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ABSTRACT

Surface and internal gravity waves have an impori@pact on the hydrological
regime of the coastal zone. Intensive surface wavegarticularly interesting to study
because they can be a serious threat to shipslatibrms, port facilities and tourist areas
on the coast; such waves hampered the implememtatibuman activities on the shelf.
Nonlinear internal waves affect the underwater fii@se and cause sediment transport,
they create washouts soil at the base of platf@mnaspipelines, affect the propagation of
acoustic signals. Freak waves have a particularbng impact, and they are studied in
this thesis. Therefore, the study of freak wavenftion in the coastal zone is relevant

and practically significant.

The main goal of the thesis is the study of paldicties of abnormal wave
formation in coastal zones under different assupngtion the water depth and wave field
form. In particular, it is demonstrated that thectrenism of dispersion focusing of freak
wave formation "works" for waves interacting witlvartical barrier. It is shown that just
before the maximum wave formation a freak wave kjyiexperiences a shape change
from a high ridge to a deep depression. The lifetoh a freak wave increases with the
growth of number of individual waves in anomalousver packets, and the lifetime of a

freak wave increases as water depth decreasing.

It is demonstrated that pair interaction of unipaalitons lead to a decrease of the
third and fourth moments of a wave field. It is wimothat in the case of heteropolar

soliton interactions the fourth moment increases.

The nonlinear dynamics of ensembles of random Uaii@mlitons in the framework
of the Korteweg - de Vries equation and the modifikorteweg - de Vries equation is
studied. It is shown that the coefficients of skesshand kurtosis of the soliton gas are
reduced as a result of soliton collisions. Theritigtion functions of wave amplitudes
are defined. The behavior of soliton fields in tframework of these models is
qualitatively similar. It is shown that in theselfls the amplitude of the large waves is

decreased in average due to multi-soliton intevasti

A new breaking effect of solitons with small ampdies and even changing of its
direction in multi-soliton gas as a result of naelr interactions with other solitons is

found in the framework of the modified Korteweg\ees equation.



It is shown that in heteropolar soliton gas abndiymiarge waves (freak waves)
appear in the frameworks of the modified Kortewetg-Vries equation. With increasing
of soliton gas density the probability and intepsif freak waves in such systems

increases.

Keywords: freak waves, turbulence, soliton, model equations



RESUME
« Dynamique de champs de vagues irréguliers en zowétiere »

Les vagues et les ondes internes de gravité ontinymact important sur
I’lhydrodynamique et I’hydrologie de la zone coétietees vagues extrémes sont
particulierement intéressantes a étudier, car edbgg une menace sérieuse pour
le transport maritime, les plates-formes pétrolggries installations portuaires
et les zones touristiques de la cdte. Ces ondemearit aussi les activités
humaines développées a la cOte. Les ondes intempaslinéaires affectent la
biosphére aquatique, notamment le transport de ns@mlis et créent des
affouillements a la base des plates-formes et deelipes. Elles affectent
également la propagation des signaux acoustiques lagues scélérates
provoquent d’importants dégats matériels et de ne@mbes pertes en vies
humaines. Par conséquent, I'étude de la formaties a@ndes scélérates dans la
zone cotiere est d’'une importance capitale. L'objearincipal de la these est
I'étude de la formation d’ondes océaniques anormalans la zone coétieres
pour différentes profondeurs d’eau et différentamips d'ondes. Il est montré
gue le mécanisme de focalisation dispersive a ¢fioe de la formation d’ondes
scélérates est pertinent quand les ondes interagissvec une paroi verticale.
Il est démontré que juste avant la formation dentle maximale, celle-ci
change rapidement de forme, d'une haute créte wersreux profond. La durée
de vie de l'onde scélérate augmente avec le nonbbomdes individuelles
contenues dans le paquet d'ondes anormales etul®rkqprofondeur de I'eau
diminue.

Il est démontré que l'interaction de paires detenk unipolaires conduit
a une diminution des facteurs de dissymétrie etpkdissement du champ
d'ondes. Il est prouvé que dans le cas d'interastinetéropolaires de solitons,
le facteur d’aplatissement augmente.

La dynamique non linéaire de champs de solitonipalaires aléatoires
est étudiée dans le cadre de I'équation de Kortewelg Vries (KdV) et de
I’équation de Korteweg - de Vries modifiee (mKdM). est montré que les

coefficients de dissymétrie et d'aplatissement da de solitons sont réduits a
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la suite de collisions de solitons. Les fonctionrs daistribution des amplitudes
des ondes sont obtenues. Le comportement des chawlgsniques dans le
cadre de ces modeles est qualitativement similaiteest démontré que
I'amplitude des ondes extrémes diminue en moyemeaeson des interactions

entre multi-solitons.

Dans le cadre de I'équation de Korteweg-de Vriegdifiee, les
interactions non linéaires entre le soliton de phesite amplitude et les autres
solitons du gaz ont pour effet de réduire sa cé&éqgui devient négative et de
modifier ainsi sa direction de propagation.

A partir de I'équation de Korteweg-de Vries moddj il est prouvé que
dans un gaz de solitons héteropolaires, des ond&grates peuvent se former.
La probabilité d’occurrence et I'amplitude des osdecélérates dans de tels

systemes augmente avec la densité du gaz de ssliton

Mots-Clés :soliton, turbulence, vagues scélérates, équatoodeles
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Chapter 1

Introduction

Wind waves on the surface of natural water bodsesa icomplex and irregular
system caused by interference and interaction ofewzackets moving with different
speeds and in different directions. The abilityaxecast them is extremely important for
navigation and the exploration of ocean resour©ggrational forecasting of wind waves
iIs based on the nonlinear kinetic equations of tsgkewave intensity, and significant
progress has been achieved there [Efimov et Poinik®91; Lavrenov, 1998; Komen et
al, 1994; Annenkov et Shrira, 2013, 2014; Badulialge2005, 2007].

In a random wind wave field abnormally large wagegjue or freak waves) may
appear. Although in the past such waves have beersubject of maritime folklore,
fairytales, and adventurous literature, over timis has changed to not simply be the
case. These waves are particularly interestingtudysbecause they can be a serious
threat to ships, oil platforms, port facilities atmlrist areas on the coast. Numerous
observations of freak waves in different areashefdceans are presented in monographs
[Kurkin et Pelinovsky, 2004; Kharif et al, 2009, Benko et Ivanov, 2006] and
catalogues [Didenkulova et al, 2006; Liu, 2007, £0dikolkina et Didenkulova, 2011,
2012].

Initially, freak waves have been studied in relatio waves in deep water, and the
first descriptions of such waves were made by sailoater, instrumental data started to
be accumulated with appearance of oil and gasopratf in a sea. The boom in the freak
wave study happened after the registration of threoamally large wave height of 26m
(in a water depth of 70 m) on the wave platfornmdipner” in the North Sea on January
1, 1995, this wave is called the “New Year waveajidr et Andersen, 2000]. Physical
mechanisms of freak wave generation in deep watdude: 1) modulation instability, 2)
interaction of waves with currents, 3) wind-wavdemaction; these mechanisms are
described in the books [Kurkin et Pelinovsky, 2084arif et al, 2009] and reviews
[Kharif et Pelinovsky, 2003; Dysthe et al, 2008urglyev et al, 2011; Didenkulova et
Pelinovsky, 2011].
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Dangerous waves near the coast are usually coedidedependently, and in the
past it was believed that they stem from a differphysical nature. Against the
background of such catastrophic events such asntsgnand storm surges, short-lived
abnormal waves attracted less attention. Neveghetee number of observations of the
abnormally large waves near the shore is growing, these waves have been termed

freak waves.

Such waves are quite a surprise to many peopledsme their holidays near the
water. A 9m high wave washed two people from thex i South Africa on August 26,
2005 [Kharif et al, 2009]. Another incident happeéne October, 1998 when a group of
students who were on a practice field on the smsédind of Diana, near Vancouver
Island, Canada [Kurkin et Pelinovsky, 2004].

The students were on a cliff about 25 meters albogewvater. After 45 minutes,
one student noticed a big wave that started crgstrinthe shore. He took a few pictures
in intervals of about 2 seconds (Fig. 1). Aftere¢ands, the wave reached them, and if it
had been slightly higher the consequences woule HBeen tragic. The analysis of
observed data, collected in the catalogue [Nik@ldnDidenkulova, 2011, 2012], shows
that the largest number of registered freak wahes led to the destruction and even
death, occurs in the coastal zone: in the shallaw @f the ocean (less than 50 m depth)
and on the coast. Remarkably, in the 5 year pdrmd 2006 to 2010, 50% of all events
caused by the freak waves occurred on the coasi%i38 in shallow water and only

11.5% on the deep parts of the ocean and on tieseigs.

Although these statistics are incomplete (excludimg instrumental data), they
show the prevalence of the freak waves in the abashe and on the coast, and that they
require special analysis. Although the physical matsms of freak waves in shallow
water are partly the same as in deep water, theralifferent mechanisms associated
their interaction with the bottom and coasts [Korlkit Pelinovsky, 2004; Kharif et al,
2009; Slunayev et al, 2011; Akhmediev & Pelinovsk§10; Didenkulova et Pelinovsky,
2011].
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Figure 1 — consecutive frames (2 second interval) ofifn@ave approaching to the coast,

its height reached 25 m.

Therefore, the study of freak wave formation ia ttoastal zone is relevant and
practically significant. It should be understoodttithe water depth near shore is not

necessarily small (in comparison with the wavelbhgt

Many incidents of freak wave appearance near stipwere recorded, where
the water depth is large enough. The importanceingéstigating such cases is
demonstrated in articles of scientists from Taijasai et al., 2004] due to numerous
victims among fishermen, who are sitting on theakveaters and rocks. The photographs

given above demonstrate the same class of freaksvav

In this case, the well-developed theory of wavesndinite or finite depth can
be used. Thus, freak waves are studied in the frameof the nonlinear Schrodinger
equation and its generalizations, and here areréésvences [Onorato et al, 2001, 2002,
2003, 2005; Dysthe et al, 2003; Dyachenko et Zakha2008; Slunyaev et Sergeeva,
2011, 2012; Sergeeva et Slunyaev, 2013; Shemér 20¥0; Slunyaev et al, 2013]. It is
also important to mention the study of freak wawvathin the Euler equations in
conformal variables [Zakharov et al., 2014; Shan#609; Shamin et Udin, 2013;
Shamin et al., 2013, 2014; Shamin et Udin, 2014l mew class of "vortex" freak waves

associated with interactions in the atmosphere d8lbkin et Soloviev, 203; Abrashkin et
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Soloviev, 2013, Abrashlin et Oshmarina, 2014]. Heere the presence of vertical

barriers has not been considered in the theoretiodels of freak wave generation.

If the water depth in the coastal area is smadl,rtew effects related to the strong
difference from quasisinusoidal waveforms whiclchsiracteristic for deep water started
to be important. Nonlinear waves in the coastalzoften have soliton or quasi-soliton
structures. More frequently, such waves occur waédal wave enters an estuary, where
they transform into shock waves (hydraulic jumpshiedular bores [Chanson, 2012] and
they can have a very irregular structure. The ssitnation is realized for tsunami waves,
when they propagate into shallow water [Tsuji etl@94; Grue et al, 2008]. The soliton
structure of the wave field in shallow water hasadly been mentioned in the article
[Brocchini et Gentile, 2001]. Nonlinear wave theamyshallow water is well developed.
The most famous model is the Korteweg-de Vries gguaderived in 1895 [Korteweg
& de Vries, 1895]. The main specificity of this edun is its applicability for waves
propagating in one direction only. Accounting favuater-propagation (or the more
general problem of wave interactions propagatingganous directions) has also been
discovered a long time ago, and in this case mangtes of Boussinesq equations were
derived; see., e.g., [Pelinovsky, 2007]. In therfeavork of shallow water models there
are a few works about freak waves, based on theorippation of the narrowband wave
packet [Onorato et al, 2003; Pelinovsky et Serge2086; Sergeeva et al, 2011] or the
Korteweg-de Vries equation [Pelinovsky et al, 200]the same time, analysis of freak

waves in soliton field has never been performedieef

It is important to mention that due to vertical arastratification by temperature
and salinity, as well as flow velocity, internal wves exist in the coastal zone [Morozov,
1996; Konyaev et Sabinin, 2002]. Internal gravigwes have the same nature as surface
gravity waves, but for them, gravity is almost lbalad by the force of Archimedes.
Weakly nonlinear theory of internal waves in theastal zone is also based on the
Korteweg-de Vries equation [Mitropolsky, 1981], hewer, here the following
amendments of the nonlinearity become importantituhehds to Gardner equation. In
the framework of this equation for some type ohtsication the effect of modulation
instability is possible, which leads to the generabf “internal” freak waves [Grimshaw

et al, 2005, 2010; Talipova, 2011]. And here we sag that the soliton structure of
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internal waves, which always was noted in the olzdemns [Ostrovsky et Stepanyants,
1989; Vlasenko et al, 2005], have not been yetrtahki® account in the analysis of freak

waves.

Outline of the thesis

The remaining thesis is arranged as follows:

Chapter 2 is devoted to the mechanism of dispersive focusifige freak wave
appearance near the vertical barrier is studiettienframework of this mechanism. The
interaction of swell and wind waves is also studied

Chapter 3 is devoted to the two-soliton interaction in theaniework of integrable
models as elementary act of soliton turbulence.

Chapter 4 presents our numerical results concerning the mcs of soliton fields.
Soliton turbulence is studied in the frameworkhaf Korteweg-de Vries equation and the
modified Korteweg-de Vries equation. Freak wavegseapance in the heteropolar soliton
field is demonstrated.

Lastly, a thesis summary and concluding remarkpeesented.

14



Chapter 2

Linear interference of random waves and the appearace of abnormally

large waves

2.1 Introductory remarks

2.2 Mechanism of dispersive focusing of freak wappearance

2.3 Various forms of freak waves in case of swedl wind wave interaction
2.4 Wave interaction with a vertical barrier

2.5 Conclusion
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2.1 Introductory remarks

Water waves propagate with different velocities amdlifferent directions; as a
result of this complex interference, very irregulaave system containing weak and
strong peaks is formed. Such large waves (freakes)agan be a serious threat to ships,
oil platforms, port facilities and tourist areas the coast. Mechanisms of abnormally
large wave formation are described in the bookskiuet Pelinovsky, 2004; Kharif et
al, 2009, Dotsenko et Ivanov, 2006] and numerotisles and reviews that will be cited
in the thesis as needed. This chapter focuses bname mechanism of large wave
occurrence — the mechanism of dispersive focussspa@ated with the dispersion of
water waves (dependence of the propagation velagithe spectral components from
their frequency). This mechanism is very populartfee freak wave generation in the
laboratory, where their reliable reproducibility mecessary [Brown et Jensen, 2001;
Johannesen et Swan, 2001; Clauss, 2002; Kurkielgtd?sky, 2004; Kharif et al, 2008,
2009, Shemer et al., 2007; Shemer et Dorfman, 2B088mer et Sergeeva, 2009].

Particular attention will be paid to the study afématics and statistics of large
waves in linear random wind wave fields. Paragraghis based on basic equations of
water waves and a description of dispersive fogusimechanisms is also presented.
Examples of single freak wave appearances in thmdwork of this mechanism are
given. The interaction of simultaneously moving Bweves with weak wind waves in
the framework of potential theory is considerecaragraph 2.3. It is noted that in the
case of variable wind, swell waves can be focuseddistance from the original area - in
a storm area, forming an abnormally large wave"fi@ak wave"). An investigation of
the visibility of freak waves of different shapesrh a background of wind waves is
made. The formation of "freak waves" at verticatriea (rock or cliff) is studied in

paragraph 2.4.
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2.2 Mechanism of dispersive focusing of freak waveppearance

Suddenly appearing short-lived abnormal waves enstta surface (freak waves)
attract the attention of specialists because tray lze a serious threat to ships, oll

platforms, port facilities and tourist areas on ¢bast.

Numerous observations of freak waves in variouasaoé the oceans are presented
in books [Lavrenov, 1998; Kurkin et Pelinovsky, 20&harif et al, 2009] and in articles
[Lavrenov, 1985; Lopatuhin et al., 2003; Divinskiy &., 2004; Badulin et al., 2005;
Didenkulova et al, 2006; Liu, 2007; Nikolkina etd@nkulova, 2011, 2012]. Through the
mechanisms of freak wave generation in the operntlsma are [Kharif et al, 2009%)
superpositions of a large number of individual $g@components moving with different
velocities and in different directions (geometrieald dispersive focusing); b) nonlinear
mechanisms of modulation instability; c) interan8oof waves with the bottom and

currents.

Each of these mechanisms has its own specificitigiclw manifests in the
corresponding probability of freak wave appearaagd its lifetime. Each mechanism
leads to different waveforms of freak waves andfed&nt scenarios of their

manifestation. All of these important features hagebeen sufficiently studied yet.

In this paragraph the scenario of the appearandeeak waves in the sea, based
on dispersive focusing of wave packets propagatinge same direction, is considered.
When the group wave velocity depends on the fregyetinis mechanism “works” for
dispersive waves of all physical natures. In tlise; the faster waves overtake the slower
ones. It is obvious that for a significant focuswdve energy, the convergence of large

numbers of quasi-monochromatic packets is necessary

This mechanism "works" for deterministic and fondam waves, leading to a
natural or accidental occurrence of abnormally lmglves. It can occur in both linear and
nonlinear theory of water waves, but of course,linearity leads to its features in the
wave field [Pelinovsky et Kharif, 2000; Pelinovskey al., 2003; Kharif et al, 2001;
Pelinovsky et al, 2000; Shemer et al., 2007; ShemdrDorfman, 2008].

Theoretical (analytical) results on wave packetuficg in water are obtained

mainly using linear theory, specifically in the frawork of the parabolic equations for
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wave packet envelopes [Clauss et Bergmann, 198gnMsson et al., 1999; Shemer et
al., 2002; Pelinovsky et al., 2003; Shemer et Darf, 2008].

The parabolic equation for wave packets can bevel@rfor weakly modulated
waves in waters of any depth, not necessarily iteiyy deep. However dispersion
decreases in shallow water, and processes of dispeconvergences occur over very
long times (distances), which can exceed the physlinensions of water reservoir.
Therefore, the main application of parabolic equagiis associated with the finite but not
the small depth. One exact solution of this equai® Gaussian impulse [Clauss et
Bergmann, 1986; Magnusson et al, 1999; PelinovskyKkRarif, 2000], which
demonstrates the process of the emergence of ablgrmigh waves and their
disappearance. The description of the processngfiesifreak wave generation will be

given in this paragraph.
In this chapter, the following will be assumed:
1. The liquid is assumed to be ideal, incompressnld unstratified.

2. We will consider two-dimensional potential wawetion (both a horizontal and
vertical coordinate).

3. The water depth is constant and there is norwiti@ation through the "solid"
bottom.

4. The action of the wind flow is neglected, an@& #imospheric pressure is
constant.

In this case, the original equations are two-direerad Euler equations:

—+u—+w—+——7-=0 (2.1)

—+Uu—+w—+——+9g=0 (2.2)

—+—=0, (2.3)

where u, w — horizontal and vertical components of fluid vetgcip — density,p —
pressureg — acceleration due to gravity— horizontal coordinate,— vertical coordinate

18



andt - time. Fluid is limited by fixed horizontal botto z=-h, there is a free surface with
equilibrium position oz=0 (Fig. 2.1).
/N

N\ P ~
S~ 7=0 S~ 7

Ve
z=-h

ST LSS S S S S S S S

Figure 2.1 - geometry of the problem.

Equations (2.1)-(2.3) must be supplemented by thaxynconditions. Conditions

of fluid nontransmission through the solid bound@dgttom) is
w=0 at z=-h. (2.4)

On the free surface the kinematic condition mustddesfied

_9n7., .91 at z=n(x,t). 2.5
w=JEru 1 (X,t) (2.5)

and dynamic condition on the surface
P=Py atz=7(xt) (2.6)

where n(x,t) is a vertical displacement of the free surfaced pg., is constant

atmospheric pressure.

Taking into account that the motion of thedlis assumed to be irrotational, we

can use the velocity potenti@(x,z,), determined by the formula
=—, = —\. 27
u 3 w (2.7)

After substituting (2.7) into (2.3) we come to tteplace equation:

¥@+¥@:
ox>  0z°

0. (2.8)
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The boundary condition at the bottom (2.4) is tfamsed into:

9 _o,  z=-h (2.9)
0z
and kinematic condition (2.5) into
9n 0% 0n 00 2=0(x.1) (2.10)

ot  ox ox 0z

To transform the dynamic boundary condition equa{@.6), the Bernoulli integral must

be used, which is obtained from equation (2.2grafttegrating by vertically

2 2

E+gz+ai)+1(ai)j +1(0ﬁj = const, (2.11)
Yo ot 2 ox 2\ 0z

whereconstmay be a function of andt. Taking into account that the potential is defined

with precision up to any function of time, the igital or equation (2.11) with equation

(2.6) as a condition on the free surface then cdsweto

[1)4

Rl 1[a¢j2+1(a¢
2

an +E+§ Ejz =0, at z=n(xt) (2.12)
Thus, we have a closed system for two functiggst) and &(x,z,t) It is a linear
Laplace equation (2.8) with linear (2.9) and nosdin (2.10), and (2.12) boundary
conditions. The functiom(x,t) could be neglected with the help of (2.12) andosex
nonlinear boundary value problem for the poterd@lld be obtained. The derivation of
this system can be found in many textbooks of hygnamics and it is presented here in
a shortened form. In any case, this is a completesy, which is why the number of

analytical solutions for water waves are seldorolynd.

In the case of linear wave motions in a reservdirfioite depth, the Euler
equations can be simplified by transferring bougidaonditions from the unknown free
surfacez = n(x,t) to the planez = 0. Additionally, all nonlinear terms in the kimatic
and dynamic boundary conditions can be omitted. @dsc equation for wave motion is

the Laplace equation (2.8) which, of course, resaimchanged.

The kinematic condition (2.10) takes the followiiogm
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6_/7 :aﬁ , (2.13)
ot 0z|,,
correspondingly the dynamic condition is
=109 @)1
g at z=0

It is convenient to exclude the functigyix,t) by substituting equation (2.14) into (2.13)
and obtaining a single boundary condition at tlee Burface
FEONG

7 *9=0,  (z=0) (2.15)

As a result, we obtain a closed linear boundaryev@roblem for the potential, consisting
from the Laplace equation (2.8) with linear bounydawnditions (2.9) and (2.15).

Because of homogeneity of the boundary value problth respect to the
transformation of the horizontal coordinate andetirtine solution of this boundary value

problem can be found by separation of variables
D (xz1) =W (zk)expli(at —kx)], (2.16)

where the parametertsandk are free. A brief solution of the boundary valuelgem is
presented below. After substituting (2.16) into thaplace equation (2.8), it is
transformed into an ordinary differential equatfon the function and can be easily

solved
W(zk) =C,expka +C, expka). (2.17)

The constants can be found from the boundary dongit Taking into account the

boundary condition at the bottom (2.9), it theremkhe following form (assumirig> 0)
W(zk) =C,coshk(z+h)]. (2.18)

After substituting (2.18) into (2.15) with (2.16he dispersion equation for waves

in the fluid of finite depth can be found:

«f =gktanih . (2.19)
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The dispersion relation indicates the relationsifigpatial and temporal scales of
water surface oscillations, determined by a spettibialance of forces for given type of
waves. This is the fundamental difference of wagkl$é from turbulent fields, for which

there is no such link.

The expression of potential takes the followiagnti:

¢(xz,t)={ “lak,

ksm—h(kHJ coshlk(z + h)]expli(kx— at)] . (2.20)

With the help of (2.14) the solution of water sgdadisplacement can be written

as

laC,

nxt) = Aexdi(ad -kx)], A=- :

(2.21)

whereA is wave amplitude. This solution describes a firagemonochromatic wave to
the right. The expression for the wave propagatinghe left can be written similarly.
General solution of the linear potential problenn dae written with the help of

elementary solutions such as Fourier integral
n(xt) = J'A(k) expli(at —kx)]dk + j B(k) expli (et + kx)]dk, (2.22)
where the conjugation condition on the spectralldoge must be imposed

AK=AK), BEK=BK. (2.23)

We consider the waves moving in only one directi@bow & > 0). In this case, the

displacement of the water surface is describednby ane integral
n(x,t) = j A(K) expli(kx — at)]dk, (2.24)

where A(k) is the complex Fourier spectrum determined by thidal perturbation

corresponding to the traveling wavg(Xx):

A(k) = %TTUO(X) exp(ikx)dx. (2.25)
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Under certain initial conditions within the soluti¢2.24) large waves can appear
at some moment. However, such adequate initial idtond are difficult to find.
Therefore a different approach is used [Kurkin eliffdvsky, 2004; Kharif et al, 2009]:
the Cauchy problem for the initial conditions cgpending to the expected abnormal
wave is solved, and then the resulting solutiomverted in space. As a result, there are
possible forms of the wave packet, and their eumbuteads to the formation of abnormal

waves in a finite time with subsequent transfororaback into a wave packet.

Scenario of a single freak wave appearance irfrimeework of the mechanism of
dispersive focusing is given in the articRelinovsky E., Shurgalina E., and
Chaikovskaya N. The scenario of a single freak wavappearance in deep water —
dispersive focusing mechanism framework. Nat. Hazals Earth Syst. Sci., 2011,
11, 127-134.

Let us say a few words about the manifesiatibthe same effect in a fluid of

finite depth. If the waves are long enough, thdypabpagate with the same velocity (
ok) =4/gH ) and hence they cannot overtake each other. Tinymyrely shallow water

the effect of dispersion focusing is impossibleedk waves in nonlinear traveling
(Riemann) waves are also absent [Didenkulova end®edky, 2011]. Then other effects
must play a role here. In the case of water witlalbilout finite depth, the velocity of
spectral component propagation in the approximatbrthe linearized Korteweg-de

Vries equation takes the following form:

(k) =2 = @(1_ kzhzj (2.26)

and shorter components may overtake each othes finicess is considered in the
articles [Pelinovsky et al, 2000; Talipova et Pelisky, 2009] taking into account
nonlinear effects. It is important to emphasizé thae to small dispersion the overtaking
process takes a long time, thus the lifetime offtekak waves in shallow water in the
framework of mechanisms of dispersion focusing rsafly increased. In this sense, it
decreases the risk because such a wave can appe@reat distance from the ship or

from the shore, thus preparations for the meetiitlg the danger wave can be done.
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2.3 Various forms of freak waves in case of swellnd wind wave

interaction

A large number of photos and eyewitness storigfseatk waves in the ocean has
been accumulating during the past decade. Availadllected data proves the existence
of freak waves of various forms [Kurkin et Pelinkys2004, Faulkner, 2000, Kharif et
al., 2009]. In literature there are descriptionsabhormally large waves in the form of

"white wall", "single tower", "three sisters" (aogip of several individual waves).

Sometimes in front of freak waves there are depes<f several meters deep -
"hole in the sea". Oftentimes these waves havepshiants and are asymmetric,
indicating the nonlinear character of freak wavBgpical records of abnormal waves,

including one and two "sisters" are shown on Fig. 2
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Figure 2.2Temporary record of abnormally high wave in thedBl&ea (a), received on
22 November 2000 [Divinsky et al., 200dhd a group of abnormally large waves (b) in
the Sea of Japan [Mori et al., 2002] — 24 Janua®B1.
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One of the mechanisms of freak wave formationagsmabined effect of geometric
(spatial) and dispersive wave focusing in casengiasition of waves moving in different
directions (“crossing sea’Pne reason is that wave superposition can be teeastion
of swell, coming from a storm area, with wind waweshe area of local storm. Usually
for wind waves description statistical methodswsed, and for swell description at large
distances from the storm deterministic methodsuaesl. Water waves are dispersive, and
out of the storm area swell is a frequency-moddligtacket and longer waves with
greater velocity of propagation are ahead of tharteh ones. This fact has already been
used in practice to determine the distance to themszone by changing swell current
frequencies [Snodgrass et al, 1968Jind in storm area is not constant, and it leads to
wave packet generation with a very complicated tdvirequency changing with time,
including the generation of packets when short wguepagate ahead of long ones. It is
obvious that such packets will focus in the anomsilvave due to dispersion, and then
spread out over large distances from the storm ditaas, at intermediate distances from
the storm area, we can expect the appearance ofrablly large swell waves (freak
waves), which will interact with a random wind waleld associated with a local storm.
The main purpose of this section is to estimatelifieéme of abnormally large swell

waves in wind wave fields.

To simplify the problem, we will assume that th@rralous swell wave is already
formed at the initial time and stands out againbtekground of wind waves. It could
have a different shape, as was mentioned in thenbeg, thus we consider several
possible freak wave forms. Spreading of abnormahlge swell waves on an unperturbed
(smooth) water surface and the interaction of swél a random wind wave field will
be studied.

The following class of modulated waves with a Garssenvelope will be

modeled:

2

1 trearc (X) = aexp[—i(—zj cos(Kx) (2.27)

wherel — characteristic size of the wave packet (envglapdK, — carrier wave number.
In all cases considered beldy = 0.07 nf, it corresponds to the length of individual

wave of approximately 90 m.
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By changind, we actually change the number of waves ("sistansthe abnormal

group.

The parametea in the linear theory plays a role of a normalizilagtor that helps to
"keep" the amplitude of the wave packet the sanaiods forms of abnormally large
waves are shown in Fig. 2.3, and their evolutioh e discussed in this section. There
are one, two, three, and four "sisters" (the nunabésisters” corresponds to the number
of crests above the zero water level). It is im@orto mention that degpoughs can be
considered as freak wave of negative polafitye length of wave packets is changing
from 200 to 800 m in our calculations, and its pesiamplitude is equal to 0.6 m. The
steepness of the anomalous wave in this casefisienfly small (0.042), which is why

such waves can be considered in the frameworkaexdn theory.
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Figure 2.4 — initial forms of abnormal wave packets
a — «one sister» (a=0.72m, | =50 m); b — «twstais» (a = 0.8 m, | =80 m); c —
«three sisters» (a = 0.59 m, | = 160 m); d — «feisters» (a =-0.62 m, | = 200 m).

During the time the perturbation (2.27) is transfed into a wave packet due to
dispersion of water waves, as shown in Fig. 2.5aféime moment of 50 seconds. The
wave packets for different initial perturbationshbee similarly. Wave trains are

stretched in space due to dispersion, the numbeardofidual waves increases linearly
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with time, and packet amplitude decreases with t{@telarge times as*? [Uizem,
1977).

At the initial times due to interference proces®smaximum positive amplitude
of the packet may even grow up and be changed moitally (Fig. 2.6). "Three sisters"
are spreading out into space slower than "onerSidige to a decrease of dispersion.

From these considerations the lifetime is growinthwncreasing wave numbers in the

group.
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Figure 2.5 — Shape of different wave packets in the mbaiéi® seconds.
a — «one sister», b — «two sisters», ¢ — «thraersis d — «four sisters».

The obtained above solutions show the evolutiothefwave packet on a perfectly
smooth surface. In this case, formally the lifetioidreak waves are equal to infinity. If
it is assumed that there is a threshold of waterwasibility, the lifetime becomes finite.
For example, consider three critical values of tik@ve amplitude when the wave
becomes "invisible": 0.3, 0.4 and 0.5 m (a moreueatte determination of the minimum
observed wave heights should take into accountbdmekground wind waves - see.

below). It is obvious that the lifetimes of abnoimaves will also be changed.
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Figure 2.6 — The changing of the maximum positive digptent of water surface over

the time, 1 — «one sister», 2 — «two sisters»«gree sisters», 4 — «four sisters».

Fig. 2.7 shows that with increasing the number ev&s in the initial group’s
wave lifetime increases with the square of the ayemumber of waves; more precisely

the exponent in the regression curves vary frontd. I7.8.
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Figure 2.7 — Dependence of freak wave lifetimes and dneber of waves for different
critical threshold values of visibility (the criat amplitude of the "visible" waves, m: 1 -

level of 0.3, 2 - 0.4, 3 - 0.5. The dashed linesragression curves).

The value of freak wave lifetimes in the framewark deterministic problems
strongly depends their "level of visibility". It isnore important to understand the
influence of nonlinearity on the value of the lileé and the applicability of linear theory

to the description of the formation of abnormal esvin the article [Shemer et al, 2007],
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there are descriptions of a laboratory experimemd aumerical simulations of the
dispersive focusing of the wave packet in the frapor& of the nonlinear theory.
It is shown that the freak wave lifetime is abofitl-3 minutes (steepness is 0.2-0.3).
The same estimation follows from our results f@irgyle wave. Taking this into account
we hope that our estimations of lifetimes of abrarmaves of different shapes (from

fig. 2.7) are the same for nonlinear theory.

Swell waves propagate in the background of windesasaused by the action of
local wind. We assume that the wind is weak encamth it generates waves with small
amplitudes, thus that abnormal swell waves ardisn the background. The interaction
time of wind with waves is large enough (it is deimed by the ratio of the water
density to the air density, which could takes hp{iKharif et al. 2008, 2009] and it is
much longer than the lifetime of freak waves (a femutes, as we will see below). Thus

we will not take into account winds in the model.

However, wind determines the distribution of wavengents, in particular, the
spectrum, amplitude, and the carrier frequencyaAspproximation of the spectrum of
wind waves here we use the Pearson-Moskowitz spacfor developed waves, it
depends only on the wind speed [Trubkin, 2007]. Pearson-Moskowitz spectrum
describes the frequency spectrum at any pointwieuteed a spatial spectrum. In the case
of small amplitude unidirectional waves, the spa@ectrum is easy to calculate from

the frequency spectrum by using the dispersioriosia

S(K = 2°‘k3 exp{— S?kz} , @)2

wherea =8.1010°%; B = 0.74; U — wind velocity. The spatial spectrum of wind waver

wind speed of 4.3 m/s is presented in fig. 2.8.
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Figure 2.8 - spectrum of wind waves for wind speed of 43=m/s.

In this case, random wind wave fields @eéned in the same way as the previous
paragraph. Thus there is no need to go into furthetail here. Wind waves are
characterized by the significant wave height, whecefined as the average height of the
largest one third of the waves. In the approximmatid a Gaussian distribution of wind
waves the significant wave height can be definefaskin et Pelonovsky, 2004; Kharif
et al, 2009]

H.=40 (2.29)

wherec is a dispersion, founded from
o] U 4
0 = [ S(K) dk= 2.745103?. (2.30)
0

This implies the following approximate formula fitve significant wave height

2
H, =029 (2.30)
g
Our calculations will be done for the wind veloclty= 4.3 m/s, when the linear
theory can be applied (the corresponding estimatesliscussed below). The significant
wave height iHs = 0.38 m for such velocity. It is more conveniémtuse significant

wave amplitudeas =H4/2 = 0.19 m.

The central wavenumber in wave spectrumkjs= 0.4 m' corresponds to a

wavelength o\ = 15.7 m (substantially smaller than swell wavgtah
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The fundamental wave steepness, defined by a mignifamplitude Kyas = 0.076),
is small enough in the framework of the Pearsonkdwosgtz, hence linear theory can be

applied.

The process of freak wave evolution in wind wawesansidered below. Length of
wind waves and swell waves differ about 6 timeskin@iit easy to separate them by the
methods of spectral analysis. Group velocitieseditis well (in about 2.5 times), thus
during the time these wave systems overlap eadr etveral times with different phases

and amplitudes.

The amplitude criteria are chosen as a criteriafrebk waves [Kurkin et
Pelinovsky, 2004; Kharif et al, 2009]
a; >2a,=H, (2.32)
all the waves with an amplitude greater than 38 amm considered as freak waves,

regardless of their origin (swell or wind wave).

The superposition of deterministic swell waves T2 &ith a random wind wave is
shown in Fig. 2.9 for a fixed set of phases fortthee moment 0 s (the moment of freak

wave formation).

The swell waves transform into wave packets dudispersion, the number of
individual waves grows, and the amplitudes are cedu Freak waves in wind wave
fields can appear as well (as shown below), andl #meplitudes exceed a critical value
as; = 0.38 m.
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Figure 2.9 — freak waves in a wind wave field (t=0)
a — «one sister», | = 35 m; b — «two sisters», |G=i; ¢ — «three sisters», | =110 m; d —

«four sisters», | = 140 m (I — characteristic valokthe wave-packet envelope).

Space-timex - f) diagrams are a good way to study the wave ewariudince they
make it easy to separate swell and wind waves mgowith different speeds. This
method is widely used for the analysis of dispersmave packets. Space-time diagrams
for all considered forms of abnormal swells arevalman Fig. 2.10. The planes of wave
fields exceeded the amplitudes of freak waaes 0.38 m are presented in the diagrams.
The clearly observed bright line starting from tbegin of the coordinate system
corresponds to the anomalous swell wave transf@rmmirthe wind wave field. This line
is extended from the moment of time 4000 % at0 (in cases ¢ and d) due to the periodic
boundary conditions used in the calculation, yepeas/iously mentioned, we will not
analyze such long times. A significant number afd@mly appearing single points and
short lines appeared outside of bright line. Thepalof these lines and single points

differ from the slope of the main line, thus frea&ves appear mainly in wind wave field.
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It is important to mention that the "natural" frealaves in the wind wave field
occur frequently in accordance with the predictiohshe linear statistical theory based
on the Rayleigh distribution. Space-time diagramews that the number freak waves
depends on the computational domain size - whiahillgpoorly investigated. Lastly, the

diagrams are similar qualitatively for differenttial set of random phases.

The "right" and "left" diagrams in Fig. 2.10, cap®and to two realizations of
wind waves, which differ slightly in general. Whilee localization of abnormal waves in
the background is varied, "lines" of freak waveséalmost the same intensity. The
space-time diagrams can be used for the estimafitnreak wave lifetimes. Lifetimes of
freak waves are random due to the random natureiraf waves. Even the lifetime of
abnormal swell wave is also changing because tigihtbralmost continuous line time

becomes discontinuous after some time (Fig. 2.10).

Using the amplitude criteria in equation (2.32), faend that the anomalous wave
"one sister" disappears in about 4-8 minutes, '$8ters" - 30-40 minutes, "three sisters"

- 60-70 min, and "four sisters" - more than 2 hours

These values are higher than the lifetimes of detestic signals, where the
threshold of visibility was selected artificialliiowever, the tendency of increasing of
freak wave lifetimes with the growth of number nflividual waves in the wave packet is
saved in both cases. The values of freak waveniést are unreal in some sense, because
the lifetime depends on the ratio between the shatiht and wave background. In our
case, the amplitude of the anomalous swell waserhts be sufficiently large (0.6 m),

and a,, /a.is about 3.2.
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Figure 2.10 — space-time diagrams

a — «one sister»; b — «two sisters»; ¢ — «threeessst; d — «four sisters».
The left and right diagrams correspond to two défe realizations of wind waves.

Such waves are rarely observed on the ocean sutfase consider only wave
amplitudes that are very large, three times hidgten large amplitude waves, the number
of such waves is much less on the space-time dra@ffeg. 2.11). Virtually all "natural”

freak waves disappear, and only noticeable blurimgmalously large swell.

The number of waves which exceed the significantesMaeight by three times is
sufficiently small in the space-time diagrams (Fiyll). All "natural" freak waves

disappear, and only the transforming of abnormalliswaves remains. Freak waves with

ala, = 2.2, 2.7 should be observed more frequently. Eitp shows the cuts of the wave

field (on the level ofa/8,=2) in the case of evolution of "one sister" forei different
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swell amplitudes at the initial moment, correspogdio the formation of freak waves.

The larger initial amplitude which will be longexaeed the thresholé, .
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Figure 2.11 — 2D projection (u(x,t) = const) of veafield at the level of 3a
a — «one sister»; b — «two sisters»; ¢ — «threeessst; d — «four sisters».

It is difficult to say that when the freak wavedisappeared in wind wave field,
which has its "own" freak waves, we can estimadifietime. Thus, Wherﬁl/aS =22
(Fig. 2.12), the time at which the freak wave disappears- rin, in case o/, =
2.7 (Fig. 2.1B) — 2-3 min, and in the case 8f&, = 3.2 (Fig. 2.12) — 6—7 min.

The same figures can be given for abnormal swethefforms of “two, three and
four sisters". They have the same dynamics; jusnsity and width of lines will be

changed.

In case of “two sisters” for the ratios @f 8, =2.2, 2.7 and 3.2 the average times

of freak wave disappearances are 9, 15 an 35 nsimetgpectively; in case of «three
sisters» — 15, 50 and 80 minutes, in case of «$@iers» the lifetime exceeds 2 hours,

and such long-living waves are difficult to callnaibmal.
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Figure 2.12 - 2D projections of wave field in cage«one sister» evolution for different

values ofi/a,: a—ala,=2.2;b-ala, =27;c—ala, =3.2.

The data of freak wave lifetimes are taken fromdéscriptions of the sailors who
report from what distance they can see the abnomaaé. This is inconsistent because it
Is obvious that the visibility from a ship deperus the weather conditions. Thus we

assume that a freak wave may be visible at a adistah500 meters from the ship.

Then, according to the diagrams, the total lifetife@ppearance + wave
disappearance) of all types of swell waves is aldoatinutes (this estimation is made
based on the condition that the ship is located distance of 500 m from the wave
formation). Swell speed, calculated from the slape the space-time diagrams, is
approximately 5.8 m/s. Standard formula for theugreelocity of the wave packet in
deep water

c, = 05,97k, , (2.33)

gives the value equal to 6 m/s, it is close todinect estimation of swell speed.

The wave covers a distance of 1000 m (500 m — bef@ve apogee and 500 m —
after), in approximately 3 minutes. Which is smatlgan visual estimation of 4 min. The
lifetime may vary depending on the ship positiomafation to the wave "epicenter”. For

example, at a distance of 20 km swell wave packatready quite wide and a 1 km freak
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wave passes for 15 min (Fig. 2.10d, left side).sThiuthe ship is close to the "epicenter”,
the abnormal waves propagate with the largest &mdgj but they have a shorter
duration; conversely, if the ship is far from thepicenter”, the amplitude of the freak
waves are relatively small, but the ship will shd&e much longer (at large distances

wave packet will be wider due to dispersion).

It is important to mention that when the depth dases the lifetime of the freak

wave increases, and it gives a hope for the padisgibf early detection in coastal areas.

Estimations of the lifetimes of abnormally largeetivwaves in wind wave fields
of wind waves are given in the artideG. Shurgalina, E.N. Pelinovsky Manifestation
of abnormal swell on weak wind waves Fundamental ahApplied Hydrophysics.
2012, Vol. 5Ne 1, 77-88.
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2.4 Wave interaction with a vertical barrier

Presently the possibility of freak wave appearancear the coast provokes
particular interest. Such waves are quite a swptts many people spending their
holidays near the water. A wave of about 9 feeth@dstwo people off from the pier in
South Africa on August 26, 2005 [Kharif et al., 2DQFig. 2.13). On February 14, 2010,
13 people were washed off from a concrete paraypetthe ocean by two large waves,
and many of them got fractures and bruises. It Gapg near San Francisco (Half Moon
Bay), where about 200 spectators were watchingralsurfing competition (Fig. 2.14)
(http://www.ireport.com/docs/DOC-4091227?hpt3T2

Figure 2.14 The sudden appearance of a large wavih® shore near San Francisco (14
February 2010).

One of possible scenarios of freak wave appearaaae a vertical barrier based

on the mechanism of dispersive focusing will besidered in this paragraph.
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Usually the problem of freak waves is discusse@ndigg the open ocean due to
the obvious danger to ships and oil and gas plagsoHowever freak waves are found in
the coastal zone as well, and their statistics gamhraphical distribution during 2006-
2010 can be found in [Nikolkina & Didenkulova, 2012012]. Thus particular interest
must be devoted to the possibility of freak wavppearing near steep coast, cliffs or

special protective walls, where people do not ekffecemergence of dangerous waves.

The geometry of this problem is shown in Fig. 2B wave approaches the wall

from the right. The water depth is large enougbawsider the waves as linear.

——

wall

0 ¢
Figure 2.15 — geometry of the problem.

A mathematical model of this problem is similarthe model described in section
2.2. Since waves reflect from the wall, it is nexa@y to consider the superposition of the

opposing waves, thus their horizontal velocityhat wall is equal to zero.
n(xt) = j [A(K)sin(at) + B(k) cos(at)|coskx)dk . (2.34)

Expressions for the components of the particle aiglp can be found from potential

d(X,z,t)

W(X,z,t) = Ta,{A(k) cos(at) — B(k)sin(at)|coskx) exp(lk | 2dk, (2.35)

u(xzt) = Tw[A(k) cos(at) — B(k)sin(at)[sin(kx) exp(k | 2dk, (2.36)

From equation (2.36) it is clearly seen that thezomtal velocity at the wall is zero at

any time; and it is used in equation (2.34).
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Solutions to equations (2.34) - (2.36) for a fixeelquency describe a standing
wave. Fourier superposition of standing waves ¢sm describe a complex system of the
wave approaching the wall, and after its reflectibime formula could be rewritten (2.34),

introducing amplitude and phase spectrum

n(x,t) = T[C(k)sin[ax ~ ¢(K)]]cosx)dk, (2.37)

n(xt) = %TC(k)[sin[ax +kx = (k)] +sin(at — kx— g (k)]dk . (2.38)

The terms appearing in (2.38), have a clear phlysieaning, the first of them

n(xt) = TA(k)sin[aI +kx— @(K)]dk (2.39)

represents a wall approaching to the vertical (rateA = C/2), and the second one

n(x.t) = jA(k)sin[ax - kx - @(k)]dk (2.40)
is a reflected wave. Both waves can be writtenmmoae compact form
n.(xt)= jA(k) explet + kx)dk. (2.41)

From a physical point of view, the interaction ciwes with a wall is equivalent to
the interaction of two identical waves, or wave ks, moving towards each other. In
this case, the boundary condition on the wall @feality of horizontal velocity to zero)

is performed automatically.

As in the previous sections, the initial conditioiltg the time of freak wave
formation on a wall can be set and the procestssafdcay into two waves propagating in
different directions can be considered. The resmglgolution in the half-space &f> 0

after inverting time and space will demonstratefdrenation of freak waves.

A Gaussian impulse will be chosen as an anomal@awewear the vertical wall.

In fact, the "half" of the Gaussian pulse>(0) is expected to be a freak wave near the
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wall. The shape of the wave packets at differentetisionless times are shown in Fig.
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Figure 2.16 - the evolution of the initial Gaussiampulse in deep water after a long time

(the numbers are the dimensionless times).

The integral (2.41) is a superposition of waves imgwn opposite directions and
is calculated numerically. Evolution of the wavefoat short times is shown on Fig.
2.17. Initially, a positive pulse (crest) is tramshed into sign-variable wave and then

into a wave trough (depression), and then into weaia.
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Let us suppose that in a random wave field thera aéeterministic frequency-
modulated packet of small amplitude, as describedva In this case, a random
disturbance does not change its energy average,tl@ndgrobability of large wave
occurrence is small in relatively small times. Aseault, the initial wave field "looks"
like purely random, and then a high ridge grows auer time disappears into random
waves again. Such processes of interference ofndielistic and random fields have
already been discussed in paragraphs 2 and 3,0bdidma single wave formation at the
wall in deep water. Non-linearity, if it is smatlannot prevent dispersion focusing of a
deterministic wave packet, thus at the first stageneglected. The wind wave field will

be presented by already known scenario, so id m@gessary to go into detail.

Superposition of deterministic and random compaesft the wave field at
different times is illustrated in Fig. 2.18, whdime is measured in seconds from the
moment of freak wave formation. The abnormal waxiste about 1 minute after its
formation at the wall. Taking that into accountsianilar process occurs when waves
approach the wall (for this it is necessary to aarsthe figures in the opposite direction
in time), thus the lifetime of the anomalous wav@lout 2 minutes. Hence it is clear that
forecasting freak waves is very difficult becauberé is no time to prepare for their

appearance on such short notice.

If a person is located on a pier, the big cresthésonly danger for him. This crest
is visible several times (2 - 4 times) for aboutsE@onds before it arrives on the coast. It
is unlikely that in this case the first low ridgedl attract a man's attention, and in fact
the freak wave will be visible for about 30 secobesore the largest wave’s arrival on
the bank.

Only directly before the pier can the observer tbe¢ wave consists of crests and
troughs and that the large wave changes oftenoiarify, so a person will feel that a
freak wave is not coming to the shore, but suddaplyears directly in front of the wall,

epitomizing the eyewitness descriptions.
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Figure 2.18 — spatial realizations of wave fielddifferent times.

The same holds true for when ships and freak weokisle at sea. This is why the
typical descriptions are: "The crews of ships do mave time to prepare for a meeting
with the danger" (Kurkin et Pelinovsky, 2004). Tiaet of the sudden appearance of the
freak waves requires mental preparation of thegumerghis analysis is performed by PhD
N. Chaikovskaya, co-author of our work [Pelinovsity al, 2011]. She specified the
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specific, purely psychological factors, such asit or asthenic emotions, the ability to
anticipate of life situations, etc. According todgovin et Karpova, 1985], activity

preparation to external stimuli occurs 0.5 - 2 selsdater (or even slower), so there is no
time to run off the bank. Therefore, it is a vemypiortant task to study the psychological

characteristics of human behavior in case a freamkews encountered.

The freak wave’s lifetime given in Fig. 2.19, whishows the maximum crest
height and trough depth in the area of 5 km afédlection from the wall. There is a
significant variation of wave height during 40 - 68conds (similar time — for waves
approaching the wall), thus a value of 1.5 - 2 rresucan be taken as the lifetime of

anomalous wave.

max and min displacement, m

Figure 2.19 — the maximal and minimal displacement.

Freak waves can become long-lived with decreasemhd Even if dispersion is
not considered, freak waves are formed due to dhnémear interaction of waves with the
wall [Pelinovsky et al, 2008]. If bottom changiriglope) is taken into account, the
interaction of the waves with the bottom will pléye role as well [Didenkulova et
Pelinovsky, 2011]. Thus, the characteristic portodifreak wave appearance near the
vertical barrier depends on a number of factorse Tirechanism described above is

implemented in case if the depth near the clifiggenough.

One possible scenario of freak wave appearanceangartical barrier based on
the mechanism of dispersive focusing is presemé&dN. Pelinovsky, E.G. Shurgalina.
Abnormal wave amplification near a vertical barrier. Fundamental and Applied
Hydrophysics, 2010, No. 4 (10), 28-37.
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2.5 Conclusion

In this chapter, the classical mechanism of disper®cusing in the linear theory
is considered. One of the scenarios of single freake appearance in the framework of
this mechanism is presented. It is demonstratediieacharacteristic lifetime of a single
freak wave is about two minutes for typical corati8 at sea. It is noted that during this
time the wave quickly (in about 10 seconds) chanigesshape from the hump to
depression and vice versa. That is why the diffjcoff freak wave forecast is obvious
even if it is seen at a relatively large distanCee lifetimes of freak waves of different
shapes - "one, two, three and four sisters" aré¢yzead in the framework of dispersion

mechanisms focusing of wave packets.

Scenarios of freak wave appearances near verfitahie discussed. In shallow
water, a wave’s shape is changing slower than iepele water because of small
dispersion. This means that an observer will séee@ak wake approaching the coast,
increasing the height and almost conserving itspshdn this case, it seems that
prediction of freak wave appearance is possiblé parallels tsunami wave prediction
methods. Waves are usually highly nonlinear in Ishalwater, and this will be

considered in the next chapter.
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Chapter 3
Two-soliton interactions in nonlinear models of lag water waves
3.1 Introductory remarks

3.2 Observation of solitons in the coastal zone anthe basic
equations

3.3 Two-soliton interactions in the framework of the Korteweg — de
Vries equation

3.4 Two-soliton interactions in the framework of tre modified
Korteweg — de Vries equation

3.5 Conclusion
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3.1 Introductory remarks

The dynamics of waves in shallow water are funddatgndifferent than the
behavior of waves in deep water. From a physicaltpd view, this is due to decreasing
of dispersion roles provided that the individualves live long enough. On the other
hand nonlinearity becomes very strong in shallowtewasince the wave height is
comparable to the depth. This is especially nokiteean case of wave runup on the shore.
Solitary waves (solitons), which are often obserwvethe coastal area, provoke particular

interest.

This chapter is devoted to the features of twok@olinteractions in the framework
of the Korteweg de - Vries equation and the modificorteweg de - Vries equation
which are used to describe the surface and intgna&ity waves in shallow water. Some
data observations of soliton groups (undular boaesl) internal solitons in natural bodies
are presented in 83.2. The criterion of transitainbreaking bore to undular bore,

formerly known only in the literature of laboratatgta, is analyzed.

Known in the literature of laboratory data, thetemibn of transforming of
breaking bore to undular bore is particularly anatl Here we analyze the field data to
test the validity of this criterion in natural wede This criterion is necessary for the
selection of an adequate physical and mathematiodel of wave motion. Two-soliton

interactions in the framework of the Korteweg -\@tees equation are studied in §3.3.

In this classical problem of theoretical physicsl aonlinear wave theory, we
focused on the study of the moments of the wauel,fiwhich has not been done in
previously, and therefore cannot be found in previbterature. Features of two-soliton
interactions in the framework of the modified Kaveg - de Vries equation, commonly
used in the theory of internal waves, are showgBid. These two-soliton interactions are
elementary acts of soliton turbulence and they plaignificant role in multi-soliton field
dynamics, which will be demonstrated in Chapteflen the results are summarized in

the conclusion.
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3.2 Observation of solitons in the coastal zone anthe basic
equations

In the coastal zone wind waves are often presesgesymmetrical waves and
their crests are separated by extended troughsn Eme point of view of the shallow
water theory (Korteweg-de Vries equation or a systd Boussinesq) [Zakharov et al.,
1980, Newell, 1985l.amb, 1983; Kudriashov, 2008], such waves are dalleidal and
when the distance from the crests is large enocrghidal waves consist of a sequence of
solitary waves called solitons. Frequently they barobserved when a tidal bore enters a

river estuary and transforms into a braking bos@lfaulic jump) or an undular bore.

Wonderful photos of such bores are collected enldbok [Chanson, 2012] and
a few of them are shown on Fig. 3.1. Some of theweha very regular structure, but
others are irregular (see instrumental record gn ¥il, taken from the article [Brocchini
and Gentile, 2001]). The soliton nature of the wéedds in the coastal zone, where
waves with sufficiently large amplitudes can appéars already been mentioned in this
article. This example shows the existence of figakes in a soliton field, and to explain

them a special approach is required.

a) Tidal bore on Selyun River (France), 19 Septembé82There is a "wavy"
transverse profile of the tidal wave caused byptesence of shoals and bars.

Propagation direction - from the left to the right.
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b) Undulating bore on the river Dordogne (Franc2y, September 2000.

c) Tidal bore on the river Severn (UK), February, 2009. There are various forms of
the bore: the breaking part near the coast anchim ¢hallows, and undular bore on

deeper water.
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d) Instrumental wave record in the coastal zone.
Figure 3.1 — wave forms in the coastal zone.

However, in addition to undular bores (represertgda set of solitons) in
shallow water breaking bores can exist naturallwek. Frequently, they are found close
to each other in one place, as illustrated in thg. B.2, taken from the site

(www.surfalaska.nét

Figure 3.2 Photo of the bore in Cook Inlet, Alaska.
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If in the center where the depth is greater theran undular bore, closer to the
shores there is a changing regime with breaking lappearance. The formation of both
types of bores is clear from physical consideratidhthe wave non-linearity is small
enough, then dispersion prevents breaking of the Wave and promotes the formation
of undular oscillations. This process is qualitalyv well described by the known
solutions of the Korteweg-de Vries equation [Zakivaet al., 1980, Newell, 1985amb,
1983]. If the nonlinearity is large enough, thepéision can neither prevent the rapid
steepening of the wave front nor its breaking. Tincess is also well understood in the
framework of a hyperbolic system of shallow watgtocker, 1959].

Unfortunately, the most well-known applied numericedels of wave dynamics
in the coastal zone cannot take into account bdthhthese effects. Shallow water

equations are commonly used to describe tidal wamdg€sunami waves.

The breaking bores can be described by the nunhemcalel CLAWPACK
[Pelinovsky et Rodin, 2012]. In other models, faample TUNAMI and AMI DANCE,
the smoothing of the wave front is carried out lbyraducing horizontal viscosity
(diffusion); while in real waters the spatial steplarge enough which is why the
nonlinear wave deformation is not that noticeaBlghjbo et al. 2006]. On the other hand,
in new models of nonlinear dispersive theory (Boesg equation of different order) the
undular bore is well-prescribed, particularly, ahgrithe 2004 Indian Ocean Tsunami
[Dao & Tkalich, 2007; Grue et al, 2008], but waveedking was not observed there.
Nonlinear dispersive models do not have signifigaetformance and, hence, they are
rarely applied to the tsunami problem.

This is precisely why a simple criterion of legidny to use a particular model for
describing the real situation is needed. Suchr@itae known in the results of numerous
laboratory experiments under idealized conditiohslimensional flow [Stocker, 1959;
Docherty & Chanson, 2010; Favre, 1935; Nakamur&319eles Da Silva & Peregrine,
1990].

However these criteria have not been tested byieltedata of wave processes in
the coastal zone. Therefore the analysis of figth,dwhich allows one to conclude the

applicability of the criteria obtained in the lahtory conditions, will be carried out
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further. It may help to perform a preliminary zogiof a water reservoir by the type of

waves propagating there.

There is a fairly large collection of tidal bore&ieh form when tidal waves enter
a river. The classical tidal bore example is a borethe river Severn in England
downstream from the city of Gloucester, which halsegght above two meters during
spring tide. Tidal bores are periodic, and this esak relatively easy to collect a large
amount of data. Many of them are presented in tbhekb[Chanson, 2011] with
quantitative parameters. Field data of recordeal tidres all over the world is collected

and presented in Table 3.1.

Table 3.1Field data of tidal bore¢Brealing -B, undular -U).

Ne River, date h,m H,m H/h Bor Reference
e
type
1 Seine River, France 1 1.9 19 B [Chanson, 2008]

2 Sélune River, France0.38| 0.72 | 189 |B [Mouaze et al., 2010]
24/09/10

3 Sélune River, France0.33| 0.74 | 2.25 B [Mouaze et al., 2010]
25/09/10

4 Garonne River, France3.l1 | 4.2 1.35 U [Bonneton et al., 2011]
Podensac, 10/09/10

5 Garonne River, Francel.85| 2.1 1.13 U [Bonneton et al., 2011
Podensac, 4/09/10

e

6 Qiantang River, Ching,1 4 4 B [Cun-Hong and Hait
October 2007 Yan, 2010]

7 Rio Mearim, Brazil,|1.8 | 2.7 1.5 | U/B|[Kjerfve and Ferreira,
30/01/91 1993]

8 Dee river, Great Britain,0.8 | 1.05 | 1.3 | U [Simpson et al., 2004]
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15/05/2002

9 Garonne river, France, | 1.74| 2.3 132 U [Simon et al., 2011]

Arcins channel, 10/09/10

10 | Dee river, Great Britain,1 1.8 1.8 | U [Chanson, 2009]
22/09/72

11 | Dordogne river, Francel.12| 1.602| 1.43 U [Chanson, 2011]
26/04/90

12 |Daly river, Australia, 1.5 | 1.78 | 1.19 U [Chanson, 2011]
2/06/2003

13 | Qiantang River, Ching,7.12| 790 | 1.1 | U [Zhu, 2011]
19/09/09

14 | Garonne River, Franceg.65| 3.17 | 1.2| U [Reungoat et al., 2014
7/06/12

15 | Garonne River at Arcins,2.05| 2.35 | 1.15 U [Reungoat et al., 2014]
France, 19/10/13

16 | Dee River, Great Britain,0.72 | 1.17 | 1.63 B | [Simpson et al., 2004],
6/09/03 [Reungoat et al., 2014]

17 | Sée River, France0.9 | 1.46 | 1.62 U [Reungoat et al., 2014]
7/05/12 [Furgerot et al., 2013]

Similar measurements around the same place, datkcanditions that were
approximately the same were excluded. Therefore, hope that our sample is
representative. Input parameters are the bore bgre, height from the bottonij, and
the water depth in front of borg)(

The total number of data points is 17, includingases of breaking bores, 11

cases of undular bores, and one intermediate.
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The criteria available in the literature are lohea various parameters of the
wave stream and the simplest of them use the ddtibore height measured from the
bottom @), to the undisturbed water depth).(In this paper [Favre, 1935] the following
criterion existsH/h <1.28 corresponding to the undular bdféh> 1.75 corresponding to
the breaking bore (hydraulic jump). The intermesliatgime lies between these cases,

when both effects may occur — the breaking andedsépe transformation.

In the book [Stocker, 1959] there is a more generékrion which does not
include any intermediate regimi/h < 1.5 corresponding to the undular bok¢h > 1.5
corresponding to the breaking bore. In the expeartaievork of Nakamura [Nakamura,
1973] one more condition is added to the Stockiera: H/h > 9 corresponding to the

case of a parabolic wave (dam destruction).

In the work [Teles Da Silva & Peregrine 1990] tmtervals of criterion are
shifted a little bit:H/h < 1.3 corresponding to the undular bokh > 1.7 corresponding
to the breaking bore. Undular bores with breakingynbe observedetween these

criterion.

The field data from the Table 3.1., can be chediethese criteria (Fig. 3.3).

Chanson Favre / Teles da Silva

1.13 1.3 1.35 1.5 1.8 1.9 4

H/h

1.1 1.19 1.32 1.43

. undular bore Stocker/Nakamura
@ breaking bore

.' two cases for given H/h

Figure 3.3 Distribution of observed data by the graeter H/h.

As we can see, undular and breaking bores are seplrated by threshold
H/h=1.5, except for one case wik/h=1.8, which is on the threshold of the interval of
Favre - Teles da Silva. In general we can saythiwatriterionH/h=1.5 may be used for a
rough assessment of the wave motion type, and @diogby, a suitable choice of the

numerical model to describe the wave dynamics. Wealgo assume thdt/h <1.5, and
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even H/h<< 1.5, which allows study of the undular bore eaming small-amplitude

solitons. This statement applies to the surfaceewan a shallow sea.

This study is published in the following articl&.N. Pelinovsky, E.G.
Shurgalina, Rodin A.A. On the criteria of the transition from breaking bore to

undular bore. Izvestiya, Atmospheric and Oceanic Pysics, 2015, 51 (2).

Solitons, however, exist not only on the water acef but also inside the fluid
if it is stratified. This situation is typical fonatural reservoirs when the effects of
turbulent mixing are weak. Internal gravity wavee af the same nature as surface
gravity waves, but for them the gravity is almoatamced by the Archimedes force, thus
the reduced gravitational acceleration is approteitgathree orders of magnitude less
than for surface waves. Internal waves exist in ¢ase of stable ocean stratification,
where the average water density increases towaedbsdttom. Internal waves have been
described theoretically in the middle of the XIXntary, and found in the ocean in the
early XX century, but it took nearly another cegtwo understand the importance of

internal waves in the ocean [Miropolsky, 1981; Kaay and Sabinin, 1992].

The height of a typical oceanic internal wave ssially much larger than the
typical height of a surface ocean wave; it becoraeger when the stability of density
water stratification becomes less. Internal waveseoved in the ocean have amplitudes
around 5-20 m, but sometimes they can be greatass The internal solitons in the
Andaman Sea have speeds up to 2.0 m/s and ampglitydeo 60 m [Osborne & Burch,
1980]. Although there are other mechanisms of maewave generation such as wind
circulation and unstable flows, the main mecham$rstrong internal wave generation is
the transformation of the barotropic tidal current the sharp drop depth (edge of the

continental shelf).

In the presence of strong tidal current, large laoge waves occur exactly at
the edge of continental flow. In the vertical plaaueh waves look like a single variation
of the pycnocline depth (areas of the most drametianges of water density) of
sufficiently large value (up to 15-20 m). Their @elkies are about 0.6-1.0 m/s. Then the
vertical distribution of density is restored witranfew hours and the initial perturbation,
propagated along the pycnocline, is divided intawanmber of consecutive solitons,

forming a train consisting of leading soliton - tla@gest and the quickest wave in the
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wave train, and the wave tail - a group of smadpdrsive waves in the end of the train

(undular bore or solibor).

Various satellite images of internal waves are showFig. 3.4 - 3.7.

Figure 3.4 Internal waves in a freshwater Lake Lgamn the radar image of spacecraft
"Almaz-1» (26.06.91, 04:54 UTC). © NGO engineering.

Figure 3.5 Internal waves in the Pacific Ocean niéer west coast of the United States
(Washington) on radar imagery of satellite Radar®08.1999, 01:55 UTC). There are
two types of internal waves: one is generated bytitte and propagates towards the
shore, the other — by a powerful motion of ColonfRirer and propagates into the open

ocean. © CSA
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Figure 3.6 Eight packages of internal waves in the S@itima Sea on radar images of
Radarsat (26.04.1998) © CSA

Figure 3.7 Internal waves in Dongsha Atoll in treugh China Sea on the radar images
ERS-2 (23.06.1998, 14:41 UTC). © ESA
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Although a large amount of experimental materiakddlected, internal waves
have not been studied enough. Particularly the am@sms of generation of various
internal waves, the conditions of their propagaaol transformation, dynamic stability
and energy dissipation are not yet clear. Satedlitd radar measurements allow us to
understand the spatial characteristics of intenalves, their evolution, and their
dynamics. Due to remote methods the role of noatineffects in internal wave

evolutions becomes obvious.

Currently, the atlases and catalogs of internalesaare created based on satellite
records (see. eg, [Atlas, 2004]). Several reviewsinternal solitons are published
[Ostrovsky & Stepanyants, 1989, 2005; Apel et2007]. This confirms that the solitons
are an integral part of the wave dynamics on theéase and inside of the ocean.

Therefore, the study of solitons and their intaoaxs is an important task.

Let us briefly present the basic equations desggilplitons in a shallow sea. Our
analysis will be based on the family of the Kortgwse Vries equation. For surface
waves it was derived in 1895 in the pioneering wairikKorteweg and de Vries, and then
rewritten again in [Korteweg & de Vries, 1895; Kargn, 1973]. The Korteweg - de

Vries equation has the following form

on. _on_ 0N

L van—L+L—L=0

ar o 'Bax3 ’ (8.1

a=3 /3=C°h2 3.2
oh 6 ' (3:2)

wherec, =,/gh(his a constant water depth)(x,7) is a displacement of water levelis
a coordinate andis time.

The coefficients@ and [ are called the coefficients of nonlinearity and

dispersion. As seen from (3.2) with depth decrepgime nonlinearity grows while
dispersion decreases, thus the nonlinear effeetsnasst strongly manifested in shallow

water.

The canonical form of the Korteweg - de Vries eguatcould be obtained by
using the following substitutions:
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- _an
t=[r, U_G,B’ (B.3

and then the equation (3.1) takes the followingesisionless form
—+BU—+—— =0, (3.4)

In the majority of mathematical and physical pap#gsoted to the dynamics of
weakly nonlinear waves in weakly dispersive metia Korteweg - de Vries equation is
written in present form [Zakharov et al., 1980; grh983, Newell, 1985].

The Korteweg - de Vries equation can also desdtigedistribution of weakly
nonlinear internal waves close to the long-waveletignit. However for internal waves
the situation is much richer. In this case the pla}smeaning of the wave function
n(x,r)in (3.1) is as follows: in the zero-order perturtattheory, which describes the
linear internal waves without dispersion, the Jalea are separated [Pelinovsky et al.,
2000; Grimshaw et al., 2002] and the verticaptiicement of isopycnals (lines of equal

density) can be represented in the form:

{6y, 1) =n(X1)P(y). gB.

There is a new vertical coordingtand @(y) is a modal function defining the
distribution of waves with the depth. It is foundrh the solution of the boundary value
problem (Sturm-Liouville problem) with zero boungaonditions at the bottony & - h)
and on the free surface € 0):

d’o N NZ(y)
dy> ¢

whereh is a water depth (the origin of coordinates iasdged with the water surface),

®=0, P0)=D(-h) =0, (3.6)

N(y) is a Brunt-Vaisala frequency (buoyancy), whichdstermined by the vertical

distribution of the water densijg(y):

N(y) = _%, (3.7)
' pody
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¢ — eigenvalues of the Sturm - Liouville problem6{3.which determines the linear
approximation of the long internal wave propagatspeed. It is easy to show that the
boundary value problem (3.6) has a discrete spmctwith different eigenvalues
[Mitropolsky, 1981]. In this model, each mode oftemal waves propagate
independently, thus we will not continue to use ithdex to select a specific mode of
internal waves. Schematic representations of tleg/dmcy frequency with the depth in
the ocean are shown on Fig. 3.8. The eigenfuncgtioakulated according to (3.6),
describing the distribution of isopycnals with ttepth (modes) taken from [Talipova et

al., 1999] are also shown.

0 N IR R DR . ) 0 . i
N(@y) D(y)
| Mode 2
1 ] Mode 1
- -h -h

Figure 3.8 Buoyancy frequency and mode functiomstefnal waves (two modes).

The normalization condition on the functiciy): @,.x = 1 is used, thus the
function 77(x,t) describes the vertical isopycnal displacemert@ntaximum mode (these
maxima may be at different depths for different e®)d The Korteweg-de Vries equation
(3.1) is obtained for this function, but now itsefficients are expressed by integral
expressions [Benney, 1966; Mitropolsky, 1981; Reisky et al., 2000]:

f(dcp/dyfdy
o= (3_2Cj = , (3.8)
[ ((do/ dy)*dy
‘@ ?dy
[”:(EJ : I . (3.9)
2 j(d¢/dy)2dy

60



In the special case of two-layer liquid and thei8nesq approximation (water
density changes are small) the coefficients orsthiéace (3.1) will take the simple form

of [Ostrovsky & Stepanyants, 1989]

_ [o8p hh, p-CM - _3ch-h
- Thl+h 6 2 hh, ' (3.10)

whereAp / p - density jump between the upper layer of thicknes and the lower

layer of thicknessh, .

The transition to the canonical Korteweg-de Vrigguation is similar to
equation (3.3). However, there is one fundamenifficdlty. In contradistinction to
surface waves the coefficient of quadratic nonlihga&an change sign, and even vanish,
while the dispersion coefficient is always positivihis is evident from the general
expression (3.8), and from the special case oflayer liquid. In the second case it is
evident that the zero value of nonlinearity is agkd if the thicknesses of the layers are
identical. But in this case the balance betweerimearity and dispersion is disrupted,

but they must have the same order in the framewairk®rteweg-de Vries equation.

To obtain the nonlinear evolution equations, irs thase it is necessary to
modify the asymptotic scheme. In this case thelm@arity must be considered up to the
cubic order. In the case when the coefficient efdbadratic nonlinearity is equal to zero,
the modified Korteweg-de Vries equation (mKdV) istaned for the internal waves
[Grimshaw et al, 1997]. This equation differs frahe Korteweg-de Vries equation by

the nonlinear term and has the following form:

0 0
—’7+a1/72 /i /3 (3.11)
or
The coefficient of cubic nonlinearity is defined the integral expression
2(dd/dy)* - 3(dT/dy)(d®/ dy)*]d
g, =3[ [200 )" ~3AT/ () dy Iy (3.12)

2 [(cw/dy)*ay

which includes the functioii(y), and this function is a solution of the inhomogersou
boundary value problem
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deT 32 d|(do)
2 NZ(YT == —|| — 3.13
4 eneyr =% dyl(dyn (3.13)

with zero boundary conditions at the bottom aneé garface, and with normalization of
T = 0 at the depth where the functidn= 1. The physical meaning of the functidfy) is
a nonlinear correction to the mode, thus the varticsplacement of isopycnals is defined

by the more complicated expression

¢(X,y,1) =n(x1)P(y) +n* (X 1)T(y). (3.14)

Taking into account the normalization of the fuan8 @ andT, the wave functiom(x,t)

still describes the vertical isopycnal displacenarthe maximum mode.

The sign of cubic nonlinearity coefficient is uredefrom the integral equation
(3.12). If we re-use the two-layer approximatiom fbe density, and when quadratic
nonlinearity coefficient is equal to zerb,£h,), the coefficient of cubic nonlinearity is
[Ostrovsky & Stepanyants, 1989]:

3
= 3.15
a 7 (3.15)

In this case it is negative (in fact it is negatigé any ratio of the layer
thicknesses). In the three-layer "symmetric" flaypger and lower layers have the same
thicknessh; and the same density difference between layehg),coefficient of the
guadratic nonlinearity vanishes, and the coefficieh cubic nonlinearity becomes
[Grimshaw et al, 1997]

a, = —4—3;1}{13— %j | (3.16)

The cubic nonlinearity coefficient is negative for > 9h/26 (when the middle
layer is thin and the stratification is close totayer stratification), and it is positive in
the opposite case (when the middle layer is larGa)culations of the coefficients of
guadratic and cubic nonlinearity for the real #icgtions of the Ocean are made in
[Grimshaw et al, 2007].
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Thus, in the framework of the modified Kortewege ries equation (3.11), the
dispersion coefficient is always positive, and twefficient of cubic nonlinearity can

have any sign or even be vanished for the intemaak.

If the cubic nonlinearity coefficient is not zetben a substitution similar to (3.3)

t=pr, u= 1ol (3.17)

65
allows us to get the modified Korteweg-de Vriesamn in a canonical form

ou _,0u 0u

—tou —+—=0 3.18

ot ox ox° ( )
where the sign of a nonlinear term coincides wite sign of the coefficient of cubic
nonlinearity. From a mathematical point of view theodified Korteweg-de Vries

equation with any sign of cubic nonlinearity coent can be studied as well, being
fully integrable over the Korteweg-de Vries equatidakharov et al., 1980; Lamb, 1983;

Newell, 1985].

However, nonlinear dynamics are quite different flifferent signs of the
coefficient of cubic nonlinearity. Particularly,gtequation (3.18) with a negative "cube”
doesn’'t have limited solutions (solitons) at theozpedestal, while in the case of the
positive "cube”, such solutions are available. @igramics of quasi-sinusoidal waves is
also different in these equations, particularlyhvé positive "cube" effects of modulation
instability are possible [Grimshaw et al, 2010;ipaVva, 2011], and they lead to the
appearance of direct and inverse cascades of gotrsm [Dutykh & Tobish, 2014a, b].

Primary attention will be paid to the interactioht@o solitons in the framework
of equations (3.4) and (3.18) with a positive "culethis chapter. All solitons in these
equations have exponential tails tending to zeenl¢ptal). With the help of well-known
two-soliton solutions and numerical simulation n@noperties of such interactions

affecting the moments of the wave field will be gicted.

63



3.3 Two-soliton interactions in the framework of tte Korteweg — de Vries
equation

The Korteweg - de Vries equation is completely gnéble, and the Cauchy
problem can be solved for this equation. Proposd&ardner et al, 1967] method of the
inverse scattering problem is very popular now #nsl presented in a number of books
[Newell, 1985; Zakharov et al., 1980]. Two operatoalled a Lax pair form the basis for

the Korteweg - de Vries.

Ly=Ay, Ay =y, (3.19)
where
~ 0> A 3 0 ou
L=——+u(xt). A=—4—+6u—+3—. )
v (x,t), e 3o (3.20)

The first equation in (3.19) is a stationary om&&hsional Schrddinger
equation with the potentiai(x,t), depending on the parameter that has a sensmef.ti
The second equation describes the time dependéribe solution. In the framework of
the inverse problem method, the spectrum of thedsiiger equation does not depend
on time and can be found with the initial condition the Korteweg - de Vries equation.
Discrete spectra (which are always real), if theiste determine the soliton amplitudes

that arise from given initial conditions.

The continuous spectrum describes the dispersiokegts which also arise from
the initial conditions. Although the scheme of swii finding in the frameworks of
stationary Schrodinger equation is quite simplsphtion in explicit form (eg, soliton
phases, and the amplitude of the wave packets) a a trivial task.
The task of finding the particular multi-soliton lgions of the Korteweg-de Vries
equation is easier in some sense, especially ibwartransformations like Backlund

transformation, Hirota, and Darboux are used [Lab®83, Newell, 1985].

It is important to emphasize that solitons aréstast wave formations and their
shape is preserved after the interaction with edblr and with wave packets. This is

why solitary waves are called solitons, emphasitiregwave-particle dualism.

64



Soliton research has become an independent tasktheese waves can be
isolated in measurements of wave fields. Here wesider one of the classical problems
in the theory of solitons - the interaction of taalitons. The description of this process is
given in many articles, and the main results wdsioed in the 70s [Zakharov et al.,
1980; Lax, 1968]. Nevertheless, a number of impurteatures of this interaction, which
are necessary for the understanding of solitorutarite, were lost. They are discussed in
the article:Pelinovsky E.N., Shurgalina E.G., Sergeeva A.V., Tipova T.G., El G.A,,
Grimshaw R.H.J. Two-soliton interaction as an elematary act of soliton turbulence
in integrable systems. Physics Letters A, 2013, 373-4), 272-275.
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3.4 Two-soliton interactions in the framework of the modified Korteweg
— de Vries equation

We have already mentioned the applicability of nhedified Korteweg-de Vries
(mKdV) to internal waves in the ocean previousieTmodified Korteweg-de Vries is
also used to describe wave propagation in isotropdia (for example, acoustic waves
in the plasma) [Perelman et al., 1974; Pelinovskg Sokolov, 1976; Grimshaw et al,
2005; Ruderman et al, 2008].

This family of nonlinear waves is much richer, andtead of solitons there are
breathers - nonlinear wave packets [Lamb, 1983rk€la&t al, 2000]. Meanwhile, the
analysis that we did in the article mentioned i@ pinevious paragraph was not made for
the modified Korteweg-de Vries equation. The simpteraction of two solitons has not
yet been studied. It is obvious that the pair Bxd@ons play a definitive role in the
dynamics of multi-soliton fields in the framework the modified Korteweg - de Vries
equation because of its complete integrability.sTieiwhy in this paragraph we focus on
the study of the contribution of two-soliton intetians to the wave field moments in the
framework of the modified Korteweg - de Vries egoiat A new feature in comparison

to Korteweg-de Vries equation is the existenceotifas with both polarities.

We will use the canonical form of the mKdV equat{@il1) with a positive sign

of the coefficient of cubic nonlinearity. The exaotution of this equation is a soliton:
u(x,t) = sAsecfA(x-ct-x,)], c=A (3.21)

where4 is an amplitude of solitons = +1 determines the soliton polaritg,is a soliton

velocity, andX, is a phase (initial position of the soliton).

The Mkdv-soliton is also highly localized in spaddée soliton velocity does
not depend on the soliton polarity and it alwaysvesoto the right side. The dependence
of the soliton velocity of the soliton amplitudessonger than in the Korteweg-de Vries
equation: soliton of small amplitude is moving vestpwly while large solitons move

quickly.

The two-soliton solution has a more complex stiteefAnco et al., 2011]:
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LX) =2y s.AcoshA, (x—Ab) +5,A coshi (x— At)

S5V D) +y? CoShA (x— Al — A (x— At) +coshiy (x— AD) + A(x-AD)’ =22

Yakia $¥1
= a-n

The individual soliton phases are neglediece by the conversion of time and
coordinates. When solitons are far from each athessolution of (3.22) can be presented

as the sum of two non-interacting solitons:
u(x,t) = u, (xt) +u, (xt), (3.23)

where u, , is a one-soliton solution (3.21) with amplitudgs.

The case of the KdV-solitons in the case of the ifretl Korteweg-de Vries
solitons the interaction of unipolar solitons leadsa nonlinear phase shift of faster
(higher) solitons forward to [Slunyaev and Pelingysl999; Slunyaev, 2001]:

Ax, = (21 A)In((A + A) (A - A))>0, (3.24)
and slower (lower) solitons - back on
Ax, = -2/ A)In((A - A)I(A +A,))<0. (3.25)

Thus, the nonlinear interaction leads to "repulsioihunipolar solitons from each other,
as in the Korteweg-de Vries equation. However tier solitons of different polarity the

result is opposite — the solitons attract eachrdBleinyaev, 2001].

The strongest interaction of solitons occurs attiime of their closest approach

(t = 0). The shape of the resulting pulse is easiyt from (3.22) explicitly

A coshAX) +s,A, coshfx)
S,(Y* =D +Y’ cos(A - A)x|+coshA +A)x]

u(x,0) =2y (3.26)

We assume here that the largest soliton has aiy@ogolarity, and the small

soliton can have any polarity.
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It is known that KdV-soliton impulse in the momaeaitsoliton interaction will
have a “one-humped” form (overtake interactionjhié amplitude of solitons are very
different from each other, and a “two-humped” (extafpe interaction) - if the amplitudes
are similar. Similar results can be obtained fordwKsolitons, analyzing the second

derivative of the function(x,0)atx=0:

U (%,0) o = (A - A)JAA - (A -SAF) (3.27)

In the article [Anco, 2011] a similar expression tbe modified Korteweg-de
Vries equation (3.11) is obtained, but for the cubonlinearity coefficient equal to 24

instead of 6.

From (3.27) is clear that in case of interactiohfi@eropolar solitonssf = - 1),
this value is always negative and, at least thérakepart of the resulting pulse is “one-

humped”.

In the case of unipolar solitons, the sign of theosmid derivative (3.27) depends on

% =3_—2*/5_3 ] 0382, 28)

The critical value of the ratio of soliton amplieglin the modified Korteweg-de Vries

equation differs from the similar value in the Kewieg-de Vries equation.

Thus, there are three types of soliton interactionshe modified Korteweg-de Vries
equation. For the positive solitons there are tyyes$ of interactions: overtak@,(<0.38
A;) and exchangef(> 0.38)). In this sense there is a complete analogy viaghsoliton
interaction in the framework of the Korteweg - deieg equation. In the case of
heteropolar solitons, the fast soliton always absatowly one and then is restored. This

type of interaction is called absorb-emit [Ancagt2011].

Different types of soliton interaction are showrfig. 3.9:
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Figure 3.9Different types of soliton interacti: a), SA=1, $A,=0.3, b) sA=1,
$A,=0.7 ¢) sA=1, SA=-0.3.

The field value in the central part of the resgtimpulse is easy to finfrom
(3.2) atx = 0 [Pelinovsky and Slunyaev, 1999; Slunyaev, 20

U.=A-SA, (3.29)

As in the case of KdV equation, this value corresisoto the amplitude of the resulti
impulse if it is oneaumped. Thus, the amplitude of theulting impulse increases in tl

case of heteropolar soliton interactions and dee®an the case of unipolar soli
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interactions. In the case of two-humped resultimpulse, its maximum value is not

located in the central point, and it cannot be tbfrom (3.2) analytically.

The maximum and minimum amplitudes of the resgltimpulse from the
amplitude ratio of solitons for the four types ofaractions are presented in Fig. 3.10 (the
fourth type is for heteropolar solitons when theést has a negative polarity - this case
is added for generality). It is easy to see themginy of figures 3.10a and 3.10d, as well
as 3.10b and 3.10c. This is due to the same sangplitudes, but opposite sign of both
solitons.

1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ =.max(U_. )
0.9 1.5 —max(U__)

S
N\

min(U
o
9
o
(3]

-
-
-
———
—————————————
—————————

1 08 06 04 02 0 i 02 04 0.6 0.8 1
AJA, AJA

Figure 3.10 Extremes of wave field3:positive mKdV-solitons, b) heteropolar mKdV-
solitons (bigger soliton has a positive polaritg),heteropolar mKdV-solitons (bigger

soliton has a negative polarity), d) negative mkabitons.

Thus, in the cases 3.10a and 3.10d the amplitidesaolting impulse firstly

monotonically decreases (increases) till the valyeA = 041and this result is due to the

formula (3.29). The extreme value of the maximunpktode is abodt0607|.
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Then the maximum amplitude monotonically increa@esreases) (when the
amplitudes of the second soliton are large enoughvahen the resulting impulse is
“two-humped”). This behavior is explained by theanbe of regimes from overtake to
exchange for the amplitude raid38 < A/A; < 0.43 In fact there is a complete analogy
with the dynamics of the KdV-solitons, where thé&sea transition zone between two

regimes of interaction as well.

Due to there existing only a regime of solitonenaictions, in the case of
heteropolar solitons (Fig. 3.10b, c) the curvesvafiation of positive and negative
amplitudes of the total impulse are monotonous. ifipgulse maximum at the time of
interaction on Fig. 3.10b and respectively the mumn on Fig. 3.10d, decreases
(increases) linearly with decreasing of modulushef second soliton amplitude, and it is

equal tos, A, - s, A, by analogy with (3.29).

Let us consider the integral characteristics ef itiodified Korteweg-de Vries
equation. Due to its complete integrability it has infinite number of conserved
invariants [Miura et al., 1968]. The first three which correspond to the laws of

conservation of mass, momentum and energy:

I, = [udx, (3.30)

I, = qudx, (3.31)

l, = I[u“ —uf]dx (3.32)

|, = J.{UG -5u°u? +%U§X}dx, (3.33)

These invariants are saved during the evolutiothefwave field and they are

easily found analytically for the case when theteo$ are separated in space:
l, = n’(sl + 52), (334)

1, =2(A +A,), (3.35)
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=2 (A + A7) (3.36)

vy

: (3.37)

The first invariant depends only on its polaréynd not on the amplitude of the
soliton. Its value plays an important part in theolation of the initial perturbation,
determining the number of emerging solitons anathers [Clarke et al., 2000]. Thus, in
contrast to the Korteweg-de Vries equation, heléoss arise only from the perturbation
with a mass greater than the critical value, noinflany initial perturbations of "correct"
polarity. Other invariants are positive definitedaheir values increase with increasing
amplitudes of interacted solitons regardless ofirtipwlarity. Knowledge of these
invariants is important primarily for the control mumerical solutions of the modified

Korteweg - de Vries equation.

To investigate the contribution of two-soliton erdctions to the total wave

dynamics, we will investigate the integrals (monsgiwff the type

Mn(t):Tu”(xt)dx. h=123...) (3.38)

The first two moments will be saved in time duethe integrability of the
modified Korteweg-de Vries equation. However, thard and fourth moments
corresponding to the coefficients of skewness amtbkis in the theory of turbulence are
not invariants and are changed in time (Fig. 3.11)In the case of two positive soliton
interaction the third and fourth moments are desgdaas in the analogous problem for
the KdV solitons (Fig.3.11a). Physically, this daam explained by the effect of reducing
of the resulting impulse amplitude at the momenintdraction. In case of interaction of
solitons of different polarities described by (3,2%hen the larger soliton remains
positive, and the smaller becomes negative —abmdrary; the amplitude of the resulting
impulse grows significantly, and it gives a contition to the change of third and fourth

moments. Which both increase at the moment ofaotem (Fig. 3.11b).

In the case of two negative soliton interactiaihg, third moment is negative

and at the moment of interaction is increased, taedfourth moment is reduced (Fig.
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3.11d). If the larger soliton is located on the lefgsha negative amplitude, and

smaller soliton is positive, the third moment wi#imain negative and decreases in

moment of interaction, while e fourth moment increases (Fgy11c).
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Figure 3.11Dependence of momeliM; andM, on time in case of mKdV solit
interactiona) Ai=1, A,=0.3, b) A=1, A=-0.3, ¢) A=-1, A,=0.3, d) A=-1, A,=-0.3.

For noninteracted solitons all moments can be calcu analytically

M, =7(s, +s,),

M 2 = 2(A1 + Az)'
/s
M3 :E(SlAlz +52A22)’

M, =5 (A )

(3.39)

(3.40)

(3.41)

(3.42)
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Formulas (3.39) - (3.42) determine the initial dim&l values of the moments
when solitons are separated. Thus, the sign diirdteand third moments depends on the

polarity of the solitons.
To estimate the value of moment changing durire dbliton interaction, we
consider the changing the values of the third anadth momentl;, M, depending on

the ratio of the soliton amplitudes. Heve =M pox—M; i)/ M, . There is a symmetry
for the third moments on Fig. 3.12a and 3.12d amd3(12b and 3.12c; the fourth

moments are identical to the corresponding graphs.
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Figure 3.12 Changing of third and fourth momeMé, MZ on amplitude soliton ratio:
a) positive KdV and mKdV-solitons with correspondamgplitudes, b) heteropolar
mKdV-solitons (bigger soliton has a positive pdlgyic) heteropolar mKdV-solitons

(bigger soliton has a negative polarity), d) negatmKdV-solitons.

For unipolar solitons (Fig. 3.12 a, d), the momleahavior is hon-monotonic,
and there is a regime change of soliton interastidihe value of the changing moment is

maximum for solitons with the ratid,/A; corresponding to the transition zone, and the
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changing moment in this case can reach 20% andfd0%ae third and fourth moments
respectively. Fig. 3.12a shows the correspondingesufor the KdV solitons, which are

slightly lower than the mKdV-soliton curves, but,principle, differ slightly.

In the case of heteropolar soliton interactiore tiurve behavior is changes
drastically (Fig. 3.12b, c). Curves are monotorgecduse in this case there is only one
regime of interaction. It is important to note thla¢ value of moment changes is quite
significant in case of heteropolar solitons, esplgciwhen the soliton amplitudes are

similar by the module.

Thus, the two-soliton interaction strongly infleeis the moments of the wave

field, and this effect may be important for undansting the nature of soliton turbulence.

Material from this paragraph is presented in thiclarE.N. Pelinovsky, E.G.
Shurgalina, Two-soliton interaction in the framewoiks of modified Korteweg — de
Vries equation, Radiophysics and Quantum Electronis, 2014, 57 (10).
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3.5 Conclusion

The features of two-soliton interactions in thenmieavork of the Korteweg - de
Vries equation and the modified Korteweg - de Vegsiation are studied in this chapter.
The criterion of transition of breaking bores todutar bores based on field data is
analyzed and verified. It allows us to determine &pplicability of soliton models in a

particular case.

The process of two soliton collisions is studieddetail. The possible types of
soliton interactions in the framework of both edodé is discussed. The first four
moments of the wave field, which play an importasié in the theory of turbulence, are
found. The first two of them are integrals of matior the KdV and mKdV, and they are
saved. It is shown that soliton interactions of the samé&apty lead to a decrease of the
third and fourth moments characterizing the cosedfits of skewness and kurtosis of the
wave process. On the other hand, soliton intenastaf different polarity (in the case of
the modified Korteweg-de Vries equation) lead to iacrease of these moments of
soliton field. In the case of unipolar soliton irgtetions, solitons with amplitudes
corresponding to the transition regime betweenetkehange and overtake interactions
made the greatest contribution to the dynamics amants; for heteropolar solitons (in
the case of mKdV) — the solitons with amplitudeaatlose to one made the greatest

contribution.

Thus, it is shown that two-soliton interactionsostyly affect moments of a wave

field, and it is an important factor for understeagdsoliton turbulence.
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4 Soliton turbulence in the framework of some integable long-wave
models

4.1 Introductory remarks

4.2 Nonlinear dynamics of irregular soliton ensemids in the
framework of the Korteweg — de Vries equation

4.3 Unipolar soliton gas in the framework of the mdified
Korteweg — de Vries equation

4.4 Freak waves in soliton fields in the frameworlof the modified
Korteweg — de Vries equation

4.5 Conclusion
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4.1 Introductory remarks

The theory of wave (weak) turbulemc@resently well developgddakharov et
al.,, 1992; Nazarenko, 2011]. Its experimental eng® is found in the ocean,
atmosphere, plasma, and Bose-Einstein condengaig.important to emphasize the
works about one-dimensional wave turbulence, whelsome extent retain the main
features of water waves, but are much easier tgoatenMajda et al, 1997; Cai et al,
2001; Zakharov et al, 2001].

Several decades ago soliton turbulence (or solgas) provoked scientific
interest. These problems are also considered irdonensional formulations. The first
theoretical description of soliton gas was proposgdV.E. Zakharov in 1971. In
theoretical studies the investigations have beamudsed around the kinetic equation,
which allows one to describe the spatial and tewmdpdlistribution of soliton gas
characteristics [Zakharov, 1971; Gurevich et &00® El et al., 2001, 2011]. However,
the statistical dynamics of soliton ensemble (oremgeneral problem of the evolution of

a random wave field) at the moment is actuallyabjam left unsolved.

This chapter is devoted to the study of multi-salifields in the framework of
some long-wavelength integrable models. Solitold$i@nd their statistical properties are
studied in 84.2 in the framework of the Kortewegle Vries equation. Similar field
(consisting only of solitons of the same polarity) the framework of the modified
Korteweg - de Vries equation are studied in 84.Ber€ is also a comparison of the
characteristics of a unipolar soliton gas withie dV and mKdV equations. In 84.4, a
numerical study of the dynamics of heteropolartsnligas in the framework of the
modified Korteweg - de Vries equation is presenfdte occurrence of freak waves as a
result of interaction of solitons of different pots is demonstrated. The obtained results

are summarized in the conclusion.
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4.2 Nonlinear dynamics of irregular soliton ensemigs in the framework
of the Korteweg — de Vries equation

It is commonly known that the sea surface is aoandurface due to the existence
of waves with different wavelengths propagatingdifferent directions on it. Their
interference and interactions lead to a fast chmangf sea surface. Therefore the wave
turbulence is taken in consideration [Zakharovlgtl®92; Nazarenko, 2011]. The main
idea is that the wave process is described by nkeraction of a large number of
sinusoidal waves with independent phases in tleatiapproximation, and a weak phase
correlation is due to weak nonlinearity. Equatidos the intensity are obtained by
perturbation theory and statistical averaging. Haevgintegrable systems have their own
specifics which were formulated half a century agothe problem of the Fermi-Pasta-
Ulam [Riskin and Troubetzkov, 2010].

Instead of the initial perturbation energy beingtiibbuted over the spectrum, after
a certain time it is then concentrated in a smalinber of harmonics. This was
discovered by the example of a vibrating string &inesq equations that for
unidirectional waves lead to the Korteweg-de Veegiation). Thus it is clear that the
wave turbulence can be very specific in integrafyetems, discussed in [Zakharov,
2009].

Soliton turbulence in integrable systems has deg#e to some extent since
there is a weak correlation between the spectraipoments. Solitons (representing
strongly correlated clots) are stored in the inteom, and hence their characteristics (or
discrete spectral values of the associated taskseinnverse scattering method) are not
changed. Soliton turbulence in the integral systdras degenerated to some extent,
because solitons are conserved in the interactingcegs which is why their
characteristics (more precisely discrete eigenwahfethe associated spectral problem)
do not change. That is why the nonlinear Fouriangform for sea waves on shallow
water (in the framework of KdV) was developed, whiallows exploration of the
"structure” of the observed random waves [Osboi®83, 1995, 2010; Osborne et al.,
1991, 1998].
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These components of the wave field (analogues oidah waves and solitons if
they exist independently) do not change over tilmg, their superposition leads to
random changes on the water surface. In practiteomly is it important to know the
distribution and moments of the random wave fibldf also the parameters of solitons

and cnoidal waves.

Korteweg - de Vries equations is an etalon equatibmonlinear wave theory
[Korteweg and de Vries, 1895; Zakharov et al., 1988ith the help of the inverse
scattering problem the occurrence of soliton sohgifrom random initial perturbations
on an infinite interval in the framework of thisuadion were proved [Murray, 1978], and
for the periodic interval is was shown in a sewépapers by Osborne and colleagues
[Osborne, 1993, 1995, 2010; Osborne et al, 19998[19he importance of this task to
describe the random wind wave field in shallow wasedemonstrated in the articles
[Osborne, 1993, 1995; 2010; Osborne et al, 19998;18rocchini and Gentile, 2001,
Pelinovsky and Sergeeva, 2006].

In this paragraph the nonlinear dynamics of anemense of solitons in the
approximation of the Korteweg - de Vries equatioa studied. It is studied numerically
by using periodic boundary conditions. A randomusagte of separated solitons with

random amplitudes is chosen as the initial conatitio
N N
u(x0) :Zui :ZASGCF'[Ki (X_XOi )], A= 2Ki2 (4.1)
i=1 i=1

whereN is the number of solitons in the computational dom

Phasesxy are chosen so that initially solitons do not iatérwith each other,
hence they are not random. If they are randomlgcsetl, a set of soliton amplitudas
(or K;) are constant for all realizations, and the otigige is the order of the solitons. In
the initial experiments with 20 solitons their amples in the computational domain
vary from Anin = 0.5 to Anax = 3.5 (a full set of amplitudes for these realizations is
presented in Table. 3.2.1 - 20 cells corresporZbltgoliton amplitudes) and the average
value of the amplitude is equal4®\> = 1.73. Two realizations of these fields are shown
in Fig. 4.1:
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Figures 4.1. The initial soliton ensembles, twoliszdions.

Table 4.1 The initial soliton amplitudes from tlealizations in Fig.4.1.

05/ 0.7,09/09] 1| 11| 12| 1.3314|16
1.711.7111.9]2.09|2.2|2.282.66| 29 | 3.1 3.5

The solitons have different amplitudes and differepeeds, hence they will
interact over time. Wave field at the time moment200 are presented in Fig. 4.2. Pair
interactions that have been discussed in the seclapiter are clearly distinguished on

these figures. This is why the pair soliton int¢i@ats are the basis of soliton turbulence.

4 : : : . . . T 4

S5 2+ 4 =52

0 50 100 150 200 250 300 350 460 0 50 100 150 200 250 300 350 400
X X
Figures 4.2 Ensembles of solitons at t = 100, tealizations.

Fig. 4.3a shows the evolution of the soliton fieldpresented in Fig.4.1, ixt
domain. The zoomes of the parts are marked by gedres are shown in Fig. 4.3b.
Different slopes and trajectories correspond tofeddint soliton speeds. Soliton
trajectories do not lie only on straight lines afteteracting, which demonstrates the
phase shift is a result of nonlinear soliton intdéian. Similar conclusions about the

trajectories of the ensemble of solitons are mad8alupere et al, 1996, 2002, 2003a, b].
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Figures 4.3 a - Space-temporal diagrams of thea@olfields, two realizations. b — zoom

of red squares.

Some conclusions about the dynamics of the wavdsfiean be found by using
field extreme graphs (Fig. 4.4). As shown in thevwus chapter, since pairs of soliton
interactions lead to a decrease in the amplitudthefresulting impulse, the maximum
value of the extremum does not exceed the amplitfdéhe biggest soliton in the
realisation. The maximum amplitude in the processteraction is reduced by about
20% to 2.8-2.9 Anax = 3.5), while the minimum amplitude of the field does ©bange
and coincides with the minimum amplitude of thetsal in the ensembleA(,, = 0.5) .
Thus the amplitude of the resulting wave field (absolitons) changes over time, and on
average it is less than in the initial time momemherefore the emergence of

anomalously large impulses is not possible here.

34
¥3.2
=
3.
28 2.8 |
0 50 100 150 200 0 50 100 150 200

time time

Figure 4.4 Temporal variability of the maximum \ahf the wave fields' extremes; two

realizations.
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These processes affect the distribution functadrtie wave field and its statistical

moments. At the initial moment the soliton amplésdare chosen close to the Weibull

distribution (Fig. 4.5):
F(A) = ex;{— K [ﬁgn , (4.2)

The distribution function of the wave amplitudec@d maxima of the wave field)
varies in each realization over time, and the exaspf the distributions are shown in
the same figure. Qualitative changes manifest ensddime way: as the number of small
amplitude impulses increases and the number o€ lar@ves decreases. As a result, the
distribution function of the wave amplitudes becam&eper in comparison to the initial
distribution. In principle, the effect of steepeminf the distribution function in the
shallows is known (the empirical distribution ofethGlukhovsky) [Massel, 1996].
However, in a field of purely solitons, this effestweak, underlining the resilient nature

of the soliton interaction and their ability toagt their parameters.

1 - - : 5 .
W --Weibull T --Weibull
0.8 . * =0 0.8 % . =0
NN =, K =,
_06 ™~ 06 N
< s < N
“ 0.4 ™, *04 EaN
. <. .
02 - 02 i ©
.- .
0 e G| 0. i ; ; ; T |
0 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35
amplitudes amplitudes

Figure 4.5 The distribution function of soliton aitydes at the different moments of
time ( = 100, = 90): The dotted line is the approximation by Weibull distribution
with (p=2.4; k=0.11,0=0.74)

Let’s discuss the statistical characteristics @& $oliton gas. We have a random
wave field, which depends on two variables: therdmatesx and timet, which are not
very convenient for the analysis. For simplicity,e wvill consider the statistical

characteristics averaged over the computationakgiam

1L
M (t) = = [ f (x Hdx
L£ 0.3

(f— any characteristic of the wave field), which fanections of the current time.
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This procedure corresponds to the ergodic hypatheghen the averaging over the
ensemble of realizations is replaced by integratiornthis case over the space. At the
same timeM(t) is a random function of time due to the randonurebf the soliton

interactions. Moments of a random function arevdlees averaged over the ensemble of

realizations
1 n
<M >=HZMj(t) (4.4)
i=1

This value for a large number of realizations, e tlimit n — oo becomes
independent of time and determines the statistrc@inent of integral characteristics of
the wave field. We can again use the ergodic hygsihand change the averaging over
ensemble to integrate over time (which should bgel@nough). Below we will often call
the integral characteristics (4.3) the momentshefwave field, as in (4.4), and we hope
that in the text, the reader will not be confusetileen (4.3) and (4.4).

Most simply, all these moments are calculated iiairtiime, when all the solitons
are isolated from each other (we have already dstrated this in the second chapter in
the example of two non-interacting solitons). Irstbase all the integral characteristics
are calculated explicitly. The average value of Weeve field over the computational

domain is:

N

i=1

1 1d § 1 ;
M, =I.([u(x,0)dxzr J(;ui (x,O)dx=I22Ki£secr12(y— y.o)dy (4.5)

i=1

The integration can be carried out over an infiiineit and the last integral is
trivial because of the narrowness of solitons inmparison with the size of the

computational domain. Then the average field is

The sum can easily be expressed in terms of thmgee/alue oK:

M1=4%<K>. .7
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where K> is a statistical average over the ensemble adaanamplitude solitond,
does not depend on the realization of the solitas, ghus its value will not change in
case of averaging over realizations and it is tts¢ $tatistical moment - the meaMz>

= <u(t=0)>.

The coefficientN/L, included in (4.7), has a clear physical meaninghefdensity

of the soliton gas
p=—. (4.8)
Then (4.7) becomes
<u(t=0)>=4p<K >=2/2p< A > (4.9)

As expected the mean increases with increasinglibis gas density<A'%> #
(<A>)2 thus the knowledge of the average soliton amgditis not sufficient for the

calculation of the average characteristics of tigon gas.

The dispersion of the wave field at the initial mearhis calculated similarly

g?(t=0) =<[u-<u>f >= 1—;,0 <K®>-16p%[< K >]. (4.10)
or
8
Ft=0=—=p<A?>-80° <A>. 4.11
(t=0=_7p 0° (4.11)

Due to the positive dispersion of the wave field timit of density of the soliton gas

appears:

<A3/2 >

<Py = 4.12
p pcr 3\/§<A> ( )

The critical density is easily understood from tf@lowing considerations.
Assuming that all the amplitudes are the samecthieal density isp,, = K/3. If we
recall the definition of density as (4.8), the icat number of solitons is equél, =
KL/3. Yet, K*' is the characteristic scale of the soliton, thhe tritical condition

corresponds to one or two solitons in the segment.
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It is clear that in this case any averaging procesilose any sense, and therefore
the density of the solitons should always be Ibas tritical. We are talking about a large
number of random solitons initially separated freach other, and the density of the
soliton gas should be much less than the critia#lies It follows that our formula will

work well only for a rarefied gas.

When the density of soliton gas is small, in (4.14¢ second term can be
neglected and retain only the linear density tdfdmwever we will not do this because in
the numerical calculation the solition density @ wery small and the second term is

important to analyze the results of calculations.

Similarly, there are a third and fourth statisticeoments, particularly coefficients
of skewness and kurtosis:

<fu-<us>P>_<ud>-3<u?><u>+2<u>® _

Sk(t=0) =

3 3
5/2 ? 2 2 ’ 3/2 3 (413)
_16V2p< A’ > 16<A>’p? 32/2<A>*p
1503 o3 o?
<[u—<u>]4> <u*>-4<ui><u>+6<u’®><u>?-3<u>*
Kur(t=0) = pr = g = 41a
712 2 3 5/2 3 2 4 ) ( ) )
_32J2p<A"?> 256p <A>+6«5<A >p° 192<A?>p
350* 150* g’ ot

We present here the asymptotic formulas which alié Yor a very rarefied gasp ¢ 0):

5 4 5/2
Skt=0y=2Y3_<K°> _ J3V2<A”> (4.15)
5\/; (< K >) 5\/;(< A3/2 >)3/2
7 712
Kurt=0)= 18 <K'> _ &2<A™> (4.16)

350 (< K3 >)2 - 350(< A%/2 >)2

The coefficient of gas density is included in tladminators in (4.15) and (4.16),
thus the coefficients of skewness and kurtosisaammalously large for a very rarefied

gas. Thus, a very rarefied soliton gas is not abM@gussian process.

Calculated at the initial time, the statistical memts of the ensemble of solitons
do not depend on the number of realizations. Defieraverage values included in there

can be easily calculated for any distribution fumttof soliton amplitudes. For specific
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calculations belowN = 20 andL = 410, thus the density of the soliton gas 0.048 is

really small.

The initial values of the statistical moments foe selected amplitude distribution

are:
<u>=0.18, 0 = 0.45, Sk= 353 Kur = 17.2. (4.17)

The positive sign of the skewness can be easillagwgal, since all the solitons are

positive, and the average value is small.

As solitons begin to interact over time the formwaven above becomes
inapplicable. However the invariants of the Kortgveke Vries equation are first two
moments. Therefore in the process of nonlinearacten the mean and the variance of

the soliton gas does not change.

The third and fourth moments are not invariantstthey will change over time.
Fig. 4.6 shows the time evolution of the third dodrth moments of the soliton gas,
calculated for one realisation according to (4.8§ @he "real" statistical moments
calculated by the formula (4.4) — in the last cHse averaging over 50 realizations is
used. Whereas in one realization they are randbenskewness and kurtosis averaged
over realizations decrease over time and afterva dellisions become almost fixed

values.

The reason for this is the nature of the interactd solitons, because such
interactions lead only to a decrease of the thidl faurth moments (integrals), as shown
in the second chapter. A finite sum of random \@es is also a random variable,
therefore by averaging over the realizations, weogéy an estimation of the coefficients

of skewness and kurtosis.

Thus, the average value of skewness is equal ®\8i#h a standard deviation of
0.07. It is important to note that the average @altithis ratio is less than the initial value
of 3.53, demonstrating the contribution of the mwawr interaction of solitons. The
average value of kurtosis is equal to 16.6 withtemdard deviation of 0.7, while the
initial value is 17.2. The decrease of the averagkies can be characterized as a
tendency to Gaussian soliton gas.
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Figure 4.6 The temporal evolution of the skewnesklairtosis of the unipolar soliton

gas.

From the above it can be concluded that the intieracof solitons in the
framework of the Korteweg - de Vries equation leansa change of the statistical
characteristics of the soliton gas (distributiondiion of the wave amplitudes, skewness
and kurtosis), but we have to admit that all ofsthehanges are small enough. In each
realization the soliton interactions do not leadthe formation of abnormally large

waves, thus there are no freak waves.

A similar study with a large number of solitonsrealization (200 solitons) fully
confirmed the findings were carried out recentlyufykh & Pelinovsky, 2014].
Moreover, the influence of non-integrability of tigeneralizations of the Korteweg-de
Vries equation in the framework of the Benjamin-Bdviacon equation on the soliton
gas characteristics is analyzed. Although the attgwn of solitons is inelastic in this
model, the effect of the dispersion packets isigefiitly small [Dutykh & Pelinovsky,
2014].
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4.3 Unipolar soliton gas in the framework of the mdified Korteweg — de
Vries equation

In this paragraph we solve the analogous problenthi® modified Korteweg-de
Vries equation, which we discussed earlier in theth paragraph of the third chapter. In
the framework of modified Korteweg-de Vries equatithhere are solitons of different
polarity, and the wave interaction is much rictrert in the framework of the Korteweg -
de Vries equation. In this paragraph we study greachics of the unipolar soliton gas in
the framework of the modified Korteweg - de Vriegiation and compare it with similar

dynamics in the framework of the classical KortevdegVries equation.

For unipolar solitons, as was shown in the previchepter, in the framework of
the modified Korteweg - de Vries equation there @ve types of soliton interaction
(overtake and exchange) which influence the ovenallamics of multi-soliton fields (as
in the analogous problem for the Korteweg - de ¥®eguation). Random sequences of

remote solitons with random amplitudes are choseheainitial condition:
N N
u(x0) =Y u => Asech (x—x, )]. (4.18)
i=1 i=1

Initial soliton fields are the same as in the cas&dV-solitons (see the previous
paragraph), their amplitudes are presented in T4ldlethe order of solitons is changed.

The realizations of such fields in the initial marhef time are shown in Fig. 4.7:

4 . T . . . T . . 4
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Fig. 4.7Two realisations of initial soliton fields.

Solitons begin to interact over time. Fig. 4.8 whahe evolution of the soliton
fields at the time moment t=80 (for the initiallle from Fig. 4.7). The dynamics of these

solitons is very similar to the behavior of KdV-isohs.
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Figure 4.8 Two realizations of soliton gas at t=80.

Fig. 4.9a,b shows the evolution of the solitondjelepresented in Fig. 4.7, xat
domains. Here the different types of two-solitoteractions discussed below can be
observed. Zooming in on the diagrams (Fig. 4.9cinthractions of larger numbers of

solitons can be identified.
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Figure 4.9 Space-temporal diagrams of the solitelu$ ¢, b - positive solitons, c,d -

zoom of black rectangles).

All solitons move with positive velocity except gnehich is marked with a red
rectangle in Fig. 4.9a,b. In the present wave figsdamplitute is the smallest and
accordingly it moves with the smallest velocity veeén collisions. The slope of its

trajectory line on Fig. 4.9b points on negativeut@sg velocity. Such an affect is seen
90



because of the large amount of collisions with hsolitons, and each collision moves
this small soliton slightly backward (which happéassolitons, yet for the solitons with

large amplitude it is not significant). Hence wenceonclude that strong nonlinear
interaction can significantly influence the velgcdand the trajectory of the soliton and

this effect requires a more detailed investigation.

In the framework of the Korteweg - de Vries thiseef was not observed. Since
solitons have a higher speed than mKdV-solitongil(tspeed is proportional to the
amplitude, while in mKdV equation is proportionad #°), and this effect is not
manifested, although in that case the interactibsotitons shifted the smaller soliton
backwards. Thus the soliton gas in the modified télweg-de Vries equation has
surprising properties when changes in weak partalection is observed. This feature

has not been previously noted in literature.

Some conclusions about the dynamics of wave fiels be given using the
graphs of field extremes. The temporal variabiifty the maximum value of wave field

(throughout the computational domain) is presemd€lg. 4.10.
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Figure 4.10 Temporal variability of the maximumueabf the wave fields' extrema of two

realizations.

In the case of the wave field which consists orflymipolar solitons (in this case
they are positive), the maximum value of extremandb exceed the amplitude of the
biggest soliton A»a=3.5). Since the maximum amplitude during the inte@aciprocess

is decreasing, the values of the changes are grfisant (up to 2.7).

The minimum amplitude of the field is the samelasdamplitude of the minimum
soliton Amin = 0.5), which is a complete analogy to the changes ofimiam amplitude

within the Korteweg-de Vries equation.

91



These processes affect the distribution functadrtie wave field and its statistical
moments. In the initial moment the soliton ampléadare chosen close to Weibull
distribution (Fig. 4.11)

As in the case of the Korteweg - de Vries equattbe, distribution function is

shifted upward in the case of small wave amplituales downwards in the case of large

amplitudes.
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Figure 4.11 The distribution function of soliton plitudes at different moments in time
(t, = 110, v = 100) for the wave fields presented in Fig. 4 fie dotted line is
approximated by the Weibull distribution with (p42k=0.11,0 =0.74).

Similarly in the KdV case, the analytical formulas the statistical characteristics

of the soliton gas can be obtained and the finptession takes the following forms:

L
<u(t=0)>= %j U X)dx =7, (4.19)
0
L
o?(t=0) =%ju(x)2dx— <u(x)>’=2<A>p-1’p? , (4.20)
0
1} 3
— | (U(¥)=<u(x) >)"dx 2
<A > 2 3
Sk(t:O):LO . :m A _67w :A>+277'33p ' (421)
o 20 o o
1 L
IJ.(u(x)— <u(x) >)*dx
Kur(t=0)=— = = (4.22)
_4Ap<A> 2P <A’ >+12p3n2<A > 37 p*
- 30 o’ o’ ot
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It is noteworthy that in contrast to the KdV monsrithe mean does not depend
on the amplitude distribution, and depends onlytbe gas density of soliton gas.
Therefore, the dependence of the moments on thétadgdistributions is different for
the KdV and mKdV, but the dependence on the demeityains the same (in the limit of

low density).

In our calculations of the initial moment the stitial moments are equal to the

following values:

<u>=0.15, 0 =0.39, Sk = 3.8, Kur =20.4, (4.23)

Thus the wave field is not symmetrical with skevaes3.8.

As in the case of Korteweg-de Vries equation, tinst fwo moments are the
invariants of the modified Korteweg-de Vries eqaatiand therefore in the process of
nonlinear interaction the mean and the variancenalochange. The third and fourth
moments will change over time. Also as time pastes,coefficients of skewness and
kurtosis are reduced and after a few collisionslecated on the stationary values (Fig.
3.3.6). As was shown in the previous chapter, dasaon for this as well as earlier in the
nature of the unipolar soliton interactions is hessa such interactions lead only to a

decrease of the third and fourth moments.
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Figure 4.12 Temporal evolution of skewness andokist

The average value of kurtosis is equal to 19.4 wittandard deviation of 0.18;
but the reduction of kurtosis is not very signifitg19.4 with initial value of 20.4).
Similarly with skewness: the average value is Bldg/minus 0.02) instead of its initial

value of 3.8.
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In the calculations 50 realizations are used whbee average values of the
statistical moments undergo small fluctuations. Eomparison, we have done the
estimation of the influence of the realization n@mbn standard deviation of the kurtosis
coefficient (Fig. 4.13). It is shown, that thialwe is slightly decreases with the growth
of the realization number (for 20 realizationsst(d.0217, for 50 - 0.0169, for 100 -

0.0143). This is why it is sufficient to use onl9 Bealizations to save computational
time.
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Figure 4.13 The dependence of the standard dewiatidhe average coefficient of

kurtosis from the number of realizations.

The comparison of statistical characteristics ofpalar soliton gas in the
framework of the Korteweg - de Vries equation ane modified Korteweg - de Vries
equation is presented above. The distinguishintufeaof solitons in these equations is
that for amplitudes larger tham 1.3 the KdV soliton is wider than the mKdV soliton
(Fig. 4.14).
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0.61

0.4r

0.2r

Figure 4.14 Comparison of KdV and mKdV solitondwiifferent amplitudes.
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Formally, the behavior of these moments remindsfuble behavior of analogous
moments for positive mKdV fields, except the fabatt the quantitative values are

changing.

The comparison of numerical values of averaged emisnfor the identical
distributions of soliton amplitudes is shown in F&15 (the distribution function of
soliton amplitudes are the same). The mean andnaeiof the wave fields are larger for
KdV-fields (Table 4.2). This is confirmed by thecfdhat in realizations the solitons with
amplitudes larger than 1.3 prevail (Table 4.2).

Table 4.2 Values of moments for KdV and mKdV sofigdds

<u> g Sk Kur
KdV 0.18 0.45 35 17.2
mKdVv | 0.15 0.39 3.8 20.4

The initial values of skewness and kurtosis aes@nted by dotted lines in Fig.
4.15 (respectively, blue lines - for the case ofdWkand red lines - for the case of the

KdV). Their initial values, found analytically, apgesented in Table 4.2.
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Figure 4.15 Averaged values of statistical momerts 50 realizations over time for
mKdV and KdV fields.

The coefficients of skewness and kurtosis, in @sttto the mean and variance,
are larger for the mKdV soliton gas for the givempditude distribution. The similarity of
the behavior of the third and fourth moments isiobs. However, if in the initial field
the solitons with amplitudes less than 1.3 prevéaén the conclusions will be the
opposite, and the values of skewness and kurtodlidoevlarger for the mKdV fields.

This is due to the fact that the mean and the negianake "negative" contributions to the
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value of the third and fourth statistical momersise(4.21, 4.22), and therefore if the first

and second moments are larger, then the third@mthf moments will be smaller.

Thus, the dynamics of the KdV and positive mKdVitseal fields is quite similar.
However, in such unipolar fields abnormally largawes do not appear. Radically
different situation exist for heteropolar solitaeldis, and it will be discussed in the next
paragraph.
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4.4 Freak waves in soliton fields in the frameworkof the modified
Korteweg — de Vries equation

The main difference between the Korteweg - de Veiggation and the modified
Korteweg - de Vries equation is the presence dfosd of different polarity in mKdV
case. Heteropolar solition iteractions make wawveadyics much richer. The interaction
of two heteropolar solitons leads to the formatmiabnormal pulses, as shown in
paragraph 3.4. It can be expected that these effeitlt manifest in heteropolar soliton

gases, leading to the appearance of the freak waves

In this paragraph the dynamics of multisoliton delconsisting of solitons of
different polarities with means equal to zero dtglied. The initial soliton field consists
of two components, positive and negative. In eaomponent the amplitudes are
distributed similarly such as in paragraphs 4.2 4rffl Also, each positive soliton’s
amplitude corresponds to the same negative amplit8dliton amplitudes are obtained
using a random number generator and are taken themnterval |0.8-2|. A random
sequence of separated solitons with random ampbtuahd polarity is chosen as the

initial condition:
u(x0) =3 u =3 s AsechA (x-x, )| (4.24)

In our calculations, the size of the computatiath@inain is constant and equal to
416. The number of solitons varies from 100 tovlich allows us to change the soliton
gas density up to 5 times. We consider the probdetim periodic boundary conditions,

thus the solitons pass the computational domairnyrtiares during the computation time.

Fig. 4.16 presents the soliton field at the initiahe (left column) and at time

moment of 500 (right column).
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Figure 4.16 Initial multisoliton fields (left columpand t = 500 (right column). From the
top to bottomp =0.24, ©=0.19, ©=0.14, p=0.096, p=0.048.
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Solitons interact over time and abnormal impulsesietimes appear (Fig. 4.17),

with both polarities - positive and negative.

0 100 200 300 400 s0 100 200 300 400 500
time time

0 100 200 300 400 500 0 100 200 300 400 500
tume tume

0 100 200 300 400 500 ) 100 200 300 400 500
time time

0 100 200 4 100 200 300 400 500
time time

Figure 4.17 Extremes of wave fields: from the riglihe maximums, from the left — the

minimums. From the top to dowmp=0.24, p=0.19, p=0.14, p=0.096, p=0.048.
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In the soliton gas with bigger density the intengfrequency) of interactions is
larger and it is logical to assume that in sucldfighe anomalous amplitudes should
have amplitudes larger than in the fields with ado density. Fig. 4.18 shows the
dependence of "the peak-peak” on the gas dengig/ trfEnd of amplitude increasing by
module is observed. However, this assumption ikted by two points on the graphs for
p=0.19, p=0.14 in the first case and f@r=0.14, p=0.096 — in the second. In this case
we compare the specific realizations and there rave full statistics with many
realizations, thus such deviations do not violdte general trend of maximums

increasing and minimums decreasing.
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=F . _E -
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3k * | -
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Figure 4.18 The dependence of the extremes (tHepesk) on the gas density.

As noted previously, the nonlinear interaction E&mchanging of the distribution
function of the amplitude characteristics. Howeverthe case of heteropolar fields the
effect will be opposite. In this case, the rolesofall-amplitude waves decreases, and role
of waves with large amplitudes increases. Thus, nmments of strong
nonlinearinteraction the tails of the distributidlnctions may increase significantly
(Fig.4.19).
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Figure 4.19 The distribution function of soliton plitudes at the different moments in
time From the top to bottomp=0.24 (4t,=500), 0=0.19 (t=2), p=0.14 (t=80), o
=0.096 (4=40).
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Abnormal peaks, currently appearing against thé&dracind of other waves can
be considered from the point of view of the freakves [Kurkin, Pelinovsky 2004,
Kharif et al., 2009]. In the third paragraph of fivst chapter we point out an amplitude
criterion of freak waves when we considered therfetence of swell and wind waves
(2.32).

In this paragraph, we will use this criterion tded# freak waves. The value of A
is the average value of the largest one third ofesan the realization. In wind wave
theory, this definition has been proposed for 2@utg records containing about 3000
waves. In our case, the number of waves is muchlemmgous the Avalue will change
over time for the concrete realization and not be &verage characteristics of the

process.

Therefore we will consider the specific realizatetrspecific moment in time, and
for each case we will determine thg(As an average of one-third of large waves). ¢n Fi

4.20 the wave fields containing abnormally larges@gare shown. For densigy=0.24,
p£=0.19, p=0.14, p=0.096 the amplitude criterion of freak waves isf@ened, and in

the first case — the exceedance of the signifisavie amplitude Ais three fold.

The right column shows zoom of freak waves. In adlses, they have
approximately the same shape corresponding to ébaltmg impulse in the case of

unipolar soliton interaction (Fig. 3.9¢).
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Figure 4.20. Wave fields that contain the abnormkdlge waves,the right column is
zoom of freak wave: §9=0.24,b)0=0.19, ¢)p=0.14, d)p=0.096,e)0=0.048.

For the analysis of the probability of occurrendefreak waves in the soliton
fields statistical moments will be used. For sefarasolitons it is easy to analytically
calculate the mean, variance, skewness, and theskarin this paragraph we consider
the soliton fields with the same number of posire negative waves. Therefore, the

mean and the skewness will be equal to zero. Vegiaand kurtosis are calculated as

follows:
02=2<A >pP, (4.25)
< A3 >
Kur=—>—"-—. (4.26)
30<A >

These formulas can only be used in cases wher®rs@as has low density (for
example 0=0.048). However, in this paragraph we consider alsoli#gosogas with high

density when solitons are already intersected atirtitial time (Fig. 4.21) and in this

case, the statistical moments must be found nuaiBric

102



t=0

270 280 290 300 310 320 330 340

270 280 290 300 310 320 330 340
Figure 4.21 Zoom of initial field with=0.24 ando =0.19.

Fig. 4.22 demonstrates the temporal evolution efdbefficients of skewness and
kurtosis in one realization, and averages of tivedges over 50 realisations. Values of
skewness changes in the realization from -1 to btit, the ensemble of solitons is
symmetrical in averages as expected. Kurtosis @dwmrasymmetrically around the
average, from 11 to 23. Average value of kurtosngls to the value of 13.66 (plus/minus

0.315) after several interactions, which is lartan initial value of (13.1).

25

=1 realisation
==averaging over 50 realisations

5 —
=1 realisation
=—averaging over 50 realisations

Skewness
\

0 50 100 150 200 0 50 100 150 200
Time Time

Figure 4.22 Temporal evolution of skewness andokistin heteropolar soliton gas.

The coefficient of kurtosis advantageously increasadicating an increase of the
tail of the distribution function. Correspondingihe skewness can take both negative
and positive values at different times. Howeveirtheeraging is close to zero due to the

balance between positive and negative waves.

The kurtosis for soliton fields of different dems# in one realization is presented
in Fig. 4.23. With the gas density increasing thetdsis decreases, however this effect
can be seen from the analytical formulas for thgainstate (4.26). As you know, this
ratio shows the difference between the Gaussidnhdison function, and if it is positive

the probability of occurrence of large waves inse=aas compared with the normal

stationary process.
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As known, this coefficient shows the differencevimn of distribution function
from the Gaussian, and if it is positive the praligbof a freak wave is increased in
comparison with the normal stationary processesréfbre, it seems that the decreasing
of kurtosis as gas density increasing means a tieduaf the probability of freak wave
occurrence, and that contradicts the results @ctlicalculations shown above. Changes
of kurtosis characterize the excess of the digtiobufunction from the Gaussian curve in
an integral sense, but this does not say anythbaptathe value of the distribution

function at very large amplitudes.

20
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Figure 4.23 Kurtosis and skewness of soliton figldk different density.

It should be noted that freak waves in the framé&vadrthe modified Korteweg-de
Vries equation have been studied previously incde of narrowband initial conditions
[Grimshaw et al, 2005, 2010; Talipova, 2011]. Iisttase, the mechanism of freak wave
generation is modulation instability of modulatedasgi-sinusoidal wave packets. We
managed to find a mathematical work on the modutaitistability of modulated cnoidal
waves [Driscoll & O'Neil, 1976].

The main conclusion of this work is that if cnoidehves have a mean of zero,
then they are unstable. Yet if they are set ondegtal, then the waves are stable. Soliton
sequencing is a special case of a cnoidal wavealksmdy stated, the evolution of an
ensemble of unipolar solitons does not lead tofthmation of large waves, which is
consistent with the stability of cnoidal waves Im@yia non-zero average. At the same
time, an ensemble of heteropolar soliton gas freakes may appear, and this is

correlated with the modulation instability of cnaidvaves with an average of zero. In
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contrast to the cited work about instability ofreoirlal wave [Driscoll & O'Neil, 1976],
our study shows the dynamic evolution of instap#ihd makes it possible to quantify the

characteristics of the soliton gas and probabditfreak wave occurrence.
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4.5 Conclusion

The dynamics of multi-soliton fields in the framewaf the Korteweg - de Vries
equation and the modified Korteweg - de Vries eigumatire studied in the present
chapter. Four statistical moments (mean, variaskewness and kurtosis) of soliton gas
are investigated and analyzed. The distributionctions of soliton amplitudes are
determined. It is shown that in the case of unipstditons the role of impulse with small

amplitudes increases and with large amplitudes #éneyeduced.

The opposite result is obtained for heteropolddsiein which the role of waves
with large amplitudes increases, i.e. the tailghef distribution function increase. This
means an increase of the probability of freak was@irrence in the heteropolar fields. It
is demonstrated that in a heteropolar field abnbdymarge waves (freak waves) may
appear. The comparison of the dynamics of the Uaismliton gas within the KdV and
mKdV equations is given. In such fields, nonlinederactions lead to an increase in the

role of small-amplitude waves.
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Chapter 5

Conclusions

The dynamics of random wave fields in the coastak in relation to the problem

of freak wave occurrence is studied in this theBne following results are obtained:

1. It is demonstrated that the mechanism of disperfocusing of freak wave
formation "works" for waves interacting with a veal barrier. It is shown that just
before the maximum wave formation a freak wave kjyiexperiences a shape change
from a high ridge to a deep depression. The lifetoh a freak wave increases with the
growth of number of individual waves in anomalousver packets, and the lifetime of a

freak wave increases as water depth decreasing.

2. It is demonstrated that pair interaction of wap solitons lead to a decrease of
the third and fourth moments of a wave field. Isi®wn that in the case of heteropolar

soliton interactions the fourth moment increases.

3. The nonlinear dynamics of ensembles of randonpoler solitons in the
framework of the Korteweg - de Vries equation ane modified Korteweg - de Vries
equation is studied. It is shown that the coeffitseof skewness and kurtosis of the
soliton gas are reduced as a result of solitonsoatis. The distribution functions of wave
amplitudes are defined. The behavior of solitotdfan the framework of these models
is qualitatively similar. It is shown that in theBelds the amplitude of the large waves is

decreased in average due to multi-soliton intevasti

4. A new breaking effect of solitons with small ditygles and even changing of its
direction in multi-soliton gas as a result of naelr interactions with other solitons is

found in the framework of the modified Korteweg\ees equation.

5. It is shown that in heteropolar soliton gas abraly large waves (freak waves)
appear in the frameworks of the modified Kortewebp-Vries equation. With increasing
of soliton gas density the probability and intepsif freak waves in such systems

increases.
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Abstract. One of the possible mechanisms of the emergencd&each of these mechanisms has its own specificity, which is
of freak waves in deep water, based on the dispersive focusltimately manifested in the probability of freak wave occur-
ing of unidirectional wave packets is analysed. This mech-rence and the time of their life. It is possible that each mech-
anism is associated with the frequency dispersion of wateanism leads to different forms of rogue waves and scenarios
waves and manifested in the interference of many spectrabf their manifestation. All these important features have not
components, moving with different velocities. Formation of been studied yet.

a single freak wave in a random wind wave field is consid- Here the possible scenario of the freak wave appearance
ered in the frame of linear theory. The characteristic lifetimein deep water, based on dispersive focusing of unidirectional
of an abnormal wave in the framework of this mechanismwave packets is analysed. This mechanism is associated with
for typical conditions is approximately two minutes, thus, a the dispersion of water waves and is manifested in the inter-
rapid effect is difficult to predict and prepare for. A rogue ference of many spectral components, moving with differ-
wave quickly changes its shape from a high ridge to a deefent velocities. This mechanism “works” for both the deter-
depression. ministic (with certain conditions on the phases of spectral
components) and random waves, leading to the appearance
of abnormally high waves. It is possible in both, linear and
nonlinear theories of water waves, although, of course, the
nonlinearity leads to their peculiarities in the wave field (Peli-

The large-amplitude waves suddenly appearing for a shorfovsky and Kharif, 2000; Kharif et al., 2001; Pelinovsky et
time on the sea surface (freak or rogue waves) attract the afi-» 2003; Shemer et al., 2007; Shemer and Dorfman, 2008).
tention of professionals nowadays because of their danger t§/€ 2/S0 émphasize that the mechanism of dispersion focus-
ships and oil platforms in sea, ports and tourist resorts on thé"d IS very popular with experimentalists, because it allows
coast. Numerous data of observing freak waves in differen@€nerating a wave of huge height in a relatively short tank.
areas of the World Ocean can be found, for example, in bookd N€ main attention in the laboratory experiments is paid to
(Lavrenov, 2003; Kurkin and Pelinovsky, 2004; Kharif et al., the description of the wave field (the displacement of wa-
2009) and papers (Kharif and Pelinovsky, 2003; Didenkuloval®’ surfac_e and particle velocities) at the focal point, which
et al., 2006; Liu, 2007). Among the mechanisms of their 'S essential for the subsequent assessment of the impact of

appearance in the open sea the following ones are marke%x'“efne waves on ships anq platforms (Brown and Jensen,.
(Kharif et al., 2009): (a) a superposition of a large number2001; Contento et al.,, 2001; Johannesen and Swan, 2001;

of individual spectral components, which move with differ- Clauss, 2002; Touboul, 2006; Shemer et al., 2007; Shemer

ent speeds and in different directions (the dispersive and gednd Dorfman, 2008; Kharif et al., 2008, 2009; Shemer and
ometrical focusing); (b) nonlinear mechanisms of modu|a_Sergeeva,.2009). _ _
tion instability, in particular, the Benjamin-Feir instability; ~ Theoretical results for focusing wave packets in deep wa-

and (c) interaction of sea waves with currents and wind flow.ter are obtained mostly in the linear theory, in the frame-
work of the so-called parabolic equation for the envelope of

the wave packet (see, for example, Clauss and Bergmann,

Correspondence tcE. Pelinovsky 1986; Magnusson et al., 1999; Pelinovsky and Kharif, 2000;
BY

(pelinovsky@hydro.appl.sci-nnov.ru)  shemer et al., 2002; Pelinovsky et al., 2003; Shemer and
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=100 Fig. 2. The dependence of the maximum value of the wave field
0.3 il from dimensionless time (the solid line corresponds to the exact,
and the dashed line — asymptotic solution).
o
k]
% 2 Generation of “huge” wave in a frequency-modulated
o wave packet
0.3t The transformation of the wave packet into a single large-
5t ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ amplitude wave in the frame of the linear theory can be con-
0 20 40 60 80 ” 100: 120;  140; 160" 150 sidered using the Fourier-superposition of spectral compo-

nents. In practice, however, a different approach is used
1. Evolution of the Gaussian pulse in deep water for long times. (Kharif et al., 2009): Cauchy problem is solved for the initial
condition, which corresponding to the expected anomalous
wave, and then the resulting solution is inverted in the space.
Dorfman, 2008). The particular analytical solution of this As a r_esult, po§5|ble forms of the wave packet can find the
o : ) evolution of which leads to the formation of abnormal waves
equation is the Gaussian packet, which demonstratesthe pro- ~ ..~ . : :
: in a finite time, followed by its transformation back into the
cess of the emergence of abnormally high waves and theif ) . :
) g . Wwave packet. Let us consider a classical solution of Cauchy
disappearance. Itis important to emphasize that the parabolic . : . :
A . : problem for waves in deep water, written in the integral form
equation is valid for slow varying envelope on the scale of the
carrier waves, so that the freak wave is a group of waves such

Fig.

+00

as “Three Sisters” — a term often encountered in the witnes%(x )= f Ak)expli [ (k)T — kx])dk )
descriptions of the phenomenon. However, it does not meet ’
a single rogue wave, the description which is also present in ®

the literature. wheren(x,7) is a displacement of the water level (k) is
The aim of this work is to develop a scenario of appear-Fourier spectrum determined by the initial disturbance, cor-

ance and disappearance of a single freak wave in the framtesponding to the expected anomalous wae)

of the dispersive mechanism of focusing wave packets. Sec-

+
tion 2 provides a solution to the Cauchy problem for waves 1 - .
in infinitely deep water, corresponding to the initial pertur- A%) = P / no(x)explikx)dx, ()
bation in the form of a single pulse. It is the basis for the —00

?heem(;)gtsétrrr?ltilr?igti%f \}J‘;/;?gge'jr%ee of solitary ]f riak waves Ina)(k) is a wave frequency determined from the dispersion re-
; Ny Process o t. € app.earlngation of waves in deep water

rogue waves in a random field of wind waves is considere

in Sect. 3. It is shown that for typical conditiqns, the charac-, (k) = /¢k, (3)

teristic lifetime of a freak wave is about 2 min, demonstrat-

ing the difficulties in predicting this dangerous phenomenon.whereg is gravity acceleration. Integral Edl)(analytically

Features of the script of the development of abnormal pulseés not calculated for "reasonable” initial disturbances, but at

are discussed in Sect. 4. It is shown that the freak wave idong times, its presented by a well-known expression ob-

not only there for a short time, but quickly changes its shapetained by the method of stationary phase (Whitham, 1977)

from a high ridge to a deep depression. The results are sum-

marized in Sect. 5. 1D~ 2 oot DTk D Felke - 2| L (@)
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|Al andy are module and an argument of the complex specdimensionless timer & t4/g/1) is shown in Fig. 1. Over

trum of A(k). The last expression in Egs)(allows unam-
biguously to find the wave numbérx, ) = gv2/4x?, then
from Eq. @) the wave frequency(x,t) = gt/2x. The final

time a train stretches in the space (proportionat Ypand
its amplitude decreases as!/2, ensuring the conservation
of wave energy. The number of individual waves increases

asymptotic expression for the wave field takes the following jinearly with time, the wave of maximum amplitude retaining

form

2,12 gTZ
n(x,t) ~2/m|A(gT*/4x°)| =5 CO0s
X

it describes, at each moment in time, the wave packet wit
variable amplitude and length (frequency-modulated wav

2
gt T
4x 4i| ©)

great group velocity. Asymptotic solutions for waves of any

physical nature are well-known (Whitham, 1977) and, there

fore, the details of their derivation are not discussed here.
As an expected anomalous wave it is natural to choose

Gaussian pulse with a characteristic amplitutteand half

of alength/

)CZ
no(x) = Age 2.

()
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e
train), and ahead follow longer wavelengths, which have a

its length and speed of propagation.

At short times the integral Eql) is calculated numeri-
cally, which allowed us to define the limits of applicability
of the asymptotic solutions. As it turned out, at values of
dimensionless time-20-25, the maximum water displace-
yment (the amplitude of the high ridge) is well described by
the asymptotic value (Fig. 2).

Itis clearly seen that in the frame of the exact solution, the
maximum of the field decreases sharply at times-6f10
and, consequently, the wave in the form of the hump disap-
pears for a while. The evolution of the wave shape at short
gimensionless times is shown in Fig. 3.

Initially, a positive bell-shaped pulse is transformed into
a wave of depression and further into the wave train. The
quick change of polarity of the pulse had not previously been
noted in the literature, however, as we show below, it plays
an important role in the scenarios of freak wave formation.
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Fig. 4. Snapshots of the wave field at different times (s).

The solution given above describes the transformation of3 Generation of a single pulse in a random field of
a solitary wave in the frequency modulated wave packet. If  wind waves
the wave packet is inverted in the space, so that now the short
waves with small group velocity are ahead of the long ones,The mechanism of dispersion focusing described above must
the wave packet will be transformed into a solitary wave of occur in a random field of wind waves, the spectral com-
Gaussian shape. The property of inverting the solutions ofoonents of which move with different velocities. A simple
linear equations of ideal hydrodynamics is used to find opti-statistical analysis of a random superposition of waves with
mal conditions for the dispersive focusing. Nonlinearity, of a narrow spectrum in the linear approximation leads to the
course, affects the process of focusing. In particular, in theRayleigh distribution, so that the freak wave should appear
papers of Shemer et al. (2006, 2007) it was demonstrated thance every 10h (Dysthe et al., 2008; Kharif et al., 2009).
in an unidirectional focusing process nonlinear effects are esThe simulation of the wave field for such long times is rather
sential in two important aspects. They may lead to a con-a difficult task, so we assume that, along with random com-
siderable modification of the complex amplitude spectrumponents, there is a deterministic frequency-modulated packet
in the course of evolution, affecting both absolute values ofof small amplitude, as described above. Then by the linear-
the amplitudes of various harmonics and their phases. Théy the random and regular components of wind wave field
other aspect is related to the contribution of bound waves thatlo not interact with each other, so that the process of form-
changes considerably the amplitudes of troughs and cresisg a single pulse from a frequency-modulated packet fol-
and violates the symmetry between the two. But if the wavelows the scenario described above. The random disturbance,
amplitude is relatively weak, this effect is not fundamental; on average, does not change its energy and the possibility of
itis just needed to make a few adjustments to the form of thea big wave in it is small at relatively short times. As a result,
wave packet (Johannesen and Swan, 2001; Clauss, 2002). the initial wave field “looks” purely random, and then there

Concluding this section, we note that in laboratory condi- comes a high ridge, which over time is again “dissolved” in
tions a single wave with a broad spectrum is generated by aandom waves. Such processes of interference of random
wave maker with variable frequency, changing in finite lim- and deterministic fields have already been discussed in the
its according to the linear law (the optimal law for the gen- literature (Kharif et al., 2009), but not for the formation of a
eration of solitary waves through the mechanism discussedingle wave on deep water. Nonlinearity, if it is weak, can
above) (see, for example, Brown and Jensen, 2001; Shemerot prevent the dispersive focusing of a deterministic wave
etal., 2007; Shemer and Dorfman, 2008; Kharif et al., 2008).packet, so it can be ignored on the first stage.
In this case, the signal spectrum is almost rectangular, while In numerical experiments the random wave field is set
the wave itself (through the inverse Fourier transform) — crestpy the superposition of spectral components with random
of small, oscillating tails (like sir{x)/x); it is the shape of a phases
focused wave observed in experiments (Kharif et al., 2008;
Shemer and Dorfman, 2008). N

n(x. )= AicosSwT —kix+¢i), ©
i=1
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Fig. 6. Maximum values of positive and negative amplitudes versus time.

where the spectral amplitudg; = /S(k) Ak, Ak is a sam-
pling interval of the spectrumk; =i Ak, w; = «/gki, N =
156 is the total number of harmonics. Phagesre evenly
distributed and set with a random number generafot)

Fig. 4, where the time (s) is measured from the onset of soli-
tary wave of large amplitude. As we see, even one minute
before, the abnormal waves are not visible and they also al-
most disappear in 1 min, so the forecast of freak wave is in-

is energetic spectrum, for example, the spectrum of thedeed very difficult and, most importantly, there is little time

Pearson-Moskowitz or JONSWAP spectrum. In our calcula-to prepare for its appearance in such a short time. What is

tions, we used a simpler Gaussian approximation of the windsaid above is also shown by the time series of the wave field

wave spectrum at short distances (500 m) from the place of an abnormally

) large wave (Fig. 5).

S = Bexp(— (k — ko) ) (10) A presentation of the typical lifetime of the rogue-wave

12 is given in Fig. 6, which shows the maximum height of the
ridges and deep depressions in the domain of 5km versus

with B=0.05n%, /=0.5nT, ko=0.063nT2. In this case, time. As it can be seen, a significant change in the wave

the characteristic wavelength is 100m and a significantheight occurs within about 2 min, and this value can be taken

height of the waveH; =1.5m, thus, the rms value of the for the lifetime of the anomalous wave. We emphasize that

surface elevation variation as=H,/4 yields to steepness the freak wave appears both in the form of a high ridge and

koo ~ 0.025. On the other hand the maximum height of in form of a deep depression, and near the estimated time the

the freak wave reachegnax=2.7 m (see below) and, there- wave changed its polarity several times.

fore, the steepness of the wave of maximum amplitude is

koamax ~0.17. This nonlinearity may probably be suffi-

ciently small to justify linear analysis if we compare the ex- 4 The scenario of a freak wave appearance

perimental results with Shemer et al. (2007) where the non-

linear effects are manifested/afumax~0.3. The calculations given above show that the freak wave exists

The superposition of deterministic and random compo-about 2 min, and a detailed chronology during that time (the

nents of the wave field at different times is illustrated in script of the process) will allow for the evolution of the freak
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Fig. 7. Snapshots of water level for different times (s).

wave. Figure 7 shows the shape of the water surface at difsuch pictures of freak-waves have been received from space
ferent times, calculated by the above formulas. At this time(Kharif et al., 2009) and are not discussed here. Freak waves
interval (about 2 min) an anomalous solitary wave is alwayswere originally described in legends, transmitted orally from
visible in the background of random wind waves. Its shapesailors who having survived the horror of meeting with this
is constantly changing from crest to trough and back quiteterrible phenomenon, hurried to share their impressions with
quickly (within approximately 10 s). others. Naturally, most of the stories contained a consider-

ob bility of th d q ; able exaggeration and fictitious descriptions. Having now a
servability ofthe rogue waves depends on many factorsy, , ye| of freak waves, it is possible to develop a “standard-

For examp_le, if the obseryer IS on the plane, _he can only S€%eq” description schematizing the reaction of sailors to this
one of the images shown in Fig. 7, and to estimate the he'ghbhenomenon

of the anomalous wave from its trough to the crest. In fact,
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Thus, in the case of the focusing wave packets, as showifreak wave in this case is almost not changed: waves of large
above, the apparent abnormal wave in the form of a crest apamplitude are noticeable for about a minute and they change
pears in approximately 1 min prior to its approach to the shiptheir polarity, appearing and disappearing at the sea surface
at the distance about 600—700 m. If the observer is on boardor a short time. However, directly at the ship it will manifest
who also “prescribes” water level fluctuations in pitching, he itself in the form of a wave of deep depression and it will fail
can only see a big crest. This crest can be seen a few timeis trough. To predict the polarity of the freak wave (crest or
(2-4 times) for about 10, before it comes to the ship. Intrough), in the framework of this approach, is impossible if
this case, the first not the highest ridges will hardly attractwe use only the observation of waves in previous times.
the attention of seafarers and, in fact, the freak waves will be
visible for about 30 s before meeting with the biggest wave. _

And only when the wave appears just before the ship, the ob® Conclusions
server can see that the wave consists of a crest and trough qjhe a fab v h ‘
of troughlcrest. ppearance of abnormally large waves on the sea surface

That is why phrases of the descriptions are typical: “Crews"> du_e o the dlﬁgrent phy5|cal mechamsms. In th's paper,
do not have time to prepare for the meeting with the dan-"V¢ discuss the d|sper5|v_e focusmg_ scenario of asingle freak
ger’ (Kharif et al., 2009), which greatly aggravates the con.vave formation. For typical conditions, it is shown that the
sequences of the, meetin'g with the elements. The fact of thgharacteristic lifetime of the freak waves is about two min-
sudden appearance of the freak waves requires from the cre oes. Ith's noteo_lttha:] at th|fs time, thtetwe':ve ql:]'Ckl):j('k? anu;t
of any vessel not only professional knowledge, but also men- §) changes its shape from crest to trough and back.

tal preparation. The reaction of seafarers, of course, depen&%e r?.ar;'e.dt'me’ for an otirs]erver onboard ? S?'p’ ll/vhen qnlyl
on their experience related to stressful situations, such as dufie high ridges are seen, the appearance of a freak wave Is al-

ing a storm. There are specific, purely psychological factor: ways unexpicted, espec:allzy lietgause abohu:_a m]inutleobef_(ln_rr]e a
(the so-called sthenic or asthenic emotions, ability to antici- arge wave, itappears only 2—= imes, each ime for 19s. 7 he

pate situations in life and willingness to encounter them anoPrObab'“ty that the ship will rise to the top of the wave (if it

s0 on). According to (Rogovin and Karpova, 1985), the will- is a crest), or fail in to the hole (if it has a negative polarity),

ingness of action to external irritants is 0.5-2s later, thus, the same, and can not be determined in advance. Al these

there is no time to be prepared for a meeting with the freakpOInts tok’:het Thergn; d|ff|c1:1It|es| n forecastlnbg afreak wave, ¢
wave. Therefore, one important task is to study the psycho—even a short time betore when largé waves become apparen

logical characteristics of human behaviour in case of meetingOn the sea surface.

with a freak wave and the development of special techniques, .y o yiedgementsThe partial support of RFBR (08-05-00069),
and simulators for the crew of ships. In addition to purely o European Programme FU-7 (No. 234175), State Contracts
technical issues (stability of the ship in large waves, a spe{No. 02.740.11.0732 and 01.420.1.2.0006) and RAS program
cial lashing, etc.) this will prevent the severe consequencesNonlinear Dynamics” is used. Authors are also grateful to Lev
of this type of maritime disasters. Shemer (Tel-Aviv University, Israel) for the useful remarks.

We should point out that in our study the temporal evolu-
tion problem is considered. The relation between the tem-Edited by: C. Kharif
poral and the spatial formulation was considered in detail inReviewed by: P. Liu and two other anonymous referees
Shemer and Dorfman (2008). While the temporal approach
is simpler and more “natural” for numerical simulations, it
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Shurgalina E., Pelinovsky E.

Development of freak waves swell in a weak wave lite

Abstract:

Interference of unidirectional swell and wind wavasdeep water in frameworks of
linear potential theory is considered. Wind waves @escribed by Pierson—Moskowitz
spectrum, and swell — by the frequency-modulatedewsacket. It is noticed that in case
of a variable wind in a storm area the swell wasess be focused on some distance from
the origin area, forming abnormal big waves («fregves»). A visibility of the freak

wave swell of different shapes in wind wave fieddekamined.

Key words: water waves, wind waves, freak waves, dispersogiding, life-time of

freak waves
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Pelinovsky E., Shurgalina E.

Abnormal intensification of a wave near a verticabarrier

Abstract:

One of the possible mechanisms of emergence ok-ikeaes near a vertical barrier,

based on the dispersive focusing of unidirectiomalve packets is analyzed. This
mechanism is associated with the frequency dispeisi water waves and manifested in
the interference of many spectral components, ngowith different group velocities.

Formation of a single freak wave in a random wirale/field is considered in the frame
of linear theory. The characteristic lifetime of @mnormal wave in the framework of this
mechanism for typical conditions is approximatelotminutes, so thus such a rapid
effect is difficult to predict and prepare for. 8gue wave quickly changes its shape from

a high ridge to a deep depression.

Keywords: water waves, wind waves, freak waves, dispersicading.
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Field data of undular and breaking bores obseriea coastal zone and river estuaries

are collected. Existing criteria of separation luége two regimes of bores which depend

on the ratio between bore height and unperturbedrvapth are applied to the collected
data. It is shown that criterid#/h > 1.5 {H is a bore height, measured from the bottbm,

Is an unperturbed depth of reservoir) is sufficientthe bore separation by the regime.
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Two-soliton interactions play a definitive role in the formation of the structure of soliton turbulence in
integrable systems. To quantify the contribution of these interactions to the dynamical and statistical
characteristics of the nonlinear wave field of soliton turbulence we study properties of the spatial
moments of the two-soliton solution of the Korteweg-de Vries (KdV) equation. While the first two
moments are integrals of the KdV evolution, the 3rd and 4th moments undergo significant variations

in the dominant interaction region, which could have strong effect on the values of the skewness and

Keywords:
KdV equation
Soliton
Turbulence

kurtosis in soliton turbulence.
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1. Introduction

Solitons represent an intrinsic part of nonlinear wave field in
weakly dispersive media and their deterministic dynamics in the
framework of the Korteweg-de Vries (KdV) equation is understood
very well (see e.g. [1-3]). At the same time, description of statisti-
cal properties of a random ensemble of solitons (or a more general
problem of the KdV evolution of a random wave field) still remains
to a large extent an unsolved problem, especially in the context
of concrete physical applications. In particular, importance of this
problem for the description of wind-generated waves on shallow
water was demonstrated in [4-9]. From the theoretical point of
view the description of a random soliton wave field is comple-
mentary to the “integrable wave turbulence” theory outlined in a
recent paper by Zakharov [10].

The macroscopic dynamics of random soliton ensembles (soli-
ton gases) in integrable systems are determined by the funda-
mental “microscopic” properties of soliton interactions: (i) soliton
collisions are elastic, i.e. the interaction does not change the soli-
ton amplitudes (or, more precisely, the discrete spectrum levels in
the associated linear spectral problem); (ii) after the interaction,
each soliton gets an additional phase shift; (iii) the total phase
shift of a ‘trial’ soliton acquired during a certain time interval can

* Corresponding author. Tel.: +44 1509 222869; fax: +44 1509 223969.
E-mail address: g.el@lboro.ac.uk (G.A. El).

0375-9601/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physleta.2012.11.037

be calculated as a sum of the “elementary” phase shifts in pairwise
collisions of this soliton with other solitons during this time inter-
val. Thus the dynamics of a soliton gas are essentially determined
by two-soliton interactions.

The study of soliton gases was initiated by Zakharov in [11]
where an approximate kinetic equation for random KdV solitons
when their spatial density is small was derived. This equation de-
scribes spatio-temporal evolution of the distribution function of
solitons over the (IST) spectrum. The full kinetic equation for the
KdV soliton gas of arbitrary density was derived in [12] (see also
[13]) using the thermodynamic limit of the Whitham modulation
equations and then was generalized in [14] to other integrable sys-
tems. The kinetic description of a soliton gas makes an emphasis
on the particle-like nature of solitons. At the same time, solitons
represent nonlinear coherent wave structures so the total random
nonlinear wave field associated with a soliton gas can be natu-
rally interpreted as soliton turbulence [15]. In view of the outlined
definitive role of two-soliton interactions, it is natural to ask: what
is their specific (qualitative and quantitative) contribution to the
statistical properties of soliton turbulence? In classical (both hy-
drodynamic and wave) turbulence theories the random field prop-
erties are usually described in terms of statistical moments (see
e.g. [16,17]). This provides one with a natural motivation to start
with the study of the properties of the spatial moments of the
two-soliton KdV solution. In spite of the elementary nature of this
problem it has apparently never been considered before. In the
context of the soliton turbulence description, the knowledge of
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“primitive” dynamics of the spatial moments of two-soliton solu-
tions is a necessary ingredient in the understanding of the behav-
ior of the statistical moments of the random KdV wave field.

Since the first and the second spatial moments of the two-
soliton solution are conserved under the KdV evolution, our main
focus in this Letter will be on the properties of the 3rd and 4th
moments which vary with time and which, after appropriate en-
semble averaging, will affect the behavior of the skewness and
kurtosis of the probability distribution of the random wave field
in the KdV soliton turbulence. These two statistical characteris-
tics are also known to play important role in the theory of rogue
waves [18].

2. Dynamics of two-soliton interactions

Although multisoliton solutions of the KdV equation had been
known since the very beginning of the soliton theory creation
[19,20], the nature of the mass/momentum/energy exchange oc-
curring during the interaction of two solitons have been continued
to be the subject of rather active study (see [21] and references
therein). In view of the outlined in the Introduction key role of the
two-soliton interactions in the formation of the structure of soli-
ton turbulence we shall need to briefly revisit here some of their
basic properties.

We shall use the canonical form of the KdV equation

U + 6ULy + Uxxx = 0. (1)

The two-soliton solution of (1) has the form (see e.g. [2,3])

uz(x, 1) =287 In[t(x, )],
where 7 =1+ e? + %1 4 2e®1792,

m—m 3 .
o0=— ¢i=—-2(nix—4nit—§&), i=1,2. (2)
"t i (711 n; 1)
Here _’7%,2 are the discrete spectrum points in the associated IST
formalism and &; are the initial phases of solitons. When t > 1
solution (2) asymptotically (up to exponentially small terms) trans-
forms into a superposition of two single-soliton solutions (see e.g.
[1.3]):

up ~ Ay sech®[m1x — 4njt — & — Aq]
+ Az sech®[mox — 4n3t — & — A3, 3)

where the amplitudes A; = 2’71‘2' i=1,2 and the phase shifts Aj >
of the solitons due to the interaction are: A, = £In|«| assuming
A1 > Aj. We note that two-soliton KdV solution (2) can be rep-
resented in a number of equivalent forms emphasizing different
aspects of the soliton interaction dynamics (see e.g. [21]).

Let at the initial moment the taller soliton with amplitude A,
be located behind the shorter one with the amplitude A;. Since
the KdV soliton speed is proportional to its amplitude, the first
soliton will catch up the second one and the nonlinear interac-
tion will take place within certain space-time “dominant inter-
action region” (see [3]). There are three types of the behavior in
the dominant interaction region depending on the amplitude ratio
r=A1/A, > 1 of the interacting solitons [22]:

i) if1<r< % ~ 2.62, then the interacting solitons inter-
change their roles without passing through each other. They never
“stick together” into a single unimodal pulse and always retain
their “identity” during the interaction. This type of interaction is
often called the “exchange interaction”. At the moment when the
strength of the interaction reaches its peak the double wave as-
sumes a symmetric two-hump profile with the local minimum
u=u*= Ay — A, at the centre (see e.g. [23]).

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
Az /4

Fig. 1. Dependence of the minimum of the double wave amplitude u, =
min [max{u(x, t)}: t > 0] on the soliton amplitude ratio A,/A; in the two-soliton
solution.

(ii) if #ﬁ <1 < 3 the nature of the interaction changes so that
the taller soliton first absorbs the shorter one and then re-emits it.
Similar to the case (i) the solitons never merge into a single hump,
but at the same time the double wave never assumes a symmetric
shape. This scenario can be associated with the transition from the
“exchange” to the “overtaking interaction”. The amplitude of the
shorter soliton grows during the absorption phase and assumes its
maximum value Z[A;+ A+ (A% + A3 —3A1A;)"/?] at the moment
of the strongest interaction, say t =t*. At the same moment t = t*
the value of the double wave amplitude reaches its minimum uy, =
min [max{uy(x,t)}: t > 0].

(iii) if r > 3, then the soliton interaction mechanism is essen-
tially the same as in case (ii) but now the solitons merge into
a single unimodal hump in the dominant interaction region, be-
fore they separate again. This scenario is usually associated with
the “overtaking interaction”. The minimum of the resulting single
pulse amplitude achieved at the moment of the strongest interac-
tion is uyp = A1 — As.

In all three above-mentioned scenarios, the resulting double
wave in the dominant interaction region is wider than each of the
interacting solitons and has a smaller amplitude than that of the
taller soliton before the interaction. One can derive an ordinary
differential equation describing the exact dynamics of the local
maxima of the two-soliton solution (see [22]). However, for our
purposes it is sufficient to present a simple plot of the value of
the double wave minimal amplitude u,, defined above, versus the
amplitude ratio r~! = Ay/A; of the individual interacting solitons.
The plot of u;(A2/A1) obtained from direct numerical simulations
of the collisions of different pairs of the KdV solitons is presented
in Fig. 1. It was assumed in the simulations that the initial ampli-
tude of the taller soliton A1 =1.

As one can see, the absolute minimum of the function u,, is
achieved at Ay/A1 =1/2.62 ~ 0.38, which is the upper boundary
of the transition interval 0.33 < A,/A; < 0.38 between the ex-
change and overtaking soliton interaction scenarios (see previous
section). This property of the two-soliton KdV solutions could have
important implications for the analysis of the random soliton wave
field, in particular, for establishing the relation between the dis-
tribution of the values of local extrema in the soliton turbulence
and its spectral (IST) composition (we recall that the initial soliton
amplitudes A1, are directly related to the IST spectrum — see (2)).

3. Effect of soliton interactions on the integral characteristics of
the wave field

Most of the features of the two-soliton interaction described in
the previous section are known very well. However, the effect of
the soliton interaction on the integral characteristics of the wave
field to the best of our knowledge had not been considered before.
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It is this effect that is of our primary concern in this Letter since
it will have direct implications for the theory of the KdV soliton
turbulence.

As is known, the KdV equation has an infinite number of con-
served quantities (Kruskal integrals) (see e.g. [1-3]); below we
present the first four of them:

o0

I = / u(x, t) dx, (4)

I, = / u®(x, t) dx, (5)

I3 = / [u3 - %u?‘] dx, (6)

—0o0

o0
1
Iy = / [u“ —2uu? + g(uxx)z] dx. (7)
—00

The first three integrals (4)-(6) are usually associated with the
“mass”, “momentum” and “energy” conservation although they do
not necessarily have physical meaning of the corresponding physi-
cal entities. All Kruskal integrals are conserved under the KdV evo-
lution (assuming vanishing at infinity or periodic boundary condi-
tions for the wave field) so it is clear from the very beginning that
these quantities are not affected by the soliton interaction. Never-
theless, it is interesting to know their dependence on the soliton
amplitudes since the higher integrals (starting from the 3rd) are
not necessarily positive definite. Formally, one would need to use
full two-soliton solution (2) in (4)-(7) but the calculation can be
dramatically simplified in view of the conservation of Iy, I, I3, I4,
so that one can use asymptotic expression (3) instead of the full
solution (2) and all the integrals can be evaluated for each soli-
ton separately. As a result, after somewhat lengthy calculation, we
obtain:

Iy =401 + n2) = 2v2(A)? + 4,7, 8)
16 42

b= PR+ m) = S A4 A, ®
32 42

13:?(n§+n§):T(Af/2+Ag/2), (10)
256 16V2, 72 712

Remarkably, all the integrals Iy, I2, I3, 14 turn out to be positive
definite so, taking into account the long-time asymptotic represen-
tation of the N-soliton solution as the sum of individual solitons,
analogous to (3), one can conclude that their values increase as
the number of solitons increases. As one could expect, the “high-
er” integrals have stronger dependence on the amplitude than the
“lower” ones.

In turbulence theory one is usually interested in the standard
moments of the form

o
Mn(t):/u"(x,t)dx, n=1,2,3,.... (12)
—00

Obviously, for the two-soliton solution the first two moments (12)
My and M, coincide with the respective Kruskal integrals I; and
I and, therefore, are conserved. In turbulence theory M and M»
define the mean value and variance of the random wave field re-
spectively, and their constancy means that nonlinear interactions

16

1.4

w12

0.8

time

Fig. 2. The time dependence of the moments M3, M4 in the two-soliton interaction
with A1 =1, A, =0.3.

do not affect these two important parameters (we note that in
many problems nonlinearity leads to variations of the mean, e.g.
in the so-called wave setup phenomenon in fluid dynamics).

The next two moments, M3(t) and My(t), are related to the
skewness and kurtosis of the probability distribution of the turbu-
lent field. They do not coincide with the Kruskal integrals I3 and
14 so one should not expect that they will be conserved in soliton
turbulence. Numerical evaluation of M3 and My for the two-soliton
solution (2) with A1 =1 and A = 0.3 shows that these moments
decrease in the dominant interaction region (see Fig. 2). Outside
the interaction region M3 and M4 assume the values correspond-
ing to the superposition of non-interacting solitons (3):

8-16 16+/2
M= =2 + ) = e (477 + 3%, (13)
16-32 3242
1= 35 (nl +n3) = ?(AZ/Z +A7%). (14)

One can see that the variations of the 3rd and 4th moments are
quite significant (up to 30%) which implies that soliton interactions
can strongly affect the higher moments of the wave field, while
the 1st and the 2nd moments remain unaffected. Physically, the
decrease of the 3rd and 4th moments due to soliton interactions
can be explained by the above-mentioned decrease of the resulting
pulse amplitude during the interaction. Also, as one can see from
the conservation of the third Kruskal integral (6), the decrease
of the 3rd moment [u3dx results in the decrease of the inte-
gral f(ux)zdx which implies smoothing of the monotone slopes
of the pulse during the interaction. Our simulations of two-soliton
collisions characterized by different values of the definitive inter-
action parameter r = A;/A; show the same qualitative behavior
of the higher moments in the dominant interaction region, while
the amplitude of their variations depends on the value of r. In
Fig. 3 we present the numerical results for the amplitudes of the
relative variations, AM;/M?, where AM; = M? — Mi(mm), i=3,4,
versus r~! = A/A;. Again, in our numerical simulations we have
assumed that the amplitude of the greater soliton A; = 1. Both
curves are nonmonotone and have their extremum (maximum) at
the same value of the amplitude ratio A;/Aq ~ 0.32 which is close
to the lower boundary of the transition region 0.33 < Ay/A1 <
0.38 separating the exchange and overtaking scenarios of the two-
soliton interaction. Thus the two-soliton interactions with the am-
plitude ratio in the transition interval are expected to have greater
impact on the higher moments in soliton turbulence.

To the best of our knowledge, the described effect of soliton
interactions on the higher moments of multisoliton solutions has
never been reported in the literature. Taking into account the key
role of the higher moments in the characterization of the skewness
and kurtosis of the turbulent field, an immediate implication of
this effect in the context of soliton turbulence is that the pairwise
interactions of solitons must decrease the skewness and kurtosis
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Fig. 3. Dependence of the relative variations AM; /M? of the 3rd and 4th moments
of the two-soliton solution on the soliton amplitude ratio A;/A;.

(compared to their values for the gas of noninteracting solitons). It
is clear the quantitative contribution of this effect will depend on
the density of the soliton gas (frequency of soliton collisions) and
on its spectral (IST) composition (the ratios A;/A; involved), i.e.
on the spectral distribution function of the soliton gas [14]. Thus,
for inhomogeneous soliton turbulence, when the density of soli-
tons depends on the spatial coordinate, the analysis of the higher
statistical moments behavior will be coupled with the kinetic de-
scription of the associated soliton gas.

In conclusion of this section we note that in classical and wave
turbulence theories, along with spatial moments, one is also in-
terested in the Fourier transform of the velocity field, its power
spectrum, etc. A similar description can be introduced for soliton
turbulence as well and would require the knowledge of the Fourier
spectrum evolution in the multisoliton solutions of integrable sys-
tems. The latter is also directly related to spectral algorithms of
the numerical simulations of emergence, propagation and interac-
tion of solitons in nonlinear dispersive media (see e.g. [24]).

4. Conclusions

We have shown that the two-soliton interaction in the frame-
work of the KdV equation leads to the decrease of the 3rd and 4th
moments M3 4 of the nonlinear wave field while the 1st and the
2nd moments remain unchanged due to the conservation of the
mass and momentum. The magnitudes of the relative variations of
M3, M4 turn out to be nonmonotone functions of the soliton am-
plitude ratio A;/A1 each having a single maximum located at the
point Ay/A1 =~ 0.32, close the boundary of the transition region
between the exchange and overtaking scenarios of two-soliton in-

teractions. The qualitative implication of this dynamical effect for
the soliton turbulence theory will be a decrease of the skewness
and kurtosis of the turbulent wave field in the regions of higher
density of solitons. The quantitative analysis of the effect of soliton
interactions on the structure of soliton turbulence will be made in
our future publications.
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Abstract:

The study of interaction of unidirectional one-mostditary internal waves in a
stratified ocean is done. The exact two-solitorusoh of the Korteweg-de Vries
equation, which is valid for internal waves of sihmamplitude, is used for the
analysis. The role of this process in the dynamoicsoliton turbulence which is
important for understanding the oceanic turbuleincéhe range of long waves is
discussed. It is shown that in the moment of imigoa the third and fourth
moments of the wave field, which play an importaié¢ in the theory of turbulence
(skewness and kurtosis) decrease. The value ofrdladive changes of these
moments is maximal for the amplitude ratio of solg in the intermediate zone,
where the exchange regime of soliton interactioanges to the overtake regime.
The obtained results are compared with the lingaandhics of soliton-like pulses,

for which the third and fourth moments grow in #lismn.
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Abstract

Interaction of two solitons of the same and différ@olarity in the framework of
modified Korteweg-de Vries (mKdV) equation is sedli Three types of soliton
interaction are considered: exchange and overtatangositive solitons, and absorb-
emit for solitons of different polarity. The inteegiate case, which separates the
different regimes of soliton interactions, is saadin details. Since the interaction of
solitons is an elementary act of soliton turbuleribe moments of the wave field up to
fourth are studied, which are usually considerethéturbulence theory. It is shown that
in the case of interaction of solitons of the samokarity the third and fourth moments of
the wave field, which determine the coefficientskéwness and kurtosis in the theory of
turbulence, are reduced, while in the case of acteyn of solitons of different polarity
these moments are increased. The results are cedhpéth the estimations for the two-

soliton interaction in the framework of the Korteyvede Vries (KdV ) equation.
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