Pr Jean Ponce

Président Pr Martial

Dr Ivan Rapporteur

Laptev

Rapporteur Pr Jitendra Malik

Dr Cordelia Schmid

Pr Zaid Harchaoui

Doctor Martial Hebert

Professor Ivan Laptev

Mattis Paulin

Nicolas Chesneau

Gregory Rogez

Guillaume Fortier

Thomas Mensink

Zeynep Akata

Dan Oneata

Shreyas Sax- Ena

Keywords: optical ow, action localization, convolutional neural network, video analysis, computer vision, machine learning iii ot optique, localisation d'actions, réseaux de neurones convolutionnels, analyse de vidéos, vision par ordinateur, apprentissage machine

With the recent overwhelming growth of digital video content, automatic video understanding has become an increasingly important issue. This thesis introduces several contributions on two automatic video understanding tasks: optical ow estimation and human action localization.

Optical ow estimation consists in computing the displacement of every pixel in a video and faces several challenges including large non-rigid displacements, occlusions and motion boundaries. We rst introduce an optical ow approach based on a variational model that incorporates a new matching method. The proposed matching algorithm is built upon a hierarchical multilayer correlational architecture and eectively handles non-rigid deformations and repetitive textures. It improves the ow estimation in the presence of signicant appearance changes and large displacements. We also introduce a novel scheme for estimating optical ow based on a sparse-to-dense interpolation of matches while respecting edges. This method leverages an edge-aware geodesic distance tailored to respect motion boundaries and to handle occlusions. Furthermore, we propose a learning-based approach for detecting motion boundaries. Motion boundary patterns are predicted at the patch level using structured random forests. We experimentally show that our approach outperforms the ow gradient baseline on both synthetic data and real-world videos, including an introduced dataset with consumer videos.

Human action localization consists in recognizing the actions that occur in a video, such as `drinking' or `phoning', as well as their temporal and spatial extent. We rst propose a novel approach based on Deep Convolutional Neural Network. The method extracts class-specic tubes leveraging recent advances in detection and tracking. Tube description is enhanced by spatio-temporal local features. Temporal detection is performed using a sliding window scheme inside each tube. Our approach outperforms the state of the art on challenging action localization benchmarks. Second, we introduce a weakly-supervised action localization method, i.e ., which does not require bounding box annotation. Action proposals are computed by extracting tubes around the humans. This is performed using a human detector robust to unusual poses and occlusions, which is learned on a human pose benchmark. A high recall is reached with only several human tubes, allowing to eectively apply Multiple Instance Learning. Furthermore, we introduce a new dataset for human action localization. It overcomes the limitations of existing benchmarks, such as the diversity and the duration of the videos. Our weakly-supervised approach obtains results close to fully-supervised ones while signicantly reducing the required amount of annotations.

Résumé

Avec la récente et importante croissance des contenus vidéos, la compréhension automatique de vidéos est devenue un problème majeur. Ce mémoire présente plusieurs contributions sur deux tâches de la compréhension automatique de vidéos : l'estimation du ot optique et la localisation d'actions humaines.

L'estimation du ot optique consiste à calculer le déplacement de chaque pixel d'une vidéo et fait face à plusieurs dés tels que les grands déplacements non rigides, les occlusions et les discontinuités du mouvement. Nous proposons tout d'abord une méthode pour le calcul du ot optique, basée sur un modèle variationnel qui incorpore une nouvelle méthode d'appariement. L'algorithme d'appariement proposé repose sur une architecture corrélationnelle hiérarchique à plusieurs niveaux et gère les déformations non rigides ainsi que les textures répétitives. Il permet d'améliorer l'estimation du ot en présence de changements d'apparence signicatifs et de grands déplacements. Nous présentons également une nouvelle approche pour l'estimation du ot optique basée sur une interpolation dense de correspondences clairsemées tout en respectant les contours. Cette méthode tire prot d'une distance géodésique basée sur les contours qui permet de respecter les discontinuités du mouvement et de gérer les occlusions. En outre, nous proposons une approche d'apprentissage pour détecter les discontinuités du mouvement. Les motifs de discontinuité du mouvement sont prédits au niveau d'un patch en utilisant des forêts aléatoires structurées. Nous montrons expérimentalement que notre approche surclasse la méthode basique construite sur le gradient du ot tant sur des données synthétiques que sur des vidéos réelles. Nous présentons à cet eet une base de données contenant des vidéos d'utilisateurs.

La localisation d'actions humaines consiste à reconnaître les actions présentes dans une vidéo, comme `boire' ou `téléphoner', ainsi que leur étendue temporelle et spatiale. Nous proposons tout d'abord une nouvelle approche basée sur les réseaux de neurones convolutionnels profonds. La méthode passe par l'extraction de tubes dépendants de la classe à détecter, tirant parti des dernières avancées en matière de détection et de suivi. La description des tubes est enrichie par des descripteurs spatio-temporels locaux. La détection temporelle est eectuée à l'aide d'une fenêtre glissante à l'intérieur de chaque tube. Notre approche surclasse l'état de l'art sur des bases de données diciles de localisation d'actions. Deuxièmement, nous présentons une méthode de localisation d'actions faiblement supervisée, c'est-à-dire qui ne nécessite pas l'annotation de boîtes englobantes. Des candidats de localisation d'actions sont calculés en extrayant des tubes autour des humains. Cela est fait en utilisant un détecteur d'humains robuste aux poses inhabituelles et aux occlusions, appris sur une base de données de poses humaines. Un rappel élevé est atteint avec seulement quelques tubes, permettant d'appliquer un apprentissage à plusieurs instances. En outre, nous présentons une nouvelle Automatic video understanding is increasingly relevant as the number and the quality of capturing devices have signicantly grown over the past few years. For instance, in 2014, YouTube has more than one billion visitors watching hundreds of millions of hours of videos every day 1 . In 2015, YouTube's CEO revealed that more than 400 hours of videos are uploaded every minute 2 . In 2019, videos are expected to represent 80% of the internet trac, and it would take one person over 5 million years to watch the amount of videos that will cross global IP networks each month 3 . With the overwhelming amount of video data, designing an automatic tool to analyze and understand this content has become a critical issue.

An example of application is illustrated in Figure 1.1. A user may need to retrieve a particular video instant in his personal collection which contains a huge number of photos and videos, captured by various devices such as cameras, smartphones, tablets or action cameras (e.g . GoPro). Such clip retrieval will require to identify people and to recognize the performed actions as well as their extent in the videos. Signicant progress has been made in computer vision over the past few years, in particular in face recognition (detection, identication, verication) and in image analysis (object personal videos collection request: `John playing harmonica' Videos span a wide range of sources and applications: indexing and retrieving videos from personal cameras, internet content platforms (e.g . YouTube, Facebook, Dailymotion), TV shows or movies; analyzing the surrounding environment for autonomous robots (e.g . autonomous cars, drones) or enhancing connected objects (e.g . augmented reality glasses); recognizing poses and motion for human-machine interfaces (e.g . Kinect); recognizing and predicting actions as well as behaviors for video-surveillance; tracking players and recognizing ne-grained actions in sports videos.

Making computers able to understand and interpret a huge amount of videos is thus fundamental. Compared to images, videos also convey the dynamics of a real-world scene over a given period of time that can vary from few milliseconds to multiple hours. This dynamic is a rich source of information, and analyzing it is what separates video understanding from image understanding. This explains why most video representation models [START_REF] Laptev | On space-time interest points[END_REF][START_REF] Wang | Dense trajectories and motion boundary descriptors for action recognition[END_REF][START_REF] Simonyan | Two-stream convolutional networks for action recognition in videos[END_REF] integrate a component which describes the motion in the scene. For instance, Figure 1.2 illustrates a pipeline for action recognition [START_REF] Wang | Dense trajectories and motion boundary descriptors for action recognition[END_REF] [START_REF] Wang | Dense trajectories and motion boundary descriptors for action recognition[END_REF].

First, the motion is estimated and used to extract trajectories. Then, a video description is built, based on static and motion cues. Finally, the description is fed to a classier to predict the label.

time time estimated motion is used for extracting trajectories and describing them.

Our work focuses on human actions and in particular on the problem of localizing them in uncontrolled videos. For instance, Figure 1. [START_REF] Vogel | An evaluation of data costs for optical ow[END_REF] shows an example of localization in space and time of the drinking action from the DALY dataset [START_REF] Weinzaepfel | Towards Weakly-Supervised Action Localization[END_REF]. As recently shown by [START_REF] Jhuang | Towards understanding action recognition[END_REF] and [START_REF] Varol | Long-term Temporal Convolutions for Action Recognition[END_REF], the quality of the estimated motion in the video representation has an impact on the performance. We hence study the problem of optical ow estimation, in particular in the case of non-rigid large displacements, such as the motion of human limbs. Indeed, state-of-the-art optical ow methods tend to perform poorly on fast motion, as highlighted by the MPI-Sintel dataset [START_REF] Butler | A naturalistic open source movie for optical ow evaluation[END_REF].

Goals

This dissertation addresses two important problems in video understanding. The rst one is low-level and consists in estimating optical ow in realistic videos, i.e., with fast non-rigid motion such as human motion. The second task is higher-level and consists in detecting generic human actions in uncontrolled videos. We now briey present these two tasks, as well as the challenges involved in each.

Optical ow estimation in realistic videos

Optical ow estimation consists in computing a motion vector for every pixel in a video. Figure 1. 4 shows an example of ground-truth optical ow from the MPI-Sintel dataset [START_REF] Butler | A naturalistic open source movie for optical ow evaluation[END_REF]. Despite signicant progress over the past decades, optical ow estimation in videos remains challenging, especially in the case of fast motion of small parts [START_REF] Brox | Large displacement optical ow: descriptor matching in variational motion estimation[END_REF]. Such motion typically appears for deformable objects such as humans (see the limbs of the leftmost character in Figure 1.4). This dissertation is thus concerned with estimating optical ow in realistic videos, i.e., with possibly fast non-rigid motion. Estimating optical ow in realistic videos also implies facing challenges, such as motion discontinuities, occlusions, large displacements and varying lighting conditions. We now present these challenges in more detail.

The rst one consists in respecting motion discontinuity. The motion of a complex scene can be decomposed into independent moving objects, i.e., layers, each one with smooth motion. Detecting the motion discontinuities is thus capital for an accurate optical ow estimation. Incorporating discontinuities into the motion model is also dicult as most of the mathematical formulations require a continuous function. In addition, modeling the motion discontinuities and the smooth motion inside each independent layer at the same time is extremely challenging.

The second diculty consists in handling occlusions. Since multiple objects move independently, foreground objects make parts of the background layers appear and disappear in each frame of the video. In a similar spirit, objects can enter or leave the eld-of-view of the camera. For instance, in Figure 1.4, large occluded areas appear at the bottom and right borders due to camera motion, and at motion discontinuities. Estimating optical ow in these areas requires a high-level and long-term understanding of the motion in the scene.

The third challenge concerns large non-rigid displacements. These displacements are frequent in real-world videos. A typical example is the limbs of the humans that have fast motion, especially compared to their size.

For instance, in Figure 1.4, the hands and the feet of the left character have motion that are not related to his torso. For small objects, few pixels can be used as evidence for their displacements. Moreover, large displacements add other diculties, such as strong discontinuities, motion blur, or wide changes in shapes and appearances across frames due to video compression.

A fourth diculty lies in variations of the lighting conditions. The appearance of a given object may vary throughout the video due to changes in the lights. In the same spirit, if an object enters in the shadow of another one, its color appearance will abruptly change. Optical ow models must incorporate such cases for accurate estimation.

Finally, optical ow is a low-level cue used for higher-level tasks such as action recognition or tracking. Consequently, eciency is capital for computing ows in a huge amount of videos or for real-time processing.

Human action localization in uncontrolled videos

The second task consists in localizing actions in videos, i.e., recognizing actions as well as their temporal extent and the spatial extent of the actor(s). For instance, Figure 1.3 shows one instance for the drinking class from the DALY dataset [START_REF] Weinzaepfel | Towards Weakly-Supervised Action Localization[END_REF] and Figure 1.5 shows an example video from the same dataset with a human performing multiple short actions in a long YouTube video. This dissertation addresses human action localization (called also human action detection), both in space and time, in uncontrolled videos. This problem faces multiple challenges such as designing a representation both robust to intra-class variability, and suciently discriminative in order to avoid inter-class confusion, as well as man ironing folding textile drinking 0:00 1:00 2:00 3:00 diculties due to the localization in space and time. We now describe these challenges in more detail.

Some diculties are due to intra-class variability. Appearance and motion may signicantly dier between instances of a class. This is caused by dierences in capturing conditions (e.g . camera motion, wide range of viewpoint, occlusion and lighting conditions) and variations in the execution style of an action (e.g . motions, poses, objects involved, speed). All these variations, highlighted by Figure 1.6, make modeling human action in uncontrolled videos challenging. Simple assumptions such as constant position of the human throughout the videos are not adequate for real-world data.

Another set of challenges are due to inter-class confusion. Dierent actions may share similar motions (e.g . drinking and smoking), similar objects (e.g . phoning and taking photo can both be performed with a smartphone) or similar poses (e.g . stand up and sitting down). For instance, hand movement happens near the mouth for the 3 actions shown in Figure 1.6.

Designing an action model which is robust to intra-class variability and discriminative between classes is thus extremely dicult.

Localizing actions in addition to recognizing them adds several challenges. Spatial localization is a dicult task as the human locations may vary throughout the videos, or the actors may be partially visible. As a consequence, per-frame detectors may not have a perfect recall and trackers may fail. In addition, in the case of crowded scenes, many humans might be present at the same time with multiple action instances co-occurring. Moreover, each human can perform multiple actions, see

Context

Automatic video understanding is one of the main challenge in computer vision. Making computers able to capture the dynamics of a scene started in the 1970s. The rst attempts have mainly studied the problem of segmenting moving objects in a scene or separating the foreground from the background [Martin andAggarwal, 1977, Jain et al., 1977]. Most of these works rely on the dierence between consecutive images in a sequence [START_REF] Jain | On the analysis of accumulative dierence pictures from image sequences of real world scenes[END_REF]. Some other approaches proposed models to estimate the velocity eld and its discontinuity [START_REF] Fennema | Velocity determination in scenes containing several moving objects[END_REF]Thompson, 1979, Nakayama and[START_REF] Nakayama | Optical velocity patterns, velocity-sensitive neurons, and space perception: a hypothesis[END_REF], assuming rigid objects.

More robust models for motion estimation appeared in the 1980s based on optical ow. Optical ow describes the apparent motion of an image brightness pattern. In general, optical ow is a projection of the motion eld that links pixels between 2D frames. Nevertheless, a small dierence is that optical ow may also be due to dierence in brightness pattern not related to motion; for instance due to changes in lighting conditions.

Optical ow and motion estimation are often confused in the literature, in particular when models integrate a constancy assumption of the gradient, as this is the case in this dissertation. In their pioneering work, Horn

and Schunck [1981] minimize a global energy composed of a data-delity term and a smoothness term to estimate the optical ow. This formulation has been improved over the years [START_REF] Black | The robust estimation of multiple motions: parametric and piecewise-smooth ow elds[END_REF][START_REF] Brox | High accuracy optical ow estimation based on a theory for warping[END_REF], Bruhn et al., 2005a[START_REF] Werlberger | Anisotropic Huber-L1 optical ow[END_REF][START_REF] Baker | A database and evaluation methodology for optical ow[END_REF], Vogel et al., 2013a, Sun et al., 2014b] and obtains excellent performance on small displacements. Integration of image matching [START_REF] Tola | A fast local descriptor for dense matching[END_REF], Brox and Malik, 2011[START_REF] Xu | Motion detail preserving optical ow estimation[END_REF] was recently proposed in order to improve robustness to large displacements, as highlighted by the performance on MPI-Sintel benchmark [START_REF] Butler | A naturalistic open source movie for optical ow evaluation[END_REF], see Figure 1.7. Optical ow has been widely used in computer vision as a motion eld for a variety of tasks such as tracking [START_REF] Mae | Object tracking in cluttered background based on optical ow and edges[END_REF][START_REF] Shin | Optical ow-based real-time object tracking using non-prior training active feature model[END_REF], driver assistance systems [START_REF] Geiger | Vision meets robotics: The KITTI dataset[END_REF][START_REF] Fletcher | Driver assistance systems based on vision in and out of vehicles[END_REF][START_REF] Sun | On-road vehicle detection using optical sensors: A review[END_REF], motion segmentation [Brox andMalik, 2010, Papazoglou and[START_REF] Papazoglou | Fast object segmentation in unconstrained video[END_REF], or action recognition [Wang et al., 2013, Simonyan and[START_REF] Simonyan | Two-stream convolutional networks for action recognition in videos[END_REF].

Recognizing human actions is a higher-level task in video understanding. First attempts from the 1990s were based on volumetric human models [START_REF] Rohr | Towards model-based recognition of human movements in image sequences[END_REF][START_REF] Campbell | Invariant features for 3-d gesture recognition[END_REF] and then simplied by using 2D silhouettes [START_REF] Brand | Shadow puppetry[END_REF]. In the same spirit, [START_REF] Bobick | The recognition of human movement using temporal templates[END_REF] represent the temporal evolution of a silhouette using Motion History Images.

Nevertheless, these models are limited to constrained capturing conditions since they rely on background subtraction or silhouette extraction. Thus, they can not generalize well to real-world videos. Driven by their success on image classication, local features [START_REF] Chomat | Probabilistic recognition of activity using local appearance[END_REF][START_REF] Schüldt | Recognizing human actions: a local svm approach[END_REF][START_REF] Dollár | Behavior recognition via sparse spatio-temporal features[END_REF][START_REF] Laptev | On space-time interest points[END_REF][START_REF] Wang | Dense trajectories and motion boundary descriptors for action recognition[END_REF] have been widely used in the 2000s. They either describe the appearance [START_REF] Kläser | A spatio-temporal descriptor based on 3d-gradients[END_REF][START_REF] Gorelick | Actions as space-time shapes[END_REF] or the optical ow [START_REF] Laptev | Learning realistic human actions from movies[END_REF][START_REF] Wang | Dense trajectories and motion boundary descriptors for action recognition[END_REF]. Actions are represented by an aggregation of the local features, for instance based on bag-of-words [START_REF] Sivic | Video google: A text retrieval approach to object matching in videos[END_REF] or on Fisher Vectors [START_REF] Sánchez | Image classication with the sher vector: Theory and practice[END_REF]. Local feature representations have been successfully applied in real-world videos thanks to their lack of global assumptions such as geometric relations. To improve these models with a more structured description, several extensions were proposed such as spatio-temporal pyramids [START_REF] Laptev | Learning realistic human actions from movies[END_REF] or stacking over supervoxels [START_REF] Peng | Action recognition with stacked sher vectors[END_REF]. More recently, the temporal order of the features [START_REF] Gaidon | Temporal Localization of Actions with Actoms[END_REF][START_REF] Fernando | Modeling video evolution for action recognition[END_REF] has been integrated. dataset [START_REF] Butler | A naturalistic open source movie for optical ow evaluation[END_REF]. Methods are grouped into 3 categories: variational methods, variational methods integrating matching, matching interpolation followed by a variational renement. Our methods, DeepFlow (and its improved version DeepFlow *) and EpicFlow, are shown in bold.

The three areas are shown for better readability but do not rely on any theoretical limit of the categories.

For localizing human actions, the rst models were either based on cuboids [START_REF] Laptev | Retrieving actions in movies[END_REF][START_REF] Cao | Cross-dataset action detection[END_REF][START_REF] Yuan | Discriminative subvolume search for ecient action detection[END_REF] or on gure-centric models [START_REF] Kläser | Human Focused Action Localization in Video[END_REF][START_REF] Lan | Discriminative gure-centric models for joint action localization and recognition[END_REF]. Cuboids, i.e., xed human positions over frames, can not generalize to the case of moving actors or moving camera. Figure-centric models leverage a human detector [START_REF] Kläser | Human Focused Action Localization in Video[END_REF] or treat the actor position as a latent variable [START_REF] Lan | Discriminative gure-centric models for joint action localization and recognition[END_REF]. [START_REF] Moeslund | A survey of advances in visionbased human motion capture and analysis[END_REF] decompose human action recognition systems into four stages. The rst one is an initialization step which consists in detecting the human at the beginning of a video. The second step consists in tracking this human throughout the video. Third, the human track is modeled, using for instance a pose representation. This modeled feature is nally used for classication. More recently, other approaches have been proposed based on extensions of successful methods for object detection in images, such as part-based models or proposals. For instance, [START_REF] Tian | Spatiotemporal deformable part models for action detection[END_REF] extend the deformable parts model [START_REF] Felzenszwalb | Object detection with discriminatively trained part based models[END_REF] to videos. Proposals have been extended to actions in videos, for instance based on clustering supervoxels [Jain et al., 2014b, Oneata et al., 2014a] or trajectories [START_REF] Van Gemert | Apt: Action localization proposals from dense trajectories[END_REF][START_REF] Puscas | Unsupervised tube extraction using transductive learning and dense trajectories[END_REF].

Contributions 1.3.1 Optical ow estimation

Our work on optical ow focuses on the case of large displacements, occlusions and discontinuities. After reviewing related work in Chapter 2, we describe our three contributions. The rst one is a variational approach (DeepFlow) that integrates a new matching algorithm (DeepMatching), leading to a signicant boost in performance, see Figure 1.7. The second contribution is a novel scheme (EpicFlow) for interpolating matches while respecting the edges, before performing a full-scale variational approach.

EpicFlow has opened a new category of methods based on matches' interpolation, see Figure 1.7. Our third contribution is a learning-based approach to detect motion boundaries. We now present these three contributions in more detail.

DeepFlow: Large displacement optical ow with DeepMatching.

Inspired by the large displacement optical ow (LDOF) of [START_REF] Brox | Large displacement optical ow: descriptor matching in variational motion estimation[END_REF], we introduce DeepFlow which blends a new matching algorithm, called DeepMatching, with a variational approach for optical ow. Deep- Left: patch hierarchy in the rst image: each squared patch is composed of four quadrants. Right: one possible displacement of corresponding patches in the second image: each of the four quadrants can move, according to its parent displacement, in any direction for a limited extent.

Matching relies on a hierarchical, multi-layer, correlational architecture designed for matching images and was inspired by deep convolutional approaches. The proposed matching algorithm can handle non-rigid deformations, repetitive textures, and eciently determines dense correspondences in the presence of signicant changes between images. Figure 1.8 illustrates the approach. We evaluate the performance of DeepMatching, in comparison with state-of-the-art matching algorithms, on the Mikolajczyk [START_REF] Mikolajczyk | A comparison of ane region detectors[END_REF], the MPI-Sintel [START_REF] Butler | A naturalistic open source movie for optical ow evaluation[END_REF] and the Kitti [START_REF] Geiger | Vision meets robotics: The KITTI dataset[END_REF] datasets. DeepMatching outperforms the state-of-the-art algorithms and shows excellent results, especially for repetitive textures. For optical ow estimation, DeepFlow is competitive with the state of the art on public benchmarks thanks to additional robustness to large displacements and complex motion obtained by integrating DeepMatching. This work was published in ICCV'13 [START_REF] Weinzaepfel | Deepow: Large displacement optical ow with deep matching[END_REF], will appear soon in IJCV [START_REF] Revaud | DeepMatching: Hierarchical Deformable Dense Matching[END_REF], and is presented in Chapter 3.

EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow. We propose a novel approach for optical ow estimation, targeted at large displacements with signicant occlusions. The method is based on an edge-preserving dense interpolation of a sparse set of matches.

The sparse-to-dense interpolation relies on an appropriate choice of the distance, namely an edge-aware geodesic distance. This distance is tailored to handle occlusions and motion boundaries two common and dicult issues for optical ow computation. We also propose an approximation scheme for the geodesic distance to allow fast computation without loss of performance.

Contour Matching Energy Minimization

First Image Second Image

Dense Interpolation

Figure 1.9 Overview of EpicFlow. Given two images, we compute matches using DeepMatching [START_REF] Revaud | DeepMatching: Hierarchical Deformable Dense Matching[END_REF] and the edges of the rst image using SED [START_REF] Dollár | Structured forests for fast edge detection[END_REF]. We combine these two cues to densely interpolate matches and obtain a dense correspondence eld. This is used as initialization of a one-level energy minimization framework. Subsequent to the dense interpolation step, standard one-level variational energy minimization is carried out to rene the ow estimation. The proposed approach, called Edge-Preserving Interpolation of Correspondences (EpicFlow) is fast and robust to large displacements. Figure 1.9 summarizes the approach. This work was published in CVPR'15 [START_REF] Revaud | EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow[END_REF] and is presented in Chapter 4. Motion boundaries detection. We introduce a learning-based approach for motion boundaries detection. The proposed method relies on a structured random forest trained on the ground-truth of the MPI-Sintel dataset.

The random forest leverages several cues at the patch level, namely appearance (RGB color) and motion cues (optical ow estimated by state-of-theart algorithms). Figure 1.10 summarizes the motion boundaries detection process. Experimental results show that the proposed approach is both robust and computationally ecient. It signicantly outperforms stateof-the-art motion-dierence approaches on the MPI-Sintel and Middlebury datasets. We compare the results obtained with several state-of-the-art optical ow approaches and study the impact of the dierent cues used in the random forest. Furthermore, we introduce a new dataset, the YouTube Motion Boundaries dataset (YMB), that comprises 60 sequences taken from real-world videos with manually annotated motion boundaries. On this dataset, our approach, although trained on MPI-Sintel, also outperforms by a large margin state-of-the-art algorithms based on optical ow. This work was published in CVPR'15 [Weinzaepfel et al., 2015b] and is presented in Chapter 5.

Human action localization

Our work on action localization is built upon successful detectors in images and tracking-by-detection approaches. By combining these two components, we obtain candidate localization of the actions, which can be represented by classical aggregation of local features. Furthermore, we also show that accurate results can be obtained without spatial supervision. After reviewing related work in Chapter 6, we introduce the two following contributions: an action-specic tracker for fully-supervised action localization, and a human-specic tracker for weakly-supervised action localization. We now present these two contributions in more detail.

Action-specic tracks for fully-supervised action localization. We propose an eective approach for spatio-temporal action localization in realistic videos. The approach rst detects proposals at the frame-level and scores them with a combination of static and motion CNN features. It then tracks high-scoring proposals throughout the video using a trackingby-detection approach. Our tracker relies simultaneously on instance-level and class-level detectors. The tracks are scored using aggregation of local features in combination with the CNN features. Finally, we perform temporal localization of the action using a sliding window at the track level. We outperform the state of the art for spatio-temporal action localization on We detect frame-level object proposals and score them with CNN action classiers. The best candidates, in term of scores, are tracked throughout the video. We then score the tracks with CNN and local features classiers.

Finally, we perform a temporal sliding window for detecting the temporal extent of the action.

the UCF-Sports, J-HMDB and UCF-101 datasets. This work was published in ICCV'15 [Weinzaepfel et al., 2015a] and is presented in Chapter 7.

Human-specic tracks for weakly-supervised action localization.

We present a novel approach for weakly-supervised action localization, i.e., that does not require per-frame spatial annotations for training. We rst introduce an eective method for extracting human tubes by combining a state-of-the-art human detector with a tracking-by-detection approach. Our tube extraction leverages the large amount of annotated humans available today and outperforms the state of the art by an order of magnitude: with less than 5 tubes per video, we obtain a recall of 95% on the UCF-Sports and J-HMDB datasets. Given these human tubes, we perform weaklysupervised selection based on multi-fold Multiple Instance Learning (MIL)

with dense trajectories and achieve excellent results. We obtain a mAP of 84% on UCF-Sports, 54% on J-HMDB and 45% on UCF-101, which outperforms the state of the art for weakly-supervised action localization and is close to the performance of the best fully-supervised approaches.

In For training, we extract human tubes for all videos using a human detector and a human-specic tracker. These tubes are described using Improved Dense Trajectories [START_REF] Wang | A robust and ecient video representation for action recognition[END_REF] [START_REF] Weinzaepfel | Towards Weakly-Supervised Action Localization[END_REF] with existing action detection datasets. Recently, image matching was integrated into optical ow formulation. We review image matching as well as their integration into optical ow models in Section 2.4. Finally, Section 2.5 presents the datasets and metrics for evaluating optical ow methods.

Optical Flow

When viewing a sequence of images, e.g. when watching a movie, the human gets the illusion of motion while objects are simply represented at dierent locations in each still image. Motion perception is actually inferred by illumination changes of a point at the retina with connection to the neighboring points. Optical ow denotes these changes of the brightness pattern over time. It represents the 2D vectors that link points of two consecutive images together, i.e., it is the 2D projection of the real-world 3D motion. We review in this section the basic concepts of optical ow.

Optical Flow Constraint

Let I 1 and I 2 be two consecutive images, dened in the space Ω ⊂ R 2 .

The task consists in estimating the optical ow w : Ω → R 2 between these two images. For each pixel x = (x, y) ∈ Ω, the ow w(x) can be decomposed in its xand ycomponent w(x) = (u(x), v(x)) .

The most basic assumption for optical ow is the constancy of the brightness along the displacement, for instance used by [START_REF] Horn | Determining Optical Flow[END_REF] and [START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF]:

I 1 x = I 2 x + w(x) .
(2.1)

Assuming that the images are smooth and the displacements are small, rst order Taylor expansion can be applied, resulting in:

I 2 x + w(x) = I 2 (x) + I x u(x) + I y v(x) with I x = ∂I 2 ∂x and I y = ∂I 2
∂y . If we denote by I t the temporal derivative I t = I 2 -I 1 , we obtain:

I t + I x u + I y v = 0 = I t + (∇ 2 I)w = (∇ 3 I)W , (2.2)
where ∇ 2 denotes the 2D partial derivatives, i.e., ∇ 2 = (∂ ∂x , ∂ ∂y) , ∇ 3 denotes the 3D partial derivatives, i.e., ∇ 3 = (∂ ∂x , ∂ ∂y , ∂ ∂t) , and W = (u, v, 1) . Equation 2.2 is well known as the optical ow constraint.

This equation with two unknowns is ill-posed. This ambiguity is called the aperture problem. Consider for instance a moving edge structure seen through an aperture. The motion can only be estimated along the normal Additional constraints must be added to make Equation 2.2 well-posed.

These constraints can be either global or local, resulting in two families of approaches that we now describe.

Local approach

Local approaches for optical ow estimate the displacement at one pixel based only on information around this pixel. A classical example is the work from [START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF]. The optical ow constraint (Equation 2.2) is solved for a pixel x based on the assumption that the motion eld is constant in the neighborhood N (x) of x. An overdetermined system of equations is obtained and the ow can be computed by minimizing the least squared errors:

E w(x) = x'∈N (x) g(x', x) ∇ 3 I(x') W(x) 2 , (2.3)
where g is a weighting function which typically decreases when the distance between x and x' increases. This energy function being convex, the global minimum of Equation 2.3 is obtained when the derivatives with respect to the components of the ow are zeros:

   ∂E w(x) ∂u = g I t I x + uI 2 x + vI y I x = 0 , ∂E w(x) ∂v = g I t I y + uI x I y + vI 2 y = 0 . (2.4)
This set of equations can be written in a matrix form:

gI 2 x gI x I y gI x I y gI 2 y w(x) = gI t I x gI t I y .
(2.5)

Let M be the 2×2 matrix on the left. When rank(M) = 2, the least-squares estimate is given by inverting Equation 2.5. This is when the local image structure over the neighborhood contains sucient information for solving the aperture problem. The optical ow can thus be estimated in a sparse set of points where the problem is well-posed. If a dense eld is needed, one can increase the size of the neighborhood at the cost of assuming a constant displacement over a larger area. This assumption is not valid for realistic videos. Various modications have thus been proposed over the years, e.g.

using a coarse-to-ne scheme, more robust penalties or layers. We refer to [START_REF] Baker | Lucas-kanade 20 years on: A unifying framework[END_REF] for an overview of them.

Global approach

A dense optical ow eld is required in many applications. In addition, local approaches can not accurately estimate the ow in a number of the image regions such as homogeneous areas. To overcome these limitations, global approaches were proposed. They leverage a smoothness term to propagate the ow in poorly textured areas. The rst global approach was proposed in the seminal work of [START_REF] Horn | Determining Optical Flow[END_REF]. An energy E, sum of a data term E data , that penalizes the violation of the optical ow constraint, and of a smoothness term E smooth , that penalizes a strong optical ow gradient, is minimized:

E(w) = Ω E data (w) + αE smooth (w)dx .
(2.6) [START_REF] Horn | Determining Optical Flow[END_REF] use a L2 penalty of the ow gradient as smoothness term E smooth (w) = ∇ 2 w 2 2 and a L2 penalty of the optical ow constraint as data term E data (w) = ((∇ 3 I)W) 2 = W J 0 W with J 0 being the tensor dened by J 0 = (∇ 3 I)(∇ 3 I). This global energy is minimized using a variational formulation most of the time, i.e. the goal is to nd the extrema of a functional. Variational methods have been widely used over the years and we review related work in the next section. Our proposed optical ow models, DeepFlow and EpicFlow, both involve a variational formulation.

Variational approaches

Variational models are based on the minimization of a global energy, composed of a data term and a smoothness term. We review in this section formulations for both terms, as well as the minimization techniques.

Data term

The data term measures the consistency of the optical ow with respect to the input images. [START_REF] Horn | Determining Optical Flow[END_REF] use a quadratic penalization of the optical ow constraint, i.e., the linearization of the brightness constancy assumption. Nevertheless, this assumption is often violated, for instance in case of illumination changes or moving shadows. The data term has been improved over the years by adding other constancy assumptions and by using robust penalizers.

Constancy assumption. When dealing with multi-band images, the brightness constancy assumption can be replaced by a color constancy assumption. A straightforward way of dealing with color images is to sum over channels the constancy term of each color. More sophisticated models [START_REF] Markandey | Multispectral constraints for optical ow computation[END_REF][START_REF] Golland | Motion from color[END_REF][START_REF] Zimmer | Complementary optic ow[END_REF] with multi-banded images have been introduced. For instance, [START_REF] Zimmer | Complementary optic ow[END_REF] use separate norms and gradients in the HSV colorspace.

Instead of relying on brightness or color constancy, it is also possible to consider any features based on the images. Such approaches have already been proposed in the 1980s [START_REF] Burt | Multiresolution ow-through motion analysis[END_REF][START_REF] Anandan | A computational framework and an algorithm for the measurement of visual motion[END_REF]]. More recently, [START_REF] Brox | High accuracy optical ow estimation based on a theory for warping[END_REF] have proposed to use a constancy of the gradient, combined with the classical color constancy assumption. The gradient has the advantage of being more robust to illumination changes. Nevertheless, such constraints assume that the ow is locally translational. For instance, the gradient will change in case of rotation or scaling, in contrast to the color.

More complex constancy assumption can be used, as for instance the constancy of the Hessian. [START_REF] Papenberg | Highly accurate optic ow computation with theoretically justied warping[END_REF] and Vogel et al. [2013a] perform a comparison of most of them, see Table 2.1. More recently, more robust features have been proposed such as SIFT descriptor [START_REF] Liu | SIFT ow: Dense correspondence across scenes and its applications[END_REF] or the census transform [START_REF] Zabih | Non-parametric local transforms for computing visual correspondence[END_REF], Stein, 2004b[START_REF] Müller | Illuminationrobust dense optical ow using census signatures[END_REF][START_REF] Hafner | Scale Space and Variational Methods in Computer Vision, chapter Why Is the Census Transform Good for Robust Optic Flow Computation[END_REF] which has shown excellent performance, in particular in case of illumination changes.

constancy assumption intensity function brightness

I 1 (x) = I 2 (x + w(x)) gradient ∇ 2 I 1 (x) = ∇ 2 I 2 (x + w(x)) Hessian H(I 1 (x)) = H(I 2 (x + w(x))) Laplacian ∆I 1 (x) = ∆I 2 (x + w(x))
norm of the gradient

∇ 2 I 1 (x) = ∇ 2 I 2 (x + w(x))
norm of the Hessian

H(I 1 (x)) = H(I 2 (x + w(x)))
determinant of the Hessian

detH(I 1 (x)) = detH(I 2 (x + w(x))) census transform C(I 1 (x)) = C(I 2 (x + w(x)))
Table 2.1 Variants of the constancy assumptions [START_REF] Papenberg | Highly accurate optic ow computation with theoretically justied warping[END_REF], Vogel et al., 2013a].

The brightness constancy assumption may also be enhanced to incorporate an illumination change model. This can be done by explicitly estimating the changes: g(x)I 1 (x) = I 2 (x + w(x)) + b(x) where g and b are two additional unknowns. The problem is thus even more under-constrained, with 4 unknowns per pixel. Nevertheless, by adding constraints on the illumination changes, the problem can still be solved [Seitz andBaker, 2009, Negahdaripour, 1998]. Such a formulation can be generalized to model blur [START_REF] Seitz | Filter ow[END_REF].

Robust penalizer. The optical ow constraint provides one error per pixel. Aggregating them over all pixels can be done in multiple ways. In their seminal work, [START_REF] Horn | Determining Optical Flow[END_REF] use the L2 norm:

E data = Ω W T J 0 W 2
2 dx. This implicitly assumes that the errors are Gaussian and iid. This assumption is violated most of the time, particularly for occluded pixels, i.e., regions that are present only in one of the two images. Robust penalization, i.e. dierent from the L2 norm with less importance given to outliers, has been proposed, leading to the following data term:

E data = Ω Ψ data (W T J 0 W)dx, with Ψ data the robust penalizer. A common
choice [START_REF] Brox | High accuracy optical ow estimation based on a theory for warping[END_REF], Wedel et al., 2009b] is to use the L1 norm, or its dierentiable approximation, the Charbonnier penalizer: Ψ data (s 2) = √ s 2 + 2 with being a small constant. Compared to the L2 norm, L1 norm gives less importance to outliers. Other penalizers have been proposed such as Lorentzian [START_REF] Black | The robust estimation of multiple motions: parametric and piecewise-smooth ow elds[END_REF], generalized Charbonnier [Sun et al., 2014b] or Huber-L1 [START_REF] Werlberger | Anisotropic Huber-L1 optical ow[END_REF]. Figure 2.2 compares the dierent penalizers.

Regularization term

The regularization term encodes some priors which add constraints to the under-constrained data term, thus making the problem solvable. A common choice is a smoothness term which is based on ow gradient, i.e., that favors ow with small derivatives. [START_REF] Horn | Determining Optical Flow[END_REF] use a L2 penalty on the ow gradient:

E smooth (w) = Ω ∇ 2 w(x) 2 2 dx. Again, such a formulation that assumes Gaussian and iid distribution is often violated. This is why more robust penalizers have been proposed, such as a Lorentzian penalty [START_REF] Black | The robust estimation of multiple motions: parametric and piecewise-smooth ow elds[END_REF] or the L1 norm and its approximation [START_REF] Brox | High accuracy optical ow estimation based on a theory for warping[END_REF], Wedel et al., 2009b]. In this case, the formulation becomes a Total Variation (TV) method. [START_REF] Roth | On the spatial statistics of optical ow[END_REF] show that logarithmic penalties have probabilistic interpretations related to the distribution of ow derivatives.

Even with a robust penalizer, the ow still tends to be oversmooth at boundaries. Consequently, adding a spatial weighting to the penalty has been proposed. A typical example is a weight that depends on image gradient. This can be used to reduce the weight near image edges, thus encoding the fact that ow discontinuities mainly appear at image edges.

Regularization with weights based on image statistics is called image-driven.

Other variants that are oversegmentation-driven [START_REF] Seitz | Filter ow[END_REF], ow-driven [Wedel et al., 2009a] or data-driven [START_REF] Zimmer | Complementary optic ow[END_REF] have been proposed.

The weighting function can also depends on a direction in addition to the spatial position, resulting in an anisotropic smoothness term. For instance, [START_REF] Nagel | An investigation of smoothness constraints for the estimation of displacement vector elds from image sequences[END_REF] and [START_REF] Werlberger | Anisotropic Huber-L1 optical ow[END_REF] give less weight to the direction along the image gradient less than the direction orthogonal to it.

Instead of relying on ow gradient, higher-order constraints can be used.

For instance, [START_REF] Anandan | Introducing a smoothness constraint in a matching approach for the computation of displacement elds[END_REF] and [START_REF] Trobin | An unbiased second-order prior for high-accuracy motion estimation[END_REF] favor ow with small second-order derivatives. In the same spirit, [START_REF] Ranftl | Non-local total generalized variation for optical ow estimation[END_REF] apply the generalized total variation framework to optical ow estimation. This regularization favors piecewise ane solutions. Several other constraints can be used, such as an ane over-parameterization [START_REF] Nir | Over-parameterized variational optical ow[END_REF] or a rigidity prior [START_REF] Adiv | Determining three-dimensional motion and structure from optical ow generated by several moving objects[END_REF], Wedel et al., 2009a].

In case of image sequences with more than 2 frames, the gradient of the ow can be computed in 3D [START_REF] Black | Robust dynamic motion estimation over time[END_REF][START_REF] Brox | High accuracy optical ow estimation based on a theory for warping[END_REF], with a separate weight for the temporal and the spatial derivatives. Nevertheless, such derivatives are not robust to large displacements. Regularizing along trajectories is thus necessary [Salgado andSánchez, 2007, Volz et al., 2011].

In this dissertation, we restrict to the case of optical ow computation over 2 consecutive frames.

Coarse-to-ne scheme

Variational formulations rely on the optical ow constraint, derived from the brightness constancy assumption using a rst-order Taylor expansion. This approximation is only valid for small ows. To handle larger displacements, a classical strategy consists in using a coarse-to-ne scheme. Coarseto-ne strategy is also benecial from a computational point of view, it was already used by [START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF] and [START_REF] Horn | Determining Optical Flow[END_REF] in their pioneering work.

Figure 2.3 illustrates a coarse-to-ne scheme. Image pyramids are built by repeatingly blurring and subsampling [START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF][START_REF] Anandan | A computational framework and an algorithm for the measurement of visual motion[END_REF], Bruhn et al., 2005b[START_REF] Black | The robust estimation of multiple motions: parametric and piecewise-smooth ow elds[END_REF]. Optical ow is rst estimated at the coarsest scale. It is then upsampled to be used to initialize the estimate at the next level. Median ltering can optionally be applied at each upsampling: Sun et al. [2014b] show that this is equivalent to adding a non-local smoothness term to the energy. The second image is sometimes warped according to the ow, and only a ow increment with respect to the current estimation is computed. This process is repeated until the last level at original resolution. In a similar spirit, [START_REF] Bruhn | A multigrid platform for real-time motion computation with discontinuity-preserving variational methods[END_REF] propose a multigrid strategy where the ow pass both up and down in the pyramid hierarchy.

Compared to single-level optimization, a coarse-to-ne scheme allows to avoid many local minima and to speed-up the optimization. However, it tends to over-smooth ne structures and fails to capture small objects with fast motion. Indeed, such objects are not visible at coarse scales and as a consequence, the initialization tends to ignore their motion.

Minimization

Variational methods. Consider an energy formulation where the global energy only depends on x, w and its gradient ∇ 2 w:

E global = Ω E(u, v, x, y, u x , u y , v x , v y)dxdy , (2.7)
with u x = ∂u ∂x and similarly for u y , v x , v y . Note that such formulation includes most energy models [START_REF] Horn | Determining Optical Flow[END_REF][START_REF] Brox | High accuracy optical ow estimation based on a theory for warping[END_REF][START_REF] Nir | Over-parameterized variational optical ow[END_REF], Bruhn et al., 2005b[START_REF] Zimmer | Complementary optic ow[END_REF]. If the ow is treated as a 2D continuous function (and not only 2D vectors at each pixel), E global can be treated as a calculus of variations, explaining the name of variational (2.8)

While these equations are linear in case of [START_REF] Horn | Determining Optical Flow[END_REF]'s energy, this is not the case for more general formulation. As a consequence, a xed point iteration is often used [START_REF] Brox | High accuracy optical ow estimation based on a theory for warping[END_REF]. The ow is decomposed into w + dw where w is assumed to be known (from the previous level of the coarse-to-ne scheme) and the ow update dw is computed.

The ow update is assumed to be small, and by applying Taylor expansion on w, a set of linear equations on dw is obtained. It is often solved using a Gauss-Seidel variant, namely the Successive Over Relaxation methods [START_REF] Young | Iterative solution of large linear systems[END_REF], or a preconditioned conjugate gradient for better parallelization [START_REF] Sundaram | Dense point trajectories by gpuaccelerated large displacement optical ow[END_REF]. For better accuracy, the ow update is then added to the current ow estimate, and a new ow update is estimated. This process is repeated several times before moving to the next pyramid level. More details for approximating the solution are given in Appendix A.

Other approaches. Other minimization approaches rely for instance on gradient descent [Baker andMatthews, 2004, Black and[START_REF] Black | The robust estimation of multiple motions: parametric and piecewise-smooth ow elds[END_REF] but are most of the time limited by the presence of a huge number of local minima. Another strategy [Wedel et al., 2009b[START_REF] Trobin | An unbiased second-order prior for high-accuracy motion estimation[END_REF] consists in decoupling the ow w in the data term w data and the smoothness term w smooth , with an additional penalty on the dierences between these two ows:

E global = Ω E data (w data)+E smooth (w smooth)+γ w smooth -w data 2 dx . (2.9)
This equation is then minimized iteratively for w data and w smooth while xing the other one and increasing γ. As a consequence, the two ows are closed at the end. The two obtained optimization problems are simpler to solve.

Other optical ow approaches

Layered and segmentation-based methods

The optical ow eld can be segmented into regions with coherent motions, referred to as layers [Darrell andPentland, 1995, Wang and[START_REF] Wang | Representing moving images with layers[END_REF]. Several works have considered the joint estimation of motion layers and their motions [START_REF] Brox | Variational motion segmentation with level sets[END_REF][START_REF] Sun | A fully-connected layered model of foreground and background ow[END_REF][START_REF] Unger | Joint motion estimation and segmentation of complex scenes with label costs and occlusion modeling[END_REF], in some cases including a depth ordering of the layer. Most methods rely on locally-connected Markov Random Fields (MRF), resulting in a poor segmentation. More recently, [START_REF] Sun | A fully-connected layered model of foreground and background ow[END_REF] propose a fully-connected MRF but limit the labeling to 2 layers. Note that the task of jointly segmenting the video into layers and estimating their motions is extremely challenging, and yields to a complex minimization of non-convex energy functions. As a consequence, the estimation is unreliable for dicult, yet common cases, such as videos with fast motion, large displacements or compression artifacts. Moreover, the computational time is usually extremely high, thus limiting the practical use of layered methods.

Learning-based methods

The data term in the energy formulation relies on various choices such as the constancy assumptions and the penalizer. Learning techniques have been applied to justify designs and parameters choices [Roth andBlack, 2007, Sun et al., 2008]. Training data are used to build probabilistic models of the optical ow.

Another learning approach was proposed by [START_REF] Wul | Ecient sparse-to-dense optical ow estimation using a learned basis and layers[END_REF] based on principal component analysis (PCA). From a training set, a principal component basis is tted. At test time, a set of sparse matches are computed and the method then estimates dense ow by estimating the weights of the PCA components that best t the sparse matches.

More recently, Convolutional Neural Network (CNN) has been used to learn to estimate optical ow [Dosovitskiy et al., 2015, Teney and[START_REF] Teney | Learning to extract motion from videos in convolutional neural networks[END_REF]. FlowNet architecture is either based either on computing convolutions on the concatenated images, or on a siamese networks that mimic feature extraction, followed by a correlational layer. Both architectures obtain a similar performance. Deconvolution architecture is also used followed by a variational renement to obtain the nal estimation. The network is trained using an articial dataset with moving chairs added on top of images. [START_REF] Teney | Learning to extract motion from videos in convolutional neural networks[END_REF] rely on 3D convolutions and add invariance properties using various normalizations. The network is trained from scratch (even on small datasets) to learn to classify the ow vector at a pixel among a xed set of candidates, and then ne-tuned with a Euclidean loss on the ow.

Discrete optimization

Discrete optimization techniques such as graph-cut or belief propagation has also been applied to optical ow estimation. Some algorithms assume that a set of ow candidates are available for each pixel. The ow is then dened as an assignment to a candidate at every pixel. For instance, Fu-sionFlow [START_REF] Lempitsky | Fusionow: Discrete-continuous optimization for optical ow estimation[END_REF] use multiple binary graph-cuts problem to rene the current ow estimate. More recently, [START_REF] Menze | Discrete Optimization for Optical Flow[END_REF] propose to use CRF to obtain a pixel-accurate ow eld, which is then rened using a variational method. The CRF is made tractable by restricting to ow candidates, by using block coordinate descent for optimization and by leveraging the structure of the regularizer. [START_REF] Chen | Full ow: Optical ow estimation by global optimization over regular grids[END_REF] show that discrete optimization can be applied to optical ow estimation without pruning the ow candidates despite the large space of possible displacements.

Image matching in optical ow estimation

Image matching techniques have recently been integrated in optical ow formulation, mainly to give more robustness to the case of small fast-moving objects [START_REF] Brox | Large displacement optical ow: descriptor matching in variational motion estimation[END_REF] for which variational methods with coarseto-ne schemes tend to miss their motions. Optical ow can be viewed as a dense matching approach between consecutive frames of a video. In particular, our proposed ow approaches, DeepFlow and EpicFlow, rely on a proposed matching algorithm named DeepMatching. In this section, we review related work on image matching techniques as well as their integration in ow formulation.

Image matching

Image matching based on local features has been extensively studied in the past decade. It has been applied successfully to various domains, such as wide baseline stereo matching [START_REF] Furukawa | Towards internet-scale multi-view stereo[END_REF] or image retrieval [START_REF] Philbin | Descriptor learning for ecient retrieval[END_REF]. It consists of two steps: extracting local descriptors and matching them. Image descriptors are extracted in rigid (generally square) local areas at sparse invariant image locations [START_REF] Mikolajczyk | A comparison of ane region detectors[END_REF][START_REF] Szeliski | Computer Vision: Algorithms and Applications[END_REF] or on a dense grid [START_REF] Wills | A feature-based approach for dense segmentation and estimation of large disparity motion[END_REF][START_REF] Tola | A fast local descriptor for dense matching[END_REF], Brox and Malik, 2011]. Matching is then performed by nearest neighbor search between descriptors, followed by an optional geometric verication.

Note that a condence value can be obtained by computing the uniqueness of a match, i.e., by looking at the distance of its nearest neighbors [Lowe, 2004, Brox andMalik, 2011]. Despite their excellent performance for matching well-textured rigid objects, local descriptors are not reliable for non-rigid objects and weakly textured regions.

Recently, fast algorithms for dense patch matching have taken advantage of the redundancy between overlapping patches [START_REF] Barnes | The generalized PatchMatch correspondence algorithm[END_REF][START_REF] Korman | Coherency sensitive hashing[END_REF][START_REF] Sun | Computing nearest-neighbor elds via propagation-assisted kdtrees[END_REF][START_REF] Yang | DAISY lter ow: A generalized discrete approach to dense correspondences[END_REF]. The main idea is to propagate good matches to their neighborhood in a loose fashion, yielding dense non-rigid matches. In practice, however, the lack of a smoothness constraint leads to highly discontinuous matches. Several works have proposed ways to x this. [START_REF] Hacohen | Non-rigid dense correspondence with applications for image enhancement[END_REF] reinforce neighboring matches using an iterative multiscale expansion and contraction strategy, performed in a coarse-to-ne manner. Yet, the algorithm matches poorly discriminative patches and, as such, cannot overcome the inherent weaknesses of patch matching approaches. [START_REF] Yang | DAISY lter ow: A generalized discrete approach to dense correspondences[END_REF] include a guided ltering stage on top of PatchMatch, which obtains smooth correspondence elds by locally approximating a MRF. Finally, [START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF] propose a hierarchical matching to obtain dense correspondences, using a coarse-to-ne (top-down) strategy. Loopy belief propagation is used to perform inference.

Integration of matching in optical ow estimation

In SIFT-Flow, Liu et al. [2011] leverage a data-term based on SIFT matching in a global energy formulation. This energy is non-dierentiable and the optimization is performed using belief propagation. SIFT-Flow has been mainly developed for the application of matching scenes. [START_REF] Hassner | On sifts and their scales[END_REF] improve over SIFT-ow by using multi-scale patches. However, this decreases performance when scale invariance is not required.

For optical ow formulation, [START_REF] Brox | Large displacement optical ow: descriptor matching in variational motion estimation[END_REF] propose to integrate matching into the energy by adding a matching term. This new term penalizes the dierence between precomputed matches and the ow estimation, thus guiding the ow. [START_REF] Brox | Large displacement optical ow: descriptor matching in variational motion estimation[END_REF] use HOG descriptors [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF] with a reciprocal nearest-neighbor verication to prune most of the false matches. [START_REF] Xu | Motion detail preserving optical ow estimation[END_REF] integrate matching of SIFT [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] and PatchMatch [START_REF] Barnes | The generalized PatchMatch correspondence algorithm[END_REF] to rene the ow initialization at each level. Promising results are obtained for optical ow estimation, yet at the cost of expensive fusion steps [START_REF] Lempitsky | Fusionow: Discrete-continuous optimization for optical ow estimation[END_REF]. [START_REF] Braux-Zin | A general dense image matching framework combining direct and feature-based costs[END_REF] used segment features in addition to keypoints. DeepFlow proposes an ecient and competitive approach for large displacement optical ow by integrating the proposed DeepMatching algorithm into the approach of [START_REF] Brox | Large displacement optical ow: descriptor matching in variational motion estimation[END_REF].

Several works have also extended PatchMatch [START_REF] Barnes | The generalized PatchMatch correspondence algorithm[END_REF] for optical ow estimation. [START_REF] Lu | Patch match lter: Ecient edge-aware ltering meets randomized search for fast correspondence eld estimation[END_REF] propose a variant of PatchMatch, which uses SLIC superpixels [Achanta et al., 2012] label graph-cut to solve the assignment of each pixel to a motion pattern candidate. Their multi-label optimization can be interpreted as a motion segmentation problem or as a layered model [START_REF] Sun | Layered image motion with explicit occlusions, temporal consistency, and depth ordering[END_REF]. These problems are hard and a small error in the assignment can lead to large errors in the resulting ow.

Datasets and evaluation

In this section, we review the metrics and the datasets used for evaluating optical ow estimation.

Metrics

To evaluate optical ow, we use the average endpoint error over all pixels, denoted as EPE. The endpoint error is the L2 norm of the dierence between the estimated optical ow and the ground-truth eld, see Figure 2.4.

More precisely, if the ow estimation is denoted as w and the ground-truth ow as w gt , the EPE is dened by:

1 |Ω| x∈Ω w(x) -w gt (x) 2 .
(2.10)

We also measure EPE on a subset of pixels of interest. For instance, the `s10-40' variant measures the EPE only for pixels with a ground-truth displacement between 10 and 40 pixels, and likewise for `s0-10' and `s40+'.

We measure EPE-occ, which is the EPE over occluded pixels, and similarly EPE-noc for non-occluded pixels. In all cases, scores are averaged over all corresponding pixels in the dataset to obtain the nal evaluation result.

On Kitti, it is standard to report the ratio of missed ow, i.e., the ratio of pixels for which the endpoint error is over a threshold δ:

1 |Ω| x∈Ω 1 w(x)-wgt(x) 2 <δ .
(2.11) `Out-All 3' denotes the ratio of pixels with an error over 3 pixels over all pixels and `Out-Occ 3' is only computed for occluded pixels.

On Middlebury, the average angular error (AAE) is also reported. This is the average over all pixels of the angular dierence between the estimation and the ground-truth:

1 |Ω| x∈Ω arccos W(x), W gt (x) .
(2.12)

Datasets

We use three datasets for evaluating optical ow: Middlebury, Kitti and MPI-Sintel. Note that for all these datasets, the publicly available data on the test sets are restricted to images and the evaluation runs on a server. • The Middlebury dataset [START_REF] Baker | A database and evaluation methodology for optical ow[END_REF] contains a training set of 12 short sequences with the ground-truth ow for the middle frame. The test consists of 12 other short sequences. The ground-truth ow is obtained from hidden texture or by using synthetic data. The dataset contains complex motions, but most of the displacements are small. Less than 3% of the pixels have a motion over 20 pixels, and no motion exceeds 25 pixels (training set). Consequently, optical ow performance is near saturation with an EPE around 0.2 pixels for the best performing method.

• The Kitti dataset [START_REF] Geiger | Vision meets robotics: The KITTI dataset[END_REF] • The MPI-Sintel dataset [START_REF] Butler | A naturalistic open source movie for optical ow evaluation[END_REF] [START_REF] Horn | Determining Optical Flow[END_REF]Schunck, 1981, Sun et al., 2014b], recent eorts have tried to address the more challenging case of estimating optical ow in realistic videos with fast motion [Brox andMalik, 2011, Xu et al., 2012].

Such approaches integrate precomputed matches [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF][START_REF] Liu | SIFT ow: Dense correspondence across scenes and its applications[END_REF][START_REF] Barnes | The generalized PatchMatch correspondence algorithm[END_REF] into the variational formulation or the optimization scheme. However, these matching approaches are limited either to rigid patches [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF], thus failing to estimate motion with weak or repetitive textures as well as non-rigid object, or to propagation-based approaches [START_REF] Barnes | The generalized PatchMatch correspondence algorithm[END_REF] which are based on small patches, making repetitive textures beyond the reach of these methods.

In this chapter we introduce DeepFlow, a variational optical ow approach, that integrates a novel matching approach, called DeepMatching, using a similar formulation as [START_REF] Brox | Large displacement optical ow: descriptor matching in variational motion estimation[END_REF]. DeepMatching gracefully combines the strengths of rigid matching and propagation-based algorithms using a multi-layer architecture which breaks down patches into a hierarchy of sub-patches. This architecture allows to work at several scales and handles repetitive textures. Furthermore, within each layer, local matches are computed assuming a restricted set of feasible rigid deformations. Local matches are then propagated up the hierarchy, which progressively discards spurious incorrect matches. We called the proposed matching algorithm DeepMatching, as it is inspired by deep convolutional approaches.

This chapter presents the three following contributions:

• Dense matching: we propose a matching algorithm, DeepMatching, that allows to robustly determine dense correspondences between two images. It explicitly handles non-rigid deformations, with bounds on the deformation tolerance, and incorporates a multi-scale scoring of the matches, making it robust to repetitive or weak textures. Furthermore, our approach is based on gradient histograms, and is thus robust to appearance changes caused by illumination and color variations.

• Fast, scale/rotation-invariant matching: we propose a computationally efcient version of DeepMatching, which performs almost as well as exact

DeepMatching, but at a much lower memory cost. Furthermore, this fast version of DeepMatching can be extended to a scale and rotation-invariant version, making it an excellent competitor to state-of-the-art descriptor matching approaches.

• DeepFlow: we propose an optical ow approach which uses DeepMatching in the matching term of the large displacement variational energy minimization of [START_REF] Brox | Large displacement optical ow: descriptor matching in variational motion estimation[END_REF]. We show that DeepMatching is a better choice compared to the HOG descriptor used by [START_REF] Brox | Large displacement optical ow: descriptor matching in variational motion estimation[END_REF] and other state-of-the-art matching algorithms. The approach, named Deep-Flow, obtains competitive results on public optical ow benchmarks.

Closest references. DeepFlow is based on the same formulation as [START_REF] Brox | Large displacement optical ow: descriptor matching in variational motion estimation[END_REF] to integrate matches into a variational model. Instead of using rigid matches, the proposed matching algorithm, DeepMatching, is inspired by non-rigid 2D warping and deep convolutional networks [LeCun et al., 1998a[START_REF] Uchida | A monotonic and continuous two-dimensional warping based on dynamic programming[END_REF][START_REF] Keysers | Deformation models for image recognition[END_REF]. This family of approaches explicitly models non-rigid deformations. We employ a novel family of feasible warpings that does not enforce monotonicity nor continuity constraints, in contrast to traditional 2D warping [START_REF] Uchida | A monotonic and continuous two-dimensional warping based on dynamic programming[END_REF]Sakoe, 1998, Keysers et al., 2007]. This makes the problem much less expensive in term of computational cost.

It is also worthwhile to mention the similarity with non-rigid matching approaches developed for a broad range of applications. [START_REF] Ecker | A hierarchical non-parametric method for capturing non-rigid deformations[END_REF] propose an approach related to ours. Their method computes a hierarchical alignment of image sub-parts in a bottom-up fashion using dynamic programming. The minimal hierarchical matching cost is then returned as a global similarity score. Our approach goes further and produces pixellevel correspondences by backtracking high-level patch matches. For the purpose of establishing dense correspondences between images, Wills et al.

[2006] estimated a non-rigid matching by robustly tting smooth parametric models (homography and splines) to local descriptor matches. In contrast, DeepMatching is non-parametric and model-free.

Unlike dense patch matching algorithms based on propagation [START_REF] Barnes | The generalized PatchMatch correspondence algorithm[END_REF][START_REF] Korman | Coherency sensitive hashing[END_REF][START_REF] Sun | Computing nearest-neighbor elds via propagation-assisted kdtrees[END_REF][START_REF] Yang | DAISY lter ow: A generalized discrete approach to dense correspondences[END_REF], Deep-Matching proceeds bottom-up rst and top-down second. Due to its hierarchical nature, DeepMatching is able to consider patches at several scales, thus overcoming the lack of distinctiveness that aects small patches. The multi-layer construction also allows to eciently perform matching with semi-rigid local deformations. In addition, DeepMatching can be computed eciently, and can be further accelerated to satisfy low-memory requirements with negligible loss in accuracy.

Outline. This chapter is organized as follows. We start by presenting the proposed matching algorithm, DeepMatching, in Section 3.2. Section 3.3 then describes two extensions of DeepMatching: an approximate and faster version of DeepMatching (Section 3.3.1), a scale and rotation invariant version (Section 3.3.2). Next, we present DeepFlow in Section 3.4, an optical ow approach that integrates DeepMatching into a variational formulation.

Finally, we present experimental results in Section 3.5. In particular, we show that DeepMatching obtains excellent matching performance and can be eectively integrated into an optical ow approach. DeepFlow outper-formed the state of the art at publication time on challenging optical ow benchmarks.

Preliminary version. A preliminary version of this work has appeared in ICCV '13 [Weinzaepfel et al., 2013]. The version presented in this dissertation, that will appear in IJCV [START_REF] Revaud | DeepMatching: Hierarchical Deformable Dense Matching[END_REF] Matching on several state-of-the-art benchmarks. The code for DeepMatching as well as DeepFlow are available at http://lear.inrialpes.fr/src/ deepmatching/ and http://lear.inrialpes.fr/src/deepflow/. Note that we provide a GPU implementation in addition to the CPU one.

DeepMatching

This section introduces our matching algorithm DeepMatching. Deep-Matching is a matching algorithm based on correlations at the patch-level, that proceeds in a multi-layer fashion. The multi-layer architecture relies on a quadtree-like patch subdivision scheme, with an extra degree of freedom to locally re-optimize the positions of each quadrant. In order to enhance the contrast of the spatial correlation maps output by the local correlations, a non-linear transformation is applied after each layer.

We rst give an overview of DeepMatching in Section 3.2.1 and show that it can be decomposed in a bottom-up pass followed by a top-down pass.

We, then, present the bottom-up pass in Section 3.2.2 and the top-down one in Section 3.2.3. Finally, we analyze DeepMatching in Section 3.2.4.

Overview of the approach

A state-of-the-art approach for matching regions between two images is based on the SIFT descriptor [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF]. SIFT is a histogram of gradients with 4 × 4 spatial and 8 orientation bins, yielding a robust descriptor R ∈ R 4×4×8 that eectively encodes a square image region. Note that its 4 × 4 cell grid can also be viewed as 4 so-called `quadrants' of 2 × 2 cells, see Figure 3.1. We can, then, rewrite R = quarter of a SIFT patch, i.e., a group of 2 × 2 cells. Left: SIFT descriptor in the rst image. Middle: second image with optimal standard SIFT matching (rigid). Right: second image with optimal moving quadrant SIFT matching. In this example, the patch covers various objects moving in dierent directions: for instance the car moves to the right while the cloud to the left. Rigid matching fails to capture this, whereas the moving quadrant approach is able to follow each object.

[R 0 , R 1 , R 2 , R 3] with R i ∈ R 2×2×8 .
Let R and R be the SIFT descriptors of the corresponding regions in the source and target image. In order to remove the eect of non-rigid motion, we propose to optimize the positions p i ∈ R 2 of the 4 quadrants of the target descriptor R (rather than keeping them xed), in order to maximize sim(R, R) = max

{p i } 1 4 3 i=0 sim (R i , R i (p i)) , (3.1)
where R i (p i) is the descriptor of a single quadrant extracted at position p i and sim() a similarity function. Now, sim(R, R) is able to handle situations such as the one presented in Figure 3.1, where a region contains multiple objects moving in dierent directions. Furthermore, if the four quadrants can move independently (of course, within some extent), it can be calculated more eciently as:

sim(R, R) = 1 4 3 i=0 max p i sim (R i , R i (p i)) , (3.2)
When applied recursively to each quadrant by subdividing it into 4 subquadrants until a minimum patch size is reached (atomic patches), this strategy allows for accurate non-rigid matching. Such a recursive decomposition can be represented as a quad-tree, see Figure 3.2. Given an initial pair of two matching regions, retrieving atomic patch correspondences is then done in a top-down fashion (i.e ., by recursively applying Equation 3.2 to the quadrant's positions {p i }).

Nevertheless, in order to rst determine the set of matching regions between the two images, we need to compute beforehand the matching scores (i.e ., similarity) of all large-enough patches in the two images (as in Figure 3.1), and keep the pairs with maximum similarity. As indicated by Equation 3.2, the score is formed by averaging the max-pooled scores of the quadrants. Hence, the process of computing the matching scores is bottom-up. In the following, we call correlation map the matching scores of a single patch from the rst image at every position in the second image.

Selecting matching patches then corresponds to nding local maxima in the correlation maps.

To sum-up, the algorithm can be decomposed in two steps: (i) rst, correlation maps are computed using a bottom-up algorithm, as shown in Figure 3.6. Correlation maps of small patches are rst computed and then aggregated to form correlation maps of larger patches; (ii) next, a top-down method estimates the motion of atomic patches starting from matches of large patches.

In the remainder of this section, we detail the two steps described above (Section 3.2.2 and Section 3.2.3), before analyzing the properties of Deep-Matching in Section 3.2.4.

Bottom-up correlation pyramid computation

Let I and I be two images of resolution W × H and W × H .

Bottom level. We use patches of size 4 × 4 pixels as atomic patches. We split I into non-overlapping atomic patches, and compute the correlation map with image I for each of them, see Figure 3.3. The score between two atomic patches R and R is dened as the average pixel-wise similarity:

sim(R, R) = 1 16 3 i=0 3 j=0 R i,j R i,j , (3.3)
where each pixel R i,j is represented as a histogram of oriented gradients pooled over a local neighborhood. We detail below how the pixel descriptor is computed.

Pixel descriptor R i,j . We rely on a robust pixel representation that is similar in spirit to SIFT and DAISY [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF][START_REF] Tola | DAISY: An Ecient Dense Descriptor Applied to Wide Baseline Stereo[END_REF]. Given an input image I, we rst apply a Gaussian smoothing of radius ν 1 in order to denoise I from potential artifacts caused for example by JPEG compression. We then extract the gradient (δx, δy) at each pixel and compute its non-negative projection onto 8 orientations (cos i π 4 , sin i π 4) i=1...8 .

At this point, we obtain 8 oriented gradient maps. We smooth each map with a Gaussian lter of radius ν 2 . Next we cap strong gradients using a sigmoid x → 2/(1 + exp(-ςx)) -1, to help canceling out eects of varying illumination. We smooth gradients one more time for each orientation with a Gaussian lter of radius ν 3 . Finally, the descriptor for each pixel is obtained by the 2 -normalized concatenation of 8 oriented gradients and a ninth small constant value µ. Appending µ amounts to adding a regularizer that will reduce the importance of small gradients (i.e ., noise) and ensures that two pixels lying in areas without gradient information will still correlate positively. Pixel descriptors R i,j are compared using dot-product and the similarity function takes value in the interval [0, 1]. In Section 3.5.2, we evaluate the impact of the parameters of this pixel descriptor.

Bottom-level correlation map.

Non-overlapping atomic patches

Correlations

Level 1 correlation maps Given two images I and I , the rst one is split into non-overlapping atomic patches of size 4 × 4 pixels. For each patch, we compute the correlation at every location of I to obtain the corresponding correlation map.

Without surprise, we can observe that atomic patches are not discriminative. Recursive aggregation of patches in subsequent stages will be the key to create discriminative responses.

Iteration. We then compute the correlation maps of larger patches by aggregating those of smaller patches. As shown in Figure 3.5, a N × N patch I N,p is the concatenation of 4 patches of size N/2 × N/2: .5) They correspond respectively to the bottom-left, top-left, bottom-right and top-right quadrants. The correlation map of I N,p can thus be computed using its children's correlation maps. For the sake of clarity, we dene the short-hand notation s N,i = N 4 o i describing the positional shift of a children patch i ∈ [0, 3] relatively to its parent patch (see Figure 3.5).

I N,p = IN 2 ,p+ N 4 o i i=0..3 with          o 0 = [-1, -1] , o 1 = [-1, +1] , o 2 = [+1, -1] , o 3 = [+1, +1] . (3
Using the above notations, we rewrite Equation 3.2 by replacing sim(R, R) def = C N,p (p) (i.e ., assuming here that patch R = I N,p and that R is centered at p ∈ I). Similarly, we replace the similarity between children patches sim

(R i , R i (p i)) by C N 2 ,p+s N,i (p i).
For each child, we retain the maximum similarity over a small neighborhood Θ i of width and height N 8 centered at p + s N,i . We then obtain:

C N,p (p) = 1 4 3 i=0 max m ∈Θ i C N 2 ,p+s N,i (m) .
G N = {p | p + s N,i ∈ [0, W -1] × [0, H -1] ∧ p + s N,i ∈ GN 2
, i = 0, . . . , 3 .

(3.7)

We observe that the larger a patch is (i.e ., after several iterations), the smaller the spatial variation of its correlation map (see Figure 3.4). This is due to the statistics of natural images, in which low frequencies signicantly dominate over high frequencies. As a consequence, we choose to subsample each map C N,p by a factor 2. We express this with an operator S:

S : C(p) → C(2p) . (3.8)
The subsampling reduces by 4 the area of the correlation maps and, as a direct consequence, the computational requirements. Instead of computing the subsampling on top of Equation 3.6, it is actually more ecient to propagate it towards the children maps and perform it jointly with maxpooling. It also makes the max-pooling domain Θ i become independent from N in the subsampled maps, as it exactly cancels out the eect of doubling N = 4 × 2 at each iteration. We call P the max-pooling operator with the iteration-independent domain Θ = {-1, 0, 1} × {-1, 0, 1}:

P : C(p) → max m∈{-1,0,1} 2 C(p + m) . (3.9)
For the same reason, the shift s N,i = N 4 o i = 2 o i applied to the correlation maps in Θ i 's denition becomes simply o i after subsampling. Let T t be the shift (or translation) operator on the correlation map:

T t : C(p) → C(p -t) . (3.10)
Finally, we incorporate an additional non-linear mapping at each iteration on top of Equation 3.6 by applying a power transform R λ [Malik andPerona, 1990, LeCun et al., 1998a]: R λ : C(.) → C(.) λ . (3.11) This step, commonly referred to as rectication, is added in order to better propagate high correlations after each level, or, in other words, to counterbalance the fact that max-pooling tends to retain only high scores. Indeed, its eect is to decrease the correlation values (which are in [0, 1]) as we use λ > 1. Such post-processing is commonly used in deep convolutional networks [LeCun et al., 1998b[START_REF] Bengio | Learning deep architectures for AI[END_REF]. In practice, good performance is obtained with λ 1.4, see Section 3.5. The nal expression of Equation 3.6 is:

C N,p = R λ 1 4 3 i=0 (T o i • S • P) C N 2 ,p+s N,i
.

(3.12) Figure 3.6 illustrates the computation of correlation maps for dierent patch sizes and Algorithm 3.1 summarizes our approach. The resulting set of correlation maps across iterations is referred to as multi-level correlation pyramid.

Boundary eects. In practice, a patch I N,p can overlap with the image boundary, as long as its center p remains inside the image (from Equation 3.7). For instance, a patch I N,p 0 with center at p 0 = (0, 0) ∈ G N has only a single valid child (the one for which i = 3 as p 0 + s N,3 ∈ I). In such degenerate cases, the average sum in Equation 3.12 is carried out on valid children only. For I N,p 0 , it thus only comprises one term weighted by 1 instead of 1 4 .

Note that Equation 3.12 implicitly denes the set of possible displacements of the approach, see Figures 3.2 and 3.9. Given the position of a parent patch, each child patch can move only within a small extent, equal to the quarter of its own size.

C 4,p ← R λ (C 4,p) (rectication, Equation 3.11) N ← 4 While N < max(W, H) do For p ∈ G N do C N,p ← (S • P)(C N,p)
(max-pooling and subsampling)

N ← 2N For p ∈ G N do C N,p = 1 4 3 i=0 T o i C N 2 ,p+s N,i
(shift and average)

C N,p ← R λ (C N,p) (rectication, Equation 3.11)
Return the multi-level correlation pyramid {C N,p } N,p

Top-down correspondence extraction

A score S = C N,p (p) in the multi-level correlation pyramid represents the deformation-tolerant similarity of two patches I N,p and I N,p . Since this score is built from the similarity of 4 matching sub-patches at the lower pyramid level, we can thus recursively backtrack a set of correspondences to the bottom level (corresponding to matches of atomic patches). In this section, we rst describe this backtracking. We, then, present the procedure for merging atomic correspondences backtracked from dierent entry points in the multi-level pyramid, which constitute the nal output of DeepMatching. where

Compared to our initial version of

m i = argmax m∈{-1,0,1} 2 C N 2 ,p+s N,i (2(p + o i) + m) . (3.13)
For the sake of clarity, we dene the short-hand notations p i = p + s N,i and p i = 2(p + o i) + m i . Let B be the function that assigns to a tuple (N, p, p , s), representing a correspondence between pixel p and p for patch of size N with a score s ∈ R, the set of the correspondences of children patches:

B(N, p, p , s) =    {(p, p , s)} if N = 4, N 2 , p i , p i , s + C N 2 ,p i (p i) 3 i=0
else. (3.14) Given a set M of such tuples, let B(M) be the union of the sets B(c) for all c ∈ M. Note that if all candidate correspondences c ∈ M corresponds to atomic patches, then B(M) = M.

Thus, the algorithm for backtracking correspondences is the following.

Consider an entry match M = {(N, p, p , C N,p (p))}. We repeatedly apply B on M. After N = log 2 (N/4) calls, we get one correspondence for each of the 4 N atomic patches. Furthermore, their score is equal to the sum of all patch similarities along their backtracking path.

Merging correspondences. We have shown how to retrieve atomic correspondences from a match between two deformable (potentially large)

patches. Despite this exibility, a single match is unlikely to explain the complex set of motions that can occur, for example, between two adjacent frames in a video, i.e., two objects moving independently with significantly dierent motions exceeds the deformation range of DeepMatching.

We quantitatively specify this range in the next subsection.

We thus merge atomic correspondences gathered from dierent entry points (matches) in the pyramid. In the initial version of DeepMatching [START_REF] Weinzaepfel | Deepow: Large displacement optical ow with deep matching[END_REF], entry points were local maxima over all correlation maps. This is now replaced by a faster procedure, that starts with all possible matches in the top pyramid level (i.e ., M = {(N, p, p , C N,p (p))|N = N max }). Using this level only results in signicantly less entry points than starting from all maxima in the entire pyramid. We did not observe any impact on the matching performance, see Section 3.5.2.

Because M contains a lot of overlapping patches, most of the computation during repeated calls to M ← B(M) can be factorized. In other words, as soon as two tuples in M are equal in terms of N , p and p , the one with the lowest score is simply eliminated. We thus obtain a set of atomic correspondences M :

M = (B • . . . • B)(M) . (3.15)
that we lter with reciprocal match verication. The nal set of correspondences M is obtained as:

M = {(p, p , s)|BestAt(p) = BestAt (p)} (p,p ,s)∈M . (3.16)
where BestAt(p) (resp. BestAt (p)) returns the best match in a small vicinity of 4 × 4 pixels around p in I (resp. around p in I) from M .

Discussion and Analysis of DeepMatching

Multi-size patches and repetitive textures. During the bottom-up pass of the algorithm, we iteratively aggregate correlation maps of smaller patches to form the correlation maps of larger patches. Doing so, we effectively consider patches of dierent sizes (4 × 2 , ≥ 0), in contrast to most existing matching methods. This is a key feature of our approach when dealing with repetitive textures. As one moves up to upper levels, the matching problem gets less ambiguous. Hence, our method can correctly match repetitive patterns, see for instance Figure 3.8.

Quasi-dense correspondences. Our method retrieves dense correspondences for every single match between large regions (i.e ., entry point for the backtracking in the top-level correlation maps), even in weakly textured areas; this is in contrast to correspondences obtained when matching descriptors (e.g . SIFT). A quantitative assessment, which compares the coverage of matches obtained with several matching schemes, is given in Section 3.5.

Non-rigid deformations. Our matching algorithm is able to cope with various sources of image deformations: object-induced or camera-induced.

The set of feasible deformations, explicitly dened by Equation 3.6, theoretically allows to deal with a scaling factor in the range [1 2 , 3 2] and rotations approximately in the range [-26 o , 26 o]. Note also that DeepMatching is translation-invariant by construction, thanks to the convolutional nature of the processing. Proof. Given a patch of size N = 4 × 2 located at level 1, Equation 3.6 allows each of its children patches to move by at most N/8 pixels from their ideal location in Θ i . By recursively summing the displacements at each level, the maximal displacements for an atomic patch is d N = i=1 2 i-1 = 2 -1. An example is given in Figure 3.9 with N = 32 and = 3. . For a rotation, the rationale is similar, see Figure 3.9.

Note that the displacement tolerance in Θ i from Equation 3.6 could be extended to x × N/8 pixels with x ∈ {2, 3, . . .} (instead of x = 1). Then the above formula for computing the lower bound on the scale factor of DeepMatching generalizes to LB(x) = lim N →∞ (N -2xd N)/N . Hence, for x ≥ 2 we obtain LB(x) = 0 instead of LB(1) = 1

2

. This implies that the deformation range is extended to a point where any patch can be matched to a single pixel, i.e., this results in unrealistic deformations. For this reason, we choose not to expand the deformation range of DeepMatching.

Built-in smoothing. Furthermore, correspondences generated through backtracking of a single entry point in the correlation maps are naturally smooth. Indeed, feasible deformations cannot be too `far' from the identity deformation. To verify this assumption, we conduct the following experi- from Section 3.2.3 by replacing in Equation 3.13 the max operation by a random sampling over {-1, 0, 1} 2 . By generating 10,000 sets of possible atomic correspondences, we simulate a set which respects the deformations allowed by DeepMatching. Figure 3.10 compares the smoothness of these two types of articial correspondences. Smoothness is measured by interpreting the correspondences as ow and measuring the gradient ow norm, see Equation 3.19. Clearly, the two types of warpings are dierent by orders of magnitude. Furthermore, the one which respects the built-in constraints of DeepMatching is close to the identity warping.

Relation to Deep Convolutional Neural Networks (CNNs). Deep-

Matching relies on a hierarchical, multi-layer, correlational architecture designed for matching images and was inspired by deep convolutional approaches [LeCun et al., 1998a]. In the following we describe the major similarities and dierences.

Deep networks learn from data the weights of the convolutions. In contrast, DeepMatching does not learn any feature representations and instead directly computes correlations at the patch level. It uses patches from the rst image as convolution lters for the second one. However, the bottom-up pipeline of DeepMatching is similar to CNNs. It alternates aggregating channels from the previous layer with channel-wise max-pooling and subsampling. As in CNNs, max-pooling in DeepMatching allows for invariance w.r.t. small deformations. Likewise, the algorithm propagates pairwise patch similarity scores through the hierarchy using non-linear rectifying stages in-between layers. Finally, DeepMatching includes a top-down pass which is not present in CNNs. Note that this pass is fundamentally dierent from deconvolutional architecture as it does not require additional parameters. Proof. Computing the initial correlations is a O(LL) operation. Then, at each level of the pyramid, the process is repeated while the complexity is divided by a factor 4 due to the subsampling step in the target image (since the cardinality of |{G N }| remains approximately constant). Thus, the total complexity of the correlation maps computation is, at worst,

O(∞ n=0 LL /4 n) = O(LL).
During the top-down pass, most backtracking paths can be pruned as soon as they cross a concurrent path with a higher score (see Section 3.2.3). Thus, all correlations will be examined at most once, and there are ∞ n=0 LL /4 n values in total. However, this analysis is worst-case. In practice, only correlations lying on maximal paths are actually examined.

Extensions of DeepMatching

Approximate DeepMatching

As a consequence of its O(LL) space complexity, DeepMatching requires an amount of RAM that is orders of magnitude above other state-of-the-art matching methods. This could correspond to several gigabytes for images of moderate size (800×600 pixels); see Section 3.5.2. This section introduces an approximation of DeepMatching that allows to trade matching quality for reduced time and memory usage. As shown in Section 3.5.2, nearoptimal results can be obtained at a fraction of the original cost.

Our approximation proposes to compress the representation of atomic patches {I 4,p }. Atomic patches carry little information, and thus are highly redundant. For instance, in uniform regions, all patches are nearly identical (i.e ., gradient-wise). To exploit this property, we index atomic patches with a small set of patch prototypes. We substitute each patch with its closest neighbor in a xed dictionary of D prototypes. Hence, we need to perform and store only D convolutions at the rst level, instead of O(L) (with D O(L)). This signicantly reduces both memory and time complexity.

Note that higher pyramid levels also benet from this optimization. Indeed, two parent patches at the second level have the exact same correlation map in case their children are assigned the same prototypes. The same reasoning also holds for all subsequent levels, but the gains rapidly diminish due to statistical unlikeliness of the required condition. This is not really an issue, since the memory and computational cost mostly rests on the initial levels; see Section 3.2.4.

In practice, we build the prototype dictionary using k-means, as it is designed to minimize the approximation error between input descriptors and resulting centroids (i.e ., prototypes). Given a pair of images to match, we perform on-line clustering of all descriptors of atomic patches {I 4,p } = {R} in the rst image. Since the original descriptors lie on an hypersphere (each pixel descriptor R i,j has norm 1), we modify the k-means approach so as to project the estimated centroids on the hypersphere at each iteration. We nd experimentally that this is important to obtain good results.

Scale and rotation invariant DeepMatching

For a variety of tasks, objects to be matched can appear under image rotations or at dierent scales [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF][START_REF] Mikolajczyk | A comparison of ane region detectors[END_REF][START_REF] Szeliski | Computer Vision: Algorithms and Applications[END_REF][START_REF] Hacohen | Non-rigid dense correspondence with applications for image enhancement[END_REF] Input: I, I are the images to be matched Initialize an empty set M = {} of correspondences For σ ∈ {-2, -1.5, . . . , 1.5, 2} do

σ 1 ← max (1, 2 +σ) # either downsize image 1 σ 2 ← max (1, 2 -σ) # or downsize image 2 For θ ∈ 0, π 4 , . . . , 7π 4
do # get raw atomic correspondences (Equation 3.15)

M σ,θ ← DeepMatching I σ 1 , R -θ * I σ 2 # Geometric rectication to the input image space M R σ,θ ← (σ 1 p, σ 2 R θ p , s) | ∀(p, p , s) ∈ M σ,θ # Concatenate results M ← M M R σ,θ M ← reciprocal(M) # keep reciprocal matches (Equation 3.16)
Return M

The approach is straightforward: we apply DM to several rotated and scaled versions of the second image. According to the invariance range of DM, we use steps of π/4 for image rotation and power of √ 2 for scale changes. While iterating over all combinations of scale changes and rotations, we maintain a list M of all atomic correspondences obtained so far, i.e., corresponding positions and scores. As before, the nal output correspondences consists of the reciprocal matches in M . Storing all matches and nally choosing the best ones based on reciprocal verication permits to capture distinct motions possibly occurring together in the same scene (e.g . one object could have undergone a rotation, while the rest of the scene did not move). The steps of the approach are described in Algorithm 3.2.

Since we iterate sequentially over a xed list of rotations and scale changes, the space and time complexity of the algorithm remains unchanged (i.e ., O(LL)). In practice, the run-time compared to DM is multiplied by a constant approximately equal to 25, see Section 3.5.2. Note that the algorithm permits a straightforward parallelization.

DeepFlow

We now present our approach for optical ow estimation, DeepFlow. We adopt the formulation introduced by Brox and Malik [2011], where a matching term penalizes the dierences between optical ow and input matches, and replace their matching approach by DeepMatching. In addition, we make a few minor modications introduced recently in the state of the art:

(i) we add a normalization in the data term to downweight the impact of locations with high spatial image derivatives [START_REF] Zimmer | Optic ow in harmony[END_REF]; (ii) we use a dierent weight at each level to downweight the matching term at ner scales [START_REF] Stoll | Adaptive integration of feature matches into variational optical ow methods[END_REF]; and (iii) the smoothness term is locally weighted [START_REF] Xu | Motion detail preserving optical ow estimation[END_REF].

Let I 1 , I 2 : Ω → R c be two consecutive images dened on Ω with c channels. The goal is to estimate the ow w = (u, v) : Ω → R 2 . We assume that the images are already smoothed using a Gaussian lter of standard deviation σ. The energy we optimize is a weighted sum of a data term E D , a smoothness term E S and a matching term E M :

E(w) = Ω E D + αE S + βE M dx .
(3.17)

For the three terms, we use a robust penalizer Ψ(s 2) = √ s 2 + 2 with = 0.001 which has shown excellent results [Sun et al., 2014b].

Data term. The data term is a separate penalization of the color and gradient constancy assumptions with a normalization factor as proposed by [START_REF] Zimmer | Optic ow in harmony[END_REF]. We start from the optical ow constraint assuming brightness constancy: (∇ 3 I)W = 0 with ∇ 3 = (∂x, ∂y, ∂t) the spatiotemporal gradient and W = (u, v, 1) . A basic way to build a data term is to penalize it, i.e., E D = Ψ(W J 0 W) with J 0 the tensor dened by J 0 = (∇ 3 I)(∇ 3 I). As highlighted by [START_REF] Zimmer | Optic ow in harmony[END_REF], such a data term adds a higher weight in locations corresponding to high spatial image derivatives. We normalize it by the norm of the spatial derivatives plus a small factor to avoid division by zero, and to reduce a bit the inuence in tiny gradient locations [START_REF] Zimmer | Optic ow in harmony[END_REF]. Let J0 be the normalized tensor J0 = θ 0 J 0 with θ 0 = (∇ 2 I 2 + ζ 2) -1 . We set ζ = 0.1 in the following. To deal with color images, we consider the tensor dened for a channel i denoted by upper indices Ji 0 and we penalize the sum over channels: Ψ(c i=1 W Ji 0 W). We consider images in the RGB color space.

We separately penalize the gradient constancy assumption [Bruhn et al., 2005a]. Let I x and I y be the derivatives of the images with respect to the x and y axis respectively. Let Ji xy be the tensor for the channel i including the normalization:

Ji xy = (∇ 3 I i x)(∇ 3 I i x)/(∇ 2 I i x 2 + ζ 2) + (∇ 3 I i y)(∇ 3 I i y)/(∇ 2 I i y 2 + ζ 2) .
The data term is the sum of two terms, balanced by two weights δ and γ:

E D = δΨ c i=1 W Ji 0 W + γΨ c i=1 W Ji xy W . (3.18)
Smoothness term. The smoothness term is a robust penalization of the gradient ow norm:

E S = Ψ ∇u 2 + ∇v 2 . (3.19)
The smoothness weight α is locally set according to image derivatives [Wedel et al., 2009a[START_REF] Xu | Motion detail preserving optical ow estimation[END_REF] with α(x) = exp(-κ∇ 2 I(x)) where κ is experimentally set to κ = 5.

Matching term. The matching term encourages the ow estimation to be similar to a precomputed vector eld w . To this end, we penalize the dierence between w and w using the robust penalizer Ψ. Since the matching is not totally dense, we add a binary term c(x) which is equal to 1 if and only if a match is available at x.

We also multiply each matching penalization by a weight φ(x), which is low in uniform regions where matching is ambiguous and when matched patches are dissimilar. To that aim, we rely on λ(x), the minimum eigenvalue of the autocorrelation matrix multiplied by 10. We also compute the visual similarity between matches as ∆(

x) = c i=1 |I i 1 (x)-I i 2 (x-w (x))|+ |∇I i 1 (x) -∇I i 2 (x -w (x))|.
We then compute the score φ as a Gaussian kernel on ∆ weighted by λ with a parameter σ M , experimentally set to σ M = 50. More precisely, we dene φ(x) at each point x with a match w (x) as:

φ(x) = λ(x)/(σ M √ 2π) exp(-∆(x)/2σ M) .
The matching term is then

E M = cφΨ(w -w 2 2).
Minimization. This energy objective is non-convex and non-linear. To solve it, we use a numerical optimization algorithm similar as [START_REF] Brox | High accuracy optical ow estimation based on a theory for warping[END_REF]. An incremental coarse-to-ne warping strategy is used with a downsampling factor η = 0.95. The remaining equations are still non-linear due to the robust penalizers. We apply 5 inner xed point iterations where the non-linear weights and the ow increments are iteratively updated while xing the other. To approximate the solution of the linear system, we use 25 iterations of the Successive Over Relaxation (SOR) method [START_REF] Young | Iterative solution of large linear systems[END_REF]. More details about the minimization of the energy are given in Appendix A.

To downweight the matching term on ne scales, we use a dierent weight β k at each level as proposed by [START_REF] Stoll | Adaptive integration of feature matches into variational optical ow methods[END_REF]. We set

β k = β(k/k max) b
where k is the current level of computation, k max the coarsest level and b a parameter which is optimized together with the other parameters, see Section 3.5.3.

Experiments

This section presents an experimental evaluation of DeepMatching and DeepFlow. The datasets and metrics used to evaluate DeepMatching and DeepFlow are introduced in Section 3.5.1. Experimental results are given in Sections 3.5.2 and 3.5.3 respectively.

Datasets and metrics

In this section, we briey introduce the matching and ow datasets used in our experiments. Since consecutive frames of a video are well-suited to evaluate a matching approach, we use several optical ow datasets for evaluating both the quality of matching and ow, but we rely on dierent metrics. We present experimental results for the MPI-Sintel dataset, the Kitti dataset and the Middlebury dataset. We refer to Section 2.5 for details about these optical ow benchmarks.

In addition, we use a matching benchmark, namely the Mikolajczyk dataset. It was originally proposed by [START_REF] Mikolajczyk | A comparison of ane region detectors[END_REF] to evaluate and compare the performance of keypoint detectors and descriptors. It is one of the standard benchmarks for evaluating matching approaches.

The dataset consists of 8 sequences of 6 images each viewing a scene under dierent conditions, such as illumination changes or viewpoint changes. The images of a sequence are related by homographies. During the evaluation, we comply to the standard procedure in which the rst image of each scene is matched to the 5 remaining ones. Since our goal is to study robustness of DeepMatching to geometric distortions, we follow HaCohen et al. [2011] and restrict our evaluation to the 4 most dicult sequences with viewpoint changes: bark, boat, graf and wall.

Performance metric for matching. Choosing a performance measure for matching approaches is delicate. Matching approaches typically do not return dense correspondences, but output varying numbers of matches. Furthermore, correspondences might be concentrated in dierent areas of the image.

Most matching approaches, including DeepMatching, are based on establishing correspondences between patches. Given a pair of matching patches, it is possible to obtain a list of pixel correspondences for all pixels within the patches. We introduce a measure based on the number of correctly matched pixels compared to the overall number of pixels. We dene `accuracy@T ' as the proportion of `correct' pixels from the rst image with respect to the total number of pixels. A pixel is considered correct if its pixel match in the second image is closer than T pixels to ground-truth.

In practice, we use a threshold of T = 10 pixels, as this represents a sufciently precise estimation (about 1% of image diagonal for all datasets), while allowing some tolerance in blurred areas that are dicult to match exactly. If a pixel belongs to several matches, we choose the one with the highest score to predict its correspondence. Pixels which do not belong to any patch have an innite error.

Performance metric for optical ow. To evaluate optical ow, we follow the standard protocol and measure the average endpoint error over all pixels, denoted as EPE. The `s10-40' variant measures the EPE only for pixels with a ground-truth displacement between 10 and 40 pixels, and likewise for `s0-10' and `s40+'. More details about the optical ow metrics can be found in Section 2.5.

Matching Experiments

In this section, we evaluate DeepMatching (DM). We present results for all datasets presented above but Middlebury, which does not feature longrange motions, the main diculty in image matching. When evaluating on the Mikolajczyk dataset, we employ the scale and rotation invariant version of DM presented in Section 3.3.2. For all the matching experiments reported in this section, we use the Mikolajczyk dataset and the training sets of MPI-Sintel and Kitti.

Impact of the parameters

We optimize the dierent parameters of DM jointly on all datasets. To prevent overtting, we use the same parameters across all datasets.

Pixel descriptor parameters. We rst optimize the parameters of the pixel representation (Section 3.2.2): ν 1 , ν 2 , ν 3 (dierent smoothing stages), ς (sigmoid slope) and µ (regularization constant). After performing a grid search, we nd that good results are obtained at ν 1 = ν 2 = ν 3 = 1, ς = 0.2 and µ = 0.3 across all datasets. Figure 3.11 shows the accuracy@10 in the neighborhood of these values for all parameters. Image pre-smoothing seems to be crucial for JPEG images (Mikolajczyk dataset), as it smooths out compression artifacts, whereas it slightly degrades performance for uncompressed PNG images (MPI-Sintel and Kitti). As expected, similar ndings are observed for the regularization constant µ since it acts as a regularizer that reduces the impact of small gradients (i.e ., noise). In the following, we thus use low values of ν 1 and µ when dealing with PNG images (we set ν 1 = 0 and µ = 0.1, other parameters are unchanged).

Non-linear rectication. We also evaluate the impact of the parameter λ of the non-linear rectication obtained by applying power normalization, see Equation 3.11. Figure 3.12 displays the accuracy@10 for various values of λ. We can observe that the optimal performance is achieved at λ = 1.4

for all datasets. We use this value in the remainder of our experiments. 0 0.5 1 1.

Evaluation of the backtracking and scoring schemes

We now evaluate two improvements of DM with respect to the previous version published in [START_REF] Weinzaepfel | Deepow: Large displacement optical ow with deep matching[END_REF], referred to as DM*:

• Backtracking (BT) entry points: in DM* we select as entry points local maxima in the correlation maps from all pyramid levels. The new alternative is to start from all possible points in the top pyramid level.

• We report results for the dierent variants in Table 3.1 on each dataset.

The rst two rows for each dataset correspond to the exact settings used for DM* (i.e ., with an image resolution of 1/4 and 1/2). We observe a steady increase in performance on all datasets when we add the new scoring and backtracking approach. We can observe that starting from all possible entry points in the top pyramid level (i.e ., considering all possible translations) yields slightly better results than starting from local maxima.

This demonstrates that some ground-truth matches are not covered by any local maximum. By enumerating all possible patch translations on the toplevel, we instead ensure to fully explore the space of all possible matches.

We verify this experimentally for articial images with small objects in fast motion. One could expect that the old BT scheme is more appropriate for matching small objects as it produces local maxima at intermediate levels of the pyramid. However, this is not conrmed by our experiment. As stated above a possible explanation is the exhaustive coverage of translations at the top-level combined with an ecient backtracking scheme. Note, however, that the performance of matching small objects with rapid motion is relatively low compared to matching large areas.

Furthermore, it is interesting to note that memory usage and run-time signicantly decreases when using the new options. This is because (1)

searching and storing local maxima (which are exponentially more numerous in lower pyramid levels) is not necessary anymore, and (2) the new scoring scheme allows for further optimization, i.e., early pruning of backtracking paths (Section 3.2.3).

Approximate DeepMatching

We now evaluate the performance of approximate DeepMatching (Section 3.3.1) and report its run-time and memory usage. We evaluate and compare two dierent ways of reducing the computational load. The rst one simply consists in downsizing the input images, and upscaling the resulting matches accordingly. The second option is the compression scheme proposed in Section 3.3.1.

We evaluate both schemes jointly by varying the input image size (expressed as a fraction R of the original resolution) and the size D of the prototype dictionary (i.e ., parameter of k-means in Section 3.3.1). R = 1

corresponds to the original dataset image size (no downsizing). We display the results in terms of matching accuracy (accuracy@10) against memory consumption in Figure 3. Overall, the proposed method for approximating DeepMatching is highly eective.

GPU Implementation. We have implemented DM on GPU in the Caffe framework [START_REF] Jia | Cae: Convolutional architecture for fast feature embedding[END_REF]. Using existing Caffe layers like Convolution-Layer and PoolingLayer, the implementation is straightforward for most layers. We had to specically code a few layers which are not available in Caffe (e.g . the backtracking pass 3). For the aggregation layer which consists in selecting and averaging 4 children channels out of many channels, we relied on the sparse matrix multiplication in the cuSPARSE toolbox. Detailed timings are given in Table 3.2 on a GeForce Titan X. Our code runs in about 0.2s for a pair of MPI-Sintel image. As expected, the computation bottleneck essentially lies in the computation of bottom-level patch correlations and the backtracking pass. Note that computing patch descriptors takes signicantly more time, in proportion, than on CPU: it takes about 0.024s = 11% of total time (not shown in table). This is because it involves a succession of many small layers (image smoothing, gradient extraction and projection, etc.), which causes overhead and is rather inecient.

Comparison to the state of the art

We compare DM with several baselines and state-of-the-art matching algorithms, namely:

• SIFT keypoints extracted with DoG detector [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] and matched with FLANN [START_REF] Muja | Fast approximate nearest neighbors with automatic algorithm conguration[END_REF], referred to as SIFT-NN, 4

• dense HOG matching, followed by nearest-neighbor matching with reciprocal verication as done in LDOF [START_REF] Brox | Large displacement optical ow: descriptor matching in variational motion estimation[END_REF], referred to as

HOG-NN 4 ,
3. Although the backtracking is conceptually close to the back-propagation training algorithm, it diers in term of how the scores are accumulated for each path.

4. We implemented this method ourselves. • Generalized PatchMatch (GPM) [START_REF] Barnes | The generalized PatchMatch correspondence algorithm[END_REF], with default parameters, 32x32 patches and 20 iterations (best settings in our experiments) 5 ,

D =4 D =64 D =4 D =64 D =1024 D =∞ D =4 D =64 D =1024 D =∞ D =∞ (a) Mikolajczyk dataset R = 1/1 R = 1/2 R = 1/4 R =
D =4 D =64 D =4 D =64 D =1024 D =∞ D =4 D =64 D =1024 D =∞ D =∞ (b) MPI-Sintel dataset (final version) R = 1/1 R = 1/2 R = 1/4 R = 1/8
D =4 D =64 D =4 D =64 D =1024 D =∞ D =4 D =64 D =1024 D =∞ D =∞ (c) Kitti dataset R = 1/1 R = 1/2 R = 1/4 R = 1/8
• Kd-tree PatchMatch (KPM) [START_REF] Sun | Computing nearest-neighbor elds via propagation-assisted kdtrees[END_REF], an improved version of Patch-Match based on better patch descriptors and kd-trees optimized for correspondence propagation 4 ,

• Non-Rigid Dense Correspondences (NRDC) [START_REF] Hacohen | Non-rigid dense correspondence with applications for image enhancement[END_REF], an improved version of GPM based on a multiscale iterative expansion/contraction strategy 6 , 5. We used the online code. 6. We report results from the original paper. of compression corresponding to the size D of the prototype dictionary (we set the image resolution to R = 1/2). A dictionary size D = ∞ stands for no compression. Run-times are for a single image pair on 1 core @ 3.6 GHz. • SIFT-ow [START_REF] Liu | SIFT ow: Dense correspondence across scenes and its applications[END_REF], a dense matching algorithm based on an energy minimization where pixels are represented as SIFT features and a smoothness term is incorporated to explicitly preserve spatial discontinuities 5 ,

• Scale-less SIFT (SLS) [START_REF] Hassner | On sifts and their scales[END_REF], an improvement of SIFT-ow to handle scale changes (multiple sized SIFTs are extracted and combined to form a scale-invariant pixel representation) 5 ,

• DaisyFilterFlow (DaisyFF) [START_REF] Yang | DAISY lter ow: A generalized discrete approach to dense correspondences[END_REF], a dense matching approach that combines lter-based ecient ow inference and the Patch-Match fast search algorithm to match pixels described using the DAISY representation [START_REF] Tola | DAISY: An Ecient Dense Descriptor Applied to Wide Baseline Stereo[END_REF] 5 ,

• Deformable Pyramid Matching (DSP) [START_REF] Kim | Deformable spatial pyramid matching for fast dense correspondences[END_REF], a dense matching approach based on a coarse-to-ne (top-down) strategy where inference is performed with (inexact) loopy belief propagation 5 .

SIFT-NN, HOG-NN and DM output sparse matches, whereas the other methods output fully dense correspondence elds. SIFT keypoints, GPM, NRDC and DaisyFF are scale and rotation invariant, whereas HOG-NN, KPM, SIFT-ow, SLS and DSP are not. We, therefore, do not report results

for these latter methods on the Mikolajczyk dataset which includes image rotations and scale changes.

Statistics about each method (average number of matches per image and their coverage) are reported in Table 3.3. Coverage is computed as the proportion of points on a regular grid with 10 pixel spacing for which there exists a correspondence (in the raw output of the considered method) within a 10 pixel neighborhood. Thus, it measures how well matches `cover' the image. Table 3.3 shows that DeepMatching outputs 2 to 7 times more matches than SIFT-NN and a comparable number to HOG-NN. Yet, the coverage for DM matches is much higher than for HOG-NN and SIFT-NN.

This shows that DM matches are well distributed over the entire image, which is not the case for HOG-NN and SIFT-NN, as they have diculties estimating matches in regions with weak or repetitive textures.

Quantitative results are listed in Table 3 DM outperforms all other methods on the 3 datasets, including DSP which also relies on a hierarchical matching.

- - 446K 1 462K 1 GPM 545K 1 446K 1 462K 1 NRDC 545K 1 446K 1 462K 1 SIFT-ow - - 446K 1 462K 1 SLS - - 446K 1 462K 1 DaisyFF 545K 1 446K 1 462K 1 DSP - - 446K 1
In terms of computing resources, DeepMatching with full settings (R = 1/2, D = ∞) is one of the most costly method (only SLS and DaisyFF require the same order of memory and longer run-time). The scale and rotation invariant version of DM, used for the Mikolajczyk dataset, is slow compared to most other approaches, due to its sequential processing (i.e ., treating each combination of rotation and scaling sequentially), yet yields near perfect results. However, running DM with reduced settings is very competitive to the other approaches. On MPI-Sintel and Kitti, for instance, DM with a quarter resolution has a run-time comparable to the fastest method, SIFT-NN, with a reasonable memory usage, while still outperforming nearly all methods in terms of the accuracy@10 measure. method R D accuracy@10 memory matching usage time). For the proposed method, R and D denote the input image resolution and the dictionary size (∞ stands for no compression). Run-times are computed on 1 core @ 3.6 GHz.

Optical Flow Experiments

We now present experimental results for the optical ow estimation.

Optical ow is predicted using the variational framework presented in Section 3.4 that takes as input a set of matches. In the following, we evaluate the impact of DeepMatching against other matching methods, and compare to the state of the art. We rst optimize the dierent ow parameters (β, γ, δ, σ and b) by employing a gradient descent strategy with multiple initializations followed by a local grid search. For the data term, we nd an optimum at δ = 0, which is equivalent to removing the color constancy assumption. This can be explained by the fact that the `nal' version contains atmospheric eects, reections, blurs, etc. The remaining parameters are optimal at β = 300, γ = 0.8, σ = 0.5, b = 0.6.

Optimization of the parameters

Impact of the matches on the ow

We examine the impact of dierent matching methods on the ow, i.e., dierent matches are used in DeepFlow, see Section 3.4. For all matching approaches evaluated in the previous section, we use their output as matching term in Equation 3.17. Because these approaches may output matches with statistics dierent from DM, we separately optimize the ow parameters for each matching approach on the small training set of MPI-Sintel 7 .

Table 3.5 shows the endpoint error, averaged over all pixels. Clearly, a suciently dense and accurate matching like DM allows to considerably improve the ow estimation on datasets with large displacements (MPI-Sintel, Kitti). In contrast, none of the methods presented have a tangible eect on the Middlebury dataset, where the displacements are small.

The relatively small gains achieved by SIFT-NN and HOG-NN on MPI-Sintel and Kitti are due to the fact that a lot of regions with large displacements are not covered by any matches, such as the sky or the blurred character in the rst and second column of Figure 3.18. Hence, SIFT-NN and HOG-NN have only a limited impact on the variational approach. On the other hand, the gains are also small (or even negative) for the dense methods despite the fact that they output signicantly more correspondences. We observe for these methods that the weight β of the matching term tends to be small after optimizing the parameters, thus indicating that the matches are found unreliable and noisy during training. The cause 7. Note that this systematically improves the endpoint error compared to using the raw dense correspondence elds as ow.

is clearly visible in Figure 3.17, where large portions containing repetitive textures (e.g . road, trees) are incorrectly matched. The poor quality of these matches even leads to a signicant drop in performance on the Kitti dataset.

In contrast, DeepMatching generates accurate matches well covering the image that enable to boost the optical ow accuracy in case of large displacements. Namely, we observe a relative improvement of 30% on MPI-Sintel and of 50% on Kitti. It is interesting to observe that DM is able to eectively prune false matches arising in occluded areas (black areas in Figures 3.16 and 3.17). This is due to the reciprocal verication ltering incorporated in DM (Equation 3.16). When using the approximation with 1024 prototypes, however, a signicant drop is observed on the Kitti dataset, while the performance remains good on MPI-Sintel. This indicates that approximating DeepMatching can result in a signicant loss of robustness when matching repetitive textures, that are more frequent in Kitti than in MPI-Sintel.

Comparison to the state of the art

In this section, we compare DeepFlow to the state of the art on the test sets of MPI-Sintel, Kitti and Middlebury datasets. For theses datasets, the results are submitted to a dedicated server which performs the evaluation.

Prior to submitting our results for Kitti and Middlebury test sets, we have optimized the parameters on the respective training set.

Results on MPI-Sintel. Table 3.6 compares our method to state-ofthe-art algorithms on the MPI-Sintel test set. A comparison with the preliminary version of DeepFlow [START_REF] Weinzaepfel | Deepow: Large displacement optical ow with deep matching[END_REF], referred to as DeepFlow*, is also provided. In this early version, we used a constant smoothness weight instead of a local one here (see Section 3.4) and used DM* as input matches. We can see that DeepFlow is among the best performing methods on MPI-Sintel, particularly for large displacements. This is due to the use of a reliable matching term in the variational approach, and this property is shared by all top performing approaches, e.g. [START_REF] Revaud | EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow[END_REF][START_REF] Leordeanu | Locally ane sparse-todense matching for motion and occlusion estimation[END_REF]. Furthermore, it is interesting to note that among the top performers on MPI-Sintel, few methods actually employ DeepMatching. For instance, EpicFlow [START_REF] Revaud | EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow[END_REF] relies on the output of DeepMatching to produce a piece-wise ane ow, and Sparse-FlowFused [START_REF] Timofte | Sparse ow: Sparse matching for small to large displacement optical ow[END_REF]] combines matches obtained with DeepMatching and another algorithm. [START_REF] Brox | Large displacement optical ow: descriptor matching in variational motion estimation[END_REF] and MDP-Flow2 [START_REF] Xu | Motion detail preserving optical ow estimation[END_REF].

We refer to the webpage of the MPI-Sintel dataset 8 for complete results

including the `clean' version.

Timings. As mentioned before, DeepMatching at half the resolution takes 15 seconds to compute on CPU and 0.2 second on GPU. The variational part requires 10 additional seconds on CPU. Note that by implementing it on GPU, we could obtain a signicant speed-up as well. DeepFlow consequently takes 25 seconds in total on a single CPU core @ 3.6 GHz or 10.2s

with GPU+CPU. This is in the same order of magnitude as the fastest among the best competitors, EpicFlow [START_REF] Revaud | EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow[END_REF]. Results on Kitti. Table 3.7 summarizes the main results on the Kitti benchmark (see ocial website 9 for complete results), when optimizing the parameters on the Kitti training set. EPE-Noc is the EPE computed only in non-occluded areas. `Out-all 3' corresponds to the proportion of incorrect pixel correspondences for an error threshold of 3 pixels, i.e., it corresponds to 1accuracy@3, and likewise for `Out-Noc 3' for non-occluded areas, see Section 2.5. In terms of EPE-noc, DeepFlow is on par with the best approaches, but performs somewhat worse in the occluded areas. This is due to a specicity of the Kitti dataset, in which motion is mostly homographic (especially on the image borders, where most surfaces like roads and walls are planar). In such cases, ow is better predicted using an ane motion prior, which locally well approximates homographies (a constant motion prior is used in DeepFlow). As a matter of facts, all top performing methods in terms of total EPE output piece-wise ane optical ow, either due to ane regularizers (BTF-ILLUM [START_REF] Demetz | Learning brightness transfer functions for the joint recovery of illumination changes and optical ow[END_REF], NLTGB-SC [START_REF] Ranftl | Non-local total generalized variation for optical ow estimation[END_REF], TGV2ADCSIFT [START_REF] Braux-Zin | A general dense image matching framework combining direct and feature-based costs[END_REF]) or due to local ane estimators (EpicFlow [START_REF] Revaud | EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow[END_REF]).

Note that the learned parameters on Kitti and MPI-Sintel are close.

In particular, running the experiments with the same parameters as MPI- • denotes the usage of a GPU.

Results on Middlebury. We optimize the parameters on the Middlebury training set by minimizing the average angular error with the same strategy as for MPI-Sintel. We nd weights quasi-zero for the matching term due to the absence of large displacements. DeepFlow obtained an average endpoint error of 0.4 on the test which is competitive with the state of the art.

Conclusion

In this chapter we introduced DeepMatching, a dense matching algorithm tailored to optical ow estimation. The proposed algorithm gracefully handles complex non-rigid object deformations and regions with repetitive textures. Integrating DeepMatching into a variational formulation leads to a performance boost for large displacement optical ow.

Nevertheless, DeepFlow still suers from inherent issues of a variational formulation optimized with a coarse-to-ne scheme, such as oversmoothing or missing small objects with fast motion. Indeed, even in the presence of correct matches for these objects, the coarse-to-ne scheme tends to miss their motion, mainly because the objects overlap at coarse scales and errors are not recovered at ner scales. Since DeepMatching already outputs quasi-dense matches, in the next chapter we propose an alternative to the coarse-to-ne scheme which is faster and outputs a more accurate optical ow. Instead, this chapter introduces a novel approach that simply interpolates a sparse set of matches in a dense manner to initiate the optical ow estimation. We then use this estimate to initialize a one-level energy minimization problem, and obtain the nal optical ow estimation. This enables us to leverage recent advances in matching algorithms, which can now output quasi-dense correspondence elds [START_REF] Barnes | The generalized PatchMatch correspondence algorithm[END_REF][START_REF] Revaud | DeepMatching: Hierarchical Deformable Dense Matching[END_REF]. In the same spirit as [START_REF] Leordeanu | Locally ane sparse-todense matching for motion and occlusion estimation[END_REF], we perform a sparseto-dense interpolation by tting a local ane model at each pixel based on nearby matches. A major issue arises for the preservation of motion boundaries. We make the following observation: motion boundaries often tend to appear at image edges, see Figure 4.1. Consequently, we propose to exchange the Euclidean distance with a better, i.e., edge-aware, distance and show that this oers a natural way to handle motion discontinuities.

Moreover, we show how an approximation of the edge-aware distance allows to t only one ane model per input match (instead of one per pixel). This leads to an important speed-up of the interpolation scheme without loss in performance.

The obtained interpolated eld of correspondences is suciently accurate to be used as initialization of a one-level energy minimization. Our work suggests that there may be better initialization strategies than the well-established coarse-to-ne scheme, see Figure 4.2. In particular, our approach, EpicFlow (edge-preserving interpolation of correspondences) shows excellent performance on the challenging MPI-Sintel dataset [START_REF] Butler | A naturalistic open source movie for optical ow evaluation[END_REF] and is competitive on Kitti [START_REF] Geiger | Vision meets robotics: The KITTI dataset[END_REF] • We propose EpicFlow, a novel sparse-to-dense interpolation scheme of matches based on an edge-aware distance. We show that it is robust to motion boundaries, occlusions and large displacements.

• We propose an approximation scheme for the edge-aware distance, leading to a signicant speed-up without loss of accuracy.

• We show empirically that the proposed optical ow estimation scheme is more accurate than estimations based on coarse-to-ne minimization.

Closest references. Several works have proposed to integrate matches in an optical ow formulation [START_REF] Brox | Large displacement optical ow: descriptor matching in variational motion estimation[END_REF][START_REF] Xu | Motion detail preserving optical ow estimation[END_REF][START_REF] Weinzaepfel | Deepow: Large displacement optical ow with deep matching[END_REF]. However, these methods rely on a coarse-to-ne scheme, that suers from intrinsic aws. Namely, details are lost at coarse scales, Given two images, we compute matches using DeepMatching [START_REF] Weinzaepfel | Deepow: Large displacement optical ow with deep matching[END_REF] and the edges of the rst image using SED [START_REF] Dollár | Structured forests for fast edge detection[END_REF]. We combine these two cues to densely interpolate matches and obtain a dense correspondence eld. This is used as initialization of a one-level energy minimization framework. and thin objects with substantially dierent motions cannot be detected.

These errors correspond to local minima, hence they cannot be recovered and are propagated across levels, see Figure 4.2.

In contrast, EpicFlow relies on sparse-to-dense interpolation of matches while taking into account image edges. In the same spirit, [START_REF] Ren | Local grouping for optical ow[END_REF] proposes to use edge-based anities to group pixels and estimate a piece-wise ane ow. Nevertheless, this work relies on a discretization of the optical ow constraint, which is valid only for small displacements. Closely related to EpicFlow, [START_REF] Leordeanu | Locally ane sparse-todense matching for motion and occlusion estimation[END_REF] also investigate sparse-to-dense interpolation. Their initial matching is obtained through the costly minimization of a global non-convex matching energy. In contrast, we directly use state-of-the-art matches [Revaud et al., 2016, He and[START_REF] Sun | Computing nearest-neighbor elds via propagation-assisted kdtrees[END_REF] as input. Furthermore, during their sparse-to-dense interpolation, they compute an ane transformation independently for each pixel based on its neighborhood matches, which are found in a Euclidean ball and weighted by an estimation of occluded areas that involves learning a binary classier.

In contrast, we propose to use an edge-preserving distance that naturally handles occlusions, and can be very eciently computed.

Outline. This chapter is organized as follows. We start by presenting the sparse-to-dense interpolation as well as its approximated scheme in Section 4.2. We then describe the energy minimization for optical ow computation in Section 4.3. Finally, Section 4.4 presents experimental results.

Source code is available online at http://lear.inrialpes.fr/software.

Sparse-to-dense interpolation

The proposed approach, EpicFlow, consists of three steps, as illustrated in Figure 4.3. First, we compute a sparse set of matches between the two images, using a state-of-the-art matching algorithm. Second, we perform a densication of this set of matches, by computing a sparse-to-dense interpolation from the sparse set of matches, which yields an initial estimate of the optical ow. Third, we compute the nal optical ow estimation by performing one step of variational energy minimization using the dense interpolation as initialization, see Section 4.3.

Sparse set of matches

The rst step of our approach extracts a sparse set of matches, see Fig- In our experiments, we compare the results when using DeepMatching [START_REF] Weinzaepfel | Deepow: Large displacement optical ow with deep matching[END_REF] or a subset of an estimated nearest-neighbor eld [START_REF] He | Computing nearest-neighbor elds via propagationassisted kd-trees[END_REF]. We defer to Section 4.4.1 for a description of these matching algorithms. In both cases, we obtain ∼ 5000 matches for an image of resolution 1024 × 436, i.e., an average of around one match per 90 pixels. We also evaluate the impact of matching quality and density on the performance of EpicFlow by generating articial matches from the ground-truth in Section 4.4.3. In the following, we denote by M = {(p m , p m)} the sparse set of input matches, where each match (p m , p m) denes a correspondence between a pixel p m in the rst image and and a pixel p m in the second image.

Interpolation method

We estimate a dense correspondence eld F : I → I between a source image I and a target image I by interpolating a sparse set of inputs matches M = {(p m , p m)}. The interpolation requires a distance D : I × I → R + between pixels, see Section 4.2.3. We consider here two options for the interpolation.

• Nadaraya-Watson (NW) estimation [START_REF] Wasserman | All of Statistics: A Concise Course in Statistical Inference[END_REF]. The correspondence eld F N W (p) is interpolated using the Nadaraya-Watson estimator at a pixel p ∈ I and is expressed by a sum of matches weighted by their proximity to p:

F N W (p) = (pm,p m)∈M k D (p m , p)p m (pm,p m)∈M k D (p m , p) , (4.1)
where k D (p m , p) = exp (-aD(p m , p)) is a Gaussian kernel for a distance D with a parameter a.

• Locally-weighted ane (LA) estimation [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF]. The second estimator is based on tting a local ane transformation. The correspondence eld F LA (p) is interpolated using a locallyweighted ane estimator at a pixel p ∈ I as F LA (p) = A p p + t p , where A p and t p are the parameters of an ane transformation estimated for the pixel p. These parameters are computed as the least-square solution of an overdetermined system obtained by writing two equations for each match (p m , p m) ∈ M weighted as previously:

k D (p m , p) A p p m + t p -p m = 0 . (4.2)
Local interpolation. Note that the inuence of remote matches is either negligible, or could harm the interpolation, for example when objects move dierently. Therefore, we restrict the set of matches used in the interpolation at a pixel p to its K nearest neighbors according to the distance D, which we denote as N K (p). In other words, we replace the summation over M in the NW operator by a summation over N K (p), and likewise for building the overdetermined system to t the ane transformation for F LA .

Edge-preserving distance

Using the Euclidean distance for the interpolation presented above is possible. However, in this case, the interpolation is simply based on the position of the input matches and does not respect motion boundaries.

Suppose for a moment that the motion boundaries are known. We can, then, use a geodesic distance D G based on these motion boundaries. Formally, the geodesic distance between two pixels p and q is dened as the shortest distance with respect to a cost map C:

D G (p, q) = inf Γ∈Pp,q Γ C(p s)dp s , (4.3)
where P p,q denotes the set of all possible paths between p and q, and C(p s) the cost of crossing pixel p s (the viscosity in physics). In our settings, C corresponds to the motion boundaries. Hence, a pixel belonging to a motion layer is close to all other pixels from the same layer according to D G , but far from everything beyond the boundaries. Since each pixel is interpolated based on its neighbors, the interpolation will respect the motion boundaries.

(a) (c) (e) (g) (b) (d) (f) (h)
In practice, we use an alternative to true motion boundaries, making the plausible assumption that image edges are a superset of motion boundaries.

This way, the distance between pixels belonging to the same region will be low. It ensures a proper edge-respecting interpolation as long as the number of matches in each region is sucient. Similarly, Criminisi et al.

[2010] showed that geodesic distances are a natural tool for edge-preserving image editing operations (denoising, texture attening, etc.) and it was also used recently to generate object proposals [START_REF] Krähenbühl | Geodesic object proposals[END_REF].

In practice, we set the cost map C using a recent state-of-the-art edge detector, namely the `structured edge detector' (SED) [START_REF] Dollár | Structured forests for fast edge detection[END_REF] 1 .

Fast approximation

The geodesic distance can be rapidly computed from a point to all other pixels. For instance, [START_REF] Weber | Parallel algorithms for approximation of distance maps on parametric surfaces[END_REF] propose parallel algorithms that simulate an advancing wavefront. Nevertheless, the computational cost for computing the geodesic distance between all pixels and all matches (as required by our interpolation scheme) is high. We now propose an ecient approximation DG .

A key observation is that neighboring pixels are often interpolated similarly, suggesting a strategy that would leverage such local information. In this section, we employ the term `match' to refer to p m instead of (p m , p m). Approximated geodesic distance. We then approximate the distance between a pixel p and any match p m as the distance to the closest match L(p) plus an approximate distance between matches:

Geodesic

DG (p, p m) = D G (p, L(p)) + D G G (L(p), p m) , (4.4)
where D G G is a graph-based approximation of the geodesic distance between two matches. To dene D G G we use a neighborhood graph G whose nodes are {p m }. Two matches p m and p n are connected by an edge if they are neighbors in L. The edge weight is then dened as the geodesic distance between p m and p n , where the geodesic distance calculation is restricted to the Voronoi cells of p m and p n . We, then, calculate the approximate geodesic distance between any two matches p m , p n using Dijkstra's algorithm on G, see Figure 4.5(d).

Piecewise eld. So far, we have built an approximation of the distance between pixels and match points. We now show that our interpolation model results in a piece-wise correspondence eld (either constant for the Nadaraya-Watson estimator, or piece-wise ane for LA). This property is crucial to obtain a fast interpolation scheme, and experiments shows that it does not impact the accuracy. Let us consider a pixel p such that L(p) = p m . The distance between p and any match p n is the same as the one between p m and p n up to a constant independent from p n (Equation 4.4). As a consequence, we have

N K (p) = N K (p m) and k DG (p, p n) = k D G (p, p m) × k D G G (p m , p n).
For the Nadaraya-Watson estimator, we thus obtain:

F N W (p) = (pn,p n) k DG (p,pn)p n (pn,p n) k DG (p,pn) (4.5) = k D G (p,pm) (pn,p n) k D G G (pm,pn)p n k D G (p,pm) (pn,p n) k D G G (pm,pn) = F N W (p m) ,
where all the sums are for (p n ,

p n) ∈ N K (p) = N K (p m).
The same reasoning holds for the weighted ane interpolator, which is invariant to a multiplication of the weights by a constant factor. As a consequence, it suces to compute |M| estimations (one per match) and to propagate it to the pixel assigned to this match. This is orders of magnitude faster than an independent estimation for each pixel, e.g. as done by [START_REF] Leordeanu | Locally ane sparse-todense matching for motion and occlusion estimation[END_REF]. We summarize the approach in Algorithm 4.1 for Nadaraya-Watson estimator.

The algorithm is similar for LA interpolator (e.g . line 6 becomes `Estimate For (p m , p m) ∈ M 5

Compute N K (p m) from G using Dijkstra's algorithm 6

Compute F N W (p m) from N K (p m) using Equation 4.1 7

For each pixel p 8

Set

F N W (p) = F N W (L(p))

Optical Flow Estimation

Coarse-to-ne versus EpicFlow. The output of the sparse-to-dense interpolation is a dense correspondence eld. This eld is used as initialization of a variational energy minimization method. In contrast to our approach, state-of-the-art methods usually rely on a coarse-to-ne scheme to compute the full-scale correspondence eld. To the best of our knowledge, there exists no theoretical proof or guarantee that a coarse-to-ne minimization leads to a consistent estimation that accurately minimizes the full-scale energy. Thus, the coarse-to-ne scheme should be considered as a heuristic to provide an initialization for the full-scale ow.

Our approach can be thought of as an alternative to the above strategy, by oering a smart heuristic to accurately initialize the optical ow before performing energy minimization at the full-scale. This oers several advantages over the coarse-to-ne scheme. First, the cost map C in our method acts as a prior on boundary location. Such a prior could also be incorporated by a local smoothness weight in the coarse-to-ne minimization, but would then be dicult to interpret at coarse scales where boundaries might strongly overlap. In addition, since our method directly works at the full image resolution, it avoids possible issues related to the presence of thin objects that could be oversmoothed at coarse scales. Such errors at coarse scales are propagated to ner scales as the coarse-to-ne approach proceeds, see Figure 4.2.

Variational Energy Minimization. We minimize an energy dened as a sum of a data term and a smoothness term. We use the same data term as [START_REF] Zimmer | Optic ow in harmony[END_REF], based on a classical color-constancy and gradientconstancy assumption with a normalization factor. For the smoothness term, we penalize the ow gradient norm, with a local smoothness weight α as in [Wedel et al., 2009a[START_REF] Xu | Motion detail preserving optical ow estimation[END_REF]: α(x) = expκ ∇ 2 I(x) with κ = 5. We have also experimented using SED instead and obtained similar performance.

For minimization, we initialize the solution with the output of our sparse-to-dense interpolation and use the approach of [START_REF] Brox | High accuracy optical ow estimation based on a theory for warping[END_REF] without the coarse-to-ne scheme. More precisely, we perform 5 xed point iterations, i.e., compute the non-linear weights (that appear when applying Euler-Lagrange equations [START_REF] Brox | High accuracy optical ow estimation based on a theory for warping[END_REF]) and the ow updates 5 times iteratively. The ow updates are computed by solving linear systems using 30 iterations of the successive over relaxation method [START_REF] Young | Iterative solution of large linear systems[END_REF]].

Experiments

In this section, we evaluate EpicFlow on three state-of-the-art datasets:

the MPI-Sintel dataset, the Kitti dataset and the Middlebury dataset. We refer to Section 2.5 for details about these benchmarks.

As in [START_REF] Weinzaepfel | Deepow: Large displacement optical ow with deep matching[END_REF], we optimize the parameters on a subset Timing is reported for one CPU-core at 3.6GHz.

In the following, we rst describe two types of input matches in Section 4.4.1. Section 4.4.2 then studies the dierent parameters of our approach. In Section 4.4.3, we compare our method to a variational approach with a coarse-to-ne scheme. Finally, we compare EpicFlow with the state of the art on the test sets in Section 4.4.4. In this case, the parameters are optimized on the training set of the corresponding dataset.

Input matches

To generate input matches, we use and compare two recent matching algorithms. They each produce about 5000 matches per image.

• The rst one is DeepMatching (DM), used in DeepFlow [START_REF] Weinzaepfel | Deepow: Large displacement optical ow with deep matching[END_REF], which has shown excellent performance for optical ow. It builds correspondences by computing similarities of non-rigid patches, allowing for some deformations. We use the online code 2 on images downscaled by a factor 2. A reciprocal verication is included in DM. As a consequence, the majority of matches in occluded areas are pruned, see matches in Figure 4.6 (left).

• The second one is a recent variant of PatchMatch [START_REF] Barnes | The generalized PatchMatch correspondence algorithm[END_REF]] that relies on kd-trees and local propagation to compute a dense correspondence eld [START_REF] He | Computing nearest-neighbor elds via propagationassisted kd-trees[END_REF] (KPM). We use the online code to extract the dense correspondence eld 3 . It is noisy, as it is based on small patches without global regularization, as well as often incorrect in case of occlusion. Thus, we perform a two-way matching and eliminate non-reciprocal matches to remove incorrect correspondences. We also subsample these 2. http://lear.inrialpes.fr/src/deepmatching/ 3. http://j0sh.github.io/thesis/kdtree/ All neighbor matches with a Euclidean distance holds to a dierent object while the geodesic distance allows to capture matches from the same region, even in the case of large occluded areas.

pruned correspondences to speed-up the interpolation. We have experimentally veried on several image pairs that this subsampling does not result in a loss of performance.

Pruning of matches. In both cases, matches are extracted locally and might be incorrect in regions with low texture. Thus, we remove matches corresponding to patches with low saliency, which are determined by the eigenvalues of autocorrelation matrix. Furthermore, we perform a consistency check to remove outliers. We run the sparse-to-dense interpolation once with the Nadaraya-Watson estimator and remove matches for which the dierence to the initial estimate is over 5 pixels.

We also experiment with synthetic sparse matches of various densities and noise levels in Section 4.4.3, in order to evaluate the sensitivity of EpicFlow to the quality of the matching approach.

Impact of the dierent parameters

In this section, we evaluate the impact of the matches and the interpolator. We also compare the quality of the sparse-to-dense interpolation and

EpicFlow. Furthermore, we examine the impact of the geodesic distance and its approximation as well as the impact of the quality of the contour detector.

Matches and interpolators. We can observe that KPM is consistently outperformed by DeepMatching (DM) on MPI-Sintel and Kitti datasets, with a gap of 2 and 8 pixels respectively. Kitti contains many repetitive textures like trees or roads, which are often mismatched by KPM. Note that DM is signicantly more robust to repetitive textures than KPM, as it uses a multi-scale scoring scheme. The results on Middlebury are comparable and below 1 pixel.

We also observe that LA performs better than NW on Kitti, while the results are comparable on MPI-Sintel and Middlebury. This is due to the specicity of the Kitti dataset, where the scene consists of planar surfaces and, thus, ane transformations are more suitable than translations to approximate the ow. Based on these results, we use DM matches and LA interpolation in the remainder of the experimental section.

The interpolation is robust to the neighborhood size K with for instance an EPE of 4.082, 4.053, 4.068 and 4.076 for K = 50, 100, 160 (optimal value on the training set), 200 respectively, on MPI-Sintel with the LA estimator and before variational minimization. We also implemented a variant where we use all matches closer than a threshold and obtained similar performance.

Sparse-to-dense interpolation versus EpicFlow. We also evaluate the gain due to the variational minimization using the interpolation as initialization. We can see in Table 4.1 that this step clearly improves the performance in all cases. The improvement is around 0.5 pixel. SED [START_REF] Dollár | Structured forests for fast edge detection[END_REF] Geodesic (approx.) Edge-aware versus Euclidean distances. We now study the impact of dierent distances. First, we examine the eect of approximating the geodesic distance (Section 4.2.4). Table 4.2 shows that our approximation has a negligible impact when compared to the exact geodesic distance. Note that the exact version performs distance computation as well as local estimation per pixel and is, thus, an order of magnitude slower to compute, see last column of Table 4.2.

Next, we compare the geodesic distance and Euclidean distances. Table 4.2 shows that using a Euclidean distance leads to a signicant drop in performance, in particular for the MPI-Sintel dataset, the drop is 1 pixel.

This conrms the importance of our edge-preserving distance. Note that the result with the Euclidean distance is reported with an exact version, i.e., the interpolation is computed pixelwise.

We also compare to a mixed approach, in which the neighbor list N K is constructed using the Euclidean distance, but weights k D(p m , p) are set according to the approximate geodesic distance. Table 4.2 shows that this leads to a drop of performance by around 0.3 pixels for MPI-Sintel and Kitti. Impact of contour detector. We also evaluate the impact of the contour detector in Table 4.2, i.e., the SED detector [START_REF] Dollár | Structured forests for fast edge detection[END_REF] is replaced by the Berkeley gPb detector [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF] or the Canny edge detector [START_REF] Canny | A computational approach to edge detection[END_REF]. Using gPb leads to a small drop in performance (around 0.1 pixel on Kitti and 0.5 on MPI-Sintel) and signicantly increases the computation time. Canny edges perform similar to the Euclidean distance. This can be explained by the insucient quality of the Canny contours. Using the norm of image's gradient improves slightly over gPb. We found that this is due to the presence of holes when estimating contours with gPb. Finally, we perform experiments using ground-truth motion boundaries, computed from the norm of ground-truth ow gradient, and obtain an improvement of 0.1 on MPI-Sintel (0.2 before the variational part). The ground-truth ow is not dense enough on Middlebury and Kitti datasets to estimate GT boundaries.

EpicFlow versus coarse-to-ne scheme

To show the benet of our approach, we have carried out a comparison with a coarse-to-ne scheme. Our implementation of the variational approach is the same as in Section 4.3, with a coarse-to-ne scheme and Deep-Matching integrated in the energy through a penalization of the dierence between ow and matches [Brox andMalik, 2011, Weinzaepfel et al., 2013]. Table 4.3 compares EpicFlow to the variational approach with coarse-tone scheme, using exactly the same matches as input. EpicFlow performs better and is also faster. The gain is around 0.4 pixel on MPI-Sintel and over 1 pixel on Kitti. The important gain on Kitti might be explained by the ane model used for interpolation, which ts well the piecewise planar structure of the scene. On Middlebury, the variational approach achieves slightly better results, as this dataset does not contain large displacements. Sensitivity to the matching quality. In order to get a better understanding of why EpicFlow performs better than a coarse-to-ne scheme, we have evaluated and compared their performances for dierent densities and error rates of the input matches. To that aim, we generated synthetic matches by taking the ground-truth ow, removing points in the occluded areas, subsampling to obtain the desired density and corrupting the matches to the desired percentage of incorrect matches. For each set of matches with a given density and quality, we have carefully determined the parameters of EpicFlow and the coarse-to-ne method on the MPI-Sintel training subset, and then evaluated them on the remaining training images.

Results in term of EPE are given in Figure 4.8, where density is represented vertically as the ratio of #matches / #non-occluded pixels and matching error is represented horizontally as the ratio of #false matches / #matches. We can observe that EpicFlow yields better results provided that the matching is suciently dense for a given error rate. For low-density or strongly corrupted matches, EpicFlow yields unsatisfactory performance (Figure 4.8 left), while the coarse-to-ne method remains relatively robust (Figure 4.8 right). This shows that our interpolation-based heuristic for initializing the ow takes better advantage of the input matches than a Taylor, 2015], and 0.7 pixel compared to the third one, DeepFlow [START_REF] Revaud | DeepMatching: Hierarchical Deformable Dense Matching[END_REF] presented in Chapter 3. In particular, we improve for both EPE on occluded areas and EPE over all pixels and for all displacement ranges. In addition, our approach is signicantly faster than most of the methods, e.g. an order of magnitude faster than the second best. Interestingly, more recent approaches such as FlowFields [START_REF] Bailer | Flow Fields: Dense Correspondence Fields for Highly Accurate Large Displacement Optical Flow Estimation[END_REF] or DiscreteFlow [START_REF] Menze | Discrete Optimization for Optical Flow[END_REF] are built upon EpicFlow but change the input matches, showing the eectiveness of our approach. FlowFields [START_REF] Bailer | Flow Fields: Dense Correspondence Fields for Highly Accurate Large Displacement Optical Flow Estimation[END_REF] 1.4 3.5 6.23% 14.01% 23s

DeepFlow [START_REF] Revaud | DeepMatching: Hierarchical Deformable Dense Matching[END_REF] publication time) on the Kitti dataset, in particular for occluded areas. We perform on par with NLTGV-SC [START_REF] Ranftl | Non-local total generalized variation for optical ow estimation[END_REF] and DeepFlow [START_REF] Revaud | DeepMatching: Hierarchical Deformable Dense Matching[END_REF] on Kitti that we outperform by 2.5 and 0.7 pixels respectively on MPI-Sintel. More recent approaches [START_REF] Bailer | Flow Fields: Dense Correspondence Fields for Highly Accurate Large Displacement Optical Flow Estimation[END_REF][START_REF] Menze | Discrete Optimization for Optical Flow[END_REF] based on EpicFlow slightly improves our performance.

On the Middlebury test set, we obtain an EPE below 0.4 pixel. This is competitive with the state of the art. In this dataset, there are no large displacements, and consequently, the benets of a matching-based approach are limited. Note that we have slightly increased the number of xed point iterations to 25 in the variational method for this dataset (still using one

Conclusion

This chapter introduced EpicFlow, a novel optical ow estimation method.

EpicFlow computes a dense correspondence eld by performing a sparse-todense interpolation from an initial sparse set of matches, leveraging contour cues using an edge-aware geodesic distance. The resulting dense correspondence eld is fed as an initial optical ow estimate to a one-level variational energy minimization.

Both the sparse set of input matches and the contour estimates are key to our approach. The approach builds upon the assumption that contours often coincide with motion discontinuities. The next chapter focuses on the problem of detecting the motion boundaries.

Introduction

Optical ow can be simply described as a eld that consists of large regions with smooth variations, divided by boundaries with abruptly changes.

Yet, energy minimization frameworks assume that the ow is continuous.

Consequently, while smooth variations of optical ow are estimated well Several approaches have been proposed to predict motion boundaries [START_REF] Bircheld | Depth and motion discontinuities[END_REF], Black and Fleet, 2000[START_REF] Middendorf | Estimation and interpretation of discontinuities in optical ow elds[END_REF][START_REF] Spoerri | The Early Detection of Motion Boundaries[END_REF]. In particular, motion boundaries have recently been computed using the norm of the gradient of the optical ow [START_REF] Papazoglou | Fast object segmentation in unconstrained video[END_REF]Ferrari, 2013, Wang et al., 2013]. However, even using state-of-the-art optical ow estimation [Sun et al., 2014b] as input, such an approach can result in disappointing results, see Figure 5.1.

Instead, we choose a learning-based approach for the motion boundary prediction problem. This requires a high volume of training data. Thankfully, the MPI-Sintel [START_REF] Butler | A naturalistic open source movie for optical ow evaluation[END_REF] dataset, composed of animated movies generated using computer graphics, is now available and contains ground-truth optical ow. Thus, motion boundaries can be directly computed from the ground-truth ow. The dataset is large (more than 1000 high resolution training images), and paves the way to the training of so- phisticated learning algorithms for this task. We choose random forests as the learning algorithm, as they are are both exible and stable.

In this chapter, we present the following contributions:

• We propose a learning-based motion boundary prediction approach, using structured random forests [START_REF] Dollár | Structured forests for fast edge detection[END_REF] in combination with image and optical ow cues, which accurately estimate motion boundaries.

• We show in experiments that our approach is robust to failure cases of the input optical ow.

• We introduce a new dataset, called the YouTube Motion Boundaries (YMB) dataset, that comprises 60 real-world videos downloaded from YouTube, for which we provide annotations of the motion boundaries.

Closest references. Most methods for estimating motion boundaries are based on optical ow [START_REF] Papazoglou | Fast object segmentation in unconstrained video[END_REF]Ferrari, 2013, Wang et al., 2013].

The early work of [START_REF] Spoerri | The Early Detection of Motion Boundaries[END_REF] shows that local ow histograms have bimodal distributions at motion boundaries. Using statistical tests on histograms and structural saliency based postprocessing, this work develops a method to recover and segment motion boundaries in synthetic footage.

Similar considerations are used later by [START_REF] Fleet | Design and use of linear models for image motion analysis[END_REF] to propose a low-level motion boundary detector. This detector measures the squared error in tting a local linear parameterized motion model: the tting error is larger at motion boundaries. This model is in turn improved by [START_REF] Black | Probabilistic detection and tracking of motion boundaries[END_REF] by casting the motion boundaries detection problem into a probabilistic framework. In their work, local pixel patches are either modeled with a translational motion or as a motion discontinuity. In the latter case, dierent congurations of depth ordering are incorporated in the model. This aspect (depth ordering at discontinuities) is also leveraged by [START_REF] Liu | Analysis of contour motions[END_REF] to estimate optical ow in textureless images. They propose a bottom-up approach to track and group hypothetical motion edge fragments. However, their approach heavily depends on the preliminary detection of edge fragments, and is not applicable to realistic videos with textures. Furthermore, none of these approaches are based on learning the relation between local features and motion boundaries.

Closely related to estimating motion boundaries is the task of segmenting a video frame into dierent regions with coherent motion, referred to as layers [Darrell andPentland, 1995, Wang and[START_REF] Wang | Representing moving images with layers[END_REF]. Recently, several works have considered the joint estimation of motion layers and optical ow [START_REF] Brox | Variational motion segmentation with level sets[END_REF][START_REF] Sun | A fully-connected layered model of foreground and background ow[END_REF][START_REF] Unger | Joint motion estimation and segmentation of complex scenes with label costs and occlusion modeling[END_REF]. However, the joint task is challenging, and these methods depend on a complex minimization of non-convex energy functions. As a result, the estimation is unreliable for dicult, yet common cases, such as videos with fast motion, large displacements or compression artifacts. More generally, motion layer segmentation can be ill-dened, as there exist cases where motion boundaries form non-closed regions, see Figure 5.2.

The related task of occlusion boundary detection has recently received some attention [START_REF] Hoiem | Recovering occlusion boundaries from an image[END_REF][START_REF] Sundberg | Occlusion boundary detection and gure/ground assignment from optical ow[END_REF][START_REF] Humayun | Learning to Find Occlusion Regions[END_REF]. Occlusion boundaries refer to depth discontinuities. They can correspond to motion boundaries, as they can create dierences in ow when the camera or the objects are moving. However, in many cases two regions of dierent depth can have the same ow, see Figure 5.2 where many of the depth discontinuities actually do not correspond to motion boundaries.

Most approaches for occlusion boundary detection [START_REF] Sundberg | Occlusion boundary detection and gure/ground assignment from optical ow[END_REF][START_REF] Hoiem | Recovering occlusion boundaries from an image[END_REF][START_REF] Stein | Occlusion boundaries from motion: Low-level detection and mid-level reasoning[END_REF] rely on an oversegmentation of the image, using for instance [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF], followed by a merging procedure. Like our approach, they all use temporal information as a cue, e.g. as the dierence between consecutive images [START_REF] Sundberg | Occlusion boundary detection and gure/ground assignment from optical ow[END_REF].

Nevertheless, the nal result highly depends on the optical ow accuracy, while our method is robust to failures in the optical ow.

Our method is also related to recent works on edge and occlusion detection cast into a learning framework [Dollár andZitnick, 2013, Humayun et al., 2011]. These approaches rely on a random forest classier applied to features extracted in a local neighborhood. The approach of [START_REF] Humayun | Learning to Find Occlusion Regions[END_REF] for occlusion detection takes as input optical ow estimated with four dierent algorithms and learns pixel-wise random forests. In contrast, our method leverages information at the patch level and is robust to failures in the optical ow by using an estimated ow error. [START_REF] Dollár | Structured forests for fast edge detection[END_REF] use structured random forests for edge detection, which is shown to outperform the state of the art. We build on their approach and show how to extend it to motion boundary detection.

Outline. This chapter is organized as follows. We rst present our approach for learning motion boundaries in Section 5.2.

We then introduce the datasets used in our experiments, including our YMB dataset, and the evaluation protocol in Section 5.3. Finally, Section 5.4 presents the experimental results. The dataset and code are available online at http://lear.inrialpes.fr/research/motionboundaries.

Learning motion boundary detection

In this section, we rst present the structured random forests approach.

We then detail the set of cues used for motion boundary detection.

Structured Random Forests

We propose to cast the prediction of local motion boundary masks as [START_REF] Dollár | Structured forests for fast edge detection[END_REF], using the publicly available code 1 . The success of our approach lies in the choice and design of the features, which we now detail.

Spatial and Temporal Cues

We consider here static appearance features and temporal features to predict motion boundaries. We use the index t to denote the frame for which we predict the motion boundaries (t + 1 being the next frame).

Color (13 channels). We use the three RGB channels in addition to 10 gradient maps, computed in the luminance channel from the Lab color space. We compute the norm of the gradient and oriented gradient maps in 4 directions, both at coarse and ne scales, resulting in (1 + 4) × 2 channels.

Optical ow (7 channels). We also use the optical ow w t,t+1 between frame t and t + 1. Let u and v be the components of w t,t+1 . In addition to u and v channels, we use an unoriented gradient map computed 1. https://github.com/pdollar/edges as ∇u 2 + ∇v 2 , and oriented gradient maps (again at 4 orientations)

where the gradient orientation is obtained by averaging the orientations of ∇u and ∇v, weighted by their magnitudes. Contrary to the RGB case, we compute these 5 gradient maps at a coarse scale only. We found that adding the ne scale does not improve the results, probably due to the blur in optical ow estimation. To compute the optical ow, we experiment with dierent state-of-the-art algorithms and compare their performance in Section 5.4.

Image warping errors (2 channels). Optical ow estimation can often be partially incorrect. For instance, in Figure 5.4(c), some object motions are missing (spear) and some others are incorrect (feet). To handle these errors, we propose to add channels indicating where the ow estimation is likely to be wrong, see Figure 5.4(d). To this end, we measure how much the color and gradient constancy assumptions [START_REF] Brox | High accuracy optical ow estimation based on a theory for warping[END_REF], Vogel et al., 2013b] are violated. We compute the image warping error, which is dened

at a pixel p as E D (p) = D t (p) -D t+1 (p + w t,t+1 (p)

Backward ow and error (9 channels).

There is no reason to consider that the forward ow may provide better information for detecting motion boundaries than the backward ow. Consequently, we add the same 7 channels of optical ow and the 2 channels of image warping errors with the backward ow w t,t-1 .

Summary. By concatenating all these channels, we obtain a feature representation at the patch level that combines several cues: appearance, motion and condence in motion.

The feature representation includes 31 channels in total. Since the 32 × 32 patches are subsampled by a factor 2 when fed to the classiers, the nal dimension for an input vector x is (32/2) 2 × 31 = 7936.

Datasets and evaluation protocol

In this section, we rst present existing optical ow datasets used to train and evaluate our approach. We then introduce our YouTube Motion Boundaries (YMB) dataset and explain the evaluation protocol.

Optical ow datasets

For training and evaluating our approach, we rely on two state-of-theart optical ow datasets: Middlebury and MPI-Sintel. Both come with dense ground-truth optical ow, which allows to extract ground-truth motion boundaries. We refer to Section 2.5 for details on these datasets. For MPI-Sintel, we compare results for both `clean' and `nal' versions in the experiments, see Section 5.4. We train our model using all sequences, except when testing on MPI-Sintel. In this case, we alternatively train on half of the sequences and test on the other half.

Ground-truth motion boundaries from ow. For evaluation, we need to compute binary motion boundaries from ground-truth optical ow. However, the resulting boundaries depend on a threshold applied to the norm of the ow gradient. We, thus, propose to generate, for each image, several versions of ground-truth boundaries corresponding to dierent thresholds.

Thresholds are spread regularly on a logarithmic scale. For our experimental evaluation, we have set the lowest threshold to a norm of 0.5 for Middlebury and to 1 for MPI-Sintel. Note that the threshold for Middlebury is lower than for MPI-Sintel, as motions in this dataset are smaller.

Examples for ground-truth motion boundaries (extracted at norm 2) are shown in Figure 5.5. We refer to Section 5.3.3 for the evaluation protocol.

The YMB dataset

Existing optical ow benchmarks have several limitations. They are often restricted to synthetic and high quality videos and have limited vari- and 30 others from the Sports1M [START_REF] Karpathy | Large-scale video classication with convolutional neural networks[END_REF] dataset.

YouTube Objects dataset [Prest et al., 2012b] is a collection of video shots representing 10 object categories, such as train, car or dog. For the sake of diversity, we select 3 shots per category. The annotated frame is the same as the one annotated by Prest et al. [2012b] for object detection.

Another 30 sequences are sampled from the Sports1M [START_REF] Karpathy | Large-scale video classication with convolutional neural networks[END_REF] dataset. This dataset comprises 487 classes and is dedicated to action recognition in YouTube videos. We select each video from a dierent class.

The annotated frame is chosen to be challenging for optical ow estimation, see Figure 5.6.

Table 5.1 shows some statistics about image sizes and motions. Videos from YouTube Objects have a lower resolution (225 × 400) than the ones from Sports1M (1280 × 720). Both datasets contain large motions, some of them of thin parts, e.g. the limbs of the humans. Note that a supplementary challenge of the YMB dataset is due to the high compression level of the videos, which causes many block-like artifacts to appear.

We evaluate the consistency between the annotations. To this end, we compute precision and recall using the protocol described below (Section 5.3.3), using one annotator as ground-truth, another one as estimate,

and averaging across all pairs of annotators. We obtain a precision and recall over 91%, showing that the annotations are consistent.

Evaluation protocol

We quantitatively evaluate our motion boundary predictions in term of precision-recall. We use the evaluation code of the BSDS [START_REF] Martin | A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[END_REF] 2 edge detection benchmark. Given a binary ground-truth and a softresponse motion boundary prediction, we compute the pixel-wise recall and precision curve (Figure 5.10), where each point of the curve corresponds to a dierent threshold on the predicted motion boundary strength. For instance, a high threshold will lead to few predicted pixels, i.e., a low recall 2. http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/ and high precision. For a lower threshold, the recall will be higher but the precision will drop. To avoid issues related to the over/under-assignment of ground-truth and predicted pixels, a non-maxima suppression step is performed on the predicted motion boundary map, and a bipartite graph problem is solved to perform a 1-to-1 assignment between each detected and ground-truth boundary pixel.

Precision-recall curves are nally averaged for all images and all binary versions of the ground-truth (i.e ., annotations for the YMB dataset, thresholded maps for the ow benchmarks) to compute mean Average-Precision (mAP). In other words, for optical ow benchmarks, the stronger is a motion boundary, the higher is its impact on the evaluation score.

Experimental results

In this section, we rst give details on how we train the structured random forest. We then evaluate dierent aspects of the method, in particular the impact of optical ow algorithms and dierent cues. Furthermore, we compare our approach to various baselines. Generating motion layers. When training each node, [START_REF] Dollár | Structured forests for fast edge detection[END_REF] map the output structured labels (i.e ., edge map of a patch) into a set of discrete labels that group similar structured labels. However, computing similarities between edge maps of patches is not well dened.

Training the forest

Consequently, they propose to approximate it by computing a distance based on the ground-truth segmentation of the image. In the same spirit, training our motion boundary detector will require a segmentation, i.e., motion layers, in addition to the ground-truth motion boundary patches.

We now describe the method we use to compute motion layers from the ground-truth optical ow.

We employ a hierarchical clustering approach on ow pixels, where each pixel is connected to its 4 neighbors with a connection weight set to the magnitude of the ow dierence between them. From this initial graph, we then grow regions using average linkage by iteratively merging regions Clean versus nal version. The training set of MPI-Sintel comes in two dierent versions (clean and nal). We conduct an experiment in which we train two separate models, one for each set. Their performance on the dierent datasets is evaluated in Table 5.2 using Classic+NL [Sun et al., 2014b] ow estimation. It turns out that, surprisingly, results are consistently better across all datasets when the model is trained on the clean version of MPI-Sintel even when detecting motion boundaries on the nal version.

This might be explained by the fact that training is aected by noise, which is de facto absent from the clean set. In contrast, noise is clearly present in the nal version, in particular in the form of motion blur that tends to smooth evidence of motion boundaries. This result is conrmed for all the optical ow algorithms evaluated. We, thus, choose the clean version of MPI-Sintel to train our models in the remainder of the experiments.

Ground-Truth Farneback

TV-L1 Classic+NL LDOF DeepFlow Table 5.3 Comparison of the performance (mAP) of our approach for dierent input ows. We also compare to a baseline of motion boundaries directly computed from the ow (ow MB).

Impact of the optical ow algorithm

Our approach relies on several temporal cues, see Section 5.2.2. These cues directly depend on the algorithm used to estimate the optical ow.

We compare ve dierent algorithms: Farneback [START_REF] Farnebäck | Two-frame motion estimation based on polynomial expansion[END_REF], TV-L1 [START_REF] Zach | A duality based approach for realtime tv-l 1 optical ow[END_REF], Classic+NL [Sun et al., 2014b], LDOF [START_REF] Brox | Large displacement optical ow: descriptor matching in variational motion estimation[END_REF] and DeepFlow [START_REF] Revaud | DeepMatching: Hierarchical Deformable Dense Matching[END_REF], see Figure 5.7. We can observe that Farneback's approach results in a noisy estimation and is unreliable in untextured regions. The reason is that this approach is local and does not incorporate a global regularization. The four other approaches minimize a global energy using a coarse-to-ne scheme. TV-L1 uses the dual space for minimizing this energy. A xed point iterations allows the three remaining approaches to obtain the linear system of equations derived from the energy. They, thus, produce more accurate ow estimations, see Figure 5.7. Classic+NL includes an additional non-local smoothness term that enhances the sharpness of motion boundaries. For instance, the contour of the character is better respected than with the other methods.

LDOF and DeepFlow integrate a descriptor matching term, allowing to better handle large displacements. This is visible on the spear in Figure 5.7, whose motion is partially captured. DeepFlow improves over LDOF in the matching scheme, making it top-performer on MPI-Sintel [START_REF] Butler | A naturalistic open source movie for optical ow evaluation[END_REF] at publication time. Both DeepFlow and LDOF tend to over-smooth the ow: for instance, the motion of the spear spreads in the background.

For each of these ows, we train a separate model and report mean Average-Precision (mAP) for all datasets in Table 5.3. The performance of our approach is rather independent of the ow algorithm used, with the exception of Farneback's method which results in a signicantly worse performance. Classic+NL gives the best performance on all datasets. This can be explained by the sharpness of the ow boundaries thanks to the non-local regularization.

Comparison to a state-of-the-art baseline

In Table 5.3, we compare our method to baseline motion boundaries, extracted as the gradient norm of each ow. Note that the performance of our approach largely outperforms this baseline, for all ow methods and on all datasets. The gap is especially large for the most challenging datasets We also compare to SED [START_REF] Dollár | Structured forests for fast edge detection[END_REF] that uses the same framework, learned on dierent data.

that it was trained on synthetic high resolution data from MPI-Sintel. In addition, this shows that our method generalizes well to another dataset with dierent content and does not require specic tuning.

Impact of the temporal cues

We conduct an ablative study to determine the importance of the temporal cues used as feature channels by the classier. Table 5. First, we notice that using static cues alone already outperforms the SED edge detector [START_REF] Dollár | Structured forests for fast edge detection[END_REF], which uses the same RGB cues and learning approach, but a dierent training set. This indicates that, based on appearances cues alone, one is able to `learn' the location of motion boundaries. After examining the decision tree, we nd that, in this case, the classier learns that a color dierence between two objects is likely to yield a motion boundary.

On Middlebury, using only the rst two cues (appearance and ow) suces to accurately predict motion boundaries. The initial ow estimate is already very close to the ground-truth for this relatively easy dataset.

On the more challenging datasets (MPI-Sintel and YMB), adding the ow condence cue (i.e ., image warping errors) allows to further gain up to 2% in mean Average-Precision. As shown in Figure 5.4, the error maps indeed accurately indicate errors in the ow estimation. Finally, backward ow cues lead to an additional gain of 2%. We also conduct an analysis of the frequency of usage of each channel in the decision stumps of our learned forest. Figure 5.11 plots the resulting histogram, which conrms that, overall, all channels have approximately the same importance.

Conclusion

In this chapter, we showed that a learning-based approach using structured random forests is successful for detecting motion boundaries. Thanks to the integration of diverse appearance and temporal cues, our method is resilient to errors in ow estimation. Our approach outputs accurate motion boundaries and largely outperforms ow gradient baseline, in particular on challenging video sequences with large displacements, motion blur and compression artifacts.

The upcoming question concerns its impact on optical ow estimation.

While it is not straightforward to integrate it into a coarse-to-ne scheme, we perform an experiment in which the edges in EpicFlow are replaced by the predicted motion boundaries. The gain (in EPE) is limited to 0.01 pixel on the MPI-Sintel training set. First, we notice that even with ground-truth motion boundaries, the performance boost is limited to around 0.1 pixel, see In this chapter, we review related work on action localization. We start by a brief overview of recent advances in video classication in Section 6.1.

We then review the state of the art in action localization in Section 6.2.

Finally, Section 6.3 presents the datasets and the metrics used for evaluating action localization.

Video classication

In this section, we briey present the main families of methods for video classication or action recognition. Reviewing all works on video classication is far beyond the scope of this thesis. We refer to [START_REF] Aggarwal | Human activity analysis: A review[END_REF][START_REF] Poppe | A survey on vision-based human action recognition[END_REF][START_REF] Weinland | A survey of vision-based methods for action representation, segmentation and recognition[END_REF], Herath et al., 2016] for recent surveys. We rst propose an overview of methods based on local fea-tures (Section 6.1.1) and then briey present approaches leveraging Deep Convolutional Neural Networks (Section 6.1.2).

Local features

Most recent methods [START_REF] Laptev | On space-time interest points[END_REF][START_REF] Wang | Dense trajectories and motion boundary descriptors for action recognition[END_REF] broadcasts [START_REF] Niebles | Modeling temporal structure of decomposable motion segments for activity classication[END_REF][START_REF] Rodriguez | Action mach: a spatio-temporal maximum average correlation height lter for action recognition[END_REF], movies [START_REF] Laptev | Learning realistic human actions from movies[END_REF][START_REF] Marszalek | Actions in context[END_REF], TV broadcasts [START_REF] Patron | High ve: Recognising human interactions in tv shows[END_REF] or consumer videos [START_REF] Liu | Recognizing realistic actions from videos in the wild[END_REF][START_REF] Ikizler-Cinbis | Learning actions from the web[END_REF].

Spatio-temporal features. Local spatio-temporal features aim at representing a video by detecting and describing small video volumes. Most approaches are extensions of successful methods for images. For instance, for selecting regions that are robust to capturing conditions, [START_REF] Laptev | On space-time interest points[END_REF] extends the Harris cornerness criterion [START_REF] Harris | A combined corner and edge detector[END_REF] to videos.

In a similar spirit, the Hessian detector proposed by [START_REF] Willems | An ecient dense and scaleinvariant spatio-temporal interest point detector[END_REF] is an extension of the well-known blob detector [START_REF] Beaudet | Rotationally invariant image operators[END_REF] in images. For descriptors, [START_REF] Kläser | A spatio-temporal descriptor based on 3d-gradients[END_REF] extend the successful Histogram of Oriented Gradient (HOG) [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF] to video volumes by quantizing the gradient angles in 3D. It is also common to extract a Histogram of Optical Flow (HOF) [START_REF] Laptev | Learning realistic human actions from movies[END_REF] or a Motion Boundary Histogram (MBH) [START_REF] Wang | Dense trajectories and motion boundary descriptors for action recognition[END_REF], which is based on the gradient of the optical ow.

Trajectory features. Another way to leverage motion consists in extracting trajectory features, i.e., the temporal evolution of some point coordinates. The temporal dimension is thus treated separately from the spatial axes. Few approaches [START_REF] Sand | Particle video: Long-range motion estimation using point trajectories[END_REF][START_REF] Brox | Object segmentation by long term analysis of point trajectories[END_REF][START_REF] Lezama | Track to the future: Spatiotemporal video segmentation with long-range motion cues[END_REF] were based on long-term trajectories. However, tracking points across many frames is expensive and faces dierent challenges, e.g. large displacements or occlusions.

Consequently, most recent works use an aggregation of short-term trajectories (around 15 frames), often referred to as tracklets [START_REF] Matikainen | Trajectons: Action recognition through the motion analysis of tracked features[END_REF][START_REF] Wang | Dense trajectories and motion boundary descriptors for action recognition[END_REF]. Such trajectories can be directly computed from the optical ow [START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF]Kanade, 1981, Farnebäck, 2003] and are less sensitive to drifting thanks to their short lengths. In addition to their spatial evolution, a subvolume centered at the trajectory is often described with its appearance and motion. For instance, [START_REF] Wang | Dense trajectories and motion boundary descriptors for action recognition[END_REF] More recently, it has been proposed to cancel out the camera motion when extracting trajectories and features. For instance, [START_REF] Uemura | Feature tracking and motion compensation for action recognition[END_REF] segment the images and use feature matching in order to estimate the camera motion, as well as separate tracks induced by moving objects from those due to camera motion. [START_REF] Wang | A robust and ecient video representation for action recognition[END_REF] improve the dense trajectories features by incorporating a camera motion compensation based on matches from SURF [START_REF] Bay | Surf: Speeded up robust features[END_REF]] and optical ow. In order to avoid using matches from the actors, i.e., motion not induced by the camera, a human detector can be leveraged to remove these correspondences.

Aggregation. For classifying videos, a representation is built by aggregating local features. A typical example is the Bag-of-Words (BoW) approach [Sivic andZisserman, 2003, Csurka et al., 2004], which was originally designed for representing textual documents as word frequencies. For computer vision, visual words are obtained by clustering a huge number of local features, e.g. using k-means. The set of visual words is often referred to as dictionary. An image or video is then represented by the frequency of assignment of the local features to each visual word. This approach has been successful in many applications of computer vision, in particular for videos [START_REF] Wang | Dense trajectories and motion boundary descriptors for action recognition[END_REF], at the cost of using non-linear kernels.

Bag-of-Words only counts the number of occurrences when assigning features to the dictionary. Improved aggregation techniques have been proposed over the years. For instance, [START_REF] Van Gemert | Visual word ambiguity[END_REF] propose a soft assignment scheme instead of the hard assignment in BoW. Higher-order statistics can be used. VLAD [START_REF] Jégou | Aggregating local image descriptors into compact codes[END_REF] and super vector coding [START_REF] Zhou | Image classication using super-vector coding of local image descriptors[END_REF] model the mean of the feature points assigned to a visual word. Fisher Vectors [START_REF] Sánchez | Image classication with the sher vector: Theory and practice[END_REF] include the secondorder statistics (i.e ., the variance) and have obtained state-of-the-art performance [START_REF] Wang | A robust and ecient video representation for action recognition[END_REF] in video classication, using a linear kernel after proper normalization [START_REF] Sánchez | Image classication with the sher vector: Theory and practice[END_REF]. In our work, we use the representation of [START_REF] Wang | A robust and ecient video representation for action recognition[END_REF] based on Fisher Vectors and improved dense trajectories.

These aggregation techniques do not model any geometric relation between feature points. Several extensions incorporating local or global relations between local features have thus been proposed. For instance, [START_REF] Laptev | Learning realistic human actions from movies[END_REF] extend the spatial pyramid [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF] to videos: the aggregation is computed for several video volumes and then concatenated.

In the same spirit, [START_REF] Gaidon | Temporal Localization of Actions with Actoms[END_REF] concatenate BoW representations for 3 sub-actions. Another example is to pool the features over supervoxels as proposed by [START_REF] Taralova | Motion words for videos[END_REF] or [START_REF] Peng | Action recognition with stacked sher vectors[END_REF].

Deep learning approaches

Driven by the recent success of Deep Convolutional Neural Networks (CNN) [START_REF] Krizhevsky | Imagenet classication with deep convolutional neural networks[END_REF][START_REF] Simonyan | Very deep convolutional networks for largescale image recognition[END_REF][START_REF] Szegedy | Going deeper with convolutions[END_REF][START_REF] He | Deep residual learning for image recognition[END_REF] in image classication and in other computer vision tasks such as object detection [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF] or segmentation [Chen et al., 2015], extensions to video classication have been proposed. Such approaches can be split in 3 categories. The rst one leverages 3D convolutions [START_REF] Ji | 3D convolutional neural networks for human action recognition[END_REF][START_REF] Karpathy | Large-scale video classication with convolutional neural networks[END_REF][START_REF] Tran | Learning spatiotemporal features with 3d convolutional networks[END_REF]. [START_REF] Karpathy | Large-scale video classication with convolutional neural networks[END_REF] compare dierent architectures in which information over consecutive frames is fused at various levels. [START_REF] Tran | Learning spatiotemporal features with 3d convolutional networks[END_REF] show that using 3 × 3 × 3 lter for all convolution layers performs best in various tasks such as action classication, action similarity labeling, scene classication or object recognition. The second category is built upon recurrent neural network [START_REF] Donahue | Long-term recurrent convolutional networks for visual recognition and description[END_REF]. Visual features are computed at every frame and then Long Short-Term Memory (LSTM) units allow to incorporate temporal modeling in the architecture. In the latter category, images and optical ows are processed in two separate streams [START_REF] Simonyan | Two-stream convolutional networks for action recognition in videos[END_REF]. For the motion stream, stacking optical ows over several frames boosts performance. Most promising results have been obtained by the two-streams architecture. Results obtained with CNN are on the same order of magnitude as improved dense trajectories [START_REF] Wang | A robust and ecient video representation for action recognition[END_REF], and these two approaches can be combined eciently [START_REF] Simonyan | Two-stream convolutional networks for action recognition in videos[END_REF].

Action localization

Action detection, called also action localization, refers to the problem of recognizing the actions as well as their extent. In this thesis, we focus on human action localization in space and time. We do not consider actions performed by animals [START_REF] Xu | Can humans y? action understanding with multiple classes of actors[END_REF]. In this section, we review most techniques for temporal and spatio-temporal action localization.

Temporal localization

Initial attempts for temporal action localization are based on a slidingwindow scheme and focus on improving the search complexity [START_REF] Yuan | Discriminative subvolume search for ecient action detection[END_REF][START_REF] Duchenne | Automatic annotation of human actions in video[END_REF][START_REF] Gaidon | Temporal Localization of Actions with Actoms[END_REF]. The problem is treated as a localized classication: uniformly sampled windows are extracted and the one that obtains the maximum score is considered as the action's location. The search space remains acceptable for temporal localization, which is a 1-dimensional problem. Few improvements have been proposed. For instance, [START_REF] Gaidon | Temporal Localization of Actions with Actoms[END_REF] use a more structured representation by dividing actions into 3 sub-actions at the cost of additional annotations for these sub-actions. [START_REF] Niebles | Modeling temporal structure of decomposable motion segments for activity classication[END_REF] apply the Deformable Part Models (DPM) [START_REF] Felzenszwalb | Object detection with discriminatively trained part based models[END_REF] to the temporal domain by inferring temporal anchor points and scales for sub-events of each class. To speed-up the temporal localization, Oneata et al. [2014c] proposed an approximately normalized Fisher Vector, allowing to replace the sliding window scheme by a more ecient branch-and-bound search [START_REF] Lampert | Ecient subwindow search: A branch and bound framework for object localization[END_REF].

Several weakly-supervised approaches have also been proposed [START_REF] Bojanowski | Weakly supervised action labeling in videos under ordering constraints[END_REF][START_REF] Duchenne | Automatic annotation of human actions in video[END_REF][START_REF] Hoai | Learning discriminative localization from weakly labeled data[END_REF]. [START_REF] Duchenne | Automatic annotation of human actions in video[END_REF] use

Spatio-temporal localization

Sliding window. The set of of spatio-temporal tubes is much too large to perform sliding window in space and time. Most of the rst attempts for spatio-temporal localization [START_REF] Laptev | On space-time interest points[END_REF]Pérez, 2007, Cao et al., 2010] assume a xed spatial extent of the action, i.e., output a cuboid. Such assumption is not realistic for uncontrolled videos in which the camera and the actor may move. More recently, DPM has been extended to videos. [START_REF] Tian | Spatiotemporal deformable part models for action detection[END_REF] replace the HOG features of DPM by its 3D version, namely HOG-3D proposed by [START_REF] Kläser | A spatio-temporal descriptor based on 3d-gradients[END_REF].

Figure-centric model. [START_REF] Lan | Discriminative gure-centric models for joint action localization and recognition[END_REF] extend the Latent Support Vector Machine framework used in DPM by considering the actor location as a latent variable and add a prior to enforce similar locations across time.

Such model centered at human location is often referred to as gure-centric model. Prest et al. [2012a] propose to detect humans and objects and then model their interaction. [START_REF] Kläser | Human Focused Action Localization in Video[END_REF] use a human detector and build human tracks using KLT features tracks. The human tracks are then classied with HOG-3D descriptors [START_REF] Kläser | A spatio-temporal descriptor based on 3d-gradients[END_REF]. Other models centered on humans often require more supervision. For instance, the pose can be leveraged to improve action recognition [START_REF] Jhuang | Towards understanding action recognition[END_REF]. to link per-frame proposals, namely SelectiveSearch [START_REF] Uijlings | Selective search for object recognition[END_REF] throughout the video. Tubes are then rened using transductive learning.

Action proposals from [START_REF] Yu | Fast action proposals for human action detection and search[END_REF] are based on an actionness measure [START_REF] Chen | Actionness ranking with lattice conditional ordinal random elds[END_REF], which requires localized training samples.

Recently, [START_REF] Gkioxari | Finding action tubes[END_REF] proposed to use object proposals and object detector based on CNN [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF] for action local-ization. Object proposals from SelectiveSearch [START_REF] Uijlings | Selective search for object recognition[END_REF] are detected in each frame, scored using features from a two-streams CNN architecture, and linked across the video. Our approaches also rely on a perframe detector, but we use a tracking-by-detection to obtain tubes, which is more robust for instance in case of multiple actors.

Weakly-supervised action localization Annotating all videos with bounding boxes in every frame of an action is not realistic for large-scale datasets. Weakly-supervised action localization is thus necessary, but has received little attention so far. [START_REF] Siva | Weakly supervised action detection[END_REF] dene cuboids of dierent time lengths around detected humans, describe them with spacetime interest points (STIPs) [START_REF] Laptev | On space-time interest points[END_REF] and then use Multiple Instance Learning (MIL). Their method can thus only be used for static humans. [START_REF] Mosabbeb | Multi-label discriminative weakly-supervised human activity recognition and localization[END_REF] use a subspace segmentation clustering approach applied on groups of trajectories in order to segment videos into parts.

Low-rank matrix completion then estimates the contribution of each cluster to the dierent labels. Hence, the approach detects several disjoint action parts and not one spatio-temporal consistent localization. [START_REF] Ma | Action recognition and localization by hierarchical space-time segments[END_REF] rst extract a per-frame hierarchical segmentation, which is tracked over the videos. Using a foreground scoring, they obtain a hierarchy of spatiotemporal segments where the upper level corresponds to human body location candidates. More recently, [START_REF] Chen | Action detection by implicit intentional motion clustering[END_REF] propose to generate unsupervised proposals by clustering intentional motion based on dense trajectories. A classier is then learned using the best proposal of a video as positive sample. It is thus a weakly-supervised method but which assumes only one action per video during training. Furthermore, this method is not robust to nearby motions and assumes signicant motion.

Some action classication methods automatically discover discriminative parts to improve the performance, but do not aim at precisely localizing the action. For instance, [START_REF] Shapovalova | Similarity constrained latent support vector machine: An application to weakly supervised action classication[END_REF] extend latent SVM to model pairwise similarities between latent variables, aiming at discovering common parts for a particular action. [START_REF] Boyraz | Action recognition by weakly-supervised discriminative region localization[END_REF] optimize jointly the classication error with the location of a xed number of discriminative parts. [START_REF] Lan | Action recognition by hierarchical mid-level action elements[END_REF] leverage a discriminative clustering approach for parsing complex actions into mid-level action elements.

Datasets and metrics

In this section, we rst present the datasets for evaluating human action localization. We then present the standard evaluation metrics. The DALY dataset we introduced in this thesis is presented in Chapter 8.

Datasets

We describe the datasets for evaluating action localization, namely UCF-Sports, J-HMDB, UCF-101 and MSR-II. Figure 6.1 illustrates few frames from these benchmarks.

• The UCF-Sports dataset [START_REF] Rodriguez | Action mach: a spatio-temporal maximum average correlation height lter for action recognition[END_REF] consists of 150 sports videos with 10 actions, such as diving or running. The number of videos is limited, with for instance 4 training and 2 test videos for the class lifting.

Videos are trimmed to the action and every frame is annotated with a bounding box. For each class, the sequences present similarities in background, camera viewpoint and actors, which is a limitation of this dataset.

In our experiments, we use the train/test split dened by [START_REF] Lan | Discriminative gure-centric models for joint action localization and recognition[END_REF].

• The J-HMDB dataset [START_REF] Jhuang | Towards understanding action recognition[END_REF] contains 928 short videos with dataset [START_REF] Kuehne | HMDB: a large video database for human motion recognition[END_REF] for action classication for which additional annotations such as the pose and the silhouette are provided. The videos are trimmed to the action, are very short (1.4 sec on average) and contain only one human most of the time. We use the bounding boxes around the silhouettes as ground-truth. The dataset has 3 train/test splits.

• The UCF-101 dataset [START_REF] Soomro | UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild[END_REF] is dedicated to action classication with more than 13000 videos and 101 classes. For a subset of 24 sports labels, the spatio-temporal extent of the actions is annotated. This represents 3207 videos. In contrast to UCF-Sports and J-HMDB, the detection is also temporal but the videos remain short; for half of the classes, the action lasts for more than 80% of the video duration. Figure 6.2 shows a histogram of the action durations in the training set, averaged over all 24 classes. Some of the actions are long, such as `soccer juggling' or `ice dancing', whereas others last only few frames, e.g. `tennis swing' or `basketball dunk'. There are 3 train/test splits.

• The MSR-II dataset [START_REF] Cao | Cross-dataset action detection[END_REF] consists of 54 videos that last 51s on average. Actors alternate between performing 3 articial actions (namely handwaving, handclapping and handboxing) and walking around in dierent realistic places. Annotations consist in a bounding volume around the moving parts (e.g . the hands) in the action. The standard protocol [START_REF] Cao | Cross-dataset action detection[END_REF] consists in using the KTH dataset [START_REF] Schüldt | Recognizing human actions: a local svm approach[END_REF] for training. The KTH dataset is one of the rst benchmark for action recognition. The videos contain a xed and almost uniform background with few actors performing a set of 6 actions (including the three labels from MSR-II) multiple times. This protocol can not be used for evaluating weakly-supervised approach as the spatial extent of the actions in the training videos corresponds to the full frames.

Metrics

The standard metric consists in computing the mean Average-Precision (mAP) at a given threshold δ. A detection is correct if the IoU (Intersection over Union) with the ground-truth is over a threshold δ. The IoU between tubes is dened as the IoU over the temporal domain, multiplied by the average of the spatial IoU over all overlapping frames. As this is standard in detection, duplicate detections are considered as wrong. The average precision is then computed for each class, with a threshold δ = 50% when the localization is limited to the spatial domain (UCF-Sports, J-HMDB) and δ = 20% for spatio-temporal detection (UCF-101). The reported results are averaged over the classes and the splits. When comparing to the state of the art on UCF-Sports, we also plot ROC curves and report the Area Under the Curve (AUC) as done by previous work. Note that this metric is impacted by the set of negatives detections and, thus, may not be suited for a detection task [START_REF] Everingham | The PASCAL VOC Challenge[END_REF]. Indeed, if one adds many easy negatives, i.e., negatives that are ranked after all positives, the AUC increases while the mAP remains the same. Some other works also report the mean-IOU, which is the average IoU between the best detection in a test video and the ground-truth tube.

Chapter 7

Action-specic Tracks for Action Localization Our approach starts from frame-level proposals extracted with a highrecall proposal algorithm [START_REF] Zitnick | Edge boxes: Locating object proposals from edges[END_REF]. Proposals are scored using CNN descriptors based on appearance and motion information [START_REF] Gkioxari | Finding action tubes[END_REF]. To ensure the temporal consistency, we propose to track them with a tracking-by-detection approach combining instance-level and class-level detectors. We then score the tracks with the CNN features as well as spatio-temporal local features that capture the dynamics of an action. At this stage, the tracks are localized in space, but the temporal localization needs to be determined. Temporal localization is performed using a multi-scale sliding-window approach at the track level.

In summary, this chapter introduces an approach for fully-supervised spatio-temporal action localization with state-of-the-art experimental results on UCF-Sports, J-HMDB and UCF-101. Spatio-temporal local features allow to single out more relevant tracks and temporally localize the action at the track level. As local features, we compare a proposed spatiotemporal motion histogram (STMH) descriptor at the track level and the standard improved dense trajectories (IDT) [START_REF] Wang | A robust and ecient video representation for action recognition[END_REF]. In the preliminary version from ICCV'15 [Weinzaepfel et al., 2015a], only results with STMH were reported.

Closest references. Our proposed method is related to gure-centric models. In particular, [START_REF] Kläser | Human Focused Action Localization in Video[END_REF] use a human detector. The detected humans are then tracked across frames using optical ow and the track is classied using HOG-3D [START_REF] Kläser | A spatio-temporal descriptor based on 3d-gradients[END_REF]. Our approach also relies on tracking, but is more robust to appearance and pose changes by using a tracking-by-detection approach [START_REF] Hare | Struck: Structured output tracking with kernels[END_REF][START_REF] Kalal | Tracking-learning-detection[END_REF], in combination with a class-specic detector. In addition, we classify the tracks using per-frame CNN features and spatio-temporal features.

Recently, [START_REF] Gkioxari | Finding action tubes[END_REF] proposed to use object proposals for action localization. Object proposals from SelectiveSearch [START_REF] Uijlings | Selective search for object recognition[END_REF] are detected in each frame, scored using features from a two-streams CNN architecture, and linked across the video. Our approach is more robust since we do not force detections to pass through proposals at every frame. Moreover, we combine the per-frame CNN features with descriptors extracted at a spatio-temporal level to capture the dynamics of the actions.

Outline. This chapter is organized as follows. We present an overview of our approach in Section 7.2 and then give the details in Section 7.3. Finally, Finally, we perform a temporal sliding window for detecting the temporal extent of the action.

Section 7.4 presents experimental results.

Overview of the approach

Our approach for spatio-temporal action localization consists of four stages, see Figure 7.1. We now briey present them and then provide a detailed description in Section 7.3.

Extracting and scoring frame-level proposals. Our method extracts a set of candidate regions at the frame level. We use EdgeBoxes [START_REF] Zitnick | Edge boxes: Locating object proposals from edges[END_REF], as they obtain a high recall even when considering relatively few proposals [START_REF] Hosang | What makes for eective detection proposals?[END_REF]. Each proposal is represented with CNN features [START_REF] Gkioxari | Finding action tubes[END_REF]. These CNN features leverage both static and motion information and are trained to discriminate the actions against background regions. This is capital since most of the proposals do not contain any action. For each class, a hard negative mining procedure is performed in order to train an action-specic classier. Given a test video, frame-level candidates are scored with these action-specic classiers.

Tracking best candidates. Given the frame-level candidates of a video, we select the highest scoring ones per class and track them throughout the video. Our tracking method is based on a standard tracking-by-detection approach leveraging an instance-level detector as well as a class-level classier. The detector is based on the same CNN features as the rst stage. We perform the tracking multiple times for each action, starting from the proposal with the highest score that does not overlap with previous computed tracks.

Scoring tracks. The CNN features only contain information extracted at the frame level. Consequently, they are not able to capture the dynamics of an action across multiple frames. Thus, we propose to use spatio-temporal local features. We introduce a spatio-temporal motion histogram (STMH).

It is inspired by the success of dense trajectory descriptors [START_REF] Wang | Dense trajectories and motion boundary descriptors for action recognition[END_REF]. Given a xed-length chunk from a track, we divide it into spatiotemporal cells and compute an histogram of gradient, optical ow and motion boundaries in each cell. A hard negative mining is employed to learn a classier for each class. We also tried using the classical Fisher Vector aggregation of improved dense trajectories (IDT) [START_REF] Wang | A robust and ecient video representation for action recognition[END_REF]. The nal score is obtained by combining CNN with STMH or IDT classiers.

Temporal localization. To detect the temporal extent of an action, we use a multi-scale sliding window approach over tracks. At test time, we rely on temporal windows of dierent lengths that we slide with a stride of 10 frames over the tracks. We score each temporal window according to CNN features, local features (STMH or IDT) and a duration prior learned on the training set. For each track, we then select the window with the highest score.

Detailed description of the approach

In this section, we detail the four stages of our action localization approach. Given a video of T frames {I t } t=1..T and a class c ∈ C (C being the set of classes), the task consists in detecting if the action c appears in the video and if yes, when and where. In other words, the approach outputs a set of regions {R t } t=t b ..te with t b (resp. t e) the beginning (resp. end) of the predicted temporal extent of the action c and R t the detected region in frame I t .

Frame-level proposals with CNN classiers

Frame-level proposals. State-of-the-art methods [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF] for object localization replace the sliding-window paradigm used in the past decade by object proposals. Instead of scanning the image at every location, at several scales, object proposals allow to signicantly reduce the number of candidate regions, and narrow down the set to regions that are most likely to contain an object.

For every frame, we extract EdgeBoxes [START_REF] Zitnick | Edge boxes: Locating object proposals from edges[END_REF] using the online code 1 and keep the best 256 proposals according to the EdgeBox score. We denote by P t the set of object proposals for a frame I t . In Section 7.3.2, we introduce a tracking approach that makes our method robust to missing proposals.

CNN features. Recent work on action recognition [START_REF] Simonyan | Two-stream convolutional networks for action recognition in videos[END_REF] and localization [START_REF] Gkioxari | Finding action tubes[END_REF] have demonstrated the benet of CNN feature representations, applied separately on images and optical ows. We use the same set of CNN features as [START_REF] Gkioxari | Finding action tubes[END_REF]. the motion-CNN, initialization weights are trained for the task of action recognition on the UCF-101 dataset [START_REF] Soomro | UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild[END_REF] with full frames of the training set of split 1. We then ne-tune the networks with backpropagation using Cae 3 [START_REF] Jia | Cae: Convolutional architecture for fast feature embedding[END_REF] on the proposal regions for each dataset. Each batch contains 25% of non-background regions.

Action classiers. For each action class c ∈ C, we train a linear SVM using hard negative mining. The positives are given by the ground-truth annotations and negatives by all proposals whose overlap with a groundtruth region is below 30%. At test time, we denote by S CNN (c, R) the score of a region R for the action class c given by the trained classier. This yields a condence score for the region R and an action class c.

Tracking

The second stage consists in tracking the best proposals over the video.

We use a tracking-by-detection approach that leverages instance-level and class-level detectors. Let R be a region in frame I τ for the class c to be tracked. As a result, the tracking stage will output a track T c = {R t } t=1..T .

The track provides a candidate localization for the action c. We rst present how the tracker is initialized. Then, we detail the tracking procedure. Finally, we explain the selection of the regions to track.

Initialization. Given a region R to be tracked in frame I τ , the rst step is to rene the position and size of the region by performing a sliding-3. http://caffe.berkeleyvision.org/ window search both in scale and space in the neighborhood of R. Let N (R) be the set of windows scanned with a sliding window around the region R. The best region according to the action-level classier is selected: R τ = argmax r∈N (R) S CNN (c, r). The sliding-window procedure using CNN features can be performed eciently [START_REF] Giusti | Fast image scanning with deep max-pooling convolutional neural networks[END_REF][START_REF] Sermanet | Overfeat: Integrated recognition, localization and detection using CNN[END_REF].

Given the rened region, we train an instance-level detector using a linear SVM. The set of negatives comprises the instances extracted from boxes whose overlap with the original region is less than 10%. The boxes are restricted to regions in P τ , i.e., the proposals in frame τ . The set of positives is restricted to the rened region R τ . This strategy is consistent with current tracking-by-detection approaches [START_REF] Hua | Occlusion and Motion Reasoning for Long-term Tracking[END_REF]. Denote by S inst (R) the score of the region R with the instance-level classier. We now present how the tracking proceeds over the video. We rst do a forward pass from frame I τ to the last frame I T , and then a backward pass from frame I τ to the rst frame.

Algorithm 7.1 Class-specic tracking.

Input: a region R in frame

I τ to track, a class c Output: a track T c = {R t } t=1..T R τ ← argmax r∈N (R) S CNN (c, r) Pos ← {R τ } Neg ← {r ∈ P τ | IoU(r, R τ) < 0.1}
For i = τ + 1 ... T and τ -1 ... 1:

Learn instance-level classier from Pos and Neg

R i ← argmax r∈N (R i) (S CNN (c, r) + S inst (r)) Neg ← Neg ∪ {r ∈ P τ | IoU(r, R i) < 0.1} Neg ← {r ∈ Neg|S inst (r) ≥ -1} (restrict to hard negatives) Pos ← Pos ∪ {R i }
Update. Given a tracked region R t in frame I t , we now want to nd the most likely location in frame I t+1 . We rst map the region R t into R t+1 , by shifting the region with the median of the ow between frame I t and I t+1 inside the region R t . We then select the best region in the neighborhood of R t+1 using a sliding window that leverages both class-level and instance- level classiers:

R t+1 = argmax r∈N (R t+1)
S inst (r) + S CNN (c, r) .

(7.1)

In addition, we update the instance-level classier by adding R t+1 as a positive exemplar and proposals P t+1 from frame I t+1 that do not overlap with this region as negatives. Note that at each classier update, we restrict the set of negatives to the hard negatives.

The tracking algorithm is summarized in Algorithm 7.1. By combining instance-level and class-level information, our tracker is robust to signicant changes in appearance and occlusion. Note that category-specic detectors were previously used in other contexts, such as face [START_REF] Kalal | Face-TLD: Tracking-Learning-Detection Applied to Faces[END_REF] or people [START_REF] Gall | On-line adaption of class-specic codebooks for instance tracking[END_REF] tracking. We demonstrate the benet of such detectors in our experiments in Section 7.4.

Proposals selection. We now present how we chose the proposals to track. We rst select the subset of classes for which the tracking is performed. To this end, we assign a score to the video for each class c ∈ C and keep the top-5. The score for a class c is dened as max r∈Pt,t=1..T S CNN (c, r), i.e., we keep the maximum score for c over all proposals of the video.

When generating tracks for the class c, we rst select the proposal with the highest score over the entire video. We run the tracker starting from this region and obtain a rst track. We then perform the tracking iteratively, starting a new track from the best proposal that does not overlap with any previous track from the same class. In practice, we compute 2 tracks for each selected class. components. For HOF, a bin for an almost zero value is added, with a threshold at 0.04. In practice, we use 3 temporal cells and 8 × 8 spatial cells, resulting in 3 × 8 × 8 × (8 + 9 + 8 + 8) = 6336 dimensions. Note that we use more spatial cells than [START_REF] Wang | Dense trajectories and motion boundary descriptors for action recognition[END_REF], as our regions are on average signicantly larger than the 32 × 32 patch they use.

Improved dense trajectories. We compare STMH with the classical improved dense trajectories (IDT) representation [START_REF] Wang | A robust and ecient video representation for action recognition[END_REF]. Dense trajectories are extracted and described using HOG, HOF and MBHx and MBHy. For a given track, we build a Fisher Vector per descriptor type, using only the trajectories that start inside the track. Each of the 4 Fisher Vectors is then independently power-normalized and L2-normalized [START_REF] Sánchez | Image classication with the sher vector: Theory and practice[END_REF]. A tube is nally described by the concatenation of the 4 normalized Fisher Vectors, resulting in 102400 dimensions.

Fusion. For each action, we train a linear SVM using hard negative mining. The set of positives is given by features extracted along the groundtruth annotations, while the negatives are given by cuboids (spatially and temporally) centered at the proposals that do not overlap with the groundtruth. Let S desc (c, T) be the score according to local features classiers. For IDT, S desc (c, T) is the output of the linear classifer for the representation extracted from the track T for the action c. For STMH, it is the average of the scores for all the chunks of length L inside the track. Given a track T = {R t } t=1..T , we score it by summing the scores from the CNN averaged over all frames, and the scores from the local descriptors:

S(T) = σ S desc (c, T) + σ T t=1 S CNN (c, R t) , (7.2)
where σ(x) = 1/(1 + e -x). We summarize the resulting approach for spatiotemporal detection in Algorithm 7.2.

Temporal localization

Similar to the winning approach in the temporal action detection track of the Thumos 2014 challenge [Oneata et al., 2014b], we use a slidingwindow strategy for temporal localization. However, we apply the sliding window directly on each track T , while Oneata et al. [2014b] used features extracted for the full frames. The window length takes values of 20, 30,40,50,60,70,[START_REF] Weber | Parallel algorithms for approximation of distance maps on parametric surfaces[END_REF]90,100,150,300,450

Experimental results

In this section, we present experiment results on three action localization approach: UCF-Sports, J-HMDB and UCF-101. We refer to Section 6.3 for details on these benchmarks as well as the evaluation metrics. We rst study the impact of both the tracking and the class selection, and then provide a parametric study of STMH. Finally, we show that our approach outperforms the state of the art for spatio-temporal action localization.

Impact of the tracker

The strength of our approach lies in the combination of class-specic and instance-level detectors in the tracker. To measure the benet of this combination, Table 7.1 compares the performance when removing one of Table 7.1 Impact of the detectors used in the tracker. We measure if the tracks generated for the ground-truth label cover the ground-truth tracks (recall-track). We also measure the impact of the tracker on the nal detection performance (mAP). The experiments are done on UCF-Sports and J-HMDB (split 1 only) using CNN and STMH features.

them. `Recall-tracks' measures if at least one of the 2 generated tracks for the ground-truth action covers the ground-truth annotations (IoU ≥ 0.5), i.e., it measures the recall at the track level. We also measure the impact on the nal detection performance (mAP) by running our full pipeline with each tracker.

On UCF-Sports, tracking obtained by combining the detectors leads to the highest recall. Using the instance-level detector signicantly degrades the recall by 13%. This can be explained by the abrupt changes in pose and appearance for actions such as diving or swinging. On the other hand, the instance-level detector performs well on the J-HMDB dataset, which contains more static actions.

Combining instance-level and class-specic classiers also gives the best performance in term of nal detection results. On UCF-Sports, this is mainly due to the higher recall. On J-HMDB, we nd that using the instance-level detector only leads to a better recall but the precision decreases because there are more tracks from an incorrect label that have a high score.

Table 7.2 compares the localization mAP on UCF-Sports when using our proposed tracker or a linking strategy as [START_REF] Gkioxari | Finding action tubes[END_REF].

We experiment with proposals from SelectiveSearch [START_REF] Uijlings | Selective search for object recognition[END_REF] (approximately 2700 proposals per frame) or EdgeBoxes [START_REF] Zitnick | Edge boxes: Locating object proposals from edges[END_REF] (top-256), with CNN features only or combined with STMH. We can see that using EdgeBoxes instead of SelectiveSearch leads to a gain of 6%

when using STMH in addition to CNN features. Using a tracking strategy leads to a further gain of 7%, with in addition a more rened localization, see Figure 7.5. This shows that the tracker is a key component to the success of our approach.

Class selection

We now study the impact of selecting the top-5 classes based on the maximum score over all proposals from a video for a given class, see Section 7.3.2. We measure the percentage of cases where the correct label is in the top-k classes and shows the results in Figure 7.4 (blue curve). Most of the time, the correct class has the highest maximum score (around 85% on UCF-Sports and 61% on J-HMDB). If we use top-5, we misclassify less than 10% of the videos on J-HMDB, and 0% on UCF-Sports. In addition, we display in red the evolution of the mAP on UCF-Sports and J-HMDB (split 1 only) using CNN and STMH features when changing the number of selected classes. Initially, the performance signicantly increases as this corrects the cases where the correct label is top-k but not rst, i.e., the recall increases. The performance then saturates since, even in the case where a new correct label is tracked over a video, the nal score will be low and will not have an important impact on the precision. As a summary, selecting the top-k classes performs similar as keeping all classes while it signicantly reduces the computational time.

STMH parameters

We now study the impact of the number of temporal and spatial cells in STMH. For evaluation, we consider the classication task and learn a linear SVM on the descriptors extracted from the ground-truth annotations of the training set. We then predict the label on the test set, assuming the groundtruth localization is known, and report mean Accuracy. Results are shown in Table 7.3. We can see that the best performance is obtained with N s = 8 spatial cells on both datasets, independently of the number of temporal cells N t . By increasing the number of cells to a higher value, e.g. 16, the descriptor becomes too specic for a class. When using a unique temporal cell, i.e., N t = 1, the performance is signicantly worse than for N t = 3. We choose N s = 8 and N t = 3 in the remainder of the experiments. The Using the same protocol, we obtain a slightly better performance of 91.9% for UCF-Sports and 57.99% for J-HMDB using IDT. Note that STMH is an order of magnitude faster to extract as it does not require features aggregation and has a lower dimension.

Comparison to the state of the art

In this section, we compare our approach to the state of the art. On UCF-Sports, past works usually plot ROC curves and report Area Under the Curve (AUC). Figure 7.5 (left) shows a comparison with the state of the art using the same protocol for dierent IoU thresholds δ. We can observe that our approach outperforms the state of the art. Note that at a low threshold, all methods obtain a comparable performance, but the gap widens for larger one, i.e., more precise detections. Indeed, our spatial localization enjoys a high precision thanks to the tracking: the position of the detected region is rened in each frame using a sliding window. As a consequence, the IoU between our detected tracks and the ground-truth is high, explaining why our performance remains constant between a low threshold and a high threshold δ. Method mAP [START_REF] Gkioxari | Finding action tubes[END_REF] 68.9 ± 1.1 68.7 ± 1.1 68.2 ± 1.2 66.8 ± 1.5 in appearance, the actor is successfully tracked throughout the video. For detection, mAP is more suitable as it does not depend on negatives. Results are shown in Figure 7.5 (right). We outperform the state of the art with a margin of 19% and obtain a mAP of 95.1% using CNN and IDT features.

We also compute the mAP when scoring with CNN features only (resp.

with CNN and STMH features), and observe a drop of 7% (resp. 5%).

The results for the J-HMDB dataset are given in Table 7.4. We also outperform the state of the art by more than 13% on J-HMDB at a standard threshold δ = 0.5. In particular, adding IDT (resp. STMH) to CNN features leads to an improvement of 10% (resp. 4%). This shows that CNN and spatio-temporal local features are complementary. We can also see that the mAP is stable w.r.t. the threshold δ. This highlights once again the high precision of the spatial detections, i.e., they all have a high overlap with the ground-truth, thanks to the tracking. Finally, we report the results for spatio-temporal detection on the UCF-101 dataset in Table 7.5. We obtain a mAP of more than 61% (resp. 47%) using CNN and IDT (resp. STMH) features at a standard threshold δ = 20% despite the challenge of detecting an action both spatially and temporally. At a threshold δ = 5%, we obtain a mAP of 70% compared to 43% reported by [START_REF] Yu | Fast action proposals for human action detection and search[END_REF]. Figure 7.7 and 7.8 show example results. We can observe that the result for the action `Basketball' is precise both in space and time. While most of the 24 action classes cover almost the entire video, i.e., there is no need for temporal localization, the action `Basketball' covers on average one fourth of the video, i.e., it has the shortest relative duration in UCF-101. For this class our temporal localization approach improves the performance signicantly. The AP for Basketball is 28.6% (δ = 20%) with our full approach. If we remove the temporal localization step, the performance drops to 9.63%. This shows that our approach is capable of localizing actions in untrimmed videos. With respect to tracking in untrimmed videos, tracking starts from the highest scoring proposal in both directions (forward and backward) and continues even if the action is no longer present. The temporal sliding window can then localize the action and removes parts without the action.

Conclusion

In this chapter, we presented an eective approach for action localization in both space and time. Our approach builds upon object proposals was achieved, see for example [START_REF] Gkioxari | Finding action tubes[END_REF], Weinzaepfel et al., 2015a[START_REF] Wang | Video action detection with relational dynamic-poselets[END_REF]. Nevertheless, these methods require a large amount of supervision. For instance, per-frame bounding box annotations are used for training class-specic detectors [START_REF] Gkioxari | Finding action tubes[END_REF]Malik, 2015, Weinzaepfel et al., 2015a]. [START_REF] Wang | Video action detection with relational dynamic-poselets[END_REF] additionally require pose annotations, as they represent actions as a sequence of skeleton models.

Several works have suggested to generate action proposals before classifying them [START_REF] Puscas | Unsupervised tube extraction using transductive learning and dense trajectories[END_REF][START_REF] Van Gemert | Apt: Action localization proposals from dense trajectories[END_REF]. However, supervision is still required for learning to classify these hundreds or thousands of proposals. Consequently, all these approaches are restricted to relatively small datasets because of the supervision cost and can not be generalized easily to more classes.

In this chapter, we propose a weakly-supervised action localization method, i.e., that does not require any spatial annotation for training. The rst step of our approach consists in extracting human tubes from videos. Using human tubes for action recognition is not a novel idea [START_REF] Kläser | Human Focused Action Localization in Video[END_REF][START_REF] Laptev | Retrieving actions in movies[END_REF][START_REF] Yu | Fast action proposals for human action detection and search[END_REF]. However, we show for the rst time that extracting highly robust human tubes is possible by leveraging a recent state-of-the-art object detection approach [START_REF] Ren | Faster r-cnn: Towards real-time object detection with region proposal networks[END_REF], a large annotated dataset of humans in a variety of poses [START_REF] Andriluka | 2d human pose estimation: New benchmark and state of the art analysis[END_REF] and state-of-the-art tracking-by-detection [START_REF] Hare | Struck: Structured output tracking with kernels[END_REF][START_REF] Kalal | Tracking-learning-detection[END_REF]. We show that a small number of human tubes per video is sucient to obtain more than 95% recall on challenging action localization datasets. Our approach outperforms existing video proposal methods by an order of magnitude, as shown in Section 8.3.3. As a second step, we describe human tubes with improved dense trajectories [START_REF] Wang | A robust and ecient video representation for action recognition[END_REF] and use multi-fold Multiple Instance Learning (MIL) [START_REF] Cinbis | Weakly Supervised Object Localization with Multi-fold Multiple Instance Learning[END_REF] to select human tubes containing the action. This manages to select proposals corresponding to the annotated action category accurately. During testing, we extract human tubes and we obtain a mAP using classiers learned from the tubes selected in the training videos. for 10 realistic daily actions. The task is to localize relatively short actions in long untrimmed videos. Furthermore, it includes videos with multiple humans performing actions at the same time. On the DALY dataset, our tubes have a spatial recall of 82%, but the detection task is extremely challenging, and we obtain 10.8% mAP.

Closest references. Our approach is based on human tubes. In a similar spirit, [START_REF] Kläser | Human Focused Action Localization in Video[END_REF] use a human detector and build human tubes using KLT features tracks. The human tracks are then classied with HOG-3D descriptors [START_REF] Kläser | A spatio-temporal descriptor based on 3d-gradients[END_REF]. Our human tubes are signicantly more robust to huge variations in pose and appearance thanks to a human-specic tracking-by-detection approach [START_REF] Hare | Struck: Structured output tracking with kernels[END_REF][START_REF] Kalal | Tracking-learning-detection[END_REF] as well as recent advances in detectors [START_REF] Ren | Faster r-cnn: Towards real-time object detection with region proposal networks[END_REF] and datasets [START_REF] Andriluka | 2d human pose estimation: New benchmark and state of the art analysis[END_REF]. In addition, our approach is weakly-supervised, i.e., does not require bounding box annotation for labeling the training samples.

Recently, CNNs for human action localization have emerged [START_REF] Gkioxari | Finding action tubes[END_REF]Malik, 2015, Weinzaepfel et al., 2015a]. These approaches rely on appearance and motion CNNs for classifying region proposals in individual frames. Tracks are obtained by combining class-specic detections with either temporal linking based on proximity [START_REF] Gkioxari | Finding action tubes[END_REF] or by class-specic tracking-by-detection [Weinzaepfel et al., 2015a]. Our approach also relies on tracking-by-detection, but performs generic human detections and tracking. Thus the complexity is divided by the number of classes and the tracks can be used for weakly-supervised learning. Furthermore, our tracker is signicantly faster, as it uses the region-pooling layer of faster R-CNN [START_REF] Ren | Faster r-cnn: Towards real-time object detection with region proposal networks[END_REF] for feature computation.

Our human tubes can also be viewed as action proposals [Jain et al., 2014b[START_REF] Van Gemert | Apt: Action localization proposals from dense trajectories[END_REF][START_REF] Yu | Fast action proposals for human action detection and search[END_REF][START_REF] Puscas | Unsupervised tube extraction using transductive learning and dense trajectories[END_REF], Oneata et al., 2014a]. While all these methods generate thousands of proposals and require ground-truth to annotate the proposals used for training, we obtain only several human tube proposals, thus allowing us to apply Multiple Instance Learning (MIL) eectively. More recently, [START_REF] Mettes | Spot on: Action localization from pointly-supervised proposals[END_REF] learn to classify proposals with less supervision, requiring only several points inside the ground-truth tube.

For weakly-supervised action localization, [START_REF] Siva | Weakly supervised action detection[END_REF] dene cuboids of dierent time lengths around detected humans, describe them with STIPs [START_REF] Laptev | On space-time interest points[END_REF] and then use Multiple Instance Learning (MIL).

Their method can thus only be used for static humans whereas ours can be generalized to more complex and realistic motions. Similar to the method from [START_REF] Chen | Action detection by implicit intentional motion clustering[END_REF], our approach is also based on action proposals (human tubes in our case). However, in contrast to their method, ours uses MIL and thus does not assume only one action per video during training.

Outline. This chapter is organized as follows. Section 8.2 presents the datasets used for evaluation and introduces our DALY dataset. We then describe our approach for extracting human tubes in a video (Section 8.3) and our weakly-supervised learning method using multi-fold MIL (Section 8.4).

Finally, experimental results are presented in Section 8.5.

Dataset and evaluation

Experiments are conducted three existing action localization datasets (namely UCF-Sports, J-HMDB and UCF-101), described in Section 6.3.

However, these benchmarks are limited by the type of actions (mainly sports), the lack of diversity in the videos and the duration of the videos, see Table 8.1 for details. There is a clear need for a realistic dataset for spatio-temporal action localization. We introduce DALY, a dataset for Daily Action Localization in YouTube 1 . The DALY dataset consists of 31 hours of YouTube videos, with spatial and temporal annotations for 10 everyday human actions: applying make up on lips, brushing teeth, cleaning oor, cleaning windows, drinking, folding textile, ironing, phoning, playing harmonica and taking photos/videos, see Figure 8.2. The videos are collected from YouTube using related queries. We collect 510 videos, i.e., 51 videos per category, representing a total of around 3.3M frames. Each video lasts between 1 and 20 minutes with an average duration of 3min 45s. We generate a split with 31 training videos and 20 test videos for each class, ensuring that videos with the same characters or scenes are in the same set.

Temporal annotations of the 10 actions result in 3724 instances in total.

Actions are short (8 seconds on average) with some classes having very brief instances (e.g . drinking) or somewhat longer (e.g . brushing teeth).

The actions cover about 25% of the videos. For each instance in the test set, we annotate the spatial extent, i.e. a bouding box around the actor, for 5 regularly sampled frames. Note that videos can contain simultaneously multiple actions, see bottom row, middle and right column in Figure 8

Building human tubes

Given a video V with F frames, spatio-temporal action localization aims at detecting when and where actions are performed. More precisely, for each instance of an action, a tube T , i.e., a set of bounding boxes T = {b f } f =fs..fe around the actor is returned, with one box b f per frame f during the predicted temporal extent of the action between frames f s and f e .

This section presents the human detector (Section 8.3.1) and the humanspecic tracker (Section 8.3.2) used to obtain reliable human tubes. We denote by T V the set of human tubes proposals extracted for a video V .

Section 8.3.3 presents an evaluation of the obtained human tubes and a comparison with state-of-the-art action proposals.

Human detector

Faster R-CNN detector. We use the state-of-the-art detector Faster R-CNN [START_REF] Ren | Faster r-cnn: Towards real-time object detection with region proposal networks[END_REF] to train our human detector. Faster R-CNN integrates a Region Proposals Network (RPN) to produce 300 proposals per image, that are classied as background or a particular class (here `human').

Detection is extremely fast (around 200ms per image on a GPU) since convolutions are only computed once and then used both for generating proposals and for scoring each proposal using a region pooling layer. Faster R-CNN also includes bounding box regression to overcome the stride of the network which limits the precision of the estimated localization. We use the examples) and to humans that are not fully-visible (third example). Nevertheless, detection are sometimes imprecise, for example not completely covering the human (second example). Note that there can be multiple detections when dierent people are present (fourth example).

Human-specic tracker

Once humans are detected, the second step consists in tracking these humans to build tube proposals. To this end, we design a human-specic tracking-by-detection approach. In the following, we present the dierent steps of our approach. It is summarized in Algorithm 8.1.

Boxes to track. The list of boxes to track is initialized with all detected candidates B f in all frames f . We start by building a rst track T = {b f } f =1..F using the detection with the highest human score in the entire video sequence. Once we have tracked this detection over the whole sequence, we remove all detections that have an Intersection Over Union We continue until we reach the end of the sequence updating the instancelevel detector on the y, see next paragraph. At the end of the forward pass, we reset the instance-level detector and track the initial rened box backward until the beginning of the sequence.

Instance-level detector update. At each frame, we also update the instance-level detector by adding b i to the set of positive features P and boxes from B i with (almost) no overlap with b i to the negatives N . At each iteration, we furthermore restrict N to the hard negatives.

Ecient computation. Launching the tracker multiple times on a sequence can be performed eciently. To extract human tubes in a video V , we rst run Faster R-CNN in every frame f to detect humans. We also keep in cache the results of the last convolution layer denoted by conv5 f , which will be used for the sliding window, and the last fully connected layer f c7 f , which will be used as feature descriptors for the negatives of the instancelevel detector. Now, when performing a sliding window at frame f using a forward pass of the network, we do not need to re-compute the convolutions, and we can directly start from conv5 f . Similarly, the f c7 feature descriptors of all detections are cached, so updating the set of negatives does not require any additional computation.

Evaluation of our human tube proposals

We compare our human tubes to the state-of-the-art action proposals on the UCF-Sports dataset. Two dierent metrics are used. The rst one is recall@0.5, i.e., the ratio of ground-truth tubes covered by at least one proposal with average spatial IoU over 0.5, while varying the number of proposals. The second metric is the recall, computed over all proposals, for varying IoU thresholds. Results are presented in Figure 8.5. We can clearly see that our human tubes outperform the other approaches by a large margin. Given few proposals (3 on average), we obtain a recall of 95% at 0.5 IoU, whereas state-of-the-art approaches do not reach this recall with signicantly more proposals (hundreds or thousands).

On J-HMDB, we also reach a recall of 95% for an IoU threshold at 0.5 with 3 proposals on average per video, demonstrating the eectiveness of our approach. For UCF-101, we obtain a recall of 80% at IoU 0.2 and of 48% at IoU 0.5. The signicant decrease in performance is due to the low quality of the videos, sequences have low-resolution and are strongly compressed, and humans tend to be small. For our new DALY dataset, we obtain a spatial recall of 82% at an IoU threshold of 0.5. This is measured on the test set for which spatial annotations are available for a subset of frames. The excellent quality of our human tubes is, thus, conrmed on a realistic challenging dataset. Nevertheless, there are some failure cases due to the fact that the full body disappears (fth row). In this case, only the feet remain visible causing the failure of the human tracker, as the human detector performs poorly and the instance-level detector is trained on previous frames where the full body is visible. Other failure cases can be explained by a poor performance of the human detector, and thus of the human tube (last two rows). This typically happens when only a small part of the body is visible (sixth row) and in the case of occlusion (last row).

Weakly-supervised human tube classier

In this section, we rst introduce the feature descriptor of the human tubes (Section 8.4.1). We then present the weakly-supervised MIL learning (Section 8.4.2) and the detection stage (Section 8.4.3). We nally evaluate the MIL training procedure (Section 8.4.4).

Human tube features

For each human tube, we extract improved dense trajectories and aggregate them with a Fisher Vector representation [START_REF] Wang | A robust and ecient video representation for action recognition[END_REF]. We start by extracting the trajectories features for the entire video 3 . For each descriptor type (HOG, HOF, MBHx, MBHy), we rst reduce its initial dimension by a factor of 2 using PCA and learn a codebook of 256 Gaussians.

For each tube, we build a Fisher Vector per descriptor type, using only the trajectories that start inside the track (increased by a margin of 10%).

Each of the 4 Fisher Vectors is then independently power-normalized and L2-normalized [START_REF] Sánchez | Image classication with the sher vector: Theory and practice[END_REF]. A tube is nally described by the concatenation of the 4 normalized Fisher Vectors, resulting in 102400 dimensions.

Multi-fold multiple instance learning

We use a Multiple Instance Learning (MIL) formulation to learn a detector in a weakly-supervised setting, i.e., given only information about the presence/absence of a class in the training videos. For a given label, let V P (resp. V N) be the set of positive (resp. negative) videos. MIL alternates between inferring the localization of the action in the positive videos V P and using these locations to train a detector. One issue is that it tends to lock onto the initial locations [START_REF] Cinbis | Weakly Supervised Object Localization with Multi-fold Multiple Instance Learning[END_REF], which is particularly the case for high dimensional descriptors. We therefore resort to the multi-fold variant proposed by [START_REF] Cinbis | Weakly Supervised Object Localization with Multi-fold Multiple Instance Learning[END_REF]. In the following, we present the dierent steps of our approach. It is summarized in Algorithm 8.2.

Initialization. For each video V , we use the track T ∈ T V with the highest average human score s H (T) = b f ∈T s H (b f)/F as initial tube. Videos are positive and negative according to the annotated video labels.

Iteration. At each iteration, we learn a linear SVM using the current positive and negative tubes, denoted by T P and T N respectively. We then perform two hard negative mining iterations with negatives being mined only in negative videos V N . The next step consists in re-estimating the tube used as positive in each positive video. We randomly split the positive videos V P into K = 4 folds. For each fold, we learn a linear SVM using the positives from all other folds and all negatives. This classier is then run on videos from this fold. The new estimated location in each positive video of this fold is set to the tube with the highest score and will be used as positive in the next iteration. We perform 10 iterations of multi-fold MIL.

3. https://lear.inrialpes.fr/people/wang/improved_trajectories Algorithm 8.2 Learning a classier on human tubes with weak supervision.

Input: a set of positive (V P) and negative (V N) videos, each with a list of tubes.

Output: a linear SVM.

T P ← {argmax T ∈T V S H (T) | V ∈ V P }
(initialization with the tube with

T N ← {argmax T ∈T V S H (T) | V ∈ V N }
highest human detection score)

For each iteration Learn a linear SVM using all positives T P and all negatives T N Perform 2 hard negative iterations in V N (update T N)

Randomly split V P in K folds For each fold k Learn a linear SVM using positives from other folds and all negatives Re-estimate the tube in the videos from fold k (update T P)

Learn a linear SVM using all positives T P and all negatives T N

Temporal supervision and detection

Given a test video, we rst extract human tubes using the method presented in Section 8.3. We then extract a feature vector for each tube as described in Section 8.4.1. Next, we score each tube for all classes using the classier learned in a weakly-supervised setting (Section 8.4.2).

For the UCF-101 dataset, which also requires temporal localization, we perform in addition a multi-scale temporal sliding window inside each tube.

When training, since the videos are almost trimmed, we rst perform multifold MIL iterations using features from the whole video. Next, we assume temporal supervision in the training set and train a new classier using as positive features the descriptors from the track selected by multi-fold MIL, restricted to the ground-truth temporal extent. At test time, we perform a sliding window with the same temporal lengths as in [Weinzaepfel et al., 2015a] ({20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 300, 450, 600} frames) and the same stride (10 frames). In order to penalize short tubes, we score each tube using the SVM score minus α/L where α is a parameter experimentally set to 20 and L is the length of the detection.

Experimental results

We have already assessed the quality of the human tubes in Section 8.3.3 and the impact of multi-fold MIL in Section 8.4.4. In this section, we evaluate the overall performance of our weakly-supervised action localization approach and compare to the state-of-the-art weakly-and fully-supervised approaches (Section 8.5.1). We then propose an evaluation of our approach on the DALY dataset (Section 8.5.2).

Comparison to the state of the art

UCF-Sports. We rst evaluate our method and compare to the state of the art on UCF-Sports. Most of previous works plot ROC curves at dierent IoU thresholds until a false positive rate of 0.6 and report the Area Under the Curve (AUC). We show a comparison to the state of the art in Figure 8.8. Plain lines indicate weakly-supervised methods and dashed ones full supervision. Our method outperforms all approaches based on this metric, even if they leverage supervision. We beat by a large margin the only other weakly supervised approach [START_REF] Chen | Action detection by implicit intentional motion clustering[END_REF] which reports results for this metric. Interestingly, our performance decreases only J-HMDB. Mean Average-Precision (mAP) on the J-HMDB dataset is shown in Table 8.3. Similar to the UCF-Sports dataset, our method is in between the two supervised methods from Weinzaepfel et al. [2015a] and [START_REF] Gkioxari | Finding action tubes[END_REF]. Since the J-HMDB dataset contains only one human per video, the main challenge actually consists in classifying the tubes. Thus, a tube description that also leverages CNN features, in the same spirit as [START_REF] Gkioxari | Finding action tubes[END_REF] and Weinzaepfel et al. [2015a] would probably increase the performance. UCF-101. We report results with the standard mAP@0.2 metric for this dataset in Table 8.3. Our method also obtains a performance slightly below the state-of-the-art fully-supervised method [Weinzaepfel et al., 2015a]. We perform better than the 37.8% mAP@0.2 reported by van Gemert et al.

[2015], which extract thousands of proposals before using supervision for learning a classier. [START_REF] Yu | Fast action proposals for human action detection and search[END_REF] report a mAP@0.05 of 42.8% compared to our 62.8% at this threshold. At this low overlap threshold, we obtain better results than all other fully-supervised approaches, except [Weinzaepfel et al., 2015a] with IDT features presented in Chapter 7. This can be explained by the fact that our approach obtains less false positive detections due to the quality of our human tubes. Nevertheless, the IoU between our detections and the ground-truth tubes are often below 0.2, due to the low quality of the videos which makes the human tube extraction challenging.

Evaluation on the DALY dataset

Spatio-temporal action localization. For spatio-temporal action localization, we obtain a mAP@0.2 of 10.8% and a mAP@0.1 of 15.8%, see Tables 8.3 and8 Action localization in trimmed clips. We also evaluate action localization in these trimmed clips. This setting is similar to action localization datasets such as J-HMDB or UCF-Sports where clips are trimmed to the action. We obtain a mAP@0.2 of 48.6% and a mAP@0.5 of 31.7%. This relatively low performance can be explained by the fact that many instances are short and can easily be confused.

Action localization in shots containing actions. We run the spatiotemporal localization only in shots that contain an action. This removes, compared to the standard setting, the incorrect detections in shots that do not contain any action, and reduces the total duration from 31 to 21 hours.

The mAP@0.2 decreases to 16.1% when adding this temporal component, but it is above the result with all shots (10.8%). Once again, the challenge is to obtain a precise temporal localization without fragmenting long actions into multiple small temporal parts, which leads to false detections. Note that this is signicantly dierent from the UCF-101 dataset in which videos are almost trimmed. Here, the shots can last for multiple minutes while the actions only last several seconds.

Conclusion

In this chapter, we introduced a novel approach for extracting human tubes that outperforms state-of-the-art proposals by a large margin. We showed that they can be used eectively for weakly-supervised action localization, with a performance close to fully-supervised approaches. We also introduced a new challenging dataset, DALY, that overcomes the limitations of the existing benchmarks and will allow to measure progress in the eld over the next few years. We now present a summary for each of these contributions.

DeepFlow: large displacement optical ow with DeepMatching.

DeepFlow is a variational approach for optical ow estimation that inte- et al., 2015], in which it is used as a similarity score, and SLAM (Simultaneous Localization and Mapping) [START_REF] Chhaya | Monocular reconstruction of vehicles: Combining slam with shape priors[END_REF], for which it is used as a component for tracking dynamic objects throughout a sequence. Deep-Flow has been used in many applications of computer vision such as pose estimation in videos [Jain et al., 2014a[START_REF] Pster | Flowing convnets for human pose estimation in videos[END_REF], SLAM [START_REF] Reddy | Dynamic body vslam with semantic constraints[END_REF], or object reconstruction from videos [START_REF] Lebeda | Dense rigid reconstruction from unstructured discontinuous video[END_REF]. It has also been used for style transfer [Ruder et al., 2016] in order to ensure the consistency of the transfer throughout the video.

EpicFlow: edge-preserving interpolation of correspondences for optical ow. EpicFlow operates by densifying quasi-dense input matches, and leverages an edge-aware geodesic distance tailored to respect motion boundaries and to handle occlusions. The interpolation step outputs an optical ow estimation, which can be further rened using a variational formulation. We have also introduced an approximation scheme for the interpolation that signicantly speeds up the computation without harming the performance. Experimental results justify the choice of the proposed edge-aware geodesic distance and its approximation. They also show that sparse-to-dense interpolation overcomes the limitations of coarse-tone schemes, such as error propagation across pyramid levels or oversmoothing. At publication time, EpicFlow obtained best performance on the MPI-Sintel dataset.

EpicFlow with its interpolation scheme has recently been used in many optical ow approaches which improve the input matches [START_REF] Bailer | Flow Fields: Dense Correspondence Fields for Highly Accurate Large Displacement Optical Flow Estimation[END_REF][START_REF] Menze | Discrete Optimization for Optical Flow[END_REF][START_REF] Chen | Full ow: Optical ow estimation by global optimization over regular grids[END_REF]. Recent state-of-the-art methods [Menze et al., 2015, Chen and[START_REF] Chen | Full ow: Optical ow estimation by global optimization over regular grids[END_REF] are based on a pixelaccurate ow estimation obtained by solving discrete optimization problem.

EpicFlow is then used to rene the estimation. EpicFlow is also used in various applications such as oversegmentation of videos [Khoreva et al., 2016] or unsupervised learning of edges [START_REF] Li | Unsupervised learning of edges[END_REF]. This latter approach proposes to compute motion edges from a color-coded representation of the EpicFlow estimation, in order to learn an edge detector without supervision.

Interestingly, this learned edge detector can be used to slightly improve the result of EpicFlow.

Learning to detect motion boundaries. We have proposed a learningbased approach for detecting motion boundaries in videos. The method is based on the structured random forest framework. A forest of multiple trees is trained to predict the motion boundaries of small patches. A soft response map is obtained by averaging the results from all trees and overlapping patches at each pixel. In addition, we introduce the YouTube Motion Boundaries (YMB) dataset which consists of 60 challenging video sequences with motion boundaries, with a central frame annotated by 3 people. Experiments show that the proposed approach performs signicantly better than the widely used ow gradient baseline, both on high quality data from optical ow benchmarks and on highly compressed videos from YouTube.

Our approach has been used for tracking [START_REF] Hua | Online object tracking with proposal selection[END_REF], in which motion boundaries are combined with edges to extract proposals. It has also been used for discovering parts of articulated objects in videos [START_REF] Del Pero | Discovering the physical parts of an articulated object class from multiple videos[END_REF], in which the motion boundaries are computed with our method, instead of the ow gradient baseline, in order to improve video segmentation into foreground and background [START_REF] Papazoglou | Fast object segmentation in unconstrained video[END_REF].

Human action localization

We have introduced novel approaches for action localization in videos, which extract action-specic or human-specic tubes based on detection and tracking. In Chapter 7, we have proposed a method leveraging a classspecic detector and tracker based on CNNs. In Chapter 8, we have introduced a weakly-supervised method, i.e., which does not require spatial supervision, leveraging a human detector together with a human-specic tracker. We now present a summary for each of these contributions.

Action-specic tracks for action localization. We have proposed a novel action localization method based on class-specic tubes. These tubes are extracted using a detector and a tracking-by-detection approach based on CNN features. Each tube is then described using the CNN features as well as spatio-temporal local features. We have compared improved dense trajectories (IDT) using Fisher Vector aggregation, with an introduced descriptor that describes a chunk from a track. Temporal detection is performed using a sliding window scheme inside each tube. Our approach outperforms the state of the art by a signicant margin on three action localization benchmarks: UCF-Sports, J-HMDB and UCF-101. Experiments highlight the benets of tracking compared to an approach in which the per-frame detections are linked throughout the video. They also show that local trajectory features such as IDT are well suited for describing tubes and are complementary to CNN features.

Human tubes for weakly-supervised action localization. The previous approach requires bounding box annotations in every frame of the training videos in order to train the class-specic detector. Moreover, the tracking is performed independently for each class. In order to scale to a higher number of classes, we have introduced a weakly-supervised approach leveraging existing human annotations available today. More precisely, the rst step of the method consists in extracting tubes around the humans. To this end, a human detector is trained on a human pose database. Thanks to recent advances in deep learning for object detection, this human detector is robust to unusual poses and occlusions. We then run a human-specic tracker in order to obtain human tubes. Experiments highlight the benet of these human tubes: a high recall is reached with only several tubes.

Multiple Instance Learning may then be applied eectively. The tubes are described using Fisher Vector on improved dense trajectories. A multi-fold variant of MIL is necessary with this high-dimensional representation. Our approach outperforms other weakly-supervised methods and is close to the best fully-supervised approaches on existing benchmarks. In order to validate our approach on more realistic data, we have introduced the DALY has been applied to optical ow [START_REF] Ranftl | Non-local total generalized variation for optical ow estimation[END_REF], and models piece-wise ane solutions. In addition, our variational model does not integrate robust detection and modeling of the occlusions [START_REF] Xu | Motion detail preserving optical ow estimation[END_REF][START_REF] Kennedy | Optical ow with geometric occlusion estimation and fusion of multiple frames[END_REF][START_REF] Fortun | Aggregation of local parametric candidates with exemplar-based occlusion handling for optical ow[END_REF][START_REF] Leordeanu | Locally ane sparse-todense matching for motion and occlusion estimation[END_REF]. Occlusions can be detected by solving a binary classication problem [START_REF] Leordeanu | Locally ane sparse-todense matching for motion and occlusion estimation[END_REF] based on various features such as forward-backward consistency, errors in the data term [Sun et al., 2014b] or mapping uniqueness criterion [START_REF] Xu | Motion detail preserving optical ow estimation[END_REF], i.e., counting the number of reference pixels mapped to a particular position by the ow. Indeed, if the optical ow estimation makes multiple pixels moving to the same location, then most of them (all of them except one) correspond to occluded pixels. To integrate the occlusions into the model, a standard approach [START_REF] Xu | Motion detail preserving optical ow estimation[END_REF] consists in canceling the data term at these locations. Finally, the data term of our variational model assumes color and gradient constancy. Recent works [Vogel et al., 2013a, Stein, 2004a] have shown the eectiveness of the Census Transform (and its dierentiable approximation) for optical ow estimation, in particular for outdoor scenes.

Structured hierarchical matching. DeepMatching leverages a multiscale hierarchical correlational architecture. However, the structure of the patches is xed to be a square, itself composed of four squared quadrants.

In particular, issues appear at strong motion boundaries for which the nonrigidity handled by DeepMatching is insucient. One possible solution consists in weighting the four quadrants dierently. This can be based for example on a precomputed segmentation. In the same spirit, [START_REF] Sevilla-Lara | Optical ow with semantic segmentation and localized layers[END_REF] propose to use semantic segmentation the context of optical ow by. Furthermore, in DeepMatching, the parameters of the rst correlational layer are given by the rst image. More recently, deep learning techniques, in which the parameters are learned from huge training data, have been applied to optical ow [Dosovitskiy et al., 2015, Teney and[START_REF] Teney | Learning to extract motion from videos in convolutional neural networks[END_REF].

In particular, for DeepMatching, the descriptor of the atomic patches is hand-crafted and could be learned instead.

Structured interpolation. In EpicFlow, the interpolation only relies on a soft boundary map (edges). Consequently, matches from another region might still have a (slight) impact on the estimation. Hard constraints from a precomputed segmentation can be added to EpicFlow by setting to innity the weights of the soft boundary map at segmentation boundaries. One other limitation of EpicFlow concerns non-contiguous regions: if a large region is split (due to occlusions from foreground objects), the motion is independently estimated for each of the part. However, it would make sense to correlate the interpolation of all these parts. Such complex structured interpolation will require designing an appropriate distance to replace the geodesic one. In the same spirit, [START_REF] Drayer | Combinatorial regularization of descriptor matching for optical ow estimation[END_REF] use a discrete regularization in which non-contiguous regions are connected if the distance between their color histograms is small.

Discrete optimization. DeepFlow and EpicFlow have shown that stateof-the-art performance can be obtained from a quasi-dense set of matches.

Many recent works now focus on obtaining such matches, and use EpicFlow to estimate dense optical ow from them. As a consequence, discrete optimization techniques [Menze et al., 2015, Chen and[START_REF] Chen | Full ow: Optical ow estimation by global optimization over regular grids[END_REF] have recently shown promising results. Sub-pixel accuracy is then obtained using EpicFlow.

Iterative estimation. The estimation of matches and boundaries can be further rened in an iterative scheme. In this scenario, the ow will be computed a rst time. Matches and/or motion boundaries will then be reestimated and used for rening the ow estimation. This process can be repeated several times. For boundaries, this has been for instance applied to learn edges without supervision [START_REF] Li | Unsupervised learning of edges[END_REF]: motion edges are extracted from EpicFlow estimation and used as supervision for training a new edge detector. Edge maps are reestimated and used to update EpicFlow estimation. A small gain in performance is obtained for the ow estimation after several iterations. For matches, DeepMatching tends to miss tiny objects.

This is mainly due to the scoring scheme which depends on scores of patches at dierent scales. At the same time, illustrations in Chapter 5 clearly show that regions with incorrect ow estimation can be easily identied. These errors are mainly due to occlusions or missing matches. Thus, DeepMatching can be run a second time, only in regions in which the ow estimation is considered as incorrect. In a similar spirit, [START_REF] Stoll | Adaptive integration of feature matches into variational optical ow methods[END_REF] rst estimate ow without matches, then identify regions with wrong estimation and recompute matches at these locations.

Human action localization

Temporal supervision. Our weakly-supervised method for action localization does not require spatial annotation but still needs temporal supervision. The next step consists in reducing or even removing the temporal supervision. Since actions typically last several seconds for videos of multiple minutes, relying on other sources of data is a more realistic scenario.

First of all, one can assume a semi-supervised setting in which only several positive frames are annotated. For each action, a detector can then be learned with positives from this set of annotated frames and with negatives coming from videos that do not contain the action. A second solution consists in using webly-supervised data to learn a temporal detector. Eectiveness of using web data to recognize actions has recently been proven [Ma et al., 2015, Nguyen et al., 2016] and these works may be extended to the action localization task. For instance, [Ma et al., 2015] show that CNNs can be trained on downloaded images obtained by querying for the actions.

[Nguyen et al., 2016] show that a dataset can be automatically built from a short-form video sharing service, namely Vine. These short videos (5-10 seconds) may also be used to learn an action detector, assuming that the actions cover the whole temporal extent of the video. Other level of supervision can consist in an ordered list of the actions occurring in training videos, as used by [START_REF] Bojanowski | Weakly supervised action labeling in videos under ordering constraints[END_REF]. To fully remove the temporal supervision, one can rely on ideas from co-segmentation in which similar patterns from the training videos are found. This can be for instance done using discriminative clustering, as proposed by [START_REF] Duchenne | Automatic annotation of human actions in video[END_REF].

Temporal detection. Experimental results, in particular on the DALY dataset, show that many failure cases are due to inaccurate temporal detections: in particular, long actions tend to be split into multiple small detections. This can be explained by the fact that Fisher Vector encoding is not suciently discriminative for an accurate temporal detection of the actions inside each tube. One way of solving this problem may be to not only answer the question `is the action occurring' but also `is the action not occurring just before and after the temporal window'. Currently, the Fisher Vector aggregates trajectory features that are inside a tube and inside the temporal window. One way to implement the previous idea is to subtract to this aggregation the features from the trajectories that are inside the tube before and after the temporal window of interest. Another solution consists in relying on other features that might be more robust for nding the beginning and the end of the action. For instance, in a fully-supervised setting, [START_REF] Shou | Temporal action localization in untrimmed videos via multi-stage cnns[END_REF] rst learn a CNN to classify chunks of videos, and then ne-tune the network in order to localize the action in time. More structured representations might also be helpful. For instance, Gaidon et al.

[2013] represent actions as a exible sequence of several sub-actions. Actions can also be temporally decomposed using a deformable part model, as shown by [START_REF] Niebles | Modeling temporal structure of decomposable motion segments for activity classication[END_REF].

Modeling pose, objects and interactions. A richer representation and understanding of the action can be benecial for action localization.

For instance, incorporating the pose has shown signicant gain for action recognition [START_REF] Jhuang | Towards understanding action recognition[END_REF][START_REF] Wang | Video action detection with relational dynamic-poselets[END_REF][START_REF] Chéron | P-cnn: pose-based cnn features for action recognition[END_REF].

The main issue is that pose estimator tends to fail in realistic videos, in particular in case of high compression and occlusion. Nevertheless, pose is an informative cue, especially for the temporal detection of an action since many actions last until a particular motion of the hand is performed. For instance, `brushing teeth' lasts as long as the hand holding the toothbrush is moving at the mouth. In a similar spirit, other cues can be used such as the interactions between humans, or between actor and object. Such modeling has already been proposed in limited settings, for instance by Prest et al.

[2012a], and should benet from recent advances in detections and tracking for a generalization to more realistic data.

estimated by a matching approach and ρ a per-matching weight with zero value at pixel without precomputed match.

By treating this energy as a calculus of variations, the Euler-Lagrange equation ensures that at the minimum: This leads to the following equations for each pixel: where Ψ * is the derivative of Ψ * with respect to its argument.

                    

A.1 Optimization

Equation A.3 leads to a non-linear and highly non-convex problem. The rst idea to approximate the solution consists in using a xed point iteration on w. Since the function is highly non-convex, the risk to fall into local minima is high. To this end, the xed point iteration is not sucient, we consequently use the classical coarse-to-ne scheme. A pyramid of images is built using smoothing and downsampling with a factor η ∈ (0, 1). We rst initialize the ow with zero values at each pixel. We compute the ow at the coarsest level. It is then used to initialize the ow computation at the next level and so on. This strategy has shown powerful properties. It has the advantage to rst capture the motion of big parts and then to rene the ow of smallest structures contained into them. Moreover, since the images at the rst levels have only few pixels, the computation is fast.

Let w k be the computed ow at level k. We dene also the warped image derivatives at this level: (A.4)

While warping, some pixels can fall outside the image boundaries. For these pixels, we remove the data term. Spatial image derivatives are computed using the mean of the two images and a ve-point stencil resulting in a fourth-order approximation, i.e., with a (1, -8, 0, 8, -1) /12 lter. w k+1 is now given by solving: 2)(v k+1v k+1 match) -div(Ψ S (∇ 2 w k+1 2 2)∇v k+1) = 0 .

                   δΨ D (I k+1
(A.5)

This new system is still non-linear because of the Ψ * terms and of I k+1 * containing temporal derivative. To this last issue, we can use a rst-order Taylor expansion. However this is valid only under the assumption that the displacement is small. Consequently, we use an incremental method, by splitting w k+1 into two terms, w k+1 = w k + dw k . If the η parameter is suciently close to 1, dw k will be small. The rst-order Taylor expansion gives: This leads to a new system of equations where the unknown are now du k and dv k :

                               δΨ k 1 I k x (I k t + I k x du k + I k y dv k) + γΨ k
= Ψ M (u k + du k -u k match) 2 + (v k + dv k -v k match) 2 , Ψ k 4 = Ψ S ∇ 2 (u k + du k) 2 2 + ∇ 2 (v k + dv k) 2 2 .
(A.8)

This system is still non-linear due to the Ψ * . We so use another inner xed point iteration: at each level, we alternatively compute the Ψ * coecients with the current ow and update the incremental ow while Ψ * values are xed. In practice, we perform n inner = 5 iterations of this strategy.

We denote by l the index of this inner iteration and by dw k,l the ow increment after l inner iterations at level k. We start with w 0 and dw 0,0 with full zeroes, compute the Ψ 0,0 * coecients with the ow w 0,0 = w 0 + dw 0,0 , we solve the linear system to compute a ow increment dw 0,1 . It is used to update the Ψ 0,1 * values, and so on until dw 0,n inner . Then w 1 is set to the sum of w 0 and dw 0,n inner and we start the next level with dw 1,0 set to 0.

Concerning the smoothing term, we compute the ow gradient using the lter (-1, 1) . For a pixel x, let N (x) be the 4-neighborhood of x. We discretize the divergence operator div(f u,v ∇u) by: j∈N (i) f u,v (i) + f u,v (j) 2 u(j)u(i) .

(A.9)

This results in a linear system with 2 × n k equations and unknowns, where n k denotes the number of pixels of the level k. For an image of resolution 640 × 480, this gives more than 600000 constraints. The size of the system is too huge to nd an exact solution. Consequently, we use an iterative method to approximate the solution. For each pixel i ∈ Ω, we obtain the following two equations, where the indices i is only written in the smoothness for a better readability: cleaning oor, the queries include `sweeping oor', `mopping oor', `cleaning oor', etc. We only keep videos with a duration between 1 and 20 minutes. A minimum duration of 1 min ensures that temporal localization will be meaningful (shorter videos contain only one action from the beginning to the end in most cases), and a maximum duration of 20 minutes avoids issues related to computational time or memory consumption.

                             δΨ k,l
Videos are ltered to remove cartoons, slideshows, actions performed by animals and rst-person viewpoints. We also remove videos in which the human is not visible when the action occurs, for instance when the camera focuses on the mop while performing the cleaning oor action. Spatial annotation. There are more than 700k frames containing at least one action. Annotating all of them is a tall order, as it would take a year and a half for one annotator to complete this task, assuming 15 seconds per annotation and a 40-hour week. Of course this does not include verifying the results which, albeit quicker, is also time consuming when you need to outsource the job. Thus, we subsample frames to be annotated, such that enough information is present for a reliable evaluation of spatio-temporal detections.

For each temporal instance in the test set, we pick 5 uniformly sampled frames, with a maximum of 1 frame per second. For each frame, annotators are asked to draw a bounding box around the actor. Some of the spatial annotations are carried out by external workers. In all cases, the bounding boxes are reviewed and adjusted by members of our research team.

B.2 Dataset statistics

The selected action classes are suciently common such that multiple action classes can be found in a single video, see drinking instances, etc. Some classes have expected overlap such as brushing teeth and drinking, ironing and folding textile. There is also overlap between taking photos/videos and phoning, which can be explained by the fact that taking photos is mostly performed outdoors, where other people are phoning. instances of several minutes, especially for actions such as brushing teeth, playing harmonica or folding textile. In some cases, short instance duration for actions can be explained by video editing. The uploader may cut the action to a few seconds and include it in a long video. Instances are shortest on average for drinking and taking photos, simply because drinking and taking a photo tend to take a short time (put the cup to the mouth and back for drinking, press the button to take a photo).

7 1. 3

 73 . 3 1.2 Context . Contributions . 10 1.3.1 Optical ow estimation 10 1.3.2 Human action localization 13

Figure 1 . 1

 11 Figure 1.1 Illustration of requesting for a particular video instant in a collection. Based on the search John playing harmonica, the system retrieves video clips in which this happens.

 Figure 1.2 Illustration of an action recognition pipeline [Wang et al., 2013].

Figure 1 . 3

 13 Figure 1.3 Example of spatio-temporal action localization of the class drinking from the DALY dataset [Weinzaepfel et al., 2016]. The boxes in yellow represent the ground-truth spatial localization of the action during its temporal extent.

Figure 1 . 4

 14 Figure 1.4 Example optical ow from the MPI-Sintel dataset [Butler et al., 2012] with the image (top left), the ground-truth ow (bottom left) using the color code shown in bottom right, and the occluded pixels represented in red (top right).

Figure 1 . 5

 15 Figure 1.5 Example of spatio-temporal action localization in a long untrimmed video from the DALY dataset [Weinzaepfel et al., 2016]. Temporal extent of the actions performed by the man are shown in green.

 Figure 1.6 Example frames for 3 classes from the DALY dataset [Weinzaepfel et al., 2016].

Figure 1 . 7

 17 Figure 1.7 Schematic view of the advances in optical ow methods. The reported results is the average endpoint error (EPE) on the MPI-Sintel

Figure 1 . 8

 18 Figure 1.8 Illustration of possible matches obtained with DeepMatching.

 Figure 1.10 Illustration of the motion prediction process with our structured decision tree. Given an input patch from the left image (represented here by image and ow channels), we predict a binary boundary mask, i.e., a leaf of the tree. Predicted masks are averaged across all trees and all overlapping patches to yield the nal soft-response boundary map.

Figure 1

 1 Figure 1.11 Overview of our fully-supervised action localization approach.

Figure 1

 1 Figure 1.12 Overview of our weakly-supervised action localization method.

Figure 1 .

 1 Figure 1.13 Comparison of the DALY dataset[START_REF] Weinzaepfel | Towards Weakly-Supervised Action Localization[END_REF]

Figure 2 . 1

 21 Figure 2.1 Illustration of the aperture problem. Dierent motions can explain the repetitive pattern observed in the circle.

Figure 2

 2 Figure 2.2 Variants of robust penalizers.

Figure 2 . 3

 23 Figure 2.3 Illustration of a coarse-to-ne scheme. The images are iteratively rescaled and blurred (left). Starting from a zero ow initialization, the optical ow is estimated at the coarsest level. This estimation is rescaled to the size of the next level where the ow is updated from this current estimation. The process is repeated until the last level at original resolution.

Figure 2 . 4

 24 Figure 2.4 Illustration of optical ow evaluation metrics for a given pixel.

Figure 2 .

 2 Figure 2.5 shows a few frames from each one. We now present them in more detail.

 contains real-world sequences taken from a driving platform. The dataset includes non-Lambertian surfaces, dierent lighting conditions, a large variety of materials and large displacements. More than 16% of the pixels have motion over 20 pixels. We use the version released in 2012; a newer version has been published in 2015. There are 194 training and 195 test image pairs in the dataset. The scene remains limited to the static case and most of the motion elds correspond to a zoom eect, i.e., a car moving forward in the street.

 is a challenging evaluation benchmark for optical ow estimation, constructed from realistic computeranimated lms. The dataset contains 23 training and 12 test sequences with large motions and specular reections. Each sequence contains up

Figure 2 . 5

 25 Figure 2.5 Examples of image pairs (rst two columns) and ground-truth ow (right column) with two examples from the Middlebury dataset (two rst rows), the Kitti dataset (two middle rows) and the MPI-Sintel dataset (two last rows).

 , adds (1) an in-depth presentation of DeepMatching; (2) an enhanced version of DeepMatching, which improves the match scoring and the selection of entry points for backtracking; (3) proofs on time and memory complexity of DeepMatching as well as its deformation tolerance; (4) a discussion on the connection between Deep Convolutional Neural Networks and DeepMatching; (5) a fast approximate version of DeepMatching; (6) a scale and rotation invariant version of DeepMatching; and (7) an extensive experimental evaluation of Deep-

Figure 3 . 1

 31 Figure 3.1 Illustration of moving quadrant similarity: a quadrant is a

Figure 3 .

 3 Figure 3.2 Left: Quadtree-like patch hierarchy in the rst image. Right: one possible displacement of corresponding patches in the second image.

 correlation map C 4,p , where . F denotes an horizontal and vertical ip 1 . Examples of such correlation maps are shown in Figures 3.3 and 3.4.

Figure 3 . 3

 33 Figure 3.3 Computing the bottom level correlation maps {C 4,p } p∈G 4 .Given two images I and I , the rst one is split into non-overlapping atomic patches of size 4 × 4 pixels. For each patch, we compute the correlation at every location of I to obtain the corresponding correlation map.

 of the hand in the first image Correlation map for a 16x16 patch Correlation map for a 4x4 patch Correlation map for a 8x8 patch Correlation map for a 16x16 patch

Figure 3 . 4

 34 Figure 3.4 Correlation maps for patches of dierent size. Middle-left: correlation map of a 4x4 patch. Bottom-right: correlation map of a 16x16 patch obtained by aggregating correlation responses of children 8x8 patches (bottom-left), themselves obtained from 4x4 patches. The map of the 16x16 patch is clearly more discriminative than previous ones despite the change in appearance of the region.

 image1

Figure 3 . 5 AFigure 3 . 6

 3536 Figure 3.5 A patch I N,p from the rst image (blue box) and one of its 4 quadrants I N

Figure 3 .

 3 4 shows the correlation maps for patches of size 4, 8 and 16. Clearly, correlation maps for larger patches are more and more discriminative, while still allowing non-rigid matching. Algorithm 3.1 Computing the multi-level correlation pyramid. Input: Images I, I For p ∈ G 4 do C 4,p = I F 4,p I (convolution, Equation 3.4)

Figure 3 . 7

 37 Figure 3.7 Backtracking atomic correspondences from an entry point (red dot) in the top pyramid level (left). At each level, the backtracking consists in undoing the aggregation performed previously in order to recover the position of the four children patches in the lower level. When the bottom level is reached, we obtain a set of correspondences for atomic patches (right).

Figure 3 . 8

 38 Figure 3.8 Matching result between two images with repetitive textures. Nearly all output correspondences are correct. Wrong matches are due to occluded areas (bottom-right of the rst image) or situations where the deformation tolerance of DeepMatching is exceeded (bottom-left of the rst image).

Figure 3 . 9

 39 Figure 3.9 Extent of the tolerance of DeepMatching to deformations. From left to right: up-scale of 1.5x, down-scale of 0.5x, rotation of 26 o . The plain gray (resp. dashed red) square represents the patch in the reference (resp. target) image. For clarity, only the corner pixels are maximally deformed.

 Relatively to N , we thus have lim N →∞ (N +2d N)/N = 3 2 and lim N →∞ (N -2d N)/N = 1 2

 ment. We articially generate two types of correspondences between two images of size 128 × 128. The rst one is completely random, i.e., for each atomic patch in the rst image we assign randomly a match in the second image. The second one respects the backtracking constraints. Starting from a single entry point in the top level we simulate the backtracking procedure Sampled from the set of feasable warpings W Random warpings over the same region

Figure 3 .

 3 Figure 3.10 Histogram over smoothness for identity warping, warping respecting the built-in constraints in DeepMatching and random warping. The x-axis indicates the smoothness value. The smoothness value is low when there are few discontinuities, i.e., the warpings are smooth. The histogram is obtained with 10,000 dierent articial warpings. See text for details.

 Time and space complexity. DeepMatching has a complexity O(LL) in memory and time, where L = W H and L = W H are the number of pixels per image.

 . As discussed above, DeepMatching (DM) is only robust to moderate scale changes and rotations. We now present a scale and rotation invariant version. Algorithm 3.2 Scale and rotation invariant version of DeepMatching (DM). I σ denotes the image I downsized by a factor σ, and R θ denotes rotation by an angle θ.

 Scoring scheme: In DM* we scored atomic correspondences based on the correlation values of start and end point of the backtracking path. The new scoring scheme is the sum of correlation values along the full backtracking path.

 Figure 3.14, we observe that good trades-o are achieved for dictionary sizes comprised in D ∈ [64, 1024]. For instance, on MPI-Sintel, at D = 1024, 94%

Figure 3 .

 3 between memory consumption and matching performance for the dierent datasets. Memory usage is controlled by changing image resolution R (dierent curves) and dictionary size D (curve points).

Figure 3 .

 3 Figure 3.14 Performance, memory usage and run-time for dierent levels

Figure 3 .Figure 3 .

 33 Figure 3.15 Comparison of matching results of dierent methods on the Mikolajczyk dataset. Each column shows pixels with correct correspondences for dierent methods with from left to right: ground-truth (GT), SIFT-NN, GPM, NRDC and DeepMatching (DM). For each scene, we select two images to match and fade out regions which are unmatched, i.e., those for which the matching error is above 15px or can not be matched. DeepMatching outperforms the other methods, especially on dicult cases like graf and wall.

Figure 3 .

 3 Figure 3.17 Comparison of dierent matching methods on three challenging pairs from Kitti. Each pair of columns shows motion maps (left column) and the corresponding error maps (right column). The top row presents the ground-truth (GT) as well as one image. For non-dense methods, pixel displacements have been inferred from matching patches. Areas without correspondences are in black. To improve visualization, the sparse Kitti ground-truth is made dense using bilateral ltering.

Figure 3 .

 3 Figure 3.18 Each column shows from top to bottom: two consecutive images, the ground-truth optical ow, the DeepMatching (DM), our ow prediction (DeepFlow), and two state-of-the-art methods, LDOF [Brox and

Figure 4 . 1

 41 Figure 4.1 Image edges detected with SED [Dollár and Zitnick, 2013] and ground-truth optical ow. Motion discontinuities appear most of the time at image edges.

Figure 4 . 2

 42 Figure 4.2 Comparison of coarse-to-ne ow estimation and EpicFlow. Errors at the coarsest level of estimation, due to a low resolution, often get propagated to the nest level (right, top and middle). In contrast, our interpolation scheme benets from an edge prior at the nest level (right, bottom).

Figure 4 . 3

 43 Figure 4.3 Overview of EpicFlow. Given two images, we compute matches

ure 4 . 3 .

 43 Any state-of-the-art matching algorithm can be used to compute the initial set of sparse matches.

Figure 4 .

 4 Figure 4.4 (a-b) two consecutive frames; (c) contour response C from SED[START_REF] Dollár | Structured forests for fast edge detection[END_REF] (the darker, the higher); (d) match positions {p m } from DeepMatching[START_REF] Weinzaepfel | Deepow: Large displacement optical ow with deep matching[END_REF]; (e-f) geodesic distance from a pixel p (marked in blue) to all others D G (p, .) (the brighter, the closer); (g-h) 100 nearest matches, i.e., N 100 (p) (red) using geodesic distance D G from the pixel p in blue.

Figure 4 .

 4 4 shows an example of a SED map, as well as examples of geodesic distances and neighbor sets N K (p) for dierent pixels p. Notice how neighbors are found on the same objects/parts of the image with D G , in contrast to Euclidean distance (see also Figure 4.6).

Figure 4 . 5

 45 Figure 4.5 For the region shown in (a), (b) shows the image edges C and white crosses representing the match positions {p m }. (c) displays the assignment L, i.e., geodesic Voronoi cells. We build a graph G from L (see text). (d) shows the shortest path between two neighbor matches, which can go through the edge that connects them (3-4) or a shorter path found by Dijkstra's algorithm (1-2).

 Voronoi diagram. We rst dene a clustering L, such that L(p) assigns a pixel p to its closest match according to the geodesic distance, i.e., we have L(p) = argmin pm D G (p, p m). L denes geodesic Voronoi cells, as shown in Figure 4.5(c).

 ane parameters A pm , t pm ' and line 8 `Set W LA (p) = A L(p) p + t L(p) ').Algorithm 4.1 Interpolation with Nadaraya-Watson. Input: a pair of images I, I , a set M of matches Output: dense correspondence eld F N W 1 Compute the cost C for I using SED [Dollár and Zitnick, 2013] 2 Compute the assignment map L 3 Build the graph G from L 4

(

 20%) of the MPI-Sintel training set. We then report average endpoint error (EPE) on the remaining MPI-Sintel training set (80%), the Kitti training set and the Middlebury training set. This allows us to evaluate the impact of parameters on dierent datasets and avoid overtting. The parameters are typically a1 for the coecient in the kernel k D , the number of neighbors is K 25 for NW interpolation and K 100 when using LA.

Figure 4 .

 4 Figure 4.6 Left: Match positions returned by DeepMatching [Weinzaepfel et al., 2013] are shown in blue. Red denotes occluded areas. Right: Yellow (resp. blue) squares correspond to the 100 nearest matches with a Euclidean (resp. edge-aware geodesic) distance for the occluded pixel shown in red.

Figure 4 . 7 presents

 47 results for three image pairs with the initialization only and the

Figure 4 .Figure 4 . 7

 447 Figure 4.6 illustrates the reason: none of the Euclidean neighbor matches(yellow) belong to the region corresponding to the selected pixel (red), but all of geodesic neighbor matches (blue) belong to it. This demonstrates the importance of using an edge-preserving geodesic distance throughout the whole pipeline, in contrast to[START_REF] Leordeanu | Locally ane sparse-todense matching for motion and occlusion estimation[END_REF] who interpolate

Figure 4 .

 4 Figure 4.7 shows a comparison to three state-of-the-art methods, all built upon a coarse-to-ne scheme. Note how motion boundaries are preserved by EpicFlow. Even small details, like the limbs in the right column, are captured. Similarly, in the case of occluded areas, EpicFlow benets from the geodesic distance to produce a correct estimation, see the right part of the left example.

Figure 4 . 8

 48 Figure 4.8 Comparison of EPE between EpicFlow (left) and a coarse-tone scheme (right) for various synthetic input matches with dierent densities and error levels. For positions above the red line, EpicFlow performs better.

 level) in order to get an additional smoothing eect. This leads to a gain of 0.1 pixels (measured on the Middlebury training set when setting the parameters on MPI-Sintel training set). Timings. While most methods often require several minutes to run on a single image pair, ours runs in 16.4 seconds for a MPI-Sintel image pair (1024 × 436 pixels) on one CPU-core at 3.6Ghz. In detail, computing Deep-Matching takes 15s, extracting SED edges 0.15s, dense interpolation 0.25s, and variational minimization 1s. We can observe that 91% of the time is spent on matching. Note that by using the GPU version of DeepMatching, our runtime can signicantly decrease. Failure cases. EpicFlow can be incorrect due to errors in the sparse matches or errors in the contour extraction.

Figure 4 .Figure 4 . 9

 449 Figure 4.9 Failure cases of EpicFlow due to missing matches on spear and horns of the dragon (left column) and missing contours on the arm (right column).

Figure 5 . 1

 51 Figure 5.1 For the image in (a), we show in (b) its ground-truth motion boundaries, in (c) motion boundaries computed as gradient of the Clas-sic+NL [Sun et al., 2014b] ow, and in (d) our proposed motion boundary detection. Despite using the Classic+NL ow as one of our cues, our method is able to detect motion boundaries even at places where the ow estimation failed, such as on the spear or the character's arm.

Figure 5 . 2

 52 Figure 5.2 Example of depth discontinuities (in red) and motion boundaries (in green, extracted from the ground-truth ow). Notice how ow discontinuities dier from depth discontinuities. In addition, the presence of non-rigid objects causes most motion boundaries to form non-closed contours.

a

 learning task using structured random forests. Motion boundaries in a local patch often have similar patterns, e.g. straight lines, parallel lines or Tjunctions. The structured random forest framework leverages this property by predicting boundaries at the patch level. In practice, several trees are learned independently with randomization on the feature set, leading to a forest of decision trees. Each tree takes as input a patch and predicts a structured output, here a boundary patch. Given an input image, the predictions of each tree (Figure 5.3) for each (overlapping) local patch are averaged in order to yield a nal soft boundary response map. Structured random forests have a good performance and are extremely fast to evaluate. We now describe the learning model in more detail. Here, a decision tree f t (x) is a structured classier that takes an N × N input patch with K channels, vectorized as x ∈ R KN 2 , and returns a corresponding binary edge map y ∈ B N 2 . Internally, each tree f t has a binary structure, i.e., each node is either a leaf or has two children nodes. During inference, a binary split function h(x, θ j) ∈ {0, 1} associated to each node j is evaluated to decide whether the sample x descends the left or right branch of the tree until a leaf is reached. The output y associated to the leaf at training time is then returned. The whole process is illustrated in Figure 5.3. The split functions h(x, θ) considered in this work are ecient decision stumps of two forms: (i) a thresholding operation on a single component of x. In this case, θ = (k, τ) and h 1 (x, θ) = [x(k) < τ], where [.] denotes the indicator function; (ii) a comparison between two components of x.

Figure 5 . 3

 53 Figure 5.3 Illustration of the prediction process with our structured decision tree. Given an input patch from the left image (represented here by image and ow channels), we predict a binary boundary mask, i.e., a leaf of the tree. Predicted masks are averaged across all trees and all overlapping patches to yield the nal soft-response boundary map.

) 2 , where D is an image representation dependent on which constraint (color or gradient) is considered. For the color case, D corresponds to the Lab color-space, in which Euclidean distance is closer to perceived color distances. For the gradient case, D is a pixel-wise histogram of oriented gradients (8 orientations), individually normalized to unit norm. We set the warping error to 0 for pixels falling outside the image boundaries.

Figure 5 . 4

 54 Figure 5.4 Illustration of the image warping error (d) computed for the image in (a) and the estimated ow in (c). The ground-truth ow is shown in (b). Errors in ow estimation clearly appear in (d), e.g. for the spear, the dragon's claws or the character's feet.

Figure 5 . 5

 55 Figure 5.5 From top to bottom: example images, corresponding groundtruth ow, ground-truth motion boundaries and motion layers used for training.

Figure 5 . 6

 56 Figure 5.6 Illustration of our YMB dataset. The two top examples comes from YouTube Objects, the three other ones from Sports1M. Left: images. Middle: human annotations of motion boundaries. Right: our predictions.

 Training random forests typically requires a large number of examples in order to learn a model that generalizes well. MPI-Sintel constitutes an excellent choice for training our model, as the dataset is large and comes with reliable ground-truth ow.

Figure 5 .

 5 Figure 5.2. Examples of the resulting segmentation are shown in Figure 5.5 (bottom).

Figure 5 . 7

 57 Figure 5.7 Optical ow estimated with dierent methods.

Figure 5 . 8 Figure 5 . 9

 5859 Figure 5.8 Example results from the MPI-Sintel dataset with, from top to bottom: image, ground-truth ow, ground-truth motion boundaries, ow estimation using Classic+NL [Sun et al., 2014b], norm of the ow gradient (Classic+NL MB), and the motion boundaries estimated by our method (ours).

Figure 5 .

 5 Figure 5.8 provides qualitative comparisons between Classic+NL ow boundaries and our predictions for two images from MPI-Sintel[START_REF] Butler | A naturalistic open source movie for optical ow evaluation[END_REF]. Some object motions, like the character in the left column, are missed in the ow estimation. Likewise, errors due to over-smoothing are visible at the bottom of the right column. They are well recovered by our model, which accurately predicts the motion boundaries. The robustness of our model to incorrect or over-smooth ow estimates is conrmed by the examples from YMB shown in Figure5.9. The motion of the arm is badly estimated by the ow (left) and the motion of the wheels (right) spreads in the background. In both cases, our model is able to accurately estimate motion boundaries. This resilience can be explained by the integration of appearance and ow condence cues (Section 5.2.2) in our model, which certainly helps the classier to recover from errors in the ow estimation, as shown in the next section.

 4 shows the improvements resulting from adding one cue at a time. In addition, Figure 5.10 shows the precision recall curves for the MPI-Sintel dataset. Performance is reported for Classic+NL, but all ow estimators result in a similar behavior.

 Ours, +Image warping error Ours, +Backward flow & error

Figure 5 .

 5 Figure 5.10 Precision-recall curves when studying the importance of temporal cues on MPI-Sintel dataset, clean version.

Figure 5 .

 5 Figure 5.11 Frequency of each feature channel in the decision stumps of the random forest learned on MPI-Sintel clean. `BW' refers to backward, `color error' (resp. `grad error') denotes the color-based (resp. gradientbased) image warping error. All channels are about equally important.

 are based on local features: a video is represented as a collection of descriptors, representing small volumes or sequences of image patches. In contrast to global representation, local features have shown robustness under uncontrolled video settings thanks to the absence of a strict assumption on the global structure of the action. In addition, descriptors are directly computed from pixel values or optical ows, thus avoiding error-prone processing steps such as silhouette extraction, segmentation or long-term tracking. These methods have shown excellent results on a wide variety of video data such as sports

 movie scripts to obtain a coarse localization of the actions. The localization is then rened by leveraging discriminative clustering and used to learn a classier. In the same spirit, Satkin and Hebert [2010] nd discriminative segments in training videos using a max-margin objective function with temporal extents acting as latent variables. Given an ordered list of the actions in each clip, Bojanowski et al. [2014] assign temporal segments to action based on discriminative clustering. The assignment then allows to learn a detector for each action. More recently, Hoai et al. [2014] extend a Multiple Instance SVM to time series while allowing discontinuities in the positive samples.

 For localizing the action, Wang et al. [2014] rst use a temporal sliding window and then model the relations between dynamic-poselets. The authors thus require pose annotations in training videos.Action proposals. Driven by the success of proposals for object detection[Zitnick and Dollár, 2014, Uijlings et al., 2013], several recent methods for action localization are based on action proposals to reduce the search complexity.Jain et al. [2014b] andOneata et al. [2014a] construct action tubes by hierarchically merging supervoxels based on various features such as color, texture, motion or their size. They then rely on dense trajectories features for tube classication.Similarly, van Gemert et al. [2015] propose to cluster dense trajectories with a similarity measure dened by their descriptors (HOG, HOF and MBH) and use the resulting tubes for action detection. Dense trajectories were also used by Marian[START_REF] Puscas | Unsupervised tube extraction using transductive learning and dense trajectories[END_REF],

 Figure 6.1 Few frames from the existing datasets.

Figure 6 . 2

 62 Figure 6.2 Histogram of action durations (in number of frames) for the 24 classes with spatio-temporal annotations in the UCF-101 dataset (training set).

Contents 7 .

 7 1 Introduction . 128 7.2 Overview of the approach 130 7.3 Detailed description of the approach 131 7.3.1 Frame-level proposals with CNN classiers . . . 131 7.3.2 Tracking . 133 7.3.3 Track descriptor 135 7.3.4 Temporal localization 137 7.4 Experimental results . 137 7.4.1 Impact of the tracker 137 7.4.2 Class selection 139 7.4.3 STMH parameters 140 7.4.4 Comparison to the state of the art 141 7.5 Conclusion . 144 7.1 IntroductionThe main challenge in spatio-temporal localization is to accommodate the uncertainty of per-frame spatial localization and the temporal consistency. If the spatial localization performed independently on each frame is too selective and at the same time uncertain, then enforcing the temporal consistency across frames of the localization may fail. In this chapter, we propose to use a set of per-frame region proposals and enforce temporal consistency based on a tracker, that simultaneously relies on instance-level and class-level detectors.

Figure 7 . 1

 71 Figure 7.1 Overview of our action localization approach. We detect framelevel object proposals and score them with CNN action classiers. The best candidates, in term of scores, are tracked throughout the video. We then score the tracks with CNN and spatio-temporal local features classiers.

Figure 7 . 2

 72 Figure 7.2 Illustration of CNN features for a region R. The CNN features are the concatenation of the fc7 layer from the spatial-CNN and motion-CNN, i.e., a 2x4096 dimensional descriptor.

7. 3 . 3 Figure 7 . 3

 3373 Figure 7.3 Illustration of STMH. A chunk is split into spatio-temporal cells for which an histogram of gradient, optical ow and motion boundaries is computed.

 and 600 frames. The sliding window has a stride of 10 frames. For each action c, we learn the frequency of its durations on the training set. We score each window using the score described above based on CNNs features and spatio-temporal local features (STMH or IDT), normalized with a sigmoid, and multiply it with the perclass duration prior. For each track, we keep the top-scoring window as spatio-temporal detection.

Figure 7 .

 7 Figure 7.4 also shows that recall (green) is lower than the top-k accuracy because the generated tracks might not have a sucient overlap with the ground-truth due to a failure of the tracker. The dierence between recall and top-k accuracy is more important for large k. This can be explained by the fact that the class-level detector performs poorly in videos for which the correct label has a low rank, therefore the class-specic tracker performs poorly as well.

Figure 7 . 4

 74 Figure 7.4 Impact of the class selection on UCF-Sports (left) and J-HMDB (right) datasets. In blue, top-k accuracy is shown, i.e., the percentage of cases where the correct label is in the top-k classes. The recall when changing the number of selected classes is shown in green and the mAP in red (using CNN and STMH features).

Figure 7

 7 . [2011] Wang et al. [2014] van Gemert et al. [2015] Gkioxari and Malik [2015] Chen and Corso [2015]

Figure 7 . 5

 75 Figure 7.5 Comparison to the state of the art on UCF-Sports. Left: AUC for varying IoU thresholds. Right: mAP at δ = 50% with dierent variants for the features used for scoring tracks.

Figure 7 . 6 Figure 7 . 7

 7677 Figure 7.6 Example results from the UCF-Sports dataset.

Figure 7 . 8

 78 Figure 7.8 Example results from the UCF-101 dataset.

Figure 8 .Figure 8 . 1

 881 Figure 8.1 Illustration of our weakly-supervised action localization approach. For training, we extract human tubes in each video and learn a classier with weak supervision using Multiple Instance Learning for selecting tubes containing the action. At test time, human tubes are extracted and scored using the learned classiers.

Figure 8 .

 8 Figure 8.2 Example frames from the DALY dataset.

Figure 8 . 3

 83 Figure 8.3 Examples of bounding boxes (green) estimated from annotated joints and head (yellow) on the MPII Human Pose dataset.

Figure 8 . 4

 84 Figure 8.4 Example results of our human detector.

(

 IoU) above 0.3 with any box b f in this track. We then run the tracker a second time starting from the remaining detection with the highest human score and repeat the process until no boxes are left. Initial box renement. Let b be the selected box from frame f . As a rst step, we rene its position by performing a search for a higher scoring location in its neighborhood. To this end, we perform a forward pass of the network on the frame f using the neighborhood N (b) of b, i.e., we use the network without the region proposal part and the bounding box regression branch. The neighborhood N (b) of b simulates a sliding window in scale and space. More precisely, we use the box b plus its translation with 0, ±s, ±2s, ±3s, ±4s where s is the stride of the network, and similarly for rescaled versions of the box by a factor 0, ±10%, ±20%. The rened position b f of the initialization box is set to the region of interest b ∈ N (b) that maximizes the human score s H (b).Instance-level detector initialization. Based on this box b f , we learn an instance-level detector using the features from the last fully connected layer denoted by f c7. More precisely, we learn a linear SVM using as positive P the feature from the rened box P = {b f } and as negatives N the features from boxes in B f that have (almost) no overlap with b f :N = {b | b ∈ B f s.t. IoU(b, b f) < 0.1}.Tracking procedure. Starting from the rened box b f , we rst track it forward until the end of the sequence. The box b i of the track at a frame i is set using a sliding window to optimize the human score and the instancelevel score. More precisely, at each frame i, we perform a forward pass of the network using the boxes in the neighborhood N (b i-1) of the tracked box from the previous frame. b i is then set to the box b that maximizes the sum of the human score s H (b) and the instance-level detector probability s I (b), computed using a sigmoid on the SVM score, among all boxes b ∈ N (b i-1).

Figure 8 .

 8 Figure 8.6 shows a few examples of the highest scoring human tube for several sequences of the DALY dataset. The rst four examples show that the human tube extraction performs well despite motion of one arm (rst row), turning of the person (second and third row), camera motion (third row) or presence of an animal close to the human (fourth row).

Figure 8 . 6

 86 Figure 8.6 Example of human tubes with successful human tube extraction in the rst four rows, and some failure cases in the last three rows. Failures are caused by partial visibility of the human (end of fth row and sixth row) and missed human detection caused by an occluding camera (last row).

For

 the DALY dataset, we assume temporal supervision during training, i.e., the start and end time of each action. For training, we thus extract human tubes only for the temporal extent of the actions. We then run multifold MIL to select the relevant tubes and train the detector. Additional temporal localization is beyond the scope of this manuscript and would require an additional step for pre-selecting relevant shots. At test time, we do not suppose temporal localization given and perform spatio-temporal localization on the entire test set. We rst divide the videos into shots

Figure 8 . 7

 87 Figure 8.7 Left: Comparison of multi-fold MIL to standard MIL on UCF-Sports. Right: an example where multi-fold MIL allows to select the correct tube. The yellow box is the tube with highest human score used as initialization. The location of the positive tube remains locked to this initialization when using MIL, while multi-fold MIL allows to move to the human performing the kicking action (green). Red boxes indicate other human tubes.

Figure 8 . 8

 88 Figure 8.8 Comparison of the AUC at various IoU threshold with the state of the art on the UCF-Sports dataset.

Figure 8 . 9

 89 Figure 8.9 Example of highly-ranked drinking detections on the DALY dataset. The two left examples are correct, whereas the two examples on the right correspond to confusions with playing harmonica and applying make up on lips.

 grates a novel matching algorithm, called DeepMatching. DeepMatching is based on correlations between image patches and relies on a hierarchical multi-layer architecture. The architecture is inspired by deep convolutional neural network approaches, with interleaved pooling and aggregation. DeepMatching eciently handles non-rigid deformations, repetitive textures and outputs quasi-dense correspondences, even in cases of significant change between images. Experiments show that the matching algorithm performs well on matching benchmarks, particularly in terms of accuracy and coverage. We have also proposed an approximation scheme to save computational time and memory without signicant loss in performance. In addition, we have shown that DeepMatching is well suited for optical ow by integrating it into a variational formulation. The resulting optical ow approach obtains competitive performance on various benchmarks thanks to the accuracy and coverage of DeepMatching. In particular, it signicantly improves the case of large displacements compared to previous methods. DeepMatching and DeepFlow have been used in several recent works. For instance, Timofte and Van Gool [2015] use DeepFlow with a combination of DeepMatching and a new matching algorithm based on sparse decomposition of local patches to improve optical ow. DeepMatching has been used in other computer vision tasks such as tracking faces [Aghaei

(

 Daily Action Localization in YouTube) dataset. DALY consists of more than 31 hours of YouTube videos with spatio-temporal annotations for 10 daily action classes. The diversity and the duration of the videos are unprecedented in existing spatio-temporal action localization benchmarks. We obtain 10.8% mAP on DALY with temporal supervision only, i.e., without spatial supervision. This dataset will allow to measure progress in the eld over the next few years. 9.2 Perspectives for future research In this section, we propose directions for future research based on the experiments presented in this thesis as well as recent advances in the eld of computer vision and machine learning. 9.2.1 Optical ow estimation Improved variational modeling. Our variational model used in Deep-Flow and EpicFlow can benet from recent advances in optical ow estimation. For instance, the regularization assumes a constant ow by penalizing its gradient. Nevertheless, this assumption is often violated, such as on the Kitti dataset in which motion can be mainly modeled by homographies near image borders. Recently, the Total Generalized Variation framework

 δΨ D (I 2 t)I t I x + γΨ D (I 2 xt + I 2 yt)(I xx I xt + I xy I yt) + βρΨ M (ww match 2 2)(uu match) div(Ψ S (∇ 2 w 2 2)∇u) = 0 δΨ D (I 2 t)I t I y + γΨ D (I 2 xt + I 2 yt)(I xy I xt + I yy I yt) + βρΨ M (ww match 2 2)(vv match) div(Ψ S (∇ 2 w 2 2)∇v) = 0 , (A.3)

 2 x + w k (x) ∂y 2 I k t (x) = I 2 x + w k (x) -I 1 x I k xt (x) = ∂It(x) ∂x I k yt (x) = ∂I t (x) ∂y .

t)

 u k+1u k+1 match) div(Ψ S (∇ 2 w k+1 2 2)∇u k+1) = 0 δΨ D (I k+1 t) 2 I k+1 t I k y + γΨ D (I k+1 xt) 2 + (I k+1 yt) 2 I k xy I k+1 xt + I k yy I k+1 yt + βρΨ M (w k+1w k+1 match 2

,

 2 I k xx (I k xt + I k xx du k + I k xy dv k) + I k xy (I k yt + I k xy du k + I k yy dv k) + βρΨ k 3 u k + du ku k match div Ψ k 4 ∇(u k + du k) = 0 δΨ k 1 I k y (I k t + I k x du k + I k y dv k) + γΨ k 2 I k xy (I k xt + I k xx du k + I k xy dv k) + I k yy (I k yt + I k xy du k + I k yy dv k) + βρΨ k 3 v k + dv kv k match div Ψ k 4 ∇(v k + dv k) = 0 (I k xt + I k xx du k + I k xy dv k) 2 + (I k yt + I k xy du k,l + I k yy dv k) 2 , Ψ k 3

,

 Figure B.1 One example frame for each of the 10 classes of the DALY dataset.

 51 videos are selected for each action class such that they contain at least one instance of the action class. In total this corresponds to 31 hours of video, or 3.3 million frames. Videos from a given action class often contain multiple instances of the main action, and may contain instances of other action classes, which we annotate exhaustively.Temporal annotation. Selected videos are carefully watched by members of our research team in order to catch all actions, including those happening in the background. The begin and end time is annotated for all instances found. Precise guidelines are established prior to annotation. For example, the phoning action lasts as long as the phone remains close to the actor's ears. In case of a shot change during an action, we annotate it as two separate instances and set a `shotcut' ag. DALY contains 3724 action instances in total, with an average duration of 8 seconds.

Figure

 Figure B.2 Left: Statistics of multiple classes per video. Each row considers the 51 videos downloaded for a given class, each column counts the videos containing at least one instance of the column class. Right: Statistics for each class on the video duration (average and standard deviation), the number of instances, and the instance duration (average and standard deviation).

Figure B. 3

 3 Figure B.3 Histogram of duration of the videos (left) and instances (right).

Figure B. 3

 3 Figure B.3 shows the histogram of video duration and instance duration. Per-class statistics are presented in Figure B.2, right. One can see that most of the videos last several minutes (less than 10). Videos are longest in average for ApplyingMakeUpOnLips, mainly because this action is present in a multitude of full-face make-up tutorials. Concerning the instances, most of them are shorter than 10 seconds. Nevertheless, DALY also contains

 Optical Flow . Image matching in optical ow estimation 2.4.1 Image matching 2.4.2 Integration of matching in optical ow estimation 2.5 Datasets and evaluation

	Chapter 2
	Related Work on Optical Flow
	Contents
	with existing spatio-temporal action localization datasets. On the DALY dataset, our tubes have a spatial recall of 82%, but the localization task is extremely challenging, we obtain 10.8% mAP. This work is presented in Chapter 8. 2.1 In this chapter, we review related work on optical ow estimation and
	present the datasets and metrics used for evaluation. We start by intro-
	ducing optical ow in Section 2.1. Most existing optical ow methods are
	based on a variational formulation. We give more details on variational

2.1.1 Optical Flow Constraint 2.1.2 Local approach 2.1.3 Global approach 2.2 Variational approaches 2.2.1 Data term . 2.2.2 Regularization term 2.2.3 Coarse-to-ne scheme 2.2.4 Minimization 2.3 Other optical ow approaches 2.3.1 Layered and segmentation-based methods . . . 2.3.2 Learning-based methods 2.3.3 Discrete optimization 2.4 2.5.1 Metrics . 2.5.2 Datasets . methods in Section 2.2 and briey present other approaches in Section 2.3.

 to 50 images. In the training set, more than 17.5% of the pixels have a motion over 20 pixels, approximately 10% over 40 pixels. The images are

	available in two rendering versions: `clean' and `nal'. We use this latter
	one which adds realistic rendering eects such as motion blur, defocus blur
	and atmospheric eects. The scene also contains non-rigid objects such as characters. Chapter 3
	DeepFlow: Large Displacement
	Optical Flow with DeepMatching
	Contents
	3.1 Introduction . 35
	3.2 DeepMatching . 38
	3.2.1 Overview of the approach 38
	3.2.2 Bottom-up correlation pyramid computation . . 40
	3.2.3 Top-down correspondence extraction 46
	3.2.4 Discussion and Analysis of DeepMatching . . . 48
	3.3 Extensions of DeepMatching 52
	3.3.1 Approximate DeepMatching 52
	3.3.2 Scale and rotation invariant DeepMatching . . . 53
	3.4 DeepFlow . 54
	3.5 Experiments . 56
	3.5.1 Datasets and metrics 56
	3.5.2 Matching Experiments 58
	3.5.3 Optical Flow Experiments 69
	3.6 Conclusion . 75
	3.1 Introduction
	Although variational methods have shown promising results on small
	displacements

Table 3

 3

			0.90							0.90		
	Accuracy@10	0.82 0.86	Pre-smoothing ν 1 Mikolajczyk dataset MPI-Sintel (final)	5	Kitti	2	Accuracy@10	0 0.82 0.86	0.5 Mikolajczyk dataset 1 1.5 Mid-smoothing ν 2 MPI-Sintel (final)	2	Kitti	2.5
			0.90							0.90		
	Accuracy@10	0 0.82 0.86	0.5 Post-smoothing ν 3 1 1.5 Mikolajczyk dataset MPI-Sintel (final)	Kitti	2	Accuracy@10	0.1 0.82 0.86	0.15 Sigmoid slope ς 0.2 Mikolajczyk dataset MPI-Sintel (final)	0.25	Kitti	0.3
					0.90							
				Accuracy@10	0.1 0.82 0.86	0.2 Regularization constant µ 0.3 0.4 Mikolajczyk dataset MPI-Sintel (final)	Kitti	0.5
	Figure 3.11 Impact of the parameters to compute pixel descriptors on the
	dierent datasets.								
			0.92									
	Accuracy@10	Power normalization parameter λ 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 0.76 0.80 0.84 0.88 Mikolajczyk dataset MPI-Sintel (final) Kitti
	Figure 3.12 Impact of the non-linear response rectication (Equa-
	tion 3.11).									

.1 Detailed comparison between the preliminary and current versions of DeepMatching in terms of performance, run-time and memory usage. R denotes the input image resolution and BT backtracking. Run-times are computed on 1 core @ 3.6 GHz.

Table 3 .

 3

	462K	1

3 Statistics of the dierent matching methods. The # column refers to the average number of matches per image, and the coverage to the proportion of points on a regular grid with 10 pixel spacing that have a match within a 10px neighborhood. We use the raw matches output by each method, i.e., without any post-processing. Matches are not necessarily correct. on weakly discriminative small patches. Despite this limitation, SIFT-ow and DSP are still able to perform well on MPI-Sintel as this dataset contains little scale changes. Other dense methods, NRDC, SLS and DaisyFF, can handle patches of dierent sizes and thus perform better on Kitti. But in turn this is at the cost of reduced performance on the MPI-Sintel or Mikolajczyk datasets (qualitative results are in Figure 3.15). In conclusion,

Table 3 .

 3 These parameters are used in the remaining of the experiments for DeepFlow, i.e., using matches obtained

	with DeepMatching, except when reporting results on Kitti and Middlebury
	test sets in Section 3.5.3. In this case the parameters are optimized on their
	respective training set.

5

Comparison of average endpoint error on dierent datasets when changing the input matches in the ow computation.

Table 3 .

 3 6 Results on MPI-Sintel test set (nal version). EPE-occ is the EPE on occluded areas. s0-10 is the EPE for pixels with motions between 0 and 10 px and similarly for s10-40 and s40+. DeepFlow* denotes the preliminary version of DeepFlow published in[START_REF] Weinzaepfel | Deepow: Large displacement optical ow with deep matching[END_REF].

	Method	EPE	EPE-occ	s0-10	s10-40	s40+	Time
	FlowFields [Bailer et al., 2015]	5.810	31.799	1.157	3.739	33.890	23s
	DiscreteFlow [Menze et al., 2015]	5.810	31.799	1.157	3.739	33.890	180s
	EpicFlow [Revaud et al., 2015]	6.285	32.564	1.135	3.727	38.021	16.4s
	TF+OFM [Kennedy and Taylor, 2015] DeepFlow	6.727 6.928	33.929 38.166	1.512 1.182	3.765 3.859	39.761 42.854	∼400s 25s
	SparseFlowFused [Timofte and Van Gool, 2015]	7.189	3.286	1.275	3.963	44.319	20s
	DeepFlow* [Weinzaepfel et al., 2013]	7.212	38.781	1.284	4.107	44.118	19s
	S2D-Matching [Leordeanu et al., 2013] LocalLayering [Sun et al., 2014a]	7.872 8.043	40.093 40.879	1.172 1.186	4.695 4.990	48.782 49.426	∼2000s
	Classic+NL-P [Sun et al., 2014b] MDP-Flow2 [Xu et al., 2012]	8.291 8.445	40.925 43.430	1.208 1.420	5.090 5.449	51.162 50.507	∼800s 709s
	NLTGV-SC [Ranftl et al., 2014]	8.746	42.242	1.587	4.780	53.860	
	LDOF [Brox and Malik, 2011]	9.116	42.344	1.485	4.839	57.296	30s

8. http://sintel.is.tue.mpg.de/results

Table 3 .

 3 7 Results on Kitti test set. EPE-noc is the EPE over non-occluded areas. Out-Noc 3 (resp. Out 3) refers to the percentage of pixels where ow estimation has an error above 3 pixels in non-occluded areas (resp. all pixels). DeepFlow* denotes the preliminary version of DeepFlow published in Weinzaepfel et al. [2013].

	Sintel decreases EPE-Noc by only 0.1 pixel on the training set. This shows
	that our method does not suer from overtting.
	9. http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=
	flow

 and Middlebury[Baker

	Coarsest level Coarsest level	Flow estimate at coarsest level Flow estimate at coarsest level
	Original frame Original frame	Flow estimate after coarse-to-fine Flow estimate after coarse-to-fine
	Ground-truth flow Ground-truth flow	EpicFlow EpicFlow

Table 4

 4 .1 compares the result of our sparseto-dense interpolation, i.e., before energy minimization, and EpicFlow for dierent matches (DM and KPM) and for the two interpolation schemes:

		Matching	Interpolator	MPI-Sintel	Kitti	Middlebury
	Interpolation	KPM KPM DM DM	NW LA NW LA	6.052 6.334 4.143 4.068	15.679 12.011 5.460 3.560	0.765 0.776 0.898 0.840
	EpicFlow	KPM KPM DM DM	NW LA NW LA	5.741 5.764 3.804 3.686	15.240 11.307 4.900 3.334	0.388 0.315 0.485 0.380
	Table 4.1 Comparison of average endpoint error (EPE) for dierent sparse

matches (DM, KPM) and interpolators (NW, LA) as well as for sparseto-dense interpolation (top) and EpicFlow (bottom). The approximated geodesic distance DG is used.

Nadaraya-Watson (NW) and locally-weighted ane (LA). The approximated geodesic distance is used in the interpolation, see

Section 4.2.4.

Table 4 .

 4

			Flow method	MPI-Sintel	Kitti	Middlebury	Time
			DM+coarse-to-ne DM+EpicFlow	4.095 3.686		4.422 3.334	0.321 0.380	25s 16.4s
	Matching density	2 -4 2 -5 2 -6 2 -7 2 -8 2 -9 2 -10 2 -11 2 -12	0.0 0.01 0.02 0.04 0.06 0.08 0.1 0.15 0.2 0.3 0.4 0.5 Matching noise DM KPM AEE for EpicFlow	Matching density	2 -4 2 -5 2 -6 2 -7 2 -8 2 -9 2 -10 2 -11 2 -12	0.0 0.01 0.02 0.04 0.06 0.08 0.1 0.15 0.2 0.3 0.4 0.5 Matching noise DM KPM AEE for coarse-to-fine	0 1 2 3 4 5 6 7 8 9 10

3 Comparison of EPE for EpicFlow (with DM + LA) and a coarse-to-ne scheme (with DM).

Table 4 .

 4 5 reports the results on the Kitti test set for methods that do

	not use epipolar geometry or stereo vision. Parameters are optimized on
	the Kitti training set. We can see that EpicFlow perform on part with
	the state of the art best in terms of EPE on non-occluded areas or per-
	centage of erroneous pixels. When comparing the methods on both Kitti
	and MPI-Sintel, we outperform TF+OFM [Kennedy and Taylor, 2015] and
	DeepFlow [Weinzaepfel et al., 2013] (second and third on MPI-Sintel at

Table 5

 5

	.1 Some statistics of our YMB dataset (averaged across the videos
	for each part). w denotes the ow, here estimated with LDOF [Brox and
	Malik, 2011].

Table 5 .

 5 2 Comparison of the performance (mAP) of our motion boundary estimation, when training on the clean or the nal version of the MPI-Sintel dataset. The ow is estimated with Classic+NL [Sun et al., 2014b].with the lowest connection weight. For each image, we generate 3 segmentations, with dierent number of target regions and with randomness in the clustering process. Generating several segmentations helps to deal with the intrinsic ambiguity of motion layers, whose boundaries only partially correspond to motion boundaries, e.g. in the case of deformable objects, see

	CHAPTER 5. LEARNING TO DETECT MOTION BOUNDARIES 108
	Training / Test	Middlebury	MPI-Sintel clean	MPI-Sintel nal	YMB
	train on clean	91.1	76.3	68.5	72.2
	train on nal	90.9	74.6	67.6	70.7

Table 5 .

 5 4 Importance of temporal cues for predicting motion boundaries.

	channels used	Middlebury	MPI-Sintel clean nal	YMB
	SED [Dollár and Zitnick, 2013]	48.8	32.4	30.1	31.3
	RGB only	48.0	41.1	37.5	36.3
	+Flow	91.8	72.2	66.3	69.6
	+Image warping error	91.2	74.2	66.1	70.5
	+Backward ow&error	91.1	76.3 68.5 72.2

Table 4

 4 Action localization . 122 6.2.1 Temporal localization 122 6.2.2 Spatio-temporal localization 123 6.3 Datasets and metrics

	.2. Second, the matches are more critical than the boundaries
	in EpicFlow performance. Indeed, in the presence of edges which are not
	motion boundaries, we nd that the texture carried by the edges allows
	to nd correct correspondences. As a consequence, the performance is not
	harmed at these locations. In summary, the question regarding how the pro-
	posed motion boundaries detection can help optical ow estimation remains
	open.

Contents 6.1 Video classication . 118 6.1.1 Local features 119 6.1.2 Deep learning approaches 121 6.2 124 6.3.1 Datasets . 125 6.3.2 Metrics . 126

 Algorithm 7.2 Spatio-temporal detection in a test video.

	Input: a test video {I t } t=1...T Output: a list of detections (c, T , score) For t = 1..T			
	P t = EdgeBoxes(I t) For r ∈ P t Compute S CNN (c, r)				
	C ← class selection (see Sec. 7.3.2) Detections ← [] For c ∈ C For i = 1...ntracks (we generate ntracks=2 tracks per label, see Sec. 7.3.2)
	R, τ ← argmax r∈Pt,t=1..T S CNN (c, r) (proposal to track without overlap with previous tracks)
	T ← Tracking(R, I τ , c) score ← σ(S desc (c, T)) + σ(Rt∈T S CNN (c, R t)) Detections ← Detections ∪ {(c, T , score)}	(Algorithm 7.1) (Equation 7.2)
	Detectors in the tracker	recall-track UCF-Sports J-HMDB	mAP UCF-Sports	J-HMDB
	instance-level + class-level instance-level only	98.75% 85.42%	91.74% 94.59%		90.50% 74.27%	59.74% 54.32%
	class-level only	92.92%	81.28%		85.67%	53.25%

Table 7

 7

	.2 Comparison of tracking and linking, SelectiveSearch and
	EdgeBoxes-256 proposals with CNN features only or CNN + STMH on
	UCF-Sports (localization in mAP).

Table 7 .

 7 [START_REF] Vogel | An evaluation of data costs for optical ow[END_REF] Comparison of mean-Accuracy when classifying ground-truth tracks using STMH with dierent numbers of temporal (N t) and spatial (N s) cells.resulting STMH descriptor has 6, 336 dimensions.

Table 7 .

 7 4 Comparison to the state of the art on J-HMDB using mAP for varying IoU thresholds δ. We also report the standard deviation among the splits.

	δ	0.05 0.1	0.2	0.3
	Yu and Yuan [2015]	42.8		
	ours (CNN + STMH) 54.3 51.7 46.8 37.8
	ours (CNN + IDT)	69.7 68.1 60.6 46.3
	Table 7.5 Localization results (mAP) on UCF-101 (split 1) for dierent
	IoU thresholds δ.			

Table 8 .

 8 .4. These results are obtained by training in a spatially weakly-supervised setting. Note that the IoU is dened as the temporal IoU multiplied by the spatial IoU obtained by averaging over the annotated 4 Detailed performance analysis on the DALY dataset. See text for more details. keyframes, since spatial annotations are not available at every frame. The relatively low performance can be explained by several factors. First, temporal detection is dicult as actions are short in long untrimmed videos.Moreover, there are many actions that are close in time and our method tends to return one detection that covers multiple ground-truth short actions. Second, the dierent labels have similarities, leading to confusion between classes, as shown in Figure8.9. For instance, drinking, playing harmonica and applying make up on lips all involve poses where the hands come near the mouth. The relatively low performance highlights the difculty of the introduced DALY dataset and demonstrates that signicant improvements are necessary to tackle challenging real-world videos.

	mAP@0.1	mAP@0.2

 Summary of contributions 166 9.1.1 Optical ow estimation 166 9.1.2 Human action localization 169 9.2 Perspectives for future research 170 9.2.1 Optical ow estimation 170 9.2.2 Human action localization 172

	polation of matches while respecting edges. Finally, we have shown that a
	learning-based method is able to predict motion boundaries, see Chapter 5.
	Chapter 9
	Conclusion
	Contents
	9.1 In this thesis, we focused on two tasks related to video understand-
	ing: optical ow estimation in realistic videos, i.e., with fast non-rigid mo-
	tion, and human action localization in uncontrolled videos. This chapter
	is organized as follows. We summarize the contributions of the thesis on
	optical ow estimation in Section 9.1.1 and on action localization in Sec-
	tion 9.1.2. We then conclude this dissertation with directions for future
	research, on optical ow estimation (Section 9.2.1) and on action localiza-
	tion (Section 9.2.2).
	9.1 Summary of contributions
	9.1.1 Optical ow estimation
	We have introduced several contributions to improve optical ow esti-
	mation near motion boundaries and in presence of large displacements and
	occlusions. We have proposed DeepFlow in Chapter 3, a variational model
	that integrates a novel matching algorithm, robust to non-rigid motions and
	repetitive textures. In addition, we have introduced EpicFlow in Chapter 4,
	a novel scheme for optical ow estimation based on a sparse-to-dense inter-

,p+ N 4 o

(red box).

), we re-2. Note that I N,p only roughly corresponds to a N × N square patch centered at 2 p in I , due to subsampling and possible deformations.

Part I Optical Flow Estimation in

Realistic Videos Algorithm 8.1 Extracting human tubes from a video.

Input: a video sequence V with F frames.

Output: a list of human tubes ours [START_REF] Mosabbeb | Multi-label discriminative weakly-supervised human activity recognition and localization[END_REF][START_REF] Ma | Action recognition and localization by hierarchical space-time segments[END_REF] mAP@0.5 mAP@0.5 mAP@0.05 mAP@0.2 mAP@0.2 [START_REF] Gkioxari | Finding action tubes[END_REF] 8.3 Comparison to the state of the art with mAP@0.5 on the UCF-Sports and J-HMDB datasets and mAP@0.2 on the UCF-101 (split 1) and DALY datasets. For UCF-101 we also report mAP@0.05 to compare to [START_REF] Yu | Fast action proposals for human action detection and search[END_REF]. Weinzaepfel et al. [2015a] • refers to the version with IDT instead of STMH features.

slowly with respect to the IoU threshold. This indicates the high IoU of our detections with respect to the ground-truth, thanks to accurate human detection and tracking. We have also evaluated the mean-IoU, which is the average IoU between the best detection in a test video and the ground-truth tube. A comparison with other weakly-supervised approaches [START_REF] Mosabbeb | Multi-label discriminative weakly-supervised human activity recognition and localization[END_REF][START_REF] Ma | Action recognition and localization by hierarchical space-time segments[END_REF] reporting this metric is shown in Table 8.2. We outperform them by more than 15%. Finally, we compare with the more meaningful mAP metric in Table 8.3. We obtain a mAP of 84% which is close to the state-of-the-art fully-supervised method [Weinzaepfel et al., 2015a] and better than [START_REF] Gkioxari | Finding action tubes[END_REF], despite the fact that we use signicantly less supervision.

Incorporating segmentation. Another useful cue consists in segmenting the humans. In particular, this will allow to focus on features from trajectories that belong to the human, whereas boxes also contain background. [START_REF] Jhuang | Towards understanding action recognition[END_REF] have shown that the human segmentation helps the action recognition task. Human segmentation can be obtained without additional annotation: recent works [Papandreou et al., 2015, Kolesnikov and[START_REF] Kolesnikov | Seed, expand and constrain: Three principles for weakly-supervised image segmentation[END_REF] show that reasonable segmentation performance can be obtained in a weakly-supervised setting. CNNs are learned using an estimation of the ground-truth segmentation based on the current estimate and priors such as the image or video labels. In addition, segmentation may help the detection when humans are partially occluded.

Publications

This thesis has led to several publications summarized below.

International Conferences

Softwares and datasets

Several softwares and datasets from this thesis are available online.

Softwares

• Source code for computing DeepMatching on CPU and GPU.

• Source code for computing DeepFlow.

• Source code for computing EpicFlow.

• Source code for detecting motion boundaries using structured random forest.

Datasets

• YouTube Motion Boundary (YMB) dataset.

• Daily Action Localization in YouTube (DALY) dataset.

Appendix A

Computation of optical ow using variational models In this appendix, we explain the minimization technique used for instance by [START_REF] Brox | High accuracy optical ow estimation based on a theory for warping[END_REF], to estimate the optical ow based on Euler-Lagrange equation. Assume that the energy to minimize has a data term with brightness and gradient constancy assumptions, a smoothness term that penalizes the norm of ow gradient, and a matching term to penalize the dierence between ow and input matches: with:

A.2 Linear solver

The set of equations can also be written as a linear system A k,l x = B k,l . If we use a row-wise order on the pixels, and if we dene x by the concatenation of vectors (u k,l+1 , v k,l+1) T for each pixel, A k,l has the structure shown in Figure A.1. We decompose the matrix into 2×2 blocks. Let A i,j be the block at position (i, j). We have the following structure for the diagonal block A i,i at position (i, i),

VARIATIONAL MODELS 203

For the non-diagonal block A i,j , i.e. with j ∈ N (i), we obtain:

- .13) And nally for the right hand side b i :

Since A is highly dimensional (2 equations per pixel), only iterative solvers can be applied. Note that A is sparse: there are 6 non-zero values per row/column (or 10 in case of an anisotropic smoothness term). Moreover, A is structured as a 7-diagonal matrix and as a 5-diagonal 2×2 blocks, see FigureA.1. A is positive semi-denite and also block diagonally dominant [START_REF] Sundaram | Dense point trajectories by gpuaccelerated large displacement optical ow[END_REF] if the robust penalizers are increasing. The diagonal blocks are positive denite. These properties are sucient to prove the convergence of most solvers.

The most used ones are the Successive Over Relaxation (SOR) [START_REF] Young | Iterative solution of large linear systems[END_REF] which is a relaxation of Gauss-Seidel method, and a conjugate gradient descent with an appropriate preconditioner. Let n be the dimension of the problem and x k the estimation after k iterations of the iterative solver. The SOR algorithm is sequential, making it inecient for a GPU implementation, see Algorithm A.1. With SOR, the ow component u and v are not updated simultaneously. We consequently use a coupled version of the algorithm in which the sequential update operates on 2 × 2 sub-matrices, see Algorithm A.2. Algorithm A.1 Successive Over Relaxation (SOR) method. ω is a parameter.

For k from 1 to n solver For i from 1 to n

For a GPU implementation, conjugate gradient descent (see Algorithm A.3) is better suited [START_REF] Sundaram | Dense point trajectories by gpuaccelerated large displacement optical ow[END_REF] as it only involves matrix operations. A preconditioning with block-Jacobi preconditioner is necessary for fast convergence.

VARIATIONAL MODELS 204

Algorithm A.2 Coupled variant of Successive Over Relaxation (SOR) method. ω is a parameter.

For k from 1 to n solver For i from 1 to n

For k from 0 to n solver -1

Summary of the algorithm

Algorithm A.4 summarizes the whole optimization process. Note that we perform a last iteration with β = 0 as [START_REF] Brox | Large displacement optical ow: descriptor matching in variational motion estimation[END_REF]. Indeed, descriptors matching is important at the beginning to encourage the ow estimate to follow the matching. Once the initialization is well done, this is less important to integrate it into the equation's system.

VARIATIONAL MODELS 205

Algorithm A.

B.1 Dataset collection

Picking action classes. In order to allow precise annotation, we choose action classes with clearly dened temporal boundaries. For instance, the brushing teeth action is dened as `toothbrush inside the mouth'. Another example is cleaning windows for which the moment where `the tool is in contact with the window' is annotated. Some of the classes are chosen to contain similar motion patterns, in order to make the class distinction dicult. Several of our action classes imply motion of the hands near the head (taking photos, phoning) or the mouth (playing harmonica, drinking, brushing teeth, applying make up on lips).

In summary, we kept the following 10 actions: applying make up on lips, brushing teeth, cleaning oor, cleaning windows, drinking, folding textile, ironing, phoning, playing harmonica and taking photos/videos, see Fig- Video collection. The videos are gathered from YouTube using manually designed queries related to the selected action classes. For the class