Keywords: Bioinformatique, Optimization combinatoire, Maximum-Weight Connected Subgraph, Recherche de modules biologiques iii Bioinformatics, Combinatorial optimization, Maximum-Weight Connected Subgraph, Biological module discovery v

Un des principaux défis de la bioinformatique moderne est de saisir le sens des données biologiques en constante croissance. Il est prépondérant de trouver de bons modèles pour toutes ces données, modèles qui servent à la fois à expliquer les données et à produire des réponses aux questions biologiques sous-jacentes. Une des nombreuses difficultés d'une telle approche est la grande variété dans les types des données manipulées. La biologie computationnelle moderne propose des approches qui combinent ces types de données dans des techniques dites intégratives.

Cette thèse contribue au problème de l'identification de module biologique en intégrant les informations de conservation dans les modèles modernes d'identification d'ensemble de protéines. Nous introduisons un modèle pour la détection de modules connexes actifs et conservés, c'est-à-dire des modules connexes dont une majorité d'éléments sont similaires entre deux espèces.

Nous présentons une formulation de notre modèle sous forme de programmation linéaire en nombres entiers, et proposons un algorithme branch-and-cut qui résout le modèle à l'optimalité en temps raisonnable. Nous appliquons notre modèle sur des données de différentiation cellulaire, à savoir les cellules Th0 en Th17 pour l'humain et la sourie. Nous analysons également notre modèle du point du vue de la complexité algorithmique, et fournissons des résultats pour le cas général ainsi que des cas spéciaux.

Chapter 1 Introduction

No definition of life is unequivocal. However, it is largely agreed that in order to be considered a living organism a biological entity must be able to 1) grow and adapt to external stimuli in order to maintain its homeostasis (maintaining a stable state by means of one or many internal processes) and 2) be able to replicate autonomously. According to this definition the most basic unit of life is the cell. Cells can either stand alone to constitute unicellular organisms, bacteria being the perfect example, or the basic components of complex multicellular organisms, composing animals and land plants for example.

Cells are made of many biomolecules in constant interactions. The two most fundamental types of biomolecules that define cellular processes are the nucleic acid chains and amino acid chains. Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are two nucleic acid molecules, strings of smaller molecules named nucleotides, that encode and transmit informations inside the cell. Proteins are complex chains of amino acids that constitute the basic components through which the cell functions. Their molecular structure is encoded inside the DNA sequences in sections that we call genes.

Cellular function is roughly defined by the proteins that compose a cell at a given time. Indeed, by the random nature of biomolecules interactions, the relative concentration of these proteins guide the overall functioning of the cell. Of all the proteins encoded inside the DNA, the set of proteins that compose a cell is defined by the genes that are expressed while the other stay silenced.

The many processes by which a cell influence the expression of its genes are complex, and altogether they make up the gene regulation mechanisms. Gene regulation provides the basic means with which a cell can adapt and respond to stimuli. Moreover, in multicellular organisms cells acquire their specific function via the process of cellular specialization (or cellular differentiation), and gene regulation also provides the required machinery required for the cell to change its internal structure and overall function.

To characterize and classify cells by their functions, in principle we can measure the level of concentration of the proteins inside a cell. Although it is often prohibitive 2 CHAPTER 1. INTRODUCTION to measure with precision such concentrations, modern microarray and sequencing techniques enable the efficient and precise measure of messenger RNA. Messenger RNA are both the precursor to proteins and are the direct product of gene expression.

By measuring the levels of messenger RNA inside a cell, expression profiles are constructed as snapshots of the cells internal states. Expression profiles act as molecular reports, that we can compare and classify by detecting similarities in the expressed genes.

The differential analysis of expression profiles compare profiles of cells under one condition against cells subject to a second condition. It portrays the differences between the two conditions by extracting similarly expression of silenced genes. Differential analysis of expression profiles is a fundamental technique that allows to inspect cell functioning as the expression level and extract important knowledge in regard to individual protein function and to functionally linked groups of protein components.

Proteins are complex macromolecules made of long chains of smaller amino acids molecules. Roughly, each protein correspond to a DNA sequence, called a gene, and the specific string of amino acid that constitute the protein is dictated by the corresponding gene sequence. Each protein form an intricate three-dimensional structure through a process called protein folding.

Proteins are studied in very many fields such as biochemistry, quantum chemistry, molecular dynamics, etc. Combined with automatic cross-referencing techniques such as literature mining across all published papers and careful manual curation of high quality publicly available database, the wealth of cross-referenced protein data is substantial.

The information contained in these databases allows the construction of large networks containing the many known of inferred molecular interactions. From all these networks, protein-protein interaction (PPI) networks contain the interactions between proteins, and for a particular cell its PPI network represents its interactome.

The information encoded inside an organism DNA is the result of long chains of evolutionary events through time. One such event, and perhaps the most important, is that of inheritance. Through inheritance, genetic sequences are passed down from ancestor to descendant species. Given that a single species can have many descendant, and that most genetic information is inherited without mutation, many species share the same sequences: conserved sequences.

There are evidences that groups of proteins that work in conjunction to accomplish a function are often conserved together. These groups of functionally related proteins are important targets for the study of cellular process, in particular those processes that are conserved through evolution. Differential analysis of expression levels are used to extract proteins of interests, that is proteins that are significantly differentiated between the control and the condition. Many statistical approaches have been proposed to detect these sets of important proteins for phenomenon under study. One shortcoming of many of these methods is that they occasionally find sets of proteins that have little in common for the cellular processes, and biological interpretation of these results becomes difficult, if even significant.

Beyond the many computational methods for the analysis of expression profiles, of interactomes, and of evolutionary conserved DNA sequences, integrative approaches propose the combination of two or more of these types of information into single systemic models. This is the case of the connected module model, where modules represent sets of significantly differentiated proteins with the additional constraint that they have to physically interact. This thesis contribute to the module identification problem by integrating conservation information with modern models of modular detection of protein sets. We thus introduction a model for the detection of conserved active connected modules, that is connected modules that are conversed across two species. These active connected modules are similar in sequence composition between the two species.

We present a mixed-integer linear programming formulation of our model, and propose a branch-and-cut algorithm to solve to provable optimality in reasonable run time.

We apply our model over cell line differentiation data, namely T helper 0 (Th0) into T helper 17 (Th17), for both human and mouse.

We also analyse the model from a complexity standpoint, and provide general as well as special cases complexity results.

Chapter 2 Preliminaries

Biological entities and their analysis

We first briefly overview the types of information that is available to study biological systems. This information can be described following the central dogma of molecular biology [START_REF] Crick | Central dogma of molecular biology[END_REF]): genetic (DNA) sequences, transcribed RNA sequences and finally protein sequences. Raw DNA sequences are strings of the four letters, called bases, comprising genes. Different species can have different numbers of genes within the genome of the organism. For prokaryotes, each gene is typically 1, 000 to 2500 bases long [START_REF] Xu | Average gene length is highly conserved in prokaryotes and eukaryotes and diverges only between the two kingdoms[END_REF]. The GenBank repository of nucleic acid sequences (http://www.ncbi. nlm.nih.gov/genbank/) currently holds a total of approximately 202 billion bases in 188 million entries 1 . At the next level are protein sequences that correspond to real gene products within the cells and are strings of 21 amino acid-letters. At present, the UniProtKB protein sequence database (http://www.uniprot.org/) contains about 500 thousands reviewed protein sequences 2 , a typical bacterial protein being approximately 300 amino acids long.

The central dogma states that DNA makes RNA, and RNA makes proteins. At each step, a cell translates the information between the different alphabets. That is, DNA sequences are translated into RNA sequences at the first step, and RNA sequences are translated into protein sequences at the second step, see fig. 2.1.

Entities

Genes

A genome is typically a set of sequences, corresponding to chromosomes, over the 4-letter alphabet: cytosine ('C'), guanine ('G'), adenine ('A'), and thymine ('T'). The set of genes of an organism encodes the instructions for a cell to perform its functions. In order to study how cells perform their functions, it is first necessary to identify genes. Process of identifying regions within the genome that encode genes is called gene finding, see for review [START_REF] Stormo | Gene-finding approaches for eukaryotes[END_REF]. The common principle behind gene prediction methods is to distinguish between protein-coding regions (genes) and non-coding regions, based on their statistical properties. Based on the observation that given two species A and B, there exist gene versions a ∈ A and b ∈ B that are similar in sequence and have related functions, the parsimony principle suggests that they must have been inherited from the common ancestor. Genes that have a similar sequence are said to be homologs. Among homologs there are two main subgoups: orthologs and paralogs. Orthologs are homologous genes that evolved from the same ancestral gene in the last common ancestor of the compared species. For example, for a and b to be orthologs, they must have descended from an ancestral gene c in C, last common ancestor of A and B. On the other hand, paralogs are homologous genes, that have evolved by duplication. For example, a ∈ A having a similar sequence to a (and b), might have descended from the duplication of a that has happened after the ancestors of A and B have taken different evolutionary paths. For further discussion of orthology, see [START_REF] Makarova | Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea[END_REF][START_REF] Kuzniar | The quest for orthologs: finding the corresponding gene across genomes[END_REF].

CGGGGTTAAATCCACTACCCTCTCCCCACGCACTC TAGTAATTACTCTATTTCCACGTCATGTTTCCGGG

CCGGGTTATAGCCACTATTCTC-CCCCACGCAATC TAGTAATTACTCTATTTCCACGTCATATTTCCGGG

RNA

Like DNA, RNA is a nucleic acid sequence, but with some differences. For example, RNA molecules are single-stranded, while DNA is double-stranded. Also DNA and RNA

BIOLOGICAL ENTITIES AND THEIR ANALYSIS

differ slightly at the nucleotide level, in particular there is a 'U' (uracil) instead of 'T'. Most importantly, RNA sequences -called mRNA for messenger RNA-correspond to the protein coding regions. Different species have their own sets of mRNA sequences at any given time. In particular, they respond to environmental stimuli by varying the level of mRNA molecules that are present at a given time, process that is called gene expression. The set of mRNA molecules of an organism is called transcriptome.

A C G T C T A G T A C T G C A T T A G C G A T G C A T A C G A T G C A T G C

A A A G G C A T A C G U A C U G C A U U C A U A C G G G C A U A C

Proteins

Translation, which is the second step in gene expression, "reads" the RNA sequences and translates (according to the genetic code) them into amino acid sequences, that is sequences over the alphabet of 21 amino-acid letters. Each group of three bases in the mRNA constitutes a codon, and each codon defines a particular amino acid. This is why it is called a triplet code. Consequently, the mRNA sequence is used as a template to build sequences of amino acids that constitute proteins.

Biology as data science

Since the completion of the Human Genome Project in 2003, thousands of species have seen their genome fully sequenced [START_REF] Reddy | The Genomes OnLine Database (GOLD) v. 5: a metadata management system based on a four level (meta) genome project classification[END_REF]. Nowadays, [START_REF] Regalado | EmTech: Illumina Says 228,000 Human Genomes Will Be Sequenced This Year[END_REF] estimated that our sequencing capacity exceeds 35 Petabases (or approximately 250,000 human genomes) per year. Looking into the future, with further advancement of highthroughput sequencing technologies, the prospect of seeing more than 1 billion genomes sequenced in the next 20 years is realistic [START_REF] Schatz | Biological data sciences in genome research[END_REF].

Genetic information is only one type of data. In the last 20 years, many techniques have been used to look deeper into cellular functions. Microarrays, RNA-sequencing, high precision microscopy, and mass spectrometry, all allow automated collection of observations of the cellular developments and regulation processes.

With the collection of these volumes of data, a number of challenges arise, among which (i) the collection of data into accessible repositories, and (ii) the analysis and interpretation of the underlying knowledge. Analysis requirements of biological data have brought biology within the scope of data science, towards what is called quantitative biology.

High throughput experiments

This ability to quantify many molecular targets in parallel was an important step towards the understanding of complex biological processes. Microarrays is an experimental technique that can analyze the expression of many genes simultaneously and in an efficient manner [START_REF] Smyth | Use of within-array replicate spots for assessing differential expression in microarray experiments[END_REF][START_REF] Sealfon | RNA and DNA microarrays[END_REF]. Microarrays can be used to perform different measurements, among others are the detection and measurement of gene expression at the mRNA or protein level, detection of mutations and location of chromosomal changes. A microarray is a collection of spots attached to a solid surface. Each spot -corresponding to one gene -on a microarray contains multiple identical strands of DNA and that are unique to this spot. Thousands of spots are arranged in rows and columns on a solid surface. The resulting data is the intensity of fluorescence for each spot that represents the level of expression of the corresponding gene. Consequently, data produced by microarray technique requires some amount of post-processing.

Furthermore, microarray data is inherently subject to variability and noise. A number of normalization techniques have been developed to deal with these artifacts [START_REF] Reimers | Making informed choices about microarray data analysis[END_REF]. However, normalization can not adjust for the major flaw of microarrays, that is batch effect. Consequently, combining batches of data produced by microarrays can potentially lead to erroneous results (W. E. [START_REF] Johnson | Adjusting batch effects in microarray expression data using empirical Bayes methods[END_REF]).

The next two sections introduce fundamental concepts and terminology that will be used at length through this work. In section 2.2 we give an overview of the computer science concepts that serve as a basis for the optimization theory. In section 2.3 we provide the reader with a brief introduction to both practical and theoretical aspects of optimization, and specifically combinatorial optimization, on which this thesis builds atop.

Computation and complexity classes

A computational problem is a mathematical question that is susceptible to being solved by a computer. Even though any specific mathematical question is potentially a computational problem, it is usual for computational problems to regroup a set of similar questions. For example, although "Is 42 a prime number?" is a mathematical question that can be solved by a computer, the computation problem is: "Given a number n, is n a prime number?". Every possible input to the problem forms an instance, which there might be an infinite number, and each of which having its own solution. In the aforementioned example there are an infinite number of instances, one for every n, each with its own yes or no answer. By convention, "computational" is very often omitted, and the previous problem would be called "the primality test problem".

Theoretical computer science is an inclusive field of both mathematics and general computer sciences that studies many of the theoretical aspects of computation. In this field any computation is expressed for a specific model of computation. These models of computation are the basis on which one can formally express computations with the use of algorithms.

Computational problems are solved with algorithms, series of well-defined sequential or parallel operations that can be executed by the model for which it was designed. Formally, an algorithm unambiguously defines an effective method in the Turing-Church sense, that is a series of finite number of mechanical steps that the model can execute and that always produce a correct answer (for the problems it is intended to solve).

Serial algorithms, containing only sequential operations, form the vast majority of known algorithms and are usually identified simply as "algorithms". On the other hand, algorithms containing parallel sequences are aptly named parallel algorithms3 , and although their fork points (points of separation) and join points (points of junction) are well defined, their analysis comes with its own share of idiosyncrasies. Parallel algorithms are the foundation of modern optimization problem solvers. We recommend [START_REF] Jada | An introduction to parallel algorithms[END_REF] for a thorough introduction to this subject. Furthermore the sequential transitions need not be deterministic: the integration of a random factor is the basis for the randomized algorithms. Randomized algorithms are also very important in optimization contexts, particularly for approximation schemes with the use of randomized rounding. We recommend (Williamson and Shmoys 2011, Chapters 5 and 6) for a clear and comprehensive reference on the topic.

Even though the Mixed-Integer Linear Programs (MILP) solvers that we use in this work implement inherently parallel and optionally randomized algorithms (see section 2.3) to solve our instances, the study of said algorithms and the associated models of computation is well beyond the scope of this manuscript since in the general case (including ours) a parallel and/or randomized algorithm does not change the inherent characteristics of the problem that it solves.

On one hand we have computational problems and on the other hand algorithms to solve these problems by computing a solution. For a given problem, different algorithms, running on different models of computation, can exhibit very different characteristics. The study of models of computation and their expressiveness in terms of algorithms -and thus of the problems that they can solve-is part of the theory of computation. For a general introduction to the subject we recommend [START_REF] Sipser | Introduction to the Theory of Computation[END_REF]. The problems that we study in this manuscript are driven by their practical applications.

The fact that there exists a potentially large number of algorithms that solve a given computational problem does not mean that they are all equivalent. There are many characteristics that can be used to compare and classify algorithms, the most important ones being the complexity measures that satisfy the Blum complexity axioms. Namely, the two most significant measures are the execution time complexity (also named run time, runtime, or simply time complexity) and the memory space complexity (or simply space complexity) measures, informally the minimum number of steps and the minimal amount of storage that an algorithm must use to successfully compute the solution to the problem at hand. These measures provide the means to quantify the necessary resources that an algorithm requires for its computation to complete, which gives us an element to express the efficiency of the algorithm. When unspecified, "complexity" usually means "execution time complexity".

The analysis of algorithms is the study of the efficiency of algorithms as function of the length of the input. In the "the primality test problem" previously mentioned, the complexity of an algorithm solving this problem would therefore be a function of n. Since the algorithm and its complexity hold for any n, the complexity is generally measured asymptotically. To denote this asymptotic representation of complexity, we use the Big-O asymptotic notation:

f (n) ∈ O(g(n)) ⇐⇒ ∃M, n 0 s.t. |f (n)| ≤ |M × g(n)| ∀ n ≥ n 0 .
Thus the Big-O function designates an asymptotic upper bound for the function and allows for a notation that represents its growth rate, also known as the order (of growth) of the function. Informally, it means that the term with highest growth rate in the function f (n), stripped of its factor, is lesser or equal than g(n) asymptotically (usually equal since we want the tightest bound possible). Thereby, constant growth rate is denoted O(1), logarithmic growth rate: O(lg(n)), linear growth rate: O(n), quadratic growth rate: O n 2 , etc. Note however that an algorithm complexity is dependant on the execution model and on the set of inputs. For example regarding the execution model, integer multiplication is often assumed O(1) when it actually only holds when the result is contained inside machine registers, where it is an O n lg 3 operation for arbitrary large n-digits number with the Karatsuba multiplication algorithm [START_REF] Karatsuba | Multiplication of multidigit numbers on automata[END_REF] in general. In regard to the inputs, the insertion sort or an n elements list takes O(n) when the list is already sorted, O(kn) time to sort the list when it contains at most k inversions, and O(n 2) time in the general (worst) case for example. When unspecified, "complexity" usually means "worst case asymptotic complexity" in opposition to "exact", "average-case" or "best-case complexity" which use are less common in theoretical contexts.

Note that the notation O(g(n)) actually defines the set of all functions such that the definition holds, that is of all functions

f (n) ∈ O(g(n)). And since clearly O(1) ⊂ O(lg(n)) ⊂ O(n) ⊂ O n 2 ⊂ . . . ,
this notation provides a natural classification of algorithms into ever more inclusive classes of increasing complexity. Although in the general case not all such classes hold an inclusion relationship with each other, hierarchical classification of classes is central to complexity analysis of computational problems. Classes for a specific resource res (e.g. time) are defined by the set of problems that can be solved in O (f (n)) in regard to res for any input of size n. Even though not strictly correct, we often denote such a class the f (n) res class, and say that an algorithm is in (the order of) f (x) res.

Where the analysis of algorithms studies these characteristics of algorithms, complexity theory is concerned with the study of the problems themselves, whatever the algorithmic solution. In practice when all the knowledge that we have about a problem is a set of algorithms that can solve it, we consider a problem to be at most as difficult (that is: complex) as the "best" known algorithm that solves the problem, in other words the one which complexity is in the most restrictive complexity class (for a given resource). For example, the fastest known algorithm that can solve the primality test problem is Lenstra Jr and Pomerance (2002)'s and is in O (log n) 6 × (2 + log(log n)) c time, for some real valued constant c; the primality test problem is thereby in this complexity class. [START_REF] Agrawal | PRIMES is in P[END_REF] speculated that there may be a faster algorithm for this problem, it is yet unknown if one actually exists. That is, it is unknown if there exists a more restrictive complexity class that includes the primality test problem.

One of the techniques to study the complexity of a problem is the problem reduction approach. A problem A is said reducible to problem B, noted A ≤ B, if there exists a method that can transform any instance of A into an instance of B. Technically, a reduction from A to B allows any algorithm that solves B to also solve A. Provided that the reduction's algorithm does not take any more resources than the algorithm that solves B, it means that A cannot be harder to solve than B, since any of its instances can be reduced to B. Conversely, if we know that A is a difficult problem (we know that some of its instances are difficult to solve), being able to reduce all of its instances to any of problem B proves that B is at least as difficult as A, since we know that some of its instances are indeed difficult from the reduction of the difficult ones from A.

Most often, problem reduction are studied under polynomial resource constraints. Note that, since for any amount of space resource that a deterministic algorithm requires, it first needs to be run through and thus a deterministic algorithm is always at most as fast as the amount of memory that it requires. For this reason, the deterministic run time complexity measure is more restrictive than the deterministic space complexity measure, and polynomial-time problem reductions give the strongest results in regard to problem classification.

Most often, problem reductions compare problems of same problem type, for which there exists many types:

• decision problems which are problem that ask a binary "yes/no" question,

• function problems which given an x are problems that ask y = f (x),

• counting problems for which we count the number of valid answers,

• optimization problems which are problems that ask which is the best solution in a set of candidates,

• etc.

The most commonly studied in complexity theory are decision problems, and they are central to complexity theory. Indeed two most prevalent complexity classes, P and N P , are formally defined for these problems.

A problem p is said to be hard for some complexity class C, or C-hard, if every problem in C can be reduced to p using a reasonable volume of resources. Thus, the set of C-hard problems is the set of all problems that are harder or equally hard as the most difficult problems in C.

A problem p is said to be complete for some complexity class C, or C-complete, if p is in C and p is C-hard. Thus, the set of C-complete problems is the set of all problems that are all equally the hardests to solve in C. Since it is known that any problem in C can be reduced to any one problem p ∈ C-complete, and considering that being able to reduce p to a problem q is equivalent to being able to reduce any problem in C to q, the set of C-complete problems is very often used to prove C-hardness (of problem q).

Optimization problems

Mathematical optimization problems are problems where we search for the optimal element (maximal or minimal depending on the problem) of a real-valued objective function, subject to some constraints over its domain. It is very rare that only the value of the optimal element is required, and most often it is the valuation of the input that leads to the optimal element, that is the values of input parameters of the function, that we really require. Formally, an optimization problem has the following form:

Given an objective function f : D → R that we want to minimize, given the choice set S ⊆ D,

find an element opt ∈ S such that f (opt) ≤ f (x) ∀x ∈ S.
Note that by convention this standard form is for minimization problems; maximization problems are strictly equivalent since, for any given maximization problem, negating the objective function effectively makes it a minimization problem. Depending on the context, the objective function is also named the cost function, cost that we usually want to minimize, or the utility (or profit) function, utility (or profit) that we usually want to maximize.

When the choice set is simple enough or clearly defined, the previous problem notation is oftentimes shortened to the smaller (but much less explicit) version min In most practical applications, the choice set rarely has a straightforward definition, and is described by a set of constraints, that is a set of equalities and inequalities such that ∀x ∈ D, x ∈ S if and only if x satisfies them all. All points x ∈ D are potential solutions for f and constitute the search space of the optimization problem, all x ∈ S are candidate solutions (or feasible solutions) of the problem, and all points x ∈ D s.t. x / ∈ S, that is points of the search space where at least one constraint is violated, are the infeasible solutions. The choice set S is thus the set of all candidate solutions. Given a set of constraints, an optimization problem is formally defined as follows:

min f (x) subject to g i (x) ≤G i ∀i ∈ [1, m] h j (x)=H j ∀j ∈ [1, n]
where f (x) is the objective function, m g i is the set of all inequality constraints, and n h j the set of all equality constraints.

Enumerative technique, which are application of exhaustive search (or brute-force search) methods, can be the basis of valid algorithm for such problems. However, the complexity of enumerative algorithms is proportional to the number of valid valuation of the variable, i.e. the number of candidate solutions. In practice the search space of many common optimization problems grows at an exponential rate. Special cases where the search space is finite constitute the very specific topic of combinatorial optimization (see section 2.3.2). In general, the search space is neither finite nor enumerable, and unless the objective function and the constraints conform to some specific restrictions, a naive exploration of the search space is not suitable.

The effective size of the search space is often compounded by the fact that optimization problems are essentially expressed in high-dimensional spaces. With highdimensional problems the x that we optimize over becomes a vector, oftentimes noted x, and each component of the vector is said a variable of the problem. In this context, constraints not only describe restrictions to the set of available candidate solutions, but also interdependencies between these variables. These interdependencies define the Pareto optimality of the problem, where the variables are valuated such that any one cannot be improved without making any other and the objective function as a whole worse. Typically, the Pareto optimality is often applied when the objective function is a combination of multiple criteria.

Multi-objective optimization When multiple objective functions are combined, that is when multiple criteria need to be optimized at the same time simultaneously, the problem is said a multi-objective optimization, or Pareto optimization. Since in the general case (and very often in practice) a single solution cannot optimize all criteria at the same time, trade-offs have to be made and some objectives must be optimized in favor of others. Specifically, some ratio α ∈ [0, 1] have to be selected such that, for some objective functions g(x) and h(x), the combined objective

f (x) = αg(x) + (1 -α)h(x)
is optimized. For one, the generalization to k objectives does not scale, and second, in practice it is very difficult to select a meaningful trade-offs. We thus define the Pareto front as the set of all vectors x that are optimal for at least one value of α. Finding the Pareto front of a problem is very similar to the Skyline query problem (or Skyline operator), and [START_REF] Rekatsinas | Finding Quality in Quantity: The Challenge of Discovering Valuable Sources for Integration[END_REF] gave a recent overview of the difficulties involved. In many cases, multi-objective optimization is problematic either because trade-offs have to be selected beforehand without a well defined models for the consequences, or because computing the Pareto front (or a part) understandably remains a computationally intensive task to this day. In chapter 4 we present a technique that we use to express an inherently multi-criteria problem into a constrained single-objective problem, therefore preventing some of the aforementioned problems and allowing for an easier interpretation of our results.

Linear and convex programs

Linear programs are optimization problems where the objective function and the inequality and equality constraints are linear. Each inequality constraint can be seen as a hyperplane, that is a d-dimensional generalisation of a 1-d point, of a 2-d line or of a 3-d plane. Hence, each inequality constraint effectively reduce the choice set by requiring that the solution is in the half-space (either on the greater-than or lesser-than side) defined by its geometric equivalence. As a result the combination of all inequality constraints produce a polytope, a d-dimentional generalisation of a 2-d polygon and 3-d polyhedron. Given the nature of the inequalities and since the search space is defined by the intersection of many half-spaces, it is either empty (no point can respect all constraints at the same time) or convex. Furthermore, the objective function effectively defines a continuous scalar field and its gradient defines the direction of the optimization. Finding the optimal value of the problem is then equivalent to finding the points of the polyhedron where the objective function is optimal. Since the objective function is linear, either there is one unique optimum on a vertex of the polyhedron, or there as infinitely many of them that form an edge or face of the polyhedron. See fig. 2.5 for a visual representation in 2-dimensions of a simple linear problem. Equality constraints are not strictly necessary since they can always be replaced by two opposite inequalities (h(x) = H becomes the two constraints h(x) ≤ H and -h(x) ≤ -H). Geometrically, this describe a d -dimensional hyperplane, with d < d depending on the variables used in the constraint, effectively reducing the search space dimension. Since a problem with n variables can be represented in a n-dimentional space, the number of variables of a problem and its dimension are often used synonymously, even though formally the dimension of the problem d ≤ n since the variables do not define orthogonal vectors in general.

In 1947 Dantzig proposed the first method to solve linear program: the simplex algorithm. Geometrically, the algorithm moves from one vertex to another connected vertex until it finds one where it detect that all other connected vertices are suboptimal (or equal); and since the search space is a convex polytope this point is provably optimal. Even though [START_REF] Klee | How good is the simplex algorithm[END_REF] showed that there exists pathological instances Figure 2.5: Visual representation of a 2-dimensional linear programming problem. The problem is constrained by seven inequalities, and the orange section represents the intersection of the half-spaces defined by these inequalities. The blue line represents the optimal isoline of the objective function (that is, all points (x, y) s.t. f (x, y) = o and o is the optimum of the problem) and the green arrow the direction of the gradient (that is, the direction of the optimization). Clearly, the objective function is at its optimum on the vertex of the polygon.

for which the algorithm run in exponential-time relative to the number of variables4 , it remains used in practice even nowadays. Furthermore, many modern techniques are grounded on the geometrical representations that the algorithm introduced. [START_REF] Khachiyan | Polynomial algorithms in linear programming[END_REF] proposed the first polynomial-time algorithm to solve linear programming problems, the ellipsoid method, which was an important theoretical result, but with very few practical applications due to high exponents. [START_REF] Karmarkar | A new polynomial-time algorithm for linear programming[END_REF] introduced the most important result in the field yet, a polynomial-time interior point algorithm that is faster than the simplex on most problems.

Convex optimization is the generalization of linear programming to convex objective functions, convex inequalities and linear equality constraints. The search space of convex optimization problems is itself convex, as the intersection of half-spaces of convex support. This convexity property provide an important invariant: any local optimum is also the global optimum. CHAPTER 2. PRELIMINARIES [START_REF] Nesterov | Interior-point polynomial algorithms in convex programming[END_REF] showed that most convex problems, specifically linear programs, second order cone programs, and semidefinite programs, can be solved in polynomialtime complexity using variations of the interior-point methods that [START_REF] Karmarkar | A new polynomial-time algorithm for linear programming[END_REF] introduced for linear programming. In general, however, convex optimization remains a NP-hard problems.

Many practical and real-life problems can be modeled as linear and convex optimization problems, and in general as continuous optimization problems. However, these forms of optimization problems are also used to a large degree in the context of combinatorial optimization as problems relaxations. A problem is said relaxed when some of its constraints are lifted, such as integrality of the variables for example. In this context the relaxed problem is often used as an heuristic: an easier version of the problem that gives an optimistic optimum in a reasonable amount of time. See section 2.3.2.1 for an example of such use of linear and convex programs.

Combinatorial optimization

Combinatorial optimization is the large field of research interested in optimization problems defined over finite search spaces. That is, where the problems is to search for one optimal element inside a discrete set of objects. The domain is closely related to various algorithmic research fields, and in particular to the complexity theory and to the combinatorics field, which together study the complexity of algorithms working on finite combinatorial sets.

Although there exists some easy combinatorial problems, in general this is a class of problems that are often difficult for at least two reasons.

1. For one, even if the search space is finite, the number of feasible solutions is frequently so high that any enumeration is impossible in practice. For example in the two-sequences alignment problem. Given two sequences a = a 1 a 2 . . . a m and b = b 1 b 2 . . . b n (n ≤ m) over the same alphabet, find the alignment that maximize the number of similar characters between the two alignments. In this problem, the number of non redundant alignments between a and b is

N (m, n) = N (m -1, n) + N (m, n -1) = m+n n
which is a clear exponential growth.

2. Secondly, in many cases, the equivalent decision problem is itself a NP-hard problem. For example in the sequence assembly problem with the shortest superstring problem. Given a set of strings s 1 , s 2 , . . . , s n , construct a superstring S that contains all s i as substrings, and such that the length of S is minimal. The decision problem equivalence, knowing given s if there exists a superstring S l of length l ≤ s, is actually NP-complete. The proof is given by a reduction of the vertex cover problem (decision version) to this shortest superstring problem as shown by [START_REF] Maier | The complexity of some problems on subsequences and supersequences[END_REF] for alphabets of size 5, and later by [START_REF] Räihä | The shortest common supersequence problem over binary alphabet is NP-complete[END_REF] for binary alphabets.

Combinatorial optimization can be subdivided into two closely related fields: the problems that work on combinatorial structures such as graphs, and integer programming problems. This distinction is useful for two reasons. On the one hand, their are some optimization problems over graphs, such as the flow-network problems, shortest paths or spanning trees, that can be solved in polynomial time, whereas the integer programming problem is difficult. Precisely, the 0-1 integer programming decision problem is NPcomplete, and the integer programming decision problem in the general case is NP-hard. On the other hand, such optimization problems can be reduced to integer programming problems, although the reduction might require an exponential number of constraints, for example to model connectivity of the solutions, and thus the reduction is an exponentialtime reduction. Note that linear programs that also include integral variables are called Mixed Integer Linear Programs (or MILP) and are a general case of discrete optimization that includes integer programming.

Even though combinatorial optimization problem are theoretically difficult, it is often the case that specific instances can be solved in reasonable amount of time. Some problems, although proven difficult, have an extensive literature related to them. In particular many publications propose techniques and heuristics that exhibit better characteristics to solve problems, oftentimes providing better run time in many benchmark instances. One such techniques involves solving in polynomial time a relaxed version or an approximation of the initial problem. Of interest to such studies are real-world instances that do not exhibit exponential behavior and random instances that often constitute basis for benchmarks (see DIMACS Challenges for standard benchmarks for many optimization problems). See section 3.4.3 for an extended bibliography of such approaches to solving the maximum-weight connected subgraph problem that we use in practice in chapter 4.

When it comes to solving combinatorial optimization problems, mostly three cases can be observed. First, if the problem can be solved in polynomial time. In this situation, the general approaches often involves greedy algorithms that lead to the global optimum, dynamic programming that reuse sub-problems structure, and linear programming when the combinatorial structure can be expressed as real-valued variables. Second, when the decision problem equivalent is actually NP-hard, informed search space exploration is the technique of choice. In particular, using branch-and-bound and branch-and-cut techniques that are described in section 2.3.2.1. Third, approximation algorithms are often employed when a reasonably close to optimal solution is required within a provable run time complexity. See section 2.3.3 for a brief overview of approximation algorithms and of the complexity class that they induce.

Search space exploration algorithms

Branch-and-bound The branch-and-bound technique is a search space exploration technique based on the explicit traversal and pruning of a state tree. It is based on the technique that [START_REF] Land | An automatic method of solving discrete programming problems[END_REF] applied to integer programming. It is very similar to the star family of algorithms (such as A*, B*, . . .) and to the alpha-beta algorithm in regards to both space exploration and to pruning [START_REF] Nau | General branch and bound, and its relation to A* and AO*[END_REF].

Informally, given a node on the state tree, for each of its children corresponding to a valid variable assignment: if it's a leaf compute the actual valuation, otherwise compute an optimistic valuation (for example using a linear relaxation heuristic). For each of these children, if the valuation is worse than the actual best: discard, otherwise: mark for traversal. Start the procedure at the root where all variables are unassigned, and continue until no more nodes are marked for traversal at which point the best valuated leaf is the optimal state.

In practice the branch-and-bound can be reasonably fast given a good node traversal strategy, for example using a priority order on the optimistic valuations, and given a good heuristic. In particular the heuristic must be as close as possible to the actual valuation in order to prune a maximum number of nodes; many problems have heuristics specifically designed to be used in a branch-and-bound technique.

The branch-and-bound technique is very well studied, and there exists many techniques that optimize the run time or the space requirements of the algorithms. Of note are parallel approaches, which are ubiquitous in modern solvers, and we recommend [START_REF] Bader | Parallel algorithm design for branch and bound[END_REF]) for an overview with a practical example applied to the phylogenetic tree reconstruction problem.

Branch-and-cut

The branch-and-bound algorithm requires an explicit definition of the search space for its branch operation, where the list of valid variable assignments must be readily available in order to traverse the list of valid children to explore.

The branch-and-cut technique is very similar to the branch-and-bound, with the introduction of global cuts and local cuts: additional constraints that can be added during the execution. Cuts, also named Gomory cuts [START_REF] Gomory | Outline of an algorithm for integer solutions to linear programs[END_REF] or cutting-planes, are additional constraints that restrict the set of candidate solution. Global cuts are constraints that, once added into the formulation, must hold for all further solutions anywhere in the state tree, and local cuts are constraints that must hold only for the local sub-problem (the local sub-tree in the state tree). In practice, the addition of these dynamic constraints very often have a positive impact to the run time and space efficiency, and most MILP solvers nowadays implement these cutting-plane techniques as the basis of their algorithm.

One special use of the branch-and-cut technique is for problems that cannot be easily expressed using a branch-and-bound model. For example, many of the problems over graphs that require connectivity of the solution need an exponential number of constraints to be explicitly defined as a MILP formulation. In such context, a first version of the problem can be expressed with a limited (potentially empty) set of initial connectivity constraints in the model, and global cuts are iteratively added during the branch-and-cut execution whenever a potential solution that would break connectivity is found. This is the application that we use in chapter 4 where we use the minimum cut problem over flow network, that can be solved in polynomial time, to find connectivity constraints to add to the model.

Approximation and complexity of optimization problems

The classes PO and NPO, respectively P-optimization and NP-optimization problems, are defined for optimization problems and mirror their equivalent classes P and NP for decision problems. They are seldom used in practice though, and it is not rare for P and NP to be used in optimization contexts to actually mean PO and NPO.

Note that given an algorithm for an optimization variant of a problem, it is trivial to have an algorithm for the decision variant by checking the optimal solution against the queried bound. Conversely given an algorithm for the decision variant, a binary search over the range of possible values of the objective function gives the optimal solution of the optimization variant in a polynomial number of execution of the decision variant algorithm. These two results show that if either one of the decision or optimization problem can be solved in polynomial time, so is the other.

Approximation algorithms are algorithms for NPO problems that find sub-optimal solution of provable quality in polynomial-time. Not all combinatorial optimization problem can be approximated though, and of those that can be approximated, some can be at best up to a constant factor of the optimal solution, and some can be up to any factor of the optimal solution. Note that if a problem can be approximated up to any factor, it can certainly be approximated up to a constant factor.

It is very common for approximation algorithm to be designed as polynomial optimization algorithm applied over a relaxation of the original problem. Such polynomial technique include the greedy approaches, dynamic programming schemes, and convex programming relaxation.

A c-approximation for a problem, with c a constant, is an algorithm that takes as input an instance of the problem and that produces a solution of at most c times the optimal solution in polynomial time. A polynomial-time approximation scheme (or PTAS) for a problem is an algorithm that takes as input an instance of the problem as well as an > 0 and that can produce a solution within a factor 1+ (for a minimization problem, 1 -for maximization) of the optimal solution in polynomial time.

The set of all problems that can be approximated up to a constant factor in polynomial time induce the complexity class APX. All problems in APX are also said c-approximable for a constant c. The set of all problems that admit a PTAS induce the PTAS complexity class. Note that unless P = N P , P T AS AP X; see (Jansen 1998, p. 20) for proof. This also means that any APX-hard problems cannot have a PTAS.

In chapter 5 we prove that the maximum-weight cross-connected subgraph problem that we introduce in chapter 4 is actually APX-hard.

CHAPTER 2. PRELIMINARIES

For an introduction to optimization problems and the fundamental techniques of the domain (including search space exploration methods) we recommend [START_REF] Papadimitriou | Combinatorial optimization: algorithms and complexity[END_REF]'s classic. For an advanced reference book on difficult optimization problem and their algorithms, their analysis and their precise classification, we suggest Hromkovič (2013)'s book (for reference note that PTAS is noted NPO(II) and APX is noted NPO(III) in this book).

Chapter 3

State of the art

Biological databases

Networks

Increasingly advanced experimental methods are used to provide evidence of existing interactions. Nowadays, comprehensive litterature combined with advanced text mining capabilities further advance cross-references between biological products. Available resources that provide access to this knowledge are currently accessible from many only databases.

Two major classes of databases exists: the automatically referenced database [START_REF] Szklarczyk | STRING v10: protein-protein interaction networks, integrated over the tree of life[END_REF], and the manually currated databases [START_REF] Orchard | Protein interaction data curation: the International Molecular Exchange (IMEx) consortium[END_REF].

Orthologous genes

In their seminal paper, [START_REF] Tatusov | A genomic perspective on protein families[END_REF]) constructed "clusters of orthologous genes" (COG) across multiple species. They contain similar cross-species sequences as well as similar intra-species sequences, i.e. paralogous sequences.

The Inparanoid database [START_REF] O'brien | Inparanoid: a comprehensive database of eukaryotic orthologs[END_REF]) is a publictly available orthology database that contains pairwise ortholog groups of more than 273 organisms1 .

Statistical analysis of gene expression

Nowadays, differential analysis of transcriptomic profiles is ubiquitous in molecular biology. The ability to broadly assey biomolecular profiles of multiple samples cheaply enabled the wide adoption of techniques based on the differential analysis of multiple whole-genome samples. Indeed, genes for which their expression profiles are correlated over many different conditions are very likely to be involved in the same processes or to exhibit similar functionalities [START_REF] Ideker | Discovering regulatory and signalling circuits in molecular interaction networks[END_REF]. On the other hand, genes with 22 CHAPTER 3. STATE OF THE ART significantly different expression profiles under conditions are candidates for choice as biomarkers for the biological phenomenons under study [START_REF] Altman | Whole-genome expression analysis: challenges beyond clustering[END_REF].

For example in cancer research, the ability measure transcriptomic state within a cell is a central technique for the analysis of mutated cell biomolecular machinery. Indeed, in order to maximize therapeutic effect of treatment and minimize side effects, it is important to be able to characterize the genetic profiles of distinct tumor types. For a long time, tumor classification was based on medical expertise and assessment based on the clinical evolution and on the physical appearance of either the cancerous growth or its cells. However, even for tumor of the same type and grade, widely different clinical development and outcome were observed. A technique allowing for the classification and the detection of cancer types and subtypes was dearly needed.

The advances of gene expression profiling techniques allowed [START_REF] Golub | Molecular classification of cancer: class discovery and class prediction by gene expression monitoring[END_REF] to develop such a classification technique based on simple statistical testing: the final prediction is the class for which the sum of scores computed statistically for each genes2 is maximal.

Whole cell expression profiles can be used to classify cancer tumors, and further predict patient clinical outcome (Charles M [START_REF] Perou | Molecular portraits of human breast tumours[END_REF][START_REF] Sorlie | Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications[END_REF][START_REF] Van't Veer | Gene expression profiling predicts clinical outcome of breast cancer[END_REF]Van De Vijver et al. 2002). Moreover, [START_REF] Ross | Systematic variation in gene expression patterns in human cancer cell lines[END_REF] showed that gene profiles can be directly linked to their cell line's origin through consistent correspondence between gene expression patterns and origin of the tissue. Even though the literature in the domain is quite extensive, recent studies such as (Estevez-Garcia et al. 2015) still uses DNA chip for genes expression profiling.

One important limitation of these studies, however, is that they are based on genecentric methods, which use univariate statistical testing to call for significantly differentially expressed genes. Modern approaches integrate knowledge for many different database.

Cross-species analysis

Several authors identified the benefits of combining cross-species experimental data. At the single gene level, [START_REF] Bibliography Noort | Predicting gene function by conserved co-expression[END_REF] have demonstrated that conserved co-expression is a strong co-evolutionary signal. More recent studies suggested to identify conserved biological processes. [START_REF] Reiss | Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks[END_REF] recognize that co-expression of genes is not enough information for the discovery of the underlying genetic regulatory process. They suggest that coregulation is a better criteria for detection, and show that a biclustering of the data over both gene expression and condition provide more sensible results. The optimization objective that they propose is an ad-hoc multi-criteria objective that takes into account transcript co-expression, as well as putative cis-acting gene regulatory motifs and con-nectivity between functionally associated clustered genes. They do not provide any new method to solve the biclustering problem, which they acknowledge as being NP-hard problem [START_REF] Cheng | Biclustering of expression data[END_REF], and rather implement a local-search heuristic that implicitly look for the Pareto front created by their criteria [START_REF] Someren | Multi-criterion optimization for genetic network modeling[END_REF]. [START_REF] Lu | Cross species expression analysis of innate immune response[END_REF] analyzed transcriptomic profiles of human and mouse macrophages and dendritic cells, under two conditions, to derive common response genes involved in innate immunity. They used a probabilistic graphical model that propagates information for each gene about its involvement in the innate immunity response across species or cell types and conditions then seeks pathway enriched with those common responses genes. [START_REF] Waltman | Multi-species integrative biclustering[END_REF] presented a multi-species integrative method to heuristically identify conserved biclusters. In their setting, a conserved bicluster is a subset of orthologous genes and a subset of conditions that achieve a high score with respect to co-expression, motif co-occurrence and network density. [START_REF] Kristiansson | A novel method for cross-species gene expression analysis[END_REF] proposed a method for the analysis of gene expression data that takes the homology structure between the different species into account. Their method is an extension of the standard Fisher's method for meta-analysis [START_REF] Hu | Statistical methods for meta-analysis of microarray data: a comparative study[END_REF]Campain and Y. H. Yang 2010;[START_REF] Trapnell | Comprehensive literature review and statistical considerations for microarray meta-analysis[END_REF]) that explicitly account for in-paralagous and orthologous genes and is able to call differential expression with increased statistical power when compared to methods ignoring this relationship. [START_REF] Dede | TriClust: A Tool for Cross-Species Analysis of Gene Regulation[END_REF] introduced a method that finds triclusters consisting of genes that are coexpressed across a subset of samples and a subset of species. [START_REF] Reiss | cMonkey2: Automated, systematic, integrated detection of co-regulated gene modules for any organism[END_REF] updated their cMonkey algorithm [START_REF] Reiss | Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks[END_REF]) to address the "long run-time, complexities, and inefficiencies" of the previous implementation. In addition to updating the scoring of the multiple criteria of their objective function, the main addition of this paper is the implementation of a global optimization algorithm for this objective, modeled after a standard k-means clustering of biological networks [START_REF] Watts | Collective dynamics of 'smallworld'networks[END_REF].

Connected active modules

Active modules methods combine biological networks with experimental data, such as expression profiles, to detect network structures of interest for the experiment. These methods are well suited to understand single-species processes, since the interpretation of the results usually follows from the inputs. They can also be used to look across multiple species for interesting process.

Already in 2001, [START_REF] Altman | Whole-genome expression analysis: challenges beyond clustering[END_REF] recognized the need to use networks of genetic interactions to tackle the analysis of expression data. One of the key concepts to understand biological processes in those networks is that of modules. Modules are considered to be sets of entities, such as genes or proteins, that function in a coordinated fashion or physically interact. See [START_REF] Mitra | Integrative approaches for finding modular structure in biological networks[END_REF] for an up to date CHAPTER 3. STATE OF THE ART review.

One possible formulation, for the problem of finding modules within a network, is to look for connected sub-networks that maximize weights on the nodes. These weights typically represent some measure of biological activity, for example the expression level of genes. In their seminal work, [START_REF] Ideker | Discovering regulatory and signalling circuits in molecular interaction networks[END_REF] were the first to solve the problem of finding gene modules within a biological network, using simulated annealing heuristic optimization. They recognize that finding the optimal module (with respect to the sum of the nodes' weights) in a biological network is formally equivalent to the maximumweight connected subgraph (mwcs) combinatorial optimization problem. This problem will be treated in section 3.4. [START_REF] Dittrich | Identifying functional modules in protein-protein interaction networks: an integrated exact approach[END_REF] were the firsts to cast the biologically relevant problem into the unified framework of combinatorial optimization theory. By recognizing the theoretical grounds of the mwcs problem, they reduce the overall problem to the very well studied prize-collecting steiner-tree optimization problem and apply an efficient algorithm [START_REF] Ljubić | An algorithmic framework for the exact solution of the prize-collecting Steiner tree problem[END_REF]) that finds provably optimal solutions to the problem. They acknowledge the close relationship between the initial scoring and the exact solution found, and provide a simple additive scoring function that ultimately allows for an easy interpretation of the results. [START_REF] Yamamoto | Better decomposition heuristics for the maximum-weight connected graph problem using betweenness centrality[END_REF] apply the mwcs problem to pathway gene networks in order to identify what they call "source components", subnetworks that hopefully represent the source of the differential behavior in the data. They provide a graph decomposition heuristic to solve the underlying computational problem.

Building on the Integer Linear Programming formulation proposed by [START_REF] Dittrich | Identifying functional modules in protein-protein interaction networks: an integrated exact approach[END_REF] and [START_REF] Zhao | Uncovering signal transduction networks from high-throughput data by integer linear programming[END_REF], [START_REF] Backes | An integer linear programming approach for finding deregulated subgraphs in regulatory networks[END_REF] provides a new ILP expression for the closely related k-cardinality mwcs problem that they solve using a branch-and-cut procedure. They test the significance of their results using graph permutation and show that the most significant results are obtained inside a small range of sizes over all their data. [START_REF] Mitra | Integrative approaches for finding modular structure in biological networks[END_REF] provides an overview of the many network centric approaches to modular detection of cellular processes. In particular they classify modern techniques into four classes: the 'active modules' discovery techhniques, the 'conserved modules' identification across species, 'differential modules' that are simultaneously active under different conditions, and the 'composite modules' that integrate many of the possible interaction type into single unified components. [START_REF] Deshpande | A scalable approach for discovering conserved active subnetworks across species[END_REF] developed the neXus algorithm for finding conserved active subnetworks. neXus is based on simple notions of activity and orthology and uses a heuristic search strategy. The authors use the average fold change of genes in a module as a measure for activity. To deal with conservation, they collapse paralogous genes 3.4. THE MAXIMUM-WEIGHT CONNECTED SUBGRAPH PROBLEM 25 within a cluster of orthologous genes (COG) [START_REF] Tatusov | A genomic perspective on protein families[END_REF] 3 into single nodes in the respective networks. They find modules using a seed-and-extend greedy heuristic that starts from a pair of orthologous seed nodes and then tries to simultaneously grow the two subnetworks by including pairs of neighboring orthologous genes, taking into account their activity as well as the interaction confidences. This strategy enforces a very stringent conservation policy: only modules whose genes are fully conserved are found. In addition, the locality of the greedy search strategy impairs the ability to find larger conserved modules and extending the search space around the seed genes drastically increases the runtime.

Cross-species connected active modules

In recent work, [START_REF] Zinman | ModuleBlast: identifying activated sub-networks within and across species[END_REF] introduce ModuleBlast, a method that, similarly to neXus, represents groups of orthologous proteins as single nodes in a combined network and tries to find connected subnetworks that are differentially expressed. The novelty of the method is the classification of the found modules according to the sign of the log fold change expression values. By doing so, the authors are able to assess whether conserved active modules show consistent or inconsistent expression patterns. However ModuleBlast, like neXus, requires strict conservation of module genes. We see that as an important limitation that our present work aim to correct.

The maximum-weight connected subgraph problem

This section is separated in two parts. In section 3.4.1 we first introduce the steiner tree, the prize-collecting steiner tree (pcst), and the maximum-weight connected subgraph (mwcs) problems. We also provide the main complexity results for the mwcs problem, and since a number of those results mostly follow from results for the pcst problem, we provide the most important ones for this problem too. In section 3.4.3 we present the main methods used to solve those problems. There are many techniques to solve these problems, and they can be classified to two caterogies. The theoretically-sound methods, that can provide either a provably optimal (or a proven gap4) solution, or an approximation solution to a proven bounded-factor. And the heuristic methods, that approximate the optimal solution to an unknown factor, but which are usually much faster.

Problems introductions

The steiner tree problem is an extremely well known combinatorial optimization problem, which is part of Karp's original 21 NP-complete problems [START_REF] Karp | Reducibility among combinatorial problems[END_REF]). It has its origin in the geometry of Jakob Steiner's eponym Steiner problem, and pertain to the class of mathematical optimization problems over graphs. It is informally defined as follows. A large number of variations of this problem exists: the Steiner tree problems. [START_REF] Hauptmann | A compendium on steiner tree problems[END_REF] maintain an extensive and up-to-date compendium of those variants.

CHAPTER 3. STATE OF THE ART

One of the variants of the steiner tree problem is the prize-collecting steiner tree problem, or pcst problem. Is is informally defined as follows.

pcst : Given a graph, a non-negative weight for each vertex, and a non-negative cost for each edge, the goal is to find the subtree that maximizes the sum of the weights minus the sum of the costs.

The pcst problem is an utility versus cost optimization variant (as formally defined by [START_REF] Conrad | Connections in networks: Hardness of feasibility versus optimality[END_REF]) of the steiner tree problem. [START_REF] Bienstock | A note on the prize collecting traveling salesman problem[END_REF] were the firsts to formally introduce the problem, and the first recognized proof of NP-hardness follows from [START_REF] Camerini | On the complexity of Steiner-like problems[END_REF] (even through the problem was not formally defined at the time). As a surprisingly late result5 , [START_REF] Feigenbaum | Sharing the cost of multicast transmissions[END_REF] were the first to prove that the pcst problem is NP-hard to approximate within any constant ratio 0 < < 1, or APX-hard, using a reduction from sat. This variant is highly relevant to our context as there exist bidirectional reductions between the pcst and mwcs problems, and for a long time reducing an mwcs instance to a pcst instance was the technique of choice to actually solve the problem (cf. section 3.4.3).

The maximum-weight connected subgraph problem, or mwcs problem, falls within the same classification as various Steiner tree problems: it is a problem of combinatorial optimization over graphs. It is informally defined as follows.

mwcs : Given a graph and a real-valued weight for each vertex, the goal is to find the connected subset of vertices that maximizes the sum of the weights.

First observe that, since the edges are unweighted, the solution is trivial, full or empty, if the vertices' weights are respectively all positive or all negative. This is in contrast with the pcst problem where the positive weights of the vertices oppose the costs of the edges.

From a computer science point of view, the mwcs problem is simple in its definition. Nevertheless, it is actually a very difficult problem to solve, and in many cases remains intractable. The first text to prove NP-hardness of the problem is the unpublished manuscript from Vergis (1983). Manuscript that D. S. Johnson (1985, Section 5) acknowledge when he looked into a series of graph problems in his famous NP-Completeness Columns. The proof is based on the reduction from the steiner tree problem, provided by Garey and D. S. [START_REF] Garey | Computers and intractability: a guide to the theory of NP-completeness[END_REF]. Johnson made the fundamental observation that the solution to the mwcs problem can always be reduced to a tree, since the additional edges serve no purpose. Karp later provided another proof of NPhardness for the mwcs problem in (Ideker et al. 2002, Supplementary Material), by providing a reduction from the minimum set cover problem, another problem which is one of his 21 first NP-complete problems [START_REF] Karp | Reducibility among combinatorial problems[END_REF]. Indeed, Álvarez-Miranda et al. (2013a) proved that the mwcs problem is actually APX-hard itself. Using the SAT reduction previously mentioned [START_REF] Feigenbaum | Sharing the cost of multicast transmissions[END_REF], they extended the result to mwcs using a straightforward reduction of pcst to 3.4. THE MAXIMUM-WEIGHT CONNECTED SUBGRAPH PROBLEM 27 mwcs.

In the same way the steiner tree broadly defines a large set of related problems, the mwcs problem defines itself a set of closely related problems. These problems can be applied in many different contexts, of which: social network sciences, operations research, certainly networks design, and system biology, which is our main interest in this manuscript.

Based on the basic version of the mwcs problem, the principal variants are the constrained versions, with an allocated budget and additional cost assigned to each vertex. The k-cardinality mwcs, the cardinality-constrained mwcs, and the budget-constrained mwcs serve interesting purposes. The k-cardinality mwcs require that the solution be comprised of exactly k vertices, whereas the cardinalityconstrained mwcs variant require that the solution includes at most K vertices. The budget-constrained mwcs variant assigns an additional positive cost to each vertex, and requires that the sum of the costs be at most a given budget B. Clearly, assigning a positive cost of 1 for each node of the cardinality-constrained mwcs problem provides a trivial reduction to the budget-constrained mwcs problem.

Note that for all these constrained versions, the problems remain non-trivial even when the nodes' weights are all positive. Furthermore, note that while removing the connectivity constraint in the basic version of the problem makes it trivial, in those variants the problems then become equivalent to the 0-1 knapsack problem (which is another one of Karp's original 21 NP-complete problems [START_REF] Karp | Reducibility among combinatorial problems[END_REF].

They can all be defined either on graphs or on directed graphs, and there exists rooted variants where one (or multiple) root(s) have to be selected in the solution.

There also exists minimization variants or reformulations for those problems. Most of them are strictly equivalent from an optimality standpoint: minimizing the sum of the opposite of the nodes' weights. However, they differ from approximation standpoint, see [START_REF] Feigenbaum | Sharing the cost of multicast transmissions[END_REF]D. S. Johnson et al. 2000) for details.

mwcs in practice

The mwcs problem and its cardinality-constrained and budget-constrained variants are used in numerous important practical applications. [START_REF] Hochbaum | Node-optimal connected k-subgraphs[END_REF] first described the fixed cardinality variant of the problem (k-cardinality mwcs). They relate its use in two contexts. First in off-shore oil-drilling where each facility is represented by a node and the weight their costs over benefits. Second in forest harvesting where we need to find the k connected parcel to harvest considering their associated benefits. They call it the connected k-subgraph problem. They where the first to observe that, for this variant, since adding a constant to the weight of each node does not change the optimal set of nodes, in the optimality context the nodes' weights can all be non-negative. They also show that the problem is NP-hard even for bipartite or planar input graphs or if the nodes' weights are boolean.

CHAPTER 3. STATE OF THE ART

H. F. [START_REF] Lee | Decomposition algorithms for the maximum-weight connected graph problem[END_REF] reintroduced the k-cardinality mwcs problem, and called it simply the maximum-weight connected graph (mcg) problem. They were the firsts to introduce the rooted variant where a single root is provided for the solution, that they called the constrained mcg (cmcg). They used this rooted variant to provide a decomposition scheme of the mwcs problem into multiple cmcg subproblems. They acknowledge that the optimal solution is NP-hard to find, and provide heuristics for their incremental roots selection. They use all problems that they introduce in the fiber-optic networks design context.

Gomes' team looked into the budget constrained version of the problem, both rooted and unrooted variants, that they apply in the context of conservation planning [START_REF] Conrad | Connections in networks: Hardness of feasibility versus optimality[END_REF][START_REF] Gomes | Connections in networks: A hybrid approach[END_REF][START_REF] Dilkina | Solving connected subgraph problems in wildlife conservation[END_REF].

C.-Y. Chen and Grauman (2012) used the mwcs problem to extract signatures from a video stream for the activity detection problem. They represent the video as a three dimentional 6-connect graph, i.e. a space-time matrix, where each node's weights represent video features. They then use standard classifier to classify the signatures. [START_REF] Carvajal | Imposing connectivity constraints in forest planning models[END_REF] also looked into the forest planning problem to select contiguous regions of forest to maximizes ecosystem protection in nature reserve design, i.e. the number of species and habitats preserved. 2013) all used the mwcs problem or its variants in system biology to extract connected sets of genes.

Solving the mwcs problems

Over the years, many methods have been proposed to solve the mwcs problem. They can mostly be categorized into two groups: 1) methods that first reduce the mwcs instance into a pcst instance, or 2) through direct modelization.

In both groups, many techniques have been proposed in order to make instances easier to solve. Instance size reductions are often used, which leads to exact methods if quality guarantees are preserved through reduction, or heuristics (possible approximation) methods when more aggressive simplifications are performed. Size reduction algorithms are fundamental techniques in solving large practical Steiner tree problems (or similar, such as the mwcs problem), and applying known exact reduction is the first step for real world instances resolution [START_REF] Polzin | Algorithms for the Steiner problem in networks[END_REF].

Through the Prize-Collecting Steiner Tree problem

In their seminal paper, [START_REF] Goemans | A general approximation technique for constrained forest problems[END_REF] were the firsts to provide an approximation algorithm (a 2-approximation) for a number of constrained forest problems, such as the pcst problem. They further develop their method in [START_REF] Goemans | The primal-dual method for approximation algorithms and its application to network design problems[END_REF]. This is an important contribution since they reformulate the problem into an easy to approximate formulation (the standard formulation is APXhard), which became the basis for many other contributions afterward.

THE MAXIMUM-WEIGHT CONNECTED SUBGRAPH PROBLEM 29

Building on these algorithms, D. S. [START_REF] Bibliography Johnson | The prize collecting steiner tree problem: theory and practice[END_REF] proposed multiple variations of this 2-approximation for pcst, that provide better performance, and application to variants such as the quota pcst where the sum of the weights must be at least a given quota, and the budget pcst where the sum of the costs must be at most a given budget. [START_REF] Lucena | Strong lower bounds for the prize collecting Steiner problem in graphs[END_REF] introduces the generalized subtour elimination constraints technique, and uses the separation algorithm first described by [START_REF] Fischetti | Weighted k-cardinality trees: Complexity and polyhedral structure[END_REF].

In two papers, Ljubić et al. (2005[START_REF] Ljubić | An algorithmic framework for the exact solution of the prize-collecting Steiner tree problem[END_REF] solved the mwcs problem by combining previously introduced methods for various Steiner tree problems over directed graphs. Their technique was the first to solve to optimality some of the previous benchmark instances and was order of magnitude faster than previous methods on some other instances. [START_REF] Dittrich | Identifying functional modules in protein-protein interaction networks: an integrated exact approach[END_REF] were the first to describe a reduction from mwcs to pcst with linear conservation of the objective function optimal value. Given this reduction, any method previously proposed to solve the pcst problem could now be used to solve instances of the mwcs problem, application that they demonstrate in system biology for module extraction. They also gave an approximation-preserving reduction from pcst to mwcs. [START_REF] Chimani | Obtaining optimal k-cardinality trees fast[END_REF] introduces an ILP formulation equivalent to the generalized subtour elimination constraints formulation proposed by [START_REF] Lucena | Strong lower bounds for the prize collecting Steiner problem in graphs[END_REF] that they call the directed cut formulation. They then propose a stronger separation algorithm for this new formulation, which is more efficient in practice than the previous technique introduced by [START_REF] Fischetti | Weighted k-cardinality trees: Complexity and polyhedral structure[END_REF].

Direct formulation

Direct formulation methods include all methods that can be used to solve the mwcs problem without first explicitly reducing the mwcs instance to a pcst instance. [START_REF] Quintão | The k-cardinality tree problem: reformulations and lagrangian relaxation[END_REF] provide multiple reformulation of the k-cardinality variant of the mwcs problem, from which they formulation strong linear relaxations. [START_REF] Quintão | The k-cardinality tree problem: reformulations and lagrangian relaxation[END_REF] further improves the technique by further integrating the constraints introduced very early by [START_REF] Miller | Integer programming formulation of traveling salesman problems[END_REF]. El-Kebir and Klau (2014) introduce new preprocessing rules that they apply until an stable state is obtained. They introduce a new graph decomposition, into biconnected and triconnected components, and solve each subproblem using a standard branch-and-CHAPTER 3. STATE OF THE ART cut approach similar to the one introduced by Álvarez-Miranda et al. (2013a). [START_REF] Althaus | Algorithms for the Maximum Weight Connected k-Induced Subgraph Problem[END_REF] describe, for k-induced subgraph, a combination of [START_REF] Fischetti | Weighted k-cardinality trees: Complexity and polyhedral structure[END_REF], [START_REF] Chimani | Obtaining optimal k-cardinality trees fast[END_REF], and (N. [START_REF] Cohen | Several Graph problems and their Linear Program formulations[END_REF]. In their as of yet unpublished manuscript, Althaus and Blumenstock (nodate) further improved their previous algorithm by introducing exact and heuristic reductions of the size of the mwcs instances. They solve the newly reduced problems using a combination of two MIP programs formulations: the (N. Cohen 2010) formulation for spanning tree problems, and the addition of the generalized subtour elimination constraints to further reduce the polyhedron size. They use [START_REF] Chimani | Obtaining optimal k-cardinality trees fast[END_REF]'s directed cut formulation of the constraints since the separation algorithm for it is very efficient. They integrate some of El-Kebir and Klau (2014)'s exact reductions in their algorithm, and propose heuristic reductions if the practical instance is still too large.

Chapter 4 xHeinz: a cross-species module discovery tool

Protein-protein interaction networks play a key role in understanding of cellular processes. Among bioinformatic techniques that rely on these networks, module extraction and network alignment are two majors classes of methods (see chapter state of the art). Traditionally, module extraction allows for the discovery of interesting gene sets from single species experiments. Network alignment is often used to discover conserved structures between species, that is similar subnetworks that are assumed to have the same biological functionality.

Molecular profiles are most often measured and validated on well studied model species. This is partly due to the fact that, when differential analysis is involved, the experiments require 1) sufficient replication, and 2) control and condition samples [START_REF] Trapnell | Comprehensive literature review and statistical considerations for microarray meta-analysis[END_REF] for the results to be statistically significant. Unfortunately these two requirements are difficult to obtain in human studies since there are large variations between physiological states of humans, making statistical analysis of replicates more difficult. Model species or cellular models are thus the source of choice for experimentation and gene expression analysis, and bioinformatics techniques for gene sets extraction often works with single species experimental data.

Unfortunately, immediate transferability from model organisms to human is rare, when possible [START_REF] Okyere | Cross-Species Gene Expression Analysis of Species Specific Differences in the Preclinical Assessment of Pharmaceutical Compounds[END_REF]. In their systematic review of cross-species extrapolation in pharmacokinetic modeling, [START_REF] Thiel | A Systematic Evaluation of the Use of Physiologically Based Pharmacokinetic Modeling for Cross-Species Extrapolation[END_REF] recently estimated that, at best, roughly 83.5% of the model extrapolations1 are in agreement with known results. As a result, [START_REF] Csermely | Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review[END_REF] attribute the very low phase-II survival rate of potential drug compounds (25%) to the lack of transferability between model organisms and human.

In this chapter we present a cross-species module discovery technique that we initially introduced in (El- [START_REF] El-Kebir | xHeinz: An algorithm for mining cross-species network modules under a flexible conservation model[END_REF]. It enables the simultaneous search of interesting 32 CHAPTER 4. XHEINZ gene sets in the two species, and such that those gene set have a high percentage of conservation across the two species.

In section 4.1 we present our technique as a mathematical model that makes it possible to identify conserved active modules across two species. Building upon the single-species modules extraction model described in [START_REF] Dittrich | Identifying functional modules in protein-protein interaction networks: an integrated exact approach[END_REF], our model inherits its notions of modularity and activity: 1) a set of genes forms a module if it induces a connected subnetwork, and 2) the activity of a module is the sum of the activities of its individual genes. The activity of each gene is quantified using a beta-uniform mixture model on the distribution of p-values that characterize the differential behavior. Our model introduces a flexible conservation policy, which allows to specify the minimum fraction of nodes in the solution that must be conserved. A rigorous complexity analysis of our model is the main topic of chapter 5.

We then cast our model as an integer linear programming formulation and present xHeinz, a branch-and-cut algorithm and its implementation. xHeinz is an exact optimization method that solves our model to provable optimality (given enough time), or reports a solution with a quality guarantee 2 (if stopped before full convergence).

In section 4.2 we apply xHeinz to understand the mechanisms underlying Th17 T cell differentiation in both mouse and human. As a main biological result, we find that the key regulation factors of Th17 differentiation are conserved between human and mouse and demonstrate that all aspects of our model are needed to obtain this insight. We further demonstrate the robustness of our approach by comparing samples of the differentiation process obtained at different time points, in which we search for optimal, conserved active modules under a wide range of conservation ratios. Using a permutation test, we show that our results are statistically significant. Finally, we discuss the main differences between our results and the results obtained by the neXus tool (see chapter state of the art) on the same data set.

Algorithmic approach: the mwccs problem

Mathematical model

We consider the conserved active modules problem in the context of two species networks, which we denote by

G 1 = (V 1 , E 1) and G 2 = (V 2 , E 2).
Nodes in these networks are labeled by their activity -defined by w ∈ R V 1 ∪V 2 and conserved node pairs are given by the symmetric relation R ⊆ V 1 × V 2 . The aim is to identify two maximal-scoring connected subnetworks, one in each network, such that a given fraction α of module nodes are conserved. The formal problem statement is as follows:

2 A provable maximum optimization gap.

G 1 G 2 G 1 G 2 G 1 G 2 Figure 4
.1: Trade-off between activity and conservation. Three optimal solutions (indicated in yellow) for varying conservation ratios α in a toy example instance. Node activities are given next to the nodes, conserved node pairs are linked by dotted lines.

The activity of a conserved module is the sum of the activities of its comprising nodes.

The parameter α denotes the minimum fraction of nodes in a solution that must be conserved, i.e. connected by a dotted line.

Problem 1 (Conserved active modules).

Given G 1 = (V 1 , E 1), G 2 = (V 2 , E 2), w ∈ R V 1 ∪V 2 and R ⊆ V 1 ×V 2 , the task is to find a subset of nodes V * = V * 1 ∪V * 2 with V * 1 ⊆ V 1 and V *
2 ⊆ V 2 such that the following properties hold.

• Activity: Node activity scores are given by w ∈ R V 1 ∪V 2 , where positive scores correspond to significant differential expression. For details see section 4.2.2. We require that the sum v∈V * w v is maximal.

• Conservation: Conserved node pairs are given by the relation

R ⊆ V 1 × V 2 .
We require that at least a certain fraction α of the nodes in the solution must be conserved, that is,

|U * | ≥ α • |V * | where U * := {u ∈ V * 1 | ∃v ∈ V * 2 : uv ∈ R} ∪ {v ∈ V * 2 | ∃u ∈ V * 1 : uv ∈ R}.
• Modularity: We require that the induced subgraphs

G 1 [V * 1] and G 2 [V * 2] are con- nected.
The model allows a trade-off between conservation and activity. If no conservation is enforced (α = 0), the solution will correspond to two independent maximum-weight connected subgraphs, thereby achieving maximal overall activity. Conversely, if complete conservation is required (α = 1), the solution can only consist of conserved nodes, which results in the lowest overall activity modules. The user controls this trade-off by varying the value of the parameter α from 0 to 1. The activity score monotonically decreases as α increases, see fig. 4.1.

Mixed-Integer Linear programming approach

We formulate the conserved active modules problem as an integer programming (IP) problem in the following way. max

v∈V 1 ∪V 2 w v x v (4.1) s.t. m u = max uv∈R x u x v u ∈ V 1 (4.2) m v = max vu∈R x u x v v ∈ V 2 (4.3) v∈V 1 ∪V 2 m v ≥ α v∈V 1 ∪V 2 x v (4.4) G 1 [x] and G 2 [x] are connected (4.5) x v , m v ∈ {0, 1} v ∈ V 1 ∪ V 2 (4.6)
This formulation satisfies the properties of activity, conservation and modularity.

Activity.

Variables x ∈ {0, 1} V 1 ∪V 2 encode the presence of nodes in the solution, i.e., for all

v ∈ V 1 ∪ V 2 we want x v = 1 if v ∈ V * and x v = 0 otherwise.
The objective function (4.1) uses these variables to express the activity of the solution, which we aim to maximize.

Conservation.

Variables m ∈ {0, 1} V 1 ∪V 2 encode the presence of conserved nodes in the solution. Recall that a node

u ∈ V * 1 (u ∈ V * 2) that is present in the solution is conserved if there is another node v ∈ V * 2 (v ∈ V * 1)
in the solution such that the two nodes form a conserved node pair uv ∈ R (vu ∈ R). This corresponds to constraints (4.2) and (4.3). Indeed, constraints (4.2) encode that a node u ∈ V 1 that is present in the solution (x u = 1) is conserved if there exists a related node v ∈ V 2 (uv ∈ R) that is also present in the solution (x v = 1). Similarly, constraints (4.3) defines conserved nodes in V 2 that are present in the solution. We linearise x u x v , in a standard way, by introducing binary variables z ∈ {0, 1} R such that z uv = x u x v for all uv ∈ R:

z uv ≤ x u uv ∈ R (4.7) z uv ≤ x v uv ∈ R (4.8) z uv ≥ x u + x v -1 uv ∈ R (4.9) z uv ∈ {0, 1} uv ∈ R (4.10)
Subsequently, we model the max function in (4.2) and (4.3) as follows.

m u ≥ z uv ∀v ∈ V 2 * st. uv ∈ R (4.11) m v ≥ z uv ∀u ∈ V 1 * st. uv ∈ R (4.12) m u ≤ uv∈R z uv u ∈ V 1 (4.13) m v ≤ uv∈R z uv v ∈ V 2 (4.14)
This set of constraints encode the two required conditions:

m u = 1 if at least one of its counterpart is present, 0 otherwise.
On one hand, (4.11) define a set of constraints: one for each node v ∈ V 2 * such that uv ∈ R. This set of constraints effectively instruct the ILP that m u must be 1 if at least one of the counterparts of u is in the solution. The same reasoning goes for (4.12). On the other hand, (4.13) constraint the variable m u to be 0 if none of the counterparts of u are in the solution. The same reasoning goes for (4.14).

We model the required degree of conservation by constraint (4.4): the fraction of conserved nodes in the solution is at least α.

Modularity.

In addition, we satisfy the modularity property by requiring in (4.5) that G 1 [x] and G 2 [x] are connected. Constraint (4.5) states that the nodes encoded in the solution x induce a connected subgraph in both G 1 and G 2 . There are many ways to model connectivity, e.g., using flows or cuts [START_REF] Magnanti | Optimal trees[END_REF]. However, [START_REF] Dilkina | Solving connected subgraph problems in wildlife conservation[END_REF] showed that cut-based formulations perform better in practice. Recently, Álvarez-Miranda et al. (2013a) have introduced a cut-based formulation that only uses node variables. In an empirical study, the authors show that their formulation outperforms other cut-based formulations. We model connectivity along the same lines. Since the constraints that we will describe are similar for both graphs, we introduce them only for graph

G 1 = (V 1 , E 1). v∈V 1 y v ≤ 1 (4.15) y v ≤ x v v ∈ V 1 (4.16) x v ≤ u∈δ(S) x u + u∈S y u v ∈ V 1 , {v} ⊆ S ⊆ V 1 (4.17) y v ∈ {0, 1} v ∈ V 1 ∪ V 2 (4.18) Where δ(S) = {v ∈ V 1 \ S | ∃u ∈ S : uv ∈ E 1 } denotes the neighbors of S.
The modularity property states that x should induce a connected subgraph in G 1 . However in our model, we don't explicitly model graph connectivity, and model local connectivity instead. The first sum of (4.17) state that x v can only be 1 if, for all sets S ⊆ V containing v, it holds that there is a neighbor u of S in the solution. Informally, this constraint is a form of expansion where we require the nodes in the solution to be part of the neighborhood of the other nodes in the solution, hence forming a connected subgraph. However this is not sufficient, because this would require all nodes to be included in the end. We solve this by introducing binary variables y ∈ {0, 1} V 1 that determine a root node, which serves as a local expansion termination condition. First, constraints (4.15) and (4.16) state that at most one node v part of the solution can also be the root node -in which case y v = 1. Second, the last sum of (4.17) state that x v can only be 1 if, for all sets S ⊆ V containing v, it holds that the root node is in S. Informally and integrating the first sum, this constraint encode that the graph is locally connected around v if, for all possible sets S ⊆ V containing v, either the root node is part of S or at least one node of the neighborhood of S is part of the solution.

There is an exponential number of such constraints. Therefore, we cannot add all them to our initial formulation. Instead we use a branch-and-cut approach, that is, at every node of the branch-and-bound tree we identify all violated constraints and add them to the formulation. Finding violated inequalities corresponds to solving a minimum cut problem, which we do using the algorithm by [START_REF] Boykov | An experimental comparison of mincut/max-flow algorithms for energy minimization in vision[END_REF].

To further improve the performance, we also strengthen our model with the following constraints. None of those constraints are necessary, but they help the ILP solver by reducing the search space.

y v = 0 v ∈ V, w v < 0 (4.19) u∈V y u ≥ x v v ∈ V, w v ≥ 0 (4.20) x v ≤ u∈δ({v}) x u + y v v ∈ V (4.21) y v ≤ 1 -x u u, v ∈ V, u < v, w u ≥ 0, w v ≥ 0 (4.22)
Constraints (4.19) states that the root node must be a positively weighted node, which reduces the search space of the root node. Constraints (4.20) explicitly state that the root node variable must be 1 if at lease one of the positive nodes is in the solution. This was already required for the previous set of constraints but never explicitly instructed to the solver. Constraints (4.21) is an optimization for the cases where the set S in (4.17) is a singleton. Finally, constraints (4.22) are symmetry breaking constraints: they encore an ordering for the possible root selections. It effectively requires that among all positively weighted nodes in the solution, the root node is the smallest one -according to some arbitrary order3 . This last set of constraints also provide determinism: the ordering guarantee that two runs of the ILP will choose the same root node.

Material and methods

We apply our method to the recently discovered interleukin-17 producing helper T cells (Th17), which exposes the problems highlighted in chapter 4.

These cells form a separate subset of helper T cells with a differentiation pathway distinct from those of the established Th1 and Th2 cells [START_REF] Park | A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17[END_REF]. Th17 cells are known to contribute to pathogenesis of inflammatory and autoimmune diseases such as asthma, rheumatoid arthritis, psoriasis and multiple sclerosis and play also a role in cancer immunology [START_REF] Wilke | Deciphering the role of Th17 cells in human disease[END_REF]. They originate from naïve helper cells, responding to environmental stimulus by activating a differentiation and specialization process [START_REF] Steinman | A brief history of TH17, the first major revision in the TH1/TH2 hypothesis of T cell-mediated tissue damage[END_REF].

Understanding the pathways and regulatory mechanisms that mediate the decision making processes resulting in the formation of Th17 is a critical step in the development of novel therapeutics that will facilitate rational manipulation of the immune response. Unfortunately, the vast majority of data collected so far originates from studies performed on mice [START_REF] Tuomela | Identification of early gene expression changes during human Th17 cell differentiation[END_REF]) and, most importantly, a comprehensive comparison of the Th17 differentiation process in model organisms and in human is missing. Several studies indicate that the differentiation and phenotype of human and mouse Th17 cells are similar (Annunziato and Romagnani 2009). Both subsets serve similar pro-inflammatory functions and produce the same hallmark cytokines and similar receptors. Furthermore, most of the already identified regulator genes show high sequence conservation.

These findings indicate that the differentiation process seems well conserved between human and mouse and that a cross-species approach is reasonable. Other studies, however, show stimulus requirements for effective differentiation of human cells that differ from those required for mice [START_REF] Mcgeachy | Th17 cell differentiation: the long and winding road[END_REF][START_REF] O'garra | Differentiation of human TH-17 cells does require TGF-β![END_REF]Annunziato et al. 2009).

The simultaneous analysis of both human and mouse expression data allows the identification of conserved candidate regulators, as well as potential drug targets. Most of our current understanding on Th17 cell differentiation relies on studies carried out in mice, whereas the molecular mechanisms controlling human Th17 cell differentiation are less well defined. A characterization of the similarities and differences will not only increase our understanding of this fundamental process, but is also essential for sound translational research.

Experimental procedure

We summarize here the experimental procedure followed by [START_REF] Tuomela | Identification of early gene expression changes during human Th17 cell differentiation[END_REF] and [START_REF] Yosef | Dynamic regulatory network controlling TH17 cell differentiation[END_REF] to generate transcriptomic profiles. 2012) isolated CD4+ T-cells from umbilical cord blood of several healthy neonates, arranged in three different pools, then activated with anti-CD3 and anti-CD28. Cells from each pool were then divided in two batches, one to be polarized toward Th17 direction, and one serving as control (Th0). Th17 differentiating cytokines consisted of IL6 (20 ng/mL), IL1B (10 ng/mL) and TGFB (10 ng/mL), along with neutralizing anti-IFNG (1 µg/mL) and anti-IL4 (1 µg/mL). Three biological replicates of human cells, for both conditions (coming from each pool), were collected between 0.5 -72 h (0.5 h, 1 h, 2 h, 4 h, 6 h, 12 h, 24 h, 48 h, 72 h time points) and hybridized on Illumina Sentrix HumanHT-12 Expression BeadChip Version 3. The microarray data were analyzed using the beadarray Bioconductor package [START_REF] Dunning | beadarray: R classes and methods for Illumina bead-based data[END_REF]). 2013) purified CD4+ T-cells from spleen and lymph nodes from wild type C57BL/6 mice, then activated with anti-CD3 and anti-CD28. For Th17 differentiation, cells were cultured with TGFB (2 ng/mL), IL6 (20 ng/mL), IL23 (20 ng/mL) and IL1B (20 ng/mL) during 0.5 -72 h (at time points 0. 5 h,1 h,2 h,4 h,6 h,8 h,10 h,12 h,16 h,20 h,24 h,30 h,42 h,48 h,50 h,52 h,60 h,72 h), and finally hybridized on an Affymetrix HT MG-430A.

Tuomela et al. (

Microarray processing, statistical analysis and node scoring

Preprocessed and quantile normalized data sets were downloaded from GEO under the accession numbers GSE43955 and GSE35103. As downloaded from GEO, both the human and the mouse time-series were already filtered by retaining only the probes with detection p-values < 0.05 in at least one time point and one condition. Following the original studies, we further only retained probes having a standard deviation > 0.15 over all the conditions and time points; as well as being annotated by a single Ensembl gene. Finally, a single probe was selected for each gene by taking, for each Ensembl gene, the probe having the largest variance accross all samples. In total, 12,307 and 18,497 probes passed the filters for the mouse and human data set, respectively. Differential expression between Th17 and Th0 conditions were estimated using the limma package [START_REF] Smyth | Limma: linear models for microarray data[END_REF]. Human samples were indicated as paired according to the experimental design so as to account for the pooled human samples. For mouse samples, calling was performed on all Th0 vs Th17 samples, regardless of the mouse donor. To determine which genes were differentially expressed at a given time point, we used a linear model to estimate the interaction between the treatment and the time effect. The linear models used for the human and mouse studies include one interaction term for each time point and exclude the intercept (In R, the formula reads: ∼ 0 + treat : time). Differential expression at any time point K of interest were determined by the contrasts Th17.time K -Th0.time K . We report in this study results for the following time points: 2 h, 4 h, 24 h, 48 h, 72 h.

Following [START_REF] Dittrich | Identifying functional modules in protein-protein interaction networks: an integrated exact approach[END_REF], we computed positive and negative scores for each gene at each time point by fitting a beta-uniform mixture model using the implementation in the BioNet package [START_REF] Beisser | BioNet: an R-Package for the functional analysis of biological networks[END_REF]). The method proceeds as follows:

Similarly to [START_REF] Pounds | Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values[END_REF], the distribution of the gene-wise p-values x = x 1 , . . . , x n is described as a beta-uniform mixture (BUM) model, which is a mixture of a B(a, 1) beta distribution (signal) and a uniform distribution (noise): λ + (1λ)ax a-1 , for 0 < a < 1, with mixture parameter λ and shape parameter a of the beta distribution. The log likelihood is defined as log(λ, a; x) = n i=1 log(λ + (1 -λ)ax a-1 i), and consequently the maximum-likelihood estimations of the unknown parameters are given by [λ, â] = arg max λ,a (λ, a; x). The parameter estimates have been obtained using numerical optimization. As detailed in [START_REF] Pounds | Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values[END_REF], the BUM model allows the estimation of a false discovery rate (FDR) that can be controlled via a p-value threshold τ (FDR). The adjusted log likelihood ratio score is then defined as s(x, FDR) = log âx â-1 âτ (FDR) â-1 = (â -1)(log(x) -log(τ (FDR))) .

Genes whose differential expression is considered significant given the FDR threshold obtain a positive score while genes showing no differential expression will receive a negative score. The size of the resulting module can be regulated with this FDR parameter. Throughout this study, FDR = 0.1 was used for all samples and species. However, due to the experimental noise and paired design, the human samples have much higher intra-group variance, resulting in significant calls having p-values orders of magnitude higher than the mouse calls. This results in a range of scores that is much narrower for human than for mouse, possibly imbalancing results towards mouse modules. To correct for this effect, scores of mouse genes were rank normalized to the scores of the human genes as follows: the scores (as defined by the BUM model) were sorted, and for each gene the score of the i-th mouse gene was set to the score of the i-th human gene.

Comparison of the distribution of scores before and after normalization showed that compared to usual Benjamini-Hochberg FDR and log fold change cut-offs (|log FC| ≥ 1), the loss in statistical power was inconsequential and that this procedure ensured that mouse and human genes had comparable score distributions.

Network and orthology databases

The human and mouse background networks were downloaded from STRING v9.1, protein.actions.detailed.v9.1.txt [START_REF] Franceschini | STRING v9. 1: protein-protein interaction networks, with increased coverage and integration[END_REF], which is a database that contains experimentally verified direct protein interactions. Note that this network also contains interactions predicted based on orthology, so-called interologs. Ideally, we would prefer to use only experimentally predicted interactions, but currently, for mouse, such available data is too incomplete to result in a meaningful background network. Outlier nodes with a degree above 40 times the interquartile range plus the 75th percentile of the distribution of all node degrees were removed (ELAVL1, UBC, Ubb, Ubc). The resulting mouse network has 16, 821 nodes and 483, 532 edges and the human network has 16, 255 nodes and 315, 442 edges.

For any given timepoint, we performed a preprocessing step where we retained the subgraphs of the input networks induced by the genes that meet the microarray filtering criteria. This reduced the number of nodes to 8,453 human nodes, 6,882 mouse nodes and 14,779 nodes in the orthology mapping. Among these, up to 250 nodes (depending on the time point) have positive scores. The rank normalization as described in section 4.2.2 ensured that the number of positive human nodes is in the order of the number of positive mouse nodes.

Orthology information was downloaded from Ensembl release 59 [START_REF] Flicek | Ensembl 2013[END_REF]) and all human and mouse orthologs were kept, regardless of the identity scores. The orthology mapping corresponds to a bipartite graph involving 67, 304 human proteins and 43, 953 mouse proteins linked by 104, 007 edges, grouped in 16, 552 bicliques with an average size of 6.72 proteins (SD: 5.34).

Results

xHeinz identifies statistically significant conserved modules at different levels of conservation

We applied xHeinz on samples from the Th17 human and mouse data sets for time points 2 h, 4 h, 24 h, 48 h and 72 h. We solved these instances for different values of α ∈ [0, 1] with a step size of 0.1. All computations were done in single-thread mode on a desktop computer (Intel XEON e5 3 Ghz) with 16 Gb of RAM and a time limit of 12,000 CPU seconds. After this timeout, the best feasible solution is returned by the solver.

Figure 4.2 shows for the five time points and eleven values of the α parameter, the human and mouse scores of the found modules as well as the distribution of the module contents. For 26 of the 55 instances we solved the conserved active modules problem to provable optimality within the time and memory limit. The optimality gap of a solution is defined as (UB -LB)/|LB|, where LB and UB are the value of the best solution and the lowest upper bound as identified by the branch-and-cut algorithm, respectively. Of the 29 instances that are not solved to optimality, 22 have a gap smaller than 5%.

Any feasible solution for a conservation ratio of α is also a solution for any α ≤ α. We indeed see in fig. 4.2 that this property holds, the solution values decrease monotonically with increasing α. Consequently, if we obtain an optimal solution (i.e., with maximal activity score) for α then, any solution for α must have its activity score that is greater or equal to the one for α . When we only account for the optimal solutions of our instances, we indeed see that this property holds.

As an added validation, we observe that the solutions for α = 0 (no conservation constraints) are identical to the solutions obtained by running the single species method Heinz, described by [START_REF] Dittrich | Identifying functional modules in protein-protein interaction networks: an integrated exact approach[END_REF], separately on the two networks.

There is a sharp decrease in module size for α = 1. Indeed, this is the most restrictive setting since it enforces that all the nodes in a module must be conserved. We also observe that as α increases, both positive and negative conserved nodes are added, indicating that we manage to retrieve informative nodes in a gradual manner. See also section 4.3.3 for a detailed analysis of module overlap for all combinations of α values.

When we compare solutions across time points, we see that the conserved active modules capture two phases of the differentiation process. We observe high activity at 2 h as well as at the late time points. Several authors reported such biphasic behavior during early Th17 differentiation, for example [START_REF] Ciofani | A validated regulatory network for Th17 cell specification[END_REF] and [START_REF] Yosef | Dynamic regulatory network controlling TH17 cell differentiation[END_REF] in mouse, and [START_REF] Tuomela | Identification of early gene expression changes during human Th17 cell differentiation[END_REF] for human. The low activity score observed at the 4 h time point is in line with [START_REF] Yosef | Dynamic regulatory network controlling TH17 cell differentiation[END_REF]'s mouse studies, which suggest that after the initial induction sustained by Stat3 and Stat1 in the first four hours, a q 2h 4h 24h 48h 72h 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 α Score Species q q Human Mouse Solved: q To optimality Gap <= 5% Gap > 5%

Module score by alpha 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 phase of Rorc induction takes place and lasts until the 20 h time point, after which the effective protein level of Rorc starts to increase and to trigger the cytokine production phase. Our model and the solutions obtained suggest that these dynamics are conserved between the two organisms.

Furthermore, fig. 4.3 illustrates the strong conservation of these overall dynamics, in human and mouse at 2 h. The plots show that in our modules all but two conserved gene pairs change expression in the same direction. It is worth noting that we do not enforce any conservation of directionality in the xHeinz model.

• •• •• •• -5 0 5 -2 0 2 4

Human logFC

Mouse logFC

Score > 0 • • • • FALSE TRUE • 0 2 4 -1 0 1 2

Human logFC

Mouse logFC

Score > 0 • • • • FALSE TRUE Conservation STAT3 BATF SOCS3 IL9 CCL20 GATA3 STAT3

Early regulation of Th17 differentiation is conserved between human and mouse

In the following, we study the two phases of the Th17 differentiation process in more detail. We focus on the 2 h and 48 h time points. We selected for this evaluation α = 0.8 for both time points, as this value provides a balance between conservation and activity and produces modules of interpretable size. All results at all time points are available on the accompanying website. We assess statistical significance of the resulting modules by performing 100 runs on randomized networks for each value of α, and additional 400 runs for the selected α = 0.8. We do this using two randomization methods: (1) permuting the node weights while keeping the graph fixed, and (2) permuting the network topology while keeping the node weights and the node degrees fixed as described in [START_REF] Mihail | The markov chain simulation method for generating connected power law random graphs[END_REF]. With the exception of a few extreme cases at the 48 h time point, all modules were found to be highly significant. For details see section 4.3.3.

Our model for conserved modules relies on the hypothesis that similar biological processes between two related species are realized by orthologous genes. To evaluate the relevance of the conserved modules returned by xHeinz, we solved the conserved active modules problem between the Th0 and Th17 conditions at 2 h and 48 h.

At the 2 h time point, xHeinz identifies a conserved module consisting of 58 human and 50 mouse proteins. Interestingly, both the human and mouse modules are centered around STAT3/Stat3, even if these genes are not the ones showing the higher fold change in both species. STAT3 is a signal transducer having transcription factor activity and was shown to play a key role in the differentiation process of Th17 [START_REF] Harris | Cutting edge: An in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity[END_REF]. Once activated by Th17 polarizing cytokines (such as IL6 in our case), it eventually binds to the promoter regions of IL17A/Il17a and IL17F/Il17f cytokines and activates transcription. These cytokines are the hallmark cytokines produced by activated Th17 cells. It is worth noting that IL17/Il17 cytokines and associated receptors are not in the 2 h modules, as these proteins have been shown to be expressed only at later time points [START_REF] Tuomela | Identification of early gene expression changes during human Th17 cell differentiation[END_REF]. Moreover, STAT1/Stat1, another member of the STAT family, is part of the solution and belongs to the central core of the human and mouse modules, which is consistent with its major role during the early phases of Th17 differentiation [START_REF] Yosef | Dynamic regulatory network controlling TH17 cell differentiation[END_REF].

We also applied xHeinz to find a conserved module at a later time point (48 h). Kinetics analysis of Th17 differentiation showed that the effective secretion of Th17 hallmark cytokines only happens after several days of polarization [START_REF] Tuomela | Identification of early gene expression changes during human Th17 cell differentiation[END_REF][START_REF] Yosef | Dynamic regulatory network controlling TH17 cell differentiation[END_REF]) and we do observe in these modules a significant enrichment for interleukin related proteins present in both species, which was absent for the 2 h modules, such as up-regulation of IL9/Il9. Secretion of IL9 by Th17 cells have been demonstrated both in mouse and human cells [START_REF] Beriou | TGF-β induces IL-9 production from human Th17 cells[END_REF], Il9 is known to be induced by Bcl3 [START_REF] Richard | Interleukin-9 regulates NF-κB activity through BCL3 gene induction[END_REF], and Bcl3 inhibition has been recently shown to affect the function of Th17 cells in mouse [START_REF] Ruan | Roles of Bcl-3 in the pathogenesis of murine type 1 diabetes[END_REF]. We also observe the conserved down-regulation of GATA3/Gata3, which is known to be the master regulator of Th2 cells [START_REF] Zheng | The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells[END_REF], and is likely to constrain the Th17 regulation program [START_REF] Hamburg | Enforced expression of GATA3 allows differentiation of IL-17-producing cells, but constrains Th17-mediated pathology[END_REF]. Similarly to the modules found at 2 h, the 48 h modules are centered around STAT3, although at the 48 h time point this gene is not differentially expressed anymore neither in human or mouse (resp. logFC of 0.17, score of -4.59 for human, and logFC 0.52, score of -3.21 for mouse). This observation is in line with the major role of STAT3 along the differentiation process at all time points [START_REF] Yosef | Dynamic regulatory network controlling TH17 cell differentiation[END_REF]). To the contrary, STAT1 has been indicated as an exclusively early regulator [START_REF] Yosef | Dynamic regulatory network controlling TH17 cell differentiation[END_REF]) in mouse and is indeed not present anymore in the 48 h modules.

We also observe the presence of the RORA/RORC/Rora/Rorc members of the RORs family of intracellular transcription factors, which are considered to be the master regulators of the Th17 lineage (X. O. [START_REF] Yang | T helper 17 lineage differentiation is programmed by orphan nuclear receptors RORα and RORγ[END_REF], and have been implicated in both species [START_REF] Crome | The role of retinoic acid-related orphan receptor variant 2 and IL-17 in the development and function of human CD4+ T cells[END_REF]). Interestingly, these regulators are linked to the upregulation of the vitamin-D receptor (VDR/Vdr), whose role in Th17 differentiation and several human auto-immune related disease have been recently studied [START_REF] Chang | Vitamin D suppresses Th17 cytokine production by inducing C/EBP homologous protein (CHOP) expression[END_REF].

In summary, our findings show the relevance of the identified conserved active modules with regard to the biological process of interest. By requiring the active modules to contain a certain fraction of conserved nodes, xHeinz identifies the main core proteins involved in the differentiation of Th17. Our analysis confirms that these proteins are very likely to have similar roles in both species.

Comparison to neXus

We compare the 48 h xHeinz modules (see figs. 4.4 to 4.6) with subnetworks computed by neXus version 3 [START_REF] Deshpande | A scalable approach for discovering conserved active subnetworks across species[END_REF]. In contrast to our exact approach, neXus uses a heuristic technique to grow subnetworks from seed nodes simultaneously in two species in an iterative fashion. Neighborhoods of the two current modules are determined using a depth-first search. This search is restricted to only consider nodes that have a path to the seed node with a confidence larger than the user-specified parameter dfscutoff. The confidence of a path is defined as the product of the confidences of the edges comprising that path. The modules are extended to include the most active pair of orthologous nodes in the neighborhoods -where activity is defined as normalized log fold change and thus differs from the definition of activity used in xHeinz. This whole procedure is repeated until either the cluster coefficient drops below the user-specified parameter cc, or the average activity scores of one of the two modules drops below parameter scorecutoff.

We ran neXus with the default parameters cc = 0.1, 0.2, scorecutoff = 0.15 and dfscutoff = 0.3, 0.8 for mouse and human respectively for all time points. Table 4.1 gives the resulting modules sizes for human and mouse. We obtained node activity scores capturing the significance of differential gene expression between the Th17 and Th0 conditions in human and mouse using the BUM model with FDR = 0.1. xHeinz uses these scores to search for conserved active modules in the STRING protein action network. The first row shows the human counterparts of the best scoring conserved modules for the 2 h (left) and 48 h (right) samples. The second row depicts the mouse counterparts. Rounded squares depict genes for which a homolog -as defined by Ensembl -is present in the counterpart, whereas triangles denote non-conserved genes. Node color gradually indicates activity scores. Orange: larger than 2; white: between -2 and 2; violet: smaller than -2. Node labels and sizes are proportional to betweenness centrality and edge width to edgebetweenness -both centralities are with respect to the subnetwork module. Only nodes having a degree larger than 2 (resp. 3) are displayed for the 2 h (resp. 48 h) module. The full networks in tabular format are available on the accompanying website and in appendix A.1. neXus finds 1 module for time point 48 h which is shown in fig. 4.7 for human (A) and mouse (B). In total 5 genes are contained in the module, which are identical for human and mouse, but the number of edges differs. Only one of the genes is significantly differentially expressed, CCL20, which has an absolute log fold change bigger than 1 and a BH FDR smaller than 0.1. Since neXus does not use p-values as an input, but 13) 7 (7) 5 (5) 15 (13) 10 (11) 9 (10) 18 (16) 25 (24) 14 (14) 6 (7) 5 (5) 6 (6 (9) 4 (4) 6 (5) 4 (4) 4 (4) 3 (3) 7 (8) 9 (10) 4 (4) 3 (3) 5 (5.40) 10 48h 5 (5) 5 (5) 1

Table 4.1: Modules calculated with neXus for all time points. Shown are the sizes in number of nodes of the first 15 representative solutions and the average sizes for the human subnetwork and for the mouse subnetwork in brackets. The last column lists the number of solutions for each time point. No solutions were obtained for time points 24 h and 72 h.

log fold-changes which are normalized to activity values, the genes CCL20 and CXCR3 are considered as active nodes with a value above 0.15. These genes show changes in expression, but only two of these changes are statistically significant.

The low number of active nodes points to a drawback in the neXus algorithm: due to the locality of the greedy search strategy it may happen that the average activity of the subnetwork in construction keeps on degrading without reaching the next active node. The effects of this issue can be seen, for example, in fig. 4.7, where CCL20 is the seed node and the majority of other neighboring nodes are not differentially expressed. Furthermore, since the activity score of a single gene is just the log fold-change, and does not reflect both fold change and variability as a p-value, the neighboring nodes of the seed node in subnetwork fig. 4.7 might merely originate from the noise in the data and represent nothing biologically relevant for the interpretation of the data.

Another consequence of the neXus search strategy is that the module sizes are small (see table 4.1) and thus only give a limited view of the molecular mechanisms at play. Theoretically, the parameter dfscutoff can be decreased to increase the module size. Doing so, however, produces only slightly larger modules, but drastically increases the running time. Table 4.2 shows the neXus solutions for time point 48 h with different values for parameter dfscutoff.

Also note that changes in the clustering coefficient parameter cc only reduce the module size with increasing cc. Table 4.3 shows the neXus solutions for time point 48 h with different values for parameter cc.

Conservation in neXus is enforced stringently by only allowing pairs of orthologous genes or genes that are only present in one of the networks to be included in the subnetworks (see fig. 4.7). This is too restrictive if the underlying mechanisms in the two species differ. For instance, for time point 48 hours and all but α = 1 values, xHeinz finds the non-conserved gene IL23R (BH FDR 3.52e-8, score 14.50, logFC 1.38) in human, which is involved in Th17 autocrine signaling [START_REF] Wei | IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner[END_REF]) but which is not JUNB is a known partner of BATF with which it heterodimerizes preferentially during Th17 differentiation [START_REF] Schraml | The AP-1 transcription factor Batf controls TH17 differentiation[END_REF], indicating its relevance. Both important genes would have been missed by a more restrictive conservation setting. Indeed, both neXus and xHeinz at α = 1 fail to find these genes showing that a more flexible view on conservation is required to adequately deal with transferability.

Implementation and evaluation details

Implementation

xHeinz is implemented in modern C++14 using the best practice patterns recently introduced by Meyers (2014), and makes use of the boost libraries and the LEMON graph library [START_REF] Dezső | LEMON -an open source C++ graph template library[END_REF]). CPLEX 12.6 is used as a black-box solver for our Mixed-Integer Linear Program formulation. The source code is publicly available in a git repository linked to from http://software.cwi.nl/xheinz.

Given two species, xHeinz takes as input:

1. a network for each of the species: G 1 and G 2 , 2. a mapping between the nodes of the two networks, 3. scores associated to each of the nodes, e.g., derived from the p-value of the moderated t-test, 4. the threshold value α, and 5. an optional time limit.

xHeinz returns two node sets corresponding to a solution found within the time limit together with an upper bound on the optimal objective value. If the objective value equals this upper bound, the computed solution is provably optimal.

Data processing pipeline

The full pipeline, implemented using Snakemake, from data downloading to running xheinz, goes as follows:

Significance of results

We computed empirical p-values to assess the significance of the obtained scores at 2 h and 48 h, for each value of α ∈ {0.1, 0.2, . . . , 1.0}, with the following two procedures:

1. Weights permutation: We shuffled the node weights by generating random permutations of the activity scores of all genes.

Topology permutation:

We repeated a million times the following operation: given two randomly selected edges A1-A2 and B1-B2, if the edges A1-B2 and B1-A2 are not present in the network we add them and remove the original edges, thus generating a random network with the same node weights and degree distribution.

For each resulting permuted network we applied a modified version of xHeinz a fixed number of times (500 times for α = 0.8, 100 times otherwise). This modified version allows to check whether the optimal score on the new random network would exceed the best score we found on the original network.

To speed up these computations, we used the observation that solving a relaxed version of the conserved modules problem is sufficient, since we only need a sufficiently low upper bound (less than the score we obtained with unshuffled data) on the optimal values for those shuffled instances to make this decision.

We therefore consider the following ILP for the shuffled instances: that is, we drop the connectivity constraints. Note that the objective value is an upper bound of the optimal score of the original problem since this new ILP is a relaxation of the original one. In addition, we can stop the branch-and-cut algorithm as soon as the upper bound on (4.23) is lower than the best found solution of the original ILP on the unshuffled data. These two observations help to speed up the significance computations tremendously.

max v∈V 1 ∪V 2 w v x v (4.
Table 4.4 shows the results of these runs, which we performed using a cumulative time limit of 500 h. It can be seen that only at extreme values of α for the 48 h time point the upper bound on (4.23) was not good enough to prove significance. This result was actually expected, since the original run was the only one with a very high gap (33.36%) at the end of the allocated timelimit.

Note that the p-values p that we demonstrate here are actually upper bounds to the underlying p-values p that we would obtain without the relaxation to the ILP. For all other combinations, including the ones we chose to compute the Th17 modules and where we computed even more permutations, our procedure demonstrates that the signal in the real network is useful to obtain a statistically significant score. .4: Results of significance experiments. For α ∈ {0.1, 0.2, . . . , 1.0} at time points 2 h and 48 h we computed upper bounds on k instances with permuted scores using the procedures described above (weights permutation on the left, topology permutation on the right). In k of these cases, resulting upper bound was not lower than the score of the best found conserved active module on the original network, resulting in a p-value p ≤ p = k /k. Values at the threshold α = 0.8 we used to compute the Th17 modules and non-zero p-values are highlighted.

Robustness of modules for varying α

Given two modules Fig. 4.9 shows the human gene module contents for time point 2 h for varying values of α, one gene per line. Genes in the left panel (FALSE) are negatively scored, that is, they are not differentially expressed at an FDR of 0.1. Genes in the right panel (TRUE) have a positive score. Squares represent conserved genes, whereas triangles represent non-conserved genes. An xHeinzmodule solution is thus the set of genes marked with a square or triangle at a given value of α. The coloring is as follows:

V 1 ⊆ V 1 and V 2 ⊆ V 2 , the Jaccard index is defined as (V 1 ∩V 2)/(V 1 ∪ V 2).
• Genes that are selected at all values of α or are coloured red. These are the core genes.

• Genes that are selected at α = 0 (no conservation) but not at α = 1 are green.

• Genes that are selected by α = 1 (strict conservation) but not at α = 0 are turquoise.

• Genes that can only be picked by xHeinz(intermediate α values) are orchid.

This figure shows that a large fraction of genes only occur in an intermediate α regime (orchid color). Furthermore, the module content smoothly changes as α varies, which illustrates the robustness of the approach. xHeinzthus allows the investigator to make an informed choice on the conservation of genes in the modules, which is not possible with methods assuming no or strict conservation.

Discussion

We presented a module discovery method that simultaneously searches across two species for interesting gene sets. A key feature of the gene sets that we extract is the guaranteed lower bound on the number of conserved genes that they contain. This user defined lower bound, α ∈ [0, 1], provides a flexible conservation requirement between the two species, which allows for the discovery of conserved modules, including genes that would be missed with a stringent conservation requirement.

We have translated our model into an integer linear programming formulation and have devised and implemented an exact branch-and-cut algorithm that computes provably optimal or near-optimal conserved active modules in our model.

As a validation of our approach, our computational experiments for understanding the mechanisms underlying Th17 T cell differentiation in both mouse and human demonstrate that the flexibility in the definition of conservation is crucial for the computation of meaningful conserved active modules. We have found two conserved Th17 modules at time points 2 h (α = 0.8) and 48 h (α = 0.8) that thoroughly encompass the biphasic Th17 differentiation process. This result can not be revealed by requiring full conservation (α = 1) or by independent modules without requiring conservation (α = 0). Likewise, neXus, an alternative approach based on a stringent conservation model, is not able to capture the key regulatory program of the differentiation process.

A key characteristics of our model is its flexibility. This allows its extension to multiple species and time points, which we will address in future work. In this case, however, realistic instances will be harder to compute to optimality. Indeed, the number of interactions between multiple species or time points increase at least quadratically the number of both ILP variables and constraints. It would requires the development of powerful algorithm engineering techniques. Interestingly, the complexity of our branchand-cut modelization of connectivity remains linear on the number of graphs involved. qq 0 0.1 qq 0 0.1 qq 0 0.1 qq 0 0.1 qq 0 0.1

Tight hardness bounds for the mwccs problem

In this chapter, we outline the frontier of complexity that characterizes the Maximum-Weight Cross-Connected Subgraph (mwccs) problem. We demonstrate that the bipartite relationship plays a major role in the separation between complexity classes, as do the types of input graphs. Furthermore, we provide constructive proofs, and algorithmic solutions that efficiently solve some instances of the problem in polynomial time.

The difficulty of the problem is not only dependent on the characteristics of the two main input graphs, but also of the relationship between the nodes of these two graphs. We hypothesised that the problem might be polynomial-time solvable in some instances with a simpler relationship function.

In section 5.1 we demonstrate that the mwccs problem is inapproximable (NP-hard to approximate) up to any arbitrary factor σ < 1.0014, it is thus an APX-hard problem. More precisely, we show that the APX-hardness holds for all inputs complex enough to represent the following cases:

1. one of the two graphs is a binary caterpillar tree1 , the other a binary tree, and the bipartite relationship is injective, 2. one of the two graphs is a binary tree, the other a general graph, and the bipartite relationship is bijective.

Section 5.1.1 contains the first proof, and section 5.1.2 contains the second.

Section 5.2 is separated into two main subsections dedicated to polynomially solvable cases of the mwccs. Both these cases are first formally defined, and their complexity is analyzed by reduction and constructive algorithmic solutions are proposed. In [START_REF] Hume | Approximation Hardness of the Cross-Species Conserved Active Modules Detection Problem[END_REF] we suggested that the problem might be solvable in polynomial time when 60 CHAPTER 5. MWCCS both graphs are trees and the relationship is bijective; we give a proof for this conjecture in section 5.2.1. This draws a clear complexity frontier, dependent on the bipartite relationship. Finally, in section 5.2.2 we provide a general algorithm to solve mwccs. Doing so we introduce a new problem, rb-mwcs, to which section 5.3 is dedicated. Given that one of the two graphs is polynomially enumerable, we provide an efficient reduction from an mwccs instance to a polynomial number of rb-mwcs instances. In this case, mwccs is as difficult as rb-mwcs: it is solvable in polynomial time when the second graph has a bounded treewidth. The details for the problem reduction are in section 5.2.2 and the rb-mwcs hardness analysis is in section 5.3.

The complexity is analyzed in a similar fashion in the two contexts. Adding constraints to one of the graphs allows to relax some of the constraints for the other graph, in order to stay within the same category of difficulty. In the context of the hardness proof, in order for the problem to stay difficult, the change from an injective to a bijective mapping function requires that one of the two trees become a general graph. In the context of polynomial-time algorithms, requiring that one of the graph that was previously a binary tree becomes more general requires that the other becomes polynomially enumerable to stay solvable in polynomial time.

APX-hardness of the mwccs problem

In this section we prove the inapproximability of two specific cases of the mwccs problem. First, we prove that if the mapping between G 1 and G 2 is an injective function, if G 1 is a binary caterpillar tree, and if G 2 is a binary tree, mwccs is APX-hard and can not be approximated within factor 1.0014. Then, we prove that if the mapping is a bijective function, the problem is as hard to approximate as when considering a binary tree and a graph. These results in themselves illustrate the role of the mapping function with respect to the difficulty of the problem.

Both proofs consist in L-reductions from the APX-hard max-3sat(B) problem (see chapter state of the art).

Injective mapping, binary trees

Proposition 1. The mwccs problem for a binary caterpillar tree and a binary tree is APX-hard and not approximable within factor 1.0014 even when the mapping M is an injective function.

We first describe how we build an instance of mwccs corresponding to an instance of max-3sat(B). Given any instance (C q , V n) of max-3sat(B), we build a binary caterpillar tree G 1 = (V 1 , E 1) with weight function w 1 , a binary tree G 2 = (V 2 , E 2) with weight function w 2 , and a mapping M as follows.

The binary caterpillar graph G 1 is defined as follows. The vertex set is

V 1 = {r, l i , c j , dl i , dc j | 1 ≤ i ≤ n, 1 ≤ j ≤ q}.
The edge set is given by the following 5.1. APX-HARDNESS OF THE MWCCS PROBLEM 61 equation.

E 1 ={(c j , dc j), (l i , dl i) | 1 ≤ i ≤ n, 1 ≤ j ≤ q} ∪ {(dc q , r), (r, dl 1)}∪ {(dc j , dc j+1), (dl i , dl i+1) | 1 ≤ i < n, 1 ≤ j < q}.
The weight function w 1 is defined as follows: for all 1 ≤ i ≤ n and 1 ≤ j ≤ q, w 1 (l i) = B, w 1 (c j) = 1 and w 1 (r) = w 1 (dc j) = w 1 (dl i) = 0.

Roughly, in G 1 there is a node for each clause (denoted by c j) and for each literal (denoted by l i) that represent the leaves of the caterpillar. The spine of the caterpillar contains dummy nodes for each clause (denoted by dc j) and for each literal (denoted by dl i) separated by a central node (denoted by r).

The binary tree G 2 = (V 2 , E 2) with weight function w 2 is defined as follows. The vertex set is

V 2 = {r, x i , x i , c k j , dx i , dx i , dc i j , dc i j | 1 ≤ i ≤ n, 1 ≤ j ≤ q, 1 ≤ k ≤ 3}.
The edge set E 2 is given by the following equation.

E 2 ={(r, dx n)} ∪ {(c k j , dc k j) | x k , is the k -th literal of clause c j } ∪ {(c k j , dc k j)|x k , is the k -th literal of clause c j } ∪ {(dx i , dx i+1)|1 ≤ i < n} ∪ {(dx i , dx i), (dx i , x n-i+1), (dx i , x n-i+1), (x i , dc i 1), (x i , dc i 1)|1 ≤ i ≤ n} ∪ {(dc i j , dc i j+1), (dc i j , dc i j+1)|1 ≤ i ≤ n, 1 ≤ j < q}
The weight function w 2 is defined as follows: for all 1 ≤ i ≤ n, 1 ≤ j ≤ q and 1 ≤ k ≤ 3, w 2 (x i) = w 2 (x i) = -B and w 2 (r) = w 2 (c k j) = w 2 (dx i) = w 2 (dx i) = w 2 (dc i j) = w 2 (dc i j) = 0 Roughly, in G 2 there is a node for each literal of each clause (denoted by c k j) and for each value of each literal (denoted by x i and x i). Dummy nodes for literals have been duplicated (one for each value of the literal -that is dx i and dx i). Dummy nodes for clauses have also been duplicated (one for each value of all literalsdc i j and dc i j). The structure is not as easy to informally describe as for G 1 but the reader may refer to an illustration provided in Figure 5.1.

Finally, the mapping M is an injective function from V 1 to V 2 defined as follows.

M (r) = r M (l i) = {x i , x i }, for all 1 ≤ i ≤ n M (c j) = {c k j |1 ≤ k ≤ 3}, for all 1 ≤ j ≤ q M (dl i) = {dx i , dx i }, for all 1 ≤ i ≤ n M (dc j) = {dc i j , dc i j }, for all 1 ≤ i ≤ n and 1 ≤ j ≤ q
C q = {(x 1 ∨ x 2 ∨ ¬x 3), (¬x 1 ∨ x 2 ∨ x 5
), (¬x 2 ∨ x 3 ∨ ¬x 4), (¬x 3 ∨ x 4 ∨ ¬x 5)}. For readability, the mapping M is not drawn but represented as labels located on the nodes: any pair of nodes (one in G 1 and one in G 2) of similar inner label are mapped in M .

Let us prove that this construction is indeed an L-reduction from max-3sat(B). More precisely, we prove the following property.

Lemma 1. There exists an assignment of V n satisfying at least m clauses of C q if and only if there exists a solution to mwccs of weight at least m.

Proof. ⇒ Given an assignment A of V n satisfying m clauses of C q , we construct a solution to mwccs of weight m as follows.

Let V * 1 =V 1 \ {c j | c j is not satisfied by the assignment} and V * the overall weight of the solution since exactly one of each variable node (x i and x i) has been kept. One can easily check that any node of V * 1 has a mapping counterpart in V * 2 . The overall solution is valid and of total weight m.

⇐ Given any solution {V * 1 , V * 2 } to mwccs of weight m, we construct a solution to the max-3sat(B) problem satisfying at least m clauses as follows.

First, note that we can assume that any such solution to mwccs is canonical, meaning that V * 2 does not contain both vertices x i and x i for all 1 ≤ i ≤ n. Indeed, by contradiction, suppose there exists a solution such that {x i , x i } ⊆ V * 2 for a given 1 ≤ i ≤ n. Then, {x i , x i } in G 2 induce a negative weight of -2B. This negative contribution can at most be compensated by the weight of the corresponding literal node in G 1 (w 1 (l i) = B) and at most B clause nodes in G 1 (B ≥ w 1 (c j) where x i ∈ c j or x i ∈ c j) since every literal occurs in at most B clauses in C q . Therefore, such local configuration does not provide any positive contribution to the solution and can be transformed into a better solution by removing one of the sub-trees rooted in {x i , x i }. We will consider hereafter that m is the weight of the resulting canonical solution. We further assume that m > 1 since otherwise we can build a trivial assignment A = {c 1 1 = 1} of V n that is satisfying at least one clause of C q . Let A be an assignment of V n such that for all 1 ≤ i ≤ n if x i ∈ V * 2 then x i = 1 and x i = 0 otherwise. Note that, since our solution is canonical, each literal has been assigned a single boolean value in A. Let us now prove that this assignment satisfies at least m clauses of C q .

First, note that since our solution is canonical and we require any node of V * 1 to have a mapping counterpart in V * 2 , this implies that if l i ∈ V * 1 then its contribution (that is w 1 (l i) = B) is cancelled by the negative contribution of either x i or x i in V * 2 (that is w 2 (x i) = w 2 (x i) = -B). Therefore, the weight m of the solution can only be realized by m clause nodes of G 1 , say C 1 ⊆ V * 1 -since w 1 (c j) = 1 for all 1 ≤ j ≤ q. As already stated, to be part of the solution any node in V * 1 has a mapping counterpart in V * 2 . Thus, for each node in C 1 , there should be a node of

C 2 ⊆ {c k j | 1 ≤ j ≤ q, 1 ≤ k ≤ 3} in V * 2 .
More precisely, by construction, any node c j in V 1 has exactly three mapping counterparts in V 2 (that is {c k j | 1 ≤ k ≤ 3}) and for each c j ∈ C 1 at least one of these mapping counterparts has to belong to C 2 .

Finally, since both G 1 [V * 1] and G 2 [V * 2]
have to be connected, each node in C 2 , say c k j , should be connected by a path to a node x i or x i , say x i , for some 1

≤ i ≤ n, in G 2 [V * 2]
. By construction, this is the case if x i is the k-th literal of the clause c j for some 1 ≤ k ≤ 3. Thus, A is an assignment that satisfies any clause c j such that the clause node c j belongs to V * 1 . As already stated |C 1 | = m.

The above reduction linearly preserves the approximation since the weights of optimal solutions of the problems correspond and there exists an assignment of V n satisfying at least m clauses of C q if and only if there exists a solution to mwccs of weight at least m. Hence, given an approximation to mwccs, one can derive an algorithm for max-3sat(B) with the same approximation ratio. Since max-3sat(B), B ≥ 3, is APX-hard [START_REF] Papadimitriou | Optimization, approximation, and complexity classes[END_REF] and max-3sat(B) for B = 6 is not approximable within factor 1.0014 [START_REF] Berman | On some tighter inapproximability results[END_REF], so is mwccs, which proves Proposition 1.

Let us now prove a similar result for mwccs problem when the mapping is a bijective function.

Bijective relationship function, tree, and graph

Proposition 2. The mwccs problem for a graph and a tree is APX-hard and not approximable within factor 1.0014 even when the mapping is a bijective function.

Given any instance (C q , V n) of max-3sat(B), we build a graph G 1 = (V 1 , E 1) with weight function w 1 , a tree G 2 = (V 2 , E 2) with weight function w 2 and a mapping M as follows. The graph G 1 has the vertex set

V 1 = {r, l i , x i , x i , c j , c k j | 1 ≤ i ≤ n, 1 ≤ j ≤ q, 1 ≤ k ≤ 3}
and the edge set defined by the following equation.

E 1 ={(l i , x i), (l i , x i), (r, x i), (r, x i) | 1 ≤ i ≤ n} ∪ {(c j , c k j), (r, c k j) | 1 ≤ k ≤ 3, 1 ≤ j ≤ q}.
The weight function w 1 is defined as follows: for all 1

≤ k ≤ 3, 1 ≤ i ≤ n and 1 ≤ j ≤ q, w 1 (l i) = B, w 1 (c j) = 1 and w 1 (r) = w 1 (c k j) = w 1 (x i) = w 1 (x i) = 0.
Roughly, in G 1 there is a node for each clause (denoted by c j), for each of the three literals of each clause (denoted by c k j), for each literal (denoted by l i) and for each valuation of each literal (denoted by x i , x i). Clause nodes and literal nodes are separated by a central node r.

The tree G 2 is defined as follows. The vertex set is V 2 = V 1 , the edge set is given by the following equation:

E 2 ={(l i , r), (c j , r), (x i , r), (x i , r) | 1 ≤ i ≤ n, 1 ≤ j ≤ q} ∪ {(c k j , x i) | x i is the k-th literal of clause c j } ∪ {(c k j , x i) | x i is the k-th literal of clause c j }.
The weight function w 2 is defined as follows: for all 1

≤ k ≤ 3, 1 ≤ i ≤ n and 1 ≤ j ≤ q, w 2 (x i) = w 2 (x i) = -B, w 2 (r) = w 2 (c k j) = w 2 (l i) = w 2 (c j) = 0. Roughly, in G 2 all the nodes except the ones in {c k j | 1 ≤ j ≤ q, 1 ≤ k ≤ 3}
form a star centered in node r. The nodes representing the literal of the clause (that is c k j) are connected to their corresponding variable nodes (that is x i or x i).

Finally, the mapping M is a bijective function from V 1 to V 2 defined as the identity (that is each node in V 1 is mapped to the node of similar label in V 2).

Let us prove that this construction is indeed an L-reduction from max-3sat(B). More precisely, we prove the following property.

C q = {(x 1 ∨ x 2 ∨ ¬x 3), (¬x 1 ∨ x 2 ∨ x 5), (¬x 2 ∨ x 3 ∨ ¬x 4), (¬x 3 ∨ x 4 ∨ ¬x 5)}.
For readability, the mapping M is not drawn but deduced from the labels of the nodes; any pair of nodes (one in G 1 and one in G 2) of similar label are mapped in M . Lemma 2. There exists an assignment of V n satisfying at least m clauses of C q if and only if there exists a solution (not necessarily optimal) to mwccs of weight at least m.

Proof. ⇒ Given an assignment A of V n satisfying m clauses of C q , we construct a solution to mwccs of weight m as follows.

Let V * 1 = V * 2 = {c j | c j is satisfied by A}∪{c k j | c k j is satisfying c j by A}∪{x i | x i = 1} ∪ {x i | x i = 0} ∪ {r, l i | 1 ≤ i ≤ n}. By construction, G 1 [V * 1] and G 2 [V * 2] are connected. Moreover, G 1 [V * 1] contributes B × n + m
to the overall weight of the solution, that is B for each of the l i and +1 for each satisfied clause, while G 2 [V * 2] contributes -B × n to the overall weight of the solution since exactly one of each variable node (i.e., x i and x i) has been kept. The overall solution is valid and of total weight m.

⇐ Given any solution V * ⊆ V 1 to mwccs of weight m, we construct a solution to the max-3sat(B) problem satisfying at least m clauses as follows.

First, note that, as in the previous construction, we can assume that any such solution to mwccs is canonical meaning that V * does not contain both vertices x i and x i for any 1 ≤ i ≤ n.

Let A be an assignment of V n such that for all 1 ≤ i ≤ n, if x i ∈ V * then x i = 1 and x i = 0 otherwise. Note that, since our solution is canonical, each literal has been assigned a single boolean value in A. Let us now prove that this assignment satisfies at least m clauses of C q .

First, note that since our solution is canonical, as in the previous construction, the weight m of the solution can only be induced by m clause nodes of G 1 , say C 1 ⊆ V * .

Since both G 1 [V *] and G 2 [V *] have to be connected, any solution with m > 1 will include node r in V * . Thus, for each node c j ∈ C 1 there should be a node of

{c k j | 1 ≤ k ≤ 3} in G 1 [V *] to connect c j to r. In G 2 [V *],
in order for nodes r and c k j to be connected, the corresponding literal node (that is x i or x i), say x i -has to be kept in V * . By construction, this is the case if x i is the k-th literal of clause c j . Thus, A is an assignment that satisfies any clause c j such that the clause node c j belongs to V * . As already stated |C 1 | = m.

The above reduction linearly preserves the approximation and proves Proposition 2.

Polynomial-time cases for the mwccs problem

Two bounded-degree trees and a bijective mapping

We have proved in section 5.1.1 that for instances with two binary trees, and an injective mapping function, the problem is APX-hard. We will now consider the case of two bounded-degree trees, T 1 = (V 1 , E 1) and T 2 = (V 2 , E 2), with a bijective relationship, or mapping function, V 1 M V 2 . Without loss of generality, lets now suppose that their respective degrees are

d T 1 = d T 2 = d, and that |V 1 | = |V 2 | = n.
Since α = 1, a node can only be selected if its counterpart is also selected. However, note that a node in one of the trees can have its counterpart at a completely different depth in the other tree (see fig. 5.3). Consequently, adding a child node might require the addition of a parent by mutual requirement between the two trees and the mapping function (see fig. 5.3). This exhibit the main difficulty with this problem: the non-isomorphic mapping function makes it impossible to use the usual local dynamic programming scheme to solve the mwcs problem and its variants on trees. In this section, we introduce a functional dynamic programming approach for this setup that solve the mwccs problem in polynomial time parameterized on the degree of the trees. A functional dynamic programming approach is a top-down dynamic programming technique, that is recursive and using subproblem overlaps, that uses a memoization scheme to store intermediate results instead of the usual tabular approach.

Our algorithm is composed of two main operations. ComputeDecisionTree is the main functionnal dynamic programming procedure and finds the optimal solution to the problem given two trees and a root for one of them. ComputeDecisionTree calls upon ConstructRequiredSet to maintain the connectivity and matching constraints of the candidate solution.

ConstructRequiredSet: Informally, ConstructRequiredSet takes as input all the nodes that have been included up intil now, from both T 1 and T 2 , and add into those sets all nodes that are required to be added if u is included to keep 1) connectivity and 2) perfect matching (see fig. 5.3).

Adding a node u ∈ V 1 from T 1 to a candidate solution3 requires the unconditional inclusion of its counterpart v ∈ V 2 from T 2 to the candidate solution. In turn, the addition of v requires the addition of all nodes from T 2 that are necessary for the candidate solution to remain connected: the (possibly empty) shortest path v 0 v 1 . . . v i between v and, if one exists, its closest node from T 2 already in the solution. Recursively, this requires the addition of all counterparts of the nodes v 0 , v 1 , . . ., v i to the candidate solution, and the nodes required for the candidate solution to remain connected. This recursion continues until no more nodes are required to be included to conserve connectivity.

It is formally defined as follows. Given two sets S 1 ⊆ V 1 and S 2 ⊆ V 2 of nodes already selected, and a node u ∈ V 1 \ S 1 such that u is a neighbor of a node in S 1 (v ∈ V 2 its counterpart). We define a double recursion procedure over V 1 and V 2 . Add u to S 1 ; then, find the shortest path from its counterpart v to any node of S 2 . Add all nodes that pertain to this shortest path to S 2 (including v), and recursively find all shortest paths from their counterparts to the nodes of S 1 . Continue until no more nodes need to be added. Proof. Indeed, since we recursively add nodes with their shortest path to already selected nodes, there exists a path connecting every pairs of nodes of S 1 and of S 2 . Proposition 4. ConstructRequiredSet is a quadratic operation in the worst case. [START_REF] Hochbaum | Approximation algorithms for NP-hard problems[END_REF]. However, since we are working with bounded-degree trees, the number of combinations remains (parameterized-)constant. The overall algorithm is thus in FPT (Fixed-Parameter Tractable), see proposition 5 for proof.

POLYNOMIAL-TIME CASES FOR THE MWCCS PROBLEM

69

Proposition 5. ComputeDecisionTree is a parameterized complexity algorithm which requires at most O(2 d n 2 + n 3) steps for d-ary trees.

Proof. The recursion tree closely follows the topology of T 1 , and contains at most O(n) calls. At each step we use the ConstructRequiredSet procedure, which is a quadratic time operation. We also compute the score, which itself requires to compute a set union operation for each combination of children. There are at worst O(2 d) combination of children (the cardinality of the power set), and set union is at worst an O(n) operation with a bitvector representation of the sets. Hence the resulting number of steps. Proposition 6. One of the recursive calls of ComputeDecisionTree contains the optimal solution to the global problem.

Proof. Even though two subtrees could actually have the exact same solution, since parent nodes can be included for matching and connectivity constraint reasons, it should be clear from the standard tree traversal that the whole tree T 1 is considered and that all its subtrees (that respect the constraints) are evaluated. To see that the optimal solution found by this procedure, in T 1 , is also the optimal in regard to T 2 , note that any given subtree of T 1 , that is valid under the constraints, have one and only one counterpart subtree in T 2 . Indeed, since the matching is a bipartite function, each node have one and only one counterpart; any subtree of size m in T 1 have one and only one counterpart subtree of size m in T 2 , the one that contains all counterpart nodes. Finally, since all possible subtrees of T 1 (that respect the constraints) are considered, it must be that all possible subtrees of T 2 are also considered by this procedure.

The optimum is in the recursive call with the highest total score, the optimal objective, and the optimal solution is the corresponding set of nodes S u .

Polynomial-time scheme for some inputs

Notice that in the previous sections the conservation constraint α for the solution, that defines which fraction of nodes has to be kept, has been strict; that is α = 1. Here we consider where α ∈ [0, 1]. In addition, we further relax the constraint on the mapping function, which can be any partial injective function. That is, any element of V 1 can have at most one image in V 2 (the elements of V 2 can have 0, 1, or more antecedents). Finally, we suppose that there is a polynomial number of connected induced subgraphs of G 1 .

We consider as many candidate solutions as there are connected subgraphs of G 1 , and for each one of them we try to find the best corresponding subgraph in G 2 . The best corresponding subgraph in G 2 is the subgraph that maximizes the total weight of the candidate solution and such that at least an α-fraction of the nodes of G 1 and G 2 in the solution are M -related. For a given subgraph of G 1 , the sum of the weights of its nodes is fixed. Hence maximizing the total weight of the candidate solution is equivalent to finding the optimal solution in G 2 where the α-fraction constraint holds.

To solve this problem, we introduce a new problem, the ratio-bounded maximumweight connected subgraph (rb-mwcs) problem. Informally, it consists in a variant of the mwcs problem where an additional contribution function is associated to each node and where an additional ratio constraint is introduced, not unlike the budgetconstrained variant of the mwcs problem. This new problem is formally defined in section 5.3.

The reduction to this new subproblem is as follows. The contribution function needs to encode the relationship function between the nodes of both G 1 and G 2 . To do so, and since we fixed a partial solution to the problem in the form of the subgraph of G 1 , we note for each node of G 2 its number of inverse images in G 1 plus one if and only if at least one exists, zero otherwise. The reason we need to make the distinction between the two cases is that when there is no counterpart in G 1 , selecting a node in the optimal solution in G 2 will not increase the number of mapped node overall. However, selecting a node in G 2 for which there exists at least one counterpart will increase the number of mapped node by the number of counterpart, plus one for the selected node itself.

Formally, given a connected subgraph G

1 = (V 1 , E 1) of G 1 , we define the corre- sponding G 2 antecedent function a : V 2 → N to be a(v) = |{v, u | M (u, v), u ∈ V 1 }|. The contribution function c : V 2 → N is defined as follows: c(v) = a(v) + 1 if a(v) > 0, 0 otherwise.
Given G 2 = (V 2 , E 2), its weight-function w 2 and its contribution function c, the problem now corresponds to the discovery of the connected subgraph of maximum weight such that:

v∈V * 2 c(v) ≥ α × |V 1 | + |V * 2 | v∈V * 2 c(v) -α × |V 1 | ≥ α × |V * 2 | Where α × |V 1 | is constant.
Finally, given the optimal score of all candidate solutions, for which there are one for each subgraphs G 1 , the optimal solution to the mwccs problem is the one candidate solution among them which has the best score.

Clearly, constructing a contribution function for G 2 given a subgraph G 1 is a linear time operation. Choosing the best candidate solution is as time consuming as enumerating all subgraphs of G 1 , which is a polynomial time operation in this context. The complexity of this algorithm hence depends on the difficulty to solve the rb-mwcs subproblem.

THE RATIO-BOUNDED MAXIMUM-WEIGHT CONNECTED SUBGRAPH PROBLEM 71

Section 5.3 provides an analysis of this problem with a more general contribution function. It provides polynomial scheme for d-ary trees and an optimized algorithm for paths. Thus, there exists a polynomial-time algorithm to solve mwccs when one of the graph if polynomially enumerable, the second is a bounded-degree tree, and the relationship is a partial injective function, for any α ∈ [0, 1].

The Ratio-Bounded Maximum-Weight Connected Subgraph problem

In this section, we introduce a slightly more general version than required in section 5.2.26 . The ratio-bounded maximum-weight connected subgraph (rb-mwcs) problem, is formally defined as follows.

rb-mwcs: Given a node-weighted graph G = (V, E), its node-weighting function w : V → R, its contribution function c : V → R, a ratio α ∈ [0, 1] and a constant C ∈ R, find a subset V * ⊆ V such that:

1. the induced graph G[V *] is connected, and 2. the ratio of the sum of contributions plus some constant over the number of nodes in the solution is greater than or equal to α, that is: and3.

v∈V * c(v) + C ≥ α × |V * |,
v∈V * w(v) is maximum.

Proposition 7. rb-mwcs is at least as difficult as mwcs.

Proof. Indeed, when c(v) = 1, ∀v ∈ V , the ratio The optimal subtree can be reconstructed from the table by finding the entry with the maximal weight and where the contribution ratio is not violated, and backtracking from that entry on the selected tc i 's and s i 's from the max function. Each entry of the table can be computed in O(n d-1) (that is, an integer partition of |V | into d parts) time, and since v∈V c(v) ∈ O(n), there are O(n 3) of them, which leads to the overall complexity.

As paths and cycles are trees of degree 1, using the preceding result leads to an O(n 3) algorithm for these cases. However, one can achieve a better complexity.

Proposition 9. rb-mwcs is solvable in O(n 2) time for paths and cycles.

Proof. Let us first consider the rb-mwcs problem for paths. Leveraging the linearity of the graph structure, we define a dynamic programming strategy with an O(n 2) time complexity.

The idea is to define two 2-dimensional tables T w and T tc with n 2 entries each and that store respectively, for each pair of indices, the maximum weight and the total contribution, of the corresponding graph. Let us consider a given orientation in the path with the node at the starting end as the reference node, of index 0. Every candidate solution (a subpath) in the path can then be defined as a pair of positions, the first element being the starting position as an index number, the second element being the size of the candidate solution. The main idea being that increasing the indices one by one enables us to update the weights and total contributions incrementally.

Formally, let us denote the k-th node of the graph in the predefined orientation by n k , we have for all 0 ≤ i ≤ j ≤ n:

T w [i][i] = 0 T w [i][j] = w(n i+j-1) + T w [i][j -1] T tc [i][i] = 0 T tc [i][j] = c(n i+j-1) + T tc [i][j -1]
The optimal subpath is defined by the indices of the entry with the maximal weight and where the contribution ratio is not violated (i.e., for any (i, j) s.t. T tc [i][j] ≥ α • j). Each O(n 2) entry of the tables can be computed in constant time, leading to the overall 5.4. RELATED QUESTIONS AND FURTHER WORK 73 complexity. For cycles, the trick consists in taking any linearization of the cycle and merging two copies of the corresponding linearization as the input path. This ensures that we will consider any candidate solution (i.e., simple subpath of the cycle). The time complexity is preserved.

Related questions and further work

In this contribution we provide the first deep complexity analysis of the mwccs problem. A fair number of interesting problems and questions still remains.

First of all, generalizing the problem to more than two graphs is of practical interest. We hypothesize that the most general expression of the problem is to have a, possibly empty, mapping function between each graph. However, as we have shown throughout this chapter, the mapping function is an important factor for the complexity of the problem. Since the mwccs problem is APX-hard for two graphs, the hardness results should hold for k > 2 graphs. However it is unclear whether the polynomial-time solvable cases would remain so, and if that is the case what would be the polynomial exponent.

Another interesting avenue is to study the effects of a relaxation of the connectivity constraints in mwccs. The problem would then become similar to the set-union knapsack, with a bipartite partition of the sets, and where the maximum weight becomes a moving target (α-ratio).

In section 5.2.2 we presented a reduction from some instances of mwccs to instances of rb-mwcs. For some classes of input, their exists trivial reductions from rb-mwcs to mwccs. However, the question whether mwccs is more general than rb-mwcs and can thus encode any of rb-mwcs instances remains open.

Interestingly, analyses of the relationship between rb-mwcs and the variants of mwcs, such as the budget constrained problem, is an already ongoing direction of our research. Indeed, the ratio constraint problem. Since rb-mwcs ⊃ budget constrained mwcs ⊃ k-cardinality mwcs ⊃ mwcs, all algorithms that apply to rb-mwcs also apply to the other problems.

Going in this direction, instead of the integer partition enumeration scheme used in proposition 8, we can probably use a tabular dynamic programming approach quite similar to knapsack where the weights are the contributions. It would effectively remove the degree bound for the trees and make the algorithm pseudo-polynomial.

Conclusion

One of the major challenge for modern biology is making sense of the ever increasing size of biological data. Finding good models for all this data, models that can both explain the data and provide insight into biological questions, is paramount. One of the many difficulties of such path is the variety in the types of data. Modern computational biology approaches combine these many data into integrative approaches, that combine the knowledge inside the data in the hope to extract higher level information. This is the path that we followed in thesis, by contribute to the connected module identification problem -in itself a model that integrates expression profiles and interaction networks -, while integrating conservation information between two species.

We introduced a model for the detection of this integrated problem that we call the conserved active connected modules problem. We provided a mixed-integer linear programming formulation of our model and a branch-and-cut algorithm to solve the model to provable optimality in reasonable run time. We then applied our model over cell line differentiation data, namely T helper 0 into T helper 17, for both human and mouse. And we analysed the model from a complexity standpoint, resulting in general and special cases complexity results.

The results that we present in chapter 4 validate the model in comparison to previous knowledge but also show that some aspects that we introduce, in particular our flexible definition of conservation, are crucial for understanding the mechanisms underlying Th17 cell differentiation in both mouse and human. In chapter 5 we showed that the problem is inherently difficult; precisely we showed that there cannot be a PTAS for the problem.

One of the major limit of our approach is the run time. Great care was applied to our branch-and-cut solver to obtain reasonable running time, but as data grows so does the computational requirements. Solving the model to provable optimality remains is an inherently exponential problem. Furthermore we showed that the problem is APX-hard, APPENDIX A. XHEINZ APPENDICES

1

 Release 210.0, October 15 2015 2

Figure 2 . 1 :

 21 Figure 2.1: Central Dogma of Molecular Biology. Below each structure type are examples using 12 dummy DNA characters, the corresponding messenger RNA sequence, and the protein sequence.

Figure 2

 2 Figure 2.2: 70 nucleobases from the human (hsa) STAT3 gene.

Figure 2

 2 Figure 2.3: 70 nucleobases from the mouse (mus) Stat3 gene. Bases highlighted in red indicate a variation from the corresponding bases in the human gene, '-' indicates that the base is abscent in the mouse gene.

Figure 2 . 4 :

 24 Figure 2.4: Gene transcription. After the removal of the primer region, which indicates the start of a gene, each exon is translated by replacing every Thymine base by an Uracil base.

 when the valuation of x is explicitly required.

 Furthermore, as stated in section 3.3,[START_REF] Dittrich | Identifying functional modules in protein-protein interaction networks: an integrated exact approach[END_REF],[START_REF] Yamamoto | Better decomposition heuristics for the maximum-weight connected graph problem using betweenness centrality[END_REF],Backes et al. (2012), and Mitra et al. (

 [START_REF] Backes | An integer linear programming approach for finding deregulated subgraphs in regulatory networks[END_REF] proposed an exact formulation to solve the k-cardinality subtrees and connected subgraphs problems. See section 3.3 for details.Álvarez-Miranda et al. (2013a,b) introduced the first technique which does not explicitly model the graph edges. Instead they introduce a Branch-and-Cut scheme where connectivity violations are detected from candidate solutions and corresponding constraints are recursively added to the model. They showed that their technique outperformed most of the other methods on practical instances at the time.

Figure 4 . 2 :

 42 Figure 4.2: Statistics of xHeinz solutions. The conserved active module problem was solved for five time points (columns) over a sequence of 11 consecutive values of the α conservation parameter (x-axis). We report in the top row the score of the best solution (y-axis) and whether optimality was proven by our algorithm (circles). All runs were limited to 12,000 CPU seconds on a standard desktop computer. The second row illustrates how module contents vary as α increases. The height of each bar indicates the size of the respective module, colors indicate the fraction of positive and conserved nodes.

Figure 4 . 3 :

 43 Figure 4.3: Comparison of log fold change expression in mouse and human for conserved gene pairs at 2 h (left) and 48 h (right). Each panel shows the log fold change correlation between conserved gene pairs: For each pair, a line segments connects the human logFC (x-axis) to the mouse logFC (y-axis). Point color indicates whether the human or mouse gene has a positive score. A line segment in the 1st or 3rd quadrant signifies positively correlated logFC values whereas a link in the 2nd and 4th quadrant corresponds to negative correlation. The sign of the activity score is indicated by the coloring. Genes discussed in the main text are indicated with white boxes.

 Figure 4.4 reports a reduced version of the resulting human and mouse Th17 modules for the two time points, and fig. 4.5 and fig. 4.6 show the full, unfiltered module contents of the modules.

Figure 4 . 4 :

 44 Figure4.4: Conserved active Th17 differentiation modules in human and mouse at 2 h and 48 h. We obtained node activity scores capturing the significance of differential gene expression between the Th17 and Th0 conditions in human and mouse using the BUM model with FDR = 0.1. xHeinz uses these scores to search for conserved active modules in the STRING protein action network. The first row shows the human counterparts of the best scoring conserved modules for the 2 h (left) and 48 h (right) samples. The second row depicts the mouse counterparts. Rounded squares depict genes for which a homolog -as defined by Ensembl -is present in the counterpart, whereas triangles denote non-conserved genes. Node color gradually indicates activity scores. Orange: larger than 2; white: between -2 and 2; violet: smaller than -2. Node labels and sizes are proportional to betweenness centrality and edge width to edgebetweenness -both centralities are with respect to the subnetwork module. Only nodes having a degree larger than 2 (resp. 3) are displayed for the 2 h (resp. 48 h) module. The full networks in tabular format are available on the accompanying website and in appendix A.1.

1.

 Retrieve human and mouse ENSEMBL orthologs, STRING species specific network 2. Retrieve human dataset from GEO (all time points, all conditions) 3. Annotate human probes with ENSEMBL 4. Select human probes based on variance filter 5. Perform linear modeling of the whole human dataset 6. Retrieve mouse dataset (all time points, all conditions) 7. Annotate mouse probes with ENSEMBL 8. Select mouse probes based on variance filter 9. Perform linear modeling of the whole mouse dataset 10. For each time point of interest: a) Call differentially expressed human genes by contrasting the Th17 with the Th0 condition ⇒ p-value for each gene at this time point b) Call differentially expressed mouse genes by contrasting the Th17 with the Th0 condition ⇒ p-value for each gene at this time point c) For an FDR threshold of 0.1, fit a BUM model for the human genes ⇒ positive and negative scores for human genes d) For an FDR threshold of 0.1, fit a BUM model for the mouse genes ⇒ positive and negative score for mouse genes e) Rank normalize the mouse score based on the human scores ⇒ update the scores of the mouse genes f) Map human and mouse genes to proteins on the STRING network g) For each value of interest for the conservation threshold α: i. Run xHeinz with the following inputs: A. the human STRING network B. the mouse STRING network C. the BUM scored human proteins D. the BUM scored mouse proteins E. the human and mouse orthologs

 Fig. 4.8 shows for each time point the Jaccard index for all pairs of conservation ratios. For consecutive values of α we can see that the module contents do not change much.

Figure

 Figure 4.5: Full module at 2 h for α = 0.8 conservation ratio

Figure 4 CHAPTERB

 4 Figure 4.6: Full module at 48 h for α = 0.8 conservation ratio

Figure 4 . 9 :

 49 Figure 4.8: Jaccard index evolution over changes of α

Figure 5

 5 Figure 5.1: Illustration of the construction of G 1 , G 2 , and M , givenC q = {(x 1 ∨ x 2 ∨ ¬x 3), (¬x 1 ∨ x 2 ∨ x 5), (¬x 2 ∨ x 3 ∨ ¬x 4), (¬x 3 ∨ x 4 ∨ ¬x 5)}.For readability, the mapping M is not drawn but represented as labels located on the nodes: any pair of nodes (one in G 1 and one in G 2) of similar inner label are mapped in M .

 Figure 5.2: Illustration of the construction of G 1 , G 2 , and M , givenC q = {(x 1 ∨ x 2 ∨ ¬x 3), (¬x 1 ∨ x 2 ∨ x 5), (¬x 2 ∨ x 3 ∨ ¬x 4), (¬x 3 ∨ x 4 ∨ ¬x 5)}.For readability, the mapping M is not drawn but deduced from the labels of the nodes; any pair of nodes (one in G 1 and one in G 2) of similar label are mapped in M .

 Figure5.3: Nodes labeled with the same letter are counterpart of one another. When starting from an empty solution 2 , the inclusion of node A requires only the inclusion of a. However when starting from the root nodes, the inclusion of node A requires the inclusion of node a, which recursively requires the inclusions of b, B, C, and c. A local dynamic programming approach is impossible since the context is important.

Proposition 3 .

 3 The induced graphs T 1 [S 1] and T 2 [S 2] obtained as results of ConstructRequiredSet are connected.

 v∈V * c(v)/|V * | = 1 ≥ α, and the mwcs and rb-mwcs problems are equivalent. Let us show now that it is in PTIME for bounded-degree trees. Proposition 8. rb-mwcs is solvable in O(n d+2) time for d-ary trees.Proof. Let us consider the rb-mwcs problem for a d-ary tree. We define a dynamic programming strategy with a O(n d+2) time complexity. This leads to a polynomial algorithm for d-ary trees. The basic idea is to define a 3-dimensional table T of size |V | × v∈V c(v) × |V | that stores the maximum weight of a subtree rooted in v of size s and of total contribution tc.Formally, ∀v ∈ V, 0 ≤ tc ≤ v∈V c(v), 0 ≤ s ≤ |V |, let us note v i the i-th child of v, 1 ≤ i ≤ d, we have: 72 CHAPTER 5. MWCCS T [v][0][0] = 0 T [v][tc][s] = max tc 1 ,...,tc d , s 1 ,...,s d w(v) + 1≤i≤d T [v i][tc i][s i] s.t. tc = c(v)

 v∈V * c(v) + C ≥ α × |V * | of the rb-mwcs problem is a generalization of the costs constraint v∈V * cost(v) ≤ B of the b-mwcs

Finally

 , we have started work on an improvement to the algorithm introduced by Bateni et al. (2011) that solves the mwcs problem in polynomial time for all graphs up to bounded tree-width. Introducing knapsack for the contributions in Bateni et al. (2011)'s algorithm should provide a solution for rb-mwcs in pseudo-polynomial time for this same category of graphs.Chapter 6

Table 4 .2: neXus solutions for time point 48 h with different values for pa- rameter dfscutoff.

 4 Shown are the number of solutions, the average and maximum number of nodes and running times for the human network.

	dfscutoff no. sols. avg. size max. size CPU time [s]
	0.1	2	5.00	5	176039.91
	0.2	3	7.00	9	110282.61
	0.3	5	6.60	9	77502.13
	0.4	4	6.62	10	54972.92
	0.5	6	5.58	9	35360.42
	0.6	4	5.38	6	20538.4
	0.7	3	5.33	6	11164.19
	0.8	60	4.04	6	4639.59
	0.9	0	0.00	0	1359.87

Table 4

 4 Shown are the number of solutions, the average and maximum number of nodes and running times for the human network.

	cc no. sols. avg. size max. size CPU time [s]
	0.1	1	5	5	23367.68
	0.2	1	5	5	23243.83
	0.3	1	5	5	23903.09
	0.4	1	5	5	24285.30
	0.5	1	3	3	24318.78
	0.6	1	3	3	24059.59
	0.7	1	3	3	24518.68
	0.8	1	3	3	24321.92
	0.9	1	3	3	24246.56
	differentially expressed in mouse. xHeinz also finds JUNB, which at the 2 hour time point
	is up-regulated in human data (BH FDR 1e-2, score 0.02, logFC 1.3) and not detected
	as differentially expressed in the mouse data (BH FDR 0.48, score -4.01, logFC 0.65).

.3: neXus solutions for time point 48 h with different values for parameter cc.

Table A .

 A 1: Timepoint 2 h, α = 0.8, FDR = 0.1A.1. FULL TH17 MODULE TABLES

	Mouse	Human	Nts (18.50)
	Napsa (-3.86)	NAPSA (32.07)	Inhba (13.50)
	Il9 (5.03)	IL9 (22.36)	Tec (10.10)
	Il21 (32.07)	IL21 (-4.97)	Serpine2 (9.94)
	Cd70 (7.24)	CD70 (19.85)	Lrmp (9.92)
	Cysltr1 (22.36)	CYSLTR1 (0.30)	Eno3 (9.74)
	Il17a (27.88)	IL17A (-5.46)	Serpinc1 (9.69)
	Fbxo15 (3.11)	FBXO15 (18.26)	Fap (9.64)
	Wisp1 (24.44)	WISP1 (-4.63)	Ifih1 (8.54)
	Slamf6 (22.16)	SLAMF6 (-5.38)	Tspan6 (8.41)
	Rbpj (14.79)	RBPJ (0.04)	Smox (6.91)
	Il24 (17.69)	IL24 (-3.66)	Ppap2a (6.35)
	Emp1 (16.64)	EMP1 (-2.83)	Piwil2 (6.11)
	Chn1 (-5.02)	CHN1 (18.50)	Cd274 (5.61)
	Egln3 (14.50)	EGLN3 (-1.79)	Ermp1 (5.31)
	Ccl20 (9.84)	CCL20 (2.50)	Tgm2 (5.21)
	Aqp3 (17.54)	AQP3 (-5.38)	Srgn (4.72)
	Vdr (2.22)	VDR (9.74)	Serpinb6b (4.53)
	Apod (-4.84)	APOD (16.41)	Mxi1 (4.39)
	Pdpn (16.86)	PDPN (-5.29)	Dnmt3a (4.32)
	Ahcyl2 (-3.39)	AHCYL2 (14.79)	Nsg2 (3.71)
	Sgk1 (4.04)	SGK1 (5.55)	Igfbp7 (3.45)
	Lgals1 (12.94)	LGALS1 (-3.52)	Gpr65 (3.30)
	Lpxn (14.49)	LPXN (-5.30)	Pdcd1lg2 (3.01)
	Anxa2 (8.87)	ANXA2 (-0.12)	Rrad (2.97)
	Loxl3 (-4.22)	LOXL3 (12.94)	Socs3 (1.90)
	Tnfrsf25 (-0.02)	TNFRSF25 (7.75)	Mt2 (1.31)
	Arhgef3 (4.10)	ARHGEF3 (2.72)	Pkp4 (1.12)
	Basp1 (5.83)	BASP1 (0.89)	Gem (0.37)
	Gata3 (1.19)	GATA3 (5.24)	Prickle1 (0.30)
	Fut7 (-1.83)	FUT7 (7.58)	Prnp (-1.10)
	Furin (4.28)	FURIN (1.46)	Ywhaz (-3.30)
	Ryr1 (-4.25)	RYR1 (8.54)	Timp1 (18.48)
	Axin2 (-4.95)	AXIN2 (7.83)	Ifi203 (18.26)
	Tnfrsf13b (6.13)	TNFRSF13B (-3.57)	Ctla2b (10.18)
	Tnfsf8 (1.41)	TNFSF8 (1.04)	Ctla2a (6.54)
	Il2rb (-3.52)	IL2RB (5.91)	Il3 (1.86)
	Fasl (7.75)	FASLG (-5.37)	PTHLH (24.44)
	Anxa3 (7.83)	ANXA3 (-5.48)	TMPRSS6 (16.86)
	Jun (-2.95)	JUN (5.14)	COL6A3 (16.64)
	Sdcbp2 (5.24)	SDCBP2 (-3.21)	IL23R (14.50)
	Klrd1 (-1.64)	KLRD1 (3.51)	PTK2 (11.74)
	Uchl1 (-5.07)	UCHL1 (6.91)	EXOC3 (10.18)
	Rps6ka4 (0.22)	RPS6KA4 (1.34)	BCAR3 (9.84)
	Ifng (1.77)	IFNG (-0.32)	IL17F (8.67)
	S100a6 (2.72)	S100A6 (-1.60)	PTGIR (6.95)
	Pfkfb3 (-5.16)	PFKFB3 (6.07)	ITGB7 (6.54)
	Rdx (-3.21)	RDX (4.10)	COL6A1 (5.47)
	Palld (-4.63)	PALLD (5.31)	TNS3 (5.20)
	Gbp2 (-1.37)	GBP2 (2.04)	LMNA (4.70)
	Sftpd (-5.12)	SFTPD (5.71)	NCALD (4.41)
	Asap1 (4.97)	ASAP1 (-4.42)	EVL (4.28)
	Col15a1 (-4.82)	COL15A1 (5.34)	BTLA (3.41)
	Casp1 (0.03)	CASP1 (0.48)	FNBP1L (1.93)
	Chst3 (-5.14)	CHST3 (5.61)	SOS1 (1.84)
	Arid5a (5.34)	ARID5A (-4.90)	EXOC2 (1.19)
	Lif (-2.49)	LIF (2.92)	NOTCH1 (0.23)
	Thbs1 (-4.55)	THBS1 (4.87)	FYN (0.08)
	Fam174b (-3.95)	FAM174B (4.09)	CD1A (27.88)
	Ptprj (5.47)	PTPRJ (-5.43)	CLECL1 (22.16)
	Syp (-3.59)	SYP (3.45)	CD1C (18.48)
	Trat1 (5.14)	TRAT1 (-5.35)	CD1B (14.49)
	Tnfrsf12a (-4.23)	TNFRSF12A (3.90)	CTSL1 (13.50)
	Id2 (5.02)	ID2 (-5.38)	TBL1X (4.04)
	Armcx2 (4.41)	ARMCX2 (-4.95)	
	Cyp11a1 (2.69)	CYP11A1 (-3.46)	

Table A

 A

.2: Timepoint 48 h, α = 0.8, FDR = 0.1

Not to be confused with concurrent algorithms, algorithms for which concurrent steps can execute in undefined order, even though the two are often closely related.

Which is very closely related to the number of constraints due to duality. Unfortunately the primal-dual theory is beyond the scope of this manuscript, see[START_REF] Papadimitriou | Combinatorial optimization: algorithms and complexity[END_REF] for details.

http://inparanoid.sbc.su.se, Release 8.0, December

They actually compute the score only for genes that they consider informative, even though they acknowledge this selection as "somewhat arbitrary".

As provided by databases such as Inparanoid[START_REF] O'brien | Inparanoid: a comprehensive database of eukaryotic orthologs[END_REF].

Proven maximal distance to the optimal solution.

They themselves acknowledge that this is an easy result(Feigenbaum et al. 2001, footnote 12).

In their study, mouse is the model organism and human the transfer target, which is a very standard coupling in phamacological transfer studies.

In our case: the order of appearances of the nodes in the network definition.

In our original publication(Hume et al.

2015) we have erroneously used the term comb graph.

={r} ∪ {c k j | c j is satisfied by its k-th literal} ∪ {x i , dc i j | x i = 1, 1 ≤ j ≤ q} ∪ {x i , dc i j | x i = 0, 1 ≤ j ≤ q} ∪ {dx i , dx i | 1 ≤ i ≤ n}. By construction, G 1 [V *1] is connected since all the vertices of the spine of the caterpillar have been kept. Moreover, G 1 [V * 1] contributes B × n + m to the overall weight of the solution, that is B for each of the l i and +1 for each satisfied clause. By construction, all the sub-trees rooted at x i (resp.x i) are kept in G 2 [V * 2] if x i = 1 (resp. x i = 0) in A.Moreover, all the dummy nodes for literals (dx i and dx i) and the root r have been kept. Thus, G 2 [V * 2] is also connected. Furthermore, G 2 [V * 2] contributes to -B × n to

As is the case with regular dynamic programming, which depend only on local subproblems.

At least one of the neighbors of u is in the candidate solution, or the candidate solution is empty. That is, its addition leaves the candidate solution connected.

Note that in general, this union is certainly not optimal. Unless there are multiple optimal solutions, only one combination of the children maximizes the score, and possibly the empty one.

The contribution function can represent inputs that we don't actually use.

We presented a general model and its MIP program to solve any instance of the crossspecies module discovery problem. An extensive complexity analysis of the problem is presented in chapter 5, where we show that some instances can be solved in polynomial time with specific algorithms.

Proof. The shortest path toward a set of nodes in a tree is equivalent to the minimum sum subsequence problem and can be solved in linear time using a dynamic programming approach. We recursively add up to O(n) nodes (all). Hence the resulting complexity.

ComputeDecisionTree:

The main procedure, ComputeDecisionTree, is a recursive decision tree traversal of T 1 that uses the ConstructRequiredSet operation. It is formally defined as follows. Given T 1 , T 2 , and a node u ∈ V 1 , this function returns the set S u 1 and S u 2 : the best selection of nodes, respectively from T 1 and T 2 , when optimizing in the subtree rooted in u and which includes u. Note that S u 1 might contain nodes that are parents to u, as a requirement for the matching and connectivity constraints. Lets define u i the i-th children of u, and C u = i {u i } the set of these children. For all nodes

1. recursively call ComputeDecisionTree with u i , which will return the sets S u i 1 and S u i 2 , then 2. call the ConstructRequiredSet procedure with S u i 1 , S u i 2 , and u, which will return

Then compute a score s(u), which correspond to the optimal combination of children such that their inclusion maximizes the local sum of weights. This score only consider the subtree rooted in u and including u in a typical dynamic programming approach.

Formally, the computation of this score is as follows. For notation sake, lets define P u = P(C u): the power set containing all the combinations of children of u; and P u k the k-th element of this set. Lets also define

the union of the optimal nodes in the k-th combination of children 4 , including u. To simplicity notation, we further define S P u 0 , with the 0-th combination being the usual empty set 5 , as the set {u, v}: if no children are selected, only the current node and its counterpart are part of the solution, which is a connected and matched solution by definition. Finally, we have:

Computing the optimal combination of children, required for the max function, is not an easy problem. It looks similar to the weighted maximum coverage problem [START_REF] Hochbaum | Approximation algorithms for NP-hard problems[END_REF], relaxed both with possibly negative weights, and with unconstrained number of sets. It also looks quite similar to the set-union knapsack problem [START_REF] Goldschmidt | Note: On the set-union knapsack problem[END_REF]), but again with real-valued weights and without budget constraint. Both are sensibly related and difficult, NP-hard problems (R. [START_REF] Cohen | The generalized maximum coverage problem[END_REF]CHAPTER 6. CONCLUSION this means that there cannot be an efficient algorithm to approximate the model to any probable quality.

Overall, these results provide many possible improvements. For one, the general problem applied to more that two graphs has practical applications, for multiple species but also for time series analysis. In chapter 5 we suggested possible relationships between some subproblems of mwccs and many well known combinatorial optimization problems. This is a clear avenue of research, that would allow the application of well optimized optimization techniques to the mwccs problem.

Appendix A xHeinz appendices A.1 Full Th17 module tables

We provide a tabular overview of the module contents (table A.1 and table A.2). In the tables, each row lists unmatched genes or homologuous gene pairs with their activity scores. On the left side are the mouse genes and on the right side the human genes. The gene activity scores are in parentheses. Names in bold represent genes for which no homologous counterpart exist in the underlying networks.

Note that very few (overall only 2 in mouse for 48 h) genes with negative activity score and without conserved counterpart are selected. Some of them even have a strong positive activity score. These genes would be missed in a strict conservation model.