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Résumé

Un des principaux défis de la bioinformatique moderne est de saisir le sens des données
biologiques en constante croissance. Il est prépondérant de trouver de bons modèles pour
toutes ces données, modèles qui servent à la fois à expliquer les données et à produire
des réponses aux questions biologiques sous-jacentes. Une des nombreuses difficultés
d’une telle approche est la grande variété dans les types des données manipulées. La
biologie computationnelle moderne propose des approches qui combinent ces types de
données dans des techniques dites intégratives.

Cette thèse contribue au problème de l’identification de module biologique en
intégrant les informations de conservation dans les modèles modernes d’identification
d’ensemble de protéines. Nous introduisons un modèle pour la détection de modules con-
nexes actifs et conservés, c’est-à-dire des modules connexes dont une majorité d’éléments
sont similaires entre deux espèces.

Nous présentons une formulation de notre modèle sous forme de programmation
linéaire en nombres entiers, et proposons un algorithme branch-and-cut qui résout le
modèle à l’optimalité en temps raisonnable. Nous appliquons notre modèle sur des
données de différentiation cellulaire, à savoir les cellules Th0 en Th17 pour l’humain
et la sourie. Nous analysons également notre modèle du point du vue de la complexité
algorithmique, et fournissons des résultats pour le cas général ainsi que des cas spéciaux.

Mots clés: Bioinformatique, Optimization combinatoire, Maximum-Weight Con-
nected Subgraph, Recherche de modules biologiques
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Abstract

One of the major challenge for modern bioinformatics is making sense of the ever increas-
ing size of biological data. Finding good models for all this data, models that can both
explain the data and provide insight into biological questions, is paramount. One of the
many difficulties of such path is the variety in the types of data. Modern computational
biology approaches combine these many data into integrative approaches, that combine
the knowledge inside the data in the hope to extract higher level information.

This thesis contribute to the biological module identification problem by integrating
conservation information with modern models of modular detection of protein sets.
We introduce a model for the detection of conserved active connected modules, that
is connected modules that are conversed across two species. These active connected
modules are similar in sequence composition between the two species.

We present a mixed-integer linear programming formulation of our model, and
propose a branch-and-cut algorithm to solve to provable optimality in reasonable run
time. We apply our model to cell line differentiation data, namely Th0 into Th17 for
both human and mouse. We also analyse the model from a complexity standpoint, and
provide general as well as special cases complexity results.

Keywords: Bioinformatics, Combinatorial optimization, Maximum-Weight Con-
nected Subgraph, Biological module discovery
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Chapter 1

Introduction

No definition of life is unequivocal.
However, it is largely agreed that in order to be considered a living organism a

biological entity must be able to 1) grow and adapt to external stimuli in order to
maintain its homeostasis (maintaining a stable state by means of one or many internal
processes) and 2) be able to replicate autonomously. According to this definition the
most basic unit of life is the cell. Cells can either stand alone to constitute unicellular
organisms, bacteria being the perfect example, or the basic components of complex
multicellular organisms, composing animals and land plants for example.

Cells are made of many biomolecules in constant interactions. The two most funda-
mental types of biomolecules that define cellular processes are the nucleic acid chains
and amino acid chains. Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are
two nucleic acid molecules, strings of smaller molecules named nucleotides, that encode
and transmit informations inside the cell. Proteins are complex chains of amino acids
that constitute the basic components through which the cell functions. Their molecular
structure is encoded inside the DNA sequences in sections that we call genes.

Cellular function is roughly defined by the proteins that compose a cell at a given
time. Indeed, by the random nature of biomolecules interactions, the relative concen-
tration of these proteins guide the overall functioning of the cell. Of all the proteins
encoded inside the DNA, the set of proteins that compose a cell is defined by the genes
that are expressed while the other stay silenced.

The many processes by which a cell influence the expression of its genes are complex,
and altogether they make up the gene regulation mechanisms. Gene regulation provides
the basic means with which a cell can adapt and respond to stimuli. Moreover, in
multicellular organisms cells acquire their specific function via the process of cellular
specialization (or cellular differentiation), and gene regulation also provides the required
machinery required for the cell to change its internal structure and overall function.

To characterize and classify cells by their functions, in principle we can measure
the level of concentration of the proteins inside a cell. Although it is often prohibitive
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2 CHAPTER 1. INTRODUCTION

to measure with precision such concentrations, modern microarray and sequencing
techniques enable the efficient and precise measure of messenger RNA. Messenger RNA
are both the precursor to proteins and are the direct product of gene expression.

By measuring the levels of messenger RNA inside a cell, expression profiles are
constructed as snapshots of the cells internal states. Expression profiles act as molecular
reports, that we can compare and classify by detecting similarities in the expressed
genes.

The differential analysis of expression profiles compare profiles of cells under one con-
dition against cells subject to a second condition. It portrays the differences between the
two conditions by extracting similarly expression of silenced genes. Differential analysis
of expression profiles is a fundamental technique that allows to inspect cell functioning
as the expression level and extract important knowledge in regard to individual protein
function and to functionally linked groups of protein components.

Proteins are complex macromolecules made of long chains of smaller amino acids
molecules. Roughly, each protein correspond to a DNA sequence, called a gene, and the
specific string of amino acid that constitute the protein is dictated by the corresponding
gene sequence. Each protein form an intricate three-dimensional structure through a
process called protein folding.

Proteins are studied in very many fields such as biochemistry, quantum chemistry,
molecular dynamics, etc. Combined with automatic cross-referencing techniques such as
literature mining across all published papers and careful manual curation of high quality
publicly available database, the wealth of cross-referenced protein data is substantial.

The information contained in these databases allows the construction of large net-
works containing the many known of inferred molecular interactions. From all these
networks, protein-protein interaction (PPI) networks contain the interactions between
proteins, and for a particular cell its PPI network represents its interactome.

The information encoded inside an organism DNA is the result of long chains of
evolutionary events through time. One such event, and perhaps the most important,
is that of inheritance. Through inheritance, genetic sequences are passed down from
ancestor to descendant species. Given that a single species can have many descendant,
and that most genetic information is inherited without mutation, many species share
the same sequences: conserved sequences.

There are evidences that groups of proteins that work in conjunction to accomplish
a function are often conserved together. These groups of functionally related proteins
are important targets for the study of cellular process, in particular those processes that
are conserved through evolution.

Differential analysis of expression levels are used to extract proteins of interests, that is
proteins that are significantly differentiated between the control and the condition. Many
statistical approaches have been proposed to detect these sets of important proteins
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for phenomenon under study. One shortcoming of many of these methods is that they
occasionally find sets of proteins that have little in common for the cellular processes,
and biological interpretation of these results becomes difficult, if even significant.

Beyond the many computational methods for the analysis of expression profiles,
of interactomes, and of evolutionary conserved DNA sequences, integrative approaches
propose the combination of two or more of these types of information into single systemic
models. This is the case of the connected module model, where modules represent sets
of significantly differentiated proteins with the additional constraint that they have to
physically interact.

This thesis contribute to the module identification problem by integrating conserva-
tion information with modern models of modular detection of protein sets. We thus
introduction a model for the detection of conserved active connected modules, that is con-
nected modules that are conversed across two species. These active connected modules
are similar in sequence composition between the two species.

We present a mixed-integer linear programming formulation of our model, and
propose a branch-and-cut algorithm to solve to provable optimality in reasonable run
time.

We apply our model over cell line differentiation data, namely T helper 0 (Th0) into
T helper 17 (Th17), for both human and mouse.

We also analyse the model from a complexity standpoint, and provide general as
well as special cases complexity results.





Chapter 2

Preliminaries

2.1 Biological entities and their analysis

We first briefly overview the types of information that is available to study biological
systems. This information can be described following the central dogma of molecular
biology (Crick et al. 1970): genetic (DNA) sequences, transcribed RNA sequences and
finally protein sequences. Raw DNA sequences are strings of the four letters, called
bases, comprising genes. Different species can have different numbers of genes within the
genome of the organism. For prokaryotes, each gene is typically 1, 000 to 2500 bases long
(Xu et al. 2006). The GenBank repository of nucleic acid sequences (http://www.ncbi.
nlm.nih.gov/genbank/) currently holds a total of approximately 202 billion bases in
188 million entries1. At the next level are protein sequences that correspond to real
gene products within the cells and are strings of 21 amino acid-letters. At present, the
UniProtKB protein sequence database (http://www.uniprot.org/) contains about 500
thousands reviewed protein sequences2, a typical bacterial protein being approximately
300 amino acids long.

The central dogma states that DNA makes RNA, and RNA makes proteins. At each
step, a cell translates the information between the different alphabets. That is, DNA
sequences are translated into RNA sequences at the first step, and RNA sequences are
translated into protein sequences at the second step, see fig. 2.1.

2.1.1 Entities

2.1.1.1 Genes

A genome is typically a set of sequences, corresponding to chromosomes, over the 4-letter
alphabet: cytosine (’C’), guanine (’G’), adenine (’A’), and thymine (’T’). The set of
genes of an organism encodes the instructions for a cell to perform its functions. In order
to study how cells perform their functions, it is first necessary to identify genes. Process

1Release 210.0, October 15 2015
2Release 2015 10
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6 CHAPTER 2. PRELIMINARIES

DNA RNA protein

ACCCATAGTCGC. . . ACCCAUAGUCGC. . . MAQW. . .

Figure 2.1: Central Dogma of Molecular Biology. Below each structure type are
examples using 12 dummy DNA characters, the corresponding messenger RNA sequence,
and the protein sequence.

of identifying regions within the genome that encode genes is called gene finding, see
for review (Stormo 2000). The common principle behind gene prediction methods is to
distinguish between protein-coding regions (genes) and non-coding regions, based on
their statistical properties.

CGGGGTTAAATCCACTACCCTCTCCCCACGCACTC
TAGTAATTACTCTATTTCCACGTCATGTTTCCGGG

Figure 2.2: 70 nucleobases from the human (hsa) STAT3 gene.

Based on the observation that given two species A and B, there exist gene versions
a ∈ A and b ∈ B that are similar in sequence and have related functions, the parsimony
principle suggests that they must have been inherited from the common ancestor. Genes
that have a similar sequence are said to be homologs. Among homologs there are two
main subgoups: orthologs and paralogs. Orthologs are homologous genes that evolved
from the same ancestral gene in the last common ancestor of the compared species. For
example, for a and b to be orthologs, they must have descended from an ancestral gene
c in C, last common ancestor of A and B. On the other hand, paralogs are homologous
genes, that have evolved by duplication. For example, a′ ∈ A having a similar sequence
to a (and b), might have descended from the duplication of a that has happened after
the ancestors of A and B have taken different evolutionary paths. For further discussion
of orthology, see (Makarova et al. 2007; Kuzniar et al. 2008).

CCGGGTTATAGCCACTATTCTC-CCCCACGCAATC
TAGTAATTACTCTATTTCCACGTCATATTTCCGGG

Figure 2.3: 70 nucleobases from the mouse (mus) Stat3 gene. Bases highlighted in red
indicate a variation from the corresponding bases in the human gene, ’-’ indicates that
the base is abscent in the mouse gene.

2.1.1.2 RNA

Like DNA, RNA is a nucleic acid sequence, but with some differences. For example,
RNA molecules are single-stranded, while DNA is double-stranded. Also DNA and RNA
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differ slightly at the nucleotide level, in particular there is a ’U’ (uracil) instead of ’T’.
Most importantly, RNA sequences —called mRNA for messenger RNA— correspond
to the protein coding regions.

A C G T C T A G T A C T G C A T T A G C G A T G C A T A C G A T G C A T G C A A A G G C A T A C

G U A C U G C A U U C A U A C G G G C A U A C

Figure 2.4: Gene transcription. After the removal of the primer region, which indi-
cates the start of a gene, each exon is translated by replacing every Thymine base by
an Uracil base.

Different species have their own sets of mRNA sequences at any given time. In par-
ticular, they respond to environmental stimuli by varying the level of mRNA molecules
that are present at a given time, process that is called gene expression. The set of mRNA
molecules of an organism is called transcriptome.

2.1.1.3 Proteins

Translation, which is the second step in gene expression, ”reads” the RNA sequences
and translates (according to the genetic code) them into amino acid sequences, that
is sequences over the alphabet of 21 amino-acid letters. Each group of three bases in
the mRNA constitutes a codon, and each codon defines a particular amino acid. This is
why it is called a triplet code. Consequently, the mRNA sequence is used as a template
to build sequences of amino acids that constitute proteins.

2.1.2 Biology as data science

Since the completion of the Human Genome Project in 2003, thousands of species have
seen their genome fully sequenced (Reddy et al. 2014). Nowadays, Regalado (2014)
estimated that our sequencing capacity exceeds 35 Petabases (or approximately 250,000
human genomes) per year. Looking into the future, with further advancement of high-
throughput sequencing technologies, the prospect of seeing more than 1 billion genomes
sequenced in the next 20 years is realistic (Schatz 2015).

Genetic information is only one type of data. In the last 20 years, many techniques
have been used to look deeper into cellular functions. Microarrays, RNA-sequencing,
high precision microscopy, and mass spectrometry, all allow automated collection of
observations of the cellular developments and regulation processes.

With the collection of these volumes of data, a number of challenges arise, among
which (i) the collection of data into accessible repositories, and (ii) the analysis and
interpretation of the underlying knowledge. Analysis requirements of biological data
have brought biology within the scope of data science, towards what is called quantitative
biology.
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2.1.3 High throughput experiments

This ability to quantify many molecular targets in parallel was an important step towards
the understanding of complex biological processes. Microarrays is an experimental
technique that can analyze the expression of many genes simultaneously and in an
efficient manner (Smyth et al. 2005; Sealfon and Chu 2011). Microarrays can be used
to perform different measurements, among others are the detection and measurement
of gene expression at the mRNA or protein level, detection of mutations and location
of chromosomal changes. A microarray is a collection of spots attached to a solid
surface. Each spot – corresponding to one gene – on a microarray contains multiple
identical strands of DNA and that are unique to this spot. Thousands of spots are
arranged in rows and columns on a solid surface. The resulting data is the intensity of
fluorescence for each spot that represents the level of expression of the corresponding
gene. Consequently, data produced by microarray technique requires some amount of
post-processing.

Furthermore, microarray data is inherently subject to variability and noise. A number
of normalization techniques have been developed to deal with these artifacts (Reimers
2010). However, normalization can not adjust for the major flaw of microarrays, that
is batch effect. Consequently, combining batches of data produced by microarrays can
potentially lead to erroneous results (W. E. Johnson et al. 2007).

The next two sections introduce fundamental concepts and terminology that will be
used at length through this work. In section 2.2 we give an overview of the computer
science concepts that serve as a basis for the optimization theory. In section 2.3 we
provide the reader with a brief introduction to both practical and theoretical aspects of
optimization, and specifically combinatorial optimization, on which this thesis builds
atop.

2.2 Computation and complexity classes

A computational problem is a mathematical question that is susceptible to being
solved by a computer. Even though any specific mathematical question is potentially a
computational problem, it is usual for computational problems to regroup a set of similar
questions. For example, although ”Is 42 a prime number?” is a mathematical question
that can be solved by a computer, the computation problem is: ”Given a number n,
is n a prime number?”. Every possible input to the problem forms an instance, which
there might be an infinite number, and each of which having its own solution. In the
aforementioned example there are an infinite number of instances, one for every n, each
with its own yes or no answer. By convention, ”computational” is very often omitted,
and the previous problem would be called ”the primality test problem”.
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Theoretical computer science is an inclusive field of both mathematics and general
computer sciences that studies many of the theoretical aspects of computation. In this
field any computation is expressed for a specific model of computation. These models
of computation are the basis on which one can formally express computations with the
use of algorithms.

Computational problems are solved with algorithms, series of well-defined sequential
or parallel operations that can be executed by the model for which it was designed.
Formally, an algorithm unambiguously defines an effective method in the Turing-Church
sense, that is a series of finite number of mechanical steps that the model can execute
and that always produce a correct answer (for the problems it is intended to solve).

Serial algorithms, containing only sequential operations, form the vast majority
of known algorithms and are usually identified simply as ”algorithms”. On the other
hand, algorithms containing parallel sequences are aptly named parallel algorithms3, and
although their fork points (points of separation) and join points (points of junction) are
well defined, their analysis comes with its own share of idiosyncrasies. Parallel algorithms
are the foundation of modern optimization problem solvers. We recommend (Jada 1992)
for a thorough introduction to this subject. Furthermore the sequential transitions
need not be deterministic: the integration of a random factor is the basis for the
randomized algorithms. Randomized algorithms are also very important in optimization
contexts, particularly for approximation schemes with the use of randomized rounding.
We recommend (Williamson and Shmoys 2011, Chapters 5 and 6) for a clear and
comprehensive reference on the topic.

Even though the Mixed-Integer Linear Programs (MILP) solvers that we use in
this work implement inherently parallel and optionally randomized algorithms (see
section 2.3) to solve our instances, the study of said algorithms and the associated
models of computation is well beyond the scope of this manuscript since in the general
case (including ours) a parallel and/or randomized algorithm does not change the
inherent characteristics of the problem that it solves.

On one hand we have computational problems and on the other hand algorithms to
solve these problems by computing a solution. For a given problem, different algorithms,
running on different models of computation, can exhibit very different characteristics.
The study of models of computation and their expressiveness in terms of algorithms

—and thus of the problems that they can solve— is part of the theory of computation.
For a general introduction to the subject we recommend (Sipser 2012). The problems
that we study in this manuscript are driven by their practical applications.

The fact that there exists a potentially large number of algorithms that solve a given
computational problem does not mean that they are all equivalent. There are many
characteristics that can be used to compare and classify algorithms, the most important

3Not to be confused with concurrent algorithms, algorithms for which concurrent steps can execute
in undefined order, even though the two are often closely related.
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ones being the complexity measures that satisfy the Blum complexity axioms. Namely,
the two most significant measures are the execution time complexity (also named run
time, runtime, or simply time complexity) and the memory space complexity (or simply
space complexity) measures, informally the minimum number of steps and the minimal
amount of storage that an algorithm must use to successfully compute the solution
to the problem at hand. These measures provide the means to quantify the necessary
resources that an algorithm requires for its computation to complete, which gives us
an element to express the efficiency of the algorithm. When unspecified, ”complexity”
usually means ”execution time complexity”.

The analysis of algorithms is the study of the efficiency of algorithms as function
of the length of the input. In the ”the primality test problem” previously mentioned,
the complexity of an algorithm solving this problem would therefore be a function of
n. Since the algorithm and its complexity hold for any n, the complexity is generally
measured asymptotically. To denote this asymptotic representation of complexity, we
use the Big-O asymptotic notation:

f(n) ∈ O(g(n)) ⇐⇒ ∃M,n0 s.t. |f(n)| ≤ |M × g(n)| ∀n ≥ n0.

Thus the Big-O function designates an asymptotic upper bound for the function and
allows for a notation that represents its growth rate, also known as the order (of
growth) of the function. Informally, it means that the term with highest growth rate
in the function f(n), stripped of its factor, is lesser or equal than g(n) asymptotically
(usually equal since we want the tightest bound possible). Thereby, constant growth rate
is denoted O(1), logarithmic growth rate: O(lg(n)), linear growth rate: O(n), quadratic
growth rate: O

(
n2), etc. Note however that an algorithm complexity is dependant on the

execution model and on the set of inputs. For example regarding the execution model,
integer multiplication is often assumed O(1) when it actually only holds when the result
is contained inside machine registers, where it is an O

(
nlg 3

)
operation for arbitrary

large n-digits number with the Karatsuba multiplication algorithm (Karatsuba and
Ofman 1963) in general. In regard to the inputs, the insertion sort or an n elements
list takes O(n) when the list is already sorted, O(kn) time to sort the list when it
contains at most k inversions, and O(n2) time in the general (worst) case for example.
When unspecified, ”complexity” usually means ”worst case asymptotic complexity” in
opposition to ”exact”, ”average-case” or ”best-case complexity” which use are less
common in theoretical contexts.

Note that the notation O(g(n)) actually defines the set of all functions such
that the definition holds, that is of all functions f(n) ∈ O(g(n)). And since clearly
O(1) ⊂ O(lg(n)) ⊂ O(n) ⊂ O

(
n2) ⊂ . . . , this notation provides a natural classification

of algorithms into ever more inclusive classes of increasing complexity. Although in the
general case not all such classes hold an inclusion relationship with each other, hierarchi-
cal classification of classes is central to complexity analysis of computational problems.
Classes for a specific resource res (e.g. time) are defined by the set of problems that can
be solved in O(f(n)) in regard to res for any input of size n. Even though not strictly
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correct, we often denote such a class the f(n) res class, and say that an algorithm is
in (the order of) f(x) res.

Where the analysis of algorithms studies these characteristics of algorithms, com-
plexity theory is concerned with the study of the problems themselves, whatever the
algorithmic solution. In practice when all the knowledge that we have about a problem
is a set of algorithms that can solve it, we consider a problem to be at most as difficult
(that is: complex) as the ”best” known algorithm that solves the problem, in other
words the one which complexity is in the most restrictive complexity class (for a given
resource). For example, the fastest known algorithm that can solve the primality test
problem is Lenstra Jr and Pomerance (2002)’s and is in O

(
(logn)6 × (2 + log(logn))c

)
time, for some real valued constant c; the primality test problem is thereby in this
complexity class. Agrawal et al. (2004) speculated that there may be a faster algorithm
for this problem, it is yet unknown if one actually exists. That is, it is unknown if there
exists a more restrictive complexity class that includes the primality test problem.

One of the techniques to study the complexity of a problem is the problem reduction
approach. A problem A is said reducible to problem B, noted A ≤ B, if there exists
a method that can transform any instance of A into an instance of B. Technically, a
reduction from A to B allows any algorithm that solves B to also solve A. Provided that
the reduction’s algorithm does not take any more resources than the algorithm that
solves B, it means that A cannot be harder to solve than B, since any of its instances
can be reduced to B. Conversely, if we know that A is a difficult problem (we know
that some of its instances are difficult to solve), being able to reduce all of its instances
to any of problem B proves that B is at least as difficult as A, since we know that some
of its instances are indeed difficult from the reduction of the difficult ones from A.

Most often, problem reduction are studied under polynomial resource constraints.
Note that, since for any amount of space resource that a deterministic algorithm requires,
it first needs to be run through and thus a deterministic algorithm is always at most as
fast as the amount of memory that it requires. For this reason, the deterministic run
time complexity measure is more restrictive than the deterministic space complexity
measure, and polynomial-time problem reductions give the strongest results in regard
to problem classification.

Most often, problem reductions compare problems of same problem type, for which
there exists many types:

• decision problems which are problem that ask a binary ”yes/no” question,

• function problems which given an x are problems that ask y = f(x),

• counting problems for which we count the number of valid answers,

• optimization problems which are problems that ask which is the best solution in
a set of candidates,
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• etc.

The most commonly studied in complexity theory are decision problems, and they
are central to complexity theory. Indeed two most prevalent complexity classes, P and
NP , are formally defined for these problems.

A problem p is said to be hard for some complexity class C, or C-hard, if every
problem in C can be reduced to p using a reasonable volume of resources. Thus, the
set of C-hard problems is the set of all problems that are harder or equally hard as the
most difficult problems in C.

A problem p is said to be complete for some complexity class C, or C-complete, if p
is in C and p is C-hard. Thus, the set of C-complete problems is the set of all problems
that are all equally the hardests to solve in C. Since it is known that any problem in C
can be reduced to any one problem p ∈ C-complete, and considering that being able to
reduce p to a problem q is equivalent to being able to reduce any problem in C to q,
the set of C-complete problems is very often used to prove C-hardness (of problem q).

2.3 Optimization problems

Mathematical optimization problems are problems where we search for the optimal
element (maximal or minimal depending on the problem) of a real-valued objective
function, subject to some constraints over its domain. It is very rare that only the value
of the optimal element is required, and most often it is the valuation of the input that
leads to the optimal element, that is the values of input parameters of the function,
that we really require. Formally, an optimization problem has the following form:

Given an objective function f : D → R that we want to minimize,
given the choice set S ⊆ D,
find an element opt ∈ S such that f(opt) ≤ f(x) ∀x ∈ S.

Note that by convention this standard form is for minimization problems; maximization
problems are strictly equivalent since, for any given maximization problem, negating
the objective function effectively makes it a minimization problem. Depending on the
context, the objective function is also named the cost function, cost that we usually
want to minimize, or the utility (or profit) function, utility (or profit) that we usually
want to maximize.

When the choice set is simple enough or clearly defined, the previous problem
notation is oftentimes shortened to the smaller (but much less explicit) version min

x∈S
f(x),

or arg min
x∈S

f(x) when the valuation of x is explicitly required.

In most practical applications, the choice set rarely has a straightforward definition,
and is described by a set of constraints, that is a set of equalities and inequalities
such that ∀x ∈ D, x ∈ S if and only if x satisfies them all. All points x ∈ D are
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potential solutions for f and constitute the search space of the optimization problem,
all x ∈ S are candidate solutions (or feasible solutions) of the problem, and all points
x ∈ D s.t. x /∈ S, that is points of the search space where at least one constraint is
violated, are the infeasible solutions. The choice set S is thus the set of all candidate
solutions. Given a set of constraints, an optimization problem is formally defined as
follows:

min f(x)
subject to gi(x)≤Gi ∀i ∈ [1,m]

hj(x)=Hj ∀j ∈ [1, n]

where f(x) is the objective function,
⋃
m
gi is the set of all inequality constraints, and⋃

n
hj the set of all equality constraints.

Enumerative technique, which are application of exhaustive search (or brute-force
search) methods, can be the basis of valid algorithm for such problems. However, the
complexity of enumerative algorithms is proportional to the number of valid valuation
of the variable, i.e. the number of candidate solutions. In practice the search space of
many common optimization problems grows at an exponential rate. Special cases where
the search space is finite constitute the very specific topic of combinatorial optimization
(see section 2.3.2). In general, the search space is neither finite nor enumerable, and
unless the objective function and the constraints conform to some specific restrictions,
a naive exploration of the search space is not suitable.

The effective size of the search space is often compounded by the fact that op-
timization problems are essentially expressed in high-dimensional spaces. With high-
dimensional problems the x that we optimize over becomes a vector, oftentimes noted
x, and each component of the vector is said a variable of the problem. In this context,
constraints not only describe restrictions to the set of available candidate solutions,
but also interdependencies between these variables. These interdependencies define the
Pareto optimality of the problem, where the variables are valuated such that any one
cannot be improved without making any other and the objective function as a whole
worse. Typically, the Pareto optimality is often applied when the objective function is
a combination of multiple criteria.

Multi-objective optimization When multiple objective functions are combined,
that is when multiple criteria need to be optimized at the same time simultaneously,
the problem is said a multi-objective optimization, or Pareto optimization. Since in the
general case (and very often in practice) a single solution cannot optimize all criteria
at the same time, trade-offs have to be made and some objectives must be optimized in
favor of others. Specifically, some ratio α ∈ [0, 1] have to be selected such that, for some
objective functions g(x) and h(x), the combined objective f(x) = αg(x) + (1− α)h(x)
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is optimized. For one, the generalization to k objectives does not scale, and second, in
practice it is very difficult to select a meaningful trade-offs. We thus define the Pareto
front as the set of all vectors x that are optimal for at least one value of α. Finding
the Pareto front of a problem is very similar to the Skyline query problem (or Skyline
operator), and Rekatsinas et al. (2015) gave a recent overview of the difficulties involved.
In many cases, multi-objective optimization is problematic either because trade-offs have
to be selected beforehand without a well defined models for the consequences, or because
computing the Pareto front (or a part) understandably remains a computationally
intensive task to this day. In chapter 4 we present a technique that we use to express an
inherently multi-criteria problem into a constrained single-objective problem, therefore
preventing some of the aforementioned problems and allowing for an easier interpretation
of our results.

2.3.1 Linear and convex programs

Linear programs are optimization problems where the objective function and the in-
equality and equality constraints are linear. Each inequality constraint can be seen
as a hyperplane, that is a d-dimensional generalisation of a 1-d point, of a 2-d line or
of a 3-d plane. Hence, each inequality constraint effectively reduce the choice set by
requiring that the solution is in the half-space (either on the greater-than or lesser-than
side) defined by its geometric equivalence. As a result the combination of all inequality
constraints produce a polytope, a d-dimentional generalisation of a 2-d polygon and 3-d
polyhedron. Given the nature of the inequalities and since the search space is defined
by the intersection of many half-spaces, it is either empty (no point can respect all
constraints at the same time) or convex. Furthermore, the objective function effectively
defines a continuous scalar field and its gradient defines the direction of the optimization.
Finding the optimal value of the problem is then equivalent to finding the points of
the polyhedron where the objective function is optimal. Since the objective function is
linear, either there is one unique optimum on a vertex of the polyhedron, or there as
infinitely many of them that form an edge or face of the polyhedron. See fig. 2.5 for a
visual representation in 2-dimensions of a simple linear problem. Equality constraints
are not strictly necessary since they can always be replaced by two opposite inequalities
(h(x) = H becomes the two constraints h(x) ≤ H and −h(x) ≤ −H). Geometrically,
this describe a d′-dimensional hyperplane, with d′ < d depending on the variables used
in the constraint, effectively reducing the search space dimension. Since a problem with
n variables can be represented in a n-dimentional space, the number of variables of
a problem and its dimension are often used synonymously, even though formally the
dimension of the problem d ≤ n since the variables do not define orthogonal vectors in
general.

In 1947 Dantzig proposed the first method to solve linear program: the simplex
algorithm. Geometrically, the algorithm moves from one vertex to another connected
vertex until it finds one where it detect that all other connected vertices are suboptimal
(or equal); and since the search space is a convex polytope this point is provably optimal.
Even though Klee and Minty (1970) showed that there exists pathological instances
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Figure 2.5: Visual representation of a 2-dimensional linear programming prob-
lem. The problem is constrained by seven inequalities, and the orange section represents
the intersection of the half-spaces defined by these inequalities. The blue line represents
the optimal isoline of the objective function (that is, all points (x, y) s.t. f(x, y) = o and
o is the optimum of the problem) and the green arrow the direction of the gradient (that
is, the direction of the optimization). Clearly, the objective function is at its optimum
on the vertex of the polygon.

for which the algorithm run in exponential-time relative to the number of variables4,
it remains used in practice even nowadays. Furthermore, many modern techniques are
grounded on the geometrical representations that the algorithm introduced. Khachiyan
(1980) proposed the first polynomial-time algorithm to solve linear programming prob-
lems, the ellipsoid method, which was an important theoretical result, but with very few
practical applications due to high exponents. Karmarkar (1984) introduced the most
important result in the field yet, a polynomial-time interior point algorithm that is
faster than the simplex on most problems.

Convex optimization is the generalization of linear programming to convex objective
functions, convex inequalities and linear equality constraints. The search space of convex
optimization problems is itself convex, as the intersection of half-spaces of convex
support. This convexity property provide an important invariant: any local optimum is
also the global optimum.

4Which is very closely related to the number of constraints due to duality. Unfortunately the
primal-dual theory is beyond the scope of this manuscript, see (Papadimitriou and Steiglitz 1982) for
details.



16 CHAPTER 2. PRELIMINARIES

Nesterov et al. (1994) showed that most convex problems, specifically linear programs,
second order cone programs, and semidefinite programs, can be solved in polynomial-
time complexity using variations of the interior-point methods that Karmarkar (1984)
introduced for linear programming. In general, however, convex optimization remains a
NP-hard problems.

Many practical and real-life problems can be modeled as linear and convex optimiza-
tion problems, and in general as continuous optimization problems. However, these
forms of optimization problems are also used to a large degree in the context of combi-
natorial optimization as problems relaxations. A problem is said relaxed when some of
its constraints are lifted, such as integrality of the variables for example. In this context
the relaxed problem is often used as an heuristic: an easier version of the problem that
gives an optimistic optimum in a reasonable amount of time. See section 2.3.2.1 for an
example of such use of linear and convex programs.

2.3.2 Combinatorial optimization

Combinatorial optimization is the large field of research interested in optimization
problems defined over finite search spaces. That is, where the problems is to search for
one optimal element inside a discrete set of objects. The domain is closely related to
various algorithmic research fields, and in particular to the complexity theory and to
the combinatorics field, which together study the complexity of algorithms working on
finite combinatorial sets.

Although there exists some easy combinatorial problems, in general this is a class
of problems that are often difficult for at least two reasons.

1. For one, even if the search space is finite, the number of feasible solutions is
frequently so high that any enumeration is impossible in practice. For example
in the two-sequences alignment problem. Given two sequences ~a = a1a2 . . . am
and ~b = b1b2 . . . bn (n ≤ m) over the same alphabet, find the alignment that
maximize the number of similar characters between the two alignments. In this
problem, the number of non redundant alignments between ~a and ~b is N(m,n) =
N(m− 1, n) +N(m,n− 1) =

(m+n
n

)
which is a clear exponential growth.

2. Secondly, in many cases, the equivalent decision problem is itself a NP-hard prob-
lem. For example in the sequence assembly problem with the shortest superstring
problem. Given a set of strings s1, s2, . . . , sn, construct a superstring S that con-
tains all si as substrings, and such that the length of S is minimal. The decision
problem equivalence, knowing given s if there exists a superstring Sl of length
l ≤ s, is actually NP-complete. The proof is given by a reduction of the vertex
cover problem (decision version) to this shortest superstring problem as shown by
Maier (1978) for alphabets of size 5, and later by Räihä and Ukkonen (1981) for
binary alphabets.
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Combinatorial optimization can be subdivided into two closely related fields: the
problems that work on combinatorial structures such as graphs, and integer programming
problems. This distinction is useful for two reasons. On the one hand, their are some
optimization problems over graphs, such as the flow-network problems, shortest paths or
spanning trees, that can be solved in polynomial time, whereas the integer programming
problem is difficult. Precisely, the 0–1 integer programming decision problem is NP-
complete, and the integer programming decision problem in the general case is NP-hard.
On the other hand, such optimization problems can be reduced to integer programming
problems, although the reduction might require an exponential number of constraints, for
example to model connectivity of the solutions, and thus the reduction is an exponential-
time reduction. Note that linear programs that also include integral variables are called
Mixed Integer Linear Programs (or MILP) and are a general case of discrete optimization
that includes integer programming.

Even though combinatorial optimization problem are theoretically difficult, it is
often the case that specific instances can be solved in reasonable amount of time. Some
problems, although proven difficult, have an extensive literature related to them. In
particular many publications propose techniques and heuristics that exhibit better char-
acteristics to solve problems, oftentimes providing better run time in many benchmark
instances. One such techniques involves solving in polynomial time a relaxed version
or an approximation of the initial problem. Of interest to such studies are real-world
instances that do not exhibit exponential behavior and random instances that often
constitute basis for benchmarks (see DIMACS Challenges for standard benchmarks for
many optimization problems). See section 3.4.3 for an extended bibliography of such
approaches to solving the maximum-weight connected subgraph problem that we
use in practice in chapter 4.

When it comes to solving combinatorial optimization problems, mostly three cases
can be observed. First, if the problem can be solved in polynomial time. In this situation,
the general approaches often involves greedy algorithms that lead to the global optimum,
dynamic programming that reuse sub-problems structure, and linear programming when
the combinatorial structure can be expressed as real-valued variables. Second, when
the decision problem equivalent is actually NP-hard, informed search space exploration
is the technique of choice. In particular, using branch-and-bound and branch-and-cut
techniques that are described in section 2.3.2.1. Third, approximation algorithms are
often employed when a reasonably close to optimal solution is required within a provable
run time complexity. See section 2.3.3 for a brief overview of approximation algorithms
and of the complexity class that they induce.

2.3.2.1 Search space exploration algorithms

Branch-and-bound The branch-and-bound technique is a search space exploration
technique based on the explicit traversal and pruning of a state tree. It is based on the
technique that Land and Doig (1960) applied to integer programming. It is very similar
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to the star family of algorithms (such as A*, B*, . . . ) and to the alpha-beta algorithm
in regards to both space exploration and to pruning (Nau et al. 1984).

Informally, given a node on the state tree, for each of its children corresponding to a
valid variable assignment: if it’s a leaf compute the actual valuation, otherwise compute
an optimistic valuation (for example using a linear relaxation heuristic). For each of
these children, if the valuation is worse than the actual best: discard, otherwise: mark
for traversal. Start the procedure at the root where all variables are unassigned, and
continue until no more nodes are marked for traversal at which point the best valuated
leaf is the optimal state.

In practice the branch-and-bound can be reasonably fast given a good node traversal
strategy, for example using a priority order on the optimistic valuations, and given a
good heuristic. In particular the heuristic must be as close as possible to the actual
valuation in order to prune a maximum number of nodes; many problems have heuristics
specifically designed to be used in a branch-and-bound technique.

The branch-and-bound technique is very well studied, and there exists many tech-
niques that optimize the run time or the space requirements of the algorithms. Of note
are parallel approaches, which are ubiquitous in modern solvers, and we recommend
(Bader et al. 2005) for an overview with a practical example applied to the phylogenetic
tree reconstruction problem.

Branch-and-cut The branch-and-bound algorithm requires an explicit definition of
the search space for its branch operation, where the list of valid variable assignments
must be readily available in order to traverse the list of valid children to explore.

The branch-and-cut technique is very similar to the branch-and-bound, with the
introduction of global cuts and local cuts: additional constraints that can be added
during the execution. Cuts, also named Gomory cuts (Gomory 1958) or cutting-planes,
are additional constraints that restrict the set of candidate solution. Global cuts are
constraints that, once added into the formulation, must hold for all further solutions
anywhere in the state tree, and local cuts are constraints that must hold only for the
local sub-problem (the local sub-tree in the state tree). In practice, the addition of
these dynamic constraints very often have a positive impact to the run time and space
efficiency, and most MILP solvers nowadays implement these cutting-plane techniques
as the basis of their algorithm.

One special use of the branch-and-cut technique is for problems that cannot be
easily expressed using a branch-and-bound model. For example, many of the problems
over graphs that require connectivity of the solution need an exponential number of
constraints to be explicitly defined as a MILP formulation. In such context, a first
version of the problem can be expressed with a limited (potentially empty) set of initial
connectivity constraints in the model, and global cuts are iteratively added during the
branch-and-cut execution whenever a potential solution that would break connectivity
is found. This is the application that we use in chapter 4 where we use the minimum cut
problem over flow network, that can be solved in polynomial time, to find connectivity
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constraints to add to the model.

2.3.3 Approximation and complexity of optimization problems

The classes PO and NPO, respectively P-optimization and NP-optimization problems,
are defined for optimization problems and mirror their equivalent classes P and NP for
decision problems. They are seldom used in practice though, and it is not rare for P
and NP to be used in optimization contexts to actually mean PO and NPO.

Note that given an algorithm for an optimization variant of a problem, it is trivial to
have an algorithm for the decision variant by checking the optimal solution against the
queried bound. Conversely given an algorithm for the decision variant, a binary search
over the range of possible values of the objective function gives the optimal solution of
the optimization variant in a polynomial number of execution of the decision variant
algorithm. These two results show that if either one of the decision or optimization
problem can be solved in polynomial time, so is the other.

Approximation algorithms are algorithms for NPO problems that find sub-optimal
solution of provable quality in polynomial-time. Not all combinatorial optimization
problem can be approximated though, and of those that can be approximated, some
can be at best up to a constant factor of the optimal solution, and some can be up to
any factor of the optimal solution. Note that if a problem can be approximated up to
any factor, it can certainly be approximated up to a constant factor.

It is very common for approximation algorithm to be designed as polynomial opti-
mization algorithm applied over a relaxation of the original problem. Such polynomial
technique include the greedy approaches, dynamic programming schemes, and convex
programming relaxation.

A c-approximation for a problem, with c a constant, is an algorithm that takes
as input an instance of the problem and that produces a solution of at most c times
the optimal solution in polynomial time. A polynomial-time approximation scheme (or
PTAS) for a problem is an algorithm that takes as input an instance of the problem as
well as an ε > 0 and that can produce a solution within a factor 1+ε (for a minimization
problem, 1− ε for maximization) of the optimal solution in polynomial time.

The set of all problems that can be approximated up to a constant factor in poly-
nomial time induce the complexity class APX. All problems in APX are also said
c-approximable for a constant c. The set of all problems that admit a PTAS induce the
PTAS complexity class. Note that unless P = NP , PTAS ( APX; see (Jansen 1998,
p. 20) for proof. This also means that any APX-hard problems cannot have a PTAS.

In chapter 5 we prove that the maximum-weight cross-connected subgraph
problem that we introduce in chapter 4 is actually APX-hard.
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For an introduction to optimization problems and the fundamental techniques of the
domain (including search space exploration methods) we recommend Papadimitriou
and Steiglitz (1982)’s classic. For an advanced reference book on difficult optimization
problem and their algorithms, their analysis and their precise classification, we suggest
Hromkovič (2013)’s book (for reference note that PTAS is noted NPO(II) and APX is
noted NPO(III) in this book).



Chapter 3

State of the art

3.1 Biological databases

3.1.1 Networks

Increasingly advanced experimental methods are used to provide evidence of existing
interactions. Nowadays, comprehensive litterature combined with advanced text min-
ing capabilities further advance cross-references between biological products. Available
resources that provide access to this knowledge are currently accessible from many only
databases.

Two major classes of databases exists: the automatically referenced database (Szk-
larczyk et al. 2014), and the manually currated databases (Orchard et al. 2012).

3.1.2 Orthologous genes

In their seminal paper, (Tatusov et al. 1997) constructed ”clusters of orthologous genes”
(COG) across multiple species. They contain similar cross-species sequences as well as
similar intra-species sequences, i.e. paralogous sequences.

The Inparanoid database (O’Brien et al. 2005) is a publictly available orthology
database that contains pairwise ortholog groups of more than 273 organisms1.

3.2 Statistical analysis of gene expression

Nowadays, differential analysis of transcriptomic profiles is ubiquitous in molecular
biology. The ability to broadly assey biomolecular profiles of multiple samples cheaply
enabled the wide adoption of techniques based on the differential analysis of multiple
whole-genome samples. Indeed, genes for which their expression profiles are correlated
over many different conditions are very likely to be involved in the same processes or
to exhibit similar functionalities (Ideker et al. 2002). On the other hand, genes with

1http://inparanoid.sbc.su.se, Release 8.0, December 2013
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significantly different expression profiles under conditions are candidates for choice as
biomarkers for the biological phenomenons under study (Altman and Raychaudhuri
2001).

For example in cancer research, the ability measure transcriptomic state within a cell
is a central technique for the analysis of mutated cell biomolecular machinery. Indeed,
in order to maximize therapeutic effect of treatment and minimize side effects, it is
important to be able to characterize the genetic profiles of distinct tumor types. For a
long time, tumor classification was based on medical expertise and assessment based on
the clinical evolution and on the physical appearance of either the cancerous growth or
its cells. However, even for tumor of the same type and grade, widely different clinical
development and outcome were observed. A technique allowing for the classification
and the detection of cancer types and subtypes was dearly needed.

The advances of gene expression profiling techniques allowed Golub et al. (1999)
to develop such a classification technique based on simple statistical testing: the final
prediction is the class for which the sum of scores computed statistically for each genes2

is maximal.
Whole cell expression profiles can be used to classify cancer tumors, and further

predict patient clinical outcome (Charles M Perou et al. 2000; Sorlie et al. 2001; Van’t
Veer et al. 2002; Van De Vijver et al. 2002). Moreover, Ross et al. (2000) showed
that gene profiles can be directly linked to their cell line’s origin through consistent
correspondence between gene expression patterns and origin of the tissue. Even though
the literature in the domain is quite extensive, recent studies such as (Estevez-Garcia
et al. 2015) still uses DNA chip for genes expression profiling.

One important limitation of these studies, however, is that they are based on gene-
centric methods, which use univariate statistical testing to call for significantly differ-
entially expressed genes. Modern approaches integrate knowledge for many different
database.

3.2.1 Cross-species analysis

Several authors identified the benefits of combining cross-species experimental data. At
the single gene level, Noort et al. (2003) have demonstrated that conserved co-expression
is a strong co-evolutionary signal. More recent studies suggested to identify conserved
biological processes.

Reiss et al. (2006) recognize that co-expression of genes is not enough information
for the discovery of the underlying genetic regulatory process. They suggest that co-
regulation is a better criteria for detection, and show that a biclustering of the data over
both gene expression and condition provide more sensible results. The optimization
objective that they propose is an ad-hoc multi-criteria objective that takes into account
transcript co-expression, as well as putative cis-acting gene regulatory motifs and con-

2They actually compute the score only for genes that they consider informative, even though they
acknowledge this selection as ”somewhat arbitrary”.
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nectivity between functionally associated clustered genes. They do not provide any new
method to solve the biclustering problem, which they acknowledge as being NP-hard
problem (Cheng and Church 2000), and rather implement a local-search heuristic that
implicitly look for the Pareto front created by their criteria (Someren et al. 2003).

Lu et al. (2009) analyzed transcriptomic profiles of human and mouse macrophages
and dendritic cells, under two conditions, to derive common response genes involved in
innate immunity. They used a probabilistic graphical model that propagates information
for each gene about its involvement in the innate immunity response across species or
cell types and conditions then seeks pathway enriched with those common responses
genes.

Waltman et al. (2010) presented a multi-species integrative method to heuristically
identify conserved biclusters. In their setting, a conserved bicluster is a subset of or-
thologous genes and a subset of conditions that achieve a high score with respect to
co-expression, motif co-occurrence and network density.

Kristiansson et al. (2013) proposed a method for the analysis of gene expression
data that takes the homology structure between the different species into account. Their
method is an extension of the standard Fisher’s method for meta-analysis (Hu et al.
2006; Campain and Y. H. Yang 2010; Tseng et al. 2012) that explicitly account for
in-paralagous and orthologous genes and is able to call differential expression with
increased statistical power when compared to methods ignoring this relationship.

Dede and Oğul (2014) introduced a method that finds triclusters consisting of genes
that are coexpressed across a subset of samples and a subset of species.

Reiss et al. (2015) updated their cMonkey algorithm (Reiss et al. 2006) to address
the ”long run-time, complexities, and inefficiencies” of the previous implementation. In
addition to updating the scoring of the multiple criteria of their objective function, the
main addition of this paper is the implementation of a global optimization algorithm
for this objective, modeled after a standard k-means clustering of biological networks
(Watts and Strogatz 1998).

3.3 Connected active modules

Active modules methods combine biological networks with experimental data, such as
expression profiles, to detect network structures of interest for the experiment. These
methods are well suited to understand single-species processes, since the interpretation
of the results usually follows from the inputs. They can also be used to look across
multiple species for interesting process.

Already in 2001, Altman and Raychaudhuri (2001) recognized the need to use
networks of genetic interactions to tackle the analysis of expression data. One of the
key concepts to understand biological processes in those networks is that of modules.
Modules are considered to be sets of entities, such as genes or proteins, that function in
a coordinated fashion or physically interact. See Mitra et al. (2013) for an up to date
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review.
One possible formulation, for the problem of finding modules within a network, is

to look for connected sub-networks that maximize weights on the nodes. These weights
typically represent some measure of biological activity, for example the expression level
of genes. In their seminal work, Ideker et al. (2002) were the first to solve the problem
of finding gene modules within a biological network, using simulated annealing heuristic
optimization. They recognize that finding the optimal module (with respect to the sum
of the nodes’ weights) in a biological network is formally equivalent to the maximum-
weight connected subgraph (mwcs) combinatorial optimization problem. This
problem will be treated in section 3.4.

Dittrich et al. (2008) were the firsts to cast the biologically relevant problem into the
unified framework of combinatorial optimization theory. By recognizing the theoretical
grounds of the mwcs problem, they reduce the overall problem to the very well studied
prize-collecting steiner-tree optimization problem and apply an efficient algo-
rithm (Ljubić et al. 2006) that finds provably optimal solutions to the problem. They
acknowledge the close relationship between the initial scoring and the exact solution
found, and provide a simple additive scoring function that ultimately allows for an easy
interpretation of the results.

Yamamoto et al. (2009) apply the mwcs problem to pathway gene networks in order
to identify what they call ”source components”, subnetworks that hopefully represent
the source of the differential behavior in the data. They provide a graph decomposition
heuristic to solve the underlying computational problem.

Building on the Integer Linear Programming formulation proposed by Dittrich et al.
(2008) and Zhao et al. (2008), Backes et al. (2012) provides a new ILP expression for
the closely related k-cardinality mwcs problem that they solve using a branch-and-cut
procedure. They test the significance of their results using graph permutation and show
that the most significant results are obtained inside a small range of sizes over all their
data.

Mitra et al. (2013) provides an overview of the many network centric approaches to
modular detection of cellular processes. In particular they classify modern techniques
into four classes: the ’active modules’ discovery techhniques, the ’conserved modules’
identification across species, ’differential modules’ that are simultaneously active under
different conditions, and the ’composite modules’ that integrate many of the possible
interaction type into single unified components.

3.3.1 Cross-species connected active modules

Deshpande et al. (2010) developed the neXus algorithm for finding conserved active
subnetworks. neXus is based on simple notions of activity and orthology and uses a
heuristic search strategy. The authors use the average fold change of genes in a module
as a measure for activity. To deal with conservation, they collapse paralogous genes
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within a cluster of orthologous genes (COG) (Tatusov et al. 1997)3 into single nodes in
the respective networks. They find modules using a seed-and-extend greedy heuristic
that starts from a pair of orthologous seed nodes and then tries to simultaneously grow
the two subnetworks by including pairs of neighboring orthologous genes, taking into
account their activity as well as the interaction confidences. This strategy enforces a
very stringent conservation policy: only modules whose genes are fully conserved are
found. In addition, the locality of the greedy search strategy impairs the ability to
find larger conserved modules and extending the search space around the seed genes
drastically increases the runtime.

In recent work, Zinman et al. (2015) introduce ModuleBlast, a method that, similarly
to neXus, represents groups of orthologous proteins as single nodes in a combined
network and tries to find connected subnetworks that are differentially expressed. The
novelty of the method is the classification of the found modules according to the sign
of the log fold change expression values. By doing so, the authors are able to assess
whether conserved active modules show consistent or inconsistent expression patterns.
However ModuleBlast, like neXus, requires strict conservation of module genes. We see
that as an important limitation that our present work aim to correct.

3.4 The maximum-weight connected subgraph problem

This section is separated in two parts. In section 3.4.1 we first introduce the steiner
tree, the prize-collecting steiner tree (pcst), and the maximum-weight con-
nected subgraph (mwcs) problems. We also provide the main complexity results
for the mwcs problem, and since a number of those results mostly follow from results
for the pcst problem, we provide the most important ones for this problem too. In
section 3.4.3 we present the main methods used to solve those problems. There are
many techniques to solve these problems, and they can be classified to two caterogies.
The theoretically-sound methods, that can provide either a provably optimal (or a
proven gap4) solution, or an approximation solution to a proven bounded-factor. And
the heuristic methods, that approximate the optimal solution to an unknown factor,
but which are usually much faster.

3.4.1 Problems introductions

The steiner tree problem is an extremely well known combinatorial optimization
problem, which is part of Karp’s original 21 NP-complete problems (Karp 1972). It has
its origin in the geometry of Jakob Steiner’s eponym Steiner problem, and pertain to
the class of mathematical optimization problems over graphs. It is informally defined as
follows. A large number of variations of this problem exists: the Steiner tree problems.
Hauptmann and Karpinski (2014) maintain an extensive and up-to-date compendium
of those variants.

3As provided by databases such as Inparanoid (O’Brien et al. 2005).
4Proven maximal distance to the optimal solution.
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One of the variants of the steiner tree problem is the prize-collecting steiner
tree problem, or pcst problem. Is is informally defined as follows.

pcst : Given a graph, a non-negative weight for each vertex, and a non-negative
cost for each edge, the goal is to find the subtree that maximizes the sum of the weights
minus the sum of the costs.

The pcst problem is an utility versus cost optimization variant (as formally defined
by Conrad et al. (2007)) of the steiner tree problem. Bienstock et al. (1993) were the
firsts to formally introduce the problem, and the first recognized proof of NP-hardness
follows from Camerini et al. (1979) (even through the problem was not formally defined
at the time). As a surprisingly late result5, Feigenbaum et al. (2001) were the first
to prove that the pcst problem is NP-hard to approximate within any constant ratio
0 < ε < 1, or APX-hard, using a reduction from sat. This variant is highly relevant
to our context as there exist bidirectional reductions between the pcst and mwcs
problems, and for a long time reducing an mwcs instance to a pcst instance was the
technique of choice to actually solve the problem (cf. section 3.4.3).

The maximum-weight connected subgraph problem, or mwcs problem, falls
within the same classification as various Steiner tree problems: it is a problem of
combinatorial optimization over graphs. It is informally defined as follows.

mwcs : Given a graph and a real-valued weight for each vertex, the goal is to find
the connected subset of vertices that maximizes the sum of the weights.

First observe that, since the edges are unweighted, the solution is trivial, full or
empty, if the vertices’ weights are respectively all positive or all negative. This is in
contrast with the pcst problem where the positive weights of the vertices oppose the
costs of the edges.

From a computer science point of view, the mwcs problem is simple in its defini-
tion. Nevertheless, it is actually a very difficult problem to solve, and in many cases
remains intractable. The first text to prove NP-hardness of the problem is the unpub-
lished manuscript from Vergis (1983). Manuscript that D. S. Johnson (1985, Section
5) acknowledge when he looked into a series of graph problems in his famous NP-
Completeness Columns. The proof is based on the reduction from the steiner tree
problem, provided by Garey and D. S. Johnson (1979). Johnson made the fundamental
observation that the solution to the mwcs problem can always be reduced to a tree,
since the additional edges serve no purpose. Karp later provided another proof of NP-
hardness for the mwcs problem in (Ideker et al. 2002, Supplementary Material), by
providing a reduction from the minimum set cover problem, another problem which
is one of his 21 first NP-complete problems (Karp 1972).

Indeed, Álvarez-Miranda et al. (2013a) proved that the mwcs problem is actually
APX-hard itself. Using the SAT reduction previously mentioned (Feigenbaum et al.
2001), they extended the result to mwcs using a straightforward reduction of pcst to

5They themselves acknowledge that this is an easy result (Feigenbaum et al. 2001, footnote 12).
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mwcs.
In the same way the steiner tree broadly defines a large set of related problems,

the mwcs problem defines itself a set of closely related problems. These problems can
be applied in many different contexts, of which: social network sciences, operations
research, certainly networks design, and system biology, which is our main interest in
this manuscript.

Based on the basic version of the mwcs problem, the principal variants are the
constrained versions, with an allocated budget and additional cost assigned to each
vertex. The k-cardinality mwcs, the cardinality-constrained mwcs, and the
budget-constrained mwcs serve interesting purposes. The k-cardinality mwcs
require that the solution be comprised of exactly k vertices, whereas the cardinality-
constrained mwcs variant require that the solution includes at most K vertices. The
budget-constrained mwcs variant assigns an additional positive cost to each vertex,
and requires that the sum of the costs be at most a given budget B. Clearly, assigning
a positive cost of 1 for each node of the cardinality-constrained mwcs problem
provides a trivial reduction to the budget-constrained mwcs problem.

Note that for all these constrained versions, the problems remain non-trivial even
when the nodes’ weights are all positive. Furthermore, note that while removing the
connectivity constraint in the basic version of the problem makes it trivial, in those
variants the problems then become equivalent to the 0-1 knapsack problem (which is
another one of Karp’s original 21 NP-complete problems (Karp 1972)).

They can all be defined either on graphs or on directed graphs, and there exists
rooted variants where one (or multiple) root(s) have to be selected in the solution.

There also exists minimization variants or reformulations for those problems. Most
of them are strictly equivalent from an optimality standpoint: minimizing the sum of
the opposite of the nodes’ weights. However, they differ from approximation standpoint,
see (Feigenbaum et al. 2001; D. S. Johnson et al. 2000) for details.

3.4.2 mwcs in practice

The mwcs problem and its cardinality-constrained and budget-constrained variants are
used in numerous important practical applications.

Hochbaum and Pathria (1994) first described the fixed cardinality variant of the
problem (k-cardinality mwcs). They relate its use in two contexts. First in off-shore
oil-drilling where each facility is represented by a node and the weight their costs over
benefits. Second in forest harvesting where we need to find the k connected parcel to
harvest considering their associated benefits. They call it the connected k-subgraph
problem. They where the first to observe that, for this variant, since adding a constant
to the weight of each node does not change the optimal set of nodes, in the optimality
context the nodes’ weights can all be non-negative. They also show that the problem is
NP-hard even for bipartite or planar input graphs or if the nodes’ weights are boolean.
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H. F. Lee and Dooly (1998) reintroduced the k-cardinality mwcs problem, and
called it simply the maximum-weight connected graph (mcg) problem. They were
the firsts to introduce the rooted variant where a single root is provided for the solution,
that they called the constrained mcg (cmcg). They used this rooted variant to
provide a decomposition scheme of the mwcs problem into multiple cmcg subproblems.
They acknowledge that the optimal solution is NP-hard to find, and provide heuristics
for their incremental roots selection. They use all problems that they introduce in the
fiber-optic networks design context.

Gomes’ team looked into the budget constrained version of the problem, both rooted
and unrooted variants, that they apply in the context of conservation planning (Conrad
et al. 2007; Gomes et al. 2008; Dilkina and Gomes 2010).

C.-Y. Chen and Grauman (2012) used the mwcs problem to extract signatures
from a video stream for the activity detection problem. They represent the video as a
three dimentional 6-connect graph, i.e. a space-time matrix, where each node’s weights
represent video features. They then use standard classifier to classify the signatures.

Carvajal et al. (2013) also looked into the forest planning problem to select contigu-
ous regions of forest to maximizes ecosystem protection in nature reserve design, i.e.
the number of species and habitats preserved.

Furthermore, as stated in section 3.3, Dittrich et al. (2008), Yamamoto et al. (2009),
Backes et al. (2012), and Mitra et al. (2013) all used the mwcs problem or its variants
in system biology to extract connected sets of genes.

3.4.3 Solving the mwcs problems

Over the years, many methods have been proposed to solve the mwcs problem. They
can mostly be categorized into two groups: 1) methods that first reduce the mwcs
instance into a pcst instance, or 2) through direct modelization.

In both groups, many techniques have been proposed in order to make instances
easier to solve. Instance size reductions are often used, which leads to exact methods
if quality guarantees are preserved through reduction, or heuristics (possible approxi-
mation) methods when more aggressive simplifications are performed. Size reduction
algorithms are fundamental techniques in solving large practical Steiner tree problems
(or similar, such as the mwcs problem), and applying known exact reduction is the first
step for real world instances resolution (Polzin 2003).

3.4.3.1 Through the Prize-Collecting Steiner Tree problem

In their seminal paper, Goemans and Williamson (1995) were the firsts to provide
an approximation algorithm (a 2-approximation) for a number of constrained forest
problems, such as the pcst problem. They further develop their method in (Goemans
and Williamson 1997). This is an important contribution since they reformulate the
problem into an easy to approximate formulation (the standard formulation is APX-
hard), which became the basis for many other contributions afterward.
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Building on these algorithms, D. S. Johnson et al. (2000) proposed multiple variations
of this 2-approximation for pcst, that provide better performance, and application to
variants such as the quota pcst where the sum of the weights must be at least a given
quota, and the budget pcst where the sum of the costs must be at most a given budget.

Lucena and Resende (2004) introduces the generalized subtour elimination con-
straints technique, and uses the separation algorithm first described by Fischetti et al.
(1994).

In two papers, Ljubić et al. (2005, 2006) solved the mwcs problem by combining
previously introduced methods for various Steiner tree problems over directed graphs.
Their technique was the first to solve to optimality some of the previous benchmark
instances and was order of magnitude faster than previous methods on some other
instances.

Dittrich et al. (2008) were the first to describe a reduction from mwcs to pcst
with linear conservation of the objective function optimal value. Given this reduction,
any method previously proposed to solve the pcst problem could now be used to solve
instances of the mwcs problem, application that they demonstrate in system biology for
module extraction. They also gave an approximation-preserving reduction from pcst
to mwcs.

Chimani et al. (2009) introduces an ILP formulation equivalent to the generalized
subtour elimination constraints formulation proposed by Lucena and Resende
(2004) that they call the directed cut formulation. They then propose a stronger sepa-
ration algorithm for this new formulation, which is more efficient in practice than the
previous technique introduced by Fischetti et al. (1994).

3.4.3.2 Direct formulation

Direct formulation methods include all methods that can be used to solve the mwcs
problem without first explicitly reducing the mwcs instance to a pcst instance.

Quintão et al. (2008) provide multiple reformulation of the k-cardinality variant of
the mwcs problem, from which they formulation strong linear relaxations. Quintão et al.
(2010) further improves the technique by further integrating the constraints introduced
very early by Miller et al. (1960).

Backes et al. (2012) proposed an exact formulation to solve the k-cardinality subtrees
and connected subgraphs problems. See section 3.3 for details.

Álvarez-Miranda et al. (2013a,b) introduced the first technique which does not
explicitly model the graph edges. Instead they introduce a Branch-and-Cut scheme
where connectivity violations are detected from candidate solutions and corresponding
constraints are recursively added to the model. They showed that their technique
outperformed most of the other methods on practical instances at the time.

El-Kebir and Klau (2014) introduce new preprocessing rules that they apply until an
stable state is obtained. They introduce a new graph decomposition, into biconnected
and triconnected components, and solve each subproblem using a standard branch-and-
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cut approach similar to the one introduced by Álvarez-Miranda et al. (2013a).
Althaus et al. (2014) describe, for k-induced subgraph, a combination of (Fischetti

et al. 1994), (Chimani et al. 2009), and (N. Cohen 2010). In their as of yet unpublished
manuscript, Althaus and Blumenstock (nodate) further improved their previous algo-
rithm by introducing exact and heuristic reductions of the size of the mwcs instances.
They solve the newly reduced problems using a combination of two MIP programs
formulations: the (N. Cohen 2010) formulation for spanning tree problems, and the
addition of the generalized subtour elimination constraints to further reduce the polyhe-
dron size. They use Chimani et al. (2009)’s directed cut formulation of the constraints
since the separation algorithm for it is very efficient. They integrate some of El-Kebir
and Klau (2014)’s exact reductions in their algorithm, and propose heuristic reductions
if the practical instance is still too large.



Chapter 4

xHeinz: a cross-species module
discovery tool

Protein-protein interaction networks play a key role in understanding of cellular pro-
cesses. Among bioinformatic techniques that rely on these networks, module extraction
and network alignment are two majors classes of methods (see chapter state of the
art). Traditionally, module extraction allows for the discovery of interesting gene sets
from single species experiments. Network alignment is often used to discover conserved
structures between species, that is similar subnetworks that are assumed to have the
same biological functionality.

Molecular profiles are most often measured and validated on well studied model
species. This is partly due to the fact that, when differential analysis is involved, the
experiments require 1) sufficient replication, and 2) control and condition samples (Trap-
nell et al. 2013) for the results to be statistically significant. Unfortunately these two
requirements are difficult to obtain in human studies since there are large variations
between physiological states of humans, making statistical analysis of replicates more
difficult. Model species or cellular models are thus the source of choice for experimenta-
tion and gene expression analysis, and bioinformatics techniques for gene sets extraction
often works with single species experimental data.

Unfortunately, immediate transferability from model organisms to human is rare,
when possible (Okyere et al. 2014). In their systematic review of cross-species extrapo-
lation in pharmacokinetic modeling, Thiel et al. (2015) recently estimated that, at best,
roughly 83.5% of the model extrapolations1 are in agreement with known results. As a
result, Csermely et al. (2013) attribute the very low phase-II survival rate of potential
drug compounds (25%) to the lack of transferability between model organisms and
human.

In this chapter we present a cross-species module discovery technique that we initially
introduced in (El-Kebir et al. 2015). It enables the simultaneous search of interesting

1In their study, mouse is the model organism and human the transfer target, which is a very standard
coupling in phamacological transfer studies.
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gene sets in the two species, and such that those gene set have a high percentage of
conservation across the two species.

In section 4.1 we present our technique as a mathematical model that makes it possible
to identify conserved active modules across two species. Building upon the single-species
modules extraction model described in (Dittrich et al. 2008), our model inherits its
notions of modularity and activity: 1) a set of genes forms a module if it induces a
connected subnetwork, and 2) the activity of a module is the sum of the activities of its
individual genes. The activity of each gene is quantified using a beta-uniform mixture
model on the distribution of p-values that characterize the differential behavior. Our
model introduces a flexible conservation policy, which allows to specify the minimum
fraction of nodes in the solution that must be conserved. A rigorous complexity analysis
of our model is the main topic of chapter 5.

We then cast our model as an integer linear programming formulation and present
xHeinz, a branch-and-cut algorithm and its implementation. xHeinz is an exact opti-
mization method that solves our model to provable optimality (given enough time), or
reports a solution with a quality guarantee2 (if stopped before full convergence).

In section 4.2 we apply xHeinz to understand the mechanisms underlying Th17 T
cell differentiation in both mouse and human. As a main biological result, we find
that the key regulation factors of Th17 differentiation are conserved between human
and mouse and demonstrate that all aspects of our model are needed to obtain this
insight. We further demonstrate the robustness of our approach by comparing samples
of the differentiation process obtained at different time points, in which we search for
optimal, conserved active modules under a wide range of conservation ratios. Using
a permutation test, we show that our results are statistically significant. Finally, we
discuss the main differences between our results and the results obtained by the neXus
tool (see chapter state of the art) on the same data set.

4.1 Algorithmic approach: the mwccs problem

4.1.1 Mathematical model

We consider the conserved active modules problem in the context of two species networks,
which we denote by G1 = (V1, E1) and G2 = (V2, E2). Nodes in these networks are
labeled by their activity – defined by w ∈ RV1∪V2 and conserved node pairs are given
by the symmetric relation R ⊆ V1 × V2. The aim is to identify two maximal-scoring
connected subnetworks, one in each network, such that a given fraction α of module
nodes are conserved. The formal problem statement is as follows:

2A provable maximum optimization gap.
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Figure 4.1: Trade-off between activity and conservation. Three optimal solutions
(indicated in yellow) for varying conservation ratios α in a toy example instance. Node
activities are given next to the nodes, conserved node pairs are linked by dotted lines.
The activity of a conserved module is the sum of the activities of its comprising nodes.
The parameter α denotes the minimum fraction of nodes in a solution that must be
conserved, i.e. connected by a dotted line.

Problem 1 (Conserved active modules). Given G1 = (V1, E1), G2 = (V2, E2), w ∈
RV1∪V2 and R ⊆ V1×V2, the task is to find a subset of nodes V ∗ = V ∗1 ∪V ∗2 with V ∗1 ⊆ V1
and V ∗2 ⊆ V2 such that the following properties hold.

• Activity: Node activity scores are given by w ∈ RV1∪V2, where positive scores
correspond to significant differential expression. For details see section 4.2.2. We
require that the sum

∑
v∈V ∗ wv is maximal.

• Conservation: Conserved node pairs are given by the relation R ⊆ V1 × V2.
We require that at least a certain fraction α of the nodes in the solution must be
conserved, that is, |U∗| ≥ α · |V ∗| where U∗ := {u ∈ V ∗1 | ∃v ∈ V ∗2 : uv ∈ R}∪{v ∈
V ∗2 | ∃u ∈ V ∗1 : uv ∈ R}.

• Modularity: We require that the induced subgraphs G1[V ∗1 ] and G2[V ∗2 ] are con-
nected.

The model allows a trade-off between conservation and activity. If no conservation
is enforced (α = 0), the solution will correspond to two independent maximum-weight
connected subgraphs, thereby achieving maximal overall activity. Conversely, if complete
conservation is required (α = 1), the solution can only consist of conserved nodes, which
results in the lowest overall activity modules. The user controls this trade-off by varying
the value of the parameter α from 0 to 1. The activity score monotonically decreases
as α increases, see fig. 4.1.
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4.1.2 Mixed-Integer Linear programming approach

We formulate the conserved active modules problem as an integer programming (IP)
problem in the following way.

max
∑

v∈V1∪V2

wvxv (4.1)

s.t. mu = max
uv∈R

xuxv u ∈ V1 (4.2)

mv = max
vu∈R

xuxv v ∈ V2 (4.3)∑
v∈V1∪V2

mv ≥ α
∑

v∈V1∪V2

xv (4.4)

G1[x] and G2[x] are connected (4.5)
xv,mv ∈ {0, 1} v ∈ V1 ∪ V2 (4.6)

This formulation satisfies the properties of activity, conservation and modularity.

Activity.
Variables x ∈ {0, 1}V1∪V2 encode the presence of nodes in the solution, i.e., for all
v ∈ V1∪V2 we want xv = 1 if v ∈ V ∗ and xv = 0 otherwise. The objective function (4.1)
uses these variables to express the activity of the solution, which we aim to maximize.

Conservation.
Variables m ∈ {0, 1}V1∪V2 encode the presence of conserved nodes in the solution. Recall
that a node u ∈ V ∗1 (u ∈ V ∗2 ) that is present in the solution is conserved if there is
another node v ∈ V ∗2 (v ∈ V ∗1 ) in the solution such that the two nodes form a conserved
node pair uv ∈ R (vu ∈ R). This corresponds to constraints (4.2) and (4.3). Indeed,
constraints (4.2) encode that a node u ∈ V1 that is present in the solution (xu = 1)
is conserved if there exists a related node v ∈ V2 (uv ∈ R) that is also present in the
solution (xv = 1). Similarly, constraints (4.3) defines conserved nodes in V2 that are
present in the solution. We linearise xuxv, in a standard way, by introducing binary
variables z ∈ {0, 1}R such that zuv = xuxv for all uv ∈ R:

zuv ≤ xu uv ∈ R (4.7)
zuv ≤ xv uv ∈ R (4.8)
zuv ≥ xu + xv − 1 uv ∈ R (4.9)
zuv ∈ {0, 1} uv ∈ R (4.10)

Subsequently, we model the max function in (4.2) and (4.3) as follows.

mu ≥ zuv ∀v ∈ V2
∗ st. uv ∈ R (4.11)

mv ≥ zuv ∀u ∈ V1
∗ st. uv ∈ R (4.12)

mu ≤
∑
uv∈R

zuv u ∈ V1 (4.13)



4.1. ALGORITHMIC APPROACH: THE MWCCS PROBLEM 35

mv ≤
∑
uv∈R

zuv v ∈ V2 (4.14)

This set of constraints encode the two required conditions:

mu =
{

1 if at least one of its counterpart is present,
0 otherwise.

On one hand, (4.11) define a set of constraints: one for each node v ∈ V2
∗ such that

uv ∈ R. This set of constraints effectively instruct the ILP that mu must be 1 if at least
one of the counterparts of u is in the solution. The same reasoning goes for (4.12). On
the other hand, (4.13) constraint the variable mu to be 0 if none of the counterparts of
u are in the solution. The same reasoning goes for (4.14).

We model the required degree of conservation by constraint (4.4): the fraction of
conserved nodes in the solution is at least α.

Modularity.
In addition, we satisfy the modularity property by requiring in (4.5) that G1[x] and
G2[x] are connected.

Constraint (4.5) states that the nodes encoded in the solution x induce a connected
subgraph in both G1 and G2. There are many ways to model connectivity, e.g., using
flows or cuts (Magnanti and Wolsey 1995). However, Dilkina and Gomes (2010) showed
that cut-based formulations perform better in practice. Recently, Álvarez-Miranda et al.
(2013a) have introduced a cut-based formulation that only uses node variables. In an
empirical study, the authors show that their formulation outperforms other cut-based
formulations. We model connectivity along the same lines. Since the constraints that we
will describe are similar for both graphs, we introduce them only for graph G1 = (V1, E1).∑

v∈V1

yv ≤ 1 (4.15)

yv ≤ xv v ∈ V1 (4.16)
xv ≤

∑
u∈δ(S)

xu +
∑
u∈S

yu v ∈ V1, {v} ⊆ S ⊆ V1 (4.17)

yv ∈ {0, 1} v ∈ V1 ∪ V2 (4.18)

Where δ(S) = {v ∈ V1 \ S | ∃u ∈ S : uv ∈ E1} denotes the neighbors of S.
The modularity property states that x should induce a connected subgraph in G1.

However in our model, we don’t explicitly model graph connectivity, and model local
connectivity instead. The first sum of (4.17) state that xv can only be 1 if, for all sets
S ⊆ V containing v, it holds that there is a neighbor u of S in the solution. Informally,
this constraint is a form of expansion where we require the nodes in the solution to be
part of the neighborhood of the other nodes in the solution, hence forming a connected
subgraph. However this is not sufficient, because this would require all nodes to be
included in the end. We solve this by introducing binary variables y ∈ {0, 1}V1 that
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determine a root node, which serves as a local expansion termination condition. First,
constraints (4.15) and (4.16) state that at most one node v part of the solution can
also be the root node – in which case yv = 1. Second, the last sum of (4.17) state that
xv can only be 1 if, for all sets S ⊆ V containing v, it holds that the root node is in
S. Informally and integrating the first sum, this constraint encode that the graph is
locally connected around v if, for all possible sets S ⊆ V containing v, either the root
node is part of S or at least one node of the neighborhood of S is part of the solution.

There is an exponential number of such constraints. Therefore, we cannot add all
them to our initial formulation. Instead we use a branch-and-cut approach, that is,
at every node of the branch-and-bound tree we identify all violated constraints and
add them to the formulation. Finding violated inequalities corresponds to solving a
minimum cut problem, which we do using the algorithm by Boykov and Kolmogorov
(2004).

To further improve the performance, we also strengthen our model with the following
constraints. None of those constraints are necessary, but they help the ILP solver by
reducing the search space.

yv = 0 v ∈ V,wv < 0 (4.19)∑
u∈V

yu ≥ xv v ∈ V,wv ≥ 0 (4.20)

xv ≤
∑

u∈δ({v})
xu + yv v ∈ V (4.21)

yv ≤ 1− xu u, v ∈ V, u < v,wu ≥ 0, wv ≥ 0 (4.22)

Constraints (4.19) states that the root node must be a positively weighted node, which
reduces the search space of the root node. Constraints (4.20) explicitly state that the
root node variable must be 1 if at lease one of the positive nodes is in the solution. This
was already required for the previous set of constraints but never explicitly instructed
to the solver. Constraints (4.21) is an optimization for the cases where the set S in
(4.17) is a singleton. Finally, constraints (4.22) are symmetry breaking constraints: they
encore an ordering for the possible root selections. It effectively requires that among all
positively weighted nodes in the solution, the root node is the smallest one – according
to some arbitrary order3. This last set of constraints also provide determinism: the
ordering guarantee that two runs of the ILP will choose the same root node.

4.2 Material and methods

We apply our method to the recently discovered interleukin-17 producing helper T cells
(Th17), which exposes the problems highlighted in chapter 4.

These cells form a separate subset of helper T cells with a differentiation pathway
distinct from those of the established Th1 and Th2 cells (Park et al. 2005). Th17 cells

3In our case: the order of appearances of the nodes in the network definition.
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are known to contribute to pathogenesis of inflammatory and autoimmune diseases
such as asthma, rheumatoid arthritis, psoriasis and multiple sclerosis and play also a
role in cancer immunology (Wilke et al. 2011). They originate from näıve helper cells,
responding to environmental stimulus by activating a differentiation and specialization
process (Steinman 2007).

Understanding the pathways and regulatory mechanisms that mediate the decision
making processes resulting in the formation of Th17 is a critical step in the develop-
ment of novel therapeutics that will facilitate rational manipulation of the immune
response. Unfortunately, the vast majority of data collected so far originates from stud-
ies performed on mice (Tuomela et al. 2012) and, most importantly, a comprehensive
comparison of the Th17 differentiation process in model organisms and in human is
missing. Several studies indicate that the differentiation and phenotype of human and
mouse Th17 cells are similar (Annunziato and Romagnani 2009). Both subsets serve
similar pro-inflammatory functions and produce the same hallmark cytokines and sim-
ilar receptors. Furthermore, most of the already identified regulator genes show high
sequence conservation.

These findings indicate that the differentiation process seems well conserved be-
tween human and mouse and that a cross-species approach is reasonable. Other studies,
however, show stimulus requirements for effective differentiation of human cells that
differ from those required for mice (McGeachy and Cua 2008; O’Garra et al. 2008;
Annunziato et al. 2009).

The simultaneous analysis of both human and mouse expression data allows the
identification of conserved candidate regulators, as well as potential drug targets. Most
of our current understanding on Th17 cell differentiation relies on studies carried out
in mice, whereas the molecular mechanisms controlling human Th17 cell differentiation
are less well defined. A characterization of the similarities and differences will not only
increase our understanding of this fundamental process, but is also essential for sound
translational research.

4.2.1 Experimental procedure

We summarize here the experimental procedure followed by Tuomela et al. (2012) and
Yosef et al. (2013) to generate transcriptomic profiles.

Tuomela et al. (2012) isolated CD4+ T-cells from umbilical cord blood of several
healthy neonates, arranged in three different pools, then activated with anti-CD3 and
anti-CD28. Cells from each pool were then divided in two batches, one to be polarized
toward Th17 direction, and one serving as control (Th0). Th17 differentiating cytokines
consisted of IL6 (20 ng/mL), IL1B (10 ng/mL) and TGFB (10 ng/mL), along with
neutralizing anti-IFNG (1 µg/mL) and anti-IL4 (1 µg/mL). Three biological replicates
of human cells, for both conditions (coming from each pool), were collected between
0.5− 72 h (0.5 h, 1 h, 2 h, 4 h, 6 h, 12 h, 24 h, 48 h, 72 h time points) and hybridized on
Illumina Sentrix HumanHT-12 Expression BeadChip Version 3. The microarray data
were analyzed using the beadarray Bioconductor package (Dunning et al. 2007).
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Yosef et al. (2013) purified CD4+ T-cells from spleen and lymph nodes from wild type
C57BL/6 mice, then activated with anti-CD3 and anti-CD28. For Th17 differentiation,
cells were cultured with TGFB (2 ng/mL), IL6 (20 ng/mL), IL23 (20 ng/mL) and IL1B
(20 ng/mL) during 0.5− 72 h (at time points 0.5 h, 1 h, 2 h, 4 h, 6 h, 8 h, 10 h, 12 h,
16 h, 20 h, 24 h, 30 h, 42 h, 48 h, 50 h, 52 h, 60 h, 72 h), and finally hybridized on an
Affymetrix HT MG-430A.

4.2.2 Microarray processing, statistical analysis and node scoring

Preprocessed and quantile normalized data sets were downloaded from GEO under
the accession numbers GSE43955 and GSE35103. As downloaded from GEO, both the
human and the mouse time-series were already filtered by retaining only the probes
with detection p-values < 0.05 in at least one time point and one condition. Following
the original studies, we further only retained probes having a standard deviation > 0.15
over all the conditions and time points; as well as being annotated by a single Ensembl
gene. Finally, a single probe was selected for each gene by taking, for each Ensembl
gene, the probe having the largest variance accross all samples. In total, 12,307 and
18,497 probes passed the filters for the mouse and human data set, respectively.

Differential expression between Th17 and Th0 conditions were estimated using the
limma package (Smyth 2005). Human samples were indicated as paired according to the
experimental design so as to account for the pooled human samples. For mouse samples,
calling was performed on all Th0 vs Th17 samples, regardless of the mouse donor. To
determine which genes were differentially expressed at a given time point, we used a
linear model to estimate the interaction between the treatment and the time effect. The
linear models used for the human and mouse studies include one interaction term for
each time point and exclude the intercept (In R, the formula reads: ∼ 0 + treat : time).
Differential expression at any time point K of interest were determined by the contrasts
Th17.timeK − Th0.timeK. We report in this study results for the following time points:
2 h, 4 h, 24 h, 48 h, 72 h.

Following (Dittrich et al. 2008), we computed positive and negative scores for each gene
at each time point by fitting a beta-uniform mixture model using the implementation
in the BioNet package (Beisser et al. 2010). The method proceeds as follows:

Similarly to (Pounds and Morris 2003), the distribution of the gene-wise p-values
x = x1, . . . , xn is described as a beta-uniform mixture (BUM) model, which is a mixture
of a B(a, 1) beta distribution (signal) and a uniform distribution (noise): λ + (1 −
λ)axa−1, for 0 < a < 1, with mixture parameter λ and shape parameter a of the beta
distribution. The log likelihood is defined as log(λ, a;x) =

∑n
i=1 log(λ+ (1− λ)axa−1

i ),
and consequently the maximum-likelihood estimations of the unknown parameters are
given by [λ̂, â] = arg maxλ,a(λ, a;x). The parameter estimates have been obtained using
numerical optimization. As detailed in (Pounds and Morris 2003), the BUM model
allows the estimation of a false discovery rate (FDR) that can be controlled via a
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p-value threshold τ(FDR). The adjusted log likelihood ratio score is then defined as

s(x,FDR) = log âxâ−1

âτ(FDR)â−1 = (â− 1)(log(x)− log(τ(FDR))) .

Genes whose differential expression is considered significant given the FDR thresh-
old obtain a positive score while genes showing no differential expression will receive
a negative score. The size of the resulting module can be regulated with this FDR
parameter. Throughout this study, FDR = 0.1 was used for all samples and species.

However, due to the experimental noise and paired design, the human samples have
much higher intra-group variance, resulting in significant calls having p-values orders
of magnitude higher than the mouse calls. This results in a range of scores that is
much narrower for human than for mouse, possibly imbalancing results towards mouse
modules. To correct for this effect, scores of mouse genes were rank normalized to the
scores of the human genes as follows: the scores (as defined by the BUM model) were
sorted, and for each gene the score of the i-th mouse gene was set to the score of the
i-th human gene.

Comparison of the distribution of scores before and after normalization showed that
compared to usual Benjamini-Hochberg FDR and log fold change cut-offs (|log FC| ≥ 1),
the loss in statistical power was inconsequential and that this procedure ensured that
mouse and human genes had comparable score distributions.

4.2.3 Network and orthology databases

The human and mouse background networks were downloaded from STRING v9.1,
protein.actions.detailed.v9.1.txt (Franceschini et al. 2013), which is a database that
contains experimentally verified direct protein interactions. Note that this network also
contains interactions predicted based on orthology, so-called interologs. Ideally, we would
prefer to use only experimentally predicted interactions, but currently, for mouse, such
available data is too incomplete to result in a meaningful background network. Outlier
nodes with a degree above 40 times the interquartile range plus the 75th percentile
of the distribution of all node degrees were removed (ELAVL1, UBC, Ubb, Ubc). The
resulting mouse network has 16, 821 nodes and 483, 532 edges and the human network
has 16, 255 nodes and 315, 442 edges.

For any given timepoint, we performed a preprocessing step where we retained the
subgraphs of the input networks induced by the genes that meet the microarray filtering
criteria. This reduced the number of nodes to 8,453 human nodes, 6,882 mouse nodes and
14,779 nodes in the orthology mapping. Among these, up to 250 nodes (depending on the
time point) have positive scores. The rank normalization as described in section 4.2.2
ensured that the number of positive human nodes is in the order of the number of
positive mouse nodes.

Orthology information was downloaded from Ensembl release 59 (Flicek et al. 2013)
and all human and mouse orthologs were kept, regardless of the identity scores. The
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orthology mapping corresponds to a bipartite graph involving 67, 304 human proteins
and 43, 953 mouse proteins linked by 104, 007 edges, grouped in 16, 552 bicliques with
an average size of 6.72 proteins (SD: 5.34).

4.2.4 Results

4.2.4.1 xHeinz identifies statistically significant conserved modules at
different levels of conservation

We applied xHeinz on samples from the Th17 human and mouse data sets for time
points 2 h, 4 h, 24 h, 48 h and 72 h. We solved these instances for different values of
α ∈ [0, 1] with a step size of 0.1. All computations were done in single-thread mode on
a desktop computer (Intel XEON e5 3 Ghz) with 16 Gb of RAM and a time limit of
12,000 CPU seconds. After this timeout, the best feasible solution is returned by the
solver.

Figure 4.2 shows for the five time points and eleven values of the α parameter, the
human and mouse scores of the found modules as well as the distribution of the module
contents. For 26 of the 55 instances we solved the conserved active modules problem to
provable optimality within the time and memory limit. The optimality gap of a solution
is defined as (UB−LB)/|LB|, where LB and UB are the value of the best solution and
the lowest upper bound as identified by the branch-and-cut algorithm, respectively. Of
the 29 instances that are not solved to optimality, 22 have a gap smaller than 5%.

Any feasible solution for a conservation ratio of α is also a solution for any α′ ≤ α. We
indeed see in fig. 4.2 that this property holds, the solution values decrease monotonically
with increasing α. Consequently, if we obtain an optimal solution (i.e., with maximal
activity score) for α′ then, any solution for α must have its activity score that is greater
or equal to the one for α′. When we only account for the optimal solutions of our
instances, we indeed see that this property holds.

As an added validation, we observe that the solutions for α = 0 (no conservation
constraints) are identical to the solutions obtained by running the single species method
Heinz, described by Dittrich et al. (2008), separately on the two networks.

There is a sharp decrease in module size for α = 1. Indeed, this is the most restrictive
setting since it enforces that all the nodes in a module must be conserved. We also
observe that as α increases, both positive and negative conserved nodes are added,
indicating that we manage to retrieve informative nodes in a gradual manner. See also
section 4.3.3 for a detailed analysis of module overlap for all combinations of α values.

When we compare solutions across time points, we see that the conserved active
modules capture two phases of the differentiation process. We observe high activity at
2 h as well as at the late time points. Several authors reported such biphasic behavior
during early Th17 differentiation, for example Ciofani et al. (2012) and Yosef et al.
(2013) in mouse, and Tuomela et al. (2012) for human. The low activity score observed
at the 4 h time point is in line with Yosef et al. (2013)’s mouse studies, which suggest
that after the initial induction sustained by Stat3 and Stat1 in the first four hours, a
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Figure 4.2: Statistics of xHeinz solutions. The conserved active module problem
was solved for five time points (columns) over a sequence of 11 consecutive values of
the α conservation parameter (x-axis). We report in the top row the score of the best
solution (y-axis) and whether optimality was proven by our algorithm (circles). All runs
were limited to 12,000 CPU seconds on a standard desktop computer. The second row
illustrates how module contents vary as α increases. The height of each bar indicates
the size of the respective module, colors indicate the fraction of positive and conserved
nodes.

phase of Rorc induction takes place and lasts until the 20 h time point, after which the
effective protein level of Rorc starts to increase and to trigger the cytokine production
phase. Our model and the solutions obtained suggest that these dynamics are conserved
between the two organisms.

Furthermore, fig. 4.3 illustrates the strong conservation of these overall dynamics,
in human and mouse at 2 h. The plots show that in our modules all but two conserved
gene pairs change expression in the same direction. It is worth noting that we do not
enforce any conservation of directionality in the xHeinz model.
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Figure 4.3: Comparison of log fold change expression in mouse and human for conserved gene pairs at 2 h
(left) and 48 h (right). Each panel shows the log fold change correlation between conserved gene pairs: For each pair, a line
segments connects the human logFC (x-axis) to the mouse logFC (y-axis). Point color indicates whether the human or mouse
gene has a positive score. A line segment in the 1st or 3rd quadrant signifies positively correlated logFC values whereas a link
in the 2nd and 4th quadrant corresponds to negative correlation. The sign of the activity score is indicated by the coloring.
Genes discussed in the main text are indicated with white boxes.



4.2. MATERIAL AND METHODS 43

4.2.4.2 Early regulation of Th17 differentiation is conserved between
human and mouse

In the following, we study the two phases of the Th17 differentiation process in more
detail. We focus on the 2 h and 48 h time points. We selected for this evaluation α = 0.8
for both time points, as this value provides a balance between conservation and activity
and produces modules of interpretable size. All results at all time points are available
on the accompanying website. Figure 4.4 reports a reduced version of the resulting
human and mouse Th17 modules for the two time points, and fig. 4.5 and fig. 4.6 show
the full, unfiltered module contents of the modules.

We assess statistical significance of the resulting modules by performing 100 runs
on randomized networks for each value of α, and additional 400 runs for the selected
α = 0.8. We do this using two randomization methods: (1) permuting the node weights
while keeping the graph fixed, and (2) permuting the network topology while keeping
the node weights and the node degrees fixed as described in (Mihail and Zegura 2003).
With the exception of a few extreme cases at the 48 h time point, all modules were
found to be highly significant. For details see section 4.3.3.

Our model for conserved modules relies on the hypothesis that similar biological
processes between two related species are realized by orthologous genes. To evaluate
the relevance of the conserved modules returned by xHeinz, we solved the conserved
active modules problem between the Th0 and Th17 conditions at 2 h and 48 h.

At the 2 h time point, xHeinz identifies a conserved module consisting of 58 human
and 50 mouse proteins. Interestingly, both the human and mouse modules are centered
around STAT3/Stat3, even if these genes are not the ones showing the higher fold change
in both species. STAT3 is a signal transducer having transcription factor activity and
was shown to play a key role in the differentiation process of Th17 (Harris et al. 2007).
Once activated by Th17 polarizing cytokines (such as IL6 in our case), it eventually
binds to the promoter regions of IL17A/Il17a and IL17F/Il17f cytokines and activates
transcription. These cytokines are the hallmark cytokines produced by activated Th17
cells. It is worth noting that IL17/Il17 cytokines and associated receptors are not in the
2 h modules, as these proteins have been shown to be expressed only at later time points
(Tuomela et al. 2012). Moreover, STAT1/Stat1, another member of the STAT family, is
part of the solution and belongs to the central core of the human and mouse modules,
which is consistent with its major role during the early phases of Th17 differentiation
(Yosef et al. 2013).

We also applied xHeinz to find a conserved module at a later time point (48 h).
Kinetics analysis of Th17 differentiation showed that the effective secretion of Th17
hallmark cytokines only happens after several days of polarization (Tuomela et al.
2012; Yosef et al. 2013) and we do observe in these modules a significant enrichment
for interleukin related proteins present in both species, which was absent for the 2 h
modules, such as up-regulation of IL9/Il9. Secretion of IL9 by Th17 cells have been
demonstrated both in mouse and human cells (Beriou et al. 2010), Il9 is known to be
induced by Bcl3 (Richard et al. 1999), and Bcl3 inhibition has been recently shown
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to affect the function of Th17 cells in mouse (Ruan et al. 2010). We also observe
the conserved down-regulation of GATA3/Gata3, which is known to be the master
regulator of Th2 cells (Zheng and Flavell 1997), and is likely to constrain the Th17
regulation program (Hamburg et al. 2008). Similarly to the modules found at 2 h, the
48 h modules are centered around STAT3, although at the 48 h time point this gene is
not differentially expressed anymore neither in human or mouse (resp. logFC of 0.17,
score of -4.59 for human, and logFC 0.52, score of -3.21 for mouse). This observation is
in line with the major role of STAT3 along the differentiation process at all time points
(Yosef et al. 2013). To the contrary, STAT1 has been indicated as an exclusively early
regulator (Yosef et al. 2013) in mouse and is indeed not present anymore in the 48 h
modules.

We also observe the presence of the RORA/RORC/Rora/Rorc members of the
RORs family of intracellular transcription factors, which are considered to be the master
regulators of the Th17 lineage (X. O. Yang et al. 2008), and have been implicated in
both species (Crome et al. 2009). Interestingly, these regulators are linked to the up-
regulation of the vitamin-D receptor (VDR/Vdr), whose role in Th17 differentiation
and several human auto-immune related disease have been recently studied (Chang
et al. 2010).

In summary, our findings show the relevance of the identified conserved active modules
with regard to the biological process of interest. By requiring the active modules to
contain a certain fraction of conserved nodes, xHeinz identifies the main core proteins
involved in the differentiation of Th17. Our analysis confirms that these proteins are
very likely to have similar roles in both species.

4.2.4.3 Comparison to neXus

We compare the 48 h xHeinz modules (see figs. 4.4 to 4.6) with subnetworks computed
by neXus version 3 (Deshpande et al. 2010). In contrast to our exact approach, neXus
uses a heuristic technique to grow subnetworks from seed nodes simultaneously in two
species in an iterative fashion. Neighborhoods of the two current modules are determined
using a depth-first search. This search is restricted to only consider nodes that have
a path to the seed node with a confidence larger than the user-specified parameter
dfscutoff. The confidence of a path is defined as the product of the confidences of the
edges comprising that path. The modules are extended to include the most active pair
of orthologous nodes in the neighborhoods – where activity is defined as normalized log
fold change and thus differs from the definition of activity used in xHeinz. This whole
procedure is repeated until either the cluster coefficient drops below the user-specified
parameter cc, or the average activity scores of one of the two modules drops below
parameter scorecutoff.

We ran neXus with the default parameters cc = 0.1, 0.2, scorecutoff = 0.15 and
dfscutoff = 0.3, 0.8 for mouse and human respectively for all time points. Table 4.1
gives the resulting modules sizes for human and mouse.
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Figure 4.4: Conserved active Th17 differentiation modules in human and
mouse at 2 h and 48 h. We obtained node activity scores capturing the significance
of differential gene expression between the Th17 and Th0 conditions in human and
mouse using the BUM model with FDR = 0.1. xHeinz uses these scores to search for
conserved active modules in the STRING protein action network. The first row shows
the human counterparts of the best scoring conserved modules for the 2 h (left) and
48 h (right) samples. The second row depicts the mouse counterparts. Rounded squares
depict genes for which a homolog – as defined by Ensembl – is present in the counterpart,
whereas triangles denote non-conserved genes. Node color gradually indicates activity
scores. Orange: larger than 2; white: between −2 and 2; violet: smaller than −2. Node
labels and sizes are proportional to betweenness centrality and edge width to edge-
betweenness – both centralities are with respect to the subnetwork module. Only nodes
having a degree larger than 2 (resp. 3) are displayed for the 2 h (resp. 48 h) module.
The full networks in tabular format are available on the accompanying website and in
appendix A.1.

neXus finds 1 module for time point 48 h which is shown in fig. 4.7 for human (A)
and mouse (B). In total 5 genes are contained in the module, which are identical for
human and mouse, but the number of edges differs. Only one of the genes is significantly
differentially expressed, CCL20, which has an absolute log fold change bigger than 1
and a BH FDR smaller than 0.1. Since neXus does not use p-values as an input, but
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solution 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 avg. #sols
0.5h 7 (6) 4 (4) 7 (6) 3 (3) 5.25 (4.75) 4
1h 15

(10)
10
(9)

12
(12)

13
(13)

7 (7) 5 (5) 15
(13)

10
(11)

9
(10)

18
(16)

25
(24)

14
(14)

6 (7) 5 (5) 6 (6) 9.95 (9.58) 19

2h 15
(17)

6 (5) 12
(10)

12
(11)

10
(10)

13
(13)

17
(15)

12
(12)

8 (9) 5 (5) 11
(12)

19
(18)

3 (3) 9 (8) 23
(21)

10 (9.83) 30

4h 6 (9) 4 (4) 6 (5) 4 (4) 4 (4) 3 (3) 7 (8) 9
(10)

4 (4) 3 (3) 5 (5.40) 10

48h 5 (5) 5 (5) 1

Table 4.1: Modules calculated with neXus for all time points. Shown are the
sizes in number of nodes of the first 15 representative solutions and the average sizes
for the human subnetwork and for the mouse subnetwork in brackets. The last column
lists the number of solutions for each time point. No solutions were obtained for time
points 24 h and 72 h.

log fold-changes which are normalized to activity values, the genes CCL20 and CXCR3
are considered as active nodes with a value above 0.15. These genes show changes in
expression, but only two of these changes are statistically significant.

The low number of active nodes points to a drawback in the neXus algorithm: due
to the locality of the greedy search strategy it may happen that the average activity
of the subnetwork in construction keeps on degrading without reaching the next active
node. The effects of this issue can be seen, for example, in fig. 4.7, where CCL20 is the
seed node and the majority of other neighboring nodes are not differentially expressed.
Furthermore, since the activity score of a single gene is just the log fold-change, and
does not reflect both fold change and variability as a p-value, the neighboring nodes of
the seed node in subnetwork fig. 4.7 might merely originate from the noise in the data
and represent nothing biologically relevant for the interpretation of the data.

Another consequence of the neXus search strategy is that the module sizes are small
(see table 4.1) and thus only give a limited view of the molecular mechanisms at play.
Theoretically, the parameter dfscutoff can be decreased to increase the module size.
Doing so, however, produces only slightly larger modules, but drastically increases the
running time. Table 4.2 shows the neXus solutions for time point 48 h with different
values for parameter dfscutoff.

Also note that changes in the clustering coefficient parameter cc only reduce the
module size with increasing cc. Table 4.3 shows the neXus solutions for time point 48 h
with different values for parameter cc.

Conservation in neXus is enforced stringently by only allowing pairs of orthologous
genes or genes that are only present in one of the networks to be included in the
subnetworks (see fig. 4.7). This is too restrictive if the underlying mechanisms in the
two species differ. For instance, for time point 48 hours and all but α = 1 values, xHeinz
finds the non-conserved gene IL23R (BH FDR 3.52e-8, score 14.50, logFC 1.38) in
human, which is involved in Th17 autocrine signaling (Wei et al. 2007) but which is not
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Table 4.2: neXus solutions for time point 48 h with different values for pa-
rameter dfscutoff. Shown are the number of solutions, the average and maximum
number of nodes and running times for the human network.

dfscutoff no. sols. avg. size max. size CPU time [s]
0.1 2 5.00 5 176039.91
0.2 3 7.00 9 110282.61
0.3 5 6.60 9 77502.13
0.4 4 6.62 10 54972.92
0.5 6 5.58 9 35360.42
0.6 4 5.38 6 20538.4
0.7 3 5.33 6 11164.19
0.8 60 4.04 6 4639.59
0.9 0 0.00 0 1359.87

Table 4.3: neXus solutions for time point 48 h with different values for pa-
rameter cc. Shown are the number of solutions, the average and maximum number
of nodes and running times for the human network.

cc no. sols. avg. size max. size CPU time [s]
0.1 1 5 5 23367.68
0.2 1 5 5 23243.83
0.3 1 5 5 23903.09
0.4 1 5 5 24285.30
0.5 1 3 3 24318.78
0.6 1 3 3 24059.59
0.7 1 3 3 24518.68
0.8 1 3 3 24321.92
0.9 1 3 3 24246.56

differentially expressed in mouse. xHeinz also finds JUNB, which at the 2 hour time point
is up-regulated in human data (BH FDR 1e-2, score 0.02, logFC 1.3) and not detected
as differentially expressed in the mouse data (BH FDR 0.48, score -4.01, logFC 0.65).
JUNB is a known partner of BATF with which it heterodimerizes preferentially during
Th17 differentiation (Schraml et al. 2009), indicating its relevance. Both important
genes would have been missed by a more restrictive conservation setting. Indeed, both
neXus and xHeinz at α = 1 fail to find these genes showing that a more flexible view
on conservation is required to adequately deal with transferability.
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4.3 Implementation and evaluation details

4.3.1 Implementation

xHeinz is implemented in modern C++14 using the best practice patterns recently
introduced by Meyers (2014), and makes use of the boost libraries and the LEMON
graph library (Dezső et al. 2011). CPLEX 12.6 is used as a black-box solver for our
Mixed-Integer Linear Program formulation. The source code is publicly available in a
git repository linked to from http://software.cwi.nl/xheinz.

Given two species, xHeinz takes as input:

1. a network for each of the species: G1 and G2,

2. a mapping between the nodes of the two networks,

3. scores associated to each of the nodes, e.g., derived from the p-value of the mod-
erated t-test,

4. the threshold value α, and

5. an optional time limit.

xHeinz returns two node sets corresponding to a solution found within the time
limit together with an upper bound on the optimal objective value. If the objective
value equals this upper bound, the computed solution is provably optimal.

4.3.2 Data processing pipeline

The full pipeline, implemented using Snakemake, from data downloading to running
xheinz, goes as follows:

http://software.cwi.nl/xheinz
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1. Retrieve human and mouse ENSEMBL orthologs, STRING species specific net-
work

2. Retrieve human dataset from GEO (all time points, all conditions)

3. Annotate human probes with ENSEMBL

4. Select human probes based on variance filter

5. Perform linear modeling of the whole human dataset

6. Retrieve mouse dataset (all time points, all conditions)

7. Annotate mouse probes with ENSEMBL

8. Select mouse probes based on variance filter

9. Perform linear modeling of the whole mouse dataset

10. For each time point of interest:

a) Call differentially expressed human genes by contrasting the Th17 with the
Th0 condition ⇒ p-value for each gene at this time point

b) Call differentially expressed mouse genes by contrasting the Th17 with the
Th0 condition ⇒ p-value for each gene at this time point

c) For an FDR threshold of 0.1, fit a BUM model for the human genes ⇒
positive and negative scores for human genes

d) For an FDR threshold of 0.1, fit a BUM model for the mouse genes⇒ positive
and negative score for mouse genes

e) Rank normalize the mouse score based on the human scores ⇒ update the
scores of the mouse genes

f) Map human and mouse genes to proteins on the STRING network

g) For each value of interest for the conservation threshold α:

i. Run xHeinz with the following inputs:
A. the human STRING network
B. the mouse STRING network
C. the BUM scored human proteins
D. the BUM scored mouse proteins
E. the human and mouse orthologs
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4.3.3 Significance of results

We computed empirical p-values to assess the significance of the obtained scores at 2 h
and 48 h, for each value of α ∈ {0.1, 0.2, . . . , 1.0}, with the following two procedures:

1. Weights permutation: We shuffled the node weights by generating random permu-
tations of the activity scores of all genes.

2. Topology permutation: We repeated a million times the following operation: given
two randomly selected edges A1–A2 and B1–B2, if the edges A1–B2 and B1–A2
are not present in the network we add them and remove the original edges, thus
generating a random network with the same node weights and degree distribution.

For each resulting permuted network we applied a modified version of xHeinz a fixed
number of times (500 times for α = 0.8, 100 times otherwise). This modified version
allows to check whether the optimal score on the new random network would exceed
the best score we found on the original network.

To speed up these computations, we used the observation that solving a relaxed
version of the conserved modules problem is sufficient, since we only need a sufficiently
low upper bound (less than the score we obtained with unshuffled data) on the optimal
values for those shuffled instances to make this decision.

We therefore consider the following ILP for the shuffled instances:

max
∑

v∈V1∪V2

wvxv (4.23)

s.t. (4.2), (4.3), (4.4), (4.6) (4.24)

that is, we drop the connectivity constraints. Note that the objective value is an upper
bound of the optimal score of the original problem since this new ILP is a relaxation of
the original one. In addition, we can stop the branch-and-cut algorithm as soon as the
upper bound on (4.23) is lower than the best found solution of the original ILP on the
unshuffled data. These two observations help to speed up the significance computations
tremendously.

Table 4.4 shows the results of these runs, which we performed using a cumulative
time limit of 500 h. It can be seen that only at extreme values of α for the 48 h time
point the upper bound on (4.23) was not good enough to prove significance. This result
was actually expected, since the original run was the only one with a very high gap
(33.36%) at the end of the allocated timelimit.

Note that the p-values p̂ that we demonstrate here are actually upper bounds to
the underlying p-values p that we would obtain without the relaxation to the ILP.

For all other combinations, including the ones we chose to compute the Th17 modules
and where we computed even more permutations, our procedure demonstrates that the
signal in the real network is useful to obtain a statistically significant score.
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Timepoint α FDR k k′ p̂

2 h 0.1 0.1 100 0 0.0
2 h 0.2 0.1 100 0 0.0
2 h 0.3 0.1 100 0 0.0
2 h 0.4 0.1 100 0 0.0
2 h 0.5 0.1 100 0 0.0
2 h 0.6 0.1 100 0 0.0
2 h 0.7 0.1 100 0 0.0
2 h 0.8 0.1 500 0 0.0
2 h 0.9 0.1 100 0 0.0
2 h 1.0 0.1 100 0 0.0
48 h 0.1 0.1 100 7 0.07
48 h 0.2 0.1 100 4 0.04
48 h 0.3 0.1 100 0 0.0
48 h 0.4 0.1 100 0 0.0
48 h 0.5 0.1 100 0 0.0
48 h 0.6 0.1 100 0 0.0
48 h 0.7 0.1 100 0 0.0
48 h 0.8 0.1 500 0 0.0
48 h 0.9 0.1 100 0 0.0
48 h 1.0 0.1 100 100 1.0

Timepoint α FDR k k′ p̂

2 h 0.1 0.1 100 0 0.0
2 h 0.2 0.1 100 0 0.0
2 h 0.3 0.1 100 0 0.0
2 h 0.4 0.1 100 0 0.0
2 h 0.5 0.1 100 0 0.0
2 h 0.6 0.1 100 0 0.0
2 h 0.7 0.1 100 0 0.0
2 h 0.8 0.1 500 0 0.0
2 h 0.9 0.1 100 0 0.0
2 h 1.0 0.1 100 0 0.0
48 h 0.1 0.1 100 7 0.0
48 h 0.2 0.1 100 4 0.0
48 h 0.3 0.1 100 0 0.0
48 h 0.4 0.1 100 0 0.0
48 h 0.5 0.1 100 0 0.0
48 h 0.6 0.1 100 0 0.0
48 h 0.7 0.1 100 0 0.0
48 h 0.8 0.1 500 0 0.0
48 h 0.9 0.1 100 0 0.0
48 h 1.0 0.1 100 20 0.2

Table 4.4: Results of significance experiments. For α ∈ {0.1, 0.2, . . . , 1.0} at time points
2 h and 48 h we computed upper bounds on k instances with permuted scores using the
procedures described above (weights permutation on the left, topology permutation on
the right). In k′ of these cases, resulting upper bound was not lower than the score of
the best found conserved active module on the original network, resulting in a p-value
p ≤ p̂ = k′/k. Values at the threshold α = 0.8 we used to compute the Th17 modules
and non-zero p-values are highlighted.

4.3.4 Robustness of modules for varying α

Given two modules V ′1 ⊆ V1 and V ′2 ⊆ V2, the Jaccard index is defined as (V ′1∩V ′2)/(V ′1∪
V ′2). Fig. 4.8 shows for each time point the Jaccard index for all pairs of conservation
ratios. For consecutive values of α we can see that the module contents do not change
much.

Fig. 4.9 shows the human gene module contents for time point 2 h for varying values
of α, one gene per line. Genes in the left panel (FALSE) are negatively scored, that is,
they are not differentially expressed at an FDR of 0.1. Genes in the right panel (TRUE)
have a positive score. Squares represent conserved genes, whereas triangles represent
non-conserved genes. An xHeinzmodule solution is thus the set of genes marked with a
square or triangle at a given value of α. The coloring is as follows:

• Genes that are selected at all values of α or are coloured red. These are the core
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genes.

• Genes that are selected at α = 0 (no conservation) but not at α = 1 are green.

• Genes that are selected by α = 1 (strict conservation) but not at α = 0 are
turquoise.

• Genes that can only be picked by xHeinz(intermediate α values) are orchid.

This figure shows that a large fraction of genes only occur in an intermediate α
regime (orchid color). Furthermore, the module content smoothly changes as α varies,
which illustrates the robustness of the approach. xHeinzthus allows the investigator
to make an informed choice on the conservation of genes in the modules, which is not
possible with methods assuming no or strict conservation.

4.4 Discussion

We presented a module discovery method that simultaneously searches across two species
for interesting gene sets. A key feature of the gene sets that we extract is the guaranteed
lower bound on the number of conserved genes that they contain. This user defined
lower bound, α ∈ [0, 1], provides a flexible conservation requirement between the two
species, which allows for the discovery of conserved modules, including genes that would
be missed with a stringent conservation requirement.

We have translated our model into an integer linear programming formulation and
have devised and implemented an exact branch-and-cut algorithm that computes prov-
ably optimal or near-optimal conserved active modules in our model.

As a validation of our approach, our computational experiments for understanding the
mechanisms underlying Th17 T cell differentiation in both mouse and human demon-
strate that the flexibility in the definition of conservation is crucial for the computation
of meaningful conserved active modules. We have found two conserved Th17 modules
at time points 2 h (α = 0.8) and 48 h (α = 0.8) that thoroughly encompass the biphasic
Th17 differentiation process. This result can not be revealed by requiring full conser-
vation (α = 1) or by independent modules without requiring conservation (α = 0).
Likewise, neXus, an alternative approach based on a stringent conservation model, is
not able to capture the key regulatory program of the differentiation process.

A key characteristics of our model is its flexibility. This allows its extension to multiple
species and time points, which we will address in future work. In this case, however,
realistic instances will be harder to compute to optimality. Indeed, the number of
interactions between multiple species or time points increase at least quadratically the
number of both ILP variables and constraints. It would requires the development of
powerful algorithm engineering techniques. Interestingly, the complexity of our branch-
and-cut modelization of connectivity remains linear on the number of graphs involved.
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We presented a general model and its MIP program to solve any instance of the cross-
species module discovery problem. An extensive complexity analysis of the problem is
presented in chapter 5, where we show that some instances can be solved in polynomial
time with specific algorithms.
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Figure 4.5: Full module at 2 h for α = 0.8 conservation ratio
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Figure 4.6: Full module at 48 h for α = 0.8 conservation ratio
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Figure 4.7: neXus modules for the time point 48 hours for human (A) and
mouse (B). Orange coloring indicates genes with significant differential expression (BH
FDR ≤ 0.1, |log FC| ≥ 1). Here only one gene is significantly differentially expressed
(CCL20).
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Figure 4.8: Jaccard index evolution over changes of α



4.4. DISCUSSION 57

Not differentially expressed Differentially expressed

PNPT1

HK1

ANKRD28

SMC4

RPA1

PTPN13

KAT2B

SIRT7

EIF3B

CXCR4

MAP3K8

LGALS3BP

PARP9

IRF8

IRF7

HDAC5

DAXX

USP2

PSMB8

IQGAP2

SOCS3

MPND

GRAP2

FMNL3

MUC1

ISG15

MAPK1

NMI

IFIH1

IL21

RPAP1

IL6ST

IRGM

IFI35

HDAC2

FAS

ETV6

BCL3

DHX58

SMAD7

RELA

NEDD4

MYC

CALM2

MAVS

JUNB

NOTCH1

ZC3HAV1

SLFN11

TAF4B

RGMA

GBP5

ARPC5L

STAMBPL1

LDLR

TRIM56

SLC8A2

SBNO2

SAMD9L

POLR3A

NRD1

KDSR

IL2RB

DTNBP1

ATP2B4

VAV1

TRIM25

TRAFD1

SAPS3

RP4−697K14.7

PRKCQ

DHDH

XAF1

UBR1

TRIM21

TNIP2

TNFRSF10D

TMEM173

STAT2

RSAD2

REC8

RAPGEF6

PFKFB3

OASL

MX2

MX1

LDHA

IRF1

IKZF4

IFIT3

IFI16

CXCR5

AXIN2

ARID5B

ARID5A

AP002004.1

TAP1

STAT3

STAT1

SOCS1

RIPK1

MYD88

MFNG

ITK

IRF9

GBP2

EIF2AK2

CISH

BATF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
alpha

S
ym

bo
l

Detected by

●

●

●

●

all

single species only

strict conservation only

xheinz

Conserved

FALSE

TRUE

Figure 4.9: Human module contents of the 2 h time point with varying α





Chapter 5

Tight hardness bounds for the
mwccs problem

In this chapter, we outline the frontier of complexity that characterizes the Maximum-
Weight Cross-Connected Subgraph (mwccs) problem. We demonstrate that the
bipartite relationship plays a major role in the separation between complexity classes,
as do the types of input graphs. Furthermore, we provide constructive proofs, and
algorithmic solutions that efficiently solve some instances of the problem in polynomial
time.

The difficulty of the problem is not only dependent on the characteristics of the two
main input graphs, but also of the relationship between the nodes of these two graphs.
We hypothesised that the problem might be polynomial-time solvable in some instances
with a simpler relationship function.

In section 5.1 we demonstrate that the mwccs problem is inapproximable (NP-hard
to approximate) up to any arbitrary factor σ < 1.0014, it is thus an APX-hard problem.
More precisely, we show that the APX-hardness holds for all inputs complex enough to
represent the following cases:

1. one of the two graphs is a binary caterpillar tree1, the other a binary tree, and
the bipartite relationship is injective,

2. one of the two graphs is a binary tree, the other a general graph, and the bipartite
relationship is bijective.

Section 5.1.1 contains the first proof, and section 5.1.2 contains the second.
Section 5.2 is separated into two main subsections dedicated to polynomially solvable

cases of the mwccs. Both these cases are first formally defined, and their complexity
is analyzed by reduction and constructive algorithmic solutions are proposed. In Hume
et al. 2015 we suggested that the problem might be solvable in polynomial time when

1In our original publication (Hume et al. 2015) we have erroneously used the term comb graph.
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both graphs are trees and the relationship is bijective; we give a proof for this conjecture
in section 5.2.1. This draws a clear complexity frontier, dependent on the bipartite
relationship. Finally, in section 5.2.2 we provide a general algorithm to solve mwccs.
Doing so we introduce a new problem, rb-mwcs, to which section 5.3 is dedicated.
Given that one of the two graphs is polynomially enumerable, we provide an efficient
reduction from an mwccs instance to a polynomial number of rb-mwcs instances. In
this case, mwccs is as difficult as rb-mwcs: it is solvable in polynomial time when the
second graph has a bounded treewidth. The details for the problem reduction are in
section 5.2.2 and the rb-mwcs hardness analysis is in section 5.3.

The complexity is analyzed in a similar fashion in the two contexts. Adding con-
straints to one of the graphs allows to relax some of the constraints for the other graph,
in order to stay within the same category of difficulty. In the context of the hardness
proof, in order for the problem to stay difficult, the change from an injective to a bi-
jective mapping function requires that one of the two trees become a general graph.
In the context of polynomial-time algorithms, requiring that one of the graph that
was previously a binary tree becomes more general requires that the other becomes
polynomially enumerable to stay solvable in polynomial time.

5.1 APX-hardness of the mwccs problem

In this section we prove the inapproximability of two specific cases of the mwccs problem.
First, we prove that if the mapping between G1 and G2 is an injective function, if G1 is
a binary caterpillar tree, and if G2 is a binary tree, mwccs is APX-hard and can not
be approximated within factor 1.0014. Then, we prove that if the mapping is a bijective
function, the problem is as hard to approximate as when considering a binary tree and
a graph. These results in themselves illustrate the role of the mapping function with
respect to the difficulty of the problem.

Both proofs consist in L-reductions from the APX-hard max-3sat(B) problem (see
chapter state of the art).

5.1.1 Injective mapping, binary trees

Proposition 1. The mwccs problem for a binary caterpillar tree and a binary tree is
APX-hard and not approximable within factor 1.0014 even when the mapping M is an
injective function.

We first describe how we build an instance of mwccs corresponding to an instance
of max-3sat(B). Given any instance (Cq, Vn) of max-3sat(B), we build a binary
caterpillar tree G1 = (V1, E1) with weight function w1, a binary tree G2 = (V2, E2) with
weight function w2, and a mapping M as follows.

The binary caterpillar graph G1 is defined as follows. The vertex set is V1 =
{r, li, cj , dli, dcj | 1 ≤ i ≤ n, 1 ≤ j ≤ q}. The edge set is given by the following
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equation.

E1 ={(cj , dcj), (li, dli) | 1 ≤ i ≤ n, 1 ≤ j ≤ q} ∪
{(dcq, r), (r, dl1)}∪
{(dcj , dcj+1), (dli, dli+1) | 1 ≤ i < n, 1 ≤ j < q}.

The weight function w1 is defined as follows: for all 1 ≤ i ≤ n and 1 ≤ j ≤ q, w1(li) = B,
w1(cj) = 1 and w1(r) = w1(dcj) = w1(dli) = 0.

Roughly, in G1 there is a node for each clause (denoted by cj) and for each literal
(denoted by li) that represent the leaves of the caterpillar. The spine of the caterpillar
contains dummy nodes for each clause (denoted by dcj) and for each literal (denoted
by dli) separated by a central node (denoted by r).

The binary tree G2 = (V2, E2) with weight function w2 is defined as follows. The
vertex set is V2 = {r, xi, xi, ckj , dxi, dxi, dcij , dcij | 1 ≤ i ≤ n, 1 ≤ j ≤ q, 1 ≤ k ≤ 3}. The
edge set E2 is given by the following equation.

E2 ={(r, dxn)} ∪
{(ck′j , dckj ) | xk, is the k′-th literal of clause cj} ∪

{(ck′j , dckj )|xk, is the k′-th literal of clause cj} ∪
{(dxi, dxi+1)|1 ≤ i < n} ∪

{(dxi, dxi), (dxi, xn−i+1), (dxi, xn−i+1), (xi, dci1), (xi, dci1)|1 ≤ i ≤ n} ∪

{(dcij , dcij+1), (dcij , dcij+1)|1 ≤ i ≤ n, 1 ≤ j < q}

The weight function w2 is defined as follows: for all 1 ≤ i ≤ n, 1 ≤ j ≤ q and
1 ≤ k ≤ 3, w2(xi) = w2(xi) = −B and w2(r) = w2(ckj ) = w2(dxi) = w2(dxi) =
w2(dcij) = w2(dcij) = 0

Roughly, in G2 there is a node for each literal of each clause (denoted by ckj ) and for
each value of each literal (denoted by xi and xi). Dummy nodes for literals have been
duplicated (one for each value of the literal - that is dxi and dxi). Dummy nodes for
clauses have also been duplicated (one for each value of all literals - dcij and dcij). The
structure is not as easy to informally describe as for G1 but the reader may refer to an
illustration provided in Figure 5.1.

Finally, the mapping M is an injective function from V1 to V2 defined as follows.

M(r) = r

M(li) = {xi, xi}, for all 1 ≤ i ≤ n
M(cj) = {ckj |1 ≤ k ≤ 3}, for all 1 ≤ j ≤ q
M(dli) = {dxi, dxi}, for all 1 ≤ i ≤ n

M(dcj) = {dcij , dcij}, for all 1 ≤ i ≤ n and 1 ≤ j ≤ q
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Figure 5.1: Illustration of the construction of G1, G2, and M , given Cq = {(x1 ∨ x2 ∨
¬x3), (¬x1 ∨ x2 ∨ x5), (¬x2 ∨ x3 ∨¬x4), (¬x3 ∨ x4 ∨¬x5)}. For readability, the mapping
M is not drawn but represented as labels located on the nodes: any pair of nodes (one
in G1 and one in G2) of similar inner label are mapped in M .

Let us prove that this construction is indeed an L-reduction from max-3sat(B).
More precisely, we prove the following property.

Lemma 1. There exists an assignment of Vn satisfying at least m clauses of Cq if and
only if there exists a solution to mwccs of weight at least m.

Proof. ⇒ Given an assignment A of Vn satisfying m clauses of Cq, we construct a
solution to mwccs of weight m as follows.

Let V ∗1 =V1 \ {cj | cj is not satisfied by the assignment} and
V ∗2 ={r} ∪

{ckj | cj is satisfied by its k-th literal} ∪
{xi, dcij | xi = 1, 1 ≤ j ≤ q} ∪

{xi, dcij | xi = 0, 1 ≤ j ≤ q} ∪
{dxi, dxi | 1 ≤ i ≤ n}.

By construction, G1[V ∗1 ] is connected since all the vertices of the spine of the cater-
pillar have been kept. Moreover, G1[V ∗1 ] contributes B × n+m to the overall weight of
the solution, that is B for each of the li and +1 for each satisfied clause. By construction,
all the sub-trees rooted at xi (resp. xi) are kept in G2[V ∗2 ] if xi = 1 (resp. xi = 0) in
A. Moreover, all the dummy nodes for literals (dxi and dxi) and the root r have been
kept. Thus, G2[V ∗2 ] is also connected. Furthermore, G2[V ∗2 ] contributes to −B × n to
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the overall weight of the solution since exactly one of each variable node (xi and xi)
has been kept. One can easily check that any node of V ∗1 has a mapping counterpart in
V ∗2 . The overall solution is valid and of total weight m.

⇐ Given any solution {V ∗1 , V ∗2 } to mwccs of weight m, we construct a solution to the
max-3sat(B) problem satisfying at least m clauses as follows.

First, note that we can assume that any such solution to mwccs is canonical,
meaning that V ∗2 does not contain both vertices xi and xi for all 1 ≤ i ≤ n. Indeed,
by contradiction, suppose there exists a solution such that {xi, xi} ⊆ V ∗2 for a given
1 ≤ i ≤ n. Then, {xi, xi} in G2 induce a negative weight of −2B. This negative
contribution can at most be compensated by the weight of the corresponding literal
node in G1 (w1(li) = B) and at most B clause nodes in G1 (B ≥

∑
w1(cj) where

xi ∈ cj or xi ∈ cj) since every literal occurs in at most B clauses in Cq. Therefore,
such local configuration does not provide any positive contribution to the solution and
can be transformed into a better solution by removing one of the sub-trees rooted
in {xi, xi}. We will consider hereafter that m is the weight of the resulting canonical
solution. We further assume thatm > 1 since otherwise we can build a trivial assignment
A = {c1

1 = 1} of Vn that is satisfying at least one clause of Cq.
Let A be an assignment of Vn such that for all 1 ≤ i ≤ n if xi ∈ V ∗2 then xi = 1

and xi = 0 otherwise. Note that, since our solution is canonical, each literal has been
assigned a single boolean value in A. Let us now prove that this assignment satisfies at
least m clauses of Cq.

First, note that since our solution is canonical and we require any node of V ∗1 to
have a mapping counterpart in V ∗2 , this implies that if li ∈ V ∗1 then its contribution
(that is w1(li) = B) is cancelled by the negative contribution of either xi or xi in V ∗2
(that is w2(xi) = w2(xi) = −B). Therefore, the weight m of the solution can only be
realized by m clause nodes of G1, say C1 ⊆ V ∗1 – since w1(cj) = 1 for all 1 ≤ j ≤ q.

As already stated, to be part of the solution any node in V ∗1 has a mapping coun-
terpart in V ∗2 . Thus, for each node in C1, there should be a node of C2 ⊆ {ckj | 1 ≤ j ≤
q, 1 ≤ k ≤ 3} in V ∗2 . More precisely, by construction, any node cj in V1 has exactly
three mapping counterparts in V2 (that is {ckj | 1 ≤ k ≤ 3}) and for each cj ∈ C1 at
least one of these mapping counterparts has to belong to C2.

Finally, since both G1[V ∗1 ] and G2[V ∗2 ] have to be connected, each node in C2, say
ckj , should be connected by a path to a node xi or xi, say xi, for some 1 ≤ i ≤ n, in
G2[V ∗2 ]. By construction, this is the case if xi is the k-th literal of the clause cj for some
1 ≤ k ≤ 3. Thus, A is an assignment that satisfies any clause cj such that the clause
node cj belongs to V ∗1 . As already stated |C1| = m.

The above reduction linearly preserves the approximation since the weights of
optimal solutions of the problems correspond and there exists an assignment of Vn
satisfying at least m clauses of Cq if and only if there exists a solution to mwccs of
weight at leastm. Hence, given an approximation to mwccs, one can derive an algorithm
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for max-3sat(B) with the same approximation ratio. Since max-3sat(B), B ≥ 3, is
APX-hard (Papadimitriou and Yannakakis 1991) and max-3sat(B) for B = 6 is not
approximable within factor 1.0014 (Berman and Karpinski 1999), so is mwccs, which
proves Proposition 1.

Let us now prove a similar result for mwccs problem when the mapping is a bijective
function.

5.1.2 Bijective relationship function, tree, and graph

Proposition 2. The mwccs problem for a graph and a tree is APX-hard and not
approximable within factor 1.0014 even when the mapping is a bijective function.

Given any instance (Cq, Vn) of max-3sat(B), we build a graph G1 = (V1, E1) with
weight function w1, a tree G2 = (V2, E2) with weight function w2 and a mapping M as
follows. The graph G1 has the vertex set V1 = {r, li, xi, xi, cj , ckj | 1 ≤ i ≤ n, 1 ≤ j ≤
q, 1 ≤ k ≤ 3} and the edge set defined by the following equation.

E1 ={(li, xi), (li, xi), (r, xi), (r, xi) | 1 ≤ i ≤ n} ∪
{(cj , ckj ), (r, ckj ) | 1 ≤ k ≤ 3, 1 ≤ j ≤ q}.

The weight function w1 is defined as follows: for all 1 ≤ k ≤ 3, 1 ≤ i ≤ n and
1 ≤ j ≤ q, w1(li) = B, w1(cj) = 1 and w1(r) = w1(ckj ) = w1(xi) = w1(xi) = 0.

Roughly, in G1 there is a node for each clause (denoted by cj), for each of the
three literals of each clause (denoted by ckj ), for each literal (denoted by li) and for
each valuation of each literal (denoted by xi, xi). Clause nodes and literal nodes are
separated by a central node r.

The tree G2 is defined as follows. The vertex set is V2 = V1, the edge set is given by
the following equation:

E2 ={(li, r), (cj , r), (xi, r), (xi, r) | 1 ≤ i ≤ n, 1 ≤ j ≤ q} ∪
{(ckj , xi) | xi is the k-th literal of clause cj} ∪
{(ckj , xi) | xi is the k-th literal of clause cj}.

The weight function w2 is defined as follows: for all 1 ≤ k ≤ 3, 1 ≤ i ≤ n and
1 ≤ j ≤ q, w2(xi) = w2(xi) = −B, w2(r) = w2(ckj ) = w2(li) = w2(cj) = 0.

Roughly, in G2 all the nodes except the ones in {ckj | 1 ≤ j ≤ q, 1 ≤ k ≤ 3} form a
star centered in node r. The nodes representing the literal of the clause (that is ckj ) are
connected to their corresponding variable nodes (that is xi or xi).

Finally, the mapping M is a bijective function from V1 to V2 defined as the identity
(that is each node in V1 is mapped to the node of similar label in V2).

Let us prove that this construction is indeed an L-reduction from max-3sat(B).
More precisely, we prove the following property.
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Figure 5.2: Illustration of the construction of G1, G2, and M , given Cq = {(x1 ∨ x2 ∨
¬x3), (¬x1 ∨ x2 ∨ x5), (¬x2 ∨ x3 ∨¬x4), (¬x3 ∨ x4 ∨¬x5)}. For readability, the mapping
M is not drawn but deduced from the labels of the nodes; any pair of nodes (one in G1
and one in G2) of similar label are mapped in M .

Lemma 2. There exists an assignment of Vn satisfying at least m clauses of Cq if and
only if there exists a solution (not necessarily optimal) to mwccs of weight at least m.

Proof. ⇒ Given an assignment A of Vn satisfying m clauses of Cq, we construct a
solution to mwccs of weight m as follows.

Let V ∗1 = V ∗2 = {cj | cj is satisfied by A}∪{ckj | ckj is satisfying cj by A}∪{xi | xi =
1} ∪ {xi | xi = 0} ∪ {r, li | 1 ≤ i ≤ n}.

By construction, G1[V ∗1 ] and G2[V ∗2 ] are connected. Moreover, G1[V ∗1 ] contributes
B × n + m to the overall weight of the solution, that is B for each of the li and +1
for each satisfied clause, while G2[V ∗2 ] contributes −B × n to the overall weight of the
solution since exactly one of each variable node (i.e., xi and xi) has been kept. The
overall solution is valid and of total weight m.

⇐ Given any solution V ∗ ⊆ V1 to mwccs of weight m, we construct a solution to the
max-3sat(B) problem satisfying at least m clauses as follows.

First, note that, as in the previous construction, we can assume that any such
solution to mwccs is canonical meaning that V ∗ does not contain both vertices xi and
xi for any 1 ≤ i ≤ n.

Let A be an assignment of Vn such that for all 1 ≤ i ≤ n, if xi ∈ V ∗ then xi = 1
and xi = 0 otherwise. Note that, since our solution is canonical, each literal has been
assigned a single boolean value in A. Let us now prove that this assignment satisfies at
least m clauses of Cq.

First, note that since our solution is canonical, as in the previous construction, the



66 CHAPTER 5. MWCCS

weight m of the solution can only be induced by m clause nodes of G1, say C1 ⊆ V ∗.
Since both G1[V ∗] and G2[V ∗] have to be connected, any solution with m > 1

will include node r in V ∗. Thus, for each node cj ∈ C1 there should be a node of
{ckj | 1 ≤ k ≤ 3} in G1[V ∗] to connect cj to r. In G2[V ∗], in order for nodes r and ckj to
be connected, the corresponding literal node (that is xi or xi), say xi – has to be kept
in V ∗. By construction, this is the case if xi is the k-th literal of clause cj . Thus, A is
an assignment that satisfies any clause cj such that the clause node cj belongs to V ∗.
As already stated |C1| = m.

The above reduction linearly preserves the approximation and proves Proposition 2.

5.2 Polynomial-time cases for the mwccs problem

5.2.1 Two bounded-degree trees and a bijective mapping

We have proved in section 5.1.1 that for instances with two binary trees, and an injective
mapping function, the problem is APX-hard. We will now consider the case of two
bounded-degree trees, T1 = (V1, E1) and T2 = (V2, E2), with a bijective relationship,
or mapping function, V1M V2. Without loss of generality, lets now suppose that their
respective degrees are dT1 = dT2 = d, and that |V1| = |V2| = n.

Since α = 1, a node can only be selected if its counterpart is also selected. How-
ever, note that a node in one of the trees can have its counterpart at a completely
different depth in the other tree (see fig. 5.3). Consequently, adding a child node might
require the addition of a parent by mutual requirement between the two trees and the
mapping function (see fig. 5.3). This exhibit the main difficulty with this problem: the
non-isomorphic mapping function makes it impossible to use the usual local dynamic
programming scheme to solve the mwcs problem and its variants on trees.

R

A C

B

r

b

a c

Figure 5.3: Nodes labeled with the same letter are counterpart of one another. When
starting from an empty solution2, the inclusion of node A requires only the inclusion
of a. However when starting from the root nodes, the inclusion of node A requires the
inclusion of node a, which recursively requires the inclusions of b, B, C, and c. A local
dynamic programming approach is impossible since the context is important.
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In this section, we introduce a functional dynamic programming approach for this
setup that solve the mwccs problem in polynomial time parameterized on the degree
of the trees. A functional dynamic programming approach is a top-down dynamic
programming technique, that is recursive and using subproblem overlaps, that uses a
memoization scheme to store intermediate results instead of the usual tabular approach.

Our algorithm is composed of two main operations. ComputeDecisionTree is the
main functionnal dynamic programming procedure and finds the optimal solution to
the problem given two trees and a root for one of them. ComputeDecisionTree calls
upon ConstructRequiredSet to maintain the connectivity and matching constraints of
the candidate solution.

ConstructRequiredSet: Informally, ConstructRequiredSet takes as input all the
nodes that have been included up intil now, from both T1 and T2, and add into those
sets all nodes that are required to be added if u is included to keep 1) connectivity and
2) perfect matching (see fig. 5.3).

Adding a node u ∈ V1 from T1 to a candidate solution3 requires the unconditional in-
clusion of its counterpart v ∈ V2 from T2 to the candidate solution. In turn, the addition
of v requires the addition of all nodes from T2 that are necessary for the candidate solu-
tion to remain connected: the (possibly empty) shortest path v0v1 . . . vi between v and,
if one exists, its closest node from T2 already in the solution. Recursively, this requires
the addition of all counterparts of the nodes v0, v1, . . ., vi to the candidate solution,
and the nodes required for the candidate solution to remain connected. This recursion
continues until no more nodes are required to be included to conserve connectivity.

It is formally defined as follows. Given two sets S1 ⊆ V1 and S2 ⊆ V2 of nodes
already selected, and a node u ∈ V1 \ S1 such that u is a neighbor of a node in S1
(v ∈ V2 its counterpart). We define a double recursion procedure over V1 and V2. Add
u to S1; then, find the shortest path from its counterpart v to any node of S2. Add
all nodes that pertain to this shortest path to S2 (including v), and recursively find
all shortest paths from their counterparts to the nodes of S1. Continue until no more
nodes need to be added.

Proposition 3. The induced graphs T1[S1] and T2[S2] obtained as results of
ConstructRequiredSet are connected.

Proof. Indeed, since we recursively add nodes with their shortest path to already selected
nodes, there exists a path connecting every pairs of nodes of S1 and of S2.

Proposition 4. ConstructRequiredSet is a quadratic operation in the worst case.

2As is the case with regular dynamic programming, which depend only on local subproblems.
3At least one of the neighbors of u is in the candidate solution, or the candidate solution is empty.

That is, its addition leaves the candidate solution connected.
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Proof. The shortest path toward a set of nodes in a tree is equivalent to the minimum
sum subsequence problem and can be solved in linear time using a dynamic programming
approach. We recursively add up toO(n) nodes (all). Hence the resulting complexity.

ComputeDecisionTree: The main procedure, ComputeDecisionTree, is a recursive
decision tree traversal of T1 that uses the ConstructRequiredSet operation. It is formally
defined as follows. Given T1, T2, and a node u ∈ V1, this function returns the set Su1
and Su2 : the best selection of nodes, respectively from T1 and T2, when optimizing in
the subtree rooted in u and which includes u. Note that Su1 might contain nodes that
are parents to u, as a requirement for the matching and connectivity constraints. Lets
define ui the i-th children of u, and Cu =

⋃
i
{ui} the set of these children. For all nodes

ui ∈ Cu, if any:

1. recursively call ComputeDecisionTree with ui, which will return the sets Sui
1 and

Sui
2 , then

2. call the ConstructRequiredSet procedure with Sui
1 , Sui

2 , and u, which will return
◦
Sui

1 and
◦
Sui

2 .

Then compute a score s(u), which correspond to the optimal combination of children
such that their inclusion maximizes the local sum of weights. This score only consider
the subtree rooted in u and including u in a typical dynamic programming approach.

Formally, the computation of this score is as follows. For notation sake, lets define
Pu = P(Cu): the power set containing all the combinations of children of u; and Puk
the k-th element of this set. Lets also define SPu

k =
⋃

ui∈Pu
k

◦
Sui

1 ∪
◦
Sui

2 : the union of the

optimal nodes in the k-th combination of children4, including u. To simplicity notation,
we further define SPu

0 , with the 0-th combination being the usual empty set5, as the set
{u, v}: if no children are selected, only the current node and its counterpart are part of
the solution, which is a connected and matched solution by definition. Finally, we have:

s(u) = max
k

∑
n∈SP

u
k

w(n)

Computing the optimal combination of children, required for the max function, is
not an easy problem. It looks similar to the weighted maximum coverage problem
(Hochbaum 1996), relaxed both with possibly negative weights, and with unconstrained
number of sets. It also looks quite similar to the set-union knapsack problem (Gold-
schmidt et al. 1994), but again with real-valued weights and without budget constraint.
Both are sensibly related and difficult, NP-hard problems (R. Cohen and Katzir 2008;

4Note that in general, this union is certainly not optimal. Unless there are multiple optimal solutions,
only one combination of the children maximizes the score, and possibly the empty one.

5Here of children.
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Hochbaum 1996). However, since we are working with bounded-degree trees, the num-
ber of combinations remains (parameterized-)constant. The overall algorithm is thus in
FPT (Fixed-Parameter Tractable), see proposition 5 for proof.

Proposition 5. ComputeDecisionTree is a parameterized complexity algorithm which
requires at most O(2dn2 + n3) steps for d-ary trees.

Proof. The recursion tree closely follows the topology of T1, and contains at most O(n)
calls. At each step we use the ConstructRequiredSet procedure, which is a quadratic
time operation. We also compute the score, which itself requires to compute a set union
operation for each combination of children. There are at worst O(2d) combination of
children (the cardinality of the power set), and set union is at worst an O(n) operation
with a bitvector representation of the sets. Hence the resulting number of steps.

Proposition 6. One of the recursive calls of ComputeDecisionTree contains the optimal
solution to the global problem.

Proof. Even though two subtrees could actually have the exact same solution, since
parent nodes can be included for matching and connectivity constraint reasons, it should
be clear from the standard tree traversal that the whole tree T1 is considered and that
all its subtrees (that respect the constraints) are evaluated. To see that the optimal
solution found by this procedure, in T1, is also the optimal in regard to T2, note that
any given subtree of T1, that is valid under the constraints, have one and only one
counterpart subtree in T2. Indeed, since the matching is a bipartite function, each node
have one and only one counterpart; any subtree of size m in T1 have one and only one
counterpart subtree of size m in T2, the one that contains all counterpart nodes. Finally,
since all possible subtrees of T1 (that respect the constraints) are considered, it must
be that all possible subtrees of T2 are also considered by this procedure.

The optimum is in the recursive call with the highest total score, the optimal
objective, and the optimal solution is the corresponding set of nodes Su.

5.2.2 Polynomial-time scheme for some inputs

Notice that in the previous sections the conservation constraint α for the solution, that
defines which fraction of nodes has to be kept, has been strict; that is α = 1. Here we
consider where α ∈ [0, 1]. In addition, we further relax the constraint on the mapping
function, which can be any partial injective function. That is, any element of V1 can
have at most one image in V2 (the elements of V2 can have 0, 1, or more antecedents).
Finally, we suppose that there is a polynomial number of connected induced subgraphs
of G1.

We consider as many candidate solutions as there are connected subgraphs of G1,
and for each one of them we try to find the best corresponding subgraph in G2. The
best corresponding subgraph in G2 is the subgraph that maximizes the total weight
of the candidate solution and such that at least an α-fraction of the nodes of G1 and
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G2 in the solution are M -related. For a given subgraph of G1, the sum of the weights
of its nodes is fixed. Hence maximizing the total weight of the candidate solution is
equivalent to finding the optimal solution in G2 where the α-fraction constraint holds.

To solve this problem, we introduce a new problem, the ratio-bounded maximum-
weight connected subgraph (rb-mwcs) problem. Informally, it consists in a variant
of the mwcs problem where an additional contribution function is associated to each
node and where an additional ratio constraint is introduced, not unlike the budget-
constrained variant of the mwcs problem. This new problem is formally defined in
section 5.3.

The reduction to this new subproblem is as follows. The contribution function needs
to encode the relationship function between the nodes of both G1 and G2. To do so,
and since we fixed a partial solution to the problem in the form of the subgraph of G1,
we note for each node of G2 its number of inverse images in G′1 plus one if and only if
at least one exists, zero otherwise. The reason we need to make the distinction between
the two cases is that when there is no counterpart in G1, selecting a node in the optimal
solution in G2 will not increase the number of mapped node overall. However, selecting
a node in G2 for which there exists at least one counterpart will increase the number
of mapped node by the number of counterpart, plus one for the selected node itself.

Formally, given a connected subgraph G′1 = (V ′1 , E′1) of G1, we define the corre-
sponding G2 antecedent function a : V2 → N to be a(v) = |{v, u | M(u, v), u ∈ V ′1}|.
The contribution function c : V2 → N is defined as follows:

c(v) =
{
a(v) + 1 if a(v) > 0,
0 otherwise.

Given G2 = (V2, E2), its weight-function w2 and its contribution function c, the
problem now corresponds to the discovery of the connected subgraph of maximum
weight such that: ∑

v∈V ∗2

c(v) ≥ α×
(
|V ′1 |+ |V ∗2 |

)
∑
v∈V ∗2

c(v)− α× |V ′1 | ≥ α× |V ∗2 |

Where α× |V ′1 | is constant.
Finally, given the optimal score of all candidate solutions, for which there are one

for each subgraphs G′1, the optimal solution to the mwccs problem is the one candidate
solution among them which has the best score.

Clearly, constructing a contribution function for G2 given a subgraph G′1 is a linear
time operation. Choosing the best candidate solution is as time consuming as enumer-
ating all subgraphs of G1, which is a polynomial time operation in this context. The
complexity of this algorithm hence depends on the difficulty to solve the rb-mwcs
subproblem.
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Section 5.3 provides an analysis of this problem with a more general contribution
function. It provides polynomial scheme for d-ary trees and an optimized algorithm
for paths. Thus, there exists a polynomial-time algorithm to solve mwccs when one
of the graph if polynomially enumerable, the second is a bounded-degree tree, and the
relationship is a partial injective function, for any α ∈ [0, 1].

5.3 The Ratio-Bounded Maximum-Weight Connected
Subgraph problem

In this section, we introduce a slightly more general version than required in
section 5.2.26. The ratio-bounded maximum-weight connected subgraph
(rb-mwcs) problem, is formally defined as follows.

rb-mwcs: Given a node-weighted graph G = (V,E), its node-weighting function
w : V → R, its contribution function c : V → R, a ratio α ∈ [0, 1] and a constant C ∈ R,
find a subset V ∗ ⊆ V such that:

1. the induced graph G[V ∗] is connected, and

2. the ratio of the sum of contributions plus some constant over the number of nodes
in the solution is greater than or equal to α, that is:∑
v∈V ∗

c(v) + C ≥ α× |V ∗|, and

3.
∑
v∈V ∗

w(v) is maximum.

Proposition 7. rb-mwcs is at least as difficult as mwcs.

Proof. Indeed, when c(v) = 1, ∀v ∈ V , the ratio
∑
v∈V ∗

c(v)/|V ∗| = 1 ≥ α, and the mwcs

and rb-mwcs problems are equivalent.

Let us show now that it is in PTIME for bounded-degree trees.

Proposition 8. rb-mwcs is solvable in O(nd+2) time for d-ary trees.

Proof. Let us consider the rb-mwcs problem for a d-ary tree. We define a dynamic
programming strategy with a O(nd+2) time complexity. This leads to a polynomial
algorithm for d-ary trees. The basic idea is to define a 3-dimensional table T of size
|V | ×

∑
v∈V c(v)× |V | that stores the maximum weight of a subtree rooted in v of size

s and of total contribution tc.
Formally, ∀v ∈ V, 0 ≤ tc ≤

∑
v∈V c(v), 0 ≤ s ≤ |V |, let us note v〈i〉 the i-th child of

v, 1 ≤ i ≤ d, we have:
6The contribution function can represent inputs that we don’t actually use.
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T [v][0][0] = 0

T [v][tc][s] = max
tc1,...,tcd, s1,...,sd

(
w(v) +

∑
1≤i≤d

T [v〈i〉][tci][si]
)

s.t. tc = c(v) +
∑

1≤i≤d
tci

s = 1 +
∑

1≤i≤d
si

The optimal subtree can be reconstructed from the table by finding the entry with
the maximal weight and where the contribution ratio is not violated, and backtracking
from that entry on the selected tci’s and si’s from the max function. Each entry of the
table can be computed in O(nd−1) (that is, an integer partition of |V | into d parts)
time, and since

∑
v∈V c(v) ∈ O(n), there are O(n3) of them, which leads to the overall

complexity.

As paths and cycles are trees of degree 1, using the preceding result leads to an
O(n3) algorithm for these cases. However, one can achieve a better complexity.

Proposition 9. rb-mwcs is solvable in O(n2) time for paths and cycles.

Proof. Let us first consider the rb-mwcs problem for paths. Leveraging the linearity
of the graph structure, we define a dynamic programming strategy with an O(n2) time
complexity.

The idea is to define two 2-dimensional tables Tw and Ttc with n2 entries each
and that store respectively, for each pair of indices, the maximum weight and the total
contribution, of the corresponding graph. Let us consider a given orientation in the path
with the node at the starting end as the reference node, of index 0. Every candidate
solution (a subpath) in the path can then be defined as a pair of positions, the first
element being the starting position as an index number, the second element being the
size of the candidate solution. The main idea being that increasing the indices one by
one enables us to update the weights and total contributions incrementally.

Formally, let us denote the k-th node of the graph in the predefined orientation by
nk, we have for all 0 ≤ i ≤ j ≤ n:

Tw[i][i] = 0
Tw[i][j] = w(ni+j−1) + Tw[i][j − 1]

Ttc[i][i] = 0
Ttc[i][j] = c(ni+j−1) + Ttc[i][j − 1]

The optimal subpath is defined by the indices of the entry with the maximal weight
and where the contribution ratio is not violated (i.e., for any (i, j) s.t. Ttc[i][j] ≥ α · j).
Each O(n2) entry of the tables can be computed in constant time, leading to the overall
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complexity. For cycles, the trick consists in taking any linearization of the cycle and
merging two copies of the corresponding linearization as the input path. This ensures
that we will consider any candidate solution (i.e., simple subpath of the cycle). The
time complexity is preserved.

5.4 Related questions and further work

In this contribution we provide the first deep complexity analysis of the mwccs problem.
A fair number of interesting problems and questions still remains.

First of all, generalizing the problem to more than two graphs is of practical interest.
We hypothesize that the most general expression of the problem is to have a, possibly
empty, mapping function between each graph. However, as we have shown throughout
this chapter, the mapping function is an important factor for the complexity of the
problem. Since the mwccs problem is APX-hard for two graphs, the hardness results
should hold for k > 2 graphs. However it is unclear whether the polynomial-time solvable
cases would remain so, and if that is the case what would be the polynomial exponent.

Another interesting avenue is to study the effects of a relaxation of the connectivity
constraints in mwccs. The problem would then become similar to the set-union
knapsack, with a bipartite partition of the sets, and where the maximum weight
becomes a moving target (α-ratio).

In section 5.2.2 we presented a reduction from some instances of mwccs to instances
of rb-mwcs. For some classes of input, their exists trivial reductions from rb-mwcs
to mwccs. However, the question whether mwccs is more general than rb-mwcs and
can thus encode any of rb-mwcs instances remains open.

Interestingly, analyses of the relationship between rb-mwcs and the variants of
mwcs, such as the budget constrained problem, is an already ongoing direction of
our research. Indeed, the ratio constraint

∑
v∈V ∗

c(v) + C ≥ α × |V ∗| of the rb-mwcs

problem is a generalization of the costs constraint
∑
v∈V ∗

cost(v) ≤ B of the b-mwcs

problem. Since rb-mwcs ⊃ budget constrained mwcs ⊃ k-cardinality mwcs ⊃
mwcs, all algorithms that apply to rb-mwcs also apply to the other problems.

Going in this direction, instead of the integer partition enumeration scheme used
in proposition 8, we can probably use a tabular dynamic programming approach quite
similar to knapsack where the weights are the contributions. It would effectively
remove the degree bound for the trees and make the algorithm pseudo-polynomial.

Finally, we have started work on an improvement to the algorithm introduced by
Bateni et al. (2011) that solves the mwcs problem in polynomial time for all graphs
up to bounded tree-width. Introducing knapsack for the contributions in Bateni et al.
(2011)’s algorithm should provide a solution for rb-mwcs in pseudo-polynomial time
for this same category of graphs.





Chapter 6

Conclusion

One of the major challenge for modern biology is making sense of the ever increasing
size of biological data. Finding good models for all this data, models that can both
explain the data and provide insight into biological questions, is paramount. One of the
many difficulties of such path is the variety in the types of data.

Modern computational biology approaches combine these many data into integrative
approaches, that combine the knowledge inside the data in the hope to extract higher
level information. This is the path that we followed in thesis, by contribute to the
connected module identification problem —in itself a model that integrates expression
profiles and interaction networks —, while integrating conservation information between
two species.

We introduced a model for the detection of this integrated problem that we call
the conserved active connected modules problem. We provided a mixed-integer linear
programming formulation of our model and a branch-and-cut algorithm to solve the
model to provable optimality in reasonable run time. We then applied our model over
cell line differentiation data, namely T helper 0 into T helper 17, for both human and
mouse. And we analysed the model from a complexity standpoint, resulting in general
and special cases complexity results.

The results that we present in chapter 4 validate the model in comparison to previous
knowledge but also show that some aspects that we introduce, in particular our flexible
definition of conservation, are crucial for understanding the mechanisms underlying
Th17 cell differentiation in both mouse and human. In chapter 5 we showed that the
problem is inherently difficult; precisely we showed that there cannot be a PTAS for
the problem.

One of the major limit of our approach is the run time. Great care was applied to our
branch-and-cut solver to obtain reasonable running time, but as data grows so does the
computational requirements. Solving the model to provable optimality remains is an
inherently exponential problem. Furthermore we showed that the problem is APX-hard,
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this means that there cannot be an efficient algorithm to approximate the model to any
probable quality.

Overall, these results provide many possible improvements. For one, the general
problem applied to more that two graphs has practical applications, for multiple species
but also for time series analysis. In chapter 5 we suggested possible relationships between
some subproblems of mwccs and many well known combinatorial optimization problems.
This is a clear avenue of research, that would allow the application of well optimized
optimization techniques to the mwccs problem.



Appendix A

xHeinz appendices

A.1 Full Th17 module tables

We provide a tabular overview of the module contents (table A.1 and table A.2). In the
tables, each row lists unmatched genes or homologuous gene pairs with their activity
scores. On the left side are the mouse genes and on the right side the human genes.
The gene activity scores are in parentheses. Names in bold represent genes for which
no homologous counterpart exist in the underlying networks.

Note that very few (overall only 2 in mouse for 48 h) genes with negative activity
score and without conserved counterpart are selected. Some of them even have a strong
positive activity score. These genes would be missed in a strict conservation model.
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Mouse Human
Batf (8.29) BATF (13.90)

Stat3 (4.22) STAT3 (8.81)
Rapgef6 (5.67) RAPGEF6 (6.68)

Stat1 (4.07) STAT1 (7.95)
Rec8 (-2.85) REC8 (11.56)
Rsad2 (0.44) RSAD2 (7.99)
Cish (-0.08) CISH (8.04)
Tnip2 (0.53) TNIP2 (6.04)
Ifi35 (6.68) IFI35 (-0.44)
Irf9 (1.07) IRF9 (4.89)

Gbp2 (3.85) GBP2 (1.21)
Parp9 (7.95) PARP9 (-2.98)

Tnfrsf10b (-3.47) TNFRSF10D (7.99)
Trim21 (-3.08) TRIM21 (7.58)

Etv6 (7.90) ETV6 (-3.54)
Stat2 (-1.88) STAT2 (6.21)
Bcl3 (4.82) BCL3 (-0.88)

Tmem173 (-0.15) TMEM173 (3.96)
Dhx58 (3.96) DHX58 (-0.20)

Fas (7.58) FAS (-4.21)
Myd88 (1.11) MYD88 (2.15)
Trim25 (-0.96) TRIM25 (4.22)
Socs1 (-2.82) SOCS1 (5.96)
Ubr1 (-3.27) UBR1 (6.15)

Lgals3bp (6.52) LGALS3BP (-3.64)
Trafd1 (-2.87) TRAFD1 (5.67)
Ikzf4 (-3.34) IKZF4 (6.14)

BC006779 (1.85) RP4-697K14.7 (0.87)
Ripk1 (0.71) RIPK1 (1.93)
Tap1 (-4.38) TAP1 (6.91)
Arid5a (2.06) ARID5A (0.23)
Saps3 (-3.51) SAPS3 (5.62)
Daxx (5.36) DAXX (-3.31)

Casp4 (-2.56) AP002004.1 (4.14)
Cxcr5 (-1.36) CXCR5 (2.63)
Notch1 (0.60) NOTCH1 (-0.06)
Ldha (-1.10) LDHA (1.61)
Mfng (-0.63) MFNG (1.10)
Hk1 (4.89) HK1 (-4.47)

Prkcq (-1.03) PRKCQ (0.84)
Irf8 (2.70) IRF8 (-3.31)
Igtp (0.02) IRGM (-0.92)
Mx2 (-1.23) MX1 (0.20)
Pnpt1 (3.12) PNPT1 (-4.46)
Nmi (-0.87) NMI (-0.55)
Il21 (2.68) IL21 (-4.69)
Ifih1 (1.00) IFIH1 (-3.19)

Oasl1 (-2.29) OASL (0.01)

Rpa1 (1.82) RPA1 (-4.36)
Ankrd28 (1.66) ANKRD28 (-4.34)

Smc4 (2.15) SMC4 (-5.12)
Muc1 (0.27) MUC1 (-3.25)
Isg15 (0.53) ISG15 (-3.57)
Kat2b (0.79) KAT2B (-4.23)
Junb (-4.02) JUNB (-0.08)

Map3k8 (1.02) MAP3K8 (-5.33)
Cxcr4 (-0.74) CXCR4 (-3.63)
Il6st (-1.06) IL6ST (-3.37)
Irf7 (0.74) IRF7 (-5.39)

Mavs (-1.97) MAVS (-5.26)
Eif3b (-4.46) EIF3B (-3.51)
Hdac5 (-3.20) HDAC5 (-4.84)
Sirt7 (-4.06) SIRT7 (-5.13)

Ptpn13 (-3.87) PTPN13 (-5.40)
Oas2 (15.42)

Elovl6 (13.90)
Ppa1 (11.56)
Pml (8.81)
Zbp1 (8.55)
Ifit1 (8.02)

Parp12 (7.99)
Oas3 (6.15)
Arrb2 (5.67)
Casp8 (3.69)

Eif2ak3 (2.80)
Irf6 (2.63)

Stk10 (2.30)
Syne2 (1.23)
Ptpn1 (1.03)
Nfe2l2 (0.59)
Hdac6 (0.04)
Dcpp3 (6.14)
Tha1 (4.61)
Oasl2 (2.19)

ITK (6.49)
ARID5B (4.61)
PFKFB3 (3.78)

VAV1 (3.00)
IFIT3 (2.70)

EIF2AK2 (2.29)
IRF1 (1.07)
XAF1 (0.97)

ZC3HAV1 (0.90)
DHDH (0.55)
IFI16 (6.52)
MX2 (0.78)

Table A.1: Timepoint 2 h, α = 0.8, FDR = 0.1



A.1. FULL TH17 MODULE TABLES 79

Mouse Human
Napsa (-3.86) NAPSA (32.07)

Il9 (5.03) IL9 (22.36)
Il21 (32.07) IL21 (-4.97)
Cd70 (7.24) CD70 (19.85)

Cysltr1 (22.36) CYSLTR1 (0.30)
Il17a (27.88) IL17A (-5.46)

Fbxo15 (3.11) FBXO15 (18.26)
Wisp1 (24.44) WISP1 (-4.63)
Slamf6 (22.16) SLAMF6 (-5.38)
Rbpj (14.79) RBPJ (0.04)
Il24 (17.69) IL24 (-3.66)

Emp1 (16.64) EMP1 (-2.83)
Chn1 (-5.02) CHN1 (18.50)
Egln3 (14.50) EGLN3 (-1.79)
Ccl20 (9.84) CCL20 (2.50)
Aqp3 (17.54) AQP3 (-5.38)

Vdr (2.22) VDR (9.74)
Apod (-4.84) APOD (16.41)
Pdpn (16.86) PDPN (-5.29)
Ahcyl2 (-3.39) AHCYL2 (14.79)

Sgk1 (4.04) SGK1 (5.55)
Lgals1 (12.94) LGALS1 (-3.52)
Lpxn (14.49) LPXN (-5.30)
Anxa2 (8.87) ANXA2 (-0.12)
Loxl3 (-4.22) LOXL3 (12.94)

Tnfrsf25 (-0.02) TNFRSF25 (7.75)
Arhgef3 (4.10) ARHGEF3 (2.72)
Basp1 (5.83) BASP1 (0.89)
Gata3 (1.19) GATA3 (5.24)
Fut7 (-1.83) FUT7 (7.58)
Furin (4.28) FURIN (1.46)
Ryr1 (-4.25) RYR1 (8.54)
Axin2 (-4.95) AXIN2 (7.83)

Tnfrsf13b (6.13) TNFRSF13B (-3.57)
Tnfsf8 (1.41) TNFSF8 (1.04)
Il2rb (-3.52) IL2RB (5.91)
Fasl (7.75) FASLG (-5.37)

Anxa3 (7.83) ANXA3 (-5.48)
Jun (-2.95) JUN (5.14)

Sdcbp2 (5.24) SDCBP2 (-3.21)
Klrd1 (-1.64) KLRD1 (3.51)
Uchl1 (-5.07) UCHL1 (6.91)

Rps6ka4 (0.22) RPS6KA4 (1.34)
Ifng (1.77) IFNG (-0.32)

S100a6 (2.72) S100A6 (-1.60)
Pfkfb3 (-5.16) PFKFB3 (6.07)
Rdx (-3.21) RDX (4.10)
Palld (-4.63) PALLD (5.31)
Gbp2 (-1.37) GBP2 (2.04)
Sftpd (-5.12) SFTPD (5.71)
Asap1 (4.97) ASAP1 (-4.42)

Col15a1 (-4.82) COL15A1 (5.34)
Casp1 (0.03) CASP1 (0.48)
Chst3 (-5.14) CHST3 (5.61)
Arid5a (5.34) ARID5A (-4.90)

Lif (-2.49) LIF (2.92)
Thbs1 (-4.55) THBS1 (4.87)

Fam174b (-3.95) FAM174B (4.09)
Ptprj (5.47) PTPRJ (-5.43)
Syp (-3.59) SYP (3.45)
Trat1 (5.14) TRAT1 (-5.35)

Tnfrsf12a (-4.23) TNFRSF12A (3.90)
Id2 (5.02) ID2 (-5.38)

Armcx2 (4.41) ARMCX2 (-4.95)
Cyp11a1 (2.69) CYP11A1 (-3.46)

Itga3 (2.81) ITGA3 (-3.60)
Batf3 (-2.57) BATF3 (1.64)

Pmepa1 (-2.08) PMEPA1 (0.89)
Ctla4 (1.49) CTLA4 (-2.69)

Anxa1 (-4.66) ANXA1 (3.43)
Skil (2.30) SKIL (-3.67)

Ripk2 (0.25) RIPK2 (-1.64)
Ino80c (-3.62) INO80C (2.22)
Stap1 (3.19) STAP1 (-4.67)
Tnip2 (0.48) TNIP2 (-1.99)

Smad3 (-3.58) SMAD3 (1.95)
Sept11 (-5.00) SEPT11 (3.21)

Tnfrsf14 (-3.50) TNFRSF14 (1.70)
Ntrk3 (-5.01) NTRK3 (3.19)
Ctnna1 (3.21) CTNNA1 (-5.04)

Taf7 (3.41) TAF7 (-5.28)
Ripk3 (1.93) RIPK3 (-4.05)
Ddit4 (-2.48) DDIT4 (0.31)
Anxa4 (3.28) ANXA4 (-5.53)

Id3 (0.38) ID3 (-2.65)
Foxo1 (-2.09) FOXO1 (-0.28)

Map3k1 (-0.93) MAP3K1 (-1.47)
Rorc (2.25) RORC (-4.79)

Cndp2 (1.21) CNDP2 (-3.76)
Il2ra (1.95) IL2RA (-4.53)

Cxcr3 (-2.88) CXCR3 (0.29)
Ppp3ca (1.84) PPP3CA (-4.64)
Setdb1 (-3.16) SETDB1 (0.31)
Pou2f2 (2.50) POU2F2 (-5.48)

Lpp (0.89) LPP (-4.05)
Sh3kbp1 (1.09) SH3KBP1 (-4.29)

Bcl3 (2.19) BCL3 (-5.51)
Irf8 (1.29) IRF8 (-5.04)
Fes (1.03) FES (-4.82)

Runx1 (-5.09) RUNX1 (1.29)
Kit (-5.24) KIT (1.41)

Ptpn14 (-4.47) PTPN14 (0.58)
Fnbp1 (-5.10) FNBP1 (1.09)

Rel (1.20) REL (-5.37)
Ralb (0.98) RALB (-5.21)
Sirt1 (-4.83) SIRT1 (0.60)
Ska1 (-5.08) SKA1 (0.66)
Cltb (-5.23) CLTB (0.76)
Penk (0.66) PENK (-5.23)
Csf2 (-1.22) CSF2 (-3.46)

Ptpn11 (0.12) PTPN11 (-4.91)
Vim (0.10) VIM (-5.10)

Prkca (0.24) PRKCA (-5.36)
Gpc6 (-4.26) GPC6 (-1.59)
Ripk1 (-0.81) RIPK1 (-5.60)
Calm2 (-2.76) CALM2 (-4.28)
Snai1 (-5.08) SNAI1 (-2.21)

Fbxo25 (-4.90) FBXO25 (-2.49)
Stat3 (-3.22) STAT3 (-4.60)
Epor (-5.17) EPOR (-3.07)
Rac3 (-4.44) RAC3 (-3.86)
B2m (-4.57) B2M (-4.45)
Os9 (-5.20) OS9 (-4.11)

Tnfsf13b (-4.10) TNFSF13B (-5.24)
Trpc3 (-4.28) TRPC3 (-5.21)
Dcn (-4.39) DCN (-5.27)
Ar (-4.20) AR (-5.67)

Myog (-5.25) MYOG (-5.01)
Cd4 (-4.94) CD4 (-5.53)

Hamp (-5.21) HAMP (-5.53)
Gap43 (22.44)

Nts (18.50)
Inhba (13.50)
Tec (10.10)

Serpine2 (9.94)
Lrmp (9.92)
Eno3 (9.74)

Serpinc1 (9.69)
Fap (9.64)
Ifih1 (8.54)

Tspan6 (8.41)
Smox (6.91)

Ppap2a (6.35)
Piwil2 (6.11)
Cd274 (5.61)
Ermp1 (5.31)
Tgm2 (5.21)
Srgn (4.72)

Serpinb6b (4.53)
Mxi1 (4.39)

Dnmt3a (4.32)
Nsg2 (3.71)

Igfbp7 (3.45)
Gpr65 (3.30)

Pdcd1lg2 (3.01)
Rrad (2.97)
Socs3 (1.90)
Mt2 (1.31)
Pkp4 (1.12)
Gem (0.37)

Prickle1 (0.30)
Prnp (-1.10)

Ywhaz (-3.30)
Timp1 (18.48)
Ifi203 (18.26)
Ctla2b (10.18)
Ctla2a (6.54)

Il3 (1.86)
PTHLH (24.44)

TMPRSS6 (16.86)
COL6A3 (16.64)

IL23R (14.50)
PTK2 (11.74)

EXOC3 (10.18)
BCAR3 (9.84)
IL17F (8.67)

PTGIR (6.95)
ITGB7 (6.54)

COL6A1 (5.47)
TNS3 (5.20)
LMNA (4.70)

NCALD (4.41)
EVL (4.28)

BTLA (3.41)
FNBP1L (1.93)

SOS1 (1.84)
EXOC2 (1.19)

NOTCH1 (0.23)
FYN (0.08)

CD1A (27.88)
CLECL1 (22.16)
CD1C (18.48)
CD1B (14.49)
CTSL1 (13.50)
TBL1X (4.04)

Table A.2: Timepoint 48 h, α = 0.8, FDR = 0.1
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