
HAL Id: tel-01405886
https://theses.hal.science/tel-01405886

Submitted on 6 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance and complexity optimization in
heterogeneous multiprocessors system on chip

Bouthaina Dammak Masmoudi

To cite this version:
Bouthaina Dammak Masmoudi. Performance and complexity optimization in heterogeneous multi-
processors system on chip. Micro and nanotechnologies/Microelectronics. Université de Valenciennes
et du Hainaut-Cambresis; École nationale d’ingénieurs de Sfax (Tunisie), 2015. English. �NNT :
2015VALE0028�. �tel-01405886�

https://theses.hal.science/tel-01405886
https://hal.archives-ouvertes.fr

Thèse de doctorat

Pour obtenir le grade de Docteur de l’Université de

Valenciennes et du Hainaut-Cambrésis

et de l’Ecole Nationale des Ingénieurs de Sfax

Disciplines :

Ingénierie des systèmes informatiques (ENIS) / Informatique (UVHC)

Présentée et soutenue par Bouthaina DAMMAK MASMOUDI

Le 06/11/2015

Ecole doctorale :
Sciences Pour l’Ingénieur (SPI)
Sciences et Technologies

Equipe de recherche, Laboratoire :
Laboratoire d’Automatique, de Mécanique et d’Informatique Industrielles et Humaines (LAMIH)

Optimisation des performances et de la complexité dans les architectures
multiprocesseurs hétérogènes sur puce

Performance and complexity optimization in heterogeneous multiprocessors
system on chip

JURY

Président du jury
- Mohamed MASMOUDI (Professeur à l’ENIS)

Rapporteurs
- Ahmed Chiheb AMMARI (Professeur à l’INSAT)
- El-Bay BOURENNANE (Professeur à L’UB)

Examinateur
- Mouloud KOUDIL (Professeur à l’ESI)

Co-directeurs de thèse
- Smail NIAR (Professeur à l’UVHC)
- Mohamed ABID (Professeur à l’ENIS)

Co-encadrants
- Mouna BAKLOUTI (Maître-assistante à l’ENIS)
- Rachid BENMANSOUR (Maître de conférences à l’UVHC)

Acknowledgements

Purshing a PH.D. project is both painful and enjoyable experience. It’s just like climbing

a high pick, step by step, accompanied with bitterness, hardship, frustration, encour-

agements and trust and with so many people’s kind help. When I found myself at the

top enjoying the beautiful scenery, I realized that it was, in fact, teamwork that meet

me there. Though it will not be enough to express my gratitude in words to all these

people who helped me, I would still like to give my many,many thanks to all these people.

First of all, I would like to thank my supervisor Pr. Smail NIAR for his continuous

support of my Ph.D study and related research, for his patience, motivation, immense

knowledge and for the nights we were working before papers deadlines. His guidance

helped me in all the time of research and writing of this thesis. It was a honour for

me to share of his scientific knowledge but also of his extraordinary human qualities. I

could not have imagined having a better advisor and mentor for my Ph.D study.

I also would like to thanks my co-supervisor Mouna BAKLOUTI for her continuous

support, proposed ideas, valuable discussions and constructive suggestions. Her cooper-

ation, positive attitude and understanding really deserve an everlasting appreciation. I

could not wish for a better or friendlier co-supervisor.

A special thank to Rachid BENMANSOUR from LAMIH laboratory, the first person

who taught me what linear programming is. I am grateful for his corporation in the

work of space exploration and for his help to revise scientific papers.

My sincere thanks also goes to my supervisor, Pr. Mohamed ABID, director of the

CES Laboratory. He has been supportive since the days I began working on CES. Ever

since, he has supported me not only by providing a research assistantship over almost

six years, but also academically and emotionally through the rough road to finish this

thesis. Thanks to him.

To my colleagues and friends of the CES laboratory and LAMIH laboratory (Faten,

Rim, Agnès, Manel, Amina, Youmna, Asma, Rim, Zainab), I thank them for their com-

panionship and for providing a so pleasurable and working atmosphere. The moment of

leisure shared together helped me to overcome some more difficult moments.

i

ii

I would like to acknowledge all the teachers I learnt from since my childhood, I would

not have been here without their guidance, blessing and support.

Some of my best friends are family, some I’ve known since many years, and others are

newer friendships that continue to grow stronger by the day. Although they are all very

different, every one of them is extraordinary.

I wish to thank, Mariem and Nihel, for their love, care and moral support. Thank you

for being there for me when I call you and need someone to just listen. You were always

beside me during the happy and hard moments to push me and motivate me. The jour-

neys in France was easier when we travel together.

Thank also goes to my freinds Saousan, Faten, Emna for their love and moral support.

Thanks to my freind and my cousin Kods to be close to me to change my mood when I

am down. Tanks Kods for your help to have nice pictures for my manuscript.

Thanks to my freind and my aunt Fatma for her advices and her encouragement over

rough spots.

Thank you doesn’t seem sufficient for everyone of you but it is said with appreciation

and respect to all of you for your precious friendship.

I am very grateful to my mother, Najoua, and my father Adel. They continue to learn,

grow and develop and they have been a source of encouragement and inspiration to me

throughout my life. A very special thank you for providing a ‘writing space’ and to look

after may baby ’chahead’ through the months of writing my thesis.

For my sisters and my brother ,Dora, Yousra and Wajih, I am grateful for the myriad of

ways in which, throughout my life, you have actively supported me in my determination

to find and realise my potential. Thanks for never giving up on me and being my best

friends.

For my Finally, and most profoundly felt indebtedness, is my husband Rached. Over

the fours years, you have been steadfast in your support of my research even when it

involved long periods apart. A very special thank you for your practical and emotional

support as I added the roles of wife and then mother, to the competing demands of work,

study and personal development. And thanks my dearly beloved daughter, Chahead.

I’m sorry that left you off care. Even you are so young month, your smile gives me

chance to complete this thesis.

Contents

Acknowledgements i

Contents iii

List of Figures vi

List of Tables viii

1 Introduction 1

1.1 Context . 2

1.2 Problem . 4

1.3 Our Work . 5

1.4 Thesis Organization . 6

2 Background and Related Works 8

2.1 Introduction . 9

2.2 Multimedia and Embedded Systems . 9

2.2.1 Technologies Used to Implement Multi-media Embedded Systems . 10

2.2.2 Discussion on FPGA and ASIC Technologies 10

2.3 Multiprocessor System-on-Chip . 11

2.4 FPGA-based MPSoC: Architecture Background 14

2.4.1 Processing Elements . 14

2.4.2 Memory Infrastructure . 18

2.4.3 On-Chip Interconnection Mechanism 19

2.5 Processor Customization . 22

2.5.1 Fine-Grained Processor Customization 22

2.5.2 Identification of Custom Instructions 23

2.5.3 Coarse-Grained Processor Customization 24

2.6 MPSoC Customization . 24

2.6.1 Dynamic Customized MPSoC . 24

2.6.2 Static Customized MPSoC . 25

2.7 Resource Sharing in Embedded System Designs 26

2.8 Design Space Exploration of Customizable MPSoC Architectures 28

2.8.1 Exact Algorithms . 28

2.8.2 Heuristic Algorithms . 29

3 Hardware Accelerators Sharing in Ht-MPSoC Architecture 30

iii

Contents iv

3.1 Introduction . 31

3.2 Hardware Accelerators Sharing Methodology 32

3.2.1 Area Saving . 33

3.2.2 Impact of HW Accelerators Sharing Methodology on Performance 34

3.3 Common Multimedia Kernels . 35

3.4 Hardware Accelerators Flow Graph . 36

3.4.1 Pre-synthesis Validation . 38

3.4.2 RTL Synthesis . 39

3.4.3 Post-synthesis Simulation . 43

3.4.4 System Assembly And Logic Synthesis 43

3.5 HT-MPSoC Architecture With Shared HW Accelerators 43

3.5.1 Symmetric Ht-MPSoC Architecture 44

3.5.2 Assymmetric Ht-MPSoC Architecture 44

3.5.3 Hardware Interconnection For A Shared Hardware Accelerator . . 45

3.5.4 Description of PLB-to-PLB Bridge 47

3.6 Conclusion . 49

4 Design Space Exploration in Shared Hardware Accelerators Based Ht-
MPSoC 50

4.1 Introduction . 51

4.2 Proposed Technique for an Area-Performance Trade-off 52

4.2.1 Applications profiling and computational Tasks (CT) identification 53

4.2.2 Pattern Identifications . 54

4.2.3 Space Exploration . 55

4.3 Space exploration in SHt-MPSoC . 55

4.3.1 Problem formulation . 56

4.3.2 Objective function . 57

4.3.3 Performance constraint . 59

4.4 Space exploration in AHt-MPSoC . 59

4.4.1 Problem formulation . 60

4.4.2 Objective function . 61

4.4.3 Performance constraint . 64

4.5 Conclusion . 68

5 Experimental Results 70

5.1 Introduction . 70

5.2 Target Platform and Application . 70

5.2.1 Xilinx Development Tool . 71

5.2.2 Microblaze Processor . 72

5.2.3 XILINX Interconnect System . 72

5.2.4 Implementation of a Single-processor Architecture on ML507 Board
. 73

5.3 Evaluation of Customized Ht-MPSoC Architecture with Shared and/or
Private HW Accelerators . 74

5.3.1 Overview of Jpeg Encoder Application 74

5.3.2 Preliminary Implementation Results for Jpeg-encoder Application
on Microblaze-based Architecture 75

Contents v

5.3.3 Evaluation of Microblaze-based MPSoC Configurations with Pri-
vate and Shared HW accelerators 77

5.4 Experimental Results for the MILP Models 81

5.4.1 Case study 1: Synthetic Applications 81

5.4.2 Case study 2: Jpeg Codec Application 84

5.5 Conclusion . 88

6 Conclusion 90

Bibliography 93

List of Figures

1.1 Comparison of trends for multimedia embedded systems [1] 3

1.2 Ht-MPSoC architecture with loosely coupled hardware accelerator 4

2.1 Homogeneous MPSoC architecture . 12

2.2 Types of processors in SoC [2] . 13

2.3 NIOS processor architecture [3] . 15

2.4 OpenRISC processor architecture [4] . 16

2.5 Microblaze processor architecture [5] . 16

2.6 Leon 3 processor architecture [6] . 17

2.7 Hardware accelerator architectures classification: Closely coupled and
loosely coupled . 18

2.8 Shared and distributed memory in MPSoCs 19

2.9 Not communicating architecture . 20

2.10 Communicated architecture over a shared bus 20

2.11 Communicated architecture over a PoinT To Point Topology 21

2.12 Crossbar communication . 21

2.13 NoC with mesh topology . 22

3.1 Illustrative example of benefits of HW accelerator sharing. T1, T2 and
T3 are computational tasks executed on P1, P2, P3 and P4. The HW
accelerator of Tj consumes aj area units in FPGA 33

3.2 Example to illustrate the impact of HW accelerator sharing on performance 35

3.3 Illustrative example of parallel aspect of hardware execution 36

3.4 Design flow of hardware accelerator integration for FPGA-based architec-
ture . 38

3.5 Interface modes for processor-accelerator interconnection 41

3.6 Communication interface between the processor and the HW accelerator 42

3.7 Top level of PLB-based hardware ACC . 42

3.8 Example of SHt-MPSoC architecture . 45

3.9 Example of AHt-MPSoC architecture . 46

3.10 Interconnection using a two-level bus hierarchy 46

3.11 Example of hierarchical buses for shared HW accelerator interconnection 47

3.12 Block Diagram for the PLBv46 to PLBv46 Bridge 48

4.1 Proposed technique to extend an AHt-MPSoC with HW accelerators in
order to speedup an application with an optimized area usage 53

4.2 Example of profiling results of three different applications executed on a
Ht-MPSoC architecture . 54

vi

List of Figures vii

4.3 yjik variables for a Tj pattern. Each row i (respectively column k) in
the matrix corresponds to processor Pi(respectively processor Pk) in a
8-processor architecture . 63

4.4 Illustrative example to calculate an access-delay to a shared HW accelerator 68

5.1 General structure of an FPGA . 71

5.2 Block diagram of ML507 board [7] . 71

5.3 Design flow of Xilinx development environment 72

5.4 PLB address phase and data phase [8] . 73

5.5 Implemented Microblaze-based architecture for jpeg-encoder application . 74

5.6 Jpeg encoder processing steps . 75

5.7 Profiling results of jpeg encoder application executed on Microblaze pro-
cessor . 76

5.8 Example of implemented architecture: Configuration with four processors
and two 2-shared HDCT HW accelerators 78

5.9 Synchronization mechanism for a shared HW accelerator 78

5.10 Slice percentage occupation of different implementations measured on the
Xilinx ML507 for different multiprocessor architectures (p=1,2,4) and
(HDCT, VDCT) configurations. For p=4 and (4,4) configuration, the
area occupation (140%) is estimated based on the other results. 79

5.11 Execution time in seconds to encode 20 images measured on different mul-
tiprocessor architectures (p=1,2,4). For the p=4 and (4,4) configuration,
the execution time is estimated based on the other results. 79

5.12 Energy consumption of the different architectures per encoded image(joules) 80

5.13 Generation of different synthetic applications 82

5.14 Area usage (y-axis) of the MILP model generated configurations for dif-
ferent speed-up (x-axis) Vs. configurations 8 processors without HW
accelerators. FPGA-based implementation results (real measurements)
are also given. 82

5.15 Jpeg encoder and decoder tasks . 85

5.16 DCT and IDCT functional decomposition 85

5.17 Area usage (y axis) of the MILP model for the generated configurations
for different speed-ups. The speed-ups are calculated relative to the con-
figuration with 8 processors without HW accelerators. 87

List of Tables

2.1 Comparison of technology used for multimedia embedded systems Legend:
+++: excellent, ++: good, +: moderate, -: poor 10

2.2 Main features of Soft-cores . 17

2.3 Survey on Resource Sharing for Embedded Systems 27

3.1 Examples of usually used multimedia patterns 37

3.2 Non Synthesizable C/C++ data types . 39

3.3 Synthesizable C/C++ data types . 39

3.4 Non synthesizable C/C++ constructs . 40

5.1 Logic utilization of baseline components Of Microblaze-based architecture 76

5.2 Synthesis report of Microblase-based architecture 76

5.3 Acceleration and area consumption of HDCT and VDCT tasks 77

5.4 T1, T2 and T3 area and execution time information 82

5.5 Comparison of generated configurations for T2 task for two different speed-
ups . 83

5.6 MILP Model resolution for a speed-up equal to 2.6 84

5.7 Generated configurations for different speed-ups (S) 88

viii

Chapter 1

Introduction

Contents

2.1 Introduction . 9

2.2 Multimedia and Embedded Systems 9

2.2.1 Technologies Used to Implement Multi-media Embedded Systems 10

2.2.2 Discussion on FPGA and ASIC Technologies 10

2.3 Multiprocessor System-on-Chip 11

2.4 FPGA-based MPSoC: Architecture Background 14

2.4.1 Processing Elements . 14

2.4.1.1 Soft-core processors 15

2.4.1.2 Hardware Accelerator 18

2.4.2 Memory Infrastructure . 18

2.4.3 On-Chip Interconnection Mechanism 19

2.4.3.1 Not Communicating Processor 19

2.4.3.2 Communication over a shared bus 19

2.4.3.3 Point-To-Point Communication 20

2.4.3.4 Crossbar Communication 20

2.4.3.5 NoC communication 21

2.5 Processor Customization . 22

2.5.1 Fine-Grained Processor Customization 22

2.5.2 Identification of Custom Instructions 23

2.5.3 Coarse-Grained Processor Customization 24

2.6 MPSoC Customization . 24

2.6.1 Dynamic Customized MPSoC 24

2.6.2 Static Customized MPSoC . 25

2.7 Resource Sharing in Embedded System Designs 26

1

Chapter 1. Introduction 2

2.8 Design Space Exploration of Customizable MPSoC Archi-

tectures . 28

2.8.1 Exact Algorithms . 28

2.8.2 Heuristic Algorithms . 29

1.1 Context

In the last few years, the number of different consumer electronics products supporting

multimedia applications have rapidly grown. Digital TVs, DVD players, game consoles

and multimedia-enabled mobile phones are a few examples of such products. The vast

majority of these products have specific-purpose processors embedded in them. The

computation imposed on these embedded processors are dominated by multimedia ap-

plications including digital processing of media streams, such as audio, video, image,

as well as other kinds of streaming data. A typical multimedia application consists on

receiving data streams from the environment and processing these streams using various

algorithms. In order to deliver processed media streams with a good quality, timing

constraints have to be met.

The need to implement the compute-intensive multimedia applications under timing

constraints suggests that the embedded system have to be designed to handle com-

plex computations. In addition, the wide spread deployment of multimedia embedded

systems in the consumer electronics products has exercised competitive pressure for op-

timizing their energy consumption and cost. In addition, continuous emergence of new

multimedia standards, coupled with ever increasing complexity of multimedia applica-

tions, motivate flexible architectures. All these requirements increase the pressure on

designers to constantly search for architectural solutions for multimedia devices.

Figure 1.1 shows the trends for multimedia embedded approaches like Application Spe-

cific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Application-Specific

Instruction Set Processors (ASIPs), and Heterogeneous Multi-Processor System-on-Chip

(Ht-MPSoCs). These approaches do not necessarily provide the above mentioned re-

quirements of multimedia embedded systems. Each approach has its its own advantages

and drawbacks [9]. In the last few years, Commercial vendors have turned to the use of

Ht-MPSoC solution that offers the more adequate solution to next generation complex

mobile multimedia applications [10] [11].

Heterogeneous Multiprocessor system-on-chips (MPSoCs)

For decades, Multiprocessor Systems-on-Chip (MPSoC) [12] was adopted as suitable

platforms for multimedia systems. In fact, on one hand the data-flow nature of mul-

timedia applications favours the use of multiple processors which operate on different

Chapter 1. Introduction 3

Figure 1.1: Comparison of trends for multimedia embedded systems [1]

data streams [13] [1], enabling a pipelined execution for high performance. This solution

combines the flexibility of general purpose processor along with a convincing speed-up.

These systems consist of a number of general purpose processors, memory units and

interconnection subsystem. On the other hand, multimedia applications are complex

and heterogeneous in nature [13] [14]; that is, the type and complexity of computations

vary across applications tasks. For example, in H264 application, motion estimation task

performs correlation on macro-blocks while Discrete Cosinus Transform (DCT) performs

a large number of multiplications and additions. Therefore, processor customization has

been emerged in the last few years as a solution to bridge the gap between the general-

purpose aspect of traditional MPSoC architectures and the ever-increasing complexity

of multimedia algorithms in each successive generation. The processor customization

consists on coupling the general purpose processors along with customized functional

units to execute particular functions aiming to deliver a best performance and a min-

imal power consumption. These customized functional units are a hard-wired solution

ranged from a simple operation to an embedded processor such as DSP. These archi-

tectures are called heterogeneous MPSoC (Ht-MPSoC). There are mainly two modes to

integrate the customized functional units: loosely coupled and tightly coupled modes. In

the tightly coupled mode, the customized functional unit is a part of the processor data

path. The loosely coupled mode integrates the customized functional unit as a periph-

eral and is called a hardware accelerator. Figure 1.2 is an overview of such architecture

with a loosely coupled hardware accelerator.

In Ht-MPSoC architecture, the critical portions of the applications take advantage of

the hardware implementation and are executed on customised functional units.

• Flexibility of multimedia Ht-MPSoCs

The flexibility of a Ht-MPSoC architecture for multimedia domain implies the abil-

ity to implement multiple multimedia standards so that several variants of a prod-

uct can be quickly deployed. This requirement implies the use of programmable

Chapter 1. Introduction 4

Figure 1.2: Ht-MPSoC architecture with loosely coupled hardware accelerator

processing elements such as general-purpose processor and DSPs as building blocks

of the Ht-MPSoC.

• Scalability of multimedia Ht-MPSoCs

The Ht-MPSoCs are scalable enough to allow easy addition of components in

future, processors, memories and/or customized functional units, to handle the

complexity of new multimedia generation without major redesign effort.

• Performance, area and energy trade-offs of multimedia Ht-MPSoCs

Ht-MPSoC architectures use general-purpose processors to allow flexibility and

integrate customized functional units to provide extreme customization to match

processors to applications tasks and thus provide high performance. However, Ht-

MPSoCs for multimedia domain are designed to be deployed in embedded devices,

and thereby favours minimal area usage and lowest possible power consumption.

Thus, a search of the design space is required for the minimum area usage and

under an execution time constraint which is often imposed in multimedia applica-

tions.

1.2 Problem

The key advantage to increase performance of multimedia embedded systems is to in-

crease the number of customized functional units in the architecture. However, the

exploitation of the full potential of hardware customization lead to an immense increase

in die area. Each task that will be customized will add a substantial area overheads in

cost and power. Based on profiling results, traditional design flows of hardware/software

partitioning consist on implementing the most computational tasks on hardware accel-

erators. Indeed, most computational tasks may bloat the die area without providing

the required performance. In these cases, the most computational tasks may provide a

minor speed-up with a high area overheads in cost and power. In addition, for multi-

media embedded systems, the number of computations tasks is higher as the number

Chapter 1. Introduction 5

of applications to be executed increase. The problem of the optimal set of tasks to be

customised can be solved based on space exploration methodology. A typical selection

approach would include the tasks that have the best area-performance trade off. Integer

Linear Programming (ILP) is a widely used technique for optimising MPSoC architec-

tures, and has been already used in several works. Such selection would be more efficient

if we consider a resource sharing approach to implement the same computational tasks

to the same functional units. The benefit of a resource sharing methodology is well un-

derstood. When two tasks execute the same functionality, the same functional unit can

perform the computation of these two tasks. If the selection process considers hardware

sharing approach, this latter needs to be aware of the effects of resource sharing.

1.3 Our Work

This thesis presents a novel technique in the field of optimizing the complexity and per-

formance for Ht-MPSoC architectures for multimedia domain. The main contributions

of this thesis are summarized as follows:

• A hardware accelerators sharing methodology which is based on the

identification of similar tasks between the different applications exe-

cuted on the different processors in order to be shared between proces-

sors. Similar tasks are implemented with a reduced number of hardware acceler-

ators. The proposed methodology allows an intelligent exploitation of hardware

resources in order to deliver the best area performance trade off.

• Novel classes of Ht-MPSoC architecture are proposed. The first class is a

symmetric Ht-MPSoC architecture where all the processors execute the same ap-

plication, thereby they have the same number and types of hardware accelerators.

The second class is an asymmetric Ht-MPSoC where all the processors execute

different applications and they may have different numbers and types of hardware

accelerators.

• A mixed integer linear programming approach is proposed to explore

the space of configurations of tasks which are candidates for hardware

implementations. The proposed model takes in consideration the hardware ac-

celerators sharing to generate the efficient architecture. The impact of the delay

problem when a task is shared between two or more processors is controlled.

• A technique that identifies, in short times, computational tasks to be

executed on HW accelerators. Our technique is based on the proposed MILP

Chapter 1. Introduction 6

model to identify the patterns to be customised and the configuration of their HW

accelerators. This is performed via measuring the area usage and performance gain

of different possible configurations of the space of solutions in order to find the

optimal one. To reduce the time to search the optimal (local optimum) solution,

the technique is based on an iterative approach.

This chapter presents experimental results obtained during the validation of the

contributions presented in chapters 3 and 4. In order to validate and evaluate the

proposed HW accelerators sharing methodology, we present in section 5.3 a case

study based on real application. A discussion on the impact of HW accelerators

sharing on performance, area and energy trade-off is presented. The proposed

technique for the selection of optimised Ht-MPSoC architecture is evaluated in

section 5.4. Section 5.5 concludes this chapter.

• An experimental evaluation of the thesis contributions is performed

with XILINX FPGA board. Implementation results of different Ht-MPSoCs

configurations are presented and a discussion on the impact of HW accelerators

sharing on performance, area and energy trade-off is performed. The effectiveness

of MILP model of the proposed technique is evaluated based on experimental

results of synthetic and real applications. For each case study, we explore the

design space configurations for different performance constraints and we compare

our technique solutions to real FPGA measurements.

1.4 Thesis Organization

This thesis is organized as follows:

Chapter 2 presents an overview of the technologies and techniques considered relevant

to this thesis. We focus on giving a background materials in the domain of embedded

systems and multiprocessor architectures. This is followed by presenting a study of re-

lated works in the field of Ht-MPSoC architecture and space exploration for application

specific instructions extension.

Chapter 3 presents the hardware accelerators sharing methodology that can be promis-

ing for multimedia applications. We present also the methodology to migrate a c/c++

task to a HW accelerator. Section 3.5 describes the proposed symmetric Ht-MPSoC and

asymmetric Ht-MPSoC architectures and the interconnection network for these proposed

Chapter 1. Introduction 7

architectures.

Chapter 4 details the proposed technique for the selection of hardware accelerators.

The MILP models proposed for SHt-MPSoC architecture and AHt-MPSoC architectures

are detailed.

Chapter 5 presents the experimental results to validate the proposed methodologies.

XILINX FPGA platforms have been used to implement the designed architectures.

Chapter 6 presents conclusions and opens new opportunities for future work.

Chapter 2

Background and Related Works

Contents

3.1 Introduction . 31

3.2 Hardware Accelerators Sharing Methodology 32

3.2.1 Area Saving . 33

3.2.2 Impact of HW Accelerators Sharing Methodology on Performance 34

3.3 Common Multimedia Kernels 35

3.4 Hardware Accelerators Flow Graph 36

3.4.1 Pre-synthesis Validation . 38

3.4.1.1 Synthesizable and Non-synthesizable C/C++ Data Types 39

3.4.1.2 Non-synthesizable C/C++ Constructs 39

3.4.2 RTL Synthesis . 39

3.4.2.1 Communication Interface 40

3.4.2.2 Memory space allocation 41

3.4.3 Post-synthesis Simulation . 43

3.4.4 System Assembly And Logic Synthesis 43

3.5 HT-MPSoC Architecture With Shared HW Accelerators . 43

3.5.1 Symmetric Ht-MPSoC Architecture 44

3.5.2 Assymmetric Ht-MPSoC Architecture 44

3.5.3 Hardware Interconnection For A Shared Hardware Accelerator 45

3.5.4 Description of PLB-to-PLB Bridge 47

3.6 Conclusion . 49

8

Chapter 2. Background and Related Works 9

2.1 Introduction

This chapter presents an overview of techniques and tools considered relevant to this

thesis. We give a background materials in the domain of reconfigurable embedded sys-

tems and multiprocessor architectures. This is followed by presenting a study of related

works in the field of Ht-MPSoC architecture and space exploration for application spe-

cific instructions extension.

The chapter starts with an introduction to multimedia embedded systems in section 2.2.

This is followed by an introduction to multi-processor systems. Section 2.4 provides a

focus on FPGA-based multiprocessor architectures. Techniques for processor customiza-

tion is discussed in section 2.6. Section 2.7 presents the existing works that deals with

resource sharing for embedded systems on-chip. Finally, in section 2.8, we present prior

works considered relevant for design space exploration for optimising area/performance

trade-off when customizing an MPSoC architecture.

2.2 Multimedia and Embedded Systems

An embedded system is a computing system which is designed for specific functions and

is embedded as part of the complete device which may include hardware and mechan-

ical parts. Thereby, in contrast with general-purpose computers, an embedded system

performs a few pre-defined tasks, with very specific requirements. Typical examples of

embedded systems include MP3 players, smart cameras and cellular phones. In the last

few years, there has been a widespread deployment of embedded systems in a wide range

of electronic and communication systems [15]. The combination of embedded systems

and multimedia communications is the key reason of the on-going evolution of modern

high-tech electronic equipment, ranged from mobile phone to set up boxes [15][16].

The efficiency of embedded multimedia systems is primarily shaped by performance and

power concerns [17]. Due to the huge amount of processing for multimedia applications

and in order to run with sufficient performance and from inexpensive batteries, better

speed-up and lower power is the challenging requirement for multimedia embedded sys-

tems [17] [18]. In the following section, we discuss the background of the technologies

commonly used for multimedia embedded systems that hold a great promise for im-

proving performance and energy efficiency of these electronic devices. Such technology

include GPUs, ASICs, FPGAs and DSPs.

Chapter 2. Background and Related Works 10

2.2.1 Technologies Used to Implement Multi-media Embedded Sys-

tems

Timm et al. [19] compare the performance and energy efficiency of CPU with those

of GPUs for several multimedia benchmarks. They proved that GPU offers significant

performance advantage over CPU and hence it outperforms CPU in energy efficiency.

In [20], Mu et al compare the energy efficiency of GPUs with that of DSPs for a broad

range of signal processing applications. They have observed that GPU provides a better

performance than the DSP, however, its energy efficiency is less optimised compared to

that of the DSP. Mencer et al. [21] compare the energy efficiency of FPGAs with that

of DSPs for data encryption algorithm. They have concluded that the FPGAs provide

better energy efficiency than DSPs. In [22], the authors provide a comparison between

FPGA, ASICs and DSPs and conclude that ASICs and FPGAs are more suited for high

efficient multimedia systems.

Table 2.1: Comparison of technology used for multimedia embedded systems
Legend: +++: excellent, ++: good, +: moderate, -: poor

Technology
Flexibility/

programmability
Performance Power usage

GPU ++ ++ -

DSP ++ + +

FPGA + ++ +

ASIC - +++ +++

Table 2.1 summarizes the comparison of technologies commonly used for multimedia

embedded systems. From this table, we conclude that hardware solutions (ASIC, FPGA)

would yield the most efficient multimedia design. In the following subsection, we justify

the use of FPGA technology for our work.

2.2.2 Discussion on FPGA and ASIC Technologies

Many on-line resources compare FPGA and ASIC design flows in order to release the

benefits of each technology From [23] [24][23], we note that ASIC and FPGA design

flows are somewhat similar. The main difference is that the whole FPGA flow is GUI

(Graphical User Interface) driven through CAD tools while ASIC flow cannot be only

performed by user. The logic design of an ASIC flow is driven by scripts and is made

by user, however, within the physical design, the ASIC must be sent to the foundry

for manufacturing. The intervention of the manufacturer raises the main disadvantages

of ASIC design, which are a slow time-to-maket (TTM), the non-recurring engineering

(NRE) cost and a high manufacturing cost [25] [26]. However, the primary advantages

Chapter 2. Background and Related Works 11

of manufactured ASICs over programmable FPGAs are the optimized performance and

the reduced power and area consumption [25] [26]. In [27], authors prove that FPGA

requires almost 20 to 35 times more logic area than an ASIC and has a speed per-

formance 3 to 4 times slower than an ASIC. It was also proved that FPGAs consume

approximately 14 times as much dynamic power.

For these reasons, the traditional multimedia systems target ASIC platforms. How-

ever, with the advent of FPGAs integration capabilities and for the interest of fast

programmability, prototyping and short TTM, FPGA are used for systems where TTM

and flexibility are in concern. Tanks to these features, FPGAs can now play in applica-

tions and markets that were previously “owned” by ASICs and other devices [28].

In the context of test system, and in order to save time and cost, in this thesis we target

FPGA platform as a substitute to ASIC platform. We used FPGA platform from Xilinx

Inc. [29], specifically devices XC5VFX70T from the Virtex-5 family [7].

2.3 Multiprocessor System-on-Chip

The multiprocessor System-on-Chip (MPSoC) is a system in a single chip (SoC) which

uses multiple processors, usually designed for embedded applications [30]. The MPSoC

architecture is a promising trend in recent multimedia embedded applications. The

parallel execution paradigm of this architecture allows to take advantages of data, in-

struction or thread parallelism aspect of multimedia applications [31] and thereby to

meet real-time performance and low power consumption demands of these applications.

Apple A5X is an example of MPSoC integrating a quad-core Power VR, which drasti-

cally increases its video processing capabilities [32].

subsection we present the widely classification of MPSoC architecture (homogneous and

heterogenous).

Commonly, according to their architecture type, MPSoCs are classified by two ap-

proaches: homogeneous and heterogeneous [33] [34] [35]. It is much easier to develop a

MPSoC following the first approach. Indeed, homogeneous approach consists on identi-

cal processing elements while the heterogeneous approach consists on different types of

processing elements communicated through a hardware communication system.

Homogeneous MPSoC

Homogeneous MPSoCs use generally the paradigm of SMP [36] (Symmetric MultiPro-

cessor) and embed two or more homogeneous soft-cores with main shared memory. In

Chapter 2. Background and Related Works 12

an SMP system, a pool of homogeneous processors working independently on different

data are tightly coupled through a hardware interconnection mechanism.

The inherent architecture of homogenous MPSoC is flexible and scalable. However,

Figure 2.1: Homogeneous MPSoC architecture

for multimedia application, the number of processing units is limited by the level of

parallelism of the application. Thereby, the increase of the number of processors is not

straightforward; scalability could be limited due to several factors such as the level of

parallelism ofthe applications, organization of the memory, the interconnection infras-

tructure, etc [37]. Thus, the performance of this class of architecture, for multimedia

applications, is limited. Also, due to the general purpose aspect of homogeneous MPSoC,

the power consumption of these architectures is not optimised.

Heterogeneous MPSoC

Heterogeneous MPSoCs consist on several processing units of different types, such as

soft-cores, hard-cores, HW accelerators, etc., communicated through hardware intercon-

nection mechanism. This type of architecture is typically designed to deliver best-case

performance. To take up the challenges imposed by multimedia processing (high per-

formance, low power consumption), designers are turned to the use of heterogeneous

MPSoCs [38] [?]. Figure 2.2 illustrates a survey performed in [2] and shows that more

than 50% of MPSoC are heterogeneous.

In heterogeneous MPSoC, processors difference may vary from higher level details such

as instruction set to architectural details such as memory size and clock frequency.

A simple heterogeneous MPSoC can be designed using multiple copies of the same core.

This mean that the cores execute the same instruction set, but have different capabil-

ities and performance levels. Such technology include ARM big.LITTLE architecture

Chapter 2. Background and Related Works 13

Figure 2.2: Types of processors in SoC [2]

[39], which combines relatively low-power processor cores (LITTLE) with relatively more

powerful and power-hungry ones (big). This model of architecture has been implemented

in the Samsung Galaxy S mobile phones.

Recent research prove that heterogeneous architectures gain performance not just by

adding cores, but also by incorporating specialized processing capabilities to handle

particular tasks. In [40], the authors show that heterogeneous-ISA architecture out-

performs the same-ISA architecture by 21% with 23% energy savings. The benefits of

using specialized processing elements with different ISE in heterogeneous architecture

have lead to the deployment of specialized processors. Examples of these specialized

processing elements include:

• Vector processors: A Vector processor is a processor that can operate on an entire

vector in one instruction. The operand to the instructions are complete vectors

instead of one element[41].

• Digital Signal Processors (DSPs): A DSP is a specialized microprocessor that has

an architecture which is optimized for the fast operational needs of digital signal

processing.

• Specialized coprocessors: A special-purpose processing unit that assists the main

processor in performing certain types of operations. Coprocessors can deliver no-

ticeable improvements on mathematically intense functions, such as multiplying

or inverting matrices or solving n-body problems.

In the last few decades, thanks to their significant evolution of integration capacity

[42] [43] [44], FPGA platforms have become feasible to host a complicated MPSoC

system. Now, FPGAs are used not only for prototyping, but also for implementing final

Chapter 2. Background and Related Works 14

design. For such MPSoC, processing elements consist on soft-core processors, DSP, Hw

accelerator, etc. These processing elements are used as Verilog or VDHL description

that can be extended or reconfigured and that are afterwards synthesized for the target

FPGA. The design of FPGA-based MPSoC architecture presents some advantages that

compensate the use of ASIC in some way.

• Flexible and reconfigurable: The number of soft-core processors depends on the

target FPGA and it can reach 80-100 processors. Moreover, the configuration of

each processor could be modified (on-chip memory size, enable FPU, etc.) and the

designer has only to re-synthesize to implement the new design.

• Less TTM: The considerable reduced TTM is the primary advantage of using

FPGA .

• Less cost: The cost of the design process is relatively cheap. Also, an error occurred

during the design process can be altered for no additional cost.

The Cray X1E [45] supercomputer is an example of heterogeneous-ISA architecture. It

incorporates both vector processing and scalar processing, and a specialized compiler

that automatically distributes the workload between processors. The Cell processor

architecture is a second example of heterogeneous-ISA architecture. This architecture

combines a general-purpose Power Architecture core of modest performance with stream-

lined coprocessing elements which greatly accelerate multimedia and vector processing

applications. The Cell processor is designed by IBM, Sony and Toshiba to accelerate

gaming applications on the Playstation 3).

2.4 FPGA-based MPSoC: Architecture Background

Both homogeneous and heterogeneous MPSoC are mainly composed of three subsystems:

processing elements (soft-cores, hardcores, DSP, Hw accelerators), memory hierachy

and the hardware interconnection mechanism. In the following subsections, we describe

in detail architecture background of these subsystems commonly used in FPGA-based

MPSoCs.

2.4.1 Processing Elements

In FPGA-based multiprocessor systems, most used processing systems are either soft-

cores, hardcores, HW accelerator or DSP. In the following, we detail each processing

system and we give examples of the most used ones.

Chapter 2. Background and Related Works 15

2.4.1.1 Soft-core processors

A soft-core processor is a microprocessor described in an HDL language, which can be

synthesized in programmable hardware, such as FPGAs. These processors implemented

in FPGAs can be easily configured to the needs of the target application. FPGA manu-

facturers provide commercial soft-core processors. Xilinx offers its MicroBlaze processor

[5], while Altera has Nios and Nios II processors [46]. If the designer is company-

independent, there is a wide range of soft-cores that can be used in FPGA-based MPSoC

[47]. Such company-independent soft-cores are the LEON3 from Aeroflex.

• NIOS II processor

Figure 2.3: NIOS processor architecture [3]

The Nios II embedded processor (Figure 2.3 has a Reduced Instruction Set Com-

puter (RISC) architecture. Its arithmetic and logic operations are performed on

operands in the general purpose registers. The data is moved between the memory

and these registers by means of Load and Store instructions. The word length of

the Nios II processor is 32 bits. All registers are 32 bits long. Byte addresses in a

32-bit word are assigned in little-endian style, in which the lower byte addresses are

used for the less significant bytes (the rightmost bytes) of the word. The Nios II

architecture uses separate instruction and data buses, which refers to the Harvard

architecture [48].

• OpenRISC

OpenRISC (Figure 2.4) is a soft-core processor that is distributed under the GNU

License and it has been used in various industrial applications.

OpenRISC 1200 is a 32-bit RISC processor core compliant to the Harvard ar-

chitecture [49] with 32 general purpose registers that implements ORBIS32 ISA.

Chapter 2. Background and Related Works 16

OpenRISC implements the standard RISC scalar processor with five stage single-

issue pipeline. It also supports a 32x32 Multiply-Accumulate Unit (MAC), digital

Signal Processing operations and on-chip debug.

Figure 2.4: OpenRISC processor architecture [4]

• Microblaze processor

Microblaze is the soft-core processor of Xilinx, the most widely FPGA used in

MPSoC. The microblaze architecture, shown in Figure 2.5, is highly configurable

and parametrizable [5]. Examples of configurable and parametrizable features

include cache size, pipeline depth (3-stage on 5-stage), memory management unit

and bus interfaces.

Figure 2.5: Microblaze processor architecture [5]

The MicroBlaze support different interconnect systems. The primary used system

is the PLB bus, which is a traditional system-memory mapped transaction bus

with master/slave capability. For communicating to local-memory, MicroBlaze

uses a dedicated LMB interconnect. The user defined hardware accelerators or

Chapter 2. Background and Related Works 17

peripherals use the FSL (Fast Simplex Link) bus [50], a special dedicated FIFO

connection.

• Leon 3 processor

The LEON3 [6] (see Figure 2.6) is a synthesisable VHDL description of a 32-bit

processor compliant with the SPARC V8 extension set [51] developed by Aeroflex

Gaisler.

Figure 2.6: Leon 3 processor architecture [6]

The model is highly configurable, and essentially suitable for system-on-a-chip de-

signs. The source code is available under the GNU GPL license, allowing free and

unlimited use for research and education. The LEON3 processor has several fea-

tures such as advanced 7-stage pipeline, fully pipelined FPU, Hardware multiply,

divide and MAC units, etc.

In table 2.2, we summarize the main features of soft-core processors described above.

From this table, we note that NIOS II and Microblaze processors present the best effi-

ciency in term of maximum frequency and resource usage. In this thesis, in our labora-

tory XILINX FPGA are provided, thereby we use Microblaze processors.

Table 2.2: Main features of Soft-cores

Leon3 Open RISC Microblaze NIOS II

Open source No Yes No No

Hardware FPU Yes No Yes Yes

Bus standard AMBA Wishbone Core connect Avalon

Coprocessors Yes Yes Yes Yes

Maximum frequency (Mhz) 210 47 200 290

Resources
4000

(slices)
2900

(slices)
1450(slices)

1400(Logic
Element)

Chapter 2. Background and Related Works 18

2.4.1.2 Hardware Accelerator

The integration of custom instruction in FPGA-based MPSoC increases the performance

gain by incorporating hardware components to handle computational tasks [52][53][54][55].

Modern platforms, including FPGAs and ASICs support different couplings of hardware

components with the processor. In [56], coupling schemes are classified into two principal

modes: closely coupled mode and loosely coupled mode (Figure 2.7).

Figure 2.7: Hardware accelerator architectures classification: Closely coupled and
loosely coupled

In the first mode, the hardware accelerator is part of the processor data path and

has direct access to the processor memory. At the opposite, in the second mode, the

accelerator is placed outside the processor on a dedicated bus [54][56][57]. A group of

closely coupled hardware components operates at a single clock cycle fixed by the slower

components. At the opposite, each loosely coupled hardware component runs at its

fastest possible individual frequency. Loosely coupled mode is quite popular in multi-

media applications like image encoding/decoding applications. Nomadik [10], Freescale

i-Mx35 [58] and S3C6400 [59] are examples of multi-media architectures designed with

loosely coupled accelerators. These platforms embed on the same die an ARM [60]

processor and different multi-media accelerators for video, audio, imaging, and graphics

processing.

2.4.2 Memory Infrastructure

There are two basic types of memory in MPSoC architectures, commonly named shared

memory and distributed memory. Figure 2.8 shows block diagrams of these two types,

which are differentiated by the way in which processors exchange information. In a

shared memory, all processors uniformly share the same memory [61]. Processors com-

municate information by accessing the same memory location. The primary advantage

Chapter 2. Background and Related Works 19

of the shared memory is their easy programmability, since there are no communications

between the processors [62] [61]. However, due to collisions, MPSoCs with shared mem-

ory are generally limited to 32 processors.

With distributed memory architectures, since memory is not shared, inter-core com-

munication between processors is required, and interconnection network performance

becomes important.

Figure 2.8: Shared and distributed memory in MPSoCs

2.4.3 On-Chip Interconnection Mechanism

As noted earlier, an MPSoC consists on a set of processing elements connected together

by means of an interconnection mechanism. To meet the performance requirements of

modern applications like multimedia applications, the design of hardware interconnec-

tion mechanism became a major focus of research in MPSoC design.

In the following subsections, we present a short survey on the existing interconnection

approaches in MPSoC, and present the characteristics of each one.

2.4.3.1 Not Communicating Processor

This is the most basic topology. As shown in Figure 2.9, the architecture is composed

of a duplication of a tile of components. For this architecture, the processors of the

different tiles cannot communicate to divide a computation of the same task. Each one

of them performs a specific computation.

2.4.3.2 Communication over a shared bus

The shared bus topology is a single communication path to which all processing elements

and peripherals are connected (see Figure 2.10). For this topology, when only one

Chapter 2. Background and Related Works 20

Figure 2.9: Not communicating architecture

master is used, no connection problem arises. However, when two or more masters are

connected to the shared bus, an arbitration policy has to be considered. It is obvious that

the principal advantage of a shared bus communication is its simplest interconnection

structure and consequently its reduced design time. However, the arbitration policy

occurs a limited bandwidth and a throughput proportional to the number of processing

elements [63].

Figure 2.10: Communicated architecture over a shared bus

2.4.3.3 Point-To-Point Communication

The Point To Point communication is a direct communication between two communi-

cating units (Figure 2.11). The data exchange over a Point To Point communication

is efficient. However, for this topology, the complexity of the interconnection increases

exponentially with the increase of the communicating units. In [63], the authors show

a complex design of Point To Point interconnection despite the reduced number of con-

nections (10 connections).

2.4.3.4 Crossbar Communication

In a crossbar communication (or also named bus matrix), every processing element on

the architecture is connected to all others (See Figure 2.12). This communication is

Chapter 2. Background and Related Works 21

Figure 2.11: Communicated architecture over a PoinT To Point Topology

characterised by a non-blocking aspect, because each processing element can perform

simultaneous data exchange with every other processing element without conflicts. In

addition, the direct connections allow a direct communication of each sender-receiver

couple of processing elements. Thereby, the crossbar communication delivers a high

speed and a large bandwidth.

Figure 2.12: Crossbar communication

The crossbars are limited by their high cost due to their wiring complexity.

2.4.3.5 NoC communication

Network-on-Chip (NoC) is a general purpose on-chip communication concept, which

tackles the problems of wire density in SoCs. As shown in Figure 2.13, typical NoC

based system consists of processing elements (PE), network interfaces (NI), routers (R)

and inter-router communication channels. It offers better scalability than on-chip buses-

based interconnection, because as more resources are used, more routers and links are

introduced to connect them to the network.

Chapter 2. Background and Related Works 22

Figure 2.13: NoC with mesh topology

2.5 Processor Customization

The complexity of recent embedded applications and their deployment in our daily life

have increased their demand on high performance and minimal power consumption.

These requirement have reached a point where software execution can no longer follow

these requirements. To tackle this problem, especially in multimedia embedded system,

a common method is to use application-specific accelerators added to the general purpose

processors. In the context of this thesis, we use the term task customization to denote

the execution of the computations of specific task on application-specific accelerator.

While the aim of our thesis is to create a Ht-MPSoC system through the integration

of application-specific accelerators, it is important for us to present a background of

techniques used in single-processor to customize a task. In the following subsections, we

will expose common used processor customization techniques.

2.5.1 Fine-Grained Processor Customization

In fine-grained processor customization, the accelerators are tightly coupled to the pro-

cessor data path as custom functional units or loosely coupled to processor as HW ac-

celerator. For ASIPs (Application-Specific Instruction set Processor), these functional

units are implemented in ASICs. For more flexibility, an ASIP can be coupled to recon-

figurable functional units, which are implemented on reconfigurable hardware resources

such as FPGA.

Static Fine-Grained Processor Customization

It is obvious that ASIP reaches the best performance when custom functional units are

implemented in ASICs. The performance improvement depends on the number of im-

plemented functional units and their area-performance trade-off. Thus, the complexity

Chapter 2. Background and Related Works 23

to design an ASIP relies on custom instructions identification and selection. For this

reason, efficient algorithms have been proposed to accelerate this process. These algo-

rithms identify the computational tasks directly from an application graph satisfying

architectural constraint imposed by processor target [64] [65] [66]. The imposed con-

straints include a number of inputs/outputs, number of operators and a delay of critical

path. The selection process in [64], [65] and [66] is based on tree search algorithms and

is further improved in [67] by ILP (Integer Linear Programming) and in [68] by a novel

maximal convex subgraph enumeration algorithm.

Dynamic Fine-Grained Processor Customization

ASIPs integrate static custom functional units and thereby they suffer from limited

flexibility. In contrast, reconfigurable ASIPs are flexible as they integrate reconfigurable

functional units but with a performance trade-off. Many research have been achieved for

the efficient designs of the reconfigurable fabric. Several papers survey the contributions

of prior works on a single processor core extended with reconfigurable fabric [68] [69].

Theses architectures include Chimara [70], One-chip [71] and Stretch [72].

2.5.2 Identification of Custom Instructions

A distinguishing aspect of cited customization approaches is the identification process of

the custom instructions. Instructions can be identified statically or dynamically during

the execution. The primary drawback of dynamic identifications such as [73] [74], is to

induce a large overhead to the processor, which can negate all the speedup provided by

using custom instructions. In order to reveal the identification delay during run-time,

[75] [76], customization process is exploited using an approach of static identification

and dynamic realization. A static approach identifies computational subgraphs during

compilation and replaces these latter with custom instructions at run-time using a trans-

lation table. Other works have proposed a dynamic reconfiguration of coarse grained

hardware accelerators such as RISPP [77], which dynamically reconfigures FPGA re-

sources to implement custom accelerator functions. Recently, the work presented in [78]

tackle a challenging problem, as all mapping steps, from compiler analysis and opti-

mizations to hardware generation, are considered to be both efficient and fast. Their

approach extends a general purpose processor (GPP) with a reconfigurable processing

unit (RPU), both sharing the data memory. Repeating sequences of GPP instructions

are mapped to an RPU composed of functional units and interconnect resources, and

able to exploit instruction-level parallelism through loop pipelining .

Chapter 2. Background and Related Works 24

2.5.3 Coarse-Grained Processor Customization

A primary debate of processor customization covers the granularity of the accelerators:

should it be designed at fine grained level [71] [70], or should it be coarse grained, i.e., an

array of ALUs which communicated through programmable interconnect [79] [80] [81].

Each customization approach has its advantages and drawbacks. In general fine grained

designs are more flexible. However, fine grained designs have a large overhead mainly in

speed up and power consumption.

2.6 MPSoC Customization

Over the last decade, according to Moore’s law, the number of raw transistors increased

at 58% per year [82], whereas the capability of chip designers to design system on

chip increased only at a rate of 20% per year. On the other hand, the complexity

of recent embedded applications and their deployment in our daily life have increased

their demands on high performance and short TTM. These requirements have reached

a point where traditional homogeneous MPSoC architectures can no longer follow their

demand. For the cited reasons, improving MPSoC with application specific instructions

is a challenging solution. We denote by MPSoC customization the customization of a

multi-processors design. Depending on whether the MPSoC system supports run-time

reconfiguration or not, the MPSoC customization approaches could be divided into static

MPSoC customization and dynamic MPSoC customization.

2.6.1 Dynamic Customized MPSoC

Dynamic MPSoC customization is realized by coupling the processors to application-

specific functional units implemented in partial reconfigurable fabrics. To support par-

tial reconfiguration, it is interesting to share large reconfigurable fabrics between cores

in spatial or temporal sharing manner. However, minor researches have addressed how

dynamic customization can benefit future MPSoCs. Many research efforts have been

investigated to the integration of reconfigurable functional units on a single-processor

architecture, including Chimaera [70] and DPGA [83] which tightly integrate reconfig-

urable fabric with the processor as application-specific functional unit.

The architectures proposed in [84] and [85] are ones of the minors research that ex-

plore the resource sharing of reconfigurable fabrics. Remap (Reconfigurable Multicore

Acceleration and Parallelization) [84] is a run-time reconfigurable architecture for ac-

celerating applications executed on the different processors of Ht-MPSoC architecture.

Chapter 2. Background and Related Works 25

In ReMAP, the reconfigurable fabric is partitioned between clusters of processors. In

each cluster, reconfigurable fabric is temporally shared between the different processors

in a round robin manner. In [85], the authors present novel approach to minimize re-

configurable fabrics usage by resource sharing for closely coupled application-specific

architectures. They develop an algorithm to select the ISEs to be mapped on the same

fabric to optimize the fabric sharing between cores leading to the best execution time.

2.6.2 Static Customized MPSoC

Some research have been interested in developing design automation tools for single pro-

cessor architecture customizations such Tensilica Xtensa [86] and CoWare [87] tool chain.

Designing such tools for MPSoC customization is a much more tedious problem. Com-

plex problems arise while exploring the design space such custom extension selections

and other architectural constraints such as processing elements, memory hierarchies and

chip interconnect mechanism. In term of MPSoC customization, a recognized work is

[88] , where a formulation of design space exploration problem is proposed. They focus

on extensible processors that combine base processor with application-specific instruc-

tions, to provide a good trade-off between flexibility, TTM, and performance. This work

motivates the need for such an integrated approach by demonstrating that application-

specific instructions selection has a serious assignment and scheduling problems. The

exploration is based on an iterative improvement algorithm to a) partition tasks on pro-

cessors and then b) select custom instructions along the critical path. It uses expected

execution time to connect these two steps. A generally used technique for design space

exploration in MPSoC design is based on Integer Linear Programming (ILP). Lately,

the static MPSoC customization problem is formalized in [89] as a Mixed ILP (MILP)

problem. They propose a formal approach based on MILP exploration and its imple-

mentation within a CAD tool for the optimization of Ht-MPSoC architectures. These

heterogeneous systems, consisting of application-specific as well as of programmable

processors, are highly suitable for performing complex schemes of image processing al-

gorithms under real time constraints, which have an intractable running time when the

number of processors scales. More recently, in [90] [91], the authors propose to partition

the applications tasks onto a set of available processing elements. [92] looks for the opti-

mal solution based on ILP formulas and presents a case study using JPEG application.

Chapter 2. Background and Related Works 26

2.7 Resource Sharing in Embedded System Designs

MPSoC customization problem is quite challenging due to the complexity of optimising

the area/performance trade-off. The requirements of a resource consumption/perfor-

mance trade-off complicate this challenging problem. Meanwhile, resource sharing is a

new research axis and the few prior works have investigate this problem. In this section

we expose prior research in the field of resource sharing for embedded systems. For

recent multi-media applications, a large number of custom instructions can be identified

to be executed in hardware components. In order to avoid an excessive area usage of

hardware components, previous works propose to identify and exploit commonality be-

tween identified custom instructions and to share hardware resources.

Resource sharing has already been studied in earlier work for closely coupled customiza-

tion in uni-processor architecture. In [93], the authors propose a polynomial-time heuris-

tic that uses resource sharing to minimize the area required to synthesize a Set of custom

Instruction Extension (ISEs). Their resource sharing approach transforms the set of ISEs

into a single hardware data path. Nevertheless, their proposed heuristic minimizes the

ISEs area usage without a control on latency constraint. Zuluaga et al. [94] intro-

duce latency constraints in the merging process of the ISEs to control the performance

improvement. Their proposed parametric algorithm combines a path-based resource

sharing algorithm, similar to the ones presented in [93], with a timing budget manage-

ment scheme. More recently, the work presented by Stojilovic̀ et al. [95] aims at a

pragmatic increase in flexibility to integrate different ISEs from different applications.

This work is motivated by data path based algorithm. While [93] aims at minimizing the

area cost, [95] increases HW accelerators flexibility for a moderate cost. Their approach

ensures that all Instruction Set Extensions (ISEs) from an application domain map on

the same proposed domain-specific coarse-grained array. The architectures proposed

in these papers belong to loosely coupled application-specific architectures. The cited

works propose tools to share HW logic between different custom instructions for several

tasks mapped on the same and single processor. Their proposed heuristics select the

custom instructions to be mapped on logic providing a more area saving with operation

sharing.

Recently, some researches have investigated the hardware resources sharing for MP-

SoC architectures. For the best of our knowledge, these research have only attempted

the problem to share partial reconfigurable resources between different processors. In

[85], Chen et al. investigated the problem of resource sharing for run-time reconfig-

urable multi-processor architectures. They develop an algorithm to select the ISEs to

be mapped on the same fabric to optimize the fabric sharing between processors leading

Chapter 2. Background and Related Works 27

Table 2.3: Survey on Resource Sharing for Embedded Systems

Closely
coupled

loosely
coupled

MPSoCs
Static
HW

sharing

Run-time
HW

sharing

Exec
time
const

P.Brisk
2004

* - - * - -

M.Zuluaga
2009

* - - * - *

M. Stojilovic
2013

* - - * - -

L.Chen
2011

* - * - * *

M. Watkins
2010

* - * * * -

Our
work

- * * * - *

to the best execution time. In [96], the authors propose a pseudo-polynomial time algo-

rithm to explore the design space of Multi-Application Specific Instruction Processor (or

M-ASIP). Their algorithm identifies the appropriate application-partitions and identifies

custom instructions satisfying the area-performance trade-off.

In [96], Watkins et al. [21] proposed ReMap, a shared reconfigurable architecture for

accelerating and parallelizing applications in a heterogeneous CMPs. In this architec-

ture, reconfigurable fabric is shared spatially between clusters of processors. Processors

of the same cluster can share temporally or spatially their reconfigurable fabric.

Table 2.3 summarizes the features of the different cited works. From this table, we note

that all cited works are interested in closely coupled customization. However, in the

context of FPGA based hybrid architectures, loosely coupled customization are much

more efficient for recent applications in terms of performance/complexity trade-off. In

[93] [94] [95], the proposed techniques optimize the hardware resource usage to customize

a single-processor architecture by sharing hardware resources between different tasks.

In [97] [85], the authors propose to share partial-reconfigurable hardware resources for

multi-processor architectures. The custom instructions are implemented on runtime

reconfigurable hardware resources. However, the primary drawback of using runtime

reconfiguration is the significant delay of reprogramming the hardware. Thus, we think

that the runtime reconfiguration delay and the sharing delay will dominate the total

execution time, especially applications with a small amount of computation between

two consecutive hardware accelerators.

Chapter 2. Background and Related Works 28

2.8 Design Space Exploration of Customizable MPSoC Ar-

chitectures

Customizing processors in an MPSoC architecture with application-specific instructions

can lead to additional hardware resources in the architecture, but potentially significant

improvement in performance. A naive integration of application-specific instructions

consists on customizing the most computational tasks until the required performance

is reached or until hardware resources constraint is overlapped. For such customiza-

tion methodology, the most computational tasks may only enable minor speed-up but

take too much hardware resources, and may prevent other tasks from being accelerated.

Thus, designer would be typically interested in identifying how the performance im-

provement and on-chip consumption change with different choices of application-specific

instructions on an MPSoC architecture. The identification of this trade-off necessitates

effective exploration of a huge search space.

There are two main types of algorithms used in space exploration for MPSOCs cus-

tomization and these are described in more detail below. In brief, the first type is based

on exact algorithms [98] that use complex mathematical processes to output the entire

set of solutions that satisfy the model exactly. The second type, known as heuristic

algorithms [98], finds lower and upper bounds on the optimal solution.

2.8.1 Exact Algorithms

When considering exact approaches, the following techniques have had significant suc-

cess: branch-and-bound, dynamic programming and in particular the large class of

integer (linear) programming (ILP) techniques including linear programming.

Exact algorithms have been adapted for processor customization since 1996 (Binh et al.

[99], Shrivastava et al. [100], Arato et al. [101]). In [101], two partitioning algorithms for

HW/SW partitioning were presented by Arato et al. (2003): one based on Integer Linear

Programming (ILP) and the other on Genetic Algorithm (GA). The authors proved that

ILP-based solution works efficiently for smaller graphs with several tens of nodes and

generates optimal solutions, whereas GA gives near-optimal and works efficiently with

graphs of hundreds of nodes. The performance of GA was found to be uniform, whereas

the run time of ILP was variable and depends on the number of nodes. More recently,

exact algorithms have been adapted to the problem of HW/SW partitioning for MPSoC

architectures [97] [91] [102]. In [97], the authors compare the dynamic programming

approach and the ILP approach and it has been proved that dynamic programming

approach is way faster than ILP approach and still generates a solution whenever the

number of tasks increase.

Chapter 2. Background and Related Works 29

2.8.2 Heuristic Algorithms

Heuristic is a technique designed for solving a problem more quickly when exact meth-

ods are too slow, or for finding an approximate solution when exact methods fail to

find any exact solution. Many researchers have applied heuristic approach for processor

customization. Particularly, genetic algorithms (Wu Jigang et al [103]; Greg Stit et al

[104]; He Jifeng et al. [105]) and simulated annealing (Eles et al. [106], Henkel et al.

[107] 2001, Lopez-Vallejo et al. [108]) have been extensively used. Other less popular

heuristics are tabu search [106] and greedy algorithms [109].

More recently, some researchers used custom heuristics to solve hardware customiza-

tion for MPSoCs. The proposed algorithm initially searches for the critical path in the

task graph, and then assigns the task with the highest benefit-to-area ratio to hardware

implementation. In [110], in order to minimize the overall execution time, a heuristic

solution is proposed for scheduling and customizing on multi-processor system on chips

(MPSOC).The proposed algorithm initially searches for the critical path in the task

graph, and then assigns the task with the highest benefit-to-area ratio to hardware im-

plementation. The critical path and the available hardware area are updated during the

iteration. The whole calculation process works until the available hardware area is not

enough to implement a software task lying in the critical path. Other custom heuristics

are proposed in order to share hardware resources between different custom instructions.

Such works include [94] [93] [109].

Unlike with exact approach, heuristic algorithms have been demonstrated to yield sub-

optimal solutions. Exact algorithms are guaranteed to find an optimal solution and to

prove its optimality. The run-time, however, often increases dramatically with a prob-

lem instance’s size, and often only small or moderately-sized instances can be practically

solved to proven optimality. In our work, we are interested to find the optimal config-

uration of a Ht-MPSoC architecture, where the number of processors is moderated (a

maximum of 32 processors). Thereby, we decided to use ILP approach to explore our

search space.

Chapter 3

Hardware Accelerators Sharing in

Ht-MPSoC Architecture

Contents

4.1 Introduction . 51

4.2 Proposed Technique for an Area-Performance Trade-off . . 52

4.2.1 Applications profiling and computational Tasks (CT) identifi-

cation . 53

4.2.2 Pattern Identifications . 54

4.2.3 Space Exploration . 55

4.3 Space exploration in SHt-MPSoC 55

4.3.1 Problem formulation . 56

4.3.2 Objective function . 57

4.3.3 Performance constraint . 59

4.4 Space exploration in AHt-MPSoC 59

4.4.1 Problem formulation . 60

4.4.2 Objective function . 61

4.4.3 Performance constraint . 64

4.4.3.1 Calculation of the access-delay to a shared HW accel-

erator . 65

4.4.3.2 Illustrative example to calculate the access-delay to a

shared HW accelerator 67

4.5 Conclusion . 68

30

Chapter 3. Hardware Accelerators Sharing in Ht-MPSoC Architecture 31

3.1 Introduction

The increased demands for high performance and minimal power/area costs for multi-

media applications need to find new emerged architectures. Ht-MPSOC architectures

have been used in recent years as the promising solution for new multimedia applica-

tions. For these architectures, system performance improves as the number of custom

instructions is increased. However, the integration of all the potential custom instruc-

tions as HW accelerators in these architectures would consume an excessive amount

of hardware resources and dissipate a significant static power [111]. The purpose of

our proposed hardware accelerators sharing methodology between processors is to re-

duce circuit complexity in terms of logic elements usage and energy dissipation while

optimizing execution time. Our methodology is motivated by the fact that multimedia

applications contain a large number of same frequently used kernels and separate private

HW accelerators are used for different processors to provide the same computations.

HW accelerator sharing methodology consists on using a reduced number of HW ac-

celerators for the same task executed on different processors. In fact, a traditional

implementation of Ht-MPSoC with a common task executed on m different processors

consist on coupling each processor to its private HW accelerator. For this example, the

architecture uses m hardware accelerators to execute the same task on the m different

processors. However, according to area-performance trade-off, different processors, of

the m ones, could share a HW accelerator. Thus the number of implemented HW ac-

celerators would be reduced. It is expected that an appropriate level of HW accelerator

sharing will extenuate the area and power consumption and will preserve performance.

For each task, the HW accelerators sharing is more significant as the number of pro-

cessors executing this task is more important. Thereby, the identification of similarity

between tasks executed on the different processors seems to us to be the key to releasing

wider benefits of HW accelerators sharing methodology. For many multimedia MPSoC

architectures, all the n processors execute the same computations on different data and

thereby the same tasks. For such architecture, the HW accelerators sharing methodol-

ogy emerges a new class of HT-MPSOC architecture, where all the processors have the

same number and type of HW accelerators with the same sharing degree for the same

type of HW accelerators. This architecture is named Symmetric Ht-MPSoC architec-

tures (SHt-MPSC).

When the n processors execute different applications, different set of processors may

have different set of similar tasks. For these architectures, the emergence of HW ac-

celerators sharing methodology provide a second new class of Ht-MPSoC architecture

where the different processors may have different number and type of HW accelerators

with different sharing degree. This architecture is named Assymmetric Ht-MPSoC ar-

chitectures (AHt-MPSC).

Chapter 3. Hardware Accelerators Sharing in Ht-MPSoC Architecture 32

This chapter is organized as follows: in section 3.2, we present the hardware accelerators

sharing methodology. After that a motivating example of the proposed sharing method-

ology is presented; the impact on area usage and performance gain is highlighted. In

section 3.3, we present the common tasks used in multimedia applications. The usual use

of these common tasks motivates the employment of HW accelerators sharing methodol-

ogy for multimedia applications. In section 3.4, we present the hardware flow to migrate

a c/c++ task to a HW accelerator. Section 3.5 describes the proposed SHt-MPSoC and

AHt-MPSoC architectures. The interconnection network of the proposed architecture is

detailed in section 3.5.3. Finally, we conclude the chapter in section 3.6.

3.2 Hardware Accelerators Sharing Methodology

For multimedia applications, a large number of computational tasks are candidate for

instructions extension in embedded systems. Each instruction is implemented as a HW

accelerator adding a substantial area usage. However, these tasks contain a range of

similar computations. Instructions extension without exploring such similarity may bloat

the available hardware resources without exploring all specific-instructions extensions

and reaching the desired performance(See section 3.2.1).

In order to achieve maximum profit from the benefits of specific-instructions extensions,

we propose a HW accelerator sharing methodology. The proposed sharing methodology

enables to share a HW accelerator of a specific task between two or more processors

executing this task.

For our proposed sharing methodology, we have to adopt some notions and definitions.

• Pattern : we call a pattern a computational task existing on one or different ap-

plications. A pattern computation ranges from one operation (addition, multipli-

cation, ect) to a complex task. In figure 3.1, T1 and T2 are two patterns executed

on different processors. T3 is a third pattern executed on only one processor.

• Private HW accelerator: We call a private HW accelerator, a HW accelerator

which is coupled to only one processor. In figures 3.1.b and 3.1.c , T3 is a private

HW accelerator for P4.

• Shared HW accelerator: We call a shared HW accelerator, a HW accelerator which

is coupled to two or more processors. For example, in figure 3.1.c, T1 is a shared

HW accelerator for P1, P2 and P3. A synchronization access is integrated within

the HW accelerator in order to manage processors access.

Chapter 3. Hardware Accelerators Sharing in Ht-MPSoC Architecture 33

Figure 3.1: Illustrative example of benefits of HW accelerator sharing. T1, T2 and
T3 are computational tasks executed on P1, P2, P3 and P4. The HW accelerator of

Tj consumes aj area units in FPGA

• Sharing degree: we define the sharing degree of a HW accelerator, the number of

processors that share this HW accelerator. In figure 3.1.c, T1 is shared between

P1, P2 and P3 and thus its sharing degree is equal to three.

In the following subsections, we show the benefits of our HW accelerator sharing

methodology on area usage and its impact on performance.

3.2.1 Area Saving

Figure 3.1 shows a frequent situation of Ht-MPSoC architecture executing different mul-

timedia applications. In this figure, P1, P2, P3 and P4 are four processors executing

different applications. Each application contains a number of computational and non-

computational tasks. In this example, computational tasks are highlighted with dotted

outlines and we note that each computational task is executed by one or more pro-

cessors. T1 is a common computational task executed by P1, P2 and P3. T2 is a

common computational task executed by P1, P2, P3 and P4. T3 is a computational

task executed by P4. For this example, specific instructions extension, if performed

without taking advantages of common tasks, cannot be fully explored. As shown in

Figure 3.1.a, T2 is executed by all the processors. A typical integration of this task

Chapter 3. Hardware Accelerators Sharing in Ht-MPSoC Architecture 34

as HW accelerator for all the processors would consume 24 area units. While FPGA

hardware resources are limited to 20 area units, T2 extension cannot be performed. In

figure 3.1.b, only T1 and T3 are integrated as HW accelerator and consume 17 area units.

When considering HW accelerator sharing methodology, a reduced number of Hw ac-

celerators for each computational task, existing in different applications, can be imple-

mented and shared among the processors. Thus, it becomes more feasible to explore all

specific-instructions extensions.

Based on our proposed approach, it would be possible to integrate all computational

tasks as HW accelerator. Figure 3.1.c is a possible configuration with shared HW ac-

celerator. For T1, one shared-accelerators is used to compute T1 instead of 3 private

hardware accelerators. For this pattern, area units usage is reduced from 15 area units

to 5 area units. For pattern T2, two shared-accelerators are used and shared between

P1, P2, P3 and P4 processors. For T2, area-units usage is reduced from 24 units,

required to integrate 4 private hardware accelerators, to 12 area units. Pattern T3 is

executed only on processor P4, so it’s integrated in private way and consumes 2 area

units. The implementation of these HW accelerators requires 19 area units and thereby,

the available HW resources could hold this configuration.

3.2.2 Impact of HW Accelerators Sharing Methodology on Perfor-

mance

When a pattern Tj is executed on many processors, the hardware accelerators sharing

methodology can be applied. However, the number and the set of processors that share

a HW accelerator may improve or decrease the architecture performance.

Consider the example of figure 3.2, where T2 is a computational task executed on four

processors and can be executed in different ways. Figu 3.2.a shows the software execu-

tion of T2 on the 4 processors. Figure 3.2.b shows the execution of T2 with a shared

configuration. In this configuration, P1 and P2 share a HW accelerator of T2 and P3 and

P4 share another HW accelerator of T2. For this configuration, P2 and P4 has to wait

until the end of the execution of T1 on processor P1 respectively on processor P3. As a

result, for P2 and P4, delays are created and performance of execution of T2 on P2 and

P4 are decreased when compared to the software execution (Figure3.2.a).

In Figure 3.2.c, the delay occurred in b is negated by changing the set of processors

that share each HW accelerator. A HW accelerator of T2 is shared between P1 and P3

and an other one between P2 and P4. Indeed, for this configuration, the intervals of

T2 execution on processors that share each HW accelerator don’t overlap. This means,

when each processor has to access the shared HW accelerator, it finds this latter free

Chapter 3. Hardware Accelerators Sharing in Ht-MPSoC Architecture 35

Figure 3.2: Example to illustrate the impact of HW accelerator sharing on perfor-
mance

and executes T2 without delay.

In this example, we show that hardware accelerators sharing methodology allows an

intelligent exploitation of FPGA resources. However, the decisions of the number and

the set of processors that share a HW accelerator affect the area-performance trade-off.

Therefore, the design space of resource-sharing solutions has to be explored in order to

find the optimal solution. Chapter4 presents an original heuristic in order to control the

number and the set of processors that share a HW accelerator , thereby permitting the

exploration of trade-offs between execution delay and area savings.

3.3 Common Multimedia Kernels

The evermore increasing of computational and communication requirements demanded

by recent multimedia applications together with energy constraints are the key chal-

lenges to deliver an efficient multimedia device.

These applications are often complex and contain a range of tasks, each of which has to

be performed under a real time requirement. For example, a face recognition application

on iPhone 3G consumes 11 seconds and consumers may feel it is too slow [112]. In or-

der to improve the performance of such applications, executing the computational tasks

Chapter 3. Hardware Accelerators Sharing in Ht-MPSoC Architecture 36

Figure 3.3: Illustrative example of parallel aspect of hardware execution

on HW accelerators is a common used technique. In this section, we present a range

of time-consuming tasks frequently used in different multimedia applications. These

common used tasks motivate our proposed HW accelerators sharing methodology. Our

selection covers many types of multimedia applications: image compression, 3-D graph-

ics, audio synthesis, audio compression, video compression. Table 3.1 lists a number of

time consuming multimedia tasks commonly used in different multimedia applications.

3.4 Hardware Accelerators Flow Graph

A HW accelerator is a specialized hardware module, which executes a time-consuming

task of computationally intensive software code. The HW accelerator is controlled by

the software code that requests high performance and minimal power consumption. Per-

formance improvements are reached thanks to the parallel execution of hardware (Figure

3.3). In this section, we describe the different steps of the HW accelerators implemen-

tation flow depicted in Figure 3.4. Within the HW accelerator flow, we consider the

following steps:

• Pre-synthesis validation

• RTL Synthesis

Chapter 3. Hardware Accelerators Sharing in Ht-MPSoC Architecture 37

Table 3.1: Examples of usually used multimedia patterns

Common multimedia tasks Description Example of applications

Matrix transpose Common used matrix
operation

2D media kernels: Im-
age filtering, Shearsort,
DCT, FFT, face recog-
nition, ect

Vector/Matrix Multiply Common used matrix
operation

face recognition, DCT

Repetitive Padding The pixel values at the
boundary of the video
object is replicated hor-
izontally as well as ver-
tically

H264, Mpeg-4

RGB-to-YCbCr/ YCbCr-to-RGB Color space conversion
from RGB colors to
YCbCr brightness

jpeg encoder, mpeg-
2 encoder, mpeg-4 en-
coder, H264 enoder

2D-DCT A signal transformation
from spatial domain to
frequency domain with
an elimination of redun-
dant components

Jpeg encoder, H264 en-
coder, mpeg encoder,
mp3 encoder

2D-IDCT A signal transformation
from frequency domain
to spatial domain

Jpeg decoder, mpeg de-
coder, H264 decoder,
mp3 decoder

Motion estimation A video process of
determining motion
vectors that describe
the transformation
from one 2D image to
another

mpeg-1,mpeg-2, mpeg-
4, H264

FFT A transformation
of time (or space) to
frequency (or wavenum-
ber) and vice versa

MP3, MPEG-4, H.264

• Post Synthesis verification

• System assembly and logic synthesis

In order to generate the RTL description of the computational task, the RTL synthesis

process needs a synthesizable VHDL or Verilog description of this pattern. This means

that non synthesizable opertaions, like dynamic allocations, has to be replaced by their

equivalent synthesizable operations . The RTL description is then passed to Post Syn-

thesis verification to validate the behaviour of the hardware description. Once the RTL

behaviour is verified, the hardware module is connected to the architecture as hardware

Chapter 3. Hardware Accelerators Sharing in Ht-MPSoC Architecture 38

accelerator. Different modules and interconnections are added to mange processor and

HW accelerators communication and the configuration file is then generated.

Pre-synthesis validation

High-Level Synthesis

Post Synthesis
verification

System assembly and
logic synthesis

C code

cpu
slaves

HW
ACC

#include <stdio.h>
 main() {
……………
printf("Value of a: %f\n", a);
…………….

Figure 3.4: Design flow of hardware accelerator integration for FPGA-based archi-
tecture

3.4.1 Pre-synthesis Validation

The HW accelerator is coded using the VHSIC (Very High Speed Integrated Circuit)

Hardware Description Language (VHDL) programming language. The VHDL descrip-

tion provides the same computation of the C/C++ code of the computational task.

Before we proceed to VHDL description of a computational task and its synthesis, the C

code has to be self-checked. In fact not all the VHDL equivalent C/C++ functions can

be synthesised. System calls and non-bounded size pointers are examples of non syn-

thesizable C/C++ constructs. For this reason, based on [113] manual, we recommend

an update of non synthesizable constructs when describing the VHDL behavioural . For

example, VHDL language doesn’t have the type float. However, we can define this data

as std logic vector, then we can use IEEE-754 package. We enumerate in the following

a list of non synthesizable data types and constructs.

Chapter 3. Hardware Accelerators Sharing in Ht-MPSoC Architecture 39

3.4.1.1 Synthesizable and Non-synthesizable C/C++ Data Types

In C/C++, all ports, variables, signals, ect are declared with a data types. If a C/C++

code has to be converted to VHDL description, data types have to be modified to use

synthesizable ones.

Table 3.2: Non Synthesizable C/C++ data types

C/C++ type Equivalent in HDl

floating point use of std logic vector and IEEE-754 package

pointers access to an array

file type: file replace or remove

I/O streams: stdout and cout replace or remove

Table 3.3: Synthesizable C/C++ data types

C/C++ type Description

bool A single-bit true or false value

int, signed/unsigned int A signed or unsigned integer, typically 32 or 64 bits

char, signed/unsigned char 8 bits, signed/unsigned character

struct A user-defined aggregate of synthesizable data types

enum A user-defined enumerated data type

The appropriate modifications do not affect the desired behaviour. In Table 3.2 and

Table 3.3 , we illustrate examples of synthesizable data types and non synthesizable

data types and their HDL equivalent.

3.4.1.2 Non-synthesizable C/C++ Constructs

To obtain a synthesizable hardware description, we have to avoid function calls to op-

erating system, dynamic memory allocations, unconditional branching and run-time

identification and casting. Table 3.4 summarizes essential non synthesizable C/C++

constructs.

3.4.2 RTL Synthesis

The RTL synthesis process consists on generating the RTL design of the hardware ac-

celerator, from the HDL description. While we are targeting Xilinx FPGA, the design

of HW accelerators is generated using Xilinx tools. The EDK software, takes the HDL

description of the designed computational task and generates the RTL description of the

HW accelerator.

In order to interconnect the HW accelerator and the processor, the former is synthesised

Chapter 3. Hardware Accelerators Sharing in Ht-MPSoC Architecture 40

Table 3.4: Non synthesizable C/C++ constructs

Category Construct Action

Dynamic
storage allocation malloc(), free(), new() Use static memory allocation

Exception
handling try, catch Comment out.

Operator, sizeof size of Determine size statically

structure type union Replace with struct

Dereference
operator * and & operators Replace with array accessing

Unconditional branching go to Replace

with a bus interface and registers or local memory which are mapped into its address

space. The following subsections describe the synthesised communication interface and

the memory space allocation.

3.4.2.1 Communication Interface

From a communications point of view, a Hw accelerator is a black box controlled by

data arrival which receives and sends data possibly at each clock cycle. It has a number

of input ports and output ports each of which having a certain bit-width. In addition

to the clock, the HW accelerator has a clock enable pin that can freeze its execution.

Hence, if the clock enable is not set, everything behave in the HW accelerator as if the

clock was not changing. Thus, the HW accelerator is data synchronised, i.e. at each

clock cycle, data are presented on the input port and at the raise of the clock (provided

that the clock enable is set), the data is read by the Hw accelerator. If all the required

data are present and the clock enable is set then the HW can run for a cycle.

As shown in Figure 3.5, in [114], authors classify the processor-accelerators interconnec-

tion modes into three categories : Processor driven, external DMA engine and Internal

DMA engine. It can be envisaged the use of the DMA in can be made much more effi-

cient if the DMA is designed specifically architecture interface and is directly connected

to the HW accelerator as shown on Figure 3.5.c. The interface mechanism is used in

various SoC architectures and dependent on the targeted platform. In this thesis, we

used XILINX platforms.

A XILINX designed architecture is based on PLB or OPB bus, so a designed HW

accelerator must be a PLB or OPB compliant peripheral. This compliance is provided

in the synthesis process with an IPIF interface. Figure 3.7 shows the top level of a HW

accelerator. In this figure the top level is constituted of the VHDL user logic, which

describe the HW accelerator functionality, and the IPIF inteface.

Chapter 3. Hardware Accelerators Sharing in Ht-MPSoC Architecture 41

Figure 3.5: Interface modes for processor-accelerator interconnection

All designed HW accelerators within Xilinx tool incorporate the Intellectual Property

Interface (IPIF). The IPIF module provides three types of IPIF interconnection : OPB

bus, PLB version 3.4 and PLB version 4.6. One side of this interface implements the

PLB or OPB interface, and the other side implements the Intellectual-Property Intercon-

nect (IPIC) interface. The IPIF provides basic features, such as address decoding, slave

attachment, and byte steering [115]. In addition, it provides some optional features that

can greatly simplify the task of creating the HW accelerator, either through parameter-

ization of the corresponding IPIF component or direct instantiation of other IP library

components. Based on selected functionalities, Xilinx tool automatically creates corre-

sponding OPB or PLB peripheral templates with slave-only operation or master-slave

combined operations.

3.4.2.2 Memory space allocation

In order to communicate data between processor and a designed HW accelerator, the

top level of the HW accelerator has user registers or memory space addressable through

software. The processor issues data to the HW accelerator by sending store instructions

to addresses of accessible registers or to addresses within the range, and restores data

from a HW accelerator by sending (load instruction from addresses. In case of inter-

connection through addressable memory space or user register, the size of the address

Chapter 3. Hardware Accelerators Sharing in Ht-MPSoC Architecture 42

Figure 3.6: Communication interface between the processor and the HW accelerator

Figure 3.7: Top level of PLB-based hardware ACC

range depends on the bit width of processor data bus as well as the width of the Hw

accelerator address signal. This address range is calculated as follows:

memory range = base address+ α (3.1)

α = 2hw addr width ∗ data bus width
8

− 1 (3.2)

In Equation 3.1, base address denotes the starting address of the HW accelerator and

base address+α indicates its ending address. A bus width is expressed in terms of bits

and the memory range is expressed in bytes. For example if the processor bus width is

32 and the HW accelerator has a 3-bit address bus width, value of α will be equal to

0x0000001F.

Chapter 3. Hardware Accelerators Sharing in Ht-MPSoC Architecture 43

When a processor needs to send data to a HW accelerator, it activates a write enable

signal and sends the address on which data will be stored. This address is decoded

within the PLB interconnect and the offset α is transmitted to the IPIF unit. This

offset is decoded within the address decode unit and controls how to send data to the

functional unit of the HW accelerator.

3.4.3 Post-synthesis Simulation

Post-synthesis simulation of the produced RTL design is performed by means of the

co-simulation feature of Xilinx development tool. It uses a HDL test bench which will

aid in debugging the design of the HW accelerator before implementation to the FPGA

for execution.

3.4.4 System Assembly And Logic Synthesis

The system assembly is performed within the XPS software of XILINX development

tools. It is used to configure and connect the HW accelerator to the system architec-

ture.

When the RTL design is successfully verified by the post-synthesis step, the HW accel-

erator can be exported as an IP, to be connected to the architecture. Once the HW

accelerator is connected appropriately, a bitfile of the system architecture is generated

and the design can be exported in SDK software of XILINX development tool.

3.5 HT-MPSoC Architecture With Shared HW Accelera-

tors

Processing acceleration in one side and multiprocessing using several cores in the other

side are two beneficial paradigms. The combination of these two paradigms in the same

architecture offers a sustained performance and could be very efficient for parallel appli-

cations involving hot computational kernels like image and video processing applications.

These architectures are named Ht-MPSoC architectures. Processing acceleration is pro-

vided by dedicated hardware components and corresponding custom instructions.

Moreover, the increase in HW resources in the latest FPGA generation, makes it possible

to implement complex Ht-MPSoC architectures. These architectures combine hardware

and/or software cores, application-specific HW accelerators and communication units.

Chapter 3. Hardware Accelerators Sharing in Ht-MPSoC Architecture 44

The Xilinx Zynq 7000 Extensible Processing Platform (EPP) is an example of such ar-

chitectures embedding a dual core ARM Cortex A9 processor and tens of thousands

of programmable gate arrays [116]. Cyclone V from Altera [117] and SmartFusion2

from Micro-Semi [118] are other examples of FPGA intended to prototype complex

Ht-MPSoC. These architectures include one or more hardcores and up to 500K of re-

configurable logic elements to build computational accelerators.

In our thesis, in the proposed Ht-MPSoC architecture, the system consists of multiple

processors running software tasks and a group of HW accelerators that execute appli-

cation specific instructions. The number and the sharing type of HW accelerators can

vary from processor to another. The purpose of sharing HW accelerators between pro-

cessors is to reduce circuit complexity in terms of logic elements while maintaining the

performance and reducing the energy consumption.

In this thesis, with the use of hardware accelerators sharing methodology for Ht-MPSOC,

we propose two new classes of Ht-MPSoC architecture. The first class is a Symmetric

Ht-MPSoC(SHt-MPSoC), in which all the processors have the same number of private

and shared HW accelerators. The second class is an Asymmetric architectures(AHt-

MPSoC), where HW accelerators attached to the different processors differ from one

processor to the other.

3.5.1 Symmetric Ht-MPSoC Architecture

SHt-MPSoC is the architecture where two or more homogeneous processors run the

same application or the same set of tasks. All the processors share a main memory,

used for data communication. The term symmetric for this class of architecture, lies in

the fact that all the processors execute the same set of tasks and they should have the

same performance gain, so all the processors should have the same number and type

of hardware accelerators. A replication of a hardware accelerator of a computational

pattern is an excessive area-consuming solution. The emergence of hardware accelerators

sharing methodology for these architectures would moderate the area usage.

Figure 3.8 is an example of 4-processors SHt-MPSoC architecture. All the processors

share a main memory and each processor is connected to peripherals over its local bus.

In this example, each processor has a private HW accelerators and a shared one. The

shared HW accelerator are connected to processors through an interconnection network.

3.5.2 Assymmetric Ht-MPSoC Architecture

AHt-MPSoC is the architecture where two or more homogeneous processors run dif-

ferent applications or different set of tasks. Each processor has a local memory and a

Chapter 3. Hardware Accelerators Sharing in Ht-MPSoC Architecture 45

Figure 3.8: Example of SHt-MPSoC architecture

local bus. The local bus connects the peripherals and private Hw accelerators to the

processor. The Hw accelerator of a common task, executed on two or more processors,

can be shared between these processors. An interconnection network is implemented to

share the HW accelerators of these common tasks. The number of private and shared

hardware accelerators for each processor depends on the performance requirement for

each application.

Figure 3.9 is an example of 4-processors AHt-MPSoC architecture. Each processor has

a local memory and a private bus. All the processors share a main memory and each

processor is connected to peripherals over its local bus. In this example, each processor

has a number of private and shared HW accelerators. In this example, Processor 1 and

Processor 2 have a common task, thus share its HW accelerator. Likewise, Processor 3

and Processor 4 have two common tasks and they share their HW accelerators. For each

processor, the private HW accelerators are placed on its local bus whereas, the access

to a shared one is assured through an interconnection network.

3.5.3 Hardware Interconnection For A Shared Hardware Accelerator

In this section, we present how the interconnection network of Figures 3.8 and 3.9 are

constructed. The interconnection network on these figures are responsible of data ex-

change between processors and shared HW accelerators.

There are several ways to construct an on chip interconnection network that acts as a

shared bus [119]. For our proposed SHt-MPSOC and AHt-MPSoC architectures, we

used an hierarchical bus which is based on several buses interconnected through bridges.

Chapter 3. Hardware Accelerators Sharing in Ht-MPSoC Architecture 46

Figure 3.9: Example of AHt-MPSoC architecture

Figure 3.10 illustrates a basic architecture of two level hierarchical bus. The primary

advantages of an hierarchical bus are the practicality and the performance/energy opti-

mizations [119][120].

Figure 3.10: Interconnection using a two-level bus hierarchy

For SHt-MPSoC and AHt-MPSoC architectures, the level one of buses is constructed of

processors local buses. Each processor has its private local bus to interconnect periph-

erals and private HW accelerators (Figures 3.8 and 3.9). The second level of buses is

comprised of a number of buses to interconnect each instance of shared HW accelerator

to processors that share this latter. Each shared HW accelerator is placed as a periph-

eral on a private bus and for each processor accessing this HW accelerator, a bridge is

implemented as a master on the HW accelerator bus.

Chapter 3. Hardware Accelerators Sharing in Ht-MPSoC Architecture 47

Figure 3.11: Example of hierarchical buses for shared HW accelerator interconnection

The bridge passes Figure 3.11 is an example of implemented architecture with two-

level shared Hw accelerator. In this figure Sh1 bus is the local bus of the shared HW

accelerator. Bridge are implemented between the HW accelerator bus and P1 and P2

processors buses. In section 3.5.4, we present the architecture of plb to plb bridge as

well as its functioning.

3.5.4 Description of PLB-to-PLB Bridge

Since we are interested in Xilinx FPGA, we present in this section the PLBv46 to

PLBv46 bridges [121]. The primary function of the PLBv46 to PLBv46 is the trans-

actions passing from the primary PLB to the secondary PLB. The primary bus is the

one that is closer to the processor. The secondary bus is the one that is farther away

from the processor. For our proposed architectures, when a HW accelerator is shared

between two or more processors, each processor bus is considered as a primary bus and

the HW accelerator bus is the secondary bus (Figure 3.11).

The bridge operates as a slave on the primary PLB and as a master on the secondary

PLB. When a processor passes a transaction to the shared HW accelerator, the trans-

action is received by PLBv46 Slave and decoded in the primary interface of the bridge.

Then, the secondary interface logic generates the sequence of PLB signals to perform the

transaction on the HW accelerator. Figure 3.12 presents the block diagram of PLBv46

to PLBv46 Bridge. The principals blocks of the PLBv46 to PLBv46 Bridge are as follows

Chapter 3. Hardware Accelerators Sharing in Ht-MPSoC Architecture 48

Figure 3.12: Block Diagram for the PLBv46 to PLBv46 Bridge

1. The PLBv46 Slave: it provides a bi-directional slave interface to the processor

bus. The PLBv46 Slave provides the address decoding for the registers inside the

bridge and for the HW accelerators on the secondary PLB.

2. Slave Buffer Interface: it provides the conditional read/write access to the PLBv46

Slave. This block decodes the request from the hw accelerator and passes the

request to the processor bus through Control Logic and the data passes through the

Write Buffer. This block also have a Xilinx Local Link Interface to communicate

with the read buffer and write buffer.

3. Write Buffer: it is a FIFO memory that stores the data from the Slave Buffer

Interface during a write transaction.

4. Read Buffer: it is a FIFO memory that stores the data from the PLBv46 Master

Burst during a read transaction.

5. PLBv46 Master Burst: it provides the PLB master interface on the HW accelerator

bus operations.

Chapter 3. Hardware Accelerators Sharing in Ht-MPSoC Architecture 49

3.6 Conclusion

This chapter presents a new HW accelerators sharing methodology for Ht-MPSoC archi-

tectures. This methodology enables two or more processors to share hardware accelera-

tors of their similar tasks. The purpose is to explore the available hardware resources in

an area intelligent manner. This chapter presented novel classes of Ht-MPSoC architec-

ture on which shared HW accelerators are used to ensure the area-performance trade-off.

The shared HW accelerator is interconnected to correspondent processors through two-

level hierarchical bus.

We showed through motivating examples that the proposed methodology saves area

but may degrade the performance. The increase of numbers of processors that share

a HW accelerator save hardware resources but may create significant execution delay.

Therefore, in order to provide efficient architecture, we have to explore all configurations

between the fully shared one and fully private one.

In the next Chapter, we present a technique to provide the designer a fast solution to

find out the configurations of HW accelerators for a given Ht-MPSoC architecture.

Chapter 4

Design Space Exploration in

Shared Hardware Accelerators

Based Ht-MPSoC

Contents

5.1 Introduction . 70

5.2 Target Platform and Application 70

5.2.1 Xilinx Development Tool . 71

5.2.2 Microblaze Processor . 72

5.2.3 XILINX Interconnect System 72

5.2.4 Implementation of a Single-processor Architecture on ML507

Board . 73

5.3 Evaluation of Customized Ht-MPSoC Architecture with Shared

and/or Private HW Accelerators 74

5.3.1 Overview of Jpeg Encoder Application 74

5.3.2 Preliminary Implementation Results for Jpeg-encoder Applica-

tion on Microblaze-based Architecture 75

5.3.3 Evaluation of Microblaze-based MPSoC Configurations with

Private and Shared HW accelerators 77

5.4 Experimental Results for the MILP Models 81

5.4.1 Case study 1: Synthetic Applications 81

5.4.2 Case study 2: Jpeg Codec Application 84

5.5 Conclusion . 88

50

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 51

4.1 Introduction

Hardware Accelerators sharing methodology for Ht-MPSoC architectures aims to pro-

vide a smart exploitation of available HW resources to integrate HW accelerators. As

more computational tasks are emerged as HW accelerators, the achieved speedup and

energy consumption are improved. As explained in Chapter 3, our space exploration

is motivated by concurrent aspect of recent mulimedia applications, which have a high

potential of HW accelerators customization. For each computational task, we need to

determine a) if the computational task will be customized or executed on software and

b) the sharing-degree of the HW accelerators of each computational task if it will be

customized. The HW accelerators customization and the HW accelerators sharing de-

gree results in a large design space. The design space of HW accelerators sharing is

bounded by a fully private solution and a fully shared solution. The fully private so-

lution consumes an excessive number of HW resources than fully shared configuration

but preserves maximum speed-up. In contrast, a fully shared Ht-MPSoC configuration

consume much less HW resources but it might degrade performance. Between these two

extreme solutions, intermediate solutions may provide a best area-performance trade-off.

To find one of these solutions, several exact methods or heuristic algorithms are used

in the literature depending on the complexity of the problem; Integer Linear Program-

ming (ILP) is one of the earliest exact methods to be used for optimization problems

in embedded systems. The ILP formulation is used as it provides an exact solution of

the problem. In this chapter, we propose a (Mixed ILP) MILP-based technique that

integrates the hardware accelerators sharing methodology to explore the search space

of shared and private configurations for Ht-MPSoC architectures. For this purpose,

we distinguish two situations: Ht-MPSoC architectures where the different processors

execute the same application and situation where the different processors execute dif-

ferent applications. For each architecture, we propose a MILP formulation of the design

space of HW accelerators, that emerge the computation of selected application-specific

instructions, to find out the best area-performance architecture. The first formulation

considers only symmetric configurations while the second one deals with asymmetric and

asymmetric configurations. Both MILP models take into consideration a delay parame-

ter to control the impact of HW accelerators sharing degree on performance. Analytical

equations, that consider the delay parameter, have been proposed to estimate the gain

on execution time. The execution time gain is imposed as a performance-constraint to

the objective function that minimize the usage of HW resources.

This chapter is organized as follows. Section 4.2 presents the proposed technique to

extend Ht-MPSoC architectures with Hw accelerators. In section 4.3, we present the

MILP formulation to explore the configurations of Ht-MPSoC architecture where all the

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 52

processors execute the same application. Section 4.4 details the MILP-based formula-

tion of the space of configurations of a Ht-MPSoC architecture where processors execute

different applications. Section 4.5 concludes this chapter.

4.2 Proposed Technique for an Area-Performance Trade-

off

Most of existing embedded applications, such as multimedia, telecommunication or au-

tomotive applications, use the same set of critical tasks. Matrix operations, convolutions

and filters are frequently tasks for these applications. For such embedded systems, where

different processors execute the same set of computational tasks, the use of HW accel-

erators sharing approach is beneficial as it avoids bloating the FPGA resources with

large number of HW accelerators. However, an excessive level of sharing can degrade

performance. In fact, as the sharing degree increases, the delay to access the shared

HW accelerator may increase. Depending on the sharing degree and the processors that

share the same HW accelerator, the latency may improve or decline performance im-

provement. So, the space of configurations of a common computational task is bounded

by a fully private solution and a fully shared solution. Between these two solutions, each

configuration presents an area/performance trade-off. Thus, the complexity to explore

this space of configuration increases as the number of common computational tasks in-

creases.

This thesis proposes a technique, presented in Figure4.1, that represents a solution for

designers to find out the efficient way to execute the computational tasks of applica-

tions executed on the different processors of a Ht-MPSoC architecture. This technique

is based on a MILP formulations which identify, through the solution found, how to

implement each task. This allows designers to come up, in a short time, with optimal

configuration for a Ht-MPSoC architecture where processors execute identical or differ-

ent applications. For a given set of processors and computational tasks executed on these

processors, the generated solution is a Ht-MPSoC configuration that optimises the area

usage and satisfies the required performance. This is performed via estimating the area

usage and performance gain of different possible configurations of the space of solutions

in order to find the optimal one. Depending on the performance/area consumption trade

off, each computational task can be executed in software or in shared and/or private

HW accelerators.

To reduce the time to search the optimal solution, the proposed technique is based on

an iterative approach. Based on profiling results, our technique increases iteratively

the number of explored tasks. Such process stops when the space exploration process

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 53

Figure 4.1: Proposed technique to extend an AHt-MPSoC with HW accelerators in
order to speedup an application with an optimized area usage

generates a solution or when all tasks are explored. Thus, the generated solution is

a local optimum MPSoC configuration that satisfies the required performance. In the

following subsections, we detail the different process of the proposed technique.

4.2.1 Applications profiling and computational Tasks (CT) identifica-

tion

Our proposed technique starts with compiling and profiling the architecture applications.

Application profiling is an important step since it determines the most computational

applications tasks. Embedded System designers are provided with different CAD profil-

ing tools. These profiling tools are classified into three main categories: software-based,

HW-based and FPGA-based tools [122][123][124]. For FPGA-based embedded systems,

FPGA-based profiling (FPGA-BP) tools have proved better results compared to the

other profiling tools [122] [123]. Thereby for our work we use (FPGA-BP) tools to com-

pile and profile applications.

To select the computational tasks to be candidate for customization and the configura-

tion of their HW accelerators, our technique is based on an iterative approach. Based on

profiling results of the different applications running on the different processors, the most

computational tasks are selected iteratively until the space exploration process generates

a solution. In each iteration, a task is considered as computational if it consumes more

than C% of the overall application execution time. For the first iteration, we compare

the highest profiling percentage values of tasks from one application to another. The

least value will be considered as the initial value of C. Each new iteration decreases the

value of C to the minimum percentage of execution of the next less computational tasks.

Thus, for each iteration, at least one more computational task is included. Thereby,

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 54

each iteration adds more computational tasks to be explored together with the previous

ones until the space exploration process generates a feasible solution.

Figure 4.2 is an example of profiling summary of three different applications. Each

application is constituted of different functions, which are sorted by percent of total

execution time. For this example, the value of C is set to 36. In fact, the largest

percentage of execution for application 1, application 2 and application 3 are respectively

50, 36 and 40. The value of C is equal to the minimum value of the three and thereby is

set to 36. Each function of Figure 4.2 that consume over C% is selected as computational

task. F1, F11, F21 and F22 are selected as initial computational tasks. After a first

exploration, and if the tool cannot generate a solution, the value of C is decreased to

the minimum value between 30, 35 and 38 which is equal to 30 . Thus F2 and F12 are

new computational tasks that may provide additional feasible solutions.

Figure 4.2: Example of profiling results of three different applications executed on a
Ht-MPSoC architecture

4.2.2 Pattern Identifications

The pattern identification step of Figure 4.1 consists on analysing the identified com-

putational tasks of current iteration to look for similarities with the previous defined

patterns and/or to add new patterns. We assume that different computational tasks are

similar if they mainly have the same goal. When a set of similar tasks are identified, a

generic superordinate pattern is defined.

The pattern library is updated in each iteration to include information of new patterns

and/or to update information of existing patterns re-identified in new computational

tasks.

In order to update the pattern library with pattern informations, the new identified

patterns are described in VHDL language and synthesised and then connected to a

processor as HW accelerators. The information of an identified pattern include the

processors on which this pattern is executed, performance gain and area consumption

if it is implemented on HW accelerator, its software start and end execution times on

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 55

the different processors. Information on execution time of the different patterns on the

different processors are also obtained by profiling the application and executing it on the

correspondent processor. The performance gain is expressed in term of clock cycles gain.

The area usage depends on functional modules that constitute the hardware description

of the pattern (fabric slice, DSP block, ect). The identification of tasks similarity is car-

ried out manually. This is due to lack of efficient technique for sharing of HW resources

for coarse grained application-specific instructions. Such techniques are developed for

HW resource sharing of fine grained custom instructions, such as those proposed in [93]

[125]. Recent works have developed these technique for the identification of similarity

for loop computations [126].

4.2.3 Space Exploration

The main goal of the space exploration process is to find the optimal configuration of

a given Ht-MPSoC architecture. This configuration is the one that minimizes the area

consumption and, at the same time, satisfies a required performance. More precisely,

we propose MILP formulations (see Sections 1.3 and 1.4) in order to solve the problem

of customizing the patterns of a given Ht-MPSoC architecture.

Our technique, which is based on MILP formulations, explores iteratively the space of

configurations of the patterns stored in the pattern library and stops when it generates

the first feasible solution. Since the exploration process is not exhaustive, due to the

lack of time to explore all the solution space, the generated solution is a local optimum

Ht-MPSoC configuration.

The outputs of space exploration process are decision variables which determine the

configuration of each HW accelerator. Once the optimal configuration is generated, the

designer can identify if a pattern would be integrated as HW accelerator, and the sharing

degree of each HW accelerator. If the model exploration is unable to find a solution, the

designer has to decrease the C parameter to increase the number of explored patterns.

This step is repeated until the model generates a feasible solution.

4.3 Space exploration in SHt-MPSoC

The aim of this section is to present the space exploration tool to optimise SHt-MPSoC

architectures. In section 3.5.1 of previous chapter, an SHt-MPSoC architecture is defined

as a Ht-MPSoC architecture where n processors have the same number and type of HW

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 56

accelerators. In Ht-MPSoC, when a pattern is added to the pattern library, the space

of configuration of its corresponding HW accelerator is bounded by the fully shared and

the fully private configurations. For each pattern, the fully shared solution implements

only one shared HW accelerator between the n processors. This solution will minimize

the added area cost but it might degrade dramatically the performance. In contrast,

a fully private solution considers m replications of the HW accelerator. This solution

will provide the maximum performance gain but will consume an excessive area usage

which is due to the replication of the m HW accelerators. Between these two extremal

solutions, there is a wide range of configurations each of which offers a trade-off between

performance gain and area cost. This design space exploration has to be carried out by

considering only the symmetric solutions, that are likely to share Hw accelerators with

same performance constraint on all processors. Thereby the selection process is guided

with symmetric configurations consideration.

In the following sections, we present and comment the MILP model proposed to ex-

plore the design space of a given SHt-MPSoC architecture. In section 1.3.1, we discuss

the input and output of the MILP model corresponding to an instance of the studied

problem. Mainly we will precise the data and the variables used in the MILP model

in order to produce an optimal solution. Section 1.3.2 is dedicated to the formulation

of the area cost of an SHt-MPSoC architecture. The area cost represents the objective

function of our MILP model. In other word, in this problem we aim to find a solution

(i.e. an architecture) with the minimum value of the area cost. The following section

presents the formulation of the performance gain of the SHt-MPSoC architecture. This

performance will constitute the constraints of our MILP model

4.3.1 Problem formulation

The architecture is a multi-processor system with n processors running the same applica-

tions, i.e. Single Program Multiple Data model. In a typical data parallel architecture,

the number of processors is a power of two (n = 2i, i ∈ N). Let (T1...Ti...Tp) denotes the

sequence of p computational pattern executed on the n processors. For SHt-MPSoC ar-

chitecture, all the processors have the same number and type of HW accelerators. Thus

the performance gain which is provided by the customization process must be identical

for all processors.

Let’s consider the pattern Tk, k ∈ {1..p}, with its n occurrences in the n parallel appli-

cations. We denote (C0..,Cj ,..,Cm) the set of the possible configurations of Tk, where

m = logn
log 2 . The configuration Cj corresponds to the configuration with 2j shared HW

accelerators. The sharing degree of these HW accelerators is equal to 2j . Thus, C0

corresponds to MPSOC configuration with only one HW accelerator shared between the

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 57

n processors. Cm corresponds to MPSOC configuration with n private HW accelera-

tors (2m = n). The sharing degree of each configuration is equal to
n

2j
. Depending on

area-performance trade-off, Ti can be implemented in m+ 1 different ways.

Let Ak be the required area on the FPGA to implement Tk. For the configurations with

shared accelerators between cores (j ∈ {0..m− 1}), an additional area denoted deltaarea

added to the total consumed area. This is a predefined value that corresponds to the

logic area consumed by the bridges needed to connect shared HW accelerators to their

processors. For these configurations, regardless of the number of HW accelerators, each

processor is connected to a shared accelerator through a bridge. Thus, for all shared

configurations of n-processors architecture, the δarea is a constant value which is equal

to n times the area usage of a bridge.

To evaluate the architecture performance we define different parameters to calculate the

performance gain for each processor. These parameters are defined as follows :

• T0k : denotes the software execution time of the pattern Tk on the n homogeneous

processors.

• td : denotes the delay of execution between two processors. This delay is due to

access to the data inputs stored in shared main memory . The sequential access to

this shared memory causes the start of run of each processor to lag slightly behind

the number of processors in the architecture.

• tacck : the execution-time-reduction obtained when implementing Tk (1 ≤ i ≤ n)

on HW accelerator.

4.3.2 Objective function

In this section, we describe the area optimization problem to implement computational

patterns on the data-parallel MPSoC. Our design space has to explore the software or

HW execution of each pattern and the configuration of each pattern implemented on

Hw accelerators. These choices can be provided with two decisions variables:

• xk a binary variable set to 1 if the pattern Tk is chosen to be customized.

∀k ∈ {1..p}

xk =

 1, if Tk is implemented on HW accelerator

0, otherwise

• yjk a binary variable set to 1 if the pattern Tk is implemented on HW accelerator

following configuration Cj .

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 58

∀k ∈ {1..p}, ∀j ∈ {0..m}

yjk =

 1, if Tk is implemented on HW with Cj

0, else

The objective function is formulated as follows:

Area =
p∑

k=1

m∑
j=0

xky
j
ka

j
k (4.1)

subject to

m∑
j=0

yjk = 1 , ∀k ∈ {1..p} (4.2)

Equation 4.2 is used to indicate that for each pattern Tk, only one configuration can be

chosen as a solution.

The variable ajk denotes the total area required to implement Tk following configuration

Cj and is computed is as follows:

ajk =


Ak ∗ 2j + δarea ,∀j ∈ {0..m− 1}

Ak ∗ n , j = m
(4.3)

In the expression of ajk, the private configuration Cm (j = m) doesn’t consume additional

area units because each processor has each private HW accelerator. However for each

shared configuration, a δarea is added due to bridges consumption.

To linearise the expression of the Area (Equation 4.1), we define a new binary variable

zjk which is expressed as follows:

zjk = xky
j
k (4.4)

In linear form, Equation 4.4 is expressed as follows:

zjk 6 xk

zjk 6 yjk (4.5)

zjk > xk + yjk − 1

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 59

Now, the objective function is formulated as follows:

Area =
p∑

i=1

m∑
j=1

zji a
j
i (4.6)

4.3.3 Performance constraint

For an SHt-MPSoC, since all processors are executing the same application, they require

the same acceleration. Otherwise, the speedup of the architecture is fixed by the pro-

cessor with the minimal gain, thereby the performance gain of the overall architecture

will be minimal. Let T limit denotes the required performance. The total acceleration

for each processor i is expressed as follows:

acci =
p∑

k=1

xk(tacck −
m∑
j=0

Dj
i,k) ≥ T limit, ∀i ∈ {1..n} (4.7)

The Dj
i,k is the contention time required for the processor Pi to share the pattern Tk

with the other processors following the configuration Cj . In other words, it represents

the waiting time needed by Pi to assure accessing shared accelerators of Tj without

conflicts. This variable is expressed in Equation 4.8 as follows:

∀j ∈ {0..m}, ∀i ∈ {1..n}, ∀k ∈ {1..p}

Dj
i,k =

 0 for j = 0 or i = l ∗ n/2j , l ∈ N

xk(T0k − yji (tacck + td)) , otherwise
(4.8)

In this section, we presented a MILP formulation of the design space of application-

specific instructions selection and HW accelerators sharing for a SHt-MPSoC architec-

ture. The implementation of each accelerator depends on the area/performance cost.

The area cost is modelled in the objective function (Equation4.1) and the required per-

formance is imposed as a constraint (Equation 4.7). Our model explores all the possible

accelerators configurations to find the optimal architecture.

4.4 Space exploration in AHt-MPSoC

The aim of this section is to present the space exploration tool to optimise AHt-MPSoC

architectures. In previous chapter, we defined an AHt-MPSoC architecture as an Ht-

MPSoC architecture where n processors execute different applications and they can have

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 60

different number and type of HW accelerators. As in SHt-MPSoC architecture, when a

pattern is selected to be executed as application-specific instruction in an AHtMPSoC

architecture, the space of configuration of the correspondent HW accelerator is bounded

by the fully shared and the fully private configurations. For SHt-MPSoC architecture

(section 4.3), we have only considered symmetric solutions of this space. However, for

an AHt-MPSoC architecture, the design space exploration has to be carried out by

considering symmetric and asymmetric solutions.

In the following sections, we detail the MILP model proposed to explore the design

space of a Ht-MPSoC architecture executing different applications. In section 4.4.1, we

represent the formulation of the MILP model for the optimization of area-performance

cost of AHt-MPSoC architecture. Section 4.4.2 shows how to quantitatively formulate

the area cost of an AHt-MPSoC architecture. The area cost represents the objective

function of the MILP model. Section 4.4.3 represents the formulation of the performance

gain considered as a constraint of the MILP formulation.

4.4.1 Problem formulation

As seen in chapter 3, an AHt-MPSoC architecture execute different multimedia appli-

cations, each of which contains several computational tasks. For these applications, we

demonstrated that the computational tasks are based on a set of common patterns.

Thanks to this communality, the hardware accelerators sharing methodology is benefi-

cial for these architectures. Let {T1...Tj ...Tm} denotes the sequence of selected pattern

and P = {P1, P2, ..., Pi, ...Pn} the sequence of n homogeneous processors.

The hardware accelerators configurations of identified patterns are explored to select

which ones are good enough to satisfy designer’ requirements. Let N = {1, 2, . . . , n}
and M = {1, 2, . . . ,m}.
Each pattern Tj (j ∈M) is specified by a number of parameters. These parameters are

enumerated as following:

• aj : the value of which is the number of HW resources which are needed by Tj to

be implemented as HW accelerator. For each pattern, the value of aj is measured

with an implementation of Tj as private HW accelerator.

• Eji: is a binary parameter which is equal to 1 if the pattern Tj is executed by the

processor Pi , otherwise it is equal to 0.

• tsji and teji: are two parameters respectively for the start-time and the end-time

of pattern Tj on processor Pi. These parameters are expressed in second and are

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 61

determined through profiling step.

• taccj : the value of which is the execution time gain of Tj pattern. This value is

measured with the implementation of Tj as private HW accelerator and is expressed

in second.

4.4.2 Objective function

Our optimization problem aims to minimise of an area objective function. Consider the

n-processors architecture whose applications can be similar or different. These appli-

cations contain a sequence of same patterns {T1...Tj ...Tm}. The implementation of a

pattern on software does not consume HW resources. In contrast, if a pattern is imple-

mented on HW, the HW resources usage depend on the manner of implementing the

HW accelerator as private or shared one. Thus, our objective function has to consider

two decision variables:

• xj : a binary variable that denotes whether Tj is implemented on Hw or on Sw .

∀j ∈M

xj =

 1, if Tj is implemented on HW

0, else

• yjik a binary variable that denotes whether the accelerator (Acc) of task Tj is

shared between processors Pi and Pk or not.

∀j ∈M , ∀(i, k) ∈ N2

yjik=

 1, if Acc of Tj is shared between Pi and Pk

0, otherwise

The objective function is expressed as follow:

Total Area =
m∑
j=1

n∑
i=1

Ejixj
aj∑n

k=1 yjik
(4.9)

subject to

yjii = 1 for j = 1..m and i = 1..n (4.10)

and

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 62

yjik ≤ Eji for j = 1..m and i = 1..n and k = {1..i− 1} ∩ {i+ 1..n} (4.11)

Equation 4.10 guarantees that denominator in Equation 4.9 is non-zero. Indeed, yjik

variable precise if two different processors Pi and Pk share the HW accelerator of the

pattern Tj (j = 1..m). For k = i, if we suppose yjii = 0, for each fully private config-

uration of a pattern Tj , the denominator of Equation 4.9 will be equal to zero for the

iteration of the pattern Tj . Thereby the value of yjii has to be set to one. Equation 4.11

guarantees that the pattern Tj will be implemented only for the processors executing

this pattern.

yjik − yjki = 0 for j = 1..m and (i, k) = 1..n (4.12)

Equation 4.12 guarantees the symmetry of yjik matrix. In fact, to share a HW accelerator

of a pattern Tj between processors Pi and Pk, both yjik and yjki have to be set to one.

Otherwise, if Pi and Pk have not a shared HW accelerator of Tj , both yjik and yjki have

to be set to zero. Thus, in both cases, yjik and yjki are equal.

rjikh = yjik ∗ yjih for j = 1..m and (i, k, h) = 1..n (4.13)

yjih ≥ rjikh for j = 1..m and (i, k, h) = 1..n (4.14)

yjkh ≤ 1 + 2 ∗ rjikh − yjik − yjih for j = 1..m and (i, k, h) = 1..n (4.15)

Equations 4.14 and 4.15 denote that if the same processor Pi share a Hw Acc of Tj with

Pk and Ph then Pi, Pk and Ph share the same Hw Acc of Tj .

In the objective function (Equation4.9), for each processor Pi , we have implicitly defined

the sharing degree for each task Tj . Let shij be this variable defined as:

shij =
n∑

k=1

yjik (4.16)

Figure 4.3 shows an example of decision variables Yj = yjik for the Tj pattern and an

8-processor architecture. Each row i (respectively column k) in the matrix corresponds

to processor Pi (respectively processor Pk) in the MPSoC. The value (1 or 0) on row i

and column k determines if processors Pi and Pk share the same Hw Accelerator for Tj .

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 63

Figure 4.3: yjik variables for a Tj pattern. Each row i (respectively column k)
in the matrix corresponds to processor Pi(respectively processor Pk) in a 8-processor

architecture

For example, from the first three rows (orange region), we deduce that the same HW

Accelerator for Tj is shared between P1, P2 and P3. For this region, for each row, the

usage of HW resources has been reduced by a factor of 3 (sharing degree for P1, P2

and P3) and is equal to aj/shij = aj/3. Likewise, for the pink region, a 4-shared HW

accelerator is shared between P5 , P6 , P7 and P8. For each row i in this region, the

HW resource usage is reduced by a factor of 4. The 4th row of the matrix shows that

P4 has a private HW Accelerator for Tj and consumes aj area units.

To linearise the objective function, we define new continuous variables zij and wij

zij =
1∑n

k=1 yjik
=

1

shij
(4.17)

wij = zijxj (4.18)

The definition of zij can be expressed in linear form as follows:

zij

n∑
k=1

yjik = 1 (4.19)

n∑
k=1

θijk = 1 (4.20)

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 64

Where θijk is a continuous variable expressed as follows θijk = zijyjik and satisfying the

following constraints:

θijk 6 yijk

θijk 6 zij (4.21)

θijk > zij + yijk − 1

The objective function (eq. (4.9)) can be re-written as:

Total Area =
m∑
j=1

n∑
i=1

Ejixjajwij (4.22)

4.4.3 Performance constraint

For many common multimedia-applications, HW accelerators are used to satisfy a re-

quired performance. For example, a processor which execute a jpeg decoder has to

satisfy a performance of 20 decoded images par second. For our model, we define limiti

and acci (i = 1..n), two temporal parameters. limiti is the required execution-time

gain for the processor Pi.acci is a variable that calculate the execution-time gain of the

generated solution. The expression of acci is imposed as a constraint and needs to be

upper or equal the required limiti (Equation 4.23).

acci ≥ limiti, ∀i ∈ N (4.23)

When a pattern is shared between different processors, access of each processor to the

shared Hw accelerator may be delayed. This delay is a crucial parameter to consider in

the performance constraint. Let Dji denotes the delay of processor Pi to access a shared

Hw accelerator of Tj and is expressed as fllows:

Dji = Max(0, dji) (4.24)

dji = tehjk − tshji, , k = max{1, ..., i− 1} and yjik = 1 (4.25)

Now, the performance constraint can be expressed as follows:

acci =
m∑
j=1

Ejixj(taccj −Dji) ≥ limiti, ∀i ∈ N (4.26)

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 65

In Equation 5.2, the term (taccj − Dji) is multiplied by xj to set the acceleration of

Tj to zero when it is executed on software (xj = 0). From Equations 4.24 and 4.25,

we note that Dji depends on tehjk and tshji, j ∈ M , i ∈ N , k ∈ {1, 2, ..., i}. tehjk and

tshji are continuous variables that define respectively the start-time and the end-time of

executing Tj n processors Pk and Pi. These variables are calculated following Equation

4.27 and depends on : software execution time of Tj on Pk and Pi; acceleration provided

with Tl patterns (l = 1..j − 1), on processors Pk and Pi. T and are calculated as follow:

∀j ∈M,∀i ∈ N, ∀k ∈ {1, 2, ..., i},

tshji = tsji −
j−1∑
l=1

xl(accl −Dli) (4.27)

tehjk = tejk −
j∑

l=1

xl(accl −Dlk)

In Equation 4.24, the expression k = max{1, ..., i − 1} and yjik = 1 denote the last

processor sharing the Hw Accelerator of Tj with Pi. In order to linearise this Equation,

we define a new binary variable pjik which is defined as follow:

pjik =

 1, if Pk is the last processor sharing Tj with Pi

0, else

Now, Equation 4.24 can be rewritten as follows:

Dji =
i−1∑
k=1

pjikdjik (4.28)

4.4.3.1 Calculation of the access-delay to a shared HW accelerator

We presented in Equations 4.24 and 4.25, the expression of the delay Dji of the processor

Pi to access a shared HW accelerator of the pattern Tj . The calculation of this delay

depends on the start-time of software execution of Tj on Pi(ts
h
ji) and the end-time of

hardware execution of Tj on the last processor Pk (tehjk), sharing Tj with Pi.

In Equation 4.29, we defined a binary variable pjik to find out the last processor Pk

sharing a pattern Tj with the processor Pi.

For each pattern Tj and for each processor Pk, the search of pjik is guided through the

following assumptions:

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 66

1. If processors Pk and Pi haven’t a shared HW accelerator of pattern Tj (yjik = 0)

then pjik will be equal to zero.

pjik ≤ yjik ∀j ∈M, ∀(i, k) ∈ N2 (4.29)

2. For a processor Pi and a pattern Tj , the sum of pjik over k is equal to 1 or 0

n∑
k=1

pjik ≤ 1 ∀j ∈M, i ∈ N

3. If processor Pi is the first processor to access a shared HW accelerator of pattern

Tj then pjik (k=0..n) will be equal to zero.

∀j ∈M, ∀i ∈ N, ∀k ∈ {1, 2, . . . , i}

if (
i−1∑
k=1

yjik ≤ 0) Then
n∑

k=1

pjik ≤ 0 (4.30)

4. If Pk is the last processor sharing with Pi the HW accelerator of pattern Tj then

pjik will be equal to 1. In other words

∀j ∈M, ∀i ∈ N, ∀k ∈ {1, 2, . . . , i}

if (yjik −
i∑

l=k+1

yjil ≥ 1) Then pjik ≥ 1 (4.31)

In a linear form, this assumption can be expressed as follows:

∀j ∈M,∀i ∈ N, ∀k ∈ {1, 2, . . . , i}

yjik −
i∑

l=k+1

yjil + V 1.rjik ≥ 1;

pj,i,k + V 2.rj,i,k >= 1;

V 3(1− rj,i,k) >= yj,i,k −
i∑

l=k+1

yjil;

Where V 1, V 2 and V 3 are large constants and rjik is a binary variable.

5. If Pk is not the last processor sharing with Pi the HW implementation of task

Tj then pjik will be equal to 0. This assumption is expressed as an IF-THEN

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 67

constraint:

∀j ∈M,∀i ∈ N, ∀k ∈ {1, 2, . . . , i}

if
i∑

l=k+1

yjil ≥ 1 Then pjik ≤ 0 (4.32)

In linear form, this constraint is expressed as follows

∀j ∈M,∀i ∈ N, ∀k ∈ {1, 2, . . . , i}
i∑

l=k+1

yjil + V 1.qjik ≥ 1;

1− pj,i,k + V 2.qj,i,k ≥ 1;

V 3(1− qj,i,k) ≥
i∑

l=k+1

yjil; ;

Where qjik is a binary variable.

Now the period constraint can be re-written as:

∀i ∈ N

acci =
m∑
j=1

taccj −
i−1∑
k=1

pjik ∗ (te hwjk − ts hwji) >= limiti
(4.33)

4.4.3.2 Illustrative example to calculate the access-delay to a shared HW

accelerator

In this section, we illustrate an example to find out pjik variables for Tj pattern and

to calculate the delay to access the shared Hw accelerator. For each pattern Tj , the

MILP model look for the configuration of its HW accelerator that satisfy the required

performance and minimize the area usage. If we consider the solution of Figure 4.3, we

note that two HW are implemented on 8-processor architecture to execute the pattern

Tj . The first Hw accelerator is shared between 3 processors (P1, P2 and P3). Figure 4.4.a

shows the execution of pattern Tj for these processors on software. The delay of each

processor to access the shared Hw accelerator (Figure 4.4.b) was calculated through the

determination of pjik variables.

From Figure 4.24.b, we note that P1 access to the shared Hw accelerator of Tj without

a delay. In fact pjik variables (for i = and k = 1..8) are found out using matrix 4.3

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 68

Figure 4.4: Illustrative example to calculate an access-delay to a shared HW acceler-
ator

and Equation 4.30, and are equal to 0. This is explained by the fact that P1 is the first

processor executing the pattern Tj and thereby is the first processor accessing to the

shared HW accelerator. Thus, D1j , the delay of P1 to access Tj was calculated from

Equation4.28 and was equal to zero.

In Figure 4.24.b the delay of processor P2 is non zero. In fact, For processor P2, pjik

variables (for i = 1 and k = 2..8) are given by Equations 4.29 and 4.31 and are equal

to zero except for P1 (pj21 = 1). D2j was calculated using Equations 4.33 and 4.25 as

follows:

D2j = pj,2,1 ∗ dj,2,1 = pj,2,1 ∗ (tehj1 − tshj2)

Finally, for processor P3, D3j was calculated following Equations 4.33 and 4.25 :

D3j = Max(0, dj32) = Max(0, tehj2 − tshj3) = 0

Since tehj2 − tshj3 is negative, the delay of processor P2 to access P2 is negated. This is

explained by the late execution of Tj on P3 when compared to its execution on P1 and

P2.

4.5 Conclusion

This chapter presents an original technique to extend Ht-MPSoC architectures with

HW accelerators in an efficient way. In order to save time and effort, an iterative ap-

proach is adopted to select the computational tasks to be explored. In each iteration,

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 69

the computational tasks are explored to look for a Ht-MPSOC configuration that min-

imizes the area consumption and provides the required performance. The exploration

process combines the design space of HW customization and HW accelerators sharing

for common computational tasks. Such an integration unveils new trade-off between

area consumption and performance gain. The exploration process integrates a MILP

formulation which is based on linear equations to define the objectives and constraints.

In order to guarantee the efficiency of the exploration process, metrics that quantify the

execution time overhead when HW accelerators sharing is enabled are used.

Chapter 5

Experimental Results

5.1 Introduction

This chapter presents experimental results obtained during the validation of the contri-

butions presented in chapters 3 and 4. In order to validate and evaluate the proposed

HW accelerators sharing methodology, we present in section 5.3 a case study based on

real application. A discussion on the impact of HW accelerators sharing on performance,

area and energy trade-off is presented. The proposed technique for the selection of op-

timised Ht-MPSoC architecture is evaluated in section 5.4. Section 5.5 concludes this

chapter.

5.2 Target Platform and Application

This thesis uses FPGA devices from Xilinx, Inc [127]. Xilinx was the first company

to manufacture FPGAs and they are until now the market leaders [128]. It comprises

approximately 47% market share versus 41% to Altera company.

The Xilinx FPGA is made up of different blocks, digital signal processing (DSP48) units,

digital clock manager (DCM), block RAMs (BRAM), programmable interconnect points

(PIP) and configurable logic blocks (CLB), etc (Figure 5.1). Each CLB is constituted

of four interconnected slices. The slices are made up of look-up tables (LUT), flip-flops

(FF), multiplexers, and a few gates. Our target platform for this thesis consists of a

Xilinx ML507 FPGA board [7]. The Xilinx ML507 board makes use of the XC5VFX70T

FPGA chip with other components such as DDR memory, Flash memory, Ethernet and

multiple PC interfaces like USB and PS/2. Figure 5.2 shows a schematic overview of

the ML507 block diagram.

70

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 71

Figure 5.1: General structure of an FPGA

Figure 5.2: Block diagram of ML507 board [7]

5.2.1 Xilinx Development Tool

Xilinx recommends ISE (Integrated Synthesis Environment) Design Suite for design

starts with Spartan-3 to Virtex-7. In this thesis, we used ISE design suite 12.4. Figure

5.3 illustrates the design flow of Xilinx Development Environment which is essentially

based on: SDK, XPS, ISE and PlanAhead. The ISE Project Navigator (ISE) allows

the design and the synthesis of Verilog HDL or VHDL modules. The synthesis process

generates the netlist file using Xilinx Synthesis Technology (XST). The Xilinx Platform

Studio (XPS) is a part of a function of the Embedded Development Kit (EDK). XPS

is used to design architectures based on embedded processor, such as Microblaze or

PowerPC. The application running on the embedded processor is implemented using

Software Development Kit (SDK). The application is compiled to an Executable and

Linkable Format (ELF) file. Using Data2MEM utility [129], various files generated by

these tools are assembled into a bitstream file for initializing FPGA.

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 72

Figure 5.3: Design flow of Xilinx development environment

5.2.2 Microblaze Processor

To speed up the design of digital systems, FPGA companies propose their softcore pro-

cessors and provide designers wizard tools to export the most suitable configuration

[130].

The Microblaze is a Xilinx softcore, proposed with the complete programming environ-

ment EDK. It is a RISC (Reduced Instruction Set Computer) processor implemented

on the FPGA internal resources (arithmetic, logic and memory). The FPGA resource

usage of a Microblaze processor depends on its configuration including cache size or not,

pipeline depth (3-stage or 5-stage), memory management unit enabled or not, etc.

The Microblaze is a 32-bit Harvard compliant architecture. It uses two Local Mem-

ory Buses (LMB) for instruction and data memories, two Block RAMs (BRAM) and

peripherals are connected via Processor Local bus (PLB) or On-chip Peripheral Bus

(OPB).

5.2.3 XILINX Interconnect System

Xilinx propose versatile interconnect systems to facilitate the design of embedded sys-

tems based on Microblaze processor. The first proposed I/O bus is the OPB bus. Later,

XILINX has developed another I/O bus and migrates all processor IP cores to this new

PLB bus. This migration is motivated by the neeed to increase the system performance

[8] . The PLB bus, is a traditional system-memory mapped transaction bus with mas-

ter/slave capability. PLB bus supports a 32-bit address bus and 32-bit, 64-bit, or 128-bit

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 73

data bus. As highlited in Figure 5.4, the PLB transactions are divided into two phases:

address phase and data phase. The address phase consists on driving requested address

and transaction qualifiers to all slaves. This phase starts with an assertion of valid signal

and finishes with an acknowledgement signal.

Figure 5.4: PLB address phase and data phase [8]

To access to local-memory (FPGA BRAM), Microblaze uses a dedicated LMB bus, which

reduces loading on the other buses. User-defined coprocessors are supported through a

dedicated FIFO-style connection called FSL (Fast Simplex Link). The coprocessor(s)

interface can accelerate computationally intensive algorithms by offloading parts or the

overall computation to a user-designed hardware module.

5.2.4 Implementation of a Single-processor Architecture on ML507

Board

In this subsection, we describe the implementation of a single processor architecture on

ML507 board. This architecture will be useful along this chapter in order to profile

applications and to measure their execution time. The architecture is presented in

Figure 5.5 and is composed of a Microblaze processor, on-chip memory (BRAM block in

Figure 5.5) and a PLB bus to communicate the processor to different peripherals. The

BRAM blocks are connected to processor through data and instruction memory buses

(DLMB and ILMB in Figure 5.5). The xps uartlite is used as peripheral for debugging

and I/O purposes. The xps timer peripheral measures data transfer times and serves to

build profiling results. The CF card stores input files for the applications which will be

encoded and communicated to the processor via SysACE compactflash.

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 74

Figure 5.5: Implemented Microblaze-based architecture for jpeg-encoder application

5.3 Evaluation of Customized Ht-MPSoC Architecture with

Shared and/or Private HW Accelerators

In this section, the efficiency of the proposed HW accelerators sharing methodology

will be evaluated using the jpeg encoder application. At the beginning of this section

we give an overview of the jpeg encoder application as well as preliminary results of

the implementation of this application on a Microblaze processor (total execution time,

profiling results and a synthesis summary). Then, the implementation results of jpeg

encoder application on different Ht-MPSoC configurations will be presented. The impact

of HW accelerators sharing on the efficiency of this architecture will be presented.

5.3.1 Overview of Jpeg Encoder Application

JPEG stands for Joint Photographic Experts Group and it refers to the committee that

created the JPEG [131] [132]. JPEG adopts a lossy compression approach based on

the discrete cosine transform (DCT). This mathematical algorithm converts each frame

of the video source from the spatial (2D) domain into the frequency domain. This

algorithm is capable to carry out a high degree of compression with minimal loss of

data. Figure 5.6 presents the main five steps of JPEG compression. The first step

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 75

consists on converting the image from RGB into a different color space called Y`CBCR.

Y component represents the brightness of a pixel, and the CB and CR components

represent the chrominance which is divided into blue and red components. The DCT

transformation is the second step and aims to remove redundant image data. The third

step allows the reduction of the amount of information in the high frequency components.

Thus for the quantization process, each component is divided in the frequency domain by

an adequate constant and then rounded to the nearest integer. This rounding operation

is the only lossy operation in the whole process. The fourth step arranges the image

components in a ”zigzag” order using run-length encoding (RLE) algorithm that groups

similar frequencies together. The final step outputs the DCT block’s elements using an

entropy encoding mechanism that combines the principles of RLE and Huffman encoding

[131].

Figure 5.6: Jpeg encoder processing steps

5.3.2 Preliminary Implementation Results for Jpeg-encoder Applica-

tion on Microblaze-based Architecture

In order to obtain preliminary results of the implementation of the JPEG encoder on

a Microblaze-based architecture, we configured the BRAM of the architecture of sec-

tion 5.2.4 to 128 Kbytes to store the executable file of the application. The baseline

JPEG encoder application is downloaded from [132]. Tables 5.1 and 5.2 summarize the

synthesis report of the implemented architectures.

On this single-processor architecture each bmp image is compressed to jpg format in

0.16 second. Thus, 3.27 seconds are needed to encode 20 images. Profiling results of

jpeg encoder application are presented in Figure 5.7. To achieve good video quality, the

encoder process has to encode 20 image frames per second. In order to take advantages

of the data-level parallelism of the jpeg encoder and to ameliorate its execution time,

we implemented this application on a 2 and 4-processor architectures

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 76

Table 5.1: Logic utilization of baseline components Of Microblaze-based architecture

Flip-Flop used LUTs used Bram used

System 2510 2596 32

Timer 358 287 -

MDM 126 124 -

Sys ace 210 96 -

RS232 144 130 -

Microblaze 1451 1549 -

BRAM - - 32

Table 5.2: Synthesis report of Microblase-based architecture

Slice Logic Utilization Available Utilization Pourcentage

Number of slice register 44800 2110 4%

Number of slice luts 44800 2283 5%

Number of occupied slices 11200 890 7%

In our experiments a master processor controls the transfer of images between the CF

card and shared memories. Each slave processor have a shared memory with the master

processor. When the master processor finishes writing an image in the shared memory,

the slave processor is activated by setting its flag. The slave processor starts executing

its program and stores the resulting image in shared memory.

Figure 5.7: Profiling results of jpeg encoder application executed on Microblaze pro-
cessor

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 77

The execution time for the 2-processor configuration is measured to 0.0815 sec/image

and thus we obtain 1.63 seconds to process 20 images. For the 4-processor configuration,

the execution time is measured to 0.065 sec/image and thus 1.3 seconds are needed to

process 20 images. We note that increasing the number of processors do not provide the

sufficient speed-up to encode 20 images per second. In next section, the execution time

will be improved by customizing the computational tasks. Different configurations with

different types and sharing degrees of HW accelerators will be evaluated and compared.

5.3.3 Evaluation of Microblaze-based MPSoC Configurations with Pri-

vate and Shared HW accelerators

In the following, we implement different SHt-MPSoC configurations executing the data-

parallel jpeg-encoder application. The integration of HW accelerators is intended to

improve performance of the jpeg encoder application. Based on profiling results of Fig-

ure 5.7, we select HDCT and VDCT as computational patterns which are candidate

for HW customization. In order to improve the performance of the overall architecture,

SHT-MPSoC configurations customize the same computational tasks. For each multi-

processor architecture, the number of shared configuration depends on the number of

processors. For example for a 2-Microblaze architecture, for each accelerator, only one

shared configuration is possible. However, for a 4-Microblaze architecture, for each HW

accelerator, two shared configurations are possible (2-shared configuration and 4-shared

configuration). Figure 5.8 is an example of implemented architecture with 4 Microblazes

and two shared HDCT HW accelerators. Each shared HW accelerator has its private

plb bus (Sh1 and Sh2 in Figure 5.8). For each shared HW accelerator, two plb bridges

are connected to its private bus as masters to communicate the shared HW accelerators

to their processors.

Table 5.3: Acceleration and area consumption of HDCT and VDCT tasks

Acceleration
(106clock cycles)

Area usage
Luts slices Slice registers

HDCT 203 20.25 6126 782

VDCT 188 f 17.75 5688 680

Table 5.3 details the synthesis results of the HDCT,VDCT HW accelerators and their

acceleration. The acceleration of each HW accelerator is measured by Equation 5.1 in

clock cycles, where SW exec(task) and HW exec(task) denote the execution of the

correspondent task on the processor and on HW accelerator respectively.

acceleration(task) = SW exec(task)−HW exec(task) (5.1)

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 78

Figure 5.8: Example of implemented architecture: Configuration with four processors
and two 2-shared HDCT HW accelerators

In the following, we expose results of area consumption, execution time and energy con-

sumption of different SHt-MPSoC configurations executing the jpeg encoder application.

Varying the number of processors in the architecture, we implemented different private

and shared architectures. In order to synchronize the access of processors sharing the

same HW accelerator, a synchronization flag is added to its HW description (See Figure

5.9).

Figure 5.9: Synchronization mechanism for a shared HW accelerator

The area consumption and the execution time of the implemented configurations are

depicted in Figures 5.11 and 5.10. In these figures, the x axis corresponds to the different

configurations. For example for p = 4, the configuration (2,2) corresponds to an SHt-

MPSoC with 4 Microblazes, two 2-shared HDCT accelerators and two 2-shared VDCT

accelerators.

From Figure 5.10, we note that the implementation of the configuration with 4 Mi-

croblaze processors, 4 HDCT HW accelerators and 4 VDCT HW accelerators was not

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 79

Figure 5.10: Slice percentage occupation of different implementations measured on
the Xilinx ML507 for different multiprocessor architectures (p=1,2,4) and (HDCT,
VDCT) configurations. For p=4 and (4,4) configuration, the area occupation (140%)

is estimated based on the other results.

possible due to FPGA resources constraint. So, without HW accelerators sharing, we

cannot take advantage of both HDCT and VDCT customization. Indeed, thanks to

HW accelerators sharing methodology, the HW accelerators of HDCT and VDCT were

implemented on the same architecture, presented by configurations (1,1) and (2,2) in

Figure 5.10.

Figure 5.11: Execution time in seconds to encode 20 images measured on differ-
ent multiprocessor architectures (p=1,2,4). For the p=4 and (4,4) configuration, the

execution time is estimated based on the other results.

From figure 5.11, we note an overhead between configurations with the same number

of processors integrating the same types of HW accelerators but implementing different

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 80

number of HW accelerators for the same task. For example, in Figure 5.11, for p = 2,

both (1,1) and (2,2) configurations used HDCT and VDCT HW accelerators. However,

the configuration (1,1) has only one shared HW accelerator for each task whereas the

configuration (2,2) has two private HW accelerators for each task. The overhead is due

to delay caused by accessing the shared HW accelerator through a bridge (See Figure

5.8). Figure 5.10 confirms that the implementation of private HW accelerators con-

sumes much more area than the configuration with shared accelerators. For instance,

the configuration with 1 shared HDCT accelerator reduces the area consumption by 37%

compared to the 4-private HDCT configuration. These results show that our proposed

technique of sharing hardware accelerators offers a reduced area consumption with a

satisfied performance.

The reduced area consumption, provided with the proposed sharing methodology, of-

fers the possibility for the HDCT and VDCT HW accelerators and the processors to

be included in the same FPGA chip and so providing better gain in execution time

and reduced area cost. This integration on the same chip was not possible using the

private approach. Only configurations with 4 Microblaze processors and implementing

HDCT and VDCT HW accelerators, configurations (1,1) and (2,2) for p = 4, satisfy the

requirement of 20 encoded images per second. The configuration (1,1) and p = 4 is the

most efficient architecture since it satisfies the required performance and consumes less

area logic than the configuration (2,2).

Figure 5.12: Energy consumption of the different architectures per encoded im-
age(joules)

Figure 5.12 presents the total energy consumption per encoded image. These values

correspond to the static and the dynamic parts of the energy consumption for the whole

FPGA. This figure shows that the 1-Microblaze architecture consumes an important

energy per image compared to the other architectures. This important difference is

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 81

explained by the reduced execution time for multi-Microblaze configurations. We also

notice that the different multiprocessor configurations with the same number of HW

accelerators have approximately the same energy consumption. For the 2-processor

architecture configuration, the implementation of 1 shared HDCT and 1 shared VDCT

accelerators, noted (1,1) and P=2 in Figure 5.12, consumes the same energy as the

implementation of two private HDCT accelerators, (2,0) and p=2 in Figure 5.12, but

with more increased execution time (figure 5.11).

5.4 Experimental Results for the MILP Models

In this section, in order to evaluate the effectiveness of MILP model exploration of

proposed technique presented in chapter 4, we give experimental results of synthetic

and real applications. For each case study, we explore the design space configurations

for different performance constraints and we compare area consumption and execution

time of generated solutions to real FPGA measurements.

5.4.1 Case study 1: Synthetic Applications

In this subsection, we use synthetic applications that are produced based on three com-

putational patterns and others non-computational tasks implemented as loop iterations,

as illustrated in Figure 5.13. For the different processors, we vary the number of iter-

ations (i, j and k) of the non-computational loops to obtain different applications and

different delays between the computational tasks T1 to T3. The three computational

tasks consist on:

• T1 implements an inversion of a 16-bit vector.

• T2 implements a multiplication of 8*8 matrices of 32-bits integers.

• T3 implements search the maximum value in a 64-elements vector of 32-bits inte-

gers.

Table 5.4 summarizes the execution time of T1, T2 and T3 tasks on the Microblaze

processor and their area requirement. Note that the area requirement is presented in

term of area unit. Here, an area unit corresponds to 150 slices. In these experiments

only the additional area needed for HW accelerator is given, as the number of soft-cores

is constant and has been fixed to 8.

Figure 5.14 presents the logic area usage calculated based on our proposed MILP model

while varying the required speed-up. The required speed-up is calculated in Equation

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 82

Figure 5.13: Generation of different synthetic applications

Figure 5.14: Area usage (y-axis) of the MILP model generated configurations for
different speed-up (x-axis) Vs. configurations 8 processors without HW accelerators.

FPGA-based implementation results (real measurements) are also given.

Table 5.4: T1, T2 and T3 area and execution time information

Area usage (area unit) SW time (cycles) HW time (cycles)

T1:Data inversion loop 2 440 222

T2:Loop multiplication 15 3815 213

T3:Search maximum 4 2000 1200

5.2 using the required execution time gain limiti and Tsw, the execution time without

HW Accelerator.

speedup =
Tsw

(Tsw − limiti)
(5.2)

In Figure 5.14, the configurations given by the MILP model to satisfy 1.007 and 1.014

speed-ups consume only 2 area units. These solutions have only one shared HW ac-

celerator for T1 (x1 = 1 and y1ik = 1), whereas T2 and T3 are executed in software

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 83

(x2 = 0, x3 = 0). In contrast, when the speed-up is increased, the generated solutions in-

tegrate T2 and T3 on HW accelerators. In Figure 5.14, the solution given for a speed-up

of 2.15 consumes 25 additional area units to implement HW accelerators. This solution

represents a configuration with HW accelerators for T1, T2 and T3 (x1 = 1, x2 = 1 and

x3 = 1).

To illustrate the impact on performance and area consumption when HW accelerators

are shared, we compare configurations of different points in Figure 5.14 consuming the

same area. In Table 5.5, we compare the MILP outputs for points 1.6 and 1.75 of Figure

5.14. Both solutions need 30 additional area units to satisfy the required speed-ups, but

they correspond to different configurations. In fact, for 1.6, the MILP model generates

an AHt-MPSoC architecture with two HW accelerators of T2, one shared between (P1,

P4, P5, P8) and the second is shared between (P2, P3, P6, P7). Whereas the AHt-

MPSoC architecture which provides a speed-up equal to 1.75, has also HW accelerators

of T2, but the first one is shared between (P1, P3, P5, P6) and the second one is shared

between (P2, P4, P7, P8). We deduce that, different combinations of processors sharing

the same HW accelerator could impact the performance of AHt-MPSoC architecture. In

fact as noted from Table 5.5, the combination of processors to implement the shared HW

accelerators of T2 impacts the delay matrix. For each constraint, the MILP exploration

looks for the combination whose time delay results the required speed-up. Thus, for a

fixed area on the FPGA, the designer has several possible configurations and he/she will

choose the optimal configuration that provides higher performances.

Table 5.5: Comparison of generated configurations for T2 task for two different speed-
ups

Speed-up=1.6 Speed-up=1.75

Area cost 30 30

Combination of
processors

(P1, P4, P5, P8)
(P2, P3, P6, P7)

(P1, P3, P5, P6)
(P2, P4, P7, P8)

Delay vector

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 200 0 350 190 520 350


0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 110 430 120 310


Figure 5.14 also demonstrates that the maximum speed-up is provided with a reduced

area-usage configuration compared to the configuration with only private HW acceler-

ators. The 8-processor architecture with private HW accelerators for T1, T2 and T3

patterns provides a speed-up equal to 2.6 and consumes 136 area units. To guarantee

the same speed-up, our MILP model generates a configuration that consumes only 96

area units. The generated AHt-MPSoC architecture integrates T1, T2 and T3 on HW

accelerators (x1 = x2 = x3 = 1 as shown in Table 5.6). This architecture has 4 HW

accelerators for T1, 4 HW accelerators for T2 and 7 HW accelerators for T3. In Table

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 84

5.6, y1ik vector indicates that for T1, processors (P1, P2, P3, P4) and (P5, P7) have

two shared HW accelerators and (P6) and (P8) have their private ones.

Table 5.6: MILP Model resolution for a speed-up equal to 2.6

Model Vari-
ables

Variables value

Model inputs

N 8
M 3

acc[M]
¶

200 3375 1000
©

a[M]
¶

2 15 4
©

te[M][N]


440 670 910 1150 1240 1360 1470 1680
4255 4485 4725 4965 5055 5175 5245 5495
6255 6485 6725 6965 7055 7175 7245 7495


limit[N]

¶
4150 4100 4200 4280 4300 4350 4500 4575

©
Decision variables

xj
¶

1 1 1
©

y1ik



1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1


In Figure 5.14, we also compare the area usage of the MILP-based generated results and

the real results obtained with the implementation on the FPGA. From this figure, due

to the extra consumed logic-area needed by the bus-bridges, we note a slight overhead

difference between real measurement and MILP estimations. The area overhead depends

on the number of implemented patterns as shared HW accelerators and is comprised

between 3% and 6%. For a speed-up equal to 1.6 only T2 is implemented as shared

HW accelerator, thus the area overhead is about 3%. While for a speed up equal to

2.15, all patterns are mapped on shared HW accelerator and the area overhead reaches

6%. These results demonstrate that the proposed MILP model produces results close to

those obtained with real implementation.

5.4.2 Case study 2: Jpeg Codec Application

In this section, we evaluate the proposed MILP-based exploration of Ht-MPSoC ar-

chitectures. Figure 5.15 presents a general overview of the Jpeg codec. The image is

decomposed into 8*8 blocks of pixels. Each block is compressed through the encoder

process. The array of compressed blocks is stored or forwarded to transmission channels.

The image is reconstituted through the decoder process.

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 85

Figure 5.15: Jpeg encoder and decoder tasks

In our experiments, we use a 10 Kbytes image and we profile the jpeg-encoder and the

jpeg-decoder applications on a Microblaze processor. Profiling results show that DCT

(respectively IDCT) is the most time-consuming function for jpeg-encoder (respectively

jpeg-decoder) application. The DCT function is mainly composed of two functions: hor-

izontal DCT (noted HDCT) and vertical DCT (noted VDCT). Each function consumes

almost 20% of the whole execution time. The IDCT function is composed of horizontal

IDCT (IHDCT) and vertical IDCT (IVDCT). Each function consumes almost 15% of

the jpeg-decoder execution time. The 2D-DCT and 2D-IDCT computations are detailed

in equations 5.3 and 5.4.

Figure 5.16: DCT and IDCT functional decomposition

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 86

F (u, v) =
1√
2N
∗C(u) ∗C(v)

N−1∑
y=0

N−1∑
x=0

f(x, y) ∗ cos
(2x+ 1) ∗ u ∗ π

2N
∗ cos

(2y + 1) ∗ v ∗ π
2N

(5.3)

f(x, y) =
1√
2N

N−1∑
v=0

N−1∑
u=0

C(u) ∗ C(v)F (u, v) ∗ cos
(2x+ 1) ∗ u ∗ π

2N
∗ cos

(2y + 1) ∗ v ∗ π
2N

(5.4)

Where

C(u) =


1√
2N

if u = 0

0 if u ≥ 0
(5.5)

The 2D-DCT and 2D-IDCT are computed using the separability property of this trans-

form. This means that F(u,v) and f(x,y) can be computed in two separate steps. Each

2-D transform (forward or inverse) is divided in two 1-D transform. The separated trans-

formations can also be expressed in matrix operations (Equations 5.6 and 5.7). Figure

5.16 details DCT and IDCT computations.

F = T ∗ f ∗ T t (5.6)

f = T t ∗ F ∗ T (5.7)

Where

T(i, j) =


1√
N

if i = 0

2√
N
∗ cos

(2j + 1)iπ

2N
if i > 0

(5.8)

For each function of Figure 5.16, the computational parts are highlighted to be imple-

mented as custom instructions. The HDCT and IHDCT parts consist on multiplication

of 1*8 matrix with an 8*8 matrix while the VDCT and IVDCT parts consist on a multi-

plication of 8*8 matrix with an 8*1 matrix. Thus, we observe that we can only associate

one pattern for HDCT and IHDCT tasks and another pattern for VDCT and IVDCT

tasks.

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 87

The HDCT/IHDCT and VDCT/IVDCT patterns consume respectively 28 and 26 area

units when implemented on a dedicated HW accelerator. In these experiments an area

unit corresponds to 70 slices on the FPGA.

The jpeg encoder/decoder applications will be explored on a 8-processor MPSoC archi-

tecture, in which four processors compute the encoder application while the four others

execute the decoder application. The optimal AHt-MPSoC configuration will be selected

through the MILP-based exploration process. The exploration finds out the sharing de-

gree of each pattern to minimize the consumed area while respecting the performance

constraint. Thus, the HDCT/IHDCT and VDCT/IVDCT patterns information are in-

serted into the MILP model. For each processor, the performance constraint is set to

ensure the 20 images/second requirement of the jpeg-codec application.

Figure 5.17 shows the area usage of the MPSoC configurations using HW accelerators

when varying the performance constraint. For the first five points, the model generates

the same solution with a minimum area usage. These points only integrate one pattern

(x1 = 1 and x2 = 0) and correspond to a fully shared HDCT/IHDCT HW accelerator

between processors. For a slight increase in speed up, the fully shared configuration can

Figure 5.17: Area usage (y axis) of the MILP model for the generated configurations
for different speed-ups. The speed-ups are calculated relative to the configuration with

8 processors without HW accelerators.

no more satisfy the performance constraint. This is mainly due to delay and conflicts

to access shared HW accelerators. In Figure 5.17, for speeds-up equal to 1.18, 1.2 and

1.22, the model generates solutions with a 4-shared HW accelerators. These solutions

consume 52 area units and integrate two VDCT/IVDCT HW accelerators. The first one

is shared between P1, P3, P6 and P8 processors while the second is shared between P2,

P4, P5 and P7.

For a speed-up greater than 1.22, configurations with only one pattern can no more

satisfy the required speed-up. For example, in Figure 5.17, for speed-ups of 1.25 and 1.27,

the MILP generated solutions integrate HDCT/IHDCT and VDCT/IVDCT patterns

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 88

(x1 = 1 and x2 = 1). These solutions consume 54 area units and integrate a fully

shared HW accelerator for HDCT/IHDCT pattern and a fully shared HW accelerator

for VDCT/IVDCT pattern. Table 5.7 summarizes the presented results and highlights

Table 5.7: Generated configurations for different speed-ups (S)

1.02 ≤ S ≤ 1.16 1.17 ≤ S ≤ 1.22 ≤ S ≤ 1.45 S ≥ 1.47

Area cost 28 52 80 108

x[m] {10} {01} {11} {11}
nb of HW acceleratorsfor T1,
nb of HW accelerators for T2

1,0 0,2 1,2 2,2

the variation of the area cost and the number of integrated HW accelerators to provide

the required speed-ups 5.17.

In Figure 5.17, we note a slight overhead between our MILP results and real measure-

ments. As mentioned in 5.4.1, this is due to bridge between processors and shared HW

accelerators.

In order to evaluate the area efficiency of our proposed AHt-MPSoC configurations, we

compare different model-based solutions to SHt-MPSoC architectures with only private

HW accelerators. In Figure 5.17, the AHt-MPSoC configuration that provides a speed-

up equal to 1.22 consumes 52 area units. Whereas, without hardware sharing, this

speed-up is provided with a fully private SHt-MPSoC architecture that integrates VDC-

T/IVDCT HW accelerators and reaches 208 units of area usage. Also without hardware

sharing, the maximum speed-up requires 432 area units to map HDCT/IHDCT and

VDCT/IVDCT patterns on HW accelerators for all the processors. In Figure 5.17, for

this speed-up, our model generates an AHt-MPSoC configuration that consumes 108

area units.

5.5 Conclusion

The experiments presented in this chapter have demonstrated that the proposed HW

accelerators sharing methodology allows an intelligent usage of available hardware re-

sources. Our approach has been applied and tested with jpeg encoder application in an

FPGA emulation platform. The FPGA prototyping allows measuring the performance

gain/area usage trade-off of Ht-MPSoC configurations with shared HW accelerators in

comparison to private ones. When HW sharing is disabled, the implementation of two

types of HW accelerators was not possible. However, configurations that enable HW

accelerators sharing integrate more computational tasks as HW accelerators. In addi-

tion, the implementation of different configurations with different sharing degree has

demonstrated that increasing the level of sharing preserves roughly the same speed up

Chapter 4. Design Space Exploration in Shared Hardware Accelerators Based
Ht-MPSoC 89

as private configurations.

In order to evaluate our technique proposed to select the HW accelerators for a Ht-

MPSoC architecture two case-studies have been proposed. The first one is based on

synthetic applications and the second one is based on jpeg codec applications. The

experiments have shown that our technique allows a rapid selection of Ht-MPSoC con-

figurations. Cplex was able to generate solutions in seconds. The Comparison of area

consumption and execution time of generated solutions to real measurements on FPGA

show the accuracy of proposed technique.

Chapter 6

Conclusion

Although processor performance is paramount for high performance-computing, embed-

ded systems have additional requirements, namely the minimization of area overheads

in cost and power. Moreover, an embedded system is a specialized computing system

for an application domain. Driven by the same physical laws, every application domain

shapes and sizes the computing systems under different goals and constraints. Thus,

every application domain has to adjust their embedded systems in order to improve the

area overhead of every new generation of products while meeting particular constraints.

Multimedia embedded systems are widely used in many areas to provide information ser-

vice in applications, such as teleconferences, distant learning, movies, and video games.

These systems require the processing of signal, image, and video data streams under an

execution time constraint. Moreover, these systems require low power and area costs. In

this context, Ht-MPSoC architecture is a promising computing system. In such archi-

tecture, customization leads to more efficient designs, as resources are consumed to meet

the exact requirements of the application. On the other hand, parallelization distributes

the computation amongst several processors.

The integration of HW accelerators represents an alternative to customize a processor

by providing a hardware execution that exploits the exact level of instruction-level paral-

lelism of a particular computational task. HW accelerators have been used in multimedia

embedded systems because they allow to exploit parallelization and reduce power con-

sumption.

Thus, the integration of HW accelerators play an important role in the design of high-

performance, energy efficient Ht-MPSoC architectures for multimedia domain. However,

this solution is still regarded as an expensive design decision, as area costs are high, and

the performance/cost trade-off is complex .

90

Chapter 6. Conclusion 91

This thesis presented a technique for optimising the area cost of Ht-MPSoC architec-

tures while satisfying performance constraints. Our technique integrates a HW acceler-

ators sharing methodology. This methodology enables two or more processors to share

hardware accelerators to execute their similar tasks. Our methodology is motivated

by the fact that multimedia applications contain a large number of similar frequently

used kernels. A naive exploitation of the available hardware resources implements sepa-

rate private HW accelerators for different processors to provide the same computations.

Previously, proposed resource-sharing techniques share static resources [93] [94] [95]

or run-time reconfigurable resources [85] [84] amongst custom functional units that are

tightly coupled to the processor data path. However, for multimedia application, loosely

coupled hardware accelerators are more suited than tightly coupled ones [133]. Hence,

resource sharing for loosely coupled HW accelerators is essential in order to optimise

multimedia embedded systems. While executing the Jpeg-encoder application , the pro-

posed HW accelerators sharing methodology achieves an area saving that reaches 50%

for a 4-microblazes architecture without impacting the performances.

Our technique is also based on MILP model that is able to quickly explore the design

space of optimal trade-off solutions. The search of the trade-off aims to find the right

balance between HW accelerators sharing and execution time overhead. The solutions

with the optimal trade-off are found by guiding the selection process to favour HW ac-

celerators sharing between tasks that are likely to be executed in a multiplexed manner

with low performances losses. This is achieved by using variables that quantify the ex-

ecution time delay. The search of the design is based on real measurements of area cost

and execution time gain of each HW accelerator. This allows our technique to be accu-

rate. The comparison of the area consumptions and performances of generated solution

and real FPGA measurements for the jpeg-codec applications shows an area and perfor-

mance overheads which are respectively below 5% and 2%. Chapter 3 has presented the

hardware accelerators sharing methodology for multimedia applications. We presented

also the proposed SHt-MPSoC and AHt-MPSoC architectures and their interconnection

network. This latter consists of hierarchical buses interconnected through bridges. The

choice of hierarchical buses was made for two reasons: the practicality and the perfor-

mance/energy optimizations. However, such interconnection would be complex and less

efficient when the number of processors increases. Thus, a study of performance/energy

trade-offs of SHt-MPSoC and AHt-MPSoC architectures with different interconnection

networks would be rewarding.

Chapter 4 detailed the proposed technique for the selection of private and/or shared

HW accelerators for SHt-MPSoC and AHt-MPSoC architectures. For our technique,

the identification of patterns that are candidates for hardware customization is a man-

ual process. This process can be automated by using existing techniques to find maximal

common subgraph of different tasks.

Chapter 6. Conclusion 92

Chapter 5 uses two real applications, namely JPEG encoding and JPEG decoding, and

synthetic applications in order to demonstrate the benefits of the proposed contribu-

tions. The experiments performed were considered sufficient to prove the benefits of

HW accelerators sharing methodology as well as the accuracy of the MILP models.

There are many interesting extensions that can be made to the HW accelerators-sharing

technique proposed in this thesis. Some of the possible future research perspectives

include:

• Power management for the SHt-MPSoC and AHt-MPSoC architectures. Although

there is not an explicit relationship between the level of HW accelerators sharing

and the resulting power consumption of the architecture, observations highlighted

upon experiments could be used to derive power-models. Based on these models,

the search of the design space can be guided towards energy-efficient solutions.

• In order to minimize the design time of efficient SHt-MPSoC and AHt-MPSoC

architectures, the process for the identification of common tasks, to construct

an automated framework, has to be automated. The identification of maximal

common sub-graphs based on maximal cliques technique can be used [134].

• The support of dynamically reconfigurable SHt-MPSoC architectures and AHt-

MPSoC architectures is another interesting research axis. In fact, some multi-

media applications require run-time adaptation. This means that some of the

computational tasks of the system may depend on varying conditions imposed by

the application or by the user.

Bibliography

[1] J. Haris and P. Sri. Pipelined Multiprocessor System-on-Chip for Multimedia,

chapter Intruduction. Springer, 2014.

[2] J. Turley. Survey says: Software tools more important than chips. Embedded

Systems Design, 2005.

[3] Altera. Nios II Classic Processor Reference Guide, .

[4] Opencores. Openrisc 1200 Ip Core Specification, 2011.

[5] MicroBlaze Processor Reference Guide.

[6] Aeroflex. Leon3 processor, 2015. URL http://www.gaisler.com/index.php/

products/processors/leon3.

[7] ML505/ML506/ML507 Evaluation Platform User Guide.

[8] PLB v3.4 and OPB to PLB v4.6 System and Core Migration User Guide.

[9] Shafique M. Architectures for adaptive low-power embedded multimedia systems.

PhD thesis, Karlsruhe Institute of Technology, Germany, 2011.

[10] STMicroelectronics. Stmicroelectronics unveils new nomadik(tm) processor for

next-generation mobile multimedia applications. Technical report, STMicroelec-

tronics, 2013.

[11] K. Konin. Nexperia pnx7850. Technical report, Philips Semiconductors, 2002.

[12] W. Wolf, A. Jerraya, and G. Martin. Multiprocessor system-on-chip (mpsoc)

technology. Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, 27(10), Oct 2008.

[13] A. Kumar, H. Corporaal, B. Mesman, and Y. Ha. Trends and challenges in

multimedia systems. In Multimedia Multiprocessor Systems, Embedded Systems.

Springer Netherlands, 2010.

93

http://www.gaisler.com/index.php/products/processors/leon3
http://www.gaisler.com/index.php/products/processors/leon3

Bibliography 94

[14] A. Nery, N. Nedjah, F. França, L. Jozwiak, and H. Corporaal. A reconfigurable

ray-tracing multi-processor soc with hardware replication-aware instruction set ex-

tension. In Springer, editor, Algorithms and Architectures for Parallel Processing,

volume 8285 of Lecture Notes in Computer Science. 2013.

[15] F. Lúıs. A survey on operating system support for embedded systems properties.

In Workshop of Operating Systems, 2009.

[16] F. Dahlgren. Future mobile phones - complex design challenges from an embedded

systems perspective. In Proceedings of the Seventh International Conference on

Engineering of Complex Computer Systems (ICECCS’01).

[17] P. Koopman. Embedded system design issues (the rest of the story). In Proceedings

of the 1996 International Conference on Computer Design, VLSI in Computers

and Processors, ICCD ’96, 1996.

[18] R. Ubal, J. Sahuquillo, S. Petit, H. Hassan, and P. López. Power reduction in

advanced embedded IPC processors. Intelligent Automation & Soft Computing,

15(3):495–507, 2009.

[19] C. Timm and A. Gelenberg. Reducing the energy consumption of embedded sys-

tems by integrating general purpose gpus. Technical report, Dortmund University,

2010.

[20] Sh. Mu, C. Wang, M. Liu, D. Li, M. Zhu, X. Chen, X. Xie, and Y. Deng. Evaluating

the potential of graphics processors for high performance embedded computing. In

Design, Automation Test in Europe Conference Exhibition (DATE), 2011, March

2011.

[21] O. Mencer, M. Morf, and M. Flynn. Hardware software tri-design of encryption

for mobile communication units. In Acoustics, Speech and Signal Processing, 1998.

Proceedings of the 1998 IEEE International Conference on, May 1998.

[22] O. Mencer, M. Morf, and M. Flynn. Hardware software tri-design of encryption

for mobile communication units. In Acoustics, Speech and Signal Processing, 1998.

Proceedings of the 1998 IEEE International Conference on, volume 5, May 1998.

[23] .

[24] REASON. A Modern Hdl-Based Diesgn Flow for Fpga Prototyping of Asics, 2000.

[25] F. Nilson. Fpga vs. asic design flow. Technical report, Xilinx, 2010.

[26] K. Ian, T. Russell, and R. Jonathan. Fpga architecture: Survey and challenges.

Foundations and Trends in Electronic Design Automation, 2008.

Bibliography 95

[27] Kuon Ian and Rose Jonathan. Measuring the gap between fpgas and asics. Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, 2007.

[28] Clive Maxfield. What’s the number of asic versus fpga design starts?, 2011. URL

http://www.eetimes.com/document.asp?doc_id=1278646.

[29] Copyright 2015 Xilinx Inc. Xilinx all programmable, 2015. URL http://www.

xilinx.com/.

[30] wikipedia. Mpsoc, 2015. URL http://en.wikipedia.org/wiki/MPSoC.

[31] N. Maik, B. Herbert, and E. Henri. Supporting reconfigurable parallel multimedia

applications. In Proceedings of the Euro-Par 2008 conference.

[32] wikipedia. Apple a5x, 2014. URL http://en.wikipedia.org/wiki/Apple_A5X.

[33] L.Carro and M. Beck Rutzig. Handbook of Processing Systems, chapter Multicore

System On chip. Springer, 2013.

[34] L.Torres, P. Benoit, G. Sassatelli, M.Robertand F. Clermidy, and D. Puschini.

Multiprocessor System-on-Chip: Hardware Design and Tool Integration, chapter

An Intoduction to Multi-core System on Chip - Trendd and Challenges. Springer,

2013.

[35] D. Taho, Jaime J., Jose L. Martin, Unai B., and Armando A. Reconfigurable mul-

tiprocessor systems: A review. International Journal of Reconfigurable Computing,

2010.

[36] Wikipedia. Symmetric multiprocessor system, 2014. URL http://en.wikipedia.

org/wiki/Symmetric_multiprocessor_system.

[37] Lionel T., Pascal B., Gilles S., Michel R, Fabien C., and Diego P. An introduc-

tion to multi-core system on chip – trends and challenges. In Springer, editor,

Multiprocessor System-on-Chip. Springer New York, 2011.

[38] H. Yue, Z. Wang, and K. Dai. A heterogeneous embedded mpsoc for multime-

dia applications. In Springer, editor, High Performance Computing and Com-

munications, volume 4208 of Lecture Notes in Computer Science. Springer Berlin

Heidelberg, 2006.

[39]

[40] A. Venkat and D. Tullsen. Harnessing isa diversity: Design of a heterogeneous-isa

chip multiprocessor. In Proceeding of the 41st Annual International Symposium

on Computer Architecuture, ISCA ’14. IEEE Press, 2014.

http://www.eetimes.com/document.asp?doc_id=1278646
http://www.xilinx.com/
http://www.xilinx.com/
http://en.wikipedia.org/wiki/MPSoC
http://en.wikipedia.org/wiki/Apple_A5X
http://en.wikipedia.org/wiki/Symmetric_multiprocessor_system
http://en.wikipedia.org/wiki/Symmetric_multiprocessor_system

Bibliography 96

[41] M. Pratyusa and Vyas S. Vector processors. Technical report, Carnegie Mellon

University, School of Computer Science, 2012.

[42] Altera. Stratix iv fpgas: The world’s highest density 40-nm fpga. Technical report,

ALTERA, 2015.

[43] Xilinx. Leading fpga system performance and capacity. Technical report, XILINX,

2015.

[44] J. Anderson, W. Qiang, and C. Ravishankar. Raising fpga logic density through

synthesis-inspired architecture. IEEE Transactions on Very Large Scale Integra-

tion (VLSI) Systems, 2012.

[45] S. Yerneni. Cray x1e architecture overview. Technical report, Hinditron Cray

Supercomputers, 2006.

[46] Introduction to the Altera Nios II Soft Processor.

[47] J. Bennett. Softcores for fpga: the free and open source al-

ternatives, 2013. URL http://www.embecosm.com/2013/11/20/

softcores-for-fpga-the-free-and-open-source-alternatives/.

[48] Introduction to the Altera Nios II Soft Processor, .

[49] Wikipedia. Harvard architecture, 2015. URL http://en.wikipedia.org/wiki/

Harvard_architecture.

[50] LogiCORE IP Fast Simplex Link (FSL) V20 Bus (v2.11c).

[51] The SPARC Architecture Manual.

[52] T. Blank. A survey of hardware accelerators used in computer-aided design. Design

Test of Computers, IEEE, 1(3), Aug 1984.

[53] A.M.Tyrrell N.J.Howard and N.M.Allison. The use of field-programmable gate

arrays for the hardware acceleration of design automation tasks. In The Interna-

tional conference of VLSI DESIGN, 1996, Vol. 4, No. 2, pp. 135-139.

[54] G.Wei B.Reagen, Y.S.Shao and Da.Brooks. Quantifying acceleration: Power/per-

formance trade-offs of application kernels in hardware. In IEEE International

Symposium on Low Power Electronics and Design (ISLPED), 2013.

[55] Altera. Hardware acceleration and coprocessing, July 2011. URL http://www.

altera.com.cn/literature/hb/nios2/edh_ed51006.pdf.

http://www.embecosm.com/2013/11/20/softcores-for-fpga-the-free-and-open-source-alternatives/
http://www.embecosm.com/2013/11/20/softcores-for-fpga-the-free-and-open-source-alternatives/
http://en.wikipedia.org/wiki/Harvard_architecture
http://en.wikipedia.org/wiki/Harvard_architecture
http://www.altera.com.cn/literature/hb/nios2/edh_ed51006.pdf
http://www.altera.com.cn/literature/hb/nios2/edh_ed51006.pdf

Bibliography 97

[56] A. Gangwar A. JeetSingh, A. Chhabra and B.Dwivedi. Soc synthesis with auto-

matic hardware software interface generation. In Proceedings of the 16th Interna-

tional Conference on VLSI Design, 2003.

[57] S. Lonardi S. Sirowy, Y.Wu and F. Vahid. Two-level microprocessor-accelerator

partitioning. In Proceedings of the Conference Design, Automation and Test in

Europe, 2007.

[58] Freescale-Semiconductor. i.mx35 applications processors for automotive products.

Technical report, Freescale Semiconductor, 2012.

[59] Samsung. Samsung s3c6400 mobile processor. Technical report, Samsung, 2007.

[60] Arm cortex. arm the architecture for the digital world. URL 2014http://www.

arm.com/products/processors/index.php.

[61] S. Hovsmith. Getting started with multicore programming. Technical report,

CriticalBlue, 2008.

[62] R. Sumit and C. Vipin. Design issues for a high-performance distributed shared

memory on symmetrical multiprocessor clusters. In Proceeding of the High Per-

formance Distributed Computing Conference(HPDC’98).

[63] G.L. Hyung, C. Naehyuck, and O. Umit Y. On-chip communication architecture

exploration: A quantitative evaluation of point-to-point, bus, and network-on-

chip approaches. ACM Transactions on Design Automation of Electronic Systems

(TODAES), 2007.

[64] K. Atasu, L. Pozzi, and P. Ienne. Automatic application-specific instruction-set ex-

tensions under microarchitectural constraints. In Design Automation Conference,

2003. Proceedings, June 2003.

[65] K. Martin, C. Wolinski, K.f Kuchcinski, A. Floch, and F. Charot. Constraint-

driven identification of application specific instructions in the durase system. In

Koen Bertels, Nikitas Dimopoulos, Cristina Silvano, and Stephan Wong, editors,

Embedded Computer Systems: Architectures, Modeling, and Simulation, volume

5657 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2009.

[66] L. Pozzi, K. Atasu, and P. Ienne. Exact and approximate algorithms for the exten-

sion of embedded processor instruction sets. Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, 25(7), July 2006.

[67] C. Ozturan, G. Dundar, and K. Atasu. An integer linear programming approach

for identifying instruction-set extensions. In Hardware/Software Codesign and

2014 http://www.arm.com/products/processors/index.php
2014 http://www.arm.com/products/processors/index.php

Bibliography 98

System Synthesis, 2005. CODES+ISSS ’05. Third IEEE/ACM/IFIP International

Conference on, Sept 2005.

[68] K. Atasu, O. Mencer, W. Luk, C. Ozturan, and G. Dundar. Fast custom in-

struction identification by convex subgraph enumeration. In Application-Specific

Systems, Architectures and Processors, 2008. ASAP 2008. International Confer-

ence on, July 2008.

[69] R. Hartenstein. A decade of reconfigurable computing: a visionary retrospective.

In Design, Automation and Test in Europe, 2001. Conference and Exhibition 2001.

Proceedings, 2001.

[70] Z.A. Ye, A. Moshovos, S. Hauck, and P. Banerjee. Chimaera: a high-performance

architecture with a tightly-coupled reconfigurable functional unit. In Computer

Architecture, 2000. Proceedings of the 27th International Symposium on, 2000.

[71] T.J. Callahan, J.R. Hauser, and J. Wawrzynek. The garp architecture and c

compiler. Computer, 33(4), Apr 2000.

[72] R.E. Gonzalez. A software-configurable processor architecture. Micro, IEEE, 26,

Sept 2006.

[73] P.G. Sassone and D.S. Wills. Dynamic strands: Collapsing speculative dependence

chains for reducing pipeline communication. In Microarchitecture, 2004. MICRO-

37 2004. 37th International Symposium on, Dec 2004.

[74] S. Yehia and O. Temam. From sequences of dependent instructions to functions:

an approach for improving performance without ilp or speculation. In Computer

Architecture, 2004. Proceedings. 31st Annual International Symposium on, June

2004.

[75] N. Clark, J. Blome, M. Chu, S. Mahlke, S. Biles, and K. Flautner. An architecture

framework for transparent instruction set customization in embedded processors.

In Computer Architecture, 2005. ISCA ’05. Proceedings. 32nd International Sym-

posium on, pages 272–283, June 2005.

[76] N. Clark, M. Kudlur, Hyunchul Park, S. Mahlke, and K. Flautner. Application-

specific processing on a general-purpose core via transparent instruction set cus-

tomization. In Microarchitecture, 2004. MICRO-37 2004. 37th International Sym-

posium on, pages 30–40, Dec 2004.

[77] L. Bauer, M. Shafique, S. Kramer, and J. Henkel. Rispp: Rotating instruction

set processing platform. In Design Automation Conference, 2007. DAC ’07. 44th

ACM/IEEE, June 2007.

Bibliography 99

[78] N. Paulino, J.C. Ferreira, J. Bispo, and J.M.P. Cardoso. Transparent acceleration

of program execution using reconfigurable hardware. In Design, Automation Test

in Europe Conference Exhibition (DATE), 2015, 2015.

[79] N. Clark, M. Kudlur, Hyunchul Park, S. Mahlke, and K. Flautner. Application-

specific processing on a general-purpose core via transparent instruction set cus-

tomization. In Microarchitecture, 2004. MICRO-37 2004. 37th International Sym-

posium on, Dec 2004.

[80] N. Clark, J. Blome, M. Chu, S. Mahlke, S. Biles, and K. Flautner. An architecture

framework for transparent instruction set customization in embedded processors.

In Computer Architecture, 2005. ISCA ’05. Proceedings. 32nd International Sym-

posium on, June 2005.

[81] V. Govindaraju, Chen-Han Ho, and K. Sankaralingam. Dynamically specialized

datapaths for energy efficient computing. In High Performance Computer Archi-

tecture (HPCA), 2011 IEEE 17th International Symposium on, Feb 2011.

[82] L. Torres, P. Benoit, G. Sassatelli, M. Robert, F Clermidy, and D. Puschini. An

introduction to multi-core system on chip – trends and challenges. In Springer,

editor, Multiprocessor System-on-Chip. Springer New York, 2011.

[83] R.E. Gonzalez. Xtensa: a configurable and extensible processor. Micro, IEEE, 20

(2), Mar 2000.

[84] M.A. Watkins and D.H. Albonesi. Remap: A reconfigurable heterogeneous multi-

core architecture. In Microarchitecture (MICRO), 2010 43rd Annual IEEE/ACM

International Symposium on, Dec 2010.

[85] Liang C. and T. Mitra. Shared reconfigurable fabric for multi-core customization.

In Design Automation Conference (DAC), 48th ACM/EDAC/IEEE, 2011.

[86] R.E. Gonzalez. Xtensa: a configurable and extensible processor. Micro, IEEE, 20

(2), Mar 2000.

[87] K. Van Rompaey, D. Verkest, I. Bolsens, and H. De Man. Coware-a design environ-

ment for heterogeneous hardware/software systems. In Design Automation Con-

ference, 1996, with EURO-VHDL ’96 and Exhibition, Proceedings EURO-DAC

’96, European, Sep 1996.

[88] F. Sun, S. Ravi, A. Raghunathan, and N.K. Jha. Application-specific heteroge-

neous multiprocessor synthesis using extensible processors. Computer-Aided De-

sign of Integrated Circuits and Systems, IEEE Transactions on, 25(9), Sept 2006.

Bibliography 100

[89] M. Schwiegershausen and P. Pirsch. A formal approach for the optimization of

heterogeneous multiprocessors for complex image processing schemes. In Design

Automation Conference, 1995, with EURO-VHDL, Proceedings EURO-DAC ’95.,

European, 1995.

[90] R. Leupers, K. Karuri, S. Kraemer, and M. Pandey. A design flow for configurable

embedded processors based on optimized instruction set extension synthesis. In

Design, Automation and Test in Europe, 2006. DATE ’06. Proceedings, volume 1,

March 2006.

[91] C.-L. Sotiropoulou and S. Nikolaidis. Ilp formulation for hybrid fpga mpsocs

optimizing performance, area and memory usage. In Electronics, Circuits and

Systems (ICECS), 2011 18th IEEE International Conference on, Dec 2011.

[92] S. Lin Shee, A. Erdos, and S. Parameswaran. Heterogeneous multiprocessor im-

plementations for jpeg:: a case study. In Hardware/Software Codesign and System

Synthesis, 2006. CODES+ISSS ’06. Proceedings of the 4th International Confer-

ence, Oct 2006.

[93] P. Brisk, A. Kaplan, and M. Sarrafzadeh. Area-efficient instruction set synthesis for

reconfigurable system-on-chip designs. In Proceedings of the 41st Annual Design

Automation Conference, 2004.

[94] M. Zuluaga and N. Topham. Design-space exploration of resource-sharing solutions

for custom instruction set extensions. Trans. Comp.-Aided Des. Integ. Cir. Sys.,

28(12), December 2009.

[95] M. Stojilovic, D. Novo, L. Saranovac, P. Brisk, and P. Ienne. Selective flexibility:

Creating domain-specific reconfigurable arrays. Computer-Aided Design of Inte-

grated Circuits and Systems, IEEE Transactions on, 32(5):681–694, May 2013.

[96] M.A. Watkins and D.H. Albonesi. Remap: A reconfigurable heterogeneous multi-

core architecture. In Microarchitecture (MICRO), 2010 43rd Annual IEEE/ACM

International Symposium on, Dec 2010.

[97] L. Chen, N. Boichat, and T. Mitra. Customized mpsoc synthesis for task sequence.

In Proceedings of the 2011 IEEE 9th Symposium on Application Specific Processors

(SASP ’11), 2011.

[98] P. Festa. A brief introduction to exact, approximation, and heuristic algorithms

for solving hard combinatorial optimization problems. In Transparent Optical

Networks (ICTON), 2014 16th International Conference on, July 2014.

Bibliography 101

[99] N. B̀ınh, M. Imai, A. Shiomi, and N. Hikichi. A hardware/software partitioning

algorithm for designing pipelined asips with least gate counts. In Proceedings of

the 33rd Annual Design Automation Conference, DAC ’96, New York, NY, USA,

1996. ACM.

[100] A. Shrivastava, H. Kumar, S. Kapoor, S. Kumar, and M. Balakrishnan. Optimal

hardware/software partitioning for concurrent specification using dynamic pro-

gramming. In VLSI Design, 2000. Thirteenth International Conference on, 2000.

[101] P. Arato, S. Juhasz, Z.A. Mann, A. Orban, and D. Papp. Hardware-software

partitioning in embedded system design. In Intelligent Signal Processing, 2003

IEEE International Symposium on, Sept 2003.

[102] R. Corvino, A. Gamatié, M., and Lech Józwiak. Design space exploration in

application-specific hardware synthesis for multiple communicating nested loops.

In 2012 International Conference on Embedded Computer Systems: Architectures,

Modeling, and Simulation, SAMOS XII, Samos, Greece, July 16-19, 2012, 2012.

[103] W. Jigang, Q. Sun, and T. Srikanthan. Multiple-choice hardware/software parti-

tioning: Computing model and algorithms. In Computer Engineering and Tech-

nology (ICCET), 2010 2nd International Conference on, April 2010.

[104] G. Stitt. Hardware/software partitioning with multi-version implementation ex-

ploration. In Proceedings of the 18th ACM Great Lakes Symposium on VLSI,

GLSVLSI ’08. ACM, 2008.

[105] J. He, D. Van Hung, P. Geguang, Q. Zongyan, and Y. Wang. Exploring optimal

solution to hardware/software partitioning for synchronous model. Formal Aspects

of Computing, 17(4), 2005. ISSN 0934-5043.

[106] P. Eles, K. Kuchcinski, Z. Peng, and A. Doboli. Hardware/software partitioning of

vhdl system specifications. In Proceedings of the Conference on European Design

Automation, EURO-DAC ’96/EURO-VHDL ’96. IEEE Computer Society Press,

1996.

[107] J. Henkel and R. Ernst. An approach to automated hardware/software partitioning

using a flexible granularity that is driven by high-level estimation techniques. IEEE

Trans. Very Large Scale Integr. Syst., 9(2), April 2001.

[108] M. López-Vallejo and J.C. López. On the hardware-software partitioning problem:

System modeling and partitioning techniques. ACM Trans. Des. Autom. Electron.

Syst., 8(3), July 2003.

Bibliography 102

[109] K.S. Chatha and R. Vemurl. Magellan: multiway hardware-software partition-

ing and scheduling for latency minimization of hierarchical control-dataflow task

graphs. In Hardware/Software Codesign, 2001. CODES 2001. Proceedings of the

Ninth International Symposium on, 2001.

[110] H. Han, W. Liu, J. Wu, and G. Jiang. Efficient algorithm for hardware/-

software partitioning and scheduling on mpsoc. Journal of Computers, 8

(1), 2013. URL http://ojs.academypublisher.com/index.php/jcp/article/

view/jcp08016168.

[111] J. Srinivasan. An overview of static power dissipation. Technical report, University

of Illinois, 2011.

[112] S. Imai. Task offloading between smartphones and distributed computational re-

sources. Master’s thesis, Rensselaer Polytechnic Institute Troy, New York, 2012.

[113] Describing Synthesizable RTL in SystemC.

[114] F. Antoine and R. Tanguy. Master interface for on-chip hardware accelerator burst

communications. Journal of VLSI Signal Processing, 2005.

[115] Xilinx Inc. Selecting intellectual property interface services, 2008. URL

http://www.xilinx.com/itp/xilinx10/help/platform_studio/ps_c_ipw_

selecting_ipif_services.htm.

[116] Xilinx. Zynq-7000 All Programmable SoC Technical Reference Man-

ual. URL http://www.xilinx.com/support/documentation/user_guides/

ug-585-Zynq-7000-TRM.pdf.

[117] Altera. Cyclone V, . URL http://www.altera.com/devices/fpga/

cyclone-v-fpgas/cyv-index.jsp.

[118] Micro-Semi. Smart Fusion 2. URL http://www.microsemi.com/products/

fpga-soc/soc-fpga/smartfusion2.

[119] An Overview of On-Chip Buses, chapter Ser. Elect. and Energet. FUniversity of

Nic´, 2006.

[120] D. Reetuparn, E. Soumya, K. M. Asit, N. Vijaykrishnan, and R. D. Chita. Design

and evaluation of a hierarchical on-chip interconnect for next-generation cmps. In

Proceedings of the 2009 IEEE 15th Intern. Symp. on High Performance Computer

Architecture (HPCA’09).

[121] xilinx. Logicore ip plbv46 to plbv46 bridge. Technical report, XILINX, 2011.

http://ojs.academypublisher.com/index.php/jcp/article/view/jcp08016168
http://ojs.academypublisher.com/index.php/jcp/article/view/jcp08016168
http://www.xilinx.com/itp/xilinx10/help/platform_studio/ps_c_ipw_selecting_ipif_services.htm
http://www.xilinx.com/itp/xilinx10/help/platform_studio/ps_c_ipw_selecting_ipif_services.htm
http://www.xilinx.com/support/documentation/user_guides/ug-585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/documentation/user_guides/ug-585-Zynq-7000-TRM.pdf
http://www.altera.com/devices/fpga/cyclone-v-fpgas/cyv-index.jsp
http://www.altera.com/devices/fpga/cyclone-v-fpgas/cyv-index.jsp
http://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2
http://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2

Bibliography 103

[122] J. G. Tong and M. A. S. Khalid. Profiling cad tools: A proposed classification. In

The 19th International Conference on Microelectronics, December 2007.

[123] J. G. Tong and M. Khalid. Profiling tools for fpga-based embedded systems:

Survey and quantitative comparison. Journal of Computer, June 2008.

[124] Rajendra P. and Arvind R. A survey of embedded software profiling methodologies.

International Journal of Embedded Systems and Applications (IJESA), Decembre

2011.

[125] H. Bunke, G. Guidobaldi, and Vento M. Weighted minimum common supergraph

for cluster representation. In International Conference on Image Processing, ICIP

2003.

[126] F. Mahmood, F. Mohammad, Z. Mahdy, and Z. Ali. A new datapath merging

method for reconfigurable system. In 5th International Workshop on Applied Re-

configurable Computing (ARC’09).

[127] xlinx. Xilinx all programmable, 2015. URL http://www.xilinx.com/.

[128] STAFF WRITER. Sourcetech411, 2013. URL http://sourcetech411.com/

2013/04/top-fpga-companies-for-2013/.

[129] Data2MEM User Guide.

[130] Microblaze Softcore and Digilent S3 FPGA Demonstration Board.

[131] J. Ahmad, K. Raza, M. Ebrahim, and U. Talha. Fpga based implementation

of baseline jpeg decoder. In Proceedings of the 7th International Conference on

Frontiers of Information Technology, FIT ’09, pages 29:1–29:6. ACM, 2009.

[132] M. Krepa. Jpeg encoder : Overview, 2012. URL http://opencores.org/

project,mkjpeg.

[133] E.G. Cota, P. Mantovani, G. Di Guglielmo, and L.P. Carloni. An analysis

of accelerator coupling in heterogeneous architectures. In Design Automation

Conference (DAC), 2015 52nd ACM/EDAC/IEEE, pages 1–6, June 2015. doi:

10.1145/2744769.2744794.

[134] I. Koch. Enumerating all connected maximal common subgraphs in two graphs.

Theoretical Computer Science, 250(1–2):1 – 30, 2001. doi: http://dx.doi.org/10.

1016/S0304-3975(00)00286-3.

http://www.xilinx.com/
http://sourcetech411.com/2013/04/top-fpga-companies-for-2013/
http://sourcetech411.com/2013/04/top-fpga-companies-for-2013/
http://opencores.org/project,mkjpeg
http://opencores.org/project,mkjpeg

	pagedegarde_Dammak
	Thèse de doctorat
	Pour obtenir le grade de Docteur de l’Université de
	Valenciennes et du Hainaut­Cambrésis
	et de l’Ecole Nationale des Ingénieurs de Sfax
	Disciplines :
	Ingénierie des systèmes informatiques (ENIS) / Informatique (UVHC)
	Présentée et soutenue par Bouthaina DAMMAK MASMOUDI
	Le 06/11/2015
	Ecole doctorale :
	Equipe de recherche, Laboratoire :

	Performance and complexity optimization in heterogeneous multiprocessors system on chip
	JURY
	Président du jury
	Rapporteurs

	DAMMAK_Bouthaina_mauvaise_pdt

