(ωFS) = ddc log(
n∑
j=0

|zj|2)1/2

In the local chart U0, assume that z0 = 1. The corresponding Fubini-Study
metric has the following Hermitian components

hij̄ =
1

π

(1 + |z|2)δij̄ − ziz̄j
(1 + |z|2)2

,

where |z|2 = |z1|2 + ... + |zn|2. Note that ωnFS is a probability measure on Pn.
This also enlighten the role of normalization in the definition of the operator
dc.
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The cohomology class of ωpFS is a generator of the group Hp,p(Pn, R). Any
positive closed (1, 1)-current T of mass 1 is cohomologous to ωFS. Then we
obtain a q.p.s.h. function u on Pn such that ddcu = T − ωFS. We will write
ωFS to be the Fubini-Study form of the complex projective space PN of any
dimension N . We give two examples of q.p.s.h. functions on Pn.

Example 1.2.40. Set |z|2 = |z0|2 + ...+ |zn|2. Let µ be a probability measure
on Pn.
(i)

v1(z) = max(log
|z0|
|z|

, ..., log
|zn|
|z|

)

is a ωFS-p.s.h. function.
(ii)

v2(z) =

∫
Pn

log
(‖z ∧ w‖
|z||w|

)
dµ(w)

is a ωFS-p.s.h. function. This function can be used to define some capacities
on Pn [46].

Positive closed (1, 1)-currents on Pn can be associated to p.s.h. functions on
Cn+1 with certain homogeneity properties. See [26, Section 4] and [53, A.5].
Let L1 be the set of positive closed (1, 1)-currents on Pn. Consider a p.s.h.
function v on Cn+1 satisfying the condition

v(λz) = c log |λ|+ v(z)

for some constant c ≥ 0 and all z ∈ Cn+1. Let [v] be the class of functions
which is equal to v up to a constant. Denote by L2 the set of the classes of
p.s.h. functions with the above condition.

Proposition 1.2.41. The two sets L1 and L2 are isomorphic. If T ∈ L1 has
the associated p.s.h. function v such that v(λz) = c log |λ| + v(z) for some
constant c ≥ 0, then the mass of T is c.

Positive closed (1, 1)-currents on Pn which are cohomologous to ωFS can be
characterized by p.s.h. functions on Cn [32, Example 2.2]. To be precise, there
is a one-to-one correspondence between Psh(Pn, ωFS) and the Lelong class:

L(Cn) := {v ∈ Psh(Cn) : v(z) ≤ 1

2
log(1 + |z|2) + Cv, Cv is a constant}.

Now we introduce the notion of moderate measures which is essential in the
thesis. First we recall a classical result about an uniform estimate for certain
compact family of p.s.h. functions in the unit ball of Cn [36, Theorem 4.4.5].

Theorem 1.2.42. There is a constant c > 0 such that for any p.s.h. function
u in the unit ball of Cn with u(0) > −1 and u(z) ≤ 0, we have∫

|z|<1/2

exp(−u(z))dλ ≤ c,

where dλ denotes the Lebesgue measure on the unit ball.
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We have a generalization for any compact family of p.s.h. functions.

Corollary 1.2.43. Let U be a compact family of p.s.h. functions in a complex
manifold X of dimension n with a Hermitian form ω. For any compact subset
K of X, there exist constants c > 0, α > 0 such that∫

K

exp(−αu)ωk ≤ c,

for all u ∈ U .

Dinh-Sibony [24] introduced the notion of locally moderate measures.

Definition 1.2.44. Let X be a complex manifold. A positive measure µ is
locally moderate if for any open set U ⊂ X, any compact subset K ⊂ U
and any compact family U of q.p.s.h. functions on U , there are constants
α > 0, c > 0 such that ∫

K

exp(−αφ)dµ ≤ c, ∀φ ∈ U .

Dinh-Nguyên-Sibony [21] proved that the equilibrium measure of endomor-
phism of Pn is locally moderate.

In the thesis, we deal with the moderate measures in a compact Kähler
manifold X of dimension n with a fixed Kähler form ω such that ωn is the
standard probability volume form. Consider a positive measure µ on X, µ is
said to be PLB if all the q.p.s.h. functions are µ-integrable. When dimX = 1,
µ is PLB if and only if it admits a local bounded potential [24]. Let

F := {φ q.p.s.h. on X : ddcφ ≥ −ω,max
X

φ = 0}. (1.1)

The set F is compact in Lp(X) and bounded in L1(µ) when µ is a PLB measure
by Theorem 1.2.33 and Proposition 1.2.47.

Recall that any q.p.s.h. functions on X are cω-p.s.h. for some constant
c ≥ 0 and uniformly bounded from above. Then the study of q.p.s.h. functions
can be reduced to the study of the family F . Observe that there is a large
family of positive singular measures which are PLB.

Example 1.2.45. Let µ0 be a smooth probability measure and T be a positive
(n− 1, n− 1)-current on X. Set µ := µ0 + ddcT . Then µ is a PLB measure.
Consider a smooth function φ ∈ F , we have

0 ≤
∫
X

(−φ)dµ =

∫
X

(−φ)dµ0 +

∫
X

(−φ)ddcT

≤ C‖φ‖L1 + (T,−ddcφ)

≤ C‖φ‖L1 + (T, ω) <∞.

Then the result follows from the regularization of q.p.s.h. functions.
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Definition 1.2.46. Let µ be a PLB measure on X. We say that µ is (c, α)-
moderate for some constants c > 0, α > 0 if∫

X

exp(−αφ)dµ ≤ c

for all φ ∈ F . The measure µ is called moderate if there exist constants
c > 0, α > 0 such that it is (c, α)-moderate.

For example, the standard volume form ωn is moderate by Theorem 1.2.42.
Let us recall the following proposition in [23].

Proposition 1.2.47. Let µ be a PLB measure on X. The family of the q.p.s.h.
functions which satisfy ddcu ≥ −ω and one of the following three normalization
conditions

(i) max
X

u = 0,

(ii)

∫
X

udµ = 0,

(iii)

∫
X

|u|dµ ≤ C,where C is a constant

is bounded in L1(µ) and bounded from above. In particular, there exists a
constant c > 0 independent of u such that µ(u < −t) ≤ c

t
for any t > 0.

When X = Pn, we recall the following proposition [23, Corollary A.5] which
plays a crucial role in the following chapters,

Proposition 1.2.48. There are constants c0 > 0 and α0 > 0 independent of
n such that ∫

Pn
exp(−α0φ)ωnFS ≤ c0n, ∀φ ∈ F .

The following lemma gives an alternative definition of moderate measures
[20].

Lemma 1.2.49. A PLB measure µ is moderate if and only if there exist two
constants c′ > 0, α′ > 0 such that

µ{z ∈ K : φ(z) < −M} ≤ c′e−α
′M

for any M ≥ 0 and φ ∈ F .

Remark 1.2.50. We can take c′ = c, α′ = α when c, α are given and take
c = 2c′, α = α′/2 when c′, α′ are given.
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1.3 Holomorphic line bundles

We introduce some basic notions and properties about holomorphic line
bundles. There are closed relationships between holomorphic line bundles and
divisors. The Kodaira maps are needed which can be regarded as meromorphic
transforms in the following chapters. The Kodaira embedding theorem assets
that the notions of positive line bundles and ample line bundles are equiva-
lent on compact Kähler manifolds. Then we introduce big line bundles with
several criterions and Nadel vanishing theorm. See [16] for the knowledge of
connections, analytic sets and sheaf cohomology.

1.3.1 Holomorphic line bundles and first Chern class

Recall that a complex line bundle is a complex vector bundle of rank 1.
Let X be a complex manifold of dimension n and π : L → X be a complex
line bundle. Denote by Lz := π−1(z) the fiber at a point z. There exists an
open covering (Uα) of X and smooth diffeomorphisms

θα : L�Uα → Uα × C,

such that for every z ∈ Uα the restriction map θα : Lz → {z} × C is a linear
isomorphism. Such smooth diffeomorphisms are called local trivializations.
Let gαβ be the transition functions satisfying

θα ◦ θ−1
β (z, ξ) = (z, gαβ(z)ξ), (z, ξ) ∈ (Uα ∩ Uβ)× C.

The collection of the transition functions {gαβ} defines a Čech 1-cocycle with
values in the multiplicative sheaf E ? of invertible smooth functions on X, i.e.
{gαβ} ∈ H1(X,E ?).

Theorem 1.3.1. There is a one-to-one correspondence between the group of
isomorphism classes of complex line bundles and the Čech cohomology group
H1(X,E ?). The group structure of the former group is the tensor product of
line bundles.

Definition 1.3.2. A complex line bundle L is said to be Hermitian if there is
a positive definite Hermitian metric h on each fiber Lz varying smoothly with
z ∈ X.

Let D be a connection on L and Θ(D) be the corresponding curvature.
Θ(D) is a closed form of degree 2. The De Rham cohomology class {Θ(D)}
is of complex coefficients and independent of the choice of D. When L is
Hermitian, we can choose a connection D such that iΘ(D) is a real form, i.e.
{iΘ(D)} ∈ H2(X,R). Such connection is called Hermitian connection. The
exponential exact sequence of sheaves

0→ Z→ E → E ? → 1
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gives a coboundary map in the long exact sequence of Cěch cohomology

δ : H1(X,E ?)→ H2(X,Z).

Since H1(X,E ) = H2(X,E ) = 0, the map δ is an isomorphism.

Definition 1.3.3. The first Chern class of a complex line bundle L is defined
to c1(L) := δ({gαβ}), where {gαβ} is the Cěch cohomology class of the 1-cocycle
associated to L.

It follows from the definition that a complex line bundle is determined up
to smooth isomorphism by its first Chern class. As usual the first Chern class
is defined to be the image of c1(L) under the following natural map

H2(X,Z)→ H2(X,R).

Theorem 1.3.4. The first Chern class c1(L) ∈ H2(X,R) is equal to the De
Rham cohomology class { i

2π
Θ(D)}.

Definition 1.3.5. A holomorphic line bundle L is a complex line bundle with
a holomorphic map π : L→ X and biholomorphic trivializations.

It follows that the transition functions are also holomorphic. Let H0(X,L)
be the space of holomorphic sections of L. Denote by O? the multiplicative
sheaf of invertible holomorphic functions on X. Similarly there is a one-to-one
correspondence between the group of isomorphism classes of holomorphic line
bundles and the Čech cohomology group H1(X,O?). The group H1(X,O?) is
called the Picard group of X.

One notable difference between smooth line bundles and holomorphic ones
is that the operator ∂̄ can be well-defined globally on holomorphic line bundles.
We are interested in Hermitian holomorphic line bundles. There exists a unique
Hermitian connection D such that its (0, 1)-connection is ∂̄ in a Hermitian
holomorphic line bundle.

Definition 1.3.6. The above unique Hermitian connection D is called Chern
connection and the curvature Θ(D) of D is called Chern curvature.

1.3.2 Divisors and Lelong-Poincaré formula

Since hypersurfaces are given by the zeros of a global holomorphic sections
of a holomorphic line bundle, there are close relationships between divisors
and holomorphic line bundles. Recall that an analytic hypersurface of X is an
analytic subvariety of codimension one.

Definition 1.3.7. A divisor D on X is a locally finite formal linear combi-
nation D =

∑
aiYi, where Yi are irreducible analytic hypersurfaces and ai are

integers.
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Denote by Div(X) the set of all divisors on X. The sum is finite if X
is a compact complex manifold. A divisor is said to be effective if all ai are
nonnegative. Every hypersurface defines an effective divisor

∑
Yi. Recall that

the order ordY,z(f) of a meromorphic function f along Y at z ∈ Y is the largest
integer a such that f = gah with h ∈ O?

X,z. If Y is irreducible, then the order
is independent of z ∈ Y . Hence we can define ordY (f) along an irreducible
hypersurface.

Definition 1.3.8. The divisor associated to a meromorphic function f is

div(f) :=
∑

ordY (f)Y,

where the index of the sum runs over all irreducible hypersurfaces in X. Such
divisor is called principle.

Denote by M ? the multiplicative sheaf of invertible meromorphic functions
on X.

Proposition 1.3.9. There exist the following group homomorphisms

H0(X,M ?/O?) ≡ Div(X)→ Pic(X).

A divisor D ∈ Div(X) is assigned to a holomorphic line bundle O(D). In
fact D corresponds to an element f ∈ H0(X,M ?/O?), which is represented
by a family of functions fα ∈M ?(Uα) with respect to an open covering {Uα}.
Then the transition functions gαβ = fαf

−1
β defines the line bundle O(D). Note

that the line bundle O(D) can be identified to the sheaf of germs of meromor-
phic functions f satisfying div(f) +D ≥ 0.

Definition 1.3.10. A meromorphic section of L is a section s defined by a
collection of meromorphic functions fα = θα(s) ∈M (Uα).

Since {fα} corresponds to an element in H0(X,M ?/O?), then the mero-
morphic section s defines a divisor div(s) which is written locally as div(fα).
The divisor div(s) is effective if and only if s is a holomorphic section.

The current defined by div(s) is written as [div(s)] or [s = 0] when s is
holomorphic. The definition of div(s) implies that O(div(s)) is isomorphic
to L for any nonzero meromorphic section s. It follows from Lelong-Poincaré
formula that

ddc log |fα| = div(fα).

Note that L is a Hermitian holomorphic line bundle with the Hermitian
metric h. There exists a local holomorphic frame eL of L over Uα such that
|eL|2h = h(eL, eL) = e−2ϕ, where ϕ is a real function on Uα. It is possible since
we can shrink Uα properly. Then |s|2h = |fα|2e−2ϕ. There is a characterization
of Chern curvature by the Hermitian metric.

Proposition 1.3.11. We have locally on Uα

i

2π
Θ(L) = ddcϕ.

In particular, the current ddcϕ represents the first Chern class c1(L).
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Following the above arguments, we obtain

ddc log |s|2h = div(s)− i

2π
Θ(L).

The following theorem is the Lelong-Poincaré formula for meromorphic sections
of line bundles.

Theorem 1.3.12. Let L be a Hermitian holomorphic bundle and s be a mero-
morphic section of L which does not vanish identically on any component of
X. Then

O(div(s)) ∼= L, c1(L) = {[div(s)]}.

Consequently we have c1(O(div(s))) = {[div(s)]}.
We extend the notion of Hermitian line bundle to the singular case.

Definition 1.3.13. Let L be a holomorphic line bundle on a complex manifold
X. A singular Hermitian metric h on L is a sesquilinear Hermitian-symmetric
form on each fiber such that for any local holomorphic frame eL of L on U ⊂ X,
we have |eL|2h = e−2ϕ ∈ [0,∞], where ϕ ∈ L1

loc(U) is called local weight. A
singular Hermitian holomorphic line bundle is a holomorphic line bundle with
a singular Hermitian metric.

If ϕ is smooth, the L is a Hermitian line bundle. It is easy to see that
ddcϕ is independent of the choice of open coverings. We can define the
curvature current by Θ(L) = −2πiddcϕ. The current cL,h =: i

2π
Θ(L) = ddcϕ

represents the first Chern class of L. The Lelong-Poincaré formula for mero-
morphic sections of singular Hermitian holomorphic line bundles also holds.

Given an arbitrary divisor D on X, we have c1(O(D)) = {[D]}. Indeed, let
D = ajDj, the line bundle O(D) can be endowed with a singular Hermitian
metric h such that |f |h = |f |, where f is a meromorphic function with div(f)+
D ≥ 0. Let gj be the defining holomorphic function of Dj on Uα. Then there
is a trivialization θα(f) = f

∏
g
aj
j of O(D) on Uα. The singular Hermitian

metric has local weight ϕ =
∑
aj log |gj|, The Lelong-Poincaré formula yields

the equation c1(O(D)) = {[D]}.

Definition 1.3.14. A Hermitian holomorphic line bundle L is called positive
if there exists a smooth Hermitian metric on L with the Chern curvature Θ(L)
such that iΘ(L) is a positive (1, 1)-form.

A divisor D is positive if the line bundle O(D) is positive. The following
result shows that the positivity of a line bundle is a topological property.

Proposition 1.3.15. Let φ be a real closed (1, 1)-form whose cohomology
class is c1(L). Then there exists a smooth Hermitian metric on L such that
i

2π
Θ(L) = φ. Hence L is positive if and only if c1(L) can be represented by a

positive closed (1, 1)-form.
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Example 1.3.16. The hyperplane bundle O(1) on Pn is a positive line bundle.
The dual of O(1) is the tautological line bundle O(−1) whose fiber at a point
z = [z0, ..., zn] ∈ Pn is the complex line {λz : λ ∈ C} ⊂ Cn+1. There is
a natural Hermitian metric h on O(−1) such that |z|2h =

∑
|zi|2. Then the

curvature form Θ of O(1) satisfy

i

2π
Θ = ddc log ‖z‖2.

Note that i
2π

Θ is just the associated (1, 1)-form of the Fubini-Study metric,
which is positive.

1.3.3 Kodaira embedding theorem

We assume X is a compact Kähler manifold and L is a holomorphic line
bundle on X in this subsection. Recall that H0(X,L) denotes the space of
holomorphic sections of L. The kth tensor product of L is Lk. It follows from
Hodge theory that the dimension of H0(X,L) is finite. Let N = dimH0(X,L).

Definition 1.3.17. A point x ∈ X is said to be a base point if s(x) = 0 for
all s ∈ H0(X,L). The base locus Bs(L) is the set of all base points.

Let s0, ..., sN be a basis of H0(X,L), then Bs(L) = (s0 = 0) ∩ ... ∩ (sN =
0) which is an analytic subvariety. Denote by H0(X,L)? the dual space of
H0(X,L).

Definition 1.3.18. The Kodaira map associated to L is defined by

Φ : X \Bs(L)→ P(H0(X,L)?),

Φ(x) = {s ∈ H0(X,L) : s(x) = 0}.
We give a local analytic description of the Kodaira map. Let s0, ..., sN be a

basis of H0(X,L) and eL be a local holomorphic frame of L on U , where U can
be chosen as a contractible Stein open subset. Then there exist holomorphic
functions fj such that sj = fjeL. By an identification via the basis, the Kodaira
map can be expressed locally as

Φ : X → PN , Φ(x) = [f0(x), ..., fN(x)].

This map does depend on the choice of the basis. But two such maps differ
only by a linear transformation of PN for two different choices of basis. The
Kodaira map is a meromorphic map on X, but it is holomorphic on X \Bs(L).

Definition 1.3.19. A holomorphic line bundle is called ample if the Kodaira
map associated to Lk is an embedding for some integer k > 0.

A compact Kähler manifold is projective if and only if it admits an ample
line bundle. A natural question is when the Kodaira map defines an embedding
of X. If it is an embedding map, the X is a projective manifold. We have the
following important theorem called Kodaira embedding theorem.

Theorem 1.3.20. Let L be a holomorphic line bundle over a compact Kähler
manifold X. Then L is positive if and only if L is ample.
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1.3.4 Big line bundles

We will use Kodaira maps associated to high tensor powers of a holomorphic
line bundle as follows,

Φp : X \Bs(Lp)→ P(H0(X,Lp)?)

Define %p := {rankxΦp : x ∈ X \ Bs(Lp)}. If H0(X,Lp) is equal to {0}, we
take the convention that %p = −∞.

Definition 1.3.21. The Kodaira-Iitaka dimension of L is κ(L) := max{%p :
p ≥ 1}.

Note that κ(L) ≤ dimX.

Definition 1.3.22. A big line bundle is a holomorphic line bundle L such that
κ(L) = dimX.

There are several criterions for big line bundles [45, 2.2.1, 2.3.3].

Theorem 1.3.23. Let L be a holomorphic line bundle over a connected com-
pact complex manifold X of dimension n. The following are equivalent:
(i) L is big;
(ii) lim supp→∞ p

−n dimH0(X,Lp) > 0;
(iii) L admits a singular Hermitian metric such that the curvature current is
strictly positive;
(iv) L admits a singular Hermitian metric which is smooth outside a proper
analytic set of X such that the curvature current is strictly positive.

If X is compact Kähler manifold with a fixed Kähler form ω, then the big
line bundle L admits a singular Hermitian metric h such that c1(L, h) ≥ εω
for some constant ε > 0.

The asymptotic expansion of dimensions of H0(X,Lp) is crucial through
our thesis. Let dp = dimH0(X,Lp). If L is positive, then the Hirzebruch-
Riemann-Roch theorem and Kodaira-Serre vanishing theorem show that dp is
given by a Hilbert polynomial whose dominate term is pn/n!

∫
X
c1(L)n, see [35,

Section 20] or the proof of [45, Theorem 2.2.20]. The Siegel’s lemma gives an
upper bound of dp [45, Lemma 2.2.6].

Proposition 1.3.24. Let L be a holomorphic line bundle over a connected
compact complex manifold X. There there exists a constant C > 0 satisfying

dimH0(X,Lp) ≤ Cp%p ≤ Cpκ(L),∀p ≥ 1.

The Kodaira-Iitaka dimension κ(L) is the optimal constant independent of p.

Theorem 1.3.25. If X is a projective manifold, then the natural group ho-
momorphism Div(X)→ Pic(X) is surjective.
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Theorem 1.3.25 [34, Corollary 5.3.7] shows that any holomorphic line bun-
dle in a projective manifold is isomorphic to a line bundle associated to a
divisor. More generally, this theorem holds also for Moishezon manifolds, see
[45, Theorem 2.2.20] for more information.

We will use the notion of multiplier ideal sheaf introduced by Nadel [47].
It can be applied to the lower estimate of dimensions associated to big line
bundles.

Definition 1.3.26. Given a real function ϕ which is locally integrable on X,
the multiplier ideal sheaf I(ϕ) is the ideal subsheaf of germs of holomorphic
functions f ∈ OX,x such that |f |2e−2ϕ is integrable with respect to the Lebesgue
measure in a local coordinate near x.

The zero variety of I(ϕ) is the set of points x such that e−2ϕ is not integrable
in a neighborhood of x. Let h be a singular Hermitian metric on L and ϕ be
the local weight of h in an open subset. Then the multiplier ideal sheaf of h
is defined by I(h) := I(ϕ). This definition does not depend on the choice of
local trivializations. Recall that KX is the canonical line bundle of X. We
have the following Nadel vanishing theorem, see also [15, Theorem 4.5].

Theorem 1.3.27. Let L be a big line bundle over a compact Kähler manifold
(X,ω). Assume that L is endowed with a singular Hermitian metric h such
that c1(L, h) ≥ εω for some constant ε > 0. Then we have

Hq(X,O(KX + L)⊗ I(h)) = 0

for all q ≥ 1.
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Chapter 2

Equidistribution of zeros of
random holomorphic sections
for moderate measures.

In this chapter, we establish an equidistribution theorem for the zeros of
random holomorphic sections of high powers of a positive holomorphic line
bundle. The equidistribution is associated to a family of singular moderate
measures. We also give a convergence speed for the equidistribution which
shows an alternative proof of the main theorem.

2.1 Dinh-Sibony equidistribution theory.

The Dinh-Sibony equidistribution theory [23] is the cornerstone in the the-
sis. Our main theorems are proved based on the techniques and theorems from
this theory. They studied the equidistribution problem associated to PLB mea-
sures, which is a generalization of the result by Shiffman-Zelditch [57]. Appro-
priate conditions are posed on PLB measures to satisfy the equidistribution
property.

2.1.1 Constants associated to PLB measures

Let (X,ω) be a compact Kähler manifold of dimension n and µ be a PLB
measure on X. Recall that r(X,ω) is the smallest number of r in Proposition

51
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1.2.34. Following Proposition 1.2.47, we can define the notations

Q(X,ω) : = {ϕ q.p.s.h. on X, ddcϕ ≥ −r(X,ω)ω},

R(X,ω, µ) : = sup{max
X

ϕ : ϕ ∈ Q(X,ω),

∫
X

ϕdµ = 0}

= sup{−
∫
X

ϕdµ : ϕ ∈ Q(X,ω),max
X

ϕ = 0},

S(X,ω, µ) : = sup{
∣∣∫ ϕdµ

∣∣ : ϕ ∈ Q(X,ω),

∫
X

ϕωn = 0},

∆(X,ω, µ, t) : = sup{µ(ϕ < −t) : ϕ ∈ Q(X,ω),

∫
X

ϕdµ = 0}.

Here t > 0. When µ = ωn, let R0(X,ω) := R(X,ω, µ). These constants are
related to Alexander-Dinh-Sibony capacity, see [23, A. 2] and [32, Section 5].
The following elementary inequality comes from [23, Proposition 2.4].

Proposition 2.1.1. We have

S(X,ω, µ) ≤ R(X,ω, µ) +R0(X,ω).

The following estimate is very fundamental in Dinh-Sibony equidistribution
theory, see [23, Proposition A.3].

Proposition 2.1.2.

R0(Pk, ωFS) ≤ 1

2
(1 + log k).

Proof. Let π : Ck+1 \ {0} → Pk (or π : S2k+1 → Pk) be the natural projection.
Let dλ2k+1 be the probability spherical measure on S2k+1. Given ϕ ∈ F , then
ddcϕ+ωFS is a positive closed current of mass 1. By Proposition 1.2.41, there
exists a corresponding p.s.h. function v on Ck+1 such that

v(λz) = log |λ|+ v(z), λ ∈ C \ {0}.

Note that v(z) = ϕ ◦ π+ log ‖z‖ and v(0) = −∞. Moreover, the Fubini-Study
volume form ωkFS and dλ2k+1 are probability Haar measures on Pk and S2k+1

respectively. By the uniqueness of Haar measures, the following equality holds

ωkFS(A) = dλ2k+1(π−1(A)),

where A is a measurable set in Pk. Hence∫
Pk
ϕωkFS =

∫
S2k+1

ϕ ◦ πdλ2k+1

=

∫
S2k+1

vdλ2k+1.
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Since maxS2k+1 v = maxPk ϕ = 0, by a theorem due to Alexander [1, Theorem
2.2], we have ∫

S2k+1

ϕ ◦ πdλ2k+1 ≥ max
S2k+1

v +

∫
S2k+1

log |z1|dλ2k+1

= −1

2

j=k∑
j=1

1

j
≥ −1

2
(1 + log k).

Then the proof is completed.

2.1.2 Meromorphic transforms

The meromorphic transforms play a crucial role in Dinh-Sibony equidis-
tribution theory. Roughly speaking, a meromorphic transform between two
complex manifolds is a surjective multivalued map with an analytic graph.

Definition 2.1.3. Let (X1, ω1), (X2, ω2) be two compact Kähler manifolds of
dimension n1 and n2 respectively, a meromorphic transform F : X1 → X2 is
the data of an analytic subset Γ ⊂ X1×X2 of pure dimension n2 + l such that
the natural projections π1 : X1 ×X2 → X1 and π2 : X1 ×X2 → X2 restricted
to each irreducible component of Γ are surjective. Γ is called the graph of F .

Note that a meromorphic transform is determined by its graph. We write
F = π2◦(π1|Γ)−1. The dimension of the fiber F−1(x2) := π1(π−1

2 |Γ(x2)) is equal
to l for a point x2 ∈ X2 generic. This is the codimension of the meromorphic
transform F . If T is a current of bidegree (m,m) on X2, n2 + l−n1 ≤ m ≤ n2,
we define F ?(T ) := (π1)?(π

?
2(T ) ∧ [Γ]), where [Γ] is the current of integration

over Γ. The intermediate degree of order m of a meromorphic transform F :
X1 → X2 is defined by

λm(F ) =

∫
X1

F ?(ωm2 ) ∧ ωn2+l−m
1 =

∫
X2

ωm2 ∧ F?(ω
n2+l−m
1 ).

Set d(F ) := λn2(F ) and δ(F ) := λn2−1(F ). These two notations are useful in
the following arguments. We give some examples of meromorphic transforms.

Example 2.1.4. The examples are constructed based on Grassmannian man-
ifolds.
(i) Let G(k − l + 1, k + 1) be the Grassmannian manifold which parame-
terizes all the projective subspace of dimension k − l of Pk. For a point
ŝ ∈ G(k − l + 1, k + 1), there is a corresponding projective subspace Pk−lŝ

of dimension k − l. Set

Γ1 := {(z, ŝ) ∈ Pk ×G(k − l + 1, k + 1), z ∈ Pk−lŝ }.

The meromorphic transform F1 : Pk → G(k − l + 1, k + 1) is defined by the
graph Γ1. Since F−1

1 (ŝ) = Pk−lŝ , it is of codimension k − l.
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We can give another description of F1 by duality. Note that Pk? := G(k, k+
1) is the dual of Pk. Denote by G?(l, k+ 1) the Grassmannian manifold which
parameterizes all the projective subspace of dimension l − 1 of Pk?. This
Grassmannian manifold is biholomorphic to G(k − l + 1, k + 1). For a point

s̆ ∈ G?(l, k + 1), there is a corresponding projective subspace P(l−1)?
s̆ of dimen-

sion l − 1. Choose l points s1, ..., sl which generate P(l−1)?
s̆ . Let P(k−1)

sj be the

corresponding hyperplane in Pk of the point sj. Note that Pk−ls̆ := ∩j=lj=1P
(k−1)
sj

is independent of the choices of sj. Set

Γ2 := {(z, s̆) ∈ Pk ×G?(l, k + 1), z ∈ Pk−ls̆ }.

The meromorphic transform F2 : Pk → G?(l, k+ 1) is defined by the graph Γ2.
Since F−1

2 (s̆) = Pk−ls̆ , it is of codimension k − l.

(ii)Let Pk,l? := Pk? × ... × Pk? (l times) be a multi-projective space. Write
s = (s1, ..., sl) ∈ Pk,l?. Set

Γ3 := {(s, s̆) ∈ Pk,l? ×G?(l, k + 1),Pk−ls̆ ⊂ P(k−1)
sj

, forj = 1, .., l}.

The meromorphic transform Ψl : Pk,l? → G?(l, k+1) is defined by the graph Γ3.
Denote by Ψ̄l the adjoint of Ψl. The composition F3 := Ψ̄l◦F2 : Pk → Pk,l? is a
meromorphic transform. For a point s ∈ Pk,l? generic, F−1

2 (s) is the subspace

Pk−ls := ∩j=lj=1P
(k−1)
sj . Then F3 is of codimension k − l.

We will see later the graph induced by a Kodaira map defines a meromor-
phic transform. For more information about meromorphic transforms, refer to
[23, Section 3].

2.1.3 General equidistribution theorem

Let (X,ω), (Xp, ωp) be compact Kähler manifolds of dimension n and np
respectively. In addition,

∫
Xp
ω
np
p = 1. Let X :=

∏∞
p=1Xp. It follows from

Tychonoff’s theorem that X is also a compact space with respect to the product
topology. A point x ∈ X is denoted by (x1, x2, ...) = (xp). The measure δxp is
the Dirac measure at the point xp on Xp.

Consider a probability PLB measure σp on each Xp. Endow X with the
product measure σ :=

∏∞
p=1 σp. Let Fp : X → Xp be a family of meromorphic

transforms with the same codimension l < n. By the definition of the pullback
of Fp on currents, we see that F ?

p (δxp) and F ?
p (σp) are positive closed currents of

bidimension (l, l) on X. Moreover, F ?
p (δxp) is well defined for xp ∈ Xp generic.

To simplify the notations, set

Rp := R(Xp, ωp, σp),

Sp := S(Xp, ωp, σp),

∆p(t) := ∆(Xp, ωp, σp, t),

δp := δ(Fp), dp := d(Fp).
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The following is the main theorem in Dinh-Sibony equidistribution theory [23,
Theorem 4.1].

Theorem 2.1.5. Suppose that the sequence {Rpδpd
−1
p } tends to 0 and one of

the following two conditions is verified∑
p≥1

Spδpd
−1
p <∞,∑

p≥1

∆p(δ
−1
p dpt) <∞, ∀t > 0.

Then for almost every x = (xp) ∈ X with respect to σ, the sequence 〈d−1
p (F ?

p (δxp)−
F ?
p (σp)), ψ〉 converges to 0 uniformly on the bounded set of (l, l)-forms on X

of class C 2.

Theorem 2.1.6. Suppose that the sequence {Spδpd−1
p } tends to 0. Then

〈d−1
p (F ?

p (σp) − F ?
p (ω

np
p )), ψ〉 converges to 0 uniformly on the bounded set of

(l, l)-forms on X of class C 2. To be more precise, we have

〈d−1
p (F ?

p (σp)− F ?
p (ωnpp )), ψ〉 ≤ 2Spδpd

−1
p ‖φ‖C 2

for any (l, l)-form of class C 2 on X.

There is a crucial estimate that we mention as follows. First we define for
every p > 0, ε > 0,

Ep(ε) :=
⋃

‖φ‖C2≤1

{xp ∈ Xp :
∣∣〈F ?

p (δxp)− F ?
p (σp), φ

〉∣∣ ≥ dpε}.

Theorem 2.1.7. Let ηε,p := εδ−1
p dp − 3Rp, then

σp(Ep(ε)) ≤ ∆p(ηε,p).

2.2 Estimate for moderate measures on Pk

In this section, we give an estimate for moderate measures on Pk. Our
work is inspired by the techniques of exponential estimates for p.s.h. functions
from [21]. Such estimate, combined with Dinh-Sibony equidistribution theory,
implies the main theorems. Let (X,ω) be a compact Kähler manifold of di-
mension k and ωk be its standard volume form such that ωk is a probability
measure on X.

2.2.1 Locally moderate currents

Let S be a positive closed current of bidegree (p, p) on X, the trace measure
is σS = S ∧ ωk−p for a fixed Hermitian form ω on X. Here X may not
be compact. S is said to be locally moderate if its trace measure is locally
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moderate. If u is a continuous real-valued function and uS defines a current
on X (for example, if supp u ⊂ suppS), then ddc(uS) is well defined (cf.
Section 1.2.2). We say that u is S-p.s.h. if ddc(uS) is a positive current. Dinh-
Nguyên-Sibony [21, Theorem 1.1] proved the following theorem. We improve
their method quantitatively in this section.

Theorem 2.2.1. Let S be a locally moderate positive closed (p, p)-current on
a complex manifold X. If u is a Hölder continuous S-p.s.h. function, then
ddc(uS) is locally moderate.

Corollary 2.2.2. Let u be a Hölder continuous p.s.h. function on X. Then
the Monge-Ampère currents (ddcu)p are locally moderate.

The following lemma is needed [21, Lemma 2.3].

Lemma 2.2.3. Let T be a positive closed current of bidegree (k − 1, k − 1)
and u be a T -p.s.h. function on a neighbourhood U of the unit ball B1 in Ck.
Suppose that u is smooth on B1−r \ B1−4r for a fixed number 0 < r < 1/4. If
φ is a q.p.s.h. function on U , χ is a smooth function with compact support on
B1−r, 0 ≤ χk ≤ 1 and χk ≡ 1 on B1−2r. Then∫

B1

χφddc(uT ) = −
∫
B1−r\B1−3r

ddcχ ∧ φuT

−
∫
B1−r\B1−3r

dχ ∧ φdcu ∧ T +

∫
B1−r\B1−3r

dcχ ∧ φdu ∧ T

+

∫
B1−r

χuddcφ ∧ T.

2.2.2 Covering lemma on Pk

Denote by Sk the unit sphere on Rk+1, B1 the unit ball in Ck. Let π :
S2k+1 → Pk be the natural projection map. More precisely, set zj = xj +

iyj, xj, yj ∈ R, 0 ≤ j ≤ k, when
∑k

j=0 |zj|2 = 1, we have π(x0, y0, ..., xk, yk) =

[z0, ..., zk]. Let U0 = {[z0, ..., zk] ∈ Pk, z0 6= 0}. There is a natural isomorphism

θ : U0 → Ck, [z0, ..., zk]→ (z1/z0, ..., zk/z0) (2.1)

Let K0 = θ−1(B1). K0 is a neighbourhood of [1, 0, ..., 0] in Pk. π−1(K0) =

{(x0, y0, ..., xk, yk) ∈ S2k+1,
∑k

j=1 |zj|2 ≤ |z0|2}. Let S0 = {(x0, y0, ..., xk, yk) ∈
S2k+1, x0 >

1√
2
}. It’s obvious that S0 ⊂ π−1(K0) and π(S0) is a neighbourhood

of [1, 0, ..., 0].
By the homogeneity of S2k+1(resp. Pk), there is a neighbourhood S ′0 (resp.

π(S ′0)) of any point (x0, y0, ..., xk, yk) (resp. [z0, ..., zk]) which is the image of
S0 (resp. π(S0)) by rotations (resp. unitary transformations). We say that S ′0
(resp. π(S ′0)) is similar to S0 (resp. π(S0)). Since Pk is compact, there are
finitely many such neighbourhoods π(S0) that cover Pk. Denote by Mk the
minimum number of such neighbourhoods π(S0) that cover Pk. We have the
following lemma.
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Lemma 2.2.4. Let K0 be as above. For any point z ∈ Pk, there exists a
neighbourhood Kz of z which is similar to K0. Denote by Nk the minimum
number of such neighbourhoods K0 that cover Pk. Then Nk = O(8k).

Proof. Since π(S0) ⊂ K0, then Mk ≥ Nk. So it remains to prove that
Mk = O(8k). We endow S2k+1 with the great-circle distance. S0 can be
regarded as an open ball with central point [1, 0, ..., 0] of radius π

4
. Denote

S0 by B([1, 0, ..., 0], π
4
). Let S1 = B([1, 0, ..., 0], π

8
) = {(x0, y0, ..., xk, yk) ∈

S2k+1, x0 >

√
2+
√

2

2
}. We first consider the open balls of radius π

8
. All

of them are similar to each other. We put the maximal number of balls
B(z1,

π
8
), ..., B(zmk ,

π
8
) in S2k+1 such that all of them are disjoint mutually.

Then S2k+1 =
⋃j=mk
j=1 B(zj,

π
4
). If there exists a point w ∈ S2k+1\

⋃j=mk
j=1 B(zj,

π
4
),

then the great-circle distance between w and zj is larger than or equal to π
4

for

all 1 ≤ j ≤ mk. Hence B(w, π
8
) ⊂ S2k+1 \

⋃j=mk
j=1 B(zj,

π
8
), contradicts with the

maximality. Then Mk ≤ mk ≤ V ol(S2k+1)/V ol(S1), the last inequality is due
to the mutual disjointedness. It means that Nk = O(V ol(S2k+1)/V ol(S1)).

We now use the spherical coordinate for S2k+1. Let x0 = cos θ1, y0 =
sin θ1 cos θ2, ..., xk = sin θ1 sin θ2 · · · sin θ2k cos θ2k+1, yk = sin θ1 sin θ2 · · · sin θ2k sin θ2k+1.
Then the volume element of S2k+1 is dS2k+1V = sin2k θ1 sin2k−1 θ2 · · · sin θ2kdθ1dθ2 · · · dθ2k+1.

V ol(S2k+1) =

∫ π

0

sin2k θ1 dθ1

∫ π

0

sin2k−1 θ2 dθ2 · · ·
∫ π

0

sin θ2k dθ2k

∫ 2π

0

dθ2k+1

V ol(S1) =

∫ π
8

0

sin2k θ1 dθ1

∫ π

0

sin2k−1 θ2 dθ2 · · ·
∫ π

0

sin θ2k dθ2k

∫ 2π

0

dθ2k+1.

This yields O(V ol(S2k+1)/V ol(S1)) = O(
∫ π

0
sin2k θ1 dθ1/

∫ π
8

0
sin2k θ1 dθ1).

Then it suffices to show that
∫ π

0
sin2k θ1 dθ1/

∫ π
8

0
sin2k θ1 dθ1 ≤ 8k+1,∀k ≥ 7.

When k = 7, the inequality is right. By induction on k and the following
integrals ∫

sin2k θ1 dθ1 = −sin2k−1 θ1 cos θ1

2k
+

2k − 1

2k

∫
sin2k−2 θ1 dθ1,

the proof is reduced to show that
∫ π

8

0
sin2k θ1 dθ1 ≥ 8

7
1

2k+1

√
2

4
(2−
√

2
4

)k. By the

relation between
∫ π

8

0
sin2k θ1 dθ1 and

∫ π
8

0
sin2k+6 θ1 dθ1, we have∫ π

8

0

sin2k θ1 dθ1

≥ 1

2k + 1

√
2

4
(
2−
√

2

4
)k(1 +

2−
√

2

4

2k + 2

2k + 3
+ (

2−
√

2

4
)2 (2k + 2)(2k + 4)

(2k + 3)(2k + 5)
)

Then the proof is completed.
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2.2.3 Local estimate for moderate measures

Let F be defined in (1.1) when X = Pk and θ defined in (2.1). The following
lemma is crucial for the main proposition in this section.

Lemma 2.2.5. Let u be of class C ρ with modulus ε on a neighbourhood U
of B1 in Ck with ddcu ≥ 0 in the sense of currents, 0 < ρ < 1. Set ω :=
1
2
ddc log(1 + ‖z‖2). Let F0 = {φ ◦ θ−1 on U : φ ∈ F} and T a positive closed

(k − 1, k − 1)-current. If T ∧ ω is (c, α)-moderate on U , then∫
B1

exp(−αρ
4
φ)ddc(uT ) ≤ ckε(c1e

α +
c2

α
)

where c1, c2 are positive constants independent of k, ρ and T .

Proof. We modify the function u on U . Subtracting a constant, we assume
that u ≤ −ε/2 on B1. Consider the function v(z) = max(u(z), εA log |z|) for
a constant A > 0 large enough such that v coincides with u near the origin
and v(z) = εA log |z| near the boundary of B1. For example, A = 1

2
log 1

1−4r
.

A is independent of the choice of u. Fix 0 < r < 1/16, we are allowed to
assume that u = εA log |z| on B1 \ B1−4r. For the smooth function χ defined
in Lemma 2.3.3, we can assume that ‖χ‖C 2 < c3 for some constant c3 > 1
large enough independent of k, since the terms in the definition of the norm
‖ • ‖C 2 are smooth on the compact subset B̄1−r \B1−2r. Set σT = T ∧ω, σT ′ =
ddc(uT ), φM = max(φ,−M), ψM = φM−1 − φM , for φ ∈ F0,M ≥ 0.

To prove the lemma, we need to estimate the mass of ddc(uT ) on {φ <
−M}. Since suppχ ⊂ B1−r, hence

σT ′{φ < −M} ≤
∫
χψMdd

c(uT ).

Since T is (c, α)-moderate, then

σT{z ∈ B1−r, φ(z) ≤ −M + 1} ≤ ceαe−αM .

By Lemma 2.3.3, we have∫
B1

χψMdd
c(uT ) = −

∫
B1−r\B1−3r

ddcχ ∧ ψMuT

−
∫
B1−r\B1−3r

dχ ∧ ψMdcu ∧ T +

∫
B1−r\B1−3r

dcχ ∧ ψMdu ∧ T

+

∫
B1−r

χuddcψM ∧ T

(2.2)

We know that ω = 1
2
ddc log(1+‖z‖2) = i

2π

∑k
j,l=1(

dzj∧dz̄l
1+‖z‖2−

z̄jzldzj∧dz̄l
(1+‖z‖2)2

). By simple

computations, the eigenvalues of the corresponding Hermitian matrix of ω are
1

π(1+‖z‖2)2
and 1

π(1+‖z‖2)
(k−1 times). On the other hand, the eigenvalues of the

corresponding Hermitian matrix of i
∑k

j,l=1 dzj∧dz̄l are k and 0 (k−1 times). So



Chapter 2. 59

there exists a constant m1 > 0 small enough such that ω−m1

k
i
∑k

j,l=1 dzj∧dz̄l >
0 on B1. Hence |ddcχ∧uT | ≤ |uc3i

∑k
j,l=1 dzj∧dz̄l∧T | ≤ εA| log(1−3r)|c3

k
m1
σT .

Observing that 0 ≤ ψM ≤ 1, suppψM ⊂ {φ < −M + 1}, we obtain∣∣∣∣∫
B1−r\B1−3r

ddcχ ∧ ψMuT
∣∣∣∣ ≤ εA| log(1− 3r)|c3

k

m1

ceαe−αM .

Since we know u explicitly on supp(dχ), we obtain∣∣∣∣∫
B1−r\B1−3r

dχ ∧ ψMdcu ∧ T
∣∣∣∣ ≤ εA

1− 3r
c3km2ce

αe−αM ,

∣∣∣∣∫
B1−r\B1−3r

dcχ ∧ ψMdu ∧ T
∣∣∣∣ ≤ εA

1− 3r
c3km2ce

αe−αM .

for a constant m2 > 0 large enough independent of k. The sum of the first
three terms is less than

c4εkce
αe−αM (2.3)

where c4 = Ac3( | log(1−3r)|
m1

+ 2m2

1−3r
) is independent of k and ρ.

For the last integral in (2.2), we use a regularization procedure and the
condition of ρ-Hölder continuity of u. Let {uδ} be the smooth approximation
of u obtained by convolution. For some fixed 0 < δ < 1 small enough, uδ
is defined in a neighborhood of B̄1−r. There exists a suitable function uδ
satisfying that ‖uδ‖C 2 ≤ εδ−(2−ρ) and ‖u − uδ‖∞ ≤ εδρ, where the latter
inequality follows from that u is of class C ρ with modulus ε. The above two
inequalities are independent of k. We write∫

B1

χuddcψM ∧ T

=

∫
χddcψM ∧ Tuδ +

∫
χ(ddcφM−1 − ddcφM) ∧ T (u− uδ).

Since ∣∣∣∣∫ χddc(φT )

∣∣∣∣ =

∣∣∣∣∫ ddcχ ∧ φT
∣∣∣∣ ≤ k‖χ‖C 2

∫
B1−r

|φ|dσT ,

We obtain ∣∣∣∣∫ χ(ddcφM−1 − ddcφM) ∧ T
∣∣∣∣ ≤ 2k‖χ‖C 2

∫
B1−r

|φ|dσT

≤ 2k‖χ‖C 2

1

α

∫
B1−r

exp(−αφ)dσT ≤ 2c3k
c

α
.

Then ∣∣∣∣∫ χ(ddcφM−1 − ddcφM) ∧ T (u− uδ)
∣∣∣∣ ≤ 2c3k

c

α
εδρ (2.4)
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Using Lemma 2.3.3 again, we obtain∫
χddcψM ∧ Tuδ

=

∫
B1−r\B1−3r

ddcχ ∧ ψMTuδ +

∫
B1−r\B1−3r

dχ ∧ ψMT ∧ dcuδ

−
∫
B1−r\B1−3r

dcχ ∧ ψMT ∧ duδ +

∫
B1−r

χψMT ∧ ddcuδ.

By the same argument, the first three integrals have the same dominant con-
stant

c4εkce
αe−αM . (2.5)

The final term ∣∣∣∣∫ χψMT ∧ ddcuδ
∣∣∣∣ ≤ ceαe−αM‖uδ‖C 2

≤ ceαe−αMεδ−(2−ρ).

(2.6)

Let δ = e−αM/2 small enough, since it is sufficient to consider M big. Then
e−αMρ/2 = e−αMeαM(2−ρ)/2. Combining (2.3), (2.4), (2.5), (2.6), we have

σT ′{z ∈ B1, φ < −M} ≤ εck(2c4e
α +

eα

k
+ 2

c3

α
)e−

αM
2
ρ.

So by Remark 1.2.50 we have∫
B1

exp(−αρ
4
φ)ddc(uT )

≤ 2εck(2c4e
α +

eα

k
+ 2

c3

α
) ≤ εck(c1e

α +
c2

α
),

where c1 = 4c4 + 2, c2 = 4c3.

2.2.4 Main result and its proof

The following proposition is our main result about the estimate for moder-
ate measures on Pk.

Proposition 2.2.6. Suppose that uj is of class C ρ with modulus ε on Pk for
some 0 < ρ < 1, 0 < ε < 1, and that uj is an εωFS-p.s.h. function for all
1 ≤ j ≤ k. Assume that ε < β0k

−3( ρ
12

)2k, where β0 is a positive constant
independent of k and ρ. Then there exists a positive constant c5 independent
of k and ρ, such that∫

Pk
exp(−α0(

ρ

4
)kφ)(∧j=kj=1(ddcuj + εωFS + ωFS)− ωkFS) ≤ c5(

ρ

4
)k (2.7)

for all φ ∈ F , where α0 is the constant in Proposition 1.2.48. In other words,
(∧j=kj=1(ddcuj + εωFS + ωFS)− ωkFS) is (c5(ρ

4
)k, α0(ρ

4
)k)-moderate.
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Proof. We pull back the integral (2.7) locally to that on Ck. There is a potential
v = ε

2
log(1 + ‖z‖2) on Ck such that (θ−1)?(εωFS) = ddcv, where the map θ

is defined in (2.1). Set ũj := uj ◦ θ−1 + v. Note that uj is εωFS-p.s.h., then
ddcũj ≥ 0. Since uj is of class C ρ with modulus ε on Pk, log(1 + ‖z‖2) is of
class C a on Ck for all 0 < a < 1, then we may assume that ũj is of class C ρ

with modulus ε on B1. Hence ‖ũj‖C ρ(B1) ≤ ε. Let ω = 1
2
ddc log(1 + ‖z‖2), we

have ∫
K0

exp(−αφ) ∧j=kj=1 (ddcuj + εωFS + ωFS)

=

∫
B1

exp(−αφ ◦ θ−1)(θ−1)? ∧j=kj=1 (ddcuj + εωFS + ωFS)

=

∫
B1

exp(−αφ ◦ θ−1)(ddcũ1 + ω) ∧ · · · ∧ (ddcũk + ω)

(2.8)

We replace ũj (resp. φ◦ θ−1) by uj (resp. φ) in the sequel. Since there are two
constants c0 > 0, α0 > 0 independent of k and ρ, such that∫

Pk
exp(−α0φ̃)ωkFS ≤ c0k, (2.9)

by pulling back the integral in B1 with Lemma 2.3.5, we have∫
B1

exp(−α0
ρ

4
φ)(ddcuj) ∧ ωk−1 ≤ c0εk

2(c1e
α0 +

c2

α0

).

By induction we can show that∫
B1

exp(−α0(
ρ

4
)jφ)ddcul1 ∧· · ·∧ddculj ∧ωk−j ≤ c0k(εk)j

j−1∏
l=0

(c1e
α0( ρ

4
)l +

c2

α0(ρ
4
)l

)

for all 1 ≤ l1 < · · · < lj ≤ k. Let β0 = 1/(c1e
α0 + c2

α0
), ε0 = β0k

−3(1
8
)k(ρ

4
)
3k−1

2 >

ε, ε0 = ε1ε2, ε2 = (ρ
4
)k. Here β0 is independent of k and ρ. Let ε1 = ε3/(

ρ
4
)
k+1
2 ,

then ε3 = β0( ρ
32

)k/k3. Hence∫
B1

exp(−α0(
ρ

4
)kφ)((ddcu1 + ω) ∧ · · · ∧ (ddcuk + ω)− ωk)

=
k∑
j=1

(
k

j

)∫
B1

exp(−α0(
ρ

4
)jφ)ddcu1 ∧ · · · ∧ ddcuj ∧ ωk−j

≤
k∑
j=1

(
k

j

)
c0k(ε1k)j(

1

β0

)j(
ρ

4
)k+k−1+···+k−(j−1)

≤
k∑
j=1

(
k

j

)
c0k(ε1k)j(

1

β0

)j(
ρ

4
)
k+1
2
j ≤ c0k

k∑
j=1

(
k

j

)
(
ε3k

β0

)j

≤ c0(
ρ

32
)k(

k−1∑
j=0

1

kj
) ≤ 2c0(

ρ

32
)k.

(2.10)
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This is equivalent to∫
K0

exp(−α0(
ρ

4
)kφ)((ddcu1+εωFS+ωFS)∧···∧(ddcuk+εωFS+ωFS)−ωkFS) ≤ 2c0(

ρ

32
)k.

By Lemma 2.3.4, there is a positive constant N ′ independent of k and ρ such
that Nk ≤ N ′8k. Let c5 = 2c0N

′. Due to the homogeneity of Pk, we have∫
Pk

exp(−α0(
ρ

4
)kφ)((ddcu1+εωFS+ωFS)∧···∧(ddcuk+εωFS+ωFS)−ωkFS) ≤ c5(

ρ

4
)k.

The proof is completed.

Remark 2.2.7. Since (ddcuj + ωFS)k ≤ (ddcuj + εωFS + ωFS)k, the above
proposition, combined with (2.9), gives the following estimate∫
Pk

exp(−α0(
ρ

4
)kφ)(ddcu1 +ωFS)∧·· ·∧(ddcuk+ωFS) ≤ c0k+c5(

ρ

4
)k ≤ c0k+c5

for all φ ∈ F . In other words, (ddcu1 + ωFS) ∧ · · · ∧ (ddcuk + ωFS) is (c0k +
c5, α0(ρ

4
)k)-moderate.

2.3 Equidistribution on positive line bundles for mod-
erate measures

In this section we prove Theorem 0.2.1 and 0.2.2. Consider the projective
manifold X of dimension n and the ample line bundle L on X in Theorem
0.2.1. By Proposition 1.3.11, there exists a smooth Hermitian metric h such
that

c1(L, h) = −ddc log h(eL, eL)
1
2

is a strictly positive (1, 1)-form, where eL is a local holomorphic section on
L. As we know, c1(L, h) represents the Chern class c1(L) ∈ H2(X,Z). Let
ω = c1(L, h) be the Kähler form,

∫
X
ωn = c1(L)n ∈ Z+.

The line bundle Lp of the pth tensor power of L has a natural Hermitian
metric hp induced by h. The space H0(X,Lp) of holomorphic sections of Lp

has the following inner product,

〈s1, s2〉 :=
1

c1(L)n

∫
X

hp(s1, s2)ωn

∀s1, s2 ∈ H0(X,Lp).

2.3.1 Meromorphic transforms induced by Kodaira maps

First we consider a meromorphic map f : X1 → X2 between two complex
manifolds X1 and X2 of dimension n1 and n2 respectively. It follows from [50]
that there exists an analytic subset I of X1 such that f is holomorphic on X1\I
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and the closure of the graph of f over X1 \ I is an irreducible analytic subset
of dimension n1 of X1×X2. The smallest set I is called the indeterminacy set
of f . Note that I has codimension at least 2.

Now we consider the meromorphic transforms from X to PH0(X,Lp) in-
duced by the Kodaira maps. The meromorphic transform Fp : X → PH0(X,Lp)
has the following graph

Γp = {(x, s) ∈ X × PH0(X,Lp) : s(x) = 0}.

Since L is ample, dimH0(X,Lp) ≥ 2 (cf. Theorem 3.4.1), for every point
x ∈ X, there exists a point s ∈ PH0(X,Lp) such that s(x) = 0. Hence the
projection from Γp to X is surjective. Since Lp is not trivial, there are no
nowhere vanishing sections. That is to say, every point s ∈ PH0(X,Lp) must
vanish at some point x ∈ X. Hence the projection from Γp to PH0(X,Lp) is
surjective. Then Fp is indeed a meromorphic transform of codimension n− 1.

Recall that ωFS denotes the Fubini-Study form of Pnp ∼= PH0(X,Lp). The
Fubini-Study current Φ?

p(ωFS) of H0(X,Lp) is defined to be the pullback of

ωFS by the Kodaira map Φp. It is actually a L1-form, which is smooth outside
the indeterminacy set of Φp by the following lemma.

Lemma 2.3.1. Let f : X1 → X2 be a meromorphic map between two complex
compact manifolds X1 and X2 of dimension n1 and n2 respectively. If φ is a
smooth form of bidegree (p, q) on X2, then f ?(φ) is a L1-form, which is smooth
outside the indeterminacy set of f .

Proof. Let π1, π2 be the natural projections from X1 × X2 to X1 and X2 re-
spectively. Denote by Γ the graph of f . The regular part of Γ is reg(Γ). By
definition, we have

f ?(φ) := (π1)?(π
?
2(φ) ∧ [Γ]).

Then for any test form ψ on X1,〈
f ?(φ), ψ

〉
=

∫
reg(Γ)

π?2(φ) ∧ π?1(ψ).

Then f ?(φ) can be extended to act on the space of continuous forms. Hence it
is a current of order 0. If V is a proper analytic subset of X1, then π−1

1 (V )∩Γ
is also a proper analytic subset of Γ and π−1

1 (x1) ∩ Γ is of measure 0 for x1

generic. So f ?(φ) has no mass on V , hence on the indeterminacy set I.
Note that π1 : Γ \π−1

1 (I)→ X1 \ I is a biholomorphic, therefore, we obtain〈
f ?(φ), ψ

〉
=

∫
X1\I

π1?π
?
2(φ) ∧ ψ

=

∫
X1\I

g?(φ) ∧ ψ,

where g is the restriction map of f on X1 \ I, which is holomorphic. Then
f ?(φ) = g?(φ) is a smooth form on X1 \ I. In addition, f ?(φ) has measure
coefficients and has no mass on I. Hence g?(φ) has L1-coefficients and is equal
to f ?(φ) in the sense of currents. The proof is completed.
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Note that δp := λnp−1(Fp) (resp. dp := λnp(Fp)) is the intermediate degree
of order np − 1 (resp. np) of Fp.

Lemma 2.3.2. In the above setting, δp is bounded and dp = pc1(L)n. More-
over, F ?

p (ω
np
FS) = Φ?

p(ωFS).

Proof. The first assertion is proved in [23, Lemma 7.1] by using cohomological
arguments. We prove the second one with the definition of F ?

p . For any test
(n− 1, n− 1)-form ψ, we have〈

F ?
p (ω

np
FS), ψ

〉
=

∫
Γp

π?1(ψ) ∧ π?2(ω
np
FS)

=

∫
PH0(X,Lp)

π2?π
?
1(ψ) ∧ ωnpFS

=

∫
PH0(X,Lp)

∫
π−1
2 (sp)∩Γp

π?1(ψ)ω
np
FS(sp)

=

∫
PH0(X,Lp)

∫
{x∈X:sp(x)=0}

ψω
np
FS(sp)

=

∫
PH0(X,Lp)

〈
[sp = 0], ψ

〉
ω
np
FS(sp)

=
〈
Φ?
p(ωFS), ψ

〉
.

The last equality follows from [10, Proposition 4.2]. This completes the proof.

2.3.2 Proof of Theorem 0.2.1

From now on we recall the notations from Section 2.2.1 in the special case.
Suppose that µ is a PLB probability measure on Pk. F is defined in (1.1) when
X = Pk. Let

Q(Pk, ωFS) = {φ q.p.s.h. on Pk : ddcφ ≥ −ωFS},

R(Pk, ωFS, µ) = sup
φ

{
−
∫
φdµ, φ ∈ F

}
,

S(Pk, ωFS, µ) = sup
φ

{∣∣∣∣∫ φdµ

∣∣∣∣ , φ ∈ Q(Pk, ωFS),

∫
φωkFS = 0

}
,

∆(Pk, ωFS, µ, t) = sup
φ

{
µ(φ < −t), φ ∈ Q(Pk, ωFS),

∫
φdµ = 0

}
for any t > 0. When µ = ωkFS, we write R0(Pk, ωFS) = R(Pk, ωFS, µ). Let σp
be a PLB probability measure on PH0(X,Lp). To simplify the notations, let

Rp := R(PH0(X,Lp), ωFS, σp),

R0
p := R(PH0(X,Lp), ωFS, ω

np
FS),

Sp := S(PH0(X,Lp), ωFS, σp),

∆p(t) := ∆(PH0(X,Lp), ωFS, σp, t).
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Let PX := Πp≥1PH0(X,Lp) endowed with its measure σ = Πp≥1σp. Denote by
δz the Dirac measure at a point z.

Lemma 2.3.3. F ?
p (δsp) = [sp = 0].

Proof. By the definition of pullbacks of meromorphic transforms, we have

F ?
p (δsp) = π1?(π

?
2(δsp) ∧ [Γp]).

For any test (n− 1, n− 1)-form φ on X,〈
F ?
p (δsp), φ

〉
=

∫
X×PH0(X,Lp)

π?2(δsp) ∧ [Γp] ∧ π?1(φ)

=

∫
X×PH0(X,Lp)

[π−1
2 (sp)] ∧ [Γp] ∧ π?1(φ)

=

∫
π−1
2 (sp)∩Γp

π?1(φ) =

∫
{x∈X:sp(x)=0}

φ

=
〈
[sp = 0], φ

〉
.

The proof is completed.

We specify Theorem 2.2.5 and Theorem 2.2.6 for the above case.

Theorem 2.3.4. Suppose that the sequence {Rpδpd
−1
p } tends to 0 and

Σp≥1∆p(δ
−1
p dpt) <∞

for all t > 0. Then for almost everywhere s = (sp) ∈ PX with respect to σ, the
sequence 〈d−1

p (F ?
p (δsp) − F ?

p (σp)), ψ〉 converges to 0 uniformly on the bounded

set of (n− 1, n− 1)-forms on X of class C 2.

Theorem 2.3.5. Suppose that the sequence {Spδpd−1
p } tends to 0. Then

〈d−1
p (F ?

p (σp) −F ?
p (ω

np
FS)), ψ〉 converges to 0 uniformly on the bounded set of

(n− 1, n− 1)-forms on X of class C 2.

The following theorem is due to Tian, Ruan, Catlin and Zelditch, see [60,
9, 52].

Theorem 2.3.6. For all r ≥ 0, ‖p−1Φ?
p(ωFS)− ω‖C r = O(p−1).

In order to prove the main theorem, we write

|
〈
p−1[sp = 0]− ω, ψ

〉
| ≤ |

〈
p−1[sp = 0]− p−1F ?

p (σp), ψ
〉
|

+ |
〈
p−1F ?

p (σp)− p−1F ?
p (ω

np
FS), ψ

〉
|+ |

〈
p−1F ?

p (ω
np
FS)− ω, ψ

〉
|,

for any test form ψ of bidegree (n − 1, n − 1) on X. It is sufficient to prove
that the three terms in the right side of the inequality all tend to 0 when
p→∞. The third one is right due to Theorem 2.3.6. The first one holds un-
der the conditions that Rp = o(p),

∑
p≥1 ∆(pt) < ∞, ∀t > 0 by Theorem
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2.3.4. The second one is valid when Sp = o(p) by Theorem 2.3.5. By applying
Proposition 2.1.1 and Proposition 2.1.2, the proof is reduced to the estimates
of Rp/p and

∑
p≥1 ∆(pt) for any t > 0.

End of the proof of Theorem 0.2.1. We have F ?
p (ω

np
FS) = (Φp)

?ωFS by
Lemma 2.3.2. It follows from Theorem 2.3.6 that

p−1F ?
p (ω

np
FS)→ ω (2.11)

in the weak sense of currents. We write µ1,p = ω
np
FS, µ2,p = ∧npj=1(ddcup,j +

εpωFS + ωFS) − µ1,p. Then σp ≤ µ1,p + µ2,p. Note that np = c1(L)npn/n! +
O(pn−1). Let c > (12

ρ
)2c1(L)n/n! > 1 such that cp

n ≥ 1
β0
n3
p(

12
ρ

)2np , then c depends

only on X,L and ρ. Hence µ2,p is a positive moderate measure satisfying
Proposition 2.2.6. To estimate ∆p, we consider any q.p.s.h. function φ on Pnp
such that ddcφ ≥ −ωFS and

∫
φdσp = 0. Set ϕ := φ−maxPnp φ. It is obvious

that ϕ ∈ F by definition in (1.1). Since
∫
φdσp = 0, maxPnp φ ≥ 0. Hence

ϕ ≤ φ. Then we have

σp(φ < −pt) ≤ σp(ϕ < −pt)
≤ µ1,p(ϕ < −pt) + µ2,p(ϕ < −pt)

≤
∫

exp(α0(−pt− ϕ))dµ1,p +

∫
exp(α0(

ρ

4
)np(−pt− ϕ))dµ2,p

≤ c0np exp(−α0pt) + c5(
ρ

4
)np exp(−α0(

ρ

4
)nppt).

The last inequality follows from Proposition 1.2.48 and Proposition 2.2.6. Then
by the definition of ∆p, we have∑

p≥1

∆p(pt) ≤
∑
p≥1

c0np exp(−α0pt) +
∑
p≥1

c5(
ρ

4
)np exp(−α0(

ρ

4
)nppt). (2.12)

It is obvious that
∑

p≥1 p
n exp(−pt) < ∞ and that exp(−(ρ

4
)nppt) tends to 1

when p tends to infinity, ∀t > 0. This yields
∑

p≥1 ∆p(pt) <∞. By Proposition
2.1.2 and Proposition 2.2.6,

lim sup
p→∞

R0
p/p ≤ lim

p→∞

1 + log np
2p

= 0. (2.13)

lim sup
p→∞

Rp/p ≤ lim
p→∞

sup
φ∈F

{
−
∫
φdµ1,p −

∫
φdµ2,p

}
/p

≤ lim sup
p→∞

R0
p/p+ lim

p→∞
c5(

ρ

4
)np/(α0(

ρ

4
)npp) = 0

(2.14)

By Proposition 2.1.1, (2.13) and (2.14), lim supp→∞ Sp/p = 0. Note that

δpd
−1
p = O(1

p
) by Lemma 2.3.2. Hence by applying Theorem 2.3.5, the fol-

lowing sequence
p−1F ?

p (σp)− p−1F ?
p (ω

np
FS)→ 0 (2.15)
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in the weak sense of currents. We know that F ?
p (δsp) = [sp = 0] by Lemma

2.3.3. Combined with (2.12) and (2.14), Theorem 2.3.4 implies that for σ-
almost everywhere s ∈ PX , the following sequence

p−1[sp = 0]− p−1F ?
p (σp)→ 0 (2.16)

in the weak sense of currents. Then we deduce from (2.11), (2.15) and (2.16)
that for σ-almost everywhere s ∈ PX ,

|
〈
p−1[sp = 0]− ω, ψ

〉
| ≤ |

〈
p−1[sp = 0]− p−1F ?

p (σp), ψ
〉
|

+ |
〈
p−1F ?

p (σp)− p−1F ?
p (ω

np
FS), ψ

〉
|+ |

〈
p−1F ?

p (ω
np
FS)− ω, ψ

〉
| → 0,

for any test form ψ of bidegree (n− 1, n− 1) on X when p tends to ∞. That
is to say, p−1[sp = 0] converges weakly to ω. The proof is completed.

2.3.3 Nontrivial examples of moderate measures

Now given X and L in Theorem 0.2.1, we construct a concrete example
of a sequence of functions (up,j) satisfying the conditions of the theorem. We
require that up,1 = · · · = up,np = up. Notice that we can perturbate up so that
the constants ξp, εp do not change and the perturbed functions still satisfy the
conditions in Theorem 0.2.1.

Example 2.3.7. Let π : Ck+1 \ {0} → Pk be the natural map. Consider the
map f : Pk → Pk with f [z0, ..., zk] = [zk0 , ..., z

k
k ]. From [53, Example 1.6.4],

its Green function is s(z) = max(log |z0|, ..., log |zk|). Moreover, s is a Hölder
continuous function with any exponent 0 < ρ < 1. We obtain a well-defined
function

v := max(log
|z0|
|z|

, ..., log
|zk|
|z|

) (2.17)

on Pk. Since π?(ddcv + ωFS) = ddcs ≥ 0, then v is ωFS-p.s.h. and Hölder
continuous with any exponent 0 < ρ < 1. Denote by dFS the distance induced

by Fubini-Study metric. Let dk = supz,w∈Pk
z 6=w

|v(z)−v(w)|
dFS(z,w)ρ

. We will show that

dk ≤
√
πk (2.18)

at the end of the example.
For each p, we obtain a corresponding function vp by using (2.17) and iden-

tifying PH0(X,Lp) with Pnp. Consider the functions up = c′pvp with suitable

constants c′p = O( 1
pncpn

) < 1/cp
n
, where c = (145)c1(L)n/n!. Let εn := c′n. Since

kn = O(nk), it follows from (2.18) that dkn = O(nk). Consequently, un is
of class C ρ with modulus 1/cp

n
. Moreover, since vp is ωFS-p.s.h., we infer

that up is εpωFS-p.s.h.. So {un} satisfy the three conditions in Theorem 0.2.1.
From the above proof, we see that σ =

∏
p≥1 σp = (ddcup + ωFS)np satisfies the

equidistribution property.
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Finally we prove (2.18). It is sufficient to consider the special case when
|z0| ≥ max{|z1|, ..., |zk|}, |w0| ≥ max{|w1|, ..., |wk|}. Then

dk =
1

2
sup
z,w∈K
z 6=w

∣∣log(1 + |z|2)− log(1 + |w|2)
∣∣

dFS(z, w)ρ

where z = ( z1
z0
, ..., z1

z0
), w = (w1

w0
, ..., w1

w0
) ∈ Ck and K = {z ∈ Ck : |zi| ≤ 1, 1 ≤

i ≤ k}. Let g =
∑2k

i,j=1 gijdx
i ⊗ dxj be the associated Riemannian metric

with g11 = 1
π

1+|z|2−|z1|2
(1+|z|2)2

. When r1 = |z|, r2 = |w| are fixed, dFS(z, w) takes its

minimum only when z and w are at the same line through the origin in R2k.
The distance is invariant with respect to the orthogonal group O(2k) in this
case since the Fubini-Study metric is invariant with respect to the unitary group
U(k) on Pk. So we take the simple case when z = (r1, 0, ..., 0), w = (r2, 0, ..., 0).
Hence

dk =

√
π

2
sup

0≤r1<r2≤k

log(1 + r2
2)− log(1 + r2

1)

(arctan r2 − arctan r1)ρ

=

√
π

2
sup

0≤s1<s2≤arctan k

log(1 + tan2 s2)− log(1 + tan2 s1)

(s2 − s1)ρ

≤
√
π

2
max

(
log(1 + k2), sup

s2−s1<1
0≤s1<s2≤arctan k

log(1 + tan2 s2)− log(1 + tan2 s1)

s2 − s1

)
.

The function y = log(1 + tan2 x) is increasing and convex on [0,∞). So the

second term in the last inequality is equal to (log(1 + tan2 s))′
∣∣∣
s=arctan k

= 2k.

This completes the proof of (2.18).

2.3.4 Proof of Theorem 0.2.2

Now we are in a position to prove Theorem 0.2.2.

Proof. It follows from Lemma 2.3.2 and Theorem 2.3.6 that

|
〈
p−1F ?

p (ω
np
FS)− ω, ψ

〉
| ≤ C1

p
‖ψ‖C 2 (2.19)

for some positive constant C1 depending only on X,L. We know that Sp =
O(log p) by using Proposition 2.2.1, (2.13) and (2.14), then Theorem 2.3.5 and
Theorem 2.2.6 imply that

|
〈
p−1F ?

p (σp)− p−1F ?
p (ω

np
FS), ψ

〉
| ≤ C2 log p

p
‖ψ‖C 2 (2.20)

for some positive constant C2 depending only on X,L. Set

Ep(ε0) :=
⋃

‖ψ‖C2≤1

{sp ∈ PH0(X,Lp) : |
〈
p−1[sp = 0]− p−1F ?

p (σp), ψ
〉
| ≥ ε0}
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for any ε0 > 0. We define Ep := Ep(
C3 log p

p
), where C3 is some positive constant

depending only on X,L. Note that Rp = O(log p) from inequalities (2.13) and
(2.14). By applying Theorem 2.1.7, we deduce that

σp(Ep) ≤ ∆p(C4 log p).

Here C4 is a positive constant depending only on X,L. Moreover, C4 is suffi-
ciently large such that α0C4 > k + 2 since C3 can be chosen sufficiently large.
Recall that α0 is the constant defined in Proposition 1.2.48. Then by (2.12),
we obtain

σp(Ep) ≤ ∆p(C4 log p)

≤ c0np exp(−α0C4 log p) + c5(
ρ

4
)np exp(−α0C4(

ρ

4
)np log p)

≤ (c0 + c5)np
1

pα0C4
≤ C

p2
.

(2.21)

Here C is a positive constant sufficiently large which depends only on X,L.
Note that the third inequality of (2.21) follows from a direct calculation when
p is big enough. The fact that np = O(pn) yields the last inequality of (2.21).
By definition of Ep, we obtain for any point sp ∈ PH0(X,Lp) \ Ep,

|
〈
p−1[sp = 0]− p−1F ?

p (σp), ψ
〉
| ≤ C3 log p

p
‖ψ‖C 2 . (2.22)

It follows from (2.19),(2.20) and (2.22) that

|
〈
p−1[sp = 0]− ω, ψ

〉
| ≤ C log p

p
‖ψ‖C 2 . (2.23)

The proof is completed.

Remark 2.3.8. Since
∑∞

p=1 σp(Ep) <∞, Theorem 0.2.2 gives an alternative
proof of Theorem 0.2.1. This is a standard proof which is analogous to that of
Borel-Cantelli lemma. Note that

∞∑
p=1

σp(Ep) <∞.

Define

E := {s = {sp}∞p=1 ∈ PX : sp ∈ Ep for infinitely many p}.

It is easy to see that E is contained in the following set

ẼN := {s = {sp}∞p=1 ∈ PX : sp ∈ Ep for at least one p ≥ N}

for each integer N ≥ 1. Hence we have

σ(E) ≤ σ(ẼN) ≤
∞∑
p=N

σp(Ep) ≤ C
∞∑
p=N

1

p2
.

The proof is completed by letting N tend to ∞.
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Chapter 3

Equidistribution on big line
bundles for moderate measures.

In this chapter, we establish an equidistribution theorem for the common
zeros of random sections of high powers of several singular Hermitian big line
bundles associated to moderate measures [55]. The basic setting is taken from
Part II in Chapter 0.

3.1 Intersection of Fubini-Study currents

In this section, we introduce some results about the intersection of the
Fubini-Study currents associated to m line bundles. We will see that the
current c1(L1, h1)∧ ...∧ c1(Lm, hm) in Theorem 0.3.1 is well-defined. Based on
the elementary techniques in [14], we also show that for almost all the zero-
divisors of sections of high powers of the bundles with respect to a moderate
measure are in general position. Then it follows from Corollary 1.2.26 (see also
[17]) that the currents [Sp = 0] are well-defined for almost all Sp with respect
to moderate measures σ in Theorem 0.3.1.

We keep the notations and hypotheses in Section 0.3. Consider theKodaira
map

Φk,p : X → P(H0
(2)(X,L

p
k)
?).

Here H0
(2)(X,L

p
k)
? is the dual space of H0

(2)(X,L
p
k). By a similar argument in

Section 1.3.3, choose {Sjk,p}
dk,p
j=0 as an orthonormal basis of H0

(2)(X,L
p
k). By an

identification via the basis, it boils down to a meromorphic map

Φk,p : X → Pdk,p .

Now we give a local analytic description of the above map. Let U ⊂ X be a
contractible Stein open subset, ek a local holomorphic frame of Lk on U . Then
there exists a holomorphic function sk,pj on U such that Sjk,p = sk,pj e⊗pk . Then
the map is expressed locally as

Φk,p(x) = [sk,p0 (x) : ... : sk,pdk,p(x)], ∀x ∈ U (3.1)

71
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It is called the Kodaira map defined by the basis {Sjk,p}
dk,p
j=0. Denote by Pk,p

the Bergman kernel function defined by

Pk,p(x) =

dk,p∑
j=0

|Sjk,p(x)|2hk,p , |Sjk,p(x)|2hk,p = hk,p(S
j
k,p(x), Sjk,p(x)).

It is easy to see that this definition is independent of the choice of basis.
Recall that ωFS is the normalized Fubini-Study form on Pdk,p . The Fubini-

Study current γk,p of H0
(2)(X,L

p
k) is

γk,p = Φ?
k,p(ωFS).

Lemma 2.4.1 says that the Fubini-Study current is a L1-form, which is smooth
outside the the indeterminacy set of Φk,p. We have in the local Stein open
subset U ,

γk,p
∣∣
U

=
1

2
ddc log

dk,p∑
j=0

|sk,pj |2.

Let uk be the local weight of the Hermitian metric hk on U . Then the following
p.s.h. function verifies

uk,p :=
1

2p
log

dk,p∑
j=0

|sk,pj |2 = uk +
1

2p
logPk,p. (3.2)

It implies that ddcuk,p = 1
p
γk,p and

1

p
γk,p = c1(Lk, hk) +

1

2p
ddc logPk,p.

Since logPk,p is a global function which belongs to L1(X,ωn), 1
p
γk,p has the

same cohomology class as c1(Lk, hk). Define the base locus of H0
(2)(X,L

p
k) as

Ak,p = {x ∈ X : Sjk,p = 0,∀0 ≤ j ≤ dk,p}, 1 ≤ k ≤ m.

Note that Ak,p is an analytic subset, Ak,p ∩ U = {uk,p = −∞} and {uk =
−∞} ⊂ Ak ∩U . By [10, Theorem 5.1] and its proof, we know that there exist
constants C > 0, p0 ∈ N, such that

Pk,p(x) ≥ C, ∀p ≥ p0, 1 ≤ k ≤ m,x ∈ X \ Ak.

Then we have

uk,p(x) ≥ uk(x) +
logC

2p
,∀p ≥ p0, 1 ≤ k ≤ m,x ∈ U. (3.3)

Hence Ak,p ⊂ Ak for p ≥ p0. Moreover,

1

p
logPk,p(x)→ 0 (3.4)

in L1(X,ωn).
We have the following result [14, Proposition 3.1].
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Proposition 3.1.1. We keep the notations and hypotheses of Theorem 0.3.1,
then

(i) For every J ⊂ {1, ...,m}, J ′ = {1, ...,m} \ J , the analytic subsets Ak,p
and Al, for k ∈ J, l ∈ J ′, are in general position, when p is sufficiently large.

(ii) The currents ∧
k∈J

γk,p ∧
∧
l∈J ′

c1(Ll, hl)

are well defined for every J ⊂ {1, ...,m}, when p is sufficiently large.

Proof. Since the analytic subsets A1, ..., Am are in general position, the fact
that Ak,p ⊂ Ak for all p sufficiently large yields (i). Hence the currents∧

k∈J

γk,p ∧
∧
l∈J ′

c1(Ll, hl)

are well defined by Corollary 1.2.26. Then (ii) is proved.

3.2 Bertini theorem associated to moderate measures

Lemma 3.2.1. Let σ be a moderate measure on PN . Then every proper ana-
lytic subset of PN has measure zero with respect to σ.

Proof. By the homogeneity of PN , it is sufficient to prove that

σ([z0]) = 0

for some homogeneous coordinate [z0, ..., zN ]. Recall that for a moderate mea-
sure σ, there exist constants c > 0, α > 0 such that∫

PN
exp(−αφ)dσ ≤ c,

∀φ ∈ F , where F is defined in (1.1). It follows that∫
PN
|φ|dσ <∞.

Let φ = log |z0||z| , where |z|2 =
∑N

j=0 |zj|2. This function is well defined on PN .

Note that φ is ωFS-p.s.h., maxz∈PN φ(z) = 0. Then φ ∈ F . So we have that∫
[z0=0]

∣∣log
|z0|
|z|
∣∣dσ <∞.

Hence σ([z0]) = 0. The proof is completed.

Adapting the proof of [14, Proposition 3.2], we obtain the following Bertini
type theorem in the context of moderate measures.
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Proposition 3.2.2. Let X be a compact complex manifold of dimension n.
Let Lk, 1 ≤ k ≤ m ≤ n, be m holomorphic line bundles on X. If

(i) Vk is a vector subspace of H0(X,Lk) with basis Sk,0, ..., Sk,dk , the base
loci BsV1, ..., BsVm are in general position, where BsVk := {x ∈ X : Sk,0(x) =
... = Sk,dk(x) = 0}.

(ii) For each tk = [tk,0 : ... : tk,dk ] ∈ Pdk , we set

Z(tk) := {x ∈ X :

dk∑
j=0

tk,jSk,j(x) = 0}.

(iii) σ = σ1 × ...× σm is the product measure on the multi-projective space
Pd1 × ...× Pdm, where σk is a probability moderate measure on Pdk .

Then the analytic subsets Z(t1), ..., Z(tm) are in general position for almost
all (t1, ..., tm) ∈ Pd1 × ...× Pdm with respect to σ.

Proof. Let σl1...lk = σl1 × ... × σlk be the product measure on Pdl1 × ... × Pdlk
for every 1 ≤ l1 < ... < lk ≤ m. Set

Uk = {(tl1 , ..., tlk) ∈ Pdl1 × ...×Pdlk : dimZ(tl1)∩ ...∩Z(tlk)∩ Ṽj ≤ n− k− j},

where 1 ≤ l1 < ... < lk ≤ m, j = 0 and Ṽ0 = X, Ṽj = BsVi1 ∩ ... ∩ BsVij for
some i1 < ... < ij in {1, ...,m} \ {l1, ..., lk} for 1 ≤ j ≤ m − k. Note that the

sets Uk depend on the choices of l1, ..., lk, j and Ṽj.
It is sufficient to prove that

σl1...lk(Uk) = 1

by induction on k for every subset Uk, 1 ≤ l1 < ... < lk ≤ m, 0 ≤ j ≤ m − k.
We only consider the case when {l1, ..., lk} = {1, ..., k}. Write σ′k = σ1...k for
short. We first consider the case when k = 1. If j = 0, then

U1 = {t1 ∈ Pd1 : dimZ(t1) ≤ n− 1} = Pd1 .

If 1 ≤ j ≤ m−1, let Ṽj =
⋃N
l=1Dl∪B, where the subsets Dl are the irreducible

components of Ṽj of dimension n− j and B is of dimension less than n− j. So
{t1 ∈ Pd1 : Dl ⊂ Z(t1)} is a proper linear subspace of Pd1 . If not, Dl ⊂ BsV1

implies that dim Ṽj ∩ BsV1 = n − j, which contradicts the condition that

BsV1, ..., BsVm are in general position. We know that dimZ(t1)∩ Ṽj ≥ n− j if

t1 ∈ Pd1 \U1. Since Z(t1)∩ Ṽj is an analytic subset in Ṽj, then Dl ⊂ Z(t1)∩ Ṽj
for some l. It follows that

Pd1 \ U1 =
N⋃
l=1

{t1 ∈ Pd1 : Dl ⊂ Z(t1)}.

Hence we have that σ1(Pd1 \ U1) = 0 by Lemma 3.2.1.
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Now we can assume that σ′k(Uk) = 1 for any Uk defined as above. Set

Uk+1 = {(t1, ..., tk+1) ∈ Pd1 × ...× Pdk+1 :

dimZ(t1) ∩ ... ∩ Z(tk+1) ∩ Ṽj ≤ n− k − 1− j},
U ′ = {(t1, ..., tk) ∈ Pd1 × ...× Pdk :

dimZ(t1) ∩ ... ∩ Z(tk) ∩ Ṽj ≤ n− k − j},
U ′′ = {(t1, ..., tk) ∈ Pd1 × ...× Pdk :

dimZ(t1) ∩ ... ∩ Z(tk) ∩ Ṽj ∩BsVk+1 ≤ n− k − 1− j},

where 0 ≤ j ≤ m−k−1, Ṽj = BsVi1 ∩ ...∩BsVij for k+ 2 ≤ i1 < ... < ij ≤ m.
Let U = U ′ ∩ U ′′. By using the induction on k, we know that σ′k(U

′) =
σ′k(U

′′) = 1, thus σ′k(U) = 1.
We need to prove that

σ′k+1(Uk+1) = 1.

It is enough to prove that

σ′k+1(W ) = 0, W := (U × Pdk+1) \ Uk+1.

Given some t = (t1, ..., tk) ∈ U , set

Z(t) : = Z(t1) ∩ ... ∩ Z(tk),

W (t) : = {tk+1 ∈ Pdk+1 : dimZ(t) ∩ Ṽj ∩ Z(tk+1) ≥ n− k − j},

then it is sufficient to show that σk+1(W (t)) = 0.

Let Z(t)∩Ṽj =
⋃N
l=1 Dl∪B, whereDl are irreducible components of Z(t)∩Ṽj

of dimension n − k − j, dimB ≤ n − k − 1 − j as t ∈ U ⊂ U ′. By the same
argument in the above, if tk+1 ∈ W (t), then Z(t) ∩ Ṽj ∩ Z(tk+1) is an analytic

subset of Z(t)∩ Ṽj of dimension n− k− j, hence there exists some l such that

Dl ⊂ Z(t) ∩ Ṽj ∩ Z(tk+1). We obtain that

W (t) =
N⋃
l=1

Fl(t), Fl(t) := {tk+1 ∈ Pdk+1 : Dl ⊂ Z(tk+1)}.

We claim that not all the sections of Vk+1 can vanish on Dl. If not, that is to
say, Dl ⊂ BsVk+1, this implies that

dimZt ∩ Ṽj ∩BsVk+1 = n− k − j,

which contradicts the fact that t ∈ U ′′. Hence we can suppose that Sk+1,dk+1
6≡

0 on Dl. So

Fl(t) ⊂ {tk+1,0 = 0} ∪Gl(t),

Gl(t) := {[1 : tk+1,1 : ... : tk+1,dk+1
] ∈ Pdk+1 : Dl ⊂ Z([1 : tk+1,1 : ... : tk+1,dk+1

])}.
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There exists at most one η ∈ C such that [1 : tk+1,1 : ... : tk+1,dk+1−1 : η] ∈ Gl(t)
for any (tk+1,1, ..., tk+1,dk+1−1) ∈ Cdk+1−1. Otherwise, if there exist two complex
numbers η 6= η′, which satisfy the property, then we have on Dl,

Sk+1,0 + tk+1,1Sk+1,1 + ...+ tk+1,dk+1−1Sk+1,dk+1−1 + ηSk+1,dk+1
≡ 0,

Sk+1,0 + tk+1,1Sk+1,1 + ...+ tk+1,dk+1−1Sk+1,dk+1−1 + η′Sk+1,dk+1
≡ 0.

Then we have a contradiction with that Sk+1,dk+1
6≡ 0 on Dl. This implies that

σk+1(Gl(t)) = 0. Moreover, σk+1(Fl(t)) = 0. It follows that σk+1(W (t)) = 0.
This completes the proof.

In the setting of Theorem 0.3.1, let Vk,p = H0
(2)(X,L

p
k) with orthonormal

basis {Sjk,p}
dk,p
j=0. Then the base locus of Vk,p is Ak,p. Let Z(tk) be an analytic

hypersurface for any tk = [tk,0 : ... : tk,dk,p ] ∈ Pdk,p , defined in Proposition
3.2.2 (ii). Let σp be the product measure of probability moderate measures on
Pd1,p× ...×Pdm,p in Theorem 0.3.1. Arguing as in the proof of [14, Proposition
3.3], we obtain the following

Proposition 3.2.3. In the above setting,
(i) The analytic subsets Z(t1), ..., Z(tm) are in general position, for almost

every (t1, ..., tm) ∈ Pd1,p × ... × Pdm,p with respect to σp, when p is sufficiently
large.

(ii) Z(ti1)∩ ...∩Z(tik) is of pure dimension n− k for each 1 ≤ k ≤ m, 1 ≤
i1 < ... < ik ≤ m.

Proof. The base loci A1,p, ..., Am,p are in general position for all p sufficiently
large, by Proposition 3.1.1. Then (i) follows by Proposition 3.2.2. We fix such
p and consider the current [Z(tk) = 0]. Recall that ek is a local holomorphic

frame for Lk and Sjk,p = sk,pj e⊗pk , where sk,pj is a holomorphic function on a
contractible Stein open subset in X. By Poincaré-Lelong formula, we have
locally on U

[Z(tk) = 0] = ddc log |
dk,p∑
j=0

tk,js
k,p
j | = pc1(Lk, hk) + ddc log |

dk,p∑
j=0

tk,jS
j
k,p|hk,p .

Since log |
∑dk,p

j=0 tk,jS
j
k,p|hk,p is a global p.s.h. function, dc log |

∑dk,p
j=0 tk,jS

j
k,p|hk,p

is a current of order at most 1. Then ddc log |
∑dk,p

j=0 tk,jS
j
k,p|hk,p is closed. Hence

[Z(tk) = 0] has the same cohomology class as pc1(Lk, hk). By (i), the current
[Z(ti1) = 0]∧...∧[Z(tik) = 0] is well defiend and supported in Z(ti1)∩...∩Z(tik),
for each 1 ≤ k ≤ m, 1 ≤ i1 < ... < ik ≤ m and allmost all (t1, ..., tm) ∈ Pd1,p ×
...×Pdm,p with respect to σp. Since Lk is a big line bundle and c1(Lk, hk) ≥ εω
for some constant ε > 0, then we have∫

Z(ti1 )∩...∩Z(tik )

ωn−k =

∫
X

[Z(ti1) = 0] ∧ ... ∧ [Z(tik) = 0] ∧ ωn−k

= pk
∫
X

c1(Li1 , hi1) ∧ ... ∧ c1(Lik , hik) ∧ ωn−k > pkεk
∫
X

ωn > 0.
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It follows that Z(ti1) ∩ ... ∩ Z(tik) 6= ∅. By Chapter III in [43],

codim (Z(ti1) ∩ ... ∩ Z(tik)) ≤
k∑
j=1

codimZ(tij) = k.

Moreover, Z(ti1), ..., Z(tik) are in general position. Hence it is of pure dimen-
sion n− k. (ii) is then proved.

3.3 Estimate on multi-projective spaces

In this section we give our core work about some estimates on multi-
projective spaces. This leads to our main theorem and convergence speed
for equidistributions.

3.3.1 Meromorphic transforms for several line bundles

We recall some results in Dinh-Sibony equidistribution theory in the setting
of Theorem 0.3.1. Let Φp be a sequence of meromorphic transforms from a
projective manifold (X,ω) into the compact Kähler manifolds (Xp, ωp) of the
same codimension k. Let

d0,p = d1,p + ...+ dm,p

be the dimension of Xp. Consider a PLB probability measure µp on Xp, for
every p > 0, ε > 0, we define

Ep(ε) :=
⋃

‖φ‖C2≤1

{xp ∈ Xp :
∣∣〈Φ?

p(δxp)− Φ?
p(µp), φ

〉∣∣ ≥ d(Φp)ε},

where δxp is the Dirac measure at the point xp. Let us restate Theorem 2.2.7
in the setting of Part II.

Theorem 3.3.1. Let ηε,p := εδ(Φp)
−1d(Φp)− 3R(Xp, ωp, µp), then

µp(Ep(ε)) ≤ ∆(Xp, ωp, µp, ηε,p).

Another one is the estimate from Theorem 2.2.6.

Theorem 3.3.2. We have∣∣〈d(Φp)
−1(Φ?

p(µp)− Φ?
p(ω

d0,p
p )), φ

〉∣∣ ≤ 2S(Xp, ωp, µp)δ(Φp)d(Φp)
−1‖φ‖C 2

for any (k, k)-form φ of class C 2 on X.

From now on, we study the special case when the meromorphic transforms
are induced by Kodaira maps. We already know that the Kodaira map in (3.1)
is a meromorphic transform with the graph

Γk,p = {(x, S) ∈ X × PH0
(2)(X,L

p
k) : S(x) = 0}.
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Refer to Section 2.4.1.
Note that

Φk,p(x) = {S ∈ PH0
(2)(X,L

p
k) : S(x) = 0},

Φ−1
k,p(S) = {x ∈ X : S(x) = 0}.

Let
Φp : X → Xp

be the product map of Φ1,p, ...,Φm,p. We claim that Φp is also a meromorphic
transform with the graph

Γp = {(x, Sp1, ..., Spm) ∈ X × Xp : Sp1(x) = ... = Spm(x) = 0}.

It is obvious that the projection Π1 : Γp → X is surjective. The projection
Π2 : Γp → Xp is proper, then the image Π2(Γp) is an analytic subvariety of Xp

by Remmert’s proper mapping theorem [29]. Note that the zero set of every
Spk ∈ H0

(2)(X,L
p
k) is represented by Z(tk) for some tk defined in Proposition

3.2.2 (ii). Then by Proposition 3.2.3 for almost every (Sp1, ..., Spm) ∈ Xp

with respect to σp, the common zero set of Sp1, ..., Spm is of pure dimension
n−m ≥ 0. Then there exists some point x ∈ X such that (x, Sp1, ..., Spm) ∈ Γp.
So σp(Π2(Γp)) = 1. Hence Π2 is surjective. Indeed, if Π2 is not surjective,
then Π2(Γp) is a proper analytic subvariety of Xp, Lemma 3.2.1 implies that
σp(Π2(Γp)) = 0, a contradiction. Hence Φp is a meromorphic transform of
codimension n−m with fibers for every Sp = (Sp1, ..., Spm) ∈ Xp,

Φ−1
p (Sp) = {x ∈ X : Sp1(x) = ... = Spm(x) = 0}.

Considering the product map of any Φi1,p, ...,Φik,p, 1 ≤ i1 < ... < ik ≤ m, it
follows from Proposition 3.2.3 that, the analytic subsets (Sp1 = 0), ..., (Spm =
0) are in general position for Sp = (Sp1, ..., Spm) ∈ Xp generic. Then by
Corollary 1.2.26, the current [Sp = 0] = [Sp1 = 0] ∧ ... ∧ [Spm = 0] of bidegree
(m,m) is well defined for allmost all Sp ∈ Xp with respect to σp.

3.3.2 Intermediate degrees

It follows from Lemma 2.3.3 that Φ?
p(δSp) = [Sp = 0] for a point Sp ∈ Xp

generic.

Remark 3.3.3. By the same argument, note that Φ?
k,p(δSpk) = [Spk = 0] for

each 1 ≤ k ≤ m. This yields

Φ?
p(δSp) = [Sp = 0] = [Sp1 = 0] ∧ ... ∧ [Spm = 0]

= Φ?
1,p(δSp1) ∧ ... ∧ Φ?

m,p(δSpm).

Recall that πk,p : Xp → PH0
(2)(X,L

p
k) is the natural projection. Set

ωp := c0,p(π
?
1,pωFS + ...+ π?m,pωFS).
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We always assume that ω
d0,p
p is a probability measure on Xp. Then c0,p satisfies

the following condition,

(c0,p)
−d0,p =

d0,p!

d1,p!...dm,p!
.

The sequence {c0,p} has a lower bound by using Stirling’s formula (cf. [18, p9]
and [14, Lemma 4.3]).

Lemma 3.3.4. There exists a positive constant c0 such that c0,p ≥ c0 for all
p ≥ 1.

To simplify the notations, we write

dp = d(Φp) :=

∫
X

Φ?
p(ω

d0,p
p ) ∧ ωn−m,

δp = δ(Φp) :=

∫
X

Φ?
p(ω

d0,p−1
p ) ∧ ωn−m+1.

Using the classical cohomological arguments, dp and δp can be calculated as
follows.

Proposition 3.3.5. In the above setting, we have

dp = pm‖c1(L1, h1) ∧ ... ∧ c1(Lm, hm)‖,

δp =
pm−1

c0,p

m∑
k=1

dk,p
d0,p

∥∥ m∧
l=1,l 6=k

c1(Ll, hl)
∥∥.

Proof. We replace ω
d0,p
p by a Dirac measure, since

H2d0,p(Xp,C) ∼= C.

Choose a Dirac measure δS, where S = (S1, ..., Sm) ∈ Xp, such that the analytic
subsets (S1 = 0), ..., (S1 = 0) are in general position. By Remark 3.3.3, the
current

Φ?
p(δS) = [S1 = 0] ∧ ... ∧ [Sm = 0]

is well defined. By the same argument in the proof of Proposition 3.2.3, we see
that [Sk = 0] has the same cohomology class as pc1(Lk, hk). By proposition
3.1.1, the current

c1(L1, h1) ∧ ... ∧ c1(Lm, hm)

is well defined. Thus by Stokes’ theorem,∫
X

Φ?
p(δS) ∧ ωn−m = pm

∫
X

c1(L1, h1) ∧ ... ∧ c1(Lm, hm) ∧ ωn−m.

Hence

dp =

∫
X

Φ?
p(ω

d0,p
p ) ∧ ωn−m =

∫
X

Φ?
p(δS) ∧ ωn−m

= pm‖c1(L1, h1) ∧ ... ∧ c1(Lm, hm)‖.
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A direct computation gives the following equality

ωd0,p−1
p =

m∑
k=1

c
d0,p−1
p (d0,p − 1)!

d1,p!...(dk,p − 1)!...dm,p!
π?1,p(ω

d1,p
FS )∧...∧π?k,p(ω

dk,p−1
FS )∧...∧π?m,p(ω

dm,p
FS ).

Repeating the cohomological argument, we replace ω
dk,p
FS (resp. ω

d1,p−1
FS ) by a

generic point Sk (resp. a generic complex line Dk) in PH0
(2)(X,L

p
k). By the

definition of Φ?
k,p,

Φ?
k,p([Dk]) = [Π1k({(x, Sk) ∈ X ×Dk, Sk(x) = 0})].

Here Π1k is the natural projection from X × PH0
(2)(X,L

p
k) to X. We show

that Φ?
k,p([Dk]) = [X]. Otherwise, if there exists a point x0 ∈ X such that

Sk(x0) 6= 0 for all sections Sk ∈ Dk, then by the genericity of Dk, take S =
S2k(x0)S1k − S1k(x0)S2k for some S1k, S2k ∈ Dk. But S(x0) = 0, we get a
contradiction. So we have

Φ?
p([{S1} × ...×Dk × ...× {Sm}]) =

m∧
l=1,l 6=k

[Sl = 0].

Hence

‖Φ?
p([{S1} × ...×Dk × ...× {Sm}])‖ = pm−1

∥∥ m∧
l=1,l 6=k

c1(Ll, hl)
∥∥.

Now we can replace ω
d0,p−1
p by the following current

T :=
m∑
k=1

dk,p
cpd0,p

[{S1} × ...×Dk × ...× {Sm}].

So

δp =

∫
X

Φ?
p(ω

d0,p−1
p ) ∧ ωn−m+1 =

∫
X

Φ?
p(T ) ∧ ωn−m+1

=
pm−1

cp

m∑
k=1

dk,p
d0,p

∥∥ m∧
l=1,l 6=k

c1(Ll, hl)
∥∥.

This completes the proof.

Remark 3.3.6. Lemma 3.3.4 implies that δp ≤ Cpm−1 for some constant
C > 0 which depends on (Lk, hk), 1 ≤ k ≤ m.

Recall that γk,p = Φ?
k,pωFS is the Fubini-Study current.

Proposition 3.3.7. [14, Lemma 4.5] Φ?
p(ω

d0,p
p ) = γ1,p ∧ ... ∧ γm,p for all p

sufficiently large.
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Proof. Denote by σ0
k,p the standard volume ω

dk,p
FS on PH0

(2)(X,L
p
k). Note that

ω
d0,p
p is a smooth form. By the definition of Φ?

p, for a test (n−m,n−m)-form
φ on X, we have〈

Φ?
p(ω

d0,p
p ), φ

〉
=

∫
Γp

Π?
2(ωd0,pp ) ∧ Π?

1(φ) =

∫
Xp

Π2?Π
?
1(φ) ∧ ωd0,pp .

By the definition of direct image (Section 1.1.2), for a point Sp ∈ Xp,

Π2?Π
?
1(φ(Sp)) =

∫
Π−1

2 (Sp)

Π?
1(φ) =

∫
(Sp=0)

φ =
〈
[Sp = 0], φ

〉
.

Then 〈
Φ?
p(ω

d0,p
p ), φ

〉
=

∫
Xp

〈
[Sp = 0], φ

〉
ωd0,pp (Sp).

Then Proposition 4.2 in [10] and the proof of Theorem 1.2 in [10] imply the
following〈

Φ?
p(ω

d0,p
p ), φ

〉
=

∫
PH0

(2)
(X,Lpm)

· · ·
∫
PH0

(2)
(X,Lp1)

〈
[Sp1 = 0] ∧ ... ∧ [Spm = 0], φ

〉
dσ0

1,p(Sp1)...dσ0
m,p(Spm)

=

∫
PH0

(2)
(X,Lpm)

· · ·
∫
PH0

(2)
(X,Lp2)

〈
γ1,p ∧ [Sp2 = 0] ∧ ... ∧ [Spm = 0], φ

〉
dσ0

2,p(Sp2)...dσ0
m,p(Spm)

=... =
〈
γ1,p ∧ ... ∧ γm,p, φ

〉
.

Then the proof is completed.

3.3.3 Main result and its proof

We recall the construction of moderate measures in the settings of Theorem
0.3.1. Consider the functions uj : PN → R, 1 ≤ j ≤ N . Fix an exponent
0 < ρ < 1. Let {uj}Nj=1 be a family of (cN , ρ)-functions (cf. Part II) where
{cN}∞N=1 is a sequence of positive numbers. Set

σN := ∧Nj=1(ddcuj + ωFS).

This is a probability measure on PN . Remark 2.3.7 shows that σN is a moderate
measure for suitable cN depending only on ρ and N (e.g. cN = O(1/cN), where
the constant c > 1 depends only on ρ). We reformulate the above result and
some estimates from the proofs of Theorem 0.2.1 and Theorem 0.2.2.

Proposition 3.3.8. In the above setting, there exists a constant 0 < cN < 1
for the measure σN which depends only on ρ and N such that∫

PN
exp(−α0(

ρ

4
)Nφ)dσN ≤ β0N (3.5)
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for all φ ∈ F , where α0 < 1, β0 are universal positive constants. That is to
say, σN is (β0N,α0(ρ

4
)N)-moderate.

Proposition 3.3.9. Under the above hypotheses, there exist universal positive
constants β1, β2, β3 such that ∀t ∈ R,

R(PN , ωFS, σN) ≤ β2 +
1

2
logN,

∆(PN , ωFS, σN , t) ≤ β0N exp(−α0t) + β1(
ρ

4
)N exp(−α0(

ρ

4
)N t).

When t ≤ 1
α0

(logN +N log 4
ρ
), we have

∆(PN , ωFS, σN , t) ≤ β3N exp(−α0t).

Proof. By Proposition 2.1.2,

R(PN , ωFS, ωNFS) ≤ 1

2
(1 + logN).

We write

µ1,N = ωNFS, µ2,N =
N∧
j=1

(ddcuj + cNωFS + ωFS)− ωNFS.

The measure µ2,N is positive since uj is cNωFS-p.s.h.. By Proposition 2.2.6,
there exists a universal positive constant β1 such that for all φ ∈ F ,∫

PN
exp(−α0(

ρ

4
)Nφ)dµ2,N ≤ β1(

ρ

4
)N . (3.6)

By applying (3.6) and Proposition 1.2.48, we obtain

R(PN , ωFS, σN) ≤ sup
φ∈F

{
−
∫
φdµ1,N −

∫
φdµ2,N

}
≤ R(PN , ωFS, ωNFS) + sup

φ∈F

{∫
exp(−α0(

ρ

4
)Nφ)dµ2,N/(α0(

ρ

4
)N)
}

≤ 1

2
(1 + logN) +

β1

α0

≤ β2 +
1

2
logN,

It follows from (2.12) that

∆(PN , ωFS, σN , t) ≤ β0N exp(−α0t) + β1(
ρ

4
)N exp(−α0(

ρ

4
)N t).

Let
N exp(−α0t) = (

ρ

4
)N exp(−α0(

ρ

4
)N t),

then

t =
logN +N log 4

ρ

α0(1− (ρ
4
)N)

.

Hence
∆(PN , ωFS, σN , t) ≤ β3N exp(−α0t),

when t ≤ 1
α0

(logN +N log 4
ρ
). This completes the proof.
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Now we study the estimates on multi-projective spaces. Let P`1 , ...,P`m be
m projective spaces. Let πk : P`1 × ... × P`m → P`k be the natural projection
map. Let σk be a probability moderate measure with respect to a family of
(c`k , ρ)-functions {uk,j}`kj=1 on P`k . In the sequel of this section, c`k is always
chosen such that the probability measure σk satisfies the property of Proposi-
tion 3.3.8 (hence Proposition 3.3.9). Let ` = `1 + ...+ `m and

ωMP := c1m(π?1(ωFS) + ...+ π?m(ωFS)), c−`1m =
`!

`1!...`m!
.

It is equivalent to that ω`MP is a probability measure. Recall that the notation
r(P`1×...×P`m , ωMP ) is defined after Proposition 1.2.34. We have the following
lemma [14, Lemma 4.6].

Lemma 3.3.10. Under the above hypotheses,

r(P`1 × ...× P`m , ωMP ) ≤ r(`1, ...`m) := max
1≤k≤m

`

`k
.

Proof. Consider a positive closed current T of bidegree (1, 1) with mass 1 on
P`1 × ...× P`m . It has a nontrivial cohomology class. By Künneth formula,

H2(P`1 × ...× P`m ,C) ∼= C⊕m.

Then T is in the cohomology class of λ = a1π
?
1(ωFS) + ... + amπ

?
m(ωFS), for

some constatns ak ≥ 0, 1 ≤ k ≤ m. Then we have

0 ≤ λ ≤
(

max
1≤k≤m

ak
c1m

)
ωMP

in the sense of currents. Since

1 = ‖T‖ =

∫
P`1×...×P`m

λ ∧ ω`−1
MP

= c`−1
1m

m∑
k=1

ak

∫
P`1×...×P`m

π?k(ωFS) ∧ (π?1(ωFS) + ...+ π?m(ωFS))`−1

= c`−1
1m

m∑
k=1

ak
(`− 1)!

`1!...(`k − 1)!...`m!

=
m∑
k=1

ak`k
c1m`

,

Then ak/c1m ≤ `/`k, 1 ≤ k ≤ m. This implies that

r(P`1 × ...× P`m , ωMP ) ≤ max
1≤k≤m

`

`k
.

The proof is completed.
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We first consider the case when m = 2. The corresponding result of esti-
mates in a simpler case was proved in [23, Proposition A.8]. Set ω12 := ωMP as
the the Kähler form on P`1×P`2 . Denote by σ the product of σ1 and σ2. Write
r := r(P`1 × P`2 , ω12). Lemma 3.3.10 guarantees the existence of sufficiently
large `1, `2 such that

r log(`1 + `2)

min(`1, `2)
� 1.

Proposition 3.3.11. In the above setting, let P`1 (resp. P`2) be a projective
space endowed with a probability moderate measure σ1 (resp. σ2) satisfying
Proposition 3.3.9. Suppose that `1, `2 are chosen sufficiently large such that

r log(`1 + `2)

min(`1, `2)
� 1,

(
ρ

4
)min(`1,`2)(`1 + `2)� 1.

(3.7)

Then there exist universal positive constants β4, β5 such that for 0 ≤ t ≤
min(`1, `2), we have

∆(P`1 × P`2 , ω12, σ, t) ≤ β4(`1 + `2)1+
α0
2 exp(−α0

2r
t),

R(P`1 × P`2 , ω12, σ) ≤ β5r(1 + log(`1 + `2)).
(3.8)

Proof. To simplify the notations, let X1 = P`1 , X2 = P`2 , X = X1×X2. Denote
by ω1 (resp. ω2) the normalized Fubini-Study form ωFS in P`1 (resp. P`2).
Consider a function ψ on X with the conditions that maxX ψ = 0, ddcψ ≥
−rω12. Fix a point (a, b) such that ψ(a, b) = 0. Let E be the set of all points
with ψ < −t for t ≥ 0. We write E = (ψ < −t). Set

F : = {x2 ∈ X2, ψ(a, x2) < −t/2},
Ex2 : = {x1 ∈ X1, ψ(x1, x2) < −t}.

Define
E ′ :=

⋃
x2∈X2\F

(Ex2 × {x2}).

Note that E ⊂ π−1
2 (F ) ∪ E ′.

We first estimate the measure of π−1
2 (F ). Let ψ1(x2) := ψ(a, x2), then

maxX2 ψ1 = ψ1(b) = 0. Define a new function ψ2 := ψ1 −
∫
ψ1dσ2. Note that∫

ψ2dσ2 = 0, ψ2 ≥ ψ1 ddcψ2 ≥ −rω2.

Let R := β2 + 1
2

log(`1 + `2). Since r(X2, ω2) = 1, then by Proposition 3.3.9,
we have

−
∫
ψ1dσ2 = max

X2

ψ2 ≤ rR(X2, ω2, σ2) ≤ rR.
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Hence by hypotheses,

σ2(F ) ≤ σ2(ψ2 ≤ rR− t/2)

= σ2(r−1ψ2 ≤ R− r−1t/2) ≤ ∆(X2, ω2, σ2, r
−1t/2−R)

≤ β0`2 exp(α0R) exp(−α0

2r
t)

+ β1(
ρ

4
)`2 exp(α0(

ρ

4
)`2R) exp(−α0

2r
(
ρ

4
)`2t).

(3.9)

When
t

2r
−R ≤ 1

α0

(log `2 + `2 log
4

ρ
),

i.e.

t ≤ 2r

α0

log `2 +
2r

α0

`2 log
4

ρ
+ 2rβ2 + r log(`1 + `2),

it yields

σ2(F ) ≤ β3`2 exp(α0R) exp(−α0

2r
t). (3.10)

Since r ≥ 1 (cf. Lemma 3.3.10), α0 < 1, log 4
ρ
> 1, inequality (3.10) holds

obviously when 0 ≤ t ≤ `2. By Fubini theorem, we obtain

σ(π−1
2 (F )) ≤ β0`2 exp(α0R) exp(−α0

2r
t)

+ β1(
ρ

4
)`2 exp(α0(

ρ

4
)`2R) exp(−α0

2r
(
ρ

4
)`2t).

(3.11)

When 0 ≤ t ≤ `2,

σ(π−1
2 (F )) ≤ β3`2 exp(α0R) exp(−α0

2r
t). (3.12)

We secondly estimate the measure of E ′. For any x2 ∈ X2\F , let ψ3(x1) :=
ψ(x1, x2), then ψ3 ≤ 0,maxX1 ψ3 ≥ ψ(a, x2) ≥ −t/2 and ddcψ3 ≥ −rω1. Define
a new function ψ4 := ψ3 −

∫
X1
ψ3dσ1. Then

−
∫
ψ3dσ1 ≤ max

X1

ψ4 + t/2

≤ rR(X1, ω1, σ1) + t/2 ≤ rR + t/2.

Hence by the same argument,

σ1(Ex2) ≤ σ1(ψ4 ≤ rR− t/2)

≤ β0`1 exp(α0R) exp(−α0

2r
t)

+ β1(
ρ

4
)`1 exp(α0(

ρ

4
)`1R) exp(−α0

2r
(
ρ

4
)`1t).

(3.13)

When 0 ≤ t ≤ `1,

σ1(Ex2) ≤ β3`1 exp(α0R) exp(−α0

2r
t). (3.14)
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By Fubini theorem, we obtain

σ(E ′) ≤ β0`1 exp(α0R) exp(−α0

2r
t)

+ β1(
ρ

4
)`1 exp(α0(

ρ

4
)`1R) exp(−α0

2r
(
ρ

4
)`1t).

(3.15)

When 0 ≤ t ≤ `1,

σ(E ′) ≤ β3`1 exp(α0R) exp(−α0

2r
t). (3.16)

So by estimates (3.11) and (3.15) for t ≥ 0,

σ(ψ < −t) ≤ β0(`1 + `2) exp(α0R) exp(−α0

2r
t)

+
2∑
j=1

β1(
ρ

4
)`j exp(α0(

ρ

4
)`jR) exp(−α0

2r
(
ρ

4
)`j t).

When 0 ≤ t ≤ t0 =: min(`1, `2), (3.12) and (3.16) yield

σ(ψ < −t) ≤ β3(`1 + `2) exp(α0R) exp(−α0

2r
t).

It is obvious that the above inequality is also valid for t < 0 since ψ ≤ 0.
By the definition of ∆(X,ω12, σ, t), we need to consider a function ϕ on X
with the conditions that ddcϕ ≥ −rω and

∫
ϕdσ = 0. Define a new function

ψ := ϕ −maxX ϕ. The fact that
∫
ϕdσ = 0 implies that maxX ϕ ≥ 0. Then

ψ ≤ ϕ. Moreover, maxX ψ = 0. Then

σ(ϕ < −t) ≤ σ(ψ < −t).

Hence

∆(X,ω12, σ, t) ≤ β0(`1 + `2) exp(α0R) exp(−α0

2r
t)

+
2∑
j=1

β1(
ρ

4
)`j exp(α0(

ρ

4
)`jR) exp(−α0

2r
(
ρ

4
)`j t).

(3.17)

When 0 ≤ t ≤ t0,

∆(X,ω12, σ, t) ≤ β3(`1 + `2) exp(α0R) exp(−α0

2r
t)

= β4(`1 + `2)1+
α0
2 exp(−α0

2r
t),

(3.18)

where β4 =: β3 exp(α0β2) is a universal positive constant.
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To estimate R(X,ω12, σ), we consider a function ψ on X with the conditions
that maxX ψ = 0, ddcψ ≥ −rω12. For any 0 ≤ t̃ ≤ t0,

−
∫
ψdσ =

∫ ∞
0

σ(ψ ≤ −t)dt

=

∫ t̃

0

σ(ψ ≤ −t)dt+

∫ t0

t̃

σ(ψ ≤ −t)dt+

∫ ∞
t0

σ(ψ ≤ −t)dt

≤
∫ t̃

0

dt+

∫ ∞
t̃

(β0 + β3)(`1 + `2) exp(α0R) exp(−α0

2r
t)dt

+
2∑
j=1

β1

∫ ∞
t0

(
ρ

4
)`j exp(α0(

ρ

4
)`jR) exp(−α0

2r
(
ρ

4
)`j t)dt

= t̃+
2r

α0

(β0 + β3)(`1 + `2) exp(α0R) exp(−α0

2r
t̃)

+
2∑
j=1

2r

α0

β1 exp(α0(
ρ

4
)`jR) exp(−α0

2r
(
ρ

4
)`j t0).

(3.19)

The above inequality follows from (3.17) and (3.18). By the hypotheses in
(3.7), the last term in the last equality is less than 5r

α0
β1 for `1, `2 sufficiently

large. Hence

−
∫
ψdσ ≤ t̃+

2r

α0

(β0 + β3)(`1 + `2) exp(α0R) exp(−α0

2r
t̃) +

5r

α0

β1.

Take t̃ = 2rR + 2r
α0

log((β0 + β3)(`1 + `2)). By the hypotheses in (3.7), t̃ ≤ t0
for `1, `2 sufficiently large. We deduce that

−
∫
ψdσ ≤ 2rR + 2rR +

2r

α0

log((β0 + β3)(`1 + `2)) +
2r

α0

+
5r

α0

β1

≤ β5r(1 + log(`1 + `2)),

where β5 is a universal positive constant. This completes the proof.

The following proposition shows the main estimates in this section.

Proposition 3.3.12. In the above setting, let P`k be a projective space endowed
with a probability moderate measure σk satisfying Proposition 3.3.9, ∀1 ≤ k ≤
m. Set σ := σ1 × ... × σm. Suppose that `1, .., `m are chosen sufficiently large
such that

r(`1, ..., `m) log `

min(`1, ..., `m)
� 1,

(
ρ

4
)min(`1,...,`m)`� 1.

(3.20)
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Then there exist positive constants β6, β, ξ depending only on m such that for
0 ≤ t ≤ min(`1, ..., `m), we have

R(P`1 × ...× P`m , ωMP , σ) ≤ β6r(`1, ...`m)(1 + log `),

S(P`1 × ...× P`m , ωMP , σ) ≤ β6r(`1, ...`m)(1 + log `),

∆(P`1 × ...× P`m , ωMP , σ, t) ≤ β6`
ξ exp(−βt/r(`1, ...`m)).

Proof. When m = 2, the estimates on R and ∆ are proved in Proposition
3.3.11. When m = 3, following the notations in the proof of Proposition 3.3.11,
we write X1 = P`1×P`2 , X2 = P`3 , X = X1×X2. The estimates on R and ∆ for
X1 (resp. X2) are showed in Proposition 3.3.11 and (3.17) (resp. Proposition
3.3.9). Consequently, the results of estimates on R and ∆ for X are proved by
using the analogous arguments in (3.9),(3.10),(3.13),(3.14) and (3.19) with the
hypotheses (3.20). For the general case, the results can be deduced inductively
by using the analogous arguments in the proof of Proposition 3.3.11. The
estimate on S follows from Proposition 2.2.1 and [14, Lemma 4.6].

3.4 Proof of main theorems

In this section we will prove the main theorems.

3.4.1 Lower bound of dimensions

First we give an estimate of the dimension dk,p. The lower estimate is proved
by construction of a new metric on the line bundle with only one singularity
and application of vanishing theorem relative to multiplier ideal sheaves.

Theorem 3.4.1. Let (X,ω) be a compact Kähler manifold of dimension n.
Suppose that (L, h) is a singular Hermitian holomorphic line bundle on X
such that c1(L, h) ≥ εω for some positive constant ε. Moreover, h is continuous
outside a proper analytic subset A of X. Then there exist a constant C > 1
and p0 ∈ N such that for all p ≥ p0

pn/C ≤ dimH0
(2)(X,L

p) ≤ Cpn.

Proof. By Proposition 1.3.24, there exist a positive constant C0 and p0 ∈ N
such that for all p ≥ p0

dimH0
(2)(X,L

p) ≤ C0p
n.

It is sufficient to show that there exist a positive constant C1 and p0 ∈ N such
that for all p ≥ p0

dimH0
(2)(X,L

p) ≥ C1p
n.

Now we fix a point x0 ∈ X \ A and r > 0 such that B(x0, 2r) ∩ A = ∅.
Consider a smooth cut-off function 0 ≤ χ ≤ 1 such that it is equal to 1 on the
closed set B̄(x0, r) and supported in B(x0, 2r). Define a new function

ψ : X → [−∞,∞), ψ(x) = ηχ(x) log |x− x0|.
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Here η is some positive constant. This function has only one singular point.
Moreover, we consider a new metric on L as follows

h0 = h exp(−ψ).

η can be chosen sufficiently small such that on X,

c1(L, h0) ≥ ε

2
ω.

Indeed it suffices to show the following inequality

ddc(χ(x) log |x− x0|) +
ε

2η
ω ≥ 0.

Since ddc(log |x − x0|) = [x = x0] is positive, we only prove the inequality in
a small neighborhood of B̄(x0, 2r) \ B(x0, r), which is a simple conclusion by
straightforward computations.

Denote by I(hp) the multiplier ideal sheaf associated to the metric hp. We
have H0

(2)(X,L
p) = H0(X,Lp ⊗ I(hp)), I(hp0) = I(hp) ⊗ I(pψ). There is an

identification of sheaves

Lp ⊗ I(hp0) ∼= KX ⊗K?
X ⊗ Lp ⊗ I(hp0).

Recall that the first Chern class of K?
X is Ric(ω) = −∂∂̄ log det(ω) which is

smooth on X. Then

c1(K?
X ⊗ Lp) = Ric(ω) + pc1(L, h0) ≥ ε′ω

for some ε′ > 0 when p is sufficiently large. Hence it follows from the Nadel
vanishing theorem (cf. Theorem 1.3.27) that there exists p0 ∈ N such that for
all p ≥ p0

H1(X,Lp ⊗ I(hp0)) = 0. (3.21)

The following short exact sequence

0→ Lp ⊗ I(hp)⊗ I(pψ)→ Lp ⊗ I(hp)→ Lp ⊗ I(hp)⊗OX/I(pψ)→ 0

with (3.21) implies that

H0(X,Lp ⊗ I(hp))→ H0(X,Lp ⊗ I(hp)⊗OX/I(pψ))→ 0

for all p ≥ p0. Here OX is the sheaf of holomorphic functions on X. Note that
I(pψ)x = OX,x for every point x 6= x0. That is to say, OX,x/I(pψ)x = 0. Since
h is continuous at x0, then I(hp)x0 = OX,x0 . So we have

H0(X,Lp ⊗ I(hp)⊗OX/I(pψ))

= Lpx0 ⊗ I(hp)x0 ⊗OX,x0/I(pψ)x0
= Lpx0 ⊗OX,x0/I(pψ)x0 .

Hence
H0(X,Lp ⊗ I(hp))→ Lpx0 ⊗OX,x0/I(pψ)x0 → 0 (3.22)
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for all p ≥ p0. Let MX,x0 be the maximal ideal of OX,x0 . Consider a germ
f ∈ I(pψ)x0 in a local coordinate z = (z1, ..., zn) with x0 = 0. Let f =

∑
aJz

J

be its Taylor expansion. Note that only the terms |aJ |2|z|2J contribute to the
following integral ∫

B(0,a)

|f |2|z|−2pηdV,

where B(0, a) is a neighborhood of the origin and dV denotes the Lebesgue
measure. Hence for each multi-index J , we obtain∫

B(0,a)

|z|2J |z|−2pηdV <∞.

It is equivalent to∫ a

0

r(|J | − pη + n− 1)dr <∞ ⇐⇒ |J | ≥ [pη]− n+ 1.

Then

I(pψ)x0 ⊂M
[pη]−n+1
X,x0

, dimOX,x0/Mk+1
X,x0

=

(
n+ k

k

)
. (3.23)

Then the estimate of lower bound of the dimensions follows from (3.22) and
(3.23). The proof is completed.

3.4.2 Proof of Theorem 0.3.1

Recall that γk,p is the Fubini-Study current defined in Section 3.1. With
techniques from [10] and [27], we can show that the sequence of wedge products
of these Fubini-Study currents converges weakly to the wedge product of the
curvature currents of the line bundles in Theorem 0.3.1, see [14, Proposition
3.1].

Proposition 3.4.2. In the setting of Theorem 0.3.1, we have

1

pm
γ1,p ∧ ... ∧ γm,p → c1(L1, h1) ∧ ... ∧ c1(Lm, hm)

when p tends to ∞.

Proof. we consider the p.s.h. functions uk, uk,p on the contractible Stein open
subset U defined in Section 3.1. Recall that ddcuk = c1(Lk, hk), dd

cuk,p = 1
p
γk,p

on U . We know that 1
p

logPk,p → 0 in L1(X,ωn) by Theorem 5.1 in [10]. So

we have that uk,p → uk in L1
loc(U), ∀1 ≤ k ≤ m. By (3.3), the inequality

uk,p ≥ uk − C
p

holds on U for some constant C > 0 and all p sufficiently large.

By Theorem 1.2.28, we have

ddcu1,p ∧ ... ∧ ddcum,p → ddcu1 ∧ ... ∧ ddcum

in the weak sense of currents as p→∞. This completes the proof.
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We also need the following convergence property.

Proposition 3.4.3. In the setting of Theorem 0.3.1, there exists a positive
constant C depending only on X, (L1, h1), ..., (Lm, hm) such that∣∣〈 1

pm
(Φ?

p(σp)− Φ?
p(ω

d0,p
p )), φ

〉∣∣ ≤ C log p

p
‖φ‖C 2

for any (n − m,n − m)-form of class C 2 on X and p sufficiently large. In

particular, 1
pm

(Φ?
p(σp)− Φ?

p(ω
d0,p
p )) converges weakly to 0 as p→∞.

Proof. By Theorem 3.4.1, there exist a positive constant C1 and p0 ∈ N such
that for all p ≥ p0, 1 ≤ k ≤ m, we have

pn/C1 ≤ dk,p ≤ C1p
n.

Then by Lemma 3.3.10, r(Xp, ωp) ≤ mC2
1 . Moreover, d1,p, ..., dm,p satisfy the

conditions in (3.20) for p sufficiently large. Hence it follows from Proposition
3.3.12 that there exists a positive constant C2,

S(Xp, ωp, σp) ≤ C2 log p.

Thanks to Proposition 3.3.5 and Remark 3.3.6, we can deduce that

δpd
−1
p ≤ C3

1

p

for some positive constant C3. Note that the constants C1, C2, C3 all depend
only on X, (L1, h1), ..., (Lm, hm). Then

2S(Xp, ωp, σp)δpd
−1
p ≤

C log p

p

for some positive constant C depending only on X, (L1, h1), ..., (Lm, hm) Hence
the proof is completed by applying Theorem 3.3.2.

The basic proof of the main theorem will end with the following theorem,
which extends [18, Corollary 3.9] and [14, Theorem 4.2].

Theorem 3.4.4. In the setting of Theorem 0.3.1, there exist a positive con-
stant ξ which depends only on m and a positive constant C which depends only
on X, (L1, h1), ..., (Lm, hm) with the following property: Given any sequence of
positive numbers {λp}∞p=1 with the following conditions

lim inf
p→∞

λp
log p

> (1 + ξn)C,

lim
p→∞

λp
pn

= 0,

there exist subsets Ep ⊂ Xp such that for all p sufficiently large,
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(i)

σp(Ep) ≤ Cpξn exp(−λp
C

),

(ii) for any point Sp ∈ Xp \Ep and any (n−m,n−m)-form φ of class C 2,∣∣ 1

pm
〈
[Sp = 0]− Φ?

p(σp), φ
〉∣∣ ≤ Cλp

p
‖φ‖C 2 .

Proof. To simplify the notations, let

Rp : = R(Xp, ωp, σp),

∆p(t) : = ∆(Xp, ωp, σp, t),

Ep(ε) : =
⋃

‖φ‖C2≤1

{Sp ∈ Xp : |
〈
[Sp = 0]− Φ?

p(σp), φ
〉
| ≥ dpε},

where t ≥ 0, ε > 0. By Theorem 0.2.1 with its proof, there exists a con-
stant c > 1 which depends only on X,L1, ..., Lm, ρ such that each component∧dk,p
j=1 π

?
k,p(dd

cuk,pj + ωFS) of σp is a probability moderate measure satisfying
Proposition 3.3.9. Theorem 3.4.1 implies that d1,p, ..., dm,p satisfy the condi-
tions in (3.20) for p sufficiently large. Hence σp satisfy Proposition 3.3.12. Let

C̃ be a positive constant depending only on X, (L1, h1), ..., (Lm, hm) such that
for all p ≥ p0, 1 ≤ k ≤ m, we have

pn/C̃ ≤ dk,p ≤ C̃pn,

Here p0 is a positive integer large enough. Then we have for p ≥ p0 and
0 ≤ t ≤ pn/C̃,

Rp ≤ mβ6C̃
2(1 + log(mC̃pn)) ≤ C1 log p,

∆p(t) ≤ β6(mC̃pn)ξ exp(
−βt
mC̃2

) ≤ C1p
ξn exp(− t

C1

).

Here we can see that C1 is some constant depending only onX, (L1, h1), ..., (Lm, hm).
Let

εp :=
λp
p
, ηp := εpdpδ

−1
p − 3Rp.

It follows from Proposition 3.3.5 and Remark 3.3.6 that for p ≥ p0,

ηp ≥ C2λp − 3C1 log p.

Here C2 is some constant depending only on X, (L1, h1), ..., (Lm, hm). If there
is a condition that

lim inf
p→∞

λp
log p

>
6C1

C2

,

then for all p sufficiently large, ηp >
C2

2
λp. Since

lim
p→∞

λp
pn

= 0,
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ηp can be always chosen such that C2

2
λp < ηp < pn/C̃ for p sufficiently large.

By applying Theorem 3.3.1 to the subset Ep ⊂ Xp, we obtain

σp(Ep) ≤ ∆p(ηp) ≤ C1p
ξn exp(

−C2

2C1

λp),

where Ep = Ep(εp). Now we set

C = max
( 6C1

C2(1 + ξn)
,
2C1

C2

, C1, ‖c1(L1, h1) ∧ ... ∧ c1(Lm, hm)‖
)
.

Then for all p sufficiently large,

σp(Ep) ≤ Cpξn exp(
−λp
C

)

under the conditions that

lim inf
p→∞

λp
log p

> (1 + ξn)C,

lim
p→∞

λp
pn

= 0.

By the definition of Ep, it is obvious that for any Sp ∈ Xp \ Ep and any
(n−m,n−m)-form φ of class C 2,∣∣ 1

pm
〈
[Sp = 0]− Φ?

p(σp), φ
〉∣∣ ≤ dp

pm
λp
p
‖φ‖C 2 ≤ Cλp

p
‖φ‖C 2 .

This completes the proof.

Proposition 3.4.5. In the setting of Theorem 0.3.1, for almost all S =
{Sp}∞p=1 ∈ PX with respect to σ, we have

1

pm
[Sp = 0]− 1

pm
Φ?
p(σp)→ 0

in the weak sense of currents as p→∞ on X.

Proof. Note that
∞∑
p=1

σp(Ep) ≤ C3

∞∑
p=1

1

pη
<∞

for some positive constant C3 and η > 1. The proof follows from the same
argument in Remark 2.3.8.

End of the proof of Theorem 0.3.1. By Theorem 0.2.1 with its proof,
there exists a constant c > 1 which depends only on X,L1, ..., Lm, ρ such

that each component
∧dk,p
j=1 π

?
k,p(dd

cuk,pj + ωFS) of σp is a probability moder-
ate measure satisfying Proposition 3.3.9. Hence σp satisfy Proposition 3.3.12.
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Note that c is independent of the choices of the metrics h1, ..., hm. It follows
from Proposition 3.3.7 and Proposition 3.4.3 that

1

pm
(Φ?

p(σp)− γ1,p ∧ ... ∧ γm,p)→ 0

in the weak sense of currents as p → ∞. Then Proposition 3.4.5 implies that
for allmost all S = {Sp}∞p=1 ∈ PX with respect to σ

1

pm
([Sp = 0]− γ1,p ∧ ... ∧ γm,p)→ 0

in the weak sense of currents as p → ∞. The proof is finally completed by
application of Proposition 3.4.2.

Theorem 0.3.3 follows from Proposition 3.4.3 and Theorem 3.4.4 with the
following theorem [14, Proposition 5.1].

Theorem 3.4.6. In the setting of Theorem 0.3.3, there exists a positive con-
stant C which depends only on X, (L1, h1), ..., (Lm, hm) such that for all p suf-
ficiently large and any (n−m,n−m)-form φ of class C 2, we have∣∣〈 1

pm
γ1,p ∧ ... ∧ γm,p − c1(L1, h1) ∧ ... ∧ c1(Lm, hm), φ

〉∣∣ ≤ C log p

p
‖φ‖C 2 .

3.4.3 Proof of Theorem 0.3.5

To prove Theorem 0.3.5, we need the following result [38, Theorem 15.1.6].

Theorem 3.4.7. Let PA be the set of all functions of the form p−1 log |f(z)|
where p is a positive integer and f an entire function 6≡ 0 in Cn. Then the
closure of PA in L1

loc(Cn) consists of all plurisubharmonic functions.

Let ω0 be the Fubini-Study form with mass 1 in Pn. Given any positive
closed current T of bidegree (1, 1) with mass 1 in Pn. Then by Proposition
1.2.19, there exists a q.p.s.h. function ϕ such that

T − ω0 = ddcϕ.

Therefore T corresponds to an entire plurisubharmonic function ψ in Cn which
belongs to the Lelong class(cf. [32, Example 2.2]). By Theorem 3.4.7, there
exists a sequence {p−1 log |fp|} which converges to ψ. Since holomorphic func-
tions in Cn can be approximated by polynomials, by using diagonal argu-
ment, we can choose a sequence of polynomials gp of degree ≤ p such that
{p−1 log |gp|} converges to ψ. It is possible since all such p−1 log |gp| and ψ
belong to the Lelong class. Since gp can be regarded as a homogeneous poly-
nomial of degree p in Cn+1, it induces a global section Sp ∈ H0(Pn,O(p)).
Hence by Lelong-Poincaré formula, 1

p
[Sp = 0] converges weakly to T . We

obtain the following result due to Oka.
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Proposition 3.4.8. Given any positive closed current T of bidegree (1, 1) with
mass 1 in Pn, there exists a sequence of {Sp}p≥1, Sp ∈ PH0(Pn,O(p)), such
that

1

p
[Sp = 0]→ T

in the weak sense of currents.

This section concludes with the proof of Theorem 0.3.5.

Proof. By Proposition 3.4.8, there exists a sequence of {Sp}p≥1, Sp ∈ PH0(Pn,O(p)),
such that

1

p
[Sp = 0]→ T.

Denote by δSp the Dirac measure at the point Sp ∈ PH0(Pn,O(p)). Choose a
sequence of smooth probability measures {µpj} which is an approximation of
δSp . Note that the map

PH0(Pn,O(p))→ C
Vp 7→

〈
[Vp = 0], φ

〉
is continuous. Then there exists a neighborhood Ep ⊂ PH0(Pn,O(p)) of Sp
such that

|
〈
[Vp = 0], φ

〉
−
〈
[Sp = 0], φ

〉
| ≤ 1,

∀Vp ∈ Ep and (n− 1, n− 1)-form φ of class C 2 with ‖φ‖C 2 ≤ 1. Hence

|
〈1

p
[Vp = 0]− T, φ

〉
|

≤ |
〈1

p
[Vp = 0]− 1

p
[Sp = 0], φ

〉
|+ |

〈1

p
[Sp = 0]− T, φ

〉
|

≤ 1

p
‖φ‖C 2 + |

〈1

p
[Sp = 0]− T, φ

〉
| → 0,

∀Vp ∈ Ep and (n− 1, n− 1)-form φ of class C 2. Since µpj → δSp as measures
when j →∞, there exists an index jp satisfying

|µpjp(Ep)− δSp(Ep)| = |µpjp(Ep)− 1| ≤ 1

p2
.

Denote by Ec
p the complement of Ep. Set σp := µpjp . So σp(E

c
p) ≤ 1

p2
. Yau’s

theorem [59] implies that there exists a smooth real function up with (ωFS +
ddcup)

dp = σp. Then the theorem follows from the same argument in the proof
of Remark 2.3.8. This completes the proof.
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3.5 Further problems

We continue studying the equidistribution property and some approxima-
tions of currents by intersection of divisors. Several questions are posed as
follows.

1) We will investigate the equidistribution of zeros of random holomor-
phic sections over more general spaces, such as non-compact manifolds [19] and
normal Kähler complex spaces [13]. With emphasis on certain conditions of
curvature forms of line bundles, I believe the equidistribution property would
still hold, even in the context of moderate measures. We will also study some
equidistribution properties with a limit of currents related to weighted global
extremal functions (cf. [8]) and convergence results for Bergman kernels with
equilibrium measures (cf. [5] and therein).

2) Approximation of currents by divisors is an interesting subject which
was explored by many mathematicians, for example, Demailly [15], Duval-
Sibony [24], Guedj [30] and Coman-Marinescu [11] etc. We would like to show
that some positive closed current of bidegree (m,m) could be approximated
by a sequence of intersections of divisors defined by m line bundles. It could
be regarded as a generalization of results obtained in [11].

3) Following Theorem 0.3.5, we consider the following question. In
the setting of Theorem 0.3.3, given any positive closed current T of bidegree
(m,m), could we construct a family of diffuse measures σp such that for σ-
a.e. {Sp}p≥1 ∈ PX , 1

pm
[Sp = 0] → T? The key problem is the existence of

approximation of any current by a sequence of currents (e.g. those currents
defined by integration on varieties of codimension m).

4) We will study the equidistribution property of random sections with
real coefficients, which is linked to the recent work by Gayet-Welschinger [31].
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[37] Hörmander L., The analysis of linear partial differential operators, vol I,
Grundlehren Math. Wiss., vol. 256, Springer-Verlag, Berlin, 1983.
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