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ABSTRACT  

Surface and internal gravity waves have an important impact on the hydrological 

regime of the coastal zone. Intensive surface waves are particularly interesting to study 

because they can be a serious threat to ships, oil platforms, port facilities and tourist areas 

on the coast; such waves hampered the implementation of human activities on the shelf. 

Nonlinear internal waves affect the underwater biosphere and cause sediment transport, 

they create washouts soil at the base of platforms and pipelines, affect the propagation of 

acoustic signals. Freak waves have a particularly strong impact, and they are studied in 

this thesis. Therefore, the study of freak wave formation in the coastal zone is relevant 

and practically significant. 

The main goal of the thesis is the study of particularities of abnormal wave 

formation in coastal zones under different assumptions on the water depth and wave field 

form. In particular, it is demonstrated that the mechanism of dispersion focusing of freak 

wave formation "works" for waves interacting with a vertical barrier. It is shown that just 

before the maximum wave formation a freak wave quickly experiences a shape change 

from a high ridge to a deep depression. The lifetime of a freak wave increases with the 

growth of number of individual waves in anomalous wave packets, and the lifetime of a 

freak wave increases as water depth decreasing. 

It is demonstrated that pair interaction of unipolar solitons lead to a decrease of the 

third and fourth moments of a wave field. It is shown that in the case of heteropolar 

soliton interactions the fourth moment increases.  

The nonlinear dynamics of ensembles of random unipolar solitons in the framework 

of the Korteweg - de Vries equation and the modified Korteweg - de Vries equation is 

studied. It is shown that the coefficients of skewness and kurtosis of the soliton gas are 

reduced as a result of soliton collisions. The distribution functions of wave amplitudes 

are defined. The behavior of soliton fields in the framework of these models is 

qualitatively similar. It is shown that in these fields the amplitude of the large waves is 

decreased in average due to multi-soliton interactions. 

A new breaking effect of solitons with small amplitudes and even changing of its 

direction in multi-soliton gas as a result of nonlinear interactions with other solitons is 

found in the framework of the modified Korteweg-de Vries equation. 
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It is shown that in heteropolar soliton gas abnormally large waves (freak waves) 

appear in the frameworks of the modified Korteweg - de Vries equation. With increasing 

of soliton gas density the probability and intensity of freak waves in such systems 

increases. 

Keywords: freak waves, turbulence, soliton, model equations 
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RÉSUMÉ 

« Dynamique de champs de vagues irréguliers en zone côtière » 

Les vagues et les ondes internes de gravité ont un impact important sur 

l’hydrodynamique et l’hydrologie de la zone côtière. Les vagues extrêmes sont 

particulièrement intéressantes à étudier, car elles sont une menace sérieuse pour 

le transport maritime, les plates-formes pétrolières, les installations portuaires 

et les zones touristiques de la côte. Ces ondes entravent aussi les activités 

humaines développées à la côte. Les ondes internes non linéaires affectent la 

biosphère aquatique, notamment le transport de sédiments et créent des 

affouillements à la base des plates-formes et des pipelines. Elles  affectent 

également la propagation des signaux acoustiques. Les vagues scélérates 

provoquent d’importants dégâts matériels et de nombreuses pertes en vies 

humaines. Par conséquent, l’étude de la formation des ondes scélérates dans la 

zone côtière est d’une importance capitale. L'objectif principal de la thèse est 

l'étude de la formation d’ondes océaniques anormales dans la zone côtières 

pour différentes profondeurs d’eau et différents champs d'ondes. Il est montré 

que le mécanisme de focalisation dispersive à l’origine de la formation d’ondes 

scélérates est pertinent quand les ondes interagissent avec une paroi verticale. 

Il est démontré que juste avant la formation de l’onde maximale, celle-ci 

change rapidement de forme, d'une haute crête vers un creux profond. La durée 

de vie de l’onde scélérate augmente avec le nombre d’ondes individuelles 

contenues dans le paquet d'ondes anormales et lorsque la profondeur de l'eau 

diminue.            

 Il est démontré que l'interaction de paires de solitons unipolaires conduit 

à une diminution des facteurs de dissymétrie et d’aplatissement du champ 

d'ondes. Il est prouvé que dans le cas d'interactions hétéropolaires de solitons, 

le facteur d’aplatissement augmente.       

 La dynamique non linéaire de champs de solitons unipolaires aléatoires 

est étudiée dans le cadre de l’équation de Korteweg - de Vries (KdV) et de 

l’équation  de Korteweg - de Vries modifiée (mKdV). Il est montré que les 

coefficients de dissymétrie et d'aplatissement du gaz de solitons sont réduits à 
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la suite de collisions de solitons. Les fonctions de distribution des amplitudes 

des ondes sont obtenues. Le comportement des champs solitoniques dans le 

cadre de ces modèles est qualitativement similaire. Il est démontré que 

l'amplitude des ondes extrêmes diminue en moyenne en raison des interactions 

entre multi-solitons.    

 Dans le cadre de l'équation de Korteweg-de Vries modifiée, les 

interactions non linéaires entre le soliton de plus petite amplitude et les autres 

solitons du gaz ont pour effet de réduire sa célérité qui devient négative et de 

modifier ainsi sa direction de propagation.       

 A partir de l'équation de Korteweg-de Vries modifiée, il est prouvé que 

dans un gaz de solitons héteropolaires, des ondes scélérates peuvent se former. 

La probabilité d’occurrence et l’amplitude des ondes scélérates dans de tels 

systèmes augmente avec la densité du gaz de solitons. 

Mots-Clés : soliton, turbulence, vagues scélérates, équations modèles 
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Chapter 1 

Introduction 

Wind waves on the surface of natural water bodies is a complex and irregular 

system caused by interference and interaction of wave packets moving with different 

speeds and in different directions.  The ability to forecast them is extremely important for 

navigation and the exploration of ocean resources. Operational forecasting of wind waves 

is based on the nonlinear kinetic equations of spectral wave intensity, and significant 

progress has been achieved there [Efimov et Polnikov, 1991; Lavrenov, 1998; Komen et 

al, 1994; Annenkov et Shrira, 2013, 2014; Badulin et al, 2005, 2007]. 

In a random wind wave field abnormally large waves (rogue or freak waves) may 

appear. Although in the past such waves have been the subject of maritime folklore, 

fairytales, and adventurous literature, over time this has changed to not simply be the 

case. These waves are particularly interesting to study because they can be a serious 

threat to ships, oil platforms, port facilities and tourist areas on the coast. Numerous 

observations of freak waves in different areas of the oceans are presented in monographs 

[Kurkin et Pelinovsky, 2004; Kharif et al, 2009, Dotsenko et Ivanov, 2006] and 

catalogues [Didenkulova et al, 2006; Liu, 2007, 2014; Nikolkina et Didenkulova, 2011, 

2012]. 

Initially, freak waves have been studied in relation to waves in deep water, and the 

first descriptions of such waves were made by sailors. Later, instrumental data started to 

be accumulated with appearance of oil and gas platforms in a sea. The boom in the freak 

wave study happened after the registration of the abnormally large wave height of 26m 

(in a water depth of  70 m) on the wave platform "Draupner" in the North Sea on January 

1, 1995, this wave is called the “New Year wave” [Haver et Andersen, 2000]. Physical 

mechanisms of freak wave generation in deep water include: 1) modulation instability, 2) 

interaction of waves with currents, 3) wind-wave interaction; these mechanisms are 

described in the books [Kurkin et Pelinovsky, 2004; Kharif et al, 2009] and reviews 

[Kharif et Pelinovsky, 2003; Dysthe et al, 2008; Slunayev et al, 2011; Didenkulova et 

Pelinovsky, 2011]. 
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Dangerous waves near the coast are usually considered independently, and in the 

past it was believed that they stem from a different physical nature. Against the 

background of such catastrophic events such as tsunamis and storm surges, short-lived 

abnormal waves attracted less attention. Nevertheless, the number of observations of the 

abnormally large waves near the shore is growing, and these waves have been termed 

freak waves. 

 Such waves are quite a surprise to many people spending their holidays near the 

water. A 9m high wave washed two people from the pier in South Africa on August 26, 

2005 [Kharif et al, 2009]. Another incident happened in October, 1998 when a group of 

students who were on a practice field on the small island of Diana, near Vancouver 

Island, Canada [Kurkin et Pelinovsky, 2004]. 

The students were on a cliff about 25 meters above the water. After 45 minutes, 

one student noticed a big wave that started crashing on the shore. He took a few pictures 

in intervals of about 2 seconds (Fig. 1). After 4 seconds, the wave reached them, and if it 

had been slightly higher the consequences would have been tragic. The analysis of 

observed data, collected in the catalogue [Nikolkina & Didenkulova, 2011, 2012], shows 

that the largest number of registered freak waves that led to the destruction and even 

death, occurs in the coastal zone: in the shallow part of the ocean (less than 50 m depth) 

and on the coast. Remarkably, in the 5 year period from 2006 to 2010, 50% of all events 

caused by the freak waves occurred on the coast, 38.5% - in shallow water and only 

11.5% on the deep parts of the ocean and on the high seas. 

Although these statistics are incomplete (excluding the instrumental data), they 

show the prevalence of the freak waves in the coastal zone and on the coast, and that they 

require special analysis. Although the physical mechanisms of freak waves in shallow 

water are partly the same as in deep water, there are different mechanisms associated 

their interaction with the bottom and coasts [Kurkin et Pelinovsky, 2004; Kharif et al, 

2009; Slunayev et al, 2011; Akhmediev & Pelinovsky, 2010; Didenkulova et Pelinovsky, 

2011]. 
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Figure 1 – consecutive frames (2 second interval) of freak wave approaching to the coast, 

its height reached 25 m. 

 Therefore, the study of freak wave formation in the coastal zone is relevant and 

practically significant. It should be understood that the water depth near shore is not 

necessarily small (in comparison with the wavelength).  

 Many incidents of freak wave appearance near steep cliffs were recorded, where 

the water depth is large enough. The importance of investigating such cases is 

demonstrated in articles of scientists from Taiwan [Tsai et al., 2004] due to numerous 

victims among fishermen, who are sitting on the breakwaters and rocks. The photographs 

given above demonstrate the same class of freak waves.  

 In this case, the well-developed theory of waves on infinite or finite depth can 

be used. Thus, freak waves are studied in the framework of the nonlinear Schrödinger 

equation and its generalizations, and here are few references [Onorato et al, 2001, 2002, 

2003, 2005; Dysthe et al, 2003; Dyachenko et Zakharov, 2008; Slunyaev et Sergeeva, 

2011, 2012; Sergeeva et Slunyaev, 2013; Shemer et al, 2010; Slunyaev et al, 2013]. It is 

also important to mention the study of freak waves within the Euler equations in 

conformal variables [Zakharov et al., 2014; Shamin, 2009; Shamin et Udin, 2013; 

Shamin et al., 2013, 2014; Shamin et Udin, 2014] and new class of "vortex" freak waves 

associated with interactions in the atmosphere [Abrashkin et Soloviev, 203; Abrashkin et 
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Soloviev, 2013, Abrashlin et Oshmarina, 2014]. However, the presence of vertical 

barriers has not been considered in the theoretical models of freak wave generation.  

If the water depth in the coastal area is small, the new effects related to the strong 

difference from quasisinusoidal waveforms which is characteristic for deep water started 

to be important. Nonlinear waves in the coastal zone often have soliton or quasi-soliton 

structures. More frequently, such waves occur when a tidal wave enters an estuary, where 

they transform into shock waves (hydraulic jumps) or undular bores [Chanson, 2012] and 

they can have a very irregular structure. The same situation is realized for tsunami waves, 

when they propagate into shallow water [Tsuji et al, 1994; Grue et al, 2008]. The soliton 

structure of the wave field in shallow water has already been mentioned in the article 

[Brocchini et Gentile, 2001]. Nonlinear wave theory in shallow water is well developed. 

The most famous model is the Korteweg-de Vries equation, derived in 1895 [Korteweg 

& de Vries, 1895]. The main specificity of this equation is its applicability for waves 

propagating in one direction only. Accounting for counter-propagation (or the more 

general problem of wave interactions propagating in various directions) has also been 

discovered a long time ago, and in this case many varieties of Boussinesq equations were 

derived; see., e.g., [Pelinovsky, 2007]. In the framework of shallow water models  there 

are a few works about freak waves, based on the approximation of the narrowband wave 

packet [Onorato et al, 2003; Pelinovsky et Sergeeva, 2006; Sergeeva et al, 2011] or the 

Korteweg-de Vries equation [Pelinovsky et al, 2000]. At the same time, analysis of freak 

waves in soliton field has never been performed before. 

It is important to mention that due to vertical water stratification by temperature 

and salinity, as well as flow velocity, internal waves exist in the coastal zone [Morozov, 

1996; Konyaev et Sabinin, 2002]. Internal gravity waves have the same nature as surface 

gravity waves, but for them, gravity is almost balanced by the force of Archimedes. 

Weakly nonlinear theory of internal waves in the coastal zone is also based on the 

Korteweg-de Vries equation [Mitropolsky, 1981], however, here the following 

amendments of the nonlinearity become important and it leads to Gardner equation. In 

the framework of this equation for some type of stratification the effect of modulation 

instability is possible, which leads to the generation of "internal" freak waves [Grimshaw 

et al, 2005, 2010; Talipova, 2011]. And here we can say that the soliton structure of 
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internal waves, which always was noted in the observations [Ostrovsky et Stepanyants, 

1989; Vlasenko et al, 2005], have not been yet taken into account in the analysis of freak 

waves. 

 

Outline of the thesis 

 

The remaining thesis is arranged as follows: 

Chapter 2 is devoted to the mechanism of dispersive focusing. The freak wave 

appearance near the vertical barrier is studied in the framework of this mechanism. The 

interaction of swell and wind waves is also studied.  

Chapter 3 is devoted to the two-soliton interaction in the framework of integrable 

models as elementary act of soliton turbulence. 

Chapter 4 presents our numerical results concerning the dynamics of soliton fields. 

Soliton turbulence is studied in the framework of the Korteweg-de Vries equation and the 

modified Korteweg-de Vries equation. Freak waves appearance in the heteropolar soliton 

field is demonstrated. 

 

Lastly, a thesis summary and concluding remarks are presented. 
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Chapter 2 

Linear interference of random waves and the appearance of abnormally 

large waves 

 

2.1 Introductory remarks  

2.2 Mechanism of dispersive focusing of freak wave appearance  

2.3 Various forms of freak waves in case of swell and wind wave interaction 

2.4 Wave interaction with a vertical barrier  

2.5 Conclusion  
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2.1 Introductory remarks  

Water waves propagate with different velocities and in different directions; as a 

result of this complex interference, very irregular wave system containing weak and 

strong peaks is formed. Such large waves (freak waves) can be a serious threat to ships, 

oil platforms, port facilities and tourist areas on the coast. Mechanisms of abnormally 

large wave formation are described in the books [Kurkin et Pelinovsky, 2004; Kharif et 

al, 2009, Dotsenko et Ivanov, 2006] and numerous articles and reviews that will be cited 

in the thesis as needed. This chapter focuses on only one mechanism of large wave 

occurrence – the mechanism of dispersive focusing associated with the dispersion of 

water waves (dependence of the propagation velocity of the spectral components from 

their frequency). This mechanism is very popular for the freak wave generation in the 

laboratory, where their reliable reproducibility is necessary [Brown et Jensen, 2001; 

Johannesen et Swan, 2001; Clauss, 2002; Kurkin et Pelinovsky, 2004; Kharif et al, 2008, 

2009, Shemer et al., 2007; Shemer et Dorfman, 2008; Shemer et Sergeeva, 2009].  

Particular attention will be paid to the study of kinematics and statistics of large 

waves in linear random wind wave fields. Paragraph 2.2 is based on basic equations of 

water waves and a description of dispersive focusing mechanisms is also presented. 

Examples of single freak wave appearances in the framework of this mechanism are 

given. The interaction of simultaneously moving swell waves with weak wind waves in 

the framework of potential theory is considered in paragraph 2.3. It is noted that in the 

case of variable wind, swell waves can be focused at a distance from the original area - in 

a storm area, forming an abnormally large wave (or "freak wave"). An investigation of 

the visibility of freak waves of different shapes from a background of wind waves is 

made. The formation of "freak waves" at vertical barrier (rock or cliff) is studied in 

paragraph 2.4. 
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2.2 Mechanism of dispersive focusing of freak wave appearance 

Suddenly appearing short-lived abnormal waves on the sea surface (freak waves) 

attract the attention of specialists because they can be a serious threat to ships, oil 

platforms, port facilities and tourist areas on the coast. 

Numerous observations of freak waves in various areas of the oceans are presented 

in books [Lavrenov, 1998; Kurkin et Pelinovsky, 2004; Kharif et al, 2009] and in articles 

[Lavrenov, 1985; Lopatuhin et al., 2003; Divinsky et al., 2004; Badulin et al., 2005; 

Didenkulova et al, 2006; Liu, 2007; Nikolkina et Didenkulova, 2011, 2012]. Through the 

mechanisms of freak wave generation in the open sea there are [Kharif et al, 2009]: а) 

superpositions of a large number of individual spectral components moving with different 

velocities and in different directions (geometrical and dispersive focusing); b) nonlinear 

mechanisms of modulation instability; c) interactions of waves with the bottom and 

currents.  

Each of these mechanisms has its own specificity, which manifests in the 

corresponding probability of freak wave appearance and its lifetime. Each mechanism 

leads to different waveforms of freak waves and different scenarios of their 

manifestation. All of these important features have not been sufficiently studied yet. 

In this paragraph the scenario of the appearance of freak waves in the sea, based 

on dispersive focusing of wave packets propagating in the same direction, is considered. 

When the group wave velocity depends on the frequency, this mechanism “works” for 

dispersive waves of all physical natures. In this case, the faster waves overtake the slower 

ones. It is obvious that for a significant focus of wave energy, the convergence of large 

numbers of quasi-monochromatic packets is necessary. 

This mechanism "works" for deterministic and for random waves, leading to a 

natural or accidental occurrence of abnormally high waves. It can occur in both linear and 

nonlinear theory of water waves, but of course, nonlinearity leads to its features in the 

wave field [Pelinovsky et Kharif, 2000; Pelinovsky et al., 2003; Kharif et al, 2001; 

Pelinovsky et al, 2000; Shemer et al., 2007; Shemer and Dorfman, 2008].  

Theoretical (analytical) results on wave packet focusing in water are obtained 

mainly using linear theory, specifically in the framework of the parabolic equations for 
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wave packet envelopes [Clauss et Bergmann, 1986; Magnusson et al., 1999; Shemer et 

al., 2002;  Pelinovsky et al., 2003; Shemer et Dorfman, 2008].  

The parabolic equation for wave packets can be derived for weakly modulated 

waves in waters of any depth, not necessarily infinitely deep. However dispersion 

decreases in shallow water, and processes of dispersion convergences occur over very 

long times (distances), which can exceed the physical dimensions of water reservoir. 

Therefore, the main application of parabolic equations is associated with the finite but not 

the small depth. One exact solution of this equation is Gaussian impulse [Clauss et 

Bergmann, 1986; Magnusson et al, 1999; Pelinovsky et Kharif, 2000], which 

demonstrates the process of the emergence of abnormally high waves and their 

disappearance. The description of the process of single freak wave generation will be 

given in this paragraph.  

In this chapter, the following will be assumed: 

1. The liquid is assumed to be ideal, incompressible and unstratified. 

2. We will consider two-dimensional potential wave motion (both a horizontal and 

vertical coordinate). 

3. The water depth is constant and there is no water filtration through the "solid" 

bottom. 

4. The action of the wind flow is neglected, and the atmospheric pressure is 

constant. 

In this case, the original equations are two-dimensional Euler equations:  
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where u, w − horizontal and vertical components of fluid velocity, ρ − density, p – 

pressure, g – acceleration due to gravity, x – horizontal coordinate, z – vertical coordinate  
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and t - time. Fluid is limited by fixed horizontal bottom. z=−h, there is a free surface with 

equilibrium position of z=0 (Fig. 2.1).  

 

Figure 2.1 - geometry of the problem. 

 Equations (2.1)-(2.3) must be supplemented by boundary conditions. Conditions 

of fluid nontransmission through the solid boundary (bottom) is 

0=w        at    hz −= .             (2.4) 

On the free surface the kinematic condition must be satisfied 

x
u

t
w

∂
∂+

∂
∂= ηη     at       ),( txz η= .            (2.5) 

and dynamic condition on the surface 

atmpp=   at ),( txz η=                        (2.6) 

where ),( txη  is a vertical displacement of the free surface, and patm is constant 

atmospheric pressure. 

     Taking into account that the motion of the fluid is assumed to be irrotational, we 

can use the velocity potential Ф(x,z,t), determined by the formula  

z
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x
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After substituting (2.7) into (2.3) we come to the Laplace equation:  
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The boundary condition at the bottom (2.4) is transformed into: 

             0=
∂
∂

z

Ф
hz −=,      (2.9) 

and kinematic condition (2.5) into 
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To transform the dynamic boundary condition equation (2.6), the Bernoulli integral must 

be used, which is obtained from equation (2.2), after integrating by vertically 
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where const may be a function of x and t. Taking into account that the potential is defined 

with precision up to any function of time, the integral or equation (2.11) with equation 

(2.6) as a condition on the free surface then converts into  
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 Thus, we have a closed system for two functions η(x,t) and Φ(x,z,t). It is a linear 

Laplace equation (2.8) with linear (2.9) and nonlinear (2.10), and (2.12) boundary 

conditions. The function η(x,t) could be neglected with the help of (2.12) and a closed 

nonlinear boundary value problem for the potential could be obtained. The derivation of 

this system can be found in many textbooks of hydrodynamics and it is presented here in 

a shortened form. In any case, this is a complex system, which is why the number of 

analytical solutions for water waves are seldomly found.  

In the case of linear wave motions in a reservoir of finite depth, the Euler 

equations can be simplified by transferring boundary conditions from the unknown free 

surface z = η(x,t) to the plane z = 0. Additionally, all nonlinear terms in the kinematic 

and dynamic boundary conditions can be omitted. The basic equation for wave motion is 

the Laplace equation (2.8) which, of course, remains unchanged. 

The kinematic condition (2.10) takes the following form 
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correspondingly the dynamic condition is 
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It is convenient to exclude the function η(x,t) by substituting equation (2.14) into (2.13) 

and obtaining a single boundary condition at the free surface 
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As a result, we obtain a closed linear boundary value problem for the potential, consisting 

from the Laplace equation (2.8) with linear boundary conditions (2.9) and (2.15). 

Because of homogeneity of the boundary value problem with respect to the 

transformation of the horizontal coordinate and time, the solution of this boundary value 

problem can be found by separation of variables  

)](exp[),(),,( kxtikztzx −Ψ=Φ ω ,                             (2.16) 

where the parameters ω and k are free. A brief solution of the boundary value problem is 

presented below. After substituting (2.16) into the Laplace equation (2.8), it is 

transformed into an ordinary differential equation for the function Ψ and can be easily 

solved 

)exp()exp(),( 21 kzCkzCkz −+=Ψ .                                    (2.17) 

The constants can be found from the boundary conditions. Taking into account the 

boundary condition at the bottom (2.9), it then takes the following form (assuming k > 0) 

   )](cosh[),( 1 hzkCkz +=Ψ .         (2.18) 

After substituting (2.18) into (2.15) with (2.16), the dispersion equation for waves 

in the fluid of finite depth can be found: 

)tanh(2 khgk=ω .                                                      (2.19) 
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The dispersion relation indicates the relationship of spatial and temporal scales of 

water surface oscillations, determined by a specified balance of forces for given type of 

waves. This is the fundamental difference of wave fields from turbulent fields, for which 

there is no such link. 

  The expression of potential takes the following form:  
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With the help of (2.14) the solution of water surface displacement can be written 

as  

[ ]
g

Ci
AkxtiAtx 1,)(exp),(
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where A is wave amplitude. This solution describes a traveling monochromatic wave to 

the right. The expression for the wave propagating to the left can be written similarly. 

General solution of the linear potential problem can be written with the help of 

elementary solutions such as Fourier integral 
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where the conjugation condition on the spectral amplitude must be imposed 

)()(* kAkA −= ,     )()(* kBkB −= .                                        (2.23) 

We consider the waves moving in only one direction below (x > 0). In this case, the 

displacement of the water surface is described by only one integral 

∫
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where A(k) is the complex Fourier spectrum determined by the initial perturbation 

corresponding to the traveling wave, η0(x): 
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Under certain initial conditions within the solution (2.24) large waves can appear 

at some moment. However, such adequate initial conditions are difficult to find. 

Therefore a different approach is used [Kurkin et Pelinovsky, 2004; Kharif et al, 2009]: 

the Cauchy problem for the initial conditions corresponding to the expected abnormal 

wave is solved, and then the resulting solution is inverted in space. As a result, there are 

possible forms of the wave packet, and their evolution leads to the formation of abnormal 

waves in a finite time with subsequent transformation back into a wave packet.  

 Scenario of a single freak wave appearance in the framework of the mechanism of 

dispersive focusing is given in the article Pelinovsky E., Shurgalina E., and 

Chaikovskaya N. The scenario of a single freak wave appearance in deep water – 

dispersive focusing mechanism framework. Nat. Hazards Earth Syst. Sci., 2011, 

11, 127-134.  

      Let us say a few words about the manifestation of the same effect in a fluid of 

finite depth. If the waves are long enough, they all propagate with the same velocity (

gHkc =)( ) and hence they cannot overtake each other. Thus, in purely shallow water 

the effect of dispersion focusing is impossible. Freak waves in nonlinear traveling 

(Riemann) waves are also absent [Didenkulova et Pelinovsky, 2011]. Then other effects 

must play a role here. In the case of water with small but finite depth, the velocity of 

spectral component propagation in the approximation of the linearized Korteweg-de 

Vries equation takes the following form: 
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and shorter components may overtake each other. This process is considered in the 

articles [Pelinovsky et al, 2000; Talipova et Pelinovsky, 2009] taking into account 

nonlinear effects. It is important to emphasize that due to small dispersion the overtaking 

process takes a long time, thus the lifetime of the freak waves in shallow water in the 

framework of mechanisms of dispersion focusing is greatly increased. In this sense, it 

decreases the risk because such a wave can appear at a great distance from the ship or 

from the shore, thus preparations for the meeting with the danger wave can be done.  
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2.3 Various forms of freak waves in case of swell and wind wave 

interaction 

A large number of photos and eyewitness stories of freak waves in the ocean has 

been accumulating during the past decade. Available collected data proves the existence 

of freak waves of various forms [Kurkin et Pelinovsky, 2004, Faulkner, 2000, Kharif et 

al., 2009]. In literature there are descriptions of abnormally large waves in the form of 

"white wall", "single tower", "three sisters" (a group of several individual waves).  

Sometimes in front of freak waves there are depressions of several meters deep - 

"hole in the sea". Oftentimes these waves have sharp fronts and are asymmetric, 

indicating the nonlinear character of freak waves. Typical records of abnormal waves, 

including one and two "sisters" are shown on Fig. 2.2.  

 а  

b  

Figure 2.2 Temporary record of abnormally high wave in the Black Sea (a), received on 

22 November 2000 [Divinsky et al., 2004], and a group of abnormally large waves (b) in 

the Sea of Japan [Mori et al., 2002] – 24 January 1987. 
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One of the mechanisms of freak wave formation is a combined effect of geometric 

(spatial) and dispersive wave focusing in case of imposition of waves moving in different 

directions (“crossing sea”). One reason is that wave superposition can be the interaction 

of swell, coming from a storm area, with wind waves in the area of local storm. Usually 

for wind waves description statistical methods are used, and for swell description at large 

distances from the storm deterministic methods are used. Water waves are dispersive, and 

out of the storm area swell is a frequency-modulated packet and longer waves with 

greater velocity of propagation are ahead of the shorter ones. This fact has already been 

used in practice to determine the distance to the storm zone by changing swell current 

frequencies [Snodgrass et al, 1966]. Wind in storm area is not constant, and it leads to 

wave packet generation with a very complicated law of frequency changing with time, 

including the generation of packets when short waves propagate ahead of long ones. It is 

obvious that such packets will focus in the anomalous wave due to dispersion, and then 

spread out over large distances from the storm area. Thus, at intermediate distances from 

the storm area, we can expect the appearance of abnormally large swell waves (freak 

waves), which will interact with a random wind wave field associated with a local storm. 

The main purpose of this section is to estimate the lifetime of abnormally large swell 

waves in wind wave fields. 

To simplify the problem, we will assume that the anomalous swell wave is already 

formed at the initial time and stands out against a background of wind waves. It could 

have a different shape, as was mentioned in the beginning, thus we consider several 

possible freak wave forms. Spreading of abnormally large swell waves on an unperturbed 

(smooth) water surface and the interaction of swell with a random wind wave field will 

be studied. 

The following class of modulated waves with a Gaussian envelope will be 

modeled:  
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where l – characteristic size of the wave packet (envelope) and K0 – carrier wave number. 

In all cases considered below K0 = 0.07 m-1, it corresponds to the length of individual 

wave of approximately 90 m.  
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By changing l, we actually change the number of waves ("sisters") in the abnormal 

group. 

The parameter a in the linear theory plays a role of a normalizing factor that helps to 

"keep" the amplitude of the wave packet the same. Various forms of abnormally large 

waves are shown in Fig. 2.3, and their evolution will be discussed in this section. There 

are one, two, three, and four "sisters" (the number of "sisters" corresponds to the number 

of crests above the zero water level). It is important to mention that deep troughs can be 

considered as freak wave of negative polarity. The length of wave packets is changing 

from 200 to 800 m in our calculations, and its positive amplitude is equal to 0.6 m. The 

steepness of the anomalous wave in this case is sufficiently small (0.042), which is why 

such waves can be considered in the frameworks of linear theory. 

a  b  

c  d  

Figure 2.4 – initial forms of abnormal wave packets 

а – «one sister» (a = 0.72 m, l = 50 m); b – «two sisters» (a = 0.8 m, l = 80 m); c – 

«three sisters» (a = 0.59 m, l = 160 m); d – «four sisters» (a = -0.62 m, l = 200 m). 

During the time the perturbation (2.27) is transformed into a wave packet due to 

dispersion of water waves, as shown in Fig. 2.5 for a time moment of 50 seconds. The 

wave packets for different initial perturbations behave similarly. Wave trains are 

stretched in space due to dispersion, the number of individual waves increases linearly 
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with time, and packet amplitude decreases with time (at large times as t-1/2 [Uizem, 

1977]).  

At the initial times due to interference processes the maximum positive amplitude 

of the packet may even grow up and be changed monotonically (Fig. 2.6). "Three sisters" 

are spreading out into space slower than "one sister" due to a decrease of dispersion. 

From these considerations the lifetime is growing with increasing wave numbers in the 

group. 

a    b  

c    d  

Figure 2.5 – Shape of different wave packets in the moment of 50 seconds. 

a – «one sister», b – «two sisters», c – «three sisters» d – «four sisters». 

The obtained above solutions show the evolution of the wave packet on a perfectly 

smooth surface. In this case, formally the lifetime of freak waves are equal to infinity. If 

it is assumed that there is a threshold of water wave visibility, the lifetime becomes finite. 

For example, consider three critical values of the wave amplitude when the wave 

becomes "invisible": 0.3, 0.4 and 0.5 m (a more accurate determination of the minimum 

observed wave heights should take into account the background wind waves - see. 

below). It is obvious that the lifetimes of abnormal waves will also be changed.  
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Figure 2.6 – The changing of the maximum positive displacement of water surface over 

the time, 1 – «one sister», 2 – «two sisters», 3 – «three sisters», 4 – «four sisters». 

Fig. 2.7 shows that with increasing the number of waves in the initial group’s 

wave lifetime increases with the square of the average number of waves; more precisely 

the exponent in the regression curves vary from 1.7 to 1.8. 

 

Figure 2.7 – Dependence of freak wave lifetimes and the number of waves for different 

critical threshold values of visibility (the critical amplitude of the "visible" waves, m: 1 - 

level of 0.3, 2 - 0.4, 3 - 0.5. The dashed lines are regression curves). 

The value of freak wave lifetimes in the framework of deterministic problems 

strongly depends their "level of visibility". It is more important to understand the 

influence of nonlinearity on the value of the lifetime and the applicability of linear theory 

to the description of the formation of abnormal waves. In the article [Shemer et al, 2007], 
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there are descriptions of a laboratory experiment and numerical simulations of the 

dispersive focusing of the wave packet in the framework of the nonlinear theory. 

 It is shown that the freak wave lifetime is about of 1-3 minutes (steepness is 0.2-0.3). 

The same estimation follows from our results for a single wave. Taking this into account 

we hope that our estimations of lifetimes of abnormal waves of different shapes (from 

fig. 2.7) are the same for nonlinear theory.  

  Swell waves propagate in the background of wind waves caused by the action of 

local wind. We assume that the wind is weak enough and it generates waves with small 

amplitudes, thus that abnormal swell waves are visible in the background. The interaction 

time of wind with waves is large enough (it is determined by the ratio of the water 

density to the air density, which could takes hours) [Kharif et al. 2008, 2009] and it is 

much longer than the lifetime of freak waves (a few minutes, as we will see below). Thus 

we will not take into account winds in the model.  

However, wind determines the distribution of wave elements, in particular, the 

spectrum, amplitude, and the carrier frequency. As an approximation of the spectrum of 

wind waves here we use the Pearson-Moskowitz spectrum for developed waves, it 

depends only on the wind speed [Trubkin, 2007]. The Pearson-Moskowitz spectrum 

describes the frequency spectrum at any point, but we need a spatial spectrum. In the case 

of small amplitude unidirectional waves, the spatial spectrum is easy to calculate from 

the frequency spectrum by using the dispersion relation 
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where 38.1 10−α = ⋅ ; 0.74β = ; U – wind velocity. The spatial spectrum of wind waves for 

wind speed of 4.3 m/s is presented in fig. 2.8. 
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Figure 2.8 - spectrum of wind waves for wind speed of U = 4.3 m/s. 

         In this case, random wind wave fields are defined in the same way as the previous 

paragraph. Thus there is no need to go into further detail here. Wind waves are 

characterized by the significant wave height, which is defined as the average height of the 

largest one third of the waves. In the approximation of a Gaussian distribution of wind 

waves the significant wave height can be defined as [Kurkin et Pelonovsky, 2004; Kharif 

et al, 2009] 

4sH = σ,                                                        (2.29) 

where σ is a dispersion, founded from 
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This implies the following approximate formula for the significant wave height 
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Our calculations will be done for the wind velocity U = 4.3 m/s, when the linear 

theory can be applied (the corresponding estimates are discussed below). The significant 

wave height is Hs = 0.38 m for such velocity. It is more convenient to use significant 

wave amplitude: as =Hs/2 = 0.19 m. 

The central wavenumber in wave spectrum is k0 = 0.4 m-1 corresponds to a 

wavelength of λ0 = 15.7 m (substantially smaller than swell wavelength).  
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The fundamental wave steepness, defined by a significant amplitude (k0as = 0.076), 

is small enough in the framework of the Pearson-Moskowitz, hence linear theory can be 

applied.  

The process of freak wave evolution in wind waves is considered below. Length of 

wind waves and swell waves differ about 6 times, making it easy to separate them by the 

methods of spectral analysis. Group velocities differ as well (in about 2.5 times), thus 

during the time these wave systems overlap each other several times with different phases 

and amplitudes.  

The amplitude criteria are chosen as a criteria of freak waves [Kurkin et 

Pelinovsky, 2004; Kharif et al, 2009] 

        ssfr Haa => 2 ,                                            (2.32) 

all the waves with an amplitude greater than 38 cm are considered as freak waves, 

regardless of their origin (swell or wind wave). 

The superposition of deterministic swell waves (2.27) with a random wind wave is 

shown in Fig. 2.9 for a fixed set of phases for the time moment 0 s (the moment of freak 

wave formation). 

The swell waves transform into wave packets due to dispersion, the number of 

individual waves grows, and the amplitudes are reduced. Freak waves in wind wave 

fields can appear as well (as shown below), and their amplitudes exceed a critical value 

afr = 0.38 m. 
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a    b  

c    d  

Figure 2.9 – freak waves in a wind wave field (t=0).  

а – «one sister», l = 35 m; b – «two sisters», l = 70 m; c – «three sisters», l = 110 m; d – 

«four sisters», l = 140 m (l – characteristic value of the wave-packet envelope). 

Space-time (x - t) diagrams are a good way to study the wave evolution since they 

make it easy to separate swell and wind waves moving with different speeds. This 

method is widely used for the analysis of dispersive wave packets. Space-time diagrams 

for all considered forms of abnormal swells are shown in Fig. 2.10. The planes of wave 

fields exceeded the amplitudes of freak waves afr = 0.38 m are presented in the diagrams.  

The clearly observed bright line starting from the origin of the coordinate system 

corresponds to the anomalous swell wave transforming in the wind wave field. This line 

is extended from the moment of time 4000 s at x = 0 (in cases c and d) due to the periodic 

boundary conditions used in the calculation, yet as previously mentioned, we will not 

analyze such long times. A significant number of randomly appearing single points and 

short lines appeared outside of bright line. The slope of these lines and single points 

differ from the slope of the main line, thus freak waves appear mainly in wind wave field.   
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It is important to mention that the "natural" freak waves in the wind wave field 

occur frequently in accordance with the predictions of the linear statistical theory based 

on the Rayleigh distribution. Space-time diagrams show that the number freak waves 

depends on the computational domain size - which is still poorly investigated. Lastly, the 

diagrams are similar qualitatively for different initial set of random phases.  

The "right" and "left" diagrams in Fig. 2.10, correspond to two realizations of 

wind waves, which differ slightly in general. While the localization of abnormal waves in 

the background is varied, "lines" of freak waves have almost the same intensity. The 

space-time diagrams can be used for the estimation of freak wave lifetimes. Lifetimes of 

freak waves are random due to the random nature of wind waves. Even the lifetime of 

abnormal swell wave is also changing because the bright, almost continuous line time 

becomes discontinuous after some time (Fig. 2.10). 

Using the amplitude criteria in equation (2.32), we found that the anomalous wave 

"one sister" disappears in about 4-8 minutes, "two sisters" - 30-40 minutes, "three sisters" 

- 60-70 min, and "four sisters" - more than 2 hours. 

These values are higher than the lifetimes of deterministic signals, where the 

threshold of visibility was selected artificially. However, the tendency of increasing of 

freak wave lifetimes with the growth of number of individual waves in the wave packet is 

saved in both cases. The values of freak wave lifetimes are unreal in some sense, because 

the lifetime depends on the ratio between the swell height and wave background. In our 

case, the amplitude of the anomalous swell was chosen to be sufficiently large (0.6 m), 

and sfr aa / is about 3.2.  

a       
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b       

c       

d       

Figure 2.10 – space-time diagrams 

а – «one sister»; b – «two sisters»; c – «three sisters»; d – «four sisters».  

The left and right diagrams correspond to two different realizations of wind waves. 

Such waves are rarely observed on the ocean surface. If we consider only wave 

amplitudes that are very large, three times higher than large amplitude waves, the number 

of such waves is much less on the space-time diagram (Fig. 2.11). Virtually all "natural" 

freak waves disappear, and only noticeable blurring anomalously large swell. 

The number of waves which exceed the significant wave height by three times is 

sufficiently small in the space-time diagrams (Fig. 2.11). All "natural" freak waves 

disappear, and only the transforming of abnormal swell waves remains. Freak waves with 

saa/  = 2.2, 2.7 should be observed more frequently. Fig. 2.12 shows the cuts of the wave 

field (on the level of saa/ =2) in the case of evolution of "one sister" for three different 
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swell amplitudes at the initial moment, corresponding to the formation of freak waves. 

The larger initial amplitude which will be longer exceed the threshold fra . 

a  b  

 c   d   

Figure 2.11 – 2D projection (u(x,t) = const) of wave field at the level of 3as, 

а – «one sister»; b – «two sisters»; c – «three sisters»; d – «four sisters». 

It is difficult to say that when the freak wave is disappeared in wind wave field, 

which has its "own" freak waves, we can estimate its lifetime. Thus, when saa/  = 2.2 

(Fig. 2.12a), the time at which the freak wave disappears is 1–2 min, in case of saa/  = 

2.7 (Fig. 2.12b) – 2–3 min, and in the case of saa/  = 3.2 (Fig. 2.12c) – 6–7 min.  

The same figures can be given for abnormal swell of the forms of "two, three and 

four sisters". They have the same dynamics; just intensity and width of lines will be 

changed.  

In case of “two sisters” for the ratios of saa/  =2.2, 2.7 and 3.2 the average times 

of freak wave disappearances are 9, 15 an 35 minutes respectively; in case of «three 

sisters» – 15, 50 and 80 minutes, in case of «four sisters» the lifetime exceeds 2 hours, 

and such long-living waves are difficult to call abnormal.  
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a  b  

c  

Figure 2.12 - 2D projections of wave field in case of «one sister» evolution for different 

values of saa/ :    а – saa/  = 2.2; b – saa/  = 2.7; c – saa/  = 3.2. 

The data of freak wave lifetimes are taken from the descriptions of the sailors who 

report from what distance they can see the abnormal wave. This is inconsistent because it 

is obvious that the visibility from a ship depends on the weather conditions. Thus we 

assume that a freak wave may be visible at a distance of 500 meters from the ship. 

Then, according to the diagrams, the total lifetime (appearance + wave 

disappearance) of all types of swell waves is about 4 minutes (this estimation is made 

based on the condition that the ship is located at a distance of 500 m from the wave 

formation). Swell speed, calculated from the slope on the space-time diagrams, is 

approximately 5.8 m/s. Standard formula for the group velocity of the wave packet in 

deep water  

0/5.0 kgcgr = ,                                                      (2.33) 

gives the value equal to 6 m/s, it is close to the direct estimation of swell speed.  

The wave covers a distance of 1000 m (500 m – before wave apogee and 500 m – 

after), in approximately 3 minutes. Which is smaller than visual estimation of 4 min. The 

lifetime may vary depending on the ship position in relation to the wave "epicenter". For 

example, at a distance of 20 km swell wave packet is already quite wide and a 1 km freak 
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wave passes for 15 min (Fig. 2.10d, left side). Thus, if the ship is close to the "epicenter", 

the abnormal waves propagate with the largest amplitude, but they have a shorter 

duration; conversely, if the ship is far from the "epicenter", the amplitude of the freak 

waves are relatively small, but the ship will shake for much longer (at large distances 

wave packet will be wider due to dispersion). 

It is important to mention that when the depth decreases the lifetime of the freak 

wave increases, and it gives a hope for the possibility of early detection in coastal areas. 

 Estimations of the lifetimes of abnormally large swell waves in wind wave fields 

of wind waves are given in the article E.G. Shurgalina, E.N. Pelinovsky Manifestation 

of abnormal swell on weak wind waves Fundamental and Applied Hydrophysics. 

2012, Vol. 5, № 1, 77–88.  
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2.4 Wave interaction with a vertical barrier  

Presently the possibility of freak wave appearances near the coast provokes 

particular interest. Such waves are quite a surprise to many people spending their 

holidays near the water. A wave of about 9 feet washed two people off from the pier in 

South Africa on August 26, 2005 [Kharif et al., 2009] (Fig. 2.13). On February 14, 2010, 

13 people were washed off from a concrete parapet into the ocean by two large waves, 

and many of them got fractures and bruises. It happened near San Francisco (Half Moon 

Bay), where about 200 spectators were watching a windsurfing competition (Fig. 2.14) 

(http://www.ireport.com/docs/DOC-409122?hpt=T2). 

                     

Figure 2.13 Photo of a freak wave washing two people off from a pier in South Africa 

      

Figure 2.14 The sudden appearance of a large wave on the shore near San Francisco (14 

February 2010). 

One of possible scenarios of freak wave appearance near a vertical barrier based 

on the mechanism of dispersive focusing will be considered in this paragraph. 
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Usually the problem of freak waves is discussed regarding the open ocean due to 

the obvious danger to ships and oil and gas platforms. However freak waves are found in 

the coastal zone as well, and their statistics and geographical distribution during 2006-

2010 can be found in [Nikolkina & Didenkulova, 2011, 2012]. Thus particular interest 

must be devoted to the possibility of freak waves appearing near steep coast, cliffs or 

special protective walls, where people do not expect the emergence of dangerous waves. 

The geometry of this problem is shown in Fig. 2.15. The wave approaches the wall 

from the right. The water depth is large enough to consider the waves as linear.  

 

Figure 2.15 – geometry of the problem. 

A mathematical model of this problem is similar to the model described in section 

2.2. Since waves reflect from the wall, it is necessary to consider the superposition of the 

opposing waves, thus their horizontal velocity at the wall is equal to zero. 
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Expressions for the components of the particle velocity, can be found from potential 

Φ(x,z,t): 
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−= dkzkkxtkBtkAtzxu )|exp(|)sin()sin()()cos()(),,( ωωω ,               (2.36) 

From equation (2.36) it is clearly seen that the horizontal velocity at the wall is zero at 

any time; and it is used in equation (2.34). 
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Solutions to equations (2.34) - (2.36) for a fixed frequency describe a standing 

wave. Fourier superposition of standing waves can also describe a complex system of the 

wave approaching the wall, and after its reflection. The formula could be rewritten (2.34), 

introducing amplitude and phase spectrum 

[ ]∫
+∞

∞−

−= dkkxktkCtx )cos()](sin[)(),( ϕωη ,                              (2.37) 

[ ]∫
+∞

∞−

−−+−+= dkkkxtkkxtkCtx )(sin()](sin[)(
2

1
),( ϕωϕωη .                 (2.38) 

The terms appearing in (2.38), have a clear physical meaning, the first of them 

∫
+∞

∞−

−+= dkkkxtkAtx )](sin[)(),( ϕωη                                       (2.39) 

represents a wall approaching to the vertical wall (here A = C/2),  and the second one  

∫
+∞

∞−

−−= dkkkxtkAtx )](sin[)(),( ϕωη                                      (2.40) 

is a reflected wave. Both waves can be written in a more compact form 

∫
+∞

∞−
± ±= dkkxtkAtx )exp()(),( ωη .                                            (2.41) 

From a physical point of view, the interaction of waves with a wall is equivalent to 

the interaction of two identical waves, or wave packets, moving towards each other. In 

this case, the boundary condition on the wall (the equality of horizontal velocity to zero) 

is performed automatically.  

As in the previous sections, the initial conditions for the time of freak wave 

formation on a wall can be set and the process of its decay into two waves propagating in 

different directions can be considered. The resulting solution in the half-space of x > 0 

after inverting time and space will demonstrate the formation of freak waves.  

A Gaussian impulse will be chosen as an anomalous wave near the vertical wall. 

In fact, the "half" of the Gaussian pulse (x> 0) is expected to be a freak wave near the 
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wall. The shape of the wave packets at different dimensionless times are shown in Fig. 

2.16.  

 

Figure 2.16 - the evolution of the initial Gaussian impulse in deep water after a long time 

(the numbers are the dimensionless times). 

The integral (2.41) is a superposition of waves moving in opposite directions and 

is calculated numerically. Evolution of the waveform at short times is shown on Fig. 

2.17. Initially, a positive pulse (crest) is transformed into sign-variable wave and then 

into a wave trough (depression), and then into wave train.  

 

  

 

Figure 2.17 - Evolution of the Gaussian impulse at short times (numbers are 

dimensionless times). 



42 

 

Let us suppose that in a random wave field there is a deterministic frequency-

modulated packet of small amplitude, as described above. In this case, a random 

disturbance does not change its energy average, and the probability of large wave 

occurrence is small in relatively small times. As a result, the initial wave field "looks" 

like purely random, and then a high ridge grows and over time disappears into random 

waves again. Such processes of interference of deterministic and random fields have 

already been discussed in paragraphs 2 and 3, but not for a single wave formation at the 

wall in deep water. Non-linearity, if it is small, cannot prevent dispersion focusing of a 

deterministic wave packet, thus at the first stage it is neglected. The wind wave field will 

be presented by already known scenario, so is it not necessary to go into detail.  

Superposition of deterministic and random components of the wave field at 

different times is illustrated in Fig. 2.18, where time is measured in seconds from the 

moment of freak wave formation. The abnormal wave exists about 1 minute after its 

formation at the wall. Taking that into account, a similar process occurs when waves 

approach the wall (for this it is necessary to consider the figures in the opposite direction 

in time), thus the lifetime of the anomalous wave is about 2 minutes. Hence it is clear that 

forecasting freak waves is very difficult because there is no time to prepare for their 

appearance on such short notice. 

If a person is located on a pier, the big crest is the only danger for him. This crest 

is visible several times (2 - 4 times) for about 10 seconds before it arrives on the coast. It 

is unlikely that in this case the first low ridges will attract a man's attention, and in fact 

the freak wave will be visible for about 30 seconds before the largest wave’s arrival on 

the bank. 

Only directly before the pier can the observer see that wave consists of crests and 

troughs and that the large wave changes often its polarity, so a person will feel that a 

freak wave is not coming to the shore, but suddenly appears directly in front of the wall, 

epitomizing the eyewitness descriptions. 
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Figure 2.18 – spatial realizations of wave field at different times. 

The same holds true for when ships and freak waves collide at sea. This is why the 

typical descriptions are: "The crews of ships do not have time to prepare for a meeting 

with the danger" (Kurkin et Pelinovsky, 2004). The fact of the sudden appearance of the 

freak waves requires mental preparation of the person. This analysis is performed by PhD 

N. Chaikovskaya, co-author of our work [Pelinovsky et al, 2011]. She specified the 
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specific, purely psychological factors, such as sthenic or asthenic emotions, the ability to 

anticipate of life situations, etc. According to [Rogovin et Karpova, 1985], activity 

preparation to external stimuli occurs 0.5 - 2 seconds later (or even slower), so there is no 

time to run off the bank. Therefore, it is a very important task to study the psychological 

characteristics of human behavior in case a freak wave is encountered.  

The freak wave’s lifetime given in Fig. 2.19, which shows the maximum crest 

height and trough depth in the area of 5 km after reflection from the wall. There is a 

significant variation of wave height during 40 - 60 seconds (similar time – for waves 

approaching the wall), thus a value of 1.5 - 2 minutes can be taken as the lifetime of 

anomalous wave. 

 

Figure 2.19 – the maximal and minimal displacement. 

Freak waves can become long-lived with decreasing depth. Even if dispersion is 

not considered, freak waves are formed due to the nonlinear interaction of waves with the 

wall [Pelinovsky et al, 2008].  If bottom changing (slope) is taken into account, the 

interaction of the waves with the bottom will play the role as well [Didenkulova et 

Pelinovsky, 2011]. Thus, the characteristic portrait of freak wave appearance near the 

vertical barrier depends on a number of factors. The mechanism described above is 

implemented in case if the depth near the cliff is big enough. 

One possible scenario of freak wave appearance near a vertical barrier based on 

the mechanism of dispersive focusing is presented in E.N. Pelinovsky, E.G. Shurgalina. 

Abnormal wave amplification near a vertical barrier. Fundamental and Applied 

Hydrophysics, 2010, No. 4 (10), 28-37.   
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2.5 Conclusion 

In this chapter, the classical mechanism of dispersion focusing in the linear theory 

is considered. One of the scenarios of single freak wave appearance in the framework of 

this mechanism is presented. It is demonstrated that the characteristic lifetime of a single 

freak wave is about two minutes for typical conditions at sea. It is noted that during this 

time the wave quickly (in about 10 seconds) changes its shape from the hump to 

depression and vice versa. That is why the difficulty of freak wave forecast is obvious 

even if it is seen at a relatively large distance. The lifetimes of freak waves of different 

shapes - "one, two, three and four sisters" are analyzed in the framework of dispersion 

mechanisms focusing of wave packets. 

Scenarios of freak wave appearances near vertical cliff are discussed. In shallow 

water, a wave’s shape is changing slower than in deeper water because of small 

dispersion. This means that an observer will see a freak wake approaching the coast, 

increasing the height and almost conserving its shape. In this case, it seems that 

prediction of freak wave appearance is possible as it parallels tsunami wave prediction 

methods. Waves are usually highly nonlinear in shallow water, and this will be 

considered in the next chapter. 
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Chapter 3 

 Two-soliton interactions in nonlinear models of long water waves  

3.1 Introductory remarks  

3.2 Observation of solitons in the coastal zone and the basic   
equations 

3.3 Two-soliton interactions in the framework of the Korteweg – de 
Vries equation  

3.4 Two-soliton interactions in the framework of the modified 
Korteweg – de Vries equation  
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3.1 Introductory remarks  

The dynamics of waves in shallow water are fundamentally different than the 

behavior of waves in deep water. From a physical point of view, this is due to decreasing 

of dispersion roles provided that the individual waves live long enough. On the other 

hand nonlinearity becomes very strong in shallow water, since the wave height is 

comparable to the depth. This is especially noticeable in case of wave runup on the shore. 

Solitary waves (solitons), which are often observed in the coastal area, provoke particular 

interest.  

This chapter is devoted to the features of two-soliton interactions in the framework 

of the Korteweg de - Vries equation and the modified Korteweg de - Vries equation 

which are used to describe the surface and internal gravity waves in shallow water. Some 

data observations of soliton groups (undular bores) and internal solitons in natural bodies 

are presented in §3.2. The criterion of transition of breaking bore to undular bore, 

formerly known only in the literature of laboratory data, is analyzed. 

Known in the literature of laboratory data, the criterion of transforming of 

breaking bore to undular bore is particularly analyzed. Here we analyze the field data to 

test the validity of this criterion in natural waters. This criterion is necessary for the 

selection of an adequate physical and mathematical model of wave motion. Two-soliton 

interactions in the framework of the Korteweg - de Vries equation are studied in §3.3. 

In this classical problem of theoretical physics and nonlinear wave theory, we 

focused on the study of the moments of the wave field, which has not been done in 

previously, and therefore cannot be found in previous literature. Features of two-soliton 

interactions in the framework of the modified Korteweg - de Vries equation, commonly 

used in the theory of internal waves, are shown in §3.4. These two-soliton interactions are 

elementary acts of soliton turbulence and they play a significant role in multi-soliton field 

dynamics, which will be demonstrated in Chapter 4. Then the results are summarized in 

the conclusion. 
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3.2 Observation of solitons in the coastal zone and the basic 
equations 

 In the coastal zone wind waves are often presented as asymmetrical waves and 

their crests are separated by extended troughs. From the point of view of the shallow 

water theory (Korteweg-de Vries equation or a system of Boussinesq) [Zakharov et al., 

1980, Newell, 1985, Lamb, 1983; Kudriashov, 2008], such waves are called cnoidal and 

when the distance from the crests is large enough, cnoidal waves consist of a sequence of 

solitary waves called solitons. Frequently they can be observed when a tidal bore enters a 

river estuary and transforms into a braking bore (hydraulic jump) or an undular bore. 

 Wonderful photos of such bores are collected in the book [Chanson, 2012] and 

a few of them are shown on Fig. 3.1. Some of them have a very regular structure, but 

others are irregular (see instrumental record on Fig. 3.1, taken from the article [Brocchini 

and Gentile, 2001]). The soliton nature of the wave fields in the coastal zone, where 

waves with sufficiently large amplitudes can appear, has already been mentioned in this 

article. This example shows the existence of freak waves in a soliton field, and to explain 

them a special approach is required.  

 

a) Tidal bore on Selyun River (France), 19 September 2008. There is a "wavy" 

transverse profile of the tidal wave caused by the presence of shoals and bars. 

Propagation direction - from the left to the right. 
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b) Undulating bore on the river Dordogne (France), 27 September 2000. 

 

 

c) Tidal bore on the river Severn (UK), February 11, 2009. There are various forms of 

the bore: the breaking part near the coast and in the shallows, and undular bore on 

deeper water. 
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d) Instrumental wave record in the coastal zone. 

Figure 3.1 – wave forms in the coastal zone.  

 However, in addition to undular bores (represented by a set of solitons) in 

shallow water breaking bores can exist naturally as well. Frequently, they are found close 

to each other in one place, as illustrated in the Fig. 3.2, taken from the site 

(www.surfalaska.net).  

 

Figure 3.2 Photo of the bore in Cook Inlet, Alaska. 



51 

 

If in the center where the depth is greater there is an undular bore, closer to the 

shores there is a changing regime with breaking bore appearance. The formation of both 

types of bores is clear from physical considerations. If the wave non-linearity is small 

enough, then dispersion prevents breaking of the tidal wave and promotes the formation 

of undular oscillations. This process is qualitatively well described by the known 

solutions of the Korteweg-de Vries equation [Zakharov et al., 1980, Newell, 1985, Lamb, 

1983]. If the nonlinearity is large enough, the dispersion can neither prevent the rapid 

steepening of the wave front nor its breaking. This process is also well understood in the 

framework of a hyperbolic system of shallow water [Stocker, 1959]. 

Unfortunately, the most well-known applied numerical models of wave dynamics 

in the coastal zone cannot take into account both of these effects. Shallow water 

equations are commonly used to describe tidal waves and tsunami waves. 

The breaking bores can be described by the numerical model CLAWPACK 

[Pelinovsky et Rodin, 2012]. In other models, for example TUNAMI and AMI DANCE, 

the smoothing of the wave front is carried out by introducing horizontal viscosity 

(diffusion); while in real waters the spatial step is large enough which is why the 

nonlinear wave deformation is not that noticeable [Zahibo et al. 2006]. On the other hand, 

in new models of nonlinear dispersive theory (Boussinesq equation of different order) the 

undular bore is well-prescribed, particularly, during the 2004 Indian Ocean Tsunami 

[Dao & Tkalich, 2007; Grue et al, 2008], but wave breaking was not observed there. 

Nonlinear dispersive models do not have significant performance and, hence, they are 

rarely applied to the tsunami problem.  

This is precisely why a simple criterion of legitimacy to use a particular model for 

describing the real situation is needed. Such criteria are known in the results of numerous 

laboratory experiments under idealized conditions of dimensional flow [Stocker, 1959; 

Docherty & Chanson, 2010; Favre, 1935; Nakamura, 1973; Teles Da Silva & Peregrine, 

1990].  

However these criteria have not been tested by the field data of wave processes in 

the coastal zone. Therefore the analysis of field data, which allows one to conclude the 

applicability of the criteria obtained in the laboratory conditions, will be carried out 
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further. It may help to perform a preliminary zoning of a water reservoir by the type of 

waves propagating there. 

There is a fairly large collection of tidal bores which form when tidal waves enter   

a river. The classical tidal bore example is a bore on the river Severn in England 

downstream from the city of Gloucester, which has a height above two meters during 

spring tide. Tidal bores are periodic, and this makes it relatively easy to collect a large 

amount of data. Many of them are presented in the book [Chanson, 2011] with 

quantitative parameters. Field data of recorded tidal bores all over the world is collected 

and presented in Table 3.1. 

Table 3.1 Field data of tidal bores (Brealing - B, undular - U). 

№ River, date h, m H, m H/h Bor

e 

type 

Reference 

1 Seine River, France 1 1.9 1.9 B [Chanson, 2008] 

2 Sélune River, France, 

24/09/10 

0.38 0.72 89.1  B [Mouaze et al., 2010] 

3 Sélune River, France, 

25/09/10 

0.33 0.74 2.25 B [Mouaze et al., 2010] 

4 Garonne River, France, 

Podensac, 10/09/10 

3.1 4.2 1.35 U [Bonneton et al.,  2011] 

5 Garonne River, France, 

Podensac, 4/09/10 

1.85 2.1 1.13 U [Bonneton et al.,  2011] 

6 Qiantang River, China, 

October 2007 

1 4 4 B [Cun-Hong   and Hai-

Yan, 2010] 

7 Rio Mearim, Brazil, 

30/01/91 

1.8 2.7 1.5 U/B [Kjerfve and Ferreira, 

1993] 

8 Dee river, Great Britain, 0.8 1.05 1.3 U [Simpson et al., 2004]  
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15/05/2002 

9 Garonne river, France, 

Arcins channel, 10/09/10 

1.74 2.3 1.32 U [Simon et al., 2011] 

 

10 Dee river, Great Britain, 

22/09/72 

1 1.8 1.8 U [Chanson, 2009] 

11 Dordogne river, France, 

26/04/90 

1.12 1.602 1.43 U [Chanson, 2011] 

12 Daly river, Australia, 

2/06/2003 

1.5 1.78 1.19 U [Chanson, 2011] 

13 Qiantang River, China, 

19/09/09 

7.12 7.90 1.1 U  [Zhu, 2011] 

14 Garonne River, France, 

7/06/12 

2.65 3.17 1.2 U [Reungoat et al., 2014] 

15 Garonne River at Arcins, 

France, 19/10/13 

2.05 2.35 1.15 U [Reungoat et al., 2014] 

16 Dee River, Great Britain, 

6/09/03 

0.72 1.17 1.63 B  [Simpson et al., 2004], 

[Reungoat et al., 2014] 

17 Sée River, France, 

7/05/12 

0.9 1.46 1.62  U  [Reungoat et al., 2014], 

[Furgerot et al., 2013] 

 

Similar measurements around the same place, date, and conditions that were 

approximately the same were excluded. Therefore, we hope that our sample is 

representative. Input parameters are the bore type, bore height from the bottom (H), and 

the water depth in front of bore (h). 

The total number of data points is 17, including 5 cases of breaking bores, 11 

cases of undular bores, and one intermediate. 
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  The criteria available in the literature are based on various parameters of the 

wave stream and the simplest of them use the ratio of bore height measured from the 

bottom (H), to the undisturbed water depth (h). In this paper [Favre, 1935] the following 

criterion exists: H/h <1.28 corresponding to the undular bore, H/h> 1.75 corresponding to 

the breaking bore (hydraulic jump). The intermediate regime lies between these cases, 

when both effects may occur – the breaking and dispersive transformation. 

  In the book [Stocker, 1959] there is a more general criterion which does not 

include any intermediate regime: H/h < 1.5 corresponding to the undular bore, H/h > 1.5 

corresponding to the breaking bore. In the experimental work of Nakamura [Nakamura, 

1973] one more condition is added to the Stocker criteria: H/h > 9 corresponding to the 

case of a parabolic wave (dam destruction). 

In the work [Teles Da Silva & Peregrine 1990] the intervals of criterion are 

shifted a little bit: H/h < 1.3 corresponding to the undular bore, H/h > 1.7 corresponding 

to the breaking bore. Undular bores with breaking may be observed between these 

criterion. 

The field data from the Table 3.1., can be checked by these criteria (Fig. 3.3). 

 

Figure 3.3 Distribution of observed data by the parameter H/h. 

 As we can see, undular and breaking bores are well separated by threshold 

H/h=1.5, except for one case with H/h=1.8, which is on the threshold of the interval of 

Favre - Teles da Silva. In general we can say that the criterion H/h=1.5 may be used for a 

rough assessment of the wave motion type, and accordingly, a suitable choice of the 

numerical model to describe the wave dynamics. We will also assume that H/h <1.5, and 
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even H/h<< 1.5, which allows study of the undular bore containing small-amplitude 

solitons. This statement applies to the surface waves on a shallow sea.  

 This study is published in the following article: E.N. Pelinovsky, E.G. 

Shurgalina, Rodin А.А. On the criteria of the transition from breaking bore to 

undular bore. Izvestiya, Atmospheric and Oceanic Physics, 2015, 51 (2). 

 Solitons, however, exist not only on the water surface, but also inside the fluid 

if it is stratified. This situation is typical for natural reservoirs when the effects of 

turbulent mixing are weak. Internal gravity waves are of the same nature as surface 

gravity waves, but for them the gravity is almost balanced by the Archimedes force, thus 

the reduced gravitational acceleration is approximately three orders of magnitude less 

than for surface waves. Internal waves exist in the case of stable ocean stratification, 

where the average water density increases towards the bottom. Internal waves have been 

described theoretically in the middle of the XIX century, and found in the ocean in the 

early XX century, but it took nearly another century to understand the importance of 

internal waves in the ocean [Miropolsky, 1981; Konyaev and Sabinin, 1992]. 

 The height of a typical oceanic internal wave is usually much larger than the 

typical height of a surface ocean wave; it becomes larger when the stability of density 

water stratification becomes less. Internal waves observed in the ocean have amplitudes 

around 5-20 m, but sometimes they can be greater. Thus the internal solitons in the 

Andaman Sea have speeds up to 2.0 m/s and amplitudes up to 60 m [Osborne & Burch, 

1980]. Although there are other mechanisms of internal wave generation such as wind 

circulation and unstable flows, the main mechanism of strong internal wave generation is 

the transformation of the barotropic tidal current on the sharp drop depth (edge of the 

continental shelf). 

 In the presence of strong tidal current, large amplitude waves occur exactly at 

the edge of continental flow. In the vertical plane such waves look like a single variation 

of the pycnocline depth (areas of the most dramatic changes of water density) of 

sufficiently large value (up to 15-20 m). Their velocities are about 0.6-1.0 m/s. Then the 

vertical distribution of density is restored within a few hours and the initial perturbation, 

propagated along the pycnocline, is divided into a number of consecutive solitons, 

forming a train consisting of leading soliton - the largest and the quickest wave in the 
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wave train, and the wave tail - a group of small dispersive waves in the end of the train 

(undular bore or solibor).  

Various satellite images of internal waves are shown on Fig. 3.4 - 3.7. 

 

Figure 3.4 Internal waves in a freshwater Lake Ladoga in the radar image of spacecraft 

"Almaz-1» (26.06.91, 04:54 UTC). © NGO engineering. 

 

Figure 3.5 Internal waves in the Pacific Ocean near the west coast of the United States 

(Washington) on radar imagery of satellite Radarsat (9.08.1999, 01:55 UTC). There are 

two types of internal waves: one is generated by the tide and propagates towards the 

shore, the other – by a powerful motion of Colombia River and propagates into the open 

ocean. © CSA 
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Figure 3.6 Eight packages of internal waves in the South China Sea on radar images of 

Radarsat (26.04.1998) © CSA 

 

Figure 3.7 Internal waves in Dongsha Atoll in the South China Sea on the radar images 

ERS-2 (23.06.1998, 14:41 UTC). © ESA 
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Although a large amount of experimental material is collected, internal waves 

have not been studied enough. Particularly the mechanisms of generation of various 

internal waves, the conditions of their propagation and transformation, dynamic stability 

and energy dissipation are not yet clear. Satellite and radar measurements allow us to 

understand the spatial characteristics of internal waves, their evolution, and their 

dynamics. Due to remote methods the role of nonlinear effects in internal wave 

evolutions becomes obvious.  

Currently, the atlases and catalogs of internal waves are created based on satellite 

records (see. eg, [Atlas, 2004]). Several reviews of internal solitons are published 

[Ostrovsky & Stepanyants, 1989, 2005; Apel et al., 2007]. This confirms that the solitons 

are an integral part of the wave dynamics on the surface and inside of the ocean. 

Therefore, the study of solitons and their interactions is an important task. 

Let us briefly present the basic equations describing solitons in a shallow sea. Our 

analysis will be based on the family of the Korteweg-de Vries equation. For surface 

waves it was derived in 1895 in the pioneering work of Korteweg and de Vries, and then 

rewritten again in [Korteweg & de Vries, 1895; Karpman, 1973]. The Korteweg - de 

Vries equation has the following form  
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where ghc =0 (h is a constant water depth), η(x,τ) is a displacement of water level, х is 

a coordinate and τ is time. 

The coefficients α  and β  are called the coefficients of nonlinearity and 

dispersion. As seen from (3.2) with depth decreasing the nonlinearity grows while 

dispersion decreases, thus the nonlinear effects are most strongly manifested in shallow 

water. 

The canonical form of the Korteweg - de Vries equation could be obtained by 

using the following substitutions: 
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and then the equation (3.1) takes the following dimensionless form 
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In the majority of mathematical and physical papers devoted to the dynamics of 

weakly nonlinear waves in weakly dispersive media the Korteweg - de Vries equation is 

written in present form [Zakharov et al., 1980; Lamb, 1983, Newell, 1985]. 

The Korteweg - de Vries equation can also describe the distribution of weakly 

nonlinear internal waves close to the long-wavelength limit. However for internal waves 

the situation is much richer. In this case the physical meaning of the wave function 

),( τη x in (3.1) is as follows: in the zero-order perturbation theory, which describes the 

linear internal waves without dispersion, the variables are separated [Pelinovsky et al., 

2000; Grimshaw  et  al.,  2002] and the vertical displacement of isopycnals (lines of equal 

density) can be represented in the form: 

)(),(),,( yxyx Φ= τητζ .                                               (3.5) 

            There is a new vertical coordinate y and Φ(y) is a modal function defining the 

distribution of waves with the depth. It is found from the solution of the boundary value 

problem (Sturm-Liouville problem) with zero boundary conditions at the bottom (y = - h) 

and on the free surface (y = 0): 

0)()0(   ,0
)(

2

2

2

2

=−Φ=Φ=Φ+Φ
h

c

yN

dy

d
,                                (3.6) 

where h is a water depth (the origin of coordinates is associated with the water surface), 

N(y) is a Brunt-Vaisala frequency (buoyancy), which is determined by the vertical 

distribution of the water density ρ0(y): 
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с – eigenvalues of the Sturm - Liouville problem (3.6), which determines the linear 

approximation of the long internal wave propagation speed. It is easy to show that the 

boundary value problem (3.6) has a discrete spectrum with different eigenvalues 

[Mitropolsky, 1981]. In this model, each mode of internal waves propagate 

independently, thus we will not continue to use the index to select a specific mode of 

internal waves. Schematic representations of the buoyancy frequency with the depth in 

the ocean are shown on Fig. 3.8. The eigenfunctions, calculated according to (3.6), 

describing the distribution of isopycnals with the depth (modes) taken from [Talipova et 

al., 1999] are also shown.  

           

Figure 3.8 Buoyancy frequency and mode functions of internal waves (two modes).  

The normalization condition on the function Φ(y): Φmax = 1 is used, thus the 

function η(x,t) describes the vertical isopycnal displacement at the maximum mode (these 

maxima may be at different depths for different modes). The Korteweg-de Vries equation 

(3.1) is obtained for this function, but now its coefficients are expressed by integral 

expressions [Benney, 1966; Mitropolsky, 1981; Pelinovsky et al., 2000]: 
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 In the special case of two-layer liquid and the Boussinesq approximation (water 

density changes are small) the coefficients on the surface (3.1) will take the simple form 

of [Ostrovsky & Stepanyants, 1989] 

,
21

21

hh

hhg
c

+
∆=
ρ

ρ ,
6

21hch
=β ,

2

3

21

21

hh

hhc −
=α    (3.10) 

where ρρ /∆  - density jump between the upper layer of thickness 1h  and the lower 

layer of thickness 2h . 

 The transition to the canonical Korteweg-de Vries equation is similar to 

equation (3.3). However, there is one fundamental difficulty. In contradistinction to 

surface waves the coefficient of quadratic nonlinearity can change sign, and even vanish, 

while the dispersion coefficient is always positive. This is evident from the general 

expression (3.8), and from the special case of two-layer liquid. In the second case it is 

evident that the zero value of nonlinearity is achieved if the thicknesses of the layers are 

identical. But in this case the balance between nonlinearity and dispersion is disrupted, 

but they must have the same order in the frameworks of Korteweg-de Vries equation.  

 To obtain the nonlinear evolution equations, in this case it is necessary to 

modify the asymptotic scheme. In this case the non-linearity must be considered up to the 

cubic order. In the case when the coefficient of the quadratic nonlinearity is equal to zero, 

the modified Korteweg-de Vries equation (mKdV) is obtained for the internal waves 

[Grimshaw et al, 1997]. This equation differs from the Korteweg-de Vries equation by 

the nonlinear term and has the following form:  
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The coefficient of cubic nonlinearity is defined by the integral expression  

∫
∫

Φ

Φ−Φ
−=

dydyd
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)/(

])/)(/(3)/(2[

2

3α             (3.12) 

which includes the function T(y), and this function is a solution of the inhomogeneous 

boundary value problem 
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with zero boundary conditions at the bottom and free surface, and with  normalization of 

T = 0 at the depth where the function Ф = 1. The physical meaning of the function T(y) is 

a nonlinear correction to the mode, thus the vertical displacement of isopycnals is defined  

by the more complicated expression 

  )(),()(),(),,( 2 yTxyxyx τητητζ +Φ= .                          (3.14) 

Taking into account the normalization of the functions Ф and T, the wave function η(x,t) 

still describes the vertical isopycnal displacement at the maximum mode.  

The sign of cubic nonlinearity coefficient is unclear from the integral equation 

(3.12). If we re-use the two-layer approximation for the density, and when quadratic 

nonlinearity coefficient is equal to zero (h1=h2), the coefficient of cubic nonlinearity is 

[Ostrovsky & Stepanyants, 1989]:  

2
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3

h

c−=α                (3.15) 

In this case it is negative (in fact it is negative at any ratio of the layer 

thicknesses). In the three-layer "symmetric" flow (upper and lower layers have the same 

thickness h1 and the same density difference between layers), the coefficient of the 

quadratic nonlinearity vanishes, and the coefficient of cubic nonlinearity becomes 

[Grimshaw et al, 1997] 
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The cubic nonlinearity coefficient is negative for h1 > 9h/26 (when the middle 

layer is thin and the stratification is close to two-layer stratification), and it is positive in 

the opposite case (when the middle layer is large). Calculations of the coefficients of 

quadratic and cubic nonlinearity for the real stratifications of the Ocean are made in 

[Grimshaw et al, 2007]. 
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Thus, in the framework of the modified Korteweg - de Vries equation (3.11), the 

dispersion coefficient is always positive, and the coefficient of cubic nonlinearity can 

have any sign or even be vanished for the internal wave. 

If the cubic nonlinearity coefficient is not zero, then a substitution similar to (3.3) 

 η
β

αβτ
6

||
, 1== ut ,                                            (3.17) 

allows us to get the modified Korteweg-de Vries equation in  a canonical form 
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t

u
                                    (3.18) 

where the sign of a nonlinear term coincides with the sign of the coefficient of cubic 

nonlinearity. From a mathematical point of view the modified Korteweg-de Vries 

equation with any sign of cubic nonlinearity coefficient can be studied as well, being 

fully integrable over the Korteweg-de Vries equation [Zakharov et al., 1980; Lamb, 1983; 

Newell, 1985]. 

However, nonlinear dynamics are quite different for different signs of the 

coefficient of cubic nonlinearity. Particularly, the equation (3.18) with a negative "cube" 

doesn’t have limited solutions (solitons) at the zero pedestal, while in the case of the 

positive "cube", such solutions are available. The dynamics of quasi-sinusoidal waves is 

also different in these equations, particularly, with a positive "cube" effects of modulation 

instability are possible [Grimshaw et al, 2010; Talipova, 2011], and they lead to the 

appearance of direct and inverse cascades of the spectrum [Dutykh & Tobish, 2014a, b]. 

Primary attention will be paid to the interaction of two solitons in the framework 

of equations (3.4) and (3.18) with a positive "cube" in this chapter. All solitons in these 

equations have exponential tails tending to zero (pedestal). With the help of well-known 

two-soliton solutions and numerical simulation new properties of such interactions 

affecting the moments of the wave field will be predicted.  
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3.3 Two-soliton interactions in the framework of the Korteweg – de Vries 
equation  

The Korteweg - de Vries equation is completely integrable, and the Cauchy 

problem can be solved for this equation. Proposed in [Gardner et al, 1967] method of the 

inverse scattering problem is very popular now and it is presented in a number of books 

[Newell, 1985; Zakharov et al., 1980]. Two operators called a Lax pair form the basis for 

the Korteweg - de Vries. 

λψψ =L̂ , tA ψψ =ˆ ,    (3.19) 
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 The first equation in (3.19) is a stationary one-dimensional Schrödinger 

equation with the potential u(х,t), depending on the parameter that has a sense of time t. 

The second equation describes the time dependence of the solution. In the framework of 

the inverse problem method, the spectrum of the Schrödinger equation does not depend 

on time and can be found with the initial condition for the Korteweg - de Vries equation. 

Discrete spectra (which are always real), if they exist, determine the soliton amplitudes 

that arise from given initial conditions.  

 The continuous spectrum describes the dispersion packets which also arise from 

the initial conditions. Although the scheme of soliton finding in the frameworks of 

stationary Schrödinger equation is quite simple; a solution in explicit form (eg, soliton 

phases, and the amplitude of the wave packets) is not a trivial task.  

The task of finding the particular multi-soliton solutions of the Korteweg-de Vries 

equation is easier in some sense, especially if various transformations like Backlund 

transformation, Hirota, and Darboux are used [Lamb, 1983, Newell, 1985]. 

 It is important to emphasize that solitons are resistant wave formations and their 

shape is preserved after the interaction with each other and with wave packets. This is 

why solitary waves are called solitons, emphasizing the wave-particle dualism.  
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 Soliton research has become an independent task, and these waves can be 

isolated in measurements of wave fields. Here we consider one of the classical problems 

in the theory of solitons - the interaction of two solitons. The description of this process is 

given in many articles, and the main results were obtained in the 70s [Zakharov et al., 

1980; Lax, 1968]. Nevertheless, a number of important features of this interaction, which 

are necessary for the understanding of soliton turbulence, were lost. They are discussed in 

the article: Pelinovsky E.N., Shurgalina E.G., Sergeeva A.V., Talipova T.G., El G.A., 

Grimshaw R.H.J. Two-soliton interaction as an elementary act of soliton turbulence 

in integrable systems. Physics Letters A, 2013, 377 (3-4), 272–275.  
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3.4 Two-soliton interactions in the framework of the modified Korteweg 
– de Vries equation  

We have already mentioned the applicability of the modified Korteweg-de Vries 

(mKdV) to internal waves in the ocean previously. The modified Korteweg-de Vries is 

also used to describe wave propagation in isotropic media (for example, acoustic waves 

in the plasma) [Perelman et al., 1974; Pelinovsky and Sokolov, 1976; Grimshaw et al, 

2005; Ruderman et al, 2008]. 

This family of nonlinear waves is much richer, and instead of solitons there are 

breathers - nonlinear wave packets [Lamb, 1983; Clarke et al, 2000]. Meanwhile, the 

analysis that we did in the article mentioned in the previous paragraph was not made for 

the modified Korteweg-de Vries equation. The simple interaction of two solitons has not 

yet been studied. It is obvious that the pair interactions play a definitive role in the 

dynamics of multi-soliton fields in the framework of the modified Korteweg - de Vries 

equation because of its complete integrability. This is why in this paragraph we focus on 

the study of the contribution of two-soliton interactions to the wave field moments in the 

framework of the modified Korteweg - de Vries equation. A new feature in comparison 

to Korteweg-de Vries equation is the existence of solitons with both polarities. 

We will use the canonical form of the mKdV equation (3.11) with a positive sign 

of the coefficient of cubic nonlinearity. The exact solution of this equation is a soliton:   

)],([sech),( 0xctxAsAtxu −−=      
2Ac=    (3.21) 

where А is an amplitude of soliton, 1±=s  determines the soliton polarity, c is a soliton 

velocity, and 0x  is a phase (initial position of the soliton).  

 The Mkdv-soliton is also highly localized in space. The soliton velocity does 

not depend on the soliton polarity and it always moves to the right side. The dependence 

of the soliton velocity of the soliton amplitude is stronger than in the Korteweg-de Vries 

equation: soliton of small amplitude is moving very slowly while large solitons move 

quickly. 

 The two-soliton solution has a more complex structure [Anco et al., 2011]:  
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        The individual soliton phases are neglected here by the conversion of time and 

coordinates. When solitons are far from each other the solution of (3.22) can be presented 

as the sum of two non-interacting solitons: 

),,(),(),( 21 txutxutxu +=      (3.23) 

 where  u1,2 is a one-soliton solution (3.21) with amplitudes А1,2.  

The case of the KdV-solitons in the case of the modified Korteweg-de Vries 

solitons the interaction of unipolar solitons leads to a nonlinear phase shift of faster 

(higher) solitons forward to [Slunyaev and Pelinovsky, 1999; Slunyaev, 2001]:  

( ) 0)/()(ln)/2( 212111 >−+=∆ AAAAAx ,   (3.24) 

and slower (lower) solitons - back on  

( ) 0)/()(ln)/2( 212122 <+−−=∆ AAAAAx .    (3.25) 

Thus, the nonlinear interaction leads to "repulsion" of unipolar solitons from each other, 

as in the Korteweg-de Vries equation. However, for the solitons of different polarity the 

result is opposite – the solitons attract each other [Slunyaev, 2001]. 

 The strongest interaction of solitons occurs at the time of their closest approach 

(t = 0). The shape of the resulting pulse is easily found from (3.22) explicitly  
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 We assume here that the largest soliton has a positive polarity, and the small 

soliton can have any polarity. 

 



68 

 

 It is known that KdV-soliton impulse in the moment of soliton interaction will 

have a “one-humped” form (overtake interaction) if the amplitude of solitons are very 

different from each other, and a “two-humped” (exchange interaction) - if the amplitudes 

are similar. Similar results can be obtained for mKdV solitons, analyzing the second 

derivative of the function u(x,0) at x=0: 

( ) ( )( ).)0,( 2
22121210 AsAAAAAxu xxx −−−==     (3.27) 

In the article [Anco, 2011] a similar expression for the modified Korteweg-de 

Vries equation (3.11) is obtained, but for the cubic nonlinearity coefficient equal to 24 

instead of 6. 

From (3.27) is clear that in case of interactions of heteropolar solitons (s2 = - 1), 

this value is always negative and, at least the central part of the resulting pulse is “one- 

humped”. 

In the case of unipolar solitons, the sign of the second derivative (3.27) depends on 
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2 ≅−=
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A
,                                               (3.28) 

The critical value of the ratio of soliton amplitudes in the modified Korteweg-de Vries 

equation differs from the similar value in the Korteweg-de Vries equation. 

Thus, there are three types of soliton interactions in the modified Korteweg-de Vries 

equation. For the positive solitons there are two types of interactions: overtake (A2 <0.38 

A1) and exchange (A2> 0.38A1). In this sense there is a complete analogy with the soliton 

interaction in the framework of the Korteweg - de Vries equation. In the case of 

heteropolar solitons, the fast soliton always absorbs slowly one and then is restored. This 

type of interaction is called absorb-emit [Anco et al, 2011]. 

 Different types of soliton interaction are shown in Fig. 3.9: 

а) 



 

b) 

c) 

Figure 3.9 Different types of soliton interaction

 The field value in the central part of the resulting impulse is easy to find 

(3.2) at x = 0 [Pelinovsky and Slunyaev, 1999; Slunyaev, 2001]: 

As in the case of KdV equation, this value corresponds to the amplitude of the resulting 

impulse if it is one-humped. Thus, the amplitude of the res

case of heteropolar soliton interactions and decreases in the case of unipolar soliton

Different types of soliton interaction: а), s1A1=1, s2

s2A2=0.7 c) s1A1=1, s2A2=-0.3. 

The field value in the central part of the resulting impulse is easy to find 

= 0 [Pelinovsky and Slunyaev, 1999; Slunyaev, 2001]:  

221* AsAU −= ,    

As in the case of KdV equation, this value corresponds to the amplitude of the resulting 

humped. Thus, the amplitude of the resulting impulse increases in the 

case of heteropolar soliton interactions and decreases in the case of unipolar soliton
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2A2=0.3, b) s1A1=1, 

The field value in the central part of the resulting impulse is easy to find from 

   

  (3.29) 

As in the case of KdV equation, this value corresponds to the amplitude of the resulting 

ulting impulse increases in the 

case of heteropolar soliton interactions and decreases in the case of unipolar soliton 
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interactions. In the case of two-humped resulting impulse, its maximum value is not 

located in the central point, and it cannot be found from (3.2) analytically. 

 The maximum and minimum amplitudes of the resulting impulse from the 

amplitude ratio of solitons for the four types of interactions are presented in Fig. 3.10 (the 

fourth type is for heteropolar solitons when the largest has a negative polarity - this case 

is added for generality). It is easy to see the symmetry of figures 3.10a and 3.10d, as well 

as 3.10b and 3.10c. This is due to the same soliton amplitudes, but opposite sign of both 

solitons.  

a)       b)  

     

c)       d) 

    

Figure 3.10 Extremes of wave fields: а) positive mKdV-solitons,  b) heteropolar mKdV-

solitons (bigger soliton has a positive polarity), c) heteropolar mKdV-solitons (bigger 

soliton has a negative polarity),  d) negative mKdV-solitons. 

 Thus, in the cases 3.10a and 3.10d the amplitude of resulting impulse firstly 

monotonically decreases (increases) till the value 41.0/ 12 =AA and this result is due to the 

formula (3.29). The extreme value of the maximum amplitude is about 607.0 . 
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 Then the maximum amplitude monotonically increases (decreases) (when the 

amplitudes of the second soliton are large enough and when the resulting impulse is 

“two-humped”). This behavior is explained by the change of regimes from overtake to 

exchange for the amplitude ratio 0.38 < A2/A1 < 0.43. In fact there is a complete analogy 

with the dynamics of the KdV-solitons, where there is a transition zone between two 

regimes of interaction as well. 

 Due to there existing only a regime of soliton interactions, in the case of 

heteropolar solitons (Fig. 3.10b, c) the curves of variation of positive and negative 

amplitudes of the total impulse are monotonous. The impulse maximum at the time of 

interaction on Fig. 3.10b and respectively the minimum on Fig. 3.10d, decreases 

(increases) linearly with decreasing of modulus of the second soliton amplitude, and it is 

equal to 2211 AsAs −  by analogy with (3.29). 

 Let us consider the integral characteristics of the modified Korteweg-de Vries 

equation. Due to its complete integrability it has an infinite number of conserved 

invariants [Miura et al., 1968]. The first three of which correspond to the laws of 

conservation of mass, momentum and energy: 
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 These invariants are saved during the evolution of the wave field and they are 

easily found analytically for the case when the solitons are separated in space:  

( )211 ssI += π ,                  (3.34)   

( )212 2 AAI += ,             (3.35) 
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 The first invariant depends only on its polarity, and not on the amplitude of the 

soliton. Its value plays an important part in the evolution of the initial perturbation, 

determining the number of emerging solitons and breathers [Clarke et al., 2000]. Thus, in 

contrast to the Korteweg-de Vries equation, here solitons arise only from the perturbation 

with a mass greater than the critical value, not from any initial perturbations of "correct" 

polarity. Other invariants are positive definite and their values increase with increasing 

amplitudes of interacted solitons regardless of their polarity. Knowledge of these 

invariants is important primarily for the control of numerical solutions of the modified 

Korteweg - de Vries equation. 

 To investigate the contribution of two-soliton interactions to the total wave 

dynamics, we will investigate the integrals (moments) of the type  

 ∫
+∞

∞−

= dxtxutM n
n ),()( .       (n = 1,2,3…)                               (3.38) 

 The first two moments will be saved in time due to the integrability of the 

modified Korteweg-de Vries equation. However, the third and fourth moments 

corresponding to the coefficients of skewness and kurtosis in the theory of turbulence are 

not invariants and are changed in time (Fig. 3.11).  In the case of two positive soliton 

interaction the third and fourth moments are decreased, as in the analogous problem for 

the KdV solitons (Fig.3.11a). Physically, this can be explained by the effect of reducing 

of the resulting impulse amplitude at the moment of interaction. In case of interaction of 

solitons of different polarities described by (3.22), when the larger soliton remains 

positive, and the smaller becomes negative – it is contrary; the amplitude of the resulting 

impulse grows significantly, and it gives a contribution to the change of third and fourth 

moments. Which both increase at the moment of interaction (Fig. 3.11b). 

 In the case of two negative soliton interactions, the third moment is negative 

and at the moment of interaction is increased, and the fourth moment is reduced (Fig. 



 

3.11d). If the larger soliton is located on the left, has a negative amplitude, and the 

smaller soliton is positive, the third moment will remain negative and decreases in the 

moment of interaction, while th

а)    

c)    

 

Figure 3.11 Dependence of moments 

interaction а) A1=1, A2

For non-interacted solitons all moments can be calculated

 

    

    

    

d). If the larger soliton is located on the left, has a negative amplitude, and the 

smaller soliton is positive, the third moment will remain negative and decreases in the 

moment of interaction, while the fourth moment increases (Fig. 3.11

   b) 

   

   d) 

    

Dependence of moments М3 and М4 on time in case of  mKdV soliton 

2=0.3, b) A1=1, A2=-0.3, c) A1=-1, A2=0.3, d) A

interacted solitons all moments can be calculated analytically:
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d). If the larger soliton is located on the left, has a negative amplitude, and the 

smaller soliton is positive, the third moment will remain negative and decreases in the 

3.11c). 

 

 

on time in case of  mKdV soliton 

=0.3, d) A1=-1, A2=-0.3. 

analytically:  

  (3.39)             

     (3.40) 

     (3.41)          

               (3.42) 
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 Formulas (3.39) - (3.42) determine the initial and final values of the moments 

when solitons are separated. Thus, the sign of the first and third moments depends on the 

polarity of the solitons.  

 To estimate the value of moment changing during the soliton interaction, we 

consider the changing the values of the third and fourth moments *
4

*
3,MM  depending on 

the ratio of the soliton amplitudes. Here 0_min_max_
* /)( iiii MMMM −= . There is a symmetry 

for the third moments on Fig. 3.12a and 3.12d and for 3.12b and 3.12c; the fourth 

moments are identical to the corresponding graphs. 

а)       b) 

 

c)       d) 

 

Figure 3.12 Changing of third and fourth moments *
4

*
3,MM   on amplitude soliton ratio: 

а) positive KdV and mKdV-solitons with corresponding amplitudes,  b) heteropolar 

mKdV-solitons (bigger soliton has a positive polarity), c) heteropolar mKdV-solitons 

(bigger soliton has a negative polarity),  d) negative mKdV-solitons. 

 For unipolar solitons (Fig. 3.12 a, d), the moment behavior is non-monotonic, 

and there is a regime change of soliton interactions. The value of the changing moment is 

maximum for solitons with the ratio A2/A1 corresponding to the transition zone, and the 
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changing moment in this case can reach 20% and 40% for the third and fourth moments 

respectively. Fig. 3.12a shows the corresponding curves for the KdV solitons, which are 

slightly lower than the mKdV-soliton curves, but, in principle, differ slightly.  

 In the case of heteropolar soliton interaction, the curve behavior is changes 

drastically (Fig. 3.12b, c). Curves are monotonic because in this case there is only one 

regime of interaction. It is important to note that the value of moment changes is quite 

significant in case of heteropolar solitons, especially when the soliton amplitudes are 

similar by the module. 

 Thus, the two-soliton interaction strongly influences the moments of the wave 

field, and this effect may be important for understanding the nature of soliton turbulence. 

Material from this paragraph is presented in the article E.N. Pelinovsky, E.G. 

Shurgalina, Two-soliton interaction in the frameworks of modified Korteweg – de 

Vries equation, Radiophysics and Quantum Electronics, 2014, 57 (10). 
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3.5 Conclusion 

The features of two-soliton interactions in the framework of the Korteweg - de 

Vries equation and the modified Korteweg - de Vries equation are studied in this chapter. 

The criterion of transition of breaking bores to undular bores based on field data is 

analyzed and verified. It allows us to determine the applicability of soliton models in a 

particular case.  

The process of two soliton collisions is studied in detail. The possible types of 

soliton interactions in the framework of both equations is discussed. The first four 

moments of the wave field, which play an important role in the theory of turbulence, are 

found. The first two of them are integrals of motion for the KdV and mKdV, and they are 

saved.  It is shown that soliton interactions of the same polarity lead to a decrease of the 

third and fourth moments characterizing the coefficients of skewness and kurtosis of the 

wave process. On the other hand, soliton interactions of different polarity (in the case of 

the modified Korteweg-de Vries equation) lead to an increase of these moments of 

soliton field. In the case of unipolar soliton interactions, solitons with amplitudes 

corresponding to the transition regime between the exchange and overtake interactions 

made the greatest contribution to the dynamics of moments; for heteropolar solitons (in 

the case of mKdV) – the solitons with amplitude ratio close to one made the greatest 

contribution.  

Thus, it is shown that two-soliton interactions strongly affect moments of a wave 

field, and it is an important factor for understanding soliton turbulence.  
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4 Soliton turbulence in the framework of some integrable long-wave 
models 

4.1 Introductory remarks  

4.2 Nonlinear dynamics of irregular soliton ensembles in the 
framework of the Korteweg – de Vries equation  

4.3 Unipolar soliton gas in the framework of the modified 
Korteweg – de Vries equation  

4.4 Freak waves in soliton fields in the framework of the modified 
Korteweg – de Vries equation 

4.5 Conclusion 
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4.1 Introductory remarks  

              The theory of wave (weak) turbulence is presently well developed [Zakharov et 

al., 1992; Nazarenko, 2011].  Its experimental evidence is found in the ocean, 

atmosphere, plasma, and Bose-Einstein condensate. It is important to emphasize the 

works about one-dimensional wave turbulence, which to some extent retain the main 

features of water waves, but are much easier to compute [Majda et al, 1997; Cai et al, 

2001; Zakharov et al, 2001]. 

 Several decades ago soliton turbulence (or soliton gas) provoked scientific 

interest. These problems are also considered in one-dimensional formulations. The first 

theoretical description of soliton gas was proposed by V.E. Zakharov in 1971. In 

theoretical studies the investigations have been focused around the kinetic equation, 

which allows one to describe the spatial and temporal distribution of soliton gas 

characteristics [Zakharov, 1971; Gurevich et al., 2000; El et al., 2001, 2011]. However, 

the statistical dynamics of soliton ensemble (or more general problem of the evolution of 

a random wave field) at the moment is actually a problem left unsolved.  

This chapter is devoted to the study of multi-soliton fields in the framework of 

some long-wavelength integrable models. Soliton fields and their statistical properties are 

studied in §4.2 in the framework of the Korteweg - de Vries equation. Similar field 

(consisting only of solitons of the same polarity) in the framework of the modified 

Korteweg - de Vries equation are studied in §4.3. There is also a comparison of the 

characteristics of a unipolar soliton gas within the KdV and mKdV equations. In §4.4, a 

numerical study of the dynamics of heteropolar soliton gas in the framework of the 

modified Korteweg - de Vries equation is presented. The occurrence of freak waves as a 

result of interaction of solitons of different polarity is demonstrated. The obtained results 

are summarized in the conclusion. 
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4.2 Nonlinear dynamics of irregular soliton ensembles in the framework 
of the Korteweg – de Vries equation  

It is commonly known that the sea surface is a random surface due to the existence 

of waves with different wavelengths propagating in different directions on it. Their 

interference and interactions lead to a fast changing of sea surface. Therefore the wave 

turbulence is taken in consideration [Zakharov et al., 1992; Nazarenko, 2011]. The main 

idea is that the wave process is described by the interaction of a large number of 

sinusoidal waves with independent phases in the linear approximation, and a weak phase 

correlation is due to weak nonlinearity. Equations for the intensity are obtained by 

perturbation theory and statistical averaging. However, integrable systems have their own 

specifics which were formulated half a century ago as the problem of the Fermi-Pasta-

Ulam [Riskin and Troubetzkov, 2010]. 

Instead of the initial perturbation energy being distributed over the spectrum, after 

a certain time it is then concentrated in a small number of harmonics. This was 

discovered by the example of a vibrating string (Boussinesq equations that for 

unidirectional waves lead to the Korteweg-de Vries equation). Thus it is clear that the 

wave turbulence can be very specific in integrable systems, discussed in [Zakharov, 

2009]. 

Soliton turbulence in integrable systems has degenerated to some extent since 

there is a weak correlation between the spectral components. Solitons (representing 

strongly correlated clots) are stored in the interaction, and hence their characteristics (or 

discrete spectral values of the associated tasks in the inverse scattering method) are not 

changed.  Soliton turbulence in the integral systems has degenerated to some extent, 

because solitons are conserved in the interacting process which is why their 

characteristics (more precisely discrete eigenvalues of the associated spectral problem) 

do not change. That is why the nonlinear Fourier transform for sea waves on shallow 

water (in the framework of KdV) was developed, which allows exploration of the 

"structure" of the observed random waves [Osborne, 1993, 1995, 2010; Osborne et al., 

1991, 1998].  
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These components of the wave field (analogues of cnoidal waves and solitons if 

they exist independently) do not change over time, but their superposition leads to 

random changes on the water surface. In practice not only is it important to know the 

distribution and moments of the random wave field, but also the parameters of solitons 

and cnoidal waves. 

Korteweg - de Vries equations is an etalon equation of nonlinear wave theory 

[Korteweg and de Vries, 1895; Zakharov et al., 1980]. With the help of the inverse 

scattering problem the occurrence of soliton solutions from random initial perturbations 

on an infinite interval in the framework of this equation were proved [Murray, 1978], and 

for the periodic interval is was shown in a series of papers by Osborne and colleagues 

[Osborne, 1993, 1995, 2010; Osborne et al, 1991, 1998]. The importance of this task to 

describe the random wind wave field in shallow water is demonstrated in the articles 

[Osborne, 1993, 1995; 2010; Osborne et al, 1991, 1998; Brocchini and Gentile, 2001; 

Pelinovsky and Sergeeva, 2006]. 

 In this paragraph the nonlinear dynamics of an ensemble of solitons in the 

approximation of the Korteweg - de Vries equation are studied. It is studied numerically 

by using periodic boundary conditions. A random sequence of separated solitons with 

random amplitudes is chosen as the initial condition: 
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where N  is the number of solitons in the computational domain. 

Phases x0i are chosen so that initially solitons do not interact with each other, 

hence they are not random. If they are randomly selected, a set of soliton amplitudes Ai 

(or Ki) are constant for all realizations, and the only change is the order of the solitons. In 

the initial experiments with 20 solitons their amplitudes in the computational domain 

vary from Amin = 0.5 to Amax = 3.5 (a full set of amplitudes for these realizations is 

presented in Table. 3.2.1 - 20 cells correspond to 20 soliton amplitudes) and the average 

value of the amplitude is equal to <A> = 1.73. Two realizations of these fields are shown 

in Fig. 4.1: 
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Figures 4.1. The initial soliton ensembles, two realisations. 

Table 4.1 The initial soliton amplitudes from the realizations in Fig.4.1. 

0.5 0.7 0.9 0.95 1 1.1 1.2 1.33 1.4 1.6 

1.7 1.71 1.9 2.09 2.2 2.28 2.66 2.9 3.1 3.5 

  

The solitons have different amplitudes and different speeds, hence they will 

interact over time. Wave field at the time moment t = 100 are presented in Fig. 4.2. Pair 

interactions that have been discussed in the second chapter are clearly distinguished on 

these figures. This is why the pair soliton interactions are the basis of soliton turbulence. 

 

Figures 4.2 Ensembles of solitons at t = 100, two realizations. 

Fig. 4.3a shows the evolution of the soliton field, represented in Fig.4.1, in x-t 

domain. The zoomes of the parts are marked by red squares are shown in Fig. 4.3b. 

Different slopes and trajectories correspond to different soliton speeds. Soliton 

trajectories do not lie only on straight lines after interacting, which demonstrates the 

phase shift is a result of nonlinear soliton interaction. Similar conclusions about the 

trajectories of the ensemble of solitons are made in [Salupere et al, 1996, 2002, 2003a, b].
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Figures 4.3 a - Space-temporal diagrams of the soliton fields, two realizations. b – zoom 

of red squares. 

Some conclusions about the dynamics of the wave fields can be found by using 

field extreme graphs (Fig. 4.4). As shown in the previous chapter, since pairs of soliton 

interactions lead to a decrease in the amplitude of the resulting impulse, the maximum 

value of the extremum does not exceed the amplitude of the biggest soliton in the 

realisation. The maximum amplitude in the process of interaction is reduced by about 

20% to 2.8-2.9 (Amax = 3.5), while the minimum amplitude of the field does not change 

and coincides with the minimum amplitude of the soliton in the ensemble (Amin = 0.5) . 

Thus the amplitude of the resulting wave field (not of solitons) changes over time, and on 

average it is less than in the initial time moment. Therefore the emergence of 

anomalously large impulses is not possible here. 

 

Figure 4.4 Temporal variability of the maximum value of the wave fields' extremes; two 

realizations. 
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 These processes affect the distribution functions of the wave field and its statistical 

moments. At the initial moment the soliton amplitudes are chosen close to the Weibull 

distribution (Fig. 4.5): 
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The distribution function of the wave amplitude (local maxima of the wave field) 

varies in each realization over time, and the examples of the distributions are shown in 

the same figure. Qualitative changes manifest in the same way: as the number of small 

amplitude impulses increases and the number of large waves decreases. As a result, the 

distribution function of the wave amplitudes becomes steeper in comparison to the initial 

distribution. In principle, the effect of steepening of the distribution function in the 

shallows is known (the empirical distribution of the Glukhovsky) [Massel, 1996]. 

However, in a field of purely solitons, this effect is weak, underlining the resilient nature 

of the soliton interaction and their ability to retain their parameters.  

 

Figure 4.5 The distribution function of soliton amplitudes at the different moments of 

time (t1 = 100, t2 = 90): The dotted line is the approximation by the Weibull distribution 

with (p=2.4; k=0.11;σ =0.74)  

Let’s discuss the statistical characteristics of the soliton gas. We have a random 

wave field, which depends on two variables: the coordinates x and time t, which are not 

very convenient for the analysis. For simplicity, we will consider the statistical 

characteristics averaged over the computational domain:  
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(f – any characteristic of the wave field), which are functions of the current time.  
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This procedure corresponds to the ergodic hypothesis, when the averaging over the 

ensemble of realizations is replaced by integration, in this case over the space. At the 

same time M(t) is a random function of time due to the random nature of the soliton 

interactions. Moments of a random function are the values averaged over the ensemble of 

realizations 
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This value for a large number of realizations, in the limit n → ∞ becomes 

independent of time and determines the statistical moment of integral characteristics of 

the wave field. We can again use the ergodic hypothesis and change the averaging over 

ensemble to integrate over time (which should be large enough). Below we will often call 

the integral characteristics (4.3) the moments of the wave field, as in (4.4), and we hope 

that in the text, the reader will not be confused between (4.3) and (4.4).  

Most simply, all these moments are calculated at initial time, when all the solitons 

are isolated from each other (we have already demonstrated this in the second chapter in 

the example of two non-interacting solitons). In this case all the integral characteristics 

are calculated explicitly. The average value of the wave field over the computational 

domain is: 
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The integration can be carried out over an infinite limit and the last integral is 

trivial because of the narrowness of solitons in comparison with the size of the 

computational domain. Then the average field is  
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The sum can easily be expressed in terms of the average value of K:  

><= K
L

N
M 41  .                                             (4.7) 
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where <K> is a statistical average over the ensemble of random amplitude solitons. M1 

does not depend on the realization of the soliton gas, thus its value will not change in 

case of averaging over realizations and it is the first statistical moment - the mean <M1> 

= <u(t=0)> . 

The coefficient N/L, included in (4.7), has a clear physical meaning of the density 

of the soliton gas  

L

N=ρ .      (4.8) 

Then (4.7) becomes 

  ><>=<>==< 2/1224)0( AKtu ρρ              (4.9) 

As expected the mean increases with increasing of soliton gas density. <A1/2> ≠ 

(<A>) 1/2, thus the knowledge of the average soliton amplitude is not sufficient for the 

calculation of the average characteristics of the soliton gas. 

The dispersion of the wave field at the initial moment is calculated similarly 
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or 
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Due to the positive dispersion of the wave field the limit of density of the soliton gas 

appears:  
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The critical density is easily understood from the following considerations. 

Assuming that all the amplitudes are the same, the critical density is ρcr = K/3. If we 

recall the definition of density as (4.8), the critical number of solitons is equal Ncr = 

KL/3. Yet, K-1 is the characteristic scale of the soliton, thus the critical condition 

corresponds to one or two solitons in the segment.       
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It is clear that in this case any averaging procedures lose any sense, and therefore 

the density of the solitons should always be less than critical. We are talking about a large 

number of random solitons initially separated from each other, and the density of the 

soliton gas should be much less than the critical value. It follows that our formula will 

work well only for a rarefied gas. 

When the density of soliton gas is small, in (4.11) the second term can be 

neglected and retain only the linear density term. However we will not do this because in 

the numerical calculation the solition density is not very small and the second term is 

important to analyze the results of calculations.  

 Similarly, there are a third and fourth statistical moments, particularly coefficients 

of skewness and kurtosis: 
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We present here the asymptotic formulas which are valid for a very rarefied gas: (ρ→0): 
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The coefficient of gas density is included in the denominators in (4.15) and (4.16), 

thus the coefficients of skewness and kurtosis are anomalously large for a very rarefied 

gas. Thus, a very rarefied soliton gas is not always Gaussian process. 

Calculated at the initial time, the statistical moments of the ensemble of solitons 

do not depend on the number of realizations. Different average values included in there 

can be easily calculated for any distribution function of soliton amplitudes. For specific 
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calculations below: N = 20 and L = 410, thus the density of the soliton gas ρ = 0.048 is 

really small. 

The initial values of the statistical moments for the selected amplitude distribution 

are:    

0.18>≈< u , 0.45≈σ , ,53.3≈Sk .2.17≈Kur    (4.17)  

The positive sign of the skewness can be easily explained, since all the solitons are 

positive, and the average value is small. 

As solitons begin to interact over time the formula given above becomes 

inapplicable. However the invariants of the Korteweg-de Vries equation are first two 

moments. Therefore in the process of nonlinear interaction the mean and the variance of 

the soliton gas does not change.   

The third and fourth moments are not invariant, thus they will change over time. 

Fig. 4.6 shows the time evolution of the third and fourth moments of the soliton gas, 

calculated for one realisation according to (4.3) and the "real" statistical moments 

calculated by the formula (4.4) – in the last case the averaging over 50 realizations is 

used. Whereas in one realization they are random, the skewness and kurtosis averaged 

over realizations decrease over time and after a few collisions become almost fixed 

values. 

The reason for this is the nature of the interaction of solitons, because such 

interactions lead only to a decrease of the third and fourth moments (integrals), as shown 

in the second chapter. A finite sum of random variables is also a random variable, 

therefore by averaging over the realizations, we get only an estimation of the coefficients 

of skewness and kurtosis.  

Thus, the average value of skewness is equal to 3.45 with a standard deviation of 

0.07. It is important to note that the average value of this ratio is less than the initial value 

of 3.53, demonstrating the contribution of the nonlinear interaction of solitons. The 

average value of kurtosis is equal to 16.6 with a standard deviation of 0.7, while the 

initial value is 17.2. The decrease of the average values can be characterized as a 

tendency to Gaussian soliton gas. 
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a)      b) 

 

Figure 4.6 The temporal evolution of the skewness and kurtosis of the unipolar soliton 

gas. 

From the above it can be concluded that the interaction of solitons in the 

framework of the Korteweg - de Vries equation leads to a change of the statistical 

characteristics of the soliton gas (distribution function of the wave amplitudes, skewness 

and kurtosis), but we have to admit that all of these changes are small enough. In each 

realization the soliton interactions do not lead to the formation of abnormally large 

waves, thus there are no freak waves.  

A similar study with a large number of solitons in realization (200 solitons) fully 

confirmed the findings were carried out recently [Dutykh & Pelinovsky, 2014]. 

Moreover, the influence of non-integrability of the generalizations of the Korteweg-de 

Vries equation in the framework of the Benjamin-Bona-Macon equation on the soliton 

gas characteristics is analyzed. Although the interaction of solitons is inelastic in this 

model, the effect of the dispersion packets is sufficiently small [Dutykh & Pelinovsky, 

2014].  
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4.3 Unipolar soliton gas in the framework of the modified Korteweg – de 
Vries equation  

In this paragraph we solve the analogous problem for the modified Korteweg-de 

Vries equation, which we discussed earlier in the fourth paragraph of the third chapter. In 

the framework of modified Korteweg-de Vries equation there are solitons of different 

polarity, and the wave interaction is much richer than in the framework of the Korteweg - 

de Vries equation. In this paragraph we study the dynamics of the unipolar soliton gas in 

the framework of the modified Korteweg - de Vries equation and compare it with similar 

dynamics in the framework of the classical Korteweg-de Vries equation. 

For unipolar solitons, as was shown in the previous chapter, in the framework of 

the modified Korteweg - de Vries equation there are two types of soliton interaction 

(overtake and exchange) which influence the overall dynamics of multi-soliton fields (as 

in the analogous problem for the Korteweg - de Vries equation). Random sequences of 

remote solitons with random amplitudes are chosen as the initial condition:  
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Initial soliton fields are the same as in the case of KdV-solitons (see the previous 

paragraph), their amplitudes are presented in Table 4.1; the order of solitons is changed. 

The realizations of such fields in the initial moment of time are shown in Fig. 4.7: 

 

Fig. 4.7 Two realisations of initial soliton fields. 

 Solitons begin to interact over time. Fig. 4.8 shows the evolution of the soliton 

fields at the time moment t=80 (for the initial fields from Fig. 4.7). The dynamics of these 

solitons is very similar to the behavior of KdV-solitons.  
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Figure 4.8 Two realizations of soliton gas at t=80. 

Fig. 4.9a,b shows the evolution of the soliton field, represented in Fig. 4.7, in x-t 

domains. Here the different types of two-soliton interactions discussed below can be 

observed. Zooming in on the diagrams (Fig. 4.9c, d) interactions of larger numbers of 

solitons can be identified.  

Figure 4.9 Space-temporal diagrams of the soliton fields (а, b - positive solitons, c,d - 

zoom of black rectangles). 

All solitons move with positive velocity except one, which is marked with a red 

rectangle in Fig. 4.9a,b. In the present wave field its amplitute is the smallest and 

accordingly it moves with the smallest velocity between collisions. The slope of its 

trajectory line on Fig. 4.9b points on negative resulting velocity. Such an affect is seen 
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because of the large amount of collisions with others solitons, and each collision moves 

this small soliton slightly backward (which happens for solitоns, yet for the solitons with 

large amplitude it is not significant). Hence we can conclude that strong nonlinear 

interaction can significantly influence the velocity and the trajectory of the soliton and 

this effect requires a more detailed investigation. 

In the framework of the Korteweg - de Vries this effect was not observed. Since 

solitons have a higher speed than mKdV-solitons (their speed is proportional to the 

amplitude, while in mKdV equation is proportional to А2), and this effect is not 

manifested, although in that case the interaction of solitons shifted the smaller soliton 

backwards. Thus the soliton gas in the modified Korteweg-de Vries equation has 

surprising properties when changes in weak particle direction is observed. This feature 

has not been previously noted in literature. 

Some conclusions about the dynamics of wave fields can be given using the 

graphs of field  extremes. The temporal variability of  the maximum value of wave field 

(throughout the computational domain) is presented in Fig. 4.10. 

 

Figure 4.10 Temporal variability of the maximum value of the wave fields' extrema of two 

realizations. 

In the case of the wave field which consists only of unipolar solitons (in this case 

they are positive), the maximum value of extrema do not exceed the amplitude of the 

biggest soliton (Amax=3.5). Since the maximum amplitude during the interaction process 

is decreasing, the values of the changes are not significant (up to 2.7).  

The minimum amplitude of the field is the same as the amplitude of the minimum 

soliton (Amin = 0.5), which is a complete analogy to the changes of maximum amplitude 

within the Korteweg-de Vries equation. 
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 These processes affect the distribution functions of the wave field and its statistical 

moments. In the initial moment the soliton amplitudes are chosen close to Weibull 

distribution (Fig. 4.11)  

As in the case of the Korteweg - de Vries equation, the distribution function is 

shifted upward in the case of small wave amplitudes and downwards in the case of large 

amplitudes.  

 

Figure 4.11 The distribution function of soliton amplitudes at different moments in time 

(t1 = 110, t2 = 100) for the wave fields presented in Fig. 4.7. The dotted line is 

approximated by the  Weibull distribution with (p=2.4; k=0.11,σ =0.74). 

Similarly in the KdV case, the analytical formulas for the statistical characteristics 

of the soliton gas can be obtained and the final expression takes the following forms:  

  ,)(
1

)0(
0

πρ∫ =>==<
L

dxxu
L

tu            (4.19) 

        ,2)()(
1

)0( 222

0

22 ρπρσ −><=><−== ∫ Axudxxu
L

t
L

   (4.20) 

,
26

2

))()((
1

)0(
3

33

3

2

3

2

3
0

3

σ
ρπ

σ
πρ

σ
πρ

σ
+><−

><
=

><−
==
∫ AA

dxxuxu
L

tSk

L

  (4.21) 

.
3122

3

4

))()((
1

)0(

4

44

4

23

4

222

4

3

4
0

4

σ
ρπ

σ
πρ

σ
ρπ

σ
ρ

σ

−
><

+
><

−
><

=

=
><−

==
∫

AAA

dxxuxu
L

tKur

L

   (4.22) 



93 

 

It is noteworthy that in contrast to the KdV moments, the mean does not depend 

on the amplitude distribution, and depends only on the gas density of soliton gas. 

Therefore, the dependence of the moments on the amplitude distributions is different for 

the KdV and mKdV, but the dependence on the density remains the same (in the limit of 

low density).   

In our calculations of the initial moment the statistical moments are equal to the 

following values:  

0.15>≈< u , 0.39≈σ , 3.8≈Sk , 20.4≈Kur .    (4.23) 

Thus the wave field is not symmetrical with skewness of 3.8. 

As in the case of Korteweg-de Vries equation, the first two moments are the 

invariants of the modified Korteweg-de Vries equation, and therefore in the process of 

nonlinear interaction the mean and the variance do not change. The third and fourth 

moments will change over time. Also as time passes, the coefficients of skewness and 

kurtosis are reduced and after a few collisions are located on the stationary values (Fig. 

3.3.6). As was shown in the previous chapter, the reason for this as well as earlier in the 

nature of the unipolar soliton interactions is because such interactions lead only to a 

decrease of the third and fourth moments. 

 

Figure 4.12 Temporal evolution of skewness and kurtosis. 

The average value of kurtosis is equal to 19.4 with a standard deviation of 0.18; 

but the reduction of kurtosis is not very significant (19.4 with initial value of 20.4). 

Similarly with skewness: the average value is 3.7 (plus/minus 0.02) instead of its initial 

value of 3.8. 
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In the calculations 50 realizations are used where the average values of the 

statistical moments undergo small fluctuations. For comparison, we have done the 

estimation of the influence of the realization number on standard deviation of the kurtosis 

coefficient (Fig. 4.13).   It is shown, that this value is slightly decreases with the growth 

of the realization number (for 20 realizations it is 0.0217, for 50 - 0.0169, for 100 - 

0.0143). This is why it is sufficient to use only 50 realizations to save computational 

time.  

 

Figure 4.13 The dependence of the standard deviation of the average coefficient of 

kurtosis from the number of realizations. 

The comparison of statistical characteristics of unipolar soliton gas in the 

framework of the Korteweg - de Vries equation and the modified Korteweg - de Vries 

equation is presented above. The distinguishing feature of solitons in these equations is 

that for amplitudes larger than 3.1≈  the KdV soliton is wider than the mKdV soliton 

(Fig. 4.14). 

 

Figure 4.14 Comparison of KdV and mKdV solitons with different amplitudes. 
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Formally, the behavior of these moments reminds us of the behavior of analogous 

moments for positive mKdV fields, except the fact that the quantitative values are 

changing.  

 The comparison of numerical values of averaged moments for the identical 

distributions of soliton amplitudes is shown in Fig. 4.15 (the distribution function of 

soliton amplitudes are the same). The mean and variance of the wave fields are larger for 

KdV-fields (Table 4.2). This is confirmed by the fact that in realizations the solitons with 

amplitudes larger than 1.3 prevail (Table 4.2). 

Table 4.2 Values of moments for KdV and mKdV soliton fields 

 ><u  σ  Sk Kur 

KdV 0.18 0.45 3.5 17.2 

mKdV 0.15 0.39 3.8 20.4 

 The initial values of skewness and kurtosis are presented by dotted lines in Fig. 

4.15 (respectively, blue lines - for the case of mKdV and red lines - for the case of the 

KdV). Their initial values, found analytically, are presented in Table 4.2. 

 

Figure 4.15 Averaged values of statistical moments over 50 realizations over time for 

mKdV and KdV fields. 

The coefficients of skewness and kurtosis, in contrast to the mean and variance, 

are larger for the mKdV soliton gas for the given amplitude distribution. The similarity of 

the behavior of the third and fourth moments is obvious. However, if in the initial field 

the solitons with amplitudes less than 1.3 prevail, then the conclusions will be the 

opposite, and the values of skewness and kurtosis will be larger for the mKdV fields. 

This is due to the fact that the mean and the variance make "negative" contributions to the 
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value of the third and fourth statistical moments (see 4.21, 4.22), and therefore if the first 

and second moments are larger, then the third and fourth moments will be smaller. 

Thus, the dynamics of the KdV and positive mKdV soliton fields is quite similar. 

However, in such unipolar fields abnormally large waves do not appear. Radically 

different situation exist for heteropolar soliton fields, and it will be discussed in the next 

paragraph.  
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4.4 Freak waves in soliton fields in the framework of the modified 
Korteweg – de Vries equation 

The main difference between the Korteweg - de Vries equation and the modified 

Korteweg - de Vries equation is the presence of solitons of different polarity in mKdV 

case. Heteropolar solition iteractions make wave dynamics much richer. The interaction 

of two heteropolar solitons leads to the formation of abnormal pulses, as shown in 

paragraph 3.4. It can be expected that these effects will manifest in heteropolar soliton 

gases, leading to the appearance of the freak waves.  

In this paragraph the dynamics of multisoliton fields consisting of solitons of 

different polarities with means equal to zero are studied. The initial soliton field consists 

of two components, positive and negative. In each component the amplitudes are 

distributed similarly such as in paragraphs 4.2 and 4.3. Also, each positive soliton’s 

amplitude corresponds to the same negative amplitude. Soliton amplitudes are obtained 

using a random number generator and are taken from the interval |0.8-2|. A random 

sequence of separated solitons with random amplitudes and polarity is chosen as the 

initial condition:  
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 In our calculations, the size of the computational domain is constant and equal to 

416. The number of solitons varies from 100 to 20, which allows us to change the soliton 

gas density up to 5 times. We consider the problem with periodic boundary conditions, 

thus the solitons pass the computational domain many times during the computation time. 

Fig. 4.16 presents the soliton field at the initial time (left column) and at time 

moment of 500 (right column). 
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Figure 4.16 Initial multisoliton fields (left column) and t = 500 (right column). From the 

top to bottom ρ =0.24, ρ =0.19, ρ =0.14, ρ =0.096, ρ =0.048. 
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  Solitons interact over time and abnormal impulses sometimes appear (Fig. 4.17), 

with both polarities - positive and negative. 

   

 

 

 

Figure 4.17 Extremes of wave fields: from the right - the maximums, from the left – the 

minimums. From the top to down: ρ =0.24, ρ =0.19, ρ =0.14, ρ =0.096, ρ =0.048.
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 In the soliton gas with bigger density the intensity (frequency) of interactions is 

larger and it is logical to assume that in such fields the anomalous amplitudes should 

have amplitudes larger than in the fields with a lower density. Fig. 4.18 shows the 

dependence of "the peak-peak" on the gas density. The trend of amplitude increasing by 

module is observed. However, this assumption is violated by two points on the graphs for 

ρ =0.19, ρ =0.14 in the first case and for ρ =0.14, ρ =0.096 – in the second. In this case 

we compare the specific realizations and there are not full statistics with many 

realizations, thus such deviations do not violate the general trend of maximums 

increasing and minimums decreasing. 

 

Figure 4.18 The dependence of the extremes (the peak-peak) on the gas density.  

As noted previously, the nonlinear interaction leads to changing of the distribution 

function of the amplitude characteristics. However, in the case of heteropolar fields the 

effect will be opposite. In this case, the role of small-amplitude waves decreases, and role 

of waves with large amplitudes increases. Thus, in moments of strong 

nonlinearinteraction the tails of the distribution functions may increase significantly 

(Fig.4.19). 

Figure 4.19 The distribution function of soliton amplitudes at the different moments in 

time From the top to bottom: ρ =0.24 (t1=500), ρ =0.19 (t2=2), ρ =0.14 (t3=80), ρ

=0.096 (t4=40). 
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Abnormal peaks, currently appearing against the background of other waves can 

be considered from the point of view of the freak waves [Kurkin, Pelinovsky 2004, 

Kharif et al., 2009]. In the third paragraph of the first chapter we point out an amplitude 

criterion of freak waves when we considered the interference of swell and wind waves 

(2.32).  

In this paragraph, we will use this criterion to detect freak waves. The value of As 

is the average value of the largest one third of waves in the realization. In wind wave 

theory, this definition has been proposed for 20 minute records containing about 3000 

waves. In our case, the number of waves is much smaller, thus the As value will change 

over time for the concrete realization and not be the average characteristics of the 

process. 

Therefore we will consider the specific realization at specific moment in time, and 

for each case we will determine the As (as an average of one-third of large waves). In Fig. 

4.20 the wave fields containing abnormally large waves are shown. For density ρ =0.24, 

ρ =0.19, ρ =0.14, ρ =0.096 the amplitude criterion of freak waves is performed, and in 

the first case – the exceedance of the significant wave amplitude As is three fold. 

The right column shows zoom of freak waves. In all cases, they have 

approximately the same shape corresponding to the resulting impulse in the case of 

unipolar soliton interaction (Fig. 3.9c). 

a)  

b)  
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c) 

d)

e)    
Figure 4.20. Wave fields that contain the abnormally large waves,the right column is 

zoom of freak wave: a) ρ =0.24,b)ρ =0.19, c)ρ =0.14, d)ρ =0.096,e)ρ =0.048. 

For the analysis of the probability of occurrence of freak waves in the soliton 

fields statistical moments will be used. For separated solitons it is easy to analytically 

calculate the mean, variance, skewness, and the kurtosis. In this paragraph we consider 

the soliton fields with the same number of positive and negative waves. Therefore, the 

mean and the skewness will be equal to zero. Variance and kurtosis are calculated as 

follows: 

ρσ ><= iA22 ,      (4.25) 
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.      (4.26)  

These formulas can only be used in cases where soliton gas has low density (for 

example ρ =0.048). However, in this paragraph we consider also a soliton gas with high 

density when solitons are already intersected at the initial time (Fig. 4.21) and in this 

case, the statistical moments must be found numerically.  
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Figure 4.21 Zoom of initial field withρ =0.24 andρ =0.19. 

Fig. 4.22 demonstrates the temporal evolution of the coefficients of skewness and 

kurtosis in one realization, and averages of these values over 50 realisations.  Values of 

skewness changes in the realization from -1 to +1, but the ensemble of solitons is 

symmetrical in averages as expected. Kurtosis changes asymmetrically around the 

average, from 11 to 23. Average value of kurtosis tends to the value of 13.66 (plus/minus 

0.315) after several interactions, which is larger than initial value of (13.1). 

     

Figure 4.22 Temporal evolution of skewness and kurtosis in heteropolar soliton gas. 

The coefficient of kurtosis advantageously increases, indicating an increase of the 

tail of the distribution function. Correspondingly, the skewness can take both negative 

and positive values at different times. However their averaging is close to zero due to the 

balance between positive and negative waves.  

The kurtosis for soliton fields of different densities in one realization is presented 

in Fig. 4.23. With the gas density increasing the kurtosis decreases, however this effect 

can be seen from the analytical formulas for the initial state (4.26). As you know, this 

ratio shows the difference between the Gaussian distribution function, and if it is positive 

the probability of occurrence of large waves increases as compared with the normal 

stationary process.  
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As known, this coefficient shows the difference between of distribution function 

from the Gaussian, and if it is positive the probability of a freak wave is increased in 

comparison with the normal stationary processes. Therefore, it seems that the decreasing 

of kurtosis as gas density increasing means a reduction of the probability of freak wave 

occurrence, and that contradicts the results of direct calculations shown above. Changes 

of kurtosis characterize the excess of the distribution function from the Gaussian curve in 

an integral sense, but this does not say anything about the value of the distribution 

function at very large amplitudes. 

 

Figure 4.23 Kurtosis and skewness of soliton fields with different density. 

It should be noted that freak waves in the framework of the modified Korteweg-de 

Vries equation have been studied previously in the case of narrowband initial conditions 

[Grimshaw et al, 2005, 2010; Talipova, 2011]. In this case, the mechanism of freak wave 

generation is modulation instability of modulated quasi-sinusoidal wave packets. We 

managed to find a mathematical work on the modulation instability of modulated cnoidal 

waves [Driscoll & O'Neil, 1976]. 

The main conclusion of this work is that if cnoidal waves have a mean of zero, 

then they are unstable. Yet if they are set on a pedestal, then the waves are stable. Soliton 

sequencing is a special case of a cnoidal wave. As already stated, the evolution of an 

ensemble of unipolar solitons does not lead to the formation of large waves, which is 

consistent with the stability of cnoidal waves having a non-zero average. At the same 

time, an ensemble of heteropolar soliton gas freak waves may appear, and this is 

correlated with the modulation instability of cnoidal waves with an average of zero. In 
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contrast to the cited work about instability of a cnoidal wave [Driscoll & O'Neil, 1976], 

our study shows the dynamic evolution of instability and makes it possible to quantify the 

characteristics of the soliton gas and probability of freak wave occurrence.  
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4.5 Conclusion 

The dynamics of multi-soliton fields in the framework of the Korteweg - de Vries 

equation and the modified Korteweg - de Vries equation are studied in the present 

chapter. Four statistical moments (mean, variance, skewness and kurtosis) of soliton gas 

are investigated and analyzed. The distribution functions of soliton amplitudes are 

determined. It is shown that in the case of unipolar solitons the role of impulse with small 

amplitudes increases and with large amplitudes they are reduced. 

The opposite result is obtained for heteropolar fields, in which the role of waves 

with large amplitudes increases, i.e. the tails of the distribution function increase. This 

means an increase of the probability of freak wave occurrence in the heteropolar fields. It 

is demonstrated that in a heteropolar field abnormally large waves (freak waves) may 

appear. The comparison of the dynamics of the unipolar soliton gas within the KdV and 

mKdV equations is given. In such fields, nonlinear interactions lead to an increase in the 

role of small-amplitude waves. 
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Chapter 5 

 

Conclusions 

 

 The dynamics of random wave fields in the coastal zone in relation to the problem 

of freak wave occurrence is studied in this thesis. The following results are obtained: 

 

1. It is demonstrated that the mechanism of dispersion focusing of freak wave 

formation "works" for waves interacting with a vertical barrier. It is shown that just 

before the maximum wave formation a freak wave quickly experiences a shape change 

from a high ridge to a deep depression. The lifetime of a freak wave increases with the 

growth of number of individual waves in anomalous wave packets, and the lifetime of a 

freak wave increases as water depth decreasing.  

2. It is demonstrated that pair interaction of unipolar solitons lead to a decrease of 

the third and fourth moments of a wave field. It is shown that in the case of heteropolar 

soliton interactions the fourth moment increases.  

3. The nonlinear dynamics of ensembles of random unipolar solitons in the 

framework of the Korteweg - de Vries equation and the modified Korteweg - de Vries 

equation is studied. It is shown that the coefficients of skewness and kurtosis of the 

soliton gas are reduced as a result of soliton collisions. The distribution functions of wave 

amplitudes are defined. The behavior of soliton fields in the framework of these models 

is qualitatively similar. It is shown that in these fields the amplitude of the large waves is 

decreased in average due to multi-soliton interactions. 

4. A new breaking effect of solitons with small amplitudes and even changing of its 

direction in multi-soliton gas as a result of nonlinear interactions with other solitons is 

found in the framework of the modified Korteweg-de Vries equation. 

5. It is shown that in heteropolar soliton gas abnormally large waves (freak waves) 

appear in the frameworks of the modified Korteweg - de Vries equation. With increasing 

of soliton gas density the probability and intensity of freak waves in such systems 

increases. 
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Abstract. One of the possible mechanisms of the emergence
of freak waves in deep water, based on the dispersive focus-
ing of unidirectional wave packets is analysed. This mech-
anism is associated with the frequency dispersion of water
waves and manifested in the interference of many spectral
components, moving with different velocities. Formation of
a single freak wave in a random wind wave field is consid-
ered in the frame of linear theory. The characteristic lifetime
of an abnormal wave in the framework of this mechanism
for typical conditions is approximately two minutes, thus, a
rapid effect is difficult to predict and prepare for. A rogue
wave quickly changes its shape from a high ridge to a deep
depression.

1 Introduction

The large-amplitude waves suddenly appearing for a short
time on the sea surface (freak or rogue waves) attract the at-
tention of professionals nowadays because of their danger to
ships and oil platforms in sea, ports and tourist resorts on the
coast. Numerous data of observing freak waves in different
areas of the World Ocean can be found, for example, in books
(Lavrenov, 2003; Kurkin and Pelinovsky, 2004; Kharif et al.,
2009) and papers (Kharif and Pelinovsky, 2003; Didenkulova
et al., 2006; Liu, 2007). Among the mechanisms of their
appearance in the open sea the following ones are marked
(Kharif et al., 2009): (a) a superposition of a large number
of individual spectral components, which move with differ-
ent speeds and in different directions (the dispersive and ge-
ometrical focusing); (b) nonlinear mechanisms of modula-
tion instability, in particular, the Benjamin-Feir instability;
and (c) interaction of sea waves with currents and wind flow.

Correspondence to:E. Pelinovsky
(pelinovsky@hydro.appl.sci-nnov.ru)

Each of these mechanisms has its own specificity, which is
ultimately manifested in the probability of freak wave occur-
rence and the time of their life. It is possible that each mech-
anism leads to different forms of rogue waves and scenarios
of their manifestation. All these important features have not
been studied yet.

Here the possible scenario of the freak wave appearance
in deep water, based on dispersive focusing of unidirectional
wave packets is analysed. This mechanism is associated with
the dispersion of water waves and is manifested in the inter-
ference of many spectral components, moving with differ-
ent velocities. This mechanism “works” for both the deter-
ministic (with certain conditions on the phases of spectral
components) and random waves, leading to the appearance
of abnormally high waves. It is possible in both, linear and
nonlinear theories of water waves, although, of course, the
nonlinearity leads to their peculiarities in the wave field (Peli-
novsky and Kharif, 2000; Kharif et al., 2001; Pelinovsky et
al., 2003; Shemer et al., 2007; Shemer and Dorfman, 2008).
We also emphasize that the mechanism of dispersion focus-
ing is very popular with experimentalists, because it allows
generating a wave of huge height in a relatively short tank.
The main attention in the laboratory experiments is paid to
the description of the wave field (the displacement of wa-
ter surface and particle velocities) at the focal point, which
is essential for the subsequent assessment of the impact of
extreme waves on ships and platforms (Brown and Jensen,
2001; Contento et al., 2001; Johannesen and Swan, 2001;
Clauss, 2002; Touboul, 2006; Shemer et al., 2007; Shemer
and Dorfman, 2008; Kharif et al., 2008, 2009; Shemer and
Sergeeva, 2009).

Theoretical results for focusing wave packets in deep wa-
ter are obtained mostly in the linear theory, in the frame-
work of the so-called parabolic equation for the envelope of
the wave packet (see, for example, Clauss and Bergmann,
1986; Magnusson et al., 1999; Pelinovsky and Kharif, 2000;
Shemer et al., 2002; Pelinovsky et al., 2003; Shemer and
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Fig. 1. Evolution of the Gaussian pulse in deep water for long times.

Dorfman, 2008). The particular analytical solution of this
equation is the Gaussian packet, which demonstrates the pro-
cess of the emergence of abnormally high waves and their
disappearance. It is important to emphasize that the parabolic
equation is valid for slow varying envelope on the scale of the
carrier waves, so that the freak wave is a group of waves such
as “Three Sisters” – a term often encountered in the witness
descriptions of the phenomenon. However, it does not meet
a single rogue wave, the description which is also present in
the literature.

The aim of this work is to develop a scenario of appear-
ance and disappearance of a single freak wave in the frame
of the dispersive mechanism of focusing wave packets. Sec-
tion 2 provides a solution to the Cauchy problem for waves
in infinitely deep water, corresponding to the initial pertur-
bation in the form of a single pulse. It is the basis for the
demonstration of the occurrence of solitary freak waves in
the deterministic wave field. The process of the appearing
rogue waves in a random field of wind waves is considered
in Sect. 3. It is shown that for typical conditions, the charac-
teristic lifetime of a freak wave is about 2 min, demonstrat-
ing the difficulties in predicting this dangerous phenomenon.
Features of the script of the development of abnormal pulse
are discussed in Sect. 4. It is shown that the freak wave is
not only there for a short time, but quickly changes its shape
from a high ridge to a deep depression. The results are sum-
marized in Sect. 5.

Fig. 2. The dependence of the maximum value of the wave field
from dimensionless time (the solid line corresponds to the exact,
and the dashed line – asymptotic solution).

2 Generation of “huge” wave in a frequency-modulated
wave packet

The transformation of the wave packet into a single large-
amplitude wave in the frame of the linear theory can be con-
sidered using the Fourier-superposition of spectral compo-
nents. In practice, however, a different approach is used
(Kharif et al., 2009): Cauchy problem is solved for the initial
condition, which corresponding to the expected anomalous
wave, and then the resulting solution is inverted in the space.
As a result, possible forms of the wave packet can find the
evolution of which leads to the formation of abnormal waves
in a finite time, followed by its transformation back into the
wave packet. Let us consider a classical solution of Cauchy
problem for waves in deep water, written in the integral form

η(x,τ ) =

+∞∫
−∞

A(k)exp{i [ω(k)τ −kx]}dk, (1)

whereη(x,τ) is a displacement of the water level,A(k) is
Fourier spectrum determined by the initial disturbance, cor-
responding to the expected anomalous waveη0(x)

A(k) =
1

2π

+∞∫
−∞

η0(x)exp(ikx)dx, (2)

ω(k) is a wave frequency determined from the dispersion re-
lation of waves in deep water

ω(k) =
√

gk, (3)

whereg is gravity acceleration. Integral Eq. (1) analytically
is not calculated for ”reasonable” initial disturbances, but at
long times, its presented by a well-known expression ob-
tained by the method of stationary phase (Whitham, 1977)

η(x,τ ) ≈ Z(x,τ)cos
[
ω(x,τ )τ −k(x,τ )x +ϕ[k(x,τ )]−

π

4

]
, (4)
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Fig. 3. Evolution of the pulse at short times.

Z(x,τ)= 2

√
2π∣∣dCgr/dk

∣∣ |A(k)|
√

τ
,

Cgr(k) =
dω

dk
=

1

2

√
g

k
=

x

τ
, (5)

|A| andϕ are module and an argument of the complex spec-
trum of A(k). The last expression in Eq. (5) allows unam-
biguously to find the wave numberk(x,τ ) = gτ2/4x2, then
from Eq. (3) the wave frequencyω(x,τ) = gτ/2x. The final
asymptotic expression for the wave field takes the following
form

η(x,τ )≈ 2
√

π |A(gτ2/4x2)|

√
gτ2

x3
cos

[
gτ2

4x
+ϕ−

π

4

]
,

(6)

it describes, at each moment in time, the wave packet with
variable amplitude and length (frequency-modulated wave
train), and ahead follow longer wavelengths, which have a
great group velocity. Asymptotic solutions for waves of any
physical nature are well-known (Whitham, 1977) and, there-
fore, the details of their derivation are not discussed here.

As an expected anomalous wave it is natural to choose a
Gaussian pulse with a characteristic amplitudeA0 and half
of a lengthl

η0(x) = A0e
−

x2

l2 . (7)

Then at large distances (x>>l) it transforms into a wave
packet

η(x,τ ) ≈ A0
lτ

x

√
g

x
exp

(
−

g2l2τ4

64x4

)
cos

[
gτ2

4x
−

π

4

]
. (8)

The shape of the wave packet at different moments of the
dimensionless time (t = τ

√
g/l) is shown in Fig. 1. Over

time a train stretches in the space (proportional toτ), and
its amplitude decreases asτ−1/2, ensuring the conservation
of wave energy. The number of individual waves increases
linearly with time, the wave of maximum amplitude retaining
its length and speed of propagation.

At short times the integral Eq. (1) is calculated numeri-
cally, which allowed us to define the limits of applicability
of the asymptotic solutions. As it turned out, at values of
dimensionless time∼20–25, the maximum water displace-
ment (the amplitude of the high ridge) is well described by
the asymptotic value (Fig. 2).

It is clearly seen that in the frame of the exact solution, the
maximum of the field decreases sharply at times of∼5–10
and, consequently, the wave in the form of the hump disap-
pears for a while. The evolution of the wave shape at short
dimensionless times is shown in Fig. 3.

Initially, a positive bell-shaped pulse is transformed into
a wave of depression and further into the wave train. The
quick change of polarity of the pulse had not previously been
noted in the literature, however, as we show below, it plays
an important role in the scenarios of freak wave formation.
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with B = 0.05 3m , l  =  0.5 m-1, k0 = 0.063 m-1. In this case the characteristic wavelength is 100 

m and a significant height of the wave Hs = 1.5 m, thus the rms value of the surface elevation 

variation as σ=Hs/4 yields to steepness kσ ≈ 0.025. This nonlinearity may probably be 

sufficiently small to justify linear analysis. 

The superposition of deterministic and random components of the wave field at different times is 

illustrated on Fig. 4, where the time (s) is measured from the onset of solitary wave of large 

amplitude. As we see, even one minute before the abnormal waves are not visible, and they are 

also almost disappear in 1 minute, so the forecast of freak wave is indeed very difficult, and most 

importantly, moreover there is little time to prepare for its appearance in such a short time. What 

is said above is also shown by the time series of the wave field at short distances (500 m) from 

the place of an abnormally large wave (Fig. 5). 

Some presentation of the typical lifetime of the rogue-wave is given by Fig. 6, which shows the 

maximum height of the ridges and deep depressions in domain of 5 km versus time. As it can be 

seen, a significant change in the wave height occurs within about 2 minutes, and this value can 

be taken for the lifetime of the anomalous wave. We emphasize that the freak wave appears both 

in the form of a high ridge, and in form of a deep depression, and near the estimated time the 

wave changed its polarity several times. 

 

  

 

Fig. 4. Snapshots of the wave field at different times (s) 
Fig. 4. Snapshots of the wave field at different times (s).

The solution given above describes the transformation of
a solitary wave in the frequency modulated wave packet. If
the wave packet is inverted in the space, so that now the short
waves with small group velocity are ahead of the long ones,
the wave packet will be transformed into a solitary wave of
Gaussian shape. The property of inverting the solutions of
linear equations of ideal hydrodynamics is used to find opti-
mal conditions for the dispersive focusing. Nonlinearity, of
course, affects the process of focusing. In particular, in the
papers of Shemer et al. (2006, 2007) it was demonstrated that
in an unidirectional focusing process nonlinear effects are es-
sential in two important aspects. They may lead to a con-
siderable modification of the complex amplitude spectrum
in the course of evolution, affecting both absolute values of
the amplitudes of various harmonics and their phases. The
other aspect is related to the contribution of bound waves that
changes considerably the amplitudes of troughs and crests
and violates the symmetry between the two. But if the wave
amplitude is relatively weak, this effect is not fundamental;
it is just needed to make a few adjustments to the form of the
wave packet (Johannesen and Swan, 2001; Clauss, 2002).

Concluding this section, we note that in laboratory condi-
tions a single wave with a broad spectrum is generated by a
wave maker with variable frequency, changing in finite lim-
its according to the linear law (the optimal law for the gen-
eration of solitary waves through the mechanism discussed
above) (see, for example, Brown and Jensen, 2001; Shemer
et al., 2007; Shemer and Dorfman, 2008; Kharif et al., 2008).
In this case, the signal spectrum is almost rectangular, while
the wave itself (through the inverse Fourier transform) – crest
of small, oscillating tails (like sin(x)/x); it is the shape of a
focused wave observed in experiments (Kharif et al., 2008;
Shemer and Dorfman, 2008).

3 Generation of a single pulse in a random field of
wind waves

The mechanism of dispersion focusing described above must
occur in a random field of wind waves, the spectral com-
ponents of which move with different velocities. A simple
statistical analysis of a random superposition of waves with
a narrow spectrum in the linear approximation leads to the
Rayleigh distribution, so that the freak wave should appear
once every 10 h (Dysthe et al., 2008; Kharif et al., 2009).
The simulation of the wave field for such long times is rather
a difficult task, so we assume that, along with random com-
ponents, there is a deterministic frequency-modulated packet
of small amplitude, as described above. Then by the linear-
ity the random and regular components of wind wave field
do not interact with each other, so that the process of form-
ing a single pulse from a frequency-modulated packet fol-
lows the scenario described above. The random disturbance,
on average, does not change its energy and the possibility of
a big wave in it is small at relatively short times. As a result,
the initial wave field “looks” purely random, and then there
comes a high ridge, which over time is again “dissolved” in
random waves. Such processes of interference of random
and deterministic fields have already been discussed in the
literature (Kharif et al., 2009), but not for the formation of a
single wave on deep water. Nonlinearity, if it is weak, can
not prevent the dispersive focusing of a deterministic wave
packet, so it can be ignored on the first stage.

In numerical experiments the random wave field is set
by the superposition of spectral components with random
phases

η(x,τ ) =

N∑
i=1

Ai cos(ωiτ −kix +ϕi), (9)
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where the spectral amplitudeAi =
√

S(k)1k, 1k is a sam-
pling interval of the spectrum,ki = i1k, ωi =

√
gki , N =

156 is the total number of harmonics. Phasesϕi are evenly
distributed and set with a random number generator,S(k)

is energetic spectrum, for example, the spectrum of the
Pearson-Moskowitz or JONSWAP spectrum. In our calcula-
tions, we used a simpler Gaussian approximation of the wind
wave spectrum

S(k) = Bexp

(
−

(k−k0)
2

l2

)
, (10)

with B = 0.05 m3, l = 0.5 m−1, k0 = 0.063 m−1. In this case,
the characteristic wavelength is 100 m and a significant
height of the waveHs = 1.5 m, thus, the rms value of the
surface elevation variation asσ=Hs /4 yields to steepness
k0σ ≈ 0.025. On the other hand the maximum height of
the freak wave reachesamax= 2.7 m (see below) and, there-
fore, the steepness of the wave of maximum amplitude is
k0amax ∼0.17. This nonlinearity may probably be suffi-
ciently small to justify linear analysis if we compare the ex-
perimental results with Shemer et al. (2007) where the non-
linear effects are manifested atk0amax∼0.3.

The superposition of deterministic and random compo-
nents of the wave field at different times is illustrated in

Fig. 4, where the time (s) is measured from the onset of soli-
tary wave of large amplitude. As we see, even one minute
before, the abnormal waves are not visible and they also al-
most disappear in 1 min, so the forecast of freak wave is in-
deed very difficult and, most importantly, there is little time
to prepare for its appearance in such a short time. What is
said above is also shown by the time series of the wave field
at short distances (500 m) from the place of an abnormally
large wave (Fig. 5).

A presentation of the typical lifetime of the rogue-wave
is given in Fig. 6, which shows the maximum height of the
ridges and deep depressions in the domain of 5 km versus
time. As it can be seen, a significant change in the wave
height occurs within about 2 min, and this value can be taken
for the lifetime of the anomalous wave. We emphasize that
the freak wave appears both in the form of a high ridge and
in form of a deep depression, and near the estimated time the
wave changed its polarity several times.

4 The scenario of a freak wave appearance

The calculations given above show that the freak wave exists
about 2 min, and a detailed chronology during that time (the
script of the process) will allow for the evolution of the freak
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wave. Figure 7 shows the shape of the water surface at dif-
ferent times, calculated by the above formulas. At this time
interval (about 2 min) an anomalous solitary wave is always
visible in the background of random wind waves. Its shape
is constantly changing from crest to trough and back quite
quickly (within approximately 10 s).

Observability of the rogue waves depends on many factors.
For example, if the observer is on the plane, he can only see
one of the images shown in Fig. 7, and to estimate the height
of the anomalous wave from its trough to the crest. In fact,

such pictures of freak-waves have been received from space
(Kharif et al., 2009) and are not discussed here. Freak waves
were originally described in legends, transmitted orally from
sailors who having survived the horror of meeting with this
terrible phenomenon, hurried to share their impressions with
others. Naturally, most of the stories contained a consider-
able exaggeration and fictitious descriptions. Having now a
model of freak waves, it is possible to develop a “standard-
ized” description schematizing the reaction of sailors to this
phenomenon.
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Thus, in the case of the focusing wave packets, as shown
above, the apparent abnormal wave in the form of a crest ap-
pears in approximately 1 min prior to its approach to the ship
at the distance about 600–700 m. If the observer is on board,
who also “prescribes” water level fluctuations in pitching, he
can only see a big crest. This crest can be seen a few times
(2–4 times) for about 10 s, before it comes to the ship. In
this case, the first not the highest ridges will hardly attract
the attention of seafarers and, in fact, the freak waves will be
visible for about 30 s before meeting with the biggest wave.
And only when the wave appears just before the ship, the ob-
server can see that the wave consists of a crest and trough or
of trough/crest.

That is why phrases of the descriptions are typical: “crews
do not have time to prepare for the meeting with the dan-
ger” (Kharif et al., 2009), which greatly aggravates the con-
sequences of the meeting with the elements. The fact of the
sudden appearance of the freak waves requires from the crew
of any vessel not only professional knowledge, but also men-
tal preparation. The reaction of seafarers, of course, depends
on their experience related to stressful situations, such as dur-
ing a storm. There are specific, purely psychological factors
(the so-called sthenic or asthenic emotions, ability to antici-
pate situations in life and willingness to encounter them and
so on). According to (Rogovin and Karpova, 1985), the will-
ingness of action to external irritants is 0.5–2 s later, thus,
there is no time to be prepared for a meeting with the freak
wave. Therefore, one important task is to study the psycho-
logical characteristics of human behaviour in case of meeting
with a freak wave and the development of special techniques
and simulators for the crew of ships. In addition to purely
technical issues (stability of the ship in large waves, a spe-
cial lashing, etc.) this will prevent the severe consequences
of this type of maritime disasters.

We should point out that in our study the temporal evolu-
tion problem is considered. The relation between the tem-
poral and the spatial formulation was considered in detail in
Shemer and Dorfman (2008). While the temporal approach
is simpler and more “natural” for numerical simulations, it
can not be realized in experiments where the evolution is spa-
tial and the initial conditions are prescribed atx = 0 rather
than att = 0. It is possible that spatial formulation would be
more appropriate from the point of view of the ship’s captain
watching the approaching waves, as attempted in the present
manuscript. But in linear approximation, both approaches
lead to the same results. The study by Shemer et al. (2010)
indicated that for wider spectrum the importance of nonlin-
ear effects seems to decrease and, therefore, we may use the
temporal approach to analyse the scenario of appearance of
the single freak wave.

Let us note that here we have considered the case when the
wave of maximum amplitude is a ridge. Quite similarly, we
can investigate a freak wave in the form of a deep depression.
In the framework of linear theory, it is sufficient to change
the sign in the Eq. (7). The scenario of the appearance of a

freak wave in this case is almost not changed: waves of large
amplitude are noticeable for about a minute and they change
their polarity, appearing and disappearing at the sea surface
for a short time. However, directly at the ship it will manifest
itself in the form of a wave of deep depression and it will fail
in trough. To predict the polarity of the freak wave (crest or
trough), in the framework of this approach, is impossible if
we use only the observation of waves in previous times.

5 Conclusions

The appearance of abnormally large waves on the sea surface
is due to the different physical mechanisms. In this paper,
we discuss the dispersive focusing scenario of a single freak
wave formation. For typical conditions, it is shown that the
characteristic lifetime of the freak waves is about two min-
utes. It is noted that at this time, the wave quickly (in about
10 s) changes its shape from crest to trough and back. At
the same time, for an observer onboard a ship, when only
the high ridges are seen, the appearance of a freak wave is al-
ways unexpected, especially because about a minute before a
large wave, it appears only 2–4 times, each time for 10 s. The
probability that the ship will rise to the top of the wave (if it
is a crest), or fail in to the hole (if it has a negative polarity),
is the same, and can not be determined in advance. All these
points to the inherent difficulties in forecasting a freak wave,
even a short time before when large waves become apparent
on the sea surface.
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Development of freak waves swell in a weak wave field 

 

Abstract: 

Interference of unidirectional swell and wind waves in deep water in frameworks of 

linear potential theory is considered. Wind waves are described by Pierson–Moskowitz 

spectrum, and swell – by the frequency-modulated wave packet. It is noticed that in case 

of a variable wind in a storm area the swell waves can be focused on some distance from 

the origin area, forming abnormal big waves («freak waves»). A visibility of the freak 

wave swell of different shapes in wind wave field is examined.  
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Abnormal intensification of a wave near a vertical barrier 

 

Abstract: 

One of the possible mechanisms of emergence of freak-waves near a vertical barrier, 

based on the dispersive focusing of unidirectional wave packets is analyzed. This 

mechanism is associated with the frequency dispersion of water waves and manifested in 

the interference of many spectral components, moving with different group velocities. 

Formation of a single freak wave in a random wind wave field is considered in the frame 

of linear theory. The characteristic lifetime of an abnormal wave in the framework of this 

mechanism for typical conditions is approximately two minutes, so thus such a rapid 

effect is difficult to predict and prepare for. A rogue wave quickly changes its shape from 

a high ridge to a deep depression. 

 

Keywords: water waves, wind waves, freak waves, dispersive focusing. 

 

  



121 

 

A.4 Publication dans le journal “Izvestiya, Atmospheric and 

Oceanic Physics”  

  



122 

 

On the criteria of the transition from breaking bore to undular bore 

E. N. Pelinovsky1-3), E. G. Shurgalina1-2), A. A. Rodin1,4) 

1) Nizhny Novgorod State Technical University n.a. R. E. Alekseev, 6030950, Russia, Nizhny Novgorod, 
Minina street, 24 

2) Institute of Applied Physics, Russian Academy of Sciences, 603950, Russia, Nizhny Novgorod, 
Ul'yanova street, 46 

3) Higher School of Economics- National Research University, 

603005, Russia, Nizhny Novgorod,  Bolshaya Pecherskaya Street , 25/12 

4) Institute of Cybernetics, Tallinn University of Technology, Akadeemia tee 21, EE-12618, Tallinn, 
Estonia 

E-mail: pelynovsky@hydro.appl.sci-nnov.ru 

E-mail: eshurgalina@mail.ru 

E-mail: artem@cens.ioc.ee 

Received 13.08.2014. 

 

Field data of undular and breaking bores observed in a coastal zone and river estuaries 

are collected. Existing criteria of separation of these two regimes of bores which depend 

on the ratio between bore height and unperturbed water depth are applied to the collected 

data. It is shown that criterion H/h > 1.5 (H is a bore height, measured from the bottom, h 

is an unperturbed depth of reservoir) is sufficient for the bore separation by the regime. 
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Two-soliton interactions play a definitive role in the formation of the structure of soliton turbulence in
integrable systems. To quantify the contribution of these interactions to the dynamical and statistical
characteristics of the nonlinear wave field of soliton turbulence we study properties of the spatial
moments of the two-soliton solution of the Korteweg–de Vries (KdV) equation. While the first two
moments are integrals of the KdV evolution, the 3rd and 4th moments undergo significant variations
in the dominant interaction region, which could have strong effect on the values of the skewness and
kurtosis in soliton turbulence.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Solitons represent an intrinsic part of nonlinear wave field in
weakly dispersive media and their deterministic dynamics in the
framework of the Korteweg–de Vries (KdV) equation is understood
very well (see e.g. [1–3]). At the same time, description of statisti-
cal properties of a random ensemble of solitons (or a more general
problem of the KdV evolution of a random wave field) still remains
to a large extent an unsolved problem, especially in the context
of concrete physical applications. In particular, importance of this
problem for the description of wind-generated waves on shallow
water was demonstrated in [4–9]. From the theoretical point of
view the description of a random soliton wave field is comple-
mentary to the “integrable wave turbulence” theory outlined in a
recent paper by Zakharov [10].

The macroscopic dynamics of random soliton ensembles (soli-
ton gases) in integrable systems are determined by the funda-
mental “microscopic” properties of soliton interactions: (i) soliton
collisions are elastic, i.e. the interaction does not change the soli-
ton amplitudes (or, more precisely, the discrete spectrum levels in
the associated linear spectral problem); (ii) after the interaction,
each soliton gets an additional phase shift; (iii) the total phase
shift of a ‘trial’ soliton acquired during a certain time interval can

* Corresponding author. Tel.: +44 1509 222869; fax: +44 1509 223969.
E-mail address: g.el@lboro.ac.uk (G.A. El).

be calculated as a sum of the “elementary” phase shifts in pairwise
collisions of this soliton with other solitons during this time inter-
val. Thus the dynamics of a soliton gas are essentially determined
by two-soliton interactions.

The study of soliton gases was initiated by Zakharov in [11]
where an approximate kinetic equation for random KdV solitons
when their spatial density is small was derived. This equation de-
scribes spatio-temporal evolution of the distribution function of
solitons over the (IST) spectrum. The full kinetic equation for the
KdV soliton gas of arbitrary density was derived in [12] (see also
[13]) using the thermodynamic limit of the Whitham modulation
equations and then was generalized in [14] to other integrable sys-
tems. The kinetic description of a soliton gas makes an emphasis
on the particle-like nature of solitons. At the same time, solitons
represent nonlinear coherent wave structures so the total random
nonlinear wave field associated with a soliton gas can be natu-
rally interpreted as soliton turbulence [15]. In view of the outlined
definitive role of two-soliton interactions, it is natural to ask: what
is their specific (qualitative and quantitative) contribution to the
statistical properties of soliton turbulence? In classical (both hy-
drodynamic and wave) turbulence theories the random field prop-
erties are usually described in terms of statistical moments (see
e.g. [16,17]). This provides one with a natural motivation to start
with the study of the properties of the spatial moments of the
two-soliton KdV solution. In spite of the elementary nature of this
problem it has apparently never been considered before. In the
context of the soliton turbulence description, the knowledge of

0375-9601/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
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“primitive” dynamics of the spatial moments of two-soliton solu-
tions is a necessary ingredient in the understanding of the behav-
ior of the statistical moments of the random KdV wave field.

Since the first and the second spatial moments of the two-
soliton solution are conserved under the KdV evolution, our main
focus in this Letter will be on the properties of the 3rd and 4th
moments which vary with time and which, after appropriate en-
semble averaging, will affect the behavior of the skewness and
kurtosis of the probability distribution of the random wave field
in the KdV soliton turbulence. These two statistical characteris-
tics are also known to play important role in the theory of rogue
waves [18].

2. Dynamics of two-soliton interactions

Although multisoliton solutions of the KdV equation had been
known since the very beginning of the soliton theory creation
[19,20], the nature of the mass/momentum/energy exchange oc-
curring during the interaction of two solitons have been continued
to be the subject of rather active study (see [21] and references
therein). In view of the outlined in the Introduction key role of the
two-soliton interactions in the formation of the structure of soli-
ton turbulence we shall need to briefly revisit here some of their
basic properties.

We shall use the canonical form of the KdV equation

ut + 6uux + uxxx = 0. (1)

The two-soliton solution of (1) has the form (see e.g. [2,3])

u2(x, t) = 2∂2
x ln

[
τ (x, t)

]
,

where τ = 1 + eφ1 + eφ1 + α2eφ1+φ2 ,

α = η2 − η1

η1 + η2
, φi = −2

(
ηi x − 4η3

i t − ξi
)
, i = 1,2. (2)

Here −η2
1,2 are the discrete spectrum points in the associated IST

formalism and ξi are the initial phases of solitons. When t � 1
solution (2) asymptotically (up to exponentially small terms) trans-
forms into a superposition of two single-soliton solutions (see e.g.
[1,3]):

u2 ∼ A1 sech2[η1x − 4η3
1t − ξ1 − �1

]
+ A2 sech2[η2x − 4η3

2t − ξ2 − �2
]
, (3)

where the amplitudes Ai = 2η2
i , i = 1,2 and the phase shifts �1,2

of the solitons due to the interaction are: �1,2 = ± ln |α| assuming
A1 > A2. We note that two-soliton KdV solution (2) can be rep-
resented in a number of equivalent forms emphasizing different
aspects of the soliton interaction dynamics (see e.g. [21]).

Let at the initial moment the taller soliton with amplitude A1
be located behind the shorter one with the amplitude A2. Since
the KdV soliton speed is proportional to its amplitude, the first
soliton will catch up the second one and the nonlinear interac-
tion will take place within certain space–time “dominant inter-
action region” (see [3]). There are three types of the behavior in
the dominant interaction region depending on the amplitude ratio
r = A1/A2 > 1 of the interacting solitons [22]:

(i) if 1 < r < 3+√
5

2 ≈ 2.62, then the interacting solitons inter-
change their roles without passing through each other. They never
“stick together” into a single unimodal pulse and always retain
their “identity” during the interaction. This type of interaction is
often called the “exchange interaction”. At the moment when the
strength of the interaction reaches its peak the double wave as-
sumes a symmetric two-hump profile with the local minimum
u = u∗ = A1 − A2 at the centre (see e.g. [23]).

Fig. 1. Dependence of the minimum of the double wave amplitude um =
min [max{u2(x, t)}: t > 0] on the soliton amplitude ratio A2/A1 in the two-soliton
solution.

(ii) if 3+√
5

2 < r < 3 the nature of the interaction changes so that
the taller soliton first absorbs the shorter one and then re-emits it.
Similar to the case (i) the solitons never merge into a single hump,
but at the same time the double wave never assumes a symmetric
shape. This scenario can be associated with the transition from the
“exchange” to the “overtaking interaction”. The amplitude of the
shorter soliton grows during the absorption phase and assumes its
maximum value 2

5 [A1 + A2 +(A2
1 + A2

2 −3A1 A2)
1/2] at the moment

of the strongest interaction, say t = t∗ . At the same moment t = t∗
the value of the double wave amplitude reaches its minimum um =
min [max{u2(x, t)}: t > 0].

(iii) if r > 3, then the soliton interaction mechanism is essen-
tially the same as in case (ii) but now the solitons merge into
a single unimodal hump in the dominant interaction region, be-
fore they separate again. This scenario is usually associated with
the “overtaking interaction”. The minimum of the resulting single
pulse amplitude achieved at the moment of the strongest interac-
tion is um = A1 − A2.

In all three above-mentioned scenarios, the resulting double
wave in the dominant interaction region is wider than each of the
interacting solitons and has a smaller amplitude than that of the
taller soliton before the interaction. One can derive an ordinary
differential equation describing the exact dynamics of the local
maxima of the two-soliton solution (see [22]). However, for our
purposes it is sufficient to present a simple plot of the value of
the double wave minimal amplitude um defined above, versus the
amplitude ratio r−1 = A2/A1 of the individual interacting solitons.
The plot of um(A2/A1) obtained from direct numerical simulations
of the collisions of different pairs of the KdV solitons is presented
in Fig. 1. It was assumed in the simulations that the initial ampli-
tude of the taller soliton A1 = 1.

As one can see, the absolute minimum of the function um is
achieved at A2/A1 = 1/2.62 ≈ 0.38, which is the upper boundary
of the transition interval 0.33 < A2/A1 < 0.38 between the ex-
change and overtaking soliton interaction scenarios (see previous
section). This property of the two-soliton KdV solutions could have
important implications for the analysis of the random soliton wave
field, in particular, for establishing the relation between the dis-
tribution of the values of local extrema in the soliton turbulence
and its spectral (IST) composition (we recall that the initial soliton
amplitudes A1,2 are directly related to the IST spectrum — see (2)).

3. Effect of soliton interactions on the integral characteristics of
the wave field

Most of the features of the two-soliton interaction described in
the previous section are known very well. However, the effect of
the soliton interaction on the integral characteristics of the wave
field to the best of our knowledge had not been considered before.
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It is this effect that is of our primary concern in this Letter since
it will have direct implications for the theory of the KdV soliton
turbulence.

As is known, the KdV equation has an infinite number of con-
served quantities (Kruskal integrals) (see e.g. [1–3]); below we
present the first four of them:

I1 =
∞∫

−∞
u(x, t)dx, (4)

I2 =
∞∫

−∞
u2(x, t)dx, (5)

I3 =
∞∫

−∞

[
u3 − 1

2
u2

x

]
dx, (6)

I4 =
∞∫

−∞

[
u4 − 2uu2

x + 1

5
(uxx)

2
]

dx. (7)

The first three integrals (4)–(6) are usually associated with the
“mass”, “momentum” and “energy” conservation although they do
not necessarily have physical meaning of the corresponding physi-
cal entities. All Kruskal integrals are conserved under the KdV evo-
lution (assuming vanishing at infinity or periodic boundary condi-
tions for the wave field) so it is clear from the very beginning that
these quantities are not affected by the soliton interaction. Never-
theless, it is interesting to know their dependence on the soliton
amplitudes since the higher integrals (starting from the 3rd) are
not necessarily positive definite. Formally, one would need to use
full two-soliton solution (2) in (4)–(7) but the calculation can be
dramatically simplified in view of the conservation of I1, I2, I3, I4,
so that one can use asymptotic expression (3) instead of the full
solution (2) and all the integrals can be evaluated for each soli-
ton separately. As a result, after somewhat lengthy calculation, we
obtain:

I1 = 4(η1 + η2) = 2
√

2
(

A1/2
1 + A1/2

2

)
, (8)

I2 = 16

3

(
η3

1 + η3
2

) = 4
√

2

3

(
A3/2

1 + A3/2
2

)
, (9)

I3 = 32

5

(
η5

1 + η5
2

) = 4
√

2

5

(
A5/2

1 + A5/2
2

)
, (10)

I4 = 256

35

(
η7

1 + η7
2

) = 16
√

2

35

(
A7/2

1 + A7/2
2

)
. (11)

Remarkably, all the integrals I1, I2, I3, I4 turn out to be positive
definite so, taking into account the long-time asymptotic represen-
tation of the N-soliton solution as the sum of individual solitons,
analogous to (3), one can conclude that their values increase as
the number of solitons increases. As one could expect, the “high-
er” integrals have stronger dependence on the amplitude than the
“lower” ones.

In turbulence theory one is usually interested in the standard
moments of the form

Mn(t) =
∞∫

−∞
un(x, t)dx, n = 1,2,3, . . . . (12)

Obviously, for the two-soliton solution the first two moments (12)
M1 and M2 coincide with the respective Kruskal integrals I1 and
I2 and, therefore, are conserved. In turbulence theory M1 and M2
define the mean value and variance of the random wave field re-
spectively, and their constancy means that nonlinear interactions

Fig. 2. The time dependence of the moments M3, M4 in the two-soliton interaction
with A1 = 1, A2 = 0.3.

do not affect these two important parameters (we note that in
many problems nonlinearity leads to variations of the mean, e.g.
in the so-called wave setup phenomenon in fluid dynamics).

The next two moments, M3(t) and M4(t), are related to the
skewness and kurtosis of the probability distribution of the turbu-
lent field. They do not coincide with the Kruskal integrals I3 and
I4 so one should not expect that they will be conserved in soliton
turbulence. Numerical evaluation of M3 and M4 for the two-soliton
solution (2) with A1 = 1 and A2 = 0.3 shows that these moments
decrease in the dominant interaction region (see Fig. 2). Outside
the interaction region M3 and M4 assume the values correspond-
ing to the superposition of non-interacting solitons (3):

M0
3 = 8 · 16

15

(
η5

1 + η5
2

) = 16
√

2

15

(
A5/2

1 + A5/2
2

)
, (13)

M0
4 = 16 · 32

35

(
η7

1 + η7
2

) = 32
√

2

35

(
A7/2

1 + A7/2
2

)
. (14)

One can see that the variations of the 3rd and 4th moments are
quite significant (up to 30%) which implies that soliton interactions
can strongly affect the higher moments of the wave field, while
the 1st and the 2nd moments remain unaffected. Physically, the
decrease of the 3rd and 4th moments due to soliton interactions
can be explained by the above-mentioned decrease of the resulting
pulse amplitude during the interaction. Also, as one can see from
the conservation of the third Kruskal integral (6), the decrease
of the 3rd moment

∫
u3 dx results in the decrease of the inte-

gral
∫
(ux)

2 dx which implies smoothing of the monotone slopes
of the pulse during the interaction. Our simulations of two-soliton
collisions characterized by different values of the definitive inter-
action parameter r = A1/A2 show the same qualitative behavior
of the higher moments in the dominant interaction region, while
the amplitude of their variations depends on the value of r. In
Fig. 3 we present the numerical results for the amplitudes of the
relative variations, �Mi/M0

i , where �Mi = M0
i − M(min)

i , i = 3,4,
versus r−1 = A2/A1. Again, in our numerical simulations we have
assumed that the amplitude of the greater soliton A1 = 1. Both
curves are nonmonotone and have their extremum (maximum) at
the same value of the amplitude ratio A2/A1 ≈ 0.32 which is close
to the lower boundary of the transition region 0.33 < A2/A1 <

0.38 separating the exchange and overtaking scenarios of the two-
soliton interaction. Thus the two-soliton interactions with the am-
plitude ratio in the transition interval are expected to have greater
impact on the higher moments in soliton turbulence.

To the best of our knowledge, the described effect of soliton
interactions on the higher moments of multisoliton solutions has
never been reported in the literature. Taking into account the key
role of the higher moments in the characterization of the skewness
and kurtosis of the turbulent field, an immediate implication of
this effect in the context of soliton turbulence is that the pairwise
interactions of solitons must decrease the skewness and kurtosis
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Fig. 3. Dependence of the relative variations �Mi/M0
i of the 3rd and 4th moments

of the two-soliton solution on the soliton amplitude ratio A2/A1.

(compared to their values for the gas of noninteracting solitons). It
is clear the quantitative contribution of this effect will depend on
the density of the soliton gas (frequency of soliton collisions) and
on its spectral (IST) composition (the ratios A1/A2 involved), i.e.
on the spectral distribution function of the soliton gas [14]. Thus,
for inhomogeneous soliton turbulence, when the density of soli-
tons depends on the spatial coordinate, the analysis of the higher
statistical moments behavior will be coupled with the kinetic de-
scription of the associated soliton gas.

In conclusion of this section we note that in classical and wave
turbulence theories, along with spatial moments, one is also in-
terested in the Fourier transform of the velocity field, its power
spectrum, etc. A similar description can be introduced for soliton
turbulence as well and would require the knowledge of the Fourier
spectrum evolution in the multisoliton solutions of integrable sys-
tems. The latter is also directly related to spectral algorithms of
the numerical simulations of emergence, propagation and interac-
tion of solitons in nonlinear dispersive media (see e.g. [24]).

4. Conclusions

We have shown that the two-soliton interaction in the frame-
work of the KdV equation leads to the decrease of the 3rd and 4th
moments M3,4 of the nonlinear wave field while the 1st and the
2nd moments remain unchanged due to the conservation of the
mass and momentum. The magnitudes of the relative variations of
M3, M4 turn out to be nonmonotone functions of the soliton am-
plitude ratio A2/A1 each having a single maximum located at the
point A2/A1 ≈ 0.32, close the boundary of the transition region
between the exchange and overtaking scenarios of two-soliton in-

teractions. The qualitative implication of this dynamical effect for
the soliton turbulence theory will be a decrease of the skewness
and kurtosis of the turbulent wave field in the regions of higher
density of solitons. The quantitative analysis of the effect of soliton
interactions on the structure of soliton turbulence will be made in
our future publications.
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Pelinovsky E., Shurgalina E. 

 

Interaction of solitary internal waves of finite amplitude 

 

Abstract: 

The study of interaction of unidirectional one-mode solitary internal waves in a 

stratified ocean is done. The exact two-soliton solution of the Korteweg-de Vries 

equation, which is valid for internal waves of small amplitude, is used for the 

analysis. The role of this process in the dynamics of soliton turbulence which is 

important for understanding the oceanic turbulence in the range of long waves is 

discussed. It is shown that in the moment of interaction the third and fourth 

moments of the wave field, which play an important role in the theory of turbulence 

(skewness and kurtosis) decrease. The value of the relative changes of these 

moments is maximal for the amplitude ratio of solitons in the intermediate zone, 

where the exchange regime of soliton interaction changes to the overtake regime. 

The obtained results are compared with the linear dynamics of soliton-like pulses, 

for which the third and fourth moments grow in a collision. 

 

Keywords: internal waves, the Korteweg–de Vries equation, soliton, turbulence  
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Abstract 

Interaction of two solitons of the same and different polarity in the framework of 

modified Korteweg-de Vries (mKdV) equation is studied. Three types of soliton 

interaction are considered: exchange and overtaking for positive solitons, and absorb-

emit for solitons of different polarity. The intermediate case, which separates the 

different regimes of soliton interactions,  is studied in details. Since the interaction of 

solitons is an elementary act of soliton turbulence, the moments of the wave field up to 

fourth are studied, which are usually considered in the turbulence theory. It is shown that 

in the case of interaction of solitons of the same polarity the third and fourth moments of 

the wave field, which determine the coefficients of skewness and kurtosis in the theory of 

turbulence, are reduced, while in the case of interaction of solitons of different polarity 

these moments are increased. The results are compared with the estimations for the two-

soliton interaction in the framework of the Korteweg - de Vries (KdV ) equation. 
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