
HAL Id: tel-01406351
https://theses.hal.science/tel-01406351

Submitted on 1 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Managing Logical and Computational Complexity using
Program Transformations

Nicolas Tabareau

To cite this version:
Nicolas Tabareau. Managing Logical and Computational Complexity using Program Transformations.
Category Theory [math.CT]. université de nantes, 2016. �tel-01406351�

https://theses.hal.science/tel-01406351
https://hal.archives-ouvertes.fr

École Doctorale STIM
UMR CNRS 6241 LINA

Habilitation à Diriger les Recherches

Managing Logical and
Computational Complexity using

Program Transformations

Rendre Compte de la Complexité Logique et Calculatoire à travers des
Transformations de Programmes

présentée et soutenue publiquement par

Nicolas Tabareau

le 24 novembre 2016

devant le jury composé de

Thierry Coquand Göteborg University (examinateur)
Hugo Herbelin Inria Paris (rapporteur)
Daniel Hirschkoff Ens Lyon (rapporteur)
Claude Jard Université de Nantes (examinateur)
Alan Schmitt Inria Rennes Bretagne Atlantique (rapporteur)

Table of Contents

Remerciements v

Introduction (en français) 1
Une Introspection Rétrospective . 1
Ma Future Ligne de Recherche . 4

1 Looking Back into the Future 17
1.1 A Retrospective Introspection . 17
1.2 Future Line of Reasearch . 20

2 Call-by-Name Forcing in Type Theory 31
2.1 Call-by-Push-Value . 33
2.2 Forcing Translation in the Negative Fragment 37
2.3 Yoneda to the Rescue . 40
2.4 Datatypes . 42
2.5 Recursive Types . 43
2.6 Forcing at Work: Consistency Results . 47
2.7 Future Work . 50

3 Chemical Foundations of Distributed Aspects 51
3.1 The distributed objective join calculus . 53
3.2 The aspect join calculus . 59
3.3 From the aspect join calculus to the join calculus 66
3.4 Aspect JoCaml . 73
3.5 Discussion . 76
3.6 Related work . 77

4 Partial Type Equivalences for Verified Dependent Interoperability 81
4.1 Partial Type Equivalences . 85
4.2 Partial Type Equivalence for Dependent Interoperability 89
4.3 Higher-Order Partial Type Equivalence 93
4.4 A Certified, Interoperable Stack Machine 96
4.5 Related Work . 101
4.6 Future Work . 104

Appendix 107

Publications of the author 111

Bibliography 113

Remerciements

Mains aux fleurs, Picasso (1958)

Je voulais dire merci aux membres du jury. Qu’ils sachent que je suis très honoré de
leur présence à ma soutenance.

Je voulais dire merci à mes collègues, co-auteurs, étudiants ou post-docs, pour ces
moments de partage et d’envolées scientifiques qui font de ce métier toute sa spécificité.

Je voulais dire merci à mes filles, pour leur spontanéité qui fait oublier en un clin d’œil
toute contrariété.

Je voulais dire merci à ma princesse, pour sa frâıcheur toujours présente après ces 17
années qui nous unient.

Introduction

Le saut dans le vide,
Klein (1960)

Contents

Une Introspection Rétrospective . 1

Aperçu du Reste du Manuscrit . 4

Ma Future Ligne de Recherche . 4

Objectifs pour les cinq prochaines années 7

Méthodologie . 11

Une Introspection Rétrospective

Remarque 1

Bien que le reste de ce manuscrit soit écrit de manière conventionnelle, cette section
est écrite à la première personne pour souligner le fait qu’elle développe un point de
vue personnel.

La Sémantique de la Compilation. Durant mon stage au sein de Microsoft Research
à Cambridge en 2007, j’ai commencé à étudier la sémantique de la compilation des langages
de programmation [BT09] sous la délicieuse supervision de Nick Benton. Mes intérêts
scientifiques de l’époque portaient principalement sur la sémantique dénotationelle des
langages de programmation, mais j’ai alors commencé à réaliser1 que la compilation—ou
plutôt la traduction—d’un programme écrit dans un langage complexe de haut niveau
vers un langage plus simple était un moyen très primitif et efficace pour donner un sens
au programme complexe.

1J’ai aussi commencé à réaliser que j’aimais beaucoup l’assistant de preuve Coq [CDT15], ce qui devrait
être clair à la lecture du reste de ce manuscrit.

2 Introduction

La Programmation par Aspects. Cette remarque m’a poursuivi alors que je com-
mençais à étudier la sémantique de la programmation par aspects lors de mon arrivée
dans l’équipe Ascola (Aspects Components Languages) en 2009. La programmation par
aspects [KLM+97] est un paradigme de programmation qui a pour but d’accrôıtre la
modularité du code en permettant la séparation des propriétés transverses. Nous ap-
pelons propriété transverse une propriété qui ne peut pas être définie en utilisant les
mécanismes de modularité classiques, comme par exemple les classes, les modules ou les
composants. Le calcul de la trace d’un programme ou les problématiques de sécurité
forment deux exemples de propriétés transverses, et sont donc sujettes à éparpillement
et intrication. L’idée de la programmation par aspects est de ramener toutes les parties
du code qui traitent d’une propriété transverse dans un même endroit du programme, à
travers l’utilisation d’un nouveau type de module, appelé un aspect. Les deux principaux
constituants d’un aspect sont les coupes (pointcuts en anglais) et les advices2 Une coupe
sélectionne les points d’exécution d’intérêt du programme de base, par exemple, les appels
de méthode dans le cas du calcul de trace. Un advice définit ce qui doit être fait lorsqu’un
point d’exécution est sélectionné, typiquement l’affichage d’un message avant et/ou après
un appel dans le cas de l’affichage de la trace d’un programme. Le processus qui consiste
à composer des aspects avec un programme de base, afin d’obtenir une implémentation
concrète du programme tel qu’il aurait été écrit sans aspect, s’appelle le tissage.

Mon premier travail sur la sémantique d’un calcul distribué avec aspects [Tab10] a
été obtenu en traduisant ce calcul vers le “join calculus” [FG96a], considérant ainsi le
tissage comme une transformation de programme. J’ai ensuite étudié la sémantique de la
programmation par aspects pour des langages fonctionnels [Tab11, Tab12], à la lumière
de la traduction monadique, qui constitue une transformation de programme bien connue
dans le cadre de la programmation fonctionnelle. Les monades [Mog91] fournissent un
mécanisme pour embarquer et raisonner sur des effets comme les états mémoires, les
entrées/sorties ou la gestion des exceptions, et ce dans un cadre purement fonctionnel
comme dans Haskell. Définir de la sémantique d’un langage fonctionnel avec aspects
en utilisant une monade permet d’être modulaire sur les différentes sémantiques possibles
des aspects (i.e., le déploiement d’aspects, la gestion des interférences entre aspects), et
permet aussi une implémentation directe dans le langage, comme nous l’avons montré sur
Haskell [TFT13, FTT14b, FSTT14].

En utilisant des idées venant de la notion de portée pour les aspects, j’ai développé, avec
Ismael Figueroa et Éric Tanter, une définition monadique de la notion de capacités pour
les effets [FTT14a, FTT15] dans Haskell, capacités qui permettent d’imposer certaines
politiques de sécurité sur les effets qui sont utilisés dans un programme Haskell. En
plus du cadre monadique, ce travail utilise crucialement le mécanisme de type classes
de Haskell pour décider statiquement du niveau de permission en se basant sur une
implémentation du treillis des permissions avec des type classes.

Le Forcing en Théorie des Types. Entre temps, j’utilisais de plus en plus Coq pour
formaliser certaines parties des preuves que je faisais sur papier. Cela me fit prendre con-
science que même si la théorie des types (ou plus précisément le Calcul des Constructions
Inductives, la théorie derrière Coq) est déjà très expressive, il manque cruellement la
possibilité d’augmenter son contenu logique ou calculatoire facilement. Cela m’a amené à
développer avec Guilhem Jaber et Matthieu Sozeau une version du forcing pour la théorie
des types [JTS12]. Le forcing est une méthode originellement développée par Paul Co-
hen pour prouver l’indépendance de l’hypothèse du continu avec la théorie des ensembles

2Je me permets cette francisation maladroite du terme “advice” utilisé dans la programmation par
aspects qui constitue déjà une utilisation libérale du terme anglais.

Introduction 3

ZFC [Coh66]. L’idée principale est d’ajouter de nouveaux éléments à la théorie qui peu-
vent être approximés dans le système initial, en utilisant ce qu’on appelle des conditions
de forcing. Pour adapter cette idée à la théorie des types, plutôt que d’utiliser l’approche
habituelle du forcing à travers la théorie des ensembles, nous avons utilisé sa reformulation
en terme de théorie des catégories que Bill Lawvere et Myles Tierney [Tie72] ont développé
en utilisant le topos des faisceaux. Récemment, les travaux de Jean-Louis Krivine [Kri11]
et Alexandre Miquel [Miq11a] ont montré que les techniques liées au forcing sont d’un
grand intérêt pour l’extension de l’isomorphisme de Curry-Howard. Le point de départ
de notre travail a été de connecter ces deux observations :

“Le forcing intuitionniste en théorie des types correspond à l’internalisation
de la théorie des préfaisceaux en théorie des types.”

L’idée est d’étendre une théorie des types de base avec de nouveaux principes, obtenant
ainsi une nouvelle théorie, appelée couche de forcing. Les termes et types de la couche
de forcing peuvent être traduit vers la théorie de base en utilisant la traduction de for-
cing. La couche de forcing peut satisfaire de nouveaux principes logiques ou calculatoires,
e.g., l’existence de points fixes généraux lorsqu’on force avec les entiers naturels comme
conditions de forcing—ce qui correspond à travailler avec le topos des arbres.

Plus récemment, nous avons réalisé qu’il manquait certaines propriétés calculatoires à
notre traduction de forcing pour que celle-ci soit complètement utilisable en pratique, à
cause de problème de cohérence. Voilà pourquoi nous avons changé notre fusil d’épaule
en passant d’une interprétation en appel par valeur à une interprétation en appel par
nom, sous l’initiative de Pierre-Marie Pédrot. Ce glissement nous a permis de donner une
nouvelle version de la traduction de forcing [JLP+16] directement implémentable dans
un module d’extension (alias plugin) de Coq. En effet, notre traduction est directement
implémentable car elle interprète la conversion—i.e., le fait que deux termes soient conver-
tibles en utilisant l’égalité définitionnelle—par la conversion elle-même. Ceci est à opposer
au fait que, dans la plupart des autres travaux sur le sujet et en particulier au niveau des
modèles de la théories des types, la conversion est interprétée par l’égalité propositionnelle
ou par une égalité externe fournie par le modèle. Dans ces cas, il se pose le fameux
problème de cohérence car la règle de conversion se retrouve interprétée par un transport
explicite d’un terme à l’autre, et ne se trouve plus implicite dans le terme de preuve. Bien
que ce problème de cohérence ait été assez largement étudié, en particulier dans le travail
récent de Pierre-Louis Curien, Richard Garner et Martin Hofmann [CGH14], il n’y pas de
solution à ce jour pour produire une transformation de programme correcte de la théorie
des types pour de tels modèles/transformations.

Cette observation m’amène à avancer la devise suivante, qui constitue une des clés de
voûte de mon programme de recherche développée dans les pages qui suivent:

“Une transformation de programme correcte et implémentable
doit préserver la conversion de type de manière exacte.”

Plus précisément, je pense qu’il est possible de modifier les transformations existantes
pour qu’elles préservent la conversion, comme nous l’avons fait pour le forcing en passant
d’une interprétation en appel par valeur à une interprétation en appel par nom.

Interopérabilité Dépendante. Une autre réflexion, qui me vint à l’esprit en discutant
avec Éric Tanter sur l’approche graduelle pour les systèmes de types dans les langages de
programmation, est qu’il manque à Coq un mécanisme similaire pour permettre une
phase d’apprentissage moins abrupte pour les développeurs qui souhaitent passer d’un

4 Introduction

cadre simplement typé à une cadre avec des types dépendants.3 En fait, nous avons
réalisé que le problème se pose aussi dans d’autres situations, lorsque par exemple on
souhaite transformer un programme écrit en Coq en un programme écrit dans un langage
simplement typé comme OCaml ou Haskell—un processus qui est appelé extraction
de programme. Dans ce cas, l’absence de gradualité engendre une perte importante de
propriétés entre le programme initial et le programme extrait. C’est avec ces problèmes
en tête que j’ai travaillé avec Pierre-Évariste Dagand et Éric Tanter sur l’interopérabilité
dépendante [TT15, DTT16] entre Coq et OCaml/Haskell, interopérabilité qui peut
être vue comme un moyen automatique d’améliorer l’extraction de programmes, i.e., la
transformation de programme de Coq vers un langage simplement typé.

Aperçu du Reste du Manuscrit

Les pages qui suivent présentent mon programme de recherche pour les cinq années qui
viennent, et peut-être plus.4 Après ça, le reste du document est dédié à la présentation
de trois de mes travaux dans des sujets qui sont assez différents mais qui partagent l’idée
commune d’utiliser des transformations de programmes pour traiter de la complexité
logique ou calculatoire. Tous ces travaux ont été publiés et sont rassemblés, standardisés
et revisités ici dans le but de rendre ce manuscrit aussi indépendant que possible.

Le chapitre 1 reprend l’introduction dans la langue de Shakespeare, qui sera aussi la
langue choisie pour présenter mes travaux de recherche.

Le chapitre 2 décrit une transformation de programmes écrits en Coq vers des pro-
grammes écrits en Coq, afin d’accrôıtre le pouvoir logique et calculatoire de Coq. Ce
chapitre est directement tiré du papier The definitional side of the Forcing [JLP+16] qui
introduit le forcing dans sa présentation en appel par nom pour Coq. Ce travail est en
collaboration avec Guihlem Jaber, Gabriel Lewertowski, Pierre-Marie Pédrot et Matthieu
Sozeau.

Le chapitre 3 présente un calcul d’aspects distribué basé sur le join calcul. La complex-
ité du déploiement des aspects et du tissage dans un cadre distribué est gérée en donnant
une traduction directe de l’aspect join calcul vers le join calcul de base, ce qui donne à la
fois une sémantique et une implémentation pour l’aspect join calcul. Je présente ici une
version revisitée et étendue, avec la collaboration d’Éric Tanter, du papier A theory of
distributed aspects [Tab10].

Le chapitre 4 décrit, dans une certaine mesure, une transformation de programme de
Coq avec types dépendants vers Haskell ou OCaml, en faisant reposer des vérifications
qui sont statiques dans Coq sur des vérifications dynamiques. Ce chapitre est tiré du
papier Partial Type Equivalences for Verified Dependent Interoperability [DTT16]. C’est
un travail commun avec Pierre-Évariste Dagand et Éric Tanter.

Ma Future Ligne de Recherche

L’égalité dans les assistants de preuve basés sur la théorie des types. Chaque
année, les bogues logiciels coûtent des centaines de millions d’euros aux entreprises et
administrations, comme en témoigne le bogue sur la division du processeur développée
par Intel Pentium ou l’explosion au décollage de la fusée Ariane V. Il est donc logique
que la notion de qualité du logiciel soit devenue de plus en plus présente, allant bien au-
dela du cadre restreint des systèmes embarqués. Plus particulièrement, le développement

3J’utilise le terme “simplement typé” pour dire “sans types dépendants”.
4La plupart des travaux à venir seront développés dans le cadre du projet CoqHoTT—ERC starting

grant 637339.

Introduction 5

d’outils pour construire des programmes qui respectent une spécification donnée est un
des problèmes majeurs de la recherche actuelle et future en informatique. Les assistants
de preuves basés sur la théorie des types, comm Coq [CDT15], équipé d’un mécanisme
d’extraction qui produit du code certifié à partir d’une preuve, se retrouve ainsi de plus
en plus dans la lumière. En effet, ils ont prouvé leur efficacité pour prouver la correction
d’importants logiciels, comme le compilateur C du projet CompCert [Ler06]. Un des
intérêts de l’utilisation de tels assistants de preuve du point de vue informatique est
la possibilité d’extraire directement le code qui a été prouvé, et de l’exécuter comme
n’importe quel logiciel. Par exemple, le compilateur de CompCert qui est extrait de sa
certification est fiable et efficace, tournant seulement 15% moins que GCC 4 avec le niveau
d’optimisation 2 (i.e., gcc -02), un niveau d’optimisation qui est alors considéré comme
non fiable même si efficace.

Malheureusement, la démocratisation de ces tels assistants de preuve souffre d’un
handicap majeur, la discordance entre l’égalité telle que conçue en mathématique et
l’égalité telle qu’implémentée dans la théorie des types. En effet, certains principes de
base qui sont utilisés massivement et implicitement en mathématique—comme le principe
d’extensionnalité propositionnelle de Church, qui stipule que deux formules sont égales
lorqu’elles sont logiquement équivalentes—ne sont pas vérifiés en théorie des types. De
manière plus problématique en informatique, le concept très naturel de considérer que
deux fonctions sont égales lorsqu’elles le sont point à point n’est pas non plus vérifié en
théorie des types, et doit ainsi être poser comme un axiome :

Axiom fun_ext : ∀ A B (f g : A → B), (∀ x, f x = g x) → f = g.

Bien sûr, ces principes sont consistants avec la théorie des types et les ajouter comme
des axiomes est correct. Mais tous les développements qui en font appel dans la définition
de programme produisent du code qui ne s’exécute pas, car il sera bloqué aux endroits où
des axiomes ont été utilisés, car les axiomes sont des bôıtes noires au niveau du calcul. Pour
comprendre ce point de discorde, il nous faut regarder de manière plus précise comment
est définie la notion d’égalité en théorie des types. Elle est définie en utilisant le type
identité de Martin-Löf IdA, qui vient avec une seule règle d’introduction (uniforme par
rapport à A) :

Γ ` x : A
Γ ` reflA x : IdA x x

Cela signifie que le seul moyen de prouver que deux termes t et u sont égaux (ou plus
précisément d’habiter le type IdA t u sans hypothèse supplémentaire) est par réflexivité.
Cela veut dire que les deux termes doivent être convertibles—au sens où ils ont la même
forme normale modulo β-réduction (et quelques autres règles de réduction). D’une certaine
manière, cette notion d’égalité est éminemment syntaxique. La raison pour laquelle le type
identité est utilisé en théorie des types vient du fait qu’il est accompagné d’un principe
d’élimination très puissant qui permet de substituer un terme par un terme qui lui est Id-
équivalent n’importe où dans un type. C’est ce qu’on appelle le principe d’indiscernabilité
des éléments identiques de Leibniz.

À l’opposé, la notion d’égalité en mathématique est éminemment sémantique, avec
une définition qui est relative aux types des objets considérés. Cela explique pourquoi
le principe d’extensionnalité des fonctions est gratuit dans ce cadre, car la définition de
l’égalité est précisément construite sur l’égalité point à point pour le type des fonctions.
Le problème avec ce point de vue est qu’il ne vient pas avec un principe général de
substitution ce qui rend sa définition difficile à utiliser dans un assistant de preuve.

6 Introduction

Ce point de discorde empêche d’utiliser des outils sémantiques plus élaborés dans
le développement de preuves, car ils reposent sur la manipulation explicite de l’égalité
mathématique, ainsi que sur l’utilisation d’axiomes. Bien sûr, des travaux importants ont
été faits afin de contourner cette difficulté en définissant d’autres notions d’égalité que celle
fournie par la théorie des types, en utilisant la notion de sétöıdes [BCP03]. Mais cela ne
permet pas d’avoir une notion d’égalité comme les mathématiciens ont l’habitude d’utiliser
au tableau, car le principe général de substitution n’est pas valide pour ces égalités. En
effet, lorsqu’un développeur souhaite utiliser une notion d’égalité basée sur les sétöıdes
et réécrire avec les égalités dans une expression, il doit prouver au préalable que cette
expression valide le principe de substitution. Et lorsque cette expression provient d’un
développement extérieur, cela peut s’avérer être une tâche très complexe, même pour une
seule expression. Ce traitement non-uniforme de l’égalité pose aussi un problème lorsqu’il
s’agit de composer des preuves entre elles, ce qui constitue pourtant un point fondamental
du développement des mathématiques. Tous ces problèmes ont pour conséquence que
même si des développements Coq conséquents ont vu le jour, ils ont tous été faits par
des virtuoses capables de jongler avec des concepts avancés à la fois en informatique et
en mathémaiique, ce qui exclut de facto un développeur ou mathématicien lambda. Mon
projet de recherche a pour but de résoudre ce problème en fournissant un assistant de
preuve dans lequel développeurs et mathématiciens pourront manipuler l’égalité comme
ils le font habituellement au tableau.

La naissance de la théorie homotopique des types. Pour corriger cette dissonance
fondamentale entre l’égalité en mathématique et l’égalité en théorie des types, Martin
Hofmann et Thomas Streicher ont introduit un nouveau point de vue sur la théorie des
types, dans lequel les types sont vus non pas simplement comme des ensembles, mais
comme des ensembles munis d’une structure homotopique [HS96]. Ainsi, chaque type vient
avec une notion d’égalité qui lui est propre et la structure homotopique décrit comment
substituer un terme par un autre terme équivalent dans un type. Vladimir Voevodsky a
reconnu récemment que cette interprétation homotopique des types satisfait de surcrôıt
une propriété cruciale, appelée univalence, et qui n’avait jamais été considérée jusqu’à
présent en théorie des types. Le principe d’univalence stipule que deux types T and U sont
égaux si et seulement si ils sont équivalents (ou isomorphes)5:

Definition univalence := ∀ T U : Type, (T = U) ∼= (T ∼= U).

Le principe d’univalence subsume les autres principes manquant à l’égalité et constitue
donc la clé pour équiper la théorie des types avec une notion d’égalité qui soit compatible
avec les raisonnements faits traditionnellement en mathématique. Dans les développe-
ments récents autour de la théorie homotopique des types [Uni13], l’univalence est ajoutée
à la théorie des types de Coq (ou Agda) à l’aide d’un nouvel axiome. Ce principe a des
conséquences très importantes pour la formalisation de la théorie de l’homotopie, comme
par exemple la preuve que le premier groupe d’homotopie de la sphère est équivalent à
Z [LS13]. Mais le principe d’univalence a aussi des conséquences très intéressantes en
informatique. Il permet d’utiliser une fonction/méthode d’une bibliothèque—qui a été
définie pour un type de données A—sur un autre type de données B, dès lors qu’il y a un
isomorphisme explicite entre A et B. Supposons par exemple que A soit le type inductif
des listes.

Inductive list1 A : Type := nil1 : list1 A | cons1 : A → list1 A → list1 A.

5En fait, comme nous le définissons formellement en Section 2.6.3, ce principe dit plus précisément que
la flèche canonique de T = U vers T ∼= U is an equivalence.

Introduction 7

CoqHoTT +
Logique Classique

Tiers Exclu

Principle suppl. :

Traduction de Faisceaux
avec Topologie Dense

CoqHoTT

CoqHoTT +
Induction Générale

Types Inductifs Généraux
Loi de Löb

Principles suppl. :

Traduction de Forcing
avec Entiers Naturels

CoqHoTT +
Sémantique de Kripke

Logique Modale

Principle suppl. :

CoqHoTT +
Axiome du Choix

AC dépendant

Principle suppl. : Traduction de Faisceaux
avec Topologie Dense
 Entiers Naturels

Traduction de Forcing
avec mondes

Figure 1: Extension de Coq en les transformations de programme venant de la logique
mathématique

Prenons maintenant un développeur qui a utilisé son propre type inductif pour les
listes au cours de son développement, et qui a, par convenance défini le constructeur cons
en prenant les arguments dan le sens inverse de l’ordre habituel :

Inductive list2 A : Type := nil2 : list2 A | cons2 : list2 A → A → list2 A.

En utilisant l’univalence, peu importe la représentation utilisée pour les listes, il de-
vient facile de passer d’un type à l’autre car les deux types sont isomorphes et peuvent
être considérés comme égaux. Ce changement de base/type est très fréquent et peut être
utilisé dans différents contextes: pour des raisons d’efficacité ou de simplicité d’un algo-
rithme (comme par exemple pour les algorithmes de tri et les différentes représentations
d’une liste), pour des raisons de compatibilité entre la représentation des données (e.g.,
mètre ou pouce, la date au format américain ou européen). . . L’univalence permet de faire
une conversion automatique d’un programme agissant sur A à un programme agissant sur
B, tout en ayant la garantie que les deux programmes produisent des résultats équiva-
lents. Ceci peut être très utile dans des phases un peu plus avancées de développement
logiciel. Mais comme la théorie homotopique des types est éminemment d’ordre supérieur,
l’univalence peut aussi être utilisée pour replacer un programme par un autre programme,
dès lors que ces deux programmes sont isomorphes, i.e., indistinguables de l’extérieur.
Cela forme donc un moyen de faire des optimisations prouvées correctes.

Objectifs pour les Cinq Prochaines Années

Malheureusement, postuler l’univalence par un axiome casse une propriété fondamentale
des preuves obtenues avec un assistant de preuve basé sur la théorie des types: cela casse
le mécanisme d’extraction qui permet d’obtenir un programme qui calcule à partir de la
formalisation. Le point de départ de mon projet de recherche est de construire un système
où l’univalence est intégrée nativement sans axiome. Ainsi, la théorie obtenue sera plus
régulière, plus proche de la structure de topos (en fait∞-topos), qui est une notion fonda-
mentale en logique mathématique. Ce point est très important pour permettre de revisiter
les transformations de modèles faites en logique, habituellement définies sur des topöı, vers
des transformations agissant sur la théorie des types. Concrètement, il deviendra possi-
ble d’étendre de manière modulaire la logique gouvernant l’assitant de preuve, e.g., en

8 Introduction

ajoutant un principe d’induction général, les axiomes de la logique classique, l’axiome du
choix ou les règles de la logique modale (Fig. 1).

Le but principal de notre projet est de fournir une nouvelle génération d’assistants
de preuve avec une version calculatoire de l’univalence et de les utiliser comme base
pour la mise en œuvre de transformations de modèles effectives, afin que le pouvoir
de logique interne de l’assistant de preuve puisse être changé dynamiquement—en
fonction de la tension entre efficacité et expressivité logique.

Le résultat donnera non seulement un élan déterminant dans la manière dont les
chercheurs, aussi bien les informaticiens que les mathématiciens, appréhendent les assis-
tants de preuve, mais fournira aussi l’opportunité de construire de manière effective une
nouvelle théorie de types qui formera les nouveaux fondements pour la formalisation des
mathématiques. Ce projet sera basé sur l’assistant de preuve Coq car il est dans une
dynamique de développement positive permanente, et commence à être utilisé de manière
massive dans la communauté scientifique. Mais les résultats du projet pourront tout aussi
bien être utilisé dans le cadre d’autres assistants comme Agda ou Lean.

Exemple : la formalisation des monades. Afin d’illustrer la possibilité qu’offrira
l’aboutissement de notre projet, considérons le cas d’un informaticien souhaitant for-
maliser les monades dans les langages de programmations. Les monades constituent une
façon très pratique de représenter les effets dans des cadres fonctionnels purs, comme
en particulier dans Haskell. Une monade consiste en un constructeur de type m qui
représente le type de calculs avec effets et deux opérations de plongement des valeurs
dans les calculs et de composition de calculs. Ces opérations doivent satisfaire différentes
propriétés pour que la notion de calcul induite soit correcte. En Haskell, ces propriétés
sont implicitement supposées, et c’est la responsabilité du programmeur de les vérifier sur
le papier lorsqu’il définit une nouvelle monade. Il est donc important de pouvoir réimplé-
menter les bibliothèques Haskell sur les monades en Coq, avec les propriétés vérifiées
formellement, et de les extraire ensuite vers Haskell pour obtenir des bibliothèques cer-
tifiées qui calculent. Concrètement, définir une monade revient à donner en Coq une
instance de la classe de type suivante:

Class Monad (m : Type → Type) := {
unit : ∀ a, a → m a ;
bind : ∀ a b, m a → (a → m b) → m b;
left_identity : ∀ a b x (f : a → m b), bind (unit x) f = f x

(* plus two other laws *)}.

Cela signifie que pour déclarer une nouvelle monade, il est nécessaire de définir les
opérations calculatoires en même temps que de prouver leurs propriétés. Regardons plus
précisément ce que cela signifie pour une monade bien connue; la monade d’état qui
permet aux fonctions de manipuler un état durant leur calcul, comme on peut le faire
en programmation impérative. Il est possible de montrer que la monade d’état est une
instance de la classe de type Monad :

Definition State s a := s → s × a.

Instance StateMonad s : Monad (State s) := {
unit a := fun a s ⇒ (s,a);
bind a b := fun c f s ⇒ let (s’,a) := c s in f a s’;

Introduction 9

left_identity a b := fun x f ⇒ fun_ext (fun s ⇒ refl)}.

L’instance pour la loi d’identité à gauche (comme pour les deux autres lois que
nous n’indiquons pas) requiert l’utilisation du principe d’extensionnalité des fonctions.
Ainsi, pour extraire complètement le code Haskell du développement Coq, le principe
d’extensionnalité fonctionnelle ne doit pas être un axiome. Cela se produit aussi lorsqu’on
définit d’autres monades courantes, ce qui indique que tout projet souhaitant formaliser
des monades a besoin d’une version native du principe d’extensionnalité des fonctions
pour avoir du code extrait qui calcule. Supposons maintenant que deux monades d’état
ont été composées. En utilisant l’univalence, la composée des deux monades peut être vue
comme une simple monade d’état sur le produit des deux états des monades:

Lemma stateCompose s s’ a : State (s × s’) a = State s (State s’ a).

Finalement, supposons qu’un développeur définisse une nouvelle monade qui nécessite
la loi du tiers exclu. Il pourra alors, au lieu de postuler un nouvel axiome dans Coq,
spécifier au début de son développement qu’il se place dans une couche logique qui contient
la logique classique, et la loi du tiers exclu deviendra accessible à la compilation à travers
une transformation de programme.

Défis. Jusqu’à présent, tous les assistants de preuve basés sur une théorie des types
décidable utilisent une notion syntaxique d’égalité. De plus, peu de travaux ont été faits
pour étendre le pouvoir interne de la logique en utilisant les idées venant de la logique
mathématique. Une des raisons pour tout cela est que la notion syntaxique d’égalité est
incompatible avec les transformations de modèles utilisées en logique mathématique pour
étendre la logique avec de nouveaux principes. Notre projet se propose donc de relever
les défis suivants :

D1. Définir une théorie des types avec une notion native d’univalence

Alors que le principe d’univalence devient communément accepté comme une solu-
tion très prometteuse pour donner de nouvelles fondations à la théorie des types et
aux mathématiques, il n’a toujours pas été ajouté à un assistant de preuve. C’est en
partie car les structures mathématiques (autour de la notion d’∞-groupöıdes) sup-
portant la théorie sont encore sujettes à des discussions actives dans la communauté,
et la définition d’une procédure complète et décidable du typage pour la théorie en-
tière pose à la fois des problèmes de complexité calculatoire et de cohérence logique.
Une toute première approximation de la théorie homotopique des types a été implé-
mentée dans Epigram sous le nom de “théorie des types observationnelle” [AMS07],
mais uniquement pour traiter du principe d’extensionnalité des fonctions et non pour
l’univalence. Plus récemment, l’équipe de Thierry Coquand a travaillé sur un modèle
calculatoire basé sur modèle des ensembles cubiques [BCH13, CCHM16], mais une
formalisation complète en théorie des types intentionnelle est encore un problème
ouvert. Mark Bickford6 a récemment annoncé la formalisation de la théorie cubique
des types en NuPRL (basé sur une théorie des types extensionnelle). La formali-
sation est assez complète mais le principe d’univalence n’a pas été dérivé pour le
moment de la sémantique Nuprl.

Le premier défi de notre projet est donc de permettre cette internalisation complète
de l’univalence en théorie des types intentionnelle.

D2. Fournir une nouvelle génération d’assistants de preuves avec univalence,
sans surcoût calculatoire

6http://www.nuprl.org/wip/Mathematics/cubical!type!theory/index.html

http://www.nuprl.org/wip/Mathematics/cubical!type!theory/index.html

10 Introduction

Une fois qu’une théorie des types avec une version calculatoire de l’univalence aura
été mise en place, le prochain défi sera de l’intégrer dans une nouvelle version de
Coq, tout en conservant la compatibilité avec les versions précédentes, en particulier
au niveau de la vitesse de calcul. En effet, le surcoût de complexité induit par la
théorie homotopique des types ne doit pas induire d’explosion de la complexité de
la procédure de vérification du typage utilisé si l’on veut que ce nouveau cadre soit
accepté rapidement dans la communauté. Concrètement, il faudra s’assurer que
le temps de compilation de la librairie standard de Coq reste du même ordre de
grandeur entre la nouvelle et l’ancienne version.

D3. Définir une notion de type inductif avec une notion intégrée d’égalité

Durant un groupe de travail au Mathematical Research Institute d’Oberwolfach en
2011, il a été noté que le nouveau point de vue sur l’égalité donné par la théorie
homotopique des types permet de généraliser la notion de types inductifs. Les types
inductifs sont au cœur de la plupart des formalisations réalisées en Coq car ils for-
ment la brique de base pour définir des structures de données complexes. Ils sont
comparables à la notion de types de données abstraits généralisés (GADT) qui peut
être trouvée dans Haskell ou OCaml. Un type inductif est défini par un ensemble
de constructeurs qui permet de spécifier comment produire des éléments de ce type
inductif (comme dans l’exemple des listes ci-dessus). Un des résultats importants
de l’année de travail à l’IAS a été de définir une notion de type inductif dans laquel-
le les constructeurs ne spécifient pas seulement les éléments du type, mais aussi les
égalités entre ces éléments. Cette nouvelle construction a été appelée types inductifs
supérieurs (higher inductive types, HIT [Uni13]). Intégrer les HIT est très important
dans notre projet car ils permettent de définir de nombreuses structures mathéma-
tiques comme les types quotients ou d’autres notions de colimites. Cette structure
est nécessaire pour le développement du prochain défi (D4). Malheureusement, la
définition précise des HIT n’a pas encore été complètement développée. Notre projet
se propose donc de fournir la première implémentation des HIT dans Coq.

D4. Étendre modulairement le pouvoir logique de la théorie des types sans
axiome

Étendre le pouvoir de la logique en utilisant des transformations de modèles (e.g., la
transformation de forcing [JTS12, JLP+16] ou la construction de faisceaux) est un
vieux sujet de la logique mathématique. De manière surprenante, ces idées n’ont pas
été très regardées dans le cadre de la théorie des types pour étendre modulairement le
pouvoir logique d’un assistant de preuve. La raison pour cela est assez simple : avec
une notion syntaxique de l’égalité, la structure sous-jacente de la théorie des types
n’est pas conforme avec la structure de topos utilisée en logique mathématique; ce
qui explique pourquoi une adaptation directe ne marche pas. Cependant, avec une
notion univalente de l’égalité, la structure sous-jacente de la théorie des types devient
plus proche car elle correspond à la notion d’∞-topos récemment étudiée par Jacob
Lurie [Lur09]. Le dernier défi de notre projet pour ces cinq prochaines années est de
reformuler et d’implémenter en théorie homotopique des types les transformations
de modèles bien connues en logique mathématique, en nous inspirant du travail sur
les ∞-topöı.

La figure 1 présente les extensions logiques qui deviendraient possibles avec cette
approche : la loi du tiers exclu, l’axiome du choix, un principe d’induction générale
ou la logique modale.

Introduction 11

Théorie des TypesThéorie Homotopique des Types

Correcte

Incorrecte

Compilation Vérification du type

a
b

c

p
p-1

q

Équalité uniforme

Structures algébriques
supérieures

Équalité relativisée

Univalence

Figure 2: Vérifier le typage en théorie homotopique des types via une phase de compilation

Méthodologie

Après avoir expliqué notre approche globale pour résoudre les défis mentionnés plus haut
en utilisant des phases de compilation de théories de types riches vers des théories plus
primitives dans Coq, nous détaillons dans cette section les cinq objectifs qui guideront
notre projet.

Étendre la théorie des types à travers différentes phases de compilation. Les
fondements de notre projet résident dans la mise au point d’une nouvelle génération
d’assistants de preuve en rendant possible l’extension de leur logique interne par différentes
phases de compilation. En effet, de nos jours, les compilateurs sont formés par composition
de différentes phases de compilation, afin de réduire la complexité de chacune de ses
phases. Ainsi, il parâıt naturel de bénéficier de la même idée pour la définition d’un
assistant de preuve complexe. C’est par exemple déjà le cas pour la définition des classes
de type de Coq qui sont moralement obtenues à travers une traduction vers un noyau de
Coq sans classe de type. Cette approche par phases de compilation s’est déjà montrée
fructueuse pour ajouter des points fixes généraux dans Coq en utilisant la traduction de
forcing[JTS12, JLP+16]. La première phase de compilation (Fig. 2) correspond à la réa-
lisation des défis D1 et D2. Elle consiste en la définition de l’interprétation de la théorie
homotopique des types vers la théorie des types traditionnelle en utilisant une interna-
lisation des ∞-groupöıdes. Je pense sincèrement que l’utilisation de différentes phases
de compilation pour modulariser la difficulté de trouver un algorithme de vérification du
typage qui soit décidable pour des théories de types complexes est une ligne de travail
prometteuse. La seconde phase de compilation (Défi D3) correspond à l’interprétation des
types inductifs supérieurs comme des types inductifs de base avec une notion spécifique
d’égalité. De cette façon, nous donnerons en même temps un contenu calculatoire aux
HIT, et obtiendrons une preuve de équi-consistance avec la théorie des types sans HIT.
La troisième phase (Défi D4, Fig. 1) correspond à l’internalisation en théorie homotopique
des types des transformations de modèles définies sur les∞-topöı, comme la construction
de préfaisceaux ou de faisceaux. Le succès de nos contributions théoriques ne pourra
être garanti qu’à travers le développement d’outils pratiques associés. J’ai donc prévu
pour les prochaines années de mettre un effort particulier dans l’implémentation d’une
extension de Coq avec le principe d’univalence. Notre but à long terme est d’avoir une
extension compatible avec et aussi efficace que la version actuelle de Coq, de manière à
ce que cette extension puisse servir de nouvelle version officielle. Notre projet focalise sur
l’assistant de preuve Coq car il supporte déjà les classes de types et la gestion implicite
d’univers polymorphes, mais les résultats du projet pour aussi bien être déclinés vers
d’autres assistants comme Agda ou Lean. Enfin, notre but n’est pas seulement de fournir
une nouvelle version de Coq avec univalence mais aussi une intégration des extensions

12 Introduction

CoqHoTT, Coq for Homotopy Type Theory

sans Logique
Classique

CoqHoTT sans Axiome du
Choix

sans Points
Fixes Généraux

Coq compilé

sans
Sémantique de

Kripke

Noyau de Coq

sans Univalence

1

Figure 3: Diverses phases de compilation pour augmenter le pouvoir logique et calculatoire
de Coq.

obtenues par l’internalisation des transformations de modèles.
Nous allons construire notre projet autour des cinq objectifs suivants. Le projet global

est résumé dans la figure 3.

Objectif 1 : Définir une internalisation de la théorie homotopique des types
en Coq

Comme en témoigne les résultats de l’année de travail de scientifiques éminents du
domaine (durant l’année“The Univalent Foundations Program” à l’IAS de Princeton
[Uni13]), définir un traitement direct et complet de la théorie homopotique des types
est une tâche très complexe qui est encore loin d’être acccomplie. Ceci est princi-
palement dû au fait que cela soulève beaucoup de problèmes de cohérence venant de
l’utilisation d’une infinité de dimension. Nous pensons que définir une interprétation
de la théorie homotopique des types à l’intérieur de la théorie des types elle-même
constitue la clé pour une définition complète. Le principal défi ici sera d’internaliser
la définition des structures infinies utilisées pour décrire la théorie homotopique des
types. Il y a eu plusieurs travaux récents sur le sujet qui servira de base à notre
investigation. Le modèle initial de Vladimir Voevodsky est basé sur les ensembles
simpliciaux de Kan mais souffre de problèmes de constructivité (comme montré
récemment dans [BCP15, BC15]) qui ne le rend pas propice à une mécanisation en
Coq. Ces structures infinies pourraient aussi être décrites en utilisant une approche
opéradique pour les ∞-groupöıdes. En effet, bien que la construction usuelle des
n-catégories strictes via des enrichissements successifs ne marche pas dans le cadre
faible, Todd Trimble [Tri99] a proposé récemment d’utiliser certaines opérades pour
paramétrer la composition faiblement associative dans les dimensions supérieures
afin d’obtenir une définition inductive des n-catégories faibles. Eugenia Cheng et
Tom Leinster [CL12] ont proposé récemment une construction co-inductive des ∞-
catégories faibles basée sur l’approche de Trimble et la notion de cogèbre finale.
Une autre ligne de travaux, initiée par l’équipe de Thierry Coquand, se tourne vers
l’utilisation d’un modèle entièrement calculatoire pour les∞-groupöıdes basé sur les
ensembles cubiques [BCH13] donnant lieu à la théorie des types cubiques [CCHM16]
pour laquelle un résultat de canonicité a récemment était prouvé pour Simon Hu-
ber [Hub16]. Enfin, Thorsten Altenkirch a proposé de construire des ∞-groupöıdes
avec une approche plus syntaxique [AR12], en générant d’abord la structure infinie
sans ses cohérences, puis en les récupérant en utilisant une approche à la “tous les di-
agrammes commutent”. Il n’est pas encore clair quelle approche sera la plus adaptée

Introduction 13

pour notre but, et la détecter constituera déjà une réelle avancée.

Le travail lié à cette tâche ne consistera pas seulement à un développement théorique
mais sera solidement ancré sur un socle d’implémentation. En effet, un bon can-
didat pour la représentation des ∞-groupöıdes ne pourra être détecté qu’à travers
la mise en œuvre de sa formalisation en Coq, aussi bien en terme de complexité
des définitions mais aussi de preuves associées. De plus, dans notre travail pour in-
ternaliser les (wild) ∞-groupöıdes dans Coq [HHT15], il est apparu clairement que
ce processus d’internalisation ne fonctionne pour les structures infinies qu’au prix
d’une forte automatisation des preuves associées. En particulier, nous aurons besoin
d’améliorer et généraliser les techniques de réécriture mises en place par Matthieu
Sozeau dans la bibliothèque Setoid. Améliorer cette biliothèque permettra de faire
la plupart des preuves grâce à de la réécriture automatique.

Objectif 2: Développer une procédure décidable pour la vérification de type
en théorie homotopique des types

Développer une procédure décidable pour la vérification de type en théorie homo-
topique des types est un des problèmes ouverts les plus importants du sujet. En effet,
comme les définitions des objets mathématiques sous-tendant la théorie sont encore
sujettes à débat actif, l’établissement d’une procédure de vérification du typage cor-
recte et décidable pose encore de nombreux problèmes. Nous proposons de nous
reposer sur le travail qui aura été accompli après avoir atteint notre premier objectif
sur l’internalisation d’une interprétation d’un modèle de la théorie homotopique des
types afin de définir un algorithme se basant sur une phase de compilation vers la
théorie des types de base (Fig. 2). En effet, de nos jours, les compilateurs sont com-
posés en une série d’étapes afin de mâıtriser la complexité de manière modulaire. Il
semble donc naturel de bénéficier de ces techniques dans la définition d’assistants
de preuve complexes. Ceci est déjà le cas pour la définition des classes de type de
Coq, qui sont données par une compilation directement dans la théorie sans classe
de type.

La théorie requise pour cette axe sera entièrement basée sur l’objectif O1. Le tra-
vail restant se situera dans la simplification et l’optimisation de la traduction pour
obtenir des termes compilés dont la vérification du typage ne prenne pas beaucoup
plus de temps que pour la vérification traditionnelle. Cela peut être atteint par
exemple en exhibant des motifs dans la traduction permettant de les pré-typer afin
d’accélérer la vérification du typage.

Objectif 3: Implémenter une extension de Coq pour la théorie homotopique
des types

L’accomplissement des deux premiers défis nous ouvrira la voie à l’implémentation
complète d’une extension de Coq pour la théorie homotopique des types. À l’inverse
des deux premiers défis, cette partie de notre projet n’est pas ambitieuse du point
de vue théorique, mais plutôt au niveau de l’ingénierie logicielle. Elle requiert
l’implémentation de la phase de compilation d’une transformation de programmes
complexe tout en conservant des performances proches de la version de Coq n’utilisant
pas cette transformation. En effet, la complexité supplémentaire de la théorie homo-
topique des types ne doit pas induire une explosion combinatoire si on veut que la
nouvelle version devienne le standard. Nous pensons aussi intégrer des idées venant
de la programmation par aspect afin d’étendre le langage de tactique de Coq avec
des constructions permettant une utilisation plus facile de l’univalence en informa-
tique. En effet, la notion de points de coupe (qui détecte les points d’intérêt lors de

14 Introduction

l’exécution d’un programme) peut être vue comme un moyen de décrire les endroits
où utiliser des isomorphismes, et un advice (qui indique quel programme exécuter)
peut être vu comme l’isomorphisme à appliquer en ce point. Ainsi, il sera plus facile
de changer à la volée la présentation des données à l’exécution.

Cette tâche est principalement technique. Notre expérience avec l’implémentation de
la traduction de forcing [JTS12, JLP+16] nous montre qu’il sera sûrement nécessaire
d’améliorer la vérification du typage de Coq pour obtenir un résultat satisfaisant.
En effet, la vérification est basée sur de nombreuses heuristiques qui peuvent être
améliorées en ayant une meilleure compréhension de la forme des termes qui seront
obtenus après compilation.

Objectif 4: Définir et implémenter une notion générale de types inductifs
supérieurs

Après avoir fourni un cadre pour l’intégration du principe d’univalence dans Coq,
l’autre point important de la théorie homotopique des types à intégrer sera la no-
tion de types inductifs supérieurs (Fig. 2, gauche). Ces types sont au cœur de la
formalisation de la théorie de l’homotopie dans un assistant de preuve. Leur donner
un contenu calculatoire permettra aux mathématiciens, non seulement de formaliser
et prouver des théorèmes en théorie de l’homotopie, mais aussi d’utiliser la théorie
des types pour calculer les groupes d’homotopie d’objets complexes. En effet, les
théoriciens de l’homotopie sont maintenant confrontés à une explosion de la complex-
ité des objets qu’ils manipulent dans leurs travaux sur la classification des espaces
topologiques. il est maintenant de notoriété publique que cette explosion nécessite
l’utilisation d’ordinateurs pour assister les mathématiciens.

La notion de types inductifs supérieurs a aussi des conséquences en informatique
car elle fournit un nouveau constructeur de types qui vient avec sa propre notion
d’égalité. Par exemple, les systèmes de contrôle de version peuvent être modélisé
avec des types inductifs supérieurs dans lesquels les actions “commit” et “revert”
correspondent aux applications des égalités venant avec ce HIT [AMLH14].

Au sein de notre projet, l’intégration des types inductifs supérieurs sera aussi très
important pour le développement du dernier objectif.

Objectif 5: Étendre la théorie homotopique des types avec de nouveaux
principes logiques et calculatoires

Avec une implémentation pratique et effective de la théorie homotopique des types,
nous avons pour but de réutiliser les transformations de modèles bien connues en
logique mathématique afin de pouvoir augmenter le pouvoir logique de la théorie
des types avec de nouveaux principes. Le défi ici est de donner un sens, à travers
différentes phases de compilation, à des axiomes souvent utilisés en mathématique,
comme la loi du tiers exclu ou l’axiome du choix (Fig. 1). Comme ajouter ces
nouveaux principes peut avoir un impact sur les temps de calcul et peut parasiter
le mécanisme d’extraction, notre but est de pouvoir étendre de manière modulaire
la logique interne de Coq. Nous avons déjà montré [JTS12, JLP+16] que le forcing
(qui correspond à la construction de préfaisceaux) permet de sublimer la logique
de Coq avec des nouveaux constructeurs, comme par exemple des types inductifs
non restreints (à ne pas confondre avec les types inductifs supérieurs). Notre projet
est d’appliquer cette technique à d’autres constructions qui nécessitent l’univalence
pour être correctes, comme par exemple la construction de faisceaux. Cela permettra
d’implémenter dans la théorie des types la fameuse traduction de Gödel de la logique

Introduction 15

classique vers la logique intuitioniste, donnant ainsi un sens calculatoire au tiers
exclu.

La structure sous-jacente de la théorie homotopique des types est celle des∞-topöı,
récemment étudiés par Jacob Lurie [Lur09]. Le principal défi à notre niveau sera de
rendre concrètes et effectives les transformations décrites dans le cadre des∞-topöı.
En effet, même si les préfaisceaux et les faisceaux ont déjà été définis dans ce cadre,
leurs définitions sont très abstraites et nécessitent un gros travail d’adaptation pour
les rendre suffisamment effectives pour être implémenter en théorie homotopique
des types. Par exemple, une présentation effective des faisceaux nécessite de refor-
muler les faisceaux dans les ∞-topöı en utilisant la notion de topologie de Lawvere-
Tierney [MM92] qui n’a pour le moment jamais été définie dans ce cadre.

Pour cette tâche, nous souhaitons reprendre nos travaux sur le forcing et implémenter
une internalisation de la notion de faisceaux à la Lawvere-Tierney dans Coq. En
utilisant ces traductions, il deviendra possible d’ajouter calculatoirement (i.e., sans
axiome) de nouveaux principes à la théorie de Coq. Comme nous anticipons des
allongements significatifs des temps d’exécution pour l’utilisation de ces nouveaux
principes, nous aurons à trouver des mécanismes pour bien séparer la compilation
des modules qui utilisent ces nouveaux principes des autres modules. Ainsi, le
surcoût calculatoire ne sera payé que dans les modules qui font un usage effectif de
ces principes, ce qui rendra notre approche beaucoup plus utilisable en pratique.

Chapter 1

Looking Back into the Future

Le saut dans le vide (négatif),
Klein (1960)

Contents

1.1 A Retrospective Introspection 17

1.1.1 Overview of the Rest of the Document 19

1.2 Future Line of Reasearch . 20

1.2.1 Objectives over the five coming years 22

1.2.2 Methodology . 26

1.1 A Retrospective Introspection

Remark 2

Although the rest of the manuscript is written in a more conventional way, this section
uses the first-person perspective to stress that it develops a personal point of view.

Semantics of compilation. During an internship at Microsoft Research Cambridge
in 2007, I started to study the semantics of compilation [BT09] under the delightful
supervision of Nick Benton. My subject of interest at this time was mainly on denotational
semantics of programming languages, but I started to realize1 that compiling—or rather
translating—a program written in a complex language into a program written in a simpler
language was a very primitive and efficient way of giving a meaning to a complex language.

1I also realized that I like the Coq proof assistant [CDT15] a lot, which should be obvious from the
reading of the rest of this manuscript.

18 Looking Back into the Future

Aspect Oriented Programming. This remark pursued me as I started to study the
semantics of Aspect Oriented Programming (AOP) when I entered the Ascola team (As-
pects Components Languages) in 2009. AOP [KLM+97] is a programming paradigm that
aims to increase modularity by allowing the separation of cross-cutting concerns. These
are concerns that cannot be defined using traditional modularity mechanisms, such as
classes, modules, or components. Tracing and security are two examples of crosscutting
concerns, and thus are subject to scattering and tangling. The idea of AOP is to bring
back all the tracing code together within a new kind of module, called an aspect. The
two main constituents of an aspect are pointcuts and pieces of advice. A pointcut selects
the execution points of interest in the base program, for instance, method calls in the
case of tracing. A piece of advice defines what to do when an execution point is selected,
typically display a message before and after a call in the case of tracing. The process of
composing aspects with a base program, recreating the program which would have been
implemented without AOP, is called weaving.

My first work on the meaning of a distributive aspect calculus [Tab10] has been done by
translating it into the more primitive join calculus [FG96a], thus considering the weaving
process as a program transformation. I have then studied the semantics of functional
AOP [Tab11, Tab12] in the light of monadic embeddings, which constitute a very famous
program transformation in functional programming. Monads [Mog91] are a mechanism to
embed and reason about computational effects such as state, I/O, or exception-handling
in purely functional languages like Haskell. Defining the semantics of functional AOP
using a monad allows to be modular on the different possible semantics of aspects (e.g.,
aspect deployment, interference), and allows for a direct implementation in functional
languages such as Haskell [TFT13, FTT14b, FSTT14].

By using ideas coming from the scoping of aspects, I have developed with Ismael
Figueroa and Éric Tanter a monadic definition in Haskell of effect capabilities [FTT14a,
FTT15] which allows to impose certain security policy on the effects that are used in
an Haskell program. Together with the monadic setting, it uses heavily the type class
mechanism of Haskell to decide the level of permission using an implementation of
permission lattices as type classes.

Forcing in Type Theory. In the meantime, I was using more and more Coq to for-
malize (part of) the proof I was doing on paper. I realized then that even if type theory
(or more precisely the Calculus of Inductive Construction, the theory behind Coq) was
very powerful, we were lacking the possibility to enhance the power of the logic or com-
putational behaviour easily.

This has lead me to develop with Guilhem Jaber and Matthieu Sozeau a version of
forcing in type theory [JTS12]. Forcing is a method originally designed by Paul Cohen
to prove the independence of the Continuum Hypothesis from the axiomatic set theory
ZFC [Coh66]. The main idea is to add new objects which can be approximate in the ground
system, using the so called forcing conditions. To adapt these ideas to type theory, rather
than using the usual set theoretic approach of Forcing, we have used its restatement in
terms of Category Theory that Bill Lawvere and Myles Tierney [Tie72] have pursued using
Sheaves Topos. Recently, after the works of Jean-Louis Krivine [Kri11] and Alexandre
Miquel [Miq11a], it became accepted that forcing techniques are of great interest for the
extension of the Curry-Howard correspondence. The starting point of our work was to
connect these two observations:

“Intuitionistic forcing for type theory is an internalization
of the presheaf construction in type theory”

1.1. A Retrospective Introspection 19

The idea is to extend a base type theory—called the ground system—with new principles,
getting a new type theory—called the forcing layer. Terms and types of the forcing layer
can be translated to the ground system using the forcing translation. Then, the forcing
layer may satisfy new logical or computational principles, e.g., the existence of general
fixpoints when forcing with natural numbers as forcing conditions—which corresponds to
considering the topos of trees.

More recently, we have realized that this forcing program transformation was lack-
ing some computational properties that make it not really usable in practice because of
coherence issues. This is why we have shifted from a call-by-value to a call-by-name
interpretation, under the initiative of Pierre-Marie Pédrot, leading to a new version of
the forcing translation [JLP+16] directly implementable as a Coq plugin. Indeed, our
translation is directly implementable because it interprets conversion—i.e., the fact that
two terms are convertible using definitional equality—as conversion. On the contrary, in
many other works and in particular when dealing with models of type theory, conversion
is interpreted as a propositional equality or as an external notion of equality provided by
the model. In that case, we are facing a coherence issue, because conversion must then be
interpreted as an explicit transportation of one term into the other and can not be implicit
anymore. Although this coherence issue has been quite widely studied, in particular in
the recent work of Pierre-Louis Curien, Richard Garner and Martin Hofmann [CGH14],
no solution is available to produce a correct program transformation of type theory from
such models/transformations. This observation leads me to the following slogan, which
constitutes one of the cornerstone of the research direction developed in Section 1.2:

“A correct and implementable program transformations
must preserve type conversion on the nose.”

More precisely, I believe that it should be possible to modify already existing transforma-
tions to preserve conversion as we have done for forcing by going from a call-by-value to
a call-by-name interpretation of forcing.

Dependent Interoperability. Another reflection that came to me when discussing
with Éric Tanter about gradual typing in programming languages, is that Coq were
lacking similar mechanism to allow a smoother learning time for developers aiming at
moving from a simply typed to a dependently typed setting.2 Actually, we realized that the
problem also occurs in the other direction, when transforming a program written in Coq
to a program written in a simply typed language such as OCaml or Haskell—a process
known as program extraction. In that case, the absence of graduality leads to a great
loose of properties, from the original code to the extracted code. In that setting, I have
worked with Pierre-Évariste Dagand and Éric Tanter on dependent interoperability [TT15,
DTT16] between Coq and OCaml/Haskell which can be seen as a way to automatically
improve program extraction, i.e., the program transformation from Coq to a simply typed
language.

1.1.1 Overview of the Rest of the Document

The next section presents my research program for the five coming years, and maybe
more.3 After that, the rest of the document is devoted to the presentation of three
different works on quite different topics but sharing the common idea of using program

2We use the term “simply typed” to mean “non-dependently typed”, i.e., we do not rule out parametric
polymorphism.

3Most of it will be developed inside the CoqHoTT project—ERC starting grant 637339.

20 Looking Back into the Future

transformation to handle logical or computational complexity. All those works have been
published and are here gathered, standardized, and revisited to make the manuscript more
self-contained.

Chapter 2 describes a transformation from Coq programs to Coq programs, in order
to increase the logical and computational power of Coq. This chapter directly comes from
the paper The definitional side of the Forcing [JLP+16] which introduces a call-by-name
version of forcing in Coq. This is joint work with Guihlem Jaber, Gabriel Lewertowski,
Pierre-Marie Pédrot and Matthieu Sozeau.

Chapter 3 presents a distributed aspect calculus based on the join calculus. The
complexity of aspects deployment and weaving in the context of distributed processes
is handled by giving a direct translation from the aspect join calculus to the core join
calculus, giving at the same time a semantics and an implementation of the aspect join
calculus. This is a revisited and extended version, done with Éric Tanter, of the paper A
theory of distributed aspects [Tab10].

Chapter 4 describes, to a certain extent, a program transformation from a Coq pro-
gram with dependent types, to a Haskell or OCaml program by moving some static
checks into dynamic ones. This chapter directly comes from the paper Partial Type Equiv-
alences for Verified Dependent Interoperability [DTT16]. This is joint work with Pierre-
Évariste Dagand and Éric Tanter.

1.2 Future Line of Reasearch

Equality in proof assistants based on type theory. Every year, software bugs cost
hundreds of millions of euros to companies and administrations, as assessed by Intel Pen-
tium division bug or Ariane 5 first flight failure. Hence, software quality is a notion that
becomes more and more prevalent, going beyond the usual scope of embedded systems. In
particular, the development of tools to construct softwares that respect a given specifica-
tion is a major challenge of current and future researches in computer science. Interactive
theorem provers based on type theory, such as Coq [CDT15], equipped with an extraction
mechanism that produces a certified program from a proof, are currently gaining traction
towards this direction. Indeed, they have shown their efficiency to prove correctness of
important pieces of software like the C compiler of the CompCert project [Ler06]. One
main interest of using such theorem provers from a computer science point of view is the
ability to extract the code that has been proven directly from the proof, being able to run
it as any other pieces of code. For instance, the CompCert compiler extracted from its
certification is reliable and efficient, running only 15% slower than GCC 4 at optimiza-
tion level 2 (i.e., ggc -O2), a level of optimization that was considered before as highly
unreliable.

Unfortunately, the democratization of such interactive theorem provers suffers from
a major drawback, the mismatch between the conception of equality in mathematics
and equality in type theory. Indeed, some basic principles that are used implicitly in
mathematics—such as Church principle of proposition extensionality, which says that two
formulas are equal when they are logically equivalent—are not derivable in (Martin-Löf)
type theory. More problematically from a computer science point of view, the basic
concept of two functions being equal when they are equal at every “point” of their domain
is also not derivable and need to be set as an axiom:

Axiom fun_ext : ∀ A B (f g : A → B), (∀ x, f x = g x) → f = g.

Of course, those principles are consistent with type theory and adding them as axioms
is safe. But any development using them in a definition will produce a piece of code that

1.2. Future Line of Reasearch 21

does not compute, being stuck at points where axioms have been used, because axioms
are computational black boxes. To understand this mismatch, we need to take a deeper
look at the notion of equality in type theory. It is defined using identity types IdA with
only one introduction rule (uniform with respect to A):

Γ ` x : A
Γ ` reflA x : IdA x x

This means that the only way to prove that two terms t and u are equal (or more
precisely to inhabit IdA t u without additional assumptions) is by reflexivity, which means
that the two terms must be convertible—in the sense that they have the same normal
form modulo β-reduction (and some other reduction rules). To some extend, this notion
of equality is eminently syntactic. The reason why identity types are used in type theory
is because they come with a nice elimination principle which allows to substitute a term
by an Id-equivalent term anywhere in a type. This is Leibniz’s principle of indiscernability
of identicals.

To the opposite, the notion of equality in mathematics is eminently semantics, with a
definition that is relative to the type of terms being considered. This is why the functional
extensionality principle is easy to set in this setting, because the definition of equality is
specialized accordingly when it comes to function types. The problem with that point of
view is that it does not come with a generic substitution principle and thus is difficult to
use it in a programming language.

This mismatch prevents proof developments from using more advanced semantical
tools in their reasoning because of the explicit manipulation of mathematical equality to-
gether with axioms. Of course, some important work has been done to work around this
difficulty by defining other notions of equalities beside, using the well known notion of
setoids [BCP03]. But this does not provide equality as we mean it on black board because
we can not use the generic substitution principle on equality available for identity types.
If a working computer scientist wants to use a setoid-based notion of equality and do
some rewriting with it in an expression, she needs to prove beforehand that this expres-
sion validates the substitution principle. And when the considered expression comes from
a separated development, this can be a very complex task, even for a single expression.
This non-uniform treatment of equality causes problems when proofs need to be com-
bined, which is one of the key stones of mathematical developments. As a consequence,
significant Coq developments have been done, but only by virtuosos playing around with
advanced concepts of both computer science and mathematics, which excludes by defini-
tion a working computer scientist (and also working mathematician). This project aims
at solving this issue by delivering a proof assistant in which a working computer scientist
or mathematician can manipulate the notion of equality as she does on black board.

The birth of homotopy type theory. To correct the fundamental mismatch between
equality in mathematics and in type theory, Hofmann and Streicher have introduced a new
point of view on type theory, where types are not viewed as simple sets but as sets enriched
with an homotopical structure [HS96]. This way, each type comes with a specialized
notion of equality and the homotopical structure describes how to substitute a term by
another equivalent one in a type. Voevodsky recognized recently that this simplicial
interpretation of type theory satisfies a further crucial property, dubbed univalence, which
had not previously been considered in type theory. The univalence principle coarsely says
that two types (or structures) T and U are equal if and only if they are equivalent (or

22 Looking Back into the Future

isomorphic)4:

Definition univalence := ∀ T U : Type, (T = U) ∼= (T ∼= U).

The univalence principle subsumes the other missing principles of equality and is the
key to equip type theory with a notion of equality that is compatible with traditional
mathematical reasonings. In recent developments of HoTT [Uni13], the univalence prin-
ciple is added to the type theory of Coq (or Agda) in the form of a new axiom. This
has far-reaching consequences in the formalization of homotopy theory, such as the proof
that the first homotopy group of the sphere is equivalent to Z [LS13]. But, the univalence
principle has also a very interesting interpretation in computer science. It allows to use a
function/method of a library—that has been defined on a data type A—on another data
type B, as soon as there is an explicit type isomorphism between A and B. Take for instance
A to be the inductive type for lists.

Inductive list1 A : Type := nil1 : list1 A | cons1 : A → list2 A → list2 A.

Suppose now a developer has used its own inductive type for lists in its development
and for convenience has defined the constructor cons by taking the arguments in a reverse
order:

Inductive list2 A : Type := nil2 : list2 A | cons2 : list1 A → A → list1 A.

Using univalence, no matter which type representation has been used, it becomes easy
to switch from one type to another because those the two types are isomorphic and can
be considered as equal. This change of base/type is very frequent and can be needed for
different reasons: for efficiency or algorithmic convenience (think about the many different
ways of representing a list), for compatibility between data representation (e.g., meter vs
inch, US vs european date format). . . Using univalence allows at the same time to perform
an automatic conversion of a program acting on A to a program acting on B, and to have
the guarantee that both programs can not be distinguished from the outside. This can
be very useful for software integration. But HoTT is eminently higher-dimensional. This
means that we can also use univalence to replace a program by another program as soon
as we can prove that there are isomorphic, i.e., observationally equivalent. This can be
seen as a way to perform safe optimization.

1.2.1 Objectives over the five coming years

Unfortunately, stating univalence as an axiom breaks one fundamental property of proofs
mechanized in a type theory based proof assistant: it breaks the extraction mechanism,
that is the ability to compute with a program that makes use of this axiom. The starting
point of our project is to build a system where univalence is a build-in property of the sys-
tem—not an axiom. Then, the underlying type theory will be more regular, being closed
to the structure of a topos (actually, being an ∞-topos), which is a fundamental notion
in mathematical logic. This point is very important as it allows to revisit logical model
transformation usually performed on topoi to transformation at the level of homotopy
type theory. Concretely, it will become possible to extend modularly the power of the
logic governing the proof assistant, e.g., by adding a general induction principle, axioms
of classical logic, the axiom of choice or modal logic (Fig. 1.1).

4Actually, as formally defined in Section 2.6.3, it says more precisely that the canocical map from
T = U to T ∼= U is an equivalence.

1.2. Future Line of Reasearch 23

CoqHoTT +
Classical Logic

Excluded Middle

Added principle :

Sheaf Translation
w/ Dense Topology

CoqHoTT

CoqHoTT +
General Induction

General Inductive Types
Löb Rule

Added principles :

Forcing Translation
w/ Natural Numbers

CoqHoTT +
Kripke Semantics

Modal Logic

Added principle :

CoqHoTT +
Axiom of Choice

Dependent AC

Added principle : Sheaf Translation
w/ Dense Topology
 Natural Numbers

Forcing Translation
w/ worlds

Figure 1.1: Extension of Coq using program transformations of mathematical logic

The main goal of our project is to provide a new generation of proof assistants with
a computational version of univalence and use them as a base to implement effective
logical model transformation so that the power of the internal logic of the proof
assistant needed to prove the correctness of a program can be decided and changed
at compile time—according to a trade-off between efficiency and logical expressivity.

The results would not only represent a huge step forward in the way researchers,
both computer scientists and mathematicians, apprehend proof assistants, but also give
the opportunity to develop fully a new type theory that will give new foundations to
formalized mathematics and computer science. The project will be based on the Coq
proof assistant because it is in a real and permanent active development and is now
widely used in the scientific community. But the outcomes of the project could also be
used to extend other proof assistant based on type theory, for example Agda or Lean.

Example: formalization of monads. To illustrate the possibilities offered by our
proposal, we consider the case of a computer scientist that wants to formalize monads in
functional programming. Monads constitute a very convenient way to represent effects
in a purely functional setting, and particularly in Haskell. A monad consists in a type
constructor m that represents the type of computation with effects and two operations,
unit and bind, that correspond to lifting of values into computations and composition
of computations. Those operations must fulfill several properties to allow the correct
composition of monadic functions. In Haskell, those properties are implicitly assumed,
and it is of the responsibility of the programmer to check them on paper when she defines
a new monad. Therefore, it is important to be able to reimplement Haskell monad
libraries in Coq, with properties formally checked, and then extract the code back to get
certified Haskell monad libraries. Concretely, the data of a monad can be gather into
the following Coq type class:

Class Monad (m : Type → Type) := {
unit : ∀ a, a → m a ;
bind : ∀ a b, m a → (a → m b) → m b;
left_identity : ∀ a b x (f : a → m b), bind (unit x) f = f x

(* plus two other laws *)}.

24 Looking Back into the Future

This means that to declare that a type constructor defines a monad, it is necessary
to define the computation operations together with their properties. Let us see what it
means for a well-known monad; the state monad that allows functions to manipulate a
state during the computation, in the same way as it is done in imperative programming.
The state monad can be shown to be an instance of the monad type class in the following
way:

Definition State s a := s → s × a.

Instance StateMonad s : Monad (State s) := {
unit a := fun a s ⇒ (s,a);
bind a b := fun c f s ⇒ let (s’,a) := c s in f a s’;
left_identity a b := fun x f ⇒ fun_ext (fun s ⇒ refl)}.
The instantiation of the left identity law (as well as the two other laws) requires the use

of functional extensionality. Therefore, to extract Haskell code from a Coq development
that makes a relevant use of monadic laws, functional extensionality need not be an
axiom. This also happens when one tries to define other typical monads, which means
that any monad formalization project would require native functional extensionality to
provide usable extracted code. Suppose now that two state monads are composed. Using
univalence, this composed monad can be seen as a single state monad, because the type
of the composed states is isomorphic to the type of their product:

Lemma stateCompose s s’ a : State (s × s’) a = State s (State s’ a).

Finally, suppose a developer defines a new monad that requires the law of excluded
middle to define one of the monad laws. Then, instead of having to set a new axiom, the
developer just has to specify at the beginning of its development that she wants to work
in a classical setting and the law of excluded middle will be available through a logical
model transformation.

Issues. So far, all proof assistants based on a decidable type theory use a syntactic
native notion of equality. Also, no work has been done to modularly extend the internal
power of the logic using ideas coming from mathematical logic. One of the reason is
that the syntactic notion of equality is incompatible with model transformations used
in mathematical logic to extend a logic with new principles. Therefore, our project will
address the following issues:

I1. Set up a type theory with a build-in notion of univalence

While the univalence principle becomes widely accepted as a very promising solu-
tion to give new foundations to mathematics and type theory, it has not yet been
added to a proof assistant. This is because the mathematical structures (around
the notion of ∞-groupoids) sustaining the theory are still under active discussion,
and the establishment of a correct and decidable type checking procedure for the
whole theory causes both computational complexity and logical coherence issues. A
first-stage approximation to homotopy type theory has been implemented in Epi-
gram as Observational Type Theory [AMS07], but it only deals with functional
extensionality and does not capture univalence. A lot of work has been done by
Coquand’s team on the computational meaning of univalence in the cubical sets
model [BCH13, CCHM16] but a complete formalization in intensional type theory
is still an open problem. It has to be noticed that Mark Bickford5 has recently an-
nounced a formalization of cubical type theoy in NuPRL (based on an extensional

5http://www.nuprl.org/wip/Mathematics/cubical!type!theory/index.html

http://www.nuprl.org/wip/Mathematics/cubical!type!theory/index.html

1.2. Future Line of Reasearch 25

type theory). The formalization is quite complete although univalence has not been
derived for the moment from the Nuprl semantics.

The first challenge of our project is to achieve a complete internalization of univa-
lence in intensional type theory.

I2. Provide a new generation of proof assistants with univalence, without
overhead

After a type theory with computational version of univalence has been set up, the
next issue will be to integrate it to a new version of Coq, while keeping compatibility
with previous versions, in particular from a performance point of view. Indeed, the
additional complexity of homotopy type theory should not induce a blow up in the
type checking procedure used by the software if we want our new framework to
become rapidly accepted in the community. Concretely, we will make sure that the
compilation time of Coq ’s Standard Library will be of the same order of magnitude.

I3. Define a notion of inductive type with embedded notion of equality

During a workshop at the Mathematical Research Institute of Oberwolfach in 2011,
it has been noticed that this new point of view on equality allows to generalize the
notion of inductive types. Inductive types are at the heart of formalization in type
theory in that they are the basic bricks to build complex data structures. They
are similar to the notion of (generalized) abstract data types that can be found
in Haskell or OCaml. An inductive type is defined by a set of generators that
specified how to produce elements of that type (see the example of lists above).
A very important outcomes of the year of work at IAS has been the definition
inductive types in which generators do not only specified new elements of the type,
but also new equalities between those elements. This new construction has been
coined Higher Inductive Types (HIT) in [Uni13]. Integrating HIT is very important
for the project because it allows to define many mathematical structures such as
quotient types or other notions of colimits. This structure will be mandatory for
the development of the next issue (I4). Unfortunately, the precise definition of HITs
has not been worked out completely. Our proposal aims at providing a first solution
to the implementation of HITs.

I4. Extend modularly the logical power of type theory without axioms

Extending the power of a logic using model transformation (e.g., forcing transforma-
tion [JTS12, JLP+16] or the sheaf construction) is an old subject of mathematical
logic. Surprisingly, those ideas have not been much investigated in the setting of
type theory to extend modularly the logical power of proof assistant. The reason
for that is simple: with a syntactic notion of equality, the underlying structure of
type theory is not conform to the structure of topos used in mathematical logic,
explaining why a direct adaptation was not possible. However, with an univalent
notion of equality, the structure of type theory becomes closer as it corresponds to
the notion of∞-topos recently studied by Jacob Lurie [Lur09]. The last issue of our
proposal is to reformulate and implement well-known logical model transformations
in the language of HoTT, taking inspiration in the work on ∞-topos. Figure 1.1
presents the logical extensions that should be possible with this approach: law of
excluded middle, dependent choice, general recursion or modal logic.

26 Looking Back into the Future

Type TheoryHomotopy Type Theory

Correct

Incorrect

Compilation Type-Checker

a
b

c

p
p-1

q

Uniform equality

Higher algebraic
structure

Relativized equality

Univalence

Figure 1.2: Type-checking homotopy type theory via a compilation phase

1.2.2 Methodology

After explaining our general approach to solve above issues using compilation phases
from rich type theories to the core type theory of Coq, we detail in this section the five
milestones that will guide our research project.

Extending type theory with different compilation phases. The foundation of our
project is to design a new generation of proof assistant by extending the logic modularly
using distinct compilation phases. Indeed, nowadays, compilers are composed of a series
of stages to break the complexity modularly. Therefore, it is natural to benefit from this
idea in the definition of complex proof assistants. This is for instance already the case
for the definition of type classes in Coq, which are morally given via a translation into a
type-class free kernel. This compilation phase approach has already shown useful to add
unrestricted inductive types using the forcing transformation [JTS12, JLP+16]. The first
compilation phase (Fig. 1.2) corresponds to the realization of issues I1 and I2. It consists
in the definition of an interpretation of homotopy type theory into the traditional type
theory using an internalization of the ∞-groupoid interpretation. I am confident that a
compilation phase into traditional type theory to modularize the difficulty of finding a
decidable type checking algorithm for HoTT is a very promising line of work. The second
compilation phase (Issue I3) corresponds to the interpretation of higher inductive types as
plain inductive type with a specific notion of equality. This way, we will at the same time
give computational meaning to HITs and get a proof of consistency with respect to type
theory. The third compilation phase (IssueI4, Fig. 1.1) corresponds to the internalization
in HoTT of logical model transformations performed on ∞-topoi, such as presheaves or
sheaves constructions.

The success of our theoretical contributions can only be assessed in the light of a
practical tool. Therefore, I plan to put a strong emphasis on the implementation of an
extension of Coq with the univalence principle. Ultimately, our goal is to make this
extension compatible with and as efficient as the current version of Coq so that it can
serve as the base for a new release of Coq. Our project will be based on the Coq proof
assistant because it supports universe polymorphism and type classes but the resulting
outcomes of the project could be very well adapted to be used in other proof assistants
based on type theory, such as Agda or Epigram. Ultimately, the project should result not
only in the release of new version of Coq but also in the integration of logical extensions
defined by model transformations.

We plan to develop our framework along the five following objectives, which are de-
scribed below. The overall project is summarize in Figure 1.3.

1.2. Future Line of Reasearch 27

w/o Kripke
Semantics!

Full CoqHoTT !
w/o Axiom of

Choice!
w/o General

Fixpoints!

Compiled Coq !

w/o Classical
Logic!

Kernel of Coq!

w/o Univalence!

Figure 1.3: Multiple compilation phases to increase the logical and computational power
of Coq.

Objective 1: Define an internalization of homotopy type theory in Coq

As witnessed by the outcome of a whole year of work of leading mathematicians and
computer scientists of the field (during The Univalent Foundations Program at the
Institute for Advanced Study in Princeton [Uni13]), developing a direct complete
treatment of homotopy type theory is a very complex task that is far from being
accomplished. This is mainly because it raises a lot of coherence issues coming from
the use of infinitely many dimensions. We are confident that defining an interpreta-
tion of homotopy type theory inside type theory is the key to successfully interpret
it. The main challenge of Objective 1 is to internalize the definition of the infinite
structure involved in homotopy type theory. There are various recent current works
on the subject on which we plan to base our investigations. The original model
of Voevodsky is based on Kan simplicial sets but suffers from constructivity issues
(as shown recently in [BCP15, BC15]) which does not make it a good candidate
for mechanization. The infinite structure could be described using an operadic ap-
proach to ∞-groupoids. Indeed, although the usual enriched inductive construction
of strict n-categories is known to be broken in the weak setting, Trimble [Tri99] has
recently proposed to use specific operads to parametrize the weakly associative com-
position in the higher-dimensional structures and recover an inductive definition of
weak n-categories. Cheng and Leinster [CL12] have recently proposed a co-inductive
construction of weak ∞-categories based on Trimble’s approach and on the notion
of terminal coalgebras. Another line of work, initiated by Coquand’s team, aims to
look at fully computational notion of ∞-groupoids, for instance by studying cubical
sets [BCH13], giving rise to cubical type theory [CCHM16] for which a canonicity
result has recently been proven by Simon Huber [Hub16]. Finally, Altenkirch has
proposed to construct ∞-groupoids in a more syntactic way [AR12], by generating
the structure without higher-dimensional coherences and getting back coherences
using an “all diagrams commute” approach. It is not clear what is the best de-
scription to be used but this question is currently a highly discussed topic among
homotopy type theorists.

This task does not only consist in theoretical investigation but is also strongly based
on implementation. Indeed, a good candidate to represent∞-groupoids can only be
discovered by trying to formalize all candidates in Coq and see which one is more
suitable for efficiency and proofs. Moreover, in our work to internalize the (wild)
groupoid construction in Coq [HHT15], it appears clearly that this internalization

28 Looking Back into the Future

process can not be lifted to infinite dimensions without an efficient automatization of
the proofs involved. In particular, we plan to improve and generalize with Matthieu
Sozeau actual coq rewriting techniques of the library Setoid. Improving it should
allow to perform (part of) many proofs by automatic rewriting.

Objective 2: Develop a decidable type checking procedure for homotopy type
theory

Developing a decidable type checking procedure for homotopy type theory is one
of the main open issue of the topic. Indeed, as the definition of the mathematical
objects sustaining the theory are still under active discussion, the establishment of
a correct and decidable type checking procedure for the whole theory causes both
computational complexity and logical coherence issues. I propose to rely on the
work of Objective 1 on internalization of the interpretation HoTT in type theory to
define the algorithm via a compilation phase to type theory (Fig. 1.2).

The theory required by this task will be fully based on Objective 1. The remaining
step will be to try to simplify and/or optimized the translation in order to obtain
terms of traditional type theory that can be type checked in a reasonable amount
of time. This can be achieved for instance by exhibiting patterns in the translation
that can be pre-typed in order to use them as basic bricks and accelerate the type-
checking procedure.

Objective 3: Implement an extension of Coq to homotopy type theory

The accomplishment of the two previous challenges will give a way to implement an
extension of Coq to homotopy type theory. On the contrary to previous challenges,
this part of the project is very challenging not from a conceptual but from a software
engineering point of view. It requires to implement the compilation phase of the
complex transformation of previous objectives while keeping performances closed to
the current version of Coq. Indeed, the additional complexity of homotopy type
theory should not induce a blow up in the type checking procedure used by the
software. We will also integrate ideas coming from Aspect Oriented Programming
to extend the language of Coq with constructs that ease the use of univalence in
programming. Indeed, the notion of pointcuts (that detect points of interest in a
program execution) can be seen as a way to write down basic type isomorphisms
and advices (that express the program to be executed when a pointcut matches)
can be seen as a way to write down program isomorphisms. Thus, the possibility to
change data representation or implementation on the fly will be a native feature of
the language.

This task is mainly an implementation task. Our experience with the implementa-
tion of the forcing translation [JTS12, JLP+16] has shown that it will be necessary
to improve existing Coq type checking procedure to end up with an effective soft-
ware. Indeed, the type checking is made of a lot of heuristics that can be strongly
improved by having a good knowledge of the shape of the term that will be typed. In
the case of a compilation phase approach, analyzing this shape to improve heuristics
is crucial to get an efficient type checking procedure.

Objective 4: Define and implement a general notion of higher inductive types

After the interpretation of HoTT in Coq has been set up, we will use it to give a
meaning to the newly introduced notion of higher inductive types (HIT) (Fig. 1.2,
left). Those objects are at the heart of the formalization of homotopy theory inside
a proof assistant. Giving them a computational meaning will allow mathematicians

1.2. Future Line of Reasearch 29

not only to formalize and prove theorems in homotopy theory, but also to use type
theory to compute the homotopy groups of complex objects. Indeed, homotopy the-
orists now face a computational blow up in their work on the classification of topo-
logical spaces. This blow up is commonly believed to require the use of a computer
to assist mathematicians. But the notion of HIT as also consequences in computer
science as it provides a new type former that provides constructors together with
(relevant) equalities. For instance, version control systems can be modeled with a
HIT where committing and reverting correspond to applying equalities of this HIT
[AMLH14]. In our project, integrating HITs is also important because they will be
used in Objective 5.

Objective 5: Extend homotopy type theory with new logical/computational
principles

With a practical implementation of HoTT, I plan to reuse well-known model trans-
formations to enhance HoTT with new logical principles. The challenge is to give a
meaning, through separate compilation phases, to axioms often used in mathemat-
ics, such as the law of excluded middle or the axiom of dependent choice (Fig. 1.1).
As adding new logical principles may have a computational cost and may weaken
the extraction mechanism, our plan is to extend HoTT modularly, letting the user
choose with which extension to work. Thus, this challenge consists in achieving a
high level of modularity in the logical principle governing the type theory of the proof
assistant. We have already proven [JTS12, JLP+16] that the forcing transformation
(which corresponds to the presheaf construction) enables to enhance the logic of
Coq with new constructors such as general unrestricted inductive types (not to be
confused with higher inductive types). We plan to apply this technique to other
constructions that require the univalence axiom to be correct and in particular to
the sheaf construction. This will allow for instance to implement in type theory the
so-called Gödel translation from classical logic to intuitionistic logic, giving this way
a computational meaning to the law of excluded middle.

The structure underlying homotopy type theory is that of ∞-topos recently studied
by Jacob Lurie [Lur09]. The main theoretical challenge of this objective will be to
make concrete the forcing transformation and the sheaf construction in the setting
of∞-topoi. Indeed, while pre-sheaves and sheaves have already been defined in this
setting, the definitions are very abstract and a huge work need to be done to make
them sufficiently effective to be implemented using the language of homotopy type
theory. For instance, an effective construction of sheaves requires to reformulate
sheaves for ∞-topoi using the notion of Lawvere-Tierney topology [MM92]. One of
the main issue will be the definition of the associated sheaf functor in that setting.

At this stage, we plan to implement the translation defined in [JTS12, JLP+16] but
directly in the language of HoTT. This translation requires some native notion of
proof irrelevance for types corresponding to proposition ((−1)-truncated types in
the HoTT terminology) that will have to be added beforehand to Coq. We also
plan to implement an internalization of the sheaf construction for ∞-topoi. Using
those translations, it will be possible to add computationally relevant new logical
principles to the core theory. As we expect some significant overhead when using
the extended logical setting, some mechanism needs to be found to automatically lift
to the extended theory some developments that have been type checked in the core
HoTT theory. This way, the overhead will only be paid for modules that actually
makes use of the extended principles, which will make our framework more usable
in practice.

Chapter 2

Call-by-Name Forcing
in Type Theory∗

Relativity, Escher (1953)

Contents

2.1 Call-by-Push-Value . 33

2.1.1 Syntax of CBPV . 33

2.1.2 Simply-Typed Decompositions 34

2.1.3 Forcing Translation . 35

2.2 Forcing Translation in the Negative Fragment 37

2.3 Yoneda to the Rescue . 40

2.4 Datatypes . 42

2.5 Recursive Types . 43

2.5.1 Type and Constructor Translation 44

2.5.2 Non-dependent Induction . 45

2.5.3 Storage Operators . 45

2.5.4 Dependent Induction in an Effectful World 46

2.5.5 Revisiting the Non-Recursive Case 47

2.6 Forcing at Work: Consistency Results 47

2.6.1 Equality in CIC . 47

2.6.2 Preservation of Functional Extensionality 48

2.6.3 Negation of the Univalence Axiom 48

2.6.4 Preserving Univalence Axiom for Monotonous Types 49

2.6.5 Towards Forcing with Naturality Conditions 50

2.7 Future Work . 50

∗This is joint work with Guilhem Jaber, Gabriel Lewertowski, Pierre-Marie Pédrot and Matthieu
Sozeau [JLP+16].

32 Call-by-Name Forcing in Type Theory

Forcing has been introduced by Cohen to prove the independence of the Continuum
Hypothesis in set theory. The main idea is to build, from a model M , a new model M ′ for
which validity is controlled by a partially-ordered set (poset) of forcing conditions living
in M . Technically, a forcing relation p
 φ between a forcing condition p and a formula φ
is defined, such that φ is true in M ′ iff p
 φ is true in M , for some p approximating the
new elements of M ′. Categorical ideas have been used by Lawvere and Tierney [Tie72]
to recast forcing in terms of topos of (pre)sheaves. It is then straightforward to extend
the construction to work on categories of forcing conditions, rather than simply posets,
giving a proof relevant version of forcing.

Recent years have seen a renewal of interest for forcing, driven by Krivine’s classical
realizability [Kri09]. In this line of work, forcing is studied as a proof translation, and
one seeks to understand its computational content [Miq11b, Bru14], through the Curry-
Howard correspondence. This means that p
 φ is studied as a syntactic translation of
formulas, parametrized by a forcing condition p.

Following these ideas, a forcing translation has been defined in [JTS12] for the Calculus
of Constructions, the type theory behind the Coq proof assistant. It is based heavily on the
presheaf construction of Lawvere and Tierney. The main goal of [JTS12] was to extend the
logic behind Coq with new principles, while keeping its fundamental properties: soundness,
canonicity and decidability of type checking. This approach can be seen, following [AK16],
as type-theoretic metaprogramming.

However, this technique suffers from coherence problems, which complicate greatly the
translation. More precisely, the translation of two definitionally equal terms are not in
general definitionally equal, but only propositionally equal. Rewriting terms must then
be inserted inside the definition of the translation. If this is possible to perform, albeit
tedious, when the forcing conditions form a poset, it becomes intractable when we want
to define a forcing translation parametrized by a category of forcing conditions.

In this chapter, we propose a novel forcing translation for the Calculus of Constructions
(CCω), which avoids these coherence problems. Departing from the categorical intuitions
of the presheaf construction, it takes its roots in a call-by-push-value [Lev01] decompo-
sition of our system. This will justify to name our translation call-by-name, while the
previous translation of [JTS12] is call-by-value.

“Call-by-name forcing provides the first effectful translation of CCω into itself which
preserves definitional equality.”

We then extend our translation to inductive types by exploiting storage operators [Kri94]—
an old idea of Krivine to simulate call-by-value in call-by-name in the context of classical
realizability—to restrict the power of dependent elimination in presence of effects. The
necessity of a restriction should not be surprising and was already present in Herbelin’s
work [Her12].

This provides the first version of Calculus of Inductive Constructions (CIC) with ef-
fects. The nice property of preservation of definitional equality is emphasized by the
implementation of a Coq plugin1 which works for any term of CIC.

We conclude the chapter by using forcing to produce various results around homotopy
type theory. First, we prove that (a simple version of) functional extensionality is pre-
served in any forcing layer. Then we show that the negation of Voevodsky’s univalence
axiom is consistent with CIC plus functional extensionality. This statement could already
be deduced from the existence of a set-based proof-irrelevant model [Wer97], but we pro-
vide the first formalization of it, in a proof relevant setting, and by an easy use of the

1Available at https://github.com/CoqHott/coq-forcing.

https://github.com/CoqHott/coq-forcing

2.1. Call-by-Push-Value 33

forcing plugin. Finally, we show that under an additional assumption of monotonicity of
types, we get the preservation of (a simple version of) the univalence axiom.

2.1 Call-by-Push-Value

In this section, we explain how the call-by-push-value language (CBPV) of Levy [Lev01]
can be used to present two versions of the forcing translation. To keep our presentation as
simple as possible, we will only use a small subset of it, although most of the results can
be adapted to a more general setting. The idea of CBPV is to break up the simply-typed
λ-calculus, leading to a more atomic presentation distinguishing values and computations,
and allowing to add effects easily into the language. We use it as the source language for
a generic forcing translation thought of as adding side-effects. Call-by-name and call-
by-value strategies can then be decomposed into CBPV, inducing in turn two forcing
translations for the λ-calculus.

2.1.1 Syntax of CBPV

CBPV’s types and terms are divided into two classes : pure values v and effectful compu-
tations t, a dichotomy which is reflected in the typing rules. The syntax and typing rules
are given at Figure 2.1

We give some intuition behind those terms. The thunk primitive is to be understood
as a way of boxing a computation into a value. Its dual force runs the computation. Note
that this name has nothing to do with forcing itself and is a coincidence. The return

primitive creates a pure computation from a value. The let binding first evaluates its
argument, possibly generating some effects, binds the purified result to the variable and
continues with the remaining term. Intuitively, this language is no more than the usual
decomposition of a monad into an adjunction.

value types A,B ::= U X | α
computation types X,Y ::= A→ X | F A
environments Γ ::= · | Γ, x : A

value terms v ::= x | thunk t
computation terms t, u ::= λx : A. t | t v | let x : A := t in u | force t | return v

(x : A) ∈ Γ
Γ `v x : A

Γ `c t : X
Γ `v thunk t : U X

Γ `v v : U X
Γ `c force v : X

Γ, x : A `c t : X
Γ `c λx : A. t : A→ X

Γ `v v : A
Γ `c return v : F A

Γ `c t : F A Γ, x : A `c u : X
Γ `c let x : A := t in u : X

Γ `c t : A→ X Γ `v v : A
Γ `c t v : X

Figure 2.1: Call-by-push-value

For technical reasons, we endow CBPV with reduction rules that are weaker than
what is usually assumed, by restricting substitution to strong values, i.e. values which are

34 Call-by-Name Forcing in Type Theory

not variables, while the standard reduction allows substitution for any value. Indeed, the
forcing translation which we present after only interprets this restricted reduction.

Definition 3 (Restricted CBPV reduction)

Strong values ṽ are simply defined as ṽ := thunk t. We define the restricted CBPV
reduction as the congruence closure of the following generators.

(λx : A. t) ṽ → t{x := ṽ}
let x : A := return ṽ in t → t{x := ṽ}
force (thunk t) → t

We write ≡ for the equivalence generated by this reduction.

2.1.2 Simply-Typed Decompositions

We recall here the decompositions of the simply-typed λ-calculus into CBPV. They were
actually the original motivation for the introduction of CBPV itself. We will translate the
usual λ-calculus where types are described by the inductive grammar

A,B := α | A→ B

using the standard syntax. The results of this section are well-known so we will not dwell
on them.

Definition 4

The by-name reduction of the λ-calculus is the congruence closure of the generator

(λx : A. t) u→n t{x := u}

while the restricted by-value reduction is the congruence closure of the generator

(λx : A. t) v →v t{x := v}

where v is a λ-abstraction.

Definition 5 (By-value decomposition)

The by-value decomposition is defined as follows.

[α]v := α

[A→ B]v := U ([A]v → F [B]v)

[x]v := return x

[t u]v := let f := [t]v in

let x := [u]v in force f x

[λx : A. t]v := return (thunk (λx : [A]v. [t]v))

Proposition 6

If Γ ` t : A then [Γ]v `c [t]v : F [A]v.

Proposition 7

If t→v u then [t]v ≡ [u]v.

2.1. Call-by-Push-Value 35

The by-name decomposition is defined as follows.

[α]n := Xα

[A→ B]n := U [A]n → [B]n
[x]n := force x
[t u]n := [t]n (thunk [u]n)
[λx : A. t]n := λx : U [A]n. [t]n

Proposition 8

If Γ ` t : A then U [Γ]n `c [t]n : [A]n.

Proposition 9

If t→n u then [t]n ≡ [u]n.

2.1.3 Forcing Translation

We now define the forcing translation from CBPV into a small dependent extension of
the simply-typed λ-calculus. Dependency is needed because we have to be able to state
in the type that some relation holds between two elements. For simplicity, we can use for
instance the much richer system defined at Section 2.2. We use implicit arguments and
infix notation for clarity when the typing is clear from context.

First of all, we need a notion of preorder in the target calculus.

Definition 10 (Preorder)

A preorder is given by

• a type P;

• a binary relation ≤;

• a term id : Πp : P. p ≤ p;

• a term ◦ : Π(p q r : P). p ≤ q → q ≤ r → p ≤ r

subject to the following conversion rules.

idp ◦ f ≡ f f ◦ idq ≡ f f ◦ (g ◦ h) ≡ (f ◦ g) ◦ h

We assume in the remainder of this section a fixed preorder that we will call forcing
conditions.

Definition 11 (Ground types)

We assume given for every CBPV ground type α:

• a type αp in the target calculus for each p : P;

• a lifting morphism θα : Π(p q : P). p ≤ q → αp → αq

subject to the following conversion rules.

θα idp x ≡ x θα (f ◦ g) x ≡ θα g (θα f x)

36 Call-by-Name Forcing in Type Theory

Definition 12 (Type translation)

The forcing translation on types associates to every CBPV type and forcing con-
dition a target type defined inductively as follows.

[[α]]p := αp

[[U X]]p := Πq : P. p ≤ q → [[X]]q
[[A→ X]]p := [[A]]p → [[X]]p
[[F A]]p := [[A]]p

Proposition 13 (Value lifting)

The lifting morphisms of Definition 11 can be generalized to any value type A as
θA with the same distribution rules.

Proof : By induction on A. Our only non-variable value type is U X where θU X is defined by
precomposition.

Definition 14 (Term translation)

The term translation is indexed by an CBPV environment Γ and a preorder variable
p and produces a term in the target calculus. It is defined inductively as

[x]Γp := x

[thunk t]Γp := λ(q : P) (f : p ≤ q). θΓ (f, [t]Γq)

[force v]Γp := [v]Γp p idp

[λx : A. t]Γp := λx : [[A]]p. [t]
Γ,x:A
p

[t v]Γp := [t]Γp [v]Γp
[let x : A := t in u]Γp := (λx : [[A]]p. [u]Γ,x:A

p) [t]Γp
[return v]Γp := [v]Γp

where the θΓ (f, t) notation stands for t{~x := θ ~A f ~x} for each (xi : Ai) ∈ Γ.

The only non-trivial case of this translation is the thunk case, which requires to lift all
the free variables of the considered term. We need to do this because the resulting term is
boxed w.r.t. the current forcing condition by a λ-abstraction, so that there is a mismatch
between the free variables of [t]Γq which live at level q while we would like them to live at
level p. Dually, the force translation resets a boxed term by applying it to the current
condition.
Proposition 15 (Typing soundness)

Assume Γ `c t : X, then p : P, [[Γ]]p ` [t]Γp : [[X]]p and similarly for values.

Proposition 16 (Computational soundness)

For all Γ `c t,u : A, if t ≡ u then [t]Γp ≡ [u]Γp and similarly for values.

The interest of giving this translation directly in CBPV is that we can recover two
translations of the λ-calculus by composing it with the by-name and by-value decompo-
sitions. This provides hints about the source of the technical impediments encountered
in [JTS12].

2.2. Forcing Translation in the Negative Fragment 37

To start with, we can easily observe that [[[A→ B]v]]p is equal to Πq : P. p ≤ q →
[[A]]q → [[B]]q, which is indeed the usual way to translate the arrow type in forcing, as
in [JTS12]. The term translation is also essentially the same, except for the adaptations
to the dependently-typed case. The two following defects of the call-by-value forcing
translation are then obvious through this decomposition.

First, the translation only preserves call-by-value reduction, and not unrestricted β-
reduction. Therefore, the interpretation of the conversion rule of CIC by a plain conversion
is not possible. One has to resort to more semantical arguments, implying the use of
explicit rewriting in the terms.

Second, the very computational conditions imposed over θα are highly problematic
as soon as we have second-order quantifications. Indeed, we need to ship with each
abstracted type Πα : Type. A a corresponding θα in the translation. But then we loose
the definitional equalities required by Definition 11. The only thing we can do is to enforce
them by using propositional equalities, which will imply in turn some explicit rewriting.

Meanwhile, the by-name variant is way more convenient to use to interpret CIC con-
version. Indeed, it interprets the whole β-conversion, and furthermore it does not even
require any θα for abstracted variables. This is because all value types appearing in the
[−]n decomposition are of the form U X for some X, so that we statically know we will
only need the θUX function which is defined regardless of X. Both properties make a
perfect fit for an interpretation of CIC.

2.2 Forcing Translation in the Negative Fragment

In this section, we first consider the forcing translation of CCω, a type theory featuring only
negative connectives, i.e. Π-types. The syntax and typing rules are given in Appendix.

This translation builds upon the call-by-name forcing described in the previous sec-
tion. The main differences are that we handle higher-order and dependency, as well as a
presentation artifact where we delay the whole-term lifting of the thunk translation by
using forcing contexts instead. Moreover, we now consider categories of forcing conditions,
rather than posets.

Definition 17 (Forcing context)

Forcing contexts σ are given by the following inductive grammar.

σ ::= p | σ · x | σ · (q, f)

In the above definition, p, x, q and f are variables binding in the right of the forcing
context, and therefore forcing contexts obey the usual freshness conditions obtained
through α-equivalence.

We will often write σ · ϕ to represent the forcing context σ extended with some
forcing suffix ϕ made of any kind of extension.

Definition 18 (Forcing context validity)

A forcing context σ is valid in a context Γ, written Γ ` σ, whenever they pertain
to the following inductive relation.

· ` p
Γ ` σ

Γ ` σ · (q, f)
Γ ` σ

Γ, x : A ` σ · x

38 Call-by-Name Forcing in Type Theory

Definition 19 (Category)

A category is given by:

• A term ` P : Type0 representing objects;

• A term ` Hom : P→ P→ Type0 representing morphisms;

• A term ` id : Πp : P. Hom p p representing identity;

• A term ` ◦ : Π(p q r : P). Hom p q → Hom q r → Hom p r representing composition.

For readability purposes, we write idp for id p, Hom(p, q) for Hom p q and we consider
the objects for the composition as implicit and write f ◦ g for ◦ p q r f g for some
objects p, q and r.

Furthermore, we require that we have the following definitional equalities.

Γ ` f : Hom(p, q)
Γ ` idp ◦ f ≡ f

Γ ` f : Hom(p, q)
Γ ` f ◦ idq ≡ f

Γ ` f : Hom(p, q) Γ ` g : Hom(q, r) Γ ` h : Hom(r, s)
Γ ` f ◦ (g ◦ h) ≡ (f ◦ g) ◦ h

Note that asking that they are given definitionally rather than as mere proposi-
tional equalities is, as we will see in Section 2.3, actually not restrictive.

Definition 20

The last condition σe from a forcing context σ is a variable defined inductively as
follows.

pe := p (σ · x)e := σe (σ · (q, f))e := q

The morphism of a variable x in a forcing context σ, written σ(x), is a term defined
inductively as follows.

p(x) := idp (σ · x)(x) := idσe

(σ · y)(x) := σ(x) (σ · (q, f))(x) := σ(x) ◦ f

Notation 21

As it is a recurring pattern in the translation, we will use the following macros.

λ(q f : σ).M := λ(q : P) (f : Hom(σe, q)).M

Π(q f : σ).M := Π(q : P) (f : Hom(σe, q)).M

Definition 22 (Forcing translation)

The forcing translation is inductively defined on terms in Figure 2.2. Note that
the three last definitions are simple macros definable in terms of the basic forcing
translation that will be used pervasively to ease the reading. In particular, the [−]!σ
and [[−]]!σ macros correspond respectively to the interpretation of thunk and U in the
call-by-push-value decomposition.

Assuming that Γ ` σ, which we will do implicitly afterwards, we now define the

2.2. Forcing Translation in the Negative Fragment 39

[∗]σ := λ(q f : σ).Π(r g : σ · (q, f)). ∗
[Typei]σ := λ(q f : σ).Π(r g : σ · (q, f)).Typei
[x]σ := x σe σ(x)
[λx : A.M]σ := λx : [[A]]!σ. [M]σ·x
[M N]σ := [M]σ [N]!σ
[Πx : A.B]σ := λ(q f : σ).Πx : [[A]]!σ·(q,f). [[B]]σ·(q,f)·x
[[A]]σ := [A]σ σe idσe

[M]!σ := λ(q f : σ). [M]σ·(q,f)
[[A]]!σ := Π(q f : σ). [[A]]σ·(q,f)

Figure 2.2: Forcing translation of the negative fragment.

forcing translation on contexts as follows.

[[·]]p := p : P

[[Γ]]σ·(q,f) := [[Γ]]σ, q : P, f : Hom(σe, q)

[[Γ, x : A]]σ·x := [[Γ]]σ, x : [[A]]!σ

We now turn to the proof that this translation indeed preserves the typing rules of our
theory. As proper typing rules and conversion rules are intermingled, we should actually
prove it in a mutually recursive fashion, but this would be fairly unreadable. Therefore, in
the following proofs, we rather assume that computational (resp. typing) soundness are
already proved for the induction hypotheses, in an open recursion style. This is a mere
presentation artifact: the loop is tied at the end by plugging the two soundness theorems
together.

Proposition 23 (Condition Concatenation)

For any Γ `M : A, and forcing contexts σ, ϕ, ψ with ϕ containing only conditions
and morphisms,

[[Γ]]σ·ϕ·ψ ` [M]σ·(q,f)·ψ{q := (σ · ϕ)e, f := (ϕ)} ≡ [M]σ·ϕ·ψ

where (ϕ) stands for the composition of all morphisms in ϕ.

Proof : By induction over M . This property relies heavily on the fact that the categorical
equalities are definitional, and the proof actually amounts to transporting those equalities.

Proposition 24 (Substitution Lemma)

For any Γ `M : A,

[[Γ]]σ·ϕ ` [M{x := P}]σ·ϕ ≡ [M]σ·x·ϕ{x := [P]!σ}

Proof : By induction over M and application of the previous lemma.

Theorem 25 (Computational Soundness)

If Γ `M ≡ N then [[Γ]]σ ` [M]σ ≡ [N]σ.

Proof : The congruence rules are obtained trivially, owing to the fact that the translation is
defined by induction on the terms. The β-reduction step is obtained by a direct application
of the substitution lemma, while the η-expansion rule is interpreted as-is in the translation.

40 Call-by-Name Forcing in Type Theory

Theorem 26 (Typing Soundness)

The following holds.

• If ` Γ then ` [[Γ]]σ.

• If Γ `M : A then [[Γ]]σ ` [M]σ : [[A]]σ.

Proof : By induction on the typing derivation. The only non-immediate case is the conversion
rule which is obtained by applying the computational soundness theorem.

Forcing Layer. We now explain how to use the forcing translation to extend safely
CIC with new logical principles, so that typechecking remains decidable and the resulting
extended theory is equiconsistent with Coq (i.e. if the empty type of Coq, or equivalently
the type ΠX : Type. X, is not inhabited then neither is the empty type of the resulting
theory) as soon as the type P of objects is inhabited.

In the forcing layer, it is possible to add new symbols to the system. Each symbol
ϕ : Φ has to come with its translation ` ϕ• : Πp : P. [[Φ]]p in CIC. This is done in the Coq
plugin using the command

Forcing Definition ϕ : Φ using P Hom.

where P and Hom define the category of forcing conditions in use. Note the similarity with
forcing in set theory, where a new model is obtained by adding a generic element G to a
ground model, and the forcing relation describes inside the ground model the properties
of G in the new model.

The typing relation `F in the layer is defined by extending CIC with the axiom Γ `F
ϕ : Φ. By posing [ϕ]σ := ϕ• σe, it is easy to derive that if Γ `F M : A then [[Γ]]σ ` [M]σ :
[[A]]σ using Theorem 26. The abovementioned equiconsistency result is just a consequence
of the fact that if `F M : ΠX : Type. X then ` [M]p : Π(X : Π(q f : p).Type). X p id,
which shows that a proof of the empty type in the forcing layer directly gives a proof of
the empty type in CIC, where the proof term is λX : Type. [M]p(λqf.X).

2.3 Yoneda to the Rescue

A key property in the preservation of typing is that the forcing category implements
category laws in a definitional way. This may seem a very strong requirement. Indeed, any
non-trivial operation is going to block on variable arguments, which puts the convertibility
at stake. For instance, simply taking objects to be the unit type and morphisms to be
booleans equipped with xor already breaks at least one of the two identity rules, depending
on the order in which xor is defined.

Luckily, we can rely on a folklore trick to build for any category an equivalent category
with laws that holds definitionally. The soundness of the translation is no more than the
good old Yoneda lemma.

Definition 27 (Yoneda translation)

Assume a category as given in Definition 19 without assuming any equalities. We
define the Yoneda translation of this category as follows.

2.3. Yoneda to the Rescue 41

PY := P
HomY p q := Πr : P. Hom(q, r)→ Hom(p, r)
idY p := λ(r : P) (k : Hom(p, r)). k
◦Y p q r f g := λ(s : P) (k : Hom(r, s)). g s (f s k)

Proposition 28 (Yoneda lemma)

The Yoneda translation of a category is a category with laws that holds definition-
ally.

Proof : Immediate. Typing is straightforward and equalities are simple βη-equivalences.

The interesting subtlety of this proof is that we actually do not even need the categor-
ical laws of the base category to recover definitional equalities in the Yoneda translation.
What we have done amounts to building the free category generated by objects and mor-
phisms, and definitional equalities follow just because the meta-theory (here, our type
theory) is computational. Although the relation between the Yoneda lemma, CPS and
free categories has already been observed in the literature, we believe that our current
usecase is novel.

It remains now to prove that the Yoneda category is equivalent to its base category.
As there is no widely accepted notion of being equivalent in type theory, we are going to
allow ourselves to cheat a little bit.

Definition 29 (Equivalence functors)

We define two type-theoretic functors Y (resp.
Y

) between a base category and
its Yoneda translation (resp. the converse) as follows. On objects, the translation is
the identity

Yo := λp : P. p Y
o := λp : PY . p

while on morphisms we pose

Yh p q f : HomY p q := λ(r : P) (k : Hom(q, r)). f ◦ kY
h p q f : Hom p q := f q idq

We need to reason about equality, so we suppose until the end of this section that our
target type theory features a propositional equality = as defined usually, and furthermore
that the functional extensionality principle is provable.

Proposition 30 (Functoriality)

Assuming that equalities of Definition 19 hold propositionally, the above objects
are indeed functors, i.e. they obey the usual commutation rules w.r.t. identity and
composition propositionally.

Proposition 31 (Category equivalence)

The above functors form an equivalence in the following sense.

1. Assuming that equalities of Definition 19 hold propositionally, then
Y
h p q (Yh p q f) = f propositionally.

2. Assuming parametricity over the quantification on the base category, then

Yh p q (Y h p q f) = f propositionally.

42 Call-by-Name Forcing in Type Theory

Proof : The first equality is straightforward. The second one is essentially an unfolding of
the definition of parametricity over the categorical structure. We do not want to dwell too
much on the whereabouts of parametricity in this chapter for the lack of space, so that we
will not insist on that property and let the reader refer to the actual implementation (see
the file yoneda.v in the repository https://github.com/CoqHott/coq-forcing).

Although this is not totally satisfying because of mismatches between type theory and
category theory, note that in the special case where the base category is proof-irrelevant
(i.e. a preorder) the translation actually builds an equivalent category.

Disregarding these small defects, we will consider that by applying the Yoneda trans-
lation to any category, we recover a new category which is essentially the same as the first
one except that it has definitional equalities. By plugging it into the forcing translation,
we will consequently fulfill all the expected conditions for the soundness theorems to go
through.

2.4 Datatypes

We now proceed to extend the calculus with positives, that is datatypes defined by their
constructors and move towards a translation of CIC. In CIC, datatypes are defined using
a generic schema for declaring inductive types, using a generic eliminator construct for
pattern-matching.

We wish to apply the forcing translation to any inductive definition, however there are
a number of issues to resolve before doing so, having to do with dependent elimination.
For the sake of conciseness, we will focus on Σ-types, whose definition is given in Figure 4.2
of the Appendix. It is noteworthy to remark that we present Σ-types in a positive fashion,
that is through pattern-matching, rather than negatively through projections. The latter
is usually easier to interpret in an effectful setting, but it is weaker and in general does
not extend to other types that have to be interpreted positively such as sums.

Whereas in the plugin our translation of inductive types builds new inductive types,
for the sake of simplicity, we will directly translate Σ-types as Σ-types. There is little
room left for tinkering. As the translation is by-name, we need to treat the subterms of
pairs as application arguments by thunking them using the [−]!σ macro and similarly for
types.

Definition 32 (Forcing translation of Σ-types)

[Σx : A.P]σ := λ(q f : σ).Σx : [[A]]!σ·(q,f). [[P]]!σ·(q,f)·x
[(M,N)]σ := ([M]!σ, [N]!σ)
[match M with (x, y)⇒ N]σ := match [M]σ with (x, y)⇒ [N]σ·x·y

Proposition 33

The translation enjoys computational soundness.

Against all expectations, typing soundness is not provable for the whole CIC. While
the typing rules of formation, introduction and non-dependent elimination are still valid,
the dependent elimination rule needs to be restricted. Indeed, the conclusion of the
traditional dependent elimination rule for Σ-types is

match M with (x, y)⇒ N : C{z := M}

https://github.com/CoqHott/coq-forcing

2.5. Recursive Types 43

This rule is not valid in presence of effects, because on the left-hand side, M is directly
evaluated, whereas on the right-hand side, the evaluation of M is postponed. In particular,
it is not valid in the forcing layer, and thus cannot be interpreted by the forcing translation.
The translation of this sequent results effectively in

match [M]σ with (x, y)⇒ [N]σ·x·y : [[C]]σ·z{z := [M]!σ}

and it is clear that [M]!σ can have little to do with [M]σ. Intuitively, a boxed term—
i.e. a term expecting a forcing condition before returning a value—of the translated
inductive type can use the forcing conditions to build different inductive values at different
conditions. It is for instance easy to build boxed booleans, i.e. terms of type [[B]]!σ :=
Π(q f : σ).B that are neither [true]!σ nor [false]!σ but whose value depends on the forcing
conditions. There is hence no reason for it to be propositionally equal to a constructor
application, let alone definitionally.

Therefore, we restrict the source type theory to dependent eliminations where a match

has type match, forcing evaluation in the result type as well. We denote this restricted
theory CIC− and summarize its typing rules at Figure 4.2.

Proposition 34

Typing soundness holds for the CIC− rules.

In this effectful setting, the usual dependent elimination of CIC can be decomposed
into a restricted elimination followed by an η-rule for Σ-types which can be written:

match M with (x, y)⇒ C{z := (x, y)} ≡η C{z := M}.

While this η-rule is actually propositionally valid in CIC, it is not preserved by the
forcing translation and can be disproved using non-standard boxed terms. In general,
assuming definitional η-rules for positive datatypes makes conversion checking hard, in
particular for sum types, requiring commutative conversions and very elaborate algorithms
even in the simply-typed case [Sch15]. Of course CIC− plus definitional η-rules for induc-
tive datatypes is equivalent to CIC plus those same rules, but an exact correspondence
between CIC− and CIC is harder to pin down.

Note that the translation also applies directly to the hidden return type annotation
found in CIC, which we did not expose here for simplicity. The same technique can be
applied to any algebraic datatype.

2.5 Recursive Types

The datatypes described in the previous section are non-recursive. Handling general
inductive datatypes raises issues of its own, because we need to be clever enough in the
definition to preserve both syntactical typing and reduction rules.

We will define our translation into CIC without giving all the technical details usually
imposed by recursive types, amongst others positivity condition and guardedness. The
reader can assume a theory close to the one implemented by Coq and Agda for instance.
Our practical implementation uses Coq, so that we will use its particular syntax.

Rather than giving the generic translation, which would turn out to be rather unin-
formative to the reader and too technical, we will focus instead on a running example.2

This example should be rich enough to uncover the issues stemming from recursive types.
We should stick to the list type, for it features a parameter. We recall that it is defined
as follows.

2The Coq plugin translates any (mutually) inductive type.

44 Call-by-Name Forcing in Type Theory

Inductive list• (p : P) (A : [[Type]]!p) : Type :=
| nil• : list• p A
| cons• : [[A]]!p·A → [[list A]]!p·A → list• p A

[list A]σ := λ(q f : σ). list• q [A]!σ·(q,f)

[nil A]σ := nil• σe [A]!σ
[cons A M N]σ := cons• σe [A]!σ [M]!σ [N]!σ

Figure 2.3: List translation

Inductive list (A : Type) : Type :=
| nil : list A

| cons : A → list A → list A.

The above definition generates the typing rules below, plus fixpoint and pattern-
matching terms with the corresponding rules.

Γ ` A : Type

Γ ` list A : Type

Γ ` A : Type

Γ ` nil A : list A

Γ ` A : Type Γ `M : A Γ ` N : list A
Γ ` cons A M N : list A

2.5.1 Type and Constructor Translation

On the type itself, the translation is not that difficult. The only really subtle part arises
from the forcing translation of types as we have

[[Typei]]σ := Π(q f : σ).Typei

so that the translation of an inductive type must take a forcing condition and a morphism
as arguments.

Now, recursive types appear as arguments of their constructors, and following the
by-name discipline, it means that they must be boxed. In particular, it implies that the
forcing conditions change at each recursive invocation. There are a lot of possible design
choices here when only following typing hints, but only one seems to comply with the
reduction rules. It consists in enforcing the fact that the inductive does not depend on
the current forcing conditions by simply not taking them as arguments and only rely on
one condition.

Formally, we define an intermediate inductive list•, and the forcing translation for
the list type is derived from it by applying it to the last forcing condition. The whole
translation is defined in Figure 2.3. We use macros to show that the translation is straight-
forward, but they should really be thought of as their unfolding.

Proposition 35 (Typing soundness)

The forcing translation of Figure 2.3 preserves the three typing rules of list, nil
and cons.

One important remark to do is that even though A is a uniform parameter of the list
type, it is not anymore in its translation, because it is lifted to a future condition at each
recursive call. Indeed, the type [[list A]]!p·A in the recursive call in cons• is convertible to

2.5. Recursive Types 45

Π(q f : p). list• q (λ(r g : p · (q, f)). A r (f ◦ g))

where list• has a different argument than A. This is not really elegant, but it does not
cause more trouble than mere technicalities.

2.5.2 Non-dependent Induction

As in the non-recursive case, it is easy to define a non-dependent recursor on the trans-
lation of a recursive inductive type, because pattern-matchings are actually translated as
pattern-matchings and similarly for fixpoints. For our running example, we can indeed
build a function that folds over a forced list.

Definition 36 (Recursor)

A recursor for lists is a term rec of type

Trec := Π(AP : Type). P0 → Ps → list A→ P

with P0 := P and Ps := A→ list A→ P → P which is subject to the conversions

rec A P H0 Hs (cons A M N) ≡ Hs M N (rec A P H0 Hs N)

rec A P H0 Hs (nil A) ≡ H0

assuming the proper typing requirements.

Proposition 37 (Recursor Translation)

Assuming a recursor rec, there exists a term rec• of type Πp : P. [[Trec]]p such that
by posing

[rec A P H0 Hs M]σ := rec• σe [A]!σ [P]!σ [H0]!σ [Hs]!σ [M]!σ

the forcing translation interprets the reduction rules of Definition 36 definitionally.

Proof : This recursor is built out of the actual recursor on list• in a straightforward way.

2.5.3 Storage Operators

Just as for the plain datatypes, dependent elimination is troublesome, because non-
canonical terms can get in the way. It means that we cannot reasonably aim for the
usual induction principles of inductive types, as we can simply disprove them by hand-
crafted terms. The situation is actually even direr, because trying to take a simple match-
expansion trick is not enough to make the inductive case go through. We need something
stronger.

Luckily, we came up with a restriction inspired from another context where forcing
interacts with effects: classical realizability. In order to recover the induction principle
on natural numbers in presence of callcc, Krivine introduced the notion of storage op-
erators [Kri94]. Essentially, a storage operator, e.g., for integers, is a term ϑN of type
N → (N → R) → R which purifies an integer argument by recursively evaluating and
reconstructing it. The suspicious (N→ R)→ R return type is actually a trick to encode
call-by-value in a call-by-name setting thanks to a CPS, so that we are sure that the
integer passed to the continuation is actually a value.

46 Call-by-Name Forcing in Type Theory

Storage operators are somehow arcane outside of the realm of classical realizability, but
they are actually both really simple to define from a recursor, computationally straight-
forward and invaluable to our translation. Once again, we only define here a storage
operator for the list type but this can be generalized.

ϑ : Π(AR : Type). list A→ (list A→ R)→ R
:= λ(AR : Type). rec A ((list A→ R)→ R)

(λk : list A→ R. k (nil A))
(λ(x : A) (: list A) (r : (list A→ R)→ R) (k : list A→ R).
r (λl : list A. k (cons A x l)))

Figure 2.4: Storage operator for lists

Definition 38 (Storage operator)

Assuming a recursor rec, we define the storage operator for lists ϑ in Figure 2.4.
We will omit the A and R arguments when applying ϑ for brevity.

Storage operators are only defined by means of the non-dependent recursor, so they
have a direct forcing translation by applying Proposition 37. Moreover, in a pure setting,
they are pretty much useless, as the following proposition holds.

Proposition 39 (Propositional η-rule)

CIC proves that

Π(AR : Type) (l : list A) (k : list A→ R). ϑ l k = k l.

This is proved by a direct dependent induction over the list. This is precisely where the
forcing translation fails, and the above theorem does not survive the forcing translation.

2.5.4 Dependent Induction in an Effectful World

By using storage operators, we can nevertheless provide the effectful equivalent of an
induction principle on recursive types.

Theorem 40

There exists a term ind• of type Πp : P. [[Tind]]p where

Tind := Π(A : Type) (P : list A→ Type).
P0 → Ps → Πl : list A. ϑ l P

P0 := P (nil A)
Ps := Π(x : A) (l : list A). ϑ l P → ϑ (cons A x l) P

which is subject to the conversion rules of Definition 36 (by replacing rec by ind).

Proof : Once again, it is a straightforward application of the dependent induction principle
for list•.

In the usual CIC, the above theorem seems to be a very contrived way to state the
dependent induction principle. By rewriting the propositional η-rule, even its type is equal
to the type of the usual induction principle. Yet, in the effectful theory resulting from the
forcing translation, the two theorems are sharply distinct, as the usual induction principle
is disprovable in general.

2.6. Forcing at Work: Consistency Results 47

2.5.5 Revisiting the Non-Recursive Case

Actually, even the restriction on dependent elimination from Section 2.4 can be presented
in terms of storage operators. As soon as a non-recursive type is defined by constructors,
one can easily define storage operators over it by pattern-matching alone.

ϑΣ : Π(A : Type) (B : A→ Type) (R : Type). (Σx : A.B)→ ((Σx : A.B)→ R)→ R
:= λ(A : Type) (B : A→ Type) (R : Type) (p : Σx : A.B) (k : (Σx : A.B)→ R).

match p with (x, y)⇒ k (x, y)

Γ `M : Σx : A.B Γ, z : Σx : A.B ` C : Type Γ, x : A, y : B ` N : C{z := (x, y)}
Γ ` match M with (x, y)⇒ N : ϑΣ M (λz : Σx : A.B.C)

Figure 2.5: Storage operator for Σ-types

Definition 41 (Simple storage operator)

We define a storage operator ϑΣ for Σ-types in Figure 2.5.

It is now obvious that the match restriction when typing dependent pattern-matching
corresponds exactly to the insertion of a storage operator in front of the type of the
expression, i.e. the typing rule of Figure 2.5 is equivalent to the one of Section 2.4 up to
conversion.

Therefore, we advocate for the use of storage operators as a generic way to control
effects in a dependent setting. Purity is recovered by adding the η-law on storage oper-
ators as a theorem in the theory, or even definitionally. To the best of our knowledge,
this use of storage operators is novel in a dependent type theory equipped with effects,
notwithstanding the actual existence of such an object.

2.6 Forcing at Work: Consistency Results

In this section, we present preservation of (a simple version of) functional extensionality
and the fact that the negation of the univalence axiom is compatible with CIC. Then, we
show that (a simple version of) the univalence axiom is preserved for types which respect
a monotonicity condition.

2.6.1 Equality in CIC

Before stating consistency result, we need to look at the notion of equality in CIC and
in the forcing layer. As usual, equality in CIC is given by the inductive eq with one
constructor refl as follows:

Inductive eq(A : Type)(x : A) : A → Type :=
| refl : eq A x x

We simply write x = y for eq A x y when A is clear from context. Following the
automatic translation of inductive types explained in Section 2.5, eq is translated as

Inductive eq• (p : P) (A : [[Type]]!p) (x : [[A]]!p) : [[A]]!p → Type :=
| refl• : eq• p A x x

48 Call-by-Name Forcing in Type Theory

Actually, we can show that the canonical function from x = y to eq• p A x y (obtained
by eliminating over x = y) is an equivalence3 for all forcing condition p. This means that
the property satisfied by eq in the core calculus can be used to infer properties on eq in
the forcing layer.

Using a storage operator, we can define a dependent elimination that corresponds
to the J eliminator of Martin-Löf’s type theory. Nevertheless, we simply need here the
following Leibniz principle, which avoids the use of storage operators because the returned
predicate does not depend on the equality:

ΠA (x y : A) (P : A→ Type) (e : x = y). P x→ P y.

2.6.2 Preservation of Functional Extensionality

The precise statement of functional extensionality in homotopy type theory is that the
term f_equal of type:

ΠA (B : A→ Type) (ϕψ : Πx.B x). ϕ = ψ → Πx. ϕ x = ψ x

is an equivalence. This term is obtained from Leibniz’s principle and expresses that when
two functions are equal, they are equal pointwise.

Assuming functional extensionality in the core calculus, we can define a weaker variant
of functional extensionality.

Proposition 42 (Preservation of functional extensionality)

Assuming functional extensionality in the core calculus, one can define a term of type

ΠA (B : A→ Type) (ϕψ : Πx.B x). (Πx. ϕ x = ψ x)→ ϕ = ψ

in the forcing layer.

Proof : Once translated in the core calculus, using the equivalence between eq and eq•, it re-
mains to give a term of type ϕ = ψ for all forcing condition p and ϕ and ψ in [[Πx : A.B x]]p,
assuming a term X of type [[Πx. ϕ x = ψ x]]!p. Now, ϕ and ψ are functions that expect a

forcing condition q, a morphism f : Hom p q and an argument [[A]]!p·(q,f). Using functional
extensionality in the core calculus, this amounts to show ϕ q f x = ψ q f x. This can be
deduced by using f_equal on X p q x and applying it to q and id.

The preservation of the complete axiom of functional extensionality would require
some additional naturality conditions (similar to parametricity) in the translation (see
Section 2.6.5 for a discussion on this point).

In the same way, we can prove the preservation of the Uniqueness of Identity Proof
axiom which says that any proof of x = x is by reflexivity.

2.6.3 Negation of the Univalence Axiom

In homotopy type theory, Voevodsky’s univalence axiom is expressed by saying that the
canonical map path_to_equiv of type

A = B → Σϕ : A→ B. IsEquiv A B ϕ

3In homotopy type theory, being an equivalence is defined as the predicate

IsEquiv := λ(AB : Type) (f : A→ B).
Σg : B → A. (Πx. g (f x) = x) × (Πy. f (g y) = y).

2.6. Forcing at Work: Consistency Results 49

is an equivalence. This term is defined using Leibniz’s principle on the identity equivalence.
It is a very important axiom, which sheds light on the connection between CIC and
homotopy theory—more specifically higher topos theory. This axiom expresses that the
only way to observe a type is through its interaction with the environment. Actually, this
axiom can be wrong in presence of effects because types may perform effects that cannot be
observed because a type A is always observed uniformly at every possible future condition
and not at a given one.

Proposition 43 (Negation of the univalence axiom)

There exists a forcing layer in which the type

(Π(AB : Type). IsEquiv (path_to_equiv A B))→ ⊥

can be inhabited (where ⊥ is the inductive type with no constructor).

Proof : We define the forcing condition to be P := bool and for all p, q : bool, Hom(p, q) :=
unit where bool (resp. unit) is the inductive type with two (resp. one) elements. In this
layer, it is possible to define two new types (at level p)

A0 := λ(q f : p). if q then unit else ⊥ : [[Type]]p
A1 := λ(q f : p). if q then ⊥ else unit : [[Type]]p

Those two types are obviously different in the forcing layer. However, it is possible to
define a function from A0 to A1 by using the fact that functions expect their arguments
to be given for every possible future forcing condition. Thus, to define the function at
condition, say p, one just have to use the argument at condition ¬p, the negation of p.
Symmetrically, it is possible to define a function from A1 to A0, and to show that they
form an equivalence.

Note that the univalence axiom has been shown to be consistent with Martin-Löf’s
type theory using a simplicial model [KLV12], which suggests the independence of the
univalence axiom with CIC.

2.6.4 Preserving Univalence Axiom for Monotonous Types

In the previous section, we have been able to negate the univalence axiom by using types
that produce completely non-monotonous effects. But if we restrict the univalence state-
ment to types that respect a monotonicity condition, it becomes possible to prove the
preservation of (a simple version of) univalence. Indeed, it is possible to define a modality
� on Type by

�p : [[Type→ Type]]p := λX q f.Πr (g : Hom q r). X r (g ◦ f) r id

We get a modality in the sense of [Uni13]4. A type A is �-modal when it is equivalent
to �A. Those types are the types which satisfy a monotonicity condition. Restricting
the univalence axiom to �-modal types, we can recover (a simple form of) preservation of
univalence.
Proposition 44 (Preservation of the univalence axiom for �-modal types)

Assuming univalence in the core calculus, one can define a term of type

(Σϕ : A→ B. IsEquiv A B ϕ)→ �A = �B

in the forcing layer.

4Up to a missing equality that can be recovered using naturality conditions of Section 2.6.5

50 Call-by-Name Forcing in Type Theory

Proof : The proof is similar to the proof of preservation of functional extensionality. It also
uses the fact that assuming univalence in the core calculus also implies functional exten-
sionality in the core calculus. The crux of the proof lies in the fact that A and B have
only to be equal globally, and not pointwisely at each forcing condition.

For instance, the types A0 and A1 of Proposition 43 satisfy (�A0) = (�A1).

2.6.5 Towards Forcing with Naturality Conditions

Our forcing translation is much coarser than it could be, for it allows really non-standard
terms that can abuse the forcing conditions a lot. Most notably, all boxed terms com-
ing from the translation respect strong constraints that the current translation does not
account for, and which are the call-by-name equivalent to the naturality requirement
from the presheaf construction. For instance, all closed boxed types A• : [[Type]]!σ ≡
Π(q f : σ) (r g : σ · (q, f)).Type verify the equality

A• q f r g ≡ A• r (f ◦ g) r idr
for all q, f, r and g. The same goes for inductive types, as the need to restrict dependent
elimination in CIC− stems from the existence of boxed terms that allow themselves to
observe the current conditions too much. By enforcing the fact that they must coincide
at each later condition, we could recover a propositional η-rule and thus full dependent
elimination.

Actually, it seems not that difficult to enforce such naturality properties by means of
an additional bit of parametricity in the translation itself, in the style of Lasson [BL11].
Just as the call-by-value translation requires natural propositional equalities on the value
types, we can do the same for values appearing in the CBPV decomposition of call-by-
name, i.e. in the [−]!σ and [[−]]!σ translations. This also means that the translation of each

type A must embed a parametricity property
A,σ : [[A]]!σ → Type specifying what it is
to be natural at this type (i.e. parametric).

We believe that contrarily to the call-by-value forcing, this should not prevent the
translation to preserve definitional equality. Indeed, as in the parametricity translation
of PTS, we never rely on the additional equalities to compute, and merely pass them
along the translation. Even more, the unary parametricity translation should probably
be equivalent to the forcing translation with trivial conditions.

Such a translation would be in some sense purer. It would preserve the monotonous
univalence axiom from the previous section, but also allow to prove propositionally the
η-law for storage operators. Therefore, it would be the best of by-value and by-name
forcing translations.

2.7 Future Work

Our work allows to use any category to increase the logical power of CIC just as considering
presheaves allows to increase the logical power of a topos. This is a first step towards the
use of the category of cubes as the type of forcing conditions to give a computational
content to the cubical type theory [CCHM16] of Coquand et al and in particular to the
univalence axiom.

It also shed some new light on the difficult problem of combining dependent types with
effects. Indeed, our translation is really close to a reader monad, the forcing conditions
corresponding to some states that can be read, and locally modified in a monotonic way.
It would be interesting to see if some of the techniques introduced here, notably the use
of storage operators, could be applied to handle more general effects.

Chapter 3

Chemical Foundations of
Distributed Aspects

Faisceaux du phare du pilier,
Noirmoutier

Contents

3.1 The distributed objective join calculus 53

3.1.1 Message passing and internal states 53

3.1.2 Syntax . 54

3.1.3 Semantics . 55

3.1.4 A companion example . 57

3.1.5 Bootstrapping distributed communication 58

3.2 The aspect join calculus . 59

3.2.1 Defining the join point model . 59

3.2.2 Customized reactions . 61

3.2.3 Semantics . 62

3.2.4 Why objects? . 65

3.3 From the aspect join calculus to the join calculus 66

3.3.1 General approach . 66

3.3.2 Translation . 68

3.3.3 Bisimulation between an aspect join calculus process and its trans-
lation . 70

3.4 Aspect JoCaml . 73

3.4.1 Overview of Aspect JoCaml . 73

3.4.2 Implementation . 75

3.5 Discussion . 76

3.5.1 Synchronous aspects . 76

3.5.2 Distributed aspect deployment 76

3.6 Related work . 77

3.6.1 Formal semantics of aspects . 77

3.6.2 Distributed aspect languages and systems 78

52 Chemical Foundations of Distributed Aspects

Distributed applications are complex to develop because of a plethora of issues related
to synchronization, distribution, and mobility of code and data across the network. It has
been advocated that traditional programming languages do not allow to separate distri-
bution concerns from standard functional concerns in a satisfactory way. For instance,
data replication, transactions, security, and fault tolerance often crosscut the business
code of a distributed application. Aspect-Oriented Programming (AOP) promotes bet-
ter separation of concerns in software systems by introducing aspects for the modular
implementation of crosscutting concerns [KIL+96, EFB01]. Indeed, the pointcut/advice
mechanism of AOP provides the facility to intercept the flow of control when a program
reaches certain execution points (called join points) and perform new computation (called
advice). The join points of interest are denoted by a predicate called a pointcut.

AOP is frequently used in distributed component infrastructures such as Enterprise
Java Beans, application frameworks (such as Spring1) and application servers (such as
JBoss2). Recently, there is a growing interest in the use of AOP for Cloud comput-
ing [MBHJJ11, Che12], including practical infrastructures such as CloudStack3. In all
these cases however, AOP systems do not support the remote definition or application of
aspects. Rather, non-distributed aspects are used to manipulate distributed infrastruc-
tures [SLB02].

To address these limitations, distributed AOP has been the focus of several practical
developments: JAC [PSD+04], DJcutter [NCT04], QuO’s ASL [DLS+04], ReflexD [TT06],
AWED [BNSV+06, BNSVV06], Lasagne [TJ06], as well as a higher-order procedural lan-
guage with distribution and aspects [TFD+10]. These languages introduce new concepts
for distributed AOP such as remote pointcut (advice triggered by remote join points), dis-
tributed advice (advice executed on a remote host), migration of aspects, asynchronous
and synchronous aspects, distributed control flow, etc. Most of these systems are based
on Java and RMI in order to promote the role of AOP on commonly-used large-scale dis-
tributed applications. But the temptation of using a rich language to develop interesting
applications has the drawback that it makes it almost impossible to define the formal
semantics of distributed aspects. While the formal foundations of aspects have been laid
out in the sequential setting [WKD04, DFES10], to date, no theory of distributed aspects
has been developed.4

This chapter develops the formal foundations of distributed AOP using a chemical
calculus, essentially a variant of the distributed join calculus [FG96b]. The join calcu-
lus is a functional name-passing calculus based on the chemical abstract machine and
implemented in several mainstream languages like OCaml [FLFMS03], C# [BCF04] and
Scala [HVC08]. Chemical execution engines are also being developed for Cloud comput-
ing [PPT11, OT13]. Due to its chemical nature, the join calculus is well-suited to describe
parallel computation. The explicit treatment of localities and migration in the distributed
join calculus make it possible to express distribution-related concerns directly.

In the join calculus, communication channels are created together with a set of reaction
rules that specify, once and for all, how messages sent on these names are synchronized
and processed. The crosscutting phenomena manifests in programs written in this style,
just as they do in other languages. The reason is that reactions in the join calculus

1http://www.springsource.org
2http://www.jboss.org
3http://cloudstack.apache.org/
4This chapter builds upon the conference publication [Tab10]. Much of the text has been completely

rewritten with Éric Tanter. The aspect join calculus has been simplified and clarified, in particular by
removing the type system and the management of classes, because they are orthogonal to the extensions
considered in this work. The implementation is available at http://tabareau.fr/aspect_jocaml/.

http://www.springsource.org
http://www.jboss.org
http://cloudstack.apache.org/
http://tabareau.fr/aspect_jocaml/

3.1. The distributed objective join calculus 53

are scoped: it is not possible to define a reaction that consumes messages on external
channels. Therefore, extending a cache process with replication implies modifying the
cache definition itself. Similarly, establishing alternative migration policies based on the
availability of locations requires intrusively modifying components.

The Aspect Join Calculus developed in this chapter addresses crosscutting issues in
the join calculus by introducing the possibility to define aspects that can react to chemical
reactions. In doing so, it provides a formal foundation that can be used to understand
and describe the semantics of existing and future distributed aspect languages. We also
use it to describe interesting features that have not (yet) been implemented in practical
distributed AOP systems.

3.1 The distributed objective join calculus

We start by presenting a distributed and object-oriented version of the join calculus.5

This calculus, which we call the distributed objective join calculus, is an original, slightly
adapted combination of an object-oriented version of the join calculus [FLMR03] and an
explicit notion of location to account explicitly for distribution [FG02].

3.1.1 Message passing and internal states

Before going into the details of the distributed objective join calculus, we begin with the
example of the object buffer presented in [FLMR03]. The basic operation of the join
calculus is asynchronous message passing and, accordingly, the definition of an object
describes how messages received on some labels can trigger processes. For instance, the
term

obj r = reply(n) . out.print(n)

defines an object that reacts to messages on its own label reply by sending a message
with label print and content n to an object named out that prints on the terminal. In the
definition of an object, the ’.’ symbol defines a reaction rule that consumes the messages
on its left hand side and produces the messages on its right hand side.

Note that labels may also be used to represent the internal state of an object. Consider
for instance the definition of a one-place buffer object:

obj b = put(n) & empty() . b.some(n)
or get(r) & some(n) . r.reply(n) & b.empty()

in b.empty()

A buffer can either be empty or contain one element. The buffer state is encoded
as a message pending on empty or some, respectively. A buffer object is created empty,
by sending a first message b.empty in the in clause. Note that to keep the buffer object
consistent, there should be a single message pending on either empty or some. This
remains true as long as external processes cannot send messages on these internal labels
directly. This can be enforced by a privacy discipline, as described in [FLMR03].

5There is a good reason why we choose a variant of the join calculus with objects; we discuss it later
in Section 3.2.4, once the basics of aspects in the calculus are established.

54 Chemical Foundations of Distributed Aspects

P
def= Processes

0 null process
x.M message sending
obj x = D inP object definition
go(H);P migration request
H[P] situated process
P & P parallel composition

D
def= Definitions

M . P reaction rule
D orD disjunction

M
def= Patterns

l(v̄) message
M &M synchronization

D def= Named Definitions
x.D object definition
H[D : P] sub-location definition
D orD disjunction
> void definition

Figure 3.1: Syntax of the distributed objective join calculus (a combination of simplified
versions of the distributed join calculus [FG02] and the objective join calculus [FLMR03])

3.1.2 Syntax

We use three disjoint countable sets of identifiers for object names x, y, z ∈ O, labels
l ∈ L and host names H ∈ H. Tuples are written (vi)i∈I or simply v̄. We use v to refer
indifferently to object or host names, i.e., v ∈ O

⋃
H. The grammar of the distributed

objective join calculus is given in Figure 3.1; it has syntactic categories for processes
P , definitions D, patterns M , and named definitions D. The main construct is object
definition obj x = D inP that binds the name x to the definitions of D. The scope of x
is every guarded process in D (here x means “self”) and the process P . Objects are taken
modulo renaming of bound names (or α-conversion).

Definitions D are a disjunction of reaction rules. A reaction rule M . P associates a
pattern M with a guarded process P . Every message pattern l(v̄) in M binds the object
names and/or hosts v̄ with scope P . In the join calculus, it is required that every pattern
M guarding a reaction rule be linear, that is, labels and names appear at most once in
M . Named definitions D are a disjunction of object definitions x.D and sub-location
definitions H[D : P], hosting the named definitions D and process P at host H. Note
that each object is associated to exactly one named definition. H[P] is the process that
starts a fresh new location with process P . Note that H[P] acts as a binder for creating
a new host. A migration request is described by go(H ′);P . It is subjective in that it
provokes the migration of the current host H to any location of the form ψH ′ (which
must be unique by construction) with continuation process P . The definitions of free
names (noted fn(.)) for processes, definitions, patterns and named definitions are given in
Figure 3.2.

3.1. The distributed objective join calculus 55

fn(0) = ∅
fn(x.M) = {x} ∪ fn(M)
fn(obj x = D inP) = (fn(D) ∪ fn(P)) \ {x}
fn(go(H);P) = {H} ∪ fn(P)
fn(H[P]) = fn(P) \H
fn(P &Q) = fn(P) ∪ fn(Q)
fn(M . P) = fn(P) \ fn(M)
fn(D orD′) = fn(D) ∪ fn(D′)
fn(l(v̄)) = {vi/i ∈ I}
fn(M &M ′) = fn(M) ∪ fn(M ′)
fn(x.D) = {x} ∪ fn(D)
fn(H[D : P]) = (fn(D) ∪ fn(P)) \H
fn(D orD′) = fn(D) ∪ fn(D′)
fn(>) = ∅

Figure 3.2: Definition of free names fn(·)

3.1.3 Semantics

The operational semantics of the distributed objective join calculus is given as a reflexive
chemical abstract machine [FG96b]. A machine D
ϕ P consists in a set of named
definitions D and of a multiset of processes P running in parallel at location ϕ = H1 · · ·Hn.
Each rewrite rule applies to a configuration C, called a chemical solution, which is a set
of machines running in parallel:

C = D1

ϕ1 P1 ‖ · · · ‖ Dn
ϕn Pn

Intuitively, a root location H can be thought of as an IP address on a network and a
machine at host/root location H can be thought of as a physical machine at this ad-
dress. Differently, a machine at sub-location HH ′ can be thought of as a system process
H ′ executing on a physical machine (whose location is H). This includes for example
the treatment of several threads, or of multiple virtual machines executing on the same
physical machine.

A chemical reduction is the composite of two kinds of rules: (i) structural rules ≡
that deal with (reversible) syntactical rearrangements, (ii) reduction rules −→ that deal
with (irreversible) basic computational steps. The rules for the distributed objective join
calculus are given in Figure 3.3. In chemical semantics, each rule is local in the sense
that it mentions only messages involved in the reaction; but it can be applied to a wider
chemical solution that contains those messages. By convention, the rest of the solution,
which remains unchanged, is implicit.

Rules Or and Empty make composition of named definitions associative and commu-
tative, with unit >. Rules Par and Nil do the same for parallel composition of processes.
Rule Join gathers messages that are meant to be matched by a reaction rule. Rule Obj-
Def describes the introduction of an object (up-to α-renaming, we can consider that any
definition of an object x appears only once in a configuration). The reduction rule Red
specifies how a message x.M ′ interacts with a reaction rule x.[M . P]. The notation
x.[M . P] means that the unique named definition x.D in the solution contains reaction
rule M . P . The message x.M ′ reacts when there exists a substitution σ with domain
fn(M) such that Mσ = M ′. In that case, x.Mσ is consumed and replaced by a copy of
the substituted guarded process Pσ.

56 Chemical Foundations of Distributed Aspects

Structural rules

Or
(D orD′)
ϕ ≡ D,D′
ϕ

Empty
>
ϕ ≡
ϕ

Par

ϕ P &Q ≡
ϕ P,Q

Nil

ϕ 0 ≡
ϕ

Join

ϕ x.(M &M ′) ≡
ϕ x.M, x.M ′

Sub-Loc
H[D : P]
ϕ ≡ {D}
ϕH {P} (H frozen)

Obj-Def

ϕ obj x = D inP ≡ x.D
ϕ P

(x fresh)

Loc-Def

ϕ H[P] ≡ H[> : P]
ϕ (H fresh)

Reduction rules

Red
x.[M . P]
ϕ x.Mσ −→ x.[M . P]
ϕ Pσ

Message-Comm

ϕ x.M ‖ x.D
ψ −→
ϕ ‖ x.D
ψ x.M

Move

H[D : (P & go(H ′);Q)]
ϕ ‖
ψH′ −→
ϕ ‖ H[D : (P &Q)]
ψH′

Figure 3.3: Chemical semantics of the distributed objective join calculus (adapted
from [FG02, FLMR03])

3.1. The distributed objective join calculus 57

Distribution. Rule Message-Comm states that a message emitted in a given location
ϕ on a channel name x that is remotely defined can be forwarded to the machine at
location ψ that holds the definition of x. Later on, this message can be used within ψ to
assemble a pattern of messages and to consume it locally, using a local Red step. Note
that in contrast to some models of distributed systems [RH98], the routing of messages is
not explicitly described by the calculus.

Rule Loc-Def describes the introduction of a sub-location (up-to α-conversion, we can
consider that any host appears only once in a configuration). Rule Sub-Loc introduces
a new machine at sub-location ϕH of ϕ with D as initial definitions and P as initial
process. When read from right-to-left, the rule can be seen as a serialization process, and
conversely as a deserialization process. The side condition “H frozen” means that there
is no other machine of the form
ϕHψ in the configuration (i.e., all sub-locations of H
have already been “serialized”). The notation {D} and {P} states that there are no extra
definitions or processes at location ϕH.

Rule Move gives the semantics of migration. A sub-location ϕH of ϕ is about to move
to a sub-location ψH ′ of ψ. On the right hand side, the machine
ϕ is fully discharged
of the location H. Note that P can be executed at any time, whereas Q can only be
executed after the migration. Rule Move says that migration on the network is based
on sub-locations but not objects nor processes. When a migration order is executed, the
continuation process moves with all the definitions and processes present at the same sub-
location. Nevertheless, we can encode object (or process) migration by defining a fresh
sub-location and uniquely attaching an object/process to it. Then the migration of the
sub-location will be equivalent to the migration of the object/process.

Names and configuration binding. In the distributed join calculus, every name is
defined in at most one local solution; rule Message-Comm hence applies at most once
for every message, delivering the message to a unique location [FG02]. Similarly, we also
assume that the rightmost host Hn defines the location ϕ uniquely. This condition is
preserved dynamically thanks to the freshness condition of rule Loc-Def.

In the semantics, the rule Obj-Def (resp. Loc-Def) introduces a fresh variable x
(resp. H) that is free in the definitions and processes of the whole configuration. But
the fact that x (resp. H) appears on the left hand side of the machine definition means
that the free variable is defined in the configuration. More precisely, for a configuration
C = (D1
ϕi Pi)i, we say that x is defined in C, noted C ` x, when there exists i such that
x.D appears in Di. Similarly, we say that H is defined in C, noted C ` H, when there
exists i such that H[D : P] appears in Di. This notion of configuration binding will be
used in the definition of the semantics of pointcuts in Section 3.2.

3.1.4 A companion example

In the rest of the chapter, we will use a cache replication example. To implement the
running example, we assume a dictionary library dict with three labels:

• create(x) returns an empty dictionary on x.getDict;

• update(d, k, v, x) updates the dictionary d with value v on key k, returning the
dictionary on x.getDict;

• lookup(d, k, r) returns the value associated to k in d on r.reply

We also assume the existence of strings, which will be used for keys of the dictionary,
written "name".

58 Chemical Foundations of Distributed Aspects

The cache we consider is similar to the buffer described in Section 3.1.1 but with
a permanent state containing a dictionary and a getDict label to receive the (possibly
updated) dictionary from the dict library:

obj c = put(k, v) & state(d) . dict.update(d, k, v, c)
or get(k, r) & state(d) . dict.lookup(d, k, r) & c.state(d)
or getDict(d) . c.state(d)

in dict.create(c)

For the moment, we just consider a single cache and a configuration containing a single
machine as follows:

c.[put(k, v) & state(d) . dict.update(d, k, v, c),
get(k, r) & state(d) . dict.lookup(d, k, r) & c.state(d),
getDict(d) . c.state(d)],

r.[reply(n) . out.print(n)]

H c.state(d0) & c.get("foo", r) & c.put("bar", 5)

At this point, two reactions can be performed, involving c.state(d0) and either c.get("foo", r)
or c.put("bar", 5). Suppose that put is (non-deterministically) chosen. The configuration
amounts to:

Rules
H dict.update(d0, "foo", 5, c) & c.get("foo", r)

where Rules represents the named definitions introduced so far. c.get("foo", r) can no
longer react, because there are no c.state messages in the solution anymore. dict passes
the updated dictionary d1, which is passed in the message c.state using reaction on label
c.getDict.

Rules
H c.state(d1) & c.get("foo", r)

Now, c.get("foo", r) can react with the new message c.state(d1), yielding:

Rules
H c.state(d1) & r.reply(5)

Finally, 5 is printed out (consuming the r.reply message) resulting in the terminal config-
uration:

Rules
H c.state(d1)

3.1.5 Bootstrapping distributed communication

Since the join calculus is lexically scoped, programs executed on different machines do
not initially share any port name; therefore, they would normally not be able to interact
with one another. To bootstrap a distributed computation, it is necessary to exchange a
few names, using a name server. The name server NS offers a service to associate a name
to a constant string— NS.register("x", x)—and to look up a name based on a string
—NS.lookup("x", r), where the value is sent on r.reply.

Note that in order to make the definition of processes more readable, we present some
part of processes in a functional programming style that can either be encoded in the join
calculus, or can already be present in the language (e.g., in JoCaml). In particular, we
will use the notions of lists, strings, integers, equality testing, conditionals (if-then-else),

3.2. The aspect join calculus 59

D
def= . . . Definitions

〈Pc,Ad〉 pointcut/advice pair
〈Pc,Ad〉• activated aspect

Pc
def= Pointcuts

contains(x.M) reaction pattern binder
host(h) location binder
¬Pc negation
Pc ∧ Pc conjunction
causedBy(Pc) causality

Ad
def= Advices

P any process
Ad&Ad parallel composition
proceed proceed

Figure 3.4: Syntax of aspects in the aspect join calculus

and a particular variable lhost that represents the current location on which a process is
executing.

3.2 The aspect join calculus

We now describe the aspect join calculus, an extension of the distributed objective join
calculus with aspects. Support for crosscutting in a programming language is characterized
by its join point model [MKD03]. A join point model includes the description of the points
at which aspects can potentially intervene, called join points, the means of specifying the
join points of interest, here called pointcuts, and the means of effecting at join points,
called advices. We first describe each of these elements in turn, from a syntactic and
informal point of view, before giving the formal semantics of aspect weaving in the aspect
join calculus. The syntax of aspects is presented in Figure 3.4.

3.2.1 Defining the join point model

Join points. Dynamic join points reflect the steps in the execution of a program. For
instance, in AspectJ [KHH+01] join points are method invocations, field accesses, etc.
In functional aspect-oriented programming languages, join points are typically function
applications [DTK06, WZL03].

The central computational step of any chemical language is the application of a reaction
rule, here specified by Rule Red. Therefore, a reaction join point in the aspect join calculus
is a pair (ϕ, x.M), where ϕ is the location at which the reduction occurs, and x.M is the
matched synchronization pattern of the reduction.

In pointcut definition, it is often of interest to know not only the current reaction join
point but also the causality tree of reaction join points that gave rise to it. Therefore, we
introduce the general notion of join point (with causality) to denote a tree of reaction join
points. More precisely, a join point (with causality) is

• either an empty tree, noted ⊥,

60 Chemical Foundations of Distributed Aspects

fn(contains(x.M)) = fn(x.M)
fn(host(h)) = h
fn(Pc ∧ Pc′) = fn(Pc) ∪ fn(Pc′)
fn(¬Pc) = fn(Pc)
fn(causedBy(Pc)) = fn(Pc)
fn(proceed) = ∅
fn(〈Pc,Ad〉) = fn(Ad) \ fn(Pc)

Figure 3.5: Definition of free names for aspects

• or a node, noted jp+ J̄ , where jp is a reaction join point and J̄ is a list of join points
(with causality) whose size is equal to the number of messages in the pattern M .

The idea is that each child represents the causal history of each message in the pattern
of the reaction join point node. We note J ′ � J to indicate that J ′ is a subtree of J and
J ′ ≺ J to indicate that moreover J ′ is different from J .

Pointcuts. The aspect join calculus includes two basic pointcut designators, i.e., func-
tions that produce pointcuts: contains for reaction rules selection, and host for host se-
lection. The pointcut contains(x.M) selects any reaction rule that contains the pattern
x.M as left hand part, where the variables occurring in contains(x.M) are bound to the
values involved in the reaction join point. In the same way, the pointcut host(h) binds
h to the location of the reaction join point. A pointcut can be also be constructed by
negations and conjunctions of other pointcuts. Finally, the pointcut causedBy(Pc) says
that Pc matches for a subtree of the current join point. The semantics of pointcuts is
formally described in Section 3.2.3.

The free variables of a pointcut (as defined in Figure 3.5) are bound to the values
of the matched join points. In this way, a pointcut acts as a binder of the free variables
occurring in the corresponding advice, as standard in aspect-oriented languages. Consider
for instance the pointcut contains(x.M). If x is free, the pointcut will match any reaction
whose pattern includes M , irrespective of the involved object, and that object will be
bound to the identifier x in the advice body. If x is not a free name, the pointcut
will match any reaction on the object denoted by x, whose pattern includes M . Note
that similarly to synchronization patterns in the join calculus, we require the variables
occurring in a pointcut to be linear. This ensures that unions of substitutions used in the
definition of a semantics of pointcuts (Fig. 3.6) are always well defined.

In the following, when the variable to be matched is not interesting (in the sense
that it is not used in the advice), we use the ∗ notation. For instance, the pointcut
contains(∗.put(k, v)) matches all reactions containing put(k, v) on any object, without
binding the name of the object.

Advices. An advice body Ad is a process to be executed when the associated pointcut
matches a join point. This process may contain the special keyword proceed. During
the reduction, proceed is substituted by the resulting process P of the matched reaction.
Note that contrarily to the common practice in AOP, it is not possible to modify the
process P by altering the substitution that is applied to it. This is because the notion of
arguments of a reaction is not easy to set up in the join calculus as it should be induced
by the substitution and not by the order in which they appear in the reaction join point.
Nevertheless, it is still possible to skip using proceed and trigger another process instead.
Free names of an advice are defined in Figure 3.5.

3.2. The aspect join calculus 61

Aspects. To introduce aspects in the calculus, we extend the syntax of definitions D
with pointcut/advice pairs (Figure 3.4). This means that an object can have both re-
action rules and possibly many pointcut/advice pairs. This modeling follows symmetric
approaches to pointcut and advice, like CaesarJ [AGMO06] and EScala [GSM+11], where
any object has the potential to behave as an aspect. Free names of an aspect are defined
in Figure 3.5.

The following example defines an object replicate that, when sent a deploy message
with a given cache replicate object c and a host H ′, defines a fresh sub-location ϕH,
migrates it to host H ′, and creates a new replication aspect:

ϕ obj replicate =
deploy(c,H ′) . H[go(H ′); obj rep =

〈contains(∗.put(k, v)) ∧ host(h),
if (H ′ /∈ h) then c.put(k, v) & proceed

else proceed〉]
in NS.register("replicate", replicate)

The advice body replicates on c every put message received by a cache object and makes
an explicit use of the keyword proceed in order to make sure that the intercepted reaction
does occur. The condition (h 6= H ′) in the advice is used to avoid replication to apply
to reactions that happen on a sub-location of the location where the aspect is deployed.
Indeed, the aspect must not replicate local modifications of the cache.

3.2.2 Customized reactions

With a single notion of reaction, we are forced to consider a single weaving semantics
that applies uniformly to all reactions. In practice, however, exposing each and every join
point to aspects can be a source of encapsulation breach as well as a threat to modular
reasoning. This issue has raised considerable debate in the AOP community [KM05,
Ste06], and several proposal have been made to restrict the freedom enjoyed by aspects
(e.g., [BTI14, OSC10, SPAK10, SGR+10]). We now present three variants of weaving
semantics.

First of all, it is important for programmers to be able to declare certain reactions
as opaque, in the sense that they are internal and cannot be woven. This is similar to
declaring a method final in Java in order to prevent further overriding.

For the many cases in which the semantics of asynchronous event handling is sufficient,
it is desirable to be able to specify that aspects can only observe a given reaction, meaning
that advices are not given the ability to use proceed at all, and are all executed in parallel.
This gives programmers the guarantee that the original reaction happens unmodified, and
that aspects can only “add” to the resulting computation.

The full aspect join calculus therefore includes three possible weaving semantics, which
can be specified per-reaction: opaque (I), observable (d), and asynchronously advisable
(.). The default semantics is asynchronous advisable.

Per-reaction weaving in practice. To illustrate the benefits of different weaving
semantics, we refine the definition of a cache object to ensure strong properties with
respect to aspect interference as follows:

obj c = put(k, v) & state(d) d dict.update(d, k, v, c)
or get(k, r) & state(d) d dict.lookup(d, k, r) & c.state(d)
or getDict(d) I c.state(d)

in dict.create(c)

62 Chemical Foundations of Distributed Aspects

(ϕ, x′.M ′) + J̄

contains(x.M) =


τ minimal substitution s.t.

xτ = x′ and Mτ ⊆M ′

⊥ otherwise

(ϕ, x′.M ′) + J̄

host(h) = {h 7→ ϕ}

J
 Pc ∧ Pc′ = J
 Pc ∪ J
 Pc′

J
 ¬Pc =
{
{ } when J
 Pc = ⊥
⊥ otherwise

J
 causedBy(Pc) =


J ′
 Pc for some J ′ s.t.
J ′≺ J and J ′
 Pc 6= ⊥
⊥ otherwise

Figure 3.6: Semantics of pointcuts

Reactions on both put and get are declared observable, in order to ensure that aspects
cannot prevent them from occurring normally. Additionally, reactions on the internal
getDict channel are opaque to enforce strong encapsulation.

3.2.3 Semantics

Semantics of pointcuts. The matching relation, noted jp
 Pc, returns either a
substitution τ from free names of Pc to names or values of jp, or a special value ⊥
meaning that the pointcut does not match. That is, we enriched the notion of boolean
values to a richer structure (here substitutions), as commonly done in aspect-oriented
programming languages in particular. We note { } the empty substitution, and consider
it as the canonical true value. We note ∪ the join operation on disjoint substitutions
that returns ⊥ as soon as one of the substitution is ⊥. Note that conjunction pointcuts
are defined only on substitutions that are disjoint, but because variables occur linearly
in pointcuts, we have the guarantee that this is always the case. The matching relation
is defined by induction on the structure of the pointcut in Figure 3.6. We say that a
pointcut Pc does not match a join point J when J
 Pc = ⊥.

In the rule for the contains(x.M) pointcut, the inclusion of patterns Mτ ⊆ M ′ is
defined as the inclusion of the induced multiset of messages. This implies in particular
that when a label occurs more than once in the messages of the matched pattern, there
may be several substitutions that induce the inclusion of patterns. This means that the
semantics of pointcuts, as the reduction of the join calculus, is not deterministic.

For instance, suppose that the cache replication aspect defined previously has been
deployed and that the emitted join point is:

(ϕ, x.put("bar", 5) & state(d)) + J̄

Then, the pointcut of the aspect:

contains(∗.put(k, v)) ∧ host(h)

matches, with partial bijection:

τ = {k 7→ "bar", v 7→ 5, h 7→ ϕ}

3.2. The aspect join calculus 63

{0}J = 0
{x.M}J = x.{M}J
{obj x = D inP}J = obj x = D in{P}J
{go(H);P}J = go(H); {P}J
{H[P]}J = H[{P}J]
{P & P}J = {P}J & {P}J
{l(v̄)}J = lJ(v̄)
{M &M}J = {M}J & {M}J

Figure 3.7: Tagging of causal history.

Note that the variable d is not mapped by τ because it is not captured by the pointcut.
The rule for the host(h) pointcut always returns the substitution that associates h

with the location of the matched pattern. The semantics of the negation and conjunction
is an extension of the traditional boolean semantics to truth values that are substitutions.
The rule for the causedBy(Pc) pointcut returns the substitution that matches Pc for any
strict sub join point J ′ of J , that is any join point in the causal history of J . It returns
⊥ when no join point matches Pc.

If a cache replication aspect is deployed on each host of interest, then aspects will
indefinitely replicate the cache replicated by aspects on other hosts. In AWED [BNSV+06],
this livelock is prevented by excluding join points produced within the body of the aspect,
using the within pointcut designator. Similarly, it is common in aspect languages to
use control-flow related pointcuts in order to be able to discriminate join points caused
by others (e.g., cflow and cflowbelow in AspectJ [KHH+01]). Most distributed aspect
languages and systems also support distributed control flow, although in a synchronous
setting. This indicates that a notion of causality is required in order to express this kind
of pointcuts. Let us illustrate with the cache replication example. To be able to identify
aspect-specific activity, we declare an aspect object, with a specific label rput whose goal is
to make the activity of the aspect visible. Then the new definition of the cache replication
aspect below also excludes the activity caused by a cache replication aspect using the
pointcut ¬ causedBy(∗.rput).

ϕ obj replicate =
deploy(c,H ′) . H[go(H ′);

obj rep =
rput(k, v) . c.put(k, v)

or 〈contains(∗.put(k, v)) ∧ host(h) ∧
¬ causedBy(contains(∗.rput(∗, ∗))),

if (h 6= H ′) then c.put(k, v) & proceed
else proceed〉]

in NS.register("replicate", replicate)

This ensures that a cache replication aspect never matches a put join point that has been
produced by the rule rput(k, v).c.put(k, v), thereby ignoring aspect-related computation.

Remembering causality in processes. In order to conserve and propagate the causal
history during the reduction, each message l(v̄) are tagged with the join point J that causes
it, noted lJ(v̄). Given a pattern M that is matched during the reduction, we note {M}J̄
the pattern tagged with the causal history of each message present in the pattern (note
that M and J̄ have to be of the same size) as defined by:

• {l(v̄)}[J] = lJ(v̄)

64 Chemical Foundations of Distributed Aspects

Deploy
x.[〈Pc,Ad〉]
ϕ −→ x.[〈Pc,Ad〉•]
ϕ

Red/NoAsp
x.[M . P]
ϕ x.{Mσ}J̄ −→ x.[M . P]
ϕ {Pσ}J ′

when no pointcut of an activated aspect matches J ′.

Red/Asp
x.[M . P]
ϕ x.{Mσ}J̄ ‖i∈I xi.[〈Pci, Adi〉•]
ψi −→
x.[M . P]
ϕ ‖i∈I xi.[〈Pci, Adi〉•]
ψi Adi[{Pσ}J ′/ proceed]τi

where J ′
 Pci = τi for all i ∈ I
and no other activated aspect matches J ′.

Red/Opaque
x.[M I P]
ϕ x.{Mσ}J̄ −→ x.[M I P]
ϕ {Pσ}J ′

Red/Observable
x.[M d P]
ϕ x.{Mσ}J̄ ‖i∈I xi.[〈Pci, Adi〉•]
ψi −→
x.[M d P]
ϕ {Pσ}J ′ ‖i∈I xi.[〈Pci, Adi〉•]
ψi {Adiτi}J ′

where J ′
 Pci = τi for all i ∈ I
and no other activated aspect matches J ′.

In every reduction rule, J ′ stands for (ϕ, x.Mσ) + J̄ .

Figure 3.8: Semantics of aspect weaving

• {M &M ′}J̄ @ J̄ ′ = {M}J̄ & {M ′}J̄ ′

Figure 3.7 presents tagging for processes that are produced by a reduction. Here, the idea
is to tag each message that has been produced by a reduction.

Initially, a process P is started with an empty causal history, {P}⊥.

Semantics of aspect weaving. Figure 3.8 presents the semantics of aspect weaving.
All rules of Figure 3.3 are preserved, except for Rule Red because this is where weaving
takes place. This rules is split into four rules, all of which depend on currently activated
aspects as expressed by the following rule.

Rule Deploy corresponds to the asynchronous deployment of a pointcut/advice pair
x.[〈Pc,Adv〉] by marking the pair as activated x.[〈Pc,Adv〉•]. Note that activated pairs
are not directly user-definable. The presence of this rule is crucial in the semantics because
it allows to activate aspects one by one asynchronously. Another possible semantics would
have been to deploy synchronously altogether pointcut/advice pairs of the same definition,
but then it would have caused extra synchronization in the translation to the core join
calculus (see Sect. 3.3).

Rule Red/NoAsp is a direct reminiscence of Rule Red in case where no activated
pointcut matches. Note that the new causal history is propagated to the produced process
Pσ.

Rule Red/Asp defines the modification of Rule Red in presence of aspects. If there is
an aspect xi with an activated pointcut/advice pair xi.[〈Pc,Ad〉•] such that Pc matches

3.2. The aspect join calculus 65

the join point with substitution τ , the advice Ad is executed with the process P substitut-
ing the keyword proceed and where the variables bound by the pointcut are substituted
according to τ . The side condition of Rule Red/Asp is that all Pcis are the activated
pointcuts that match the current join point (ϕ, x.Mσ). In particular, when two point-
cut/advice pairs of the same object definition match, we can have xi = xj and ψi = ψj .
Note that all advices associated to a pointcut that matches are executed in parallel.

Rule Red/Opaque is computationally the same as Rule Red/NoAsp, since activated
aspects are essentially ignored when an opaque reaction occurs.

Rule Red/Observable proceeds the original reaction in parallel with the application
of all deployed pointcut/advice pairs that match the join point. Note that in this rule, an
advice has to be a simple process, and hence cannot use proceed (this can be guaranteed
by a simple type system).

Coming back to the cache example, the synchronization pattern reacts to become:

x.put("bar", 5) & state(d)
−→ c.put("bar", 5) & dict.update(d, "bar", 5, x)

The original operation on dict to update d is performed, in addition to the replication on
c.

3.2.4 Why objects?

When designing the aspect join calculus, we considered defining it on top of the standard
join calculus with explicit distribution, but without objects. However, it turns out that
doing so would make the definition of aspects really awkward and hardly useful. Consider
the standard join calculus definition of a buffer producer (adapted from [FG96b]):

def make buffer(k) .
def put(n) | empty() . some(n)
∧ get(r) | some(n) . r(n) | empty()

in empty() | k(get, put)

make buffer takes as argument a response channel k on which the two newly-created
channels get and put are passed (hence representing the new buffer). Crucially, the channel
names get and put are local and not meaningful per se; when the definitions are processed,
they are actually renamed to fresh names (rule str-def in [FG96b]). Therefore, there is no
way for an aspect to refer to“a reaction that includes a message on the get channel”. Doing
so would require modifying make buffer to explicitly pass the newly-created channels also
to the aspect, each time it is executed. An aspect would then have to match on all
reactions and check if the involved channels include one of the ones it has been sent. In
addition, the explicit modification of make buffer defeats the main purpose of aspects,
which is separation of concerns. A make buffer that explicitly communicates its created
channels to a replication aspect is not a general-purpose entity that can be reused in
different contexts (e.g., without replication).

The objective join calculus, on the other hand, includes both object names and labels.
Conversely to object names, labels have no local scope and are not subject to renam-
ing [FLMR03]. They constitute a “shared knowledge base” in the system, which aspects
can exploit to make useful quantification. This is similar to how method names are used
in the pointcuts of object-based aspect-oriented languages.

The argumentation above also explains why we have chosen not to include classes
as in [FLMR03] in our presentation of the aspect join calculus. Classes support exten-
sible definitions, but do not contribute anything essential with respect to naming and

66 Chemical Foundations of Distributed Aspects

quantification.

3.3 From the aspect join calculus to the join calculus

In this section, we present a translation of the aspect join calculus into the core join
calculus. This allows us to specify an implementation of the weaving algorithm, and to
prove it correct via a bisimilarity argument. The translation is used in Section 3.4 to
implement Aspect JoCaml on top of JoCaml [FLFMS03], an implementation of the join
calculus in OCaml.

3.3.1 General approach

The translation approach consists is considering that an aspect is a standard object that
receives messages from the weaver to execute a particular method that represents its
advice. This is the usual way to compile aspects to a target object-oriented language
without aspects [HH04].

Aspect weaving. In order to determine whether an aspect applies or not, the trans-
lation must account for aspect weaving. Note that the description of the semantics of
the aspect join calculus leaves open the question of the underlying aspect weaving infras-
tructure. The naive approach consists in relying on a central weaver that coordinates
all distributed computation and triggers the weaving of all aspects. This centralized
approach, described in [Tab10], is however not realistic in a distributed setting and is
therefore not useful as an implementation strategy.

Decentralized weaving. The first step towards a flexible decentralized weaving archi-
tecture is to distribute weavers across several hosts. Having several weavers raises the
question of their granularity. Because each reaction can have a specific weaving seman-
tics (Section 3.2.2), we consider one weaver per reaction, in charge of performing aspect
weaving for a given reaction.

In order to mediate between aspects and weavers, we introduce the notion of a weaving
registry, in direct analogy with, for instance, registries in Java RMI. A weaving registry
wR is in charge of bootstrapping the binding between weavers and aspects. The definitions
DwR available to communicate with the weaving registry are given by:

DwR
= getasp(k) & aspact(ā) . k(ā) & aspact(ā)

deploy(a) & aspact(ā) . aspact(a , ā)

Aspects get activated by registering to the weaving registry through the channel deploy
and local weavers get the current list of activated aspects each time a reaction is triggered
by passing a continuation to the channel getasp.

6 The weaving registry is executing at
location HW and is known by all other processes.

6It is important that weavers ask for the current list of activated aspects before weaving a reaction
because it guarantees the consistency of the knowledge of the list of activated aspects between distributed
local weavers. Indeed, a more asynchronous and decentralized translation where newly activated aspects
are broadcast to local weavers—which are then responsible for storing the list of activated aspects—would
not be equivalent to the semantics of Figure 3.8. This is because the asynchronous broadcast of aspects
would allow a weaver to use a list of activated aspects that is inconsistent with the list of activated aspects
known by other weavers. But the rules of Figure 3.8 assume a global consistent view of the list of activated
aspects.

3.3. From the aspect join calculus to the join calculus 67

Processes

J0KJ = 0
Jx.MKJ = x.JMKJ

Jobj x = D inP KJ = obj W(Dr, x) in
obj x = JDrKx in JDaK & JP KJ

Jgo(H);P KJ = go(H); JP KJ
JH[P]KJ = H[JP KJ]

JP & P ′KJ = JP KJ & JP ′KJ

Definitions

JM . P Kx = JMKJ̄M
obj ret = proceed(J) . JP KJ

in let J = (lhost, x.M) + J̄M
in Wx.M .weave(ret.proceed, J)

JM d P Kx = JM . P Kx
JM I P Kx = JMKJ̄M

. let J = (lhost, x.M) + J̄M
in JP KJ

JD orD′Kx = JDKx or JD′Kx
where J̄M = J1, .., Jn with n = |M |

Messages

Jl(v̄)KJ = l(v̄, J)
JlJ(v̄)KJ = l(v̄,J)

JM &M ′KJ = JMKJ & JM ′KJ

Jl(v̄) &M ′KJ , J̄ = l(v̄, J) & JM ′KJ̄

Pointcuts

Jcontains(x.M)K = λ(ϕ, x′.M ′) + J̄ .
if Mτ ⊆M ′ then [x′ , τ] else []

Jhost(H)K = λ(ϕ, x′.M ′) + J̄ . [[ϕ]]
J¬PcK = λJ. if JPcK J = [] then [[]] else []

JPc ∧ Pc′K = λJ. shuffle(JPcK J, JPc′K J)
JcausedBy(Pc)K = λjp+ J̄ . concat(map JPcKrec J̄)

JPcKrec = λ⊥. []
JPcKrec = λjp+ J̄ . JPcK (jp+ J̄) @

concat(map JPcKrec J̄)

Aspects

JproceedKJ = proceed(J)
J〈Pc,Ad〉K = obj adv = advice(proceed, J, v̄Pc).

JAdKJ
in wR.deploy(JPcK, adv.advice)

where v̄Pc is the list of variables occurring free in Pc.

Figure 3.9: Translating the aspect join calculus to the join calculus

68 Chemical Foundations of Distributed Aspects

Translation overview. Therefore, given an aspect join calculus configuration:

C = D1

ϕ1 P1 ‖ · · · ‖ Dn
ϕn Pn

we construct a distributed join calculus configuration without aspects by translating def-
initions, processes and aspects—following the specific translation described below in Sec-
tion 3.3.2—and introducing a weaving registry wR that monitors the list of activated
aspects:

JCK = JD1K
ϕ1 JP1K ‖ · · · ‖ JDnK
ϕn JPnK
‖ wR.DwR

Hw wR.aspact(JāK)

where ā is the list of activated aspects in D1, . . . ,Dn. The idea is to manipulate an explicit
join point in every reaction rule. This join point triggers a protocol with the weaver to
decide whether or not some aspect intercepts the reaction rule and must be executed.

3.3.2 Translation

The translation of processes, definitions and aspects, from the aspect join calculus to the
standard join calculus, is defined in Figure 3.9.

Processes. The rules for processes recursively propagate the translation in sub-processes
and definitions. The translation of objects requires to distinguish between reaction rules
(Dr) and pointcut/advice pairs (Da) in the original definition D, because each point-
cut/advice is translated as a normal object. The translation of reaction rules is done in
two steps. First, a local weaver is created for each reaction, using W(Dr, x), and then
each reaction is replaced by a reaction that communicates with its weaver.

Definitions. A reaction rule M.P is replaced by a call to the weaver, passing a locally-
created single-use channel ret.proceed to perform the original computation P and the
current join point, obtained by collecting join points of the matched pattern J̄M and
adding the current reaction join point (lhost, x.M). It is important that the new channel
is locally-created and of a single use because it guarantees that different calls to proceed
cannot be interleaved. Note that opaque reactions are not woven and the difference
between standard and observable reactions only shows up in the definition of the weaver
(Figure 3.10).

Messages. Similarly to the tagging mechanism of messages described in Section 3.2.3,
there are three ways to translate a message: (1) if it occurs on the left hand side of a
definition, the list of variables is extended with a variable Ji that captures the causal
history of the message, (2) if it occurs on the right hand side of a definition, the current
join point J is added to the message, (3) if it is a tagged message lJ, the tagged join point
J is added to the message.

Pointcuts. Pointcuts are recursively transformed into functions that operate on join
points and return a list of substitutions (encoded as lists) that correspond to all the pos-
sible matches. When the list is empty, it means that the pointcut does not match. This
is the usual folklore way of computing altogether the possible results of a non determin-
istic function in one step [Wad85]. To preserve the non-deterministic nature of pointcut
matching, only one substitution will be chosen randomly by the weaver.

In the definition of Jcontains(x.M)K, the substitution τ is seen as the list, and contains
only free variables of M . The definition of JPc ∧ Pc′K uses the function shuffle that takes

3.3. From the aspect join calculus to the join calculus 69

two lists of lists and returns the list of lists of all possible concatenations, which can be
written using list comprehension as:

shuffle ls ls′ = [l@ l′ | l← ls, l′ ← ls′].

The definition of JcausedBy(Pc)K is given by computing every possible match of Pc on
every sub join point. concat and map are the usual operations on lists.

Aspects. A pointcut/advice pair 〈Pc,Ad〉 is translated as an object that holds the
advice and is registered with the weaver. The advice has only one channel advice which
expects the proceed channel, the current join point and the list of variables that are free
in the pointcut Pc.

The initialization sends the pointcut/advice pair to the weaving registry Wr by using
the dedicated label deploy. Note that the pointcut is sent to the weaver but is not checked
explicitly in the aspect. Indeed, it is the responsibility of the weaver to decide whether
the advice must be executed or not. This is because the weaver must have the global
knowledge of which pointcuts match, to perform Rule Red/NoAsp.

Finally, the translation of proceed is obtained by adding the current join point J as
argument to proceed.

Per-reaction weavers. The per-reactions weavers are defined altogether at the be-
ginning of the translation of an object using the inductive definition W(D,x), given in
Figure 3.10. The idea is to define, for each reaction, a weaver as an object with a weave
method, used to trigger weaving at a join point. The weaver of an opaque reaction is just
the null object.

The definition of the weaver depends on the kind of reaction, observable (Dd) or
advisable (D.). In both cases, when the weaver receives weave(proceed, J), it creates a
new object Winit that defines a fresh channel aspL() whose aim is to get the current list
of activated aspect asp from the weaving registry by spawning getasp(Winit.aspL). When
the list is received, the weaver tests the emptiness of the list ads of advices whose pointcut
matches J (defined using the usual filter functions on lists).

For observable reactions, the weaver Dd just spawns in parallel a call to proceed and
call to advices (using the iter function on lists) for which the pointcut has matched, by se-
lecting randomly a substitution from the list of substitutions ¯̄v using the non-deterministic
selection function select. This corresponds to Rule Red/Obs.

For advisable reactions, the weaver D. needs to distinguish between two cases, corre-
sponding to the two Rules Red/NoAsp and Red/Asp. If no aspect applies, the weaver
executes the original process by sending the message proceed(J) to resume the original
computation; this corresponds to Rule Red/NoAsp. Otherwise, the weaver executes all
advices present in ads asynchronously using again a randomly chosen substitutions from
the list ¯̄v for each advice. This corresponds to Rule Red/Asp.

Named Definitions. When going to the left-hand side of a configuration, definitions
are named by the created object, but the original definition of the object disappears.
To conserve the definition of each per-reaction weaver attached to a reaction, a named
reaction must be translated to the named translation of the reaction, plus the definition
of his corresponding weaver (Figure 3.11). For pointcut/advice pair, the translation is
obtained by applying the structural rule Obj-Def to the advising object translation.

The translation of a activated pointcut/advice pair is identical, except for the implicit
assumption that the initial message wR.deploy(JPcK, adv.advice) has been consumed by

70 Chemical Foundations of Distributed Aspects

W(M . P , x) = Wx.M = D.

W(M d P , x) = Wx.M = Dd

W(M I P , x) = Wx.M = 0
W(D orD′, x) = W(D,x) in obj W(D′, x)

Dd = weave(proceed, J).
obj Winit = aspL(asps).

let ads = filter (λ(¯̄v,).¯̄v 6= [])
map (λ(Pc, adv).(JPcK J, adv)) asps

in proceed(J) & iter (λ(¯̄v, adv). adv(J, select(¯̄v))) ads
in getasp(Winit.aspL)

D. = weave(proceed, J).
obj Winit = aspL(asps).

let ads = filter (λ(¯̄v,).¯̄v 6= [])
map (λ(Pc, adv).(JPcK J, adv)) asps

in if ads = []
then proceed(J)
else iter (λ(¯̄v, adv). adv(proceed, J, select(¯̄v))) ads

in getasp(Winit.aspL)

Figure 3.10: Per-reaction weaving

Jx.[M . P]K = x.[JM . P Kx] orWx.M .D.

Jx.[M d P]K = x.[JM d P Kx] orWx.M .Dd
Jx.[M I P]K = x.[JM I P Kx]
Jx.〈Pc,Ad〉K = x.[advice(proceed, J, v̄Pc) . JAdKJ]
Jx.D orD′K = Jx.DK or Jx.D′K

where v̄Pc is the list of variables occurring free in Pc.

Figure 3.11: Translation of named definitions

weaving registry. The translation of the list of activated aspects of wR.aspact(JāK) is given
by

Jx.〈Pc,Ad〉• , āK = (JPcK, x.advice) , JĀK

3.3.3 Bisimulation between an aspect join calculus process and its trans-
lation

The main interest of translating the aspect join calculus into the core join calculus is that
it provides a direct implementation of the weaving algorithm that can be proved to be
correct. As usual in concurrent programming languages, the correctness of the algorithm
is given by a proof of bisimilarity. Namely, we prove that the original configuration
with aspects is bisimilar to the translated configuration that has no aspect. The idea of
bisimilarity is to express that, at any stage of reduction, both configurations can perform
the same actions in the future. More formally, in our setting, a simulation R is a relation
between configurations such that when C0 R C1 and C0 reduces in one step to C′0, there
exists C′1 such that C′0 R C′1 and C1 reduces (in 0, 1 or more steps) to C′1. We illustrate

3.3. From the aspect join calculus to the join calculus 71

this with the following diagram:

C0
R

��

C1

∗��
C′0

R C′1

A bisimulation is a simulation whose inverse is also a simulation.

To relate a configuration C with its translation JCK, we need to tackle two difficulties:

1. During the evolution of JCK, auxiliary messages that have no correspondents in C are
sent for communication between processes, weaver, aspects and the weaving registry.

2. In the execution of C, proceed is substituted by the process P to be executed, whereas
in JCK, P is executed through a communication with the object where the reaction
has been intercepted.

To see the auxiliary communication as part of a reduction rule of the aspect join
calculus, we define a notion of standard form for the translated configurations. Let

T = {C | ∃C0, JC0K −→∗ C}

be the set of configurations that come from a translated configuration. We construct a
rewriting system −→T for T, based on the reduction rule of the join calculus. Namely, we
take Rule Red restricted to the case where the pattern contains either of the dedicated
labels: weave, proceed, advice, getasp and aspL (the label deploy is treated differently
as it corresponds to the application of Rule Deploy). In T, those labels only interact
alone, or one-by-one with the constant label aspact. So the order in which reaction rules
are selected has no influence on the synchronized pattern; in other words, the rewriting
system −→T is confluent. Furthermore, it is not difficult to check that this rewriting
system is also terminating. Therefore, it makes sense to talk about the normal form of
C ∈ T, noted C̃.

We note C proc∼ C′ when C′ is equal to C where every message proceed(J) is substituted
by the process JP K to which it corresponds.

Theorem 45

The relation R = {(C0, C1) | JC0K
proc∼ C̃1} is a bisimulation. In particular, any

configuration is bisimilar to its translation.

The crux of the proof lies in the confluence of −→T which means that once the message
weave(k, jp) is sent to the weaver, the translation introduces no further choice in the
configuration. That is, every possible choice in JCK corresponds directly to the choice of
a reduction rule in C.
Proof : The fact that R is a simulation just says that the communication between aspects,

processes and the weaver simulates the abstract semantics of aspects. More precisely, we
show that for any reduction C0 −→ C′0 using Rule Deploy, Red/Asp or Red/NoAsp,
one can find a corresponding reduction chains from JC0K to JC′0K:

C0
R

��

C1
∗
T
// C̃1

proc∼ JC0K

∗��
C′0

R C′1
proc∼ JC′0K

72 Chemical Foundations of Distributed Aspects

Rule Deploy.

The activation of an aspect x.[〈Pc,Ad〉] is in one-to-one correspondence with the con-
sumption of the message of the message wR.deploy(JPcK, x.advice) by the weaving registry.
Note at this point, that the fact that aspect activation is asynchronously described by Rule
Deploy in the semantics is crucial in the proof.

Rule Red/NoAsp.

Straightforward.

Rule Red/Asp.

Consider the reduction

x.l(v̄) −→ Ad1[P/ proceed] & · · ·&Adn[P/ proceed]

This rule is simulated by the chain:

x.l(v̄) −→ w.weave(k, jp)
−→ Ad1.advice(k, jp) & · · ·&Adn.advice(k, jp)
−→ JAd1Kx1 & · · ·& JAdnKxn

leading the normal form C′1
proc∼ JC′0K. Rule Deploy is simulated by the first reaction rule

in the definition of the weaver.

The converse direction is more interesting as it says that any reduction in the translated
configuration can be seen as a step in the simulated reduction of Rule Deploy, Red/Asp
or Red/NoAsp of the original configuration. More precisely, we have to show that any
reduction C1 −→ C′1 can be seen as a reduction between their normal forms. This expressed
by the following diagram:

C0
R

∗��

C1
∗
T
//

��

C̃1
proc∼ JC0K

∗��
C′0

R C′1
∗
T
// C̃′1

proc∼ JC′0K

If the reduction is C1 −→T C′1, then C̃1 = C̃′1 and C0 = C′0. If it introduces a message

proceed(jp), then C̃′1
proc∼ C̃1

proc∼ JC0K. If it introduces a message deploy(pc, ad), then

C0 ≡ C′0 and C̃′1
proc∼ JC′0K. If it consumes a message deploy(pc, ad), then C′0 is obtained

by applying Rule Deploy to the corresponding pointcut/advice pair and C̃′1
proc∼ JC′0K.

Otherwise, the reduction consumes a pattern x.Mσ and produces a message of the form:

w.weave(k, jp).

Then, if some aspects match the join point, C′0 is obtained by applying Rule Red/Asp to
x.M . P
ϕ x.Mσ, and if no aspect match, C′0 is obtained by applying Rule Red/NoAsp
to x.M . P
ϕ x.Mσ. The fact that the diagram above commutes is a direct consequence
of the confluence of −→T and its non-interference with other reductions of the system.

We conclude the proof of the theorem by noting that JC0K is a normal form for −→T,
so that C0 R JC0K.

Note that the bisimulation we have defined is not barbed-preserving nor context-closed.
This is not surprising as a context would be able to distinguish between the original and
translated configuration by using messages sent on auxiliary labels (weave, proceed, advice
or deploy). But we are interested in equivalent behavior of two closed configurations, not
of two terms that can appear in any context, so a simple bisimulation is sufficient.

3.4. Aspect JoCaml 73

3.4 Aspect JoCaml

Aspect JoCaml is an implementation of the aspect join calculus on top of JoCaml, an
extension of OCaml with join calculus primitives [FLFMS03]. The implementation is
directly based on the translation described in Section 3.3. Recall that the decentralized
weaving relies on weaving registries as a bootstrap mechanism; we discuss some advantages
of weaving registries in Section 3.5.2.

While slightly different in the syntax, Aspect JoCaml supports all the functionalities
of the aspect join calculus, except for migration, which is not supported in the current
implementation of JoCaml (http://jocaml.inria.fr/). Using the facilities provided by
OCaml, we have also introduced new concepts not formalized in the aspect join calculus,
such as classes for both objects and aspects, and the distinction between private and
public labels.

This section presents a quick overview of the language through the implementation
and deployment of the cache replication example. We then discuss salient points in the
implementation.

3.4.1 Overview of Aspect JoCaml

Aspect JoCaml uses directly the class system of OCaml, providing a new dist_object

keyword to define distributed objects with methods and reactions on public or private
labels. For instance, a continuation class that defines a label k that expects an integer
and prints it to the screen can be defined as:

class continuation ip =

dist_object(self)

reaction react_k at ip: ’opaque k(n) =

print_int(n); print_string(" is read\n");0

public label k

end

The label k is declared as public, meaning that it is visible in a reaction join point. Con-
versely, a private label is not visible, and hence can be neither quantified over nor accessed
by aspects. Private labels hence provide another level of encapsulation by hiding patterns,
in addition to the possibility to hide reactions discussed in Section 3.2.2. The different
per-reaction weaving semantics are specified by a quoted keyword, e.g., ’observable.

A reaction definition is parametrized by an IP address using at. This IP address is
meant to be the address of a weaving registry. The parameter ip is passed at object
creation time, making it possible to choose a different weaving registry for each created
continuation object.

The definition of the cache class is given in Figure 3.12 and can be directly inferred from
the definition of Section 3.2.2. We omit the code for the dictionary class, which directly
uses hash tables provided by the Hashtbl OCaml module. A message that creates a
dictionary is initially emitted using spawn in the initializer process.

Aspects are defined as classes with a pointcut and an advice. The instantiation mech-
anism is identical to that of objects, using the new keyword. The cache replication aspect
is defined in Figure 3.13. Labels in Contains pointcut are handled as strings and boolean
pointcut combinators are defined by infix operators &&& and |||. The only difference with
the aspect join calculus in the definition of pointcut/advice is the binding of arguments
of the join point. Here, the function jp_to_arg must be used with as first argument the
label "l" of interest and as second argument the join point. This function returns the

http://jocaml.inria.fr/

74 Chemical Foundations of Distributed Aspects

(* cache class *)

class cache ip dict =

dist_object(self)

reaction

r_get at ip: ’observable

state(d) & get(k,r) =

dict#lookup(d,k,r) & state(d)

or

r_put at ip: ’observable

state(d) & put(k,v) =

dict#update(d,k,v,getDict)

or

r_getDict at ip: ’opaque

getDict(d) = state(d)

private label state

public label get , put , getDict

initializer spawn dict#create(self#getDict)

end

Figure 3.12: Cache class in Aspect JoCaml

(* cache replication aspect *)

class replication ip cache =

dist_object(self)

reaction

react_rput at ip: ’opaque

rput(k,v) = cache#put(k,v)

public label rput

end

aspect my_asp ip repl =

pc: Contains x.["put" (k,arg)] &&&

Not(CausedBy(Contains _.["rput" (_,_)]))

advice: repl#rput(k,arg) & proceed ()

end

Figure 3.13: Cache replication aspect in Aspect JoCaml

tuple of arguments passed to l, from which each argument can be recovered by explicit
pattern matching.

Deployment. Before creating any process, at least one weaving registry must be created
and registered to the name server. For instance, the following code creates a permanent
weaving registry at IP 12345:

(* create a permanent weaving registry *)

let () =

let _ = new weaving_registry 12345 in

while true do Thread.delay 1.0 done

Then, a cache replication aspect can be registered to this weaving registry:

(* register a cache replication aspect *)

let () =

let ip = 12345 in

3.4. Aspect JoCaml 75

let dict = new Dict.dict ip in

let buf = new cache ip dict in

let repl = new replication ip buf in

let _ = my_asp ip repl in

while true do () done

Finally, the execution of the cache process defined below is replicated on the machine
where the aspect has been deployed:

(* a cache process loop *)

let () =

let ip = 12345 in

let dict = new Dict.dict ip in

let z = new cache ip dict in

let k = new continuation ip in

for arg = 1 to 10 do

spawn z#put("key",arg);

spawn z#get("key",k#k)

done;

3.4.2 Implementation

We now briefly discuss some elements of the Aspect JoCaml implementation.

Architecture. An Aspect JoCaml file is translated into a JoCaml file and then compiled
using the JoCaml compiler. To simplify the parser, there are { ... } separators for plain
JoCaml code (for clarity, those separators have been omitted in Figure 3.13). While these
separators clutter the code, they have the advantage that new features of JoCaml or
OCaml can be directly back ported to Aspect JoCaml.

A more advanced solution would be to use Camlp5, the preprocessor-pretty-printer of
OCaml, to produce a type-safe translation. Unfortunately, compatibility issues between
Camlp5 and JoCaml forbids this solution at the moment.

Typing issues. As the code produced is compiled using JoCaml, everything needs to
be typed. Sometimes, this requires type annotations in class definitions when dealing with
parametric polymorphism.

However, as mentioned in the JoCaml manual: “communications through the name
server are untyped. This weakness involves a good programming discipline.”[MM12] On
the one hand, this limitation of distributed programming in OCaml simplifies the task
of creating a list of aspects of different types. On the other hand, to avoid type errors
at runtime, an anti-unification mechanism has to be developed to guarantee type safe
application of aspects [TFT13].

Static/dynamic pointcuts. The weaving registry is responsible for bootstrapping the
communication between weavers and aspects. This is performed by adding aspects to
the list of current aspects connected to the weaver. But part of communications between
weavers and aspects can be avoided. Indeed, it is sometimes possible to statically decide
whether a pointcut can match a join point coming from a given weaver. If the pointcut
can never match, the weaving registry does not need to register the aspect to the weaver.

To that end, our implementation differentiates between the static and dynamic parts
of a join point. The static part is used at registration time, whereas the dynamic part is
used during runtime weaving.

76 Chemical Foundations of Distributed Aspects

Bounded depth of causality tree. An optimized, scalable management of the causal-
ity tree discussed in Section 3.2.3 is a challenging research challenge. The current imple-
mentation is naive, keeping track of every causal match. This means that the causality
tree may grow unboundedly. Therefore, a bounded version of the causality tree ought
to be implemented. This raises the issue of deciding the size of the tree, because dealing
with a bounded tree changes the semantics of pointcut matching. It remains to be studied
how existing optimization techniques for control flow pointcuts [MKD03] and trace-based
matching [ACH+06] could be adapted to the general setting of the causality tree.

3.5 Discussion

3.5.1 Synchronous aspects

A particularity of aspects compared to traditional event handling is the possibility to ad-
vise around join points and therefore have the power to proceed the original computation,
either once, several times, or not at all. Doing so requires careful thinking about the syn-
chronization of advices. The semantics we have presented corresponds to asynchronous
reactions, in which all advices that match are triggered asynchronously. We could devise
a weaving semantics that rather reflects the one of AspectJ by chaining implicitly advices
and invoking them in a synchronous manner. First, this presents the issue of choosing the
order in which advices are chain, which is not clear in an asynchronous setting. Second,
the synchronous semantics can be encoded by an explicit chaining of advices and thus
is not a primitive operations. For those two reasons, we have decided not to integrate a
synchronous reaction in the semantics.

Also, note that the semantics of aspect weaving relies on the currently-deployed as-
pects. As we have seen, deployment is asynchronous, which means that to be sure that
an aspect is in operation at a given point a time, explicit synchronization has to be setup.
This design is in line with the asynchronous chemical semantics of the join calculus. For
instance, the same non-determinism occurs in the definition of an object, in which the
initialization process is not guaranteed to be completed before the object process starts
executing. In case such sequentiality is needed, it has to be manually encoded.

3.5.2 Distributed aspect deployment

Distributed aspect deployment is a complex task, for which several different policies can
be conceived. This is reflected in the different designs and choices of specific distributed
AOP systems, such as DJcutter (one central aspect server) [NCT04], AWED (aspects
are either deployed on all hosts, or only on their local host of definition) [BNSV+06], and
ReflexD (distributed aspect repositories to which base programs are connected at start-up
time) [TT06], among others.

The weaving registries we propose are a simple and flexible abstraction that captures
the need for precisely specifying the distributed deployment of aspects. This mechanism
is very flexible topologically (e.g., the case where all aspects see all computation corre-
spond to one global weaving registry to which all weavers and aspects are registered), and
allows for fine-grained policies that go beyond existing work. For instance, some weaving
registries (called closed) may be initiated with a fixed number of aspects deployed, and
subsequently reject any new aspect registration requests. Other registries (called open)
may accept dynamic aspect registration requests, with the restriction that these aspects
will not be able to react to the computation of previously-registered rules. A weaving

3.6. Related work 77

registry policy may further specify that only weavers of a specific kind are accepted, such
as observable reactions (Section 3.2.2).

open WR

a

a

w

w

w

w

w

w
w

w

...

closed WR

a

a

Figure 3.14: Objects registering their public weavers to an open weaving registry (white),
and the weavers of their sensitive reactions to a closed registry with only two trusted
aspects (grey).

Figure 3.14 illustrates some of the topological flexibility offered by weaving registries
and their policies: objects can register their reaction weavers in different registries with
specific policies. For instance, suppose a closed weaving registry regc with only a cache
replication aspect and an open weaving registry rego. The following definition of the cache
example guarantees that only cache replication can have access to the cache history (we
extend the syntax of reactions with an exponent M .reg P to express that the reaction is
registered in the weaving registry reg):

obj c = put(k, v) & state(d) dregc dict.update(d, k, v, c)
or get(k, r) & state(d) drego dict.lookup(d, k, r) & c.state(d)
or getDict(d) Irego c.state(d)

in dict.create(c)

The design space of distributed deployment policies is wide and its exhaustive explo-
ration is left open.

3.6 Related work

We first discuss work related to the formal semantics of aspects, and then relate to existing
distributed aspect languages and systems.

3.6.1 Formal semantics of aspects

There is an extensive body of work on the semantics of aspect-oriented programming
languages (e.g., [WKD04, CL06, DTK06, JJR06, DFES10]). These languages adopt either
the lambda calculus or some minimal imperative calculus at their core. To the best of
our knowledge, this work is the first to propose a chemical semantics of aspects. In
addition, none of the formal accounts of AOP considers distributed aspects. Among
practical distributed aspect systems, only AWED exposes a formal syntax; the semantics
of the language is however only described informally [BNSV+06].

78 Chemical Foundations of Distributed Aspects

The approach of starting from a direct semantics with aspects, and then defining a
translation to a core without aspects and proving the correctness of the transformation is
also used by Jagadeesan et al., in the context of an AspectJ-like language [JJR06].

3.6.2 Distributed aspect languages and systems

We now compare specific features of practical distributed aspect languages and systems—
in particular JAC [PSD+04], DJcutter [NCT04], ReflexD [TT06], and AWED [BNSV+06]—
and relate them to the aspect join calculus.

Quantification. Remote pointcuts were first introduced in DJcutter and JAC, making
it possible to specify on which hosts joint points should be detected. Remote pointcuts
are also supported in AWED, ReflexD, and in the aspect join calculus, in a very similar
fashion. Remote pointcuts can be seen as a necessary feature for distributed AOP (as
opposed to using standard AOP in a distributed setting).

Hosts. Remote pointcuts bring about the necessity to refer to execution hosts. In
DJcutter and AWED, hosts are represented as strings, while in ReflexD they are reified as
objects that give access to the system properties of the hosts. The host model in ReflexD
is therefore general and expressive, since host properties constitute an extensible set of
metadata that can be used in the pointcuts to denote hosts of interest. In the aspect join
calculus, we have not developed locations beyond the fact that they are first class values.
A peculiarity is that locations are organized hierarchically, and can possibly represent
finer-grained entities than in existing systems (for instance, a locality can represent an
actor within a virtual machine within a machine). A practical implementation should
consider the advantages of a rich host metadata model as in ReflexD. AWED and ReflexD
support dynamically-defined groups of hosts, as a means to deal with the distributed
architecture in a more abstract manner than at the host level.

Weaving semantics. Most distributed AOP languages and systems adopt a synchronous
aspect weaving semantics. This is most probably due to the fact that the implementa-
tion is done over Java/RMI, in which synchronous remote calls is the standard. Notably,
AWED supports the ability to specify that some advices should be run asynchronously.
The aspect join calculus is the dual: the default is asynchronous communication, but we
can also express synchronous weaving (Section 3.2.2). In addition, we have developed
the ability to customize the weaving semantics on a per-reaction basis. An interesting
consequence of this granularity is that we are able to express opaque and observable
reactions. Both kinds of reactions support stronger encapsulation and guarantees in
presence of aspects, and therefore fit in the line of work on modular reasoning about
aspects [BTI14, OSC10, SPAK10, TFT13].

Advanced quantification. DJcutter, AWED, and ReflexD support reasoning about
distributed control flow, in order to be able to discriminate when a join point in the (dis-
tributed) flow of a given method call. AWED also support state-machine-like pointcuts,
called stateful aspects, which are able to match sequences of events that are possibly
unrelated in terms of control flow. However, stateful aspects per se do not make it possi-
ble to reason about causality; additional support is needed, for instance as developed in
WeCa [LTD12]. In Section 3.2.3, we describe how join points can capture their causality
links, which can then be used for pointcut matching. While the synchronous commu-
nication pattern can be recognized in order to support a similar notion of distributed

3.6. Related work 79

control flow, the causality tree model is much more general. An interesting venue for
future work is to develop a temporal logic for pointcuts that can be used to reason pre-
cisely about causality. Temporal logic has been used in some aspect-oriented systems to
perform semantic interface conformance checks [BS06]. Causality in widely-asynchronous
(distributed) contexts is a topic of major interest. It would be interesting to study how
our approach relates to the notion of causality in the π-calculus proposed by Curti et al.
in the context of modeling biochemical systems [CDB03].

Aspect deployment. DJcutter adopts a centralized architecture with an aspect host
where all aspects reside and advices are executed. JAC allows distributed aspect de-
ployment to various containers with a consistency protocol between hosts, to ensure a
global view of the aspect environment. Both AWED and ReflexD adopt a decentralized
architecture, in which it is possible to execute advices in different hosts: multiple parallel
advice execution in specific hosts is possible, and programmers can control where aspects
are deployed. ReflexD is more flexible than AWED in the localization of advices and
in deployment, by supporting stand-alone aspect repositories to which a Reflex host can
connect. The weaving registries mechanism we have described in Section 3.5.2 subsumes
these mechanisms, and also adds support for controlling the openness of the distributed
architecture.

JAC, AWED and Reflex support dynamic undeployment of aspects. While we have
not introduced undeployment in this chapter, it is trivial to add it to the core calculus.
More interesting, in previous work we explore structured deployment through scoping
strategies [TFD+10]. Scoping strategies make it possible to specify the computation that
is exposed to a given aspect in a very precise manner. The model of scoping strategies
relies on per-value and per-control-flow propagation of aspects; it would be not trivial,
but interesting, to study how these strategies can be adapted to a chemical setting.

Parameter passing. In Java, remote parameter passing is by-copy, unless for remote
objects that are passed by-reference. ReflexD allows to customize the remote parameter
passing strategy for each parameter passed to a remote advice. The join calculus has a
by-reference strategy, where names act as references. It would be possible to add a by-copy
mechanism in the aspect join calculus, by adding a rule to clone named definitions.

Chapter 4

Partial Type Equivalences for
Verified Dependent
Interoperability∗

Le Coq sur Paris, Chagall (1958)

Contents

4.1 Partial Type Equivalences . 85

4.1.1 Type Equivalence . 85

4.1.2 Towards Partial Type Equivalence: The Cast Monad 85

4.1.3 Partial Type Equivalence . 86

4.1.4 Partial Type Equivalence in the Kleisli Category 87

4.1.5 A (Bi-)Categorical Detour . 88

4.2 Partial Type Equivalence for Dependent Interoperability . . 89

4.2.1 Partial Equivalence Relations . 89

4.2.2 Equivalence Between Indexed and Subset Types 90

4.2.3 Equivalence Between Subset and Simple Types 91

4.2.4 Equivalence Between Dependent and Simple Types 92

4.2.5 Simplifying the Definition of a Dependent Equivalence 93

4.3 Higher-Order Partial Type Equivalence 93

4.3.1 Defining A Higher-Order Dependent Interoperability 94

4.3.2 A Library of Higher-Order Dependent Equivalences 95

4.4 A Certified, Interoperable Stack Machine 96

4.4.1 From Stacks to Lists . 97

4.4.2 From Indexed Instructions to Simple Instructions 97

4.4.3 Lifting the Interpreter . 98

4.4.4 Diving into the Generated Term 98

∗This is joint work with Pierre-Évariste Dagand and Éric Tanter [DTT16].

82 Partial Type Equivalences for Verified Dependent Interoperability

4.4.5 Extraction to OCaml . 99

4.4.6 A Homotopical Detour . 100

4.5 Related Work . 101

4.6 Future Work . 104

Dependent interoperability is a pragmatic approach to building reliable software sys-
tems, where the adoption of dependent types may be incremental or limited to certain
components. The sound interaction between both type disciplines relies on a marshalling
mechanism to convert values from one world to the other, as well as dynamic checks,
to ensure that the properties stated by the dependent type system are respected by the
simply-typed values injected in dependent types.1

Following [OSZ12], we illustrate the typical use cases of dependent interoperability
using the simple example of simply-typed lists and dependently-typed vectors. For con-
ciseness, we fix the element type of lists and vectors and use the type synonyms ListN
and VecN n, where n denotes the length of the vector.

Using a simply-typed library in a dependently-typed context. One may want to
reuse an existing simply-typed library in a dependently-typed context. For instance, the
list library may provide a function max : ListN → N that returns the maximum element
in a list. To reuse this existing function on vectors requires lifting the max function to
the type ∀ n. VecN n → N. Note that this scenario only requires losing information
about the vector used as argument, so no dynamic check is needed, only a marshalling
to reconstruct the corresponding list value. If the simply-typed function returns a list,
e.g., rev : ListN → ListN, then the target dependent type might entail a dynamic
check on the returned value.

Using a dependently-typed library in a simply-typed context. Dually, one may
want to apply a function that operates on vectors to plain lists. For instance a sorting
function of type ∀ n. VecN n → VecN n could be reused at type ListN → ListN. Note
that this case requires synthesizing the index n. Also, because the simply-typed argument
flows to the dependently-typed world, a dynamic check might be needed. Indeed, the
function tail : ∀ n. VecN (n+1) → VecN n, should trigger an error if it is called on
an empty list. On the return value, however, no error can be raised.

Verifying simply-typed components. One can additionally use dependent interop-
erability to dynamically verify properties of simply-typed components by giving them a
dependently-typed interface and then going back to their simply-typed interface, thereby
combining both scenarios above. For instance, we can specify that a function tail :

ListN → ListN should behave as a function of type ∀ n. VecN (n+1) → VecN n by
first lifting it to this rich type, and then recasting it back to a simply-typed function
tail’ of type ListN → ListN. While both tail and tail’ have the same type and
“internal” definition, tail’ will raise an error if called with an empty list; additionally, if
the argument list is not empty, tail’ will dynamically check that it returns a list that
is one element smaller than its input. This is similar to dependent contracts in untyped
languages [FF02].

1In this chapter, we use the term “simply typed” to mean “non-dependently typed”, i.e., we do not rule
out parametric polymorphism.

. 83

Program extraction. Several dependently-typed programming languages use program
extraction as a means to obtain (fast(er)) executables. Coq is the most prominent example,
but more recent languages like Agda, Idris, and F? also integrate extraction mechanisms,
at different degrees (e.g., extraction in F? is the only mechanism to actually run programs,
while in Agda it is mostly experimental at this point).

Dependent interoperability is crucial for extraction, if extracted components are meant
to openly interact with other components written in the target language. While [TT15]
address the question of protecting the extracted components from inputs that violate
conditions expressed as subset types in Coq2, the situation can be even worse with type
dependencies, because extracting dependent structures typically introduces unsafe opera-
tions; hence invalid inputs can easily produce segmentation faults.

Consider the following example adapted from the book Certified Programming with
Dependent Types [Chl13], in which the types of the instructions for a stack machine are
explicit about their effect on the size of the stack:

Inductive dinstr: N → N → Set :=
| IConst: ∀ n, N → dinstr n (S n)
| IPlus: ∀ n, dinstr (S (S n)) (S n).

An IConst instruction operates on any stack of size n, and produces a stack of size
(S n), where S is the successor constructor of N. Similarly, an IPlus instruction consumes
two values from the stack (hence the stack size must have the form (S (S n)), and pushes
back one value. A dependently-typed stack of depth n is represented by nested pairs:

Fixpoint dstack (n: N): Set :=
match n with

| O ⇒ unit

| S n’ ⇒ N × dstack n’
end.

The exec function, which executes an instruction on a given stack and returns the
new stack can be defined as follows:

Definition exec n m (i: dinstr n m):
dstack n → dstack m :=

match i with

|IConst n ⇒ fun s ⇒ (n, s)
|IPlus ⇒ fun s ⇒
let (arg1, (arg2, s’)) := s in (arg1 + arg2, s’)

end.

Of special interest is the fact that in the IPlus case, the stack s is deconstructed by
directly grabbing the top two elements through pattern matching, without having to check
that the stack has at least two elements— this is guaranteed by the type dependencies.

Because such type dependencies are absent in OCaml, the exec function is extracted
into a function that ignores its stack size arguments, and relies on unsafe coercions:

(* exec: int → int → dinstr → dstack → dstack *)

let exec _ _ i s =
match i with

| IConst (n, _) → Obj.magic (n, s)
| IPlus _ →
2In Coq terminology, a subset type is a type refined by a proposition—this is also known in the literature

as refinement type [RKJ08].

84 Partial Type Equivalences for Verified Dependent Interoperability

let (arg1, s1) = Obj.magic s in

let (arg2, s2) = s1 in Obj.magic ((add arg1 arg2), s2)

The dstack indexed type from Coq cannot be expressed in OCaml, so the extracted code
defines the (plain) type dstack as:

type dstack = Obj.t

where Obj.t is the abstract internal representation type of any value. Therefore, the type
system has in fact no information at all about stacks: the unsafe coercion Obj.magic (of
type ∀a∀b.a− > b) is used to convert from and to this internal representation type. The
dangerous coercion is the one in the IPlus case, when coercing s to a nested pair of depth
at least 2. Consequently, applying exec with an improper stack yields a segmentation
fault:

exec 0 0 (IPlus 0) [1;2];;
− : int list = [3]
exec 0 0 (IPlus 0) [];;
Segmentation fault: 11

Dependent interoperability helps in such scenarios by making it possible to lift de-
pendent structures—and functions that operate on them—to types that are faithfully
expressible in the type system of the target language in a sound way, i.e., embedding
dynamic checks that protects extracted code from executing unsafe operations under vio-
lated assumptions.3 We come back to this stack machine example and how to protect the
extracted exec function in Section 4.4.

Contributions In this work, we present a verified dependent interoperability layer for
Coq that exploits the notion of type equivalence from Homotopy Type Theory (HoTT).
In particular, our contributions are the following:

• Using type equivalences as a guiding principle, we give a unified treatment of (par-
tial) type equivalences between programs (Section 4.1). Doing so, we build a con-
ceptual as well as practical framework for relating indexed and simple types;

• By carefully segregating the computational and logical content of indexed types, we
introduce a notion of canonical equivalence (Section 4.2) that identifies first-order
transformations from indexed to simple datatypes. In particular, we show that
an indexed type can be seen as the combination of its underlying computational
representation and a runtime check that its associated logical invariant holds;

• To deal with programs, we extend the presentation to a higher-order setting (Sec-
tion 4.3). Using the type class mechanism of Coq, we provide a generic library for
establishing partial type equivalences of dependently-typed programs;

• Finally, we illustrate our methodology through a concrete application: extracting an
interoperable, certified interpreter (Section 4.4). Aside from exercising our library,
this example is also a performance in homotopic theorem proving.

This chapter is thus deeply entrenched at the crossroad between mathematics and
programming. From the former, we borrow and introduce some homotopic definitions
as well as proof patterns. For the latter, we are led to design interoperable—yet safe—
programs and are willing to trade static safety against runtime checks.

3Note that some unsafe executions can be produced by using impure functions as arguments to func-
tions extracted from Coq—because referential transparency is broken. Designing an adequate protection
mechanism to address such scenarios is a separate, interesting research challenge.

4.1. Partial Type Equivalences 85

4.1 Partial Type Equivalences

Intuitively, dependent interoperability is about exploiting a kind of equivalence between
simple and indexed types. This section formally captures such an equivalence relation,
which we call partial because, as illustrated previously, some runtime errors might occur
when crossing boundaries.

We use Coq as both a formalization vehicle and an implementation platform. We
make extensive use of type classes [WB89] in order to define abstract structures and their
properties, as well as relations among types. For instance, a partial type equivalence
is a type class, whose instances must be declared in order to state an equivalence be-
tween specific types, such as VecN n and ListN. As opposed to Haskell, type classes
in Coq [SO08] can express arbitrary properties that need to be proven when declaring
instances—for instance, the monad type class in Coq defines and imposes the monad laws
on each instance.

In this section we progressively define the notion of partial type equivalences in a
general manner. We apply partial type equivalences to the dependent interoperability
context in Section 4.2, focusing on first-order equivalences between types of data struc-
tures. Later, in Section 4.3, we build higher-order partial type equivalences to interoperate
between functions that manipulate such structures.

4.1.1 Type Equivalence

The notion of type equivalence offers a conceptual framework in which to reason about
the relationships between types. Following intuitions coming from homotopy theory, a
type equivalence between two types A and B is defined by a function f: A → B such
that there exists a function e_inv : B → A, with proofs that it is both its left and right
inverse together with a compatibility condition between these two proofs [Uni13]. This
definition plays a central role in Homotopy Type Theory (HoTT), as it is at the heart of
the univalence axiom.

In this chapter, we exploit type equivalence as a means to (constructively) state that
two types “are the same”. In Coq, this amounts to the following type class definition:4

Class IsEquiv (A B : Type) (f:A → B) := {
e_inv : B → A ;
e_sect : e_inv ◦ f == id;
e_retr : f ◦ e_inv == id;
e_adj : ∀ x, e_retr (f x) = ap f (e_sect x)
}.

The properties e_sect and e_retr capture the fact that e_inv is the inverse of f. The
definitions use the identity function id, and point-wise equality between functions ==.
The extra coherence condition e_adj ensures that the equivalence is uniquely determined
by the function f, that is, being an equivalence is proof-irrelevant (where ap f is the
functorial action of f, transporting an equality between x and y to an equality between
f x and f y).

4.1.2 Towards Partial Type Equivalence: The Cast Monad

As illustrated in the introduction, lifting values from simple to indexed types can fail at
runtime. Thus, the type equivalences we are interested in are partial. To denote—and

4Adapted from: http://hott.github.io/HoTT/coqdoc-html/HoTT.Overture.html#IsEquiv

http://hott.github.io/HoTT/coqdoc-html/HoTT.Overture.html#IsEquiv

86 Partial Type Equivalences for Verified Dependent Interoperability

reason about—partial functions, we resolve to use pointed sets [Hyl91]. In Coq, those are
naturally modeled by working in the Kleisli category of the option monad, with a None

constructor to indicate failure, and a Some constructor to indicate success.

We thus define a specific Cast monad, which is essentially the option monad.5 We use
the harpoon notation ⇀ to denote a (partial) function in the Cast monad: Notation "

A ⇀ B" := (A → Cast B). The Cast monad is characterized by its identity creturn

and binder cbind. We use the traditional do-notation. For instance, function composition
in the corresponding Kleisli category, denoted ◦K , is defined as follows:6

Definition kleisliComp {A B C : Type}:
(A ⇀ B) → (B ⇀ C) → (A ⇀ C) :=
fun f g a ⇒ b ← f a ; g b.

Notation "g ◦K f" := (kleisliComp f g).

We thus closely model the denotational objects we are interested in (here, partial
functions). Crucially, the nature of these objects is reflected at the type-level: types play
a guiding role in Section 4.1.3 below, where we lift the notion of type equivalence to the
partial setting.

4.1.3 Partial Type Equivalence

In this section, we aim at reconciling the general notion of type equivalence with the
potential for errors, as modeled by the Cast monad. To do so, we observe that the Cast

monad induces a preorder. This naturally leads us to generalize the equivalence relation
to operate on preorders.

Cast as a preorder with a least element. The notion of preorder with a least element
is naturally defined in Coq with the following type class:

Class PreOrder⊥ (A:Type) :=
{ rel : A → A → Prop where "x � y" := (rel x y);
⊥ : A;
rel_refl : ∀ x, x � x ;
rel_trans : ∀ x y z, x � y → y � z → x � z;
⊥_is_least : ∀ a, ⊥ � a

}.

The Cast monad induces a preorder which corresponds to equality on success values,
and considers None as the least element of the ordering. More precisely:

Instance PreOrderCast A : Preorder⊥ (Cast A) :=
{| rel := fun a a’ ⇒ match a with

| Some _ ⇒ a = a’
| None ⇒ True

end;
⊥ := None |}.

Any preorder on the codomain of two functions gives us a way to compare these
functions pointwise.7

5We discuss some specificities of the Cast monad in Section 4.4.5.
6In Coq, parameters within curly braces are implicitly resolved.
7In Coq, back-quoted parameters are nameless. Records differ from type classes in that they are not

involved in (implicit) instance resolution; other than that, type classes are essentially records [SO08].

4.1. Partial Type Equivalences 87

Instance Preorder⊥_fun (A: Type) (B: A → Type)
‘{∀ a, Preorder⊥ (B a)} : Preorder⊥ (∀ a, B a) :=
{| rel := fun f g ⇒ ∀ a, f a � g a;
⊥ := fun a ⇒ ⊥ |}.

Monotone functions. We must now generalize type equivalence from types equipped
with an equality to types equipped with a preorder. To witness such a partial type
equivalence, we shall ask for a monotonic function, i.e., a function that preserves the
preorder relation (and the least element).

Record monotone_function X Y ‘{Preorder⊥ X}
‘{Preorder⊥ Y} := Build_Mon

{ f_ord :> X → Y ;
mon :∀ x y, x � y → f_ord x � f_ord y;
mon_p : f_ord ⊥ � ⊥
}.

Notation "X −→ Y" := (monotone_function X Y).

Monotonicity is expressed through the functorial action f.(mon), thus following and gen-
eralizing the functorial action ap f of (total) type equivalences (Section 4.1.1). We use
a type class definition Functor to overload the notation ap of functorial action. The :>
notation in the field f_ord declares an implicit coercion from X −→ Y to X → Y: we can
transparently manipulate monotone functions as standard functions.

Partial equivalence. We now capture the notion of a partial equivalence between two
preorders A and B. The definition of IsPartialEquiv is directly derived from its total
counterpart, by replacing functions with monotone functions, and equality by the preorder
relation �.

Class IsPartialEquiv (A B : Type) (f:A −→ B)
‘{Preorder⊥ A} ‘{Preorder⊥ B} := {
pe_inv : B −→ A ;
pe_sect : pe_inv ◦ f � id;
pe_retr : f ◦ pe_inv � id;
pe_adj : ∀ x, pe_retr (f x) = ap f (pe_sect x)
}.

4.1.4 Partial Type Equivalence in the Kleisli Category

The preorder over Cast types yields the expected notion of type equivalence in the Kleisli
(bi-)category defined in Section 4.1.2. Composition amounts to monadic composition ◦K ,
and identity to monadic identity creturn. We substantiate this intuition by specifying a
monadic equivalence to be:

Class IsPartialEquivK (A B : Type) (f:A ⇀ B) := {
pek_inv : B ⇀ A ;
pek_sect : pek_inv ◦K f � creturn ;
pek_retr : f ◦K pek_inv � creturn;
pek_adj : ∀ x,

((pek_sect ◦V (id2 f)) ◦H idL f) x =
(α f pek_inv f ◦H ((id2 f) ◦V pek_retr) ◦H idR f) x

}.

88 Partial Type Equivalences for Verified Dependent Interoperability

Note that the definition of pek_adj is more complicated than for partial equivalences, as
explained in Section 4.1.5 below.

As a sanity check, we can prove that lifting an equivalence yields a partial type equiva-
lence in the Kleisli category, meaning in particular that pek_adj is a conservative extension
of e_adj to the Kleisli category.

Definition EquivToPartialEquivK A B (f :A → B) :
IsEquiv f → IsPartialEquivK (clift f).

4.1.5 A (Bi-)Categorical Detour

The various notions of equivalence presented above (total, partial, and partial in the
Kleisli category of the Cast monad) follow a common pattern—they are all instances of
the concept of adjunction in a bicategory, coming from the seminal work of [Bén67]. Recall
that 2-categories generalize categories by introducing a notion of 2-cells, i.e., morphisms
between morphisms, but letting compatibility laws hold strictly. In the setting of type
theory, the fact that compatibility laws are strict means that they hold definitionally by
conversion in the system. Bicategories generalize 2-categories by allowing compatibility
laws not to be defined strictly, but up-to an invertible 2-cell.

Relaxing compatibility laws up-to invertible 2-cells is not necessary to describe (total)
type equivalence because associativity and identity laws hold strictly on functions between
types, as they are directly captured by β-reduction.

For partial type equivalence, strict laws for composition also hold because we are
dealing with proofs of monotonicity that are irrelevant in the sense that they are stated
on a notion of preorder that lives in Prop. Note that we could have defined a proof-relevant
preorder and monotonicity condition, in which case the need to go to a bicategorical setting
would have manifested itself at this stage.

When considering the Kleisli category induced by the Cast monad, however, it is
not possible to avoid bicategories anymore because, for instance, associativity of Kleisli
composition does not hold strictly. Indeed, the different order in which arguments are
evaluated (i.e., in which effects are performed) matters, and so associativity only holds up
to a proof term. That is, there is a term to make explicit the associativity of composition
(we express it from left-to-right but the converse also holds):

Definition α {X Y Z T: Type} (f:X ⇀ Y) (g:Y ⇀ Z) (h:Z ⇀ T):
h ◦K (g ◦K f)) � (h ◦K g) ◦K f.

In the same way, we need to exhibit the usual morphisms:

idR f : creturn ◦K f � f (right identity law)
idL f : f ◦K creturn � f (left identity law)
◦V : f � f’ → g � g’

(vertical composition)→ g ◦K f � g’ ◦K f’

◦H : e � f → f � g → e � g (horizontal composition)
id2 f : f � f (2-identities)

It follows that the definition of pek_adj is merely the expected formulation of the
compatibility of an adjunction in a bicategory.

4.2. Partial Type Equivalence for Dependent Interoperability 89

4.2 Partial Type Equivalence for Dependent Interoperabil-
ity

We now exploit partial type equivalences to setup a verified framework for dependent
interoperability. In this context, we are specifically interested in partial equivalences
between indexed types, such as VecN, and simple types, such as ListN. We call this kind
of partial type equivalence a dependent equivalence.

A major insight of this work is that a dependent equivalence can be defined by com-
position of two different kinds of type equivalences, using subset types as intermediaries:

• a total equivalence between indexed types and subset types of the form {c:C & P c}

whose logical content P—i.e., static invariants—is carefully quarantined from their
computational content C—i.e., runtime representation;

• a partial equivalence between subset types and simple types, in the Kleisli category
of the Cast monad.

The resulting dependent equivalence is therefore also a partial type equivalence in the
Kleisli category.

For instance, to establish the equivalence between VecN and ListN, we exploit the
subset type {l:ListN & length l = n}, which captures the meaning of the index of
VecN.

4.2.1 Partial Equivalence Relations

The equivalence classes defined in Section 4.1 characterize a specific function as witnessing
an equivalence between two types, thereby allowing different functions to be thus qualified.

Following the Coq HoTT library, we define the Equiv record type to specify that
there exists an equivalence between two types A and B, denoted A ' B. The record thus
encapsulates the equivalence function e_fun and defines a type relation:

Record Equiv (A B : Type) := {
e_fun : A → B ;
e_isequiv : IsEquiv e_fun

}.
Notation "A ' B" := (Equiv A B).

For partial type equivalences in the Kleisli category of the Cast monad, we similarly
define the record type and notation:

Record PartialEquivK (A B : Type) := {
pek_fun : A ⇀ B;
pek_isequiv: IsPartialEquivK pek_fun

}
Notation "A '?

K B" := (PartialEquivK A B).

For dependent interoperability, however, we want to consider canonical dependent
equivalences between index and simple types, so as to automate the lifting between both
worlds. This is particularly important to perform complex, automatic lifting of functions,
as described in Section 4.3. For instance, lifting a function that operate on VecN to an
equivalent function that operates on ListN implies “looking up” the canonical equivalence
between these types.

Technically, this means that canonical partial equivalences need to be presented to Coq
as a type class, in order to take advantage of the automatic instance resolution mechanism
they offer:

90 Partial Type Equivalences for Verified Dependent Interoperability

Class CanonicalPartialEquiv (A B : Type) := {
pe_fun : A −→ B;
pe_isequiv: IsPartialEquiv pe_fun

}
Notation "A '? B" := (CanonicalPartialEquiv A B).

The strategy to establish dependent equivalences via subset types can be depicted as
follows, for a given index a:

B a {c : C & P a c}

C

'

'?
K'?

K

The following subsections describe the two (orthogonal) equivalences below, before
defining their (diagonal) composition.

In the diagram above, and the rest of this chapter, we adopt the following convention:
the type index is A : Type, the type family is B : A → Type, the plain type is C : Type,
and the logical proposition capturing the meaning of the index is P : A → C → Type.

Remark: HProp/HSet vs. Prop/Set The reader might expect P to end in Prop,
not Type. One of the initial goal of the sort Prop of Coq was to capture proof irrelevant
properties that can be erased during extraction. This syntactic characterization is however
not correct. On the one hand, it is too restrictive because some properties are proof
irrelevant but cannot be typed in Prop [MS08]. On the other hand, there are elements of
Prop that cannot be proven to be proof irrelevant. The most famous example of such an
element is the equality type. Indeed, for every type A:Type and elements a,b:A, we have
a=b : Prop in Coq, but proving that a=b is irrelevant is independent from the theory of
Coq as it corresponds to the Uniqueness of Identity Proofs (UIP) axiom.

Therefore, we face two possible design choices. We could consider propositions in Prop

and datatypes in Set, assuming UIP—which could be seen as controversial. Instead of
relying on an axiom, we choose to require proof irrelevance semantically whenever it is
needed. This semantic characterization of types with a proof-irrelevant equality is specified
by the type class IsHProp as introduced in the Coq HoTT library:

Class IsHProp (T: Type) := {is_hprop : ∀ x y:T, x = y}.

In the same way, types that semantically form sets can be characterized by the type class
IsHSet:

Class IsHSet X := {isHSet :> ∀ (a b : X), IsHProp (a = b)}.

In the rest of the code, we (abusively) write T : HProp for a type T : Type for which
there exists an instance of IsHProp T (and similarly for HSet). Therefore, the logical
proposition capturing the meaning of the index is hereafter written P : A → C →
HProp. Similarly, since simple types represent data structures, which are sets, we write
C : HSet.

4.2.2 Equivalence Between Indexed and Subset Types

The first step is a total equivalence between indexed types and subset types. In our de-
pendent interoperability framework, this is the only equivalence that the programmer has
to manually establish and prove. For instance, to relate lists and vectors, the programmer
must establish that, for a given n:

4.2. Partial Type Equivalence for Dependent Interoperability 91

VecN n ' { l : ListN & length l = n }

Recall from Section 4.1.1 that establishing this total equivalence requires providing two
functions:

vector_to_list n: VecN n → { l : ListN & length l = n }
list_to_vector n: { l : ListN & length l = n } → VecN n

These functions capture the computational content of the conversion between the two
data structures.8 The programmer must also prove that they are inverse of each other. In
addition, she needs to prove the e_adj property. This coherence property is generally quite
involved to prove. We come back to the question of proving the coherence in Section 4.2.5,
and we discuss some useful proof techniques for type conversions in Section 4.4.6.

4.2.3 Equivalence Between Subset and Simple Types

The second equivalence we exploit is a partial type equivalence in the Kleisli category of
the Cast monad between subset types and simple types such as, for a given n:

{ l : ListN & length l = n } '?
K ListN

Obviously, going from the subset type to the simple type never fails, as it is just the first
projection of the underlying dependent pair π1. However, the other direction is not always
possible: it depends if the given n is equal to the length of the considered list.

Recently, [TT15] developed an approach in Coq to cast a value of any simple type C

to a value of a subset type {c:C & P c} for any decidable predicate P. Using decidability,
the authors perform the type cast through a runtime check, relying on an axiom to capture
the potential for cast failure. In the monadic setting we adopt here, there is no need for
axioms anymore, and their technique amounts to establishing a partial type equivalence
{c:C & P c} '?

K C. We capture this partial type equivalence between subset types and
simple types with the following instance:

Definition Checkable_PEquivK (C : HSet) (P : C → HProp)
‘{∀ c, Checkable (P c)} : {c:C & P c} '?

K C :=
{| pek_fun := (clift π1 : {c:C & P c} ⇀ C);

pek_isequiv := {| pek_inv := to_subset |}|}.

Instead of imposing actual decidability, the Checkable type class (defined in Appendix)
only asks for the predicate to be checkable, i.e., there must exist a decidable, sound
approximation. We also demand proof irrelevance of P (via HProp).

The equivalence function pek_fun is the (lifting of the) first projection function π1
(the type ascription is necessary to help the Coq type inference algorithm). The inverse
function is the to_subset function below, which is essentially a monadic adaptation of
the cast operator of [TT15]:

Definition to_subset {C : HSet} {P : C → HProp}
‘{∀ c, Checkable (P c)}: C ⇀ ({c:C & P c}) :=
fun c ⇒
match dec checkP with

| inl p ⇒ Some (c; convert p)
| inr _ ⇒ None

end.

8Note that a programmer may very well choose to define a conversion that reverses the elements of the
structure. As long as the equivalence is formally proven, this is permitted by the framework; any lifting
that requires the equivalence uses the user-defined canonical instance.

92 Partial Type Equivalences for Verified Dependent Interoperability

to_subset applies the sound approximation decision procedure for the embedded logical
proposition. If it succeeds, the proof of success of the approximation is converted (by
implication) to a proof of the property. Otherwise an error is raised.

Note that proof irrelevance of P c is crucial, because when going from the subset
type {c:C & P c} to the simple type C and back, the element of P c is inferred by the
approximation decision, and there is no reason for it to be the same as the initial element
of P c. By proof-irrelevance, both proofs are considered equal, and the partial equivalence
is established.

4.2.4 Equivalence Between Dependent and Simple Types

We now define a partial equivalence between dependent and simple types by composing
the two equivalences described above. The dependent equivalence class below captures
the necessary requirements for two structures to interoperate. DepEquiv corresponds to
a first order dependent interoperability, in as much as it only relates data structures.
In Section 4.3, we shall develop higher-order dependent equivalences, which enable us
to operate over functions. As explained above, we define a class so as to piggy-back on
instance resolution to find the canonical partial equivalences automatically.

Class DepEquiv (A : Type) (B: A → Type) (C : HSet) := {
P : A → C → HProp;
total_equiv :> ∀ a, B a ' {c:C & P a c};
partial_equiv :> ∀ a, {c:C & P a c} '?

K C;
fca : C ⇀ A;
Pfca : ∀ a (b:B a), (fca ◦K pek_fun) (e_fun b) = Some a;
}.

Notation "B ≈ C" := (DepEquiv _ B C).

(The index type A can always be inferred from the context so the notation ≈ omits it.) A
key ingredient to establishing a dependent equivalence between the type family B and the
simple type C is the property P that connects the two equivalences. Note that the partial
and total equivalences with the subset type are lifted to point-wise equivalences, i.e., they
must hold for all indices a .9

The DepEquiv class also includes an index synthesis function, fca, which recovers
a canonical index from a data of simple type. In the case of an ListN, it is always
possible to compute its length, but as we will see in the case of stack machine instructions
(Section 4.4), synthesizing an index may fail. The fca function is used for defining higher-
order equivalences, i.e., for automatically lifting functions (Section 4.3). The property
Pfca states that if we have a value c : C that was obtained through the equivalence from
a value of type B a, then fca is defined on c and recovers the original index a.

Finally, for all index a, B ≈ C is a partial type equivalence in the Kleisli category of
the Cast monad:

Definition DepEquiv_PEK (A : Type) (B : A → Type)
(C : HSet) ‘{B ≈ C} (a:A) : B a '?

K C :=
{| pek_fun := to_simpl;

pek_isequiv := {| pek_inv := to_dep a |} |}.

9To define a dependent equivalence, Coq must also be able to infer that the type C is an HSet. In
practice, it is convenient to exploit Hedberg’s theorem [Uni13, Section 7.2], which states that decidable
equality on T (which is easier to prove) implies isHSet T.

4.3. Higher-Order Partial Type Equivalence 93

The functions used to establish the partial equivalence are to_simpl, which is the standard
composition of the two equivalence functions pek_fun ◦ e_fun, and the function to_dep,
which is the Kleisli composition of the inverse functions, (clift e_inv) ◦K pek_inv.

4.2.5 Simplifying the Definition of a Dependent Equivalence

In practice, requiring the simple type C to be an HSet allows to alleviate the burden on
the user, because some coherences become automatically satisfied. We define a function
IsDepEquiv that exploits this and creates a dependent equivalence without requiring the
extra coherences e_adj or pek_adj.

Additionally, note that the DepEquiv class is independent of the particular partial
equivalence between the subset type and the simple type. Therefore, we provide a smart
constructor for dependent equivalences, applicable whenever the partial equivalence with
the subset type is given by a checkable property:

Definition IsDepEquiv {A: Type} (B: A → Type) (C:HSet)
(P: A → C → HProp) ‘{∀ a c, Checkable (P a c)}
(fbc : ∀ a, B a → {c : C & P a c})
(fcb : ∀ a, {c : C & P a c} → B a)
(fca : C ⇀ A) :
(∀ a, (fcb a) ◦ (fbc a) == id) →
(∀ a, (fbc a) ◦ (fcb a) == id) →
(∀ a (b:B a), fca (fbc _ b).1 = Some a) → B ≈ C.

Using IsDepEquiv, establishing a new dependent interoperability between two types
such as VecN and ListN boils down to providing a checkable predicate, two inverse con-
version functions (as in Section 4.2.5), and the index synthesis function (length). The
programmer must then prove three equations corresponding to the properties of conver-
sions and that of the index synthesis function.

Frequently, the checkable predicate merely states that the synthesized index is equal
to the proposed index (i.e., P := fun a c ⇒ fca_eq c = Some a). We provide another
convenient instance constructor DepEquiv_eq, specialized to handle this situation. Declar-
ing the canonical dependent equivalence between VecN and ListN amounts to:

Instance DepEquiv_vector_list : VecN ≈ ListN :=
DepEquiv_eq VecN ListN (clift length)

vector_to_list list_to_vector.

4.3 Higher-Order Partial Type Equivalence

Having defined first-order dependent equivalences, which relate indexed types (e.g., VecN)
and simple types (e.g., ListN), we now turn to higher-order dependent equivalences, which
rely on higher-order partial type equivalences. These higher-order equivalences relate par-
tial functions over simple types, such as ListN ⇀ ListN, to partially-equivalent functions
over indexed types, such as ∀ n. VecN (n + 1) ⇀ VecN n.

Higher-order equivalences support the application scenarios of dependent interoper-
ability described in the introduction. Importantly, while programmers are expected to
define their own first-order dependent equivalences, higher-order equivalences are auto-
matically derived based on the available canonical first-order dependent equivalences.

94 Partial Type Equivalences for Verified Dependent Interoperability

4.3.1 Defining A Higher-Order Dependent Interoperability

Consider that two first-order dependent equivalences B1 ≈ C1 and B2 ≈ C2 have been
previously established. We can construct a higher-order partial type equivalence between
functions of type ∀ a:A, B1 a ⇀ B2 a and functions of type C1 ⇀ C2:

Instance HODepEquiv {A: Type}
{B1: A → Type} {C1: HSet} ‘{B1 ≈ C1}
{B2: A → Type} {C2: HSet} ‘{B2 ≈ C2} :
(∀ a:A, B1 a ⇀ B2 a) '? (C1 ⇀ C2) :=
{| pe_fun := fun f ⇒ to_simpl_dom

(fun a b ⇒ x ← f a b;
to_simpl x)) _ ;

pe_isequiv := {| pe_inv :=
fun f a b ⇒ x ← to_dep_dom f a b;

to_dep _ x) _ |}|}.
The definition of the HODepEquiv instance relies on two new auxiliary functions,

to_dep_dom and to_simpl_dom.
to_dep_dom lifts a function of type C ⇀ X for any type X to an equivalent function

of type ∀ a. B a ⇀ X. It simply precomposes the function to lift with to_simpl in the
Kleisli category:

Definition to_dep_dom {A X} {B: A → Type} {C : HSet}
‘{B ≈ C} (f: C ⇀ X) (a:A) : B a ⇀ X := f ◦K to_simpl.

to_simpl_dom lifts the domain of a function in the other direction. Its definition is more
subtle because it requires computing the index a associated to c before applying to_dep.
This is precisely the raison d’être of the fca function provided by the DepEquiv type class.

Definition to_simpl_dom {A X} {B: A → Type} {C : HSet}
‘{B ≈ C} (f : ∀ a:A, B a ⇀ X) : C ⇀ X :=

fun c ⇒ a ← fca c;
b ← to_dep a c ;
f a b.

Crucially, the proof that HODepEquiv is a partial equivalence is done once and for all.
This is an important asset for programmers because the proof is quite technical. It implies
proving equalities in the Kleisli category and requires in particular the extra property Pfca .
We come back to proof techniques in Section 4.4.6.

As the coherence condition of HODepEquiv involves equality between functions, the
proof makes use of the functional extensionality axiom, which states that f == g is equiv-
alent to f = g for any dependent functions f and g. This axiom is very common and
compatible with both UIP and univalence, but it can not be proven in Coq for the mo-
ment, because equality is defined as an inductive type, and the dependent product is of a
coinductive nature.

In order to cope with pure functions of type ∀ a, B a → C a, we first embed the
pure function into the monadic setting and then apply a partial equivalence:

Definition lift {A} {B1: A → Type} {B2 : A → Type}
{C1 C2 : HSet} ‘{∀ a, B1 a ⇀ B2 a '? C1 ⇀ C2} :

(∀ a, B1 a → B2 a) → C1 ⇀ C2 :=
fun f ⇒ pe_fun (fun a b ⇒ creturn (f a b)).

This definition is straightforward, yet it provides a convenient interface to the user of
the dependent interoperability framework. For instance, lifting the function:

4.3. Higher-Order Partial Type Equivalence 95

VecN.map : ∀ (f : N → N) (n : N), VecN n → VecN n

is a mere lift away:

Definition map_simpl (f : N → N) : list N ⇀ list N
:= lift (VecN.map f).

Note that it is however not (yet) possible to lift the tail function VecN.tl : ∀ n, VecN
(S n) → VecN n because there is no dependent equivalence between VecN (S n) and
ListN. Fortunately, the framework is extensible and we will see in the next section how
to deal with this example, among others.

4.3.2 A Library of Higher-Order Dependent Equivalences

HODepEquiv is but one instance of an extensible library of higher-order dependent equiv-
alence classes. One of the benefits of our approach to dependent interoperability is the
flexibility of the framework. Automation of higher-order dependent equivalences is open-
ended and user-extensible. We now discuss some useful variants, which provide a generic
skeleton that can be tailored and extended to suit specific needs.

Index injections. HODepEquiv only covers the pointwise application of a type index
over the domain and codomain types. This fails to take advantage of full-spectrum de-
pendent types: a type-level function could perfectly be applied to the type index. For
instance, if we want to lift the tail function VecN.tl : ∀ n, VecN (S n) → VecN n to
a function of type ListN → ListN, then the domain index is obtained from the index n

by application of the successor function.
Of particular interest is the case where the index function is an inductive constructor.

Indeed, inductive families are commonly defined by case analysis over some underlying in-
ductive type [BMM04]. Semantically, we characterize constructors through their defining
characteristic: they are injective. We thus define a class of injections where the inverse
function is allowed to fail:

Class IsInjective {A B : Type} (f : A → B) := {
i_inv : B ⇀ A;
i_sect : i_inv ◦ f == creturn ;
i_retr : clift f ◦K i_inv � creturn

}.
We can then define a general instance of DepEquiv that captures the use of an injection

on the index. Note that for the sake of generality, the domain of the injection can be a
different index type A’ from the one taken by B:

Instance DepEquivInj (A A’ : Type) (B : A → Type)
(C : HSet) (f : A’ → A) ‘{IsInjective f} ‘{B ≈ C} :

(fun a ⇒ B (f a)) ≈ C

This new instance now makes it possible to lift the tail function from vectors to lists:

Definition pop : list N ⇀ list N := lift VecN.tl.

As expected, when applied to the empty list, the function pop returns None, which cor-
responds to the error of the Cast monad.10 In the other direction, we can as easily lift a
pop function on lists to the dependent type ∀ n, VecN (S n) ⇀ VecN n. This function
can only be applied to a non-empty vector, but if it does not return a vector of a length
reduced by one, a cast error is reported.

10We come back to an improvement of the error message in Section 4.4.5

96 Partial Type Equivalences for Verified Dependent Interoperability

Composing equivalences. With curried dependently-typed functions, the index of
an argument can be used as an index of a subsequent argument (and return type), for
instance:

∀ a a’, B1 a → B2 a a’⇀ B3 a a’

We can define an instance of '? to form a new partial equivalence on ∀ a a’, B1 a →
B2 a a’⇀ B3 a a’ from a partial equivalence on ∀ a’, B2 a a’⇀ B3 a a’, for a fixed
a, provided that we have established that B1 ≈ C1:

Instance HODepEquiv2 A A’ B1 B2 B3 C1 C2 C3
‘{∀ a, ((∀ a’:A’, B2 a a’ ⇀ B3 a a’) '? (C2 ⇀ C3))}
‘{B1 ≈ C1}:

(∀ a a’, B1 a → B2 a a’⇀ B3 a a’) '? (C1 → C2 ⇀ C3).

For space reasons, we do not dive into the technical details of this instance, but it
is crucial to handle the stack machine example of the introduction: as explained in Sec-
tion 4.4, the example involves composing two dependent equivalences, one on instructions
and one on stacks.

Index dependencies. It is sometimes necessary to reorder arguments in order to be
able to compose equivalences, accounting for (functional) dependencies between indices.
This reordering of parameters can be automatized by defining an instance that tries to
flip arguments to find a potential partial equivalence:

Instance HODepEquiv2_sym A A’ B1 B2 B3 C1 C2 C3
‘{∀ a a’, B2 a a’ → B1 a a’ ⇀ B3 a a’) '? (C2 → C1 ⇀ C3)} :

(∀ a a’, B1 a a’ → B2 a a’ ⇀ B3 a a’) '? (C1 → C2 ⇀ C3)

Note that this instance has to be given a very low priority (omitted here) because it must
be used as a last resort, or one would introduce cycles during type class resolution. The
stack machine example in Section 4.4 also exploits this instance.

4.4 A Certified, Interoperable Stack Machine

To demonstrate our approach, we address the shortcomings of extraction identified in
Section 4 and present a certified yet interoperable interpreter for a toy stack machine. Let
us recall the specification of the interpreter:

exec: ∀ n m, dinstr n m → dstack n → dstack m

This definition enforces—by construction—an invariant relating the size of the input stack
and output stack, based on which instruction is to be executed.

In the simply-typed setting, we would like to offer the following interface:

safe_exec: instr → ListN → ListN

while dynamically enforcing the same invariants (and rejecting ill-formed inputs).

This example touches upon two challenges. First, it involves two equivalences, one
dealing with instructions and the other dealing with stacks. Once those equivalences have
been defined by the user, we shall make sure that our machinery automatically finds them
to lift the function exec. Second, and more importantly, type indices flow in a non-trivial
manner through the type signature of exec. For instance, providing an empty stack means
that we must forbid the use of the IPlus instruction. Put otherwise, the lifting of the
dependent instruction depends on the (successful) lifting of the dependent stack. As we

4.4. A Certified, Interoperable Stack Machine 97

shall see, the index n is (uniquely) determined by the input list size while the index m is
(uniquely) determined by n and the instruction being executed. Thus, the automation of
higher-order lifting needs to be able to linearize such indexing flow and turning them into
sequential checks.

In this process, users are only asked to provide the two first-order type equivalences
specific to their target domain, dstack ≈ ListN and ∀ n, dinstr n ≈ instr. Using
these instances, the role of our framework is threefold: (1) to linearize the indexing flow,
through potentially reordering function arguments; (2) to identify the suitable first-order
equivalences, through user and library provided instances; (3) to propagate the indices
computed through dynamic checks, through the constructive reading of the higher-order
equivalences (Section 4.3).

4.4.1 From Stacks to Lists

As hinted at in Section 4, the type of dstack cannot be properly extracted to a simply-
typed system. Indeed, it is defined by large elimination over natural numbers and there is
therefore no natural, simply-typed data structure to extract it to. As a result, extraction in
Coq resorts to unsafe type coercions [Let04, Section 3.2]. However, using specific domain
knowledge, the programmer can craft an equivalence with a list, along the lines of the
equivalence between vectors and lists. We therefore (constructively) witness the following
subset equivalence:

dstack n ' {l : ListN & clift length l = Some n}

by which we map size-indexed tuples to lists.11 Crucially, this transformation involves a
change of representation: we move from tuples to lists. For our framework to automatically
handle this transformation, we declare the suitable instance of dependent equivalence:

Instance DepEquiv_dstack : dstack ≈ ListN :=
DepEquiv_eq dstack ListN (clift length)

dstack_to_list list_to_dstack.

The definition of this dependent equivalence is very similar in nature to the one already
described between vectors and lists, so we refer the reader to the implementation for
details.

4.4.2 From Indexed Instructions to Simple Instructions

The interoperable version of indexed instructions is more natural to construct: indexed
instructions are a standard inductive family whose indices play a purely logical role.

Inductive dinstr: N → N → Set :=
| IConst: ∀ n, N → dinstr n (S n)
| IPlus: ∀ n, dinstr (S (S n)) (S n).

Merely erasing this information gives an inductive type of (simple) instructions:

Inductive instr : Type :=
| NConst : N → instr

| NPlus : instr.

11Note that the equality clift length l = Some n is equivalent to the simpler length l = n,
but the framework is tailored to encompass potential failure. This could be avoided by defining a more
specific function than DepEquiv_eq for the case where computation of the index never fails.

98 Partial Type Equivalences for Verified Dependent Interoperability

Nonetheless, relating the indexed and simple version is conceptually more involved. In-
deed, the first index cannot be guessed from the simply-typed representation alone: the
size of the input stack must be provided by some other means. Knowing the size of the
input stack, we can determine the expected size of the output stack for a given simple
instruction:

Definition instr_index n (i:instr) : Cast N :=
match i with

| NConst _ ⇒ Some (S n)
| NPlus ⇒ match n with

| S (S n) ⇒ Some (S n)
| _ ⇒ None

end

end.

The dependent equivalence is thus parameterized by the input size n and only the output
size m needs to be determined from the simple instruction:

∀ n, dinstr n m ' {i: instr & instr_index n i = Some m}.

Once again, we inform the system of this new equivalence through a suitable instance
declaration:

Instance DepEquiv_instr n : (dinstr n) ≈ instr :=
DepEquiv_eq (dinstr n) instr (instr_index n)

(dinstr_to_instr n) (instr_to_dinstr n).

4.4.3 Lifting the Interpreter

Having specified our domain-specific equivalences, we are left to initiate the instance
resolution so as to automatically obtain the desired, partially-equivalent lifting of the
interpreter exec. To do so, we simply appeal to the lift2 operator, which is similar to
lift from Section 4.3.1 save for the fact that it deals with two-index types:

lift2 A A’ B1 B2 B3 C1 C2 C3
‘{∀ a a’, B1 a a’ → B2 a a’ ⇀ B3 a a’ '? C1 → C2 ⇀ C3} :

(∀ a a’, B1 a a’ → B2 a a’ → B3 a a’) → C1 → C2 ⇀ C3.

The definition of simple_exec is then:

Definition simple_exec : instr → ListN ⇀ ListN :=
lift2 exec.

lift2 matches upon the skeleton of our dependent function exec, lifts it to a monadic
setting and triggers the instance resolution mechanism of Coq. This (single) command is
enough to build the term simple_exec with the desired type, together with the formal
guarantee that it is partially-equivalent to the dependent program we started from.

4.4.4 Diving into the Generated Term

Printing the generated term (by telling Coq to show partial equivalence instances) is
instructive:

simple_exec = lift2

(HODepEquiv2_sym

4.4. A Certified, Interoperable Stack Machine 99

(HODepEquiv2
(fun a : N ⇒ HODepEquiv (DepEquiv_instr a)

DepEquiv_stack)
DepEquiv_stack)) exec

We witness three generic transformations of the function: HODepEquiv2_sym, which
has reordered the input arguments so as to first determine the size of the input stack;
HODepEquiv2, which has made the size of the input list available to subsequent transfor-
mations; and HODepEquiv, which has transferred the size of the output list as computed
from the simple instruction to the output stack.

Now, when printing simple_exec by telling Coq to unfold definitions, we recover the
description of a function in monadic style that actually performs the expected computa-
tion:

simple_exec = fun (i : instr) (l : ListN) ⇒
(* lift l to a dstack ds of size (length l) *)

ds ← (c’ ← to_subset l; Some (list_to_dstack c’));
(* compute the index associated to (length l) for i

this may fail depending on the instruction *)

m ← instr_index (length l) i;
(* lift i to a dependent instruction di *)

di ← (c’ ← to_subset i;
Some (instr_to_dinstr (length l) m c’));

(* perform exec (note the reverse order of di and ds)

and convert the result to a list *)

Some (dstack_to_list (exec (length l) m di ds)) .1

4.4.5 Extraction to OCaml

In Section 4.1.2, we introduced the Cast monad as essentially the option monad. For
practical purposes, the failure constructor of Cast takes additional arguments for pro-
ducing informative error messages: we capture the type we are trying to cast to and a
message to help diagnose the source of the error.

More importantly, having defined a custom error monad enables us to tailor program
extraction when targeting an impure language. In an impure language like OCaml, it
is indeed possible—and strongly advised—to write in direct style, using runtime excep-
tions to implement the Cast monad. The success constructor of the monad is simply
erased, and its failure constructor is projected to a runtime exception (e.g., failwith
in OCaml). This allows us to avoid affecting the consistency of the host language Coq
—conversely to [TT15], we do not introduce inconsistent axioms to represent cast errors—
while preserving the software engineering benefits of not imposing a monadic framework
on external components. The definition of the extraction of the Cast monad is provided
in Appendix 4.6.

We can now revisit the interaction with the extracted function:

simple_exec NPlus [1;2];;
− : int list = [3]
simple_exec NPlus [];;
Exception: (Failure "Cast failure: invalid instruction").

and confirm that an invalid application of simple_exec does not yield a segmentation
fault, but an informative exception.

100 Partial Type Equivalences for Verified Dependent Interoperability

4.4.6 A Homotopical Detour

Before concluding, we briefly reflect on the proof techniques we used to build the verified
dependent interoperability framework and implement the different examples.

Many of the proofs of sections and retractions, either on general instances (Sections 4.2
and 4.3) or on domain-specific equivalences (as we shall see below), require complex rea-
soning on equality. This means that particular attention must be paid to the definition of
conversion functions. In particular, the manipulation of equality must be done through ex-
plicit rewriting using the transport map (which is the predicative version of ap introduced
in Section 4.1):

Definition transport {A : Type} (P : A → Type) {x y : A}
(p : x = y) : P x → P y.

Notation "p # x" := (transport _ p x).

Transport is trivially implemented by path induction, but making explicit use of trans-
port is one of the most important technical insights brought by the advent of HoTT. It is
crucial as it enables to encapsulate and reason abstractly on rewriting, without fighting
against dependent types.12 Indeed, although equality is presented through an inductive
type in Coq, it remains best dealt with through abstract rewriting— a lesson that was al-
ready familiar to observational type theorists [AMS07]. The reason is that it is extremely
difficult to prove equality of two pattern matching definitions by solely reasoning by pat-
tern matching. Conversely, it is perfectly manageable to prove equality of two different
transportations.

For instance, the definition of instr_to_dinstr must be defined by pattern matching
on the instruction and transport (comments express the specific type of the goal in each
branch of pattern matching):

Definition instr_to_dinstr n n’ :
{i: instr & instr_index n i = Some m} → dinstr n n’ := fun x ⇒

match x with (i;v) ⇒ (match i with

(* ` Some (S n) = Some n’ → dinstr n n’ *)

| NConst k ⇒ fun v ⇒ Some_inj v # IConst k

| NPlus ⇒ match n with

(* ` None = Some n’ → dinstr 0 n’ *)

0 ⇒ fun v ⇒ None_is_not_Some v

(* ` None = Some n’ → dinstr 1 n’ *)

| S 0 ⇒ fun v ⇒ None_is_not_Some v

(* ` Some (S n) = Some n’ → dinstr (S (S n)) n’ *)

| S (S n) ⇒ fun v ⇒ Some_inj v # IPlus

end end) v end.

where None_is_not_Some is a proof that None is different from Some a for any a (in the
sense that None = Some a implies anything) and Some_inj is a proof of injectivity of the
constructor Some.

The benefit of using the encapsulation of rewriting through transport is that now, we
can prove auxiliary lemmas on transport and use them in the proof. For instance, we can
state how transport behaves on the IConst instruction by path induction:

Definition transport_instr_Const (n m k : N) (e : S n = m) :
dinstr_to_instr (e # (IConst n0)) = (NConst n0; ap Some e).

12A fight that Coq usually announces with “Abstracting over the terms...” and wins by declaring
“is ill-typed.”

4.5. Related Work 101

and similarly for IPlus. Armed with these properties on transport, we can then prove the
retraction of dinstr m n ' {i: instr & instr_index n i = Some m} by pattern
matching on instructions and integers, together with some groupoid laws (@ is equality
concatenation and path_sigma is a proof that equalities of the projections imply equality
dependent pairs).

Definition DepEquiv_instr_retr n m

(x:{i:instr & instr_index n i = Some m}) :
(dinstr_to_instr n m) ◦ (instr_to_dinstr n m) x = x :=
match x with (i;v) ⇒ (match i with

(* ` Some (S n) = Some m →
dinstr_to_instr n m (Some_inj v # IConst n0)

= (NConst n0; v) *)

NConst k ⇒ fun v ⇒
transport_instr_Const @

path_sigma eq_refl (is_hprop _ _)
| NPlus ⇒ match n with

(* ` None = Some m →
dinstr_to_instr O m (Fail_is_not_Some v)

= (Nplus; v) *)

O ⇒ fun v ⇒ None_is_not_Some v

(* ` None = Some m →
dinstr_to_instr 1 m (Fail_is_not_Some v)

= (Nplus; v) *)

| S O ⇒ fun v ⇒ None_is_not_Some v

(* ` Some (S n) = Some m →
dinstr_to_instr (S (S n)) m (Some_inj v # IPlus)

= (NPlus; v) *)

| S (S n) ⇒ fun v ⇒
transport_instr_Plus @

path_sigma eq_refl (is_hprop _ _)) end
end) v end end.

We believe that this new way of proving equalities—initially introduced to manage higher
equalities in syntactical homotopy theory—is very promising for proving equalities on
definitions done by pattern matching and thus proving properties on dependent types.

4.5 Related Work

As far as we know, the term dependent interoperability was originally coined by [OSZ12]
as a particularly challenging case of multi-language semantics between a dependently-
typed and a simply-typed language. The concept of multi-language semantics was initially
introduced by [MF07] to capture the interactions between a simply-typed calculus and a
uni-typed calculus (where all closed terms have the same unique type).

Our approach is strictly more general in that we make no assumption on the dependent
types we support: as long as the user provides partial type equivalences, our framework
is able to exploit them automatically. In particular, we do not require a one-to-one
correspondence between constructors: the equivalence is established at the type level,
giving the user the freedom to implement potentially partial transformations. We also
account for more general equivalences through partial index synthesis functions; [OSZ12]
assume that these functions are total and manually introduced by users. Finally, while

102 Partial Type Equivalences for Verified Dependent Interoperability

their work is fundamentally grounded in a syntactic treatment of interoperability, ours
takes its roots in a semantic treatment of type equivalences internalized in Coq. We are
thus able to give a presentation from first principles while providing an executable toolbox
in the form of a Coq library that is entirely verified.

Dynamic typing with dependent types. Dependent interoperability can also be con-
sidered within a single language, as explored by [OTMW04]. The authors developed a core
language with dependent function types and subset types augmented with three special
commands: simple{e}, to denote that expression e is simply well-typed, dependent{e},
to denote that the type checker should statically check all dependent constraints in e, and
assert(e, T) to check at runtime that e produces a value of (possibly-dependent) type
T. The semantics of the source language is given by translation to an internal language
relying, when needed, on runtime-checked type coercions.

However, dependent types are restricted to refinement types where the refinements are
pure Boolean expressions, as in [KF10]). This means that the authors do not address the
issues related to indexed types, including that of providing correct marshalling functions
between representations, which is a core challenge of dependent interoperability.

Casts for subset types. [TT15] also explore the interaction between simple types and
refinements types in a richer setting than [OTMW04] : their approach is developed in
Coq, and thus refinements are any proposition (not just Boolean procedures), and they
accommodate explicitly proven propositions. They support sound casts between simple
types and subset types by embedding runtime checks to ensure that the logical component
of a subset type is satisfied. Our notion of dependent equivalence builds upon the idea
of casting to subset types—we use subset types as mediators between simple types and
indexed types. But instead of using an inconsistent axiom in the computational fragment
of the framework to represent cast errors, we operate within a Cast monad (recall that
we do use a fairly standard axiom, functional extensionality, in the non-computational
fragment of the framework). Imposing a monadic style augments the cost of using our
framework within Coq, but we can recover the convenience of non-monadic signatures
upon extraction. Finally, just like [OTMW04], the work of [TT15] only deals with subset
types and hence does not touch upon dependent interoperability in its generality.

The fact that dependent equivalences only abstractly rely on casting to subset types
should make it possible to derive instances for other predicates than the Checkable ones.
For instance, in the setting of the Mathematical Components library using the SSreflect
proof language, properties are better described through Boolean reflection [GM10]. Using
Boolean functions is very similar to using decidable/checkable properties, so that frame-
work should provide a lot of new interesting instances of partial equivalences between
subset and simple types in the Kleisli category of the Cast monad.

Gradual typing. Multi-language semantics are directly related to gradual typing [ST06],
generalized to denote the integration of type disciplines of different strengths within the
same language. This relativistic view of gradual typing has already been explored in the lit-
erature for disciplines like effect typing [BGT14] and security typing [DF11, FT13]. Com-
pared to previous work on gradual typing, dependent interoperability is challenging be-
cause the properties captured by type indices can be semantically complex. Also, because
indices are strongly tied to specific constructors, casting requires marshalling [OSZ12].

In our framework, casting (which we termed “lifting”) must be explicitly summoned.
However, as already observed by [TT15], the implicit coercions of Coq can be used to

4.5. Related Work 103

direct the type checker to automatically insert liftings when necessary, thus yielding a
controlled form of gradual typing.

This being said, there is still work to be done to develop a full theory of gradual
dependent types. It would be interesting to explore how the abstract interpretation foun-
dations of gradual typing as a theory of dealing with type information of different levels
of precision [GCT16] can be connected with our framework for dependent equivalences,
which relate types of different precision.

Ornaments. Our work is rooted in a strict separation of the computational and logical
content of types, which resonates with the theory of ornaments [McB10], whose motto
is “datatype = data structure + data logic”. Ornaments have been designed as a con-
struction kit for inductive families: while data structures—concrete representation over
which computations are performed—are fairly generic, data-logics—which enforce pro-
gram invariants—are extremely domain-specific and ought to be obtained on-the-fly, from
an algebraic specification of the invariants.

In particular, two key ingredients of the ornamental toolbox are algebraic ornaments [McB10]
and relational ornaments [KG13]. From an inductive type and an algebra (over an end-
ofunctor on Set for algebraic ornaments, over an endofunctor on Rel for relational orna-
ments), these ornaments construct an inductive family satisfying—by construction—the
desired invariants. The validity of this construction is established through a type equiva-
lence, which asserts that the inductive family is equivalent to the subset of the underlying
type satisfying the algebraic predicate.

However, the present work differs from ornaments in several, significant ways. First,
from a methodological standpoint: ornaments aim at creating a combinatorial toolbox
for creating dependent types from simple ones. Following this design goal, ornaments
provide correct-by-construction transformation of data structures: from a type and an
algebra, one obtains a type family. In our framework, both the underlying type and the
indexed type must pre-exist, we merely ask for a (constructive) proof of type equivalence.
Conceptually, partial type equivalences subsume ornaments in the sense that an ornament
automatically gives rise to a partial type equivalence. However, ornaments are restricted to
inductive types, while partial type equivalences offer a uniform framework to characterize
the refinement of any type, including inductive families.

Functional ornaments. To remediate these limitations, the notion of functional orna-
ments [DM12] was developed. As for ornaments, functional ornaments aim at transporting
functions from simple, non-indexed types to more precise, indexed types. The canonical
example consists in taking addition over natural numbers to concatenation of lists: both
operations are strikingly similar and can indeed be described through ornamentation.
Functional ornaments can thus be seen as a generalization of ornaments to first-order
functions over inductive types.

So far, however, such generalization of ornaments have failed to carry over higher-order
functions and genuinely support non-inductive types. The original treatment of functional
ornaments followed a semantic approach, restricting functions to be catamorphisms and
operating over their defining algebras. More recent treatment [WDR14], on the other
hand, is strongly grounded in the syntax, leading to heuristics that are difficult to formally
rationalize.

By focusing on type equivalences, our approach is conceptually simpler: our role is to
consistently preserve type information, while functional ornaments must infer or create
well-indexed types out of thin air. By restricting ourselves to checkable properties, we
also afford the flexibility of runtime checks and, therefore, we can simply lift values to and

104 Partial Type Equivalences for Verified Dependent Interoperability

from dependent types by merely converting between data representations. Finally, while
the original work on functional ornaments used a reflective universe, we use type classes
as an open-ended and extensible meta-programming framework. In particular, users are
able to extend the framework at will, unlike the clients of a fixed reflective universe.

Refinement types. Our work shares some similarities with refinement types [RKJ08].
Indeed, dependent equivalences are established through an intermediary type equivalence
with user-provided subset types, which is but a type-theoretic incarnation of a refinement
type. From refinement types, we follow the intuition that most program invariants can
be attached to their underlying data structures. We thus take advantage of the rela-
tionship between simple and indexed types to generate runtime checks. Unlike [SNI15],
our current prototype fails to take advantage of the algebraic nature of some predicates,
thus leading to potentially inefficient runtime checks. In principle, this shortcoming could
be addressed by integrating algebraic ornaments in the definition of type equivalences.
Besides, instead of introducing another manifest contract calculus and painstakenly de-
veloping its meta-theory, we leverage full-spectrum dependent types to internalize the cast
machinery through partial type equivalences.

Such internalization of refinement techniques has permeated the interactive theorem
proving community at large, with applications ranging from improving the efficiency
of small-scale reflection [CDM13], or the step-wise refinement of specifications down to
correct-by-construction programs [DPGC15, SA16]. Our work differs from the former
application because we are interested in safe execution outside of Coq rather than fast
execution in the Coq reduction engine. It would nonetheless be interesting to attempt
a similar parametric interpretation of our dependent equivalences. Our work also differs
from step-wise refinements in the sense that we transform dependently-typed programs to
and from simply-typed ones, while step-wise refinements are concerned with incrementally
determining a relational specification.

4.6 Future Work

As a first step, we wish to optimize the runtime checks compiled into the interoperability
wrappers. Indeed, dependent types often exhibit a tightly-coupled flow of indexing infor-
mation. Case in point is the certified stack machine, whose length of the input list gives
away the first index of the typed instruction set while its second index is obtained from
the raw instruction and the input length. By being systematic in our treatment of such
dataflows, we hope to identify their sequential treatments and thus minimize the number
of (re)computations from simply-typed values.

The similarities with standard dataflow analysis techniques are striking. Some equiv-
alences (typically, DepEquiv_eq) are genuine definition sites. For instance, the input list
of the stack machine defines its associated index. Other equivalences are mere use sites.
For instance, the first argument of the typed instruction cannot be determined from a
raw instruction: one must obtain it from the input list. As hinted at earlier, the second
argument of the typed instruction can be computed from the first one, thus witness-
ing a use-definition chain. Conceptually, lifting a dependently-typed program consists in
performing a topological sort on this dataflow graph.

Taking full advantage of this representation opens many avenues for generalizations.
For instance, our current definition of dependent equivalences insists on being able to
recover an index from a raw value through the mandatory fca : C ⇀ A. As such, this
precludes the definition of many equivalences, such as the equivalence between natural

4.6. Future Work 105

numbers and finite sets (i.e., bounded natural numbers, the bound being unknown), or
between raw lambda terms and intrinsic dependently-typed terms (the types being un-
known and, a priori, not inferable).

Finally, perhaps inspired by the theory of ornaments, we would like to avoid mar-
shalling values across inductive types and their algebraically ornamented families. Indeed,
when converting from, say, lists to vectors, we perform a full traversal of the list to convert
it to a vector that is, essentially, the same datatype. Most of our conversion functions are
nothing but elaborate identity functions. By taking advantage of this structural informa-
tion and, perhaps, some knowledge of the extraction mechanism, we would like to remove
this useless and inefficient indirection.

Coq Formalization. The full Coq formalization, with documentation, is available at
http://coqhott.github.io/DICoq/. It has been developed using the 8.5 release of
Coq [CDT15].

http://coqhott.github.io/DICoq/

Appendix

-You look so much thinner.
-Thanks, I had my appendix
removed.

Type Theory

CCω is a type theory featuring only negative connectives, i.e. Π-types. It features a
denumerable hierarchy of universes Typei together with an impredicative universe ∗, and
is therefore essentially Luo’s ECC without pairs nor cumulativity [Luo89].

Definition 46 (Typing system)

As usual, we define here two statements mutually recursively. The statement ` Γ
means that the environment Γ is well-founded, while Γ `M : A means that the term
M has type A in environment Γ. We write Type for ∗ or Typei for some i ∈ N.
The typing rules are given at Figure 4.1. The rules are almost entirely standard. The
definitional equality A ≡ B is defined as the congruence on type and term formers
compatible with β-reductions for abstractions and projections. We give a version of
the theory with named variables for presentation purposes but the interpretation is
actually defined on the explicit substitution version of the system, without the xi rule
allowing to push substitutions under abstractions.

Sigma type. CCω is extended to CIC by adding inductive types in the theory. For
simplicity, we present the definition of Σ types (Fig 4.2), which corresponds to dependent
products.

Identity type. The identity type in the source theory is the standard Martin-Löf iden-
tity type IdT t u, generated from an introduction rule for reflexivity with the usual J

eliminator and its propositional reduction rule. The J reduction rule will actually be valid
definitionally in the model for closed terms only, as it relies on the potentially abstract
functorial action of the elimination predicate, as in Hofmann & Streicher’s interpretation.

Note that we use a slightly different version from the identity type defined in Coq as
it inhabits Typei for some i and not ∗. This is in accordance with the new point of view
on equality given by HoTT.

108 Appendix

A,B,M,N ::= ∗ | Typei | x |M N | λx : A.M | Πx : A.B

` Γ i < j

Γ ` Typei : Typej

` Γ
Γ ` ∗ : Typei

Γ ` A : Typei Γ, x : A ` B : Typej

Γ ` Πx : A.B : Typemax(i,j)

Γ ` A : Typei Γ, x : A ` B : ∗
Γ ` Πx : A.B : ∗

Γ, x : A `M : B Γ ` Πx : A.B : Type

Γ ` λx : A.M : Πx : A.B
Γ `M : Πx : A.B Γ ` N : A

Γ `M N : B{x := N}

Γ `M : B Γ ` A : Type

Γ, x : A `M : B
Γ `M : B Γ ` A : Type Γ ` A ≡ B

Γ `M : A

` ·
Γ ` A : Type

` Γ, x : A
Γ ` A : Typei

Γ, x : A ` x : A

Γ ` (λx : A.M) N ≡M{x := N}
Γ `M : Πx : A.B

Γ `M ≡ λx : A.M x

(congruence rules ommitted)

Figure 4.1: Typing rules of CCω

A,B,M,N ::= . . . | Σx : A.B | (M,N) | match M with (x, y)⇒ N

Γ ` A : Typei Γ, x : A ` B : Typej

Γ ` Σx : A.B : Typemax(i,j)

Γ `M : A Γ ` N : B{x := M} Γ ` Σx : A.B : Type

Γ ` (M,N) : Σx : A.B

Γ `M : Σx : A.B Γ ` C : Type Γ, x : A, y : B ` N : C
Γ ` match M with (x, y)⇒ N : C

Γ `M : Σx : A.B Γ, z : Σx : A.B ` C : Type Γ, x : A, y : B ` N : C{z := (x, y)}
Γ ` match M with (x, y)⇒ N : match M with (x, y)⇒ C{z := (x, y)}

Figure 4.2: Typing rules for Σ-types in CIC−

The proof assistant

In this book, we use the latest version (8.5) of the Coq proof assistant. Vanilla features
of Coq allow us to define overloaded notations and hierarchies of structures through
type classes [SO08], and to separate definitions and proofs using the Program extension

Appendix 109

Id
Γ ` T : Type Γ ` a, b : T

Γ ` IdT a b : Type

Id-Intro
Γ ` t : T

Γ ` reflT t : IdT t t

Id-Elim (J)

Γ ` i : IdT t u Γ, x : T, e : IdT t x ` P : Type Γ ` p : P{t/x, reflT t/e}
Γ ` Jλx e.P i p : P{u/x, i/e}

Figure 4.3: Typing judgments for identity type.

[Soz07], they are both documented in Coq’s reference manual [CDT15]. We also use the
recent extension to polymorphic universes [ST14].

Decidable and Checkable

A proposition A is an instance of the Decidable type class when there exists a function
that return either a proof of A or a proof of not A. We restrict the use of the Decidable

type class to HProp to force the element computed by the decidability function to be
irrelevant.

Class Decidable (A : HProp) := dec : A + (not A).

A proposition is Checkable when there exists a decidable proposition checkP that
implies it.

Class Checkable (A : HProp) := {
checkP : HProp;
checkP_dec : Decidable checkP ;
convert : checkP → A;
is_hPc :> IsHProp A }.

Cast Monad

The Cast Monad is a refinement of the Maybe monad, that allows to collect information
on the error.

Inductive _Cast A info :=
| Some : A → _Cast A info

| Fail : info → _Cast A info.

Here, we want to collect an error message in the form of a string. However, we
need this extra piece of information to be irrelevant. For that, we use the propositional
truncation Trunc, as introduced by Awodey and Bauer [AB04]—but in the form defined
in the HoTT book [Uni13]. This allows us to state formally that the error message is
irrelevant while preserving consistency and compatibility with univalence.

Definition Cast A := _Cast A (Trunc string).

We have standard monadic functions and notations:

Definition clift A B : (A → B) → A → Cast B :=
fun f a ⇒ Some (f a).

110 Appendix

Definition cbind A B : (A → Cast B) → Cast A → Cast B :=
fun f a ⇒
match a with

Some a ⇒ f a

| Fail _ s t ⇒ Fail _ s t

end.

Notation "x ← e1; e2" := cbind (fun x ⇒ e2) e1.

We use extraction to provide a direct style extraction of the Cast monad in OCaml,
using runtime exceptions. The success constructor of the monad is simply erased, and
its failure constructor is projected to a runtime exception where argument of the failure
constructor are used as the error message.

(* Transparent extraction of Cast:

- if Some t, then extract plain t

- if Fail, then fail with a runtime cast exception *)

Extract Inductive Cast ⇒
"" ["" "(let f s = failwith

(String.concat """" ([""Cast failure: ""]@

(List.map (String.make 1) s))) in f)"]
"(let new_pattern some none = some in

new_pattern)".

Publications of the author

Il Bibliotecario, Arcimboldo
(1556)

[BT09] Nick Benton and Nicolas Tabareau. Compiling Functional Types to Relational
Specifications for Low Level Imperative Code. In Types in Language Design
and Implementation, Savannah, United States, January 2009.

[DTT16] Pierre-Evariste Dagand, Nicolas Tabareau, and Éric Tanter. Partial Type
Equivalences for Verified Dependent Interoperability. In 21st ACM SIGPLAN
International Conference on Functional Programming, Nara, Japan, September
2016.

[FSTT14] Ismael Figueroa, Tom Schrijvers, Nicolas Tabareau, and Éric Tanter. Composi-
tional Reasoning About Aspect Interference. In 13th International Conference
on Modularity (Modularity’14), Lugano, Switzerland, April 2014.

[FTT14a] Ismael Figueroa, Nicolas Tabareau, and Éric Tanter. Effect Capabilities For
Haskell. In Brazilian Symposium on Programming Languages (SBLP), Maceio,
Brazil, September 2014.

[FTT14b] Ismael Figueroa, Nicolas Tabareau, and Éric Tanter. Effective Aspects: A
Typed Monadic Embedding of Pointcuts and Advice. Transactions on Aspect-
Oriented Software Development, 2014.

[FTT15] Ismael Figueroa, Nicolas Tabareau, and Éric Tanter. Effect capabilities for
Haskell: Taming effect interference in monadic programming. Science of Com-
puter Programming, November 2015.

[HHT15] André Hirschowitz, Tom Hirschowitz, and Nicolas Tabareau. Wild omega-
Categories for the Homotopy Hypothesis in Type Theory. Leibniz International
Proceedings in Informatics (LIPIcs), 38:226–240, 2015.

[JLP+16] Guilhem Jaber, Gabriel Lewertowski, Pierre-Marie Pédrot, Matthieu Sozeau,
and Nicolas Tabareau. The Definitional Side of the Forcing. In LICS, New
York, United States, May 2016.

[JTS12] Guilhem Jaber, Nicolas Tabareau, and Matthieu Sozeau. Extending type the-
ory with forcing. In Logic in Computer Science (LICS), 2012, pages 395–404.
IEEE, 2012.

112 Publications of the author

[ST14] Matthieu Sozeau and Nicolas Tabareau. Universe polymorphism in Coq. In
Interactive Theorem Proving, 2014.

[Tab10] Nicolas Tabareau. A theory of distributed aspects. In ACM, editor, 9th Inter-
national Conference on Aspect-Oriented Software Development (AOSD ’10),
pages 133–144, Rennes, Saint-Malo, France, March 2010.

[Tab11] Nicolas Tabareau. Aspect Oriented Programming: a language for 2-categories.
Research Report RR-7527, INRIA, February 2011.

[Tab12] Nicolas Tabareau. A Monadic Interpretation of Execution Levels and Excep-
tions for AOP. In Modularity: AOSD’12, Postdam, Germany, March 2012.
ACM Press.

[TFT13] Nicolas Tabareau, Ismael Figueroa, and Éric Tanter. A Typed Monadic Embed-
ding of Aspects. In 12th annual international conference on Aspect-Oriented
Software Development (Modularity-AOSD’13), Fukuoka, Japan, March 2013.

[TT15] Éric Tanter and Nicolas Tabareau. Gradual certified programming in Coq.
In Proceedings of the 11th ACM Dynamic Languages Symposium (DLS 2015),
pages 26–40, Pittsburgh, PA, USA, October 2015. ACM Press.

Bibliography

Il Bibliotecario, Arcimboldo
(1556)

[AB04] Steven Awodey and Andrej Bauer. Propositions as [types]. Journal of Logic
and Computation, 14(4):447–471, 2004.

[ACH+06] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins,
Jennifer Lhoták, Ondrej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sit-
tampalam, and Julian Tibble. abc: an extensible AspectJ compiler. In Trans-
actions on Aspect-Oriented Software Development, volume 3880 of Lecture
Notes in Computer Science, pages 293–334. Springer-Verlag, 2006.

[AGMO06] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. An
overview of CaesarJ. In Transactions on Aspect-Oriented Software Devel-
opment, volume 3880 of Lecture Notes in Computer Science, pages 135–173.
Springer-Verlag, February 2006.

[AK16] Thorsten Altenkirch and Ambrus Kaposi. Type theory in type theory using
quotient inductive types. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, 2016.

[AMLH14] Carlo Angiuli, Edward Morehouse, Daniel R Licata, and Robert Harper.
Homotopical patch theory. In ICFP 2014, volume 49, pages 243–256. ACM,
2014.

[AMS07] Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. Observational
equality, now! In Proceedings of the ACM Workshop on Programming Lan-
guages meets Program Verification (PLPV 2007), pages 57–68, Freiburg, Ger-
many, October 2007.

[AOS10] Proceedings of the 9th ACM International Conference on Aspect-Oriented
Software Development (AOSD 2010), Rennes and Saint Malo, France, March
2010. ACM Press.

[AR12] Thorsten Altenkirch and Ondrej Rypacek. A Syntactical Approach to Weak
omega-Groupoids. In Computer Science Logic (CSL’12), volume 16, pages
16–30, 2012.

[BC15] Marc Bezem and Thierry Coquand. A kripke model for simplicial sets. Theor.
Comput. Sci., 574(C):86–91, April 2015.

114 Bibliography

[BCF04] Nick Benton, Luca Cardelli, and Cédric Fournet. Modern concurrency ab-
stractions for C]. ACM Transactions on Programming Languages and Sys-
tems, 26(5):769–804, September 2004.

[BCH13] Marc Bezem, Thierry Coquand, and Simon Huber. A model of type theory
in cubical sets. Preprint, September, 2013.

[BCP03] Gilles Barthe, Venanzio Capretta, and Olivier Pons. Setoids in type theory.
Journal of Functional Programming, 13:261–293, 3 2003.

[BCP15] Marc Bezem, Thierry Coquand, and Erik Parmann. Non-Constructivity
in Kan Simplicial Sets. In Thorsten Altenkirch, editor, 13th International
Conference on Typed Lambda Calculi and Applications (TLCA 2015), vol-
ume 38 of Leibniz International Proceedings in Informatics (LIPIcs), pages
92–106, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

[Bén67] Jean Bénabou. Introduction to bicategories. In Reports of the Midwest Cat-
egory Seminar, pages 1–77. Springer-Verlag, 1967.

[BGT14] Felipe Bañados, Ronald Garcia, and Éric Tanter. A theory of gradual ef-
fect systems. In Proceedings of the 19th ACM SIGPLAN Conference on
Functional Programming (ICFP 2014), pages 283–295, Gothenburg, Sweden,
September 2014. ACM Press.

[BL11] Jean-Philippe Bernardy and Marc Lasson. Realizability and Parametricity in
Pure Type Systems. In Foundations of Software Science and Computational
Structures, volume 6604, pages 108–122, Saarbrücken, Germany, March 2011.

[BMM04] Edwin Brady, Conor McBride, and James McKinna. Types for Proofs and
Programs, volume 3085 of Lecture Notes in Computer Science, chapter Induc-
tive Families Need Not Store Their Indices, pages 115–129. Springer-Verlag,
2004.

[BNSV+06] Luis Daniel Benavides Navarro, Mario Südholt, Wim Vanderperren, Bruno
De Fraine, and Davy Suvée. Explicitly distributed AOP using AWED. In
Proceedings of the 5th ACM International Conference on Aspect-Oriented
Software Development (AOSD 2006), pages 51–62, Bonn, Germany, March
2006. ACM Press.

[BNSVV06] Luis Daniel Benavides Navarro, Mario Südholt, Wim Vanderperren, and Bart
Verheecke. Modularization of distributed web services using AWED. In
Proceedings of the 8th International Symposium on Distributed Objects and
Applications (DOA’06, volume 4276 of Lecture Notes in Computer Science,
pages 1449–1466. Springer-Verlag, October 2006.

[Bru14] Alöıs Brunel. Transformations de «forcing» et algèbres de «monitoring».
PhD thesis, 2014.

[BS06] Eric Bodden and Volker Stolz. Tracechecks: Defining semantic interfaces with
temporal logic. In Welf Löwe and Mario Südholt, editors, Proceedings of the
5th International Symposium on Software Composition (SC 2006), volume
4089 of Lecture Notes in Computer Science, pages 147–162, Vienna, Austria,
March 2006. Springer-Verlag.

Bibliography 115

[BTI14] Eric Bodden, Éric Tanter, and Milton Inostroza. Join point interfaces for safe
and flexible decoupling of aspects. ACM Transactions on Software Engineer-
ing and Methodology, 23(1):7:1–7:41, February 2014.

[CCHM16] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical
Type Theory: a constructive interpretation of the univalence axiom, 2016. To
appear in post-proceedings of Types for Proofs and Programs (TYPES 2015).

[CDB03] Michele Curti, Pierpaolo Degano, and Cosima Tatiana Baldari. Causal π-
calculus for biochemical modelling. In Computational Methods in Systems
Biology, volume 2602 of Lecture Notes in Computer Science, pages 21–34.
Springer-Verlag, February 2003.

[CDM13] Cyril Cohen, Maxime Dénès, and Anders Mörtberg. Refinements for free! In
Proceedings of the 3rd International Conference on Certified Programs and
Proofs (CPP 2013), pages 147–162, Melbourne, Australia, December 2013.

[CDT15] The Coq Development Team. The Coq proof assistant reference manual.
2015. Version 8.5.

[CGH14] Pierre-Louis Curien, Richard Garner, and Martin Hofmann. Revisiting the
categorical interpretation of dependent type theory. Theoretical Computer
Science, 546:99–119, 2014.

[Che12] Hsing-Yu Chen. COCA: Computation offload to clouds using AOP. In Pro-
ceedings of the 12th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid), pages 466–473, Ottawa, ON, USA, 2012.

[Chl13] Adam Chlipala. Certified Programming with Dependent Types. MIT Press,
2013.

[CL06] Curtis Clifton and Gary T. Leavens. MiniMAO1: An imperative core lan-
guage for studying aspect-oriented reasoning. Science of Computer Program-
ming, 63:312–374, 2006.

[CL12] Eugenia Cheng and Tom Leinster. Weak ω-categories via terminal coalgebras.
arXiv preprint arXiv:1212.5853, 2012.

[Coh66] Paul J. Cohen. Set theory and the continuum hypothesis. 1966.

[DF11] Tim Disney and Cormac Flanagan. Gradual information flow typing. In
International Workshop on Scripts to Programs, 2011.

[DFES10] Bruno De Fraine, Erik Ernst, and Mario Südholt. Essential AOP: the A calcu-
lus. In Theo D’Hondt, editor, Proceedings of the 24th European Conference
on Object-oriented Programming (ECOOP 2010), number 6183 in Lecture
Notes in Computer Science, pages 101–125, Maribor, Slovenia, June 2010.
Springer-Verlag.

[DLS+04] Gary Duzan, Joseph Loyall, Richard Schantz, Richard Shapiro, and John
Zinky. Building adaptive distributed applications with middleware and as-
pects. In Lieberherr [Lie04], pages 66–73.

116 Bibliography

[DM12] Pierre-Évariste Dagand and Connor McBride. Transporting functions across
ornaments. In Proceedings of the 17th ACM SIGPLAN Conference on Func-
tional Programming (ICFP 2012), pages 103–114, Copenhagen, Denmark,
September 2012. ACM Press.

[DPGC15] Benjamin Delaware, Clément Pit-Claudel, Jason Gross, and Adam Chlipala.
Fiat: Deductive synthesis of abstract data types in a proof assistant. In
Proceedings of the 42nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL 2015), pages 689–700, Mumbai, India,
January 2015. ACM Press.

[DTK06] Christopher Dutchyn, David B. Tucker, and Shriram Krishnamurthi. Seman-
tics and scoping of aspects in higher-order languages. Science of Computer
Programming, 63(3):207–239, December 2006.

[EFB01] Tzilla Elrad, Robert E. Filman, and Atef Bader. Aspect-oriented program-
ming. Communications of the ACM, 44(10), October 2001.

[FF02] Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order func-
tions. In Proceedings of the 7th ACM SIGPLAN Conference on Functional
Programming (ICFP 2002), pages 48–59, Pittsburgh, PA, USA, September
2002. ACM Press.

[FG96a] C. Fournet and G. Gonthier. The reflexive CHAM and the join-calculus. In
23th, pages 372–385, 1996.

[FG96b] Cédric Fournet and Georges Gonthier. The reflexive chemical abstract ma-
chine and the join-calculus. In Proceedings of POPL’96, pages 372–385. ACM,
January 1996.

[FG02] C. Fournet and G. Gonthier. The join calculus: a language for distributed
mobile programming. In Applied Semantics, volume 2395 of Lecture Notes in
Computer Science, pages 268–332. Springer-Verlag, 2002.

[FLFMS03] Cédric Fournet, Fabrice Le Fessant, Luc Maranget, and Alan Schmitt. Jo-
Caml: A language for concurrent distributed and mobile programming. In
Advanced Functional Programming, volume 2638 of Lecture Notes in Com-
puter Science, pages 129–158. Springer-Verlag, 2003.

[FLMR03] Cédric Fournet, Cosimo Laneve, Luc Maranget, and Didier Rémy. Inheritance
in the join calculus. Journal of Logic and Algebraic Programming, 57(1):23–
70, 2003.

[FT13] Luminous Fennell and Peter Thiemann. Gradual security typing with refer-
ences. In Proceedings of the 26th Computer Security Foundations Symposium
(CSF), pages 224–239, June 2013.

[GCT16] Ronald Garcia, Alison M. Clark, and Éric Tanter. Abstracting gradual typing.
In Proceedings of the 43rd ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL 2016), pages 429–442, St Petersburg,
FL, USA, January 2016. ACM Press.

[GM10] Georges Gonthier and Assia Mahbouhi. An introduction to small scale re-
flection in Coq. Journal of Formalized Reasoning, 3(2):95–152, 2010.

Bibliography 117

[GSM+11] Vaidas Gasiunas, Lucas Satabin, Mira Mezini, Angel Núñez, and Jacques
Noyé. EScala: modular event-driven object interactions in Scala. In Proceed-
ings of the 10th ACM International Conference on Aspect-Oriented Software
Development (AOSD 2011), pages 227–240, Porto de Galinhas, Brazil, March
2011. ACM Press.

[Her12] Hugo Herbelin. A constructive proof of dependent choice, compatible with
classical logic. In LICS, pages 365–374. IEEE Computer Society, 2012.

[HH04] Erik Hilsdale and Jim Hugunin. Advice weaving in AspectJ. In Lieberherr
[Lie04], pages 26–35.

[HS96] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type
theory. In In Venice Festschrift, pages 83–111. Oxford University Press, 1996.

[Hub16] Simon Huber. Canonicity for cubical type theory. CoRR, abs/1607.04156,
2016.

[HVC08] Philipp Haller and Tom Van Cutsem. Implementing joins using extensible
pattern matching. In Doug Lea and Gianluigi Zavattaro, editors, Proceedings
of the 10th International Conference on Coordination Models and Languages
(COORDINATION 2008), volume 5052 of Lecture Notes in Computer Sci-
ence, pages 135–152, Oslo, Norway, June 2008. Springer-Verlag.

[Hyl91] J. M. E. Hyland. First steps in synthetic domain theory. In Proceedings of the
International Conference on Category Theory, pages 131–156, Como, Italy,
July 1991. Springer-Verlag.

[JJR06] Radha Jagadeesan, Alan Jeffrey, and James Riely. Typed parametric poly-
morphism for aspects. Science of Computer Programming, 63:267–296, 2006.

[JLP+16] Guilhem Jaber, Gabriel Lewertowski, Pierre-Marie Pédrot, Matthieu Sozeau,
and Nicolas Tabareau. The Definitional Side of the Forcing. In LICS, New
York, United States, May 2016.

[JTS12] Guilhem Jaber, Nicolas Tabareau, and Matthieu Sozeau. Extending type
theory with forcing. In Logic in Computer Science (LICS), 2012, pages 395–
404. IEEE, 2012.

[KF10] Kenneth Knowles and Cormac Flanagan. Hybrid type checking. ACM Trans-
actions on Programming Languages and Systems, 32(2):Article n.6, January
2010.

[KG13] Hsiang-Shang Ko and Jeremy Gibbons. Relational algebraic ornaments. In
Proceedings of the ACM SIGPLAN Workshop on Dependently Typed Pro-
gramming (DTP 2013), pages 37–48. ACM Press, 2013.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William Griswold. An overview of AspectJ. In Jorgen L. Knudsen, editor,
Proceedings of the 15th European Conference on Object-Oriented Program-
ming (ECOOP 2001), number 2072 in Lecture Notes in Computer Science,
pages 327–353, Budapest, Hungary, June 2001. Springer-Verlag.

[KIL+96] G. Kiczales, J. Irwin, J. Lamping, J. Loingtier, C.V. Lopes, C. Maeda, and
A. Mendhekar. Aspect oriented programming. In Special Issues in Object-
Oriented Programming. Max Muehlhaeuser (general editor) et al., 1996.

118 Bibliography

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming,
pages 220–242. Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.

[KLV12] Chris Kapulkin, Peter LeFanu Lumsdaine, and Vladimir Voevodsky. The
simplicial model of univalent foundations. arXiv preprint arXiv:1211.2851,
2012.

[KM05] Gregor Kiczales and Mira Mezini. Aspect-oriented programming and modular
reasoning. In Proceedings of the 27th international conference on Software
engineering (ICSE 2005), pages 49–58, St. Louis, MO, USA, 2005. ACM
Press.

[Kri94] Jean-Louis Krivine. Classical logic, storage operators and second-order
lambda-calculus. Ann. Pure Appl. Logic, 68(1):53–78, 1994.

[Kri09] Jean-Louis Krivine. Realizability in classical logic. Panoramas et synthèses,
27:197–229, 2009.

[Kri11] J.L. Krivine. Realizability algebras: a program to well order R. Logical
Methods in Computer Science, 7(3):1–47, 2011.

[Ler06] Xavier Leroy. Formal certification of a compiler back-end or: programming a
compiler with a proof assistant. ACM SIGPLAN Notices, 41(1):42–54, 2006.

[Let04] Pierre Letouzey. Programmation fonctionnelle certifiée – L’extraction de pro-
grammes dans l’assistant Coq. PhD thesis, Université Paris-Sud, July 2004.

[Lev01] Paul Blain Levy. Call-by-push-value. PhD thesis, Queen Mary, University of
London, 2001.

[Lie04] Karl Lieberherr, editor. Proceedings of the 3rd ACM International Con-
ference on Aspect-Oriented Software Development (AOSD 2004), Lancaster,
UK, March 2004. ACM Press.

[LS13] D. R. Licata and M. Shulman. Calculating the fundamental group of the
circle in homotopy type theory. In Logic in Computer Science (LICS), 2013
28th Annual IEEE/ACM Symposium on, pages 223–232, June 2013.

[LTD12] Paul Leger, Éric Tanter, and Rémi Douence. Modular and flexible causality
control on the web. Science of Computer Programming, December 2012.
Available online.

[Luo89] Zhaohui Luo. ECC, an extended calculus of constructions. In LICS, pages
386–395. IEEE Computer Society, 1989.

[Lur09] Jacob Lurie. Higher topos theory. Annals of mathematics studies. Princeton
University Press, Princeton, N.J., Oxford, 2009.

[MBHJJ11] A. Mdhaffar, R. Ben Halima, E. Juhnke, and M. Jmaiel. AOP4CSM: An
aspect-oriented programming approach for cloud service monitoring. In Pro-
ceedings of the 11th IEEE International Conference on Computer and Infor-
mation Technology (CIT), pages 363–370, 2011.

[McB10] Conor McBride. Ornamental algebras, algebraic ornaments. Technical report,
University of Strathclyde, 2010.

Bibliography 119

[MF07] Jacob Matthews and Robert Bruce Findler. Operational semantics for multi-
language programs. In Proceedings of the 34th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 2007), pages
3–10, Nice, France, January 2007. ACM Press.

[Miq11a] A. Miquel. Forcing as a program transformation. In Proceedings of the 26th
Symposium on Logic in Computer Science (LICS’11), pages 197–206. IEEE,
2011.

[Miq11b] Alexandre Miquel. Forcing as a program transformation. In LICS, pages
197–206. IEEE Computer Society, 2011.

[MKD03] Hidehiko Masuhara, Gregor Kiczales, and Christopher Dutchyn. A compi-
lation and optimization model for aspect-oriented programs. In G. Hedin,
editor, Proceedings of Compiler Construction (CC2003), volume 2622 of Lec-
ture Notes in Computer Science, pages 46–60. Springer-Verlag, 2003.

[MM92] Saunders MacLane and Ieke Moerdijk. Sheaves in Geometry and Logic.
Springer-Verlag, 1992.

[MM12] Louis Mandel and Luc Maranget. The JoCaml language Release 4.00. INRIA,
august 2012.

[Mog91] Eugenio Moggi. Notions of computation and monads. Information and Com-
putation, 93:55–92, 1991.

[MS08] Nathan Mishra-Linger and Tim Sheard. Erasure and polymorphism in pure
type systems. In 11th International Conference on Foundations of Software
Science and Computational Structures (FOSSACS), volume 4962 of Lecture
Notes in Computer Science, pages 350–364. Springer-Verlag, 2008.

[NCT04] Muga Nishizawa, Shigeru Chiba, and Michiaki Tatsubori. Remote pointcut –
a language construct for distributed AOP. In Lieberherr [Lie04], pages 7–15.

[OSC10] Bruno C. d. S. Oliveira, Tom Schrijvers, and William R. Cook. EffectiveAd-
vice: discplined advice with explicit effects. In AOSD 2010 [AOS10], pages
109–120.

[OSZ12] Peter-Michael Osera, Vilhelm Sjöberg, and Steve Zdancewic. Dependent in-
teroperability. In Proceedings of the 6th workshop on Programming Languages
Meets Program Verification (PLPV 2012), pages 3–14. ACM Press, 2012.

[OT13] Marko Obrovac and Cédric Tedeschi. Experimental evaluation of a hierarchi-
cal chemical computing platform. International Journal of Networking and
Computing, 3(1):37–54, 2013.

[OTMW04] Xinming Ou, Gang Tan, Yitzhak Mandelbaum, and David Walker. Dynamic
typing with dependent types. In Proceedings of the IFIP International Con-
ference on Theoretical Computer Science, pages 437–450, 2004.

[PPT11] Jean-Louis Pazat, Thierry Priol, and Cédric Tedeschi. Towards a chemistry-
inspired middleware to program the internet of services. ERCIM News,
85(34), 2011.

120 Bibliography

[PSD+04] Renaud Pawlak, Lionel Seinturier, Laurence Duchien, Gérard Florin, Fabrice
Legond-Aubry, and Laurent Martelli. JAC: an aspect-oriented distributed
dynamic framework. Software—Practice and Experience, 34(12):1119–1148,
2004.

[RH98] James Riely and Matthew Hennessy. A typed language for distributed mobile
processes. In Proceedings of POPL’98, pages 378–390. ACM Press, 1998.

[RKJ08] Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. Liquid types.
In Rajiv Gupta and Saman P. Amarasinghe, editors, Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI 2008), pages 159–169. ACM Press, June 2008.

[SA16] Wouter Swierstra and Joao Alpuim. From proposition to program - embed-
ding the refinement calculus in Coq. In Proceedings of the 13th International
Symposium on Functional and Logic Programming (FLOPS 2016), pages 29–
44, Kochi, Japan, March 2016.

[Sch15] Gabriel Scherer. Multi-focusing on extensional rewriting with sums. In
Thorsten Altenkirch, editor, 13th International Conference on Typed Lambda
Calculi and Applications, TLCA 2015, July 1-3, 2015, Warsaw, Poland, vol-
ume 38 of LIPIcs, pages 317–331. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2015.

[SGR+10] Kevin Sullivan, William G. Griswold, Hridesh Rajan, Yuanyuan Song, Yuan-
fang Cai, Macneil Shonle, and Nishit Tewari. Modular aspect-oriented design
with XPIs. ACM Transactions on Software Engineering and Methodology,
20(2), August 2010. Article 5.

[SLB02] Sergio Soares, Eduardo Laureano, and Paulo Borba. Implementing distribu-
tion and persistence aspects with AspectJ. In Proceedings of the 17th Interna-
tional Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA 2002), pages 174–190, Seattle, Washington, USA,
November 2002. ACM Press. ACM SIGPLAN Notices, 37(11).

[SNI15] Taro Sekiyama, Yuki Nishida, and Atsushi Igarashi. Manifest contracts for
datatypes. In Proceedings of the 42nd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL 2015), pages 195–207,
Mumbai, India, January 2015. ACM Press.

[SO08] Matthieu Sozeau and Nicolas Oury. First-Class Type Classes. In César Muñoz
Otmane Ait Mohamed and Sofiène Tahar, editors, TPHOLs, volume 5170 of
LNCS, pages 278–293. Springer, August 2008.

[Soz07] Matthieu Sozeau. Program-ing Finger Trees in Coq. In ICFP’07, pages
13–24, Freiburg, Germany, 2007. ACM Press.

[SPAK10] Friedrich Steimann, Thomas Pawlitzki, Sven Apel, and Christian Kästner.
Types and modularity for implicit invocation with implicit announcement.
ACM Transactions on Software Engineering and Methodology, 20(1):Article
1, June 2010.

[ST06] Jeremy Siek and Walid Taha. Gradual typing for functional languages. In
Proceedings of the Scheme and Functional Programming Workshop, pages
81–92, September 2006.

Bibliography 121

[Ste06] Friedrich Steimann. The paradoxical success of aspect-oriented programming.
In Proceedings of the 21st ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA 2006), pages
481–497, Portland, Oregon, USA, October 2006. ACM Press. ACM SIG-
PLAN Notices, 41(10).

[Tab10] Nicolas Tabareau. A theory of distributed aspects. In AOSD 2010 [AOS10],
pages 133–144.

[TFD+10] Éric Tanter, Johan Fabry, Rémi Douence, Jacques Noyé, and Mario Südholt.
Scoping strategies for distributed aspects. Science of Computer Programming,
75(12):1235–1261, December 2010.

[TFT13] Nicolas Tabareau, Ismael Figueroa, and Éric Tanter. A typed monadic embed-
ding of aspects. In Jörg Kinzle, editor, Proceedings of the 12th International
Conference on Aspect-Oriented Software Development (AOSD 2013), pages
171–184, Fukuoka, Japan, March 2013. ACM Press.

[Tie72] Myles Tierney. Sheaf theory and the continuum hypothesis. LNM 274, pages
13–42, 1972.

[TJ06] Eddy Truyen and Wouter Joosen. Run-time and atomic weaving of dis-
tributed aspects. Transactions on Aspect-Oriented Software Development II,
4242:147–181, 2006.

[Tri99] Todd Trimble. What are ‘fundamental n-groupoids’? seminar at DPMMS,
Cambridge, August 1999.

[TT06] Éric Tanter and Rodolfo Toledo. A versatile kernel for distributed AOP. In
Proceedings of the IFIP International Conference on Distributed Applications
and Interoperable Systems (DAIS 2006), volume 4025 of Lecture Notes in
Computer Science, pages 316–331, Bologna, Italy, June 2006. Springer-Verlag.

[Uni13] The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. http://homotopytypetheory.org/book, In-
stitute for Advanced Study, 2013.

[Wad85] Philip Wadler. How to replace failure by a list of successes. In Proc. Of a
Conference on Functional Programming Languages and Computer Architec-
ture, pages 113–128, New York, NY, USA, 1985. Springer-Verlag New York,
Inc.

[WB89] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad
hoc. In Proceedings of the 16th ACM Symposium on Principles of Program-
ming Languages (POPL 89), pages 60–76, Austin, TX, USA, January 1989.
ACM Press.

[WDR14] Thomas Williams, Pierre-Évariste Dagand, and Didier Rémy. Ornaments in
practice. In José Pedro Magalhães and Tiark Rompf, editors, Proceedings of
the 10th ACM SIGPLAN Workshop on Generic Programming (WGP 2014),
pages 15–24, Gothenburg, Sweden, August 2014. ACM Press.

[Wer97] Benjamin Werner. Sets in types, types in sets. In Theoretical aspects of
computer software, pages 530–546. Springer, 1997.

http://homotopytypetheory.org/book

122 Bibliography

[WKD04] Mitchell Wand, Gregor Kiczales, and Christopher Dutchyn. A semantics for
advice and dynamic join points in aspect-oriented programming. ACM Trans-
actions on Programming Languages and Systems, 26(5):890–910, September
2004.

[WZL03] David Walker, Steve Zdancewic, and Jay Ligatti. A theory of aspects. In
Proceedings of the 8th ACM SIGPLAN Conference on Functional Program-
ming (ICFP 2003), pages 127–139, Uppsala, Sweden, September 2003. ACM
Press.

	Remerciements
	Introduction (en français)
	Une Introspection Rétrospective
	Ma Future Ligne de Recherche

	Looking Back into the Future
	A Retrospective Introspection
	Future Line of Reasearch

	Call-by-Name Forcing in Type Theory
	Call-by-Push-Value
	Forcing Translation in the Negative Fragment
	Yoneda to the Rescue
	Datatypes
	Recursive Types
	Forcing at Work: Consistency Results
	Future Work

	Chemical Foundations of Distributed Aspects
	The distributed objective join calculus
	The aspect join calculus
	From the aspect join calculus to the join calculus
	Aspect JoCaml
	Discussion
	Related work

	Partial Type Equivalences for Verified Dependent Interoperability
	Partial Type Equivalences
	Partial Type Equivalence for Dependent Interoperability
	Higher-Order Partial Type Equivalence
	A Certified, Interoperable Stack Machine
	Related Work
	Future Work

	Appendix
	Publications of the author
	Bibliography

