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Abstract

With so many job adverts and candidate profiles available online, the e-
recruitment constitutes a rich object of study. Large-scale analysis of this data
would enable us to fully understand the offers and demands of the work force.
All this information is however textual data, which from a computational point
of view is unstructured. The large number and heterogeneity of recruitment web-
sites also means that there is a lot of vocabularies and nomenclatures. A French
firm specialized in e-recruitment tools, Multiposting, that wanted to easily ma-
nipulate this data, financially supported the research of this thesis as well as
provided access to millions of CVs and job ads aggregated from public sources.

One of the difficulties when dealing with this type of textual data is being
able to grasp the concepts contained in it, since the meaning behind the words
can only be completely understood by humans. Inferring structured and mean-
ingful attributes from raw textual data, i.e. standardization, is the problem that
is tackled in this thesis. The aim of standardization is to create a unified pro-
cess providing values in a nomenclature. A nomenclature is by definition a finite
set of meaningful concepts, which means that the attributes resulting from stan-
dardization are a structured representation of the information. This process thus
translates each document into a common language, which allows the aggrega-
tion of all data in an understandable and exploitable way. Several questions are
however raised: Are the websites’ structured data usable for a unified standard-
ization? What structure of nomenclature is the best suited for standardization,
and how to leverage it? Is it possible to automatically build such a nomenclature
from scratch, or to manage the standardization process without one?

To illustrate the various obstacles of standardization, the examples we are go-
ing to study include the inference of the skills or the category of a job advert, or
the level of training of a candidate profile. One of the challenges of e-recruitment
is that the concepts are continuously evolving, which means that the standardiza-
tion must be up-to-date with job market trends. In light of this, we will propose
a set of machine learning models that require minimal supervision and can easily
adapt to the evolution of the nomenclatures. The questions raised found partial
answers using Case Based Reasoning, semi-supervised Learning-to-Rank, latent
variable models, and leveraging the evolving sources of the semantic web and so-
cial media. The different models proposed have been tested on real-world data,
before being implemented in a industrial environment. The resulting standard-
ization is at the core of SmartSearch, a project which provides a comprehensive
analysis of the job market.



Résumé

Sachant qu’'une grande partie des offres d’emplois et des profils candidats est
en ligne, le e-recrutement constitue un riche objet d’étude. L’analyse a grande
échelle de ces données permettrait notamment de fluidifier le marché du travail.
Ces documents sont cependant des textes non structurés, et le grand nombre
ainsi que I'hétérogénéité des sites de recrutement implique une profusion de
vocabulaires et nomenclatures. Avec 'objectif de manipuler plus aisément ces
données, Multiposting, une entreprise francaise spécialisée dans les outils de e-
recrutement, a soutenu cette thése, notamment en terme de données, en fournis-
sant des millions de CV et offres d’emplois agrégées de sources publiques.

Une difficulté lors de la manipulation de telles données est d’en déduire les
concepts sous-jacents, les concepts derriere les mots n’étant compréhensibles
que des humains. Déduire de tels attributs structurés a partir de donnée tex-
tuelle brute est le probleme abordé dans cette these, sous le nom de normali-
sation. Avec l'objectif d’'un traitement unifié, la normalisation doit fournir des
valeurs dans une nomenclature, de sorte que les attributs résultants forment une
représentation structurée unique de l'information. Ce traitement traduit donc
chaque document en un language commun, ce qui permet d’agréger I’ensemble
des données dans un format exploitable et compréhensible. Plusieurs questions
sont cependant soulevées : peut-on exploiter les structures locales des sites web
dans l'objectif d’une normalisation finale unifiée 7 Quelle structure de nomen-
clature est la plus adaptée a la normalisation, et comment ’exploiter ? Est-il
possible de construire automatiquement une telle nomenclature de zéro, ou de
normaliser sans en avoir une ?

Pour illustrer le probleme de la normalisation, nous allons étudier par exemple
la déduction des compétences ou de la catégorie professionelle d’une offre d’em-
ploi, ou encore du niveau d’étude d’un profil de candidat. Un défi du e-recrutement
est que les concepts évoluent continuellement, de sorte que la normalisation se
doit de suivre les tendances du marché. A la lumiere de cela, nous allons pro-
poser un ensemble de modeles d’apprentissage statistique nécessitant le mini-
mum de supervision et facilement adaptables a 1’évolution des nomenclatures.
Les questions posées ont trouvé des solutions dans le raisonnement a partir de
cas, le learning-to-rank semi-supervisé, les modeles a variable latente, ainsi qu’en
bénéficiant de ’Open Data et des médias sociaux. Les différents modeles pro-
posés ont été expérimentés sur des données réelles, avant d’étre implémentés
industriellement. La normalisation résultante est au coeur de SmartSearch, un
projet qui fournit une analyse exhaustive du marché de I’emploi.
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Chapter 1

Introduction and Motivation

1.1 The Internet, a Rich but Unstructured World

The growth of the internet has had a similar impact on our daily lives as the in-
dustrial revolutions. It has created new jobs and businesses, changed our leisure
activities and facilitated worldwide communication. The internet is now synony-
mous with a huge amount of data, including videos, images, but also text: most
webpages are text in natural language, and represent an incredibly rich source of
information, for instance Wikipedia is a multilingual encyclopedia that explains
millions of concepts. New fields of research have emerged, most of them very
promising and exciting, with the aim of improving the user experience of web
applications and making use of this rich source of data.

The most common examples of internet-oriented research efforts are infor-
mation retrieval systems, and recommender systems. Information retrieval sys-
tems find documents related to a specific query, and are typically used in search
engines. Recommender systems suggest items to a user, based on his/her pref-
erences, and are typically used on shopping websites. Both types of system are
often assisted by machine learning, which enables the automatic reproduction
of a behaviour from a base of examples. These systems often have to manage
textual data, which is mainly unstructured. Some models use calculations that
do not take word order into account. These models gives good results for specific
tasks, such as retrieving relevant documents for an unstructured query. However,
they miss the underlying concepts behind the words. These structured concepts
are more important since they can be used as input features for machine learning
and artificial intelligence.

One current direction of research for capturing the meaning behind words fo-
cuses on organizing them in a graph of concepts. This type of graph constitutes
a knowledge base, and is structured thanks to a formal naming of the edges and
types, which is called an ontology. An example of a generic knowledge base is
WordNet, which is an advanced dictionary that aims to model natural language
in its entirety. In particular, WordNet does not treat specific entities or concepts
such as companies and job categories. For specific domains, building a knowledge
base from scratch and ensuring its maintenance incurs high engineering costs, be-
cause it requires a lot of manual work. Fortunately, some high quality knowledge
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bases can be found on the Internet, sometimes in the form of nomenclatures with
meta-data, i.e. lists of concepts with associated information. If these nomencla-
tures do not allow the extraction of concepts from a text, they are nevertheless
well described and maintained on a regular basis. If we are able to associate a
document to the corresponding concept(s) of a nomenclature, this means that we
have partly understood it, and can lead to more advanced computations. When
dealing with several textual documents, such an association is a standardization
in the sense that each document is explained in the same language, namely the
nomenclature. Furthermore, when the nomenclature is hierarchized and has meta
data associated to it, the standardized documents benefit from this additional
knowledge. The difficulty remains on how to associate a concept to a textual
document, and currently no generic approach exists.

While advances in research related to artificial intelligence have already ben-
efited e-commerce, e-recruitment has gained little from these advances, despite
the big stakes associated to it. One of the challenges related to this field is that
it involves many concepts and is constantly evolving. This will be the object of
study throughout this thesis.

1.2 Industrial Context

Before introducing the reader to the e-recruitment topic, we would first like to
describe the processes involved in recruitment. This will better motivate the
SmartSearch project, which is currently being developed by Multiposting and
strongly relies on the work of this thesis.

1.2.1 From Recruitment to e-Recruitment

Recruiting means finding someone for a vacant position, for example a cashier
for a small shop, a farmer, or a computer scientist for an I'T company. We could
say that recruitment is one of the oldest activities of mankind, since it appeared
at the same time as the concept of work. The first explicit trace of a coherent
recruitment strategy dates back to the roman empire [Losey, 1998], when Julius
Caesar proposed a reward of 300 sestertii to any soldier that would convince
another man to join the roman army. Centuries have passed and recruitment
has spread to all job sectors, and today, there are even employees dedicated to
this activity, recruiters. This process is indeed a difficult task, and requires a lot
of time.

In this thesis, we will take on the recruiter’s point of view, and not that of
the candidate looking for a new position. To describe the task of recruiting an
employee, we propose to distinguish 4 major steps:

The analysis: preliminary to any action, the recruiter needs to know about the
job market, what type of profile could fit the position, and where to find
it.

The sourcing: the recruiter creates a pool of candidates. It can be passive,
meaning that a job advert is made public, and the recruiter waits for
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candidates to apply. But, it can also be active, meaning that the recruiter
directly searches for suitable candidates. We can use a metaphor to make
this clearer: in the first case, the recruiter fishes for candidates using the
advert as bait, and in the second case he hunts for them.

The selection: from his/her pool of candidates, the recruiter only keeps the
relevant candidates.

The interview: the recruiter meets each of the suitable candidates, in order to
see if the person fits the position. Once this step has been completed, a
candidate is hired.

The interview is a necessary step and has to be done by the recruiter; this is
a very human task, and can involve some negotiation, such as for the salary. As
this last step is susceptible to failing, the aim of sourcing and selection processes
is to find the maximum number of suitable candidates. Unlike the interview step,
the first three steps can easily be dematerialized, and are thus subject to change
with the breakthrough of computer science. Nowadays, for instance, sourcing
is almost exclusively done on the internet, whereas during the 20th century it
was mainly done by adverts in newspapers. Today there are plenty of websites
dedicated to recruitment; for passive sourcing, the recruiter can post job adverts
on websites called job boards. Some websites such as Indeed and CareerBuilder
do not have a specific audience, others, such as Efinancialcareers are specialized
in a specific sector or job category. For active sourcing the recruiter looks for
candidate profiles in CV-Banks, like Monster, as well as in professional social
networks, such as LinkedIn or Viadeo. Candidates can make their resume avail-
able online, but professional networks are now more commonly used and also
enable recruiters to see candidate connections. This type of sourcing using a
numerical support and used widely is known as e-recruitment.

The consequences of the digitization of recruitment are multiple. Firstly, com-
munication has been facilitated, millions of jobs can be accessed by candidates,
and recruiters can also access millions of profiles online. Secondly, this new way
of sourcing candidates enables the recruiters to concentrate on the more human
aspects of recruitment, namely the interview. Lastly, the whole job market is rep-
resented by this numeric data which can be used for large scale computing, and
in particular has opened the way for a computer assisted recruitment process.

1.2.2 SmartSearch Project: Unifying Job Market Information

With the digitization of recruitment, many new businesses emerged, including
recruitment websites, such as job boards, CV banks and professional social net-
works. In this context, Multiposting has for objective is to assist and ease the
work of recruiters. This French firm that was founded in 2008 and recently ac-
quired by SAP; it has now more than 80 employees and thousands of customers.
The firm has developed several products that help the recruiter in the sourcing
process, including a tool that enables recruiter to post jobs to multiple channels
on the Internet.
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Figure 1.1 — The overall functioning of SmartSearch, which leverages internet
data to provide comprehensive job market analysis.

The research effort of the company is now focused on SmartSearch. This
project is currently under development and has been laureate on two occasions
in the “Big Data” category of the national Concours Mondial de I'Innovation®,
which awards the most innovative industrial projects in France. The project has
also been supported by the Ile-de-France region through the research partnership
SONAR?, which enabled Multiposting to collaborate with the LIASD? and the
LIMSI4, the former an IUT Montreuil laboratory specialized in statistics and the
latter a CNRS laboratory specialized in semantics. SmartSearch has also bene-
fited from the results of this thesis, which is supported by the ANRT® through
the CIFRE program.

The aim of SmartSearch is to aggregate all the job market data available on
recruitment websites, and to then propose comprehensive statistics about it. As
shown in Figure 1.1, the data used includes jobs, taken from job boards, and
numeric resumes, taken from CV Banks or professional social networks. This
data is processed and stored in a large database, and then used to compute
different statistics, with the following purposes:

e Job-based job market analysis: These statistics are computed from the jobs.
For instance, given a job category, the recruiter can access information

"http://www.gouvernement . fr/argumentaire/concours-mondial-de-1-innovation

*http://sonar-project.com/

3Laboratoire d’Informatique Avancée de Saint-Denis: http://www.ai.univ-paris8.fr/

4Laboratoire d’Informatique pour la Mécanique et les Sciences de I'Ingénieur: https: //www.
limsi.fr/

® Association Nationale de la Recherche et de la Technologie: www.anrt.asso.fr
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about which companies are hiring the most, suitable recruitment websites,
the average required experience or where the most job openings are located.

e Candidate-based job market analysis: These statistics are computed from
the candidate profiles. For instance, given a skill, recruiters can view rele-
vant educational institutions, or companies that have the most employees
for a particular competency.

e Meta-search engine for jobs and candidates: The recruiters can look at
practical examples of jobs or candidates related to a specific industry, insti-
tution or skill. This search engine aims to support the computed statistics
by showing real-world examples.

SmartSearch is consequently the ideal tool for the first step of the recruit-
ment process, namely the analysis step. It also provides critical information for
job sourcing, by showing suitable candidate profiles or suggesting relevant re-
cruitment websites. The computation involved in the job sourcing analysis could
also be used for the selection step of the recruitment process. However, the
project does not focus on the job/candidate matching but aims to give the most
comprehensive and updated snapshot of the job market.

Resumes Jobs
Number of entries 4,352,948 | 9,521,239
Number of sources 42 120
Average number of fields per source 35.1 10.2

Table 1.1 — Statistics of numbers of documents used in the SmartSearch project.

For the project, an engine continuously collects data from many different
websites. The number of websites involved at the time of the writing of the thesis
is displayed in table 1.1, and it is planned to keep increasing. On each website,
the job is made up of several fields, such as the contract type, the title, and
the description. The structure and the content of the fields can be very different
according to the source. The average number of fields is shown in table 1.1. The
computations involved in SmartSearch require every job and every profile to be
translated into a common constructed language, because of the heterogeneity of
the sources. This problem is referred to as interoperability, and is a common issue
when using internet data [Ouksel and Sheth, 1999]. The translation aims to give
each job advert the same structure of fields, as well as represent the content of
the fields in a singular way. In the next section, we detail the field structure of
jobs and candidate profiles, which aims to be generic.

1.3 The Object of our Work: Textual Data

In this section the generic fields that compose jobs and candidate profiles are
described. These fields are also found in SmartSearch documents. Both tem-
plates detailed below aim to be as generic as possible and can be found on most
recruitment websites, even if occasionally some fields are missing.
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1.3.1 Job Adverts

Generally speaking, a job advert is a document which describes a vacant posi-
tion. This document is posted on recruitment websites, and is written to be as
attractive as possible, in order to catch the candidate’s eye. The job advert is
separated into several textual fields, for which we propose the following generic
structure:

Title : Describes the job position in a couple of words.

Description : Describes the job in a couple of sentences, such as the tasks to
be performed by the hired candidate and the team that he would join.

Company description : Describes the company in a few sentences, such as its
sector and corporate spirit.

Profile : Describes the profile is required for the position in a few sentences,
such as the education level, experience and skills necessary or nice to have.

Company : The name of the firm that is hiring.
Location : The city where the employee will work.

Contract : The type of contract, for example short term contract or part-time
work.

Study : The level of study required for the position.
Experience : The amount of experience required in the sector.
Sector : The sector of the company.

Category : The job category of the position, generally coarse-grained.

Each of the fields above can possibly be empty, if the recruiter has not pro-
vided all the information, or if the job advert is published on a website which
does not include the field.

1.3.2 Candidate Profiles

A candidate is represented by a resume or a user profile on a professional social
network. Since the emergence of the CV, a common template is widely used,
with some variations. We consider that a profile can be described by using the
following groups of fields:

Education : This group of fields describes the degrees obtained by the candi-
date. Fach degree has a Start date, End date, Degree name, Educational
Institution and Location.

Positions : This group of fields describes the positions previously occupied by
the candidate. Each job position is similar to a job advert as described
above, but shorter and with only the Title, Description and Company,
Start date, End date and Location.

Skills : This group describes the candidate’s different skills.
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The last field is generally filled by two different type of skills, hard skills
and soft skills. A hard skill is precise and easily quantifiable, for example the
ability to use a specific tool or software. On the contrary, a soft skill refers to a
personality trait, such as leadership, empathy or the communication skills. In our
representation of the candidate profile, we omitted additional information such as
interests, campus activities or volunteer experiences. Although this information
is sometimes helpful for giving an insight into candidate personality traits which
are important for a particular role [Cole et al., 2007], it is difficult for a recruiter
to infer such traits just from a written résumé [Cole et al., 2009]. We also omit any
personal information such as name, phone number, email address, for confidential
reasons and also because they are irrelevant for our study.

1.3.3 Structured or Unstructured Data?

All the fields described above are textual, in the sense that they are stored as text,
and displayed as verbatim to the user. However, it is necessary to distinguish
two types of fields. The first type, unstructured fields, are purely textual: they
are generally written in natural language and have an infinite number of possible
values, such as a job Description, Title or a Degree Name. Structured fields are
ones that have a finite number of possible values, such as the Contract or the
required Ezperience of a job advert. In practice, the value of a structured field is
specified by the user when selecting an option in a nomenclature, which is a list
of concepts. Every website has its own nomenclature for a given structured field,
meaning that the field would be represented differently depending on the website.
Some fields, such as company field and educational institutions field, are only
structured on some websites. For the purpose of this thesis, we will consider that
every field that could be associated to a nomenclature is structured, meaning
that there are a finite number of options that could be listed.

In this thesis, the values of a nomenclature will be called the concepts. Two
types of nomenclature can be distinguished:

Nomenclature of entities : this is a set of concepts that exist, called entities.
Each entity has one or several names, and if it is not explicitly named in
the document, it can not be inferred from it. For instance, a Company, an
Institution, a Location, a Skill are examples of entities. Nomenclatures can
be very large, because they list all the possible entities.

Abstract Nomenclature : this is a set of high-level concepts, such as the
Category or the Sector field. Contrary to entities, we can not associate
a high-level concept to an exact term or name. As a consequence, the
link between a document and such a concept is often unclear, like the
Category in a jobadvert description and a Study Level in a degree name.
The concept is implicit in the text, and therefore needs to be inferred. This
type of nomenclatures is generally shorter than a nomenclature of entities,
and never exceeds one thousand concepts.

By definition, the concepts are often associated to some textual data, such
as a label. This meta data provides interesting knowledge, and will be regularly
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used in the models proposed throughout the thesis. To illustrate the different
reasoning, we will invent a character called Bob.

1.4 Have you met Bob?

Before manipulating the data described above, we would like
to introduce the reader to Bob. This fictional character will
accompany the reader throughout the thesis and will illus-
trate problems in a simple way.

Bob is very nice and does what he is told. This docility is crucial, because
Bob is the only person that directly manipulates the numeric data. In practice we
just give him orders, and Bob applies them carefully when manipulating the job
adverts or CVs. In fact, Bob suffers from a cruel lack of autonomy, which is due
to a simple fact: Bob is not very smart. In particular, he does not understand
what he reads. He can read, yes; but he can not understand the meaning of
words.

Consequently, Bob can handle structured fields much better than purely tex-
tual ones. In order to deal with Bob’s limited ability, we have to give him par-
ticularly precise and detailed rules. Aside from this Bob has several strengths:
he can count, he executes orders extremely quickly, and has an almost unlimited
memory capacity.

This curious example is not only designed to amuse the reader, but also has
a real meaning. The name Bob is not a nickname for Robert, but for Robot. Our
new friend represents what is known as artificial intelligence, even if he is not so
smart at the moment. However, chapter after chapter we will endeavor to teach
Bob the best way possible and make him as artificially intelligent as possible.

1.5 The Need for Generic Standardization

The textual data described in Section 1.3 partly consists of unstructured fields,
that can not be understood by Bob. Some calculations only consider the words
contained in the texts, but we want to go beyond words for structured concepts:
this means that we need to convert the textual data into structured information.
In other words, given a text, we would like to infer a structured attribute, which
would be a value chosen in a nomenclature. The choice of concept to be inferred
depends on the use case, and is not discussed in this thesis; for instance, we
may want to infer the job category from the textual fields of the job advert, or
the official name of the institution that a candidate graduated from, using the
“education” field of his/her resume. We call this standardization, and it is the
problem we address in this thesis:

“How can we link an unstructured textual document to the correct concept
in a nomenclature, in a cheap and updatable manner?”

For each field that we need to standardize, two questions must be answered:
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how to determine the correct nomenclature - possibly by generating it automat-
ically - and how to establish a strategy for finding the concept that correctly
corresponds to a piece of textual data. It should be noted that standardization
does not lead to a gain of information, since structured data can not convey more
information that what is contained in the original text. The concept represented
by the nomenclature can correspond exactly to the textual information - for ex-
ample the official name for an educational institution - or can be higher-level -
such as the category of a job advert - and in this case it conveys less information
than the initial text.

Figure 1.2 — The problem of textual data standardization from Bob’s point of
view: each paper has to fit into one box, a piece of paper represents a document
and a boz represents a concept. All of these concepts (represented by each box)
grouped together represent the nomenclature.

From Bob’s point of view, all that the standardization process requires him
to do is put a sheet of paper into a box, as shown in Figure 1.2. The document
contained on the sheet of paper is the unstructured textual data, and each box
represents a concept of the nomenclature. We need to determine what set of
boxes to take into consideration, and to tell Bob how to decide in which box he
should put a given paper. Fortunately Bob is fast and once he is told what to
do, he can process a large number of pieces of paper in a very short amount of
time. Moreover, he can easily work out basic statistics according to the boxes,
such as the number of documents that are contained in a box.

We need to be more precise about some aspects of our definition of stan-
dardization. Firstly, standardization is not only necessary for unstructured data,
but also for structured data, when it as aggregated from several websites. In-
deed when we deal with multiple sources, the data is structured into different
nomenclatures according to each website, which means that the same concept
will be expressed using different words, and possibly in many different ways.
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This prevents us from being able to compare data from two different sources.
In this case, standardizing signifies the conversion of all values into a singular
nomenclature, in order to have a more global perspective in comparison with
data represented in the original nomenclatures. Secondly, in some cases - as with
structured data - the documents that are inputed convey exactly the same infor-
mation as the nomenclature. In other cases, standardization provides different
information from that contained in the original document, such as when deter-
mining the study level of an educational degree. Thirdly, several textual fields
can be standardized at once. For instance, when we infer the category of a job
advert, the inputed data will be all of the advert’s unstructured fields. Lastly,
the same document can be subject to multiple standardizations, meaning we can
infer several different concepts from it: for instance, we can obtain the industrial
sector and the job category from the same job advert.

Job Offers on Recruitment Websites Web pages
Web Crawler
HK KKK *kok HK KK
* P AR Semi-structured documents
I JokokAok HRAKARARANK with different templates
SR AR AR K s oKk
Parsing
Title: *xorex Title: e Title: xoxx
Description Description Description Semi structured documents
SRR KK skkskRORE KK sk skkRk K with a common tcmplatc
Fkokokokok kokokkok ok ok SRRk
Company: *** Company: ** Company: ***
Textual Data Standardization
Category: C Category: A Category: H
Company: n°2 Company: n°4 Company: n°7 Structured documents
Skills : #, +, £

Figure 1.8 — Documents are processed as raw internet webpages into a structured
database. The example of SmartSearch job adverts is on the left hand side.

Standardization is a crucial part of the SmartSearch project, and it is used
as a pre-process when we fill the database with job adverts and candidate pro-
files, as shown in the diagram of Figure 1.3. The documents collected from the
internet have a field structure that depends on each website. This structure is
automatically aligned to the structure of Section 1.3, using a similar process to
[Naz, 2009] that will not be discussed in this thesis. The documents are therefore
organized according to the same textual fields before the standardization pro-
cess, so that we can then leverage this common template in the standardization
process.

Having standardized the job adverts and candidate profiles in SmartSearch’s
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database, we are then able to easily answer questions such as “What are the
most sought-after skills for Sales managers?” or “What are the study levels and
educational institutions of computer scientists in Paris?”. Indeed, such questions
can not be understood by just looking at the words contained in each text, but
are expressed in the structured fields. Standardization is therefore crucial when
dealing with textual data. The next section details our strategy for tackling this
problem.

1.6 Structure of the Thesis

Data is already standardized using local Nomenclatures +++

A satisfactory Nomenclature with detailed descriptions already exists ++

Use of External Knowledge For
The Nomenclature

Figure 1.4 — Diagram illustrating the different levels of external knowledge that
will be addressed in Chapters 3, 4, 5 and 6.

Standardization is discussed in this thesis from four different points of view,
depending on the level of external knowledge, as illustrated in Figure 1.4. The
formal definition of a document and of the standardization problem is given
at the beginning of the related work (Chapter 2) and will be used in the rest
of the thesis. Chapters 3, 4, 5 and 6 successively study standardization with a
decreasing amount of external knowledge available:

e When the data has already been standardized. This means the text takes
a value from a local nomenclature, namely the website’s one. The fields
Contract, Study and Experience are for instance manually selected by re-
cruiters when posting the job. To leverage this rich knowledge, we proposed
in [Malherbe et al., 2015b] a schema mapping solution based on case-based
reasoning, which converts the local standardization into a common nomen-
clature.

e When a nomenclature with rich knowledge already exists. Such rich infor-
mation is for instance expressed by semi-structured textual descriptions,
as is the case for national Job Categories. The proposed semi-supervised
standardization then aims to rank the categories using a learning-to-rank
model [Malherbe et al., 2014], before enriching the categories using a corpus
of job adverts as detailed in [Malherbe et al., 2015a]. When categorizing a
job, the top-ranked category is selected, and a probability of correctness is

11
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estimated using the supervised learning we proposed in [Malherbe et al.,
2015c¢].

e When public sources appear to be suitable for building a knowledge base
than can then be used as a nomenclature. These sources include the Seman-
tic Web, Social Media and Professional Social Networks. As we successfully
proposed in [Malherbe and Aufaure, 2016], the Skills and the Educational
Institutions can be standardized using a nomenclature like this. The diffi-
culty for the former is selecting the relevant entities and for the latter is
performing data matching in order to deduplicate the sources.

e When it is impossible to build a nomenclature with rich knowledge. In this
case, the only source of knowledge is a corpus of unannotated documents,
for example the educational Degrees obtained by a candidate. In this case,
we proposed in [Malherbe et al., 2016] an unsupervised approach based
on a latent variable model, in order to generate a weakly labeled dataset,
which will be the knowledge that will be used for standardization.

Chapter 7 gives the practical applications of the proposed standardization
systems, that have all been implemented in an industrial context. The practical
use of our work revealed some limitations, we will therefore propose possible
future areas of research and work in Chapter 8.



Chapter 2

Related Work

Understanding the meaning behind unstructured text has been a major focus
in research for decades. More recently, the data gained in size and heterogene-
ity with the explosion of the internet where the textual information is directly
given by the users. Standardizing texts into domain specific nomenclatures is a
process that can be done a posteriori, and gives the advantage of providing more
exploitable data, both at the user level and at the computer level. It involves the
following objectives:

e We need a nomenclature that represents the concepts in a comprehen-
sive, generic and updated way. For every kind of textual attribute to be
standardized, a different nomenclature is involved, and can be optionally
associated to some meta-data.

e We need to associate every textual attribute to the corresponding concept.
This process has to automatically follow the temporal evolution of the
concepts, which happens when the nomenclature evolves but also when
the vocabulary associated to the concepts evolves.

In this chapter, we will study the literature linked to these two aspects. The
first one relates to the knowledge bases, which notably result from the Semantic
Web initiative, and give information about entities. The fields of schema map-
ping, data matching and entity linking serve at manipulating and exploiting these
knowledge bases, in a perspective of using them as nomenclatures. The second
aspect relates to the machine learning, which aims to detect relevant patterns
in a new documents, based on what has been seen on a data-set of documents.
The supervised classification and the latent variable models serve in a sense at
standardizing the documents into abstract nomenclatures, with however some
limitations. In order to gain some clarity, the reader will be firstly introduced to
the common representation and manipulation of textual data, that will be used
in the whole thesis. This chapter will be concluded by the questions that appear
to be crucial for standardization but remain unresolved in the literature.
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2.1 Preliminary Definitions: Representing and Ma-
nipulating Texts

In order to clarify the notations and objects that will be manipulated in this
chapter and the followings, we describe first the general approaches for repre-
senting a text, and the similarity measures that result. Table 2.1 summarizes the
notations that will be used for the rest of the manuscrit.

2.1.1 Representation of Texts

A first step before manipulating a text is to give it a formal representation.
Taken as is, a text is a chain of characters, and a first necessary process is to
convert this into a list of processed words, and the common approach consists
in the three following steps [Sebastiani, 2002]:

e Tokenization: The words are firstly separated, by splitting the text at each
whitespace or punctuation character. This step is often coupled with an
accents removal and a conversion of characters into lower case.

e Words filtering: A second step is to remove the words that do not convey
any information. A word can be decided to be useless if it is too infrequent
or too frequent in a given corpus, if it belongs to a certain grammatical
category such as the determinants, or if it belongs to a list set beforehand
called stopwords [Rajaraman et al., 2012].

e Words processing: This step serves at uniting some words having a very
close meaning, for example “obey” /“obeying” and “car”/“cars”, in order
to reduce intelligently the set of words manipulated. To do so, a stemmer
[Porter, 2001] can be used in order to keep only the stem of the words, or
a lemmer [Liu et al., 2012] which gives the words lemmas.

After this process, the common assumption in text mining is to forget the
order of the processed words [Lewis, 1998]. A text is then seen as a “bag of
words” or multiset of terms d, which is a set in which the same element can
occur several times:

d= {{tl,tz, ...,tn}}

where each term t; results from previous steps, and n is the number of such
terms, varying on each text. This mathematical expression for a text opens the
way to many calculations, like the similarity measures between two documents.

2.1.2 Similarity Measures between Texts

Leveraging the previous representation of texts can help to answer the following
question: is the text d similar to the text d’? For such computation, each term
t of the text d is given a weight wg; € R. Many variants exist [et al., 1975], a
key component of them being the term frequency ¢f(d,t) € N which counts how
many times t appears in d:
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tf(d,t) = |{t; € d|t; = t}|

In other words, the function ¢t — ¢f(d,t) is the multiplicity function of the
multiset d.

A second key component is the global weighting function [Berry and Browne,
2005], which does not depend on the text d but on a corpus of documents D.
It estimates the importance of the term ¢ based on its appearance in D, and is
computed for all the terms appearing in the corpus, which form the vocabulary V.
For instance, the invert document frequency focuses on 1/p(t € d|d € D), which
is the number of documents in the corpus divided by the number of documents
containing the term ¢:

, _ D
W) = e Dt e il

A variant of the previous function is used in the Okapi BM-25 [Robertson
and Jones, 1976]:

|D| — |{d € D|t € d}| + 0.5
|{d € D|t € d}| + 0.5

idfBaras(t) =

Closer to the information theory, the term entropy [Hotho et al., 2005] focuses
on the probability that a document is d given that it contains the term ¢, written

pldlt € d) = <%0

entropy(t) =

tf(d,t) tf(d,t)
log( |D| Z < S tf(d, 0’ (Zd, tf(d’,t)>

To get the expression of wgq ¢, numerous alternatives exist for combining the
term frequency and the global weighting function [Berry and Browne, 2005],
and the tf-idf is widely used to characterize documents [Sugiyama et al., 2003],
including in many industrial implementations [Smiley and Pugh, 2011]:

way = /A (d,t) x (1+idf (t)) (2.1)

Its variant, the Okapi BM25, has recently shown better results [Claveau,
2012]:
tf(d,t).(k+1)
7 t) + b (L b+ bld]/{ld])
Where k and b are free parameters and (|d|) is the average size of the texts

in D. The log entropy has also been found to work well in practice for many
data-sets[Landauer et al., 2013]:

W = X idfBnr2s(t) (2.2)

wat = log (1 +tf(d,t)) x entropy(t) (2.3)

Those weights are extended to terms ¢ not in d by wg; = 0. Using them, a
text is generally represented as a vector where each component corresponds to
a term of V [Salton et al., 1975]. In this thesis, with a slight abuse of notations,

15
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this vector will be noted wg € RV, whose k-th component is given by the weight
of the k-th term of the vocabulary V, that is to say wgq; when one writes ¢ this
term. We emphasize the fact that the k-th component of wg is not related to the
indexation of terms in d (Equation (2.1.1)).

For a given weighting wgq ¢, a similarity measure between the two texts d and
d' can be computed. Many alternatives exist, the most commonly used being
[Huang, 2008]:

e the cosine similarity:

— —>
Wq- W D iey Wdyt-Wd ¢

AT T
lwdl leall /55, el [ Sien i,

cos(d,d") = € [0,1] (2.4)

e the Euclidian distance:

dist(d,d) = |wg—wa | = | |was — war il
dey

e the Jaccard coeflicient:
Wy W
|wgl]? + |wd|]? — wg.wa
_ Dtey Wdt-Wa t
>ty wi,t + 2 tev w¢21’,t — Dtey Wa,t- W ¢

jace(d,d) =

One notes that these similarities have the disadvantage to be purely keywords-
based, as well as the representation of a document as a multiset. One better
approach could be to map a text into a nomenclature, which leads to a concept-
based text representation and a conceptual cosine similarity [Tan et al., 1999].
This approach is what we call standardization.

Symbol  Description Nature of the object
t Term List of characters
d Document Multiset of terms
D Corpus Set of documents
1% Vocabulary Set of terms
Wt Weight of the term ¢ for document d € R
Wy Term-weights vector for d e RV

cos(d,d') Cosine similarity between d and &’ € [0, 1]

Table 2.1 — Notations.

2.1.3 The Three Reasonings of Bob

Following the formulas above, we can teach Bob how to assess whether two
documents are similar, as represented visually in Figure 2.2. This first kind of
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reasoning just requires Bob to apply specific rules, and does not involve any
memorized pre-computation. To illustrate that Bob can adopt different kind of
reasoning, he will be represented in one of the three following states:

1. The observation, on the left-hand side of Figure 2.1, when Bob simply
obeys to some fixed rules that he has been told, like when computing the
similarity between two texts.

2. The learning, in the middle of Figure 2.1, when Bob is looking for some
relevant patterns in a set of documents examples. He then keeps in memory
these patterns, which are often represented as a vector of weights.

3. The prediction, on the right-hand side of Figure 2.1, when Bob is finding
patterns in a new document, based on what he has computed and memo-
rized during the learning.

Figure 2.1 — The three reasonings of Bob: the observation, the learning and the
prediction.

As stated in Section 1.4, the different strategies in this thesis will be illus-
trated by our new friend Bob, represented in one of the states above. Now that
the reader is fully prepared to read the illustrations with Bob, we can go deeper
into the standardization problem, whose formalized statement is given in the
following.

Figure 2.2 — Given a weighting wq: and a similarity measure, Bob evaluates
whether two documents are similar or not.

2.1.4 Formal Standardization Definition and Strategies

Before going further into the literature related to this thesis, we propose to
express formally the standardization of the document d. The problem is to define
a function f such that:

fldy=ceN
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where A is the target nomenclature that takes a finite number of values, and c
is the concept associated to the document d. The concept c is the standardized
attribute resulting from standardization. To give example of A/, let us consider
the list of the multinational companies, which would include a value n repre-
senting “SAP”, with possibly meta information about this company: this is a
nomenclature of entities. An example of abstract nomenclature A is the job
categories.

A first interrogation is the nature of the nomenclature N. The concepts
it should represent is generally guided by industrial constraints, and can be
limited by technical difficulties: a fine-grained nomenclature is often preferable,
but might be replaced by a coarser nomenclature for which standardization is
more feasible. Moreover, N can be the fruit of an automatic generation using
external sources, mainly the internet. With this objective in mind the knowledge
bases from the semantic web will be detailed in Section 2.2.1, and the matching
of such sources is possible through the data matching presented in Section 2.2.2.

The second interrogation is the computation involved in f. In the case of
a nomenclatures of entities, a natural approach is the entity linking detailed in
2.2.3, which involves a simple straightforward comparison following the remark
in Section 1.3 that an entity is detectable only if it is explicit in d. In the case
of an abstract nomenclature A/, the classification literature detailed in Section
2.3.1 proposes to learn how to compute f from a data-set of examples (d,c),
where the target concepts c are referred as classes. Last, in the section 2.3.2 are
detailed the latent variable models for texts. Such models only leverage a data-
set of documents d in order to compute a function f that projects a document
into a cluster or some topics, which are not fixed in advance.

Section 2.2 and 2.3 address the literature related to the two paragraphs above.
The former presents the existing nomenclatures N and their manipulation, and
the latter presents possible computations for f, through supervised or unsuper-
vised learning.

2.2 Manipulating Existing Nomenclatures

Determining the nomenclature to use is the very first step for standardizing
documents. Building one from scratch involves high engineering costs and might
not produce a generic nomenclature, so it is preferable to leverage some external
source of information. The rapidly growing semantic web is a relevant source,
it provides meta-data that enables to perform entity linking, but also raises the
issue of multiple nomenclature, which therefore needs to be matched.

2.2.1 Knowledge Bases from the Semantic Web

The internet is an incredibly rich source of textual data, but without any pro-
cessing it is difficultly exploitable. A major focus in the past decade has been
to express the information in a computationally exploitable way following the
recommendations given by [Berners-Lee et al., 2001]. The core idea is that the

by ENA

internet texts deal with concepts, for example “Company”, “Google”, “Search en-
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gine”, “Larry Page”, each of which should be universally referred using a unique
Uniform Resource Identifier (URI). A second core aspect to describe information
is the Resource Description Framework (RDF) [Decker et al., 2000], which pro-
poses to express predicates in form (subject, verb, object), for example (”Larry
Page”, “works-at”, “Google”), which universally encapsulates the information
that Larry Page works at the firm Google. In such description of the informa-
tion, it is important to distinguish between the entities and the other concepts.
Indeed, the entities are concepts that exist, such as persons and organizations,
for example “Larry Page” and “Google”. On the other side, there are the types,
properties and interrelationships of the entities, for instance “company” is the
type of “Google” and “works-at” is the relation between an employee and its
company. It is critical that this second kind of concepts are carefully designed,
because they structure the entities and their connexions - taken together, they
form what we call an ontology. In an ideal world, there would be a unique on-
tology shared by everyone, but in practice, there exist numerous of them [Bizer
et al., 2009a]. The project to express most of the internet information in a RDF
structure is called the Semantic Web.

During the past decade, several open data projects have emerged with the
purpose of building a knowledge base with information expressed in a RDF struc-
ture, leveraging one or several ontologies. For instance, WordNet [Fellbaum, 2010]
aims to model the natural language. In this database the entities are words, and
the ontology expresses relations such as hyponymy, hyperonymy or synonymy.
This project does not deal with people, organizations or institutions, which is on
the contrary a major aspect of the DBPedia project [Bizer et al., 2009b]. This
other popular database is indeed built automatically using Wikipedia! pages, and
entities are as various as Wikipedia pages, with celebrities, companies, movies
or even softwares. Both of these projects have an encyclopedic purpose, and are
not specific with a domain. Because of this, they use upper ontologies - to be
contrasted with domain ontologies which are more specific.

When dealing with a domain, it can be very efficient to use a RDF-structured
knowledge base. In e-recruitment, some ontologies have been proposed, in which
the concepts were typically skills, degrees, institutions, companies and candi-
dates. The real-world experiments or fictive scenarios gave promising results
for matching CV with job adverts [Mochol et al., 2004, Fazel-Zarandi and Fox,
2009, Popescu and Popescu, 2010, Bourse et al., 2002], but the data have to
be manually structured to fit the ontology: one has to specify the skills of the
candidate, the degree level, and so on. When dealing with profiles or job adverts
extracted from the internet, the attributes are not or poorly structured and an
ontology-based reasoning is impossible. For concepts such as job sectors, job
categories and skills, there exists national knowledge bases, for example ISCO
[Winterton et al., 2009], O*Net [Hilton et al., 2010}, and ROME [ROME, 2013].
Each of them can be seen as an attempt to build an universal structured database
for e-recruitment. They are made up of entities which can be used as standards
and enable to compute national job market statistics [Le Ru, 2015, Alterman

Lurlhttps: / /www.wikipedia.org/

19



Chapter 2. Related Work

20

et al., 2008], but this requires to have structured manually the jobs and candi-
date profiles. For the problem of standardization, those structured databases are
a good source of information, but are limited since they are not comprehensive
and do not deal with concepts like companies or degrees. However, using directly
these knowledge bases for analyzing the job adverts or candidate profiles corre-
spond to a top-down approach. Indeed, these bases are predefined by recruitment
experts. Consequently, they express a terminology and a knowledge that is not
necessarily shared by the candidates nor the regular recruiters.

These knowledge bases represent rich structured information, and in this
thesis we will use their concepts for our standardization nomenclatures. In light
of this, we will not directly use the RDF-structured data, apart from extract-
ing entities along with their associated meta information. In other words, the
the knowledge bases can simply be seen in this thesis as flat data-sets of entities
with their meta data associated. To the best of our knowledge, building a custom
nomenclature is poorly tackled by the literature, since most systems simply rely
on the existing knowledge bases as nomenclatures. Depending on the concept,
some knowledge bases from the internet could be suitable sources for automati-
cally building a nomenclature of entities. However, building a nomenclature from
multiple sources implies to match the data, in order to avoid having duplicated
entities in the final base.

2.2.2 Matching Hierarchized and Flat Nomenclatures

To represent the data in a unique way, one often needs to match two nomencla-
tures, which is done by matching every concept successively. When the nomen-
clature is short and can be hierarchized, the problem relates to schema mapping,
whereas when it is large the problem is flat and relates then to as data matching.

Mapping Schemas of Concepts

A schema is a hierarchy or taxonomy of concepts, which can be the schema of a
database, the XML structure of a webpage, or more specifically the nomenclature
used in a recruitment website for the contract type or the required experience.
When dealing with two websites or databases, the problem on interoperability
can be solved by aligning the first schema on the second one, which means trans-
lating each term of the first into a term of the second, as represented in Figure
2.3. This problem is referred as schema mapping and has received a lot of atten-
tion over the past decade, with the growth of Internet and database integration
[Shvaiko and Euzenat, 2013a]. The problem tackles the structural heterogeneity
and semantic heterogeneity, because entities can be named differently and hier-
archized differently. In the case of jobs, [Carlson and Schafer, 2008] proposes an
automatic alignment of job adverts XML structures, which is equivalent to align
the names of the attributes of Section 1.3. The schema mapping appeared to be
more difficult for the nomenclatures of the attributes, and [Dorn and Naz, 2007]
leaves this question open for job categories.

The schema matching task is still mainly done manually, with the potential
use of crowdsourcing [Zhang et al., 2013, Viet et al., 2013], but the past decade
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the manual efforts have been reduced thanks to semi-automatic mapping sys-
tems [Bellahsene et al., 2011]. There mainly exist three approaches to partially
automatize the schema mapping:

e The instance-level mapping, which focuses on the instances associated to
each concept, which is typically applicable when we match the schemas of
databases

e The schema-level mapping, which focuses on the data type constraints as-
sociated to the concepts, the meta-data like the descriptions of the concepts
and the structure of the schema which imply the concepts’ names.

e The mapping-reuse, which leverages previously mappings performed to per-
form a new schema mapping.

Because of the multiplicity of the approaches, many systems are hybrid and asso-
ciate some different matchers. Each matcher is independent and the combination
of them is done a posteriori, using possibly machine learning [Rodrigues et al.,
2015]. However in some cases, the only additional information we have about
concepts are the name of the entities, and the structure; the two first approaches
are then irrelevant. [Shvaiko and Euzenat, 2013b, Madhavan et al., 2005a] pro-
pose name-based approaches and the former computes the similarity between
n-grams of words while the latter computes the Levenshtein distance between
the names. Such similarities are direct and assume that names are the same
for both schemas, meaning it will not work for two strictly different words with
same meaning. The use of WordNet for extended semantic similarity seems to
give good results, as proposed in [Manakanatas and Plexousakis, 2006] who sep-
arates names into tokens and leverage WordNet similarity between them. Such
an approach highly depends on the choice of lexical database, and it would be
preferable to leverage a domain specific base, containing for instance some ter-
minology related to the e-recruitment, while WordNet appears to be too generic.

The mapping reuse is still not very spread out, although a corpus of manu-
ally matched schemas is often available because the industrial context required
to match them. Among common match tools [Bernstein et al., 2011], only one
uses this approach: named COMA, the system links schemas thanks to a golden
standard schema, using transitivity of the semantic equivalence [Do and Rahm,
2002, Massmann et al., 2011]. Such a golden standard approach is time consum-
ing, and can result in a loss of quality depending on the choice of the golden
standard. [Manakanatas and Plexousakis, 2006] also reuses already identified
mapping, but only when names to be mapped are exactly the same as for pre-
vious mapping, which is very restrictive. [Madhavan et al., 2005b] successfully
proposes to use machine learning in order to learn a flexible similarity between
names. To do so, they associate each concept with two sets of positive and
negative matches, and vectorize the name, the description or instances of the
concepts of those sets. This approach however suffer from a cold start problem
and can only work when the source schema has already be mapped a lot, which
is drastically restrictive in practice.
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Figure 2.3 — Illustration of Bob’s reasoning for the schema mapping: he observes
a relation between the source item and its equivalent in the target schema. When
it is a textual similarity that is observed, this corresponds to name-based map-
ping, but the observation can also involve for instance meta-data or data type
constraint of the concepts.

In schema mapping, the match between concepts generally expresses an
equivalence and not an equality, because every concept needs to be matched
for interoperability and there is no insurance that an exact match exists. This
applies for short nomenclatures, but with very long ones, typically with thou-
sands of concepts, it can generally be sufficient to match the exact duplicates
between the two sources, which is a task referred as data mapping.

Data Matching

When the data is not hierarchized and represents a list of entities, the data
matching aims to find if the entities of the first source have an equivalent in the
second source, or none. The task is then to merge duplicate entries from 2 data-
sets, in order to create a unique deduplicated base. The domain is often referred
as record linkage, because a recurrent use has been for merging data from differ-
ent censuses [Herzog et al., 2010], but the typical applications covers data-sets
of farms [Lavallée and Caron, 2001], restaurants [Ravikumar and Cohen, 2004]
or e-commerce items [Christen, 2012]. Closer to our domain, data matching has
been found to have critical application in deduplication of social network users
[Buccafurri et al., 2012], but always considers the names alone and do not aim
to deduplicate the attributes of the users. About universities, [Aumueller and
Rahm, 2009] has applied data matching to the researchers’ affiliations, which
are regularly the laboratories themselves, contrary to a CV where any kind of
institution can be found. All the previous examples involve entities, and no high-
level concepts: while the schema matching can involve abstract nomenclatures,
for example the industrial sectors, the data matching only applies to nomencla-
tures of entities, moreover fine-grained ones. In light of this, in data matching,
the entries of the two sets are always directly comparable, because an entity
systematically has one or few explicit names.
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The problem has been formalized by [Fellegi and Sunter, 1969] as considering
two sets A and B, and deciding for each pair a,b € A x B whether to merge
a and b or not, as illustrated in Figure 2.4. A and B can possibly be the same
set, if the goal is to deduplicate the entities of a single data-set. The comparison
of a and b is generally represented by a vector y(a,b), in which each dimension
corresponds to the agreement or not regarding a feature, for instance the name
or the address. The merging decision is then based on 7(a,b) and can gener-
ally obey to deterministic rules or to a strategy which depends on conditional
probabilities p(y(a, b)|a, b to be merged), directly computed from the data or es-
timated through the expectation maximization algorithm [Herzog et al., 2010].
Clustering or supervised learning on the vectors 7(a, b) has also been successfully
proposed by [Elfeky et al., 2002, Ravikumar and Cohen, 2004].
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Figure 2.4 — Lllustration of Bob’s reasoning for the data matching: he staples the
documents that are similar, in order to form a deduplicated stack of sheets of
paper from the two original stacks.

As shown in Figure 2.4, from Bob’s point of view, he is confronted to two
sets of sheets of paper. The task is to staple the pairs taken from the two sets
that represent the same entity. The approach is to directly compare the sheets
of paper, comparison embodied by the vector v(a,b).

All methods except the supervised have concentrated a lot of efforts in the
past decades, especially because no labeled data is required to learn the pa-
rameters. But without external information, we have no assurance that any of
those methods provides a good performance. Indeed, all the metrics for data
matching quality [Christen and Goiser, 2007] need to be computed on a labeled
data-set. According to [Christen, 2012], majority of data matching techniques
has unfortunately only been evaluated on a small quantity of labeled data, and
in [Gomatam et al., 2002], no method clearly stands out, which both confirm the
necessity for a proper evaluation on a consequent labeled data-set.

Nevertheless, constituting a labeled data-set for data-matching requires high
human costs, and as [Winkler, 2006] recently pointed out, the manual review
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process is not well documented. In particular, as made explicit by [Christen and
Goiser, 2007], when considering all pairs a,b € Ax B the number of true negatives
is extremely high, because many pairs do not need to be merged: this makes
several classical metrics less meaningful, and a straightforward manual review
strategy highly inefficient. Another important outcome having a labeled data-
set would be to train models on the vectors y(a,b). In [Ravikumar and Cohen,
2004, Elfeky et al., 2002], heuristic approaches are compared with a supervised
algorithm, which outperforms the other approaches. Both papers point out the
difficulty of having labeled data, and in the experiments of [Elfeky et al., 2002],
the training is done only on artificial data.

For the hierarchized and the flat data matching, the information about en-
tities is used at matching the equivalent entities. This information is also used
in entity linking, which aims to associate a mention to one entity of the nomen-
clature. This mention is unstructured, while until now the comparisons were
typically between two structured values of nomenclatures.

2.2.3 Linking Documents to Entities of Nomenclatures

Given a knowledge base of entities, finding the entry that corresponds to a men-
tion in a document is the problem of entity linking, a typical example being to
link the company name of a job advert with the proper entity of a nomencla-
ture of companies. The research about entity linking began relatively recently
when [Cucerzan, 2007] and [Bunescu and Pasca, 2006] proposed to solve the
disambiguation problem by linking given the mention extracted in documents
to a Wikipedia page. The task gained into popularity with the challenge in the
Text Analysis Conference TAC [McNamee and Dang, 2009], and is often used
for named entity disambiguation, knowledge base population or textual data
standardization. The entity linking process is generally separated into 3 steps
[Hachey et al., 2013]:

e Extraction: Given the document and the mention, a query representing the
problem is extracted. The query is often made up of the mention itself and
some information of the surrounding context.

e Search: Based on the query, a set of relevant entities are selected in the
knowledge base.

e Disambiguation: In the case where several candidate entities are selected,
this step decides which one represents the mention.

The disambiguation step focuses on estimating the similarity between the
query and each selected entity, that are represented using textual information
contained in the knowledge base. From Bob’s point of view, each box corresponds
to an entity, and there are many boxes - as many as in the knowledge base.
The entity’s textual information is directly compared to the document that Bob
needs to store, as shown in Figure 2.5. Indeed, the extracted query and the entity
textual information are both the name of an entity, and are therefore directly
comparable.
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Figure 2.5 — Illustration of Bob’s reasoning for the entity linking: Fach box is
taged with the name(s) of its entity. Bob places the sheet of paper into the box
whose tag is the most similar to the sheet of paper itself.

The system can also return the answer NIL, when no entity seems to rep-
resent the mention after the search or disambiguation steps. A vast majority
of the proposed systems in the literature leverages the information of wikipedia
for the entities features [Rao et al., 2013], using for instance URL redirections
and disambiguation pages as aliases for the entity. Such data is made easily ac-
cessible through the DBpedia project previously described in Section 2.2.1, and
is considered as a sufficient source of knowledge in most of the papers. Conse-
quently, the literature does not treat the creation of the knowledge base, and the
common approach to face queries that have no corresponding entity is to return
NIL, in order to potentially add it manually in the base. Some work designated
as knowledge base population aims to enrich existing entities in the knowledge
base [Ji and Grishman, 2011], but a real need is to create totally new entities by
considering for example multiple knowledge bases.

Similarly to data matching, designing an entity linking system involves evalu-
ating it, which requires a labeled data-set. The labeled data also find a significant
importance when supervised learning is used for linking, which have been found
to be a performant approach [Zhang et al., 2010, Rao et al., 2013]. The usual
entity linking metrics [Hachey et al., 2013] endeavor to analyse separately the
accuracies of the search step and the disambiguation step. This enables to tune
efficiently the system on each step separately. In the case of a knowledge base
built up from multiple sources, evaluating the entity linking would imply to
define adapted metrics.

The task of entity linking is only possible when there exists a nomenclature
of entities, with information for each of them. However, when we want to link
a document to an abstract nomenclature, for example the job categories, we
can not have some descriptions of the concepts directly comparable with the
document to standardize. In practice there might not be any description of the
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concepts. In such case, we need to focus on the document to standardize and
find patterns in it.

2.3 Standardizing by Finding Patterns in Documents

In order to learn relevant properties in textual documents, we can leverage a
set of documents which will be our guiding examples. These documents might
have been manually labeled: in this case, the labels are referred as classes, and
finding the patterns in each class is referred as supervised learning, that will be
the first part of this section. On the contrary, when the documents have not been
manually labeled, the learning is unsupervised and aims generally to determine
clusters of documents or finding the topics in them. A major trend for such
analysis are the latent variable models, that will be studied in the second part of
this section. In each case, the set of topics, of clusters or of classes can be viewed
as an abstract nomenclature, since they correspond to higher level concepts and
not to existing entities.

2.3.1 Learning to Classify from Examples

A big range of problems can efficiently be solved by leveraging a set of manually
solved examples; this is in particular true for many standardization problems.
This approach is called the supervised machine learning, and the examples are
called the training samples. The problem of classification is a kind of supervised
learning in which the objective is to give a class to each input data. If the in-
put data is textual documents, the examples can be represented as a data-set of
classified documents (d, ¢) where the class c is a concept of an abstract nomencla-
ture, for example the job category of a job description d. As shown in Figure 2.6
with the metaphor of boxes that represent classes, the process separates into two
steps: the training, during which we learn the patterns associated to each class
by examining the labeled documents; the prediction, when the label of a new
input document is inferred by examining which pattern is encountered in it. We
describe here three ranges of classifiers popular for text mining [Sebastiani, 2002],
the proximity based classifiers, the linear classifiers, and probabilistic classifiers.

The most easily understandable classifiers are based on the proximity be-
tween documents, and have thus a geometrical interpretation [Gower and Ross,
1998]. For documents, it requires to represent documents as vectors wg [et al.,
1975] where each dimension corresponds to a term of the vocabulary ¢ € V, and
the value is the weight wq; where Equations (2.1), (2.2) and (2.3) give some of
the most popular variants (see Section 2.1). One historic classifier is the near-
est neighbors [Cover and Hart, 1967], whose idea is to find the example of the
training set which is the most similar to the input document d, and consider as
solution the class of this example. The training step does not involve any compu-
tation but the prediction involves to compare the document with each sample, so
that its complexity increases linearly with the size of the training set. The Roc-
chio classification [Rocchio, 1971] scales better to large training sets. It proposes
to compute the average vector of each class, also called centroid, and prediction
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Figure 2.6 — Illustration of Bob’s reasoning for the classification: 1. For each
box, Bob learns what are the typical patterns of the documents inside. 2. Bob
predicts a box for a new document based on the patterns he found in it.

is then limited to comparing the input document with each classes’ centroid.
Both classifications are fairly simple, but suffer from overfitting, meaning they
are efficient when the input document is very close to the training samples, but
can be highly wrong for different documents from what was seen in the examples.

A second group are binary linear classifiers, who split the vector space into 2
regions separated by an hyperplane. Each region modelizes a class, and the two
classes are usually a positive and a negative one. The parameters to be learned are
the parameters of the hyperplan, which are the normal vector to the hyperplane
B e RV, and the offset @ € R. One example is the Logistic Regression, for
whose probability for a vector & of being in the positive class is modelled by
m It can be trained using gradient descent, and is a particular case of
the perceptron, i.e. the single layer neural network. A more popular algorithm
is the Support Vector Machines. The interpretation is purely geometric, it aims
to find the separating hyperplane that is the most distant from the samples of
each class. The training is the optimisation of the function mawg7a]] 3|, under
constraints that express the separation of the samples. It can be extended to
other kernels, but the linear assumption gives good results for text classification
[Andrews et al., 2002]. The linear classifiers generalize better than Rocchio and
nearest neighbors classifiers, but the number of parameters to learn is very high,
since it equals the size of vocabulary |V|: a very high number of labeled samples
are required for the training. Furthermore, the binary classifier are originally
defined for bi-class problems, and a multi-classes problem is solved by training a
classifier for each class before combining them: this means that we need for each
single class a high number of labeled samples.

Another range of classifiers are the Naive Bayes, that are probabilistic, be-
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cause we compute p(d|class ¢) from a model in order to infer p(class c|d). The
models are generative, meaning we consider that a class “gives birth” to a docu-
ment, and the computation of p(d|class ¢) does not require to represent the texts
in the vector space but only as multisets of terms (Equation (2.1.1) of Section
2.1.1). The two popular models for texts are the Bernoulli and the Multinomial
Naive Bayes. The first one assumes that each term of the vocabulary V can be
present or not in the document d: we generate the document by determining for
each term ¢t € V if the event ¢t € d is true or false. We compute these probabili-
ties p(t € d|class c) for all terms t € V and multiply them to get p(d|class c), as
shown in the left-hand side of Figure 2.7. The Bernoulli model therefore penal-
izes the absence of every term not in d, which is discussable especially when the
vocabulary V is large. In a different way, the Multinomial model assumes that
given a class, the document is generated term after term ¢;, following the event
t=t; for a number of n times, n being the number of terms in d. The event does
not depend on ¢ but only on the distribution of terms per class, and we multiply
the n values p(t=t;|class c) to get p(d|class c¢). In both cases, the training com-
putes a formula corresponding to the maximum likelihood estimation. If it has
a naturally a multiclass classification, it also requires to learn |V| parameters.
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Figure 2.7 — Bayes diagram describing two Naive Bayes algorithms. On the left,
the Bernoulli version generates the presence or not of each term of the vocabulary
V, noted t@ for i = 1..|[V|. On the right, the Multinomial version generates
successively the n terms of the document d.

The previous models gives good results for textual classification [Wang and
Manning, 2012}, and can solve a standardization problem provided that we have
a sufficient number of documents in the training set. Indeed, the dimension
of the problem, namely the number of words in V), is of the order of minimum
10, 000. Consequently, the number of documents has to be of the same order, and
every class must be significantly represented, which is problematic in the case
of fine grained classification. One way to train a classifier on fewer documents
is to use dimensionality reduction, which aims to represent documents in fewer
dimension using a preprocessing unsupervised learning. Along with the latent
variable models described in the next section, the most popular ways to reduce a
problem’s dimension are the principal component analysis [Jolliffe, 2002] and the
latent semantic analysis [Dumais, 2004], which both are algebraical algorithms
that correspond to the diagonalization of a matrix. However, even after such
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pre-process, the classification precision might still be low; in this case, a strategy
could be to require additional manual validation.

The active learning proposes to efficiently leverage the manual validation, by
interactively querying a user about the class of some input data. The objective is
to improve incrementally the classifier, by choosing optimally the input data to
be manually label by the user [Settles, 2010]. The literature has widely focused
on the approaches for choosing what data should be manually labeled, and the
most simple and used approach is to consider the most uncertain classifications,
meaning those with the lowest probability p(c|d) in the case of a document d
with a predicted class c. For fine-grained classification of documents, following
the previous paragraph, we would need a very high number of manual validations
to significantly improve the classifier.

Instead of focusing on improving the classifier - which is the initial objective
of active learning - one might instead consider that the manual validation is an
integrant part of the system, and similarly focus on the cases’ uncertainty. In
other words, we can consider that some human labour will always be necessary
for classifying documents d, but we can limit the validation to only uncertain
cases. This means we need to automatically detect the uncertainty of classifi-
cation given by the probability p(c|d). This quantity is naturally produced by
probabilistic classifiers, but not by others classifiers. Any classifier outputs a raw
score, that can give a first insight of uncertainty, but it can be more relevant to
estimate a probability instead. Indeed, the probabilities are normalized scores,
and they provide better user experience, especially for non expert users [Kruppa
et al., 2014b]. In case of a binary SVM, the raw score is an non-bounded distance
to the separating hyperplane, and the probability can be accurately estimated
by fitting a logistic regression on the distances [Platt, 1999]. The logistic re-
gression raw scores can indeed be interpreted as probabilities [Hosmer Jr and
Lemeshow, 2004] and are widely used in probability estimation. Recently, it has
been shown that multi-dimensional logistic regression enables to estimate the
probability for the K-NN and Rochio classifiers [Kruppa et al., 2014a], which
both produce naturally multi-dimensional scores. Furthermore, a combination
of logistic regressions can also provide easily a probability interpretation while
having better performances. In [Nie and Fei, 2014}, the combination is performed
through an Adaboost, meaning the classifier is a weighted sum of several logistic
regressions, and the probability is estimated using a different formula that avoids
too close values from 0 and 1. For a multi-class classification computed through
one-versus-all binary classifiers, one can directly estimate independently the pos-
terior probabilities for each classifier, by fitting independent logistic regressions.
However an additional computation can significantly improve the probability es-
timation. Indeed, the approach proposed in [et al., 2004, Zadrozny and Elkan,
2002] combines the previous one-versus-all probabilities in order to refine the es-
timation incrementally. However, all these studies need a consequent training set,
including significant number of positive cases for every class, which is limiting
for fine grained classification of documents.

In all its previously described forms, the classification of documents has found
many applications, including in e-recruitment for categorizing jobs. This problem
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is a example of standardization, and has for instance been used for managing
human ressource [Cornelius et al., 1979], for matching a job advert to a candidate
resume [Diaby and Viennet, 2014], or more recently for predicting recruitment
campaigns success, as proposed in [Séguela, 2012]. The general need is that a job
advert has conceptually a category, for example “software engineer” or “sales
manager”, and that it can not be captured by some simple keywords, as pointed
out by the design of jobs search engines [Schmidt et al., 2015]. One specific
aspect of the categorization of job adverts is that the categories nomenclature is
usually fine-grained, and in literature the number of classes is at minimum of one
hundred [Séguéla, 2011, Séguela, 2012, Ghani, 2002, Schnitzer et al., 2014, Javed
et al., 2014]. These nomenclatures are generally organized as a taxonomy, with a
first level, coarser, counting several dozens of categories, and a second one, finer.

For instance, [Zhang et al., 2012] proposes for a Chinese recruitment website
to disabled people to separate the job adverts into 7 employment sectors. They
train a variant of the Naive Bayes classifier on a training set of 5,700 labeled
job adverts, leading to a precision and a recall high enough to automatically
categorize real-world job adverts, but remains on a coarse grained classification.
In [Schnitzer et al., 2014] the job adverts can be associated to several categories
out of 103, which is therefore a multi-label classification. In their dataset, the
10,300 adverts are on average associated with 4 categories. They propose to train
several binary classifiers before combining them in an ensemble method, which
gives excellent results when they restrict the classes to the number of 5. Moreover,
when the learning is done on a limited dataset of only 1,000 job adverts, a
manual validation is necessary for ambiguous cases. In [Séguéla, 2011, Séguela,
2012], a linear SVM is trained on a data-set of 9,300 job adverts. The results
on the first level (23 classes) shows that the recall and precision really depend
on the considered class: the job adverts in “Human Resources”, “Accounting”
and “Computer Science” seem to have a much more specific vocabulary, and are
therefore better classified, contrary to the adverts in “project management” and
“clients support”. However, the data-set appears to be too limited to consider
classification on the second level of 107 classes, and when they propose to reduce
the dimension through PCA, even if they gets slightly better results with only 300
dimensions - compared to about 10,000 words - it remains unsatisfactory for fine-
grained level classification. [Ghani, 2002] proposes to use ECOC [Hatami, 2012],
which is particularly indicated for high number of classes, because it decomposes
the m-classes problem into a number of binary problem lower than m, and scales
up sub-linearly with the number of classes. This algorithm gets good results
for classification on 65 categories, but the training required 132,000 labeled job
adverts.

As the literature about job categorization demonstrates, the fully supervised
classification appears to be complicated for fine-grained categories as it requires
a significant labeled training set. Furthermore, in order to follow the evolution
of the job market, we would need to update this data-set regularly. One option
that still remains poorly tackled in literature is to leverage one of the existing
nomenclatures. The latters generally provide rich information, as do the national
databases discussed in Section 2.2.1. The only related approach [Javed et al.,
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2014] studies the classification on the first level of the american national taxon-
omy for jobs O*Net [Dierdorff et al., 2013], and proposes to train a linear SVM
on 3,6 millions of labeled job adverts. They vectorize only the job title, since
it conveys more information than all other attributes of a job advert, according
to [Diaby et al., 2013]. The experiments required a consequent infrastructure,
16 computing units with 35BG of RAM, and gave very promising results for 25
categories, but they leave the consideration of finer level as a future perspective.
In particular they only use the structure of the O*Net nomenclature, and not
any meta-data associated to it. Since the meta-data of a nomenclature might
include the concepts’ descriptions and titles and is regularly updated by the
domain experts, it might be extremely relevant to use it for the classification.

However, for many standardization problems, the nomenclature is not asso-
ciated to any meta-data, and we might have no labeled documents - or only a
limited number. In such case, the only option is to leverage a data-set of unla-
beled documents through unsupervised or semi-supervised learning, as detailed
in the following.

2.3.2 Unsupervised Latent Variable Models for Documents

The unsupervised branch of machine learning leverages only unlabeled data as
input and has found many application in text mining, one typical task being to
cluster hundreds of thousands of job adverts into groups that share the same skills
[Litecky et al., 2010]. One sub-class of unsupervised learning are latent variable
models, which assume that each example is generated by an unknown latent
variable. Such models are probabilistic and generative by definition. They can
be easily illustrated by bayesian networks [Whittaker, 2009], which are graphs
that represent the conditional dependencies between the random variables.

Historically, the first model of this kind is the mixture of gaussian, proposed
by [Pearson, 1894]. He realized that the studied crabs sizes followed a first normal
law for a subpart of them, and another normal law for others. In this example,
the latent variable represented actually the two subspecies of the crabs. In order
to generate the size of a crab, one has to flip a biased coin to determine the
crab species, before sampling a size following the normal law of this species. The
same idea has been applied to documents [Nigam et al., 2000], meaning that
one assumes that the input documents form several groups in which the words
have a specific distribution. The law for such distribution can be Multinomial or
Bernoulli, which corresponds to a Naive Bayes Classifier but with the class of the
document considered as a latent variable 2.7. To generate a document, one has to
flip a biased coin to determine the class ¢, before sampling the words with respect
to the class words distribution. The model’s parameters are then computed using
a Expectation Maximization algorithm (EM) [Moon, 1996], which is very popular
for latent variable models [Everett, 2013]:

1. Initialization: for each input document, assign a value to the latent variable
z. Without any specific clue, this assignment is fully random.

2. While the expected total log-likelihood @ = )", Ez|d(log(p(d))> has not
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converged, repeat the following steps:

(a) Maximization (M-step): learn the parameters of the generative model
p(d|z), considering the probabilities for the values of z of every doc-
ument.

(b) Expectation (E-step): for each document d, compute the new proba-
bility for each possible value of z, based on p(z|d) o p(d|z)p(z). After
this step the expected total log-likelihood value ) is updated.

At the end, one can be interested in the final values z assigned to each
document, as well as in the model linking documents to classes p(d|z) and its
parameters. This baseline model is also called mixtures of unigrams, and is at
the origin of several models in the domain of semi-supervised learning, clustering
and topic modeling [Blei, 2004].

The mixture of unigram was originally a semi-supervised algorithm [Nigam
et al., 2000], meaning the solved problem is a classification where the training
involves labeled documents but also unlabeled ones, in order to increase the preci-
sion compared to training on labeled documents only. To do so, the labeled data
are used in the initialization for computing the probabilities p(d|class c), as well
as in the M-step when learning the parameters on both pre-labeled and automat-
ically labeled documents. The semi-supervised form of the mixtures of unigrams
has been compared in the literature to another latent variable model, the co-
training [Nigam and Ghani, 2000], which does not require an EM approach. The
idea is to split cleverly each labeled document in two sub-documents d = (d®, d®)
and learn one classifier for the data-set with the sub-documents d* , and another
one for the sub-documents d®. Both data-sets are incrementally increased with
the unlabeled documents, by considering in priority the most certain predictions
according to one classifier. This way, the unlabeled documents are progressively
labeled while the classifiers are improved thanks to these new training exam-
ples. One assumption that provides theoretical guarantees for the co-training is
that d® does not depend on d® given the document’s class ¢ [Blum and Mitchell,
1998], which is theoretically a latent variable model as shown in Figure 2.8. How-
ever the documents are not labeled using p(c|d) o p(d®|c) x p(d®|c) but using
only one of the two last probabilities - the highest one. In practice, the quantity
representing the classifications’ certainty is not necessarily a probability; it needs
however to be precisely estimated, as for the active learning (the co-training can
be seen as an automated active learning). The co-training applies to documents
having an obvious split into 2 subspaces that each conveys rich information. This
is the case for the job adverts since one can separate their title and their descrip-
tion [Ghani, 2002]. In this latter paper, they leverage the amount of unlabeled
adverts available on the internet by using co-training with a simple Naive Bayes.
This approach enables them to train an algorithm on only 13,200 categorized
job adverts in a nomenclature of 65 classes, thanks to 120,000 unlabelled job
adverts. They compare the co-training to the basic EM detailed previously and
to a combination of both that they propose, called co-EM. They get the best
results for the last one, with a precision on 65 categories equivalent to the super-
vised approaches on coarser categories [Séguéla, 2011], but the consequent size



2.3. Standardizing by Finding Patterns in Documents

of their labeled data-set of job adverts makes their system difficultly updatable
for following the new trends of the job market.

Figure 2.8 — In the co-training model, the class generates separately the two sub-
documents d* and d®. When applied to a job advert, d® is the title and dP is the
description.

In the case where there is no labeled data at all but only a corpus of docu-
ments, the problem of clustering aims to form groups of documents. The meaning
of those groups is unknown, contrary to the classes in the supervised case. As
illustrated in Figure 2.9, from Bob’s point of view, he is asked to group similar
documents together, which then enables him to assign a cluster for new doc-
uments. Several clustering algorithms are geometrical, such as the K-Means in
which each cluster’s centroid is iteratively computed, but for analyzing textual
data the probabilistic clustering has been more used [Aggarwal and Zhai, 2012],
which corresponds to latent variable models. One of them that has showed great
efficiency [Cornell, 2011] is the previously detailed model of the mixture of uni-
grams [Blei, 2004] with a random initialization and a M-step computed only on
initially unlabeled documents; this model can be seen an unsupervised version of
the Multinomial Naive Bayes in its fuzzy variant [Li and Deogun, 2009]. A point
worthwhile to notice is that clusters have no interpretation, and to automatically
give a meaningful name to each cluster is a difficult task [Tseng, 2010], which is
therefore generally done manually a posteriori. Contrary to the classification, to
assign a cluster number to a document can not be considered as a standardiza-
tion, since the clusters do not represent meaningful concepts. They indeed just
represent groups, and are therefore not a suitable nomenclature, apart if a highly
costly manual review reveals they also represent meaningful concepts.

In literature, clustering have been a support of classification rather than a
replacement. For instance, [Sasaki and Shinnou, 2005] proposes to cluster docu-
ments before classifying them, in order to capture their topic and improve the
supervised spam detection, which is a kind of data reduction, whereas [McCal-
lum, 1999] tackles the text classification by using mixtures that are trained for
each class. The clustering has repeatedly found application in the e-recruitment,
for example on the job adverts by [Javed et al., 2014] who plans to go beyond the
O*Net taxonomy, by performing clustering on millions of jobs automatically cat-
egorized. Their work does not aim to improve the categorization but at finding
new niches and emerging job titles, and relies on massive data-set of annotated
job adverts and computing infrastructure. The clustering has also been used for
analyzing candidate profiles, for instance by [Karamatli and Akyokus, 2010] who
clusters the entities extracted in a resume based on the closeness of their posi-
tions, in order to group the education and work experience information, before
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Figure 2.9 — Illustration of Bob’s reasoning for the clustering: in the first frame,
Bob groups the documents that are similar in a certain sense - strictly speaking,
this is the clustering. In the second frame, Bob learns the properties of the clus-
ters. In the third frame, Bob predicts the cluster of a new document. Each box

1s simply numbered, and has no meaningful name, since the cluster’s meaning
remains a mystery to Bob.
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standardizing them using some dictionaries. [Hong et al., 2013] finds clusters of
candidates of a recruitment website based on their textual information as well
as their click and search frequencies, in order to use different job recommenda-
tion strategies for each cluster. They manually determine those strategies after
having manually interpreted those 3 clusters. In [Sivaram and Ramar, 2010],
the clustering aims to detect relevant candidates for a company, based on the
textual information manually standardized. Following a comparison with a su-
pervised classification, they conclude that K-means and its fuzzy variant are not
applicable for resumes.

A more recent use of the latent variable models for text are the topic models
[Aggarwal and Zhai, 2012], which are closely related to the probabilistic clus-
tering presented above. The difference is that such models do not aim to form
groups of documents but groups of terms, which represent the topics covered in
a corpus of documents. A given document is then assigned to several topics sup-
posed to capture the its global themes, instead of a unique cluster in the general
case of clustering. The topics are unknown a priori, and could for instance cap-
ture the vocabularies related to the car industry, to software development or to
the working conditions. A first topic modeling is the Latent Semantic Analysis
or LSA [Deerwester et al., 1990], which is purely algebraic and not probabilistic,
since it works by diagonalizing the matrix of words co-occurence in the input
corpus. The idea is that the eigen vectors would regroup the words occurring
in the same documents, which therefore represent the same topic. But rapidly
this first deterministic approach has been supplanted by the Probabilistic Latent
Semantic Analysis [Hofmann, 2001], which is a latent variable model in which
the same word can be associated to different topics depending on the document
where it appears. As shown in Figure 2.10, for a model with K topics, a docu-
ment d of size n is generated in three steps: first, one latent variable of dimension
K is generated for representing the distribution of topics of d. Then, following
this distribution, n latent variables z; € {1, ..., K} are generated, and every term
t; is finally generated with respect to the terms distribution p(t;|2;) for the topic
numbered z;. A popular evolution of this model has been proposed by [Blei et al.,
2003] by adding the assumption that the distributions of topics per document
as well as words per topic are Dirichlet distributions, meaning that a document
only covers few topics and a topic is depicted by only few words. This model is
the Latent Dirichlet Allocation or LDA and is considered as the most popular
topic model [Blei, 2012, Arora et al., 2012].

Like other topic models, the LDA is hard to quantitatively evaluate; but it is
known to provide fairly interpretable topics by humans. It has been successfully
applied on corpuses of job adverts, for instance in [Kim et al., 2011] where they
manually find the “abusive” LDA topics in order to automatically filter the
job adverts of some freelancing sites. [Thompson and Willis, 2015] proposes to
replace the qualitative analysis of job adverts by just giving the list of the topics’
labels, and to do so they train a LDA with 200 topics on 15,000+ job adverts
from Indeed, before manually labeling the computed topics. They compare the
predicted topics with the cluster predicted using a K-mean with 50 clusters, and
conclude that the LDA is more appropriate because there are several aspects
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in a job advert that are not captured by the clusters, too coarse. Consistently
with this statement, [Mimno and McCallum, 2008] finds the LDA topics to be
very promising for predicting the sequence of job positions in a résumé. Their
point is that 85 percent of job titles are unique out of the 54,000 positions they
study in a corpus of about 10,000 resumes, which means job titles are too specific
and useless for prediction. To cope with this, they propose to first compute 200
topics using the LDA, and then learn a generative sequence model in which
each position is assigned to a professional state which corresponds to a mixture
of topics. They evaluate the model by comparing the log-likelihood values of
different variants, which poorly indicates the performance but points out that
the model with states and topics is most efficient, and in particular compared
with a model that uses just titles.

Z] “—b tli‘

Zl—btlw

@

Figure 2.10 — Diagram describing the probabilistic LSA, in which the topic dis-
tribution generates latent topics z; associated to each term t; (i = 1..n where n
is the number of terms in d).

“topic \/ /'
\dzstm utwn/ \

Another interesting aspect about [Mimno and McCallum, 2008] is that topics
are automatically given a label which is the most frequently associated job title
in the corpus. This labeling leverages the meta-data provided by resumes, and
an in-depth use of the meta-data would be to consider it in the computation of
the topics, which is a global prospect of topic modeling [Blei, 2012]. In [Mimno
and McCallum, 2012], and similarly in [Mei and Zhai, 2006], the distribution of
topics depends on the document features, for example the author, the location or
the date, each being given as meta-data. Some work about temporal text mining
[Mei and Zhai, 2005] combines topic models with information about temporal
evolution, but these two aspects are computed separately one after the other,
as it is done in [Mimno and McCallum, 2008]. The latter work confirms that
latent variable models can be relevant for sequence of documents, for example
the work positions or educations in a candidate profile. However, their model
do not consider the sequentiality for the computation of the topics. If meta-data
could enable us to know what each topic or cluster represents, the topic modeling
and clustering could then serve at standardizing documents.
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2.4 Unresolved Questions about Standardization

All the previously described scientific fields solve problems that relates at least
partly to standardization, on the side of the nomenclature A as well as on the
side of the standardization function f itself. Apart from the unsupervised latent
variable models, a discriminative common aspect of these automated approaches
is to involve some external knowledge. Indeed, if standardization has been widely
tackled by the literature, the only ready-to-use solutions are the multiclass clas-
sification and the entity linking. However, the former requires a labeled data-set
of documents, while the latter requires knowledge base dedicated to the entities
that we want to standardize. We will however never meet these ideal situations
during this thesis, so that we have to study some questions that remain unre-
solved by the literature. As stated in Section 1.6, we will tackle standardization
by decreasing order of the available external knowledge, which successively raise
the following questions:

e The most classified documents that we need to standardize are the struc-
tured texts, which take values in a hierarchized nomenclature. Each website
having its own nomenclature, we will see that standardizing is equivalent
to schema mapping; however, the only strategy that applies to our stan-
dardization problem is the mapping reuse, poorly treated by the literature.
The first question that arises is therefore the feasibility to leverage a large
data-set of previous schema mapping, in order to reproduce automatically
the semantic equivalences. Furthermore, to what extent such an automated
schema mapping permits a reliable standardization of structured data?

e Some structured knowledge bases appears to be directly usable as nomen-
clatures, for example the national job categories. In the case of an abstract
nomenclature, the problem of standardization is not solvable through en-
tity linking. The example of jobs’ categorization is even regularly treated
as a multi-class classification for which the semi-supervised learning has
shown promising results. In the case where we have only a limited data-set
of standardized documents, is it feasible to leverage efficiently the cate-
gories’ descriptions? Is it moreover possible to enrich the system with a
corpus of unlabeled documents, as does the semi-supervised learning?

e The entity linking proposes to standardize a mention into a fixed knowl-
edge base. However, the existing knowledge bases generally used are too
generic for a domain-specific standardization. Is it feasible to automatically
generate a domain-specific knowledge base for a standardization problem?
What would be the general process for this, and how to evaluate the qual-
ity of the generated nomenclature just based on the final standardization?
This evaluation is particularly critical when the generation relies on data
matching, whose variants would produce nomenclatures of varying quali-
ties.

e The latent variable models show the great advantage of not requiring any
external structured knowledge, but just a corpus of documents. Such mod-
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els are however not usable as standardization because the topics or clusters
have no explicit meaning. They even change every time we learn the model.
However, incorporating some meta-data for some problems appears to be
a current prospect. Is it possible that a latent variable model leveraging
some meta-data provides more meaningful clusters? Which latent variable
model would therefore be usable in the case of sequences of documents,
like the degrees of candidates?

These questions will be studied successively throughout the chapters of this
thesis, starting with locally structured data.



Chapter 3

Mapping Local Nomenclatures
of Structured Attributes

In order to adress automatic standardization, it appears necessary to leverage
external structured knowledge. In the case of data extracted from websites, such
as the documents involved in the SmartSearch project, many textual fields are
already structured: they take values in the nomenclature of the source website.
A first natural approach to standardization is therefore to make use of these
local nomenclatures, which will be covered in this chapter. In other words, we
will study the standardization of structured data (see Section 1.3.3), which are
pre-standardized differently on each source. It is for instance the case for the con-
tract type or the industry sector of a job advert, values that are selected by the
recruiter in the website’s nomenclature. As pointed out in 1.3, each website has
a different nomenclature, which raises the common problem of interoperability
between various sources. There is therefore a need for an a posteriori standard-
ization, in order to translate the attributes in a common nomenclature. In this
chapter we will see how standardizing this type of data is partially resolved by
schema mapping, for which we proposed a case-based automation in [Malherbe
et al., 2015b].

This study is also a more in-depth introduction to the standardization prob-
lem when dealing with different sources and vocabularies, and furthermore raises
the difficulty of automatically reproducing semantic reasonings.

3.1 Standardization through Mapping of Nomencla-
tures

The job adverts as well as the candidate profiles involved in SmartSearch project
are extracted from various recruitment websites, and a first natural strategy for
standardization is to study the data that is structured on these websites. This is
the case for the Contract type, the industrial Sector, the job Function, the
required Experience and Study level for a job advert or an occupied position,
manually specified by the recruiter or the candidate in the website’s nomencla-
ture. Such attributes are represented by textual documents, but take a finite
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number of values for a given website (see the definition of structured data in
Section 1.3.3). In light of this, if we translate these few values into a common
nomenclature, then all the corresponding data coming from this website is stan-
dardized.

In this case, and only in this case, standardization can be addressed man-
ually. Indeed, the millions of documents we manipulate come from only a few
hundreds of recruitment websites (see Table 1.1 of Section 1.2.2), meaning that
only few hundreds of local nomenclatures need to be standardized. The task is
then to find for each value of the local nomenclature an equivalent in the tar-
get common nomenclature, which corresponds to mapping the nomenclatures as
shown visually in the Figure 3.1. The choice of the common nomenclature, i.e the
target of standardization, depends on the industrial context; in the SmartSearch
project, we aim to have a generic nomenclature for each attribute, but we could
imagine having personalized nomenclatures for each client using the software. In
light of this, this chapter does not focus on a specific target nomenclature N/,
but just proposes to reproduce the manually pre-defined mappings, as an ex-
ploratory study. Since a good part of the nomenclatures are hierarchized, we are
in fact dealing with schemas (see Section 2.2.2); the problem we address is hence
schema mapping, which is a recurrent approach for dealing with interoperability.

Local Job Categories .
Target Job Categories
| IT Department

HTML Integration

Database Administration

Software Engineering
Web Development

L. . Administration
Administrative and o .
Management & Administration
Infrastructure Support : .

Direction

| Management Department
g c Sales
ecretar
. y_ Human Resources

HR Direction

Figure 3.1 — Example of the schema matching problem : given the text schemas
Aerample jn the left-hand side and Z€*“™Pe in the right-hand side, what is, for
each item in ASTMPE the best semantic equivalent in Zev@mple

In practice, Multiposting faces this kind of standardization in another soft-
ware, which serves at publishing automatically a job advert from the client to a
selection of recruitment websites. In this example of industrial inter-operatibility,
the job advert fields are structured in the client’s internal nomenclature, and
need to be standardized into the website’s nomenclature before being published.
Dozens of nomenclatures need to be mapped one to another each week, due to
the constant increase of Multiposting’s clients and supported websites. As an ex-
ample, the Figure 3.1 could represent respectively Microsoft’s and Monster.com’s
nomenclatures for job categories.

In term of formalized standardization, which we defined as a function f(d) €
N in Section 2.1.4, the documents d take a finite number of values for locally
structured data. When looking at one source of data, these values make up the lo-
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cal nomenclature N/ = {d,, d,, ..., d ||}, and standardizing signifies giving the
values of f(d,), f(ds2), ..., f(dx|) in the target nomenclature N. The function f
is therefore a map between N’ and N, meaning each concept of the left-hand side
of Figure 3.1 is linked to its equivalent in the right-hand side. Handling more
sources means doing new mappings from a nomenclature into another, which
defines f incrementally.

In this chapter, the nomenclatures are supposed to be hierarchized, and are
not just a flat set of values d. For this reason, the standardization function f
will be applied to what we call items, which will be defined in the next section
as well as schemas.

3.2 Formal Definitions

3.2.1 Representation of Schemas and Items

We firstly introduce here the notion of a schema item, which corresponds to a
concept in the nomenclature, or to a node if one considers the schema a tree.
The item is for instance a contract type, a job sector or an experience level. To
define an item, we consider the name of the concept, and the name of the parent
concept, which are both textual documents. This parent name gives the semantic
context of the item, and captures the hierarchy of the schema. For clarity, we
will only focus on such 2-level items, but higher levels of the hierarchy could
be taken into account, by considering for instance the name of the grandparent
node. An item is therefore defined as a pair of documents a = (a,, a,), made
up of the bag-of-words a, of the concept, and the bag-of-words a. of its parent.
These bags-of-words are obtained following the process described in Section 2.1.1
using a stemmer for processing words, and a, equals to the empty multiset {}
when the considered concept has no parent. If one considers the schema as a
tree, a, corresponds to a node of the schema, while a. corresponds to its parent,
as described in the example below. Grouping items in a set is another way of
representing 2-level schemas.

This definition of items enables us to represent a schema as a set of items.
For instance, the left-hand side schema in the Figure 3.1 is represented as the
following items set:

Aerample {({html, integration}, {it, department}}»),
{database, administration}, {it department}}),

{administrative, in frastructure, support}, {it, department}}),

(
(
({{hr, direction}}, {management, departmemf}}),
(

{secretary}, {management, department}ﬁ})}
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And similarly for the right-hand side schema of Figure 3.1:

zewample — {({{web7 development}, {software, engineering}),

{administration}, {software, engineem’ng}),
{direction}, {management, administration}}),

{sales}, {management, aalministv"ation}})}7

N N7 N N

{human, resources}, {management, administration})}

The term schema will equivalently denote the formal schema (on the top) and

the corresponding items set. Hence, Z¢**™Pl¢ will be referred to as a schema.
The schemas will be written in capital letters, and we will write a € A to say
that the item @ is in the schema A.

3.2.2 Formal Schema Mapping

Given two schemas A, Z the general problem of schema mapping is to associate
one by one each item a € A to its equivalent item z in the schema Z. This problem
can be solved by considering successively the items a € A; hence our schema to
schema mapping boils down to solving several sub-problems, each of them being
denoted by a triplet pb = (a, A, Z). Sub-problem pb consists in finding the item
z in schema Z that is the closest to the meaning of a in schema A. The solution
z is therefore the value of the standardization function f(a) in the schema Z. A
will be referred to as the initial schema and Z as the destination schema. We
then assume that the problem systematically has a solution: it is not true in
theory, but it is an industrial constraint that every item in A finds an equivalent
in Z. In practice, the schemas to be mapped describe similar knowledge and the
assumption is verified.

The problem and its solution (a, A, Z, z) can be compared to the definition of
mapping in [Bouquet et al., 2004]. Similarly to them, we will define in equation
3.3 of Section 3.3.1 a score that estimates the quality of the mapping, which
corresponds to what they refer to as the degree of trust to the mapping. On the
other hand, it is worth noticing that contrary to them, we explicit the schemas
as part of the problem, and we consider our problem as asymmetric.

For instance, let us consider the problem of finding a semantic equivalent of
the first item in the left in Figure 3.1 among the items of the schema in the right.
If we write the first item as a®**™Ple = ({html, integration}, {it, department}),
this example problem is formalized as pb®*@mPle = (qevample  gezample ' zezample)
The solution of this target problem would then be

({webd, development}, {software, engineering})

which will be denoted z¢*@™Ple and verifies ze*ample ¢ gevample
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3.2.3 Data-Set of Past Mappings

As it is pointed out in the related work of Section 2.2.2, schema mapping is a task
that is generally performed manually in practice. At Multiposting, the schemas
involved in the automatic job postings have been mapped fully manually for
years, as described previously in Section 3.1. Following the above formalization,
this process requires the employee to select the solution z to the problem pb,
which is particularly time consuming. A purely automatized standardization
would be ideal but a computer assistance would already be a significant gain of
time.

The set of all previously solved mappings are formally represented by entries
(pb, z) where z was given as the solution of the problem pb. These solved map-
pings form a huge database, manually maintained over the years. This database
contains numerous semantic equivalences between nomenclatures of different
websites and companies’ systems, which make up particularly relevant infor-
mation in order to compute the standardization fonction f. The section 2.2.2
reveals that only little work related to schema mapping leverages mapping reuse.
To tackle the problem, we propose to leverage the database through a Case Based
Reasoning methodology [Watson, 1999], often abbreviated as CBR, which will
be detailed in the next section.

3.3 Automatic Nomenclature Mapping: a First At-
tempt

3.3.1 Case Based Reasoning Steps

The CBR methodology bases its computation on a data-set M of solved mapping
problems, that are called source cases m, which each represents a pair m =
(pl/, sol’), where the source problem pb’ = (a’, A’, Z') describes the mapping of
a single element and sol’ € Z’' the retained solution. The CBR methodology
consists in the following four standard steps [Aamodt and Plaza, 1994]:

e Retrieve: Given a current problem pb to be solved, a sub-set of source cases
relevant to solving it are retrieved. We write a case of solved mapping,
written m = (pb’, sol’) to avoid confusion with the current problem pb.

e Reuse: The solutions sol” of the retrieved cases are used to propose a solu-
tion sol to pb, which possibly requires to adapt the solutions sol’ to fit the
constraints of the current problem.

e Revise: The proposed solution sol is tested in the real world and revised if
necessary, which generally involves manual supervision.

e Retain: The final solution is kept in memory in order to add a new solved
mapping m in the base M.

We instantiated the retrieve, reuse and revise steps of schema mapping, which
are illustrated from Bob’s point of view in Figure 3.2 and are described in details
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in the next sub-sections. This algorithm could also be described as a closest
neighbor (see Section 2.3.1) that would classify positive mappings based on a
custom distance function d(m,m’) defined between two mappings m, m’. For
the sake of clarity and for justifying our similarity functions (given by Equations
(3.2) and (3.3)), we prefer to dissect our system through a CBR methodology.

The Retrieve step

First of all, we define a function for comparing two items one to another. Given
two arbitrary items a,a’, the similarity between them is defined as:
cos(a4, aly) + cos(az, a’,)

g(a,a’) = 5 €[0,1] (3.1)

where the cosine measure cos between two documents was defined by Equation
(2.4) of Section 2.1. All values computed by this function belong to the inter-
val [0, 1], with 1 corresponding to a perfect match. The left part cos(a,,a’)
computes the similarity between the leaves of each item, whereas the right part
compares the parents.

For instance, with items introduced in Section 3.2.2, we have:

g(aemample zewample)

1
, =35 cos({html, integration}, {web, development})

1
+ 3 cos({it, department}, {software, engineering})
=0

This example also shows us the need to go beyond a direct match between
items, which leads here to a zero similarity, whereas the meanings of aé®@mple
and z¢*@mPle are very close.

In order to determine what case is relevant for solving a new problem that
occurs, we introduce an inter-problem similarity function h(pb, pb’). As a first
attempt, it is simply defined as:

h(pb, pb') = g(a,a’) (3.2)

which forgets all information about the initial schema A. When we have h(pb, pb')
1, it implies that: @ = a’. One notes that this similarity only takes into account
the item a, forgetting schemas A, Z when retrieving useful cases. We will propose
similarity functions in the section 3.4 that address this limit.

Thanks to this function, for every new problem pb that occurs, we can de-
termine which existing case m’ = (pb/, sol’) stored in the base is the most useful
to help us solve pb. Once retrieved, we need to exploit the information provided
by its solution, as explained in the next subsection.

The Reuse step

In this step, we want to exploit the most similar case found during the Retrieve
step. However, if we consider a source problem pb' = (a’, A’, Z’), we do not
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e R

Figure 3.2 — The CBR approach to schema mapping as perceived from Bob’s
point of view. He firstly memorizes in the first frame the base of previously made
mappings, illustrated here just with pairs of items a' — sol’ for clarity. In prac-
tice, this memorization is done incrementally through the successive retain steps.
Then, in the second frame, given the current problem illustrated by the item a
and the target schema Z, Bob retrieves the most relevant case, based on the
similarity between a and a'. In the third frame, Bob considers the solution sol’
memorized for this retrieved case. In the fourth frame, Bob then takes among
the possible current solutions the most similar to this solution sol’. In this exam-
ple, only one case is used for simplicity, but the system described in this chapter
considers k retrieved cases. In practice, the choice of the solution is manually
revised a posteriori by an expert.
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necessarily have Z = Z’. In particular, sol’ ¢ Z, which means that we can not
take the corresponding solution sol’ as our current solution; we thus need an
adaptation to find a solution in sol € Z.

In light of this, we propose to rank the possible solutions z of the current des-
tination schema Z. In order to use more information to rank possible mappings,
not just one but the k most similar cases are retrieved from the base (k = 100
gave satisfactory results in our experiments). Let us denote My, the subset of
M that contains the k most similar cases m’ to the problem pb, with respect to
the similarity function g.

Given the current problem pb = (a, A, Z), a ranking of the possible solutions
z € Z is computed using the function match(pb, z) € [0,1] defined as:

match(pb,z) = max h (pb,pb’) x g (z, sol’ 3.3
(p ) m'=(pb’ ,sol' )€ Mp, (p p ) g( ) ( )

The idea is to find a source problem pb’ similar to pb such that the corre-
sponding solution sol’ is similar to item z - the first similarity being evaluated
by the function h (problems similarity) and the second one by the function g
(items similarity).

The Revise step: Ranking Suggestions to the User

After the previous step, the top ranked item z € Z that maximizes match(pb, z)
could ideally be taken as the final solution. However, this ready-made approach
would likely provide poor results because of the fact that distinguishing a good
from a bad mapping is a matter of semantics and is thus difficult to fully au-
tomatize. Furthermore, any CBR system aims to improve its problem solving
capacity over time, and the automatic approach would likely fail to enhance the
system’s performance.

Consequently, a manual revision is necessary in our system, but it is greatly
eased by the match scores computed in the reuse step. The Revise step con-
sists thus in asking the right mapping to the user, which is made as fast and
easy as possible thanks to the previously computed ranking. Given the problem
pb = (a,A,Z), items z of Z are ranked with respect to match(pb, z), and the
user chooses manually which element of Z corresponds to a. The ranking of all
elements of Z helps a lot, especially when the cardinality of Z is big.

3.3.2 Preliminary Evaluation

Let us first describe the experimental data-set of mappings M. As explained in
Section 3.1, the schemas mapped at Multiposting are the nomenclatures of the
e-recruitment websites. They are in different languages, mainly French, English,
German, Spanish and Polish. They represent different kinds of information, and
a good part of them have been manually grouped into 6 types corresponding
to the job structure of Section 1.3, for example the “contract type” and “job
category”. Moreover, many nomenclatures are specialized, and correspond for
instance to some university degrees or to a recruitment website for managers.
This diversity of schemas should be handled by our algorithm, that retrieves
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only the useful cases. Characteristics of the data-set are listed in Table 3.1. Note
that we also have an “unknown” schema type in our data-set for uncategorized
schemas. The same table also gives statistics for the full data-set of mappings
M, resulting from the aggregation of all categories.

Schema Type All Contract| Study | XP | Location | Sector | Category
# schemas 2,257 184 94 69 21 205 296

# terms 99,875 713 1736 288 | 36,960 5,120 12,541

# items/schema | 87 7 23 7 3,152 55 227
Schema mappings| 3,356 182 96 71 18 340 691

Item mappings 215,701 | 1,330 839 629 | 2,017 19,926 | 88,581

Table 3.1 — Characteristic from our data-set, by schema category: number of
terms, average number of items per schema, number of item pairs mapped, of
schema pairs mapped and number of schemas.

In order to evaluate the performance of our CBR approach, we used a cross
validation on the data-set. The Leave-one-Out Cross Validation is commonly
used for testing a CBR algorithm [Gu and Aamodt, 2006], and more generally
for machine learning algorithms. To cross validate our system, at each fold, we
take out a schema mapping from the case base, and we run the algorithm on
the excluded mapping to see the ranks of the manually selected items. From
this cross validation, we deduced the relevancy of our system’s suggestions. In
order to do so, we compute the precision at k which is a metric from information
retrieval systems [Biittcher et al., 2010]:

P@F = p(solution is in the k top ranked items) € [0, 1]

where this probability is given by the number of test mappings for which the
algorithm had ranked the valid solution in the top-k suggestions, divided by the
number of test mappings. One notes that the precision at k increases with k; in
our experiments, we computed PQk for k = 1..10.

The computed precisions PQFk are displayed in Figure 3.3, with k as abscissa.
From this figure, we can conclude that the case-based reasoning applies to our
problem; for instance, in 70% of the runs, the validated mapping has been ranked
in the 5 first suggestions. However, the performance seems still quite low, since
the algorithm firstly suggested a correct mapping in only 36% of the cases. This
confirms that we can not imagine a totally automatic CBR taking the mapping
with the top-ranked item as a solution.

Figure 3.4 shows the precision of the first suggestion PQ@1 for the different
types of schemas mapped. The geographical location and contract are the types
with highest precision. These problems are indeed the most simple, since these
schemas are nomenclatures of entities and the mapping mainly maps synonyms.
On the contrary, job sectors and job categories are more difficult to map, since
they are abstract nomenclatures; the problem is then to find semantic equiv-
alents, that can be synonyms, but also hyponyms or hypernyms, for instance.
As it could be expected, the sectors, which are less precise than categories, are
better suggested by our CBR.
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3.4 Improvement by System Tuning

In this section, we explore some improvement and their effect on the system’s
performances. In the previous section, we made arbitrary choices concerning the
definition of the inter-problem similarity g(pb, pb’), and the function match(pb, z)
used in the ranking. In the following, we propose more sophisticated definitions
in order to make the CBR system more precise in its suggestions.

3.4.1 Alternative Inter-problem Similarity

First of all, let us introduce an operation to compare not only items but whole
schemas one to another. As stated in Section 3.3, we did not exploit the schemas
A or Z to define the inter-problem similarity. Let cat(A) be the bag-of-words
obtained by concatenating all the documents of the schema A, with dedupli-
cated terms. cat(A) conveys therefore crucial information, which is the vocab-
ulary contained in A. For example, with the schemas introduced in Figure 3.1,
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cat(Aw@mPle) g the following bag of words:

{html, integrator, it, department, administrative, infrastructure, support,

database, administration, hr, direction, management, secretaryj}

and cat(Z¢*¥mPle) is the bag of words:

{management, administration, software, engineering, web, development,

direction, administration, sales, human, resources}

Thanks to this new definition, we can compute by cos(cat(A), cat(A’)) how
similar the two schemas A and A’ are, based on their terms in common. We then
refine the inter-problem similarity to take into account the destination schema
Z, which is the set of possible solution items:

h(pb,pb") = g(a,a’) x cos(cat(Z),cat(Z")) (3.4)

This similarity will be referred to as “right vocabulary similarity”, because cat(Z)
represents the vocabulary of Z, and the destination schema Z is represented in
the right hand side. For instance, with the example problem pb®*®™Pl¢ defined in

Section 3.2 and pb/emample — (Zemample7 Zewample7Aemample) we have:

h(pbexample’ pb/ea:ample) — g(aexample’ Zea:ample) x f(cat(Ae:vample)’ Cat(Zexample))

=0x0.15

where the destination schemas A®®@mple  zexample haye terms in common, namely
Management and Administration.

For comparison purposes, the similarity function h defined in the first solu-
tion in Section 3.3 will now be referred to as “no vocabulary similarity”. Simi-
larly, we will try other variants of the similarity function, starting with the “left
vocabulary” similarity which considers the initial schema A:

h(pb,pt') = g(a,a’) x f(cat(A),cat(A")) (3.5)
and the ”both vocabularies similarity that considers both schemas A, B:
h(pb,pb') = g(a,a’) x f(cat(A),cat(A") x f(cat(Z),cat(Z")) (3.6)

Those variants are proposed so that the system will take into account the
context, when performing the schema mapping. The first solution proposed in
this article indeed uses a very basic inter-problem similarity based only on the
inter-item similarity g between the items a, @’ that we want to map. This does not
take into account the context of the problems that we compare in the retrieve
step. Indeed, the destination schemas Z,Z’ may be totally different even if a
and a’ are very similar. In practice, this phenomenon occurs when two problems
with almost identical items a,a’ are applied to schemas in different languages,
e.g. English and in French. Similarly, mapping an item to a list of job sectors,
or to a list of university courses are also two very different problems, which is
expressed by the global difference between Z and Z’.
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3.4.2 Alternative Score Function

When considering a source mapping m = (pb’, sol’) of the case base M, the re-
tained solution sol’ has been initially validated by a human expert. Since human
operators are prone to make mistakes, we want to prevent our CBR from any
overfitting on the errors contained in M. Indeed, the score function proposed pre-
viously in Equation 3.3 is based on the single case that maximizes inter-problem
similarity, so that a single bad mapping can influence further responses nega-
tively. In other words, a single flawed case can change score values dramatically
and the system may fail in helping the user in the very long run. On the other
hand, we can hope the best solution z for problem pb to have several similar
cases in the base; we therefore propose to leverage not one, but 5 similar cases
in the match score used for ranking the solutions. We define an extended match
score as:

match’' (pb, z) = max h (pb,pb’) X g (z, sol’)

nd / 1
m’:(Qpb’,;’Ilol%)éMpbh (pb,pb') x g (2, sol') (3.7)

th / /
m’:(kr;;b’,gollz})}éMpbh (pb,pb ) X g (z, sol )

This new function hence computes a ranking based not only on the most similar
case, but on the five most similar cases. Using several cases at a time, the system
becomes a lot less human error-prone. The new match score returns meaningful
results, even if a bad mapping is unintentionally saved in the base of mappings

M.
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Figure 3.5 — Precision of the system using three different inter-problem similarity
functions proposed in Section 3.4.1. The curves for the “no vocabulary” and “left
vocabulary” similarities are almost indistinguishable, as well as the curves for
“right vocabulary” and “both vocabularies” similarities.
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Figure 8.6 — Precision of the system using two different score functions defined
in Sections 3.3.1 and 3.4.2, with and without right vocabulary inter-problem sim-
tlarity.

3.4.3 Overall Evaluation

Figure 3.5 shows results when we try variants of similarity measures defined in
Equations (3.2), (3.4), (3.5) and (3.6), with a simple revision step using the match
score of Equation (3.3). At first sight, we see an improvement when the right
vocabulary is taken into account, with almost a 10% increase for the precision
at the first suggestion PQ1. Second, we note that taking into account the left
vocabulary is useless: the curve obtained when the left vocabulary is included
in the similarity has exactly the same shape. In light of this, a problem pb of
schema mapping should be only represented by (a, Z), since it depends on the
possible solutions Z but not on the neighbor items of a contained in the initial
schema A.

Figure 3.6 shows the results for the extended revision step, with the simple
match score defined in Equation (3.3) and with the extended score defined in
Equation (3.7). We only compared algorithms with simple “no vocabulary simi-
larity” - Equation (3.2) - and “right vocabulary similarity” - Equation (3.4). In
both cases, the extended revision step increases accuracy by about 5% in general,
it is therefore relevant to consider several similar cases in the scoring. This could
be because of the poor quality of some cases in M, which would lead to biased
suggestions.

We decided to implement the system tuned with the alternative match score
of Equation (3.7) and the “right vocabulary similarity”. In the interface shown
in Figure 3.7, items on the right side represent the schema Z of possible map-
pings, and are ranked with respect to match/(pb). In order to ease visualiza-
tion, the items are associated to a color (gradients of blue) proportional to

% € [0, 1]. The top-ranked item is associated to a correctness, which
» [2289)

estimates how reliable the first ranked solution is. Displayed on the top-right cor-
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166 /167 mappes 53%

Administration - Services généraux Innovation / entrepreunariat

Autres | non precisé

Commercial - Vente

Statistiques

Communication - Création Genie industriel / production

Conseil audit / conseil

Direction générale - Direction centre de profits Procédés

Gestion - Comptabilité - Finance Génie mecanique

Figure 3.7 — Interface of the computer-assisted tool for schema mapping. The
current item to be mapped is highlighted in green on the left-hand side, and the
items on the right-hand side are ranked with respect to their score.

ner in the interface, it is estimated by a supervised learning on the data-set M
following a method detailed later in Section 4.5.

Evaluation Cross validation Users’ usage

on new mappings

System Initial system Tuned system Tuned System
Average rank 2.56 2.14 1.72

Table 3.2 — Average rank of the solution in the computer-assisted system, com-
puted by cross-validation on the initial data-set or on user’s real-world usage.

After two years of use, the users are satisfied with this tool, and the time
spent on schema mapping has significantly decreased: 62% of items have been
mapped by a clic on one of the top suggestion, 81% on the top 3, whereas in
the unranked case the user had to look at dozens of items (87 on average, see
table 3.1). Based on the real-world usage since the release of the interface, we
computed the average rank of the user’s choice, sometimes denoted by mean
rank [Biittcher et al., 2010]. The users’ choices might be biased by the predicted
ranking, therefore in Table 3.2 we compare this value with the average rank
computed by cross validation on the initial data-set, for the system described
in Section 3.3 and the tuned system proposed in this section. The figures show
how helpful the ranking is, and we evaluate the saving time per item mapping
at 5 seconds. As there are about 30 schemas mapped every week with 87 items
per schema on average, the time saved by the employees using our system is
approximately 3 and a half hours every week.



3.5. The Necessity of a Generic Standardization Process

Despite this positive feedback from the users, this standardization solution
for locally structured data still requires manual action in practice. This is a
serious limit for a scalable standardization, which should be automatic in order
to process thousands of job adverts and candidate profiles every day.

3.5 The Necessity of a Generic Standardization Pro-
cess

In the objective of a fully automatic system of standardization, the case-based
system proposed in this chapter gives a satisfactory precision PQ1 for some types
of schemas, namely the required Fxperience, the Contract and the Location of
a job advert, or a professional experience of a candidate. In these cases, stan-
dardization can be handled automatically or with very limited cost using the
proposed system. This solution just uses the corresponding values that are orig-
inally structured in the source’s nomenclature, and no additional information
about the job advert or the candidate profile is needed.

This standardization approach could moreover be extended to some unstruc-
tured data as input, since the system does not need the considered item a to be
originally taken from a schema A - the initial schema is indeed not used by our
final solution. One could therefore consider a simple document d as input of our
system and define the standardization function f as:

f(d) = argmax match(pb, z)
z€Z

where pb = (d,Z) represents the text d to be standardized - possibly with
two levels, as items - and Z the target nomenclature. However the precision
P@1 obtained for abstract nomenclatures is not high enough to automatically
consider the top ranked item as a solution. Moreover, even when focusing on
nomenclatures of entities, the studied source websites mainly use coarse-grained
nomenclatures, so that the presented approach would not give good results for
fine-grained nomenclatures of entities.

As a consequence, in order to infer fine attributes such as the category or
the skills of a job advert, we can not leverage the locally structured fields that
most sources provide. In other words, in the rest of this thesis, we will discard
this rich knowledge, namely the structured values in the local nomenclatures,
and prefer to infer attributes from unstructured raw texts, for example the Title
and Description of a job advert. In the following chapters, the standardization
function f will always take as input a raw document d, regardless of its source
website - contrary to the present chapter which addressed the standardization
problem nomenclature by nomenclature. In light of this, we can still leverage
structured external knowledge, but on the side of the nomenclature N instead of
the side of the document d. For instance, we will make use in the next chapter
of the job category descriptions, made public for national nomenclatures.
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Chapter 4

Categorizing Jobs using
Category Descriptions

In this chapter, we study standardization into a fine-grained abstract nomencla-
ture. As seen in the previous chapter, such standardization can not be handled
using the local nomenclatures; moreover, the related work of Section 2.3.1 sug-
gests that when A deals with abstract concepts, standardizing requires to find
patterns in the document d through machine learning, instead of simply finding
the mention of an entity as in the entity linking. In light of this, the literature
mainly proposes to address this problem using supervised or semi-supervised
multi-class classification, which both require a large data-set of standardized
examples. We propose instead to cope this standardization with only a limited
data-set, and efficiently leverage the external knowledge represented by the cat-
egory descriptions associated to the nomenclature N .

The object of this study will be the jobs’ categorization, that has never been
tackled by leveraging the external structured knowledge given by the existing
rich nomenclatures. In light of this, we study in this chapter the use of the job
category descriptions, that are made public for national nomenclatures. This
rich knowledge appears to be crucial for standardization, as it shows a struc-
ture, is regularly updated and present relevant semantic information. However,
several questions arise: How to efficiently find the proper category for a given
job advers, since their textual content is not directly comparable? In particular,
an special focus will be to use supervised learning but on a limited data-set of
categorized job adverts. Beyond this aspect, how to follow the swift evolution
of professions, whose most visible effect is the radical and sudden change in the
utilized vocabulary? Last, how to estimate the probability for a categorization
to be correct?

This chapter regroups the models we presented in [Malherbe et al., 2015c,
Malherbe et al., 2015a, Malherbe et al., 2014]. They all have been positively
implemented in the industrial environment represented by Multiposting.
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4.1 A Nomenclature with Textual Descriptions

The professional category is particularly central in the e-recruitment platforms,
since it leads the user in an effective exploration of the job adverts through a
set of predefined categories. This categorization is an example of standardization
into an abstract nomenclature: the job category is not explicitly named in a job
advert, but is represented by several aspects of the job, for example the tasks
involved or the required skills. This standardization appears to be impossible
by using the original category of the job in its source nomenclature, as studied
in chapter 3. One reason is that this attribute is specified by the recruiters in
very heterogeneous nomenclatures: they are as many as websites, can be coarse-
grained with only a dozen of categories, or really fine-grained with up to hundreds
of categories. The objective of standardization enforces us to use a generic fine-
grained nomenclature, and the corresponding job categorization would be purely
based on the textual data of the job. The first natural strategy for categorizing
a job is to use a multi-class classification algorithm on the job’s textual data,
that has been successfully applied to texts (see chapter 2). However, building
a large and representative data-set of manually categorized job adverts would
require extremely high human costs, especially if we want the nomenclature to
be fine-grained - with typically hundreds of categories - and regularly updated.

Another strategy for standardization comes naturally when studying the pos-
sible nomenclatures. Indeed, there exist national nomenclatures that show great
advantages: they aim to be generic, they are fine grained, and regularly updated
by the national employment services. Another interesting aspect of these na-
tional nomenclatures are the job category descriptions, generally made public.
As previously stated in Section 2.2.1, these textual descriptions are written by
domain experts, for example the ROME description in Figure 4.1, and can be
positively used for standardizing and indexing the job adverts. Using such de-
tailed descriptions, the problem of standardization is represented to Bob as in
Figure 4.2: the document representing a job needs to be put in one box, where
each box is associated to a detailed category description. The strategy we adopt
is then to match the job document to each category description, by computing
a similarity score that estimates how well the job adverts corresponds to the
category.

With the notations of Section 2.1.4, the nomenclature N is made up of ob-
jects n presenting a detailed description, that we propose to use by computing
a similarity function sim(d,n) with the document d to standardize. The stan-
dardization function f assigns then a value to d according to:

f(d) = argmax sim(d,n)
neN

where the similarity function sim(d,n) can be computed using machine learning,
as we propose for our job categorizer. In the following, we firstly present the
formalization of the job categorization problem, a preliminary similarity measure
and the strategy for designing the final system.
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Figure 4.1 — Example of category description, with the first fields’ contents: its
Title, the related job titles called Labels, its Definition, and the required Skills
and Tasks. Other fields, out of 14 in total, are skipped for clarity, for example
the working Environment and the required Studies.
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Figure 4.2 — The problem of job categorization as perceived by Bob. The descrip-
tions over the boxes as well as the sheets of papers are separated into several
fields, which are not visually shown here for clarity.

4.2 Preliminary Approach

4.2.1 Formal Representation of Jobs and Categories

In this chapter, we will make use of two different types of textual content: the
job adverts and the job category descriptions. As explained in Section 1.3, a
job advert is represented by different textual fields, among which we only con-
sider the Title, the Description, the Company Description and the Profile, that
are each free texts and present in almost any job advert, whatever the source.
We formalize the content of a job advert j as a list of documents j;, each one
representing a textual field:

j = (j17j27"'7jnj) (41)

where n; is the total number of textual fields in a job advert j, (fixed to 4 in
this study), and j; is a multiset of terms, using the representation of documents
of Section 2.1. In this study, the terms are stemmed using the implementation
of [Porter, 1980], and some predefined stopwords are removed.

Similarly, a job category description (also simply called category) is defined
by the textual description of a specific category of professions. This description
being separated into several textual fields, we formalize the content of a job
category c as a list of documents:

c={c1,Czy...,Cn.} (4.2)

where n. is the number of textual fields in the job category description, and cg
is a multiset of terms for the k-th field of the job category (with k < n.). In this
study, n. is fixed to 14, whose full list of fields are readable in Figure 4.7. The
set of the categories is written C, with a fixed size of 531.
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The above formalization can be linked to standardization, that we previously
defined by a function f with values in a nomenclature A. In this study, the set of
categories C forms the nomenclature (previously written A'), and the function f
takes as input a job advert j. This input is not exactly a text but a list of texts.
In the following, we introduce through a simple model the strategy of ranking
categories for a given job advert.

4.2.2 Direct Matching for Ranking Categories

The core of our approach is to rank the categories ¢ given the job j to catego-
rize, using a similarity function sim(j,c) € R. A natural approach is to use an
existing similarity measure (see chapter 2.1), for instance the cosine measure cos
(Equation (2.4)) of Section 2.1), and to hope that the textual contents of a cat-
egory and a job are directly comparable. Since such measures take as input two
classical documents, we need to build a unique document for the job advert and
for the category, noted respectively j and €, by concatenating the bag-of-words

of each fields content:
nj Ne
i=Ud c=Ja
i=1 k=1

Since the category descriptions remain constant, contrary to the jobs, we
consider for the vocabulary V the set of terms contained in all the job categories €.
For each term ¢ of V, we compute the global term weight idf (¢) (Equation (2.1.2)
of Section 2.1), based on the document frequency for the category descriptions,
which form a corpus of 531 documents €. The motivation for computing the idf
on the categories side is that a term is relevant if and only if it is infrequent in
job categories, meaning it represents precisely a category - or inversely.

Using this idf (t) and the term frequency count ¢f(j,t), we can compute the
terms’ weights for a document, like for j:

wi, = \/tf (3:1) (1+log(idf(t))) (4.3)

One notes that some terms ¢ in the job adverts will have a weight of 0 (or,
equivalently, will be absent from this formalization), since the vocabulary used
V is restricted to the terms in the job category descriptions.

As a preliminary approach, given a job j, we propose to compute the simi-
larity sim(j, c) with category c as:

sim(j,c) = cos (3, E) (4.4)

To categorize the job j, we simply select the category that maximizes the
similarity, in other words the top-ranked one:
" = argmazx sim(j, c) (4.5)
ceC
This first approach is referred in the experiments as the Basic Cosine. As we
will see later, it gets a relatively poor accuracy, but not ridiculous, with more than
60% job adverts of our data-set properly categorized: this preliminary similarity
sim(j, ¢) validates the approach of ranking the categories for standardizing a job
advert’s category.
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4.2.3 Perspectives for Job Categorization

This preliminary approach permits to discuss more deeply about job categoriza-
tion. Indeed, it shows some limits and is obviously improvable. The final system
we propose is illustrated in Figure 4.3, and aims to address the following limits
of the preliminary approach:

e The similarity sim looses the information about the structure of the
documents; indeed, a word will be equally treated if it comes from the
Title or the Company Description of the job, for instance. However, we
have the chance that the templates for the job adverts and for the category
descriptions are respectively static, so that we can leverage them. Since it
is not trivial to efficiently match semi-structured documents, we develop
in Section 4.3 a learning-to-rank approach based on a small annotated
data-set.

e The matching relies completely on the category descriptions ¢ € C and the
corresponding vocabulary V. However, the job market is evolutive, and the
official category descriptions might be outdated at a given time. Besides
that, the descriptions might be incomplete and might lack some vocabu-
lary. Last, these descriptions are not directly comparable to a job advert,
since automatic categorization is not their original purpose. We propose
therefore to enrich the category descriptions with new keywords in
Section 4.4, using a massive data-set of unlabeled job adverts.

e The approach by ranking the categories does not provide any probability
estimate: Taking directly the similarity sim(j,c) is a poor estimate that
the category c is correct for job j. However, it is very useful to estimate
precisely the correctness of the system, especially for an industrial use. The
section 4.5 proposes a generic approach for estimating the probability that
a pointwise learning-to-rank based system is correct.

4.3 The Field-to-Field Similarity Model

This section starts by describing a model that leverages the structures of jobs
and category descriptions. Then, we detail how the parameters of the model are
learned, and the feature selection that results. The presented model is usable
for matching any type of documents having a static template; for example, we
successfully used it for ranking facebook profiles with respect to job adverts in
[Malherbe et al., 2014].

4.3.1 Field-to-Field Similarity Model (FtFw)

In order to compute efficiently the similarity sim(j,c) between the job j and
category ¢, we propose to leverage their separation into different textual fields
Ji: and ci. With this objective, we assume that it is relevant to compare the
i-th job field, represented by j;, to the k-th category field ¢g and not to the
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Figure 4.3 — The job categorization as Bob perceives it: in frame 1, he learns
the Field-to-Field model (Section 4.3), for which he just needs to inspect some
examples of pre-classified sheets of paper, but each box does not need to be filled
with sheets. Using this model, Bob predicts the categories of a corpus of unlabeled
job adverts in frame 2. By looking at the terms present in these artificially cat-
egorized jobs, Bob enriches the category descriptions in frame 3 (Section 4.4).
The final categorization of a job, in frame 4, is a prediction based on a sec-
ond learning of the Field-to-Field model, using this time the enriched category
descriptions (learning not illustrated here for conciseness and redundancy with
frame 1).

61



Chapter 4. Categorizing Jobs using Category Descriptions

62

other field cg/. As an example, when a word present in the Description of a job
j is related to a Task of the category c, its importance differs from the one of a
word related to the work Environment of c. Similarly, this word has a different
importance when present in the Company Description of j, or in the job Title
of j. This reasoning is motivated by the fact that the category description gives
a separation of the words into those related to a Skill, those related to a Task,
those related to an Environment, an so on.

The first step to describe the Field-to-Field weighting model (FtFw) is to
define the FtF matrix between a job advert j and a job category c. This matrix
S(j,c) € R4+"*" compares each field of j to each field of ¢ as:

S(j,C)171 S(j,C)LQ S(jvc)l,nc
S(j,C)QJ S(j,6)272 S(j,C)ch
S(j,c) = (4.6)
S, n;—11 S nj—12 - S n;—1,n.
SG:na SGnz2 o S0 nne

where each element S(j,c); represents the normalized similarity between the
i-th field of the job j and the k-th textual field of the enriched category ¢, that
is defined as:

) cos(Ji, ck)
S(]? C)Lk = (47)
Z =1 Z <1 cos(Jp, cq)
where the denominator is a normalization factor. By comparing independently
each field to another, S(j,c) captures specifically which job field match with
which category field. The predicted similarity sim(j,c) € R between j and c is

then defined as:
simy .77 ZZ)‘l kS j? (48)

where \ € R™ %" encodes the field-to-field weights. These weights could ideally
be manually pre-defined by a exceptionally gifted expert; however in practice we
will prefer to compute them using a learning-to-rank approach, as detailed in the
next sub-section. Such weights are computed such that the highest sim)(j, ¢) is,
the most the category ¢ corresponds to the job advert j. However, sim)(j, c) can
not be interpreted as a probability since it is unbounded. The diagram of Figure
4.4 represents visually the FtFw similarity.

The definition of sim) (7, c) proposes a linear combination of the similarities
S(4,¢)ik. To justify this, we propose to omit the denominators in Equation (4.7)
and in the cosine cos(j;, cg). These denominators serve for normalization, and
without them the expression of sim)(7,¢) (Equation (4.8)) can be re-written as
a term-by-term sum:

) DD IRMETIVES 3) PN | S YEN)

tey tey i

which brings us back to a linear text classification algorithm, the category ¢ being
the considered class. Indeed, like in the text classifiers of this type [C.B. Do,
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Field 1
Field 2 ¥

Field 3

S LLULTT

Job j match Category ¢

Figure 4.4 — Conceptual schema of FtFw model

2006], each term t € V is given a fixed coefficient Y ;° A; pwe, +, which does
not depend on the job advert j, but only on the category c. The specificity of
our model is that the coefficients are computed using the category descriptions
(represented by we, ), and that coefficients get a boost A;j depending on the
textual field, in order to leverage the documents structure. Also, we use two
normalizations for the exact computation of simy(j,¢): the cosine measure and
the denominator of Equation (4.7). They tackle the varying sizes of the fields j;
or ¢, which differs from a job to another but also among the fields of a given
job advert, and similarly for the categories.

4.3.2 Learning-to-Rank Approach

The efficiency of the FtFw model relies on the weights A; j,, for which we propose
to adopt a learning-to-rank method with a pointwise approach. In other words,
the values for A; j, are computed using a data-set I" of entries

(j: C, yj,C) € F

Where y; . € {—1,+1} represents whether ¢ is a correct category or not for the
job j. To build I', 1,450 job adverts have been randomly selected from Multipost-
ing’s database, and for each, few possible match (j,c) (typically 5 per advert)
were generated using the top-ranked categories using the preliminary similarity
of Equation (4.4). Our experts then manually specified the corresponding y; .
values, considering whether the match was acceptable or not. In practice, in the
8,226 examples of match job/category of I', some jobs match one or multiple
categories and others none, and many categories ¢ are simply absent. Conse-
quently, A is in no way usable for training a multi-class classification algorithm,
as the ones described in Section 2.3.1.

Leveraging this data-set, the parameters for simy(j,¢) can be computed,
which requires therefore much fewer annotated jobs than for a classical classifier.
Indeed, the variables \; ; have relatively low dimension: k£ x ! (< 100 in our data-
sets), compared to the number of terms in the vocabulary |V| which is the number
of parameters for a textual classifier. We propose to use a SVM, which means
we minimize the following quantity:
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1
”:\”b” A% + T Z maz (0, 1 —yj. x (simx(j,c) — b)) (4.9)
(chvyj,c)ep

where the first term is the regularization term, and the optimum is found using
a gradient ascend. The predicted value for a match is then sign (simy(j,c) — b),
but in our system we only use simy(j, c) for ranking the categories.

This learning-to-rank method does not necessarily require the linearity as-
sumption of Equation (4.8). Indeed, different combinations of the field-to-field
comparisons S(j,c); could be considered, for example a polynom with coeffi-
cients learned on the data-set I'. As another example, a random forest can be
trained to separate the matrices S(j,c) in the case of a match or a non-match.
This will be vainly experimented later in Section 4.6, confirming the linear as-
sumption.

Company
Description

Description

Job Offer Field

Title

Job Category Field

Figure 4.5 — Field to field importances I;}, (Equation ((4.10))). Standard devi-
ation are not displayed, but negligible w.r.t the absolute I; }, values.

The FtFw model can be interpreted by visualizing the computed weights A; .
To do so, we use a bootstrapping approach, meaning we compute the values \;
on a random half of I, for 100 different runs. The learned parameters \; ; are
not directly usable for visualization, since the field-to-field comparison S(j, ¢); &
in the sum of Equation (4.8) can be structurally very low, meaning the corre-
sponding weight \;; will be artificially high. In light of this, we instead define
the field-to-field importance I; , € R as:

1 .
Lig = Ai X T > S0k (4.10)

(jyczyj,C)EF
which is the average value of the term in the sum of equation (4.8) for given
1 and k values. This corresponds to the similarity between the i-th field and the
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k-th field, computed on the set I'. The importances I; ;, are shown in Figure 4.5,
with the field names of the job in the y-axis and the fields’ names of the job
category in the x-axis. We note that the most important job field is the Title,
as already pointed out by [Ghani, 2002, Diaby et al., 2013]. This is explained by
three reasons: it forms a summary of the job advert, it is short and the recruiters
are careful when writing it. On the contrary, the job Description is long, some-
times noisy, and therefore harder to exploit in automatic language processing.
We also note that the field-to-field weights A; ;. are almost systematically pos-
itive (since S(j,c¢)ix > 0): the presence of common terms in a job advert and
a job category has never a negative effect on the match, which is a logical and
meaningful result.

4.3.3 Comparison with Basic Field Weighting

Field 1

Field 2

Field 3

Job j match Category c

Figure 4.6 — Conceptual schema of models weighting independently the fields.

B Categories of jobs EJob

Different fields

Figure 4.7 — Weights u;, vy, estimated for the fields weighting approach of Equa-
tion (4.11). Bootstrapping (100 runs) has been used to estimate the 95% empirical
confidence intervals ([2.5% quantile, 97.5% quantile]).

A natural discussion about the FtFw model is to compare it with the classical
fields-weighting models, commonly used in numerous information retrieval sys-
tems [Smiley and Pugh, 2011, Gormley and Tong, 2015]. Conceptually, each field
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is given an intrinsic weight, so that the fields are independently aggregated for
both documents in the similarity measure, as represented in Figure 4.6. Whereas
the weights are manually chosen in [Smiley and Pugh, 2011, Gormley and Tong,
2015], a learning-to-rank approach has been proposed in [Diaby et al., 2013] to
compute the optimal weights of each fields. Using the notations of this chapter,
in this model the similarity function simg z(j, c) € [0,1] is defined as:

NZAWR) - — .
. 1225 pawg |12 viwey |

where the weight p; € R applies to the i-th field of the job j, and v € R
applies to the k-th field of the job category c. The optimal weights are computed
by a gradient ascent on the training set I, and are visualizable following a similar
bootstrapping approach to the previous visualization (Figure 4.7). The job Title
appears to be again the most important, but we note that the model captures
a simpler interaction between the job advert and the job category, since the job
Description has a low importance in the computation.

4.3.4 Feature Selection for the FtFw Model

The FtFw model naturally leads to a feature selection process [Huan Liu, 2005],
which aims to consider only a sub-set of features S(j,c); in the computation.
The objective of such process is to reduce computational costs, and possibly
improve the precision by removing noise features. We conducted experiments
by using a sequential search, more precisely a backward elimination, with an
evaluation on the subsets to compare the ROC-AUC [Omary and Mtenzi, 2010].
For a given sub-set of features, we used a 10-fold cross-validation on the data-set
I', in order to compare the ground-truth values y;. and the predicted values
simy(J, c) on this data-set, through computing the ROC-AUC. At each iteration
of the process, the number of features is fixed, and the model is successively
evaluated for deleting one of the remaining component ¢, k of S(j,¢). Then, the
i,k values that leads to the lowest ROC-AUC is deleted for all the following
iterations. This means we stop comparing the i-th field of the job to the k-th
field of the category, because it does not seem to help much to predict the match.

Figure 4.8 shows the successive AUC-ROC values at each iteration of the
feature selection process. One sees that the performance is still very high with
only 3 features. To visualize the corresponding selected features, we introduce a
feature importance I ; € R, computed as

Iy = exp(deletion order of S(j,¢); ) (4.12)

that are visually comparable with the field-to-field importances I; ;. defined in
Equation (4.10). Figure 4.9 is indeed very close to the importances shown in
Figure 4.5, confirming the intuition that a pair of fields i, k with a high field to
field importance I; ;, is also very likely to be kept after the feature selection.
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Figure 4.8 — Performance at each step of incremental feature elimination, on
Categorization data-set
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Figure 4.9 — Field to Field importance I}, (Equation (4.12)).

As a positive result, this feature selection leads to an interesting reduction
of computational costs, in time and in space. Indeed, for this data-set, we only
need to vectorize and store vectors for only 2 fields for j and 2 for ¢, instead
of 3 and 14. Moreover, only 3 cosines need to be computed, instead of 42. No
large-scale tests have been conducted yet to precisely estimate our computational
costs reduction, but significant improvements are expectable using this feature
selection.

Despite this computational aspect, the feature selection does not significantly
improve the system’s precision, measured here through the ROC-AUC. Hence,
reducing the problem dimension seems irrelevant for increasing the categorization
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precision. Another strategy for improving the system’s performance is in a sense
the opposite of the feature selection: it is to enrich the features of the problem.
One way to do this is to semantically enrich the category descriptions, that we
study in the next section.

4.4 Enrichment of Category Descriptions

By computing the job/category similarity using the FtFw model, the job cate-
gorization depends purely on the official category descriptions: those documents
can therefore be a limit to the system’s precision. In light of this, we propose
in this section a way to improve these descriptions, using a large data-set of
unlabeled job adverts.

4.4.1 Going Beyond the Official Category Descriptions

For the standardization process, using the official descriptions presents some
limitations. We will depict this aspect through the example of the description
for the “Computer Programming” category. As one can observe in Figure 4.1, the
Skills field content presents a fixed list of keywords including popular languages
(e.g., Java, C++, Python), without including recent languages such as Clojure
or Swift that are likely to be in high demand in the immediate future. In the
very evolutive context of recruitment, it is indeed considerably hard to update
the description and anticipate the rapid changes in the industry - even for a
domain expert. These new languages are however present in the job adverts
since they directly represent the needs of the job market, for example in the
following advert:

Title: Software Engineer Python

Description: You will work with algorithm development. The following
Skills and Abilities are required: - Demonstrated knowledge of software
development in MySQL / Python / Django Framework - The ability to
work unsupervised when required.

Profile: Engineering / Computer Science graduate

Company Description: At *** the leader in entertainment innova-
tion, science meets art and high tech means more than computer code.

Figure 4.10 — This job advert presents new programming languages, that are
absent in the category description of Figure 4.1; it is therefore wrongly categorized
when using the FtFw model with the official category descriptions.

A first limit of the official category descriptions is the vocabulary used to
write them, represented by the set V. Some terms might indeed be absent from
V), for example the new programming languages of the job advert above. More
subtly, some terms might be present in V but under-represented in some category
descriptions. In other words, some concepts might not be emphasized enough in
a category description, so that the corresponding terms’ weights are too low to
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properly categorize the related job adverts. In light of this, detecting the dynamic
semantic variations is crucial for improving the job categorization, especially
in presence of terms in the job advert that could not match with the official
descriptions of the profession.

In this section we propose to consider a large corpus J of job adverts ex-
tracted from Multiposting’s database. This corpus is assumed to represent the
exact needs of the job market and will serve at improving the category descrip-
tions. Each job category description will be enriched with the more contextually
relevant terms in the given job corpus, in order to properly reflect the changes
we detected in the considered job professions. To do so, our approach bridges the
gap between the categories and the documents knowledge in an evolving manner,
leveraging the data-set of real-world job adverts that can change over time, mak-
ing the enrichment is dynamic. From this data-set we associate to each category
description a set of enriching keywords, each one being associated to a weight.
Such enriching keywords are context and knowledge-aware, so that our enriched
descriptions are aware of not only the static knowledge of the domain expert
that implemented it, but also the background dynamic knowledge expressed by
the real job adverts scenario.

With this objective, the next sub-sections present a novel bottom-up method
that aims to automatically enrich each category descriptions with the newest
terms detected in the job adverts corpus. This method is articulated in three
steps: we firstly associate the context documents to each category, before ex-
tracting the relevant keywords from those contexts, and we lastly compute the
new keywords’ weights used in the FtFw model.

4.4.2 Associating Context Documents to Categories

This first step takes as input a data-set J of unlabelled job adverts, which are
context documents. For our experiments and final implementation we consid-
ered the real-world jobs published on Pole Emploi! during the year 2014, whose
statistics are displayed in table 4.1. This website belongs to the French national
employment services, and aims to be the most comprehensive possible about job
market. For each job category ¢ € C, we build a set J. made up of representa-
tive jobs taken from [J and that seem related to ¢. We capture this notion of
relatedness through the similarity sim)(j, ¢) computed by the FtFw model. This
association, as well as the whole enrichment process, is therefore semi-supervised:
firstly, we use the manually annotated data-set I" for computing simj(j, ¢); and
secondly, the corpus of unannotated jobs J serves at improving the similarity
simy(j, c) by enriching the category descriptions.

For every category c, the set J. is initially empty and incrementally aug-
mented during the associative process, as follows: for each job j € J we

1. Compute its similarity simy(j,c) with respect to all the categories using
the FtFw model.

2. Consider the top-ranked category ¢* = argmax simy(j,c)
ceC

1www.pole—emploi.fr
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3. Add j to Je+

At the end of this phase, each job category c € C has a set of job adverts J,.
associated to it. Some of those sets can be empty, in the case of rare categories
that are not represented in 7; in such case the corresponding category will not be
enriched, which appears acceptable for rare categories. This step is represented in
Bob’s world in Figure 4.3, in the second frame. In frame 3, each box - representing
a category c - is filled with sheets of papers which correspond formally to the set
Je.

Number of jobs |J| 215,512
Number of categories c enriched, i.e such that J. # (0 | 435
Average number of jobs associated |J.| 4.25
Standard deviation for |J.| 14.25

Table 4.1 — Statistics about the enrichment data-set J and the set J. of jobs
associated to each category c.

Using the FtFw model described in the previous section, we are now able to
associate each job to its best representative category in the given categorization
nomenclature. After this step, considering a category ¢ and his document-to-
category association, J., we aim to search for the most contextual informative
keywords for each category.

4.4.3 Extracting Relevant Keywords

This phase proposes to find the keywords better describing the category in the
corpus of jobs. Leveraging the associated documents to each category, we can
interpret the keywords that are supporting them as the intentions - or the ex-
planations - supporting these categories.

For this purpose, we treat the category c as a query and the extension set J.
as a contextual feedback, and we apply a probabilistic feedback process. The idea
is that each job advert j in the subset J. indicates a positive feedback about the
keywords in its aggregated bag of words j. As discussed in [Ruthven and Lalmas,
2003], the degree of matching between the keyword and the category is then
computed by treating each common document between a keyword and a category
as a positive relevance feedback; each job corresponding to the keyword but not
to the category node is on the contrary treated as a negative relevance feedback.
In particular, the relevance weight rw(e,t) for a category c of a candidate term
t is theoretically given by the following probabilistic formula:

p(t € 5lj € Je) - o
W) |p(t € 515 € Je) —p(t € 5lj & Jo)]

Intuitively, the keywords that appear frequently only in specific associations
and rarely in others will tend to have higher weights. In other words, the quan-
tity rw(c, t) weighs the most contextually informative keywords for the category
c. By re-expressing the probabilities and modifying slightly the above formula

rw(e,t) = log (
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[Ruthven and Lalmas, 2003], the relevance weight rw(c,t) is computed in prac-
tice by
Tt
Rc*"'a,
w(e,t) = log (ntrc; )
N_nt_Rc+7'c,t

e N =|J| is the total number of job adverts in the corpus

Tet ng — Tet

R, N-—-R.

(4.13)

Where:

e R.=|J.| is the number of jobs associated to the category ¢

e n; = |{j € JJt € 7}| is the total number of job adverts containing the term
t.

e r.; = |{j € J:|t € j}| is the number of job adverts associated to the
category c containing the term ¢

Leveraging these computed weights, we define the enriching field of the cate-
gory ¢, noted ¢j44, as the multiset of terms ¢ such that rw(c,t) > 0. Such terms
can be already present in the initial vocabulary V - obtained from the unenriched
category descriptions - but some of them are new, like the ones shown in Figure
4.11. We define the enriched job category as an extended list of multisets of
terms ¢ = {¢;, Ca, ..., Cnyy Crgt+1  Where Cp, 44 encodes the knowledge extracted
from the corpus J, and the other fields ¢g of the category remain unchanged.
By adding the enriching field ¢y, .41, the vocabulary of our problem is extended,
and we note V' the enriched vocabulary obtained by concatenation of all the
fields of the new category descriptions ¢'.

CSS Hibernat ASP
Ajax  MVC MySQL
xMLJgquery Oracle
Framework

Figure 4.11 — Top ten new terms (with respect to rw(c,t)) extracted from J for
the category “Software Engineering”.

4.4.4 Final Similarity Measure

Now that the categories are described by an extra enriching field, we will detail
how the similarity sim(j,c’) between a job j and an enriched category ¢’ is
computed. We will again make use of the FtFw model for this, which again
involves computing the cosine cos(j;, cx) and consequently the weights wjy, ; and

wck,t.
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Firstly, the invert document frequency idf (t) is updated by being computed
on the enriched category descriptions @, instead of on the initial ones ¢. If the
value change will be low for the already considered terms ¢ € V, the updated
idt(t) will be now non-null for the new terms of V’. This new value for idf(t) is
used for weighting the terms in the initial categories’ fields ¢ as well as in the
job fields j; (Equation (4.3)). Secondly, for the new field-to-field comparisons
cos(0;, €14,) with the enriching field ¢;4,, we will use a novel term weighting
function we,, ¢ Indeed, simply updating idf(t) would mean we do not make
profit from the relevance weights rw(c,t). This quantity gives however a signifi-
cant clue about the importance of the term t. We propose therefore to calculate
the term weight we,, .+ of the term ¢ for the category c as:

Wey oo = \/EF (6, 1) (1 +log(idf () + ruw(c, t)) (4.14)

where rw(c, ) is the relevance weight and ¢ f (¢, t) is the number of jobs associated
to the category c. The homogeneity of the weighting function is assured by
expressing rw(c,t) as a log of probabilities, since idf(t) is assimilated to the
probability of observing term ¢ in a category [Ruthven and Lalmas, 2003].

By using this weighting function when computing the similarities with the
enriching field cos(j;, €n.+1), the FtF matrix S(j, ") for the enriched category
¢’ is augmented of one column compared to S(j, ¢), which corresponds to ¢, +1-
Consequently, the sum of similarities in Equation (4.8) includes these new terms
when computing simy(j, '), so that the parameter A of the model is also aug-
mented. By a slight abuse of notations, sim) (4, ¢’) will denote this new similarity,
but A € R%*(et1) hag g different shape than when writing sim, (4, ). This pa-
rameter is again optimized through a second training on I', meaning that the
annotated data-set serves twice: firstly, for the training of the FtFw model with
initial categories, used for assigning jobs to the categories during the enrichment;
secondly, for the FtFw model with the enriched categories. This double use of
the data-set will be handled subtly during the evaluation process.

After the enrichment process, given a job advert j to be standardized, the
similarities simy(j, ¢') are computed and the top-ranked job category is assigned
to the advert j. This final assignment of job category is quite simple, but efficient
in practice, as experiments of Section 4.6 will show. However, this decision does
not provide any precise idea on how correct the automatic categorization is. In-
deed, given a job advert, the score sim) (7, ¢') has no probabilistic interpretation,
and is only meaningful when compared to other categories scores. To tackle this,
the next section proposes a way to estimate the probability that the system’s
answer is correct.

4.5 Probability Estimate for Categorization

In this section, we propose to estimate the probability that the predicted cate-
gory for a given job is correct, based on the similarity scores produced for the
ranking. We propose and evaluate different estimations for this quantity, defined
as correctness. This work extends to all learning-to-rank system with a pointwise
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approach, as it was successfully experimented in [Malherbe et al., 2015¢] for the
schema mapping of Chapter 3.

4.5.1 Definition of Correctness

As for any predicting system, it would be relevant to estimate a probability for
each prediction of job category. The probability estimate is a recurrent problem
of supervised learning, as detailed in Section 2.3.1, and having a probabilistic
prediction is for instance used in semi-supervised learning and active learning,
that both require insight about the quality of the prediction. In the case of job
categorization, a probability estimate is also useful to filter the poorly categorized
jobs of a data-set before computing some statistics.

In our approach, after the enrichment of the category descriptions, the job
categorization consists in ranking the categories ¢ with respect to a job advert
J using simy(j,c’). To investigate the accuracy of the predicted category, we
propose to step back from our problem, and consider only the ranking scores
produced by the system. Following such hypothesis, our following study applies
to each of the similarity scores we presented above, namely sim(j, ¢), simy(j, ¢),
simg 5(j, c) defined by Equations (4.4), (4.8) and (4.11). For the experiments, we
will focus on the final similarity score simy(j, ) (computed after enrichment),
but for clarity and generality, we will simply write sim(j,c) in the formulas.

Here are few points worth noticing about the similarity score sim(j,c).
Firstly, it should ideally represent the quantity p(y;. = 1|4, ¢), but has no prob-
abilistic interpretation, since it is unbounded, with sim(j,c) € RT. Secondly,
the function sim is computed independently for each category c, meaning this is
a learning-to-rank model with a pointwise approach. Thirdly, the function sim
results from a supervised (or semi-supervised) learning, meaning the values it
produces depend on the data-set used for the training, namely I".

A specific aspect of our standardization problem is that one and only one
correct category c is needed for a given job advert j. In other words, once a
relevant category is found, the other ones are useless, and the ranking only
serves at finding the most likely category c¢*, that is to say the top-ranked one:

¢ = argmazx sim(j,c)
ceC
And in this context, we want to determine how likely the category c* is to be
correct given a job advert j. We define therefore correctness C; as the probability
that the top-ranked category is a valid for j:

Cj =p(yje = 1) =p(c" is a correct category for j)

This definition is generic, as it applies to any ranking system for which we
systematically select the top-ranked solution. We need to clarify the difference
between correctness Cj and the highest score sim(j, ¢*): first, C; is a probability,
contrary to this score. Second, scores are computed with independence assump-
tion (as illustrated in Figure 4.12), whereas C; takes into account that c¢* is the
top ranked category, and is implicitly aware of the other categories. For instance,
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even if all the scores sim(j,c) are very low but sim(j, ¢*) remains much higher
than other scores, ¢* is likely to be a correct answer. On the other hand, if every
category has a high score but no outcome seems to stand out from the others,
we are less confident about ¢* being a correct category.

Our objective is to estimate correctness C; the most precisely as possible,
based on the scores sim(j,c). To do so, the data-set I" provides crucial informa-
tion: for each job j represented in I', we can compute the corresponding scores
sim(j, c) and the top category c¢*. When (j, ¢*, yj ) is present in I", we have an
example of truly or wrongly categorized job advert:

(j') yj,c*) S T

where 1" is a data-set that will serve for correctness estimate, and is obtained
by re-expressing I for a given a ranking measure sim(j, ¢). This second data-set
T is smaller than I', since there is only one entry per job j, and j is present
in 7 only if the match with the top-ranked category y; .« is given by I'. One
notes that 7" changes with the similarity function sim(j, ), since the top-ranked
category c¢* changes. In the following, we will see how to estimate correctness by
leveraging the scores sim(j,c), with and without the feedback provided by the
data-set 1.

| Jobj
N4
A ’/\ =
Ve ~N ™~ e ™
(sim(j, 1)) [sim(j,ca))  --+  [sim(j,en)
NN e NS

Figure 4.12 - Bayesian network representing the independence assumption
among scores sim(j,c). This property is verified by any learning-to-rank system
with a pointwise approach.

4.5.2 Various Approaches for Estimating Correctness

We propose here different approaches for estimating correctness C;, that intro-
duce incrementally our final approach based on the top-k scores.

Heuristic-Based Approach

A first natural approach is to rely directly on the scores sim(j, c) predicted for
the ranking. Given a job j, in order to interpret each score as the probability
that the category c is valid for j, we normalize the scores by

sim(j, )

> sim(j,c)

sim'(j,¢) =
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in order to have sim/(j,c) € [0,1] and ). sim'(j,c) = 1. We use then the
following metrics proposed by [Vanrompay and Berbers, 2012] as estimations for
correctness:

~

e Mazimum equals the highest normalized score: C; = max. sim/(j,c) =
sim/(j, c*)

e Distance evaluates how much the best category stands out from the second
one: C; = max, sim/(j,c) — 2" max, sim’(j, c)

We note that these heuristic-based approaches rely on only the highest (for the
Maximum) and the two highest values for sim’(j, ¢) (for the Distance), whereas
more values could be considered. Such approaches are moreover static, since their
computations do not exploit the categorization examples of 7. We tackle this
second aspect in the following approach.

Learning on Independent Scores

A second approach is to use I as a training data-set. For a given job advert j, we
consider the score sim(j, ¢) for a single category ¢ and forget the scores for other
categories of C. It makes sense to separate every category since the ranking
is computed independently among categories. We try thereby to estimate the
probability that a category ¢ is valid for j just from the score sim(j, c) - that is
to say p(%C = 1|sim(7, c)) - through a predicting function ):

p(yj,c = 1‘Slm(j, C)) = 1/1(3“”(% C)) (415)

where ¢ : © € R — [0,1] is learned on a set of entries (sz’m(j, c), yj,c) obtained
from the data-set I" (see Section 4.5.3 for some examples for ). This function
serves at re-expressing the scores sim(j,c) as probabilities, and would therfore
be useless if the scores were probabilistic. Contrary to the multi-class probability
estimation, this prediction does not depend on the category ¢, but just on the
ranking score, so that ¢ does not need to be represented in I' for estimating
p(yj.c = 1|sim(j, ¢)). The estimated correctness C; for the job j is then obtained
by converting the top score into a probability:

Cj =¥ (sim(j, c)) = p(yj.e = 1|sim(j, c*)) (4.16)

We note that this final prediction of C; depends only on the category with
the highest value ¢*. We expect however that the scores for other categories give
additional information on the ranking quality: indeed, if the second highest score
sim(j,c) is much lower than the highest one, it means that the first category
stands out of the others. In light of this, we propose in the following a model
that considers not one but several scores when estimating C}.

Learning on Top-k Scores

Given a job advert j, we extend the previous learning by considering all the
categories scores sim(j,c), meaning we estimate correctness C; by p(yjyc* =
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Figure 4.13 — Graphical model for Figure 4.14 — Graphical model for
estimation on independent scores. estimation on top-k scores.

1|sim(j, c) Ve € C). However, the input features can not simply be all the scores
sim(j,c), ¢ € C as is. Indeed, the number of features |C| would be high and we
might encounter overfitting. Besides that, only few categories ¢ are represented
in I, so that we can not use a fixed order for representing the scores sim(j, c)
in an input vector: this would penalize the absent categories in I'. For the same
reason, the use of the principal components analysis would also penalize some
categories. We therefore build a vector by re-ordering the scores sim(j,c). To
do so, we consider the ranked k highest values of sim(j,c), where k € N. One
can link this process with the distance D computation, where the 2 highest
components are considered, statically. We write the top-k scores vector topg(j):

mag sim(j, c)
2" max sim(j, c)

—
topr(j) = cec e R

k" maz sim(j, ¢

ceC (] )
which can be viewed as a feature map of a job j into R¥. It captures the dis-
tribution of scores, and in particular, how much the first category ¢* stands out
from the others. The correctness C; is then estimated by:

C; = cp(@z(j)) = p(yj,c* = 1]k top scores sim(j, c)) (4.17)

Where the prediction function ¢ : X € R¥ — [0,1] is learned on a set of
entries (topk (7)), yj,c*), by re-expressing 1. The choice for function ¢ is discussed
in the following.

4.5.3 Experimental Precision of Approaches

For our experiments on correctness estimation, we used a two levels cross val-
idation: a first level separates the training and testing sets used for learning v
and ¢, and another cross validation is performed on each training set to produce
unbiased values sim(j,c). Indeed, when we re-express the data-set 7" as entries
(sim(j, ), yjﬂ) and (t_o—pz(j), yj,c*), the scores sim(j, c) depend on the data-set
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used for training; the objective is to learn the functions ¢ and ¢ from scores
sim(j,c) and vectors topi(j) that reflect what would be predicted for an new
job advert j.

Since the approaches on independent scores sim(j, ¢) and top-k scores @)( 7)
involve learning functions ¢ and ¢ to estimate correctness Cj, we compared the
following supervised algorithms, whose output can be interpreted as a probability
([Carrizosa and Morales, 2013]):

Sigmoid: (%) = 1

Tre e where o € R and § has the dimension of Z.
B

K nearest neighbors (kNN): ¢(Z) = 137 2% is a weighted average of

T n Lai |33
the n closest vectors #; in the base (n = 20 in our experiments).

Random forest: ¢(¥) = Ztreer{ﬁgzzﬁ/ﬂﬁ) is the average of the probabilities
Piree(y = 1|Z) produced by each randomized tree in the forest (300 in our

experiments).

To estimate the quality of our predictions, for each entry (j,y;.) € 1 we
compared the estimated correctness C; to the ideal prediction, y; ., using 3
metrics: the ROC-AUC as defined in [Carrizosa and Morales, 2013], the mean
square error M SFE and the log-likelihood LL:

MSE = ’;'\/ > (G —yjer)? LL = ‘;, > 1og(ICs — yjer])
(9,yj,c%)EY (4,y5,ex)EY
ROC-AUC LL MSE
Heuristic Based Maximum 0.73 £ 0.03 -1.41 £ 0.14 0.49 + 0.05
Distance 0.75 + 0.00 | -2.20 + 0.23 0.57 £+ 0.06
kNN 0.70 + 0.03 -4.02 + 1.82 0.26 £+ 0.02
Independent Scores Forest 0.70 4+ 0.03 -12.56 + 3.67 0.28 + 0.02
(Equation (4.16)) Sigmoid 0.76 + 0.02 | -0.72 £+ 0.02 | 0.22 + 0.00
kNN 0.76 £ 0.02 1.41 + 0.56 0.19+0.01
Top-k Scores Forest 0.74 £+ 0.02 -0.58 4+ 0.03 0.20 + 0.02
(Equation (4.17)) Sigmoid 0.77 £ 0.02 | -0.58 £+ 0.01 | 0.20 &+ 0.01

Table 4.2 — Quantitative comparison of correctness estimates.

Table 4.2 shows the quantitative results. On the top part, we see that heuristic-
based approaches seem to detect well the correct categorizations according to
the ROC-AUC, but have a poor probabilistic interpretation, as the low LL and
M SFE values point out. The estimation from independent scores produces a bet-
ter probability, but the ROC-AUC remains quite low, suggesting not to consider
the scores sim(j, c) independently for our problem. For the estimate on top-k
scores topk(7), the metrics have been computed for k& = 4, following the curves of
the Figure 4.15. Like for the estimation on independent scores, using the Sigmoid
for ¢ gives a high ROC-AUC and approaches relatively well the ideal probability
(see the LL values), so that this function fitted on top-k scores gives the best
results.
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Figure 4.15 — AUC-ROC with respect to k when estimating using the top-k scores.
Some overfitting occurs for k > 4, so that k = 4 seems to be the best value for

our final correctness estimate.

4.5.4 Direct Applications of Correctness

The direct application of estimating C; is to filter the better categorized jobs,
by applying a threshold € € [0,1] on Cj. This serves in practice at computing
category-based statistics: for instance, in the SmartSearch project, we want to
compute statistics for a given pool of jobs related to a given a category c. By
restricting this pool to jobs j such that C; > ¢, the statistics are less biased by
the wrongly categorized job adverts, and therefore less noisy. Below here is a
study of how to choose the threshold e.

We applied a threshold € to the correctness of each job represented in 7, in
order to detach a sub-part with better categorized jobs. Let Coverage. be the
proportion of jobs j from 7 such that C; > ¢, and Accuracy. the categorization
accuracy on this subpart. We plotted the accuracy with respect to the coverage in
Figure 4.16, each point corresponding implicitly to a threshold. The curves show
which correctness estimate permits to detach efficiently some better categorized
jobs: if we want a sub-part with 90% of jobs correctly categorized, we cover 31%
of cases when Cj is estimated using top-k scores, against 25% using independent
scores and 19% using distance. Furthermore, the curve is more regular with the
estimation learned on top-k scores, which is preferable for industrial strategy.
When focusing on a single model, plotting the accuracy/coverage curve serves
at defining the industrial strategy through the choice of €.

Another use of correctness is for ranking the job adverts for a given cate-
gory. In SmartSearch’s interface, the user might have a look at the pool of job
adverts used for the statistics. This pool sometimes present poorly categorized
job adverts, which is very bad for the user experience; by ranking the jobs j by a
decreasing correctness Cj, we ensure that the first displayed adverts most likely
belong to the given category. In practice, for a vast majority of the categories,
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Figure 4.16 — Accuracys with respect to the Coverage., when applying a threshold
e on correctness C; (each point corresponds to a threshold value).

there are a large number of associated job adverts in SmartSearch database,
at least few hundreds, meaning that the first wrongly categorized job adverts
appears at a high rank when using this correctness-based ranking.

Estimating correctness finds also application in co-training. Indeed, this semi-
supervised method requires to estimate which jobs of an unannotated corpus are
the most correctly categorized, as detailed in the next section.

4.6 Evaluation of Job Categorization

In this section, we evaluate our job categorizer, that is semi-supervised since it
leverages the annotated data-set I' as well as the corpus of non-annotated jobs
J, as illustrated in Figure 4.17. For this reason, we propose to compare our
system with a co-training on I" and J, as detailed below.

-1 Learning the FtF mmjlanty- 4: Learning the estimation of the correctness

sima(j.c) 3: Learning the FF similarity | gim, (4, ¢') C’J

Final estimators for the
2: Enriching the categories similarity and the correctness

Figure 4.17 — Diagram describing the data-set and the steps - numerated in order
of construction - involved for the final job categorizer.

79



Chapter 4. Categorizing Jobs using Category Descriptions

80

4.6.1 Co-Training for our Learning-to-Rank System

Our system being semi-supervised, a natural comparison is to the co-training.
As stated in Section 2.3.2, the idea behind it is to incrementally learn two in-
dependent and complementary predictors, which serve at annotating the jobs J
and enriching therefore the training set I'. It has been successfully applied to job
adverts in a multi-class classification [Ghani, 2002], by separating the classifica-
tion into one based on the title and one on the description. The former textual
feature is written j, in this chapter, while the latter is written j,. This does not
directly apply to our system, that adopts learning-to-rank approach, for which
co-training has been successfully applied [Tan et al., 2004, Wang and Li, 2011]
where the learning is pairwise. To fit our system - that is pointwise - and leverage
the correctness estimation, we propose a novel co-training strategy.

With the objective of separating the FtFw model into two independent

rankers, we learn on one side sim(;)(j, c¢) based the title j; on one side, and

on the other side simg\2’3’4) (4,c) based on the job fields ja,Jg,J,. This means

we consider the first row of the FtF matrix S(j, ¢) which correspond to the title

of the job (Equations (4.7) and (4.8)) for training simg\l)(j7 c), and the other

rows for training simE\Q’g’A‘) (4,¢), by leveraging initially the data-set I'. These

two rankers will serve at forming incrementally an enriched training set, that
we write I, using the corpus J. To assess which job advert j of J is the most
correctly categorized by one of the two rankers, we propose to use the correct-
ness - written Cj(l) for the system using simg\l)(j, ¢), and C](2’3’4)
(2,3,4)(

for the one

using sim Jj,c). For comparison purpose, we use the non-enriched category
descriptions in the similarity measures.

/- ~
‘class ¢
Ny /\

_

Job title Job full;gé’scri ption

Figure 4.18 — Graphical model representing the assumption behind the co-
training. This corresponds to Figure 2.8 of Section 2.3.2, re-expressed with out
notations in the case of jobs.

Before detailing the co-training method we propose, let us discuss about the
assumptions behind the separation of our system into two rankers sz’mf\l)(j, c)

and sim§2’3’4) (4, ¢). For the co-training to work properly, the jobs adverts need
to reflect the bayesian assumption of Figure 4.18, that gives

p(j,¢) = p(c)p(d.|c)p(dz, Ig, Jalc)
- p(lc)mcul)p(jl)p(cumjg,j4>p<j2,j3,j4>

o p(elga) X p(cliz, Js; Ja)
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when assuming that the categories ¢ are equiprobable in the job market, and
noticing that for a fixed job advert j, p(j.) and p(ja,Jg,J4) remain constant.
One can estimate the two probabilities of the last expression using the approach
of Section 4.5.2 (Equation (4.15)), by training sigmoids (1) and (33 4) on the
independent scores. The former sigmoid is based on the scores sim(;)( j,c), while
the latter is based on the scores sim > (j,¢). These estimates give the following
similarity function simg;(j, c) between a job j and a category c:
. ‘ ROV . (2,34) /.
simy(j,¢) = Yoy (sim)) (. €)) x G (sim*V i) (418)
This variant of the similarity function leverages the FtFw model on non-enriched
category descriptions as well as the probability estimate on independent scores.
We will not use it for comparison purpose, but for justifying the use of co-training
with the two co-rankers simg\l)(j, ¢) and sim&2’3’4) (4, ).
The co-training process we propose for our experiments incrementally builds
the data-set I by iterating: while all job adverts in the corpus J are not repre-
sented in I, do

1. Train on I" U I the FtF similarity sim™)(j, ¢) based on j,, and the similar-
ity sim/(2:34) (j,c) based on ja, jg, J4. Deduce then the respective estimators

for the correctness C’}l) and CJ(2’3’4) after a cross-validation on the initial
training set I', as explained in Section 4.5.3.

2. Consider the job j € J not yet represented in I"” with the highest correct-
ness C;l). Add the corresponding positive example (7, c¢*, +1) to I". Since
we need negative examples, we also add n,., random negative examples
(j,¢,—1) to I'". This is a negative random sampling [Cochran, 1953] with
the same job j paired with n,., random categories ¢ (¢ # c*).

3. Consider j € J not yet represented in I with the highest correctness
C](-2’3’4). Add a positive example in 1", and npey negative examples like in

the previous step.

In order to reduce computational costs, the training of the first step does
not need to be performed at each iteration; in our experiments, we updated
the similarities sim()(j,¢) and sim()(j,¢) at every batch of 1,000 jobs of J
considered for increasing I"”. This process differs from the official co-training
for multiclass classification, in which the most confident examples are added for
each class, which implicitly creates negative examples for all other classes. In our
case, considering the most confident for each class does not make sense, as each
class is not represented in 7. Actually, since we build a data-set I" with binary
validation, we are closer to a binary co-training, in which for each most confident
example added as true, n,e4 less confident examples are added in false. But in
our case, the most confident example is estimated through the correctness, and
the less confident ones result from a random sampling. Due to the core role of
the correctness in this process, we prefer to use I' when learning to estimate it,
and keep I” for training sim) and sim(23%).
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At the end of the co-training process, the data-set I"U " is used for training
the FtFw model simy(j,c), using non-enriched category descriptions for com-
parison purposes. The co-training uses the corpus of unannotated job adverts J
in a significantly different strategy than ours: while the section 4.4 aims to enrich
the category descriptions ¢ € C, the co-training aims to enrich the training set
I'" used for learning the weights A used in the FtFw model. In other words, for
the standardization problem, the categories enrichment serves at improving the
nomenclature N while the co-training serves at improving the standardization
function f(d).

4.6.2 Experimental Setup

In order to validate the system we propose for categorizing a job advert j, we
dissected our model into different variants, to highlight the improvement of each
contribution, namely the FtFw model and the category descriptions enrichment.
We also confronted our system with several baselines, so that we evaluated the
following methods:

Cosine Measure CM: as a first baseline, the cosine similarity sim(j, c) is the
simplest approach, with no learning nor enrichment (Equation (4.4), Sec-
tion 4.2.2).

Field Weighting Fw: a second baseline is the fields’ weighting, whose similar-
ity simj 7(J, c) is trained on I" (Equation (4.11), section 4.3.3).

FtFw: to evaluate the FtFw model, we computed the similarity simy(j, ¢) with
non-enriched category descriptions (Equation (4.8), section 4.3.1).

FtFw with Random Forest: to validate the linearity assumption of the FtFw
model, we computed a random forest [Breiman, 2001] based on the FtF
matrix S(j,¢) (4.7) (100 trees in our experiments). The matrix is flattened
and considered as an input vector.

Co-training: A baseline of semi-supervised learning is the co-training described
in the previous sub-section, with the FtFw model sim)(j, ¢) trained on the
resulting data-set I" U I'" with non-enriched categories. We tested it with
different values for the random negative sampling, 7,y = 1, 5 and 30, and
due to the randomness we performed this process 3 times for each 7,4
value.

Bi-ranking: to validate the assumption behind the co-training, the similarity
simp;(j, ¢) was computed with non-enriched categories (Equation (4.18)),
to assess how independent and complimentary the two sub-features 7, and

(42,33, J4) are.

e-FtFw: this final model leverages the FtFw model sim(j, ¢') when computed
with the enriched category descriptions (Section 4.4.4).
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Apart from the first model (CM), we used of the training set I" requires to
perform a cross-validation, that was 5-fold in our experiments. A special evalu-
ation process is necessary for the Bi-ranking and Co-training systems. Indeed,
the former requires to estimate the probability p(yj7C = 1|sim(y, c)) while the
latter requires to estimate the correctness C;, through a supervised learning. As
explained in Section 4.5.3, for both systems, a second level cross-validation is nec-
essary to train the corresponding correctness estimators. For the e-FtFw, every
fold gives different enriched category descriptions, since the similarity simy(j, ¢)
differs at each fold, and is used when constructing the associative sets J. from
which the new keywords for the category c are extracted. Similarly, in the Co-
training method, at every fold is produced a different enriched training set I".
At each fold of the cross-validation, we computed the following metrics on the
test fold:

Categorization error rates Fy, Fs: As the top category is particularly im-
portant, we first observed the predictions for the top ranked category c*.
The error rate F € [0, 1] is calculated as the proportion of mis-categorized
jobs in the data-set 7". The second rate E5 corresponds to the industrial
needs, and is less strict than Fj: it evaluates if the category proposed by
each approach falls in the extended set of valid categories. This set includes
the correct category as well as the categories similar to it, that are spec-
ified in the category description for the ROME nomenclature. One notes
that Fy and Es will be computed on a slightly different number of jobs j
depending on the model: indeed, when j, c*, y; .~ is or not in I", we do not
know the ground truth for c¢*. Despite this aspect, these errors express the
best the real use and industrial needs of the system.

Matching error rate Fg;,: This second rate evaluates the matching errors
with respect to the ground truth, when predicting y; . based on the simi-
larity between j and c. This rate is computed for all pairs represented in
I, and is fundamentally different from the multi-class categorization error
E1, although related. As we will see, when the pairwise match is better
predicted, the categorization precision also increases.

Receiver Operating Characteristic AUC-ROC [Omary and Mtenzi, 2010]:

This last measure also evaluates the pairwise matching error on I, but
aims to be independent from the threshold applied on the similarity mea-
sure before the conversion in binary match. It is computed by plotting the
fraction of True Positives with respect to the fraction of False Positives
(ROC curve), in order to measure the area under the curve (AUC). Con-
trary to the previous metrics, the higher the ROC — AUC is, the better
the pairwise match are predicted.

These measures were computed for each variant of the job categorization to
assess the quality of the predictions.
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4.6.3 Results

For studying the semi-supervised approach, we first evaluated the co-training
with 3 values for 7,4, through 3 different runs for each in order to see the effect
of the randomness in the negative sampling. We displayed in Figures 4.19 and
4.20 the evolution of E1 and ROC — AUC through the iterations, by learning the
FtFw similarity simy(j, ¢) on the partially enriched data-set I'UI"”. We see that
sampling a higher number of negative examples gives better results, and that
the randomness has a limited effect on the co-training process, the 3 runs giving
very similar results for each n,.,. We also observe from the ROC' — AUC values
that the generated data-set I" contains meaningful examples for n,., = 30, at
the number of 31x215, 512. Nevertheless, this does not improve standardization,
contrary to the category descriptions enrichment as detailed below.

Table 4.3 shows the result of the models comparison, with the averaged met-
rics for nyeq = 30 for the Co-training approach. We first note that the C'M model
gives the worst results, but the values remain in an acceptable range, confirming
the approach of matching the job category descriptions ¢ to the job advert j.
When compared to this baseline, the matching models Fw, FtFw and FtFw with
Forest all improve the metrics, confirming the relevancy to leverage the data-
set I'. Furthermore, the FtFw model stands out from the two others, validating
therefore the idea to compare each field content of j with each field content of
¢, as well as the linear combination of those comparisons.

The three last models concern the enrichment process, and the best strategy
appears to be the e-FtFw model leveraging enriched category descriptions. In-
deed, the corresponding job categorization is the most accurate with a relaxed
error rate Fy of almost 20%, which is satisfactory given the granularity of the
chosen nomenclature (with 531 categories), so that the e-FtFw model has been
implemented and is now daily used to categorize thousands of jobs. We see also
that the simple application of the Co-Training is not an efficient way to leverage
the corpus J. A strategy could be to design another co-training process adapted
to our learning-to-rank model, since the Bi-ranker model gives good results and
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Ey Ey  Egn AUC-ROC
CM 038 033 0.39 0.766
Fw 031 0.27 0.36 0.842
FtFw with Forest 0.29 0.25 0.31 0.872
FtFw 0.28 024 0.34 0.862
bi-ranker 0.27 0.23  0.32 0.870
co-training 0.30 0.28 0.43 0.825
e-FtFw 0.25 0.21 0.25 0.880

Table 4.8 — Performance of the proposed approach (e-FtFw) compared with the
alternatives, on a set of 1,339 job adverts and 531 job categories.

was designed to validate the assumptions of the co-training. Furthermore, the
Bi-ranker performance confirms firstly that the FtFw model still works when
learned only on j, and only on (Ja,J3,J4), and secondly that our probability
estimate for the FtFw is precise enough to combine the two rankers like in Equa-
tion (4.18). Over all, the poor results of the Co-training teach us that in this
standardization problem, it is more efficient to enrich the category descriptions
of C instead of enriching the training set I': the category descriptions are crit-
ical and are potentially improvable, whereas the similarity function simy(j,c)
does not seem to be improvable by learning it on more examples. This result
confirms that the textual descriptions of a nomenclature are at the core of the
standardization problem.

4.7 The Importance of a Nomenclature with External
Knowledge

In this chapter, we have used the textual data associated to the nomenclature
N (written C for job categories) that was predefined by domain experts. This
external knowledge has been at the core of our standardization, when computing
the similarity, and moreover the knowledge enrichment has shown great results.
In particular, while we have failed to improve the standardization function f
through co-training - our baseline of semi-supervised learning - we managed to
improve the standardization precision by enriching the category descriptions of
N. Beyond standardization itself, the nomenclature’s meta-data also finds sev-
eral practical applications, like for user experience - when manipulating objects
with textual descriptions - and the international relations that link a French job
category to its American equivalent.

Unfortunately, only few nomenclatures directly usable exist, and the job
categories will remain our only example of ready-to-use nomenclature for the
e-recruitment domain. In light of this, we will study in the next chapter the
feasibility to build a generic nomenclature A; a special focus will be to leverage
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external knowledge extracted from the Semantic Web (see Section 2.2.1) as well
as from the social media. These sources will be at the core of the construction
of NV, will help at being generic, and will provide crucial textual data that will
be at the core of standardization.



Chapter 5

Generating Knowledge Bases
Usable as Nomenclatures

The nomenclature N and its associated knowledge appears to be crucial for stan-
dardization, but for most of the concepts - for example the skills and the educa-
tional institutions - there is no ready-to-use nomenclature with rich meta-data. In
this chapter, we study the feasibility to construct automatically a nomenclature
of entities A; in this case, each document to standardize is ideally represented by
one of the entities, and the standardization function f aims to find the right one.
As observed previously, the core of an efficient standardization will be the knowl-
edge associated to the nomenclature, that we will extract from public sources.
These are external knowledge bases, which present a generic purpose while the
nomenclature for standardization concentrates by definition on a domain. After
having detailed the standard process for this construction, we will study its in-
stantiation in the case of the skills and the educational institutions, which each
will raise different questions:

e When considering a generic knowledge base, how to select the appropriate
entities for A in the case of a concept difficult to define, like the skills,
which results from a common knowledge? For this example, the construc-
tion needs to follow the job market trend, expressed by changes in the skills
themselves as well as in the terminology used by candidates and recruiters.
The approach we proposed in [Malherbe and Aufaure, 2016] considers not
only the semantic web through the DBpedia project, but also social media,
incarnated by the Q&A forum Stack Overflow and a corpus of candidate
profiles from professional social networks.

e As multiple public sources are often necessary to cover a sufficient range
of entities, how to evaluate the merge of multiple knowledge bases when
building the nomenclature? Standardizing the educational institutions re-
quires in particular to deduplicate three complimentary bases that present
numerous entities in common. In light of this, we propose a unified eval-
uation that considers a set of real-world queries for standardization, and
efficiently produces metrics for the data matching and the entity linking.

87



Chapter 5. Generating Knowledge Bases Usable as Nomenclatures

88

While both problems require to focus on the nomenclature of entities, the
approaches present two different difficulties. They have been implemented, and
are used every day for standardizing thousands of candidate profiles and job
adverts.

5.1 The Standard Process for Standardizing Entities

In this section, we motivate our strategy for standardizing entities, which is to
construct a nomenclature of entities from public knowledge bases, and propose
a unified approach for it, divided in three processes.

5.1.1 Advantages of a Rich Knowledge Base

By definition, an entity is a concept that exists, and can therefore theoretically
be enumerated. For instance, the Company and the educational Institution in
the e-recruitment documents are entities, contrary to the job categories that are
higher-level concepts. For such textual field, standardizing means finding the
right representant of a document into a nomenclature of entities N'. An entity
having one or several explicit names, the task is in practice to detect the pres-
ence of the entities names inside a document d, with possibly a disambiguation.
This type of standardization presents many advantages when the nomenclature
presents rich meta-data, in which case we consider it as a knowledge base - if
this type of knowledge bases have generally information encoded through RDF
data (see Section 2.2.1), in this chapter we will simply see them as a flat set of
entities with meta-information. A first avantage of the knowledge bases is when
each entity is associated to several aliases, so that standardization performs a
deduplication, meaning that several different but equivalent wordings refer to
the same concept. Another advantage is when the nomenclature is multilingual,
meaning the entities have aliases in different languages. In this case, standard-
ization is equivalently performed on documents of different languages, so that
the final statistics can include several countries; for example, when a job advert
in French talks about “soudage”, we can compare it to a job advert in English
talking about “welding”. Besides, when the entities of the nomenclature are
classified or organized as a taxonomy, it is possible to regroup the entities into
meaningful groups. Moreover, when a description is associated to each element
of NV, it improves the user experience, as well as the taxonomy when exploring
the knowledge base.

Beyond these aspects, the richness of the nomenclature is crucial for mak-
ing standardization efficient. Indeed, the knowledge base used needs to be the
most comprehensive possible in terms of number of entities contained, in order
to standardize the larger number of documents. Furthermore, the meta-data is
associated to each entity also increases the coverage, but also the standardiza-
tion precision, because the more the aliases there are, the finer the deduplication
is. In light of this, for standardization purpose only, the aliases of the entities
of N will be the most crucial data. Other meta-data can however be used by
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the system, for instance during the disambiguation of the possible entities for a
document d.

With these considerations in mind, we dissect in the following sub-section a
unified process for building a knowledge base from public sources, in order to
use it as a nomenclature.

5.1.2 The Three Processes of this Type of System

With the growth of the Internet, many knowledge bases exist (see Section 2.2.1)
and can serve as a basis for generating a nomenclature for a given standardiza-
tion problem. Unfortunately, it is rare to have a knowledge base directly usable
as a nomenclature, as was the case for the job categories. Indeed, some bases
are generic and contain many concepts, whereas a nomenclature is specific to
a domain by definition. On the other side, some knowledge bases are not com-
prehensive enough and would not constitute a sufficiently representative nomen-
clature when considered alone. In light of this, when standardizing entities, we
generally need to construct the nomenclature based on several sources of knowl-
edge. Designing the standardization system involves therefore the three following
processes:

1. Selecting the relevant sources of knowledge and the respective entities: we
first need to constitute a pool of entities that we extract from public knowl-
edge bases. On one side, we have to manually inspect and choose which
sources are relevant or not for our system, depending on the industrial
use case, like the language of the documents to be standardized. On the
other side, since these sources might be too generic and deal with irrelevant
entities, we need to select - ideally automatically - the sub-part of these
knowledge bases that corresponds to our current attribute.

2. Merging the sources to produce a deduplicated knowledge base: this is nec-
essary when several sources have been selected. In this case, the extracted
knowledge bases will very probably present an overlap of entities, so that
we need to merge the duplicated entities. This process might be assimilated
to a data matching (Section 2.2.2) and produces the final nomenclature N.

3. Linking the unstructured documents d to the corresponding entity of N.
This step corresponds to entity linking (Section 2.2.3) and the answer might
be several entities, in the case of a long free text for instance. This process
is in practice done by comparing d to the documents associated to the
entity; since those documents each presents explicit entities name(s), this
comparison is simpler than the FtFs model, which compared documents of
different nature and structure, and required some supervised learning. This
step is the actual standardization, and is performed at each document d to
be standardized, contrary to the selection and merging that are performed
only when generating/updating the nomenclature.

These processes are illustrated in Figure 5.1, from Bob’s point of view. In
the following of this chapter, we will present the instantiation of those steps in
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two use-cases: the Skills present in a candidate profile or in a job advert, and
the educational Institutions of a profile.

5.1.3 Two Types of Entities, Two Problems

A first object of study in this chapter will be the Skills. This kind of concept
is obviously an entity in the case of a hard skill (see Section 1.3), for example
a mechanical tool or a software. Theoretically, some soft skills could however
be inferred from a document that does not explicitly state them. For example,
a job advert about management could implicitly require some relational com-
petencies without stating them; we will however forget those implicit skills and
focus on the explicit ones, that are therefore assimilated to entities. The skills
are indeed a major aspect when dealing with job ads or candidate profiles, but
the existing knowledge bases of skills are too far from real-world terminology
used by candidates [Braun et al., 2010]. Despite their costly development, they
can not be efficiently used for skills extraction, for which they constitute a top-
down approach since the knowledge come from recruitment experts. Building a
knowledge base of skills from public sources appears necessary, but presents a
difficulty when selecting the correct entities: what entity can be considered as a
skill? This question seems to be answered differently by recruitment experts and
candidates, so that we propose a bottom-up approach for selecting the entities
of N, that finds its roots in a corpus of real-world candidate profiles.

Our second object of study will be the educational Institutions. Present only
on the resumes, this attributes is crucial: the reputation of the institutions where
the candidate graduated is one of the most regarded feature by recruiters (the
second one according to [Archer and Davison, 2008]). For this example of enti-
ties, the institutions are characterized by generally long, numerous and various
aliases, for example the acronyms, nicknames and historical name(s) of a uni-
versity. Consequently, handling them raises a difficulty for merging the public
sources, since we need to perform a data matching, and to evaluate accurately
this process. The merging has indeed great effect on the final standardization,
since it influences directly the nomenclature’s quality, so that we propose a uni-
fied process for evaluating the global system which produces efficiently metrics
on the merging quality.

5.2 Leveraging Candidate Skill Terminology

Listing the skills required for a job or mastered by a candidate is a crucial ex-
ample of textual standardization, in which several structured values are inferred
inferred per document - instead of a unique as in the others standardizations
treated in this thesis. The skills extraction on both side leads indeed to many
applications [Trichet and Leclere, 2003], like skills-based matching between ads
and candidates, experts finding systems [Riahi et al., 2012], HR management
[Fazel-Zarandi and Fox, 2012], or advanced statistics on large corpuses like the
emergence of skills [Abbound et al., 2015]. This standardization is also very ben-
eficial for the SmartSearch project, for which needs to be performed both on
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Figure 5.1 — The approach for generating nomenclatures as perceived by Bob. In
the first frame, Bob downloads the appropriate entities from multiple sources (2
in this illustration), which is the selection process and generally involve filtering
irrelevant entities. From each source results a set of entities, each of them being
represented by a short document of meta-data, which includes a list of aliases. In
the second frame, Bob performs the merging process by deduplicating the sheets of
paper representing the same entity. The last frame represents the linking process,
once each deduplicated entity has been associated to a box. Bob puts the sheet of
paper to be standardized into the box for which an alias is in the observed sheet
of paper.
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resumes and job ads, in order to compare the statistics on the candidate side
and on the recruiter side.

In this study, we will only consider the last field of the candidates’ profiles,
the Skills, that is a list of expressions that one could assimilate to tags. Each of
those expressions is an unstructured raw text, made up possibly of several words
and referring (ideally) a single entity. In the following, a candidate profile p will
be simply defined as this list of expressions in lowercase, like in the example
below:

bE 3 bR 1A

p = {“adobe premiere”, “microsoft office”, “photoshop”,

YO R4

“video editing”, “photography” } EPEN

where Py, denotes the corpus of all candidate profiles in English, and P, the
corpus of profiles in French, that have been extracted from professional social
networks for the SmartSearch project. In this study, we will use the notation ¢ for
this type of expression, which might regroup several words, contrary to the rest of
the thesis where a term ¢ is a single token. Despite this aspect, the expressions ¢
always refer to a unique concept, and could therefore be assimilated to a phrase
[Arnon and Snider, 2010], which is regularly considered in the literature as a
single token and is generally extracted based on statistical rules.

In this first practical example of knowledge base construction, the standard-
ization target are candidate profiles p, as well as the textual descriptions of jobs,
for which standardization is multivalued. As we will detail in the next section,
the selection step is not straightforward since the definition of a skill is sub-
jective and results in fact from a common knowledge. We propose therefore a
new bottom-up approach (illustrated in Figure 5.2) to generate an up-to-date
multilingual knowledge base of skills using social media and the terminology of
skills extracted from the candidate profiles. The social media is used in two as-
pects during the selection step: firstly, professional social networks - from where
candidate profiles are extracted - serve at deciding which entities to extract, and
secondly, a Q&A platform is used as a public source of knowledge.

Professional Candidates  Extracted French DBPedia Concepts Sub-Graphs Merged Graph

Social Profiles Terminologies
Networks Ak}‘ — V\.

French sites ) ﬂ » \ Stack Overflow Tags
English sites ) D - Eng/lsh.wws r\

Figure 5.2 — Diagram describing the steps and data involved in building the
knowledge base of skills S,,y,, . All those steps but the last constitute the selection
process of the nomenclature’s construction.
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5.2.1 Selecting Skills from Social Media and the Semantic Web

The public sources that appears to contain concepts related to skills are DBPedia
(see Section 2.2.1), in French and English for our study, as well as the tags of
Stack Overflow!. This Q& A website is specialized in computer science, for which
it seems to be comprehensive and up-to-date; this kind of website has been found
relevant for finding experts [Riahi et al., 2012] and the tags include programming
languages, softwares or frameworks. However, for each of those public sources,
there is no obvious way for selecting which entities are indeed skills. In light
of this, the main aspect when building our knowledge base is the definition of
a skill, which is difficult linguistically. The collaborative approach proposed in
[Braun et al., 2010] points out a group effect, because the employees prefer to
use frequent tags when they specify the skills of someone. The definition of a
skill has therefore a social aspect, so that we investigate the use of social media.

Language French English
Number of Sources 12 9
Number of Profiles | P,y |, |Pax| | 916,284 | 414,480
Number of Skills 5,976,950 | 1,548,866
Number of Distinct Skills 99,974 52,661
Number of Frequent 9,111 3,898
Distinct Skills |7op |, | Tox |

Table 5.1 — Characteristics of our corpuses of candidate profiles.

To benefit from the growth of professional social networks while avoiding the
expensive cost of the manual tagging used in [Braun et al., 2010], we propose to
consider the corpuses of candidate profiles P, and P, whose stats are in table
5.1 once the candidates having an empty Skills field are filtered. Our hypothesis
is then to define a skill as an expression that appears frequently in the skills field
content of the candidate profiles. In other words, only the expressions of P, that
appear more than a given threshold e are considered for the French language,
which defines formally the French terminology of skills

Ter = {expression t| 3 more than €% of profiles p € P, such that ¢t € p}

and similarly in English for 7. In our experiments, the threshold was fixed at
e = 0.01%; the motivation for this choice is to get a similar number of skills
compared to the existing skills bases (see Table 5.3). In a future work, we plan
to investigate a strategy to determine the optimal threshold automatically, with
both qualitative and quantitative considerations. For each language, the list of
expression resulting from this process forms our skills terminology, and Figure
5.3 gives an overview of 7., and T, for the French and English languages.
To support more languages in the final knowledge base, one simply needs to
consider an additional corpus of candidates in the desired language, and apply
this terminology extraction procedure.

"http://stackoverflow.com/
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“Management”, “Communication”, “Customer Service”, “Cashier”,
“Gestion de projet”, “Marketing”, “javascript”, “Graphic Designer”,
“Microsoft Office”, “Microsoft Excel”, “Project Manager”, “java”, “php”,
“Microsoft Word”, “Informatique”, “jquery”, “Administrative Assistant”,
“Vente”, “Adobe Photoshop” “Sales Person”

Figure 5.8 — Top 10 most frequent expressions, in French on the left and English
on the right.

It is worth noting that each extracted terminology is a just flat set of ex-
pressions and contains some noise and duplicates. Despite being finite, this set
is not usable as a nomenclature, since our skills knowledge base should have
rich information (as introduced in Section 5.1.1), whereas the expressions of the
terminologies come with no meta-data nor relations. We will however make use
of the terminologies 7., and 7T, for selecting the related concepts in the espe-
cially chosen knowledge graphs, DBpedia in French and English, and the tags
of Stack-Overflow. As a result, we obtain the partial bases S, 1ns Sppp.py and
S..o, which are formally a set of skills s associated to a list of synonyms or aliases,
written aliasesyr— s for the French aliases and aliasesyy_,s for the English ones.

The entites selection process starts by extracting a sub-part of DBpedia that
matches our skills terminology, in French and English. In this knowledge base,
each entity comes with information such as a category, a description, a type,
and some aliases corresponding to the URL redirections [Wu and Weld, 2010].
Whereas a natural approach is to select the concepts based on the “rdf:type”
attribute of the DBpedia concepts - as we will use in Section 5.3.1 - the difficulty
to determine what is a skill makes that there is no type dedicated to it. We

Numlber of Concepts Extractegl per Type
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Figure 5.4 — The most frequent “rdf:type” of the skills of S, ,p.zn, €xtracted from
the English DBpedia. The extracted knowledge base is very heterogeneous and
contains only few programming languages.
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therefore propose to extract each entity that is named in the terminology. In
other words, our approach amounts to define a DBpedia entity as a skill when
it has one of its aliases is in the skills terminology. For each language and the
corresponding DBpedia (they are distinct bases), the concepts that verify this
property are extracted, which formally defines the set S, . of skills concepts:

Sppp.rr = {concept s of DBpedia-FR |3 ¢t € T, such that t € aliasespr—ss}

and similarly in English for the set S| ;. - The elements of S, ;. o and Sppp n
are more than expression, since they are associated to meta-data. Table 5.4 shows
the heterogeneity of the entities extracted. Any language for which DBpedia is
rich enough can be considered in this process, provided we have extracted the
corresponding terminology from a corpus of candidates.

Despite its richness, the set of DBpedia entities might not be comprehen-
sive, so that we need to enrich the knowledge base of skills with extra entries.
As introduced previously, we consider in our construction an additional public
source, the tags of Stack Overflow. Those tags refer to an entity and are generally
associated to a description, some aliases, and similarities with other tags (acces-
sible in open access?). Similar to DBpedia, since only few tags really correspond
to skills, we need to filter the irrelevant skills, starting by those corresponding
to a natural language word, using a list of english words®, formally written W.
Then, we consider the subgraph of the Stack Overflow tags that matches the
French and the English terminologies of skills (those tags being not specific to
any language), which formally defines the set:

Ss.o = {tag s of StackOverflow |3 ¢t € T_, U T, such that ¢ € aliases;
and aliasess N W = ()}

where the aliases aliasess for the tag s are not specific to any language. Our
study is limited to Stack Overflow, the richest forum of the Stack Exchange?,
but other forums could be relevant, like the ones dedicated to Management and
Graphic Design.

The construction of Sy;p 1r> Spep.ey ad Sg  is our selection process. It can
be seen as a filtering of the entities, based on the candidates terminology. As
introduced in Section 5.1.2, we need now to form from these three sets a unique
set of entities, that will be our skills nomenclature.

5.2.2 Merging into a Final Knowledge Base of Skills

This step produces the final knowledge bases of skills S,y ., by merging the
subgraphs S up prs Spepen @A Sg o, since they are independent and contain
duplicated concepts. With this objective, the Stack-Overflow tags are merged to
the DBpedia concepts when they share one alias in common, and the DBpedia
concepts are merged with their equivalent concept in the other DBpedia based

“https://data.stackexchange.com/
3http://www-personal.umich.edu/~jlawler/wordlist.html
“http://stackexchange.com/sites
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on the “same as” relation. One notes that other knowledge bases, such as YAGO
or FreeBase, could also be easily merged, provided that there exists explicit
relations linking the concepts among bases.

In this merge process, we have to carefully consider the DBpedia concepts
corresponding to the disambiguations pages, since this kind of page precisely
makes the link between several different concepts that can be confused and should
not be merged. This type of concept is considered in our system as an ambiguous
skill, except if it is linked to only one other skill of the knowledge base: it then
means that the other disambiguated senses of the page are not skills. In this case,
the disambiguation concept is deleted, and the corresponding skill is enriched
with an additional alias, the title of the disambiguation page. The ambiguous
skills represent less than 5% and are skipped for the extraction described in
Section 5.2.3.

Knowledge Base Total Number | Skills # aliases
of Concepts Extracted | per Skill
French DBpedia 1,721,600 4,845 3.63
English DBpedia 5,072,562 4,691 8.53
StackOverflow 114,742 1,520 3.76
Final Knowledge Base | 5,157 - 11.64

Table 5.2 — Characteristics of the different knowledge bases involved.

The knowledge base of skills S, We obtain contains rich information, ex-
tracted from the initial knowledge bases. Firstly, a significant information about
each skill s of the knowledge base are its aliases (as detailed in Section 5.1.1), that
is formally expressed as a set of lowercase expressions aliasesgy—ss for English,
and aliasespr_ss for French. As an example, the skill s for “Mobile Marketing”

is associated to the following languages:

aliasesgy—ss = { “mobile marketing”, “sms marketing”

“mobile interaction service” }

aliasespr—ys = { “marketing mobile”, “m-marketing” }

Secondly, each skill is associated to a textual description, that we display in
SmartSearch’s interface in order to improve the user experience. Considering
the same example as above, the description starts with “Mobile marketing is
marketing on or with a mobile device, such as a smart phone.”.

Another relevant information are the categories of the DBpedia concepts.
Those categories constitute a taxonomy, that be used for exploring the knowl-
edge base of skills. For the SmartSearch project, we opted for a limited number
of categories that we manually selected, in the idea of grouping the skills into
skills-related categories. Among the few dozens of categories we considered, there
are “Law”, “Software” and “Marketing” (in which the previous example, “Mo-
bile Marketing”, is categorized). To extend these categories to the skills obtained
through StackOverflow, we simply analyzed the first sentence of the description,
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and assign a type if some specified keyword is found, such as “framework” or
“programming language”. This way, the skills of S, ,, are automatically clus-
tered into macro categories. We can therefore work out statistics grouped per
category, and concentrate on specific categories.

These meta-data will be used in the SmartSearch project, as illustrated later
in chapter 7. In this chapter, we will only use the aliases, for standardization

purpose as detailed in the following.

5.2.3 Linking Candidates and Jobs to the Corresponding Skills

This section explains the linking process resulting from the knowledge base
Spinar» Which is straightforward and only uses the aliases of the skills. It serves on
the candidate side as well as the job side, for which it returns multiple structured
values.

A first natural use of the knowledge base is to associate a candidate profile p
to its corresponding skills. To do so, each expression ¢ € p is linked to the skill s
of the knowledge base that contains the expression ¢ in its aliases aliasespr—ss (if
case of a profile coming from a French website, for instance), if this skill exists.
Formally, this defines a standardization function

s If 3 s € S, yasuch that ¢ € aliasespr_ys

normalizegy (t) = {NIL Otherwise

This standardization is a variant of the wikification (see Section 2.2.3), and
provides various advantages: each standardized expression t is linked to some
meta-data that was detailed in Section 5.2.2; the expressions representing the
same skill are deduplicated, even for expressions in different languages; last, this
standardization filters the expressions that are absent from the knowledge base
Spinar» Meaning they are too infrequent in Py and Py or absent in DBpedia
and StackOverflow.

The second and main application of this newly created nomenclature is to
extract skills of a job advert, which is a raw unstructured text. We simply write
this text d, but contrary to the other chapters, we do not extract only the single
tokens but all the 1 to 4 grams of words from d. This multiset of n-grams of
words is written ngrams(d), and corresponds to a process similar to [Abbound
et al., 2015] where they propose to look at the frequent and emerging n-grams in
a data-set of job ads to detect the trendy skills. Contrary to their approach, our
process provides structured data, by extracting the skills of Sy, having one
of its aliases in the set ngrams(d). Formally, this defines an extraction function

extract,, (d) = {s € SiinaL

ngrams(d) N aliasespr—ss # @}

An example of extraction is given in Figure 5.5, using the knowledge base Sy .1
on a job advert found on Indeed.com. This example shows that extracting the
skills gives a summarization of the job advert, and can be assimilated to auto-
matic tagging. Furthermore, most of the extraction covers the second paragraph,
which talks about the tasks of the job, contrary to the first one which introduces
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the context of the post. In the real-world usage of standardization (detailed later
in Chapter 7), this job advert would be for instance counted in the statistics
about the skill “Adobe Indesign”.

Job Title and Description:

Russian speaking Web Designer, London

A great new opportunity has just become available for an experienced Russian
Speaking Senior Web Designer to join international company and become part
of their London team. If you are interested in this position yourself or know
someone who might be, please contact us.

Required skills: Strong knowledge of the Adobe Suite - Photoshop, Indesign
and [lustrator; Strong visual eye and attention to detail; Understanding of UX
principles and User Centered Design ; Ability to take a PSD and turn it into a
functioning prototype; Visual design of user interfaces for websites.

Extracted Skills extract(d):

designer / design / website / speech / web design / adobe photoshop / rus-
sian language / user (computing) / prototype / adobe indesign / illustrator /
availability / user-experience / international / adobe / unix / user interface /
information technology

Figure 5.5 — Example of skills extraction on a real-world job advert.

5.2.4 Experimental Comparison with Other Knowledge Bases

To justify the use of our newly generated nomenclature of skills and evaluate
quantitatively the standardization we obtain, we computed several metrics by
using Spya, @8 well as other knowledge bases of skills. There already exists
knowledge bases, private or open, that are directly usable as a nomenclature for
our system. Using one of these existing knowledge bases of skills extraction is a
top-down approach in the sense that the skills are pre-defined by professionals,
and do not necessarily correspond to the terminology used by candidates and
recruiters. In our experiments, we considered the following alternative knowledge
bases:

e O*Net [Hilton et al., 2010]: as introduced in Section 2.2.1, the O*Net
knowledge base is used by the U.S. public recruitment services. The core
concepts are the job categories, that are associated to generic skills as well
as “tools and technology”. The skills nomenclature is very coarse with
only 35 skills. We instead extracted the list of the “tools and technology”,
constituting a large set of skills with only few meta-data and in English
only.

e SkillsPlex®: this private knowledge base has been used at SAP for years,
mainly for human resources management. It is only in English and contains
detailed descriptions for thousands of skills.

Swww. peoplesciences.com/psilibrary.htm
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e ESCO [De Smedt et al., 2015]: the European Skill, Competences and Oc-
cupations taxonomy is an thesaurus freely available in 10 languages. From
this knowledge base introduced in Section 2.2.1, we extracted only the in-
formation related to skills, namely several aliases in multiple languages but
no textual description.

® S.va.: This knowledge base is obtained after the process described in the
sections 5.2.2 and 5.2.1.

e S, This knowledge base corresponds to the process described in the sec-
tions 5.2.2 and 5.2.1, without considering the Stack-Overflow data, S . In
other words, this nomenclature is the merge between S, ;. . and S0 ux,
with only DBpedia concepts. Testing this knowledge base of skills serves
at justifying the use of Stack Overflow tags in our process.

Knowledge Base O*Net | SkillsPlex | ESCO | Sppp | Spnaw
4 skills 27,025 | 14,195 5096 | 4,352 | 5,157
# aliases/skill 1 1 4.5 11.4 11.6
Skills with a description (%) | 0 100 0 78 81
Skills with a category (%) 100 100 100 | 83 71
Multilingual skills (%) 0 0 95 78 83

Table 5.3 — Quantitative comparison of the knowledge bases of skills

Some statistics about these knowledge bases are displayed in table 5.3. In or-
der to compare the standardization itself, we also computed several quantitative
metrics to evaluate normalize(t) and extract(t) using the different knowledge
bases of skills. We first computed the coverage for the normalization coveragep €
[0,1] on the test sets of candidates P, and P.,. This quantity is the propor-
tion of expressions t € p € Py, that are standardized by normalize(t), and is
formally given by

EPGPEN > _tep L(normalize(t) # NIL)
zpePEN |p’

where 1(normalize(t) # NIL) denotes the identity function that equals 1 if
the expression e is normalized or 0 otherwise. One notes that this coverage is
computed on the sets used in Section 5.2.1, but is counted with expressions
frequency and before any filtering. Consequently, we expect to obtain a high
coverage on the profiles using Sy .., that was the initial aim of our construction.

A more interesting and unpredictable behaviour is the standardization of job
descriptions. Indeed, they are written by recruiters, contrary to the candidate
profiles P, and P, used to construct S, .. - To evaluate this second standard-
ization, we computed the absolute coverage coveragecytrqct for the extraction as

the average number of skills extracted from a job advert d, formally written as

Zdej lextract(d)|
|T|

coveragep =

coverageyg =
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where J is the sample of job adverts. Despite the notation, this corpus of jobs
differs from the one used in Chapter 4, because each job is described by only
one document d, obtained after concatenation of the job Title and Description.
Unlike coveragep, the value for coverages is absolute, because we can not di-
vide it by the number of skills to be ideally extracted, this number being very
subjective.

Lastly, the extraction precision precision s € [0, 1] was estimated on a sample
J of 100 job adverts. In order to represent a wide range of jobs, each advert of
J was taken from a different job category, using the automatic categorization
described in Chapter 4. For each job advert, a team of Multiposting experts have
manually labeled the extracted skills as being relevant or not. The set of relevant
skills for a job advert d is written valid(d), and the precision is formally given
by
> deg lvalid(d) N extract(d)|

> acr lextract(d)|

which is the proportion of valid skills that have been extracted on the sample of
job adverts J. For this last metric, the set J of job adverts is smaller, due to
the cost of the manual validation.

precisiong =

Metric Tested Knowledge Base | O*Net | SkillsPlex | ESCO | Sppp | Spnar

coveragep (%) | 5,976,950 expressions - - 13.9 75.9 76.9
from French profiles

coveragep (%) | 1,548,866 expressions 2.5 20.7 16.1 65.7 73.8
from English profiles

coverages 100,000 French adverts | - - 2.9 13.0 15.1

coverage s 100,000 English adverts | 1.2 11.8 11.6 31.6 35.2

precisiongy (%) | Skills Extracted - - 73.9 - 81.0

Table 5.4 — Results of the experiments on the different data-sets, using the 5 skills
knowledge bases. The knowledge bases SkillsPlex and O*Net are in English, so
that they were only tested on the English data-sets.

The results in table 5.4 show that for the two languages, the O*Net, Skill-
sPlex and ESCO knowledge bases poorly cover the candidates vocabulary, unlike
Spinar, Which get a high coveragep. This was expected since the S ., has been
constructed based on these candidates, but the comparison shows the poor re-
sults of the top-down approach using pre-defined bases. The coverage on the job
descriptions coverage s is an unbiased metrics for which the S, ,, gets also the
highest coverage, meaning it captures well the vocabulary used by recruiters -
even if it is built from the candidates terminology. We note in both cases that
Sppp gets lower coverage values, justifying therefore the use of Stack Overflow
in our entities selection process.

In terms of precision, the value for precisions appears to be satisfactory,
with more than 80% using our final system. The quality of the extraction is
directly linked to the quality of the aliases of a skill, for instance aliasespr—_ s in
French. Indeed, let us consider an alias t € aliasespgr_s that is poorly related
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to the skill s, meaning that a job described by d containing the alias ¢t does not
actually relate to the skill s. However, since ¢t € ngrams(d), skill s would be
extracted from the job, which is an undesirable extraction. Based on this fact,
we deduce that the aliases in the knowledge base ESCO are of lower quality than
in the nomenclature S;,,, . In practice, we even observed that different skills
from ESCO can share the same alias, whereas in Sy, the aliases correspond
to an URL and are therefore singular.

The experiments confirm that the knowledge base created through this sec-
tion is exploitable as a nomenclature for standardization purpose. The selection
step we propose, based on social media, appears to consider relevant entities for
the considered use case. The construction process can be repeated to benefit
from an updated corpus of candidate profiles, as well as the evolution of the
public knowledge bases that are both maintained by the crowd of internet users.
We can therefore update the knowledge base of skills and follow the evolution in
the job market, or support a new language for standardization. In this knowl-
edge base construction, the merging process was straightforward, since we used
the interconnexion among DBPedia projects, as well as the full names of a skill,
that are simple expressions with one or two words in general. For other kind of
entities, like the educational Institutions, the merging of the sources might be
more subtle than for the skills. In this case, the nomenclature construction highly
depends on the data matching process, which directly influences the knowledge
base quality as we will see in the following section.

5.3 Evaluating the Merge of Knowledge Bases of In-
stitutions

In the following, we study standardization of the Institution field content of
a resume, for which three examples are displayed in Figure 5.6. An educational
institution is easy to define, contrary to the skills, so that few satisfactory knowl-
edge bases of schools already exist and provide many synonyms for each entity.
However, while the selection process is eased, the merging and linking processes
are complicated, due to the high variance in an institution names, for example
“UCB”, “University of California, Berkeley” or “Berkeley, Cal”. The former pro-
cess will be tackled by data matching and the latter by entity linking, and while
the literature always addresses these subjects separately (see Sections 2.2.2 and
2.2.3) they both influence the performance of the final standardization. In par-
ticular, a poor data matching strategy could produce entities of low quality, by
associating multiple non-related institutions or keeping many duplicates in the
final knowledge base. This section studies the influence of the merging strategy
on standardization, and shows how evaluating the final standardization gives a
feedback both on the entity linking and the data matching quality. The unified
evaluation process we propose only requires a limited number of manual vali-
dations, and provides a labeled data-set for data matching very efficiently, on
which metrics for the data matching can be computed independently from the
entity linking metrics, and are highly related to the real-world application of the
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Paradise City Green University
Master of Business Administration
Austin  Gray College
B.Eng. in Chemical Industry
Springfield Public High School of Springfield
HS with Honors

Figure 5.6 — Example of educational institution in a real-world resume.

system, since they focus on institutions occurring the most.

Before detailing this novel evaluation process, this section describes first the
selection, the merging and the linking processes involved for standardizing the
Institutions.

5.3.1 Selecting Complementary Knowledge Bases of Institutions

To build a knowledge base of educational institutions, we firstly considered the
entities classified with the type “Educational Institution” in the French and En-
glish DBpedia. This type indeed covers any kind of educational institution, so
that we can use it to filter the relevant entities for the current standardization
problem. For each of those selected entity, we extract the institution’s label,
the official website URL, the locations (expressed in text format), the number
of students and diverse aliases from the Wikipedia’s redirections, disambiguates
pages and international links, each feature being reliable information because
it is structured on the original Wikipedia. While we aim to be comprehensive
about French education, we noted that most of small institutions do not have
a Wikipedia page, so that we also considered the source Letudiant®, a national
website about French institutions. We extracted from each public page of Letudi-
ant the label of the institution, the official website URL, the location (expressed
again in text format) and two aliases from the postal address and the web-
page’s URL. The necessity to deal with multiple sources and complementarity
of the presented knowledge bases will be confirmed quantitatively in Section
5.3.5 (tables 5.5 and 5.9): the DBpedia knowledge bases are less comprehensive
but international, and provide richer information than to Letudiant. This for-
mer source is however more comprehensive for French national institutions, but
is restricted to them. Following this selection of entities, we formally define an
educational institution e as

e = {website, aliases, locations, students} (5.1)

where website is the URL for the institution official website, possibly null if it has
not be specified; the set aliases regroups the documents noted alias referring to
the institution e in any of the considered languages, namely French and English
in this study; locations is a document regrouping the institution’s locations

Syww.letudiant.fr
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names; students € N is the number of students of the institution. The entity e is
also given a unique name, taken arbitrarily among the names of each source, that
will be used later in the user interface. We write 50 vny Eppppns Crprup the
sets of educational institutions respectively extracted from the French DBpedia,
from the English DBpedia, and from Letudiant.

In this use case, the selection of entities is simpler than for the skills, mainly
because an educational institution is well defined and thus well specified in the
sources. On the other side, the institutions’ aliases are longer and more numerous,
which will complicates the following merging process.

5.3.2 Data Matching for Merging the Sources

As illustrated in Figure 5.7, the data matching process aims to merge dupli-
cates that represent the same institution, by testing all the pairs of entities e, €’
from distinct sources, where each e represents an institution as defined above.
Although we do not test pairs from the same source, the matching we propose is
not exactly unique (not one-to-one) since we assume that several entities of one
source can be linked to the same entity of another source. In our deterministic
matching strategy, we propose to merge two entities e, €’ if one of the following
rules is satisfied:

1. e and € have the same website

2. If one website is not specified, and e, €’ share one alias in common

3. If one website is not specified, e, ¢’ share one location in common, and an
alias of the one is contained in an alias of the other

where for the last condition, instead of using the textual document locations
as defined in Equation (5.1), we preferred to use the locations in format latitude,
longitude, that are provided indirectly by the initial sources of knowledge through
the geonames and the postcodes. This data matching procedure results in the
final knowledge base of institutions, written &,,,,. To merge e and €', we con-
sider the union of all aliases, that is to say aliasesUaliases’, and similarly for the
locations. For students, we keep the maximum number, max(student, student’).
The rules presented here are purely deterministic, the strategy itself being not
the focus of this section, but the evaluation process behind it. Indeed, based
on the evaluation described later in Section 5.3.4, we have been able to tune
manually the data-matching, and propose the rules above. Similarly, the labeled
data-set generated in the evaluation is totally usable as a training set in the case
where the data matching is performed through machine learning.
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Base A Merged Base

@—NoMerge
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Figure 5.7 — Diagram describing the data matching process. The entities of the
merged knowledge base, written E, are represented into circles because they come
from the union of entities e of A and B.

We propose to step back from the previous representation of institutions,
in order emphasize the conceptual difference between the entities of the initial
sources and the ones of the final knowledge base, resulting from the data match-
ing. Indeed, an entity of £, .5 1ns Eppropn OF ELprup 1S considered to be primary,
and is written e, whereas an entity of the merged base &, ,, is written E, since
it is formally a set of primary entities e € E. For instance, writing £ = {e, e’}
means that E/ comes from the merge of the primary entities e and ¢/, and the at-
tributes of E are given by aggregating the respective attributes of e, ¢’. In many
cases, ' = {e} is made up of a single primary entity, because the primary entity
e has not been merged during the data matching process. Following this consid-
eration, in Figure 5.8 and 5.9, a primary entity is represented by a number, while
an entity E is represented by a circle grouping numbers. We emphasize the fact
that only the primary entities e are constant because the initial sources (€, 5p g
Eppprn and & L) are fixed, whereas the final entities E € &, ,, depend on
the data matching process.

To illustrate the entities after the data matching process, here is an example
of institution F:

Institution: Pierre and Marie Curie University
Locations: Paris, France
Students: 32,000
Website: www.upmec.fr
Aliases: Paris 6, UPMC, Paris Jussieu,
University of Paris VI, Jussieu University

5.3.3 Entity Linking for Normalizing Resumes

In this section, we consider the knowledge base &, as fixed. With the objective
of standardizing the institutions’ names of a numeric resume, we successively
detail here the 3 steps of the entity linking process: the extraction, the search
and the disambiguation (Section 2.2.3).

The objective of our system being to standardize the institutions that are
cited in a resume, we firstly extract a textual query g from a resume. We consider
for g the bag of words given by aggregating the Institution and the Location
associated to a degree, which is motivated by the fast that many institutions
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names in &, contain their location. For instance, the query for standardizing
the first line of the resume of Figure 5.6 would be:

q = {Green, University, Paradise, City }

Apart from the lowercase, the only pre-processing of the query is to translate
the acronyms. To do so, a list of acronyms is automatically found from the
knowledge bases of institutions, when detecting for instance that “MIT” and
“Massachussets Institute of Technology” are in the same aliases of a primary
entity e. We only keep the acronyms that have a unique possible translation.

We then need to search for the institutions E that are relevant candidates to
represent q. To assess the relevance of F/, we focus on the aliases and locations,
which are directly comparable with the query q. We consider that an institu-
tion is relevant if and only if 70% of terms of the query q can be found in the
set of words aliases U locations. Following this rule, we can retrieve the related
universities F from the knowledge base, to form the set Rel(q) of relevant insti-
tutions for the query q. If Rel(q) = ), meaning there is no relevant institution
with respect to the selection rule, the answer of the system is NIL. The value of
the threshold has been chosen experimentally, to give a low rate of NIL answers
(below 25%) and a high rate of queries above threshold that are properly linked.
This choice is based on the experimental evaluations.

Before giving the final answer of the system, we need to disambiguate the
set Rel(q) of relevant institutions by comparing each of them directly with the
query q. Using the cosine measure among documents (Equation (2.4) of Section
2.1), we compute for each institution E € Rel(q) its score:

score(q, E) = 5 x max cos(q,alias) + cos (q, U alias)
alias -
Caliases alias (52)

ECaliases

+ 3 X cos(q, locations) + log(students)

We then link the query q to the institution E having the highest value for
score(q, F) € R. This answer for the entity linking process is written EL(q),
which is possibly NIL response, and is formally given by

X NIL if Rel(q) =0
EL(q) = argmax score(q, E) otherwise
E€Rel(q)

Defining score(q, E) has been done after experimental evaluations, as well as
the coeflicients in the formula. Such choices are critical for the entity linking
process, we need therefore to evaluate properly our system. Besides that, we see
that the entity linking process directly depends on the knowledge base &, ..
which results from the data matching. In order to justify our arbitrary choices of
parameters in the merging and linking processes, we propose in the next section
an unified evaluation process for this type of two-part system.
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5.3.4 Evaluation Process for the Two-Part System

In this part, we step back from the industrial use case and propose an evaluation
for a system combining a data matching with an entity linking.

Separated Manual Validation and its Limits

The described standardization system relies on a data matching and an entity
linking, which both need to be designed and tuned in order to achieve better
precision. Indeed, standardizing correctly a high proportion of queries implies
first that the entity linking properly links each query q to the best entity E of
the knowledge base &, ,., but implies also a good data matching. Indeed, the
final entities need to make sense and not be a merge of several distinct concepts;
moreover, we want each concept to be represented by only one entity of the base,
in order to have a unique valid standardization.

The evaluation of the merging and linking processes is thus critical when
building this type of system, and it requires building a labeled data-set on which
the system is tested and metrics are computed. Generating these labeled exam-
ples is necessary in the case where rules are set experimentally (like we did for the
use-case described in previous sections) or when one of the processes is learned
and involve machine learning. For evaluating the processes separately, we need
a labeled data-set I',, for the entity linking on one side, and labeled examples
M, U for the data matching on the other side (see Sections 2.2.2 and 2.2.3 for
more details). The first one is expressed as a set of entries (q,E,yq.p) € I,
where q is a query, E a entity of the knowledge base, and yq g equals +1 if E/
represents indeed the concept of query q, —1 otherwise. We compute from this
labeled data-set the accuracy, recall and f-measure for the entity linking:

_ #HaeQypg =1 rec,, = #1a € Q Yy prq =1
#{q € Q| EL(q) # NIL} o #9Q

acc

EL

acc,, *recy,

(5.3)

f —measure,, =2 *
acc,,, +rec
EL EL

All these metrics for the entity linking are for the non-NIL answers, because
verifying that a query q is not represented in the knowledge base is a costly task
compared to the simple “correct” or “incorrect” choice, especially when & .,
is not fixed.

For the data matching, the evaluation requires a labeled data-set expressed
usually as a set of pairs M to merge and a set of pairs U not to merge [Fellegi
and Sunter, 1969]. We count firstly from M the number of entries e, ¢’ € M that
are correctly merged by the process, named the number TP of true positives,
and secondly the entries e, e’ € M that are not, named the number F'N of false
negatives. Similarly we count from U the number T'IN of true negatives and the
number F'P of false positive. From these quantities are computed the precision,
recall and f-measure for the data matching:

TP TP

Preon =pprpp oM T PP LI EN
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TP+TN
acc,,, = (5.4)
TP+TN+FP+ FN

A straightforward evaluation would be to evaluate the processes indepen-
dently by building distinct data-sets I',,, M and U. This would be however
time-consuming, and moreover we note that the concepts involved in each case
are closely related: the primary entities e of M and U on one side, and the
merged entities &/ for I',, on the other side. Besides that, evaluating the data
matching can be very inefficient because only few merges occur (see table 5.5 of
Section 5.3.5), meaning that sampling randomly the pairs for the manual review
would be extremely time-consuming. We propose thus to leverage the implicit
feedback provided when validating the entity linking process, which leads to an

unified and efficient evaluation process for such standardization system.

Manual Validation Process

As we focus on the real-world application of the two-part system, all the eval-
uation will be guided by a set of queries Q for standardization. For each query
g € Q, we will build the validation sets Tr_q, Fr—q, Te—q and Fe_,q, as il-
lustrated in Figure 5.8. The two first sets are constituted of final entities which
have been validated as being good representant for ¢ when E € Tr_,q, or bad
representant when I/ € Fg_,4. The two last sets are for the data matching eval-
uation, and are made up of primary entities which have been inferred to be good
representant when g for e € T._,4 or bad representant when e € F,_,4. Quality
metrics are directly computed from these sets and the process to build them is
detailed in the following.

Knowledge B Query T4
owledge Base < ™, Valid Mo
Entity ) 0
Linking o e
Remove

Primary

Entities Correct

Entities
[ ] Fe oy
® o ® o

Figure 5.8 — Diagram of evaluation process with the building of sets Tp_,q, Fp_q,
Tesq and Fe_q. The number are named by numbers; circles grouping numbers
represent merged entities of the knowledge base. The evaluation is performed on
different knowledge bases, meaning that the entities E in Tp_q, Fp_q result
from different variants of the merging process.

Validation

©
0®

Unvalid

Given a generated knowledge base &, and an entity linking procedure
EL(q), for each query q € Q we ask for a manual validation of the suggested
answers I = EL(q). This validation is done for each variant of the system
being tested, which includes variants of the data matching process. For all q,
we build the sets of validated entities Tr_,q and invalidated entities Fp_,q in an
incremental way following the algorithm 1, both being sets of merged entities
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FE. One notes that the entities E involved here are not the same when the data
matching is modified.

Algorithm 1: Manual Validation Routine: Tg_,q and Fg_.q updates

input: Test-set Q, sets Tr_,q, Fr—q

Output: Updated sets Tr_,q, Fr—q

foreach query q in Q do

E = FEL(q)

if £ # NIL and E not in Tp_.q U Fp_,q then
ask for a manual validation

if E is a correct representant for q then
| add entity E to the set Tp_.q

else
| add entity E to the set Fg_,q

end

end

end

At this point, one can directly compute the quality metrics for the entity
linking based on the sets Tg_,q and Fr_,4. For a given variant of the two-part
system, the labeled data-set I',, is given by simply re-expressing the previous
validation as a set of entries (q, F,yq r) where the query q is taken from Q,
E = EL(q) is the corresponding answer of the system, and yqr € {+1,—1}
is the manual validation we infer in accordance with £/ € Tp_,q or I/ € Fg_q.
The number of entry in this labeled data-set I',, should be equal to the size
of Q provided that the manual validation process has been fully completed for
the current variant of the system. The metrics for the entity linking quality
(Equation (5.4)) are directly computable from this data-set.

Implicit feedback for the merging

We propose now to leverage the previously built sets Tr_,q and Fg_,q to infer
a labeled data-set for the data matching, without requiring any additional man-
ual validation. Our approach relies on the implicit feedback about the primary
entities that the manual validation provides. The idea is that when an expert
validates a merged entity E = {e, €'}, this implies implicitly that e and €’ repre-
sent the same concept. We consider thus the set of good primary entities for q,
denoted T,_.q4, as the union of all primary entities that are in Tr_,4. Formally it
is defined as:
Towg= |J B ={ceE ’ E€Tpq)
E€Tp_q

We will similarly build the set of primary entities that does not represent the
query q. To do so, we consider the primary entities contained in Fg_,4; however,
this set can still contain valid primary entities for the query q. Indeed, let us
consider F = {e, e’} where e is valid for ¢ and €’ is invalid. Such E will be
refused during the manual validation, so that the valid primary entity e will be
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added to the set Fg_,q. In other terms, the primary entities in a refused £ are
not necessarily all invalid for the query g, but at least one. We thus remove the
validated primary entities T,,_.4 when building Fe_,4:

Fosg= |J E\Tooy = {eeE ‘ E € Fp_,q andegéTe_w}
EEFE_>q

A discussion is needed to clarify the assumption behind this definition. When
removing the set of validated entities T4, we have no assurance that it removes
all valid primary entities for query g, because T¢._,4 might not be comprehensive.
In other terms, when building the set of invalidated primary entities F,_.q, we
assume that without any positive information about a primary entity e of Fr_.q,
e is an invalid representant for q. Formally, the positive information is expressed
in the set Tr_,q, and not having any positive information about e is equivalent
to e ¢ Tp_q.

An undesired consequence of this assumption is that F._,4 may contain pri-
mary entities e valid for g. This occurs if an entity E containing a valid primary
entity e is invalidated, and e is never validated when evaluating all the variants
for the system. Nevertheless, this occurs very rarely in practice, and the con-
sequences are negligible, because the pairs we will consider in the following are
only taken in T,_,q X Fe_,q. For instance, when Tg_.q = 0, we will not infer any
pairs for the labeled data-sets M, U of the data matching. Besides that, we can
assume that only few primary entities are valid for the query g, and consequently
the set of validated primary entities T,_,q4 is rapidly comprehensive.

T rq Fo'rq
déz
Figure 5.9 — Pairs for data matching deduced from the sets T._.q and Fe_q. In
plain arrows are the positive pairs, in dashed lines are the negative pairs.
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For each query g, we deduce positive and negative pairs M, U for the data
matching process from these sets of primary entities T,_,q and F,_.4. As described
in Figure 5.9, we simply consider that each valid primary entity e for g should
be merged to all other valid entities €’ € T4, and to none of the invalid entities
¢ € Fe_,q. We do not infer anything about two primary entities that are invalid
representant for the query q. From this reasoning, we get data-sets M and U
by unionizing the positive and negative pairs inferred for each query g € Q.
Formally, the set of positive pairs M and the set of negative pairs U are defined
as

M=|J{e€ €TogxTorsq} U= |J{e,d €Togx Forg}  (5.5)
qeQ qeQ

where the pairs are counted once when building M. The metrics for the data
matching quality (Equation (5.4)) are directly computed from these sets, so that
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the system can be tuned based on this implicit feedback on the merging process.
This tuning can be manual but also automatic, when supervised learning is used
for the data matching.

The process we propose is therefore an “entity linking-based” approach to
create the labeled data-set for data matching. The major disadvantage of this
approach is that the data-set creation directly depends on the entity linking
process, meaning we need an entity linking and moreover an efficient one. Indeed,
the worst case when T,_,q = () does not lead to create labeled data-sets M, U.
Besides this point, the approach shows several advantages:

1. The similarity between compared primary entities e is indirect, because
we “pass by queries” to link the pairs, contrary to [Bilenko and Mooney,
2003] where they use a direct similarity. In our case, the entities e of M do
not necessarily have many words in common, but are conceptually similar,
since they represent the concept behind the query q.

2. Our approach cheaply creates a high number of labeled data for the data
matching process, with for instance 42,150 labeled pairs with only 2, 709
manual validations for our case study (see table 5.6 of Section 5.3.5).

3. The set of negative examples U has a relatively similar size of the one of
the positive set M, so that the T'N value does not bias the evaluation, con-
trary to what [Christen and Goiser, 2007] observes in usual data matching
processes.

4. The computed metrics correspond to an average in the space of entity
linking queries Q. This is an advantage because the primary entities are
sampled by respecting the distribution of concepts for the final application.
Indeed, entities related to queries g which occurs more in real life are
more represented in M and U, and the corresponding metrics reflect the
importance of the concepts behind each query gq.

We implemented this evaluation process leveraging the implicit feedback, in
order to perform the quantitative comparison described in the following section.
5.3.5 Experimental Results
In this section, we describe the variants of data matching and entity linking we
evaluated using the proposed process, and the experimental results obtained.
Dissecting the System

Firstly, we implemented the following variants tested for the merging process of
Section 5.3.2:

None: This first matching simply aggregates the multiple sources without any
merge.

Web: This process merges only the primary entities having the same website.
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NoLoc: For this data matching, primary entities are merged if they have the
same official website, or, if one website is unspecified, if an alias of the one
is contained in an alias of the other. These rules are equivalent to those
described in Section 5.3.2 without the condition on the institution location.

Full: This matching is the one described in Section 5.3.2.

In Figure 5.5 can be seen the sizes of the sources and the knowledge bases
resulting from each data matching. We see that only few primary entities are
merged in average, with a noticeable difference among the rules for data match-
ing, with fewer deduplications occurring for stricter rules. Such figures are limited
and do not enable us to properly compare the data matching processes.

Knowledge Base Eierup | €psrrr | Cppp.eN None Web | NoLoc Full
# entities 8,209 3,448 | 18,639 | 30,206 | 27,863 | 26,491 | 26,826
% with website 97 94 76 84 82 84 83
Average |aliases| 2.19 5.23 4.22 3.78 3.97 5.19 4.04
Average |locations| 1.00 1.15 1.81 1.51 1.63 1.74 1.70
Average |F| 1.00 1.00 1.00 1.00 1.08 1.14 1.13

Table 5.5 — Statistics for the initial knowledge bases as well as for the knowledge
base merged by the variants of the data matching process. The three last lines are
quantities averaged per entity.

Similarly, we dissect the linking process of Section 5.3.3 by adding incremen-
tally the terms of Equation (5.2) in the score function, in order to measure the
features effectiveness:

Semantic: The simplest entity linking limits the score function to the semantic
information of the aliases, so that

score(q, F) =5 x max cos(q, alias) + cos (q, U alias)
Calianes alias
E€aliases

S-Boost: As first variant, the boost on the number of students, log(students),
is added to the semantic score.

L-Boost: As second variant, the boost on the location of the institution, 3 x
cos(q,locations), is added to the semantic score.

All: This last entity linking combines the semantic score with the two boosts
(Equation (5.2)).

This change in the formula for score(q, F) also impacts the filtering of rele-
vant entities Rel(q) for the Semantic and S-boost processes, for which the loca-
tion label is not included in the query gq.
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Labeled Data-sets Created

For each of the entity linking variants, and for every knowledge base resulting
from the data matching approaches, we tested the standardization system on
real-world queries, following the manual validation process of algorithm 5.3.4. To
do so, we extracted the data-set of queries Q from Viadeo” profiles. 263 distinct
users profiles were considered, and for each of the 500 educational institutions
cited we extracted a query q. This forms the set Q on which the validation
process was performed to generate the labeled data-sets I',, , M and U for every
variant of the system.

Considered set | g€ Q | Validations | Te—q | FE>q | Tewsq | Fesq M U
Average size 1 5.42 2.45 2.98 4.25 6.86 43.4 40.89
Summed sizes 500 2709 | 1,226 | 1,483 | 2,127 | 3,430 | 21,702 | 20,448

Table 5.6 — Statistics about the validation sets involved in the system evaluation,
with quantities averaged per query in the first line. In bold, the number of manual
validations, positive pairs and negative pairs for evaluating data matching.

Table 5.6 shows the average size and total size for the intermediate sets,
namely Tp_q, FE—q, Te—q and F._.4. The total size for the two first sets in-
forms us that 2,709 answers of the system have been manually validated, which
makes an high average per query: this shows that the tested variants of data
matching give significantly different answers for real-life queries. Similarly, the
average size of Tp_,q is relatively high: this is because for the queries related to
major universities, the answers including the corresponding colleges have been
accepted, giving thus several variants of E/ accepted. As an example, this implic-
itly means the colleges of Oxford should all be merged: this could be discussable,
but the data matching being ruled by the final use of standardization, the real
world needs influence the ground truth for the data matching. Because of such
grouping, the number of labeled pairs for data matching is very large, especially
when compared with the number of manual validation. Another positive aspect
we observe is that the sets M and U of respectively positive and negative pairs
are balanced, which was expected and desired, since we compare primary entities
related to the concepts behind the queries.

"http://www.viadeo.com/
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Quantitative Results

DM EL Semantic | S-Boost | L-Boost All
None 0.797 0.802 0.798 | 0.803
Web 0.802 0.809 0.802 | 0.809
NoLoc 0.740 0.740 0.739 | 0.741
Full 0.800 0.804 0.800 | 0.804

Table 5.7 — f — measuregy, for variants of EL and DM methods. Figures for
recgy, or precgr are similar but skipped for clarity. The variants for the data
matching are hard to compare with such figures - especially the Web and Full
ones - so that it is impossible to choose one specific merging process.

Table 5.7 shows the results for the two-part system, which corresponds to a
classical evaluation of an entity linking process. We see that the data matching
highly influences the quality of the two-part system, but the following metrics
give no clue about which tuning - like stricter or stronger rules - would im-
prove the knowledge base. Typically, a proper evaluation of the data matching
should answer questions like “for which reasons the NoLoc variant is worse than
the None matching?”, or “which of the None, the Web or the Full is the best
approach for entity linking?”, whereas in the previous table the comparison is
different for each entity linking. Moreover, the best system seems to be with
the Web merging procedure, which is actually false if we take into account the
knowledge base £\, quality.

Data Matching | accpas (%) | precpa (%) | recpu (%)
None 0 0 0
Web 72.3 99.7 45.2
Full 75.6 99.6 51.6
NoLoc 56.6 58.9 45.5

Table 5.8 — FEwvaluation Metrics for the Data Matching variants.

In a second time we computed the data matching metrics based on the
implicit feedback, which does not require new manual validations. The results
shown in table 5.8 explicitly express how efficient each data matching method is.
The Website and Full matchings shows a very good precision, that we require
when building this type of system. On the contrary, the NoLoc approach gets a
lower precision, but a higher recall, whose reason is that it obeys to less strict
rules. But a lower precision means more undesirable merges: this is a really bad
behaviour for our final use case, which explains why the respective results are
lower in table 5.7. Besides that, the Full data matching increases by 10% the
recall when compared to the Website matching: this implies a better unicity in
the knowledge base, which is significant for the quality of the two-part system.
This aspect was not readable in the previous table 5.7, since when looking at
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one single profile, standardization might look correct even with duplicated en-
tities in the nomenclature; but when the candidates having graduated from the
same institution are associated by our system to two distinct “twins” entities,
the statistics about this institution are biased, and we lose the advantages of
standardization.

Metrics
EL Precgr, recgr,
Semantic 86.5 74.4
S-Boost 86.9 74.8
L-Boost 87.6 73.6
All 88.1 74.0
All - DBpedia 82.6 43.8
All - Letudiant 59.6 46.4

Table 5.9 — FEvaluation Metrics when varying the entity linking, with the Full
data matching knowledge base. The two last lines present results using the DB-
Pedia knowledge base (obtained after the merge of €, ,p pp and €4 oy) and the
Letudiant knowledge base €

LETUD "

Following the previous quantitative results we implemented the system using
the Full data matching. The performances of the entity linking variants are
compared in table 5.9 using the resulting knowledge base of institutions &, .. -
The recall is lower when considering the L-Boost and All entity linking because
the selection step misses some institutions that have their location unspecified.
However, each feature’s relevancy is confirmed since the precision is augmented
with both boosts, which is a crucial aspect for the industrial use, so that despite
a slightly lower f — measure, the All linking is preferable. We also compared
the results when using as a nomenclature the initial knowledge bases separately,
namely the one from Letudiant, & ., and the merge from &, ., and € .. -
The higher precision with DBPedia confirms - as in Section 5.2.4 - that the aliases
it provides are more appropriate for standardization. We also see that merging
the bases does not only increase the recall but also the precision, reaching 88%
instead of 82% and 59% using DBPedia and Letudiant: when generating the
nomenclature, the merging process produces entities with richer information,
which increases the standardization precision.

Despite the misleading results of table 5.7, the final system implemented
is with the Full merging process, and the All linking, that were described in
Sections 5.3.2 and 5.3.3. While thousands of candidate profiles are standardized
every day by the system, the recall of the merging process (table 5.8) appears
improvable, and an approach would be to use machine learning, which leads to
the model proposed in the following section.

5.3.6 Perspectives for Active Learning

The experiments has shown the reliability to use the implicit feedback on stan-
dardization in order to generate a data-set for evaluating the data-matching. The
manual validation process is unified and just requires validating the standard-
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3: Manual Validation

5: Learn the Data Matching - 4: Implicit Feedback -

Figure 5.10 — Diagram describing the active learning process. This process iter-
atively increases the data-sets M, U by repeating the steps 1 to 5.

1: Merging the Sources

ization answers, while the resulting metrics are separated into the entity linking
and the data matching. In the present study, this process has been used for man-
ually tuning the models parameters, but it could be extended to an automated
tuning, in other terms using machine learning. In this case, a classification algo-
rithm is trained on the data-sets of pairs M and U. This classifier then serves at
matching more precisely the pairs when merging the sources, while still focusing
on the frequent entities, represented by Q. This results in a knowledge base of
institutions &, of better quality, on which we can perform a new manual val-
idation - by possibly increasing @ with new real-world queries. This defines an
iterating process in which the manual validation keeps increasing the data-sets
M, U, which keep improving the data matching and consequently the knowledge
base quality.

This system is an active learning, that we introduced in Section 2.3.1. This
active learning would apply to any system coupling data matching and entity
linking, as illustrated in Figure 5.10. A first advantage is that it would enable
us to use machine learning for data matching, which has only been rarely done
in the literature due to the difficulty to label pairs, but appeared to be very
promising (see Section 2.2.2). A second advantage is that we keep the benefits of
the implicit feedback, listed in Section 5.3.4. Besides that, we note that machine
learning could also be used for the entity linking, which could therefore also
benefit from the active learning, in a more classical way though.

The implementation and in-depth study of this active learning system con-
stitute a future work, that could lead to higher recall for the data matching
process (only 51.6% now). However, by pragmatism, we considered the precision
and recall of the standardization system as acceptable industrially, so that it has
been implemented without studying the active learning process.

5.4 The Limits of External Sources of Knowledge

Through the examples of Skills and Educational Institutions, this chapter has
shown that it is feasible to automatically generate knowledge bases directly us-
able for standardization. The two systems are now daily used at Multiposting
for processing the skills and educational institutions of candidate profiles, as well
as the skills of job adverts. The unified approach we developed is first to select
a pool of relevant entities from existing knowledge bases, then to merge these
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entities, and finally to use this deduplicated knowledge base as a nomenclature.

In each case, the external sources of knowledge have raised some difficul-
ties, so that we had to propose specific methods to build the nomenclature N .
Firstly, in the example of the skills, that appears to be concepts hard to define,
the selection process was not straightforward but social media helped at select-
ing the relevant entities for a custom nomenclature. We also have seen through
the example of institutions how standardization feedback are helpful for improv-
ing the nomenclature construction, and especially the merging process. In the
SmartSearch project, the standardization of these two attributes is performed
using these generated knowledge bases, which therefore greatly benefits from the
public sources of the internet.

Nevertheless, for standardizing some textual fields, there might be no relevant
public sources for building a nomenclature A. This is the case of educational
degrees, which can be seen as entities but can not be standardized using a com-
prehensive nomenclature of degrees: there exist very few sources of knowledge
about them, and they are far from being comprehensive. In light of this, the
approach developed in this chapter does not apply. To discard this issue, we will
study in the next chapter an unsupervised learning model (see Section 2.3.2)
to generate automatically a labeled data-set from the corpus of profiles. This
data-set produced with no external data will constitute, in a sense, our knowl-
edge for standardization, whereas the nomenclature will not be associated to any
information.



Chapter 6

Building an Annotated
Data-Set for Detecting Study
Level

This chapter tackles standardization when it is impossible to build a compre-
hensive knowledge base of entities like we did in the previous chapter. Instead,
we reduce the problem into standardization on an abstract nomenclature, which
then relies on pattern recognition on documents (see Section 2.3.1). In such case,
we propose to leverage an internal data-set of documents, and apply an unsu-
pervised learning model in order to generate labeled examples, in the form d,!
where [ is the label to be predicted [ and takes values in the abstract nomen-
clature V. The textual data d represented in this data-set do not constitute a
comprehensive overview of the documents to be standardized, and is by no means
the standardization nomenclature A/. The automatically labeled documents d,
will however be an exploitable knowledge for standardization, from which we will
learn how to compute the standardization function f(d). This knowledge base
makes thus the intermediary between a new document d and its label [, which
is the standardized attribute.

With this objective, our object of study will be the degrees of a candidate
profile, for which we will fail to leverage any external source of knowledge. Instead
of constituting a base of degrees, we focused on detecting the level of training,
which is implicit in a degree description. The method we propose only leverages
a corpus of candidate profiles - which is internal data - and is trained using on
a latent variable model for text, that captures the level of training of a degree
description, whereas the other similar models capture the semantic topics (see
Section 2.3.2). The comparison with alternative baselines methods, namely state-
of-the-art topic models as well as supervised approaches on existing - but limited
- annotated data-sets, shows that our unsupervised model is efficient for this
problem of text classification. The system has been industrially implemented
and is now daily used for standardizing thousands of degrees extracted from
candidate profiles.
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6.1 Standardizing with no External Knowledge

Our last object of study is the degree, with three examples in Figure 6.1, which
includes the Educational Institution among other information. Whereas the
previous chapter focused purely on the latter, in this chapter we will make use
of the institution simply as an enrichment information for our problem, which is
the standardization of the degrees themselves.

2011-2013 Green University

Master of Business Administration
2002-2006 Gray College

B.Eng. in Chemical Industry
1997-2002 Public High School of Springfield

HS with Honors

Figure 6.1 — Exzample of an education field content of a candidate, with three
degrees. This chapter will not only focus on the educational institution, but on
the degree as a whole.

Following to the approach of generating a knowledge base (Chapter 5), a first
natural objective for our standardization would be to build a comprehensive base
of degrees. This means we consider a degree as an entity, and we standardize
it into a nomenclature of entities AV, containing possibly hundreds of thousands
of degrees for a given country. Like this, standardization would be to link each
degree of a resume to its corresponding entry of the degrees knowledge base, from
which we would get meta-information such as the level of training, the specialty,
or the associated job categories.

With this objective, the first step for building a knowledge base of degrees is
the selection of sources of knowledge (Section 5.1.2). Unfortunately, it appears
that DBpedia contains only very few degrees among its entities: this is indeed
not the purpose of the encyclopedia Wikipedia. Other generic knowledge bases,
such as Freebase and Yago, similarly do not contain much data about degrees.
There exists however an interesting a domain-specific source called Intercarif-
Oref!, which relates to French education. In this knowledge base, a lot of data
is associated to each degree, as shown in Figure 6.2, but Intercarif-Oref has a
significant disadvantage: it is not comprehensive and only deals with public and
active French degrees. Hence, there is no outdated degrees nor degrees provided
by private institutions, which however appear a lot in candidate profiles. Further-
more, in a standardization perspective, the terminology used in Intercarif-Oref
appears to be very limited, and do not present any synonyms for instance, which
is crucial for a knowledge base serving for standardization (see Section 5.4). This
is indeed problematic since the candidates use many abbreviations and aliases
when stating their degrees. In light of this, the standardization approach using
a knowledge base of degrees appears vain.

"http://www.intercariforef.org
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Brevet d'études professionnelles
études du batiment

Niveau Niveau V (CAR, BEP)

Niveau européen 3 :Savoirs couvrant des faits, principes, concepts
gEnéraux

Descriptif Les activités du titulaire de ce dipldme sont

rattachées aux phases chronologiques de 'acte de
construire (Elaboration d'un projet, préparation des
travaux, réalisation des travaux)...

Débouchés Secteurs d'activités : cabinet d'economiste de la
construction, cabinet d'architecte, entreprise de
batiment ou de travaux publics, services
techniques des collectivités territoriales
Métiers : aide-métreur

Certificateur Ministére de 'éducation nationale

Domaine(s) de 22223 : Architecture

formation 22354 : Batiment gros oeuvre

Liens vers les F1107 : Mesures topographiques

métiers (ROME)

Groupes C : Batiment : gros oeuvre, travaux publics
formation emploi

(GFE)

Domaine de 230 M : Specialités pluritechnologigues, génie-

spécialité (NSF) civil, construction, bois

Figure 6.2 — Example of data associated to a degree in Intercarif-Oref, such as
the level of training, a description, few associated job categories and specialties.

As a consequence, we had to use a different objective for our standardization,
which is, in a sense, a simplified objective: instead of seeing the degree as an en-
tity, we propose to detect its level of training, which is crucial for human-resource
selection and is a notoriously difficult variable to quantify [Singer and Bruhns,
1991]. This information is not explicitly encoded in the degree name but rather
implicit, so that this standardization deals with an abstract nomenclature. The
level of training can only be derived by analyzing a large, dynamic and open
set of academic institutions, degrees, professional qualifications and corporate
certificates. To the best of our knowledge, no satisfactory solution exists to au-
tomatically detect this level from multiple unstructured data sources, as those
we face in the SmartSearch project.

In term of standardization, the function f(d) takes as input a degree de-
scription d and takes values in a nomenclature of the levels of training N, that
will be later defined in Section 6.2.2. In absence of external knowledge, no data
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will be associated to the nomenclature N; our approach is instead to generate
some knowledge from a corpus of candidate profiles, that will serve at computing
the function f, similarly to the data-set I" that was used for the job categoriza-
tion (Chapter 4). With this objective, we will extract the degrees descriptions d
contained in the corpus, that express a lot of information such as the outdated
degrees and the abbreviations used by candidates. The core of our approach
is then to automatically label those documents, which produces a data-set of
documents with their weak label:

d,leD

where [ € M. This data-set D of weakly labeled documents will serve as knowl-
edge, and contain some mistakes, hence the use of the term “weakly”. The stan-
dardization process then aims to detect the patterns seen in these examples,
which gives the function f(d) — N. Contrary to the previous chapter, we thus
will not focus on the nomenclature A/ but on the function f itself.

In light of this, we present in the following a system articulated in three steps.
Firstly, an unsupervised model is trained on a corpus of profiles in order to assign
a label to each degree description, leveraging the temporal information through
an Expectation Maximization procedure. Secondly, the degrees are extracted
from those profiles to form a data-set of weakly labeled degrees. Lastly, a word-
based classifier is trained on this data-set, which serves at predicting the training
level of a new candidate. The model has been validated on real-world data,
showing high accuracy, so that it is now deployed in production in Multiposting
products. While the data and the study are located in the French context, the
model can easily be adapted to any education-related data.

6.2 Problem Representation and Data

This section starts by a formalization of the educational background of a can-
didate. The abstract nomenclature A for the level of training is then described,
and followed by a discussion about the temporal aspects of our standardization
problem.

6.2.1 Representing the Education of a Candidate

As we focus on the education of a candidate, we will consider for this chapter the
education part of a parsed CV, such as the one displayed in Figure 6.1. As stated
previously in Section 1.3, this part is a list of degrees, with each an Institution,
Degree Description, Start date and End date. In light of this, we formalize
the educational background b as a sequence of education degree

b=b1,b2,---,by (6.1)

where the degrees by are in chronological order, the k-th degree by (with k =
1..K) being defined as:

by, = d, sy, eyx (6.2)
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where dj, represents the k-th degree description, sy the corresponding starting
date (represented by years) and ey the corresponding ending date of the educa-
tional program (or the conferring date). To better understand this formalization,
the educational background of Figure 6.1 is therefore formalized as:

by = {Public, High, School, ...},1997, 2002
by = {Gray, College, B, Eng}, 2002, 2006
bs = {Green, University, Master, ...}, 2011, 2013

Where the degree descriptions dy, are truncated for clarity.

6.2.2 The Nomenclature for the Level of Training

Following the formalization, our standardization aims to detect the level of train-
ing based on the textual information extracted from the educational background
b in a candidate profile. To design a harmonized approach for detecting the level
of training, we selected a widely adopted frame of reference: as commonly used
in e-recruitment platforms [Faliagka et al., 2012, Sauvageot, 2008], we define the
level of training of a degree as the number of years in tertiary education required
to complete it.

As common basis for the years count, we consider the secondary degree,
such as the Baccalaureate in France and the A-levels in the United Kingdom,
which is obviously the necessary requirement for any tertiary degree. Hence, the
level of training of a degree can be defined as the number of years of academic
training reported by the job candidate after the ending date of the secondary
degree. This means that the nomenclature N of the proposed standardization
is constituted of relative integers, ranging from -5 to +8 for our implemented
system, where negative values indicate the remaining number of years required
to obtain the secondary degree. For the French education, it corresponds to
the levels of training “Bac -5”, “Bac -4”, ... to “Bac +8”. This is an abstract
nomenclature, since the level of training is never explicitly stated in the degree
name.

This formalization of training level has the advantage of being independent
from any specific national Education System. However as we aim to harmonize
the level of training w.r.t. the secondary degree, we need to consider that the
duration of secondary degree can slowly differ between different national edu-
cation systems. In light of this, the proposed approach is independent from the
value of the secondary degree, and aims to maintain the relative order among the
degrees, where d > d’ means that the degree named d corresponds to a higher
training level than the degree named d’. The secondary degree can therefore be
specified or estimated in our algorithm a posteriori, as it will be done in Section
6.3.3. Following this definition of the level of training and the formalization of a
candidate, we propose in the next section our strategy to detect the level of a
candidate.
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Symbol  Description

b Educational background of a profile, sequence of degrees by

br k-th degree of a candidate profile, di, sy, eyk

k Index for the degrees of a single candidate (chronological order)
d Degree textual description, multi-set of terms d,,

dy, n-th term for the description d, (n = 1..||d|), noted dj,, for dj.
Syk,eyr Starting and ending year of the k-th degree by,

Ay Number of years of academic training after the k first qualifications
l Level for the degree d, indexed by k when it refers to a qualification by
lo Initial level for an educational background b, at date sy
M Probability distribution of level [y for the educational

background b, verifying my, ;, = p(lo|b)
lwl(d)  Term-based prediction of the level of training for a degree description d.

Table 6.1 — Notations.

6.2.3 Abandon of Temporal Data for Term-Based Classification

At this point, one notes that the level of training has a purely temporal definition,
which might be closely related to the temporal information of a profile, given by
the years sy; and ey;. An straightforward approach could be to standardize the
degrees by using the values of sy, and ey, by counting for instance how many
years the candidate has studied to obtain its k-th degree. However, we have to
be particularly careful when considering this temporal data: the simple count of
the total number of years in education can lead to misleading conclusions. This
is due to the following aspects:

1. There might be gap years between the degrees. This occurs for example
when a person mixes his education with his work experience.

2. The initial level of training differs among candidates. By “initial”, we mean
the level at the date sy;, which corresponds to the level of the candidate
before the first degree stated in his resume. Indeed, some candidates only
state their most advanced degree, while others specify all steps from high
school.

3. Some candidates’ educations presents temporal irreqularities. This occurs
for instance when one switches the field entirely, i.e. first gets a master
degree in one area, then gets a master degree in another field: the second
master degree requires 2 more years but do not increase the candidate’s
level. More compromising, some people spend more years to graduate than
the normal number of years.

Each of those points are treatable with varying difficulties. The first point is
easily solved by counting carefully the years without including the gap years. As
an example, with the education of Figure 6.1 we need to deduct the gap between
the bachelor and the master. The second point is solvable by estimating the
initial level of the candidate, which will be the core of our automatic labeling of
Section 6.3. However, even after the estimate of the initial level of a candidate,
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to use the temporal data can lead to misleading conclusion because of the last
point.

The third point is indeed more compromising since it is unpredictable. Be-
cause of these temporal irregularities, for a non negligible number of candidates,
the temporal reasoning is not applicable. Consequently, we propose to exclu-
sively refer to terms for the final prediction, instead of reasoning on temporal
data. In our system, the new candidate profiles will thus be processed based
purely on the textual descriptions dj. In light of this, our objective is to build a
term-based classifier, written (vl(d), which predicts the level of study as defined
above from the textual description of the degree d. The function lvi(d) corre-
sponds to the standardization function - previously written f(d) - and takes
values in the nomenclature of level of training A. By using this classifier [vi(d),
we will be able to process a new candidate with education b by assigning him to
the maximum detected level among his degrees, each being predicted from the
description dp:

Level of candidate with background b = maz l(dy) (6.3)

This way, the final analysis of a candidate is not based on the temporal aspect,
nor the order of degrees, but only on the words. With the example of Figure 6.1,
the predicted levels of training would ideally be

[vl({Public, High, School, ...}) = 40

lvl({Gray, College, B, Eng}) = +4

lvl({Green, University, Master, ...}) = +6
e =

= Level of the candidat +6

Building the term-based detector [vl(d) is a typical application of textual classifi-
cation (see Section 2.3.1), provided that we have a data-set of annotated degrees

(d,1) € D (6.4)

As stated during the preliminary study of Section 6.1, it is hard to get a public
data-set of this form which is representative and covers properly the terminology
used by candidates. In light of this, the data-set D will be build automatically by
leveraging an internal corpus of candidate profiles. The following of this chapter
proposes to automatically label the degrees descriptions d contained in an corpus
of candidates educational backgrounds, written B. For this labeling - and only
for this labeling - we will make use of the sequentiality of the degrees in a profile,
as explained in the next section.

6.3 Building a Training Set by Weakly Labeling Can-
didate Degrees
With the final objective of building a classifier [vl(d), we propose to construct

automatically a data-set of degrees D (Equation (6.4)) using live candidate pro-
files. As it is illustrated in Figures 6.4 and 6.3, the construction takes as input
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a data-set B of candidates’ educations background each expressed as b (Section
6.2.1), and is articulated in three steps:

e Unsupervised labeling (Section 6.3.2): this step aims to assign a har-
monized initial level [y to each education b of B, based on the textual and
temporal information of b. The estimation is done through a Expectation-
Maximization procedure, after the hypothesis of Section 6.3.1.

e Infer weakly labeled degrees (Section 6.3.3): this step produces a data-
set D of degrees coupled with their level (d, ). This set is generated using
the profiles b of B and respective estimated initial levels lg. The levels [
expressed in D are said “weak” because a marginal part is incorrect.

e Term-based classification training step (Section 6.3.4): in this step, a
supervised classifier [vl(d) is trained on the data-set D. This final effective
predictor is purely based on the terms and not on the temporal data, and
will serve at predicting the level of the new candidates using Equation

(6.3).

The next sub-section starts by explaining how the temporal information will
be used for generating labels for the degrees contained in the profiles B.

6.3.1 Temporal Aspects

In the objective of building a data-set of labeled degrees, we will automatically
assign a label [ to each degree dj contained in the education field contents
b € B. To do so, we will leverage the temporal information expressed in each
education b. To get rid of the last of the temporal issues listed in Section 6.2.3,
the unsupervised labeling step - and only this step - relies on the following
assumptions:

1. The candidate increases his/her level of training over time. Each qualifica-
tion b; is superior to the previous one b;_1.

2. The candidate completed the every qualification by in the normal number
of years.

When these assumptions are verified, it is interesting to consider Ay, the
cumulated number of years of academic training after the k-th degree of the

profile b, computed as:
k

Ayr = ey, — sy;
j=1

where ey; — sy; is the number of years used for obtaining the degree by. For
instance, with the educational background b of Figure 6.1, Ay; = 5, Ays = 9
and Ays = 11.

Although both quantities are related, Ay is different from the level of the
k-th degree. Indeed, by definition, the level of training is with respect to the
secondary degree, whereas a candidate provides information about his education
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Level
+1

%/

4

Figure 6.3 — The different steps of our approach as perceived by Bob. In the first
frame, he randomly puts the papers in the boxes, using a dice. Since the papers
come grouped into sequences, Bob respects the order of the papers when he puts
them; the bozes have no clear labels but are ordered (Section 6.3.2). In the second
frame, Bob learns the textual patterns appearing in each box, that are filled with
papers without any sequential information (Maximization step, Section 6.5.2).
After having emptied the boxes, in the third frame, Bob puts again each paper into
one box by leveraging these learned patterns as well as the order in each sequence
of papers; in particular, the papers’ order in a sequence is kept in the ordered
boxes (Ezpectation step, Section 6.3.2). Bob repeats the frames 2 and 3, that is
to say the filling and emptying successively the boxes, until the result appears
unchanged between two iterations. Then, in frame 4, Bob converts each box into
a level of training, by assigning level 0 to the box having the bigger number of
documents inside (Section 6.5.3). These boxes filled with papers constitute our
knowledge, on which Bob learns the textual patterns for each level of training
(Section 6.3.4).
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Figure 6.4 — Work flow of the approach.

starting from an arbitrary level. Hence, as stated in Section 6.2.3, we need to
consider the initial level of training of an education field b. We write [y this value
that represents the level of the candidate at the year sy;. When [y is known and
the assumptions are verified, each level of training [ of the k-th degree is given
by

Ui = lo + Ay, (6.5)

For instance, the initial level of the education field of Figure 6.1 would ideally
be lp = —5 (i.e.; five years before the secondary degree). The level for by, bo and
b3 are then given by:

Lh=l+5=+0
lo=1l+9=+4
l3=10p+11=+46

Which are indeed the correct level of training for the respective degrees d,, d,
and dg (HS / Bachelor / Master).

Since the candidates provide information about their education starting from
different levels, the the initial level [y takes a different value for each educational
background b. Our automatic labelling aims to estimate the value of [y for every
education b, and associate the label [}, to each degree dj, using Equation ((6.5)).
Obviously, for an education not verifying the assumptions above, the equation
would give incorrect labels [;: for this reason, we will say that the resulting
labeled degrees are weakly labeled. Fortunately, in practice, only a small part of
the profiles do not reflect these assumptions.

6.3.2 Unsupervised Labeling of Educational Backgrounds

In this section we propose a method to estimate the value of the initial level [
for each educational background b € B. This value is obviously unknown, but
the descriptions dj observed in b highly depend on it, so that we consider [
as a latent variable. After detailing the generative model that links Iy to the
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Figure 6.5 — Graphical model for the case of three degrees. Observed variables
are in gray.

descriptions dg, we propose an expectation-maximization [Moon, 1996] (EM)
procedure for inferring the [y values.

Model for the educational background b

In order to motivate that [y can be represented as a latent variable, we pro-
pose a probabilistic model that generates the descriptions dy of an educational
background b given the value of the initial level ly and the temporal information
Ayi. The generative model for an education field b of a candidate profile with
K degrees (see Section 6.3.1) is as follows:

e We initially set a level [y with probability p(lp).
e We infer the level of k-th degree by I, = g + Ay, for k =1..K.

o We generate a description dj for the k-th degree by, term after term, with
probability p(dy ,|lx) (independently from the position k).

In this model, the distribution of the terms of dj only depends on the value
of I, and corresponds to a classical naive Bayes distribution among terms (see
Section 6.3.2). The distributions p(dj ,|l;) captures what are the specific terms
for each level of training, such as Master for | = +6 and Bachelor for | = +4
(American educational system). In the case of an education with 3 degrees, the
generative model leads to the following density p(b,lo,1,12,13), as represented
in Figure 6.5:

p(b,lo, l1,12,13) = p(dy, Ay, da, Aya, dg, Ays, lo, 11,12, 13)
= p(lo) x p(da|l1)p(li|lo, Ay1)
x p(dall2)p(l2llo, Aya)
x p(dg]lz)p(l3llo, Ays)

At this point, following the assumptions in Section 6.3.1, the level of training
of the k-th degree is given by:

1 if ly=lp+Ayx

0 otherwise

p(lillo, Ayg) = {
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This dependency among levels [, [y lets us re-write the probability distribution
of a given educational background b as follows:

pbylo) = > p(b,lo, 11,12, 1)
l1,l2,l3
= p(lo) x p(ds|ly = lo + Ay1)
X p(dz|la = lo + Ayz)
x p(dg|ls = lo + Ays)

Subsequently, this can be generalized to any number of degrees through this
formula:

K
b l() H dk’lk =1y + Ayk) (6.6)

where p(dg|l;) = 0 when [, = lp + Ay, is not in the specified interval of levels
of training, which means that [; is higher than the maximum observed level of
training.

The likelihood of the education field b is given by L(b) = p(b) = >_; p(b,lo),
where [y covers the interval of level of training, and the total log-likelihood of
the corpus B is then

= Z log (p Zlog (Z (b l0)>

beB beB

We note that this quantity is intractable for the whole data set B, as the num-
ber of possible values for all [y grows exponentially with the number of pro-
files |B|. For this reason, the Expectation-Maximization algorithm instead aims
to maximize the expectation of the total log likelihood [Moon, 1996], written
Q(B) = > yen Eiyp(log(L(b))). To re-write Q(B), for each b € B we introduce ns,
the distribution of the initial level lg:

Mvlg = P(lo‘b)

Injecting Equation (6.6) into the expression for Q(B) gives:

:Z Z Mb.iol0g (p (lo) +Z Z anlolog (dk|lk)) (6.7)

beB level lg beBlevel [y k

The Expectation-Maximization procedure maximizes this quantity through an
iterative process. After a random initialization, the expectation step and max-
imization step are repeated until convergence of Q(B). The expectation step
updates the distributions 7, of the latent variables lp, and the maximization
step updates the model parameters p(dg|lx) and p(ly). After convergence, ev-
ery educational background has an estimated distribution 1 for its initial level
lop. These steps are detailed in the next sub-sections; before reading them, it is
preferable to be familiar with the EM procedure [Moon, 1996].
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Figure 6.6 — Schema for the generative model of degree descriptions, independent
of k. Observed variables are in gray.

Initialization of the initial levels of training

Given an educational background b, the initial level of training [y is unknown,
so that we first need to assign a random value for starting the EM procedure.
To do so, for every education b € B we randomly set an integer value for [y, and
we set the distribution 7, such that 7;,;, = 1 and 0 for all the other components.
In our experiments, each [y value was sampled uniformly in the range 0,1, ..., 15.
The upper bound was chosen based on the analysis of the Multiposting profile
database, as a maximum training time.

Maximization Step

In this step, for all education b of B, the distribution 1 is fixed, given by the
initialization or the expectation of the previous iteration. Given these 1, values,
maximizing the expected log-likelihood Q(B) boils down to two independent
maximization. Firstly, maximizing the left-hand term of Equation (6.7) gives
the distribution of initial level Iy observed on the educations fields in B:

_ Zbes TIv, 1o

on) ‘B‘

(6.8)

Secondly, maximizing the right-hand term of Equation (6.7) gives the parameters
of the model for the degree descriptions given their level p(dg|lx). By the change
of variable Iy = [ — Ay, this second term can be re-written:

Z Z Z Mo,1— Ay L0g (p(di|lk))

beB kU

Given that the documents are generated term by term, this formula corresponds
to a simple mixture model [Nigam et al., 1999] where p(lx|dx) is replaced by
M1, — Ay, - Indeed, the probability of observing the term dj, € dj for a given
level I reflects the Naive Bayes assumption, expressed in Figure 6.6 and with
the formula:

pldill) = p(dig,dia, i) =[] p(dknlle) (6.9)
n=1..|dg|

Replacing this expression in the previous formula eases at finding the optimal
parameters p(t|l). Given a level of training [, the obtained probability to observe
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a term ¢ in a degree description is:

D beB 2ok 2on Moi—Ay, L(dgn =1)
p(tll) = (6.10)
Zbes Zk; Zn Mb,1— Ayy,
where 1(dj, = t) equals 1 when dy,, equals the term ¢, and 0 otherwise. From
another point of view, computing the parameters p(¢|l) is equivalent to the fuzzy
variant of the multinomial Naive Bayes [Nigam et al., 1999], when trained on all

the documents dj, with their distribution of label p(l|dg) = 71—y, -

Expectation step

In this step, we fix the model parameters p(lp) and p(dg|l;) that are given by the
maximization step of the previous iteration; the expected log-likelihood Q(B) is
maximized with respect to the distributions 7, of each educational background
b. For each education b and each possible value for the initial level [y, the prob-
ability p(b,lp) is given by Equation (6.6) used with the previously computed
distributions p(lp) and p(dg|lx). A normalization of the p(b,ly) values leads to
the updated distribution n;:
p(b7 lO)

o =200 = 5 o 1y (040
Based on those updated distributions 7, a new maximization step is performed,
and so on until the procedure has converged, as detailed below.

Convergence

The Expectation and Maximization steps are successively iterated. The EM is
such that the quantity Q(B) decreases at each iteration. We break the itera-
tive process when this quantity seems to have converged, which is expressed in
practice when the variation of Q(B) between two iterations falls below a certain
threshold. The whole procedure suffers from the randomness of the initialization
(Section 6.3.2), and the final value for Q(B) after convergence is different for
every run of the procedure. To reduce this randomness, we perform several runs
of the EM and keep the one with the lowest Q(B) value (in our experiments, we
performed 5 runs).

After convergence, we have an estimated distribution of initial level 1, for
each education b € B. We detail below how to infer weakly labeled degrees from
these aligned profiles.

6.3.3 The Resulting Weakly Labeled Degrees

This step outputs a set of annotated degrees D containing degree descriptions
coupled with their weak label, respectively written d and [. Contrary to B, the
entries of D are not sequenced and thus not indexed by k. To build this data-set,
from any education b € B we extract each degree di and estimate a level of
training I by:

ly = argmax ny g, + Ay — 7 (6.12)

lo
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Figure 6.7 — Real case scenario of automatically labeled educations (one back-
ground b per column) positioned in the y-azis with respect to their estimated
initial level lyg. The degrees of a given row are weakly labeled with the level of
training displayed on the left. For the 3 degrees in bold, the weak labels 1, are in-
correct, because the corresponding candidates obtained a double degree. Howewver,
the term-based classifier resulting from section 6.3.4 gives a correct prediction
vl(d).

where argmax 1y, is the most likely initial level [y for the background b, and 7 €
lo
N is a corrective constant (this corresponds to Equation (6.3.1)). The constant 7

serves at ensuring that the [ values reflect the definition of the level of training,
in which the secondary degree has a level set to +0. Indeed, after the automatic
labeling, the levels [, are harmonized between them but take values in 0,...15
(subsection 6.3.2) and have no knowledge about the secondary degree.

Theoretically, the secondary degree and thus the value of 7 correspond to
external information that has to be provided manually. However in our data-set,
the secondary degree’s level appeared to be with a significant margin the most
represented [y value in our candidates backgrounds b. In other terms, a large
part of the candidates only states the tertiary degrees, so that their education
field content starts just after the secondary degree. We thus automatically set

T = argmaz p(ly)
lo

where the distribution p(ly) is computed on the data-set B after the automatic
labeling. Further experiments are necessary to generalize this property which
links the secondary degree with the most represented initial level /3. The whole
labeling process is thus fully automatic; it is summarized in the pseudo-code 2,
and some real-world labeled examples are shown in Figure 6.7.

With the example of Figure 6.1, with a proper value for 7 the resulting weakly
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Algorithm 2: Pseudo-Code for Automatic Labeling

Input: Set B of educational backgrounds
Output: Set D of documents d with their label [

for b € B do
| Randomly assign distribution 7 of ly to background b
end
Compute initial Q(B)
while Q(B) has not converged do
/* Maximization Step x/
for all level of training | do
| Compute terms distribution p(t|l): Equation ((6.10))
end
Compute initial level distribution p(ly): Equation ((6.8))
/* Expectation Step x/
for b € B do
| Update distribution of p(l|b): Equation ((6.11))
end
Update Q(B)
end
for be B, by, € bdo
Assign weak label [;,: Equation ((6.12))
Add dy, I to the output set D
end

labeled degrees are:

[ = +0, d = {Public, High, School, ...}
[ = +4, d={Gray, College, B, Eng}
I =46, d = {Green, University, Master, Business, ...}

which constitutes correctly labeled data. This would not be the case if the as-
sumptions stated in Section 6.3.1 were not satisfied; fortunately, in practice, a
majority of the profiles satisfies them, so that the weakly labeled degrees consti-
tute globally a valid training set for a term-based classifier.

6.3.4 Final Term-Based Classification

This step produces a classifier [vl(d) based on the examples of the data-set D.
This is a typical application of the numerous classification algorithms for texts
(see Section 2.3.1), which aims to find the terms that are relevant or not for a
given class. Here, the classes are the levels of training.

In practice, any algorithm of classification can be trained on the data-set D.
The classifier we propose in our system is a Multinomial Naive Bayes, which
logically corresponds to our generative model for documents (Equation (6.9)).
With this model, given a degree description d, the predicted level [vl(d) is given
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by:

Wwl(d) = argmaz p(l|d) = argmazx p(l) H p(dnl|l) (6.13)
! ! n—=1.|d|

where the distributions p(d,|l) and p(l) are computed on D.

In the objective of justifying the use of the Multinomial Naive Bayes, we
also experimented a linear SVM. It is indeed an popular and efficient model
for textual classification [Sebastiani, 2002], and really differs from the previous
model since this latter is a discriminative model. Briefly, for any value of the level
[, each term ¢ of the vocabulary is associated to a weight a;+ € R, expressing how
relevant ¢ is for the level [. Given a degree description d, using the one-versus-all
paradigm, the score anl..\d\ aq.4, — P is associated to each level of training I,
where f; € R. The final prediction is then given by:

l(d) = argmax Z d, — Bi
l
n=1..|d|

where 3; and oy ; result from an optimisation on the documents d of D associated
to the level [.

The resulting classifier [vl(d) is aware of the heterogeneous terminologies
used in candidate profiles. In practice, the whole training process detailed in the
current section needs to be performed once. In a daily use, only the term-based
prediction (Equations (6.3) and (6.13)) is necessary to detect the level of training
of the new candidates’ profiles.

6.3.5 Comparison with other Latent Variable Models

In this section, we compare the automatic labeling of Section 6.3.2 to the existing
latent variable models for text. To gain some generality, we propose to step
back from our industrial problem. The general problem would be to annotate
documents that are grouped into sequences (d, ..., dg ). The model implies that
documents’ labels [ of a given sequence depends on a latent variable ly. We
moreover assume that some meta data organizes the labels of each sequence,
meaning that the distributions of labels I can be determined by coupling the
meta data with the latent variable ly. In our case, the meta data is encapsulated
in the Ay values, and the label values are simply ruled by [, = lop + Ay, but
the dependence p(l|lp, Ayx) might be probabilistic.

We first note that our model could be theoretically compared to a Hidden
Markov Model. However, comparing the sequence of labels [ to a Markov Chain
is irrelevant, because the sequence only depends on [y and is deterministic given
this value. Moreover, our model mainly focuses on the distribution of terms by
label p(d|l), and relates directly to latent variable models for text [Aggarwal and
Zhai, 2012], also called topic models. Contrary to probabilistic Latent Semantic
Analysis [Hofmann, 1999] and Latent Dirichlet Allocation [Blei, 2012], our model
does not assume a topic variable for each word (denoted as z, in the referred
papers). This assumption comes naturally with the nature of our problem, as
each degree description d corresponds to one and only one level of training I,
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Figure 6.8 — Plate notation for the classical mixture model on the left (which
applies to a flat data-set of documents d € D) and for our model on the right
(which applies to sequences of documents b € B). Observed variables are in Gray.

so this value is common to all the terms of the document. Our model is thus
very related to a mixture of unigrams (modeled in plate notation in the top of
Figure 6.8), but goes beyond in two aspects. Firstly, the model incorporates extra
temporal information sy, ey, ..., SYx, eyx that organizes the labels to predict,
which is made possible because labels are closely related to temporal information
(Equation (6.3.1)). Secondly, the documents come as sequences (d,, ..., dk ), for
which labels [l; are closely related, leading to a unique distribution per sequence
n to estimate in the Expectation step (Section 6.3.2).

6.4 Evaluation and Experiments

This section describes the results of our model when compared to baseline su-
pervised classification methods and latent variable models. With this goal, we
describe in detail the alternative data and the metrics used for our evaluation.

6.4.1 Training Data-set

The different steps of Section 6.3 have been performed on a real-word data-set B
of educational backgrounds extracted from SmartSearch database. The profiles
have been extracted from Viadeo, one of the most popular and growing profes-
sional social network in France. The data-set contains 38,858 candidate profiles
with 88,622 different degrees expressed through 29,337 different unique words.
Some considered CV examples are shown in Figure 6.7 with their predicted level
after the presented labeling step.

For assessing the quality of the resulting classifier lvi(d), we predicted the
level of the degrees d of the data-sets introduced below.

6.4.2 Alternative Data-sets of Labeled Degrees

In our evaluation we used several labeled data-sets, in which the degrees d come
with their level of training I. On the one side, such data-sets can be used to
confront the level predictions [(vl(d) to the ground truth [, whereas the training
data-set B does not provide any ground truth levels. On the other side, each of
these data-sets can be used to train a supervised classifier as detailed in Section



6.4. FEvaluation and FExperiments

MP-data I0O-data V-data D
7 degrees 26,312 53,014 500 88,622
# candidates - - 217 38,558
7 terms 2,319 7,981 426 29,337

Table 6.2 — Statistics for the used data-sets: MP-data, 10-data, V-data and D.

6.3.4, for comparison purposes. In order to meet Multiposting’s requirements,
the considered data sets are specific to the French education system.?

The first considered annotated data-set has been extracted from the base
Intercarif-Oref, previously described in section 6.1. The corresponding set of an-
notated degrees is called I0-data and includes a list of annotated public and
active degrees released by public institutions. Considering that many candidates
either have degrees released by private institutions or still reports degrees no
longer available, we included a complementary data set called MP-data, which
was manually constructed by Multiposting when including the educational in-
stitution into the historic software of the firm. As introduced in Section 1.2.2,
this software serves at posting jobs on recruitment websites, meaning that the
partners institutions are in a limited number. These two first data-sets include
a controlled terminology, and do not provide alternative names and abbrevia-
tions for degrees and institutions, often found in professional social networks
or e-recruitment platforms. We therefore also considered the data-set V-data
containing 500 degrees extracted from B and manually labeled by Multiposting
domain experts. This last data-set reflects the most the industrial commitments
of our standardization system. Indeed, the degrees of V-data express realistically
the structure, the heterogeneity and the variable quality of the data encountered
in the practical use of the level detection. Moreover, the candidates whose level
of training will be predicted by our system come from similar sources to the one
of V-data. A summary of the data sets is shown in Table 6.2.

6.4.3 Evaluation in Comparison with a Supervised Approach

As first experiment, we evaluated the performances of the classifier trained on
D resulting from our model, against the same classifier when trained on each of
the labeled data-sets. The resulting classifiers are then compared to the ground-
truth, using each labeled data-set as a test set. In the case where the classifier is
trained and tested using the same data-set, a 10-fold cross validation has been
performed. For each data-set, we used the two classification algorithms detailed
in Section 6.3.4. We emphasize the fact that the compared approaches are deeply
different, in the sense that building the data-set D and the resulting classifier is
fully unsupervised. On the contrary, training classifiers on MP-data and V-data
is a typical use of supervised classification.
To compare the different classifiers, the following metrics were computed:

e Error rate E. Firstly, we observed the classification errors with respect to

2The French categorization of degrees can be found at http://www.education.gouv.fr/
cidb59013/codification-des-formations-et-des-diplomes.html
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the ground truth. The error rate E € [0, 1] is calculated as 1 — P, where P
is the classification precision with respect to the predicted level lvi(d).

e Hinge-Loss HL. The Hinge-Loss function computes the average distance
between the proposed model and the ground-truth data for multi-class cat-
egorizations [Moore and DeNero, 2011]. For each prediction, H L considers
the vector of the decision function generated by the classifier. This vector
is defined as 7, =p(l|d) VI for the Naive Bayes classifier, and the distance
to the hyper-plane for the SVM approaches. These vectors are then com-
pared to the ground truth vector 7, in which the correct level is marked
as 1 (while the others are set to 0):

0,1+ max 7y — 7
mlcw:< + maxi m)

As shown in Table 6.3 and Table 6.4, our final classifier outperforms, with re-
spect to all of the considered data-set and all the presented metrics, the baseline
classifiers obtained after supervised learning. Our system gives indeed satisfac-
tory results for the MP-data and IO-data data-sets (the best ones after the
classifiers trained on degrees of the same data-set), and gives by far the best
prediction quality on V-data, which constitutes the real-world target data of our
standardization system. More specifically, using a Multinomial Naive Bayes, the
error rate (0.119) for the introduced method is significantly lower than the ones
of the supervised alternatives (0.248 and 0.211 respectively). These performance
confirms that the weakly labeled degrees of D are globally correctly labeled, even
if our proposed method to generate D is fully unsupervised.

Test Sot Train Set MP-data IO-data D
MP-data E 0.070 0.094 0.089
HL 1.647 1.983 1.923
10-data E 0.222 0.091 0.154
HL 1.842 1.872 1.825
V-data E 0.248 0.211 0.119
HL 1.166 1.254 0.993

Table 6.3 — Results for the comparison with supervised learning using a Multino-
mial Naive Bayes classification, with best evaluation per line in bold and cross-
validation evaluations in italics.

Moreover, it is also possible to remark that the best performances are ob-
tained when the algorithm trained on the data-set D is the Multinomial Naive
Bayes, which is not surprising since the generative model used when building D
obeys to the same assumptions for the words of a document. Considering the
supervised learning approach, the SVM gives slightly better performances w.r.t.
the error rate E; however this is not the case for the Hinge-Loss H L, which is
significantly higher for all the considered tests. This is mainly due to the confi-
dence of the classifier when the prediction is false: such confidence increases the
overall HL value, because max,;, ¥, is decreased and y;, increased.
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et o Train Set | \ip dqata  10-data D
MP-data E | 0.063 0079 0127
HL | 8810 359  3.091
10-data E 0173 0.071 0252
HL | 3779 4206 3.537
V-data E | 0265 0204 0171
HL | 2198 1762 1.363

Table 6.4 — Results for the comparison with supervised learning using a SVM
classification, with best evaluation per line in bold and cross-validation evalua-
tions in italics.

6.4.4 Evaluation with other Latent Variables Models

This second evaluation aims to compare the automatic labeling approach of Sec-
tion 6.3.2 with the well-known latent variable models LDA and mixture model.
To do so, these alternative models were trained on the degrees descriptions of the
data-set of profiles B, for a number of clusters and topics of 15 (the number of
levels in our model), using the implementation of the LDA proposed by [Rehﬁfek
and Sojka, 2010]. Since these models take as input a flat set of documents, we
considered separately the degrees d extracted from each b € B, loosing thus the
information related to the sequentiality (contrary to our approach).

We then compared the prediction of clusters/topics against the label predic-
tion p(l|d) obtained in our model (Equation (6.9)). For each labeled data-set,
every degree d has been assigned to a cluster/topic/label ¢, that we write d € ¢,
using respectively the mixture model, the LDA and the terms distribution of our
model. For this experiments, the labels predicted by our model do not need to
be converted to levels of training, and thus take values in 0..15. The underlying
idea is to evaluate how each model captures clusters/topics related to the levels
of training. Indeed, the most desirable situation is that each cluster/topic rep-
resent a level of training, which is the objective of our model but could also be
experienced with these two baselines.

With this goal, for each approach we compared the degrees grouped by
topic/cluster/label against the groups of degrees having the same ground-truth
level, using the mutual information score [Vinh et al., 2010]. This metrics mea-
sures the correlation of two clustering approaches, and is calculated in our case

l,dec

ceClusters level 1

where d € ¢ denotes the assignment of a degree to a cluster/topic/label, and [
is the ground-truth level provided in the annotated data-set on which the above
probabilities are computed. We opted for the normalized variant of the mutual
information score in order to scale the results in the range of [0,1]. As both
models are highly random, we performed 20 evaluations to show average results
with their standard deviation.
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LDA Mixture Our Approach
MP-data  0.31 &£ 0.05 0.62 + 0.03 0.77 £+ 0.01
10-data 0.26 + 0.07 0.34 +0.03 0.52 + 0.01
V-data 0.33 £ 0.05 0.46 &+ 0.03 0.76 £+ 0.02

Table 6.5 — Results for the comparison of our model with the mixture model and
LDA. In bold are the best results per line.

Results in Table 6.5 shows that our model clearly presents significant benefits
w.r.t. the alternatives. Please also notice that the clusters of terms captured by
the LDA do not seem correlated to the level of training, which confirms the
idea that our problem is more related to a clustering than to a topic model. We
also emphasize the fact that only our model provides interpretable clusters, by
leveraging the temporal aspect of the levels of training (Section 6.3.3).

6.5 Future Directions for Unsupervised Processes

This chapter positively addressed the problem of detecting the level of training
from heterogeneous degrees’ descriptions, expressed in an unstructured manner
within user-generated CV. The unsupervised model we propose leverages tem-
poral information in a corpus of candidate profiles and harmonizes the profiles
educations, which constitutes a data-set of weakly labeled degrees. This knowl-
edge serves at training a term-based classifier usable for standardization, which
outperformed the alternative baselines in our experiments. This model requires
no supervision, and can thus be updated at no cost by being trained on a new
corpus, for handling new diplomas, or for adapting the standardization to a new
country. Testing the model on a corpus of another language remains a future
work, such data being not available at time of study.

This study proves that the unsupervised approach shows great advantages,
since it requires no supervision, no external data, and can stay close to the
real-world terminology, when it is trained on real-world data. But unsupervised
learning presents a significant limit: in general, there is no meaning associated to
the clusters/topics, which is contradictory with the objective of standardization.
However in this example, by considering the temporal meta-data, we obtained an
unsupervised model with fixed classes even if the model is updated. These classes
are our nomenclature and the system performs an exploitable standardization. As
future work, we plan to apply a latent variable model adapted to the current and
past work positions of the considered candidates. A first approach would be to
again leverage the temporal data, coupled with the job category, so that we would
predict how skilled is the candidate in a considered domain. Another interesting
study would be to design an unsupervised model that captures the specialty of
each degree and each work experience. This would require to consider other meta
data, in order to produce meaningful and fixed topics usable as a nomenclature.
Determining which meta-data should be considered in such a model remains a
interrogation at the moment.



Chapter 7

Practical Applications

In this last chapter, we leave aside the standardization problem and have a look
at the results of the previous chapters. Based on the positive experimental evalu-
ations, all our standardization systems have been industrially implemented, each
dealing with a special case of standardization. As a global results we obtain a
corpus of standardized documents, as illustrated in Figure 7.1. As a first appli-
cation, the meta-search engines for jobs and for candidates will be the occasion
to sum up the standardized attributes inferred throughout the thesis. We will
secondly use these attributes as input features for a supervised regression which
predicts the attractiveness of a job advert. Thirdly, we will present the interface
of the SmartSearch project, that leverages the corpus of standardized documents
aggregated from the Internet in order to work out a comprehensive analysis of
the job market.

Figure 7.1 — llustration of Bob’s world, now that the documents are standardized.
He is smiling: his remaining tasks are the most simple, now that the papers are
organized into boxes.

139



Chapter 7. Practical Applications

140

7.1 Meta-Search Engines for Jobs and Candidates

After performing all standardization processes developed in previous chapters,
the job adverts and candidate profiles collected in the SmartSearch project are
represented with standardized features. Compared to the initial documents, such
features represent either existing information but in a standardized way - when
this is a nomenclature of entities - either abstract information that was only
implicit in the original documents - when this is an abstract nomenclature. In
Bob’s eyes, at this step, the sheets of papers are all organized into boxes, as
illustrated in Figure 7.1. Our work was to ensure that the standardization was
meaningful, and now that documents are processed, Bob simply has to retrieve
and to count documents. As a first application, the meta-search engine will
enable users to specify concept-based queries, that Bob treats by retrieving the
documents contained in the corresponding boxes.

We now summarize the documents’ standardized attributes that result from
our different studies, and on which the meta-search engine users can define struc-
tured queries. These attributes are to be compared to the initial documents de-
scribed in Section 1.3, whose fields were unstructured texts, or structured but
only locally. Firstly, the job adverts gained the following attributes thanks to
standardization:

Contract, Study, Experience: These attributes have been standardized in
Chapter 3, by mapping the websites’ nomenclature into a unique nomen-
clature defined by Multiposting.

Category: The job unstructured fields are used for this standardization into a
fine-grained abstract nomenclature (531 categories), as detailed in Chapter
4.

Skills: This list of extracted skills take values in the nomenclature generated in
the first part of Chapter 5.

Company, Location: Similarly to the skills, these attributes are standardized
using nomenclatures generated following the processes of Section 5.1.2.
For brevity worries, these standardization systems are not detailed in this
thesis.

As Figure 7.2 shows, these standardized features are used in the queries of the
search engine interface. Similarly, on the candidate side, the extracted profiles
are now described by the following standardized attributes:

Categories: This is a list of the job categories of each experience of the candi-
date, obtained as for a job (see above). In most cases, the other attributes
of a job advert mentioned above are absent from resumes.

Study level: This is the maximum value of the candidate’s degrees levels, each
being computed using the model of Chapter 6.

Schools: These educational institutions are standardized using the nomencla-
ture generated in the second part of Chapter 5.
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SMARTSEARCH Q, Architects, Except Landscape and Naval (ONET 17-1011.00) ~ Advanced search

Company Work experience Contract type
Schneider Electric 25 1-2 years 35 Permanent 69
Scet 23 5-7 years 25 Contract 35
>
INTERIM AVENUE BTP 17 3-4 years 23 Internship 12
Kp Industries 16 Temporary 8
Architecte Agencement v Architecte v I Td Architecte Du Batiment v
Q Saint-Maurice-sur-Dargoire Q Tresserve . | Q Alsace
46/100 [ selpro [ JMV RESORT [ LD International
9 1012212016 3 077112016 ™ 0711212016
I Td Architecte Du Batiment v ARCHITECTE- URBANISTE H/F ¥ Architecte Du Batiment v
[N Tle-de-France Q Lille Q Mantes-lajolie
46/100 [ LTD International 39/100 [ Axad [ Intertis S.A.
9 071272016 A 3 071212016 ™ 0771172016
Architecte TIBCO H/F v Architecte v Architecte-Urbaniste v
Q Paris 9 Belfort Q Rhoéne
[E oucos [E unknown company [ unknown company

) 071272016 ™) 07/05/2016 9 0771212016

Figure 7.2 — Illustration of jobs search engine. The query is constituted by a
job category, on the top of the figure (here, “architect”), and possibly filtered
based on other standardized features: company, work experience, contract type,
and required study level.

Skills: This attribute has been standardized into the nomenclature generated in
the first part of Chapter 5. Since the initial corpus used in this study was
extracted also from the profiles of SmartSearch, this standardization might
sound biased. This serves however in practice at deduplicating the skills
and at filtering those absent in the nomenclature (hence too infrequent, or
absent from DBpedia and from social media). The strong advantage of this
standardization is to share the same nomenclature than the skills of jobs.

The meta-search engine for candidates is shown in Figure 7.3. Without any
standardization, only keyword-based search is possible; it can be performed field
by field, thanks to the parsing based on websites” HTML structure (see Figure
1.3 of Section 1.5). To improve ranking, documents have been indexed using
some terms weights, as the one introduced in Section 2.1. However, without
standardization, the queries remain simply keyword-based. Thanks to standard-
ization, users can search based on meta information, which transforms in a sense
the keyword-based search into a concept-based search. Indeed, he can for in-
stance look for a precise entity - such as a university, or a skill - by selecting
the right entry in the nomenclature; all the associated documents are then re-
trieved, including those presenting a synonym of the entity. Moreover, users can
look for abstract concepts, for which keyword-based search appears impossible,
such as when searching all candidates above a certain level of training. Last but
not least, we remind that the search engines presented in Figures 7.3 and 7.3
collect data from all sources displayed previously in Table 1.1 of Section 1.2.2:
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Raw Query Graphisme
Sites

Work Experience

Directeur, PATH GRAPH

PATH GRAPH
Toulouse

Graphiste indépendant, MS Gra...

MS Graph'
Neuilly-Plaisance

Graphiste freelance, Sucre Graph

Sucre Graph
Salon-de-Provence

[ 4y ] Bac+3/4 BEP/CAP [[3y ] Bac +6 et plus
Skills
Adobe After Effects
Adobe Illustrator Chef d'entreprise, Indie Graph Directeur technique, Yupeek Développeur web et mobile, Fre...
Adobe InDesign Indie Graph Yupeek Freelance.Com
Adobe Photoshop Rueil-Malmaison Bordeaux Annecy
Design
L Bac e oo oc»
Gestion de projet
Education Level
BEP/CAP Community Manager chez Anka... Graphiste indépendant UX Ul Designer
Bac Ankama Freezysnail University of Massachuset...
Bac+2 Lille Toulouse Canéjan
Bac +3/4
oc 3 L Yoac-a/a Loy Yoac s oD
Bac +6 et plus
Companies Stratégie Web et formations Stagiaire Etudiant Defitech
Positions Clic-En-Berry EGstyle Communication VD Promotion
Bourges Besangon Rueil-Malmaison
Locations
Loy Yoercar oo ocd

Schools >

Figure 7.8 — Screenshot of the candidate search engine. The raw query is keyword-
based. The other fields are structured, including skills, education level, positions
(as job categories) and schools, that each results from the studies of this thesis.
Candidates have been here anonymized.

standardization has converted heterogenous data into a common nomenclature.

7.2 Input Features for Predicting Job Attractiveness

Since standardization converts heterogenous data into common features, it can
be leveraged to perform some supervised learning on a specific data-set of doc-
uments having interesting properties, such as the internal job adverts of Mul-
tiposting. Indeed, a major aspect with this internal data-set is that it provides
a feedback from the candidates, through their applications. We describe here
briefly the notion of attractiveness of an internal job advert of Multiposting,
and explain how standardization is used to extend this attractiveness to any job
advert of the SmartSearch project.

As previously stated in Sections 1.2.2 and 3.1, the historical tool developed
by the firm serves at posting jobs on multiple recruitment websites, called job
boards. We get from these postings a feedback through the clicks of applicants:
every time a candidate is interested in a job ad, he has to click on the link to
apply, meaning that Multiposting can measure the number of clicks for the job
7 posted on the job board jb:

clicksjp—; € N

where the value highly depends on the website jb, since certain job boards reach
a much wider audience than others. To get a normalized quantity, we leverage
the distribution of clicks on the website jb in order to compute what we call the
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attractiveness of the job j:
attsy; = p(clicksjbﬂj/ > clz’ck‘sjb_ﬁ) € [0,1]

where the probability is computed on all job adverts j’ that have been posted on
the job board jb. This quantity compares the performance of j against other job
adverts j', and therefore enables us to cope with the job boards’ heterogeneity.
From this local attractiveness, we deduce an average attractiveness for the job
advert 7, by

(Itt]’ = ]Ejb (attjbd-)

where the expectancy is computed on the job boards where the job j was posted.
The highest is this value, the most attractive is the job advert 7 when compared
to the job market, regardless of the website where it was posted. The attrac-
tiveness is only computable on the jobs of Multiposting’s internal data-set, that
we write J,,,. However, thanks to standardization we can also estimate the at-
tractiveness of any external job advert. Indeed, we can use the data-set J,,,
to perform a nearest neighbor regression (see Section 2.3.1). In other words, to
get the attractiveness att; of an external job advert j, we compare it to the job
adverts j' of Multiposting J,,, through:

1
att; = = Z simsa(4,7') x atty

z
J'€Iup
simgpa(d,j")>e

where Z = Zsimstd(j,j’)x simgq(4,4') is a normalization factor, and the simi-
larity simgq(j,j') between two job adverts j,j’ is computed using their stan-
dardized attributes. This similarity has been manually tuned by few experts of
the firm; its full expression and its evaluation go beyond the scope of this chap-
ter. The important point is that it only uses standardized attributes, whereas
the tested term-based similarities - as the one introduced in Section 2.1 - gave
poor predictions. Standardized attributes are therefore meaningful features for
training machine learning algorithms, like the ones introduced in Section 2.3.1.
Moreover, this example shows that thanks to the fact that standardization ap-
plies to any document, we successfully compare any job advert to the internal
job adverts of Multiposting.

7.3 Comprehensive Job Market Analysis

The attractiveness estimate as well as the standardized data-sets of the meta-
search engines are both part of the SmartSearch project. This tool considers
job adverts and candidate profiles in a macroscopic way, in order to work out
comprehensive statistics about the job market. This type of analysis has been
only made possible recently, with the growth of e-recruitment and the fact that
all documents related to the job market are now available on recruitment web-
sites. However, without any textual standardization, it is hardly possible to infer
meaningful information from these millions of jobs and candidate profiles, apart
from simple keyword trends.
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9 Intellectual property

How easy is it to find candidates with this skill? @

56/100

Hard

4 There are many candidates with this skill.

1,092 17,050

active matching job openings matching job openings over the last

twelve months

What is the evolution of the demand for this skill?

3k
2
8
1k

ok
Feb'16 Mar '16 Apr'16 May'16 Jun '16
Date

Which occupations require this skill?

521100

45100

A

47100

39100

A

Lawyers 226
Engineers, All Other 219
Legal Support Workers, All Other 124
Computer User Support Specialists 60

Which companies are looking for candidates with this

skill?

1,637 companies are looking for candidates with this skill

Top companies

BCG Attorney Search 107
cisco systems inc 79
General Electric 79
ncr 58

Figure 7.4 — Screenshot of SmartSearch showing statistics about the skill “Intel-
lectual property”. On the top left is displayed the averaged attractiveness. On the
top right are ranked the most related job categories, and on the bottom right the
top hiring companies.
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SmartSearch’s interface enables the recruiter to specify a concept-based query,
which is selected among the nomenclatures of the systems developed in this the-
sis. As an example, Figure 7.4 shows the statistics of the skill “Intellectual prop-
erty”. The documents having the queried structured attributes form a pool of
jobs J, and a pool of candidate profiles C'. Some statistics are then computed
on these documents, such as the top hiring companies - ranked with respect to
the number of corresponding jobs j of J - as well as the average attractiveness

of the jobs in J: .
T Z att;
jeJ

where each att; results from the previously described regression, since the job
advert o is external and presents no feedback on its attractiveness. One notes
that this average is computed on a set of external adverts, which expresses the
best the job market, whereas averaging on internal adverts of Multiposting would
be biased. Indeed, a kind of job can be under represented in Jyp, but will be
properly emphasized when averaging on the pool of external jobs, more repre-
sentative. The data-set J,,, serves just at estimating how attractive a job is,
which requires only few examples to be meaningful.

Another aspect is that all statistics can be dissected through time, provided
that we have historical data-sets, such as in the bottom left of Figure 7.4. In-
deed, each job of the data-set of documents is associated to a posting date. One
notes that the presented job market analysis only relies on jobs; the interface
for candidate-based statistics is under development, and would include informa-
tion about educational institutions or about skills mastered by employees of a
company.

SmartSearch serves thus at answering questions such as “Which skill is pop-
ular in this job category?” or “How stable and easy is it to work in this core
business?”, through the distribution of contract types, attractiveness and re-
quired experience/study level. We note however that the computations involve
nothing else than counting documents, once standardization has been properly
done. From Bob’s point of view, his only task for SmartSearch is to count the
sheets of paper in the selected boxes.

The different practical applications we presented in this chapter have shown
the usefulness of standardization. However, despite these successful practical ap-
plications, the use of standardization in an industrial context has highlighted sev-
eral limitations of our work. In the next chapter, we will draw a global conclusion
to our study, before giving future works that would overcome these limitations.
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Figure 7.5 — Screenshot of SmartSearch comparing the job categories “Marketing
Managers” on the left and “Sales Managers” on the right. The attractivenesses
are confronted, along with the distributions of geographical location, contract type
and required experience.
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Conclusions

In this thesis we have addressed the problem of textual data standardization,
which is raised in the SmartSearch project for processing millions of documents.
The first chapter introduced this industrial context and the documents’ fields
on which we conducted our studies. We also defined the notions of structured
textual data, abstract nomenclatures and nomenclatures of entities. The related
work studied in Chapter 2 has clarified the two aspects involved in the standard-
ization, namely the nomenclature N and the standardization function f(d). On
the nomenclature side, we saw that the Internet present interesting knowledge
bases, serving notably at entity linking, but also that existing bases generally do
not serve at standardization, because they are too generic or not comprehensive
enough. On the standardization function side, we saw that supervised classifi-
cation well applies to abstract nomenclatures, but requires a large data-set of
standardized documents to learn the relevant patterns. Unsupervised learning
for text do not need such training data-set, but presents the problem of pro-
viding clusters and topics with no meaning, despite the popularity of the latent
variable models for text mining.

As a preliminary approach, Chapter 3 has shown that the local nomenclatures
are poorly usable for standardization, apart in the case of coarse-grained nomen-
clatures of entities. For such attribute, the automatic approach we proposed in
[Malherbe et al., 2015b] showed good results for mapping nomenclatures, but
required a large data-set of manual mappings. This first standardization system
introduced further the problem of interoperability that occurs when manipulat-
ing documents talking about the same concept but with different words. More-
over, this study showed that reproducing the semantic reasoning is a difficult
task, even based on an “ideal” data-set. The size, structure and nature of our
data-set was indeed exactly the one of the target data. It appears thus better to
handle standardization by considering raw unstructured documents as input and
forgetting the knowledge about website. In other words, we recommend not to
use the structured knowledge of websites (encoded by the local nomenclatures),
but prefer instead to leverage the knowledge encoded by a nomenclature, that
would be singular and generic.

Focusing on a generic nomenclature has indeed shown good results in Chapter
4, which confirmed that the structure and richness of A/ is at the core of standard-
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ization. The chapter addresses the case of a fine-grained abstract nomenclature,
and takes as example the job categorization, usually treated by supervised learn-
ing on a large labeled data-set. We instead decided to leverage a nomenclature
with textual category descriptions, and we proposed in [Malherbe et al., 2014] a
learning-to-rank approach that combines the advantages of using the knowledge
of N, as well as supervised learning on few standardized examples - that are
besides too few to learn a multi-class classifier. We also proposed in [Malherbe
et al., 2015a] a semi-supervised approach for enriching the nomenclature N, by
adding keywords to the descriptions. In addition, standardization is computed
with a probability estimate, that we call correctness. The estimate is based on a
supervised learning and applies to any pointwise learning-to-rank system, as we
successfully experimented in [Malherbe et al., 2015¢]. Using this correctness, we
could compare our system with the co-training, a baseline for semi-supervised
learning. The results confirmed the relevancy of enriching the nomenclature A/
with new keywords instead of increasing the training set for the standardization
function f, which is done in co-training.

To face standardization with no pre-defined rich nomenclature, Chapter 5
studied the automated construction of a nomenclature of entities N. For this
type of standardization, N should present rich meta-data like few aliases for each
entity. Our work proved that the existing knowledge bases, even if not designed
for standardization, can positively be used to generate domain-specific nomen-
clatures. The generic process we propose involves first selecting the appropriate
entities, second merging the sources of knowledge and third linking documents to
the corresponding entities. We applied this process successfully to two use cases.
Firstly to the skills, as we detailed in [Malherbe and Aufaure, 2016], for which
we leveraged the social media and DBpedia. By doing so, the nomenclature is
the most up-to-date possible, and reflects the common definition of a skill in a
bottom-up construction. Secondly, for treating the educational institutions, we
proposed an unified evaluation process, which showed that standardization de-
pends on the merging process quality. Secondly, we saw how the merging quality
can inversely be inferred just by evaluating the final standardization. The feed-
back provided by evaluating the standardized answers can moreover constitute
a basis for an active learning for data matching.

Since many situations present no exploitable external knowledge, Chapter 6
addressed the problem of standardization into an abstract nomenclature without
using any external source of knowledge. This appeared necessary for the degrees
of a candidates, from which we propose to detect the levels of training. This
attribute is fully implicit and is very discriminative in e-recruitment. The unsu-
pervised learning process that we successfully proposed in [Malherbe et al., 2016]
is based on a novel latent variable model which is trained on an internal corpus of
candidate profiles. The model integrates temporal meta-data in order to provide
meaningful clusters, and generate a data-set of labeled degrees that constitutes
our standardization knowledge. This standardization can thus be automatically
updated every time the model is trained on a new corpus of candidate profiles,
while keeping the same nomenclature N.

Beyond these satisfactory experimental results, standardization has shown
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great applications, as introduced in Chapter 7. The experiments have lead us
to implement each of our approaches, that serves at standardizing the millions
of documents of SmartSearch. Since all documents are now expressed in the
same nomenclatures, it is straightforward to see which concepts are correlated.
We can work out concept-based statistics, even if the concepts are entities with
many names or abstract concepts that need to be inferred from the documents’
patterns. Moreover, this singular structured representation appears to constitute
relevant features for supervised learning; for example, after standardizing the
internal job adverts of Multiposting, we designed a nearest neighbor regression
in order to estimate the attractiveness of a job. This prediction applies to any
job advert, and is based on the standardized concepts resulting from our work.
We can thus consider a given job sector or industry, look at the corresponding
job adverts, and draw statistics including the attractiveness. This feature is just
an example of supervised learning, and now that the representative data-set
of SmartSearch has been standardized, it opens a way to large-scale machine
learning algorithms.

As we formalized it, the standardization problem is generic, and has been
applied to many use cases, all around e-recruitment though. In a sense, it provides
a data summarization, the working space is reduced to a limited number of
values, and it removes the noise inherent to term-based representations. However,
we note that each attribute has been treated by different systems, depending
on the concepts it deals with - abstract or entities - or on the external data
available. We have addressed in this thesis a wide range of cases, that are the
ones we encountered in our real-world documents; however, there might be other
cases, that would involve a variant of the systems we proposed, or even a deeply
different strategy.

8.1 Future Works

A first aspect that should be studied further are the tools and models that can be
used in standardization. Indeed, the mathematical tools used in this thesis cover
a wide range of fields, with entity linking, topic models, case based reasoning,
supervised and semi-supervised classification. In order to improve the presented
standardizations or develop new cases of standardization, we should inspect new
fields of text analysis. In particular, all models we developed have the limit
to be based on the bag-of-words representation of documents. This common
assumption for statistical text analysis is indeed very simplifying for long texts
with sentences in natural language, such as for Job Descriptions. To take into
consideration word order, local grammars [Gross, 1997] in based on an automata
which analyze the text word after word. This costly design can be supported by
syntactic analysis [Albus et al., 2012], and have been successful in processing jobs
[Bsiri et al., 2008], despite an expensive development cost. Another new trend is
to use deep neural networks, which are trained on millions of sentences seen as
sequences of words [Mikolov et al., 2013a]. Using these networks, each word is
represented as a continuous vector, which captures better the semantic concepts
[Mikolov et al., 2013b]. This type of network can also be coupled with syntactic
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tags [Socher et al., 2013]. The vector can be extended to represent sentences [Le
and Mikolov, 2014], which would be of primary interest for standardization. An
interesting study would be to adapt sequence to sequence learning [Sutskever
et al., 2014] to job adverts, with job description as input sequence and job title
as predicted sequence. This would directly give a job categorization, by assigning
the input job to the category whose title is the most likely predicted sequence.

A second future work about standardization is a more global prospect and
came with the real world usage of SmartSearch. Indeed, our standardization so-
lutions have been treated for given fixed nomenclatures, whereas in practice we
would need to adapt to new nomenclatures easily, for instance to the internal
nomenclatures of our clients. To reduce the human design work of standard-
ization, we can not afford to build a training set and tune the standardization
system for each new nomenclature. An interesting study would therefore be the
adaption of standardization to new nomenclatures, based on an existing stan-
dardization system. A first natural approach we should use is transfer learning
[Pan and Yang, 2010], which could solve the standardization problems sharing
the same structure. For instance, this would apply to job categorization in other
languages, for which national nomenclatures differs from a country to another
but keep a similar field structure. We expect the parameters of the FtFw model
to be similar, even with different category descriptions. A more long term strat-
egy would be to build a unified and possibly automatic standardization system.
Such system would decide, given a corpus of documents to be standardized, the
strategy to adopt. This system would leverage external sources of knowledge,
would find the nomenclatures that would fit our problem, and the user would
ideally simply confirm wether this appears good. This ambitious perspective
would require to study global metrics from the corpus that guides us to one or
another strategy.

Another future work will be to leverage further the structured documents re-
sulting from our standardization. Indeed, we now have a very large corpus which
presents coherence, with features that has shown to be reliable for supervised
prediction in the context of the SmartSearch project. A direction we would like
to focus on is to learn embeddings for each concept. This is the focus of deep
learning for text, that require a large data-set - that we have, moreover all ex-
pressed in the same nomenclatures. However the classical models for embeddings
applies to natural language [Mikolov et al., 2013b]; we would thus need to design
a novel structure of neural network that would make sense for our documents.
These embeddings would lead to a fuzzy representation of our standardized doc-
uments, and would in a sense relax the standardization, which appears to be
strict - a document is in one box or not. While being discriminative, this single
assignment has however permitted to represent simply our strategies through
Bob’s eyes, who has been quite sympathetic and that we will certainly miss.
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Résumé : Sachant qu’'une grande partie des offres
d’emplois et des profils candidats est en ligne, le e-
recrutement constitue un riche objet d’étude. Ces doc-
uments sont cependant des textes non structurés, et
le grand nombre ainsi que I’hétérogénéité des sites de
recrutement implique une profusion de vocabulaires et
nomenclatures. Une difficulté lors de la manipulation
de telles données textuelles brutes est d’en déduire les
concepts sous-jacents, qui est le probleme de normal-
isation abordé dans cette these. Avec l'objectif d’un
traitement unifié, la normalisation doit fournir des
valeurs dans une nomenclature, de sorte que les at-
tributs résultants forment une représentation structurée
unique de l'information. Plusieurs questions se posent
alors: peut-on exploiter les structures locales des sites
web dans l'objectif d’une normalisation finale unifiée?
Quelle structure de nomenclature est la plus adaptée a
la normalisation, et comment ’exploiter? Est-il possible
de construire automatiquement une telle nomenclature
de zéro, ou de normaliser sans en avoir une?

Pour illustrer le probléeme de la normalisation, nous al-
lons étudier par exemple la déduction des compétences
ou de la catégorie professionelle d’une offre d’emploi,
ou encore du niveau d’étude d'un profil de candi-
dat. Un défi du e-recrutement est que les concepts
évoluent continuellement, de sorte que la normalisa-
tion se doit de suivre les tendances du marché. A
la lumiere de cela, nous allons proposer un ensem-
ble de modeles d’apprentissage statistique nécessitant
le minimum de supervision et facilement adaptables
a I’évolution des nomenclatures. Les questions posées
ont trouvé des solutions dans le raisonnement a partir
de cas, le learning-to-rank semi-supervisé, les modeles
a variable latente, ainsi qu’en bénéficiant de 1’Open
Data et des médias sociaux. Les différents modeles pro-
posés ont été expérimentés sur des données réelles, avant
d’étre implémentés industriellement. La normalisation
résultante est au coeur de SmartSearch, un projet qui
fournit une analyse exhaustive du marché de ’emploi.
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Abstract : With so many job adverts and candidate
profiles available online, the e-recruitment constitutes
a rich object of study. All this information is however
textual data, which from a computational point of view
is unstructured. The large number and heterogeneity of
recruitment websites also means that there is a lot of
vocabularies and nomenclatures. One of the difficulties
when dealing with this type of raw textual data is being
able to grasp the concepts contained in it, which is the
problem of standardization that is tackled in this thesis.
The aim of standardization is to create a unified process
providing values in a nomenclature. A nomenclature is
by definition a finite set of meaningful concepts, which
means that the attributes resulting from standardiza-
tion are a structured representation of the information.
Several questions are however raised: Are the websites’
structured data usable for a unified standardization?
What structure of nomenclature is the best suited for
standardization, and how to leverage it? Is it possible to
automatically build such a nomenclature from scratch,
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or to manage the standardization process without one?
To illustrate the various obstacles of standardization,
the examples we are going to study include the infer-
ence of the skills or the category of a job advert, or the
level of training of a candidate profile. One of the chal-
lenges of e-recruitment is that the concepts are contin-
uously evolving, which means that the standardization
must be up-to-date with job market trends. In light of
this, we will propose a set of machine learning models
that require minimal supervision and can easily adapt
to the evolution of the nomenclatures. The questions
raised found partial answers using Case Based Reason-
ing, semi-supervised Learning-to-Rank, latent variable
models, and leveraging the evolving sources of the se-
mantic web and social media. The different models pro-
posed have been tested on real-world data, before being
implemented in a industrial environment. The resulting
standardization is at the core of SmartSearch, a project
which provides a comprehensive analysis of the job mar-
ket.
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