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Introduction

1. Motivation

1.1. Polynomial system solving and applications

The problem of solving polynomial systems is very important nowadays, because such systems
arise in a wide range of applications. Indeed, polynomials are a basis for models in many areas
of research.

We give three examples of general applications, both practical and theoretical, of polynomial
system solving that we will encounter in this thesis.

Cryptography Algebraic cryptanalysis models cryptographical systems using polynomial
systems, and reduces the problem of breaking the code to solving these systems. We shall
encounter an example related to the Discrete Logarithm Problem (DLP) on elliptic curves.

Polynomial inversion The problem is, given some polynomials f1, . . . , fm , to identify the
relations between the fi ’s. For example, the only nontrivial relation between f1 = XY , f2 = X 2

and f3 = Y
2 is f 2

1 = f2 f3. It can be used for example to obtain implicit equations describing a
parametric object.

Real roots classification This is also related to parametric equations: the input is a polyno-
mial system F = (f1(X,T), . . . , fm(X,T))with coe�cients inR, indeterminatesX = (X1, . . . ,Xn)
and parameters T = (T1, . . . ,Ts ) such that for any t ∈ Rs , the equations (f1(X, t), . . . , fm(X, t))
with unknowns X = (X1, . . . ,Xn) have a �nite number of real solutionsCt . The goal is to �nd a
dense covering of Rs with open subsets over which Ct is constant.

These examples illustrate the fact that the meaning of solving a polynomial system depends
on the application. The simplest question one might ask given a polynomial system is “does
it have a solution?”. This problem is NP-complete on �nite �elds. Solving a system usually
means computing some more information about the solution set. The exact form of the question
depends on the application, and systems are usually split in two categories: they can be zero-
dimensional or positive-dimensional.

Zero-dimensional systems are systems with a �nite number of solutions, in an algebraic
closure of the coe�cient �eld. For example, systems arising in applications to cryptography are
usually zero-dimensional: there are enough constraints to ensure that there is only one solution
to the problem. In this case, “solving” usually means either listing all the solutions of the system,
giving a parametrisation of all solutions of the system, or simply giving one solution of the
system.

On the other hand, positive-dimensional systems are systems with in�nitely many solutions,
again in some algebraic closure of the coe�cient �eld. There, “solving” potentially takes on many
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di�erent meanings, depending on the system and the application: �nding a parametrisation of
the solutions, computing the equations of the projection of the solutions on a subspace (or in
other words, eliminate variables from the system), computing the dimension of the solution set
(that is identifying a subset of unknowns which are independent), or, when applicable given the
coe�cient �eld, �nding topological information on the set of solutions (for example one point
per connected component of the set or its complementary).

For example, the polynomial inversion problem is an elimination problem: if the input
polynomials are (f1, . . . , fm) ∈ K[X1, . . . ,Xn], one can construct the ideal I = 〈F1− f1, . . . , Fm −
fm〉 with extra variables F1, . . . , Fm , and the wanted relations shall correspond to polynomials
in I ∩ K[F1, . . . , Fm], thus eliminating X1, . . . ,Xn .

The real roots classi�cation problem also involves an elimination problem: we need to �nd
the set of values of the parameters where the number of real solutions in X changes. Let
π : Rn × Rt −→Rs be the projection onto the parameters T1, . . . ,Ts , the wanted subdivision
of the parameter space is contained in the projection of the singular locus of the zeroes of F
and of the critical points of π restricted to this variety. It is enough to compute one polynomial
whose zeroes cover this set, and this too can be done using elimination. In order to complete
the resolution of the problem, we then need to compute one point per connected component of
the complementary of this set, and for each point, count the solutions in X.

Many tools have been developed for solving polynomial systems, including numerical meth-
ods (Newton’s method. . . ) or symbolic-numeric methods (homotopy continuation [SW05]. . . ),
computing solutions with arbitrary precision, as well as symbolic methods from computer alge-
bra (triangular sets [ALM99], multivariate resultants [CD05], geometric resolution [GLS01]. . . )
computing exact solutions.

In this thesis, we mainly focus on Gröbner bases [Buc76]. They can be used to solve systems
with a �nite number of solutions as well as eliminate variables, thus covering most needs for
polynomial system solving in applications. Furthermore, they can solve a polynomial system
regardless of its �eld of de�nition.

We shall also make use of regular chains [LMX05], as an alternative tool for computing
polynomial elimination, and Cylindric Algebraic Decompositions [Col75] in order to obtain
topological information about sets of real solutions of a system of polynomial equations and
inequations.

1.2. Regularity of Gröbner basis computations

Gröbner bases are computed by successive reductions of the polynomials de�ning the system.
This can be done in an algebraic way, similar to euclidean reductions in the univariate case,
or using linear algebra on the coe�cients of the polynomials. The historical algorithm by
Buchberger [Buc76] uses the former method, while modern algorithms such as F4 [Fau99] or
F5 [Fau02] use linear algebra to group reductions together. This makes the choice of a reduction
strategy important, to condition how, at any given step, to pick polynomials for the reduction.

The default strategy is the normal strategy for homogeneous systems (or its inhomogeneous
variant, the sugar strategy), which picks at each step the polynomials leading to the smallest
degree reductions. For this strategy, the degree of the reductions can be seen as an indicator of
progress, and we can characterize regular behaviors for the algorithms: a behavior is regular if
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it does show any degree fall, that is a step where the degree of the reductions is not (strictly)
increasing. See for example the curves on page 10: the red curve is an example of a regular
behavior, whereas the blue curve is an example of an irregular behavior.

We shall see that regular behaviors make it possible to analyze the complexity of the algo-
rithms: indeed, if at each step the degree is strictly increasing, we may bound the number of
steps by bounding the maximal degree, and then obtain complexity bounds by bounding the
cost of each step.

This can be done under some generic properties, that is algebraic properties which are satis�ed
by almost all systems. An example of a generic property relevant for Gröbner basis computa-
tions is zero-dimensional regular sequences, that is sequences of n polynomials in n variables
having only a �nite number of solutions (in an algebraic closure of the coe�cient �eld). For
homogeneous zero-dimensional regular sequences, or sequences such that the highest degree
homogeneous components form a zero-dimensional regular sequence, algorithm F5 has a regular
behavior, and algorithm F4 has as few degree falls as possible.

1.3. What to do when systems are not generic?

Problems appear when systems fail to satisfy genericity properties: complexity bounds relying
on the regular behavior of the algorithms are no longer valid, and the algorithms waste time
computing useless reductions.

For example, the authors of [Fau+13], when working with the DLP on Edwards elliptic curves,
were confronted with the following system of 5 equations in 5 unknowns, over a �nite �eld:

0 =



7871
18574
14294
32775
20289



e16
5 +



53362
50900
36407
58813
20802



ẽ8
1 +



26257
128
3037
38424
41456



ẽ7
1ẽ2 +



25203
23117
28918
29298
56353



ẽ6
1ẽ

2
2 +



19817
29737
52187
36574
46683



ẽ5
1ẽ

3
2 +



9843
3752
27006
64195
63059



ẽ4
1ẽ

4
2

+



11204
25459
58263
17964
57146



ẽ3
1ẽ

5
2 +



46217
5478
45631
13171
42548



ẽ2
1ẽ

6
2 +



63811
50777
48809
1858
55751



ẽ1ẽ
7
2 + 2070 smaller monomials.

This system is not a zero-dimensional regular sequence: the highest degree component of all 5
polynomials is a monomial in e16

5 , so any point with e5 = 0 is a root of these components. And
indeed, the behavior of Gröbner basis algorithms using the normal strategy for this system
is irregular: see on Figure 1 the blue plot, representing the progress of algorithm F5, step by
step. Each step at which the plot stalls or reverses course is an irregularity, making it harder to
bound the complexity.

On the other hand, assume that we now assign degree 2 to variables ẽi , i ∈ {1, . . . , 4} (thus
excluding e5). In other words, we are using the weighted degree for the system of weights
(2, 2, 2, 2, 1). Then all monomials printed above have weighted-degree 16, together with 486
more monomials. The highest weighted homogeneous components of polynomials of the system
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0 10 20 30

10

20

30

6461 s935 s

Step

Degree
W -degree/2 Total degree strategy

Weighted degree strategy

Figure 1: Step-by-step progress of Algorithm F5 on a DLP system

are now much larger than just one monomial, and they actually form a zero-dimensional regular
sequence. By evaluating the weighted degree of polynomials for the reduction strategy, instead
of the total degree, we recover a regular behavior. The behavior of algorithm F5 using the
weighted degree was plotted in red on Figure 1, and indeed the algorithm progresses steadily
towards its �nal weighted degree.

Another example is given by determinantal ideals: a determinantal system is a system de�ned
as the set of all r -minors of a matrix with polynomial entries. It encodes the fact that the
matrix has rank at most r − 1. These systems appear in a lot of applications, for example
in cryptography (the MinRank problem [FLP08]) or in convex optimization (semi-de�nite
programming [Ott+15]). Computing critical points of projections restricted to a determinantal
variety is a frequent problem, which has been thoroughly studied ([BV88]. . . ).

For example, consider a k × k matrix M with coe�cients in K[X1, . . . ,Xn], and let V be the
variety de�ned by det(M) (that is the k − 1’th determinantal variety associated with M). Assume
that we want to compute the critical points of the projection onto the �rst variable X1, restricted
to V .

A natural way of approaching this problem is to use the Jacobian criterion on the determinantal
system: compute the partial derivatives ∂ det(M )

∂Xi
, i ∈ {2, . . . ,n}, saturate by ∂ det(M )

∂X1
, and compute

a Gröbner basis of this system. In the same way as before, we plot the behavior of this strategy
in blue in Figure 2, for k = 5, n = 7 and K = F65521. Again, it appears that there are some
irregularities.

However, it is possible to change the modelization, or in other words �nd another set of
equations describing the same geometrical object. The idea is that the matrix M has rank at
most r − 1 if and only if its kernel has dimension at least k − r + 1. This can be modelled by
adding k(k − r + 1) variables to the polynomial algebra, form a k × (k − r + 1)-matrix N with
these variables as entries, and use the entries of M · N as the polynomial systems. We want N

10
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0 5 10 15 20 25 300

4

8

12 572 s

79 s
52 s

Step

Degree
Derivatives
of the determinant
Incidence variety
with minors of the Jacobian
Incidence variety
with Lagrange multipliers

Figure 2: Step-by-step progress of Algorithm F4 on the singularities of a determinantal system

to have full rank (k − r + 1), this can be described locally with (k − r + 1)2 additional equations.
The resulting system FI de�nes what is called an incidence variety. It models the same

geometrical object, and we can compute the critical points of the projection restricted to this
variety using the Jacobian criterion: critical points of the projection onto X1 are points where
the truncated Jacobian matrix JacX2, ...,Xn,Y1, ...,Yk (k−r+1)(FI ) has rank less than the codimension
of the variety.

This is a determinantal condition too, and we can model it with minors of the Jacobian, or
again form an incidence variety using the Jacobian. This last approach is known in optimization
as the introduction of Lagrange multipliers. In this case, both these approaches make the
computations more regular, and faster by a factor of almost 10. On Figure 2, we plotted in red
(resp. green) the behavior of the computations on the minors of the Jacobian of the incidence
system (resp. the system obtained by multiplying the Jacobian with Lagrange multipliers), with
the same input as before.

Both weighted-homogeneous and determinantal systems are examples of the more general
problem of solving structured systems: systems arising in applications frequently exhibit some
structure that they do not share with arbitrary systems. This is both a problem and an advantage:
on the one hand, this makes the systems non-generic, and usually the algorithms need to be
adapted to recover a regular behavior for these systems; and on the other hand, once dedicated
algorithms exist, the additional structure frequently makes it easier to solve generic structured
systems than arbitrary generic systems.

In general, working with a new structure raises two deeply interleaved problems:

• identify properties of generic polynomials with the structure, which imply a regular
behavior of dedicated algorithms;

• and design dedicated algorithms taking the structure into account and having a regular
behavior for generic systems.

11
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Figure 3: Algorithmic strategy for zero-dimensional systems

2. State of the art

2.1. Computational strategy for Gröbner bases

We now give more details about how Gröbner bases can be used for solving polynomial systems,
and why a reduction strategy taking into account the degree of the polynomials is useful in this
work�ow.

The de�nition of a Gröbner basis depends on the choice of a monomial ordering, in order to
give a formal meaning to the reduction of polynomials. Gröbner bases for di�erent monomial
orderings will yield di�erent kinds of information, and be more or less easy to compute. In
terms of actually solving the system, two monomial orderings are particularly useful:

• elimination orderings, that is orderings such that any monomial divisible by X1, . . . ,Xi is
greater than any monomial not divisible by X1, . . . ,Xi , for some i: using such an ordering,
one may eliminate the variables X1, . . . ,Xi from the ideal;

• the lexicographical ordering: up to a random change of coordinates, the lexicographical
Gröbner basis of a zero-dimensional system is a parameterized representation of all
solutions: Xn is given as zero of a univariate polynomial, and all other unknowns are
expressed as polynomials in Xn .

On the other hand, computing bases for elimination orderings or the lexicographical ordering
is usually more di�cult than for other orderings such as the GRevLex ordering. A common
strategy for solving a polynomial system is thus to �rst compute a GRevLex basis using
algorithm F4 or F5, and then perform a change of ordering to compute an elimination or
lexicographical basis from the GRevLex basis. This change of ordering can be done using
another run of algorithm F4 or F5, or using a dedicated algorithm such as FGLM [Fau+93] in
the zero-dimensional case (Figure 3), or the Gröbner walk [CKM97] in the general case.

This makes computing a Gröbner basis for the GRevLex ordering an important step in most
cases. This order orders the monomials according to their degree �rst, which is why algorithms
usually use the normal strategy by default when computing a GRevLex basis: it is a way to
consider the smallest monomials �rst.

2.2. Complexity studies for homogeneous systems

Homogeneous systems are maybe the most widely studied structure for Gröbner basis com-
putations: indeed, from the very start, strategies such as the normal strategy or the sugar
strategy were designed in order to take into account the degree of homogeneous polynomials,
or properties of their highest degree components when the systems were inhomogeneous.

12
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It has been observed that the normal strategy frequently gives good results in practice. This
does not necessarily mean that the algorithms are lightning-fast, but monitoring their progress
does not show any “irregular” behavior of the kind of our earlier examples: the degree of the
polynomials considered grows steadily from start to end.

The study of this behavior led to algebraic characterizations of systems exhibiting this regular
behavior. It turned out that these properties are generic, which is a formal way of expressing
that “most” systems will satisfy them, and explains why these strategies appeared e�cient in
practice.

An example of generic property ensuring regularity in Gröbner basis algorithms is regular
sequences. It has several equivalent de�nitions, but for now we will restrict to systems with n
equations and n unknowns (so-called square systems). A square system is a regular sequence if
and only if its set of solutions is �nite.

This property ensures that algorithm F5 has a regular behavior on homogeneous systems.
For inhomogeneous systems, the “good” property is regularity in the a�ne sense, and it requires
that the highest degree components of the system form a regular sequence.

Under these genericity hypotheses, the regular behavior of the algorithms makes it possible
to obtain complexity bounds. For example, here are complexity bounds for algorithms F5 and
FGLM for generic square systems.

Theorem 1. Let F = (f1, . . . , fn) ⊂ K[X1, . . . ,Xn] be a homogeneous system with respective
degree d1, . . . ,dn . Assume that the system is regular in the a�ne sense (and thus zero-dimensional).
Then algorithm F5 computes a GRevLex Gröbner basis of 〈F 〉 in time

O *
,
dreg

(
n + dreg − 1

dreg

)3
+
-
,

where dreg is the degree of regularity of the system, that is the largest degree we need to reach in a
run of F5. It is bounded by Macaulay’s bound [BFS14, Cor. 13]:

dreg ≤
n∑
i=1

(di − 1) + 1.

Algorithm FGLM computes a lexicographical basis of 〈F 〉 in time

O
�
n deg(I )3�

,

where deg(I ) is the degree of the ideal, that is the number of solutions. It is given by Bézout’s
bound [Laz83, Prop. 1]:

deg(I ) =
n∏
i=1

di .

2.3. Other structures

The problem of computing Gröbner bases for structured polynomial systems is not new, and a
lot of new structures have been successfully exploited from this point of view in the past few
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years: examples include multi-homogeneous systems [FSS11], systems invariant under a group
action [FS12], determinantal systems [FSS13]...

In particular, this last example will prove useful in this thesis. Recall that given a k ×k-matrix
M with polynomial entries, and an integer r ∈ {1, . . . ,k}, the determinantal system Dr is the
system given by all r -minors of M . Its zeroes, the so-called determinantal variety, are points at
which the matrix M has rank at most r − 1.

The structure of these ideals has been thoroughly studied, both from an algebraic stand-
point [BV88] and from a computational standpoint [FSS13]. In particular, it is known that
generically, the singular locus of Dr is the determinantal variety Dr−1.

As for computations, the idea of modelling the determinantal variety as the projection of an
incidence variety is far from new: for example, the classic method of using Lagrange multipliers
in optimization relies on modelling rank defects of the Jacobian matrix of a system as an
incidence variety, and this technique was central in the work of [Nal15] on real optimization for
determinantal varieties. This strategy has been analyzed from a computational point of view in
the zero-dimensional case [FSS13].

3. Contributions

In this thesis, we worked on two classes of structured polynomial systems: weighted homoge-
neous systems, and determinantal systems for a root classi�cation problem.

Weighted homogeneity is the structure used in the DLP example on page 9. It generalizes
homogeneity, by giving more choice over how the degree is computed. This structure appears
naturally in a wide range of applications, for example whenever one applies a polynomial change
of variables to a homogeneous system. Algorithmic strategies for weighted homogeneous
systems were known, but there was no complexity analysis. Furthermore, the FGLM step of
the classic strategy became a bottleneck in the resolution. We identi�ed genericity properties
which allowed us to obtain complexity bounds for the algorithms, and described a strategy
allowing algorithm FGLM to take advantage of the structure. Under genericity hypotheses, we
proved that the algorithms have a completely regular behavior in this strategy.

On the other hand, for determinantal systems, we started with a speci�c problem from
an application to contrast optimization, in medical imagery. While solving this problem, we
identi�ed that the underlying problem was the more general problem of real root classi�cation,
specialized to singularities of determinantal varieties. However, while implemented algorithms
exist for this general problem, they were unable to give a solution to the system from contrast
optimization. We proposed a strategy taking advantage of the determinantal structure of the
system, in order to spread the computations over several smaller problems within the reach of
existing algorithms. Using incidence varieties to model the rank defects, the regularity of the
Gröbner basis algorithms used for computing eliminations is improved.

3.1. Weighted-homogeneous systems

Computational strategy Weighted homogeneous systems are a generalization of homo-
geneous systems. Given a system of weightsW = (w1, . . . ,wn) ∈ Nn

>0, the W -degree of the
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monomial X α1
1 · · ·Xαn

n is defined as

degW
�
X α1

1 · · ·X αn
n


=

n∑
i=1

wiαi .

A polynomial is said to beW -homogeneous if all its monomials have the sameW -degree.
Equivalently, a polynomial f isW -homogeneous withW -degree d if and only if

homW (f ) = f
�
X w1

1 , . . . ,X
wn
n


is homogeneous with degree d .

This morphism gives a natural strategy for computing Gröbner bases for a weighted homoge-
neous system F : we can run the usual algorithms on homW (F ). Some algorithms, such as F4 or
F5, appears to become faster with this strategy, but algorithm FGLM becomes a bottleneck.

This strategy is also interesting from a theoretical point of view. Homogeneity is certainly
the most studied structure with respect to Gröbner basis computations: this includes the
complexity studies given above, but also detailed characterizations of the Hilbert series of
an homogeneous ideal [Mor96], thin-grained complexity bounds under stronger genericity
hypotheses [BFS14], and complexity analyses for overdetermined systems under a property
conjectured to be generic [BFS04].

The question raised by all these results for homogeneous systems is how far these bounds
and results can be transposed to the weighted homogeneous case.

It turns out that for a genericW -homogeneous system F , homW (F ) is “sufficiently generic”
as a homogeneous system, and a run of Algorithm Matrix-F5 on homW (F ) computes a Gröbner
basis without any reduction to zero. In this case, as in the homogeneous case, its complexity
can be determined in terms of the size of the computed matrices and the degree of regularity of
the system.

In applications, systems are rarely weighted homogeneous. In this situation, as in the
homogeneous case, the behavior of the algorithms is tied to reductions to zero of the highest
W -degree components of the systems, and so, to whether these components satisfy regularity
properties. If this condition is not satisfied, the behavior of algorithm F5 is expected to be
irregular, with reductions to zero and degree falls, and generic complexity analyses no longer
apply: the algorithms perform worse in practice, and theory fails to quantify exactly how much
worse.

This also explains why transforming a weighted homogeneous system into a homogeneous
one yields significant improvements in practice. Indeed, given a generic weighted homogeneous
systems, its highest degree components are unlikely to be large, and thus to satisfy regularity
properties: informally, the smaller a class of polynomial systems is, the less likely there will be
enough room for interesting generic properties to be satisfied.

We now turn to algorithm FGLM, for zero-dimensional systems: its complexity is bounded in
terms of the number of solutions of the system, regardless of any generic property. The morphism
homW multiplies this number of solutions by

∏
wi : for example consider F = (X 2 − Y ,X − 1),

with the weights (1, 2); its only solution is (X = 1,Y = 1), but homW (F ) = (X 2 − Y 2,X − 1) has
2 solutions: (X = 1,Y = 1) and (X = 1,Y = −1).
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Figure 4: Algorithmic strategy for a zero-dimensional system, using theW -degree

This explains why algorithm FGLM becomes a bottleneck when computing a lexicographical
Gröbner basis through homW : the transformation arti�cially demultiplies the number of
solutions, leading the algorithms to build and reduce unnecessarily large matrices.

On the other hand, it turns out that applying hom−1
W to a reduced Gröbner basis of homW (F )

yields a Gröbner basis for a weighted equivalent of the GRevLex order. This basis can also be
computed directly from the original system by using the weighted degree instead of the total
degree in algorithm F4 or F5.

This new basis can be used as input for algorithm FGLM, and it generates the same ideal
as the original system F , hence it has the correct degree. Algorithm FGLM can compute a
lexicographical basis of the ideal from this basis, with the same complexity bounds as above
in terms of the degree of the ideal. The complete computational strategy is summed up on
Figure 4.

Regularity properties and complexity bounds The de�nition of regular sequences does
not involve the gradation, so it extends to a weighted setting. Regarding inhomogeneous
systems, as in the total degree case, we consider whether the highestW -degree components
form a regular sequence.

These properties are still generic amongst sequences of polynomials of givenW -degree, as
long as there exists at least one such sequence. It is proved straightforwardly by transposing the
genericity proofs in the homogeneous case. However, the existence hypothesis is a necessary
one, conditioning the system of weights: take for exampleW = (2, 3) and D = (5, 5), the only
monomial ofW -degree 5 being XY , so for any weighted-homogeneous system with respective
W -degree D, the set of solutions is the union of {X = 0} and {Y = 0}, and it is not a �nite set.

We shall give hypotheses on the system of degrees ensuring that this hypothesis is satis�ed.
For example, if all degrees are divisible by the least common multiple of the weights, or if each
degree di is divisible by the corresponding weight wi , then regular sequences exist, and thus
are generic. But these hypotheses are not necessary: take for exampleW = (2, 3) and D = (5, 6),
the sequence (XY ,X 3 + Y 2) is regular.

Some results about weighted homogeneous systems were known before this thesis. Most
notably, Bézout’s bound giving the number of solutions of a zero-dimensional ideal admits a
weighted version [Spa12, Th. 1.67 and 1.68]:

deg(I ) =
∏n

i=1 di∏n
i=1 wi

,
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which gives us immediately the complexity of algorithm FGLM in the strategy described above,
for a square system de�ned by a regular sequence:

CFGLM = O *
,
n

( ∏n
i=1 di∏n
i=1 wi

)3
+
-
.

For a run of Algorithm Matrix-F5 on homW (F ), the usual complexity bounds from the
homogeneous case can be applied, but they can actually be improved. The main asymptotical
improvement comes from the work of combinatoricians on the Sylvester denumerant of d , that
is the number of monomials with a givenW -degree d . In particular, it is known [FS09] that
asymptotically, this number of monomials is the number of monomials with total degree d ,
divided by the product of the weights. As such, the complexity bound for Algorithm Matrix-F5
run on homW (F ) is divided by (∏wi )3 when compared to the original bound for homogeneous
systems, given on page 13.

The bound on the degree of regularity can also be improved, with su�cient hypotheses on
the system. Assuming that the system form a regular sequence, a �rst weighted version of
Macaulay’s bound yields that

dreg ≤
n∑
i=1

(di − wi ) +max{wi}.

In other words, Algorithm Matrix-F5 may skip the last
n∑
i=1

(wi − 1) − (max{wi} − 1)

degree steps in a run on homW (F ).
This bound can be re�ned, but we need some stronger genericity hypothesis, containing

some information about which variables are involved at each step of the computation. More
precisely, we say that F is in simultaneous Noether position if the sequences (f1,X2, . . . ,Xn),
(f1, f2,X3, . . . ,Xn), . . . , (f1, . . . , fn) are all regular. Under this hypothesis, the following bound
applies:

dreg ≤
n∑
i=1

(di − wi ) + wn .

In particular, when applicable, it implies that for the best complexity, one should order the
variables such that the smallest variable (for the monomial order) is the one with the smallest
weight.

This bound is still not sharp in full generality. We conjecture that with no hypothesis on the
weights andW -degrees as long as there exist regular sequences, the following bound is true
and optimal:

dreg = wn

⌈∑n
i=1(di − wi ) − д

wn

⌉
(1)

with д is the Frobenius number of (w1, . . . ,wn), that is the highestW -degree at which there exist
no monomial (with the convention that д = −1 if there always exists a monomial, that is if
wi = 1 for some i).
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Oxygenated
blood

Deoxygenated
blood

Figure 5: Contrast optimization: both pictures were taken using the same setup of two tubes, the
inner one containing deoxygenated blood and the outer one containing oxygenated
blood. The left-hand picture is the reference picture, with no contrast optimization;
the right-hand picture is contrast-optimized by saturating the inner sample.

Examples This structure appears in many applications, we already gave the example of the
work of the authors of [Fau+13] on the DLP for Edwards elliptic curves.

Another example where weighted homogeneity appears naturally is polynomial inversion
systems. Recall that given a set of polynomials f1, . . . , fn in X1, . . . ,Xn , we may obtain their
relations by adding variables F1, . . . , Fn to the algebra, and eliminating X1, . . . ,Xn from 〈F1 −
f1, . . . , Fn − fn〉. There is a natural system of weights to try when working with such systems,
as �rst described in [Tra96]: if we give the Fi ’s a high-enough weight, we can ensure that the
highestW -degree components of the system form a regular sequence and a sequence in Noether
position. Furthermore, if the fi have additional structure, for example if they are homogeneous,
using the degree of fi as the weight of Fi makes the highestW -degree components even larger,
thus improving the regularity of the behavior of Algorithm F5.

In Section 3.6, we shall present benchmarks computing the relations between fundamental
invariants of the cyclic group or the dihedral group, between monomials, and between minors
of matrices. We could obtain diverse speed-ups for the �rst step of the computational strategy
(computing a GRevLex basis) for these systems, from a modest 1.5 to 4 for matrix minors to 105

for monomials.

3.2. Real root classification for determinantal systems
Application to contrast optimization

Context The second class of structured systems that we studied arised in an application in
medical imagery. Nuclear Magnetic Resonance (MNR) is a technique relying on applying a
magnetic �eld to a body, and measuring the response of di�erent matters. Contrast optimization
is the problem of ensuring that two biological matters that we wish to distinguish on a picture,
for example blood and water, stand apart: ideally, one should be completely black, and the other
as bright as possible.

The saturation method is a contrast optimization technique, consisting of making the magnetic
�eld variable in order to progressively obtain the optimal contrast. In order to �nd the optimal
“path” towards the saturated state, control theory has been involved [Lap+12].

This strategy involves alternating so-called bang-arcs and singular-arcs, and estimating the
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complexity of the path requires to estimate the number of switching points, in terms of the
matters that we want to study. These switching points are characterized as the singularities
of the determinant of a matrix whose entries are polynomials in the parameters and some
variables, together with some polynomial inequalities [Bon+13].

This problem has two forms: in its most general form, both matters are free, each matter being
described by two parameters. The structure of the system allows to eliminate one parameter,
and we need to identify parts of R3 where the number of singularities does not change. A useful
easier case is the case where one of the matters is water, leaving only 2 parameters.

This is a particular case of a more general problem: given a matrix M(X,G) whose entries are
polynomial in some variables X and some parameters G, and a target rank r , let Vr be the locus
at which M has rank at most r . We wish to identify a dense subset U of the parameter space,
together with a covering of U with open subsets, such that on each open subset, the number of
singularities of Vr in the �ber over the parameters is constant.

In the case of the application, the physics of the system brings an additional constraint on
the solutions: they have to be in the Bloch ball, which is described by inequations. Thus the
problem is a real roots classi�cation problem on a semi-algebraic set.

Algorithmic strategy The problem is a real roots classi�cation problem for a semi-algebraic
set described by a parameterized determinantal system and some inequalities.

The Cylindrical Algebraic Decomposition (CAD) method can be used to solve this problem,
but none of its implementations can attack the application directly. On the other hand, it is
known that adding equational constraints can dramatically improve the complexity of CAD
computations. In our context, these equations should be the equations of the borders of the
subdivision areas in the parameter space. This is the crux of real roots classi�cation algorithms
such as those presented in [LR07; YHX01]. However, none of the existing implementations of
these algorithms for this problem were able to tackle the general case of the imagery problem.

We propose a strategy taking advantage of the determinantal structure of the varieties at
hand, to guide existing algorithms towards a solution.

Under some hypotheses satis�ed by the application, these strategies classify the cardinality
of the �bers by identifying critical points of the projections, that is points where several single
roots merge into one multiple root, and points where the variety meets the boundary of the
relevant domain. In other words, we need to compute the singular locus of a determinantal
variety, and then the singularities of this singular locus, the critical points of a projection
restricted to it, and its intersection with the boundary of the domain.

The classical tool for computing critical and singular points is the Jacobian criterion, which
characterizes singularities in terms of minors of the Jacobian matrix of the system de�ning the
variety. In other words, a singular locus is again a determinantal variety.

Furthermore, the singular locus of a determinantal ideal is closely related to smaller minors
of the same matrix. In particular, points where the rank of the matrix is r − 1 are always singular
points of the locus where the rank is r .

This is the �rst property that we use to steer the computations: we compute a rank strati�cation
of the solutions, by separating those singularities where the matrix has exactly rank r (which
we can compute using the Jacobian criterion), and those points where the matrix has rank at
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most r − 1, which are automatically singularities of the ideal.
Furthermore, recall that the classi�cation strategy aims at computing a set of hypersurfaces

of the parameter space Rt , splitting it into open sets over which the number of singularities
is constant. So if we know that some component C of the singular locus of the determinantal
variety has dimension at most t − 1, we only need to compute the equation of one hypersurface
containing its image by the projection on the parameter space: this hypersurface will necessarily
contain the projection of the singular points of C, the critical values of the projection restricted
to C and the intersection of C with the boundaries of the domain.

Under some generic hypotheses, the dimension of rank strata is determined by the target
rank defect and the number of variables and parameters. It turns out that the high rank stratum
necessarily has dimension less than t , thus reducing the problem to a single elimination for that
stratum.

The last regularization step is the use of incidence variety to model singularities of the
determinants where needed. Algorithmically, we add k(k − r ) variables to the system, build a
matrix N with k rows and k − r columns, each entry being one of the new variables, and we
build the system with the entries of M · N . In order to ensure that the resulting kernel vectors
are linearly independent, we pick at random a matrixU with k − r rows and k columns, and we
add to the system the entries of U · N − Idk−r .

Results for the application This strategy was used for answering questions related to the
contrast imaging problem.

In particular, an open question for the case of water was whether the number of singularities
was a global invariant, not depending on the second matter: for all experimental samples, there
was only one such singularity.

It turns out that the answer is no: we identi�ed 3 areas of the parameter space where the
number of singularities is 1, 2 and 3 respectively. See Figure 6: the red area is out of the
physically relevant domain; for parameters in the areas containing blue diamonds, there are
two singularities in the �ber; for parameters in the areas containing green circles, there are
three singularities in the �ber; and for all other areas, there is only one singularity.

These results can be obtained in about 10 s using the new strategy, while a direct approach
using Gröbner bases requires 100 s. Furthermore, we were able to use this strategy to obtain the
boundaries of the classi�cation in the general case. This computation takes less than 2 h, while
it is intractable for the general strategies.

4. Perspectives

In this section, we list some questions left open by this thesis, as well as potential extensions
and generalizations that we would �nd interesting.

Open questions and conjectures forW -homogeneous systems First, there is the prob-
lem ofW -compatibility: what are the systems of degrees and weights such that there exists
W -homogeneous regular sequences, and thus that they are generic? We were able to give
su�cient conditions, but counter-examples show that they are not necessary.
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Figure 6: Decomposition of the parameter space in the case of water: the parameters are the
relaxation times for the second matter, γ2 and Γ2, and in each area delimited by the
black curves, the cardinality of the �ber of the singularities ofVr is constant and written
as a circled number; the red area corresponds to physically irrelevant parameters.

Genericity results are useful because testing whether a given system is a regular sequence is
not easy in general: if one knows that most sequences similar to the system at hand are regular,
it makes sense to run the algorithms assuming that the hypothesis is satis�ed.

As of now, for systems of degrees and weights falling out of the su�cient conditions for
regular sequences to exist, this assumption is riskier. Obtaining a set of necessary and su�cient
conditions could complete the characterization of the genericity of weighted homogeneous
regular sequences and make this procedure more likely to succeed.

Second, we conjectured formula (1) as a sharp bound of the degree of regularity of a sequence
in simultaneous Noether position, without any hypothesis on the weights. So far, we have not
been able to prove it.

And last, it would be interesting to be able to characterize semi-regularW -homogeneous
sequences in terms of their Hilbert series, once again without any hypothesis on the weights.

Several systems of weights Weighted homogeneous systems have been studied considering
only one system of weights. However, some systems may be W -homogeneous for several
systems of weightsW . Consider for example the polynomial

X 3Y 2Z + X 4Z 2 + X 2Y 4,

it is (1, 1, 1)-homogeneous with degree 6, and (1, 2, 3)-homogeneous with degree 10.
This new constraint gives extra structure to the Macaulay matrix of the system. Exploiting

this structure should yield further improvements on the complexity of Matrix-F5 for these
systems.
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Furthermore, polynomials with areWi -homogeneous for all systems of weightsWi in some
family are alsoW -homogeneous for anyW obtained by linear combination of theWi ’s: for ex-
ample, the above polynomial is also (2, 3, 4)-homogeneous with degree 16. It may be interesting
to see if this property can be used to �nd systems of weights leading to easier computations.

Non-positive weights An extension of the previous point could be to consider systems of
weights including weights set to zero or a negative integer. With only one system of weights, this
leads to problems because homogeneous components do not necessarily have �nite dimension.
However, with several systems of weights, it is possible to ensure that this does not happen,
and it would be useful to know what algorithmic strategies we can use in this situation.

This class of systems is very wide, it would for example include multi-homogeneous systems
(systems where the variables are split into groups, and polynomials are homogeneous in total
degree for each group): for example, consider a polynomial f in K[X1,X2,Y1,Y2], and assume
that it is bilinear for the variables X1,X2 and Y1,Y2. In terms of weights, consider the systems of
weightsW1 = (1, 1, 0, 0) andW2 = (0, 0, 1, 1); f being bilinear means that f isW1-homogeneous
withW1-degree 1 andW2-homogeneous withW2-degree 1.

Weight search Returning to the case of only one system of weights, until now, we have only
worked where systems for which the user was able to guess a good system of weights (either
because it was natural in the application, or through trial and error). It would be interesting to
describe a strategy, or at least a good set of heuristics, giving good candidate systems of weights
for an arbitrary inhomogeneous system.

Testing that a system is a regular sequence is not computationally easy, so using that as a
criterion is impractical. On the other hand, we could look for systems of weights making the
highestW -degree component large-enough for it to be generically regular.

Experimentally, we also observed systems which behaved better with a system of weights
such that the highestW -degree component is small, but with a very largeW -homogeneous com-
ponent at smallerW -degree. Characterizing these situations could lead to further improvements
on a strategy for picking up good systems of weights.

Application to imagery Our work on real roots classi�cation for the imagery problem also
left several open questions and possible extensions.

First, we only described algorithms, and showed experimental data con�rming that they are
more e�cient. It would be interesting to complete the analysis with complexity bounds for the
whole process.

Furthermore, the algorithmic strategy described for the roots classi�cation problem for the
contrast imagery problem builds a strati�cation by rank. To the best of our knowledge, the
question of whether this strati�cation is physically meaningful has never been raised.

As for the extensions, the root classi�cation problem is only one of the many computational
problems posed by specialists in control theory working on constrast optimization for the
MNR. For example, they would be interested in a rational parametrisation of the roots, or in a
classi�cation of the parameter space according to the number of connected components in the
�bers for higher-dimensional varieties. All these questions o�er new computational challenges.
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Chapter 1

Algebra and geometry

In this chapter, we recall concepts of commutative algebra and algebraic geometry that will
be used in the rest of the thesis. In Section 1.1, we give some basic de�nitions about rings and
ideals, and in particular the properties of gradations on polynomial algebras. In Section 1.2, we
focus on some properties of polynomial systems, which will be useful in the context of Gröbner
bases. In Section 1.3, we brie�y recall the correspondence between algebraic and geometric
notions, and in particular we give an interpretation of the previous properties. In Section 1.4, we
examine the genericity of regularity properties. Finally, in Section 1.5, we give some de�nitions
and properties of varieties characterizing low-rank matrices.

This chapter and the next one do not contain any original contribution. For most results,
we give a reference to a point in the literature where a proof may be found. We only give an
explicit proof for folklore results, or when the proof itself is useful for subsequent chapters (e.g.
if it is generalized later).

1.1. Commutative algebra

1.1.1. Ideals

We assume that classic de�nitions about rings, algebras and ideals are known. We shall consider
rings and algebras, which we will suppose to be commutative and with a unity.

De�nition 1.1. Let R be a ring. A divisor of zero is an element x ∈ R, non-zero, such that

∃y ∈ R,y , 0,xy = 0.

De�nition 1.2 (Noetherian ring). A ring R is noetherian if and only if any increasing chain of
ideals

I0 ⊆ I1 ⊆ · · · ⊆ In ⊆ . . .
is stationary.

This property is sometimes de�ned using the following classic characterization:

Proposition 1.3 ([Eis95, Sec. 1.4]). A ring R is noetherian if and only if all ideals of R are �nitely
generated.
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Proof. Let R be a noetherian ring and I an ideal of R. If I is not finitely generated, then we can
find a family of polynomials (fi )i ∈N ⊂ I such that no finite subset of this family generates I . Let
Ii = 〈f0, . . . , fi 〉, the sequence of ideals (Ii )i ∈N is strictly increasing, which is impossible since R
is noetherian.

Conversely, let R be a ring such that all ideals of R are finitely generated. Let I0 ⊆ I1 ⊆ · · · ⊆
In ⊆ . . . be an increasing chain of ideals, the limit

⋃
i ∈N Ii is an ideal, and by hypothesis it is

finitely generated. All of its generators necessarily belong to one of the ideals in the chain, and
the sequence stations at that point. �

1.1.2. Graded rings

Definition 1.4 (Gradation on a ring, degree, homogeneous components). Let R be a ring (resp.
algebra), R is graded if and only if there exists a decomposition (called a gradation or grading of
R) into additive groups (resp. vector spaces)

R =
∞⊕
i=0

Ri

such that Ri · R j ⊂ Ri+j : the product of elements of degree i and j has degree i + j. We say that
the elements of Ri are homogeneous of degree i .

Let p ∈ R, there exists d ∈ N and pi ∈ Ri (i ∈ {0, . . . ,d}) such that

p =
d∑
i=0

pi and pd � 0.

We then say that p has degree d , and pi is called the homogeneous component of p of degree i . If
all pi ’s are zero except for one, p is homogeneous.

Definition 1.5 (Homogeneous ideal). Let R be a graded ring, and I an ideal of R. We say that I
is homogeneous if it satisfies one of the following equivalent conditions:

1. I is generated by homogeneous elements

2. For any p ∈ I , all homogeneous components of p belong to I

Definition 1.6 (Graded morphism). Let R and S be two graded rings. A morphism φ : R −→ S
is said to be graded if it sends homogeneous elements of R onto homogeneous elements of S :

∀d ∈ N,∃e ∈ N,φ(Rd ) ⊂ Se

1.1.3. Polynomial algebras

Definition 1.7. Let K be a field and n a positive integer, let A be the polynomial algebra K[X]
with coefficients in K and n indeterminates X = X1, . . . ,Xn .

A product of indeterminates X α1
1 · · ·X αn

n is a monomial, and the integer vector (α1, . . . ,αn) is
its exponent.

A term is the product of a coefficient and a monomial.
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In particular, monomials generate a polynomial algebra as a K-vector space, and terms
generate a polynomial algebra as an additive group.

We shall use the same notations throughout this section.

Theorem 1.8. The polynomial algebra A is a noetherian ring.

This is a consequence of a more general result:

Theorem 1.9 (Hilbert’s basis theorem, [Eis95, Th. 1.2]). Let R be a noetherian ring, then the

polynomial algebra R[X ] is noetherian.
Remark 1.10. Theorem 1.8 for polynomial rings admits a more elementary proof than the more
general Theorem 1.9, see for example [CLO07, Ch. 2, sec. 5, th. 4] or [Eis95, Ex. 15.15].

An important feature of polynomial algebras is that they can be graded.

Definition 1.11 (Total degree, weighted degree). Let W = (w1, . . . ,wn) ∈ Nn be a family of
integers. We call W a system of weights, and define the W -degree (or weighted degree) of a
monomial as

degW
�	

n∏
i=1

X αi
i


� =
n∑
i=1

wiαi ,

and let AW ,d be the vector space generated by all monomials m such that degW (m) = d .
Polynomials in AW ,d are calledW -homogeneous (or weighted homogeneous).

In the special caseW = (1, . . . , 1), theW -degree is called total degree, or simply degree. In
this case,W -homogeneous polynomials are simply called homogeneous.

Proposition 1.12. Let A =
⊕

Ad be a gradation such that monomials are homogeneous. Then

there existsW ∈ Nn such that

∀d ∈ N,Ad = AW ,d

Proof. Consider a degree function deg on A. For all i ∈ {1, . . . ,n}, let wi = deg(Xi ). The
multiplicative property of the degree implies that deg is deg(w1, ...,wn ). �

Throughout this thesis, we will only consider non-degenerate systems of weights, that is
systems of weights such that wi > 0 for all i .

An important concept is that of homogeneization:

Definition 1.13 (Homogenization of polynomials). Let Ah = K[H ,X]. The homogeneization

morphism is defined as

•h : A −→ Ah

f 	−→ Hd f
(
X1
H
, . . . , Xn

H

)
where d is the degree of f

The dehomogenization morphism is defined as

•a : Ah −→ A
f 	−→ f (H = 1)
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It has the following immediate properties:

Proposition 1.14.

• The homogenization morphism is graded and sends polynomials of degree d onto polynomials
of degree d ;

• For any polynomial f in A of degree d (not necessarily homogeneous), f h is homogeneous of
degree d ;

• For any f ∈ A, (f h)a = f ;

• For any fh ∈ Ah , if fh is not divisible by H , (f ah )h = fh .

De�nition 1.15 (Homogenization of ideals). Let I be an ideal of A, the homogenization ideal
Ih is de�ned as

Ih = 〈f h | f ∈ I 〉;
let J be an ideal of Ah , the dehomogenization ideal Ia is de�ned as

Ia = 〈f a | f ∈ J 〉.
The element-wise properties above have the following consequences on ideals:

Proposition 1.16. Let I be an ideal of A and J be an homogeneous ideal of Ah . Then:

• Ih is an homogeneous ideal of Ah ;

• (Ih)a = I ;

• (Ja)h = J .

1.1.4. Combinatorics of monomials

Let d ∈ N, the homogeneous component Ad forms a �nite dimensional K-vector space, and its
dimension is the number of monomials at degree d .

Counting these monomials in the total degree case is a classic combinatorial exercise:

Proposition 1.17. Let n ∈ N and d ∈ N. The number of monomials in n variables having total
degree d is

Nn,d =

(
n + d − 1

d

)
.

The number of monomials in n variables having total degree at most d is

N ′n,d = Nn+1,d =

(
n + d

d

)
.

In the more general case, this number is called a denumerant, as introduced by Sylvester:
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1.1. Commutative algebra

De�nition 1.18 (Sylvester denumerant, [SF82]). Let W be a set of integers and d ∈ N, the
denumerant NW ,d is the number of non-negative integer solutions (α1, . . . ,αn) to the equation

w1α1 + · · · + wnαn = d .
There are formulas expressing the denumerants for some speci�c weightsW [Com74, Sec. 2.6],

but in the most general case, there is no known formula expressing a denumerant as a function
ofW and d . The asymptotic behavior of these denumerants is well-known:

Proposition 1.19 ([FS09, Prop. IV.2]). IfW is �xed and d tends towards in�nity, then

NW ,d ∼ gcd(W )
Π (W ) Nn,d =

gcd(W )
Π (W )

(
n + d − 1

d

)
.

Additionally, some bounds are known:

Proposition 1.20 ([Agn02, Th. 3.3 and 3.4]). De�ne

A B
n∑
i=2

wi
gcd(w1, . . . ,wi )

gcd(w1, . . . ,wi−1)

B B
n∑
i=2

wi

(
gcd(w1, . . . ,wi )

gcd(w1, . . . ,wi−1)
− 1

)
− n

gcd(W ) B gcd(w1, . . . ,wn)
Π (W ) B w1 · · ·wn ,

where gcd(a1, . . . ,ak ) denotes the greatest common divisor of the integers a1, . . . ,ak . Then the
number NW ,d of monomials withW -degree d is bounded by

gcd(W )
Π (W ) Nn,d−B+1 ≤ NW ,d ≤ gcd(W )

Π (W ) Nn,d+A−n+1.

Another interesting combinatorial number related to sums of integers is the Frobenius
number [Alf05, Ch. 1].

De�nition 1.21 (Frobenius number). LetW be a set of integers, assume that they are coprime.
The Frobenius number ofW is the largest integer d such that the equation

w1α1 + · · · + wnαn = d .
has no non-negative integer solutions (α1, . . . ,αn).
Remark 1.22. Algebraically, it corresponds to the largest W -degree d such that there exists
no monomials withW -degree d , or equivalently, such that the homogeneous component of
W -degree d in A is 0.
Remark 1.23. Computing this number is in general a hard computational problem: it has been
proved to be NP-hard [Alf05, Th. 1.3.1]. In particular, there is no general closed-form formula if
n > 2 ([Alf05, Sec. 1.3]).
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Remark 1.24. An easy case is if one of the integers is 1, because then the equation always have
solutions, and the Frobenius number does not exist.
Remark 1.25. The Frobenius number is sometimes called coin number, because of its application
to the problem of making change in small coins. Another example of application comes from
restauration: the McNuggets problem is deciding, given an integer d , whether it is possible to
obtain d chicken nuggets using boxes of 6, 9 and 20. If it is the case, d is called a McNuggets
number, and the Frobenius number of {6, 9, 20} is the largest non-McNuggets number ([Alf05,
Ch. 1]).

1.1.5. Hilbert series

In the previous section, we saw that computing the number of monomials at a givenW -degree
directly is a non-trivial problem. However, results such as the asymptotic equivalent of the
denumerants (Prop. 1.19) have been known for a long time. These results were proved by
considering generating series, instead of individual denumerants.

De�nition 1.26 (Generating series). Let f : N−→N be an integer function. The generating
series of f is the formal series

∞∑
d=0

f (d)T d ∈ N[[T ]].

Generating series are useful because many usual combinatorial operations can be converted
into algebraic operations on the generating series. For the case at point, the generating series
for denumerants is well known:

Proposition 1.27 ([Com74, Sec. 2.6, Th. A], [FS09, Prop. I.1]). LetW be a set of integers, the
generating series for the denumerants NW ,• is given by

∞∑
d=0

NW ,dT
d =

1∏n
i=1(1 −T wi ) .

This generating series is a particular case of a Hilbert series:

De�nition 1.28 ([Eis95, Ex. 12.12]). Let R be a graded K-algebra such that all homogeneous
components, as K-vector spaces, have �nite dimension. The Hilbert series of R is the power
series de�ned by

HSR(T ) =
∞∑
d=0

dimK(Rd )T d ∈ N[[T ]].

Proposition 1.29. The Hilbert series of A, graded with respect to a system of weightsW , is

HSA(T ) =
1∏n

i=1(1 −T wi ) .
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Hilbert series of quotients A/I where I is a homogeneous ideal will be very useful, because
many interesting parameters of the ideal can be read from the series. In section 1.2, we shall see
some examples of polynomial systems whose Hilbert series can be computed very easily.

Proposition 1.30 ([Eis95, Ex. 12.12]). Let I ⊂ A be aW -homogeneous ideal. Then there exist a
polynomial P ∈ Z[T ], and an integer r ∈ N, such that the Hilbert series of A/I can be written

HSA/I (T ) =
P(T )∏n

i=1(1 −T wi ) .

Remark 1.31. This result will be proved as a by-product of the proof of Prop. 1.38 in Section 1.2.1.

De�nition 1.32. With the same notations:

• the codimension of I is the multiplicity r of 1 as a root of P ;

• the dimension of I is d = dim(I ) = n − r ;

• the index of regularity of I is ireg(I ) = deg(P) − r ;

• if I is homogeneous for the total degree, the degree of I is deg(I ) = Q(1) where Q =
HSA/I (T ) · (1 −T )d .

Remark 1.33. In Section 1.3.4, we shall see that the dimension and degree have geometrical
interpretations. For example, if r = n, the dimension of I is 0, and HSA/I is a polynomial. The
degree of I is then the dimension of A/I as a K-vector space. In this case, there are only a �nite
number of zeroes common to all polynomials of I , and this number, counted with multiplicities,
is deg(I ).

Hilbert series (and dimension, codimension, etc.) can be de�ned for non-homogeneous ideals
as well, by taking the Hilbert series of Ah/Ih as a de�nition.

To conclude this section, we give a last interpretation of the Hilbert series of a homogeneous
quotient ring, which will be of immediate use when describing Gröbner basis algorithms.

De�nition 1.34 (Macaulay matrix). LetW be a system of weights, F = (f1, . . . , fm) ∈ K[X]m
a W -homogeneous polynomial system with respective W -degree (d1, . . . ,dm), and d ∈ N a
W -degree. For any i ∈ {1, . . . ,m}, letMd be the set of monomials µ with W -degree d : The
family Fd of all products µ fi ’s, i ∈ {1, . . . ,m}, µ ∈ Md−di , is a linear basis of the homogeneous
component of 〈F 〉 atW -degree d . The Macaulay matrix of F atW -degree d is the matrix of Fd
in the canonical monomial basis (whose elements are the monomials ofW -degree d).

Macd (F ) =

µ1 µ2 . . . µN
µ1,1 f1
...

µ1,N1 f1
µ2,1 f2
...
...

µm,Nm fm
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Remark 1.35. Macaulay matrices are a generalization of Sylvester matrices ([GKZ94, Ch. 12]) to
the multivariate case.

Proposition 1.36. If F is aW -homogeneous polynomial system, the Hilbert series of A/〈F 〉 is the
generating series of the corank ofMacd (F ), de�ned as the di�erence between its number of columns
and its rank.

1.2. Regularity properties

1.2.1. Regular sequences

De�nition 1.37 (Regular sequences). Let m be an integer, W a system of weights, and F =
(f1, . . . , fm) ∈ Am a family ofW -homogeneous polynomials. We say that F is a regular sequence
if for any i ∈ {1, . . . ,m}, fi is not a zero-divisor in A/〈f1, . . . , fi−1〉. In this case, we say that the
quotient ring A/〈f 〉 is a complete intersection.

This notion has several equivalent characterizations:

Proposition 1.38 ([Bar04, Prop. 1.7.4(2)]). Let m be an integer,W a system of weights, F =
(f1, . . . , fm) ∈ Am a sequence ofW -homogeneous polynomials, (d1, . . . ,dm) their respectiveW -
degree, and I = 〈F 〉. The Hilbert series of A/I satis�es the inequality (coe�cient-wise)

HSA/I (T ) ≥
∏m

i=1(1 −T di )∏n
i=1(1 −T wi )

with equality if and only if F is a regular sequence.

Proof. For i ∈ {1, . . . ,m}, let Ii = 〈f1, . . . , fi 〉. We will prove the result by recurrence on i .
If i = 0, then A/I = A and the result is a restatement of the formula for the Hilbert series of a

polynomial algebra.
Let i > 0 and assume that the result is proved for Ii−1. The multiplication by fi gives an exact

sequence:

0−→Ki −→A/Ii−1
·fi−→A/Ii−1 −→A/Ii −→ 0,

where Ki is the kernel of the application. For any d ∈ N, this exact sequence restricted to
W -homogeneous components ofW -degree d is:

0−→(Ki )d −→(A/Ii−1)d
·fi−→(A/Ii−1)d+di −→(A/Ii )d+di −→ 0,

which implies for the dimensions:

dim((A/Ii )d+di ) = dim((A/Ii−1)d+di ) − dim((A/Ii−1)d ) + dim((Ki )d ).

Multiplying by T d and taking the sum for d ranging over N, we get

HSA/Ii (T ) = (1 −T di )HSA/Ii−1(T ) +
∞∑
d=0

T d+di dim((Ki )d ).
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By recurrence hypothesis,

HSA/Ii−1(T ) =
∏i−1

j=1(1 −T dj )∏n
j=1(1 −T wj ) + Ri−1(T ),

where Ri−1(T ) is a series whose coe�cients are all nonnegative. Hence

HSA/Ii (T ) =
∏i

j=1(1 −T dj )∏n
j=1(1 −T wj ) + Ri−1(T ) +

∞∑
d=0

T d+di dim((Ki )d ), (1.1)

and all coe�cients in the rightmost summand are nonnegative as well, so we get the wanted
inequality.

Furthermore, if the sequence (f1, . . . , fi ) is regular, then Ki = 0 and by recurrence hypothesis,
Ri−1(T ) = 0, so there is indeed equality. Conversely, assume that

HSA/Ii (T ) =
∏i

j=1(1 −T dj )∏n
j=1(1 −T wj )

From Equation (1.1), Ri−1(T ) = 0 and Ki = 0. By recurrence hypothesis, if Ri−1(T ) = 0, then
(f1, . . . , fi−1) is a regular sequence; and by de�nition, if Ki = 0, then fi is not a zero divisor in
A/Ii−1, so (f1, . . . , fi ) is indeed regular. �

Corollary 1.39 ([Bar04, Prop. 1.7.4(3)]). If F is a regular sequence, then any permutation of F is
also regular.

Proof. The characterization from Proposition 1.38 does not depend on the order of the polyno-
mials. �

1.2.2. Description of the Hilbert series of a homogeneous regular sequence

In the total degree case, the Hilbert series of a zero-dimensional regular sequence admits the
following description.

Theorem 1.40 ([Mor96, Prop. 2.2]). Let D = (d1, . . . ,dn) ∈ Nn , and let ad be the coe�cient of
degree d in the series

SD (T ) =
∏n

i=1(1 −T di )
(1 −T )n .

Further let

• δ =
∑n

i=1(di − 1);

• δ ∗ =
∑n−1

i=1 (di − 1) = δ − dn + 1;

• σ = min(δ ∗, bδ/2c);

• µ = δ − 2σ .
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Then:

• the series SD (T ) is a polynomial of degree δ

• it is self-reciprocal (i.e. for any d , ad = aδ−d )

• the coefficients ad satisfy:

∀d ∈ {0, . . . ,σ − 1}, ad < ad+1

∀d ∈ {σ , . . . ,σ + μ − 1}, ad = ad+1

∀d ∈ {σ + μ, . . . ,δ}, ad > ad+1

Example 1.41. Take a homogeneous regular sequence of A = K[X ,Y ,Z ] with respective total
degree (2, 4, 8): for example, F = (X 2,Y 4,Z 8). The Hilbert series of A/〈F 〉 is

H (T ) = (1 −T 2)(1 −T 4)(1 −T 8)
(1 −T )3

= (1 +T )(1 +T +T 2 +T 3)(1 +T + · · · +T 7)
= 1 + 3T + 5T 2 + 7T 3 + 8T 4 + 8T 5 + 8T 6 + 8T 7 + 7T 8 + 5T 9 + 3T 10 +T 11.

The value of the coefficient of degree d in this series, as a function of d , is plotted in Figure 1.1.
In this case, the parameters from Theorem 1.40 are:

δ = (2 − 1) + (4 − 1) + (8 − 1) = 11

δ ∗ = (2 − 1) + (4 − 1) = 4

σ = min(4, 10) = 4

μ = 11 − 2 · 3 = 3.

Indeed, the polynomial H (T ) is self-reciprocal (the plot is symmetric around d = 5.5) and its
coefficients are increasing until degree σ , then stationary until degree σ + μ, then decreasing.

In Section 3.2.5 we shall generalize this theorem in a weighted setting.

1.2.3. Noether position

We recall the following definition of ring theory:

Definition 1.42 (Integral element, integral morphism, integral extension). Let R ⊂ S be two
rings, and x ∈ S . An element x ∈ S is integral over R if there exists a monic polynomial with
coefficients in R annihilating x :

∃ r0, . . . , rd−1 ∈ R,xd + rd−1x
d−1 + · · · + r0 = 0.

An integral morphism φ : R −→ S is a morphism such that any element of S is integral over φ(R).
If the inclusion R ↪→ S is an integral morphism, then R ⊂ S is an integral extension.
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d

ad

σ = 4 σ + µ = 7 δ = 11

µ = 3

Figure 1.1: Shape of the Hilbert series of a homogeneous regular sequence with total degree
(2, 4, 8)

De�nition 1.43 (Noether position). Let F = (f1, . . . , fm) be a sequence of polynomials in K[X].
The ideal 〈F 〉 is said to be in Noether position w.r.t. the variables X1, . . . ,Xm if it satis�es the two
following properties:

• for i ∈ {1, . . . ,m}, the canonical image of Xi in K[X]/I is an algebraic integer over
K[Xm+1, . . . ,Xn];

• K[Xm+1, . . . ,Xn] ∩ I = 0.

In other words, the morphism

K[Xm+1, . . . ,Xn]−→K[X1, . . . ,Xn]/〈F 〉

is integral and injective.
The system F is said to be in simultaneous Noether position (or in SNP) w.r.t. the order

X1 > X2 > · · · > Xn if for any 1 ≤ i ≤ m, the ideal 〈f1, . . . , fi 〉 is in Noether position w.r.t. the
variables X1, . . . ,Xi .

To conclude this section, we give several useful characterizations of Noether position. They
appear to be folklore (see for example [BFS14, Prop. 6]), we give a proof for completeness.

Form ∈ {1, . . . ,n}, let θm be the morphism evaluating Xm+1, . . . ,Xn to 0:

θm : K[X] −→ K[X]
Xi 7−→ Xi (i ≤ m)
Xi 7−→ 0 (i > m)

Proposition 1.44. Let m ≤ n, and let F = (f1, . . . , fm) be a sequence of polynomials. The
following statements are equivalent:

1. the sequence F is in Noether position w.r.t. the variables X1, . . . ,Xm ;

35



Chapter 1. Algebra and geometry

2. the sequence Fext B (f1, . . . , fm ,Xm+1, . . . ,Xn) is regular;

3. the sequence θm(F ) = F (X1, . . . ,Xm , 0, . . . , 0) is in Noether position w.r.t. the variables
X1, . . . ,Xm ;

4. the sequence θm(F ) is regular.
Proof. (1 =⇒ 2). Let I be the ideal generated by F . In Section 1.3.5, we shall state a geometric
interpretation of Noether position (Proposition 1.65), which shows that the canonical projection
onto the n −m last coordinates

π : V (I )−→V (〈X1, . . . ,Xm〉)

is a surjective morphism with �nite �bers. This implies that the variety V (〈Fext〉) = π−1(0) is
zero-dimensional, and so the sequence is regular.

(2 =⇒ 1). This statement will be proved using basic notions of Gröbner basis theory, which
are introduced in Sections 2.1.1 and 2.1.2. Let i ≤ m, we want to show that Xi is integral over
the ring K[Xm+1, . . . ,Xn]. Since Fext de�nes a zero-dimensional ideal, there exists ni ∈ N such
that Xni

i = LT(f ) with f ∈ 〈Fext〉 for the Lex ordering with Xn > · · · > X1 (Prop. 2.20). By
de�nition of the Lex ordering, all monomials in f are only divisible by X1, . . . ,Xi , so we may
assume that f lies in I . This shows that every Xi is integral over K[Xi+1, . . . ,Xn]/I . We get the
requested result by induction on i: �rst, this is clear if i =m. Now assume that we know that
K[Xi , . . . ,Xn]/I is an integral extension of K[Xm+1, . . . ,Xn]. From the above, we also know that
Xi−1 is integral over K[Xi , . . . ,Xn], and so, since the composition of integral homomorphisms
is integral, we get the requested result.

Finally, we want to check the second part of the de�nition of Noether position. Assume that
there is a non-zero polynomial in K[Xm+1, . . . ,Xn] ∩ I . If this polynomial is constant, then I
is not a proper ideal. And if this polynomial has degree at least 1, it is a non-trivial syzygy
between Xm+1, . . . ,Xn , contradicting the regularity hypothesis.

(2 =⇒ 4). For any i ∈ {1, . . . ,m}, write f ′i = fi (X1, . . . ,Xm , 0, . . . , 0). Since any permutation
of a regular sequence is a regular sequence, (Xm+1, . . . ,Xn , f1, . . . , fm) is a regular sequence,
that is, for any 1 ≤ i ≤ m, fi is not a zero divisor in

K[X1, . . . ,Xn]/〈Xm+1, . . . ,Xn , f1, . . . , fi−1〉

As a consequence, factoring in the quotient by 〈Xm+1, . . . ,Xm〉, f ′i is no zero-divisor in

K[X1, . . . ,Xm]/〈f ′1 , . . . , f ′i−1〉.

(4 =⇒ 2). For any i , write fi = f ′i + ri with f ′i ∈ K[X1, . . . ,Xm], and ri ∈ 〈Xm+1, . . . ,Xn〉.
Let 1 ≤ i ≤ n. Assume that д fi ∈ 〈Xm+1, . . . ,Xn , f1, . . . , fi−1〉:

д fi = д f
′
i + дri =

i−1∑
j=1

дj fj +
n∑

j=m+1
дjX j

=

i−1∑
j=1

дj f
′
j + R with R ∈ 〈Xm+1, . . . ,Xn〉.

36



1.2. Regularity properties

As a consequence, considering only the monomials in K[X1, . . . ,Xm]

д′ f ′i =
i−1∑
j=1

дj f
′
j where д′ = д(X1, . . . ,Xm , 0, . . . , 0).

Since θm(F ) is regular, д′ ∈ 〈f ′1 , . . . , f ′i−1〉:

д = д′ + r ∈ 〈f ′1 , . . . , f ′i−1〉 + 〈Xm+1, . . . ,Xm〉 = 〈f1, . . . , fi−1〉 + 〈Xm+1, . . . ,Xm〉.

And indeed, fi is no zero-divisor in K[X1, . . . ,Xn]/〈Xm+1, . . . ,Xn , f1, . . . , fi−1〉. It means that
(Xm+1, . . . ,Xn , f1, . . . , fm) is a regular sequence. By permutation, we conclude that the sequence
(f1, . . . , fm ,Xm+1, . . . ,Xn) is regular.

(4 ⇐⇒ 3). The sequence θm(F ) = (θm(f1), . . . ,θm(fm)) ∈ K[X1, . . . ,Xm]m is regular if and
only if the sequence (θm(f1), . . . ,θm(fm),Xm+1, . . . ,Xn) is regular. The equivalence between 3
and 4 is then a mirror of the equivalence between 1 and 2. �

1.2.4. Semi-regular sequences

The length of a regular sequence cannot be more than the number of indeterminates in the
polynomial algebra. In applications, it is often required to solve so-called overdetermined systems,
that is systems with more equations than unknowns. In the case of homogeneous systems, we
use the notion of semi-regularity to characterize systems which are “as regular as they can”.

De�nition 1.45 (Semi-regular system). Letm be an integer, and let F = (f1, . . . , fm) ∈ Am be
a sequence of homogeneous polynomials. For any i ∈ N, let Fi = (f1, . . . , fi ). We say that the
sequence F is semi-regular if and only if for any i ∈ {1, . . . ,m} and any d ∈ N, the linear map
given by the multiplication by fi :

si,d : (A/〈Fi−1〉)d −→ (A/〈Fi−1〉)d+di
д 7−→ fiд

is full-rank (either injective or surjective).

Proposition 1.46 ([Par10, Prop. 1]). Letm be an integer, and let F = (f1, . . . , fm) ∈ Am be a
sequence of homogeneous polynomials. For any i ∈ N, let Fi = (f1, . . . , fi ).

The sequence F is semi-regular if and only if for all i ∈ {1, . . . ,m}, the Hilbert series of A/〈Fi 〉 is

HSA/〈Fi 〉(T ) =


∏m
i=1(1 −T di )
(1 −T )n



where b•c is the truncation before the �rst negative coe�cient.

In particular, regular sequences are semi-regular, and if F is semi-regular, then all sub-
sequences Fi are semi-regular. On the other hand, with this de�nition, permutations of a
semi-regular sequence need not be semi-regular.
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1.3. Algebraic geometry

Throughout this section, K is a �eld, n ∈ N, and A is the polynomial algebra K[X1, . . . ,Xn].

1.3.1. Nullstellensatz

Algebraic geometry establishes a correspondence between algebraic objects (ideals of polynomial
algebras) and geometric objects (solution sets of polynomial equations). The backbone of this
correspondence is Hilbert’s Nullstellensatz (or theorem of zeroes).

De�nition 1.47. Let I be an ideal of A, let L be a �eld containing K. The a�ne variety (or in
short variety) de�ned by I in L is the set

VL(I ) = {(x) ∈ Ln | ∀f ∈ I , f (x) = 0}.

When the �eld L is the algebraic closure of the �eld of de�nition K, we simply write this set
V (I ).

Let V be a subset of Ln , we de�ne the ideal associated with V as

I (V ) = {f ∈ L[X] | ∀(x) ∈ V , f (x) = 0}

Theorem 1.48 (Hilbert’s Nullstellensatz, [CLO07, Ch. 4, sec. 1, th. 2 and sec. 2, th. 4]). Let K be
an algebraically closed �eld. Then

I (V (I )) =
√
I

where
√
I is the radical of I .

1.3.2. Zariski topology

Algebraic varieties satisfy all axioms of the closed sets of a topology:

Proposition 1.49 ([Har77, Prop. 1.2]).

• VL(0) = Ln

• VL(A) = ∅

• VL(I ) ∪VL(J ) = V (I ∩ J )
•

⋂
VL(Ii ) = V (∑ Ii )

De�nition 1.50 (Zariski topology). Taking all subsets VL(I ) ⊂ Ln as closed sets, one obtains a
topology on Ln , called the Zariski topology.

De�nition 1.51 (Irreducible subset). A topological space is called irreducible if it cannot be
written as the union of two proper closed subsets.

Equivalently, it means that two non-empty open subsets have non-empty intersection: in
other words, all non-empty open subsets are dense.
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Proposition 1.52 ([Har77, Cor. 1.4]). If L is algebraically closed, irreducible varieties correspond
to prime ideals of L[X].
De�nition 1.53 (Irreducible component). LetV ⊂ Ln be a variety. There exists, up to permuta-
tion, a unique decomposition

V = V1 ∪ · · · ∪Vk
such that allVi are irreducible varieties and none contain another. TheVi are called the irreducible
components of V .

Other topological notions (open set, closure, interior, boundary. . . ) are de�ned as usual.
Locally closed sets are de�ned as the intersection of an open set and a closed set. The last
de�nition of this section is an interesting special case:

De�nition 1.54 (Distinguished open subset). Let V ⊂ Ln be a variety and let S ⊂ Ln be a
hypersurface, that is a variety de�ned by a single polynomial f . The open subsetV r S is called
a distinguished open subset of V .

1.3.3. Morphisms and rational maps

We shall be interested in functions between varieties, or between dense subsets of varieties.
Because of the underlying algebraic structure, we can de�ne polynomials on varieties, and the

De�nition 1.55 (Morphism). Let V1 ⊂ Kn and V2 ⊂ Km be varieties. A morphism V1 −→V2 is
an application φ which can be expressed, coordinate-wise, by polynomials:

φ : V1 −→ V2
(x1, . . . ,xn) 7−→ (φ1(x), . . . ,φm(x)) with φi ∈ K[X1, . . . ,Xn]/I (V1)

We say that V1 and V2 are isomorphic if there exist morphisms V1 −→V2 and V2 −→V1 which are
mutually inverse.

De�nition 1.56 (Rational map). Let V1 ⊂ Kn and V2 ⊂ Km be varieties. A rational map
V1 99KV2 is an application φ which can be expressed, coordinate-wise, by rational fractions:

φ : U1 99K V2
(x1, . . . ,xn) 7−→ (φ1(x), . . . ,φm(x)) with φi ∈ K(X1, . . . ,Xn)

whereU1 is the Zariski-open subset ofV1 de�ned as the non-vanishing locus of the denominators
of the φi .

De�nition 1.57 (Birational equivalence). If V1 and V2 are irreducible varieties, we say that V1
and V2 are birationally equivalent (or simply birational) if there exist rational maps V1 99KV2
and V2 99KV1.

Recall that on irreducible varieties, non-empty open subsets are dense. So two irreducible
varieties being birational means that, apart from some closed sets with empty interior, they are
in a one-to-one rational correspondence.

A useful example of application of these de�nitions is the following classic construction,
associating a distinguished open subset of a variety in Kn to an algebraic variety in Kn+1:
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Proposition 1.58. Let V ⊂ K
n
be an irreducible variety, let f ∈ K[X], and letW be the distin-

guished open subset V rV (f ). Consider the varietyW ′ ⊂ K
n+1

, with coordinates X1, . . . ,Xn ,U
de�ned byU · f − 1 = 0. Then there is an birational map with no pole:

W ' W ′

(x1, . . . ,xn) 7−→
(
x1, . . . ,xn ,

1
f (X)

)
(x1, . . . ,xn) 7−→ (x1, . . . ,xn ,u)

The ring K[X,U ]/〈U · f − 1〉 is called the localization of K[X] at f , and denoted K[X, f −1] or
K[X]f .

This is not true for general subsets, for example any rational map from K2 r {(0, 0)} will
necessarily have a curve of poles.

1.3.4. Dimension and degree

The dimension of an algebraic variety is de�ned as a topological dimension. We shall see that
this de�nition coincides with the algebraic notion introduced earlier, and with the usual notion
of dimension when working over the reals or the complex (in Section 1.3.7).

De�nition 1.59 (Krull dimension, equidimensional varieties). Let V be an irreducible variety
of Ln . The Krull dimension of V (or simply dimension) is the largest d ∈ {0, . . . ,n} such that
there exists a chain of irreducible closed subsets

V = V1 ) V2 ) · · · ) Vd .

LetV be any variety, its dimension is de�ned as the maximal dimension of one of its irreducible
components. Let X be any subset of Ln , its dimension is de�ned as the dimension of its closure.
As usual, the codimension of V is n − d .

Assume that L is algebraically closed. If all irreducible components of a variety V have the
same dimension, we say that V is equidimensional. Any variety V is the union of a �nite set of
equidimensional varieties called equidimensional components: thed-equidimensional component
ofV is the union of all irreducible components ofV having dimension d . The local dimension of
V at a point x ∈ V is the largest dimension of an irreducible component of V containing x.

Proposition 1.60. If L1 ⊂ L2 are extensions of K, then

dim(VL1(I )) ≤ dim(VL2(I ))

Proof. Consequence of VL1(I ) ⊂ VL2(I ). �

Proposition 1.61 ([Har77, Ex. 1.9]). Let f1, . . . , fm ∈ K[X1, . . . ,Xn]. All irreducible components
of the variety V

K
have dimension at least n −m.

Proposition 1.62 ([Har77, Prop. 1.7]). Let I be an ideal with dimensiond , thenV
K
(I ) has dimension

d .
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1.3. Algebraic geometry

In particular, if I is a 0-dimensional ideal, V (I ) is a finite set of points. The cardinality of this
set is at most deg(I ), and it is exactly deg(I ) if points are counted with a notion of multiplicity
and K is algebraically closed. For example, we shall see in Section 2.3.1 ideals generated by
equations of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

д1(X1, . . . ,Xn) = X1 + r1(Xn)
д2(X2, . . . ,Xn) = X2 + r2(Xn)

...

дn−1(Xn−1,Xn) = Xn−1 + rn−1(Xn)
дn(Xn) = X δ

n + rn(Xn)
For such an ideal, the quotient K[X]/I is isomorphic to a univariate quotient:

K[X]/I � K[Xn]/〈дn〉
and the dimension of the right-hand side of the equality, as a K-vector space, is the degree δ of
the univariate polynomial дn . So by definition, we have δ = deg(I ).

The system may not have exactly δ solutions in an algebraic closure of K, but if it does not,
it means that дn has roots with multiplicity, and it makes sense to give the same multiplicity to
the corresponding points in V (I ).

For positive dimensional systems, the degree is interpreted through Bézout’s theorem. We
shall give a rigorous statement of this theorem in Section 1.3.5, but informally-speaking, it means
that the intersection of a variety of degree d1 and a hypersurface of degree d2 is expected to have
degree d1d2. Given a d-equidimensional variety V (I ) in Kn , we may thus cut it with d random
hyperplanes, in order to obtain a finite set of points whose cardinality (with multiplicities) is
the degree deg(I ).

1.3.5. Geometric interpretation of the regularity properties

In this section, we look back at the regularity properties defined in Section 1.2, in particular
regular sequences and Noether position. We shall examine these properties through the algebra-
geometry correspondence.

Proposition 1.63 ([Bar04, Prop. 1.7.4(1)], [Spa12, Prop. 1.43]). Letm be an integer,W a system of

weights, F = (f1, . . . , fm) ∈ Am a sequence ofW -homogeneous polynomials, and I = 〈F 〉. Then F
is a regular sequence if and only if V (I ) is equidimensional with dimension n −m.

Proof. From Prop. 1.61, we know that all irreducible components ofV (I ) have dimension at least
n −m, and from Prop. 1.62, with the Hilbert series described Prop. 1.38, V (I ) has dimension at
most n −m, and thus all irreducible components of V (I ) as well.

Now assume that F is not regular. Let i be such that fi is a zero divisor in K[X]/〈f1, . . . , fi−1〉,
and assume that i is minimal, that is (f1, . . . , fi−1) is a regular sequence. Let Ii−1 = 〈f1, . . . , fi−1〉
and let Vi−1 = V (Ii−1), this variety is equidimensional with dimension n − i + 1. Let If be the
annihilator of fi in Ai−1, that is

If = {д ∈ K[X]/Ii−1 | дfi = 0 ∈ K[X]/Ii−1}.
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Since fi is a zero-divisor in K[X]/Ii−1, If is a non-zero ideal of K[X]/Ii−1 such that f If = 0 in
K[X]/Ii−1. Geometrically, it means that

Vi−1 = (Vi−1 ∩V (f )) ∪ (Vi−1 ∩V (If )),

and since If is non-zero, V (If ) ∩ Vi−1 is a proper subvariety of Vi−1. Hence V (f ) ∩ Vi−1 is
non-empty, and f vanishes on an irreducible component V of Vi−1. So V (〈f1, . . . , fi 〉) contains
V , and has dimension n − i + 1. So V (F ) contains

V ∩V (〈fi+1, . . . , fm〉)

and by Prop. 1.61, it has dimension at least n −m + 1 > n −m. �

In particular, if F is a regular sequence of length n, the varietyV (〈f 〉) has dimension 0, which
means that it is a �nite set of points. Systems de�ned by a zero-dimensional regular sequences,
sometimes called square systems (by analogy with linear algebra, where systems with as many
equations as unknowns are de�ned by a square matrix), play a particular role in resolution
strategies.

Theorem 1.64 (Bézout, consequence of [Spa12, Th. 1.67 and 1.68]). Let F = (f1, . . . , fm) be a
system ofW -homogeneous polynomials with total degree d1, . . . ,dn . If F is a regular sequence,
then the degree of the ideal 〈F 〉 is given by the Bézout bound:

deg(I ) =
∏m

i=1 di∏n
i=1 wi

.

In particular, ifm = n, then the dimension ofA/〈F 〉 as a K-vector space is either in�nite or equal
to d1 · · ·dn/w1 · · ·wn .

Proof. The �rst statement is a consequence of the formula for the Hilbert series of a regular
sequence. For the second statement, from Props. 1.61 and 1.63, V (〈F 〉) has dimension 0 if and
only if F is a regular sequence. In that case, the result is a consequence of the �rst statement. If
V (〈F 〉) has positive dimension, the dimension of A/〈F 〉 is in�nite. �

All this can be applied in a non-homogeneous setting, by working with the homogenized
system Fh instead. However, in that case the Bézout bound is really a bound, not necessarily
sharp. The reason for that is that Fh may have more solutions than F . These solutions are called
solutions at in�nity and correspond to solutions with H = 0 (where H is the homogenization
indeterminate). For example, two a�ne lines in a plane (degree 1 hypersurfaces) may not
intersect if they are parallel.

Equivalently, solutions at in�nity are points where the highest degree components of poly-
nomials in F simultaneously vanish. We shall encounter this behavior again when describing
algorithms for polynomial system solving, in Section 2.4.3, and we will de�ne regularity in the
a�ne sense, in order to ensure that this phenomenon does not appear.

We conclude this section with the following geometrical interpretation of Noether position.

42



1.3. Algebraic geometry

Proposition 1.65 ([Eis95, Cor. 9.3]). Assume that K is algebraically closed, and let I ⊂ K[X] be
an ideal in Noether position with respect to X1, . . . ,Xm . Then the projection

π : Kn −→ Kn−m
(x1, . . . ,xn) 	−→ (xm+1, . . . ,xn)

is surjective, and the fibers π−1(y) (y ∈ Kn−m) are finite.

1.3.6. Singularities

The study of singularities of algebraic varieties and morphisms is of first importance for classifi-
cation problems. We shall see an example of such application in Section 1.3.7 (Theorem 1.82).
For now, in this section, we give some definitions and useful theorems.

In the following section, we assume that K is algebraically closed.

Definition 1.66 (Jacobian matrix). LetG = (д1, . . . ,дm) : Kn −→Km be a polynomial map, and
let V = {V1, . . . ,Vk} ⊂ {X1, . . . ,Xn}. The Jacobian matrix of G with respect to V is the matrix
of the differential of G:

Jac(G)V =
⎡⎢⎢⎢⎢⎢⎢⎢⎣
∂д1

∂V1
. . .

∂д1

∂Vn
...

...
∂дm
∂V1

. . .
∂дm
∂Vn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The Jacobian matrix of G with respect to X is written Jac(G).
Definition 1.67 (Smoothness). LetV be a variety in Kn , and let F = (f1, . . . , fm) be a system of
generators of I (V ). Let x ∈ V , and let d be the local dimension ofV at x. The point x is a regular
point of V if the Jacobian matrix Jac(F )(x) has rank n − d . Otherwise, x is a singular point of V .

The regular locus (resp. singular locus) ofV is the set reg(V ) (resp. sing(V )) of all regular (resp.
singular) points of V . If sing(V ) = ∅, we say that V is smooth.

Remark 1.68. This definition of regularity requires F to be a system of generators of I (V ). By
the Nullstellensatz, it is equivalent to saying that V = V (〈F 〉) and 〈F 〉 is radical.

Definition 1.69 (Critical point). With the same notations as above, let д = (д1, . . . ,дk ) define a
polynomial map Kn −→Kk . We consider the vertical joint matrix

Jac(f ,д) =
[
Jac(f )
Jac(д)

]
.

Let x ∈ reg(V ). The point x is a critical point of the map д restricted toV if Jac(f ,д)(x) has rank
less than k + n − d . In that case, its image д(x) is a critical value of д restricted to V . A point
y ∈ Kk which is not a critical value of д restricted to V is a regular value of д restricted to V .

The set of critical points of д restricted to V is denoted by crit(G,V ).
Remark 1.70. If x ∈ sing(V ), and x lies in a d-dimensional irreducible component of V , the rank
of Jac(f ,д)(x) is necessarily less than k + n − d . In other words, if V is d-equidimensional, the
locus at which Jac(f ,д)(x) has rank less than k + n − d is sing(V ) ∪ crit(д,V ).

43



Chapter 1. Algebra and geometry

Remark 1.71. Let y ∈ Kk ; if y is a regular value of д restricted to V , then 〈f , (дi − yi )〉 is radical
and д−1(y) ∩V ⊂ Kn is smooth. In particular, if 0 ∈ Kk is a regular value of д restricted to V ,
then the variety V (〈f ,д〉) ⊂ Kn is smooth.

The Jacobian criterion is a very important tool linking the Jacobian matrix and properties of
the underlying variety:

Theorem 1.72 (Jacobian criterion, [Nal15, Th. 1.9]). Let V ∈ Kn be an algebraic variety, and
f = (f1, . . . , fm) ⊂ K[X] a system of generators of I (V ).

1. If V is d-equidimensional, then for all x ∈ Kn , x is a regular point of V if and only if
Jac(f )(x) has rank n − d ;

2. If for all x ∈ Kn , Jac(f )(x) has rank n − d , then V is d-equidimensional and smooth.

We conclude this section with two powerful tools when working with critical values.
Sard’s theorem states that given a polynomial map, a generic point of the target space is a

regular value.

Theorem 1.73 (Sard’s theorem, [Nal15, Lemma 1.16]). Let V ⊂ Kn be a variety, and let д :
Kn −→Km be a polynomial map. Then д(crit(д,V )) is contained in a proper hypersurface of Km .

Thom’s transversality theorem states that given a smooth variety, the intersection with
generic coordinate level lines is smooth.

Theorem 1.74 (Thom’s weak transversality theorem, [Nal15, Th. 1.18],[Dem00, Th. 3.7.4]). Let
f : Kn × Kk −→Kr be a polynomial map. For y ∈ Kk , de�ne the partial application

fy : Kn −→ Kr

x 7−→ f (x, y)

Let U ⊂ Kn be an open subset such that 0 ∈ Kr is a regular value of f restricted to U × Ck .
Then there exists an open subsetV ⊂ Kk such that for all y ∈ V , 0 ∈ Kr is a regular value of fy
restricted toU .

1.3.7. Real semi-algebraic geometry

In this section, we focus on the case where the base �eld is R. The de�nitions of the previous
sections allow us to work with real algebraic sets (de�ned as subsets of Rn de�ned as the sets
of zeroes of some polynomial ideal).

However, geometry over the reals is richer if we take into account the fact that R is an
ordered �eld, by allowing inequalities in the de�nition of the basic objects of the geometry: that
is the de�nition of a real semi-algebraic set.

De�nition 1.75. A real semi-algebraic set is a �nite unionV of subsetsVi , with eachVi de�ned
by a set of polynomial equations {Fi = 0 | Fi ⊂ R[X]} and a set of polynomial inequations
{Gi > 0 | Gi ⊂ R[X]}, as

Vi =

{
x ∈ Rn

�����
∀ f ∈ Fi , f (x) = 0
∀д ∈ Gi ,д(x) > 0

}
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Like algebraic varieties, real semi-algebraic sets are stable under �nite union and intersection.
Furthermore, they are also stable under complement. Finally, they are stable under projection
onto linear subspaces:

Theorem 1.76 (Tarski-Seidenberg, [Nal15, Th. 1.13]). Let V be a semi-algebraic subset of Rn+1

and π : Rn+1 −→Rn the projection onto the �rst n coordinates. Then π (V ) is a semi-algebraic
subset of Rn .

Let V be a real semi-algebraic set of Rn . Locally (up to intersection with an open subset of
Rn), V is a submanifold of Rn , as de�ned by di�erential geometry:

De�nition 1.77 (Submanifold). A submanifold M is a subset of Rn such that, for all x ∈ M ,
there exists an open subset U ⊂ Rn such that M ∩U is di�eomorphic to Rd , for some integer
d ∈ {0, . . . ,n}. In this case, d is the local dimension of M at x. The dimension of M is the largest
local dimension at a point of M .

Remark 1.78. Let V be a real algebraic set. This de�nition of dimension coincides with the Krull
dimension, as de�ned in Section 1.3.4.
Remark 1.79. One can de�ne submanifolds of Cn in a similar way. Then complex algebraic
varieties are locally submanifolds of Cn . Moreover, the dimension of an algebraic variety V
seen as a submanifold is the Krull dimension of V , and if V is d-equidimensional (for example
irreducible), for all points at which V is a submanifold, V has local dimension d .
Remark 1.80. Over the reals, it is no longer true: Whitney’s umbrella (Figure 1.2) is a classic
example of an irreducible subset where points may have di�erent local dimensions. It is the
algebraic setW of R3 de�ned as the real zeroes of X 2 − Y 2Z . This polynomial is irreducible
(over C), so the algebraic varietyW is irreducible.

However,W is the disjoint union of two semi-algebraic sets:

W+ =

{
(x ,y , z)

�����
x2 = y2z
z ≥ 0

}
W− =

{
(x ,y , z)

�����
x = y = 0
z < 0

}
The semi-algebraic setW+ has dimension 2 (the projection onto (x ,y) is a local di�eomorphism),
and the semi-algebraic setW− has dimension 1 (it is a half-line).

The �nal result of this section is an algebraic version of Ehresmann’s theorem, or Thom’s
isotopy lemma, giving a description of �bers of the projection of a real semi-algebraic set under
some hypotheses.

We �rst recall the following topological de�nition:

De�nition 1.81 (Proper map). Let A and B be two topological spaces, and f : A−→B a map.
The map f is proper if and only if for all compact subsets K ⊂ B, f −1(K) is compact in A.

Theorem 1.82 (Thom’s isotopy lemma, [CS95]). Let V be a real semi-algebraic set of Rn ×Rt ,
and let π : Rn ×Rt −→Rt be the projection onto the last t coordinates. Assume that:
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0

x
y

z

Figure 1.2: Whitney’s umbrella

• V is smooth;

• V is locally closed;

• the restriction π V has no critical points;

• π V is proper (for the euclidean topology);

• V is t-equidimensional.

Then there exists a �nite set F and a semi-algebraic di�eomorphism

h = (h0,π ) : V ∼−→ F ×Rt .

1.4. Genericity

1.4.1. Definition

Genericity formalizes the intuitive notion that some property is almost always true.

De�nition 1.83. Let m be an integer, and S = (Si )i ∈{1, ...,m} a family of �nite subsets of mono-
mials ofA. LetAm,S be the set of families ofm polynomials fi ∈ K[X], with Supp(fi ) ⊂ Si for all
i ∈ {1, . . . ,m}. Elements of Ak,S can be seen as points in an a�ne space over K, the coordinates
being the coe�cients of the polynomials. Finally, let P be a property of elements of Am,S .

We say that P is generic amongst elements of Am,S if the set of families satisfying P in Am,S
contains a non-empty Zariski-open subset of Am,S .

A typical choice for the support Si is the set of polynomials with degree less than a given
integer d , or homogeneous polynomials with degree exactly d .
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1.4.2. Generic properties of homogeneous systems

We will now prove genericity results for the regularity properties defined in Section 1.1.5, for
homogeneous systems (with the total degree). More generally, the proofs that these properties
cover Zariski-open subsets hold for any gradation, but for non-trivial systems of weights, these
subsets need not be non-empty (see Section 3.2.4).

We assume that A is graded in total degree. For d ∈ N, let Ad be the set of homogeneous
generic polynomials with degree exactly d .

Proposition 1.84 ([Bar04, Prop. 1.7.4(5)], [Par10]). Letm ∈ {1, . . . ,n} and let (d1, . . . ,dm) ∈ Nm

be a family of degrees. Homogeneous regular sequences with degree (d1, . . . ,dm) are generic
amongst families of homogeneous polynomials of degree (d1, . . . ,dm), that is in ∏m

i=1 Adi .

Proof. Assume thatm = n and let F = (f1, . . . , fm) ∈ K[A][X] be a sequence of polynomials in
X, with generic coefficients A. Let I = 〈F 〉. Write

Hreg =

∏n
i=1(1 −T di )
(1 −T )n =

∞∑
i=1

aiT
i with aδ+1 = aδ+2 = · · · = 0

and let bi be the coefficient of degree i in the Hilbert series of F .
By Prop. 1.38, for all i ∈ N, bi ≥ ai and F is regular if and only if they are equal. For each i ,

this equality means that the rank of the Macaulay matrix of F at degree i is ai , and this can be
encoded by the non-vanishing of the ai × ai -minors of this matrix. LetUi be the Zariski-open
subset defined by the non-vanishing of at least one of these minors.

Furthermore, if bδ+1 = 0, it means that I contains all monomials of degree δ + 1, and it implies
that bδ+2 = · · · = 0. So we only need to check a finite number of equalities ai = bi , for i ranging
from 0 to δ +1. Geometrically, it means that the set of regular sequences is the finite intersection
U of the open setsUi .

Consider the sequence (Xd1
1 , . . . ,X

dn
n ), it is regular, and soU is non-empty.

Ifm < n, F is regular if and only if there exist linear forms lm+1, . . . , ln such that the sequence
(f1, . . . , fm , lm+1, . . . , ln) is regular. In particular, the set of regular sequences of homogeneous
polynomials with degree (d1, . . . ,dm) contains the set of sequences F = (f1, . . . , fm) such
that (f1, . . . , fm ,Xm+1, . . . ,Xn) is regular. From the above, regular sequences with degree
(d1, . . . ,dm , 1, . . . , 1) form a non-empty Zariski-open subset U of

∏m
i=1 Adi × An−m

1 , and the
closed subset C defined by fm+1 = Xm+1, . . . , fn = Xn does meet U . Consider the projection
onto them first components

π :
m∏
i=1

Adi ×An−m
1 −→

m∏
i=1

Adi

It is surjective, and its restriction toC is an isomorphism. SinceC ∩U is non-empty, π (C ∩U ) is
a non-empty open subset of

∏m
i=1 Adi , defining exactly those sequences F = (f1, . . . , fm) such

that (f1, . . . , fm ,Xm+1, . . . ,Xn) is regular. �

Corollary 1.85. Homogeneous sequences in (simultaneous) Noether position with respective degree

(d1, . . . ,dm) are generic amongst families of homogeneous polynomials of degree (d1, . . . ,dm).
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Proof. This is a direct consequence of the proof of the casem < n of Prop. 1.84. �

Corollary 1.86. Letm be an integer, and let (d1, . . . ,dm) be a family of degrees. Assume that there
exists at least one semi-regular sequence with degree (d1, . . . ,dm), then homogeneous semi-regular
sequences with degree (d1, . . . ,dm) are generic amongst families of homogeneous polynomials of
degree (d1, . . . ,dm).

Proof. Ifm ≤ n, semi-regular sequences are actually regular, and so Prop. 1.84 applies. Otherwise,
semi-regular sequences de�ne zero-dimensional ideals and are characterized by their Hilbert
series, so the proof that zero-dimensional regular sequences form a Zariski-open subset in
Prop. 1.84 can be repeated for semi-regular sequences. �

This corollary states that semi-regular sequences form a Zariski-open subset of all sequences,
and that the property is generic if and only if this Zariski-open subset is non-empty. This is an
open question:

Conjecture 1.87 (Fröberg,[Frö85]). Let m be an integer, and let (d1, . . . ,dm) be a family of
degrees. Then there exists at least one semi-regular sequence of homogeneous polynomials
with respective degrees d1, . . . ,dm .

This conjecture is only proved in a handful of cases [Mor03, Th. 1.5]:

• m ≤ n: then semi-regular sequences are regular sequences;

• n = 2;

• n = 3 and the �eld K is in�nite;

• m = n + 1 and the �eld K has characteristic 0.

1.4.3. Generic changes of coordinates

Some properties are also true up to a generic change of coordinates: given a property P , this
means that given any system F , the set of linear changes of coordinates L such that F ◦L satis�es
P is generic amongst all linear changes of coordinates.

A classic result of this kind is Noether’s normalization lemma: it is a fundamental result
of dimension theory, stating that given a variety V of dimension d , up to a generic change of
coordinates, the projection V −→Kn−m is surjective and �nite.

We give here an algebraic transcription of this theorem for a regular sequence:

Theorem 1.88 (Noether’s normalization theorem, [Eis95, Th. 13.3]). Let K be an in�nite �eld, F
a regular sequence in K[X1, . . . ,Xn], and k ∈ {1, . . . ,n}. Then, for a generic choice of n − k linear
forms li (Xi+1, . . . ,Xn), i ∈ {1, . . . ,k}, the change of variables

Xi = X ′i + li (Xi+1, . . . ,Xn)

is such that F (X1(X′), . . . ,Xk (X′),Xk+1, . . . ,Xn) is in Noether position with respect to the variables
Xk+1, . . . ,Xn .
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More generally, if F has length n, then for a generic choice of n linear forms li (Xi+1, . . . ,Xn),
i ∈ {1, . . . ,n}, the change of variables

Xi = X ′i + li (Xi+1, . . . ,Xn)

is such that F (X1(X′), . . . ,Xn(X′)) is in simultaneous Noether position with respect to the order
X ′1 > · · · > X ′n .

Noether’s normalization theorem is really made of two parts: �rst, up to a substitution
Xi = P(X), any system can be put in Noether position; and second, that under some hypotheses,
we can make additional assumptions on the substitution. Here, the second part is that if K is
in�nite, then any generic linear change of variables gives a suitable transformation; this part of
the proof of [Eis95, Th. 13.3] relies on the following lemma:

Lemma 1.89 (Noether’s normalization lemma, [Eis95, lem. 13.2.c]). Let K be an in�nite �eld
and f ∈ A = K[X1, . . . ,Xr ] a non-constant polynomial. Then there are homogeneous elements
X ′1, . . . ,X

′
r−1 ∈ A with degree 1 such thatA is a �nitely generated module over K[X ′1, . . . ,X ′r−1, f ].

Furthermore, there exists a dense Zariski-open subset U ⊂ Kr−1 such that for all (ai ) ∈ U , one can
choose X ′i = Xi − aiXr .

Proof. For any 1 ≤ i ≤ r − 1, let ai ∈ K, and let X ′i = Xi − aiXr . If f has degree d , let fd be the
degree d component of f . We need to show that for generic ai , under this change of variables,
f is monic in Xr , and it is enough to prove it for fd :

fd (X1, . . . ,Xr ) = fd (X ′1 + a1Xr ,X
′
2 + a2Xr , . . . ,Xr−1 + ar−1Xr )

= fd (a1, . . . ,ar−1, 1)Xd
r + . . .

So the set of all ai ’s such that f is monic in Xr is exactly the set of all ai ’s such that

fd (a1, . . . ,ar−1, 1) , 0,

and since f is homogeneous non-constant, this is a non-empty open subset of Kr−1. �

If F is homogeneous, it is still homogeneous after any linear change of variables, so Noether’s
normalization theorem states that a regular homogeneous sequence can be made into a homo-
geneous sequence in Noether position, up to a generic change of variables. We shall identify
suitable changes of variables for the same property to hold in a weighted setting in Section 3.2.3.

1.5. Determinantal varieties

In this section, we will de�ne determinantal varieties, that is varieties de�ned as the locus of
rank defects of a matrix with polynomial entries. These systems arise in many applications, for
example in optimization, when using the Jacobian criterion to model singularities and critical
points in terms of the minors of the Jacobian matrix.
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1.5.1. Definition

Definition 1.90 (Determinantal ideal, determinantal variety). Let r ,k,n be integers such that
r ≤ k . Let M ∈ K[X1, . . . ,Xn]k×k be a matrix with polynomial coefficients. The r ’th determinan-

tal ideal associated with M is the ideal Dr generated by its (r + 1)-minors. The corresponding
determinantal variety is

Vr = {x ∈ Kn | rank(M(x)) ≤ r}
In Chapter 4, we shall be interested in the study of the singularities of these varieties.

Because of the structure of determinantal ideals, these singularities are strongly related to other
determinantal varieties.

Proposition 1.91. If Dr is radical, then

Vr−1 ⊂ sing(Vr )
Proof. We will prove the following stronger statement: let x ∈ Vr−1, then all partial derivatives
of all (r + 1)-minors of M vanish at x. This will prove that the Jacobian of Vr at x is the zero
matrix, and in particular has rank 0. Then, by hypothesis the ideal of all (r + 1)-minors of M is
radical, so we can use the Jacobian criterion to characterize sing(V ), and we can conclude that
x ∈ sing(Vr ).

To prove this statement, let x ∈ Vr−1. For any (r + 1) × (r + 1)-submatrix of M , the result we
want to prove only depends on the coefficients of the submatrix. So w.l.o.g., we may assume
that r = k − 1, let D = det(M). Let x ∈ Vk−2, this means that all (k − 1)-minors of M vanish at x.
Consider a matrix of polynomial indeterminates U:

M̃ =

⎡⎢⎢⎢⎢⎢⎢⎣
U1,1 . . . U1,k
...

...

Uk,1 . . . Uk,k

⎤⎥⎥⎥⎥⎥⎥⎦ (1.2)

and let D̃ be its determinant. Then for any i, j ∈ {1, . . . ,k},

∂D̃

∂Ui, j
= (−1)i+j · M̃i, j (U)

where M̃i, j is the (k − 1)-minor of M̃ obtained by removing row i and column j.
For any i, j ∈ {1, . . . ,k}, letmi, j (resp.Mi, j ) be the coefficient at row i and column j of the

matrix M (resp. the minor obtained by removing row i and column j from M). By the derivation
chain rule, for any X ∈ {X1, . . . ,Xn},

∂D

∂X
=

k∑
i, j=1

(−1)i+j ∂mi, j

∂X
· M̃i, j (m)

=

k∑
i, j=1

(−1)i+j ∂mi, j

∂X
· Mi, j (X)

Since by hypothesis all (k − 1) minors of M vanish at x, all partial derivatives ∂Δ
∂X vanish at

x. �
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Generically, this inclusion is an equality.

Proposition 1.92 ([HNS15b, Prop. 2]). Let d ∈ N. Generically amongst matrices with coe�cients
of degree at most d :

1. Vr−1 = sing(Vr );

2. the variety Vr is equidimensional with codimension c = (k − r )2 if n ≥ (k − r )2, and empty
otherwise;

3. the ideal Dr is radical.

Proof. Let D̃r be the r ’th determinantal ideal associated to the matrix M̃ as de�ned in Equa-
tion (1.2), and, as before, letmi, j be the coe�cient at row i and column j in M . In K[X,U], the
two determinantal ideals are related as

〈Dr 〉 = 〈D̃r 〉 + 〈Ui, j −mi, j (X)〉1≤i, j≤k .

Now, all three statements of the proposition are unconditionally true for M̃ : see [BV88,
Th. 2.10] for the radicality of D̃r , and then [BV88, Prop. 1.1] for the other two statements. We
shall prove that generically, these statements transfer to M .

Consider the application

Mm : Kn −→ Kk2

x 7−→ (mi, j (x))i, j

By Thom’s weak transversality lemma, generically over the space of polynomials (mi, j ),

Vr rVr−1 =M−1
m (Ṽr r ˜Vr−1)

is either empty or smooth and equidimensional with codimension c = (k − r )2. This proves
statements 1 and 2. It also proves that Vr = V (Dr ) satis�es the hypotheses of [Eis95, Th. 18.18].

Furthermore, add the substitution equationsUi, j −mi, j (X) to the generators of D̃r in K[U,X],
and consider the Jacobian of this system. It writes as a block matrix

JacU,X(Dr ) =
[
JacU(D̃r ) 0

Idk2 JacX(mi, j )

]

where the top-left block has
�k
r

�
rows andk2 columns, and the bottom-right block hask2 rows and

n columns. By Sard’s lemma, the set of x such that JacX(mi, j ) has non-full rank has codimension
at least 1 in Kn ; and from the above, outside of ˜Vr−1, JacU(D̃r ) has rank c . So by Serre’s Criterion
for radicality ([Eis95, Th. 18.15(a) with Th. 18.18]), under the same genericity condition as above,
the ideal Dr is radical, which completes the proof. �
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1.5.2. Cramer’s formula and Schur’s complement

In particular, results from the previous section imply that the system of all (r +1)-minors of M is
not a regular sequence (it has length

� k
r+1

�2 and, generically, de�nes a variety with codimension
(k − r )2). However, it is possible to cover determinantal varieties with dense open subsets, each
being an open subset of a complete intersection.

These constructions stem from the linear algebraic interpretation of the rank: a k × k matrix
has rank at most r if and only if its kernel has dimension at least k − r . Algebraically, the
correspondence between linear algebra and minors comes from Cramer’s formula, and its
generalization Shur’s complement. Cramer’s formula is a classical formula for solving invertible
linear system. Here, we give an equivalent statement for matrices with corank 1.

Proposition 1.93 (Cramer’s formula). Let R be a ring, k ∈ N, M ∈ Rk×k an invertible matrix,
b ∈ Rk a vector, and consider the linear system in x = T(x1, . . . ,xk ):

Mx = b

Then this system has a unique solution, de�ned by

∀ i ∈ {1, . . . ,k},xi =
det(Mi )
det(M)

whereMi is the matrix obtained by replacing the column i inM with b.

Amongst its consequences, we recall the classic formula for the inverse of a matrix:

Proposition 1.94. With the same notations and hypotheses,

M−1 =
1

det(M)
T Com(M) (1.3)

where Com(M) is the cofactor matrix ofM , whose coe�cient at row i and column j is

ci, j = (−1)i+j · (k − 1)-minor ofM obtained by removing row i and column j .

Conversely, if M is such that det(M) , 0, then M is invertible in the localized ring Rdet(M ) =
R[1/ det(M)], and its inverse is given by the same formula.

Cramer’s rule can be used to parameterize the kernel of non-invertible matrices. For example,
assume that M is a k × k singular matrix such that the submatrix M0 obtained by removing row
k and column k is invertible, so that M has rank k − 1. Let x = T(x1, . . . ,xk ) ∈ Ker(M):

M · x = 0

Keeping only the k − 1 �rst rows of M , the system becomes

M0 ·


x1
...

xk−1


= −xkCk
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where Ck is the k’th column in M . Cramer’s rule implies that the kernel of M is parameterized
by xk as

∀ i ∈ {1, . . . ,k − 1},xi =
−xk det(Mi )

det(M0)
where Mi (i ∈ {1, . . . ,k − 1}) is the submatrix obtained by replacing column i in M0 with the
last column Ck of M , less row i .

This construction is what we use to �ll the gap between determinantal ideals and kernels of
matrices. For matrices of smaller rank, it can be generalized:

De�nition 1.95 (Schur complement). Let M ∈ Rk×k be a square matrix, p ∈ {1, . . . ,k}, and A,
B, C and D be respectively p × p, p × k − p, k − p × p and k − p × k − p matrices such that

M =

[
A B
C D

]

Further assume that A is invertible. Then the Schur complement of the block A in M is the
k − p × k − p matrix

M/A = D −CA−1B. (1.4)

Proposition 1.96. The Schur complement of A in M appears in the following block diagonal
decomposition ofM :

[
A B
C D

]
=

[
Idp 0
CA−1 Idk−p

]
·

[
A 0
0 M/A

]
·

[
Idp A−1B
0 Idk−p

]

Proposition 1.97. The entry at row i and column j in M/A isMp,i, j/ det(A), whereMp,i, j is
the (p + 1)-minor ofM obtained by taking rows 1, 2, . . . ,p,p + i and columns 1, 2, . . . ,p,p + j, or
equivalently, the (p + 1)-minor ofM obtained by appending row i and column j to A.

Proof. Let ai, j , a′i, j , bi, j , ci, j , di, j , d ′i, j be the coe�cient at row i and column j in respectively A,
A−1, B, C , D, M/A. Formula (1.4) yields that

d ′i, j = di, j −
p∑

u=1
ci,u

p∑
v=1

a′u, vbv, j

By Formula (1.3),

a′u, v =
(−1)u+vAv,u

det(A)
where Av,u is the (p − 1)-minor of A obtained by removing row v and column u (u and v are
swapped because of the transposition in Formula (1.3)). So, by decomposition over column j,
det(A)∑p

v=1 a
′
u, vbv, j is the p-minor of M obtained by removing column u in A and appending

column j in B, and by decomposition over row i ,

det(A)d ′i, j = det(A)di, j − det(A)
p∑

u=1
ci,u

p∑
v=1

a′u, vbv, j

is the (p + 1)-minor of M obtained by adding row p + i and column p + j in M to A. �
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To conclude this section, we give an immediate consequence of these last two results, which
is a �rst local description of determinantal systems.

Proposition 1.98. Assume that Vr−1 has empty interior in Vr . Let A be a r × r submatrix ofM .
Then the open subsetW of Vr at which det(A) does not vanish is de�ned by the vanishing of all
(r + 1)-minors ofM containing A, and generically, they form a regular sequence.

Proof. Up to permutation of the rows and columns, we may assume that A is the top-left r × r
submatrix of M . If A is invertible, M has rank at least r , and by Proposition 1.96, M has rank r
if and only if M/A is 0. By Proposition 1.97, the entries of this matrix are precisely the (r + 1)
minors containing A.

Since generically, the variety Vr is equidimensional with dimension (k − r )2, the same holds
for the non-empty open subset W . The sequence of (r + 1)-minors containing A has length
(k − r )2, so by the characterization of Propostion 1.63, they form a regular sequence. �

1.5.3. Incidence varieties

Incidence varieties o�er an alternative modelling of determinantal varieties.

De�nition 1.99. Let r ∈ {0, . . . ,k − 1}. The incidence variety of rank r associated with M is the
varietyVr ⊂ Kn × (Pk−1(K))k−r de�ned by:

M ·


Y1,1 . . . Y1,k−r
...

...

Yk,1 . . . Yk,k−r


=



0 . . . 0
...

...

0 . . . 0


(1.5)

with the additional condition that the matrix (Yi, j ) has rank k − r .

The projection ofVr onto the a�ne space with coordinates (X) is Vr . For

u = (u1,1, . . . ,uk−r,k ) ∈ Kk (k−r ),

we de�ne the varietyV ′r,u as the intersection ofVr and the complex solutions of



u1,1 . . . u1,k
...

...

uk−r,1 . . . uk−r,k


·



Y1,1 . . . Y1,k−r
...

...

Yk,1 . . . Yk,k−r


= Idk−r (1.6)

Proposition 1.100. For any r ∈ {0, . . . ,k − 1}, the varieties Vr andV ′r,u are birational.
Proof. We need to de�ne a morphism f : W −→V ′r,u withW a non-empty Zariski-open subset of
Vr , and such that f is inverse to the projectionV ′r,u −→Vr onto the a�ne space with coordinates
(X). LetW be the open subset of Vr de�ned as the non-vanishing locus of the top-left r -minor
of M . Consider the block decompositions, where A, Y(1) and U(1) are r × r matrices:

M =

[
A B
C D

]
Y =

[
Y(1)
Y(2)

]
U =

�
U(1) U(2)

�
.
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Over W , A is invertible, let Δ = det(A). Let M/A be the Schur complement of A in M ,
Equations (1.5) and (1.6) can be rewritten as

⎡⎢⎢⎢⎢⎢⎣
ΔIdr A−1B

0 M/A
U(1) U(2)

⎤⎥⎥⎥⎥⎥⎦ ·
[
Y(1)
Y(2)

]
=

⎡⎢⎢⎢⎢⎢⎣
0
0

Idr

⎤⎥⎥⎥⎥⎥⎦
We may restrict to the open subset ofV′r,u where Y(2) is invertible, then eliminating Y(1) yields
that ⎧⎪⎨⎪⎩Y(2) = (U(2) −U(1)A−1B)−1

Y(1) = −1
Δ
A−1BY(2)

which defines the wanted morphismW −→V′r,u. �
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Chapter 2

Gröbner bases

This chapter deals with Gröbner bases, and gives de�nitions and properties which will be used
throughout the thesis. It is a powerful tool for solving polynomial systems, and is de�ned as a
particular set of generators of a polynomial ideal. This set of generators depends on the choice
of an order on the monomials, and this choice has consequences on what information does the
basis yield, and how complicated it is to compute the basis.

This chapter is organized as follows: in Section 2.1, we de�ne monomial orderings, and list
a few examples which shall be useful in the rest of the thesis. In Section 2.2, we recall the
de�nition of a Gröbner basis and a normal form, and in Section 2.3 we examine two common
applications of Gröbner bases (namely listing all the solutions of a system with a �nite-number
of solutions and computing equations of the Zariski-closure of the projection of a variety)
and we use these examples to illustrate how each application leads to the choice of a speci�c
monomial order.

Then we move on to more algorithmic considerations. In Section 2.4, we describe 3 algorithms
for computing Gröbner bases: the historical algorithm from Buchberger, the more modern
F5 algorithm through its variant Matrix-F5, and the FGLM algorithm, for change of order.
Section 2.5 concludes this chapter with complexity results for algorithms Matrix-F5 and FGLM.

This chapter, like the previous one, is purely bibliographical.

2.1. Monomial orderings

2.1.1. Definition

Gröbner bases generalize euclidean division to multivariate polynomials, and gaussian elimina-
tion to nonlinear polynomials. In both cases, we eliminate some monomials until we reach a
normal form: in the univariate case, we eliminate high degree monomials; in the linear case, we
choose an order on the indeterminates, and we eliminate them in that order.

De�nition 2.1 (Monomial ordering). Let A = K[X] be a polynomial algebra with n indetermi-
nates; letM be the set of its monomials. A monomial ordering is a total ordering <mon onM
such that:

∀x ∈ M, 1 <mon x

∀x ,y , z ∈ M,x <mon y =⇒ xz <mon yz
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Equivalently, a monomial ordering can be defined on the set of exponents Nn , in which case the
requirements are that:

∀v ∈ Nn , 0 <mon v

∀u, v,w ∈ Nn ,u <mon v =⇒ u + w <mon v + w

Given a monomial ordering, we may define:

Definition 2.2 (Leading monomial, leading term, leading coefficient). Let f ∈ K[X], and let
<mon be a monomial ordering. Then

• the leading monomial LM<mon(f ) of f is the largest monomial of its support ;

• the leading coefficient LC<mon(f ) of f is the coefficient of LM(f );
• the leading term LT<mon(f ) of f is the product LC<mon(f )LM<mon(f ).

Let I be an ideal of K[X], the leading ideal (or initial ideal) of I is the ideal 〈LT<mon(I )〉 generated
by the leading terms of all elements of I .

For all these notions, we shall omit the subscripted monomial order when clear by the context.

In the multivariate nonlinear case, unlike the linear and the univariate cases, the choice of an
order on the monomials is not unique.

In the rest of this section, we give several examples of monomial orderings, with basic
algebraic properties. We shall examine them again in Section 2.3, from the angle of applications.
Let α = (α1, . . . ,αn) and β = (β1, . . . , βn) be two exponents in Nn .

2.1.2. Lexicographical ordering

The lexicographical ordering is maybe the most “natural” monomial order: it is the dictionary
order for the “words” α and β .

Definition 2.3. The lexicographical ordering Lex is defined as:

α <lex β ⇐⇒ α1 = β1 , . . . , α j−1 = βj−1 , α j < βj

Its main property is the following:

Proposition 2.4. Let f ∈ K[X]. If LT<lex
(f ) ∈ K[Xi , . . . ,Xn] for i < n, then f ∈ K[Xi , . . . ,Xn].

Proof. Let (α1, . . . ,αn) be the exponents of LT(f ) for the lexicographical order. If LT(f ) ∈
K[Xi , . . . ,Xn], then α1 = · · · = αi−1 = 0. Any monomial Xβ such that βj > 0 with j < i is larger
than Xα for the lexicographical order. �

We shall see in Section 2.3.1 that the lexicographical ordering is particularly useful for solving
zero-dimensional systems.
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2.1.3. Graded reverse-lexicographical ordering

The next monomial orders that we present are degree orders: the monomials are ordered first
by degree, then according to some other monomial order. We shall see that these orders are
particularly suitable for working with homogeneous polynomials.

Definition 2.5. The graded reverse-lexicographical (or degree reverse lexicographical, or in short
DRL) ordering GRevLex is defined as:

α <grevlex β ⇐⇒
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

deg(Xα ) < deg(Xβ )
or

deg(Xα ) = deg(Xβ ) and αi > βi , αi+1 = βi+1 , . . . , αn = βn

This definition extends straightforwardly to a weighted setting:

Definition 2.6. LetW ∈ Nn be a system of weights.The weighted graded reverse-lexicographical
orderingW -GRevLex is defined as:

α <W -grevlex β ⇐⇒
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

degW (Xα ) < degW (Xβ )
or

degW (Xα ) = degW (Xβ ) and αi > βi , αi+1 = βi+1 , . . . , αn = βn

When working with homogeneous polynomials, the leading term for these orders contains a
lot of information on the remaining terms. The next elementary propositions shall be useful in
Section 2.5.3, in order to refine the complexity analyses for Algorithm F5.

Proposition 2.7. Let f ∈ K[X] be a homogeneous (resp. W -homogeneous) polynomial. If

X k
i | LT<grevlex

(f ) (resp. X k
i | LT<W -grevlex

(f )), then f ∈ 〈X k
i ,Xi+1, . . . ,Xn〉. In particular, if LT(f )

is divisible by Xn , then f is divisible by Xn .

Proof. It suffices to prove it in the weighted case, the total degree case is obtained by setting all
weights to 1.

First assume that LT(f ) = X α1
1 · · ·X αi

i , or in other words that i is the largest index of a
variable dividing LT(f ). Let μ be a monomial with the same W -degree, and such that μ �
〈X αi

i ,Xi+1, . . . ,Xn〉, this means that

μ = X
β1

1 · · ·X βi
i with βi < αi ,

so μ <lex LT(f ), and thus μ >W -grevlex LT(f ), and it may not appear in the support of f .
If i is not the largest index of a variable dividing LT(f ), then LT(f ) is divisible by X j for some

j > i , and from the above

f ∈ 〈X j , . . . ,Xn〉 ⊂ 〈X αi
i ,Xi+1, . . . ,X j , . . . ,Xn〉.

�
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Form ∈ {1, . . . ,n}, let θm be the morphism evaluating Xm+1, . . . ,Xn to 0:

θm : K[X] −→ K[X]
Xi 	−→ Xi (i ≤ m)
Xi 	−→ 0 (i > m)

Corollary 2.8. Let f ∈ K[X] be a homogeneous (resp. W -homogeneous) polynomial, and let ≺
be the GRevLex (resp. W -GRevLex) order. Ifm ∈ {1, . . . ,n} is such that θm(f ) � 0, then

LT≺(f ) = LT≺(θm(f ))
Proof. The evaluation θm(f ) is nonzero if and only if f � 〈Xm+1, . . . ,Xn〉. So if θm(f ) � 0,
LT(f ) is not divisible by Xm+1, . . . ,Xn , and

LT(θm(f )) = θm(LT(f )) = LT(f ).
�

Proposition 2.9 ([BFS14, Prop. 7]). Let (f1, . . . , fm) be a homogeneous (resp.W -homogeneous)

polynomial system in Noether position with respect to the variables Xm+1, . . . ,Xn , let ≺ the

GRevLex (resp. W -GRevLex) order, and I = 〈f1, . . . , fm〉. Then:
LT≺(I ) = LT≺(θm(I )) · 〈Xm+1, . . . ,Xn〉.

Proof. It suffices to prove it in the weighted case, the total degree case is obtained by setting all
weights to 1.

From Corollary 2.8, for the W−GRevLex ordering, LT(θm(I )) ⊂ LT(I ), this implies the reverse
inclusion

LT(I ) ⊃ LT(θm(I )) · 〈Xm+1, . . . ,Xn〉.
Conversely, let f ∈ I be aW -homogeneous polynomial, write LT(f ) = Xα1

1 · · ·X αn
n . We want

to prove that there exists д ∈ I such that LT(д) = Xα1
1 · · ·Xαm

m . Let i be the largest index of a
variable dividing LT(f ) (that is the largest integer such that αi � 0). If i ≤ m, there is nothing
to prove.

Otherwise, from Proposition 2.7, this implies that f ∈ 〈X αi
i ,Xi+1, . . . ,Xi 〉, which we may

write

f = Xαi
i дi +

n∑
j=i+1

X jдj

with дj (j ≤ i)W -homogeneous and 0 � дi ∈ K[X1, . . . ,Xi ] (all monomials divisible by X j , for
j > i , are pushed in the term X jдj ). This implies that

X αi
i дi ∈ I + 〈Xi+1, . . . ,Xn〉. (2.1)

By Proposition 1.44, since (f1, . . . , fm) is in Noether position, (f1, . . . , fm ,Xm+1, . . . ,Xn) is a
regular sequence, and by Corollary 1.39, (f1, . . . , fm ,Xn , . . . ,Xm+1) is also regular. Equation (2.1)
means that Xαi

i is a zero divisor in K[X]/〈f1, . . . , fm ,Xn , . . . ,Xi+1〉, so by regularity,

дi ∈ 〈f1, . . . , fm ,Xn , . . . ,Xi+1〉 = I + 〈Xi+1, . . . ,Xn〉.
Since дi ∈ K[X1, . . . ,Xi ], we deduce that дi ∈ I , and its leading term is X α1

1 · · ·X αi−1
i−1 . Repeating

the process until i ≤ m, we obtain the wanted polynomial. �
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2.1.4. Elimination orders

The last order that we present is an elimination ordering.

De�nition 2.10. Let k be a integer such that 1 ≤ k ≤ n, the k’th elimination ordering Elimk is
de�ned as:

α <Elimk β ⇐⇒



(α1, . . . ,αk ) <grevlex (β1, . . . , βk )
or
(α1, . . . ,αk ) = (β1, . . . , βk ) and (αk+1, . . . ,αn) <grevlex (βk+1, . . . , βn)

The name comes from the fact that this ordering can be used to eliminate variables.

De�nition 2.11. Let <mon be a monomial ordering, we say that <mon eliminates the �rst k
variables if and only if for any (α1, . . . ,αn) ∈ Nn and (βk+1, . . . , βn) ∈ Nn−k ,

(0, . . . , 0, βk+1, . . . , βn) <mon (α1, . . . ,αn)

Equivalently, for f ∈ K[X], if LT<mon(f ) ∈ K[Xk+1, . . . ,Xn], then f ∈ K[Xk+1, . . . ,Xn].
From Proposition 2.4, the lexicographical order eliminates the �rst k variables for all k . On

the other hand, the graded reverse lexicographical ordering does not eliminate any group of
variables in general (there may be monomials with lower degree in the trailing terms). The
elimination orderings are in some sense an intermediate ground between the lexicographical
and the graded reverse-lexicographical orderings:

Proposition 2.12. Let k ∈ {1, . . . ,n}, the k’th elimination ordering eliminates the �rst k variables.

Proof. Immediate consequence of the de�nition. �

2.2. Gröbner bases: definition

We can now de�ne Gröbner bases.

De�nition 2.13 (Gröbner basis). Let I be an ideal of K[X]. A Gröbner basis of I is a subset
G = {д1, . . . ,дk} ⊂ I such that

〈LT(д1), . . . , LT(дk )〉 = 〈LT(I )〉.

This de�nition can be rephrased as follows: a Gröbner basis of I is a �nite subset G ⊂ I and
such that

∀ f ∈ I , f , 0 =⇒ ∃д ∈ G, LT(д) | LT(f ).
The fundamental property of Gröbner bases is that they de�ne a normal form:

Proposition/De�nition 2.14 (Normal Form application, [BW93, Th. 5.35]). Let I be an ideal
of K[X] and let G be a Gröbner basis of I . Let f ∈ K[X] be a polynomial. There exists a unique
polynomial NF(f ) ∈ K[X] such that:
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• f − NF(f ) ∈ 〈G〉 (we say that f reduces to NF(f ) modulo G, written f
G−→ NF(f ));

• For all µ in the support of NF(f ), µ is not divisible by any LT(д), д ∈ G.

The polynomial NF(f ) is called the normal form of f modulo G. If f = NF(f ), we say that f is
in normal form. Otherwise, f is reducible modulo G.

If LT(f ) is reducible modulo G, we say that f is head-reducible modulo G. If f is reducible
modulo G but LT(f ) is irreducible, we say that f is tail-reducible.

This notion allows to prove that a Gröbner basis of I is a set of generators of I .

Proposition 2.15. Let G be a Gröbner basis of I , then 〈G〉 = I .

Proof. By de�nition, 〈G〉 ⊂ I . Let f ∈ I , f − NF(f ) ∈ 〈G〉 ⊂ I , so NF(f ) ∈ I . Assume that
NF(f ) , 0, then by de�nition of a Gröbner basis, LT(NF(f )) is divisible by LT(д) for some д ∈ G ,
thus contradicting the de�nition of NF(f ). Hence NF(f ) = 0 and f ∈ 〈G〉. �

The normal form application has a lot more properties which we list now.

Proposition 2.16 ([CLO07 ]). Let f , д ∈ K[X] and let NF be a normal form application for a
Gröbner basis G of some ideal I . Then:

1. NF(f ) is in normal form with respect to G;

2. NF(f ) = 0 if and only if f ∈ I ;
3. NF(f ) = NF(д) if and only if f − д ∈ I ;
4. NF(f + д) = NF(f ) + NF(д);

5. NF(f д) = NF(NF(f )NF(д));
In particular, NF de�nes a surjective ring morphism K[X]−→K[X]/I .
Proof. Item 1 is a consequence of the unicity of the normal form. Item 2 is a consequence of the
proof of Proposition 2.15.

For item 3, write

f − д = (f − NF(f )) + (NF(f ) − NF(д)) + (NF(д) − д),
so f −д ∈ I if and only if NF(f )−NF(д) ∈ I . In particular, if NF(f )−NF(д) = 0, then f −д = 0.

Conversely, the support of NF(f ) − NF(д) is a subset of the union of the supports of NF(f )
and NF(д), so all monomials of NF(f ) −NF(д) are irreducible modulo G . So NF(f ) −NF(д) is in
normal form, and so if NF(f ) − NF(д) ∈ I , then it is zero.

Items 4 and 5 are proved similarly: since

NF(f + д) − NF(f ) − NF(д) = (NF(f + д) − f − д) + (f − NF(f )) + (д − NF(д)) ∈ I ,
the same argument involving the support shows that

NF(f + д) − NF(f ) − NF(д) = 0.
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And since

f д − NF(f )NF(д) = f (д − NF(д)) − (f − NF(f ))NF(д) ∈ I ,
taking the normal form of both terms of the left hand side yields that

NF(f д) − NF(NF(f )NF(д)) = 0. �

Item 2 is the main property of Gröbner bases: the normal form application that they define
give a practical way of testing whether any polynomial belong to the ideal.

The last two propositions of this section are existence statements for Gröbner bases. We
shall describe algorithms computing Gröbner bases later, which will give a constructive proof
of these results.

Proposition 2.17 ([CLO07, Ch. 2, sec. 5, cor. 6]). Let I be an ideal of K[X], then I admits a

Gröbner basis for any given monomial order.

Gröbner bases are not unique in general, since we may add polynomials from the ideal to
any Gröbner basis and still obtain a Gröbner basis. However, with additional properties, unicity
can be ensured.

Definition 2.18. Let I be an ideal of K[X], and let G be a Gröbner basis of I . We say that G is
reduced if the following two conditions are satisfied:

1. all leading coefficients of polynomials of G are 1;

2. all polynomials in G are in normal form with respect to the others.

Proposition 2.19 ([CLO07, Ch. 2, sec. 7, prop. 6]). Let I be an ideal of K[X], then I admits a

unique reduced Gröbner basis for any given monomial order.

2.3. Applications

What information one can obtain from a Gröbner basis depends on the monomial order that is
used. The most useful orders in that regard are the lexicographical order and the elimination
orders.

2.3.1. Zero-dimensional systems

Recall that zero-dimensional systems are systems with a finite number of solutions. A first
property is that we can check this property using any Gröbner basis.

Proposition 2.20. Let I be an ideal of K[X], and let G be a Gröbner basis of I . The ideal I is
zero-dimensional if and only if for all X ∈ {X}, there exists a polynomial in G with leading term

X α for some α .
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Proof. Recall that I is zero-dimensional if and only if K[X]/I is a K-vector space with finite
dimension. Let

MI = {μ monomial of K[X] | ∀д ∈ G, LT(д) � μ},
elements of MI are all linearly independent modulo I . Hence MI is finite.

Let X ∈ {X}, there exists β ∈ N such that X β � MI , and so there exists α ∈ N, α ≤ β such
that X α is the leading term of an element of G. �

The lexicographical order allows one to solve generic zero-dimensional systems.

Definition 2.21 (Shape position). Let I be an ideal in K[X], and let G be the reduced lexico-
graphical Gröbner basis of I . We say that I is in shape position if G has the following shape:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

д1(X1, . . . ,Xn) = X1 + r1(Xn)
д2(X2, . . . ,Xn) = X2 + r2(Xn)

...

дn−1(Xn−1,Xn) = Xn−1 + rn−1(Xn)
дn(Xn) = X

deg(I )
n + rn(Xn)

In particular, if I is in shape position, it is zero-dimensional, and its deg(I ) roots can be
recovered by solving the univariate polynomial дn .

This property is generic in the following sense:

Lemma 2.22 (Shape lemma, [GM89]). Up to a generic change of coordinates, any zero-dimensional

ideal is in shape position.

This makes lexicographical Gröbner bases a very powerful tool for solving zero-dimensional
systems.

2.3.2. Positive-dimensional systems and eliminations

Gröbner bases can also be used to work with positive-dimensional systems. In particular,
elimination bases allow to “compute” projections: the projection of an algebraic variety onto
an affine subspace is not in general an algebraic variety, but its Zariski closure is, and one can
compute equations defining this algebraic set by polynomial elimination.

Proposition 2.23 ([CLO07, Chap. 3, Sec. 1, Th. 2]). Let I be an ideal of K[X], let k ∈ {1, . . . ,n},
and let G be a Gröbner basis of I for an order eliminating the first k variables (for example Elimk

or Lex).

Then the elimination basisGk � G∩K[Xk+1, . . . ,Xn] is a Gröbner basis of I∩K[Xk+1, . . . ,Xn].
Geometrically, Gk is a system defining the Zariski closure of the projection of V (I ) onto the

coordinates (Xk+1, . . . ,Xn).
Remark 2.24. In [CLO07, Chap. 3, Sec. 1, Th. 2], the theorem is written for the lexicographical
order, but the proof only uses the fact that this order eliminating the first k variable.
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Remark 2.25. The shape position is an example of successive eliminations: with the notations
of De�nition 2.21, for any i ∈ 1, . . . ,n, the polynomials {дi , . . . ,дn} generate the ideal I ∩
K[Xi , . . . ,Xn]. In particular, the last polynomial дn generates I ∩ K[Xn].

Geometrically, a zero-dimensional ideal I has �nitely-many solutions. Their projection on
the Xn line is a �nite set, and I being in shape position means that each of these roots xn is the
projection of only 1 point (x1, . . . ,xn) ∈ V (I ) onto the Xn line, and this point is given by

(−r1(xn), . . . ,−rn(xn),xn).

Another example of how elimination techniques can be useful is saturation:

Proposition 2.26 ([CLO07, Sec. 4.4, Ex. 9]). Let I be an ideal of K[X], let F = (f1, . . . , fm) be a
system of generators of I , and let д ∈ K[X]. Consider the saturated system

Fsat B (f1, . . . , fm ,U · д − 1) ⊂ K[U ,X1, . . . ,Xn].

Let Gsat be a Gröbner basis of 〈Fsat〉 eliminating the �rst variableU . ThenGsat is a Gröbner basis
of the saturated ideal (I : д∞) de�ned as

(I : д∞) B {f ∈ K[X] | ∃n ∈ N,дn f ∈ I}.

Geometrically,Gsat is a system de�ning the Zariski closure of the complementary ofV (〈д〉) inV (I ).

2.4. Algorithms

Many algorithms have been developed to compute Gröbner bases, we will present three examples
here.

2.4.1. A pairs algorithm: Buchberger’s algorithm

The �rst algorithm for computing Gröbner bases was Buchberger’s algorithm [Buc76]. Its
building block is pairwise reductions.

De�nition 2.27 (S-polynomial). Let f , д ∈ K[X], the S-polynomial of f and д is de�ned as

S-pol(f ,д) B lcm(LM(f ), LM(д))
(

f

LM(д) −
д

LM(f )

)
In particular, if f is not in normal form with respect to д, S-pol(f ,д) is a reduction of f

modulo д:

S-pol(f ,д) = f − lcm(LM(f ), LM(д))
LM(f ) · д.

This allows for computing polynomial reductions algorithmically.
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Algorithm 2.1 Reduction

Input: f ∈ K[X], G ⊂ K[X]
Output: h ∈ K[X] such that f G−→ h and h is in normal form with respect to G

1: h ← f
2: res← 0
3: while h , 0 do

4: while ∃д ∈ G such that LT(д) | LT(h) do
5: h ← S-pol(h,д)
6: end while

7: res← res + LT(h)
8: h ← h − LT(h)
9: end while

10: return res

Remark 2.28. If G is a Gröbner basis and f is a polynomial, Reduction(f ,G) is the normal form
of f with respect to G.
Remark 2.29. If G is a Gröbner basis of some ideal I , let

G ′ B {Reduction(д,G r д) | д ∈ G}r {0}.
Then G ′ is a reduced Gröbner basis of I for the same monomial order.

Buchberger’s algorithm uses S-polynomials and Algorithm Reduction to compute a Gröbner
basis of an ideal: given a set of generators of the ideal, it creates all S-polynomials of pairs of
these generators, then reduces them modulo the initial set of generators. The result is a new,
larger set of generators, and it iterates these steps until all S-polynomials reduce to zero.

Algorithm 2.2 Buchberger ([Buc76])
Input: F ⊂ K[X]
Output: G ⊂ K[X] such that G is a Gröbner basis of 〈F 〉

1: G ← F
2: Q ← F × F
3: while Q , ∅ do

4: Pick (f ,д) in Q , remove (f ,д) from Q
5: h ← S-pol(f ,д)
6: h ← Reduction(h,G)
7: if h , 0 then

8: Q ← Q ∪G × {h}
9: G ← G ∪ {h}

10: end if

11: end while

12: return G

Theorem 2.30 (Correctness of Buchberger’s algorithm, [Buc76],[CLO07, Ch. 2, sec. 7, th. 2]).
Buchberger’s algorithm terminates and returns a Gröbner basis of I .
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Remark 2.31. Buchberger’s algorithm being correct gives another proof that Gröbner bases exist
for all ideals.

This version of Buchberger’s algorithm is only of theoretical interest. In practice, many pairs
will eventually reduce to the zero polynomial, and thus are e�ectively useless for the rest of the
computations. To mitigate this e�ect, two algorithmic criteria were given in [Buc79], �ltering out
some pairs leading to reductions to zero. The algorithm can also be improved by de�ning strate-
gies for the choice of the next pair (for example the sugar strategy, see [Gio+91]) Buchberger’s
algorithm is currently implemented, for example in Macaulay2 [Macaulay2], Singular [Singular]
or for computations over arbitrary rings in Magma[Magma] or Maple[Maple].

Buchberger’s algorithm belongs to a wide family of Gröbner basis algorithms, called pairs
algorithms: they construct a set of pairs, reduce them, and build new pairs with the result.

Other examples include the HDriven algorithm [Tra96] (Buchberger with an additional
criterion based on information on the Hilbert series of the ideal, currently implemented in most
systems implementing Buchberger), the F4 algorithm [Fau99] (selecting several pairs at each
step and using linear algebra instead of S-polynomials to compute the reductions, currently
implemented in the library FGb [Fau10], in Magma and in Maple), and the F5 algorithm [Fau02]
(F4 with the additional F5 criterion, see Section 2.4.2).

2.4.2. A matrix algorithm: Matrix-F5

The complexity of the previous algorithms is di�cult to estimate, because it mainly depends on
the length of the queue at any given step. However, the complexity of these algorithms can
be bounded by studying matrix variants, replacing S-polynomials and critical pairs with the
construction and reduction of Macaulay matrices.

For example, the matrix variant of Buchberger’s algorithm is Lazard’s algorithm [Laz83]: at
each degree d , it builds the Macaulay matrix of degree d of the system, reduces it to echelon
form, and extract a new set of generators from the new matrix.

In this section, we describe a matrix variant of F5 algorithm, called Matrix-F5 ([BFS14]).
This algorithm works by keeping track, for each computed polynomial, of “where it came

from”. It uses this information to exclude some rows from the constructed matrix: the matrix
built is a submatrix of the Macaulay matrix, whose rows span the same vector space as the rows
of the Macaulay matrix.

De�nition 2.32 (Signature). Let F = (f1, . . . , fm) be a family of homogeneous polynomials in
K[X], and let I = 〈F 〉. Consider a polynomial д ∈ I such that

д = дi fi +
i−1∑
j=1

дj fj

with дi , 0 and i minimal for this property. The signature of д is the pair (i, LT(дi )).
Signatures are ordered using the lexicographical ordering on the two components:

(i, µ) < (j,ν ) ⇐⇒



i < j

or
i = j and µ < ν
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Remark 2.33. Decomposing the дj ’s into sums of monomials, the de�nition means that a
polynomial with signature (i, µ) can be written as a linear combination of µ fi and polynomials
with smaller signatures.

Lemma 2.34 (F5 criterion, [Fau02]). Let F = (f1, . . . , fm) be a family of homogeneous poly-
nomials in K[X], and let I = 〈F 〉. Let i ∈ {1, . . . ,m} and µ be a monomial of K[X]. If µ is the
leading term of a polynomial in 〈f1, . . . , fi−1〉, then the polynomial µ fi is a linear combination of
polynomials with signature less than (i, µ). In other words, no polynomial in I has signature (i, µ).
Proof. Let µ = LT(д), and let (j, •) be the signature of д. By hypothesis, j < i . Write

д = дj fj +

j−1∑
k=1

дk fk

and let r = д − µ. All monomials in r are smaller than µ. Write

µ fi = д fi − r2 fi

= −r fi +
j∑

k=1
дk fi fk

Hence µ fi has signature at most (i, LT(r )) with LT(r ) < µ. �

Unlike pairs-based algorithms which stop when the pair queue is empty, there is no obvious
stopping criterion for matrix-based algorithms. This means that the algorithm takes an additional
parameter along with the system, a degree dmax at which to stop. Formally, what the algorithm
computes is aGröbner basis truncated todmax (or admax-Gröbner basis), that is a set of polynomials
containing the polynomials of the reduced Gröbner basis of I of degree at most dmax.

In Algorithm 2.3, EchelonForm denotes a routine performing Gaussian elimination on a
matrix, with restrictions:

• rows are not exchanged;

• rows are only reduced by rows above them.

These conditions will be used to ensure that any polynomial is only reduced by polynomials
with smaller signatures.

The notation row(M, i) is a shorthand for the polynomial associated with the i’th row of the
matrix M . When talking about matrices, the notation A ∪ B means that, both matrices having
the same number of columns, we append matrix B to the bottom of matrix A.

The algorithm proceeds by looping over the degree d , and then over the polynomials fi , and
then over the monomials µ with degree d − di , as if to build the Macaulay matrix with rows
µ fi . For each row µ fi , it tests if it satis�es the F5-criterion (line 11), and if not, it computes its
signature and adds the row to the matrix.

Theorem 2.35 (Correctness of algorithm Matrix-F5, [Fau02; BFS14]). Algorithm Matrix-F5
terminates and computes a dmax-Gröbner basis of F . Furthermore, if F is a regular sequence, then
no rows are reduced to zero in the echelon forms.
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Algorithm 2.3 Matrix-F5 ( [BFS14])
Output: F ⊂ K[X] homogeneous system, dmax ∈ N an implicit monomial ordering
Input: G ⊂ K[X], truncated Gröbner basis of 〈F 〉 at degree dmax

1: G ← ∅
2: for d = 0 to dmax do
3: Nd ← number of monomials of degree d
4: Md,0, M̃d,0 ← matrix with 0 rows and Nd columns
5: for i = 1 tom do

6: Md,i ← Md,i−1
7: if d = di then
8: Md,i ← Md,i ∪ row fi with signature (i, 1)
9: else if d > di then

10: for all µ monomial of degree d − di do
11: if µ is not leading term of a row in M̃d−di ,i−1 then
12: j ← largest j such that X j divides µ
13: µ ′ ← µ/X j
14: f̃ ← row of M̃d−1,i with signature (i, µ ′)
15: Md,i ← Md,i ∪ row X j f̃ with signature (i, µ)
16: end if

17: end for

18: end if

19: end for

20: M̃d,i ← EchelonForm(Md,i )
21: R ← number of rows in Md,i
22: G ← G ∪ {row(M̃d,i , j) | j ∈ {1, . . . ,R}, row(M̃d,i , j) , row(Md,i , j)}
23: end for

24: return G
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Proof. For all i ∈ {1, . . . ,m}, let Fi = {f1, . . . , fi} and Ii = 〈Fi 〉.
We will prove by recurrence over (d, i) that the rows of Md,i span (Ii )d . Note that for any

(i,d) such that it is true, after Gaussian elimination, the rows of M̃d,i still span (Ii )d , and the
leading terms of these rows are the leading terms of (Ii )d .

The base cases d = min(dj ) and i = 0 for any d are clear.
Assume that d > min(dj ) and i > 0. The matrix Md,i is a submatrix of the Macaulay matrix

Macd of Fi . More precisely, it is obtained by removing from Macd those rows failing to match
the F5 criterion.

By induction hypothesis, the rows with signature (j, •), j < i span (Ii−1)d , so we need only
check those rows with signature (i, •). If Md,i does not span (Ii )d , then there exists a polynomial

f =
i∑
j=1

дj fj

which does not lie in Vect(Md,i ). Let µ = LT(дj ), and assume that f is such that µ is minimal.
Write дi = µ + ri , all monomials in the support of ri are smaller than µ, and by minimality of µ

r B ri fi +
i−1∑
j=1

дj fj ∈ Vect(Md,i )

Furthermore, since signatures are inserted in increasing order, r lies in the vector space spanned
by all rows inserted before considering signature (i, µ).

If the row with signature (i, µ) is inserted in the matrix, then f is the sum of this line and
r , and so it lies in Vect(Md,i ). So the signature (i, µ) was rejected by the F5 criterion, which
implies that the row µ fi is a linear combination of rows with signature less than (i, µ), and so
again it lies in Vect(Md,i ). So we have reached a contradiction, and we conclude that

Vect(Md,i ) = (Ii )d .

For the second part of the statement, assume that there is a row reduced to zero in a run of
Matrix-F5, and let (i, µ) be the signature of such a row. It means that there exist polynomials
д1, . . . ,дi such that

i∑
j=1

дj fj = 0,

and so

дi fi ∈ 〈f1, . . . , fi−1〉.

If F is regular, this implies that дi ∈ Ii−1, and so µ = LT(дi ) ∈ LT(Ii−1). Thus this row is rejected
by the F5 criterion, and we reached a contradiction. �
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2.4.3. Matrix algorithms in the a�ine case

In the previous section, we described a matrix algorithm computing Gröbner bases for homo-
geneous systems. The idea was to build a full-rank submatrix of the Macaulay matrix of the
system, and reduce it to echelon form.

Macaulay matrices can be de�ned in an a�ne setting, in the following way:

De�nition 2.36. If F = (f1, . . . , fm) ∈ K[X]m is any polynomial system (not necessarily
homogeneous), the Macaulay matrix of F is de�ned as the Macaulay matrix of the homogenized
system Fh . Equivalently, it is the matrix of a basis of the set of products µ fi of degree at most d .

In general, this set of products is not a basis of the set of polynomials in 〈F 〉 with degree at
most d .
Example 2.37. In K[X ,Y ], let f1 = XY +Y and f2 = X . At total degree 1, the only polynomial in
the Macaulay matrix is f2 = X . However, f1 −Y f2 = Y is also a degree 1 polynomial in the ideal.

Matrix-based Gröbner basis algorithms can be adapted to the a�ne case in a way similar to the
construction of the a�ne Macaulay matrix: compute Fh , run the algorithm on this homogeneous
system, and dehomogenize the result. But for the same reason, Matrix-F5(Fh ,dmax) does not
necessarily return a dmax-Gröbner basis of 〈F 〉h .
Example 2.38. With the system of Example 2.37, the output of Matrix-F5(F , 1) is X , which does
not generate 〈F 〉 = 〈F 〉h = 〈X ,Y 〉.

This behavior is called a degree fall:

De�nition 2.39. Let F be a polynomial system and let Fh be the homogenized system (with
an homogenization variable H ). We say that Matrix-F5 has a degree fall if it computes a row
corresponding to a polynomial divisible by Hk for some k .

Ignoring degree falls is not e�cient, because it requires the algorithm to reach an unnecessarily
high degree. Instead, degree falls can be handled in the following way:

1. Detect them in all lines computed at a given step;

2. Reinject them into the matrix at the relevant degree

Note that in order to detect whether some polynomial f represents a degree fall, for the GRevLex
order, it su�ces to check whether LT(f ) is divisible by H .

This technique mitigates the additional complexity induces by degree falls, and it is quite
e�cient in some cases. However, estimating the complexity of the algorithms now requires to
be able to count the number of degree falls and their magnitude.

For this reason, the complexity of matrix Gröbner basis algorithms for a�ne systems is often
evaluated under some generic assumption ensuring that there is no degree fall.

De�nition 2.40. Let F be a polynomial system. We say that F is regular in the a�ne sense if
the sequence (h1, . . . ,hm), where for all i ∈ {1, . . . ,m}, hi is the highest degree component of
fi , is regular.
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Proposition 2.41. Letd1, . . . ,dm ∈ N>0. Sequences regular in the a�ne sense are generic amongst
sequence of polynomials of respective degree less than di .

Proof. There exists a non-empty Zariski-open subset U of the space A= of families of homo-
geneous polynomials of respective degree di such that U is contained in the set of regular
sequences. The space of all families of arbitrary polynomials of respective degree di is the
product of A= and the space A< of all polynomials of respective degree less than di , and the
non-empty Zariski-open set U ×A< is contained in the set of sequences regular in the a�ne
sense. �

Proposition 2.42 ([Bar04]). Let F be a polynomial system, assume that F is regular in the a�ne
sense. Let dmax ∈ N, let Gh = Matrix-F5(Fh ,dmax) and let G = Ga

h . Then Matrix-F5 computes Gh
without any degree fall, and G is a dmax-Gröbner basis of 〈F 〉;

Furthermore, assume that we are using the GRevLex monomial order, and let dreg be the degree
of regularity of the sequence Fh of the highest degree components of F . Then if dmax ≥ dreg, then G
is a Gröbner basis of 〈F 〉.
Proof. A degree fall is a reduction to zero of the highest degree components. Since by hypothesis
these highest degree components form a regular sequence, the F5 Criterion ensures that no
such reduction happen.

If there is no degree fall, the rows of the F5 matrix at any degree d represent a linear basis of
the set of polynomials of degree d in the homogenized ideal 〈F 〉h , so Gh is a dmax-Gröbner basis
of 〈F 〉h , and G is a dmax-Gröbner basis of 〈F 〉.

For the last part of the proposition, note that the GRevLex order is a degree order, and so the
leading term of f is the leading term of its highest degree component. Since there is no degree
fall in the algorithm, all pivots used for computing the echelon form, and thus all leading terms
of a polynomial in Gh , are monomials in X1, . . . ,Xn (they are not divisible by H ). This shows
that LT(〈F 〉) = LT(〈Fh〉), and since generators of LT(〈Fh〉) can be computed at degree dreg, the
same follows for 〈F 〉. �

Remark 2.43. If F is a polynomial system which forms a regular sequence in the a�ne sense,
then the homogenized ideal of 〈F 〉 is generated by the homogenization of F :

〈F 〉h = 〈Fh〉

This is false in general. For example, the system from Example 2.37 is equal to 〈X ,Y 〉, and so it
is homogeneous. But 〈f h ,дh〉 = 〈X ,HY 〉.

In general, the relationship between the homogenized ideal and the homogenized generators
involves a saturation by H :

〈F 〉h = 〈Fh〉 : H∞

2.4.4. Change of order: FGLM

In this section, we present algorithm FGLM ( [Fau+93]), which allows for change of ordering in
the zero-dimensional case. Informally, it converts a Gröbner basis for some monomial order
into a Gröbner basis for another order.
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The reason such algorithms were developed is because the direct algorithms such as F5 are
generally much more e�cient at computing bases for some orders than others. Typically, the
GRevLex is usually the easiest order, and the Lex order is the hardest. Elimination orders stand
in between, depending on how many variables we wish to eliminate.

By using a change of order algorithm, we may �rst compute a Gröbner basis for an “easy”
order and then use the change of order to compute the wanted basis.

Algorithm FGLM proceeds as follows: let I be a zero-dimensional of K[X], letG1 be a Gröbner
basis of I for some monomial order <1 and let <2 be another order for which we want a Gröbner
basis of I . Since I is zero-dimensional, K[X]/I is a vector space of �nite dimension D = deg(I ).
The algorithm will consider two monomial bases for this vector space, namely the two staircases
for the monomial orders at hand.

De�nition 2.44. Let I be a zero-dimensional ideal of K[X], and let <mon be a monomial order.
The staircase of I with respect to <mon is the set of monomials which are not leading monomial
of a polynomial in I :

SI = {m ∈ M |m < LT(I )}

If G is a Gröbner basis of I with respect to <mon, then

SI =
�
m ∈ M | ∀д ∈ G, LT(д) -m	

.

The main idea of Algorithm FGLM (Algorithm 2.5) is to use linear algebra to model the
structure of the quotient ring:

1. Use G1 to compute the staircase S1 of I with respect to <1;

2. Compute the matrices of the multiplication by x1, . . . ,xn in the basis S1;

3. Compute the staircase S2 of I with respect to <2

The two �rst steps are performed by the subroutine MultiplicationMatrix (Algorithm 2.4):
it is a routine taking as input a Gröbner basis G of an ideal I and returning the matrices of all
linear maps K[X]/I −→K[X]/I given by the multiplication by Xi followed by the normal form
in the monomial basis S, for i ranging in {1, . . . ,n}. The number of normal forms to compute
can be limited by noticing that any monomial Xiµ, µ ∈ S falls in one of the following cases:

• Xiµ ∈ S, in which case NF(Xiµ) = Xiµ;

• Xiµ = LT(д), д ∈ G, in which case NF(Xiµ) = д − X µ;

• otherwise, if NF(µ) = ∑
k αkµk , then NF(Xiµ) =

∑
k αkNF(Xiµk ).

In the two former cases, the normal form can be computed for free. In the latter case, it is given
as a linear combination of normal forms of smaller monomials (according to the monomial
order).

73



Chapter 2. Gröbner bases

Algorithm 2.4 MultiplicationMatrix

Input: G a Gröbner basis of a zero-dimensional ideal I for a monomial order <mon

Output: M = (M1, . . . ,Mn) multiplication matrices of X1, . . . ,Xn

1: S ← {μ monomial of K[X] | μ � LT(〈G〉)}
2: F ← {Xiμ, i ∈ {1, . . . ,n}, μ ∈ S} � S
3: N ← []
4: for μ ∈ S do N [μ]← μ end for
5: Sort F by increasing <mon order
6: for μ ∈ F do
7: if μ ∈ LT(G) then
8: Find д such that д ∈ G and μ = LT(д)
9: N [μ]← д − μ

10: else
11: Find (i, μ ′) such that μ = Xiμ

′, μ ′ ∈ F
12: Write N [μ ′] = ∑

μ′′<μ′ αμ′′μ
′′

13: N [μ]← ∑
μ′′<μ′ αμ′′N [Xiμ

′′]
14: end if
15: end for
16: Copy the normal forms N into the multiplication matrices M
17: return M

Algorithm FGLM (Algorithm 2.5) then computes the staircase S2 of the ideal with respect to
<2 maintaining a association between the monomials μ and their normal form vμ w.r.t. G1.

For this purpose, it considers, in increasing <2 order, all monomials already known to be in
S2 (starting with 1) and considers their smallest multiples. Let μ be a monomial in the staircase,
and let Xi be a variable. The normal form of Xiμ with respect to G1 can be computed by matrix
multiplication:

vXi μ � NF(Xiμ) = Mi · vμ .

If this normal form is linearly independent from all previously computed normal forms, this
means that Xiμ lies in the staircase S2. Otherwise, Xiμ lies in the initial ideal of I w.r.t. <2, and
the linear relation between (vs )s ∈S2 and vXi μ gives a polynomial of I with leading term Xiμ:
this polynomial may be added to the Gröbner basis of I w.r.t. <2.
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Algorithm 2.5 FGLM ([Fau+93])

Input: G1 a Gröbner basis of I for a monomial order <1, another monomial order <2

Output: G2 Gröbner basis of I for <2

1: if G1 = {1} then return {1} end if
2: M = (M1, . . . ,Mn)← MultiplicationMatrix(G1)
3: G2 ← ∅
4: S2 ← {1}
5: v1 ← (1, 0, . . . , 0)
6: while ∃ i ∈ {1, . . . ,n}, μ ∈ S2,Xiμ � S2 do
7: (Xi , μ)← min{(Xi , μ) | i ∈ {1, . . . ,n}, μ ∈ S2,Xiμ � S2 ∪ LT<2(G2)}
8: vXi μ ← Mi · vμ
9: if vXi μ ∈ Vect{vs | s ∈ S2} then

10: Find (λs )s ∈S2 such that vXi μ =
∑

s ∈S2
λs vs

11: Add Xiμ −∑
s ∈S2

λss to G2

12: else
13: Add μ to S2

14: end if
15: end while
16: return G2

2.5. Complexity results

2.5.1. Complexity model and notations

In this section, we give complexity bounds for Algorithms Matrix-F5 and FGLM. We measure the
arithmetic complexity of algorithms, that is the number of operations (additions, multiplications,
inversions) in the coefficient field K.

This corresponds to time complexity if we assume that field operations are done in constant
time. This is a reasonable assumption for finite fields. On the other hand, for infinite fields, it
means that we ignore the growth of the coefficients of the polynomials.

Because of the central role of linear algebra in Gröbner basis algorithms, complexity estimates
shall frequently depend on the constant ω defined as the smallest positive number such that
one can compute the product of two k × k matrices in time O(kω ).

Most operations onk×k matrices can be reduced to matrix multiplications, and thus performed
in time O(kω ): this includes the row echelon form, the characteristic polynomial...

The exact value of ω is unknown. The best known theoretical bound at the time of writing is
ω < 2.372 863 9 ([LeGall14]). In practice, matrix multiplication is typically done either

• using the naïve sequential implementation, with a complexity exponent of 3, or

• using Strassen’s algorithm ([Str69]), with a complexity exponent of log2(7) ≈ 2.81.

Finally, it is important to note that complexity estimates are always given under genericity
assumptions. The worst-case complexity of computing a Gröbner basis is known to be doubly-
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exponential in the degree of the polynomials ([MM82; BS88]), but this bound is not reached for
generic systems.

2.5.2. Complexity of Matrix-F5 and degree of regularity

In the case of Matrix-F5, at each degree d , we build incrementally a matrix Md whose columns
are indexed by the monomials of degree d in K[X]. This matrix is then reduced to echelon form,
and this step is the most expensive of the algorithm. Hence the complexity of the algorithm
depends mainly on the size of the matrices being built, and on the number of such matrices.
Both depend on the highest degree reached when running the algorithm.

Recall that if the system F forms a regular sequence, then the F5 criterion eliminates all
reductions to zero. As a consequence, the number of rows of the matrices is necessarily less
than the number of columns.

As for the number of matrices that we need to compute and reduce, it is bounded by the
stopping degree dmax, given as an input to the algorithm. All in all, it gives the following simple
estimate for the complexity of algorithm Matrix-F5:

Theorem 2.45 ([BFS14, Prop. 1]). Let F ⊂ K[X] be a homogeneous polynomial system and
dmax ∈ N, then Matrix-F5(F ,dmax) computes a dmax-Gröbner basis of 〈F 〉 in time

O *
,
dmax

(
n + dmax − 1

dmax

)3
+
-

We now focus on a typical usage of algorithm F5: computing a GRevLex basis for a system
de�ned by a su�ciently generic system. In this case, we want to estimate how large dmax needs
to be in order for Matrix-F5 to return a Gröbner basis of the ideal.

De�nition 2.46. Let F be a system of homogeneous polynomials. The degree of regularity of F
is the smallest degree dreg such that Matrix-F5(F ,dreg, <grevlex) gives a Gröbner basis of 〈F 〉.

Recall that we de�ned the index of regularity of an ideal as the degree of its Hilbert series
(De�nition 1.32). This notion gives a bound for the degree of regularity of regular sequences,
under genericity hypotheses:

Theorem2.47 (Macaulay’s bound). Let F = (f1, . . . , fm) be a system of homogeneous polynomials
with respective degree (d1, . . . ,dm), and assume that F is in Noether position with respect to the
variables Xm+1, . . . ,Xn . Then

dreg(F ) ≤ ireg(〈F 〉) + 1 =
m∑
i=1

(di − 1) + 1.

Remark 2.48. Recall that ifm = n, that is if the ideal 〈F 〉 is zero-dimensional, the condition of
being in Noether position is equivalent to F being a regular sequence.

Proof. First assume thatm = n. Then the ideal 〈F 〉 is zero-dimensional, and the Hilbert series of
K[X]/〈F 〉 is a polynomial with degree ireg. If d ≥ ireg + 1, all monomials in K[X] are in 〈F 〉, and
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so any polynomial with degree greater than ireg + 1 is reducible modulo some polynomial in
〈F 〉 with lower degree.

Now assume that m < n. Since F is in Noether position, from Proposition 2.9, if G is a
Gröbner basis of F , then G ∪ {Xm+1, . . . ,Xn} is a Gröbner basis of 〈F ,Xm+1, . . . ,Xn〉. Since this
is a zero-dimensional regular sequence, the bound above applies. �

Theorem 2.49 ([BFS14, Prop. 1]). Let F = (f1, . . . , fm) be a system of homogeneous polynomials.
Then a run of Matrix-F5(F ,dmax) computes a dmax-Gröbner basis of 〈F 〉 in time

O *
,
dmax

(
n + dmax − 1

dmax

)3
+
-
. (2.2)

If dmax ≥ dreg and the order is GRevLex, thenMatrix-F5(F ,dmax) computes a Gröbner basis of F . If
F is in Noether position with respect to the variables Xm+1, . . . ,Xn , then dreg is bounded by

dreg ≤
m∑
i=1

(di − 1) + 1.

In the a�ne case, for systems regular in the a�ne sense, Proposition 2.42 ensures that we
can run AlgorithmMatrix-F5 on the homogenized system up to the degree of regularity of the
highest degree components, and obtain a Gröbner basis. So the same complexity bounds hold,
using the number of monomials of degree at most d for the size of the matrix at degree d .

Theorem 2.50. Let F = (f1, . . . , fm) be a system of polynomials which are regular in the a�ne
sense, and assume that we are using the GRevLex order. Then Matrix-F5(F ,dmax) computes a
dmax-Gröbner basis of 〈F 〉 in time

O *
,
dmax

(
n + dmax
dmax

)3
+
-
.

If dmax ≥ dreg, thenMatrix-F5F ,dmax computes a Gröbner basis of F . If the highest degree compo-
nents of F are in Noether position with respect to the variables Xm+1, . . . ,Xn , then dreg is bounded
by

dreg ≤
m∑
i=1

(di − 1) + 1.

2.5.3. Thin-grained complexity of Matrix-F5

The complexity bound in the previous section is far from optimal: it is obtained by taking the
complexity of reducing one dense matrix as large as the largest one the algorithm sees, and
multiplying this complexity by the number of matrices that the algorithm needs to reduce.

There are two ways this bound can be improved: by taking into account the fact that the
matrices are not dense, and by looking at the size of all matrices instead of the largest one.

Both re�nements come as a consequence of the following structure lemma:
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Lemma 2.51 (Structure lemma, [BFS14, Prop. 11]). Let F = (f1, . . . , fm) be a homogeneous system
of polynomials of respective degree (d1, . . . ,dm), in simultaneous Noether position with respect to
the order X1 > · · · > Xm . For all i ∈ {1, . . . ,m}, let Gi be the reduced GRevLex Gröbner basis of
〈f1, . . . , fi 〉. Let i ∈ {1, . . . ,m}, and д ∈ Gi with signature (j, µ). Then:

• j ≤ i

• LT(д) ∈ Ai B [X1, . . . ,Xi ]
• µ ∈ Ai−1 = K[X1, . . . ,Xi−1]

Proof. Since Gi is a Gröbner basis of 〈f1, . . . , fi 〉, any polynomial in Gi can be written as an
algebraic combination of these polynomials, and thus j ≤ i .

For the second statement, without loss of generality, we may assume that i = j. Indeed, if
д has signature (j, µ) with j < i , then д ∈ G j and applying the proposition to G j yields that
LT(д) ∈ K[X1, . . . ,X j ] ⊂ K[X1, . . . ,Xi ]. From Corollary 2.9, LT(〈f1, . . . , fi 〉) is generated by
monomials in Ai , and since д ∈ Gi , LT(д) ∈ Ai .

In order to prove the third statement, we proceed by induction on the signature (i, µ). For
i = 1, there is no reduction so the result holds. Let us assume i > 1, then the lemma is true for
the minimal valid signature (i, 1). Let now f be a polynomial appearing in the computation of
Gi , inW -degree d > di . Before any reduction, f can be written asXl f0, where f0, with signature
(i, µ) is reduced against the basis Gi−1, and where Xl is a variable with l ≤ i .

If there is a polynomial in Gi with signature (i, µ), it means that the row corresponding to
f was reducible (in the linear sense) by the rows above it. Algebraically, it means that there
exists д in Gk , k ≤ i , having signature (k, β) < (i, µ), such that f is head-reducible modulo д.
By induction hypothesis, we �nd that β ∈ Ak−1, and from the second statement, we deduce that
LT(д) ∈ Ak . Since д head-reduces f , LT(д) divides LT(f ) = XlLT(f0), and since f0 is reduced, Xl
divides LT(д), and so Xl ∈ Ak . Now we are in one of the three following cases:

1. k < i: then Xl ∈ Ai−1, and the label of f is (i,Xl µ) with Xl µ ∈ Ai−1;

2. k = i , l < i: same;

3. k = i , l = i: then we can write XiLT(f0) = cLT(д), with c ∈ Ai . If Xi | c , LT(д) divides
Xi
Xi
LT(f0), which is absurd because we assumed f0 to be reduced. So we must have c ∈ Ai−1.

Then the label of cд is (i, cβ), which is greater than the label of f : cβ is in Ai−1, unlike
Xiµ. But that is absurd, because we assumed cд to reduce f . �

The structure lemma gives a correspondence between signatures and polynomials in the
Gröbner basis. Counting the possible signatures thus gives us a bound on the number of
polynomials in the Gröbner basis:

Proposition 2.52 ([BFS14, Th. 12]). With the same notations, let i ∈ {1, . . . ,m} and d ∈ N. The
number of polynomials of degree d inGi whose leading term does not belong to LT(Gi−1) is bounded
by the generic term b(i)d of the following generating series:

B(i)
d (T ) B

∞∑
d=0

b(i)d T d B T di
i−1∏
k=1

1 −T dk

1 −T .
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Remark 2.53. This proposition bounds the number of new elements added to the Gröbner basis
by each polynomial fi . It is tempting to write it as Gi � Gi−1, but elements of Gi−1 may be
tail-reducible modulo fi , changing their value in Gi . Another way of stating this proposition is
that we count the number of polynomials in Gi with signature (i, •).
Proof. By Lemma 2.51, any polynomial in Gi with signature (i, μ) is such that μ ∈ Ai−1 =

K[X1, . . . ,Xi−1]. Furthermore, the F5 criterion ensures that μ � Fi−1 � 〈f1, . . . , fi−1〉. The num-
ber of monomials of degree d in Ai−1 such that μ � 〈f1, . . . , fi−1〉 is precisely the dimension of
(Ai−1/〈θi−1(Fi−1)〉)d as a K-vector space. In other words, the number of available monomials for
a signature of degree d is bounded by the generic term of the Hilbert series of Ai−1/〈θi−1(Fi−1)〉.
Since F is in simultaneous Noether position, by Proposition 1.44, θi−1(Fi−1) is a regular sequence,
and this Hilbert series is:

HSAi−1/〈θi−1(Fi−1)〉 =
∏i−1

k=1 1 −T dk

(1 −T )i−1

and the result follows, shifting this series by T di to count the number of polynomials that we
can form with these signatures. �

Theorem 2.54 ([BFS14, Sec. 3.2, Eq. 10]). Let F = (f1, . . . , fm) be a system of homogeneous

polynomials with respective degrees d1, . . . ,dm , and such that F is in simultaneous Noether position

with respect to the order X1 > · · · > Xn .

Then a run of Matrix-F5(F ,dmax) computes a dmax-Gröbner basis of 〈F 〉 in time

O ��	
m∑
i=1

dreg∑
d=0

b(i)
d

(
i + d − 1

d

) (
n + d − 1

d

)
�� . (2.3)

Proof. For each polynomial fi , at each degree d , we reduce at most b(i)
d

rows in the matrix. Each

reduction uses at most
�i+d−1

d


pivots (because the resulting leading term is in K[X1, . . . ,Xi ]),

and each elementary reduction costs at most
�n+d−1

d


arithmetic operations (the number of

columns in the matrix). �

Both bounds are plotted for comparison in Figure 2.1.

2.5.4. Complexity of FGLM

As before, let I be a zero-dimensional ideal and let D be its degree.
Algorithm FGLM has two main steps: computing the multiplication matrices, and computing

the Gröbner basis with respect to the new monomial order.
The cost of computing the multiplication matrices with Algorithm 2.4 is concentrated in the

computation of the normal forms of the monomials of the form Xiμ
′, μ ′ ∈ F . Each of these

normal forms is computed as the product of a K ×K matrix and a 1×K vector, where K ≤ D.We
need to compute at most #F ≤ nD such normal forms, and overall, computing the multiplication
matrices can be done in time

O(nD × D2) = O(nD3).
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1 2 3 4 5 6 7 8 9 10
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d

Number of operations

Number of operations
Usual bound (2.50)
Thin-grained bound (2.54)

Figure 2.1: Number of operations in a run of algorithm Matrix-F5 on a system of 3 generic
homogeneous polynomials with degree d

Computing the Gröbner basis is done by incrementally building a linear basis of the staircase
of I with respect to the second order. If we maintain a matrix of the basis throughout the
algorithm, each step of verification of linear independence and recovery of the coefficients λj
can be done by reducing one vector by this matrix. Overall, it is equivalent to computing the
normal form of the whole matrix using the Gauss algorithm. This matrix has D columns and at
most nD rows, so the complexity is again O(nD3).
Theorem 2.55 ([Fau+93]). The complexity of algorithm FGLM for computing the Gröbner basis

of a zero-dimensional ideal with degree D is

O(n D3).
Faster variants of FGLM have been proposed. In [FM13], the authors proposed algorithms

taking advantage of the sparsity of the multiplication matrices. In particular, for a lexicographical
basis in shape position, it suffices to compute the minimal polynomial of Mn , and this can be
done in time O(nDω ) using fast linear algebra. In [Fau+14], the authors show that, up to a
generic change of coordinates, the multiplication matrices can be read at no cost on a GRevLex
basis of the ideal. Overall, up to a generic change of coordinates, computing a Lex Gröbner
basis from a GRevLex one can be done in time

O(nDω ).
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Chapter 3

Weighted homogeneous systems

The results presented in this chapter are extracted from a joint work with Jean-Charles Faugère

and Mohab Safey El Din. They have been published in [FSV13] and [FSV15].

In this chapter, we consider weighted-homogeneous systems, as defined in Section 1.1.3. We
define some properties of these systems, and we rework some characterizations which were
available for homogeneous systems. We exhibit a computational strategy making use of existing
algorithms, and show, under genericity assumptions, that the complexity is divided by (∏wi )ω
when compared with homogeneous systems with the same degree. Finally, we provide some
experimental results showing that taking advantage of the weighted homogeneous structure
can yield substantial speed-ups.

3.1. Introduction

Consider a vector of positive integersW = (w1, . . . ,wn). As in Section 1.1.3, we define a gradation
on K[X1, . . . ,Xn] by defining theW -degree of a monomial as:

degW (X α1
1 · · ·X αn

n ) = w1α1 + · · · + wnαn .
An equivalent definition is that a polynomial f isW -homogeneous withW -degree d if and only
if f (X w1

1 , . . . ,X
wn
n ) is homogeneous with degree d .

There are two main strategies for computing Gröbner bases for weighted homogeneous
systems:

• apply existing algorithms, disregarding the weighted homogeneous structure;

• use the above property to transform a weighted homogeneous system and apply existing
algorithms to this system, exploiting its new homogeneous structure.

Experimentally, the second strategy appears to be faster than the first one for computing a
GRevLex basis using F4 or F5. But when needed, the change of order using FGLM becomes a
major bottleneck.

To the best of our knowledge, there is no way to evaluate the complexity of the first strategy,
and complexity analyses for the second strategy only rely on the homogeneous structure of the
system.
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In this work, we justify that the second strategy is correct, and is actually a way to e�ciently
take advantage of the weighted homogeneous structure with pairs-based algorithms, such as
F4 or F5. We also explain the bottleneck in the FGLM algorithm for zero-dimensional systems,
and propose a computational strategy working around this obstacle, e�ectively dividing the
complexity of FGLM by a factor (∏wi )3.

We also give complexity results for the F5 algorithm. For this purpose, we adapt algorithm
Matrix-F5 to the weighted case, and show that the bounds of Proposition 1.20 on the number of
monomials in aW -graded algebra allow to divide the complexity bounds by (∏wi )3. We also
show that the complexity in practice is improved, because the degree of regularity of a weighted
homogeneous system is lower than that of a homogeneous system with the same degrees.

As in the homogeneous case, complexity studies are obtained under some generic assumptions.
More precisely, we give bounds on the degree of regularity for:

• zero-dimensional systems de�ned by a regular sequence;

• positive-dimensional systems de�ned by a sequence in Noether position with respect to
the smallest variables;

• zero- or positive-dimensional systems de�ned by a sequence in simultaneous Noether
position;

In the over-determined case, we de�ne semi-regular weighted homogeneous sequences, and
we show that under some hypotheses on the weights and the degrees, this property admits
the same characterization as in the homogeneous case. This can be used to bound the degree
of regularity of weighted semi-regular sequences. We give an example of such computations,
by transposing an asymptotic analysis [Bar+05] of the degree of regularity of semi-regular
sequences withm = n + k to the weighted homogeneous case.

Prior work The special caseW = (1, . . . , 1) is the usual homogeneous case. In this case, all
properties and characterizations shown in this chapter specialize to known results that we
described in Chapters 1 and 2.

Weighted homogeneous systems have been studied before, from the angle of singularity
theory and commutative algebra. In particular, the results about the Hilbert series and the Hilbert
function of weighted homogeneous ideals (see Chapter 1) can be found in most commutative
algebra textbooks.

The computational strategy for systems with a weighted structure is not new either. For
example, it is already implemented (partially: for weighted homogeneous or heuristically,
systems containing some weighted homogeneous polynomials) in the computer algebra system
Magma [Magma]. Additionally, the authors of [Tra96] proposed another way of taking into
account the weighted structure, using the Hilbert series of the ideal. The authors of [CDR96]
generalized this algorithm to systems homogeneous with respect to a multigraduation. Their
de�nition of a system of weights is more general than the one we use in this thesis.

To the best of our knowledge, nobody presented a formal description of a computational
strategy for systems with a weighted homogeneous structure (not necessarily weighted homo-
geneous), together with complexity estimates.

84



3.1. Introduction

Some of the results presented in this chapter appeared in a conference paper [FSV13]: these
results are the weak form of the weighted Macaulay bound (3.2) and the formal description of
the algorithmic strategy for weighted homogeneous systems, with the complexity estimates (3.1)
and (3.4). The remaining parts of this chapter were presented in the journal article [FSV15]: the
conference paper lacked a hypothesis (reverse chain-divisible systems of weights), and there-
fore lacked the precise description of Hilbert series required to obtain results for semi-regular
sequences. The sharp variant of the weighted Macaulay bound (3.3), under the assumption
of simultaneous Noether position, was also added in the extended paper. Finally, the bench-
marks section of the journal paper contains additional systems, arising in polynomial inversion
problems.

The conference paper was using quasi-homogeneous instead of weighted homogeneous to
describe the studied structure. While both names exist in the literature, weighted homogeneous

seems to be more common, and to better convey the notion that this structure is a generalization
of homogenity, instead of an approximation. The same notion is sometimes also named simply
homogeneous (in which case the weights are determined by the degree of the generators; see for
example [Eis95]), or homogeneous for a nonstandard graduation [DS06].

Main results By definition, weighted homogeneous polynomials can be made homogeneous
by raising all variables to their weight. The resulting system can then be solved using algorithms
for homogeneous systems. However, it appears experimentally that solving such systems is
much faster than solving generic homogeneous systems. In this chapter, we show that the
complexity estimates for homogeneous systems can be divided by (∏wi )ω in case the system
was originallyW -homogeneous, ω being the complexity exponent of linear algebra operations
(ω = 3 for naive algorithms, such as the Gauss algorithm).

These complexity estimates depend on two parameters of the system: its degree of regularity
dreg and its degree deg(I ). Both parameters can be obtained from the Hilbert series of the ideal,
which can be precisely described under generic assumptions. To be more specific, we will
consider systems defined by a regular sequence and systems which are in simultaneous Noether

position.

Theorem. LetW = (w1, . . . ,wn) be a system of weights, and F = (f1, . . . , fm) a zero-dimensional

W -homogeneous system of polynomials in K[X1, . . . ,Xn], with respectiveW -degree d1, . . . ,dm .
The complexity (in terms of arithmetic operations in K) of Algorithm F5 to compute aW -GRevLex

Gröbner basis of I � 〈F 〉 is bounded by

CF5 = O
�	 1

(∏wi )3
·
(
n + dreg − 1

dreg

)3
� . (3.1)

If F is a regular sequence (and in particularm = n), then dreg can be bounded by the weighted
Macaulay bound:

dreg ≤
n∑
i=1

(di − wi ) +max{wj}. (3.2)
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If additionally F is in simultaneous Noether position w.r.t the order X1 > · · · > Xn , then the

weighted Macaulay bound can be refined:

dreg ≤
n∑
i=1

(di − wi ) + wn . (3.3)

The complexity of Algorithm FGLM to perform a change of ordering is bounded by

CFGLM = O (n(deg(I ))ω ) . (3.4)

Recall that if F forms a regular sequence, then deg(I ) is given by the weighted Bézout bound

deg(I ) =
∏n

i=1 di∏n
i=1 wi

.

In particular, the bound (3.3) indicates that in order to compute a Gröbner basis faster for
a generic enough system, one should order the variables by decreasing weights whenever
possible.

The hypotheses of the theorem are not too restrictive. In the homogeneous case, regularity and
simultaneous Noether position are generic properties. However, in the weighted homogeneous
case, there are systems of weights and systems of weighted degrees for which they are not
generic. We shall identify large families of systems of weights and systems of weighted degrees
for which they are (Proposition 3.19).

All sequences in simultaneous Noether position are regular. Conversely, in the homogeneous
case, all regular sequences are in simultaneous Noether position up to a generic linear change
of coordinates. In the weighted homogeneous case, this is no longer true. In fact, there are even
systems of weights for which there exists no non-trivial change of coordinates.

To avoid this limitation, we consider reverse chain-divisible systems of weights, that is systems
of weights such that wn | wn−1 | . . . | w1. This property ensures that there are non-trivial changes
of coordinates of the form Xi ← Xi + Pi (Xi+1, . . . ,Xn) for all i , with Pi a W -homogeneous
polynomial withW -degree wi . Under this assumption, many properties from the homogeneous
case remain valid in a weighted setting. In particular, any regular sequence is in simultaneous
Noether position up to aW -homogeneous change of coordinates (Theorem 3.15).

For many systems from practical applications, the weights can be chosen to be reverse
chain-divisible. We give a few examples in the last section of this chapter.

If m > n, there is no regular sequence. Instead, we will consider systems defined by a
semi-regular sequence, that is systems for which no reduction to zero appear in a run of
Algorithm F5. This property has several equivalent definitions in the homogeneous case. While
these definitions can be easily extended to the weighted case, their equivalence is not necessarily
true. However, we prove that these definitions are equivalent in the special case where the
weights form a reverse chain-divisible sequence.

In the homogeneous case, the property of being semi-regular is only conjectured to be generic,
but this conjecture is proved in a handful of cases [Mor96, Thm. 1.5]. In this chapter, we adapt
the proof of one of these cases, namely the casem = n + 1 in a base field of characteristic 0.

For semi-regular systems with m = n + 1, we obtain a bound on the degree of regularity.
More generally, in the homogeneous case, one can compute asymptotic estimates on the degree
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of regularity of a semi-regular sequence [Bar+05; Bar04]. These estimates can be adapted to the
weighted homogeneous case. As an example, we give an asymptotic bound on the degree of
regularity for semi-regular systems withm = n + k for a given integer k :

Theorem. Let n and k be two positive integers, and letm = n + k . Let w0 and d0 be two positive
integers such that w0 | d0. Consider the system of n weightsW = (w0, . . . ,w0, 1). Let F be a
semi-regular sequence in K[X1, . . . ,Xn], made ofW -homogeneous polynomials withW -degree
d0. Then the highest degree reached in the computation of aW -GRevLex Gröbner basis of 〈F 〉 is
asymptotically bounded by

dreg = n
d0 − w0

2 − αk

√
n
d2

0 − w2
0

6 +O
(
n1/4

)
.

where αk is the largest root of the k’th Hermite polynomial.

Experimentally, if we lift the assumption that the system of weights is reverse chain-divisible,
the degree of regularity does not appear to rise too far beyond the bound. Future work on the
topic could include characterizing the Hilbert series ofW -homogeneous semi-regular sequences
in full generality, in order to obtain bounds on theW -degree of regularity.

In practice, taking advantage of the weighted structure when applicable yields signi�cant
speed-ups. Some instance of a weighted structure has already been successfully exploited
for an application in cryptography [Fau+13]. We also present timings obtained with several
polynomial inversion problems, with speed-ups ranging from 1–2 to almost 100. In particular,
we use these techniques in order to compute the relations between fundamental invariants
of several groups [Stu08]. For some groups such as the Cyclic-5 group or the dihedral group
D5, computing these relations is intractable without considering the weighted structure of the
system, while it takes only a few seconds or minutes when the weighted structure is exploited.
All these systems are examples of applications where the weights giving the appropriateW -
homogeneous structure are naturally reverse chain-divisible. These experimentations have
been carried using F5 and FGLM with the Gröbner basis library FGb [Fau10] and F4 with the
computer algebra system Magma [Magma].

There are other applications where Gröbner bases are computed for polynomial systems with a
weighted-homogeneous structure, for example in coding theory, both for generating codes [BP99,
sec. 5], [Leo09] and for decoding through Guruswami-Sudan’s algorithm (see [GR09] for an
overview).

Organisation of the chapter In Section 3.2, we describe some algebraic properties ofW -
homogeneous systems. In particular, we show that regular sequences and sequences in Noether
position are generic, and we give a characterization of the Hilbert series of aW -homogeneous
regular sequence. In Section 3.3, we give bounds for the degree of regularity of a generic zero-
dimensional system, and in Section 3.3.4, we give some bounds for positive-dimensional systems
as well. In Section 3.4, we consider semi-regular systems. We give some equivalent de�nitions
of this property, and we show how asymptotic estimates of the degree of regularity can be
adapted from the homogeneous case to the weighted case. Additionally, we prove that Fröberg’s
conjecture in the case m = n + 1 is true in the weighted case, as in the homogeneous case,
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degY1

degY2
1 monomial out of 6

Monomials of
K[Y1,Y2]

Monomials in the
image of homW

Figure 3.1: Counting monomials in the image of homW (hereW = (2, 3))

provided that the base �eld is large enough. In Section 3.5, we describe strategies for computing
Gröbner bases for weighted homogeneous systems, and we give complexity estimates for these
strategies. Finally, in Section 3.6, we show how weighted structures can appear in applications,
and we give some benchmarks for each example.

3.2. Properties

3.2.1. Definitions and properties

As described in the introduction, one can make aW -homogeneous polynomial homogeneous
using the following proposition.

Proposition 3.1. Let (K[X1, . . . ,Xn],W ) be a graded polynomial algebra. Then the application

homW : (K[X1, . . . ,Xn],W ) −→ (K[Y1, . . . ,Yn], 1)
f 7−→ f (Y w1

1 , . . . ,Y
wn
n )

is an injective gradedmorphism, and in particular the image of a weighted homogeneous polynomial
is a homogeneous polynomial.

Remark 3.2. This morphism is not surjective. More precisely, the bounds and asymptotics for
Sylvester denumerants (Proposition 1.20 and 1.19) apply, and show that on average, there are∏

wi times more monomials in K[X] at degree d than atW -degree d .
The morphism homW gives an intuition for these asymptotic estimates (Figure 3.1). For

example, consider µ = Y w1−1
1 · · ·Y wn−1

n . There is only 1 monomial in the divisors of µ which also
lies in the image of homW (namely 1); there are ∏

wi monomials dividing µ; and all non-trivial
multiples of µ are divisible by more monomials in the image of homW .

TheW -GRevLex monomial ordering is the pullback of the GRevLex monomial ordering by
this morphism:

u <W -grevlex v ⇐⇒ homW (u) <grevlex homW (v).
Given aW -homogeneous system F , one can build the homogeneous system homW (F ), and

then apply classic algorithms (Section 2.4) to that system to compute a GRevLex or Lex Gröbner
basis of the ideal generated by homW (F ).
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3.2. Properties

De�nition 3.3. The W -degree of regularity of the system F is the highest degree dreg,W (F )
reached in a run of F5 to compute a GRevLex Gröbner basis of homW (F ). When the graduation
is clear in the context, we may call it degree of regularity, and denote it dreg.

Remark 3.4. Unlike what we could observe in the homogeneous case, this de�nition depends
on the order of the variables (we shall give an example in Table 3.1 in Section 3.3.2, and another,
with timings, in Table 3.4 in Section 3.6.1).

As before, we only consider the a�ne varieties associated with the ideals we consider. In
particular, for polynomials in K[X1, . . . ,Xn], the dimension ofV (0) is n, and a zero-dimensional
variety is de�ned by at least n polynomials if the base �eld is algebraically closed.

3.2.2. Degree and Bézout’s bound

The degree of a weighted homogeneous ideal can be de�ned in the same way as the homogeneous
case, using the Hilbert series:

De�nition 3.5. Let I be a weighted homogeneous ideal with dimension d . Its degree is deg(I ) =
Q(1) where Q = HSA/I (T ) · (1 −T )d .

Remark 3.6. With this de�nition, the degree has a geometrical interpretation in the zero-
dimensional case. Then d = 0, so deg(I ) = HSA/I (1) is an integer, which corresponds to the
dimension of A/I as a K-vector space, that is the cardinality of the staircase of the ideal, or the
number of solutions counted with multiplicity.
Remark 3.7. This is the de�nition used by the software Macaulay2 for the degree of a positive-
dimensional variety (function degree(Module) in [Macaulay2]).
Remark 3.8. In the positive-dimensional case, even if the sequence F is in Noether position
w.r.t. the variables X1, . . . ,Xm , the degree of 〈F 〉 is not necessarily the number of solutions
of Fext = (f1, . . . , fm ,Xm+1, . . . ,Xn) = 0. For example, consider K[X ,Y ] with the weights
W = (2, 1), and let f = X + Y 2. The ideal 〈f 〉 has degree 2, and indeed, a generic hypersurface
ofW -degree 2 is another parabola with horizontal axis, so that there are 2 intersection points
(see Figure 3.2). However, (f ) is in Noether position with respect to the variable Y , and
〈f ,Y 〉 = 〈X ,Y 〉 has only 1 zero.
Remark 3.9. It may even happen that positive-dimensional varieties have a rational degree. For
example, consider the ideal 〈XY 〉 in K[X ,Y ] graded with respect toW = (2, 3). Then

HSA/I (T ) =
(1 −T 5)

(1 −T 2)(1 −T 3) =
1 +T +T 2 +T 3 +T 4

(1 −T )(1 +T )(1 +T +T 2)
and

deg(I ) = 5
6 .

Intuitively, computing the degree of a positive-dimensional variety can be done by cutting it
by generic hypersurfaces. In the total degree case, one can use hyperplanes, that is degree
1 hypersurfaces, so that cutting does not change the degree. However, with W = (2, 3), the
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Chapter 3. Weighted homogeneous systems

Figure 3.2: Common zeroes of X 2 + Y (in blue) and a generic polynomial of [1, 2]-degree 2 (in
red)

�rstW -degree at which one can really form generic hypersurfaces is 6, and intersecting XY
with a degree 6 hypersurface generically yields 5 solutions: going through homW , a generic
intersection will have 30 points, and homW multiplies this number of solutions by 6.

The following proposition formalizes the intuitive notion that “going through homW multiplies
the number of solutions by the product of the weights”:

Proposition 3.10. LetW = (w1, . . . ,wn) be a system of weights, and F = (f1, . . . , fm) a sequence
ofW -homogeneous polynomials, with respectiveW -degrees d1, . . . ,dm . Then

deg(F ) = deg(homW (F ))∏n
i=1 wi

.

Proof. Let I = 〈F 〉 and homW (I ) = 〈homW (F )〉. Write the Hilbert series of A/I (as an algebra
graded in W -degree) and A/homW (I ) (as an algebra graded in total degree) using Proposi-
tion 1.30:

HSA/I (T ) =
P(T )∏n

i=1(1 −T w)

HSA/homW (I ) =
Q(T )

(1 −T )n .

The proof of Proposition 1.38 actually shows that P = Q , so

HSA/I (T ) =
HSA/homW (I )(T )∏n

i=1(1 +T + · · · +T wi−1) ,

and evaluating this equation at 1 yields the wanted result. �

A classic consequence of this is the weighted version of Bézout’s bound:
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Theorem 3.11. LetW = (w1, . . . ,wn) be a system of weights, and F = (f1, . . . , fm) a regular
sequence ofW -homogeneous polynomials, with respectiveW -degrees (d1, . . . ,dm). Then

deg(I ) = HSK[X]/I (1) =
∏m

i=1 di∏n
i=1 wi

.

3.2.3. Changes of variables and reverse chain-divisible systems of weights

Several properties from the homogeneous case turn out to be no longer true in the weighted
case.

For example, many properties of polynomial systems are true up to a linear change of
coordinates. Since linear changes of coordinates leave the 1-homogeneous components of
the polynomial algebra stable, it is also true of 1-homogeneous polynomial systems. A good
example of such a property is Noether’s normalization theorem.

However, in a weighted setting, linear transformations on the variables do not necessarily
preserve theW -degree of the monomials.

If we add some constraints on the system of weights, we may de�ne non-trivial changes of
variables. More precisely, we will consider reverse chain-divisible systems of weights, de�ned as
follows.

De�nition 3.12. A system of weights,W is reverse chain-divisible if

wn | wn−1 | . . . | w1

In this situation, the weights are coprime if and only if wn = 1.

Remark 3.13. The name “chain-divisible” can be found in [Alf05], referring to a notion introduced
in [Alf98].

In this setting, many results from the homogeneous case can now be adapted to the weighted
homogeneous case. For example, Noether’s normalization theorem (Theorem 1.88) is true in a
weighted setting if we replace linear changes of coordinates byW -homogeneous changes of
coordinates with degree (wi ).

Lemma 3.14 (Noether normalization lemma, weighted case). Let K be an in�nite �eld,W be a
reverse chain-divisible system of weights and f ∈ R = K[X1, . . . ,Xr ] be a non-constant polynomial,
W -homogeneous withW -degree d . Then there are elements X ′1, . . . ,X

′
r−1 ∈ R such that R is a

�nitely generated module over K[X ′1, . . . ,X ′r−1, f ]. Furthermore, if the �eld has characteristic 0 or
large enough, there exists a dense Zariski-open subsetU ⊂ Kr−1 such that for all (a1, . . . ,ar−1) ∈ U ,
one can choose X ′i = Xi − aiX wi /wr

r .

Proof. We follow the proof of Lemma 1.89. For any 1 ≤ i ≤ r − 1, let ai ∈ K, and let X ′i =
Xi − aiX wi /wr

r . We need to show that for generic ai , under this change of variables, f is monic
in Xr . Under this change of variables, collecting the coe�cients of f in Xr yields:

f (X1, . . . ,Xr ) = f (X ′1 + a1X
w1/wr
r ,X ′2 + a2X

w2/wr
r , . . . ,Xr−1 + ar−1X

wr−1/wr
r )

= f (a1, . . . ,ar−1, 1)Xd
r + · · ·
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So the set of all ai ’s such that f is monic in Xr is exactly the set of all ai ’s such that

f (a1, . . . ,ar−1, 1) � 0,

and since f isW -homogeneous non-constant, this is a non-empty open subset of Kr−1. �

Apart from the lemma, the proof of Noether’s normalization theorem does not depend on the
graduation, and as a consequence:

Theorem 3.15 (Noether’s normalization theorem, weighted case). LetW be a reverse chain-

divisible system of weights, and let F be aW -homogeneous zero-dimensional regular sequence in

K[X1, . . . ,Xn]. Then, for a generic choice ofW -homogeneous polynomials Pi withW -degree wi ,

the change of variable

Xi = X ′i + Pi (Xi+1, . . . ,Xn),
is such that F (X1(X′), . . . ,Xn(X′)) is in simultaneous Noether position with respect to the order

X ′1 > X ′2 > · · · > X ′n .

A central property of reverse chain-divisible weights is the following proposition. In the
homogeneous case, if d1 ≤ d2 are two non-negative integers, then any monomial with degree d2

is divisible by a monomial with degree d1. When the system of weights is reverse chain-divisible,
the following proposition states a similar result for the weighted case.

Proposition 3.16. Assume thatW = (w1, . . . ,wn) is a system of weights, such that w1 ≥ w2 ≥
· · · ≥ wn . The following statements are equivalent:

1. The system of weightsW is reverse chain-divisible;

2. Let d1 ≤ d2 positive integers, i ∈ {1, . . . ,n}, andm2 a monomial ofW -degree d2. Assume

that wi divides d1, and thatm2 is not divisible by any of the variables X1, . . . ,Xi−1. Then

there exists a monomialm1 withW -degree d1 such thatm1 | m2.

Proof. (1 =⇒ 2). Fix d1. We shall prove by induction over d2 that for any monomialm2 with
W -degree d2 satisfying the hypotheses of (2), there exists a monomial m1 withW -degree d1

dividingm2. The case d2 = d1 is immediate, since we can usem1 �m2.
Assume that d2 > d1, and letm2 be a monomial ofW -degree d2. Let j be the greatest index

of a variable dividingm2, writem2 = X α
j m
′
2, wherem′2 is a monomial in K[Xi , . . . ,X j−1], with

W -degree d ′2 = d2 − wjα . If d ′2 ≥ d1, the result follows by induction. If i = j, thenm2 = X α
i , and

m1 � Xd1/wi
i hasW -degree d1 and dividesm2. So we can assume that d ′2 < d1 and that i < j.

SinceW is a reverse chain-divisible system of weights, wj−1 divides wk for any k in {1, . . . , j −
1}. Hence, since m2 ∈ K[Xi , . . . ,X j ] and m′2 ∈ K[Xi , . . . ,X j−1], d2 ≡ 0 [wj ] and d ′2 ≡ 0 [wj−1].
By hypothesis, d1 is divisible by wi , and in particular it is divisible by wj−1. All in all, this shows
that d1 − d ′2 is divisible by wj−1, and so it is divisible by wj . Let

m1 �m′2 · X (d1−d ′2)/wj
j .

Then the monomialm1 hasW -degree d1 and dividesm2.
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(2 =⇒ 1). Assume thatW is a system of weights which is not reverse chain-divisible. We
shall �nd integers d1 ≤ d2 and a monomialm2 withW -degree d2 which is not divisible by any
monomial ofW -degree d1.

Since W is not reverse chain-divisible, there exists i such that wi+1 does not divide wi . In
particular, gcd(wi ,wi+1) < wi and gcd(wi ,wi+1) < wi+1. Without loss of generality, we may
consider only the variables Xi ,Xi+1. Let d1 = wiwi+1, d2 = d1 + gcd(wi ,wi+1). By Paoli’s lemma
(see for example [Luc91, chap. 264] or the discussion after [NZM91, th. 5.1]), there exists exactly

⌊
d2

wiwi+1

⌋
=

⌊
1 + gcd(wi ,wi+1)

wiwi+1

⌋
= 1

couple of non-negative integers a,b such that awi +bwi+1 = d2. Letm2 be the monomial X a
i X

b
i+1.

TheW -degree d1 is divisible by wi , andm2 is not divisible byX1, . . . ,Xi−1. The maximal divisors
ofm2 are

m2
Xi
= X a−1

i Xb
i+1 withW -degree d2 − wi = d1 + gcd(wi ,wi+1) − wi < d1;

m2
Xi+1

= X a
i X

b−1
i+1 withW -degree d2 − wi+1 = d1 + gcd(wi ,wi+1) − wi+1 < d1.

As a consequence,m2 is not divisible by any monomial ofW -degree d1. �

This proposition essentially states that the staircase of aW -homogeneous ideal is reasonably
shaped whenW is a reverse chain-divisible system of weights. For example, letW be a reverse
chain-divisible system of weights, and let I be the ideal generated by all monomials ofW -degree
w1 (that is, the least common multiple of the weights). Then the proposition proves that I
contains all monomials ofW -degree greater than w1.

If on the other hand the system of weights is not reverse chain-divisible, this property needs
not hold. For example, consider the algebra K[X1,X2,X3] graded w.r.t. the system of weights
W = (3, 2, 1), the least common multiple of the weights being 6, and let I be the ideal generated
by all monomials ofW -degree 6. Consider the monomial X1X

2
2 : it hasW -degree 7, yet it is not

divisible by any monomial withW -degree 6, and so it does not belong to the ideal I .

3.2.4. Genericity of regularity properties andW -compatibility

Proposition 3.17. Let m ≤ n be two integers, W = (w1, . . . ,wn) a system of weights, and
D = (d1, . . . ,dm) a system ofW -degrees. Then

• the set of regular sequences,

• the set of sequences in Noether position with respect to the variables X1, . . . ,Xm , and

• the set of sequences in simultaneous Noether position w.r.t. the order X1 > · · · > Xm

are Zariski-open subsets of the a�ne space ofW -homogeneous polynomials withW -degree D.
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Chapter 3. Weighted homogeneous systems

This states that the set of regular sequences, sequences in Noether position and sequences
in simultaneous Noether position are Zariski-dense subsets if and only if they are not empty.
Unfortunately, depending on the weights and the weighted degrees, there may exist no regular
sequence, and thus no sequences in (simultaneous) Noether position either. For example, let
W = (2, 5) and D = (4, 8), the onlyW -homogeneous sequence withW -degree D in K[X ,Y ] is
(up to scalar multiplication) (X 2,X 4), and it is not regular. However, this is only the case for
very speci�c systems ofW -degrees for which there does not exist enough monomials to build
non-trivial sequences.

De�nition 3.18. Let m ≤ n be two integers, W = (w1, . . . ,wn) a system of weights, and
D = (d1, . . . ,dm) a system of W -degrees. We say that D is W -compatible if there exists a
regularW -homogeneous sequence in K[X1, . . . ,Xn] withW -degree D. We say that D is strongly
W -compatible if for any 1 ≤ i ≤ m, di is divisible by wi .

Using these de�nitions, we can identify cases where the properties of being regular, in Noether
position or in simultaneous Noether position are generic.

Proposition 3.19. Let m ≤ n be two integers, W = (w1, . . . ,wn) a system of weights, and
D = (d1, . . . ,dm) a system ofW -degrees. For any 1 ≤ i ≤ m, writeWi B (w1, . . . ,wi ) and
Di B (d1, . . . ,di ). WriteAW ,D the a�ne space ofW -homogeneous sequences ofW -degree D. Then
the following statements are true:

1. if D isW -compatible, then regular sequences form a Zariski-dense subset of AW ,D ;

2. if D isWm-compatible, then sequences in Noether position with respect to the variables
X1, . . . ,Xm form a Zariski-dense subset of AW ,D ;

3. if D is stronglyW -compatible, then D isW -compatible,Wm-compatible, and for any i , Di is
Wi -compatible;

4. ifm = n, D isW -compatible andW is reverse chain-divisible, then, up to some reordering of
the degrees, D is stronglyW -compatible.

Proof. The proofs of statements 1 and 2 follow the same technique: by Theorem 3.17, we know
that the sets we consider are Zariski-open inAW ,D . So in order to prove the density, we only need
to prove that they are non empty. Statement 1 is exactly the de�nition of theW -compatibility.

For statement 2, byWm-compatibility, we know that there exists aW -homogeneous sequence
F = (f1, . . . , fm) with W -degree D in K[X1, . . . ,Xm], which is regular. As a consequence,
the sequence (f1, . . . , fm ,Xm+1, . . . ,Xn) is regular, and from the characterization 4 of Noether
position (prop. 1.44), this means that F is in Noether position with respect to the variables
X1, . . . ,Xm .

In order to prove statement 3, let 1 ≤ i ≤ m, we need to exhibit a regular sequences of length
i in K[X1, . . . ,Xi ]. We may choose Fi B (Xd1/w1

1 , . . . ,Xdi /wi
i ), it is regular and each polynomial

lies in K[X1, . . . ,Xi ].
Finally, statement 4 is a consequence of Theorem 3.15. Let W be a reverse chain-divisible

system of weights, and D a W -compatible system of W -degrees. Up to reordering, we can
assume that the polynomials are ordered so that d1 ≥ d2 ≥ · · · ≥ dn ; this does not cancel the
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W -compatibility. Let F = (f1, . . . , fn) be a regular sequence,W -homogeneous withW -degree
D. By Theorem 3.15, there exist polynomials Pi (Xi+1, . . . ,Xn) which areW -homogeneous with
W -degree wi , and such that F , under the change of variables Xi = X ′i + Pi (Xi+1, . . . ,Xn), is in
simultaneous Noether position with respect to the order X ′1 > X ′2 > · · · > X ′n .

From the characterization 4 of Noether position, this means in particular that for any i ∈
{1, . . . ,n}, fi (X1(X ′1, . . . ,X ′i ), . . . ,Xn(X ′1, . . . ,X ′i )) belongs to a regular sequence, and thus is
not zero. By de�nition of reverse chain-divisible weights, itsW -degree di is a sum of multiples
of wi , and so it is itself a multiple of wi . �

Remark 3.20. The statement 4 is a converse of 3 in the reverse chain-divisible case. In the
non-reverse chain-divisible case, that converse is false: letW = (3, 2), D = (6, 5) and consider
F = (X 2 + Y 3,XY ) in K[X ,Y ]. The sequence F is in simultaneous Noether position w.r.t. the
order X > Y , yet 5 is neither divisible by 3 nor by 2.

The weaker converse that if D isW -compatible, then D isWm-compatible is also false: with
the same weights and algebra, let D = (5), the only polynomial withW -degree 5 is (up to scalar
multiplication) f = XY . It is non-zero, so that (f ) is a regular sequence, but (f ,Y ) is not regular,
hence (f ) is not in Noether position w.r.t X .
Remark 3.21. These examples lead to the following attempt at writing a general characterization
ofW -compatibility.

Let n be a positive integer, W = (w1, . . . ,wn) a system of weights, and D = (d1, . . . ,dn) a
system ofW -degrees. Further assume that

• for all i ∈ {1, . . . ,n}, K[X]di , 0

• the formal series

SD,W (T ) =
∏n

i=1(1 −T di )∏n
i=1(1 −T wi )

is a polynomial.

Is D necessarilyW -compatible?
The answer is no: take the system of weightsW = (3, 5, 11), and the system ofW -degrees

D = (165, 19, 19). Note that 165 is the product of the weights, and 19 the sum of the weights.
The series

SD,W (T ) = (1 −T 165) · (1 −T 19) · (1 −T 19)
(1 −T 3) · (1 −T 5) · (1 −T 11) = 1 +T 3 + · · · +T 184

is a polynomial. But atW -degree 19, there are only 2 monomials, namely X1X2X3 and X 3
1X

2
2 ,

and they are not coprime, so we cannot form a regular sequence ofW -degrees (165, 19, 19).
Remark 3.22. Bézout’s bound gives another necessary condition for D to beW -compatible in the
zero-dimensional case. Indeed, if n =m and D isW -compatible, let I be an ideal generated by a
regular sequence ofW -homogeneous polynomials with respectiveW -degree D. Then K[X]/I is
a �nite-dimensional K-vector space, and its dimension is given by

dimK(K[X]/I ) = deg(I ) =
∏n

i=1 di∏n
i=1 wi

.
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Chapter 3. Weighted homogeneous systems

Since this dimension is necessarily an integer,
∏n

i=1 wi divides
∏n

i=1 di .

In the homogeneous case, affine systems were studied by homogenization. In order to be able
to study affine systems with a system of weights, we introduce the following definition:

Definition 3.23. Let F = (f1, . . . , fm) ⊂ K[X1, . . . ,Xn] be a sequence of polynomials, and let
W be a system of weights. We say that F has aW -homogeneous structure if the highestW -degree
components of f1, . . . , fn form a regular sequence.

3.2.5. Characterization of the Hilbert series

LetW = (w1, . . . ,wn) be a reverse chain-divisible system of weights such that wn = 1, and let
D = (d1, . . . ,dn) be a system ofW -degrees, such that for any i ∈ {1, . . . ,n}, di is divisible by all
of the wj ’s. Let R = K[X1, . . . ,Xn] be a polynomial algebra graded with respect toW .

We use the notations below, following [Mor96]:

• δ j =
∑j

i=1(di − wi );
• δ = δn , δ ∗ = δn−1;

• σ = min
(
δ ∗,

⌊
δ
2

⌋ )
, σ ∗ = min

(
δn−2,

⌊
δ ∗
2

⌋ )
;

• μ = δ − 2σ , μ∗ = δ ∗ − 2σ ∗.

Given a formal series S(T ) = ∑∞
d=0 adT

d , we also define

ΔS(T ) =
∞∑
d=0

(ad − ad−1)T d (with the convention a−1 = 0)

= (1 −T ) · S(T )
and

∫
S =

∞∑
d=0

(a0 + · · · + ad )T d =
S(T )
1 −T .

Lemma 3.24. Under the above notations and assumptions, the following properties hold.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ ∗ >
⌊
δ

2

⌋
⇐⇒ dn − δ ∗ ≤ 0

δ ∗ =
⌊
δ

2

⌋
⇐⇒ 1 ≤ dn − δ ∗ ≤ 2

δ ∗ <
⌊
δ

2

⌋
⇐⇒ 3 ≤ dn − δ ∗

(3.5)

σ =

⌊
δ

2

⌋
=⇒ μ = δ [2] ∈ {0, 1} (3.6)

0 ≤ μ < dn (3.7)

dn−1 ≤ dn =⇒ σ ∗ + μ∗ ≤ σ (3.8)
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Proof. The proof of statements (3.5) and (3.7) can be found in [Mor96, Lemma 2.1]. This proof
depends only on the value of wn , and since we assume it to be 1, it is also valid in our setting. It
also proves (3.6) as a side-result.

For the statement (3.8), we proceed by case disjunction on the values of σ .

• If σ = δ ∗:

σ ∗ + µ∗ = δ ∗ − σ ∗ ≤ δ ∗ = σ .

• If σ = bδ/2c, then σ = b(δ ∗ + dn − 1)/2c which implies 2σ = δ ∗ + dn − 1 − µ and
µ = δ [2] ∈ {0, 1} (from statement (3.6)). Now consider the possible values of σ ∗:

– if σ ∗ = bδ ∗/2c, then µ∗ = δ ∗ [2], and thus 2σ = 2σ ∗ + µ∗ + dn − 1 − µ. It implies that
dn − 1 − µ + µ∗ is even. We shall prove that it is greater than or equal to 0.
From statement (3.7), dn − 1 − µ ≥ 0, so if µ∗ = 0, we are done. If µ∗ = 1, by parity
dn − 1 − µ is odd, and thus dn − 1 − µ ≥ 1 = µ∗.
It implies that:

2σ = 2σ ∗ + µ∗ + dn − 1 − µ ≥ 2σ ∗ + 2µ∗;

– otherwise, σ ∗ = δ ∗∗, and in that case

σ ∗ + µ∗ = δ ∗ − σ ∗ = δ ∗ − δ ∗∗ = dn−1 − wn−1

which implies that:

dn − 1 ≥ σ ∗ + µ∗ (since wn−1 ≥ wn and dn−1 ≤ dn)

and

δ ∗ = δ ∗∗ + dn−1 − wn−1 ≥ σ ∗ + µ∗.
So we have:

2σ = δ ∗ + dn − 1 − µ
≥ σ ∗ + µ∗ + σ ∗ + µ∗ − µ .

Recall that µ ∈ {0, 1}, so by parity, 2σ ≥ 2σ ∗ + 2µ∗, hence σ ≥ σ ∗ + µ∗. �

The following theorem describes the shape of the Hilbert series of a zero-dimensional complete
intersection. It states that it is a self-reciprocal (or palindromic) polynomial, that is a polynomial
with symmetrical coe�cients, and that these coe�cients increase at small degrees, then station,
then decrease again. Furthermore, between every strict increase, they reach a step, which has
width wn−1. For an example, see �gure 3.3, where the width of the steps is 3, and the width of
the central plateau is 5.

This is a generalization of a known result in the homogeneous case (Proposition 1.40) which
has been proved for example in [Mor96, prop. 2.2] (we will follow that proof for the weighted
case). The result is simpler in the homogeneous case: there is no such step in the growth of the
coe�cients, and they are strictly increasing, then stationary, then strictly decreasing.
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d

ad

σ = 6 σ + μ = 11 δ = 17

μ = 5

wn−1 = 3

Figure 3.3: Shape of the Hilbert series of a W -homogeneous complete intersection for
W = (3, 3, 1) and D = (9, 6, 3)

Theorem 3.25. LetW = (w1, . . . ,wn) be a reverse chain-divisible system of weights, and D =
(d1, . . . ,dn) a system of degrees such that for any i ∈ {1, . . . ,n}, di is divisible by w1. Consider the

formal series

SW ,D (T ) =
∏n

i=1(1 −T di )∏n
i=1(1 −T wi ) =

δ∑
d=0

adT
d

The series SW ,D is a self-reciprocal polynomial in T (i.e. for any d ≤ δ , ad = aδ−d ) and its

coefficients satisfy the inequalities:

∀d ∈ {0, . . . ,σ − 1}, ad ≤ ad+1

∀d ∈ {σ , . . . ,σ + μ − 1}, ad = ad+1

∀d ∈ {σ + μ, . . . ,δ}, ad ≥ ad+1

Furthermore, if d < σ (resp. d > σ + μ), the coefficients increase (resp. decrease) with steps, and

these steps have width wn−1:

∀d ∈ {0, . . . ,σ − 1}, ad − ad−1

⎧⎪⎨⎪⎩> 0 if wn−1 divides d

= 0 otherwise.

Proof. We adapt the proof from [Mor96, Prop. 2.2] for the homogeneous case to the weighted
case. Up to permutation of the di ’s, we can assume that for any i , di ≥ di−1. We proceed by
induction on n. The result for the case n = 1 is a consequence of the homogeneous case, since
wn = 1.

Let n > 1. Let W
∗
= (w1/wn−1, . . . ,wn−1/wn−1) and D

∗
= (d1/wn−1, . . . ,dn−1/wn−1), and

consider the series

S
∗
� SW ∗,D∗ =

∏n−1
i=1 (1 −T di /wn−1)∏n−1
i=1 (1 −T wi /wn−1) =

δ∑
d=0

a∗dT
d .

Write S
∗

the Hilbert series of F
∗
, with generic coefficient a∗d . The system F

∗
satisfies the

hypotheses of the theorem (from the caracterization 3 of the Noether position 1.44), so by
induction hypothesis, S

∗
has the shape predicted by the theorem.
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The Hilbert series S can be computed from S
∗

with

S(T ) = 1 −T dn

1 −T S
∗(T wn−1) = (1 −T dn ) ·

∫
S
∗(T wn−1),

and so for any d , we have:

ad = a∗d−dn+1 + · · · + a∗d
a′d � ad − ad−1 = a∗d − a∗d−dn

where

a∗d =
⎧⎪⎨⎪⎩
a∗
d

if d = dwn−1

0 otherwise.

This proves that the polynomial is self-reciprocal. Indeed:

aδ−d = a∗δ−d−dn+1 + · · · + a∗δ−d
= a∗d−dn+1 + · · · + a∗d since, by induction hypothesis, S

∗
is self-reciprocal

= ad

To prove the properties regarding the sign of a′
d
= ad − ad−1, we shall consider two cases,

according to the value of dn .

• If dn ≥ δ ∗ + 1, then from statement (3.5) in Lemma 3.24, and the definition of σ and μ,
σ = δ ∗ and σ + μ = dn − 1. Let 0 ≤ d ≤ σ , then d ≤ δ ∗ < dn , so:

a′d = a∗d =
⎧⎪⎨⎪⎩a
∗
d/wn−1

> 0 if wn−1 divides d ;

0 otherwise.

Let d ∈ {σ + 1, . . . ,σ + μ}, that implies that δ ∗ < d ≤ dn − 1, so:

a′d = a∗d = 0 (since δ ∗ is the degree of S∗).

• If dn ≤ δ ∗, then from statement (3.5) again, σ = �δ/2� and μ = δ [2]. Let d ≤ σ . We want
to prove that ad − ad−1 is greater or equal to zero, depending on whether d is divisible by
wn−1. We shall consider two ranges of values for d :

– if d ≤ σ ∗ + μ∗, then d − dn ≤ σ ∗ + μ∗ − dn < σ ∗ (since μ∗ < dn). Recall that
a′
d
= a∗

d
− a∗

d−dn . By hypothesis, dn is divisible by wn−1, and so, either both d and
d − dn are divisible by wn−1, or both are not. Thus,

a′d
⎧⎪⎨⎪⎩> 0 if both d and d − dn are divisible by wn−1

= 0 if neither d nor d − dn is divisible by wn−1;
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– if σ ∗+μ∗ < d ≤ σ , then 2d ≤ 2σ ≤ δ ; by definition, δ = δ ∗+dn−1, sod−dn < δ ∗−d ;
furthermore, δ ∗ − d < δ ∗ − (σ ∗ + μ∗) = σ ∗, so in the end:

d − dn < δ ∗ − d < σ ∗.

Since, by construction, δ ∗ is divisible by wn−1, the same reasoning as before yields
that

a′d = a∗d − a∗d−dn = a∗δ ∗−d − a∗d−dn
and

a′d
⎧⎪⎨⎪⎩> 0 if both δ ∗ − d and d − dn are divisible by wn−1;

= 0 if neither δ ∗ − d nor d − dn is divisible by wn−1.

Still assuming that dn ≤ δ ∗, let now d ∈ {σ + 1, . . . ,σ + μ}. We want to prove that
ad − ad−1 = 0. If μ = 0 there is nothing to prove, so assume that μ = 1 and d = σ + 1. But
then σ + 1−dn = δ −σ −dn = δ ∗ −σ , and so by symmetry, a′

d
= a∗σ+1 −a∗σ+1−dn = 0. �

Remark 3.26. The hypothesis that the weights are reverse chain-divisible is necessary. As a
counter-example, let W = (3, 2, 2) and D = (6, 6, 6). Then the Hilbert series of a complete
intersection ofW -degree D is illustrated in Figure 3.4. It is self-reciprocal, but the coefficients
do not vary as predicted by Theorem 3.25.

The hypothesis that each of theW -degrees should be divisible by w1 is also necessary. As
a counter-example, let W = (4, 2, 1) and D = (8, 8, 2). Then the Hilbert series of a complete
intersection ofW -degree D is illustrated in Figure 3.5: the width of the steps is greater than
wn−1. Furthermore, following the proof, the parameters for this series should be defined by
σ = �δ/2� and μ = δ [2], where δ = 11, so that σ = 5 and μ = 1. However, we cannot reorder
the degrees such that d3 ≥ d2 ≥ d1, and we cannot deduce from statement (3.8) in Lemma 3.24
that σ ∗ + μ∗ ≤ σ : indeed, we have σ = 4 but σ ∗ + μ∗ = 6.

However, the fact that the Hilbert series is self-reciprocal for complete intersections is true
even for general system of weights, and is a consequence of the Gorenstein property of complete
intersections (see [Eis95, Chap. 21]; this property is also central to the proof of Theorem 3.42).

3.3. W -Degree of regularity of regular sequences

3.3.1. Macaulay’s bound in dimension zero

LetW = (w1, . . . ,wn) be a system of weights, and F = (f1, . . . , fm) a regular sequence ofW -
homogeneous polynomials, with respectiveW -degrees d1, . . . ,dm . Further assume that the set
of solutions is zero-dimensional, that ism = n. We denote by I the weighted homogeneous ideal
generated by F .

One can read on the Hilbert series a weighted version of Macaulay’s bound:
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d

ad

Figure 3.4: Hilbert series of a weighted homogeneous complete intersection withW = (3, 2, 2)
and D = (6, 6, 6) — The weights are not reverse chain-divisible.

d

ad

4 > wn−1 = 2

δ = 11σ = 5 σ + µ = 6

Figure 3.5: Hilbert series of a weighted homogeneous complete intersection withW = (4, 2, 1)
and D = (8, 8, 2) — TheW -degrees are not all divisible by w1.

Theorem 3.27 (Macaulay’s bound, weighted case). With the same notations and hypotheses, the
W -degree of regularity of F is bounded by

dreg,W (F ) ≤ ireg(I ) +max{wi} =
n∑
i=1

di − wi +max{wi}. (3.9)

Proof. As in the homogeneous case, since I is zero-dimensional, the Hilbert series is a polynomial
with degree ireg. This means that all monomials ofW -degree greater than ireg are in the ideal,
and as such, that the leading terms of theW -GRevLex Gröbner basis of F need to divide all the
monomials ofW -degree greater than ireg.

Let f ∈ K[X], W -homogeneous with W -degree at least ireg + max{wi} + 1. If it belongs
to a reduced Gröbner basis of I , then none of the proper divisors of his leading term are in
LT(I ), but they necessarily have W -degree at least ireg + 1, so we reached a contradiction.
Hence all polynomials in a reduced W -GRevLex Gröbner basis of I have W -degree at most
ireg +max{wi}. �

In the homogeneous case, this bound is sharp, and is actually reached for generic system,
but it is not true in the weighted case. In particular, it appears that theW -degree of regularity
depends on the order set on the variables (see Table 3.1 for some examples).
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3.3.2. Sharper bound on the degree of regularity

The following theorem is an improvement over the previous bound, under the additional
assumption that the system is in simultaneous Noether position. Recall that this property is
generic, and that for reverse chain-divisible systems of weights, it is always true for regular
sequences, up to a weighted homogeneous change of coordinates.

Theorem 3.28. LetW = (w1, . . . ,wn) be a (not necessarily reverse chain-divisible) system of

weights and D = (d1, . . . ,dn) be a stronglyW -compatible system ofW -degrees. Further assume

that for any j ∈ {2, . . . ,n}, dj ≥ wj−1. Let F = (f1, . . . , fn) be a system ofW -homogeneous

polynomials, withW -degree D, and assume that F is in simultaneous Noether position for the

variable ordering X1 > X2 > · · · > Xn . Then theW -degree of regularity of F is bounded by

dreg,W (F ) ≤
n∑
i=1

(di − wi ) + wn . (3.10)

Proof. We prove this by induction on n. If n = 1, we simply have one W -homogeneous
polynomial to consider, and so dreg,W = d1.

Assume now that n > 1. We consider the system F ∗ defined by:

F ∗ =
�
f1(X1, . . . ,Xn−1, 0), . . . , fn−1(Xn−1, . . . ,Xn−1, 0).

This system is W ∗-homogeneous, for W ∗ � (w1, . . . ,wn−1). From the characterization 3 of
Noether position, the sequence F ∗ is in simultaneous Noether position. As a consequence, the
induction hypothesis applies to F ∗, and theW ∗-degree of regularity of F ∗ is bounded by

dreg,W ∗(F ∗) ≤
n−1∑
i=1

(di − wi ) + wn−1.

Let δ be the degree of the Hilbert series of F , that is δ =
∑n

i=1(di −wi ). We want to prove that
dreg ≤ δ + wn , i.e. that the Gröbner basis of F need not contain any polynomial withW -degree
greater than δ + wn . Equivalently, let μ be a monomial withW -degree d > δ + wn . We will
prove that μ is strictly divisible by a monomial in the initial ideal generated by F .

Write μ = X α
n · μ ′, with μ ′ ∈ K[X1, . . . ,Xn−1], and proceed by induction on α :

• if α = 0, then μ ∈ K[X1, . . . ,Xn−1]. By assumption dn ≥ wn−1, hence:

δ + wn = δ ∗ + wn−1 − wn−1 + dn − wn + wn ≥ d∗reg + dn − wn−1 ≥ d∗reg; (3.11)

and so μ hasW -degree greater than d∗reg. By induction hypothesis, μ is strictly divisible
by a monomial in the initial ideal generated by F ∗.

• If α > 0, then consider μ ′′ = X α−1
n μ ′: it is a strict divisor of μ. Furthermore, since

deg(μ) > δ +wn , then deg(μ ′′) = deg(μ)−wn > δ . Recall that δ is by definition the degree
of the Hilbert series of the ideal generated by F , so μ lies in that ideal. �
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3.3. W -Degree of regularity of regular sequences

Remark 3.29. The hypothesis stating that for any i , di ≥ wi−1 is necessary. For example, let
W = (2, 1), D = (2, 1) and the system F = (X ,Y ) in K[X ,Y ], it is W -homogeneous with W -
degree D and in simultaneous Noether position. This system has Hilbert series 1 (the quotient
vector span is generated by {1}), which has degree δ = 0. But the Gröbner basis of the system
is given by F itself, and contains X , withW -degree 2.

More generally, without that hypothesis, we obtain the following bound for dreg,W (F ):

dreg,W (F ) ≤ max



k∑
i=1

(di − wi ) + wk : k ∈ {1, . . . ,n}


,

and the proof is the same as that of Theorem 3.28, with the weaker induction hypothesis that
dreg,W (F ) ≤ max

�
δ + wn ,dreg,W ∗(F ∗)�, which does not need inequality (3.11).

Remark 3.30. We give examples of the behavior of both bounds in Table 3.1: we give the degree
of regularity of a genericW -homogeneous system ofW -degree D, and show how this degree of
regularity varies if we change the order of the weightsW .

Remark 3.31. Theorem 3.28 gives an indication as to how to choose the order of the variables.
Generically, in order to compute aW -GRevLex Gröbner basis of the system, the complexity
estimates will be better if we set the variables in decreasing weight order.

3.3.3. Conjectured exact formula

While the new bound (3.10) is not sharp in full generality, it is sharp whenever wn = 1. We
conjecture that the sharp formula is the following.

Conjecture 3.32. Let W = (w1, . . . ,wn) be a system of weights, and D = (d1, . . . ,dn) a
strongly W -compatible system of W -degrees. Let F ∈ K[X1, . . . ,Xn] be a generic system
ofW -homogeneous polynomials. Let δ = ∑n

i=1(di − wi ) be the degree of the Hilbert series of
〈F 〉, and let d0 be de�ned as

d0 =



δ + 1 if there exists i such that wi = 1
δ − д otherwise ,

where д is the Frobenius number of W (that is, the greatest W -degree at which the set of
monomials is empty). In other words, d0 is the degree of the �rst “unexpected” zero coe�cient
in the Hilbert series (by de�nition of the degree in the �rst case, and by self-reciprocality of the
Hilbert series in the second case).

Then the degree of regularity of F is the �rst multiple of wn greater than d0:

dreg = wn

⌈
d0
wn

⌉
. (3.12)
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Table 3.1: Macaulay’s bound on the degree of regularity of generic weighted homogeneous
systems

W D dreg Bound (3.9) Bound (3.10)

(3, 2, 1) (6, 6, 6) 13 15 13
(3, 1, 2) (6, 6, 6) 14 15 14
(1, 2, 3) (6, 6, 6) 15 15 15

3.3.4. Positive-dimensional regular sequences

In the positive-dimensional case, the main complexity parameter that we study is the degree
of regularity of the system. Under some Noether position assumptions, the bounds that we
obtained for zero-dimensional systems apply.

As before, given F = (f1, . . . , fm) we de�ne Fext = (f1, . . . , fm ,Xm+1, . . . ,Xn) and θm(F ) =
F (X1, . . . ,Xm , 0, . . . , 0).
Theorem 3.33. Let F = (f1, . . . , fm) be aW -homogeneous polynomial system with respective
W -degree (d1, . . . ,dm). If F is in Noether position with respect to Xm+1, . . . ,Xn , then

dreg ≤
m∑
i=1

(di − wi ) + max
1≤j≤m{wj}.

If F is in simultaneous Noether position with respect to the order X1 > · · · > Xm , then

dreg ≤
m∑
i=1

(di − wi ) + wm .

Proof. The proof is analogous to that of Theorem 2.47. �

3.4. Overdetermined systems

As in the homogeneous case, we want to be able to study systems with more equations than
unknowns. For this purpose, we want to generalize the notion of semi-regularity to the weighted
case.

We will use the same algebraic de�nition as in the homogeneous case (De�nition 1.45).
However, the characterization of Proposition 1.46 does not hold in full generality.

We prove that it does hold in the case of reverse chain-divisible systems of weights however.
We then give some consequences on the degree of regularity of the ideal, and show that Fröberg’s
conjecture is true ifm = n + 1, as in the homogeneous case.

3.4.1. Definition of semi-regularity

Let n andm be two integers,m ≥ n,W = (w1, . . . ,wn) a system of weights, and D = (d1, . . . ,dm)
a system ofW -degrees. Let F = (f1, . . . , fm) be a system ofW -homogeneous polynomials with
W -degree D. For any i ∈ {i, . . . ,n}, write Fi = (f1, . . . , fi ).
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3.4. Overdetermined systems

De�nition 3.34 (Semi-regularity). We say that F is semi-regular if, for any i ∈ {1, . . . ,m} and
for any d ∈ N, the linear map given by the multiplication by fi :

si,d :
�
K[X1, . . . ,Xn]/〈Fi−1〉

�
d

·fi−→ �
K[X1, . . . ,Xn]/〈Fi−1〉

�
d+di

is full-rank (either injective or surjective).
Furthermore, let

SD,W (T ) =
∏m

i=1(1 −T di )∏n
i=1(1 −T wi ) =

∞∑
d=0

adT
d .

We say that F has a semi-regular Hilbert series if the Hilbert series of F is equal to bSD,W (T )c,
that is the series truncated at the �rst coe�cient less than or equal to zero.

The motivation behind these de�nitions is that in the homogeneous case, they are equivalent
(Proposition 1.46):
Proposition 3.35. IfW = (1, . . . , 1), the following conditions are equivalent:

1. the system F is semi-regular;

2. for any 1 ≤ i ≤ n, the system Fi has a semi-regular Hilbert series.

For weighted homogeneous systems, the converse implication (2 =⇒ 1) is still true:
Proposition 3.36. Let F be aW -homogeneous system such that, for any 1 ≤ i ≤ n, the system Fi
has a semi-regular Hilbert series. Then F is semi-regular.

Proof. We prove this by induction on the numberm of polynomials. The initial case ism = n,
and it is a direct consequence of the characterization of a regular sequence.

Assume m > n. Write R∗ = K[X1, . . . ,Xn]/〈f1, . . . , fm−1〉, and for any d ∈ N, consider the
multiplication map

sm,d = R∗d
·fm−→R∗d+dm

Let Km,d = ker(sm,d ). Write S(T ) the Hilbert series of F , ad its coe�cient at degree d , δ its
degree, H (T ) = �∏m

i=1(1 −T di )� / �∏n
i=1(1 −T wi )�, bd its coe�cient at degree d , and S∗(T ), a∗d ,

δ ∗, H ∗(T ) and b∗d their counterparts withm − 1 polynomials. From the exact sequence

0−→Km,d −→R∗d
sm,d−→ R∗d+dm −→Rd+dm −→ 0,

we know that the following identity holds
ad+dm = a∗d+dm − a∗d + dim(Km,d ).

We want to prove that either ad+dm = 0 or dim(Km,d ) = 0. Assume that ad+dm > 0. This means
that d + dm ≤ δ and ad+dm = bd+dm , so:

ad+dm = ad+dm − a∗d + dim(Km,d )
= bd+dm
= b∗d+dm − b∗d by de�nition of H (T )
= a∗d+dm − a∗d since δ ∗ ≥ δ .

Thus Km,d = 0. �
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3.4.2. Characterization with the Hilbert series

In this section, we prove that for reverse chain-divisible systems of weights, semi-regular
sequences have a semi-regular Hilbert series. First, we characterize the shape of semi-regular
Hilbert series, by extending Theorem 3.25 to the overdetermined case.

Theorem 3.37. Letm ≥ n ≥ 0 be two integers. LetW = (w1, . . . ,wn) be a reverse chain-divisible
system of weights, and let D = (d1, . . . ,dm) be a system ofW -degrees such that d1, . . . ,dm are all

divisible by w1. Write

SD,W (T ) =
∏m

i=1(1 −T di )∏n
i=1(1 −T wi ) =

∞∑
d=0

adT
d .

Then there existW -degrees σ , δ such that

∀d ∈ {1, . . . ,σ}, ad ≥ ad−1 (σ1)

aσ > aσ−1 (σ2)

∀d ∈ {σ + 1, . . . ,δ}, ad ≤ ad−1 (σ3)

aδ > 0, aδ+1 ≤ 0. (δ1)

Furthermore, ifm > n, let D∗ = (d1, . . . ,dm−1) and define δ ∗ as above for the series SD∗,W . Then

the following statements hold:

⎧⎪⎨⎪⎩∀d ∈ {δ + 1, . . . ,δ ∗}, ad ≤ 0 if n = 0

∀d ∈ {δ + 1, . . . ,δ ∗ + dm}, ad ≤ 0 if n > 0.
(δ2)

If n > 0, letW ∗ = (w1, . . . ,wn−1), and let δ ′ be the degree of �SD,W ∗(T )�. If n = 0, let δ ′ = 0. Then
the following equality holds

σ = δ ′. (σ4)

Proof. We prove the theorem by induction on n, and for any given n, by induction overm. The
base cases are:

• n = 0, m ≥ 0: then SD,W (T ) = 1 − akT k + O(T k+1) with ak > 0, and we can conclude,
taking δ = 0 and σ = 0.

• n =m > 0: then this is a consequence of Theorem 3.25 (shape of the Hilbert series of a
complete intersection).

Assume thatm > n > 0. Let D∗ = (d1, . . . ,dm−1),W ∗ = (w1, . . . ,wn−1), and write:

S(T ) � SD,W (T ) =
∞∑
d=0

adT
d ;

S∗(T ) � SD∗,W (T ) =
∞∑
d=0

a∗dT
d .
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The derivatives of these series are

ΔS(T ) = SD,W ∗(T ) =
∞∑
d=0

a′dT
d ;

ΔS∗(T ) = SD∗,W ∗(T ) =
∞∑
d=0

a′∗d T
d .

Furthermore, let w = wn−1, W ∗ = (w1/w, . . . ,wn−1/w) and D∗ = (d1/w, . . . ,dn−1/w), and con-
sider the series

ΔS(T ) = SD,W ∗(T ) =
∞∑
d=0

a′dT d ;

ΔS∗(T ) = SD∗,W ∗(T )
∞∑
d=0

a′∗dT d .

In particular,

ΔS(T ) = ΔS(T w) and ΔS∗(T ) = ΔS∗(T w).
All the series S∗, ΔS and ΔS∗ satisfy the induction hypothesis. TheW -degrees for which the

coefficients of S∗ satisfy properties (σ1)-(σ4) and (δ1)-(δ2) are denoted by σ ∗ and δ ∗. We write
σ ′, δ ′, σ ′∗, δ ′∗ the respective values of theW -degrees for which these properties apply to ΔS
and ΔS∗.

From S(T ) = (1 −T dm )S∗(T ), we deduce the recurrence relation

ad = a∗d − a∗d−dm .
Since S∗ satisfies the induction hypothesis, we know that there exists a degree δ such that

⎧⎪⎨⎪⎩
∀d ∈ {0, . . . ,δ} a∗

d
> a∗

d−dm
∀d ∈ {δ + 1, . . . ,δ ∗ + dm} a∗

d
≤ a∗

d−dm .

This proves statements (δ1) and (δ2). As a side result, since a∗
δ
> a∗

δ−dm , we also deduce that

δ − dm < σ ∗. (3.13)

Let σ = δ ′, we prove that it satisfies equations (σ1), (σ2) and (σ3). We need to evaluate the
sign of ad − ad−1, depending on d . The generating series of ad − ad−1 is:

(1 −T )S(T ) = (1 −T ) ·
∏m

i=1(1 −T di )∏n
i=1(1 −T wi ) = ΔS(T ) since wn = 1.

In other words, ad ≥ ad−1 if and only if a′
d
≥ 0, which proves statements (σ1) and (σ2), by

definition of δ ′:

∀d ∈ {0, . . . ,σ}, ad − ad−1 = a′d ≥ 0

aσ − aσ−1 = a′σ = a′δ ′ > 0.
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d

ad

σ = 3 δ = 8

Figure 3.6: Shape of the Hilbert series of a semi-regular W -homogeneous sequence with
W = (3, 3, 1) and D = (12, 9, 6, 6, 3)

To �nish the proof, we need to prove that for any d ∈ {δ ′ + 1, . . . ,δ}, a′d ≤ 0.
From the induction hypothesis (statement (σ4)) applied to S∗, we know that δ ′∗ = σ ∗. More-

over, ∆S satis�es the induction hypothesis, and statement (δ2) yields that:

∀d ∈ {δ ′ + 1, . . . ,δ ′∗}, a′
d
≤ 0.

As a consequence, since σ ∗ = δ ′∗ = wδ ′∗:

∀d ∈ {δ ′ + 1, . . . ,σ ∗}, a′d =



a′
d
≤ 0 if d = wd ;

0 otherwise.
(i)

Now assume that σ ∗ < d ≤ δ . We can write a′d as

a′d = ad − ad−1 = a∗d − a∗d−dm − a∗d−1 + a
∗
d−dm−1

= (a∗d − a∗d−1) − (a∗d−dm − a∗d−dm−1) = a′∗d − a′∗d−dm .

Since ad ≤ a∗d for any d , we necessarily have δ ≤ δ ∗, hence σ ∗ < d ≤ δ ∗. Then, by induction
hypothesis (statement (σ3)), we know that a∗d − a∗d−1 ≤ 0. Additionally, equation (3.13) and
induction hypothesis (statement (σ1)) together yield that a∗d−dm − a∗d−dm−1 ≥ 0, so we conclude
that

∀d ∈ {σ ∗ + 1, . . . ,δ}, a′d ≤ 0. (ii)

Sticking the ranges of statements (i) and (ii) together, we prove statement (σ3) which completes
the proof. �

Using this description of semi-regular Hilbert series, we now prove that for reverse chain-
divisible systems of weights, semi-regular sequences have a semi-regular Hilbert series. As an
illustration, Figure 3.6 shows the coe�cient of a semi-regular Hilbert series. The black dots
correspond to the actual coe�cients, and the gray dots are the coe�cients which were truncated
away.

Theorem 3.38. Letm ≥ n ≥ 0 be two integers,W = (w1, . . . ,wn) be a reverse chain-divisible
system of weights and D = (d1, . . . ,dm) be a system ofW -degrees such that d1, . . . ,dn are all
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divisible by w1. Let F = (f1, . . . , fm) be a system ofW -homogeneous polynomials, with respective

W -degree D.
If F is a semi-regular sequence, then F has a semi-regular Hilbert series.

Proof. We proceed by induction on m. If m = n, then the result is a consequence of the
characterization of regular sequences.

Assume that m > n. We consider the series S(T ) = SD,W (T ) with generic coefficient ad ,
S∗(T ) = SD∗,W (T ) with generic coefficienta∗

d
,H (T ) the Hilbert series of F with generic coefficient

bd , and H ∗(T ) the Hilbert series of F ∗ � (f1, . . . , fm−1) with generic coefficient b∗
d
.

By induction hypothesis, H ∗(T ) = �S∗(T )�. Furthermore, since F is semi-regular, we have the
exact sequence

0−→Km,d −→R∗d
sm,d−→ R∗d+dm −→Rd+dm −→ 0

where R = K[X1, . . . ,Xn]/〈F 〉 and R∗ = K[X1, . . . ,Xn]/〈F ∗〉. As a consequence, for any d ≥ 0,
the coefficient bd satisfies the recurrence relation:

bd+dm = b
∗
d+dm

− b∗d + dim(Km,d )
where either Km,d = 0 or bd+dm = 0. Since sm,d is defined from a space of dimension b∗

d
to a

space of dimension b∗
d+dm

, this can be rephrased as

bd = max
(
b∗d − b∗d−dm , 0

)
.

From Theorem 3.37 applied to S(T ), there exists δ such that

∀d ∈ {0, . . . ,δ}, ad = a∗d − a∗d−dm > 0.

Furthermore, the induction hypothesis shows that there exists a degree δ ∗ such that

∀d ∈ {0, . . . ,δ ∗}, a∗d = b∗d > 0

∀d > δ ∗,b∗d = 0,

and that δ ∗ is defined as in Theorem 3.37. In particular, it implies that δ ∗ ≥ δ .
We shall prove that the Hilbert series H of F is equal to S , truncated at degree δ . Let d ≥ 0:

• if 0 ≤ d ≤ δ ≤ δ ∗:

bd = b
∗
d − b∗dm since d ≤ δ

= a∗d − a∗dm since d ≤ δ ∗

= ad

• if δ < d :

bd = max
(
b∗d − b∗d−dm , 0

)
= 0 since b∗d = 0 and b∗d−dm ≥ 0

And since aδ+1 ≤ 0, this proves that

H (T ) = �S(T )�.
�
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3.4.3. W -degree of regularity of semi-regular sequences

Another consequence of Theorem 3.37 is an explicit value for the degree δ of the Hilbert series
of an ideal de�ned by a semi-regular sequence withm = n + 1 polynomials in n variables. In
the homogeneous case, it is known that this degree is bounded by

δ = min *
,

n∑
i=1

di − n,
⌊∑n+1

i=1 di − n
2

⌋
+
-
.

Proposition 3.39. Let n be a positive integer, andm = n + 1. LetW = (w1, . . . ,wn) be a system
of weights, and F = (f1, . . . , fm) a system ofW -homogeneous polynomials, and assume that the
hypotheses of Theorem 3.38 are satis�ed. For all i ∈ {1, . . . ,m}, let di B degW (fi ). Then the degree
δ of the Hilbert series of 〈F 〉 is given by:

δ = min *
,

n∑
i=1

di −
n∑
i=1

wi ,

⌊∑n+1
i=1 di −

∑n
i=1 wi

2

⌋
+
-
.

Proof. Consider the system of weightsW + = (w1, . . . ,wn , 1), and the series SD,W + as de�ned in
Theorem 3.37. It satis�es the hypotheses of Theorem 3.25, which implies that its coe�cients are
increasing up to degree

σ+ = min *
,

n∑
i=1

di −
n∑
i=1

wi ,

⌊∑n+1
i=1 di −

∑n
i=1 wi

2

⌋
+
-
.

Theorem 3.37 (statement (σ4)) states that the degree δ of the Hilbert series of 〈F 〉 satis�es

δ = σ+,

hence the result. �

In the end of this section, we show how the results from [Bar+05] and [Bar04, Chap. 4] about
the degree of regularity of semi-regular homogeneous sequences can be adapted to the weighted
case.

Theorem 3.40. Let k and n be non-negative integers and let m B n + k . Let w0 and d0 be
non-negative integers such that w0 | d0. Consider the system of n weightsW = (w0, . . . ,w0, 1)
and the system of m W -degrees D = (d0, . . . ,d0). Let F = (f1, . . . , fm) ⊂ A = K[X1, . . . ,Xn]
be a semi-regular sequence of weighted homogeneous polynomials withW -degree D. Then the
asymptotic expansion of theW -degree of regularity dreg of F as n tends to in�nity is given by

dreg = n

(
d0 − w0

2

)
− αk

√
n

(
d2

0 − w2
0

6

)
+O(n1/4).

Remark 3.41. In the non-weighted case, this asymptotic expansion is

dreg = n

(
d0 − 1

2

)
− αk

√
n

(
d2

0 − 1
6

)
+O(n1/4).

Overall, the bound is improved by O(nw0) = O(
∑
wi ).
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Proof. Let I � 〈F 〉. The Hilbert series of A/I is given by

HSA/I (T ) =
⌊ (1 −T d0)m
(1 −T w0)n−1(1 −T )

⌋
.

Write

H (T ) = (1 −T d0)m
(1 −T w0)n−1(1 −T ) =

δ∑
d=0

adT
d ;

H ∗(T ) = (1 −T d0/w0)m−1

(1 −T )n−1
=

δ∑
d=0

a∗dT
d ,

these series are related through

H (T ) = H ∗(T w0) · 1 −T
d0

1 −T = H ∗(T w0) · (1 +T + · · · +T d0−1
)
.

It means for the coefficients that for any d in N:

ad = a∗�d/w0� + · · · + a∗�(d−d0+1)/w0	

If truncated before its first non-positive coefficient, the series H ∗ is the Hilbert series of a
semi-regular 1-homogeneous sequence ofm − 1 polynomials in n − 1 variables, with degree
d0/w0. Let δ ∗ be the degree of this truncated series, so that δ ∗ + 1 is an upper bound for its
degree of regularity. Statement (δ2) of Theorem 3.37 states that:

∀d ∈ {δ ∗ + 1, . . . ,δ ∗ + d0/w0}, a∗d ≤ 0.

Let δ0 � w0δ
∗ + d0, we have

δ ∗ <
δ0 − d0 + 1

w0
≤ δ ∗ + 1

and

δ0

w0
= δ ∗ +

d0

w0
,

and as a consequence

aδ 0 = a∗�δ0/w0� + · · · + a∗�(δ0−d0+1)/w0	 ≤ 0.

In other words, the degree of regularity dreg of F is bounded by

w0δ
∗ < dreg ≤ δ0 = w0δ

∗ + d0.

The degree δ ∗ is the degree of the Hilbert series of a homogeneous semi-regular sequence,
and as such it follows the asymptotic estimates proved in [Bar04, Chap. 4]. For example in our
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setting where k is an integer andm = n + k , the asymptotic expansion of δ ∗ when n tends to
in�nity is given by

δ ∗ + 1 = n d0/w0 − 1
2 − αk

√
n
(d0/w0)2 − 1

6 +O(n1/4)

where αk is the largest root of the k’th Hermite polynomial. 1

As a consequence,

dreg = w0δ
∗ +O(1)

= w0
*.
,
n
d0/w0 − 1

2 − αk
√
n
(d0/w0)2 − 1

6 +O(n1/4)+/
-
+O(1)

= n
d0 − w0

2 − αk

√
n
d2

0 − w2
0

6 +O(n1/4). �

3.4.4. Fröberg’s conjecture

Fröberg’s conjecture states that homogeneous semi-regular sequences are generic among
sequences of �xed degree. The fact that semi-regularity is a Zariski-open condition is a known
fact (the proof is the same as for regularity), so the conjecture states that for any system of
degrees, there exists a semi-regular homogeneous sequence with these degrees.

This conjecture extends naturally to the weighted case. In this case, semi-regularity is still a
Zariski-open condition.

We extend here one known result from the homogeneous case (see for example [RRR91]),
stating that Fröberg’s conjecture is true in characteristic 0 if m = n + 1. We follow the proof
given in [RRR91].

Proposition 3.42. Letm = n + 1,W = (w1, . . . ,wn) a reverse chain-divisible system of weights,
D = (d1, . . . ,dn) a stronglyW -compatible system of degrees, and dn+1 an integer divisible by w1.

Write fn+1 = (X1 + X
w1/w2
2 + · · · + X w1

n )dn+1/w1 .
Then the sequence F B (Xd1/w1

1 , . . . ,Xdn/wn
n , fn+1) is semi-regular.

Lemma 3.43. Let f be a polynomial such that

f · fn+1 = 0 ∈ A = K[X1, . . . ,Xn]/(Xd1/w1
1 , . . . ,Xdn/wn

n ).

Let δ =
∑n

i=1(di − wi ), then we have

degW (f ) ≥ δ − dn+1 + 1
2 .

1In [Bar04, Chap. 4], the remainder O(n1/4) was written as o(√n). However, it appears that in the proof, this o(√n)
is a rewriting of

√
n ·O(√∆z), where ∆z = O(1/√n).
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Proof. If the W -degree of f is 0, this means that (X1 + X
w1/w2
2 + · · · + X w1

n )dn+1/w1
= 0 in A.

Assume that degW (f ) < (δ−dn+1+1)/2, that means that δ − dn+1 + 1 ≥ 1, so δ ≥ dn+1. Consider
the expansion of fn+1. All its coe�cients are nonzero since the base �eld has characteristic 0. Its
support is the set of monomials of degree dn+1. Since dn+1 ≤ δ , dim (K[X]/〈f1, . . . , fn〉)dn+1 > 0,
which means that there exists at least one monomial withW -degree dn+1 which does not lie in
the initial ideal of 〈f1, . . . , fn〉. As a consequence, f is non-zero in the quotient.

Now assume that degW (f ) > 0. Write B = K[X2, . . . ,Xn]/(Xd2/w2
2 , . . . ,Xdn/wn

n ), X = X1,
R = B[X ], d = d1/w1, such that A = R/Xd . Let S = (X + X w1/w2

2 + · · · + X w1
n ), and let F be a

weighted homogeneous polynomial in R with image f in A. By assumption, there exists G ∈ R
such that Sdn+1/w1 · F = G · Xd . Di�erentiate this equality along X to obtain:

mS ′Sdn+1/w1−1F + S (dn+1)/w1F = dG ′Xd−1 +G ′Xd

which gives, modulo Xd−1

Sdn+1−1(mF + SF ′) ≡ 0 [X ]d−1 =⇒ Sdn+1/w1(mF + SF ′) ≡ 0 [X ]d−1

=⇒ Sdn+1/w1+1F ′ ≡mFSdn+1/w1 ≡ 0 [X ]d−1

Since X = X1 has weight w1, F ′ isW -homogeneous withW -degree degW (f ) − w1, and we can
use the induction hypothesis on F ′ [X ] ∈ A and deg(F ) = dn+1 + w1 to deduce:

degW (f ) = degW (F ) = degW (F ′) + 1

≥ (δ − 1) − (dn+1 + 1) + 1
2 + 1

≥ δ − dn+1 + 1
2 . �

Proof of the proposition. The proof given in [RRR91, before prop. 7] still holds in the weighted
case. �

3.5. Algorithms and complexity

3.5.1. Critical pairs algorithms

As said previously, we can compute a Gröbner basis of a weighted homogeneous ideal generated
by a system F by running usual algorithms on homW (F ). The following proposition shows that
this is correct:

Proposition 3.44. Let F = (f1, . . . , fm) be a family of polynomials in K[X1, . . . ,Xn], assumed
to be weighted homogeneous for a system of weightsW = (w1, . . . ,wn). Let <1 be a monomial
order, G the reduced Gröbner basis of homW (F ) for this order, and <2 the pullback of <1 through
homW . Then

1. all elements of G are in the image of homW ;

2. the family G ′ := hom−1
W (G) is a reduced Gröbner basis of the system F for the order <2.

113



Chapter 3. Weighted homogeneous systems

Proof. The morphism homW preserves S-polynomials, in the sense that

S-pol(homW (f ), homW (д)) = homW (S-pol(f ,д)).

Recall that we can compute a reduced Gröbner basis by running the Buchberger algorithm,
which involves only multiplications, additions, tests of divisibility and S-polynomials. Since all
these operations are compatible with homW , if we run the Buchberger algorithm on both F and
homW (F ) simultaneously, they will follow exactly the same computations up to application of
homW . The consequences on the �nal reduced Gröbner basis follow. �

This shows that all pairs-based algorithms (for example Buchberger, F4 and F5) can be made
to take into account a weighted homogeneous structure, simply by wrapping homW around
the algorithm.

3.5.2. Adapting the Matrix-F5 algorithm

In order to study the complexity of algorithm F5, we want to run algorithm Matrix-F5 on a
weighted homogeneous system. Recall that this algorithm works by constructing a matrix of
linear bases of Id incrementally, and does not use critical pairs to guide the reductions.

If we wrap the algorithm with homW , Proposition 3.44 applies and shows that the result is
correct. However, it also states that we can compute a Gröbner basis of 〈homW (F )〉 by working
with S-polynomials in the image of homW , so those rows whose label monomial does not lie in
this image will be e�ectively useless.

There are two equivalent ways around this problem. We can run the algorithm on homW (F ),
only considering monomials in the image of homW for the labels. Or we can adapt Matrix-F5
to use the weighted degree instead of the total degree. We present the second solution.

The only real di�erence is at line 14: if µ hasW -degree d − di , µ/x j hasW -degree d − di − wj
and so the polynomial f comes from a row of the matrix atW -degree d − di − wj + di = d − wj .

Theorem 3.45. Let F = (f1, . . . , fm) be a system ofW -homogeneous polynomials, and let P =∏n
i=1 wi . ThenMatrix-F5(F ,dmax) computes a dmax-Gröbner basis of 〈F 〉 in time

O *
,
dreg

1
P3

(
n + dmax − 1

dmax

)3
+
-
. (3.14)

If dmax ≥ dreg and the monomial order isW -GRevLex, thenMatrix-F5(F ,dmax) computes a Gröbner
basis of F . If F is in Noether position with respect to the variablesXm+1, . . . ,Xn , thendreg is bounded
by

dreg ≤
m∑
i=1

(di − wi ) +max{wj}.

If F is in simultaneous Noether position with respect to the order X1 > X2 > · · · > Xm , then dreg is
bounded by

dreg ≤
m∑
i=1

(di − wi ) + wm .
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Algorithm 3.1 Matrix-F5 (weighted case)
Input: G ⊂ K[X] a truncated Gröbner basis of 〈F 〉 atW -degree dmax
Output: F ⊂ K[X], dmax ∈ N an implicit monomial ordering,W ∈ Nn

1: G ← ∅
2: for d = 0 to dmax do
3: Nd ← number of monomials ofW -degree d
4: Md,0, M̃d,0 ← matrix with 0 rows and Nd columns
5: for i = 1 tom do

6: Md,i ← Md,i−1
7: if d = di then
8: Md,i ← Md,i ∪ row fi with signature (i, 1)
9: else if d > di then

10: for all µ monomial ofW -degree d − di do
11: if µ is not the leading term of a row in M̃d−di ,i−1 then
12: j ← largest j such that X j dividesmu
13: µ ′ ← µ/X j
14: f̃ ← row of M̃d−wj ,i with signature (i, µ ′)
15: Md,i ← Md,i ∪ row X j f̃ with signature (i, µ)
16: end if

17: end for

18: end if

19: end for

20: M̃d,i ← EchelonForm(Md,i )
21: R ← number of rows in Md,i
22: G ← G ∪ {row(M̃d,i , j) | j ∈ {1, . . . ,R}, row(M̃d,i , j) , row(Md,i , j)}
23: end for

24: return G
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Proof. The complexity is computed as in the homogeneous case, in terms of the maximal degree
dmax and the size of the matrices. The size of the matrices depends on the number of monomials
at a givenW -degree, and Proposition 1.19 shows that asymptotically, this number of monomials
is divided by P . The bounds on dreg come respectively from Theorem 3.27 and Theorem 3.28. �

3.5.3. Thin-grained complexity of Matrix-F5

As in the homogeneous case, we wish to obtain sharper complexity bounds. We will show that
the computations of Section 2.5.3 can be carried in a weighted setting.

LetW = (w1, . . . ,wn) be a system of weights, and (f1, . . . , fm) ∈ K[X] a system of weighted
homogeneous polynomials in simultaneous Noether position with respect to the order X1 >
· · · > Xn . Let d1, . . . ,dm be the respectiveW -degrees of the polynomials f1, . . . , fm .

We also denote by:

• Ai = K[X1, . . . ,Xi ], and A = An ;

• Si =
∑i

j=2 wi
gcd(w1, ...,wj )

gcd(w1, ...,wj−1) (see the de�nition of A in Prop. 1.20), and S = Sn ;

• Pi =
∏i

j=1 wj , and P = Pn ;

• Ii = 〈f1, . . . , fi 〉, and I = Im ;

• homW (fj ) = homW (fj );

• homW (Ii ) = 〈homW (f1), . . . , homW (fi )〉, and homW (I ) = homW (Im);

• Di =
∏i

j=1
dj
wj

(with the convention D0 = 0);

• D̃i = deg(homW (Ii )) =
∏i

j=1 dj ;

• d (i)reg the degree of regularity of Fi (or of homW (Fi )) ;

• Gi theW -GRevLex Gröbner basis of Ii as given by Matrix-F5.

With these notation and hypotheses, we are going to prove the following theorem:

Theorem 3.46. The complexity of weighted homogeneous Matrix-F5 algorithm (Algorithm 3.1) is:

CF5 = O
*
,

m∑
i=2

(Di−1 − Di−2)Md (i )
reg,W

(i)Md (i )
reg,W

(n)+
-

= O *.
,

m∑
i=2

Di−1 − Di−2
PiPn

(
i + d (i)reg − 1

d (i)reg

) (
n + d (i)reg − 1

d (i)reg

)
+/
-

As in the homogeneous case, this theorem relies on the structure lemma:

Lemma 3.47 (Structure lemma, weighted case). Let i ∈ {1, . . . ,m}, and д ∈ Gi with signature
(j, µ). Then:
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• j ≤ i

• LT(д) ∈ K[X1, . . . ,Xi ]
• µ ∈ K[X1, . . . ,Xi−1]

Proof. The proof of the homogeneous version of the lemma (Lemma 2.51) does not depend on
the graduation. �

With the structure lemma, we can count the number of polynomials in each intermediate
basis,W -degree byW -degree:

Proposition 3.48. Let (f1, . . . , fm) be aW -homogeneous system in simultaneous Noether position
with respect to the order X1 > · · · > Xn . Let Gi be a reduced Gröbner basis of (f1, . . . , fi ) for the
W -GRevLex monomial ordering, for 1 ≤ i ≤ m. Then the number of polynomials ofW -degree d in
Gi whose leading term does not belong to LT(Gi−1) is bounded by bd,i , de�ned by the generating
series

BW ,i (T ) =
∞∑
d=0

b(W ,i)
d T d = T di

i−1∏
k=1

1 −T dk

1 −T wk
. (3.15)

Proof. The proof of Proposition 2.52 still holds in a weighted setting, substituting formula (3.18)
for the Hilbert series of a weighted homogeneous regular sequence. �

As in Section 2.1.3, we de�ne for any l ≤ n the endomorphism θl of K[X], sending Xi on itself
for i ≤ l and on 0 otherwise. Note that by Proposition 1.44, θl (F ) is still in Noether position for
all l ∈ {1, . . . ,m}.

Theorem 3.49. The complexity of weighted homogeneous Matrix-F5 algorithm (Algorithm 3.1) is:

CF5 = O
*
,

m∑
i=2

∞∑
d=0

b(W ,i)
d+di

NWi ,d+diNW ,d+di
+
-

= O *.
,

m∑
i=2

∞∑
d=0

b(W ,i)
d+di

PiPn

(
d + di + Si

d + di + Si − i + 1

) (
d + di + Si

d + di + Si − n + 1

)
+/
-

(3.16)

Proof of Theorem 3.49. The proof of Theorem 2.54 adapts to a weighted setting: b(W ,i)
d+di

bounds
the number of polynomials reduced with signature (i, •) andW -degree d , NWi ,d bounds the
number of rows used for each reduction at degree d for a polynomial with signature (i, •),
and NW ,d bounds the length of the rows. The second equality follows from the bounds of
Proposition 1.20 on NWi ,d . �

Proof of Theorem 3.46. With the same notations, for any i ∈ {1, . . . ,m}, BW ,i (1) represents
the number of reduced polynomials during the computation of a Gröbner basis of (f1, . . . , fi ).
Equation (3.15) states that BW ,i (T )/T di is the Hilbert series of (θi (f1), . . . ,θi (fi−1)), and so its
value at T = 1 is the degree of that ideal, or Di−1. Therefore we know that the number of
reduced polynomials with label (µ, fi ) is bounded by Di−1 − Di−2.

The rest of the factors are obtained in the same way as in the proof of Theorem 3.49, using
the fact that all polynomials with label (i, •) are reduced at aW -degree bounded by d (i)reg. �
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Figure 3.7: Number of operations needed by Matrix-F5 on a generic [4, 2, 1]-homogeneous sys-
tem with degree [d,d,d]

The behavior of both bounds is shown on Figure 3.7.

3.5.4. FGLM and computational strategy for zero-dimensional systems

Let F = (f1, . . . , fn) ⊂ K[X1, . . . ,Xn] be a zero-dimensional a�ne system. In this situation, we
usually want to enumerate all solutions of the system. As described in Section 2.3.1, one can
generically obtain a triangular description of the solutions from a lexicographical basis of the
ideal, and it can be computed from another Gröbner basis using algorithm FGLM.

Recall from Section 2.5.4 that the complexity of algorithm FGLM mainly depends on the
degree of the ideal. The weighted version of Bézout’s bound implies that at least generically,
applying homW to a zero-dimensional ideal multiplies the number of solutions by the product
of the weights. So wrapping homW around calls to FGLM incurs an additional complexity
factor of ∏

wi .
On the other hand, algorithm FGLM does not need adapting in order to work with systems

with a weighted homogeneous structure: it takes as input a Gröbner basis for any order, in
particular one can use aW -GRevLex basis.

All in all, Bézout’s bound gives the following complexity for FGLM for a weighted system:

Theorem 3.50. The complexity of algorithm FGLM for computing the Gröbner basis of a zero-
dimensional ideal de�ned by (f1, . . . , fn), polynomials with aW -homogeneous structure, and with
respectiveW -degrees (d1, . . . ,dn).

O *
,
n

( ∏n
i=1 di∏n
i=1 wi

)3
+
-
. (3.17)

Experimentally, the improvement of [Fau+14] appears to work for bases for theW -GRevLex
order, so that ω can be taken as the complexity exponent.
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3.5.5. Other algorithms

The gain from the reduced number of monomials applies to other algorithms as well, provided
they are run on homW (F ) if they are only using critical pairs, or use the W -GRevLex order
otherwise.

For example, when computing elimination bases for positive dimensional systems, depending
on the situation, it may be interesting to perform a two-steps computation, or to simply use one
of the direct algorithms with the desired order. In the former case, FGLM cannot be used for the
change of ordering. A common choice in this situation is the Gröbner walk. This algorithm is
much more complex and to the best of our knowledge, does not have good complexity estimates.
However, it involves computing successive Gröbner bases using algorithm F4 or F5 as a blackbox.
As such, assigning weights to a polynomial system will yield similar improvements for the
computing time.

3.6. Experiments

In this section, we present some applications where taking into account the weighted structure
of the system yields speed-ups. For each system, we compare two strategies: the “standard”
strategy consists of computing a Gröbner basis without considering the weighted structure; the
“weighted” strategy is the strategy we described in Section 3.5. For all these examples, we use
a more compact notation for degrees and weights, so that for example, (23, 1) is equivalent to
(2, 2, 2, 1).

3.6.1. Generic systems

First, we present some timings obtained with generic systems, in the complete intersection
(m = n), the positive-dimensional (m < n) and the over-determined (m > n) cases. In all cases,
we �x a system of weightsW = (w1, . . . ,wn) and a system ofW -degrees D = (d1, . . . ,dm), and
we pick at random m polynomials (fi )i=1...m , such that for any i ∈ {1, . . . ,m}, fi has dense
support in the set of monomials withW -degree less than or equal to di .

For zero-dimensional regular sequences, we compute a lexicographical Gröbner basis using a
two-steps strategy in Magma, with algorithm F4 as a �rst step (�rst block of lines in Table 3.2a)
and algorithm FGLM for the change of ordering (Table 3.2b).

For over-determined systems, we compute a Gröbner basis for the GRevLex ordering, using
algorithm F4 from Magma (second block of lines in Table 3.2a).

For positive-dimensional systems, we compute a basis for an elimination order, using a
two-steps strategy with FGb2: �rst we compute a GRevLex basis with algorithm F4 (third block
of lines in Table 3.2a), and then we compute a basis for the wanted elimination order, again
with F4 (Table 3.2c). In this table, the second column describes what variables we eliminate:

2The Gröbner basis algorithms from Magma seem to behave strangely with elimination orders, as seen in the detailed
logs, and it coincides with signi�cant slowdowns. This behavior was not observed on other implementations of
the same algorithms: F4 from FGb and Buchberger from Singular [Singular]. For example, for the system in the
�rst line of table 3.2c, without the weights, with Magma’s F4 algorithm, the �rst degree fall comes at step 4, and
the algorithm needs more than 66 steps to compute the basis. With FGb’s implementation of F4 in Maple, the
�rst degree fall appears at step 13, and the algorithm �nishes at step 32.
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for example, 3 means that we eliminate the �rst 3 variables, while 1→ 3 means that we �rst
eliminate the �rst variable, then the next 2 variables, again resulting in a basis eliminating the
�rst 3 variables.

For algorithm F4 with the GRevLex ordering, the behavior we observe is coherent with the
previous complexity studies: we observe some speed-ups when taking into account the weighted
structure of the system, and these speed-ups seem to increase with the weights. However, the
speed-ups cannot be expected to match rigorously the ones predicted by the complexity bounds,
because the systems are usually not regular for the standard strategy. Experiments also con�rm
that it is more e�ective to order the variables with highest weight �rst.

For the lexicographical ordering with FGLM, we also observe some speed-ups when applying
the weights (we will observe this behavior again in Section 3.6.2). These di�erences are not
explained by the theoretical complexity bounds, since both ideals have the same degree in
each case. However, it appears that the slower FGLM runs are those where the FGLM matrix
is denser, and that this di�erence in density seems to match quantitatively the speed-ups we
observe.

Finally, for elimination bases, the results are similar to what we observed with the GRevLex
ordering: when possible, one should take into account the weights, and order the variables such
that the smallest weights are also the smallest variables. However, when eliminating variables,
the largest variables need to be the ones that should be eliminated. If the variables need to be
ordered such that those with the smallest weights are �rst, in most cases, taking into account the
weighted structure is still pro�table. However, if the smallest weight is on the largest variable
and there is only one such variable, this is no longer true (see for example the second line in
Table 3.2c). Experiments suggest that these systems naturally possess a good weighted structure
for the weights (1, . . . , 1): their construction ensures that every such polynomial of total degree
d will have a large homogeneous component at degree d/2, and the higher degree components
will be small, and divisible by large powers of X1. On the other hand, with weights (1, 2, . . . , 2),
the same polynomial will have a large W -homogeneous component at W -degree d , overall
leading to reductions at higher degree (an example is given in Table 3.3).

We conclude this section with timings illustrating the consequences of the estimates of the
degree of regularity of a system, depending on the order of the variables (Section 3.3.2). For this
purpose, we generate a generic system ofW -degree (604) with weights (20, 5, 5, 1). Then we
compute aW -GRevLex Gröbner basis for the orders X1 > · · · > X4 (smallest weights last) and
for the reverse order X4 < · · · < X1. We give the degree of regularity, the value predicted by
the previous bound (3.9), by the new bound (3.10) and by the conjectured bound (3.12), as well
as the timings. This experiment was run using algorithm F5 from the FGb library, the results
are in Table 3.4.

3.6.2. Discrete Logarithm Problem

Taking advantage of a weighted homogeneous structure has allowed the authors of the ar-
ticle [Fau+13] to obtain signi�cant speed-ups for solving a system arising from the DLP on
Edwards elliptic curves [Gau09]. They observed that the system of equations they had to solve
has symmetries, and rewrote it in terms of the invariants of the symmetry group. For a system
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Table 3.2: Benchmarks with Magma for generic systems

Parameters Without
weights (s)

With
weights (s) Speed-up

n = 8,W = (26, 12), D = (48) 8.0 2.5 3.2
n = 9,W = (27, 12), D = (49) 101.2 12.5 8.1

n = 7,W = (25, 12), D = (815) 31.6 7.5 4.2
n = 7,W = (25, 12), D = (814) 29.0 9.4 3.1
n = 7,W = (25, 12), D = (813) 40.0 12.0 3.3

n = 5,m = 4,W = (24, 1), D = (84) 2.6 0.2 13.0
n = 5,m = 4,W = (1, 24), D = (84) 2.5 0.3 8.3
n = 5,m = 4,W = (13, 22), D = (44) 23.6 0.0 2360.0
n = 5,m = 4,W = (22, 13), D = (44) 407.5 0.0 40 750.0

(a) Benchmarks for the F4 algorithm for the GRevLex ordering

Parameters Degree Without
weights (s)

With
weights (s) Speed-up

n = 8,W = (26, 12), D = (48) 1024.0 500.4 495.0 1.0
n = 9,W = (27, 12), D = (49) 2048.0 11 995.8 7462.1 1.6

(b) Benchmarks for the FGLM algorithm (lexicographical ordering)

Parameters Elim. vars. Without
weights (s)

With
weights (s) Speed-up

n = 5,m = 4,W = (24, 1), D = (84) 1 120.3 12.0 10.0
n = 5,m = 4,W = (1, 24), D = (84) 1 27.6 30.4 0.9
n = 5,m = 4,W = (13, 22), D = (44) 2 146.3 6.9 21.2
n = 5,m = 4,W = (13, 22), D = (44) 1−→ 2 162.0 3.3 49.1
n = 5,m = 4,W = (22, 13), D = (44) 1 >750 0.1 >7500
n = 5,m = 4,W = (22, 13), D = (44) 1−→ 2 NA 0.1 NA
n = 5,m = 4,W = (22, 13), D = (44) 1−→ 2−→ 3 NA 7.9 NA

(c) Benchmarks for the F4 algorithm for elimination

Table 3.3: Size of theW -homogeneous components for a generic polynomial withW0-degree 4
forW0 = (1, 2, 2, 2)

W -degree W = (1, 2, 2, 2) W = (1, 1, 2, 2) W = (1, 1, 1, 1)
0 1 1 1
1 1 2 4
2 4 5 10
3 4 6 4
4 10 6 1
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Table 3.4: Impact of the order of the variables on the degree of regularity and the compu-
tation times (generic weighted homogeneous system with W -degree (604) w.r.t.
W = (20, 5, 5, 1))

Order dreg
Macaulay’s
bound (3.9) Bound (3.15) Conjectured

bound (3.12) F5 time

X1 > X2 > X3 > X4 210 229 210 210 101.9
X4 > X3 > X2 > X1 220 229 229 220 255.5

Table 3.5: Benchmarks with FGb and Magma for DLP systems

System deg(I ) F5 w (s) F5 std (s) Speed-up
for F5

FGLM
w (s)

FGLM
std (s)

Speed-up
for FGLM

DLP Edwards: n = 4,
W = (23, 1), D = (84) 512 0.1 0.1 1.0 0.1 0.1 1.0

DLP Edwards: n = 5,
W = (24, 1), D = (165) 65 536 935.4 6461.2 6.9 2164.4 6935.6 3.2

(a) Benchmarks with FGb

System deg(I ) F4 w (s) F4 std (s) Speed-up
for F4

FGLM
w (s)

FGLM
std (s)

Speed-up
for FGLM

DLP Edwards: n = 4,
W = (23, 1), D = (84) 512 1 1 1.0 1 27 27

DLP Edwards: n = 5,
W = (24, 1), D = (165) 65 536 6044 56 105 9.3 ∞ ∞ NA

(b) Benchmarks with Magma

in n equations, these invariants are

E1 = e1(X 2
1 , . . . ,X

2
n)

E2 = e2(X 2
1 , . . . ,X

2
n)

...

En−1 = en−1(X 2
1 , . . . ,X

2
n)

En = en(X1, . . . ,Xn).

The system they obtained is sparser, but does not have a good homogeneous structure. In
particular, the highest total degree components of the system do not form a regular sequence,
and in practice, a Gröbner basis computation will follow many degree falls.

However, the system had a weighted homogeneous structure for the weights (2, . . . , 2, 1) (only
En has weight 1), with respectiveW -degree (2n , . . . , 2n). The highestW -degree components
forming a sequence in simultaneous Noether position with respect to the order E1 > E2 > · · · >
En , one could compute a Gröbner basis without anyW -degree fall, with complexity bounded
by the estimates (3.14) and (3.17).

This system also illustrates the role of the choice of the system of weights: recall that we
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Figure 3.8: Degree at each reduction step in a run of Algorithm F5 on a DLP system (n = 5,
W = (23, 1), D = (165)

want to avoid degree falls, that is reductions to zero of the highestW -degree components of the
polynomials.

To compare the behavior of the algorithm with the total degree and the appropriateW -degree,
we plotted the degree for each reduction step in a run of algorithm F4 in Figure 3.6.

On the blue curve, any horizontal or downwards segment is a step where the degree is less
than or equal to the degree of the previous step: a degree fall. Indeed, when using the total
degree, the system was not regular in the a�ne sense, and degree falls are to be expected. On
the other hand, the red curve shows the progress of the algorithm when using the weights. It is
an example of a regular run: there is no degree fall.

In this example, the �nalW -degree reached with the weights is exactly twice the �nal degree
reached without the weights, so that the matrices built and reduced have approximately the
same size. But when there are degree falls, evaluating the highest degree reached is not su�cient
for counting the number of steps.
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3.6.3. Polynomial inversion

The polynomial inversion problem consists in �nding polynomial relations between polynomials.
More precisely, given a system of polynomial equations




f1(X1, . . . ,Xn) = 0
f2(X1, . . . ,Xn) = 0

...

fm(X1, . . . ,Xn) = 0 ,

we want to compute all the relations of the form

дi (f1, . . . , fr ) = 0.

One can compute these relations with Gröbner bases by computing an elimination ideal:
consider the ideal generated by the polynomials

T1 − f1(X1, . . . ,Xn)
T2 − f1(X1, . . . ,Xn)

...

Tm − fm(X1, . . . ,Xn)

inR B K[X1, . . . ,Xn ,T1, . . . ,Tm]. OrderR with an elimination order on the variablesX1, . . . ,Xn ,
recall that it is an order such that

mX (X1, . . . ,Xn)mT (T1, . . . ,Tm) <elim m′X (X1, . . . ,Xn)m′T (T1, . . . ,Tm) (3.18)

⇐⇒



mX <X m′X
or
mX =m

′
X andmT <T m′T

for some monomial orders <X and <T . The usual choice is the block-GRevLex order Elimn .
This problem can bene�t from being given a weighted structure [Tra96, sec. 6.1]. For any

i ∈ {1, . . . ,m}, let di be the degree of fi . By setting the weight of Ti to be di , the monomial Ti
becomes part of the highestW -degree component of Ti − fi (X1, . . . ,Xn), giving this equation a
weighted homogeneous structure.

More precisely:

Proposition 3.51. Let f1, . . . , fm be a system of polynomials with respective degree d1, . . . ,dm
in K[X1, . . . ,Xn]. Consider the algebra R B K[X1, . . . ,Xn ,T1, . . . ,Tm], graded with the weights
W = (1, . . . , 1,d1, . . . ,dm), and consider the system F = (T1 − f1(X), . . . ,Tm − fm(X)) in R. Then
the system Fh formed with the highestW -degree components of F is in Noether position with
respect to the variables T1, . . . ,Tm , and in particular it forms a regular sequence.

Proof. By the choice of the weights, the system Fh is de�ned by

Fh = (T1 − f h1 (X), . . . ,Tm − f hm(X)),
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Table 3.6: Benchmarks with Magma on some polynomial inversion systems

System Without
weights (s)

With
weights (s) Speed-up

Cyclic invariants, n = 4 4.2 0.0 140.0
Cyclic invariants, n = 5, k = 12 2612.6 54.7 47.8
Cyclic invariants, n = 5 > 75 000 a 392.7 NA
Cyclic invariants, n = 6, k = 14 32 987.6 2787.7 11.8
Cyclic invariants, n = 6, k = 15 >280 000 a 14 535.4 NA
Dihedral invariants, n = 5 > 70 000 a 6.3 NA

Generic monomials, d = 2, n = 24,m = 48 216.1 0.2 1350.6
Generic monomials, d = 2, n = 25,m = 50 14 034.7 0.1 116 955.8
Generic monomials, d = 2, n = 26,m = 52 14 630.6 0.2 66 502.7
Generic monomials, d = 2, n = 27,m = 54 8887.6 0.2 55 547.5
Generic monomials, d = 3, n = 11,m = 22 370.9 0.1 6181.7
Generic monomials, d = 3, n = 12,m = 24 4485.0 0.2 26 382.4

Matrix minors, n = 5, 7 × 7, r = 3 125.7 93.3 1.3
Matrix minors, n = 6, 7 × 7, r = 3 1941.0 1029.1 1.9
Matrix minors, n = 6, 8 × 8, r = 3 4115.8 2295.8 1.8
Matrix minors, n = 4, 6 × 6, r = 5 612.6 159.2 3.8
Matrix minors, n = 4, 7 × 7, r = 6 8043.3 2126.9 3.8
Matrix minors, n = 4, 7 × 10, r = 7 69 386.1 43 910.1 1.6

a. Memory usage was over 120 GB

(a) First step (F4 for the GRevLex order)

where for any i ∈ {1, . . . ,m}, f hi is the highest degree component of fi . As a consequence, by
the characterization 4 of the Noether position, the system Fh is indeed in Noether position with
respect to the variables T1, . . . ,Tm . �

In Tables 3.6, we present timings for a few systems with this kind of problem:

• group invariants [Stu08]: given a group, compute its fundamental invariants, and then
the relations between these invariants. Since these examples can lead to very long
computations, in some cases, we only compute the relations between the k �rst invariants;

• monomials: given m monomials of degree d in K[X1, . . . ,Xn], compute the relations
between them;

• matrix minors: given a p × q matrix of linear forms in n indeterminates, compute all its
minors of rank r as polynomials in the Xi, j ’s, and compute the relations between them.

In each case, we compute an elimination basis using a two-steps strategy: �rst we compute a
GRevLex basis (Table 3.6a), then we compute the elimination basis (Table 3.6b). In Table 3.6c,
we show some timings for the computation of the elimination basis directly from the input
system. All these experiments were run using algorithm F4 from Magma.

As in the previous section, we plot in Figure 3.9 the degree of each reduction step on a run of
Algorithm F4 for the GRevLex step in �nding the relations between a random set of monomials.
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Chapter 3. Weighted homogeneous systems

System Without
weights (s)

With
weights (s) Speed-up

Cyclic invariants, n = 4 7.0 0.1 70.0
Cyclic invariants, n = 5, k = 12 1683.2 70.7 23.8
Cyclic invariants, n = 5 NA 382.5 NA
Cyclic invariants, n = 6, k = 14 9236.4 1456.0 6.3
Cyclic invariants, n = 6, k = 15 NA 7179.7 NA
Dihedral invariants, n = 5 NA 20.3 NA

Generic monomials, d = 2, n = 24,m = 48 250.3 117.4 2.1
Generic monomials, d = 2, n = 25,m = 50 13 471.2 15 932.9 0.8
Generic monomials, d = 2, n = 26,m = 52 17 599.5 8054.2 2.2
Generic monomials, d = 2, n = 27,m = 54 9681.0 3605.6 2.7
Generic monomials, d = 3, n = 11,m = 22 624.5 199.9 3.1
Generic monomials, d = 3, n = 12,m = 24 9751.6 3060.1 3.2

Matrix minors, n = 5, 7 × 7, r = 3 52.6 66.6 0.8
Matrix minors, n = 6, 7 × 7, r = 3 556.5 779.1 0.7
Matrix minors, n = 6, 8 × 8, r = 3 1257.9 1714.0 0.7
Matrix minors, n = 4, 6 × 6, r = 5 262.7 328.1 0.8
Matrix minors, n = 4, 7 × 7, r = 6 2872.2 4299.8 0.7
Matrix minors, n = 4, 7 × 10, r = 7 4728.4 5485.8 0.9

(b) Second step (F4 for an elimination order)

System Without
weights (s)

With
weights (s) Speed-up

Cyclic invariants, n = 4 4.0 0.3 13.3
Cyclic invariants, n = 5, k = 12 2705.8 73.4 36.9
Cyclic invariants, n = 5 > 90 000 b 370.0 >243
Cyclic invariants, n = 6, k = 14 35 922.4 2256.2 15.9
Cyclic invariants, n = 6, k = 15 >300 000 b 7426.7 >40
Dihedral invariants, n = 5 > 40 000 b 18.5 >2162

Generic monomials, d = 2, n = 24,m = 48 216.5 110.9 2.0
Generic monomials, d = 2, n = 25,m = 50 31 135.2 16 352.2 1.9
Generic monomials, d = 2, n = 26,m = 52 14 919.2 8142.8 1.8
Generic monomials, d = 2, n = 27,m = 54 5645.8 4619.0 1.2
Generic monomials, d = 3, n = 11,m = 22 370.1 193.1 1.9
Generic monomials, d = 3, n = 12,m = 24 4527.2 2904.6 1.6

Matrix minors, n = 7, 7 × 7, r = 3 41 220.0 26 340.0 1.6
Matrix minors, n = 7, 8 × 8, r = 3 48 000.0 18 060.0 2.7
Matrix minors, n = 8, 8 × 8, r = 3 711 690.0 390 235.0 1.8
Matrix minors, n = 4, 6 × 6, r = 5 613.9 325.4 1.9
Matrix minors, n = 4, 7 × 7, r = 6 8059.4 3955.5 2.0
Matrix minors, n = 4, 7 × 10, r = 7 71 067.8 32 721.5 2.2
b. Memory usage was over 120 GB.

(c) Direct strategy
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Figure 3.9: Degree at each reduction step in a run of Algorithm F4 on a polynomial inversion
systems (relations between 50 monomials of degree 2 in 25 variables)

Once again, using the weighted degree instead of the total degree makes the system regular
in the a�ne sense, and there is no degree falls with the weighted degree. In this case, this
newly found regularity also makes the �nal degree reached much smaller, which justi�es the
ridiculous speed-ups that we observed on this class of systems (second block in Table 3.6a).
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Chapter 4

Real root classification for determinants
Application to contrast optimization

The results presented in this chapter are extracted from a joint work with Bernard Bonnard, Jean-
Charles Faugère, Alain Jacquemard and Mohab Safey El Din. They have been published in [Bon+16].

In this chapter, we consider the algorithmic problem of classifying the singularities of real
parameterized determinantal systems. This problem has direct applications, for example in
contrast optimization for Nuclear Magnetic Resonance imagery. In its most general setting, this
example is out of reach of existing implementations of algorithms for real roots classi�cation
problems. We describe a computational strategy re�ning these classic tools in order to take
advantage of the structure of determinantal systems. The new algorithm is able to �nd the
classi�cation for the general case of the contrast optimization problem.

4.1. Introduction

Real roots classification and determinantal systems In this chapter, we consider a real
roots classi�cation problem for determinantal ideals. A real roots classi�cation problem can
be stated as follows: let V be an algebraic variety in Cn × Ct , where the n �rst coordinates are
variables and the t last are parameters, and let B be a real semi-algebraic set in Rn × Rt . Let
π : Cn × Ct −→Ct . The goal of roots classi�cation is to subdivide Rt into areas where the
cardinality of the �bers of the restriction of π to V ∩ B ⊂ Rn+t is constant. More precisely, we
want to �nd connected open subsets C1, . . . ,Cs ⊂ Rt for the Euclidean topology such that:

1. C1 ∪ · · · ∪Cs is dense in Rt

2. For any i ∈ {1, . . . , s}, there exists ci ∈ N such that for any g ∈ Ci , #(V ∩B ∩ π−1(g)) = ci .
Obviously, this can only be done if the generic �ber of π on V ∩ B is �nite.

Here, the variety V shall be a determinantal variety, as de�ned in Section 1.5. To �x the
notations, letM be ak×k matrix whose coe�cients are polynomials inQ[X1, . . . ,Xn ,G1, . . . ,Gt ].
As above, let π : Cn × Ct −→Ct .

Fix r ∈ {1, . . . ,k − 1}. Let Vr be the r ’th determinantal variety associated with M (that is the
set of points of Cn+t at which M has rank at most r ), and V the union of the singular locus of
Vr and of the critical points of π restricted to Vr .
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Oxygenated
blood

Deoxygenated
blood

Figure 4.1: Contrast optimization: both pictures were taken using the same setup of two tubes,
the inner one containing deoxygenated blood and the outer one containing oxy-
genated blood. The left-hand picture is the picture obtained with no contrast op-
timization; the right-hand picture is contrast-optimized by saturating the inner
sample.

Recall from Proposition 1.92 that generically, this variety is Vr−1, and it is equidimensional
with dimension n + t − (k − r + 1)2. Further assume that

n = (k − r + 1)2,

so that generically, V is t-equidimensional. In this case, generically, there exists a Zariski-open
set O ⊂ Ct such that V ∩ π−1(g) is a non-empty �nite set for any g ∈ O.

As before, let B be a real semi-algebraic set in Rn ×Rt , and assume that:

1. B has non-empty interior (for the euclidean topology)

2. the projection π restricted to V ∩ B is proper.

We want to design an algorithm for the roots classi�cation problem specialized to V ∩ B.

Application to contrast optimization This problem arose from a control theory study of
the dynamics of contrast optimization in Nuclear Magnetic Resonance (MNR) imaging.

Nuclear Magnetic Resonance (NMR) is a powerful tool in medical imagery. In order to
distinguish two biological matters on a picture, it is required to optimize the contrast between
the two matters. Because of its importance in medical sciences, this contrast imaging problem
has received a lot of attention. The pioneering work of [Bon+12] has established geometric
optimal control techniques as a major tool for designing optimal control strategies for the
problem of improving the contrast.

These strategies depend on the biological matters under study. In NMR imagery the main
physical parameters involved are the longitudinal and transversal relaxation times of each
matter. This approach is formalized in [Bon+13], and it leads to a real root classi�cation problem
for a determinantal system, where the size of the matrix is k = 4 and the number of variables is
n = 4.

The number of parameters is initially 4: the longitudinal and the transversal relaxation times,
for 2 biological matters. Because the system is homogeneous and physical constraints ensure
that the parameters are nonzero, we may set one of them to 1, reducing the problem to t = 3. An
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important particular case is when one of the matters is water; then the corresponding relaxation
times are equal, and the number of parameters is t = 2.

We also mention that the optimal control problems in [Chy+15] lead to algebraic classi�cation
problems with similar structures.

State of the art The modeling through an optimal control problem is introduced in [Bon+13].
The so-called Bloch modeling and saturation method for tackling this problem is developed
therein.

In [Bon+13], four experimental important cases are studied (all parameters of the classi�cation
problem are �xed). Among other properties, it has been observed there that the number of
singularities is constant when water is involved. This led to the following questions:

1. Is this number of singularities preserved for any choice of second matter?

2. If not, how many di�erent classes of pairs of matters can we distinguish through the
analysis of those singularities?

Answering these questions leads to the real root classi�cation problem described above. Symbolic
computation techniques are good candidates to solve them.

Properties of Cylindrical Algebraic Decomposition (CAD) adapted to a given polynomial
family allow to solve real root classi�cation problems. Hence the CAD algorithm [Col75] can
be used in our context. However, the complexity of computing a CAD is doubly exponential in
the number of variables ([BD07; DH88]); its implementations are usually limited to non-trivial
problems involving 4 variables and cannot tackle our application.

The complexity of computing a CAD can be much improved when taking into account
equational constraints (see e.g. [McC99]). In the context of real root classi�cation problems,
this leads us to take advantage of the presence of equations to compute closed sets in the
parameter space (Rt using our notation) containing the boundaries of the regions C1, . . . ,C` ,
hence substituting the recursive (doubly exponential) projection steps of CAD with more
involved projection techniques. In the past ten years, several works have focused on this
problem [LR07; YHX01] using various computer algebra tools such as Gröbner bases, regular
chains, etc. We also mention [RT15] which uses evaluation/interpolation techniques to compute
those closed sets in the parameters space.

While the implementation of [YHX01] is able to solve our classi�cation problem for the case
of water, none of the implementations were able to classify the singular locus ofV in the general
case (the number of parameters is 3).

Our strategy is based on those of [LR07] and [YHX01], adapted to the determinantal case:
by exploiting properties of sets de�ned by minors of matrices with polynomial entries, we can
obtain a more regular behavior for the algorithms. As such, our strategy is less general than
existing ones, but is able to compute the partition of the parameter space in the general case.

Such structures have been used for computing sample points in each connected component of
the real trace of determinantal varieties [HNS15b; HNS15c; HNS16] or for solving linear matrix
inequalities [HNS15a]. These works are based on dedicated strategies for computing critical
loci of some projections restricted to determinantal varieties. Such computations are naturally
related to real root classi�cation problems and real quanti�er elimination (see e.g. [HS12]).
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Finally, the computations rely on Gröbner bases. Several works have focused on design-
ing strategies improving the regularity of Gröbner basis computations on determinantal sys-
tems [FSS13], and in particular when computing singular and critical loci of determinantal
varieties [FSS12; Spa14]. These strategies involve modelling the problem using incidence vari-
eties instead of minors.

Main results The main results of this chapter are twofold:

• an algorithm solving the special real root classi�cation problem described above and
which exploits the determinantal structure of the input data arising in contrast imaging
problems;

• its successful use for solving the challenging application to contrast problem in the general
case.

We start by describing our algorithmic contribution. Recall that we are given a matrix, denoted
by M , with polynomial entries. As in [HNS15a; HNS15b; HNS15c; HNS16], it is based on splitting
computations according to the rank of M .

More precisely, in order to solve the real root classi�cation problem, we need to identify
where the number of real solutions inside B of the determinantal system describing V changes
depending on the values of the parameters. In particular, this problem involves inequalities
de�ning a semi-algebraic set with non-empty interior. In this context, we use standard tools
from real geometry, such as Thom’s �rst isotopy lemma, which reduce our classi�cation problem
to computing the singular points of V , the critical points of the projection of the parameter
space restricted to V , and the intersection of V with the boundary of the semi-algebraic set B.

This computation may be di�cult because generically, the variety Vr has singularities corre-
sponding to points where rank(M) < r (Proposition 1.92). Hence, observe that the variety V is
naturally split according to the rank of M . This is the very basic idea on which our algorithm
relies: we compute critical loci of the projection on the parameter space restricted to the variety
V by distinguishing those points at which M has rank less than r from those at which M has
rank exactly r .

Our algorithms need to compute projection of algebraic sets, which is done using elimination
algorithms such as Gröbner bases or triangular sets for example. We have performed experiments
for both these tools, using the package FGb ([Fau10]) in Maple and an implementation of F5
([Fau02]) for Gröbner bases, and using the package RegularChains ([LMX05]) in Maple for
triangular sets.

Regarding the contrast imaging problem, we illustrate the behaviour of our algorithm in the
case of water (t = 2), giving the whole classi�cation. Using Gröbner bases to perform the elimi-
nations, the computation takes 10 s on an 2 GHz Intel Xeon CPU. The RealRootClassification
command of the Maple RegularChain library needs 1600 s to �nd this classi�cation.

We also ran our algorithm on the general case (t = 3). While none of the available imple-
mentations is able to tackle this classi�cation problem directly, ours can �nd the polynomials
separating the open sets Ci within 4 h using FGb, or 2 min using F5, and the projection step of
the CAD can be done in 4 h. We see similar speed-ups when using triangular sets to perform
the elimination.
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This illustrates how our dedicated algorithms take advantage of the special structure of the
problem, to achieve speed-ups when compared with more general techniques.

We give an overview of the results at the end of the chapter1. The source code is also given
in Appendix A.2.

Structure of the chapter In Section 4.2, we present the mathematical background around
NMR imagery and the contrast problem. Section 4.3 deals with the dedicated classi�cation
algorithm. Finally, in Section 4.4, we report on experimental results obtained when solving the
application to the contrast imaging problem.

4.2. Modeling the dynamics of the contrast optimization

The model we describe below has been introduced in [Bon+12] in order to apply techniques
from geometric optimal control theory to the control of the spin dynamics by NMR. Up to some
normalization, each spin 1/2 particle is governed by the Bloch equation




ẋ = −Γx + uyz
ẏ = −Γy − uxz
ż = γ (1 − z) + uxy − uyx ,

where the state variable q = (x ,y , z) represents the magnetization vector which must lie in the
Bloch ball de�ned by |q| ≤ 1, and the parameters (Γ ,γ ) are related to the physical relaxation
times. The parameters must also satisfy 2Γ ≥ γ > 0. The control u = (ux ,uy ) represents the
magnetic �eld whose magnitude is bounded by a maximum value µ.

In the context of the contrast imaging problem, this leads to the simultaneous control of
two non-interacting spins with di�erent relaxation time parameters. The contrast by saturation
method consists in bringing the magnetization vector of the �rst spin toward the center of
the Bloch ball while maximizing the modulus of the magnetization vector of the other matter.
The matter with a zero magnetization is black on the picture, while the other matter with a
maximum modulus of the magnetization vector is bright.

Using the symmetry of revolution [Bon+13] which allows to eliminate one state variable for
each matter, we obtain the system




ẏ1 = −Γ1 y1 − ux z1
ż1 = γ1 (1 − z1) + ux y1

ẏ2 = −Γ2 y1 − ux z2
ż2 = γ2 (1 − z2) + ux y2,

|u| ≤ µ (4.1)

and the optimal control problem is: starting from the equilibrium point N = ((0, 1), (0, 1)),
saturate the �rst spin, that is q1(T ) = 0, where T is the transfer time while maximizing |q2(T )|2,
where |q2(T )| represents the �nal contrast. It is a standard Mayer problem in optimal control. It
has been studied in [Bon+12] through the analysis of the Hamiltonian dynamics given by the
Pontryagin Maximum Principle [Pon+62]. We summarize this analysis below.

1The full results, together with the source code which produced them are available at: mercurey.gforge.inria.fr

133

mercurey.gforge.inria.fr
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Writing (4.1) as q̇ = F (q) + uG(q), |u| ≤ µ, the optimality conditions associated with the
Maximum Principle lead us to construct the optimal solution as a concatenation of bang-arcs
and singular arcs. Bang-arcs are de�ned by setting the control to u = ±µ, and singular arcs are
solutions us of Xe = F + usG. In the latter case, the control us is the rational fraction −D ′/D
with

D = det(F ,G, [G, F ], [[G, F ],G])
D ′ = det(F ,G, [G, F ], [[G, F ], F ]),

where [ , ] denotes the Lie bracket of vector �elds. Explicitly, with di = γi − Γi (i ∈ {1, 2}),

D = det



−Γ1y1 −z1 − 1 d1z1 − Γ1 2d1y1
−γ1z1 y1 d1y1 −2d1z1 + Γ1 − d1
−Γ2y2 −z2 − 1 d2z2 − Γ2 2d2y2
−γ2z2 y2 d2y2 −2d2z2 + Γ2 − d2



.

The localization of the singularities of {D = 0} inside the Bloch ball is important to understand
the geometry of the hypersurface, as well as the dynamics of the vector �eld Xe which is closely
linked to the presence of such singularities.

4.3. Algorithm

4.3.1. Classification strategy

We consider the polynomial algebra Q[X,G] with variables X = (X1, . . . ,Xn) and parameters
G = (G1, . . . ,Gt ). Let F andH be families of polynomials in Q[X,G]. LetVR = VR(F ),V = VC(F )
be the set of zeroes of F in Rn+t and in Cn+t respectively. Let B be the closed semi-algebraic set
de�ned by H :

B = {(x, g) ∈ Rn+t | ∀h ∈ H ,h(x, g) ≤ 0},

and let B0 =
⋃

h∈H VC(h). Let π : Cn+t −→Ct be the projection onto the a�ne space with
coordinates G. Let sing(V ) be the singular locus of V , crit(π ,V ) be the set of critical points of π
restricted to V , and K(π ,V ) = π (sing(V ) ∪ crit(π ,V )) ∩Rt .

Given a subset A of a real or complex a�ne space, A and ∂A are used to denote the closure
and the boundary of A for the Euclidean topology respectively.

Assume that the following hypotheses are satis�ed:

H 1. There exists a nonempty Zariski-open subset O1 of Ct such that for all g ∈ O1, the �ber
V ∩ π−1(g) is a nonempty �nite subset of Cn+t ;

H 2. The restriction of the projection π to B is proper (De�nition 1.81);

H 3. The intersection V ∩ B0 has dimension at most t − 1 in Cn+t ;

H 4. The variety V is equidimensional of dimension t .
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We want to �nd a non-zero polynomial P ∈ Q[G] such that, on each connected component
U of Rt rVR(P), for g ∈ U , the cardinality of V ∩ B ∩ π−1(g) does not depend on g.

In Lemma 4.1, we describe a well-known strategy for computing these objects (see for exam-
ple [LR07; YHX01]).

Lemma 4.1. Let F and H be polynomial systems satisfying hypothesesH 1,H 2,H 3 andH 4. Let
CB = π (V ∩ B0), U a non-empty connected open subset of Rt which does not meet CB ∪ K(π ,V ),
and g ∈ U . Then V ∩ π−1(g) is �nite, and for any g′ ∈ U , #

�
V ∩ π−1(g′)� = #

�
V ∩ π−1(g)�.

Proof. We will construct a Whitney strati�cation of V ∩ B ([BCR98, Def. 9.7.1]) with certain
properties. First note that sinceV is t-equidimensional by hypothesisH 4,V has real dimension
at most t (Proposition 1.60). Let S=t be the intersection of the points where VR has local
dimension t and of the interior of B. There exists a Whitney strati�cation (Si ) of the semi-
algebraic set V ∩ B such that S=t is the union of strata of dimension t ([BCR98, Th. 9.7.11]). Let
S<t be the union of the other strata, they all have real dimension less than t . By construction,
this is a semi-algebraic set which is the union of (V ∩ ∂B) ⊂ (V ∩ B0) and of the singular locus
of V ∩ B, and it has dimension less than t (using hypothesisH 3 for V ∩ B0). Its image through
π has dimension less than t , and so it has codimension at least 1.

Now consider S=t . By hypothesisH 1, for any g ∈ O1, π−1(д) ∩V is non-empty, hence π (V )
contains the non-empty Zariski-open set O1 ⊂ Ct . The intersection O1 ∩ Rt is a non-empty
Zariski-open set of Rt , contained in π (V ), hence π (V ) ∩ Rt has real dimension t . Let U0 be
its interior. The subset S=t ∩ π−1(U0) is a locally closed semi-algebraic set. If it is empty, then
there is nothing to prove. Otherwise, by construction it has dimension t ; and the projection π
restricted to this subspace is proper, by hypothesisH 2. Thom’s isotopy lemma (Theorem 1.82)
states that for any nonempty connected open set U of Rt not meeting K(π ,V ), and for any
g ∈ U , there exists a semi-algebraic di�eomorphism

h = (h0,π ) : V ∩ B ∩ π−1(U ) ∼−→ π−1(g) ×U .

By hypothesis H 1, if U is nonempty, π−1(g) is �nite, and the cardinality of the �bers is
constant on U . �

So in order to compute the wanted decomposition of the parameter space, it su�ces to
compute a polynomial P ∈ Q[G] such that V (P) covers π (V ∩ B0) and K(π ,V ).

4.3.2. The determinantal problem

Let k be an integer greater than 1, r0 ∈ {1, . . . ,k − 1}, and

n = (k − r0 + 1)2. (4.2)

Let t ∈ N, and let M(X,G) be a k × k matrix with polynomial entries in n variables X =
(X1, . . . ,Xn) and t parameters G = (G1, . . . ,Gt ). As before, let π : Cn+t −→Ct be the projection
onto the a�ne space with coordinates G.
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д
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π
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V

P1
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P3

Figure 4.2: Roots classification using Thom’s isotopy lemma: we classify the points of the д
axis according to the cardinality of the fibers of π restricted to V ∩ B. The points
where this cardinality may change are the projections of P1, P2 and P3: P1 is in the
intersection ofV and the boundary of B, P2 is a critical point of π restricted toV and
P3 is a singular point of V .

Let {h(X,G) ≤ 0 | h ∈ H} be a system of inequalities, with H ⊂ Q[X,G]. We will consider
determinantal varieties associated with M , as defined in Section 1.5: for any r ∈ {0, . . . ,k}, we
define the variety

Vr = {(x, g) ∈ Cn+t | rank(M(x, g)) ≤ r},
and let V−1 = ∅ by convention. Furthermore, we define the constructible set V=r = Vr �Vr−1,
that is the set of points at which the matrix M has rank exactly r .

Let V be the union of the singular locus of Vr0 and of the set of critical points of π restricted
to Vr0 . In other words,

π (V ) = K(π ,Vr0).
We want to classify the cardinality of the real fibers by π of the semi-algebraic set

V ∩ {(x, g) | ∀h ∈ H ,h(x, g) ≤ 0}.
Assume that V and H satisfy hypothesesH 1,H 2,H 3 andH 4. Further assume that:

H 5. There exists a non-empty Zariski-open subset O2 ⊂ Ct such that

V ∩ π−1(O2) = Vr0−1 ∩ π−1(O2)
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H 6. For any r ∈ {0, . . . ,k − 1}, the ideal de�ned by the (r + 1)-minors of M is radical;

H 7. For any r ∈ {0, . . . ,k − 1}, the variety Vr is equidimensional with dimension n + t − (k −
r + 1)2.

By Proposition 1.92, these properties are generic. Furthermore, hypothesisH 7 implies hypothe-
sisH 4 (by de�nition (4.2) of n), and generically it implies hypothesesH 1.

In following subsections, we will describe two algorithms DeterminantCritVals and Deter-
minantBoundary, which, given such a matrix M , a target rank r0 and inequalities H , compute
respectively a polynomial whose zeroes cover K(π ,V ), and a polynomial whose zeroes cover
π (V ∩ B0). By Lemma 4.1, the zeroes of the product of these polynomials will subdivide the
parameter space into connected components where the cardinality of real �bers is constant.
These algorithms are probabilistic, because they will rely on the choice of generic linear forms
to ensure linear independence. However, the algorithms could be made deterministic by testing
that these linear forms are generic enough for our purpose, and repeating the random draw
otherwise.

The algorithms will also need to compute the projection of algebraic sets onto coordinate
subspaces. For this purpose, we assume that we are given a routine Elimination, which, given a
system of polynomials F ⊂ Q[V1, . . . ,VN ] and a set of variables V′ ⊂ {V1, . . . ,VN }, computes a
system of generators of 〈F 〉 ∩Q[V′]. Such a routine can be implemented using Gröbner bases
or regular chains, for example.

4.3.3. Incidence varieties

We decompose the problem depending on the rank of the matrix. For that purpose, we use
incidence varieties, as de�ned in Section 1.5.3.

Recall that the incidence variety of rank r associated with M is the variety Vr ⊂ Cn+t ×
(Pk−1(C))k−r de�ned by:

M ·


y1,1 . . . y1,k−r
...

...

yk,1 . . . yk,k−r


=



0 . . . 0
...

...

0 . . . 0


(4.3)

with the additional condition that the matrix (yi, j ) has rank k − r .
Let (u1,1, . . . ,uk−r,k ) ∈ Ck (k−r ), we de�ne the varietyV ′r,u as the intersection ofVr and the

complex solutions of



u1,1 . . . u1,k
...

...

uk−r,1 . . . uk−r,k


·



y1,1 . . . y1,k−r
...

...

yk,1 . . . yk,k−r


= Idk−r , (4.4)

this encodes that the matrix (yi, j ) has rank k −r and it �xes an a�ne chart for the homogeneous
coordinates of the columns of (yi, j ).

In the rest of Section 4.3, Fr,u denotes the union of Equations (4.3) and (4.4).
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Proposition 4.2. Let r1 = r0 − 1. Let φ : V′r1,u
−→Ct be the projection onto the affine space

with coordinates G. Assuming that hypothesesH 1 toH 7 hold, there exists a Zariski-open subset

U ⊂ Ck (k−r1) such that if u ∈ U ∩Qk(k−r1), K(π ,Vr1) = K(φ,V′r1,u).
Proof. Let P = (x, g, y) ∈ V′r1,u

.
IfM(x, g) has rank less than r1, then by Proposition 1.91, (x, g) ∈ sing(Vr1), hence g ∈ K(π ,Vr1).
SinceM(x, g) has rank less than r1, its kernel L1 has dimension at leastk−r1+1. Equations (4.4)

encode that the vectors yi given by the columns of matrix (yi, j ) generate a r1-dimensional vector
space L2. So there exists y0 ∈ L1 ∩ L2, and for all a ∈ C, (x, g, y1 + ay0, y2) belongs to the fiber
above (x, g) inVr1 . So this fiber has dimension at least 1, while the generic fiber has dimension
0 by hypothesis H 1. So (x, g) is a critical value of the projection of Vr1 onto Rn+t , hence
(g) ∈ K(φ,V′r1,u

).
So we may assume that M(x, g) has rank exactly r1. There is a r1 × r1 submatrix A of M(x, g)

which is invertible, without loss of generality we may assume that it is the top-left r1 × r1

submatrix. In an open neighborhood of (x, g), V=r1 is described by the vanishing of the entries
of M/A, that is the determinants of the (r1 + 1) × (r1 + 1) submatrices containing A. The same
computations as in the proof of Lemma 1.100 give the following equations describingV′r1,u

in
the open neighborhood of (x, g, y) where Δ = det(A) does not vanish:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
M/A = 0

Y(2) = (U(2) −U(1)A−1B)−1

Y(1) = −1
Δ
A−1BY(2)

(4.5)

and the truncated Jacobian matrix in (X,Y) of this system can be written⎡⎢⎢⎢⎢⎢⎣
JacX(M/A) 0 0
� Id(k−r1)2 �

� 0 Idr1(k−r1)

⎤⎥⎥⎥⎥⎥⎦
where JacX(M/A) is the truncated Jacobian matrix in X of the (k − r1)2 entries of M/A, which
define Vr1 � {(x, g | Δ = 0)} in Cn+t . By hypothesis H 6, the ideal defined by the entries of
M/A, which is a subideal of the ideal of all (r1 + 1)-minors of M , is radical. Since the Schur
complement appears by multiplication with invertible matrices with entries in the localized
ring Q[X, g]Δ (using the same notations as in the proof of Lemma 1.100):[

Idr1 0
−C Idk−r1

]
·
[
A−1 0
0 Idk−r1

]
·M =

[
Idr1 A−1B
0 M/A

]
,

Equations (4.5) describe the localization of 〈Fr1,u〉 in Q[X, g]Δ , so this ideal is radical as well. So
we can use the Jacobian criterion on Vr1 near (x, g) and onV′r1,u

near (x, g, y). Both Jacobians
matrices have the same rank and both varieties have the same local codimension (k − r1)2 (by
Lemma 1.100 and hypothesisH 7), so

K(π ,V=r1) ∩ φ(V′r1,u
) = K(φ,V′r1,u

) ∩ π (V=r1)
The image φ(V′r1,u

) ∩ π (V=r1) is a Zariski-open subset Ou of π (V=r1). It remains to prove that
if u is sufficiently generic, then all irreducible components of K(π ,V=r1) meet this open subset.
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Let C1, . . . ,Ca be these irreducible components, and let

(x1, g1) ∈ π−1(C1), . . . , (xa , ga) ∈ π−1(Ca).

For any (x, g) ∈ V=r1 , the proof of [HNS15b, Prop. 4, Sec. 6] shows that there exists a non-empty
Zariski-open subsetU(x,g) ⊂ Ck (k−r1) such that if u ∈ U(x,g)∩Qk (k−r1), then (x, g) ∈ Ou; namely,
U(x,g) is the set of u such that

rank
[
M(x, g)
(ui, j )

]
= k .

Taking the �nite intersection of the non-empty Zariski-open subsetsU(xi ,gi ) for i ∈ {1, . . . ,a}
yields the wanted subsetU . �

4.3.4. Locus of rank exactly r0

Recall that by H 5, π (V ∩ V=r0) has codimension at least 1, and that we want to compute a
polynomial whose zeroes cover K(π ,V ) and π (V ∩ B0). So we may multiply the result by the
equation of one hypersurface covering π (V ∩V=r0), it will naturally cover π (V ∩V=r0)∩K(π ,V )
and π (V ∩V=r0) ∩ π (V ∩ B0).

Algorithm 4.1 RankExactly

Input: M ⊂ Q[X,G]k×k , r0 ∈ {1, . . . ,k − 1}
Output: P1 ∈ Q[G]r {0} s.t. π (V ∩V=r0) ⊂ V (P1)

1: res← 1
2: FV ,0 ← {(r0 + 1)-minors of M}
3: J ← JacX(FV ,0)
4: FV ,1 ← FV ,0 ∪ {(k − r0)2-minors of J}
5: Pick at random u1, . . . ,uk (k−r0) = u ∈ Qk (k−r0)

6: F0 ← Fk−r0,u
7: {M1, . . . ,MN }← {r0-minors of M}
8: for i in {1, . . . ,N } do

9: F1 ← F0 ∪ FV ,1 ∪ {M1, . . . ,Mi−1,u · Mi − 1}
10: G ← Elimination(F1, {u,X,Y})
11: Multiply res by 1 polynomial from G
12: end for

13: return res
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4.3.5. Singularities

Algorithm 4.2 DeterminantCritVals

Input: M ⊂ Q[X,G]k×k , r0 ∈ {1, . . . ,k − 1}
Output: Pc ∈ Q[G]r {0} s.t. K(π ,V ) ⊂ V (Pc )

1: res← RankExactly(M, r0)
2: Pick at random u1, . . . ,uk (k−r0+1) = u ∈ Qk (k−r0+1)

3: F0 ← Fr0−1,u
4: J ← JacX,Y(F0)
5: F1 ← F0 ∪ {k(k − r0 + 1) + (k − r0 + 1)2-minors of J}
6: G ← Elimination(F1, {X,Y})
7: Multiply res by 1 polynomial from G
8: return res

Proposition 4.3. Algorithm DeterminantCritVals is correct.

Proof. By de�nition, V ⊂ Vr0 . Using the decomposition Vr0 = V=r0 ∪Vr0−1, we decompose the
variety V as V =

�
V ∩V=r0

� ∪ �
V ∩Vr0−1

�
.

The subspace π (V ∩ V=r0) is covered by the output of RankExactly, so we may restrict to
V ∩Vr0−1, which is the whole variety Vr0−1 by Lemma 1.91.

By Proposition 4.2, in order to compute K(π ,Vr0−1), we can compute polynomials whose
zeroes cover K(φ,V ′r0−1,u) with u su�ciently generic instead.

By hypothesesH 6,H 7 and the proof of Proposition 4.2,V ′r0−1,u is t-equidimensional and
Fr0−1,u is a set of generators of its ideal, so we can use the Jacobian criterion to compute
equations de�ning K(φ,V ′r0−1,u). �

4.3.6. Boundary

Algorithm 4.3 DeterminantBoundary

Input: M ⊂ Q[X,G]k×k , r0 ∈ {1, . . . ,k − 1},H ⊂ Q[X,G]
Output: Pb ∈ Q[G]r {0} s.t. π (V ∩ B0) ⊂ V (Pb )

1: res← RankExactly(M, r0)
2: Pick at random u1, . . . ,uk (k−r0+1) = u ∈ Qk (k−r0+1)

3: F0 ← Fr0−1,u
4: for h in H do

5: F1 ← F0 ∪ {h}
6: G ← Elimination(F , {X,Y})
7: Multiply res by 1 polynomial from G
8: end for

9: return res

Proposition 4.4. Algorithm DeterminantBoundary is correct.
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Proof. As in Section 4.3.5, we write: V =
�
V ∩V=r0

� ∪ �
V ∩Vr0−1

�
. Since B0 =

⋃
h∈H V (h), the

intersection V ∩ ∂B is contained in the union of the varieties V (〈F 〉 + 〈h〉) for h ranging over H ,
and the equation of the projections can be obtained with polynomial elimination. �

Remark 4.5. For the real root classi�cation problem, the subdivision is given by the product of
the outputs of DeterminantCritVals and DeterminantBoundary. In order to avoid repeating
computations, we may skip the call to RankExactly in either subroutine (but not both), and
initialize res to 1 instead.

4.4. The contrast problem

4.4.1. The case of water

With the notations of Section 4.2, the variety V is the complex algebraic variety de�ned by

D =
∂D

∂y1
=
∂D

∂y2
=
∂D

∂z1
=
∂D

∂z2
= 0.

With the notations of Section 4.3, we want to classify the singularities of the set of points where
M has rank at most r0 = 3. Our semi-algebraic constraints are that the solutions are within the
Bloch ball, that is

B :



h1 = y
2
1 + (z1 + 1)2 ≤ 1

h2 = y
2
2 + (z2 + 1)2 ≤ 1.

Since the equations are homogeneous in Γ1, Γ2,γ1,γ2, and the parameters are supposed to be non-
zero, we may normalize by setting γ1 = 1. In the case where the �rst matter is water, we further
simplify by setting Γ1 = γ1 = 1, leaving free the two parameters Γ2,γ2 corresponding to the
second matter. We recall that we also assume that 2 Γ2 ≥ γ2 and that (γ2, Γ2) , (1, 1) = (γ1, Γ1)
(that is, the second matter is not water).

This system satis�es hypothesesH 1 toH 7.

Theorem 4.6. Consider the 9 polynomials:

f1 = Γ2 − 1
f2 = 3 Γ2 − 2γ2 − 1
f3 = 3 Γ 2

2 − 5 Γ2γ2 + γ
2
2 + 2 Γ2 − 2γ2 + 1

f4 = 2 Γ 2
2 − 5 Γ2γ2 + 2γ 2

2 − 2 Γ2 + 3γ2

f5 = 2γ 3
2 − (3 Γ2 + 11)γ 2

2 +
�
9 Γ2 + 6 − 3 Γ 2

2
�
γ2 + 2 Γ2 (Γ2 + 2) (Γ2 − 1)

f6 = Γ2 − 2γ2 + 1
f7 = 2 Γ2 − γ2 − 1
f8 = γ2 − 2 + Γ2

f9 = 2 Γ 2
2 − 5 Γ2γ2 + 2γ 2

2 + 1

The zeroes of their product divide the subset of R2 de�ned by 2 Γ2 > γ2 > 0 into connected
components where the cardinality of VR ∩ π−1(γ2, Γ2) is constant.
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Figure 4.3: Curves involved in the de�nition of the semi-algebraic set G. Sample points marked
with a blue diamond (resp. a green circle) are points in G−1 ∪ G+1 (resp. G−2 ∪ G+2 ).
Parameters in the red area are physically irrelevant.

Letψ : (y1, z1,y2, z2) 7−→ (−y1, z1,−y2, z2) be the symmetry �xing Π = {y1 = y2 = 0}, and let
us consider the semi-algebraic sets (see Figure 4.3):

G−1 = {γ2 < 2 Γ2, Γ2 < 1, f2 > 0, f4 < 0},
G+1 = {γ2 < 2 Γ2, Γ2 > 1, f2 < 0, f4 > 0},
G−2 = {Γ2 < 1, f6 > 0, f3 < 0},
G+2 = {Γ2 > 1, f6 < 0, f5 > 0},
G = G−1 ∪ G+1 ∪ G−2 ∪ G+2 .

Theorem 4.7. For all (γ2, Γ2) such that 2 Γ2 > γ2 > 0, the center O of the Bloch ball B is a
singularity of {D = 0}. And provided (γ2, Γ2) ∈ G, there exist at most two other singularities:

1. provided (γ2, Γ2) ∈ G−1 ∪ G+1 there is one other singularity lying on Π ∩ B;
2. provided (γ2, Γ2) ∈ G−2 ∪ G+2 there are two other singularities in B,ψ -symmetric, outside Π .

The con�guration is illustrated in Figures 4.3 and 4.4. Observe that the number of singularities
inside B is an invariant of the contrast problem. Two of the pairs of biological matters studied
in [Bon+13], water-cerebrospinal �uid (normalized parameters [γ2 =

5
4 , Γ2 =

25
3 ]) and water-fat

(normalized parameters [γ2 =
25
2 , Γ2 = 25]) correspond to points outside G, and their invariant

is 1 in both cases (see Figure 4.4). But our results give answers to our guiding questions: there
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Figure 4.4: Positions of the parameters corresponding to the pairs water-cerebrospinal �uid
(red circle) and water-fat (red square) and the set G (with the same conventions as
in Figure 4.3).

exist pairs of matters for which this algebraic invariant can di�er; and any pair (water,matter)
belongs to one of 3 classes, depending on whether the number of singularities inside B is 1, 2
or 3.

Proof of Theorem 4.6. Let V=3 = {p ∈ C4 × R2 | rank(M) = 3} and V2 = {p ∈ C4 × R2 |
rank(M) < 3}, where p = (y1,y2, z1, z2,γ2, Γ2). We apply the strategies described in Section 4.3.

We study the generic caseV2∩V �rst. This set does cover a dense subset of R2. Its intersection
with the boundary of B is given by the vanishing of either h1 or h2. The projection on (Γ2,γ2)
of the set of points of V2 ∩ V such that h1 = 0 is described by 0 = γ2 f

2
1 f2 f3 which gives us

polynomials f1, f2 and f3.
The projection on (Γ2,γ2) of the set of points of V2 ∩ V such that h2 = 0 is described by

0 = (2 Γ2 − γ2) f 2
1 f4 f5 which gives us new polynomials f4 and f5.
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System RegularChain
(direct)

Gröbner
(direct)

RegularChain
(new algo.)

FGb
(new algo.) F5 (new algo.) CAD

Water 1600 s 100 s 10 s 1 s 50 s
General >24 h >24 h 90 × 200 s 46 × 200 s 110 s 4 h (projection step)

Table 4.1: Timings

Next, we consider the incidence varietyV2 associated with the matrix M :

M ·



λ1,1 λ1,2
λ2,1 λ2,2
λ3,1 λ3,2
λ4,1 λ4,2



=



0 0
0 0
0 0
0 0



with random linear equations ensuring that the matrix (λi, j ) has rank 2.
Out of the surface γ2 = 0, this a�ne variety is a complete intersection (it has dimension 2

and it is given by 9 equations in 11 variables, including the saturation by γ2). The set of critical
values of π is described by 0 = (2 Γ2 − γ2) (Γ2 + 1)f 2

1 f
2

6 f
2

7 which gives us new polynomials f6
and f7 (Γ2 + 1 has no solutions within our constraint range).

This completes the study of V ∩V2. We now move on to the study of V ∩V=3. As described
in the algorithm, we de�ne the incidence variety of rank 3 of M , and we saturate successively
by the 3-minors of M . Only the �rst of these subcases is nonempty, and it is described by
0 = (2 Γ2 − γ2) f8 f9 which gives us f8 and f9. �

Proof of Theorem 4.7. Observe �rst by means of a trivial evaluation that O is a singularity of
{D = 0}. We now focus on singularities in B∗ = B r {O}. Theorem 4.6 provides a list of 9
polynomials to which we add our constraints 2 Γ2 ≥ γ2 > 0. Let ξ = γ2 Γ2 (γ2 − 2 Γ2)

∏9
i=1 fi .

The complementary of {ξ = 0} is the union of a sequence of connected open semi-algebraic
sets where the number of singularities is constant. The routine CylindricalAlgebraicDecompose
of the Maple package RegularChains[SemiAlgebraicSetTools] provides 1533 sample points.
Excluding those at which ξ vanishes and those outside our physical constraints domain, remains
a set Kc of 548 points. At each point of Kc we locate the singularities by computing a Gröbner
basis.

We get 165 points of Kc such that there exists at least one singularity in B∗. We have a set Ks
of 37 points, each of them corresponding to a couple ofψ -symmetric singularities outside the
symmetry plane Π , and a set Kp of 128 points corresponding to a unique singularity on Π ∩ B∗.
For parameters at which ξ does not vanish, the number of singularities in B∗ is at most two.

Points of Ks (resp. Kp ) are represented in green (resp. blue) in Figures 4.3, 4.5 and 4.6. Let us
evaluate on Kc the condition (Γ2 < 1, f2 > 0, f4 < 0) or (Γ2 > 1, f2 < 0, f4 > 0). Indeed the set
of points of Kc satisfying this condition coincides with Kp . This proves item 1. The proof of
item 2 is similar. �

144



4.4. The contrast problem

Fig. 4.4
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Figure 4.5: The curves involved in the decomposition of the region Γ2 > 0,γ2 > 0, 2 Γ2 ≥ γ2 of
the parameter space (with the same conventions as in Figure 4.3)
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Figure 4.6: Decomposition of the parameter space near (1, 1) (with the same conventions as in
Figure 4.3).
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4.4.2. The general case

The varietyV and the semi-algebraic set B are de�ned as in the previous section. We normalize
again by γ1 = 1, we assume that 2 Γ1 ≥ 1, 2 Γ2 ≥ γ2 > 0, (γ2, Γ2) , (1, Γ1), and that Γ1 , 1,
Γ2 , γ2 (case of water).

Theorem 4.8. Splitting the subset of R3 de�ned by 2 Γ2 > γ2 > 0 and 2 Γ1 > 1 into open subsets
where the number of real singularities of V in the �bers is constant, can be done by cutting out 12
irreducible surfaces, consisting of 5 planes, 3 quadrics, two surfaces of degree 9 and one of degree 14.

These polynomials were obtained by applying the algorithms from Section 4.3 to our system.
The elimination steps were done using both Gröbner bases with FGb or with F5, and with
triangular sets with RegularChains. Table 4.1 presents some timings for these methods (for
computations done with interpolation, we give the results as a × b where a is the interpolation
degree and b the time taken for each specialized computation).
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Appendix A

Source code

A.1. Magma source code for Matrix-F5 (Chapters 2 and 3)

A.1.1. Algorithm Matrix-F5

File F5Mtx.m

// load "F5_comptes_clean.m";

// *** Aux functions

// ****** General purpose

function Status (Calc)

// String representing the current status of the calculation, in a

// very short way. It is meant to be used in verbose output.

res := Sprintf("[%o](n=%o)", Cputime(), Calc‘n);

return res;

end function;

function SortedMonomialsOfWeightedDegree(P,d)

// Returns the sequence of monomials of W-deg d, sorted with

// decreasing order

M := MonomialsOfWeightedDegree(P,d);

l := IndexedSetToSequence(M);

Sort(~l); // Inc. order

Reverse(~l); // Reversion for dec. order

return l;

end function;

function DReg (F)

// Computes the theoretical degree of regularity of F

D := [Degree(f) : f in F];

res := &+[d-1 : d in D] +1;

return res;

end function;

function MinVariableDividing(mu)
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// Returns the smallest variable dividing monomial mu

// /!\ Smallest variable = Highest index /!\

P := Parent(mu);

e := Exponents(mu);

i := Max([i : i in [1..#e] | e[i] ne 0 ]);

x := Parent(mu).i;

return x;

end function;

function LeadingMonomialOrZero(f)

// Same as LeadingMonomial, but returns 0 instead of an error

// if f=0

if f eq 0 then

return 0;

else

return LeadingMonomial(f);

end if;

end function;

function PolynomialToMatrixRow(f,Columns,N)

P := Parent(f);

R := BaseRing(P);

Coefs,Mons := CoefficientsAndMonomials(f);

M := ZeroMatrix(R,1,N);

/* printf "Mons : %o\nColumns : %o\n\n", Mons, Columns; */

for c in [1..#Coefs] do

i := Columns[Mons[c]];

M[1,i] := Coefs[c];

end for;

return M;

end function;

function MatrixRowToPolynomial(L,Monomials)

P := Parent(Monomials[1]);

res := P!0;

for i in [1..NumberOfColumns(L)] do

res +:= L[i]*Monomials[i];

end for;

return res;

end function;

function MtxInsertRow (M,L,l)

M2 := VerticalJoin(M,L);

return M2;

end function;

function MtxAddRow (M,c,i,j)

// M[j] <- M[j] + c*M[i]

M2 := AddRow(M,c,i,j);
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return M2;

end function;

function MtxMultiplyRow (M,c,i)

// M[i] <- c*M[i]

M2 := MultiplyRow(M,c,i);

return M2;

end function;

procedure PrintDebug (s)

if GetVerbose("Groebner") ge 3 then

print s;

end if;

end procedure;

function RescalePoly(f)

if f eq 0 then

return f;

else

c := LeadingCoefficient(f);

f2 := (1/c)*f;

return f2;

end if;

end function;

// ****** Declarations and functions for signatures

// Record format for polynomials and their signatures

Sig := recformat

<mu, // The signature itself

i : Integers(), // The base polynomial

row : Integers(), // The row in the matrix

valbefore : RngMPolElt,

valafter : RngMPolElt,

d : Integers(), // The degree of the associated GB poly

log_redlist, // The list of the indices reducing this one

LTbefore, // Leading term of the associated polynomial

LTafter,

LTfromGB

>;

function SigCreate (i,f,row)

P := Parent(f);

s := rec <Sig |>;

s‘mu := P!1;

s‘i := i;

s‘row := row;

s‘valbefore := f;

s‘valafter := s‘valbefore;

151



Appendix A. Source code

s‘d := Degree(f);

s‘log_redlist := [];

s‘LTbefore := LeadingMonomialOrZero(f);

s‘LTafter := s‘LTbefore;

s‘LTfromGB := s‘LTbefore;

return s;

end function;

function SigEqual (s1,s2)

return (s1‘i eq s2‘i) and (s1‘mu eq s2‘mu);

end function;

function SigMultiplyByVar (s,v,row)

// INPUT :

// s : signature

// v : variable

// row : row

// OUTPUT :

// Signature of v*s, with row row

PrintDebug(Sprintf("Multiplying by %o the signature %o\n",v,s));

res := s;

res‘mu := v*s‘mu;

res‘valbefore := v*s‘valafter;

res‘valafter := res‘valbefore;

res‘log_redlist := [];

res‘row := row;

res‘LTbefore := v*s‘LTafter;

res‘LTafter := res‘LTbefore;

res‘d := 1 + s‘d;

PrintDebug(Sprintf("Result : %o\n",res));

return res;

end function;

function SigUpdate (s,Calc)

// Update the value of s anywhere it appears in Calc

mu := s‘mu;

d := s‘d;

i := s‘i;

l := s‘row;

Calc‘SigsFromMons[i][mu] := s;

Calc‘SigsFromRows[d][l] := s;

return Calc;

end function;

// ****** Specific aux functions

function F5_InsertRow(s,Calc)

// Do what is necessary to insert the row defined by

// signature s into the calculation Calc.
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// It means :

// - inserting the row in the matrix

// - inserting the signature in the list of indices

// - updating the current and last row

vprintf Groebner,3 :

"Inserting the row defined by %o\ninto the calculation%o\n\n",

s, Calc;

f := s‘valbefore;

i := Calc‘i_current;

d := Calc‘d_current;

row := Calc‘row_current;

mu := s‘mu;

MatrixRow := PolynomialToMatrixRow(f,Calc‘Columns[d],Calc‘N[d]);

Calc‘M[d] := MtxInsertRow(Calc‘M[d],MatrixRow,Calc‘row_current);

Calc‘SigsFromMons[i][mu] := s;

Calc‘SigsFromRows[d][row] := s;

Calc‘lastrow[d][i] := Calc‘lastrow[d][i] +1;

Calc‘row_current := Calc‘row_current +1;

col := Calc‘Columns[d][s‘LTbefore];

if not IsDefined(Calc‘Pivots[d],col) then

Calc‘Pivots[d][col] := row;

end if;

return Calc;

end function;

function F5_Criterion (s, Calc)

// Returns true iff the signature s defines a polynomial

// which should be added to the matrix.

//

// Criterion : true iff the monomial part of s is not a

// leading term in the matrix at degree d-di and for the

// i-1’th polynomial

mu := s‘mu;

d_di := Degree(mu); // d_di = d_current - di

i := Calc‘i_current;

try

res := (mu notin Calc‘Crit[d_di][i-1]);

catch e

res := true;

end try;

return res;

end function;

function F5_EchelonForm (Calc : Full := false)

// Computes the row-echelon form as required by the F5 algorithm

// (no row or column swapping)

vprintf Groebner,3 : "Reduction to echelon form of matrix\n%o\n\n",

Calc‘M[Calc‘d_current];
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Comp := (assigned Calc‘OpCntRed);

d := Calc‘d_current;

i := Calc‘i_current;

M := Calc‘M[d];

N := Calc‘N[d];

if i eq 1 then firstrow := 1;

else firstrow := Calc‘lastrow[d][i-1] +1;

end if;

lastrow := Calc‘lastrow[d][i];

Pivots := Calc‘Pivots[d];

for row in [firstrow..lastrow] do

s := Calc‘SigsFromRows[d][row];

LTinit := s‘LTbefore;

colinit := Calc‘Columns[d][LTinit];

col := colinit;

leadingcol := colinit;

donetop := (row eq Pivots[colinit]);

donefull := donetop;

while (col le N) and (not donefull) do

if (M[row][col] ne 0) then

if (IsDefined(Pivots,col)) and Pivots[col] lt row then

Append(~s‘log_redlist,Pivots[col]);

M := MtxAddRow(M,-M[row][col],Pivots[col],row);

if Comp then

nop := NumberOfNonZeroEntries(M[Pivots[col]])

-1;

Calc‘OpCntRed +:= nop;

end if;

elif not donetop then

leadingcol := col;

Pivots[leadingcol] := row;

donetop := true;

if not Full then

donefull := true;

end if;

end if;

end if;

col +:= 1;

end while;

try

M := MtxMultiplyRow(M,1/M[row][leadingcol],row);

catch e;

end try;

s‘valafter := MatrixRowToPolynomial(M[row],Calc‘Monomials[d]);

s‘LTafter := Calc‘Monomials[d][leadingcol];

if s‘LTafter ne s‘LTbefore then

s‘LTfromGB := s‘LTafter;

end if;

Calc := SigUpdate(s,Calc);
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end for;

Calc‘Pivots[d] := Pivots;

Calc‘M[d] := M;

PrintDebug(Sprintf("Result :\n%o\n",M));

return Calc;

end function;

function F5_GBCriterion (s,Calc)

// INPUT :

// - s : signature Calc : state of the computation

// OUTPUT :

// - res : boolean stating if we should add the

// polynomial associated to that signature to the Groebner

// basis

res := (((assigned s‘LTafter)

and (s‘LTafter ne s‘LTbefore))

or ((Calc‘i_current eq 1)

and (s‘mu eq 1)));

return res;

end function;

function F5_ReduceGBMatrix(Calc : Full := false)

// Reduce the Groebner basis in the matrix

Comp := (assigned Calc‘OpCntRed);

for d in [1..Calc‘dreg] do

M := Calc‘M[d];

firstrow := 1;

lastrow := NumberOfRows(M);

N := NumberOfColumns(M);

Pivots := Calc‘Pivots[d];

for row in [firstrow..lastrow] do

reduced_p := false;

s := Calc‘SigsFromRows[d][row];

if s‘LTafter ne s‘LTbefore then // Element of the GB

col := Calc‘Columns[d][s‘LTafter]+1;

while (col le N) do

if (M[row][col] ne 0)

and IsDefined(Pivots, col)

and (Full or Pivots[col] gt row)

then

reduced_p := true;

M := MtxAddRow(M,-M[row][col],Pivots[col],row);

if Comp then

nop:=NumberOfNonZeroEntries(M[Pivots[col]])

-1;

Calc‘OpCntInterRed +:= nop;

end if;

end if;
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col +:= 1;

end while;

// Update the value:

s‘valafter := MatrixRowToPolynomial(M[row],

Calc‘Monomials[d]);

Calc := SigUpdate(s,Calc);

if reduced_p then

vprintf Groebner,2: "%o -> %o -> %o\n",

s‘LTbefore, s‘LTafter,

LeadingTerm(s‘valafter);

end if;

else // See if the original one was reduced

sig := s‘LTafter div s‘LTfromGB;

d0 := Degree(s‘LTfromGB);

row0 := Calc‘Pivots[d0][Calc‘Columns[d0][s‘LTfromGB]];

M[row] := PolynomialToMatrixRow(

MatrixRowToPolynomial(Calc‘M[d0][row0],

Calc‘Monomials[d0])

*sig,

Calc‘Columns[d],N)[1];

end if;

end for;

Calc‘M[d] := M;

end for; // for d

return Calc;

end function;

// *** Main function

// Record containing information about the F5 run. See the

// initialization step in function F5_Mtx for explanations of the

// fields.

Calculation := recformat<F,

m,

n,

dreg,

D,

quadratic,

LTGB,

NonCrit,

M,

Mtilde,

Monomials,

Columns,

Crit,

SigGB,
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SigsFromMons,

SigsFromRows,

ReducedSigs,

Pivots,

N,

allMonomials,

lastrow,

i_current,

d_current,

row_current,

SigFromLT,

LTFromSig,

OpCntRed, OpCntInterRed, OpCntTot>;

function F5_Mtx (F : dreg := DReg(F),

bound := func<s | "">,

Full := false,

InterRed := false,

FullInterRed := Full and InterRed,

Comp := false)

// bound : function taking the signature of a row and

// printing various info about it

//

// Full : false -> no full reduction (only top)

// true -> full reduction (for rows non-triv. top-reduced)

//

// InterRed : true iff we want to reduce the intermediate

// Groebner bases

//

// FullInterRed : true iff we want to do this as a full

// reduction

//

// Bases after completing step i

// {{{ *** Initialization

// {{{ ****** Preparation of input

if exists(i){i : i in [1..#F] | not IsHomogeneous(F[i])} then

error Sprintf("Polynomial #%o is not homogeneous", i);

end if;

P := Parent(F[1]);

R := BaseRing(P);

n := Rank(P);

m := #F;

D := [Degree(f) : f in F];

// }}}

// {{{ ****** Initialization of output

G := AssociativeArray([0..m]); // Groebner bases

G[0] := [];
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S := []; // Signatures

// }}}

// {{{ ****** Initialization of internal values

Calc := rec<Calculation|>;

// We will store the current state of the calculation there

Calc‘F := F;

Calc‘m := m;

Calc‘n := n;

Calc‘dreg := dreg;

Calc‘D := D;

Calc‘N := AssociativeArray([0..dreg]);

// Calc‘N[d] = number of monomials at degree d

Calc‘Monomials := AssociativeArray([0..dreg]);

// Calc‘Monomials[d][i] = i’th monomial of degree d

Calc‘Columns := AssociativeArray([0..dreg]);

// Calc‘Columns[d][m] = index of the column of monomial m at

// degree d

Calc‘Pivots := AssociativeArray([0..dreg]);

Calc‘Crit := AssociativeArray([0..dreg]);

// Calc‘Crit[d] = sequence of monomials at degree d serving

// in the F5 criterion

Calc‘lastrow := AssociativeArray([0..dreg]);

// Calc‘lastrow[d][i] = last row reached at the step i at degree d

Calc‘row_current := 1;

Calc‘M := AssociativeArray([0..dreg]);

// Calc‘M[d] = matrix built at degree d

Calc‘SigsFromMons := AssociativeArray([1..m]);

Calc‘SigsFromRows := AssociativeArray([0..dreg]);

// Calc‘SigsFromMons[i][mu] is the sig associated to the pair

// i,mu

//

// Calc‘SigsFromRows[d][l] is the sig associated to the row l

// at degree d

for d in [0..dreg] do

Calc‘Monomials[d] := SortedMonomialsOfWeightedDegree(P,d);

Calc‘N[d] := #(Calc‘Monomials[d]);

Calc‘Pivots[d] := [];

Calc‘Columns[d] := AssociativeArray(Calc‘Monomials[d]);
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for i := 1 to Calc‘N[d] do

Calc‘Columns[d][Calc‘Monomials[d][i]] := i;

end for;

Calc‘Crit[d] := AssociativeArray([1..m]);

Calc‘lastrow[d] := [];

Calc‘M[d] := ZeroMatrix(R,0,Calc‘N[d]);

Calc‘SigsFromRows[d] := AssociativeArray();

end for;

Calc‘allMonomials := [];

for d in [0..dreg] do

Calc‘allMonomials cat:= Calc‘Monomials[d];

end for;

if Comp then

Calc‘OpCntRed := 0;

Calc‘OpCntInterRed := 0;

Calc‘OpCntTot := 0;

end if;

// }}}

// }}}

// {{{ *** Computation

F := [RescalePoly(f) : f in F];

for i in [1..m] do

// {{{ ****** Preparation

Calc‘i_current := i;

fi := F[i];

di := D[i];

Calc‘SigsFromMons[i] := AssociativeArray(Calc‘allMonomials);

for d in [1..dreg] do

if i eq 1 then

Calc‘lastrow[d][i] := 0;

Calc‘Crit[d][i] := [];

else

Calc‘lastrow[d][i] := Calc‘lastrow[d][i-1];

Calc‘Crit[d][i] := Calc‘Crit[d][i-1];

end if;

end for;

// }}}

for d in [di..dreg] do

vprintf User2 : "%o i=%o, d=%o\n", Status(Calc), i, d;

// {{{ ****** Construction of the matrix

Calc‘d_current := d;
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Calc‘row_current := Calc‘lastrow[d][i]+1;

if d eq di then

// {{{ Case of a new polynomial in the matrix

s := SigCreate(i,fi,Calc‘row_current);

Calc := F5_InsertRow(s, Calc);

// }}}

elif d gt di then

// {{{ Case of a polynomial from a lower degree

for k := Calc‘N[d-di] to 1 by -1 do // Decreasing order

mu := Calc‘Monomials[d-di][k];

PrintDebug(Sprintf("Considering signature %o",

<i,mu>));

s := rec <Sig| i := i, mu := mu, d := d>;

if F5_Criterion(s, Calc) then

PrintDebug("F5 criterion : OK");

x := MinVariableDividing(mu);

mu2 := mu/x;

if IsDefined(Calc‘SigsFromMons[i],mu2) then

// {{{ Construction and addition of

// the new poly

PrintDebug("Presence at "

cat "previous degree : OK");

s2 := Calc‘SigsFromMons[i][mu2];

s := SigMultiplyByVar(s2,x,

Calc‘row_current);

Calc := F5_InsertRow(s, Calc);

// }}}

else

PrintDebug("Presence at "

cat "previous degree : No");

end if;

else

PrintDebug("F5 criterion : No");

end if;

end for;

// }}}

end if;

// }}}

// {{{ ****** Reduction of the matrix

Calc := F5_EchelonForm(Calc : Full := Full);

// }}}

end for; // for d

// {{{ 2.3. Update of the GB

if InterRed then

// "Reduce the Groebner basis", in matrix words

Calc := F5_ReduceGBMatrix(Calc : Full := FullInterRed);

// And recompute the Groebner basis
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jmin := 1;

G[i] := [];

else

jmin := i;

G[i] := G[i-1];

end if;

for j in [jmin..i] do

for m in Keys(Calc‘SigsFromMons[j]) do

s := Calc‘SigsFromMons[j][m];

d := s‘d;

Append(~Calc‘Crit[d][j],s‘LTafter);

if F5_GBCriterion(s,Calc) then

g := s‘valafter;

Append(~G[i],g);

end if;

// }}}

end for; // for m

end for; // for j

end for; // for i

// }}}

// {{{ *** Conclusion

if Comp then

Calc‘OpCntTot := Calc‘OpCntRed + Calc‘OpCntInterRed;

end if;

return G, Calc;

// }}}

end function;

// }}}

// Set of functions to help extracting information out of the Calc

// output of F5_Mtx

function FoldAlongGB (L)

// Given a list of <s,list of whatever>, returns a array whose

// entry m is <l,ls> where l is the cat of all lists associated to

// a signature of leading term m and ls is the list of these

// signatures.

res := AssociativeArray();

for k in Keys(L) do

cpl := L[k];

s := cpl[1];

l := cpl[2];

m := s‘LTfromGB;

if not IsDefined(res,m) then

res[m] := <[],[]>;

end if;

rescpl := res[m];
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res[m] := <Append(rescpl[1],s),rescpl[2] cat cpl[2]>;

end for;

return res;

end function;

function ListReductionsDownwards (Calc)

// Returns a list of <s,l> where s is a sig and l the list of

// lines it reduced

res := AssociativeArray();

for i in [1..Calc‘m] do

SfM := Calc‘SigsFromMons[i];

SfL := Calc‘SigsFromLines;

for m in Keys(SfM) do

s := SfM[m];

L := s‘log_redlist;

for line in L do

s2 := SfL[s‘d][line];

i2 := s2‘i;

mu2 := s2‘mu;

if not IsDefined(res,<i2,mu2>) then

res[<i2,mu2>] := <s2,[]>;

end if;

cpl := res[<i2,mu2>];

l2 := Append(cpl[2],s);

res[<i2,mu2>] := <cpl[1],l2>;

end for;

end for;

end for;

return res;

end function;

A.1.2. Weighted homogeneous systems

File Whomo.m

function TotalWeightedDegree (f)

res := 0;

for m in Monomials(f) do

d := WeightedDegree(m);

res := Max(res,d);

end for;

return res;

end function;

function Homogenize (F)

if F eq [] then return [];

else

P := Parent(F[1]);

n := Rank(P);
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ord := MonomialOrder(P);

W := Grading(P);

Wh := Append(W,1);

if ord[1] eq "grevlexw" then

nouvord := <"grevlexw",Wh>;

else

nouvord := ord;

end if;

R := CoefficientRing(P);

Q := PolynomialRing(R,Wh,nouvord);

Fh := [];

for f in F do

D := TotalWeightedDegree(f);

fh := 0;

M := Monomials(f);

C := Coefficients(f);

r := #M;

for i in [1.. r] do

e := Exponents(M[i]);

d := &+[W[i] * e[i] : i in [1..n]];

eh := Append(e,D - d);

fh := fh + C[i] * Monomial(Q,eh);

end for;

Append(~Fh,fh);

end for;

return Fh,Q;

end if;

end function;

function DeHomogenize (Fh,Ph,P)

n := Rank(P);

F := [];

for f in Fh do

C,M := CoefficientsAndMonomials(f);

M2 := [];

for i in [1..#M] do

e := Exponents (M[i]);

e2 := [];

for k := 1 to n do // Remove the last variable

e2[k] := e[k];

end for;

M2[i] := Monomial(P,e2);

end for;

f2 := Polynomial(C,M2);

Append(~F,f2);

end for;

return F;

end function;
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function WHomoToHomo (F)

if F eq [] then return []; end if;

P := Parent(F[1]);

W := Grading(P);

n := #W;

R := CoefficientRing(P);

Q := PolynomialRing(R,n,"grevlex");

h := hom<P -> Q | [(Q.i)^W[i] : i in [1..n]]>;

return h(F);

end function;

function FindWeights(F)

// Find weights w1..wn such that all polynomials of F can be

// written as polynomials in X1^w1..Xn^wn

if F eq [] then error("Empty sequence"); end if;

P := Parent(F[1]);

n := Rank(P);

W := [0 : i in [1..n]];

for f in F do

for m in Monomials(f) do

e := Exponents(m);

for i in [1..n] do

W[i] := Gcd(W[i],e[i]);

end for;

end for;

end for;

return W;

end function;

function HomoToWHomo(F : W := [])

if F eq [] then return []; end if;

P := Parent(F[1]);

n := Rank(P);

if IsEmpty(W) then

W := FindWeights(F);

end if;

assert #W eq n;

Q := PolynomialRing(CoefficientRing(P),W);

F2 := [];

for i in [1..#F] do

f := F[i];

f2 := 0;

C,M := CoefficientsAndMonomials(f);

for j in [1..#C] do

c := C[j];

e := Exponents(M[j]);

e2 := [e[k] div W[k] : k in [1..n]];

m2 := Monomial(Q,e2);

f2 +:= c*m2;
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end for;

Append(~F2,f2);

end for;

return F2;

end function;

File tests_GB.m

load "F5Mtx.m";

load "Whomo.m";

SetVerbose("Groebner",1);

SetVerbose("User2",1);

W := [4,2,1,1];

P<X,Y,Z,T> := PolynomialRing(GF(65521),W);

F := [

11541*X^2 + 53990*X*Y^2 + 37592*Y^4 + 27834*X*Y*Z^2 +

30004*Y^3*Z^2 + 8314*X*Z^4 + 4825*Y^2*Z^4 + 28158*Y*Z^6 +

19050*Z^8 + 26015*X*Y*Z*T + 557*Y^3*Z*T + 58180*X*Z^3*T +

42158*Y^2*Z^3*T + 34612*Y*Z^5*T + 45718*Z^7*T + 34908*X*Y*T^2

+ 23734*Y^3*T^2 + 57434*X*Z^2*T^2 + 28743*Y^2*Z^2*T^2 +

18580*Y*Z^4*T^2 + 10813*Z^6*T^2 + 23568*X*Z*T^3 +

65399*Y^2*Z*T^3 + 3761*Y*Z^3*T^3 + 51403*Z^5*T^3 +

20744*X*T^4 + 46116*Y^2*T^4 + 44410*Y*Z^2*T^4 + 37156*Z^4*T^4

+ 13625*Y*Z*T^5 + 24856*Z^3*T^5 + 39692*Y*T^6 + 34019*Z^2*T^6

+ 53446*Z*T^7 + 1929*T^8,

33098*X^2 + 54375*X*Y^2 + 14826*Y^4 + 3377*X*Y*Z^2 +

23825*Y^3*Z^2 + 7023*X*Z^4 + 52920*Y^2*Z^4 + 23589*Y*Z^6 +

50207*Z^8 + 49154*X*Y*Z*T + 3423*Y^3*Z*T + 225*X*Z^3*T +

43216*Y^2*Z^3*T + 56563*Y*Z^5*T + 8367*Z^7*T + 64946*X*Y*T^2

+ 60800*Y^3*T^2 + 65240*X*Z^2*T^2 + 34223*Y^2*Z^2*T^2 +

39536*Y*Z^4*T^2 + 15290*Z^6*T^2 + 33901*X*Z*T^3 +

21724*Y^2*Z*T^3 + 1521*Y*Z^3*T^3 + 32997*Z^5*T^3 +

11568*X*T^4 + 35339*Y^2*T^4 + 39002*Y*Z^2*T^4 + 6645*Z^4*T^4

+ 38351*Y*Z*T^5 + 52984*Z^3*T^5 + 50226*Y*T^6 + 12349*Z^2*T^6

+ 50105*Z*T^7 + 8711*T^8,

35779*X^2 + 7522*X*Y^2 + 49129*Y^4 + 6315*X*Y*Z^2 +

33104*Y^3*Z^2 + 59779*X*Z^4 + 47533*Y^2*Z^4 + 14703*Y*Z^6 +

51257*Z^8 + 11944*X*Y*Z*T + 27755*Y^3*Z*T + 55382*X*Z^3*T +

1529*Y^2*Z^3*T + 24962*Y*Z^5*T + 6285*Z^7*T + 62689*X*Y*T^2 +

61121*Y^3*T^2 + 2430*X*Z^2*T^2 + 52833*Y^2*Z^2*T^2 +

48100*Y*Z^4*T^2 + 44590*Z^6*T^2 + 59954*X*Z*T^3 +

43520*Y^2*Z*T^3 + 16159*Y*Z^3*T^3 + 112*Z^5*T^3 + 48989*X*T^4

+ 60810*Y^2*T^4 + 51752*Y*Z^2*T^4 + 54345*Z^4*T^4 +

12978*Y*Z*T^5 + 14453*Z^3*T^5 + 20513*Y*T^6 + 46414*Z^2*T^6 +

40677*Z*T^7 + 35597*T^8,
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59914*X^2 + 5160*X*Y^2 + 51256*Y^4 + 688*X*Y*Z^2 +

37687*Y^3*Z^2 + 7159*X*Z^4 + 60215*Y^2*Z^4 + 39922*Y*Z^6 +

11761*Z^8 + 22386*X*Y*Z*T + 45230*Y^3*Z*T + 28100*X*Z^3*T +

27809*Y^2*Z^3*T + 54179*Y*Z^5*T + 18563*Z^7*T + 38052*X*Y*T^2

+ 64357*Y^3*T^2 + 26800*X*Z^2*T^2 + 37661*Y^2*Z^2*T^2 +

57333*Y*Z^4*T^2 + 37124*Z^6*T^2 + 18538*X*Z*T^3 +

29552*Y^2*Z*T^3 + 44263*Y*Z^3*T^3 + 17949*Z^5*T^3 +

55615*X*T^4 + 32246*Y^2*T^4 + 61559*Y*Z^2*T^4 + 46600*Z^4*T^4

+ 59196*Y*Z*T^5 + 19035*Z^3*T^5 + 43459*Y*T^6 + 60433*Z^2*T^6

+ 10492*Z*T^7 + 57095*T^8

];

FH := WHomoToHomo(F);

//print FH;

assert IsHomogeneous(FH);

FF1 := HomoToWHomo(FH);

//print FF1;

assert [P!f : f in FF1] eq F;

FF2 := HomoToWHomo(FH : W := W);

//print FF2;

assert [P!f : f in FF2] eq F;

G1 := HomoToWHomo(GroebnerBasis(FH) : W := W);

G1 := [P!f : f in G1];

GG2 := F5_Mtx(F);

G2 := GG2[4];

SetVerbose("Groebner",0);

assert IsGroebner(G1);

assert IsGroebner(G2);

assert Ideal(G1) eq Ideal(F);

assert Ideal(G2) eq Ideal(F);

A.2. Maple source code for determinantal varieties (Chapter 4)

A.2.1. Algorithms

File functions.mpl

# read "functions.mpl";

with(LinearAlgebra):

with(FGb):

with(VectorCalculus):

with(combinat):

randomize():
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randval := rand(100..10000):

Minors := proc(s,K)

description "Input: s integer, K matrix"

"Output: the list of (s X s) minors of K";

local d1,d2,MIN,j,l,listofminors,subm:

(d1,d2):=Dimension(K):

if s > min(d1,d2) then

printf("ERROR: INPUT s TOO LARGE\n");

return;

fi;

MIN:=Matrix(binomial(d1,s),binomial(d2,s)):

for j from 1 to binomial(d1,s) do

for l from 1 to binomial(d2,s) do

subm := SubMatrix(K,(choose([seq(i,i=1..d1)],s))[j],

(choose([seq(i,i=1..d2)],s))[l]);

MIN[j,l]:=Determinant(subm):

od:

od:

listofminors:=seq(seq(MIN[j,l],l=1..binomial(d2,s)),

j=1..binomial(d1,s)):

return(listofminors):

end:

dimension := proc(sys, vars := indets(sys))

description "Find the dimension of the variety defined by the system "

"by cutting it with random hyperplanes";

local dim, hyp, randgen,hh, v, gg,sysCut,j, firstdone;

dim := nops(vars):

hyp := []:

randgen := rand(-500..500):

for j in seq(i,i=1..dim) do

hh := randgen():

for v in vars do

hh := hh + randgen()*v:

od;

hyp := [op(hyp),hh]:

od:

sysCut := [op(sys),op(hyp)]:

gg := [1]:

firstdone := false;

while gg = [1] and dim >= 0 do

if firstdone then
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dim := dim -1:

sysCut := sysCut[1..-2]:

else

firstdone := true:

fi:

printf("Trying dimension %d\n",dim):

gg := fgb_gbasis(sysCut,65521,vars,[],{"index"=2000000}):

od:

return dim:

end:

sqfr := proc(f)

description "Square-free reduction of f";

return mul(ff,ff in map(x -> x[1],factors(f)[2])):

end:

GB_interpolate := proc(sys,charac,vars1,vars2,varinter,deg)

description "Use interpolation on varinter up to degree deg to compute "

"a Groebner basis of sys for the order eliminating vars1";

local points, bases, v, i, gb, res, t0, safety, tgtdeg, m,

bases_i, pol, frct;

v := -1:

points := []:

bases := []:

safety := 1:

tgtdeg := 2*deg + 2 + 2*safety:

for i from 1 to tgtdeg do

printf("GB %a/%a: ", i,tgtdeg):

t0 := time():

while v = -1 or v in points do

v := randval():

od:

gb := fgb_gbasis_elim(eval(sys,varinter=v),charac,vars1,vars2,

{"index"=20000000}):

points := [op(points),v]:

bases := [op(bases),gb]:

printf("done (%a) [v=%a]\n", time()-t0,v):

od:

res := []:

m := mul(varinter-v,v in points):

for i from 1 to nops(bases[1]) do

bases_i := map(x -> x[i]/lcoeff(x[i])

, bases):

pol := CurveFitting[PolynomialInterpolation](points,

bases_i,

varinter):

frct := ratrecon(pol,m,varinter,deg+safety,deg+safety):
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res := [op(res),numer(frct)]:

od:

return res:

end:

GB_find_deg := proc(sys,vars1,vars2,varinter,ntrials := 10)

description "Find the maximal degree in variable varinter of "

"the polynomials in a Groebner basis of sys eliminating vars1";

local deg, gb, ss, i, v, t0;

deg := -1:

printf("Finding degree (%a tests): ", ntrials):

i := 0:

facts := []:

while i < ntrials do

ss := {}:

for v in vars2 do

if v <> varinter then

ss := {op(ss), v=randval()}:

fi:

od:

gb := fgb_gbasis_elim(eval(sys,ss),0,vars1,vars2):

for j from 1 to nops(gb) do

if i = 0 then

facts := [op(facts),0]:

fi:

facts[j] := gcd(facts[j],gb[j]);

od:

deg := max(map(degree,gb,varinter),deg):

printf("|"):

i := i+1:

od:

printf("\n"):

facts_prod := sqfr(mul(p,p in facts));

return deg, facts_prod:

end:

Elimination_codim1 := proc(F,vars,params,{algo:=default})

description "Compute a polynomial whose zeroes cover the "

"projection of V(F) on the parameter space"

""

"Compute a system of generators for the elimination ideal "

"of F obtained by eliminated the variables vars"

"Uses the algorithm ‘algo‘ to compute the basis. Admissible "

"values for ‘algo‘ are:"

"- gb_direct : compute an elimination Groebner basis directly "

"- gb_interp : compute an elimination Groebner basis using "

"evaluation/interpolation"

"Any other value defaults to gb_interp."
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;

local var,deg_interp,G:

if algo = gb_direct then

### Direct

G := fgb_gbasis_elim(F,0,vars,params ,{"verb"=3}):

return G[1];

else

### Interpolation with first param

var := params[1]:

deg_interp, facts := GB_find_deg(F,vars,params,var):

G := GB_interpolate(F,0,vars,params,var,deg_interp):

return facts*G[1];

fi:

end:

DiscriminatingPolynomial := proc(M,r0,H,vars,params,

eqs := [], neqs := [], {algo:=default})

description "Compute a polynomial P as in section 3."

""

"The argument ‘eqs‘ is a set of extra equations and inequations "

"restricting the solutions: the solutions returned are "

"projections in the parameter space of points at which all "

"polynomials of eqs vanish."

""

"The polynomials in ‘neqs‘ are saturated in the computations."

""

"See Elimination for the parameter ‘algo‘":

local res,res1,res2,res3,t0,t1,t2,t3:

t0 := time():

res1 := RankExactly(M,r0,vars,params,eqs,neqs,

’:-algo’=algo):

t1 := time():

res2 := DeterminantCritVals(M,r0,vars,params,eqs,neqs,true,

’:-algo’=algo):

t2 := time():

res3 := DeterminantBoundary(M,r0,H,vars,params,eqs,neqs,true,

’:-algo’=algo):

t3 := time():

printf("RankExactly\t%as\n",t1-t0):

printf("DeterminantCritVals\t%as\n",t2-t1):

printf("DeterminantBoundary\t%as\n",t3-t2):

return res1*res2*res3, res1, res2, res3;

end:

IncidenceVariety := proc(M,r)

description "Compute a system of generators for the incidence variety "

"of rank r of M"

;

170



A.2. Maple source code for determinantal varieties (Chapter 4)

local MatrixU, MatrixY,k,i,j,Prod1,Sys1,Prod2,Sys2,Sys:

k := RowDimension(M):

MatrixU := Matrix(k-r,k):

for i from 1 to k-r do

for j from 1 to k do

MatrixU[i,j] := randval():

od:

od:

print(MatrixU);

MatrixY := Matrix(k,k-r):

for i from 1 to k do

for j from 1 to k-r do

MatrixY[i,j] := Y[i,j]:

od:

od:

Prod1 := M . MatrixY:

Sys1 := [seq(seq(Prod1[i][j],j=1..k-r),i=1..k)]:

Prod2 := MatrixU . MatrixY - Matrix(k-r,k-r,shape=identity):

Sys2 := [seq(seq(Prod2[i][j],j=1..k-r),i=1..k-r)]:

Sys := [op(Sys1),op(Sys2)]:

return Sys, indets(MatrixY):

end:

RankExactly := proc(M,r0,vars,params,eqs := [], neqs := [],

{algo := default})

description "Algorithm RankExactly (section 3.4)"

""

"See DiscriminatingPolynomial for a description of parameters "

"‘eqs‘ and ‘neqs‘."

"See Elimination for a description of the parameter ‘algo‘";

local res,k,n,FVr,dim,JVr,FV,F0,varsY,Mins,i,Sysi,G, codim:

k := RowDimension(M):

n := nops(vars):

res := 1:

FVr := [Minors(r0+1,M)]:

codim := (k-r0)^2:

JVr := Jacobian(FVr,[op(vars)]):

FV := [op(FVr), Minors(codim,JVr),op(eqs),u*mul(f, f in neqs)-1]:

F0, varsY := IncidenceVariety(M,r0):

Mins := [Minors(r0,M)]:

for i from 1 to nops(Mins) do

Sysi := [op(FV),op(F0),op(Mins[1..i-1]),uu*Mins[i]-1]:

g := Elimination_codim1(Sysi,[uu,u,op(varsY),op(vars)],params,

’:-algo’=algo):

if g <> FAIL then
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res := res*g:

fi:

od:

printf("RankExactly: %a\n", factor(res));

return res:

end:

DeterminantCritVals := proc(M,r0,vars,params,eqs := [], neqs := [],

skipRankExactly := false, {algo:=default})

description "Algorithm DeterminantCritVals (section 3.5)"

""

"See DiscriminatingPolynomial for a description of parameters "

"‘eqs‘ and ‘neqs‘."

"See Elimination for a description of the parameter ‘algo‘":

local res,F0,varsY,N,J,F1,G:

if not skipRankExactly then

res := RankExactly(M,r0,vars,params):

else

res := 1:

fi:

F0, varsY := IncidenceVariety(M,r0-1):

N := nops(F0):

J := Jacobian(F0,[op(varsY),op(vars)]):

F1 := [op(F0),Minors(N,J),op(eqs),u*mul(f, f in neqs)-1]:

g := Elimination_codim1(F1,[u,op(varsY),op(vars)],params,

’:-algo’=algo):

res := res*g:

printf("CritVals: %a\n", factor(res));

return res:

end:

DeterminantBoundary := proc(M,r0,H,vars,params,

eqs := [], neqs := [],

skipRankExactly := false,

{algo := default})

description "Algorithm DeterminantBoundary (section 3.6)"

""

"See DiscriminatingPolynomial for a description of parameters "

"‘eqs‘ and ‘neqs‘."

"See Elimination for a description of the parameter ‘algo‘";

local res, F0, varsY, h, F1, G:

if not skipRankExactly then

res := RankExactly(M,r0,vars,params):

else

res := 1:

fi:

F0, varsY := IncidenceVariety(M,r0-1):

for h in H do

F1 := [op(F0),h,op(eqs),u*mul(f, f in neqs)-1]:
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g := Elimination_codim1(F1,[u,op(varsY),op(vars)],params,

’:-algo’=algo):

res := res * g:

od:

printf("Boundary: %a\n", factor(res));

return res:

end:

A.2.2. Case of water

Definitions

File water_def.mpl

# read "water_def.mpl":

d1:=g1-G1:d2:=g2-G2:

MatrixD:=Matrix([[-G1*y1, -z1-1,-G1+d1*z1,2*d1*y1],

[-g1*z1,y1,d1*y1,(G1-d1)-2*d1*z1],

[-G2*y2, -z2-1,-G2+d2*z2,2*d2*y2],

[-g2*z2,y2,d2*y2,(G2-d2)-2*d2*z2]]):

g1 := 1: G1 := 1:

vars := [y1,y2,z1,z2]:

params := [g2,G2]:

H := [1-y1^2-(z1+1)^2, 1-y2^2-(z2+1)^2]:

k := 4: n := 4: t := 2:

DetD:=Determinant(MatrixD);

Computations using the functions

File water_functions.mpl

# read "water_functions.mpl":

# Function definitions

read "functions.mpl";

# Definitions for water

read "water_def.mpl";

# Computations
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t0 := time():

res_general,res1,res2,res3 :=

DiscriminatingPolynomial(MatrixD,3,H,vars,params,[],[],

algo = gb_direct):

t1 := time():

# Results

# RankExactly

ff1 := map(x -> x[1],factors(res1)[2]):

nops(ff1);

# 6

map(degree,ff1);

# [1,1,1,2,1,1]

# Critical values

ff2 := map(x -> x[1],factors(res2)[2]):

nops(ff2);

# 5

map(degree,ff2);

# [1, 1, 1, 1, 1]

# Boundary

ff3 := map(x -> x[1],factors(res3)[2]):

nops(ff3);

# 7

map(degree,ff3);

# [1, 1, 1, 1, 2, 2, 3]

allfacts := [op({op(ff1),op(ff2),op(ff3)})]:

nops(allfacts);

# 13

map(degree,allfacts);

# [1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3]

filename := "water_results.mpl";

fid := fopen(filename,WRITE):

fprintf(fid,"## RankExactly:\n##---------\n"):

fprintf(fid,"res1 := [\n"):

for i from 1 to nops(ff1)-1 do

f := ff1[i]:

fprintf(fid," %a,\n", f):

od:

fprintf(fid," %a\n]:\n\n",ff1[-1]):

fprintf(fid,"## CritVals:\n##---------\n"):

fprintf(fid,"res2 := [\n"):

for i from 1 to nops(ff2)-1 do
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f := ff2[i]:

fprintf(fid," %a,\n", f):

od:

fprintf(fid," %a\n]:\n\n",ff2[-1]):

fprintf(fid,"## Boundary\n##---------\n"):

fprintf(fid,"res3 := [\n"):

for i from 1 to nops(ff3)-1 do

f := ff3[i]:

fprintf(fid," %a,\n", f):

od:

fprintf(fid," %a\n]:\n\n",ff3[-1]):

fprintf(fid,"## All (without duplicates)\n##---------\n"):

fprintf(fid,"allfacts := [\n"):

for i from 1 to nops(allfacts)-1 do

f := allfacts[i]:

fprintf(fid," %a,\n", f):

od:

fprintf(fid," %a\n]:\n\n",allfacts[-1]):

fclose(fid):

Step-by-step computations

File water_computations.mpl

# read "water_computations.mpl";

read "functions.mpl";

# System

read "water_def.mpl":

DetD:=Determinant(MatrixD):

gradD_yz := [diff(DetD, y1), diff(DetD, z1),

diff(DetD, y2), diff(DetD, z2)]:

r0 := 3:

Sys := [DetD,op(gradD_yz)]:

# Incidence varieties

F2,varsY2 := IncidenceVariety(MatrixD,2):

F3,varsY3 := IncidenceVariety(MatrixD,3):

# Singular points and critical values

# Rank(M) <= 2
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Jac := Jacobian(F2,[z1,z2,y1,y2,op(varsY2)]):

Sys_rk2 := [op(F2),Minors(2*k+(k-r0+1)^2,Jac),u*g2-1]:

GB_rk2 := fgb_gbasis_elim(Sys_rk2,0,

[u,op(varsY2),z1,z2,y1,y2],[G2,g2]):

lprint(factor(GB_rk2));

(* Results:

[(G2-1)^2*(-2*g2+1+G2)^2*(-g2-1+2*G2)^2*(2*G2-g2)^2]

*)

# Intersection with the boundary

# Side 1

Sys_bnd1 := [op(F2),H[1]]:

GB_bnd1 := fgb_gbasis_elim(Sys_bnd1,0,

[op(varsY2),z1,z2,y1,y2],[G2,g2]):

lprint(factor(GB_bnd1));

(* Results:

[g2*(G2-1)^2*(-2*g2-1+3*G2)*(3*G2^2-5*G2*g2+g2^2+2*G2-2*g2+1)]

*)

# Side 2

Sys_bnd2 := [op(F2),H[2]]:

GB_bnd2 := fgb_gbasis_elim(Sys_bnd2,0,

[op(varsY2),z1,z2,y1,y2],[G2,g2]):

lprint(factor(GB_bnd2));

(* Results:

[(G2-1)^2*(2*G2^2-5*G2*g2+2*g2^2-2*G2+3*g2)\

*(2*G2^3-3*G2^2*g2-3*G2*g2^2+2*g2^3+2*G2^2+9*G2*g2-11*g2^2-4*G2+6*g2)\

*(-g2+2*G2)^2]

*)

# Rank(M) = 3

allGB_rk3 := []:

MM := [Minors(k-1,MatrixD)]:

Sys_rk3 := [DetD,op(gradD_yz),op(F3),u1*g2-1]:

for i from 1 to k^2 do

Sys_rk3_i := [op(Sys_rk3),op(MM[1..i-1]),u2*MM[i]-1]:

GB := fgb_gbasis_elim(Sys_rk3_i,0,

[u1,u2,op(varsY3),z1,z2,y1,y2],

[G2,g2],
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{"verb"=3}):

allGB_rk3 := [op(allGB_rk3),[i,GB]]:

od:

for g in allGB_rk3 do

if g[2] <> [1] then

printf("i%a Basis:%a\n",g[1],factor(g[2])):

fi:

od:

(* Results:

i=1 Basis:[(-g2+2*G2)*(g2-2+G2)*(2*G2^2-5*G2*g2+2*g2^2+1)]

*)

Cylindrical algebraic decomposition

File water_cad.mpl

# restart; read "water_cad.mpl";

read "water_def.mpl";

SDetD := [DetD,diff(DetD,y1),diff(DetD,y2),

diff(DetD,z1),diff(DetD,z2)]:

Pols := [g2,

G2,

g2-2*G2,

G2-1,

3*G2-1-2*g2,

3*G2^2-5*G2*g2+g2^2+2*G2-2*g2+1,

2*G2^2-5*G2*g2+2*g2^2-2*G2+3*g2,

(2*G2^3-3*G2^2*g2-3*G2*g2^2+2*g2^3

+2*G2^2+9*G2*g2-11*g2^2-4*G2+6*g2),

-2*g2+G2+1,

2*G2-1-g2,

G2-2+g2,

2*G2^2-5*G2*g2+2*g2^2+1];

xi := product(Pols[i], i = 1 .. nops(Pols));

with(RegularChains); with(ChainTools); with(SemiAlgebraicSetTools);

R := PolynomialRing([G2,g2]);

cadfull := CylindricalAlgebraicDecompose(Pols,R,output=cadcell):

sols := [];

for j from 1 to nops(cadfull) do

sols := [op(sols),

subs(op(2,op(1,subs(op(2,op(1,cadfull[j])),SamplePoint))),

box_bwe)[1]

]:

od:
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print(nops(sols));

print(sols[1]);

avg2 := proc(l):

return (l[1]+l[2])/2;

end:

insideBB := x -> (evala(eval(y1^2+(z1+1)^2-1, x)) <= 0 and

evala(eval(y2^2+(z2+1)^2-1, x)) <= 0):

PolsRed := remove(x -> x = g2 or x = G2 or x = 2*G2-g2, Pols):

sAvg := map(x -> [g2 = avg2(eval(g2,x)),

G2 = avg2(eval(G2,x))],

sols):

sAvgValid := select(x ->(eval(xi,x) <> 0

and 0 < eval(g2,x)

and 0 < eval(G2,x)

and eval(g2,x) < 2*eval(G2,x)),

sAvg):

print(nops(%)):

# 570

Sols := [seq(select(x -> x <> {y1 = 0, y2 = 0,

z1 = -1, z2 = -1},

[solve(Groebner[Basis](eval(SDetD,

sAvgValid[i]),

plex(y1, y2, z1, z2)))]),

i = 1..nops(sAvgValid))]:

print(map(nops, Sols));

# [2..2]

SolsInBB := [seq(select(x -> (evalb(0 <= evala(eval(y1^2, x)))

and evalb(0 <= evala(eval(y2^2, x)))

and insideBB(x)), Sols[i]),

i = 1 .. nops(Sols))]:

print(nops(select(x -> x <> [], SolsInBB)));

# 187

SolsBBSym := [seq(select(x -> (evalb(evala(eval(y1, x)) = 0)

and evalb(evala(eval(y2, x)) = 0)
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and insideBB(x)), Sols[i]),

i = 1 .. nops(Sols))]:

print(nops(select(x -> ( x <> []), SolsBBSym)));

# 156

IndBBSym := select(x -> ( SolsBBSym[x] <> []),

[seq(i, i = 1 .. nops(SolsBBSym))]):

SolsBBNoSym := [seq(select(x -> (evalb(0 < evala(eval(y1^2, x)))

and evalb(0 < evala(eval(y2^2, x)))

and insideBB(x)), Sols[i]),

i = 1 .. nops(Sols))]:

print(nops(select(x -> ( x <> []), SolsBBNoSym)));

# 31

IndBBNoSym := select(x -> ( SolsBBNoSym[x] <> []),

[seq(i, i = 1 .. nops(SolsBBNoSym))]):

g2G2_1 := sAvgValid[IndBBSym]:

g2G2_2 := sAvgValid[IndBBNoSym]:

filename1 := "pts_cad_1.txt";

fid1 := fopen(filename1,WRITE);

for s in g2G2_1 do

fprintf(fid1,"%a %a\n",evalf(eval(g2,s)), evalf(eval(G2,s)));

od:

fclose(fid1);

filename2 := "pts_cad_2.txt";

fid2 := fopen(filename2,WRITE);

for s in g2G2_2 do

fprintf(fid2,"%a %a\n",evalf(eval(g2,s)), evalf(eval(G2,s)));

od:

fclose(fid2);

f0,f1,f2,f3,f4,f5,f6,f7,f8,f9 := op(Pols[3..-1]):

test_all := x -> map(f -> evalb(eval(f,x) > 0),

[f1,f2,f3,f4,f5,f6,f7,f8,f9]);

crit_1 := x -> ((eval(f1,x) > 0

and eval(f4,x) > 0

and eval(f2,x) < 0)

or (eval(f1,x) < 0
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and eval(f2,x) > 0));

print({op(map(crit_1,g2G2_1))});

print(nops(g2G2_1));

# 156

print(nops(select(crit_1,sAvgValid)));

# 156

crit_2 := x -> ((eval(f1,x) < 0

and eval(f6,x) > 0

and eval(f3,x) < 0)

or (eval(f1,x) > 0

and eval(f6,x) < 0

and eval(f5,x) > 0)):

print({op(map(crit_2,g2G2_2))});

print(nops(g2G2_2));

# 31

print(nops(select(crit_2,sAvgValid)));

# 31

A.2.3. General case

Definitions

File general_def.mpl

# read "general_def.mpl";

d1:=g1-G1:d2:=g2-G2:

MatrixD:=Matrix([[-G1*y1, -z1-1,-G1+d1*z1,2*d1*y1],

[-g1*z1,y1,d1*y1,(G1-d1)-2*d1*z1],

[-G2*y2, -z2-1,-G2+d2*z2,2*d2*y2],

[-g2*z2,y2,d2*y2,(G2-d2)-2*d2*z2]]):

g1 := 1:

vars := [y1,y2,z1,z2]:

params := [G1,g2,G2]:

H := [1-y1^2-(z1+1)^2, 1-y2^2-(z2+1)^2]:

k := 4: n := 4: t := 3:

DetD:=Determinant(MatrixD);

Using the functions
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File general_functions.mpl

# read "general_functions.mpl":

# Function definitions

read "functions.mpl";

# Definitions

read "general_def.mpl";

# Computations

t0 := time():

res_general,res1,res2,res3 :=

DiscriminatingPolynomial(MatrixD,3,H,vars,params,[],[]):

t1 := time():

# Results

# RankExactly

ff1 := map(x -> x[1],factors(res1)[2]):

nops(ff1);

# 6

map(degree,ff1);

# [1,1,1,1,2,1]

# Critical values

ff2 := map(x -> x[1],factors(res2)[2]):

nops(ff2);

# 7

map(degree,ff2);

# [1, 1, 1, 14, 1, 1, 1]

# Boundary

ff3 := map(x -> x[1],factors(res3)[2]):

nops(ff3);

# 7

map(degree,ff3);

# [2, 9, 9, 2, 1, 1, 1]

allfacts := [op({op(ff1),op(ff2),op(ff3)})]:

nops(allfacts);

# 15

map(degree,allfacts);

# [1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 9, 9, 14]
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filename := "general_results.mpl";

fid := fopen(filename,WRITE):

fprintf(fid,"## RankExactly:\n##---------\n"):

fprintf(fid,"res1 := [\n"):

for i from 1 to nops(ff1)-1 do

f := ff1[i]:

fprintf(fid," %a,\n", f):

od:

fprintf(fid," %a\n]:\n\n",ff1[-1]):

fprintf(fid,"## CritVals:\n##---------\n"):

fprintf(fid,"res2 := [\n"):

for i from 1 to nops(ff2)-1 do

f := ff2[i]:

fprintf(fid," %a,\n", f):

od:

fprintf(fid," %a\n]:\n\n",ff2[-1]):

fprintf(fid,"## Boundary\n##---------\n"):

fprintf(fid,"res3 := [\n"):

for i from 1 to nops(ff3)-1 do

f := ff3[i]:

fprintf(fid," %a,\n", f):

od:

fprintf(fid," %a\n]:\n\n",ff3[-1]):

fprintf(fid,"## All (without duplicates)\n##---------\n"):

fprintf(fid,"allfacts := [\n"):

for i from 1 to nops(allfacts)-1 do

f := allfacts[i]:

fprintf(fid," %a,\n", f):

od:

fprintf(fid," %a\n]:\n\n",allfacts[-1]):

fclose(fid):
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